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ABSTRACT 

The research outlined in this thesis is mainly designed to develop a technology of 

producing a DNA prime-protein boost vaccine against HIV-1 infection. To reach this 

aim 1.7-kb fragment encoding gp 120 antigen deriving from two groups of British HIV- 1 

infected persons (one consisting of homosexual individuals from Edinburgh, Newcastle 

and Belfast and the other consisting of haemophiliac patients from Edinburgh who 

became infected from a common batch of Factor VIII) were PCR amplified and 

subsequently subcloned into a cloning vector (pGEM T). A mammalian expression 

vector (pSRHS) was modified in order to include a polylinker to allow the transfer of 

1.7-kb fragments from pGEM T to pSRHS. The recombinant clones were identified and 

the gp120 genes were expressed in mammalian cells (COS cells) by lipofectin protocol. 

The functional clones (i.e. those that contained intact open reading frames) were selected 

and their associated gp120 antigens were quantified by an "in house" ELISA method. 

Equivalent amounts of the gpl2O antigens were used in an anti-gpl2O ELISA to estimate 

the extent of recognition by the IgG antibodies from autologous and heterologous sera. 

The nucleic sequences of the functional clones were obtained and some properties such 

as their predicted NSI/SI phenotype, co-receptor usage and glycosylation sites were 

analysed. The phylogenetic relationship between the sequences derived from both 

cohorts was computed and the extent of gp 120 antigen recognition by the IgG antibodies 

from the autologous and heterologous sera was analysed in conjunction with their degree 

of relatedness. 

As a conclusion of this study, a high degree of cross-reactivity was noticed between the 

antigens and sera, the extent of the recognition of the antigens by the sera was given by 

the patients' immune status. No significant difference in recognition of the gp120 

antigens by sera was observed. This result points towards the potential utilisation of a 

cocktail of such DNAs and their corresponding gp 120 antigens as a DNA prime-protein 

boost vaccine. 
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ABBREVIATIONS 

ELISA Enzyme Linked Immunosorbent Assay 

SI Syncytium Inducing 

NSI Non-Syncytium Inducing 

MCS Multiple Cloning Site 

TCLA T Cell Line-Adapted Isolate 

MAb Monoclonal Antibody 

IgG Immunoglobulin Class G 

EDTA Ethylenediamine-Tetraacetic Acid 

PBMC Peripheral Blood Mononuclear Cells 

PCR Polymerase Chain Reaction 

AMPAK Amplification System 

HRP Horseradish Peroxidase 

AP Alkaline Phosphatase 

p-NPP para-Nitrophenyl Phosphate 

OPD ortho-Phenylene Diamine 

CV Coefficient of Variation 

STDEV Standard Deviation 

MPMV Mason-Pfizer Monkey Virus 

DSS Donor Splicing Site 

SURE Stop Undesired Recombinant Events 

SV40 Simian virus 40 

NADPH Reduced Nicotinamide Adenine Dinucleotide 

NAD Oxidised Nicotinamide Adenine Dinucleotide 

ARP AIDS Reagent Programme 

RRE Rev Responsive Element 

TAR Trans-activation Response Element 

CRS cis-Acting Repressive Sequences 

INS Instability Sequences 

ORF Open Reading Frame 
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1.1 The impact of HIV epidemic in the world 

It is estimated that 30 million people are already infected with HIV- 1 and more than 

16,000 new infections occur annually. Although it was initially recognised in 

industrialised countries, the HIV epidemic is spreading nowadays in the developing 

world. More than 90% of new infections are occurring in less developed countries, 

with Sub Saharan Africa and South Asia experiencing the worst of the pandemic 

impact. The advent of highly active antiretroviral therapy (HAART) raised hopes of 

extending survival, but it is expensive ($15-20,000 per person each year), may fail in 

the person treated and, although is no clear evidence for it, it might lead to more 

virulent and pathogenic isolates. At the time being, a vaccine for HIV is desperately 

needed for all regions, but especially in developing countries where other 

interventions are limited. 

1.2 Discovery of the HIV virus 

In 1983, Barre-Sinoussi and his collaborators recovered, from the lymph node of a 

man with a polylymphadenopathy syndrome that was associated with AIDS, a virus 

containing reverse transcriptase. Because of many similarities this virus shared with 

the human T cell leukaemia viruses (HTLVs), Gallo and his co-workers (1983) 

suspected a member of the HTLV group. Other investigators (Montagnier et al., 

1984) found some distinctive characteristics of this virus and, therefore, they called it 

lymphadenopathy-associated virus (LAy). For instance, LAV agent was identified in 

haemophiliacs with AIDS in circumstances when HTLV can not be seen, as it does 

not exist as a free virion in blood and can not be transmitted by cell-free plasma 

products such as Factor VIII. Moreover, HTLV immortalises lymphocytes into 

continuous growth and could not be the cause for the CD4 lymphocyte depletion in 

AIDS patients. 

Subsequently, Levy et al., (1984) also reported the identification from AIDS patients 

of a retrovirus, which was called AIDS-associated retrovirus (ARV), showing some 

cross-reactivity with the French LAV strain. In 1986, the International Committee on 

Taxonomy of viruses recognised all three viruses as members of the same group of 

3 



viruses that has been named Human Immunodeficiency Virus (HIV). Soon after 

HIV-1 was discovered, a distinct subtype, HIV-2, was identified in West Africa 

(Clavel et al., 1986). These new viruses were included in the Lentivirinae subfamily 

of the Retroviridae family. 

1.3 Genome and virion structure 

HIV-1 is an enveloped, positive-strand RNA virus that is able to convert its RNA 

genome into a proviral DNA using a unique enzyme, reverse transcriptase (RT). The 

envelope is a lipid bilayer that is gained during virion budding from the cellular 

plasma membrane and, hence, contains, besides the viral Env glycoprotein, cellular 

proteins (i.e. major histocompatibility molecules, cyclophilin A, etc). The matrix is 

composed of p17 (myristylated protein) that encloses the capsid structure formed by 

p24 and contains the viral RNA and enzymes, encoded by poi (i.e. reverse 

transcriptase, integrase and protease). 

The HIV- 1 genome consists of a 10-kb RNA that has three coding regions common 

to all retroviruses: gag, poi and env. These regions encode for the capsid proteins 

(Gag), the viral enzymes necessary for replication (Pot) and the external 

glycoproteins (Env). Other regions encode other proteins that regulate directly viral 

gene expression (Tat, Rev), are part of the viral particle (Vif, Vpr) or interact with 

the cellular machinery to promote virus propagation (Vpu, Nef). Due to the presence 

of these regions, HIV was included in the complex retrovirus subgroup, together 

with the human T-cell leukaemia virus (Cullen et al., 1991). HIV-1 RNA has two 

long terminal repeats (LTR), one at each end, that present a promoter at the 5 '-end 

and a polyadenylation site at the 3 '-end, and expresses one primary transcript. Many 

proteins are produced from this transcript by different mechanisms: generation and 

proteolytic processing of precursor proteins, ribosomal frameshifting or suppression 

of translational termination, alternative splicing of the primary transcript and 

bicistronic mRNA producing two proteins. 
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1.3.1 Elements involved in regulation of viral transcription 

1.3.1.1 Promoters of transcription 

There are several cis-acting regulatory sequences in the LTR, which regulate viral 

RNA transcription. The TATA box and three SP1 binding-sites are two important 

cis-acting regulatory elements in the U3 region of the HIV-1 LTR that control basal 

HIV- 1 transcription. 

TA TA box, located between —24 and —27 relative to the start of transcription, 

facilitates the binding of the TATA-binding protein to the transcription (TFIID) 

complex during transcript initiation (Maldonado et al., 1990, Peterson et al., 1990). 

SP-1-binding sites, consist of three regions located between —46 and —78 designated 

Site I, Site II and Site III that influence the basal HIV-1 transcription mechanism 

(Harrich et al., 1989). All three sites involved in SP-1- binding function in concert. 

Site I alone does not support transcription of viral replication and is dispensable in 

the presence of Sites II and HI (Parrott et al., 1991, Ross et al., 1991). 

Leader-binding protein 1 (LBP-1) and upstream-binding protein (UBP-1) are also 

involved in basal HIV-1 transcription (Garcia et al., 1987, Wu et al., 1988, Harrich et 

al., 1989). LBP-1 targets the transcription initiation site (-16 to +27) and also a 

binding site around TATA region (-38 to —16), which interferes with the interaction 

between TATA box and TFIID, inhibiting the transcription in vitro (Boris Lawrie et 

al., 1992, Ross et al., 1991). TATA box, SP1-binding sites and the regions involved 

in binding LBP- 1 and UBP- 1 form the basal promoter of transcription. 

1.3.1.2 Enhancer and activation of transcription 

The enhancer region is composed of two 10-base pair elements, located between 

—105 to —96 and —91 to —82, which are presented in tandem and are binding sites for 

NF-kB (nuclear factor kB) (Ross et al., 1991). NF-kB is a heterodimer of a 50-kd 

nucleic acid binding protein and a 65-kd transactivation protein. Its synthesis is 

strongly induced during T-lymphocyte activation (Bachelerie et al., 1991). As an 

inactive form, the NF-kB heterodimer is complexed to an inhibitor protein (1kB) that 
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blocks the nuclear localisation signal and DNA-binding capacity of NF-kB (Baeuerle 

et al., 1988). Phosphorylation of 1kB may results in the dissociation of the NF-kB-

1kB complex (Shirakawa et al., 1989), unbound NF-kB being able to bind, after its 

translocation to the nucleus, to the NF-kB enhancer element and thus activates HIV 

transcription. 

1.3.1.3 Tat transactivation 

A major control element of HIV transcription is TAR (trans-acting response 

element). 

Trans-acting response element (TAR), located between +1 to +80, is a target of tat 

prptein (transactivation of transcription). Tat is a 14-kd molecule that is translated 

from two adjacent coding exons in a multispliced mRNA. The function of the region 

encoded by the first exon (a 72 amino acids fragment), consists of transactivation and 

nuclear localisation. The function of the region encoded by the second exon is not yet 

defined. TAR RNA region has a predictive stem-loop secondary structure that is 

present at the 5'-terminus of all viral mRNAs. This structure contains a three-

nucleotide bulge region in the stem that binds Tat protein in vitro and is necessary for 

transactivation in vitro (Gatignol et al., 1989, 1991, Han et al., 1992). In the absence 

of Tat protein, HIV transcription is non-processive. Tat functions by recruitment of 

specific cellular protein kinase complex called TAK (Tat-associated kinase). TAlK 

complex comprises cycline-dependent kinase 9 (Cdk9) and cyclin I (Cy T) and 

binds TAR RNA region via interactions between cyclin T and Tat. Binding of the 

TAlK complex and Tat to the Tar region leads to the hyperphosphorylation of the 

CTD (C-terminal domain) of RNA polymerase II. As a consequence, the 

transcriptional elongation of the nascent viral RNA is upregulated and the virus 

production is maximised (Emerman et al., 1998). 

1.3.1.4 Posttranscriptional control of HIV RNA expression 

HIV-1 proteins are produced by either monocistronic (e.g. gag-pol, tat) or bicistronic 

(e.g. rev/nef, vpulenv) mRNAs. Thus, single unspliced mRNAs produce Gag-Pol 

precursor by ribosomal frameshifting, whereas Env is produced at the second open 



reading frame (ORF) by bicistronic vpulenv mRNAs (Schwartz et al., 1990a). The 

HIV-1 primary transcript is alternatively spliced to produce more than 30 different 

species of viral proteins (Schwartz et al., 1992a), all from a single promoter and 

sharing a common 5'end. 

The cytoplasmic expression of intron-containing, unspliced and single-spliced viral 

mRNAs is regulated by Rev protein binding to a Rev responsive element (RRE). The 

RRE RNA is a 234-nucleotide region located in the env that for which a stable stem-

loop secondary structure is predicted (Heaphy et al., 1991). This region is contained 

in all viral mRNAs that encode the unspliced Gag-Pol and single spliced Vif, Vpr 

and Vpu-Env but not in multispliced mRNAs transcripts that encode Tat, Rev and 

Nef(Pomerantz etal., 1992, Malim etal., 1991a,b). 

HIV-1 RNA contains, besides TAR and RRE, negatively acting elements that inhibit 

HIV expression (i.e. INS or CRS) by interfering with the stability, transport and 

translatability of the viral mRNAs. In addition to sites important for expression, the 

HIV mRNA also contains other sites necessary for other steps in the viral cycle: the 

genomic RNA dimerisation site, encapsidation site (ie. psi site) and priming sites for 

reverse transcriptase (primer binding site (PBS) for minus-strand priming and 

polypurin tract (PPT) for plus-strand priming). 

1.3.2 Structural proteins 

1.3.2.1 Gag proteins 

Splicing of the primary transcript produces two gag containing precursor proteins: a 

gag precursor Pr555a5  and a Gag-Pol fusion protein (Pr 1 60gagpol) 

The gag precursor p55a  forms the core viral particle that interacts with other viral 

and cellular components (RNA, Pol and Env proteins, plasma membrane) and 

facilitates the incorporation of the viral proteins into viral particles during budding 

process. The Gag-Pol fusion protein (Pr 160P01)  is produced by ribosome 

frameshifting to the first open reading frame (ORF). About 20 p55 as molecules are 

produced for each Pr160 °'. 
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During viral assembly the protease is activated and cleaves the Gag precursor into 

four proteins (matrix p17, capsid p24, nucleocapsid, p7 and p6) and two small 

peptides (p1 and p2). 

The region between positions 178 and 300 in the capsid domain of the Gag precursor 

has been shown to bind cyclophilin A (Luban et al., 1993). Mutation of the 

cyclophilin A-binding domain results in non-infectious viral particles (Franke et al., 

1994, Thali et al., 1994). Cyclosporin and its analogues compete with the binding of 

cyclophilin A to Gag and inhibit HIV- 1 replication. 

1.3.2.2 Env proteins 

The viral envelope contains, as spikes of trimers of two proteins, a surface external 

gpl2O glycoprotein and a transmembrane gp4l glycoprotein. 

Gp120 glycoprotein 

Early studies have shown that gpl2O has a complex three-dimensional structure that 

is held together by disulphide bonds whose number is conserved between divergent 

isolates (Myers et al., 1991). Studies conducted by Leonard et al., 1990 revealed the 

presence of five variable regions, designated Vi to V5, which are interspersed 

among five conserved regions. The V1/V2 domain has a double-loop disulphide-

structure, whereas V3 and V4 regions exist as single loop structures that are formed 

by a single disulphide bond at the base of each. These regions were predicted by 

computer-assisted modelling to be exposed at the surface of the molecule and, hence, 

potentially antigenic (Modrow et al., 1987). Also predicted to be exposed were some 

residues from conserved regions (ie. C2, C3 and C4) that are involved in binding to 

the CD4 molecule (Olshevsky et al., 1990). Subsequently, studies employing 

immunochemical techniques have shown that the variable regions of the envelope are 

accessible to monoclonal antibodies and therefore exposed on the protein surface, 

whereas the conserved regions of gp 120 are inaccessible to anti-gp 120 monoclonal 

antibodies on the native protein (Moore et al., 1993a, b, c, 1994a, b, c). In this 

respect it has been found that Cl and C5 conserved regions are exposed on the 

monomeric form of gpl20 but inaccessible on the oligomeric form (Moore et al., 

1994b). 
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The structure of the gp120 core derived from HXBc2 strain of HIV-1 was 

ascertained by X-ray crystallography, when the core was complexed with two-

domains: CD4 and neutralising antibody (Kwong et al., 1998). The core contained 

deletions of the Vi, V2 and V3 variable loops and the N- and C- termini, in 

comparison with the full-length gp 120. Three domains were identified in this core 

structure: an inner, an outer and a bridging sheet. The inner domain is seen as a 

region that interacts with the gp4 1 glycoprotein. The outer domain that is variable 

and heavily glycosylated is exposed on the assembled envelope glycoprotein trimer 

(Wyatt et al., 1998). Arbitrarily, a proximal and a distal side were delimited on the 

core structure. The "proximal" side of the gpi20 core that includes the N- and C-

termini is believed to reside near the viral membrane. The "distal" side is believed to 

face the target cell membrane after CD4 binding occurs. The density of glycosylation 

on the gp 120 surface is seen to face outwards on the trimeric envelope glycoprotein 

spike. Three faces have been described on the oligomeric spikes: a neutralising face, 

a non-neutralising face and a silent face. The neutralising face includes the V2 and 

V3 loops and is adjacent to the surface. The non-neutralising face is poorly 

accessible on the assembled envelope glycoprotein trimer and therefore elicits only 

non-neutralising antibodies. The silent face corresponds to the highly glycosylated 

outer domain surface (Wyatt et al., 1998). 

Finally, residues located within V3 molecule are important for binding of gp 120-

CD4 complexes to the chemokine receptors (Rizzuto et al., 1998). 

Gp41 glycoprotein 

Gp4 1 glycoprotein has three domains: a hydrophobic external domain at the N-

terminal part of the molecule, a transmembrane domain and a cytoplasmic domain. 

The external domain of gp4 1 interacts with gp 120 through non-covalent bonds (Ivey-

Hoyle et al., 1991). It also contains a fusion domain that mediates the fusion of the 

viral envelope with the plasma membrane of the host cell (Freed et al., 1990). 

The cytoplasm domain of gp4l interacts with the matrix protein (MA) p7a 

Deletions in this domain block incorporation of Env into virions (Freed et al., 1996). 

The core structure of gp4l glycoprotein has been recently elucidated (Chan et al., 

1 998a,b). The external domain (also called ectodomain) of the molecule has a N-part 

that contains a hydrophobic glycine-rich "fusion" peptide, which has a role in the 



membrane fusion, and also two other domains with a 4,3 hydrophobic (heptad) 

repeat motif, which is characteristic for a coiled-coil structure. These hydrophobic 

domains are designated N51 and C41 because they resulted from the N and C-

terminal of the ectodomain by a limited proteolysis and consisted of a stretch of 51 

and 41 amino acids, respectively (Lu et al., 1997). By employing biophysical 

methods, Chan et al. (1997, 1998a) have shown that three of each N51 and C41 

peptides associate to form a thermostable helical trimeric complex of N51/C41 

heterotrimers, in which the N51 peptides from the inner helices form hydrophobic 

grooves in which fit three residues (Trp-628, Trp-631 and Ile-635) from the C41 

peptides. Thus, the C41 peptides wrap obliquely the N51-peptide helices bundle, in 

an antiparallel manner (Lu et al., 1997, Chan et al., 1997). 

The identification of the core structure of gp4l has brought light on the fusion 

mechanism. The interaction between gpl20 and cellular receptors is followed by 

conformational changes in the envelope complex that lead to a pre-hairpin 

intermediate, in which the fusion domain of each N peptide region of the trimeric 

coiled-coil is inserted into the target membrane. The C41 and N51 peptide domains 

are not still associated, probably because there are still involved in binding to gp120 

or to other regions of gp4 1. This pre-hairpin structure is long-lived and evolves into a 

fusion-active hairpin structure, when the C41 and N51 peptide regions associate and 

adopt a helical hexameric bundle structure. This event triggers the cellular and viral 

membranes in apposition followed by the membrane fusion, probably via fusion 

pores made by gp4l trimer aggregates (Chan et al., 1998b). 

The N-terminal region is the most highly conserved domain of Env and synthetic 

peptides that mimik the C41 region of gp4 1 protein, such as C34 and T20/DP 179 

peptides, have been used as effective inhibitors of HIV infection and syncytia 

formation. These C-peptides can associate with N-peptide domains of the pre-hairpin 

structure and inhibit this intermediate (Eckert et al., 1999) in a dominant-negative 

manner. Thus, in a phase I clinical trial, Kilby et al. (1998) have shown that T20 has 

an antiviral effect when used as a therapeutic intervention in infected individuals. 
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Peptides such as T649 that do not target the pocket-binding residues can select for 

escape mutants, whereas those that act on the groove-binding residues are elusive to 

the emergence of the escape variants due to the fact that mRNA encoding those 

residues are part of the RRE and, hence, this region is highly conserved among 

different HIV-1 isolates. Also peptides containing D-amino acids such as IQN 17 

have been identified as ligands for the hydrophobic pocket of gp4l and are able to 

inhibit gp4l-mediated cell-cell fusion and HIV-1 infection (Eckert et al., 1999). 

These peptides are insensitive to proteolytic degradation, mimic N51 peptide domain 

ofgp4l and are fused to soluble trimeric-coiled coil to impair their aggregation. 

1.3.3 Proteins with enzymatic activity 

1.3.3.1 Protease 

This protein contains a characteristic active centre (ie. Asp-Thr-Gly) that is active 

when the enzyme is in dimenc form, each subunit being of approximately 10kb 

(Debouck et al., 1987, Copeland et al., 1988, Kohl et al., 1988). The enzyme 

becomes active only after Gag and Gag-Pol multimerisation occurs. Intracellular 

activation of HIV-1 protease, due to over expression of the HIV-1 gag-pol 

polyprotein inhibits the assembly and budding of virus-like particles (Karacostas et 

al., 1993). Inhibitors of HIV protease such as saquinavir, indinavir, ritonavir, 

nelfinavir and amprenavir are now in widespread use as components of HAART. 

1.3.3.2 Reverse transcriptase 

This protein is a heterodimer of p66 and p51 subunits that is produced by proteolytic 

cleavage of Pr 1600I  by the viral protease (Di Marzo Veronese et al., 1986). 

Firstly, the p66 subunit is produced from the Gag-Pot precursor and dimerised. It is 

subsequently cleaved at the C-terminal part of one p66 subunit to produce a p66-p5l 

heterodirner. The protein has three enzymatic activities: RNA-dependent DNA 

polymer ase, DNA-dependent DNA polymerase and ribonuclease H (RNase H). The 

N-terminal portion of p66 contains the polymerase activity, whereas the RNase H 

activity lies within the C-terminal portion of p66. The heterodimer is characterised 

by asymmetry (Kohlstaedt et al., 1992, Jacobo-Molina et al., 1993). Thus, p66 has a 
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large cleft that resembles a right hand with its subdomains designated fingers, palm 

and thumb. Reverse transcriptase does not have a 3' exonuclease proof reading 

activity and hence it has an error rate of one in 104  nucleotides. This means that each 

genomic RNA molecule of 104  nucleotides contains on average one misincorporation 

per each replication cycle. 

Inhibitors of RT can be classified in nucleoside and non-nucleoside analogues 

(Debyser et al., 1992a) The nucleoside analogues used are AZT (zidovudine), ddl 

(didanosine), ddC (zalcitabine), d4T (stavudine) and 3TC (lamivudine) (Debyser et 

al., 1992a, Richman et al., 1992, Kellam et al., 1994). These analogues act after 

phosphorylation to nucleotide trisphosphates to inhibit elongation and the active site 

of RT. Non-nucleotide analogous such as nevirapine, delaviroline and efaviranez 

inhibit directly reverse transcription activity (Debyser et al., 1992b, De Clercq et al., 

1994). Non-nucleoside inhibitors target a region in RT-ase located between amino 

acid residues 181 to 188. Single point mutations at Tyr 181, 190 and 103 to Cys lead 

to drug-resistant escape mutants in vitro and in vivo (Balzarini et al., 1993, 1994). 

1.3.3.3 Integrase 

This enzyme is a 31 -kd protein that is produced after processing of PH 60go1  from 

the C-terminal part of Pol. Integrase cleaves the ends of the linear viral RNA and 

also the cellular DNA randomly and covalently links the viral DNA to the host 

chromosomal DNA (Vink et al., 1993a, Engelman et al., 1993, Drelich et al., 1993). 

It contains: an N-terminal zinc finger, a centrally located region responsible for 

catalytic activity and oligomerisation and a DNA-binding domain involved in the 3'-

DNA processing activity and integration (Engelman et al, 1993, Vink et al., 1993b). 

1.3.4 Regulatory proteins 

HIV-1 has two regulatory proteins: Tat and Rev. 

1.3.4.1 Tat protein 

Tat is a 1 6-kd protein encoded from two separate exons of multiply spliced mRNAs 

(Dayton et al., 1986, Fisher et al., 1986a, Sodroski et al., 1985). Another 14-kd form 

of Tat may be produced by single spliced mRNAs. Tat is located in the nucleus and 

acts as a transcriptional activator factor of HIV expression (Peterlin et al., 1986, 
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Hauber et al., 1989, Ruben et al., 1989) through its binding to TAR. Tat contains 

distinct functional domains: an activation domain and an arginine-rich basic domain 

that are required for activation of transcription, specific binding to TAR RNA and 

nuclear localisation (Derse et al., 1991). The activation domain lies in a region 

between amino acids 40 through 48 and contains a motif (RKGLGI) that is 

conserved between HIV-1, HIV-2 and SIV. The arginine-rich basic domain contains 

a RKKRRQRRR motif within the amino acids 49 through 72 that is responsible for 

RNA binding and for nuclear localisation of the protein, together with amino acid 

residues flanking the basic region (Churcher et al., 1993, Luo et al., 1993). Initiation 

of transcription is given by the interaction between the HIV-1 LTR and RNA 

polymerase II holoenzyme complex (RNAP II) via a bulged stem-loop structure 

called TAR. In the absence of Tat, transcription elongation is inefficient due to the 

hypophosphorylation of the C terminal domain (CTD) of RNAP II. Cdk9-CycT 

complex binds the activation domain of Tat via CycT, increasing the affinity of the 

interaction between Tat and TAR. After Tat binding to TAR, Cdk9 

hyperphosphorylates the CTD of RNAP II, stimulating the transcription elongation 

of the nascent viral RNA (Emerman etal., 1998). 

1.3.4.2 Rev protein 

Rev is a small, positively charged 18-kd protein that shuttles between the nucleus 

and the cytoplasm (Kalland et al., 1 994a,b, Meyer et al., 1994, Richard et al., 1994). 

Rev binds to RRE (Daly et al., 1989, Holland et al., 1990, 1992, Cook et al., 1991) 

and stabilises the unspliced and partially spliced HIV mRNAs that are subsequently 

transported and translated into the viral structural proteins (Malim et al., 1989, Felber 

et al., 1989, Emerman et al., 1989). In the absence of Rev, mRNAs are multiple 

spliced and the production of the structural proteins is very low. Rev antagonises 

with inhibitory/instability regions (ie. INS or CRS) that prevent RNA expression 

(Hadzopoulou-Cladaras et al., 1989, Rosen et al., 1988, Schwartz et al., 1992b, c). 

Rev is located primarily in the nucleus (Cullen et al., 1988, Cochrane et al., 1989). 

Several functional domains have been identified in Rev by mutagenesis: an NH2-

terminal domain that mediates RRE-binding, Rev-Rev multimensation as well as 
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nuclear localisation, a COOH-terminal leucine-rich domain that contains a nuclear 

export signal and an effector domain. Thus: 

A 	region 	located 	between 	amino 	acid 	35 	through 	50 

(RQARRNRRRRWRERQR), rich in arginine residues, has been shown to be 

involved in nuclear-nucleolar localisation and Rev-Rev multimerisation (Zapp et 

al., 1991, Olsen et al., 1990, Malim et al., 1991b). 

The region between amino acids 34 through 50 binds specifically to RRE (Kjems 

etal., 1992, 1991). 

A region between amino acids 75 through 84 represents the effector domain. 

Four leucine residues (Leu78, Leu8l, Leu83 and Leu75) and glutamine (G1u79) 

have been identified as being important for Rev function (Malim et al., 1991b). 

The effector domain is the signal for nuclear export after association with cellular 

factors. Rev multimerisation is essential and takes place even in the absence of RRE 

(Nalin et al., 1990). Furthermore, formation of the RNA-binding site may depend on 

Rev multimerisation (Olsen et al., 1990). 

The nuclear export signal of Rev interacts co-operatively and in a leptomycin B 

sensitive reaction with exportin 1 (XPO)(a member of the importin /kariopherin-f 

superfamily of shuttling nuclear transport receptors) and the Ran guanosine 

trisphosphatase (Ran-GTPase). The Ran GDP-Ran GTP gradient that exists between 

the cytoplasm and nucleus triggers the RRE-Rev-XPO-Ram-GTP complex for 

nuclear export. In the cytoplasm, Ran GTPase-activating protein (RanGAP) 

stimulates GTP hydrolysis and triggers the dissociation of XPO, Ran-GDP from 

Rev-RRE-viral RNA. Subsequently, the viral RNA is released and is either translated 

or packaged into virions, whereas Rev shuttles back to the nucleus (Emerman et al., 

1998). 

1.3.5 Accessory proteins 

The four HIV- 1 "accessory proteins" (ie. vif, vpr, vpu and nef) were so described 

because they were dispensable for virus replication in vitro. 
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1.3.5.1 Vif protein 

This is a 23-kd protein that influences the infectivity but not the production of virus 

particles (Kan et al., 1986, Lee et al., 1986, Rabson et al., 1985). It is a cytoplasmic 

protein that exists in both a soluble cytosolic form and a membrane-associated form 

(Michaels et al., 1993, Goncalves et al., 1994). Vif ensures a proper assembly of the 

virion and also an efficient Env-mediated infection of target cells. Thus, it has been 

shown that vif virus is approximately 25 to 100 times less infectious than wild-type 

virus produced in CEMx174 cells or PBMCs, respectively (Blanc et al., 1993, 

Courcoul et al., 1995). 

The region of the C terminus of Vif is required for the stable association of Vif with 

membranes. Mutations of Cysi 14 and Cys 133 confer a Vif - infection phenotype 

(Ma et al., 1994). The region between 103 to 115 and 142 to 150 is important for Vif 

function, although its function is not completely defined. 

1.3.5.2 Vpr protein 

This is a 14-kd protein that interacts with the p6 gag  part of the Pr 55 gag  precursor 

(Cohen et al., 1990, Paxton et al., 1993). Vpr is detected early after infection, being 

produced by multiply spliced (Rev-independent) and by singly spliced (Rev-

dependent) mRNAs (Neumann et al., 1994). The protein is involved in the nuclear 

import of the preintegration complex, in particularly non-dividing cells, cell growth 

arrest, transactivation of cellular genes and induction of cellular differentiation. The 

region between 17 and 34 on Vpr contains an amphipathic a-helical domain that is 

critical for the stability of Vpr and its efficient incorporation into the virion. HIV- 1 is 

able to integrate its genome in non-dividing cells by transporting the preintegration 

complex into the nucleus via Vpr, integrase and p 17 MA  (Heinzinger et al., 1994). Vpr 

can directly interact with nucleoporins, thus explaining the nuclear localisation of vpr 

during virion packaging via p6 protein, which is located at the C-terminus of the 

P55 gag precursor (Vodicka et al., 1998, Paxton et al., 1993). Vpr also binds Importin 

a (Imp (x), increasing the affinity of the Imp a to the NLS present on HIV-1 PICs 

and, hence, enhancing PlC import to the nucleus (Popov et al., 1998). Vpr alone 

arrests the cells at G2 in the cell cycle (Rogel et al., 1995). The removal of phosphate 

residues on the p34 2  —cyclin B kinase by phosphatase cdc25C inhibits kinase 
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function that is critical for the transition from G2 to mitosis. In vpr-expressing cells, 

cdc25C is in an inactive form, which triggers the p34 2  —cyclin B kinase in an 

active form, event that leads to G2 arrest (Re et al., 1995). 

The Vpr homologue in HIV- 1 and Sly is named Vpx and is important also in virus 

infectivity (Park et al., 1995a, b). 

Vpr is important for replication in vivo, as a Vpf molecular clone reverted to wild 

type in infected macaques monkeys (Lang et al., 1993). This phenomenon explains 

the results obtained by Gibbs et al. (1995) who reported that animals infected with 

Sly isolates with deletion in Vpr or Vpx progressed to AIDS. 

1.3.5.3 Vpu protein 

This is a 1 6-kd protein that is produced by a bicistronic vpulenv mRNAs (Schwartz 

et al., 1990). It is a membrane protein that has at least two functions: degradation of 

CD4 in the endoplasmic reticulum and enhancement of virion release from the 

plasmalema. Several regions on the cytoplasmic domain of CD4 molecules located 

between amino acid 402 and 420 and 418 to 425 are responsible for the susceptibility 

to Ypu-induced degradation (Willey et al., 1994). The transmembrane domain of 

CD4 also provides sequences through which the Vpu protein could access CD4 for 

degradation in the endoplasmic reticulum (Buonocore et al., 1994, Raja et al., 1994). 

The C-terminal domain on Vpu is involved in interaction with CD4 molecule (Chen 

et al., 1993). During viral infection, Env binds to CD4 in the ER and retards its 

transit to the plasma membrane. Vpu binds the CD4-Env complex in the ER and 

targets it for proteolysis by recruitment into the ubiquitin-proteasome mediated 

pathway (Schubert et al., 1998) via interactions that are established between -TrCP 

and Skplp proteins (Margottin et al., 1998), while vpu is apparently recycled. This 

leads to the release of Env from the ER and its incorporation into progeny virions. 

1.3.5.4 Nef protein 

This is a 27-kd myristylated protein that is found in the cytoplasm and is associated 

with the plasma membrane through the myristyl residue linked to the conserved 
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second amino acid (Gly). Nef seems to be important for viral replication in vivo. Its 

primary function consists of the CD4 down regulation and degradation in lysosomes 

(Garcia et al., 1991, Aiken et al., 1994). The dileucine motif on the cytoplasmic tail 

of CD4 initiates the interaction of Nef with CD4 and the i subunit of the AP-2 

adapter complex at the plasma membrane. The interaction between Nef and AP-2 

increases the association of CD4 with clathrin-coated pits and promotes the 

formation of the pits themselves (Emerman et al., 1998). 

In addition to CD4, Nef induces downregulation of cell-surface MHC class I 

molecules (Le Gall et al., 1998) and, thus, inhibits CTL-mediated lysis of HIV-1-

infected cells (Collins et al., 1998). 

Nef also increases the infectivity of produced virions (Miller et al., 1995, Chower et 

al., 1994) through interactions between its proline-rich domain and cellular kinases. 

Thus, the PxxP motif in HIV-1 Nef binds to the SH3 domains of a subset of Src 

kinases and enhances the replication of Nef + viruses but does not influence the CD4 

downregulation. Nef PxxP motif binds specifically the biotinylated SH3 domains of 

Hck and Lyn proteins (Saksela et al., 1995, Sawai et al., 1994). 

Other functions of Nef have been described such as: abnormal hematopoiesis through 

inhibition of bone marrow progenitor cells (Calenda et al., 1994), B-cell activation 

and induction of IL-6 (Chinnule et al., 1994), inhibition of the protein synthesis 

(Poulin et al., 1994). 

1.4 Viral replication cycle 

HIV- 1 virus makes primary contact to CD4 through its gp 120 envelope glycoprotein 

spikes. This binding is followed by the interaction between V3 region of gp120 

molecules with one of the chemokine receptors (Section 1.6.4). Conformational 

changes expose the N-terminus of gp4l (a stretch of hydrophobic amino acids) 

allowing the fusion of the cellular and viral membranes (Maddon et al., 1988, Hunter 

et al., 1990, Chan et al., 1998) (Section 1.3.2.2). Afterwards, the viral core is 

uncoated and the HIV- 1 nucleoprotein complex consisting of Gag and Pol proteins 
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and genomic RNA is released into the cytoplasm. The Pol protein comprises 

RT/RNase H enzyme, a 66- and 51-kd heterodimer that uses a single-stranded 

genomic viral RNA to synthesise a double-stranded linear proviral DNA. The reverse 

transcription process generates the LTR on the 5' and 3' ends of the proviral DNA, a 

requirement that is characteristic for integration of the proviral DNA into the cellular 

chromosomal DNA. The viral DNA integration into the chromosomal DNA requires 

a 32-kd integrase enzyme that is contained in the preintegration complex. The 

integrase removes two nucleotides at the 3 '-end of both DNA strands and cuts the 

chromosomal DNA in such a way that produces a 5'-five nucleotide overhang on 

each end. Thus, the 3 '-ends of the viral DNA are ligated with the 5 '-ends of genomic 

DNA followed by the filling up the gaps in the genomic DNA. The resulting 

integrated form consists of a provirus minus two base pairs at the ends of both LTRs 

and an identical five-base pair sequence immediately upstream and downstream of 

the provirus. The integration of HIV- 1 was until recently believed to occur randomly. 

However, in four persons infected with HIV-1 with non-B-cell lymphomas it was 

found that HIV-1 genome was integrated in fur, located upstream from the fos-fps 

protooncogene (Shiramizu et al., 1994). Linear and circular double stranded DNA 

may be found unintegrated into the nucleus of a recently infected cell. When the 

infected cells are activated, the transcription of the proviral DNA occurs leading to 

the synthesis of the virus proteins that are included together with two copies of the 

RNA in the new virions during the virion assembling and budding. 

1.5 HIV-1 subtypes 

HIV-1 isolates that have significant public health importance were classified into 

several subtypes or clades designated A through K. Envelope sequences between 

subtype varied by more than 20%. Most of the HIV-1 subtypes have been found in 

sub-Saharan Africa, with subtypes A, C and D being more prevalent than the others. 

Subtype B showed distribution preponderance in the United States and Western 

Europe. Less heterogeneity was shown by the strains isolated in Asia. In Thailand, 

HIV-1 subtypes B and E spread into the population through different routes: subtype 

B was detected mainly among intravenous drug users, whereas subtype E was spread 

rapidly among heterosexuals. Similarly, in India subtype B spread among 
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intravenous drug users whereas subtype C was mainly found in heterosexuals. In 

general the more rapidly a strain spreads within a new population, the less viral 

diversity in that population was found (Weniger et al., 1994). 

A new strain designated HIV-0 was detected in Cameroon and Gabon (Peeters et al., 

1994, Nkengasong et al., 1994). Analysis of its genome in comparison with those of 

HIV-1, HIV-2 and SIVs has shown that HIV-0 is more related to HIV-1 than HIV-2, 

being less related to HIV-1 subtype A through H than the other subtypes are related 

to each other (Gurtler et al., 1994). For this reason HIV-1 subtypes A through H 

were designated M group (major group) and HIV-0 was designated the 0 group 

(outgroup) (Charneau et al., 1994). A common human progenitor ancestor from 

whom they were derived and from which they diversified may explain the close 

relatedness of the subtypes from the M group. HIV-0 and HIV-2 probably entered 

into the human population through zoonotic transmission from chimpanzee and 

mangabey monkey, respectively (Hirsch et al., 1989). A new branch of the HIV-1 

cluster designated "N" was recently discovered (Simon et al., 1998). 

Subtype A, the most prevalent subtype in Africa, has recombined with many other 

subtypes giving recombinant viruses that were designated "Circulating Recombinant 

Forms" (CRFs). There are four CRFs of HIV- 1 spread worldwide to a significant 

extent. AE virus from Southeast Asia (Can et al., 1996, Gao et al., 1996), called AE 

(CM240), the AG recombinant from west and central Africa, called AG (IbNG), 

(Can et al., 1998), the AGI recombinant from Cyprus and Greece, called AGI 

(CY032) (Gao et al., 1998, Kostrikis et al., 1995, Nasioulas et al., 1999) and the AB 

recombinant from Russia, called AB (Ka1153) (Liitsola et al., 1998). A variety of 

intersubtype recombinants combining segments such as A and C, A and D, B and F 

have also been documented. 

1.6 Biological properties displayed by HIV-1 in vitro 

HIV-1 displays three biological properties in vitro: replication rate, cytopathic effect 

and cellular host range. 
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1.6.1 Replication rate 

The replication rate is the feature based on which the isolates were classified as 

"slow/low" and "rapid/high" (Asjo et al., 1986). The classification was done by co-

cultivation of HIV-positive PBMC with negative donor PBMC. The isolates able to 

replicate efficiently in PBMCs were designated "rapid/high", whereas those able to 

yield low amounts of virus after a prolonged time in culture were defined as 

"slow/low" isolates. Generally, although not always, "rapid/high" but not "slow/low" 

isolates were found to induce syncytia and infect T cell lines (Fenyo et al., 1988, 

1989). 

1.6.2 Cytopathic effect 

The cytopathic effect distinguishes the isolates in syncytia inducing and non-syncytia 

inducing, based on their ability to induce cell fusion (or syncytia) in established T-

cell lines (eg. MT-2 cells) (Lifson et al., 1986). HIV infection of PBMC in culture 

results in the formation of the multinucleated cells within 2 to 3 days, accompanied 

by "ballooning" and degeneration of the cells. The cytopathic effect can be 

manifested by the single-cell death in the absence of syncytia as a consequence of 

pycnosis and degradation (Fenyo et al., 1988). 

1.6.3 Cellular host range 

The cellular host range refers to the type of cells in which HIV-1 isolates can grow. 

Initially, several reports in which the impact of the envelope regions for the cellular 

host range was investigated, revealed different ability for different isolates to 

replicate in CD4-positive transformed cell lines and monocyte-derived macrophages 

(Gendelman et al., 1990, Cheng-Mayer et al., 1990a). In general, HIV-1 isolates able 

to grow in cultures of monocyte-derived macrophages do not grow well in 

transformed T cell line. These isolates are described as MT-tropic (for macrophage 

and primary T lymphocytes) or of broad host-range, or dual tropic (Moore et al., 

1995a). The isolates able to grow in CD4-positive cell lines but not monocyte-

derived macrophage culture are referred to as T-cell-line tropic, T-tropic, or narrow-

host range. This classification is not rigid. Thus, all isolates are able to infect 

activated peripheral blood CD4 cells and most if not all primary isolates are able to 

FIE 



infect macrophages with different replication kinetics (Cheng-Mayer et al., 1988, 

Valentin et al., 1994). Furthermore, dual-tropic viruses have been identified (ie. 

rapidly replicating, syncytium-inducing isolates capable of infecting macrophages) 

(Valentin et al., 1994, Simmons et al., 1996). 

