
The Optical Measurement of 

Acoustic Velocity Fields. 

a thesis bV 

John P. Sharpe. 

for the degree of 

Doctor of Philosophy. 

Physics Department, 

Edinburgh University. 



To Ma and Da 

and 

Caroline 



Declaration. 

I declare that this thesis is of my own composition and that the work 

described in it is, except where indicated by reference or acknowledgement, 

entirely my own. 

John P. Sharpe. 



Acknowledgements. 

I would like to thank my project supervisor, Dr. C. A. Created, for 

encouragement, advice and help at all stages of this project. I would further 

like to thank Dr. D. M. Campbell for keeping me on the acoustical straight and 

narrow and intimating the calculations given in appendix B. 

Thanks must also go to Callum Gray for help with image analysis and some 

interesting collaborative work in Particle Image Velocimetry (see chapter 6) and 

to Frank Morris, the Fluid Dynamics technician, for technical assistance on 

some of the experimental work. 



Contents. 

CHAPTER 1: INTRODUCTION. 

CHAPTER 2: INTRODUCTORY ACOUSTICS AD 

ACOUSTIC MEASUREMENT. 

2.1. Introduction. 	 3 
2.2. Introductory acoustics. 	 3 

2.2.1. Intensity and impedance - relationship 
between acoustic velocity and pressure. 3 

2.2.2. Input impedance for an open tube. 7 
2.2.3. The acoustic boundary layer in a circular 

tube. 	 8 
2.3. Acoustic impedance and intensity measurement. 9 

CHAPTER 3: CONSIDERATIONS WHEN USING LD.A. FOR 

ACOUSTIC VELOCITY MEASUREMEMT. 

3.1. Introduction. 	 12 
3.2. Principle of the L.D.A. technique. 	 12 
3.3. Tracking of particles suspended in 

an acoustic field. 	 14 
3.4. Optical considerations. 	 17 
3.5. Signal processing considerations. 	 19 

CHAPTER 4: THEORY. DERIVATIOd OF CORRELATION FUNCTIONS FOR 

TIME AVERAGED AD GATED SOUND RELDS. 

4.1. Introduction. 20 
4.2. Time averaged correlation function for 

sinusoidal oscillations. 22 
4.3. Time averaged correlation function for 

band limited noise fields. 30 
4.4. The gating technique. 32 
4.5. Periodic sound fields with superimposed 

flows. 35 



C. 

CHAPTER 5: EXPERIMENTS. MEASUREMENT OF PERIODIC AND 

NOISY SOUND FIELDS. 

5.1. Introduction. 37 
5.2. Apparatus. 37 

5.2.1. Acoustic calibration - equipment 
and procedures. 37 

5.2.2. Acoustic wave tubes. 38 
5.2.3. Optical and signal processing equipment. 40 
5.2.4. The gating equipment. 41 

5.3. Laser Doppler acoustic velocity measurement. 42 
5.3.1. Time averaged measurement of periodic 

acoustic fields. 42 
5.3.2. Dynamic range of technique. 44 
5.3.3. Measurement of phase. 45 
5.3.4. Time averaged measurement of band 

limited noise fields. 46 
5.4. Measurement of complex acoustic impedance. 47 

5.4.1. Apparatus. 47 
5.4.2. Measurement of impedance amplitude. 48 
5.4.3. Measurement of phase. 49 

CHAPTER 6: ACOUSTIC STREAMING AND PARTICLE 

IMAGE VELOCIETRY. 

6.1. Introduction. 	 51 
6.2. Acoustic streaming. 	 51 
6.3. Rayleigh streaming. 	 53 
6.4. Particle image velocimetry. 	 54 
6.5. P.I.V. theory. 	 56 
6.6. P.I.V. experimental apparatus. 	 58 
6.7. Measurements and results. 	 60 
6.8. Discussion and conclusions. 	 62 

CHAPTER 7: DISCUSSION AND CONCLUSIONS. 

7.1. Resume of work done. 	 66 
7.2. Limitations of the techniques. 	 66 
7.3. Proposed further work. 	 69 



APPEDX k ACOUSTIC STREAIIG FROM A CAPILLARY TUBE. 

APPDIZ B: INPUT IMPEDANCE OF AN OPEN TUBE 

APPEIDIX C: PUBLICATIONS. 

BIBLIOGRAPHY. 



Abstract. 

The application of two different optical techniques to the measurement of 

acoustic velocity fields is described. Firstly, (and forming the major part of the 

work) the application of laser Doppler anemometry to the measurement of the 

vibrational velocities associated with acoustic fields is described. Secondly, the 

technique of particle image velocimetry is introduced to measure the 

nonlinear, non-zero mean motions which arise when higher intensity sound 

fields are present. 

For the first case consideration is given to the special requirements involved 

in measuring acoustic vibrational velocities: theory is then developed relating 

the photon correlation function to the sound field velocity distribution for the 

cases of periodic and noisy sound fields. A technique which can be used to 

measure the phase of the velocity with respect to the pressure is also 

described. Experiments are then described which test the technique and 

successful measurements are made of complex acoustic impedance. 

These latter measurements lead us to consider acoustic streaming and to the 

realisation that it could be measured using particle image velocimetry. This 

technique is then applied to Rayleigh streaming and the measurements are 

shown to agree well with theory. 



Chapter 1: ntroduction. 

Acoustics, which is defined in Kinsler et. al. (1982) as the generation, 

transmission and reception of energy in the form of vibrational waves in 

matter, covers an extremely large number of the topics open to physical 

investigation. For, not only does it include the regime (up to 16 kHz) which 

mediates much of human communication but also embraces the areas of 

ultrasound, non-linear acoustics, underwater acoustics, molecular absorption 

phenomena etc.. 

In this thesis we shall be confining ourselves to sound fields of the order of 1 

kHz and "moderate" intensity in air. We shall be demonstrating the use of 

optical techniques which permit measurements to be made of acoustic 

vibrational velocities and of the motions generated when, at higher intensities, 

non-linear effects start to become noticeable. At first sight this range of 

measurement may seem rather restricted, especially when compared to the list 

of topics given in the previous paragraph. However, this area covers much of 

the acoustics which interests those studying the sound fields which affect 

humans. This includes, for example, the assessment of acoustic absorption in 

building materials and the location of noise sources in industrial machinery. 

Indeed, since human pitch perception is dominated by the range 500 to 2000 

Hz, the techniques introduced here could also be very useful in the study of, 

say, musical wind instruments [Campbell & Greated 19871. 

In chapter 2 we shall briefly revise the basics of acoustics defining, for 

example, acoustic intensity and impedance and developing acoustic 

relationships which will be of use in later experimental work. Current methods 

of acoustic velocity measurement will be briefly reviewed, providing some 

indication for the motivation behind the work undertaken in this thesis. In 



chapter 3, the Laser Doppler Anemometry (L.D.A.) technique is introduced and, 

after a brief resume of the technique, detailed consideration is given to the 

optical and signal processing requirements for acoustic measurement. This is 

followed in chapter 4 by a derivation of the correlation function for the laser 

Doppler signal from periodic and noisy acoustic velocity fields. A gating 

technique, which will be used to measure the phase difference between the 

acoustic pressure and velocity will also be described. 

Chapter 5 describes the experimental work which çir3 the theory of 

chapter 4 and goes on to describe the experimental determination of complex 

acoustic impedance in an open tube. This last piece of work leads us on to 

consider acoustic streaming, a non-linear phenomenon, and to realize that the 

technique of Particle Image Velocimetry (P.l.V.) could provide a means for its 

measurement. Accordingly, chapter 6 outlines the P.I.V. technique and 

experiments are described on Rayleigh Streaming and shown to give good 

agreement with theory. Difficulties and limitations of the technique are also 

discussed. 

Finally in chapter 7 the two techniques of L.D.A. and P.I.V. are discussed and 

conclusions are drawn about their possible regimes of application and 

accuracy. It is also suggested where further developmental and applications 

work could be done. 

Appendix A discusses the production of acoustic streaming by the sound field 

from a capillary and offers a qualitative explanation for the effect while 

appendix B details some calculations which have relevance to the 

measurement of complex acoustic impedance when the pressure and velocity 

are not measured on the same plane. Appendix C contains a list and copies of 

the reports and publications generated in the course of this work. 



Chapter 2: Introductory Acoustics and Acoustic 

Measurement. 

21. ITOOUCT1O. 

In this chapter we shall define the various acoustic quantities which are used 

to parametrise and describe sound fields. Expressions relating velocity and 

pressure are developed so that quantitative comparisons may be made in later 

experimental work. A theoretical expression is given for the input impedance 

of an open tube so that, again, quantitative comparison may be made with 

later work. Boundary layer effects in tubes are also discussed. 

Current methods for measuring acoustic intensity and impedance are reviewed 

and it is observed how difficult it is to make direct measurement of acoustic 

velocity. This review also indicates the motivation for the work undertaken in 

this project. 

22.. IMTRODUCTORY ACOUSTICS. 

2.2.1. Intensity and impedance - relationship between 

acoustic velocity and pressure. 

In order to completely define a sound field both the pressure, p, and the 

acoustic velocity, v, at any point must be determined. Here p is the difference 

between the instantaneous and the equilibrium (or hydrostatic) pressures while 

v is the particle velocity or instanteous velocity of a small element or particle 

of the fluid. These quantities are required for the evaluation of the acoustic 

impedance and intensity but, although the pressure is quite easily measured - 

small, cheap and accurate microphones being readily available - the 

measurement of acoustic velocity is much more difficult. 



The acoustic intensity, which quantifies the transport of energy by the sound 

field, is defined as 

T 

-==f p.vt  2.2.1. 

where the angled brackets indicate time averages and the integral is taken 

over one cycle of the acoustic disturbance. The intensity is useful in 

applications such as determining the location of noise sources or sinks in 

industrial machinery [Bruel & Kjaer 1982b]. 

Specific acoustic impedance, z, is defined as the ratio of pressure to acoustic 

particle velocity 

2.1.2.. 

When dealing with sound in pipes or horns, however, it is more convenient to 

use the acoustic impedance which is defined, for a fluid acting on a surface of 

area S. as the complex quotient of the pressure at the surface divided by the 

volume velocity at the surface [Kinsler et. a/. 19821 

where 

tA ft 	S  

U is known as the volume velocity. 2.2.3. can also be written as 
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where(ZIis the impedance amplitude and 0 the phase difference between the 

velocity and pressure. Acoustic impedance is used when quantifying the 

coupling of sound fields in different media or in volumes of different 

dimensions. It is in fact closely analogous to electrical impedance, with 

pressure and volume velocity corresponding to voltage and current 

respectively. This analogy is quite useful and can be extended to cover areas 

where the sound field wavelength is much larger than the dimensions 

confining it (equivalent to discrete circuit elements like capacitors and 

inductors) and where the wavelength is much smaller (equivalent to 

waveguides). This latter analogy can be used in chapter 5 when computing the 

theoretical impedance for an open tube. 

For a plane progressive wave the particle velocity and pressure are simply 

related through 

1 
	

2.2..5 

where p 0c is the characteristic impedance of the medium and p 0  and c are the 

density of the medium and speed of sound in the medium respectively. For air 

at standard temperature and pressure p 0c takes the value 415 Pa.s/m. K 

Acoustic pressure though is not usually given in pascals but in terms of sound 

pressure levels or intensities related to some arbitrary reference level (usually 

1O_ 12  W/m 2, equivalent to 20.4 .iPa), which corresponds roughly to the lower 

limit of hearing at 1000 Hz. 

For intensity levels measured in decibels 
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Then, since intensity and effective (r.m.s.) pressure for a plane progressive 

wave are related through [Kinsler et. al 19821 

to 

we get 
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1.2.7. 

Rearranging 2.2.7. and using "ref20  jiPa then gives the pressure in pascals as 
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Returning to 2.2.7. and remembering we are still dealing with plane progressive 

waves we also see, by writing the r.m.s. pressure as 

P X rS 

where Vrms  is the r.m.s. velocity and z=415 Pa.s/m that 

, 	Vr v S \ 
SPL 	2o L7 	
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Since the velocity amplitude am  is related to Vrms  through am =Jvrms  we then 

get 

StL 
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Although 2.2.9. was derived assuming that the sound field was a plane 

progressive wave, it can be applied to more complex fields provided one 

knows the phase relationship between the velocity and pressure. For example, 

for the first normal mode of a tube closed at both ends, the pressure starts as 

a maximum at one end, falls to a minimum at the tube centre and rises again 

to a maximum at the other end. The velocity however starts as a minimum, 

rises to a maximum at the centre and falls again to a minimum at the other 

end. We thus see that if the velocity is deduced from a pressure measurement 

at any point then this velocity is equal to the true velocity displaced by half a 

tube length, equivalent to a 900  phase shift. Equation 2.2.9. and arguments 

such as the above will be used extensively later on when making comparisons 

between acoustic pressures and velocities. 

2.2.2. Input impedance for an open tube. 

Consider a tube of length L and radius a, open at one end and closed at the 

other with acoustic excitation provided at the closed end. Then, if the 



wavelength of the sound field is much greater than the tube radius, the tube 

can be thought of as a transmission line with distributed loss [Pratt, Elliot & 

Bowsher 19771. The input impedance is thus given by (King 19431 

z7-  
z[zL 

coskPL 

- 	zo ,Sk rL 

.. Zsii ___ I 
+Z sin rL J 

2.1.10. 

Here Z0  is the characteristic impedance, ZL  is the terminating or load 

impedance and r is the (generally complex) propagation constant; r=k+ia 

where a is the attenuation coefficient, k is the wavenumber and i 
=J-  1 

Then, 

following Pratt, Elliot and Bowsher it is possible to write Z 1  as 

at L 
Z 2.1.I(. 

+ 	 tti 

where Z0=p 0c/ITa 2  and L'=L+0.61a. 0.61a is the end correction for an open tube 

[Kinsler et. al. 19821 i.e. the tube has an effective acoustic length a little 

greater than its geometrical length. Equation 2.2.11. can be used to compute 

theoretical expressions for the input impedance and phase (eqn. 2.2.4.) using 

the relationships(Z =f and 4=arctan(lm(Z)/Re(Z 1 )) where * denotes complex 

conjugate and Re and Im the real and imaginary parts respectively. Equation 

2.2.11. will be derived in appendix B by another method when we come to 

discuss the measurement of acoustic impedance in greater detail. 

2.2.3. The acoustic boundary layer in a circular tube. 

It is well known that flow past a solid boundary is slowed down due to 

viscous interaction between the fluid and the boundary [Batchelor 19701. This 

naturally also applies to acoustic flows where the resulting boundary layer 

would, in the case of ducts or tubes, reduce the effective area of flow. This 

would then have to be taken into consideration when calculating, say, acoustic 
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impedance from point measurement of acoustic particle velocity (c.f. eqn. 

2.2.3.). 

For a cylindrical tube the ratio of mean particle velocity (') to the velocity at 

the tube centre (v(0)) is given by [Elliot, Bowsher & Watkinson 19821 

7 V(0) 

where a is the tube radius and J 0  and J 1  are zero and first order Bessel 

functions respectively. K is equal to (-i(pw/n)) 112  where p is the fluid density, 

w the angular frequency and n the coefficient of viscosity. The effective 

boundary layer is usually quite small with effective thickness given by 

c 
	'7 	 2.2-13. 

which, for air at standard temperature and pressure takes the value of 0.15mm 

at 100Hz and rapidly decreases at greater frequencies. Whether in any specific 

experiment the boundary layer need be considered depends on the size of the 

tube, the frequencies under investigation and the accuracy desired. 

An area where the acoustic boundary layer becomes very important is in the 

regime of higher intensity sound fields. In this case the boundary layer causes 

dissipation of the acoustic wave and forces non-zero mean motions [Lighthill 

1978a]. This effect is known as acoustic streaming and detailed consideration 

will be given later to its measurement (chapter 6). 

2.3. ACOUSTIC IPEDA110E AO INTENSITY PAEASUREPAEMT. 

Acoustic impedance and intensity measurements may be approached either 

directly by trying to measure the acoustic velocity or indirectly, by controlling 

VA 

the sound field so that a simple known relationship exists between the 



pressure and velocity. Pressure measurements alone then become sufficient. 

Examples of indirect methods are constant volume velocity techniques and 

pressure gradient microphones while direct methods include Rayleigh Discs 

and Hot Wire Anemometers. 

In the constant volume velocity technique (which was developed mainly for 

studying the input impedance of musical instruments) the acoustic excitation 

is fed into the system (instrument mouthpiece) via a high impedance series 

resistance (capillary tube) [Backus 1974, Salava 1980, Campbell 19871 (see 

figure 5.2.2.). The capillary tube maintains a constant volume velocity input 

over a wide frequency range and this input may be deduced either 

theoretically [Backus 1974, Keefe & Benade 1981, Kergomard & Causs' 19861 or 

by calibration using, say, a Helmholtz resonator [Campbell 19871. The pressure, 

measured in the input plane, then suffices to deduce the impedance. 

An equally ingenious approach to the measurement of acoustic intensity 

(which became feasible with the advent of cheap high speed digital signal 

processors) involves the use of two closely spaced microphones from which 

the pressure gradient is estimated and transformed to a velocity using the 

equations of motion for the sound field [Fahy 1977, Chung 1978, Bruel & Kjaer 

1982a,b]. This technique can also be extended to direct measurement of 

impedance and absorption [Minten, Cops & Lauriks 19881. 

Both these techniques however suffer from a variety of drawbacks ranging 

from calibration difficulties, need for empirical frequency corrections, directivity 

effects and assumptions needing to be made about the field under 

investigation. Probe devices such as the pressure gradient microphone can 

also upset the field under investigation [Bruel & Kjaer 19851. 

Turning now to direct velocity measurement techniques, we see that the first 

of these was the Rayleigh Disc [Rayleigh 18961. This takes the form of a thin 



disc, typically made of mica or brass and of —1cm diameter, suspended in the 

sound field. The acoustic velocity field acts on this disc to produce a 

measurable torque of magnitude proportional to the mean square velocity. 

Unfortunately such a device is rather difficult to use and a host of empirical 

correction factors and assumptions must be applied in order to take account 

of, for example, diffraction effects and flexural vibrations of the disc [Jensen & 

Saermark 1958, Rasmussen 19641. Also, since the torque is proportional to the 

disc diameter, the disc cannot be made arbitrarily small and can hence 

produce significant distortion of the field under investigation. 

The Hot Wire Anemometer (H.W.A.), a common fluid velocity measuring device 

which relies on the cooling effect of the flow on a thin electrically heated 

wire, has also been successfully applied to the measurement of acoustic 

velocities. Good results were obtained in measurements of brass instrument 

input impedances [Pratt, Elliot & Bowsher 1977, Elliot, Bowsher & Watkinson 

19821. In their experiments however there always seemed to be a steady flow 

in the instrument (due perhaps to acoustic streaming because high intensities 

were used to get reliable results from the H.W.A.) but it is not clear if such a 

device would work in a field without non-zero mean motions. For in this case 

the air would simply oscillate about the probe and would not be expected to 

have the same cooling effect as a non-zero mean flow. The H.W.A. also 

suffers from the drawbacks of calibration difficulties and, like other material 

probes, disturbance of the sound field. 
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Chapter 3: Considerations when using Laser Doppler 

Anemometry for Acoustic Velocity Measurement. 

3.1. lGTR0DUCTIO11. 

As was seen in chapter 2, conventional techniques for measuring acoustic 

velocity suffer from a variety of drawbacks. Consequently we now look to 

direct optical measurement techniques which will perhaps surmount some of 

these difficulties. The prime candidate for such a technique is Laser Doppler 

Anemomet,y (L.D.A.) which is absolute (requires no calibration) and is non - 

intrusive. 

In this chapter the various configurations for L.D.A. will be examined to decide 

which of the various combinations of optics and signal processing most suit 

the requirements of acoustical measurement. That is, which system gives the 

best combination of measurement accuracy, speed, ease of operation etc. 

Such considerations will then allow us to go on and deduce how the velocity 

distribution in the sound field may be derived from the anemometer output 

signal. 

32. PRUCIPLE OF THE LDA TECHNIQUE 

The principle of L.D.A. is simple enough: laser light projected into the flow 

under investigation is scattered from small particles contained in and faithfully 

following the fluid. The Doppler shift imposed on the light is then analysed to 

reveal the flow velocity. Since the L.D.A. technique has been around since 1964 

[Yeh & Cummins 19641 there has understandably been much progress in the 

fields of optical design and signal processing and the literature is vast. This 

literature now contains several books including Durst, Melling and Whitelaw 

(1976), Watrasiewicz and Rudd (1976), Durrani and Greated (1977) and Drain 
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(1980). All of these form excellent introductions to this work and Durrani and 

Greated will be referred to frequently. 

L.D.A. systems fall into two general classes - reference beam heterodyne 

mode and crossed beam mode (Fig. 3.2.1.). In the heterodyne system the light 

scattered from the moving particles is mixed (heterodyned) with a reference 

beam and the resulting beat frequency analysed to deduce the flow velocity. In 

the crossed beam or differential Doppler mode the beating takes place 

between two beams scattered in different directions so that the beat 

frequency is equal to the difference between the Doppler shifts for the two 

angles of scattering. This system, for the purposes of visualization and 

calculation, can be imagined as an interference pattern of bright and dark 

sinusoidal fringes through which the particles pass scattering light (Fig. 

3.2.1. (b)). 

For the crossed beam system it can easily be shown that the separation of the 

fringes is given by 

	

LA 	

2S. 

where A is the laser light wavelength and e the half angle between the beams. 

If a particle in the flow then passes through the fringe pattern (perpendicular 

to the fringes) with velocity U, the/frequencv of the scattered light is 
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where D is known as the velocity to frequency conversion factor. Thus the 

velocity can be deduced knowing only the wavelength of the light and 

intersection angle of the beams. 
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Figure 3.2.1. L.D.A. configurations. (a) Heterodyne mode. (b) Crossed beam mode 
showing variation in light intensity across the fringe pattern. 
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Before going on to give these L.D.A. systems more careful consideration we 

must first consider how faithfully typical seeding particles will track the 

motions of the acoustic field. 

3.3. TRACt(IIG OF PARTICLES SUSPENDED IN AN ACOUSTIC FIELD. 

In air, the most commonly used artificial seeding particles are tobacco smoke 

or atomised vegetable or silicone oil. Tobacco smoke particles have diameters 

of roughly less than 1pm, depending on the smoke's age [Keith & Derrick 

19601. Atomised oil droplets can be obtained down to about 1pm using, for 

example, the Disa type 551-17 seeding generator. We note first that, taking the 

maximum field intensity we are likely to encounter as equivalent to a plane 

wave with sound pressure level of say 150 dB (re 20 pPa) then the maximum 

particle velocity will be —2 rn/s. Then, taking the average particle diameter as 

1 pm, we see that the characteristic Reynolds number for this flow is 

.1 	o•o7 

where U is the velocity, d the particle diameter, p 0  the air viscosity and p the 

density. Since this Reynolds number is less than unity, Stokes resistance law 

can be applied to the flow [Batchelor 19701 and, following Hinze (1959) the 

equation of motion for a seeding particle may be written 

. 	+ CV - c.V  

where v and 'i  are the particle and fluid velocities and 

'3,44 

C 	
(2 	+ r d 

2. 	 .3.1. 

where p p  and pf are the particle and fluid densities. In deriving 3.3.1. it has 
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been assumed that Pp>>Pf. Since Pp/Pf —1000 for smoke or oil in air, this 

assumption is well justified. 

