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ABSTRACT 

 

Upland rivers control the large-scale topographic form of mountain belts, 

allow coupling of climate and tectonics at the earth’s surface and are responsible for 

large scale redistribution of sediment from source areas to sinks.  However, the 

details of how these rivers behave when perturbed by changes to their boundary 

conditions are not well understood.  I have used a combination of fieldwork, 

remotely sensed data, mathematical analysis and computer modelling to investigate 

the response of channels to well constrained changes in the forcings upon them, 

focussing in particular on the effects of glacial remoulding of the catchments 

draining the south flank of the Ladakh batholith, northwest Indian Himalaya.  The 

last glacial maximum for these catchments is atypically old (~100 ka), and this 

allows investigation of the response to glaciation on a timescale not usually 

available.  The geomorphology of the catchments is divided into three distinct 

domains on the basis of the behaviour of the trunk stream – an upper domain where 

the channel neither aggrades above or incises into the valley form previously carved 

by glacial abrasion, a middle domain where the channel incises a gorge down into 

glacial sediments which mantle the valley floor, and a lower domain where the 

channel aggrades above this postglacial sediment surface.  This landscape provides a 

framework in which to analyze the processes and timescales of fluvial response to 

glacial modification.  The dimensions of the gorge and the known dates of glacial 

retreat record a time averaged peak river incision rate of approximately 0.5 mm/y; 

the timescale for the river long profile to recover to a smooth, concave up form must 

exceed 1 Ma.  These values are comparable with those from similarly sized 

catchments that have been transiently perturbed by changing tectonics, but have 

never been quoted for a glacially forced basin-scale response. 

 

I have also demonstrated that lowering of the upper reaches of the Ladakh 

channel long profiles by glacial processes can systematically and nonlinearly perturb 

the slope-area (concavity) scaling of the channel downstream of the resulting profile 

convexities, or knickzones.  The concavity values are elevated significantly above 

the expected equilibrium values of 0.3-0.6, with the magnitude controlled by the 
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relative position of the knickzone within the catchment, and thus also by the degree 

of glacial modification of the fluvial system.  This work also documents the 

existence of very similar trends in measured concavities downstream of long profile 

convexities in other transiently responding river systems in different tectonoclimatic 

settings, including those responding to changes in relative channel uplift. This 

previously unrecognised unity of response across a wide variety of different 

environments argues that such a trend is an intrinsic property of river response to 

perturbation. Importantly, it is consistent with the scaling expected from variation in 

incision efficiency driven by evolving sediment flux downstream of knickzones.  The 

pervasive nature of this altered scaling, and its implications for fluvial erosion laws 

in perturbed settings, have significant consequences for efforts to interpret past 

changes in forcings acting on river systems from modern topography. 

 

I follow this by examining in detail the channel hydraulics of the Ladakh 

streams as they incise in response to the glacial perturbation.  I present a new 

framework under which the style of erosion of a natural channel can be characterized 

as either detachment- or transport-limited based upon comparison of the downstream 

distribution of shear stress with the resulting magnitude of incision.  This framework 

also allows assessment of the importance of sediment flux driven effects in studied 

channels.  This approach is then used to demonstrate that fluvial erosion and 

deposition in the Ladakh catchments is best modelled as a sediment flux dependent, 

thresholded, detachment-limited system.  The exceptional quality of the incision 

record in this landscape enables an unprecedented calibration of the sediment flux 

function within this incision law for three different trunk streams.  The resulting 

curves are not compatible with the theoretically-derived parabolic form of this 

relation, instead showing nonzero erosion rates at zero sediment flux, a rapid rise and 

peak at relative sediment fluxes of less than 0.5 and a quasi exponential decrease in 

erosional efficiency beyond this.  The position of the erosional efficiency peak in 

relative sediment flux space and the magnitude of the curve are shown to be both 

variable between the catchments explored and also correlated with absolute sediment 

flux in the streams. 
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1. GENERAL INTRODUCTION 

 

Dynamics of Long Term Fluvial Response in Postglacial Catchments of the 

Ladakh Batholith, Northwest Indian Himalaya 

 

1.1 Overview 

 

This thesis addresses the processes and styles of mountain river response to 

perturbation by glacial alteration of a landscape, and uses information gleaned in 

such a setting to improve our understanding of the long term evolution of rivers in 

upland environments. We use an integrated approach combining new field 

measurements, analysis of remotely sensed digital elevation models (DEM) and 

satellite imagery, modelling, and reinterpretation of existing theory. The work 

focuses primarily on a spectacular and hitherto poorly studied natural laboratory of 

catchments draining the Ladakh Range in the Northwest Indian Himalaya (Chapters 

2 – 4) but also includes comparative observations made in contrasting study sites in 

the F�g�ra� Alps of Romania and the Red River region, Yunnan Province, China 

(Chapter 3). 

 

The central Chapters 2 – 4 of this manuscript are in the form of research 

papers either already or shortly to be submitted to journals, as noted at the start of 

each section.  These discuss individual aspects of this study and can be read as self-

contained units.  These are followed in Chapter 5 by a synthesis of what we have 

shown in the course of this study in toto and a discussion of its implications for, and 

impact on, the wider study of fluvial geomorphology in upland landscapes, and then 

finally in Chapter 6 by conclusions. 

 

We begin by presenting the wider rationale for the study of river evolution in 

landscapes, followed by a discussion of the prior state of the art regarding the 

research needs that this work addresses in particular.  This section concludes with a 

detailed outline of the structure of this thesis. 
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1.2 Rationale 

 

Rivers are one of the key elements of the Earth surface system.  They are 

responsible for large scale redistribution of mass in the form of sediment across the 

Earth’s surface, transferring material from source areas to basins, where it may be 

stored on a variety of time scales and later read as part of the stratigraphic record 

(Milliman and Meade, 1983; Milliman and Syvitski, 1992). In the same way that 

sediment is passed down a system creating a record of upstream processes, 

information about the base level of the network is also passed back upstream, making 

rivers vital links in the connectivity of terrestrial landscapes (Knighton, 1998; 

Rodriguez-Iturbe et al., 1992; Whipple and Tucker, 2002). 

 

In highland areas, rivers are very often directly coupled to the surrounding 

hillslopes, which means that changes in the properties of the river channel can 

propagate directly into the surrounding nonfluvial environment (Burbank et al., 

1996; Strahler, 1950).  In this way, fluvial systems can be seen as the drivers of large 

scale topographic evolution in mountain belts (Burbank, 2002).  Moreover, as high 

topography tends to form as a result of uplift driven by deeper Earth processes, 

mountain rivers also have the potential both to access and mobilize extremely large 

quantities of material brought to the surface by advection of rock.  This allows a 

coupling of fluvial erosion to solid earth, geological processes and creates a feedback 

between climate, landscape and tectonics (Burbank, 2002; Burbank and Anderson, 

2001; Montgomery and Stolar, 2006; Roe et al., 2008; Willett and Brandon, 2002; 

Zeitler et al., 2001). 

 

However, hillslopes are not coupled directly to river channels in all mountain 

landscapes.  Where glaciers develop in cold conditions at altitude, these may become 

the primary agents of flow in a landscape, with ice supplanting the erosive and 

transporting roles of water (Berger et al., 2008; Ehlers et al., 2006; Montgomery, 

2002).  Glaciers are delicate, however – they may only exist under a restricted range 

of climatic conditions, and are thought sometimes to be agents of their own downfall, 

restricting their own range by eroding their beds (Jamieson and Hulton, 2007; Kaplan 
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et al., 2009).  The impact of glaciation on high topography can be intense but is 

highly localized, both in a temporal and spatial sense (Brocklehurst and Whipple, 

2006; Hallet et al., 1996).  If we wish to understand how glaciers may affect 

landscapes more widely, we must look to understand how they interact with the 

fluvial system which succeeds them – again both spatially and temporally.  It will be 

these rivers that transfer glacially derived sediment downstream into longer-term 

basinal stores and propagate the signal created by disturbance of pre-existing fluvial 

systems into lower parts of the network (Church and Slaymaker, 1989; Harbor and 

Warburton, 1993; Herman and Braun, 2006).  Moreover, on a global scale it is 

known that geologically synchronous rejuvenation of landscapes and associated 

filling of sedimentary basins has been enhanced over the last few millions of years, a 

signal thought to be driven by enhanced climate variability and intensification of 

glaciation (Ehlers et al., 2006; Molnar, 2004; Molnar and England, 1990; Zhang et 

al., 2001).  An understanding of how rivers transiently respond to glacial growth, and 

indeed how they respond to changes in imposed climate more generally, is an 

underexplored but essential component of this story. 

 

In addition to this, it has been widely noted that since rivers respond to 

environmental forcing in terms of climate, tectonics and substrate over which they 

flow, it ought to be possible to back-calculate aspects of these forcing variables from 

the form of channels (inter alia, Boulton and Whittaker, 2009; Cyr et al., 2009; 

Harkins et al., 2007; Kirby and Whipple, 2001; Kirby et al., 2003; Kobor and 

Roering, 2004; Snyder et al., 2000; Whittaker et al., 2008; Wobus et al., 2006b).  

This approach has been utilized extensively in landscapes which have experienced a 

tectonic change in boundary conditions, and has met with some success.  

Unfortunately, however, the reliability of many of these methods remains 

undemonstrated, since it is unusual to be able to constrain the (tectonic) boundary 

conditions tightly enough to prove that the conclusions drawn from a study are true.  

The best studies of this type tend to have used an exceptionally well constrained field 

site to investigate how well a prediction derived from channel data matches the 

known forcings, and have commonly been able to provide significant advances in our 

understanding of river dynamics by showing which assumptions in the river models 
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are robust, and which are not (e.g., Snyder et al., 2000; Valla et al., 2010; van der 

Beek and Bishop, 2003; Whittaker et al., 2008).  However, approaches like this have 

been taken only rarely on landscapes responding to changing climate and, in 

particular, to glacial alteration of topography.  In these settings, variation in hillslope-

channel coupling driven by valley widening by ice, long profile alteration in the 

absence of active channel uplift and sharply increased sediment production around 

the landscape may all provide previously unexplored windows on the way in which 

channels adjust to externally imposed drivers. 

 

 

 

1.3 Motivation and Starting Point 

 

The starting central aim of this thesis was to use a landscape undergoing 

transient response to valley glaciation as a specific example of a perturbed landscape 

against which to test existing models and descriptions of channel dynamics.  Many 

different models of long term channel evolution have been proposed in the literature 

(Anderson, 1994; Beaumont et al., 1992; Braun and Sambridge, 1997; Chatanantavet 

and Parker, 2009; Crave and Davy, 2001; Davy and Lague, 2009; Howard, 1994; 

Kooi and Beaumont, 1994; Sklar and Dietrich, 2004; Tucker and Bras, 1998; 

Turowski et al., 2007; Whipple and Tucker, 1999, 2002; Willgoose et al., 1991).    

There exists a wide range of modelling approaches, from very simplistic descriptions 

of how the flow may couple to the bed to full process-based analyses of the system, 

covering most intervening levels of model complexity (the details of these are 

introduced below in Chapter 1.5 and reviewed in depth in Chapter 4.2). However, it 

has been widely noted in the literature that these models do not lead to testable 

differences in landscapes which show the topographic characteristics of being in 

equilibrium with the forcings upon them (e.g., Howard, 1980; Tomkin et al., 2003; 

Tucker and Hancock, 2010; Tucker and Whipple, 2002; van der Beek and Bishop, 

2003; Whipple, 2004; Willgoose et al., 1991). 
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The key testable differences do however emerge under transient conditions.  

Over the past five to ten years researchers have begun to use this realization to test 

some of the models against real data.  Findings have tended to indicate that erosion 

models based around the channel expending energy on either detaching sediment 

from the bed or transporting clasts along in the flow can do a good job of describing 

real channel response, despite the simple treatment of channel processes which these 

models assume (Attal et al., 2008; Howard and Kerby, 1983; Valla et al., 2010; van 

der Beek and Bishop, 2003; Whipple et al., 2000b; Whittaker et al., 2008).  However, 

these models allow for a large degree of “tuning” of internal parameters.  Many 

authors have interpreted such tuning away from more physically preferable values to 

reflect the influence of factors such as channel width scaling, varying sediment 

supply or incision thresholds in the system (Finnegan et al., 2005; Sklar and Dietrich, 

1998; Snyder et al., 2003b; Whipple, 2004; Whipple et al., 2000a; Whittaker et al., 

2007a); physically realistic combinations of these effects provide nonunique 

response styles, however, making it hard to determine the exact role of each 

individual factor using a theoretical modelling approach (Snyder et al., 2003a, b).  

This difficulty applies both between different models (e.g., detachment versus 

transport limited erosion where sediment supply is considered important in both) and 

within each model (e.g., tradeoffs in the relative influences of sediment flux effects, 

thresholds and incision process efficiency within the detachment limited model). 

 

A possible solution to this difficulty is to use very high quality field data 

where as many parameters as possible are constrained for the system, allowing 

independent characterization of each term which may be important in the incision 

process and eliminating the need for undirected tuning of the models.  Theory 

suggests that the key landscape properties to be constrained should be:- 

 

1) substrate variability, 

2) climate (i.e., the probability distribution functions for rainfall rate and 

duration) , 

3) rate of tectonic uplift/base level change, 
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4) incision mechanism(s), 

5) channel width, 

6) incision threshold(s), 

7) sediment flux. 

 

Vitally, an understanding of the variability or otherwise of the above through both 

space and time is also required. 

 

The role of sediment flux here is key.  Even for a hypothetical field site 

where all other parameters were known and constant under steady state conditions, a 

transient response induced by a change through time in any one of these variables 

(for example, a step change in relative uplift rate) will necessarily also perturb the 

volume of sediment carried by the channel downstream; that is, the sediment flux 

response should always be apparent in a transient river network. This is not true of 

many of the other parameters listed above, which are more independent of each other 

(noting however the possible exception of channel width response; see, e.g., 

Whittaker et al. (2007a)).  Moreover, in contrast to most of these other drivers of 

channel evolution, theoretical considerations and experimental study have both 

suggested that in an eroding landscape varying sediment flux should induce a 

strongly nonlinear effect on channel erosion – sediment can both act as tools to 

promote incision of the bed and as a cover to inhibit it (Cowie et al., 2008; Johnson 

and Whipple, in press; Johnson et al., 2009; Sklar and Dietrich, 1998, 2001, 2004; 

Turowski et al., 2007; Turowski and Rickenmann, 2009; Valla et al., 2010; 

Whittaker, 2007). 

 

However, no study has yet been able to demonstrate convincingly the actual 

details of this sediment driven response in a real, natural channel.  To a large part this 

is due to previous focus on tectonically forced landscapes, where problems related to 

variability of sediment flux shed from directly coupled threshold bedrock hillslopes 

into a channel and the manner in which the channel interacts with such material have 

thus far proven insurmountable.  A transient postglacial landscape where loose, 

homogeneous sediment is abundant and the channel is decoupled from bedrock 
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hillslopes can provide an alternative and hitherto untried angle of attack on this 

problem. 

 

 The details of the models describing channel response are not just interesting 

in their own right.  The form of the erosion laws also provides the theoretical 

underpinnings for attempts to read the record of past climate and tectonics affecting a 

landscape, as detailed in Section 1.2.  The similarity of the predictions of most of the 

erosion laws under steady state conditions means that such approaches are robust 

where these forcings do not vary through time (e.g., Snyder et al., 2000), but over the 

past few years attempts have been made to extend these methods into landscapes 

responding transiently to changing boundary conditions (see Chapter 3).  As detailed 

above, in these environments we remain significantly uncertain as to the relative 

importance of effects such as channel width scaling, thresholds and the role of 

sediment flux.  All of these generally unmodelled complexities have the potential to 

create large amounts of systematic error in predictions which do not take them into 

account. 

 

 

 

1.4 Approach 

 

This work uses a carefully chosen postglacial field site to constrain the 

driving parameters of a transient landscape and to test them against the known river 

properties such as channel scaling and river dynamics through time.  The key 

parameters in a well chosen glacial site (Fig. 1.1) which will make it distinct from a 

tectonically perturbed locality are: 

 

1) predictable sediment loading on the channel through time, and known 

properties of this sediment entering the flow, based upon distribution of 

postglacial sediment in the surrounding landscape; 

2) clearly preserved initial starting topography from which the channel evolves, 

left as an easily identifiable glacial surface; 
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3) strong variability of the extent of catchment alteration on a local, valley to 

valley scale, due to the previous extent of each individual valley glacier  (in 

contrast, variability in tectonics tends to occur on a regional scale); 

4) readily quantifiable alteration in the catchment based on the extent of glacial 

overprint on the pre-existing landscape; 

5) lack of strong tectonic uplift or relative baselevel fall. 

 

 

 The field site discussed throughout this manuscript on the Ladakh Batholith 

fulfils these expectations. The work presented here first introduces this landscape and 

then establishes its structure and process geomorphology in order to demonstrate its 

appropriateness for a study of this kind.  Subsequently, this natural laboratory has 

been used to answer four specific questions: 

 

1) Do the characteristics of this landscape – for example the rates of response, 

time scales over which change occurs, and scaling relations of the channel – 

vary with extent of perturbation of the system? 

2) Do the scaling metrics of the responding channels in this landscape match 

those seen in nonglacial but still transient environments?  How well 

established are these values in the literature?  Is there anything distinctively 

“glacial” about the landscape response in Ladakh? 

3) Which erosion models can accurately reproduce the known past behaviour 

and present form of this landscape? 

4) How important are sediment flux effects in controlling incision in this 

landscape, and thus perhaps more generally? 

 

 These questions are addressed in turn in the following chapters, as detailed in 

Section 1.6. 
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1.5 Framework and Terminology 

 

Much, though not all, of the analysis within this thesis is couched in terms of 

stream power.  This treatment is simple, and does not attempt to physically model the 

processes occurring in the river channel.  Instead, it is assumed that the geomorphic 

activity of the system is describable based on knowledge of its unit stream power (or 

equivalently of the shear stress it exerts on the bed), combined with scaling relations 

governing basin hydrology, conservation of mass and momentum in the channel, and 

hydraulic geometry.  A brief overview of these types of models has already been 

given in Section 1.3 and details are emphasized within the body chapters of the thesis 

as appropriate, but in view of the importance of this framework to the thesis as a 

whole, a brief summary of how this basic idea is deployed within this work (and how 

this deployment differs somewhat from that used by other authors) is also presented 

here.  This description loosely follows that presented by Whipple and Tucker (1999, 

2002), and uncited statements within this section are drawn from those two works. A 

parameter definitions list is given at the end of this section, as Section 1.5.5. 

 

 

 

Figure 1.1 (previous page).  Landscape structure of an idealized glacially 

perturbed valley.  The gradient of the upper reaches of the valley has been 

reduced by glacial erosion (c.f., Anderson et al., 2006; Brocklehurst and 

Whipple, 2006; MacGregor et al., 2000), creating a knickzone in the stream long 

profile.  Features which would make such a catchment an ideal natural 

laboratory for studying transient landscape response are highlighted in the 

diagram. 
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1.5.1  Pure Detachment-Limited Channel Dynamics 

 

 There are two mutually exclusive ways of describing such a system 

mathematically.  The first is to assume that the stream power (or shear stress, τ) 

describes the rate at which material can be removed from the bed: - 

 

)(τfE =   (shear stress) 

(1.1a) 

)( VfE τ=   (unit stream power) 

(1.1b) 

 

where E is incision rate and V is volume of flow. This function is typically a power 

function, but may also incorporate thresholds or other modifying elements.  Note that 

this can only describe an incising system.  This approach is termed “detachment-

limited” since it assumes that the rate of response of the channel bed is limited by the 

rate at which material can be detached from the bed.  If we then combine these two 

similar but distinct formulations of the detachment-limited model (assuming power 

laws and no thresholds for now) with expressions conserving mass (1.2) and 

momentum (1.3), and describing basin hydrology (1.4) we may simplify yet further: - 

 

Vhwqw =  

(1.2) 

2
VCghS fρρτ ==  
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= '   (unit stream power) 

(1.5b) 

 

where qw is water flux, h is flow depth, w is channel width, ρ is water density, g is 

gravitational acceleration, S is channel slope, Cf is a friction factor, A is upstream 

drainage area and other parameters are constants. If we also incorporate a (less 

reliable) relation for hydraulic geometry (c.f., Finnegan et al., 2005; Whittaker et al., 

2007a), 

 

b

wwqkw =  

(1.6) 

the equation simplifies yet further to 

 

nm
SKAE =  

(1.7) 

where 

 

anbacmbagCkkkfK fqw
3

2
),1(

3

2
),,,,,,,,( =−== ρτ   (shear stress) 

(1.8a) 

anbacmbagkkkfK qw =−== ),1(),,,,,,,( ρτ   (unit stream power) 

(1.8b) 

 

Values for b and c are directly measurable for channels and well established in the 

literature; they typically around 0.4 ≤ b ≤ 0.6 and 0.7 ≤ c ≤ 1 respectively (Whipple 

and Tucker, 1999).  In contrast, the value of a is not directly measurable from a 

channel, though it can be estimated for various pure and idealised erosion processes, 

e.g., plucking, abrasion, cavitation (Whipple et al., 2000a) – this difficulty is in part 

responsible for the ongoing ambiguity over whether the shear stress or unit stream 

power model is preferable.  A value of a = 1 is often selected both on grounds of 
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parsimony and since it describes acceptably the process of plucking.  However, we 

note that in both of these cases we may write from (1.8), independent of a, 

 

)1( bc
n

m
−=  

(1.9) 

 

If a river is in topographic steady state, i.e., everywhere uplift (U) = erosion, and is in 

a constant uplift field then we may use equation (1.7) to show that 
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K
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S lnln

1
ln −�

�

�
�
�

�
=  

(1.10) 

 

In other words, (strictly only under the assumptions made above!) the gradient of a 

slope-area plot in logarithmic space for such a channel should be equal to -m/n.  The 

value of m/n is termed the “intrinsic concavity”, θI, while the value of the gradient 

derived from a slope area plot is known simply as the “concavity index”, or simply 

“concavity”, and is denoted θ. From the ranges for b and c presented above, we 

would expect 0.35 ≤ θI ≤ 0.6, and if we choose to make the constants in equations 

(1.4) and (1.6) dimensionless then we select b = 0.5, c = 1 and θI = 0.5.  Satisfyingly, 

in landscapes which have been argued to be at steady state and under uniform uplift, 

this ratio almost always sits within these ranges (e.g., Whipple, 2004).  This provides 

support for the basic underlying assumptions for the stream power approach. 

 

 

 

1.5.2  Pure Transport-Limited Channel Dynamics 

 

Alternatively, it may be assumed that the stream power (or shear stress) 

describes the carrying capacity of the flow, qc: - 
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)(τfqc =   (shear stress) 

(1.11a) 

)( Vfqc τ=   (unit stream power) 

(1.11b) 

 

Using very similar arguments to the detachment-limited case above, we may likewise 

write this relation as 

 

tt nm

tc SAKq =  

(1.12) 

 

where mt and nt are constants. The evolution of the bed is then in turn described by 

the downstream divergence of sediment flux, which is assumed to always be at 

capacity: - 

 

c

p

q
wdx

d
U

dt

dz 1

1

1

λ−
−=  

(1.13) 

 

where z is bed elevation, t is time, λp is sediment porosity and x is downstream 

distance. This approach is termed “transport-limited” since it assumes that the rate 

limiting factor is the rate at which material can be transported away by the flow; in 

the simple form of the model the fact that the sediment flux is equal to the sediment 

transport capacity assumes that detaching material from the bed is of negligible 

difficulty.  It is important to note in the context of this thesis that the transport-

limited model may describe both incision and aggradation occurring on the bed, 

while the detachment-limited model may only describe incision. 

 

 The intrinsic concavity of the transport-limited end-member is derived 

similarly to that for the detachment-limited, and is calculated as (mt – 1)/nt 

(Willgoose et al., 1991). mt and nt vary depending on which transport equation is 
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used to derive (1.12), but are often of similar magnitude, e.g., under the Einstein-

Brown equation (if c = 1), mt = 1.8, nt = 2.1 (ibid.). Under these conditions note that 

again the predicted intrinsic concavity is around 0.5, as for the detachment-limited 

model.  It is in fact possible to prove that under steady state these two intrinsic 

concavities (let us call them θID and θIT) are almost identical (see Box 1.1). 

 

 

1.5.3  Hybrid Stream Power Models 

 

These two end member scenarios are mutually exclusive – it is not possible to 

internally consistently model both the (saturated) transport capacity and the erosion 

of the bed as functions of the same driving parameter.  However, there is a middle 

ground between these end members, where erosion is sensitive both to the sediment 

carrying capacity of the channel and also to the shear stress it exerts on the bed.  This 

is equivalent to saying that neither the difficulty of detaching a clast nor of 

transporting it away is negligible. 

 

This model space can be envisioned graphically on a plot of relative 

efficiency of incision versus relative sediment flux (Fig. 1.2).  Relative incision 

efficiency is a measure of the amount of incision occurring relative to total work 

done by the river – a value of 0 indicates no incision, a value of 1 indicates that the 

river does the maximum amount of incision it could for the total work done by the 

flow.  Relative sediment flux describes the amount of sediment carried by the 

channel relative to its carrying capacity – a value of 0 corresponds to clearwater 

flow, a value of 1 corresponds to sediment saturation.  Values >1 are physically 

forbidden in any given flow (hence dashed lines), but on the long term may be 

apparently exceeded if the transport capacity is calculated from the representative 

discharge (see Chapter 4).  The parameter spaces where both the pure detachment-

limited (red) and transport-limited (green) models operate are shown.  The yellow 

space corresponds to the domain of hybrid incision models.  Several of these from 

the literature are shown as black curves. 
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Box 1.1.  A new proof for the stream power models. 

 
For sediment transport we may always write as the most general case (Sinha and Parker, 1996): 

 

( ) p

qcq ** τα=  

 

where qc* is dimensionless transport capacity, τ* is Shields stress (shear stress non-

dimensionalized by dividing by grain size), and αq and p are parameters which will be constant 

within a reference flow regime characterized by τ∗0 and q*0.  This is a fuller statement of (1.11).  

We take the Meyer-Peter-Muller equation as an example, and may show by differentiation 
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Now we already know that we are modelling 
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and by direct comparison 

χ = p. 

 

So using 1.2-1.5 again we can explicitly write (assuming shear stress version of stream power, 

but makes little difference) 
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Now rolling all this together, along with θIT = (mt-1)/nt, we find 
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Now under uniform uplift and steady state conditions, τ (= τ0) is a constant, incrementally 

greater than τc at all points in the transport-limited domain, as in fact is demanded by the 

assumptions of this model.  Hence 

IDIT θθ → , 

 

i.e., θIT is incrementally smaller than θID. Hence the steady state concavities should be 

indistinguishable but transport-limited conditions should always develop downstream of their 

detachment-limited equivalents (c.f., Whipple and Tucker, 2002). 
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This plot brings out an important point however – when we describe the 

hybrid model domain, should we do it by extending the rules applying to the 

detachment-limited conditions downwards across the space (small solid red arrow), 

or by extending transport-limited conditions leftwards (dashed green arrow)?  

Existing hybrid incision models from within the stream power paradigm all use the 

former method, deploying to greater or lesser extents modified versions of equation 

Figure 1.2.  Model space for stream power-based incision laws.  Full description 

is in text.  Hybrid models shown are linear decline (Beaumont et al., 1992), and 

three versions of “tools and cover”-type models, parabolic (Sklar and Dietrich, 

2004), almost parabolic (Gasparini et al., 2006), and Turowski and coworkers’ 

(2007) dynamic cover model; all three are based upon detachment-limited-type 

assumptions (i.e., Equs. (1.1a,b)), though note the Turowski et al. formulation 

depends on relative sediment supply rather than flux. The figure emphasizes that 

the pure detachment- (red) and transport-limited (green) domains are orthogonal.  

Transport-limited conditions are not simply the “end-point” of a pure 

detachment-limited system, and all efficiencies of incision are possible in a 

sediment-saturated channel (depending on sediment flux divergence 

downstream, as opposed to its magnitude). 
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(1.7), typically modulated by a function which responds to relative sediment supply 

(Whipple, 2004): - 

 

nm

csccr SAqqfKKKE ),(τ=  

(1.14) 

 

where now we have parameters sensitive independently to lithology (Kr), climate 

(Kc), incision threshold (Kτc) and sediment flux (f(qs,qc)).  However, to my 

knowledge there has been no published attempt to describe this hybrid domain 

through the transport-limited assumptions represented by equations (1.12) and (1.13).  

This idea is developed further in the early sections of Chapter 4. 

 

 

1.5.4  Physical Interpretations 

 

 It is important to stress that in this work the terms “detachment-limited” and 

“transport-limited” are defined explicitly in terms of the mathematics describing the 

processes: in detachment-limited incision erosion proceeds as a function of a power 

law of shear stress or stream power, while in transport-limited incision it proceeds as 

a function of the downstream divergence of carrying capacity, and thus shear stress 

(see Chapter 4).  I would argue this is the way of describing these terms least open to 

misinterpretation.  However, this means that it is not always possible to accurately 

and intuitively predict which of these approaches to modelling incision will be most 

appropriate based only on qualitative field observations.  In particular, any channel 

which is very sediment rich could reasonably be argued to be eroding in a transport-

limited style, and equally, channels in substrates which are entirely loose sediment 

could still be eroding according to the detachment-limited laws.  The only way to be 

sure of this distinction will be to either analyse quantitative measurements describing 

the channel (Section 4.2.3), or to examine their long-term topographic responses to 

changes in forcing parameters (c.f., Whipple and Tucker, 2002; see Sections 1.3 and 

5.2). 
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1.5.5 List of Parameters and Constants Used In This Section 

 

A  Drainage area upstream α  Multiplier in generic sediment flux 

equation 

Cf  Coefficient of friction θ  Channel concavity (measured) 

E  Erosion rate θI  Intrinsic channel concavity 

S  Local slope of bed 

U  Uplift rate 

θID,θIT  Intrinsic concavities (for 

detachment-, transport- limited channels) 

V  Flow velocity λp  Sediment porosity 

ρ  Density of water a  Power law exponent for erosion 

process τ  Shear stress 

b  Power law exponent for channel width τ*  Shields stress 

c  Power law exponent for basin 

hydrology 

χ  Power law exponent for sediment 

transport capacity-shear stress relation 

g  Acceleration due to gravity  

h  Flow depth 

m  Power law exponent on drainage area 

n  Power law exponent on slope 

k,K  Assorted constants.  Those denoted 

prime (’) are “dustbin” constants, and not 

preserved between equations. 

 p  Power law exponent in generic 

sediment flux equation Subscripts where otherwise not noted 

denote: 

q  Flux in channel c  “Threshold”, or “capacity” 

q*  Dimensionless flux in channel r  “Rock” 

t  Time s  “Sediment” 

w  Channel width t  “Transport-limited version” 

x  Downstream distance (horizontal) w  “Water” 

z  Channel elevation  
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1.6 Thesis Outline 

 

The body of this thesis consists of three paper-chapters, each of which can be 

read independently, but also contribute sequentially and holistically to a greater 

understanding of the dynamics of the transient landscape of the Ladakh region as a 

whole, and through that to a wider picture of the importance of sediment flux in 

evolving natural mountain river systems.  An outline of the role of each chapter in 

addressing the big picture questions listed in Section 1.4 is provided below. 

 

Chapter 2 presents a thorough and unique geomorphic description of the 

catchments draining the Ladakh batholith southwards into the Indus River, focussing 

in particular on their fluvial process geomorphology, coupled with a review of the 

existing literature describing the region.  This forms a qualitative underpinning for 

much of the quantitative analysis of the channel system which follows, both in this 

and subsequent chapters.  The chapter goes on to use the exceptional age of the local 

last glacial maximum (10
5
 years) to explore the nature of the transient fluvial 

response of this postglacial landscape across time scales not usually observed.  It is 

demonstrated that glacial modification of the upper reaches of a catchment can have 

a profound first-order influence on the hydraulic scaling of the downstream channel, 

perturbing the channel slope-area scaling systematically and nonlinearly away from 

the values expected under steady state.  We also calculate both the incision rates (up 

to 1mm/y) and response time scales (> 10
6
 years) during the postglacial recovery.  

The latter of these values is an order of magnitude slower than any glacial relaxation 

process previously reported.  Both this rate and time scale are however consistent 

with values suggested for tectonically perturbed transient landscapes.  This paper has 

been published in the Geological Society of America Bulletin this year (Hobley et al., 

2010). 

 

Chapter 3 explores an idea raised in Chapter 2, and tests whether the fluvial 

scaling perturbations driven by glacial modification on the Ladakh batholith are 

characteristic of all transient channels, regardless of the forcing mechanisms.  Slope-
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area (concavity) scaling in the Ladakh streams is contrasted with data taken from 

field sites with differing climatic and/or tectonic regimes in Romania and the south-

eastern margin of the India-Asia collision.  All three sites show systematically and 

predictably elevated concavity values downstream of long profile convexities.  The 

trends in each of the datasets are very similar, demonstrating unity of response 

regardless of whether these convexities were formed by glacial or tectonic 

perturbation of the landscape.  This altered scaling is consistent with the response 

expected if a nonlinear sediment flux term is included in the erosion laws describing 

the incision.  This chapter concludes by discussing the consequences of this 

pervasive and previously unrecognized altered concavity scaling for attempts to read 

past tectonic forcing from the topographic form of transient channel long profiles.  

