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Abstract The exact role of the cerebellum in motor control
and learning is not yet fully understood. The structure,
connectivity and plasticity within cerebellar cortex has been
extensively studied, but the patterns of connectivity and
interaction with other brain structures, and the computational
significance of these patterns, is less well known and a
matter of debate. Two contrasting models of the role of
the cerebellum in motor adaptation have previously been
proposed. Most commonly, the cerebellum is employed in
a purely feedforward pathway, with its output contributing
directly to the outgoing motor command. The cerebellum
must then learn an inverse model of the motor apparatus
in order to achieve accurate control. More recently, Porrill
et al. (Proc Biol Sci 271(1541):789–796, 2004) and Porrill
et al. (PLoS Comput Biol 3:1935–1950, 2007a) and Porrill et
al. (Neural Comput 19(1), 170–193, 2007b) have highlighted
the potential importance of these recurrent connections by
proposing an alternative architecture in which the cerebellum
is embedded in a recurrent loop with brainstem control
circuitry. In this framework, the feedforward connections are
not necessary at all. The cerebellum must learn a forward
model of the motor apparatus for accurate motor commands
to be generated. We show here how these two models exhibit
contrasting yet complimentary learning capabilities. Central
to the differences in performance between architectures is
that there are two distinct kinds of disturbance to which a
motor system may need to adapt (1) changes in the relation-
ship between the motor command and the observed outcome
and (2) changes in the relationship between the stimulus and
the desired outcome. The computational distinction between
these two kinds of transformation is subtle and has there-
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fore often been overlooked. However, the implications for
learning turn out to be significant: learning with a feedfor-
ward architecture is robust following changes in the stimulus-
desired outcome mapping but not necessarily the motor
command-outcome mapping, while learning with a recurrent
architecture is robust under changes in the motor command-
outcome mapping but not necessarily the stimulus-desired
outcome mapping. We first analyse these differences theore-
tically and through simulations in the vestibulo-ocular reflex
(VOR), then illustrate how these same concepts apply more
generally with a model of reaching movements.

Keywords Cerebellum · Motor adaptation · VOR ·
Kinematics

1 Introduction

Humans and other biological systems demonstrate remar-
kable abilities to adapt their motor behaviour to novel circum-
stances and to learn to perform new motor tasks. The need to
adapt existing controllers may arise for a variety of reasons
including growth, ageing, injury, disease or experimental
intervention in the laboratory. Acquisition of accurate motor
behaviour from birth during infancy also requires similar
or perhaps even identical learning mechanisms to motor
learning during adulthood.

In general, a motor control task involves generating appro-
priate motor commands in response to some stimulus to
bring about a desired outcome. There are two fundamental
types of change which can alter what the appropriate motor
commands are in response to a given stimulus (see Fig. 1).
Firstly, the relationship between the motor commands and
the resulting outcome can be altered. This typically involves
changes in the motor plant dynamics (e.g. through injury,
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Fig. 1 Illustration of the two kinds of mappings described in Sect. 1

disease, growth or ageing); however some changes which
are more kinematic in nature, such as distortions of visual
feedback, can also be grouped into this category.

A second kind of change is in the relationship between
the initial stimulus and the desired outcome following that
stimulus. This kind of change is more subtle than the pre-
vious one but examples do occur in the context of most
motor behaviours—either naturally or under experimental
conditions. After such a change, the original response to the
stimulus will no longer be appropriate and a new pattern of
responses must be learnt.

In many circumstances, the stimulus and the desired
outcome can be considered to be equivalent. For example,
in the case of reaching, the stimulus is the location of an
object in the visual field and the desired outcome is that the
hand be in that same location (note that this is true even
when visual feedback is tampered with). Nevertheless, there
are numerous examples where the stimulus-desired outcome
relationship is not so trivial and subject to change. As we
will describe in later sections, many common experimental
paradigms in oculomotor adaptation actually fall into the
latter category rather than the former. Adaptation to these
kinds of changes can also be induced in reaching tasks
(Lurito et al. 1991) where they are sometimes referred to
as ‘non-standard mappings’ or ‘transformational mappings’
(Shadmehr and Wise 2005).

The possibility of having to adapt in the face of an
unknown relationship between the stimulus and the desi-
red outcome has been noted before (Jordan and Rumelhart
1992), but a thorough examination of the extent to which
this applies to human motor system in practice has been
previously lacking: Indeed, the solutions proposed in (Jordan
and Rumelhart 1992) do not aim at biological plausibility
since they rely on backpropagation of error signals through
a learnt internal model.

We examine the problem of adapting to both kinds of
change from a biologically plausible cerebellar learning
perspective. In the next section, we describe in detail two
existing models of cerebellar-based motor learning in the
context of a variety of commonly studied motor behaviours
and examine their suitability for adapting to each of the two
kinds of change described above.

Fig. 2 Schematic of the VOR

Before going into the details of the different architec-
tures, we will first illustrate the discussion with a concrete
example in which both kinds of sensorimotor change occur
naturally—the vestibulo-ocular reflex (VOR).

1.1 Kinematics and dynamics of the VOR

The vestibulo-ocular reflex in mammals acts to stabilize
gaze during head rotations by counter-rotating the eyes. The
characteristics of this reflex are not fixed, but can be modified
through experience when conditions change. After a suitable
amount of training under these new conditions, the VOR
becomes recalibrated so that even in the dark, the response
of the VOR is altered (Boyden et al. 2004).

For illustrative purposes, and since the oculomotor plant
is known to have negligible inertia (Robinson 1964), we
consider a first-order dynamics model of the oculomotor
plant. Denoting the current eye position by y, the relationship
between the motor command u and the resulting eye velocity
ẏ (see Fig. 2) is determined by the forward dynamics of the
oculomotor plant,

ẏ = P(y,u). (1)

The inverse dynamics model is correspondingly defined as

u = P−1(y, ẏ). (2)

The inverse dynamics P−1 map the current eye position y and
eye velocity ẏ to a motor command u which would achieve
that eye velocity when acting through the plant.