Then, taking the fluid velocity magnitude as 1 and writing the fluid and particle 

velocities as 

e 

j ",JP,J t 

where am  is the (complex) particle amplitude and Wm  the frequency of the 

sound field, and substituting these into 	3.3.1. yields, for the particle velocity 

amplitude 

k) 
	C 	

3.3.3. 

If we wish the particles to follow the velocity of the fluid to within say 1% 

then 3.3.3. can be rearranged to yield 

1.. 

c " _ (o.) 
c4jf1 '.s 	 3.3.4. 

(0.17) 

This gives the upper frequency limit for 1 urn particles of density 1000 kg/M 3  

in air as approximately 8 kHz, which is well within the range of frequencies 

dealt with here. Even at 2 urn the particles will still follow the field to 5% up 

to 	4 	kHz. These 	calculations 	agree 	with the predictions 	of 	Taylor (1981) 

following the work of Brandt at. al. (1937). 

Particles sizes below 1 urn can in fact be reasonably easily generated. For 

example, tobbacco smoke particles are on average < 0.4 urn if the smoke is 
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not less than about 4 minutes old [Keith and Derrick 19601. Particles of this 

size would be required if oscillations much over 10 kHz were to be 

investigated. It must be born in mind of course that these estimates refer to 

sinusoidal oscillations: if the sound field were generated by say a square wave 

then the inertia of the tracking particles could cause filtering of the high 

frequency components. We will meet this observation again in connection 

with the measurement of noise fields. 

It is also possible, when using the very sensitive photon counting correlation 

technique, to dispense entirely with artificial seeding and rely simply on 

naturally occuring "dust" particles in the air. This can be an advantage when 

carrying out measurements in systems where it is inconvenient or impossible 

to introduce artificial seeding particles and will be kept in mind when deciding 

on the optical system. 

Finally, in this section, we will briefly touch on the contribution that Brownian 

motion might make to the output signal. As will be seen in the next chapter, 

the signal spectrum for an oscillating flow field will be expected to take the 

form of a series of narrow peaks separated by the frequency of the oscillation 

(typically 1 kHz for our sound fields). Brownian motion would contribute a 

broadening to the spectrum and, clearly, if this were too great, then the peaks 

would be unresolvable. The Brownian motion spectral broadening can be 

shown to have a Lorentzian shaped spectrum [Edwards et. al. 19711 with width 

at half intensity equal to 2K2DC  where K is the magnitude of the scattering 

vector and D C  the diffusion coefficient of the particles. (K is equivalent to the 

frequency to velocity conversion factor defined in equation 3.2.2.). D can be 

calculated from 
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where kb  is Boltzmans constant and T the absolute temperature which gives, 

for 1 urn particles in air at 25 °C, the spectral broadening to be —50 Hz. Thus 

the technique should be able to handle sound fields well below 100 Hz. 

3.4. OFflCAL COSIDRAT1O3S. 

As was seen in section 3.2. there are two basic types of laser Doppler setup - 

the heterodyne and crossed beam modes. We, in fact, will be using the 

crossed beam system - for the following reasons. 

Firstly, this configuration is more suited to the lower particle concentrations 

generally found in air flows [See She & Wall (1975) for an excellent yet rarely 

cited treatment of signal to noise ratios in various L.D.A. systems]. In fact, in 

our experiments, we could usually have seeded as heavily as we liked, in 

which case the reference beam system would have been more effective. It was 

decided however to leave the system as flexible as possible. 

Secondly, the cross beam system can use large collection optics unlike the 

reference beam system [She & Wall 19751 again increasing the sensitivity 

when only small seeding densities are available. 

Finally, the optics of the crossed beam system are much easier to align and 

the Doppler signal is independent of the collection angle. This latter point is 

quite important because our experiments were usually made on narrow tubes 

(-1 cm radius) so it was useful to be able to to move the detector to avoid 

flare from the tube walls. 

A factor that is usually quite critical when discussing L.D.A. systems is the 
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size of the measuring volume; that is, the spatial extent of the observed fringe 

pattern. It is important to know this for the estimation of transit time 

broadening when attempting to measure turbulence [Durrani & Greated 19771. 

The size of the measuring volume also determines (in conjunction with the 

receiving optics) the "scale" over which the velocity field is measured. Neither 

of these considerations is critical to us however because, firstly, turbulence 

does not generally occur in the acoustic regimes we will be looking at and, 

secondly, in our experiments the velocity does not vary significantly over the 

measuring volume. This latter point would not hold if we were to make 

measurements near the boundary layer for then the velocity would vary (in the 

y direction of figure 3.2.1.(b)) significantly over the measuring volume. Careful 

consideration would then have to be given to the optical arrangement [Hanson 

1973, Mullin & Greated 19781. 

A very important consideration is the fringe spacing since it is this that 

determines the frequency output for a given velocity. One would expect, purely 

intuitively, that if there were only one or two particles in the fringe pattern, 

then the displacements of the particles should be of at least the order of the 

fringe spacing. Otherwise the particles would not properly "sample" the 

sinusoidal fringe variation. In the case of more particles we would expect 

their random distribution to more properly reflect all areas of the fringe 

pattern. 

To get a feel for the quantities involved assume that the laser beams are 

focussed from a separation of 2 cm using a lens of focal length 20 cm. The 

fringe separation then becomes (eqn. 3.2.1.) 6.33 urn. If the particles are to 

have displacements say a half of this distance then, for a 1 kHz plane wave, 

we would expect a lower measurement limit of —105 dB. We will see later 

(chapter 5) that this estimate is too high, but the above argument does give a 

useful rule of thumb estimate for the lower limit of the technique. 
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3.5. SIGNAL PROCESSING C0PdSIDERAT10S. 

The signal from a laser Doppler anemometer can (like all temporal signals) be 

analysed in either the frequency (spectrum) or time (correlation function) 

domains. We have chosen to use the photon counting correlator which detects 

individual photons scattered from the fringe pattern and computes, digitally 

and directly, the correlation function. This type of analysis technique is more 

suited to low light levels and can deal with smaller SNRs than frequency 

techniques [She & Wall 1975, Durrani & Greated 19771. We may note here that 

the photon count correlation function is proportional to the intensity 

correlation function [Durrani & Greated 19771. 

As will become apparent later (chapters 4 and 5), the correlation method yields 

the Sound field velocity amplitude in an easily invertible form and seems to be 

more robust than frequency techniques. As will also be seen, the output from 

the L.D.A. system when oscillating flows are observed, takes the form, in the 

frequency domain, of a series of narrow peaks whose relative heights are 

measured to deduce the velocity amplitude [Taylor 1976,19811. Because of the 

stochastic nature of the scattering process it is easy to see that the 

measurement of these power spectrum peaks would present some difficulty. 

For example, if a swept frequency measuring device were used then there 

could be no particles in the fringe pattern when any particular frequency range 

was being observed. 

The photon correlation technique does however suffer from the disadvantage 

that it is impossible to pre-filter the Doppler signal prior to processing thus 

eliminating low frequency terms. This makes the deduction of the correlation 

function a little more difficult. 
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Chapter 4: Theory. Derivation of correlation functions 

for time averaged and gated sound fields. 

4.1. INTRODUCTION. 

Having decided to use the crossed beam system with the photon correlation 

method of signal analysis, it now remains to deduce the form of the output 

signal and correlation function for the case of a sinusoidally oscillating 

velocity field. 

This can be approached in several different ways. Firstly, one may apply 

directly the well known equations for frequency modulation as detailed in 

several texts e.g. [Betts 19701. This was essentially the method adopted by 

Taylor (1976,1981) and Davis & Hews-Taylor (1986) who carried out the signal 

analysis in the frequency domain. This method however takes no account of 

the stochastic nature of the problem (e.g. random number of scattering 

particles, random scattering cross sections, arrival times etc.). 

Another approach, adopted by Sharpe & Greated (1987a), involved the 

integration of the velocity probability density over the velocity dependent 

autocorrelation function for the fringe geometry under investigation. This 

method, a well known approach, following Durrani & Greated (1977) is however 

really only applicable for quasi - steady flows. That is, it is assumed that the 

velocity of each particle does not vary "too much" as the particle crosses the 

fringe pattern. How much is too much is considered at some length in the 

literature but the quasi - steady condition can often be achieved in practice by 

frequency shifting so that a large apparent mean motion is superimposed on 

the flow velocity. This technique was used in the work on oscillating flows by 

Durrani & Created (1977) and Greated (1986) but it unfortunately makes the 
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deduction of the acoustic velocity very inaccurate because the contribution to 

the correlation function due to the sound field oscillations can become masked 

by the contribution due to the frequency shift (see section 4.5.). 

It is also notable, for instance, in our earlier work [Sharpe & Greated 1987a] 

that the expression for the autocorrelation function did not show any 

dependence on the modulating frequency. Later studies however showed such 

a dependence [Sharpe & Created 1987b]. This is perhaps intuitively consistent 

with the implicit assumption that, for any particle moving with velocity U, it 

travels a distance x=Ut rather than x=JU(s)ds in a time t. 

The only really rigorous way to attack the problem is to write down the spatial 

autocorrelation function and deduce its time dependence. This would then be 

valid for any flow and provide a basis on which further development of the 

theory could be made. This approach should then yield up our earlier results 

[Sharpe & Created 1987a] and the result for pure frequency modulation 

[Middleton 19601 as limiting cases. We will first look at the process in an 

idealised form and indicate areas of difficulty. 

For a sinusoidal signal of frequency f m  modulating a carrier of frequency f, 

the resulting spectrum takes the form of a series of peaks with relative 

heights given by a series of Bessel functions and separated by the modulating 

frequency [Betts 19701 (Fig. 4.1.1.(a)). The number and relative sizes of the 

peaks depends on the strength of the modulation but, roughly, for large 

modulations (large particle velocity amplitudes) there are a large number of 

small peaks spread across the spectrum while for lower modulation strengths 

there are fewer but larger peaks. For f c >>fm  this is equivalent to the case of 

oscillating particles in a large mean flow (or, alternatively, with frequency 

shifting applied). For the case of zero carrier frequency the spectrum takes 

the form of figure 4.1.1.(b) where the components of the spectrum in the 
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negative frequency domain are folded back into the positive region. For the 

case however of the carrier frequency being roughly the same order as the 

modulating frequency the spectrum becomes rather more complicated (Fig. 

4.1.1.(c)). The exact form of the spectrum would then depend critically on the 

value of the carrier frequency. We will not discuss this case in detail since it 

would be very difficult to obtain a general expression for the spectrum or 

correlation function. 

We will now go on and deduce the form of the correlation function for a 

sinusoidal oscillation with no mean flow using the crossed beam Doppler 

setup. The case of a mean flow superimposed on the oscillation is simply an 

extension of this. We will follow the notation of Durrani & Created (1977). 

4.2. TIME AVERAGED CORRELATION FUNCTION FOR SINUSOIDAL 

OSCILLATIONS. 

Let us write the voltage output associated with any pth particle in the 

observation volume as 

k p  W(P 	f'  t Cs-5 D ~ ? (t- 
)] 	~ - 2 - 1. 

so that the total output is 

XkW(P))[t +)] 
P 

where K is a constant associated with the optical power and detector 

sensitivity, K ckfackr5the scattering cross section of the particle, is the 

particle position and 0 is the frequency to velocity conversion factor (see 

chapter 3). W(B(t)) is the spatial weighting function which represents the 

envelope on the fringes due to the Gaussian cross section of the laser beams. 



23 

tt.Z. 3. 

with 

fl 

where e is the laser beam intersection angle and r 0  the radius at the lie 

intensity points of the beam waist. 

Note that in equation 4.2.1. low frequency terms have been retained (the 

constant term added to the cosinusoidal intensity variation). In standard 

analyses these are presumed to be filtered off but since this cannot be done 

in photon counting we will include them to see what their final effect will be. 

To determine the correlation function for x(t) we write as the initial particle 

position (at time t=O) and C P  for its position a time t later. 

0 

where V(z) is the instantaneous velocity of the pth particle which in this case 

is 

Ski (w 	
+) 	 4.. 

We are ultimately interested in recovering the velocity amplitude, a m . 

Then, following the derivation of Durrani & Greated (1977) we find that the 

autocorrelation function for the output voltage is 
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L)  = E r7t (-~ ) ;z ( ~ + -e)] 

C . 0 	w 	
] J 

+ 
t 

where EL I is the expectation operator, Co = EEK], C 1  = E[K2PI, g 0  represents 

the average number of particles per unit length of the measuring volume and 

Rw(BV) is the autocorrelation of the spatial weighting function (see eqn. 4.2.3. 

and Gradshyteyn & Ryzhik 1965). 

4.2.7. 

p(y;T) is the probability density function of the variable fl(T)  which we must 

determine in order to evaluate the autocorrelation function. We will do this 

below but first we note that the first term on the r.h.s. of eqn. 4.2.6. is the 

squared mean value of the Doppler signal. We will ignore this term from now 

on since it is time independent, contains no velocity information and only 

contributes a constant or pedestal value to the correlation function. 

From equations 4.2.4. and 4.2.5. we have 

b 9 ( 'r) 	fa 
It 

S L  A (  0" -,E- +- 0 ) 

OPI L 2- 	2- 	O)j 

where 0is a random variable uniformly distributed over the interval 0 - 27r 
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(çI( 	 4.2.9. 

We can now use the relationship for a function of a random variable [Bendat & 

Piersol 19661 

I 	
() 

where the factor 2 on the r.h.s. occurs because rl is a double valued function 

of $ over the interval 0 - 2. We then get 

0 

where 

Qx 	
till., 

2  

Equation 4.2.6. then takes the form 

RM 

TrJ 

JY  

We proceed to evaluate 4.2.13. by substituting y=a,Sinc so that the integral 

becomes 
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which we then split into two parts and make the substitution 

I - 

such thatthat 

j 0 g(-r) 

where 

I  
J..T 

FIL f 	][ 	s]  

First we evaluate F 1  by using the well known double angle formula to get 

F1 

 

f ' P  [ -.2 ( 
I - C,, 2. a) 
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P  If 
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c2cI1 
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and letting 2a=0 gives 
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7r 

	

F 	J- 	
P{] I cP[ ci]a 

	

I 	IIV —7r 

[P/] i(P/) L 	. (5• 

[McLachlan 19341 where lo( ) is a zero order modified Bessel function of the 

first kind. 

Turning then to F 2  and making the same substitution for v we get 

F  = I  j Tr/7' 	72 	2. a 

(Dar,) + 	 (D A' ) 	(lc)] 	( 

where this time we utilize the Bessel function expansion for cos(zsine). 

Making the substitution 2=4 again and expanding then leads to 

L 

E-T. (D 
f  

~") , a VK 

t+.z.  16. 
where J2( ) and l( ) are Bessel and modified Bessel functions of the first kind 

and orders 2n and n respectively. So we finally obtain for 4.2.13. 
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1#.l. 17. 
This is the full expression for the time dependent part of the autocorrelation 

function. It can be simplified by considering typical magnitudes for B and a m . 

For example, for laser beams of unfocussed e 1  width 0.5 mm focussed down 

from 2 cm separation using a 20 cm focal length lens, B takes the value 

25000. Putting this into equation 4.2.17. along with typical acoustic magnitudes 

and considering the behaviour of e_xl(x) [Tranter 19681 reveals that we may 

write the time dependent periodic part of 4.2.17. as 

r) C 3; (4) = 0 
( 

L   

to a very good approximation. 

We can further simplify 4.2.18. by noting that for typical correlator lag times 

(see chapter 5) 

eir 
- 

so we may write 

/Z (-C) OC 
	

(D) 
	

L. 2.. 

Equation 4.2.19. was the expression derived in Sharpe and Greated (1987a). 
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This time however we can be sure that the expression 4.2.19. is valid for 

oscillatory flows and we are now more aware of its limits of applicability. 

The acoustic velocity amplitude can thus be deduced by counting the lag time 

up to maxima or minima of the correlation function and using the tabulated 

values for the zero order Bessel function. For example, using the first minimum 

gives the velocity amplitude as 

. 32. 

Finally, we can now compare the result we have obtained with that for pure 

frequency modulation. Middleton (1960) implies that the autocorrelation 

function for a sine wave frequency modulation of a zero frequency carrier is 

where j.i  is the modulation index, defined as the ratio of the peak frequency 

deviation to the modulating frequency. 

If we make the identification that the peak frequency deviation is the maximum 

particle velocity divided by the fringe separation 

4 

then we see that 
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R(r) cC :;( 	 . (ii 

( 	 (&:)) 

which 	is 	4.2.18. 

4.3. TIME AVERAGED CORRELATION FUNCTION FOR RAID 

LIITED MOOSE FIELDS. 

Having dealt with periodic sound fields we now turn to random or noisy fields. 

Greated (1986) had shown that the L.D.A. system responded to wide band 

noise with the correlogram becoming progressively more damped as the 

sound intensity increased. No theory was developed however and the 

measurements were all purely qualitative. We will now show how the 

correlation function is related to the mean velocity amplitude for narrow band 

noise. This type of sound field was chosen because it is then possible to make 

some form of quantitative comparison with pressure measurements. Also, if 

we can predict the form of the correlation function on the basis of our earlier 

work, then this will be a good check that our earlier theory is indeed correct. 

Assume that the noise field is band limited white noise with zero mean and a 

gaussian velocity probability density. Also assume that no part of the noise 

spectrum is of greater frequency than that which can be tracked by the 

seeding particles (see chapter 3). For a sufficiently narrow bandwidth the 

velocity can be represented as a quasi-periodic sine wave with slowly varying 

amplitude and random phase uniformly distributed over 0 - 27T (Betts 19701 

(see Figure 4.3.1.). The velocity amplitude, am,  then assumes a Rayleigh 

probability density (Figure 4.3.1.(b)). p(am)  is given by 
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Figure 4.3.1. Narrow bandwidth noise. (a) Form of noise time history. (b) 
Probability density for amplitude of the signal illustrated in (a), a = standard 
deviation. 
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f I 
or 

where a is the standard deviation of the velocity distribution. The mean 

velocity amplitude (am)  is related to the standard deviation through m=af7. 

This can be plainly seen from 

7,M = E [ a
m I 
	

io 
	p(a) 

f__ 
b 	 I 2.J 

iTJ 	" 2 	
4-s-1. 

[Gradshetyn & Ryzhik 19651. To obtain the autocorrelation function for the 

noise field we then integrate the result for a single tone sound field (eqn. 

4.2.19.) over the amplitude probability density. 

(t) am p L] T ( U 

where B is a constant. 4.3.2. evaluates to [Tranter 19681 

Then, substituting for a from 4.3.1. we can write 

R0 	 P TrI - ( D 

This has a Gaussian form in t with standard deviation of, say, a. Hence we 
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can write 

I 	r 	_ 
.3 .c. J 2..(D 

The mean velocity amplitude can thus be deduced by measuring the standard 

deviation of the correlogram. 

4.4. THE GATING TECHNIQUE- 

In chapter 2 we saw that to completely define a sound field the phase 

relationship between the velocity and pressure must be determined. We will do 

this using a gating technique which works in the following fashion. 

The sinusoidal pressure signal from a microphone in the sound field is sent to 

a microcomputer which detects the positive going zero crossings of the signal 

and provides a pulse of a preset width and at a preset delay time from the 

zero crossing (Figure 4.4.1.) This pulse is then used to gate the 

photomultiplier so that the Doppler signal is only "seen" for the duration of the 

pulse. The velocity is thus being sampled at constant phase positions in its 

fluctuation. Clearly, if the pulse width is reasonably narrow, then the flow 

velocity will be approximately constant for the duration of the pulse and the 

autocorrelation function will be a cosine curve with period related to the 

velocity through equation 3.2.2. By incorporating a phase or frequency shifter 

into the optics the velocity direction as well as magnitude may be deduced 

from the correlogram period and, by selecting several different delay times so 

that at least one whole period is covered, it is then possible to reconstruct the 

velocity time history. If the microphone phase response is also known it is 

then possible to deduce the phase difference between the velocity and 

pressure. 

The gating process can however distort the correlogram unless special 



Figure 4.4.1. Pressure signal and gating pulses. 
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Figure 4.4.2. Autocorrelatjon function (A.C.F.) for a train of square pulses of 
width a and period T. 
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Figure 4.4.3. Autocorrelation of sampled velocity signal (c.f. eqn. 4.4.3.). 
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electronic circuitry is used; this is only available on certain types of correlator 

(see chapter 5). The form the correlation function takes when gated can be 

deduced as follows. The theoretical background can be found in, for example, 

Papoulis (1968). 

For a continuous, wide sense stationary Doppler signal, c(t), riding on a 

pedestal d.c. current d and sampled by a square gating pulse p(t), the 

photodetector current is 

I(): ( c() +) p(t) 

For our case (Fig. 4.4.1.) where there are many pulses, occuring with period T, 

p(t) is replaced by 4(t) where 4(t) is a single pulse convolved with a train of 

delta functions 

P10 4 

where 

1 
	

61/2  < + K & 

ENE 
	 eLSe. ejL r'z 

d is the well - known delta function and * indicates convolution. The total 

photocurrent is then 

y (fl : ((t) 	) 0 +) 

The autocorrelation of X(t) then becomes 
.1 
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since E[c(t)] is, by definition, zero. 

The autocorrelation of (t) is found in the following manner: taking the Fourier 

transform of both sides of 4.4.2. and using the convolution theorem gives 

x 

2. 	 (w 	ic) 

where w 0=27T/T. Since the r.h.s. of 4.4.6. is real the power spectrum of c(t) 

becomes 

06 
SJc = 

where the constant K would be infinite if the train of delta functions were 

infinite. Most measurements however have a finite run time! The 

autocorrelation function for 4(t) is then given by the inverse transform of 4.4.7. 

(Wiener - Khinchine Theorem). 
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( 	
) 

	 mT) 
: 

So we see that R(t) is a train of triangles of base width 2a and period T 

(Figure 4.4.2.). Putting 4.4.8. into 4.4.5. and observing only the first triangle we 

see that the Doppler signal correlation function is damped and rides on a 

sloping baseline (Figure 4.4.3.) This can make the deduction of the velocity 

somewhat difficult, especially if the pulse width is very small so the damping 

is large (see chapter 5). 