This paper is in review for Geology. 

 

Chapter 4 looks specifically at the incising component of the Ladakh 

channels and uses it to address questions of how we should model such a system.  A 

new framework is presented for understanding the predictions of detachment-limited 

and transport-limited formulations of erosion based around interaction of separate 

sediment flux dependent and shear stress dependent terms in each case.  This 

framework is then used to demonstrate that incision into the coarse, loose, poorly 

sorted sediment of the thick postglacial surface in the Ladakh catchments is 

occurring in a detachment limited manner, but also incorporates an incision threshold 

and a nonlinear sediment flux effect.  In the later sections of the chapter, a 

combination of analytical and numerical forward modelling is used to calibrate the 

forms of the sediment flux functions which are active in each of the analyzed 

catchments.  The resulting functions comprise the best constrained examples in the 

literature and are unique in their description of the details of the interaction of the 

tools and cover effects in a real field setting.  This paper is shortly to be submitted to 

the Journal of Geophysical Research: Earth Surface. 

 

Finally, Chapter 5 then goes on to synthesize key research findings from the 

preceding chapters and to discuss how this work fits into the wider context of the 

literature, bringing out the importance, impact and implications of these findings.  
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Outstanding questions raised by this work are then addressed, and possible future 

research directions based upon these are outlined.  The thesis then concludes with a 

brief summary of the main research outcomes of this study. 
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2. PROCESSES, RATES, AND TIME SCALES OF FLUVIAL RESPONSE IN 

AN ANCIENT POSTGLACIAL LANDSCAPE OF THE NORTHWEST 

INDIAN HIMALAYA
1
 

 

CHAPTER ABSTRACT 

 

Both glacial and fluvial processes are key elements in molding 

landscapes in high mountain environments—glaciers are highly efficient 

erosional agents and producers of sediment but are restricted spatially, 

while rivers can transmit information about upstream changes through 

landscapes and flush this sediment out of mountain belts and into 

sedimentary basins. However, little research has focused on the manner 

in which these two agents of landscape change interact, especially on 

longer time scales. We analyze a suite of catchments draining the 

previously glaciated Ladakh batholith in the northwest Indian Himalaya, 

which preserve the oldest known moraine succession in this mountain 

chain. We describe and quantify the rates, processes, and time scales of 

postglacial recovery of the fluvial system across a previously unstudied 

time interval of 10
5
–10

6
 yr. We demonstrate that glacial modification of 

the upper reaches of a catchment can have profound first-order influence 

on the hydraulic scaling of the channel downstream, where increasing 

degree of glacial modification systematically and nonlinearly elevates 

the channel concavities of downstream reaches above the expected value 

range of 0.3–0.6. We also demonstrate that the response time of these 

systems as they recover must exceed 500 k.y., which is longer than any 

previously reported estimate for recovery times from glaciations, but is 

comparable with estimates from many tectonically perturbed landscapes. 

 

 

2.1 Introduction 

 

Fluvial dynamics are widely recognized as the primary control on the style 

and pace of landscape evolution in unglaciated upland areas. River networks transmit 

base-level change signals widely though landscapes by coupling to hillslopes 

(Burbank et al., 1996; Strahler, 1950), and they govern the routing of sediment from 

erosive areas to depositional basins (Milliman and Syvitski, 1992). Removal of rock 

                                                 
1
 A version of this paper has been published in Geological Society of America Bulletin: 

 Hobley, D.E.J., Sinclair, H.D., and Cowie, P.A., in press, Processes, rates, and time scales of 

fluvial response in an ancient postglacial landscape of the northwest Indian Himalaya: GSA Bulletin, 

v. 122, no. 9/10, p. 1569-1584, doi: 10.1130/B30048.1. 
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from upland areas also provides a direct isostatic feedback mechanism, whereby 

changes in the erosional capacity of the climate couple with rock uplift (Dahlen and 

Suppe, 1988; Molnar and England, 1990). 

 

In mountain ranges where glaciers are developed, however, long-term 

erosional history is determined by the action of ice as well as water, and the 

boundary between the glacial and fluvial domains shifts in response to climate 

fluctuations (Berger et al., 2008; Hallet, 1990). Despite this, the nature and response 

of the fluvial system in previously glaciated settings have been underexplored, 

particularly across time scales exceeding a few thousand years. Moreover, although it 

is well recognized that transient landscapes hold great potential for understanding the 

mechanics of fluvial incision (e.g., Whipple, 2004), few researchers have attempted 

to use climatically induced transience to understand such processes, and instead 

studies have focused on tectonic forcing (e.g., Finnegan et al., 2005; Lavé and 

Avouac, 2001; Snyder et al., 2000, 2003a; Whipple and Tucker, 2002; Whittaker et 

al., 2007a). Previously glaciated environments provide ideal and complementary 

natural laboratories for such analyses. 

 

A large body of literature focuses on sediment dynamics within and out of 

paraglacial systems—those in which sediment dynamics are directly conditioned by 

glaciation (sensu Church and Ryder, 1972)—but much of this literature is focused on 

understanding the slope processes occurring within these settings (e.g., Ballantyne, 

2002b) or quantifying the sediment yields from them, as opposed to quantifying the 

geomorphic responses of fluvial networks across glacial cycles. Such sediment yield 

studies have shown that typical response times for large basin systems tend to fall in 

the region of 1–10 k.y. (e.g., Ashmore, 1993; Brooks, 1994; Church and Slaymaker, 

1989; Ferguson, 1984; Lamoureux, 1999; Slaymaker and McPherson, 1977), 

although primary glacial sediment mobilization is thought to decrease on time scales 

perhaps one to two orders of magnitude shorter than this (e.g., Ballantyne and Benn, 

1994; Cruden and Hu, 1993; Friele et al., 1999; Hinchliffe and Ballantyne, 1999; 

Meigs et al., 2006; Ryder, 1971), indicating the importance of sediment storage 

within the paraglacial realm. Modeling studies have also been used to investigate 
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sediment output from paraglacial systems, and these have reported time scales of 

sediment flux decay between 3 and 50 k.y. (e.g., Braun et al., 1999; Dadson and 

Church, 2005). Typically, the fluvial transport rules in these models are implemented 

in a simple way, assuming sediment mobility to be limited by the river’s transport 

capacity and ignoring difficulties in lifting the sediment from the bed. However, few 

studies have considered the geomorphic response of these systems on medium to 

longer time scales (~10
5
–10

6
 yr). These time scales are of great interest because they 

are on a similar order to known response time scales for tectonically forced 

erosional-depositional catchment-fan systems (Allen, 2008; Baldwin et al., 2003; 

Carretier and Lucazeau, 2005; Densmore et al., 2007; Whipple, 2001). Responses on 

these longer time scales are also important since they match or exceed the time scales 

of most Milankovich-type climatic forcing, and thus determine the reactivity of 

landscape elements to such changes. 

 

A number of studies have contrasted glacially sculpted basins with purely 

fluvial ones, but generally these have focused on the effects of the glaciers 

themselves rather than examining the postglacial fluvial dynamics (Amerson et al., 

2008; Brocklehurst and Whipple, 2002, 2006; Brook et al., 2008; Montgomery, 

2002). The inverse approach has been taken in some cases, using streams in glaciated 

landscapes to examine reach-scale fluvial geomorphology and stream structure and 

response (e.g., Brardinoni and Hassan, 2006, 2007; Brocard et al., 2003; Herman and 

Braun, 2006; Mueller and Pitlick, 2005), with the latter authors also emphasizing the 

impact that glacial sculpting of a basin has on distribution of channel type within it. 

However, no previous study has examined catchment-scale response of streams to 

variable degrees of glacial alteration. Therefore, the key geomorphic domain that 

modulates the influence of fully glaciated mountainous catchments on sedimentary 

basins at the edge of alpine mountain ranges has not been adequately characterized in 

terms of processes, rates, or time scales. 

 

We use a suite of tributaries in a previously glaciated environment to describe 

and quantify the effects of glacial modification of catchments on their first-order 

channel hydraulics during postglacial recovery. We chose the field site using the 
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following criteria: (1) numerous catchments for comparison; (2) known tectonic 

forcing, and well-quantified, uniform base-level history; (3) uniform substrate; (4) 

quantifiable, variable extent of glacial alteration; (5) known glacial chronology; (6) 

minimal anthropogenic alteration; and (7) availability of remote-sensed digital 

elevation model and supporting imagery. On this basis, we selected 70 channels 

draining the Ladakh Batholith, northwest Indian Himalaya, southward into the Indus 

valley (Fig. 2.1). We use a combination of remotely sensed data, incorporating both 3 

arc-second (90 m) resolution digital elevation models (DEMs) from the Shuttle 

Radar Topography Mission (SRTM; see Appendix A) and satellite imagery (Landsat 

7 and Google Earth), and field-based investigation to assess the process 

geomorphology of the paraglacial environment of these tributaries, with particular 

emphasis on the trunk streams of each catchment. We first describe these field 

observations in order to assess the role of riverine processes and to provide evidence 

for controls on channel hydraulic scaling, which are not accessible from the remotely 

sensed data. Subsequently, we examine the hydraulic scaling of these streams using 

the satellite data, with emphasis on their slope-area relationships. We then synthesize 

both field and remotely sensed data to demonstrate that river scaling is directly 

controlled by glacial sculpting of the upper reaches of the valleys. We also show that 

the response time scale for these systems exceeds half a million years, but that 

incision into the substrate proceeds at rates on the order of 1 mm/yr. Both values are 

comparable to those observed during transient landscape response to tectonic forcing. 
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2.2 Methodology 

 

Our analysis is based around the framework of the stream power model. This 

approach has been widely used in fluvial analysis (e.g., Anderson, 1994; Howard, 

1980; Howard and Kerby, 1983; Parker and Izumi, 2000; Snyder et al., 2000, 2003a; 

Whipple and Tucker, 1999, 2002) and provides a means of investigating the 

catchment-scale architecture of river channels and relating it to their erosive 

capacity, assuming that the evolution of the channel bed is rate limited by the ability 

Figure 2.1. (a) Summary map of India. Dotted box indicates location of field 

area shown in b. (b) Hillshade digital elevation model (DEM) of field area. The 

Ladakh Batholith runs NW-SE, corner to corner, through the center of the 

image, north of the Indus River, picked out faintly in gray. Catchments flowing 

southward into the Indus Valley analyzed in this study are indicated. Those 

colored darker gray have been explored in the field, and are, from west to east, 

Basgo (B), Nimmu (N), Tharu (T), Phyang (P), Leh (L), Sobu (S), Stakma (St), 

Nang (Na), Karu (K), and Ratatse (R) valleys. The area of the paleolake referred 

to in the Regional Setting section corresponds broadly to the prominent valley 

flats around the Indus, approximately between the outlets of Basgo and Karu 

catchments. Area shown in Figure 2.2a is marked by white box. 
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of the stream to detach elements of it. Many formulations of this relationship exist; 

however, almost all of them may be recast in the form 

 

E = krkckτcf(Qs) A
m
 S

n
 

(2.1) 

 

where E is rate of channel incision, kr and kc are erosivity parameters based on 

substrate resistance and climate, respectively, kτc and f(Qs) are threshold for erosion 

and relative sediment flux terms (both likely to be strongly nonlinear), A and S are 

upstream drainage area and channel slope, respectively (Whipple, 2004), and m and n 

are parameters that convolve the effects of channel width and basin hydrology 

responses, and are presumed constant. It may be shown that no matter what the 

details of the formulation, for all points in a river channel, we may write 

 

S = ksA
−θ

 

(2.2) 

 

where ks and θ are parameters known as the channel steepness and channel concavity 

indices, respectively (e.g., Whipple and Tucker, 1999). This equation has been 

shown to be widely applicable within river channels on both a reach and catchment 

scale, it provides a mechanism for understanding river evolution without demanding 

an understanding of all of the parameters within a given incision law formulation, 

and it is applicable to both incisional and depositional systems (e.g., Whipple, 2004). 

However, working explicitly with the detachment-limited Equation 2.1, it may be 

shown that the value of concavity, θ, is governed only by m and n, and it may be 

further shown that based on known scaling of these two components, concavities for 

most natural channels ought to lie in the range 0.3–0.6, with a preferred value of 0.5 

(Whipple and Tucker, 1999). This value ought to be the concavity measurable from 

field data for channels in topographic steady state under uniform forcing conditions. 

Similar arguments apply for the steady-state concavities of channels hypothesized to 

be limited by the rate at which the river can transport away material, rather than 

detach it, i.e., “transport-limited” channels, and these give an indistinguishable range 
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of predicted values (Whipple and Tucker, 2002). In contrast, the channel steepness, 

ks, convolves very many effects, including climatic erosivity, rock uplift, channel bed 

resistance, width scaling and basin hydrology, sediment flux, incision thresholds, bed 

friction, and, crucially, whether the channel bed itself is in both flux and topographic 

steady state. If any of these controls also varies systematically downstream, this has 

the potential to create changes in the measured channel concavity (e.g., 

VanLaningham et al., 2006). Hence, the form of Equation 2.2 provides a sensible 

means of both displaying slope and drainage area data, and also investigating 

whether channels obey or indeed violate these expected scaling relations. 

 

For our data, we also carry out power-law regression on plots of slope versus 

distance downstream, x, as opposed to upstream drainage area, A, giving correlation 

of the form 

 

φ
φ

−= xkS  

(2.3) 

 

where φ is here defined as the channel curvature, and kφ is a steepness term 

analogous to ks. Hack (1957) first recognized a power-law correlation between 

downstream distance and upstream drainage area, and this curvature method allows 

us to discount changes in this power-law relation—Hack’s exponent—as a potential 

cause of variation in channel concavity, that is, to isolate changes in the drainage 

architecture of the valleys caused by glacial resculpting as a mechanism for changing 

θ. A response in terms of drainage structure will lead to changes in θ while leaving φ 

unaltered.  In other words, if the glaciers have little altered the preexisting channel 

form but have altered the structure of the drainage into the channels, comparing θ 

and φ should reveal this.  This provides a complementary analysis to one based 

purely on concavity. An analogous approach has been previously exploited by other 

authors, though without explicitly considering variations in the value of curvature 

(e.g., Bishop et al., 2005). This method will also help prevent issues such as 
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dependence of rainfall on elevation (Anders et al., 2006; Bookhagen and Burbank, 

2006) from clouding the analysis. 

 

 

2.3 Field Area – Regional Setting 

 

2.3.1 Geology 

 

The Ladakh Batholith is part of the western end of the Transhimalayan 

Batholith system, and it represents the predominantly granodioritic plutonic core of 

part of the Cretaceous to Eocene arc batholiths that developed between India and 

Asia, and that are now ensnared into the collisional zone (Weinberg and Dunlap, 

2000). The batholith is sandwiched between the Shyok suture zone to the north and 

the Indus-Tsangpo suture zone to the south (Searle et al., 1990), and both contacts 

are inferred to be presently tectonically inactive. The northwest-trending Indus River 

exploits the position of the contact with sediments to the south, following it fairly 

closely for the whole of the length of the Ladakh Range. 

 

2.3.2 Topography 

 

The present maximum elevation of the range above the floor of the Indus 

Valley varies from 2.3 km (west) to 4.1 km (east), while the ridgeline forms an 

almost horizontal divide, with summit elevations in the east around 6 km and in the 

west around 5.8 km. The ridgeline runs some 350 km broadly southeast-northwest, 

although there is a distinct kink in the center of the batholith in the vicinity of Leh, 

northwest of which the batholith trends more west-northwesterly (Fig. 2.1). 

Coinciding with this kink, the width of the batholith also decreases from ~40 km 

across both the southeastern and northwestern arms to 33 km. This narrowing is also 

associated with a slight decrease in summit elevation on the ridgeline of around  

100 m. 
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2.3.3 Climate 

 

The High Himalaya to the south of Ladakh blocks much of the northerly 

penetration of the annual Indian monsoon, creating arid desert conditions. Humidity 

in the summer months averages only 40 % (Fort, 1983), and modern precipitation at 

Leh is only ~80–100 mm/yr (Holmes, 1993; Spate et al., 1976), falling largely as 

snow in winter (Fort, 1983). Average monthly temperatures range from −8.2 °C to 

+17 °C (Spate et al., 1976), although diurnal temperature fluctuations are on the 

order of 25 °C (Cunningham, 1853), with winter temperatures frequently below −40 

°C (Fort, 1983). This harshness of climate means that vegetation cover is scarce and 

discontinuous, although floors of river valleys are typically well cultivated, 

particularly at lower altitudes, due to human irrigation. 

 

2.3.4 Geomorphology 

 

The geomorphology of the Ladakh Batholith and Indus valley has been 

described by several authors (Bürgisser et al., 1982; Cunningham, 1853; Fort, 1983; 

Holmes, 1993; Jamieson et al., 2004; Owen et al., 2006). However, many of them 

have focused mostly or entirely on glacial geomorphology and, in particular, the 

geomorphology of the Indus Valley, rather than on the tributary catchments draining 

the batholith. The importance of glacial and periglacial action—that is, the effects of 

both flowing ice and other ice-mediated cold-region processes—on the landscape has 

been emphasized, along with reworking by snowmelt, glacial runoff, and mass 

movement processes. Jamieson et al. (2004) reported that some of these channels 

have developed knickzones due to the growth of valley glaciers in their middle to 

upper reaches, but the extent of this alteration varies with position and thus mean 

altitude of the individual catchments along the range. This arrangement provides a 

spectrum of data reflecting different degrees of glacial influence in the valleys. 

 

Owen et al. (2006) provided a glacial chronology for these catchments, having 

measured cosmogenic 
10

Be exposure ages from suites of boulders on the surfaces of 

moraines in seven of the valleys. Despite some scatter in their data, they argued that 
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the date of maximum advance was from 100 to 200 ka, and more probably between 

100 and 150 ka. These dates imply that this is the oldest glacial sequence in the 

Himalaya, allowing us to examine the landscape response to overall glacial retreat on 

a time scale that is rarely available. In the Indus Valley around Leh, lake sediments 

have been dated at older than 50 ka (Phartiyal et al., 2005). This lake was formed by 

blockage of the Indus by ice and glacial debris emerging from the catchments 

draining the batholith (e.g., Bürgisser et al., 1982), and thus maximum glacial 

advance and lake initiation are believed to have been contemporaneous. Incision into 

the paleolake sediments upstream of Leh has been minimal, on the order of 20 m; 

downstream evidence is less clear but is unlikely to have exceeded 100 m since the 

last local glacial maximum. The geomorphic effect of base-level change is discussed 

in subsequent sections, but is minimal. 
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2.4 Field Observations and Interpretations 

 

We undertook detailed field analyses in 10 of the valleys in the Leh area—

Basgo, Nimmu, Tharu, Phyang, Leh, Sobu, Stakma, Nang, Karu, and Ratatse valleys 

(Fig. 2.1)—in order to establish a generalized geomorphologic structure (Table 2.1). 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 (next page). Generalized geomorphic structure for all significantly 

glaciated catchments. (a) Satellite imagery taken from Google Earth; images 

©2009 GeoEye, DigitalGlobe, and TerraMetrics. Field of view is ~20 km across. 

Full catchments shown are Phyang (west) and Leh (east), with their drainage 

divides picked out with white dashes. Both drain southward into the 

anastamosing Indus River, which is visible at the bottom of the image. Leh 

airport is labeled and lies southwest of Leh town. White dotted lines demarcate 

the three domains that run along the range, as described in the text. Between the 

two dotted lines in each valley note in particular the gorges cut into the valley 

floors, which define domain 2 (c.f., Fig. 2.4). White V’s show locations and 

directions of fields of view for photos shown in Figures 2.3-2.5, with the field of 

view arranged as if looking out along the arms of the V; solid lines indicate 

actual positions, while dashed lines indicate equivalent positions in Leh valley of 

images taken in catchments not shown in this figure. Inset shows in greater 

detail the hillslopes and valley floor in domain 1; the repeated sequence of 

valley-transverse rock ridges and associated fans as described in the text is very 

clear. (b) Cartoon of generalized glaciated catchment structure. Note that the 

boundaries between the domains are defined by the start and end of the gorge cut 

into the valley floor sediments in the middle reaches. 
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2.4.1 Interpreted Catchment Structure—Glacially Modified Valleys 

 

Inspection of remotely sensed imagery suggests that the form of the 

geomorphic domains outlined here is applicable to all catchments where U-shaped 

valley cross profiles are developed in their upper reaches (Fig. 2.2). We recognize 

three distinct domains sequentially present down the valleys, each of which reflects 

the locally dominant mode of channel behavior—from glacially overwhelmed, to 

incisional, to aggradational. The field-based descriptions of the geomorphic 

properties of each domain are recorded in Table 2.1. Next, we interpret the process 

geomorphology of each domain based on these field observations. 

 

 

2.4.1.1 Domain 1, Upper Reaches—Glacially Dominated (Table 2.1; Fig. 2.3) 

 

Almost all of the features described for this domain are consequences of the 

recent occupation of the upper reaches of these catchments by valley glaciers and the 

accompanying periglacial acceleration of weathering on exposed bedrock. The U-

shape of the valleys indicates the action of warm-based subglacial abrasion and 

plucking (Bennett and Glasser, 1996). The abrupt termination of the transverse rock 

ridges some 100–200 m above the valley floor probably constitutes a paleosurface of 

the valley glaciers—a trimline—and suggests that significant arêtes were exposed 

above the ice, shedding large amounts of debris onto the surface of the glacier (e.g., 

Ballantyne, 1998). Along with the hummocky nature of the unmodified valley floor, 

this implies that much of the diamicton now mantling the valley is supraglacial in 

origin (Boulton and Eyles, 1979; Clayton et al., 2008), i.e., derived from material 

accumulated mainly on the surface of the glacier rather than at its bed, and this 

material mantles an irregular bedrock floor. However, the fresh debris fans shed from 

the sidewalls and characteristics of the river demonstrate that there has been 

significant paraglacial modification of this environment since glacial retreat. The 

angular, poorly sorted material of the fans is suggestive of frost-shattered debris 

being released from the hillslopes onto the valley floors, with localized extremely  
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Figure 2.3a,b.  Figure continues on next page. 

(a) 

(b) 
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Figure 2.3 (see also previous page). Field photos illustrating key geomorphic 

features for domain 1. (a) Classically U-shaped valley, looking west up toward 

glacier from dogleg in valley plan form, Leh catchment (compare Fig. 2.2). 

Transverse rock ridges and associated debris fans are particularly clear on the 

south flank. Note that these fans meet the channel thalweg, and that the channel 

is not incising. (b) Valley floor view of a typical point where a debris fan 

impinges on the channel, Leh valley. Main fan descends from right of image and 

meets the stream in the center left of the mid-distance. The steepness of the 

channel as it crosses the fans in contrast to the low gradient reach immediately 

downstream is obvious; for scale, this jammed cascade is ~5 m high. Many of 

the blocks comprising the fan material are in excess of 1 m across; the sediment 

in the low gradient reach is much finer, as also described in the text. (c) View 

southward from the dogleg in Leh valley. Trucks in foreground and military 

station of South Pullu in midground (left of image) provide scale. Note the 

hummocky texture of the valley bottom surface here. The gorge defining domain 

2 begins around South Pullu and deepens southward. The irrigated valley fill of 

domain 3 and eventually the Indus Valley are visible in the far distance. 

(c) 
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large blocks suggesting episodic sidewall collapse rather than a diffusive process 

(c.f., Augustinus, 1995; Dadson and Church, 2005). Moreover, the form of the river 

itself suggests that it is incapable of mobilizing much of the coarser material supplied 

by these debris fans where they impinge on the thalweg, and this has resulted in the 

mesoscale (300–500 m) reorganization of channel profile form. The river steepens to 

maximize its power over these coarse deposits and winnows out much of the finer 

sediment within the consequent cascades, resulting in the very high cobble-boulder 

D50 values. The channel then compensates for these steep reaches by aggrading 

between the cascades to reduce gradient, and much of the finer winnowed sediment 

is redeposited here. We note that this channel form is very similar to the process 

domain organization described by Brardinoni and Hassan (2006) for coastal glaciated 

British Columbia and that the inferred processes are similar to those suggested by 

Mueller and Pitlick (2005) for Halfmoon Creek, Colorado. 

 

 

 

 

2.4.1.2 Domain 2, Middle Reaches—Fluvial Incision (Table 2.1; Fig. 2.4) 

 

The basic relict valley structure mirrors the glacial influence already observed 

in domain 1. The presence of well-developed side tributary catchments points to a 

reduced glacial influence compared to the upper reaches. These side catchments have 

no evidence of remolding by flowing ice and are considered relics of the fluvial 

drainage structure before glaciation, lacking sufficient area to gather enough snow to 

form glaciers. The sediment mantling their present slopes is tentatively attributed to 

the action of periglacial freeze-thaw processes on these preexisting colluvial 

surfaces, partly retained within the sub-basins due to their reduced hillslope gradients 

compared to the sheer sidewalls of domain 1. The lichen covering on these blocks 

confirms the relatively immobility of these surfaces, and we suggest an average 

exposure time of several tens of thousands of years—their color is only a little lighter 

than that of the hummocky valley floor, which is known to be of the order of 100–50 

k.y. old (Owen et al., 2006). However, it is the gorge cut into the trunk valley floor 
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that provides the defining distinction from domain 1. The dip of the sidewalls of the 

gorge is equal to the angle of repose for loose sand (Bagnold, 1966), and along with 

the lack of lichen cover on the sediment here, this indicates that these surfaces are 

being actively denuded by coupling to the incising river at their base (Burbank et al., 

1996; Caine and Swanson, 1989; Strahler, 1950). Without the very coarse debris fans 

directly loading the channel that were present in domain 1, and with gradually 

increasing discharges and slopes in the channel, the transition to domain 2 represents 

the first time the stream power has become high enough to fully mobilize enough of 

the sediment to initiate incision (c.f., Parker and Klingeman, 1982; Wilcock, 1993; 

Wilcock and McArdell, 1993). This transition point represents the location at which 

a threshold for fluvial transport and erosion has been exceeded, and the river 

downstream may be regarded as self-formed, i.e., it has not inherited its channel 

properties purely from the relict surface left by the glacier, but instead has begun to 

form its own profile by sediment reorganization under the hydrologic regime or 

regimes active since glacial retreat. The coarser, less mobile sediments in the steeper 

reaches, especially where associated with mounds of this sediment at the sides of the 

channel, are interpreted as deposits from debris flows traveling down the gorge. 

However, these mounds appear on either side of the channel and seem to have been 

cut through by the flow, and, along with direct evidence of incised recent debris flow 

activity in Phyang Valley, this suggests that the fluvial processes active in these 

channels are dominant over the debris-flow activity on the medium to long term. 

 

 

 

 

 

 

 

Figure 2.4 (next page). Field photos illustrating key geomorphic features for 

domain 2. (a) Well-developed gorge midway down domain 2 at a tributary 

confluence, Leh catchment. Gorge is ~60 m deep at this point, and some bedrock 

is exposed in the sidewalls at this location. Note the contrast in shade between 

unincised valley floor (orange) and non-bedrock gorge sidewalls (gray). Break in 

slope is picked out. (b) Typical channel form and floodplain within gorge. Image 

is from Basgo Valley, looking downstream. Yaks for scale. 
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(b) 

(a) 
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2.4.1.3 Domain 3, Lower Reaches—Fluvial Aggradation (Table 2.1; Fig. 2.5) 

 

This domain is a region of long-term fluvial aggradation, shown by the flat-

lying fluvial sediments filling the valley (sorted cobbles and sandy laminated 

overbank deposits), and evidence for channel avulsion in the form of abandoned 

channels lower down the domain. The diamicton mounds in this domain are 

interpreted as terminal (horseshoe-form) and lateral (linear) moraines of the former 

glacier, consistent with the work of others in the region (Fort, 1983; Owen et al., 

2006). The freshness of their sides indicates that the modern river periodically 

couples directly to their slopes. The drape of fluvial sediments onto the toes of these 

structures indicates that a major episode of aggradation postdates the maximum 

advance of the glaciers at ca. 100 ka (Owen et al., 2006). We relate the deep channel 

entrenchment between Basgo and Phyang to breaching of the glacial dam system 

around Basgo and Nimmu (see Regional Setting) and the propagation of this signal 

up the Indus and the associated side tributaries. Elsewhere, we link minor incision 

present in the tributaries to minor, ~10 m entrenchment into the valley floor by the 

Indus unrelated to the dam breach. However, we emphasize that these landscapes 

remain significantly active, and recent aggradation has occurred, as indicated by the 

freshness of portions of the fan surfaces in the lower parts of this domain. This 

aggradation also occurs in valleys where there is no good evidence for significant 

base-level change on the Indus, implying that it is a behavior driven primarily by 

processes occurring upstream, and not just governed by downstream base level. The 

main channels of the tributaries and the fan surfaces lack evidence of levees and 

inverse grading (sediment coarsening upward), characteristic of debris flows, and are 

interpreted as purely alluvial settings, in spite of the coarseness of some of the 

channel loads (c.f., Owen, 1991). This interpretation is corroborated by the 

observations from the remotely sensed data that the fans are also concave-up rather 

than planar, and they exhibit slope-drainage area relations more typical of fluvial 

than debris-flow processes (see next section). On the hillslopes and in the side 

catchments within the tributaries, colluvial processes are active. The paucity of 

sediment drape on these slopes in these side catchments relative to the side 

catchments in domain 2 is perhaps linked to decreasing efficiency of periglacial 
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weathering action with altitude, or to an increase in the amount of precipitation 

falling as rain rather than snow, removing the buffer on peakedness of flood 

discharge provided by ice (Fountain and Tangborn, 1985; Jansson et al., 2003) and 

allowing better mobilization of larger clasts. 

 

 

 

 

 

2.4.2 Generalized Catchment Structure—Less Glacially Modified Valleys 

 

Where U-shaped valley cross profiles are not present in the upper reaches, 

valley form is different. These catchments are smaller than the contrasting three 

domain valleys described already. They do not reach the main drainage divide and 

are confined to lower mean basin altitudes. Glaciers or major accumulations of 

interannual snow (firn) are never present in these today. Such catchments provide a 

reference case against which to compare the observations presented in Table 2.1. 

Generalized catchment form is more variable, and the description given here is based 

largely on the Ratatse catchment in the east of the accessible field area (Fig. 2.1). 

 

 

2.4.2.1 Observations of Hillslopes and Valley Floor 

 

The flow is confined to a single channel that is coupled directly to the 

surrounding slopes, meeting bare rock hillslopes in the upper reaches. Flattened, 

diamicton-draped surfaces a few meters thick are occasionally present, but they are 

not associated with widened valley form, are preserved only perched above the 

modern river base level, and are a minor component in the landscape. Lower in the 

catchments, the channel incises down several meters into crudely bedded, poorly 

sorted cobbles (D50 ~5 cm), which are coarser and more poorly sorted than the 

present channel material (Section 2.4.2.2). This sediment forms flat surfaces already 

filling the valley in its lower reaches. Satellite imagery indicates that there is a 
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continuum from catchments more heavily sediment flooded in their lower reaches, 

especially around the Leh paleolake, to much less sediment-flooded catchments, with 

good coupling to the surrounding bedrock hillslopes and well-developed V-shaped 

valleys. 

 

 

2.4.2.2 Observations of Channel and Sediment Load 

 

The lack of a glacier or firn in the valley headwaters means that these 

catchments are ephemeral, and there is no flow when there has been no rain. They 

show very coarse (D50 > 20 cm), jammed, angular blocks combined with very steep 

channel slopes (0.2–0.5) in the uppermost reaches, fining very rapidly into a 

moderately well-sorted veneer of medium- to coarse-grained (D50 < 2 mm) sand 

mixed with occasional gravel and cobble clasts as the slope falls beneath ~0.15. 

Below this (generally <50 cm) is bedrock.  Almost all of the sediment in the channels 

is angular, subangular, or subrounded and lacks flat faceted faces. 

 

 

 

 

 

 

Figure 2.5 (next two pages). Field photos illustrating key geomorphic features 

for domain 3. (a) Aggradational valley flats in Karu valley, looking north. 

Notice the drape onto the rocky sidewalls of this well-irrigated surface, and also 

the convex valley sides, with a break in slope clear toward the left of the image. 

Moraines are visible in the mid-distance (light tan structures), and eventually 

domain 2 and a hanging valley at the head of domain 1. (b) Channel entrenched 

a few meters into top surface of valley floor, Basgo valley. Channel is ~5 m 

wide. An artificial dry stone wall has been constructed on the far side of the 

channel. River is shown in flood, several days after exceptionally heavy rains in 

summer 2006. (c) Lateral and terminal moraines in Leh valley domain 3, looking 

southward. Indus Valley and Indus molasse sediments of the Zanskar Range 

beyond it are visible in the distance. (d) Indus Valley and fan of Phyang Valley 

from airplane, looking north. Notice entrenchment of modern channel into 

slightly (10–20 m) raised fan surface, and abandoned channel courses across fan. 
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Figure 2.5a,b.  Figure continues overleaf; caption on previous page. 