The desired outcome in this case is that the gaze be
stabilized, i.e. that the eye velocity ẏ be equal to some
gaze-stabilizing eye velocity ẏ∗. Any deviations of eye velo-
city from this desired value will be perceived as retinal
slip—movement of the visual image across the retina. We
denote this retinal slip by ˙̃y and it is given by

˙̃y = ẏ∗ − ẏ. (3)
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We define u∗ as the motor command which achieves the
desired eye velocity ẏ∗ when supplied to the plant,

u∗ = P−1(y, ẏ∗). (4)

In most VOR models, desired eye velocity is taken as
equal and opposite to head velocity, i.e. ẏ∗ = −ẋ. However,
in general, this is not the case. Most VOR gain adaptation
experiments work by directly manipulating the relationship
between head velocity and desired eye velocity, not by chan-
ging the properties of the oculomotor plant. This includes
any experiment using prisms or lenses or vestibular mismatch
experiments in which an external visual stimulus is moved
concurrently with head movements. If the stimulus is moved
in phase with head movements, this achieves a change in the
gain of the required response.

VOR adaptation therefore cannot be regarded as simply a
process of learning the motor command-outcome mapping of
the oculomotor plant. Fundamental to VOR adaptation is that
the kinematic relationship between the stimulus (vestibular
signal, indicating head velocity) and the desired outcome
(gaze-stabilizing eye velocity) is also subject to change
and must be compensated for, as illustrated in Fig. 2. This
kinematic component is effectively what many experimental
paradigms manipulate, such as when the visual image is
transformed before reaching the eye or in visual/vestibular
mismatch conditions. It also encompasses more natural dis-
turbances such as off-axis effects (Coenen and Sejnowski
1996) and inaccuracies or nonlinearities in the relationship
between the vestibular signal and the true head velocity ẋ.
VOR adaptation must, either explicitly or implicitly, reflect
learning of this kinematic relationship as well as of the plant
dynamics.

Mathematically, we can describe this relationship as a
function mapping head velocity ẋ and current eye position y
to a desired eye velocity ẏ∗,

ẏ∗ = S(y, ẋ) (5)

and a corresponding inverse kinematics mapping

ẋ′ = S−1(y, ẏ). (6)

S maps the current head velocity ẋ to an appropriate gaze-
stabilizing eye velocity ẏ, while S−1 gives the head rotation
ẋ′ that would have required an eye movement ẏ to stabilize
gaze.

Hence, from (2) and (5), the overall mapping which must
be learnt is a composite function

u∗ = P−1(y, S(y, ẋ)). (7)

This shows exactly how each kind of mapping, stimulus-
desired outcome or motor command-outcome, influences the
choice of motor command u.

In later sections, we will give further examples of beha-
viours where both of these kinds of mappings are subject

to change. First, however, we show the implications that
changes in each of these kinds of mappings has for different
models of cerebellar-based adaptation.

2 Cerebellar-based learning models

We now analyse in more detail the alternative architectures
for cerebellar connectivity with other brain regions and the
implications for learning. In this section, we describe a model
of cerebellar-based VOR adaptation. The VOR is used here as
an illustrative example, particularly because the underlying
neuroanatomy has been extensively studied. The arguments
we make in this section, however, are quite general to all
error-driven cerebellar learning scenarios and central to the
theme of this paper.

It is well known that the cerebellum plays a crucial role in
VOR adaptation. Although a variety of brainstem circuitry
contributes to the VOR, the basic reflex is largely mediated by
a fast three-synapse pathway in the brainstem (Boyden et al.
2004). This brainstem pathway is augmented by an adaptive
pathway through the cerebellum. It is known that among
its many inputs, the region of the cerebellum involved in
the VOR receives a variety of parallel-fibre inputs including
vestibular-related signals and efferent copies of outgoing
oculomotor commands (Hirata and Highstein 2001).

Two distinct kinds of simplified models have previously
been proposed to approximate this circuitry. Most models
have tended to disregard the motor command efferent copies,
modelling the brainstem and cerebellar pathways as having
a purely feedforward organization (Gomi and Kawato 1990;
Kawato and Gomi 1992; Shibata and Schaal 2001). This kind
of feedforward architecture is illustrated in Fig. 3a. More
recently, Porrill et al. (2004) have argued that the efferent
copy inputs should not be ignored and, furthermore, efferent
copy information alone is sufficient for successful VOR
adaptation. They demonstrate this with a model of cerebellar
VOR adaptation which has a purely recurrent architecture
i.e., having no feedforward vestibular input to the cerebellum.
This architecture is illustrated in Fig. 3b.

These two alternative models of VOR adaptation each
effectively assume that either the feedforward or the recurrent
(efferent copy) inputs to the cerebellum dominate, with the
other inputs playing a more minor role in generating the
cerebellar output. The true contributions from each of these
inputs to the cerebellar output is unknown. Although both
architectures are quite capable of accurate control, the lear-
ning properties of the feedforward and recurrent architectures
turn out to be quite different in adapting to different kinds of
disturbance.

Before analysing the different architectures in detail, we
briefly discuss a basic model of learning within cerebellar
cortex.
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(a)

(b)

Fig. 3 Schematic of feedforward and recurrent architectures

2.1 Cerebellar plasticity model

For the purpose of illustration we will assume a simple
Marr-Albus-Ito type model of cerebellar learning (Ito 2000).
The arguments presented here, however, apply to any iterative
error-driven learning scheme, including CMACs and more
abstract, machine-learning inspired cerebellum models (e.g.
Shibata and Schaal 2001).

Let us denote the input to the cerebellum by z(t) and its
output by c(t). In this model, the cerebellar output c(t) =
C(z(t)) is given by a weighted sum of parallel fibre activities:

c j (t) =
∑

i

wi j pi (t),

where, pi (t) is the activity (i.e. firing rate) of the i th parallel
fibre and wi is the strength of the corresponding parallel
fibre-Purkinje cell synapse. This can be written more com-
pactly in vector notation as

c(t) = wTp(t). (8)

Learning occurs through adaptation of the synaptic
weights w over time. This plasticity is driven by the climbing
fibre signal c̃(t). It is widely believed that the climbing fibre
signals directly represent errors in motor performance. Some
studies have claimed that this corresponds to sensory error
(Simpson et al. 1996), while others have suggested that it is a
motor-based representation (Wolpert et al. 1998; Yutaka et al.
2005). We assume that the climbing fibre signal corresponds
to the error in the cerebellar output c(t). Whether this equates
to a sensory or a motor error will become clear further down.
A simple learning rule which approximately captures the
known plasticity laws at the synapses is

ẇi j = −β c̃ j (t)pi (t), (9)

or in vector notation

ẇ = −β c̃(t)p(t)T. (10)

Although firing rates clearly cannot be negative, p(t) and c̃(t)
can be interpreted as deviations from some baseline firing
rate. This learning rule is equivalent to performing gradient
descent on the squared error, provided c̃(t) really does reflect
the error in the cerebellar output.