4.5. PERODOC SOUND FIELDS WITH SUPERIMPOSED FLOWS. 

We will now discuss the case of a periodic sound field on which a steady flow 

is superimposed. Actually, this case does not really occur in this project but it 

will be discussed here for the sake of completeness. The situation corresponds 

to that of figure 4.1.1.(a) where the net effect of the flow is to cause a shift of 

the carrier frequency and the corresponding effect on the correlation function 

is the multiplication of equation 4.2.17. by a cos(w 0 r) term where w o  is related 

to the flow velocity through equation 3.2.2. Using the approximate equation 

4.2.19. we see that the correlation function is 

k(-r) 0C :; (D) 
(0.) 

(r) 

which was derived by Durrani & Greated (1977) on the assumption that the 

flow velocity was much greater than the oscillatory velocity. This assumption 

considerably simplifies the mathematics of the situation but the deduction of 

the acoustic velocity amplitude becomes very inaccurate because the 

parameters of the Bessel function (zeroes and turning points) become masked 

by the cosine oscillations. This is illustrated in figure 4.5.1. which shows 
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Figure 4.5.1. Effect of a steady flow (frequency shifting) on the correlation 
function. (a) No frequency shift. (b) Frequency shift applied. 
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correlation functions recorded with and without frequency shifting. (The 

experimental apparatus and method by which figure 4.5.1. was obtained is 

described in the next chapter.) 

Essentially what is needed is the deconvolution of the contributions to the 

correlation function from the oscillatory and steady flows. This is a common 

type of desideratum in L.D.A. but is complicated by the truncated and 

statistical nature of the correlation function. Methods for this "inversion" 

procedure range from the simple (identification of turning points) to the highly 

complicated and computationally expensive (high resolution spectral 

estimators) [Brown & Gill 19821. A good deal of interesting work could 

probably be done in this area. 

Another approach is suggested by the gating technique. Since the velocity 

deduced from the gated correlograms represents the velocity at that particular 

phase position of the acoustic fluctation plus the contribution from the steady 

flow, then the reconstructed time history will be a sinusoid riding on a velocity 

pedestal. It is thus possible to deduce the velocity amplitude and mean flow 

from the one measurement. Unfortunately, as we shall see, the gating 

technique is somewhat tedious in application. We notice however that if the 

flow situation corresponded to that of 4.1.1.(c), then it would probably be best 

to use frequency shifting to move the carrier frequency well away from zero. 

Processing would then have to continue from 4.1.1.(a). 

Finally, if there was turbulence in the acoustic field then any possibility of 

acoustic measurement would probably be precluded altogether if the turbulent 

spectral broadening became of the same order as the modulating frequency. 

For then the spectrum of, say, figure 4.1.1.(a) would become smeared so that 

the individual peaks (and hence oscillatory information) would be lost. 
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Chapter 5: Experiments. Measurement of Periodic 

and Nosy Sound Reds. 

5.1. I1kTTRODUCTIOc1. 

In this chapter the work done to verify the theory of chapter 4 will be 

described. The methods of acoustic calibration and the construction of the 

acoustic equipment will be detailed and time averaged measurements in 

standing and travelling wave tubes will be described both for periodic and 

noisy sound fields. It will be shown how the gating technique may be used to 

measure the phase difference between the velocity and pressure. Finally, the 

application of the technique to the measurement of complex acoustic 

impedance in an open tube will be described. This situation is well enough 

understood to permit theoretical calculation of the impedance but it is also 

realistic enough to demonstrate the use to which the technique may be put in 

a practical situation. Observations made in the course of these final 

measurements lead us to consider non-linear acoustic effects and the optical 

measurement of acoustic streaming. This will then be dealt with in chapter 6. 

5.2 APPRTUS. 

5.2.1. Acoustic Calibration - Equipment and Procedures. 

Since all the L.D.A. velocity measurements to be described in this chapter will 

be compared against sound pressure measurements it is necessary to have an 

accurate and reliable procedure for calibrating the pressure microphones. In all 

these experiments we will be relying for our primary source of calibration on 

the Bruel & Kjaer (hereinafter called B & K) type 4230 sound level calibrator. 

This provides, for B & K half inch microphones, a sound pressure level of 94 

dB (re 20iPa) to within 0.4 dB at 1000 Hz. Once a microphone has been 
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calibrated at this frequency its response at other frequencies can then be 

deduced using the data supplied by the manufacturer. 

Frequently, however, we will be using the microphones with probe 

attachments which, due to resonance and absorption effects, greatly change 

the microphone response. Calibration is then achieved using another, 

precalibrated, microphone to sense the pressure in an acoustic coupler and 

the signal from this compared with the probe response. Figure 5.2.1. shows a 

diagram of the equipment used. 

Since there are errors of about 0.1 dB in reading the scales on the measuring 

amplifiers we will take the total error in the pressure measurements (including 

the error in the type 4320 sound level calibrator) as about 0.5 dB. This value 

will be used throughout the present work when probe microphones are being 

used. An exception to this is in chapter 6 where the sound field becomes so 

intense that microphone distortion effects must be considered. 

5.2.2. Acoustic Wave Tubes. 

The acoustic fields, with which the technique was tested, were set up in either 

standing or travelling wave tubes. In the standing wave tube the waves 

emitted from one end were reflected from the other to set up (by interference) 

a standing wave. In the travelling wave tube the far end was terminated in 

such a way as to reduce this reflection to a minimum. 

The standing wave tube was constructed from 2 cm i.d. glass tubing with solid 

rubber bungs terminating each end to provide an air column of length 46.5 cm. 

Acoustic excitation of the air column was provided by a probe loudspeaker 

inserted through one bung while pressure measurements were made with a 

probe microphone (1mm i.d.) inserted through the other. Location of the tube 

resonances was made by positioning the tip of the probe microphone at one 
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Figure 5.2.2. Apparatus used for testing the termination of the travelling wave 
tube (from Campbell (1987)). 
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closed end (a pressure antinode) and adjusting the frequency until a maximum 

response was seen on the measuring amplifier 

For the travelling wave tube a 1.5 metre length of 2 cm i.d. glass tubing was 

used with the last metre or so filled with plastic wool and foam rubber to 

prevent reflection of sound from the far end. Sound was introduced into the 

tube through a curved section of plastic tubing using a horn loudspeaker 

which had the horn removed. A probe microphone could be inserted through 

the plastic tubing to monitor the pressure. (See figure 5.2.4. which shows this 

tube in the working section of the L.D.A. system.) 

To assess the effectiveness of the absorbing material and hence be able to 

adjust it for minimum reflection, the tube was examined in an anechoic 

chamber using the apparatus constructed by Campbell (1987) for measuring 

the input impedance of brass instruments (Figure 5.2.2.). This apparatus worked 

by supplying a constant volume velocity input through the capillary and 

measuring the pressure output from the system under observation. In this 

case, however, the musical instrument was replaced with the glass tube and 

interest was more focussed on reducing resonance than extracting values for 

impedance. The absorbing material was adjusted several times until a roughly 

flat response was found over quite a wide frequency range. The output from 

the level recorder is shown in figure 5.2.3.(a) for the final configuration of 

absorbing material used. For comparison the output due to a 2 m long open 

tube of similar diameter is shown in (b). 

The effectiveness of the termination was further gauged by traversing the 

probe microphone some distance along the tube. Any standing waves would 

then manifest themselves through variation of microphone response with 

position. The largest ratio of sound maximum to minimum was found to be 0.8 

dB (at 1260 Hz, the frequency used later). This value will be used later in 
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Figure 5.2.3. (a) Level recording from the travelling wave tube with the 
terminating material in the final configuration and (b) recording from a 2 m 
long open tube. 
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assessing the accuracy of the L.D.A. measurements. 

5.2.3. Optical and Signal Processing Equipment. 

A diagram of the experimental apparatus is shown in figure 5.2.4. with the 

travelling wave tube in the working section. 

On the optics side the beam from an 8 mW He-Ne laser (X=633nm) was split 

into two equal intensity, parallel beams using a beam splitter. After passing 

through a phase shifter (Electro Optics Developments PC 14 Light Modulator) 

the two beams were focussed down from a 2 cm separation using a 20 cm 

focal length lens. This gave a measuring volume with 35 fringes and a fringe 

spacing of 6.33 I.tm. (The number of fringes was simply found by projecting 

them onto a screen using a very short focal length lens and counting them.) 

The 20 cm focal length lens was chosen for two reasons; firstly, the fringe 

separation was of the order of that expected for easily generated acoustic 

particle displacements and secondly, the crossover point was sufficiently far 

from the lens to allow easy access during experimental work. 

The detector was a photomultiplier with a built-in discriminator unit which 

produced equal sized pulses for each photon detected. Light from the 

observation volume was collected using a 105 mm focal length lens and was 

focussed through a 400 urn diameter pinhole onto the detector surface. A 

narrowband optical filter, just in front of the detector, only permitted the 

passage of red light near 633 nm - allowing measurements to be made under 

normal illumination conditions. The pinhole, which determines the size of the 

measuring volume (chapter 3), also prevented too much extraneously scattered 

light from entering the detector. The photomultiplier was usually angled at 

about 350 
 from the straight through position to avoid flare from the tube 

walls. 



TRAVELLING WAVE TUBE 

I j 	PHASE SHIFTER 	 LASER 
CORRELATOR 

 

II 	BEAM SPUTTER 

PHOTOMULTIPLIER 

SINE GENERATOR 

LOUDSPEAKER 

PROBE MIC. 

FILTER 	NOISE GENERATOR 

MICROCOMPUTER 

MEASURING AMP. 

Figure 5.2.4. Laser Doppler apparatus with the travelling wave tube in the 
working section. 
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The photomultiplier signal was processed using a Malvern type K7023 digital 

correlator which has a minimum lag time between separate channels of 50 ns 

and a total of 72 channels. Measurements were made by outputting the 

correlation function (the correlogram) to an oscilloscope and counting the 

number of channels to maxima or minima. These correlograms could then be 

recorded, if one wished, using an oscilloscope camera. 

5.2.4. The Gating Equipment. 

The gating technique worked in the fashion indicated in chapter 4. The 

pressure signal from the probe microphone was sent to an Apple 

microcomputer which had been programmed to detect the positive going zero 

crossings of the signal and supply a pulse of preset duration and at a preset 

delay time from the zero crossing. The pulse length and delay time could be 

varied independently with the former having a minimum value of 50 us. The 

pulses were then amplified and sent to the photomultiplier. Generally, during 

an experimental run, both the pressure signal and pulses were monitored on 

an oscilloscope. 

As was also described in chapter 4, this gating process results in the 

correlation function becoming damped and riding on a sloping baseline. This 

can make the deduction of the velocity quite difficult, especially if the pulse 

width is small. The problem can be overcome (at least on this Malvern 

correlator) by incorporating a strobing circuit into the equipment. The 

intricacies of the strobing process are somewhat involved - the details can be 

obtained from the manufacturer - but essentially what happens is this: the 

Doppler signal from the photomultiplier is split into two by the strobing circuit. 

One part goes directly through to one input on the correlator while the other, 

identical, part is sampled by the gating pulses and fed to the other input. The 

strobe circuitry then acts on the shift registers in the correlator so that values 
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from the inputs are only stored when the gating pulses are high (i.e. for the 

duration of the pulse.) Cross correlating the two inputs then gives the 

autocorrelation of the gated doppler signal. No damping occurs because the 

correlator does not in effect see the pulses themselves. 

5.3. LASER DOPPLER ACOUSTIC VELOCITY MEASUREMENT. 

5.3.1. Time averaged measurement of periodic acoustic fields. 

For these measurements the gating circuit, phase shifter and noise generator 

of figure 5.2.4. were made inactive. The standing wave tube, probe loudspeaker 

and probe microphone were all mounted rigidly on a piece of optical bench so 

that the whole assembly could easily be moved as a unit. A small quantity of 

tobacco smoke was introduced into the tube for seeding purposes. This rig 

was then put into the working section of the L.D.A. system so that the laser 

beams intersected on the tube axis and the air column was excited to its 

fourth normal mode - a frequency of 1470 Hz - using the probe loudspeaker. 

The laser intersection was then scanned along the tube axis by moving the 

tube-speaker-microphone assembly and correlograms were recorded every 

two centimeters. The acoustic velocity amplitude was then derived from these 

by counting up to the first minimum of each correlogram and applying 

equation 4.2.20. The pressure was also recorded at these points by traversing 

the probe microphone along the tube. These pressure measurements were 

then converted to equivalent velocity amplitudes using equation 2.2.9.. 

Although this equation is not directly applicable to a standing wave (chapter 2 

,section 2.2.1.) we can use it provided we remember that the velocity and 

pressure are 900 out of phase in this case. Figure 5.3.1. shows the correlation 

functions obtained for a variety of intensities - indicating how the Bessel 

function changes in accordance with equation 4.2.19. That a zero order Bessel 

function is a good approximation to the correlation function may be seen by 
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Figure b.3.1. Correlograms recorded at various intensities in the standing wave 
tube. Sound frequency, 1470 Hz, sample time (time between channels on 
correlator) = 1.5 jis. (a) velocity amplitude = 257 mm/s. (b) velocity amplitude 
= 103 mm/s, (c) velocity amplitude = 8 mm/s. 
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Figure 5.3.2. Pressure deduced () and correlogram deduced (0) velocity 
amplitude measurements along the standing wave tube. 
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calculating the velocity amplitude using the various turning points of, say, 

figure 5.3.1.(a) and using the tabulated values for the Bessel function. The 

calculations all give closely similar values. 

The velocity measurements made with the L.D.A. system and those derived 

from the pressure measurements were then plotted as a function of distance 

along the tube (figure 5.3.2.). The solid lines were fitted using the velocity 

maximum (derived from the pressure measurement at one end of the tube) 

and knowing the wavelength of the sound field. Both sets of measurements 

show close agreement and, as would be expected for this Sound field, are 90 0  

out of phase. The accuracy to which the velocity amplitude could be deduced 

from the L.D.A. measurements depended on how accurately the minimum of 

the correlation function could be measured. Just measuring by eye it was 

generally possible to estimate the position of the minimum to within half a 

channel. This indicates an accuracy of greater than 5% for an average 

correlogram. Interfacing the correlator to a computer and using an 

interpolation and minimum-finding routine would increase this accuracy 

considerably. All the L.D.A. measurements however agreed with the pressure 

measurements to within the accuracy of the pressure microphone. 

Replacing the standing wave with the travelling wave tube allowed even more 

direct comparison of the L.D.A. and pressure measurements since the velocity 

and pressure are in phase. Figure 5.3.3. shows one such correlogram obtained 

at a frequency of 1260 Hz. The travelling wave tube also allowed direct 

estimates of the dynamic range of the technique - both in terms of the 

intensity and frequency of the sound field. 

We are now in a position to discuss the dynamic range of the technique. We 

will thus do this in the following section, both from a theoretical point of view 

and in terms of what we were able to measure. Then we will move on to the 



Figure 5.3.3. Correlogram recorded in the travelling wave tube at sound 
frequency 1260 Hz. Sample time = 3 is. Velocity amplitude deduced from 
correlogram = 64.3 mm/s. Velocity amplitude deduced from microphone 

reading = 63.3 mm/s. 

Figure 5.3.4. Effect of Sfl(Wm T/2 ) term on the correlation function (c.f. equation 
4.2.9.). Sound frequency = 1260 Hz, sample time = 15 jis, sound field intensity 
in travelling wave tube = 118 dB. 
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measurement of phase and noisy sound fields 

5.3.2. Dynamic range of the technique. 

As was mentioned in chapter 3, one would expect the lower intensity limit of 

the technique using the optical configuration described above to be about 105 

dB for a 1000 Hz sound field (corresponding to a velocity amplitude of 12 

mm/s). In fact we found we could measure down to just over 95 dB 

(equivalent to 5 mm/s). This perhaps reflects the motion of several 

particles, moving coherently, so that at any instant the fringe pattern is well 

sampled. 

Davis & Hews-Taylor (1986) discuss the technique's dynamic range in terms of 

modulation indices (defined in chapter 4): for low indices very little energy is 

put into the sidebands of figure 4.1.1. while for high indices the energy is 

distributed among so many sidebands that the peaks can become masked by 

system noise. This argument however is, like the one in the previous 

paragraph, really only useful for order of magnitude estimates. For example, 

the level of noise in any system depends on the type of analysis system, the 

amount of extraneous light entering the detector, the size of the scattering 

particles etc.. We found, with the above optical system, that we could 

measure accurately up to about 130 dB. This agrees qualitatively with Davis & 

Hews-Taylor's work. 

A more fundamental limitation on the technique at higher frequencies and 

lower intensities is the effect of the sin(w m t/2) term in equation 4.2.18. For 

"moderate" intensities and frequencies sin(w m t/2) W m T/2. This 

approximation may, however, not be satisfied if Wm becomes large or the 

intensity becomes low so that the lag time, r, on the correlator must be 

increased to render the first minimum of the Bessel function visible. The effect 

of this term on the correlation function is shown in figure 5.3.4. where the 
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correlation function repeats for W m t/2 = n (remembering that J0( ) is an even 

function). No information can thus be recovered (through the first minimum of 

the Bessel function) if the first minimum of this sinusoidal oscillation occurs 

before the first minimum of the Bessel function. Thus, for the velocity 

amplitude to be recoverable. 
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This implies, for our 1260 Hz field, a lower velocity limit of approximately 9 

mm/s - qualitatively in agreement with the experimental work. 

5.3.3. Measurement of phase. 

To test the gating technique the gating circuit and phase shifter of figure 5.2.4. 

were made active. The phase shifter, set to give a 50 kHz equivalent frequency 

shift, provided a 0.317 rn/s velocity bias from which to determine the velocity 

of the acoustic fluctuation. For a 1260 Hz sound field at a velocity amplitude 

of 86 mm/s in the travelling wave tube, the gating pulse width was set to 100 

Vs and correlograms were recorded at various delay times. (A typical 

oscilloscope trace of the pressure signal and the pulses is shown in figure 

5.3.5..) From these correlograrns the velocity was deduced from the period of 

the correlation function. Two such correlograms are shown in figure 5.3.6. The 



Figure 5.3.5. Pressure signal and gating pulses. Sound frequency = 1260 Hz, 
delay time = 400 us, pulse width = 100 is. 

Figure 5.3.6. Gated correlograms for different delay times in the 1260 Hz cycle. 
Frequency shift = 50 kHz, sample time = 1 jis, pulse width = 100 us. (a) delay = 
300 us, (b) delay = 700 ps. 
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damping of the correlation function is clearly visible. The velocity was then 

plotted as a function of delay time (figure 5.3.7.) and, as expected, shows the 

form of a sine curve. Unfortunately however we did not know the phase 

response of the probe microphone so no quantitative conclusions could be 

reached about the accuracy of the technique. We will however be able to do 

this later when complex acoustic impedance is being measured. 

5.3.4. Time averaged measurement of band limited noise fields. 

For these measurements the gating circuit and phase shifter were again made 

inactive and the travelling wave tube was used. The acoustic excitation was 

provided using a Quanlech type 420 noise generator with the noise filtered 

through a band pass filter with 24 dB/octave cutoff and centre frequency at 

1260 Hz. The spectrum of the sound field is shown in figure 5.3.8.(a) with the 

time history in (b). Note the similarity of the latter to the diagram in figure 

4.3.1. The spectrum was recorded both directly from the filter and from the 

probe microphone and, since these both looked identical, this was taken as 

indicating little or no filtering or distortion of the sound field due to the 

amplifier, speaker, microphone or resonance effects in the tube. 

Velocity measurements were made with the L.D.A. system by estimating the 

standard deviation of the correlograms from the oscilloscope. This was done 

over a range of intensities and a typical correlogram is shown in figure 5.3.9. 

Comparison with pressure measurements was made by assuming that the 

mean pressure response of the probe microphone came at 1260 Hz and that 

each part of the spectrum contributed to the response on the measuring 

amplifier in proportion to its intensity. This was probably not too bad an 

assumption since the pressure response of the microphone was roughly flat in 

this area. A plot of velocity deduced from the pressure measurements versus 

those deduced from the L.D.A. system is shown in figure 5.3.10.. The straight 
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Figure 5.3.8. (a) Spectrum of noise filtered about 1260 Hz. (b) Sample of noise 
time history. 

Figure 5.3.9. Typical correlogram due to band-limited noise field. Sample time 
= 2 us. Mean velocity amplitude deduced from correlogram = 43.0 mm/s. Mean 
velocity amplitude deduced from pressure measurement = 44.8 mm/s. 
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those deduced from pressure measurements in the noise field over a range of 
intensities. The straight line indicates equal velocities. 
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line shows equal velocities. We can see that there is quite close agreement 

although the L.D.A. measurements seem to be lower than the others by 

roughly 5%. This however was considered well within the errors that could be 

ascribed to the assumptions and calibration errors inherent in this work e.g. 

the narrowband assumption, improper termination of the tube etc. 

5.4. MEASUREMENT OF COMPLEX ACOUSTIC I1WEDA10E 

5.4.1. Apparatus. 

A diagram of the apparatus used is shown in figure 5.4.1. with a photograph 

in figure 5.4.2. 

A glass tube of length 1.512 metres and i.d. 2.1 cm was sealed against a brass 

plate which had holes bored through it to accept a capillary tube (i.d. 1 mm) 

and a 1/2 inch microphone (B & K type 4134). Sound was introduced into the 

tube through the capillary and the pressure at this (input) plane was measured 

using the microphone. This microphone also provided the signal for the gating 

pulses. 

The same optical system described in the previous sections was used with the 

laser beams being focussed down to intersect on the tube axis at a distance 

of 1.5 cm from the input plane. Thus velocity measurements were not being 

made exactly at the end of the tube but a calculation showed (see Appendix B) 

that the effect of this would be to move the measured resonance frequencies 

up by a factor of (1+x/L) where x is the distance to the input plane and L is 

the length of the tube. For our setup this amounted to a frequency correction 

of about 1% which was applied to each impedance measurement. 

Further, since the L.D.A. system measures the velocity at one point (giving the 

acoustic particle velocity), we have to multiply this by the cross sectional area 

of the tube to obtain the volume velocity for calculating the acoustic 
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Figure 5.4.1. Impedance measurement apparatus with (inset) close-up of the 
closed end of the tube. 
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impedance (see chapter 2). This assumes that the velocity is constant over the 

tube cross section but, as we saw in chapter 2, there exists viscous 

interaction between the flow and the tube wall which creates a boundary layer. 

This effectively decreases the tube's cross section. However, substituting 

values for the acoustic field, air viscosity etc. into equation 2.2.12. shows that 

even at frequencies as low as 50 Hz (the lowest frequency we used) the error 

incurred through neglect of the boundary layer is only of the order of 5% for 

our setup - and this decreases rapidly with increasing frequency. Consequently 

the effect was not considered any further. 