(a) 

(b) 
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Figure 2.5c,d.  See previous page for caption. 

(c) 

(d) 
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2.4.2.3 Interpreted Geomorphic Structure 

 

The differences between this form and the valley form described previously 

can be ascribed to the fact that no glacially molded reach had developed in these 

catchments. Glaciers have been present in these valleys, as demonstrated by the 

accumulations of diamicton on undissected surfaces perched above the modern 

channel, but they have not carved significant U-shaped sections or widened the 

valley floors. Consequently, the amount of glacially processed sediment apparent in 

these valleys is also much smaller, with very rarely glacially faceted sediment and 

much more commonly angular slope failure debris in the channels. This is most 

apparent in the topmost, steepest reaches of the channels, where a true colluvial, 

debris-flow–dominated process regime has developed (angular, jammed coarse 

blocks giving way suddenly downstream to moderately well-sorted fluvial sands and 

gravels, indicating that flows of these blocks have frozen). This arrangement is 

typical of unglaciated, unperturbed, steep bedrock channel systems in other 

mountainous areas (Montgomery and Foufoula-Georgiou, 1993; Stock and Dietrich, 

2003). We interpret the accumulations of poorly sorted cobbles forming incised 

terraces in the lower reaches as broadly analogous to the aggradational domain 3 in 

the glaciated catchments described previously, in that they represent a proximal 

storage site for material mobilized from the higher parts of the catchment, though 

they lack the inset morainal landforms seen in those cases. These older sediments are 

coarser than the modern channel material, and are perhaps debris-flow influenced. 

This material may be derived from early stage postglacial mobilization of the small 

amounts of loose diamicton present higher up these catchments. 
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2.5 Remotely Sensed Data 

 

Methodology for the acquisition and processing of the DEM is described in 

Appendix A. For each trunk stream in the studied catchments, we derived data 

covering downstream distance (x), elevation (z), drainage area (A), and channel slope 

(S), smoothed across a 500 m window to remove finer scale noise in the data. We 

then used these extracted variables to examine the long profile for each trunk stream 

(plotting z versus x), and the concomitant variation in A and S with x. Prompted by 

the form of Equation 2.2, we also plotted slope versus area for each stream. Where 

discontinuities were present in the S-x and S-A plots, we subdivided the profiles into 

discrete segments, on the basis of local maxima in slope (see Fig. 2.6). These “points 

of curvature” were identified analytically for each stream, allowing unbiased 

comparison. Data were also visually inspected to ensure that the magnitude of the 

slope maximum peak was larger than the inherent scatter in the slope values 

surrounding it; where it was not, the point of curvature was set to the top of the 

profile or to a better-defined smaller peak. Where two or more slope peaks of similar 

magnitude were present, the one furthest downstream was selected. The point of 

curvature defines the position of a knickzone within a profile, a broad convexity 

(sensu Zaprowski et al., 2001), rather than a localized reach-scale feature. The 

location of each point defines an associated distance downstream, xPC, and upstream 

drainage area, APC, for the downstream channel segment (Fig. 2.6). We also recorded 

the corresponding values of downstream distance and drainage area at the end of the 

downstream segment, xtot and Atot. On the basis of Equation 2.2, we then fit power 

laws to each of these segments downstream of xPC on the slope versus area graphs, 

iteratively minimizing the sum of the squares error in the predicted value of slope. In 

some cases, a distinct but slight steepening is observed in the lowest few kilometers 

or less of the channels, of which the data presented in Figure 2.6 provide a typical 

example. We attribute this to minor base-level change occurring in the Indus Valley 

and propagating upstream as already described in the field observations, and where 

apparent, this oversteepened reach was excluded from the analysis. However, we 

also repeated the analysis without removing these sections and were able to show 
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that this removal does not significantly affect any of the conclusions drawn herein. 

The effect of this short oversteepened reach is typically just to increase the error on 

the fitted power laws, rather than to systematically alter them. 

 

 

 

 

 

 

 

Figure 2.6. Example plots for a typical catchment showing derivation of θ from 

digital elevation model (DEM) data. See text for full explanation. (a) Long 

profile. Domains, known from field observations, are indicated with Roman 

numerals. (b) Slope of long profile. Point of curvature, PC, the slope maximum 

where long profile becomes concave on a long wavelength, is defined here. 

Open circles upstream of this point are excluded from numerical analysis. 

Steepening data at the toe of the channel, interpreted as related to base-level 

change in the Indus, are plotted as crosses and were also excluded from analysis. 

Small arrows pick out sawtooth pattern of steepening and shallowing reach 

segments within domain 1—these correspond to the large-scale step-pool 

channel structure as described in the field observations. (c) Drainage area 

evolution downstream. (d) Slope-area plot. Symbology as in b. Line represents 

least squares best fit to filled circles; θ is the exponent on A from this fit. 
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These fitted power laws yield a value of steepness (ks) and concavity (θ) for 

each channel segment (see Equation 2.2). Note that we have deliberately chosen not 

to fit normalized steepness indices based on a reference concavity (see, e.g., Wobus 

et al., 2006b) to our data, since we shall show that significant and meaningful 

variations in measured channel concavity systematically occur, rendering the idea of 

a constant reference concavity meaningless for these catchments. We also do not 

discuss further variations in ks within this data set, since it is known to be strongly 

correlated with θ (Wobus et al., 2006b), and if we cannot use a reference concavity 

to deconvolve this effect, this correlation will overwhelm any other signal not related 

to the concavity in the data. The same rationale has been applied to fit Equation 2.3 

to the data set, providing values of channel curvature (φ) alongside our concavity 

values. 

 

We constructed acceptable power-law regressions on the data for 58 trunk 

streams in 50 different catchments. This full data set is presented in Appendix B as 

Figures B1 and B2.  The remaining streams are either too short (significantly less 

than one order of magnitude change in abscissa downstream of knickzone), have too 

many artifacts present in the SRTM data, or clearly do not follow a power-law 

relationship in slope versus area in their lower segments. These latter two cases are 

represented by 95% confidence intervals exceeding 50% of the calculated concavity 

value. There is no spatial pattern to the distribution of these poorly fit catchments 

along the batholith, and we hypothesize that they record areas where the glacially 

inherited form of the catchment has not been significantly modified by the 

subsequent fluvial system. 

 

We recognize two distinct channel forms amongst the analyzed long profiles. 

The first represents a reference case, where the steepest reaches of the catchment are 

in the headwaters, and the whole stream is described as a single segment with a 

single power law fit through the slope-area data. These catchments correspond 

exactly to those lacking U-shaped valleys in their upper reaches, as described in the 

field observations. In the second case, each catchment shows a major knickzone 
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somewhere in the middle of its long profile, which divides it into discrete segments. 

Upstream of this knickzone, the valley form is commonly convex-up on a large scale, 

although on a finer scale, it can sometimes be subdivided into a number of short 

consecutive concave reaches (see Fig. 2.6). Downstream of the knickzone, the 

channel may be modeled as a single concave reach, with a well-defined power-law 

regression line. This second catchment form corresponds to the three-domain 

catchment type recognized in the field and described in the previous section. The 

point of curvature corresponds to the position of the knickzone, and it is always 

present within the gorged section of domain 2. The convex reach upstream of the 

knickzone thus corresponds to domain 1 and the upper part of domain 2, and we 

correlate the finer-scale concave reaches here with the pool-riffle type sequences 

observed in domain 1. Downstream of the point of curvature, the river flows entirely 

on a mobile sediment bed, either incising (domain 2) or depositing (domain 3)—the 

channels are self-formed downstream of the point of curvature. Visual inspection of 

the satellite imagery suggests that a point of curvature further downstream is 

associated with more extensive expression of domain 1, and in those catchments the 

transition from domain 2 to 3 is nearer the catchment outlet. 

 

We checked the accuracy of our remote-sensed channel bed slope 

measurements by comparing them directly to field measurements of slope on a 30 m 

scale taken for the catchments of Basgo and Leh (see Figs. B3 and B4 in Appendix 

B). Within domains 2 and 3, field slopes match slopes extracted from the DEM well, 

though they tend toward the low end of observed values. Within domain 1, there is 

more variability, reflecting the rapid variation of true slope induced by the pool-riffle 

morphology on a scale much less than the 500 m averaging of DEM slope. However, 

field- and DEM-derived values are correlated 1:1 within error (Fig. B4 in Appendix 

B), and this leads to no differences in calculated concavities using either one data set 

or the other. 

 

Our concavity data for all analyzed catchments fall in the interval 0.22 < θ < 

5.57, and many values are significantly elevated above the expected theoretical range 

for streams in erosional steady state. A t-test confirms that these data are not 
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consistent with the highest expected steady-state value of θ = 0.6 (Whipple and 

Tucker, 1999), to 95% confidence. Instead, we observe from the remotely sensed 

imagery that the significantly elevated values of concavity are associated with more 

extensive expression of domain 1 in the upper reaches, i.e., with a heavier glacial 

influence on the catchments. Moreover, concavity values remain high throughout the 

lower half of domains 2 and 3, with no apparent change as the system switches from 

incisional to aggradational behavior (see following). Those catchments that do not 

develop domain 1 at all, however, i.e., those that are not noticeably glacially beveled 

in their headwaters, retain concavities consistent with the expected theoretical range 

of 0.3 < θ < 0.6. We are able to investigate this hypothesized relationship 

quantitatively by plotting concavity (θ) versus APC/Atot for each analyzed catchment 

(Fig. 2.7); this value determines the relative position of the glacially induced 

knickzone within each catchment, and so quantifies the relative impact of major 

glacial alteration downstream (see Figs. 2.6 and 2.7). A catchment lacking 

development of domain 1 will have an extremely low value of APC/Atot, while a 

catchment where domain 1 extends far downstream would have a value of APC/Atot 

approaching 1. Note, however, that as APC/Atot increases, the amount of data on 

which our concavities are fitted also falls, increasing the analytical error on this 

value. This is reflected in the 95% confidence error bars shown in Figures 2.7 and 

2.8, but even considering this error, we are still able to show a systematic increase in 

θ with APC/Atot. Notice that we could equally well have plotted θ versus xPC/xtot, 

expressing extent of glaciation in terms of downstream distance instead of drainage 

area. We have chosen the drainage area plot because we wish to go on to attribute 

these trends to disequilibrium response of the systems to water discharge flowing 

into and through domains 2 and 3 (see Discussion). 
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We may also isolate the role of changes in catchment drainage structure, i.e., 

Hack’s law, in causing these effects by plotting channel curvature φ versus APC/Atot, 

as described in the Methodology. We also plot φ versus xPC/xtot, since this is more 

geometrically and dimensionally consistent. These two plots are shown in Figures 

2.8a and 2.8b. Notice that broadly the same trend is evident in this figure as was 

shown in Figure 2.7, but that the fit is poorer and the data are less well grouped, 

especially for Figure 2.8a. This is to be expected, however, as we have removed the 

controlling effect of discharge on channel form by plotting curvature not concavity, 

and this problem is amplified by the mismatch of variables in the former of the two 

Figure 2.7. Relation of channel concavity to relative area upstream of point of 

curvature. Error bars are 95% confidence limits; note log scale on the y-axis. 

Data points represent individual catchments along the batholith. Cartoons 

illustrate effect of this concavity change on channel long profile form for 

channels showing little alteration by glaciers (A) and greater alteration (B), and 

also show schematic relative positions of domains downstream (denoted with 

Roman numerals). 
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plots. Note that we consider trend shown in Figure 2.7 to be stronger than that shown 

in Figure 2.8b, because the data are less scattered, and also because the relationship 

in Figure 2.8b suggests a maximum theoretical value for the curvature, which seems 

less physically reasonable than the asymptotic trend suggested by Figure 2.7. Even 

so, the broad similarity between Figures 2.7 and 2.8a–2.8b informs us that the river 

channels are indeed responding to increased amounts of glaciation by varying their 

slopes, as opposed to responding to altered drainage structure. This result is 

consistent with the field evidence we have presented for active aggradation of and 

incision into the valley floor in domains 2 and 3. We also note that no correlations 

are seen with either absolute catchment size, or absolute area above the point of 

curvature (Figs. 2.8c and 2.8d). 

 

 

 

 

 

Figure 2.8. Analyses of other channel scaling metrics versus measures of 

relative amounts of glacial alteration in channel headwaters. All error bars are 

95% confidence limits; note linear scales on the y-axes. Data points represent 

individual catchments along the batholith. Graphs contrast with Figure 2.7. (a) 

Channel curvature versus relative area upstream of point of curvature. (b) 

Channel concavity versus relative channel length upstream of point of curvature: 

notice occasional significantly depressed values of φ at elevated values of 

xPC/xtot. (c) Channel concavity versus absolute area upstream of point of 

curvature. (d) Channel concavity versus total catchment area. 



Chapter 2  Hobley, 2010 

 

55 

 

Unfortunately, there is neither enough independent change in drainage area 

within domain 2, nor enough surety as to the precise location of its lower boundary 

across multiple catchments, to fully assess the possibility that domains 2 and 3 have 

different concavity values. However, we examined the convergence of the values of 

θ and φ to assess whether they systematically increase or decrease downstream, as 

presented in Appendix Section B3. The data suggest that this is not the case (see Fig. 

B5), and this implies (though cannot demonstrate) that there is not a significant and 

uniform scaling change either between domains 2 and 3 or more generally within 

either domain. 

 

 

 

2.6 Discussion 

 

2.6.1 Causes of Observed Concavity Trends 

 

We suggest four possible reasons for the systematic increases in downstream 

segment concavity with point of curvature (and hence knickzone) position in the 

profile, as seen in Figure 2.7: 

 

1) The signal is an artifact of either (a) systematically incorrect values of 

slope in the remotely sensed data, or (b) an increase in the relative 

importance of data scatter as the channel segment being analyzed 

becomes proportionally smaller. 

 

2) The signal is glacial, carved in by the passage of ice into the lower 

regions of the catchment, and is unaffected by subsequent return to 

fluvial conditions. 

 

3) Altered hydrologic conditions in the river are responsible for the signal, 

either (a) changes in the stochasticity of discharge in the channel caused 
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by the presence of a glacier in the upper reaches of the valley, or 

alternatively (b) orographic rainfall effects. 

 

4) The signal is a consequence of the glacially generated knickzone in the 

middle reaches of the channel. The knickzone alters the expected scaling 

of variables such as channel width or sediment flux in the system, 

violating the assumptions behind the slope-area relationship. 

 

We preclude hypothesis 1a on the basis that excellent correlation is obtained 

between field derived and remotely sensed slope values where known (see also Figs. 

B3 and B4), and values of concavity obtained for these catchments using each type 

of slope data are within error of each other. The role of processes in hypothesis 1b is 

also unlikely to be large, since there is no reason to assume that error introduced by 

scatter should be systematically positive, and no correlation is seen with the absolute 

parameters shown in Figures 2.8c and 2.8d. 

 

We do not favor hypothesis 2 for this field area since the channel shows 

characteristics of being self-formed downstream of the point of curvature, as 

previously discussed in the field observations, meaning the signal is not purely 

glacially inherited. Moreover, due to the log-log scaling, much of the concavity 

signal is accommodated by changes at low gradient, that is, in the depositional 

regime of domain 3. Thus, only small changes in bed elevation, and hence in volume 

of sediment redistributed, are required to allow these small changes in slope. This 

strongly implies that the channel can readily adjust its concavity. However, similar 

work in nonglaciated regions will be required to conclusively falsify this hypothesis. 

 

Modified hydrologic conditions induced by the upstream glacier (hypothesis 

3a) may play some role. The exact effects, however, will depend strongly on the river 

response time scale. On interannual time scales, the presence of glaciers covering 

some intermediate proportion of the catchment will reduce the variability of runoff 

(Fountain and Tangborn, 1985; Jansson et al., 2003), since there is almost always 

background runoff from the melting glacier onto which precipitation spikes are 
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superimposed, and moreover the amplitude of each precipitation spike will be 

reduced as much of the precipitation arrives as snow, which will be released into the 

rivers gradually. However, melting glaciers can increase the magnitude of the 

individual largest flood events if glacial floods coincide with peak summer runoff 

(Braun et al., 2000), and the snowmelt will significantly alter the shapes of the 

associated flood hydrographs. Other authors have previously demonstrated that such 

changes can alter the responses of an incising river network, including channel 

concavity, largely by changing the frequency of breaching of erosion thresholds or 

by interacting with any nonlinearity in control of erosion by discharge within the 

models (Craddock et al., 2007; Molnar et al., 2006; Snyder et al., 2003b; Sólyom and 

Tucker, 2004; Tucker and Bras, 2000). These effects may also be enhanced by the 

aridity of this environment noted in the regional overview (Molnar et al., 2006). 

However, these studies have indicated that these changes, which make the flood 

hydrographs more spiky and less like the uniform, constant rain regime assumed by a 

standard stream power approach, should reduce, not increase, concavity, and thus 

this seems unlikely to be a first-order control on the concavity trends observed here. 

We note though that these studies have been carried out only on incising channels 

and cannot directly explain the behavior of the aggrading reaches, though we 

anticipate that similar arguments would apply in such regions, based on sediment 

mobility thresholds. Additionally, none of these modeling approaches explicitly 

considers disequilibrium scaling, instead only analyzing landscapes under 

topographic steady state, so we cannot preclude hypothesis 3a entirely. 

 

The other alternative, hypothesis 3b, is that rainfall itself may be a function of 

altitude in these catchments, with more arid conditions higher up (Anders et al., 

2006; Bookhagen and Burbank, 2006; Craddock et al., 2007). Such effects do have 

the capacity to increase concavities, as seen here by increasing erosivity at lower 

altitudes for a given drainage area. However, we note that this effect should also 

somewhat increase the concavities of those catchments that do extend to higher 

altitudes but do not develop major knickzones (e.g., Tharu valley in Fig. 2.1), which 

does not appear to be the case in our data. 
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We thus attribute the observed concavity trends mainly to hypothesis 4, and 

we suggest that conventional scaling relations must be altered during transient river 

response in these settings. Detailed analysis of quantitative field data, for instance, 

channel width or measured sediment fluxes, will be necessary to conclusively show 

the nature of this change, but since we have observed nonlinear amplification of 

concavity with relative knickzone position, we infer that ks must itself be a nonlinear 

function of discharge, and we anticipate that the scaling change will primarily be 

within the nonlinear elements of Equation 2.1, i.e., in the sediment flux or threshold 

parameters. A stream power incision law method cannot capture the dynamics of the 

river in the aggrading zone, but the very fact that this trend is evident so strongly 

within the depositional domain 3 implicates the interaction of sediment flux and 

caliber with carrying capacity of the river as the ultimate cause of this effect. 

 

 

2.6.2 Implications 

 

2.6.2.1 Direct Control of Downstream Channel Hydraulic Scaling by Upstream 

Glacial Modification 

 

We have demonstrated that for the catchments draining south into the Indus 

River from the Ladakh Batholith, the rate of change of local channel slope of each 

river below a glacially induced knickzone is set according to both contributing 

upstream drainage area and relative position of the knickzone within that catchment. 

This predictable pattern provides insight into the route by which such perturbed 

channels approach an equilibrium state. We may then test whether existing incision 

law and sediment deposition formulations successfully map out this path. An 

appropriate formulation will allow us to forward model this response, both within the 

conventional frameworks applicable to incising systems specifically where the gorge 

is developed in domain 2, and also continuously throughout the whole length of the 

river in domains 1, 2, and 3. 
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2.6.2.2 Rates and Time Scales of Paraglacial Recovery 

 

Variations in the concavity of these systems also have implications for 

understanding the distribution of postglacial sediment fluxes out of these channels 

and into the Indus though time. During glacial retreat, we expect a coarse sediment 

(pebble-boulder fraction) production spike, as the glacially buttressed and 

oversteepened bedrock side walls of the valleys have their ice support removed and 

are exposed for the first time to the intense freeze-thaw cycles of the periglacial 

environment (Church and Ryder, 1972; Dadson and Church, 2005; Harbor and 

Warburton, 1993). However, we have shown here that in order for the postglacial 

valley floors to adjust their slopes in line with Equation 2.2, they must both incise 

into these floors around the point of curvature and aggrade in their furthest 

downstream reaches. This means that some significant fraction of the coarse 

sediments produced during glacial retreat does not reach the Indus, but is initially 

locked up in the more proximal lower reaches of the tributary valleys. If not flushed 

out by subsequent glacial readvance, this sediment will only be released following 

significant base-level fall on the trunk stream, which need not be coupled to glacial 

dynamics at all, or by significant relaxation of the knickzone in the upper reaches 

back toward a concave profile. Thus, we should expect to observe release of glacial 

sediments into basins further downstream across time scales much longer than those 

created by the movement of the ice masses themselves—both as discrete pulses, 

driven by bottom-up base-level changes, and gradually, driven by relaxation of the 

glacial modification of the catchment. 

 

We can obtain a lower bound estimate for this postglacial recovery time by 

predicting the elevation of the hypothetical channel with curvature φ = 0.5 for the 

example catchments of Basgo, Leh and Sobu using the channels’ current maximum 

and minimum elevations, and then comparing the elevation of the point of curvature 

now with that predicted in the hypothetical channel (see Fig. 2.9). We work with 

curvature as opposed to concavity here since this allows us to handle the long profile 

without assuming a drainage structure, and we select a value of 0.5 on the basis of 
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the minimally altered catchments in Figure 2.8b. We know the approximate 100 ka 

age of the postglacial surface (Owen et al., 2006), the maximum amounts of incision 

into this surface in that time, and the equivalent heights of the hypothetical “steady-

state” profiles at the same points. If we then assume that rates of recovery toward 

equilibrium are likely to exponentially decay (e.g., Ballantyne, 2002a; Howard, 

1988), as indicated in the inset to Figure 2.9, then we may calculate an approximate 

relaxation time scale for these catchments by solving the equation 

 

tt e
k

z
λ

λ
−=  

(2.4) 

 

where z is the elevation above our steady-state profile, t is the time elapsed since 

deglaciation, λ is the decay constant (equal to the inverse of the e-folding time scale, 

τ), and kt a constant. Table 2.2 presents these data and the calculated rates and time 

scales. Thus, under the extremely optimistic assumption that this early rate of 

recovery will be sustained throughout the relaxation, especially if and when the 

incising river strikes bedrock rather than cutting into loose sediment, we quote a 

lower bound of ~500 k.y. for the response time of this system, with perhaps a factor 

of two error reflecting known error in the time elapsed since glacial retreat. Thus, if 

these catchments are not tectonically perturbed, we can expect to see significant 

quantities of sediment actually produced during glacial retreat being locally stored 

and then subsequently and gradually released into the Indus River and beyond 

throughout at least the next half a million years, assuming that no further glacial 

readvances occur. 
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TABLE 2.2.  RATES AND TIMESCALES OF RESPONSE FOR SAMPLE CATCHMENTS 

Catchment Basgo Leh Sobu 

Data used    
Max. depth of gorge (m) 53 65 78 

Present elevation of max. depth point 
above equilibrium profile (m) 

360 260 350 

Time since deglaciation (k.y.) 100 100 100 

    

Calculated values    

Decay constant, λ (/k.y.) 0.00137 0.00223 0.00206 

Time constant (e-folding time), τ (k.y.) 730 450 490 

95 % recovery time (k.y.) 2180 1340 1460 

Max. incision rate (mm/yr) 0.53 0.65 0.78 

 

 

 

Figure 2.9. Schematic of method for estimating catchment recovery time. Solid 

black line represents present channel profile; dashed line represents 

reconstructed profile immediately after deglaciation based on gorge sidewall 

elevations. Present-day positions of domains are demarked and labeled with 

Roman numerals. Dotted line represents hypothetical idealized unperturbed 

profile for catchment of this drainage area, based on a curvature of 0.5 and a 

pinned point at the head of the catchment. This approach requires the removal of 

the minimum amount of material (light shading). Arrows indicate maximum 

amounts of lowering known to have taken place since the local last glacial 

maximum (white arrow) and that must occur in total to reach this hypothetical 

profile (black arrow). We may then calculate recovery times based on dates 

provided in the literature for the local last glacial maximum, and an assumed 

exponential decrease in incision rates (see text and inset). 
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This calculation and interpretation evoke the conclusions of both Church and 

Slaymaker (1989), who argued the importance of secondary remobilization of 

sediments in Quaternary landscape evolution, and Dadson and Church (2005), who 

used a coupled fluvial and landslide landscape evolution model of a postglacial U-

shaped valley to demonstrate that a pulse of sediment out of this system could be 

delayed from the actual time of deglaciation by several to many thousand years. We 

note also the results of Brocard et al. (2003), who calculated a response time scale of 

20 k.y. for the Drac River in response to glacial retreat from its lower reaches, and 

the similar but even more rapid response times (~10
2
 – 10

3
 yrs) reported by Meigs et 

al. (2006) for a similar scenario, but emphasize that both of these studies examined 

readjustment occurring by the fundamentally different mechanism of “bottom-up” 

glacially controlled base-level fall rather than the “top-down” response to glacial 

carving of the headwaters of a catchment discussed here. Perhaps the closest match 

to our data is to the modeling work of Braun et al. (1999), who reported time scales 

on the order of 50 k.y. for fluvially transported paraglacial sediment fluxes out of a 

mountain range–scale erosion model (see their Fig. 5a). However, our results 

indicate that sizable volumes of glacial sediment will continue to be stored on time 

scales at least one order of magnitude longer than this. This constitutes the first 

recorded instance of such long time scales for a catchment-scale paraglacial 

response. It may be argued that this is partly due to the aridity of this environment, 

but we note that the maximum incision rates calculated here are not particularly slow 

(see following discussion), and aridity probably cannot account for the whole order 

of magnitude difference from the Braun et al. results. We suggest that some of the 

mismatch is also due to overly simplistic implementation of fluvial transport laws 

within such models, probably related to the difficulty in mobilizing the large boulder 

clasts present within the diamicton mantling such landscapes. 

 

This time scale is however directly comparable to those suggested for 

tectonically perturbed landscapes. Whipple (2001) gave a response time of between 

0.25 and 2.5 m.y. for detachment-limited river channels; Densmore et al. (2007) have 

reported time scales of 10
5
–10

6
 yr for coupled catchment-fan systems. Our result also 
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conforms with response time estimates from Whittaker et al. (2007b) of between 1 

and 3 m.y. for relaxation of a tectonically forced knickzone back to a smooth 

concave-up profile, a situation featuring a very similar channel long profile geometry 

but with dissimilar forcing mechanism. We also note that the peak time-averaged 

incision rate within the gorges of both Leh and Basgo valleys is between 0.5–1.0 

mm/yr, which is typical of rivers in many actively uplifting regions (Milliman and 

Syvitski, 1992), but perhaps surprising in a landscape containing so many ancient 

landscape elements. Both of these similarities—in rate and time scale—further 

emphasize that the long-term geomorphic response of a landscape recovering from 

glaciation is likely to look very much like the response to any other perturbation, be 

it tectonic or climatic, since beyond the spatially and temporally restricted domain of 

periglacial processes, the same suite of landscape processes are responsible for 

change in both. 

 

 

2.7 Conclusions 

 

We have described the generalized geomorphic structure of catchments 

draining southward from the Ladakh Batholith into the Indus River. Each catchment 

where glacial erosion has lowered the down-valley gradient of the valley floor at 

higher elevations consists of three domains arranged sequentially downstream (Fig. 

2.2). The upper domain is characterized by smooth U-shaped valley cross sections 

and small-scale postglacial sediment reorganization by the modern river, the middle 

domain is characterized by the incision of a large postglacial gorge into the 

diamicton mantling the floor of the valley, and the lower domain is characterized by 

the onset of fluvial aggradation over the glacial valley floor. This clear, repeated 

pattern makes these catchments an ideal natural laboratory for the study of fluvial 

dynamics in a transient setting. 

 

By comparing drainages with differing degrees of glacial sculpting, we show 

that past glacial modification of the upper reaches of a catchment in the form of 

subglacial abrasion can have profound first-order influence on the hydraulic scaling 
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of the channel downstream. Channel concavities downstream of any convexity in the 

channel long profile are systematically and nonlinearly elevated above the expected 

value range of 0.3–0.6, where more elevated values are associated with the presence 

of the convexity proportionally further downstream. This effect is associated with 

increasing relative sediment flux through the channel system and is independent of 

possible drainage restructuring induced by glaciation and of the influence of 

inherited relict glacial landform, making it a true paraglacial response. 

 

We demonstrate that the response times of these paraglacial systems must 

exceed 500 k.y., but nevertheless that implied time-averaged maximum rates of 

fluvial incision are on the order of 1 mm/yr, comparable with rates in many 

tectonically active settings. Furthermore, we emphasize that the coupled incisional-

depositional nature of these systems means that large volumes of glacially derived 

sediments may be held within previously glaciated mountain belts on time scales on 

the order of 10
5
–10

6
 yr post-deglaciation. These time scales are at least an order of 

magnitude longer than any previously reported. If tapped by subsequent tectonic 

perturbation of the chain, this may have significant consequences for understanding 

the stratigraphic architecture of neighboring basins. 
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3. RIVER SCALING IN TRANSIENT LANDSCAPES
1
 

 

CHAPTER ABSTRACT 

 

The scaling of the slope of a river channel against upstream drainage area is a 

widely used metric in fluvial geomorphology, and is well understood for steady 

state conditions. However, the scaling in landscapes that have been perturbed by 

climate or tectonics is poorly characterized and not well understood. We 

compare the slope-area scaling of three sets of catchments in the east 

Himalaya/Tibetan plateau, West Himalaya and Carpathian Alps, which are all 

responding transiently to differing tectonic or climatic perturbations. In all these 

examples, downstream of channel long profile convexities (knickzones), the 

exponent in this scaling relationship (the concavity) is elevated above values 

that characterize topographic steady state. Uniquely, we show that its value is 

systematically and nonlinearly related to knickzone position in the catchment. 

Such scaling is best explained by sediment flux dependent channel incision and 

aggradation. We show how these results impact on the application of slope-area 

scaling to the interpretation of relative uplift histories from transiently 

responding rivers. 

 

 

3.1  Introduction 

 

The scaling exponent that relates the slope of a river bed to its upstream 

drainage area defines the concavity, θ, of a long river profile such that  

 

S = ksA
–θ 

(3.1) 

 

where S is local channel gradient, A is upstream drainage area (acting as a proxy for 

channel discharge), and ks and θ are defined as the steepness index and concavity 

respectively (Flint, 1974). In many landscapes, θ is found to be relatively invariant, 

ranging from 0.3 to 1.2, averaging 0.5 (Knighton, 1998; Whipple, 2004; Whipple and 

Tucker, 1999). This observation forms a key calibration for numerical landscape 

evolution models and underlies many quantitative analyses of river systems. For 

                                                 
1
 A version of this paper has been submitted to Geology: 

 Hobley, D.E.J., Sinclair, H.D., and Cowie, P.A., in review, River scaling in transient 

landscapes: Geology. 
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example, it is commonly used to interpret variations in rock uplift rate affecting 

different channels in a region (e.g., inter alia, Cyr et al., 2009; Harkins et al., 2007; 

Kirby and Whipple, 2001; Kirby et al., 2003; Kobor and Roering, 2004; Snyder et 

al., 2000; Wobus et al., 2006b).  This approach generates a normalized steepness 

index assuming a constant concavity for all channels and that all channels have 

reached erosional steady state. Another application of assumed concavities is the 

reconstruction of pre-glacial valley long profiles, enabling quantification of glacial 

downcutting by the upstream projection of an assumed fluvial profile (Brocklehurst 

and Whipple, 2002).  

 

The form of Equation (3.1) is often explicitly linked to the stream power law 

(Kobor and Roering, 2004; Whipple, 2004), 

 

E = krkckτcf(Qs)  A
m
 S

n 

(3.2) 

 

where E is rate of channel incision, kr and kc are erosivity parameters based on 

substrate resistance and climate respectively, and kτc and f(Qs) are threshold for 

erosion and relative sediment flux terms (both likely to be strongly non-linear). This 

assumes erosional steady state across the landscape, and that kr, kc, kτc and f(Qs), m 

and n are all constant and nonzero, and yields, where K is a constant, 

 

K = kr kc  kτc f(Qs),   θ = m/n. 

(3.3) 

 

In field areas thought to be in steady state, the observed average θ = 0.5 matches well 

with independently derived ratios of m and n (Whipple and Tucker, 1999). 

 

However, channels which are in disequilibrium with their climatic or tectonic 

environment – transiently responding channels – may have significantly elevated 

values of θ, often exceeding 1. Such concavities are generally associated with broad 
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wavelength convexities, or knickzones, in the channel long profiles, and with 

downstream transitions to fully alluvial conditions (Hobley et al., 2010; Schoenbohm 

et al., 2004; VanLaningham et al., 2006; Whipple, 2004), but their origin has not 

been fully explained. Disequilibrium channels are important for discriminating 

between the processes of landscape evolution (e.g., Whipple and Tucker, 2002). 