We do not, however, have explicit knowledge of the error
in the cerebellar output. We can only measure the error in
performance in terms of retinal slip. This poses a distal lear-
ning problem which can be solved by finding an appropriate
mapping between the observed outcome error (retinal slip
˙̃y in the case of the VOR) and the error in the cerebellar
output c̃.

In order to calculate this, we need to know exactly what the
desired output of the cerebellum is. This turns out to depend
strongly on the architecture (feedforward or recurrent). Pre-
vious analyses of cerebellar VOR adaptation have tended
to consider only changes in the motor command-outcome
mapping (i.e. they have neglected the fact that it is often the
stimulus-desired outcome relationship which changes in an
experiment). In this case (i.e. if we assume head velocity
and desired eye velocity are equal and opposite), the error in
the cerebellar output c̃ under the feedforward architecture is
equal to the error in the motor command,

c̃ = u∗ − u. (11)

This motor error can be estimated from the retinal slip
by transforming it through an inverse model of the plant
dynamics.

Under the recurrent architecture, on the other hand, Porrill
et al. (2004) have shown that the error in the cerebellar
output is equal to the raw retinal slip signal ˙̃y and thus the
distal learning problem is circumvented. Their analysis of the
properties of the recurrent architecture was restricted to adap-
tation to changes in the oculomotor plant dynamics (although
they do acknowledge that other kinds of disturbances are
possible).
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We will now examine learning within each of these archi-
tectures in the case that the head velocity-eye movement
relationship S is also subject to change. In both cases, we
require an expression for the error in the cerebellar output,
c̃, in terms of the observed output error (retinal slip, ˙̃y, in the
case of the VOR).

2.2 Learning in the feedforward architecture

Let us refer to the feedforward architecture shown in Fig. 3a.
The inputs to the cerebellum in this model are head velocity ẋ
and head position x (ẋ is omitted from the figure for clarity).
We also assume that an optimal cerebellar model C∗ exists
(this corresponds to a set of optimal weights w∗ for the
cerebellum model outlined in the previous section). The error
in the cerebellar output is then defined as

c̃(x, ẋ) = C∗(x, ẋ)− C(x, ẋ), (12)

and we wish to express this in terms of the retinal slip ˙̃y.
The motor command is generated by combining the output

from the brainstem and cerebellum

u = C(x, ẋ)+ B(x, ẋ), (13)

where B(x, ẋ) describes the brainstem dynamics. Similarly
for the optimal cerebellum model

u∗ = C∗(x, ẋ)+ B(x, ẋ). (14)

Noting that the optimal motor command u∗ is given by
P−1(y, S(y, ẋ)), we can see that the optimal cerebellum
model C∗ satisfies

C∗(x, ẋ) = P−1(y, S(y, ẋ))− B(x, ẋ). (15)

The cerebellum must therefore learn a composite of a forward
kinematics model and an inverse dynamics model, while
compensating for the contribution from the brainstem B.

Now, taking the difference between (13) and (14) and
comparing it to (12) illustrates that we can express the error
in the cerebellar output as:

c̃ = u∗ − u, (16)

that is, c̃ is equal to the motor error. Rewriting the right hand
side of (16) in terms of the inverse plant model (2), we have

c̃ = P−1(y, ẏ∗)− P−1(y, ẏ). (17)

For linear plant dynamics, we can directly simplify and
rewrite the expression in terms of the retinal slip ˙̃y,

c̃ = P−1(y, ˙̃y). (18)

For nonlinear plant dynamics, (17) can be approximated by
the first term of the Taylor expansion of P−1 about (y, ẏ):

c̃ ≈ JP−1(y, ẏ)̃y, (19)

where JP−1(y, ẏ) is the Jacobian of P−1 at the point (y, ẏ).

Equations (18) and (19) show that the error in the cerebellar
output can be calculated from the retinal slip via the inverse
dynamics of the plant, i.e. the inverse of the mapping from
motor commands to observed outcome. We assume that
some internal model is available to compute this, which may
reside elsewhere in the cerebellum (Wolpert et al. 1998).
Alternatively, the error signal might be the direct output of a
feedback controller, as in feedback-error learning (Gomi and
Kawato 1990). In any case, if the plant dynamics change, an
unadapted internal model will still reflect the old dynamics
and we can no longer be confident that our estimate of the
cerebellar output error is accurate.

The required training signal is, however, independent of
the kinematics S, i.e. the relationship between the stimulus
(head velocity ẋ) and the desired outcome (eye velocity ẏ).
This is an important but usually overlooked advantage of
employing a feedforward cerebellar architecture.

So, in general, we expect learning under the feedforward
architecture to be impaired (i.e. converge more slowly) or
even made entirely unstable (not converge at all) following
a change in the motor command-outcome (dynamics) map-
ping. However, we expect learning to be unaffected by a
change in the kinematics.

2.3 Learning in the recurrent architecture

Next, we derive an expression for the error in the cerebellar
output in terms of the measured retinal slip for the recurrent
architecture (Fig. 3b). We assume that the inputs to the
cerebellum are the head position x and the afferent motor
command u (the head-position input is omitted in Fig. 3b for
clarity).

We begin the derivation by noting that the input to the
brainstem model is given by C(x,u) + ẋ, which is equal to
the motor command transformed under the brainstem inverse
model, i.e.

C(x,u)+ ẋ = B−1(x,u). (20)

Again, as in the feedforward case, we assume there exists an
optimal cerebellar model C∗ which yields exactly the desired
motor command (this corresponds to optimal weights w∗ in
the cerebellum model outlined previously).

Note that the motor command u would be optimal for
some alternate head velocity ẋ′, i.e.

C∗(x,u)+ ẋ′ = B−1(x,u), (21)

with ẋ′ = S−1(y, P(y,u)), by definition of S−1 from (1) to
(6). Rearranging this, we have

C∗(x,u) = B−1(x,u)− S−1(y, P(y, u̇)). (22)

Under the recurrent architecture then, the cerebellum must
learn a composite of a forward dynamics model and an
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inverse kinematics model. This is in direct contrast to the
feedforward case in (15).

Taking the difference between (20) and (21), we can
express the cerebellar output error as:

C∗(x,u)− C(x,u) = ẋ′ − ẋ

= S−1(y, ẏ)− S−1(y, ẏ∗). (23)

If we assume that S is linear then we can express this
simply in terms of the retinal slip,

c̃(x,u) = S−1(y, ˙̃y). (24)

If S is nonlinear, a first order Taylor approximation can be
used,

c̃ ≈ JS−1(y, ẏ) ˙̃y, (25)

where JS−1(y, ẏ) is the Jacobian of S−1 at the point (y, ẏ).