1.6.4 Receptors and co-receptor usage for HIV-1 entry 

The main cellular receptor for HIV- 1 was identified and showed to be CD4 molecule 

that is commonly found on a subset of T-lymphocytes (Th cells) and on cells of 

monocyte-macrophage lineage (Klatzmann et al., 1984, Sattentau et al., 1989, 

Maddon et al., 1986, 1987). Some other molecules such as sphingolipid galactosyl 

ceramide are believed to mediate viral entry in the absence of CD4 molecule on 

CD4 brain- and bowel-derived human cells with lower efficiency (Yahi et al., 

1994a, b, Harouse et al., 1998). Early studies using murine cell lines that were 

transformed with a cDNA clone of the human CD4 gene have shown that the 

expression of the CD4 molecules alone on the murine cell lines did not render these 

cells permissive for HIV-1 infection (Maddon et al., 1985). In 1995, it has been 

shown that CC chemokines RANTES, MIP-la, MIP-113 are suppressive factors 

released by CD8 T lymphocytes which are able to suppress infection by M-tropic 

HIV-1 strains but have no effect on a TCL-tropic strain (Cocchi et al., 1995). The 

chemokine receptor with specificity for RANTES, MIP-la and MIP-13 has been 

identified and called CCR5 (the fifth receptor for CC chemokines) (Samson et al., 

1996, Combadiere et al., 1996, Raport et al., 1996). It has been shown that CCR5 is 

the major coreceptor for macrophage-tropic HIV-1 strains (Deng et al., 1996, Dragic 

et al., 1996, Alkhatib et al., 1996, Doranz et al., 1996). 

In 1996, a cDNA that rendered a CD4 expressing murine cell permissive for fusion 

with cells expressing Env from a TCL-adapted strain was isolated (Feng et al., 

1996). The protein was identified and found to be a member of a superfamily of the 

seven transmembrane domain G-protein-coupled receptors. No ligand or functional 

activities were associated with this protein; therefore it has been called "orphan" 

receptor or "fusin", based on its property to mediate Env-fusion (Feng et al., 1996). 

Co-expression of the fusion with CD4 rendered non-human cells permissive for Env- 
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mediated cell fusion and anti-fusin antibodies were able to inhibit fusion and 

infection of primary CD4 T lymphocytes. Thus, both results showed that fusion fit 

the criteria for the TCL-tropic HIV-1 receptor. Subsequently, stromal cell-derived 

factor-i (SDF-l) has been characterised as a ligand for fusin (Bleul et al., 1996, 

Oberlin et al., 1996). Fusin was renamed CXCR4 (the fourth receptor for CXC 

chemokines). 

In general, viruses from all clades are able to use both CCR5 and CXCR4 

coreceptors (Bjorndal et al., 1997, Bazan et al., 1998). Thus, TCL-tropic strains use 

CXCR4, as T cell lines abundantly express this molecule. Conversely, macrophage-

tropic strains use CCR5, a coreceptor that is expressed on macrophages. Finally, 

dual-tropic strains are able to use both coreceptors and can infect primary T cells that 

express both molecules. 

Recently, the designation of HIV-1 phenotype was revised. Thus, X4 was conferred 

to isolates CXCR4-specific, TCL-tropic and syncytium inducing, R5 was given to 

isolates CCR5-specific, macrophage-tropic and non-syncytium-inducing, and finally 

R5X4 corresponds to isolates that use both coreceptors and are dual-tropic (Berger et 

al., 1998). 

Other human chemokine receptors have been demonstrated to have coreceptor 

activity: CCR2b (Doranz et al., 1996), CCR3 (Choe et al., 1996, Simmons et al., 

1998), CCR8 (Rucker et al., 1997, Simmons et al., 1998), GPR1 (Zhang et al., 

1998a), CX3CR1 (V28 or CMKBRL1) (Combadiere et al., 1998a,b), 

STRL33/Bonzo (Deng et al., 1997, Zhang et al., 1998a, Simmons et al., 1998), 

GPR15/BOB (Edinger et al., 1998, Farzan et al., 1997, Simmons et al., 1998) and 

Apj (Choe et al., 1998, Zhang et al., 1998a) but CCR5 is the predominant receptor 

used in infected individuals. The identification of new coreceptors led to the 

elaboration of the sequential conformational changes of the Env protein to allow 

fusion/entry/infection of the CD4 T lymphocytes (Wyatt et al., 1998). In this 

model, CD4 binds to gpl20, an event that induces conformational changes in gp120 

to create or stabilise the determinants required for coreceptor binding. Subsequently, 
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gp 120 interacts with the coreceptor, inducing further conformational changes in Env 

that result in exposing the fusion peptide of gp4 1 and in fusion of the viral bilipidic 

membrane with the plasma membrane of the target cell. The V3 loop plays an 

important role in the specificity of the gpl20 receptor for coreceptor binding. 

Specifically, basic residues at particular positions on both sides of the V3 loop, in 

concert with other regions such as Vi, V2 and C4 are important for gp 120 binding to 

coreceptor. It has been shown by X-ray crystallographic studies (Kwong et al., 1998) 

that coreceptors interact with the V3 loop and a conserved "bridging sheet" 

composed of the V1/V2 stem and an antiparallel, four-stranded structure that 

includes sequences in the C4 region. 

The temporal evolution of HIV-1 tropism (ie. NSI-SI shift) during HIV-1 

pathogenesis was supported by the discovery of the predominance of R5 viruses at 

early stages, with X4 and R5X4 isolates appearing at late stages. The early R5 

restriction and the late R5-X4 evolution suggest an important role for CCR5 during 

initial viral transmission and for CXCR4 in disease progression at late stages. 

Four coreceptor/chemokine genetic polymorphisms have been identified and shown 

to correlate with delayed rate of HIV-1 disease progression: CCR5z32 (Dean et al., 

1996), CCR5 59029 G/A (McDermott et al., 1998), CCR2-641 (Kostrikis et al., 

1998) and SDF-1 3' UTR-801 G-A (abbreviated SDF-1 3'A) (Winkler et al., 1998). 

Conversely, the presence of a CCR5 promoter allele, designated P1, has been 

reported to correlate with rapid progression to AIDS (Martin et al., 1998). 

Small molecules such as ALX-40 and T22 peptides or bicyclam compounds called 

AMD 3100 have been identified as specific ligands for CXCR4 (R4) receptors, being 

able to block the interaction between R4 and gpl2O (Littman et al., 1998). 

1.7 Natural history of HIV infection 

Usually, HIV- 1 entry into its human host occurs through mucosal surfaces (Quinn et 

al., 1996) and subsequently disseminates throughout the lymphatic tissue (LT). LT 
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becomes the reservoir where virus is produced and stored during the course of 

infection (Pantaleo et al., 1991). The first few weeks of the infection is called the 

acute stage and is characterised by a high level of virus and viral antigen in the blood 

stream, accompanied in many individuals by an illness that resembles infectious 

mononucleosis (Daar et al., 1991, Clark et al., 1991, Ho et al., 1985). The acute 

stage is followed by an asymptomatic, clinically latent stage, when the level of virus 

and viral antigen drops, due to the emergence of the cellular immune responses 

(Koupetal., 1991, 1994a). 

AIDS ensues after several years, when CD4 T cell count in blood slowly declines to 

reach the level of 200cells/mm 3, below which opportunistic tumours and infections 

can appear (Pantaleo, et al., 1993, Fauci et al., 1996). 

HIV infection is defined by interconnected processes of viral replication, spread and 

infection of new cells (Wei etal., 1995, Ho et al., 1995). This means that the rate of 

progression to AIDS and death is correlated with the levels of viral RNA in the blood 

stream (Mellors et al., 1995). That reflects virus production in LT (Haase et al., 

1999). 

1.8 Reservoirs of the productively infected cells 

HIV- 1 is believed to pass through mucosal barriers by infecting dentritic cells (DC) 

or macrophages (M(D) (Spira et al., 1996). These cells convey the virus to LT where 

CD4 T cells become infected. However, studies conducted by Haase (1999) 

revealed that more than 90% of the productively infected cells at the portal of entry 

were CD4 T lymphocytes. In the second week of infection the productively infected 

cells in the LT are CD4 T cells (Veazey et al., 1998). From the clinically latent 

stage to AIDS, LT is the major reservoir of HIV virus. In AIDS, nearly every organ, 

including liver, kidney, adrenal, lung and central nervous system (CNS) harbour 

virus. In lung and CNS, Mc1 and cells in the Mm-lineage (eg, microglial cells, the 

resident M1s in the CNS) become productively infected cells (Orenstein et al., 

1997). HIV-1 was also detected in CD8 T cells in the late stages (Livingstone et al., 

1996). The number of productively infected cells during chronic HIV infection varies 
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between 107  to 108  cells. The number of copies of viral RNA per productively 

infected cell varies also from 20 copies to 200 copies per cell, with a mean of about 

50-100 copies per cell (Haase et al., 1999). 

The advent of highly active antiretroviral therapy (HAART) has altered the outcome 

of HIV-1 infection by suppressing replication of HIV-1 to undetectable levels in the 

blood stream and LT reservoir (Cavert et al., 1997). The level of viral RNA in FDC 

declines at rates that parallel the decline in numbers of productively infected cells. 

Immune complexes of virus are deposited on FDCs and degraded by complement-

mediated virolysis and phagocytosis by Ms (Spear et al., 1990). Before HAART 

treatment, there is equilibrium between virus production, storage and clearance. 

Studies of 10 patients have shown that after HAART is initiated, the population of 

productively infected cells with more than 75 copies of HIV-1 RNA per cell can no 

longer be detected. This event is accompanied by a rapid decline of virus in 

circulation and in the FDC pool. This population consists of cells in the late stages of 

the viral life cycle in infections that have shortest life expectancy and succumb to the 

cytopathic effects or are eliminated by CTLs. These infected cells with highest 

intracellular concentration of HIV-1 turn over rapidly and are the source of the daily 

virus production. Secondly, cells with more than 20 but less than 75 copies of viral 

RNA per cell are eliminated at a slower rate and, thus, the decay rate of the virus is 

kept at a relatively constant level because of the continued production and deposition 

of virus by these cells. This population is believed to be M, as they do not succumb 

as quickly, but may include CD4 T cells that are chronically infected, but produce 

small amount of virus and consequently have longer lifespans. After six months of 

HAART, a 2500-fold reduction in the FDC pool of virions has been documented 

(Cavert et al., 1997). After 1 year, productively infected cells with more than 20 

copies of viral RNA per cell have disappeared but those with a very few copies of 

viral RNA (less than 5) have not. Persistence of virus in these cells ensures a 

detectable pool of viral DNA even after 2.5 years of suppression of viral replication 

from which virus has been isolated (Wong et al., 1997). The chronically and latently 

infected cells and residual virus in the FDC represent a potential source of wild type 

and drug resistant mutant viruses that are able to restart infection if treatment is 
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ineffective or is stopped. In the latter case, infection is quickly re-established in FDC 

with similar kinetics to acute infection (Wong et al., 1997). 

On HAART, the total CD4 count increases at a rate of 10 9  cells/day (Zhang et al., 

1998b) in both blood and LT, comparable to the CD4 T cell turnover in PBMC (Ho 

et al., 1995). The increase is in the RO subset until a plateau is reached, when a 

slow increase in subset in both blood and LT becomes significant (Autran et al., 

1997, Zhang et al., 1998b). Thus, following treatment, mature CD4 T cells from 

gut, lung and other compartments are redistributed to blood and peripheral lymph 

nodes (Mosier et al., 1995, Rosenberg et al., 1993). The restoration of the immune 

function has been reported even in patients with AIDS undergoing HAART therapy 

(Palella et al., 1998). 

1.9 Immune responses to HIV infection 

1.9.1 Cellular mediated immunity (CMI) 

After local replication in LT, virus is disseminated in a massive viremia, which 

usually is accompanied by symptoms that resolves without intervention. The onset of 

CTL response coincides with the fall in the virus level (Koup et al., 1994b), 

suggesting an anti-viral effect of CD8 cells. To support this finding, Schmitz et al. 

(1999) and Jin et al. (1999) have shown that virus replication cannot be controlled 

when CD8 T cells are experimentally depleted during primary infection. Depletion 

of CD8 cells in chronically infected monkeys resulted in high level of viremia. This 

level dropped coincidentally with the reappearance of CD8 cells. An inverse 

correlation between the magnitude of CTL responses and viral load has also been 

observed by Ogg et al. (1998). These data support the idea that CD8 T cells mediate 

the drop from the peak viremia in acute HIV infection. CTLs have been detected in 

peripheral blood, lymph nodes, skin and semen of infected persons (Bachelez et al., 

1998, Quayle et al., 1998) and a general loss of CTLs occurs during disease 

progression (Klein et al., 1995, Rinaldo et al., 1995). 

CTL responses have been reported in persistently uninfected people who have been 

exposed to HIV (Rowland Jones et al., 1998) and also in HIV babies born to 
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seropositive mothers (Rowland Jones et al., 1995). Moreover, long-term non-

progressors who successfully manage to control viremia have showed a strong CTL 

responses and week to undetectable levels of neutralising antibodies (Harrer et al., 

1996). These individuals showed also strong virus-specific Th responses, Thi-like, 

that were accompanied by a high level of IL-2 and IFN-y (Rosenberg et al., 1997). 

1.9.1.1 Effects of HAART on HIV-1 specific CMI 

Institution of HAART has effects on CTL responses but data obtained to date is 

difficult to be interpreted. Thus, Gray et al. (1999) and Ogg et al. (1999) have shown 

that the onset of HAART is followed by a decline in CTL responses, suggesting that 

sustained viral replication is required to maintained high level of memory CTL. Two 

other factors are thought to lead to the loss of these cells. Firstly, the effect of the 

protease inhibitor on the proteasome mediated antigen processing that limits the 

antigen presentation and prevents effective stimulation of virus-specific CTLs 

(Andre et al., 1998). Secondly, HAART therapy could have a direct effect on the 

proliferative capacity of CTLs (Ogg et al., 1999) leading to the emergence of a short 

half-life CTL population. 

1.9.1.2 Escape from CTL Responses 

Disease progression has been reported to coincide with the emergence of CTL-

escape variants in vivo (Borrow et al., 1997, Goulder et al., 1997a, b). Escape from 

CTL responses occurs both in the acute and late stages of the infection. Two studies 

investigating patients with acute infection showed that strong early CTL responses 

could rapidly select mutant virus. Thus, Borrow et al. (1997) investigated a patient 

early in infection, noticing a CTL clone specific for an epitope on gp160 

(AENLWVTVYY), restricted by B44. This epitope mutated at the second position 

(E/K), seven weeks after infection. This mutation was rapidly fixed and a 

diversification of the CTL responses against other epitopes has followed. 

Also, Goulder et al. (1997a) described two epitopes restricted by HLA B8. The first 

epitope was in gag p17 (GGKKKYKL) that rapidly mutated at the time of 

seroconversion at the third position (K/Q), abrogating peptide binding. The second 
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epitope was in Nef (FLKEKGGL) that was largely mutated (the third residue 

KIE/N/Q) or even completely deleted. 

Late escape from CTL responses has also been documented. Thus, Goulder et al., 

(1996b) studied a group of haemophiliac patients with HLA B27 over more than a 

decade. All individuals showed CTL responses to an epitope in gag p24 

(KRWIILGLNK). In two patients a lysine replaced arginine at the second residue. 

This mutation was fixed 12 years after infection and represented 100% of activated 

provirus in one patient whose CD4 cell count rapidly dropped to 60 cells/mm 3 . 

Peptides with an Arg/Lys substitution bound weakly to HLA B27 impairing CTL 

recognition. Conversely, Brander et al. (1998), failed to find a strong immune 

pressure imposed by HLAA*020  1 restricted CTL response, concluding that CTL 

escape may occur in individual cases but is not a common phenomenon. 

Several studies have shown that HLA type may be associated with rapid or slow 

disease progression. In this light, it has been shown that HLA-B27 and HLA-B57 

were associated with slow progression of HIV infection (Kaslow et al., 1996), 

whereas HLA A1-B8-DR3, HLA-B35 or HLA-Cw4 were associated with a more 

rapid progression (Steel et al., 1988, Kaslow et al., 1990, Carrington et al., 1999). 

Different mechanisms of CTL escape by HIV have been proposed. Firstly, mutation 

could occur during antigen presentation, especially in the amino acid residues 

flanking the epitope that could affect the CTL response (Koup et al., 1994b). 

Secondly, mutations that change peptide orientation, distort the peptide-binding 

groove or alter residues exposed to the TCR give the virus the best chance to escape 

(Reid et al., 1996). Finally, it has been shown in vitro that peptides with diminished 

antigenicity are able to drive proliferation of CTL with specificity for the wild-type 

peptides, that are not able to lyse cells presenting the altered peptides (Klenerman et 

al., 1995). This mechanism, if manifested in vivo, could enhance immune escape. 

Escape mutants from CTL responses that appear during HIV infection support the 

model proposed by Nowak el al. (1995) according to which a diversity threshold 
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emerges beyond which the immune system can not control the infection, leading to 

the immune system failure. 

1.9.1.3 Implication of CMI for vaccine development 

It is widely accepted that vaccine-induced responses must broadly cross-neutralise 

multiple HIV-1 clades. Cellular immune responses that recognise conserved epitopes 

located in the structural and regulatory genes represent the immunologic arm that 

should be the response induced by an HIV vaccine. There is evidence showing that 

CTLs raised against viral antigens from different clades can cross-react extensively. 

Ferrari et al. (1997a, b) have investigated immune responses to canarypox-clade-B 

based ALVAC/HIV-1 vaccines containing full-length gpl60MN, gp120 plus 

transmembrane portion of gp4l, full-length gag and protease. Autologous CD4 

lymphoblasts that were infected with primary isolates from dade A to F were used as 

target cells. Both the gp160-based canarypox immunogen and that containing gag/pol 

genes could elicit CTL reactivities able to recognise target cells infected with 

genetically diverse HIV-1 primary isolates. 

Other studies have investigated the ability of CTL responses elicited in HIV-1 

infected individuals to recognise epitopes from clades different than those with 

which they were infected. Thus, Betts et al. (1997) have shown that individuals 

infected with HIV-1 dade C can elicit vigorous HIV-1 CTL responses reactive to 

HIV-1 dade B. Six of the eight Zambian individuals who were infected with dade C 

virus demonstrated high levels of HIV-1 specific CTL responses to HIV- 1 dade B 

(strain IIIB) gag/pol/env constructs. 

In another study, Cao et al. (1997) isolated CTL clones, specific for Gag, RT-ase or 

Env, with B- dade virus and tested their ability to recognise analogous A-, C-, D-

and E- dade viral sequences. They have revealed that all CTL clones were able to 

cross-react with at least one non B-dade strain. They also investigated HIV-1 

specific CTL responses in 14 individuals infected with A-, C- or G- dade viruses and 

pointed out that all CTL clones showed cross-reactivity with B- dade viral constructs 

expressing Gag, Env, Pol and Nef. 
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Also, Durali et al. (1998) investigated CTLs in eight patients with A- dade virus and 

seven infected with B- dade virus. Target cells were infected with recombinant 

vaccinia viruses expressing Env, Gag, Pol and Nef from A- or B- clades. The results 

showed that CTLs from all individuals cross-reacted with proteins from the 

heterologous clades. 

Finally, McAdam et al. (1998) evaluated individuals infected with A-, B-, C- and D-

dade HIV-1. They also observed extensive cross-reactivity in CTL responses to p55 

in the majority of individuals. 

The route by which the immunogen is administered is important for induction of a 

desired type of immune responses. Thus, Benson et al. (1998) induced a strong CTL 

response after intra-muscular vaccination of macaques with a vaccinia virus strain 

expressing SIV gag, poi and env. Co-administration of cytokines and the timing of 

cytokine addition may lead to increased CTL responses. Thus, co-administration of 

IL-12 and IL-2 increased the CTL responses when macaques were challenged 

intrarectally, but not intravenously with SIVmac 25strain (Benson et al., 1998). A 

high level of CTL reactivity was obtained in mice when gp120 administration was 

followed by an IL-2 boost (Barouch et al., 1998). 

Studies concerning the effectiveness of vaccine-induced immune responses have also 

been performed. On this ground, two macaques were immunised with a mixture of 

lipopeptides and challenged with SIV. The vaccine induced strong CTL responses in 

two animals that selected escape variants (Mortara et al., 1998). The ability of CTL 

responses to neutralise across the clades is a requirement for the HIV vaccine 

development, since most currently designed vaccines are based on B-dade 

immunogens and a vaccine for global use is highly desirable. 

1.9.2 Humoral immunity 

In contrast to CMI, HIV-1 specific antibodies are detected considerably later (Moore 

et al., 1994d). Their appearance does not coincide with the reduction in viremia seen 
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during the acute infection. Particularly, neutralising anti-envelope antibodies develop 

very slowly at lower titres than non-neutralising antibodies to both continuous and 

discontinuous epitopes (Moore et al., 1993c). The heterogeneity found within env 

gene during the infection is thought to be imposed by the antibody selective pressure. 

A high rate of replacement substitution in HIV envelope suggests a strong selective 

force of the humoral responses (Simmonds et al., 1991). 

Primary isolates and cell-line-adapted isolates have different sensitivities to 

neutralisation (Moore et al., 1995a, b). These different neutralisation sensitivities are 

probably a result of different conformations of the Env of these viruses (Sattentau et 

al., 1995a, b, Schutten et al., 1993). 

1.9.2.1 Neutralisation in the context of the relationship between the 

structure and function of env proteins 

Very little gp 120 protein is available to antibody attack, most of its surface being 

involved in gp4 1 binding, oligomerisation and chemokine binding or is occluded by 

glycosylation. Similarly, most of gp4l is occluded by gp120 binding or by the 

carbohydrate mass that surrounds the molecule. 

Only two epitopes on gp 120 have been identified as being accessible on different 

primary isolates. Monoclonal antibody (MAb) b12 and 2G12 target these epitopes. 

MAb b12 recognises an epitope overlapping the CD4 binding site and V2 and V3 

domains (Roben et al., 1994, Moore et al., 1995c). MAb 2G12 binds a region 

composed of the V3 loop and the V4 region and is influenced by the presence of N-

linked carbohydrates (Trkola et al., 1995, 1996). 

The gp4l protein has only one epitope that is exposed on the mature oligomer. This 

is located in the C-terminal part of the extracellular domain and is targetted by MAb 

2F5 (Sattentau et al., 1995a, Muster et al., 1993, 1994). Specifically, its epitope is 

represented by the linear sequence ELDKWA that is conserved across many isolates 

of HIV-1, conferring a broad neutralisation capability. 



1.9.2.2 Implications of neutralising antibody on vaccine development 

Vaccine design must take into account the immunogenicity of the envelope protein. 

Subunit vaccine antigens based on soluble monomeric gp 120 are poor inducers of 

antibodies able to neutralise primary isolate viruses. There are two explanations for 

this result. Firstly, monomeric gpl20 used as immunogen could have been denatured 

and, hence, the antibodies elicited recognised this form of the protein but not the 

native Env (Moore et al., 1993c, VanCott et al., 1995). Secondly, the humoral 

immune responses induced by properly folded monomeric Env are of non-

neutralising specificity. The reason for this is that the epitopes recognised by 

antibody elicited by monomeric Env are occluded on the trimeric form of primary 

isolates. This result suggested the idea of using oligomeric Env rather than 

monomeric Env as immunogen to elicit antibody able to neutralise primary isolates 

(VanCott et al., 1997). In this regard, protection from challenge has been reported in 

macaques immunised with oligomeric, but not monomeric Env immunogens (Luke et 

al., 1996), although other studies have reported protection of macaques achieved 

even by monomeric soluble gpl2O proteins (Mooij et al., 1998). 

In natural infection, humoral immune response is directed to viral debris (ie. not to 

the mature envelope oligomer but to other conformations, especially to unprocessed 

gpl60 precursor). This response is probably stimulated by the uncleaved gp160 that 

is released and acts by a mechanism known as original antigenic sin (Deutsch et al., 

1972). That means that immunisation with antigen 1 (in this case, unprocessed gpl6O 

precursor) can establish a memory B cell population that is subsequently reactivated 

by a related antigen 2 (mature oligomer) to produce antibody with high affinity to 

antigen 1 and only moderate affinity to antigen 2. 

An efficient vaccine approach should be based on that protocol that elicits 

neutralising antibody specific for primary isolates. Passive immunisation studies 

provide the evidence of the feasibility of such a vaccine. A series of studies have 

revealed that antibody to the V3 and CD4 binding domains on gp120 were able to 

protect chimpanzees and hu-PBL-SCID mice from challenge with TCLA viruses 

(Emini et al., 1992, Safrit et al., 1993, Parren et al., 1995). Conversely, MAb 2175 
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was able to delay disease progression but did not protect chimpanzees against 

challenge with a primary virus (Conley et al., 1996). Disappointing results have been 

reported when passive transfer of pool Ig from HIV-1 seropositive donors was done 

to chronically infected humans. In this case HIVIG relatively weakly neutralised 

primary isolates (Burton et al., 1994). 

1.10 Antigenic diversity of HIV isolates 

1.10.1 Quasispecies 

HIV-1 replicates with a high mutation rate, leading to a genetically complex 

population designated quasispecies. Due to a high error-rate that is characteristic for 

RT-ase, a distribution of mutants in which a consensus or "master" sequence is 

generated, around which the mutants are distributed and reach an equilibrium 

(Domingo et al., 1978). This mutant distribution rather than a single sequence is 

considered to be the target of selection. 

The source of the genetic variation of HIV is the error prone polymerase enzyme RT-

ase. This enzyme lacks a 3'—> 5'exonuclease ability and cannot repair nucleotide 

mismatches introduced into the sequence during the synthesis of the viral DNA 

(Preston et al., 1988, Roberts et al., 1988). Also, the provirus is transcribed by the 

cellular RNA polymerase II, another error-prone polymerase that provides another 

source of variation. 

Hypermutation (a proccess where G to A transition occurs) was characterised as 

being another mutational process specific for HIV-1 (Goodenow et al., 1989, 

Vartanian et al., 1991). Other source of antigenic variability is given by 

recombination between non-identical viral genomes present in the same virion, due 

to template switching during reverse transcription (Clavel et al., 1989). 

More important, the emergence of quasispecies is seen as a consequence of a 

dynamic interaction between viral diversity and the humoral and cellular immune 

responses (Nowak et al., 1990, 1991, 1996a, b, Wolinsky et al., 1996). The 
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mathematical model of "the antigenic diversity threshold" elaborated by Nowak et 

al. (1991) may be of a conceptual importance. According to this concept, the 

selective pressure imposed by the immune system to select distinct antigenic variants 

finally destroys the immunity. The replication errors during reverstranscription 

produce antigenically distinct variants that, being under the control of the immune 

system may evolve in so-called "escape mutants". These processes lead in time to the 

establishment of an antigenic diversity level that, if it is below a threshold, it is under 

the control of the immune system. If the antigenic diversity is above the threshold 

value, the immunity is overcome and the AIDS outbreaks. Conversely, Wolinsky et 

al. (1996) failed to see a correlation between the antigenic diversity and disease 

progression in 2 out of 6 patients followed up to 5 years of infection. In this study, 

two patients progressed rapidly and died within 36 and 46 month, respectively, after 

seroconversion, showing a relatively homogenous population of variants. The other 

four individuals showed a more diverse heterogeneous viral population accompanied 

by a slow rate of CD4 T cell decline. The interpretation of Wolinsky's results given 

by Nowak et al. (1996) would rather confirm the "antigenic diversity theory". In this 

regard, two rapid progressors are seen to have a weak immunity, with a low diversity 

threshold, and may have developed disease rapidly in the presence of a low antigenic 

diversity. However, the "antigenic diversity threshold" theory still needs to be 

demonstrated experimentally (Nowak et al., 1996). 

1.10.2 Antigenic diversity and transmission 

It has been documented that the usage of different coreceptors might be associated 

with infectivity and transmission. Tscherning et al. (1998) examined 81 primary 

isolates from nine different HIV-1 subtypes for their ability to use different 

coreceptors, suggesting subtype-specific differences in coreceptors usage. Soto-

Ramirez et al. (1996) and Essex et al. (1997) have also shown that Langerhans cells 

in the genital tract were more easily infected with HIV-1 Env subtype E and C than 

subtype B. However, two other studies failed to show a difference between these 

HIV-1 subtypes and susceptibility to infection of Langerhans cells (Pope et al., 1997, 

Dittmar et al., 1997). 
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Conclusively, a correlation was rather found between transmissibility or 

pathogenesis and virological, host and sociobehavioral factors than genetic subtypes. 

Thus, Zhong et al. (1995) has shown that CCR5 is the major coreceptor for all 

primary macrophage tropic strains of HIV-1, irrespective of the genetic subtypes (ie. 

A, B and D). 

1.10.3 Antigenic diversity and pathogenesis 

The rate of disease progression varies hugely from one person to another one, being 

influenced by virological and host factors (Fauci et al., 1996). Usually, infection with 

HIV-2 is characterised by a slower disease progression than HIV- 1 infection or even 

HIV-1/HIV-2 dual infection (Marlink et al., 1994). The existence of differences in 

pathogenesis and disease progression between different HIV-1 subtypes is still 

questioned. Thus, a study conducted by Kanki et al. (1999) who followed up 

seroconvertors infected with different type 1 subtypes, reported the AIDS onset by 

year 5 in women infected with subtype A in comparison to women infected with 

other subtypes who developed AIDS rapidly. 

Conversely, two studies have shown no significant difference in the CD4 cell decline 

between subjects infected with different subtypes of HIV-1. Galai et al. (1997) found 

similar decline rates in CD4 cell count in two groups: a cohort of Israeli men infected 

with subtype B and another of Ethiopian immigrants into Israel infected with subtype 

C. Also, Mastro et al. (1999) investigated drug users infected with subtype B and E 

and found a higher viral load early post-infection in drug users infected with subtype 

E that was followed 1 year afterwards by similar levels of viral load, CD4 and CD8 

cell count in persons infected with both subtypes. 

Host immune responses to HIV do not correlate accurately with HIV-1 subtypes. 

Several studies have investigated the ability of both autologous and heterologous sera 

from HIV-1 infected persons to intra- and interclade neutralise different HIV-1 

subtype isolates (Nyambi et al., 1997). These studies have shown that whereas some 

primary isolates were widely neutralised by sera from persons infected with a broad 

range of genetic subtypes, others are weekly neutralised by the same sera (Moore et 
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al., 1996a, b, Kostrikis et al., 1996). Similarly, many CTL-targeted epitopes 

appeared conserved between different subtypes, conferring the ability of CMI to 

broadly neutralise across the clades (Cao et al., 1997). 

1.10.4 Antigenic diversity and vaccine development 

The high antigenic variability has hampered the vaccine development for more than a 

decade. It is still unknown how to best formulate a vaccine that is able to induce 

broadly effective humoral and cellular immune responses. A commonly held view is 

that a separate vaccine for each genetic subtype might be needed. However, the 

identification of three neutralising antibodies (ie. 2175, 2G12 and IgGlbl2), able to 

cross-neutralise different primary isolates and conserved CTL-epitopes across 

different clades brought great hopes that an effective prophylactic and therapeutic 

vaccine may be achieved. A combined regimen between HAART therapy and 

vaccine is currently viewed with optimism and expected to lead to the body clearance 

from HIV- 1 infection. 

1.10.5 Objectives of this thesis 

The work presented in this thesis investigates the hypothesis regarding the high 

cross-reactivity between gp120 antigens and sera obtained from patients from which 

close related viruses were isolated. Two groups of subjects were selected in order to 

test this hypothesis. Namely, the first group consisted of nine homosexulas from 

Edinburgh, Newcastle and Belfast who were selected from a large group of subjects 

based on the similarity in gag region of the isolates with which they were infected 

and the second group was represented by seven haemophiliac subjects from 

Edinburgh who had a common source of infection. Due to a high degree of 

relatedness of these isolates, the hypothesis regarding the presence of a high cross-

reactivity between gp120 antigens and IgG antibody of sera from these subjects 

would be expected. To prove this, 1.7-kb fragments encoding gp120 antigen were 

amplified from patients PBMC's DNA, cloned and expressed in COS cells. The level 

of recognition of these primary isolate-derived monomeric glycoproteins by the IgG 

antibody from autologous and heterologous sera was assessed. The results obtained 

when taking this approach would reflect the situation when a group of persons would 
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be infected with similar isolates and elicit a cross-reacting IgG response. 

Furthermore, this high cross-reactivity would be desirable to be elicited in a group of 

vaccinees who would mount a level of IgG antibody response able to cross-react with 

isolates that are close related with the immunogen, following a DNA prime-protein 

boost immunisation. If the hypothesis questioned in this study is true than its 

applicability for an AIDS vaccine is of a considerable value. It may be worth 

mentioning that, by the time this work was performed, the assessment of recognition 

of gp120 antigens by IgG antibody from human sera was done using antigens from 

TCLA isolates or recombinant monomeric gpl2O expressed in yeast or insect cells 

but not primary isolate-derived monomeric gp12Os expressed in mammalian cells. 

This would be one aspect regarding the originality and the contribution of this work 

to HIV-1 biology. In spite of the fact that the methodology consists of assays and 

approaches that have been previously used in other studies, the main contribution of 

this work was to collect and present data in only one paper. 

Specifically, Chapter 3 describes the steps taken to set up an ELISA assay which 

allows both the estimation of the amount of gp 120 protein and the IgG antibody level 

from HIV-1 positive serum to gpl20. Chapter 4 presents the construction of a 

mammalian expression cassette-vector into which gp 120 genes can be subcloned. 

Chapter 5 gives all the clones obtained when cloning 1.7-kb fragments into a 

mammalian cassette-vector together with analysis of their sequence in conjunction 

with some of their biological properties. Chapter 6 examines the level of cross-

reactivity between gpl20 antigens and sera obtained from both groups of subjects 

investigated. Finally, Chapter 7 presents a discussion of the results obtained in the 

light of previous published data and their implication in the achievement of an AIDS 

vaccine. 
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2.1 Collection and Processing of Blood Samples 

Samples were obtained from HIV-1 seropositive homosexuals attending Genito-

Urinary and infectious diseases' clinics in Edinburgh, Newcastle and Belfast between 

1993 and 1995 (Leigh Brown et al., 1997). The seroconversion dates were not 

available for these patients. However, they were asymptomatic and had not received 

any anti-viral therapy at the time of collection of the blood samples used in this 

study. Haemophiliac subjects taken in this study were selected from the Edinburgh 

Haemophiliac Cohort (Holmes et al., 1995). Some details of the HIV-1 infected 

individuals are shown in Table 2.1. 

2.1.1 Processing of blood samples 

Blood samples were collected in tubes containing either Heparin or ethylenediamine-

tetra acetic acid (EDTA). Peripheral blood mononuclear cells (PBMC) were 

separated from plasma on the same day as collection. Blood was diluted two fold in 

phosphate buffer saline (PBS, OXOID or Gibco BRL). lOml of diluted blood was 

gently layered over 1 0m1 LymphoprepTM  (NYCOMED) or NycoPrep 1.077 

(NYCOMED) in a 20m1 universal tube. Precautions were made to avoid mixing the 

two phases. The universals were centrifuged at 2,000rpm for 30 minutes (Beckman 

GP centrifuge, IEC Centra-4R). PBMCs and plasma layers were then carefully 

removed. 

2.1.2 Sample storage 

Plasma was stored in cryotubes (NUNC) at -70 0C. PBMCs were washed twice with 

RPMI 1640 (HyClone'Europe LTD) and centrifuged at 2,000rpm for 5mm. The 

pelleted cells were resuspended in freezing mix: 20% dimethyl suiphoxide (DMSO, 

Sigma) with 80% sterile heat inactivated fetal calf serum (FCS, Advanced Protein 

Products Ltd) in cryotubes (NTJNC). The cryotubes were stored in freezer containers 

(NALGENE Cryo 1 °C Freezing Containers), which allow tubes to cool down to - 

700C at a rate of 1 °C/minute. Next day the freezer boxes were moved to liquid 

nitrogen storage containers. 
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2.2 Extraction of the provirus DNA from PBMC 

The cryopreserved PBMCs were thawed and washed once with 20m1 RPMI 1640 

and centrifuged at 15,000rpm for 10 minutes. The resulting cell pellet was 

resuspended in 400 j.il of lysis buffer (110mM NaCl, 55mM Tris pH8.0, 0.5% SDS, 

1mg/mi Proteinase K (SIGMA Molecular Biology), 40tg/ml polyA) and incubated 

at 370C for 2 hours. After cell lysis, DNA was extracted once with 450 j.il phenol, 

once with 450p.l phenol: chloroform (1:1) and once with chloroform: 

isoamylalchohol (50:1). After each extraction the layers were vigorously mixed by 

vortexing and separated by centrifugation at 13,000rpm for 10 minutes (Heraeus 

SEPATECH BIOFUGE 15). Each time, the upper aqueous phase was removed and 

processed further. Finally, in order to precipitate the DNA, the aqueous phase was 

incubated with 800.t1 of 100% ethanol and 40tl of 3M Na-acetate pH5.2, overnight 

at -200C. The next day, the DNA was pelleted by centrifugation at 15,000rpm for 20 

minutes, the supernatant discarded and the pellet washed twice with lml ice-cold 

80% ethanol. To prevent the occasional loss of DNA pellet, another centrifugation 

step at 15,000 rpm for 5 minutes was performed. The DNA pellet was air-dried and 

resuspended in 30p.l of RNA-ase free water (dimethyl pyrocarbonate- (DEPC) 

treated water). The concentration of DNA was estimated spectrophotometrically and 

DNA was then stored in aliquots at -20 0C or -700C. 
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Table 2.1. Details of the HIV-1 infected individuals. 

No Sample Age Sex Detection of Antiviral No of CD4 Risk group City 

infection Therapy* Cell/mm3 

1 1363 31 M 1994 none 399 Homosexual Edinburgh 

2 1299 39 M 1994 none 580 Homosexual Edinburgh 

3 1260 32 M 1989 none 100 Homosexual Edinburgh 

4 1021 34 M 1992 none 226 Homosexual Edinburgh 

5 1020 34 M 1986 none 39 Homosexual Edinburgh 

6 1397 36 M 1992 none 210 Homosexual Newcastle 

7 1294 36 M 1992 none 640 Homosexual Newcastle 

8 1066 41 M 1993 none ND Homosexual Belfast 

9 1090 30 M 1993 none 290 Homosexual Belfast 

10 p80 ND M 1984 none ND Haemophilia Edinburgh 

11 p82 ND M 1984 none ND Haemophilia Edinburgh 

12 p74 ND M 1984 none ND Haemophilia Edinburgh 

13 p84 ND M 1984 none ND Haemophilia Edinburgh 

14 p86 ND M 1984 none ND Haemophilia Edinburgh 

15 p89 ND M 1984 none ND Haemophilia Edinburgh 

16 p79 ND M 1984 none ND Haemophilia Edinburgh 

* at time of blood sample collection 

42 



2.3 Plasmid cloning vectors 

2.3.1 pGEM-T 

The pGEM-T vector (Mezei et al., 1994) is a 3-kb plasmid-cloning vector that was 

purchased from Promega. It was derived from pGEM 5Zf(+) (Promega) by digestion 

with EcoRV at base 51 of its sequence and adding a 3-terminal thymidine to the 5' 

and 3'-ends. The vector contains T4 and SP6 Polymerase transcription initiation sites 

and promoters flanking a multiple cloning site (MCS) within the lacZ gene. 

Insertional inactivation by the PCR products allows recombinant clones to be 

directly identified from non-recombinant ones by blue-white colour screening of the 

plates. The pGEM T vector also contains the Ampr  gene that confers resistance to 

ampicillin allowing only those bacterial strains containing the region of replication of 

the filamentous phage fi to grow, and thus preparation of single stranded copies of 

plasmid DNA. PGEM T vector can be used to clone PCR products generated by Taq 

polymerase, an enzyme that often adds a single deoxyadenosine to the 3'-ends of the 

amplicons in a template composition independent manner (Newton et al., 1994a, b). 

2.3.2 pSRHL 

pSRHL is a mammalian expression vector that was modified from pSRHS (Dubay et 

a!, 1992) by replacing the wild-type gpl60 encoded gene with a polylinker. In 

pSRHS, HIV gpl20 gene expression is under the control of the SV40 late promoter 

and Mason-Pfizer Monkey Virus long terminal repeat (LTR) which polyadenilates 

and stabilises the message. In addition, a high level of gene expression is given by 

the SV40 origin of replication and an adjacent region encoding for large T antigen 

that acts as a DNA replication factor. 

2.4 Bacterial strains: characterisation and storage 

2.4.1 Characterisation of bacterial strains 

The work involving cloning of the gpl20 glycoprotein PCR products into pGEM T 

and subsequent subcloning into mammalian expression vector pEV6, was done using 

Epicurean Coli SURE (Stop Unwanted Rearrangement Events) Competent Cells 

(Stratagene). This strain was engineered to carry mutations able to inactivate certain 
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pathways catalysing rearrangements of cruciform and Z-DNA structures that occur 

frequently in eukaryotic DNA and are highly unstable. The SURE cells allow blue-

white colour screening of recombinant plasmids due to the presence of lacIgZAM 15 

gene on the F' episome. This strain genotype is: 

e14 (McrK)A(mcrCB-hsdSMR-mrr)1 71 endAl supE44 thi-1 gyrA96 relAl lac recB 

recfsbcC umuC::Tn5(Kan') uvrC(F' proAB laclq ZL\M15 TnlO(Tet')). 

Modification of the mammalian expression vector, which was done in order to 

include a polylinker that subsequently allows exchanges of the gp120 genes from 

pGEM T into it, involved the manipulation of DH5a cells. DH5a Competent cells 

(Gibco) are capable of being transformed with high efficiency by different plasmids 

(Hanahan et al., 1991). Their genotype is: F480dlacZEM15 \(/acZYA-argF)U169 

deoR recAl endAl hsdRl7(rk, mk )phoA supE44X thi-1 gyrA96 relAl. 

2.4.2 Bacterial strain storage 

For short-term storage (3-4 weeks) bacteria were maintained on solid Luria Broth 

medium (LB: lOg tryptone, 5g yeast extract, 5g NaCl, lml IN NaOH, 15g agar or 

agarose per liter) plates at 4 0C. For long-term storage (years), 2mls of a mid-log 

culture or 1 ml of a freshly saturated culture were added to a cryovial (Nunc or 

Nalgene) containing imi-glycerol solution or 7% (v/v) dimethylsulfoxide (DMSO). 