When the laser beams were on and a sound field was being introduced into 

the tube it was noticed that turbulent motions of the air of the order of 

centimetres per second were being produced near the capillary exit at certain 

frequencies. Since these motions could have upset the measurements, a small 

baffle of thin plastic was constructed round the capillary exit. This reduced the 

motion near the laser beam intersection and measurements could then be 

made with some confidence. Further investigation seemed to indicate that the 

motions were due to non-linear interaction between the sound field and the 

region round the capillary tip. A discussion and qualitative explanation of the 

effect is given in Appendix A. 

5.4.2. Measurement of impedance amplitude (ZI). 

Measurement of the impedance amplitude was carried out over a range of 

frequencies from about 50 Hz to 700 Hz by making separate measurements of 

the pressure and velocity. The recorded sound pressure levels were converted 

to pascals (equation 2.2.8.) and the velocities deduced from the correlograms 

using equation 4.2.19. Each particle velocity amplitude was then converted to 

r.m.s. volume velocity and combined with the pressure measurement at that 

frequency to yieldZwhich is expressed in acoustic ohms. 
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A theoretical impedance curve was calculated using the method outlined in 

section 2.2.2. with values for constants such as the viscosity, speed of sound 

in air etc. at various temperatures taken from Benade's (1968) paper. The 

theoretical curve and experimental points are shown in figure 5.4.3. where the 

experimental points have been moved down in frequency by 1% due to the 

different planes of velocity and pressure measurement. As can be seen, the 

agreement is very good. The error bars were calculated assuming a 0.5 dB 

error in the pressure measurements and that the velocity could be measured 

to about 2% accuracy from the correlograms. 

5.4.3. Measurement of phase 

In order to demonstrate the measurement of phase, recordings were taken at 

155, 165, 170, 175 and 180 Hz; a range which we knew to straddle a resonance 

peak and hence to have a large phase change. The pulse width in this case 

was 500 us with the delay being incremented in units of 500 us. A phase shift 

of 20 kHz was used providing a bias velocity of 0.1266 rn/s. At each delay 

setting a velocity measurement was taken and the process repeated until at 

least one whole pressure (and hence velocity) fluctuation had been covered. 

Figure 5.4.4. shows two velocity versus delay time curves recorded at different 

frequencies and clearly shows a phase change. 

Since, in this experiment, we were using a microphone without a probe 

attachment, it was possible to estimate the microphone phase response using 

the data supplied by the manufacturer [Bruel & Kjaer 19821. Knowing this we 

were then able to deduce the phase difference between the acoustic velocity 

and pressure. Figure 5.4.5. shows the measured points and the theoretically 

deduced phase curve. The error bars were calculated by estimating how 

accurately the phases of the velocity versus delay curves could be deduced. 

As may be suspected this method of measuring phase is very tedious when 
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done manually. Discussion of how the procedure may be speeded up will be 

deferred to the conclusions and discussion of chapter 7. 
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Chapter 6: Acoustic Streaming and Particle Image 

VeIocmetry. 

61. INTRODUCTION. 

It was seen in the last chapter how acoustic streaming effects arose in 

connection with the measurement of complex acoustic impedance. During the 

course of finding out more about this streaming it was realised that the 

photographic technique of Particle Image Velocimetry (PLy.) could be applied 

to the measurement of this effect. This would be interesting primarily 

because it is difficult to use material probes to measure streaming and also 

because P.I.V. ties in well with the more common flow visualisation method of 

comparing streaming observations with theory. 

In fact, P.I.V. had been considered earlier in this project for the measurement 

of acoustic particle velocities but had been left aside after a few preliminary 

experiments had indicated that any measurements would have low resolution 

and have required very large laser powers. Work on acoustic streaming would 

therefore also allow a more complete assessment of this early work 

Although L.D.A. could perhaps also be applied to acoustic streaming 

measurement we notice that, for slow flows, the correlation function can take 

a very complex form and for faster flows there is still the problem of sorting 

out the contributions due to the oscillatory and flow motions. (c.f. Chapter 4.) 

6.2. ACOUSTC STPEALG. 

Acoustic streaming is the generation of non-zero mean flows by a sound field. 

The phenomenon typically (though not exclusively [Andrews & McIntyre 1978]) 

arises due to attenuation or dissipation of the sound field in the propagating 
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medium or, when a solid wall is present, in the boundary layer [Lighthill 

1978a]. It is this attenuation that provides the mechanism for transferring 

momentum into the body of the fluid. There are several articles dealing with 

acoustic streaming (e.g. [Lighthill 1978a,b , Beyer 1974]) but the topic as a 

whole has perhaps been rather neglected. This is probably because streaming 

effects only arise when the acoustic field is very intense and such regimes 

occur only infrequently at normal audio frequencies (<20kHz). Exceptions 

arise when the field is very curved (as discussed in appendix A) or, 

occasionally, in musical instruments. For example, the intensity can be as great 

as 160 dB in the mouthpiece of a clarinet [Keefe 19831 and, although streaming 

does seem to have some effect on the performance of the instrument, this has 

not yet been rigorously quantified. 

The topic has perhaps also been somewhat neglected because of the difficulty 

of accurately measuring streaming due to the measuring probe (e.g. hot wire 

anemometer) creating its own boundary layer and upsetting the flow under 

investigation. (This could be a possible explanation for the low Reynolds 

numbers found by MerkIl & Thomann (1975) for the transition to turbulence in 

oscillatory pipe flow.) Consequently, one sees in the literature qualitative 

statements about "strong" or "weak" streaming [Keefe 19831 and 

measurements made on the basis of flow visualisation [Beyer 19741. 

Another region where streaming occurs is at ultrasonic frequencies (>20 kHz) 

and indeed the availability of reliable ultrasonic transducers in the 1940s 

seems to have provided an impetus for the study of streaming effects around 

that time [Westervelt 1953 , Nyborg 19531. Here streaming can be much more 

vigorous with jet velocities of the order of meters per second being readily 

obtainable [Lighthill 1978a]. We will not be dealing with ultrasound in this work 

though it should perhaps be noted that with the advent of a new generation of 

ultrasonic sources and research being carried out now on using ultrasound for 
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mixing and inducing chemical reactions much more careful research on 

streaming will perhaps be required. 

For the purpose of this work we will confine ourselves to the type of 

streaming known as Rayleigh streaming since it is well understood, can be 

easily generated and the streaming velocities can be independently estimated 

by measuring the pressure of the sound field causing it. 

6.3. RAYLEIGH STREJIGG 

This form of streaming was first explained by Rayleigh himself in his Theory of 

Sound (1896) and occurs due to the viscous attenuation of the Sound field in 

the boundary layer when a solid wall is present. The most common 

configuration in which to observe this effect occurs when a standing wave is 

set up in a circular tube. The form the streaming takes is illustrated in figure 

6.3.1. with the direct current (along the walls) always pointing towards the 

velocity nodes and the return current (along the tube centre) going towards 

the antinodes. 

For a standing wave of the form 

Ik(;L)+) 	=. (A() 

Rayleigh's Law gives the velocity at the wall as 

- 	i 	, (x) 

It is interesting to note that the streaming velocity is independent of the fluid 

viscosity for, although the viscosity drives the streaming, the resistance to the 

flow also depends on the viscosity and consequently explicit dependence on it 

drops out of equation 6.3.2. 

It is possible then to calculate the streaming velocity at any point in the tube 
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Figure 6.3.1. Form of Rayleigh streaming in a circular tube of radius a. The 
length of each arrow is proportional to the velocity at that point. va  = velocity 
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and to deduce that the velocity across the tube, perpendicular to the axis, 

takes the form (Lzc*in9 the 6n4c.j (er) 

LA () ( 	 C.3.3. 

where a is the tube radius and s the distance from the tube centre. 

Strictly speaking this result only holds for very low Reynolds numbers (R e <l) 

where one can neglect inertial terms in the Navier - Stokes equation [Lighthill 

1978a]. However, Keefe (1983) has shown that this is not a precisely rigorous 

requirement provided the streamtubes of the flow are not too curved. 

Note also that, using the well known equations relating acoustic pressure and 

velocity (Chapter 2.), it is possible through equations 6.3.2 and 6.3.3 to deduce 

the streaming velocity at any point in the tube by measuring the pressure. 

6.4. PARTICLE IMAGE VEL0CIW]ETRY. (P.l.V.) 

P.W. is a relatively recent photographic method for measuring fluid velocity 

[Dudderar & Simpkins 1978] and relies on photographing, under intermittent 

illumination, small particles contained in and faithfully following the flow under 

investigation. The technique arose from speckle photography, the well known 

solid body deformation measurement technique [Dainty 19751 and P.I.V. is still 

occasionally called speckle velocimetry. This is however rather a misleading 

term because the generation of true speckle relies on the coherent 

illumination of a microscopically rough body to produce a complex 

interference pattern in the space around the body. P.l.V. relies purely on 

photographing particle images and does not in fact require the illuminating 

light to be coherent [Bernabeau et. al. 19821 though lasers are generally used 

because they provide high light density in an easily controlled form. A 

schematic diagram of a P.I.V. system is shown in figure 6.4.1. Light from a 

laser is expanded into a sheet and projected into the flow. The laser is then 

pulsed (either by Q-switching or chopping the beam) so that successive 
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particle images are recorded on the film plane of a camera placed at right 

angles to the expanded sheet of laser light. 

The velocity information is then recovered by ascertaining the separation of 

the particle images on the film plane. This can be done by either observing 

the film directly using a microscope or, more commonly, by interrogating each 

point on the film using a low power laser beam to produce, in the far field 

diffration zone, a series of fringes analagous to those produced in the Youngs 

double slit experiment (figure 6.4.2.). The distance between the fringes is 

inversely proportional to the particle image separation at that point on the film 

and their orientation is perpendicular to the flow direction (to within a 180 0  

ambiguity). Knowing the magnification of the camera and the time between the 

light pulses it is then an easy matter to deduce the local flow velocity. 

As may be appreciated, if the particle images are too close then the fringes 

will be so far apart so that perhaps only one will be visible or, if the images 

are too far apart, then the fringes will be too close to be resolvable. Such 

limitations on the dynamic range of the technique have been discussed 

previously [Meynert & Lourenco 19841 though a convenient rule of thumb is 

that, on the film plane, the particle images should be separated by 

approximately 0.1 mm. It is necessary therefore (if one wants to avoid much 

tedious work) to be able to estimate roughly the range of velocities in the 

flow under investigation. 

Since a typical region needing analysis can contain from say fifty to several 

hundred points it is necessary in practice to analyse the fringes automatically. 

This is most commonly done by capturing the fringe pattern using a video 

camera and frame grabber and using a computer to extract the velocity 

information. Such a system has been developed at our institution [Gray & 

Greated 1988a] and there are many publications describing the speed etc. of 
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various implementations of the technique e.g. [Robinson 1983, Erbeck 1985, 

Huntley 19861. In our implementation the slide is automatically scanned using 

a computer controlled micropositioner, the fringes at each point captured 

using a video camera and the velocity information extracted using a 

two-dimensional Fast Fourier Transform. 

6.5. P.IV. THEORY. 

In this section we introduce briefly the theoretical background to P.I.V. This will 

aid us later when discussing the limitations of the technique and will also 

allow us to highlight the analogies that can be drawn between L.D.A. and P.I.V. 

First imagine a small area of the flow over which the velocity is constant and 

which is photographed to produce on the developed film images of the 

particles in the flow. Under a single exposure (one pulse from the laser) there 

will be a random distribution of particles. Under a double exposure this 

random pattern is displaced by an amount proportional to the velocity of the 

flow. Our task is to deduce the separation of the particles. 

As said above, this can either be done directly by observing the slide and 

calculating the separations (most conveniently done by calculating the image 

intensity autocorrelation function) or indirectly by illuminating the area with 

coherent light to produce (by the Wiener - Khinchine Theorem) the Fourier 

transform of the image intensity autocorrelation function (the fringe pattern). 

This can then be re-transformed to get back to the autocorrelation function. 

The indirect approach is of course faster due to the speed of the Fast Fourier 

Transform algorithm. 

To put all this on a more mathematical footing we note first that, under a 

single exposure, the size of the particle images is measured by the image 

intensity autocorrelation function. 
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k P  (x) = Ci (' I(rA +")> 

where 	r ; 	is the 	position 	of the 	ith particle. 	The 	<> 	brackets 	indicate 

ensemble averaging and will be used to distinguish this two-dimensional case 

from the one-dimensional case of chapter 4 where the expectation operator 

E[] was used. 

If two exposures are made, between which the particles move a distance 

then the total irradiance falling on the film and hence the image intensity is 

given by 

(r - ¼) +r( 	/' ) =  I (r~) a JT ( 5) 	g -.5% z . 

where * denotes convolution and 1I() is the symbol introduced by Bracewell 

(1986) to denote two delta functions separated by 

'.c.3. 

Note that in 6.5.2. we are neglecting constant factors such as the exposure 

time and scattering efficiency of the seeding particles. The autocorrelation 

function of the transparency then becomes 

RT ( .70 = (:1  (r.) * IT W -A T(r~ 	p~p 4-S-4. 

which on expansion and simplification becomes 

+  R P  (7, ) # If ( 7- ~ ) 1 	6 . ~'. 

Then, taking the Fourier transform of both sides and using the convolution 

theorem we get 
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T? 	()c)) = 2 	#2 y(Rp(x)) x 	 1.54. 

zJ 	C .r.7. 

where a is a measure of the spatial frequency. We see immediately that 

equation 6.5.7. has a form identical to that for the laser Doppler fringe 

intensity (equation 4.2.1.). The cosine term represents the particle spacing 

information in which we are interested while the multiplying term represents 

the statistics of the particle size distribution. For example, if the particles all 

gave identical circular images then the(R(x)) term modulating the fringes 

would be an Airy disc. Or, if the particles had a random distribution in size 

then the envelope would be (by the central limit theorem) a Gaussian. Removal 

of this low frequency term (which can sometimes swamp the fringe frequency 

when there is a low fringe density [Pickering & Halliwell 1984]) is a recurrent 

problem in P.I.V. and is compounded by the noisiness of the fringe images due 

to the use of coherent light (true speckle!). In our fringe analysis system 

[Gray & Created 1988a] following Huntly (1986) an average halo is collected 

from all points of the P.I.V. slide and is subtracted from each fringe pattern. 

Processing then proceeds by two-dimensional FFT. We note that in practise 

more than two exposures may be used so that multiple images are obtained 

on the film plane. This has the effect of sharpening the fringe pattern and 

increasing the fringe visibility (c.f. using multiple slits or a diffraction grating 

as opposed to just two slits in Young's experiment). 

6_6. P.I.V. EXPERIETAL APPARATUS. 

A diagram of the experimental setup for recording the P.I.V. images is shown 

in figure 6.6.1. Light from a 32 mW He-Ne laser (A=633nm) was expanded 
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Figure 6.6.1. Apparatus used to acquire P.I.V. photographs (see text). 
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using a circular lens, L, and the two cylindrical lenses Cl and C2 to produce a 

thin sheet of light which, when it entered the tube through the axis, was 

approximately two centimeters high and 1/2 mm thick. A chopper, which was a 

rotating disc with a slot cut in it, was placed at the focus of L and produced 

the pulses of light while a shutter placed just before L dictated the number of 

pulses that got through. This use of an external shutter, rather than the 

shutter on the camera, was employed to reduce vibration in the film plane to a 

minimum. Although the chopper (Scitec Model 300 CD) came complete with an 

electronic readout to indicate the frequency of rotation of the disc, it was 

found that at the low speeds required for this experiment the readout was 

unreliable and so an external photodiode was connected to a storage 

oscilloscope to give an accurate measure of the pulse separation and duration. 

The camera, a 35mm Nikon with a 50mm flat focus lens at a magnification of 

0.773, placed at right angles to the sheet of light, recorded the 

P.I.V. photographs. It was found necessary to use a flat focus lens if one 

wanted to avoid distortion in the off-axis region. The film used was Kodak 

1-Max 400 which provided good sensitivity (400 ASA) with adequate resolution 

(-100 lines/mm, depending on contrast). The picture was always taken against 

a black background to increase contrast and during experimental runs the 

laboratory was only illuminated with extremely subdued light. 

The amount of distortion in the image plane due to the curvature of the glass 

tube was estimated by putting a piece of graph paper in the tube, 

photographing it, and examining the developed film with a travelling 

microscope. A negligible amount of distortion was found except at 

approximately 1 mm or so from the tube wall. Since, as it turned out, the 

amount of flare from the wall of the tube tended to make any measurements 

in this region impossible anyway it was not necessary to calculate correction 

factors for this effect. 
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6.7 MEASUREMENTS AND RESULTS. 

The apparatus was set up as indicated in figure 6.6.1. Sound of frequency 2460 

Hz was introduced into the tube (length 450 mm, internal diameter 23.3 mm) 

using a horn loudspeaker with the horn removed. The tube was sealed at the 

other end with a rubber bung which had a tightly fitting metal plate attached 

to its inside face to ensure a rigid termination. The sound field thus 

corresponded to the 7th normal mode of the air column. A probe microphone, 

(Bruel & Kjaer type 4166 with 2 mm i.d. probe attachment) inserted through 

the rigid end monitored the pressure. The probe microphone had previously 

been calibrated to within 0.5 dB using an acoustic coupler. Although the 

intensities required to produce streaming were near the limits of the 

microphone's range [Bruel & Kjaer Data Handbook 1982.1 they were still within 

the 10% distortion limit - leading to a possible error of around 1 dB. So, 

although the pressure measurements were not highly accurate they did 

provide a useful independent check on the streaming velocities. 

Tobacco smoke was introduced into the tube to provide the seeding particles 

and streaming was set up, the field having a pressure of 151 dB (re 20 pPa 

at the rigid end. Because of the limited dynamic range of the P.I.V. technique 

(see section 6.4.) the streaming velocity was first estimated by eve and the 

chopper then set to provide pulses with a separation of 0.114 seconds and 

duration 0.0057 seconds. It is necessary to have the ratio of pulse separation 

to duration so large because if the particle displacements and separations are 

of a similar order, they will give rise to similarly sized contributions in the 

spatial frequency domain which will lead to a loss of velocity information. 

Also, since the time between pulses is much shorter than any relevant time 

scale for the flow, the velocity measurement is essentially instantaneous. 

Such details of the technique are well discussed in Meynert & Lourenco (1984). 

The shutter, set to 0.5 second, allowed 4 pulses through. 
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Photographs were taken near a velocity node and a print of the film used to 

provide the measurements quoted here is shown in figure 6.7.1. The individual 

particle images can be clearly seen. In fact, measurements could not be made 

far from the velocity nodes because, at the frequencies and intensities used 

here, the vibrational displacement amplitudes became of the same order as the 

particle displacements required to give fringes. This is quite an important point 

and will be returned to and discussed at some length in section 6.7. 

The film was analysed in the fashion indicated in section 6.4. It is clear from 

figure 6.7.1. that not all areas of film yielded a velocity measurement, due 

either to flare from the tube walls or uneven seeding. The latter is a problem 

in all P.I.V. measurements and seems to be more difficult to overcome in air 

than in water. Perhaps this is due to the larger convective currents found in 

air, coupled with its lower viscosity. 

The measurements were transferred to a computer which, after interpolating 

missing points and smoothing the velocities using a third order Chebyshev 

interpolation routine, drew a velocity map (see figure 6.7.2.). As can be seen, 

the measurements look slightly asymmetric with the velocities in the upper 

left vortex seeming to sweep over too much to the right. This was probably 

due to outside air currents. As a check on the accuracy of the measurements 

it is noticed from equation 6.3.3. that the axial velocity should be parabolic 

across any section of the tube with maximum velocity given by equation 6.3.2. 

and zeroes at distances r=0.707a from the axis of the tube. Axial velocities 

were therefore computed from the original unsmoothed data for three 

separate lines across the tube a few millimeters from the velocity node (figure 

6.7.3.). The solid parabolae were fitted using the measured velocity maxima 

and the theoretical zero points. The fits are quite good though the velocities 

do show some deviation near the left crossover point, reflecting the 

assymmetry mentioned earlier. A calculation using equation 6.3.2. and a value 



Figure 6.7.1. Print of P.I.V. transparency used to provide measurements. The 
individual particle images can be clearly seen. 
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Figure 6.7.2. Velocity map. ('I cm = 4.37 mm/s). 



Figure 6.7.3. Experimentally deduced axial velocities in the tube (symbols) and 
theoretical curves. 
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of 151 dB for the maximum pressure indicates a maximum slip velocity of 

—6.5 mm/s, giving the corresponding maximum axial velocity a few millimeters 

from the velocity node to be of the order of 3-4 mm/s - in agreement with 

figure 6.7.3. The cross sectional velocity measurements agree with the 

theoretical curves to within about 10% in the region of the central return 

velocity but deteriorate in the outer regions. This is due not only to 

extraneous air currents but to the fact that small positional errors in the 

interrogating laser beam lead to large velocity errors because of the large 

velocity gradient in these regions. Inaccuracies also occur due to the finite 

area of the interrogating laser beam. That is, in regions where the seeding is 

quite sparse the particle images which produce the fringe pattern may not lie, 

on average, at the centre of the laser beam which is where the velocity is 

taken to be measured. The measured velocities in figure 6.7.3. also show 

significant scatter about the theoretical lines and this reflects a basic problem 

in P.I.V.: because the measurement is taken effectively instantaneously effects 

such as particle diffusion and random particle distributions which can upset an 

individual velocity measurement are not averaged out. It is impossible thus to 

assign a statistical measure (in terms of these effects) to each separate 

velocity. It is however possible to assign a measure in terms of the point's 

nearest neighbours because we know that in this case the flow is continuous. 

This is the justification for using the velocity smoothing routine mentioned 

earlier. 

6.8. D9SCUSSIOPO AMD COCLUSOS. 

It has been demonstrated that P.I.V. can accurately measure acoustic streaming 

effects; an area that cannot be tackled using conventional probe devices. Also, 

in contrast to the more common optical technique of Laser Doppler 

Anemometry (L.D.A.), it can measure "instantaneously" over a whole field. To 

make the type of measurements described here using L.D.A. would require a 
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two component L.D.A. system, a carefully controlled environment to prevent 

changing ambient conditions from upsetting the streaming over the time 

(many hours) that would be required to make the measurements and some 

method of traversing the L.D.A. measuring volume accurately to each point in 

the flow. 

