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Abstract

Automatic story generation has a long-standing tradition in the field of Artificial

Intelligence. The ability to create stories on demand holds great potential for enter-

tainment and education. For example, modern computer games are becoming more

immersive, containing multiple story lines and hundreds of characters. This has sub-

stantially increased the amount of work required to produce each game. However, by

allowing the game to write its own story line, it can remain engaging to the player

whilst shifting the burden of writing away from the game’s developers. In education,

intelligent tutoring systems can potentially provide students with instant feedback and

suggestions of how to write their own stories. Although several approaches have been

introduced in the past (e.g., story grammars, story schema and autonomous agents),

they all rely heavily on handwritten resources. Which places severe limitations on its

scalability and usage.

In this thesis we will motivate a new approach to story generation which takes its

inspiration from recent research in Natural Language Generation. Whose result is an

interactive data-driven system for the generation of children’s stories. One of the key

features of this system is that it is end-to-end, realising the various components of the

generation pipeline stochastically. Knowledge relating to the generation and planning

of stories is leveraged automatically from corpora and reformulated into new stories to

be presented to the user.

We will also show that story generation can be viewed as a search task, operating

over a large number of stories that can be generated from knowledge inherent in a cor-

pus. Using trainable scoring functions, our system can search the story space using

different document level criteria. In this thesis we focus on two of these, namely, co-

herence and interest. We will also present two major paradigms for generation through

search, (a) generate and rank, and (b) genetic algorithms. We show the effects on

perceived story interest, fluency and coherence that result from these approaches. In

addition, we show how the explicit use of plots induced from the corpus can be used

to guide the generation process, providing a heuristically motivated starting point for

story search.

We motivate extensions to the system and show that additional modules can be

used to improve the quality of the generated stories and overall scalability. Finally we

highlight the current strengths and limitations of our approach and discuss possible

future approaches to this field of research.
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Chapter 1

Introduction

The process of generating stories using computers has a longstanding tradition in the

field of artificial intelligence. Computational storytelling has the potential to bring

benefits to both eduction and entertainment, providing a wealth of new example stories

and allowing the on-line creation of interactive narratives. To this end, many different

approaches have been proposed in order to solve the problem of how best to model and

implement a story generation system. Current approaches, however, require a large

volume of hand-crafted rules and knowledge bases, placing the burden of creating

them on the system developer. In this thesis we take the first step towards constructing

a story generator that consists of trainable components, and is thus learnable from text.

The ability to generate stories automatically is most relevant in education where

stories are used to help teach children. Currently, however, story creation relies on

human authors and the writing process demands considerable effort and time to ensure

stories are both informative and entertaining. Teaching resources are therefore limited

to the stories that are in circulation. Computational story writing has the potential to

greatly increase the number of stories available by removing the reliance on human

authors. Also, current research of interactive tutoring systems has highlighted the abil-

ity to provide students with feedback, specifically tailored to meet their needs based

on automatic assessment of their work. The ability to analyse a story in development,

offering suggestions and highlighting areas of concern would be invaluable to young

authors. As a prototype for such a system, STORYSTATION (Halpin et al., 2004) is

able to discern the difference between good and poor attempts by students at a story

retelling task. Automatic storytelling also holds great potential as a component in inter-

active environments which can be used as learning aids. Robertson and Good (2003a)

propose GHOSTWRITER, a system that allows children to interact in a story environ-

1



2 Chapter 1. Introduction

ment with the aim of collaboratively generating a narrative. Within this environment

the students are encouraged to form relationships and make decisions pertaining to

complex problems, with the overall aim of increasing their perception of story charac-

terisation. Designing scenarios that the students encounter is currently the task of the

developer, however, through automatic generation means, the scenarios used in inter-

active tutoring systems could be automatically tailored to specific age ranges, subjects

and learning outcomes.

As technological media becomes more pervasive in human culture, Murray (1997)

foresees a greater role for digital storytelling in everyday life. The more we interact

with the web, social networking and computer games, the more we expect to find nar-

rative structures to make them more accessible and entertaining. Stories are already

used extensively in the entertainment industry, for instance within computer games.

Many computer games, such as Role Playing Games (RPGs), allow the gamer to as-

sume the role of a character and participate in a story line throughout the game. As the

performance and processing power of games consoles increase, so does the potential

for larger and more sophisticated gaming environments. Recent games (e.g., The El-

der Scrolls IV: Oblivion and Fallout 3) include multiple story lines, hundreds of NPCs

(Non Player Characters), game locations and thousands of lines of dialogue, resulting

in games that involve hundreds of hours of game-play. Clearly, games of this magni-

tude require substantial amounts of work in developing. Also, the majority of these

games will have their plots set during development and as a result each consecutive

play of the game will be less interesting. However, if a game were to generate its

story during runtime then the gamer would feel much more involved (i.e, less like they

are acting out a script). Having a dynamic plot that responds to the actions of the

gamer would make game play more involving and entertaining. As more players are

signing up to Massively Multiplayer Online Role Playing Games Games (MMORPGs,

e.g., World of Warcraft and Star Trek Online) which contain many players interacting

in online environments, the dynamics of game plots are becoming much richer. Com-

puters can therefore be utilised in this area to create interesting stories and plots for

games within these dynamic environments. In addition to creating richer computer

games, there is also the potential for automatic story generation to be integrated into

tools for authors. One example is in providing hypothetical plot lines for screen writ-

ers, suggesting possible character attributes and scenes by evaluating the developing

plot.

The art of storytelling is one that humans often take for granted but it forms an
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integral part of our cultural heritage. We encounter stories in a large number of every-

day situations. We use them to communicate with one another, to create examples for

teaching and even as a resource in shaping our self-image in the form of a self-narrative

containing our memories (Mar, 2004). However, it can be difficult to pin down exactly

the skills required in order to produce or understand a simple story. Take for example,

the well known fable of “The Hare and the Tortoise” attributed to Æsop.

A Hare jeered at a tortoise for the slowness of his pace. But he laughed
and said, that he would run against her and beat her any day she would
name. “Come on,” said the Hare, “you shall soon see what my feet are
made of.” So it was agreed that they should start at once. The Tortoise
went off jogging along, without a moment’s stopping, at his usual steady
pace. The Hare, treating the whole matter very lightly, said she would first
take a little nap, and that she would soon overtake the Tortoise. Meanwhile
the Tortoise plodded on, and the Hare oversleeping herself, arrived at the
goal, only to see the Tortoise had got in before her.

Slow and steady wins the race.

The simplistic nature of this text classifies it as a children’s story, but we must consider

that reading this story involves complex thought processes. Besides language process-

ing, this story requires us to make inferences based on our word knowledge, which

informs us that hares are fast and tortoises slow. We are required to correctly inter-

pret the story fabula (the correct ordering of all events performed by story characters,

including implied actions that have been omitted) from the story sujet (the ordering

presented in the text). This often includes the ability to ‘look between the lines’, us-

ing inference, world knowledge and personal experience to fill in gaps in the narrative

(Anderson et al., 1977). We also have to consider that the fable contains a moral mes-

sage, and how the situation acted out by the story characters is applicable to our own

lives by considering our own personal experiences. When reading or hearing a story,

interpretation requires looking further than the level of the text itself, we must also

consider who the intended reader is and what the author intended to communicate. As

a result, this make the task of story understanding and generation very challenging for

computers to do well.

Storytelling is a useful skill as it allows us to transform information into a form that

is entertaining and easier to understand. To date there has been little consensus on how

to generate stories automatically and previous work has emanated from many different

disciplines. For example, the Russian formalist Propp (1968) analysed Russian folk

tales and identified recurring units (e.g., the villain is defeated, the hero is pursued)
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and rules (e.g., an act of villainy will often be followed by meditation) which indicated

how they could interact. Consider the following formula:

S→ ABC ↑ DEFG
HJIK ↓ Pr−Rs0L
LMJNK ↓ Pr−Rs

QExTUW

This is in fact a schema produced by Propp that represents a range of different Russian

folk tales that he studied. In this schema, the individual propositions represent those

morphemes that he identified as well as their ordering (e.g., W stands for a wedding,

so from the schema above we see that many Russian folk tales end with the main char-

acters getting married). Using Propp’s rules, new Russian folk tales can be generated

from the reformulation of the available morphemes. Structural Grammars, such as

those used in language processing, have been used to both describe and create stories.

For instance, Klein et al. (1979) used a grammar in order to generate stories of the mur-

der mystery genre. Recent approaches to computational storytelling have focused on

the use of autonomous agents (Swartjes and Theune, 2008). By supplying a character

agent with a set of goals, a story can be created by recording the actions it performs in

order to resolve these goals.

There are several common challenges that any hypothetical story generator would

have to face. Perhaps the biggest concern is the amount of world knowledge required to

create good stories. For this reason, previous systems have been primarily handcrafted.

The amount of knowledge required varies but most approaches generally require in-

formation on the entities appearing in the story, how they interact and how a story can

be structured to include them. For example, story generation with agents requires a

set of actors with goals and action descriptions, an environment in which the agents

will interact, and a description of possible relationships between the agents. All of

this information must be complete to ensure that the planning algorithms will create

successful plans. Using handcrafted data sets a limit on the domains that the story gen-

erator can cover. In agent-based systems, a whole new set of action descriptions and

environments would have to be written in order to generate stories of a different genre.

It is easy to imagine that the process of creating the required knowledge base for these

systems will be laborious and time consuming which removes any impetus to expand

them to cover new genres.
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1.1 Thesis Hypothesis

Many of the components of a story, such as characters and themes, will repeat in similar

forms in other stories. We can see from the work of Propp (1968) that several stories

contained a Hero or a Villain and although they may not be have been identical in every

story, they shared a lot of similar properties. It is precisely this redundancy that we wish

to exploit in order to create new stories, by discovering regularities in a large sample

of manually authored ones. Our goal is to generate stories automatically by leveraging

knowledge inherent in corpora. Rather than hand-coding all the information in the

system for each genre, we want the system to acquire this information from stories it

has already seen. This will allow the us to port our story generator to different genres

without extensive manual hand-coding.

There are many different story genres for which we could generate stories. Exam-

ples include fairy tales, parables, fables or even murder mysteries. However, we wish

to start simple in order to see if our hypothesis is at all feasible. For this reason we

have chosen to focus on children’s stories. Children’s stories offer several benefits as

the basis of a feasibility study. To start with, the vocabulary and the content of each

story will be limited as they must meet the knowledge held by children. Secondly,

they have great potential for educational applications, such as educational interactive

systems. These systems usually have an introductory story that the children seek to

develop. We believe that if such a system could generate stories itself then it could

provide children with much richer examples as they attempt to write their own.

1.2 Contributions

The main contributions of this thesis are as follows:

• We describe an end-to-end story generation system that is comprised of both

trainable and off-the-shelf components. We outline an approach to story genera-

tion that removes the reliance on hand-crafted data sources, which to date places

a large burden on the system developer. As research into trainable components

for natural language generation (NLG) continues to rise, systems that fall un-

der the purview of NLG should seek to incorporate them. We describe, in this

thesis, trainable components for content selection, sentence planning, document

planning and surface realisation and show how they be combined to form a NLG

system capable of producing short children’s narratives. Unlike the majority of
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research which focuses on individual components, we propose an end-to-end

system realising the whole NLG pipeline. The evaluation methods developed in

the thesis make it possible, for the first time, to establish the state of the art in the

field. And the thesis (therefore) delivers state of the art performance, a suitable

baseline against which to compare future developments.

• We present a viable bottom-up model of story generation, without rhetorical

structures and other high level document structures. We view the task of gener-

ating a story as a search problem that simultaneously seeks the best content and

structure of the document it is producing. Our approach is data lean and starts

by first building the best sentences and then through their combination, the best

stories.

• We demonstrate the utility of trainable models for interest and local coherence

that can be used to evaluate the quality of stories in the story search space. These

models are trained using shallow document features, removing the need for hand

annotation, making them desirable for automatic systems which are required to

evaluate large numbers of possible texts.

• We compare several methodologies for searching the space of possible stories.

First, we outline a generate-and-rank approach in which stories are created one

sentence at a time, with the subsequent stories being ranked and the best re-

tained. We also present a genetic algorithm for optimising stories generated

from document plans. Interesting stories are sought though the repeated appli-

cation of mutation and crossover operators, which allows for exploration of the

story space.

• This thesis reports the first work to induce plots from corpora and generate novel

stories from these. Specifically, we extract from the corpus, knowledge about

the expected action progressions and interactions for each entity. We represent

this knowledge in the form of directed graphs, in which nodes represent actions

and transitions indicate ordering. From these graphs we can then generate plots,

which are essentially schema, each encoding a large number of possible sto-

ries. The stories that we generate from plots represent advantageous areas of the

search space which we use as the starting point for our genetic algorithm search.

• The final contribution is to demonstrate the thesis work provides a platform for

future work. The extensions are not carried out to show improved text qual-
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ity, but to show ease of extensibility, scalability and portability. Specifically,

we introduce components for generating referring expressions and integrating

commonsense knowledge, which rely on data mined from corpora or publicly

available knowledge bases. We also investigate the portability of the system, by

evaluating its ability to retrain on new corpora and to fulfil requirements for a

new task, namely, finishing incomplete stories.

1.3 Thesis Overview

The remainder of the thesis is structured as follows:

• Chapter 2 starts with a review of current approaches to computational story gen-

eration. To date a wide variety of systems have been developed that differ in

their methodology and the data sources that they utilise. In particular, we fo-

cus on those systems that generate stories using problem solving, autonomous

agents, commonsense knowledge, story grammars and story schemata. The sec-

ond half of the chapter then explores current work in natural language generation

(NLG), specifically those approaches that create trainable components in order

to partially implement the NLG pipeline as described in Reiter and Dale (2000),

namely, content selection, sentence planning, document planning and surface

realisation. We then conclude by arguing that a story generation system should

ideally draw from both of these fields.

• Chapter 3 introduces our story generation system, designed to create short stories

targeted at young children. This is an end-to-end system comprised of trainable

components. We describe each of our components for content selection, sentence

planning and surface realisation in detail. We formulate the story generation task

as a search problem and describe a generate-and-rank methodology for selecting

the best sentences and stories. Shallow document features are utilised to train

models for evaluating stories. We outline a model of interest, trained on ratings

of Æsop’s fables elicited from human subjects. We also motivate the use of a

an entity based model of local coherence (Barzilay and Lapata, 2008). Finally,

through a human evaluation study, the generate-and-rank system was evaluated

by comparing it to two simple baselines.

• Chapter 4 looks to improve upon the stories generated in Chapter 3 by intro-

ducing an approach for document planning, namely the use of story plots. We
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present a graph formulation for encoding the action progression of an individual

story protagonist across a collection of texts. By combining the graphs of two

protagonists, story plots are created from the regions in which they interact. We

show that the plot graphs have an impact on the stories the system is capable of

creating, specifically with respect to content selection.

• Chapter 5 motivates the use of evolutionary search algorithms, akin to Darwin’s

‘survival of the fittest’, to improve on the limitations of the generate-and-rank

approach described in Chapter 3. Specifically, we present and motivate a genetic

algorithm implementation that optimises stories generated from plots. GAs are

well suited to this task as they allow the system to creatively search a larger

section of the story search space. We formulate operators for crossover (recom-

bination) and mutation specific to our story generation task and outline a series

of possible fitness functions based on local coherence. We conclude by com-

paring the GA-based system with the generate-and-rank system as well as two

baselines, through a human evaluation study.

• Chapter 6 provides a platform for exploring the extensibility and portability

of the basic story generation system by motivating additional components and

tasks. Firstly, we propose a trainable component for generating referring expres-

sions to address observed deficiencies in the generated narratives. This com-

ponent would supply definite descriptions and pronoun references for inclusion

inclusion in the surface text. We then introduce a component that expands upon

the generated stories using a database of commonsense knowledge facts (Singh,

2002). These facts are included to explain the motivation for and effects of story

actions, along with providing details about story entities. The second half of the

chapter is devoted to the exploration of the system’s portability. We explore the

ability of the system to generate stories from a new corpus, representing a new

domain. We also explore the capability of the system to perform a new task,

namely, its ability to complete partial or unfinished stories.

• Chapter 7 concludes the thesis with a summary of the main contributions and

findings, and highlights areas of potential future research.
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1.4 Published Work

The thesis expands on material that has been previously published. Chapter 3 gives a

more detailed account of the system and human elicitation studies presented in McIn-

tyre and Lapata (2009). Further information is given on preliminary studies of the

system and the evaluation models that were trained.

Chapter 4 and Chapter 5 expand on research detailed in McIntyre and Lapata

(2010). In particular, Chapter 4 provides a detailed explanation of how our story plots

are elicited and explores their capacity for generating stories. Chapter 5 presents fur-

ther information on our genetic algorithm formalism, including a preliminary parame-

ter study.





Chapter 2

Related Work

There have been many different approaches to the problem of automatic story gen-

eration. These differ in the data sources they employ and methods they use when

generating their stories. In the first half of this chapter we give an overview of these

approaches and the systems that have been constructed to date. These approaches to

story generation can be grouped into the following: problem solving, agent-based sys-

tems, story grammars, story schema and those using commonsense knowledge. Our

primary focus is to examine the scalability of these approaches, in particular how easy

it is to transfer from one domain to another.

The second half of this chapter focusses on recent work in the field of natural

language generation (NLG). Our aim in this thesis is to produce textual stories, there-

fore we need to examine the methods in which text documents can be generated from

knowledge bases. Our focus will be on those NLG systems that have been trained on

data, relieving the reliance on hand-crafted knowledge bases.

We will end the chapter by proposing that the story generator we seek to create

must lie in the overlap of these two fields.

2.1 Story Generation

Story generation has a long-standing tradition in the field of Artificial Intelligence and

many different approaches have been proposed in order to solve the task. Viewing

story generation as a computational task requires several decisions to be made: on how

to structure story knowledge, whether or not to incorporate human cognitive processes,

whether generation is solely the task of the system or if humans can be used as col-

laborative authors, and how best to represent the space of possible stories the system

11
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(define (action shoot)

:parameters (?attacker ?victim ?weapon ?place)

:precondition ((character ?attacker) (character ?victim)

(weapon ?weapon) (location ?place)

(at ?attacker ?place)

(at ?victim ?place)

(has ?attacker ?weapon)

(violent ?attacker))

:effect ((not (alive ?victim))))

Figure 2.1: Example of a planning rule for the action shoot from Riedl and Young

(2006a).

is capable of generating. Below we will outline some of the approaches to story gen-

eration that have been used to date and see how they respond to these questions, in

structure and procedure.

2.1.1 Problem Solving

TALE-SPIN (Meehan, 1977) is one of the earliest computer storytellers. It’s approach

to story generation is to supply story characters with goals and use the resulting search

traces as the basis of the story output. The stories generated were about animal charac-

ters in a style similar to Æsop’s fables. Each story starts with a character being supplied

a set of goals, such as John Bear is hungry. Planning rules are then searched to find

actions that can be applied to the current state of the story world in order for a goal

state to be achieved, in this example, John bear is not hungry. An example of a generic

planning rule is shown in Figure 2.1. TALE-SPIN requires knowledge about each of the

characters in the story, including their personalities and relationships to one another, as

well as the story environment, i.e, how locations in the story are related so characters

can move from one to another. Most importantly, it requires a knowledge base of the

actions that are applicable to the story domain, each of which require the prerequisite

state for an action to be applicable and the postconditions that show how the resulting

environment will have changed. The completed stories contain both statements of fact

about the environment and characters, i.e., “there was water in the river” and “Wilma

bird lived in a nest”, and also the actions that appear in the problem solver’s trace,

“Wilma flew from her nest across a meadow through a valley to the river”.
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The Vengeful Princess

Once upon a time there was a Lady of the Court named
Jennifer. Jennifer loved a knight named Grunfeld.
Grunfeld loved Jennifer.

Jennifer wanted revenge on a lady of the court named
Darlene because she had the berries which she picked
in the woods and Jennifer wanted to have the berries.
Jennifer wanted to scare Darlene. Jennifer wanted a
dragon to move towards Darlene so that Darlene believed
it would eat her. Jennifer wanted to appear to be
a dragon so that dragon would move towards Darlene.
Jennifer drank a magic potion. Jennifer transformed into
a dragon. A dragon moved towards Darlene. A dragon was
near Darlene.

Grunfeld wanted to impress the king. Grunfeld wanted
to move towards the woods so that he could fight a
dragon. Grunfeld moved towards the woods. Grunfeld was
near the woods. Grunfeld fought a dragon. The dragon
died. The dragon was Jennifer. Jennifer wanted to
live. Jennifer tried to drink a magic potion but failed.
Grunfeld was filled with grief.

Jennifer was buried in the woods. Grunfeld became a
hermit.

MORAL: Deception is a weapon difficult to aim.

Figure 2.2: Example of a story produced by MINSTREL, taken from Turner (1992).

When generating stories, TALE-SPIN focuses mainly on satisfying the goals of the

story characters, but as Turner (1992) explains, this often leads to stories that lack pur-

pose as stories are developed without an overall message. Turner’s system MINSTREL,

on the other hand, generates stories using a combination of character and authorial

goals. These author goals drive the overall search procedure of the system so that

although the goals of the story characters are achieved, the events that appear in the

story conform to an overall theme which is the point or message behind the story. For

example, one theme used by MINSTREL represents the moral “Done in haste is done

forever”, which results in a story where an impulsive action performed by a character

ultimately leads to a regrettable outcome.

MINSTREL is capable of generating stories about King Arthur and the Knight of

the Round Table. An example of a story generated by MINSTREL is presented in Fig-

ure 2.2. Once again, generation is a problem solving task. Interestingly, Turner paid
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particular attention to what it would mean for these stories to be considered creative.

The approach taken is to model MINSTREL’s problem solving technique on human

episodic memory. The system utilises case-base reasoning, where previous solutions

to problems are stored for reuse. But in order to encourage creativity, the system re-

members when solutions have been used previously so as not to simply generate the

same story over and over again. Novel stories are generated through the application of

Transform-Recall-Adapt Methods (TRAMs). When the system encounters a problem

one of the characters is striving to overcome, it can either directly call up a solution to

that problem if it has been encountered before or attempt to modify a similar solution

or sequence of solutions that would bring about the same result. A TRAM works by

modifying the current problem situation until it matches one in the database; for exam-

ple, ‘the knight accidentally meets a princess’ requires the system to create a scene for

which it has no previous knowledge. However, the relevant knowledge can be found in

a different domain, specifically by transforming the problem to ‘a businessman acci-

dentally meets a person’, for which the system already has a solution. In this manner,

creativity appears in the generated stories through the system’s ability to adapt previ-

ous solutions to new problems, even across domains. Recently, Tearse et al. (2010)

have recreated MINSTREL in their system MINSTRELREMIXED, and propose making

the system interactive allowing human users to collaborate in the generation process.

The aim of UNIVERSE (Lebowitz, 1985) is to create ongoing plot lines for soap

operas. This system generates story plots through the use of planning, but uses a

database of ‘plot fragments’ from which to construct a story. These fragments cover

a range of levels, from thematic plans that cover larger time scales, to specific plot

actions. Each fragment then outlines a series of goals and sub-goals that are ex-

pected to appear in the story. Rather than making them character specific, the plot

fragments are generalised. These fragments can then be selected in order to create

authorial level goals for the generated stories, similar to those in Turner (1992), how-

ever, it should be noted that the task is quite different as the plot lines generated by

UNIVERSE are not intended to have an ending. Some of the author level rules used

by the system reflect this constraint, such as the author goal KEEP-STORY-MOVING,

which forces characters to perform actions even when they are not optimal for meeting

their character level goals. Although the development of story actions are the result

of author level direction, UNIVERSE requires extensive information about the charac-

ters involved. This includes encoding information about a character’s level of wealth,

intelligence and promiscuity; and their relationships to other characters in the system
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such as current and previous spouses. The system does however allow characters to be

grouped together into stereotypes, such as socialite and doctor, and according to their

past event histories, e.g., divorce and illness, which allow characters to inherit default

traits. Lebowitz (1983) outlines an approach for generating a cast of characters by it-

eratively selecting under-defined characters and hypothesising their personal histories

from the system’s plot fragments.

Another approach is that of MEXICA (Pérez y Pérez and Sharples, 2001), a system

that generates stories about the Mexicas (the people that once lived in what is now

Mexico city). This system relies on the user to build the knowledge base from which

the stories can be created, first by describing the actions that can take place and then

providing a set of example stories (the stories are defined as sequences of actions).

Using the previous stories as a basis, MEXICA then learns the rhetorical knowledge

it will use to generate new stories. The system attempts to explore the cognitive pro-

cess of writing by modelling generation using an engagement-reflection cycle. During

the engagement cycle, a selected story action is applied (the first story action is sup-

plied by the user) and each story character’s attributes and relationships are updated

(information relevant to the story characters are stored in structures called Story World

Contexts (SWC)). For example, the knight having been healed of his injuries by the

princess may now feel indebted towards her. Rather than looking specifically at the

goals of the story characters, the system uses the character’s SWCs to find those ac-

tions from the previous stories (considered the system’s long term memory (LTM))

that could follow from the previous action. One of these possible follow-on actions is

then selected at random and the process continues. The second phase is known as the

reflection phase, during which the system evaluates each story for coherence, interest

and novelty. The coherence of each story is assessed by ensuring the preconditions

of each action are satisfied in the story world. Interest is assessed by looking at the

expected audience tension that is associated with the actions appearing in the story.

Finally, the novelty of a story is decided based on the frequency that actions appear in

the LTM, with infrequent actions being deemed the most novel. Also, the system can

overcome impasses where SWCs do not relate to actions in LTM simply by selecting

actions known to advance the previous action in the example stories. A story is then

generated through subsequent applications of engagement and reflection. Each has the

ability to modify the existing story, for example, the reflection cycle may highlight

problems with the current story and identify where the changes need to be made in the

engagement cycle. Stories are therefore not created simply as a sequence of actions,
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but can be edited throughout the generation process.

An approach for story planning similar to Turner (1992) and Lebowitz (1985), is

the vignette described in Riedl and Leon (2008) and Riedl (2008). A vignette is a frag-

ment of a story that is considered a ‘good’ representation of a situation and/or context

that has been found to commonly occur in stories. These may include bank robberies,

betrayals, combat situations, ect. These are essentially an ordered set of events, per-

ceived to be important to that specific narrative situation. Each vignette represents a

fragment of a narrative plan that is general enough to be employed in different contexts

depending on the characters and objects assigned. Riedl (2008) outlines the Vignette-

Based Order Causal Link (VP-POCL) planner that allows flaws in incomplete story

plans to be corrected by incorporating partial plans stored in the vignette library. Upon

finding a vignette that contains an action that satisfies the incomplete story plan, the

planner can then integrate the stored partial plan into the current story plan. Unlike

the episodic memory approach used in Turner (1992), these plans are not considered

new solutions to a particular problem and are therefore not retained for future use. The

vignettes can, however, have an impact on the creativity of the story as they represent

fragments of good narrative plans rather than efficient problem solving solutions, al-

lowing the planner to incorporate events which enhance the narrative even though the

planner would have considered them superfluous.

Peinado et al. (2004) and Gervás et al. (2004) both use a formal structure for gener-

ating stories in a compositional manner based on the findings of Propp (1968). Propp,

a Russian formalist, studied a selection of Russian folk tales and broke them down

into recurring units or morphemes. He noted that although the names and some of

the attributes of the characters change, the actions primarily remain the same and he

defined these actions as functions. For instance some of the functions are “The Hero

leaves home” and “The Villain is defeated”. He then created rules explaining how these

functions interact with one another. Despite being rather specific, Propp’s morphemes

can be used to generate many Russian style folk tales. Peinado et al.’s (2004) system,

PROTOPROPP, uses a database describing the Propp functions. The user inputs a query

and the system uses it to reason about characters and the order of the Propp functions

that best create a story for that query. For example, the user may request a story about a

prince that includes a “Test of the Hero” and a “Wedding” (both “Test of the hero” and

“Wedding” being Propp functions). Using the dependencies that have been identified

in the database ontology, the system generates a story allowing for possible temporal

restraints and dependencies between actors within functions. For example, if the hero
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was to be kidnapped during the story, then there would also be a dependency on him

being released before he could attend his wedding. As a problem solver, the system

employs case-based reasoning in order to identify previous story structures from Propp

that can be moulded to fit the user’s story requirements.

A major drawback of these systems is that the structural formality of the rules

they use for planning and search limits their scalability and robustness. For instance,

PROTOPROPP (Peinado et al., 2004) is based solely on Propp’s rules. This means it

can only generate stories in the genre of the Russian folk tale and only specific types

of events, or functions, can appear in the story, namely those identified by Propp.

Similarly, MINSTREL (Turner, 1994) can only generate stories about King Arthur and

the Knights of the Round Table. For a planner to work effectively it is vital that each

of the planning rules clearly state all of the relevant preconditions and postconditions

of the story environment. Figure 2.1 shows an example of a single rule. As we can see

there are many conditions that must first be met before the action can be applied. A

human developer is required to write these rules based on their knowledge of the real

world and the domain at hand. As the complexity of the environment and the actions

therein increases so does the number and complexity of rules required, placing a heavy

burden on the developer.

Although these systems are all capable of planning stories they vary in terms of the

linguistic sophistication of the texts they generate. UNIVERSE and vignettes (Riedl,

2008) are focussed on solely creating story plans. TALE-SPIN, MINSTREL, MEXICA

and PROTOPROPP, all use either canned text that is associated with story actions or

map those actions to sentence level schema from which they create stories. MINSTREL

incorporates some linguistic knowledge as is evident by the use of pronominalisation.

Gervás et al. (2004) outline an extension to PROTOPROPP that would allow it to gen-

erate more natural texts and break the its reliance on sentence templates.

2.1.2 Autonomous Agents

Agent-based Story Generation is currently the most popular research area in the story

generation community. This approach uses autonomous story agents that have been

embedded within a story world and creates stories based on the actions they perform.

Agents are described in Russell and Norvig (2003) as being able to interact with the

environment around them through sensors and effectors, as shown in Figure 2.3. The

figure illustrates a generic agent that can use sensors to perceive the environment and
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Figure 2.3: A generic agent interacting with an environment. The agent’s sensors allow

it to view the current state of the environment. An internal mechanism within the agent

will take this information and use it to decide which action to make next. The agent

can manipulate the environment through the use of its effectors. Agents can appear

in many different types of environment and in different forms, for example, robots in

the real world or web crawlers on the Internet. The example is taken from Russell and

Norvig (2003).

then decides how to use its effectors in order to manipulate that environment based on

the instruction of an internal reasoning mechanism. In a story environment, the agents

act as characters with the ability to sense everything within the environment and per-

form actions in order to manipulate it. The environment itself may contain a collection

of character agents as well as story objects which are used as props within the story.

An example story environment is shown in Figure 2.4. Each agent starts with a list

of goals and by using planning techniques, similar to that of Meehan (1977), forms

plans of action and tries to fulfil them. In contrast though, the planning is distributed

amongst the agents. In Figure 2.4, the agent representing a prince wishes to wear the

crown and to do this it has to make a plan of action based on its knowledge of the

environment. In this example the agent chooses to first enter the castle and then put on

the crown. Performing each action will effect the state of the environment leading to a

state in which the crown is on the agent’s head. The actions performed by the agents as

they interact with their story environment, as well as with one another, will become the

outline for the story. Interesting stories occur as the plans of several different agents

interact and cause failures and possible re-planning.

The major drawback of using agent-based systems is that they require the entire

story world environment and all actions that can be performed within it to be explicitly



2.1. Story Generation 19

Story Environment

Story Agent

GOAL: wear crown

POSSIBLE ACTIONS:

enter, put on

CURRENT PLAN:

• enter castle

• put on crown

act

sense

prince

Story Object

castle

Story Object

crown

Figure 2.4: Example of a story environment with one actor agent and two story objects.

In this example the story agent has constructed a simple two action plan in order to

reach its goal of wearing the crown. More sophisticated systems would have multiple

story agents, capable of many more actions and the possibility for several goals.

programmed into the system. This leaves the story world with finite possible actions

and plans for each agent and a finite set of story props with which they can interact.

The Virtual Storyteller project of Fass (2002); Theune et al. (2003); Swartjes and The-

une (2008) is an example of such a system that uses many actor agents, performing

character level goals, under the guidance of a narrator agent, performing author level

goals, to construct fairy tales. These stories are then presented to the user of the system

using a voice synthesis speaking presentation agent.

In Oinonen et al. (2006) a framework is proposed to allow the Virtual Storyteller

system to learn from human authored or machine generated texts is given. Here, data

related to different levels of story representation are extracted from a collection of

texts. The first level is story knowledge, in which they extract the current state of

characters and objects in the story environment with respect to time. The second level

is the character level where information about each character in the stories, including

their motivations, emotional state, relationships with other characters, personalities,

and beliefs are collected. The next level is to acquire information from the texts about

the plot by building up a database of story fragments as causal networks or graph
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models of actions and events. This allows them to view the temporal relationships

between actions within a story. The top levels of story representation require gauging

the effect of the text upon the reader. For this the they require feedback annotations

from readers to discover how different narratology concepts are constructed and how

different story construction techniques (e.g., adding suspense) affect the reader. There

is to date, however, no evidence that their framework has been indeed implemented.

Shim and Kim (2002) also use autonomous character agents to generate short sto-

ries. They break the task into a set of multi-level goals that have to be achieved in order

to create a story; viewer goals (emotional state of the reader), plot goals and character

goals. The agents within these stories have a limited sense of emotion and as different

actions are performed on or near them, their internal states are changed depending on

the rules associated with these actions. This supplies the story with an extra level of

information for the viewer but also assumes that the effects of each action are explicitly

entered during construction of the story world. The user of the system starts by sup-

plying it with a desired emotional state that the story should express. The story is then

generated as a series of episodes in which the characters select and perform actions

that will either maintain the current plot emotion or seek to change it in order to match

the viewer specified emotion. The resulting story is generated as a comic strip with an

image depicting each episode.

Research into the use of autonomous agents has yielded more sophisticated agents

that can be used as the basis for story generation systems. One of the main aims in this

field of research is to make the agents more lifelike. To this end, models of emotional

response have been developed. Theune et al. (2004) describe how the agents in the

Virtual Storyteller can record their current emotional state (following the model of

Ortony, Collins and Clore (OCC, Ortony et al., 1988))1. Different events, such as those

near the completion of the agent’s goals, will affect their emotional state in a way that

is outlined by the character’s personality. The agents can now form emotional bonds

between one another, e.g., fear and love, and can be emotionally affected by the events

performed in the story, e.g., they can become sad if a character they liked is killed.

Agent’s emotional states can be also used to trigger certain actions, such as singing

when they are happy, or give weighting to possible actions and goals, e.g., Diana’s

reluctance to carry out her goal of killing Brutus because she fears him. Loyall and

Bates (1997) also outline how agents can incorporate language in order to transfer

beliefs and facts from one agent to another. This would allow an agent-based system

1See also Bartneck (2002) and Chen et al. (2001).
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to simulate speech acts, furthering plot developments in which a character must first

gain information from another before they can accomplish their goals.

Another reason that this area of research is growing in popularity is that it allows

the user to take on the role of one of the agents and therefore interact in the story being

created. For instance, Young and Riedl (2003) use Unreal Tournament to create a 3D

interactive narrative world populated with story agents. The user then assumes the role

of one of the characters in this world and, through their actions, affect the story being

constructed. This allows the user to be a key part of an unfolding story which helps

increase their enjoyment and leads to novel stories.

Recent years have seen growing interest in online multiplayer communities where

many human players can interact when playing the same game. Fairclough and Cun-

ningham (2003) describe a story management system which can develop stories in a

multi-player environment. Their system generates stories using case-based reasoning

over Propp Functions. The story actions, characters, objects and locations are those

described in Propp (1968). Each human player selects a character to play, and a story

director agent is created in order to generate stories for them specifically. There is

also a main story director agent, whose job is to update the character agents, referred

to as non-player characters (NPCs), depending on their interactions with the human

players. Character agents are also capable of communicating with one another, creat-

ing speech acts which are presented to the players on screen using canned text. Being

able to construct and maintain multiple storylines is clearly the biggest task of such a

system. In order to properly engage the human player, there must be a suitable num-

ber of possible actions for them to perform so as to maintain interest in the developing

story. Combined with this is the need for realistic NPCs that act similar to other human

players, performing their own goals whilst also supporting the developing storyline of

the player. The lucrative nature of the computer games industry ensures that this will

remain a hot topic for research.

Interestingly, we see a difference of focus in the presentation goals for the agent-

based systems when we compare them with the problem solving systems in the previ-

ous section. Virtual Storyteller, although capable of producing a textual representation

of the generated stories, uses speech synthesis technology incorporated with a graph-

ical agent to present their fairy tales. Shim and Kim (2002) present their stories as a

comic strip in which the story environment, character agents and objects are associ-

ated with images. Obviously, story generation within an interactive game environment

requires the stories to be acted out rather than transcribed, although text generation
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may be required in order to inform human players of scene specific information and

generate dialogue.