Equations (24) and (25) show that the error in the cerebellar
output is given by the retinal slip transformed via the inverse
kinematics, i.e. the inverse of the mapping from the stimulus
to the desired outcome. This can be thought of as an error in
the original vestibular signal ẋ.

So in general, we expect learning under the recurrent
architecture to be impaired under changes in the stimulus-
desired outcome mapping, but to be unaffected by changes
in the motor command-outcome mapping.

This reveals a duality between the feedforward and recur-
rent architecture models. The properties of learning in the
feedforward architecture are mirrored by those of learning in
the recurrent architecture with the roles of the two kinds of
transformation transposed.

2.4 Summary

Although we have illustrated the argument with the specific
example of the VOR, the arguments presented here are enti-
rely general and can be applied to any other motor behaviour.
Furthermore, the only point at which linearity was assumed
was in the final step in each derivation combining the terms in
Eqs. (17) and (23). For nonlinear P and S, a Taylor expansion
gives a simple approximation to the cerebellar output error
in terms of the observed output error, provided the error is
not too large.

Under the feedforward architecture model, in order for
the observed outcome error to act as an appropriate training
signal for the cerebellum, it must be transformed into the
motor domain via the motor command-outcome mapping.
If this mapping changes drastically, for instance, through a
change of the plant dynamics, the error signal being used may
no longer accurately reflect the error in the cerebellar output
and learning may proceed less efficiently or even be disrupted
entirely. The transformed error is, however, independent
of the head velocity-desired eye velocity mapping. Thus

the feedforward architecture is guaranteed to learn stably
following changes in this mapping.

For the recurrent architecture model, in order to train the
cerebellum, the observed error must be transformed via the
inverse of the stimulus-desired outcome mapping, giving
something analogous to an error in the initial stimulus. If
the true mapping from stimulus to desired outcome changes
substantially, learning may be slowed down or even dis-
rupted entirely. The transformation of the observed error
into cerebellar output error is, however, independent of the
motor command-outcome relationship and thus, the recurrent
architecture is guaranteed to learn stably following a change
in that mapping.

3 Simulation of VOR adaptation

In order to test the performance of each of the two alternative
VOR models in adapting to a range of changes in both
the motor command-outcome mapping and the stimulus-
desired outcome mapping, we simulated adaptation of a 2
degree-of-freedom oculomotor plant under a range of trans-
formations of the kinematics and the plant dynamics. The
simulated oculomotor plant had simplified dynamics initially
given by

ẏ = u, (26)

and an initial relationship between head velocity and gaze-
stabilizing eye velocity given by

ẏ∗ = −ẋ. (27)

To simulate a change in the relationship between motor
command and observed outcome, we changed the dynamics
from the ordinary resistive viscosity field described by (26)
to a viscous curl field (Fig. 4a) in which there is an angle φ
between the eye velocity and the force, i.e.

u = P1ẏ, (28)

where

P1 =
(

cosφ sin φ
− sin φ cosφ

)

. (29)

Due to the first-order dynamics assumed here, this had the
effect of rotating the angle of actuation for a given motor
command.

To change the relationship between head velocity and
gaze-stabilizing eye velocity, we employed a rotation of the
visual field (Fig. 4b) by angle ψ . Following this transforma-
tion, the desired eye velocity is rotated by angle ψ relative
to the head velocity, i.e.

ẏ∗ = S1ẋ∗, (30)
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(a)

(b)

Fig. 4 Example of dynamic and kinematic transformations

where

S1 =
(

cosψ sinψ
− sinψ cosψ

)

. (31)

In all experiments, the head position repeatedly traced out a
figure-of-eight:

x(t) =
[

sin(0.1t)
sin(0.2t)

]T

. (32)

All experiments were run 10 times, with different initial
positions around the figure-of-eight on each trial. Full imple-
mentation details are given in Appendix 7.

3.1 Experiments

First, we tested the performance of the feedforward
architecture in adapting to the visuomotor rotation. Analy-
zing the normalised mean-squared (nMSE) velocity error /
retinal slip, we found no significant difference in the learning
trace when adaptation to different magnitudes of rotation
(ψ = [15, 135]) were compared. Figure 5a plots the average
nMSE over time for ψ = 45◦ which is representative of all
values of ψ . The error bars represent one standard deviation
above and below the mean.

We then tested the performance of the feedforward archi-
tecture in adapting to novel dynamics. Figure 5a plots the
evolution of the nMSE over time for different values of
φ. For φ = 15◦, performance is the same as under the
visuomotor rotation. As φ increases, however, the rate of
improvement drops. Error bars are plotted for the φ = 60◦
case to show that this difference is significant (error bars on
other plots are omitted for clarity). At φ = 90◦, the VOR
no longer converges and updates of the cerebellar weights
no longer improve performance. This is equivalent to always
moving perpendicularly to the direction of steepest slope.
For φ > 90◦, changes in the cerebellar weights led to
deteriorating performance and unstable adaptation.

For the recurrent architecture, we first tested the per-
formance under the change in dynamics. For φ < 60◦,
we found no significant difference in performance between
different values of φ. For larger values of φ, however, the
recurrent loop tended to become unstable after a period of
initial improvement. Figure 5b shows the nMSE over time for
φ = 45◦ which was representative of all trials for φ < 60◦.

Finally, we tested the performance of the recurrent archi-
tecture in adapting to the visuomotor rotation. Results from
these trials are also plotted in Fig. 5b. Again, for clarity, error
bars are only plotted for representative transformations. For
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Fig. 5 Timecourse of adaptation for VOR model using a feedforward
architecture and b recurrent architecture. Both figures display average
normalized mean squared eye velocity error (retinal slip), averaged over

ten trials. Different traces show response to different conditions—either
a change in dynamics (viscous curl field) or a change in kinematics
(visual field rotation) of differing magnitudes
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ψ = 15◦, performance is similar to that under the change
in the dynamics. For ψ = 45◦, however, the adaptation is
significantly slower. For ψ = 50◦ and greater, the recurrent
loop tended to become unstable resulting in an exponential
increase of the error over a very short timescale. The plots
have therefore been curtailed at this point. The initial rate of
improvement in performance is nevertheless reflective of the
quality of the estimate of the cerebellar output error.