There are however several limitations to the P.I.V. technique. Firstly, any flows 

measured must be essentially two-dimensional: if there is too much out of 

plane motion then the particle images will become decorrelated and no 

velocity information can be extracted. Secondly, and just as importantly for 

acoustic streaming, if the vibrational displacement of the sound field becomes 

too large then it can effectively swamp the velocity displacement images (the 

particle images become streaked and overlap). Such an effect was noticed in 

this work (section 6.7.) Furthermore, in regions not too far from the velocity 

node the streaking of the particles causes the circular halo in which the 

fringes are confined to become elongated and outer lobes to become visible, 

an effect of the(R(x)) term in equation 6.5.7. (see figure 6.8.1.). This can 

have serious implications for the fringe analysis system since, in our 

implementation, an average circular halo is subtracted from each fringe pattern 

in order to remove low frequencies which could otherwise swamp the fringe 

frequency [Gray & Greated 1988a]. Clearly it is impossible to define such a 

halo if it changes for different portions of the film. We get round this problem 

by instructing the computer to make measurements on successive lines 

perpendicular to the tube axis across which the vibrational amplitudes are 

constant. The computer can then gather an average halo from each of these 

lines and use it to remove the low frequencies for that line. 

In fact, because the particles move more slowly at the extremities of their 

displacements and hence scatter off more light from these positions, the 

particle images are not just streaked but are somewhat dumbell shaped (this is 
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Figure 6.8.1. P.I.V. fringe patterns. (a) acquired near velocity node and (b) 

acquired away from node, showing the appearance of lobes due to streaking 
of the particle images. 
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nicely shown in Brandt et. al. (1937)). The halo, in the direction parallel to the 

particle oscillations, then takes the form of a squared zero order Bessel 

function from which it would be possible to estimate the magnitude of the 

particle displacements [Tiziani 19711. Such estimates would however probably 

be of quite low accuracy and such measurements would perhaps be of little 

practical use anyway. It may however be of interest to note that, knowing the 

sound field and the particle's density, it would be possible in principle to 

deduce the particle sizes from their displacement amplitudes. 

We see therefore that we are faced with a similar problem as in L.D.A. In that 

case (c.f. Chapter 4.) the zero order Bessel function in the temporal 

autocorrelation function due to the oscillatory motion was multiplied by a 

cosine term when a flow was present. Now, in PAM., when we wish to measure 

the flow, we find a (squared) zero order Bessel function modulating the fringe 

pattern in the Fourier Transform of the spatial autocorrelation function. 

A way round the above problem would be to pulse the laser fast enough to 

"freeze" the particle images, the pulse former being triggered from the sound 

field to capture the images at the same phase positions. To illuminate the 

particle for say 1/10 of its period would require, for frequencies of the order 

we have here, laser pulses lasting only small fractions of a millisecond. This 

would then require (if we scale up the intensities used here) laser powers of 

the order of several watts. Such lasers are not uncommon though their use 

does entail certain difficulties and hazards. It may be noted however that more 

effective use can be made of available laser light by employing scanning beam 

technology (Gray & Greated 19881 or by using more sensitive films and 

sacrificing resolution. 

However, despite these limitations the technique should be of considerable 

interest both to acousticians and fluid dynamicists. It may also be noted that 
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in other areas the technique would perhaps not suffer from the 

aforementioned difficulties. For example, in the regions of much higher 

frequencies, say 20 kHz upwards, the vibrational amplitudes can become quite 

small though the streaming effects are very large [Lighthill 1978a , Bergmann 

1938]. 
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Chapter 7: Discussion and Conclusions. 

7.1. RESUME OF WORK DONE. 

The main achievements of this project may be summarised as follows: 

After a brief introduction to acoustics and laser Doppler 
anemometry a critical examination is made of the factors 
affecting the laser Doppler measurement of acoustic 
velocity fluctuations. 

A rigorous derivation of the photon correlation function is 
presented for the case of periodic and noisy sound fields. It 
is shown how the parameters of the acoustic velocity field 
may be extracted from the observed correlation function. A 
gating technique, which may be used to measure the phase 
difference between the acoustic velocity and pressure, is 
described and the effect this gating can have on the 
correlation function is detailed. 

Experiments are described which verify the above theory 
and the 	limits 	of the technique are assessed. 
Measurements of the complex impedance of an open tube 
are shown to give good agreement with theory. 

Observations made in connection with the measurement of 
complex impedance lead to consideration of acoustic 
streaming 	and the realization that particle image 
velocimetry could be applied to the measurement of this 
phenomenon. The technique is applied to the case of 
Rayleigh streaming and the measured velocities are shown 
to give good agreement with theory. 

Laser Doppler anemometry and particle image velocimetry have thus been 

proved capable of performing accurate measurement on a useful and 

interesting range of acoustic phenomena. 

7.2. U0rAT1ONS OF THE TECHNIQUES. 

The L.D.A. technique is somewhat limited in several respects. Firstly, there is 

the restricted dynamic range. With the apparatus described in chapter 5 one 

can measure from roughly 95 to 130 db in a 1000 Hz sound field. The lower 

limit can be decreased however by decreasing the fringe spacing (recall the 
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argument in chapter 3 relating fringe spacing and displacement of the 

scattering particles). This can be achieved both by increasing the intersection 

angle of the beams and using light of shorter wavelength. For example, using 

say a wavelength of - 0.45 urn and an intersection angle of 60 0  gives a fringe 

spacing of 0.45 urn and the lower limit of measurement as - 86 db for a 1 

kHz field. This is perhaps a practical lower limit of measurement since it is 

difficult to obtain laser light of shorter wavelength and also, obtaining such a 

large intersection angle produces its own problems such as non-paraxiality of 

lens systems and difficulties of conveniently introducing the measuring volume 

to the area of interest. 

The problem of raising the limit of the technique is not quite so fundamental 

since one can reasonably easily make the structure of the light pattern 

through which the scattering particles pass as large as required 

Then there are the complications due to any superimposed flows in the sound 

field. This was discussed in chapter 4 but no work was done to see how 

acoustic parameters could be extracted from the correlation function. This 

would probably be quite an interesting area of study and will certainly have to 

be tackled if the L.D.A. system  is to find widespread use in acoustic 

measurement. 

Also, in the system we have used in this project, velocities were only 

measured in one dimension. This was not a limitation for the essentially 

planar sound fields studied here but for a totally unknown sound field several 

measurements would have to be taken at each point. Alternatively, a two or 

three component L.D.A. system could be used though this dramatically 

increases the complexity (and price) of the apparatus. 

Another point, not explicitly mentioned so far, is that an optical path must be 

provided to the area where acoustic measurement is to be made. If one 
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wanted to make measurements in musical instruments, say, then special 

transparent sections would have to be constructed. 

A limitation which was not fully investigated in this project was the gating 

technique. It was mentioned in chapter 5 that it can be difficult to deduce the 

flow velocity when the duration of the gating pulse is small - this being due 

to the damping effect of the gating process. It was also mentioned how the 

problem could be got round by using extra electronic circuitry. However, when 

the gating pulse is very small, very little light gets through to the 

photodetector and it can take a prohibitively long time to build up a 

correlation function (over a minute as opposed to a few seconds without 

gating). This further slows down the already rather tedious gating procedure 

because, to make the measurements described in section 5.4.3. at least five or 

six correlograms must be recorded in order to accurately reconstruct the time 

history at each phase point. The process could be speeded up by using an 

on-line computer to the correlator. This facility was not however available 

during the present work. 

For the reasons given above the author sees the technique, in its present 

form, more as a research tool than as a tool for routine "industrial" 

measurement in the manner of conventional fluid velocity measuring laser 

Doppler systems. Applications could include laboratory measurement of 

specific sound fields of special interest or the technique could be used as a 

calibration standard in national standards laboratories. Also, because the 

technique is more suited to sound in the higher intensity range, applications 

would probably be more easily found in these regimes. This could include, for 

example, measuring the sound field near a jet engine for diagnostic or 

environmental purposes. 

The limitations of the P.I.V. technique were largely noted and discussed in 
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chapter 6 but we can briefly recap here by noting the need for a certain 

amount of a priori information about the flow under investigation. This is 

because of the limited dynamic range and two dimensionality of the technique. 

For measurement of large flow fields large lasers are also needed - increasing 

the cost and hazardousness of the system. 

7.3. PROPOSED FURTHER WORK. 

There are several directions in which the work undertaken in this project could 

be extended. On the L.D.A. side the technique could be refined by interfacing 

the correlator to a computer and investigating the best way to extract 

information from the correlation function. This could include the use of curve 

fitting or high resolution spectral estimators and investigation of the technique 

when steady flows are present. It would be very interesting to apply the 

technique to some practical measurements, for example, measurement of the 

input impedance of brass musical instruments or the sound field near loud 

industrial machinery. This latter sound field would perhaps be of some interest 

in connection with the measurement of band limited noise since the noise 

from say a jet engine could be thought of as a dominant tone with a certain 

amount of noise pollution round it. Another interesting area of study would 

be an investigation of the boundary layer when acoustic fields are adjacent to 

walls. This is a phenomenon which can really only be investigated using 

optical probes since material probes would probably upset the flow too much. 

The P.I.V. technique perhaps offers even more scope for further work. Firstly, 

no complete statistical analysis has yet been offered relating the output from 

the P.I.V. system (the fringe pattern) to the parameters of the flow (density of 

seeding particles, presence of velocity gradients, turbulent flows etc.). There 

could also be a lot more work done on the image analysis side of the 

technique. We saw in chapter 6 how the Fourier transform based image 
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analysis algorithm failed when the particle images became streaked due to the 

amplitude of the acoustic particle displacements. We got round the problem in 

a rather ad hoc way but it should be possible to devise more robust 

algorithms - perhaps based on pattern recognition principles. Further work 

could also include extending the technique to three dimensional flows. Some 

work has already been done in this area using holographic and stereoscopic 

methods [Rover 1988, Gauthier & Riethmuller 19881 but these techniques still 

suffer from considerable drawbacks. 

It would be interesting to use P.I.V. to look into acoustic streaming in more 

detail - as mentioned before little quantitative experimental work has been 

done in this area. At present there is also a growing interest in the application 

of ultrasonic techniques for industrial machining, mixing etc. Since ultrasonic 

fields can induce powerful streaming effects without large particle 

displacements, P.I.V. should be ideally suited to making measurements in these 

velocity fields. The author feels that this could be an area of considerable 

academic and commercial interest. 



Appendix A: Streaming from an acoustcaDy 

excited capifiary tube. 

It was seen in chapter 5 that some form of jet or streaming motion seemed to 

be produced from the tip of the capillary tube used to provide the acoustic 

excitation in the impedance measurements. This was thought worthy of further 

investigation and, in fact, led on to the work of chapter 6. Here we will discuss 

how the effect came to be recognised as a phenomenon of non-linear 

acoustics and a qualitative explanation will be offered for it. 

In order to study the phenomenon more closely a capillary tube (i.d. 1mm) was 

attached through a rubber bung to a horn loudspeaker which had the horn 

removed (Figure Al). With the sound intensity turned up a stream of air could 

easily be felt coming from the tip of the capillary. This jet, which was strong 

enough to blow out a candle, varied in strength not only with the sound 

intensity but also with frequency with the frequencies of maximum jet strength 

appearing to coincide roughly with the expected resonance frequencies of the 

tube. Visualising the flow using tobacco smoke and a sheet of laser light 

revealed that it took the form illustrated in figure Al. That is, the flow took the 

form of a central jet with recirculating vortices. 

In order to study this more closely a similar capillary was attached to an air 

pump and the air flow adjusted until it felt roughly the same as that from the 

sound induced flow. When the jet due to the pumped air was visualised no 

vortices were observed, except those set up occasionally by entrainment of 

adjacent fluid. Also the smoke became diluted or dissipated vey quickly unlike 

in the acoustic case where the jet and vortices remained visible for several 
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Figure A.1. Production of acoustic streaming due to sound emitted from the tip 
of a capillary tube. 
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Figure A.2. Spherical sound field round the capillary tip. The double headed 
arrows represent the magnitude of the acoustic velocity. 
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minutes. This all implied that a more complex dynamical situation than just 

some pumping mechanism was at work. The tips of both capillaries were then 

placed underwater. That attached to the air pump immediately began to 

vigorously blow bubbles but the other did not. In fact, the small plug of water 

drawn up into the acoustic capillary was sufficient to stop the streaming while 

shaking it out restored the jet. This implied that the streaming was due to the 

sound field interacting with the outside medium or the capillary boundary layer 

and led us to consider the radiation pattern of the emitted sound field. 

If the air column in the capillary is oscillating so that the at the capillary exit 

the air can be thought of as a small oscillating piston, then the radiation 

pattern in such a situation is governed by the parameter ka where k (=27T/A) is 

the wavenumber and a the capillary radius. For the typical frequencies used 

here (-1kHz) and a=0.5mm, ka<<1 which implies [Kinsler et. 8/. 19821 that an 

almost perfect spherical wave is being emitted i.e. the capillary tip was 

behaving as a point source. This was further tested in the anechoic chamber 

where it was found that the field intensity decreased with inverse distance 

squared i.e. in a manner consistent with the spherical wave assumption. 

If we now consider how pressure and velocity are related in a spherical wave 

we see that, for distances close to the source, the acoustic velocity is given 

by [Kinsler et. al. 19821 

I 

K. r 

where P is the pressure and r the distance to the source (c.f. eqn. 2.2.5.). Thus 

moderate acoustic intensities can generate large velocities close to the source. 

The acoustic field then takes the form illustrated in figure A2 where the 

arrows indicate the magnitude of the velocity. 
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Recalling the discussion of Rayleigh Streaming in chapter 6 we see that the 

velocity field could perhaps be generating the streaming through interaction 

with the capillary boundary layer. This was qualitatively tested by inserting the 

capillary tube into the standing wave tube used in chapter 6 so that its tip 

was near a velocity antinode. The streaming observed is shown in figure A3 

(c.f. figure A2). Inserting a thin metal bar in place of the capillary caused 

identical streaming to be generated. Moving the tip of the bar to a velocity 

node caused the streaming to stop. Our supposition that the capillary 

streaming is a boundary layer phenomenon forced by the large acoustic 

velocities near the source of spherical waves thus seems to be correct. 
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Figure A.3. Acoustic streaming due to a small tube being placed near a 
velocity antinode in a standing wave tube. Note that the streaming takes the 
form illustrated in figure Al. 



Appendix B: Input impedance of an open tube. 

In chapter 5 use was made of a theoretical expression for the input impedance 

of an open tube. How this expression was derived was explained in chapter 2. 

Here we will derive the input impedance expression in another way and will go 

on to show how a frequency correction factor may be applied to measured 

impedance values when the pressure and velocity are measured in different 

planes. 

Consider a circular tube of length L and radius a where L is much greater than 

the wavelength of any sound field we will examine and a is much smaller. 

Sound waves will therefore only propagate along the axis of the tube. A sound 

field is driven into one end through a capillary tube with the other end open. 

The impedance of the driven end is then large enough to justify the 

assumption that the driven end is closed. Then, neglecting radiation from the 

open end and assuming a pressure node at that end we can write the 

pressure at any point in the tube as 

A 	p 1 [ct +  K  ( L-7f )] 	 — JC  (L-=) 

'U-  
 9~~ [ L< ( L — 9 

where A is the amplitude and w the frequency of the sound field. k is the 

complex propagation constant, k = k + ia where k is the wavenumber and 

the attenuation coefficient. In equation Bi we have assumed that the load 

impedance is zero. This is not quite true for there is always a small radiation 

impedance. We can however take this into consideration by redefining the tube 

length to be L' = L + 0.61a, the well known end correction for an open tube 

[Kinsler et. al. 19821. 
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The velocity can then be written, using the so called linear inviscid force 

equation, as 

916 

	 I 

- 	_____ 	 e 
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where p 0  is the density of the air. 

This gives for the input impedance, Z 1  

2A. 
	(Olt) 
	 - 	 L') 
	

RIN 

Writing k in full and expanding the tangent gives 

jL' 

I- 

( 	L + A- ta7t kL' 

- 
C 

for aL << 1. This is the same as equation 2.2.11. Examination of equation B4 

shows that impedance maxima (resonances) occur for values of the 

wavenumber that satisfy 

 , 	, 	p 

When, however, the pressure is measured at the input plane and the velocity 

is measured at a distance x along the tube, the impedance Z,, is given by 



p(o,±) 
zdt , 

 = -=====~ 

(z, - ) 

so that, in the absence of damping (ot = 0) resonances occur for values of the 

wavenumber, k', such that 

rr 
( 	 01: I ) 2.,, . 	* 

L. '- 7. 

So that 

L '  

k 

- ( 	
' L' ) 	

<< L 	96 

For the experimental situation described in chapter 5 this amounts to a 

correction of -1% being applied to the frequencies at which the impedances 

were measured. 

Neglecting the end correction for an open tube would have caused the 

calculated resonances to move by a smaller amount, -0.4%, an amount that 

would have become more noticeable if measurements had been carried out at 

higher frequencies. 



Appendix C: Publications. 

The work undertaken in this project generated several reports and publications: 
the following is a list of articles which have either been published or accepted 
for publication. 

- Easson, W. J., Griffiths, M., Sharpe, J. P. and Greated, 
A. (1986) "Measurement of fluid velocity and acceleration 

using pulsed correlation techniques." Proceedings of 
Electro-Optics and Laser U. K. 1986. 

- Sharpe, J. P. & Greated, C. A. (1987) "The measurement of 
periodic acoustic fields using photon correlation 
spectroscopy." Journal of Physics D (Applied Physics.) 20 
418-423 

- Sharpe, J. P. & Created, C. A. (1987) "Acoustic measurement 
using photon correlation spectroscopy." S.P.l.E. Vol. 808. 
(Inverse Problems in Optics.) 

- Sharpe, J. P. & Created, C. A. (1987) "Laser measurement of 
random and periodic sound fields." Proc. Inst. Acoust. 9(3) 
183-191. 

- Sharpe, J. P., Created, C. A. & Campbell, D. M. (1989) "The 
measurement of complex acoustic impedance using photon 
correlation spectroscopy." To appear in Acustica 67(4). 

- Sharpe, J. P., Created, C. A., Gray, C. A. & Campbell, 
M. (1989) "The measurement of acoustic streaming using 

particle image velocimetry." To appear in Acustica 68(3). 

The work described in the above papers has also been the subject of a cover 
story in the December 1987 issue of the technical magazine "Laser Focus." 
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The Measurement of Complex Acoustic Impedance 
using Photon Correlation Spectroscopy 

by J. P. Sharpe, C. A. Greated. and D. M. Campbell 
Fluid Dynamics Unit. Physics Department. Edinburgh University. Edinburgh. U.K. 

1. Introduction 

In acoustics one of the most important quantities 
that can be measured is the specific acoustic imped-
ance, z, defined as the ratio of pressure to acoustic 
particle velocity, 

P 

In dealing with the transmission of acoustic radia-
tion in pipes or horns it is more convenient to use the 
acoustic impedance, Z, which is defined, for a fluid 
acting on a surface of area S. as the complex quotient 
of the pressure at the surface divided by the volume 
velocity at the surface [1]. 

U 
	 (2) 

or 

Z=IZJeJ#, 	 (3) 

where I Z  is the impedance amplitude and qf the phase 
difference between the velocity and pressure. The spe-
cific acoustic impedance and impedance are thus 
related by, 

z=. 	 (4) 

The measurement of the acoustic pressure is easily 
accomplished using microphones but the measure-
ment of velocity is much more difficult. A method 
which has been developed in recent years is the pres-
sure gradient microphone [2, 31 which uses two closely 
spaced pressure microphones and transforms the 
pressure gradient between them into velocity using the 
equations of motion for the acoustic field. Such a de-
vice however requires calibration in frequency. as-
sumptions to be made about the field under investiga-
tion, and the application of empirical correction 
factors depending on source proximity and directivity 
[4. 51. Other methods such as hot wire anemometers 
[6] are difficult to calibrate and, like pressure micro-
phones, can distort the field under investigation. Indi-
rect methods of assessing acoustic impedance have 
also been devised, especially in the measurement of the 
input impedance of brass musical instruments where a 
constant volume velocity input is applied via a high 
impedance series resistance to the instrument mouth-
piece. This makes it only necessary to measure the 
pressure at the input plane to deduce the impedance 
[7]. 



More recently the technique of Laser Doppler Ane-

mometry (L.D.A.) has been applied to the measure-

ment of acoustic velocities [8,9, 10, 11]. The technique, 

which is both absolute and non-intrusive, has been 

shown to work well in the range of (plane wave) inten-

sities of roughly 90 dB to 120 dB (re 10 12 Wm 2 ) 

and up to frequencies of approximately 3 kHz [12]. 

In this paper the measurement of the input imped-

ance for an open tube utilizing direct L.D.A. velocity 

measurement will be described. The theoretical im-

pedance for this situation can easily be calculated and 

hence comparisons with the measured values made. 

Measurements are also made of the relative phase 

difference between the velocity and pressure, the aim 

being to demonstrate the applicability of L.D.A. to 

direct measurement of complex acoustic impedance. 

2. Description of the L.D.A. technique 

The L.D.A. technique relies on the scattering of 

light from small particles contained in, and faithfully 

following, the flow under investigation. This light is 

then collected and analysed to reveal the parameters 

of the flow. It has been shown [8, 13] that, for the case 

of tabacco smoke particles in air, the particles will 

faithfully follow the flow up to frequencies of the order 

of 10 kHz. The frequencies under investigation in this 

paper are well within this regime. 

In the most common L.D.A. setup (which is used 

here) a laser beam is split into two beams which are 

focussed down to intersect in the flow. At the point of 

intersection a fringe pattern is set up which the par-

ticles in the flow pass through. Light scattered from 

this region is then collected and the resulting signal 

analysed in either the time or frequency domains, the 

various techniques being well documented in the liter -
ature, e.g. [14]. 

In our experiments we use the photon counting 

correlation technique which operates in the time do-

main. This employs a photomultiplier to collect the 

light and send the digital signals to a correlator which 

counts the number of photons arriving in small time 

intervals and calculates the autocorrelation function 

of the signal. 

For the case of sinusoidal oscillations the form of 

the autocorrelation function has been deduced by us 

[I I) and takes, to a good approximation, the form of 

a zero order Bessel function. The velocity amplitude of 

the fluctuation can be calculated by counting the 

number jof points on the correlogram up to the first 

minimum of this Bessel function and applying the 
formula 

3.832 
a. 	 (5) 

DST 



where a,,, is the velocity amplitude, t is the sample time 
(the time between points on the correlogram), s is the 
number of points up to the first minimum of the Bessel 
function, and D is the frequency to velocity conversion 
factor which depends only on the wavelength of the 
laser light and the intersection angle of the beams. The 
method is fully described in [11] and a typical correlo-
gram is shown in Fig. 1. 

In order to determine the phase of the velocity with 
respect to the pressure we have also developed a gat-
ing technique [11, 151 which works as follows: The 
signal from a microphone in the sound field is sent to 
a microcomputer which detects the positive-going 
zero-crossings of the pressure signal. The computer 
then sends a pulse of predetermined width and at a 
predetermined delay time from the positive-going 
zero-crossings to the photomultiplier. Only for the 
duration of this pulse is the Doppler signal analysed 
so the photomultiplier only "sees" a small portion of 
the fluctuation at a specific time delay where the veloc-
ity is approximtely constant. A phase shifting device 
incorporated into the optics of the setup allows the 
direction of the velocity to be determined. Thus by 
varying the delay time, it is possible to reconstruct the 
velocity curve and hence its phase with respect to the 
pressure signal. 