2.1.3 Commonsense Knowledge

Liu and Singh (2002) propose an approach to story generation that relies on com-

monsense knowledge. Using causal chains, the intention of a particular character’s

actions can be followed throughout the story. This work is based on commonsense

information, supplied by the Open Mind Commonsense Knowledge Base (OMCS2,

Singh, 2002). The OMCS contains 400,000 semi-structured English sentence of com-

monsense relationships that have been obtained from contributors on the web. This is

information such as, an eye is a body part and that the effect of riding a bike can be

an accident. Their system, MAKEBELIEVE, starts by taking an input sentence from

the user and then uses this as the initial sentence to create a story of length 5 to 20

sentences. It works by finding likely consequences to the actions that appear in the

sentence, by comparing the similarity of the words appearing in the current sentence to

all the possible following consequences in the commonsense database. For example,

given the sentence “Mary broke her leg” we could expect “Mary went to hospital” to

be the following sentence. This approach to story generation allows for realistic sto-

ries to be produced, although it is also very dependent on the information contained

within the commonsense database. Each entry in the commonsense database is asso-

ciated with a sentence, into which the current character of the story can be substituted

to produce the final text.

2.1.4 Story Grammars

One of the oldest approaches to story generation is based on story grammars. These

grammars consist of a set of expandable rules that allow the creation of different stories

depending on the expansions used. Story grammars involve several levels of granular-

ity, each being expanded by transformation rules until the terminals of the stories are

reached. The terminals contain the text that will form the story. For some of these

terminals there may be variables that are related across the entire story, such as the

names of the story entities. These are satisfied once the entire story tree has been cre-

ated. Arguably, the oldest proposed story grammar was developed by Lakoff (1972),

2See http://agents.media.mit.edu/projects/commonsense/
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who used rewrite rules to create a grammar of Russian folk tales based on Propp’s find-

ings. The grammar consists of Propp functions which act as non-terminals. Thorndyke

(1977) proposed his own story grammar with the intention of identifying the structural

elements common to a set of narrative discourses. This grammar can be seen in Fig-

ure 2.5 and an example of a story derivation is shown in Figure 2.6. As we can see, a

story is described by the expansion of the grammar rules with the terminals of the tree

representing text, such as EVENT or STATE in Figure 2.5.

An overview of work based on story grammars can be found in Black and Wilensky

(1979). They also list many of the problems that face the creation of fully expressive

story grammars. For example, the grammars focus on the structure of the stories they

create rather than ensuring that their content is cognitively coherent. It is important

for a reader to understand the intentions of a character as they perform an action.

Black and Wilensky analysed several grammars and found that they missed many of

the stories they should have been able to generate and also generated stories that did

not make sense. They argue that grammars are also inadequate to capture stylistic

literary devices common to many narratives, such as switching between sub-plots and

foreshadowing. Further information on the story grammar polemic can be found in

Andersen and Slator (1990).

Despite the controversy, several systems have been developed that rely on a story

grammar in order to generate stories. Correira (1980) present two systems, TELLTALE

and BUILDTALE, the former describing a story generator and the latter a parser capable

of analysing the generated stories. Both systems use the same inference engine, based

on extended horn clauses (EHC, similar to planning rules described in Section 2.1.1

as they contain preconditions and postconditions defining their use). TELLTALE gen-

erates a story by expanding on rules held within a database. The database itself was

manually constructed to produce short fairy tales. An example of a rule is, that each

fairy tale must contain a setting and at least one episode, terminating with the main

characters living happily ever after. Rules in the database are parametrised so that

search and inference can take place to find applicable rules that will result in a story.

The final story consists of a set of propositions, which are not translated into prose,

each of which relates to a story action.

GESTER (Pemberton, 1989) uses a narrative grammar that generate stories in the

genre of the medieval French epic. The grammar is hand-coded from the analysis of

nine French epic poems. The terminals of a tree generated from this grammar depict

what they call, the narrative motifs, which indicate the chronological flow of the text.
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Rule

Number
Rule

(1) STORY → SETTING + THEME + PLOT + RESOLUTION

(2) SETTING → CHARACTERS + LOCATION + TIME

(3) THEME → (EVENT)∗ + GOAL

(4) PLOT → EPISODE∗

(5) EPISODE → SUBGOAL + ATTEMPT∗ + OUTCOME

(6) ATTEMPT →

{
EVENT∗

EPISODE

(7) OUTCOME →

{
EVENT∗

STATE

(8) RESOLUTION →

{
EVENT
STATE

(9)
SUBGOAL

GOAL

}
→ DESIRED STATE

(10)

CHARACTERS

LOCATION

TIME

 → STATE

Figure 2.5: Thorndyke’s Grammar (1977). Story rewrite rules are shown in (1)-(10).

The right hand side consists of terminals or nonterminals. Terminals are indicated in

bold face. The “+” symbol indicates a combination of elements in a sequential order

and the “*” indicates that an element may be repeated.

However, when presenting the story to the user to read, the actions in the terminals

may be reordered so that stories containing more than one storyline can be interwoven.

Each terminal of the story plan is associated with a canned-text representation for

inclusion in the final text. The rule expansions used will result in variables in the

story tree, which can, however, require a large amount of inference to be satisfied.

For example, Pemberton (1989) also maintains a set of rules describing the French

epic genre, including rules about loyalty, inheritance, religious belief, marriage and

military practice. This requires additional human annotation of the data set, decreasing

the system’s portability.
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(1) Circle Island is located in the middle of the Atlantic Ocean, (2) north
of Ronald Island. (3) The main occupations on the island are farming and
ranching. (4) Circle Island has good soil, (5) but few rivers and (6) hence
a shortage of water. (7) The island is run democratically. (8) All issues
are decided by a majority vote of the islanders. (9) The governing body
is a senate, (10) whose job is to carry out the will of the majority. (11)
Recently, an island scientist discovered a cheap method (12) of converting
salt water into fresh water. (13) As a result, the island farmers wanted (14)
to build a canal across the island, (15) so that they could use water from
the canal (16) to cultivate the island’s central region. (17) Therefore, the
farmers formed a procanal association (18) and persuaded a few senators
(19) to join. (20) The procanal association brought the construction idea
to a vote. (21) All the islanders voted. (22) The majority voted in favor
of construction. (23) The senate, however, decided that (24) the farmers’
proposed canal was ecologically unsound. (25) The senators agreed (26)
to build a smaller canal (27) that was 2 feet wide and 1 foot deep. (28)
After starting construction on the smaller canal, (29) the islanders dis-
covered that (30) no water would flow into it. (31) Thus the project was
abandoned. (32) The farmers were angry (33) because of the failure of the
canal project. (34) Civil war appeared inevitable.

Figure 2.6: An example of a story and its parse tree using the grammar defined in

Thorndyke (1977). Each numbered region of text maps to a terminal node of the parse

tree.

2.1.5 Story Schema

Fayzullin et al. (2007) propose a system for generating stories from heterogeneous
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data sources. These include text documents, web pages and XML documents to create

story texts about archaeological artefacts in Pompeii. The motivation for this system is

to allow viewers of archaeological entities to obtain extra information about particular

entities in the form of a story. As people may have different backgrounds and interests,

it is not sufficient to inundate them with all known facts for any given entity, so the

system needs to be able to decide which information to include.

The stories are created using a schema-base approach. Each story consists of a

set of entities and their associated attributes. The entities are the objects of interest

(e.g., sculptures, paintings), the objects and events they depict and other entities that

are related to them. Relationships between entities, such as “Bacchus was the enemy of

Pentheus” and “Elektra and Iphigenia were daughters of Agamemnon”, are discovered

from additional texts and databases. The process of creating a story is viewed as a

constraint satisfaction problem where a story schema is filled using collected data.

Specifically, entities and their attributes are extracted from multiple data sources and

are then transformed into English either by using the sentence they originated from or

through the use of templates. Fayzullin et al. (2007) show the process of creating an

optimal story under these circumstances is NP-complete which leads them to create

heuristic algorithms for finding quick sub-optimal stories; by restricting the search

space, using genetic programming techniques and employing dynamic programming.

A human-based evaluation reveals that a dynamic programming algorithm produces

the best stories and that the readers prefer shorter stories, although the use of template

sentences may have contributed to this result.

2.1.6 Evaluation of Story Generators

There has been little consensus to date on how best to evaluate the performance of a

given story generator, or how best to compare the performance of one story generator to

another. This stems partially from the the fact that many story generators are developed

in order to explore a specific theory, computational approaches or phenomenon (e.g.,

MEXICA, MINSTREL explore human memory processes and problem solving). These

systems are not necessarily developed in order to produce ‘good’ stories, but rather to

develop and test specific theories. This makes it difficult to gauge the performance of

particular story generators and, as a result, the quality of the stories that they generate.

In order for these systems to be directly comparable it would be necessary to define

a set of criteria that is common to the stories that they generate. For example, reader
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enjoyment and expectation, story coherence and creativity. These stories would then

have to be evaluated in an un-biased manner by experts (this is usually taken to mean

human readers). To date there have been few human elicitation studies performed to

evaluate the stories generated by a given system, and even then, the evaluation criteria

often differ. For example, planning systems tend to focus on story and character plau-

sibility whilst those systems that generate textual stories focus on the quality of the

generated text.

Any systematic evaluation of these systems must also contend with the fact that

different systems will tend to use different data sources (for which those data sources

have been developed exclusively) and focus on different aspects of the generation pro-

cess (e.g, generating complex story planning whilst performing no rendering into nat-

ural language). Any standardised evaluation of story generation systems would have

to take these factors into account as all systems are not necessarily directly compara-

ble. For example, the impact of transcribing system output by hand for one system

against template-based story output for another may greatly influence a human evalu-

ators judgement of a story without necessarily providing the intended comparison of

story quality. This is also an issue when the media of presentation for different systems

is very different (e.g., interactive systems, comic strips).

2.2 Probabilistic Natural Language Generation

Natural Language Generation (NLG) has a long standing tradition in the field of Nat-

ural Language Processing. NLG allows us to transform non-linguistic representations

of information into text. This information may be facts in a database, time series data,

propositions, or discourse trees. Within NLG, we wish to focus on the probabilistic

methods that are available since they are more central to the goals of this thesis. Reiter

and Dale (2000) describe how an NLG system can be decomposed into distinct mod-

ules that form a pipeline process. An overview of the pipeline is shown in Figure 2.7.

The input to a hypothetical NLG system is a communication goal that describes the

desired output of the system (this is dependent on the purpose of the NLG system,

e.g., the communication goal submitted to a weather forecast summary system will be

in terms of the data it stores, such as ‘what was the weather like last month?’). The

output of the system is a text generated in the target language. The pipeline itself can

be decomposed into three distinct modules, document structuring, microplanning and

surface realisation. These modules can then be further decomposed into a series of
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NLG ModuleData Structures

Communication Goal Document Planner

Document Plan Microplanner

Text Specification Surface Realiser

Surface Text

Figure 2.7: Overview of the natural language generation pipeline as described in Reiter

and Dale (2000).

tasks described below:

Document Planner Using the data-sources of the NLG system, the document plan-

ning module will decide what information should be included in the produced

text (content determination) and order it to match the readers expectation of a

document of the desired domain (document structuring). The output of the mod-

ule is a document plan, typically a tree where internal nodes represent structure

and leaf nodes represent content.

Microplanner Although the document plan outlines structure and content, there are

still decisions over how to express that information in natural language. The

job of the microplanner is to decide upon the words and structures that will be

used to communicate the document plan. This is broken into three tasks. The

first is to select the words and syntactic constructs required (lexicalisation). Sec-

ondly, deciding how the document will represent the entities present (referring

expression generation). Lastly, the mapping of the document plan to linguistic

structures, resolving any unspecified ordering of the information (aggregation).

The result of the microplanner is a text specification, once again a tree structure
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in which the structural elements of the document are represented in the internal

nodes, however the leaf nodes here represent sentences.

Surface Realiser The final module is concerned with taking the text specification and

transforming it into actual text. This requires both transforming the representa-

tions of individual sentences into text (linguistic realisation) and also those of

the larger structures such as paragraphs and sections (structural realisation). The

output will then be the final text of the document.

Recent work has focused on improving these modules by constructing them in a

probabilistic manner that facilitates learning. Previous work has included training com-

ponents for the tasks of content selection (content determination), sentence planning

(lexicalisation and aggregation), document structuring and surface realisation which

are reviewed below:

2.2.1 Content Selection

When generating a text, we must first select what specific information we wish to in-

clude in it. For instance, there is an abundance of data that can be collected from the

stock market during the course of a day, but any particular investor will not be inter-

ested in viewing all of it. The goal of content selection is to identify from the data

sources available the information that is most useful for the reader. The traditional

method for content selection is to use rules that define what information to include

in the text. Recent work attempts to learn these rules automatically. In Duboue and

McKeown (2002) a stochastic search method is used to learn tree-like structures for

a content planner from a parallel corpus. Their training corpus contains information

gathered from cardiac surgeries and summary briefings to post operation carers. A

genetic learning process is employed that allows candidate planners to be scored with

respect to their similarity with the corpus. They find that the learning algorithm out-

performs randomly created planners.

Barzilay and Lapata (2005) acquire content selection rules from a parallel corpus

containing statistics of American Football games and their text summaries. The goal

here is to train the system to select the particular information that should appear in

the summaries. Each document in the training set consists of a database of statistics

about the game (e.g., a record of passes performed be each player) and human written

summaries of the games. From the written summaries each database entry can then
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be tagged to say whether or not it was included. From the training set, rules can

be learnt based both on selection preferences of individual entities (e.g., touchdowns,

passes) and on links between database entities (e.g., if you give the statistics for one

player that scores, then you should also give those for any others that do the same).

Their process of content selection therefore considers all of the entities in the database

simultaneously, making it a collective classification task. The motivation is that a text

in which the entities are related will be more coherent that one in which they do not.

Both of these studies view content selection as a classification task although the latter

focuses on finding a globally optimal solution. They also presuppose the existence

of structured data sets and training examples for the domains in which they are to be

implemented.

2.2.2 Sentence Planning

Once the content of the text has been selected, the words and syntactic structures that

will form the text’s sentences must be chosen. Stent et al. (2004) trained a sentence

planner for the domain of restaurant recommendations where the original information

was described as a set of assertions and the rhetorical relations between them. Their

system, SPARKY (Sentence Planning with Rhetorical Knowledge) which is an exten-

sion to their previous system SPOT (Sentence Planner Trainable, Walker et al., 2002),

which was domain dependant and only operated on simple content plans that did not

contain rhetorical relations. For SPARKY, a ranking system was trained, using hu-

man annotated data, to select the best sentence plan trees generated by the planner.

The learning algorithm used 7,024 real valued features that were automatically gener-

ated using feature templates. Their results showed that their trainable sentence planner

could be extended to a new domain whilst still being comparable to template sentence

planners that had been hand crafted for that particular domain.

Recent work by Mairesse and Walker (2008) has also shown that decisions on

how to represent content can be made by modelling the intended author. Their work

incorporated the Big Five personality model to generate text tailored towards a spe-

cific personality. The Big Five models consists of the features extraversion, emotional

stability, agreeableness, conscientiousness and openness to experience. Structural de-

cisions can then be weighted with their likelihood for inclusion in texts for readers with

given personality traits, for example, extraversion may be strongly related to the use of

exclamations. Through the use of these weights, the system can narrow down the space
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of possible representations, removing those not suited to the readers personality traits.

Both of these approaches require the content of each document to have been decided

in advance. SPARKY in particular requires the rhetorical relationships between asser-

tions in the document to be given as input. These relationships, such as, one statement

contrasts another, are difficult to ascertain automatically and are therefore annotated

by hand.

2.2.3 Document Structuring

It is crucial that any text being produced by a NLG system is coherent. To this end there

are several different approaches to structuring a text in order to maximise coherence.

There has recently been work to remove the reliance of text structuring on limited

domain handcrafted rules by employing learning techniques. Mellish et al. (1998) use

stochastic search methods in order to train a text planner for automatically generated

descriptions of museum artefacts. Their approach focuses on identifying an optimal

Rhetorical Structure (RS, Mann and Thompson, 1987) tree for a description. A genetic

search process is used that evaluates candidate RS trees based on different metrics of

document level information. This process allows them to select an optimal RS tree

from the search space by creating successive generations of possible candidates that

improved with respect to the scoring function. We shall discuss this approach in more

detail in Chapter 5.

We can view a text as being composed of discourse units that must be placed in

an order that achieves maximum coherence. Althaus et al. (2004) refer to this as

the discourse ordering problem and show that it is NP-complete. Centering Theory

(CT, Grosz et al., 1995; Walker et al., 1997) is used to measure the cost of transitions

from one discourse unit to another. The problem to solve becomes that of finding the

path through each of the discourse units that has the lowest cost. Using different op-

timisation strategies they were able to implement time efficient search procedures for

short text segments.

The ordering of sentences in a generated text can affect the coherence of the overall

text. Lapata (2003) trains an unsupervised probabilistic model that learns ordering

constraints from a large corpus. Training involves learning the sequences of features

that are likely to co-occur in coherent texts. These features are shallow, such as the

verbs with their subjects and nouns with their modifiers. An acceptable ordering of the

sentences can then be constructed by searching greedily though the space of possible
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orderings. Their results show that low level lexical and syntactic features can be used

to successfully train models for single and multiple document ordering tasks.

Local coherence relies strongly on the distribution of entities within a text. Barzilay

and Lapata (2008) use an entity grid approach to capture the distribution of entities in

text. The entity grid records the role (e.g., subject, object, missing) of each document

entity in each sentence. The likelihood of a given transition, e.g., being the subject

of one sentence and then being the object of the next, can then be learnt. This allows

us to evaluate the coherence of human authored and machine generated texts from the

probabilities of the entity transitions. We shall discuss this in more detail in Chapter 3.

The above approaches to document structuring differ in the granularity of docu-

ment analysis required for their implementation, yet all assume that the basic units,

be they sentences or utterances, have already been decided. Encouragingly, Lapata

(2003) and Barzilay and Lapata (2008) only require shallow document features for

training and implementation which improves their portability.

2.2.4 Surface Realisation

The process of converting the conceptual expressions, that represent a text, into natural

language is by no means a straightforward task. It requires the integration of syntactic

and lexical information, knowledge about morphology and tense, and so on. Knight

and Hatzivassiloglou (1995) conduct their investigation of this area in the context of

Machine Translation, where a symbolic representation of a sentence in the source lan-

guage must be realised in the target language. The process they employed maps sym-

bolic structures to word lattices (acyclic state transition networks with one start state,

one end state and transitions labelled by words). The lattice effectively shows the pos-

sible realisations of the semantic input and by using a bigram model they are able to

select the n-best paths through the lattice, depicting the best sentences. The sentences

generated using bigram probabilities are found to outperform the selection of random

paths through the lattice.

Word lattices were also used for surface realisation in Langkilde and Knight (1998)

as part of their natural language generator, NITROGEN. Different levels of knowledge

including lexical, morphological and grammar formulations are used to build up sec-

tions of the word lattice and combine them together. This bottom up process contrasts

the inefficiency of top-down methods which often repeat the same calculations when

processing. The main advantage of NITROGEN is that it utilises corpus based statistics



2.3. Summary of Chapter 33

when making linguistic decisions giving it broad coverage.

2.3 Summary of Chapter

The majority of the story generation systems we have encountered create their stories

to meet a specific user goal. For instance, asking for a story in which a hero overcomes

a villain or even asking the system to give the description of a museum artefact. It

is important to remember that stories are generated for the reader and therefore must

cater for their needs or they will become ineffectual. Most of the above systems focus

primarily on the structure and content of the stories that they produce and hand over

the task of generating the story itself to either future work or other systems. This is in

marked contrast with NLG where the aim is to generate well formed documents from

symbolic or other representations.

The main differences, across story generation systems, stem from the way they

form their stories and the data sources they use. For instance, agent-based systems

focus on planning techniques with databases of actions, while commonsense systems

focus on a sentence by sentence structure utilising a database of commonsense rela-

tions. These approaches draw inspiration from different areas of research which allows

for different styles of stories to be created. For example, high levels of interaction be-

tween characters are plausible in agent-based stories, however, this is less evident in

commonsense stories where the generation focuses on the logical progression of sen-

tences rather than on any particular character’s goals.

The reliance on handcrafted rules appears to the be the biggest problem facing

current story generation systems. This means that the coverage available to each sys-

tem is narrow and usually confines them to small domains. The process of creating

handcrafted rules and databases is time consuming and must be repeated anew when

extending these systems to new domains. To overcome the dependence on handcrafted

data we propose to borrow and further develop ideas from recent work in probabilistic

NLG. Trainable modules allow automatic discovery of rules and are used in different

areas of text generation. So it seems feasible that they could be extended to discov-

ering rules for story generation. In contrast to previous work, which focused on indi-

vidual modules of the NLG pipeline, we propose to create an end-to-end probabilistic

system. Previous work by Chen et al. (2002) has shown that the potential exists to

combine trainable components together to create a portable NLG system. In partic-

ular, they combine a sentence planner and surface realiser and show that they can be
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successfully used as part of a dialogue system.

Another tendency of story generation systems is to overlook the important role

natural language generation has to play in producing a high quality narrative. For ex-

ample, MEXICA (Pérez y Pérez and Sharples, 2001) and GESTER (Pemberton, 1989)

bypass the process of generating text by utilising ‘canned-text’ sentences. The produc-

tion of high quality narratives clearly involves an integration of the story generation

process with the natural language generation pipeline. Callaway and Lester (2002b)

propose an architecture AUTHOR and an implementation STORYBOOK for bridging

the gap between the two fields. Taking as input, a narrative plan, they focus on how

linguistic structures can be constructed to generate high quality prose. In particular,

attention is paid to the use of a discourse history to improve lexical choice and gener-

ating referring expressions (we shall discuss this in more detail in Chapter 6). Lönneker

(2005) argues that STORYBOOK does not fully close the gap between story generation

and NLG as they focus primarily on microplanning and generating surface features.

Instead, Lönneker (2005) suggests that an architecture for generating narratives must

take the linguistic aspects of content determination and document structuring into con-

sideration, rather than leaving them as the task of a separate story generator. They

describe how the phenomena of narrative levels, “stories within stories”, rely on the

ability to embed narratives within one another during document planning. Also, mak-

ing decisions on when to use flashbacks or ellipses (removing events that the reader

can infer) requires such a system to consider the rhetorical structure of the document

being developed.

In the next chapter we shall outline our first attempt at creating a story generation

system that follows the NLG pipeline in which each of the components are trained. We

will motivate a generate-and-rank procedure that makes use of the wealth of possible

stories available from corpus extracted knowledge. Also, we will discuss evaluation

techniques designed to automatically asses our generated stories.
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Generate-and-Rank Story Generation

In the previous chapter we presented current story generation systems and showed that

they suffer both with respect to scalability and robustness. The majority of the systems

we have seen utilise hand coded data representing a particular genre. In the agent-based

systems, the planning rules used by the agents are entirely hand coded. This means that

adding new actions to the story generator requires substantial effort. Several systems

use Propp’s functions as their basis. As these functions are rooted in Russian folk tales,

this is the only domain in which they are able to produce stories. Due to their reliance

on hand crafted data, the robustness of these systems is compromised. It is easy to

foresee situations in which they will suffer from missing information, especially in

cases where the user tries to input data the system is unfamiliar with. The reason

for these problems is clearly linked to the difficulty in implementing knowledge in a

fashion a computer system can understand. Without giving a system access to a large

knowledge base, the effectiveness of its story generation abilities will be limited.

Within Natural Language Generation (NLG) the desire to escape the dependence

on hand-crafted rules has given rise to probabilistic systems. These systems, however,

do not tackle NLG as a whole but rather individual modules within the NLG pipeline.

Our goal is to create an end-to-end probabilistic system for generating natural language

stories.

In this chapter we introduce an approach to story generation that takes its inspira-

tion from the recent work in trainable NLG. We follow the traditional NLG pipeline

which decomposes generation into content selection, sentence planning, surface real-

isation and document planning. We realise each of these processes with trainable or

off-the-shelf components. The system we outline in this chapter does not make use

of explicit document planning, however, we will discuss in Chapter 4 how it can be

35
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incorporated. We will also show that story generation can be viewed as a search task

and outline measures for assessing the quality of a generated story automatically. We

will then conclude, by showing through experimentation that stories generated by our

generate-and-rank system are rated more preferably, by human evaluators, than those

of two baseline systems.

3.1 The Story Generation Task

In this thesis we consider how simplified stories can be generated automatically from

corpora. We define these simplified stories as being only a few sentences long and con-

taining only a couple of entities. In addition, we view these stories as the composition

of a series of actions that are typical of the entities participating in them. These actions

represent the highest meaning bearing content within our stories. This means that we

do not consider document level story structures, such as whether they portray a spe-

cific message or result in a specific goal. Although other story generation approaches

focus on building models for character, author and reader level goals, our simplified

stories are designed only to communicate a series of actions for a given set of story

entities that meet the reader’s expectations for those entities within a given genre. Our

approach to story generation is thus to identify the entities and actions that are to be

included in a story and compose them into a document for the reader. Although we

are not concerned with high level document structures such as metaphor, these stories

still need to be fit for purpose, they must be intelligible and entertaining enough that

the reader will want to read them. The main goal of this thesis is to show that there is

a feasible approach to automatically generating these simplified stories. We will also

consider the limitation of our approach and the systems we develop with regards to

more complex stories definitions.

Developing a story generation system to produce the simplified stories described

above still faces several daunting challenges. The system must have access to a knowl-

edge base of entities and actions, as well as the natural language resources for generat-

ing the final text. These resources need to be accurate to meet reader expectation, how-

ever, they must also be flexible enough that portability is not compromised. Managing

the synergy between story content and document coherence requires a story genera-

tion approach that can perform multiple evaluations and search procedures. Another

consideration is how to search through the multitude of entities, actions, sentences and

stories in order to decide which one story should be presented to the reader. Below we
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outline our first attempt at generating a system that can generate these stories: starting

with a generate-and-rank approach we will show the abilities and limitations of that

system before continuing in the following chapters to show how these limitations can

be overcome through the addition of modelling story plots and the use of evolutionary

search techniques. We will show how our approaches to generating these simplified

stories perform and compare with one another, for the task of generating simplified

stories.

3.2 The Story Generator

Below we outline a first attempt at relieving the knowledge acquisition bottleneck as-

sociated with computational storytelling by generating stories from an automatically

created knowledge base. We propose that stories can be generated by reformulating

information about entities, their attributes and interactions as attested within a corpus.

For instance, we expect dog to appear as part of certain actions, such as barking, and

we know that food will often be eaten. These relationships of the form verb-subject

and verb-object can be automatically extracted from text using a state-of-the-art parser.

Interestingly, these actions can form new completely different and unique story ar-

rangements different to those found in the corpus. As Turner (1994) explains, we are

capturing the milieu, or environment, in which the story entities exist. His system,

MINSTREL, was able to tell stories about King Arthur and the Knights of the Round

Table by providing it with information, such as, “knights love princesses and kill drag-

ons”, “hermits live in caves and heal people”. Although MINSTREL can generated

stories for other milieus, the overhead in time and effort is prohibitive. The informa-

tion we extract from the corpus must therefore be representative of the environment in

which our stories are to be generated, yet it must also be straightforward to extract to

ensure portability.

As a proof of concept we initially focus on children’s stories (see Figure 3.1 for

an example). These stories exhibit several recurrent patterns and are thus amenable

to a data-driven approach. Although they have limited vocabulary and non-elaborate

syntax, they nevertheless present challenges at almost all stages of the generation pro-

cess. Also from a practical point of view, children’s stories have great potential for

educational applications (Robertson and Good, 2003b).

As common in previous work (e.g., Shim and Kim, 2002; Liu and Singh, 2002), we

assume that the process of generating a story occurs in an interactive context. Specifi-
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This is a fat hen.

The hen has a nest in the box.

She has eggs in the nest.

A cat sees the nest, and can get the eggs.

The sun will soon set.

The cows are on their way to the barn.

One old cow has a bell on her neck.

She sees the dog, but she will not run.

The dog is kind to the cows.

Figure 3.1: Children’s stories from McGuffey’s Eclectic Primer Reader; it contains pri-

mary reading matter to be used in the first year of school work.

cally, the user supplies the topic of the story and its desired length. By topic we mean

the story protagonists, i.e., the entities (or characters) around which the story will re-

volve. This topic can either be a list of nouns such as prince and princess or a sentence,

such as the prince marries the princess. To simplify the problem, we start by limiting

the number of entities in the topic to two. This means each story we generate will have

two protagonists. We also assume that each sentence in the story must contain one of

the story protagonists as its subject. This is an assumption inspired by Centering The-

ory (Grosz et al., 1995), which indicates that coherent texts tend to maintain their focus

on particular entities from one utterance to the next. Each story must be presented in

a form the reader can understand. We have elected that the medium for presentation

will be English text, although some systems use alternative formats. For example, the

Virtual Storyteller (Swartjes and Theune, 2008) uses an animated figure of a wizard,

using speech synthesis to read the generated story out loud. Shim and Kim (2002)

present their generate stories to the user as an animated comic strip.

Stories rendered as text are clearly literary artefacts and as such we can consider

them as the intended output of NLG systems. We assume that NLG systems should

conform to the NLG pipeline outlined in Reiter and Dale (2000). Lonneker et al. (2005)

outline a theoretical system for producing narratives based on the NLG pipeline. They

explain how the task of each module can be encoded for the task of building narratives,

however their system relies on the specifications for each module being hand-coded,

something we endeavour to avoid. An overview of our system is shown in Figure 3.2,
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Input Sentence

Lexical Database Grammar

Generate Sentences

Score Stories

Ranking Models

Language Model

Surface Realisation

Generated Story

Figure 3.2: Overview of the story generation system. Ellipses indicate processes and

rectangles indicate data sources.

ellipses represent processes and rectangles represent data sources. The input to our

system is the user supplied topic sentence and the output, a story realised in English.

Our approach follows a generate-and-rank framework, meaning that the system has

the ability to create a large number of candidate stories which it can evaluate and

rank. These stories are generated one sentence at a time. The process of generating

sentences (see Generate Sentences ellipse in Figure 3.2) encompasses our system’s

content selection and sentence planning (the former making use of a lexical database

and the latter a grammar), we apply these simultaneously rather than in a pipeline

fashion. The generate-and-rank search procedure makes use of automatic evaluation

(see Score Stories ellipse in Figure 3.2) using ranking models to decide which of the

stories are better than others; bear in mind we want to return only one story to the

user and that should be the best one. Finally, the selected story will undergo surface

realisation (see Surface Realisation ellipse in Figure 3.2) which transform the abstract

system representation of the story into English, using a language model to decide upon

the best representation from those possible. As we mentioned earlier there is no explicit

document planning in this system, rather the order in which sentences are generated

will form the final story.

We now explain in more detail each of the procedures and data sources of the

system, finishing with a worked example.
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the prince marries the princess

the prince fights with the dragon the princess escapes the tower

the prince kisses the princess the princess loves the prince

Figure 3.3: Example of a simplified story tree.

3.2.1 The Search Procedure

Our approach is to generate multiple stories involving the supplied topic entities by

consulting a knowledge base containing information about them. So if we wanted a

story about a prince and princess we can consult their associated actions (e.g., princes

fight, princesses escape) and their interactions (e.g., princes marry princesses, princesses

love princes). We conceptualise the story generation process as a tree (see Figure 3.3)

whose levels represent different story lengths. For example, a tree of depth 3 will

only generate stories with three sentences. The tree encodes many stories efficiently,

the nodes correspond to different sentences and there is no sibling order. For exam-

ple, the tree in Figure 3.3 can generate three stories; (the prince marries the princess,

the prince fights with the dragon), (the prince marries the princess, the princess es-

capes the tower, the prince kisses the princess) and (the prince marries the princess,

the princess escapes the tower, the princess loves the prince). We assume that each

sentence in the tree has a score representing the quality of a story terminating at that

sentence. Story generation can then be viewed as the process of searching this tree at

the required depth for the highest scoring story.

Specifically, our story generator applies two distinct search procedures. Although

we are ultimately searching for the best overall story at the document level, we must

also find the most suitable sentences that can be generated from the knowledge base

(see Figure 3.6 and Algorithm B.1 in Appendix B). The space of possible stories can

increase dramatically depending on the size of the knowledge base so that an exhaus-

tive tree search becomes computationally prohibitive. Fortunately, we can use beam

search to prune low-scoring sentences and the stories they generate. For example, we
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may prefer sentences describing actions that are common for their characters. Each

story and sentence can be scored by specific criteria. We discuss scoring methods in

Section 3.3.1.

3.2.2 Content Selection

The content selection procedure makes use of two different resources, both extracted

from the corpus. A database of lexical relationships is used for sentence generation

and an action graph is used to encourage logical actions progressions across sentences.

Lexical Database The process of content selection utilises a database containing

information on entities, actions and how they relate. Specifically we use subj-verb,

verb-obj, verb-adverb, verb-verb and noun-adjective relationships. These relationships

can be extracted from a dependency parse tree of each sentence and we assume that

entities and actions can are represented as simple word tokens, such as nouns and

verbs. We can also give likelihoods for each of these relationships in order to build a

model of the distribution of events and entities within a particular corpus. Above we

suggested that it is common for dogs to bark and food to be eaten. If this is the case

then we would expect to find a strong relationship between these entity-action pairs

in the corpus. The characteristics of entities and actions, identified as adjectives and

adverbs, are also important to capture. Think about how a description can change your

opinion of a particular character, i.e., the cruel prince or the heroic prince.

This database is then used to indicate all the lexical items that are available for a

given lexical dependency, e.g., what are the objects of the action protect? It is then

up to the sentence generator to decide how these will be used. Scores can be assigned

to each relationship based on their distribution in the corpus to aid in selection, we

discuss the scoring functions used by our system in Section 3.3.1. In the event of a

lexical item having no co-occurring relationships, the content selection process will

generalise the identified entity (e.g., if we query the lexical database for adjectives

that can describe a prince but we find that none were observed in the corpus). Using

the WordNet (Fellbaum, 1998) hierarchy, we can locate those entities that are hyper-

nyms1 of prince. Although we may not have any adjectives for prince we may have

encountered some for aristocrat, leader or person. We then select adjectives for prince

from the closest hypernym for which adjectives are attested. The relationships created

1Hypernym relationships are of the form, x is-a y. For example, a dog is a canine.
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through this process will clearly be weaker than those directly attested in the corpus,

however, it does make the most of the lexical database and also ensures that a story can

be created.

The stories we generate should be representative of the corpus from which the

database was extracted. This means we want the entities that appear in our stories to

act in a manner consistent with their behaviour in the corpus. We expect to find that the

distribution of actions to entities will differ between corpora which should then lead to

the entities performing differently within the generated stories. For example, consider

the entity prince. In a fictional setting we could expect dragon slaying and rescuing

to be recurring actions associated with princes. However, in the real world a prince

is much more likely to be found opening shopping centres and meeting with heads of

state and it is exactly this discrepancy that the database is intended to capture.

Action Graph The lexical database described above can only inform the generation

system about relationships at the sentence level. However, a story created simply by

concatenating sentences in isolation will often be incoherent. Investigations into the

interpretation of narrative discourse (Asher and Lascarides, 2003) have shown that

lexical information plays an important role in determining the discourse relations be-

tween propositions. Although we do not have an explicit model of rhetorical relations

and their effects on sentence ordering, we capture the lexical inter-dependencies be-

tween sentences by focusing on events (verbs) and their precedence relationships in

the corpus.

For every entity in our training corpus we extract event chains similar to those

proposed by Chambers and Jurafsky (2008), who obtain narrative event chains from

news text using unsupervised methods. These narrative event chains represent par-

tially ordered actions performed by an entity, known as the protagonist, within a text.

Similarly, we identify the events every entity relates to and record their (partial) order.

Here we aim to build a global view of valid sequences of actions rather than those per-

formed by a single protagonist within a text. We assume that verbs sharing the same

arguments are more likely to be semantically related than verbs with no arguments in

common. For example, if we know that someone steals and then runs, we may expect

the next action to be that they hide or that they are caught.

We define the action graph as a directed graph G = (V,E) whose nodes V denote

action-role pairs (the actions are verbs in the story and the role is either subject or

object), and edges E represent transitions from node Vi to node Vj. We will discuss
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OBJ:chase OBJ:catch

OBJ:chase

SUBJ:chase

SUBJ:run

SUBJ:catch

SUBJ:fall

OBJ:catch SUBJ:frighten
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Figure 3.4: Example action graph encoding (partially ordered) chains of events.

how weights are calculated and used in Section 3.4.1. For each document in the corpus

we record the actions that each entity participates in and its role in that action. We

also assume that the actions associated with a given entity are ordered and that linear

order corresponds to temporal order. This is a gross simplification as it is well known

that temporal relationships between events are not limited to precedence, they may

overlap, occur simultaneously, or be temporally unrelated. We could have obtained a

more accurate ordering using a temporal classifier (see Chambers and Jurafsky, 2008),

however we leave this to future work. Once all chains of actions are identified, the

entities are stripped and the chains are combined to a single graph. An example action

graph is shown in Figure 3.4. These links appear as bigrams of entities but we have also

added trigrams where a node in the graph represents the two previous actions. Each

node links to the actions that will follow. From the example graph in Figure 3.4 we can

see that an entity who was previously chased and caught (OBJ:chase OBJ:catch) will

then be frightened (SUBJ:frighten) and fall (SUBJ:fall). As before we can gain insight

as to how likely action transitions are by viewing their frequency of occurrence. The

action graph then allows the system to give preference to actions which follow on in a

logical sequence from those it has already encountered.