Stored cells were revived by streaking a loop from frozen stock onto a fresh L-plate 

and incubated overnight at 37 0C. 

2.5 Polymerase Chain Reaction (PCR) 

PCR is an in vitro technique which allows the exponential amplification of a DNA 

sequence template through a series of repetitive cycles involving template 

denaturation, primer annealing and primer extension by mean of a heat-stable DNA 

polymerase (Mullis et al., 1987, 1990a, b, 1991). 
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2.5.1 Enzymes and primers 

Two types of DNA polymerase were used in this study: Taq DNA Polymerase 

(Promega) and Pfu DNA Polymerase (Stratagene). Several features of these enzymes 

are presented in Table 2.2. 

Table 2.2 Comparison of amplicons properties for Taq and Pfu Polymerase. 

Characteristics Taq Polymerase Pfu Polymerase 

resulting DNA ends 3'-A blunt 

5'-3' exonuclease activity yes no 

3'-5' exonuclease activity 

(proof-reading capability) 

no yes 

error rate 8.0x10 6  1.3x10 6  

percentage 	of 	mutated 

PCR products 

16 2.6 

The primers design was based on the consensus of the HIV- 1 HXB 2-D sequence, 

with the primer binding sites chosen to be as highly conserved as possible (Korber et 

al., 1998). Oligonucleotides were synthesised by the Oswel DNA Service, 

Department of Chemistry, University of Edinburgh on an Applied BioSystems 394 

and purified by high-performance liquid chromatography (HPLC). In the present 

study, two approaches to the polymerase chain reaction were taken: a limiting 

dilution nested PCR specific for V1/V2 region and a nested PCR specific for gpl20 

gene. Nested PCR involves two rounds of amplification. The first round employs 

outer primers, whereas the primers for the second round of amplification lay within 

the sequence delimited by the outer primers, therefore being called nested or inner 

primers. The primers for PCR both for amplification of V3 and env region are 

presented in Table 2.3. The layout of the primers for PCR amplification is shown in 

Figure 2.1. 
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2.5.2 Limiting dilution nested PCR 

This method was carried out to quantify the target DNA (Simmonds et al., 1990a, b) 

because its increased specificity and sensitivity that allows the amplification of a 

very limited concentration of DNA template. PBMC DNA was titrated into a series 

of dilutions (ten fold dilution first: 1/2, 1/3, 115, 1/10, 1/20, 1/30, 1/50, etc, and then 

two fold dilution was performed around the cut-off point). Multiple replicates (l0-

30) per each dilution were amplified in nested PCRs with primers that are specific 

for VI/2 region. The end point dilution for each sample was considered to be the 

dilution at which 20% of the reactions were consistently positive. The provirus 

copies per reaction were estimated based on the Poisson formula -(in f0 )xl/d, where 

fo is the frequency of negative reaction and d is the dilution of the DNA sample. 

PCR reactions were performed in a 20tl reaction mixture containing 10mM Tris-

HC1 pH 8.8, 50mM KC1, 1.5mM MgC12, 0.1% Triton X-100, 33tM each dNTP, 

lOOnM of each primer, 1U Taq Polymerase (Promega). A drop of paraffin overlaid 

the reaction mix. For the first round of amplification 1 j.tl of DNA from each dilution 

was taken into the reaction and 1 tl from the first PCR reaction was transferred into 

the second reaction. For both rounds, the amplification was done by using a 

programme involving 30 cycles of three segments: 94 0C for 35sec, followed by 50 0C 

for 35sec and 70 °C for 2min 30sec and a final cycle in which the reaction tubes were 

held at 700C for 10mm. 

2.5.3 Nested PCR Amplification with Pfu 

Pfu polymerase was chosen for high-fidelity PCR amplification of the gp120 gene 

derived from patient PBMC DNA based on its lowest error rate (1.3x10 6  mutation 

frequency per base pair per duplication). The reactions were carried out in 100.tl mix 

containing 250p.M each dNTP, 250ng/reaction each primer, 5U Pfu Polymerase per 

reaction, 20mM Tris-HC1 pH8.8, 2mM MgSO4, 10mM KC1, 10mM (NH4)2 SO4, 

0.1% Triton X- 100, 0.1 mg/ml nuclease-free BSA and 5Ell  of PBMC DNA. 5p.l from 

the first round was transferred into the second round mix. The same programme was 

used for both rounds of amplification: 30 cycles including template denaturation at 

940C for 35sec, primer hybridisation at 50 0C for 35 sec and primers extension at 
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720C for 5min and one final cycle at 72 0C for 10mm. lOjtl from each tube was run on 

the gel and the tubes, which gave positive bands, were selected for further cloning. 

For each amplification 5-10 negative samples were included in which the provirus 

DNA was substituted with distilled ultrapure water (TECHNE Thermal Cycler, 

GENEE Thermal Cycler). 

2.5.4 Agarose gel electrophoresis 

PCR reaction products were visualised on ethidium bromide stained 1-1.5% agarose 

gels. 300m1 of 1xTAE buffer (40mM Tris-acetate and 2mM Na2 EDTA x 2H 20) and 

3mg of agarose (Helena BioSciences) were heated until boiling point whilst 

continually stirring. The solution was then let to cool down to 60 °C at which point 

0.5.igJml ethidium bromide was added to each gel. The agarose was then poured 

onto the electrophoretic plate and left at room temperature to solidify. 20j.il  of 

secondary reaction were loaded onto each gel with 3 tl of 6x FICOLL buffer together 

with pGEM marker (Promega) and the gel was fully immersed in lx TAE buffer in 

the electrophoretic tank. The electrophoresis was run at 150 volts for 20-30mm. The 

bends on the gel were visualised in a dark room on an ultra-violet transiluminator to 

visualise the bands. The gel was photographed using a Polaroid camera with Polaroid 

667 film. 

2.5.5 Procedure for purification of the PCR products 

Purification of PCR products from amplification reactions was carried out using 

QlAquick PCR Purification Kit (Qiagen). DNA binds to the silica-membrane in the 

presence of 400.i1 of buffer PB (5 volumes) and 80tl (1 volume) of the PCR 

reaction, without removing the mineral oil. The QlAquik spin column was placed in 

a provided 2m1-collection tube. The sample was carefully applied to the centre of the 

column and centrifuged 30-60sec (Beckman Microfuge E TM)  . The flow through was 

then discharged. In the presence of a high concentration of chaotropic salts and a pH 

less than 7.5 DNA absorbs to the silica-membrane, whereas contaminants pass 

through the column. Pure DNA can then be eluted off with 10mM Tris-Cl buffer, pH 

8.5 
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Table 2.3 Primers sequences and their co-ordinates 

The table lists the primers used for PCR performed in V1/2 and V3 hypervariable regions and those used to amplify the gp120 gene. 

Figures showed in brackets refer to the primer co-ordinates in relation to the HIV-1 HXB2-D clone (Korber et al., 1998). The restriction 

sites located within the primers are underlined. 

Opposite page number 49 



(1) 401 (+, 6540) GAG GAT ATA ATC AG T TTA TGGG SENSE (OUTER) V!/V2 

(2) 333 (-, 6945) GTA CAT TGT ACT GTG CTG CTG ACA ANTISENSE (OUTER) V1IV2 

(3) 402 (+,6561) GAT CAA AGC CTA AAG CCA TG SENSE (INNER) V1/V2 

(4) 403 (-, 6855) CAA TAA TGT ATG GGA ATT GG ANTISENSE (INNER) V1/V2 

(5) 306 (+,7009) TGG CAG TCT AGC AGA AGA AG SENSE V3 

(6) 308 (-,7361) AAT TTC TGG GTC CCC CTC CTG AGG ANTISENSE V3 

(7) 365 (+, 6293) GAT GTT GAT GAT CTG TAG SENSE (OUTER) gp120 

(8) 366 (-,8097) ACT CCA TCC AGG TCG TGT ANTISENSE (OUTER) gpl2O 

(9) 313 (+,6327) TGG GTC ACC GTC TAT TAT SENSE (INNER) gp120 

(10) 367 (-,8064) CAT CTA GAG ATT TAT TAC TCC ANTISENSE(INNER) gpl2O 
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(Vogeistein et al., 1979). Specifically, the QIA quick column was transferred into a 

clean 1.5m1-microfuge tube. DNA was eluted with 50p1 buffer EB (10mM Tris-Cl, 

pH8.5) or for increased DNA concentration, 30.tl elution buffer was added to the 

centre of the QlAquick column, it was allowed to stand for Imin and then 

centrifuged. 

2.6 Cloning of the PCR products into pGEM T vector 

2.6.1 Adding a 3'-A tail to the blunt end products 

As mentioned previously, the thermostable proofreading Pfu polymerase generates 

blunt-end fragments during PCR amplification. PCR fragments obtained using this 

enzyme can be modified and ligated in pGEM T vector by adding 3'-A tail. 5j.tl of 

purified PCR fragment generated by polymerase was added to a lOp.l mix containing 

50mM Tris HC1 pH 9.1, 16mM ammonium sulphate, 3.5mM MgC12 and 150.xg/ml 

BSA, 0.2mM dATP, 5U of Taq Supreme (Helena BioSciences) and incubated at 

700C for 30mm. 

2.6.2 Cloning of A-tailed fragments into pGEM T vector 

To achieve a high cloning efficiency, an insert-vector molar ratio of 3:1 was taken as 

optimal. The appropriate amount of PCR product (insert) taken into the ligation was 

estimated using the equation: ng of vector x size (kb) of insert! size (kb) of vector x 

insert: vector molar ratio (i.e. 50ng of vector x 1.6kb: 3kb x3: 1 =80ng insert). In order 

to accurately assess the performance of the ligation reactions 4ng of control insert 

DNA and 50ng of pGEM T vector were used in 10tl ligation reaction containing 

10mM MgCl2, 10mM DTT, 1mM ATP and 3U T4 DNA ligase. 

To estimate the extent of background (i.e. blue colonies) that can arise due to the 

presence of non T-tailed or undigested pGEM vector, a background control was set 

up (SOng vector was taken in 10tl mix containing the same components as 

mentioned above). For standard ligation reactions, 80ng insert and 50ng vector were 

added into iøj.i1 ligation reaction. All ligation tubes were mixed by pipetting and 

incubated overnight at 4 0C. 
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2.6.3 Transformation of SURE cells 

The ligation of fragments with a single-base overhang can be inefficient. For this 

reason, in order to obtain a reasonable number of colonies, cells, such as SURE cells, 

which have a high transformation efficiency of 1x10 8  cfulp.g DNA, were used. In 

addition, these cells carry lacIZAM15, which is required in the blue/white colour 

screening process. 

Falcon tubes containing 100tl of SURE competent cells were removed from -70 0C 

storage and placed on ice bath for 5min until they had just thawed. The cells were 

mixed by gently flicking the tubes. One positive control was set up for each 

experiment. SURE cells were transformed with 0.lng uncut plasmid (pUC18) in 

order to calculate colony forming units (cfu)/.tg DNA. 2p.l of each ligation reaction 

was added to SURE cells. The cells were mixed by gently flicking the tubes and then 

placed on ice for 20 minutes. The cells were heat shocked for 45 seconds. After that, 

the tubes were returned to ice for 2 minutes. 950tl of room temperature LB medium 

were added to the tubes containing cells transformed with ligation reactions and 

900jtl of the same medium to the tube containing cells transformed with uncut 

plasmid. The tubes were incubated for 1.5 hours at 370C on a shaking platform 

(150rpm). 1 00tl of each transformation culture was plated onto LB plates with 

ampicillin/IPTG/X-Gal (LB supplemented with 0.5mM IPTG and 80tgIml X-Gal 

was poured into the plates). For the transformation control, a 1:10 dilution with LB 

medium was made before 1 00il of diluted ligation product were plated. The plates 

were incubated overnight (16-24 hours) at 37 0C. Next day, the white colonies were 

counted and transformation efficiency was calculated. 

2.7 General manipulations during DNA cloning 

2.7.1 Isolation of recombinant plasmid DNA 

2.7.1.1 Small-scale plasmid DNA 

Small amounts (e.g. less than 20tg) of DNA were obtained by alkaline lysis of 

bacteria cells (standard protocol) (Birnboim et al., 1979). The peletted bacterial cells 

were resuspended in 250j.il of solution I (50mM Tris-Cl, pH 8.0, 10mM EDTA, 

100.tg/ml RN-ase). 2501.l solution II were added followed by the inversion of the 
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tube several times. The lysis reaction was not allowed to exceed 5 mm. 350tl of 

solution III (3M potassium acetate, pH 4.9) was used to precipitate the chromosomal 

DNA and proteins. The solution was mixed gently several times to avoid localised 

precipitation. The tubes were centrifuged 5 min at 13 000 rpm and the supernatant 

was transferred to a new tube. The precipitation of plasmid DNA was done with 2.5 

volumes of absolute alcohol or 0.7 volumes of isopropanol. This was then 

centrifuged at 13000 rpm for 10mm, and the resulting pellet was washed two times 

with 70% ethanol, dried and resuspended in 20-30.il of 10mM Tris-Cl, pH 8.0. 

Plasmid DNA derived from recombinant clones were screened by three methods: 

electrophoresis on 1-1.5% agarose gel using ?JHindIII as molecular marker and 

suitable negative and positive controls; 

PCR reactions with primers designed based on the insert sequence; 

digestions with appropriate restriction enzymes. 

In experiments in which high quality plasmid DNA was required, a silica-gel 

membrane included in QIA prep Miniprep kits (Qiagen) was utilised. 

The protocol for the first steps is identical to the one written beforehand (standard 

protocol). The supernatant obtained after the neutralisation step was applied to the 

QIA prep column by decanting or pipetting. The columns were centrifuged for 30-60 

sec and then washed with 0.75ml of washing buffer (1M NaCl, 50mM MOPS, pH 

7.0, 15% ethanol) and centrifuged again for 30-60 sec. An extra 1 -min centrifugation 

step ensured that any residual wash buffer was not left in the column. The elution of 

plasmid DNA was done by adding 50.il of elution buffer (10mM Tris-Cl, pH 8.5) to 

the centre of the columns and spinning the tubes for 1mm. 

2.7.1.2 Large-scale plasmid DNA 

Large amounts of plasmid DNA were obtained by using QUIAGEN-tip kits 

(QUIAGEN). A single colony was inoculated into 2m1 of LB media containing 

ampicillin (lOOp.g/ml) and grown for 8 hours. The miniculture was then diluted 

1:100 to a final volume of lOOm! for 12-16 hours (overnight). Next day, the culture 

was centrifuged at 4500 rpm for 10 min and the pellet resuspended in 4ml of buffer 

P1 (50mM Tris-HC1, pH 8.0, 10mM EDTA, 100.ig/ml RN-ase A). When cell clumps 
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were no longer visible, 4 ml of buffer P2 (200mM NaOH, 1% SDS) were added and 

cells were left to lyse for 5mm. The solution was neutralised by pipetting 4m1 of 

chilled buffer P3 (3M potassium acetate, pH 5.5) and incubated on ice for 15 min to 

enhance the precipitation. The samples were centrifuged in non-glass tubes 

(Nalgene) at 20,000g for 30min at 4 0C. The supernatant was subjected to another 

centrifugation step at 20,000g for 15min at 4 0C. Meanwhile the QIAGEN-tip 100 

columns were equilibrated by applying 4m1 of buffer QBT (750mM NaCl; 50mM 

MOPS, pH 7.0, 5% ethanol, 0.15% Triton X-100). The buffer flowed through until 

the meniscus had reached the upper part of the column. The supernatant was applied 

to the QIAGEN-tip and allowed it to enter into the resin by gravity. The QIAGEN -

tip were washed with 2x10 ml of buffer QC (1M NaCl, 50mM MOPS, pH 7.0, 15% 

ethanol) and plasmid DNA was eluted with 5ml of buffer QF (1.25M NaCl, 50mM 

Tris-HC1, pH 8.5, 15% ethanol) and precipitated with 0.7 volumes of isopropanol. 

After centrifugation at 15,000g for 30min at 4 0C, the pellet was washed with 2 ml of 

70% ethanol, air-dried and re-dissolved in lOOpi of 10mM Tris-HC1 pH 8.0 buffer. 

2.7.2 Storage of plasmid DNA 

Usually, plasmid DNA was stored in 10mM Tris-Cl, pH 8.0 at 4 0C for several weeks. 

For long periods, samples were stored at -20 0C or -700C. However, the storage of 

plasmid DNA was preferred to the bacteria stock storage in order to avoid 

rearrangements that can occur during storage and revival of bacteria cells. 

2. 7. 3 Digestion with restriction enzymes 

Restriction digests of plasmid DNA employed enzymes such as: XbaI, XhoI, BstEII, 

Not!, Sail, Smal, BH! (Promega, Stratagene or Boehringer). Digestions were carried 

out using 0.2tg DNA (when the purpose of the experiment was to check for new 

recombinants), or 5-10j.ig DNA (when the digestion product was used to set up a 

ligation reaction). Between 5-10U of enzyme (the amount of enzyme was calculated 

so that 1 U could digest 1 tg of DNA in 1 hour at the optimum concentration of that 

enzyme) and between 0.2tg and 5tg of DNA were added to 20pi final volume of 

reaction containing (lx) restriction enzyme buffer recommended by the 

manufacturer. The reactions were allowed to proceed for 0.5 to 2 hours at the 
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optimum temperature for each enzyme. A small volume from the digestion reaction 

(one tenth) was run on a gel to check for a complete digestion. When applicable, the 

enzyme was heat-inactivated (10 minutes at 6 5-700C). Alternatively, the enzyme was 

removed by using QIA quick purification kit. 

2.7.4 Filling in the recessed 3' tailed 

To remove a restriction site, 5tg of completed digested plasmid were added into 

20tl mix containing 15U of Klenow fragment of Escherihia coli DNA polymerase I 

(Boehringer), 1mM of each dNTP and lx buffer (10mM Tris-Ci, 10mM M902, 

1mM dithioerythritol). The reaction was incubated for 30 minutes at 37 0C and the 

enzyme was inactivated with 2j.tl of 0.25M EDTA. The required DNA fragments 

were then purified using QIA quick purification kit. 

2.7.5 Resolving the bands on agarose gel 

After performing digestions, the reaction mix was loaded onto 1 -% agarose gel and 

run at 25mA for 2 hours, to avoid damage to the ends. The required fragment was 

subsequently recovered from the gel by quickly cutting out the area around the band 

with a clean scalpel blade on a long-wave UV transiluminator (short-wave UV 

damage to the DNA must be minimised). 

2.7.6 Purification of DNA from agarose slice 

DNA extraction from agarose gel bands was done with GeneClean kit (Bio101). 3 

volumes of Na! solution over the weight of the gel slice were added to keep the final 

concentration of Nal above 4M. The tubes were incubated in a water bath at 50 0C 

until all the agarose had melted (about 5 minutes, mixing every two minutes). 

The glassmilk suspension was resuspended by vortexing the vial for 1 minute. 5.i1 of 

glassmilk was added to the melted agarose solution (this is enough to extract 5.tg 

DNA from 500pd of solution). For larger volumes of agarose containing solution, 

10tl of silicagel was used. The mix was homogenised and incubated at room 

temperature for minimum 5 minutes, mixing the contents to ensure that the silicagel 

is always in suspension. This step allows an increased binding efficiency of the DNA 
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to silica matrix. The silicagel was pelleted by centrifugation for 5 seconds at full 

speed (approximately 14,000g). The pellet was then washed three times with 500tl 

New Wash Solution (provided by the kit) and pelleted by centrifugation as 

mentioned above. The tubes were left on the rack with the cap off for 5-10 minutes. 

Then the pellets were resuspended in a volume of Elution Solution (10mM Tris 

pH8.5) equal to that of the Glassmilk to ensure a good elution of the DNA. The 

silicagel was pelleted by centrifugation for about 30 seconds to 1 minute to make a 

solid pellet. The supernatant containing the eluted DNA was transferred in a new 

tube. Eventually, a second elution was done to recover additional DNA (less than 

20% from the total amount of DNA). When necessarily, another centrifugation was 

carried out to ensure that any insoluble silica matrix remained in the eluate. 

2.7.7 Oligonucleotides annealing and subsequent cloning of the 

polylinker 

To discriminate between parental and new recombinants, polylinkers were subcloned 

into the vector. Table 2.4 describes the oligonucleotides used to assemble 

polylinkers. 

Table 2.4. Polylinkers and the oligonucleotides from which they derive. 

Polylinker Oligonucleotides 

BstEIIISmaI/XbaI (+) 	5' GTC ACC CCC GGG T3' 

(-) 	5' CTA GAC CCG GGG3' 

BstEIIISmaI/XhoI (+) 	5' GTC ACC CCC GGG C3' 

(-) 	5' TCG AGC CCG GGG3' 

The oligonucleotides synthesised by Oswell have neither a 3' nor 5' phosphate group. 

In order to improve the efficiency of ligation, they were phosphorylated at the 5'end. 

15 pmoles of sense and antisense oligonucleotides were phosphorylated by setting up 

a 20il reaction containing 2U of T4 polynucleotide kinase (Boehringer) in the 

presence of 1mM ATP, and lx T4 polynucleotide kinase buffer (50mM TrisCl 

pH8.2, 10mM MgCl2, 5mM EDTA, 5mM DTT and 0.1 mM spermidine) at 37 0C for 
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30 minutes. Before annealing, the oligonucleotides were purified from enzymes, 

dATP and salt using QIA quick purification kit. The polylinkers were prepared as 

concentrates (lOx) by heating the mix containing the phosphorylated sense and 

antisense oligonucleotides and lx Taq polymerase buffer (Promega) at 90 0C in a hot-

block (Techne DR1BLOCKR DB*2A). Once at 90 0C, the metal block was removed 

and left on the bench to cool to room temperature, thus allowing the oligonucleotides 

to anneal. The subsequent ligation of the polylinker and the digested vector was set 

up in a lOp.l mix in which the ratio of polylinker: vector was 1000:1. 

2.7.8 Ligation 

In all experiments that have been done to modify the ends of both the vector and 

insert, which were produced by restriction digestions, were compatible cohesive 

ends. To ligate them, a ratio vector: insert of 1:3 was generally applied. Ligation 

reactions were set up using 200ng vector in as small a volume as possible in two 

different ways. One way involved the usage of T4 DNA ligase (Promega) when 1 Otl 

mix containing vector:insert, 3U of T4 DNA ligase, lx T4 DNA ligase buffer (30mM 

TrisCl, pH7.8, 10mM MgC1 2, 10mM DTT, 0.5mM ATP). The reaction tubes were 

incubated overnight (16 hours) at 4 0C. The other way of doing ligation involved the 

utilisation of the Rapid ligation kit (Boehringer). 5.il of DNA (vector and insert) 

were added in lx concentrated DNA dilution buffer (5x concentrated) together with 

lOj.tl T4 DNA ligation buffer (2x concentrated). The contents of the tubes were 

thoroughly mixed, then 1 tl T4 DNA ligase was added and the solution was mixed 

again. The reaction was allowed to run for 5 minutes at room temperature. The 

ligation reaction mixture was used without heat inactivation of the T4 DNA ligase 

for the transformation of competent cells. 

2.7.9 Transformation of competent cells.Transformation of DH5 

Cells were removed from -70 0C and left for 5 minutes on ice to thaw. 1 OOi.il of cells 

were added into each chilled 17x 100mm polypropylene tubes (Falcon 2054) on ice. 

For each transformation experiment, one positive control tube was set up in parallel 

with the experimental reaction to allow the efficiency of transformation to be certain. 
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For experimental ligation reaction, DNA was pre-diluted (1:5) in 10mM Tris-Ci, pH 

7.5 and 1mM Na2EDTA to increase the efficiency of transformation (Hanahan et al., 

1983, 1991). Usually, 1-2 p.1 of the dilution of the cells (1-long DNA) was added to 

the cells while dispensing. Tubes were gently tapped to mix; the cells were then 

incubated on ice for 30 minutes and heat-shocked for 45 seconds at 42 0C, then 

placed back on ice for 2 minutes. 900p.l of LB medium was added and the diluted 

cells were shaken at 225rpm at 37 0C for 1/2-1 hour and 100-200p.l spread on LB 

plates. The positive control was diluted 1:100 and 1 OOp.l of this dilution was spread 

onto LB plates. The plates were incubated overnight at 37 0C. Next day, the colonies 

were counted on each plate. For a positive control, the transformation efficiency was 

expected to be minimum 109  CFU/p.g, while for experimental ligation reactions 108 

CFU/p.g was normal. 

Transformation of SURE cells - see Chapter 2.6.3. 

2.7.10 Screening for recombinant clones 

The colonies were picked in to 2ml LB (usually, 12 colonies per plate) and grown 

overnight in a shaking incubator at 37 0C and 225rpm. Next day, a crude DNA 

miniprep was performed and a tenth of the resuspended DNA pellet was run on a 1-

% agarose gel. The transformed colonies were discriminated from the previous one 

based on the difference of their mobility on the gel. 

The second method employed was a restriction enzyme digestion of DNA clones. 

For the new recombinant clones, the band corresponding to the molecular weight of 

the insert should be present after digestion. 

The third method used to ascertain the new recombinants was by performing one 

round of amplification with inner primers (131 and 167) using conditions mentioned 

in Section 2.5.3. 
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2.8 Automatic DNA Sequencing 

Automated DNA sequencing was done by using the model 373 DNA sequencing 

system of Applied BioSystems Inc. 

The method is based on the di-deoxy chain termination method of Sanger (Sanger et 

al., 1988). In this study we employed dye-labelled dideoxynucleotides 

(dichloroRhodamine derived terminators), each of which emits a light at a different 

wavelength when excited by a laser that continually scans the gel while it is moving. 

The signal is transferred to the computer and is subsequently processed. 

DNA sequencing involves the following steps: 

- amplification of DNA by PCR, 

- DNA sequencing, 

- Data collection and analysis. 

2.8.1 PCR amplification 

Plasmid DNA used for DNA sequencing was obtained by QIA quick miniprep kit 

(Qiagen). 20i.tl of PCR reaction containing 8j.il of Terminator Ready Reaction Mix 

(dye terminators, deoxinucleotides triphosphates, enzymes, MgC12 and buffer are 

premixed and ready to use), 200-500 ng double- stranded DNA, 3.2 pmoles of each 

primer and deionised water were spun briefly and 25 cycles of three segments: 

template denaturation at 96 0C for 10 sec, primer annealing at 60 0C for 4 minutes 

were performed. The PCR amplification was done using a Gene Amp PCR System 

9600 or 2400. For each sequencing reaction, a 1 .5m1 microcentrifuge tube containing 

2p.l of 3M sodium acetate (NaOAc) pH 4.6, 50.tl of 95% ethanol (EtOH) was 

prepared. The entire content of each extention reaction was pipetted into a tube of 

sodium acetate/ethanol solution and mixed thoroughly. The tubes were vortexed and 

placed on ice for ten minutes to precipitate the extension products. The tubes were 

spun in a microcentrifuge for 15-30 minutes at maximum speed. The supernatant was 

carefully aspirated with a pipette and discarded. The pellet was rinsed with 250tl of 

70% ethanol, then spun for five minutes in a microcentrifuge at maximum speed. The 

supernatant was carefully aspirated and discarded and the pellet was dried in a 
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vacuum centrifuge for 1-3 minutes (until dry). Electrophoresis was done on the ABI 

PRISM 373 DNA Sequencer. First the pellet was resuspended in 4tl of 5:1 ratio of 

deionised formamide: 25mM EDTA pH8) with blue dextran (50mg/mi) and heated at 

950C for two minutes (to denature the DNA) and then placed on ice until ready to 

load. 2.tl of each sample was loaded into a separate lane of the gel. 

2.8.2 Poly-acrylamide sequencing gel and DNA sequencing 

Gel plates were cleaned thoroughly with detergent, rinsed with distilled water, dried 

and assembled. 3g urea, 0.5g Amber light resin, 20m1 distilled water and 9ml of 40% 

Bis/Acrylamide stock solution (30g of 19:1 was dissolved in 48m1 of H20, 

BIORAD), were dissolved and degassed by vacuum filtration through a 0.2j.iM 

cellulose acetate filter which was previously wetted with 6m1 of TBE. 300p1 of 

freshly prepared 10% Ammonium persulphate, and 33tl of TEMED (N,N,N',N'-

tetramethylenediamine, EASTMAN KODAK COMPANY), were then added and the 

content was gently mixed, pouring into the gel plates and allowed to polymerase for 

2 hours. 

2.8.3 Data collection and analysis 

An ABI data collection programme (ABI Inc) on a Macintosh computer was used to 

collect the data from the sequencing run. ABI sequence files were transferred to a 

SUN SPARC station computer via CAP (Columbia AppleTalk Package). Data was 

processed through a preliminary editor TED (which forms part of the Staden 

computer package, see below) using the Seqprocess script (written by Dr. Chris 

Wade, University of Edinburgh), then was introduced into the Xbap data base 

(Staden package) using the Seqedit script(Chris Wade, University of Edinburgh). 

TED and Xbap are two programs that form part of the Staden Package (Roger Staden 

and Simon Dear, Cambridge). Sequences from both strands of DNA were aligned 

and contiguous sequences assembled within the Xpab program. The sequences were 

then edited by eye. The consensus sequence was output from Xpab and transferred to 

a VAX computer, where it was analysed using the GCG package. Sequences were 

collected and analysed by Macintosh lici computer. Two programs were utilised: 

Data Collection and Analysis. Sample files created from the preliminary analysis of 
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data were transferred to a Sun SPARCstation computer and subsequently analyses 

using TED and Xbap. 

2.9 Cell culturing 

2.9.1 Continuous cell line 

The cell line used in this study was COS-1. This is an adherent established kidney 

simian cell line transformed with the simian virus SV40 (Mellon et al., 1981). These 

cells were a kind gift from Dr Natalia Gomez (ICAPB, University of Edinburgh). 

The cells have a single integrated copy of the complete early region of SV40 DNA 

and express large amounts of 5V40 large T antigen. 

2.9.2 Maintenance of the mammalian cell line 

COS-1 cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 10% fetal calf serum (FCS, Advanced Protein Product Ltd, 

Brierley Hill, UK), 2mM L-glutamine (Hy Clone), 50U/ml penicillin (GIBCO BRL, 

Paisley, Scotland), 50pg/ml streptomycin (GIBCO). 

One vial of frozen cells was rapidly incubated in a water bath at 37 0C for several 

minutes to thaw the cells. The freezing medium was quickly removed by pipetting 

the content of the vial in a universal with 20tl of lx PBS. The cells were spun down 

by centrifugation at 1,200rpm for 5 minutes. Another step of washing followed. 

Finally, the cells were resuspended in 5ml complete medium and seeded into a 

25cm3 flask and let grow to become semiconfluent. Culture was split 1:3 using 

0.02N EDTA pH7.00 and distributed in 1 5mls complete medium in 75cm 3  flask. 

2.10 Transfection of adherent cells 

Transfection of COS cells requires preparation of small amount of DNA (less than 

20tg of sufficient purity). This can be achieved by caesium chloride gradient 

centrifugation or using a conventional DNA purification column. Due to the fact that 

caesium chloride gradient centrifugation is a laborious method, QIA prep columns 

supplied by QUIAGEN were used. QIA prep columns use a silica-gel membrane for 
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selective adsorption of plasmid DNA in high salt buffer and elution in low salt 

buffer. RNA, cellular proteins and metabolites are not retained on the membrane but 

are found in the flow-through. The purified DNA is ready for immediate use in a 

range of applications such as transfection or automated DNA sequencing. The 

detailed protocol was given in Section 2.7.1.1. 

2.10.1 Transfection with Lipofectin 

In a six well plate, lxl05cells were seeded in 2ml of the appropriate growth medium 

supplemented with serum. The cells were incubated at 37 0C, in a CO2 incubator until 

the cells were 40-60% confluent. For COS cells this usually takes 24 hours. Two 

types of solutions were prepared in Falcon 2054 tubes (Becton Dickinson): 

- Solution A: 1-2tg of DNA were diluted into 100.d serum-free medium. OPTI-

MEMRI Reduced Serum Medium, 

- Solution B: 5tl of Lipofectin Reagent were diluted into lOOjtl serum-free medium 

(OPTIMEMRI Reduces Serum Medium), and allowed to stand at room temperature 

for 1 hour in order for the liposomes to assemble. 

The two solutions were combined, mixed gently and incubated at room temperature 

for 15 minutes. For each tube, 0.8 ml of serum-free medium were added and the 

tubes were tapped gently and added into the pre-washed cells (the cells were washed 

with 2m1 of serum-free DMEM). The transfection was allowed to carry on for 5 

hours at 37 0C in a CO2 incubator. Then the liposome-DNA complex containing 

medium was replaced with 2ml of completed medium and the cells were incubated at 

370C in a CO2 incubator for 72 hours. 

For 24 well plates, 1tg DNA was added in each well seeded with 0.4-0.8x10 5  cells. 

The ratio DNA:Lipofectin used was also 1:5. 

Lipofectin reagent (GIBCO, Life Technologies) is a 1:1 liposome formulation of the 

cationic lipid N-( 1 -(2,3-dioleyloxy)propy)-N,N,N-trimethylammonium chloride 

(DOTMA) and dioleoyl phosphatidylethanolamine (DOPE). This positive charge and 

neutral lipids from liposomes can complex with nucleic acids. The lipid-nucleic acid 

complex, when applied to culture cells, facilitates the uptake of the nucleic acid into 
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the cells. Liposome mediated transfections are by 5 too 100-fold more efficient than 

calcium phosphate or DEAE-dextran transfected methods (Felgner et al., 1987). 

2.10.2 Transfection with SuperFect Transfection Reagent 

SuperFect Transfection Reagent is an activated dendramer that possesses a defined 

spherical architecture, with branches radiating from a central core and terminating at 

charged amino-groups. SuperFect Reagent assembles DNA into compact structures, 

optimising the entry of DNA into the cells. The overall charge of SuperFect-DNA 

complexes is positive thereby allowing these complexes to bind to negatively 

charged receptors (e.g. sialylated glycoproteins) on the surface of eukaryotic cells. 

Inside the cells, the SuperFect Reagent buffer inhibits the lysosomal nucleases by 

stabilising the SuperFect-DNA complexes and enabling the transport of intact DNA 

to the nucleus. 

The day before transfection, 2-8x 104  cells were seeded into each well of 24 well 

plates in lml of completed DMEM and incubated at 37 0C and 5% CO2 in an 

incubator. 1 tg of DNA dissolved in TE, pH 7.4 was diluted to a total volume of 

150tl with cell growth medium containing no serum, proteins or antibiotics. The 

solution was mixed and centrifuged. 6tl of SuperFect Transfection Reagent was 

added and the mix was vortexed for 10 seconds. The samples were incubated for 5-

10 minutes at room temperature (250C) to allow complex formation. The growth 

medium from the 24 wells plate was gently aspirated and the cells were washed with 

4ml PBS. The solution was mixed by pipetting up and down twice and then 

transferred immediately to the cells in the plate. The cells were incubated with 

complexes for 2-3 hours at 37 0C and 5% CO2. Then, the medium containing the 

remaining complexes was removed from the cells by gentle aspiration. The cells 

were washed once with 4ml of PBS. Fresh medium containing serum and antibiotics 

was added and the transfected culture was maintained for 72 hours. Cells were then 

harvested and their supernatants collected and assayed for gene expression. 
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2.10.3 Transfection with Effectene Transfection Reagent 

Effectene Transfection Reagent consists of non-liposomal lipids that together with a 

specific DNA-condensing Enhancer and buffer, produces high transfection 

efficiencies. Firstly, DNA is condensed by interaction with the Enhancer in a defined 

buffer system. Effectene Reagent is then added to the condensed DNA to produce 

condensed Effectene-DNA complexes. The Effectene-DNA complexes are mixed 

with medium and directly added to the cells. 

One day before transfection, 2-8x 10 cells were seeded per well. The cells were 

incubated at 370C and 5% CO2 in an incubator until they reached 40-60% 

confluence. 1tg of DNA dissolved in TE, pH 7.4 was diluted with DNA 

condensation buffer to a total volume of 150tl. 8j.il  of Enhancer were added and the 

solution was mixed by vortexing for 1 second and incubated for 5 minutes at 2 50C. 

25p.l of Effectene Transfection Reagent were added to the DNA-Enhancer mixture 

and the tubes were vortexed for 10 seconds. The sample was incubated for 10 

minutes at room temperature in order to allow complex formation. The growth 

medium from the plate was gently aspirated and the cells were washed once with 

PBS. lml of complete growth medium was added to the reaction tube containing the 

transfection complexes. The contents were mixed by pipetting up and down twice 

and then transferred to the transfection complexes drop-wise into the wells of a 24 

wells plate. The dish was gently swirled to homogenise the solution. The cells were 

incubated with the complexes at 37 0C and 5% CO2 for 72 hours when the cells were 

harvested and assayed for gene expression. 

2.11 Assessment of gp120 gene expression 

2.11.1 gp120 ELISA 

2.11.1.1 Preparing ELISA plates 

Immunolon II Microtitre plates (DYNATECH) were used for gp120 ELISA. 

Lyophilised D7324 (sheep polyclonal, Aalto BioReagent was resuspended in 2m1 of 

distilled ultrapure water to give a concentration of 1mg/mi. This was diluted with 

100mM NaHCO3 pH 9.6 to a concentration of 2p.g/ml. lOOp.l of D7324 (2tg/ml) 
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were distributed in each well of a microtitre plate with a P200 multichannel pipett 

and incubated overnight at room temperature. Next day, the plates were washed four 

times with wash buffer (0.05% Tween 20 in TBS). Then the plates were blocked 

with 100tl per well of 2% BSA in TBS for 1 hour at 37 0C. The blocking solution 

was removed by washing four times with wash buffer. Plates were then kept at 37 0C 

until dry. The plates were wrapped in plastic bags containing silica gel sachets and 

stored at -700C until required. Before using, plates were left on the bench to 

equilibrate to room temperature. 

2.11.1.2 gpl 20 ELISA-main protocol 

Three recombinant gp120s have been used in this study (IIIB, MN, SF2). Master 

solution (200p.glml) was diluted with 0.1% Empigen in TBS to a concentration of 

0.2.tgIml. A 2 fold serial dilution from this concentration was performed (100, 50, 

25, 12.5, 6.25, 3.17, 1.65 nglml) and distributed in duplicates for each experiment. 

Also, a zero (in which all the reagents were missing but the substrate), a blank (in 

which recombinant gp120 was omitted) and the supernatants obtained after 

transfection were set up and incubated for 1 hour at 37 0C. The plates were washed 

four times with wash buffer. Anti gp120 monoclonal antibody GP13 (ARP 3054) 

was diluted 1:25 with wash buffer supplemented with 1% BSA to an intermediate 

concentration of 40tgIml. Aliquots of this concentration were kept at -70 0C. Each 

aliquot was diluted to the working concentration of 200ng/lOOp.1 (2p.gIml). 100.il of 

this concentration were added in each well and incubated 30 minutes at 37 0C. Then 

the plates were washed four times again with wash buffer. 0.4mg of lyophilised 

biotinylated F(ab')2 Goat anti-human Ig (Zymed) were dissolved in lml of distilled 

water to a concentration of 0.4mg/ml, aliquoted and kept at -70 0C. This stock was 

further diluted 1:1000 with wash buffer to give a working concentration of 0.4g/ml. 

100t1 of this dilution were added per well and incubated 30 minutes at 37 0C. The 

plates were washed four times with wash buffer. ExtrAvidin alkaline phosphatase 

(Sigma E-2636) was diluted 1:1000 in lx TBS and 100tl were incubated in each 

well for 30 minutes at 37 0C. Four time wash steps removed ExtrAvidin alkaline 

phosphatase. The substrate used was SIGMA FAST pNPP (N- 1891 or N-2770). The 
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substrate was prepared by dissolving one tablet substrate N-1891 and one Tris buffer 

tablet in 5m1 distilled water or 1 tablet substrate N-2770 and one Tris buffer tablet in 

20m1 distilled water. The tube that contained ready to use substrate was covered with 

tin foil and vortexed until dissolved and kept in darkness. The reaction was 

developed with the addition of 100[d pNPP for 20 minutes in a dark room and then 

stopped by addition of 100il of 0.4N NaOH. The absorbance value (OD) of each 

sample was read with a Labsystems Multiskan Bicromatic Reader using the filter 

corresponding to the weivelengh of 405 rim. Data processing was done with 

GENESIS computer program (GENESIS II Windows TM, Based Microplate 

Software, Labsystems). 

2.11.2 Immunofluorescence assay 

Monoclonal antibodies used to stain the cells for gpl20 glycoprotein expression 

were: GP13 (ARP 3054, human MAb to HIV-1 gpl20, which recognise an epitope 

within or topographically near to the C134-binding site of gpl20), GP68 (ARP 3055, 

human MAb to HIV-1 gpl20, which recognise an epitope within or topographically 

near to the CD4-binding site of gpl20), IgGi b12 (ARP 3065, human MAb to HIV-1 

IIIB gpl2O, is mapped to the CD4 binding site of gpl2O). After transfection the cells 

were removed by cell scraping (Greiner disposable cell scraper) and washed twice 

with PBS. The cells were pelleted by centrifugation at 1200rpm for 5 minutes and 

resuspended in 1 O0tl of paraformaldehyde (this preserves the shape of the cells) and 

kept for 30 minutes at 4 0C. 10xl of this suspension were dotted onto each well of the 

slide (Hendley-Essex Multispot microscope slides, PTFE and specialised coatings, 

PH-001) and air-dried for one hour in the laminar flow hood. The cells were then 

fixed by immersion in methanol: acetone solution (1:1) for 10 minutes at room 

temperature and then air-dried. The monoclonal antibody anti-gp120 was used in a 

dilution of 1:100 in normal sheep/goat serum (to decrease the non-specific 

backgrounds). lOp.g of these solutions were dropped in each well and the slide was 

covered with tin foil and incubated for 1 hour, after which time the slides were 

washed four times with lx PBS. Biotinylated goat anti-human IgG (Zymed) was 

diluted 1:50 and lOi.tl were added per well and incubated for 30 minutes. Then, the 
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slides were washed again three times with lx PBS. Finally, 10tl - Streptavidin 

Fluorescein Isothiocyanate conjugate (StreptAvidin FITC  Dako) diluted 11150 were 

dotted into each well and incubated for 30 minutes. Slides were than washed four 

times with lx PBS. Mounting medium (Dako) was added to each well along with a 

coverslip (22x64mm borosilicate cover glass, thickness no. 1, BDH). The slides were 

examined by fluorescence microscopy (Nikot Optiphot microscope) with water lens 

immersion. The positive cells appeared green-fluorescent. 

