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Abstract

For systems that are in equilibrium, fluctuations can be understood through

interactions with external heat reservoirs. For this reason these fluctuations are

known as thermal noise, and they usually become vanishingly small in the ther-

modynamic limit. However, many systems comprising interacting constituents

studied by physicists in recent years are both far from equilibrium, and sufficiently

small so that they must be considered finite. The finite number of constituents

gives rise to an inherent demographic noise in the system, a source of fluctuations

that is always present in the stochastic dynamics.

This thesis investigates the role of stochastic fluctuations in the macroscop-

ically observable dynamical behaviour of non-equilibrium, finite systems. To

facilitate such a study, we construct microscopic models using an individual based

modelling approach, allowing the explicit form of the demographic noise to be

identified.

In many physical systems and theoretical models, absorbing states are a

defining feature. Once a system enters one, it cannot leave. We study the dynamics

of a system with two symmetric absorbing states, finding that the amplitude of

the multiplicative noise can induce a transition between two universal modes of

domain coarsening as the system evolves to one of the absorbing states.

In biological and ecological systems, cycles are a ubiquitously observed

phenomenon, but are difficult to predict analytically from stochastic models. We

examine a potential mechanism for cycling behaviour due to the flow of

probability currents, induced by the athermal nature of the demographic noise,

in a single patch population comprising two competing species. We find that such

a current by itself cannot generate macroscopic cycles, but when combined with

deterministic dynamics which constrain the system to a closed circular manifold,

gives rise to global quasicycles in the population densities.

Finally, we examine a spatially extended system comprising many such patch

populations, exploring the emergence of synchronisation between the different

cycles. By a stability analysis of the global synchronised state, we probe the

relationship between the synchronicity of the metapopulation and the magnitude

of the coupling between patches due to species migration.

In all cases, we conclude that the nature of the demographic noise can play a

pivotal role in the macroscopically observed dynamical behaviour of the system.
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Lay Summary

In order to study systems made up of many interacting constituents, a

mainstay of materials science and biology, compromise must be made. One cannot

hope to solve the governing equations given by either classical Newtonian laws,

or quantum theory. Instead, the study of thermodynamics has been developed,

which when one considers a system to be infinitely large, gives a description of

the characteristic, observable properties and behaviour of such systems in terms

of macroscopic, well-defined variables such as the temperature and the pressure.

An alternative formalism, whose origins lie 150 years ago with Boltzmann

and Maxwell, has come from the development of statistical mechanics. Beginning

with a detailed description of the interactions of a system at the smallest scale,

statistical methods can be used to find the behaviour of average properties of

the system, akin to thermodynamic variables. However this means information is

lost, leading to a randomness entering into the system, commonly referred to as

noise. The noise manifests itself as fluctuations away from the predicted average

behaviour in the thermodynamic limit.

An inherent property of many systems due to their finite number of

constituents is demographic noise. We investigate the role it can play in the

dynamical behaviour of such systems. We consider a system which can be

applied to model language development in a community, finding that the strength

of the noise can dictate how a consensus is reached in the use of linguistic

variables. In biological and ecological systems, cycles in the number of species are

a ubiquitously observed phenomenon, but are difficult to predict mathematically

from stochastic models. We propose a potential mechanism for cycling behaviour

which is controlled by the nature of the noise, exploring model systems where it

leads to cycles being observed. Finally, we study a system comprising many such

populations, examining the emergence of synchronisation between the cycles of

each population through mathematical and computational analysis.

In the study of each of these three very different model systems, we find that

the nature of the demographic noise has a direct consequence for their observed

global dynamical behaviour.
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Chapter 1

Introduction

The advancement of modern science has been accompanied by the progressive

specialisation of individual disciplines. This development has enabled the neces-

sary specification required to understand simple characteristic systems [1]. Ideally,

these systems are theoretically modelled or experimentally controlled to be

isolated from external influences, allowing their fundamental features, processes

and mechanisms to be studied. However, while this approach has led to many

remarkable discoveries—from the structure of DNA [2] to the Higgs boson [3, 4]—

there are few real systems that are truly isolated in nature. Instead, many

systems in the physical, biological and social sciences are out of equilibrium

as they are in contact with external systems. As a consequence, they can only

be analysed through their dynamics due to the interactions of the constituents

[5]. Increasingly, scientists drawn from a diverse range of backgrounds are

interested in studying these complex systems [6], which have become the subject

of intensive research in areas of the natural sciences [7], language dynamics and

crowd behaviour [8], economics [9], and finance [10].

At first sight, modelling complex systems made up of many interacting

constituents represents a colossal challenge. Assuming that all the interactions

are known and can be expressed in a mathematical form, encapsulating them

in a model which is amenable to either numerical or analytical study is almost

always impossible. Progress can be made by construction of a simplified model

which captures the dynamics of the variables of the system which are the interest

of study. A popular approach amongst statistical physicists in the modelling of

a very diverse range of systems, is to give a probabilistic description, casting
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Chapter 1. Introduction

the interactions as stochastic processes [11]. For example, if we are studying a

population model, we may be interested in how the abundance of one species or

genus evolves over time. The full range of processes that play a part in the birth

or death processes of this species may be very complex and intractable to work

with mathematically. We can instead posit what we believe to be the relevant

processes and express them as rates in a probabilistic description of a birth or

death event occurring in a given time period. This makes such events random

processes, where the stochasticity enters from the information of other system

variables we have discarded [7]. Consequently, fluctuations play a crucial part in

our understanding of model complex systems and are empirically relevant due to

the limited knowledge of the real system under consideration.

In the thermodynamic limit, where the number of constituents in the system

is taken to be infinitely large, relative fluctuations about the average behaviour

usually become vanishingly small [12]. However in ecological, biological and

sociological systems, while the typical size of systems of interest may span from a

few dozen to a few billion, very few are of the order of Avogadro’s number, where

the thermodynamic regime holds [13]. In a finite system the fluctuations due to

the discrete nature of its constituents are an inherent property of the system.

This source of stochasticity is referred to as demographic noise, and in the words

of van Kampen, it cannot be switched off [7]. Its origin is very different from

that of an external noise source to the system, such as the environmental changes

to a population habitat due to the weather, whose stochastic properties can in

principle be known. Instead demographic noise is an intrinsic property of finite,

probabilistic systems, inherent in the stochastic processes by which the system

evolves. The aim of this thesis is to investigate the consequences that demographic

noise can have in non-equilibrium dynamical systems.

For equilibrium systems, fluctuations are conceptually well understood [12].

Taking a statistical mechanical formulation, one can give an exact microscopic de-

scription of the system in terms of the relevant constituents and interactions. The

lost information can then be interpreted as a heat bath which is coupled to the

system, introducing fluctuations to the system in the form of thermal noise. The

state of the system is given by the Boltzmann probability distribution defined

through the Hamiltonian of the system, and the thermodynamic variables can

in principle be derived through minimisation of the free energy [14]. Working

2



within the relevant ensemble, fluctuation-dissipation theorems can be formulated

to describe the response of the system about the mean behaviour due to the

fluctuations [15, 12].

Out of equilibrium however, this established framework is of little use as

a Hamiltonian cannot be defined for such open systems, and the steady-state

probability distribution is rarely known. In the past 20 years there have been

successes in developing fluctuation theorems for far-from-equilibrium systems—

notably the Crooks relation [16] and the Jarzynski equality [17]—and are the

subject of recent reviews by Kurchan [18] and Seifert [19]. Typically in the

derivation of work relations of this kind, the system is driven externally through

a thermostated Hamiltonian [20], while detailed balance is maintained and the

noise is prescribed as thermal. However very often when studying a system defined

through its dynamics, the noise is athermal and detailed balance is broken as

transitions between configurations in state space are no longer microscopically

reversible [21]. In such situations, conceptually very little is understood for

fluctuations in non-equilibrium systems [22]. For this reason, we will proceed

on a case by case basis in our study of the effects of demographic noise in the

macroscopic dynamics of non-equilibrium systems. In this way we may be able

to discern what general properties and characteristics give rise to any observed

universal features, which in turn may lead to a better understanding of the

relevant features in classifying non-equilibrium dynamical behaviour.

In ecology, a traditional approach taken in modelling population dynamics,

such as in predator-prey systems and population genetics [23, 24], has been to

codify the dynamics of the system in the form of ordinary differential equations.

These describe the time evolution of the density of each species—or more generally

the type of constituent—which are deterministic coarse-grained variables in the

limit of an infinite population size. Models of this type are commonly referred

to as population level models (PLM), as they work with the total number of a

constituent of a certain type [25]. However for finite systems, they are a limited in

their scope to describe the dynamics of the system, as this deterministic approach

does not capture its discrete nature.

In this thesis we will follow a more prevalent approach in recent years of

constructing individual based models (IBMs) of systems we wish to study [25].

The description of the dynamics enters at the level of individual constituents,

3



Chapter 1. Introduction

with the evolution of the system encapsulated in a master equation [26]. This

is a natural approach if one wishes to study demographic stochasticity as it is

an inherent property of the model at the outset, making it possible to describe,

quantify and even control to some extent the form on the noise. An IBM also

has the advantage of being versatile. One can recover the deterministic PLM

description of the system in the infinite population limit [27], while the stochastic

dynamics can be be studied numerically through computer simulation using

Monte Carlo techniques [28, 29]. This makes an IBM an excellent intermediary

for developing and evaluating analytical techniques to describe such systems and

for studying the effects demographic noise can have in large, yet finite, system

where stochastic effects are believed to play an important role. By contrast, if one

begins with a PLM, then stochastic differential equations can be formulated by

adding Langevin noise terms to the ODEs. This then becomes a numerical study

of how fluctuations due to the discrete nature of the system come to perturb the

PLM dynamics. To do so one has to somehow deduce the form and nature of the

noise, a feature of the system which is neglected in a PLM description. This is

a very unsatisfactory approach, as there may be many IBMs defined by different

stochastic processes whose average dynamics reduce to the same PLM [25].

Outline of Thesis

We begin our investigation of the macroscopic consequences of demographic noise

in non-equilibrium dynamical systems in chapter 2 by reviewing the concepts and

methods of stochastic modelling. Here, we introduce the analytical techniques,

procedures and practices that we shall employ in the remainder of the thesis

where we study three very different model systems. We now present an overview

of each of these, highlighting the dynamical behaviour we wish to explore.

Ordering Dynamics in Systems with Absorbing States

An absorbing state is one which if the system enters it, it can never leave. This

is most readily understood in the context of population dynamics: if the number

of inhabitants of a population falls to zero, then, assuming that only birth and

death processes are at work, with no mutation, then it cannot become non-

zero again at a later time. While in general phase transitions are conceptually

poorly understood in non-equilibrium systems [30, 31], in the past decade, a
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(a) Ising Model (b) Voter Model

Figure 1.1: The domain ordering dynamics in two dimensions of: (a) the zero
temperature Ising model (taken from [39]), and (b) the voter model (from [34]).

framework has emerged to describe the critical behaviour of systems characterised

by having two symmetric absorbing states [32, 33, 34] which encapsulates the

different observed static order-disorder transitions.

Within this framework, in chapter 3 we investigate what contribution if any

the amplitude of the noise can have in a spatially discrete system. In particular

we focus on how such out of equilibrium systems evolve to one of the fully

ordered, absorbing states. Phase ordering dynamics is an extensive field, as phase

separation is a widely observed phenomenon, for example in the grain boundaries

of binary alloys [35], coexistence in complex fluids [36] and spinodal decomposition

in low temperature polymer solutions [37]. A classic example of domain ordering

for a system with two equivalent ordered states is the two-dimensional Ising

model, which is illustrated in 1.1(a). Recently, Dornic et al [34] revealed a

very different coarsening behaviour for a system with two symmetric absorbing

states undergoing voter dynamics [38], which is shown in figure 1.1(b). We report

the existence of a previously unseen noise-induced dynamical phase transition

between these two universal modes of ordering at a non-zero critical value of the

amplitude of the demographic noise.

Probability Currents and Quasicycles in Finite Populations

The long term fate of finite populations is often determined by stochastic effects

due to the demographic noise, as fluctuations will eventually fix the population

by taking the system to an absorbing state of species extinction [40, 41]. For

intermediate times, the role that the noise can play in the dynamics of populations
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has only recently become better understood. Cycles in biological and ecological

systems are a ubiquitous phenomenon that have been studied extensively since

the first mathematical models were formulated by Lotka and Volterra over 80

years ago [42, 43, 23]. McKane and Newman [44] have shown how demographic

stochasticity can give rise to cycles in finite predator-prey systems. They found

that resonances in the power spectra of the fluctuations, combined with a

deterministic dynamics given by the Lotka equations naturally gives rise to

macroscopic persistent quasicycles in the species abundances. Subsequently this

general mechanism has been shown to be versatile, emerging in a broad range of

biological and ecological models spanning many orders of magnitude from gene

regulation [45] to the spread of epidemics [46].

In chapters 4 and 5 we investigate another potential stochastic mechanism

which allows macroscopically observable cycles in two-species finite population

dynamical systems, based on the flow of probability currents in the steady

state. We deduce what contribution from the deterministic component of the

dynamics in concert with the athermal diffusion gives rise to quasicycles in single

realisations of the system.

Synchronisation in a Metapopulation

The emergence of synchronisation in the collective dynamics of complex systems

is a problem which inspires much research across physical, chemical, biological

and social systems [47, 48, 49]. It has recently been shown that demographic

noise can play a role in the synchronisation of metapopulations [50, 51], and that

desynchronisation between cycles is a key component in the long-term stability of

spatially extended predator-prey systems [52, 53]. In chapter 6 we study the onset

of synchronisation in a spatially extended multi-patch population model. The

single patch populations each undergo noise-induced quasicycles, whose phases

become coupled due to migration of species between patches. We investigate how

to measure the synchronisation in such systems both analytically and empirically

from Monte Carlo simulation, quantifying the relationship with the coupling

strength.

In the concluding chapter of this thesis we draw together some common themes

from our analysis of these three models, discussing how they could point the way

towards a general framework for studying non-equilibrium dynamical systems.
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Chapter 2

Concepts and Methods

2.1 Introduction

In this chapter we introduce and review some key concepts and mathematical

analysis essential for studying fluctuations. We define standardised language and

conventions that will be adhered to in this thesis. While this will be presented

in a general context, we will specifically address two variable systems. The

generalisation to higher dimensions is straightforward, and does not contain new

features, whereas there exist symmetries and constraints in 1D systems that do

not feature in higher-dimensional systems and vice-versa, making some analytical

procedures unique to one dimension.

Primarily we work from three textbooks which deal with modelling stochastic

processes, written by Risken [54], Gardiner [26] and van Kampen [7]. Each cover

the same crucial mathematical analysis we introduce here, but with varying

motivations, emphases, notation and derivations. Often when looking to these

source materials, the link between the mathematical theory and application

can be large and difficult to navigate, and translating between the two is not

something that is immediately apparent. Here, we will endeavour to present a

mathematical framework which brings together the key aspects of the theory of

stochastic processes with an eye to making clear how it can be used in practice

for a given model.
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2.2 Individual Based Models

Historically, the principal approach to modelling ecological systems, like those of

predator-prey dynamics or bacterial growth, has been to formulate a population

level model (PLM) which describes the system’s dynamics using ordinary

differential equations (ODEs) [23]. The ODEs describe the time evolution of the

population densities of each species. These densities are continuous coarse grained

variables, which are defined in the deterministic limit of infinite system size. There

are many real biological and ecological systems where taking the deterministic

limit is not valid and fluctuations play a key role in the behaviour observed in

the system. As a PLM by construction neglects demographic noise as a source of

fluctuations, it can not predict phenomena stemming from this inherent property

of a finite system.

An alternative approach which we adopt in the work presented here is that

of individual based modelling (IBM), where the dynamics of the system are

described in terms of the discrete population numbers ni, or densities xi. This is

advantageous because fluctuations due to demographic noise enter naturally at

the outset of the study of such models, and it is therefore possible to describe,

quantify and even control the noise. In this chapter we review the theoretical

framework for devising and studying individual based models, deriving and

discussing the main analytical tools which we will employ throughout this thesis.

2.2.1 Defining the System

We are interested in studying the evolution of systems of interacting con-

stituents. More specifically, systems whose constituents can be assigned to one of

r distinct classes. One example is a binary spin system where spins are classified

as being up or down [55]. Another is from evolutionary biology, where genes

come in different types known as alleles [24]. Here we will generically refer to a

distinct class as a species. The state of the system at a time t is defined by the

r-dimensional vector

n(t) = (n1(t), n2(t), ..., nr(t)) (2.1)

where ni(t) is the number of species i at time t. Equivalently, we can describe the

system by the vector

x(t) = (x1(t), x2(t), ..., xr(t)) (2.2)
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where xi = ni/Ω and Ω is an extensive variable which is a measure of the size or

volume of the system. For ecological models Ω is known as the carrying capacity

and is the maximum population size the environment of a system can sustain

indefinitely [23]. Therefore, we regard the variables xi as population densities of

each of the i species. In this chapter we will restrict our descriptions to a system

comprising two species, A and B; the number of species A will be denoted by n

and the number of species B by m. The state of the system is given by n = (n,m),

or x = (x, y).

2.3 Jump Processes

In an IBM the state of the system evolves through changes in the number of

each type of constituent. The numbers of each species in the systems must be

treated as a random variable due to the demographic noise. This means the

system will evolve probabilistically in time, and the interactions between the

constituents and between the constituents and the environment are stochastic

processes [25]. The interactions are referred to as jump processes because the

system jumps discontinuously between discretely countable states. Typically these

jump processes depend on the state of the system, i.e. the number of each

constituent which can partake in the interaction.

We define a jump process in terms of a transition rate T (n′,m′|n,m): the

probability that a system in a state (n,m) at time t is in a state (n′,m′) an

infinitesimal time τ later is T (n′,m′|n,m)τ . Throughout this thesis we regard the

time interval τ to be infinitesimal, in this chapter and in subsequent applications

of the methods presented here. This allows us to neglect any contributions

from higher-order terms o(τ) when defining a continuous-time limit [26]. The

probability density that the system is in the state (n,m) at a time t we denote

by P (n,m).

The processes considered in the models studied in this thesis are defined as

continuous-time Markov processes [26]. Birth and death processes in a population

are the classic example of where this approach is implemented. The Markov

property enters naturally as transition rates depend on the state of the system

at that time and not on the previous history of the system. The jump processes

can be described as inhomogeneous Poisson processes because the rate at which

9
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an event can occur, T (n′,m′|n,m), is a function of n and m which are constant

between events meaning the rate is constant also [7].

Strictly to define the transition rates we write

T (n′,m′|n,m) = lim
τ→0

P (n′,m′|n,m)

τ
(2.3)

where P (n′,m′|n,m) is the conditional probability. This satisfies the consider-

ations set out by Gardiner [26] which must be made to define a continuous

Markov process, via derivation of a differential form of the Chapman-Kolmogorov

equation.

One-Step Processes

In this thesis we will be interested in models where the stochastic processes change

the species number ni by increments of 1. In [7], van Kampen describes such

processes as one-step processes, and gives a general formalism to model them,

and extensively details methods of solution. The motivation for doing so is due

to their ubiquity in stochastic modelling, for example in the kinetics of chemical

reactions and in the birth and death of individuals in population dynamics.

In our definition of a one-step processes we also include processes akin to

those such as the predator-prey interaction which allows a birth of one species at

the expense of another. For clarity, in a two species model we consider one-step

processes to be those with the non-zero transition rates

T (n′,m′|n,m) = T (n′,m|n,m)δn′,n±1 + T (n,m′|n,m)δm′,m±1

+ T (n′,m′|n,m)δn′,n±1δm′,m∓1 (2.4)

where δij is the Kronecker-Delta symbol.

2.4 Non-Spatial Models: Patch Dynamics

When considering models where the number of constituents is not fixed, extra

considerations have to be taken to ensure the population remains finite. For

example, if a model of a one species population with birth and death processes

given by transition rates T (n + 1|n) = αn and T (n − 1|n) = βn respectively,
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if α > β the population will become infinitely large. The usual fix for this is to

introduce the carrying capacity of the system N . This is the size of population

that the system can accommodate indefinitely, and is a natural extensive variable

to describe the volume of the system. Now the birth rate is adjusted to inhibit

a birth in the event that the population is close to to the carrying capacity:

T (n + 1|n) = αn(1 − n/N). So the birth rate approaches zero as n approaches

N . This form of birth rate is that of the well studied logistic growth [23].

Rather than implementing logistic growth by hand to correct birth rates in

a system, it can be incorporated into non-spatial models explicitly by following

the formalism presented in [27]. In our model system, each constituent occupies

a single site on the patch, and the population is considered well-mixed so the

distance between sites is coarse-grained out of the system. While the total number

of the population n + m is not fixed, we do restrict the number of sites on the

patch they inhabit N = n + m + e to be constant, where e are the number of

empty sites E. In a sense E is entering as a passive species into this two species

population. The kinetics of the interactions are now formulated by consideration

of the number of ways the constituents involved can be selected from the patch. So

the birth of an A depends not only on the number of A but also on the available

spaces on the patch for the new A to inhabit:

A+ E
a−→ A+ A . (2.5)

The corresponding transition rate is

T (n+ 1,m|n,m) = 2a
n

N

(N − n−m)

N − 1
. (2.6)

The factor of 2 is a combinatorial factor accounting for the number of ways of

picking an A and an E. The rate constant a could absorb this factor, and also it

can be rescaled by one or both of the extensive terms in the denominator. In effect,

rescaling the rate constant of the interaction is rescaling time, the significance of

which will be explained in due course. One other consideration to be made is how

many reactants one draws to decide which reaction occurs. While the birth of an

A requires the interaction of an A and an E, the death of an A,

A
d−→ E, (2.7)
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with rate

T (n− 1,m|n,m) = d
n

N
(2.8)

needs only an A for the reaction to occur. While one could have a probability

µ1 to draw one reactant and µ2 to draw two etc [27], here we will always have it

equally likely and these rates can be absorbed into the rate constants.

Copying Dynamics

The conservation of the patch size N can also be achieved through copying

dynamics. By this, we mean a death and birth event occur simultaneously so

that a newly created constituent assumes the space occupied previously by the

constituent which dies. This has the composite effect of one site at a patch copying

the state of a site at another patch.

2.4.1 Example Model

To fully elucidate the formalism and methods presented in this chapter, at this

stage we present a model that will be analysed in its full physical context in

chapter 4. The model is of a non-spatial population comprising two competing

species A and B with carrying capacity N . Each species undergoes the same

processes with analogous rates. (To write down the reactions and transition rates

for species B given those for species A, one simply relabels A↔ B, n↔ m etc.)

Individuals of both species reproduce with rate a according to (2.5) while each

can die due to: (i) natural death with rate d, as in (2.7); (ii) predation from the

other species with rate p,

A+B
p−→ A+ E ; (2.9)

and (iii) cannibalism from another of its species with rate c,

A+ A
c−→ A+ E . (2.10)
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These four processes give us the transition rates for the model

T (n+ 1,m|n,m) = 2a
n(N − n−m)

N

T (n,m+ 1|n,m) = 2a
m(N − n−m)

N

T (n− 1,m|n,m) = dn+ c
n(n− 1)

N
+ 2p

nm

N

T (n,m− 1|n,m) = dm+ c
m(m− 1)

N
+ 2p

nm

N
. (2.11)

where the rate constant d has been rescaled by N and a, p, c by N − 1.

Finally, we note that not all models require the consideration of logistic growth

to ensure populations remain finite. Typically this is achieved by having more

exotic interactions, which require a higher number of reactants or equivalently

higher-order polynomials for birth and death rates. In this thesis we shall employ

both methods.

2.5 Spatial Models: Migration Between Patches

When constructing a dynamical model it is important to consider whether the

system in question is best characterised as being spatially discrete. For example,

in many ecological models the role of spatial heterogeneity can play a crucial part

in the existence and observed behaviour of a population [51, 56]. To incorporate

space into a patch model formalism, we regard the population as a composite

system comprising several patches. These patches can be placed on the sites

of a lattice, alternatively the nodes of a network, whose topology must be

defined. Constituents in the system are then able to migrate between different

patches. The local dynamics of each patch are in principle the same, but this does

not have to be the case. For example, one may be interested in studying the effect

of having a population in a spatially heterogeneous environment. If the birth rate

of a species is greater in one region, due for example to a greater abundance of

food, then this can be modelled by having patch dependent birth rates [57]. As

with single patch dynamics, the size of the composite population can be kept

finite. For example, in a two patch system the transition rate for an A at site 1
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to move to site 2 is

T (n1 − 1,m1, n2 + 1,m2|n1,m1, n2,m2) ∝ n1(N − n2 −m2) . (2.12)

2.5.1 Lattice Populations

We can also study spatially extended systems by modelling the system as a

lattice of sites, each site of which hosts a well-mixed population i.e. a non-spatial

patch. The topology of the lattice can be defined through the adjacency matrix

aij which has elements 1 if the site i and site j are connected, and otherwise are

0. By connected we mean that interactions may take place between constituents

at adjacent patches. In doing so we implicitly introduce a length scale over which

the dynamics act. One can assign distances to adjacent patches and thereby

to these connections. For example, one can employ the two-dimensional (2D)

square lattice where each patch is in contact at a fixed distance δ from its 4

nearest neighbours. Care must be taken in comparing such discrete space systems

to continuum field-theoretic results [31]. This will be addressed in the relevant

chapters.

2.6 The Master Equation

For a system being described in terms of continuous-time Markov processes we

can express the evolution of the system by a linear first-order differential equation

in terms of the transition rates T [7]:

dP (n)

dt
=
∑
n′

[T (n|n′)P (n′)− T (n′|n)P (n)]. (2.13)

We interpret this as a gain-loss equation: the first term is the probability flowing

into the state n from all states n′ for which there is a non-zero transition

rate; conversely the second term is the total probability leaving the state n.

Writing the master equation for a stochastic model is akin to writing F = ma

in Newtonian physics, or the Hamiltonian in quantum mechanics. In an IBM,

the master equation (2.13) give a complete description of the system, describing

how it will evolve over time. The particular dynamics of the stochastic processes

which the constituents undergo are encoded in the transition rates T . In practice,
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the starting point of an IBM is to write down which stochastic processes which

the species undergo, define the transitions with which they which occur, and then

present the dynamics in a master equation.

This is the simple part: in practice it is very nearly always impossible to solve

the master equation [7]. However, as we will show, one can calculate moments

of the distribution P (n,m, t) from it which allows the deterministic behaviour

to be studied by analysis of the the mean-field equations. More significantly, it

is also possible to approximate the master equation by means of a second-order

partial differential equation known as a Fokker-Planck equation [54], allowing

an analytical description of the fluctuations about the deterministic behaviour

predicted by the mean-field equations.

For our toy model defined by the transition rates (2.11) the 2D master

equation is

dP (n,m)

dt
= T (n,m|n− 1,m)P (n− 1,m)− T (n+ 1,m|n,m)P (n,m)

+ T (n,m|n+ 1,m)P (n+ 1,m)− T (n− 1,m|n,m)P (n,m)

+ T (n,m|n,m− 1)P (n,m− 1)− T (n,m+ 1|n,m)P (n,m)

+ T (n,m|n,m+ 1)P (n,m+ 1)− T (n,m− 1|n,m)P (n,m).

(2.14)

2.6.1 Mean-Field Equations

In an IBM the first thing one does after writing down the master equation is

to find the deterministic behaviour of the system. To do we must find the rate

equations for the evolution of the first moments of the distribution P (n,m). The

moments are defined as

〈npmq〉 =
N−1∑
n=0

N−1∑
m=0

npmqP (n,m) , p, q ∈ N. (2.15)

In practice, it is often straightforward to write down the correct mean-field

equations from inspection of the rates, but here we will illustrate with the concrete

example of the toy model how to derive them from the master equation.

Formally, the mean-field behaviour is recovered in taking the infinite system

size limit, N →∞ [27]. To derive the rate equation for n we multiply the master
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equation (2.14) by n and sum over all n and m. Taking the first two lines of (2.14)

and using (2.15) we have

d〈n〉
dt

=
∞∑
m=0

(
∞∑
n=0

nT (n,m|n− 1,m)P (n− 1,m)−
∞∑
n=0

nT (n+ 1,m|n,m)P (n,m)

+
∞∑
n=0

nT (n,m|n+ 1,m)P (n+ 1,m)−
∞∑
n=0

nT (n− 1,m|n,m)P (n,m)

)
.

We wish to change summation variable to bring the first term to the same form

of the second term, and similarly for the third and fourth terms. Noting that the

lower limit can begin at 1 due to the first term in the sum contributing zero, we

make the substitution n = n−1 in the first term and n = n+1 in the third term,

which after cancellation with the third and fourth terms gives

d〈n〉
dt

=
∞∑

n,m=0

(
T (n+ 1,m|n,m)P (n,m)− T (n− 1,m|n,m)P (n,m)

)
. (2.16)

We still have to consider the contribution from the third and fourth lines of (2.14):

∞∑
m=0

∞∑
n=0

n

(
T (n,m|n,m− 1)P (n,m− 1)− T (n,m+ 1|n,m)P (n,m)

+T (n,m|n,m+ 1)P (n,m+ 1)− T (n,m− 1|n,m)P (n,m)

)
.

We can relabel the sum in the first term by m = m − 1, and use the boundary

condition for the probability distribution that P (n,−1) = 0 to begin the

summation from m = 0. This means the first and second terms will cancel. We

can also relabel the sum in the third term by m = m+ 1:

∞∑
n=0

n

(
∞∑
m=1

T (n,m− 1|n,m)P (n,m)−
∞∑
m=0

T (n,m− 1|n,m)P (n,m)

)
.

From inspection of the rates (2.11) we see the rate T (n,m − 1|n,m) is zero for

m = 0. Therefore these two terms also cancel and so there is no contribution to

the rate equation for 〈n〉.
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We now explicitly put in the rates for our toy model (2.11) into (2.16):

d〈n〉
dt

=
∞∑

n,m=0

(
2a
n(N − n−m)

N
− dn− 2p

nm

N
− cn(n− 1)

N

)
P (n,m) . (2.17)

Now applying the definition of the average (2.15) and dividing through by N we

have

d

dt

〈n〉
N

= 2a
〈n〉(N − 〈n〉 − 〈m〉)

N2
− d〈n〉

N
− 2p

〈nm〉
N2

− c〈n
2〉 − 〈n〉
N2

(2.18)

In the deterministic limit N → ∞ we can make the mean-field assumption to

neglect fluctuations, meaning the variances and covariances are zero [26]. This

means for the hierarchy of moments, we have the separation ansatz:

〈npmq〉 = 〈n〉p〈m〉q. (2.19)

Applying this and defining the average population densities

ρ = 〈n〉/N (2.20)

σ = 〈m〉/N (2.21)

we can write (2.17) as the mean-field rate equation for the evolution of population

density of species A,

dρ

dt
= 2aρ(1− ρ− σ)− dρ− 2pρσ − cρ2. (2.22)

Unsurprisingly, given the neutrality and symmetry in the processes defined in

the toy model, following the same procedure for species B yields the rate equation

dσ

dt
= 2aσ(1− ρ− σ)− dσ − 2pρσ − cσ2. (2.23)

Once one has obtained the mean-field equations of the system they should be

solved, where possible. Often, the best that can be done is to solve the linearised

system. Stability analysis can then be performed to determine the phase portrait

of the deterministic behaviour that is permitted by the system. Our principal

interest is to study the role fluctuations due to the demographic noise can have in
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producing dynamical behaviour not predicted by this deterministic framework.