Discourse History In order to maintain consistency throughout a story being gener-

ated, we must allow the system to maintain a discourse history of entities and events

that have occurred thus far in a story. There are two entities that are the focus of the
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story but they are unlikely to be the only entities that will appear. The positioning of

entities within a text is related to both coherence and reader expectations. Centering

Theory (CT, Grosz et al., 1995) argues that the focus of a discourse revolves around a

centred entity. It is also assumed that texts whose utterances share a common center

are more coherent than texts where the center shifts from one utterance to the next and

that salient entities are more likely to be centers. CT thus allows us to make predictions

about which entities are likely to reoccur within a story. We can imagine the complete

break down of coherence that would occur if a story simply introduced each entity

with a single mention and then never referred to it again. We have already taken a step

towards enforcing coherence by only allowing one of our two topic entities to occupy

the subject role of each sentence. However, we can further enhance story coherence

by giving preference to those entities that appeared previously in the story regardless

of whether they are the most likely entity to occupy that role within an action. The

content selection process, when generating a particular sentence, depends not only on

the database but also the sentences that preceded it (see Algorithm B.2 in Appendix B).

Using the action graph requires the discourse history to record the actions per-

formed by each entity in a given story. The system then selects a list of expected

actions for an entity based on the previous one or two actions that it performed and

uses these to reorder the actions available for the entity to perform from the lexical

database.2 Also, in order to maintain consistency we only allow verbs to be selected

from the action graph, for a given entity, if that verb is also related to that entity in the

database.

3.2.3 Sentence Planning

So far we have described how we gather knowledge about entities and their interac-

tions, which must be subsequently combined into a sentence. The backbone of our

sentence planner is a grammar with subcategorisation information which we collected

from the lexicon created by Korhonen et al. (2006) and the COMLEX dictionary (Gr-

ishman et al., 1994). A selection of these rules are shown in Table 3.1. The grammar

rules act as templates which have the structural form of a dependency tree. Each node

represents a lexical item, and each rule has a verb node as its root. Each grammar

node takes one of two possible forms, primary or auxiliary. Primary nodes are content

bearing, whereas auxiliary nodes contain information pertaining to sentence structure.

2In the event that there are no attested actions in the action graph based on the entity’s history, the
system uses the subject verbs for the entity that appear in the content selection database.
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Rule

Name
Rule

INTRANS [VP rel:@r lex:@v1] → $[NP role:S rel:I lex:@n1]

NP [VP rel:@r lex:@v1] → $[NP role:S rel:I lex:@n1]

$[NP role:O rel:II lex:@n2]

NP-NP [VP rel:@r lex:@v1] → $[NP role:S rel:I lex:@n1]

$[NP role:O rel:III lex:@n2]

$[NP role:X rel:II lex:@n3]

ADJP [VP rel:@r lex:@v1] → $[NP role:S rel:I lex:@n1]

$[ADJP rel:ATTR lex:@a symb:@a-adj-@n1]

PP [VP rel:@r lex:@v1] → $[NP role:S rel:I lex:@n1]

( [PP lex:@p rel:ATTR]→
$[NP role:O rel:II lex:@n2] )

INF-AC [VP rel:@r lex:@v1] → $[NP role:S rel:I lex:@n1]

$[VP subj:null rel:II lex:@v2 mood:inf]

HOW-S [VP rel:@r lex:@v1] → $[NP role:S rel:I lex:@n1]

( [X lex:how rel:II]→
$[VP rel:II lex:@v2] )

Table 3.1: Example of grammar rules used by the sentence planner. Nodes prefixed

with a $ are those that require satisfaction by the system. Variables are prefixed with

an @. Rules contain a set of attributes which include; lex the lexeme of the node, rel

the role of the node in the dependency structure, role the role of the entity in the clause,

mood the mood of the verb for the realisation and symb which adds a relationship

between two lexical variables.
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The primary nodes represent nouns, verbs, adverbs and adjectives. These nodes re-

quire their lexemes to be selected by the content selection module during generation.

In addition, some rules call for auxiliaries such as prepositions and particles. Many of

these auxiliaries are specific to the rule itself, for example the HOW-S rule in Table 3.1

contains a node with the set lexeme how that governs the subclause. In addition to

supplying the information on which rules attach to which verbs, the lexicons also sup-

ply the lists of prepositions and particles for these rules. A default list of prepositions

was used in the event that no prepositions were assigned to a given rule. To give an

example, for the verb play, the rule PP is assigned with the list of prepositions: for,

on, upon, against and with. This allows the system to construct sentences such as, the

prince plays upon the horse.

Due to the subcatagorisation structure of the rules, the choice of verb during gen-

eration will affect the structure of the sentence. The subcategorisation templates are

weighted by their probability of occurrence in the reference dictionaries. This allows

the system to prefer less elaborate grammatical structures. We also grouped together

rules with similar content structures. For instance, the primary nodes of the rules NP

and PP are identical, only the latter has a preposition governing the object. By combin-

ing the rules that have identical primary node structures we are delaying the decision

as to the structure of the final sentence. This is an important step in the way our gen-

eration system works as the placement of primary nodes is required before the content

words for the sentence can be chosen. The structure of the sentence, however, has

an impact on the meaning of the sentences even after the content words have been fi-

nalised. Taking the example of the rules NP and PP again, the prince hides the treasure

and the prince hides from the treasure have very different meanings and making the

wrong choice can adversely effect the quality of the produced story. The decision on

which of the available rules to use in our case is thus deferred to the surface realiser

(see Section 3.2.4).

Both lexicons treat the verb be different from other verbs so they did not directly

associate it with any rules. For be we manually selected the four most frequently occur-

ring rule groups (excluding the INTRANS rule which would only generate sentences

of the type the prince is) along with the ADJP rule as this will allow the system to

generate simple descriptive sentences. The ADJP rule was chosen by inspection to be

useful for the types of stories we hoped to generate.

Some rules also contain information about entity placement, e.g., by requiring that

the entity in the subject role also appear as the subject of any rule appended as a



3.2. The Story Generator 47

subclause. To simplify our evaluation of story coherence, described in Section 3.3.3,

we also added each nouns functional information, i.e., whether they were the subject

(S), direct object (O) or indirect object (X) of the governing verb. The grammar rules

also contain information that will be used by the surface realiser, described in the next

section. Certain grammar rules dictate the manner in which their resulting sentences

should be realised. For example, the NP-P-POSSING rule states that the verb of the

subclause be realised as a present participle, creating a sentence such as, the prince

wakens the dragon by stealing the gold.

3.2.4 Surface Realisation

The final step for the system is to take the generated story and transform it into English

text for presentation to the user. Up to this point the story has been represented as an

ordered list of dependency trees. The problem is that each of these trees may have

multiple representations and the job of the surface realiser is to select the best overall

rendering for the story. Our surface realisation module currently interacts with the

REALPRO generation system (Lavoie and Rambow, 1997). This system takes a Deep-

Styntactic Structure (DsyntS) tree and using a rule-based approach transforms it into

English. The Dsynt structure was inspired by Mel’čuk (1988) and is ideal for our

representation as the syntactic relationships are labelled with grammatical information

(e.g., subject, object) and each node corresponds to a meaning bearing lexical item

(i.e., the lemma). An example of a DsyntS tree for the sentence ‘The prince runs

quickly up the stairs’ is shown in Figure 3.5.

There are, however, several grammatical issues that will affect the final realisation

of the sentence that cannot be included in the subcategorisation rules. For nouns, we

must decide whether they are singular or plural, whether they are preceded by a def-

inite or indefinite article or with no article at all. Adverbs and particles can either be

pre-verbal or post-verbal. Verbs that appear as sub-clauses may take on different mood

attributes, whether they are imperative, infinitives, etc. Prepositions and particles will

arrive at the surface realiser as lists as they are not directly content bearing. The re-

aliser is therefore required to select the most appropriate lexeme from those available

for each of these word types. As we mentioned in the previous section, some sentences

may be realised using several possible structures. There is also the issue of selecting

an appropriate tense for our generated sentences, however, we simply assume all sen-

tences are in the present tense.
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DSYNTS:

run [class:verb tense:pres](

I prince [class:common_noun article:def]

ATTR up [class:preposition] (

II stair [class:common_noun number:pl article:def]

ATTR quickly [class:adverb position:post-verbal]

)

)

END:

Figure 3.5: Example of a Deep-Syntactic Structure (DsyntS, Mel’čuk, 1988) tree for the

sentence ‘The prince runs quickly up the stairs’.

Since we do not know a priori which of these parameters result in a grammatical

sentence, we generate all possible combinations and select the most likely one accord-

ing to a language model. When scoring with the language model we are looking for

the sentence that has the lowest perplexity3. This is an approach used when generating

text, for example in Machine Translation, where the final translation may have many

possible realisations. We used the SRI tool-kit4 to train a trigram language model on

the British National Corpus5, with interpolated Kneser-Ney (Kneser and Ney, 1995)

smoothing and perplexity as the scoring metric for the generated sentences. Once again

we encounter a search problem with a potentially large number of possible candidates.

We reduce the number of candidates for scoring by searching for the correct represen-

tation of the lowest clause in a sentence first before moving to its parents. It is possible

that the realisation that result from this approach may not be the optimum but for sen-

tences that contain multiple prepositional phrases it is not feasible to try all possible

realisations of the sentence. As another simplification, we assume that the input enti-

ties are singular and are proceeded by a definite article. A history is also maintained

so that once the parameters of a noun have been established for one sentence they will

be repeated in all subsequent sequences in which that noun appears.

3Perplexity can be thought of as the level of surprise resulting from reading the next word in a
sequence. The perplexity should be low when a sequence of words conforms to our expectations of a
language. Formally, perplexity is defined as 2H where H is the the entropy, a measure of the uncertainty
associated with a random variable (see Jurafsky and Martin, 2009, chap. 6).

4Available from http://www-speech.sri.com/projects/srilm/
5Available from http://www.natcorp.ox.ac.uk/



3.2. The Story Generator 49

root

prince

rule

. . . fight

fight(prince) fight_with(prince, OBJ)

fight_with(prince, dragon)

fight_with(prince, goblin)

fight(prince, ADV)

fight(prince, heroically)

kiss

. . .

princess

love

. . .

protect

. . .

escape

. . .

Figure 3.6: Simplified sentence generation example for the input sentence the prince

marries the princess.

3.2.5 Example

It is best to illustrate the generation procedure with a simple example (see Figure 3.6).

Given the sentence the prince marries the princess as input, our generator assumes that

either prince or princess will be the subject of the following sentence. As we explained

earlier, this is a somewhat simplistic attempt at generating coherent stories. Centering

(Grosz et al., 1995) and other discourse theories argue that topical entities are likely

to appear in prominent syntactic positions such as subject or object. Next, we select

verbs from the knowledge base that take the words prince and princess as their subject

(e.g., fight, kiss, love). Our beam search procedure will reduce the list of verbs to a

small subset by giving preference to those that are likely to follow marry and have

prince and princess as their subjects or objects.

The sentence planner gives a set of possible frames for these verbs which may intro-

duce additional entities (see Figure 3.6). For example, fight can be intransitive or take

an object or adverbial complement. We select an object for fight, by retrieving from the

knowledge base the set of objects it co-occurs with. Our surface realiser will take struc-

tures like fight(prince,heroically), fight_with(prince,dragon), fight_with(prince,goblin)

and generate the sentences the prince fights heroically, the prince fights with the dragon

and the prince fights with the goblin. This procedure is repeated to create a list of pos-

sible candidates for the third sentence, and so on.

As Figure 3.6 illustrates, there are many candidate sentences for each entity. In
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default of generating all of these exhaustively, our system utilises the likelihoods from

the knowledge base to guide the search. So, at each choice point in the generation

process, e.g., when selecting a verb for an entity or a frame for a verb, we consider

the N best alternatives assuming that these are most likely to appear in a good story.

An overview of the approach is given in Algorithm B.1 in Appendix B.

3.3 Searching the Story Space

We can think of all the possible stories existing within a search space defined by the

content selection database. These stories contain differing content words, sentence

structures and length. One strategy for searching this space is to always follow the

path with the highest score. However, this approach is not guaranteed to lead us to the

best scoring story overall.

The first question that comes to mind when considering the story space is, what

is its size? This is a non-trivial question and is ultimately dependent on the size and

structure of the content selection database. An entity may be the subject of many

actions, leading to several template structures which are possibly a single clause of an

ultimately larger sentence. For example, a verb may take both a direct and indirect

object, each of which could take one of 40 possible nouns. This would result in 1600

versions of this sentence. This may seem like a small number but consider that this verb

may only be a subclause of the matrix verb, which itself may have a similar number of

variations. It is now quite easy to see how the search space can explode as the size of

the content selection database increases.

Secondly, how do we evaluate a complete or partial story and select which path

in the search space to follow? As we established, the search space has a potentially

intractable size making a complete search impossible. We therefore, prune the search

by removing solutions that look unprofitable. Ideally, we would like to include all

actions associated with each entity as we do not know which of them will lead to

the better story overall but this approach is not practical. Pruning is required at both

the sentence and document level. So, when generating sentences we focus on events

that are more strongly associated with the noun. We do this by assigning likelihood

to the stored syntactic relationships (e.g., subj-verb, verb-obj) in the content selection

database. This allows us to prune away the unlikely events associated with each entity,

leaving those that we would actual expect the entity to perform.

Pruning is also required at the story level. As we mentioned earlier, a beam search
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can be employed for this purpose. A cache of solutions is held and when we reach a

point where the cache becomes full we simply reduce the number of stories. We can

also prune at each level of the story search to reduce the number of candidates under

consideration when we start generating the next level of our tree search. A scoring

measure is utilised to rank each of the stories in the cache and the N best are kept. This

approach has been used successfully in previous NLG systems (see Walker et al., 2001;

Knight and Hatzivassiloglou, 1995). A useful feature of a rank based system is that it

allows for multiple scoring measures which may rate differing aspects of the candidate

solutions. We will now discuss how we select the stories we keep in the cache. This

brings us to one of the most fundamental questions for a search based story generator,

namely “What makes a good story?"

3.3.1 Scoring a Story

In essence, we must now define what makes a ‘good’ story. It is unlikely that everyone

will appreciate a story in the same way as people are often influenced by their personal

background, age, knowledge and interests, ect. Therefore, we need to look for overar-

ching features present in all stories which we can be used to judge their quality. Turner

(1994) identified what he considered to be important features of a story. These include

interest, coherence, originality and creativity. Turner was keen to investigate to what

extent a story generation system could be considered creative. He argued that creativity

emerges in problem solving through the retrieval and adaptation of previous solutions

Our approach is different, as it is not a problem solving system in which satisfaction

of author and character level goals drive the production of the final text. As our sys-

tem generates stories at the syntactic and lexical level, our evaluation must reflect this.

Therefore assessing our stories in terms of interest, coherence and originality, but not

creativity. As our stories are generated from relationships extracted by decomposing

the corpus, we can assume that each story will be original with respect to the original

corpus.

Coherence is a factor in generated texts that has garnered much interest in the past

(see Reiter and Dale, 2000 and the references therein). Any NLG system that produces

text must ensure that the reader will be able to understand its content and this holds

true for stories generated by our system. However, the interest of a story deserves more

consideration. Interest is subjective but there are some key features we tend to look for

in a story, e.g., does it have a good plot, is there a twist or suspense, even humour?
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This is somewhat problematic as many of these features exist at the document level

and we have no means of determining them automatically. A crucial factor in any

evaluation performed by our system is that it is performed quickly and automatically.

Human readers make the best judges, but when considering a system that may produce

hundreds of thousands of stories in a single run, this is simply not practical. Any

measures utilised must therefore be performed by the system itself and be fast enough

to allow for a reasonable runtime.

Our focus will be on models that utilise the surface features of texts, as these are

easily observable. In particular, we will use these surface features to train models for

interest and local coherence. Surface features have already featured highly in work

on recognising local coherence in texts (Barzilay and Lapata, 2008). Combining these

methods will allow the system to evaluate the generated stories and effectively score

them. Traversing the search space, we can then move towards an optimal solution, the

most interesting and coherent story.

3.3.2 Modelling Interest

A stumbling block to assessing how interesting a story may be, is that the very notion of

interestingness is subjective and not very well understood. Although people can judge

fairly reliably whether they like or dislike a story, they have more difficulty isolating

what exactly makes it interesting. Furthermore, there are virtually no empirical studies

investigating the linguistic (surface level) correlates of interestingness. We therefore

conducted an experiment where we asked participants to rate a set of human authored

stories in terms of interest. Our stories were Æsop’s fables since they resemble the

stories we wish to generate. They are fairly short (average length was 3.7 sentences)

and with a few characters. Short stories were preferable as interest may vary during

longer stories making it harder to associate interest to specific lexical features.

We asked native English speaking participants to judge 40 fables on a set of criteria:

plot (how strong was the plot of the story?), events (how novel were the events in the

story?), characters (how believable were the characters?), coherence (how easy was

the story to follow?) and interest (how interesting was the story?). Ratings were given

on a 7-point scale. These criteria were chosen to help us predict what human readers

were looking for when deciding the interest of a story. In addition, the evaluators

were given the chance to write down their reasoning for scores they assigned to each

story. The fables were split into 5 sets of 8; each participant was randomly assigned
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Features Interest Features Interest

NTokens 0.188∗∗ NLET 0.120∗

NTypes 0.173∗∗ NPHON 0.140∗∗

VTokens 0.123∗ NSYL 0.125∗∗

VTypes 0.154∗∗ K-F-FREQ 0.054

AdvTokens 0.056 K-F-NCATS 0.137∗∗

AdvTypes 0.051 K-F-NSAMP 0.103∗

AdjTokens 0.035 FAM 0.162∗∗

AdjTypes 0.029 CONC 0.166∗∗

NumSubj 0.150∗∗ IMAG 0.173∗∗

NumObj 0.240∗∗ AOA 0.111∗

MEANC 0.169∗∗ MEANP 0.156∗∗

Table 3.2: Correlation values for the human ratings of interest against syntactic and

lexical features; ∗ : p < 0.05, ∗∗ : p < 0.01.

one of the 5 sets to judge. We obtained ratings (440 in total) from 55 participants,

using the WEBEXP6 (Keller et al., 2009) experimental software over the internet. The

experimental materials are given in Appendix A.

We next investigated if easily observable syntactic and lexical features were cor-

related with interest. Participants gave the fables an average interest rating of 4.27

(SD 1.70). For each story we extracted the number of tokens and types for nouns,

verbs, adverbs and adjectives as well as the number of verb-subject and verb-object

relations. Features were also extracted from the MRC Psycholinguistic database7. In

particular, as we are generating children’s stories, we are interested in the age at which

words are acquired and the imagery of such words (see Bird et al., 2001). Using the

MRC database, tokens were annotated along the following dimensions: number of let-

ters (NLET), number of phonemes (NPHON), number of syllables (NSYL), written

frequency in the Brown corpus (Kucera and Francis, 1967; K-F-FREQ), number of

categories in the Brown corpus (K-F-NCATS), number of samples in the Brown cor-

pus (K-F-NSAMP), familiarity (FAM), concreteness (CONC), imagery (IMAG), age

of acquisition (AOA), and meaningfulness (MEANC and MEANP).

Correlation analysis using Pearson’s r was performed to assess the degree of linear

6See http://www.webexp.info/
7http://www.psy.uwa.edu.au/mrcdatabase/uwa_mrc.htm



54 Chapter 3. Generate-and-Rank Story Generation

relationship between interest ratings and the above features. The results are shown in

Table 3.2. As can be seen the highest predictor is the number of objects in a story

followed by the number of noun tokens and types, indicating interesting stories con-

tain actions with more than one participant and the stories themselves contain several

different entities. Imagery, concreteness and familiarity all seem to be significantly

correlated with interest. Although the number of sentences in a story was not a signif-

icant predictor, as each story was approximately the same length, the length of those

sentences was. This is reflected in the significant correlation between interest and the

number of entities and actions in each story. Regressing the best predictors from Ta-

ble 3.2 against the interest ratings yields a correlation coefficient of 0.608 (p < 0.05).

The predictors account uniquely for 37.2% of the variance in interest ratings. Over-

all, these results indicate that a model of story interest can be trained using shallow

syntactic and lexical features.

However, it is important to point out that there are some caveats with regards to

training an interest model on Æsop’s Fables. First, Æsop’s fables contained inherent

properties that posed several difficulties to our study. Several contain archaic words,

some of which could have been unknown to our native English speaking participants.

Secondly, and more importantly, some of these stories are well known. Such as the

“The Hare and the Tortoise” story. These stories tend to be rated either very positively

or very negatively in terms of interest. Participants giving low ratings so due to their

familiarity with story content, not the quality of the story itself. Also, several partici-

pants indicated that they disagreed with the underlying message and characters in the

fables, strongly influencing their ratings of interest. Fables are a very particular form

of story and are similar in style to parables, containing an underlying morale. Many

of the moral messages contained in the fables are now out of fashion, with their value

diminished in modern society. In order to portray these morals, the characters within

the fables (mostly animals) quite often act in a manner contrary to our expectations.

For example, “The Stag and the Pool”, contains a particularly vain deer, a characteris-

tic not often associated with that particular animal. Appendix A contains examples of

fables with their associated comments.

A model of interest, based on the findings of human experiment, was trained using

the fables combined with the human ratings as training data. From each document we

extracted those features that were shown to be significant predictors in our correlation

analysis (the features are those shown in Table 3.2 that are marked with an asterisk).

Word-based features were summed across each text in order to obtain a representa-
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Plot Coherence Action Interest

Character 0.535** 0.409** 0.306** 0.408**

Plot 0.328** 0.495** 0.703**

Coherence 0.3077** 0.318**

Action 0.644**

Table 3.3: Correlation values for the human ratings of Æsop’s Fables; ∗∗ : p < 0.01

tion for the entire story. We used Joachims (2002) SVMlight package8 to train a linear

model preference ranker (all parameters set to their default values). Each training ex-

ample represents a single interest rating, from a single human evaluator, for a given

document and consists of both the numerical rating and a vector of the documents fea-

tures. An evaluation was conducted of the model’s performance to predict the ranking

of documents for which the interest ratings were already known. Due to the small size

of the data set, evaluation was carried out using cross-validation on the training set.

The training set was split into 8 sets of size 5 and cross-validation involved training the

model on 7 of the sets whilst testing on the last. The test set for each group contained 5

documents for which the interest score was derived by taking the average of the inter-

est scores given to it by the human evaluators. Using these scores we can then assign a

ranking to the documents. To evaluate we used Kendall’s Tau statistic. The latter com-

putes the distance between the order of the models produced ranking in comparison to

the original ranking by recording the number of inversions it would take to produce it.

τ = 1− 2(number of inversions)
N(N−1)/2

(3.1)

Where N is the number of items in the ranking and the inversions are the interchanges

necessary to create the new ranking. A score of 1 is given to a those that are identical, -1

is given to those that are in the completely reverse order. Our evaluation shows that

the model achieved an average Kendall’s tau correlation of 0.948 (SD 0.025) with the

human ratings.

Table 3.3 shows the correlation matrix for character, plot, coherence and interest.

As we can see, the perceived strength of the plot and the novelty of actions are the

strongest indicators of interest in a story. The coherence of the stories is less corre-

lated, but this makes sense as we can expect human authored stories to be coherent.

8http://www.cs.cornell.edu/People/tj/svm_light/



56 Chapter 3. Generate-and-Rank Story Generation

The fact that the believability of the characters is not so strongly correlated with inter-

est may indicate that the readers are not so interested in whether the character is likely

to perform an action, but rather, what that action is and how it fits into the plot. It is

clear that the readers were looking for a strong plot, but as we mentioned before this

is a largely document level feature of a story and can be difficult to discern automati-

cally. However, we found that the plot ratings also strongly correlated with the lexical

features of the fables, supporting our use of the interest ratings as a basis for a trainable

model.

3.3.3 Modelling Coherence

In addition to evaluating the interest of a story, we also want to ensure that the story

produced is coherent. This is not a problem with Æsop’s fables as we can assume that

coherence is inherent in human authored stories. However, as our system generates

each story one sentence at a time, we need to make sure that the story, is overall co-

herent. Considerable research has been conducted into how to generate coherent texts,

but this has largely focussed on the use of rhetorical relationships. As our system uses

the shallow features that can be extracted from text, we do not make use of rhetorical

relationships that model global coherence. As a result, we shall resort to assessing the

coherence of each document using a model of local coherence. Local coherence is in-

tended to capture the relatedness between sentence transitions. As our story generation

approach searches for the next sentence to add to each current story hypothesis, we are

interested in how these sentences will affect the coherence of each story.

We evaluate the local coherence of a text using an entity grid as described in Barzi-

lay and Lapata (2008). This approach represents each document as a 2-dimensional

array in which the columns corresponds to entities and the rows to sentences. Each

cell indicates whether an entity appears in a given sentence or not and whether it is

a subject, direct or indirect object. This entity grid is then converted into a vector of

entity transition sequences. From a corpus we can learn the probabilities of such transi-

tion sequences and then use them to calculate the probability of the sentence transitions

in a given text. An example entity grid is shown in Figure 3.7.

This approach was successfully used in Barzilay and Lapata (2008) to learn a rank-

ing function for sentence ordering. Following their work, we train our model using

artificial test data created by permuting the sentences of a text and then ranking the

resulting texts by their proximity to the original. We can assume that the original doc-
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The prince loves the princess. The princess sees a

dragon near the city. The prince draws his sword
and goes to meet the dragon. The prince slays the

dragon with the weapon. The princess kisses the

prince.

prince princess dragon city sword weapon

1 S O – – – –

2 – S O X – –

3 S – X – O –

4 S – O – – X

5 O S – – – –

SS SO SX S– OS OO OX O– XS XO XX X– –S –O –X – –

.04 .04 0 .08 .04 0 .04 .08 0 .04 0 .08 .08 .08 .08 .29

Figure 3.7: An example entity grid and vector for a given story. Rows correspond to

sentences in the story and columns to story entities. Grid cells correspond to gram-

matical roles: subjects (S), direct objects (O)and indirect objects (X ). If an entity is not

present in a sentence then it is recorded as (–).

ument will be coherent. We trained our model on a selection of documents from the

Andrew Lang fairy tales collection (see Section 3.4.1). We selected fairy tales rather

than Æsop’s fables as fables tend to contain only a couple of sentences, making it diffi-

cult to extract sufficient large transition sequences to train effectively. A more detailed

account of our model of local coherence is given in Section 3.4.3.

3.4 Experimental Setup

In this section we present our experimental set-up for assessing the performance of

our story generator. We give details on our training corpus, the system parameters,

the baseline systems used for comparison, and explain how our system output was

evaluated.
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Once upon a time there lived a poor fisher who built a hut on the banks of a stream

which, shunning the glare of the sun and the noise of the towns, flowed quietly past

trees and under bushes, listening to the songs of the birds overhead. One day, when

the fisherman had gone out as usual to cast his nets, he saw borne towards him on the

current a cradle of crystal. Slipping his net quickly beneath it he drew it out and lifted

the silk coverlet. Inside, lying on a soft bed of cotton, were two babies, a boy and a

girl, who opened their eyes and smiled at him. The man was filled with pity at the

sight, and throwing down his lines he took the cradle and the babies home to his wife.

The good woman flung up her hands in despair when she beheld the contents of the

cradle. “Are not eight children enough,” she cried, “without bringing us two more?

How do you think we can feed them?” “You would not have had me leave them to

die of hunger,” answered he, “or be swallowed up by the waves of the sea? What is

enough for eight is also enough for ten.” The wife said no more; and in truth her heart

yearned over the little creatures. . . .

Once upon a time there lived a King and Queen, who were the best creatures in the

world, and so kind-hearted that they could not bear to see their subjects want for any-

thing. The consequence was that they gradually gave away all their treasures, till they

positively had nothing left to live upon; and this coming to the ears of their neighbour,

King Bruin, he promptly raised a large army and marched into their country. The poor

King, having no means of defending his kingdom, was forced to disguise himself with

a false beard, and carrying his only son, the little Prince Featherhead, in his arms,

and accompanied only by the Queen, to make the best of his way into the wild coun-

try. They were lucky enough to escape the soldiers of King Bruin, and at last, after

unheard-of fatigues and adventures, they found themselves in a charming green valley,

through which flowed a stream clear as crystal and overshadowed by beautiful trees.

. . .

Figure 3.8: Extracts of stories from the Andrew Lang fairy tale corpus.
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3.4.1 Corpus Data

We trained the content selection database and action graph on a corpus consisting of

437 stories from the Andrew Lang fairytale collection9. Sample excerpts from the cor-

pus are shown in Figure 3.8. We selected fairy tales as they contain characters and

themes children will be familiar with. The average length of a fairy tale is 125.65 sen-

tences (SD 76.82) with an average sentence length of 15.29 words (SD 4.57) and there

are 1,254,306 word tokens present in the corpus consisting of 15,789 word types. Each

document was parsed using RASP (Briscoe and Carroll, 2002). The parser computes

part of speech (POS) tags for each word and then through syntactic analysis outputs

the grammatical relations that appear within the text. We discarded word tokens that

did not appear in the Children’s Printed Word Database10, a database of printed word

frequencies as read by children aged between five and nine, as well as any word not

found in WordNet (Fellbaum, 1998). We extracted binary relationships, for example

(dog:subject:bark), and stored the number of occurrences of each relationship. We

only retained relationships that appeared at least 5 times in the corpus. We only stored

common-nouns, proper-nouns and pronouns were discarded; we also split compound

nouns. Verbs were stored in their lemmatised word form.

Using the counts of occurrences that we collected from the corpus, we scored each

grammatical relation using the mutual information (MI) score proposed in Lin (1998):

MI = ln
(
‖ w,r,w′ ‖ × ‖ ∗,r,∗ ‖
‖ w,r,∗ ‖ × ‖ ∗,r,w′ ‖

)
(3.2)

where w and w′ are two words related by relation type r′. ∗ denotes all words in that

particular position and ‖ w,r,w′ ‖ represents the counts of w,r,w′ occurring in the cor-

pus. MI scores, unlike likelihoods, do not give an indication of which relationships

are most likely to occur in the corpus. Rather, they indicate the uniqueness of these

relationships. We would therefore expect the relationship between dog and bark to

be scored much higher than that of dog and be, not because we find that ‘dog is’ is

less prevalent in the corpus but rather that the majority of entities can also be attested

with the verb be but not so with bark. We can therefore, think of dog and bark as

having a unique relationship that other entities do not share. Mutual Information was

used for selecting subject-verb, verb-adverb, noun-adjective, verb-verb (within a sen-

tence) and verb-verb (between sentence) relations. The MI scores were calculated for

all co-occurring word pairs of the aforementioned relations. Any relations that had an
9Available on-line at http://www.mythfolklore.net/andrewlang/

10http://www.essex.ac.uk/psychology/cpwd/
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MI score less than 0 were disregarded as being unlikely (see Algorithm B.3 in Ap-

pendix B). MI scores were also calculated for both bigram and trigram relationships in

the action graph, the first two actions of the trigram being treated as a single relation-

ship.

Mutual information allows us to score binary relations, however, this may lead

to problems when likely selections do not make sense in a ternary relation, such as

subjects and objects of verbs. For instance, although both dog:subject:run and presi-

dent:object:run are probable, we may not want the system to create the sentence The

dog runs for president. Some verbs can accept up to two object entities if they are

transitive so we also need to stop unlikely objects appearing together, such as John

went for a walk in the mirror although a look in the mirror would have been fine. To

help reduce these problems we need to satisfy subjects, verbs and objects together at

the same time. To do this we gathered data from the corpus that allowed us to calculate

the conditional probability;

p(o1,o2 | s,v) = ‖ s,v,o1,o2 ‖
‖ s,v,∗,∗ ‖

(3.3)

where s is the subject of verb v, o1 is the first object of v and o2 is the second object of

v and v,s,o1 6= ε. When faced with a unknown set of object relations the system will

first try and select those object entities with this conditional probability before backing

off and selecting them with the MI scores (see Algorithm B.4 in Appendix B).

3.4.2 Corpus Analysis

Before presenting our system’s output we analyse the corpus on which it was trained,

to give an indication of the possibilities it holds, but also to highlight the challenging

nature of our task. In total the fairy tale corpus contains 1,541 noun tokens, 724 verbs,

218 adverbs and 326 adjectives. In Table 3.4 we see the 10 entities that appear most

frequently in the corpus, and in Table 3.5 the top 10 verbs. It is encouraging to see that

within the most frequent entities we find those that we would expect to appear in fairy

tales, namely, king, prince and princess. These are entities we presume will assume

protagonist roles in fairy tales. However, there are also some unexpected entities in

this list, such as way and head. These words are common throughout the corpus as

supplementary entities (e.g., ‘. . .but the daughter had forgotten the way’), protagonists

tend to appear frequently across a document whereas these supplementary entities are

prevalent in the document collection as a whole. These also include the top two nouns,
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Noun Subject Object Adjective Total

man 2223 (204) 1466 (104) 1879 (43) 5568

woman 887 (148) 598 (92) 1000 (33) 2485

king 1318 (169) 749 (83) 100 (24) 2157

way 241 (77) 1289 (104) 294 (37) 1824

prince 1043 (164) 448 (81) 108 (24) 1599

girl 764 (135) 452 (69) 347 (36) 1563

thing 468 (86) 491 (79) 428 (70) 1387

wife 545 (111) 732 (80) 106 (30) 1383

head 261 (80) 1055 (115) 66 (34) 1382

princess 746 (154) 487 (97) 147 (38) 1380

Table 3.4: Properties of relationships for the most frequent entities in the fairy tale

corpus. The number of occurrences for each relationship is reported with the number

of tokens it relates to shown in parentheses.

man and woman, which appear as referring terms for many entities.11

Tables 3.4 and 3.5 also show the number and types of relationships for each of these

most frequent word. For example, the entity man appears 2,223 times as the subject of

204 verbs, and the verb be appears 5,889 times with 664 different subjects. If we were

to allow unrestricted search when building a sentence with man as the subject then we

would need to consider all of these verbs. Assuming that the first verb was be and we

were using the NPPP template (consisting of a verb, a subject, a direct object and an

indirect, for example, the man is the king of the country), then we would also have to

consider all combinations of objects attested with be. We see from Table 3.5 that there

are 650 objects, resulting in 422,500 (650*650) different sentences. Considering that

this is just a single sentence within the story search space, a complete search would

clearly make the system non-viable.

Looking at specific entities within the database we can see how well the MI scores

capture the stereotypical relationships within the corpus. Table 3.6 shows the top and

bottom subject, object and adjective relationships for the entities king, prince and

princess. From the top scoring subject and object relationships we see some inter-

esting verbs appearing. Many of these are expected e.g., kings sign, princes woo and

11We did not undertake coreference resolution before processing the corpus so these references now
appear as entities within their own right, throughout the corpus.
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Verb Subject Object Adverb Total

be 5889 (664) 9355 (650) 2524 (75) 17768

go 1158 (253) 2781 (320) 1437 (55) 5376

take 811 (232) 3179 (422) 575 (64) 4565

have 833 (236) 3099 (430) 591 (63) 4523

come 1527 (295) 1919 (381) 1042 (62) 4488

say 1115 (198) 2198 (260) 658 (59) 3971

see 823 (208) 1971 (443) 1078 (50) 3872

give 647 (233) 2213 (375) 343 (47) 3203

make 712 (283) 1780 (345) 389 (65) 2881

find 362 (170) 1427 (359) 544 (55) 2333

Table 3.5: Properties of relationships for the most frequent verbs in the fairy tale corpus.

The number of occurrences for each relationship is reported with the number of tokens

it relates to shown in parentheses.

princesses are married. There are also some high scoring relationships that are sur-

prising, for example, kings spit and princes wet, actions we do not strongly associate

with fairytale princes and kings. Furthermore, note that low scoring actions are appli-

cable to many entities in the corpus, e.g., think, say and do. These actions, say little

about any particular character that takes part in a story, however they are potentially

important for generating fluent and human-like stories. Our search procedure gives

preference to sentences with high scoring relationships, as they are more expected of

the character. However, other verbs can also be used when selected by the action graph

based on the discourse history. The action graph trained on the fairy tale corpus con-

taining 23,109 nodes with an average of 1.832 (SD 4.343) outgoing edges per node.