For the linear models considered in this section, the pro-
blem of instability in the brainstem-cerebellum loop under
the recurrent architecture can be attributed to the eigenvalues
λ of the matrix BC (refer Fig. 3b) having magnitude |λ| > 1.
It may, however, be possible to avoid entering into unstable
regions of the parameter (cerebellar weight) space by also
adapting B, using the output of C as a training signal. This
‘learning transfer’ from C to B would steer the loop away
from regions of instability by ensuring that C∗ (which would
now depend on B) would tend asymptotically to 0. Learning
transfer of this kind is supported by physiological evidence
(Boyden et al. 2004) and Porrill and Dean (2007a) have
suggested it may be used as a mechanism to enhance VOR
response at high frequencies.

In summary, as predicted by the theory, performance of
the feedforward architecture was impaired following changes
in the oculomotor plant dynamics, but was not affected by
changes in the kinematics. Performance of the recurrent
architecture, on the other hand, was affected by changes in
the kinematics but not by changes in the dynamics.

4 Reaching and catching

Arm movements are considerably more complex than eye
movements, having more degrees of freedom and nonli-
near dynamics. Nevertheless, many of the control principles
observed in oculomotor control can be easily generalized to
this setting, as we shall describe in this section.

While the exact role of the cerebellum in reaching move-
ments is not entirely understood, cerebellar involvement has
been demonstrated in compensating for interaction torques
between limb segments (Bastian et al. 1996), adapting to
altered dynamics (Smith and Shadmehr 2005), adapting to
altered visual feedback (Baizer et al. 1999) and in learning
to manipulate an on-screen cursor (Imamizu et al. 2000).
The role of motor command generation in reaching is largely
attributable to the primary motor cortex (Todorov 2000;
Shadmehr and Wise 2005). It therefore seems reasonable
to extend the cerebellar-based adaptation frameworks for the
VOR from Sects. 2 to model the cerebellum’s role in reaching
adaptation.

Indeed, Schweighofer et al. (1998) have suggested that the
cerebellum generates feedforward motor commands which
refine those generated by the cortex, effectively assuming

a feedforward cerebellar architecture. By contrast, Porrill
and Dean (2007b) have proposed a model of arm control
which employs a recurrent cerebellar architecture to learn an
inverse kinematics model of the arm. Each of the architec-
tures considered in the previous sections might therefore be
considered plausible abstract models of the cerebellum’s role
in the adaptive control of reaching.

The most common experimental paradigms for eliciting
adaptation of reaching movements include application of an
external force field to the hand via a robotic manipulandum
(e.g., Shadmehr and Mussa-Ivaldi 1994), or tampering with
visual feedback—usually in the form of a rotation of the
visual field about the initial position of the hand (Krakauer
et al. 2000). Both of these manipulations amount to chan-
ging the relationship between the motor command and the
eventual observed outcome.

A few studies have, however, explored adaptation to
changes in the relationship between stimulus and desired
outcome. Magescas and Prablanc (2006) trained human sub-
jects on a target-shift paradigm similar to that commonly
used in saccade adaptation. A visual target was extinguished
as subjects began the reach and reappeared in a new position
slightly shifted from the where it had been intially. The final
location of the target (i.e. the desired outcome) depends
only on the initial stimulus and not on the motor com-
mand. Subjects were able to adapt to the task and exhibited
robust aftereffects in subsequent reaches. Similar target-jump
conditions have also been performed elsewhere (Lurito et al.
1991; Diedrichsen et al. 2005).

This kind of disturbance corresponds to a change in
the stimulus-desired outcome mapping. The required motor
command in each of these cases is very similar, however
the nature of learning under the proposed cerebellar learning
models is quite different and depends on the cerebellar
architecture assumed.

4.1 Simulations

4.1.1 Reaching model

Reaching movements appear to be planned as a visually
estimated difference vector dx between current hand location
and target location (Krakauer et al. 2000; Shadmehr and Wise
2005). A simplified model is illustrated in Fig. 6. Based
on this difference vector, a suitable change in joint angles
du is selected by the fixed controller B. We maintain our
label B for this controller from the previous model of the
VOR where it denotes ‘brainstem’, although here it denotes
primary motor cortex. In general, the ‘motor command’ du
will depend also on the current set of joint angles u; for
simplicity, in our experiments, we consider a unique starting
joint position u. The final observed hand position is then
given by the kinematics P which represents a mapping from
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Fig. 6 Schematic of human reaching model

the change in joint angles du to a change in observed hand
position dy,

dy = P(du). (33)

Note that this P includes both the forward kinematics of
the arm, which map joint angles into hand position, and any
distortions of visual feedback such as a rotation about the
initial hand position.

Meanwhile, the target may be shifted mid-reach with the
shift S determining the difference vector dy∗ of the shifted
target (and therefore, the desired observed change in hand
position),

dy∗ = S(dx). (34)

The error ỹ in the observed hand position is used to guide
adaptation of the controller and is given by the difference
between the the actual and desired change in observed hand
position,

ỹ = dy∗ − dy. (35)

Adaptation in our model is mediated by the cerebellar
pathway which may be connected with the motor cortex
B through either a feedforward or a recurrent architecture.
We model the cerebellar output as being constructed from
a weighted sum of radial basis functions defined over the
input space. The combination weights are learnt using the
same gradient-descent learning rule as in previous sections.
The error in the cerebellar output was estimated by trans-
forming the error in hand position appropriately according
to the architecture used, as described in Sect. 2. For the
feedforward architecture, this corresponded to transforming
the output error through a linearization of the original inverse
kinematics mapping (without any rotation of visual feedback
taken into account). For the recurrent architecture, this simply
corresponded to using the raw observed output error, since
the initial stimulus-desired outcome mapping S is simply the
identity. More technical details are given in Appendix 7.

4.1.2 Experiment

We set up a 10×10 square grid of targets around the initial
position of the hand (given by the initial joint-angles θ0 (see
Fig. 7a). The goal was to find a suitable change of joint angles
du such that the resulting change in hand position brought
the hand in line with the target.

Two separate conditions were chosen requiring adapta-
tion, the first corresponding to a change in the stimulus-
desired outcome mapping, the second a change in the motor
command-outcome mapping.

In the first condition, we implemented a target-shifting
paradigm along the lines of the experiment presented in
(Lurito et al. 1991; Magescas and Prablanc 2006). During
the reach, the position of each target was shifted by rotating
it about the initial hand location by an angle −ψ .