2.7 The Fokker-Planck Equation

To understand the nature of fluctuations about the deterministic behaviour a

popular approach is to approximate the master equation by a Fokker-Planck

equation (FPE). There are several ways to derive an FPE. Here we will present

the two methods employed in this thesis: (i) truncation of the Kramers-Moyal

expansion of the master equation, following the spirit of the derivation given

by Gardiner [26]; (ii) the linear noise approximation of van Kampen [7], where

we give a systematic derivation of his system size expansion of the master

equation. We will show that to leading order in the inverse system size of

the population that the two descriptions are equivalent. From an application

perspective however, one is often preferable to the other and so we use both in

this thesis.

2.7.1 The Kramers-Moyal Expansion

A Fokker-Planck equation can be obtained for continuous variables only [54]. Tak-

ing a small parameter ε� 1 we define the coarse-grained continuous variables x

and y as population densities: x = εn, y = εm. We will define ε = 1/Ω where Ω is

an extensive variable describing the size or volume of the system, which for our

purposes we take to be the carrying capacity.

Our starting point is the two-species master equation

dP (x, y)

dt
=
∑
x′

∑
y′

[
T (x, y|x′, y′)P (x′, y′)− T (x′, y′|x, y)P (x, y)

]
(2.24)

giving the evolution of the probability density P (x, y). We can express the

transition rates in (2.24) in terms of the jumps in the state space in a small

time interval [t, t+ τ ]. Following the formalism of Gardiner [26] we write

r = x− x′, s = y − y′ in the first sum, (2.25)

r = x′ − x, s = y′ − y in the second sum (2.26)
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and express the transition rates in terms of the jumps functionally as

T (x′, y′|x, y) = w(x, y;x′ − x, y′ − y) . (2.27)

This allows us to write (2.24) as

dP (x, y)

dt
=
∑
r,s

[
w(x, y;−r,−s)P (x− r, y − s)− w(x, y; r, s)P (x, y)

]
(2.28)

where the sum runs over all possible non-zero transitions. As we are restricted

to one-step processes we enumerate the sum over r, s ∈ [−ε, 0, ε]. We now Taylor

expand the first term about (x, y):

dP (x, y)

dt
=
∑
r,s

[ ∞∑
k=0

∞∑
l=0

(−1)k+l r
ksl

k! l!

∂k

∂xk
∂l

∂yl

(
w(x, y;−r,−s)P (x, y)

)
−w(x, y; r, s)P (x, y)

]
. (2.29)

The first term in the expansion will cancel with the second term in (2.29) as

expanding out the sums over r and s will give identical terms in each. The

remaining terms we express as

dP (x, y)

dt
=

∞∑
k,l=0
k+l 6=0

(−1)k+l ∂
k

∂xk
∂l

∂yl

(
αk,l(x, y)P (x, y)

)
(2.30)

where we define the jump moments αk,l(x, y) as

αk,l(x, y) =
1

k! l!

∑
r,s

rkslw(x, y; r, s) (2.31)

=
1

k! l!

∑
x′,y′

(x− x′)k(y − y′)lT (x′, y′|x, y) (2.32)

= lim
τ→0

1

k! l!

∑
x′,y′

(x′ − x)k(y′ − y)l
P (x′, y′|x, y)

τ
(2.33)

= lim
τ→0

1

k! l!

〈(δx)k(δy)l〉x(t)=x

τ
. (2.34)

In the second line we have substituted back to x′ and y′ using (2.26). We can
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absorb a minus sign by relabelling of the sum from r → −r, s → −s so we are

free to write r = x′ − x, s = y′ − y. In the third line the definition (2.3) is used

to define the probability of a transition occurring in the continuous-time interval

[t, t+ τ ]. In the final line we introduce the variables

δx = x′ − x (2.35)

δy = y′ − y (2.36)

and define the average as

〈x〉x(t)=x =
∑
x′,y′

= xP (x′, y′|x, y) (2.37)

where the subscript specifies at time t the system was definitely in the state x

and we are averaging over all possible final states x′ at a later time t+ τ .

Toy model

In practice we assume that these jump moments are known, as we can calculate

the averages straightforwardly from the given transition rates of the model. We

will do so here for our toy model. We take the random variables x = n/N ,

y = m/N to be continuous if the carrying capacity N is suitably large. We

express the required moments as

〈(δx)k(δy)l〉x(t)=x =
∑
x′,y′

(x′ − x)k(y′ − y)lP (x′, y′|x, y) (2.38)

where P (x′, y′|x, y) is the probability that x and/or y change by ε = 1/N in a

time τ . For the toy model the non-zero moments are

〈(δx)k〉x(t)=x =
1

Nk

(
P (x+ ε, y|x, y)± P (x− ε, y|x, y)

)
〈(δy)k〉x(t)=x =

1

Nk

(
P (x, y + ε|x, y)± P (x, y − ε|x, y)

)
(2.39)

where the ± sign is negative for odd k and positive for even k.

We know that the probabilities of the densities evolving to (x′, y′) from (x, y)

in a time interval τ is the same as the probability of the population numbers
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2.7. The Fokker-Planck Equation

evolving to (n′,m′) from (n,m). So for the example of the birth of an A given by

the transition rate (2.6) we have

P (x+ ε, y|x, y) ≡ P (n+ 1,m|n,m)

= 2an
(N − n−m)

N
τ

= 2ax(1− x− y)τ (2.40)

after rescaling the rate constant a byN . Expressing P (x−ε, y|x, y) in an analogous

fashion, the moments are now given by

〈(δx)k〉x(t)=x =
τ

Nk

(
2ax(1− x− y)± [dx+ 2pxy + c(x2 −N−1x)]

)
〈(δy)k〉x(t)=x =

τ

Nk

(
2ay(1− x− y)± [dy + 2pxy + c(y2 −N−1y)]

)
. (2.41)

Truncating the Expansion

The infinite series for the time evolution of the probability density P (x, y) (2.30) is

the Kramers-Moyal expansion of the master equation (2.24). To obtain a Fokker-

Planck equation we truncate the expansion at the second term, yielding

dP (x, y)

dt
=− ∂

∂x
α1,0(x, y)P − ∂

∂y
α0,1(x, y)P

+
∂2

∂x2
α2,0(x, y)P +

∂2

∂x∂y
α1,1(x, y)P +

∂2

∂y2
α0,2(x, y)P. (2.42)

More generally this is often written schematically as

dP (x)

dt
=
∑
i

− ∂

∂xi
[Ai(x, t)P ] +

∑
i,j

∂2

∂xi∂xj
[Dij(x, t)P ] (2.43)

with the drift vector Ai and the diffusion matrix Dij defined as

A =

(
α1,0(x, y)

α0,1(x, y)

)
, D =

(
α2,0(x, y) α1,1(x, y)/2

α1,1(x, y)/2 α0,2(x, y)

)
. (2.44)
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In order for the truncation to be valid we assume that only the first and second

order jump moments are non-zero. That is

αk,l(x, y) = 0, k + l > 2. (2.45)

Pawula’s theorem states that the expansion can be terminated after the first or

the second term, or all terms must be included [58, 54]. The jump moments can

be expressed in terms of the moments as in (2.34),

αk,l = lim
τ→0

1

k! l!

〈(δx)k(δy)l〉x(t)=x

τ
. (2.46)

We see from the explicit form of the moments given in (2.41) that in general it will

always be possible to rescale τ with N before taking the continuous-time limit

τ → 0. If we can do this in such a way so that only the first and second moments

are the dominant terms in the Kramers-Moyal expansion in comparison to the

higher-order terms, we can legitimately truncate the expansion at the second

term. This is necessarily a step in the derivation that must be done on a case by

case basis, dependent on the particular processes which define the model.

For the toy model, from the expressions for the moments (2.41) we see for

example that

〈(δx)k〉x(t)=x ∼ τ

[
1

Nk
+O

(
1

Nk+1

)]
. (2.47)

Now to take the τ → 0 limit to define the jump moments in (2.46) we scale time

as τ = τ/N . Clearly as we are interested in finite systems, we are not actually

taking the limit but approximating it with a large but finite N . We see that as

the first jump moments have no N dependence they remain. For the higher-order

terms we also retain the second order jump moments as they dominate over the

rest in the Kramers-Moyal expansion, which fall away in increasing powers of

N−1 in comparison.

In doing so we can now describe the dynamics of the model using a Fokker-
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2.8. The van Kampen System Size Expansion

Planck equation (2.42) as an approximation of the master equation with

α1,0(x, y) = 2ax(1− x− y)− dx− 2pxy − cx2 (2.48)

α0,1(x, y) = 2ay(1− x− y)− dy − 2pxy − cy2 (2.49)

α2,0(x, y) =
1

N

(
2ax(1− x− y) + dx+ 2pxy + cx2

)
(2.50)

α0,2(x, y) =
1

N

(
2ay(1− x− y) + dy + 2pxy + cy2

)
(2.51)

α1,1(x, y) = 0. (2.52)

2.8 The van Kampen System Size Expansion

Obtaining an FPE from the Kramers-Moyal expansion was criticised by van

Kampen due to the arbitrary nature of introducing a small parameter which

could be used to truncate the expansion at the second term. Instead, he offered

a systematic way [7] in which to expand the master equation, a formulation of

which we present here.

The Step Operator Ê

As we are concerned with systems involving one-step processes it is useful to

introduce the step operator Ê which, for example, when it acts upon a function

f(n,m) yields

Ê±1
n f(n,m) = f(n± 1,m) . (2.53)

Using this operator allows us to rewrite the master equation

dP (n,m)

dt
=
∑
n′,m′

[T (n,m|n′,m′)P (n′,m′)− T (n′m′|n,m)P (n,m)] (2.54)

in a more compact form. We define analogous jumps to those in (2.26)

R = n− n′, S = m−m′ in the first sum

R = n′ − n, S = m′ −m in the second sum, (2.55)
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where now R, S ∈ [−1, 0, 1], and can write the master equation as

dP (n,m)

dt
=
∑
R,S

[T (n,m|n−R,m−s)P (n−R,m−S)−T (n+R,m+S|n,m)P (n,m)].

(2.56)

We can rewrite this using the step operator Ê as:

dP (n,m)

dt
=
∑
R,S

(Ê−Rn − 1)(Ê−Sm − 1)T (n+R,m+ S|n,m)P (n,m) . (2.57)

For example, the toy model master equation (2.14) can be written using the step

operator as

dP (n,m)

dt
= (Ê−1

n − 1)T (n+ 1,m|n,m)P (n,m)

+(Ê1
n − 1)T (n− 1,m|n,m)P (n,m)

+(Ê−1
m − 1)T (n,m+ 1|n,m)P (n,m)

+(Ê1
m − 1)T (n,m− 1|n,m)P (n,m) . (2.58)

2.8.1 Scaling Assumption

The principal assumption of van Kampen is how to express the transition rates

T (n′,m′|n,m) in terms of the dependence on the system size Ω. While keeping

the size of the jumps R, S ∝ Ω0 as defined by (2.55), van Kampen argued it is

best to describe the dependence of the system’s state by the intensive variables

x = n/Ω and y/Ω. To encapsulate this van Kampen proposed the scaling ansatz

[7, 26]

T (n′,m′|n,m) = W (n,m;R, S) = Ωw(x, y;R, S). (2.59)

Taking the example of the birth rate in our toy model, we can express it as

T (n+ 1,m|n,m) = 2an
(N − n−m)

N
= 2aNx(1− x− y) ≡ Ωw(x, y|1, 0) (2.60)

where Ω ≡ N and w(x, y; 1, 0) = 2ax(1−x−y). It is always possible when defining

a stochastic process following the prescription given in section 2.4 to scale the

rate constants {a} to bring the transition rates into the form of the scaling ansatz

(2.59). For the birth process in the toy model the rate constant a was scaled by
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2.8. The van Kampen System Size Expansion

a = a/(N − 1) to get the transition rate (2.6). In effect we are rescaling time to

leave the transition rates independent of Ω.

2.8.2 Ansatz

The second assumption van Kampen made was to describe the random variables

x and y in terms of a well-defined mean value, and a stochastic component to

characterise fluctuations about these mean values. Using the observation that in

the large system size limit n ≡ Ωx, m ≡ Ωy and that fluctuations about the mean

typically fall off like Ω−1/2, we write the change of variable ansatz [7]

n = Ωρ(t) +
√

Ω ξ

m = Ωσ(t) +
√

Ω η (2.61)

to new stochastic variables ξ and η. The two deterministic functions ρ(t) and σ(t)

are well defined functions which in fact turn out to be the mean-field population

densities, whose equations of motion are derived in the systematic expansion of

the master equation.

2.8.3 The Expansion

We now wish to apply this ansatz to (2.57). Defining a new probability

distribution P (n,m) = Π(ξ, η), the time derivative transforms as

∂P

∂t
=
∂Π

∂t
−
√

Ω ρ̇
∂Π

∂ξ
−
√

Ω σ̇
∂Π

∂η
(2.62)

where the chain rule has been applied using (2.61) while holding n and m

constant. The operator Ê we can express as a power series:

Ê−Rn f(n) = f(n−R) =
∞∑
k=0

(−1)k
Rk

k!
Ω−k/2

∂k

∂ξk
f(n) (2.63)

where we have Taylor expanded f(n − R) and changed variable via (2.61). As

this holds for an arbitrary function f we have the result

Ê−Rn =
∞∑
k=0

(−1)k
Rk

k!
Ω−k/2

∂k

∂ξk
. (2.64)
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Putting all these ingredients together (2.57) becomes

∂Π

∂t
−
√

Ω ρ̇
∂Π

∂ξ
−
√

Ω σ̇
∂Π

∂η
(2.65)

=
∞∑

k,l=0
k+l 6=0

(−1)k+lΩ(2−k−l)/2 ∂
k

∂ξk
∂l

∂ηl

[
1

k! l!

∑
R,S

RkSlw(x, y;R, S)

]
Π(ξ, η)

The term in the square brackets we recognise as being related to the jump

moments defined in (2.31). We write it as

α̃k,l(x, y) =
1

k! l!

∑
R,S

RkSlw(x, y;R, S) (2.66)

=
1

k! l!

∑
n′,m′

(n′ − n)k(m−m′)lw(x, y;R, S) . (2.67)

We carry out a further Taylor expansion in powers of Ω−1/2 of these jump

moments about x = ρ, y = σ using the ansatz (2.61):

α̃k,l(x, y) =
∞∑

p,q=0

Ω−(p+q)/2

p! q!
α̃

(p)(q)
k,l (ρ, σ)ξpηq (2.68)

where

α̃
(p)(q)
k,l (ρ, σ) =

∂p

∂ξp
∂q

∂ηq
α̃(x, y)

∣∣∣∣
x=ρ,y=σ

. (2.69)

This gives us our final expression for the system size expansion:

∂Π

∂t
−
√

Ω ρ̇
∂Π

∂ξ
−
√

Ω σ̇
∂Π

∂η
(2.70)

=
∞∑

k,l=0
k+l 6=0

∞∑
p,q=0

Ω(2−k−l−p−q)/2α̃
(p)(q)
k,l (ρ, σ)

∂k

∂ξk
∂l

∂ηl

(
ξpηqΠ

)
.

As in the Kramers-Moyal expansion, we assume the jump moments can be

obtained from the stochastic dynamics of the model. Here we find them by

explicitly by doing the expansion. We write the master equation for our toy

model (2.58) using the van Kampen ansatz (2.61) and the expansion of the step
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operator (2.64):

∂Π

∂t
−
√

Ω ρ̇
∂Π

∂ξ
−
√

Ω σ̇
∂Π

∂η
= (2.71)(

− 1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2
+ . . .

)
N2a

[
ρ+

ξ√
N

] [
1− ρ− σ − 1√

N
(ξ + η)

]
Π

+

(
1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2
+ . . .

)
N

[
ρ+

ξ√
N

] [
d+ 2p(σ +

η√
N

) + c(ρ+
ξ√
N

)

]
Π

+

(
− 1√

N

∂

∂η
+

1

2N

∂2

∂η2
+ . . .

)
N2a

[
σ +

ρ√
N

] [
1− ρ− σ − 1√

N
(ξ + η)

]
Π

+

(
1√
N

∂

∂η
+

1

2N

∂2

∂η2
+ . . .

)
N

[
σ +

η√
N

] [
d+ 2p(ρ+

ξ√
N

) + c(σ +
η√
N

)

]
Π

To make progress we now equate the terms on the left and right hand side of

the same order of Ω. We have dropped the N−1 term in the cannibalistic process

with rate c as it will not feature in the order we expand to.

Mean-field Equations

To leading order O(Ω1/2) we have from the k = 1, l = 0 and k = 0, l = 1

(p = q = 0) terms in (2.70):

ρ̇∂ξΠ + σ̇∂ηΠ = α̃
(0)(0)
1,0 (ρ, σ)∂ξΠ + α̃

(0)(0)
0,1 (ρ, σ)∂ηΠ (2.72)

which yields the rate equations

ρ̇ = α̃
(0)(0)
1,0 (ρ, σ)

σ̇ = α̃
(0)(0)
0,1 (ρ, σ). (2.73)
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These are the same deterministic equations found by following the method in

section 2.6.1. We can write the deterministic equation for ρ as

ρ̇ = α̃
(0)(0)
1,0 (ρ, σ) =

∑
R,S

Rw(ρ, σ;R, S)

= w(ρ, σ; 1, 0)− w(ρ, σ;−1, 0)

≡ 2aρ(1− ρ− σ)− dρ− 2pρσ − cρ2 (2.74)

where we have used the jump moment definition (2.66), and the scaling ansatz

(2.59). This is the same rate equation derived previously (2.22). It can also be

obtained straightforwardly using the explicit van Kampen expansion for the toy

model (2.71).

Fokker-Planck Equation

To find the FPE for the probability density of the fluctuations Π(ξ, η) we equate

terms of O(Ω0) in (2.70):

∂Π

∂t
=− α̃(1)(0)

1,0

∂

∂ξ

(
ξΠ

)
− α̃(0)(1)

0,1

∂

∂ξ

(
ηΠ

)
− α̃(1)(0)

1,0

∂

∂η

(
ξΠ

)
− α̃(0)(1)

0,1

∂

∂η

(
ηΠ

)
+ α̃

(0)(0)
2,0

∂2

∂ξ2
Π + α̃

(0)(0)
1,1

∂2

∂ξ∂η
Π + α̃

(0)(0)
0,2

∂2

∂η2
Π. (2.75)

Defining the vector ξ = (ξ, η), we can express this in matrix notation as

∂Π

∂t
=

∂

∂ξi
γijξjΠ +

∂

∂ξi
Dij

∂

∂ξj
Π (2.76)

where the drift matrix γ and the diffusion matrix D are

γ = −

(
α̃

(1)(0)
1,0 (ρ, σ) α̃

(0)(1)
1,0 (ρ, σ)

α̃
(1)(0)
0,1 (ρ, σ) α̃

(0)(1)
0,1 (ρ, σ)

)
(2.77)

D =

(
α̃

(0)(0)
2,0 (ρ, σ) α̃

(0)(0)
1,1 (ρ, σ)

α̃
(0)(0)
1,1 (ρ, σ) α̃

(0)(0)
0,2 (ρ, σ)

)
. (2.78)

The FPE (2.76) is described as being linear as the drift terms only contain linear
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terms of ξ and η, while the diffusion terms are independent of them. Obtaining a

linear FPE at this order of Ω is a generic feature of the van Kampen system size

expansion, and is referred to as the linear noise approximation [7]. In this thesis

we will work within this approximation, which is suitable for a large but finite

population. If one was working at an order of Ω ∼ 10 it is often necessary to go

beyond this [59, 60].

Comparing the drift matrix γ with the mean-field equations (2.73) we

recognise −γ as the matrix of the linear stability analysis of the deterministic

behaviour. In practice, the jump moments α̃ which appear in the FPE (2.76) are

found straightforwardly from doing the expansion by hand, such as with the toy

model expansion (2.71).

2.8.4 Comparison of the Kramers-Moyal and van Kampen

Expansions

It is clear that these two derivations are similar, and because in practice

the van Kampen scaling form (2.59) can always be obtained they are often

synonymous. The real difference is that the van Kampen expansion stems

from acknowledging the physical situation we are interested in describing, that

the fluctuations due to the noise can be regarded as some correction to the

deterministic behaviour. The Kramers-Moyal expansion is a far more general

treatment for a set of stochastic processes governed by a master equation.

To show that to the lowest order in Ω−1/2 the two expansions are equivalent,

we give a simplified argument of that presented by Gardiner [26]. We write the

jump moments (2.31) in the Kramers-Moyal expansion (2.30) as

αk,l(x, y) =
∑
R,S

(n′ − n)k(m−m′)l

Ωk+l
w(x, y;R, S) =

1

Ωk+l
α̃(x, y) (2.79)

where we have used the definition (2.66), and the transition rate w(x, y; r, s) ≡
w(x, y;R, S) ∼ Ω0 describe the same transition probability and so are equivalent,

each depending functionally only on x and y, not r and s. The Kramers-Moyal
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FPE is then

dP (x, y)

dt
=− 1

Ω

∂

∂x
α̃1,0(x, y)P − 1

Ω

∂

∂y
α̃0,1(x, y)P (2.80)

+
1

Ω2

∂2

∂x2
α̃2,0(x, y)P +

1

Ω2

∂2

∂x∂y
α̃1,1(x, y)P +

1

Ω2

∂2

∂y2
α̃0,2(x, y)P.

We can multiply this expression by Ω and rescale time by t = t/Ω. Applying the

van Kampen transformation using the ansatz (2.61) and Taylor expanding each

of the jump moment terms about x = ρ, y = σ yields

∂Π

∂t
−
√

Ω ρ̇
∂Π

∂ξ
−
√

Ω σ̇
∂Π

∂η
= (2.81)

√
Ω
∂

∂ξ

∞∑
p,q=0

α̃
(p)(q)
1,0 (ρ, σ)

p! q! Ω(p+q)/2
ξpηqΠ +

√
Ω
∂

∂η

∞∑
p,q=0

α̃
(p)(q)
0,1 (ρ, σ)

p! q! Ω(p+q)/2
ξpηqΠ

+
∂2

∂ξ2

∞∑
p,q=0

α̃
(p)(q)
2,0 (ρ, σ)

p! q! Ω(p+q)/2
ξpηqΠ +

∂2

∂η2

∞∑
p,q=0

α̃
(p)(q)
0,2 (ρ, σ)

p! q! Ω(p+q)/2
ξpηqΠ

+
∂2

∂ξ∂η

∞∑
p,q=0

α̃
(p)(q)
1,1 (ρ, σ)

p! q! Ω(p+q)/2
ξpηqΠ .

Again, the highest order terms yield the usual rate equations (2.73) which we

assume are satisfied for x = ρ, y = σ, i.e. they cancel. What remains to the next

lowest order in Ω0 is the same FPE obtained from the van Kampen system size

expansion (2.75). While the two expansions of the master equation agree to this

lowest order, they diverge when higher-order terms are kept. Gardiner further

elaborates on the significance of this result [26]. If one is only interested in the

small noise approximation, i.e. this lowest order agreement, then the Kramers-

Moyal FPE can be used to approximate the van Kampen FPE. In this thesis this is

the order we shall work to and so both techniques will be used throughout. Often

it is the case that to work with the Kramers-Moyal expansion is easier as we given

a set of stochastic processes defined by transition rates calculating the moments

in (2.34) is straightforward. The van Kampen FPE is useful when explicitly

considering the fluctuations about a fixed point, and the linear structure of the

FPE means we can solve it and explicitly write down the form of the probability

density Π(ξ, η).
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2.9 The Langevin Equation

An alternative formulation to the Fokker-Planck equation in describing stochastic

dynamics is to write a system of stochastic differential equations known as

Langevin equations (LE). These are of the form

ẋi = fi(x) + ηi(t) (2.82)

where the random variables ηi(t) are defined by the statistics of their mean 〈ηi(t)〉
and the covariance matrix 〈ηi(t)ηj(t′)〉 = Cij(x, t, t

′).

An LE is split into a deterministic part and a stochastic part. If one’s

knowledge of the system is only the equations of motion governing the mean-

field behaviour, then care has to be taken in interpreting and dealing with the

noise term η. This approach is the one taken in a population level model. If one

then wishes to analyse the evolution of the system governed by these stochastic

differential equations, they have to be numerically integrated and so somehow the

statistics of the noise must be obtained or estimated. Two integration schemes are

used, which primarily differ in deciding how to advance the time increment of the

noise terms η. The Itô prescription updates at the start of the timestep whereas

Stratonovitch updates at some weighted intermediate time between timesteps

[26]. The expressions for the drift and diffusion terms in the LE can be written

using a different calculus depending on which scheme is used.

The choice of which scheme to use is widely referred to as the Itô-Stratonovitch

dilemma, which must be addressed when constructing a PLM from adding noise

terms to a set of differential equations to describe the system. However, a great

benefit in taking an IBM approach is that there is no ambiguity and the dilemma

is avoided. As the transition rates governing the dynamics of the systems we

study depend on the state of the system it seems a natural choice to update the

noise at the beginning of the timestep where the state of the system is known, so

following the Itô prescription. In the example of modelling radioactive decay, van

Kampen [7] shows that using the Itô calculus succeeds in recovering the correct

mean-field behaviour whereas Stratonovitch fails. The Itô prescription is more

suited to dealing with intrinsic noise, a property of the system due to the discrete

nature of the constituents and the finite number of them. This can be treated

mathematically as idealised white noise which is delta-correlated in time. The
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Stratonovitch prescription is more appropriate for dealing with “real” noise like

that coming from an external source into the system with finite correlation time

and finite amplitudes [26, 7].

2.9.1 Equivalence with the Fokker-Planck Equation

Under the Itô prescription, the equivalent LEs to the FPE (2.43) are

ẋ = α1,0(x, y) + ηx(t)

ẏ = α0,1(x, y) + ηy(t) (2.83)

where η are Gaussian random variables with statistics

〈ηi(t)〉 = 0 (2.84)

〈ηi(t)ηj(t′)〉 = 2Dijδ(t− t′) . (2.85)

It is often preferable to work in a Fokker-Planck formalism as there is no such

ambiguity with regard to the noise. As the IBM approach begins with a master

equation and transition rates, once the moments have been obtained, the jump

moments follow and we can write down the FPE and then alternatively the LE

under the Itô prescription if we so choose using (2.83).

For 1D problems we can write the LE

φ̇ = f(φ) + g(φ)η(t) (2.86)

where η is Gaussian white noise with zero mean and unit variance. This is

equivalent, following the Itô prescription, to the 1D FPE [54]

∂P (φ, t)

∂t
= − ∂

∂φ

(
f(φ)P

)
+

∂2

∂φ2

(
g2(φ)

2
P

)
. (2.87)

2.10 Multiplicative and Additive Noise

When using a Langevin formalism, the noise can be classified according to the

form of the multiplicative term g(x). If g is independent of x, then the noise is said

to be additive—if not, then it is multiplicative. The physical ramifications of this
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will be discussed in the proper context of the relevant chapters. Here, we derive

a general result that will be used several times in this thesis. It is, namely, that

it is always possible to perform a variable transformation for a 1D system of the

form (2.86), from one with multiplicative noise to one with additive noise. Here

we expand and elaborate on details of the transformation given by Risken [54].

Starting with the an FPE of the form (2.87) which has the multiplicative noise

term g(φ), writing the second term as

∂2
φ(g2P ) = ∂φ((∂φg)gP ) + ∂φ(g∂φ(gP )) , (2.88)

we have

∂tP = −∂φ
(
f

g
− 1

2
∂φg

)
gP +

1

2
∂φ(g∂φ(gP )) . (2.89)

Now we define a new probability distribution in a new variable θ:

Q(θ, t) =
g(φ)√

2D
P (φ, t) . (2.90)

This transformation must obey the normalisation condition

Q(θ, t)dθ = P (φ, t)dφ . (2.91)

Integrating this and using the definition of Q(θ, t) gives us the required variable

transformation:

θ =
√

2D

∫ φ

0

dφ′

g(φ′)
. (2.92)

The partial derivative transforms as

∂

∂φ
=
∂θ

∂φ

∂

∂θ
=

√
2D

g
∂θ

∴ g∂φ =
√

2D ∂θ . (2.93)

Multiplying (2.89) by g/
√

2D we get

∂tQ(θ, t) = −∂θ
(
f

g
− 1

2
∂φg

)√
2D Q+

1

2
∂θ(
√

2D ∂θ
√

2D Q) , (2.94)
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or upon tidying up

∂tQ(θ, t) = −∂θ (F (θ)Q) +D∂2
θQ (2.95)

F (θ) =
√

2D

(
f(φ)

g(φ)
− 1

2
∂φg(φ)

) ∣∣∣∣
φ=φ(θ)

, (2.96)

with the corresponding Langevin equation

θ̇ = F (θ) +
√

2D ηθ (2.97)

where ηθ is Gaussian white noise with zero mean and unit variance and D is the

diffusion constant, giving an additive noise term as required.

2.11 Monte Carlo Simulation

To test the mathematical analysis of a stochastic model we compare it with

computer simulation of the full stochastic dynamics which define the model. To

simulate stochastic dynamics, several different but equivalent algorithms have

been developed. Here we discuss the two methods used in this thesis, both of

which can be described as kinetic Monte Carlo methods [28]. In a Monte Carlo

procedure, if we know the probability p of an event occurring, in a timestep we

can accept or reject an update to the system due to that event by comparison

to a random number r. If r < p then we accept the update to the system, if

not we reject it. In the Metropolis algorithm [28] for Monte Carlo simulations

of equilibrium systems, the probabilities p are known by the Boltzmann factors

defined by the Hamiltonian of the system. The most well known and much studied

instance of this is the simulation of the Ising spin model. For systems out of

equilibrium however, the system cannot be described in terms of a free energy and

so the dynamics as defined by the transition rates form the acceptance criterion

for whether an update is accepted or rejected.

2.11.1 The Gillespie Algorithm

The most well-known formulation of the kinetic Monte Carlo method for

simulating continuous-time stochastic processes is that commonly referred to as
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the Gillespie algorithm [61, 29]. Here we outline how the algorithm works and

how to implement it. The rate at which an event from process i occurs we denote

ωi. Although each ωi is implicitly time dependent, as they depend on the state

of the system defined by the number of each species in it, these are effectively

constant when considering at what time the next event occurs after time t, given

the state of the system. To run the simulation defined by these rates we need to

know what time the next event occurs at, and which event has occurred.