There were 1,012 bigram (e.g., subj:run subj:catch) relationships and 22,097 trigram

relationships (e.g., subj:run subj:catch subj:hold). Several examples of action graph

entries are shown in Table 3.7, each example shows the actions that follow a particular

node, with the MI score for each transition. In Table 3.7 we see what if the previous

actions performed by an entity were to hide and then wait then it is expected that the

next action would be either to watch, go or run.
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Noun Subject Object Adjective

king empty (3.4) report (3.6) powerful (4.0)

exchange (3.4) improve (3.3) astonished (3.6)

spit (2.8) colour (3.1) false (3.3)

woo (2.8) reign (3.1) silly (3.1)

sign (2.5) sob (2.9) angry (2.7)

. . . . . . . . .

force (0.12) step (0.2) rich (0.56)

hold (0.089) raise (0.14) great (0.53)

do (0.06) bear (0.09) wicked (0.43)

lose (0.02) help (0.02) full (0.37)

lead (0.01) happen (0.01) strange (0.11)

prince court (3.7) attack (3.5) unfortunate (3.6)

wet (3.7) waken (3.2) instant (3.6)

station (3.0) sign (3.0) gracious (3.5)

woo (3.0) praise (2.9) beloved (3.1)

equal (3.0) suck (2.8) pale (2.8)

. . . . . . . . .

step (0.05) leave (0.09) beautiful (1.0)

say (0.03) stay (0.07) other (0.66)

jump (0.03) see (0.05) new (0.60)

save (0.02) live (0.02) dead (0.43)

pay (0.02) order (0.02) splendid (0.20)

princess study (4.0) report (4.1) proud (3.8)

tease (3.3) joke (4.1) beloved (3.5)

report (2.9) sway (4.1) glad (3.3)

express (2.9) rejoin (3.5) vain (3.5)

race (2.9) marry (3.1) younger (3.1)

. . . . . . . . .

want (0.05) behold (0.07) rich (0.26)

think (0.04) wait (0.06) young (0.17)

return (0.03) fetch (0.04) dead (0.12)

begin (0.02) leave (0.01) full (0.06)

laugh (0.01) pay (0.01) wonderful (0.6)

Table 3.6: Example of highest and lowest scoring relationships (with MI scores shown

in parentheses) for commonly occurring entities in the fairy tale corpus.
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Preceding Following actions

action(s) subject object

subject:fly buzz (5.1) peck (5.1) tap

(5.1) scratch (4.4) flutter (4.4)

swing (4.4) leap (4.2) drop

(4.0) snatch (4.0) cure (3.5)

pass (2.6) eat (2.4) leave (2.3)

throw (2.0) begin (1.8) take

(1.1)

lock (4.4) offer (4.4) disap-

pear (4.0) wait (3.3) make

(3.0) give (2.0) ask (2.0) see

(1.9) look (1.6) like (1.6)

object:marry obey (4.6) write (4.6) love

(3.9) happen (3.4) eat (2.9) re-

turn (2.6) pass (2.5) sit (2.4)

tell (2.1) go (2.0) live (1.8)

have (1.7) see (1.6) begin

(1.5) take (1.5) grow (1.2)

fetch (4.4) win (4.3) behold

(4.2) order (3.8) save (3.6)

seek (3.3) look (2.4) put (2.2)

give (1.5)

subject:hide watch (4.0) go (3.1) run (2.6) serve (7.2)

subject:wait

Table 3.7: Example of entries in the action graph constructed from the fairy tale corpus.

For a set of preceding actions, the expected next actions are reported with their MI

scores in parentheses. Each action is labelled with whether the entity is the subject or

the object.
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3.4.3 Parameter Tuning

There are several parameters that we have thus far eluded to but not set. The coherence

model in Section 3.3.3 can be trained on either bigrams or trigrams of entity transitions.

Also, as we are using two separate ranking models (interest and local coherence) we

must decide in which order they should be applied to the generated stories. To select

the best parameter setting for a full human participant study, we must first investigate

the effects that these parameters have on the stories being generated.

In training the entity grid model for evaluating local coherence we can choose

whether to look at bigrams or trigrams of entity transition sequences. Moving from

bigrams to trigrams increases the number of different sequence types, and therefore

the length of the vectors increase, as we have a vocabulary of size 4 (S, O, X and –) the

length of the bigram vector is 42 = 16 and the trigram vector 43 = 64. It does however,

allow the model to consider a larger window of transitions from the discourse history.

Each model is trained using SVMlight (Joachims, 2002). Each vector is paired with

a real number value representing the document’s perceived coherence. The training

vectors were created by taking the original document and permuting the sentences, un-

der the assumption that the original document is coherent and that any permutations

of sentence order will lead to a less coherent document. Each vector is scored us-

ing Kendall’s Tau (Lapata, 2003) which indicates how similar the sentence order of

the permutation is to the original sentence order. The input to the SVM is thus the

documents vector and its Kendall’s Tau score.

For each document we randomly selected pairs of permutation, in which one would

would have a higher tau than the other, to be used as training examples. We trained both

models on 200 documents of the fairy tale corpus and evaluated on 40. Evaluation was

performed by recording the number of vector pairs the models could correctly rank.

The bigram model correctly ranked the pairs 0.91% of the time and the trigram model

0.96%. Although this would seem to indicate that the trigram model is better, it should

also be noted that the fairy tales are much longer and contain many more entities than

the stories our system produces. We therefore propose that the performance of both the

bigram and trigram models requires to be evaluated on stories generated by the system.

Another consideration is how to apply our two ranking models of interest and local

coherence. One approach is to apply them both simultaneously using a simple voting

method to achieve a combined ranking (see Algorithm B.5 in Appendix B). Another

alternative is to rank with the coherence model first and then the interest model (or
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vice-versa). The stories produced by the system would then vary as we change the

priority of what we are looking for in the story. So, we could first remove stories that

are not coherent before we decide which of the coherent stories are interesting. Each

of these approaches will produce different types of story depending on their focus.

We ran the generate-and-rank system with the different coherence models described

above and then varied the order in which interest and coherence models were applied.

We used 12 input sentences with 2 coherence models and 3 different methods for ap-

plying the coherence and interest models (coherence and interest simultaneously, co-

herence first then interest, interest first then coherence) which gave in total 72 stories.

Two human judges rated these stories on a scale of 1 to 5 in terms of both coherence

and interest. It was found that the best setting was to apply the coherence and interest

models simultaneously using entity transition sequences of length 2. A shorter chain

of entity transition sequences does makes sense as our stories are short with a few en-

tities. Applying the models in succession yielded worse stories. The entity-grid model

tended to maximise coherence by selecting only short sentences with very few entities,

leading to few lexical items for the interest model to evaluate. The interest model, on

the other hand, tended to select stories with large sentences in which numerous one-off

entities appeared resulting in less coherent texts.

3.4.4 Evaluation

We compared the generate-and-rank system (Rank-based) against two baseline sys-

tems. Both systems do not use a beam. Instead, they decide deterministically how to

generate a story. The first baseline, Best-selection, does so on the basis of the predicate-

argument and predicate-predicate relationships in the knowledge base, it will always

select the relationship with the strongest MI scores. Only a single story is created,

although the search procedure has the ability to backtrack if a dead-end is reached be-

fore the story is of the desired length. The second baseline, Random-selection, uses a

uniform distribution when making decisions ignoring the co-occurrence frequencies.

Again, only one story hypothesis is considered whilst generating.

The three systems generated stories for 10 input sentences. These were created

using commonly occurring sentences in the fairy tales corpus (e.g., the family has the

baby, the monkey climbs the tree, the giant guards the child). Each system generated

one story for each sentence resulting in 30 (3×10) stories for evaluation. All stories

had the same length, namely five sentences. Human judges (21 in total) were asked to
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System Fluency Coherence Interest

Random-selection 1.95∗ 2.40∗ 2.09∗

Best-selection 2.06∗ 2.53∗ 2.09∗

Rank-based 2.20 2.65 2.20

Table 3.8: Human evaluation results: mean story ratings for three versions of our

system; ∗: significantly different from Rank-based (∗ : p < 0.05).

rate the stories on a scale of 1 to 5 for fluency (was the sentence grammatical?), coher-

ence (does the story make sense overall?) and interest (how interesting is the story?).

These criteria were selected as they covered fundamental aspects of our generated sto-

ries, i.e., they must make sense and be interesting, whilst being represented adequately

in the text. There are other evaluation measures we could have considered. For exam-

ple, Callaway and Lester (2002a) asked participants to judge the level of detail and the

believability of the produced stories when evaluating the output of their story genera-

tor STORYBOOK. However, as their focus was on the production of high quality prose

rather on how the story itself was generated,12 the level of detail in the stories produced

were more complex, requiring more granularity during evaluation. In particular, they

were interested in the effects of microplanning and surface level features on the per-

ceived quality of the generated texts. Our evaluation is therefore much closer to that

of Peinado and Gervás (2006) who asked participants to evaluate stories produced by

PROTOPROPP against randomly generated stories and stories from the original corpus.

Participants rated each story for linguistic quality, coherence, interest and originality.

The experiment was conducted using theWEBEXP13 (Keller et al., 2009) exper-

imental software over the internet and the stories were presented in random order.

Participants were told that all stories were generated by a computer program and were

instructed to rate more favourably interesting stories, stories that were comprehensible

and overall grammatical.

12STORYBOOK assumes the existence of a narrative generator that produces a story specifications.
For their evaluation, Callaway and Lester, 2002a used a primitive narrative planner, capable of producing
two different Little Red Riding Hood stories of two to three pages in length.

13See http://www.webexp.info/
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3.4.5 Results

Our results are summarised in Table 3.8 which lists the average human ratings for

the three systems. We performed an Analysis of Variance (ANOVA) to examine the

effect of system type on the story generation task. Statistical tests were carried out on

the mean of the ratings shown in Table 3.8 for fluency, coherence, and interest. We

observed a reliable effect of system type by subjects and items on all three dimensions.

Post-hoc Tukey tests revealed that the stories created with our rank-based system are

perceived as significantly better in terms of fluency, interest, and coherence than those

generated by both the best-selection and random-selection systems (α < 0.05). The

best-selection system is not significantly better than random-selection system except

in terms of coherence.

These results are not entirely surprising. In contrast to the baselines, the rank-based

system assesses candidate stories more globally, thus favouring more coherent stories,

with varied word choice and structure. The best-selection system maintains a local

restricted view of what constitutes a good story. It creates a story by selecting isolated

entity-event relationships with high MI scores. As a result, the stories are unlikely to

have a good plot. Moreover, it tends to primarily favour verb-object or verb-subject

relations, since these are most frequent in the corpus. The stories thus have little struc-

tural variation and feel repetitive. The short sentences generated by this system seems

also to confirm that sentence length can be taken to be a significant predictor of story

interest. The random-selection system uses even less information in generating a story

(entity-action relationships are chosen at random without taking note of the MI scores).

A note of caution here concerns referring expressions which our systems did not gen-

erate. This may have disadvantaged the stories overall, rendering them stylistically

awkward.

Table 3.9 shows example output from the three systems. As can be seen, the stories

created by the generate-and-rank system include some unexpected lexical choices. The

sentence, The giant cries that the son laughs the happiness out of death, presents sev-

eral oddities. The first is the addition of entities such as happiness and death, which are

rather dramatic for a simple children’s story. These words are highly favoured by the

interest model, and it is true that these words can be thought of as interesting. Although

interesting on their own, these words do not relate to the story’s context, and the inter-

est model has no way of knowing this. As a result, the actions and entities favoured by

the interest model seem surreal and require considerable effort on the reader’s part in
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R
an

k-
ba

se
d

The family has the baby. The baby is to

seat the lady at the back. The baby sees

the lady in the family. The family mar-

ries a lady for the triumph. The family

quickly wishes the lady vanishes.

The giant guards the child. The child

rescues the son from the power. The

child begs the son for a pardon. The

giant cries that the son laughs the hap-

piness out of death. The child hears if

the happiness tells a story.

B
es

t-
se

le
ct

io
n The family has the baby. The family

rounds up the waist. The family comes

in. The family wonders. The family

meets with the terrace.

The giant guards the child. The child

rescues the clutch. The child beats

down on a drum. The child feels out

of a shock. The child hears from the

giant.

R
an

do
m

-s
el

ec
tio

n The family has the baby. The family

is how to empty up to a fault. The

baby vanishes into the cave. The fam-

ily meets with a stranger. The baby

says for the boy to fancy the creature.

The giant guards the child. The child

calls for the window to order the giant.

The child suffers from a pleasure. The

child longer hides the forest. The child

reaches presently.

Table 3.9: Stories generated by our generate-and-rank system (Rank-based), a system

that follows the highest scoring path through the search space (Best-selection), the a

system that makes choices at random (Random-selection).
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trying to construct a mental picture of what is said. The sentence above requires us to

imagine a situation in which the giant is commenting on the fact that an additional en-

tity, the son, is gaining joy by laughing at a life threatening situation. The composition

of the sentence is needlessly complicated and it is a concern that the target audience,

young children, will not be able to understand it.

One issue that needs to be addressed is the quality of the text of the realised story.

Looking at the examples above, we see that there are some rather strange arrangements

in word order, for example, The child longer hides the forest. These problems appear

as the surface realiser tries to pick an appropriate place for the adverb in the sentence.

We can also see that the sentence is missing a preposition, this means that the realiser

has selected the wrong sentence structure. This example also suffers from the fact that

the system does not have any mechanism for coping with negation (there is currently

no mechanism for deciding whether a verbs polarity is positive or negative), so the

sentence, The child no longer hides in the forest, cannot currently be generated. In

addition, as the surface realiser scores each possible realisation with a trigram lan-

guage model it fails to capture long range dependencies in the text and tends to favour

sentences that contain commonly occurring groups of words. Other approaches to lan-

guage modelling are available that are not constrained by such short word sequences

(see Mitchell and Lapata, 2009 and the references therein).

Another consideration is the efficiency and coverage of the generate-and-rank ap-

proach. As we have shown, the space of possible stories can be incredibly large and as

such we placed strict limits on the number of candidate stories we consider. Specifi-

cally, we set a limit on the number of lexemes considered for a sentence node and the

number of sentence templates considered for a particular verb. Unfortunately, by re-

ducing the search space in this manner, we are missing out on some optimal solutions.

When selecting which lexical items to use in the story, the system utilises the MI scores

to rank and select the top N words. The lexemes selected have a strong relationship

with the words they are connected to in the sentence’s dependency graph, however,

viewing the document as a whole, it is not clear that they would make the best choices

overall. Interestingly, we find that the stories generated by the random-selection system

include some very good sentences, e.g., The baby vanishes into the cave, The family

meets with a stranger. This would seem to suggest that there are interesting sentence

structures the generate-and-rank approach simply cannot reach. We will discuss alter-

native search methods in Chapter 5.

Each sentence we generate has a strong dependency on the sentences that preceded
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it in the story. As we explained earlier, a discourse history is maintained in order to

steer the selection of entities towards those that have already appeared, and to encour-

age a logical action progression sequence. The downside of this approach is that we

end up with a large amount of repetition in the sentences being generated. The same

sentences are generated over and over again for inclusion at different positions in the

story search tree. This leaves us with a lot of wastage in terms of run-time. We clearly

need a more efficient way of searching the story space.

The system presented in this chapter covers the content selection, sentence plan-

ning and surface realisation tasks of Reiter and Dale’s (2000) NLG pipeline. Without,

however, incorporating any document planning. Each story was built one sentence at

a time with each new sentence being dependent on those that came before it. Choices

made early on in the creation of a story are, therefore, immutable and affect the genera-

tion of the rest of the story, perhaps leading to a story which is not the best story overall.

Due to the high overhead associated with searching the story space we can assume that

without proper planning before search begins, a large percentage of the solutions gen-

erated will be fruitless. By incorporating document planning, we can direct the system

towards areas of the search space that are more likely to result in profitable solutions.

In the next chapter we will propose a method for document planning through the use

of story plots and show how these plots can be automatically extracted from the corpus

and used to generate a wide range of stories.

3.5 Summary of Chapter

In this chapter we proposed a novel method to computational story telling. Our ap-

proach has three key features. Firstly, story plot is created dynamically by consulting

an automatically created knowledge base. Secondly, our generator realises the various

components of the generation pipeline stochastically, without extensive manual cod-

ing. Thirdly, we generate and store multiple stories efficiently in a tree data structure.

Story creation amounts to traversing the tree and selecting the nodes with the highest

score. We develop two scoring functions that rate stories in terms of how coherent and

interesting they are. Experimental results show that these bring improvements over

versions of the system that rely solely on the knowledge base. Overall, our results in-

dicate that the generate-and-rank approach advocated here is viable in producing short

stories that exhibit narrative structure. As our system can be easily retrained on differ-

ent corpora, it can potentially generate stories that vary in vocabulary, style, genre, and
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domain. In the next chapter we show how the issues with story structure, described

above, can be improved using an explicit model of document planning, namely using

story plots. Further, in Chapter 5 we will present an evolutionary search procedure for

generating stories which uses the stories generated from plots as a basis. We show that

by using evolutionary search methods we can overcome the limitations that were en-

countered with the generate-and-rank approach, specifically improving the exploration

of the story search space.



Chapter 4

Plot-Based Story Generation

In the previous chapter we introduced a system that generated stories through the refor-

mulation of knowledge about entities and actions acquired from corpora. Central to this

approach was the idea that the building blocks of binary relationships between actions

and entities could be combined in such a way that new sentences and subsequently

new stories could be created. This approach, although providing a good starting point,

suffered from the lack of document level control throughout the generation process.

The latter manifested itself in several ways.

Firstly, the generate-and-rank search approach required a limit on the number of

possible story candidates the system could consider due to the size of the search space.

Each sentence within a story was generated from a template, each template contained

lexical arguments to be filled using the knowledge from the corpus. It was necessary

to limit the number of lexical items considered for these arguments (e.g., objects for

the verb protect or adjectives to describe the noun prince), taking the N highest scoring

candidates from the content selection database. However, as decisions on which enti-

ties to include are made based solely on the verb-entity relationships in the database,

the system could not make selections that favour entities which are more likely to ap-

pear together. If we consider the entity dog then we see from the corpus that it is

related with dog-like actions: bark, bite and lick. Selecting an action for which dog is

the subject is a straightforward enough task. In contrast, though, suppose we are con-

sidering an object for the action give. The problem is that a large number of entities are

associated with the action of giving. The system must select those entities which have

the strongest relationship with the object role of the action. This means that no matter

which entity appears as the subject, be it a dog, king or castle, it will find itself inter-

acting with those same entities, which in the case of give are helper, tug, shove, push

73
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and kick. It is clear that these lexical choice decisions cannot be made in isolation and

require knowledge of entity co-occurrences. The generate-and-rank system attempted

to reduce this problem by making use of a discourse history. However, this could only

enforced the appearance of those entities that had already appeared in the current story.

Conditional probabilities over verb arguments were also used but had little effect due

to their sparsity in the corpus.

The system also struggled to enforce coherence as actions depicted in the stories

were largely independent of one another. To improve coherence, verb choices were

made based on likelihoods of action progressions (e.g., if someone steals then their

next action will probably be run or hide). However, these action progressions were

generic and did not take into account the expected action progressions of given entities.

Can we really assume that all characters will react in the same way to a given situation?

We therefore need to move away from a generic treatment of entity action sequences

and attempt to bring in a level of character modelling. Lacking from the generate-and-

rank system was the notion of how an entity behaves within the corpus, by itself and

with others.

We hypothesise that these problems could be alleviated by generating stories from

plots, which will allow document level control over the the generation process. As

mentioned earlier, the generate-and-rank approach lacked direction when searching,

this is unsurprising as it is trying to generate and complete the content of each sen-

tence (i.e., clauses and their subjects, objects, adverbs and adjectives) at the same time,

without the ability to consider how these choices affect the quality of the story in de-

velopment with consideration future sentences.

In this chapter we will outline a story generator that employs a document planner to

create and structure plots for stories. The planner is built automatically from a training

corpus and creates plots dynamically depending on the protagonists of the story. Each

plot is representative of a range of stories, the final stories are produced once the enti-

ties that are to appear in each story have been selected. Unlike the generate-and-rank

system, the resulting stories will consist of action sequences that have been prescribed

by the story protagonists. These actions will also contain information about which en-

tities are likely to appear together to improve the interactions of entities in the story.

From the set of stories prescribed by each plot, the system selects a single story to be

presented to the user. We will start by describing how plots have been used in previous

story generation work and natural language systems. And then we move on to describe

an approach for extracting plots from corpora and show how these plots can be used to
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generate stories.

4.1 Related Work

Plots are traditionally used in symbolic generation systems. Pemberton’s (1989) GESTER

system uses a grammar in order to generate story summaries of French epics. Gram-

mars translate well into document structures, non-terminals indicate document sections

whereas terminals are reserved for text. GESTER uses a grammar that was hand-coded

from the analysis of nine poems composed in medieval France. The grammar defines

a complex story which comprises one or more simple stories. A simple story consists

of an initial situation, a series of active events and then a final situation. The events

in each story consist of a motivation, plan, qualification, action and resolution. The

grammar also outlines how simple stories and events relate to one another. For exam-

ple, simple stories may have a ‘cause’ relationship between them, the first story causes

the second, or a ‘motive’ relationship where an action in the first story is the motive for

the second.

Once a plot has been generated from the grammar, it still represents only an ab-

stract version of a story and require satisfaction of variables, selecting characters and

events from the predefined epic story world. The placement of characters relies on the

relationships between them, i.e., whether two characters are married or whether one

character owns a particular entity or not. An attempt at maintaining coherence is made

by assigning the same roles to characters throughout each story. The result of vari-

able satisfaction is the final story, which Pemberton (1989) refers to as the story line.

In particular, the distinction is made between the story line and the story discourse

(comparable to the story fabula and sujet described by Propp, 1968). The story line

contains all the actions performed by the characters in the story, yet the order in which

actions appear in the final text may not necessarily be in the story line’s chronological

order. Some events in the story line may also be omitted if they are implied by other

events. For example, for the story line Simon is hungry, Simon has chicken, Simon eats

chicken, we would not necessarily have to add in the final text that he has the chicken,

as the fact he is eating it already implies this. In particular, Pemberton (1989) typi-

cally removes the initial situation, the resolution and the final situation as these can be

inferred from the events that take place in the story.

Changing the order of events between the story line and the story discourse occurs

when a given story entity takes part in more than one event at the same time. Pemberton
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(1989) gives an example from their corpus where the character will catch sight of their

future wife during the conquest of a city. These distinct events although occurring

chronologically at the same time will not appear together in the final text, as the focus

should be maintained on one objective at a time. The output of the system is a story

summary in a canned English-like representation.

Although not implemented in GESTER, Pemberton (1989) describes how the gen-

eration of the document structure should take into consideration, who the author and

audience are. These factors will in part define the communication goal of the document

being generated, for example, is this a story by an adult teacher conveying a moral to a

child, or perhaps a light-hearted tale simply intended to entertain a 21st century adult

reader. Solis et al. (2009) model the author and audience explicitly in their system,

PICTUREBOOKS. The latter generates stories for children aged 4 to 6 that portray a

moral situation, similar to that of a fable; it is interactive, the user starts by selecting a

background setting which appears on the screen as a picture. From a prescribed list of

pictures of objects and characters, the user then selects the main entities to appear in

the story and places them in the background picture. Using this background and enti-

ties therein, the theme of the story and the events that will occur in it can be decided.

For example, the themes associated with the bedroom background include being neat

and going to sleep early.

The PICTUREBOOKS system database contains information on 11 different themes.

Each theme comprises four distinct sections that are described by Machado (2003) as

fundamental stages for a story plot. These are: an introduction to the problem, a

rising action and plot development, an insightful answer of solution and a climactic

scene. A theme is selected that contains applicable entities closely matching those the

user placed in the background image. A grammar then defines how this theme can

be expanded to create a text. The terminals of this grammar are the actions that will

represent sentence clauses in the final story text. During the generation process, the

rules regarding how the theme is developed will include arguments that require satis-

faction, such as the objects used by the characters in the story. In particular, Solis et al.

(2009) make use of a semantic ontology which they develop from ConceptNet (Liu

and Davenport, 2004). This allows them to increase the number of applicable events

and entities in a story by searching for those that are semantically related. The abstract

story tree represented by the story plan and its argument satisfaction is finally realised

using the simpleng realiser (Gatt and Reiter, 2009).

The realisation of the story differs depending on the age of the user, allowing for
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simple audience modelling. A story generated for a four year old will contain simpler

language, to represent the events in the story plan, than that of a story for six year old,

e.g., Sara was sad rather than Sara was upset. The complexity of the final story can

also be regulated by removing supplementary information, i.e., terminals of the story

plot that do not represent key events, in order to shorten the story of younger readers.

Gervás et al. (2004) create stories by manipulating a database of plots manually

constructed from the story morphemes identified by Propp (1968). Each plot repre-

sents a single story in the corpus of Russian folk tales on which Propp based his work.

Gervás et al. (2004) construct an ontology of Propp’s characters and recurring plot

units, including the dependencies between them. A user can then stipulate which char-

acters and events (only those identified by Propp) they wish to appear in a generated

story. Retrieving a plot that contains all the requirements of the user is unlikely how-

ever, as they are free to select characters and plot elements from the entire corpus of

stories. Plots are therefore adapted using the dependencies in the ontology. For exam-

ple, their system substitutes the act of Murder for Kidnapping (which is in the original

story) as they are both Villainy events. New plots can be created by adapting those in

the database, using knowledge of how plot events relate.

Many other approaches to story generation rely heavily on planning to elicit a story

(Meehan, 1977; Riedl and Young, 2004; Swartjes and Theune, 2008). They typically

utilise a story world, defining the genre, along with an initial world state and a goal

state representing the desired outcome of the story. Planning rules are then applied

in order to find a sequence of events that will change the initial state of the story

world into that of the goal state. A story results from the translation of the planning

rules that have been applied into natural language. As with the work of Pemberton

(1989), the order in which these story events are presented need not be the same as the

order they were applied (see Riedl and Young, 2006b). Systems such as TALE-SPIN

(Meehan, 1977), require only that facts and relationships about the world be stored

and manipulated through planning rules. However, more recent work uses autonomous

agents to represent characters in the story, which carry out their own planning (Swartjes

and Theune, 2008). The overall story plot is a set of world goals, with agents that are

concerned with their own particular goals throughout the story generation process.

This leads to more realistic story events as the story characters are absorbed in meeting

their own goals. However, this carries the risk of the system never reaching the final

goal state which is required for the story plot. It is the job of the director agent, a

special type of story agent that manages the story world as a whole, to supply the
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character agents with their goals and manipulate the story environment to ensure that

the final goal state is reached.

Riedl and Young (2006b) also employ a director agent as their planning system

has a new and difficult element to contend with, the interactive human player. The

generation of plots for agent-based systems becomes more complicated when the user

interacts with the story agents. This is an advantageous area for integrating story gen-

eration into computer games. The human interacting with a story must have the option

to explore the system they are participating in, they need to feel they are free to act on

their own accord rather than simply play a part in a pre-written script. The FAÇADE

system (Riedl and Young, 2006b) is a prime example. Here, the human player can

participate in a story scenario. One example is that of a bank robbery. The user is free

to perform their own actions, affecting how the scenario is ultimately played out. In

this example, the bank manager is required to open the safe with their key before the

human can steal the contents. However, by stealing the key from the bank manager

before he unlocks the safe, the system must re-plan the key events of the story in order

to reach the desired conclusion. The director agent therefore has to plan a sequence of

actions to acquire back the key for the bank manager so that the scenario can proceed

along its plot. In this case we can see the system uses a high level plot involving a set

of key events, but the fine detail of its execution is left unspecified so as not to constrain

the actions of the human player.

In most agent-based systems, agents must attain multiple goals. An exception is

TALE-SPIN (Meehan, 1977) where story generation focuses on a single goal: the char-

acters are thirsty and must find a solution to this problem. Multiple goal states can

be used to create more intricate plots. Theune et al. (2004) view a story as the result

of generating a series of episodes which outline the story’s plot. An episode database

is used in which each episode script contains information on setting, goals and con-

straints, once again derived from Propp (1968). A story plot is created by allowing

users to select a number of episode scripts from the database. Although the desired

outcomes for each episode are prescribed in the plot, the manner in which they are

achieved is left to the system. Each episode indicates which agents should be included

and what their goals are, and the final story results from their attempts to satisfy these

goals.

Each of these approaches to story generation, rely on hand-coded knowledge bases,

whether in terms of the story world and the applicable actions or a grammar describing

how to structure a story text. This reliance reduces the number of plots available to
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these story generation systems. Plan-based story generation systems not only require

a carefully constructed database representing the story domain, but also knowledge of

the initial and goal states for each story plot. None of the story generation systems

mentioned above scale particularly well. The development of each is laborious and

time consuming as the process must be repeated for any new characters, plots and

domains. We propose that story plots need not be hand-written, but rather can be

extracted automatically from corpora. In particular, we look at producing story plots

aimed at young children, as in Solis et al. (2009). However, we shall refrain from

explicitly modelling the author or the audience, instead relying on the information

inherent in corpora to guide the generation process.

Our own plots are reminiscent of the narrative schemas introduced by Chambers

and Jurafsky (2009). Their goal is to automatically extract from corpora representa-

tions of situations akin to those found in FrameNet (Fillmore et al., 2003). To achieve

this they construct schemas consisting of semantically similar predicates and the en-

tities evoked by them. Events within a corpus are clustered into narrative chains by

comparing actions with a shared protagonist. These chains are then merged with those

of other entities appearing in the corpus to create narrative schemas. An example

schema is {X arrest, X charge, X raid, X seize, X confiscate, X detain, X deport},
where X stands for the argument types {police, agent, authority, government}. These

schemas represent events and entities that strongly associate within the corpus. Our

narrative schemas differ slightly from Chambers and Jurafsky (2009). In our setting,

every entity has its own schema, and predicates associated with it are ordered. Plots

are generated by merging together the entity-specific narrative schemas.

Our plots bear some similarity to those utilised by Halpin and Moore (2006) who

outline a computer agent, as part of an interactive tutoring system, that gives person-

alised feedback to children partaking in a story rewriting task. Specifically, children are

asked to write from memory in their own words a story they have recently been told.

The aim is to asses how well the children understood the original story. To do this, the

agent compares the plot of the story written by the child against that of the original

story. Halpin and Moore (2006) define plots as a series of linear events appearing in

written text. The events are represented as predicate argument structures with verbs as

predicates and nouns as the arguments (e.g., become(boy, elf)). A major hurdle to the

extraction process was that the text produced by children is of a low quality. For each

retelling, the plot was extracted and compared against a gold standard plot from the

story told to the children. By comparing the proportion of overlapping events a grade
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(excellent, good, fair or poor) can be selected, indicating how well the student under-

stood the story. In addition, a method is outlined for providing personalised feedback,

in particular, whether significant plot events are missing from their retelling or are in

the different order from the original story. Significant plot items are identified as those

which occurred in the majority of stories that were rated as excellent. Rather than

building a plot of any one particular story, our aim is to create new plots by examining

the action sequences of entities throughout the entire corpus. Our plots, unlike those

of Halpin and Moore (2006), focus only on the protagonists, the main story characters,

rather than enumerating all entities and actions within a document.

We will now outline our approach for extracting plots automatically from corpora

and show how they can be used to generate stories.

4.2 Entity Graph Extraction

In order to create a plot we must first obtain information about the entities that will

appear in the story, the actions they participate in, their ordering and finally how the

entities can interact. Information about each entity is represented as a directed graph

which we explain below. Throughout this thesis we have emphasised the virtues of ex-

tracting knowledge automatically from corpora. Along the same lines, we will outline

an approach for building entity-specific schemas, which we shall call entity graphs,

from knowledge inherent in corpora.

Our algorithm processes each document in the corpus, one at a time, operates over

dependency structures and assumes that entity mentions have been resolved.1 Doc-

uments are processed with RASP (Briscoe and Carroll, 2002), a broad coverage de-

pendency parser, and the OPENNLP2 coreference resolution engine. However, any

dependency parser or coreference tool could serve our purpose. In addition, we as-

sume that entities have been sense disambiguated. Our sense disambiguation method

is relatively naïve, we default to the first sense in WordNet (Fellbaum, 1998). Each

document in the corpus is processed in turn and from the dependency trees, events are

identified along with their subjects and objects. For each entity in the text we now

have a chain of events in which that entity was present. We assume that linear order

corresponds to the temporal order. This is a gross simplification as it is well known

that temporal relationships between events are not limited to precedence, they may

1Following from Chapter 3 entities are single word token nouns, and actions are lemmatised verbs.
2See http://opennlp.sourceforge.net/
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The dragon holds the princess in a cave. The prince slays

the dragon. The princess loves the prince. The kingdom

rejoices. The prince asks the king’s permission. The prince

marries the princess in the temple. She has a baby.

dragon1

holds

princess1 cave1

in

princess1

love

prince1

prince1

marry

princess1 temple1

in

princess1

have

baby1

Figure 4.1: Example of graph construction for the entity princess. Dashed arrows rep-

resent directed edges between nodes. Each entity is shown with a subscript indicating

its sense index in WordNet.

overlap, occur simultaneously, or be temporally unrelated. We could have obtained a

more accurate ordering using a temporal classifier (see Chambers and Jurafsky, 2008),

however we leave this to future work.

For each entity e in the corpus we build a directed graph G = (V,E) whose nodes V

denote predicate argument relationships, and edges E represent transitions from node Vi

to node Vj. Each edge E is also assigned a weight w to represent the likelihood that a

transition from the previous node will follow this edge. We discuss how weights are

calculated and used in Section 4.2.1. In Figures 4.1 and 4.2 we give an example of how

the graph for the entity princess, is constructed from a hypothetical corpus consisting

of two documents. For simplicity we have omitted the weights on the graph’s edges

and used bold font to highlight the graph’s topic entity. From the first document in

Figure 4.1 a graph for princess is extracted with each node in the graph corresponding

to an action with which princess is attested. As a result of coreference resolution, the
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The goblin holds the princess in a lair. The prince rescues

the princess and marries her in a castle. The ceremony is

beautiful. The princess now has great influence as the prince

rules the country.[
dragon

goblin

]
hold princess in

[
cave

lair

]

princess love prince prince rescue princess

prince marry princess in

[
temple

castle

]

princess have baby princess have influence

Figure 4.2: Example of an entity graph constructed for princess from two documents.

word forms she and her are recorded as princess. We also record the senses of any

other entities participating in the action. WordNet sense indices are shown with each

entity in the example, as we always take the first sense these will all be 1 and as such

are omitted from the following examples. Each action is represented as a dependency

tree which we show in Figure 4.1 but linearise for simplicity in the following examples.

It should be clear that not every sentence in a document will be associated with each

entity. Sentences may contain multiple events resulting in many more nodes. The first

sentence in the text gives rise to the first node in the graph, the third sentence to the

second node, and so on. Note that the second sentence is not present in the graph as it

is not about the princess. Each node contains only the lemmatised dependency infor-

mation as shown in Figure 4.1, grammatical information in the original text (e.g., verb

tense and noun number, prepositions and particles) is discarded3 and only reassigned

during surface realisation (see Section 4.2.2; prepositions and particles are shown in

the examples for clarity).

As mentioned above, entities are assigned the first sense in WordNet. The reason

3As with the development of the content selection database in Section 3.2.2, our focus is on building
a model of the relationships between entities and actions. By removing prepositions and particles we
reduce the number of possible actions that entities can be associated with, decreasing the number of low
frequency events. Grammatical structure can later be reconstructed by the sentence planner and surface
realisation modules.
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we do not simply record the entity word forms is that we do not want to constrain,

at this early stage, the number of possible lexical items that the story generator could

use when creating a story from a plot. By recording sense information we defer the

decisions with regards to which entities will appear in the final story. Using the first

WordNet sense is admittedly a naïve approach and will not always assign the correct

senses in the context of the text being processed. Works of fiction, such as those in

our fairy tale corpus may lead to problems as the senses which appear will not neces-

sarily have the same distributions as those in non-fiction documents, which WordNet

is more apt to represent. Another issue is that co-reference resolution is not error-free

(especially on fictional texts as most systems are trained on news text) and may leave

pronouns unresolved. Rather than discarding actions with pronouns or any of their

argument slots, we introduce two dummy senses, object and person. We use the ob-

ject sense when encountering inanimate pronouns and person otherwise. Interestingly,

fairy tales (as well as some other genres of fiction) rely heavily on anthropomorphism.

This means that some story entities, although not actually being people, can still be

seen to perform actions that would indicate they were. An example of this is the

fairy tale “Puss in Boots” where the main character performs the acts of speaking and

wearing clothes, although being a cat. For example, if the action princess greet puss

appeared in the corpus as princess greet him, this would be recorded in our graph as

princess greet person. When generating a story from a plot containing this node, the

generator will look for an entity to fill the argument person, possibly leading to the

action princess greet prince.

The entity graph is extended whenever a new sequence of associated events is found

in a new document. In our example, the second document (see Figure 4.2) also contains

a series of events in which the princess participates. Our goal when building an entity

graph is not to simply record a collection of event chains as this would mean the graph

would only encode stories it had seen before, hindering creativity. By creating a global

entity graph, new action progressions can lead to entirely new stories. This practically

means merging graphs together that have at least one node in common. Before adding

a new node to the entity graph we compare it with the nodes currently in the graph

to see if a similar node already exists. Nodes are merged only if they have the same

verb and similar arguments, with the graph entity (i.e., princess) appearing in the same

argument slot. In our example the nodes goblin hold princess in lair and dragon hold

princess in cave can be merged as they contain the same verb and number of similar

arguments. Combining these into a single node results in two different actions that the
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princess can participate in after being held, namely to be rescued by a prince or to love

him.

We stated above that two nodes can merge only if they contain similar arguments.

In our example castle and temple can be merged as they both represent a place in which

the princess is married. Nodes within graphs can therefore represent lists of senses.

Note that we did not merge the nodes have baby and have influence despite the fact that

they are both associated with princess because they are semantically dissimilar. In sum,

entities other than the entity for which the graph is created do not correspond to word

forms. Rather, they are grouped into semantically coherent classes. The later allows us

to create many different stories from the same plot. In our example, the princess could

also get married in a mansion, palace or cathedral as long as the system considers

them semantically similar to castle and temple.

In order for us to group semantically similar senses we need a method of measuring

how related they are. There are many ways of doing this using WordNet (Fellbaum,

1998) or distributional similarity (e.g., Brody and Lapata, 2008, 2009). Several differ-

ent sense similarity measures have been proposed based on WordNet and an outline

and comparison for several of these are presented in Budanitsky and Hirst (2001). In

order to judge similarity we will focus solely on the hypernym (x is a y) relationships.