It should be noted of course that to implement the' 
L.D.A. technique an optical path must be provided 
into the sound field to allow access for the laser beams 
and for collection of the scattered light. Thus, if one 
wanted to make measurements in say the throat of a 
trumpet, a specially made transparent section would 
be required. 

Other workers [8-10] have used a frequency do-
main method for analysing the Doppler signal. We 
consider, however, that the photon correlation tech-
nique is faster and more robust and it is capable of 
dealing with the low level of scattered light generally 
found in air flows. 



3. Experimental apparatus 

A diagram of the apparatus used for the acoustic 
impedance studies is shown in Fig. 2 with a closeup of 
the measuring area in Fig. 3. 

Light from a 32 mW He-Ne laser . = 633 nm) is 
split into two beams which, after passing through the 
phase shifter, are focussed down to a point on the axis 
of the tube using a 20 cm focal length lens. A small 
quantity of tobacco smoke was generally introduced 
into the tube for seeding purposes. 

Sound from a speaker is fed through a capillary into 
a glass tube of length 1.512 m and internal radius 
1.05 cm. A small baffle was constructed round the exit 
of the capillary to reduce the streaming which was 
observed to occur, especially at higher intensities. A 
Bruel & Kjaer - inch microphone (type 4134), mounted 
in the input plane, measured the pressure and could 
also provide the signal for the gating pulses. The laser 
beam intersection was placed about 1.5 cm in front of 
the input plane. The velocity measurement point was 
not therefore exactly at the end of the tube but a 
calculation showed that the effect of this would be to 
cause the measured resonance frequencies to move up 
by a factor of 1 + x/L, where x is the distance from the 
input plane to the velocity measurement point and L 
is the length of the tube. For our experimental setup 
this amounted to a correction of about 1% which was 
applied to the measured frequencies. Also, since the 
L.D.A. system effectively measures the acoustic par-
ticle velocity at the point of intersection, the velocities 
were converted to volume velocities by dividing by the 
cross-sectional area of the tube. No correction was 
made for the effect of the boundary layer when calcu-
lating the volume velocity since even at the lowest 
frequency used (50 Hz) this only amounted to a cor -
rection of some 5% to the velocity [7] which decreased 
rapidly as the frequency increased. In a more elabo-
rate experimental setup (see section 6) this correction 
factor would be automatically computed at each 
frequency where measurements were taken. The 
temperature in the laboratory was maintained at 
26 C ± 1 :C 
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4. Measurement of impedance amplitude (IZI) 

Measurements of IZI were carried out at varius 
frequencies in the range of about 50 Hz to 700 Hz by 
making separate measurements of the pressure and 
velocity. Pressure measurements were made in the in-
put plane with the microphone which had been cali-
brated to within 0.5 dB. The recorded sound pressure 
level (SPL) was then converted to pascals using the 
formula [16] 

101 262-1.  PRESSURE (Pa) = 1ØLJ 	 (6) 

For the velocity amplitude measurements the gat-
ing circuit and phase shifter were made inactive and 
the amplitudes deduced using eq. (5). Each particle 
velocity amplitude measurement was then converted 
to r.m.s. volume velocity and combined with the pres-
sure measurements at that frequency to yield IZI 
which is expressed in acoustic ohms. 

A theoretical impedance curve for the tube was cal-
culated using the method of [6]. This considers the 
tube in analogy with a terminated transmission line of 
length I with distributed loss so that the input imped-
ance can be written as [17] 

ZL  Cosh F1 + Z0  Sinh r I 
(7) I Z O  Cosh r I + ZL  Sinh r 1 

where Z 0  is the characteristic impedance and Z L  the 
terminating (load) impedance. r is the propagation 
constant which is generally complex and equal to 
s + j /1, where a is the attenuation coefficient and fi the 
wavenumber. It is then possible, knowing the form of 
the load impedance and by making the "large" tube 
approximation, to deduce the following simplified 
form for the input impedance, 

21 +jtanfll' 
z i =zo 	 (8) I +jzl tan fll'' 

where 1' = I + 0.61 a. a being the internal radius for the 
tube. 

This expression was used to compute values for the 
impedance amplitude and phase. Values for constants 
such as the viscosity and speed of sound in air at 
various temperatures are to be found in [18]. The theo-
retical curve and experimental points for the imped-
ance are shown in Fig. 4. 

The error bars were computed assuming a 0.5 dB 
error in the microphone measurements and that the 
velocity could be measured to about 2%. A fuller 
discussion of errors will be deferred to section 6. 



5. Measurement of phase (4)) 	
110 

In order to demonstrate the measurement of phase, 
a region of frequency about 170 Hz was chosen, this 
corresponding to the region of an impedance peak. 
Measurements were taken at 155, 165, 170, 175 and 
180 Hz using the following procedure: 

At the frequency selected the pressure signal was 
sent to the microcomputer which detected the posi-
tive-going zero-crossings of the pressure signal and 
generated a pulse of width 500 is. The delay time was 
incremented in units of 500 j.ls and at each point a 
measurement taken of the velocity. This process was 
repeated until at least one whole cycle of the pressure 
(and hence velocity) fluctuation had been covered. It 
was thus possible to reconstruct the velocity curve 
with respect to the delay time and hence deduce its 
phase relative to the pressure signal. An example of 
pressure signal and pulses is shown in fig. 5, while 
Fig. 6 shows typical velocity versus delay time points. 

Although we did not have the facilities for calibrat-
ing the microphone for phase, it was possible to es-
timate the phase response using the literiture supplied 
by Bruel and Kjaer [19]. Applying this to the velocity 
versus delay time curves allows the phase difference 
between the pressure and velocity to be deduced. The 
experimental points and theoretical phase curve (com-
puted using equation 8) are shown in Fig. 7. 

The error bars were obtained by estimating the ac-
curacy with which the phase difference between sepa-
rate velocity versus time delay curves could be 
deduced. In the present paper estimation of the phase 
difference was done by simply sketching the curves on 
graph paper, though it should not be difficult to imple-
ment a computer curve fitting routine in order to 
improve the accuracy. This will be discussed more 
fully in section 6. 

6. Conclusions 

As can be seen from Fig. 4 the theoretical and mea-
sured impedances agree very well, the main source of 
error coming from the pressure measurements. The 
velocity accuracy could be improved if an on-line 
computer link to the correlator was available to inter-
polate between points on the correlation function. The 
effect of turbulence and non-zero mean motions on 
the correlation function have not been mentioned 
since they are small and would only contribute a 
damping to the correlograms which does not affect the 
position of the minimum of the Bessel function to any 
great extent. 



• The phase measurements are subject to the dual 
inaccuracy of fitting a curve to the velocity versus 
delay time points and then estimating the phase of this 
curve. As mentioned before this process was done by 
hand though it could easily be adapted to run on a 
computer. Furthermore, the actual gating process 
used causes unwanted side effects on the correlation 
function [15] i.e., the correlogram is damped and rides 
on a sloping baseline. This is due to the fact that the 
input signal is gated and it makes the deduction of the 
velocity somewhat difficult. It is however possible, us-
ing a more sophisticated correlator (we use the basic 
Malvern K7023), to gate the signal internally and 
eliminate this problem. Again, an on-line computer 
link would speed up the process. 

It may be mentioned here that, as yet, no complete 
stochastic model has been offered to quantify rigo-
rously the limits of applicability of the technique. In 
our earlier work [11,20] we used an extension of exist-
ing L.D.A. theory which seems to apply, while other 
researchers [7] have simply applied the well known 
equations of frequency modulation. The latter ap-
proach does not take into account the statistical na-
ture of the scattering process. The problem is by no 
means trivial and is one on which the authors are at 
present engaged. 

However, we have demonstrated that it is possible 
to measure complex acoustic impedances in a prac-
tical situation using direct measurement of velocity 
from a laser Doppler anemometer. Although the pro-
cedure described is somewaht tedious in application 
(especially the phase measurements), it can be auto-
mated by sending the individual correlograms to a 
computer where they can be processed and a direct 
readout given of velocity and phase. This currently 
being implemented and, although the technique will 
perhaps always be somewhat slower than using, say, 
constant volume velocity techniques, it is absolute and 
accurate, not relying on any assumptions about the 
sound field (except periodicity) or on any external 
calibrations. We feel it may provide a useful tool in a 
number of areas of acoustics ranging from the design 
of sound systems to the study of musical instrument 
mouthpieces. 
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Fig. I. Typical correlogram indicating velocity amplitude of 
24 mm's. Sample time (rI = 5.5 .is. 

Fig. 2. Schematic diagram of apparatus. 

Fig. 3. Close up of measuring section. 

Fig. 4. Theoretical impedance curve and - experimental 
points. 

Fig. 5. Pressure signal and pulses. Frequency = 170 Hz, 
pulse width = 500 ss. delay time = 2000 zs. 

Fig. 6. Typical velocity vs. delay time points. (o) 155 Hz. 
(o) 175 Hz. 

Fig. 7. Theoretical phase curve and experimental points. 
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ABSTRACT 

In this paper the application of Laser Doppler Anemometry (L.D.A.), which is 
both absolute and non-Instrusive; to the measurement of acoustic particle 
velocities is described. Reasons for the photon correlation method of signal 
analysis are Outlined and a gating technique, which allows the relative phase of the. velocity and pressure to be deduced is described. 

INTRODUCTION 

To obtain a full description of a Sound field at any point the pressure, 
velocity ad phase relationship between the two must be determined. The 
pressure is quite easily measured using microphones but velocity measurements 
are Considerably more difficult. Several methods have been proposed of which 
one of the more recent is the pressure gradient microphone 1,2 

 Such methods 
suffer however from the need for calibration, the application of empirical 
correction factors depending on distance from the Sound source etc. and the 
fact that they intrude into and hence distort the field. 

The technique of L.D.A. though can overcome these difficulties ''. 	It provides an absolute measurement of the velocity and, since it relies on the 
scattering of light from very small particles suspended in the medium under 
investigation, it is essentially non-intrusive. The actual experimental 
arrangements of L.D.A. systems are numerous, as are the methods for analysing 
the Intensity fluctuations of the scattered light s 

In this work the 
Gaussian crossed beam setup employing the photon correlation method of signal 
analysis is used. The photon correlation methdd Is best suited to the low 
density or scattering particles generally available in air flows and also 
seems to be more robust and versatile than say frequency tracking systems. 

In this paper we present results for the form of the correlation function due 
to periodic, and band limited noise fields and discuss the form of the 
correlation function when the Doppler signal is gated. 

Measurements made in a travelling wave tube are presented and compared to 
those made with a microphone. Further extensions of the work are proposed and 
limitations of the technique discussed. 

I C3 
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LASER MEASUREMENT OF RANDOM AND PERIODIC SOUND FIELDS 

REVIEW OF L.D.A. TECHNIQUE 

L.D.A. relies on the scattering of light from small particles suspended in, 
and faithfully following the motions of the fluid under investigation. 

In the Guassian crossed beam setup light from a laser is split into two beams 
which are then focussed down to a point in the fluid (see Fig. 1). At he 
Intersection of these two beams a fringe pattern is set up, as shown. 

xIj 

Figure 1. Production of L.D.A. fringe pattern. I is light intensity. 

Particles passing through this pattern will scatter light in a manner 
depending on their velocities and the geometrical form of the fringe pattern. 
Thus it is possible to deduce the fluid velocity by collecting the scattered 
light and analysing it. The method of analysis is dictated by the density of 
seeding particles in the fluid, parameters of the flow to be measured and 
various other factors. Photon correlation (which analyses signals in the time 
domain) is found to be easy to use though other workers have made measurements 
using frequency analysis systems . 

THEORY 

In this section is it stated how the velocity and average velocity amplitude 
of the sound field can be deduced from the observed characteristics of the 
correlation function. The effect of gating (to determine the phase 
relationship between the pressure and velocity fluctuations) on the 
correlation function is also described. 

Periodic Sound Fields 
It has already been shown 	that the correlation function due to a sinusoidal 
oscillation with no mean flow takes the form 

I ff4. 
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R(t) 	A + B Jo(amDr) 	 (1) 

where A and B are constants, J. is the zero order Bessel function am  Is the 
velocity amplitude of the vibration, 0 is the frequency to velocity conversion 
factor and t Is the lag time on the correlator. D depends only on the 
wavelength of the laser light used and the geometry of the L.D.A. system so it 
is possible to deduce the velocity amplitude of the sound field at any point 
by measuring some parameter of the autocorrelation function (we use the first 
minimum) and using the tabulated values of the Bessel function. 

Another approach is to use the autocorrelation function for frequency 
modulation which is essentially what is happening here - the sinusoidal 
Intensity distribution of the fringe pattern due to the laser beams is being 
modulated by the sinusoidal oscillations of the sound field. This yields 

Ao 
R(t) 	- J. (2u sin ---) cos w. t 	 (2) 

Where A. Is the amplitude of the frequency modulated signal, ji is the 
modulation 4ndex, w. is the frequency of the modulating signal and wo is the 
carrier frequency. For no mean flow (we 0) and for 

I 

<< 1 	equation (2) reduces to equation (1). However the latter 

condition does not always obtain in practice and affects the correlation 
function in the regimes of low intensity and high frequency. Discussion of 
this and possible remedies will be deferred unt4l the conclusion. 

Noise Fields. 
The effect of narrow band noise on the autocorrelation function was studied 
because of the occurrence of this type of noise In many situations (e.g. 
resonance set up in ducts by noise). The correlation function was deduced by 
integrating the correlation function for a single tone sound field over the 
probability density function for the amplitude distribution of band limited 
white noise '. This gave the form of the autocorrelation function as a 
Gaussian and the average velocity amplitude of the sound field to be deduced 
as 

am/ 2(Don)a 	 (3) 

where On  is the standard deviation of the correlogram. 
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The gating technjg 

To Implement the gating technique the signal from a microphone in the Sound 
field is fed to a microcomputer which supplies a pulse of preset width at a 
preset delay time from the zero uperossings of the signal. These pulses are 
then fed to the photomultipijer and only for their duration is the Doppler 
signal analysed. Thus, by varying the delay time, the velocity at different 
Portions of the acoustic cycle is sampled. Furthermore, by incorporating a 
frequency or phase shifting device into the optics the sign of the velocity 
can be deduced. This would then allow the phase relationship between the 
velocity and pressure to be determined. 

The gating however affects the correlogram by causing it to be damped and ride 
on a sloping base line 0 . The degree of damping is increased as the pulse 
width is decreased and generally some compromise must be reached between 
damping of the correlogram and velocities to be sampled. 

APPARATUS 

A schematic diagram of the apparatus is shown In figure 2. 

tRAVELLING WAVE TUCI 

CORACuATOR 	 — - - 	J 	PHASE $nnpTf A 	 LATIn 

OAA SPUTTIA 

PTROTOEWLTIPu(A 

AffiA GINEAATCA 
LOUOSA tn', 	 ______________ 

PAoAI EAIC 

CAOCPVTIA 	

•qj.1A 	
NOISE GAt.nnton 

Q*E  

AASUAItAG ALIP, 

Figure 2. Diagram of apparatus. 

The Sound field is fed into a tube of length 1.5 a, diameter 2 cm, the final 
metre of the tube being filled with absorbing material to prevent the 
reflection of Sound and hence the production of standing waves. A probe 
microphone could be inserted into the tube to monitor the Sound field and thus 
make comparisons with the laser measurements. This arrangment was chosen 
because of the particularly simple relationship between the pressure and 
velocity fluctuations. The sound field could be chosen as either single tone 
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or band limited white noise. 

On the optical side a 32 mW He-Ne laser was used. After splitting and passing 
through a phase shifter the beams were focussed down into the tube from a 
separation of 2 cm using a 200 mm focal length lens. A small quantity of 
tobacco smoke was generally Introduced into the tube for seeding purposes. 

MEASUREMENTS AND RESULTS 

Periodic Sound Fields 
To measure the velocity amplitude of a single tone sound field the 
microcomputer gating system and the phase shifter were made inactive. A sound 
frequency or 1260 Hz was used, the probe microphone having been calibrated at 
this frequency to an accuracy of about 0.5 dB. Figure 3 shows a typical 
correlogram and compares Its estimate of the velocity amplitude to that of the 
probe microphone. It was found that over the range of sound intensity from 
about 95 dB to 120 dB the L.D.A. system and probe microphone agreed with each 
Other to within about 5%. 

Ftgure 3. Correlogram due to 1260 Hz sound field. 
Velocity amp from correlogram - 80.' mm/sec. 
From probe mb. - 80.6 ± 2 mm/sec. t - 2is. 

Band limited noise field 
For these measurements white noise was filtered about 1260 Hz and passed into 
the tube. A typical correlogram is shown In figure 11. These measurements 
showed rather more deviation than those for the single tone case, but this 
would have been expected considering the difficulty of estimating the standard 
deviation of the correlogram, the irregular pressure fluctuations in the tube 
and the fact that the microphone response is non-linear over frequency. All 
measurements however agreed to well within 10%. 

tV1 
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Figure 4. Correlogram due to noise filtered about 1260 Hz. 
Average velocity amp. from correlogram - 51.2 mm/sec. 
Ftom probe mic. - 119.1 mm/sec. 	r - 2is. 

Gating the Sound field 

These mea3urtflent3 followed the procedure outlined in the theory section. The 
Sound frequency was again 1260 Hz and the phase shifter was set at 50 kHz. 
This later provided a velocity pedestal of 0.317 rn/sec against which to 
measure the velocity at any particular position In the acoustic cycle. 
Figure 5 shows an oscillogram of the pressure and Sating pulses while figures 
6(a) and (b) show correlograms obtained using different delay times. 
Mea5urments such as these allowed the velocity time history to be plotted as 
In Figure 7. As can been seen the graph indicates a velocity ampllutde of 
about 85 

mm/Sec while measurements with ungated correlograms and the probe 
microphone indicated velocity amplitudes of 86 mm/sec and 85 mm/sec 
respectively. 	It is encouraging that the three procedures show such close 
agreement. 

Figure 5. G1ng pulses and sinusoidal pressure fluctuation. 
Delay time - 400 us. Pulse width - 100 is. 

18,0 
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Figure . CateO correlograma for different delay times in 1260 Hz cycle. 
Frequency shift - 50 Hz. r - 13. Pulse width - 100 us. 

(a) Delay - 300 us. (b) Delay - 700 vs. 
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Figure T. Velocity vs. delay time using gating technique. 

I 

194 



Proceedings of The Institute of Acoustics  

LASER MEASUREMENT OF RANDCH AND PERIODIC SOUND FIELDS 

DISCUSSION 

It has been seen that L.D.A. can provide accurate measurement of acoustic 
velocity flutuations in the regime of intensities from about 90 dB to 120 dB. 
In Itself this is quite useful but, as mentioned earlier, the method begins to 
rail at lower intensities and higher frequencies (- 3 kHz). This is due to the wn/2 

term in equation 2. For example, it Intensity is low then the 
correlator lag time must be increased so that the first minimum of the Bessel 
function can be measured. This causes the correlogram to become modulated by 
the sin function (see fig. 8) and hence makes it difficult or Impossible to 
estimate the velocity amplitude. This effect can be reduced to some extent 

tlgure b. Correlogram 3bta1red wlth t - 20 ps . 

by altering the optical arrangement (increasing the angle of intersecton or the beams) which would decrease the lower limits to about 
80 dB. 	Higher frequencies have a similar effect on the correlogram. A possible solution to 

these problems may be trariformstion of the correlogram into the frequency 
domain, a facility which is not at present available on our correlator. 

It Is imagined however that the technique will be of interest to laboratory 
acousticians and present research is directed towards measuring complex 
acoustic impedances using the gating technique. 	Further extensions of the 
work include the Investigation of superimposed flow fields on the correlogram. 
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Figure 1. Schematic diagram of arparatus. 
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Figure 2. Correlogram obtained with 1260 Hz 
sound field. T = 3us. 
Velocity amplitude deduced using 
correlogram = 64.3 mm/sec. 
Velocity amplitude deduced using 
microphone = 63.3 mm/sec. 

Figure 4. Time history of filtered noise. 

Figure 3. Spectrum of filtered noise. 

Figure 5. Correlogram obtained with noise 
field filtered about 1260 Hz. 	t = 2iis. 
Average velocity amplitude deduced using 
correlogram = 43.0 mm/sec. 
Average velocity amplitude deduced using 
microphone = 44.8 mm/sec. 
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The velocity amplitude was deduced using, in the case of the correlogram, equation 2 and, 
in the case of the microphone, by measuring the pressure in the tube and converting to 
velocity amplitude using the assumption that the sound in the tube has a plane wave form. 

Noise fields. 

For the noise measurements white noise was band filtered about 1260 Hz and fed into the 
travelling wave tube. The spectrum of the filtered noise is shown in Fig. 3 while Figure 
shows the time history of the filtered noise. A typical correlogram is shown in Figure 5 
and in this case the velocity amplitude was estimated by estimating the standard deviation 
of the Gaussian. The velocity was determined from the probe microphone by measuring the 
average sound pressure and converting to velocity amplitude by assuming the major proport-
ion of the sound excitation occured at 1260 Hz. It was found that the laser technique 
seemed to consistently under estimate the average velocity by a factor of about 5-10%. 
This is probably due to several factors including the effect of small amounts of turbulenc 
in the tube which causes excess damping and the fact that the analysis assumes a perfect 
Rayleigh distribution for the velocity amplitudes. 

Phase measurements. 

In order to deduce the phase relationship between the pressure and velocity a gating 
technique was used. This involved programming a microcomputer to detect the zero up-
crossing of the pressure fluctuations from the microphone and provide a pulse of predeter-
mined width at a preset delay time after this event. This pulse was fed to the photomult-
iplier and only for the duration of the pulse was the Doppler signal processed. A phase 
modulating device, incorporated into the optics, provided a velocity pedestal allowing the 
sign of the acoustic fluctuation to be deduced. The technique has already been described  
10 and at present is being used in attempting to measure complex acoustic impedances, an 
area of considerable practical importance. 

Conclusion 

It has been seen that photon correlation spectroscopy can provide an accurate measure 0 

acoustic velocity amplitudes both for single tone and narrow band noise fields. The range 
of applicability and limitations of the technique are still being investigated especially 
with regard to very high and low intensity fields and in the regime of very high freqiienci 
(-10 kHz) where slippage of the seeding particles will undoubtedly become a dominant effec 

The measurement ;of acoustic impedances is also being investigated at the present time b 
utilizing the gating technique described elsewhere 7 '

10 . This allows the phase relationshi 
between velocity and pressure to be deduced. 