Time of First Event

We know that for a Poissonian process which has a constant rate ωi that the

probability density Pi that an event of that process occurs at time t is [54]

Pi(t) = ωie
−ωit . (2.98)

In the case of a model with several stochastic processes, we need to find the

probability that the next event from any of these processes occurs at time t. To

do so we first find the probability density P 1
i (ti) that process i occurs before the

others at a time ti. This is

P 1
i (ti) =

∏
j 6=i

P (ti < tj) =
∏
j 6=i

P (tj > ti) . (2.99)

Using (2.98) this becomes

P 1
i (ti) =

∏
j 6=i

∫ ∞
ti

dt ωje
−ωjt =

∏
j 6=i

e−ωjti = e−ωtieωiti (2.100)

where ω =
∑

i ωi is the total rate of an event occurring in the system. The

probability density P (i, t) that process i was the first to occur at time t is then

P (i, t) = P 1
i (t)Pi(t) = e−ωtieωitiωie

−ωit = ωie
−ωt. (2.101)

Finally, we can now write down the probability density P (t) that the first event

from any of the processes occurs at time t:

P (t) =
∑
i

P (i, t) =
∑
i

ωie
−ωt = ωe−ωt . (2.102)
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So to obtain the time interval until the next event in the system, we draw a time

τ from the distribution P (t).

Finding Which Process Occurred

Given that the event occurs at a time τ after t, the process which occurred at

that time is given by the distribution of events P (i):

P (i) =
P (i, τ)∑
j P (j, τ)

=
ωie
−ωτ∑

j ωje
−ωτ =

ωi
ω
. (2.103)

We now have a way of obtaining the two ingredients required for the

algorithm. For each iteration we draw a random number from (2.102) to update

the simulation time, and a random number from (2.103) to select which event

occurred. The state of the system is updated accordingly. By averaging over many

realisations, measurements can be made of statistics of the system. For example

in the toy model of a population with two competing species we are interested in

the mean population numbers 〈n(t)〉 and 〈m(t)〉.

2.11.2 Random Sequential Updating

For large systems, using the Gillespie algorithm can become very inefficient. In-

stead, we can implement a discrete time update [28], where instead of calculating

the first reaction to occur as in Gillespie, we choose at random a set of constituents

to have an interaction and accept or reject it using a Monte Carlo update. Running

for long times and/or averaging over many realisations this allows us to calculate

averaged values of interest.

When dealing with a spatially extended system this approach is preferable,

as using the Gillespie algorithm involves computing very many probabilities for

individual processes, which will be expensive in time, or if one stores them in a

list and subsequently updates the list, then it is computationally expensive. It

is valid in this context to use random sequential updating if each patch has

approximately the same number of constituents, meaning the total rate of an

event happening occurring at a patch is the same for each patch. This will be

true when the carrying capacity of each patch is equal. If on the other hand

the carrying capacity was infinite, or each patch could have a different carrying
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capacity, then random sequential updating would not correctly sample the weights

assigned to each of the processes. If one patch has the majority of the entire

number of constituents in the system, then more updates should occur there

than at a sparsely occupied patch. For such a case more care must be taken, and

implementing the full Gillespie algorithm is required to get the sampling correct.

2.12 Conclusion

Here we have presented some detailed derivation and overview of the main analyt-

ical and numerical methods that will be employed throughout this thesis. We have

found by experience that taking these methods from abstract theory to practical

application in a stochastic model takes time to understand and appreciate.
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Chapter 3

Ordering Dynamics in Systems

with Symmetric Absorbing States

In this chapter we review recent work done in building a framework for describing

systems characterised by the presence of two symmetric absorbing states, which is

encapsulated in a phenomenological Langevin equation proposed by Al Hammal

et al [32]. We show that there exists a previously unobserved noise-driven

transition in the ordering dynamics of systems described by such a Langevin

equation, from one driven by surface tension to one driven by interfacial noise

alone. This work is done through study of a microscopic lattice spin model

with stochastic dynamics. Analytically, we find evidence for the transition by

mapping the Langevin equation for the model onto a thermal diffusion process.

Numerically, we confirm the transition through studying the evolution of the

system from a highly ordered initial condition, that of a circular droplet, from

Monte Carlo simulation of the stochastic dynamics.
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3.1 Introduction

An absorbing state is one that, once a system enters it, is never left. This is

most readily understood in the context of population dynamics: if the number

of inhabitants of a population falls to zero, then, assuming that only birth and

death processes are at work, with no mutation, then it cannot become non-zero

again at a later time. Systems characterised by having one or more absorbing

state feature readily in many different physical and model systems, from ecology

[23] to linguistics [62], in the dynamics of catalytic reactions [63] and of calcium

channels in living cells [64].

In condensed matter physics, model systems with absorbing states have

featured prominently in the quest for a fundamental understanding of far-from-

equilibrium phase transitions and critical phenomena [30, 65]. One notable success

of the study of non-equilibrium systems has been the classification of systems with

a single absorbing state. Much analysis from microscopic models and a field-

theoretic approach have culminated in the emergence of the directed percolation

(DP) universality class, broadly defined to encompass all systems with a single

absorbing state [31].

However for systems with multiple absorbing states, for example the zero-

temperature Ising model of magnetism [55, 39] or models of multi-species compe-

tition in population ecology [23], there is not such a fundamental understanding

or framework in place and only in the past few years has progress been made.

In choosing to study systems of this kind, we were particularly interested in

viewing the role played by the noise in such systems. Primarily, the noise has

a crucial role to play in the manifestation of absorbing states. This is achieved

through it having a multiplicative form, as described in section 2.10, ensuring that

deterministically determined absorbing states, such as global magnetisation in the

zero-temperature Ising model, or extinction in a population remain absorbing,

and cannot be exited due to a fluctuation.

The importance of the multiplicative form of the noise for a system with

multiple absorbing states eventual fate has been established [32, 66, 67, 68], but

little consideration has as yet been given to the possible effects it could have on the

dynamics of these systems. We begin this chapter with an overview of the different

typically observed ordering dynamics in systems with two symmetric absorbing

states, in particular focussing on the phase ordering kinetics which govern the
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way such systems evolve to one of the fully ordered absorbing states. We then

review the static behaviour of these systems, discussing the different order-to-

disorder transitions that have been reported. The observed phenomenology has

been encapsulated by Al Hammal et al in a governing Langevin equation [32] for

systems with two symmetric absorbing states.

Our study begins with the devising of a microscopic model which allows an

explicit study solely of the effects that the noise can have on the ordering dynamics

of systems with two symmetric absorbing states. Through study of the form

of potentials obtained by mapping the system to a thermal diffusion process,

and Monte Carlo simulations of the model’s stochastic dynamics, we confirm the

existence of a previously unseen noise-induced transition between two universal

modes of domain coarsening. For a non-zero value of the noise strength, the

ordering dynamics change from curvature-driven coarsening (like that associated

with the Ising model [39]) due to interfacial surface tension, to that of the voter

model [34] where no surface tension is present, and ordering occurs due solely to

the interfacial noise.

3.1.1 Domain Coarsening

In the study of non-equilibrium systems, a key tool in classifying the dynamics

is to look at the way in which phase ordering occurs. There are two modes of

coarsening that are of importance in this work: that due to surface tension and

that due to interfacial noise.

Coarsening Due to Surface Tension

Domain coarsening like that of the ferromagnetic Ising spin model [55] is a feature

of a diverse range of systems such as binary alloys [35] and colloidal suspensions

[36]. The Ising model has two fully ordered states, where the magnetisation, more

generally a non-conserved order parameter, is φ = ±1, though they are only

absorbing states strictly at T = 0 when no thermal, or bulk, noise is present.

A typical Landau free energy functional [39] to describe such systems is

F [φ] =

∫
dx

(
1

2
(∇φ)2 +

a

2
φ2 +

b

4
φ4

)
. (3.1)

The second and third terms are a potential where b > 0 keeps φ finite and the
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sign of a dictates whether the system is in a ferromagnetic ordering phase or in

a disordered phase, with a spontaneous symmetry breaking at a = 0. The first

term contributes an energy cost due a surface tension at an interface between

domains of opposite spin. Taking the functional derivative gives the Ginzburg-

Landau equation [39]
∂φ

∂t
= ∇2φ− aφ− bφ3 . (3.2)

Adding a Gaussian white noise term to this gives model A in the classification

scheme of kinetic Ising models by Hohenberg and Halperin [69].

It is the interfacial surface tension between domain of opposite spin that drives

the phase ordering towards global magnetisation in the ferromagnetic, ordering

phase. Allen and Cahn [35] derived the general result relating the motion of the

domain walls given by their velocity v to their characteristic curvature K due to

surface tension,

v ∝ K . (3.3)

Out of equilibrium, the dynamical behaviour of a system described by model

A is characterised by ordered domains of length L. For a two dimensional (2D)

system, which is the focus of our work here, by dimensional arguments Bray shows

how this typical size of a domain L evolves with time [39]. The velocity of the

interfaces between domains v ∼ dL/dt while their curvature K ∼ 1/L. Applying

these to the Allen-Cahn equation (3.3) yields the algebraic expression for domain

growth L ∼ t1/2. This algebraic coarsening is general to any dimension, with

a universal exponent z, dependent only on certain qualitative features such as

conservation laws or symmetries, not on microscopic details of the particular

model [8]. This ordering mechanism due to surface tension is referred to in the

literature as curvature-driven and is a well established phenomenon.

Coarsening Due to Interfacial Noise

A widely studied model in non-equilibrium statistical mechanics is the voter

model, first presented by Clifford and Sudbury [38]. This is partly due to its

simplicity: a constituent of a system is chosen at random and then copies the

state of one of its neighbours. More importantly, however, is that it has the rather

rare distinction of being an exactly analytically solvable model [8, 70]. Much of

the success in this regard comes from the equivalence of the voter model to as
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Figure 3.1: The voter model for a droplet (top) and random initial condition
(bottom). Time increases left to right. From Dornic et al [34].

system of coalescing annihilating random walkers on a lattice [71], first realised by

Holley and Liggett [72] who coined the name voter model. Dimensionality plays

a crucial role and therefore it does so in the voter model’s dynamical behaviour

as well. The upper-critical dimension of the voter model is d = 2 [34], and the

work we present here, along with much work in the literature, is done on a system

whose dynamics acts on a 2D regular square lattice. Here, an interface, or domain

wall, exists between a pair of neighbouring opposite spins, and a useful dynamical

measure of the ordering of the system is the density of interfaces ρ(t).

A direct consequence of the marginality of the voter model in 2D is that a

system will order completely but take a very long time to do so. By solving exactly

the voter model in arbitrary d dimensions by the study of a model of dimer-dimer

kinetics [73], Frachebourg and Krapivsky found the exact asymptotic long-time

behaviour of the density of interfaces. In d = 2 dimensions the density of interfaces

decaying logarithmically, ρ−1 ∼ ln(t) [70]. The density of interfaces is inversely

related to the domain size L. Therefore for curvature-driven coarsening, from the

previous discussion we have in 2D the density of interfaces decaying algebraically,

ρ ∼ L−1 ∼ t−1/2 [39].

A graphical insight into the apparent different ordering behaviour between the

voter and Ising-type models was presented by Dornic et al through simulating

voter dynamics for a 2D lattice initially phase separated into a circular droplet. In

the presence of surface tension we expect the droplet to shrink and disappear

over time. As can be seen from Fig. 3.1 this does not happen in the case of

the voter model, instead the spins from the droplet diffuse into the rest of the

lattice. This coarsening is best described as occurring in the absence of surface

tension. It had been thought that this feature was due in some way to some of the
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remarkable properties of the voter model, such as its integrability, conservation of

magnetisation (m-conservation) or the presence of Z2 symmetry. (Symmetry in

this context refers to the equivalence of the dynamical roles of the two absorbing

states, which is enforced in the microscopic dynamics.) Dornic et al addressed

this assumption directly in [34]. They reported that in fact the integrability

plays no role in determining the coarsening behaviour. Instead they showed that

m-conservation was a sufficient condition for voter-like behaviour without Z2

symmetry, and vice-versa. This led to the proposition of the existence of a whole

class of models which could exhibit voter-like coarsening.

3.1.2 The Generalised Voter Class

By considering a family of kinetic Ising models, Dornic et al recast the different

behaviour observed in terms of the presence of interfacial noise and bulk noise as

done by Drouffe and Godrèche [74]. There is no bulk noise present in systems with

one or more absorbing states, otherwise they would not be absorbing. The authors

found that in the absence of bulk noise there existed a family of kinetic rules

which exhibited voter-like behaviour. In the parameter space of bulk noise and

interfacial noise they showed that the the family of voter-like rules formed a line

of second order, Ising-like phase transitions, between the ordered and disordered

phases.

They claimed that this showed the voter model transition was a more general

phenomenon, leading them to propose the existence of a generalised voter (GV)

universality class, best characterised as: “an order-disorder transition driven by

the interfacial noise between two absorbing states possessing equivalent dynamical

roles, this symmetry being enforced either by the Z2 symmetry of the local rules

or by the global conservation of the magnetisation” [34].

The concept of m-conserving dynamical rules producing voter-like behaviour

is clear to us; a feature of the voter model is that on average the magnetisation

is conserved. However, while [34] alludes to non m-conserving, Z2-symmetric

rules doing likewise, it is not clear what constitutes such rules, with no concrete

definitions or examples being provided. We feel this requires further elucidation,

but does not directly affect the work presented here. In investigating the role of

the noise in systems of this kind, we will not be changing any of the universal

qualitative features of the systems, be it the m-conservation or Z2 symmetry,
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but rather their relative magnitude. We find this alone is sufficient to induce a

transition between the different universal ordering mechanisms.

3.1.3 Langevin Equation for Systems with Z2 Absorbing

States

The proposal of the new GV class was what prompted the work by Al Hammal et

al to find a general description for systems with Z2-symmetric absorbing states

[32]. As well as the GV transition predicted by Dornic et al there was also

evidence from Droz et al of systems where the disorder to order transition was

classified as an Ising-like, spontaneous symmetry breaking transition followed by

a DP transition to the effective single absorbing state selected by the symmetry

breaking [33]. Prior to both of these studies, Hwang et al also observed different

universal critical phenomena in systems with two absorbing states when the Z2

symmetry was broken [75].

Al Hammal et al proposed a phenomenological Langevin equation which the

authors showed encapsulated all observed critical behaviour in systems with two

(Z2) symmetric absorbing states:

∂tφ = (aφ− bφ3)(1− φ2) +D∇2φ+ σ
√

1− φ2 η (3.4)

where φ ∈ [−1, 1] is an appropriate coarse-grained variable, usually the

magnetisation [32], and η is a Gaussian white noise with zero mean and unit

variance. The first term is a deterministic force derived from the potential

V (φ) = −a
2
φ2 +

a+ b

4
φ4 − b

6
φ6 (3.5)

shown in figure 3.2, with the minimum number of terms required to give an Ising-

like spontaneous symmetry breaking. The Laplacian term serves as the diffusion

while the final term is the multiplicative noise. The factor of
√

1− φ2 ensures

that locally ordered states are absorbing: if φ = ±1 then no noise can act at that

point to perturb the system away from the ordered, absorbing state.

From analysis of the static potential (3.5), by controlling its shape through

the parameters a and b the authors of [32] were successfully able to reproduce

the different known critical behaviour for systems with Z2-symmetric absorbing
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(a) b = 1 (b) b = −1

Figure 3.2: The static potential for different values of a and b which dictate the
order-disorder transitions. The left panel shows an Ising-like symmetry breaking
when a becomes positive, the minima of which coincide with the absorbing states
at φ = ±1 when a = b. In the right hand panel, we see the symmetry breaking
occurs simultaneously with the system entering the absorbing states φ = ±1 at
the critical value a = 0.

states. They found that: (i) for b > 0, the system undergoes an Ising symmetry

breaking transition at a = 0, followed by a DP transition to the effective single

absorbing state of the system selected by the symmetry breaking, as reported by

Droz et al ; (ii) for b < 0, the Ising symmetry breaking and the DP transition

to the absorbing state occur simultaneously—this is commonly considered to be

the defining feature of the GV transition. This mean-field picture was verified to

be qualitatively correct by direct numerical analysis using an integration scheme

devised by Dornic et al in [68]. The authors found for the GV transition, at the

critical point logarithmic decay of the density of interfaces is observed.

In the generic Langevin equation (3.4) there is a noise strength parameter

σ, but its possible role in any critical behaviour was not examined, merely set

as an appropriate system parameter. A renormalisation group treatment of a

field-theoretic analysis by D’all Asta and Galla [76] suggests that noise is an

irrelevant parameter as it is in the equilibrium theory of phase ordering kinetics

[39]. However, for spatially discrete models such as the one we will present, it is

unclear from this analysis as to whether the multiplicative noise can play a role

in the macroscopically observed ordering of such systems.
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Microscopic Models

Several microscopic models have been proposed from which have been derived

Langevin equations belonging to the Al Hammal description (3.4). Vazquez and

Lopez devised a multiple spin lattice model with a flipping probability for a spin

is derived under constraint that it complies with the system having symmetric

absorbing states [77]. Dall’ Asta and Galla constructed a modified voter model

in which spins can take on intermediate values between the absorbing, ordered

limits [76]. The authors also looked to explain why the introduction of just one

intermediate state was enough to break the voter-like coarsening and instead

restore an effective surface tension, leading to algebraic coarsening. A similar

phenomenon was described in a paper by Castellano and D’All Asta [78]. In the

noise reduced voter model (NRVM), memory effects are added to the voter model

by placing counters at each site. A spin will then only flip after a specified number

of attempts to do so under standard voter model rules, regulated by the counter.

These models each have the capacity for changing the shape of the static

potential (3.5). However no model yet exists to our knowledge in which one

can control independently the qualitative deterministic behaviour, through the

form of the potential, and the amplitude of the noise. In order to investigate the

role the multiplicative noise can play, a microscopic model must provide such a

mechanism.

3.1.4 Application: Language Development

We conclude this preliminary section with a review of some previous, related

work. A concrete example and motivation in studying systems with two absorbing

states comes from the field of language learning and development. In previous

work [79] we studied a model of language change. In a population who use a

language with some linguistic variability (such variability exists at all levels of

language, from enunciation of vowel sounds, to the choice of grammar) over

time it has been observed, such as in the case of New Zealand English [80],

that regularisation can occur, and, roughly speaking, the population come to

a consensus - everyone does the same thing. We focused on modelling the

competition between two linguistic variants meaning there are two possible

consensus states, making it, in effect, a system with Z2-symmetric absorbing
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states.

Our work involved constructing a modified version of an existing model called

the utterance selection model (USM) [81]. The USM is a frequency selection model

in which speakers use a linguistic variant according to the frequency of past use

and exposure to that variant. In the original USM the frequency dependence is a

simple linear rule. In the modified model, which we call the utterance selection

and regularisation model, we introduced a non-linear bias to this linear rule,

meaning that a speaker will overestimate the frequency of the most used variant,

and underestimate the minority variant. This concept of a bias in frequency

dependent learning was motivated from neurological experiments reported in

[82]. A subject views an experiment in which different outcomes occur with a

set frequency. In this case, an outcome is one of three lights flashing on and

off. When one of the lights is set to flash a majority of the time, subjects would

overestimate the frequency with which the majority outcome had occurred. For

adults this phenomenon became less prevalent over longer runs of the experiment

but persisted with children.

We found that the deterministic qualitative behaviour in a two speaker system

was determined by only one parameter r, the relative strength of the diffusion

parameter to the amplitude of the potential in the Langevin equation derived for

the model (which we now recognise as belonging to the Al Hammal description).

Remarkably, if r is large enough there exists two pairs of stable fixed points that

the system can evolve to at which the speakers have not reached a consensus.

Even though this was found for such a small system size in the deterministic limit,

nevertheless the rich dynamical behaviour was unexpected. A pertinent question

arising from this study is whether such behaviour persist in the full stochastic

system when noise is present. We look to shed light on this by studying effects of

the noise in systems with multiple absorbing states.

3.2 Microscopic Spin Model

In order to conduct a study of the effect of the multiplicative noise in systems

with Z2 symmetric absorbing states can have on the phase ordering, we devise a

microscopic model whose dynamics are described mesoscopically by a Langevin

equation of the kind (3.4). It is essential that we are able to control the amplitude
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of the noise without altering the qualitative deterministic behaviour governed by

the shape of the static potential (3.5).

3.2.1 Definition

The model is a spatially discrete microscopic, multiple-spin model and is defined

as follows:

• The model comprises a 2D square lattice with lattice spacing δ and periodic

boundary conditions, meaning each site has z = 4 nearest neighbours. At

each site is a non-spatial patch, itself comprising a conserved number of

sites N , each occupied by a binary spin, which we refer to as being up or

down. The number of up-spins at site i we denote by nu,i or ni, and the

number of down-spins nd,i is determined by the constraint nu,i + nd,i = N .

The state of the system is defined by the number of up-spins at each site

via the vector n = (n1, . . . , nL2) where L2 is the total number of patches.

Equivalently we can use the vector x = n/N where xi/N is the fraction of

up-spins at site i. These can be thought of as local magnetisations at each

site.

• In an update of length τ , a spin at a site i is randomly selected.

– With probability q = h/N it copies a spin selected at random from

a neighbouring site j, by which we mean the probability of copying

an up-spin is simply xj, the fraction of up-spins at site j. This move

serves as the diffusion process in the system.

– With probability q = 1 − h/N it copies a spin sitting at its own site

with probability p = xi + (k/N)f(xi), k > 0. The function f(x) =

x(1 − x)(2x − 1), displayed in figure 3.3(b), acts as a perturbation

to a linear update rule. This move can be viewed as a biased local

sampling and leads to a deterministic force which pushes sites towards

the absorbing barriers at xi = {0, 1}.

These dynamics are illustrated in figure 3.3(a). In relation to our previous model

of language development [79, 81], this model can be applied as follows. Each

site represents a speaker, and each spin represents a previously-heard utterance
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q
z(1-q)p

(1-q)(1-p)
(a) (b)

Figure 3.3: (a) Dynamics of the microscopic model. Each lattice site (shown as a
region bounded by a dashed line) contains N spins. In each update, a randomly-
chosen spin is replaced with a copy taken from one of the z = 4 nearest-neighbour
sites, each with probability q/z; an up-spin from the same site with probability
(1 − q)p or a down-spin from the same site with probability (1 − q)(1 − p). (b)
The function f(x) serving as nonlinear bias in the on-site copying probability of
the microscopic spin model.

stored in memory. The two spin states relate to two different ways of saying the

same thing (e.g., phonetic realisations of a vowel). The local bias, in which the

majority spin state is favoured, then models an experimentally-observed tendency

for language users to overproduce the most frequent variant [82]. The key point is

that the number of spins per site, N , sets both the noise strength (see below) and

the lifetime of an utterance in memory. An appropriate choice for this lifetime

was a central consideration in an analysis of the New Zealand English dialect [83].

This model can also be employed as a Moran-like [23] population dynamical

model for finite-size populations. The binary spins at each patch can be regarded

as two competing species. The process of a spin at site i copying a spin at site j

can be cast as a migration of a constituent of patch j to patch i at the expense of

a constituent at site i. The biased copying rate for an on-site copy translates to

non-linear birth rates of the majority species. This gives rise to a deterministic

frequency-based selection bias [84], akin to that found for competing phenotypes

in evolutionary genetics whose fitness is dependent on the number of phenotypes

[24]. Physically, the resulting non-linear terms appearing in the birth and death

rates are a result of higher-order processes such as predation, which is a two-body

reaction depending on the number of each species.
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3.3 Master Equation

The transition rates T (x′i|xi) for a patch to go from a state xi to a state x′i by a

shift ε = 1/N in an update of length τ are given by

T (xi + ε|xi) = (1− xi)

[
h

Nz

∑
j

xj +

(
1− h

N

)(
xi +

k

N
f(xi)

)]
(3.6)

T (xi − ε|xi) = xi

[
h

Nz

∑
j

(1− xj) +

(
1− h

N

)(
1− xi +

k

N
f(1− xi)

)]
(3.7)

T (xi|xi) = 1− T (xi + ε, xi)− T (xi − ε, xi) (3.8)

where the j summation is over the four nearest neighbours on the square

lattice. The master equation, which gives a complete description of the stochastic

dynamics of the system, is

dP ({x}, t)
dt

=
L2∑
i=1

(
T (xi|xi − ε)P (xi − ε, {x}) + T (xi|xi + ε)P (xi + ε, {x})

−[T (xi − ε|xi) + T (xi + ε|xi)]P ({x})
)

(3.9)

where the states in configuration space ({x}) and (xi ± ε, {x}) differ only in the

value of the component xi.

3.4 Fokker-Planck Equation

We wish to derive a Fokker-Planck equation (FPE) to describe the evolution of

the probability of the systems local magnetisation P ({x}, t). To do so we will

truncate the Kramers-Moyal expansion of the master equation (3.9) as detailed

in section 2.7.1. This requires us to calculate the jump moments

α
(i)
l = lim

τ→0

〈(δxi)l〉
τ

. (3.10)

For a FPE we require the first and second jump moments to be non-zero when the

limit is taken. All of these jump moments will vanish in the in the limit N →∞
as some power of 1/N . The first and second moments of the local magnetisation
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are

〈δxi〉 =
1

N2

[
h

z

∑
j

(xj − xi) + kxi(1− xi)(2xi − 1)

(
1− h

N

)]
τ (3.11)

〈(δxi)2〉 =
1

N2

[
2xi(1− xi) +O(N−1)

]
τ (3.12)

with higher-order moments being of the order O(N−3). To obtain a continuous-

time limit we rescale the length of an update as τ = τ/N2. We see that in taking

limit of τ → 0 in (3.10), or equivalently N → ∞, that only the first and second

moments are finite. This then allows us to truncate the Kramers Moyal expansion

at the second term giving us the FPE

∂tP ({x}, t) = −
∑
i

∂

∂xi

[
Ai({x})P

]
+

1

2

∑
i

∂2

∂x2
i

[
Bi({x})P

]
. (3.13)

where

Ai({x}) =
h

z

∑
j

(xj − xi) + kxi(1− xi)(2xi − 1) (3.14)

Bi({x}) = 2xi(1− xi) . (3.15)

This FPE now gives a full description of the stochastic dynamics of the system

in this continuous-time limit. Taking N → ∞ also provides for a coarse-grained

continuous local magnetisation xi at each site. In practice, when simulating this

model we hope to set N large enough to match the analytical work. We settle on

the value of N = 100 as a balance between approximating the continuous-time

limit and facilitating feasible run times of Monte Carlo simulations.

3.5 A Spatially Discrete Langevin Equation

As discussed in section 2.9.1, the FPE can written equivalently as a set of

Langevin equations under the Itô prescription. We have

∂txi = kxi(1− xi)(2xi − 1) + h
∑
j

(xj − xi) +
√
xi(1− xi) ηi . (3.16)
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where each ηi is delta-correlated white noise with zero mean and unit variance.

Now performing the change of variable

φi = 2xi − 1 (3.17)

to give us magnetisation variables with a domain φi ∈ [−1, 1], we arrive at a

spatially discrete version of the Langevin equation of Al Hammal et al (3.4),

∂tφi =
k

2
φi(1− φ2

i ) + h
∑
j

(φj − φi) +
√

1− φ2
i ηi . (3.18)

The second term we recognise as the the discrete form of the Laplacian

operator on a lattice, which serves as the diffusion term. This is a subtle but

crucial difference between our Langevin equation and that of Al Hammal et al.

By constructing a lattice model with a local, on-site update and a diffusive, inter-

site update we have implicitly introduced a length scale over which the dynamics

act. To explicitly compare our spatially discrete Langevin equation (3.18) with

the continuous Al Hammal theory we perform a discretisation procedure on the

deterministic part of (3.4):

∂φ

∂t
= D∇2φ+ (aφ− bφ3)(1− φ2) . (3.19)

Starting from the standard spatial discretisation

φ(r + δe, t) = φ(r, t) + δ
∂φ(r, t)

∂α
+
δ2

2

∂2φ(r, t)

∂α2
(3.20)

where e is a unit basis vector of the lattice, we write

∂2φ

∂α2
=

1

δ2

(
[φ(r + δe, t)− φ(r, t)] + [φ(r− δe, t)− φ(r, t)]

)
, (3.21)

and the discrete Laplacian as

∇2φ =
∑
α

∂2φ

∂α2
=

1

δ2

∑
{k}

(
φ(r + k, t)− φ(r, t)

)
, (3.22)

where {k} are the unit vectors pointing to the 4 nearest neighbours of the site at
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r. We can now write (3.19) as

∂φ

∂t
=
D

δ2

∑
{k}

[φ(r + k, t)− φ(r, t)] + (aφ− bφ3)(1− φ2). (3.23)

Comparing this with our spatially discrete Langevin equation (3.18) we see that

D = hδ2, k = 2a and b = 0. By having a > 0 and b = 0, the static potential (3.5)

of the system is that of the GV-ferromagnetic phase, meaning that the system

will evolve to one of the two fully ordered absorbing states φi = ±1,∀i [85].

3.6 Controlling the Noise Strength

There is not an explicit noise strength parameter σ in (3.18); compared to the

Al Hammal equation (3.4) we have σ = 1. However, we can construct one and

control it indirectly through h and k. Defining r = h/k, we write (3.18) as

∂tφi = h

(
rφi(1− φ2

i ) +
∑
j

(φj − φi)
)

+
√

1− φ2
i ηi . (3.24)

We regard this Langevin equation now as being in two parts: a deterministic term

and a stochastic noise term. Written in this way it is clear that if h is varied while

holding r constant, the strength of the noise term, relative to the deterministic

term, can be varied without changing the shape of the static potential. In effect,

the diffusion parameter h is now the inverse noise strength.

Before we can conduct an investigation of the effect of the noise strength has

on the ordering dynamics of the system, we must decide what value to assign

to the static potential parameter r. In previous work [79], when studying the

deterministic behaviour of a two patch version of this model, we found that

there existed a threshold for r = h/k above which the system would not fully

order, and instead the steady state became frozen at some coexistence, non-

consensus state where both up and down spins survived. To find if this holds

true for arbitrarily large systems, we numerically integrate the system of ODEs

which are given by (3.24) without the noise terms. By implementing the fourth

order Runge-Kutta method [86], the iteration continued until the system reached

a fixed point. Averaging over many runs, we calculate the probability Pc that

the system reached a fully ordered state Pc of consensus from a random initial
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Figure 3.4: Comparison of system sizes for the consensus probability Pc for
different values of the r parameter.

condition, for a range of values of r.

As can be seen in Fig. 3.4 there is different qualitative behaviour for different

domains of r. For suitably large r the system will not reach consensus. We

interpret this as indicative of the existence of many stable or metastable fixed

points, whose number increase incrementally with r. In the Allen-Cahn theory of

phase ordering, the interfaces between domains become more stable as r increases

[35, 39]. This allows us to identify a suitable value of r = 3, for which we expect

not to reach consensus in the deterministic limit, and the metastable interfaces

between phases of opposite spins to exist, allowing domain coarsening to take

place.

3.6.1 Simulation Details

In order to test our analysis and probe the behaviour of the model system,

we perform Monte Carlo simulations of the stochastic dynamics given by the

master equation (3.9) using random sequential updating and averaging over many

realisations, as reviewed in section 2.11.2. As there is always the same number

of constituents at each site N , this gives the correct sampling for each spin to

update once on average in a timestep.
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3.7 Identifying the Ordering Dynamics

As far as we are aware this is the first model of its kind which facilitates the

independent control of the diffusion, potential and noise strengths. We have fixed

the deterministic behaviour by fixing the static potential (3.5) through holding r

constant. On a finite system, and with a > 0, b = 0 in (3.4), the system eventually

ends up in one of the globally absorbing states (i.e., all φi = 1 or all φi = −1)

[32]. We now examine how the ordering dynamics in the high (small h) and low

(large h) noise regimes.