Figa and Tarau (2003) also use WordNet to create what they call story projections

which generalised stories by substituting entities with their hypernyms. They argue

that patterns in stories will become more apparent by viewing stories by the types of

entities that occur within actions rather than the exact entity. These projections are in-

tended to be used by story understanding systems to build an overview of what a story

is about. It is obvious though that crucial information about the story will be lost if

we carry this procedure too far, as all characters in a story can eventually be projected

to being objects (the fact that objects perform actions on other objects does not really

provide us with much information). Although they also looked at abstracting other

word types than nouns, such as verbs, we will focus exclusively on the former.

To judge the similarity of two senses we adopted the measure in Wu and Palmer

(1994). It provides an efficient online method of calculating similarity which the sys-

tem requires when searching the story space. This measure uses the paths between

senses in the WordNet hierarchy. The assumption is that two related nodes will both

have a shared super-node on their paths from the root node. Although Wu and Palmer

(1994) only applied their measure to the similarity of verbs, the structural aspect of the

measure can easily be adapted to the ontology of nouns as well. We can assume that
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two similar noun senses will share a common super-node in their hypernym trees. The

similarity of two senses S1 and S2 is thus:

SenseSim(s1,s2) =
2∗n3

n1+n2+2∗n3
(4.1)

Where sense s3 is a super-node of s1 and s2. n1 is the number of nodes on the path

from s1 to s3, n2 is the number of nodes on the path from s2 to s3 and n3 is the number

of nodes between the root and s3. Resnik (1999) reformulates this equation in terms

of the depth of each sense, i.e., distance from the root of the taxonomy:

SenseSim(s1,s2) =
2∗d(s3)

d(s1)+d(s2)
(4.2)

Where d(s3) is the depth of the maximally specific superclass s3, of s1 and s2, and

d(s1) and d(s2) are the depths of s1 and s2 through s3. Our implementation uses

Resnik’s (1999) formulation as sense depths are computationally easier to calculate.

An advantage of this measure is that it always returns a value of similarity between

0 and 1 (1 meaning the senses are identical and 0 completely dissimilar), allowing us

to define a numerical limit for what the system considers similar. Through empirical

observation we decided that a score of 0.6 or above could be considered similar. Al-

though the above measure will never return a score of 0, as the WordNet root is at

depth 1, a score of 0 is automatically given when two senses do not share a common

hypernym. For example, the senses for prince and hope have no super-ordinate sense

in common.

When considering a new node for merging, we may be comparing a single sense

against a list of senses which have already been deemed similar. In our example we

grouped together castle and temple but the next document may contain the same action

with the sense cathedral. For merging to take place we stipulate that the new sense

must be scored as similar against all the senses in the list. This is to ensure that there

is no drift in the meaning of that particular action. In the event there is a list of senses

to be evaluated against we take the average sense similarity score compared to each

sense. However, it should be noted that the order in which the texts and actions are

processed can affect the way these cliques of senses are formed, in turn affecting the

final entity graph.

The graph construction algorithm terminates when graphs like the one shown in

Figure 4.2 have been created for all entities in the corpus. We will next outline a

story generation system that utilises the entity graphs to make document level deci-

sions when generating. As with the generate-and-rank system, we will assume that
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prince slay dragon

prince rescue princess

princess love prince

prince marry princess in

[
temple

castle

]prince ask king’s permission

prince rule country

Figure 4.3: Example entity graph for the entity prince.

a user supplies the system with a sentence containing a couple of entities, the story

protagonists. The goal of the system will then be to take this input sentence and use

it to instantiate several plots. These plots will allow the system to search the space of

possible stories more efficiently as the structure of the story will already be outlined

within each plot. In addition to document planning, the system will make use of the

content selection, sentence planning and surface realisation modules described in the

Chapter 3.

4.2.1 Building a Story Plot

Our entity graphs effectively describe the characteristics of a single entity, its actions

and interactions with other entities. However, we argue that for a story to be coherent

we need to maximise the interaction between the story protagonists, i.e., the main

characters in the story. In the previous chapter we explained how this could be achieved

through the use of a discourse history. This, however, did not give preference to any

particular entity, treating the story protagonists equally with all other entities in the

story. Here, we create plots in which the focus is on the story protagonists supplied in

the input sentence. For each of our protagonists we have an entity graph. We produce

a plot by merging these together. We call the resulting graph a plot graph. As an

example we will consider creating plots for the input sentence the princess loves the

prince which requires the combination of the graphs for princess and prince shown in

Figures 4.2 and 4.3 respectively to give the plot graph shown in Figure 4.4.

The process of merging two entity graphs is very similar to the way individual

entity graphs are acquired. However, there are a couple of additional constraints on
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[
dragon

goblin

]
hold princess in

[
cave

lair

]

prince rescue princess princess love prince

prince marry princess in

[
temple

castle

]

princess have baby

princess have influence

prince slay dragon

prince ask king’s permission

prince rule country

Figure 4.4: Example plot graph for the input sentence the princess loves the prince.

which nodes can be merged. First, we must be careful when merging nodes containing

both protagonists, ensuring that they do not result in a node in which they assume

the same role, (e.g., [prince, princess] cries). However, if these appear in different

roles, then the resulting merger creates a new node while retaining the original nodes

from both entity graphs. The entity senses that appear alongside the protagonists in

these actions have the possibility of introducing additional entities to the story, so the

system should be able to decide whether or not to introduce them when creating a

plot. The newly created node maintains a focus on the protagonists which we expect

to increase coherence. Consider the plot graph created from the two documents shown

in Figure 4.5. Here, merging the nodes prince dance with duchess and dauphin dance

with princess would result in a new node prince dance with princess which has the

same edges as both of the original nodes. However, we also maintain the original

nodes so that it is still possible for a duchess or a dauphin to appear in a story created

from this plot. Essentially, this stops us from restricting the entities that can appear in

our stories.

In addition to depicting order, the edges of the plot graph are weighted, indicating

preference for particular action sequences. We would expect most actions to con-

tain only a few possible transitions, however, it is easy to foresee that without proper

weighting, commonly occurring actions (such as get, be and have) would become the

predominant nodes for any entity, losing the characterisation the graphs are intended

to capture. In keeping with the previous content selection module outlined in Sec-
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. . . The prince has always loved

parties. The duchess is at the

party. The prince dances with

the duchess. The prince is soon

tired out. . . .

. . . The princess arrives at the

party. The dauphin calls for mu-

sic. The dauphin dances with the

princess. The princess loses a

glass slipper. . . .

prince love party princess arrive at party

prince dance with duchess

prince dance with princess

dauphin dance with princess

prince be tired princess lose slipper

Figure 4.5: Example of node merging from two documents. The node prince dance with

princess is created through the merging of the entity graphs for prince and princess.

tion 3.2.2, we weight these transitions with Mutual Information (MI, Lin, 1998) scores.

These weights are easily calculated after the construction of the graph from counts of

each nodes’s occurrences in the corpus. Once again we are giving precedence to events

that are more characteristic of the entities.

Once the plot graph has been created, a depth first search (see Corman et al., 2001,

Section 22.3) is initiated from the node representing the action within the input sen-

tence. The search locates all paths which will represent a story of the desired length,

supplied as an input parameter (cycles are disallowed). We also disregard any nodes

that do not have one of the two story protagonists as its subject (this is a stipulation

made in the generate-and-rank system to increase coherence). The result of this search

procedure is a collection of plots, representing underspecified stories. Assuming we

wish to generate a story consisting of three sentences, the graph in Figure 4.4 would

create four plots. These are (princess loves prince, prince marry princess in [castle,

temple], princess have influence), (princess loves prince, prince marry princess in

[castle, temple], princess have baby), (princess loves prince, prince marry princess
in [castle, temple], prince rule country), and (princess loves prince, prince ask king’s

permission, prince marry princess in [castle, temple]).

What happens if our search reaches a dead end? This is a distinct possibility and
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what is even more possible is that the input sentence, supplied by the user, will not

match any of the nodes in the plot graph. Using the generate-and-rank system we

can generate sentences that follow a given node, or the input sentence. We can thus

obtain a set of sentences that are likely to follow these actions based on the content

selection database. These generated sentences can then be compared against the nodes

of the plot graph to see if they are represented. Once again we must ensure that we

match a sentence to nodes with similar entity senses. Once a match has been found

the search procedure can be continued from the identified node. By backing-off to the

generate-and-rank approach we are allowing the story generator to use its knowledge

of the corpus to infer one-off edges in the plot graph that it has not seen before, stop-

ping the search from becoming trapped. We can expect that the sentences returned by

the generate-and-rank system will feature actions strongly associated with the protag-

onists, highlighting advantageous nodes in the graph from which to continue building

the plot.

4.2.2 Sentence Planning

The sentence planner is interleaved with the story planner and influences the final struc-

ture of each sentence in the story. Using the sentence planner described in Section 3.2.3

the actions depicted in the graph are given a structure that the story generation process

can manipulate. The sentence planner uses a phrase structure grammar which can be

represented as a tree in which nodes contain lexical items and edges represent depen-

dencies. Lexical resources made available by Korhonen et al. (2006) and Grishman

et al. (1994) indicate the rules applicable for a given verb. Grammar rules must con-

tain the same number of noun arguments as there are entities in the action. The nodes

in our entity graph are made up of entities and actions, i.e., nouns and verbs (in the

example prepositions were added for clarity). However, a sentence is clearly going to

contain more than just nouns and verbs. The rules outlined within the sentence planner,

also allow for inserting adverbs, adjectives and prepositions. We describe how adverbs

and adjectives are selected in Section 4.3. When generating a plot, we postpone, until

surface realisation, the decision on how exactly the sentence should be rendered but

it is crucial that we find which rules can be applied to the action. Each node contains

one verb and then one to three nouns. A search of all grammar rules finds the rules

suited to the action we are considering. This can also function as an early sanity check

to ensure that the verb is allowed the number of arguments it appears with.
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The nodes in our graph represent only a single action, corresponding to a single

clause. The realisation of these nodes would therefore result in rather short sentences.

As we discovered in the previous chapter (see Section 3.3.2), there is a significant

correlation between interest and sentence length which was reflected in the low inter-

est scores given to the Best-selection system which tended towards using the simplest

sentence structures when generating stories. To avoid generating short sentences we

combine pairs of nodes within the same graph by looking at intrasentential verb-verb

co-occurrences in the training corpus. The grammar rules applicable for the matrix

verb must contain a dependent subclause. For example, the nodes (prince have prob-

lem, prince keep secret) could become the sentence the prince has a problem keeping

a secret. We leave it up to the sentence planner to decide how the two actions should

be combined. Also, we only turn an action into a subclause if its subject entity is same

as that of the previous action.

4.3 Generating Stories from Plots

The plots that we generate are essentially schemas representing a large number of

possible stories. Each node in the plot graph contains a list of sentence templates

assigned by the sentence planner, each of which may contain lexical nodes that must

be satisfied. These may be verbs, adjectives, adverbs or nouns (represented as senses).

Using the content selection database described in Section 3.2.2 the most appropriate

verbs, adverbs and adjectives are found based on the dependencies in the sentence (see

Algorithm B.6 in Appendix B). The case for nouns is slightly different. All references

to the protagonists are assigned the same word form used in the input sentence. For

all other entities, the decision on which word form to select depends on the sense

information. We know from the content selection database which entities are strongly

suited to roles within an action (e.g., that dogs bark and princesses are married), based

on their Mutual Information scores calculated from the corpus and use this information

to select the word-forms for the final story. For example, consider again the node

prince marry princess in [castle, temple]. The protagonists will be assigned the word

forms prince and princess, however, we still need to select an appropriate word form

for the final argument [castle, temple]. We need to select the word form from our co-

occurrence database, but this may not contain either church or temple. As we discuss

in Section 3.2.2 we discard all verb-noun occurrences that occur in the corpus less

than a certain number of times. In the event that they are not present, we look for other
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entities that co-occur with marry that have a similar sense to that of temple and castle.

For example, these could include princess, temple, haste, cathedral, house, mansion,

queen, forest. These candidate words can be ordered by calculating their similarity to

the sense of castle and temple. This would then gives rise to the following ordered list:

temple, mansion, cathedral, house, forest, princess, queen and haste. Senses deemed

considerably dissimilar are then dropped, e.g., princess, queen and haste.

Note that, simply enumerating exhaustively all of the stories represented by a

plot would be completely infeasible. A typical graph can contain hundreds of nodes

which themselves represent thousands of sentences (especially for commonly occur-

ring nouns such as get, be and say). Searching all combinations of sentences within a

plot would lead to the generation of millions of stories. To get around this we limit the

branching factor of the search. The MI scores on the edges of the plot graph allow us

to prescribe an order for the children before we search them. As we are dealing with a

depth first search we take the N best children that result in complete plots.

As well as limiting the number of plots we generate, we must also limit the number

of lexical items for consideration in those arguments of the sentence templates not

yet satisfied. We can therefore use the MI scores in the content selection database to

limit the number of choices for consideration for verbs, adjectives and adverbs. As

for nouns, we first list all nouns in the content selection database that appear with the

given verb in the corpus. Then, we order these using the semantic similarity score, as

demonstrated above, and select the top N nouns for use in the stories.

As a result, each plot we generate produces a set of complete stories, by enumer-

ating all possible versions of each sentence, which can either be realised into text for

presentation to the user or stored for further analysis.

4.4 Examining the Plots

We now examine the capabilities of the plot generation system by looking at some of

the plots and the stories they can generate. We used the Andrew Lang fairy tale corpus

for training and the same content selection, sentence planning and surface realisation

modules as outlined in Chapter 3. Entity graphs were collected for the entire fairy

tale corpus, discarding any that contained less than 10 nodes. There were 667 entity

graphs in total (this is 43% of the entities in the corpus) with an average of 61.04 (SD

106.76) nodes. We used clustering rate (or transitivity, Newman, 2003) – the number

of triangles in the graph sets of three vertices each of which is connected to each of
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Entity Number of

Nodes

Number of

connected

graphs

Maximum

chain length

% of bidirec-

tional nodes

prince 933 3 929 0.89

princess 811 2 808 0.83

dog 219 8 202 0.71

cat 163 6 142 0.72

queen 436 3 433 0.83

bird 272 13 242 0.58

king 1076 2 1076 0.9

monster 49 11 9 0.47

daughter 350 6 340 0.68

stepmother 58 3 51 0.57

Table 4.1: Properties of selected entity graphs extracted from the fairy tale corpus. The

number of nodes indicates the total number of unique nodes in the graph. Number of

connected graphs indicates the number of unconnected subgraphs. Maximum chain

length is the number of nodes in the largest connected subgraph. We also show the

percentage of nodes that contain incoming and outgoing nodes.

the others – as a means of measuring whether nodes in the plot graphs are densely

connected. This measure is inspired by social networks, in which you would expect

the friend of your friend to also be your own friend. We calculate clustering rate using

following formula.

C =
3∗Number of distinct triangles

Number of distinct paths of length three
(4.3)

The average clustering rate is 0.027 (SD 0.076) which indicates that our graphs are

substantially connected. A breakdown of the graphs for some of the most commonly

occurring entities is shown in Table 4.1. As well as giving the total number of nodes

for each entity we show the number of unconnected graphs, the length of the largest of

these graphs and the percentage of nodes that have incoming and outgoing edges. It is

encouraging to see that the majority of nodes created for each entity appear within a

single connected graph and have both incoming and outgoing edges which will reduce

the number of instances where the plot search reaches a dead end. We can see though

that entities that appear less frequently in the corpus may have problems due to short

disjoint chains, e.g., monster and bird.
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Entity Number

of Nodes

Number of

connected

graphs

Maximum

chain

length

% of bidi-

rectional

nodes

Nodes

gained in

merging

prince ∪
princess

1826 3 1821 0.87 82

prince ∪
queen

1421 4 1415 0.87 50

king ∪
queen

1574 4 1567 0.89 60

king ∪
princess

1967 3 1962 0.88 80

prince ∪
dog

1054 7 1160 0.86 21

dog ∪
cat

386 13 349 0.71 4

queen ∪
bird

727 14 694 0.74 17

king ∪
monster

1131 7 1112 0.85 6

king ∪
daughter

1499 6 1489 0.86 73

stepmother ∪
daughter

412 7 397 0.67 4

Table 4.2: Properties of selected plot graphs extracted from the fairy tale corpus. The

number of nodes indicates the total number of unique nodes in the graph. Number

of connected graphs indicates the number of connected subgraphs. Maximum chain

length is the number of nodes in the largest connected subgraph. We show the per-

centage of nodes that contain incoming and outgoing nodes. The last column shows

how many new nodes were created during the merging process.



94 Chapter 4. Plot-Based Story Generation

princess waken prince

prince shoot

. . .

prince remember

. . . prince go

prince hunt forest

prince lose way wander tree

princess lead [palace, room] prince

. . .
prince seek topographic_point

prince wander village

prince stop person

prince awake

. . .

princess prepare

. . .

Figure 4.6: A section of the search tree generated, by the system trained on the fairy

tale corpus, for the sentence the princess wakens the prince.

Table 4.2 illustrates the results when combining two entity graphs together to form

a plot graph. Entities that appear frequently in the corpus (e.g., prince and princess)

lead to a large number (in this case 82) of new nodes that are created from mergers in

the entity graphs. However, some entity pairs are difficult to combine. For example,

although the entity graph for king contains a large number of nodes, only 6 new nodes

are created in the merger with monster.

We next inspect some of the plots our system produces for the entities prince and

princess. Specifically, we supplied the system with the sentence the princess wakens

the prince and asked it to produce stories of length 5. Figure 4.6 shows a sample of

these plots. For this example we kept the branching factor to 5, so only 5 children

could be considered from each node (as each sentence after the input sentence can be

comprised of up to 2 nodes, this places an upper limit of 390,625 plots). In total there

were 112 plots generated for this particular input sentence.

We must next examine the stories these plots are capable of producing. The number

of possible choices for each unsatisfied lexical node was set to 5. In total, the 112 plots

generated 10,624 stories. Taking one of the plots in the above example we will show

how the story generator satisfies lexical choice decisions. We start with a list of plot

nodes.

princess waken prince, prince go, prince hunt forest, prince lose way

wander tree, princess lead [palace, room] prince.

(4.4)
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Some nodes may at first seem to make little sense, such as, prince lose way wander

tree. However, this is because we have not yet added structural information to the sen-

tence or resolved lexical variables. We next proceed to do this; for the entity way we

select the words way, strength, shape and ring. These are the the most similar to way’s

WordNet sense4 and co-occur with lose.

princess waken prince, prince go, prince hunt [forest], prince lose

[way, strength, shape, ring] wander [tree, giant, friend, wizard, fellow ],

princess lead [room, castle, palace, house, cottage] prince.

(4.5)

This represents many different stories depending on the permutations of lexical choices

we make. An example of one of the stories we could realise from this example is the

following, depicting a scene in which the prince once being saved by the princess then

becomes lost.

The princess wakens the prince. The prince goes. The prince hunts in the
forest. The prince loses the way wandering among the trees. The princess
leads the castle in place of the prince.

From this example there are several points for consideration. First we can see that

the 5 sentence story has been constructed from 6 plot nodes. The nodes (prince lose

way, prince wander tree) have been aggregated into a single sentence by structuring

the second node as a subclause of the first. It is clear that this results in more natural

stories than simply enumerating each graph node as a single sentence. Although not

shown in our example above, we also encountered plots in which the nodes (prince go,

prince hunt forest) were aggregated to create the sentence the prince goes to hunt in

the forest. There are also interesting implications rising from the selection of entities.

In confining word forms to similar senses we are trying to narrow what may often be

a large selection of words in the content selection database. The node prince hunt

forest only considers the word form forest as an object. However, the content selection

database actually contains 46 different entities for this argument. What it comes down

to is capturing the intention of the action. The node in our example is describing to

us an event where the prince is hunting in a certain place. The verb hunt, however,

could also have been used to describe the prince hunting for a particular entity, either

simply to find them or for sport. Other entities in the content selection database would

4Sense 1: manner, mode, style, way, fashion – (how something is done or how it happens; “her dig-
nified manner”; “his rapid manner of talking”; “their nomadic mode of existence”; “in the characteristic
New York style”; “a lonely way of life”; “in an abrasive fashion”).
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The princess wakens the prince. The prince awakes. The prince tells an aunt about

asking for the woman. The prince picks up a pebble. The prince takes the property

in the ring.

The knight fights the dragon. The knight rides. The knight is to do for men out of

the plain. The knight meets with the road. The poor knight shakes the head.

The fairy saves the princess. The princess goes home. The princess tells of the king.

The princess marries a woman. The princess picks the garden out of the pebble.

The witch captures the girl. The witch shouts. The witch becomes the body. The

ugly witch takes a piece. The ugly witch holds a canopy.

Table 4.3: Example of stories created by the plot based system for the input sentences;

the princess wakens the prince, the knight fights the dragon, the fairy saves the princess

and the witch captures the girl.

have been more suited to these alternative meanings, e.g., tiger, stranger, treasure and

monster. In this example, the sense information ensures that the chosen lexicalisations

conform to the original meaning of the node’s action.

In Chapter 3 we described how a lexicalised model of interest and an entity grid

model of local coherence could be used to discern the single best story created by the

generate-and-rank system. We applied the same approach to the stories resulting from

our plots, with examples shown in Table 4.3 for a selection of input sentences. The

story generated for the princess wakens the prince is the first in the table. One of the

most peculiar parts of this story is the sentence the prince picks up a pebble. It simply

comes out of nowhere and does not make much sense. This sentence is a result of the

graph node prince pick object; the system simply does not have enough information

as to what it is that the prince is supposed to be picking. The objects attested with

pick include diamond, girl and treasure, which make more sense in the context of the

story, but the system can only select from those with the most similar sense to that of

object. The words that were selected when generating stories for this plot node are

ground, goods, stone, piece and pebble. We described earlier how we use Wu and

Palmer (1994) to score the similarity of two senses. This measure is based on the

path length between the sense nodes in WordNet, counting nodes closer together as

more semantically similar. This means that when comparing words from the content

selection database, to assume a lexical argument, the system will select those closer to

object and person. These senses are, however, rather abstract, indicating a category of
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senses rather than a particular entity. The word pebble is selected by the system rather

than diamond as the former has a shorter path to the sense object.

pebble
=>rock, stone

=>natural object

=>object, physical object

(4.6)

diamond
=>jewel, gem, precious stone

=>jewelry, jewellery

=>adornment

=>decoration, ornament, ornamentation

=>artifact, artefact

=>object, physical object

(4.7)

Our similarity measure will select those senses closest to the target sense, as those

are the ones it considers most similar. There is obviously a trade-off between using

an abstract sense place holder, such as object or person. However, unless we want to

discount these actions completely from the plot then there is no other alternative for

actions in which not all of the entities mentioned have been resolved. We will discuss

in the next chapter how the problem can be alleviated by removing the limits on the

number of entities to be considered in an action. This problem is common, resurfacing

in other generated stories, e.g., princess marry person becomes the princess marries a

woman and witch become object becomes the witch become a body.

Despite these problems in lexical choice, the generated stories are promising. We

can see logical action sequences appearing, such as the princess wakens the prince,

the prince awakes. We must also consider the fact that the number of complete sto-

ries considered by the generator was on average around 10,000. Each sentence was

generated once and reused if the node appeared in more than one plot, thus reduc-

ing computation time. This is a stark contrast to the generate-and-rank system where

each generated sentence was unique to each story under construction. On average the

generate-and-rank system created around 500,000 sentences, many of which ended up

being identical.5

5Unlike the plot-based system, the generate-and-rank system employs a discourse history when gen-
erating sentences for a particular story. This means the sentences created at a particular depth of the
search tree cannot be reused as the discourse history for that node is unique.
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However, there are still some caveats with our approach. Although the search is

much more directed than it was in the generate-and-rank approach, with plots outlin-

ing the expected actions, the system still lacks document level control over how lexical

choice decisions are made. Each action represented in a plot can contain a very large

number of representations, outlined in the grammar rules of the sentence planner. Al-

though the use of sense information has improved our ability to order the candidates

for lexical choice, we find that still only a small proportion can be searched, which

may not necessarily lead to the best story. These lexical choice decisions are made in

isolation with no document level control. A coherent text is more likely to have recur-

ring entities, but the plot based system has no mechanism to ensure any entity other

than the topic entities reappear.

It is also clear that taking the default sense for each word form is not optimal.

One example is the word queen. In the fairy tale domain, the word queen refers to

a female monarch. Unfortunately, this is not the default sense in the current version

of WordNet6 and as a result our system interprets queen7 to be the single egg laying

female of an insect colony. Surprisingly, this has not caused too many problems, as

the sense for insect and person are closely linked through the sense organism. Other

notable erroneous sense assignments were for the words scorpion8 and tiger9 which

were classified as descendants of the sense person. This means that when the system is

looking for a person to take the object role in a given action, it is more likely to select

scorpion or tiger than queen. It is clear that the system requires the ability to perform

word sense disambiguation on the corpus whilst extracting the entity graphs.

The use of the senses object and person allowed us to keep actions that were en-

countered in the corpus with pronouns as arguments. These senses however tell us little

about the type of entity we should be using in these roles when it comes to turn the

plot into a story. An example is the action princess put object where candidates for the

sense object are the word forms ground, piece, body, spit or nest. One option would

be to maintain the senses object and person only until the node is merged and a differ-

ent sense for this slot is found. For example, it may be better that the action princess
recognise [object, person, husband] be recorded as princess recognise husband which

narrows the range of entities that could assume the object role of the action. We have to

6At the time of writing 3.0.2.
7queen – (the only fertile female in a colony of social insects such as bees and ants and termites; its

function is to lay eggs)
8Scorpio, Scorpion – ((astrology) a person who is born while the sun is in Scorpio)
9tiger – (a fierce or audacious person; “he’s a tiger on the tennis court”; “it aroused the tiger in me”)
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bear in mind though that husband might not make sense in context for every recognise

action the princess performs.

Problems also occur due to the lack of ordering when constructing entity graphs.

Counts are used to calculate Mutual Information scores but these may not give the

best picture overall of how entities behave. A better approach may be to employ the

clustering method used in Chambers and Jurafsky (2009) where the addition of nodes

within a narrative chain depends on how well it fits with the overall chain. Our ap-

proach records all events associated with an entity in the entity graph. Some of these

events could be omitted as they add little information to the plot. Events such as get-

ting, saying and asking appear frequently in the plots but rarely produce sentences that

contribute to an overall narrative. This is because these actions are often found in di-

alogue, which our system cannot represent. The ordering of actions are also likely to

be incorrect in some cases. Strategies to correctly determine the temporal ordering of

actions have previously been described in Bramsen et al. (2006) and Chambers and

Jurafsky (2008).

We gave an example of how the aggregation of graph nodes can create more inter-

esting and natural sentence structures. However, we have only outlined a very simplis-

tic method of aggregation which will not always work in practice. There are several

considerations to be made when performing aggregation. The first is how do the two

clauses relate to one another? Our system is agnostic with regards to this information.

4.5 Summary of Chapter

In this chapter, we explained how story plots can be automatically extracted from cor-

pora and used to generate stories. These plots represent story plans, something the

generate-and-rank generation approach did not have access to. Graphs are created for

each entity in the corpus indicating the progressions of actions it participated in, the

order these actions occur and which other types of entity it is seen to interact with.

These graphs are subsequently combined to create plots representing stories based on

a user supplied input sentence. From these plots, the story generation system can make

lexical choice decisions based on the types of entity attested within the plot actions in

the original text. By searching through these possible stories the system can then select

the one best story to present as an output.

As we mentioned above, one of the biggest problems with plot-based generation

is that it cannot make lexical choice decisions whilst considering their impact on the
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document as a whole. We shall see in the next chapter how the stories generated by

the plot based system can be viewed not as a final product of a story generation system

but as a starting point of a more elaborate search procedure. We will show that using

evolutionary search techniques, stories can be optimised to overcome problems with

lexical node satisfactions. We will also show that evolutionary search techniques pro-

vide a strong platform for exploring the story space, removing the limitations imposed

by the generate-and-rank approach proposed in the previous chapter. In addition, we

can remove the need for an explicit model of interest, by allowing interesting stories to

develop through the optimisation of established story plots.



Chapter 5

Evolutionary Search for Story

Generation

The generate-and-rank system presented in Chapter 3 can produce a large number of

potential stories. However, in order to be computationally feasible it can only explore

a small portion of the search space. Limitations are set on the number of sentences

the system can produce at each depth of the search. This means restricting the num-

ber of actions and entities that appear in the final story. By limiting the search in this

manner, the system may never encounter the sentences that would result in the best

story overall. In the previous chapter we discussed how this problem may be allevi-

ated by introducing document level controls over the generation process, which we

operationalised using plots. The later allow us to create an outline for a story which

we no longer need to build sentence by sentence. Each plot however, still potentially

represents a large number of stories that we need to search in order to find the best

one. Unfortunately, an exhaustive search is also not computationally feasible. In this

chapter, we propose to use story plots as a starting point from which to explore the

search space advantageously so as to arrive at one ‘good enough’ story.

The search task can be viewed as an optimisation problem. We already have the

ability to produce stories which we now must improve upon along a set of criteria.

We propose that evolutionary search techniques are well suited for this type of search

problem as they allow the search space to be explored stochastically. In particular,

we will use genetic algorithms (GAs) a well-known technique for finding approximate

(or exact) solutions to optimisation problems. The basic idea behind GAs is based on

“natural selection” and the Darwinian principle of the survival of the fittest (Mitchell,

1998). In this chapter we present a story generation system that utilises GAs to evolve

101
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an optimal story. Below, we introduce the basic GA procedure and show how it can

be adapted to our task. We start by reviewing related work that has used evolutionary

search techniques for natural language generation.

5.1 Related Work

Mellish et al. (1998) pioneered the use of GAs in natural language generation and

subsequent research has built upon their work, especially in the field of document

structuring. They propose a system for generating textual descriptions of museum

artefacts from a list of facts and relationships between them. The task is to find the

best document structure that includes all the facts about an artefact whilst also being

coherent. They use Rhetorical Structure Theory (RST, Mann and Thompson, 1987)

to define document structure, with leaf nodes representing the facts and higher levels

denoting how they relate (e.g., that one fact can contrast or elaborate another). To find

the optimal RS tree they advocate genetic algorithms as an alternative to exhaustively

searching all possible descriptions. They outline a measure of document coherence

based on the structure of the RS tree and the ordering of entities and facts. For each

artefact, there are a set of the facts relating to it represented as snippets of English

text, and the known rhetorical relationships between those facts. The GA search starts

with a population of random document trees, these are created by loosely following

sequences of facts where consecutive facts mention the same entity. This population

then undergoes mutation and crossover. Mutation occurs by randomly assigning a fact

a new position among the tree’s leaves. Crossover takes two parent trees and produces

a single child by taking a subset of facts from the first parent and inserting it into the

second parent, removing duplicates as each fact must appear at most once in the final

document structure. The result of this search is a document structure for a particular

artefact, however, this system was not integrated with a surface realiser, so the final

document contains only the ‘canned text’ of each of the input facts.

Cheng and Mellish (2000) extend this work by focussing on the interaction of ag-

gregation and text planning, using a GA to search for the best aggregated document

that satisfies coherence constraints. They extend the fitness function of Mellish et al.

(1998) to include features for local coherence, embedding and semantic parataxis1. To

1Two facts are said to have a semantic parataxic relationship if they are both children of a shared
multi-nuclear semantic relationship (e.g., sequence and contrast). These facts are related but are con-
sidered of equal importance in the sentence. In contrast, a semantic hypotaxic relationship is indicated
by nucleus-satellite relationship in the RS-tree (e.g., clause) making one fact dependant on the other.
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evaluate they scored the orderings of the human authored descriptions of the artefacts

and compared them against the scores of their system generated orderings. They found

that the scores for the machine authored texts often came very close to that of the hu-

man authored ones, although no formal evaluation was carried out to see if human

evaluators preferred one over the other.

Karamanis and Manurung (2002) also utilise GAs to search for the best ordering

of facts about museum artefacts. However, rather then using RS trees to evaluate doc-

ument structures as in Mellish et al. (1998), they simply use the ordering of the facts

themselves. They argue that for a produced text to be coherent, it must retain continu-

ity, i.e., each utterance should refer to at least one entity in the utterance that preceded

it. To evaluate each candidate solution, they use a fitness function that counts the

number of continuity preservations. They mutate members of the population by either

randomly permuting the ordering, swapping two facts or repositioning a single fact.

Their crossover procedure is the same as in Mellish et al. (1998). Once the search fin-

ishes, the ordering of the facts represents a description which is realised using ‘canned

text’ associated with each fact. Their results show that it is possible for GAs to find

a global optimum solution using only the principle of continuity in order to create a

coherent ordering of facts, at least in the museum artefact domain.

Unlike Mellish et al. (1998) who use GAs as a means for optimising the imple-

mentation of a content planner, Duboue and McKeown (2002) employ evolutionary

algorithms in order to learn a content planner itself. In particular, they wanted to

use search to produce a planner similar to that of MAGIC (McKeown et al., 1997).

The MAGIC system utilises a manually developed planner to generate post cardiac-

surgery medical reports or briefings from raw data collected in the operating room. By

training a content planner using GAs it was hoped to overcome the inflexible, con-

sistent nature, of the generated texts resulting from the manually developed planner.

They operationalise the content planner as a tree consisting of operators which iden-

tify what information from the semantic input to use and how it should be structured.

These operators are either structure-defining (discourse or topic level) or data-defining

(atomic level). An example of an atomic operator is the age of the patient, whereas the

structure-defining operators form a discourse plan of how the atomic operators should

be placed in the document. Their task is to optimise the tree-like structures in order

to find a planner that results in documents similar to human authored reports for the

same surgical operations. Starting with an initial population of random planner trees,

they evolve this population using two corpus-based fitness functions. The first fitness
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function assess to what extent the placement of atomic operators violates ordering con-

straints learned for the domain. The second fitness function then evaluates the plans by

comparing the average similarity to the reports produced automatically against those

authored by the physicians for the same patient. The process of generating a new pop-

ulation of planners involved three mutation operators and a single crossover operation.

Mutations occur by inserting, deleting and combining nodes. The crossover operation

creates new planner trees by combining the structures of two plans selected from the

population. Duboue and McKeown (2002) find that the best plan returned by the GA

is more similar in structure to manually constructed MAGIC planner than a randomly

created planner. This result shows that GAs have the potential to train Natural Lan-

guage Generation components that are comparable to those constructed manually by

humans.

In a related task, Manurung (2003) explore the use of GAs in order to generate

poetry. They developed a NLG component, MCGONAGALL, that takes as its input a

non-hierarchical semantic representation (e.g., john(j), mary(m), loves(l, j, m)) that is

to be expressed poetically. The system encodes each possible representation of the

semantic input as a lexicalised tree-adjoining grammar. A GA search is then employed

to evolve these grammar structures, optimising in terms of meaningfulness (semantic

faithfulness), grammaticality, and poeticness (metre conformance). They were able to

show through empirical studies that as a proof of concept MCGONAGALL was capable

of optimising text to match designated meters, such as haiku and limerick, as well as

correctly representing the underlying semantic meaning. However, they found that the

results suffered when optimizing on more than one evaluation metric at a time.

5.2 Genetic Algorithms

We have taken the simple canonical GA outlined in Mitchell (1998) as the basis for the

GA search we describe below. The GA search procedure centres around a population

which contains a number of individuals (or solutions). These individuals are each rep-

resented by a genetic string (e.g., a population of chromosomes). The search begins

with an initial population that is randomly created and contains a predefined number

of individuals. The job of the GA is to evolve from this population a new and better

population by breeding the individuals based on their fitness. An individual’s fitness

is evaluated according to an objective function (also called a fitness function). Indi-

viduals that are selected to be parents undergo crossover (also called recombination)
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and mutation in order to develop the new population. The motivation here is that fit

parents will produce superior offspring improving the overall fitness of the population.

The algorithm thus identifies the individuals with the optimising fitness values, and

those with lower fitness will naturally get discarded from the population. This cycle

is repeated for a given number of generations, or stopped when the solution obtained

is considered optimal. This process leads to the evolution of a population in which

the individuals are more and more suited to their environment, just as with natural

adaptation.

One of the key strengths of GAs as a search technique is that they contain an el-

ement of randomness. If we were to always select the fittest individuals to breed,

then we would quickly reach a point where our population converges at a local opti-

mum. However by introducing a random element in the application of the selection,

crossover and mutation operators we can force the genetic algorithm to keep exploring

the search space and stop it from becoming trapped. We also argue that by breaking

from a strictly deterministic method of story generation, we can add more creativity to

our stories as we entertain story candidates that systems following a more traditional

architecture could not have considered.

The input to our GA-based story generator is similar to the generate-and-rank based

system presented in Chapter 3. The user provides a sentence (e.g., the princess loves

the prince), which contains two story protagonists (the main characters the story will

focus on), and the desired story length. Unlike the generate-and-rank approach this

generator relies on a story planner for creating meaningful stories. The GA-based sys-

tem differs from the generate-and-rank system in two important ways. Firstly, it does

not rely on a knowledge base of seemingly unrelated entities and relations. Rather, we

employ a document planner to create and structure a plot for a story. The planner is

built automatically from a training corpus and creates plots dynamically depending on

the protagonists of the story (see Chapter 4). Secondly, our search procedure is simpler

and more global; the generate-and-rank system searches for the best story twice (it first

find the N-best stories and then subsequently re-ranks them based on coherence and

interest), whereas our genetic algorithm explores the space of possible stories once.

5.2.1 Initial Population

Genetic algorithms traditionally start with a randomised population of individuals.