2.12 Detection and quantification of patients' sera IgG antibodies 

against patients-derived gp120s 

Detection and semi-quantification of sera antibodies were done using the same 

ELISA assay presented in section 2.11.1, with some modifications: recombinant 

gp120s were substituted by clones expressing gp120 glycoproteins and Goat F(ab)2 

anti- human IgG with patient polyclonal antibodies (diluted 1:400). 

ELISA first quantified gp120 glycoproteins secreted in the supernatants. Regardless 

of the clone from which they derived, the same amount of glycoprotein was used per 

well which were then recognised by the patients IgG antibodies which were present 

in sera (these were diluted 1/400). For each experiment eight replicates of a negative 

pool were worked in parallel. ODs for samples and all negative replicates were read 

at 405nm. A cut-off value was calculated based on the formula: the average OD 

(negatives) + 3 x standard deviations. The ratio between the sample OD and cut-off 

value gives the reactivity for that sample. 

68 



CHAPTER 3 
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3.1 Introduction 

The purpose of this study was to investigate the extent of recognition of gp120 

protein obtained from HIV-1 infected individuals by the anti-gp120 IgG antibody 

from autologous and heterologous sera. In order to fulfil this aim, an "in house" 

ELISA method was set up to allow both the quantification of gp120 from the 

supernatants and the level of anti-gpl2O IgG antibody from the patients derived sera. 

This method was based on that established by J. Moore (Moore et al., 1988) that 

allows rapid detection of gp 120 at a level of detection of 100-1000 pg per sample of 

transfection supernatant or estimation of gp120 in sera from HIV-1 infected 

individuals. 

3.1.1 The principle of the gp120 ELISA 

The method is very sensitive because involves a cascade amplification consisting of 

the sequential activation of enzymes ultimately leading to a response that is many 

orders of magnitude greater than the initial triggering event. A series of enzymes 

generates molecules such as cofactors that activate another reaction giving rise to a 

detectable product. One of these enzymes, alkaline phosphatase (AP), is suitable for 

use as a label in immunoassays, being readily available, quite stable, and having a 

relatively high specific activity. The enzyme is covalently bound to an antibody and 

acts directly on a substrate, which, in the AMPAK amplification system, is 

nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is 

dephosphorylated by alkaline phosphatase (AP) to the reduced form nicotinamide 

adenine dinucleotide, (NADH). The interconversion of NADH and its oxidised form 

(NAD) is catalysed by dehydrogenase and diaphorase, respectively. For each cycle, 

one molecule of formazan is produced, having a maximum of absorption around 

492nm. Colour development increases in proportion to the length of the amplifier 

incubation time so that the initial signal that comes from the primary enzyme is 

multiplied many times and an amplification of 100-fold may easily be achieved. The 

cascade of enzyme amplification by the NAD-activated redox reaction is shown in 

the diagram below: 
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3.1.2 Methodology 

The method uses the D7324 antiserum as a capture antibody. D7324 was produced 

by immunizing sheep with a synthetic peptide that has the following amino acid 

sequence: APTKAKRRVVQREKR. This sequence corresponds to amino acid 

number 497-511 in the envelope gene gp 120 protein of the BH- 10 strain of HIV-1 

(Ratner et a., 1985). D7324 antibodies were adsorbed onto Immunolon II microtitre 

wells (Dynatech Ltd) by incubation overnight at room temperature in iøøpi per well 

of 100mM NaHCO3, pH9.6. The wells were washed twice with TBS and blocked for 

30 min with TBS solution containing 2% non-fat milk powder (Marvel, Cadbury 

Ltd) and then washed again with TBS. Recombinant gpl20 IIIB was added to the 

wells in two fold dilutions in TBS containing 1% Empigen (alkyl dimethyl amine 

betaine) and incubated for I  at room temperature. Unbound protein was removed by 

washing twice with TBS. Captured gpl20 was detected by the addition of a second 

human biotinylated antibody anti-gpl20 (GP13: ARP 3054), which was incubated 

for half an hour at room temperature. After another washing step with TBS + 0.05% 

Tween 20, 100 tl antihuman IgG -AP in TBS with 4% non-fat milk power and 0.5% 

Tween 20 were added and incubated for 1 hour at room temperature. The unbound 

IgG-AP was removed by washing the wells six times with AMPAK wash buffer and 

the bound IgG-AP was detected with the AMPAK II ELISA amplification system 

using 50j.d per well of substrate solution for 1 h followed by 50p.l amplifier solution 
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for 5mm. The reaction was stopped with 50tl of 0.5M HCl and the absorbance was 

read at 492nm. 

3.2 Results 

3.2.1 ELISA assay employing biotinylated F(ab')2 goat anti-human lgG 

(gamma chain specific) 

3.2.1.1 AMPAK amplification system 

The attempt to set up ELISA assay as described by Moore et al. (1986) failed 

because of high absorbance values recorded when D7324-gpl2O complex was 

reacted with anti-human IgG-AP (r = 1.92 vs. r blank=  0.07). These increased values 

suggested specific interactions between anti-human IgG-AP and capture antibody 

D7324. In order to reduce the interaction between anti-human IgG-AP and D7324, 

the anti-human IgG-AP was substituted with biotinylated F (ab) 2 goat anti-human 

IgG (gamma chain specific) antibodies. The biotinylated F (ab') 2 goat anti-human 

IgG (gamma chain specific) was obtained by conjugating the affinity purified F (ab') 

2 goat anti-human IgG (gamma chain specific) antibody with aminohexanoyl biotin 

N-hydroxysuccimide. The lyophilised powder was reconstituted with lml of distilled 

water to give a concentration of 0.4 mg/ml. ExtrAvidin-Alkaline Phosphatase used in 

conjunction with the biotinylated F(ab')2 anti-human IgG, was prepared from egg 

white avidin, combining the high specific activity of avidin with the low background 

staining of StreptAvidin, a biotin binding protein produced by the bacteria 

Streptomyces avidinii. The protocol employed was similar to the previously 

mentioned protocol (see 3.1.2) with some modifications. After binding of gp 120 and 

anti-gp 120 antibody, biotinylated F(ab')2-anti-human IgG (1:1000) was added and 

incubated for 30 min at 37 °C. ExtrAvidin-AP (1:1000) was added for 3 Omin at 37 °C. 

The AMPAK amplification system was employed as mentioned before (substrate 

20mm, amplification 1 0mm). The results are presented in the Table 3.1. For ELISA 

with the biotinylated F (ab') 2 anti human IgG, ExtrAvidin-AP and AMPAK 

amplification system, a linear regression was obtained in the dose dependent curve 
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Table 3.1 Data obtained for ELISA assay when biotinylated F (ab') 2 anti-human lgG, ExtrAvidin-AP and AMPAK system were 

used. 

gpl20( ng/ml) Status 013492nm 
(detailed value) 

013492nm 
(calculated value) 

CV 
(coefficient of 
variation) 

0.5 median 1.1 0.12 1.08 
1 median 1.24 0.26 2.64 
2.5 median 1.38 0.4 3.5 
5 median 1.56 0.57 12.2 
10 median 1.71 0.73 2.85 
20 median 2 0.9 2.32 
40 median 2.15 1.1 4.5 
80 median - 2.15 1.17 2.99 
160 median 2.15 1.17 4.1 
Blank I median 0.27  3.6 
Blank 2 median 0.26 1 5.2 
Blank 3 Imedian 10.28 1 4.3 
Blank 4 Imedian 10.98 1 8.6 

Footnote: OD405nm (calculated value) = OD405nm (detailed value) - OD405nm Blank 4 

The blanks used in table above are explained in the table below: 

Blank gp120 anti-gp120 F(ab)2 anti-human lgG-Biotin 
Blank I - - - 

Blank  + - - 

Blank  - + - 

Blank  - - + 
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for a range of protein concentration of between 1-5ng/ml (see Figure 3.1). As one 

may see in the Figure 3. 1, the saturation point was reached for a concentration of the 

glycoprotein of 40ng/ml. This low saturation point may be inconvenient for 

quantifying the gpl20 from transfection supernatants, because many dilutions of the 

supernatants would have to be done in order to record an absorbance that is in the 

linear part of this curve. Therefore, the amplification system was changed with a 

detection system. In this system, the cascade of amplification is replaced with the 

specific interaction between biotinylated F(ab)2 anti-human IgG and Avidin labelled 

enzyme, with subsequent development of the colour. Two experiments were run to 

test if the nature of the enzyme influences the sensitivity of the assay and if so, to 

find what enzyme gives sensitivity suitable for the aim of this study. 

3.2.1.2 Horseradish peroxidase (HRP) 

HRP is a relatively cheap and widely available enzyme that has a high turnover rate. 

A large number of chromogens are commercially available that may be used with the 

HRP. Most commonly used are orthophenylene diamine (OPD), 2, 2-azino-di (3-

ethylbenzothiazoline-6-sulphonate) (ABTS), 5-aminosalicylic acid (5-AS), and 3, 3', 

5, 5 '-tetramethylbenzidine hydrochloride (TMB). StreptAvidin-Peroxidase was 

chosen because it is easy manipulated and their carcinogen effect is minimised. The 

principle of the ELISA assay employing HRP as a substrate is similar to that 

presented in Section 3.1.2. After incubation with biotinylated F (ab') 2 anti-human 

IgG, the wells were washed and lOOpi per well of StreptAvidin-HRP (1: 1000 

diluted in PBS) was added for 30min at 37 0C. The plates were washed four times and 

100p/well of OPD (lx 20mg tablet of OPD to 50m1 substrate buffer and lOOpi 

hydrogen peroxide) were added and the plate incubated at room temperature for 

30mm. 
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Figure 3.1 Standard curve for ELISA employing biotinylated F(ab')2 anti-human lgG, ExtrAvidin-AP 
and AMPAK 
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The reaction was stopped by adding 25tl per well of 3.4% H2SO4 solution and the 

absorbance values read at 492nm. The results obtained are presented in Table 3.2 and 

the plot of OD versus concentration of the glycoprotein is shown on Figure 3.2. In 

this particular ELISA assay, the linearity was obtained between 200-1000 nglml of 

gpl20 glycoprotein, with the saturation point occurring around 1000ngIml. This 

range of sensitivity may be suitable for quantifying the glycoprotein from 

supernatants and this ELISA was the first one that was taken into account as the best 

assay. Subsequently, HRP was substituted with AP to test if the sensitivity of the 

new method makes it a better candidate. 

3.2.1.3 Alkaline Phosphatase (AP) 

3.2.1.3.1 Quantitative immunoassay 

Like HRP, AP is a good enzyme label for ELISA. Although it is expensive, it has the 

advantage of employing para-Nitrophenyl phosphate (p-NPP), which is a stable, non-

mutagenic substrate. An experiment employing AP and p-NPP was performed to 

compare its sensitivity with that obtained for HRP and OPD. After incubation of 

biotinylayed F(ab')2 anti-human IgG (1:1000) and ExtrAvidin-AP (1:1000), the 

wells were washed and lOOj.il of pNPP (1 tablet N-1891 and 1 Tris buffer tablet 

dissolved in 5mls water) was added per each well and incubated for 60min at room 

temperature. The reaction was stopped by addition of 50p.l 4N NaOH and the 

absorbance read at 405nm. 

The method gives absolute quantitative results (weight per volume units of the tested 

sample) by means of a pre-calibrated standard curve. The response of the test sample 

is converted into a dose estimate by homologous interpolation. The homologous 

interpolation involves the use of a standard containing the homologous or identical 

reagent being measured in the test sample. 

As a homologous standard, rgpl20 IIIB glycoprotein was used in a serial dilution 

(i.e. two replicates per each dilution). The standard data points are fitted in a dose 

response curve (i.e. OD vs. gpl20 concentration). The results obtained are presented 

in Table 3.3 and the plot OD vs. concentration of gpl20 is shown in Figure 3.3. 
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Table 3.2. The data obtained for quantification of gpl2O using biotinylated F(ab')2 anti-human IgG and Avidin-HRP/OPD as a detection 

system. 

gpl2O (j.tglml) Status 0D492nm 
(detailed values) 

0D492nm 
(calculated values)  

CV 

12 mean 0.37 0.44 14 
6.4 mean 0.36 0.431 3 
3.2 mean 0.335 0.405 2.8 
1.2 mean 0.434 0.364 8.3 
0.6 mean 0.215 0.285 21 
0.4 mean 0.306 0.236 29 
0.2 mean 0.233 0.163 5.6 
0.1 mean 0.207 0.137 24.2 

Blank 1 mean 0.068  
Blank 2 mean 0.069  
Blank 31 meanj 0.0711  
Blank 41 meanj 0.071 

Footnote: 0D492nm (calculated value) = 0D492nm (detailed value) - 0D492nm Blank 

The blank controls used in the experiment are presented in table below: 

Blank gp120 anti—gp120 anti—human IgG Biotin 

Blank I - - - 

Blank  + - - 

Blank  - + - 

Blank 4 - 
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Figure 3.2. Standard curve that allows estimation of the concentration of gpl 20 protein when biotinylated 
F(ab')2 anti-human lgG and Avidin-HRP was used as a detection system 
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Table 3.3 The data obtained for the standard curve obtained when biotinylated F(ab')2 anti-human IgG, Avidin-AP and pNPP 

were used as a detection system. 

rgp120lllB (ng/ml) Status Absorbance 405nm 
(detailed values) 

Absorbance 405nm 
(calculated values)  

% CV 

31.2 mean 0.763 0.631 12% 
62.5 mean 0.85 0.719 20% 
125 mean 1.31 1.182 28% 
250 mean 1.62 1.495 29% 
500 mean 1.88 1.74 21% 
1000 mean 2.19 2.05 20% 
Zero  0.096 1.88  
Blank  0.145 2 

Footnote: CV refers to the coefficient of variation 

The zero and blank controls which were used are shown in table below: 

Blank gp120 anti-gpl2O F(ab')2 anti human lgG-Biotin Avidin-AP pNPP 
Zero - - - - + 

Blank - + + + + 
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Figure 3.3. Standard curve for quantification of the gpl20 concentration when biotinylated F(ab')2 anti-human IgG 
and Avidin-AP were used as a detection system 
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Linearity was obtained for this particular ELISA assay for a range of concentrtion of 

gp120 between 10 and 200ng/ml. The sensitivity of this method was between that 

which employed AMPAK amplification system and that that used OPD-HRP as a 

detection system and, therefore, more suitable for quantification of gp120 

glycoprotein from transfection supernatants. The magnitude of the response (i.e. OD 

value) of the supernatant sample can be interpolated from the standard dose-response 

curve, producing a concentration of the gp120 glycoprotein expressed as a weight 

per volume units. When the supernatant samples were tested in several dilutions, the 

interpolated dose from each dilution, multiplied by their dilution, gave the same 

concentration within the reasonable statistical error (less than 10% inter-dilutional 

coefficient of variation). This result attests the accuracy of the "in house ELISA" 

developed in this study. 

3.2.1.3.2 Statistical analysis and data interpretation 

Variability of a method can be statistically assessed by testing at least two dilutions 

of the appropriate reference reagent to cover the upper, middle and bottom parts of 

the standard. The coefficient of variation of the inter- and intra - assay can be 

measured using the following equation: 

Coefficient of variation (CV) = standard deviation (STDEV) / mean X 100 

A good accuracy is given by a CV value less than 20. To test the intra-assay and 

inter-assay variability of the method, several concentrations of the recombinant 

glycoprotein gp120 IIIB were used (0.01, 0.05, 0.1, 0.5, 1, 5Wml)  to obtain a 

standard curve. This curve was used to estimate the amount of gp120 glycoprotein 

from a series of diluted supernatants (non-diluted, 1/2, 1/4, 1/16, etc.), which were 

obtained after transfection of COS cells with J{XB2-MCS. HXB2-MCS is an 

infectious molecular clone, which was obtained by Dr. Sarah Asherfold (Centre for 

HIV Research, University of Edinburgh). In order to test for reproducibility of the 

assay, a second experiment with the same supernatants was performed. Data from the 

first experiment are presented in Table 3.4 and Figure 3.4 and those from the second 

experiment are shown in Table 3.5 and Figure 3.5. A good reproducibility of the 

assay is proved by CV values presented in Table 3.6. 
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Table 3.4 Data obtained for titration of recombinant glycoprotein rgp120 lllB in parallel with two fold dilution of a supernatant 

that was obtained by transfecting COS cells with HXB2-MCS (first experiment). 

rgp120 	1DB 

(lug/ml) 

Status OD405nm 
(detailed value) 

OD405nm 
(calculated value) 

CV Dilution of the 
supernatant 

Status 

(HXB-2MCS)  

OD405nm 
(detailed value) 

OD405nm 
(calculated value) 

CV 

0.01 mean 0.389 0.263 15 non-diluted mean 0.89 0.75 22 
0.05 mean 0.51 0.393 10 1/2 mean 0.82 0.68 10 
0.1 mean 0.66 0.534 12 1/4 mean 0.63 0.49 17 
0.5 mean 1.02 1.077 19 1/8 mean 0.5 0.36 5 
1 mean 1.56 1.44 21 1/16 mean 0.44 0.3 9 
5 mean 2.275 2.149 12 1/32 mean 0.34 0.2 11 
Zero mean 1 0.109 
Blank mean 0.143 

OD calculate values = OD detailed values - OD blank 

Footnote: The nature of the zero and blank controls is given in table below: 

Blank gp120 anti-gp120 anti-human IgG-Biotin Avidin AP 
Zero - - - - 

Blank  - + + + 
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Figure 3.4. Dose dependent curve for quantification of gp120 protein from a supernatan that derives 
from COS cells transfected with HXB2-MCS (first experiment) 
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Table 3.5. Data obtained for titration of recombinant glycoprotein rgp120 IIIB in parallel with two fold dilution of a supernatant 

that was obtained by transfecting COS cells with HXB2-MCS (second experiment). 

rgp120 	IIIB 
(ug/mI) 

Status OD405nm 
(detailed value) 

OD405nm 
(calculated value) 

CV dilution 	of 	the 
supernatant 

Status 

(HXB-2MCS)  

OD405nm 
(detailed value) 

OD405nm 
(detailed value) 

CV 

0.01 mean 0.297 0.113 14 non-diluted mean 0.79 0.58 7 
0.05 mean 0.411 0.227 15 1/2 mean 0.71 0.50 25 
0.1 mean 0.532 0.348 21 1/4 mean 0.52 0.31 19 
0.5 mean 0.801 0.617 23 1/8 mean 0.41 0.20 13 
1 mean 0.914 0.73 8 1/16 mean 0.34 0.14 14 
5 mean 1.279 1.09 14 1/32 mean 0.31 0.10 10 
Zero 0.153  
Blank  0.215  

OD calculate value = OD detailed value - OD blank 

Footnote: The nature of the controls (zero and blank) is given in table below: 

Blank gpl2O anti-gp120 anti-human lgG-Biotin jAvidin AP 
Zero - - - I - 
Blank - + + + 
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Figure 3.5. Dose dependent curve for quantification of gpl 20 glycoprotein from supernatant 
that derives from COS cells transfected with HXB2-MCS (second ELISA experiment) 
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Table 3.6 Data processing for homologous interpolation ELISA method: 

Dilution of the supernatant 0D405nm interpolated gp120 concentration final gp120 concentration 

Experiment 1/1: 	1/4 0.49 83ng/ml. 83x4 = 332 ng/ml 

Experiment 1/2: 	1/8 0.36 45 ng / ml 45 x 8 = 360 ng / ml 

Experiment 1111: 	1/4 0.31 78ng/ml. 78x4 = 312 ng/ml 

Experiment 11/2: 	1/8 0.20 42 ng / ml 42 x 8 = 336 ng / ml 

Analysis of the intra-assay variability: 

Experiment MEAN (ng/ml) STDEV 
Experiment I 346 1.97 

t~j 
 

Experiment II 324 1.69 

Analysis of the inter-assay variability: 

Experiment MEAN (nglml) STDEV CV 
Exp Ill + Exp Il/I 322 1.41 4.3 
Exp 1/2 + Exp 11/2 348 1.69 4.85 
Exp Ill + Exp 11/2 334 0.28 0.8 
Exp 1/2 + Exp Il/i 336 3.39 110 
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3.2.2 Optimisation of the "in house" gp120 ELISA 

In this subchapter the experiments done in order to optimise the conditions of the 

ELISA assay, which employs biotinylated F (ab') 2 anti-human IgG, Avidin-AP and 

pNPP reagents, are described. 

3.2.2.1 Titration of the capture antibody (137324) 

To optimise the concentration of D7324 antibody, three monoclonal antibodies were 

tested as a detection antibody to select that that gives the highest reactivity against 

gpl20 glycoprotein. The following monoclonal antibodies (MAb) were used at the 

concentration of 2tg/ml: 

- ARP 3054 (GP 13), a human monoclonal antibody to HIV-1 gpl20 that recognises 

an epitope within or topographically near to the CD4-binding site of gp120 (amino 

acid: 256, 257, 262, 368, 370, 384) (Schutten et al., 1993), 

- ARP 3055 (GP68), a human monoclonal antibody to HIV-1 gpl20, which 

recognises an epitope within or topographically near to the CD4 binding site of 

gpl20 (amino acid: 117, 256, 262, 370, 384, 435) (Schutten et al., 1993), 

- ARP 3065 (IgGi b12), a human monoclonal antibody to HIV-1 IIIB 9p120, which 

was mapped to the CD4 binding site of gpl2O (Burton et al., 1991). 

The results are presented in Table 3.7 and Figure 3.6. From Figure 3.6 it can be 

observed that, for concentrations of the capture antibody (D7324) lower than 6tg/ml, 

the reactivity of GP13 (ARP 3054) was slightly higher than GP 68 (ARP 3055). As 

the desirable concentration of the capture antibody should be as low as possible to 

allow a competition between high and low affinity anti-gp 120 IgG antibody for 

binding to gpl20 molecules, GP13 antibody seemed to be the best candidate as a 

detection antibody. The absorbance values obtained for antibodies GP68 and 

IgGlbl2 when the concentration of D7324 was lower than 10.ig/ml were below 

those recorded for GP13. The lowest reactivity values were recorded for IgGlbl2 

antibody, for all the concentrations of D7324 tested. As a consequence, GP13 (ARP 

3054) was chosen as detection antibody in this ELISA assay. 

87 



Table 3.7 Parallel titration of capture antibody D7324 using three monoclonal antibodies: ARP 3054, ARP 3055, and ARP 

3065: 

D7324 
(j.tg/ml) 

Status 0D405 ARP 3054 
calculated 	detailed values 

0D405 ARP 3055 
calculated 	detailed values 

OD 405 ARP 3065 
calculated detailed values 

0.5 mean 0.5 0.81 0.41 0.6 0.393 0.673 
1 0.56 0.87 0.55 0.84 0.53 0.81 
5 mean 2.8 3.11 2.76 3.05 2.33 2.61 
10 mean 3.59 3.9 2.99 3.28 2.84 3.12 
Zero mean 1 0.12 0.16 0.13 
Blank Imean 1 0.312 0.29 0.289 

OD calculated value = OD detailed - OD blank 

Footnote: The zero and blank controls were as presented in the following table: 

Blank gp120 anti-gpl20 anti-human lgG-Biotin Avidin AP 
Zero - - - + 

Blank - + + + 

88 



-0--- ARP 3054 

• 	ARP 3055 

-*- ARP 3065 

E 
C 
It) 
0 

a 
0 

I 
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A second experiment was performed to choose the optimum concentrations of the 

capture and detection antibodies. 

The microtitre test format for this experiment is presented in the following diagram: 

the values written in the columns represent the GP 13 concentrations 

0.1 0.1 

0.25 0.25 

05 0.5 

1 1 

2 2 

4 4 

8 8 

Blank 

8 4 2 1 0.5 0.25 

Blank 

8 4 2 1 0.5 0.25 

the D7324 concentrations are written on the bottom wells 01 tne plate 

The intersection between the diagonals which join the upper value of the 

concentration of the monoclonal antibody with lower value of the concentration of 

the capture antibody, and vice versa, indicated the well that have the optimum 

concentration of the reagents. For the ELISA assay that employs GP13 antibody as a 

detection antibody, the optimum concentration of the reagents was given by the well 

placed in the middle of the plate (i.e. 2tg/ml for D7324 and 2p.g/ml for GP13). Data 

derived from this assay are presented in Table 3.8. Figure 3.7 depicts the curves 

when titration of D7324 was done simultaneously with a series of two-fold dilutions 

of the detection antibody (GP13). Taking 2j.tg/ml as being the optimum 

concentration for D7324, a titration of gp120 was done using three concentrations of 

GP13 (0.5tgIml, 1pgIml and 2igIml). The results are presented in Table 3.9 and in 

Figure 3.8. The highest absorbance values were obtained for a concentration ofGPl3 

of 2tg/ml. Absorbance values less than 1 were obtained for a concentration of GP13 

of 2.tgIml (the plates were incubated with the substrate for 20min in dark). 
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Table 3.8 Absorbance values when parallel titration of the capture antibody and detection antibody was performed. 

D7324 Qtg/ml) Status GPI3 
(0.25 jig/ml) 

CV GPI3 
(0.5 j.tglml) 

CV 
_____ 

GP13 
(1 	jig/ml) 

CV GPI3 
(2 tg/ml) 

CV 
_____ 

GP13 
(4 	j.tg/mI) 

CV GPI3 
(8 j.tglml) 

CV 
_____ 

0.25 mean 0.139 2.5 0.17 3.3 0.21 8.4 0.37 4.2 0.6 3.11 0.95 6.7 

0.5 mean 0.193 1.2 0.25 3.08 0.34 0 0.51 4.1 0.74 13 1.42 10.2 

I mean 0.25 2.3 0.36 5.5 0.53 2.4 0.76 2.5 1.03 5.6 1.90 2.5 

2 mean 0.35 3.5 0.45 3.3 0.63 6.7 0.94 5.1 1.46 1 2.3 8 

4 mean 0.45 8.3 0.59 11.6 0.81 18.25 1.28 19.1 1.65 3.4 2.54 3.9 

8 mean 0.56 13.6 0.74 7.04 1.09 7.9 1.42 3.35 1.88 2.5 279 3.5 

Zero mean 0.091 5.2 10.102 5.6 0.130 7.4 0.150 3.6 172 1 0.196  2.5 

Blank mean 0.33 5.8 0.26 5.9 0.43 4.8 0.56 6.4 rO67 16.8 1.12 1 8.2 

Footnote: Zero and blank controls are explained in table bellow: 

Control gp120 GPI20 anti-human lgG-Biotin Avidin AP 

Zero - - - - 

Blank - + + + 
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Figure 3.7. Titrations of the capture and detection antibody (D7324 and GP13) 

E 3  
C 
to 
0 

0 
IA 

2. 

1 

0 
0 	 2 	 4 	 6 	 8 	 10 

D7324 (uglmi) 

•—°-- GP 13 (0.2ug/rnI) 
• GP 13 (0.5ugImI) 

GPI3 (lug/mi) 
---'--- GP13 (2ug/mI) 

GP13(4ug/mI) 
—°— 

 
GP 13 (8ug/mI) 

92 



Table 3.9 Dose response curves for gpl 20 glycoprotein when using three concentrations of GPI 3: 

gp120(tg/ml) Status GP13 
(0.5jig/ml) 

CV GP13 
(lj.tg/mI) 

CV GP13 
(2tg/ml)  

CV 

0.8 mean 0.54 0.51 0.67 14.7 0.864 2 
0.4 mean 0.38 0.72 0.53 3.65 0.759 5.6 
0.2 mean 0.35 2.6 0.4 2.42 0.53 3.1 
0.1 mean 0.31 4.5 0.35 7.1 0.38 4.6 
0.05 mean 0.3 4.9 0.28 0 0.36 1.3 
Zero mean 0.094 8.9 0.093 5.3 0.094 2.6 
Blank mean 0.28 16 0.3 10 0.21 4.9 

Footnote: The zero and blank controls are explained in table below: 

Control gp120 GPI20 anti-human lgG-Biotin Avidin AP 
Zero - - - - 

Blank - + + + 

93 



Figure 3.8. Dose dependent curve for quantification of gpl2O protein when a titration of GPI3 MAb 
was done 
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3.3 Summary of Results 

The experiments done in order to reproduce the ELISA method described by Moore 

et al., (1988) failed. This result given by the specific interactions between D7324 

antiserum and anti-human IgG-AP made difficult to differentiate between the real 

signal and the background noise. To surmount this problem, anti-human IgG-AP was 

substituted with an biotinylated F(ab')2 anti-human IgG. 

Using biotinylated F(a&)2 anti-human IgG, three ELISA methods were set up. Their 

sensitivities were compared and analysed, in order to choose that assay which allows 

the estimation of the gp120 concentration from the supernatants of COS cells 

transfected with an infectious clone (HXB2-MCS). We estimate that the level of 

transfection of COS cells with env encoding infectious clones will approximate that 

of transfection with a non-infectious clone. 

ELISA assays using the AMPAK amplification system is probably more suitable as a 

serologic assay to estimate the amounts of gp 120 glycoprotein in sera from HIV-1 

infected individuals. The concentration of gp120 so far detected in these sera was 

reported not to exceed 20ng/ml, lower than the level of gp120 expression in COS 

cells (J. Moore et al., 1988). The linear range of this assay (between 1-4 nglml) is not 

suitable to estimate the amount of gp 120 protein from transfection supernatants 

unless many dilutions of these supernatants are done. 

Consequently, the amplification system was replaced with a detection system. This 

was represented by the biotinylated F(ab')2 anti-human IgG and Avidin-HRP or 

Avidin-AP, respectively. 

When the sensitivity of both methods were compared, the ELISA assay that 

employed biotinylated F(ab')2 anti-human IgG and Avidin-AP has shown a 

sensitivity that suits that needed to estimate the amount of gp 120 glycoprotein in 

COS cell-derived supernatants. Statistical analysis of the results proved the accuracy 

and reproducibility of this method. 
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4.1 Introduction 

Molecular clones of HIV may be generated either from viral DNA derived from virus 

amplified in cell culture or from PCR amplification in vitro. Virus amplification in cell 

culture may lead to a selection for (or against) a particular subset of HIV variants 

(Meyerhans et al, 1989). Virus propagation has the limitation of amplifying the virus in 

cell lines that may select for desired HIV variants (i.e. "rapid-high" (Asjo et al., 1986), 

tissue tropic, non-cytopathic, etc.). However, to obtain the most representative sampling 

of viral sequences present in vivo, cell culture should be kept to a minimum. An 

alternative method to the virus propagation in cell lines is DNA amplification in vitro, a 

method that is presented in detailed in Chapter 5. This alternative allows one to bypass 

potential cell culture selection against HIV variants. 

PCR amplification gives the possibility to clone viral DNA derived from peripheral 

blood mononuclear cells in which the HIV DNA copy number is more than 1 in 10 

down to 1 in 150.000 cells (Simmonds et al., 1990a). Successful expression of these 

genes requires the choice of an appropriate vector and cells used for transfection. 

4.1.1 Control elements of gene expression 

Mammalian expression vectors have normally been used for investigating genes, which 

were already subcloned, for direct the synthesis of a desired protein, production of large 

amount of proteins and evaluation of the effect of specific mutations introduced into 

genes. 

The mammalian expression vector (pSRHS) used in this study was modified in order to 

include a polylinker that has restriction sites compatible with the restriction enzymes 

used to clone the HIV-1 infected cellular DNA. The plasmid contains: the SV40 origin 

of replication (SV40ori), SV40 early and late promoters and the Mason-Pfizer Monkey 

Virus Long Terminal Repeat (LTR) (Dubay et al., 1992). Mason-Pfizer Monkey Virus 

Long Terminal Repeat (LTR) contains the poly-A +  signal and, thus, stabilises the 

mRNA transcripts. The restriction map of the plasmid pSRHS is given in Figure 4.2. 
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4.1.2 Transfer and expression of genes in COS cells 

The successful strategy for introducing foreign genes into mammalian cells relies upon 

COS cells for rapid, transient expression of protein from specific vectors. In transient 

system, the gene of interest is introduced into a population of cultured cells and its 

activity is assayed within a few hours to a few days. COS cells produce wild-type large 

T antigen but no viral particle. SV40ori containing plasmids are able to replicate in 

these cells to a high copy number (10,000 to 100,000 copies per cell) 48-72 hours post 

transfection. Thus, if the plasmid carries a genomic insert encoding a desired protein 

which is under the control of an appropriate promoter, COS cells will express the 

protein 

at relatively high levels over a short period of time. Expressed eukaryotic proteins 

produced in COS cells are usually biologically active. Although COS cells are able to 

carry out some posttranslational modifications, they may not modify the expressed 

protein in exactly the same way as the cell that would normally produce it. Aruffo et al., 

(1987a,b) showed that the lymphocyte cell-surface proteins tend to be 

underglycosylated in COS cells probably due to the lack of enzymes required to carry 

out the full posttranslational modifications. However, for gp120 glycoproteins 

expressed on COS cells, the glycosylation pattern is closer to gp120 glycoprotein which 

is found in vivo than the glycosylation pattern of the glycoproteins expressed in 

prokaryotic system (i.e. bacteria, Moore et al., 1995b). 

4.1.3 Alternative splicing pathway and cis-acting RNA splicing elements of HIV-1 

Proviral DNA, being integrated into the host chromosome, is transcribed into a 

retroviral RNA that is further processed by cellular machinery (i.e. capped and 

polyadenylated). These niRNAs are alternately and incompletly spliced. A balance 

between unspliced and spliced transcripts is essential for viral replication. 

The HIV-1 genome includes 20 exons bounded by 5 5' splice sites (called 1, 2, 3, 5 and 

6d) and 11 3' splice sites (called 2, 3, 4, 4c, 4a, 4b, 5, 6d, 7a, 7b and 7) to yield more 

than 40 transcripts (Robert Guroff et al., 1990). The open reading frames (A) and splice 
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sites (B) of HIV- 1 BH 10 are presented in Figure 4.1. The locations of the 5' splice sites 

are indicated above and of the 3' splice sites below the diagram. 5' splice site 5 is used 

by multiple exons, containing 3' splice sites 3-5. 

Figure 4.1. HIV- 1 BH 10 genome organisation. 
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Figure 4.2 The restriction map of the mammalian expression vector pSRHS 

The molecule is a double-stranded circle, 9200 base pairs in length. It contains SV40 ori, SV40 late promoter and enhancer, large T 

antigen, Mason Pfizer Monkey Virus polyadenilation signal, wild-type HIV envelope gene from clone HXB2 and the gene for resistance to 

ampicilline 
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4.2 Results: 

4.2.1 Construction of pAA-MCS and pAAL from pSRIHS 

The original plasmid pSRHS was subject to a series of modifications in order to 

include a polylinker suitable for subsequent subcloning of the env gene amplification 

product. All the transformations, which have been done to pSRHS, are depicted in 

Annex 1. 

Shortly, these steps involve: 

deletion of 3.2 kbp fragment flanked by Sall and XhoI restriction sites that 

includes the env gene from pSRHS to generate pSRH, 

cloning of the SalIlXhoI fragment containing the whole gp120 and gp4l gene 

and also the N-terminal of nef gene from the clone HX32 into pSRH, giving pSRH-

HXB2-MCS. 

cloning of a polylinker (SalI!NotIISmaIIXhoI) into pSRH, resulting pSRHL (L 

derives from linker), 

insertion of the same SalIIXhoI fragment as mentioned before into pSRHL, 

generating pSRHL-MCS. 

deletion of a XbaI site from pSRHL to produce pAA-MCS, 

cloning of a polylinker (XbaI/SmaI/BstEII) into pAA-MCS that generate pAAL in 

which patient derived env PCR amplified fragments will be subcloned. 

Plasmids pAA, pAA-MCS and pAAL were obtained by myself. All the other 

plasmids were obtained by Dr. A. Alonso and Mrs. P. Robertson. 

The restriction map for pSRHS is given below: 
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This plasmid contains the second and third exon of rev, the 5' donor-splicing site, the 

whole env and the N-terminal part of nef and it expresses the env gene. PSRH-

HXB2-MCSenv has the same restriction sites as those showed in the restriction map 

given for pSRHS. 

In pSRHL, the fragmet between NotI(386) and XhoI(3154) (positions that 

correspond to the map given for pSRHS) was replaced by a polylinker 

(NotIlSmaIIXhoIlSalI). 

PAA-MCS and pSRHL-MCS have the second and the third exon for rev, the whole 

env gene and the N-terminal part of nef but lacks a SalI(43)-NotI(3 86) fragment. 

4.2.2 Transfection of COS cells with env constructs to check for gene expression 

To check if the modifications done to pSRHS did not affect gene expression, 

transfection experiments were carried out on COS cells. The results are presented in 

Table 4.1. 

Table 4.1. The level of gp 120 glycoprotein that was detected employing gp 120 

ELISA in transfection supernatants. 

Transfectant 

DNA 

Transfection 1 

gp120 (p.gIml) 

Transfection 2 

gp120 (p.g/ml) 

Transfection 3 

gpl2O (pgIml) 

Mean+StDev 

gpl2O (igIml) 

pSRHL 0.01 0.02 0.05 0.026±0.02 

pSRHS 0.46 0.23 0.20 0.29±0.14 

pSRH-HXB2- 

MCS 

0.33 0.16 0.11 0.2±0.11 

pSR}{L-MCS 0.03 0.05 0.06 0.04±0.01 

pAA-MCS 0.01 0.03 0.07 0.03±0.03 

Figures presented in Table 4.1 show a lack of expression of env recorded for 

pSRHL-MCS and pAA-MCS contrary to pSRHS and pSRH-HXB2-MCS. 
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4.2.3 Identifying the reason for the lack of gene expression 

By analysing the restriction maps for pSRHL-MCS, pAA-MCS in comparison with 

those for pSRHS and pSRH-HXB2, it became obvious that the difference between 

these plasmids consisted of a small fragment that is flanked by Sail and NotI 

restriction sites with a size of 312 bp. It has been documented that the expression of 

HIV-1 env from SV40-based vector is dependent on the presence of this fragment 

containing a 5' donor-splicing site in the env mRNA (Lu et al., 1990). Thus, the 

presence and integrity of this 5' donor-slicing site is essential for envelope gene 

expression. 

4.2.4 Remodification required for reintroducing the 5' donor-splicing site into 

the mammalian expression vector 

All the subsequent modifications were done in order to reintroduce the Sall-Noti 

fragment containing the 5 'donor-splicing site responsible for the efficient env gene 

expression. These modification are shown in Annex 2 and the strategy used is 

summarised below: 

deletion of BamHI (8750)-BamHI (2346) fragment containing the env gene, the 

SV40 ori and SV40 promoter elements from pSRHL-MCS having a size of roughly 

2400 bp and comprising one Sail site was performed in order to ensure the presence 

of only one Sail site in the fragment left. 

Sail site was deleted by digestion with Sail followed by the filling in of the 3' 

overhang ends with Kienow fragment. 

Bani}{I-XhoI fragment from pSRHL that contains the SV40 on, SV40 promoter 

and a polylinker SalIINotIISmaI/XhoI was subcloned into the previous plasmid. 

NotI-XhoI fragment including the gpl20 and gp4l genes and the amino-terminal 

of nef gene was introduced between NotI and XhoI sites carried by the polylinker. 

Sail-NotI fragment that derived from the plasmid pRNBXX containing the donor-

splicing site was included in the vector. 

NotI-XhoI fragment from the vector was substituted with a short fragment of 190 

bp that includes a linker NotIIBstEIIJXhoI 

Xba I site from the piasmid was deleted. 
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BstE!I-XhoI fragment from pRNBXX containing the env and part of nef gene was 

subcloned in order to test if the )(bal deletion affected the gene expression. 

BstEII-XhoI fragment was replaced with a BstEIIISmaI/XbaI polylinker to 

generate a suitable vector in which subcloning of the env amplified genes will 

become possible. 

Plasmids pEV4, pEV5 and pEV6 were obtained by myself. The other modifications 

were done by Dr. A. Alonso and Mrs. P. Robertson. 

The restriction sites for pEX, pEV5 and pEV6 are presented below: 

pEX2 

BamHI 	XbaI Sal! NotI BstEII XbaI 	XhoI 

pEV5 

Bam}{! 	 Sall Not! BstEII Xba! 	XhoI 

pEV6 

Bam}iI 	 Sal! NotI BstEII/SmaI/XbaI XhoI 

pEV6 was used as an expression vector in which 1.7kb-fragments amplified from 

patients' PBMC DNA were subsequently subcloned. Therefore, it was a need to 

check if deletion of XbaI did not abolished gene expression and subcloning of the 

5'donor-splicing site did have a consequence in re-establishing the ability of the 

plasmid to expresse the env gene. 
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4.2.5 Testing the pEX2 and pEV5 constructs for env gene expression 

To check if the re-modifications described in Subchapter 4.2.4 re-establish the ability 

of the vector to express the env gene, a transfection experiment was done using 

pSRHL and pSRHL-MCS, as negative controls, and pSRH-HXB2-MCS, as a 

positive control. The results obtained are presented in Table 4.2. 

Table 4.2. The level of gp120 glycoprotein detected in the transfection supernatant 

by ELISA. 