One way to identify the coarsening regime is to examine the density of

interfaces as a function of time [34, 32]. This is defined as

ρ(t) =
1

4L2

∑
〈i,j〉

(1− φiφj) (3.25)

on the square lattice in two dimensions, in which the sum is over distinct nearest-

neighbour pairs. As previously discussed, for the Ising model ρ(t) ∼ t−1/2 [39],

while for the voter model, ρ(t) ∼ 1/ ln(t) [70] in 2D. We can detect and verify

this behaviour directly from Monte Carlo simulations, by keeping track of the

number of interfaces between a spin and its neighbours on the same site and at

the nearest neighbouring sites.

3.7.1 Low Noise Regime

In the large h regime, from the theory of phase ordering kinetics we anticipate a

domain growth driven by surface tension. This is because the deterministic limit

h→∞ corresponds to the time-dependent Ginzburg-Landau equation, obtained

from the Landau free energy functional for the Ising model with a non-conserved

order parameter [39]. When the noise amplitude is small, we do not expect

the distinction between additive and multiplicative noise to be important, and

without the square root multiplicative factor to the noise, (3.24) is recognisable

as model A of the Ising model [69].

This leads us to predict that we will observe algebraic coarsening in the low

noise, large h, regime. From the left panel of figure 3.5, we confirm this as we

observe ρ(t) ∼ t−ν with the measured exponent ν ranging from 0.45 − 0.50 in

the large h region. These measured exponents are consistent with those reported
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Figure 3.5: Interfacial density ρ as a function of time t in Monte Carlo simulations
of the microscopic model. Left: 1/ρ(t) is plotted on logarithmic axes, such that a
straight line indicates algebraic coarsening. For large h, and at times before the
onset of finite-size effects, the gradient is consistent with the Ising model value of
1
2

(dashed line). Right: [ρ(t) ln t]−1 plotted on linear axes. A constant asymptote,
seen for small h, indicates logarithmic coarsening.

from other microscopic models with an effective surface tension by Dall’ Asta and

Galla [76], and Castellano and Castello [78]. We remark that the deviation from

the expected t−1/2 law seen at late times for large h is a finite-size effect caused by

the periodic boundary conditions in the simulation, when a domain grows large

enough to coalesce with a periodic image of itself.

However the left hand panel of figure 3.5 also shows that as h becomes smaller

this exponent deviates largely from ν = 0.5 to a typical range 0.15− 0.20, which

suggests that the coarsening due to surface tension is not the dominant ordering

mechanism in a higher noise regime.

3.7.2 High Noise Regime

From the study of a closely related system, it can be shown using the method

of Möhle [87], that in the limit h → 0 the purely fluctuation-driven dynamics

of the voter model are formally recovered. The dynamics of the voter model is a

system driven purely by interfacial noise. In the Al Hammal Langevin equation

(3.4) if the potential term is removed, one recovers the Langevin equation for the

voter model originally proposed by Dickman [66, 67] and subsequently verified by

Dornic et al [68]. We consider taking the limit h→ 0 in the context of our model’s

dynamics. A spin will undergo the local update more and more times between
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two instances of the diffusive update as h gets smaller, leading to a separation of

timescales for the two processes. This scenario, we argue, is akin to that presented

by Möhle [87], describing a Markov process with a fast and a slow mode. After

copying a spin from a neighbouring site, on the slow timescale of this mode, the

next time the same site copies from another site, it will have fully ordered to

either φi = {−1, 1}. The phase space is therefore reduced to sites only occupying

the fully ordered configurations, making the model resemble a single spin-per-site

model with the effective dynamics of the voter model.

Therefore we expect to see voter-like coarsening for some sufficiently small h,

where the density of interfaces decays logarithmically in 2D. We see confirmation

of this in the right hand panel of figure (3.5) for the smallest values of h. However

as h increases the logarithmic nature of the evolution of ρ(t) breaks down.

In summary, we observe Ising-like, algebraic coarsening driven by a surface

tension in the low noise (high h) regime and voter-like, logarithmic coarsening

due to interfacial noise in the high noise (low h) regime. We now want to establish

whether this change in phase ordering dynamics is a sharp transition or a smooth

crossover, and if the former, what the mechanism for a transition would be.

3.8 Mapping to a Thermal Diffusion Process

The multiplicative noise in the Langevin equation (3.18) makes interpretation of

the stochastic dynamics difficult as it stands. Our physical intuition is strongest

when the noise is additive, and the dynamics can be viewed in terms of diffusion

in a potential. To this end, we transform the local magnetisation φi to a variable

θi such that the FPE (3.13) has a diffusion term Bi({θ}) that is independent

of the coordinates θi. This technique has previously been used for models with

a single absorbing state [88], and a derivation of the transformation is given in

section 2.10.

The appropriate transformation is

θi = sinφi , (3.26)

with the resulting FPE corresponding uniquely (à la Itô) to the set of Langevin

equations

θ̇i = −V ′D(θi) + η , (3.27)
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one for each site i, and where η is the usual thermal (Gaussian white) noise. The

potential VD has the form

VD(θ) = ln

[(
1− sin θ

1 + sin θ

) 1
2
hzm̄

(cos θ)
1
2
−hz

]
+
hr

8
cos 2θ (3.28)

where

m̄ =
1

z

∑
j

φj (3.29)

is the mean magnetisation of the z sites that are neighbours of site i. We note

that the L2 separate Langevin equations are coupled because m̄ depends on the

values of θ at neighbouring sites.

The subscript D here is used to emphasise the crucial difference between

this potential, felt by a thermal diffusion process, and the static potential (3.5)

whose derivative gives the deterministic term in the Langevin equation (3.4). The

shape of VD gives insight into the stability of a microscopic configuration under

the stochastic dynamics, and that this shape changes with the noise strength

h in a non-trivial way. On first inspection, this diffusion potential VD seems

very complex and to analytically find how its shape varies with h is not an

easy task. However, as we now show, for our purposes it suffices to look at the

behaviour near the boundaries in order to deduce the three distinct qualitative

shapes that VD may take.

Under the variable transformation (3.26), the local absorbing states φi = ±1

become θi = ±π
2
. We now consider a mean-field analysis by having only one

active site i with θi = θ, while holding all other θj fixed. In particular this

means the local neighbourhood and hence the local magnetisation m̄ (3.29) is

held constant. Taking the case m̄ < 0, we examine the form of VD near the right

hand boundary at θ = π
2
. First we rewrite the potential as

VD(θ) =
hm̄z

2
ln(1−sin θ)−hz ln(cos θ)+

1

2
ln(cos θ)−hm̄z

2
ln(1+sin θ)+

hr

8
cos 2θ.

(3.30)
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Near θ = π
2

we can write

ln(1− sin θ) = ln(1− (1− cos2 θ)
1
2 )

≈ ln(1− (1− 1

2
cos2 θ)) = ln(

1

2
cos2 θ) ∼ ln(cos2 θ) (3.31)

where the final form is the limiting behaviour as we take θ → π
2
. Using this we

can express VD near θ = π
2

using (3.30) as

VD(θ) ∼
(

1

2
− hz

)
ln(cos θ) +

hzm̄

2
ln(cos2 θ) (3.32)

=

(
1

2
− hz(1 + m̄)

)
ln(cos θ). (3.33)

Now formally taking the limit we find

lim
θ→π

2

VD(θ) =


−∞ if h < h−

∞ if h > h−

(3.34)

where

h± =
1

2z(1± m̄)
. (3.35)

Following the exact same procedure, we find analogously for the left hand

barrier θ = −π
2
:

lim
θ→−π

2

VD(θ) =


−∞ if h < h+

∞ if h > h+

. (3.36)

From this we have learnt that as θ approaches either boundary point θ = ±π
2

at

some fixed local magnetisation m̄, VD diverges logarithmically. Depending on the

values of h and m̄, the divergence can be either towards +∞ or −∞. Considering

the case m̄ < 0, we find that the divergence is towards +∞ at the right boundary

when h > h−, and towards −∞ for smaller values of h. Similarly, at the left

boundary, the divergence is towards +∞ when h > h+. The three possible

combinations of boundary divergence are as shown in Fig. 3.6. To do this analysis

we considered that the fixed local magnetisation m̄ < 0. If we repeat the procedure

for the case m̄ > 0 we find analogous shapes of the potential, due to the symmetry
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(a) h < h− (b) h− < h < h+ (c) h > h+

Figure 3.6: Shape of the diffusion potential VD at increasing h. Here, h± =
[2z(1± m̄)]−1, z = 4 and m̄ = −0.5.

θi → −θi and m̄→ −m̄.

We want to know what the different distinct shapes of the diffusion potential

in different noise regimes tells us about the coarsening dynamics. We can reconcile

the shape of the potential 3.6(a) with our observation of voter-like coarsening in

the low h, high noise regime. A microscopic spin configuration is determined by

the value of m̄ ∈ [−1, 1]. Taking a fully ordered local neighbourhood m̄ = −1,

for which h− is minimal, there always exists an h such that

h < h− =
1

4z
= 0.0625. (3.37)

Therefore, for h < 1
4z

, there are always minima of the diffusion potential at

the boundaries, and a single maximum in between (since there are at most two

extrema in the interior region). Thus the diffusion of θ is at any instant biased

towards a locally absorbing state at θi = ±π
2
. Once a locally absorbing state is

reached, the deterministic force in (3.24) vanishes. Then, all that remains is the

Langevin equation for the voter model [66, 67]. This leads us to suggest that voter

coarsening should be seen over some finite range of h, at least up to h = 1
4z

.

Given the abruptness in the change in shape of VD as h increases through h−,

the observation of Ising-like coarsening for larger values of h in figure 3.5 and

the fact that the deterministic limit of (3.18) and model A for the Ising model

are equivalent, we believe there is the possibility of a transition to Ising-like

coarsening at some non-zero value of h, perhaps in the vicinity of h = 1
4z

.
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3.9 Droplet Simulation

In order to confirm whether a transition exists, we look for evidence from Monte

Carlo simulation of the stochastic dynamics. We have already found evidence for

the different ordering regimes from simulation, as shown in figure 3.5. However,

while those simulations identify the transitional region in which the coarsening

dynamics change, in order to identify a sharp transitional value of h, akin to

the value h− from our diffusion potential analysis, something more definitive is

required.

The simulations in figure 3.5 were generated by starting with a random initial

condition, where each spin is equally likely to be up or down. Now we will adopt

a highly ordered initial condition, that of a droplet, analogous to that used by

Dornic et al in [34] and displayed in figure 3.1. All the sites within a given radius

of the centre of the square lattice are fully ordered with up spins, while those

outside are fully ordered down.

The reason for adopting this is that by measuring the time evolution of the

global magnetisation, for which the total number of up spins

Mu(t) =
1

L2

∑
i

ni (3.38)

is a suitable definition, we can identify both Ising-like and voter-like coarsening.

3.9.1 Voter-Like Behaviour

A key characteristic of the voter-like dynamics is m-conservation [8, 70, 71],

meaning that on average we expect

d〈Mu〉
dt

= 0 . (3.39)

This we can readily identify from simulation.

3.9.2 Ising-Like Behaviour

The calculation we give here is adapted from Bray’s review of phase ordering

dynamics [39]. For systems with a non-conserved order parameter field φ(r, t),

such as the magnetisation in the sub critical Ising model, an appropriate equation

62



3.9. Droplet Simulation

Figure 3.7: The schematic form of the order parameter f(x). It has a large
derivative at 0 as it the function moves sharply between ±1.

for the time evolution of the field is

∂tφ = D∇2φ− V ′(φ) (3.40)

where V (φ) is a symmetric well defined potential. For a 2D circular domain of

radius R(t), i.e. a droplet, if the radius is much bigger than the interface width

between the two phases then we can make an ansatz of the form, using polar

coordinates (r, θ),

φ(r, t) = f(r −R(t)) (3.41)

where x = r − R(t) is the distance form the interface. A schematic form of f(x)

is displayed in figure 3.7. Loosely, it has the form

f(x) =

{
−1 x > 0

1 x < 0
(3.42)

and its derivative is maximal about x = 0.

Writing (3.40) in polar coordinates

∂φ

∂t
= D

[
∂2φ

∂r2
+

1

r

∂φ

∂r

]
− σV ′(φ), (3.43)

substituting in the ansatz (3.41) gives

−f ′Ṙ = D

[
f ′′ +

1

r
f ′
]
− V ′(f). (3.44)
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Multiplying through by f ′ and rearranging gives

0 = Df ′f ′′ +

(
D

r
+ Ṙ

)
(f ′)2 − f ′V ′(f). (3.45)

Now we integrate this through the interface with x ∈ [−w,w], w � 1. The latter

two terms give: ∫ w

−w
V ′(f)f ′dx = V (f)

∣∣∣∣∞
−∞

= 0

as the potential is symmetric and the fully ordered phases have the same potential,

V (1) = V (−1); ∫ w

−w
f ′′f ′dx =

1

2
(f ′)2

∣∣∣∣∞
−∞

= 0 .

The first term gives ∫ ∞
−∞

dx

[
D

x+R
+ Ṙ

]
(f ′)2 = 0 . (3.46)

We see from figure 3.7 that the dominant contribution to this integral comes from

the neighbourhood of x = 0, and therefore the integral will not be zero unless we

have
D

R
+ Ṙ = 0 (3.47)

which yields the final expression

R2(t) = R2
0 − 2Dt . (3.48)

So under surface tension we expect the radius of the droplet to decay from

its initial value R0 linearly with time, the rate being set by the diffusion D. As

the initial condition confines all the up-spins to lie inside the droplet, we see that

the global magnetisation Mu(t) ∼ R(t) because as the droplet shrinks, so too

proportionately will the number of up-spins. From the discretisation of section

3.5 we know that D ∼ h, and so we arrive at the scaling form for the time

evolution of the magnetisation

Mu(t) = M0 − ct (3.49)

where M0 = Mu(0) is the initial magnetisation and the rate of the linear decay c
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has the scaling form

c ∼ h

L2
. (3.50)

This linear decay rate c is our order parameter for Ising-like coarsening. In the

low h voter regime we expect m-conservation to hold and so from (3.39) we expect

c to be zero. Above a certain value of h we expect to find Ising-like coarsening,

giving us a non-zero value of c according to (3.50).

3.9.3 Simulation Results

In figure 3.8(a) is the time evolution of the average magnetisation 〈Mu(t)〉
obtained from Monte Carlo simulation of the stochastic dynamics with the droplet

initial condition. We see the expected linear decay at high h andm-conservation at

low h. To each stochastic realisation of Mu(t) we fit a linear function. An estimate

of c, and an error, can be computed from the mean and standard deviation of

the measured gradients. We can compare results from different system sizes L by

taking the initial droplet radius R0 proportional to L, and by plotting cL2 against

h test our hypothetical scaling form (3.50).

These results are shown in figure 3.8(b). The expected linear increase of c with

h from (3.50) is observed. Crucially, we find that the intercept is not at h = 0, but

at some positive value of h, below which c is consistent with zero. This suggests

that there is indeed a transition between voter-like and Ising-like coarsening

dynamics at some h = h∗ > 0. A least-squares linear fit to the data yields an

estimate of h∗ ≈ 0.059, which is close to the value h− = 1
4z

= 0.0625 suggested by

the analysis of the diffusion potential. One possibility for this observed non-zero

critical value of h could be due to a finite-size effect in the simulation. If such an

effect were present we would expect the h-axis intercept to regress to zero as L

increased. By plotting the data for several different system sizes and observing a

scaled data collapse in figure 3.8(b), we rule out this possibility.

3.10 Discussion and Conclusion

We have presented evidence for a purely noise-induced transition in the ordering

dynamics in systems with two symmetric absorbing states for a non-trivial value

of the inverse noise strength h, from Ising-like coarsening under surface tension
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(a) The time evolution of the average magnetisation 〈Mu(t)〉 for a range
of values of the noise strength parameter h for system size L = 60,
averaged over 100 runs. For high h (low noise) we can see clearly the
linear decay of as expected, whereas for low h (high noise) we can see
evidence of m-conservation, indicative of the voter model.

(b) Droplet shrinking rate, c, as a function of inverse noise
strength h at a range of system sizes L. Each data point is
obtained from a sample of 100 simulation runs. The same is
shown in the inset over a larger range of h.

Figure 3.8: Results from Monte Carlo simulation of the stochastic dynamics with
a droplet initial condition.
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in a low noise regime, to ordering driven by interfacial noise like that of the voter

model, when the noise is sufficiently strong. Through a mean-field mapping of

the non-equilibrium stochastic dynamics to a thermal diffusion process, we found

a physical mechanism for this transition. Once the noise is sufficiently strong,

we find that locally-absorbing states are entered with ease. This makes the force

term in the governing Langevin equation (3.24), which provides a surface tension

at the interface, vanish. Consequently, the only way for the system to order is

through interfacial fluctuations, a mode of domain coarsening exhibited by the

voter model.

This noise-induced dynamical transition has not been predicted by any

other models of systems with symmetric absorbing states. Though several

microscopic models whose stochastic dynamics are mesoscopically described by

the phenomenological Langevin equation (3.4) proposed by Al Hammal et al have

been proposed, none allow an independent study of the noise, as the deterministic

and stochastic contributions to the dynamics are often not independent. We

constructed a model specifically to avoid such a shortcoming, which facilitates

a study of the role the multiplicative noise can play in the dynamics of such

systems.

We believe the discrete space in our model has been key to our observation

of the transition. The physical mechanism we propose for the transition relies

on the discrete nature of the model, which allows that a locally-absorbing state

can be reached more quickly than the diffusion process connecting neighbouring

sites. However in taking the spatial continuum limit of δ → 0, any finite transition

point h∗ > 0 collapses onto a zero diffusion constant, D = 0. While a previous

field-theoretic renormalisation group treatment of Dall’ Asta and Galla [76] on the

Langevin equation (3.4) did not reveal the noise strength as a relevant quantity,

it is not incompatible with our observed transition in the ordering dynamics

at a critical value of the noise strength h. It is an interesting open question

whether such a transition can be realised in a future field-theoretic treatment of

the phenomenological Langevin equation (3.4) of Al Hammal et al.

As an extension to this work, it would be interesting to find if the demographic

noise strength can lead to other macroscopic effects of the dynamics of a

spatially discrete system, or even dictate its long term fate. It is known

that the demographic noise plays a key role in keeping the existence and
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stability of spatially extended predator-prey metapopulations [50] as well as their

synchronisation [52]. The stability arises from a complex interplay of the spatial

heterogeneity, the noise strength and migration rate [53]. By construction of a

model similar to that presented here, which allowed independent control of these

parameters, an insight into the framework and phase portrait of the observed rich

behaviour of such systems may be possible

A final general implication of this work relates to a question first investigated

twelve years ago by Dornic et al in [34]. It is: which qualitative features, such as

symmetries and conservation laws, determine the dynamical universality class

of systems with multiple absorbing states? We have shown that even in a

subclass of models which have the same qualitative properties, but different

noise strengths, the macroscopic ordering dynamics can be different. In particular,

strong noise leads to the m-conservation characteristic of the voter model being

an emergent consequence of the stochastic dynamics. To develop a better general

understanding of non-equilibrium phase transitions and critical phenomena, one

may need to determine whether other cases exist in which such conservation laws

emerge.

In conclusion, we have found that the multiplicative form of the demographic

noise can play a crucial role in the macroscopic ordering dynamics of systems with

two symmetric absorbing states. We uncovered this result by taking an individual

based modelling approach to the constructing the dynamics of the system. As well

as deriving from this the deterministic rate equations, it also allows us to derive

the form of the demographic noise, and crucially its amplitude, which we are able

to control independently of the deterministic contribution.
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Chapter 4

Currents in Finite Populations

About a Stable Fixed Point

In the previous chapter we witnessed the consequences that demographic noise

can have in the ordering dynamics of a system out of equilibrium. For multi-

dimensional systems, it is generally the case that non-equilibrium probability

currents flow in the steady state. In this chapter we study whether probability

currents can be macroscopically observable in finite-size populations. We do so

by means of an individual based model which we analyse through a van Kampen

expansion of the governing master equation. The deterministic dynamics evolve

the system to a stable fixed point in the 2D configuration space, the simplest

such behaviour for studying the manifestation and possible effects of a probability

current. We derive the conditions for a probability current to flow, and introduce

a noise-controlled mechanism into the model which allows the system to evolve to

a non-equilibrium steady state. We confirm the existence of a probability current

through Monte Carlo simulation of the stochastic dynamics and by calculating

the frequency of the closed elliptical orbits of the current velocity.
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4.1 Introduction

The paradigmatic example of an individual based model (IBM) approach for

studying the role noise can play in a finite population is the phenomenon of

stochastic amplification discovered by McKane and Newman [44]. The authors

were interested in looking for a novel mechanism which could give rise to cycling

behaviour in an interacting population. The example they studied was a predator-

prey system [23], which comprises two competing populations, one of which can

reproduce at the expense of the other. In modelling such an ecological system, the

essential processes which must be included are: prey reproduction, predator and

prey mortality and the predator-prey interaction. Incorportating these features

lead to the famous Lotka-Volterra equations which, however, by themselves in

a mean-field treatment do not lead to cycles [42, 43, 23]. For that, further

processes are required such as satiation of the predator population, which imposes

a carrying capacity on the predator population. Including these leads to stable

limit cycle solutions, such as seen in the Holling-Tanner model [89, 90]. McKane

and Newman argued that given cycles are ubiquitous in nature, on scales of many

differing orders of magnitude, there may be a simpler mechanism which gives rise

to them, not requiring the inclusion of more subtle biological processes. This

view had previously been expressed by Nisbet and Gurney, who believed that

an interplay of the noise with the deterministic behaviour of a predator-prey

system was a more likely scenario to give rise to cycles, rather than having to

accommodate limit cycles in the deterministic dynamics [91].

The authors of [44] incorporated the simplest biological processes given above

into an IBM, which described well-mixed patch population with a conserved size

N . A van Kampen expansion of the master equation was implemented, as outlined

in section 2.8. The mean-field equations recovered are the Volterra equations,

which predict the system to evolve to a fixed point in the steady state. Taking

the linear Fokker-Planck equation (FPE) for the fluctuations about the mean

densities for each population, the authors calculated the power spectra for the

fluctuations by transforming the equivalent Langevin equations. These display

a resonance in the spectrum at a non-zero frequency. The amplitude of this

resonance is then large enough to be relevant on the mean-field level of the system

size expansion which then gives rise to macroscopic cycles. In the neighbourhood

of the the fixed point the deterministic trajectory is a focus, following a decaying
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spiral into it. Periodically the system is perturbed by the stochastic resonance

a macroscopic distance out from the fixed point, meaning the trajectory then

rejoins the deterministic focus. This behaviour persists indefinitely leading to a

cycling behaviour in the time series of the population densities, the frequency of

which is that of the decaying spiral.

We observe that while the resonance of the demographic noise plays a key

role in this observed cycling behaviour, of equal importance is the deterministic

spiral. In the language of Tomé and de Oliveira [92], the demographic noise

converts the deterministic, damped oscillations of the spiral, to undamped

oscillations in the form of phase-forgetting quasicycles. This mechanism of

stochastic amplification has been realised in models of systems as diverse as gene

regulation [45] and measles epidemics [93].

The importance of this work is that it establishes a generic mechanism

for sustained population cycles in predator-prey systems. The periodic orbits

present in the deterministic Lotka-Volterra system, for example, are not robust to

modifications of the dynamics or noise [23]. Intrinsic demographic noise has been

shown to destabilise marginally stable predator-prey cycles [53, 94, 95], shifting

the phase space trajectory between different limit cycle orbits until eventually

one crosses an absorbing state where a species becomes extinct. The need for

models in which cycles are robustly observed arises from the fact that some

natural populations indeed exhibit cyclicity in abundances. For example, voles

and lemmings exhibit complex multi-year cycles [96, 97]. It is unlikely that such

behaviour is achieved by fine-tuning of parameters with highly specific values that

happen to favour cyclicity.

In this chapter, we investigate a potential and hitherto unexplored mechanism

for generating cycles in a population dynamical system without parameter tuning.

It is based on the observation that when one has more than one stochastic variable

(as is the case in a multi-species population dynamics) a non-equilibrium steady

state that exhibits cyclic probability currents in configuration space typically

arises. We want to find out whether these abstract cycles can be manifested as

macroscopically observable cycles in species abundances. This is a reasonable

hypothesis since it is known that in physical systems, such currents are directly

observable in experiments on optically-trapped colloids [98]. There, the presence

of a current was inferred from the persistent bias seen in the evolution of the
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polar coordinate of the colloid’s motion.

Central to our considerations is the question of whether a non-equilibrium

steady state can be attributed solely to the form and nature of the noise. As we

have just discussed, the demographic noise plays a key part in sustaining cycling

behaviour and keeping finite-size systems driven out of equilibrium [44]. A more

general question we wish to address is: under what conditions does a population

reach a steady state in thermal equilibrium? We present the simplest two-

species population dynamical model as a candidate for observing these currents

macroscopically, and derive the most general conditions under which a non-

equilibrium steady state can be permitted.

A final motivation of this study comes from the technical aspect of the

stochastic resonance mechanism. As mentioned, this was uncovered following a

power spectrum analysis of the Langevin equations describing the dynamics of

the fluctuations about the centre of the stable focus. Given the equivalence of the

Fokker-Planck formalism under Itô calculus in IBMs, we wish to learn if similar

information can be obtained from the FPE.

4.2 The Stable Fixed Point (SFP) Model

We wish to investigate the importance of demographic noise in influencing the

dynamics of non-equilibrium systems and to see if it alone can be responsible

for some macroscopic phenomena not observable in a deterministically analogous

system, in particular focussing on cycles in ecological population models. To this

end, we wish to study a system similar to the stochastic predator-prey model of

[44]. As already discussed, the cycles observed there are due to an interplay of

a stochastic resonance due to the noise, and an stable deterministic spiral. We

propose a model which deterministically quickly relaxes to a stable node, which

then allows a clean study of the effect of noise on the subsequent dynamics of the

system.

The model we use is the stable fixed point (SFP) model which we introduced in

section 2.7.1. To recap, it comprises two competing species A and B with species

number n and m respectively residing on a non-spatial patch with conserved

size N = n + m + e where e is the number of empty sites on the patch. We

denote rate constants for processes of species A with a 1 and for species B with
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a 2. Individuals of both species reproduce with rate ai, while each can die due

to: (i) natural death with rate di; (ii) predation from the other species with rate

pi; (iii) cannibalism from another of its species with rate ci, where i = {1, 2}. This

gives us the transition rates for the model:

T (n+ 1,m|n,m) =2a1
n

N
(N − n−m)

T (n,m+ 1|n,m) =2a2
m

N
(N − n−m)

T (n− 1,m|n,m) =d1n+ c1
n(n− 1)

N
+ 2p1

nm

N

T (n,m− 1|n,m) =d2m+ c2
m(m− 1)

N
+ 2p2

nm

N
, (4.1)

and the corresponding master equation using the step operator Ê is

dP (n,m)

dt
= (Ê−1

n − 1)T (n+ 1,m|n,m)P (n,m)

+ (Ê1
n − 1)T (n− 1,m|n,m)P (n,m)

+ (Ê−1
m − 1)T (n,m+ 1|n,m)P (n,m)

+ (Ê1
m − 1)T (n,m− 1|n,m)P (n,m) . (4.2)

4.2.1 van Kampen Expansion

Because we are interested in looking at fluctuations about some steady state

determined by the deterministic dynamics, it is appropriate to analyse the model

using the van Kampen system size expansion. Following the procedure outlined

in section 2.8, we write the ansatz

n = Nρ(t) +
√
N ξ

m = Nσ(t) +
√
N η (4.3)

which gives us the new stochastic variables ξ and η to describe the fluctuations

about the mean-field values ρ and σ. Applying this transform to the master
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equation (4.2) gives us the expansion

∂Π

∂t
−
√

Ω ρ̇
∂Π

∂ξ
−
√

Ω σ̇
∂Π

∂η
= (4.4)(

− 1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2
+ . . .

)
N2a

[
ρ+

ξ√
N

] [
1− ρ− σ − 1√

N
(ξ + η)

]
Π

+

(
1√
N

∂

∂ξ
+

1

2N

∂2

∂ξ2
+ . . .

)
N

[
ρ+

ξ√
N

] [
d+ 2p(σ +

η√
N

) + c(ρ+
ξ√
N

)

]
Π

+

(
− 1√

N

∂

∂η
+

1

2N

∂2

∂η2
+ . . .

)
N2a

[
σ +

ρ√
N

] [
1− ρ− σ − 1√

N
(ξ + η)

]
Π

+

(
1√
N

∂

∂η
+

1

2N

∂2

∂η2
+ . . .

)
N

[
σ +

η√
N

] [
d+ 2p(ρ+

ξ√
N

) + c(σ +
η√
N

)

]
Π .

4.2.2 Mean-Field Analysis

The equations of motion governing the deterministic behaviour are obtained by

gathering the terms of O(N1/2). We have from (4.4)

−ρ̇∂ξΠ− σ̇∂ηΠ = [−2a1ρ(1− ρ− σ) + d1ρ+ c1ρ
2 + 2p1ρσ]∂ξΠ

+ [−2a2σ(1− ρ− σ) + d2σ + c2σ
2 + 2p1ρσ]∂ηΠ (4.5)

which in order to satisfy we must have the rate equations

ρ̇ = ρ[2a1 − d1 − 2(a1 + p1)σ − (2a1 + c1)ρ]

σ̇ = σ[2a2 − d2 − (2a2 + c2)σ − 2(a2 + p2)ρ] . (4.6)

In order to keep the deterministic behaviour of the model neutral we will set

the rates for each process as equal, i.e. a1 = a2 ≡ a etc. This shows that we do

not have a preference or selection bias for either species.
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Fixed Points

We now look to find the fixed points of (4.6). From inspection, we have the three

fixed points (ρ∗, σ∗):

(0, 0) (4.7)(
0,

2a− d
2a+ c

)
(4.8)(

2a− d
2a+ c

, 0

)
(4.9)

The first of these is clearly the absorbing state at the origin which is the extinction

of both species. The other are fixed points where one species has gone extinct. We

find the final fixed point from simultaneously solving the linear equations in the

square brackets, yielding the fixed point (ρ∗, ρ∗) where

ρ∗ =
2a− d

(2p− c)(4a+ 2p+ c)
. (4.10)

In order for this fixed point to exist in the system we shall impose 2a > d and

2p > c.