However, rather than initialising the GA with random stories, we start from possi-
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rescue

prince princess
marry

prince princess castle
have

princess baby

rescue

prince princess
love

prince princess
kiss

princess prince

⇓

rescue

prince princess
marry

prince princess castle
kiss

prince princess

rescue

prince princess
love

prince princess
have

princess baby

in

in

Figure 5.1: Example of the genetic algorithm crossover operator as applied to story

structures. Here two stories undergo crossover at a single point, indicated by the

dashed line, resulting in two children which are a recombination of the parents.

ble story plots instantiated by the input sentence. These plots in turn give rise to many

different stories. By randomly sampling this pool of stories we can create an ini-

tial population of a desired size that is random in nature but contains stories with a

narrative. Each individual within our population is a story, represented as a list of de-

pendency trees each of which corresponds to a sentence. Each of these sentence trees

consists of nodes representing lexical items and edges representing dependencies.

5.2.2 Crossover

In order to produce the next generation of the population, a selection process is used

that will pick two members of the current population based on their fitness. There is

then a small probability (known as the crossover rate) that these two individuals will

undergo mating and produce offspring. If they do not undergo mating then they are

simply copied straight into the new population (we cannot expect each population to
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be completely different from the last). However, if they do produce children, then these

children will be the result of a recombination of the parents. Before the offspring can

be created, one index in the sentence ordering (although potentially more) is assigned

along the length of the parent chromosomes. To create a child, we copy the chromo-

some up to this point in the first parent and then after this point in the second (and

visa-versa). Each child now contains some genetic material from each parent. As our

solutions are represented by an ordered graph of dependency trees, our crossover point

will represent depth in the ordered list. The crossover point must be the same depth

for both parents to ensure that stories remain at the desired length. We assume that

the crossover point occurs after the input sentence but we use a uniform distribution to

decide where to place it.

Figure 5.1 shows two parents (prince rescue princess, prince marry princess in

castle, princess have baby) and (prince rescue princess, prince love princess, princess

kiss prince) and how two new stories are created by swapping their last sentences.

5.2.3 Mutation

In the event that two selected candidate solutions produce children, these children may

then undergo mutation before entering the next generation. Mutation allows for adap-

tation and search within the GA; without this operation we would only produce re-

combinations of stories already present in the population. To explore a larger space

of possible stories, we must be able to mutate genetic material in the population into

new solutions. Mutation, however, has a very disruptive effect on the population, as it

has the ability to completely alter a chromosome, so it must be used sparingly. Before

entering the population, each child has a small probability of undergoing one or more

mutations. Mutation can occur on any verb, noun, adverb, or adjective in the story. If

a noun, adverb or adjective is chosen to undergo mutation, then we simply substitute

it with a new lexical item that is sufficiently similar (similar lexical items co-occur

with the parent node in the training corpus, see Figure 5.2a). Verbs, however, have

structural importance in the stories and we cannot simply replace them without taking

account of their arguments. If a matrix verb is chosen to undergo mutation, then a new

random sentence is generated to replace the entire sentence (see Figure 5.2c). This new

sentence must have one of the story protagonists as its subject to retain coherence. If it

is a subclause, then it is replaced with a randomly generated clause, headed by a verb

in the training corpus that co-occurred with the matrix verb (Figure 5.2d). The sen-
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tence planner selects a template tree and fills it using the content selection database to

generate random clauses. Mutation may also change the order of any two sentences in

the list in the hope that this will increase the story’s coherence or create some element

of surprise (see Figure 5.2b).

5.2.4 Selection

The process by which we select individuals for possible mating is of primary impor-

tance in our story generation setting. Obviously the emphasis is on the ‘survival of

the fittest’, yet as we have already explained we do not wish to concentrate solely on

the fittest individuals as they may trap the search within a local maximum. Potentially

advantageous genetic material may be contained within the chromosome of a less fit

individual, yet through recombination this material may eventually lead to a superior

child. Selection methods must therefore tend towards choosing fitter individuals but

not totally discount less fit ones. We can do this by using fitness proportional selec-

tion (also know as roulette-wheel selection, Goldberg, 1989) which chooses candidates

randomly but with a bias towards those with a larger proportion of the population’s

combined fitness. To ensure that through this somewhat random process of selection

we do not loose the fittest members of the current generation we employ some elitism

by allowing the top 1% of solutions to be copied straight from one generation to the

next.

One problem faced by the GA is that not all solutions will be valid. Specifically,

we consider invalid stories to contain repetitive actions. This was not a problem for

the generate-and-rank system as it built up each sentence in a very directed manner,

whereas, the GA has the ability to make alterations at any point in a story through

crossover and mutation. We enforce validity by ensuring that a subj-verb pair only

appears once in the story.2 In the cases where repetition occurs, the story is assigned

a low fitness, without however being discarded, as it may still contain some useful

material. For example when we perform crossover on the stories (princess love prince,

princess see castle, prince ride horse, prince save kingdom) and (princess love prince,

princess cry, princess see castle, princess go on quest), it could produce the story

(princess love prince, princess see castle, princess see castle, princess go on quest).

This new story will be given a low score as there is a sentence repetition, however, the

some of the sentences could be useful in future crossover operations, (e.g., princess

2As each of the actions in the story has one of the story protagonist as its subject, we can assume
sentences will be distinct enough that we do not need to check verb-object pairs also.
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a) marry

prince princess church

hall

castle
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kingdom

b) rescue

prince princess
marry

prince princess castle
kiss

prince princess

in
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prince princess castle

kiss
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c) rescue
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d) knows
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princess dragon

Figure 5.2: Example of genetic algorithm mutation operators as they are applied to

story structures: a) mutation of a lexical node, church can be replaced from a list of

semantically related candidates; b) sentences can be switched under mutation to create

a potentially more coherent structure; c) if the matrix verb undergoes mutation then, a

random sentence is generated to replace it; d) if the verb chosen for mutation is the

head of a subclause, then a random subclause replaces it.
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see castle, princess go on quest).

As a GA search progresses, the number of individuals in the population remains

constant but the number of unique solutions they represent will decrease as the pop-

ulation converges over a suitable solution. This results from the selection procedure

selecting the same individual within a single generation more than once and placing it

directly into the next generation, producing clones. The presence of identical solutions

in the population will increase the selection pressure in favour of the fittest solution,

which exerts itself over the population by replicating itself in this manner. This selec-

tion pressure aids the population in reaching convergence, however, there is a trade-off

between the speed at which a convergence is sought and allowing the GA to explore a

wider pool of solutions. Our system treats each of the solutions in the population as an

individual, even if they are clones of other solutions.

For many search problems the GA is particularly advantageous as the landscape

defined by the fitness function contains an optimum solution to be reached. We share

the view of Karamanis and Manurung (2002) that in natural language generation tasks

there does not need to be a global optimum solution, there simply needs to be a solution

that is coherent enough to be understood.

In the next section we will discuss some of the fitness functions that can be used

by the selection procedure to evaluate our story population.

5.2.5 Fitness Functions

The fitness function evaluates and scores each individual in the population. In a tra-

ditional GA, the fitness function deals with one optimisation objective. It is possible

to optimise several objectives either using a voting model or more sophisticated meth-

ods such as Pareto ranking (Goldberg, 1989). Any measure of story quality used as

part of a fitness function must be automatic and efficient, as the GA may contain a

large number of candidate stories that require scoring. We follow previous work (Mel-

lish et al., 1998; Karamanis and Manurung, 2002) which focuses on fitness function

that scored candidates based on their coherence. In Chapter 3 we motivated a scoring

function based on interest and approximated by lexical and syntactic features such as

the number of noun/verb tokens/types, the number of subjects/objects, the number of

letters, word familiarity, imagery, and so on. However, although an interest scoring

function made sense for the generate-and-rank system as a means of selecting unusual

stories, in the GA-based system it seems redundant. Interesting stories emerge natu-
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rally through the operations of crossover and mutation, and we can assume that story

plots will already be interesting as they contain sequences of actions consistent with the

training corpus. In essence, we are exploiting the nature of the GA search to develop

the interest of our stories at the document level rather than at the lexical level.

In contrast to previous work (Mellish et al., 1998; Cheng and Mellish, 2000) our

fitness functions are not based on the well-formedness of RST trees. Karamanis and

Manurung (2002) show that coherent texts can also be produced using a similar and po-

tentially more robust fitness function based the number of continuity violations within

a text. Continuity violations can be easily calculated by the entities present in each ut-

terance with those of the previous utterance. We will now outline several measures for

evaluating text coherence that are easily calculated for our stories. We have previously

discussed a measure of local coherence based on the entity grid representation (Sec-

tion 3.3.3). Also, Clarke and Lapata (2007) in their work on sentence compression,

use measures derived from Centering Theory (Grosz et al., 1995) and Lexical Chains

(Morris and Hirst, 1991) to evaluate the coherence of their compressed documents.

Entity Grid The local coherence of a text can be evaluated using a representation

based on entity grids (Barzilay and Lapata, 2008). This approach represents each doc-

ument as a 2-dimensional array in which the columns corresponds to entities and the

rows to sentences. Each cell indicates whether an entity appears in a given sentence or

not and whether it is a subject, object or neither. This entity grid is then converted into

a vector of entity transition sequences. Central to their approach is the idea that the

distribution of entities in a locally coherent text will exhibit certain regularities. From a

corpus we can learn the probabilities of such transition sequences and then use them to

calculate the probability of the sentence transitions in a given text. This approach was

successfully used in Barzilay and Lapata (2008) to learn a ranking function for sen-

tence ordering. We describe, in detail, in Section 3.3.3 how the entity grid model was

trained. An example entity grid is shown in Figure 3.7. In each sentence we record

if an entity is a subject (S), direct object (O), indirect object (X) or not present (–).

Although Barzilay and Lapata (2008) used the symbol X for an entity present in the

sentence that was neither a subject or an object, we will use it to represent an indirect

object.

Centering Theory A central assumption in Centering Theory (CT, Grosz et al., 1995)

is that the focus of a discourse revolves around a centred entity. It is also assumed that
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The prince1 loves the princess1. The princess1

sees a dragon2 near the city. The prince1 draws his

sword3 and goes to meet the dragon2. The prince1

slays the dragon2 with the weapon3. The princess1

kisses the prince1.

Figure 5.3: An example story with centers highlighted in boxes and entities belonging

to lexical chains shown with subscripts; entities with the same number are in the same

chain (e.g., prince, princess).

texts whose utterances share a common center are more coherent than texts where the

center shifts from one utterance to the next and that salient entities are more likely to

be centers. Salience is determined by different factors such as the entity’s syntactic

role, whether it is a subject, and whether it is prenominalised or not. Assuming that

utterances correspond to sentences (Miltsakaki and Kukich, 2000), we can calculate

for each sentence Un:

• Preferred center, CpUn, the subject of the matrix verb in sentence Un.

• Backward-looking center, CbUn, the most highly ranked entity in sentence

Un−1 which is also realised in sentence Un.

• Forward-looking center, C fUn, the set of entities that appear in sentence Un

ranked by their salience. The ranking of C f will allow the Cp of this sentence

and the Cb of the following sentence to be identified.

The salience of each entity in the set of forward looking centers is calculated by as-

suming that subjects are ranked higher than objects, which in turn are ranked higher

than all other entities.

There are currently several different coherence metrics that use CT as their basis.

Karamanis et al. (2009) discuss and evaluate a selection of centering based measures

for information ordering in NLG (including the entity grid shown above). They found

that ensuring each utterance had a CbUn provided a baseline that was difficult to out-

perform when incorporating additional centering features. However, they also explain

that its performance is not suitable for it to be used as a measure for sentence order-

ing on its own. As we are focussing on the task of content selection in conjunction
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with sentence ordering, we decided to focus on the centering based measure described

in Kibble and Power (2004) in order to provide additional granularity to the level of

coherence each text could be assigned. Kibble and Power (2004) describe a measure

that scores the transitions from one utterance to the next in a text, and show that it

can be used to select an optimal realisation from a selection of different text plans, for

the same document. From the sentence trees that form our stories we know exactly

which entities appear in each sentence and the role they play in each action. We take

each sentence, Un, in a story and calculate the preferred center (CpUn), the backward-

looking center (CbUn) and the forward looking center (C fUn). To score a story we

look at violations of salience, cohesion, cheapness and continuity which are defined in

Kibble and Power (2004) as follows;

• Salience violation: An utterance Un violates salience if CbUn 6= CpUn. This

defect is assessed only on utterances that have a backward-looking center.

• Cohesion violation: A transition 〈Un−1, Un〉 violates cohesion if

Cb(Un) 6= Cb(Un−1). This defect is not recorded when either Un or Un−1

has no Cb.

• Cheapness violation: A transition 〈Un−1, Un〉 violates cheapness if

CbUn 6= CpUn−1. This defect is assessed only on utterances that have a

backwards-looking center.

• Continuity violation: This defect is recorded for any utterance with no Cb ex-

cept the first proposition in the sequence (which by definition cannot have a Cb).

We also follow their work by assigning each salience, cohesion and cheapness

violation a score of 1 and each continuity violation a score of 3. Continuity violations

are seen as more sever as they represent an expensive rough shift, e.g., the entities in

Un are all different from those in Un−1. The sum of all violations gives an idea of

how well a story adheres to the principles of CT. The stories with the lowest scores are

expected to have the greatest local coherence. Kibble and Power (2004) note that the

weight given to the violations may differ depending on the type of text being evaluated

(i.e., different genres, spoken vs. written), however we will use their weights as they

still provide an insight into how well a document adheres to the principles of CT.

We will now show how the story in Figure 5.3 is evaluated by the Kibble and Power

(2004) centering measure. The first step is to calculate the preferred center (CpUn),
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1 The prince loves the princess.

Cf(prince, princess)

Cp=prince

2 The princess sees a dragon near the city.

Cf(princess, dragon, city)

Cb=princess Cp=princess

3 The prince draws his sword and goes to meet the dragon.

Cf(prince, sword, dragon)

Cb=dragon Cp=prince

4 The prince slays the dragon with the weapon.

Cf(prince, dragon, weapon)

Cb=prince Cp=prince

5 The princess kisses the prince.

Cf(princess, prince)

Cb=prince Cp=princess

Figure 5.4: The preferred center (Cp), the backward-looking center (Cb) and the forward

looking centers (C f ) for each sentence (Un) of the story in Figure 5.3.

the backward-looking center (CbUn) and the forward looking centers (C fUn) for each

sentence. These are shown in Figure 5.4.

We then record any violations that occur between entity transitions which in our

example are: salience in sentences 3 and 5 (as Cb 6= Cp), cohesion in transitions 2-

3 and 3-4 (as CbUn 6= CbUn−1) and cheapness in transition 1-2 and 2-3 (as CbUn 6=
CpUn−1). This would give the above story a violation score of 6. We normalise the

scores by story length by bearing in mind that the maximum number of violations

for each utterance after the initial utterance is 3, either salience+cohesion+cheapness

violations or a continuity violation.

Lexical Chains As we discuss above, Centering Theory describes how a locally co-

herent text will maintain the discourse focus on a centered discourse entity. However,

the cohesion of the utterances may rely on more than just the centered entity. For ex-

ample, the discourse, ‘the prince has a football, the prince loves chicken, the prince

visits France’, does not violate any centering constraints, as the prince is the focus of

each sentence, but this text is not very coherent. Lexical cohesion takes into account
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the relatedness of lexical items in the story and their distribution. Halliday and Hasan

(1976) coined the term to explain the fact that coherent texts tend to contain more re-

lated terms and phrases than incoherent ones. As we saw in the text above, the lexical

items football, chicken and France are unrelated and the story does not make much

sense. However, consider the story, ‘the prince has a puppy, the prince likes dogs,

the prince does not like cats’, which appears much more coherent as the lexical items,

puppy, dog and cat are semantically related.

We can view coherent documents as those containing more related terms. In par-

ticular, we will use lexical chains (Morris and Hirst, 1991) which represent lexical

cohesion through semantically related words. Using WordNet (Fellbaum, 1998), re-

lationships such as synonymy, hyponomy and mernomyny, can be identified for noun

entities in the text. These relationships along with entity repetition then allow chains

of nouns to be built throughout the text. Lexical chains allow us to quickly view

the coherence of a text by viewing their distribution. Texts where the chains form

dense clusters will have a higher degree of coherence as the words are lexically related

whereas chains with sparse clusters will indicate a lack of coherence. Lexical chains

have been successfully used in the areas of sentence compression (Clarke and Lapata,

2007) and document summarisation (Barzilay and Elhadad, 1997), as they can iden-

tify topic boundaries: entities within a topic will relate to one another stronger than

they will with entities of another topic. Documents will often contain multiple top-

ics and producing a document summary requires deciding which of these to include

whilst retaining the most important information from the document. Of the topics in

a document, those represented by the largest lexical chains are likely to reveal what a

topic is about and so will play an important role in any summary produced. Whereas,

shorter chains are more likely to represent topics that have been included to provide

supplementary information, so their omission from a summary is unlikely to detract

from the message the document is intended to convey.

To build lexical chains, we follow the procedure outlined in Barzilay and Elhadad

(1997) that is inspired by the work of Hirst and St-Onge (1998).

1. Select a set of candidate words (typically all words in the document that appear

in WordNet).

2. For each candidate word, find the appropriate chain relying on a relatedness

criterion among members of the chains.

3. If a chain is found, insert the word into the chain.
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Candidate words are those nouns found in WordNet. There are three types of re-

lationship used in determining relatedness between members of a chain, which also

depend on the typographical distance between the nouns in the document. These are,

extra-strong (between repetitions of a word, no limit on distance between occurrences),

strong (between words connected by a relationship in WordNet, within a window of

seven sentences) and medium-strong (where the path length between the synsets of the

words is greater than 1, within a window of three sentences).

Hirst and St-Onge (1998) utilise a greedy strategy when building chains, using an

iterative process assigning each word to a chain in which the strongest of the above

relationships can be applied, or adding it to a new chain. This greedy strategy leads

to inconsistent sense allocations as the sense selected in order for the word to fit in

with the current chains may not be the correct sense if when considering all the words

in the document. Barzilay and Elhadad (1997) improve upon their implementation by

introducing word sense disambiguation. Rather than applying and updating the sense

of each word based on the current set of chains, they build the set of chains resulting

from each sense of each word. By recording all possible chains they can select the set

of chains that result in the strongest relationships based on the words from the whole

document.

To give a numerical value indicating the strength of a lexical chain in a story, we

use the scoring function proposed in Barzilay and Elhadad (1997). From the set of

chains created for a document, they select the strongest of these chains as indicators

of the key topics for use in a documents summary. To select the strongest chains they

show that good indicators of a chain’s strength are:

Length: The number of occurrences of members of the chain.

Homogeneity index: 1 - the number of distinct occurrences divided by chain

length.

These are combined to give the following measure of chain strength:

Score(Chain) = Length∗Homogeneity (5.1)

For each story we calculate the average lexical chain strength from each of the iden-

tified chains. For the example shown in Figure 5.3 there are three chains; {prince,

princess}, {dragon} and {sword, weapon} (castle is not semantically related to any

other word in the story). We start by scoring each of the chains using equation 5.1.

The chain {prince, princess} has a length of 7 and contains 2 distinct occurrences. Its
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score is therefore, 7∗ (1− (2/7)) = 5. The score for the chain {dragon} is 1 and for

{sword, weapon}, 0. This gives an average chain score of 2.

Applying the Fitness Functions Each of the fitness functions above evaluates a

story candidate in a different way, using a different numerical scale. A simple voting

system is implemented to combine the scores when more than one fitness function is

to be applied (see Algorithm B.7 in Appendix B). Each story is ranked by each of

the fitness functions and then these ranking are combined to create an overall ranking

for the population. This method of scoring treats each of the fitness functions with an

equal weighting (i.e., one fitness function does not have more influence on selection

of candidates than another). We use descending dense ranking (e.g., 100, 99, 99, 98)

so as not to favour too strongly those solutions that are clones of one another (see

Algorithm B.8 in Appendix B). The ranks of each member of the population are then

used to decide the proportion of weighting each candidate is assigned during roulette-

wheel selection.

In Section 5.3.2 we will evaluate the range of fitness functions available from the

combination of these three measures of local coherence.

5.2.6 Surface Realisation

Once the search has reached a set number of generations, the fitness function is used to

select the overall fittest story. This story is then transformed into English text through

surface realisation. The realiser takes each sentence in the story and reformulates it

into input compatible with the REALPRO (Lavoie and Rambow, 1997) text generation

engine. REALPRO creates several variants of the same story differing in the choice

of determiners, number (singular or plural), and prepositions. A language model is

then used to select the most probable realisation (Knight and Hatzivassiloglou, 1995).

Ideally, the realiser should also select an appropriate tense for the sentence. However,

we make the simplifying assumption that all sentences are in the present tense (see

Section 3.2.4 for more details).

5.3 Experimental Setup

In this section we present our experimental set-up for assessing the performance of our

story generator. We give details on our training corpus, system, parameters (such as
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the population size for the GA search), the baselines used for comparison, and explain

how our system output was evaluated.

5.3.1 Corpus Data

The generator was trained on 437 stories from the Andrew Lang fairy tales collection,

the same corpus presented in Section 3.4.4. The corpus contains 15,789 word tokens,

the average story length being 125.18 sentences. We discarded tokens that did not

appear in the Children’s Printed Word Database3, a database of printed word frequen-

cies as read by children aged between five and nine. From this corpus we extracted

entity graphs (see Section 4.2) for 667 entities in total (this is 0.43% of the entities

in the corpus), disregarding any graph that contained less than 10 nodes as too small.

The graphs had on average 61.04 (SD 106.76) nodes, with an average clustering rate4

of 0.027 (SD 0.076) which indicates that they are substantially connected.

5.3.2 Search Parameters

Considerable latitude is available when selecting parameters for the GA. These involve

the population size, crossover, mutation rates, and fitness functions. To evaluate which

setting was best, we asked two human evaluators to judge (on a 1–5 scale) stories

produced with a population size of 1,000, 5,000, and 10,000, a crossover rate likelihood

of 0.1, 0.4, and 0.6 and a mutation rate likelihood of 0.001, 0.01, and 0.1. We used

7 different fitness functions. As we have used the entity grid previously we decided

to see if using additional coherence models would approve the output; entity grid,

centering, lexical chains, entity grid + centering, entity grid + lexical chains, centering

+ lexical chains, and the combination of all three. For each run of the system a limit

was set to 5,000 generations. We produced stories of length five for three different

input sentences resulting in a total of 567 (27 × 7 × 3) stories that were presented to

the evaluators.

The human ratings revealed that the best stories were produced for a population

size of 10,000, a crossover rate of 0.1, a mutation rate of 0.1 and a fitness function

consisting of the entity grids alone. Compared to previous work (e.g., Karamanis and

Manurung, 2002) our crossover rate may seem low and the mutation rate high. In fact

3http://www.essex.ac.uk/psychology/cpwd/
4Clustering rate (or transitivity), Newman (2003), is the number of triangles in the graph — sets of

three vertices each of which is connected to each of the others. The clustering rate is calculated using
Equation 4.3.
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Goldberg (1989) recommends that the mutation rate should be inversely proportional

to the size of the population. However, it makes intuitive sense in our case, as high

crossover may lead to incoherence by disrupting canonical action sequences found in

the plots. On the other hand, a higher mutation will raise the likelihood of a lexical

item being swapped for another that may improve overall coherence and interest. The

evaluation showed that the best stories were generated when the entity grid was used

on its own. An explanation for this could be that the system finds it too difficult to

optimise in more than one dimension. The fitness landscape created by using multiple

coherence metrics may simply be too ill-defined. It is also possible that lexical chains

and centering measures are not well as well suited to our task as the entity grid ap-

proach. Our stories are very short, containing only 5 sentences and a small number

of entities. Our centering based measure could only evaluate the story based on the

centered entity of each sentence, and our lexical chain measure can only evaluate those

entities that it can place within a chain. This means that neither of these measures will

necessarily evaluate the usage of all of the entities within a story, although the entity

grid will.

5.3.3 Evaluation

To evaluate the performance of the GA system (GA-based), we compared the stories

it created against those of the following 1) the generate-and-rank system (Rank-based)

described in Chapter 3 and 2) the plots as a deterministic system, without GA optimi-

sation (Plot-based). In Chapter 4 we outlined how a plot graph can be generated for a

given input sentence. Edges within this graph are weighted using Mutual Information

(MI, Lin, 1998), and so traversing the graph whilst preferring the highest scoring edges

will result in a single, most likely, plot from the graph. Each plot represents a set of

stories containing differing lexical values for entities other than the protagonists (the

main characters of the story supplied in the input sentence). These supporting entities

are selected from the content selection database and are ranked based on their semantic

similarity to the senses in the plot. We limit the number of entities that can be consid-

ered for each lexical variable in the plot to 5. The resulting stories are ranked using the

entity grid coherence metric in order to select the best one. In addition, we included a

baseline (Human-sentences) which randomly selects sentences from the training cor-

pus of human authored fairy tales. We limited the set of possible sentences to those

that contained one or both of the story protagonists (i.e., entities in the input sentence)
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System Fluency Coherence Interest

GA-based 3.09 2.48 2.36

Plot-based 3.03 2.36 2.14∗

Rank-based 1.96∗∗ 1.65∗ 1.85∗

Human-sentences 3.10 2.23∗ 2.20∗

Table 5.1: Human evaluation results: mean story ratings for four story generators;
∗ : p < 0.05, ∗∗ : p < 0.01, significantly different from GA-based system.

and with a length of 12 words or less, as this was the maximum length of the sentences

generated by the Rank-based system.

Each system generated stories for 12 input sentences, resulting in 48 (4×12) stories

for evaluation. The sentences were created using commonly occurring entities in the

fairy tales corpus (e.g., the child watches the bird, the queen controls the dragon, the

wizard casts the spell). These stories were split into three sets containing four stories

from each system but with only one story from each input sentence. All stories had

the same length, namely five sentences. Human judges (56 in total) were presented

with one of the three sets and asked to rate the stories on a scale of 1 to 5 for fluency

(was the sentence grammatical?), coherence (does the story make sense overall?) and

interest (how interesting is the story?). The stories were presented in random order and

participants were told that all of them were generated by a computer program. They

were instructed to rate more favourably interesting stories, stories that were compre-

hensible and overall grammatical. The experiment was conducted remotely over the

web using the WEBEXP5 (Keller et al., 2009) experimental software. Instructions and

materials are included in Appendix A.

5.3.4 Results

Our results are summarised in Table 5.1 which lists the average human ratings for each

system. We performed an Analysis of Variance (ANOVA) to examine the effect of

system type on the story generation task. Statistical tests were carried out on the mean

of the ratings shown in Table 5.1 for fluency, coherence, and interest.

In terms of interest, the GA-based system is significantly better than the rank-based,

plot-based and human-sentence ones (using a Post-hoc Tukey test, α < 0.05). With re-

5See http://www.webexp.info/
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gard to fluency, the Rank-based system is significantly worse than the rest (α < 0.01).

Interestingly, the sentences generated by the GA-based and plot-based systems are as

fluent as those written by the human authors. Recall that the human-sentences system,

simply selects sentences from the training corpus. Finally, the GA-based system is sig-

nificantly more coherent than the rank-based and human-sentences systems (α < 0.05),

but not the plot-based one. This is not surprising, the GA and plot-based systems rely

on similar plots to create a coherent story. The performance of the human-sentences

system is also inferior as it does not have any explicit coherence enforcing mechanism.

The rank-based system is perceived overall worse. As this system is also the least flu-

ent, we conjecture that participants are influenced in their coherence judgements by

the grammaticality of the stories.

Overall our results indicate that an explicit story planner improves the quality of

the generated stories, especially when coupled with a search mechanism that advan-

tageously explores the search space. It is worth noting that the plot-based system is

relatively simple, however the explicit use of a story plot, seems to make up for the

lack of sophisticated search and more elaborate linguistic information. Example sto-

ries generated by the four systems are shown in Table 5.2 for the input sentences the

emperor rules the kingdom and the child watches the bird.

The stories generated by the GA-based system appear to be coherent. The story

protagonists interact in the majority of the story actions. This is because the mutation

operator has the option of swapping any entity in a story for a protagonist anywhere

in the story, something the generate-and-rank approach could not do, due to the way

it constructs stories, sentence by sentence. It is unknown exactly how disruptive the

introduction of new sentences through the mutation process is, however, the action

sequences that appear in the examples of the plot-based system are, on inspection,

relatively similar to those generated by the GA-based system, leading us to believe

that their disruption is quite low.

The rank-based system and GA-based system both differ on their treatment of story

interest whilst generating stories. The rank-based system evaluates each story using a

lexical model of interest which it uses to select between different story variations as it

generates each story one sentence at a time. The GA-based system, however, does not

make use of an explicit model of interest and utilises its recombination and mutation

functions in order to generate interesting stories from complete stories in the popu-

lation of story plots. From the results we can see that the document level treatment

of interest used by the GA outperforms the lexicalised treatment by the rank-based
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G
A

-b
as

ed
The emperor rules the kingdom. The

kingdom holds on to the emperor. The

emperor rides out of the kingdom. The

kingdom speaks out against the em-

peror. The emperor lies.

The child watches the bird. The bird

weeps for the child. The child begs the

bird to listen.The bird dresses up the

child. The child grows up.

Pl
ot

-b
as

ed

The emperor rules the kingdom. The

emperor takes over. The emperor goes

on to feel for the kingdom. Possi-

bly the emperor sleeps. The emperor

steals.

The child watches the bird. The bird

comes to eat away at the child. The

child does thoroughly. The bird sees

the child. The child sits down.

R
an

k-
ba

se
d

The emperor rules the kingdom. The

kingdom lives from the reign to the

emperor. The emperor feels that the

brothers tempt a beauty into the game.

The kingdom saves the life from crum-

bling the earth into the bird. The king-

dom forces the whip into wiping the

tears on the towel.

The child watches the bird. The bird

lives from the reign to the child. The

child thanks the victory for blessing

the thought. The child loves to hate the

sun with the thought. The child hopes

to delay the duty from the happiness.

H
um

an
-s

en
te

nc
es

Exclaimed the emperor when Petru

had put his question. In the meantime,

mind you take good care of our king-

dom. At first the emperor felt rather

distressed. “The dinner of an em-

peror!” Thus they arrived at the court

of the emperor.

They cried, “what a beautiful child!”

“No, that I cannot do, my child” he

said at last. “What is the matter, dear

child?” “You wicked child,” cried the

Witch. Well, I will watch till the bird

comes.

Table 5.2: Stories generated by a system that uses plots and genetic search (GA-

based), a system that uses only plots (Plot-based), the generate-and-rank system out-

lined in Chapter 3 (Rank-based) and a system that randomly pastes together sentences

from the training corpus (Human-sentences).
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system. As we discussed in Section 3.4.4, the use of a lexicalised model for inter-

est when generating sentences and stories tends to result in overly long sentences in

which the words used may be selected based on their perceived interest rather than on

how well they complement the story as a whole. Interest in the GA’s stories, how-

ever, develops from the treatment of the document as a whole, where recombination

and mutation serve to change limited portions of an already established story, with the

resulting mutations being required to maintain or improve the coherence of that story

for it to receive a competitive fitness. One future possibility is to investigate how both

lexical and document level interest could be combined. For instance, using weightings

we could give preference to those options supplied to the mutation operator that have

higher perceived lexical interest. This could potentially encourage the use of interest-

ing words in the story without impacting on the evaluation of document level interest

maintained by the fitness functions.

The use of GAs is also promising for scaling the generation system presented here.

For instance, a story of length 10 is no more difficult to produce than a story of length

5. As the GA accepts stories from plots as its inputs, it is relatively straightforward

to create the initial population. The GA operators then work identically to how they

would for a shorter story. This is very different from the generate-and-rank approach

where sentences had a very strong dependence on the discourse history. The plot-based

system makes no use of discourse history, but rather uses sense information from action

roles, to make lexical choice decisions. As the lexical items for each node of the plot

graph are selected independent from one other, the sentences representing these nodes

are only generated once. Indeed, whilst the plot generation system, generating stories

of length 5, tends to produce sentences in the thousand, the generate-and-rank approach

was in the hundreds of thousands.

When we generate plots for use in our system, we add sense information to outline

which entities are to assume roles in each action. This information is used by the

plot generation system to satisfy underspecified action slots. The sense information

can sometimes be misleading (for example, the first sense for scorpion in WordNet

represents a person born under the start-sign Scorpio). Lexical selection problems

may however have resulted from the plot generation system’s inability to make content

selection decisions with document quality in mind. The mutation process used by the

GA when replacing an entity node will select at random from those supplied by the

content selection database. For common verbs, such as give, this may mean effectively

selecting from hundreds of possible entities. One option to improve efficiency is to
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extend the use of sense information to the mutation process so that a bias can be made

towards similar words, whilst also allowing for dissimilar words to be chosen, just not

as often.

Our experimental evaluation revealed that the combination of plots with genetic

search leads to interesting stories even without an explicit interest rating module. How-

ever, there are some issues that come to light by evaluating stories on their coherence

alone. To start with, we can only judge story quality based on the position of the enti-

ties in the story. This is useful but it tells us little about what these entities are, or if the

actions performed are in fact interesting. A coherence-based fitness function will also

have problems discriminating between stories in which the entity transition sequences

are the same and as it is unlexicalised it does not asses whether entities fit together in

a story. It is possible that an improved model of interest together with a coherence-

based fitness function could provide this information. This interest model would help

discern between equally coherent stories by evaluating the combination of their lexical

and syntactic features. Another argument is that the coherence model completely ig-

nores the contribution of adverbs and adjectives. These are still selected by the system

but as there is no way to judge their impact on the story, they are simply chosen at

random from those available.

We have not investigate in full the nature of the GA search technique as it can be

applied to our domain. Our approach assumed that the fitness function remains static

throughout the search whereas it could be profitable to develop a dynamic model of

fitness. There is a trade-off between exploration and exploitation. The search should

be initially exploitative to allow potentially rich areas of the search space to be located.

Yet, this should eventually turn to exploitation, which is known as the “killer instinct”:

having found a lucrative area the search forces convergence upon the fittest solution in

that area. Exploration is maintained in our approach though our use of roulette wheel

selection, we allow weak candidates to participate in the mating process, although

not as often as the fitter candidates. Another selection method we could have used

is tournament selection. In tournament selection, a certain number of candidates are

selected at random and then the fittest individual wins the tournament. Miller and

Goldberg (1995) show that this selection process can be used to affect the selection

pressure through the varying of the tournament sizes.

We compared a selection of fitness functions that evaluated coherence in the gen-

erated stories. These included measures based on the entity grid, centering and lexical

chains and their combination. On the one hand, we found that system output suffered
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when utilising a fitness function comprised of more than one of these measures. The

intended specialisation of each fitness function is diluted when not considered in iso-

lation. In gaining a consensus opinion from several fitness function, we lose the ability

to effectively critique the stories along the desired dimensions. On the other hand,

using a fitness function based on the entity grid measure alone gives many different

stories the same score because they have the same distribution of entities. One op-

tion we did not consider was to employ a two-tier fitness function as in Duboue and

McKeown (2002). Our GA search could then evolve the individuals in the population

along different coherence measures one after another. This option would also allow us

to consider the interest model as a fitness function on its own. The system could then

search for the most coherent of the most interesting stories. It would also allow the

addition of further evaluation models, for example, in this study we did not include a

model of Latent Semantic Analysis (LSA, Foltz et al., 1998) which has been shown to

be an effective predictor of coherence.

5.4 Summary of Chapter

In this chapter we have introduced evolutionary search, GAs in particular, as a means to

improve the quality of the stories generated by our system. Specifically, we used stories

described by plots and then applied a GA search to improve the overall coherence and

flow of the story. Unlike the generate-and-rank system, the search was applied to entire

stories, thereby allowing document level control to guide the story progression.

Having developed an improved method for searching the story space, we will next

look at how the system can be extended. It is clear that the language used in the

stories is not very natural, so we will consider referring expressions and how they can

be included to improve the quality of the generated stories. We will also consider

how common sense knowledge (Liu and Davenport, 2004) can be used to improve

the stories. Another consideration for our approach is its portability, we will explore

the impact of using a different training corpus and how stories produced by a system

trained on a corpus representing a different domain, namely, news texts. We will also

introduce a story completion task rather than generation an entire story from scratch.

This task is more in line with how the story generator would be used in an educational

setting, e.g., as an aid to students while writing their own stories.





Chapter 6

Exploring the Modularity and

Portability of the Story Generation

System

In the preceding chapters, we motivated a trainable story generation system. The

strength of such a system lies in its portability and modular structure. The former

allows it to be trained on new domains, whereas the latter enables the integration of

new data sources. In this chapter we propose additional components for integration

into our system. These components highlight possible areas of future work and show-

case the extensibility of the pilot system. Specifically, we will look at the addition

of a components for generating referring expressions and incorporating commonsense

knowledge (Singh and Barry, 2003). These are added as post-processing tasks and are

intended to enhance the stories generated by the GA-based system. We shall also ex-

plore the system’s capability for retraining on a new domain. Finally we will introduce,

a new generation task, namely automatically finishing incomplete stories.

6.1 Generating Referring Terms

One problem facing the story generation system we have described in this thesis is

the quality of the text it is able to produce. In particular, we find a large amount of

repetition as each entity in a story is represented by the same surface form throughout

the text. Consider for example, one of the stories created by the GA-based system.

The emperor rules the kingdom. The kingdom holds on to the emperor.
The emperor rides out of the kingdom. The kingdom speaks out against

127
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the emperor. The emperor lies.