Furthermore, Zhang et al (2001) have claimed transient landscape response plays a 

vital role in global sediment budgets. 

 

This study uses remotely sensed data from three contrasting, transiently 

responding landscapes to investigate the causes of high concavities downstream of 

first-order convexities in river long profiles. Based on very similar scaling trends in 

the three sites we argue that this scaling is only compatible with channel evolution 

which is sediment flux dependent, especially where the channels incise. We then 

discuss the potential influences of such scaling on attempts to read past tectonic 

changes from modern topography. 

 

 

3.2 Field Areas 

 

We compare the scaling of sets of broadly linear, subparallel, perturbed river 

channels in three distinct environments, two glacially perturbed, one tectonically 

perturbed (Fig. 3.1 & Table 3.1). 

 

 

3.2.1 South Flank of the Ladakh Batholith, NW Indian Himalaya 

 

Along-strike variation in glaciation has resulted in knickzones carved into the 

present channel long profiles at varying positions along their lengths. The catchments 

comprise an upstream domain of lower river gradients where the channel does not 

incise down into the substrate, a middle domain straddling the knickzone where the 

channel responds by downcutting, and a lower domain where the river aggrades (Fig. 

3.2a). The reduction of gradients upstream of the knickzone is the result of subglacial 
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abrasion above the equilibrium line altitude for the former glaciers (Jamieson et al., 

2004). Bedrock is homogenous and crystalline, but the catchments are thickly draped 

with loose glacial debris and colluvium, which decouple the channel from the 

bedrock hillslopes. All the incision since the local last glacial maximum (LLGM) 

remobilizes these sediments (Hobley et al., 2010; see also Chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Field area overviews of the (a) Ladakh, (b) F�g�ra� and (c) Red 

River sites.  Catchments studied are shaded, and analyzed trunk streams within 

them shown in white. Axial rivers downstream are labelled.  Surrounding 

topography is shown as hillshade for a and b, elevation for c. Insets show 

location maps. 
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TABLE 3.1. KEY GEOMORPHIC CHARACTERISTICS FOR EACH FIELD LOCALITY 

Locality Ladakh Batholith F�g�ra� Alps Red River Region 

Perturbation type 
Glacial (LLGM 
ca.100 k.a.)* 

Glacial (LLGM 
ca. 15 k.a.)† 

Tectonic (base level 
fall post Pliocene)§ 

Present climate High altitude desert Temperate continental Monsoonal tropical 

Present precipitation (mm/yr) c. 100# >600** c. 800†† 

No. of catchments 70 28 97 

Median catchment length (km) 30 10 25§§ 

Catchment peak elevations (m) 6000 2500 2000-3000 

Outlet elevations (m) 2000-4000 370-430 100-1300 

Axial river Indus Olt Red River 

   Note: Data drawn from – *Hobley et al., 2010 and Owen et al., 2006; †Bartmus, 1994; §Schoenbohm et 
al., 2004; #Holmes, 1993; **Tantau et al., 2006; ††Yunnan Province Meteorological Bureau Information 
Office, 1982. 
   §§Four catchments breach northern drainage divide and exceed 100 km. 

 

 

 

 

3.2.2 North Flank of the F�g�ra� Alps, Carpathians, Romania 

 

The range is developed in a metamorphic anticline that has been thrust 

southwards; the north flank of the range is not fault bounded, but is presently 

uplifting relative to the Transylvanian basin to the north (Fielitz and Seghedi, 2005). 

As in Ladakh, the channels divide into three domains characterised by upper valley 

channel stability, followed by incision, and then aggradation (Fig. 3.2b). However, 

these catchments are less heavily glacially altered, with a smaller upper domain and 

presence of the knickzones higher up the systems, if at all. These rivers contain much 

less sediment compared to Ladakh, and incision occurs directly into channel bedrock 

– accumulations of glacial debris are only observed in the upper domain. The 

channel is coupled to vegetated hillslopes in domain 2 (Table 3.1). Transition to the 

depositional regime occurs close to the mountain front, with extensive piedmont 

alluvial fans extending north from this, largely excluded from this analysis (Fig. 3.1). 
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3.2.3 Red River Region, Yunnan Province, China 

 

Data and observations for this field site are drawn directly from Schoenbohm et al. 

(2004). This landscape has not been glaciated. Channels are tributaries to the Red 

River and display knickzones in their long profiles, typically as two major profile 

convexities with some smaller knickzones between these (Fig. 3.2c). These 

discontinuities are the product of a ~1400 m relative base level fall on the Red River, 

with the two major knickzones reflecting punctuated vertical motions driven by 

faults.  They are not lithologically controlled. The headwaters are dominated by 

meandering alluvial channels flowing through a deeply weathered, low relief, relict 

landscape. Below the first knickzone the channels pass into incised gorges, cut up to 

1 km into bedrock and coupled to soil-rich hillslopes. Below the second knickzone 

the gorges become steep, landslide-dominated, soil-sparse V-shaped canyons with 

bedrock channels. This field site permits the investigation of channel scaling for a 

system with similar dimensions and geometries to the Ladakh examples, but 

tectonically forced, and with pure bedrock channels below the knickzones. 
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Figure 3.2. Example plots of stream data for each field site – (a) Ladakh, (b) 

F�g�ra�, (c) Red River region (after Schoenbohm et al., 2004). Main plots show 

long profiles; inset boxes show associated slope(S)-area(A) scaling in log-log 

space. Crosses represent log-binned data. Note variable scales; aspect ratio is 

maintained in S-A plots. Dashed lines in main plots demark geomorphic domains 

as indicated in italics and described in the text. Shaded boxes show intervals 

over which concavities, θ, are determined, also shown as solid lines in S-A plots. 

Note that (c) has several local slope maxima and hence several values of θ, each 

associated with unique values of xkz and xseg. 
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3.3 Methods 

 

The remotely sensed data used consist of 90 m resolution digital elevation 

models (DEMs) derived from the NASA Shuttle Radar Topography Mission 

(SRTM). The data for the Ladakh and Romania field sites comprise extracted long 

profiles smoothed on a 500 m scale, giving distance, x, elevation, z, and channel 

slope, S, along each stream, as well as concomitant drainage area, A, following the 

detailed methodology presented in Hobley et al. (2010) (see also Chapter 2 and 

Appendix A). Stream segments are separated by knickzones, defined by local slope 

maxima – where not present, the whole stream is treated as a single segment, and 

where multiple local maxima occur and the channel is smoothly concave downstream 

between them, several segments are defined for one channel (Fig. 3.2). Below and 

between these maxima, power laws are fitted to the slope-area data by a least-squares 

method, yielding steepness index, ks, and concavity, θ, for each segment, recorded 

against the relative downstream positions of the segment start (xkz) and end (xseg). 

We reject fits where confidence intervals exceed 50% of the calculated θ value, often 

indicating that a power law fit is not appropriate for this reach. Data for the Red 

River site is drawn directly from Schoenbohm et al. (2004), whose processing 

parallels the above methods allowing direct comparison of the data sets (Fig. 3.2c). 

Note that in the Ladakh and F�g�ra� Alps data, defined channel segments run across 

the transition from dominantly bedrock to alluvial channels; in Ladakh the 

concavities of these two process domains are indistinguishable (Hobley et al., 2010; 

see also Appendix B).  
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3.4 Results 

 

In order to examine the variability of slope-area scaling in different channel 

segments and between field sites we plot the concavity value of each segment against 

the proportion of the channel upstream of the associated profile convexity, as 

measured by the fraction Fkz = xkz/xseg (Fig. 3.3). This ratio uses x not A for 

consistency with existing data; expressing the position using A produces very similar 

results, since almost all catchments share the same form (Fig. 3.1; Hobley et al., 

2010). All three data sets indicate that concavity values rise nonlinearly with position 

of the knickzone further downstream, and the trends for the glaciated field sites are 

contained within the data from the Red River. We describe the form of this trend 

with the empirical equation 

 

0
1

θζθ +
−

=
kz

kz

F

F
, 

(3.4) 

 

where θ0 and ζ the fitting parameters, representing unperturbed channel concavity 

and the rate of divergence from this respectively (Fig. 3.3). This equation makes θ 

asymptotic approaching Fkz = 1, and also defines the intrinsic concavity θ0, while 

still requiring only two parameters. t-testing indicates that the ζ values for each 

region as shown in Figure 3.3 are distinct from each other to 95% confidence, though 

are of similar magnitude. The θ0 values are all indistinguishable however, and are 

within the range 0.3-0.6, which corresponds to the theoretical concavity for a steady 

state eroding system (Whipple and Tucker, 1999). 
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3.5 Discussion 

 

3.5.1 Causes of Concavity Scaling 

 

Concavity of substantial reaches of rivers can be systematically elevated 

above the range 0.3-0.6 while they are undergoing transient response to perturbation 

(Fig. 3.3). There are a number of theoretical mechanisms which could produce this 

trend; here, we use the shared form of response in these three sites to test these 

hypotheses. 

 

 

Figure 3.3. Data describing variation of reach concavity with relative knickzone 

position downstream for Red River Region (RRR), F�g�ra� Alps (FA) and 

Ladakh Batholith (LB). Note logarithmic scale on y-axis. Trend lines are 

maximum likelihood best fits for each data series, giving parameters listed in 

inset table; errors are 95% confidence intervals. 
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River hydrology. Changes in the stochasticity of river discharge driven by glaciation 

or other processes could drive changes in channel concavity (e.g., Sólyom and 

Tucker, 2004). However, the upper Red River Region records no significant glacial 

presence, and the trends in Figure 3.3 are shared between sites in very different 

climates, making hydrology an unlikely first order control. 

 

Regional variation in channel uplift. In a river system in topographic steady state, 

higher uplift rates in the headwaters (i.e., tectonic rotation) can create elevated 

concavities (Kirby and Whipple, 2001). However, no realistic uplift gradients would 

be compatible with the nonlinear trends seen in Figure 3.3. Moreover, analysis 

carried out by Schoenbohm et al. (2004) to reconstruct past landscape form implicitly 

demonstrated that that field site has remained level. Similarly, the shared trend also 

makes it highly unlikely that downstream changes in lithology play an important role 

(c.f., VanLaningham et al., 2006). 

 

Transition from incising to aggrading conditions. Previous authors have argued that 

the transition from incision to deposition and the associated change in channel 

process is responsible for increasing concavities in some systems (e.g., Whipple, 

2004). While in Ladakh and the F�g�ra� Alps we do see this transition, we do not in 

the Red River, which is a purely bedrock system in many of the analyzed reaches. 

Moreover, the concavities of purely alluvial systems tend to be lower than those in 

equilibrated bedrock systems (Voller and Paola, 2010), and sharp S-A scaling breaks 

between the two regimes are rarely observed in real systems (Densmore et al., 2007), 

including the Ladakh example seen here (Hobley et al., 2010; see Appendix B). 

 

Width or sediment flux dependent scaling in transient landscapes. Perturbations to 

expected concavity scaling in transiently responding channels can be produced by 

unexpected scaling of channel width, of threshold of mobility or erosion, or of river 

response to relative sediment flux with drainage area. In incising reaches this is best 

illustrated by consideration of stream power, where changes to m/n (driven by 

channel width variation), kτc (threshold) or f(qs) (sediment flux dependency) could 

alter the expected concavity scaling (Equ. 3.2). However, in order for variations in 
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channel width scaling to create elevated concavities, the channel aspect ratio must 

rise or the roughness fall considerably with changing A (Finnegan et al., 2005). 

Neither of these mechanisms is satisfactory, since comparing terms in the Finnegan 

and concavity equations shows the sensitivity required to produce concavities >>1 as 

seen here would be so extreme as to be immediately obvious in grain size changes in 

the field. Thus the elevated concavities seen in this study must be driven by 

sedimentary effects – either falling thresholds of sediment mobility, or decreasing 

f(qs) downstream caused by sediment cover on the bed. We infer that sediment flux 

dependent incision is primarily responsible, because: (a) strong downstream trends in 

grain size are not observed in Ladakh (Hobley et al., 2010; Chapter 2); (b) similar 

sensitivity of concavity to realistic forms of f(qs) has been reported from modelling 

(Gasparini et al., 2006); (c) transitions into depositional conditions in Ladakh and 

F�g�ra� confirm that sediment flux is increasing downstream in these cases. 

 

Although such arguments cannot account for behaviour in the aggrading 

reaches of Ladakh and the F�g�ra� Alps, the response in these systems is very similar 

to that in the Red River Region (Fig. 3.3) where such arguments do apply. Also, the 

bedrock-alluvial transition makes little impact on the trends in Figure 3.3 in the 

Ladakh and F�g�ra� examples. We infer on the grounds of these similarities that 

sediment flux dependent effects analogous to those during incision must apply during 

aggradation. This would be consistent with the underlying physics of transport-

limited channel processes (Whipple and Tucker, 2002). 

 

 

 

3.5.2 Reading Uplift from Topographic Data 

 

The trends recorded in Figure 3.3 highlight a key issue in trying to interpret 

the nature of past perturbations from transiently responding river systems. Typical 

approaches essentially solve Equations (3.1), (3.2) and (3.3) to calculate ks, assuming 

erosional steady state and constant K and θ. This is recorded as the concavity-
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normalized steepness index, ksn, which proxies uplift (see, e.g., Wobus et al., 2006b). 

However, we have shown that in these examples K is variable, since sediment flux 

sensitivity and/or threshold variability must change downstream (Equ. 3.3). It is well 

recognized in the literature that analyzing transient landscapes is more challenging 

than those at steady state, but our results demonstrate a consistent, quantifiable, 

nonlinear signal in this variation in K and hence ksn, if it is calculated for a transient 

landscape. By comparison of equations (3.1) and (3.4) under assumed constant 

reference concavity we can show that for these disequilibrium channels 

 

ζ
kz

kz

F

F

ssn Akk
−

−

= 1
, 

(3.5) 

 

where ks is the “true” channel steepness which accurately reflects the relative uplift 

rate. This equation demonstrates that where knickzones are present in the middle 

reaches of transiently responding river systems, relative changes in ksn are driven 

primarily by the nonlinear response captured by the exponent on A, swamping real 

changes in ks. Encouragingly however, where knickzones are not present (Fkz = 0), 

concavities are consistent with the assumptions of the steepness index method and 

will produce results that reflect ks as intended (e.g., Snyder et al., 2000). 

 

 

 

 

3.6 Conclusions 

 

In three contrasting river systems responding transiently to differing climatic 

or tectonic perturbations, the concavity of a channel reach downstream of a long 

profile convexity increases nonlinearly and systematically above expected 

equilibrium values as the knickzone is located proportionally further downstream. 

The magnitude and form of this response is similar in each field location as well as 
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being present in both incising and aggrading river reaches. In the incising reaches, 

this response is most consistent with sediment flux dependent channel dynamics. 

Such slope-area scaling means that channel steepness indices derived in transiently 

responding rivers with prominent long profile knickzones will not accurately reflect 

relative channel uplift, instead convolving tectonic signals with sediment flux 

dependent adjustments. 
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4. FIELD CALIBRATION OF SEDIMENT FLUX DEPENDENT RIVER 

INCISION
1
 

 

CHAPTER ABSTRACT 

 

Theoretical and laboratory studies suggest that the dynamics of eroding 

river systems may be strongly modulated by their sediment load, 

allowing both promotion and inhibition of bed incision at different 

relative sediment fluxes. Testing this hypothesis in the field has proven 

difficult, however, since establishing both the long-term sediment 

budget and erosion record in a channel where the style of erosion is 

well-known has hitherto been extremely difficult. This paper presents a 

new framework for understanding channel erosion style as either 

detachment- or transport-limited, and for revealing the relative 

importance of sediment flux in modulating incision rates.  We show that 

downstream distribution of shear stress forms the key discriminator 

between detachment- and transport-limited models when compared to 

measured patterns of resulting incision across a short timestep in a 

transiently responding channel network.  We use this framework to 

demonstrate that incision proceeding into a coarse, loose, poorly sorted 

substrate in a postglacial setting in the Ladakh Himalaya, NW India 

should be modelled as a detachment-limited process, though modulated 

by both tools and cover effects driven by evolving relative sediment flux 

downstream.  We then go on to model how incision varies as a function 

of  sediment flux in this setting, and are uniquely able to describe the 

detailed form of this sediment flux function in each analyzed catchment.  

The resulting functions show many features which are compatible with 

previous theoretical and laboratory studies but which have not before 

been independently verified from real field data. Our results suggest that 

the peak in incision efficiency may occur at lower relative sediment flux 

values than widely assumed in the literature. 

 

 

4.1 Introduction 

 

River dynamics in upland settings are a key element in the Earth surface 

system, redistributing large volumes of sediment into basins (Milliman and Syvitski, 

1992), coupling climate and tectonic processes (Molnar and England, 1990; Willett 

                                                 
1
 This paper is to be submitted to the Journal of Geophysical Research (Earth Surface): 

 Hobley, D.E.J., Sinclair, H.D., Cowie, P.A., and Mudd, S.M., in prep., Field Calibration of 

Sediment Flux Dependent River Incision. 
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and Brandon, 2002), transmitting information from downstream into highlands 

(Rodriguez-Iturbe et al., 1992) and controlling the form of mountain belts themselves 

(Burbank, 2002; Zeitler et al., 2001).  However, significant uncertainty still remains 

over how real river systems are likely to evolve through time.  Numerous models of 

river erosion have been proposed (see, e.g., Tucker and Hancock, 2010), but much 

doubt remains over how we should distinguish between these models and whether 

factors such as thresholds and sediment-flux dependent incision are important in real 

settings.  This is vital to establish, since the long term tempo, style and patterns of 

landscape evolution under each modelling approach can be very different (e.g., 

Whipple and Tucker, 2002). 

 

In particular, several authors have drawn attention to the probable importance 

of sediment flux dependent incision in natural channels, arguing that it is likely to 

create a strongly nonlinear erosional response, as sediment may both promote 

incision by acting as tools and inhibit it by covering the bed (Cowie et al., 2008; 

Gilbert, 1877; Sklar and Dietrich, 2001; Turowski et al., 2007). Sediment flux 

dependent erosion has also been shown to significantly alter the styles and patterns of 

channel response to changes in boundary conditions (e.g., Gasparini et al., 2006). 

However, it has proven difficult to unequivocally demonstrate the form of this “tools 

and cover” effect in real environments. 

 

We set out to discriminate between incision models and assess the role of 

sediment flux in catchments in Ladakh, northwest Indian Himalaya. These 

catchments have been perturbed by glacial resculpting of their upper reaches (Hobley 

et al., 2010). This location is ideal for such a study as we may tightly constrain 

through time both average incision rates and average sediment fluxes downstream as 

the channels respond. However, the “bedrock” of these channels consists of very 

poorly sorted glacial sediment, which although consisting of loose material, contains 

many clasts which in any given flood will be immobile, and which may interact in an 

unpredictable way with the surrounding clasts. Thus it is unclear just from the nature 

of the substrate whether this system is essentially transport-limited, where incision 

proceeds as a function of divergence of sediment carrying capacity of the flow, or 



Chapter 4  Hobley, 2010 

   81 

detachment-limited, where incision is a function of the ability of the channel to 

mobilize the bed. 

 

Thus this paper seeks to address two related objectives. Firstly we present a 

novel analysis of the detachment- and transport-limited frameworks for fluvial 

erosion, using shear stress distribution downstream to demonstrate that these 

channels are responding in a sediment flux dependent, detachment-limited manner 

above an incision theshold. Secondly, we use field observations to constrain the 

resulting sediment flux functions for each analyzed catchment using a Monte Carlo 

Markov Chain model. The resulting curves show the detailed interaction of the tools 

and cover effects in a real setting and allow investigation of the factors controlling 

their expression. 

  

 

 

 

4.2 Modelling Framework 

 

In the past fluvial systems have often been described as either detachment-

limited (DL), governed by resistance of the bed to erosion, or transport-limited (TL), 

governed by capacity of the flow to carry away material which is freely available on 

the bed (Anderson, 1994; Beaumont et al., 1992; Howard, 1994; Kooi and 

Beaumont, 1994; Tucker and Bras, 1998; Whipple and Tucker, 1999, 2002; 

Willgoose et al., 1991).  These mutually exclusive descriptions of incision are 

advantageous as they allow modelling of channels in mountain belts across 

geologically relevant timescales (> 10
4
 years), and represent relatively simple 

approaches which allow us to understand the first order kinematics of such systems 

through time.  Both have been shown to produce realistic results when compared to 

real landscapes (Attal et al., 2008; Cowie et al., 2006; Kooi and Beaumont, 1994; 

Stock and Montgomery, 1999; Valla et al., 2010; van der Beek and Bishop, 2003; 

Whittaker et al., 2008).   
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4.2.1 Detachment-Limited and Transport-Limited River Incision 

 

Many different formulations of the detachment-limited approach exist in the 

literature; however, perhaps the most general has been outlined by Whipple (2004), 

as 

 

nm

csccr SAqqfkkkE ),(τ=  

(4.1) 

 

where E is bed erosion rate, kr, kc and kτc are parameters reflecting bed erodability, 

climatic influence and threshold of incision, respectively, f(qs,qc) is a parameter 

reflecting the influence of sediment load which we shall term the sediment flux 

function, A and S are the upstream drainage area and local channel slope, and m and 

n are dimensionless parameters reflecting incision process in the channel, basin 

hydrology and channel hydraulic geometry.  This equation can also be stated 

explicitly in terms of mean bed shear stress, τ, giving 

 

a

ccs qqKfE ))(,( ττ −=
 

(4.2) 

 

where a reflects the dominant incision process (Whipple et al., 2000), τc is a 

threshold below which no incision occurs, and K is a parameter reflecting the 

combined influences of bed erodability, climatic influence and erosion process 

(Hancock et al., 1998; Howard and Kerby, 1983).  Despite the existence of numerous 

forms of the basic law, all preserve this power law dependence of erosion rate on 

shear stress or a direct equivalent to it, and it is widely recognized that all generally 

accepted forms of the model can give rise to effectively indistinguishable 

topographic outputs, given tuning of parameters which cannot be directly measured 

(e.g., Tucker and Hancock, 2010). 
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Importantly, existing real-world tests of the detachment-limited model 

indicate that this f(qs,qc) term is likely to be non-linear, allowing for both promotion 

and/or inhibition of erosion by sediment flux (Cowie et al., 2008; Sklar and Dietrich, 

2001; Turowski and Rickenmann, 2009; Valla et al., 2010; Whittaker, 2007).  This is 

because, in rivers, sediment acts as tools to detach bed material, but increasing 

quantities of bedload sediment in transport will act to cover a greater proportion of 

the bed, reducing the likelihood of impact against the bed.  The ratio of sediment 

flux, qs, to carrying capacity of the channel, qc, appears to control the variation in 

erosional efficiency (e.g., Johnson and Whipple, in press; Sklar and Dietrich, 2004).  

This “tools and cover” effect should produce a humped form of f(qs,qc) when plotted 

against qs/qc, where the maximum value of f(qs,qc) = 1 occurs at intermediate values 

of relative sediment flux within the available range qs/qc = 0 to 1. However, no actual 

example of this relation has been well constrained either experimentally or in the 

field, with authors tending to assume a parabolic or almost parabolic form based on 

consideration of normal kinetic energy flux to the bed and a static bed cover 

proportion (Gasparini et al., 2006; Sklar and Dietrich, 1998, 2004).  A notable 

exception is the formulation of Turowski et al. (2007), who noted that parabolic-type 

forms do not match laboratory studies of bed abrasion.  They showed that allowing 

for dynamic covering of the bed by sediment and spatial heterogeneity of the 

armouring of the bed creates an exponential decrease for the cover term.  Such an 

adjustment allowed them to more accurately model the original Sklar and Dietrich 

(2001) experimental results. 

 

The transport-limited model in contrast postulates that rates of incision in a 

channel depend on divergence of sediment carrying capacity, qc, in the channel, and 

thus assumes that enough sediment is always available on the channel bed to be 

incorporated into the flow (Tucker and Bras, 1998; Willgoose et al., 1991).   Such 

models may be written in general form as 
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(4.3) 

 

where λp is sediment porosity (which we shall treat in our approach as a constant), x 

is the downstream direction, w is the channel width and qc is the sediment carrying 

capacity (Whipple and Tucker, 2002).  Importantly, we note that qc can be expressed 

as some function of shear stress, τ, in the channel (see also Davy and Lague, 2009). 

 

Under equilibrium conditions in which channel erosion is everywhere equal 

to uplift in the landscape, these end member erosion laws give rise to 

indistinguishable longitudinal channel profiles.  However, they lead to fundamentally 

distinct response styles as landscapes undergo transient response to changes in 

boundary conditions, such as in climate or tectonics acting on the catchments 

(Whipple and Tucker, 2002).  This is extremely important, since these transient 

conditions are those which hold promise for reconstructing past conditions affecting 

a landscape, and will likely also be reflected most strongly in the stratigraphic record 

(Whittaker et al., in press; Zhang et al., 2001).  They also underpin predictions of 

landscape response to future climate change.  When perturbed by a step change in 

relative base level, pure detachment-limited models of channel incision where 

f(qs,qc) = 1 and any thresholds are negligible typically lead to a wave-like response 

propagating up through a channel network. A sharp break in channel slope demarks a 

boundary between a downstream reach where the channel is fully adjusted to the new 

boundary conditions and an upstream reach where the channel has not felt the effects 

of boundary condition changes in the system at all.  This contrasts sharply with the 

predictions of the simple transport-limited end member model, which existing 

analyses suggest will give a diffusive response in the network where all points will 

respond gradually and together to a change in boundary conditions (Whipple and 

Tucker, 2002; Wobus et al., 2006a). 
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However, work focussed on the response of systems which lie between these 

two erosion styles is less well advanced.  Figure 4.1 illustrates graphically the 

interaction of the pure detachment-limited, pure transport-limited and hybrid erosion 

laws.  Erosion in channels where clast transport downstream and clast detachment 

from the bed are of comparable difficulty is generally treated within the detachment-

limited erosion law, where the f(qs/qc) term models the effects of the sediment in the 

channel. Gasparini et al. (2006; 2007) have explored the transient dynamics of a such 

a system in which f(qs,qc) is allowed to vary, modelling both just the cover effect in 

isolation (linearly falling f(qs,qc) with qs/qc) and also an almost-parabolic form of the 

function incorporating both tools and cover. They demonstrated more complex 

responses combining elements of both diffusive and advective behavior. 

 

Other authors have also approached this problem without employing the DL-

TL framework described here.  Such models (e.g., Beaumont et al., 1992; Braun and 

Sambridge, 1997; Davy and Lague, 2009) tend to instead treat erosion and deposition 

in the stream as independent but linked processes, with a characteristic travel length 

for a particle once it is in transit.  We acknowledge the potential of such methods to 

describe these intermediate cases, but choose not to consider them here, partly on the 

grounds of frequent difficulty in replicating scaling relations (particularly channel 

concavity) seen in natural systems using such approaches (e.g., Whipple, 2004).  

However, these alternative methods should be seen as complementary to the DL-TL 

system – the same kinematics can arise from both treatments, and they represent 

contrasting idealized descriptions of the same underlying real processes.  We 

anticipate that a better understanding of channel response within one framework will 

lead to better understanding of the mechanics of the other. 
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Figure 4.1.  Model space for stream power-based incision laws.  Hybrid models 

shown are linear decline (Beaumont et al., 1992), and three versions of “tools and 

cover”-type models, parabolic (Sklar and Dietrich, 2004), almost parabolic 

(Gasparini et al., 2006), and Turowski’s (2007) dynamic cover model; all three are 

based upon detachment-limited-type assumptions (i.e., Equs. 4.1, 4.2), though note 

the Turowski et al. formulation depends on relative sediment supply rather than 

flux. The figure emphasizes that the pure detachment- (red) and transport-limited 

(green) domains are orthogonal.  Transport-limited conditions are not simply the 

“end-point” of a pure detachment-limited system, and all efficiencies of incision 

are possible in a sediment-saturated channel (depending on sediment flux 

divergence downstream, as opposed to its magnitude). Small arrows indicate that it 

is possible to consider the space where incision efficiency is controlled by relative 

sediment flux (yellow; the main body of the diagram) both from the traditional 

hybrid detachment-limited perspective (A) but also from a hybrid transport-limited 

perspective (B). 
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4.2.2 A Hybrid Transport-Limited Model 

 

As outlined above, within the DL-TL framework almost all models which 

describe “hybrid” erosion behavior – i.e., that which falls between the end-members 

of detachment- and transport-limited – do so from a fundamentally detachment 

limited footing, where erosion is modelled as direct function of shear stress on the 

bed (Fig. 4.1).  The equivalent formulation of what could be termed a “hybrid 

transport-limited” system is missing from the literature, and we here provide this. 

 

If sediment transport capacity, qc, in the channel is some function of bed 

shear stress or a close equivalent, as it is in very many published derivations (see, 

e.g., Bagnold, 1977, 1980; Einstein, 1950; Fernandez Luque and van Beek, 1976; 

Meyer-Peter and Muller, 1948; Parker et al., 1982; Schoklitsch, 1962; Yalin, 1963), 

then we may simply use the chain rule and quotient rule to express the transport-

limited Equation (4.3) as 
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(4.4) 

 

This new format of the transport-limited erosion law has several advantages 

over Equation (4.3).  We can now see the relative effects of variation in each of the 

primary controlling variables of transport capacity, shear stress and channel width 

separately, and the form of Equation (4.4) mirrors that of the hybrid detachment-

limited equivalent (Equ. 4.2) – erosion rate is now in both cases modelled as a 

constant multiplied by the product of a sediment transport capacity dependent term 

and a shear stress dependent term, which are independent of each other. 

 

Thus, this new expression allows direct comparison of the predictions of the 

two models under known variations of shear stress and channel width with field data 
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describing channel incision.  This forms a theoretical basis for qualitatively 

distinguishing between detachment- and transport-limited erosion occurring in real 

settings (see Section 4.2.3).  Equation (4.4) also however clarifies that the transport-

limited erosion law may be hybrid – that is, erosion rate responds both to shear 

stresses and sediment flux, and these effects can operate independently.   If the 

dqc/dτ term varies, we may model sediment flux dependent channel incision without 

initially assuming that erosion rate is described as a power of bed shear stress. 

 

If existing sediment transport relations (e.g., Bagnold, 1977; Bagnold, 1980; 

Einstein, 1950; Fernandez Luque and van Beek, 1976; Meyer-Peter and Muller, 

1948; Parker et al., 1982; Schoklitsch, 1962; Yalin, 1963 - see also Section 4.5.1.3) 

are used to describe the transport capacity, in most cases these predict that the dqc/dτ 

term in Equation (4.4) should be a constant.  However, such transport relations 

already implicitly incorporate the assumption that the sediment on the bed may be 

freely incorporated into the flow, in that the sediment considered for transport is 

often already known to be potentially mobile under “normal” experimental 

conditions, either in the laboratory or in an alluvial field setting.  This may not be 

true of natural rivers responding on longer timescales than typically reflected in such 

experiments, or in settings where fluvially unsorted material may be fed directly into 

the flow. We suggest that to account for this the dqc/dτ term be allowed to vary with 

τ in an analogous manner to f(qs,qc) varying with relative sediment flux.  This would 

constitute what we term a “hybrid transport-limited” channel.  Such an extension to 

the framework fills out our understanding of sediment flux dependent incision and 

can also address some of the criticisms that can be levelled at an explicitly DL-TL 

modelling framework regarding poor treatment of the intermediate, sediment flux 

dependent conditions away from the pure end-members (e.g., Davy and Lague, 

2009).   
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4.2.3 Discrimination Between Models 

 

The restatement of the transport limited erosion law presented as Equation 

(4.4) is also advantageous because it allows examination of how channel incision 

varies as a function of channel width and shear stress. Furthermore, for a given 

pattern of shear stress and channel width the two incision rules predict quite different 

distributions of channel incision (Fig. 4.2). This is true regardless of the forms of the 

sediment flux dependent terms f(qs,qc) and dqc/dτ, neither of which are well 

established. Thus, field measurements of channel incision, shear stress and channel 

width can be used to determine if a channel is behaving in a fundamentally transport- 

or detachment-limited manner.   

 

We illustrate this idea by a hypothetical example (Fig. 4.2).  The form of each 

of the instantaneous incision responses shown by the curves in Figure 4.2c-f is 

uniquely associated with the shear stresses producing it (Fig. 4.2a,b).  Varying the 

sediment flux dependent term (f(qs,qc)) allows for the incision maxima to be 

translated up or downstream (solid gray arrows), but it cannot affect the location in 

the channel where incision transitions to deposition.  Varying channel width 

systematically can translate the pattern of incision up or downstream in the case of 

the transport-limited model (dashed and toothed gray arrows), but field data can be 

used to examine this effect, using the sense and magnitude of channel width change 

to constrain translation of the function.  Thus comparison between positions of 

maxima, minima and zero points in the downstream distributions of incision and 

shear stress in natural channels forms a key diagnostic tool for differentiating 

between these two incision models. While Figure 4.2 presents only an instantaneous 

channel response under each of these models, as long as the cumulative incision 

remains relatively small (i.e., little change in long profile form since incision began), 

we can reliably use direct comparison between shear stresses, channel widths and 

cumulative incision patterns to discriminate between models. In line with other 

authors, however (see, e.g., Valla et al., 2010), we emphasise that the patterns of 

incision downstream alone are not sufficient to differentiate amongst the models – 
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for example note the strong similarity between Figs. 4.2c and 4.2f under different 

incision laws. 