Linear Stability

To find the evolution of the deterministic dynamics we study the stability of each

of the fixed points. We do this by examining the eigenvalues of the linearised

matrix, or Jacobian matrix, A for the system of equations (4.6):

A =

(
2a− d− 2(a+ p)σ∗ − 2(2a+ c)ρ∗ −2(a+ p)ρ∗

−2(a+ p)σ∗ 2a− d− 2(a+ p)ρ∗ − 2(2a+ c)σ∗

)
(4.11)

We find that the fixed point at the origin (4.7) has eigenvalues λ− = λ+ = 2a−d,

meaning it is repulsive. For the two single species fixed points (4.8) and (4.9) the

eigenvalues are

λ± =
2a− d
2a+ c

[
a+ p± (a− p+ c)

]
(4.12)

which means they are either repulsive nodes or saddle points depending on the

parameter values. For the parameter regime we will work with, they are saddle

75



Chapter 4. Currents in Finite Populations About a Stable Fixed Point

0 0.1 0.2 0.3 0.4 0.5
ρ

0

0.1

0.2

0.3

0.4

0.5

σ

Figure 4.1: The phase portrait of the two population densities ρ and σ. For the
parameters a = 2.1, d = 0.5, c = 2.5, p = 0.9 the system evolves to the fixed
point at ρ = σ = 0.29 and then diffuses about it.

points. For the fixed point (4.10) the linearised matrix is

A = −ρ∗

(
2a+ c 2(a+ p)

2(a+ p) 2a+ c

)
(4.13)

with eigenvalues

λ+ = −(4a+ 2p+ c)ρ∗

λ− = −(c− 2p)ρ∗ . (4.14)

Both of these are negative and so the fixed point is stable. Therefore determinis-

tically we expect the system to evolve to the stable node (4.10).

4.2.3 Monte Carlo Simulation of the System

Using the Gillespie algorithm, as detailed in section 2.11.1, we can simulate the

stochastic dynamics (4.1) to see if the deterministic behaviour of the system we

predict is borne out. In figure 4.1 we see that the system does evolve to the fixed

point predicted by (4.10). Once there the system is then free to diffuse about it.

We see immediately this diffusion is skewed to act more in one particular direction.

Because of the double symmetry of the form of the linearised matrix, where

A11 = A22 and A12 = A21, the corresponding eigenvectors e± of the eigenvalues
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λ± (4.14) are

e+ =
1√
2

(1, 1)

e− =
1√
2

(−1, 1) (4.15)

We see from figure 4.1 that the diffusion is elongated in the direction of e2, which

tallies with the fact that the associated eigenvalue |λ−| < |λ+| and so the restoring

force is weaker in this direction compared to its perpendicular axis.

4.2.4 Nullcline

We can describe this elongated diffusion more formally by describing the dynamics

about the fixed point in terms of a slow manifold dynamics as done very recently

by Constable et al in [99]. The basic idea is to exploit a separation in timescales: in

a diagonalised system, the variables are cast as fast or slow depending on how

quickly they relax to the fixed point according to their eigenvalues derived from

linear stability analysis. The variables whose eigenvalues are large and negative

can be held constant as they will fix first. Then the remaining active, or slow,

variables can be described as acting on a subspace of the phase space called

the slow manifold [100]. To estimate the slow manifold, Constable et al use

the nullcline of the deterministic system, a surface on which the forces are zero

[101]. They find for a similar population dynamical model to ours, for a system

with a stable fixed point, that the diffusion can be approximated as acting over

a hyperbolic nullcline.

Following the same method, we derive the form of the nullcline for the SFP

model from the defining equation

ρ̇+ σ̇ = 0 . (4.16)

Plugging in (4.6) gives

Aρ2 + 2Bρσ + Aσ2 + Cρ+ Cσ = 0 (4.17)
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with A = 2a+ c, B = 2(a+ p) and C = −(2a− d). Rewriting this as

(
ρ σ

)( A B

B A

)(
ρ

σ

)
+ Cρ+ Cσ = 0 , (4.18)

we diagonalise the matrix by introducing the variable transformation(
ρ

σ

)
=

1√
2

(
1 −1

1 1

)(
u

v

)
(4.19)

to the new variables (u, v) which are the principal axes of the eigenvalues (4.15).

This yields (
u v

)( P1 0

0 P2

)(
u

v

)
+
√

2Cu = 0 (4.20)

with P1 = A + B, P2 = A − B. Multiplying this out and completing the square

gives

P1

(
u+

C√
2P1

)2

+ P2v
2 − C2

2P1

= 0 , (4.21)

which can be written in the canonical form of the equation of an ellipse

(u− u0)2

R2
u

+
(v − v0)2

R2
v

= 1 , (4.22)

where

u0 =
−C√
2P1

=
2a− d√

2(4a+ 2p+ c)
=

ρ∗√
2

(4.23)

v0 =0 (4.24)

Ru =

∣∣∣∣ C√
2P1

∣∣∣∣ =
2a− d√

2(4a+ 2p+ c)
(4.25)

Rv =

∣∣∣∣ C√
2P1P2

∣∣∣∣ =
2a− d√

2(4a+ 2p+ c)(c− p)
(4.26)

In figure 4.2 we superimpose the elliptical nullcline and the simulation of the

stochastic dynamics. Analogously to what was found in [99], we see the diffusion

could be approximated as diffusing on the slow manifold approximated by the

nullcline. Here, for the SFP model we will not pursue this slow manifold approach,

but we will make use of it for for a different model in chapter 5.
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-0.5 0 0.5ρ

0

0.5

1

σ

Figure 4.2: Superposition of the elliptical nullcline (4.22) and a simulation of the
stochastic dynamics with parameters a = 2.1, d = 0.5, c = 2.5, p = 0.9.

4.2.5 Fokker-Planck Equation

To describe the fluctuations due to the noise about the stable fixed point,

described by the stochastic variables ξ = (ξ, η), we return to the van Kampen

expansion (4.4). Collecting the terms of O(N0) we find a linear FPE, giving the

evolution of the distribution of the fluctuations P (ξ, η). We have, using Einstein

notation,
∂P (ξ, η)

∂t
=

∂

∂ξi

(
γijξjP

)
+Dij

∂2P

∂ξi∂ξj
(4.27)

where the drift matrix γ and the diffusion matrix D are given by

γ = −A = ρ∗

(
2a+ c 2(a+ p)

2(a+ p) 2a+ c

)
(4.28)

D = 2aρ∗
c+ 2(p+ d)

4a+ 2p+ c

(
1 0

0 1

)
≡ Deq

(
1 0

0 1

)
. (4.29)

4.3 The Steady State

We are interested in studying our SFP model in the long time limit, when the

system has relaxed to its steady state. We digress here to review the important

concept of detailed balance. When detailed balance holds, the system reaches
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thermal equilibrium in the steady state, and a probability current is necessarily

not permitted. Conversely, when detailed balance is broken, in the steady state a

current can flow, and so the system is driven into a non-equilibrium steady state

(NESS). To explore the flow of a probability current as a possible mechanism

for cycles and other macroscopic dynamical phenomena, we must establish how

the conditions for detailed balance are codified in a Fokker-Planck formalism. In

doing so, we also look to find what rules the noise must adhere to, and learn how

it can be used to drive the system to a NESS.

4.3.1 Detailed Balance

A FPE can be expressed as a continuity equation

∂P (x, t)

∂t
= − ∂

∂xi
Ji(x, t) (4.30)

where we recognise J as the probability current. Comparing this with the FPE

obtained in a Kramers-Moyal expansion (2.30) we write this current as

Ji = αiP −
∂

∂xj
αijP . (4.31)

A system is in thermal equilibrium if in the steady state, where ∂tP = 0,

the current is zero everywhere. This is a manifestation of detailed balance

being satisfied [54]. When one is dealing with systems that are defined by their

dynamics, rather than by appealing to an energy function, a steady state in which

the current is non-zero is most likely. In order to satisfy the continuity equation

(4.30) in the steady state we require that the current is divergence free.

In a one-dimensional (1D) system—by which we refer to the size of the phase

space—it is possible to make a change of variable such that these conditions

are satisfied, unless a current is enforced on the system by virtue of periodic

boundary conditions, or driving of the system at the boundaries. If the system

has natural boundary conditions, where the probability and the current vanish at

the boundaries, then necessarily the current must be zero everywhere in the steady

state [26]. In two or more dimensions, however, detailed balance is typically only

satisfied if it is imposed from the outset, as is appropriate for systems that are

at thermal equilibrium. In particular, in two dimensions (2D), the vanishing of a
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divergence implies that ‘streamlines’ following the probability current form closed

loops in the 2D phase space within the boundaries of the system, regardless of

whether the system has natural, periodic or driven boundary conditions [54].

For the system to be in thermal equilibrium in the steady state two conditions

must be satisfied by the drift and diffusion matrices [54]. The first is the potential

condition which requires that the drift forces in the equivalent Langevin equation

can be derived from a potential V (x):

ẋi = αi(x) + ηi(t) ≡ −
∂V (x)

∂xi
+ ηi(t) . (4.32)

We see that this means we require αi = ∂xiV . Differentiating by xj this becomes

∂αi
∂xj

=
∂2V

∂xj∂xi
. (4.33)

Alternatively by relabelling i↔ j we can write this as

∂αj
∂xi

=
∂2V

∂xi∂xj
. (4.34)

As the order of partial differentiation is irrelevant, equating these two expressions

shows that to obey the potential condition we that the drift terms satisfy

∂αi
∂xj

=
∂αj
∂xi

. (4.35)

The second condition we require for no current to flow is that the we have thermal

noise, which requires the diffusion matrix D to be equivalent to the identity

matrix Dij = dδij, where d is some diffusion constant. If both the potential and

thermal condition are met, the steady-state probability distribution is given by

the Boltzmann distribution

P (x) =
1

Z
e−V (x)/D . (4.36)

with normalisation constant Z [54].
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4.3.2 Application to a Linear Fokker-Planck Equation

We want to translate these conditions for detailed balance for the case where

the stochastic dynamics are acting in the neighbourhood of a deterministic fixed

point, a problem studied more generally by Kwon et al [102, 103, 104]. Using the

linear noise expansion of the van Kampen expansion, the FPE is linear (2.76). The

thermal noise condition needs no translating as it is trivial to identify whether a

matrix is proportional to the identity matrix. Identifying α1 ≡ α1,0 and α2 ≡ α0,1,

from inspection of (2.76) and (2.77) we see that the potential condition is satisfied

if γ is symmetric, i.e. γ12 = γ21.

We can also obtain a direct expression for the current J for a linear FPE.

Such an FPE is of the form of that for the Ornstein-Uhlenbeck process which has

been studied extensively as a model for describing Brownian motion [105, 26]. For

a general n-dimensional vector x the solution to the linear FPE (using Einstein

notation)
∂P (x)

∂t
=

∂

∂xi
γijxjP +Dij

∂2

∂xi∂xj
P (4.37)

in the steady state, ∂tPS = 0, is the multivariate normal distribution

PS(x) =
1

Z
e−

1
2
xkSklxl (4.38)

where the matrix S is the inverse of the covariance matrix: S−1
kl = cov(xk, xl)

[54]. Substituting this Gaussian ansatz into (4.37) we can find how S relates to

the drift and diffusion matrices γ and D. Solving in the steady state, at long

enough time that the system has deterministically reached its fixed point, we will

evaluate the two terms in (4.37) separately. The first term is

∂

∂xi
γijxjPS = γjjPS −

1

2
γijxj(Sikxk + xkSki)PS

=
[
γii −

1

2
xj(γ

T
jiSik + Sjiγik)xk

]
PS (4.39)

where we have used the fact that Sij = Sji and relabelled j ↔ k in the final term.
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The second term gives, making use of the fact Dij = Dji,

Dij
∂2

∂xi∂xj
PS = − ∂

∂xi
DijSjkxkPS

=
[
−DijSji +DijSjkxkSilxl

]
PS

=
[
− (DS)ii + xjSjiDilSlkxk

]
PS (4.40)

where in the final line we relabelled l↔ j in the second term. Putting these two

expressions back into (4.37) the steady-state equation is now

(γ −DS)iiPS − xj
[

1

2
(γTS)jk +

1

2
(Sγ)jk − (SDS)jk

]
xkPS = 0 (4.41)

which can only be satisfied if the following two relations hold:

γTS + Sγ = 2SDS (4.42)

Tr(DS − γ) = 0. (4.43)

Plugging the Gaussian solution (4.38) into the the expression for the current

from the continuity equation for a linear FPE,

Ji = γijPS −Dij
∂

∂xj
PS , (4.44)

gives

Ji = (DS − γ)ijxjPS . (4.45)

We see then that the current will be zero in the steady state, and the system will

be in thermal equilibrium, if

S = D−1γ . (4.46)

This is consistent with the two conditions for detailed balance. To see this

we transpose it to get S = γTD−1, using the fact that S and D are

symmetric. Equating these equivalent expressions for S and rearranging we see

that we must have

γD = DγT (4.47)

which is true when γij = γji and Dij = dδij.
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4.3.3 Solving the Linear Fokker-Planck Equation Explic-

itly

It is in fact possible to solve the linear FPE (4.37) directly using the method of

characteristics. While this is mentioned by Risken in [54], it is not done explicitly,

and having been unable to find such a derivation we present our own version

here. The reason for doing so is that it will give us a direct way to calculate

the matrix S appearing in the steady-state Gaussian distribution (4.38), which

is crucial in subsequent calculations. A different method of how to construct this

matrix is given by Kwon et al [102], who refer to S as the cost matrix. However

the method still boils down to diagonalisation and matrix decomposition, and

does not prove to be a faster method than the one we present here.

Formally, writing the probability distribution as P (x) ≡ P (x, t|x′, t′) we define

the Fourier transform

P (x, t|x′, t′) =
1

(2π)N

∫ ∞
−∞

dNk eikmxmP̃ (k, t|x′, t′) . (4.48)

Using this, the linear FPE (4.37) is transformed to the first-order partial

differential equation

∂P̃ (k, t|x′, t)
∂t

= −γijkj
∂P̃

∂ki
−DijkikjP̃ (4.49)

which we now solve using the methods of characteristics [106]. Defining our initial

time t′ = 0, we have the initial conditions P (x, 0|x′, 0) = δ(x − x′). This gives

the equivalent initial condition in k-space P̃ (k, t|x′, t) = e−ikjx
′
j .

We are required to solve the coupled ordinary differential equations

dt

dr
= 1 (4.50)

dki
dr

= γTjiki , i = 1, . . . , N (4.51)

dP̃

dr
= −kiDijkj . (4.52)

As we have a linear partial differential equation then the characteristic curves are

given parametrically by (k1(0), k2(0) . . . , kN(0), P̃ (0)) = (s1, s2, . . . , sN , e
−isjx′

j)
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[106]. This gives the initial conditions

t(r, 0) = 0 (4.53)

ki(r, 0) = si , i = 1, . . . , N (4.54)

P̃ (r, 0) = e−isjx
′
j (4.55)

The solution to (4.50) is simply t(r) = r+ c(r). Applying the initial condition

(4.53) gives r = t which requires no work to invert. The solution to (4.51) is

ki(r, s) =
∑
j

cje
rλ(j)

v
(j)
i (4.56)

where cj are constants of integration and {λ(j),v(j)} are the eigenvalue-eigenvector

pairs of γT . Introducing the matrices

Vij = v
(j)
i (4.57)

Γij = erλ
(j)

δij (4.58)

we can express ki as

ki(r, s) = cjVipΓpj . (4.59)

Applying the initial condition (4.54) we have

ki(r, 0) = si = cjVij (4.60)

which we invert to find the constant vector c. This gives us the solution

k(r, s) = V ΓV −1s (4.61)

which it is straightforward to invert to find s(k, t). Now that we have solved (4.50)

and (4.51) and can go between (t,k)↔ (r, s), we are able to solve (4.52) and find

the solution in terms of t and k. The solution is of the form

P̃ (r, s) = C exp

(
−
∫

dr kiDijkj

)
(4.62)

where C is the integration constant. To do this integral we express the integrand
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by writing k in terms of s using (4.61) and we use the definition of Γ (4.58):

kiDijkj = Viae
rλ(b)

δabV
−1
bc scDijVjwe

rλ(y)

δwyV
−1
yz sz (4.63)

Combining the exponentials this is simple to integrate over r. Reordering the

terms it is ∫
dr kiDijkj =

sc(V
−1)TcbΓbaV

T
aiDijVjwΓwyV

−1
yz sz

λ(a) + λ(w)
. (4.64)

Defining the matrix

βij =
(V TDV )ij
λ(i) + λ(j)

(4.65)

and again using (4.61) to switch between s and k we can now write (4.62) as

P̃ (r, s) = C exp
[
−ki(V −1)TiaβabV

−1
bj kj

]
. (4.66)

Applying the initial conditions (4.54) and (4.55) gives us for the integration

constant

C = exp(−isjx′j) exp(si(V
−1)TiaβabV

−1
bj sj) . (4.67)

Transforming s to k and plugging this back in gives us the expression for P̃ :

P̃ (t,k) = exp

(
−ikjmj −

1

2
kiσijkj

)
(4.68)

where we define

m = V Γ−1V −1x′ (4.69)

σ = 2(V −1)T (β − Γ−1βΓ−1)V −1 . (4.70)

The only thing we require now is to compute the Fourier transform (4.48):

P (x, t|x′, t′) =
1

(2π)N

∫ ∞
−∞

dNk exp

(
i(xj −mj)kj −

1

2
kiσijkj

)
. (4.71)

This is a standard multi-dimensional Gaussian integral for a symmetric positive-

definite matrix σ [107] with solution

P (x, t|x′, t′) =
1

(2π)N/2
√

detσ
exp

[
−1

2
(mi − xi)σ−1

ij (mj − xj)
]
. (4.72)
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The final consideration we make is to find obtain the long time behaviour, when

P has reached its steady-state distribution. The time dependence enters into the

matrix Γ (4.58), and we see that as t → ∞, Γ−1 → 0, which by (4.69) means

m→ 0.

We summarise this method of solution in the box below. It gives us a way to

explicitly calculate the matrix of the Gaussian distribution for the steady state

(4.75) from knowledge of the drift matrix γ and diffusion matrix D of a system

described by a linear FPE (4.73).

For an N-dimensional linear Fokker-Planck equation

∂P (x)

∂t
=

∂

∂xi
γijxjP +Dij

∂2

∂xi∂xj
P (4.73)

the solution in the steady state is

PS(x) =
1

(2π)N/2
√

detσ
exp

[
−1

2
xiσ

−1
ij xj

]
(4.74)

where:

σ = 2(V −1)TβV −1 ; (4.75)

βij =
(V TDV )ij
λ(i) + λ(j)

; (4.76)

{λ(j),v(j)} are the eigenvalue-eigenvector pairs of γT and Vij = v
(j)
i .

4.3.4 Consistency Check

We can check that this result satisfies the criteria for detailed balance (4.46)

derived earlier. For the potential condition we have γ = γT . This means that the

matrix V will be orthogonal and so V −1 = V T . Applying this and the thermal

noise condition Dij = dδij where d is a constant to (4.76) gives

β =
d

2λ(i)
δij =

d

2
Λ−1 (4.77)

where Λ = diag(λ(1), λ(2), . . . , λ(N)).
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Plugging this into (4.75) gives

σ = d V Λ−1V T . (4.78)

From the spectral theorem of diagonalisation [108] we have the relation

Λ = V TγTV (4.79)

which we substitute into (4.78). Cancelling terms and using the symmetric

property of γ gives

σ = dγ−1 = Dγ−1 . (4.80)

Inverting this we find the equivalence with the Gaussian ansatz matrix S in (4.38),

S ≡ σ−1 = γD−1 = D−1γ (4.81)

where in the final step we have used the fact D is proportional to the identity

matrix. We see that we have recovered the constraint (4.46) on S for detailed

balance to hold and thermal equilibrium be reached in the steady state.

4.4 The SFP Steady State

Now that we have established the criteria for whether or not a system described by

a linear FPE is in thermal equilibrium or not, we apply it to the SFP model. From

inspection of the FPE (4.27) we see that both detailed balance conditions are

satisfied: γ12 = γ21 and Dij = Deqδij. This means in the steady state we expect

no current to flow. Intuitively this seems correct as the SFP model is neutral,

with no selection bias favouring either species.

4.4.1 Breaking Detailed Balance

In order for the system to evolve instead to a NESS, we must induce a current to

flow by breaking the neutrality of the model. To do so we could introduce some

new processes to the model or make the rates of one of the existing processes

different for each species. As we wish to study effects purely due to the noise,

doing either requires some thought. We wish to break the detailed balance by
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violating the thermal noise condition, while keeping the potential condition intact

and the deterministic behaviour of the system unchanged.

This is achievable by not just differentiating one of the rate constants, but

by transforming each of them by a systematic linear displacement. Introducing

the parameters r1 and r2 for species A and B respectively, we transform the rate

constants for the processes given in (4.1) as

a→ a− ri , d→ d− 2ri , p→ p+ ri , c→ c+ 2ri . (4.82)

Substituting this into the rate equations (4.6) and the drift matrix (4.28) leaves

them invariant. The diffusion matrix (4.29) however becomes

Dij = [Deq + 2riρ∗(2ρ∗ − 1)] δij (4.83)

meaning that if r1 6= r2 then D11 6= D22, making the noise athermal which violates

detailed balance.

4.5 Measuring the Current

Now that we have found a way to induce a current to flow in the steady state,

we wish to observe it in the system. We must define an appropriate measure

which signifies the presence of a current. As mentioned earlier, in a study of a

physical system of an optically trapped colloid [98], a persistent non-zero angular

velocity was measured in the thermal motion, from which a probability current

was inferred to be flowing. We will also use the average angular velocity as a

yardstick, and measure it in two ways: (i) from finding the analytical form of the

closed current cycle, and (ii) by direct measurement from Monte Carlo simulation

of the master equation (4.2).

4.5.1 Solving the Planar Autonomous System

Returning to our notation of ξ to describe fluctuations about the stable fixed

point in the SFP model, we can express the current in the steady state in terms

of a velocity by writing

J(ξ) = ξ̇PS(ξ) . (4.84)
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Using our expression for the current derived for a linear FPE (4.45) we see this

gives us the planar autonomous system

ξ̇ = (DS − γ)ξ ≡ Wξ . (4.85)

If the detailed balance condition (4.46) holds then W = 0 and so the velocity

is zero. When r1 6= r2 and W 6= 0, we can solve the planar autonomous system

(4.85) by diagonalising W . We calculate the eigenvalues using

λ± =
TrW

2
±
√

(TrW )2 − 4 detW

2
. (4.86)

We know by the constraint (4.43) imposed by the Gaussian form of the steady-

state distribution PS that TrW = 0. Therefore we have two purely imaginary

eigenvalues: λ± = ±iω where ω =
√

detW .

For planar autonomous systems whose trajectories are centres, the solutions

to (4.85) can be expressed as [108]

ξ(t) = cos(ωt)c1 + sin(ωt)c2 (4.87)

where the constant vectors c1 and c2 are set by the initial conditions:

c1 = ξ(0) = (ξ0, η0) (4.88)

c2 =
1

ω
Wc1 . (4.89)

Writing the matrix W as

W =

(
q u

z −q

)
, (4.90)

we express the general solution as

ξ(t) =

(
ξ0 cos(ωt) + 1

ω
(qξ0 + uη0) sin(ωt)

η0 cos(ωt) + 1
ω

(zξ0 − qη0) sin(ωt)

)
. (4.91)

These solutions tell us that the steady-state currents form closed loops that are

ellipses in the 2D phase space of (ξ, η), with the particular trajectory in the phase

portrait selected by the initial condition. In figure 4.3 is displayed the vector field

defined by (4.85) along with a particular solution of the form (4.91).
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Figure 4.3: Field plot of the planar autonomous system (4.85) overlaid with a
particular solution of the form (4.91). The parameters are a = 3.1, d = 1.0,
c = 3.5, p = 1.2, r1 = 0.0 and r2 = −0.6 with c1 = 0, c2 = 10.3 for the red ellipse.

The important thing to take from this analysis is the frequency of the elliptical

orbit, which we see clearly from the form of the solution (4.91) is ω. This frequency

is the angular velocity associated with the elliptical probability current which we

denote by ωE and is, from before, given by

ωE =
√

detW . (4.92)

In order to calculate this we use the mathematical software Maple(TM) to

calculate W , which involves constructing the matrix S by the method of

characteristics solution given by (4.73 – 4.76).

4.5.2 Measuring an Angle From Simulation

To verify the existence of the elliptical steady-state current we need to measure the

average angular velocity directly from Monte Carlo simulations of the stochastic

dynamics. This requires us to calculate the angular position of the system about

the stable fixed point in the Cartesian coordinate system of the species population

numbers in the simulation.
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X

δφ

1

B
C

Y

Figure 4.4: Schematic of how the change in angle δφ is calculated in terms of the
state of the system before the update, B, and after, C. This example is of the
birth of an A, meaning X(t+ τ) = X(t) + 1.

Defining a coordinate system with a shifted origin to the stable fixed point,

X = n− n∗ (4.93)

Y = m−m∗ (4.94)

with n∗ = m∗ = Nρ∗ , we can measure the total angular displacement φ(t)

which is positive in the anti-clockwise direction and quantifies the total distance

travelled. After each update of the simulation we update the angle by

φ(t+ τ) = φ(t) + δφ . (4.95)

Defining by B = (X(t), Y (t)) the state of the system at the start of the update,

and by C = (X(t+ τ), Y (t+ τ)) the state of the system at the end of the update

as in the schematic given in figure 4.4, we can calculate the change in φ using the

cosine rule:

cos(δφ) =
B2 + C2 − 1

2BC
. (4.96)

As the model involves only one-step processes of a birth or a death of an A or B

in an update, the vector C−B is always of length 1.

What we measure is not the actual polar coordinate θ ∈ [−π, π], but the

aggregate angle φ which will be non-zero if there is a persistent current present in
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Figure 4.5: Time evolution of the total average angular displacement 〈φ(t)〉
measured by simulation of the stochastic dynamics (4.1) by the Gillespie
algorithm. The parameters are a = 2.1, d = 0.5, c = 2.5, p = 0.9. For the
red line (top) r1 = −0.6, r2 = 0, the black line (middle) r1 = r2 = 0, the green
line (bottom) r1 = 0, r2 = −0.6. Each is averaged over 100 runs.

the system. In figure 4.5 is plotted the the time evolution of the ensemble average

〈φ〉. We see that we have the linear relation

〈φ(t)〉 ∼ ωGt (4.97)

for some constant angular velocity which we denote ωG. Furthermore, we observe

that the criterion for no current to flow, r1 = r2, holds as the (black) central plot

has a gradient consistent with a zero angular velocity. For the parameters quoted

in the figure we find by linear regression that the average angular velocity has a

magnitude of ωG = 0.97 for the (red) top and (green) bottom plots. We also see

that the direction of circulation is determined by the athermality of the noise,

i.e. if D11 is larger or smaller than D22.

Using the same parameter set, we calculate the angular velocity obtained from

the frequency of the elliptical orbit (4.92) to be ωE = ±0.98, where the sign is

again indicative of the direction of circulation according to whether r1 > r2 or

vice-versa.
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4.6 Discussion and Conclusion

Our aim in this chapter has been to understand the conditions under which

a non-equilibrium steady-state current in a finite population may be visible

macroscopically, and if such currents could facilitate cycling behaviour in the

population densities. We have observed through what we believe to be the

simplest candidate model of species competition that a system may sustain a non-

equilibrium steady state due to the form of the noise alone. This is manifested

in the flow of a probability current whose presence we have inferred through a

persistent non-zero average angular velocity in 2D state space. We find very good

agreement between the two measurements made: calculating the frequency of the

elliptical orbits the currents form in order to be divergence free in 2D, and by

direct measurement of the ensemble average of the angular velocity from Monte

Carlo simulation of the model’s dynamics using the Gillespie algorithm.

By breaking the symmetry of the fluctuations by violating detailed balance,

we observe a driven motion around the stable fixed point, which is in either the

clockwise or anti-clockwise direction depending on the relative magnitude of the

non-equilibrium parameters r1 and r2. Observing this long-time biased diffusion

due to the athermality of the demographic noise is analogous to the fluctuating

motion observed experimentally for the optically trapped colloid in [98]. However,

a crucial feature of the dynamics is that one does not observe cyclicity in

population abundances in single realisations of the stochastic dynamics on short

timescales. More precisely, it is not possible to see the precession of a single orbit

over a 2π interval. One must either perform an average over long times or an

large ensemble to uncover systematic cyclicity. This means we do not observe

global cycles as behaviour in the sense of McKane and Newman. Indeed, for the

dynamics of the SFP model, there is no resonance in the power spectrum of the

noise, and therefore no stochastic amplifications resulting in large deviations from

the deterministic fixed point values of the species populations.

To observe any form of damped or undamped oscillations, Tomé and de

Oliveira argue that one must have an underlying mechanism in the deterministic

dynamics [92]. Here we have found this is indeed the case - we postulated whether

a non-equilibrium current could fulfil this role in the absence of a deterministic

component. This is not the case in terms of observing macroscopic oscillations

with a well-defined frequency. Instead on short timescales we only observe
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standard non-cyclic fluctuations consistent with Gaussian noise. Therefore we find

that the presence of a non-equilibrium probability current due to the athermality

of the noise could not be advanced in this case as a sole explanation for cyclic

behaviour in natural populations, as observed in single field experiments.

This leads us to consider the question: is it possible to set up a population

dynamical model in such a way that the flow of a noise-induced probability

current does lead to cyclic behaviour being observed in a single trajectory over

short times? When faced with the notion of an elliptical probability current

flowing about the stable fixed point, conceptually one is drawn to thinking the

fluctuations follow a fixed orbital path. Instead as is clear from figure 4.1 the

system diffuses noisily about the fixed point. The definition of an angle about

the fixed point is tenuous as the system can diffuse very close to and even jump

over this origin, making the notion of an orbit implausible. This is the case both

when the system is in thermal equilibrium and when a current is flowing, one

being indistinguishable from the other. In the next chapter we look to overcome

this obstacle by having a truly fixed orbital path, allowing us to study whether

cycling behaviour can be observed due to the flow of a non-equilibrium steady-

state current.

95



Chapter 4. Currents in Finite Populations About a Stable Fixed Point

96



Chapter 5

Currents in Finite Populations

Along a Circular Manifold

In the previous chapter we found for the stable fixed point (SFP) model that

the flow of a steady-state probability current could not by itself give rise to

macroscopically observable cycles. In this chapter we introduce an individual

based, population dynamical model which is explicitly constructed to allow

the system to follow a fixed radial orbit. It comprises two competing species,

whose deterministic dynamics are such that the population resides on a stable

circular manifold. As the population is finite, the system then diffuses around

the manifold. Our major assumption is to neglect any diffusion off the manifold

in the radial direction and model the diffusive motion as a one-dimensional

motion in the polar direction φ. We induce a current to flow by dethermalising

the demographic noise, which leads to a biased diffusion around the manifold

resulting in quasicycles in the two-dimensional (2D) phase space of the population

densities. We measure the current directly from the full 2D dynamics using the

Gillespie algorithm, numerical integration of the polar 1D Langevin equation,

and by considering a thermal diffusion process and calculating Kramers escape

rates. We find broad agreement between these measurements, and find the system

is well described by a 1D non-equilibrium steady state.
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5.1 Introduction

In the stable fixed point (SFP) model of chapter 4 we studied the effects a

probability current in the steady state can have on the macroscopic dynamics

of a two-species population. An obfuscating factor in our considerations was

the ill-defined closed orbit the current followed. We found that the proposed

mechanism, due purely to the athermal form of the noise, by itself is not enough

to sustain cycling behaviour—there must be some deterministic component. In

other ecological models, most commonly this has been provided by a deterministic

spiral, or focus, as in predator-prey systems [23] which give rise to damped

oscillations. These are a feature only at short times which have attenuated

in the steady state. In the last decade, multiple studies of the effects of

demographic noise have shown how combinations of stochastic and deterministic

effects can combine to sustain macroscopically observable cycles in populations

[44, 53, 92, 94, 109]. Crucial to these studies have been the taking of an

individual based model (IBM) approach, in which knowledge of the deterministic

behaviour and fluctuations about it are obtained from the same common source,

the stochastic dynamics that define the model, and encapsulated in the master

equation.