The first thing we notice is that the text used to communicate this story is not very

natural and it is unlikely that a human writer would have expressed the narrative in

this way. To make the text more human like, it requires the use of pronouns, e.g., the

emperor can be referred to as he after the first mention and the kingdom as it. Also,

the story communicates no descriptive information about these entities as the current

implementation always maps each entity to a single noun. However, writing a narrative

requires more than simply stating each event that takes place. Take the following

excerpt from the Andrew Lang fairy tale corpus (see Chapter 3.4.1) as an example:

Many, many thousand years ago there lived a mighty King whom heaven
had blessed with a clever and beautiful son. When he was only ten years
old the boy was cleverer than all the King’s counsellors put together, and
when he was twenty he was the greatest hero in the whole kingdom.

There is clearly a gap between the human authored prose of the fairy tales and our

system generated stories. Here, we discuss how pronouns can be introduced into our

stories (i.e., replacing King with he) together with the generation of more elaborate

referring expressions (e.g., describing the king as mighty or adding that the counsellors

belonged to the king).

In the NLG pipeline (Reiter and Dale, 2000) the task of generating referring ex-

pressions falls under the purview of the microplanner. The latter is responsible for

selecting the best representation for each mention of an entity within the text. Any

system which generates referring expressions must also differentiate between the ini-

tial and subsequent mentions of each entity. It must consider if an entity should be

represented by a simple or complex noun phrase depending on the level of detail about

that entity, whether a pronoun can be used to replace the noun phrase, and finally, if

the entity has a name that could be used to represent it. The system must also en-

sure that the reader knows which entity is being refereed to, taking care to watch for

possible distractors, and making sure that the reader is not confronted with too much

redundancy, resulting from the inclusion of information about entities that serves no

purpose. Many approaches to generating referring expressions have been proposed in

the past with particular attention to the task of pronominalisation, a selected few are

discussed below.

STORYBOOK (Callaway and Lester, 2002a) incorporates an algorithm for making

pronominalisation decisions as outlined in Callaway and Lester (2002b). Their ap-

proach assumes that the input to the pronominalisation component is a discourse tree
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representing the narrative. This discourse tree has discourse relationships as its in-

ternal nodes and the leaves are individual sentential elements organised semantically.

In order to make decisions about when to use pronouns, the algorithm must consider

several factors about each entity and the rhetorical structure it appears in, including,

the sentential distance and number of other entity references that have been encoun-

tered since its last occurrence, and whether the containing rhetorical structure marks

a shift in topic. The algorithm clearly needs access to a discourse history for each

entity to make such decisions. Callaway and Lester (2002a) conducted a human evalu-

ation study to determine the effects of removing the components for discourse history

(selecting definite or indefinite articles, allowing contextual references and pronomi-

nalisation), lexical choice (replacing repetitious entity and event mention) and revision

(allowing revisions in sentence planning, e.g., aggregation) from STORYBOOK. They

found that the removal of the module for discourse history was most detrimental to the

perceived quality of the narratives, especially in terms of flow and readability. Their

results show that unnatural use of referring expressions can greatly affect the quality

of a generated narrative.

McCoy and Strube (1999) also propose an algorithm for making decisions on when

an entity mention in a text should be a pronoun or a noun phrase. Similar to Callaway

and Lester (2002a) the distance between entity mentions is considered. In particu-

lar, they found that pronouns are generally used for subsequent reference to an entity

within a sentence and that a definite description is used if the last mention was several

sentence previously. Their algorithm also handles multi-thread documents (a feature

prevalent in the newspaper documents they were working with) where attention must

be paid to whether the previous mention of the entity is within or without the current

story line. One of the biggest problems for any pronominalisation algorithm is deter-

mining whether or not the use of a pronoun would create ambiguity over which entity

it refers to. McCoy and Strube (1999) only use pronouns when the reference is unam-

biguous, which requires comparing entities in the previous sentence and the preceding

text of the current sentence and comparing the gender and number of each to the cur-

rent mention. If there is a competing entity present for which these features match then

the use of a pronoun would lead to ambiguity. Evaluation of their algorithm on three

documents from the New York Times, shown that it correctly identifies where pronouns

should be applied 84.7% of the time.

Dale and Reiter (1995) propose the Incremental Algorithm for generating referring

expressions. The input to their algorithm is an entity to be referenced along with its
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known attributes (e.g., entity e1 has the attribute set catagory = car, colour = red,

size = small) and the set of other entities in the scene labelled with their attributes.

The algorithm then iterates through the attributes for the focal entity and selects one-

by-one attributes for inclusion in the reference that succeed in eliminating at least one

entity from the list of distractors in the scene. Once a set of attributes is selected

that results in an unambiguous reference for the entity, the algorithm terminates. The

Incremental Algorithm was designed to loosely comply with Grice’s maxims (Grice,

1975) of conversational implicature which state that referring expressions should be

accurate, contain as few attributes as possible, be as short as possible and not add

any more information than the hearer requires. Although Dale and Reiter (1995) also

outline several approaches which strongly adhere to these maxims, they found that they

have greater computational complexity in comparison to the Incremental Algorithm

and do not necessary help explain the psychological aspects of how human speakers

construct referring expressions. The Incremental Algorithm represents a much simpler

model and by not placing the constraint of brevity on the generated reference is closer

to human generated referring expressions.

Krahmer et al. (2003) propose a graph based method for deciding which properties

of entities within a text should be included in the referring expressions. Their approach

is similar to that of Dale and Reiter’s (1995) although they seek to overcome the limi-

tations placed upon the Incremental Algorithm by its inability to perform backtracking

(once an attribute has been selected it cannot be removed). Their goal is to create

a description of a scene in which the minimal amount of information is included to

avoid ambiguity. To accomplish this, they encode the scene as a graph in which each

vertex represents an entity, each edge between two distinct vertices is a relationship

and an edge starting and ending on the same vertex denotes an attribute. The prob-

lem of deciding which relationships and attributes to include is reformulated as finding

the best subgraph for each vertex which could not refer to any other distractors. For

each vertex, a subgraph, initially the vertex itself, is iteratively constructed by adding

edges until a representation without distractors is found. However, a cost function is

used which stipulates that adding an edge to the subgraph will increase its cost. This

ensures a minimal representation for each entity in the scene. Viethen et al. (2008) ex-

pand upon Krahmer et al.’s (2003) approach by considering the fact that humans do not

always refer to objects using the most minimal description. Their approach is to learn

a dynamic cost function by examining the frequency of properties that appear in hu-
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man authored descriptions of scenes in the TUNA corpus1 (Gatt et al., 2007). Adding

certain edges to a subgraph under consideration may then not incur an additional cost

if they were often used redundantly by the human authors.

Recent work by Hervas and Finlayson (2010) explores further the use of descriptive

rather than distinctive referring expressions. They create an annotated corpus of refer-

ring expressions gathered from a selection of folk tales and news texts and find that

around 18% of the annotated referring expressions were descriptive. Their research

highlights the need for referring expression generation to move away from its current

focus on generating purely distinct references.

Siddharthan and McKeown (2005) propose a method of acquiring and generating

referring expressions for people by exploiting the redundancy in multilingual docu-

ment summarisation. For this task (outlined in the DUC 2004 Multilingual summarisa-

tion task of the Document Understanding Conference2) 25 sets of documents in Arabic

were to be summarised, with 2 machine translations of the document set, in English,

being provided. Siddharthan and McKeown (2005) proposed that by being able to

identify and extract the referring expressions from these documents they could also be

generated in order to improve the quality of the machine translated text. For entities in

the translated documents they marked up the semantic attributes for role, organization,

country, state, location, temporal modifier (e.g., former, new) and also person name.

As it can be assumed that entities with similar (although not identical) reference at-

tributes will be the same across documents on the same topic, these entity references

can be combined to create a single set of attributes for each entity. The set of attributes

for each entity is then pruned, leaving the most likely reference for that entity in each

of the semantic attributes shown above. From analysis of news texts Siddharthan and

McKeown (2005) extracted a set of template phrasal structures based on an entity’s role

(for example, an expression referring to an ambassador may be structured as ‘COUN-

TRY ambassador PERSON’). In order to generate a referring expression, they then se-

lected the best fitting template based on the entity’s semantic attribute set, using those

attributes to fill the template. To evaluate, they compared their model for generated

referring expressions against two baselines, one which selected the first reference used

for a given person in the document and another that selected a reference at random.

They found that their generated reference achieved a higher BLEU score3 than the two

1See http://www.csd.abdn.ac.uk/research/tuna/
2http://duc.nist.gov
3BLEU scores are often used in machine translation to judge the similarity of a machine translated

document to that of human authored translations for the same document.
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baselines when compared to the referring expressions in manual translations, of the

same document set.

Each of the approaches described above requires a significant amount of data about

the entities and the context in which they are being generated (Siddharthan and McK-

eown (2005) being a notable exception). Firstly, the generation of pronouns requires

knowledge about the gender and number of every entity which is typically hand-coded.

Secondly, approaches for generating distinct and descriptive referring expressions re-

quire knowledge about each entity’s attributes and the relationships between entities.

We shall now outline a procedure for generating referring expressions from data that

can be automatically leveraged from a corpus.

6.1.1 Corpus-based Generation of Referring Expressions

Our referring expressions component performs post-processing on the story plans gen-

erated by the GA-based system, before they undergo surface realisation. The input is

thus a story, comprising a list of dependency trees, each of which represents a sentence.

The goal is to search for a more natural and descriptive representation for this story as

a whole. Unlike the approaches to generating referring expressions described above,

our system deals with simple stories, that are short with no shift in topic or dialogue, so

we need only consider local constraints. Also, our story specifications do not make use

of rhetorical relationships so we need only consider the positions of the entity mention

and not its current role in the text. And finally, each of our stories assumes that there

is no referential ambiguity, e.g., in a story about a prince there is only one prince and

all mentions of the word prince refer to him.

We decompose the task into three distinct parts. Firstly we consider building a de-

scriptive reference for the first reference to an entity, secondly we indicate which of the

subsequent references can be replaced with pronouns and lastly, as in STORYBOOK’s

revision module (Callaway and Lester, 2002a) we replace repetitive references with se-

mantically similar references (e.g., synonyms and hypernyms). We start by describing

how the data required can be leveraged from the corpus before outlining the generation

procedure.

6.1.2 Building Referring Expressions

The first step we must take is to decide which attributes can be applied to each entity.

We start by looking at four types of linguistic attribute that can be easily leveraged
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entity: princess

verb:role description

strut:subject ‘vain princess’ (4.83) ‘proud princess’ (2.48) ‘poor princess’

(0.95)

dance:subject ‘wonderful princess’ (4.76) ‘beautiful princess’ (1.52)

suffer:subject ‘princess of Lombardy’ (4.12) ‘lost princess’ (2.58) ‘young

princess’ (1.84) ‘lovely princess’ (0.68)

forget:object ‘weeping princess’ (4.22) ‘world’s princess’ (4.22) ‘silent

princess’ (3.93) ‘beautiful princess’ (0.82)

threaten:object ‘elder princess’ (4.05) ‘other princess’ (3.13) ‘eldest princess’

(1.61)

expect:object ‘princess Celandine’ (3.45) ‘princess of the island’ (3.45)

‘charming princess’ (1.5) ‘lovely princess’ (0.45) ‘poor princess’

(0.44)

Table 6.1: Example of verb-reference relationships for the entity princess. Verbs are

shown with their role (subject or object) and references are shown with their MI scores.

from the corpus. These are prepositional attachments (the prince of England), adjec-

tives (the happy prince), possessives (the prince’s horse), and appositives, including

names (prince George). Each of these relationships is straightforward to extract from

a dependency parse tree. For each entity we can then ascribe its possible attributes.

However, we must also consider that we may not always want to describe an entity

the same way in every story. In order to add characterisation to our stories we need to

consider the type of character that the entity portrays. To do this we shall make two

assumptions. Firstly, that for each document in the corpus there is only one character

type represented by each entity word form, i.e., there is only one set of characteristics

for a prince in the given text. Secondly, that the characteristics of a given entity are

associated with the actions that they perform, e.g., a good prince will save and pro-

tect whilst an evil prince will terrorise and kidnap. We process the documents in the

Andrew Lang fairy tale corpus (see Section 3.4.1) one as a time. For each entity in a

document we extract its attributes and the actions it performs. We then record the rela-

tionships between actions and attributes. For each action we also take note of whether

the entity was the subject or the object, i.e., descriptions of the prince who has been

kidnapped and the prince who is kidnapping may differ. As we continue to process the
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corpus, the actions performed will continue to be associated with additional attributes.

It is also clear that we must weight the likelihood that an attribute is associated with an

action. We use Mutual Information (MI, Lin, 1998) to score the relationships, which

allows us to decide which attributes are most characteristic of a given action for an

entity.

Selecting the best attributes for an entity then becomes a case of ranking each at-

tribute by its MI scores for a set of actions. Selected examples of verbs and associated

descriptions for the entity princess are shown in Table 6.1. Given the set of actions

for an entity, those attributes with the highest average MI are selected. If there are no

attributes attested with the actions, then we shall not generate a descriptive reference.

From the top 5 attributes, we select at most 1 of each type, except for adjectives for

which we allow at most 2. This gives us at most 5 references that can be combined

with an entity’s noun to produce a descriptive reference. If one of the references is

a compound noun that indicates a name then we incorporate it directly into the refer-

ence. For each of the other attributes we perform a search to select which to include.

We generate all possible combinations of reference that can be produced (ordering is

only a consideration for selecting adjectives) and then score the realised version of

the reference with our language model (see Section 3.2.4). This score indicates the

naturalness of the reference with respect to human authored text. The highest scoring

attributes are then incorporated into the story tree for the first mention of that entity.

The next step is to calculate for each entity whether they are masculine, feminine

or neuter. To do this we use a database constructed by Charniak and Elsner (2009)

which gives the probability of a given noun falling into one of these categories. Their

work focusses on the use of Estimation Maximisation (EM) to obtain parameters for

a system that resolves pronoun anaphora. One such parameter is the probability of

gender given a noun. The probabilities they derive can thus be used to select the most

likely gender for each noun.4 For example, the likelihood of prince being male is

0.943, female 0.026 and neuter 0.031.

6.1.3 Making Reference Decisions

We now outline a simple algorithm for generating referring expressions. On the first

mention of an entity we attempt to generate a descriptive reference from the actions

4Their system and the Ge corpus (a portion of the Penn Wall Street Journal Tree-bank which was
used by Ge et al., 1998) on which it was trained are available online at http://bllip.cs.brown.edu/
download/emPronoun.tar.gz
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Algorithm 6.1 Pronoun Generation Condition

if r ε C ∧¬(∃ x ε C such that x 6= r∧〈px,gx,nx〉= 〈pr,gr,nr〉) then
use a pronoun

else
use a nonpronomial reference

end if

• C is the set of entities mentioned in the previous utterance.

• r is the internal symbol corresponding to the intended referent.

• 〈pr,gr,nr〉 is a triple representing the grammatical properties of person, number

and gender of r.

Figure 6.1: Reiter and Dale (2000)’s conservative pronoun generation algorithm

in the story in which the entity participates. For all subsequent mentions of an entity

we decide whether to use the non-descriptive noun phrase, just the noun token, a se-

mantically similar noun phrase or a pronoun. To decide if a pronoun can be used, we

implement the conservative pronoun resolution algorithm described in Reiter and Dale

(2000) and shown in Figure 6.1. This algorithm uses each entity’s number, gender

and person in the current and previous sentence to decide whether or not a pronoun

can be used. This algorithm will only produce pronouns when the entity in question

has already been encountered in the current or previous sentence and does not share

attributes with any other entity in that same window which would result in an am-

biguous pronoun. The number for each entity can be determined by preprocessing

each sentence with the realiser to find the best representation of the sentence before

pronominalisation takes place. In our stories, every entity is referred to in the third

person.

The last stage in our algorithm is to monitor the types of reference used for each

entity and replace references that are overused with semantically similar ones. We do

this if there have been three consecutive references for the same entity that are not

descriptive or a pronoun. To select a semantically similar noun to replace the entity

with, we must first determine the correct sense for the entity. This can be achieved

using lexical chains which we describe in Section 5.2.5. In particular, we use the

procedure for generating lexical chains described in Barzilay and Elhadad (1997). A
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result of generating lexical chains for the story is that the most likely entity senses will

be selected to form those chains. Once we know an entity’s sense, WordNet (Fellbaum,

1998) can be used to select all possible synonyms and hypernyms. However, as we

must ensure the reference is not ambiguous we must also ensure that the new reference

produced cannot also describe any of the other entities in the text. Using the semantic

similarity score outlined in Wu and Palmer (1994) (described in detail in Section 4.2)

we select the first single word reference (thus excluding compound nouns such as male-

monarch) from the hypernym tree that is not considered semantically similar to any

other entity sense in the story. This allows us to break the monotony that may occur

when two entities with similar attributes but of different classes (e.g., a prince and a

chef ) appear together in a story preventing the use of pronouns.

6.1.4 Examples

We shall now give examples of story revisions produced by the referring expression

component on both hand-written stories and those generated by the GA system (see

Chapter 5). Hand-written stories (simple fairy tale stories by an adult author) can

be parsed by the system into the same structural representation (an ordered list of

dependency trees) that is the input to the surface realiser. Examples of hand-written

stories are shown in Table 6.2 (stories A through D) and examples for the GA-system

in Table 6.2 (stories E & F). For each example, the original story is given with the

revised entity references generated by the component shown in bold and each reference

indexed to indicate the entity they refer to.

These stories highlight several successes and failures of our prototype referring

expression component. Stories A and B demonstrate the ability to generate descriptive

references for several entities. We see that the prince has become the young prince

or the prince of the East depending on the actions he performs. We also see that the

system can now select names for some characters, such as the great dragon Fafnir.

The entities that are not introduced with a descriptive reference are those for which the

system does not have enough information regarding their attributes. From these stories,

it is clear that the conservative pronoun algorithm is also successful. For example, the

princess is correctly referred to as she and her. The system also avoids ambiguous

pronouns. In story C we have two stereotypically male protagonists, a prince and a

knight. Using a pronoun to describe either of these entities would confuse the reader as

to which of them is being referred to. However, it is clear that this makes the remainder
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t

A
The prince presents the princess to the duke. The duke leads the princess to the

palace. The prince leaves the palace hunting the dragon. The duke distracts

the princess with the birds. The princess welcomes the prince riding home on

a horse.

[The young prince]1 presents [the princess of love]2 to [the duke]3. [The

duke]3 leads [her]2 to [the palace of the underworld]4. [The prince]1 leaves

[it]4 hunting [the dragon]5. [The duke]3 distracts [the princess]2 with [the

birds]6. [She]2 welcomes [the prince]1 riding home on [a good horse]7.

B
The prince searches for the princess. The dragon guards the princess. The

prince has a horse the dragon. The prince fights the dragon. The horse awak-

ens the princess with a neigh. The prince saves the princess.

[The prince of the East]1 searches for [the unfortunate princess]2. [The
great dragon Fafnir]3 guards [her]2. [The prince]1 has [a white horse]4 fol-

lowing [it]3. [The prince]1 fights [it]3. [The horse]4 awakens [the princess]2

with [a neigh]5. [The prince]1 saves [her]2.

C
The prince offends the knight. The knight demands an apology from the

prince. The prince ignores the knight. The knight draws the sword on the

prince. The knight duels with the prince.

[The handsome prince]1 offends [the young knight]2. [The knight]2 de-

mands [an apology]3 from [the prince]1. [The prince]1 ignores [the knight]2.

[The knight]2 draws [the robber’s sword]4 on [the prince]1. [The knight]2

duels with [the prince]1.

D
The chef offends the young knight. The knight demands an apology from the

chef. The chef ignores the knight. The knight draws the sword on the chef.

The knight duels with the chef.

[The chef]1 offends [the young knight]2. [The knight]2 demands [an

apology]3 from [the chef]1. [The chef]1 ignores [the knight]2. [The knight]2

draws [the robber’s sword]4 on [the cook]1. [The aristocrat]2 duels with

[the chef]1.

Table 6.2: Examples of hand-written stories with revisions performed by the referring

expressions component. Revisions are shown in bold font and references are indexed

by entity.
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E
The emperor rules the kingdom. The kingdom holds on to the emperor. The

emperor rides out of the kingdom. The kingdom speaks out against the em-

peror. The emperor lies.

[The young emperor]1 rules [the kingdom of the fairy Blue]2. [It]2 holds

on to [him]1. [He]1 rides out of [it]2. [It]2 speaks out against [him]1. [He]1

lies.

F
The child watches the birds. The birds weep for the child. The child begs the

birds listen. The birds dress up the child. The child grows up.

[The poor child]1 watches [the birds]2. [They]2 weep for [her]1. [She]1 begs

[they]2 listen. [They]2 dress up [her]1. [She]1 grows up.

Table 6.3: Examples of GA-system stories with revisions performed by the referring

expressions component. Revisions are shown in bold font and references are indexed

by entity.

of the story rather repetitive. Story D, shows a successful attempt to overcome this by

utilising semantically similar nouns to refer to entities when pronominalisation is not

appropriate. In this story we once again encounter two male entities where one of

their mentions has been altered (e.g., knight becomes aristocrat and chef becomes

cook). This approach was not viable in story C as prince and knight are considered

too semantically similar, i.e., the term aristocrat could apply equally to both of them

creating an ambiguous reference. Finally, stories E and F show the result of applying

the referring expression component to the GA-based system. We see that the stories

become much shorter due to the reduced number of entities, although the text appears

more natural.

These stories also highlight some caveats with our approach. In story F the sentence

the birds dress up the child is transformed to the birds dress up her. It is clear that

the process of generating pronouns has an impact on the structure of the sentence

in certain cases. Allowing further revisions to sentence ordering with the use of a

language model ranker may solve this problem. Another problem highlighted is that

although we can determine the most likely gender for entities within the corpus, this

does not necessarily correspond with their usage in the corpus. This is once again one

of the peculiarities of fictional writing in which personification is used to give animals

and objects human characteristics. In story B, for example, although the assertion that

the dragon be referred to as it may be technically correct, by describing the dragon
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using a male sounding name in the previous sentence (the name Fafnir is associated

with the entity dragon in the fairy tale corpus), we then expect that the correct pronoun

would be him. The gender probabilities, from Charniak and Elsner (2009), record a

0.65 likelihood that the gender of dragon is neuter and 0.34 likelihood that it is male.

In such situations, it may be more beneficial to use the proper name, where possible,

when determining gender and making more use of that name in references after the

initial description.

The algorithm we have described above is rather simplistic and plays heavily on

the reduced structural nature of the stories our system is capable of producing. It is

clear that further work is required in ascertaining the attributes for given entities from

corpora. One approach would be to train a model using shallow text features that can

make classification decisions for which type of referring expression to use for each

entity mention based on examples obtained from corpora. Charniak and Elsner (2009)

have already shown that features can be determined for the task of anaphora resolution.

Selecting attributes for descriptive references is also a difficult task, requiring the sys-

tem to determine the correct amount of information about an entity being described to

the reader. Recent work by Bergsma et al. (2010) outlines how classification tasks in

generation can benefit from using web-scale data and allowing portability. They also

show that their model is capable of effectively ordering adjectives lists, without relying

on language models.

6.2 Commonsense Knowledge

Another possible extension to the pilot system is to incorporate additional knowledge

bases to the generation process. One such knowledge base is ConceptNet5 (Liu and

Davenport, 2004; Singh et al., 2004) which consists of a database of commonsence

knowledge automatically extracted from human written sentences that were collected

as part of the Open Mind Commonsense project (Singh and Barry, 2003). The database

has already been utilised by other story generation systems. MAKEBELIEVE (Liu and

Singh, 2002) generated short stories by following the causal chain resulting from a

supplied input action. In particular, they focus on commonsence relationships that

encode cause-and-effect assertions, such as, a consequence of bringing in a verdict is

that the defendant is nervous. A user supplies the initial sentence to the system and

a story is generated through the successive applications of causal chains. A global

5Available at http://web.media.mit.edu/~hugo/conceptnet/
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Relation Example

CapableOf The man’s hand is capable of hold pipe.

LoacationOf The location of the sculpture is at gallery opening.

EffectOf The effect of ride bike is accident.

MotivationOf The motivation of buy umbrella is to keep dry.

UsedFor A computer is used for compute.

SubeventOf A subevent of see artefact is learn about history.

FirstSubeventOf The first sub event of start fire is light match.

LastSubeventOf The last sub event of wake up in morning is stretch.

PrerequisiteEventOf A prerequsite of read letter is open envelope.

CapableOfReceivingAction A weight can receive the action measure with scale.

DesireOf The person desires not be unappreciated.

DesirousEffectOf The book wants to have the effect of learn.

PropertyOf A lcd monitor has the property flat.

Table 6.4: Examples of relationships in the ConceptNet database.

manager constantly evaluates the story being produced to ensure there are no cycles.

In the event that no further causal chains can be found, the user may be prompted

to supply the next sentence. MAKEBELIEVE also makes use of WordNet (Fellbaum,

1998) to overcome problems with matching word forms in sentences and rules, using

semantic distance to locate semantically related entities.

Solis et al. (2009) also utilise ConceptNet in PICTUREBOOKS, a story generation

system that generates short children’s stories to describe the scene in a picture con-

structed by the user. Although their system generates stories in a structured manner,

from 11 predefined themes, it also contains a database of concepts derived from Con-

ceptNet that can be used to enhance the stories. They make use of the commonsence

knowledge as a semantic ontology in order to link entities, attributes and events. For

example, knowing that a character is performing the action play the ontology can in-

form the system of a possible location for that event. The ontology is also used in a

manner similar to MAKEBELIEVE in order to build paths between desired story events,

showing the causal steps that can lead from one event to the other.
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6.2.1 Integrating Commonsense Knowledge

We created a prototype component for integrating common-sense information into the

stories generated by the pilot system. It works by incorporating sentence fragments

extracted from ConceptNet into the generated stories. Specifically, we add this as

a post-processing step after the story plan is generated but before surface realisation

takes place. The purpose of this post-processing task is to introduce additional infor-

mation into the generated stories with an eye to making them more entertaining, or

simply to aid in justifying the events that place.

We started by extracting each concept from the database. The ConceptNet database

contains 1.6 million assertions of commonsense knowledge, linking together 300,000

nodes which represent entities and facts. These assertions fall into 20 different cate-

gories, 13 of which we shall focus on in this chapter. Those 7 categories that we omit

are simple semantic relationships, e.g., a dog is a canine or a wheel is part of a car.

The relationships we used along with examples are shown in Table 6.4. In total the 13

relationship types consist of 24,981 unique commonsense assertions. Each assertion

in the ConceptNet database, consists of a rule type and then two sentence fragments

describing the two concepts, the antecedent and consequent, that it connects. For ex-

ample, (MotivationOf “buy fresh fruit and vegetable” “eat fresh fruit and vegetable”).

To transform these database entries into a format compatible with our system we parsed

them with RASP (Briscoe and Carroll, 2002) and record the POS tags and dependency

structures. It is clear that problems will arise due to ambiguity as we are parsings sen-

tence fragments rather than complete sentences. For example, without a sentence from

which to determine context, the word play could easily be a noun or a verb. We eval-

uated the performance of the RASP on the 200 of the concept sentences and found

that it achieved a precision6 of 0.9 in terms of correct POS tagging. From the depen-

dency parse of each relationship’s antecedent we selected the word at the root of the

parse to be the indexing term. For example, the root for buy fresh fruit and vegetable

will be the verb buy. The consequent of each rule is then parsed by our system’s sen-

tence planner (see Section 3.2.3) to build a dependency tree using the rules from our

subcatagorisation grammar.

Once the story generator has produced a story plan, the commonsense module can

start to search through the database of rules to find those which are applicable. For this

prototype, we assume that each sentence in the story that has one or more applicable

6Precision is defined here as the number of correctly classified word types.
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Original Sentence: The prince marries the princess.

keyword Commonsence rule Enhanced Sentence

prince CapableOf succeed king The prince, who succeeds the king,

marries the princess.

LocationOf in castle The prince, who is in the castle, mar-

ries the princess.

LocationOf in England The prince, who is in England, marries

the princess.

princess CapableOf kiss frog The prince marries the princess, who

kisses the frogs.

CapableOf live in castle The prince marries the princess, who

lives in the castle.

marry MotivationOf start family The prince wants to start a family. The

prince marries the princess.

Table 6.5: An example of the variations created by the commonsense module for the

sentence The prince marries the princess.

entries in the commonsense database must have one of those rules applied to it. Ideally,

we would want to search all possible combinations of rule applications to find the best

overall, but as this is a prototype, we restrict it to one rule per sentence. The entries

in the commonsence database can be split into two categories, namely those that apply

to entities and those that apply to actions. We therefore look for those relationships

pertaining to the nouns and verbs in each sentence. These two sets will also vary in

the way they can be applied to the story. Entries pertaining to entities provide descrip-

tions, giving an additional clause containing information on the characteristics of that

entity, whereas relationships pertaining to actions will include motivations or conse-

quences, involving the insertion of a new sentence either before or after the sentence,

respectively. To reduce the amount of search conducted we restrict the application of

entity based rules to the first mention of an entity in the story. This can be likened to a

description used to introduce a new entity in a story.

For each relationship type we developed a template for its application (e.g., the

rule (LocationOf entity location) will become entity be in location). In general, these

templates consist of a simple phrase for the root of the sentence to which the conse-

quent’s dependency tree is attached (i.e., the root of a location sentence will always be
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entity be in location, but location may represent a larger dependency tree). As men-

tioned earlier, the relationships we consider fall into two categories, those pertaining

to nouns and verbs. The templates used for noun rules are dependant clauses to be

embedded into a sentence whereas those for verbs will become new sentences. The

process works one sentence at a time. The nouns and verbs are first identified and used

to lookup the database. For each entry in the database that is associated with one of the

nouns, the templates are used to construct a clause with the noun as the subject of its

matrix verb. This clause will be attached to the noun’s node in the dependency tree for

the sentence. For each verb a similar process applies: templates are used to construct

sentences for each applicable database relationship. Rather than being integrated into

the current sentence, this new sentence will either be inserted before or after it in the

story, depending on the type of rule used to construct the new sentence. It is likely

that there will be more than one possible sentence revision or additional sentences for

inclusion in the current story. The system must therefore search for the best one to

use in the final version and we do this using a language model (see Section 3.2.4).

This process continues for each sentence in the original story, the final updated version

of the story is then sent to the surface realiser to undergo surface realisation. Limited

pronominalisation is also performed when dependant clauses are generated for entities.

For example, compare the prince, the prince succeeds the king, is in the castle with the

prince, who succeeds the king, is in the castle. Another possibility is that the enhanced

story could then undergo further post-processing in terms of the referring expressions

component described in the previous section.

In order to make full use of the data, we utilise WordNet (Fellbaum, 1998) to search

for terms semantically related to those in the text that do not have associated entries

in the database. For nouns we search first through synonyms and then hypernyms.

Therefore, if the entity prince had no associated relationships it could inherit those of

aristocrat. This is useful as most of the concepts center around more abstract entities,

the most common being person and object. In order to reduce the problem of ambi-

guity, we first perform word sense disambiguation upon the story using lexical chains

(Barzilay and Elhadad, 1997) as described in the previous section.

6.2.2 Examples

Table 6.5 shows the resulting variations for the sentence the prince marries the princess.

Here, we see examples of both how knowledge about entities, e.g., the prince is in the
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castle, and how the motivation for an action is conjectured, e.g., the prince marries

because he wants to have a family. We can also see from this example that both ev-

eryday and fictional expectations are encoded in the commonsense database Although

we can expect in real life to find princes in castles, we would not really expect to

find princesses kissing frogs outside of the fairy tale domain. This shows that human

commonsense knowledge is not restricted to the real world, making such a database

suitable for the production of fiction.

To examine the commonsense module, we used several hand-written stories along

with several stories generated by the GA-based system (see Chapter 5). Figure 6.6

shows the original version of each story along with a revised version generated by the

component, the revisions are shown in bold font. Story A is hand-written whilst B and

C were generated by the GA. The stories generated by the GA system usually contain

only two entities, so we also included a hand-written story, parsed by the system on

input, to evaluate the effect of introducing new entities throughout the story. In story

A a new entity is introduced in each sentence and an entity-based relationship is in-

cluded in each line. Although several of these seem appropriate, e.g., the duke who is

in the country, others seem out of place, such as the palace which can be divided into

rooms. Stories B and C, were generated by the GA-based system and show how the

component is capable of extending stories by adding sentences indicating motivation

or effect. Several of these inserts help add context to the sentence. For instance, hav-

ing the sentence the emperor wants to go before the emperor rides out of the kingdom

renders the narrative more natural. However, others seem to complicate the reason-

ing behind actions performed by the story entities. For example, the kingdom wants

to lose consciousness is inserted before the kingdom holds on to the emperor as our

current approach does not take the context into account when searching the database

and the information that the system is attempting to express is that holding your breath

leads to you losing consciousness. Clearly more work is needed in deciding which

commonsense relationships are appropriate for which context.

From these examples we can see how integrating off-the-shelf knowledge sources

has the potential to enhance the stories that the pilot system system is capable of creat-

ing. For example, using commonsense knowledge could improve characterisation by

providing additional information about story entities and attempt to explain the reasons

and the consequences of the actions they perform. However, our pilot component only

illustrates how commonsense information could be incorporated as a post-processing

task, the information contained in the database was not used to generate the stories,
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A
The prince presents the princess to the duke. The duke leads the princess to the

palace. The prince leaves the palace hunting the dragon. The duke distracts

the princess with the birds. The princess welcomes the prince riding home on

a horse.

The prince presents the princess to the duke, who is in the country. The duke

leads the princess to the palace, which can be divided into rooms. The prince

leaves the palace hunting the dragon, which is fictional. The duke distracts

the princess with the birds, which are in the air. The princess welcomes the

prince riding home on a horse, who is in the country.

B
The emperor rules the kingdom. The kingdom holds on to the emperor. The

emperor rides out of the kingdom. The kingdom speaks out against the em-

peror. The emperor lies.

The emperor, who is at the school, rules the kingdom. The kingdom wants
to lose consciousness. The kingdom holds on to the emperor. The emperor
wants to go. The emperor rides out of the kingdom. The kingdom wants
to illustrate the point. The kingdom speaks out against the emperor. The
emperor wants to have a rest. The emperor lies.

C
The child watches the bird. The bird weeps for the child. The child begs the

bird to listen. The bird dresses up the child. The child grows up.

The child, who is in the school, watches the bird. The bird weeps for the

child. The bird wants to hear. The child begs the bird to listen. The bird

dresses up the child. The child wants to eat. The child grows up.

Table 6.6: Examples of stories before and after processing with the commonsense

component. Inserts generated by the component are shown in bold font.
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only to ornament them. Being able to integrate this knowledge at the generation stage

could provide additional benefits, as it would allow causal chains to be integrated

into the stories from the start, thus resulting in more believable stories (as shown in

MAKEBELIEVE (Liu and Singh, 2002)).

Another aspect to consider is the portability of the commonsense database. Does

the commonsense information stored in ConceptNet really transcend genres? Is it fair,

for instance, to say in a fairy tale setting that dragons are fictional, or that real-life

princesses kiss frogs, or is this likely to spoil the story? Currently, we have used

a language model when selecting between possible sentence variations, but a better

approach may be to include a measure of the information content and the probability

that the inserted information conforms to the expectations of the story and genre.

6.3 Exploring Portability

Throughout this thesis we argued that our story generation system has a high degree

of portability due to the fact that it can construct its own knowledge base directly

from text. This allows it to develop new knowledge bases for new corpora or even

new domains. To illustrate the portability of the system, we retrained our system on

a corpus from a new domain, namely news texts, and evaluate the stories it generates.

Retraining the system requires constructing a new content selection database and story

plot database. We did this on a corpus consisting of 485 documents from the British

National Corpus7 that have been designated world news. These texts are representative

of articles from newspapers, relating to social and geopolitical topics (i.e., they do not

contain business or finance topics). The average length of a news text is 1,399.45

sentences (SD 2,036.21) with an average sentence length of 24.34 words (SD 15.7)

and there are approximately 16,700,000 word tokens present in the corpus consisting

of 184,455 word types. Each document was parsed using RASP (Briscoe and Carroll,

2002). The parser computes part of speech (POS) tags for each word and then through

syntactic analysis outputs the grammatical relations that appear within the text. As

with the fairy tales, we discarded word tokens that did not appear in the Children’s

Printed Word Database8 and only retained relationships that appeared at least 5 times

in the corpus and had a MI (Mutual Information (Lin, 1998)) score greater than 0. We

also only stored common-nouns, proper-nouns and pronouns were discarded; we also

7Available from http://www.natcorp.ox.ac.uk/
8http://www.essex.ac.uk/psychology/cpwd/
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Noun Subject Object Adjective Total

people 7214 (301) 4474 (261) 3051 (155) 14739

man 4906 (358) 3906 (266) 2592 (205) 11404

government 5067 (283) 3138 (228) 3105 (58) 11310

minister 4826 (218) 2816 (143) 3323 (55) 10965

way 2139 (237) 6353 (248) 1868 (167) 10360

year 2062 (220) 6099 (275) 1812 (82) 9973

member 4228 (255) 3462 (155) 1469 (110) 9159

part 1125 (161) 5644 (163) 1923 (121) 8692

state 1723 (194) 2578 (225) 3877 (81) 8178

country 2150 (183) 3622 (255) 2001 (75) 7773

Table 6.7: Properties of relationships for the most frequent entities in the news text

corpus. The number of occurrences for each relationship is reported with the number

of tokens it relates to shown in parentheses.

split compound nouns. Verbs were stored in their lemmatised word form.