Plasmid Transfection 1 

gp 1 20(tg/ml) 

Transfection 2 

gp 1 20(tg/ml) 

Mean+StDev 

gp 1 20(j.ig/ml) 

pSRHL 0.048 0.127 0.087+0.055 

PSRH-HXB2-MCS 0.292 0.431 0.361+0.098 

pSRHL-MCS 0.126 0.139 0.132+0.009 

pEX2 0.28 0.24 0.21+0.042 

pEV5 0.2 0.24 0.22+0.042 

Data presented in Table 4.2 show similar levels of gene expression for pEX2 and 

pEV5 and pSRH-HXB2-MCS, whereas pSRHL-MCS, plasmid that lacks the donor-

splicing site, has a level of gene expression close to that recorded for the negative 

control pSRHL. Thus, experimental data obtained proved that the remodification 

done in order to include the donor-splicing site into the expression vector allowed 

env gene expression. Moreover, the removal of both Sall site at the position 2773 

and XbaI site at the position 5382 did not have a negative impact on env expression. 

A restiction analysis of pEV6 is presented in Figure 4.2. 
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Figure 4.3 The restriction analysis of pEV6 

Gel electrophoresis of the plasmid pEV6 (line 2), together with its single digests: Sail (line 3), Not I (line 4), BstEII (line 5), Smal (line 

6), XbaI (line 7), XhoI (line 8) and double digests: SalI/XhoI (line 9), SmaIIBstEII (line 10), SmaI/XbaI (line 11), BstEII/XhoI (line 12), 

along with the markers: X/HindIII (line 1) and pGEM (line 13). The presence of only one site for BstEII., Smal and XbaI and of only 

one band for the double digests: SmaIIBstEII and SmaI]XbaI shows the presence of the polylinker BstEII/SmaI/XbaI into the plasmid 

pEV6. Digestion of pEV6 with SalI/XhoI and BstEIIIXhoI resulted in two band (details of the fragment sizes are presented in the table 

below): 

Digestion Fragment 1 	 1 Fragment 2 
SaII/XhoI 5242bp 	 11 358bp 
BstEII/XhoI 5790bp 	 181 Obp 
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Lane 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 
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4.2.6 Comments regarding the level of env gene expression 

All the clones described in Chapter 5 were obtained by subcloning 1.7-kb fragments 

amplified from patients' PBMC DNA into pEV6 and, hence, all of them contain 5'-

donor splicing site, patient-derived gp120 encoding gene, HIV-HXB2-derived gp4l 

encoding gene, fragment encoding the N-terminal part of Nef, the second and third 

exons of Rev and RRE but not the acceptor-splicing site. 

Levels of expression achieved by the env clones obtained in this study (see Table 

5.3) were hugely variable, probably because of the polymorphism between patients. 

Low level of gene expression can be explained by the absence of functional Rev. 

Because the absence of the acceptor site, it is unlikely that Rev is produced by the 

activation of cryptic splices. Thus, in the absence of Rev, a significant part of env 

mRNA transcripts are intranuclear sequestered and degraded and only little will 

reach the cytoplasm. Therefore, a suggestion for increasing the gene expression 

could be co-transfection of the env constructs with Rev-expressing plasmids. Finally, 

another reason for low gene expression can be found in the presence of the Rev AUG 

5' to the start of env (M.Kozak, 1995). 

4.3 Summary of results 

The first modifications that were done to pSRHS in order to replace the gp120 gene 

with a polylinker, failed to produce a plasmid able to express env gene. The 

explanation for the lack of env gene expression was found to reside in the absence of 

the 5' donor splicing site. Consequently, all the subsequent work was done in order 

to reintroduce this splicing site and to bring the vector in a form that is suitable for 

subcloning of patient-derived env genes. 
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5.1 Introduction 

The clones containing the uncultured patients PBMCs derived 1.7-kb sequences that 

were obtained by PCR amplification and their screening in order to select functional 

genes are presented in this chapter. 

5.1.1 Abundance of HIV-1 provirus molecules in patient material 

HIV-1 viral sequences are usually of low abundance in vivo (Harper et al., 1986). 

The estimates of HIV DNA copy number in peripheral blood mononuclear cells and 

in tissues of infected individuals vary during the phase of the infection in the range 

between 1 per 10 PBMCs to as low as 1 per 150,000 PBMC (Psallidopoulos et al., 

1989, Simmonds et al., 1990a). These levels are below the minimum required for 

cloning of the viral DNA without a method of amplification of the provirus copy 

number. A few reports documented the molecular cloning and characterisation of 

HIV-1 genomes directly from uncultured brain tissue from patients with AIDS 

dementia complex with an extremely high provirus load (Li etal., 1991, 1992). 

Because of the low abundance of proviral DNA in tissues and PBMCs of chronically 

infected individuals, most early studies were performed directly with small cultured 

material (i.e. viral cultures using infected PBMCs and uninfected PBMCs or CD4 

immortalised cell lines). However, when infected PBMCs are stimulated to replicate, 

the viral copy number increases to a level that enables transfection-competent 

molecular clones to be obtained through conventional methods (Cheng Mayer et al., 

1988, 1989). Studies conducted by Overbaugh et al., (1988), Meyerhans et al., 

(1989) and Asjo et al. (1986) indicated that culture-derived isolates represent a 

selected subpopulation of viruses or a particular subset of HIV variants that have an 

in vitro growth advantage. Consequently, the subset with the highest replication rate 

will predominate in the cell culture, whereas the variants that hardly grow in the cell 

culture will be under-represented. 
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PCR technology enabled the genetic characterisation of HIV-1 directly from 

uncultured patient material (Balfe et al., 1990, Epstein et al., 1991, Meyerhans et al., 

1989, Vartanian et al., 1991). 

The method employs two oligonucleotide primers that flank the region of interest in 

the target DNA to initiate DNA synthesis followed by the strand elongation by 

means of a DNA polymerase (Mullis et al., 1987). As it is complementary to the 

positive strand of denatured genomic DNA, one primer can anneal to that strand, an 

event that is followed by extension with the DNA polymerase and deoxynucleotide 

triphosphates, resulting in the synthesis of a negative strand fragment containing the 

target sequence. Simultaneously, a similar reaction occurs with the other primer, 

producing a new positive strand. These newly synthesised DNA strands will 

themselves be templates for the PCR primers. Consequently, a repetitive series of 20-

30 cycles consisting of DNA denaturation, annealing of the primer to the DNA 

template and the extension of the annealed primers by DNA polymerase, results in an 

exponential amplification of the target sequence. 

Hence, amplifying the PBMC HIV DNA via the polymerase chain reaction has the 

advantage of producing large quantities of a product suitable for direct cloning into 

plasmid vectors, bypassing potential cell culture selection against slower-replicating 

HIV- 1 variants. In spite of bypassing the selection of a specific subset of isolates, the 

PCR amplification of provirus sequences has its own impediments. Firstly, the 

misincorporation of nucleotides during synthesis of the target sequences might 

produce errors associated with the PCR (Saiki et al., 1988). Secondly, the presence 

of a heterogeneous population of the provirus DNA can lead to a recombination 

between non-identical templates during the PCR reaction (Meyerhans et al., 1990). 

5.1.4 Primer design 

In order to amplify 1.7-kb env fragments from HIV-1 infected patients, the primers 

were designed to be complementary to the template DNA, with restriction 

endonuclease recognition sites being added at the 5'-ends of the oligonucleotides. 
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Thus, by restriction enzyme digestion, compatible overhangs for subcloning into the 

mammalian expression vectors are produced (BstEII at the 5' end of the sense inner 

primer and XbaI at the 5' end of the antisense inner primer). The presence of 3'-

terminal mismatches was avoided since the consequence will be a dramatic reduction 

of PCR product yield. The primers used to amplify env genes are shown in Chapter 2 

(Table 2.3). The presence of the restriction sites at the 5' ends of the primers are 

useful when considering the transfer of the DNA fragment that is between them from 

the cloning vectors into expression vectors. 

5.1.5 Cloning vector system 

The difficulty of cloning the amplified DNA directly into the expression vector, due 

to the inefficient cutting of restriction enzymes, impurities or blockages of the ends, 

is overcome by using a TA cloning vector such as pGEM T Easy Vector System 

(Mezei et al. 1994). TA cloning vectors overcome the problems associated with 

cloning of blunt-end ligation, a process that is less efficient and more time 

consuming. Blunt-ends fragments produced by Pfu polymerase are not suitable for 

ligation into pGEM T, unless an additional A' nucleotide at the 3' end of the PCR 

product is introduced by a round of amplification with Taq DNA Polymerase in the 

presence of only dATP. 
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5.2 Results 

5.2.1 Estimation of the provirus DNA copies number by end-point 

dilution nested PCR 

Proviral HIV-1 molecular copy number associated with each patient sample can be 

quantified by nested PCR, using primers for VI/V2 region in env gene (see Table 

2.3). For each patient DNA extracted, test samples were titrated to an end-point (i.e. 

dilution when no signal was visible). The final dilution above the end point was then 

distributed into aliquots and the number of positive aliquots recorded (usually for 

this dilution 20% of the reactions produced a visible signal). Increasing the numbers 

of replicates at each dilution (Simmonds et al., 1990a) can increase the accuracy of 

the titration. The frequency of positive reactions varies with the amount of target 

DNA amplified and can be converted into an estimated amount of target DNA (i.e. 

number of template molecules per reaction) by employing Poisson formula An (f0) x 

l/d x 100, where f0  is the frequency of negative reactions and d x 100 is the dilution 

of the DNA x the volume in which the DNA extracted from 106  PBMC was 

resuspended (i.e.100 tl). The results obtained for the patients used in this study are 

presented in Table 5.1. 

In all V1/V2 PCR experiments, primers specific for HLA DQa were used to amplify 

a 242bp fragment that is an indicative of a positive reaction. In negative reactions, 

patient DNA was substituted with distilled water. 

In Figure 5.1 an agarose gel of a titration of DNA sample derived from patient 1090 

is shown. When amplifying samples, using primers for V1/V2, a specific band 

corresponding to a fragment of 294 bp shows a positive reaction. The frequency of 

positive reactions less then 0.2 (defining the end point dilution) is reached in this 

case for sample diluted 1/3 5. 
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Table 5.1 Quantitation of target DNA per each patient sample 

DNA no. Patient PBMC End-point Frequency of positive Estimated env 

DNA sample code dilution reactions copies/106  PBMC 

1 1363 1/30 30/50 1,532 

2 1299 1/50 10/50 8,047 

3 1260 1150 8/50 9,162 

4 1021 1/35 10150 5,633 

5 1020 1/10 5/50 2,302 

6 1397 1/20 7/50 3,932 

7 1294 1115 11/50 5,868 

8 1066 1/20 9/50 3,429 

9 1090 1/35 30/50 510 

10 p80  (115) 1/28 9/50 4,801 

11 p80(158) 1/10 8/50 1,832 

12 p80(191) 1/10 11/50 1,514 

13 p80(270) 1/10 2/50 3,218 

14 p80(301) 1/80 5/50 18,420 
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Figure 5.1 Gel electrophoresis of VIN2 PCR amplification that was done when DNA from patient 1090 was used 

The gel shows two runs, one above the other (from Origin 1 to Origin 2) of PCR reactions from material that derived from patient 1090. 

DNA sample extracted from PBMCs derived from patient 1090 was used in the following concentrations: 1/5, 1/20, 1/30, 1/35. Ten 

reactions were done per each dilution of DNA. The tube containing DNA diluted 1/35 gives the final dilution above end point. For this 

dilution another V1/V2 PCR was performed using 50 replicates with the same result (data not showed). The arrow showed at the left side 

of the gel gives the direction of migration. The sizes of the fragments provided by the marker are written. The number of wells is given in 

the lines written above or below the origins, with the distribution of each diluted sample or negative control specified in the legend 

presented on the right side of the gel. Positive bands resulted from V1/V2 amplification have a molecular weight of 294 bp. 
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5.2.2 PCR amplification of 1.7kb env sequences and their incorporation 

into a TA cloning vector system 

As presented in Section 5.1.1, recombination between the heterogeneous proviral 

DNA templates can occur. To avoid this putative event leading to hybrid molecules to 

be manifested during PCR, amplification of env gene from diluted DNA extracts was 

attempted. All the experiments failed to produce a detectable 1.7kb fragment on the 

agarose gel. However, despite a moderate viral load (as mentioned in the above 

section) which suggests a certain probability of DNA recombinants into PCR reaction 

that can be ascertained by screening and sequencing several env clones derived from 

the same PCR to establish the identity of each sequenced clone (i.e. if it is or not 

recombinant), the amplification of the gene from the bulk DNA extracts was 

undertaken. Many trials to amplify env gene from undiluted DNA sample failed 

(even when different annealing temperatures, concentrations of Mg 2 and addition of 

additives such as glycerol, DMSO were used), when using different batches of Pfu 

polymerase. The suspected cause for these failures was probably the low processivity 

of the Pfu enzyme from those particular batches. Finally, the amplification of the 1.7 

kb fragment from several patients employing nested PCR with primers designed for 

env region (see Chapter 2) using hot start and a batch which provided a processive 

Pfu polymerase was successfully done. In hot start PCR, all the components of the 

reaction (i.e. the template, dNTPs, Pfu polymerase, and buffer) are added but not the 

primers. The reaction tubes were placed on GENEE Thermal Cycler hot block and 

heated to 92 0C for 1 min to denature the strands. The reaction is paused for Imin at 

920C, during which the primers were added, and then the annealing and extension 

steps performed normally. This first cycle is followed by other 30 cycles as described 

in Section 2.5.3. When the temperature dropped from 92 0C to 500C, the primers 

recognise and specifically hybridise with the complementary strand leading to a very 

specific band after PCR reaction. 

After PCR amplification, the reaction product was resolved in 1% agarose gel and the 

1.7kb patient derived env genes were identified, cut and purified with GeneClean kit. 

A gel electrophoresis showing a 1.7kb amplicon is depicted in Figure 5.2. The 

purified bands and the mammalian expression vector pEV6 were digested with 

BstEII. 
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Figure 5.2 Agarose gel electrophoresis corresponding to PCR amplification when primers specific for env region 

were used 

The arrow showed at the left side of the gel gives the direction of migration 

Lane 1 shows the bands given by the pGEM Marker 

Lane 2 represents the negative control 

Lane 3 shows a 1.7kb fragment that represents env gene from patient 1090 amplified from bulk. 
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and XbaI and ligated with T4 DNA Ligation kit (standard protocols). All the 

attempts to ligate the amplified env genes directly into the mammalian expression 

vector (pEV6) were not successful. The failure of these experiments might be 

explained by the blockage of the ends, a process that can occur after electrophoresis, 

leading to a decrease in percentage of the functional ends. Another explanation might 

be given by the inefficient cutting of restriction enzymes that impaired the ligation to 

be carried out efficiently. In conclusion, a series of 1.7kb env fragments were 

obtained and lost because of the reasons mentioned above. A more efficient and 

quicker alternative to clone the 1.7kb env genes was provided by TA cloning vectors. 

Due to the lack of any A-overhang at the 3' ends of the amplicons, making it 

impossible to subclone the Pfu amplified env genes into TA vectors, 1.7kb fragments 

were subject to one more cycle of amplification with Taq polymerase in the presence 

of only dATP, followed by subcloning into the pOEM T vector system. Some of the 

PCR reactions were done employing Taq polymerase and the fragments produced 

were subcloned directly into pGEM T. The recombinant clones obtained were firstly 

differentiated from the parental pOEM T vector by agarose gel electrophoresis and 

the presence of the env genes was checked by both restriction digestion with BstEII 

and XbaI and PCR employing primers for env sequence. The clone nomenclature 

(recombinants deriving from pOEM T that contain env from patient sample) and the 

enzyme used to amplify the env gene are presented in Table 5.2. 

5.2.3 Transfer of the 1.7kb fragments from pGEM T into the mammalian 

expression vector pEV6 

The transfer of the pOEM T saved env genes from pGEM T into pEV6 was done 

according to standard protocols. pEV6 was linearised by double digestion with 

BstEIl and XbaI. In order to minimise formation of the parental vector (pEV6) and 

thus to reduce the background after ligation of env genes with linearised pEV6, a 

third digestion with Smal (which lies between BstEII and XbaI in polylinker) 

followed. Env fragments were obtained from env-containing pOEM T derived clones 

after double digestion with BstElI/XbaI, by separation of the digestion products on 

the 1.5-% agarose gel and gel purified. 
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Table 5.2. Recombinant clones obtained when 1.7kb qenes were saved in pGEM T vector system 
Patient PBMC Enzyme used in 

amplification 

Recombinant clone 

nomenclature 

1363 Pfu 1363.1; 1363.2; 1363.4; 1363.5; 1363.6; 1363.7; 1363.8 

1299 Pfu 1299.1; 1299.2; 1299.5; 1299.7; 1299.9; 1299.10 

1260 Pfu 1260.1; 1260.3; 1260.4; 1260.5; 1260.7; 1260.9; 1260.10 

1021 Pfu 1021.1; 1021.2; 1021.3; 1021.4; 1021.5; 1021.6; 1021.7; 1021.8; 	1021.9 

1397 Pfu 1397.1; 1397.2; 1397.3; 1397.4; 1397.6; 1397.7; 1397.8; 1397.9; 1397.10 

1066 Pfu 1066.1 

1090 Pfu 1090.4 

1020 Pfu 1020.4; 1020.7; 1020.8 

1299 Pfu 1299.10; 1299.5 

158 Taq 158.1 

115 Taq 115.2; 155.4; 155.6; 155.7; 155.8 

191 Taq 191.3; 191.4; 191.5; 191.6; 191.9 

270 Taq 270.1; 270.3; 270.4; 270.5; 270.6; 270.8 

301 Taq 301.1; 301.2 301.4; 301.5; 301.6; 301.7; 301.8; 301.9; 301.10 

The clones written in bold were selected for the env gene transfer from pGEM T into pEV6. The selection criteria were 
slightly biased on the quality and the yield of the DNA miniprep obtained but generally was a random process 
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After ligation, the recombinant clones containing env gene were screened and 

differentiated from the parental plasmid pEV6 by gel electrophoresis and the 

presence of env fragments was further confirmed by digestion with BstEII and XbaI 

and env PCR. The nomenclature of the clones obtained after swapping the genes 

from pGEM T to pEV6 is given in Table 5.3. 

In order to identify the origin of each clone, the following nomenclature that reflects 

the order of the cloning steps was adopted. The first figure refers to the patient 

PBMC DNA samples. The suffix to this number refers to the number of the clone 

that derives from TA vector system in which the env gene was subcloned. The 

second suffix refers to the recombinant clone that derives from pEV6 in which the 

env gene was transferred from env containing pGEM T vector. For example, 

1365.5.5 refers to the clone number 5, cloned from env containing cloning vector 

pGEM T number 5, amplified from PBMC DNA sample # 1365. 

Figures in Italics in Table 5.3 refer to the level of the gp 120 glycoprotein of the non-

expressing clones or clones that have a very low level of expression that might be 

considered to be below the sensitivity of the gp 120 ELISA employed, respectively. 

Bold figures are allocated to the recombinant clones which could express the gp120 

gene and underlined bold figures correspond to those clones for which a high 

variation of the humidity was observed to have occurred (high values for gp120 level 

can be a result of an artefact given by the fact that supernatants evaporated and, thus, 

it does not reflect a high level of expression of the associated clones. Up to 500 ul 

(for example 100.tl of each of 2-3 replicates, tested in parallel) out of 2m1 of 

transfection supernatant were used in ELISA to estimate the concentration of gp 120 

expressed. The supernatant left was stored at -70 0C and used later to quantify the 

antibody recognition from the patient sera against autologous and heterologous 

gp 120 (see Chapter 6). As can be seen, all the clones obtained for patients 1021(5/5) 

and 1397 (515) expressed the env gene, whereas for others such as patients 1299 

(0/5), 1090 (0/1), 1020 (0/3) and all the samples deriving from patient p80 (158, 115, 

191, 270 and 301) no functional clone could be selected. Interpretation of these 

results may consist of a relatively high level of defective proviruses into patients 
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Table 5.3 Recombinant clones able to express the env gene variants. 
This table shows the numbers of clones obtained when each selected pGEM T saved 
1.7kb fragment presented in Table 5.2 was transferred to pEV6 

Patient PBMC Nomenclatur gp 120 (ng/ml) when gp 120 (nglml) when 
e of clones 5tg transfectant DNA 1 p.g transfectant DNA 

was used  was used  

1363 1365.5.5 0 0 
1363.6.3 0 5.8 
1363.7.2 4 5 
1363.8.2 32 56.35 

1299 1299.2.2 0 6.9 
1299.5.3 0 0 
1299.7.1 8.6 15.4 
1299.10.1 0.9 2.5 
1299.10.2 1.6 2.8 

1260 1260.1.6 5.3 11 
1260.1.7 2.1 4 
1260.3.1 0 0 
1260.4.1 0 2.4 
1260.5.1 49 19.5 

1021 1021.6.1 110 45.9 
1021.6.2 26 42 
1021.6.3 34 ND 
1021.8.1 1249 1685 
1021.9.1 20 63 

1397 1397.2.7 91 25.3 
1397.4.1 395.3 337 
1397.6.1 584 458 
1397.7.8 ND 180 
1397.8.1 601 1216.4 

1066 1066.2.2 41 32 
1090 1090.4.2 0 0 
1020 1020.4.1 0 1.84 

1020.7.1 0 3 
1020.8.1 0 0 

158 158.11213.1 0 5.2 
115 115.1/2/3.1 0 0 
191 191.1/2/3.1 0 0 
270 270.11213.1 0 0 
301 301.11213.1 0 0 

a. figures are the result of three paralleled transfections 
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PBMC DNA rather than a disruption of the open reading frame (ORF), as a 

consequence of a defective ligation or inactivating mutations introduced by PCR. 13 

out of 44 clones amplified by Pfu polymerase were positive for env gene expression, 

corresponding an associated frequency of gene expression of 44.8%. Using Taq 

polymerase, 15 env clones originating from patient p80-derived samples were 

obtained, none of these expressed detectable levels of env gene, giving a frequency 

of gene expression of 0%. 

The relationship between the number of expressing clones and the type of the 

enzyme employed during PCR amplification was analysed by chi square-test 

(x2  =6.46, P<0.01) and Fisher test (P<0.01). While clone selection was a fairly 

random process, the result suggests that there is a clear advantage of Pfu polymerase 

over Taq polymerase in terms of conferring a higher likelihood of gene expression 

for obtained env clones. 

In light of the concepts presented in the previous chapter, the low number of clones 

able to express the env gene in a range that is detectable in ELISA assay may be 

explained by the lack of Rev. Therefore, both the number of expressing clones and 

their level of expression could be increased by co-transfection of these constructs 

with a Rev-expressing vector. 

5.2.4 Screening for a successful gp120 env gene expression by 

transfection of COS cells 

5.2.4.1 Comparison between Lipofectin, Effectine and SuperFect 

Transfection Protocols 

The type of transfection vector and PCR product cloned within it, influences the 

transfection results. The configuration and size of the construct also determines the 

efficiency of transfection. Therefore, an experiment was performed to test different 

transfection protocols and compare their transfection efficiency. First, the Effectine 

protocol that uses a non-liposomal lipid that works together with a specific DNA-

condensing Enhancer. Second, the SuperFect protocol that uses an activated 
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dendramer. This is a compound that possessed a defined spherical architecture with 

branches radiating from a central core and terminating at charged amino groups able 

to bind transfectant DNA and to buffer the lisosomal nucleases after it has fused with 

the endosome. The third was Lipofectin that uses a liposome formulation of the 

cationic lipid N-(2,3 -dioleyloxy)propyl)-n,n,n-trimethylammonium chloride 

(DOTMA) and dioleoyl phosphotidylethanolamine (DOPE). pEV6 was used as a 

negative control and pEV5 as a positive control. Clone 102 1.8.1 was chosen as a test 

sample because it gave a good expression level in one previous experiment, when 

Lipofectin was preliminary used. To test if Effectine and SuperFect give an 

advantage over the Lipofectin, regarding transfection and gene expression efficiency, 

clone 1021.8.1 derived plasmid was transfected in COS cells, employing all the 

methods in parallel. After transfection, COS cells were cultured for 72h and 

supernatants collected and tested for gp120 level using gp120 ELISA. The results 

obtained are given in Table 5.4. 

Table 5.4 Transfection of COS cells using three transfection protocols 

Sample Effectine 

gp 1 20(nglml)a 

SuperFect 

gp 1 20(nglml)a 

Lip ofectin 

gp 1 20(ng!ml)a 

pEV6 92 74 164 

pEV5 13 7.4 14.5 

1021.8.1 760 520 1231.5 

a. values represent the results of one experiment using duplicates per sample. 

Contrary to the expected results, the higher transfection efficiency was obtained for 

Lipofectin protocol. Therefore, all the transfection experiments to screen for gp120 

env gene expression of the patient derived clones were done according to this 

protocol (see Table 5.3). 
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5.2.4.2 gp120 cellular staining of COS cells 

An immunofluorescence assay to investigate gp120 expression was used as an 

alternative method for gp120 ELISA. After collecting the supernatants derived from 

COS cells transfected with patients derived env clones, transfected COS cells were 

detached from the transfection wells using 0.02M EDTA, washed two times in lx 

PBS and treated with a hypotonic solution (PBS: H20 = 40-60%). One drop of cell 

suspension was spotted per well on a multiwell microscope slide and allowed to dry 

thoroughly for lh. The slides were fixed with a solution methanol: acetone (5:95) or 

acetone alone for 10min at room temperature, then washed four times with 1xPBS. 

After the slide had completely dried, one drop of mounting solution was distributed 

in each well and a cover slide put on top. 

The staining procedure involved the sequential usage of the following reagents: 

antibody anti-gp 120 and sheep anti-human IgGlTC (y chain specific) (Sigma). Three 

antibodies anti-gp120 were tested in parallel ARP 3054 (GP13), ARP 3055 (GP68) 

and ARP 3065 (IgGlbl2). Supernatants obtained by transfection of COS cells with 

pEV6 were used as negative controls for each anti-gp 120 antibodies being tested. 

Supernatants from pEV5 transfected COS cells were taken as positive controls. 

Different fixation protocols were tested to select one that gave a low background. 

Thus, treatment of the cells with either methanol: acetone = 5:95 or acetone alone 

was found to suit the purpose of the assay. 

Titrations of each reagent were done in order to establish the optimum concentration 

for each one. Dilutions of 1/100 in normal sheep serum for both anti-gp120 

antibodies and sheep anti-human I gGITC were chosen as being optimum. From the 

intensity of the fluorescent staining of COS cells, ARP 3054 was selected as giving a 

better signal than ARP 3055 and ARP 3065 (see Figure 5.3). 

When a transfection experiment was completed, COS cells were used in 

immunofluorescent assay to assess the gp 120 staining and the supernatants were used 

to estimate the amount of the secreted glycoprotein. The results obtained by 

employing both methods were generally consistent, although variations in 

transfection and staining efficiency between experiments were noticed. 
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Figure 5.3. gp120 cellular staining of COS cells 

The photographs show the cellular staining of COS cells transfected with a gp 120 expressing plasmid (1021.8.1), with antibodies directed 

against HIV-1 gpl2O as following: 

A. ARP 3054 (GP13) recognises V3 loop ofgpl2O MN, SF2 and other strains. 

C. ARP 3025 (GP68) with specificity for V3 loop derived from HIV IIIB 

E. ARP 3065 (IgGi b12) that is mapped to the CD4 binding site ofgpl20 

Mock tranfected COS cells stain with antibodies GP 13, GP68 and IgGlbl2 are shown in photpgraphs B, D and F 
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5.2.5 Sequence analysis of the env gene clones 
5.2.5.1 NSI/Sl Phenotype 
The NSI/SI phenotype - associated sequence variation was assessed by employing 

two methods: Donaldson et al. (1994) and Fouchier et al. (1992). 

In the first method, the phenotype of V3 sequences can be compared on the basis of 

predicted overall charge (x-axis) and number of amino acid changes from the 

subtype B consensus (y axis). In this model NSI isolates cluster in an area having a 

low charge on the V3 loop and a minimum difference from consensus, whereas SI 

isolates manifest a higher overall positive charge on the V3 loop and have more 

differences from subtype B consensus. A line (See Figure 5.4) can mark the 

delimitation between the two subgroups of isolates. Table 5.5 gives some features 

such as predicted overall positive charge and the number of differences from 

consensus for the env clones obtained from the homosexual patients and those 

derived from the patient 82. Figure 5.4 presents the phenotype of the same patients 

based on V3 loop sequences as predicted by Donaldson et al. (1994). The majority of 

sequences were predicted to be of NSI phenotype by both methods (see Figure 5.4 

and Table 5.6). In order to simplify the nomenclature of env clones, the annotations 

p82a to p82m were written in the brackets following the old nomenclature (see Table 

5.6). Clones 1066.2 and 1260.5 from homosexual patients and 82 and 82.3 from 

patient p82, were predicted to have derived from isolates with SI phenotype. 

In Fouchier prediction, the SI isolates exhibit V3 sequences with a significantly 

higher positive charge than those of NSI isolates do with an obvious difference of the 

amino acids at positions 11 and 28. Thus, NSI variants usually present uncharged (S 

or G) residues at position 11 and either negatively charged (E or D) or uncharged 

residues (A or Q) at position 28. Conversely, in SI isolates, basic residues replace 

either one or both amino acid residues at positions 11 and 28. The NSI/SI phenotype 

of the env clones, deduced by Fouchier prediction, is presented in Table 5.6. Using 

this method, all the sequences but four (i.e. 1066.2, 1260.5, 82 and 82.3) have NSI 

phenotype. 
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Table 5.5 Overall charge and divergence from subtype B consensus of V3 
loop presented by the patients derived clones and some well-known isolates 

Overall charge (+) Number of Number of Clones from 

differences from sequences with patient with these 

consensus these properties properties 

2 4 2 139.6B 

12.16 

2 2 1 1363.8 

3 0 2 r82r001r(82a) 

108.18 

3 2 5 1021.89 

12.08 

108.10/108.11 

108.17 

3 4 1 139.05 

JRCSF 

4 1 1 108.19 

4 2 2 108.15 

108.42 

4 3 1 1021.6.123/123.14 

82 

5 5 2 82.3 

SF2 

6 9 1 1260.5 

7 12 1 1066.2 

8 7 1 LAI 

8 5 1 MN 

The clones written in bold are considered to derived from isolates with a predictive Slphenotype. 
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Figure 5.4 Predicted NSI/Sl phenotype of the env isolates based on V3 loop 	ences as compiled by Donaldson et al., 

(1994) 

Diagram shows the predictive NSI/SI phenotype of the env clones obtained from patients 
	

d, based on the calculated overall positive 

charge and the degree of difference from the consensus B sequence (CTRPNNNTRKSI.1{I. . GPGRAFYTTGEIIGDIRQAHC) (Korber et 

al., 1998). The V3 loop charge was calculated by assigning a unitary positive charge to Arg/Lys residues and a unitary negative charge to 

GluJAsp residue. The potential charge contributed by histidine (His) residues was discounted. A line marks the split between NSI and SI 

isolates. Several well-defined isolates are also shown: Ada/Ba!, JRCSF, MN, LAI, S1 72, IIIB. When two samples gave the same values, 

they were written side by side, with the clones deriving from the same patient delimited by slash. 
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5.2.5.2 Prediction of the CCR5 co-receptor usage 

A correlation between amino acid substitutions at different positions in subtype B 

consensus was found between HIV-1 strains and CXCR4/CCR5 co-receptor usage. 

By analysing the influence of amino acid substitutions in the V3 loop on the effect of 

co-receptor usage, Speck et al., (1997) observed a strong correlation between the 

presence of either His at position 13 or a lie at position 33 or both of them 

simultaneously and the CCR5 co-receptor usage. The correlation between amino acid 

substitution and the ability to use CXCR4 co-receptor was not consistent, although 

the presence of either a lysine (K) at position 10 or one of the following residues: 

isoleucine (I) at position 31, aspartic acid (D) at position 32 and isoleucine (I) at 

position 33 was found to correlate well enough with viral entry via the CXCR4 co-

receptor. 

The CCR5/CXCR4 co-receptor usage prediction was applied to patient derived env 

sequences (see Table 5.6). All the isolates were predicted to use CCR5 as indicated 

by the score obtained when one unit was allocated for each His residue found at 

position 13 or lie at position 29 for each isolate. 

Generally the isolates had Lys (K) at position 10 (with only one exception, the isolate 

1260.5 for which Lys is replaced by Arg (R) without altering the positive charge at 

this site), lie (I) at position 33 and Asp (D) at position 31 (exception being made by 

clones 102 1.6.123, 82, 82.3, 123.14), indicators of a predicted CXCR4 coreceptor 

usage. 

5.2.5.3 Sequence analysis 
5.2.5.3.1 Nucleic sequences from patients' PBMC DNA 

A total of 12 sequences of the V3 domain and flanking regions (1 O3bp fragment) 

were obtained directly from five homosexual patients PBMC DNA by nested PCR 

(i.e. 1021, 1066, 1260, 1363 and 1397). Sequencing was done by Dr. D.Yirrell, 

Centre for HIV Research, University of Edinburgh. All the clones derived from 

patient 1397 shown identical sequences (4 out of 4 sequences). The same result was 

noticed for all three clones that corresponded to patient 1021, with only one silent 

A-+C transversion at position 7193, numbered according to HIV HXB2. 

135 



Table 5.6 The amino acid sequence alignment, predicted NSIISI phenotype and co-receptor usage for patient 

derived env clones 

HIV-1 env clones 
1 	10 	20 	28 	32 	38 

I 	I 	I 	I 	I 	I 
CTRPNNNTRKSI .HI. .GPGRAFYTTGEIIGDIRQA}iC 

SI/NSI 
(Donaldson) 

SI/NSI 
(Fouchier) 

CXCR4 CCR5 

1021.6.12 ------------- T ------------- D---N NSI NSI + + 

1021.3 ------------- T ------------- D---N NSI NSI + + 

1021.89 ------------- T ------------- D NSI NSI + + 

1066.2 KIG-R- .TM. . ----V-----K-V----R-Y SI SI + + 

1260.5 RG- .V-. . -----V-ARDK------K SI SI + + 

1363.8 NSI NSI + + 

1397.2467 .P-. . 	---------S NSI NSI + + 

Z82r001z(82a) NSI NSI + + 

108.10(82b) --------G------Q NSI NSI + + 

108.11(82c) 

- 

.T-. .- --------- D NSI NSI + + 

108.15(82d) .P-. .- ---------Q NSI NSI + + 

108.17(82e) .--. .---G------Q NSI NSI + + 

108.18(82f) NSI NSI + + 

108.19(82g) 

 -E --------- -.N 

 

- . . 	--------------------- 

.--. 
. ---------------------- 

---*----------- G NSI NSI + + 

108.42(82h) .P-. .- --------- Q NSI NSI + + 

12.08(82i) .P-. .- --------- D NSI NSI + + 

12.16(82j) 

.--. . ---------------------- 

G--------- S ---A--D NSI NSI + + 

82 R-.--. . -----V---EQ---N SI SI + + 

82.3(82k) R-.Y-. .-----V---ER---N SI SI + + 

139.05(821) G--------- S ---A--G NSI NSI + + 

139.6B(82m) G--------- S ---A--b NSI NSI + + 
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The sequences obtained from both homosexual cohort and haemophiliac patient p82 

are presented in Figure 5.5, with alignments being preserved using dash to indicate 

the presence of gaps and dots to show the identity to the first sequence. 

The 5'-end of sequences deriving from clones 108.10, 108.11, 108.17, 108.19, 12.08, 

12.16, 82, 82.3 and 123.14 (between position 7051 and 7130) could not be read with 

accuracy and dashes were used to keep the alignment. Very few deletions and no 

insertions have been identified among the sequences. Conversely, a certain degree of 

variability has been noticed both within the nucleic acid sequence that encodes V3 

loop and its flanking regions. This result may have been expected, since they were 

previously tested for their capability to express the env gene. 

In flanking regions, the sequence variability was present at positions -9, -18, -19, -26, 

-38, -53, and -55 and +4, +14, +16, +23, + 25, +34, +35, +39, +44, +59 and +69 (the 

+1- signs reflect the direction from V3 region towards 573' end of the sequences). The 

most frequent positions characterised by high variation within V3 region were: 37, 38, 

58, 70, 80, 82, 91 (see Figure 5.5). 

5.2.5.3.2 Nucleotide distances of the V3 and flanking regions within and 

between samples 

Pairwise nucleotide distances were estimated for the sequences derived from both 

homosexuals and haemophiliac patient (p82) using the program DNADIST, as 

implemented by PHYLIP package (version 3.4), based on Kimura correlation. 

Average sequence diversity, both within and between sequences were estimated based 

on the pairwise nucleotide distances and is presented in Tables 5.7 and 5.8. 

Nucleotide distances of the V3 sequences within samples from the same haemophiliac 

patient (p82), at five points from seroconversion (year 3, year 4, year 6, year 7) were 

estimated by Dr. Lin Qi Zhang (1992) (PhD thesis, University of Edinburgh, 1992). 

The average intra-sample distances in year 3 was 3.2%, 3.6% in year 4, 2.5% in year 

5, 5.7% in year 6 and 4.6% in year 7. 
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Figure 5.5 Alignment of the env clones sequences from homosexual patients and those from patient p82, encompassing V3 

and flanking region. 

The diagram shows the nucleic sequences for the V3 loop and flanking regions of homosexual patients derived env genes and those of the 

patient p82. Nucleotide positions are numbered according to HXB2. The sequences were aligned to the sequence of the clone 102 1.6.12. 

Only nucleotides that differed from those that belong to the first sequence are shown. Gaps were used to maintained the alignment, when 

necessary, and where marked by dashes. The identity to the first sequence is shown by dots. All the sequences originating from patient p82 

were written in the order in which they were chronologically found in the PBMC DNA (seroconversion: z82rOOlz, 1987: 108.10-108.42, 

1988: 12.08, 12.16, 82, 82.3, 1989: 123.14, 1990: 139.05, 139.6b). 1021.6.12 represents the unique sequence obtained for both clones 

1021.6.1 and 1021.6.2. The sequence TGT at positions —9 and 100 is given in bold to show the codons for Cys in the clones sequences. 
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7051 7149 

-55/53 	 -38 -26 -19/18 	-9 	 1 	 10 	 20 	30 
1021.6 . 12 AATTTCTCGGACAATGCTAAAACTATAATAGTACATCTGAATAAATCTGTAGAAATTAATTGTACAAGACCCAACAACAATACAAGAAAAAGTATAACT 
1021.6.3 
1021.8 ....................... C ........ G .................................................................. 
1021.9 ....................... C 	........ G .................................................................. 
1066.2 A.A .............. C ........... A ............................................ G.T.G ....... A ...... 
1260.5 A ........ A ....... C ................... G ... C. 	. 	. 	.T.. 	.0 ............................... G.G ..... GT. 

1363.8 A ................ C ........... G .... C .......... A.0 .... C. 	. 	. 	.GA ......... T ...................... A. 

1397.246 7  A .......... A ................. G ....... G .... A ............................................... C.. 
Z82r001z(82a) A ................ C ........... . ...... GG .................................................... CA. 

108.10(82b) ------------------------------------------------------------------------------------------------ CA. 

108.11(82c) --------------------------------------------------- . 	. 	.G.-C ...................................... CA. 
108.15(82d) A.A .............. C ........... G ...... GG ........ T ........................................... C.. 

108.17(82e) ------------------------------------------------------------------------------------------------ CA. 

108.18(82f) A.A .............. C ........... G ...... GG ..................................................... A. 
108.19(82g) -----------------------C ........... G ....... G ........T ...........................................CA. 

108.42(82h) A.A ..............C ........... G .... C.GG ....................................................C.. 

12.08(821) -----------------------C ........... G ......GG ....................................C ...............C.. 
12.16(82j) -------------------.. . .0 ........... G ...... G ......... T ..................................... G .....CA. 
82 -------------------------------------------------------------------------------------------- G...TA. 

82.3(82k) ----------------------- C ........... G ...... G ......... T ....................................... G ... CA. 

139.05(821) A.A .............. C ........... G ...... G ......... T ..................................... G .....CA. 

139.6B(8 2 m) A..............C ........... G ...... G ......... T ..................................... G .... CA.. 
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7150 7253 

40 	50 	 60 	 70 80 9 	 100 	+4 	+14/16 +24/25 

1021.6.12 ATCCAGAGAGGACCAGGGAGAGCATTTTATACAACAGGAGACATAATAGGAAATATAAGACAAGCACATTGTAACATTAGTAGAGAACAATGGAACAAAACTT 

1021.6.3 ............................................................................................. C ......... 

1021.89 ................................................... G ................................................... 
1066 .2 . 	 . - ...................T ................A.A. .G ......G ......... G .... T .................. A ......... TGCC.... 

1260.5 ....................... G ...... G ... G 	.ATA.A ......... G ........ A ........................C.G ...... TT. .C. 

1363.8 .........................................A .........G ..............................A.A. 	.G ....... TG.C.... 

1397.2467 ..............G .....G ........C .........AGT .........G ............................. G. 	.AC.0 ..... C.T. ------ 

z82rOOlz(82a) .................A .......................A .........G .......................C .........C.0 ...... CTG.C.... 

108.10(82b) .......................................C.A .........G .......................C .........C.A....... TG ...... 

108.11(82c) .........................................T .........G .......................C .........C.A....... TG ...... 

108.15(82d) .......................................C.A .........G .......................C .........C.A....... TG ...... 

108.17(82e) .......................................C.A .........G .......................C .........C.A....... TG ...... 

108.18(82f) .........................................A .........G .......................C .........C.A....... TG ...... 

108.19(82g) ........................................GA .........G .............G ...................C.A....... TG ...... 

108.42(82h) .......................................C.A .........G .......................C .........C.A....... TG ...... 

12.08(82i) ................................................... G .......................C .........C.A....... TG ...... 

12.16(82j) ....................T .........G .................... G .......................C .........C.A....... TG ...... 

82.3 ........................G ..............CGA ........................................... C.A....... TG ...... 

82.0 ........................G .............. C.A ...................................... C .... C.A....... TG ...... 

123 .14(82k) ........................G ............A.C.A ........................................... C.A....... TG ...... 

139.05(821) ....................T .........G .........GA .........G .................................C.A....... TG ...... 