We now look to introduce a component to the deterministic dynamics in order

to facilitate cyclic behaviour. But rather than introduce a spiral, which allows

overdamped oscillations which may or may not become undamped due to the

noise [92], we impose a fixed orbital trajectory for the current to follow. What is

needed is for the dynamics to be repelled from some origin, so that an orbit may

then be set up about it. In particular, if the dynamics are constructed such that

the deterministic forcing vanishes along some closed line (or manifold) in phase

space, and such that the dynamics are attracted onto the manifold from outside,

then it could in principle be possible for non-equilibrium fluctuations to generate

a biased diffusion on the manifold. If so, in general we would expect to observe

cycles about the circular manifold.

In this chapter we present what we believe to be the simplest model to achieve

this, which on the deterministic level introduces a stable circular continuous

manifold of fixed points, which lie at a fixed radius away from a repulsive node. We

admit from the perspective of modelling real biological populations, the dynamics

required to generate such a property in the deterministic behaviour are somewhat
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contrived. However, from the more fundamental perspective of non-equilibrium

statistical mechanics, we believe that this is the simplest such system that admits

macroscopically observable quasicycles arising from non-equilibrium probability

currents. It is also a natural extension of quasi-neutral models of population

dynamics from open to closed neutral manifolds [110].

In studying the stochastic dynamics on the circular manifold we will carry out

a dimensional reduction akin to a slow manifold analysis in order to describe the

athermal biased diffusion, a purely noise-induced phenomenon, about the circular

manifold. In doing so we can not only find whether cycles are possible, but also

test the validity of describing 2D systems in terms of slow and fast variables, as

done similarly in [95, 99].

5.2 The Circular Manifold (CM) Model

The new model we construct has a similar patch dynamics to that of the SFP

model, the framework of which is detailed in section 2.7.1. The only major

difference is now we do not conserve the total number of sites on the non-spatial

patch. In other words, the patch can accommodate an indefinitely large number

of both species. The population is kept finite however by the necessarily more

complex interactions we admit to the model.

Defining the intensive population numbers xA = XA/K, xB = XB/K where

K is the carrying capacity, both species undergo the following birth and death

processes:

T (XA + 1, XB|XA, XB) = bxA
(
2 + 3x2

A + x2
B + 2xAxB

)
birth of A

T (XA, XB + 1|XA, XB) = bxB
(
2 + 3x2

B + x2
A + 2xAxB

)
birth of B

T (XA − 1, XB|XA, XB) = bxA
(
a+ (4− a)xA + 2xB + x3

A + xAx
2
B

)
death of A

T (XA, XB − 1|XA, XB) = bxB
(
a+ (4− a)xB + 2xA + x3

B + xBx
2
A

)
death of B

(5.1)

where b ≡ b(K) and a are constants.

To interpret these transition rates in terms of biological processes, we note

that a term in xnAx
m
B corresponds to an interaction between n individuals of

species A and m individuals of species B. So, for example, the birth of A
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at a rate proportional to x3
A would arise from some interaction between three

individuals of species A, i.e., some cooperative interaction. Likewise, a birth

rate for A proportional to xAx
2
B would arise through some interaction between

individuals of species B: for example, the cooperative production of some resource

by individuals of B that is beneficial to A. The higher-order terms in the death

rates serve to stop the population sizes running out of control: they can therefore

be interpreted as some kind of resource depletion implied by large populations.

Thus although the combination of processes that yields a circular stable manifold

is somewhat specific, the biological principles involved (cooperative behaviour

and resource depletion) are not entirely unreasonable.

For analysis purposes the useful quantities obtained from the rates are the

moments of δxA and δxB. From these we will find the rate equations for the

mean-field analysis of the deterministic behaviour of the system, and the jump

moments of the Fokker-Planck equation (FPE) derived from a Kramers-Moyal

expansion of the master equation, as detailed in section 2.7.1. They are given by

〈(δxA)i(δxB)j)〉 =
∑

X′
A,X

′
B

(δxA)i(δxB)jT (X ′A, X
′
B|XA, XB)τ (5.2)

where X ′A/B = XA/B ± 1 and T (X ′A, X
′
B|XA, XB)τ is the probability that xA

and/or xB changes by ±1/K in an infinitesimal time τ . We write the moments

in terms of the extensive variables b and K, and the intensive variables xA and

xB via the functions Mi,j(xA, xB):

〈(δxA)i(δxB)j)〉 =
b

Ki+j
Mi,jτ . (5.3)

We find for the first and second moments:

M1,0 = xA
(
2− a− (4− a)xA − 2xB + 3x2

A + x2
B + 2xAxB − x3

A − xAx2
B

)
M0,1 = xB

(
2− a− (4− a)xB − 2xA + 3x2

B + x2
A + 2xAxB − x3

B − xBx2
A

)
M2,0 = xA

(
2 + a+ (4− a)xA + 2xB + 3x2

A + x2
B + 2xAxB + x3

A + xAx
2
B

)
M0,2 = xB

(
2 + a+ (4− a)xB + 2xA + 3x2

B + x2
A + 2xAxB + x3

B + xBx
2
A

)
M1,1 = 0 . (5.4)
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5.2.1 Mean-Field Analysis

The deterministic behaviour can be found from the rate equations for 〈xA〉 and

〈xB〉:

d〈xA〉
dt

= lim
τ→0

〈xA(t+ τ)〉 − 〈xA(t)〉
τ

= M1,0

d〈xB〉
dt

= lim
τ→0

〈xB(t+ τ)〉 − 〈xB(t)〉
τ

= M0,1 , (5.5)

can be computed using (5.4). In the mean-field limit K → ∞ where we neglect

fluctuations, 〈xA(t)〉 ≡ xA(t) and we find after some algebra:

ẋA = bxA(xA − 1)[a− (xA − 1)2 − (xB − 1)2 ]

ẋB = bxB(xB − 1)[a− (xA − 1)2 − (xB − 1)2 ] . (5.6)

Defining the polar coordinates r and φ via

x′A ≡ xA − 1 = r cos(φ)

x′B ≡ xB − 1 = r sin(φ) , (5.7)

we find that the fixed points of (5.6) are

(xA = 0, xB = 0) (5.8)

(xA = 1, xB = 0) (5.9)

(xA = 0, xB = 1) (5.10)

(xA = 1, xB = 1) (5.11)

r = r0 =
√
a . (5.12)

To find the nature of these fixed points we must evaluate the linearised

stability matrix L,

L = b

(
(2xA − 1)(a− r2)− 2xA(xA − 1)2 2xA(xA − 1)(xB − 1)

2xB(xA − 1)(xB − 1) (2xB − 1)(a− r2)− 2xB(xB − 1)2

)

for each in turn. The fixed point (5.8) is an absorbing state at the origin where
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both species are extinct. Its linear stability is given by the eigenvalues of

L = b

(
−(a− 2) 0

0 −(a− 2)

)
(5.13)

which we can read off as L is diagonal. We see that for a < 2 both eigenvalues

are positive and the fixed point will be repulsive. The fixed point (5.11) sits at

the centre of the polar coordinate system defined in (5.7). Physically this means

that (K,K) is the centre of the circle in the extensive system. It has the diagonal

stability matrix

L = b

(
a 0

0 a

)
(5.14)

which means it will also be a repulsive fixed point, as desired, for any positive a >

0. Two fixed points (5.9) and (5.10) sit on the A and B axis respectively, which

are absorbing for the respective species. They have diagonal stability matrices

L = b

(
±(a− 1) 0

0 ∓(a− 1)

)
(5.15)

which will make them saddle points if we choose 0 < a < 1. Finally, we have the

fixed point (5.12), which is in fact a continuous circular manifold of fixed points,

located at fixed radius r0 from the centre (5.11). The stability matrix is

L = −2b

(
x∗A(x∗A − 1)2 x∗A(x∗A − 1)(x∗B − 1)

x∗B(x∗A − 1)(x∗B − 1) x∗B(x∗B − 1)2

)
(5.16)

where (x∗A, x
∗
B) are points which lie on the circular manifold. This matrix has zero

determinant, which means using (4.86) that the eigenvalues are {0,TrA}. For any

permitted population densities, i.e. those that are non-negative, TrA < 0 and so

the circular manifold is stable, having a restoring force in the radial direction off

the manifold, and no force acting in the φ-direction around the manifold, precisely

what we set out to obtain.

To summarise, we find that at the level of the deterministic equations, the

system evolves to a fixed point on the circular manifold if we have 0 < a < 1. The

fixed point that is reached would be determined by the initial conditions. For finite

K however, we expect the system to evolve to the neighbourhood of the manifold,

102



5.2. The Circular Manifold (CM) Model
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Figure 5.1: Typical dynamical trajectory of the system defined by XA(t) and
XB(t) and the transition rates given in (5.1). These data were obtained by
simulation using the Gillespie algorithm of the master equation with parameters
K = 5000, b = K2, a = 0.5.

and then diffuse about it. A typical snapshot of the evolution of the system is

given in figure 5.1: this indeed shows that the occupied region of phase space is

a circular annulus of large radius relative to its width.

The CM model as defined by (5.1) is neutral, in the sense that relabelling A

to B in the birth rate for A say, gives the birth rate for B. There is no selection

bias for one of the species and the rates of birth and death are equivalent. The

neutrality is made more explicit by the fact each species has the same locus of fixed

points, and deterministically both relax to reside on the circular manifold. This

is a natural extension of quasi-neutral models of population dynamics from open

to closed neutral manifolds. In [110], Parsons and Quince study a model of a non-

spatial population with two species, each of which undergo the same birth and

death processes. Their model is non-neutral in the sense that the birth and death

rate differ for each species. However, when the ratios of these two parameters are

the same for both species, deterministically both population densities evolve to

reside at a stable linear manifold, made up of a continuum of fixed points. In this

sense the model is said to be quasi-neutral.
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5.3 Reduction to a One-Dimensional Diffusion

Due to the mean-field behaviour of the CM model, the stochastic dynamics of the

system are now restricted to act on a circular annulus, as seen in figure 5.1. In

order to analyse the diffusion about it, we now reduce the full dynamics in the two-

dimensional space spanned by xA and xB to the diffusion of the angular coordinate

φ in a polar coordinate system defined in (5.7), whose origin is the centre of

the circular manifold. A similar approach was used by Parker and Kamenev

in studying the stability of a stochastic Lotka-Volterra model [95]. There, as

the angular component of the motion relaxes rapidly, it can be integrated out

of the probability distribution, allowing the dynamics of the 2D system to be

described by the 1D stochastic radial motion between the deterministic limit

cycles. In contrast, our main assumption in this study is to neglect diffusion in

the radial r direction off the stable circular manifold. That is, we assume that

the restoring force that acts perpendicular to the manifold is sufficiently strong

that any deviation away from the manifold does not contribute to the dynamics

in an important way. In doing so, we are casting the circle as a slow manifold

of the stochastic dynamics, a technique also employed in [99, 111, 112]: the fast

variable r relaxes quickly to the circle, leaving the dynamics of the slower variable

φ, which has a zero eigenvalue, to be constrained to lie on the circular manifold.

We note, however, that lateral diffusion off a manifold has been seen to enter

into an effective description on an open manifold [110]. Here, our aim is to see

how well we can understand the full two-dimensional diffusion within a highly

simplified approximation, and in particular any sustained angular velocity due

to the presence of a probability current in the steady state, leading to cyclic

behaviour.

In a very recent piece of work [99], the authors studied the dynamics of a

two-species population which deterministically evolves to reside at a fixed point

on a stable hyperbolic manifold. They carried out a similar dimensional reduction

to that presented here and found it to be a good approximation of the full 2D

dynamics. However a crucial difference is that the hyperbola has natural boundary

conditions. As mentioned in section 4.3.1, for a 1D system with natural boundary

conditions the current must vanish at the boundaries. Therefore the system

cannot support a sustained constant current in the steady state as it must be

zero everywhere on the hyperbola.
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5.3.1 The Polar Fokker-Planck Equation

In order to study the diffusion in the φ direction around the manifold, we wish to

derive a polar Fokker-Planck equation (FPE) for the evolution of the probability

density P (φ, t). To do so we terminate the Kramers-Moyal forward expansion

∂P (φ, t)

∂t
=
∞∑
n=1

(−1)n

n!

(
∂

∂φ

)n
αn(φ)P (φ, t) (5.17)

at the second term, as we detailed in section 2.7.1. This truncation is valid if α1

and α2 are the only non-zero jump moments as defined by

αn = lim
τ→0

〈[φ(t+ τ)− φ(t)]n〉
τ

≡ lim
τ→0

〈(δφ)n〉
τ

. (5.18)

To find an expression for δφ we use the schematic of figure 4.4 to find a relation

in terms of of δxA and δxB. It is

δφ(δx′A, δx
′
B|x′A, x′B) = tan−1

(
x′B + δx′B
x′A + δx′A

)
− tan−1

(
x′B
x′A

)
, (5.19)

where the first term on the right hand side is the angle defined after an update

and the second is the angle before, defined from the origin at the centre of the

manifold using the polar coordinates defined by (5.7). Taylor expanding to second

order in δx′A and δx′B about δx′A = δx′B = 0 and keeping terms up to order δ2

yields

δφ =− x′B
r2

(δx′A) +
x′A
r2

(δx′B)

+
x′Ax

′
B

r4

(
(δx′A)2 − (δx′B)2

)
+

(x′B)2 − (x′A)2

r4
(δx′Aδx

′
B) . (5.20)

Applying the polar transformation (5.7) and averaging gives

〈δφ〉 =
b

K2

[
sin(2φ)

2r2
0

(
M2,0 −M0,2

)]
τ (5.21)

〈(δφ)2〉 =
b

K2

[
sin2(φ)M2,0 + cos2(φ)M0,2

r2
0

]
τ , (5.22)

105



Chapter 5. Currents in Finite Populations Along a Circular Manifold

where we use the definitions of the moments (5.2) and the fact that determinis-

tically we are at a fixed point so 〈δxA〉 = 〈δxB〉 = 0. For the higher-order jump

moments we can infer from (5.3) and (5.4) that to leading order in K

〈(δφ)n〉 ∼ bK−nGn(xA, xB)τ, n ≥ 3 (5.23)

where Gn are functions of the intensive variables, independent of K. Using (5.18),

we have from the above expressions for the moments that

α1, α2 ∼ lim
b→∞

b

K2
(5.24)

αn ∼ lim
b→∞

b

Kn
, n ≥ 3 . (5.25)

The change in limit is an observation that the rates defined in (5.1) scale with

b and so the time τ until an event happens scales like 1/b. This means that in

order to have a non-zero first and second jump moment with higher-order jump

moments vanishing we should choose b = K2.

Therefore we have the 1D polar FPE describing the diffusion about the circular

manifold
∂P (φ, t)

∂t
= − ∂

∂φ

[
f(φ)P

]
+

1

2

∂2

∂φ2

[
g2(φ)P

]
(5.26)

where the drift term f and the diffusion term g are

f(φ) =
sin(2φ)

2r2
0

(
〈(δxA)2〉 − 〈(δxB)2〉

)
=

1

4r2
0

(
2r0(12 + r2

0)[sin(φ)− cos(φ)] + 4r0(6 + r2
0)[sin(3φ) + cos(3φ)]

+ 20r2
0 sin(4φ) + 2r3

0[sin(5φ)− cos(5φ)]

)
, (5.27)

g2(φ) =
1

r2
0

(
sin2(φ)〈(δxA)2〉+ cos2(φ)〈(δxB)2〉

)
=

1

4r2
0

(
64 + 28r2

0 + r0(56 + 6r2
0)[sin(φ) + cos(φ)] (5.28)

+ 4r0(6 + r2
0)[sin(3φ)− cos(3φ)]

+ 24r2
0 sin(2φ)− 20r2

0 cos(4φ)− 4r2
0[sin(5φ)− cos(5φ)]

)
.
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(a) f(φ) (b) g(φ)

Figure 5.2: The drift term f and the diffusion term g of the Langevin equation
(5.29) for a = 0.5.

Using the Itô prescription (2.86) we can write the equivalent Langevin equation

φ̇ = f(φ) + g(φ) ηφ (5.29)

where ηφ is Gaussian white noise with zero mean and unit variance. As one would

expect, f and g are 2π-periodic as can be seen in figure (5.2).

5.4 The Steady State

A key feature of the Langevin equation (5.29) is that the noise is multiplicative.

The criteria for a non-equilibrium steady state (NESS) with a current to exist in

a system with a FPE of the form (5.26) with periodic boundary conditions are

more easily checked in the case where the noise is additive. Therefore we will use

the transformation defined in section 2.10 which will do just that. The required

change of variable is

θ(φ) =
√

2D

∫ φ

0

dφ′

g(φ′)
, (5.30)

under which the FPE (5.26) becomes

∂tQ(θ, t) = −∂θ (F (θ)Q) +D∂2
θQ (5.31)
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describing the time evolution of the probability density Q(θ, t) where now the

diffusion is a constant D and the drift force F (θ) is

F (θ) =
√

2D

(
f(φ)

g(φ)
− 1

2
∂φg(φ)

) ∣∣∣∣
φ=φ(θ)

. (5.32)

The corresponding Langevin equation (à la Itô) is

θ̇ = F (θ) +
√

2D ηθ . (5.33)

In this transformation one can choose D arbitrarily. For completeness we will

proceed with arbitrary D, but in numerical calculations will set it to unity.

Unfortunately, it is difficult to obtain an analytic expression for F (θ), as one

needs to evaluate the integral (5.30) and invert the resulting expression to obtain

the function φ(θ) that appears in (5.32). It is however possible to determine

whether the drift force F (θ) is conservative, and hence infer whether the system

will reach thermal equilibrium, without an explicit expression for this function.

First, we note that F (θ) is conservative if the work done in one circulation of

the manifold vanishes, i.e., if ∮
dθ F (θ) = 0 . (5.34)

We can write an ansatz for F :

F (θ) = ω − ∂θV (θ) , (5.35)

where the first term ω is a constant, non-equilibrium driving force and the second

term is a conservative force derived from a potential V (θ). To determine whether

ω = 0, formally, we should be able to write F (θ) as a Fourier series

F (θ) =
1

2
a0 +

∞∑
n=1

[
an cos

(
nθ

T

)
+ bn sin

(
nθ

T

)]
(5.36)

where, using (5.30),

T =

√
2D

2

∫ π

−π

dφ

g(φ)
(5.37)

is the half-width of the transformed interval [−π, π], viz, T = θ(π) − θ(0). (We
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can take θ(0) = 0 with no loss of generality). The coefficients are given in the

usual way as

an =
1

T

∫ T

−T
dθ F (θ) cos

(
nθ

T

)
(5.38)

bn =
1

T

∫ T

−T
dθ F (θ) sin

(
nθ

T

)
. (5.39)

Comparing (5.35) and (5.36) we see that ω = a0/2. So the question of whether

F (θ) is conservative and hence whether the system is reaches thermal equilibrium

is equivalent to finding if a0 is zero.

Taking

a0 =
1

T

∫ T

−T
dθ F (θ) (5.40)

we apply the change of variable (5.30):

a0 =
1

T

∫ φ(T )

φ(−T )

dφF (θ[φ])
dθ

dφ
. (5.41)

By definition φ(±T ) = ±π, F (θ[φ]) can be obtained directly by (2.96), formally

via φ(θ[φ]) = φ, and we know the Jacobian of the transformation. So,

a0 =

√
2D

T

∫ π

−π
dφ

(
f(φ)

g(φ)2
− d

dφ
ln g(φ)

)
(5.42)

=

√
2D

T

∫ π

−π
dφ

f(φ)

g(φ)2
, (5.43)

since the second term vanishes due to the periodicity of g(φ).

Although we have successfully side-stepped the problem of evaluating φ(θ), it

remains the case that the integral (5.43) does not have a convenient closed form.

However we can determine whether it is zero by finding if the integrand

h(φ) =
f(φ)

g2(φ)
(5.44)

is odd over the limits of integration. In figure 5.2 we see that f is odd and g is
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even about φ = π/4. This implies that h is also odd about π/4, namely:

h(φ) = −h
(
π

2
− φ
)
. (5.45)

Due to the 2π-periodicity of h we can write (5.43) as

a0 =

∫ π

−π
dφ h(φ) =

∫ 5π
4

− 3π
4

dφ h(φ) =

∫ 5π
4

π
4

dφ h(φ) +

∫ π
4

− 3π
4

dφ h(φ) . (5.46)

Changing variable to β = π/2− φ in the second integral we have

a0 =

∫ 5π
4

π
4

dφ h(φ) +

∫ 5π
4

π
4

dβ h
(π

2
− β

)
. (5.47)

Now applying (5.45) we see that a0 = 0.

Intuitively it seems correct that the system reaches thermal equilibrium as

the model defined by the processes in (5.1) is neutral and each species undergoes

the same processes at equivalent rates.

5.4.1 Breaking Detailed Balance

The insight that is gained from this analysis is that we now know in order to reach

a NESS, we must introduce processes which will enter the drift term f and the

diffusion g in such a way as to make the integrand in (5.43) not be odd. In order

to adhere to our central study of the effects that noise can have in the dynamics

and fate of non-equilibrium systems, we wish to do this in such a way so that

the deterministic contribution is unaffected. Therefore whatever change to the

model’s dynamics (5.1) we make, we wish the drift term f to be unaffected. To

this end we introduce the following extra rates to the CM model:

T (XA + 1, XB|XA, XB) = b(p1xAx
3
B + p2x

3
axB)

T (XA, XB + 1|XA, XB) = b(p1xAx
3
B + p2x

3
axB)

T (XA − 1, XB|XA, XB) = b(p1xAx
3
B + p2x

3
axB)

T (XA, XB − 1|XA, XB) = b(p1xAx
3
B + p2x

3
axB) . (5.48)
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These new rates cancel in the first moments 〈δxA〉 and 〈δxB〉 and so leave the

deterministic equations (5.5) unaltered. The second moments accrue the extra

terms

〈(δxA)2〉 =
b

N2
0

[
2p1xAx

3
B + 2p2x

3
AxB

]
τ (5.49)

〈(δxB)2〉 =
b

N2
0

[
2p1xAx

3
B + 2p2x

3
AxB

]
τ . (5.50)

Substituting these into (5.27) leaves f as it was. However the form of g will

change. The two new parameters p1 and p2 will determine the magnitude and

direction of the probability current. The new terms that appear in our expression

for g (5.28) are

2p1 sin2(φ)(1 + r cos(φ))(1 + r sin(φ))3 + 2p2 cos2(φ)(1 + r sin(φ))(1 + r cos(φ))3 .

From this we see that g will only remain even about π/4 as long as p1 = p2.

Therefore as long as p1 6= p2 a probability current will flow in the steady

state. This condition breaks the neutral selection of the model as the rates of

birth and death for each species are no longer exactly equivalent. However quasi-

neutrality is maintained in the sense that the deterministic behaviour of both

species is the same [110, 113], each evolving to reside on the common circular

manifold.

5.5 Measuring the Current

Having now established a mechanism in the multiplicative noise of the CM model

for inducing a probability current to flow in the steady state, we now look to

establish its existence. We present three different approaches to measuring the

current. We follow the same principle for the SFP model of chapter 4 in expressing

the current as

J(φ, t) = P (φ, t)ω (5.51)

where P is the probability density and ω is the average angular velocity, and we

infer the flow of a current from a non-zero ω.

The first method is the same as that used in section 4.5.2, which uses

Monte Carlo simulation of the dynamics for the full problem. The second
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Figure 5.3: Plot of the time evolution of the average aggregate angle obtained
from: (a) simulation of the 2D stochastic model using the Gillespie algorithm; (b)
numerical integration of the 1D polar Langevin equation. For each, the parameters
are K = 5000, b = K2, a = 0.5, p1 = 20 and p2 = 0, and the average is taken
over 100 runs.

is to numerically integrate the Langevin equation within the one-dimensional

reduction. This will also provide an assessment of the validity of the 1D

reduction approximation, and thereby revealing any error that is introduced in

this procedure. The third method is to appeal to Kramers’ escape-rate theory

to estimate the current. Our expectation is these methods trade accuracy for

precision and (in the latter case) analytical insight.

5.5.1 Monte Carlo Simulation

Using the Gillespie algorithm the stochastic model as defined by the rates in (5.1)

and (5.48) can be simulated. We measure the total angular displacement φG(t)

which is positive in the anti-clockwise direction and quantifies the total distance

travelled, as previously described in section 4.5.2. For each update

φG(t+ τ) = φG + δφ (5.52)

where δφ is calculated using (5.19). In figure 5.3(a) we plot the angular

displacement and find that

〈φG(t)〉 ∼ ωG t . (5.53)

For the parameters quoted, linear regression of the data yields ωG = −0.97.
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5.5.2 Numerical Integration of the Langevin Equation

The average velocity can also be calculated from direct numerical integration of

the quasi-1D Langevin equation (5.29). We do so using the integration scheme [54]

φL(t+ dt) = φL(t) + f(φL)dt+ g(φL)
√
dt ηφ . (5.54)

For the same set of parameter values of previously, we find an ensemble-averaged

angular displacement shown in figure 5.3(b). This time we find that ωL = −1.27,

in reasonable agreement with the simulations of the full 2D diffusion. (See below

for a more detailed discussion of the different methods for estimating the current.)

5.5.3 Kramers’ Escape-Rate Theory

Our final approach makes use of the transformation of the diffusion with

multiplicative noise to a diffusion with additive noise described in Section 5.3. This

allows us to estimate the non-equilibrium current via calculations of escape rates

over potential barriers as done by Kramers [114], following closely the presentation

of the method in [54].

The potential Φ(θ) that we are required to calculate is

Φ(θ) = −
∫ θ

dθ′F (θ′) . (5.55)

From earlier discussion, one would expect Φ(θ) to only be a true potential if F (θ)

is conservative. However, using the ansatz (5.35) in (5.55) we have

Φ(θ) = −ωθθ + V (θ) (5.56)

up to an irrelevant constant. We know V (θ) is periodic as it can be expressed

as a Fourier series (5.36). Therefore in the domain of θ, V will be monotonically

shifted by ωθ, which we interpret as our potential Φ(θ).

Given the form of f and g derived for this model it is not possible to perform

the transformation from φ to θ in (5.30), or compute the integral in (5.55) to

obtain Φ. By approximating the function g with a mathematically tractable

function we are able to make some progress in analytically approximating these

required expressions.
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Figure 5.4: The inverted diffusion term 1/g (red, solid) and its approximation G
(green, dashed).

Approximating θ(φ) and Φ(θ)

Here we present the technical details of our approximations for the variable

transformation and the potential. We are faced with the task of computing

Φ(θ) = −
∫ θ

dθ′ F (θ′) (5.57)

= −
√

2D

∫ θ

dθ′
(
f(φ)

g(φ)
− 1

2
∂φg(φ)

) ∣∣∣∣
φ=φ(θ′)

. (5.58)

Applying the same change of variable as in (5.41), (5.42) we have

Φ(θ) = −
√

2D

∫ φ(θ)

dφ

(
f(φ)

g2(φ)
− 1

2

∂φg(φ)

g(φ)

)
. (5.59)

The form of g(φ) as it is given in (5.28) makes the above integral intractable. We

therefore make the approximation G(φ) ≈ Gg(φ) = 1/g(φ) where G has the form

G(φ) = cG + AG cos(φ− bG) . (5.60)

The phase bG is set to by matching numerically the position of the first extremum

of Gg and G for φ > 0. The other two parameters are set by making the maximum

and minimum values of Gg and G the same. We illustrate this approximation

for a typical g in figure 5.4. Applying the approximation G(φ) ≈ 1/g(φ) our
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expression (5.59) becomes

Φθ(θ) = −
√

2D

∫ φ(θ)

dφ

(
f(φ)G(φ)2 +

1

2

∂φG(φ)

G(φ)

)
. (5.61)

It is possible to numerically integrate this integral by computer, in our case

using Maple(TM). However, to evaluate it in the θ coordinate we must have an

analytical form of φ(θ) to substitute into it.

The transformation from θ to φ in (5.30) does not have a closed form for the

exact g(φ) derived for this model so we approximate it by

θ(φ) ≈ θG(φ) =
√

2D

∫ φ

0

dφ′G(φ′) (5.62)

which using (5.60) gives

θG(φ) =
√

2D(cGφ− AG sin(φ− bG)− AG sin(bG)) . (5.63)

This functional relation is shown in figure B5.5(a). What we really require is the

inverted form of this relation, giving us φ in terms of θ. The inversion is not

possible, however we can approximate it via

θt =
√

2D

∫ φ

0

dφ

ct + At cos(φ)
. (5.64)

This integral has the solution

θt(φ) =
2
√

2D

ct
√

1− at
tan−1

(
1− at√
1− a2

t

tan

(
φ

2

))
(5.65)

where ct = At/ct. We need to approximate the values ct and at to give a good fit

with the form of θ(φ) from (5.63).

We do this by matching the linear gradient and the curvature near φ = 0

of θG(φ) and θt(φ). The slope we match by finding the straight line gradient

between two points that lie on θt(φ) and making it equal to slope of the constant

term in (5.63). Choosing the two points φ = −π and φ = π we have from (5.65)

that

θt(±π) = ±
√

2D π

ct
√

1− a2
t

. (5.66)
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Matching the gradients:

θt(π)− θt(−π)

2π
=
√

2D cG (5.67)

yields

cG =
1

ct
√

1− a2
t

. (5.68)

To match the curvature near the origin we rearrange (5.65) to

tan

(
ct
√

1− a2
t√

2D

θt
2

)
=

1− at√
1− a2

t

tan

(
φ

2

)
. (5.69)

Substituting θG for θt using (5.63) gives

tan

(
ct
√

1− a2
t√

2D

θG
2

)
=

tan

(
ct
√

1− a2
t

2
√

2D

[√
2D(cGφ− AG sin(φ− bG)− AG sin(bG))

])
. (5.70)

Now setting the above two expressions equal and Taylor expanding about φ = 0

we have
1− at√
1− a2

t

φ

2
=
ct
√

1− a2
t

2

(
cG − AG cos(bG)

)
φ (5.71)

which upon matching coefficients gives

1

ct(1 + at)
= cG − AG cos(bG) . (5.72)

We can solve (5.68) and (5.72) simultaneously to find ct and at for the approximate

transformation (5.65). A comparison of the two approximate transformations are

given in figure B5.5(b). We can invert (5.65) and find the functional form we

require:

φ(θ) = 2

√
1− a2

t

1− at
tan−1

(
ct
√

1− a2
t√

2D

θ

2

)
. (5.73)

Finally, we need to find the limits of the domain in the θ variable. Substituting
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(a) θG(φ) (b) θG(φ) and θt(φ)

Figure 5.5: Comparison of the two approximations of the transformation θG(φ)
(red, solid) and θt(φ) (green, dashed).

the φ limits ±π into (5.65) we find θ ∈ [−θ0, θ0], with

θ0 =

√
2D

ct
√

1− a2
t

. (5.74)

The Static Potential

In figure 5.6 are typical examples of Φ(θ) according to different values of the non-

equilibrium parameters p1 and p2. The thermal equilibrium condition p1 = p2 is

shown in figure 5.6(a). In this case there is no current flowing and the potential

Φ(θ) is periodic. However in the non-equilibrium cases shown in figures 5.6(b) and

5.6(c) we see that Φ(θ) is not periodic. Though as the domain of of the potential

is only θ ∈ [−θ0, θ0], as defined in (5.74), it is only important that the upper

and lower limits of the domain are the same to satisfy the periodic boundary

conditions of the system. The absolute value of a potential is not important for

deriving the force for it, so we do not require Φ(θ) to be periodic to regard it as

being a potential.