In the second condition, we implemented a rotation of
the visual field by angle φ about the initial hand location.
This led to a rotation of both the stimulus dx and the
estimated error ỹ. To ensure that the set of stimuli used (i.e.
visually estimated difference vectors dx) was the same in
both conditions, the grid of targets was rotated by angle
−φ during the visual field rotation. The mapping to be
learnt by the cerebellum C and the set of stimuli used were
the same in either condition provided φ = ψ . The only
difference between conditions, therefore, was in the nature of
the error signal and how it related to the error in the cerebellar
output.

A sequence of 200 reaching movements was simulated to a
random sequence of the 100 targets and this was repeated 100
times with different randomly selected target sequences. The
same target sequences were used for each architecture and
for each condition. Figure 7 illustrates the results of learning
under the different architectures and across the two different
conditions. In particular, (d) and (e) show the normalized
mean squared global test error (nMSE), averaged over all
targets and all sessions, as a function of the number of
reach trials performed for visual and target rotations of 45◦.
For the feedforward architecture, it is particularly clear that
performance is impaired under the visual rotation condition
relative to the target rotation condition, in accordance with
the theory. For the recurrent architecture, there was less
difference in performance between conditions with margi-
nally better asymptotic average performance under the visual
rotation condition.

To demonstrate more clearly the effect that different kinds
of transformation had on the quality of learning for different
architectures, we examined the trend in reach errors during
learning for a small subset of targets (marked with dots in
the grid in Fig. 7a). We sampled the final hand position
obtained during test trials to these targets after every 10
training trials. Because of the strong effect of the order of
training targets on learning, we averaged these positions
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dx
Target

(a)

Trial 20
nMSE = 0.16911

Trial 200
nMSE = 0.052247

(b)

Trial 20
nMSE = 0.24947

Trial 200
nMSE = 0.013514

(c)

(d) (e)

Fig. 7 Learning kinematic control of a two-link planar arm. a Experi-
mental setup of arm and grid of observed targets. Difference vector dv
is estimated from seen target positions (which may be rotated from
the actual positions) and this constitutes the stimulus. b–c Grid of
learnt hand positions following 30◦ visual rotation for feedforward
and recurrent architectures after 20 and 200 trials. Light grey grid
shows the actual (rather than seen) final location of targets. Dark

grid shows the grid of hand positions attained while testing rea-
ching to all targets following the indicated number of training trials.
d–e Normalized global mean squared hand position error as a function
of the number of trials. Shaded regions indicate standard deviation of
error across multiple training runs with training targets presented in
different (random) sequences. Visual rotation and target rotation are
compared for each architecture

over 100 different training runs with different randomly
selected target sequences to obtain an impression of the
general trends of learning in each condition. The paths of
these average positions as training proceeds are plotted in
Fig. 8. The actual target locations are marked by a ‘×’. For
the feedforward architecture, under the target-shift condition
(Fig. 8b), the error estimate used for training is almost
equal to the true error and, consequently, the improvement
from trial-to-trial comes close to following a straight line
in task space. Under the visual rotation condition (Fig. 8a),
however, the effect of using a poorer estimate of the error
is clearly seen in the fact that the trial-to-trial trend in reach
errors does not follow a straight line but an indirect, curved
one.

Under the recurrent architecture, there is still a clear
difference between the two conditions. However in the visual
rotation condition (Fig. 8c), where we expect the cerebellar
output error estimate to be correct, the trial-to-trial trend
in final hand position is not straight, as in the feedfor-
ward/target shift combination, but has slight curvature. This
is due to the fact that there is a nonlinear relationship
between the improvement in the cerebellar weights and
improvements in task-space performance. So although the
improvement takes the shortest path in cerebellar weight-
space, this does not necessarily correspond to the shortest
path of improvement in task space in the same way as it
does for the feedforward architecture. In the target shift
condition (Fig. 8d), the trend, although different, doesn’t

123



Biol Cybern (2009) 100:81–95 91

Feedforward, Visual Rotation

(a)

Feedforward, Target Rotation

(b)

Recurrent, Visual Rotation

(c)

Recurrent, Target Rotation

(d)

Fig. 8 Time-course of learning for selected targets

appear to be much worse than in the visual rotation condi-
tion.

To highlight the fact that learning in the recurrent architec-
ture really was ‘better’ for the visual rotation condition than
for the target rotation conditions, we quantified the quality of
the estimate of the cerebellar output error in each condition by
computing the overlap between the estimated and true error,
given bŷc̃Tc̃ / c̃T̃c. An overlap of 1 or close to 1 indicates a
good approximation while an overlap of 0 indicates that the
estimated error and the true error are perpendicular. Table 1
shows how this overlap varies with increasing ψ and φ.
As expected, the estimated error was close to perfect in the
case of the feedforward architecture/target shift combination
and the recurrent architecture/visual rotation combination,
independent of the magnitude of the transformation. For the
other two conditions (feedforward with visual rotation and
recurrent with target rotation), the quality of the estimate
clearly diminished with increasing extent of visual field or
target rotation.

As in the case of the VOR, the recurrent architecture
was unstable in some circumstances with divergence of the
motor command during iteration of the recurrent loop. For

transformations with ψ > 60◦ or φ > 60◦, this led to a
total breakdown of learning for all targets (indicated by ‘—’
in the table). For transformations of magnitude ψ = 45◦
or φ = 45◦ the divergence of the motor command was
only apparent for some targets and not for others. This
caused a large discrepancy between the estimated cerebellar
output and the error in hand position for these particular
targets, leading to the large variation in overlap recorded in
Table 1.

5 Conclusion

We have compared and contrasted two previously proposed
architectures for cerebellar-based motor adaptation—one
feedforward and one recurrent—initially in quite general
theoretical terms and then in the context of two specific
behaviour: vestibulo-ocular reflex adaptation and reach adap-
tation.

The central computational difference between the two
cerebellar architectures lies in their relative capabilities in
adapting to two broad classes of sensorimotor disturbance:
(i) changes in the mapping between stimulus and desired
outcome and (ii) changes in the mapping between motor
command and movement outcome. Because of differences
across architectures in how the distal error signal is related
to cerebellar output error, the resulting adaptation patterns are
qualitatively different. Learning under the recurrent architec-
ture is impaired in response to the first kind of disturbance
but not the second, while for the feedforward architecture,
this pattern is reversed.