139.6B(82m) ....................T .........G .................... G .......G .........................C.A....... TG ...... 
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7254 7293 
+34/35 +39 +44 +59 +69 

1021.6.123 TAGAACAATAGCTATAAAATTAAGAAAACAATTCGGGAA 
1021.6.3 
1021.89 
1066.2 . .AG. . .G. .. .T.GA .......... G ........... -- 
1260.5 . .C. . . .G ....... GG ........ T.0 ........ 

1363.8 . 	 .C. 	. 	. 	 .G ........ T ........ T.0 ........ A.-- 

1397.2467 
Z82RO01Z(82a) . .AG.. .G.. . 	 .T. 	. 	.G ......... G .......... G.. 

108.10(82b) . 	 .A. . . .G. . 	 . 	 .T .......... G. 	.G .......... G.. 

108.11(82c) ..AG .. .G.. . 	 .T .......... G. .G. . .- 
108.15 (82d) ..AG - . .- 
108.17(82e) . .A. . . .G. .. 	.T .......... G. 	.G .......... 

108.18(82f) ..AG . . .G. . 	 . 	 .T ............. G .......... G. 
108.19(82g) . .A. . . .G.. . 	 .T ............. G .......... G.. 
108.42(82h) . .A... .G.. . .T ........................... 
12.16(82i) . .A.. . .G. . 	 . 	 .T ............. G .......... GC. 
12.08(82j) ..AG . . .G. .. 	.T .......... G. .G .......... 
82 .3 . .A-.. .G -------------------------------- 
82 . .A. . .- 
123.14(82k) . .A.. . .G... .T ............. G .......... G.. 

139.05(821) . .A. . . .G. .. 	.T ............. G .......... G. 

139.6B(82m) . .A. .. .G. . 	 . 	 .T. 	.0 .......... G .......... G.. 
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The same algorithms were applied for sequences that derived from the same patients 

(1021 and 13 97) producing an intra-sample distance of 1.8% for patient 1021 and 0% 

for patient 1397 (see Table 5.7). 

Figures presented in Table 5.7 suggest that patients 1021 and 1397 were investigated 

either early in infection (very close to the seroconversion time) or they are at a 

considerable time after seroconversion but they may not be progressors and hence 

their virions are not under the immune pressure to evolve into a heterogeneous 

population. 

The mean inter-sample distances between sequences derived from patient p82 were 

estimated to be: 22.3%, between year 0 and year 3, 15.93, between year 0 and year 4, 

13.5%, between year 0 and year 5, 22.4%, between year 0 and year 6 and 20.38%, 

between year 0 and year 7. Thus, the mean intra-sample distance decreased after year 

3 to reach the minimum value of 13.55% by year 5 and increased after year 6 to a 

value that was comparable to that between year 0 and year 3 (Dr. Lin Qi Zhang, 

1992). For homosexual cohort, the inter-sample variation values, as computed by 

DNADIST program, are presented in Table 5.8. When analysing the distances 

between sequences taken from different patients, it became noticeable that all the 

values were less than that which was estimated for patient p82 between year 0 and 

year 7 (20.38%). This result suggests that the extent of V3 variation that appears 

within the individual over several years can reach the same order as that that is 

manifested between different persons. Holmes et al. (1995) reported the same result 

by investigating 132 V3 sequences obtained from HIV-1 infected persons who 

belong to different risk groups in Edinburgh (including sequences from patient p82). 

The main conclusion of this analysis, regarding the homogeneous nature of the 

sequences obtained at or near after seroconversion with an enormous diversification 

of the sequences over time, is in agreement with that reported by Dr. Lin Qi Zhang 

(1992). The diversification of the sequences over time may be a consequence of a 

positive selection imposed by the host immune system or the need of the virus to use 

different co-receptors in order to gain the ability to infect different cell types, or a 
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Table 5.7 Mean pairwise nucleotide distances within the V3 sequences 

obtained for patient 1021. 

Sample (a) 1021.6.1 1021.6.2 1021.6.3 1021.8.1 1021.9.1 

1021.6.1 0(b) 

1021.6.2 0 0 

1021.6.3 0.004 0.004 0 

1021.8.1 0.013 0.013 0.018 0 

1021.9.1 0.013 0.013 0.018 0 0 

env sequences obtained from patient 1021 

distances were estimated using DNADIST program, implemented in PHYLIP package. Mean distances from 

all pairwise inter-clone comparisons are presented below the diagonal. 

Mean Intra Sample Variation 	 0.81% 

Range 
	 0%-1.8% 

Table 5.8 Mean pairwise nucleotide distances for V3 sequences obtained for 

patient 1021, 1066, 1260, 1363 and 1397 

Sample (a) 1021 1066 1260 1363 1397 

1021 0.81 (b) 

1066 0.1378 0 

1260 0.1570 0.1300 0 

1363 0.1206 0.2130 0.1590 0 

1397 0.1130 0.1680 0.165 0.1440 0 

env sequences obtained from patients 1021, 1066, 1260, 1363 and 1397. 

distances were estimated using DNADIST program, implemented in PHYLIP package. Mean distances from 

all pairwise inter-sample comparisons are presented in italics below the diagonal. 

Mean Inter Sample Variation 	13.4% 

Range 	 049.4% 
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neutral selection, as a consequence of the random activation of infected cells. 

5.2.5.3.3 Phylogenetic relationship between V3 sequences 

The phylogenetic relationship among sequences from homosexual patients, with 

reference to those obtained from patient p82 and three conventional subtype B 

isolates (HXB2, MN and SF2) was estimated by Neighbour-Joining method 

(NEIGHBOUR program, implemented in the PHYLIP package (version 3.4). A 

neighbour joining unrooted tree is presented in Figure 5.6, where a major division of 

the sequences into two main clusters is clearly seen. 

Five sequences obtained from patient 1021 clustered together, whereas all the 

sequences originated from homosexual patients appeared on distinct branches, 

showing that no contamination of plasmid DNA occurred. All branch lengths of the 

tree are drawn to scale, allowing an assessment of the relative amount of 

evolutionary change between the isolates to be made. 

5.2.5.3.4 Amino acid sequence variation and glycosylation pattern in the 

V3 region of env sequences 

The translated amino acid sequences of V3 domain and flanking regions of env 

sequences obtained from homosexual patients and patient p82 are presented in Figure 

5.7. The V3 region consists of a 38 amino acid sequence whereas 5' and 3' regions 

comprise a stretch of 20 and 23 amino acid residues, respectively. The frequency 

with which the amino acid replacement was manifested (given by the total number of 

sites where a replacement is accounted) is very similar in all three regions 

investigated: 0.45 (9/20) in 5' region, 0.5 (19/38) in V3 domain and 0.52 (12/23) in 3' 

region. The amino acid replacements within V3 loop are largely concentrated at 

positions: 306, 308, 313, 315, 317, 319, 320, 324 and 327 (the numbering was done 
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Figure 5.6. The Neighbour-joining phylogenetic tree for env sequences 

The diagram shows the unrooted phylogenetic tree of HIV- 1 isolates that were obtained from homosexual individuals and from an HIV- 1 

positive haemophiliac patient infected from a contaminated batch of factor VIII (p82). The tree includes other three subtype B isolates 

(HIVHXB2, MN and SF2). The scale bar corresponds to 0.10% nucleotide sequence divergence. Horizontal branch lengths are drawn to 

scale. The method of bootstrap resampling (100 replications) was used on neighbour-joining trees (programs, SEQBOOT and 

CONSENSE). The bootstrap values higher then 50% are written in italics at the level of divergence, giving the approximate confidence 

limits on individual branches. 

The sequences amplified and analysed by Dr. Sarah Ashelford (Ashelford (1996) PhD Thesis) and those deriving from homosexual 

patients clustered individually into two main lineages. To simplify the presentation the nomenclature p82a-p82m was adopted (see Figure 

5.5 and Table 5.6). The sequences deriving from homosexual patients clustered together and apart from those originating from 

haemophiliac patient. 
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with reference to the HIV HXB2 isolate, Los Alamos, 1998). Some of these sites 

represent targets for neutralising antibodies (306, 308) and cytotoxic T cell, and are 

responsible for conversion from one phenotype to another (Milich et al., 1993, 

Donnaldson et al., 1994, Fouchier et al., 1992). The hypervariable nature of the V3 

region was reported by many investigators (La Rosa et al., 1990, Albert et al., 1992), 

highlighting the high frequency of non-synonymous substitutions in this region, 

imposed by the host factors (immune system) or viral factors (diversification of viral 

tropism). 

Comparison of amino acid sequences revealed common patterns of potential N-

linked glycosylation in all sequences. Seven glycosylation sites were predicted to be 

present in the majority of sequences from both homosexual and haemophiliac 

patients, having the locations: 276, 289 (in 5' region), 295, 312 (in V3 domain) and 

333, 339 (in 3' region). 

Four glycosylation sites were perfectly conserved among the sequences (sites 276, 

295, 312 and 331), with one exception being represented by the sequence derived 

from patient 1066.2, where Thr (T) was replaced by Ile (I) at position 312. By 

contrast, sites 289 and 339 (located at 5' and 3' regions) showed a greater variability. 

Thus, at position 275, Asn(N) was replaced by Thr (T), Lys (K) or Gln (Q) in 

sequences 1363.8, 108.18, 108.42 and z82r000lz. Position 339 is characterised by 

the Asn (N) replacement to His (H), Ile (I) or Thr (T), respectively, in sequences 

1021.6.3, 1397, 1260.5 and z82r000lz. The loss of glycosylation sites may be 

relevant in connection with some biological properties such as antigenicity and 

infectivity (Montefiori et al., 1988). 

Some regions within V3 loop were characterised by the presence of highly conserved 

amino acid residues among the isolates, namely: CTTRPNNNTRK (positions 296 

and 305), IGPG (positions 309 and 312) and IRQAHC (positions 324 and 329) 

suggesting the presence of constrains within V3 domain in order to preserved the 

glycoprotein quaternary structure (La Rosa et al., 1990). 
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Figure 5.7 Alignment of the nucleic acid and amino acid sequences of the V3 loop and flanking regions 

The diagram presents the alignment of deduced amino acid sequences for the V3 loop and flanking regions from the HIV-1 infected 

homosexual patients together with those deriving from a haemophiliac individual (designated p82). Nucleotide sequences from 

recombinant gp120 clones were translated, aligned and compared to the consensus env sequence 1021.6.12389. Dashes denote sequence 

identity with the first sequence, while dots represent gaps introduced to optimise alignments. Question marks above the first sequence 

indicate sites at which less than 50% of the viruses share the same amino acid residue. The arrows denote conserved cystein residues. V3 

designates the third hypervariable HIV-1 envelope domain (Modrow et al., 1987). Rectangles represent potential glycosylation sites. 
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5.3 Summary of results 

The simple nested PCR method using primers for V1/V2 region of env, applied to 

estimate the provirus copy number for each DNA sample, revealed a range of the 

provirus copy number of between 510 and 18,420 copies/i 06  PBMC. This result 

suggested a certain probability of recombination between heterogeneous sequences 

being eventually present in DNA extracts. However, if present, it can be ascertained 

by sequencing the clones obtained from the same sample. Consequently, the 

amplification of env region was performed from bulk extracts using both Pfu and 

Taq polymerase, The strategy for efficient cloning was found to be that that 

employed pGEM T, as a cloning vector, from which the env sequences were 

subsequently exchange into the expression vector (pEV6). 13 out of 25 env clones, 

amplified with Pfu polymerase, which were obtained from five patients, were 

functional. For the other patients (1020, 1299, 1294 and 1090), no functional clone 

was produced. The same result was given by the patients p80-derived samples (158, 

115, 191, 270 and 301). The number of defective env genes integrated in PBMC 

DNA is dependent on patient factors. Thus, for some patients, all the clones 

produced were functional, whereas for other only 20-25% or even 0% was 

functional. Biological characterisation was done using predictive methods for 

estimating SIINSI phenotype and the ability to use CCR5/CXCR4 co-receptors. All 

the sequences obtained from homosexual patients were predicted to be NSI isolates 

with two exceptions: 1021.9 and 1066.2. The same NSI phenotype was estimated to 

be preponderant among the isolates obtained from patient p82 with three exceptions: 

82, 82.3 and 123.14. All of the sequences investigated are predictably able to use 

both co-receptors (CCR4 and CXCR5). 

Sequence analysis of env clones from the homosexual group was performed within 

and between patients in order to reveal the evolutionary distance between isolates 

derived from different HIV-1 positive individuals and those taken from the same 

patient. Nucleotide distances and the phylogenetic analysis of the sequences strongly 

suggested the relatedness of the sequences isolated from the homosexual patients in 

comparison to p82- derived sequences. This aspect is important because it will be 

correlated with the antibody recognition of the patient derived glycoprotein by the 

IgG antibodies that are present in autologous and heterologous sera (see Chapter 6). 
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CHAPTER 6 

ANALYSIS OF THE REACTIVITY OF IgG 

ANTIBODIES FROM PATIENT'S PLASMA 

AGAINST AUTOLOGOUS AND HETERO- 

LOGOUS GPI20 ANTIGENS 
6.1 Introduction 

6.1.1 Overview of the ELISA method for quantifying the antibody 

response 

6.2 Results 

6.2.1 The extent of the IgG antibody response to autologous and 

heterologous patient-derived env glycoproteins 

6.2.2 Analysis of the results obtained by ELISA in the presence of 

chaotropic compounds (8-M urea) 

6.2.3 Correlation between mean antibody reactivities recorded for 

homosexual individuals and their CD4 cell count 

6.2.4 Characterisation of the lgG antibody response of Edinburgh 

haemophiliac patients who received a common batch of factor 

VIII to autologous and heterologous gp120 glycoproteins 

6.2.4.1.Longitudinal characterisation of reactivity of lgG 

antibody from different samples from a haemophiliac 

patient (p82) to autologous gp120 antigens 

6.2.4.2 High degree of cross-reactivity between sera from 

other haemophiliac patients against gp120 antigens 

obtained from patient p82 

6.2.5 Level of recognition of recombinant gp120 glycoproteins by 

lgG antibody from haemophiliac and homosexual-derived sera 

6.3 Summary of results 



6.1 Introduction 

This chapter describes results obtained using an ELISA assay in order to quantify the 

IgG antibody response of sera from homosexual and haemophiliac HIV-1 infected 

patients to autologous and heterologous gp120 antigens that were produced in 

mammalian cells (COS cells). The aims were: to measure the IgG antibody response 

from two groups of individuals (homosexual and haemophiliac) to monomeric, 

recombinant gp120 glycoproteins expressed in mammalian cells and derived from 

the same individuals, and to do this in autologous and heterologous combinations to 

allow comparison of these reactivities. Although these glycoproteins have a more 

exposed conformation than oligorneric molecules, their glycosylation pattern and 

hence their antigenic properties should be close to those produced by infected T 

lymphocytes, in vivo. Thus, the results obtained will approximate the in vivo degree 

of recognition of these antigens by patients' IgG antibody, being superior to all the 

results obtained by ELISA assay using V3 peptides, which quantify only the anti-V3 

IgG antibody, and those produced when gp120 antigens were expressed in bacteria or 

insect cells, which have a glycosylation pattern different from those produced by the 

infected lymphocytes (see Chapter 7). 

6.1.1 Overview of ELISA method for quantifying the antibody response 

In order to estimate the reactivity of patients' sera against gp 120 glycoproteins 

secreted in transfection supernatants, the ELISA method used to quantify gp120 

glycoprotein described in Chapter 2.11.1 was employed with some modifications. 

The principle of this ELISA is given below. The capture antibody D7324 (a sheep 

polyclonal antiserum able to recognise and interact with Cl and C5 conserved 

regions of gp120 glycoprotein) was absorbed on each well of a microtitre plate. 

Between 100-500 ng/ml of recombinant gp120 glycoproteins, which had been 

expressed in transfection supernatants and had previously been quantified by the 

gp 120 ELISA, was added in order to interact with capture antibodies. Subsequently, 

the patient's sera (diluted 1/400) were added in each well. 
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Figure 6. 1. Diagram showing the principle of ELISA assay for estimation 
of IgG Ab response of patients sera to monomeric gp 120 glycoprotein 
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This step was followed by the addition of biotinylated F (ab') 2 goat anti-human IgG 

that are able to interact with the IgG class from patient sera. Finally, ExtrAvidin 

alkaline phosphatase interacted with biotinylated F (ab') 2 anti-human IgG and pNPP 

was used as a substrate to produce a coloured product that has an absorbance read at 

405nm. For each experiment, between 10-20 negative sera were used in order to 

establish a cut-off value calculated by employing the following formula: CO = N* 

+3 SD, where N*  is the average of all the absorbance values recorded for the negative 

sera. The ratio between the absorbance of each test sample and the cut-off 

established for that experiment was used to define the reactivity of that sample so 

that results between different experiments could be compared. The antibody 

recognition expressed by the given reactivities referred to the extent of the IgG 

antibody response to gp120 antigens, without defining their functionality (i.e. if they 

are able to neutralise or not). 

6.2 Results 

6.2.1 The extent of the IgG antibody response to autologous and 

heterologous recombinant gp120 antigens 

A panel of recombinant gpl20s prepared from homosexual patients, as described in 

Section 5.2.4, was used to assess the magnitude of the IgG antibody reactivity from 

their sera to autologous and heterologous recombinant gp120 antigens. Sera used to 

conduct these experiments derived from nine homosexual patients: 1363, 1299, 1260, 

1021, 1397, 1066, 1090, 1294 and 1020. Both positive and negative sera were diluted 

1/400 in order to avoid non-specific interactions that appear when using concentrated 

samples. A panel of ten constructs that successfully expressed the env gene, deriving 

from five homosexual patients designated 1363.8.2, 1260.5.1, 1260.6.1, 1021.8.1, 

1021.9.1, 1397.2.7, 1397.4.1, 1397.6.1, 1397.7.8 and 1066.2.2 was used. gp120 

antigens were obtained directly from transfected COS supernatants, their amount 

having been estimated by employing the gp120 ELISA described in Chapter 2. A 

constant amount of gp120 antigen (50ng/ml) was added in each ELISA experiment 

in order to avoid the variation in the OD between different samples due to variation 

in the amount of antigen. The same experiment was repeated with 500ng/ml and 
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1 000ng/ml of gp 120 glycoprotein when a rise in both the magnitude of the reactivity 

and the degree of cross-reactivity between sera and gp 120 antigens was noticed (data 

not shown). All the subsequent ELISA experiments were performed at low 

concentration of antigen (50ng/ml) to avoid the contribution of non-specific and low 

affinity interactions, which can be manifested at a high concentration of gp120 

antigen (i.e. using a high antigen concentration both the high and low affinity 

antibody will bind equally to the antigen, whereas at limiting antigen concentration 

only high affinity antibodies bind to the antigen). 

High level of variation in anti-HIV antibody 

Table 6.1 gives the reactivities obtained for the individuals from the homosexual 

group when their sera were tested against autologous and heterologous gp120 

antigens. These results were obtained by running three independent experiments, in 

which each sample was analysed in duplicate. The graph presented in Figure 6.2 

shows the extent of cross-reactivity between all the patients' sera and the gp120 

glycoproteins used, with error bars indicating the standard deviation between 6 

replicates. In order to simplify the presentation of the results, the reactivities for all 

the antigens obtained from the same individual were averaged and data obtained in 

this way is given in Table 6.2. Plots of the mean reactivity of IgG antibody from each 

individual serum against gpl2O antigens are drawn in Figure 6.3 A to I. 

It was found that all the sera exhibited significant reactivity (r) against both 

autologous and heterologous recombinant antigens. The range of response was 

patient-specific (ie. some sera were more strongly reactive against all clones). 

Several observations could be seen: 

a high degree of cross-reactivity between all sera and both autologous and 

heterologous env clones, 

the extent of the response to gp120 antigens was patient-specific (the recognition 

of the env clones depended on the immunocompetence of each individual). On 

the basis of the magnitude of the response to rgp120s, patients' sera could be 

classified into three groups of reactivity: 

- high, comprising the patient 1021 (mean r value 6.34), 
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Table 6.1 Data obtained from three ELISA experiments testing the overall recognition of gp120 
glycoprotein by autologous and heterologous sera 

?lbn&sera 
(a) 	.-.. 1363 1299 1260 1021 1397 1066 	10901 	1294 11 	020 
1363.8.2 3.99±0.3(b)  1.98±0.35 4.31±0.0005 6.17±0.32 3±0.01 4.12±0.45 2.68±0.072.58±0.04 4.4±0.14 
1260.5.1 2.12±0.42 1.12±0.05 2.78±0.49 5.92±0.06 2.31±0.31 2.54+0.622±0.14 	1.62±0.1 	2.29±0.45. 

1021.6.1 3.03±0.38 1.43±0.15 3.54±0.35 6.82±0.11 2.79±0.21 3.07+0.54'2.3 7±0.05 2.03±0.07 	3.4 

1021.8.1 2.92±0.19 1.1±0.24 3.25±0.11 6.18±0.1412.68±0.02 3.23+0.15 2.41±0.01 2.03±0.09 3.53±0.18 

1021.9.1 3.49±0.29 1.73±0.4 3.71+0.12 7±0.15 3.09±0.323.76+0.24 2.53±0.23 2.52±0.223.95±0.32 

1397.2.7 3.7±0.32 1.11±0.1 3.85±0.03 6.44±0.2 3.52±0.2 4.22+0.5 	2.6±0.14 2.75±0.294.16±0.48 

1397.4.1 2.89±0.24 1.05±0.2 2.91±0.02 6.02±0.1712.81±0.3813.06+0.3712.09±0.

"  
1 	2.36±0.1 3.03±0.16 

1397.6.1 3.89±0.02 1.22±0.28 3.8±0.16 6.4±0.18 13.12±0.1814.09+0.0612.56±0.14 12.36±0.18 3.03±0.03 

1397.7.8 3.52±0.02 1.22±0.28 3.8±0.16 6.4±0.18 3.12±0.184.09+0.06 2.56±0.1413.12±0.18 1 3.99±0.03 
1066.2.2 2.56±0.16 1±0.01 3.03±0.03 6.11±0.21 2.73±0.09 3.18+0.042.35±0.01 L_1.94'3.29±0.11  

refers to the env clones obtained from homosexual patients 
figure indicates the reactivity for autologous combination of gp 120 glycoprotein and serum 
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Figure 6.2. Relative cross-reactivity of sera to different recombinant gpl 20 antigens derived from homosexual patients. 

The graph shows different extent of recognition of the gp 120 antigens obtained from homosexual patients to autologous and heterologous 

sera 

The reactivity value is calculated as a ratio between the optical density (OD) of a sample and the cut-off (CO) value that was calculated for 

each experiment based on the following formula: 

CO = Mean OD negat i ves  + 3xST, where ST stands for standard deviation. The OD values for the negative samples used in all experiments 

performed were less than 0.2. 

Data represent mean reactivity values measured at a single, selected serum dilution (1/400). 

X-axis indicates the patients from which the sera derived 

Y-axis indicates the magnitude of the IgG Ab reactivities against recombinant glycoproteins used 

The legend given at the right side of the graph presents the gp 120 antigens obtained from the homosexual men group. Each gp 120 antigen 

is represented by a different colour. 

Error bars represent one standard deviation 
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- moderate, containing four patients: 1363 (mean r value 3.21), 1260 (mean r value 

3.49), 1066 (mean r value 3.53), 1020 (mean r value 3.5), 1397 (mean r value 

2.91), 1090 (mean r value 2.41) and 1294 (mean r value 2.31). 

- low, represented by patient 1299 (mean r value 1.29), showing a low level of 

anti-HIV antibody, close to the threshold level, as detected with heterologous 

gp 120 glycoprotein. 

3. Some antigens obtained from one individual were slightly better recognised 

than others derived from the same individual. 

6.2.1.2 Antibody responses to NSI vs. SI gpl 20$ 

As described in Section 5.2.5.1, the NSI/SI phenotype for each isolate from which 

gp 120 antigens were obtained was predicted based on both Donaldson and Fouchier 

methods. Briefly, gp120 antigens designated 1260.5.1 and 1066.2.2 were derived 

from isolates with a predicted NSI phenotype, whereas those obtained from 

homosexual patients: 1363, 1021 and 1397 were derived from isolates with a 

predicted SI phenotype. Data from both Table 6.2 and Figure 6.3 suggest that the 

recognition of gp120 glycoproteins derived from isolates with predictive SI 

phenotypes was generally lower than those from isolates with a predicted NSI 

phenotype for both the autologous and heterologous systems. The reactivity values of 

all the sera derived from homosexual patients to the gp120 antigens from isolates 

with a predicted SI phenotype (e.g. 1066.2.2 and 1260.5.1) were lower than those 

with a NSI phenotype (e.g. 1363.8.2, 1021.689 and 1397.2467)(e.g. the reactivity 

values obtained for serum 1363 to env clones 1260.5.1 and 1066.2.2 were 2.12 and 

2.56, respectively, whereas the reactivity values for env clones 1363.8.2, 1021.689 

and 1397.2467 were 3.99, 3.14 and 3.5). The results regarding a higher recognition 

of the antigens deriving from isolates with predictive NSI phenotype then those from 

isolates with SI phenotype by autologous serum may be explained by a higher 

proportion of variants with NSI phenotype among HIV- 1 isolates that were present in 

samples taken from infected individuals early in infection (see Subchapter 6.2.4.1). 

However, sera from patients in which SI variants appeared could strongly recognise 

the heterologous NSI derive isolates. 
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Table 6.2 The mean reactivity of sera from homosexual patients to autologous and heterologous gp120 antigens (data 

for the antigens originating from patients 1021 and 1397 were produced by calculating the mean of the reactivities 

presented in Table 6.1) 

sera 
136(c) 129 126 - 	 102 139 106 109 129 102 

1363.8.2 3.99(b) 1.9 4.3 6.1 3.0 4.1 2.6 2.5 4. 
1260.5.1 2.1 1.1 2.7 5.9 2.3 2.5 2.1 1.6 2.2 
1021.689 3.1 1.4 3. - 	 6.6 2.8 3.3 2.4 2.1 3.6 

1397.2461 3. 1.1 3.5 6.3 - 3.1 3.8 2.4 2.6 3.5 
1066.2.2 2.5 1.0 3.0 6.1 2.7 3.1 2.3 1.9 3.2 

refers to the env clones obtained from homosexual patients, with all suffixes written together for the clones originating from the 
same patient (e.g. all the reactivity values given for the env clone 102 1.689 represent the average of all the individual reactivities of 
each sera with each clone deriving from patient 1021) 

bold italics figures indicate the reactivity for autologous combination ofgpl2O glycoprotein and serum 
figures refer to the mean of reactivity obtained for all the env clones classified in the same group 
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Figure 6.3. The extent of recognition of the sera from homosexual patients to autologous and heterologous gp120 

glycoproteins 

Graphs A to I present the mean reactivity of the IgG antibodies present in the homosexual patients' sera to autologous and heterologous 

glycoproteins. Each graph gives the reactivity values recorded for each individual serum, serum identity being written at the right side of 

the graph. 

The predicted phenotype of the isolates from which the gpl2O antigens derived is written in bold, below the X-axes. 

X-axes indicate the patients from which the sera derived. 

Y-axes indicate the magnitude of the IgG Ab reactivities against recombinant glycoproteins used. 

Data represent mean reactivity values measured at a single, selected serum dilution (1/400). 

Opposite page number 161 



5 

p4.5 > 
- 4 
0 

w 3.5 

2.5 

2 

'.5 

0.5 

0 

Serum 

1066 

4,5 

> 	4 

3.5 
C) 
cc 	3 

r 1260 	
2.5 

2 

I'S 

0.5 

0 

A rn 
FL] C 

4.5 
> 

t 3.5 

cc 
2.5 

1.5 

0.5 

(1 

Serum 

1013631  

p3.5 
> 

. 	3 

w 
CC 2.5 

2 

1.5 

0.5 

() 

Serum 

0 1397 

6.8 

6.6 
U 

6.4 cc 
6.2 

6 

5.8 

5.6 

5,4 

Serum 

01021 

1363.8 	1021 	1397 	1260.5 	1066.2 

NSI 	NSI NSI 	SI 	SI 
Env clones 

1363.8 	1021 	1397 	1260.5 1066.2 
NSI NSI 	NSI 	51 	Si 

Env clones 

363.8 	1021 	1397 	1260.5 1066.2 
NSI NSI NS1 SI 	SI 

Env clone 

'IC 
	

E 

1363.8 	1021 	1397 	1260.5 1066.2 
NSI NSI NSI 	Si 	SI 

Env clones 

1363.8 	1021 	1397 	1260.5 	066.2 

NSI NSI NSI SI 	SI 
Env clones 

no 



F 

2.5 

2 

1.5 

0.5 

0 

G 

Serum 

1299 

3 

2.5 

1.5 

0.5 

0 

Serum 

U1294 

363.8 	1021 	1397 	1260.5 1066.2 
	

363.8 	1021 	1397 	1260.5 1066.2 

NSI 	NSI NSI 	SI 	SI 
	

NSI NSI NSJ 	SI 	SI 
Ens' clone 
	 En Clone 

m 
	 I 

: 
4.5 

t 4 

3.5 

2.5 

.5 

0.5 

0 

Serum 

. 1020 

3 

2.5 

1.5 

0.5 

0 

Serum 

[0 l0Y() 

1363.8 	1021 	1397 	1260.5 1066.2 
	

1363.8 	1021 	1397 	1260.5 	1066.2 

NSI 	NSI 	NSI SI 	SI 
	

NSI 	NSI NSI 	SI 	SI 
Env clones 
	

Env clones 

162 



6.2.1.3 Moderate differences between clones in level of recognition by different 

sera 

Different levels of recognition of gp 120 glycoproteins derived from the same patient 

were observed (e.g. 1021.6.1 and 102 1.8.1 were moderately recognised, mean r value 

= 3.16 and 3.03, whereas 1021.9.1 was slightly better recognised, mean r value = 

3.62; 1397.2.7, 1397.6.1 and 1397.7.8 were highly recognised, mean r value = 3.59, 

3.37 and 3.53, while 1397.4.1 was slightly weakly recognised, mean r value = 2.91) 

by both autologous and heterologous samples might be explained by the fact that 

some of env clones (e.g. 1397.1) supported some mutations in certain positions 

imposed by the selective pressure of the immune response (see Chapter 1) or 

alternatively these results might be due to experimental variation. 

Overall, the high level of cross-reactivity between different combinations of sera and 

gp120 antigens might suggest that conserved immunodominant epitopes are present 

on the immunising isolates, and that these are able to elicit broadly cross-reactive 

antibodies to gp120 glycoprotein in patients. This result is worth taking into account 

when considering a subunit vaccine design and the assessment of its efficacy. 

However, data presented here express only an estimation of IgG reactivity without 

investigating their function. 

6.2.2 Analysis of the results obtained by ELISA in the presence of 

chaotropic compounds (urea) 

It was documented by Kamoun et al. (1988) that the presence of urea, after antibody-

antigen complexes are formed, reduces the strength of intramolecular hydrophobic-

interactions and, hence, the consequence would be a catastrophic unfolding of the 

protein structure. Thus, urea is likely to have a major effect on the recognition of 

discontinuous or conformational epitopes. 

Taking advantage of this property, it was possible to test the gp120 antigens, 

obtained from transfection supernatants, for their quaternary conformation. The 

experiment employed a modified gp120 ELISA. Briefly, gp120 secreted in 

transfection supernatants are bound via absorbed sheep antibody D7324 (Aalto Bio 
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Reagents, Dublin), as previously described (see Chapter 2.11). In each assay, after 

washing the plates with TBS containing 0.05% Tween 20, patient plasma diluted 

1/400 was added to duplicate wells for lh at room temperature. One of each 

duplicate was treated with 8M urea in TBS-0.05% Tween (urea elution) for 5 min at 

room temperature, followed by two washes with TBS. Bound antibody was detected 

using biotinylated F(ab')2 anti-human IgG (gamma chain specific) and ExtrAvidin-

AP as detection system. By urea elution, low affinity antibodies to linear epitopes 

and both low and high affinity antibodies directed to conformational epitopes were 

removed due to the high potential of urea to denature the proteins. Consequently, a 

drop in the OD values recorded when urea is employed might reflect the unfolding of 

the protein structure. The main disadvantage of this method would be the putative 

denaturation of the capture antibody (D7324), which may occur during urea 

treatment together with the denaturation of the antigens. It was difficult to find a 

control to show the effect of urea on the gpl20-D7324 interaction and on the capture 

antibody alone, due to the fact that in the absence of gp 120 molecules the value of 

the OD is the same as the negative control. In spite of the denaturing effect of urea 

on the capture antibody, which may be minimised by decreasing the time of urea 

elution, this method has been used previously to prove the presence of the antigens in 

a quaternary conformation (Moore et al., 1996). 

The results are presented in Table 6.3 and Figure 6.4, where the reactivity of plasma 

from homosexual patients against gp120 antigens (1363.8.2 and 1397.2.7), in the 

presence or absence of urea, is depicted. These two antigens were chosen at random 

from the group of homosexual patients whose sera reactivity was classified as being 

moderate. Mean reactivity values are shown for each plasma sample, in the presence 

or absence of urea treatment. It was observed that urea treatment causes a reduction 

in IgG anti-gpl20 reactivity of between 1.5 to 4 folds. As the urea treatment has the 

consequence of unfolding the molecule and hence the conformational epitopes, by 

disrupting the hydrogen bonds, the OD values obtained in the presence of urea 

reflects the contribution of only the linear epitopes (the drop in OD is a consequence 

of the disturbance of the conformational epitopes in the presence of 8M-urea). Thus, 

ELISA in the presence of 8M-urea may be regarded as a test to demonstrate the 
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Table 6.3. Reactivity of the IgG antibody from plasma derived from homosexual 

subjects to two antigens (1363.8.2 and 1397.2.7) in the presence or absence of 8M 

ureea. 

Sera/Reactivity 1363.8.2 1363.8.2+urea 1397.2.7 1397.2.7+urea 

1363 0,403051 0,579827561 0,622253967 0,367695526 

1299 0,494975 0,127279221 0,219203 102 0,3252691 19 

1260 0,007071 0,445477272 0,070710678 0,45254834 

1021 0,445477 1,046518036 0,395979797 0 

1397 0,021213 0,084852814 0,424264069 057609307 
1066 0,615183 0,091923882 1,025304833 1,13137085 

1090 0,098995 0,084852814 0,240416306 0,473761543 
1294 0,06364 0,127279221 0,579827561 0,502045815 

1020 0,205061 1,011162697 0,961665222 0,219203 102 
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Figure 6.4 Sera reactivity recorded for homosexual patients-derived sera with two gp120 antigens in the presence or absence 

of a denaturant agent (8M urea) 

The graph presents the plot of the IgG antibody recognition of homosexuals' sera to mainly, heterologous gp120 glycoproteins in the 

presence or absence of 8M urea. Only two samples (1363 and 1397) were worked with autologousgp 120 antigen. 

X-axis indicates the origin of the sera 

Y-axis shows the calculated reactivity values (OD sample/OD cut-off, were OD cut-off is calculated using the following formula: OD cut-

off= Average of OD Negatives +3xSD, where SD represents the standard deviation). 

The env clones used are presented in the legend given at the right side of the graph. Error bars represent standard deviation obtained when 

the experiment was repeated twice, with two replicates per sample included in each experiment. 

Figures written in Bold Italics indicate the mean reactivity values obtained when an autologous combination between serum end gp120 

antigens were used both with or without urea treatment 
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quaternary conformation of the monomeric gp 120 glycoproteins secreted in the 

transfection supernatants. 

The OD sample/OD urea ratio values (rv) were calculated for all sera to gp 120 

antigens derived from patient 1363 and 1397 (corresponding to moderate reactive 

samples). A classification of sera containing high affinity antibodies (rv>2) and those 

with low affinity antibodies (rv<2) was adopted. 

Antibody class (ie. if they are of high or low affinity) was analysed in connection 

with some parameters, which may reflect the stage of the disease. CD4 cell number, 

IgG level, viral load and provirus copy number/10 6  PBMC for all the homosexual 

patients are presented in Table 6.4. Thus, the appearance of high affinity antibody in 

some patients but not others appears unrelated to clinical parameters including viral 

load, CD4 count and proviral copy number. 



Table 6.4. The antibody affinity, CD4 cells count, viral load and provirus env 

copies/1 06  PBMC of sera from homosexual cohort. 

Sera Affinity CD4 cell 

count/mm3  

(d) 

Viral load (b) Env copies/106  

PBMC (c) 

1294 High 640 >750,000 5,868 

1299 Low 580 2,270 8,047 

1363 High 339 315,000 1,532 

1090 Low 290 77,900 510 

1021 High 226 5,000 5,633 

1397 High 210 105,000 3,932 

1260 Low 100 253,000 9,162 

1066 High ND (a) 205,000 3,429 

1020 High 39 336,000 2,302 

not done 

data kindly provided by Dr. Susan Nicoll, Lothian Regional Clinical virus 

laboratory, City Hospital, Edinburgh 

was determined by titration of the proviral DNA using primers for V 1 1V2 

data kindly provided by Dr A. Mc Millan, Royal Infirmary, Dr. K.N. Sankar, 

and Dr. M. Snow, Newcastle General Hospital, Belfast. 
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6.2.3 Correlation between mean antibody reactivities recorded for 

homosexual individuals and their CD4 cell count/mm 3  blood and plasma 

viral load. 

Results involving the IgG antibody level (IgG), CD4 cell count (CD4), plasma viral 

load (PVL) and provirus copy number (PCN) were analysed using Spearman rank 

correlation test. The patients were divided in two groups: one group containing 

patients 1021 and 1299 who have an atypical profile regarding the parameters 

analysed and the second group comprising the remaining patients who were more 

homogenous. Patient 1299 had a high plasma viral load (>750,000) but high number 

of CD4 cells. Patient 1021 had a very high IgG anti-gp 120 antibody level, with a 

moderate viral load, proviral copy number and CD4 cell count. Therefore, the 

Spearman correlation test was done in parallel for three group-cases: a. for all the gay 

patients, b. for the situation when the patient 1299 was omitted from the comparison, 

c. for the case when both patients (1299 and 1021) were not considered. The 

correlation values obtained are presented in Table 6.5 and Figure 6.5. 

Table 6.5 Spearman correlation coefficient for all the group-cases analysed. 

Variables All patients 

R 	P 

All patients minus 

1299 

R 	P 

All patients minus 

1299 and 1021 

R 	P 

CD4vs. IgG -0.73 0.037 -0.52 0.18 -0.64 0.11 

CD4 vs. VL -0.08 0.831 -0.35 0.38 -0.46 0.29 

CD4 vs. PVL 0.07 0.86 -0.14 0.76 -0.17 0.7 

IgG vs. VL 0.06 0.86 0.52 0.18 0.6 0.14 

IgG vs. PVL -0.1 0.77 0.14 0.76 0 1 

VL vs. PVL -0.4 0.91 -0.42 0.33 -0.35 0.43 

An inverse correlation between CD4 and IgG level was obtained when all patients 

were considered (r=0.73, P=0.037), but for the other two group-cases this correlation 

was not strongly supported, although still present. 
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Figure 6.5 Inverse correlation between mean lgG reactivity values form homosexual patients' sera to autologous and 

heterologous gpl2O glycoproteins and their CD4 cell count 

Table shows the calculated mean reactivity and CD4 cells/mm 3  blood for each homosexual patient 

The plot of Ab reactivity and CD4 cell count, for each patient sample, are presented as violet histograms and green filled circles. 

The Spearman correlation coefficient was computed using SPSS statistics package (-0.73, P=0.037) showing a negative correlation 

between Ab titres and CD4 cell number 

Opposite page number 172 



8 

4- 
U 

5 

4 

3 

2 

1 

0 

I 

I 

300 
- 	0 Ab reactivity 1 

200 	 - 

— 100 	r 	CDI 

600 

500 

400 

A 

Serum 	-:j;-  

_______ 
Antibody 
response  

CD4cell/mm3 

1299 1.29 580 
1294 2.33 640 
1090 2.41 290 
1397 2.91 210 
1363 3.2 339 
1260 3.4 100 
1020 3.5 39 
1021 6.68 226 

•1 

1299 	1294 	1090 	1397 1363 	1260 	1020 	1021 

Sample 

172 



The correlation between a lower CD4 cell count/mm 3  blood and an increase in 

antibody reactivity may be explained by the reactivation of the memory B cells and 

their differentiation into effector cells able to produce gpl20-specific antibodies. 

When patients 1299 and 1021 were subtracted, the correlation was still present but 

not strongly supported. However, the interpretation of these results is difficult 

because of the scarcity of the samples available in this study. 

6.2.4 Characterisation of the IgG antibody response from Edinburgh 

haemophiliac patients who received a common batch of factor VIII 

Several reports revealed the existence of a small cohort of haemophilia A patients 

infected following exposure to non-commercial factor VIII, in 1984, in Edinburgh 

(Ludlam et al., 1985, Balfe et al., 1990, Simmonds et al., 1990b). Among them, 

patient p82 was the most studied and characterised patient, because many samples at 

different time points during the infection were available and he never received 

antiretroviral treatment. Two patients (p82 and p79) had more divergent sequences, 

as estimated by phylogenetic analysis. One of them (p82) shared identical sequences 

in the V3 and V4 regions of gp120 with another HIV-1 infected haemophiliac (p80) 

who did not receive factor VIII from the main batch, but had at least one other batch 

in common with p82. The rooted neighbour-joining tree for 121 unique V3 

sequences, taken from 25 Edinburgh patients, together with several world-wide 

isolates of HIV-1 subtype B and subtype D isolate HIV ELI (as outgroup), giving the 

relationship among the patients, is presented in Figure 6.6. 