 

 

 

 

 

 

 

 

Figure 4.2.  Erosive responses under contrasting erosion models to two 

hypothetical downstream shear stress distributions. (a,b) Two contrasting 

hypothetical shear stress distributions which might be seen in a real mountain river 

channel which is transiently responding to a perturbation.  Lower plots show the 

form of corresponding instantaneous incision patterns under the detachment-

limited model (c,d) and the transport-limited model (e,f).  Black curves correspond 

to the case where only variations in shear stress occur downstream; channel width 

is invariant and f(qs,qc) = dqc/dτ = 1.  This is the simplest possible reference case 

for both models.  Gray dashed curve and associated marker arrows represent the 

general case; channel width varies downstream and sediment flux dependent terms 

are both humped functions analogous to the tools and cover-type f(qs,qc) proposed 

for the detachment-limited law.  Where the transport-limited model predicts 

deposition to occur, magnitude is schematic, and assumed to behave simply as 

“negative incision”, i.e., deposition is also governed by Equation (4.4).  Location 

of the start of an aggrading reach remains unaffected by this assumption. 
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4.3 Field Data 

 

4.3.1 Field Area 

 

We use this modelling framework to understand incision occurring in 

catchments on the Ladakh batholith in the northwest Indian Himalaya (Fig. 4.3). The 

site comprises a set of around 70 broadly subparallel and linear catchments cut into 

the exhumed batholith. These drain from the ridgeline of the range down its 

southwest flank into the river Indus, which flows northwest along the foot of the 

massif.  The batholith itself is effectively monolithologic, composed of granodioritic 

crystalline rocks, but the floors of the valleys are thickly mantled with coarse, loose, 

poorly sorted postglacial debris which creates a relatively flat, easily traceable 

surface (Fig. 4.4).  Everywhere the channels incise, they do so into this material, and 

never downcut into bedrock.  This creates the ambiguity in choice between 

detachment- and transport-limited erosion referred to in the introduction: the 

looseness and small grain size of a large fraction of the substrate suggests a 

transport-limited approach, but a detachment-limited approach is also possible due to 

the immobility of the coarse fraction. 

 

The upper reaches of those catchments which extend all the way to the 

drainage divide all show signs of significant carving by flowing ice, with prominent 

U-shaped valleys developed and reduced valley gradients compared to the lower 

reaches (Figs. 4.4 and 4.5).  This has created a knickzone in the long profile of these 

channels.  The extent of this glacial remolding is variable along the batholith, 

probably primarily driven by variations in the altitude of each catchment (Jamieson 

et al., 2004).  This glacial alteration of valley form, and particularly development of 

the knickzone, has perturbed the fluvial network and induced the transient response 

which we focus on in this work. 
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The present form of the landscape is best described as three distinct 

downstream divisions: a domain in the headwaters where the present long profile has 

changed little from the original postglacial surface, a domain in the middle reaches 

where a gorge records past incision into the sediment substrate, and a lower domain 

where fluvial sediment aggrades above the original postglacial surface (Hobley et al., 

2010) (Figs. 4.4, 4.5).  The gorge in the middle reaches forms the focus of this study, 

and is decoupled from the bedrock sidewalls of the surrounding glacial trough by the 

intervening flat, terrace-like surface of the postglacial valley fill.  Field evidence 

does however suggest that the lower aggrading domain onlaps this postglacial 

surface, implying that the point where aggradation begins has migrated up the 

channel through time, but also that the modern channel is slightly inset into the older 

Figure 4.3.  (a) General location map for Ladakh field site.  (b) Catchments 

draining the southeast flank of the Ladakh batholith.  Trunk streams are shown in 

white.  The three catchments considered in more detail later in this study, Basgo, 

Leh and Sobu, are shown in darker gray.  The River Indus is shown, and drains 

northwest along the foot of the batholith (white arrow). 
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depositional surface by a couple of meters (Hobley et al., 2010).  This hints at a 

somewhat complex movement of this boundary through time, with the aggradational 

front first advancing up the river system, and then later retreating back down it. 

 

 

 

 

 

 

Figure 4.4.  Panoramic view of Leh catchment, looking northwest, taken from 

Google Earth.  Coloration change in the lower right corner of the image is due to 

stitching of two images, and can be ignored.  Field of view is roughly 6 km across.  

Trunk stream drains southwards (left).  The postglacial sediment surface described 

in the main text is clear, running down from the upper reaches in the U-shaped 

valley (top right) round the dogleg, through the middle reaches of the valley and 

disappearing under the broad alluvial depositional domain just after the rock spur 

which creates a kink in the river planform (lower arrow). Note that this 

depositional domain now fills the prominent terminal moraine complex in this 

valley (bottom left corner, downstream of lower arrow).  The incised gorge 

surrounding the trunk stream which we primarily focus on in this work is visible 

cutting into the postglacial surface in the middle reaches, the start and end of 

which are out by the two arrows. 
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4.3.2 Data Collection Methodology 

 

We have collected detailed field data in three of the catchments draining the 

batholith – Basgo, Leh, and Sobu valleys (Fig. 4.3).  The dataset incorporates 

measurements made in all three of the domains described above, but focuses largely 

on the incising reaches.  The data consist of systematic measurements spaced 

approximately every 300-500 m downstream (where possible) of channel slope on a 

30 m scale, current channel depth and width, and the gorge dimensions of depth on 

either side of the channel and slope of the gorge walls, all measured using a laser 

range finder.  Bankfull depth and width were determined using the height of a sharp 

boundary between lichen-free and lichen-covered surfaces of boulders in the stream, 

Figure 4.5.  Present long profile form for Leh valley, as example of general form.  

The three domains are illustrated, with black arrows indicating sense of motion of 

the river through time.  Dark shading in the middle reaches indicates material 

removed, and picks out the gorge incised below the postglacial surface.  Light 

shading in the lower reaches indicates material deposited above the original 

postglacial valley floor (dotted line, shown schematically); likely complexity in 

the motion of the boundary between these two domains through time is not shown 

here.  Little change through time in the long profile occurs in the upper reaches. 
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which was found to be approximately level with the channel banks in the 

depositional reaches of the channels.  To complete the data set we later used remote 

sensed imagery of the sites freely available through Google Earth to establish 

variability of channel and valley floor width downstream in the catchments. Shear 

stress was then calculated with  

 

τ = ρw g h S, 

(4.5) 

 

where ρw is the density of water, g the gravitational acceleration and h the flow depth 

at bankfull. The reasonableness of these shear stress values was checked by ensuring 

that the stream discharges calculated from these values using a Darcy-Weisbach 

friction factor approach and known channel dimensions appeared to increase 

downstream. Allowing for some noise, this was the case. 

 

 

4.3.3 Gorge Dimensions and Shear Stress (Fig. 4.6) 

 

As suggested in Section 4.2.3, shear stress data combined with an incision 

history can discriminate between known incision models.  Depth of the gorge in the 

middle reaches shows clearly the expected increase from zero to a maximum then 

decrease downstream noted qualitatively, but suffer from variations across and down 

valley introduced by (a) the fact the surface the gorge incises is hummocky and not 

perfectly flat, (b) valley-perpendicular ridges and moraines, and (c) locations where 

the gorge sidewalls coincide with the rock walls of the glacial trough.  To reduce the 

impact of these variations, we present gorge depth as a five point moving average 

downstream of the maximum gorge depth present at each site (Fig. 4.6).  This also 

has the advantage of smoothing the data to an appropriate level to stabilize the 

numerical simulations performed in the later parts of this paper. 
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Calculated shear stresses (Equ. 4.5) are plotted alongside these gorge depth 

data (Fig. 4.6), and are similarly smoothed with a five point moving average to allow 

direct comparison between the datasets.  In all the valleys, maximum shear stresses 

broadly coincide with maximum gorge depth.  Shear stresses rise from a roughly 

constant value in the headwaters, and return to a roughly constant value just before 

the end of the gorge, but the stable value of shear stress is three or four times higher 

downstream of the gorge than the value upstream – this is particularly clear for the 

Leh valley data.   

 

We have also analyzed data describing the gorge sidewall angles, focussing 

on Basgo and Leh valleys, and discarding any measurements taken where bedrock 

was known to be exposed in these slopes.  These data have a mean of 31.4° and a 

Figure 4.6.  Downstream distributions for shear stress (red dotted line) and gorge 

depth (blue solid line) for trunk streams in four catchments, Leh (a), Basgo (b), 

and Sobu (c).  Approximate extent of the gorge is shown by gray shading, and 

profiles are displayed with the gorge starting points aligned.  Note the approximate 

coincidence of the maximum gorge depth with a shear stress maximum in each 

case.  Shear stress values at the gorge feet are also often significantly higher than 

they are at the gorge heads. 
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median of 32.3°, and these values are indistinguishable between valleys.  Similarly, 

analysis of remotely sensed imagery suggests that the width of the valley floor within 

the gorge is relatively invariant with distance downstream, and approximately 40 m 

in all cases. 

 

In the Leh and Sobu valleys, rates of change of shear stress downstream 

suddenly fall to almost zero (Fig. 4.6) beginning approximately 1 km before the end 

of the currently exposed gorge.  This change is less extreme, but still present for 

Basgo.  We infer that this change is related to the onset of aggradation in the channel 

and associated changes in channel dynamics, and the position of this point is 

consistent with field evidence that the postglacial surface is onlapped by the fluvial 

sediments.  If this is the case, then within this reach shear stresses are likely to have 

changed over time, as the downstream decrease associated with ongoing downcutting 

has been replaced by the more even downstream distribution associated with 

aggradation. We discuss the role of this effect as we proceed. 

 

 

4.3.4 Channel Width and Substrate Grain Size 

 

An understanding of channel width variation is also an essential component 

in discriminating between incision models (Fig. 4.7). The distribution of channel 

widths varies markedly between the three process domains of glacial-incisional-

aggradational outlined above. In the upper glacial domain large variation is present, 

reflecting changing substrate grain size as the channel passes over and between 

debris flow fans (c.f., Hobley et al., 2010). In the aggradational domain and within 

the gorge, channel width is more uniform, with occasional high outliers. Qualitative 

field observations indicate that localized width maxima within the gorge are 

sometimes associated with recent debris flow activity. Importantly, there is only a 

slight hint of systematically increasing downstream width in these lower domains, an 

observation borne out by inspection of the remote sensed imagery. This indicates that 

downstream changes in channel width will not significantly translate the predicted 

transport-limited incision distribution for these channels (c.f., Fig. 4.2). 
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We have also considered variation in the grain size of the substrate using the 

Wolman values measured at two different exposures in the Leh valley, 

approximately 2.5 km apart (see Appendix C and Fig. C1).  Substrate size 

distribution is identical between the sites measured (95 % confidence; Kolmogorov-

Smirnov test), and we assume that this is true of the glacial debris substrate 

throughout the catchments, consistent with semi-quantitative field observations 

elsewhere, including field photographs.  This observation forms a basis for our 

treatment of channel aspect ratio variation in the past (Section 4.5.1.5), and 

demonstrates that the substrate has a uniform resistance to erosion. 

 

 

Figure 4.7. Field measurements of channel bankfull widths for trunk streams, 

again for the catchments Leh (a), Basgo (b) and Sobu (c). Approximate extent of 

the gorge is shown by gray shading, and profiles are displayed with the gorge 

starting points aligned. 
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4.4 Channel Response Style 

 

Direct visual comparison of Figures 4.2 and 4.6 allows discrimination 

between detachment- and transport-limited response in these catchments.  Figure 4.6 

indicates that the maxima in shear stress, and hence the points where dτ/dx = 0, are 

associated with the maximum gorge depths and not with points of zero incision.  This 

result is incompatible with the transport-limited model, unless (a) channel width 

were to fall significantly downstream to compensate, or (b) shear stress distributions 

have evolved significantly through time.  We have demonstrated in Section 4.3.4 that 

channel width does not fall significantly downstream so are able to discount the 

former case, and reject the latter both on grounds of parsimony and from 

consideration of likely past variation in shear stress from the small changes in overall 

long profile form seen here (e.g., Fig. 4.5), corroborated by the output of the 

modelling presented in Section 4.5. 

 

The patterns in Figure 4.6 are however entirely consistent with the 

detachment-limited model (c.f., Figure 4.2c).  Shear stresses downstream of the 

gorge are several times greater than those upstream, but in both cases there is almost 

no incision, and the peaks in shear stress in some of the cases may be offset with 

respect to the incision peaks.  These are the hallmarks of a sediment flux dependent, 

detachment-limited response, as shown schematically in Figure 4.2c. The raised 

shear stresses downstream indicate that work is being done in the stream which is not 

associated with downcutting, and we attribute this to work done moving sediment.  

Similarly if the peaks are significantly displaced this would indicate that the incision 

efficiency maxima in the systems are offset with respect to the shear stress maxima, 

with sediment flux a likely means of mediating this process. Moreover, the fact no 

incision occurs in the upper domain of Leh valley despite non-zero shear stresses 

also strongly suggests that this response also involves a shear stress threshold below 

which no erosion occurs. 
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To invoke sediment flux dependent variation in incision rates, we also need to 

constrain the actual evolution of sediment flux downstream in the gorge. Sediment 

flux in the channel can be supplied from upstream and from valley sidewalls. There 

is no evidence for significant amounts of erosion or sediment transport upstream of 

the gorge, as large scale postglacial reshaping of the valley floor has not occurred 

(Hobley et al., 2010). Within the gorge, hillslopes are at the angle of repose, with a 

median of 32.3° (c.f., Bagnold, 1966). Slopes of loose material at the angle of repose 

will fail as their base is lowered (Roering et al., 1999; Strahler, 1950), and this 

appears to be the case within the gorge because of the lack of lichen cover on these 

slopes compared to the hummocky glacial surface (Hobley et al., 2010). We can 

therefore calculate sediment flux to the channel by determining the amount of 

material that must be removed from the hillslope to maintain angle of repose as the 

channel lowers. 

 

 

4.5 Incision Model 

 

We have now inferred in Section 4.4 that the Ladakh channels we have 

studied respond in a detachment limited manner, in which incision depends on 

sediment flux and shear stress must exceed a threshold if incision is to occur.  

However, the exceptional quality of the preservation of the incision history in this 

landscape and the consistency of the form across several examples in fact means we 

can go beyond this and calibrate the forms of the sediment flux function active in 

each channel.  We use a finite element approach to model the incision occurring 

under an excess shear stress incision model modulated by a sediment flux function, 

and vary the inputs to this using a Monte-Carlo Markov Chain method.  This 

technique allows us both to establish the most likely form of the sediment flux 

function for each catchment, and to rigorously assess the uncertainties associated 

with these solutions. 
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4.5.1 Approach 

 

The finite element model tracks the progressive incision history at each 

measurement point in the gorge, and gorge dimensions for each timestep are 

integrated with the incision rates to calculate the sediment flux for each iteration. 

Because incision rate evolves in time, so does gorge depth as well as shear and 

Shields stresses.  

 

 

4.5.1.1 Initial Model Setup 

 

Model input consists of downstream distances, the smoothed modern slope 

and gorge depth data already discussed, and flow depth measurements for each 

locality.  Using the known gorge depths, the original downstream slope distribution 

of the initial channels before incision began was also reconstructed and forms the 

starting condition for the model.  At the gorge head, all available data points within 

the gorge are included, as well as some just upstream of its start where available.  

However, in the lower gorge reaches we have interpreted the prominent levelling off 

of the shear stress data in Leh and Sobu valleys c. 1 km up from the gorge end (Fig. 

4.6) as indicating the onset of depositional behaviour (Section 4.3.3).  We do not 

include data for localities downstream of these transitions, as the model does not 

account accurately for aggradation on the valley floor.  Similarly we do not consider 

data points in the final kilometer of Basgo valley, which also shows a levelling off 

around this point, though less distinctly.  We acknowledge that this transition point 

can migrate as the model evolves and the gorge deepens, but our results indicate that 

this makes little difference for these catchments. 
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4.5.1.2 Sediment Flux Function 

 

We model the gorge incision over 100 ka (�t = 0.5 yrs) using an assumed 

sediment flux function. A Kf(qs/qc) curve forms the main variable input for the 

model, assigned between 0 � qs/qc � 1.  The form is given by 
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where κ, n, φ and c are all positive constants.  This equation is adopted explicitly for 

its generality; it allows us to fit a wide variety of peaked, smoothly increasing or 

smoothly decreasing curve shapes, including a broadly symmetrical form as favoured 

by Sklar and Dietrich (2004), as well as optionally allowing a nonzero value of 

Kf(qs/qc) at qs/qc = 0 as has been suggested in some models (e.g., Gasparini et al., 

2006).  The form of the equation is also analogous to the dependence of erosion on 

sediment supply proposed by Turowski et al. (2007), though their analysis was not 

cast explicitly within a shear stress driven, detachment-limited framework and it is 

nontrivial to compare the detailed predictions of the two models. 

 

 

4.5.1.3 Sediment Flux and Capacity 

 

The value of Kf(qs/qc) is allocated using qs produced by mass balance directly 

within the model from the gorge form and the incision rate, and also a value for qc 

determined from a slightly modified version of the Meyer-Peter-Muller (MPM) 

transport equation (see below).  The calculation of qs assumes that no sediment 

enters the gorge from upstream of its head or from side tributaries but rather that it is 

sourced entirely from the gorge hillslopes and channel bed.  The three catchments 

presented here were selected specifically to minimize the impact of sediment brought 
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in from side tributaries, and the geomorphology of the upper reaches of the valleys 

beyond the gorge head also indicates that little sediment transport is transported 

significantly downstream in this domain (Hobley et al., 2010). 

 

The transport capacity, qc, for these channels is calculated from 
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where ρs is the density of the sediment, 2700 kgm
-3

, C an empirical constant, Dchar a 

characteristic critical grain size for the system, and τ* and τ*c the bed Shields stress 

and critical Shields stress respectively (Meyer-Peter and Muller, 1948).  Note that 

this formulation gives a volume flux, not mass flux.  Dchar replaces the median 

diameter of the sediment in the subsurface, which is inappropriate across such a 

broad range of grain sizes.  Instead, it is calculated to give a consistent relationship 

between the critical shear stress observed in the field and the critical Shields stress 

which we calculate using the Lamb equation (Lamb et al., 2008; see below, Section 

4.5.1.4). C is unity in the MPM equation senso stricto, but here is a free parameter 

reflecting changing transport stage in the channel (e.g., Fernandez Luque and van 

Beek, 1976). We calculate its value heuristically for each catchment, adjusting the 

input value for successful model runs until the sediment capacity matches the 

sediment flux at the known modern transition points to depositional behaviour at the 

end of the simulation. 

 

We have chosen to use the MPM relation instead of one of the very many 

alternative sediment capacity equations since (1) it is of simple form, (2) it makes 

predictions based on a small set of variables of which we believe we understand the 

distribution back through time, and (3) most previous studies of the tools and cover 

effect have used this formulation.  We do recognize that we are using the MPM 

relation under a circumstance it was not derived to explicitly describe – that of a 
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heterogeneous grain mixture.  However, we note that most other transport laws 

which we could have selected (e.g., Bagnold, 1977; Bagnold, 1980; Einstein, 1950; 

Fernandez Luque and van Beek, 1976; Meyer-Peter and Muller, 1948; Parker et al., 

1982; Schoklitsch, 1962; Yalin, 1963) rely on a similar form, analogous to excess 

shear stress raised to a power of 1.5.  The multiplier in front of this tends to be only a 

weak function of variables which we expect may evolve downstream in our channels.   

Thus we expect a similar downstream form from many of the relations, and since we 

know absolute value of sediment flux at the point of sediment saturation from our 

field observations we independently calibrate the function magnitude at capacity, so 

the choice of specific function is much less of an issue. 

 

 

4.5.1.4 Thresholds 

 

We require threshold values for both shear stress and Shields’ stress for our 

equations.  We use the Lamb equation (Lamb et al., 2008) to derive the critical 

Shields stress, which makes this value a weak function of slope:  

 

25.015.0* Sc =τ  

(4.8) 

 

We derive values for τc for our channels based on consideration of past 

values of shear stress in the channels, but also incorporating this threshold sensitivity 

to slope, since Shields stress is given by 
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We thus calculated the shear stresses that would have been present in the 

gorge head at the start of its evolution using the calculated initial values of channel 

slope, correcting for this slope sensitivity, and adjusted the value of Dchar uniformly 
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for all streams in order to allow incision everywhere within all gorges but forbid it at 

all points upstream.  The critical value of Dchar was calculated as 0.229 m, which 

seems feasible based on the known caliber of the bed sediment at the gorge head.  In 

fact, without this slope sensitivity, it is not possible to select a single value to predict 

τc everywhere at once, providing support for our use of the Lamb equation. 

 

 

4.5.1.5 Model Output 

 

The model output is determined by a slightly modified version of Equation 

(4.2), the general detachment-limited erosion equation: 
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where E is the incision rate, Η is the total accumulated gorge depth, WV is the gorge 

floor width, and t the total time since incision.  Since the standard tools-and-cover 

detachment-limited model treats 0 < f(qs/qc) < 1, we can then rescale the solution to 

give both K, presumed constant within each valley, and f(qs/qc) separately.  Note that 

we assume a = 1 in Equation (4.2) to derive Equation (4.10) – this is the value 

typically associated with erosion proceeding by plucking of clasts from the bed 

(Whipple et al., 2000) as is occurring here, and authors using higher values in the 

incision law tend to be aiming to implicitly incorporate sediment or threshold effects 

which we treat here explicitly (Whipple and Tucker, 2002).  τ evolves as a function 

of S throughout the run, which assumes constancy of discharge and channel aspect 

ratio through time – the latter being a reasonable assumption given the uniform grain 

size distribution in the glacial substrate (Finnegan et al., 2005).  We take t = 100000 

years (Owen et al., 2006), which is a significant approximation with a large 

uncertainty, but as long as the glacier retreat time is the same in each valley, the 

absolute value is of little importance as fractional error will be subsumed into the 
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erodability parameter K.  The term inside the brackets on the left hand side of the 

equation reflects the complexity that as we cut down in a v-shaped gorge, for a unit 

of downwards incision we must also simultaneously mobilize all the material shed 

into the channel from the angle of repose hillslopes.  We treat the addition of this 

material as instantaneous and assume it is effectively spread evenly across the valley 

floor.  The uniformity of the substrate, demonstrated 32° hillslopes (Sections 4.3.3, 

4.3.4) and long time scale considered serve to make these assumptions reasonable. 

 

 

4.5.1.6 Optimal Solutions 

 

Our goal is to determine the form of Equation (4.6), or in other words to 

constrain the coefficients κ, n, φ and c.  We treat these coefficients as unknown, and 

determine their values and the uncertainties in their values using a Monte Carlo 

Markov Chain method. This method involves selecting values of the coefficients 

from a probability distribution, and then accepting or rejecting these values using an 

acceptance criterion. This process is iterated upon several thousand times in order to 

constrain the posterior distribution of the model coefficients (e.g., Berg, 2004). The 

acceptance criterion is based on the Metropolis-Hastings algorithm (Hastings, 1970). 

The proposed values of the model coefficients are used to drive the finite difference 

model of channel evolution of the 100,000 year span of gorge development. The 

model predicts the depth of gorge incision. This model prediction is then compared 

to the measured gorge to determine the likelihood of the coefficients in Equation 

(4.6). The likelihood of the current iteration is compared to the previous iteration. If 

the ratio likelihood of the new iteration to the previous iteration is > 1, then the new 

coefficient values are accepted. If this ratio is < 1, then the new coefficients are 

accepted with a probability equal to the ratio. To generate the posterior distribution 

of coefficient values, each iteration in the Markov Chain is weighted by the 

likelihood of the combination of parameter values, creating a probability distribution 

of each coefficient. This can be used to determine both mean and 95% credibility 

limits on the parameter values (Fig. 4.8).  
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4.5.2 Optimal Results from the Forward Model 

 

Figure 4.8 shows the most likely forms of the sediment flux function for our 

channels.  We solve for Kf(qs/qc) (Fig. 4.8a), and derive the value of K and the form 

of f(qs/qc) by rescaling the latter to give a peak magnitude of unity (Fig. 4.8b).  We 

note that the erosivity, K, of Sobu is much higher than the other two channels.  The 

associated values of κ, n, φ and c are quoted in Table 4.1. We plot predicted vs. 

modelled incision patterns (Fig. 4.9) to illustrate the quality of fit of the sediment 

flux functions. The matches to the field data are excellent. 

 

We also illustrate the evolution in f(qs/qc) values used at each node in the 

model and resulting changes in incision rates as the best fit runs proceed (Fig. 4.10). 

Somewhat surprisingly, the value of f(qs/qc) used by the model, and hence the 

relative sediment flux itself, is relatively stable at most points downstream. We 

interpret this to reflect interplay between the evolving gorge form, erosion rates and 

channel slopes, balancing out the tendency for the deepening gorge to increase the 

sediment flux per unit incision. In particular the point of maximum erosional 

efficiency (f(qs/qc) = 1) moves very little through time, and does not always migrate 

in the same direction, up- or downstream (Fig. 4.10a-c). This runs counter to the 

expected behaviour that would be assumed if slope and erosion rates could not 

evolve during the run, which would predict advance of both the point of maximum 

erosional efficiency and the transition to alluvial conditions upstream through time. 

Such stability in the erosional efficiencies through time may account for the 

difficulties in demonstrating conclusively the existence of the tools and cover effect 

in many other real landscapes. The model output also indicates that the rates of 

incision at most points in the gorge are either approximately constant or gradually 

decrease through time (Fig. 4.10d-i). This general tendency to decreasing response 

speeds as the system matures is what would intuitively be expected for a perturbed 

geomorphic system (e.g., Church and Ryder, 1972). 
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Figure 4.8.  Most likely sediment flux functions for Leh (dashed green line), 

Basgo (solid black line) and Sobu (dotted blue line) valleys. Shaded areas 

represent 95% credibility limits for these curves.  (a) Comparison of functions 

preserving best fit magnitude, K.  (b) Comparison of functions rescaled to a 

relative magnitude of 1, consistent with theory.  Implied values of K for each 

catchment are also shown. 
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TABLE 4.1. BEST FIT VALUES FOR PARAMETERS IN EQUATION 10 FOR EACH CHANNEL 

Channel κ n φ c 

Leh 4.22x10-6 < 6.07x10-6 < 9.74x10-6 1.02 < 1.13 < 1.37 7.30x10-4 < 1.81x10-3 < 4.20x10-3 3.64 < 4.24 < 4.89 

Basgo 2.77x10-5 < 3.56x10-5 < 4.73x10-5 1.69 < 1.91 < 2.05 1.81x10-3 < 6.83x10-3 < 1.76x10-2 6.33 < 6.54 < 6.72 

Sobu 8.76x10-5 < 1.26x10-4 < 1.39x10-4 1.84 < 2.02 < 2.08 1.88x10-4 < 2.44x10-3 < 3.22x10-3 3.85 < 4.19 < 4.31 

Figure 4.9.  Outputs from the 

forward model using most 

likely solutions shown in 

Figure 4.8.  Thinner black lines 

represent the total accumulated 

incision every eighth of the 

total runtime, i.e., 12.5 ka.  

Thicker gray lines are the 

known field observations of 

gorge depth. Modelled curves 

are truncated at the known real 

transition to depositional 

behavior in the modern 

channel. 
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We also illustrate the evolving transport stage, the ratio of the Shields stress 

of the flow to the critical Shields stress, down each channel under these optimal 

solutions (Fig. 4.11).  The different lines shown for each catchment indicate variation 

in transport stage throughout the model runs as slope and sediment load evolve, but 

overall these values are relatively stable.  These values are important since relative 

transport stage is also thought to play a role in controlling erosivity in sediment flux 

dependent incising systems (Sklar and Dietrich, 2004; Whittaker, 2007), and we go 

on to discuss its possible effects in Sections 4.6.1 and 4.6.2.  We note that Basgo has 

slightly higher peak transport stages than Sobu, and Leh has much higher values than 

both of these.  This ordering is consistent with the idea that lower transport stages 

can be associated with increased erosivity, but the large change in erosivity occurs 

between Basgo and Sobu, while the large change in transport stage occurs between 

Basgo and Leh. 
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Figure 4.10. (a-c) Model data 

reflecting evolution of f(qs/qc) 

at each node downstream 

during model run for each 

catchment using most likely 

solutions (Fig. 4.8). The sharp 

spike in the Sobu data is a 

point with high error driven by 

initially low shear stresses in 

the gorge head. (d-i) (Overleaf) 

Model data reflecting evolution 

of gorge depth through time for 

each node in each catchment 

using best fit solutions (Fig. 

4.8). These data are shown 

both as true depths (d-f) and 

normalized to total incision at 

that node at the end of the run 

(g-i). Note that most nodes 

show a tendency to incise more 

slowly later in the model run, 

but a few increase their rates of 

incision slightly through time. 

These accelerating nodes are 

typically either at the head or 

foot of the gorge, but are not 

intuitively distributed.  
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Figure 4.10 (cont.). 
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Figure 4.11.  Distributions of transport stage downstream for Leh, Basgo, and 

Sobu valleys for the most likely sediment flux functions (Fig. 4.8). Each fine line 

represents transport stage at a single 2.5 ka time-slice in during each run; note that 

although transport stages do evolve during the model runs, they do not vary greatly. 

The peak transport stages in Leh valley are much (3-5 times) higher than in either 

Basgo or Sobu valleys, whereas the difference between the Basgo and Sobu 

distributions is much smaller (< twofold variation). 
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4.6 Discussion 

 

4.6.1 General Form of the Sediment Flux Function 

 

This study has demonstrated that incision proceeding into loose, poorly sorted 

substrate material across long timescales can and should be modelled as a 

detachment-limited process, but modulated by a sediment flux function which 

incorporates both tools and cover effects.  Figure 4.8 shows that the sediment flux 

function is not always of the parabolic form originally proposed by Sklar and 

Dietrich (2004).  We identify some general differences to this model: the transition 

point between the tools and cover effects, which represents the maximum efficiency 

of erosion, occurs at low qs/qc = 0.25-0.5, the rising limb of the tools effect is steep, 

and the decreasing limb of the cover effect falls off less rapidly at high relative 

sediment flux, giving a quasi-exponential decrease. These features are all reminiscent 

of the form of the sediment flux sensitive erosive response proposed by Turowski et 

al. (2007), indicating that their dynamic treatment of bed cover is probably a sensible 

revision of theoretical models of the cover effect. 

 

Peak erodability occurs at reduced relative sediment flux in the Basgo and 

Leh catchments compared to the Sobu catchment (Fig. 4.8b). This pattern has in fact 

already been reported from experimental studies of bedrock abrasion in a flume, 

where increasing asymmetry is associated with increasing transport stage in the flow, 

across a similar to slightly lower range of transport stages to that reported here 

(Whittaker, 2007). This outcome is also consistent with results from modelling using 

cellular automata to constrain sediment transport and erosion (R. A. Hodge, unpubl. 

data). The relative transport stages in our channels (Fig. 4.11) are consistent with this 

explanation, but demand that the sensitivity to variation in τ*/τ*c is much greater at 

low transport stages than it is at high. The extent to which the skew of the sediment 

flux function towards low relative sediment flux values will be mirrored in other 

incising systems is not clear however, as it may reflect the specific dominance of the 

cover effect in a loose sediment system (see also section 4.6.3).  We do however note 
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that this skew matches that suggested by Turowski et al.'s (2007) dynamic cover 

model, and is consistent with previous experimental abrasion studies (Whittaker, 

2007), including the original Sklar and Dietrich results (Sklar and Dietrich, 2001). 

 

 

4.6.2 The K Parameter, Absolute Sediment Flux and the Sobu Curve 

 

Our method has allowed us not only to isolate the form of the sediment flux 

function, but also the absolute magnitude of the expression Kf(qs/qc) for each 

analyzed channel (Fig. 4.8).  The magnitudes of Kf(qs/qc) for the Leh and Basgo data 

sets are significantly lower than that for Sobu.  Since the function f(qs/qc) varies only 

between zero and one, this means that the value of K is varying strongly between 

catchments, with a higher value – more efficient erosion – in Sobu valley.  

Traditionally, within the stream power law (e.g., Equ. 4.1) the value of K is thought 

to depend primarily on substrate erodability, climatic erosivity, and perhaps a 

threshold effect (e.g., Whipple, 2004).  However, Leh and Sobu are adjacent, 

subparallel valleys, their outlets only some 6 km apart, and are of similar dimensions 

(Fig. 4.3).  Both share the same postglacial substrate within the gorge, and similar 

elevation spans for each geomorphic domain. It seems unlikely that either the 

substrate or climate could vary significantly between these valleys. 