It is forseen that the technique will be of considerable use to, for example, laborator 
acousticians since it provides direct, accurate and absolute measurement of acoustic veloc 
ity. Another area of possible use could be in environmental monitoring of noise though in 
this case a careful investigation of the effect of superimposed flows will have to be made 
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Wm the frequency of the modulating signal and w o  the carrier frequency. For zero carrier frequency (no mean flow) and small lag times 

<< 1) 

expression (3) reduces to the form of (1) 

For the case of a noise field we Consider band limited white noise. The velocity dis- 
tribution will have a Gaussian form and, in the case of narrow band noise, the velocity 
amplitudes will have a Rayleigh probability density. 

a 	1-2 
	-, 

	

a 	I 
p(am) 	

m 	m I = - exp 

where a is the standard deviation of the velocity distribution. To obtain the autocorrel-
ation function of the noise we integrate the autocorrelatjon function for a single tone 
field over this density. 

(4) 

B 
 2 '- I-a 	1 

noise 	= - I a ex 	m l R 	(r) 	 I 

a2 J 	 Jo  (am  D T) dam . 
0 

which evaluates to 9  

I R . 	(r) = B exp L 
-(D T a) 2  

2 	] 
noise 

T 	) 2] 

R noise  i(T) = B exp I 	 _ 
This has a Gaussian form in T with standard deviation of say 

n 

 

 

o/7. Therefore 

 

 

Hence we can write 

 

It is known that for Rayleigh distribution the mean value is equal to 
we-can write the average velocity amplitude 	as 

am _cl/I2 

The average velocity amplitude can thus be deduced by measuring the standard deviation of the correlogram. 

Apparatus 

A schematic diagram of the apparatus used is shown in figure 1. The measurements were 
carried out in a travelling wave tube of diameter 2 cm and length approximately 1.5 m. The 
Sound field was introduced at one end using a loudspeaker and the tube was terminated 
throughout the last meter with absorbing material. This absorber prevented reflection of 
sound and the formation of standing waves. The termination was of course not perfect but 
for the case of the 1260 Hz sound wave used, the ratio of maximum to minimum sound pres- 
sures was less than 0.8 dB indicating a maximum phase difference between the velocity and pressure of around 50 

The laser used was a 32 mW He-Ne (X = 633 nm) and the beams were focussed down from 2 cm 
apart using a 200 mm focal length lens. A small amount of tobacco smoke was usually intro- 
duced into the tube for seeding purposes. The probe microphone, which could be moved along 
the tube, had been calibrated to about 0.5 dB. 

Measurements and results 

Periodic sound fields. 

In this case the Sound field was derived directly from the sine generator, the noise 
generator and filter being made inactive. In Figure 2 a typical correlogram is shown. 
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Acoustic measurement using photon correlation spectroscopy 

J.P. Sharpe, C.A. Greated, 

Department of Physics, Edinburgh University, J.C.M.B., King's Buildings, 
Mayfield Road, Edinburgh, Scotland. 

Abstract 

An investigation of Laser Doppler Anemometry (L.D.A.) for the measurement of acoustic 
velocity fields using the photon correlation method of signal analysis has been made. It 
is shown how estimates of velocity amplitudes can be obtained for the cases of single tone 
and band limited noise fields. Measurements made in a travelling wave tube are presented 
and are shown to compare well with microphone measurements. 

A discussion is also made of the measurement of complex impedances and possible indust-
rial uses of the technique are mentioned. 

Introduction 

In order to obtain a complete description of a sound field the acoustic velocity, 
acoustic pressure and the phase relationship between the two must be determined. It is 
relatively easy to measure pressure using microphones but considerably more difficult to 
measure acoustic velocity. Methods in the past have included hot wire anemometers, 
Rayleigh Discs and, more recently, calculations from the pressure gradients between two 
closely spaced microphones' ' 2 . All of these methods however intrude into the field and 
require the application of empirical correction factors depending on the frequency of the 
acoustic field, distance from the sound source etc . 3 . 

L.D.A. though can surmount these difficulties"' 5 ' 6 ' 7  and combining it with the photon 
correlation method of signal analysis makes the technique generally more suitable for the 
low density of scattering particles available in air flows. 

Presented here are me'asurexnents made on both single tone and band limited noise fields 
in a travelling wave tube. This setup was chosen because the pressure and velocity fluct-
uations are both in phase and hence facilitate comparison of microphone and laser measure-
ments. Results previously published were carried out in standing wave tubes 7 . The meas-
urement of noise fields was investigated because of the widespread occurrence of this type 
of sound in industry. For example, sound fields set up due to resonance in ducts by noise 
will have the spectral characteristics of filtered white noise or the sound from an engine 
in any particular frequency range may be thought of as a dominant tone with a considerable 
amount of noise pollution around it. A gating technique which can be used to elucidate the 
phase relationship between the pressure and velocity is also discussed. 

Theory 

It has already been shown  that, using the Gaussian crossed beam setup for L.D.A., the 
autocorrelation function due to sinusoidal oscillation in the case of no mean flow is well 
approximated by 

R(t) = A + B J 
0 m (a DT) 
	

(1) 

where A and B are constants, J 0  is the zero order Bessel function, am is the velocity amp-
litude of the vibration, D is the radial frequency to velocity conversion factor and r is 
the lag time. Thus the velocity amplitude of the fluctuation can be deduced by counting 
up the lag time to the first minimum of the Bessel function and applying the formula 

a = 3.832 	 (2) 
m 	Dr 

Expression (1) was originally derived by integrating the correlation over the velocity 
probability density function for a sine wave. A more general expression however for fre-
quency modulation by a sine wave is given by Middleton 6  

R(r) = - J0 (2p Sin WMT ) COSW Q T 
A0 	 (3) 

Where A0  is the amplitude of the frequency modulated signal, i is the modulation index, 
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Abstract. A method of measuring the velocity amplitudes of acoustic vibrations 
using the laser Doppler photon counting technique (photon correlation 
spectroscopy) is described. The results are compared with measurements made 
using a pressure microphone and close agreement is found. A gating technique is 
also described which allows time histories of the fluctuation to be obtained if 
periodicity is assumed. 

1. Introduction 

Sound waves are normally measured with 
microphones which respond either to the pressure or 
the pressure gradient at a point, whereas the acoustic 
field is only fully defined if the pressure plus all three 
velocity components are known. Values of 
instantaneous velocity and pressure are required for 
an evaluation of both sound intensity and acoustic 
impedance, the two quantities which are most 
frequently required in industrial acoustics. Sound 
intensity is a vector quantity which describes the mag-
nitude and direction of acoustic energy flow and is 
the standard parameter used in analysing the sound 
power emitted by machinery and other industrial and 
environmental sources. Unlike sound pressure levels, 
intensity measurements are ,  only sensitive to the 
active component in the sound field, ignoring the 
reactive part. They can thus be used to study sound 
sources in their natural environment, without 
recourse to an anechoic chamber. This is a most 
important consideration in many practical 
investigations. Acoustic impedance is also a vector 
quantity, being the ratio of pressure to the associated 
particle velocity. This parameter is of particular 
importance in the analysis of standing wave patterns, 
e.g. in musical instruments, or ducts used for trans-
mitting sound waves e.g. telephone headsets and 
loudspeaker horns. 

Particle velocities can be inferred by measuring 
the pressure gradient at a point either using a 
pressure-gradient microphone (e.g. a ribbon 
microphone) or, more commonly, two pressure 
microphones placed a short distance apart. The 
equations of motion for the sound waves are then 
used to transform pressure gradients to velocities 

0022-3727/87/040418 + 06 $02.50 © 1987 lOP Publishing Ltd 

(Fahy 1975, Chung 1978). This method, however, 
requires calibration and the application of correction 
factors depending on the proximity of the 
microphones in relation to the source and the 
frequency of the acoustic disturbance (Bruel and 
Kjaer 1982a, b) More important still, the introduc-
tion of microphones disturbs the acoustic field which 
necessitates the application of further factors which 
can only be derived empirically. Other intrusive tech-
niques, such as the Rayleigh disc, are beset with simi-
lar difficulties which combine to make them either 
inaccurate or impractical for many applications. 

It is however possible to measure acoustic velocit-
ies absolutely and non-intrusively using the laser 
Doppler technique. This has been done by Taylor 
(1976, 1981); the principle is described in Durrani 
and Greated (1977). Application of the technique in 
acoustics is made difficult by the fact that the 
frequencies of the velocity fluctuations are high; up to 
15 kHz. For a typical acoustic frequency of 1 kHz, 
light scattered from the laser beam must be sampled 
over time periods of 100 is or less if velocities are to 
be recorded over a complete wave cycle. Since with a 
lower power laser the photon count rate is only one 
or two per microsecond for the light scattered from 
dust particles naturally present in the air, this rules 
out the frequency tracking and pulse counting tech-
niques commonly used in flow measurement. To 
apply these either a very high power laser is required 
or heavy seeding needs to be added to the air. Also 
these techniques are only directly applicable when 
scattering particles pass completely through the fringe 
pattern formed within the measuring volume. In an 
acoustic field particle excursions are frequently less 
than a single fringe spacing, so this condition is not 
fulfilled. 



Measurement of periodic acoustic fields 

These difficulties have been overcome by employ-
ing the photon correlation method of signal analysis 
(Greated 1986). The method has been applied in two 
ways. Either time-averaged correlograms over the full 
acoustic cycle are used to compute velocity 
amplitudes, or a gating technique is applied so that 
the photon counts are only recorded at a 
predetermined phase position in the cycle. The 
velocity variation as a function of time is then 
obtained by computing the correlogram at a number 
of different phase positions thus yielding directly the 
relationship between the pressure and velocity 
fluctuations. 

In the original experiments of Greated (1986) a 
phase shifting device was used in the optical system 
when constructing the correlograms averaged over 
the complete cycle. This effectively introduced a ped-
estal velocity onto the fluctuations which were to be 
measured so that the form of the correlogram was 
essentially the same as that produced by a steady flow 
on which sinusoidal fluctuations had been 
superimposed. Experiments have now shown that the 
phase shifter is unnecessary if only velocity 
amplitudes are required. This greatly simplifies the 
optical system and makes the estimation of the vel-
ocity amplitude much more accurate. In this paper 
we give the theory for the formation of the correlo-
gram in a sinusoidally varying acoustic field and also 
show that the results give close quantitative 
agreement with pressure microphone measurements. 
In addition, we describe the gating technique which 
can be used to determine temporal variations, which 
are necessary for the measurement of acoustic imped-
ance and sound intensity or in the mapping of three-
dimensional fields. In order to validate the technique 
the standing wave in a closed tube at resonance has 
been studied. This particular situation has been cho-
sen because the relationship between the pressure 
and velocity fluctuations is well known (Morse 1948). 
The field is essentially one-dimensional with velocity 
nodes and pressure anti-nodes at the ends. 

P24  "T 

2.1. Form of the time-averaged correlogram 

In the analysis to follow it is assumed that the gaus-
sian beam difference Doppler optical arrangement is 
used, this being by far the most common. 

The form of the correlation function for a steady 
flow perturbed by a sinusoidal fluctuation has been 
derived by Durrani and Greated (1977). In this case 
each scattering particle traverses the complete meas-
uring volume, whereas in the acoustic situation under 
study the particles may oscillate within distances of 
less than one fringe spacing. Despite this a similar 
method of derivation can be applied since the signal 
is derived from the light scattered by many particles  

randomly distributed within the measuring volume, 
but moving coherently at any instant of time. Since 
the averaging times of the correlograms are many 
oscillation periods (typically 10000) this ensures that 
particles will have sufficient time to redistribute them-
selves (due to diffusion etc) and hence eliminate 
excessive weighting to any given part of the fringe 
pattern. 

The instantaneous velocity of the particles is 

u(t) = am  5m(Wmt) (1) 

where am  and co. are the amplitude and frequency of 
the velocity fluctuation respectively. 

The velocity probability density is then given by 

P(U) = -- (a ' 	u2)_h/2 	Jul <am 	
(2) 

Jul > am . 
P(u) = 0 

We can thus write the autocorrelation function as 

f

+a,,
R a(ST) = E[Ra(ST, u)] = 

	
p(U)R a(ST, u) du (3) 

—a m  

where s is the address number on the correlator, T is 
the sample time and E[ ... ] denotes the expectation 
operator. 

Applying now the weighting function for a gaus-
sian beam system and the form for the intensity 
distribution of the fringes we obtain 

1 f

+a
Ra(ST)j 
	(a, - u2 )h/2  
-am  

X exp 
(_(sT) 2 u 2  \ 

4r 	
) (2 + cos DusT) du 	(4) 

where r is the distance across the observation 
volume and D is the (radial) frequency to velocity 
conversion factor i.e. 

D = w0 /u = 42r sin 0/A. 	 (5) 

Here 0 is the half-angle between the beams and A the 
wavelength of the light. 

Separating the integral in (4) into two parts such 
that 

R a(ST) = F1  + F2 	 (6) 

where 

:: 	

2 (sT) 2 u2 ) 
F1 
=' 	(a 	u2)h/2 exp( 	

4r 	
du (7) 

and 

1 fama 
F2 
	(a _u2)h/2 
-am  

X exp 
(_(sT)2u2\ 

4r 	
) cos DsTu d u 	 (8) 

we proceed to evaluate these by substituting u = 
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am  sin co t. Thus 

F1 =— 
r - 3

2Wm J  +/2Wrn exp (_(sT) 2 a sin  
2Wmt) d  (9) 

4r 

and by expanding the exponential term and integrat-
ing we obtain 

2 (sT) 2 a 	(sT) 4 a, 
F, 

- - 12r 2  + 64r 	- . 
	(10) 

to a good approximation. 
For F2  we find 

W m f 2(0 m 	_(sT)2al Slfl2Wmt\
F2_ exp 
	 4r 	) 

x cos[Ds Ta m  sin((omt)] dt 
	

(11) 

l 	 _________ (0m 2112Wm 	

()2 asin2wmt
exp

4r 2 ) 
(Jo  (Ds Tam ) 

T/2Wm 

+2J7  (Ds Tam ) cos 2nw mt))dt 	 (12) 

(12) being obtained by using the identity 

cos(/3 sin (omt) = J0 (f3) + 2 j J2 (/3) COS(2flWmt) (13) 
n1 

where J,, is the Bessel function of order n. 
Expanding the exponential term as before and carry-

ing out the integration we find 

G (sT)2a, (sT)44\
F2=Jo(DsTam)— 

24r  + 128r -•) 	
(14) 

Since in most cases (sT)2a, 2 < r we can write the 
autocorrelation function as 

R a(ST) = F1  + F2  = 13 + [Jo (amDsT)]. 	(15) 

Since the first minimum of the zero-order Bessel func-
tion occurs at 3.832 we can immediately deduce the 
velocity amplitude by counting the number of points on 
the correlogram up to the first minimum and applying 
the formula 

am  = 3.832/DsT. 	 (16) 

2.2. Form of the gaited autocorrellation function 

By using a gating technique we can sample specific 
portions in time of the acoustic fluctuation. This 
allows us to deduce the temporal variation of the vel-
ocity fluctuation. For these measurements a phase 
shifter must be used in order to obtain the direction 
of the velocity at any given phase position in the 
cycle. 

The effect of gating on the form of the correlo-
gram has already been discussed (Grant and Greated 
1980, Easson et a! 1986). The photodetector current 
due to a continuous Doppler signal c(t) riding on a 
pedestal DC current p and sampled by a square gating  

pulse is 

1(0 = (c(t) + p)  92 	(17) 

where p(t) is a pulse taking the value 1 between 
times t 1 , t2 and 0 elsewhere. For c(t) a stationary 
process, the autocorrelation function takes the form 

R j(r) = R(r)R9,(r) +p2 R,(r). 	(18) 

Since the autocorrelation of a square pulse is a 
triangular pulse, Rj(r) is a linearly damped 
correlogram (the damping becoming complete at r = 

- t1  the pulse width) and rides on a sloping base 
line. In the case of the multiple gating of a harmonic 
signal it may be shown that the sum of the autocor-
relations of all the observed pulses is contained in the 
first triangular pulse and represent an average Dop-
pler signal for that phase in the cycle. 

3. Apparatus 

Figure 1 is a schematic representation of the arrange-
ment used for the experiments. Standing waves were 
set up in a glass tube of length 46.5 cm and diameter 
2 cm using a probe loudspeaker. The tube was 
terminated at each end by rubber stoppers and a 
probe microphone was used for measuring the press-
ure fluctuations. 

For the optical measuring system an 8 mW He—Ne 
laser (A = 633 nm) was used as a light source. Parallel 
beams of light were produced using a beam splitter 
and these were passed through a phase shifter and 
then focused down to a point on the axis of the tube. 
This is essentially the gaussian crossed beam system 
described in the literature e.g. in Durrani and Gre-
ated (1977) which utilises the scattering of light by 
small particles as they pass through the fringe system 
set up at the intersection of the two beams. The light 
scattered from the observation volume was collected 
using a photomultiplier angled at about 35° to the 
straight-through axis, this rather large angle being 
required to reduce noise •caused by flare from the 
tube walls. 

For the time-averaged correlograms the signal 
from the photomultiplier was fed directly to the cor-
relator and analysed, the microcomputer being made 
inactive. In this case the phase shifter was not used. 

The probe microphone, which had been calibrated 
to an accuracy of about 1 dB using an acoustic coup-
ler, could be moved along the axis of the tube to 
monitor the pressure fluctuations at any point. 

In the case of gated correlograms the microcom-
puter was programmed to detect the zero uperossing 
of the waveform from the probe microphone and pro-
vide pulses at a predetermined delay time after this 
point. The pulse length and the delay time could be 
varied independently. Only for the duration of the 
pulse width was the signal from the photomultiplier 
analysed. The waveform and pulses were generally 
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Figure 1. A schematic layout of the apparatus: BS, Beam splitter; Ps, Phase shifter. 

monitored on an oscilloscope and their form is seen 
in figure 2. 

4. Method and results 

4.1. Time-averaged correlograms 

A small quantity of tobacco smoke was introduced 
into the tube for seeding purposes and the tube ter-
minated at both ends. The air column was excited to 
its 4th harmonic (frequency = 1470 Hz) with the 
probe loudspeaker. The intersection of the laser 
beams was then scanned along the axis of the tube 
(by moving the tube-loudspeaker assembly) to a dis-
tance of 18 cm from the end, with correlograms being 
recorded at 2 c intervals. At these positions the 
pressure was also recorded using the probe 
microphone. 

The velocity amplitudes were then derived using, 
in the case of the correlograms, the method described 

Figure 2. The waveform and pulses as monitored during 
the gating experiments. The delay and pulse times are 
100 ps and 80 ps respectively. 

in § 2.1 and in the case of the probe microphone the 
formula (Greated 1986) 

am  = 0.0694 x 10(0051_6) 	 (19) 

where I is the intensity in decibels. 
Figure 3 shows the form of the correlograms 

obtained at various intensities and sample times. (a). 
(b) and (c) were taken at 'moderate' intensity values 
and show how the position of the first minimum of 
the Bessel function changes as the intensity changes, 
in accordance with equation (15). (d) demonstrates 
the effect of the 

(sT) 2 a/24r 

term in equation (14) due to very high intensities and 
larger sample times. 

The velocity amplitudes as deduced from the cor-
relograms and from the probe microphone were then 
plotted as a function of distance along the tube (see 
figure 4). The velocity amplitudes measured from the 
correlograms represent the actual velocities in the 
tube whereas the values deduced from the probe 
microphone output are pressures converted to the 
same velocity scale. The two curves should be 90° out 
of phase but have the same amplitude (Morse 1948). 
As can be seen there is good agreement between 
both sets of results, validating the theory presented 
earlier and the assumptions about the physical 
characteristics of the system. 

4.2. Gated correlograms 

For these measurements the intersection of the laser 
beams was positioned at a velocity node to ensure 
large fluctuations and the tip of the probe 
microphone were kept well away from this observa-
tion volume to avoid distortion of the acoustic field. 
A phase shift of 47.62 kHz was used, corresponding 
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? 26 

16 

 

2 sunce along tube (cm) 

Figure 3. The time-averaged correlograms obtained with 
no phase shift. (a) Velocity amplitude = 257 mm s 1 , 

sample time = 1.5 Ms. (b) Velocity amplitude = 103 mm s 1 , 

sample time = 1.5 Ps. (C) Velocity amplitude = 8 m s_ i , 
sample time = 1.5 ,us. (d) Very large velocity amplitude and 
large sample time. 

Figure 4. The velocity amplitude as a function of distance 
along the tube _., velocities deduced from the 
correlograms: E, velocities deduced from the probe 
microphone. 

an ippalent \ elocIt\ ol 0.3 in s 	I he puke vidth 
v as 70 is and the delay time increased in intervals of 

i ps, using a sample time of 1.5 Ms. A typical corre-
logram obtained is shown in figure 5. 

The velocities were deduced by the standard 
method of counting the number of points per cycle 
ad the phase shift allowed the velocity direction to 

be obtained. The velocity was plotted as a function of 
delay time and is shown in figure 6. The full curve's 
amplitude was obtained from the maximum velocity 
deduced using the pressure microphone and equation 
(19). As can be seen the points deduced from the 
correlograms fit the sinusoidal curve very well, as 
expected from theory. 

5. Conclusions 

It has been shown that the photon correlation tech-
nique can be used to measure sinusoidal velocity 
fluctuations in an acoustic field and that the values 
obtained are in close agreement with those deduced 
from calibrated probe-microphone readings. The 
measurements presented in this paper are for essen-
tially one-dimensional standing wave patterns, it 

Figure 5. Form of gated correlogram. 
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Figure 6. The velocity fluctuation as a function of delay 
time. 

being recognised that the system we have set up only 
measures velocity components rather than the full 
velocity vector. For more complex flow fields, which 
show dominant two- or three-dimensional character-
istics, further measurements would have to be made 
to determine all three velocity components, thus 
allowing a complete description of the field. When 
used in conjunction with a probe microphone the 
instrument allows both acoustic impedance and inten-
sity to be measured directly. 

The measurement of random noise fields has not 
been considered in this paper but it has been demon-
strated earlier (Greated 1986) that the instrument 
does respond to changing noise intensity levels. It 
should not be difficult to extend the theory presented 
here to derive the shape of the time-averaged corre-
logram as a function of intensity but there appears to 
be no simple way in which temporal characteristics  

could be obtained, due to the absence of periodicity 
in this situation. 

A detailed study is now in progress to evaluate 
the intensity and frequency ranges over which the 
method is applicable. At very high frequencies and 
intensities it is expected that the scattering particles 
will not be able to follow the acoustic field, whereas 
at low intensities Brownian motion may become 
important. The effect of superimposed flow fields is 
also being considered. 
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He-Ne LASER MEASURES ACOUSTIC FIELDS 

A rionlnfrusive laser Doppler anemometry tech-
nique for directly measuring acoustic particle 
velocities can provide more detailed information 
than Is obtained by using conventional micro-
phones. It can be employed to give direct 
records of acoustic impedance. The method is 
now being extended to three-dimensional sound 
patterns. Applications of the technique are ex-
pected to be in telecommunications and in 
noise measurement in industrial environments. The 
work has been carried out by the Fluid Dynamics 
Unit in the Physics Department of the University of 
Edinburgh. Edinburgh, U.K.. under the direction of 
Dr. Clive ,k Greated. 