Thus, patients p28, p72, p77, p79, p82, p84, p86, p87, p89 and p91, clustered 

together to produce the main haemophiliac cohort, while patients p74, p79, p80 and 

p82 were separated from the main cohort. Although patients p80 and p82 grouped 

away from the main haemophiliac cohort, these patients are also believed to have 

been infected from the locally prepared factor VIII; p82 had received factor VIII 

from a small number of bottles from the common implicated batch, while p80 had 

not. Five gp120 antigens that originated from patient p82, obtained by Dr. Sarah 

Ashelford (PhD thesis, University of Edinburgh, 1996) were used in this study to 

investigate the extent of their recognition by the IgG class from autologous and 

heterologous sera using the "in house" ELISA assay. Their nomenclature, the years 

173 



Figure 6.5 Rooted neighbour-joining tree for 121 unique V3 sequences 
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when they were taken from patient p82, and the predicted phenotype of the isolates 

from which they derived are presented in Table 6.6. Their V3 amino acid and 

nucleotide sequence alignments are presented in Table 5.6 and Figure 5.5 (see 

Chapter 5). 

Table 6.6. Designation of gp120 antigens from patient p82 together with the 

predicted phenotype of the variants from which they derived and years after 

seroconversion when they were isolated. 

Env clones Years after 

seroconversion 

SI/NSI 

predictive 

phenotype 

108.11 3 NSI 

108.15 3 SI 

82 5 SI 

82.3 5 NSI 

139.6B 6 NSI 

Two independent ELISA experiments were conducted, in which p82-derived gp120 

antigens were reacted with autologous and heterologous samples, as described in 

Section 6.1.2. Two replicates per sample were included in each experiment. The 

results are presented in Table 6.7, as mean reactivity ± standard deviation. The extent 

of recognition of p82-derived gp120 glycoproteins, by the autologous and 

heterologous sera, are plotted as histograms, in Figure 6.7 and Figure 6.8 A to C. 

Figure 6.7 shows a significant cross-reactivity between sera from various 

haemophiliac patients to gp120 antigens from patient p82. Data obtained for each 

antigen with sera deriving from each patient were averaged. The following 

observations were made: 

1. The mean reactivity value obtained for both gp 120 antigens that derived from 

isolates with a predicted SI phenotype (i.e. 82.3 and 82) with sera from each 

patient were higher than those obtained for antigens that derived from isolates 

with NSI phenotype (108.11, 108.15 and 139.6b) (mean r values of 10.63 vs. 

8.78 for p82 sera, 12.1 vs. 10 for p80 sera, 8.89 vs. 8.43 for the other 

haemophiliac sera). 
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One of the antigens that was derived from the SI isolate (82.3) appeared to be 

more reactive than the other (82), being recognised more strongly by the 

autologous, sequential sera as well as the heterologous p80-derived sera (mean r -

value = 12.12 vs. 9.14 for p82 sera, 10.3 vs. 13.9 for p80 sera). These antigens 

are recognised to the same extent by the heterologous sera derived from the 

patients infected with unrelated virus from the main haemophiliac cohort, (mean 

r-value 9.38 vs. 8.4 for other haemophiliac sera). This result suggests the 

existence of specific epitopes on the gp120 antigens (probably localised at the 

level of the hypervariable regions, possibly the V3 loop), which were better 

recognised by related than unrelated sera. The extent of recognition by the 

unrelated sera gives the contribution of the group specific antibody able to 

recognise conserved epitopes on the glycoprotein. 

Antigen 82.3, which was derived from an isolate taken at year 5 was recognised 

by the autologous samples from year 4 (r = 11.5 and 11.45), and showed higher 

levels of reactivity with the contemporaneous serum from year 5 (r = 12.14) and 

with samples from the following year (6) (r = 13.87). Both antigens derived from 

year 5 reacted strongly with sera from year 4. The significance of this result is 

analysed further in the following section. 

One NSI derived isolate (139.6b) was recognised even more strongly than an SI-

derived antigen (82) (mean r value = 13.41 vs. 9.21) and one NSI-derived antigen 

108.15 had the poorest recognition among all the other NSI/SI-derived antigens 

(mean r value = 7.26 vs. 9.21, 9.21, 11.5 and 13.41). 

Thus, in comparison to the homosexual group, samples were taken within 1 year 

from seroconversion, and probably therefore, the NSI-derived antigens were better 

recognised by the autologous sera. For haemophiliac patients p82 and p80, the 

antibody responses to NSIISI variants suggest a dynamic evolution of the viral 

population, with the emergence of new SI variants that replaced the NSI isolates 

which consequently become less representative of the viral population. In order to 

simplify the interpretation of results, the data were analysed further as autologous 

pairs of sera and gp 120 antigens, independently from the heterologous combination. 
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Figures 6.7 Cross-reactivity of sera from haemophiliac patients to a panel of env antigens obtained from patient p82 

The patients from whom the sera derived are written on the x-axis. 

Y-axis gives the magnitude of the IgG antibody reactivities against the gpl2O antigens that were obtained from patient p82 (Sarah 

Asherfold, PhD thesis, 1996). 

The gpl2O antigens are presented in the legend on the right side of the graph, together with their predicted NSIISI phenotype given 

between brackets. Each individual gp 120 antigen is represented by a particular colour. 
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Figure 6.8 The reactivity of autologous and heterologous sera against gp120 antigens obtained from patient p82 

Graph A presents the plot of recognition of p82 —derived gpl2O antigens by autologous sera. 

Graph B presents the extent of recognition of the same gpl2O antigens by heterologous sera obtained from a haemophiliac patient (p80) 

who was infected from the same batch as that shared by the patients from the main haemophiliac cohort but shared at least one other batch 

with patient p82. 

Graph C shows the reactivity recorded for patients belonging to the main haemophiliac cohort against the same p82-derived gpl2O antigens 

X-axes show the gpl2O antigens used and their predicted phenotype. 

Y-axes show the extent of the IgG antibody recognition of sera to the p82-derived gpl2O antigens. 

The sera used are given in the legend at the right side of each graph, each serum being represented by a particular colour. 
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6.2.4.1 Longitudinal characterisation of the lgG antibody reactivity from 

different samples from a haemophiliac patient (p82) to autologous 

gp120 antigens 

It was found by Simmonds et al. (1991) that V3 sequences amplified from patient 

p82 were characterised by a high percentage of non-synonymous substitutions, 

reflecting a high positive selection that is often assumed to be imposed by the 

immune system to select escape mutants. To estimate the degree of amino acid 

replacement mutations, which is manifested within the V3 loop, mean number of 

synonymous and non-synonymous substitutions for the env sequences from patient 

p82 were calculated using the MEGA program (Kumar et al., 1993). The results are 

presented in Table 6.8. 

Table 6.8. Mean number of synonymous and non-synonymous substitutions 

for sequences derived from patient p82 at year 3, 4, 5 and 6. 

Year 

postseroconversion 

Synonymous 

(ds) 

xl 0 3/site/year 

Non-synonymous (dn) 

xl 0 3/site/year 

ds/dn 

3 years 47.2 25.6 1.84 

4 years 46.9 41.75 1.12 

5 years 63 94.05 0.66 

6 years 71.9 69.3 1.03 

The plot of ds/dn that corresponded for years 3, 4, 5 and 6 is given in Figure 6.9 A 

and the CD4 cell count for each year post seroconversion, as shown by Bonhoeffer et 

al (1995a and b) for sequences isolated from patient p82 is plotted in Figure 6.9 B 

(also Lin Qi Zang, PhD thesis, University of Edinburgh, 1992). The results presented 

in Figure 6.8A and B were analysed together with the IgG antibody reactivity of sera 

obtained from patient p82 against autologous gpl2O antigens plotted in Figure 6.8A. 
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Figure 6.9A. The ratio of ds/dn in p82 for each year postseroconversion. 

B. Changes in CD4 cell count after seroconversion (Bonhoeffer et al., 1995, 

Lin Qi Zang, PhD thesis, 1992). 
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As it can be seen, by year 5, there was a significant drop in ds/dn ratio, 

pointing towards a sustained positive selection for amino acid replacement, at a time 

when p24 antigen was not detected. Furthermore, with the antigen which was 

isolated in year 5 (82.3), a high reactivity was given by the sera taken at years 5 and 

6, with a subsequent drop of reactivity at year 7, to the same level given by sera 

taken from year 4. 

Regarding CD4 cell count, an increase in CD4 cells was reported by Bonhoeffer et 

al. (1995) to occur in year 5, when analysing sequential samples from patient p82 

(Figure 6.9B), although these data were obtained over 10 years ago and may 

represent an experimental artefact associated with occasional variability in reagents 

over 10 years ago, they may also represent a real spike associated with an acute 

infection. Nevertheless, taking the findings mentioned above at face value, they 

suggest a scenario according to which a more virulent isolate with SI phenotype 

(represented by env clone 82.3) was able to elicit a strong and rapid humoral immune 

response which neutralised the initial variant and reduced the viremia to below the 

sensitivity of the p24 detection assay. Consequently, a sustained Th function may be 
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manifested over 7 years of the infection in the absence of the antiretroviral therapy. 

The immune responses may select for new mutants that might be more virulent and 

have a destructive effect on Th cells and impairs the immune system function. This 

continuous dynamism of the viral population may also be reflected by the fact that 

the antigen derived from year 5 was recognised by the IgG antibody from serum 

taken in year 4, a result that may be explained by the fact that the isolates circulating 

in plasma in year 4 that were able to mount an immune response were integrated into 

the chromosomal DNA in the subsequent year. In this light, Simmonds et al., (199 1) 

initially reported that the integrated provirus might reflect the viral variant that were 

found in previous years. 

A detailed analysis of Figure 6.8A highlights also, the existence of a high cross-

reactivity between gp120 antigens and heterologous sera, since 82.3 derived from 

year 5 could be recognised by sera taken one year before (the reactivity values were 

in range between 6 and 10, similar to those recorded for heterologous sera, see 

Chapter 6.2.4.2 and Figure 6.8C). Another interpretation of this result could be the 

presence of the isolates with SI and NSI phenotypes (designated 82 and 82.3 and 

139.6b, respectively) as plasma free virions that were present as a minority virus 

population among the HIV-1 isolates at year 3 or 4. Being under pressure of the 

humoral immune responses, these isolates became integrated into chromosomal 

DNA of long lived cells as provirus, therefore being detected in year 5 and 6, 

respectively, among PBMC DNA derived provirus isolates (Holmes et al., 1992, 

Sarah Ashelford, PhD thesis, University of Edinburgh, 1996). As described by these 

two investigators, V3 sequences that corresponded to antigens 82 and 82.3 were 

indeed detected among V3 RNA isolates in plasma in years 1988/1989 (four/five 

years after seroconversion) and those corresponding to the antigen 139.06b arose in 

plasma in 1987/1988 (three/four years after seroconversion), being preponderant in 

year 1989/1990 (four/five years after seroconversion). 

As mentioned before, another parameter that reflects the viral dynamism consists of 

the replacement in time of the NSI-phenotype isolates with more virulent SI variants. 

On this basis, a variety of responses of p82-derived sera to gpl20s derived from 
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isolates with SI and NSI phenotype were observed. Thus, both antigens from SI 

isolates (82 and 82.3) were recognised better than one deriving from NSI isolates: 

108.15 (mean reactivity 9.1 and 12.1 vs. 7.18). The other NSI isolate-derived gp120 

antigen (108.11) reacted with the p82 sera to same extent as 82 (9.11 vs. 9.1) but 

lower with 82.3 (mean reactivity 9.11 vs. 12.1). Finally, one NSI isolate-derived 

gp120 antigen, 139.6b, reacted better than SI isolate-deriving antigen 82 (mean 

reactivity 10.7 vs. 9.1) but poorer than the other antigen 82.3 (mean reactivity 10.07 

vs. 12.1). A striking difference in responses was also noticed between the SI isolate 

deriving-gp 120 antigens (82 and 82.3). Specifically, the antigen 82 gave a lower 

level of recognition with all the p82 sera, similar to those that derived from isolates 

with a NSI phenotype, whereas for the antigen 82.3, a broader variation with 

sequential sera was observed. To find an explanation for differences observed 

between them, I looked at the synonymous and non-synonymous substitutions 

between 82 and 82.3 and the sequence found at the seroconversion (82a) and also I 

analysed the differences regarding the amino acid sequences of the V3 region from 

antigens 82 and 82.3. 

Thus, whereas a slight difference between gp120 antigens 82 and 82.3 regarding the 

rate of replacement mutations (111 X  I 03/Site/year vs. 97x10 3/site/year) was noticed, a 

two-fold difference for the rate of synonymous substitutions (46x 1 0 3/site/year vs. 

96x 1 03/site/year) was evident, although the error on this is very large. 

Shioda et al. (1994) investigated the impact of basic amino acid substitutions in the 

V3 region of the HIV-1 Env protein on the antigenic properties of the virus, 

revealing that the basic substitution at position 323, numbered according to HXB2 

sequence (or 28, numbered from the first Cys(C) residue at the 5' terminal end of the 

V3 loop), correlated with a shift in the antigenicity of that protein. Therefore I have 

compared the V3 amino acid sequences from antigens 82 and 82.3. Thus, the 

presence of a basic amino acid (Arg, R) at position 28, on the V3 sequence from the 

antigen 82.3 correlated with a higher recognition of this glycoprotein by the IgG 

antibody from both autologous and heterologous samples, in comparison with the 
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other SI isolate-derived antigen 82, that has a Gin (Q) at position 28, which is 

uncharged at physiological pH. This result, as those reported by other investigators, 

is consistent with the proposal that the presence of a basic amino acid at position 323 

could change the antigenicity of that isolate. However, the amino acid replacement 

that could modify the antigenicity of the glycoproteins might have occurred outside 

the V3 region. 

In conclusion, the poor antibody responses to the NSI-derived antigens and the 

enhanced recognition of some SI-derived antigens by the IgG antibody from sera 

taken over the several years of the infection may show the switch from the less 

virulent, macrophage tropic, NSI phenotype-isolates to more virulent, T cell tropic, 

SI phenotype-isolates that was reported to occur during HIV- 1 infection. 

6.2.4.2 High degree of cross-reactivity between sera from haemophiliac 

patients against gp120 antigens obtained from patient p82 

As mentioned before, p82 shared at least one batch of factor VIII with patient p80, 

who himself was infected from the main batch of factor VIII as was the main 

haemophiliac cohort. From Figure 6.6, it can be seen that p80 sequences were 

clustered into two groups, one close to, and interspersed among, sequences derived 

from patient p82, although these positions are not strongly supported in this tree. p74 

and p79 sequences were placed between p82 sequences and the sequences from the 

main haemophiliac cohort. Therefore, the extent of IgG antibody recognition of sera 

from patient p80 and main haemophiliac patients against p82-derived gpl2O antigens 

was plotted for p82-derived antigens versus p80 sera, separately from p82-derived 

antigens versus sera taken from the main haemophiliac group (see Figure 6.8B and 

Q. The extent and the pattern of responses for p80 were in the same range (or even 

slightly higher) as those given by autologous sera. The highest value was obtained 

for the SI isolate-derived antigen 82.3, a result which was similar to that recorded for 

patient p82. This may reflect the contribution of type-specific antibody. Conversely, 

for patient p74, p84, p86, p89  and p79, the extent of recognition decreased, result 

that could have been predicted based on the basis of position these patients occupied 

on the phylogenetic tree. There is a common background level of recognition of p82- 
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derived gp120 antigens by each individual serum that may reflect cross-reactivity 

between these antigens and less related sera, as observed in the homosexual group 

(Figure 6.8C). The lowest level of recognition of p82-derived gp120 antigens was 

obtained for the p79 serum (mean r = 6.5). The explanation for the low level of 

recognition of p82-derived gp120 antigens by p79 serum may consist of the 

immunocompromised status of this subject. However, the recognition of the p82-

derived antigens by the less-related sera might reflect the contribution of group-

specific antibody. High reactivities recorded for the most related patient p80 and p82 

against p82-derived gp 120 antigens may be a consequence of recognition of less 

conserved epitopes, that act as an additive factor to the value given by the 

recognition of more conserved epitopes. 

6.2.5 lgG antibody recognition of three recombinant gp120 antigens 

(rgp120) from prototypic HIV strains by haemophiliac and homosexual 

derived sera 

In order to compare the total IgG antibody response of sera from both groups 

(haemophiliac and homosexual) to HIV-1 monomeric gp120 glycoprotein, two 

independent ELISA experiments, with samples in duplicate, were performed, using 

three rgpl20s at the concentration of 1tg/ml. The recombinant gp120 glycoproteins 

were: HIV-1 IIIB and MN-derived gp120s, produced in Baculovirus expression 

system and HIV-1 S172-derived gp 120, expressed in Chinese hamster ovary (CR0) 

cells (Levy et al., 1984). The protocol employed was presented in Chapter 2.11 and 

Chapter 6.1.2. The results obtained are presented in Table 6.9 and Figure 6.10A and 

Band Figure 6.11 A,B and C. 

The reactivity values recorded for all three recombinant gp120 glycoproteins were 

averaged for each serum obtained from homosexual individuals and, based on the 

mean reactivity values, sera were classified into the following groups: 

- highly reactive group, containing serum 1021 (mean r = 8.92), 

- moderately reactive group, comprising sera deriving from patients: 1363 (mean r 

= 6.14), 1397 (mean r = 5.81), 1066 (mean r = 6.54), 1090 (mean r = 4.42), 1020 

(mean r = 6.64), 1294 (mean r = 5.68). 

- poorly reactive group, represented by serum obtained from patient 1299 (mean r 
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Figure 6.10 Reactivity of homosexual and haemophiliac sera against three recombinant glycoproteins: gp120 IIIB, gp120 

MN and gp120 SF2 

Graph A shows the extent of recognition of recombinant gp120 glycoproteins IIIB, MN and SF2 by the IgG Ab of haemophiliac 

patients (p80, p82, p86, p74, p89, p79 and p84). Graph B shows the extent of recognition of recombinant gp120 glycoproteins IIIB, MN 

and SF2 by the IgG Ab of homosexual patients (1363, 1299, 1260, 1021, 1020, 1397, 1297, 1066, 1090). 

X-axes show the patients' sera used in ELISA assay 

Y-axes give the magnitude of IgG Ab recognition of these gp120 glycoproteins by patients' sera. 

Both positive and negative sera used in this experiment were used at a dilution of 1/400. Reactivity values for negative samples were 

averaged and a cut-off(CO) was established by applying the formula: CO= average ODN egatives+ 3SD. 

Ratio between ODsampie and CO value gave the reactivity of that sample. 

Opposite page number 188 



DIIIB 

•MN 

0 SF2 

1363 1299 1260 1021 1397 1066 1090 1294 1020 

A. 	>10 

I  
MMN 

4.14.2 5 6 7 4 5.1 5.2 6.16.2 7 	5 5 	5 4 	5 
P82 	

> 	
p80 	p86p74pI14p79p84 

Serum 

> 12 
B. 

t 10 

8 

6 

4 

2 

0 

Serum 



Figure 6.11 Reactivity of homosexual and haemophiliac sera against three recombinant glycoproteins: gp120 IIIB, gp120 

MN and gp120 SF2 

Graphs A, B and C show the extent of recognition of three recombinant gp120 glycoproteins: tuB, MN and SF2 by the IgG antibody 

from the haemophiliac patients (p80, p82, p86, p74, p89, p79 and p84) and homosexual patients (1363. 1299, 1260, 1021, 1020, 1397, 

1297, 1066, 1090). 

X-axes show the patients' sera used in ELISA assay 

Y-axes give the magnitude of IgG antibody recognition of these gp 120 glycoproteins by patients' sera. 

Both positive and negative sera used in this experiment were used at a dilution of 1/400. Reactivity values for negative samples were 

averaged and a cut-off(CO) was established by applying the formula: CO= average ODN egat i ves+ 3SD. 

Ratio between OD sampte  and CO value gave the reactivity of that sample. 

Opposite page number 190 



10 

. 	8 
Cs 

5 

4 

3 

2 

0 

[o lOB] 

>< 	>1 	P. 4 	
Serio 

p82 	 p80 	 Homosexual group 
Main haemophilia 

group  

14 

12 
Cs 

10 

0 - 	 1 U 
Serum 

>< 	>1 
p82 	 p80  

Main haemophilia 	Homosexual group 

group 

L! 7 

: 	6 

>1 	
Seri 

i 82 	 P80 	
Main haemophilia 	Homosexual group 

group 

190 



- = 2.82). 

The same classification of sera was obtained when sera were reacted with autologous 

and heterologous glycoproteins (see Section 6.2.1). 

To simplify the interpretation of the results, the reactivity values obtained for all sera 

from patients p80 and p82, those from the main haemophiliac cohort (p86, p74, p89, 

p79 and p84) and those from the high, moderate and low reactive groups, in which 

the homosexual subjects, were clustered were averaged. The values are presented in 

Table 6.9. 

Table 6.9 The mean reactivity values obtained for groups of sera to three 

recombinant gp120 antigens (IIIB, MN and SF2). 

Group of sera Mean r (MN) Mean r (IIIB) Mean r (SF2) 

p82 7.82 6.02 4.74 

p80 8.6 5.68 4.71 

Other 

haemophiliac 

8.1 5 3.79 

High reactive 

homosexuals 

11.84 8.83 6.11 

Moderate reactive 

homosexuals 

8.33 5.34 4.19 

Low 	reactive 

homosexuals 

3.67 2.47 2.34 

It can clearly be seen that SF2 was less well recognised by all groups of sera, in 

comparison with the other two recombinant glycoproteins: IIIB and MN (overall 

mean r--4.31 vs. 5.55 and 8.06, respectively). One possible explanation of a low 

recognition of SF2 gp 120 glycoprotein by all sera may be differences in the antigenic 

properties of gp120 SF2, due to its expression in mammalian cells (CHO cells) as 

opposite to the insect cells in which gp120 IIIB and MN were expressed. Insect cells 

lack the machinery involved in the metabolic pathways of fusine and galactosamine, 
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which are added during complex oligosacharide synthesis (see Chapter 7). The 

presence of complex oligosacharides on the SF2 gp 120 may therefore occlude some 

epitopes from the antibody recognition, in comparison to the IIIB and MN-derived 

gp120 antigens, which have only high maimose-type oligosacharide). 

Of the glycoproteins expressed in the Baculovirus system, gp120 MN was better 

recognised than IIIB by all sera (overall mean r=8.06 vs. 5.55). Previous studies have 

also described SF2 strain as having a weak antigenicity in comparison with other 

strains such as: MN and IIIB (Hariharan et al., 1993, Boudet et al., 1996). This result 

is also in agreement with data reported by other investigators (Zwart et al., 1994). 

From Figure 6.10 A and B and Figure 6.11 A to C it can be seen that p80 and p82-

derived sera reacted consistently with all recombinant gp120 glycoproteins (IIIB, 

MN and SF2). For p82, the variation was in a range between 5.69 to 6.3 for IIIB, 

7.35 to 8.28 for MN and 4.52 to 5.09 for SF2, whereas for patient p80 the range was: 

between 5.29 to 5.98 for IIIB, 8.32 to 8.81 for MN and 4.36 to 5.03 for SF2. 

Among the patients clustered in the main haemophiliac group, p79 reacted poorly 

with IIIB and SF2 (r=3.41 for TuB, 2.43 for SF2) but strongly recognised gp120 MN 

(r=9.04). Sera from this patient also reacted poorly with the heterologous gp120 

glycoproteins derived from patient p82. A low IgG anti-env antibody level in serum 

taken from p79, which was still able to strongly cross-react with MN gp120 antigen, 

might explain this result. 
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6.3 Summary of results 

Ten gp 120 antigens obtained from homosexual individuals and five similar antigens 

from a haemophiliac patient (p82) were used in ELISA experiments in order to 

measure the extent of recognition by autologous and heterologous sera. 

For the homosexual cohort, the antigens derived from isolates with predictive NSI 

phenotype were better recognised by autologous and heterologous sera than those 

which derived from isolates with SI phenotype, suggesting that the patients may have 

been at an early stage in infection, when NSI isolates are preponderant. However, a 

high level of cross-reactivity between gp 120 antigens and different sera was evident, 

showing the presence of highly conserved epitopes on the immunising isolates. 

Envelope antigens derived from the same patient were recognised to different extents 

by autologous samples, suggesting the presence of escape mutants or mutants with 

lower antigenicity, during HIV- 1 infection. 

By employing an ELISA in the presence of denaturing agent (8M urea), it has been 

shown that the gp 120 antigens expressed after transfection in supernatants have a 

proper quaternary structure. No correlation between the affinity of antibody as 

expressed by the reactivity recorded in the presence of urea, and CD4 cell count was 

found. Conversely, an inverse correlation between the extent of antibody reactivity 

given by the homosexual patients' sera against gpl20 antigens and their CD4 cell 

count was observed (Spearman r=0.73, P= 0.037). This finding supports the idea that 

a high IgG level in patients with impaired Th function may be a consequence of the 

activation of the memory B cells by the antigen. 

A dynamic relationship between viremia and humoral immune responses was also 

found in a longitudinal study of a haemophiliac patient (p82). From this patient, two 

SI isolates-derived gp120 antigens were recognised to different extents by antibody 

from autologous and heterologous sera (i.e. sera that was derived from a closely 

related individual, p80). 
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Two closely related patients (p80 and p82) gave similar patterns and extent of 

reactivity to the p82-derived gp 120 antigens, higher then those recorded for non-

related patients sera (as shown by phylogenetic analysis), indicating the contribution 

of type-specific antibody. The recognition of p82-derived antigens by sera from less 

related patients might indicate the presence of group-specific antibody. 

The level of the IgG antibody response of sera from both haemophiliac and 

homosexual patients was assessed against three control antigens: TuB, MN and SF2 

recombinant gp120 glycoproteins. All sera reacted poorly with gp120 SF2, a 

glycoprotein expressed in CHO cells, in comparison with baculovirus-expressed TuB 

and MN gp120s, probably showing a lower antigenicity of the molecule due to the 

presence of complex oligosacharide chains on this antigen that might occlude 

epitopes from antibody recognition. Homosexual patients' sera fell into the same 

groups (high reactive, medium reactive and low reactive) when employing both 

autologous and heterologous gp120 glycoproteins or recombinant gp120 

glycoproteins (huB, MN and SF2). Consistent results were obtained for all the 

haemophiliac-derived sera, when reacting with both p82-derived antigens and control 

antigens. 

A sustained Th function might be present during the infection in the absence of the 

antiretroviral therapy. 
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CHAPTER 7 

GENERAL DISCUSSION 

7.1 The use of gp120 ELISA to estimate the amount of gp120 

glycoprotein from transfected cell culture or body fluids 

7.2 ELISA-based methods for assaying anti-HIV antibodies 

7.3 Expression of the HIV-1 gp120 glycoprotein 

7.4 Intracellular processing and transport of env proteins 

7.5 in vivo variation of the gp120 genes in the homosexual 

group 

7.6 Strategies for AIDS vaccines 



As stated in Chapter 3, an "in house" gpl20 ELISA was set up to fulfil two aims. The 

first one was to estimate the amount of gpl20 glycoprotein in transfection supernatants. 

The second aim was to estimate the extent of the gp 120 recognition by the autologous 

and heterologous sera. Chapter 4 described the modifications performed to pSRHS to 

make it suitable for the subsequent subcloning of the 1.7-kb fragments encoding gpl20 

glycoprotein. In Chapter 5, the env-expressing clones were presented together with their 

nucleic and amino acid sequences and some biological features (NSI/SI-phenotype, co-

receptor usage, glycosylation sites). In Chapter 6, the reactivity values obtained when 

homosexual and haemophiliac-derived gpl20 antigens were reacted with autologous and 

heterologous sera and their significance were shown. 

Consequently, in this chapter the results obtained using ELISA assay in comparison to 

the other methods used to quantify the gpl20 proteins are discussed. Also, the 

discussion covers the level of gene expression achieved by env-containing clones in 

comparison to other systems used to express the HIV-1 gpl20 antigens, together with 

their limitation, which consists of an inefficient intracellular processing and transport of 

env proteins. The discussion further reveals the significance of the in vivo variation of 

the gpl20 genes in the homosexual group. Finally, comments on strategies for AIDS 

vaccines that are currently ongoing, with the achievements obtained to date regarding 

DNA/prime-protein/boost vaccine, are presented. 

7.1 gp120 ELISA 

An HIV specific ELISA assay was needed to allow the estimation of the degree of 

recognition of the gp 120 antigens produced in this study by the autologous and 

heterologous sera. It was first necessary to quantify gpl20 antigens obtained from the 

transfection supernatants to ensure that the ELISA microtitre wells are loaded with 
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similar amounts of antigen. The ELISA assay set up fulfils both requirements. Previous 

studies have adopted different approaches for quantifying gpl20. Two different ways of 

quantifying gpl2O glycoprotein were used by Weiler etal., (1991). One consisted of an 

HIV protein ELISA where gp120 glycoprotein and other viral proteins were directly 

adsorbed to the solid phase through the interactions between the negatively charged 

residues on vinyl and styrene molecules of the microtitre plates and positive charge 

residues on the surface of the protein. Subsequently, the protein was detected using 

enzyme coupled-Narcissus pseudonarcissus lectin (NPL), with an associated sensitivity 

of between 3 to 600ngIml. The main disadvantage of this method resides in a possible 

alteration of the conformation of gp120 as a consequence of direct absorption of the 

molecules onto the solid phase that might obscure or distort the epitopes. The second 

method consisted of a mannose binding lectin-based ELISA, when NPL lectin was 

bound to the solid phase to capture gp120 glycoprotein and Galanthus nivalis 

agglutinin-coupled peroxidase were used as a detector system. The linear relationship 

between the absorbance and the concentration of the glycoprotein was between 0.6-

20,000ngIml. Despite a relatively unaltered conformation of the glycoprotein due to its 

binding to the lectin, the orientation cannot be rigorously controlled because lectin 

binding may occur through mannose binding at any N-linked carbohydrate residue. 

Quantitative studies of gp120 were also performed by Moore et al., (1988) who used, as 

a capture antibody, a sheep antiserum (D7324) able to specifically interact with the C  

and C5 region of the gp120 molecule. Gilbert et al. (1991) also developed an ELISA 

assay to quantify the amount of the gp120 glycoprotein employing recombinant soluble 

CD4 as a substitute for D7324. 

In the study described in this thesis, an "in house" sandwich enzyme-linked 

immunosorbent assay (ELISA) was developed. This was based on Moore's ELISA 

assay with the only one modification consisting of the replacement of the AMPAK 

amplification system with a specific detection system, biotin-F (ab') 2 anti-human IgG 
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and avidin-alkaline phosphate. When using AMPAK system a high background was 

recorded which was subsequently reduced by replacing the whole biotin-anti-human IgG 

with more specific biotin-F (ab') 2 anti-human IgG. The results suggested non-specific 

interactions that occurred between Fc fragments of the anti-human IgG and the capture 

antibody D7324, which have been removed by using F (ab) 2 fragments. A high 

background due to the interactions between biotin-anti-human IgG and the capture 

antibody D7324 was also observed by Moore et al. (1993a) who removed from the 

sheep antiserum D7324 the fraction that was able to react with the human IgG. Thus, 

biotin-anti-human IgG was used as an alternative to reduce the background. 

Optimisation with F (ab) 2 anti-human IgG was performed, finally resulting a linear 

relationship between optical density and gpl2O concentration between 50 and 400ng/ml. 

Precision analysis of the "in house"gp 120 ELISA provided a coefficient of variation 

between 5 and 20, indicating that the method had a good reproducibility. 

When transiently transfecting COS cells with a construct encoding gp120 and gp160 

glycoprotein from a T cell line adapted isolate (pHXB2-RC), Moore et al., (1988) 

estimated an equivalent of 2.5x10 6  molecules of gp120 to be produced per cell, 40-50% 

of which can be recovered from the culture medium after 24 hours, leading to a total of 

between 500-700ng gp120/10 6  cells/72 hrs being produced. A similar level of 

expression was obtained in this study, when using both homosexual and haemophiliac-

derived env-encoding constructs to transfect COS cells (average value of 

500ngIl06cells/72hrs). Consequently, the linear relationship between the absorbance 

value and the gp120 concentration of the ELISA method should be in the range of 50-

500 ng/ml, a requirement that was fulfilled by the "in house" ELISA assay developed in 

the present study. 

Adaptations of gp 120 ELISA have been used to assess the magnitude of reactivity 

between gp120 glycoprotein and IgG antibody from HIV-1 infected persons. Early 

ELISA assays for testing human sera for antibodies to HIV-1 used purified HIV 
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particles passively absorbed to plastic surfaces in order to replace the 

radioimmunoprecipitation (RIP) assay, which is complicated and more time consuming 

to perform. The main disadvantage of these methods resides in the retention of only a 

proportion of gp 120 on the virus surface, due to the fact that the gp 1 20-gp4 1 interaction 

is non-covalent in HIV-1 and, hence, a significant proportion of gp120 is shed during 

virus purification. In addition, a lower specificity that might be a consequence of the 

sera containing antibodies reacting to cellular antigens that appeared as contaminants of 

the viral preparation due to their incorporation to the virion envelope during budding 

was reported. 

7.2 Development of an ELISA-based method for assaying anti-
HIV antibodies 

As already mentioned, the development of an ELISA assay to estimate the extent of the 

recognition of the patients-derived gp 120 antigens by the autologous and heterologous 

sera was a need to test the degree of cross-reactivity between antigens and sera. 

ELISAs utilising synthetic peptides representing segments of gpl20 glycoprotein have 

been used (Thorn et al., 1987, Jansson et al., 1994, Warren et al., 1992) to test their 

degree of recognition by the HIV-1- infected sera. This method was developed in 

response to the need to find efficient tools to identify HIV-1 subtypes rapidly for 

epidemiological studies (see Chapter 1). While sequencing regions of the genome 

represents the most reliable method for classification, simpler and quicker assays were 

required to investigate subtype distribution. The V3 domain was chosen as an antigen 

for serologic subtyping for several reasons. Firstly, in spite of the great genetic variation 

within the env gene, the V3 domain seems to be sufficiently conserved within subtypes 

allowing the identification of a V3 consensus sequence for each HIV-1 subtype (Korber 

et al., 1998). Secondly, the epitopes that reside within this region are highly antigenic in 

vivo and a humoral immune response to this region can be detected in most of the HIV-1 

infected persons. Therefore, short linear V3 peptides of subtype A to I were extensively 
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used as antigens in peptide binding enzyme immunoassays. In general, it was found that 

V3 peptide serology could predict HIV-1 genotypes, a conclusion that was supported by 

higher recognition of the peptides corresponding to the genotypes A, B, C and E by the 

sera that had the same genotype (Cheingsong-Popov et al., 1994). The use of V3 

serotyping for epidemiological studies has been questioned by other studies 

(Nkengasong et al., 1998, Plantier et al., 1999) due to the great extent of serological 

cross-reactivity to peptides representing heterologous genotypes, leading to incorrect 

classification of subtypes. Nowadays, V3 serology is considered to be limited to 

epidemiological monitoring of HIV- 1 epidemics in large populations. 

Use of V3 peptides for serological purpose had another shortcoming that derived from 

differences in conformation of the V3 peptide absorbed on the solid-phase, in 

comparison to the same peptide in solution and the conformation of that V3 domain on 

the intact gp120 glycoprotein. Moore et al., (1993d, 1994e) showed that reactivity of 

positive sera with solid-phase V3 peptides could, therefore, be a poor predictor of 

reactivity with the same domain on native gp120 molecules. The level of anti-V3 

antibody, as measured by a V3 peptide ELISA, did not correlate with the stage of 

disease (Zwart et al., 1994). Conversely, Fenouillet et al., (1995) reported a correlation 

between the antibody reactivity to the North American/European consensus sequences: 

V3 (MN) or V3 (Cs) and clinical stage of the disease, using a V3 specific antigen 

limited ELISA. In their study, the level of anti-V3 antibody declined in relation to 

progression to AIDS. This result might be explained by the emergence of escape 

mutants with V3 sequences very different from those used as antigens (a situation 

which, if it is true, shows a limitation of the V3 peptide based ELISA assay) or by a 

general decline in the numbers of memory B cells. 

In spite of these limitations associated with V3 serology, it is worth mentioning a study 

of Zwart et al. (1992) where the V3 region from viral RNA and proviral DNA from 13 

asymptomatic individuals (samples were taken less then one year after seroconversion) 
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and 14 symptomatic individuals were cloned and sequenced. Firstly, they observed that 

sera taken early after seroconversion reacted specifically with the peptides that 

reproduced the viral population early in infection. Sera taken at the later points during 

the infection reacted to the same extent or even more strongly with the peptides that 

were prevalent early in the infection than with those specified to the sample of 

contemporary virus. That means that the specificity of anti-V3 antibodies in most sera 

taken late during the infection does not reflect the isolates circulating at that time point. 

Only 7% of individuals developed serum specificity for new variants that appeared over 

the five years, whereas 50% of individuals had the same specificity (both early and late 

sera) to the isolate found early in infection. This result was explained by the 

phenomenon named "original antigenic sin", in which the humoral immune response 

over the course of an infection is generated predominantly against the first immunogenic 

isolate, with a new, related, antigen that is slightly different from the original "activator" 

causing the reactivation of the same B cells (Nara et al., 1991, Kohler et al., 1992). 

To surmount the problems involved with quantifying the total serum HIV-specific IgG 

elicited against the V3 domain, V3 serology was replaced with an ELISA that employed 

recombinant gp120. Different systems to capture gp120 on the solid-phase were used. 

The first set of ELISA methods employed lectins such as Concanavalin A (ConA) 

(Robinson et al., 1990), Galanthus nivalis agglutinin (GNA) (1-linkula et al., 1994) or 

Narcissus pseudonarcissus (NPL) lectin (Weiler et al., 1991). The second set of ELISAs 

was based on the same principle as the ELISA for quantification of gp120 glycoprotein. 

Thus, sheep antiserum raised to gp120 glycoprotein (D7324) was used as a source of 

capture antibodies able to specifically interact with the C  and C5 regions of monomeric 

gp120. Similar to the lectin ELISA, an ELISA employing a capture antibody offers the 

chance of detecting antibodies able to react with conformational epitopes (i.e. epitopes 

within the C2, C3 and C5 regions), since the gp120 glycoprotein is immobilised 

unaltered and with a precise orientation, via the D7324 antibodies (Moore et al., 1993a, 

1994b, Binley et al., 1998). This was demonstrated by a 100-fold reduction in the titres 
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of sera seen when monomeric IIIB gpl20 was denatured before performing the assay 

(Moore et al., 1993c). 

A variation of the ELISA method used to quantify gpl20 antigens, consisting of a 

replacement of the anti-gp 120 MAb with IgG antibodies from HIV- 1 infected sera, was 

employed in order to estimate the degree of recognition of autologous and heterologous 

gpl20 antigens by sera taken either cross-sectional or longitudinal from both groups of 

subjects studied. In comparison to V3 peptide ELISA, this assay allows detection of IgG 

antibodies that are raised against regions other than the V3 loop (region that was 

referred to as the Principal Neutralisation Determinant) such as V1/V2 loop. A 

limitation of this assay would come from the conformation of the monomeric gp 120 

molecules that is more exposed than that presented by the oligomeric forms and, hence, 

would have different antigenic properties. In spite of this shortage, the purpose of this 

study can be satisfactorily fulfilled with the "in house" anti-gp 120 ELISA, taking 

account the fact that monomeric gpl20 antigens obtained from transfection supernatants 

derived from primary isolates that have a conformation closer to those presented by the 

oligomeric gpl20 molecules than monomeric or oligomeric gpl20 antigens derived 

from T cell line adapted isolates (TCLA). 

Due to its rapidity and simplicity this ELISA assay was also used by other investigators 

to map epitopes on the monomeric and oligomeric gpl20 molecules. The Cl, C2, C3 

and C5 domains appeared poorly accessible on the native monomeric gpl20 

glycoprotein (Moore et al., 1994b), whereas the Vi, V2 and V3 domains were found to 

be exposed on its surface and accessible to antibody (Moore et al., 1993a). In oligomeric 

gp120, the epitope exposure mapped somewhat differently (Stamatos et al., 1998). The 

Cl and C5 regions that were accessible on monomeric gpl20 molecules became 

occluded on the oligomers, whereas the C4 region was partially exposed (Moore et al., 

1994b) while the Vi/2 and V3 loop have a good exposure. A study conducted by Binley 

et a! (1998) revealed that gp 120 V 1/2 and V3 variable loops contribute to the occlusion 
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of some of the conserved gp120 epitopes. These results were obtained by reacting two 

forms of the gp120 glycoproteins (i.e. a gp120 protein derived from the LAI strain of 

HIV-1, HXBc2 clone and a deleted iV1/2/3 glycoprotein, both expressed in COS cells) 

with four CD4bs MAb (15e, F91 and IgGlbl2) and CD4-IgG2. Thus a 6- to 15-fold 

higher affinity was recorded when the CD4bs MAbs and CD4-IgG2 bound to the 

V1/2/3 glycoprotein than to the HXBc2 glycoprotein. 

Subsequent studies conducted on crystals of gp120 glycoproteins performed by Kwong 

et al. (1998) and Wyatt et al. (1998) revealed the structure of a truncated gp120 protein 

derived from HXBc2 strain of HIV-1, with 52 and 19 residues deleted from the N- and 

C-termini and Gly-Ala-Gly tripeptide substitutions for 67 V1/V2 loop residues and 32 

V3 loop residues. About 80% of the gp 120 core was deglycosylated. The analysis 

revealed that the polypeptide chain of gp120 is folded in two major domains: an inner 

domain and an outer domain. The proximal end of the outer domain includes variable 

loops V4 and V5 and a protrusion represented by the 13-hairpin consisted of 1320-1321 

that is hydrogen bonded with the V1/V2 stem emanating from the inner domain. This 

structure represented by an antiparallel, four-stranded region called the "bridging sheet" 

is involved in the interaction of gpl2O with both CD4 and the 17e antibody. Interatomic 

contacts between gp120 and CD4 are mediated by Phe 43 and Arg 59 protruding from 

CD4 and residues Asp 368, Glu 370 and Trp 427 on gp120 which form a water-filled, 

hydrophobic cavity. The inaccessibility of these amino acids explains the failure to find 

almost any neutralising antibody that prevents CD4-gp 120 binding directly. In the light 

of their accessibility to the neutralising antibody, three regions could be described: a 

neutralising face that includes the V2 and V3 loops that are found adjacent to the 

surface, a non-neutralising face, represented by the regions that are poorly accessible on 

the assembled envelope glycoprotein trimer and a silent face that roughly correspond to 

the highly glycosylated outer domain surface. 