 

Our data suggest that some other parameter not captured by the conventional 

erosion expression must affect the value of K. Studies of the tools and cover effect in 

flumes as well as theoretical approaches have suggested that this missing expression 

is transport stage (Sklar and Dietrich, 2004; Whittaker, 2007).  The transport stage is 

on average lowest for Sobu (Fig. 4.11), but in order for this effect to be solely 

responsible for the enhanced erosivity in Sobu valley we would require a very strong 

decrease in erosivity across a very narrow window in transport stage.    In contrast, 

the most obvious factor that varies strongly between the valleys is absolute sediment 

flux (Fig. 4.12).  We suggest that the erosivity term within the hybrid detachment-

limited erosion law should also be sensitive to the absolute bedload flux. Such 

sensitivity would be consistent with the underlying physics of a bed abrasion model 
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for the tools effect, and has previously been incorporated into theoretical models of 

sediment dependent incision (Sklar and Dietrich, 2004; Turowski et al., 2007). 

 

 

 

 

 

 

 

 

 

 

4.6.3 Tools and Cover - If Here, Then Everywhere? 

 

The prominent cover effect in these results is consistent with results from a 

number of natural bedrock erosional systems (e.g., Cowie et al., 2008; Johnson et al., 

2009; Valla et al., 2010). The mechanism of draping of the bed with sediment 

already in transport applies here, and we had already observed the transition 

downstream to full alluvial conditions which implied the channel approached then 

exceeded the limit qs/qc = 1.  However, the presence of the tools effect in our study 

area is more unexpected, as most formulations for tools theory assume erosion of a 

Figure 4.12.  Sediment flux function erosivity, K, as a function of modelled total 

sediment flux at the transition to depositional behavior, measured at the end of 

model runs using the most likely sediment flux functions (Fig. 4.8). 
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bedrock substrate.  This indicates that clasts already in transport play an important 

role in dislodging clasts that were previously immobile on the bed and allowing them 

to be incorporated more easily into the flow (c.f., Chatanantavet and Parker, 2009; 

Schmeeckle et al., 2001).  Indeed, very recent experimental work has confirmed that 

erosion rates of a loose sediment can be enhanced by the addition of sediment to the 

flow, providing direct support for the existence of a tools effect in such systems 

(Venditti et al., 2010). 

 

This study comprises the first documented example of the tools effect arising 

from changing downstream sediment flux from within single channels, and the best 

constrained examples of any previously documented sediment flux functions. 

However, this incision is occurring in a non-bedrock system.  We speculate that if 

the tools and cover effect is occurring here, it is probably also occurring in any 

channel, bedrock or otherwise, which is downcutting while also transporting a 

significant coarse bedload.  This behavior should at least be considered in all bedrock 

channels, and many of the implications discussed below may well apply in a large 

number of incising systems in a wide variety of settings. 

 

 

4.6.4 Implications 

 

In a transiently responding landscape undergoing sediment flux dependent 

incision, different reaches of the same channel with differing relative sediment fluxes 

will experience different erosional efficiencies (Fig. 4.10a-c).  This has several 

profound consequences for how we understand the long term evolution of 

landscapes, particularly in terms of how we use the stream power law. 

 

 

4.6.4.1 Modelling Channel Erosion 

 

If the channel element of landscape evolution is modelled with a stream 

power law approach, then in order to correctly predict both the pace of topographic 
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change and sediment flux from basins one must include the effects of incision 

thresholds and the sediment flux function.  Other authors have already highlighted 

many of these effects in isolation – we note amongst others the contributions of 

Gasparini et al. (2006) discussing the effects of sediment flux on transient response 

of a modelled landscape and the differences from simpler stream power models, and 

those of Baldwin et al. (2003) and Wobus et al. (2006a) discussing the profound 

(order of magnitude) extensions in landscape response time that seemingly small 

changes in erosion model complexity can produce, including simply implemented 

sediment flux effects.  However, further work is needed to explicitly explore how 

varying downstream erosional efficiency fits into this picture, especially the tools 

effect, and how sediment flux dependency interacts with thresholds on the system, 

the stochasticity of the imposed climate, and downstream depositional regimes, 

especially those developing ephemerally during transient channel response. We 

anticipate that in many cases nonlinear sediment flux functions may significantly 

extend the response times of perturbed rivers (c.f., Fig. 4.10d-i), though for relatively 

sediment starved channels it is also possible that the tools effect may shorten 

response times compared to predictions from more simply implemented erosion 

models (c.f., Gasparini et al., 2007). 

 

 

4.6.4.2 Channel Scaling 

 

It has previously been noted that rivers in transient landscapes tend to 

develop anomalous scaling metrics, especially in terms of the slope-area scaling 

exponent, or concavity (e.g., Hobley et al., in review; VanLaningham et al., 2006; 

Whipple, 2004).  Similarly, a number of studies have addressed the theory behind 

how perturbations to these scaling relations can be produced, with reference typically 

to a specific effect such as model formulation, catchment-scale variation in forcing, 

or sediment flux effects (e.g., Gasparini et al., 2006; Sinha and Parker, 1996; Sólyom 

and Tucker, 2004; Tucker and Whipple, 2002; Wobus et al., 2006a).  However, the 

link between the theory and real field studies is rarely made.  Uniquely, we are here 

able to demonstrate that the tools and cover effect is active in a channel system 
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which has previously been documented to have systematically elevated concavity 

values (Hobley et al., 2010).  This provides good evidence that variation in relative 

sediment flux in natural systems is one of the prime drivers of altered scaling in 

natural channels.  We also note that concavities can evolve significantly in channel 

networks even following quite modest bed elevation changes, as are occurring in this 

field site.  It is the distribution of this change downstream which is the important 

driving parameter for channel concavity. 

 

 

4.6.4.3 Reading Past Changes in Boundary Conditions From Landscapes 

 

It has previously been argued that an understanding of the dynamics of 

channel incision can allow past boundary conditions affecting a landscape to be read 

from its present form (e.g., Kirby and Whipple, 2001; Snyder et al., 2000; Wobus et 

al., 2006b).  These approaches have met with some impressive success when applied 

to landscapes where this past forcing is known and the landscape is believed to have 

reached topographic steady state.  However, some more recent studies have extended 

the method into landscapes which are responding transiently (e.g., Cyr et al., 2009; 

Harkins et al., 2007; Kirby et al., 2007; Wobus et al., 2006a).  Such methods 

typically assume a simple form of the detachment-limited erosion law without 

sediment flux effects when deriving the mathematical inversion required to 

reconstruct the past changes.  We suggest that if sediment flux dependent incision is 

widespread in bedrock channels (Section 4.6.3), then applying such methods in 

transiently evolving landscapes in particular may create significant systematic errors 

in any results (c.f., Chapter 3).  We would advocate caution in applying the simplest 

form of detachment-limited erosion law to transient landscapes until further work has 

more fully established the prominence and forms of the sediment flux function across 

a wider variety of mountain channels. 
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4.7 Conclusions 

 

We have presented a framework under which the erosion style of an incising 

channel may be understood as either detachment- or transport-limited. We have also 

demonstrated that both styles can incorporate a sediment flux dependent term as well 

as a shear stress dependent term, allowing extension of the idea of a “hybrid” 

incision response into the transport-limited erosion model.  Shear stress distribution 

downstream forms the key discriminator between these two erosion models when 

compared to known patterns of resulting incision in a transiently responding channel 

network. 

 

We have applied this framework in a postglacial landscape where we have 

direct measurements of shear stress and where incision is well constrained due to the 

presence of a dated terrace. We demonstrate for the first time that incision 

proceeding into a coarse, loose, poorly sorted substrate can and should be modelled 

as a sediment flux dependent, detachment-limited system.  This sediment 

dependency must incorporate both a tools effect, where increasing relative sediment 

flux from initially low values promotes more efficient incision of the bed, and also a 

cover effect, where as the relative sediment flux continues to rise it begins to inhibit 

incision of the substrate.  Uniquely, we are able to calibrate the precise form of the 

resulting sediment flux function in three different catchments in the field site, and 

model how transient variations in relative sediment flux control the development of a 

gorge and the transition to the downstream aggrading system as these catchments 

develop through time, accurately matching these outcomes to real field data.  The 

resulting sediment flux functions show many features which are compatible with 

previous theoretical and laboratory studies but which have not before been 

independently verified from real field data, but also suggest that the peak in incision 

efficiency may occur at lower relative sediment flux values than widely assumed in 

the literature.  We also show that the erosivity (K) of hybrid detachment-limited 

systems is not described sufficiently by extrinsic controls of climate and lithology, 

and may also depend on absolute values of sediment flux in the channel.  The 
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presence of the tools and cover effects working in concert in this environment 

suggests that they are also likely to important in any eroding river channel carrying 

significant quantities of coarse bedload. 
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5. DISCUSSION AND SYNTHESIS 

 

5.1 Overview and Synthesis 

 

This thesis has used an integrated study of field and remotely sensed data 

combined with analytical and computer modelling to investigate the long term 

transient response of mountain rivers to changes in their boundary conditions.  This 

addresses an outstanding challenge in modern quantitative geomorphology (c.f., 

Whipple, 2004), allowing us to discriminate between incision models, to understand 

the dynamics and style of the response, and to better read past environmental 

changes from the landscape record.  We have presented the previous three chapters 

in a stand-alone paper style, but together they form a coherent narrative which makes 

significant forward progress on several deeper unsolved questions in 

geomorphology.  Amongst others, these include: 

 

• Is there anything special about the perturbation experienced by a postglacial 

landscape compared to a landscape perturbed by changing tectonics? 

• How reliable is the steepness index method for reconstructing past tectonics 

when applied in transient landscapes? 

• What is the role of sediment flux in controlling river incision? 

• How can we tell the difference between detachment- and transport-limited 

responses of river channels from field data?  How does sediment flux fit 

into this picture? 

 

The next section provides a detailed account of how the work presented in 

chapters 2, 3 and 4 addresses these major challenges in the field, and makes explicit 

how the material in this thesis significantly advances our understanding of transient 

river dynamics.  The subsequent section outlines questions which this thesis has in 

turn raised and suggests possible avenues of approach for some of these.  The thesis 

then concludes with a short summary of the key elements of this study. 
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5.2 Importance, Impact and Implications 

 

5.2.1 Postglacial Landscapes as Transient Landscapes – Differences, but Mainly 

Similarities 

 

The literature describing geomorphic response to and recovery from 

glaciation – “paraglacial response” – tends to leave the reader with the strong 

impression of the “special-ness” of postglacial landscapes.  New, ice mediated 

(“periglacial”) processes may be active, and the accelerated rates of change and short 

response time scales of small and intermediate scale geomorphic features compared 

to nonglaciated environments tend to be emphasized (see Section 2.1).  However, the 

geomorphic response of the landscape to glaciation at the catchment scale, perhaps 

the most relevant to the impact of glaciation in the geologic record, has been rarely 

considered in this literature.  Are the rates and styles of response at this scale 

distinctively “glacial”, or are the landscape dynamics more or less equivalent to any 

transiently perturbed landscape? 

 

This question is addressed in Chapters 2 and 3 of this work, looking first at 

the exceptionally ancient postglacial landscape of the Ladakh Himalaya (Chapter 2), 

then more explicitly at the contrast between this case and two differently perturbed 

river systems elsewhere (Chapter 3).  It has been shown that while the 

geomorphology of the Ladakh landscape is filled with features which are clearly 

relics of the glaciation and unique to such a postglacial environment, the first order 

characteristics and divisions of the landscape are defined by the style of response (or 

indeed non-response) of the trunk streams draining the catchments (Section 2.4).  

This is vital, as it indicates that on the catchment scale, exotic processes driven by 

the effects of ice are of minor importance, and it is the channel response which 

determines the long term evolution of the system after deglaciation, both 

geomorphologically and in terms of its sediment output to downstream stores.  A 

simple approach, based on the known rate of river downcutting into the landscape, 

has been used to suggest a minimum response time for the landscape on the order of 

10
6
 years and a rate of downcutting on the order of 0.5 mm/y, values which are both 
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entirely consistent with examples of nonglacial transient landscape response from the 

literature (Section 2.6.2.2).  However, this time scale of response is an order of 

magnitude longer than any previous value quoted for any system responding to a 

glacially driven perturbation, i.e., a paraglacial response. 

 

This thesis also looks into the first order scaling of channels perturbed by 

glaciation.  Chapter 2 draws attention to the existence of concavity (slope-area 

scaling) values which are sharply elevated above those expected at steady state for 

the glacially perturbed landscapes in Ladakh. The magnitude of the displacement 

away from steady state values reflects the extent of the glacial alteration of the 

landscape, as measured by the position of the glacially carved knickzone within the 

catchment (Section 2.5).  This might instinctively be interpreted as a unique 

consequence of some aspect of the system specifically forced by the glaciation (e.g., 

altered channel hydrology), but this is not supported by existing work on the effects 

of altered stochasticity on river scaling (Section 2.6.1).  Instead, Chapter 3 

demonstrates that such an altered scaling is a consequence of the presence of a 

knickzone within the catchment, rather than by the fact it is glacially carved.  Since a 

migrating knickzone is a common feature of many transiently responding landscapes 

(e.g., Whipple and Tucker, 2002), this scaling is probably widespread in very many 

channel systems in a wide variety of climatic and tectonic settings. It is possible that 

many instances of atypically high concavity values previously reported in the 

literature (see, e.g., Whipple, 2004 for a review) also reflect this same sensitivity of 

river scaling to presence of a knickzone in a river system. 

 

This conclusion – that at the catchment scale, glacially perturbed catchments 

can be regarded as equivalent to transiently responding catchments in other settings – 

has not previously been well articulated, and forms the foundation for the subsequent 

approach taken in this work exploring the style of response of the channels in these 

environments within a purely fluvial framework. 
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5.2.2 Transient Landscapes, River Scaling and the Reading of Tectonics from 

Landscape 

 

Chapters 2 and 3 have described the existence of a systematic and nonlinear 

perturbation in the measured concavity value for reaches downstream of knickzones 

in the long profile of a river.  Chapter 3, with its documentation of this trend in a 

variety of tectonoclimatic settings and the arguments from first principles laid out in 

Section 2.6.1 together make the case that this behaviour is not driven by extrinsic 

forcing on the systems – be it stochastic, climatic, tectonic or paraglacial.  Instead, 

the evidence suggests that the effect is forced by catchment geometry, and an 

inevitable consequence of the existence of the knickzone in the channel perturbing 

some property of the flow, such as width or sediment flux scaling, as it passes over 

the break in slope.  Section 5.2.3 returns to the nature of this perturbation, but here it 

is noted that the nonlinearity in concavity scaling reported here is not predicted by 

simple versions of the stream power law, where erosion is effectively modelled as a 

direct function of the shear stress on the bed (Figure 5.1). 

 

 This previously unrecognized but yet widespread trend is in fact of vital 

importance.  Almost all attempts to read past changes of tectonics from landscape 

assume this simple form of the stream power law somewhere in their derivation, and 

if the scaling of river channels deviate from this then systematic error in the 

calculations is to be expected.  This idea is dealt with thoroughly in Section 3.5, 

which describes in detail the errors that this altered scaling will introduce into the 

steepness index method of channel analysis.  That chapter concludes that the effect 

will make little difference where the channels have reached steady state (e.g., Snyder 

et al., 2000), but will introduce phantom zones of increased inferred uplift 

downstream of long profile convexities in transiently responding landscapes where 

the method been recently applied.  The effect will be exacerbated by considering 

individual reaches of the channel, which has also recently become common practice 

when using this method (e.g., Harkins et al., 2007).  A clear, unequivocal 

demonstration of the stability of the slope-area scaling of channels on the scale that 
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they are analyzed is essential if the results of such studies in transient landscapes are 

to be believed. 

 

 

Figure 5.1.  From Whipple and Tucker (2002).  Modelled long profile (a) and 

slope-area scaling (b) for a channel responding transiently to an increase in 

uplift rates, assuming a simple detachment limited erosion law.  Light gray lines 

indicate profile at regular timesteps during the response.  A migrating knickzone 

sweeps up through the system as time advances, but note that the slope area 

scaling of the reach downstream of the knickzone does not deviate from the 

expected concavity value of 0.5 (dashed black line in b), the same as that before 

perturbation (solid black line in b). 
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This conclusion echoes general concerns previously raised by others over the 

applicability of the steepness index method in transient landscapes (see Section 

3.5.2), but provides an entirely novel explanation for how systematic error can enter 

the calculations and provides a framework for understanding its likely impacts and 

for avoiding interpretations biased by its effects.  Demonstration of the presence of 

the signal across a variety of different environments also means that these 

conclusions have the potential to impact very many future studies of transient river 

response to past changes in boundary conditions. 

 

 

5.2.3 Sediment Flux and River Incision 

 

The idea that the rate of erosion in a natural river system ought to be sensitive 

to the flux of sediment it carries has now been present in the literature for some time.  

Working from both theory and experimental modelling studies, it has been suggested 

that sediment entrained in the flow has the capacity to act both as tools to promote 

incision by impacts on the bed, and also as cover, where increased volumes of 

sediment form a protective layer over the bed.  This existing work (see Section 4.2.1) 

suggests that the tools effect should be dominant at low relative sediment fluxes and 

will give way to the limiting effects of cover at higher relative sediment fluxes, 

giving a peak in erosional efficiency at some intermediate value of relative sediment 

flux.  This means that of the various possible controlling factors modulating the 

simple stream power type approach – e.g., climate, lithology, threshold effects – the 

effect of sediment flux is likely to be most important, both due to the strongly 

nonlinear, humped, form of the response and also due to its ubiquity – all eroding 

rivers must carry sediment, and in transient landscapes the relative sediment flux 

must vary downstream.  However, despite all this an astonishingly small body of 

work has attempted to calibrate or detail this effect in real, natural settings. 
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Figure 5.2.  From Gasparini et al. (2006).  Change in modelled channel long 

profile (A) and associated slope area-plot (B) for catchment perturbed by a 

fourfold increase in uplift rates, assuming an almost-parabolic form of the 

sediment flux function.  Data lines represent time intervals as shown in B, as 

model years.  Straight lines running through slope-area plot are the equilibrium 

relationships, i.e., θ = ~0.5, for old (lower) and new (upper) uplift rates.  Note 

that this model generates a migrating knickzone in the long profile (local slope 

maxima in B), and that downstream of this the concavities are significantly 

elevated.  These concavities relax back towards equilibrium values as the 

knickzone moves up the system.  Compare Fig. 5.1. 
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The role of sediment flux forms perhaps the strongest theme running through 

this thesis.  Chapter 2 begins by describing the qualitative field evidence that in the 

Ladakh field site, the relative sediment flux in the river system must be varying 

downstream – the mobile boundary between incising reaches upstream and 

depositing reaches downstream in the glaciated catchments is perhaps the best 

evidence for this.  The altered river scaling then described in Section 2.5 and further 

documented in other tectonoclimatic settings in Chapter 3 is also shown to be 

entirely compatible with the long term effects expected from this downstream 

increase in relative sediment fluxes (see, e.g., Sections 2.6.1 and 3.5).  It has 

previously been documented that elevated concavity values may be associated with 

downstream transitions to alluvial river behaviour, but uniquely here we have shown 

this only to be a sufficient, not necessary condition – the transition to alluvial reaches 

is driven by evolving relative sediment flux downstream, at the same time as it drives 

increases in concavity.  It has been asserted here that evolving sediment flux would 

still drive increased concavity without the transition to full alluvial conditions, as we 

see in the Red River region in Chapter 3.  The close match between field sites of the 

increased concavity trend downstream of profile convexities also argues that this is 

an intrinsic feature of river dynamics, shared between eroding and depositing reaches 

and relatively invariant in different settings.  Long term relative sediment flux is the 

most parsimonious choice for the driver of this effect, since sediment variations will 

occur in all transient landscapes independent of forcing mechanism, can be 

demonstrated for the Ladakh and F�g�ra� regions by the downstream transitions to 

alluvial reaches, and have been suggested from theory to be capable of producing 

elevated concavity trends downstream of knickzones in eroding systems (c.f., 

Sections 2.6.1 and 3.5; Fig. 5.2). 

 

Having suggested in Chapters 2 and 3 that evolving relative sediment flux is 

sufficiently important to perturb first order slope-area scaling in transient river 

networks, it is essential that the effects of sediment flux also be demonstrated from 

the detailed reach scale channel response of the Ladakh field site.  This provided the 

original motivation behind Chapter 4.  Working from within a detachment-limited 

erosion framework (justified by consideration of the distribution of downstream 
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shear stress; see Section 5.2.4), this chapter demonstrates that the patterns of incision 

observed in the field in the incisional Domain 2 of the Ladakh catchments are most 

consistent with an erosion law modulated by both tools and cover sediment flux 

effects.  This field site presents a unique opportunity to go beyond this however and 

to fully calibrate the form of this sediment flux function, using the exceptionally 

clear and continuous form of the postglacial gorge and the ability here to produce an 

almost comprehensive sediment budget through time for the stream within it.  

Section 4.5 presents this material.  Figure 4.8 presents the resulting unprecedented 

curves describing the relative erosional efficiency at varying relative sediment fluxes 

for three different Ladakh catchments.  These results provide an unmatched 

opportunity to test theoretical ideas of how the tools and cover effect works against 

real data (see Section 4.6) and represent a very important contribution to our wider 

understanding of this process. 

 

  Although the Ladakh site is somewhat atypical to many transiently 

responding landscapes in terms of the loose substrate incised and the aridity of the 

environment, this thesis has emphasized the similarity of the response rates, styles 

and time scales to other environments (c.f., Section 5.2.1).  It is in fact likely that the 

role of the sediment flux function presented here is widely applicable in incising 

transient landscapes of all types, especially considering that this work has 

demonstrated that the Ladakh system is responding in a detachment-limited fashion, 

in line with most other bedrock upland systems (next section). 

 

 

5.2.4 Distinguishing Incision Models Using Field Data 

 

A wide variety of models to describe river incision have been proposed in the 

literature (see, e.g., Section 4.2).  However, as has been widely noted, distinguishing 

between these is challenging, since under equilibrium channel conditions many of 

the models achieve a similar concave-up form.  Looking at the river response while it 

is transiently adjusting to a change in forcing conditions is now recognized as the 

best hope for model discrimination, since the response style (e.g., 
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diffusive/advective/hybrid) has been shown to vary from theory to theory.  However, 

to be able to reconstruct the long profile form in sufficient detail across a long 

enough time window to definitely identify this response style can prove difficult in a 

real world setting. 

 

This study has taken a novel approach to this problem by returning to the 

basic mathematics used to frame a river incision model as either detachment limited, 

(where erosion proceeds as a function of shear stress on the bed) or transport limited 

(where it proceeds as a function of divergence of carrying capacity in the flow).  

Chapter 4 has argued that by making explicit the dependence of the transport 

capacity of the channel on shear stress, we can make direct comparison between 

these two formulations where each incision equation depends on the product of two 

independent terms, one a function of sediment flux, the other a function of bed shear 

stress.  This treatment allows us not only to recognize a potential new class of hybrid 

transport-limited erosion response (Section 4.2.2), but also to distinguish between 

detachment- and transport-limited behaviour purely on the basis of downstream shear 

stress distribution and the resulting pattern of channel downcutting. 

 

We have used this framework to test the style of response occurring in 

Ladakh, an environment in which the choice between incision model is ambiguous.  

Incision is known to be proceeding into the coarse, loose, but very poorly sorted 

substrate of glacial debris.  This material is not attached to the bed and a lot of it is 

quite fine grained, so we might expect a transport-limited response, but equally there 

are many blocks in the grain mixture which the channel will not be able to freely 

incorporate into the flow, which would argue against this.  On the basis of the shear 

stress and gorge depth data (Figure 4.6), we are able to demonstrate that these 

channels are adjusting to the glacial sculpting of the catchments in a sediment flux 

dependent, detachment-limited fashion on catchment response (> 10
3
 yrs) time 

scales. Presumably, a similar response should be expected in analogous situations in 

other mountain catchments, for instance where debris flow or landslide deposits 

directly impinge on channels, or where river beds are composed of jointed or 

otherwise fragmented bedrock.  
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This shear stress based approach to understanding erosive response style 

across the whole spectrum of detachment-limited and transport-limited behaviour is 

entirely new, and has great potential to allow us to distinguish between river incision 

models in other environments and settings where long profile form may not be 

sufficient to distinguish between them.  The addition of the new hybrid transport-

limited response style also fills a theoretical gap in our understanding of this 

spectrum of behaviour, and provokes further questions regarding when and if such 

modified diffusive behaviour would be seen.  The ability to demonstrate that a 

channel is responding in a detachment-limited fashion is also a key step in the 

reconstruction of a channel’s response to relative sediment flux, as described in 

Section 5.2.3. Providing this framework may also stimulate further attempts to 

understand this important parameter in other settings. 

 

 

 

5.3 Research Opportunities and Future Work 

 

The novel results and conclusions from this work have in turn triggered a set 

of new research questions, both regarding the detailed evolution of the Ladakh 

catchments and on how we treat long term river dynamics more generally.  This 

section outlines some of these questions as well as possible approaches to tackling 

them. 

 

5.3.1 Landscape Evolution in an Ancient Postglacial Environment: Dynamics 

of the Other Domains 

 

Chapter 2 of this work has presented a thorough field description of the 

catchments draining the Ladakh batholith.  However, the detailed analysis conducted 

for these catchments in Chapter 4 focussed almost entirely on the dynamics of the 

incising channel in the gorged reaches.  There is still abundant research to be done on 
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kinematics and dynamics of the lower, aggrading domain and in particular the upper, 

glacially dominated domain, some of which we outline below. 

 

The lower domain is clearly an important part of the evolving concavity story 

outlined in Chapters 2 and 3. However, on the grounds of shared response, this study 

has only been able to hypothesize that evolving long term sediment flux modulates 

long term channel aggradation in the same way that it modulates long term channel 

incision in the better documented downcutting reaches.  This is largely due to the fact 

that long term deposition in this reach has hidden beneath the surface any evidence 

of past landscape form – we need to know the stratigraphy to interpret the evolution 

of this domain.  Surveys of the subsurface in such settings would be extremely 

valuable, perhaps exploiting subsequent downcutting, though this would not be 

possible in any of the Ladakh catchments documented here.  An alternative might be 

to establish systematic modern sediment flux measurements throughout the systems 

to investigate how the material supplied to the depositing regime at the end of the 

gorge is dispersed today, or to use stable isotope systems in grains in this domain to 

see particle transport histories. Such approaches would allow us to test the extent to 

which standard sediment transport laws are appropriate in these settings, and to try to 

document the details of the coupling between the sediment flux dependent incising 

reaches and the downstream areas of deposition. 

 

The upper domain however may yield more easy progress, since burial of the 

past landscape form is not so much of a problem.  Chapter 2 has qualitatively 

documented some of the complexities of landscape evolution in this domain, but time 

and logistical difficulties prevented a fuller examination of the details of response in 

this area.  The role of the paraglacial debris fans and unusual hillslope channel 

coupling in this domain presents an interesting problem, since while it is clear that 

material is reorganized on a 500 m scale between fans and the flats between them, it 

is not clear how this impacts and has impacted long term channel evolution in this 

domain.  What would the landscape be like if more/fewer of these fans intersected 

with the channel?  Do they prevent the channel from modifying the landscape more 

widely by forcing it to concentrate its power on these coarse bed regions?  How old 
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are the fans, and what is the likely fate of this component of the landscape in the 

future?  The role of the inherited valley width carved by the glaciers will form an 

important component of this problem.  A field campaign focussed on taking finer 

scale field measurements than those presented in Chapter 4 in a number of the 

Ladakh valleys would rapidly make progress on these questions. 

 

 Further clarification of how these other elements within the such catchments 

operate would not only provide a clearer view of some of the processes described in 

this study and the links between them, but would also be an ideal study of the 

dynamics of the transition points between contrasting incisional and depositional 

channel processes, a topic of great importance within geomorphology but still poorly 

understood (c.f., Paola et al., 2009).  It might also enable better understanding of the 

concavity trends seen in Chapters 2 and 3, and possibly allow for a correction to be 

applied when considering the calculation of past forcings from transient topography 

(Section 3.5). 

 

 

5.3.2 The Hybrid Transport-Limited Erosion Model 

 

Section 4.2 of this work introduced the theoretical concept of a hybrid 

transport-limited erosion model, where erosion is modelled as a function of the 

product of rate of change of sediment capacity with shear stress and rate of change of 

shear stress downstream (Equation 4.4).  This formulation arose as a natural 

consequence of the framework under which we analyzed the transport-limited 

erosion law, and in fact was not found to be applicable in the Ladakh field site.  

However, this raises the questions of how such a formulation would respond in 

theory to equilibrium and perturbed boundary conditions, and whether or not it may 

be shown to be a real driver of channel behaviour rather than just a theoretical 

possibility. 

 

Chapter 4.2.2 suggested that the hybrid transport-limited model would behave 

in a manner analogous to the hybrid detachment-limited law on the basis of similarity 



Chapter 5  Hobley, 2010 

 

 135 

of form.  However, this has not been demonstrated.  A thorough study is needed in 

the vein of those by Whipple and Tucker (2002) and Gasparini et al. (2006) (c.f., 

Figs. 5.1, 5.2) to document the details of the expected response of this erosion 

equation.  This will also require an examination of the likely form of the dqs/dτ term, 

which it was suggested in Chapter 4 may well diverge away from the linear relation 

predicted from the form of many laboratory derived transport equations when 

considered in real landscapes over long time periods.  An approach based on 

predicted proportions of a mixed substrate to move under certain imposed shear 

stress conditions may be a good place to start with this (c.f., Wong and Parker, 

2006).  A very simple trial attempt at doing this (conducted during this study but not 

reported in the main text) using field data on the Ladakh glacial sediments and a 

Shields particle mobility calculation suggested it may be possible to produce a 

strongly nonlinear form of dqc/dτ like that for the detachment-limited sediment flux 

function.  However, the precision of the sediment data already collected cannot 

support a robust conclusion on this topic, and a more definitive study on well-

constrained substrate sediment grain size data would be needed. Examples of good 

locations for such a study would be those in which the incising substrate were to be 

composed of homogenous blocks, such as glacial, jointed or landslide material, 

where detailed measurements of the substrate and subsequent predictions of its 

mobility under sediment flux laws could be compared to documented long term 

incision trends. 

 

It would also be interesting to test other real incising fluvial landscapes to see 

if hints of this hybrid transport-limited behaviour can actually be seen in the field.  

The method used in Chapter 4 would allow a first order indication of whether it is 

acting.  Since we have already discounted its importance in a coarse, loose and 

poorly sorted postglacial substrate, the next most obvious place to look might well be 

for incision occurring into pre-existing fluvial deposits, for example, an entrenched 

fan.  Such a site would not have a heavy load of essentially immobile clasts, as in the 

Ladakh case, but the channel would still have to shift material not entirely optimized 

to its current flow regime.  It may also be that the style of response changes 
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according to the magnitude and speed of perturbation, and this idea could also be 

explored. 

 

The existence or otherwise of a hybrid transport-limited erosion regime could 

shed important light on the nature of the interaction between detachment-limited and 

transport-limited erosion and transport processes, both temporally and spatially.  A 

fuller understanding of the “best” way to describe incision processes in a wide 

variety of settings will also significantly improve our ability to computationally 

model landscape evolution. 

 

 

 

5.3.3 Interaction of Sediment Flux and Threshold 

 

This study has demonstrated that in the Ladakh catchments, incision can only 

be modelled adequately with both a threshold and a tools-and-cover type sediment 

flux function incorporated into the detachment-limited incision law (Chapter 4).  

However, in drawing such a conclusion this field-based study has now outstripped 

the theoretical background describing how such a system will evolve in the long 

term.  Modelling work has addressed both the role of thresholds (Attal et al., 2009; 

Snyder et al., 2003b) and the role of varying sediment flux (Gasparini et al., 2006) 

independently, but no previous research has attempted to examine how having both 

of these effects active together will change the long term evolution of fluvial 

systems.  This is a particularly important gap in the literature to close, since it seems 

likely that any river system loaded with enough sediment to experience the tools and 

cover effects may also have imposed upon it an incision threshold driven by the 

threshold of motion of that sediment (c.f., Section 4.5.1.4). 

 

A systematic study of the way in which a both thresholded and sediment flux 

dependent detachment-limited system would respond to a perturbation in its 

boundary conditions (e.g., increased uplift), again after Tucker and Whipple (2002) 

or Gasparini et al. (2006), would serve to fill this gap.  Such a study could also be 
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combined with the investigation of a hybrid transport-limited system as proposed in 

Section 5.3.2. 