To obtain a full description of an acoustic field 
at any point, the pressure, the velocity, and the 
phase relailonship between these two quantities 
must be determined. The pressure is easily mea-
sured with a microphone, but velocity measure-
ments are much more difficult. Laser Doppler 
anemometry provides an absolute measure-
ment of velocity and is essentially nonintrusive 
because It relies on the scattering of light from 
small particles. 

The Edinburgh work used a Gaussian crossed-
beam system in which the light from a laser was 
split into two beams, which were then focused to 
a point where a fringe pattern was produced. 

Particles passing through this pattern scattered 
light in a manner depending on their velocities 
and on the geometrical form of the fringe 
pattern. The scattered light could be collected 
and analyzed to determine the fluid velocity. 

The analytical method is determined by the 
density of the particles, the flow parameters, and 
such. A photon correlation technique was used 
for signal analysis. This technique is most suitable 
for the low density of the scattering particles 
normally available in air flows. It also seemed to 
be more versatile than other techniques, such as 
frequency tracking systems. 

High-power laser 
In the experimental arrangement of Fig. 1. the 
Sound field was fed into a tube 1.5-rn long with a 
diameter of 20 mm. The last Iwo-thirds of the 
tube were filled with absorbing material to prevent 
the production of standing waves by reflection. 
This arrangement was selected because it pro-
vides a very simple relationship between pres-
sure and velocity fluctuations. The sound field 
could be either a single tone or band-limited 
white noise. 

The light from a He-Ne laser passed through a 
beam splitter and through a phase shifter. The 
beams were focused Into the tube from a 

FIGURE i. 
beams (see Fig. 2). Smoke seeded into the gas varies the detected signal, providing information on 
acoustic particle velocities. (Photo courtesy of J. Sharpe, Edinbi.irgh University. Photographer: Peter Tuffy.) 

Because of the importance of large-volume 
manufacture, the recent announcement that 
Uniphase will take over Spectra-Physics's low-
power He-Ne line has attracted a great deal of 
industry attention. According to Uniphase 
Vice President of Marketing Dave Osborne, 
Uniphase production capacity will increase 50% to 
150,000 annually, as a result of the deal with 

Spectra-Physics. The newly acquired production 
capacity will move from Eugene, Oreg., to the 
Uniphase plant in Mantika, Calif. 

Osborne claims that Uniphase now will have 
"50% of the total market." At Melles Griot, 
previously the largest U.S. manufacturer, Mar-
keting Director John Post Wheeler provides a 
similar assessment. According to Wheeler, the 
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separation of 20 mm using a 200-mm focal length 
lens. Tobacco smoke was used for seeding 
purposes. 

The He-Ne laser was a 32-mW device from 
Spectra-Physics. Edinburgh researcher John 
Sharpe explained: 'We chose a laser of this 
power since the light scattering from air flows Is 
generally of quite a low level. Actually, a less 
powerful laser would probably have done the Job, 
but we also wish to apply the laser to particle-
image velocimetry, in an attempt to make accu-
rate measurements of acoustic streaming ef -
fects. This work, which is now under way, needs 
high light intensity." 

Gated signals 
A gating technique was incorporated Into the 
system to allow the relative phase of the velocity 
and the pressure to be deduced. A signal from a 
microphone in the sound field was fed to a 
microcomputer; the latter supplied a pulse of 
preset width at a preset delay time from the zero 
up-crossings of the signal. These pulses were fed 
to a photomultiplier anththe Doppler signal was 
analyzed only during the pulse duration. The 
delay time was varied so qs to sample the velocity 
at different portions of the acoustic cycle. 

Gated sound measurements used a 1260-Hz 
frequency with the phase shifter set at 50 kHz. This 
provided a velocity pedestal of 0.317 m/s against 
which the velocity could be measured. The corre-
logram indicated a velocity amplitude of 85 
mm/s, in close agreeement with measurements 
using ungafed correlograms (86 mm/s) and 
those using the probe microphone (85 mm/s). 

The laser technique was shown to provide 
accurate measurements of acoustic velocity fluc-
tuations over intensities in the approximate 
range 90 to 120 dB, but it tended to fail at low 
intensities and at higher frequencies. Increasing 
the angle of intersection of the beams can 
decrease the lower limit to about 80 dB. It Is 
suggested that the transformation of the correlo-
gram into the frequency domain may offer a 
solution to the problem, but this was not possible 
with the correlator available. 

TRAVEUNG-WAVE 
COPI?ELATO4 	TUBE 

-4 PI-tASfl- 
SHIFTER I... 

PHOTO-
MULTIPLIER 

PROBE 	 LOUDSPEAKER 
MICRO 
PHONE 	

I SINE-WAVE 
I GENERATOR  

I MICRO- 

IFIER 	 GENERATOR I 
I MEASURING I NOISE 

FIGURE 2. Dual beams derived from a single He-
Ne laser form a fringe pattern within a gas tube as 
the basis for studies of acoustic Impedance. 

Complex impedances 
Current work Is directed toward the measure-
ment of complex acoustic Impedances using the 
gating technique. It Is Intended to investigate the 
effect of superimposed flow fields on the 
correlogram. 

John Sharpe, of Edinburgh University, told us: 
"Estimates can also be made of the average 
velocity amplitude In a noisy field and, in the 
periodic case, the gating technique allows the 
phase relationship between the pressure and 
velocity to be deduced. The work has important 
implications for acousticians, since the measure-
ment of acoustic velocities (a hitherto rather 
difficult task) would allow easier measurement of 
acoustic impedances." 

The work has been funded by the British 
Science and Engineering Research Council (SERC) 
and British Telecom. 

Brian Dance 

deal makes Uniphase the same size as Melles 
Griot, and the two companies will now run neck 
and neck in annual production. He says, "Each 
will have around 35 to 40% of the market." 

At Aerotech, Product Marketing Manager Dan 
Smyers suggests that his company will experi-
ence no net negative or positive effects from the 
Uniphase/Spectra-Physics deal. "It helps that 

Spectra sold its line," says Smyers, "but then, 
another company gets bigger as a result." 

High-power devices 
At Spectra-Physics, Steve Anderson, who is mar-
keting manager for gas lasers, says that his 
company now will concentrate on a small range 
of scientific and high-power He-Ne lasers. These 
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The Measurement of Acoustic Streaming using Particle Image 

Velocimetry 	 A A §V enfc i -pr 
cc.9T 	t?Y 

J. P. Sharpe, C. A. Created, C. Gray & D. M. Campbell. 

Physics Dept., Edinburgh University, Edinburgh, Scotland. 

ABSTRACT. 

In this paper the application of a whole field optical velocity measuring technique (Particle 

Image Velocimetry) to the measurement of acoustic streaming is described. Results are 

presented for measurements near a velocity node in the case of Rayleigh Streaming and 

comparisons with theory and pressure measurements show good agreement. The technique 

is shown to be useful in an area where conventional material or optical probes are 

impossible or impractical to use. Limitations of the technique are also discussed. 
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1. INTRODUCTION.  

Acoustic Streaming, which may be described here as the generation of non-zero mean 

motions by a sound field, has been a subject of investigation since the time of Rayleigh [1]. 

Although, as Lighthill points out in his excellent review article 1,21, the topic has been 

somewhat neglected of late, it is still of considerable interest to acousticians [3] and to 

fluid dynamicists interested in Lagrangian mean flows [4]. 

The phenomenon typically arises when a sound field is attenuated or dissipated due to its 

interaction with the medium of propagation or with the boundary layer when a solid wall 

is present. Quite a body of theoretical work has been produced on the subject [see above 

references] but experimental work is rather scarce. Reasons for this lack of measurement 

are not difficult to appreciate when one considers that in the regimes where acoustic 

streaming takes place there can be considerable interaction between the sound field and 

any measuring device introduced to measure the flow e.g. [5]. Consequently one sees in the 

literature qualitative statements about "strong" or "weak" streaming and comparisons with 

theory made on the basis of flow visualisation [3] [4]. 

We present here the application of an optical technique (Particle Image Velocimetry) to 

the measurement of Rayleigh Streaming. This form of streaming was chosen since it is 

reasonably easy to generate, it is well understood and its magnitude can be independently 

estimated from pressure measurements of the sound field causing it. 

Sections 2 and 3 outline Rayleigh Streaming and the optical technique while 4 and 5 

describe the experimental setup, measurements and results. Section 6 discusses the 

advantages, limitations and accuracy of the technique. 

2. RAYLEIGH STREAMING. 

Rayleigh Streaming occurs when an acoustic standing wave suffers dissipation in the 

boundary layer generated by a solid wall. The most common configuration in which to 

observe the phenomenon occurs when a standing wave- is set up in a circular tube. The 



form that the streaming takes was calculated by Rayleigh himself [1] and is illustrated in 

figure 1. 

The velocity of the streaming at the wall of the tube (or rather just beyond the boundary 

layer) is given by Rayleigh's Law, 

(I) 
c& 

where V(x) is the acoustic particle velocity outside the boundary layer at any point x 

along the tube and w is the radial frequency of the sound field. This velocity u 

(sometimes called the slip velocity) is directed towards the velocity nodes and is matched 

by a return flow up the centre of the tube and away from the velocity nodes such that on 

any section through the axis of the tube the velocity is given by 

(2) 

where r is the distance from the tube axis and a is the tube radius. 

If the acoustic particle velocity of the sound field is given by 

ç) 

where am  is the velocity amplitude then, inserting this into (I) yields 

• 	 —3 E- 
9C 

 

where c is the speed of sound. It may be noted that, interestingly, (3) does not depend on 

the viscosity of the medium. Thus, using the relationship between the velocity and pressure 

in a standing wave , it is possible to estimate the magnitude of the slip velocity at any 

point in the tube outside the boundary layer. 

3. PARTICLE IMAGE VELOCIMETRY. 

Particle Image Velocimetry (P.E.V.) is a velocity measuring techniquewhich can 

"instantaneously" record velocities over a whole field [61.  The technique relies on 

photographing small particles contained in and faithfully following the flow under 
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investigation. 

Light from a laser is expanded into a two-dimensional sheet and projected into the flow 

(see figure 2). The laser beam is then pulsed (by either Q-switching or chopping the beam 

from a continuous laser) so that successive particle images are recorded on the film plane 

of a camera placed at right angles to the expanded sheet of laser light. Actually the light 

does not need to be coherent (flash lamps have been used for P.I.V. measurements [71) but 

a laser provides very high light density in an easily controlled form. 

The velocity information on the film can then be recovered by ascertaining the separation 

of the particle images. This can be done by either observing the film directly using a 

microscope or, more commonly, interrogating each point on the film using a low power 

laser beam. This method produces, in the far field diffraction zone, a series of fringes 

analagous to those produced in the Young's double slit experiment (figure 3). The distance 

between the fringes is inversely proportional to the particle image separation at that point 

on the film and their orientation is perpendicular to the flow' direction. Knowing the 

magnification of the camera and the time between the light pilses it is then an easy 

matter to deduce the flow velocity. 

As may be appreciated, if the particle images are too close then the fringes are so far apart 

that only one may be visible, or, if the images are too far apart, it may be impossible to 

resolve the individual fringes. Such limitations on the dynamic range of the technique have 

been discussed previously 1. 81 though a convenient rule of thumb is that, on the film plane, 

the particle images should be separated by approximately OA mm. It is necessary therefore 

(if one wants to avoid much tedious work) to be able to estimate roughly the range of 

velocities in the flow under investigation. 

Since a typical region needing analysis can contain from say fifty to several hundred points 

it is necessary in practice to analyse the fringes automatically. This is most commonly 

done by capturing the fringe pattern with a video camera and frame grabber and using a 

computer to extract the velocity information. Such a system has been developed at our 



institution [9] and there are many other publications e.g.[10], [11] describing the accuracy, 

speed etc. of various implementations of the technique. In our implementation the slide is 

automatically scanned using a computer controlled micropositioner, the fringes at each 

point captured with a video camera and the velocity information extracted using a two 

dimenjonal Fast Fourier transform. 

4. EXPERIMENTAL APPARATUS. 

A diagram of the experimental setup is shown in figure 4. Light from a 32mW He-Ne laser 

(X=633nm) was expanded into a two dimensional sheet using the lens 1 and the two 

cylindrical lenses ci and c2. When the sheet entered the tube, cutting the axis,-4 was 

approximately 2cm high and 1/2 mm thick. It was noticed while conducting the 

experiments that the streaming motions could be greatly affected by small temperature 

gradients. To minimise this the tube was lagged with polyurethane foam at all points 

except the working section and baffles were placed around the apparatus to reduce air 

movements. Positioned between I and the laser was the shutter while the chopper was 

placed at the focus of I.. The chopper, which was a rotating disc with a slot cut in it, 

formed the pulses of light while the shutter could be adjusted to let a preset number of 

pulses through. This use of an external shutter (rather than the camera's own shutter) was 

employed to reduce camera vibration to a minimum. Although the chopper (Scitec Model 

300CD) came with it's own electronic display to indicate the frequency of rotation, this 

was found to be unreliable at the low chopping speeds we were to use. Consequently a 

photodiode and storage oscilloscope were used to give a more precise frequency reading. 

The camera used was a 35 mm Nikon with a 50 mm flat focus lens at a magnification of 

0.773. This type of lens was found to be essential if one wanted to avoid distortion of the 

image in the off axis region. The film used was Kodak T-Max 400 which provided good 

sensitivity (400 ASA) and adequate resolution (—. 100 lines/mm depending on contrast). 

During actual experimental runs the laboratory was always illuminated with extremely 

subdued light and the photograph taken against a black background to increase contrast. 
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The amount of distortion in the image plane due to the curvature of the glass tube was 

estimated by putting a piece of graph paper in the tube, photographing it, and examining 

the developed film with a travelling microscope. A negligible amount of distortion was 

found except at approximately 1 mm or so from the tube wall. Since, as it turned out, the 

amount of flare from the wall tended to make any measurements in this region impossible 

anyway it was not necessary to calculate correction factors for this effect. 

5. MEASUREMENTS AND RESULTS. 

The apparatus was set up as indicated in figure 4. Sound of frequency 2460 Hz was 

introduced into the tube (length 450 mm, internal diameter 23.3 mm) using a horn 

loudspeaker with the horn removed. The tube was sealed at the other end with a rubber 

bung which had a tightly fitting metal plate attached to its inside face to ensure a rigid 

termination. The sound field thus corresponded to the 7th normal mode of the air column. 

A probe microphone, (Bruel & Kjaer type 4166 with 2 mm i.d. probe attachment) inserted 

through the rigid end monitored the pressure. The probe microphone, had previously been 

calibrated to within 0.5 dB using an acoustic coupler. Although the intensities required to 

produce streaming were near the limits of the microphone's range [12] they were still 

within the 10% distortion limit - leading to an extra possible error of around 1 dB. So, 

although the pressure measurements were not highly accurate they did provide a useful 

independent check on the streaming velocities. 

Tobacco smoke was introduced into the tube to render the flow visible and streaming was 

set up, the field having a pressure at the rigid end of [Si dB (re 20i..iPa ). Because of the 

limited dynamic range of the P.I.V. technique (see section 3) the streaming velocity was 

first estimated by eye and the chopper then set to provide pulses with a separation of 

0.114 second and duration 0.0057. It is necessary to have the ratio of pulse separation to 

duration so large because one only wants information about particle separations and, if the 

particle displacements and separations are of a similar order, they will give rise to similarly 

sized contributions in the spatial frequency domain which will lead to a loss of velocity 
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information. Such details of the technique are well discussed in [8]. The shutter, set to 

0.5 second, allowed 4 pulses through. 

Photographs were taken near a velocity node and a print of the film used to provide the 

measurements quoted here is shown in figure 5. The individual particle images can be 

clearly seen. In fact, measurements could not be made far from the velocity nodes because, 

at t'e frequencies and intensities used here, the vibrational displacement amplitudes 

became of the same order as the particle displacements required to give fringes. This is 

quite an important point and will be returned to and discussed at some length in section 6. 

The film was analysed in the fashion indicated in section 3. It is clear from figure 5 that 

not all areas of film yielded a velocity measurement, due either to flare from the tube walls 

or uneven seeding. The latter is a problem in all P.I.V. measurements and seems to be 

more difficult 'to overcome in air than in water. Perhaps this is due to the larger 

convective currents found in air coupled with its lower viscoscity. 

The measurements were transferred to a computer which, after interpolating missing points 

and smoothing the velocities using a third order Chebyshev interpolation routine, drew a 

velocity map (see figure 6). As can be seen, the measurements look slightly asymmetric 

with the velocities in the upper left vortex seeming to sweep over too much to the right. 

This was probably due to outside air currents. As a check on the accuracy of the 

measurements it is noticed from equation 2 that the axial velocity should be parabolic 

across any section of the tube with maximum velocity given by equation I and zeroes at 

distances r0.707a from the axis of the tube. Axial velocities were therefore computed 

from the original wismoothed data for three separate lines across the tube (figure 7.). The 

solid parabolae were fitted using the measured velocity maxima and the theoretical zero 

points. The fits are quite good though the velocities do show some deviation near the left 

crossover point, reflecting the assymmetry mentioned earlier. A calculation using (3) an 

a value of 151 dB for the maximum pressure indicates a maximum slip velocity of —6.5 

mm/s, giving the corresponding maximum axial velocity a few millimeters from the 
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velocity node to be of the order of 3-4 mm/s - in agreement with figure 7. The cross 

sectional velocity measurements agree with the theoretical curves to within about 10% in 

the region of the central return velocity but deteriorate in the outer regions. This is due 

not only to extraneous air currents but to the fact that small positional errors in the 

interrogating laser beam lead to large velocity errors because of the large velocity gradient 

in these regions. Inaccuracies also occur due to the finite area of the interrogating laser 

beam. That is, in regions where the seeding is quite sparse the particle images which 

produce the fringe pattern may not lie on average at the centre of the laser beam which is 

where the velocity is taken to be measured. The measured velocities in figure 7 also show 

quite a bit of scatter about the theoretical lines and this reflects a basic problem in P.I.V.: 

because the measurement is taken effectively instantaneously effects such as particle 

diffusion and random particle distributions which can upset an individual velocity 

measurement are not averaged out. It is impossible thus to assign a statistical measure (in 

terms of these effects) to each separate velocity. It is however possible to assign a measure 

in terms of the point's nearest neighbours because we know that the flow is continuous. 

This is our justification for using the velocity smoothing routine mentioned earlier. 

6. DISCUSSION AND CONCLUSIONS. 

It has been demonstrated that P.I.V. can accurately measure acoustic streaming effects; an 

area that cannot be tackled using conventional probe devices. Also, in contrast to the more 

common optical technique of Laser Doppler Anemometry (L.D.A.), it can measure 

"instantaneously" over a whole field. To make the type of measurements described in this 

paper using L.D.A. would require a two component L.D.A. system, a carefully controlled 

environment to prevent changing ambient conditions from upsetting the streaming over the 

time (many hours) that would be required to make the measurements and some method of 

traversing the L.D.A. measuring volume accurately to each point in the flow. 

There are however several limitations to the P.I.V. technique. Firstly, any flows measured 

must be essentially two dimensional: if there is too much out of plane motion then the 
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particle images will become decorrelated and no velocity information can be extracted. 

Secondly, and just as importantly for acoustic streaming, if the vibrational displacement of 

the sound field becomes too large then it can effectively swamp the velocity displacement 

images (the particle images become streaked and overlap). Such an effect was noticed in 

this work (Section 3.) Furthermore, in regions not too far from the velocity node the 

streaking of the particles causes the circular halo in which the fringes are confined to 

become elongated and outer lobes to become visible. (see figure 8.) This can have serious 

implications for the fringe analysis system since, in our implementation, an average circular 

halo is subtracted from each fringe pattern in order to remove low frequencies which could 

otherwise swamp the fringe frequency [ 9]. Clearly it is impossible todefine such a halo if it 

changes for different portions of the film. We get round this problem by instructing the 

computer to make measurements on successive lines perpendicular to the tube axis across 

which the vibrational amplitudes are constant. The computer can then gather an average 

halo from from each of these lines and use it to remove the low frequencies for that line. 

In fact the particle streaks are dumbell shaped due to the particles ,moving more rapidly at 

the centre than at the extremities of their displacements. The halo (in the direction 

parallel to the particle displacements) then takes the profile of a squared zero order Bessel 

function from which it would be possible to estimate the magnitude of the particle 

displacements [15]. Such estimates would probably •however be of quite low accuracy and 

such measurements would perhaps be of little practical use anyway. It may however be of 

interest to note that, knowing the sound field and the particle's density, it would be 

possible in principle to deduce the particle sizes from their displacement amplitudes. 

A way round the above problem would he to pulse the laser fast enough to "freeze" the 

particle images, the pulse former being triggered from the sound field to capture the 

images at the same phase positions. To illuminate the particle for say 1/10 of its period 

would require, for frequencies of the order we have here, laser pulses lasting only small 

fractions of a millisecond. This would then require (if we scale up the intensities used here) 

laser powers of the order of several watts. Such lasers are not uncommon though their use 
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does entail certain difficulties and hazards. It may be noted however that more effective 

use can be made of available laser light by employing scanning beam technology [13] or by 

using more sensitive films and sacrificing resolution. 

However, despite these limitations the technique should be of considerable interest both to 

acousticians and fluid dynamicists. It may also be noted that in other areas the technique 

would perhaps not suffer from the aforementioned difficulties. For example, in the regions 

of much higher frequencies, say 20 kHz upwards, the vibrational amplitudes can become 

quite small though the streaming effects are very large [2], [14]. The authors feel that the 

P.I.V. technique begins to complement their earlier work on the optical measurement of 

acoustic velocities [16] and hope to go on to apply both techniques to the measurement of 

practical acoustic situations (e.g. the acoustics of musical instruments). 
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Figure Captions. 

Figure 1. Rayleigh Streaming in a circular tube of radius a. vn = velocity node, va = 
velocity antinode. 

Figure 2. Schematic diagram of P.I.V. setup. 

Figure 3. Production of P.I.V. fringes. 

Figure 4. Apparatus for acquisition of P.I.V. photographs. 

Figure 5. Print of P.LV. transparency used to provide measurements. 

Figure 6. Smoothed velocity map (1 cm = 4.37 mm/s). 

Figure 7. Axial velocities in tube (symbols) and theoretical values (solid lines). 

Figure 8. P.I.V. fringe patterns. (a) acquired near velocity node and (b) a few millimeters 
away from velocity node. 
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