The Escape Rate

Each of the potentials in figure 5.6 are characterised by having a minimum

between two barriers. We can derive the escape rate of a particle over these

barriers; here we will do so for the right side barrier of the potential displayed in

figure 5.6(c). We denote the position of the minimum in the well by θW , the top
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(a) p1 = 0, p2 = 0

(b) p1 = 20, p2 = 0 (c) p2 = 0, p2 = 20

Figure 5.6: Φ(θ) for different values of the current parameters p1, p2 with a = 0.5.

of the barrier by θB and the next minimum to the right of the barrier by A. For

the FPE (2.95) in a non-equilibrium steady state the probability current

J = −∂θΦθ(θ)QS(θ)−D∂θQS(θ) (5.75)

can be written as

J = −De−Φθ/D
∂

∂θ

[
eΦθ/DQS

]
. (5.76)

Integrating between θW and A we have

J

∫ A

θW

dθ eΦθ/D = D
[
eΦθ(θW )/DQS(θW )− eΦθ(A)/DQS(A)

]
. (5.77)

If the barrier height ∆Φ = Φ(θB)− Φ(θW ) is much greater than the diffusion D

then the particle is far more likely to be found in the well about θW . This means
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we neglect the second term in the square brackets in (5.77), giving

J =
D QS(θW ) eΦ(θW )/D∫ A

θW
dθ eΦθ/D

. (5.78)

The current can be expressed as the probability p of being in the well at θW

multiplied by the escape rate r from the well. Taking θ1 < θW < θ2 to define the

domain of the well we write

p =

∫ θ2

θ1

dθ QS(θ) . (5.79)

From (5.76) the stationary distribution is

QS(θ) = Ne−Φ(θ)/D − Je−Φ(θ)/D

∫ θ

dθ′
eΦ(θ′)/D

D
. (5.80)

As we are interested in the stationary distribution in the well we introduceQS(θW )

by eliminating the normalisation constant N :

QS(θ) = QS(θW )e−[Φ(θ)−Φ(θW )]/D − Je−Φ(θ)/D

D

[∫ θ

dθ′ eΦ(θ′)/D −
∫ θW

dθ′ eΦ(θ′)/D

]
(5.81)

Using this we can now write

p = QS(θW )eΦ(θW )/D

∫ θ2

θ1

dθ e−Φ(θW )/D (5.82)

where the contribution from the square bracket terms in (5.81) is negligible

when considering the contribution from the domain of the well. Combining this

with (5.78) we can express the escape rate as

1

r
=
p

J
=

1

D

∫ θ2

θ1

dθ e−Φ(θ)/D

∫ A

θW

dθ eΦ(θ)/D . (5.83)

We Taylor expand each integrand in the above expression, the first about θW ,
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the second about θB:

Φ(θ) ≈ Φ(θW ) +
Φ′′(θW )

2
(θ − θW )2 (5.84)

Φ(θ) ≈ Φ(θB)− |Φ
′′(θB)|
2

(θ − θB)2 . (5.85)

Using these second order expansions, we can extend the boundaries of each

integral to ±∞, meaning that to both integrals in (5.83) are now Gaussian.

Computing them leads to the final expression for the escape rate

r ≈ 1

2π

√
Φ′′(θW )|Φ′′(θB)| e−∆Φ/D . (5.86)

To find the value of these escape rates, we numerically compute the value of the

second derivatives at the minima and maxima after explicitly constructing the

potential Φ(θ) using the mathematical software Maple (TM).

Denoting by r− and r+ the escape rate for the left and right barrier

respectively, we express the average change in θ due to hopping over the right or

left barrier in a time τ as

〈δθ〉 = (r+∆θ − r−∆θ)τ (5.87)

where ∆θ = 2θ0 is the distance between wells, i.e. the period of the system. In

the limit τ → 0 this gives the average angular velocity

ωK = ∆θ(r
+ − r−) . (5.88)

It is clear from (5.86) that a current exists due to the difference in the height of

the two barriers. When the system is in thermal equilibrium as in figure 5.6(a)

there is no current as we are equally likely to hop left or right around one circuit.

With the parameter set used before, and setting D = 1, we find ωK = −0.83.

Again, this value is in reasonable agreement with those previously obtained by

other means.
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Figure 5.7: Overlay of the different measurements of ω using the three distinct
methods of section 5.5 plotted against a relative measure of the non-equilibrium
current p2 − p1. For each data point either p1 or p2 is zero.

5.5.4 Comparison of the Three Measurements

To better understand how well the currents obtained via these different ap-

proaches correspond with each other, we compare in Figure 5.7 these measures

for different values of the p parameter which controls the extent to which detailed

balance is violated. We see that all three measurements obey the same qualitative

trend, and remain within an order of magnitude of each other.

This validates our principal approximation to reduce the full two-dimensional

system to one dimension, that of the polar angle φ, by neglecting radial diffusion.

In particular, we note that the 1D criterion for a non-equilibrium steady state

p1 = p2 is borne out by simulations of the full 2D dynamics. The difference in

the dynamic measurements, ωL is larger than ωG, is understandable as while

we neglect any radial diffusion in the 1D treatment, it is still present in the

simulations, as witnessed in figure 5.1. We expect time spent diffusing radially

to slow the rate of polar diffusion.

The main assumption of the Kramers escape rate calculation is that the ratio

of the barrier size ∆Φ to the diffusion constant D is very large. In practice, we

set D = 1, and it is not possible to tune the model to allow us to independently

control the barrier height and the diffusion strength. Typically, we find that the

ratio is 2 < ∆Φ/D < 3, which is a likely cause of the quantitative discrepancy

between this method of obtaining ω with the other two.
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Figure 5.8: A single realisation of φG obtained by simulation of the stochastic
dynamics with parameters: K = 5000, b = K2, a = 0.5, p1 = 20, p2 = 0.

5.6 Discussion and Conclusion

In the work presented here we have observed cycling behaviour in a multi-

dimensional population dynamical model which is driven by the presence of

a probability current in the steady state. We have demonstrated that this

current is a feature induced purely through the form of the demographic noise

inherent in the finite population. The cyclicity is facilitated by the deterministic

dynamics being neutral on some closed manifold in configuration space. Then, by

dethermalising the multiplicative noise, a probability current can be induced to

flow around the manifold, resulting in a sustain non-zero angular velocity which

gives rise to global quasicycles in the 2D phase space of the system. Although, the

specific interactions that yield such a structure are somewhat contrived from a

purely biological viewpoint, here we have used them to highlight some interesting

features of stochastic dynamical systems from the perspective of non-equilibrium

statistical mechanics.

Most notably, the stochastic trajectories along the manifold are somewhat

complex, as figure 5.8 shows. We see that the system tends to diffuse over a small

region of the phase space before sharply jumping a distance of approximately

2π radians, i.e. a full circuit of the manifold. The origin of this motion can

be understood from the potential picture after mapping to additive (thermal)

noise as described in section 5.3. After transforming the multiplicative noise,

122



5.6. Discussion and Conclusion

the deterministic equations acquire additional terms that can be interpreted as

a constant driving force acting in a periodic potential with multiple maxima

and minima on the manifold. The dynamics will reside for some time in a

potential minimum before escaping over one of the barriers to a neighbouring

minimum. Since the potential is periodic, one eventually returns to the same

minimum (hence the 2π jump). The driving force leads to an asymmetry in the

barrier heights, which in turn yields a systematic current in one direction around

the circle (i.e., a ‘cycle’, albeit not a strictly periodic one). We note that such step

motion on a closed manifold we demonstrate in figure 5.8 is a more generic feature

found in stochastic systems which permit mean-field limit cycles [115, 116].

This analysis leads us to believe that in general the closed manifold does not

have to be neutrally stable in order to observe this cycling behaviour, as long as

the manifold itself is attractive from the outside. In such an instance, the non-

zero angular velocity generated by the probability current would still drive the

system over potential barriers, but now they barriers are due to the deterministic

forces acting on the manifold. While the timescale for passing over a barrier would

increase markedly, quasicycles would still be generically observable in a system

with athermal noise whose deterministic dynamics evolve to a closed manifold.

The observation of quasicycles due to a noise-induced non-conservative

driving force highlights the importance of the form of the demographic noise

that is manifest in these stochastic population models. In the polar Langevin

equation (5.29) the non-equilibrium processes given in (5.48) only appear in the

diffusion term g. Therefore if one naively assumed the noise to be thermal, i.e.

g is constant, integrating up the drift force f would yield a periodic potential

similar to the one displayed in figure 5.6(a), and one would conclude no current is

flowing. We see that stochastic effects alone are responsible for a current to flow

in the system, keeping the system out of equilibrium.

In the context of modelling population dynamical systems more generally, our

findings further showcase the advantages of taking an IBM approach to modelling

finite population dynamics. The deterministic and stochastic contributions to the

dynamics can be derived from the defined stochastic processes of the model, so one

can analytically understand and also control the effects of noise. We have found

that finite-size populations in which the dynamics are non-neutral, never relax

fully to equilibrium, but instead inhabit a steady state where their is a thermal
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bias in the fluctuations due to the presence of a non-equilibrium probability

current.

In this work we resorted to a number of approximations to compute the steady-

state current in the dynamical system. The first of these was a reduction to a

single-coordinate description by disregarding one of the degrees of freedom in the

system. Sophisticated methods have been applied to integrate out this degree of

freedom in the context of quasi-neutral diffusion along an open interval [110] (as

opposed to one that is closed/periodic, as here). It would be of interest to see if

similar methods can be applied to determine what is lost in such a dimensional

reduction, as this may be of utility in understanding high-dimensional stochastic

dynamical systems more generally. Moreover, we made various approximations in

order to apply Kramers’ escape rate theory to diffusion on the manifold: it may

be that more direct approaches to estimating the current in such systems can be

found. Finally, and more generally, it would be interesting to establish if there

are other ways that a non-equilibrium current may enter into the macroscopic

dynamics of a stochastic population dynamical system in ways that are not

immediately evident from their deterministic counterparts.
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Chapter 6

Synchronisation in a

Metapopulation

In this chapter we return to the study of spatially extended systems as in chapter

3, analysing a model which consists of a multi-patch network of populations

coupled through migration. We examine the onset of synchronisation between

the patches, whose local dynamics are that of the circular manifold (CM) model

of chapter 5. We derive a governing set of Langevin equations to describe the

quasicycles at each patch. Analytically, we perform a quantitative study of

the relationship between the synchronisation of the patches and the coupling

migration rate q by conducting a stability analysis of the global coherent state,

where all the patches are fully synchronised. We compare this to two empirical

methods for measuring the synchronisation of the system from Monte Carlo

simulations of the stochastic dynamics, finding good qualitative agreement over

the domain of q for which the system crosses over from being unsynchronised to

fully coherent.
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6.1 Introduction

In the previous chapter we studied the circular manifold (CM) model of a non-

spatial, single patch population with two competing species A andB. We observed

cycling behaviour in the species densities due to two mechanisms of the defining

dynamics given by the birth and death processes. Firstly, the deterministic

dynamics constrain the population to reside on a circular annulus in the two-

dimensional (2D) phase space, with a radius greater than its width, as witnessed

in figure 5.1. Then, the stochastic dynamics of the fluctuations can be controlled to

dethermalise the demographic noise, inducing a steady-state probability current

to flow. This in turn leads to a non-zero angular velocity which gives a biased

diffusion about the manifold, resulting in quasicycles.

The analysis of the CM model was founded on a dimensional reduction,

describing the dynamics about the manifold through the polar coordinate φ. An

obvious, interesting extension to the CM model, is to consider a metapopulation

comprising several such single patch systems, which are coupled through the

migration of each species between different patches. Intuitively, we would expect

to see some level of synchronisation in the phase of each patch given by its angular

position φi on the circular manifold.

In general, spatially extended models have become a major area of study in

population biology in the past two decades [56], leading to the unveiling of a

variety of observed macroscopic behaviour in the persistence of cycles [52, 53],

and, more fundamentally, in the long term extinction or survival of a population

[51]. In studying cycling behaviour in spatially extended finite population

dynamical models, there is a complex interplay between three factors: (i) the

diffusion due to migration of the species between patches [117]; (ii) the intrinsic,

demographic noise due to the stochasticity of the finite local patch populations

[92], and (iii) the synchronisation between local cycles of the patch populations

[53].

For example, Abta et al found in a multi-patch stochastic predator-prey

model, by tuning of the migration and noise strength parameters, a regime where

sustained cycles are permitted at each patch of the system [52]. However, in

order to explain this behaviour from a paradigmatic toy model, they argue that

a missing mechanism is desynchronisation between the cyclic frequencies of each

patch. Schematically, this is facilitated by the orbiting frequencies being phase
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space dependent, allowing the noise to desynchronise the patches. The migration

then counteracts this by decreasing the concentration gradient between the two

patch velocities, restoring each to an invariant manifold in phase space, away

from the absorbing states.

The complex interactions of these different processes highlights the fact

that if one wishes to consider the role synchronisation can play in stochastic

metapopulations, it is also necessary to measure and quantify it, as the relative

strength of each of the three factors can prove to be key in determining

the macroscopic dynamical behaviour. In a recent study of the effects of

demographic noise in a metapopulation of predator-prey patches, Lai et al derived

a measurement of the synchronisation in the system through the probability

distribution of pairwise phase differences [50].

In this chapter we conduct a quantitative study of synchronisation in the

spatially extended CM model due to the coupling from migration. We begin by

deriving the coupled Langevin equations governing the system’s dynamics. This

is followed by a brief review of the Kuramoto model, a well studied model for

synchronisation whose conceptual framework we adopt to describe our system. We

then proceed to measure the synchronisation through a stability analysis of the

global coherent state, where each patch population has the same phase (angular

position) on the common circular manifold. Finally, we develop two empirical

methods for measuring the synchronisation from Monte Carlo simulations of the

stochastic dynamics of the multi-patch CM model, which we compare with that

obtained from our linear stability treatment.

Naively one might assume that in the limit of fast migration the metapop-

ulation behaves as an effective single patch population which exhibits the same

macroscopic behaviour with a global dynamics analogous to the single patch

dynamics. Recently, Khasin et al showed that even for the simplest case of a

single species dynamics on a network of patches, if the carrying capacities of each

patch are different, then only if the rates of the birth and death dynamics obey

a certain scaling form will this be the case [118]. With this in mind, in order to

study as cleanly as possible the relation between migration and synchronisation

we extend the CM model in the simplest fashion possible, taking the migration

rates to be symmetric between each pair of patches, assigning each patch the

same carrying capacity and the same CM model local dynamics and parameters.
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6.2 The Multi-Patch CM Model

We begin by spatially extending the CM model of section 5.2. To do so, our

model system becomes a network, or lattice. At each site is a non-spatial patch

with the same carrying capacity K, with a population comprising two species

which undergo the same birth and death processes defined by the transition

rates (5.1). The spatial component now enters by the process of migration, which

allows constituents of both species to move between different patches. The allowed

migrations are governed by the topology of the lattice. In this work we will use

the simplest case of a fully connected lattice, meaning that both species at a site

i can move to reside at any other site j.

6.2.1 Migration Transition Rates

The probability density P now describes the probability that at a given time t

the system is in a state defined by the patch population densities xi = ni/K and

yi = mi/K:

P (x1, y1, x2, y2, . . . , xL, yL) ≡ P (x,y) . (6.1)

To keep things manageable we write transition rates in such a way as to only

indicate which components of the system have changed. So for example, the

transition rate for the birth of an A at site i given the system is in a state (n,m)

is expressed as T (ni + 1|n,m).

We introduce migration in the simplest way, as a neutral and linear process.

The probability of an A moving from a site i to a site j is proportional to the

number of A at site i:

T (ni + 1, nj − 1|n,m) =
bq

z
xj , (6.2)

where q is the migration rate constant, which is the same for migration between

any two sites, and z = L − 1 is the number of nearest neighbours of the source

site i. The parameter b is that common to all processes in the CM model (5.1)

and is used to set the continuous-time limit. As explained in section 5.3.1 we set

b = K2. The division by z tells us that the migration is neutral as the A at site

i choose uniformly randomly which site to migrate to. For the migration to be a

neutral process which favours neither species, analogously we have the transition
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rate for species B from a site i to a site j given by

T (mi + 1,mj − 1|n,m) =
bq

z
yj . (6.3)

These new processes give rise to the first and second Cartesian moments of

δxi and δyi in an update time τ ,

〈δxi〉 =
bqτ

Kz

∑
j 6=i

(xj − xi)

〈δyi〉 =
bqτ

Kz

∑
j 6=i

(yj − yi) . (6.4)

6.2.2 Sub-Deterministic Migration

We must consider how to scale the migration rate q with the system size K.

At the mean-field level, adding the contributions (6.4) from migration to the

local deterministic dynamics of a population (5.6) at a site i gives the new rate

equations,

ẋi = xi(xi − 1)[a− (xi − 1)2 − (yi − 1)2 ] +
q

z

∑
j 6=i

(xj − xi)

ẏi = yi(yi − 1)[a− (xi − 1)2 − (yi − 1)2 ] +
q

z

∑
j 6=i

(yj − yi) . (6.5)

When Q = 0, we know that each patch population will evolve to reside on a

common circular manifold. We want to maintain this behaviour in the presence

of migration. Therefore we need a weak form of migration, not acting at the

leading order in K, so it can treated as a sub-deterministic process which is

neglected in the above mean-field equations. We can achieve this by scaling the

migration rate q with the carrying capacity K as

q → q

K
. (6.6)
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6.3 Multi-Patch Fokker-Planck Equation

Following the same procedure for the single patch CM model in section 5.3.1,

we derive a polar Fokker-Planck Equation (FPE) to describe the diffusion in the

φ-direction about the circular manifold for each patch. To do so we must find

what contribution the migration process make to the polar jump moments αi of

the Kramers-Moyal expansion given by

α(i)
n = lim

τ→0

〈(δφi)n〉
τ

. (6.7)

This means we need to find the moments of the change in φ in a time τ due

to migration, and consider which terms are non-zero when the continuous-time

limit is taken. It turns out we can find out both of these things by considering

just the contributions from the first-order moments. With the transformation to

polar coordinates defined as

x′i ≡ xi − 1 = ri cos(φi)

y′i ≡ yi − 1 = ri sin(φi) , (6.8)

we write the Cartesian first moments, using the scaled form of Q (6.6), as

〈δxi〉 =
bτ

K2

qr0

z

∑
j 6=i

[cos(φj)− cos(φi)]

〈δyi〉 =
bτ

K2

qr0

z

∑
j 6=i

[sin(φj)− sin(φi)] (6.9)

where r0 is the radius of the circular manifold. As each site has the same carrying

capacity and local dynamics with the same rates, then r0 is the same assumed

fixed radius for each circular manifold. In other words, the oscillators reside on

a common circular manifold of radius r0.

Using an equivalent expression for δφi from (5.20), we have for the first

moment

〈δφi〉 = − y
′
i

r2
i

〈δx′i〉+
x′i
r2
i

〈δy′i〉+
x′iy
′
i

r4
i

(
〈(δx′i)2〉 − 〈(δy′i)2〉

)
.

Considering the first two terms, plugging in (6.9) and transforming to polar
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coordinates using (6.8) we find

〈δφi〉 =
bτ

K2

q

zr2
0

∑
j 6=i

(
r2

0 cos(φi)[sin(φj)− sin(φi)]− r2
0 sin(φi)[cos(φj)− cos(φi)]

)
(6.10)

which after some use of trigonometric addition formulae can be written as

〈δφi〉 =
bτ

K2

q

z

∑
j 6=i

sin(φj − φi) . (6.11)

In defining the continuous-time scale for the local dynamics of the CM model in

section 5.3.1, we set b ≡ K2 so that

α1(φi) = lim
τ→0

〈δφi〉
τ
∼ lim

b→∞

b

K2
(6.12)

is finite. Therefore we do the same here, giving the non-zero contribution to the

first jump moment from the migration

α
(i)
1 (φi) =

q

z

∑
j 6=i

sin(φj − φi) . (6.13)

Furthermore, we see that there will be no contribution to the first-order or second-

order polar jump moments from the second-order Cartesian moments due to

migration as they scale with K as b/K3.

Adapting the one patch FPE (5.26), we have the FPE describing the polar

diffusion about the circular manifolds of each patch

∂P ({φi}, t)
∂t

=
∑
i

(
− ∂

∂φi

[
f(φi)P

]
+

1

2

∂2

∂φ2
i

[
g2(φi)P

]
(6.14)

−q
z

∑
j 6=i

∂

∂φi

[
sin(φj − φi)P

])

where the local, single patch functions f and g are the same as those given in

(5.27) and (5.28) respectively.
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6.4 A Langevin Description of Synchronisation

The equivalent set of Langevin equations to the FPE (6.14) under the Itô

prescription are

φi = f(φi) +
q

z

∑
j

sin(φj − φi) + g(φi)ηi (6.15)

where the stochastic variables ηi are Gaussian white noise with zero mean and

unit variance.

This is the governing set of equations we shall use to explore how the diffusion

of each patch population can become synchronised around the manifold. To

make our language more concise and relate it to other studies of synchronisation

phenomena, we now refer to the diffusion at each patch about the common circular

manifold as the oscillator at site i whose phase is given by φi. Having made the

migration a sub-deterministic process, in this regime it is clear from inspection

of the second term of (6.15) to expect the migration to make the oscillators

more similar, and that their phases will synchronise for some sufficiently strong

coupling strength q. Our aim is to study the emergence of synchronisation between

the oscillators, finding how it depends on q. To do so we need to develop

meaningful quantitative definitions and measurements of synchronisation in the

system. We proceed to begin with by studying the Langevin equations (6.15)

describing the system dynamics, after first reviewing a commonly studied model

of synchronisation.

6.4.1 The Kuramoto Model of Synchronisation

A paradigmatic model of synchronisation is the Kuramoto model, named after

Kuramoto who first solved it in the mean-field limit [119, 120]. The model consists

of a system of N coupled oscillators whose phases are denoted by θi ∈ [−π, π]. In

the basic deterministic model, the dynamics are defined by the first-order rate

equations

θ̇j = ωj +
N∑
k=1

Qjk sin(θk − θj) . (6.16)

The first term is the natural frequency of each oscillator while the second term is

the coupling between the oscillators, which tends to synchronise them according
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to the coupling matrix Qij.

To quantify the synchronisation, an appropriate order parameter is the

complex valued s [47], defined as

s =
1

N

N∑
k=1

ei(θk−ψ) (6.17)

where

ψ =
1

N

N∑
k=1

θk (6.18)

is the average phase and i =
√
−1. The order parameter (6.17) gives the level

of synchronicity by assigning a value of 0 ≤ s ≤ 1. If the oscillators are

unsynchronised, we can assume they are uniformly distributed about the unit

circle. Defining the uniform spacing as ∆ = 2π/N then we can express each

oscillator’s position as θk = k∆. Using this in (6.17) we have

seiψ =
1

N

∑
k

eik∆ . (6.19)

Taking the large N limit, we replace this sum with an integral and compute

seiψ =
1

N

∫ N

0

dk eik∆ =
1

Ni∆
(eiN∆ − 1)

=
1

Ni∆
(e2πi − 1)

= 0 . (6.20)

As eiψ 6= 0, this means that s = 0 for the incoherent, unsynchronised state. On

the other hand, if all the oscillators are fully synchronised, then we have θj = θ

for all j. This gives an average phase of ψ = θ and the order parameter (6.17)

becomes

seiθ = eiθ (6.21)

meaning s = 1. Between these two extremes of incoherence and synchronisation

any interim value of 0 < s < 1 represents a state of partial synchronisation [47].

The version of the model solved by Kuramoto is the mean-field version

of (6.16) in the limit of N → ∞ many oscillators, with Qjk = Q/N . The
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natural frequencies of the oscillators ωj are drawn from a unimodal probability

distribution g(ω) with zero mean, i.e. a Gaussian distribution. Here we do not

reproduce the mathematical derivation of the main result, details of which can be

found in a review of Kuramoto systems by Acebrón et al [47], but instead simply

quote it: there exists a transition from incoherence to partial synchronisation at

a critical value of the coupling constant Qc, encapsulated in the critical scaling

law

s =

√
16(Q−Qc)

πQ4
cg
′′(0)

, (6.22)

where Qc is determined by the unimodal distribution as

Qc =
2

πg(0)
. (6.23)

We wonder if any similar transitional behaviour can be observed in our

multi-patch CM model. At first glance the two systems seemed very similar

when comparing their governing dynamical equations. For the multi-patch

CM Langevin equations (6.15), remarkably the sub-deterministic migration

process has resulted in a sinusoidal coupling term identical to that for the

Kuramoto model (6.16) for the mean-field case. However there are two principle

differences between the two models. Firstly our model considers a relatively

small number of oscillators making up a metapopulation, not a large, possibly

infinite, coupled system. Secondly, the frequencies of each oscillator in our

model are not constant, rather there is a diffusive motion in a periodic 1D

potential, which can be dethermalised to give a non-zero angular velocity or

frequency. Schematically, in our model we have ωi(φi), i.e. position dependent

velocities, compared to the constant frequencies of the Kuramoto model, drawn

from a probability distribution. This is an important distinction: as we mentioned

in the introduction to this chapter, recently Abta et al have shown that

desynchronisation due to gradients between phase space dependent oscillator

frequencies plays a crucial role in the stability of cycles and the long-time survival

of spatial predator-prey systems [52, 53].

For these reasons it is therefore not possible to repeat the analysis of the

mean-field Kuramoto model for our system. Instead, we now proceed to develop

our own analytical and empirical techniques to study the synchronisation.
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6.5 The Eigenvalue Landscape Function Method

While the Kuramoto model has helped with our conceptual understanding of how

to study synchronicity for a system of coupled oscillators, we now develop our own

method for trying to study synchronisation in our system, in particular probing

the relationship with the coupling strength due to migration q. The basic premise

of the method is to construct a linear stability analysis of the fully synchronised

state of the system.

6.5.1 Multiplicative to Additive Noise

We know well from previous chapters the importance the multiplicative form of

the demographic noise can have on the dynamics of finite systems. Therefore we

take our governing set of Langevin equations for the coupled patch populations

(6.15) and perform a variable transformation to a system of Langevin equations

with additive noise terms. The transformation is the same as that for for the

single patch CM model in section 5.4. Defining the new variables

θi =

∫ φ dφ′i
g(φi)

(6.24)

and using the details of the transformation in section 2.10 we have

θ̇i = F (θi) +
q

zg(θi)

∑
j

sin(θj − θi) + ηi (6.25)

where

F (θ) =

(
f(φ)

g(φ)
− 1

2
∂φg(φ)

) ∣∣∣∣
φ=φ(θ)

. (6.26)

We now proceed to analyse the deterministic dynamics of these Langevin

equations, neglecting the effects of the additive Gaussian noise terms. While at

first glance this seems to run contrary to our main aim of studying the effects

of noise in the dynamics of complex systems, we see from the above expression

for F (θi) that the new Langevin equations (6.25) describing the dynamics of the

system contain the multiplicative factors of the noise,

g(θi) ≡ g(φi)

∣∣∣∣
φi=φi(θi)

(6.27)
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found in the original Langevin equations (6.15). Therefore the behaviour we

observe in the new deterministic dynamics of the transformed system is a direct

consequence of the multiplicative form of the demographic noise in the original.

In order to make progress, in producing plots and performing numerical

calculations, we once again have to resort to the approximation schemes for the

variable transformation (6.24) and of the multiplicative noise factor (6.27). These

approximations are the same as detailed in section 5.5.3 which were used to

facilitate analysis of the single patch population for the CM model.

6.5.2 Change of Variables

When the system is fully synchronised we refer to it as being in the coherent

state. Here, oscillators all have the same phase θi = θ ∀i, and so the average

phase

ψ =
1

L

L∑
j=1

θj = θ . (6.28)

We now investigate the stability of this coherent state as described by ψ = θ. To

do so we perform the change of variables,

ψ =
1

L

L∑
j=1

θj

χi = θi − θ1 , i = 2, . . . , L

 (6.29)

for which the inverse transformation is,

θ1 = ψ − 1

L

L∑
j=2

χj

θi = χi + ψ − 1

L

L∑
j=2

χj , i = 2, . . . , L


. (6.30)
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Applying this change of variables to the deterministic part of the Langevin

equations (6.25) yields the rate equations

ψ̇ =
1

L

∑
j

F (θj) +
q

zg(θi)

∑
j

sin(θj − θi) (6.31)

χ̇i = F (θi)− F (θ1) + q
L∑
j=1

[
1

zg(θi)
sin(θj − θi)−

1

zg(θ1)
sin(θj − θ1)

]
. (6.32)

The coherent state is now equivalently defined by

θj = θ , i = 1, . . . , L (6.33)

ψ = θ (6.34)

χi = 0 , i = 2, . . . , L . (6.35)

In the coherent state the system is reduced to an effective single oscillator whose

phase is given by ψ. The coherent state is not a static fixed point, rather it exists

on the whole domain of ψ, i.e. the circular manifold.