 

 

5.3.4 Landscape and Climate 

 

One of the original motivations for this study was the observation that erosion 

rates have seemingly intensified globally over the last few million years, and that this 

is probably linked to transience imposed on the landscape by oscillating climate 

(Molnar and England, 1990; Zhang et al., 2001; see also Section 1.2).  This work has 

examined the particular role in this story that glacial growth and retreat can play in 

inducing transience in mountain river systems, but we have quite deliberately 

ignored the possible role played by evolving climate itself.  An important counterpart 

to studies such as this will be to examine the effect that more globally relevant 

climatic change (i.e., in rainfall distribution, quantity and intensity) can have on 

driving increased erosion of landscapes.  Such changes have the potential to drive 

global erosion signals, not just those in glaciated regions, and will also modulate the 

effects of glaciers on landscapes such as that studied here.  They will also shed light 

on the landscape change, including natural hazards, likely to be induced by modern 

anthropogenic climate perturbation. 

 

Chapter 2 has presented a response time scale for the Ladakh system of the 

order of 10
6
 years, much longer than the time scales of Milankovich-type climate 

cyclicity (Lisiecki and Raymo, 2005). This prompts several specific research 

questions which we might ask: To what extent are landscapes buffered against 

climatically induced cycles (c.f., Allen, 2008, and references therein)?  Is the 

landscape more sensitive to climatic variation with a certain characteristic period?  

What, if anything, could make landscapes more reactive to climatic changes, for 

instance, sediment effects or thresholds?  An obvious angle of attack on such 

problems will be to numerically model the consequences for the landscape of likely 

climate change scenarios, both modern and past, but the conclusions of such studies 

will also need to be field tested to establish their robustness.  A methodology 
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focussed on an ideal real natural laboratory like the approach taken in this work will 

again prove invaluable.  An appropriate natural laboratory will consist of a landscape 

with a strong climatic gradient on a relatively short lengthscale, combined with some 

understanding of how this gradient varies through time.  A combined approach using 

global climate modelling or, more likely, well constrained orographic rainfall 

variation and atmospheric flow kinematics alongside detailed field work describing 

the form of channels (and hillslopes) crossing and within climatic zones will 

probably yield immediate gains in our understanding of the response of landscape to 

a changing climate. 
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6. CONCLUSIONS 

 

The main conclusions of this thesis are as follows: 

 

• The geomorphology of catchments draining the south flank of the Ladakh 

batholith follows a tripartite division, defined primarily by the dynamics of 

the trunk streams.  In the upper domain the channels are controlled mainly by 

the inherited glacial and paraglacial structure of the landscape; in the middle 

domain the channels incise strongly down through postglacial sediments; in 

the lower domain the channels aggrade in a valley-filling floodplain above 

the postglacial surface.  Field observations show that the lower domain is 

migrating up into the lower parts of the gorges previously cut by the 

channels.  These observations demonstrate that the channel network is 

transiently adjusting to changing forcings on the system. 

 

• The extent of glacial modification of the upper reaches of these catchments 

alters the hydraulic scaling of the downstream channel.  The channel 

concavity measured downstream of the knickzone carved by the ice is 

systematically and nonlinearly elevated above the expected range of 0.3-0.6.  

Field observations suggest that this effect is associated with evolving relative 

sediment flux downstream in the channel, which would be consistent with its 

hypothesized role in some incision laws. 

 

• The peak time-averaged incision rates in the Ladakh catchments surveyed are 

of the order of 0.5 mm/y, and catchment recovery times from the glaciation 

must significantly exceed 1 Ma.  These values are consistent with rates and 

time scales from catchments elsewhere undergoing transient response 

induced by a change in tectonics.  However, when interpreted strictly as 

glacially induced – “paraglacial” – responses, this response time scale 

exceeds any other previously reported by an order of magnitude.  This is 

interpreted as being due to the previously underexplored whole catchment 

scale of this response. 
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• Comparison of the altered hydraulic scaling in Ladakh with river scaling in 

catchments elsewhere of similar form but responding transiently to different 

tectonoclimatic forcings demonstrates that the elevation of channel 

concavities downstream of knickzones is a widespread phenomenon, linked 

to some intrinsic property of the transiently eroding systems.  This property 

is interpreted as evolving relative sediment flux downstream of the knickzone 

in each case. 

 

• The existence of significantly perturbed slope-area river scaling relations in 

transiently responding landscapes creates significant complications for 

attempts to read past changes in tectonics from topography in these 

environments.  The documented trends will create phantom zones of apparent 

uplift downstream of long profile convexities due to locally elevated 

concavity indices if a steepness index methodology is applied unthinkingly. 

This effect will be exacerbated by the presence of such convexities 

progressively further downstream in a catchment and by subdivision of the 

channel into smaller segments for analysis.  Attempts to use such a method 

must take care to document the stability of measured channel concavities on 

the length scale appropriate to the channel segment length. 

 

• Transport-limited and detachment-limited styles of erosion may be 

distinguished in real settings based on comparison between downstream 

shear stress distribution, channel width and erosion rates.  This method also 

allows  qualitative assessment of the relative importance of relative sediment 

flux effects on incision rate in each case.  This process also highlights the 

possible existence of a previously unappreciated class of sediment flux 

dependent, transport-limited incision responses. 

 

• Long term incision into a coarse, loose, poorly sorted but homogeneous 

substrate occurs as a detachment-limited process.  Rates of downcutting in 

these settings are modulated by both an erosion threshold, below which 
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erosion does not occur, and a nonunity sediment flux function.  Accurate 

modelling of this process requires that the sediment flux function 

incorporates both a tools effect at low relative sediment flux and a cover 

effect at high relative sediment flux. 

 

• It is possible to fully calibrate the detailed form of this sediment flux function 

in this setting.  This is the first description of the shape of the curve from a 

natural eroding system.  The shape is not compatible with the simple 

parabolic form of the original Sklar and Dietrich (2004) theoretical 

suggestion, and instead shows nonzero erosion rates at zero sediment flux, a 

rapid rise and peak at relative sediment fluxes of less than 0.5 and a quasi-

exponential decrease in erosional efficiency beyond this.  Both the position 

of the erosional efficiency peak in relative sediment flux space and the 

magnitude of the curve are shown to be variable between catchments 

explored and correlated with transport stage and absolute sediment flux in the 

streams. 

 



Chapter 7  Hobley, 2010 
 

 142 

7. REFERENCES 

 
 
Allen, P. A., 2008, Time scales of tectonic landscapes and their sediment routing 

systems, in Gallagher, K., Jones, S. J., and Wainwright, J., eds., Landscape 
Evolution: Denudation, Climate and Tectonics Over Different Time and 
Space Scales: Geological Society, London, Special Publications, v. 296, p. 7-
28. 

 
Amerson, B. E., Montgomery, D. R., and Meyer, G., 2008, Relative size of fluvial 

and glaciated valleys in central Idaho: Geomorphology, v. 93, no. 3-4, p. 537-
547, doi: 10.1016/j.geomorph.2007.04.001. 

 
Anders, A. M., Roe, G. H., Hallet, B., Montgomery, D. R., Finnegan, N. J., and 

Putkonen, J., 2006, Spatial patterns of precipitation and topography in the 
Himalaya, in Willett, S. D., Hovius, N., Brandon, M. T., and Fisher, D., eds., 
Tectonics, Climate, and Landscape Evolution: Geological Society of America 
Special Paper, v. 398, p. 39-53. 

 
Anderson, R. S., 1994, Evolution of the Santa Cruz Mountains, California, through 

tectonic growth and geomorphic decay: Journal of Geophysical Research, v. 
99, no. B10, p. 20161-20179. 

 
Anderson, R. S., Molnar, P., and Kessler, M. A., 2006, Features of glacial valley 

profiles simply explained: Journal of Geophysical Research, v. 111, F01004, 
doi: 10.1029/2005JF000344. 

 
Ashmore, P., 1993, Contemporary erosion of the Canadian landscape: Progress in 

Physical Geography, v. 17, p. 190-204. 
 
Attal, M., Cowie, P. A., Whittaker, A. C., Hobley, D. E. J., Tucker, G. E., and 

Roberts, G. P., 2009, Integrated field and numerical test of stream erosion 
models using the transient response of bedrock rivers to tectonic forcing: 
Geological Society of America Abstracts with Programs, v. 41, no. 7, p. 335. 

 
Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., and Roberts, G. P., 2008, 

Modeling fluvial incision and transient landscape evolution: Influence of 
dynamic channel adjustment: Journal of Geophysical Research, v. 113, 
F03013, doi: 10.1029/2007JF000893. 

 
Augustinus, P. C., 1995, Glacial valley cross-profile development: the influence of in 

situ rock stress and rock mass strength, with examples from the Southern 
Alps, New Zealand: Geomorphology, v. 14, p. 87-97. 

 
Bagnold, R. A., 1966, The shearing and dilatation of dry sand and the 'singing' 

mechanism: Proceedings of the Royal Society of London. Series A, 
Mathematical and Physical Sciences, v. 295, p. 219-232. 

 



Chapter 7  Hobley, 2010 
 

 143 

-, 1977, Bedload transport by natural rivers: Water Resources Research, v. 13, no. 2, 
p. 303-312, doi: 10.1029/WR013i002p00303. 

 
-, 1980, An empirical correlation of bedload transport rates in flumes and natural 

rivers: Proceedings of the Royal Society of London. Series A, Mathematical 
and Physical Sciences, v. 372, p. 453-473. 

 
Baldwin, J. A., Whipple, K. X., and Tucker, G. E., 2003, Implications of the shear 

stress river incision model for the timescale of postorogenic decay of 
topography: Journal of Geophysical Research, v. 108, 2158, doi: 
10.1029/2001JB000550. 

 
Ballantyne, C. K., 1998, Age and Significance of Mountain-Top Detritus: Permafrost 

and Periglacial Processes, v. 9, p. 327-345. 
 
-, 2002a, A general model of paraglacial landscape response: The Holocene, v. 12, 

no. 3, p. 371-376, doi: 10.1191/0959683602hl553fa. 
 
-, 2002b, Paraglacial geomorphology: Quaternary Science Reviews, v. 21, p. 1935-

2017. 
 
Ballantyne, C. K., and Benn, D. I., 1994, Paraglacial slope adjustment and 

resedimentation following glacier retreat, Fåbergstølsdalen, Norway: Arctic 
and Alpine Research, v. 26, p. 255-269. 

 
Barry, J. J., Buffington, J. M., and King, J. G., 2004, A general power equation for 

predicting bed load transport rates in gravel bed rivers: Water Resources 
Research, v. 40, W10401, doi: 10.1029/2004WR003190. 

 
Bartmus, A., 1994, Die Sp�teiszeitliche und Nacheiszeitliche Waldgeschichte 

Siebenbürgisches, in Heltmann, H., and Wendelberger, G., eds., 
Naturwissenschaftliche Forschungen über Siebenbürgen. V. Beiträge zur 
Flora, Vegetation und Fauna von Siebenbürgen: Siebenbürgisches 
ArchivKöln-Weimar-Wien, Böhlau Verlag, p. 1-10. 

 
Beaumont, C., Fullsack, P., and Hamilton, J., 1992, Erosional control of active 

compressional orogens, in McClay, K. R., ed., Thrust TectonicsLondon, 
Chapman and Hall, p. 1-18. 

 
Bennett, M. R., and Glasser, N. F., 1996, Glacial Geology: Ice Sheets and 

Landforms: Chichester, John Wiley & Sons Ltd., 364 p. 
 
Berg, B. A., 2004, Markov Chain Monte Carlo Simulations and Their Statistical 

Analysis: Singapore, World Scientific. 
 
Berger, A. L., Gulick, S. P. S., Spotila, J., Upton, P., Jaeger, J., Chapman, J. B., 

Worthington, L. A., Pavlis, T., Ridgway, K. D., Willems, B. A., and 
McAleer, R., 2008, Quaternary tectonic response to intensified glacial erosion 



Chapter 7  Hobley, 2010 
 

 144 

in an orogenic wedge: Nature Geoscience, v. 1, no. 11, p. 793-799, doi: 
10.1038/ngeo334. 

 
Bishop, P., Hoey, T. B., Jansen, J. D., and Lexartza Artza, I., 2005, Knickpoint 

recession rate and catchment area: the case of uplifted rivers in Eastern 
Scotland: Earth Surface Processes and Landforms, v. 30, no. 6, p. 767-778, 
doi: 10.1002/(ISSN)1096-9837. 

 
Bookhagen, B., and Burbank, D. W., 2006, Topography, relief and TRMM-derived 

rainfall variations along the Himalaya: Geophysical Research Letters, v. 33, 
L08405, doi: 10.1029/2006GL026037. 

 
Boulton, G. S., and Eyles, N., 1979, Sedimentation by valley glaciers; a model and 

genetic classification, in Schlüchter, C., ed., Moraines and VarvesRotterdam, 
Balkema, p. 11-23. 

 
Boulton, S. J., and Whittaker, A. C., 2009, Quantifying the slip rates, spatial 

distribution and evolution of active normal faults from geomorphic analysis: 
Field examples from an oblique-extensional graben, southern Turkey: 
Geomorphology, v. 104, p. 299-316, doi: 10.1016/j.geomorph.2008.09.007. 

 
Brardinoni, F., and Hassan, M. A., 2006, Glacial erosion, evolution of river long 

profiles, and the organization of process domains in mountain drainage basins 
of coastal British Columbia: Journal of Geophysical Research, v. 111, 
F01013, doi: 10.1029/2005JF000358. 

 
-, 2007, Glacially induced organization of channel-reach morphology in mountain 

streams: Journal of Geophysical Research, v. 112, F03013, doi: 
10.1029/2006JF000741. 

 
Braun, J., and Sambridge, M., 1997, Modelling landscape evolution on geological 

time scales: a new method based on irregular spatial discretization: Basin 
Research, v. 9, p. 27-52. 

 
Braun, J., Zwartz, D., and Tomkin, J. H., 1999, A new surface-processes model 

combining glacial and fluvial erosion: Annals of Glaciology, v. 28, no. 1, p. 
282-290. 

 
Braun, L. N., Weber, M., and Schulz, M., 2000, Consequences of climate change for 

runoff from Alpine regions: Annals of Glaciology, v. 31, p. 19-25. 
 
Brocard, G. Y., van der Beek, P. A., Bourlès, D. L., Siame, L. L., and Mugnier, J. L., 

2003, Long-term fluvial incision rates and postglacial river relaxation time in 
the French Western Alps from 10Be dating of alluvial terraces with 
assessment of inheritance, soil development and wind ablation effects: Earth 
and Planetary Science Letters, v. 209, no. 1-2, p. 197-214, doi: 
10.1016/S0012-821X(03)00031-1. 

 



Chapter 7  Hobley, 2010 
 

 145 

Brocklehurst, S. H., and Whipple, K. X., 2002, Glacial erosion and relief production 
in the Eastern Sierra Nevada, California: Geomorphology, v. 42, p. 1-24. 

 
-, 2006, Assessing the relative efficiency of fluvial and glacial erosion through 

simulation of fluvial landscapes: Geomorphology, v. 75, p. 283-299. 
 
Brook, M. S., Kirkbride, M. P., and Brock, B. W., 2008, Temporal constraints on 

glacial valley cross-profile evolution: Two Thumb Range, central Southern 
Alps, New Zealand: Geomorphology, v. 97, no. 1-2, p. 24-34, doi: 
10.1016/j.geomorph.2007.02.036. 

 
Brooks, G. R., 1994, The fluvial reworking of Late Pleistocene drift, Squamish River 

drainage basin, southwest British Columbia: Géographie Physique et 
Quaternaire, v. 48, p. 51-68. 

 
Burbank, D. W., 2002, Rates of erosion and their implications for exhumation: 

Mineralogical Magazine, v. 66, no. 1, p. 25-52. 
 
Burbank, D. W., and Anderson, R. S., 2001, Tectonic Geomorphology: London, 

Blackwell Science. 
 
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovi�, N., Reid, M. R., 

and Duncan, C. C., 1996, Bedrock incision, rock uplift and threshold 
hillslopes in the northwestern Himalayas: Nature, v. 379, p. 505-510. 

 
Bürgisser, H. M., Gansser, A., and Pika, J., 1982, Late Glacial lake sediments of the 

Indus valley area, northwestern Himalayas: Eclogae geol. Helv., v. 75, no. 1, 
p. 51-63. 

 
Caine, N., and Swanson, F. J., 1989, Geomorphic coupling of hillslope and channel 

systems in two small mountain basins: Zeitschrift für Geomorphologie, v. 33, 
no. 2, p. 189-203. 

 
Carretier, S., and Lucazeau, F., 2005, How does alluvial sedimentation at range 

fronts modify the erosional dynamics of mountain catchments?: Basin 
Research, v. 17, no. 3, p. 361-381, doi: 10.1111/bre.2005.17.issue-3. 

 
Chatanantavet, P., and Parker, G., 2009, Physically based modeling of bedrock 

incision by abrasion, plucking and macroabrasion, Journal of Geophysical 
Research, v. 114, F04018, doi: 10.1029/2008JF001044. 

 
Church, M., and Ryder, J. M., 1972, Paraglacial Sedimentation: A Consideration of 

Fluvial Processes Conditioned by Glaciation: Geological Society of America 
Bulletin, v. 83, no. 10, p. 3059-3072, doi: 10.1130/0016-
7606(1972)83[3059:psacof]2.0.co;2. 

 
Church, M., and Slaymaker, O., 1989, Disequilibrium of Holocene sediment yield in 

glaciated British Columbia: Nature, v. 337, p. 452-454. 



Chapter 7  Hobley, 2010 
 

 146 

 
Clayton, L., Attig, J. W., Ham, N. R., Johnson, M. D., Jennings, C. E., and Syverson, 

K. M., 2008, Ice-walled-lake plains: Implications for the origin of hummocky 
glacial topography in middle North America: Geomorphology, v. 97, no. 1-2, 
p. 237-248, doi: 10.1016/j.geomorph.2007.02.045. 

 
Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas, A., and 

Roberts, G. P., 2006, Investigating the surface process response to fault 
interaction and linkage using a numerical modelling approach: Basin 
Research, v. 18, p. 231-266, doi: 10.1111/j.1365-2117.2006.00298.x. 

 
Cowie, P. A., Whittaker, A. C., Attal, M., Roberts, G. P., Tucker, G. E., and Ganas, 

A., 2008, New constraints on sediment-flux dependent river incision: 
Implications for extracting tectonic signals from river profiles: Geology, v. 
36, p. 535-538, doi: 10.1130/G24681A.1. 

 
Craddock, W. A., Burbank, D. W., Bookhagen, B., and Gabet, E. J., 2007, Bedrock 

channel geometry along an orographic rainfall gradient in the upper 
Marsyandi River valley in central Nepal, Journal of Geophysical Research, v. 
112, F03007, doi: 10.1029/2006JF000589. 

 
Crave, A., and Davy, P., 2001, A stochastic "precipiton" model for simulating 

erosion/sedimentation dynamics: Computers and Geosciences, v. 27, p. 815-
827. 

 
Cruden, D. M., and Hu, X. Q., 1993, Exhaustion and steady-state models for 

predicting landslide hazards in the Canadian Rocky Mountains: 
Geomorphology, v. 8, p. 279-285. 

 
Cunningham, A., 1853, Ladak: Physical, Statistical and Historical: New Delhi, 

Pilgrims Publishing, 483 p. 
 
Cyr, A. J., Granger, D. E., Olivetti, V., and Molin, P., 2009, Distinguishing between 

tectonic and lithologic controls on bedrock channel longitudinal profiles 
using cosmogenic 10Be erosion rates and channel steepness index: Eos Trans. 
AGU, v. 90, no. 52, Fall Meet. Suppl., Abstract EP41B-0606. 

 
Dadson, S. J., and Church, M., 2005, Postglacial topographic evolution of glaciated 

valleys: a stochastic landscape evolution model: Earth Surface Processes and 
Landforms, v. 30, no. 11, p. 1387-1403, doi: 10.1002/(ISSN)1096-9837. 

 
Dahlen, F. A., and Suppe, J., 1988, Mechanics, growth and erosion of mountain 

belts, in Clark Jr., S. P., Burchfiel, B. C., and Suppe, J., eds., Processes in 
Continental Lithospheric Deformation: Geological Society of America 
Special Paper, v. 218, p. 161-178. 

 



Chapter 7  Hobley, 2010 
 

 147 

Dancey, C. L., Panayiotis, D., Papanicolaou, A., and Bala, M., 2002, Probability of 
Individual Grain Movement and Threshold Condition: Journal of Hydraulic 
Engineering, v. 128, no. 12, p. 1069-1075. 

 
Davy, P., and Lague, D., 2009, Fluvial erosion/transport equation of landscape 

evolution models revisited: Journal of Geophysical Research, v. 114, F03007, 
doi: 10.1029/2008JF001146. 

 
Densmore, A. L., Allen, P. A., and Simpson, G., 2007, Development and response of 

a coupled catchment fan system under changing tectonic and climatic forcing: 
Journal of Geophysical Research, v. 112, F01002, doi: 
10.1029/2006JF000474. 

 
Ehlers, T. A., Farley, K. A., Rusmore, M. E., and Woodsworth, G. J., 2006, Apatite 

(U-Th)/He signal of large-magnitude accelerated glacial erosion, southwest 
British Columbia: Geology, v. 34, p. 765-768, doi: 10.1130/G22507.1. 

 
Einstein, H. A., 1950, The bed-load function for sediment transportation in open 

channel flows: Technical Bulletin, v. 1026, U.S. Department of Agriculture, 
Washinton, D.C., 73 p. 

 
Ferguson, R. I., 1984, Sediment load of the Hunza River, in Miller, K. J., ed., The 

International Karakoram Project, v. 2: Cambridge, Cambridge University 
Press, p. 581-598. 

 
Fernandez Luque, R., and van Beek, R., 1976, Erosion and transport of bed-load 

sediment: Journal of hydraulic Research, v. 14, p. 127-144. 
 
Fielitz, W., and Seghedi, I., 2005, Late Miocene–Quaternary volcanism, tectonics 

and drainage system evolution in the East Carpathians, Romania: 
Tectonophysics, v. 410, p. 111-136. 

 
Finnegan, N. J., Roe, G. H., Montgomery, D. R., and Hallet, B., 2005, Controls on 

the channel width of rivers: Implications for modeling fluvial incision of 
bedrock: Geology, v. 33, no. 3, p. 229-232, doi: 10.1130/G21171.1. 

 
Flint, J. J., 1974, Stream Gradient as a Function of Order, Magnitude, and Discharge: 

Water Resources Research, v. 10, no. 5, p. 969-973. 
 
Fort, M., 1983, Geomorphological Observations in the Ladakh Area (Himalayas): 

Quaternary Evolution and Present Dynamics, in Gupta, V. J., ed., 
Stratigraphy and structure of Kashmir and Ladakh, Himalaya, Hindustan 
Publishing, New Delhi, p. 39-58. 

 
Fountain, A. G., and Tangborn, W. V., 1985, The Effect of Glaciers on Streamflow 

Variations: Water Resources Research, v. 21, no. 4, p. 579-586. 
 



Chapter 7  Hobley, 2010 
 

 148 

Friele, P. A., Ekes, C., and Hicken, E. J., 1999, Evolution of Cheekye fan, Squamish, 
British Columbia: Holocene sedimentation and implications for hazard 
assessment: Canadian Journal of Earth Sciences, v. 36, p. 2023-2031. 

 
Gasparini, N. M., Bras, R. L., and Whipple, K. X., 2006, Numerical modeling of 

non-steady-state river profile evolution using a sediment-flux-dependent 
incision model, in Willett, S. D., Hovius, N., Brandon, M. T., and Fisher, D., 
eds., Tectonics, Climate, and Landscape Evolution: Geological Society of 
America Special Paper, v. 398, p. 127-141. 

 
Gasparini, N. M., Whipple, K. X., and Bras, R. L., 2007, Predictions of steady state 

and transient landscape morphology using sediment-flux-dependent river 
incision models, Journal of Geophysical Research, v. 112, F03S09, doi: 
10.1029/2006JF000567. 

 
Gilbert, G. K., 1877, Report on the Geology of the Henry Mountains, U.S. 

Government Printing Office, Washington, D. C. 
 
Hack, J. T., 1957, Studies of longitudinal stream profiles in Virginia and Maryland: 

U.S. Geological Survey Professional Paper, v. 294-B, United States 
Government Printing Office, Washington, 97 p. 

 
Hallet, B., 1990, Spatial self-organization in geomorphology: from periodic 

bedforms and patterned ground to scale-invariant topography: Earth-Science 
Reviews, v. 29, no. 1-4, p. 57-75, doi: 10.1016/0012-8252(0)90028-T. 

 
Hallet, B., Hunter, L., and Bogen, J., 1996, Rates of erosion and sediment evacuation 

by glaciers: A review of field data and their implications: Global and 
Planetary Change, v. 12, p. 213-235. 

 
Hancock, G. S., Anderson, R. S., and Whipple, K. X., 1998, Beyond power: bedrock 

river incision process and form, in Tinkler, K. J., and Wohl, E. E., eds., 
Rivers Over Rock: Fluvial Processes in Bedrock Channels, Geophys. 
Monogr. Ser, vol. 107, v. Geophysical Monograph 107: Washington DC, 
AGU, p. 35-60. 

 
Harbor, J. M., and Warburton, J., 1993, Relative rates of glacial and nonglacial 

erosion in alpine environments: Arctic and Alpine Research, v. 25, p. 1-7. 
 
Harkins, N., Kirby, E., Heimsath, A., Robinson, R., and Reiser, U., 2007, Transient 

fluvial incision in the headwaters of the Yellow River, northeastern Tibet, 
China: Journal of Geophysical Research, v. 112, F03S04, doi: 
10.1029/2006JF000570. 

 
Hastings, W. K., 1970, Monte Carlo Sampling Methods Using Markov Chains and 

Their Applications: Biometrika, v. 57, no. 1, p. 97-109. 
 



Chapter 7  Hobley, 2010 
 

 149 

Herman, F., and Braun, J., 2006, Fluvial response to horizontal shortening and 
glaciations: A study in the Southern Alps of New Zealand: Journal of 
Geophysical Research, v. 111, F01008, doi: 10.1029/2004JF000248. 

 
Hey, R. D., Bathurst, C. R., and Thorne, J. C., 1982, Gravel bed rivers: Fluvial 

processes, engineering and management: Chichester, J. Wiley, 995 p. 
 
Hinchliffe, S., and Ballantyne, C. K., 1999, Talus accumulation and rockwall retreat, 

Trotternish, Isle of Skye, Scotland: Scottish Geographical Journal, v. 115, p. 
53-70. 

 
Hobley, D. E. J., Sinclair, H. D., and Cowie, P. A., 2010, Processes, rates and time 

scales of fluvial response in an ancient post-glacial landscape of the 
northwest Indian Himalaya: Geological Society of America Bulletin, v. 122, 
no. 9/10, p. 1569-1584, doi: 10.1130/B30048.1. 

 
-, in review, River scaling in transient landscapes: Geology. 
 
Holmes, J. A., 1993, Present and past patterns of glaciation in the northwest 

Himalaya: climatic, tectonic and topographic controls, in Shroder Jr., J. F., 
ed., Himalaya to the Sea: Geology, Geomorphology and the 
QuaternaryLondon, Routledge, p. 72-90. 

 
Howard, A. D., 1980, Thresholds in river regimes, in Coates, D. R., and Vitek, J. D., 

eds., Thresholds in GeomorphologyLondon, Allen and Unwin, p. 227-258. 
 
-, 1988, Equilibrium models in geomorphology, in Anderson, M. G., ed., Modelling 

geomorphological systemsNew York, John Wiley, p. 49-72. 
 
-, 1994, A detachment-limited model of drainage basin evolution: Water Resources 

Research, v. 30, no. 7, p. 2261-2285. 
 
Howard, A. D., and Kerby, G., 1983, Channel changes in badlands: Geological 

Society of America Bulletin, v. 94, p. 739-752. 
 
Jamieson, S. S. R., and Hulton, N. R. J., 2007, Ice sheets: victims of their own 

success?: Geophysical Research Abstracts, v. 9, EGU2009-00336. 
 
Jamieson, S. S. R., Sinclair, H. D., Kirstein, L. A., and Purves, R. S., 2004, Tectonic 

forcing of longitudinal valleys in the Himalaya: morphological analysis of the 
Ladakh Batholith, North India: Geomorphology, v. 58, no. 1-4, p. 49-65, doi: 
10.1016/S0169-555X(03)00185-5. 

 
Jansson, P., Hock, R., and Schneider, T., 2003, The concept of glacier storage: a 

review: Journal of Hydrology, v. 282, no. 1-4, p. 116-129, doi: 
10.1016/S0022-1694(03)00258-0. 

 



Chapter 7  Hobley, 2010 
 

 150 

Johnson, J. P. L., and Whipple, K. X., in press, Evaluating the controls of shear 
stress, sediment supply, alluvial cover and channel morphology on 
experimental bedrock incision rate: Journal of Geophysical Research, doi: 
10.1029/2009JF001335. 

 
Johnson, J. P. L., Whipple, K. X., Sklar, L. S., and Hanks, T. C., 2009, Transport 

slopes, sediment cover, and bedrock channel incision in the Henry 
Mountains, Utah: Journal of Geophysical Research, v. 114, F02014, doi: 
10.1029/2007JF000862. 

 
Kaplan, M. R., Hein, A. S., Hubbard, A., and Lax, S. M., 2009, Can glacial erosion 

limit the extent of glaciation?: Geomorphology, v. 103, p. 172-179, doi: 
10.1016/j.geomorph.2008.04.020. 

 
Kirby, E., Johnson, J., Furlong, K., and Heimsath, A., 2007, Transient channel 

incision along Bolinas Ridge, California: Evidence for differential rock uplift 
adjacent to the San Andreas fault: Journal of Geophysical Research, v. 112, 
F03S07, doi: 10.1029/2006JF000559. 

 
Kirby, E., and Whipple, K. X., 2001, Quantifying differential rock-uplift rates via 

stream profile analysis: Geology, v. 29, no. 5, p. 415-418. 
 
Kirby, E., Whipple, K. X., Tang, W., and Chen, Z., 2003, Distribution of active rock 

uplift along the eastern margin of the Tibetan Plateau: Inferences from 
bedrock channel longitudinal profiles: Journal of Geophysical Research, v. 
108, 2217, doi: 10.1029/2001JB000861. 

 
Knighton, D., 1998, Fluvial Forms & Processes: A New Perspective: London, 

Hodder Arnold, 383 p. 
 
Kobor, J. S., and Roering, J. J., 2004, Systematic variation of bedrock channel 

gradients in the central Oregon Coast Range: implications for rock uplift and 
shallow landsliding: Geomorphology, v. 62, p. 239-256, doi: 
doi:10.1016/j.geomorph.2004.02.013. 

 
Kooi, H., and Beaumont, C., 1994, Escarpment evolution on high-elevation rifted 

margins: Insights derived from a surface processes model that combines 
diffusion, advection and reaction: Journal of Geophysical Research, v. 99, no. 
B6, p. 12191-12209. 

 
Lamb, M. P., Dietrich, W. E., and Venditti, J. G., 2008, Is the critical Shields stress 

for incipient sediment motion dependent on channel-bed slope?, Journal of 
Geophysical Research, v. 113, F02008, doi: 10.1029/2007JF000831. 

 
Lamoureux, S. F., 1999, Catchment and lake controls over the formation of varves in 

monomictic Nicolay Lake, Cornwall Island, Nunavat: Canadian Journal of 
Earth Sciences, v. 36, p. 1533-1546. 



Chapter 7  Hobley, 2010 
 

 151 

 
Lavé, J., and Avouac, J. P., 2001, Fluvial incision and tectonic uplift across the 

Himalayas of central Nepal: Journal of Geophysical Research, v. 106, no. 
B11, p. 26561-26591. 

 
Lisiecki, L. E., and Raymo, M. E., 2005, A Pliocene-Pleistocene stack of 57 globally 

distributed benthic D18O records: Paleoceanography, v. 20, PA1003, doi: 
10.1029/2004PA001071. 

 
MacGregor, K. R., Anderson, R. S., Anderson, S. P., and Waddington, E. D., 2000, 

Numerical simulations of glacial-valley longitudinal profile evolution: 
Geology, v. 28, no. 11, p. 1031-1034. 

 
Meigs, A. J., Krugh, W. C., Davis, K., and Bank, G., 2006, Ultra-rapid landscape 

response and sediment yield following glacier retreat, Icy Bay, southern 
Alaska: Geomorphology, v. 78, p. 207-221. 

 
Meyer-Peter, E., and Muller, R., 1948, Formulas for bedload transport, in Research, 

I. A. f. H. S., ed., Proceedings of the 2nd Meeting of the International 
Association for Hydraulic Structures ResearchStockholm, Int. Assoc. for 
Hydr. Struct. Res., p. 39-64. 

 
Milliman, J. D., and Meade, R. H., 1983, World-wide delivery of river sediment to 

the oceans: The Journal of Geology, v. 91, no. 1, p. 1-21. 
 
Milliman, J. D., and Syvitski, J. P. M., 1992, Geomorphic/tectonic control of 

sediment transport to the ocean: the importance of small mountainous rivers: 
Journal of Geology, v. 100, p. 525-544. 