203 



Conclusions of this section 

The ELISA developed in this study employing a set of reagents represented by the 

capture antibody D7324, anti-gp120 IgG, Biotinylated F (ab') 2 goat anti-human IgG 

and ExtrAvidin Alkaline phosphatase fulfilled two purposes: 

quantification of the gp 120 glycoproteins from the supernatants of transfected COS 

cells 

estimation of the sera IgG level able to react to the gpl2O antigens. 

The reproducibility and sensitivity of the method was in the range that was suitable for 

quantification of both gp120 molecules from transfection supernatants and IgG level 

from HIV-1 infected sera (i.e. 50-200ng/ml). This assay overcomes the shortage of the 

V3 peptide based ELISA residing in their recognition by a narrow group of antibody and 

their inability to reproduce the conformation of the V3 domain on native gp120 

glycoproteins. The glycoproteins are absorbed on the microtitre plates in a precise 

orientation, via D7324 capture antibody, thus presenting the epitopes in an unaltered 

conformation. 

7.3 Systems used to express the HIV-1 gp120 glycoprotein 

Different expression systems have been used to express env gene in different cell types. 

Thus, HIV-1 envelope antigens have been produced in bacterial cells (Escherichia coli) 

(Crowl et al., 1985a,b, Chang et al., 1985), yeast (Barr et al., 1987), insect cells (Weiss 

etal., 1993) and also in mammalian cells (Rekosh etal., 1988). 

1. A number of plasmids have been used to express HIV- 1 env genes in E.coli (Crowl et 

al., 1 985a, b). These plasmids derived from pBR322 and contained the phage lambda PL 

promoter, a synthetically derived ribosome-binding site, convenient cloning sites, 

downstream to the initiation codon, and the ampicillin resistance gene. The main 

advantage of this system is the large amount of the protein produced in bacteria, 
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although the bacterial products are not modified after translation and are therefore of 

much lower molecular weight in comparison to naturally occurring env gene product. In 

spite of a completely different glycosylation pattern that gpl20 molecule produced in 

bacteria have in comparison to homologous mammalian cells produced molecules, 

Crowl et al., (1985b) showed that the env glycoproteins synthesised in E.coli cells are 

recognised by antibody present in the sera of AIDS patients. These results may suggest 

that some antibodies to gpl20 glycoprotein are directed against the protein backbone of 

the molecule rather than against the carbohydrate moieties. However, the significance of 

this reactivity for viral neutralisation has not been established. 

2. Expression of envelope glycoprotein was achieved in insect cells such as Drosophila 

melanogaster Schneider 2 cells (Ivey-Hoyle et al., 1990) and Spodopterafrugiperda-8 

lepidopteran insect cell line (Rusche et al., 1987, Wells et al., 1990, Hu et al., 1987). 

The DNA construct used to produced HIV-1 BH1O gp160 protein in Drosophila cells 

contains an expression cassette that has the inducible Drosophila metallothionein 

promoter, the beginning of the human tissue plasminogen activator (tPA) gene fused in 

frame with gp 160 coding sequences and SV40 early polyadenylation signal (Ivey-Hoyle 

et al., 1990) on a pBR322-based plasmid. Drosophila cells stably transfected with this 

construct expressed 1 to 2 mg of gpl20 per litre of culture medium, upon metal 

induction of the metallothioneine promoter. In spite of the high level of env expression 

in insect cells, in comparison to the other systems employed in vertebrate cells, there is 

evidence to suggest that the processing pathway is different between insect and 

vertebrates cells, since N-linked oligosaccharides from insect cells are deficient in sialic 

acid, galactose and fucose (Butters et al., 1981a, b, Hsieh et al., 1984). Studies of 

oligosaccharide processing in insect cells reveals that the core structures represented by 

three mannose residues, one glucose residue and two N-acetilglucosamine residues 

(Man3  Glu NAc2), which arise from high mannose oligosaccharides, represent the most 

extensively processed oligosaccharides in these cells, whereas those from virus grown in 

vertebrate cells are characterised by the large sialic acid-containing complex-type 
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oligosaccharides. It is not clearly understood the extent to which difference in 

glycosylation pattern affects the antigenic property of the insect cell product. 

The env gene of HIV-1 was also inserted into the genome of the baculovirus Autographa 

calfornica nuclear polyhedrosis virus (AcNPV) to produce a recombinant baculovirus 

(Hu et al., 1987). The principle of constructing a recombinant baculovirus consists of 

the insertion of a foreign DNA into a plasmid vector (pAc6 10) downstream from the 

promoter for the baculovirus polyhedrin gene. The chimeric gene in the recombinant 

plasmid is flanked by additional AcNPV sequences around the polyhedrin gene. This 

plasmid is then transfected with AcNPV DNA into insect tissue culture cells, an event 

that is followed by the homologous recombination between the plasmid and the viral 

DNA, which occurs in the region flanking the chimeric gene and allows its insertion into 

the genome of AcNPV. The recombinant viruses lack the ability to synthesise 

polyhedrin and, therefore, exhibit a polyhedrin negative phenotype. Thus, Hu et al., 

(1987) inserted an env gene of HIV-1 into the genome of an insect virus vector 

(Autographa calfornica nuclear polyhedrosis virus) and expressed the env gene by 

infecting Spodopterafrugiperda cells with the recombinant virus, the presence of HIV-

specific proteins in the infected cell lysates being detected by Western Blots. 

Recombinant baculovirus-produced env proteins were immunoreactive, being 

successfully used as antigens in diagnostic tests for AIDS and also to immunise animals 

that subsequently developed neutralising antibodies (Rusche et al., 1987). 

In addition to transient expression of env genes, stable expression of the envelope 

glycoprotein has been described in human C134-positive lymphocyte cell lines such as 

Jurkat and CEM (Stevenson et al., 1988), HELA cells (Terwilliger et al., 1988) and 

human B cell line (Ahmad et al., 1993). 

3. Both transient and stable expressions were performed in mammalian cells. Some 

vectors used in other systems such as the amphotropic retrovirus vector, Semliki Forest 
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virus and recombinant adenovirus vectors are less commonly used in comparison to the 

SV40 based and recombinant vaccinia virus vectors. 

a. Amphotropic retrovirus vectors were used to expressed the HIV envelope 

glycoproteins in a human CD4 cell line (CEM cells). The env gene was inserted into 

the retrovirus expression vector, being under the control of the highly active 

cytomegalovirus (CMV) immediate early promoter (Stevenson et al., 1988). 

Using a novel expression system based on Semliki Forest virus (SFV) expression of 

HIV-1 env glycoprotein was performed. Different genes have been cloned into the 

expression system, based on the cDNA of SFV. These vectors can be used either to 

transfect the heterologous gene directly or to produce a recombinant virus by co-

expression of a helper plasmid (Paul et al., 1993). An SFV expression system is 

composed of the pSFV1 expression vector and SFV-helperl. Both constructs have the 

SP6 promoter, SP6 origin of replication and the ampicillin resistant gene. The pSFVI 

encodes SFV non structural genes (nsP 1 -nsP4), HIV-1 env gene and packaging site for 

incorporation into SF\' particles, whereas pSFV-helperl encodes a deleted form of 

nonstructural gene, the capsid (C) and envelope (p62, 6k and El) genes. The SFV 

system has several advantages for HIV-1 envelope glycoprotein expression. The 

recombinant proteins are produced efficiently, the recombinant viruses have a broad 

host range of wild-type SFV, being able to infect many eukaryotic cells, including 

human T cell lines, the system allows the expression of a high amount of glycoprotein 

without the requirement of Rev protein, since the replication of SFV occurs in the 

cytoplasm, the cells may express the recombinant glycoprotein for longer period of time 

(more than 75 hrs), in comparison to vaccinia expression, case in which the cytopathic 

effect is manifested early after infection. Thus, Paul et al., (1993) induced high level of 

expression of HIV-1 envelope glycoproteins in Baby Hamster Kidney (BI-IK) cells, 

HeLa and MOLT-4 cells, using pSFVI vectors, glycoprotein being properly folded, 
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processed and transported and able to interact with CD4 molecules and mediate cellular 

fusion. 

Another way to induce HIV-1 env glycoprotein involved the manipulation of 

recombinant adenovirus expressing env/rev genes of the HIV-1. They were constructed 

by inserting the gene into an expression cassette containing the adenovirus type 7 major 

late promoter, following by leaders 1 of the adenovirus tripartite leader and a portion of 

intron between leaders 1 and 2, leaders 2 and 3, and a hexon polyadenylation signal. The 

cassette was then inserted in the terminal region between the E 4 and ITR domains of 

the adenovirus 7 genome with a concomitant E3 region deletion. A 549 cells were co-

infected with a recombinant Ad7 viruses containing env and rev genes or with a 

recombinant virus that had both the rev and env genes. HIV-1 envelope gene expression 

was greatly enhanced (20 to 50-fold) when env gene was expressed in the presence of 

Rev protein, as measured by ELISA and Western blotting (Chanda et al., 1990), 

showing the role of Rev protein in preventing the nuclear retention of incompletely 

spliced mRNA (see Introduction). 

b. Env glycoprotein synthesis from SV40-based systems 

Major systems that were extensively used to express the env glycoprotein in mammalian 

cells are represented by the SV40 based and vaccinia-based vectors. The vector used in 

this study belong to the group of vectors that contain the entire SV40 early/late 

promoter, the SV40 origin of replication, Mason-Pfizer Monkey virus polyadenylation 

signal and ampicillin resistance gene, driven by the SV40 promoter, and are able to 

replicate to high copy numbers in cells permissive for SV40, such as COS cells (Dubay 

et al., 1992). This lead to high levels of expression of the cloned gene. Since the Env 

proteins are expressed from a vector that might be easily modified by site-directed 

mutagenesis, this system also provides a convenient source of mutated proteins for 

purification and further characterisation. 
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A similar env-encoding SV40 based eukaryotic expression vector, able to express Env 

proteins both in E. coli and eukaryotic cells permissive for SV40 replication was used by 

Rekosh et al., (1988). The level of gp120 expression obtained by Rekosh et al. (1988) 

was similar to those found in this study, transfected COS cells producing approximately 

200 times more protein than HIV-1 infected cells (Robey et al., 1986). The vector used 

contained Sall-XhoI fragment from the BH 10 clone of HIV-1, under the control of 

SV40 late promoter, large T antigen, under the control of the SV40 early promoter, the 

SV40 enhancer, the rabbit 3-globin gene containing the splice donor and acceptor 

surrounding the second intron as well as the 3-globin polyadenylation signal. The initial 

vector, called pBABE, contained the entire envelope protein-coding region (Env) from 

SstI site at position 6035 to the XhoI site at position 8920 (GENBANK numbering 

system). It contained about 200 nucleotides of sequence upstream from the start of ORF 

encoding the envelope protein but did not contained the donor-splicing site (6043, 6044) 

(GENBANK numbering system). Their attempts to demonstrate synthesis of the 

envelope proteins with this vector were unsuccessful. Consequently, a fragment from the 

Sall site (5820) to the SstI (6035) was subcloned in the previous plasmid to produce a 

piasmid called pSVSX1. This construct was able to express the env gene, in the 

presence of Tat and Rev proteins, at the level of 500ng/10 6  cells/72hrs, with the 

frequency of positive cells of 20% to 30%, as detected by immunofluorescence assay. 

This study revealed the importance of the donor-splicing site in the synthesis of the 

envelope proteins. Similar results were obtained in the present study when a fragment 

containing the donor-splicing site (DSS) was removed by digestion with Sal!. The 

ability of the plasmid to express the env gene was restored only when donor-splicing site 

was subcloned into the plasmid (see Chapter 4). 

Similar vectors were used to produce the influenza hemagglutinin, in CV  cells, with a 

level of expression comparable with those obtained with env constructs (Gething et al., 

1981, 1982). Also, a derivative of the vector used by Rekosh et al., (1988) lacking the 3-

globin splice and polyadenylation signal was used to express EBNA (Hammarskjold et 
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al., 1986) and the human myc protooncogene products (Classon et al., 1987) even in 

several human lymphoid cell lines. 

Another env gene construct (pSVT env (tatrev), containing SV40 ori, SV40 early 

promoter, AmpR,  SV40 polyA, was used by Bird et al., (1992) to induce env expression 

in murine L cell lines along with many other expression vectors. Thus, Weiss et al., 

(1993) used env sequences inserted into an expression vector which has a glutamine 

synthetase minigene for selection and amplification and CMV promoter to obtain a 

stable CHO cell line, able to express both the wild-type, secreted form of gp120 or a 

glycosylphosphatidyl inositol-anchored enveloped glycoprotein of HIV-1. Ahmad et al., 

(1993) transfected Raji cells (human lymphoid B cell clone) with a vector (çSL 

3EnvVpuNeo) which contained the Epstein-Barr virus origin of replication, the 

neomycin resistance gene, driven by the SV40 promoter, PolyA signal, provided by the 

SV40 early region intron (SV40 polyA) and env fragment of HXBc-2 ligated to the 3' 

LTR of SL 3-3 murine leukemia virus. Another vector (pSV2gpt) that had mycophenolic 

acid resistance gene and env gene driven by the HIV LTR was used to express env 

glycoprotein in HeLa cell lines (Terwilliger et al., 1988). 

c. Production of gpl2O from infectious molecular clones 

Infectious molecular clones, such as pHXB2D, have been used to produce wild-type 

virus, after transfection into COS-1 cells (Fisher et al., 1986a, Guo et al., 1990). 

pHXB2D plasmid contains an SV40 origin of replication, HIV-1 LTR directing 

expression of full-length and spliced viral transcripts. The same construct was used to 

express viral proteins in CD4i-IeLa cells (Guo et al., 1990). A modified form of gp 120 

(AV 1/2/3), containing a deletion of the VI /V2 stem-loop and one of the V3 loop and a 

deglycosylated V 1 /V2/V3 that resulted by treatment of the AV 1 /V2/V3 glycoprotein 

with a combination of endoglycosidase D and H, were obtained by transfecting insect 

cells (Drosophila Scheider 2 cells) with a derivative of pHXB2D in order to investigate 

the interaction of antibodies with a conserved, deglycosylated core of the HIV-1 Env 
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glycoprotein. This study revealed that deletion of VI, V2 or V3 regions only minimally 

altered the binding of the most antibodies examined, when compare with the full-length, 

correctly folded gp120 monomer, a result which was exploited in crystallography 

studies of deglycosylated, truncated gp120 glycoprotein (Wyatt et al., 1998). 

The other major class of the expression systems is represented by the vaccinia virus 

vectors, which have been intensively used to induce the env gene expression in 

mammalian cells. Schwartz et al., (1993) expressed env glycoprotein in CEM cells using 

this vector together with a retroviral vector containing murine leukemia virus LTR and 

SV40 early promoter-neo gene cassette able to express Nef protein. The study revealed a 

downregulation of the CD4 cell surface localisation in the presence of Nef protein 

together with a significant decrease of cell surface levels of gp120. Down regulation of 

CD4 by Nef and Vpu confers protection of the virus-producing cells from superinfection 

and prevents inappropriate gpl20/CD4 interactions prior to viral budding. Vaccinia 

virus vectors with env gene under the control of vaccinia virus promoter and with a 

thymidine kinase- negative phenotype were used to express gp120 gene in Green 

monkey kidney cells (BSC-40), H9 and HeLa cells (Chakrabarti et al., 1990, Hu et al., 

1986). The synthesis, glycosylation, processing and membrane transport of these env 

glycoproteins were identical with those recorded for infected T cell lymphocytes, env 

proteins being recognised by heterologous HIV positive sera and were able to induce 

antibodies to gpl2O in mice. 

Conclusion of this section 

The main advantage of expressing the env genes in eukaryotic cell lines consists of the 

similarity of the posifranslational processes between the expressing cells and infected T 

lymphocytes. The glycoproteins expressed in this type of cells have a high mannose and 

complex oligosaccharide type N-linked carbohydrates moiety, similar to those found in 

vivo, being thus a good reagent for eliciting an antibody response or for epitope 
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mapping. The level of env gene expression was 500-1000 ngIlO 6cells/72hrs comparable 

to those reported by other investigators. 

7.4 Inefficient intracellular processing and transport of env 
proteins 

The results obtained by immunofluorescence assay showed the presence of the env 

protein intracellularly suggesting gp160 precursor degradation in lysosomes, accounting 

for a moderate level of expression achieved by transfecting COS cells with gp120 

encoding vector. A similar result was reported by Bird et al., (1990) who evaluated the 

kinetic and efficiency of intracellular processing and transport of the envelope 

glycoprotein in COS cells by pulse chase metabolic labelling of the cells with pSVT env 

(tat-  rev). It has been proved that in transfected COS-1 cells, the conversion of gp160 

precursor to gp120 and gp41 begins very soon after synthesis, but quantitatively is 

highly inefficient. If the processing rate was initially rapid, it slowed considerably after 

3hrs of chase, suggesting that gp160 is no longer subject to further conversion. Only 

40% of the newly synthesised gp160 precursor appeared to be converted to gp120 and 

gp41 at the completion of the chase period (20hrs) and only 30% of the total gp120 

protein was found in culture supernatant. Thus, approximately 35% of the total gp160 

precursor synthesised cannot be accounted for after a 20hrs chase, being intracellularly 

degraded. The inefficient processing and transport of env proteins is not a feature 

limited to COS cells. Similar results have been reported by Willey et al., (1988) in 

infected T lymphocytes, where less than 20% of gp 160 was cleaved to gp 120 and gp4 1. 

Also, another study conducted by Bird et al., (1992) revealed that most of the env 

proteins had a perinuclear Golgi or endoplasmic reticulum distribution, as indicated by 

indirect immunofluorescent staining of fixed and permeabilised pSVT env (tat rev) gpt 

transfected murine L cells. It has been suggested that inefficient env processing might be 

a consequence of subsequent destruction of complexes of CD4 and gp 160, which occurs 

in the absence of Rev protein (Emerman et al., 1998). However, since transfected COS 
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cells do not constitutively express CD4, the inefficient processing of gp 160 must occur 

independently of CD4-gp 160 complex formation. 

Significance of the in vivo variation of the gp120 genes in the gay group 

Discussion of the variation of the sequences obtained for individuals from the male 

homosexual group may be done both within and between samples. 

Intra-samples distances 

As given in Chapter 5, the nucleotide distance of the gpl20 env sequences derived from 

the same patients were computed to produced an intra-sample distance of 1.8% for the 

patient 1021 and 0% for 1397. These results were analysed in conjunction with data 

reported by Dr. Lin Qi Zhang (1992) (University of Edinburgh, PhD thesis, 1992), 

regarding the nucleotide distances of the V3 sequences amplified and sequenced directly 

from samples from the same haemophiliac patient (p82), at five sequential time points 

(year 3, year 4, year 6 and year 7). The average intra-sample distance in year 3 was 

3.2%, 3.6% in year 4, 2.5% in year 5, 5.7% in year 6 and 4.6% in year 7. Analysing the 

patients 1021 and 1397-derived sequences relative to those from a single patient, taken 

longitudinally the data are consistent with the fact that these patients were investigated 

early in infection (last negative 03.92, first positive and the date of sample collection 

03/94, suspected date of seroconversion 1993). However, the procedure employed in 

this study sampled a limited number of proviruses. Nevertheless, the results suggest that 

the viable complete coding sequences are not less diverse than all sequences taken at 

similar time points. 

Inter-sample distances 

The value of 13.4% obtained for inter-samples distances associated with the sequences 

obtained for gay individuals was analysed relative to the mean inter-samples distances 

computed for sequences obtained sequentially from patient p82, in a longitudinal study 

(Holmes et al., 1992). In this study, the mean inter-sample distances between sequences 

derived from patient p82 were estimated to be: 22.3%, between year 0 and year 3, 15.93, 
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between year 0 and year 4, 13.5% between year 0 and year 5, 22.4%, between year 0 

and year 6 and 20.38%, between year 0 and year 7. Thus, the mean intra-sample distance 

decreased after year 3 to reach the minimum value of 13.55% by year 5 and increased 

after year 6 to a value that was comparable to that between year 0 and year 3. It was 

found that the mean inter-samples distances for sequences from homosexual subjects 

were lower than the value obtained for the patient p82 between year 0 and year 7. This 

result may suggest that the extent of the sequence variation that appears within the 

individual over several years can reach the same extent as that that is manifested 

between different persons. A similar result was reported by Holmes et al. (1995), who 

investigated 132 V3 sequences obtained from HIV-1 infected persons from different risk 

groups in Edinburgh (including sequences from patient p82). The main conclusion of 

this analysis, regarding the homogeneous nature of the sequences obtained at or near 

after seroconversion with the diversification of the sequences over time, is in agreement 

with that reported by Holmes et al. (1992). The diversification of the sequences over 

time may be a consequence of a positive selection imposed by the host immune system 

or the need of the virus to use different co-receptors in order to gain the ability to infect 

different cell types, or a neutral evolution, as a consequence of the random activation of 

infected cells. Some of these sites (e.g. V3 hypervariable region) represent targets for 

neutralising antibodies (Moore et al., 1996a, b, Javaherian et al., 1989) and cytotoxic T 

cell (Doe et al., 1994, Kameoka et al., 1994), and are responsible for conversion from 

one phenotype to another (Milich et al., 1993, Donaldson et al., 1994, Fouchier et al., 

1992). The hypervariable nature of the V3 region was also described by many 

investigators (La Rosa et al., 1990, Albert et al., 1992). They reported a high frequency 

of non-synonymous substitutions in this region, probably imposed by the host factors 

(immune system) or viral factors (diversification of viral tropism). 

Mean nucleotide distances reported for more conserved regions (i.e. gag and pol) were 

lower than those found for env gene (7.2 ± 0.12% for a group of gays from Edinburgh, 

Newcastle and Belfast and 3.3 ± 0.29% for haemophiliac individuals from Edinburgh 

(Leigh Brown etal., 1997). 
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7.5 Strategies for AIDS vaccines focusing on the achievements obtained to 

date regarding prime-boost vaccines 

Inactivated virus vaccines 

Desrosiers et al. (1989) and Murphy-Corb et al. (1989) tested the first vaccines against 

Sly infection in macaques. These vaccines consisted of formalin inactivated whole SIV 

administered with the appropriate adjuvant, giving substantial protection 24 weeks after 

vaccination, with no evidence of infection detected even by PCR. 

Subsequently, Stott et al. (1991) revealed that in vaccinated monkeys the antibody level 

correlated with protection, but the protective immunity was not virus-specific as 

protection of macaques was achieved by immunisation with uninfected cells alone. 

Later, Cranage et al. (1992) and Le Grand et al. (1992) have reported that monkeys 

vaccinated with inactivated SIV grown in human T cells were protected against 

challenge with SIV grown in human T cells but not against STY grown in simian cells. 

Antibodies specific for the cells in which the virus used as a vaccine was cultivated gave 

protection seen in these macaques. They were elicited by the cell-surface molecules that 

co-purified with the virus or by those that became incorporated into the lipid bilayer of 

the virions, after budding from the membrane of the infected cells. Thus the protection 

was due to the response to xenoantigens (Chan et al., 1995). Also the antibody response 

to xenoantigens in sera from vaccinated monkeys may induce complement-mediated 

virolysis of HIV and SIV (Spear et al., 1993). As a result of these limitations, the study 

of efficacy of inactivated virus vaccines against AIDS was abandoned. However, the 

clearance of the SIV in the vaccinated monkeys might be due to the alloreactivity given 

by the normal activation of Th cells by the ALLO MHC molecules taken by the HIV 

virion after budding from the donor infected cells (Shearer, et al., 1999). This was the 

basis of a suggestion for an allovaccine against HIV. Thus, approximately 40% of 

asymptomatic, HIV-1 infected individuals do not generate in vitro Th-cell responses to 

recall antigens such as influenza A virus and HIV envelope peptides but do respond to 

irradiated allogeneic peripheral blood mononuclear cells. The intact Th-cell function to 
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alloantigens could be used to drive a CD8 T-effector-cell response specific for HIV-1 

antigens by alloimmunisation. 

Live attenuated virus vaccines 

In 1991, Desrosiers et al. (1992) reported that an irreversible genetic disruption of the 

nef gene of the pathogenic clone SIV mac239 attenuated the course of infection of six 

rhesus macaques that remained clinically healthy for more than 3 years, despite the 

persistence of the virus. In the following year, Daniel et al. (1992) observed that 

macaques chronically infected with attenuated viruses were protected against challenge 

with wild-type SIV. Subsequent reports confirmed the protection from superinfection 

conferred by the immunised macaques. Thus, using an attenuated clone of SIV mac32H, 

called C8, Almond et al. (1995) and Rud et al. (1994) induced protection of the 

macaques against superinfection with wild-type SIV presented as either cell-free virus or 

virus infected cells. Almond et al. (1995) also observed a protective immunity in 

monkeys infected with attenuated viruses, which was effective against a broad range of 

viruses, including SHIV chimeras carrying env, tat and rev genes of HIV-1. More 

precisely, eight cynomolgus macaques infected with attenuated SIV were challenged 

with cell-free and cell-associated SIV and they were protected against infection in 

comparison with the eight controls that were infected after challenge. 

Thus, live attenuated virus vaccines fulfilled many of the criteria expected of an 

effective AIDS vaccine, although debates regarding safety issues have tempered the 

enthusiasm for using this approach as a prophylactic vaccine in humans. In this light, a 

study done by Deacon et al. (1995) on a cohort of Australian patients called Sydney 

Bloodbank cohort, infected from the same donor with a nef-defective virus, remained 

free of the HIV-1 related disease, with stable, normal CD4 lymphocyte counts for 

between 10 to 14 years postinfection. The cohort consisted of seven HIV-1 infected 

recipients of HIV-1 infected blood from the same donor (a homosexual male who 

became infected between December 1980 and April 1981) who have a stable CD4 cell 

count of more than 5001p 1 of blood for more than 10 years. In this time no member 
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developed any AIDS-defining condition or HIV-related symptoms or received any 

antiretroviral chemotherapy. The amount of HIV-1 DNA in the cohort members was 

very low, which is a characteristic feature for long-term non-progressors (LTNP) and 

ranged from <10 to 400 copies of HIV-1 DNA per 10 CD4 cells in the absence of 

therapy. Sequencing amplified fragments from the nef gene-LTR region indicated 

deletions in the nef-LTR region. However, recent evidence showed that LTNP infected 

with attenuated viruses manifested the disease after 14-16 years postinfection, which 

raises awareness of the safety issue of attenuated-virus vaccine. Firstly, this vaccine 

could initiate cancer through insertional mutagenesis of the provirus in the host cell 

genome with the activation of the oncogenes, as MMTV does in mice (Hardiman et al., 

1996, van Leeuwen et al., 1995). Secondly, attenuated SIV mac  in adult macaques was 

capable of causing AIDS when transmitted orally to neonates (Baba et al. 1995). 

Thirdly, Whatmore et al. (1995) observed the regeneration of a complete nef gene from 

a 12-nucleotide nef gene deletion during the course of infection in macaques. However, 

if the revertant viruses were injected into a macaque infected with an attenuated virus, 

the animal remained resistant (Sharpe et al., 1997). Clearly there is a limitation on this 

type of vaccine coming from the inability of the immunity elicited by live attenuated 

virus to eliminate or prevent the emergence and pathogenesis of revertant virus arising 

endogenously, despite the good protection against virulent strains introduced 

exogenously. 

The mechanism by which live attenuated SIV induces such protection is still unknown, 

although there is evidence that the immunity elicited by infection with nef-deleted SIV 

might be CTL-based (Johnson et al., 1997). 

Subunit vaccine 

Considerable efforts have been made to evaluate proteins as immunogens because of the 

greater safety of non-replicating molecules. Early studies performed by Berman et al. 

(1988) showed protection of chimpanzees vaccinated with recombinant gpl20 against a 

217 



cell-free TCLA inoculum. The result was not convincing due to the fact that HIV 

isolates do not replicate to high levels in chimpanzees. Subsequent studies conducted by 

Mills etal. (1993) and Giavedoni etal. (1993) failed to show protection of the macaques 

induced by subunit vaccines comprising env and gag proteins. Also Mascola et al. 

(1996) showed that this vaccine from a cell-line-adapted strain does not elicit viral-

specific CTL and does not generate antibody responses that can neutralize primary 

patient isolates of HIV-1. 

So far, several different gpl20 and gpl60 vaccines have been tested in phase I and II 

clinical trials. More than 1000 individuals have been tested in phase I trials ofgpl20 and 

gpl60 vaccines in USA. However, the shift of the project from phase I to phase II 

(efficacy) trial was postponed due to the finding that the neutralising antibody could 

inactivate TCLA-adapted viruses but not primary isolates (Mascola et al., 1996). Thus, 

Connor et al., (1998) reported a lack of protection of such vaccines in immunogenicity 

trials in a high-risk human population in USA, the immunity elicited by the vaccines did 

not exert selective pressure on the infecting virus. Moreover, several individuals who 

received these vaccines have subsequently been infected with HIV-1 (Kahn et al., 1995). 

In spite of these results, vaccine trials with bivalent immunogens are currently 

proceeding in Thailand, the immunogens including env sequences typical for dade E 

viruses that have a high prevalence in this region. 

In conclusion, the efficacy of subunit vaccines in stimulating an efficient neutralising 

response is impaired by the more occluded conformation of the oligomers on the surface 

of the primary isolates that consequently shields the neutralising epitopes (Bou Habib et 

al., 1994). Nevertheless such immunogens may be useful in eliciting effective immune 

responses in combination with other vaccine strategies such as live vectors-based 

vaccines or DNA vaccines. 
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DNA vaccines 

DNA vectors were successfully used to elicite immune responses able to confer 

protective immunity against influenza challenge in mice and ferrets. After intramuscular 

or intradermal injection by means of a gene gun, DNA vaccines are taken up by local 

cells that become antigen-presenting cells able to express viral protein-derived antigens. 

As a consequence, strong and persistent humoral and cellular immune responses are 

generated. The advantage of this vaccine consists of eliciting humoral and CTL activity 

without the pathogenic risk, which characterise the immunisation with live vectors. 

DNA vaccines have been used both in primates and human trials. Thus, Wang et al. 

(1995a, b) obtained good protection of the cymolgous macaques against a challenge 

with SIVmac/HIVMN env chimera after immunisation with DNA vaccines comprising 

env and rev from HIV-1 MN. Three out of four monkeys cleared the virus in 60 days, 

whereas the fourth animal developed a viral load at the same level as the control 

animals. DNA vaccines were also used in chimpanzee by Boyer et al. (1996). 

Immunising chimpanzees with DNA containing MN env and gag/pol both humoral and 

cellular immune responses were elicited. In a subsequent study, Boyer et al. (1997) 

challenged two DNA vaccinated and one negative control chimpanzees with HIV-1 SF2. 

Both vaccinated chimpanzees were protected against HIV-1 S172 inoculum: one of them 

developed a high antibody response, whereas the other had a higher CTL response. The 

type of the response that is elicited by DNA vaccines clearly varies from one chimp to 

the other. 

The prophylactic effect of DNA vaccines was tested in HIV-1 infected chimpanzees by 

Boyer et al. (1997) who reported the clearance of the virus from the PBMC by DNA-

PCR and viral culture assays and from plasma by RT-PCR after the third intramuscular 

vaccination with DNA encoding env, rev and gag/pol. The immunised animals 

developed both humoral and cellular immune responses. Subsequently, animals were 

challenged with a heterologous stock of HIV-1 SF2 virus and followed for 48 weeks 
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after challenge. Animals vaccinated with DNA constructs were protected from the 

establishment of infection, whereas RT-PCR results indicated infection in the control 

animals. Nowadays, DNA vaccines are currently in trials for both prophylactic and 

therapeutic purpose. 

Live vector-based vaccines 

These vaccines consist of recombinant organisms that are produced when genes 

encoding viral proteins are inserted into the genomes of other viruses or bacteria. By 

infecting experimental animals or humans with such vectors an immune response 

against the parental organism and the products of the inserted viral genes is elicited. 

First attempts to produce a live-vector-based vaccine were based on poxviruses as an 

HIV gene vector. Thus, Hu et al. (1991) reported the establishment of an AIDS virus-

specific cellular and humoral immunity in macaques when immunising with vaccinia 

virus in which HIV genes were inserted. Moreover, subsequent studies recorded a good 

protection against infection by some SIV isolates conferred by immunising macaques 

with such constructs followed by boosting with recombinant proteins (Zolla-Pazner et 

al., 1998a, b). However, there is a reluctance to use this vector system in large-scale 

human trials because of the life-threatening dissemination of the vaccinia infections in 

immunosupressed humans. Therefore, later studies were focused on poxviruses with 

limited in vivo replicative capacity and limited pathogenic potential in humans. Thus, 

modified vaccinia ankara (MVA), a vaccinia strain attenuated by extensive passaging in 

vitro with deletions in certain genes associated with its pathogenicity has been used as a 

vector virus for SIV genes to immunise macaques (Hirsch et al., 1996). Immunisation of 

12 rhesus macaques with MVA carrying SIV-env and gag-pol genes showed a sustained 

suppression of the virus which promoted a long-term, asymptomatic survival of two 

immunised SI V-infected macaques, but did not confer sterilising immunity to any of the 

immunised macaques (Hirsch etal., 1996). 
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Contrary to the MVA-based vaccines that were used as an HIV-1 vaccine in non-human 

primates, avian pox viruses (APV) have undergone extensive preclinical and early-phase 

human trial because avian pox viruses do not complete an entire replication cycle in 

human cells but they initiate protein synthesis and therefore, can elicite an immune 

response. Among APV, canarypox vectors encoding HIV env and gag have been used in 

different dosages and immunisation protocol. Ferrari et al. (1997a, b) reported a low 

titre env-and gag-specific antibodies elicited in 70% of vaccinees, with 30% of 

individuals developing an env or gag-specific CTL response, after repeated vaccination 

with both envelope and gag-expressing canarypox constructs. However, the responses 

elicited by this vaccine were not durable, some vacinees showing only a sporadic CTL 

responses. Therefore, the poor consistency of HIV-1 specific CTL elicitation impairs 

testing of this vector strategy in large-scale human efficacy trial. 

Other viruses have been used as vaccine vectors such as adenoviruses that are able to 

elicite mucosal immune response. Wang et al. (1997) revealed a low and non-effective 

immune response elicited by recombinant serotype 5 and 7 adenoviruses. Also, 

poliovirus and the alpha viruses (such as Semliki Forest Virus and Venezuelan Equine 

Encephalitis virus) are being evaluated as a potential HIV- vaccine vectors (Moldoveanu 

et al. 1995). 

Recombinant bacteria have also been evaluated as HIV vaccine vectors. BCG (baccile 

Calmefte-Guerin), a bacterium that is used to vaccinate against Mycobacterium 

tuberculosis infection was found to be an effective vaccine vector candidate because it 

establishes a chronic persistent infection and is safe in worldwide use. Winter et al. 

(1995) obtained rBCG strains expressing both regulatory (nef) and structural (gag p26 

and env) genes that were used to immunised Balb/c mice. Immune responses induced in 

the experimental animals involved strong cellular immune responses, both proliferative 

and cytotoxic T-cell responses, accompanied by a strong production of IFN-y, indicator 

of a Thi immune response. In addition, the elicitation of a strong humoral immune 
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response against Gag p26 and Env gpl2O was reported by Lim et al. (1997). In their 

study, mice or guinea pigs were inoculated with rBCG strain expressing the N-terminal 

half of the SIV mac25 1 env gene, having the consequence the induction of serum IgGs 

against env, able to neutralise in vitro virulent SIVmac 251 strain. Enteric bacteria such 

as Salmonella and Shigella, which are able to elicite a strong mucosal immune responses 

were also investigated as HIV-vaccine vectors (Wu et al., 1997). A summary of the viral 

vectors used for HIV vaccine trials are presented in Table 7.1. The main shortcoming of 

the live vector-based vaccines for therapeutic purpose resides in the direct correlation 

between the immunogenicity of that vector and the extent with which that vectors 

replicate in vivo. Thus, the most immunogenic of the live vector is usually the most 

pathogenic, especially for immunocompromise individuals. Also, pre-existing immunity 

or a vigorous anamnestic response make the use of these vectors problematic where 

significant proportion of the population have been exposed to the virus or bacterium, 

because the vector could be cleared by the host memory immunity before immune 

response to recombinant immunogens is induced. 

Table 7.1 Viral vectors used for HIV vaccine trials 

Vector Immune response Safety issue Trials 

Vaccinia virus NA+CTL Non safe in IC humans 

Modify vaccinia Ankara NA+CTL safe monkeys 

Avian pox viruses 

(canarypox vectors) 

NA+CTL safe humans 

BCG NA+CTL+MI - mice 

Salmonella CMI - mice 

AdV, AAV, HSV, VZV, 

SV40, IV, polio, SIN, 

VEE 

Not tested Not tested conceptual 

IC stands tor immunocompromised individuals 
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Prime-boost regimens 

Since 1994, interest in HIV vaccine research has been shifted towards mixed-modality 

vaccines called prime-boost regimes. Early mixed-modality prime-boost strategies 

consisted of immunisation with a live-recombinant virus vector to induce CTL activity 

and to prime for humoral responses, followed by a vaccine boost or boosts with 

recombinant subunit proteins (Pialoux et al. 1995, Fleury et al. 1996, Lubeck et al. 

1997). Newer combinations that have been evaluated are naked DNA prime-

recombinant protein boost, naked DNA prime-vaccinia boost and more recently DNA 

prime/MVA boost. First studies in this respect were conducted in mice and guinea pigs 

to evaluate a vaccine approach consisting of naked plasmid DNA encoding gp120 from 

HIV-1 S172 and recombinant gpl20 SF2 protein (rgpl20 SF2) with MF 59 adjuvant (oil 

in water emulsion) (Barnett et al., 1998). Results showed that the mixed modality DNA 

prime/protein boost regimen performed better than DNA/DNA or protein/protein alone. 

Importantly, gpl20 DNA immunisation induced potent and persistent CTL responses in 

all animals tested, regardless of the fact that DNA was administered alone or in 

combination with a protein boost. Relatively low neutralising titres were seen following 

env DNA alone, which were substantially enhanced by subsequent immunisation with 

protein. 

The function of the prime is to induce strong and persistent cell-mediated responses to 

CD4 and CD8 T cell epitopes and also a broad neutralisation response. Different DNA 

vectors comprising env, gag, pol, tat, nef and rev genes are currently under evaluation 

for their ability to prime the immune responses (Lubeck et al., (1997), Barnett et al., 

(1997), Fuller et al., (1997a, b), Hanke et al., (1998), Hinkula et al., (1997). The main 

advantage conferred by priming with a DNA vaccine resides in their ability to elicite 

CTL responses to recognise similar peptides that have conserved amino acid residues at 

certain position. For instance, studies done by Ferrari et al., (1997a), Betts et al., (1997) 

and Cao et al., (1997) to evaluate the CTL responses in volunteers receiving env-based 
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DNA vaccines and patients infected with dade B strains of HIV has demonstrated cross-

clad recognition. This points towards the hope of achieving an international vaccine 

including env, gag and pol genes from more prevalent HIV-1 strains. Furthermore, 

results reported by Hu et al., (1996) revealed that priming the animals with DNA 

encoding gp160 gene is superior to gp120 for protection of vaccinia primed/protein 

boosted animals. 

The function of the boost is to enhance the immune responses to the primary 

immunisation through activation of specific T and B memory responses. Early studies 

done in mice showed that antibody responses were augmented when the animals were 

primed with recombinant vaccinia encoding env protein followed by a recombinant 

gp160 protein boost but were not increased in priming with protein first followed by 

vaccinia (Hu et al., 1991). Recombinant protein boosts with nucleic acid as a prime was 

also a potent regimen for inducing neutralising antibody responses (Barnett et al., 1997). 

DNA priming followed by MVA boosting has been shown to be effective for the 

induction of anti-malaria CTL responses in a mouse model, whereas other regimens 

such as: DNA alone, MVA alone or MVA as prime and DNA as boost were less 

effective (Schneider et al., 1998). Finally, recombinant protein or vaccinia vaccines 

were effective in augmenting antibody responses when used to boost in macaques after 

gene-gun DNA immunisation (Fuller et al., 1997a). 

The most common boost regimen both in animals and human models used adjuvant-

supplemented env gp120 and gp160 proteins from either HIV-1 or SIV strains expressed 

in baculovirus expression system, CHO cells or other mammalian cells (Barnett et al., 

1998). Significant results showed that boosting with either form of env is effective for 

the induction of neutralising antibody against TCLA viruses (Hu et al., (1991), Graham 

et al., (1993), Barnett et al., (1997), Lubeck et al., 1997, Hu et al., (1996)). However, 

only few reports revealed the neutralising potential of such vaccine-induced antibodies 

to primary HIV-1 strains, expecially, those with NSI phenotype which are 
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preponderantly transmitted in HIV-1 infection (Zolla-Pazner et al., 1997, 1998a, b). This 

result may be explained by a different conformation adopted by the gpl20/gpl6O 

molecules on the TCLA isolates in comparison to primary isolates. However, the gpl2O 

protein from TCLA strains SF2 was capable of eliciting neutralising antibody able to 

bind to the primary isolates (Mascola et al., 1996). Currently, both monomeric gpl20 

and its oligomeric form (gp140 or gpl60) derived from primary HIV-1 strains are 

evaluated as boost candidates for DNA prime recombinant glycoprotein vaccines 

(VanCott et al., 1997, Mascola et al, 1997). 

Conclusion of this section: 

The prime boost regimen elicits strong CTL and neutralising antibody response and it 

has been shown to protect macaques from challenge with SIV strains. Immune responses 

are elicited in circumstances where the risk of pathogenicity associated with the live-

attenuated viruses and live-vector vaccines is eliminated. Furthermore, this regimen is 

virus-specific and long lasting due to the enhancement of the antibody responses by 

boosts with recombinant proteins. 
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