6.5.3 Taylor Expansion About the Coherent State

Our goal now is to quantify the global attraction of the coherent state by a linear

stability analysis. To do so we Taylor expand the rate equation for χi (6.32) about

the coherent state (6.35) which we denote by {χi = 0}, and is also a fixed point

of (6.32). Introducing the shifted variables about the coherent state χ̄i = χi − 0,

and keeping only linear terms in the expansion yields

˙̄χi =
L∑
k=2

[
∂

∂χk
HF (ψ, {χj}) +

∂

∂χk
HQ(ψ, {χj})

]
{χj=0}

χ̄k (6.36)

where

HF (ψ, {χj}) = F (θi(ψ, {χj}))− F (θ1(ψ, {χj})) (6.37)

HQ(ψ, {χi}) = − q

zg(θi)

[
sinχi −

L∑
j=2

sin(χj − χi)

]
− q

zg(θ1)

L∑
j=2

sinχj (6.38)

and the square bracket term is evaluated at the coherent state {χj = 0}.
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We evaluate each term in the square bracket separately. For HF , we first

do the differentiation using the chain rule with the definition of the variable

transformation (6.30):

∂

∂χk

(
F (θi)− F (θ1)

)
=

∂θi
∂χk

∂

∂θi
F (θi)−

∂θ1

∂χk

∂

∂θ1

F (θ1)

=

(
δik −

1

L

)
∂

∂θi
F (θi) +

1

L

∂

∂θ1

F (θ1) . (6.39)

Evaluating this at the coherent state we have

∂

∂χk
HF (ψ, {χj})

∣∣∣∣
{χj=0}

= δik
∂

∂θ
F (θ)

∣∣∣∣
θ=ψ

. (6.40)

For the HQ term (6.38), we find taking the derivative

∂

∂χk
HQ =− q

zg(θi)

[
δik cosχi − cos(χk − χi) +

L∑
j=2

cos(χj − χi)δik

]
− q

zg(θ1)
cosχk (6.41)

where we do not write terms with derivatives of g(θ) as they become zero in the

coherent state due to the coupling sinusoidal terms vanishing. Evaluating at the

coherent state yields

∂

∂χk
HQ(ψ, {χi})

∣∣∣∣
θ=ψ

= − Lq

zg(ψ)
δik . (6.42)

Now substituting the evaluated derivatives (6.40) and (6.42) back into the

Taylor expansion (6.36) gives

˙̄χi =
L∑
k=2

(
∂

∂θ
F (θ)

∣∣∣∣
θ=ψ

− Lq

zg(ψ)

)
δikχ̄k

=

(
∂

∂θ
F (θ)

∣∣∣∣
θ=ψ

− Lq

zg(ψ)

)
χ̄i . (6.43)

We now make the simplification of taking z = L − 1 ≈ L when we have a
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(a) q = 0 (b) q = 100 (c) q = 200

Figure 6.1: The ELF λ(ψ) for different values of migration coupling q. The CM
model parameters are r0 =

√
0.5 , p1 = 0 and p2 = 0.

suitably large enough number of oscillators. For example, for L = 8 oscillators,

L/(L− 1) = 1.14 is well approximated to 1. Implementing this gives us our final

expression for the linearised rate equations near the coherent state for z oscillators

˙̄χi =

(
∂

∂θ
F (θ)

∣∣∣∣
θ=ψ

− q

g(ψ)

)
χ̄i (6.44)

with the other variable being the average phase ψ, which as previously mentioned

is the effective 1D system variable in the coherent state.

6.5.4 Eigenvalue Landscape Function

We see from the linearised equations (6.44) that when in the local neighbourhood

of the coherent state, the attraction or repulsion of an oscillator to the coherent

state is dictated by the term in parenthesis. We interpret it as the eigenvalue of

the linear stability analysis. In the coherent state, all the oscillators j have the

same phase θj = θ, yet the system can still take any value of the average phase

ψ on the circular manifold. Therefore the eigenvalue is a function of the average

angle ψ, which we call the eigenvalue landscape function (ELF):

λ(ψ) =
∂

∂θ
F (θ)

∣∣∣∣
θ=ψ

− q

g(ψ)
. (6.45)

In figure 6.1 we show the ELF for different values of q. We see that as the

coupling strength q increases, while the shape of the ELF may change, the main
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Figure 6.2: The relation between the global synchronisation Is and the scaled
migration rate q. The CM model parameters are r0 =

√
0.5 , p1 = 0 and p2 = 0.

effect is to lower it in relation to the attraction/repulsion line at λ = 0. Therefore

for a large enough q each point of the landscape will be a restoring force to the

coherent state, as the ELF always has a negative value. To quantify the overall

synchronisation in the system we compute Is, an averaged measure of the global

attraction of the coherent state over the whole circular manifold. It is given by

Is =
Ia

Ia + Ir
(6.46)

where Ia is the integral given the total bounded area below λ = 0 and Ir is the the

area above ψ = 0. In figure 6.2 we plot the relationship between Is and the scaled

coupling q, calculating the required integrals numerically using the mathematical

software Maple(TM). In contrast to the Kuramoto model, we have for our system

that the fully incoherent state, more specifically one with no coupling q = 0, that

the measure of Is is 0.5 rather than 0. However, as q increases and becomes

sufficiently large we see the synchronisation saturating to the coherent state at

Is = 1.

In order to find how well this ELF method captures the synchronisation

behaviour of the metapopulation we now look to compare it with some empirical

measurements from simulations of the defining stochastic dynamics.
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6.6 Measuring Synchronisation in Simulations

To study the spatially extended CM model with migration, we simulate the full

stochastic dynamics using the Gillespie algorithm. As discussed in section 2.11,

it is not possible to use random sequential updating for the multi-patch system

because, unlike in the lattice spin model of section 3.6.1, the number of interacting

constituents is not fixed for each patch and so the sampling would be wrong. For

this reason, the number of patches we simulate becomes a limiting factor, as it

becomes time-expensive to implement the full Gillespie algorithm.

For each of the simulation results presented in the figures in the remainder

of this chapter, the equilibrium CM model parameters are K = 5000, b = K2,

r0 =
√

0.5, p1 = 0 and p2 = 0, unless otherwise stated.

6.6.1 The Kuramoto Order Parameter

In the simulations we can calculate the angular positions of the oscillators which

we denote by φi . Unlike for the CM model in section 5.5.1, φi are true spatial

coordinates φi ∈ [−π, π] and not aggregated displacements. To use the Kuramoto

order parameter s for synchronisation defined in (6.17), we swap φ for θ and

expanding the complex exponential, yielding

s =
1

N

∑
j

[cos(φj − ψ) + i sin(φj − ψ)] . (6.47)

Now calculating the modulus |s|2 = ss∗ gives

|s|2 =
1

N2

∑
j,k

[cos(φj − ψ) cos(φk − ψ) + i sin(φj − ψ) sin(φk − ψ)]

=
1

N2

∑
j,k

cos(φj − φk)

=
1

N2

(∑
j

cosφj
∑
k

cosφk +
∑
j

sinφj
∑
k

sinφk

)
, (6.48)
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Figure 6.3: The modulus of the Kuramoto order parameter s against time for a
system of L = 4 patches with no migration, q = 0.

which upon taking the real, positive square root yields the expression for the

modulus |s| ≡ s,

s =
1

N

√√√√(∑
j

cosφj

)2

+

(∑
j

sinφj

)2

. (6.49)

This expression allows us to measure s directly from simulation, and to study

how it depends on the coupling strength q. However we find it to not be a very

good measure of synchronisation for our system. In figure 6.3 we show a typical

time evolution of s for a system of L = 4 oscillators. We see that we do not get

a well defined, constant measure of s, a problem that persists as L and q are

increased. This could be a result of the frequency dependence of the potential in

our system, not present in the Kuramoto model. The oscillators all diffuse in the

same 1D potential and so we expect a background level of synchronisation, as they

predominantly inhabit a broad potential well. Averaging over many realisations

will very likely alleviate this problem and s will become a meaningful, accurate

measure of synchronisation, but as mentioned already computing time is already

at a premium, making an averaging procedure too time-expensive.
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6.6.2 Displacement Method

We devise an alternative method for measuring the synchronisation of the system

by simulation of the stochastic dynamics. We develop the method intuitively

for two oscillators and then generalise the method to an arbitrary system of L

oscillators.

Two Oscillators

If we consider a system of two oscillators, the distance φ between them in terms

of their angular position on the circular manifold

φ =

{
|φ2 − φ1| if |φ2 − φ1| < π

2π − |φ2 − φ1| otherwise
(6.50)

tells us directly how similar the two phases are. We define a small constant ε to

define a distance over which one can infer whether the phases are synchronised.

We assign two counters TY (t) and TN(t), which tally the total amount of time

the oscillators have been in or out of sync. For each Monte Carlo sweep t of the

system, we update the counters like

TY (t+ 1) = TY (t) + 1 if φ < ε

TN(t+ 1) = TN(t) + 1 if φ > ε
. (6.51)

We then calculate a long-time frequential average T to find the typical state of

synchronicity in the system,

T (t) =
TY (t)

t
. (6.52)

As we will show, this grows rapidly at short times before saturating to a constant

T∞, which we take as our order parameter defining the synchronisation of the

system.

L Oscillators

In trying to generalise this method to more than two oscillators, an immediate

difficulty is in interpreting a measure of distance. The distance between φ1 and

φ2 tells us nothing about the distance of either to φ3. Our solution to this is to
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Figure 6.4: The time evolution of the ensemble time average T̄ (t) for a system of
L = 4 oscillators, with ε = 0.5. It reaches different saturation constants T̄∞ for
different values of q.

define the distance ∆φi for each oscillator to the average phase ψ:

∆φi =

{
|ψ − φi| if |ψ − φi| < π

2π − |ψ − φi| otherwise
. (6.53)

Then, analogously to (6.51), to evaluate the synchronisation of the system at each

Monte Carlo sweep t we have counters for each oscillator to see how similar their

phase is to the average phase, using a small parameter ε:

T iY (t+ 1) = T iY (t) + 1 if ∆φi < ε

T iN(t+ 1) = T iN(t) + 1 if ∆φi > ε
. (6.54)

We again define our long time average quantity (6.52), but now we require one

for each oscillator,

T i(t) =
T iY (t)

T iY (t) + T iN(t)
. (6.55)

However, what we really want is a single quantity telling us a global measure of

synchronisation in the system. The simplest and most obvious one we construct

is the patch-ensemble average T̄ of the time averages T i,

T̄ (t) =
1

L

∑
j

T j(t) . (6.56)
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Figure 6.5: Comparison of the average T̄ for different values of the synchronisation
parameter ε for a system of size L = 4 with q = 0.

In figure 6.4 are measurements of T̄ from Monte Carlo simulation of the

defining birth, death and migration stochastic processes of the multi-patch

CM model. We observe rapid growth at early times before a saturation to

some constant value T̄∞, which we define as our global synchronisation order

parameter. This not only gives us a simple scalar measure of the synchronicity of

the system, but also direct insight into how the coupling of the system through

the migration constant q enhances the phase alignment of the system.

Setting the ε Parameter

In the displacement method measurement we introduce one arbitrary parameter

ε which is defined via (6.54). It is clear that if ε ≈ 2π, the oscillators would be

found to be fully synchronised all the time, while if ε ≈ 0 then, simply due to the

inherent noise for each oscillator the method would barely register any instances

of synchronicity. While being able to intuitively select a reasonable value for

0 ≤ ε ≤ 2π, we can be guided by trying to tune it to our analytical work using

the ELF (6.45). Here, we know that in the zero migration, fully decoupled case

of q = 0, our measurements of the background synchronicity of the system is

Is = 0.5. Therefore to tune our simulation results to the ELF analysis, we can

choose an ε which gives a similar background measure.

In figure 6.5 we show the time evolution of T̄ for a range of different values of

ε. We see that choosing ε = 0.5 gives a good fit to the q = 0 synchronisation

measure of Is = 0.5. It is not clear to us if their is a physical significance
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Figure 6.6: Comparison of the global measurements of synchronisation from the
ELF measure Is and the empirical measure T∞ for a range of system size L with
ε = 0.5.

of this particular value of the ε parameter. Two possibly important factors to

be considered are the size of the potential landscape typically explored by the

oscillators, defined by the width of a well, and the strength of the thermal

noise which gives a measure of their typical diffusion. It could be that when one

considers how these two factors, a length scale emerges describing the domain of

an oscillator in the well, and that it is analogous to ε = 0.5. We do not conduct

any such study here however, and instead proceed to analyse data for this tuned

parameter value.

6.6.3 Comparison of Measurements

We now compare T∞, the empirical measurement of synchronisation direct from

simulation, with Is, found by integration of the ELF. We do so by plotting them

for a range of system sizes L against the scaled migration rate q = Q/z where

z = L−1. The results are shown in figure 6.6, where we find excellent agreement

between the two measurements across a broad range of system sizes.

The agreement of the two measurements in describing the relationship between

the synchronisation and the coupling strength q is remarkable, not only in the

similarity of individual measurements but more generally in identifying accurately

the range of q over which the system evolves from the incoherent state to the fully

synchronised state at Is = T̄∞ = 1. The agreement is even more remarkable when
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one considers the very different bases of of each measurement. From simulation,

T∞ is a dynamical measure of the full stochastic dynamics, which has been

averaged in the long time limit. On the other hand, Is is calculated from a

linearised treatment of the rate equations, which itself has been dimensionally

reduced from L− 1 variables to 1 variable, the average phase ψ.

However while the ELF and displacement method measurements agree well

qualitatively, we acknowledge that the quantitative agreement only holds for the

tuned parameter value ε = 0.5. We now present one final method of measurement

of synchronisation by simulation, which does not require any parameter to be

optimised. This will provide further insight into how well the linearised ELF

method captures the synchronisation in the full stochastic dynamics due to the

coupling strength q.

6.6.4 Step Method

Recalling the typical way quasicycles arise for a single patch population in the

CM model in chapter 5, we observed that an oscillator would sit in a potential

well on the circular manifold for a time, before being carried over a barrier by the

demographic noise. When the noise becomes dethermalised there is a non-zero

angular velocity which leads to a bias in which barrier the oscillator exits the well

by, resulting in quasicycles.

In figure 5.8, we saw that this waiting time for the noise to carry the system

over the barrier, results in a step motion in the time evolution of the aggregate

phase φ. After a period of time in the potential well the system would rapidly

pass over the barrier and return to the well. We now exploit this typical behaviour

to measure the synchronisation between the systems. We return to the use of the

aggregate angle definition employed for the CM model, as defined in sections 4.5.2

and 5.5.1, where φ is the total angular displacement in the positive anticlockwise

direction.

For each patch i the step motion of the phase φi will occur. Therefore we also

expect a step motion in the difference between two oscillators φj−φi, as they both

occupy the same region of the well for the vast majority of the time, but then

when one jumps, a 2π interval opens between them. Defining the displacements

di = φL − φi (6.57)
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Figure 6.7: (a) The step motion of the displacements d1 as well as that of the
oscillators φ1 and φL for a system with L = 4 patches and q = 100. (b) The step
motion of the displacement d1 for different coupling strengths q in a L = 4 size
system.

we confirm this picture directly in figure 6.7(a) from simulations of the stochastic

dynamics. In the incoherent state q = 0, there is no synchronisation and we

expect each φi will evolve randomly. However as q increases the times at which

the steps occur in the displacements di will become more correlated, occurring

together in smaller and smaller time windows, as once one oscillator moves over

the barrier, the others are more likely to follow. In the coherent state, we expect

the steps to occur almost simultaneously. Practically this means in the length of

a Monte Carlo sweep in the simulations, we will no longer see the steps in the

displacements di. We confirm this picture in figure 6.7(b).

More particularly, in increasing the coupling strength q to go between the

incoherent and coherent states, the synchronisation increases and the time

between steps will become longer for the displacements di. The length of this

step interval we can measure from simulation. To do so, we begin each simulation

with each patch population having the same initial condition. In order to observe

as many steps as possible, we induce a current to flow by setting the current

parameters of the CM model to be p1 = 20, p2 = 0 for each patch. This means

that when uncoupled, each patch has the same non-zero angular velocity, inducing

a biased diffusion which leads to more complete orbits of the circular manifold.

Due to the initial condition, the initial displacements are di = 0. We store

these values in the variables Di. For each Monte Carlo sweep t, the new di(t) are

evaluated. To find out if an oscillator has moved up or down a step we compare

148



6.6. Measuring Synchronisation in Simulations

0 1000 2000 3000 4000
t

-40

-30

-20

-10

0

10

d
1

(a)

0 1000 2000 3000 4000
t

0

100

200

300

400

500

600

700

S
1

(b)

Figure 6.8: (a) Step motion of a displacement d1, with a step height of
approximately 6.0. (b) The equivalent step interval counter S1 with step height
parameter ∆ = 6.0. There is close agreement in the measurement of the step
interval lengths of the displacement shown in (a). The system parameters are
q = 100 and L = 4 with p1 = 20 and p2 = 0.

it to Di. If

|di(t)−Di| > ∆ (6.58)

where ∆ is a positive parameter representing the height of a step, then we know

it has. Then, we reset the value of Di to Di = di(t). If not, the oscillator has not

undergone a rapid full cycle of the manifold by passing over a barrier and remains

on the same step. We use the counters Si to record the length of a step interval

for each oscillator. Starting the counter from zero, at each sweep the counter is

updated as

Si =

{
Si + 1 if |di(t)−Di| < ∆

0 otherwise
. (6.59)

To take a meaningful global measure from these counters in order to compare

the synchronicity at different coupling strengths, we compute the average step

interval S. We do this in two steps, first computing the running average step

interval S̄i for each oscillator during the simulation and then finding the patch-

ensemble average

S =
1

z

∑
j

S̄j . (6.60)

In order to implement this method we must set the value of the step height ∆. We

know previously from the single patch dynamics of the CM model that the size of a
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Figure 6.9: (a) The inverse average step interval S−1 versus q with L = 4 and
∆ = 6.0. As predicted, we see a decay to 0 as q increases. (b) The ELF measure of
synchronisation Is for the same parameters p1 = 20 and p2 = 0 as in (a) alongside
the transformed data A for the step method, with fitting parameter a = 0.5039.

step is approximately 2π as the oscillator crosses over a barrier, completes a rapid

cycle of the manifold and returns to the well. Therefore we set ∆ = 6.0 ≈ 2π.

From inspection of figure 6.8(a) we see that this is a good estimate of the step

height in a displacement d1. We confirm this is a good value of ∆ in figure 6.8(b)

where the equivalent counter S1 is displayed, which accurately identifies the times

at which the steps occur, accounting for the background thermal noise that occurs

in the well during a step interval in figure 6.8(a). Setting the value of ∆ in this

way is a self-consistent part of implementing the step method correctly, not an

arbitrary assignment or tuned fit with other measurement methods.

In measuring the synchronisation using the step method, for q = 0 we expect

a small value of S. The value of S will increase with increasing q, becoming

infinitely large once q is sufficiently large for the system to inhabit the coherent

state indefinitely. Therefore we expect an inverse relationship between S−1 and

q, with the inverse step interval length decaying to zero as the coupling strength

increases. This predicted behaviour is borne out in figure 6.9(a). The simulations

were run for a total of 20000 Monte Carlo sweeps, during which no step motion

was observed in the final two data points figure 6.9(a). We would expect if the

simulations were run for longer that the quantitative values of the data would

change, but the qualitative trend would persist.

In order to compare this directly with the ELF method we transform the data
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displayed in figure 6.9(a) by

A = 1− aS−1 (6.61)

meaning that A will increase with q and saturate to 1 for some sufficiently large

q. The fitting parameter a is set so that the q = 0 data point coincides with that

of the ELF measurement of Is = 0.5, giving a = 0.5039. This data is displayed

in figure 6.9(b) alongside that obtained for the equivalent Is data. We see a very

close qualitative agreement in the two measurements over the same domain of q.

6.7 Discussion and Conclusion

In this chapter we have investigated the emergence of synchronisation in the

quasicycles of a multi-patch population. We studied how the synchronisation of

the system relates to the coupling strength q due to the migration of species

between patches. To conduct this study we derived a governing set of of coupled

Langevin equations to describe the synchronisation bought about by the sub-

deterministic migration process. We adopted the conceptual framework of the

Kuramoto model, describing a system of coupled oscillators in a state of partial

synchronisation for a non-zero q, which reaches the fully synchronised, coherent

state—where the phase of each oscillator is the same—above some sufficiently

large q. Unlike in the Kuramoto model, we saw no evidence of a transition

from incoherence to partial synchronisation at some critical value of the coupling

strength qc. Rather, the partial synchronisation seems to appear in the system

when the coupling is switched on. We posit that the transition to partial

synchronisation occurs exactly at qc = 0 or in a small range of q that we have not

probed, a possible question for future study.

We developed our own analytical method of quantifying the synchronisation

between phases by conducting a linear stability analysis of the coherent state,

deriving an effective one-dimensional reduction to the average phase ψ to describe

the attraction or repulsion experienced by an oscillator to the coherent state. This

is encapsulated in the eigenvalue landscape function, or ELF, (6.45). We compute

a global average measure of the attraction of the coherent state Is by integrating

the ELF over the domain of the circular manifold. This serves as an order

parameter to describe the level of synchronisation in the quasicycles of the

metapopulation.
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To test the validity of the linear ELF method in describing the synchronisation

in the full stochastic dynamics of the system, we developed two methods of

measuring the synchronisation from Monte Carlo simulations. The first was

related to the ELF method measuring the distance of each oscillator from the

average phase ψ. We calculated the long time average T∞, which measures the

relative time the oscillators spend within a defined synchronisation distance ε.

We found very good quantitative agreement between T∞ with the ELF measure

Is for the tuned parameter value ε = 0.5. The second empirical measurement was

based on the step motion of the aggregate phase of each oscillator, measuring

the displacements between pairs of oscillators. The inverse average step interval

S−1 decays to zero as the coupling strength q increases. We found that the decay

has a strong qualitative agreement over the same domain of q with the empirical

measure T∞ and the numerical measure Is to the fully synchronised coherent

state T∞ = Is = 1. Furthermore the single parameter ∆ is set self-consistently

in the simulation making it an independent empirical definition and measure of

the synchronisation in the system, making it more preferable to the T∞ order

parameter, where the arbitrary distance measuring synchronicity ε has to be

defined.

At the outset of the study of the governing Langevin equations of the

coupled system (6.15), we transformed to an alternative set of Langevin equations

where the demographic noise has an additive form, not multiplicative. While

then proceeding to probe the deterministic behaviour of these equations, the

multiplicative noise factor g(θ) remains, and is present in each term that appears

in the final expression for the ELF (6.45). Given the good qualitative agreement

derived from the ELF method with the empirical measures from simulations of

the full stochastic dynamics, we see that to describe analytically the observed

synchronisation, an understanding of the multiplicative form of the demographic

noise is vital. This understanding is facilitated by taking an individual based

modelling approach. In introducing the migration process in the multi-patch CM

model, we carefully evaluated how the migration enters at the deterministic level

and into both the drift and diffusion terms. A more ad hoc approach of adding

migration terms to the system dynamics would make differentiating between the

consequences of the inherent demographic noise for each patch and the migration

between patches difficult. As discussed in the introduction to this chapter these
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are important features in spatial metapopulation dynamics, and so it is desirable

to recognise and control each of them when studying their effect.

Looking to the future, there is still much to be that could be studied in

this spatially extended model. As stated at the outset, in order to focus on

synchronisation we set up the model in the simplest way possible, with each

patch having the same parameters in the birth and death rates. In principle each

patch could have its own rates, carrying capacity and migration rates. This is a

preferred method for studying spatially heterogeneity in populations, which lead

to spatially dependent fitnesses which are important in microbial populations

[57].

More straightforwardly and incrementally, it would be interesting to study

the synchronisation effects of this model when each patch is identical except for

the current parameters p1 and p2. In the language of the Kuramoto model this

would mean that each patch had a different natural frequency, and it would be

interesting to find what the resulting frequency of the effective 1D oscillator would

be in the fully synchronised system. In doing so, the question posed by Khasin

et al [118] could be addressed for this system, considering in the limit of fast

migration whether we expect to see the metapopulation behaving as one large

patch population with the equivalent dynamics of a single patch population.
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Chapter 7

Conclusion

In this thesis we have shown that demographic noise can have profound

consequences on the dynamics of non-equilibrium systems. Through analytical

and numerical study of individual-based, microscopic models we have observed

three striking examples of emergent macroscopic behaviour in finite model

systems.

In chapter 3 we studied the role that noise can play in the ordering dynamics of

systems with two symmetric absorbing states. We found that there is a dynamical

transition between two universal modes of domain coarsening at some non-

zero critical value of the noise strength. In the low noise regime, the system

exhibits coarsening dynamics emblematic of the sub-critical Ising model, due to

surface tension at domain interfaces. However when the noise strength becomes

sufficiently strong the multiplicative form of the noise becomes relevant and the

surface tension vanishes from the system. In this high noise regime, we observe

global ordering characteristic of the voter model which is driven by interfacial

fluctuations.

In chapter 4 we investigated whether it was possible to observe macroscopic

probability currents in finite populations, and if so, whether they could give rise

to cycling behaviour in the species densities. For two-species populations which

deterministically evolve to reside at a stable fixed point, we derived the general

conditions for which the system reaches a non-equilibrium steady state. We found

that while dethermalisation of the noise induced a steady-state current to flow,

this was not sufficient to allow global quasicycles to be observed. In chapter 5 we

demonstrated that this stochastic mechanism could induce cycling behaviour if it
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was coupled with a deterministic component of the dynamics which constrained

the system to a closed, circular manifold. The athermal nature of the noise then

leads to a biased diffusion about the manifold, resulting in quasicycles.

Finally, in chapter 6 we studied the synchronisation of several quasicycles in a

spatially extended version of the circular manifold model of chapter 5, in which the

multi-patch populations are coupled through migration. We devised two empirical

measurements by Monte Carlo simulation to quantify the synchronisation of the

system and to qualitatively observe its relation to the coupling strength. We

successfully captured this behaviour analytically through a linearised stability

analysis of the global synchronised state. This was predicated on the derivation

and transformation of a set of Langevin equations describing the metapopulation

dynamics, in which the multiplicative nature of the demographic noise is a key

feature.

The models we constructed to facilitate our study of these very different

global dynamical phenomena are necessarily specific to the system under

consideration. Nevertheless, in the course of studying each of them some common

themes emerged which may prove insightful in any future approach to formulating

a more general framework for studying stochastic dynamical systems. A recurring

feature in our analysis has been the separation of the models’ dynamics into slow

and fast processes.

In the microscopic spin model of chapter 3, the noise becomes a relevant

parameter when its inverse amplitude h, which set the rate of diffusion in the

spatially extended system, is sufficiently small that two timescales emerge in the

phase ordering dynamics. Below some non-zero h∗ the local, on-site dynamics

becomes a fast process, taking each site to a locally absorbing state. This means

that on the timescale of the slow diffusion process the dimension of the system is

effectively reduced from N spins to 1 spin per lattice site.

In the circular manifold model in chapter 5, we exploit a slow manifold in

the deterministic dynamics to constrain the two-dimensional (2D) stochastic

dynamics to the neighbourhood of a 1D closed manifold, allowing us to

approximate the diffusion due to the demographic noise as a 1D process. The

subsequent analysis showed this to be a good approximation of the full 2D

stochastic dynamics. These reductions due to the emergence of fast and slow

processes in the dynamics allows us to to exploit the mathematical machinery
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available in analysing 1D non-equilibrium systems which are governed by

Langevin equations or their equivalent Fokker-Planck equations. In particular,

mapping the non-equilibrium dynamics onto a thermal diffusion process has

proven to be conceptually insightful and allows quantitative comparison with

numerical simulation of the complete defining stochastic dynamics of the models.

We have seen in this thesis that the interplay between the demographic

stochasticity and the deterministic dynamics can give rise to macroscopically

observable effects unaccounted for in population level models of finite systems

governed by ordinary differential equations. In the study of deterministic

dynamical systems there exists a wide range of methods for exploiting the

difference in timescales and relaxation of variables between fast and slow

processes. For example, in applied mathematics, slow manifold theory is a well

established technique in studying non-linear systems [100], while the separation of

timescales is a central tenet in mode-coupling theory in the study of glassy systems

[121]. We speculate—echoing a similar notion expressed recently by Constable,

McKane and Rogers in [99]—that if by coupling an individual based modelling

approach with a broader toolkit of analytical techniques to exploit the dynamical

separation of stochastic processes, a more general framework could emerge for

studying how fluctuations due to the discrete nature of finite systems give rise to

phenomena unpredicted by deterministic models.

The development of such a framework along with universal principles and

general analytical tools in the study of complex systems is very much in

demand. There is a growing consensus in the scientific community on the need

for an interdisciplinary approach to be taken in tackling important problems in

21st century science. The expansion of the relatively new fields of quantitative

biology and biological physics have shown where the transfer of knowledge can

be invaluable, for example in the study of protein aggregation [122], cell biology

[123], antibiotic resistance [124] and evolutionary biology [125]. Often this comes

in the form of greater quantitative insight, which allows for simplifications of

models and guides researchers in probing the vital aspects of the systems under

consideration. Stochastic modelling of individual based models, such as that

performed in this thesis, can play a vital role in bridging the gap between real

systems in the natural and social sciences and the analytical power of statistical

physics.
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Chapter 7. Conclusion
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[47] Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F., and Spigler, R.
(2005) The Kuramoto model: A simple paradigm for synchronization phenomena.
Rev. Mod. Phys., 77, 137–185.

[48] Mirello, R. E. and Strogatz, S. H. (1990) Synchronisation of pulse-coupled
oscillators. SIAM J. Appl. Math., 50, 6, 16645.

161



BIBLIOGRAPHY

[49] Strogatz, S. H. (2003) SYNC: The Emerging Science of Spontaneous Order .
Hyperion.

[50] Lai, Y. M., Newby, J., and Bressloff, P. C. (2011) Effects of demographic noise
on the synchronization of a metapopulation in a fluctuating environment. Phys.
Rev. Lett., 107, 118102.

[51] Hanski, I. (1998) Metapopulation dynamics. Nature (London), 396, 41.

[52] Abta, R., Schiffer, M., and Shnerb, N. M. (2007) Amplitude-dependent frequency,
desynchronization, and stabilization in noisy metapopulation dynamics. Phys.
Rev. Lett., 98, 098104.

[53] Abta, R., Schiffer, M., and Shnerb, N. M. (2008) Stabilisation of metapopulation
cycles: Towards a classification scheme. Theor. Popul. Biol., 74, 273–282.

[54] Risken, H. (1996) The Fokker-Planck Equation: Methods of Solutions and
Applications, Second Edition. Springer Series in Synergetics, Springer.

[55] Brush, S. G. (1967) History of the Lenz-Ising Model. Rev. Mod. Phys., 39, 883–
893.

[56] Briggs, C. J. and Hoopes, M. F. (2004) Stabilizing effects in spatial parasitoid–
host and predator–prey models: a review. Theor. Popul. Biol., 65, 299–315.

[57] Hermsen, R. and Hwa, T. (2010) Sources and sinks: A stochastic model of
evolution in heterogeneous environments. Phys. Rev. Lett., 105, 248104.

[58] Pawula, R. F. (1967) Approximation of the linear Boltzmann equation by the
Fokker-Planck equation. Phys. Rev., 162, 186–188.

[59] Grima, R., Thomas, P., and Straube, A. V. (2011) How accurate are the nonlinear
chemical Fokker-Planck and chemical Langevin equations? J. Chem. Phys., 135,
084103.

[60] Melbinger, A., Cremer, J., and Frey, E. (2010) Evolutionary game theory in
growing populations. Phys. Rev. Lett., 105, 178101.

[61] Bortz, A., Kalos, M., and Lebowitz, J. (1975) A new algorithm for Monte Carlo
simulation of Ising spin systems. J. Comp. Phys., 17, 10 – 18.

[62] Blythe, R. A. and McKane, A. J. (2007) Stochastic models of evolution in
genetics, ecology and linguistics. J. Stat. Mech., 2007, P07018.

[63] Ziff, R. M., Gulari, E., and Barshad, Y. (1986) Kinetic phase transitions in an
irreversible surface-reaction model. Phys. Rev. Lett., 56, 2553.

[64] Bär, M., Falcke, M., Levine, H., and Tsimring, L. (2000) Discrete stochastic
modeling of calcium channel dynamics. Phys. Rev. Lett., 84, 5664.
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