In order to illustrate and validate the theoretical argument,
we have simulated learning under both architectures on
two biological motor adaptation problems—the VOR and
reaching. In each case we have highlighted examples where
either the stimulus-desired outcome relationship or the motor
command-outcome relationship may be subject to change
either naturally or through experimental manipulation. Our
simulations confirm our theoretical predictions. However
the results also largely indicate that error-driven learning
is quite robust with succesful, if slow, learning even when
the approximating error signal is not that accurate. Only
in extreme and generally biologically implausible cases,

Table 1 Quality of cerebellar
output error estimates under
different conditions

Architecture Condition Average ̂c̃T c̃ / c̃T̃c ± (SD)

15◦ 30◦ 45◦ 60◦ 75◦ 90◦

Feedforward Vis. rotation 0.96±0.17 0.87±0.33 0.72±0.48 0.49±0.61 −0.03±0.15 −0.04±0.17

Target shift 1.00±0.01 1.00±0.01 1.00±0.02 1.00±0.02 1.00±0.03 1.00±0.03

Recurrent Vis. rotation 1.00±0.00 0.99±0.11 1.05±1.83 – – –

Target shift 0.97±0.00 0.85±0.11 0.82±2.24 – – –

123



92 Biol Cybern (2009) 100:81–95

when the approximated cerebellar output error is either not
correlated or negatively correlated with the true error, is
learning not possible at all.

A major problem identified with the recurrent architecture,
however, is the threat of instability in the recurrent loop.
As a result of this instability, learning was more likely to
fail under the recurrent architecture than the feedforward
architecture, even under changes in the motor command-
outcome mapping, where it is expected to perform well. It is
possible that these instability problems may be rectifiable in
a biologically-plausible manner through transfer of learning
from the cerebellum to the brainstem (Porrill and Dean
2007a).

6 Discussion

One of our main contributions in this work has been to
explicitly distinguish two important classes of sensorimotor
disturbance: changes in the relationship between the stimulus
and the desired outcome, and changes in the relationship bet-
ween the motor command the resulting movement outcome.
Furthermore, we have shown that these different kinds of dis-
turbance can have different effects on the adaptive response,
even though they may initially produce a similar pattern
of errors. While the distinction between these disturbance
classes has been noted previously (Jordan and Rumelhart
1992; Shadmehr and Wise 2005), here we have highlighted
specific examples in the context of the VOR and reaching
and examined the impact on learning.

In addition to the VOR and saccades, this distinction is
likely to be relevant for many other motor behaviours. In
particular, the themes of this paper are highly relevant to
saccade adaptation, which is also known to be cerebellar-
dependent (Optican and Robinson 1980). Saccade adaptation
can be induced by physically adjusting the properties of the
oculomotor plant through surgically weakening one or more
of the extraocular muscles (Scudder et al. 1998)—a change
in the motor command-outcome mapping. A much more
common approach, however, is the (non-invasive) target
shift paradigm where the target of the saccade is shifted
mid-movement (McLaughlin 1967), leading to an apparent
overshoot or undershoot. This corresponds to a change in the
relationship between the stimulus (initial target position) and
the desired outcome (final eye position). It has been noted that
these two methods for eliciting saccadic errors result in quite
different patterns of adaptation even though initial errors are
quite similar (Scudder et al. 1998). While it is possible that
additional cues besides visual error are responsible for these
differing adaptation patterns, we propose that the difference
in learning is at least partly due to the fact that the different
disturbances have different effects on the quality of cerebellar
learning.

It is difficult, however, to draw any firm conclusions on
what architecture the brain actually uses based purely on
behavioural data. Actual learning rules in the cerebellum are
considerably more complex than the simplified versions we
have assumed here and the details of these learning rules are
likely to have as much impact on learning as the architecture-
dependent effects we have highlighted here. Moreover, it
appears that, in reaching tasks, subjects respond fundamen-
tally differently to the two kinds of disturbances, as can be
seen through different generalization patterns (Magescas and
Prablanc 2006) and different brain activity (Diedrichsen et al.
2005).

Although the example we have given here of a stimulus-
desired outcome disturbance during reaching movements
may only be plausible in a laboratory setting, it is not too
difficult to imagine circumstances in which the ability to learn
mappings of this kind may be useful in general. For instance,
when catching a ball, a catcher might learn to predict the
trajectory of the ball from its mid-flight state and choose
a suitable position along this trajectory at which to catch
the ball. The movement of the hand to this intermediately
calculated position can then be made using the existing
reaching circuitry. It may, however, be beneficial to learn
a direct relationship between the mid-flight state of the ball
and the arm movements which will result in a successful
catch. Such a direct strategy would lead to lower latency and
introduce less noise than having to maintain an intermediate
representation of a desired hand location.

In the case of this catching example, any change in ball
dynamics—e.g. caused by wind or a change in elasticity if
the ball is to bounce, will affect the relationship between the
mid-flight state of the ball (the ‘stimulus’) and the required
hand position. Any change in arm kinematics or dynamics,
for instance if trying to catch the ball using a net on the end
of a heavy pole (note that this would affect both kinematics
and dynamics), will alter the relationship between motor
command and resulting end-effector motion.

The alternative composite strategy of maintaining and
adapting a prediction of the ball’s future trajectory alongside
a separate model of arm dynamics can be described in more
general terms as a target-substitution strategy (Shadmehr
and Wise 2005). This strategy has analogs in VOR adap-
tation (pre-processing of the vestibular signal) and sacca-
dic gain adaptation (re-scaling of the estimated difference
vector). How the intermediate target-substitution mapping
might be learnt, however, and particularly how changes in the
stimulus-desired outcome mapping might be distinguished
from changes in the motor-command outcome mapping is
unclear since both can give rise to identical errors.

In reality it is quite possible that a combination of target-
substitution and direct mapping strategies, as well as feedfor-
ward and recurrent strategies are employed by the nervous
system. Some behaviours are likely to be more susceptible
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to certain kinds of disturbances than others, rendering either
a feedforward or recurrent architecture more appropriate.

Biomimetic robotics often also employ cerebellar-like
adaptive control strategies, (e.g. Shibata and Schaal (2001)).
Understanding the nature of the disturbances which are likely
to be encountered should similarly guide selection of which
style of architecture may be more appropriate. To this end we
have shown elsewhere (Haith and Vijayakumar 2007) that
in certain cases both architectures can be employed concur-
rently in a feedback-error learning framework to ensure
robust adaptation to both kinds of change, combining the
advantages of each individual architecture to maximum
effect.