As expected, news texts are substantially different from fairy tales. In total, the

news text corpus contains 3,058 noun tokens, 1,358 verbs, 300 adverbs and 1,019 ad-

jectives. In Table 6.7 we see the 10 entities that appear most frequently in the corpus,

and in Table 6.8 the top 10 verbs. Tables 6.7 and 6.8 also show the number and types

of relationships for each of these most frequent words. For example, the entity people

appears 7,214 times as the subject of 301 verbs, and the verb be appears 65,283 times

with 1,380 different subjects. The size of the database trained on the news texts is

therefore substantially larger than that trained on fairy tales. For example, be is the

most frequent verb for both corpora, yet its occurrence in the news text corpus is ap-

proximately 10 times that of the fairy tales. Although the fairy tale corpus contained

frequent references to many character entities such as, king, prince and princess, the

news text corpus refers more to institutions, e.g., state, government and country. How-

ever, many of the predominant fairy tale entities also reoccur in news text, or rather

their real world counterparts do. Table 6.9 shows the top and bottom subject, object

and adjective relationships for the entities king, prince and princess, which we pre-

sented in Table 3.6 for the fairy tale corpus. Looking at specific entities within the

database we can see how well the MI scores capture the stereotypical relationships

within the corpus. In Table 6.9 we see that many of the relationships are just as we
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Verb Subject Object Adverb Total

be 65283 (1380) 107066 (1205) 19936 (101) 192285

have 9654 (783) 25035 (876) 4806 (73) 39495

take 5705 (638) 16610 (624) 2731 (82) 25046

make 6333 (740) 13957 (817) 2574 (93) 22864

give 3658 (601) 11057 (699) 1520 (87) 16235

go 4215 (618) 5873 (688) 2597 (95) 12685

come 4287 (677) 6241 (637) 1870 (98) 12398

see 2356 (517) 6828 (799) 2116 (64) 11300

become 3303 (628) 5761 (555) 1680 (60) 10744

say 4433 (305) 3321 (525) 1541 (60) 9295

Table 6.8: Properties of relationships for the most frequent verbs in the news text

corpus. The number of occurrences for each relationship is reported with the number

of tokens it relates to shown in parentheses.

would expect from real-life royalty, for instance, the king can knight and reward whilst

the princess can be booked or cared for. Changing the domain of the training text has

therefore not damaged the potential of the system to generate coherent narratives. We

also retrained the database of story plots. Entity graphs were collected for the news

text corpus, discarding any that contained less than 10 nodes. There were 1,740 en-

tity graphs in total (this is 57% of the entities in the content selection database) with

an average of 112.76 (SD 172.61) nodes. The average clustering rate9 is 0.031 (SD

0.067).

6.3.1 Examples

Using the retrained knowledge bases, we ran both the Rank-based system and the GA-

based system, as described in Chapters 3 & 5 respectively, to gain insight into the

different types of story the systems are capable of producing. We used a range of dif-

ferent input sentences, including some containing entities that are predominant in the

news text corpus, e.g., the parliament investigates the minister and the army surrounds

the city. For the Rank-based system, we used the setup described in Section 3.4.4,

9Also known as transitivity (Newman, 2003). It is the number of triangles in the graph sets of three
vertices each of which is connected to each of the others. It measures whether nodes in the plot graphs
are densely connected.
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Noun Subject Object Adjective

king pardon (5.0) style (4.6) conquering (4.2)

grumble (5.0) crown (4.5) danish (4.0)

reward (4.4) pardon (4.5) norman (3.9)

disgust (4.4) reign (4.2) fearful (3.9)

knight (4.1) dine (3.6) saxon (3.9)

. . . . . . . . .

stay (0.14) need (0.07) eastern (0.26)

sit (0.14) leave (0.06) bad (0.22)

take (0.13) welcome (0.04) roman (0.14)

come (0.01) lie (0.02) various (0.11)

add (0.01) talk (0.01) european (0.04)

prince pin (4.1) style (6.3) murdered (4.5)

shelter (4.1) bend (4.3) lay (4.1)

pronounce (4.1) strip (3.6) keen (3.3)

punish (3.6) tear (3.4) christian (3.3)

wander (3.5) wish (3.2) powerful (3.2)

. . . . . . . . .

need (0.45) pay (0.38) english (0.75)

tell (0.44) come (0.34) american (0.62)

do (0.36) receive (0.28) old (0.23)

have (0.28) see (0.26) local (0.16)

work (0.01) be (0.11) european (0.1)

princess fast (7.2) please (5.5) split (6.5)

nod (5.3) book (5.1) deaf (5.8)

cheer (5.2) slip (4.1) scots (5.3)

crown (5.0) care (4.1) pretty (5.2)

tour (4.8) beat (3.8) muslim (4.7)

. . . . . . . . .

appear (0.58) lead (1.2) english (2.4)

lead (0.37) get (0.92) special (2.3)

get (0.35) provide (0.77) young (1.9)

begin (0.2) become (0.66) british (1.3)

see (0.15) go (0.64) new (0.46)

Table 6.9: Examples of the highest and lowest scoring relationships (with MI scores

shown in parentheses) for character entities in the news text corpus.
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Rank-based GA-based

The parliament investigates the minister.

The minister introduces the order in the

streaming. The minister meets for a year

in the order. The minister sours the happi-

ness for a year. The minister plans a crisis

for a year.

The parliament investigates the minister.

The minister blocks parliament. The par-

liament presses the minister. The minister

steps out of the parliament. The parliament

honours.

The president signs the bill. The bill seeks

the sustenance from the president. The

president agrees with the relay on the bill.

The bill orders that the eagle circles the kill

around the globe. The president honours

the ponies for the deal vetting the people

with a copy.

The president signs the bill. The bill aims

for the president. The president calls for the

bill. The bill concerns the president. The

president offers to control.

The queen marries the king. The king or-

ders the property into giving. The king

lives in the property for the year. The king

places an advert out of the property. The

king raises the money out of the pup.

The queen marries the king. The king has

granted the queen. The queen faithfully

sends for the king. The king crowns the

queen. Surely, the queen lives.

Table 6.10: Examples of stories generated by the Rank-based and GA-based systems

trained on a corpus of world news texts from the British National Corpus.
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this includes a scoring measure applying simultaneously entity grid coherence and our

interest model trained on human interest ratings of Æsop’s fables. A limit of 5 choices

was imposed on the system when making selection decisions and a beam of size 500

was used at each level of the story search. For the GA-based system the parameters

used were the same as for our experiments in Section 5.3. We used a population of

10,000 stories initialised from plots, at a crossover rate of 0.1, a mutation rate of 0.1

and with a fitness function based on entity grids. Each run of the system was for 5,000

generations and each story 5 sentences long.

Table 6.10 shows a selection of stories generated by each system. As we can see the

language is very different from that of the fairy tales. The actions that appear are much

more formal, as is expected from a newspaper article, e.g., the minister blocks and

the president honours. We once again see the difference in the stories generated by the

Rank-based and GA-based systems. The interest model used by the Rank-based system

has selected words which it regards as interesting, e.g., happiness and kill, although it

seems to have had less of an impact as the resulting sentences are not quite as extreme

as those produced from the fairy tale corpus. The reason for this could be that the

features of predominant words in the news text corpus are generally different from

those in the fairy tales and fables, i.e, it is less likely for highly imaginative words to be

present. There are, however, still instances where the interest model leads to complex

sentence structures, e.g., the bill orders that the eagle circles the kill around the globe.

In contrast, the stories generated by the GA are shorter with fewer entities and they

retain a clear progression of actions. We see in one of the examples in Table 6.10 a

story in which a conflict occurs between a minister and parliament. It is clear from

these examples that the system can generate stories that are not tied to the corpus on

which it is trained. We can easily retrain on new corpora, producing stories that are

indicative of new genres, yet are similar in structure to those it has generated before.

We can see that the content selection decisions made using the retrained knowledge

bases helps capture the language expectations of the new genre.

6.4 Completing Unfinished Stories

We have mentioned that one of the practical uses of story generation is for inclusion in

interactive tutoring systems, giving prompts for students as they are writing their own

stories. To give an example of our system’s potential for such integration, we present

a new task in which the system is presented with an incomplete story for which it has
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to generate the missing sentences. This task is different from generating a whole story

as the sentences created by the system must be compatible with the human authored

portions of the story.

The input to the system is a story containing 6 sentences of which the 4th and 5th

are missing. The human-authored sentences are parsed by the system and represented

as dependency trees, blank sentences in the input are those the system must generate.

We will complete the stories with the GA-based system (see Chapter 5). The process

of generating the initial population however will be different as the sentences used for

building the plot graph (see Chapter 4) and initialising the search of that graph will

be different. As before we use the first sentence in the story to identify the protag-

onists and create a plot graph by merging together their entity graphs. However, as

we already have several sentences of the story supplied by the user, we need to start

searching the plot graph from the last sentence before the missing lines. As each node

in the plot graph encodes a unique action, there will only be one node which represents

that sentence and it is from this node that we begin a search of the plot graph. The GA-

based system starts with a population of 10,000 stories initialised from the possible

plot, a crossover rate of 0.1 a mutation rate of 0.1 and each run of the system was for

5,000 generations. The system we used was trained on the Andrew Lang fairy tale

corpus (see Section 3.4.1). Restrictions are placed on the GA’s operators so that only

the missing sentences can be mutated and crossover can only be applied between those

sentences. We investigated the effect of two different fitness functions on the types of

story the GA could produce. We have shown previously that the entity grid measure is

capable of producing short interesting stories, however, the task presented here is dif-

ferent from generating a story from scratch. Rather than finding those sentences that

fit together sequentially, the story completion task also requires the system to consider

globally how the new sentences will fit in with the already established context that has

been provided by the user. We propose that lexical chains (see Section 5.2.5) provide a

suitable fitness function for this task as they compare the placement of entities through-

out the document, scoring highly, those that are more semantically related. To this end

the system generates two stories for each incomplete story, one using entity grids as a

fitness function and the other lexical chains.

Table 6.11 shows example stories with the system generated lines in bold font.

From these stories we see that the system is capable of generating new stories to appear

in an already determined context. From inspection it appears that the lexical chains fit-

ness function is more suited to this task than the entity grid. One possibility for this is
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Entity Grid Lexical Chains

The prince loves the princess. The prince

introduces the princess to the queen. The

queen hates the princess. The princess
recognises the horse. The princess
means for the horse to prefer. The

princess forgives the queen.

The prince loves the princess. The prince

introduces the princess to the queen. The

queen hates the princess. The princess
tells the queen when the kingdom saves
the prince. The prince writes to the
princess that the queen gives up. The

princess forgives the queen.

The queen catches the bird. The bird sings

a song. The queen takes the bird to the

court. The bird teaches the manners that
the court makes up. The bird reminds
the day when the boat stops off at the
door. The bird flies away.

The queen catches the bird. The bird sings

a song. The queen takes the bird to the

court. The queen discovers that the bird
hides out. The bird helps with the queen.
The bird flies away.

The knight rides the horse. The knight

brings back the treasure. The horse is very

tired. The horse speaks about the subject
when the wizard enters the room. The
horse tells the knight about the room
surprising the attendant. The knight es-

capes on the horse.

The knight rides the horse. The knight

brings back the treasure. The horse is very

tired. The knight goes to fetch the horse.
The knight lets up on the horse. The

knight escapes on the horse.

Table 6.11: Output of the story completion task generated by the GA system using

entity grid and lexical chain fitness functions. New sentences generated by the system

are shown in bold font.
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that the entity grid only considers the transitions between pairs of adjacent sentences

whereas the lexical chains consider entity relations more globally. This allows the lex-

ical chains to capture longer distance relationships than that of the entity grid. As we

can see in the story generated by the lexical chain GA for the story beginning the prince

loves the princess, the newly generated stories contain all three of the entities that ap-

pear in the human authored sentences. The entity grid GA however has difficulty in

evaluating all of the entities that appear in the sentence, from those longer sentences

that are generated from story plots: there may be no fitness increase in changing the

sentence’s structure. These stories are good examples of how the knowledge contained

in the system’s database can be used to hypothesise missing story content. By provid-

ing a context for the story generation, the system has the ability to better define the

entities that will appear in the story and the sequence of actions to develop.

6.5 Summary of Chapter

In this chapter we motivated profitable areas of future work arising from the extensi-

ble and modular platform of the pilot story generation system. We presented a series

of modular extensions, including two post-processing components, one for generat-

ing referring expressions and another of integrating commonsense knowledge into the

generated story. The referring expressions component highlights the potential for in-

corporating automatically generated descriptive references, pronouns and semantically

similar noun phrases to the pilot system’s stories. It utilises a database of descriptions

that have been extracted from the training corpus allowing further characterisation of

the story entities. The commonsense component illustrates how additional informa-

tion could be integrated into the story to provide further details about story entities and

actions. We also explored the portability of the system by retraining it on a corpus of

news texts, representing a new domain. In addition, we showed how the pilot system

can be used for a new task, i.e., finishing incomplete stories. Overall, we have shown

that our system provides an excellent platform for developing extensions to improve

the quality of the generated stories and for use in new tasks and domains.
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Conclusions and Future Directions

In this chapter we summarise the main findings and contributions of the thesis and

indicate possible areas of future research.

7.1 Main Findings

In this thesis we have proposed a novel approach to story generation, outlining an end-

to-end system which stochastically realises the components of the natural language

pipeline. An outline of our major findings and contributions is given below:

1. We have developed an end-to-end system for generating short narratives which

consists of trainable components. The strength of our system lies in its simplic-

ity, as it does not require large amounts of hand-annotated data, thus reducing the

work load of the system developer. In particular, we developed components for

content selection, sentence planning, document planning and surface realisation

and have shown how they can be easily integrated to form an end-to-end natu-

ral language generation system. We have described an approach to extracting

a knowledge base from a corpus that encodes the relationships between entities

and actions in order to capture the content of a given corpus. From this knowl-

edge base, sentences and stories can be constructed based on the likelihoods of

entities and their interactivity appearing in the corpus. Our approach is therefore

bottom-up, a story is generated from the simplest lexical structures, in contrast to

previous story generation systems which have a top-down approach to document

planning. We have presented an evaluation method that, for the first time, allows

us to establish the state of the art in the field. The story generation system we

155
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have developed is thus state-of-the-art and can be used as a suitable baseline for

comparison against future developments.

2. We have formulated the story generation task as a search problem. In particular,

we present a viable bottom-up story generator that does not rely on rhetorical

or other document level structures. Our system finds the best story overall by

searching through possible sentences and the stories that result from their combi-

nation. Searching this large space is made possible through evaluation functions

that use shallow document features. This allows the system to perform on-line

evaluation of a large number of possible stories. We have shown that local co-

herence can be used to judge the quality of generated stories, making use of the

entity grid approach proposed in Barzilay and Lapata (2008).

3. In addition to evaluating coherence of our generated texts, we have proposed a

novel model for evaluating story interest. This model is trained using human in-

terest judgements for well known human authored stories and also uses shallow

document features, making it suitable for automatic evaluation. Using publicly

available psychological resources the model can be trained to identify those fea-

tures that indicate whether a story is interesting. We have shown that in its early

stages such a model has the ability to discern between lexical choice decisions

that improve story quality.

4. We have compared two different search methodologies for traversing the story

space. The first is an over-generate and rank approach which creates sentences

for stories sequentially, maintaining a cache of the best stories, selected by the

evaluation models, which the system will then extend by generating the next sen-

tence. This search approach considers both partial and complete stories through-

out the generation procedure. We also outline a genetic algorithm search ap-

proach which constantly maintains and optimises a pool of complete stories.

Optimisation of the stories occurs through the repeated application of crossover

and mutation operators on individual story candidates that are selected based

on their fitness (as operationalised by their local coherence). We have shown

experimentally that the human participants found the stories generated by the

GA-based system more interesting than those generated by the rank-based ap-

proach.

5. We reported the first work to induce story plots from corpora and to use these
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as a basis for generating novel stories. We show that from a given corpus it

is possible to build a graph which encodes that expected action sequences of

a given entity. Story plots are developed from the overlap resulting from the

merger of two (or more) such graphs, in particular from those actions in which

the story protagonists interact. We used WordNet (Fellbaum, 1998) to aid in

the graph merging by identifying non-identical yet semantically similar entities.

Each story plot we generate represents a schema encoding a large number of

possible stories depending on those supplementary entities that will appear in

the final story.

6. Additionally, we have shown that our system provides an excellent platform for

future work. We presented several pilot components and new tasks that high-

light the extensibility, scalability and portability of our story generation system.

In particular, we have shown how attributes pertaining to story entities can be

extracted and used to model different character stereotypes based on the actions

they perform in the corpus. These attributes can then be incorporated into a

given story to provide descriptions of the story entities, making the final text

more ornate. Pronominalisation can also be incorporated by identifying the gen-

der of each entity, using attributes derived from pronoun resolution (Charniak

and Elsner, 2009).

7.2 Future Research Directions

In this thesis we have focussed on a modular story generation system in which a

bottom-up, data lean approach was championed. We have developed a system that

represents a first attempt at approaching the task of story generation from this angle.

There are several points to be considered for the development of such a system, 1) the

level of document structuring used to represent each story, 2) how knowledge-bases

for the story generator can be developed from available corpora, 3) the methodology

for generating and searching the space of possible stories that can be encoded in the

knowledge bases, and 4) what off-the shelf components are available to reduce the

work load of the developer. This thesis has sought to answer these questions but future

research is required to improve the quality of the stories that can be produced.

Most generation systems use rhetorical relations for document structuring. Adding

rhetorical knowledge would allow our system to consider the way in which phrases
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relate to one another, so that their placement in the final text can be decided. This

would also allow for aggregation, which is currently out of the system’s reach as it

would require the relationships between phrases to be labelled for the correct lexical

connectives to be selected. The challenge here is in automatically extracting the rhetor-

ical knowledge from the corpus and learning the relationships that occur between story

propositions. Despite initial efforts at rhetorical parsing the results are still quite poor

(Marcu, 2000; Soricut and Marcu, 2003).

This thesis proposed that stories can be evaluated based on interest and local co-

herence. We defined interest in terms of shallow document features, yet it could be

argued that this interpretation of interest is too simplistic and that there are other doc-

ument level features should be considered when evaluating a story’s interest. Pérez y

Pérez and Sharples’s (2001) story generation system MEXICA, for instance, records

the level of tension resulting from the application of sequences of actions. Bae and

Young (2008) propose a system that produces surprise using foreshadowing and flash-

backs, by manipulating the action sequence of the story. However, any document level

evaluation of interest needs to be automatic to allow the assessment of large numbers

of candidate stories. MEXICA required that the level of tension be explicitly encoded

by the human developer and Bae and Young (2008) utilised planning rules to iden-

tify the relationships between actions. Developing automatic evaluation models for

interest in terms of suspense, humour, imagery, conflict, and so on, requires more so-

phisticated methods than we have presented here, and requires, potentially, extensive

human involvement. However, their development would open the door to potentially

new applications, such as poetry or screenplay generation.

Future work may also focus on how document level evaluation could be incor-

porated to allow stories to be generated that communicate specific messages or meet

specific communication goals. Such stories may include parables or forms of poetry.

This would represent an ability beyond that of the system we have presented in the the-

sis. Recent work has already shown the potential for future development along these

lines. Manurung (2003) developed an evolutionary search approach for generating a

poetic representation for a given document content specification. One option would be

to incorporate their work as a post-processing step that would provide the potential for

presenting our generated stories in new media.

Developing automatic methods for instilling morals and other communicative goals

represents a much more difficult task as it requires us to know exactly how the contents

of a story culminate to express them. In order to generate such stories automatically,
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we would first need to develop a method of analysing stories to extract, not only the

set characters and actions, but also the changing states of the story world and each

character’s beliefs, goals and feelings. These are not necessarily obvious from the text

of a story, as they will be implied and require substantial world knowledge in order to

predict them. An additional challenge would then be in designing a database to store

the extracted document structures. One requirement is that the extracted information

would have to be general enough so that it could be used in different ways to create

novel stories (not simply retelling the same stories that were in the corpus). The con-

cept would ideally be similar to the problem solving TRAMs used by Turner (1992),

which encode solutions to specific problems that are then abstracted so they can be

used in other genres.

One of the main strengths of the system we have proposed is its modular structure

which allows additional components to be integrated, as well as new knowledge to

be incorporated into the stories. Recent years have seen the development of several

psychological and linguistic knowledge bases which have the potential to enhance the

quality of our generated stories. The FrameNet project (Baker et al., 1998) is one such

source of knowledge. Its function is to gather together semantic knowledge about real

world actions, stipulating relationships (e.g., one action inherits from another or causes

another action) and orderings between them. Each action frame also encodes informa-

tion about the entities that participate, e.g., driving involves a driver and a vehicle with

possible cargo. The knowledge contained in FrameNet could be used by the system to

make better decisions about which actions to include in a story, using semantic knowl-

edge to develop causation relationships between story actions and ensure that story

entities appear in the appropriate semantic roles. Similarly, having the ability to deter-

mine semantic information in a document would allow the system to construct more

accurately the relationships between story entities, building profiles that can be called

upon to make inferences about their behaviours. The semantic networks produced by

ASKNET (Harrington and Clark, 2008) contain nodes representing entities in a text

and labelled relationships between them. To construct their networks, they start by per-

forming Named Entity Recognition identifying entities and their semantic categories,

e.g., person, organisation, location. Then using BOXER (Bos et al., 2004) they extract

the document’s underlying semantic representation in first order logic. ASKNET can

then translate this output into one or more networks by identifying which variables in

the semantic representation refer to one another. Through the application of spreading

activation theory they are able to successfully combine network fragments, allowing
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long distance semantic relationships between entities to be established. These semantic

networks can potentially be used to generate improved story plots, through inference

over networks containing intended story protagonists.

Another improvement to the current system could be the incorporation of an ex-

plicit model of temporal ordering (Bramsen et al., 2006; Chambers and Jurafsky, 2008).

Human authored texts do not always represent events in chronological ordering, e.g., one

character may tell another what they saw the day before. In order to generate more

elaborate stories, the system will require the ability to deduce the actual ordering of

events in the original corpus as well as the ability to produce an appropriate action

ordering in the stories it generates.

Due to their potential for integration in interactive systems, agent-based approaches

to story generation are very much the focus of current research. Ideally, the data-lean

approach we have described in this thesis could be extended to provide knowledge

bases for such systems too. Agent-based systems are attractive not only for their in-

teractivity but also in that they allow a creative means of developing stories in which

logical action decisions by story characters are separate from their internal planning

mechanisms and world knowledge. These systems also provide capabilities currently

out of the reach of our system, including the use of dialogue, through the transferral

of story-world knowledge, and also emotion. However, there is one major hurdle that

must be overcome before development of such a system could begin. An automatic

method of leveraging the knowledge required for an agent-based rule base from the

corpus would be required. Story agents require access to planning rules but these are

difficult to learn from written text, at least in an unsupervised fashion, without access

to annotated data. Human writers do not always state explicitly all the preconditions

and implications a performed action will have, the author relies on human real-life ex-

perience to fill-in the missing information. This makes it difficult for planning rules,

to be written automatically. However, one avenue of research may be the use of infer-

ence systems for planning that can perform automated planning on incomplete world

knowledge (Eiter et al., 2000) using only those propositions that can be extracted from

the corpus.
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Æsop’s Fables Evaluation

This appendix contains the instructions presented to participants in our elicitation study

on Æsop’s Fables (see Section 3.3.2) and the evaluation studies for comparing the

output story generation systems (see Chapter 3 and Chapter 5).

A.1 Instructions for Elicitation Study of Æsop’s Fables

In this experiment you will be asked to judge a set of short stories. These stories are

fables and you may be familiar with some of them. A fable is a brief, succinct story,

that features animals, plants, inanimate objects, or forces of nature which are

anthropomorphised (given human qualities), and that illustrates a moral lesson (a

“moral”) which may sometimes be expressed explicitly at the end of the story. After

reading each story you will be presented with a number of questions asking for your

opinion of the story you just read. Some of these questions will require a numerical

answer based on your judgements while others will require you to give a textual

response.

The questions you will be asked are shown below:

• How believable were the characters? Rate from 1 (hard to believe) to 7 (very

believable).

• How strong was the plot of the story? Rate from 1 (little or no plot) to 7 (very

strong plot)

• How easy was the story to follow? Rate from 1 (very hard to understand) to 7

(very easy to understand)
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• How novel were the events in the story? Rate from 1 (the events were repetitive

and clichéd) to 7 (the events were novel and exciting).

• How interesting was the story? Rate from 1 (very boring) to 7 (very exciting).

• Once you have answered these questions you will be asked to explain briefly

whether you liked the story or not.

A.1.1 Examples

Consider the following story.

A wolf resolved to disguise himself in order that he might prey upon a
flock of sheep without fear of detection. So he clothed himself in a
sheepskin, and slipped among the sheep when they were out at pasture.
He completely deceived the shepherd, and when the flock was penned for
the night he was shut in with the rest. But that very night as it happened,
the shepherd, requiring a supply of mutton for the table, laid hands on the
wolf in mistake for a sheep, and killed him with his knife on the spot.

Below are scores that would be given for this story.

• How believable are the characters? You may give this question a high

number (e.g., 7 or 6) as the characters assumed roles that we expect them to.

The wolf is trying to eat the sheep and resorts to deception to accomplish this.

• How strong is the plot of the story? Here, you may consider a relatively high

number (e.g., 6 or 5) as there is a clear plot outline and progression of events.

The wolf disguises himself, deceives the shepherd, and then gets killed.

• How easy is the story to follow? Again a high number (e.g., 6 or 7) would be

given here as the story is very easy to understand and progresses in a logical

order.

• How novel are the events in the story? The story introduces some novel

actions. The wolf pretends to be a sheep and is successful at it. There is also an

interesting twist in the end. The deception bring about the wolf’s downfall. So,

you’d give this question a high number (e.g., 6 or 7).

• How interesting is the story? The approach taken by the wolf to get the sheep

is an interesting solution to his problems which unfortunately later ends up

causing him more problems. We can also read from this story an underlying
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message as the wolf ends up getting what he deserves. This seems interesting

so we would give a high score (e.g., 6 or 7).

• Please explain briefly whether you liked the story. Here you may say that

you liked this story because of the twist in the end. Or because the underlying

message and plot are clear and the story interesting.

There will also be stories you may want to assign lower scores. Take the following

example.

A fir-tree was boasting to a bramble, and said, somewhat contemptuously,
“You poor creature, you are of no use whatever. Now, look at me: I am
useful for all sorts of things, particularly when men build houses; they
can’t do without me then.” But the bramble replied, “Ah, that’s all very
well: but you wait till they come with axes and saws to cut you down, and
then you’ll wish you were a bramble and not a fir.”

• How believable are the characters? Here, you may find the characters less

believable in comparison to the previous story. For example, having an

argument is not an activity we picture for plants. Also a fir-tree and a bramble

are an unusual choice of characters as opposed the wolf and the shepherd. So,

you could give this question a low score (e.g., 2 or 3).

• How strong is the plot of the story? This story does not have much of a plot.

Two plants discuss which one is more useful. There is no event progression and

no actions are undertaken by the two main characters. So, you could give 3 or 2

as an answer to the question.

• How easy are the story to follow? Here you could give a relatively high score

(e.g., 6 or 5) as the story is easy enough to understand and the each segment of

dialogue clearly follows from the last.

• How novel are the events in the story? A score of 1 would be appropriate as

there is very little action in this story.

• How interesting is the story? This story is not very exciting.] Although there

is an underlying message, the story itself does not deliver this message very

convincingly and can hardly capture our attention. So this question would

receive a low score (e.g., 2 or 1).



164 Appendix A. Æsop’s Fables Evaluation

• Please explain briefly whether you liked the story. Here, you may say that

you did not like the story. The characters were boring and unrealistic. The plot

and the actions within the story were weak and did not help maintain interest

throughout the story. However, there was a clear message and it was easy to

understand.

It is possible that you may find a story performs better or worse in each of the

evaluation criteria so do not feel constrained to give a story the same score for each of

the questions.

A.1.2 Procedure

When you start the experiment below you will be asked to enter your personal details.

Next, you will be presented with 8 short stories to evaluate in the manner described

above. Once you have completed the questions for a story, click the button at the

bottom of that page to advance to the next story.

A.1.3 Examples of Human Rated Fables

Figure A.1 gives two fables that have been rated by human evaluators during our

elicitation study. The fable at the top of the page was rated highly in terms of interest

whilst the other was given low ratings. Included are the comments written by each

reviewer for that fable.

A.2 Evaluation of the Story Generation Systems

In this experiment you will be asked to read a set of short computer generated sto-

ries. Each story will be 5 sentences long and will contain only a couple of characters.

After reading each story you will assess its quality along three dimensions: fluency,

coherence and interest. For each dimension you will provide a rating on a scale from

1 to 5.

Fluency refers to the individual sentences of the story, whether they are grammati-

cal and in well-formed English or just gibberish.

• If the sentences are grammatical, the you should rate the story high in terms of

fluency.
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Story

A trumpeter marched into battle in the van of the army and put courage into his

comrades by his warlike tunes. Being captured by the enemy, he begged for

his life, and said, “Do not put me to death; I have killed no one: indeed, I have

no weapons, but carry with me only my trumpet here.” But his captors replied,

“That is only the more reason why we should take your life; for, though you

do not fight yourself, you stir up others to do so.”

Comments

“Good moral about those who encourage being as much to blame.”

“This story is likeable in the conclusion, for the captor grasped the truth so

thoroughly, that the trumpeter was the encouragement for the nearby troops.”

“Yes, I thought it was thought provoking with an interesting message.”

Story

A deer said to her fawn, who was now well grown and strong, “My son, nature

has given you a powerful body and a stout pair of horns, and I can’t think why

you are such a coward as to run away from the hounds.” Just then they both

heard the sound of a pack in full cry, but at a considerable distance. “You stay

where you are,” said the deer; “never mind me”: and with that she ran off as

fast as her legs could carry her.

Comments

“I didn’t like it because a mother would never leave her offspring to die.”

“I liked this story because it played on the the vulnerable nature of deer but no

action really happened in this story.”

“Very dull, and a bit pointless.”

Figure A.1: Example of a fable that received high scoring judgements of interest and

a fable that received low scoring judgements of interest from the participants. Also

presented is a selection of comments written by the participants about each story.
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• If the sentences are something like word salad, then you should give the story a

low number.

Coherence refers to the overall story and how comprehensible it is.

• If the text is almost impossible to understand, then you should give it a low

number.

• If the text is readily comprehensible, well-organised and doesn’t require any

effort on the reader’s part, then you should give it a high number.

Finally, interest reflects whether you found the story exciting or boring.

• Use high numbers if you find the story original.

• On the other hand it the story is rather tedious, you should use low numbers.

A.2.1 Examples

Suppose you were given the following story:

The prince fights the dragon.

The dragon burns the shield.

The prince raises the sword.

The prince slays the dragon.

The prince saves the princess from the tower.

Then, you may rate it high in terms of fluency (e.g., 4 or 5) as the sentences are

well-formed and overall grammatical. This story would be also given a high coherence

number (e.g., 4 or 5) as it progresses in a logical order, focuses on the main characters

and generally makes sense. You may give this story a medium score as far as interest

is concerned (e.g., 3), as it is familiar and describes a rather predicable series of events.

However, if you are not familiar with the story at all, you may give it a high number.

Now, take the following example:

The prince fights the dragon.

The prince knows of the fairy out of the horse.

The fairy up bakes a cake.

The prince flies to the river.

The prince reads the dragon.
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This story is much harder to read than the previous example. It contains unusual sen-

tence structures and the individual words do not make sense together. So you would

rate this story low in terms of fluency (e.g., 1 or 2). Taken in its entirety, this story also

makes little sense. It is unclear why the characters are behaving as they are and there is

no strong progression of actions. The story seems rather unfocused, the dragon appears

in the first sentence and then only again at the end. Overall the story is not coherent

and would receive a low score (e.g., 1 or 2). This story is not very interesting either as

it is impossible to picture exactly what is happening. The disjoint action sequences are

too confusing to capture the reader’s attention. So interest here would receive a low

rating (e.g., 1 or 2).

A story can receive high ratings on some dimension and low ratings on others; it is

not necessary that your ratings for fluency, coherence, and interest are all either high

or low.

A.2.2 Procedure

When you start the experiment below you will be asked to enter your personal details.

Next, you will be presented with 12 short stories to evaluate in the manner described

above. Once you have completed your rating, click the button at the bottom of that

page to advance to the next story.
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Appendix B

Algorithm Psudocode

Algorithm B.1 Simple story generation algorithm
nounList→ k nouns supplied by the user

storyLength→ i supplied by the user

discourseHistory→ holds ordered verb list for each entity in each story

actionGraph→ graph holding verb-verb relationships

choiceLimit→ limit on number of selection choices

storyCache→ partial/completed stories

while number of sentences < storyLength do
newStoryCache→ /0

for all story in storyCache do
for all protagonist in nounlist do

matrixVerbs → chooseMatrixVerb(protagonist, actionGraph, discourseHis-

tory(story))

for all verb in matrixVerbs do
sentenceTemplates→ selectTemplates(verb, choiceLimit)

for all t in sentenceTemplates do
sentences→ fillTemplate(t, choiceLimit, discourseHistory)

for all sent in sentences do
story.add(sent)

end for
end for

end for
end for

end for
storyCache→ newStoryCache

end while
select highest scoring story and realise
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Algorithm B.2 Building the discourse history
storyCache→ list of partial/completed stories

discourseHistory <story, <noun, verbList> > → /0 verbList contains tuples of verb

and relationship type (subject or object)

for all story depth d do
for all story in storyCache do

sentences→ generatedSentences(story, d)

for all s in sentences do
for all n in s.nouns do

verbList→ discourseHistory<story, n>

verbList.add(n.parentVerb, n.relationship)

end for
end for

end for
end for

Algorithm B.3 Building the mutual information database
contentDB→ database of relationships with assigned scores

relationships→ list of all relationships of form relationship(word1, word2, relation-

shipType)

limit→ selected threshold for relationship occurrences

for all r in relationships do
if count(r) > limit then

r.MI = calculateMutualInformation(r)

if r.MI > 0 then
contentDB.add(r)

end if
end if

end for
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Algorithm B.4 Selecting objects for verbs
contentDB→ database of relationships with assigned scores

subject→ noun subject the clause

verb→ verb root of the clause

n→ number of objects for the verb (1 or 2)

object1List→ list of selected lexemes for first object

choiceLimit→ limit on values to return

if n = 2 then
object2List→ list of selected lexemes for second object

if contentDB contains relationship(subject, verb, $o1FromDB, $o2FromDB)

then
object1List = selectFirst(choiceLimit, $o1FromDB)

object2List = selectFirst(choiceLimit, $o2FromDB)

else if contentDB contains relationship(subject, verb, $object1) then
object1List = selectFirst(choiceLimit, $o1FromDB)

objectFromDB = contentDB.selectMIObjects(verb)

object2List = selectFirst(choiceLimit, objectFromDB)

else
objectFromDB = contentDB.selectMIObjects(verb)

object1List = selectFirst(choiceLimit, objectFromDB)

object2List = selectFirst(choiceLimit, objectFromDB)

end if
else

if contentDB contains relationship(subject, verb, $object1) then
object1List = selectFirst(choiceLimit, $o1FromDB)

else
objectFromDB = contentDB.selectMIObjects(verb)

object1List = selectFirst(choiceLimit, objectFromDB)

end if
end if
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Algorithm B.5 Combined coherence and interest ranking
stories→ list of generated stories

for all s in stories do
s.interestScore = scoreInterest(s)

s.coherenceScore = scoreCoherence(s)

end for
for all s in stories do

s.rankInterest = denseRank(interestScore, stories)

s.rankCohherence = denseRank(coherenceScore, stories)

end for
for all s in stories do

s.rank = denseRank(rankInterest + rankCoherence, stories)

end for
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Algorithm B.6 Generating story plots
storyPlot→ list of x clause nodes n

stories→ list of stories /0

wordLimit→ limit of selection choices

stories.add(sentence(n0))

for all nodes n j where n>0 do
sentences→ /0

for all sentence template sTemp in in n j do
for all lexeme lex in sTemp do

if lexeme.word = ε then
if lexeme.type = noun then

selectSimilarNouns(lex.sense, limit)

else
selectTopMI(sTemp, limit)

end if
end if

end for
sentences.append(sentence)

end for
newStories = ε

for all story in stories do
for all sentence in sentences do

newStories.add( story.add(sTemp.sentences) )

end for
end for
stories→ newStories

end for
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Algorithm B.7 Fitness function ranking
stories→ list of generated stories

fitnessFunctions→ set of x scoring functions

for all s in stories do
for all f in fitnessFunctions do

s.score(f) = scoreFitness(s, f)

end for
end for
for all s in stories do

for all f in fitnessFunctions do
s.rank(f) = denseRank(f, stories)

end for
end for
for all s in stories do

s.rank = denseRank(sum(s.rank(f0), ... ,s.rank(fx)), stories)

end for

Algorithm B.8 Dense ranking (denseRank)
scoringFunction→ value of each item to use for comparison

itemList→ list of x items i with assigned scores

order itemList by scoringFunction sorting order descending

i0.rank = x

for all i j in itemList do
if i j.score < i j−1.score then

i j.rank = i j−1.rank - 1

else
i j.rank = i j−1.rank

end if
end for
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