Acknowledgments This work was funded in part by the UK EPSRC/
MRC through the Neuroinformatics Doctoral Training Centre, Univer-
sity of Edinburgh and by the EU FP6 Integrated Project SENSOPAC.
We thank John Porrill and Paul Dean for helpful discussions.

7 Appendix: Implementation details

The same pattern of training was used and very similar
control and learning algorithms were employed for simula-
ting each of the behaviours discussed here. Table 2 outlines
the basic algorithm underlying all of the simulations.

In each case, an initial motor command-outcome mapping
P0 and an initial stimulus-desired outcome mapping S0 were
specified. The algorithm then simulated cerebellar-based
adaptation to a new pair of mappings P1 and S1 (in practice
only one was varied at a time) using either a feedforward
(FF) or recurrent (REC) architecture.

A sequence of stimuli x1:T was selected. For the VOR,
this xt represented a discrete-time series of head velocity
measurements with a discretization timestep of .01s. For
reaching, each xt represented a difference vector movement
plan for a single trial.

The fixed controller B generates motor commands which
are optimal under the initial conditions P0 and S0, i.e.

B(xt ) = P−1
0 (S0(xt )). (36)

The input to the cerebellum, which we denote by zt ,
varied depending on the architecture employed and the task.
For linear P and S (i.e. in the case of VOR), under the
forward architecture this was equal to the stimulus xt , while
under the recurrent architecture this was equal to the motor
command ut .

For nonlinear P and S (i.e. reaching), zt was given by a set
of non-linear basis functions Φ defined over the same input
space, i.e. zt = Φ(xt ) for the feedforward architecture and
z = Φ(ut ) for the recurrent architecture. The basis functions
Φ were Gaussians given by

Φi (o) = e(o−ri )
TΣ(o−ri ), (37)

Table 2 Pseudocode summary of algorithm used for all simulating
all behaviours simulated and for both architectures (Exceptions for
particular behaviours are given in parentheses)

Initialize:
Define stimulus sequence x1:T
W1 = 0
(u0 = 0 for VOR)

Run

For t=1:T

1. Generate motor command ut

if (FF)

zt = xt (or zt = Φ(xt ) for reaching)

ct = Wt zt

if (REC)

ut = 0

iterate

zt = ut (or zt = Φ(ut ) for reaching)

ct = Wt zt

ut = B(xt + ct )

until convergence of ut :

(or ut = B(xt + ct−1) for VOR)

2. Calculate outcome yt and observed error ỹt

yt = P1(ut )

y∗
t = S1(ut )

ỹt = y∗
t − yt

3. Estimate cerebellar error c̃t

if (FF)

̂c̃t = P−1
0 (̃yt ) (or̂c̃t = JP−1

0
ỹt for reaching)

if (REC)

̂c̃t = S−1
0 (̃yt )

4. Update cerebellar weights

Wt+1 = Wt + β̂c̃t zT
t

End

where o represents the appropriate input (xt or ut ) depending
on the architecture. The function centres ri were distributed
on a uniform square grid in the input space and the metricΣ
was chosen so that the width of each tuning function along
each dimension was equal to twice the separation∆r between
functions:

Σ = 2

⎛

⎜

⎝

1
∆r1

0 0

0
. . . 0

0 0 1
∆rn

⎞

⎟

⎠
. (38)

Note that r and Σ were different between the two architec-
tures due to different distributions of inputs. A total of 16
basis functions in a 4×4 grid was used in each case.

The cerebellar output ct was then given by multiplying
the input zt by the learnt cerebellar weight matrix Wt ,
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Table 3 Summary of model details for different behaviours

Model component Notation Description

VOR Saccades Reaching

Stimulus xt Head velocity Target difference vector Target difference vector

Outcome yt Eye velocity Eye displacement Hand displacement

Motor command ut Oculomotor torque Motor amplitude Change in joint angle

Motor command-outcome mapping P Oculomotor dynamics Oculomotor dynamics Visual rotation

Stimulus-desired outcome mapping S Visual rotation Target shift Target shift

ct = Wt zt . (39)

The motor command u was constructed differently for
different architectures. For the feedforward architecture, it
was given directly by the sum of the cerebellar and brainstem
outputs

ut = B(xt )+ C(xt ). (40)

For the recurrent architecture, when approximating conti-
nuous time dynamics, as in the VOR, the motor command
was calculated as

ut = B(xt + C(ut−1)). (41)

For simulating single trials of reaching, the motor command
was determined by iterating the equation

ut = B(xt + C(ut )) (42)

until the difference in u between successive iterations was
less than 0.1 %.

In some cases the recurrency led to divergence of ut either
while iterating within a single trial (reaching) or over time
(VOR), in which case the recurrent architecture was unstable
and unable to learn the task. However, this was typically only
an issue for transformations of moderate to large magnitude
and for less severe transformations ut converged within
10–20 iterations.

The motor command ut was then transformed into an
observed output y via the (transformed) plant dynamics P1,

yt = P1(ut ). (43)

For reaching, the converged value of ut was used for this.

yt = P1(ut (1 + εt )); εt ∼ N (0, 0.52) (44)

The desired outcome at each timestep or trial, yt∗, was cal-
culated separately according to the (transformed) stimulus-
desired outcome relationship,

y∗
t = S1(xt ). (45)

The observation error was then calculated as

ỹt = y∗
t − yt . (46)

To estimate the error in the cerebellar output, the initial
mappings between motor command and observed outcome
P0 and between stimulus and desired outcome S0 were used,
according to the theory presented in Sect. 2, i.e. for the
recurrent architecture,

̂c̃t = ỹt , (47)

and for the feedforward architecture,

̂c̃t = P−1
0 ỹt . (48)

Where this mapping was nonlinear (i.e. for reaching) the error
was approximated to first order using a Taylor expansion,

̂c̃t = JP−1
0
(yt )ỹt (49)

where JP−1
0
(yt ) is the Jacobian of P−1

0 at yt . This was
estimated numerically by finite differences. Note that in all
simulations S was linear, although the same principle could
be used for approximatinĝc̃ in the recurrent architecture if it
were nonlinear.

Finally, the cerebellar weights were updated at each time
step using a discrete-time analog of the gradient learning rule
stated in Sect. 2.1

Wt = Wt−1 + β c̃t pT
t , (50)

where c̃t is the estimated cerebellar output error.
The learning rate β was different in each case and chosen

to give approximately realistic timescales of adaptation in
comparison to experimental data. The same value of β was
always used for both architectures.
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