 
Molnar, P., 2004, Late Cenozoic Increase in Accumulation Rates of Terrestrial 

Sediment: How Might Climate Change Have Affected Erosion Rates?: 
Annual Review of Earth and Planetary Sciences, v. 32, no. 1, p. 67-89, doi: 
10.1146/earth.2004.32.issue-1. 

 
Molnar, P., Anderson, R. S., Kier, G., and Rose, J., 2006, Relationships among 

probability distributions of stream discharges in floods, climate, bed load 
transport, and river incision: Journal of Geophysical Research, v. 111, 
F02001, doi: 10.1029/2005JF000310. 

 
Molnar, P., and England, P., 1990, Late Cenozoic uplift of mountain ranges and 

global climate change: chicken or egg?: Nature, v. 346, p. 29-34. 
 
Montgomery, D. R., 2002, Valley formation by fluvial and glacial erosion: Geology, 

v. 30, no. 11, p. 1047-1050. 
 
Montgomery, D. R., and Foufoula-Georgiou, E., 1993, Channel network source 

representation using digital elevation models: Water Resources Research, v. 
29, no. 12, p. 3925-3934. 



Chapter 7  Hobley, 2010 
 

 152 

 
Montgomery, D. R., and Stolar, D. B., 2006, Reconsidering Himalayan river 

anticlines: Geomorphology, v. 82, no. 1-2, p. 4-15, doi: 
10.1016/j.geomorph.2005.08.021. 

 
Mueller, E. R., and Pitlick, J., 2005, Morphologically based model of bed load 

transport capacity in a headwater stream: Journal of Geophysical Research, v. 
110, F02016, doi: 10.1029/2003JF000117. 

 
Owen, L. A., 1991, Mass movement deposits in the Karakoram Mountain: their 

sedimentary characteristics, recognition and role in Karakoram landform 
evolution: Zeitschrift für Geomorphologie, v. 35, no. 4, p. 401-424. 

 
Owen, L. A., Caffee, M. W., Bovard, K. R., Finkel, R. C., and Sharma, M. C., 2006, 

Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial 
successions in the Himalayan orogen: Ladakh Range, northern India: 
Geological Society of America Bulletin, v. 118, no. 3, p. 383-392, doi: 
10.1130/B25750.1. 

 
Paola, C., Wolinsky, M., Voller, V. R., and Swenson, J. B., 2009, Moving-boundary 

methods as a unifying approach to linked erosional-depositional systems: 
Geophysical Research Abstracts, v. 11, EGU2009-6486. 

 
Parker, G., and Izumi, N., 2000, Purely erosional cyclic and solitary steps created by 

flow over a cohesive bed: Journal of Fluid Mechanics, v. 419, p. 203-238. 
 
Parker, G., and Klingeman, P. C., 1982, On why gravel bed streams are paved: Water 

Resources Research, v. 18, no. 5, p. 1409-1423. 
 
Parker, G., Klingeman, P. C., and McLean, D. G., 1982, Bedload and size 

distribution in paved gravel-bed streams: Journal of the Hydraulic Division of 
the American Society of Civil Engineers, v. 108, p. 544-571. 

 
Phartiyal, B., Sharma, A., Upadhyay, R., and Sinha, A. K., 2005, Quaternary 

geology, tectonics and distribution of palaeo- and present fluvio/glacio 
lacustrine deposits in Ladakh, NW Indian Himalaya - a study based on field 
observations: Geomorphology, v. 65, no. 3-4, p. 241-256, doi: 
10.1016/j.geomorph.2004.09.004. 

 
Rodriguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Marani, A., and Ijjász-

Vásquez, E., 1992, Energy dissipation, runoff production, and the three-
dimensional structure of river basins: Water Resources Research, v. 28, no. 4, 
p. 1095-1103. 

 
Roe, G. H., Whipple, K. X., and Fletcher, J. K., 2008, Feedbacks among climate, 

erosion, and tectonics in a critical wedge orogen: American Journal of 
Science, v. 308, p. 815-842, doi: 10.2475/07.2008.01J. 

 



Chapter 7  Hobley, 2010 
 

 153 

Roering, J. J., Kirchner, J. W., and Dietrich, W. E., 1999, Evidence for nonlinear, 
diffusive sediment transport on hillslopes and implications for landscape 
morphology: Water Resources Research, v. 35, no. 3, p. 853-870. 

 
Ryder, J. M., 1971, The stratigraphy and morphology of paraglacial alluvial fans in 

south-central British Columbia: Canadian Journal of Earth Sciences, v. 8, p. 
279-298. 

 
Schmeeckle, M. W., Nelson, J. M., Pitlick, J., and Bennett, J. P., 2001, Interparticle 

collision of natural sediment grains in water: Water Resources Research, v. 
37, no. 9, p. 2377-2391. 

 
Schoenbohm, L. M., Whipple, K. X., Burchfiel, B. C., and Chen, L., 2004, 

Geomorphic constraints on surface uplift, exhumation, and plateau growth in 
the Red River region, Yunnan Province, China: Geological Society of 
America Bulletin, v. 116, no. 7, p. 895-909, doi: 10.1130/B25364.1. 

 
Schoklitsch, A., 1962, Handbuch des wasserbaues, v. 1: Vienna, Springer-Verlag, p. 

173-177. 
 
Searle, M. P., Pickering, K. T., and Cooper, D. J. W., 1990, Restoration and 

evolution of the intermontane Indus molasse basin, Ladakh Himalaya, India: 
Tectonophysics, v. 174, no. 3-4, p. 301-314. 

 
Sinha, S. K., and Parker, G., 1996, Causes of concavity in longitudinal profiles of 

rivers: Water Resources Research, v. 32, no. 5, p. 1417-1428. 
 
Sklar, L. S., and Dietrich, W. E., 1998, River Longitudinal Profiles and Bedrock 

Incision Models: Strem Power and the Influence of Sediment Supply, in 
Tinkler, K. J., and Wohl, E. E., eds., Rivers Over Rock: Fluvial Processes in 
Bedrock Channels, Geophys. Monogr. Ser, vol. 107, Washington DC, AGU, 
p. 237-260. 

 
-, 2001, Sediment and rock strength controls on river incision into bedrock: Geology, 

v. 29, no. 12, p. 1087-1090. 
 
-, 2004, A mechanistic model for river incision into bedrock by saltating bed load: 

Water Resources Research, v. 40, W06301, doi: 10.1029/2003WR002496. 
 
Slaymaker, O., and McPherson, H. J., 1977, An overview of geomorphic processes 

in the Canadian Cordillera: Zeitschrift für Geomorphologie, v. 21, p. 169-
186. 

 
Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D. J., 2000, Landscape 

response to tectonic forcing: Digital elevation model analysis of stream 
profiles in the Mendocino triple junction region, northern California: 
Geological Society of America Bulletin, v. 112, no. 8, p. 1250-1263. 

 



Chapter 7  Hobley, 2010 
 

 154 

-, 2003a, Channel response to tectonic forcing: field analysis of stream morphology 
and hydrology in the Mendocino triple junction region, northern California: 
Geomorphology, v. 53, no. 1-2, p. 97-127, doi: 10.1016/S0169-
555X(02)00349-5. 

 
-, 2003b, Importance of a stochastic distribution of floods and erosion thresholds in 

the bedrock river incision problem: Journal of Geophysical Research, v. 108, 
2117, doi: 10.1029/2001JB001655.{Whipple, 2000 #686} 

 
Sólyom, P. B., and Tucker, G. E., 2004, Effect of limited storm duration on 

landscape evolution, drainage basin geometry, and hydrograph shapes: 
Journal of Geophysical Research, v. 109, F03012, doi: 
10.1029/2003JF000032. 

 
Spate, O. H. K., Learmonth, A. T. A., and Farmer, B. H., 1976, India, Pakistan and 

Ceylon (2nd revised edition): London, Methuen and Co., Ltd., p. 424-450. 
 
Stock, J. D., and Dietrich, W. E., 2003, Valley incision by debris flows: Evidence of 

a topographic signature: Water Resources Research, v. 39, 1089, doi: 
10.1029/2001WR001057. 

 
Stock, J. D., and Montgomery, D. R., 1999, Geologic constraints on bedrock river 

incision using the stream power law: Journal of Geophysical Research, v. 
104, no. B3, p. 4983-4993. 

 
Strahler, A. N., 1950, Equilibrium theory of erosional slopes approached by 

frequency distribution analysis: American Journal of Science, v. 248, p. 673-
696. 

 
Tantau, I., Reille, M., De Beaulieu, J. L., and Farcas, S., 2006, Late Glacial and 

Holocene vegetation history in the southern part of Transylvania (Romania): 
pollen analysis of two sequences from Avrig: Journal of Quaternary Science, 
v. 21, no. 1, p. 49-61, doi: 10.1002/(ISSN)1099-1417. 

 
Tomkin, J. H., Brandon, M. T., Pazzaglia, F. J., Barbour, J. R., and Willett, S. D., 

2003, Quantitative testing of bedrock incision models for the Clearwater 
River, NW Washington State, Journal of Geophysical Research, v. 108, no. 
B6, 2308, doi: 10.1029/2001JB000862. 

 
Tucker, G. E., and Bras, R. L., 1998, Hillslope processes, drainage density, and 

landscape morphology: Water Resources Research, v. 34, no. 10, p. 2751-
2764. 

 
-, 2000, A stochastic approach to modeling the role of rainfall variability in drainage 

basin evolution: Water Resources Research, v. 36, no. 7, p. 1953-1964. 
 
Tucker, G. E., and Hancock, G. S., 2010, Modelling landscape evolution: Earth 

Surface Processes and Landforms, v. 35, p. 28-50, doi: 10.1002/esp.1952. 



Chapter 7  Hobley, 2010 
 

 155 

 
Tucker, G. E., and Whipple, K. X., 2002, Topographic outcomes predicted by stream 

erosion models: Sensitivity analysis and intermodel comparison: Journal of 
Geophysical Research, v. 107, 2179, doi: 10.1029/2001JB000162. 

 
Turowski, J. M., Lague, D., and Hovius, N., 2007, Cover effect in bedrock abrasion: 

A new derivation and its implications for the modeling of bedrock channel 
morphology: Journal of Geophysical Research, v. 112, F04006, doi: 
10.1029/2006JF000697. 

 
Turowski, J. M., and Rickenmann, D., 2009, Tools and cover effects in bedload 

transport observations in the Pitzbach, Austria: Earth Surface Processes and 
Landforms, v. 34, p. 26-37, doi: 10.1002/esp.1686. 

 
Valla, P. G., van der Beek, P. A., and Lague, D., 2010, Fluvial incision into bedrock: 

insights from morphometric analysis and numerical modeling of gorges 
incising glacial hanging valleys (western Alps, France): Journal of 
Geophysical Research, v. 115, F02010, doi: 10.1029/2008JF001079. 

 
van der Beek, P. A., and Bishop, P., 2003, Cenozoic river profile development in the 

Upper Lachlan catchment (SE Australia) as a test of quantitative fluvial 
incision models: Journal of Geophysical Research, v. 108, 2309, doi: 
10.1029/2002JB002125. 

 
VanLaningham, S., Meigs, A. J., and Goldfinger, C., 2006, The effects of rock uplift 

and rock resistance on river morphology in a subduction zone forearc, 
Oregon, USA: Earth Surface Processes and Landforms, v. 31, no. 10, p. 
1257-1279. 

 
Venditti, J. G., Dietrich, W. E., Nelson, P. A., Wydzga, M. A., Fadde, J., and Sklar, 

L. S., 2010, Effect of sediment pulse grain size on sediment transport rates 
and bed mobility in gravel bed rivers, Journal of Geophysical Research, v. 
115, F03039, doi: 10.1029/2009JF001418. 

 
Weinberg, R. F., and Dunlap, W. J., 2000, Growth and Deformation of the Ladakh 

Batholith, Northwest Himalayas: Implications for Timing of Continental 
Collision and Origin of Calc-Alkaline Batholiths: The Journal of Geology, v. 
108, p. 303-320. 

 
Whipple, K. X., 2001, Fluvial landscape response time: how plausible is steady-state 

denudation?: American Journal of Science, v. 301, p. 313-325. 
 
-, 2004, Bedrock Rivers and the Geomorphology of Active Orogens: Annual Review 

of Earth and Planetary Sciences, v. 32, no. 1, p. 151-185, doi: 
10.1146/earth.2004.32.issue-1. 

 



Chapter 7  Hobley, 2010 
 

 156 

Whipple, K. X., Hancock, G. S., and Anderson, R. S., 2000a, River incision into 
bedrock: Mechanics and relative efficacy of plucking, abrasion, and 
cavitation: Geological Society of America Bulletin, v. 112, no. 3, p. 490-503. 

 
Whipple, K. X., Snyder, N. P., and Dollenmayer, K., 2000b, Rates and processes of 

bedrock incision by the Upper Ukak River since the 1912 Novarupta ash flow 
in the Valley of Ten Thousand Smokes, Alaska: Geology, v. 28, p. 835-838, 
doi: 10.1130/0091-7613(2000)28<835:RAPOBI>2.0.CO;2. 

 
Whipple, K. X., and Tucker, G. E., 1999, Dynamics of the stream-power river 

incision model: Implications for height limits of mountain ranges, landscape 
response timescales and research needs: Journal of Geophysical Research, v. 
104, no. B8, p. 17661-17674. 

 
-, 2002, Implications of sediment-flux-dependent river incision models for landscape 

evolution: Journal of Geophysical Research, v. 107, 2039, doi: 
10.1029/2000JB000044. 

 
Whittaker, A. C., 2007, Investigating Controls on Bedrock River Incision Using 

Natural and Laboratory Experiments [PhD thesis]: University of Edinburgh, 
188 p. 

 
Whittaker, A. C., Attal, M., and Allen, P. A., in press, Characterising the origin, 

nature and fate of sediment exported from catchments perturbed by active 
tectonics: Basin Research, doi: 10.1111/j.1365-2117.2009.00447.x. 

 
Whittaker, A. C., Attal, M., Cowie, P. A., Tucker, G. E., and Roberts, G. P., 2008, 

Decoding temporal and spatial patterns of fault uplift using transient river 
long profiles: Geomorphology, v. 100, p. 506-526, doi: 
10.1016/j.geomorph.2008.01.018. 

 
Whittaker, A. C., Cowie, P. A., Attal, M., Tucker, G. E., and Roberts, G. P., 2007a, 

Bedrock channel adjustment to tectonic forcing: Implications for predicting 
river incision rates: Geology, v. 35, no. 2, p. 103-106, doi: 
10.1130/G23106A.1. 

 
-, 2007b, Contrasting transient and steady-state rivers crossing active normal faults: 

new field observations from the Central Apennines, Italy: Basin Research, v. 
19, no. 4, p. 529-556, doi: 10.1111/bre.2007.19.issue-4. 

 
Wilcock, P. R., 1993, Critical Shear Stress of Natural Sediments: Journal of 

Hydraulic Engineering, v. 119, no. 4, p. 491-505. 
 
Wilcock, P. R., and McArdell, B. W., 1993, Surface-Based Fractional Transport 

Rates: Mobilization Thresholds and Partial Transport of a Sand-Gravel 
Sediment: Water Resources Research, v. 29, no. 4, p. 1297-1312. 

 



Chapter 7  Hobley, 2010 
 

 157 

Willett, S. D., and Brandon, M. T., 2002, On steady states in mountain belts: 
Geology, v. 30, no. 2, p. 175-178. 

 
Willgoose, G., Bras, R. L., and Rodriguez-Iturbe, I., 1991, A Coupled Channel 

Network Growth and Hillslope Evolution Model, 1. Theory: Water Resources 
Research, v. 27, no. 7, p. 1671-1684. 

 
Wobus, C. W., Crosby, B. T., and Whipple, K. X., 2006a, Hanging valleys in fluvial 

systems: Controls on occurrence and implications for landscape evolution: 
Journal of Geophysical Research, v. 111, F02017, doi: 
10.1029/2005JF000406. 

 
Wobus, C. W., Whipple, K. X., Kirby, E., Snyder, N. P., Johnson, J., Spyropolou, K., 

Crosby, B. T., and Sheehan, D., 2006b, Tectonics from topography: 
Procedures, promise, and pitfalls, in Willett, S. D., Hovius, N., Brandon, M. 
T., and Fisher, D., eds., Tectonics, Climate, and Landscape Evolution: 
Geological Society of America Special Paper, v. 398, p. 55-74. 

 
Wong, M., and Parker, G., 2006, Reanalysis and Correction of Bed-Load Relation of 

Meyer-Peter and Müller Using Their Own Database: Journal of Hydraulic 
Engineering, v. 132, no. 11, p. 1159-1168. 

 
Yalin, M. S., 1963, An expression for bed bed-load transportation: Journal of the 

Hydraulic Division of the American Society of Civil Engineers, v. 89, no. 3, 
p. 221-250. 

 
Yunnan Province Meteorological Bureau Information Office, 1982, Meteorological 

Information of Land Surface for 30 years in Yunnan Province, vol. 4. 
Rainfall, Yunnan Province Meteorological Bureau (in Chinese). 

 
Zaprowski, B. J., Evenson, E. B., Pazzaglia, F. J., and Epstein, J. B., 2001, 

Knickzone propagation in the Black Hills and northern High Plains: A 
different perspective on the late Cenozoic exhumation of the Laramide Rocky 
Mountains: Geology, v. 29, no. 6, p. 547-550. 

 
Zeitler, P. K., Meltzer, A. S., Koons, P. O., Craw, D., Hallet, B., Chamberlain, C. P., 

Kidd, W. S. F., Park, S. K., Seeber, L., Bishop, M., and Shroder, J., 2001, 
Erosion, Himalayan Geodynamics, and the Geomorphology of 
Metamorphism: GSA Today, v. 11, no. 1, p. 4-9. 

 
Zhang Peizhen, Molnar, P., and Downs, W. R., 2001, Increased sedimentation rates 

and grain sizes 2-4 Myr ago due to the influence of climate change on erosion 
rates: Nature, v. 410, p. 891-897. 



Appendix A  Hobley, 2010 

 

 158 

APPENDIX A:  

 

METHODOLOGY FOR ACQUISITION AND TREATMENT OF RAW DIGITAL 

ELEVATION MODEL DATA 

 

A1.  Ladakh 

 

We have taken three arc-second resolution data freely available from NASA 

(ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM3/), derived from the Shuttle Radar 

Topography Mission (SRTM).  Raw data were converted to ARCinfo GRID format 

for processing using IMAGEGRID.aml, developed by the United States Geological 

Survey (ftp://e0srp01u.ecs.nasa.gov/srtm/version2/Documentation/notes_for_ 

ARCInfo_users.pdf).  The data used here comprise one degree by one degree squares 

N33E077, N33E078, N34E076, N34E077 and N34E078 (see Figs. 2.1, 3.1a, 4.2).  

The data for this region are in fact well suited to DEM analysis, since the glaciers 

have widened and flattened the valley floors over much of the rivers’ courses, 

meaning artifacts produced by the satellite’s footprint catching the valley sides as 

well as the channel in the valley centre are much reduced.  Minor holes in the data 

(<2 % of pixels in analyzed catchments, and rarely impinging on valley bottoms) 

were patched by converting the whole dataset into a point dataset then using 

ARCinfo to interpolate back into GRID form using a cubic spline algorithm.  This 

process provided the base DEM on which subsequent analysis was carried out. 

 

The base DEM was first filled to remove artificial internally draining patches 

– the affected area comprises <1 % of the total surface, almost entirely confined to 

regions of the Indus valley itself and not significantly changing the profiles of the 

tributaries.  The drainage network was then predicted from a flow accumulation 

threshold of 200 pixels (a drainage area of approximately 1.4 × 10
6
 m

2
).  This 

relatively high value was chosen to avoid the prediction of channels beneath the 

existing glaciers and recent moraine successions in the highest elevations of the 

catchments, and creates a channel network that agrees well with the known channel 



Appendix A  Hobley, 2010 

 

 159 

forms seen in satellite imagery.  The trunk streams for each of the 70 independent 

basins draining southwards into the Indus were then selected, taking more than one 

profile per valley if a major bifurcation of the trunk stream was present, and 

elevation, z, upstream drainage area, A, and distance downstream, x, data extracted 

for each pixel along the course of each trunk stream.  MATLAB was then used first 

to smooth out high frequency noise in the elevation data with a low-pass filter on z, 

then to construct a value of channel slope, S, on a reach length scale of 500 m.  Both 

these methods act to damp local (<500 m) variation in channel slope, whether an 

artifact of the DEM or due to fine scale river responses.  This scaling is appropriate 

since we only sampled local slope and channel form in the field once every 300–500 

m, and variability on a finer scale than this will not be revealed by the data.  These 

methods and smoothing techniques correspond broadly to those chosen by Snyder et 

al. (2000) and recommended by Wobus et al. (2006), though with different absolute 

values chosen appropriate to the coarser resolution of our DEM data. 

 

 

A2. F�g�ra� 

 

The treatment methods parallel exactly those described above for the Ladakh 

data to allow direct comparison between the datasets.  The squares used in this case 

were N45E024 and N45E025 (Fig. 3.1b).  A similar number of holes in the data were 

present as for Ladakh, and internally draining patches were even less of a problem. 

 

 

A3. Red River Region 

 

The data describing this DEM were drawn directly from material presented 

by Schoenbohm et al. (2004) and have not been reprocessed.  However, the base 

DEM presented as Figure 3.1c was produced by me in order to compare directly with 

the earlier parts of the figure.  The methods again parallel those described above for 

Ladakh, and the degree squares used were N22E100-N22E103, N23E100-N23E103, 

N24E100-N24E103 and N25E100-N25E103.  Details of this processing clearly have 
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no impact on the quality of the associated data presented in Chapter 3, as this uses 

the Schoenbohm data directly. 
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APPENDIX B: 

 

SUPPORTING MATERIAL FOR CHAPTER 2 

 

B1. Long Profiles and Scaling Plots for All Analyzed Ladakh Catchments 

 

An altered version of Figure 2.1 is presented as Figure B1 in order to 

illustrate which catchments provide acceptable slope-distance (curvature) and slope-

area (concavity) regressions, as described in the Remotely Sensed Data section (2.5) 

of the main manuscript.  Those which do are colored blue.  Channels are numbered 

consecutively as they appear along the batholith going from west to east.  Note that 

several catchments have more than one trunk stream, and these channels are each 

allocated their own number.  The channels in question are 2/3, 7/8/9, 11/12, 17/18, 

19/20/21 and 37/38, and the associated catchments are shown in a lighter blue in the 

Figure. 

 

Figure B2 illustrates the long profile (z-x) and drainage structure (A-x) of 

each of these channels, along with associated slope plots S-x and S-A, plotted on 

logarithmic axes.  The grayscale lines show the slope scaling relations fitted to these 

latter two plots by the method described in the main text, and the range of values 

over which the fit is made.  The associated equations are also shown above these 

figures. 

 

Table B1 collates all of these data, and is the source for Figures 2.7 and 2.8 in 

the main text. 

 

 

B2. Field-DEM Slope Comparisons 

 

Figure B3 shows plots of channel slope, S, versus distance downstream, x, for 

the valleys Basgo (a) and Leh (b).  DEM-derived slopes (see Appendix A) are shown 
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as grey open circles and direct field measurements over 30 m intervals, every c. 500 

m are shown as black closed squares. 

 

Figure B4 displays these same data as a direct comparison for each 

catchment.  Quoted errors on the lines of best fit are 95% confidence intervals, 

assuming direct linear correlation.  Note that neither gradient is distinguishable from 

1, but that there is a tendency for the DEM values to be slightly higher.  This is 

probably an artifact of the different scales over which the gradient is averaged (500 

m versus 30 m), especially in domain 1, where slope can be highly variable on a 

scale less than 500 m.  This is particularly clear in Figure B3.  For the same reason, 

we note that the fit for Leh is poorer, since a larger proportion of these data points 

come from within domain 1. 

 

 

B3. Variation of Scaling Metrics between Domains 

 

As noted in the main text, the data presented here do not extend across 

enough variation in drainage area to conclusively calculate the scaling metrics of 

concavity and curvature for the bottom of domain 2 and domain 3 separately.  

However, in order to investigate this issue further, we present here a semi-

quantitative method examining the convergence towards the whole channel values as 

progressively larger proportions of the channel are included.  This analysis is 

presented as Figure B5. 

 

We plot calculated concavity and curvature values for each channel over the 

first 50, 100, 150, 200, etc. points downstream of the knickzone up to the end of the 

whole analyzed segment, then similarly plot the data in sections 50, 100, 150, etc. 

points long going from the downstream end of the channel up to the knickzone.  This 

data is then displayed graphically on the same chart, where the fits established for the 

first 50 points (upper- and lower-most stream sections of the channel) are displayed 

to the left and the fits incorporating all of the data to the right.  We then examine the 

manner in which the data converges to the right-hand side of the graph.  The 
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measured values are clearly quite variable where fewer data points are used, but as 

more data is incorporated, the variability in the values tends to stabilize.  We 

recognize three patterns in these tails as the final elements of data are incorporated: - 

 

1) Magnitude of concavity (or curvature) becomes gradually greater as data 

is incorporated towards the downstream end of the channel (blue bars), 

and gradually smaller as data is incorporated towards the upstream end 

of the channel (red bars).  This suggests that the scaling exponents are 

uniformly lower in the upstream reaches of the channel than in the 

downstream reaches. 

 

2) Magnitude of concavity (or curvature) becomes gradually lesser as data 

is incorporated towards the downstream end of the channel (blue), and 

gradually greater as data is incorporated towards the upstream end of the 

channel (red).  This suggests that the scaling exponents are uniformly 

greater in the upstream reaches of the channel than in downstream 

reaches. 

 

3) Neither of the above is the case, with no trends in the scaling metrics, or 

with trends in the same direction incorporating data going both upstream 

and downstream in the catchment.  This category also includes 

catchments with few points in total (<200).  We interpret this to indicate 

that there is no demonstrable systematic difference in concavity (or 

curvature) in the upstream reaches versus the downstream reaches of the 

channel as a whole. 

 

 

The pattern we assign for the concavity and curvature of each channel is 

noted above each graph as 1, 2 or 3.  Note that we ignore the first three data points 

(50-150 data points) entirely, where random noise will certainly overwhelm any 

signal.  This method is, at best, limited, but provides at least some indication of the 

variability of the scaling values quoted in the main text, and also avoids having to 
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pre-allocate domain boundaries for all of the catchments, which are not always easy 

to accurately fix from the satellite imagery. 

 

We find that for both the concavity and curvature, very many channels (34 

out of 58 for θ; 27 out of 58 for φ) show no uniform tendency for a changing value 

downstream.  The remainder are split between a tendency for increase and a 

tendency for decrease downstream for both metrics (12 type 1, 12 type 2 for θ; 12 

type 1, 19 type 2 for φ).  We interpret this to mean that there is no tendency for 

upstream reaches to have uniformly higher or lower scaling exponents to 

downstream reaches, including across the boundary of domain 2 into domain 3, as 

discussed in the main text. 
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 Figure B2 (subsequent pages). Plots of long profile (z-x) and drainage structure 

(A-x) of each analyzed channel, along with associated slope plots S-x and S-A, 

plotted on logarithmic axes. Grayscale lines show slope scaling relations fitted to 

these latter two plots by the method described in the main text of Chapter 2, and 

the range of values over which the fit is made. The associated equations are also 

shown above the figures. 
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Figure B3. Comparison of field (black squares) and DEM (gray circles) derived 

slopes as measured downstream for (i) Basgo valley and (ii) Leh valley. 
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Figure B4. Field slopes versus DEM slopes for two catchments in Ladakh, 

(i) Basgo valley, (ii) Leh valley 
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 Figure B5 (subsequent pages).  Plots of calculated concavity and curvature 

values for each catchment, subdividing the data to investigate possible variations 

in the values downstream. Data is plotted incorporating different numbers of sets 

of 50 data points, working both from upstream to downstream (blue) and 

downstream to upstream (red).  The pattern of convergence as described in the 

accompanying supporting text is noted above each graph.  See Appendix section 

B3 for full explanation. 
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APPENDIX C:  

 

SUPPORTING MATERIAL FOR CHAPTER 4 

 

Grain Size Distributions for Glacial Sediments 

 

Figure C1 presents histograms describing the distribution of sediment grain 

size in the glacial material for two sites in Leh valley, both within the lateral/terminal 

moraine complex but >2.5 km apart. Data was collected using a Wolman point 

counting method and the data binned into intervals between the values of 1, 2, 4, 6, 8 

and 12 cm, keeping a separate record of the b-axis length of clasts larger than 12 cm.  

250 clasts where measured at each site.  The distributions are indistinguishable 

between sites to 95% confidence, using a Kolmogorov-Smirnov test. 
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Figure C1.  Grain size distributions for two sites in Leh valley, (a,c) 34.20598N, 

77.61563E; (b,d) 34.18933N, 77.59868E.  (a) and (b) describe the long axis 

lengths, a, of the clasts; (c) and (d) describe the short axis lengths, c. 
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APPENDIX D:  

 

RAW DATA FROM LADAKH 

 

(Italics indicate data not entirely trusted as representative due to high variability 

around locality or known difficulties in data collection) 

(Blanks indicate data not collected) 

 

D1. Field Season 2006 – Basgo Valley 

 

TABLE D1.  FIELD DATA FROM BASGO VALLEY 

Locality Longitude (°) Latitude (°) Elevation (m) 

(from GPS) 

Slope Bankfull 

width (m) 

Bankfull 

depth (m) 

Max. gorge 

height (m) 

BG4 34.34039 77.36374 4841 0.182 8.8 0.9 0 

BG5 34.33973 77.3606 4834 0.093 45.3 0.4 8 

BG6 34.33894 77.35748 4807 0.079 15.4 0.7 7.5 

BG7 34.33918 77.35426 4754 0.116 8.5 0.7 15 

BG8 34.33861 77.35108 4712 0.123 18.3 0.8 21 

BG9 34.33629 77.3493 4658 0.114 8.5 0.8 19.5 

BG10 34.33345 77.34682 4600 0.123 24.4 0.6 10 

BG3A 34.33119 77.34482 4559 0.200 41.6 0.9 32 

BG2A 34.3297 77.34327 4528 0.158 40 1.2 35 

BG11 34.32854 77.34196 4511 0.173 24.4 1.5 25 

BG12 34.32752 77.34065 4480 0.176 41.9  28 

BG13 34.32488 77.33927 4404 0.128 28.5 1.3 37 

BG14 34.3225 77.33737 4415 0.155 27.5 1.25 53 

BG1A 34.3191 77.33788 4286 0.151 30 1.2 53 

BG15 34.31644 77.33737 4258 0.149 15.9 1.3 21 

BG16 34.31439 77.33547  0.110 11.4 1.1 18.5 

BG17 34.31255 77.33302 4178 0.123 12.8 1.6 40 

BG18 34.31001 77.33189 4142 0.100 27.1 1.4 9 

BG19 34.30812 77.32956 4099 0.087 12.9 1.2 14 

BG20 34.30706 77.32655 4057 0.148 49.3 1.1 25 

BG21 34.30495 77.32444 4023 0.072 12.2 1.2 18 

BG22 34.30289 77.32229 4044 0.107 17 1.5 13.5 

BG23 34.30062 77.32039 3942 0.080 23.6 1.4 7 

BG24 34.29742 77.31651 3890 0.095 13.9 2 4 

BG25 34.29421 77.31277 3863 0.080 18.8 2.1 5.5 

BG26 34.29214 77.3079 3798 0.068 20.2 1.3 4.5 

BG27 34.28816 77.3054 3733 0.070 15.6 1.8 7.5 

BG28 34.28392 77.30354 3705 0.072 36.2 1.3 7.5 

BG29 34.27992 77.30219 3675 0.051 39.8 2.2 3 

BG30 34.27631 77.2984 3653 0.066 21.7 1.4 7.5 

BG31 34.27293 77.29675 3595 0.058 30 2 1.7 

BG32 34.26791 77.29434 3559 0.058 33.8 2.25 1 

BG33 34.25845 77.29178 3491 0.063 32 2.1 5 

BG34 34.2543 77.28926 3457 0.073 24.3 1.8 0 

BG35 34.24918 77.2862 3427 0.045 56  2 

BG36 34.24622 77.28434 3397 0.049 82  2 

BG37 34.24185 77.28317 3373 0.054 59.5  8.7 

BG38 34.23832 77.27981 3355 0.028 14  5 

BG39 34.2299 77.27468 3259 0.053 23.1  2 

BG40 34.22523 77.27328 3269 0.054 18.6  1.7 

BG41 34.21963 77.27656 3234 0.044 11.8  2 

BG42 34.21552 77.28109 3213 0.042 19.7  2 
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D2. Field Season 2006 – Leh Valley 

 

TABLE D2.  FIELD DATA FROM LEH VALLEY 

Locality Longitude (°) Latitude (°) Elevation (m) 

(from GPS) 

Slope Bankfull 

width (m) 

Bankfull 

depth (m) 

Max. gorge 

height (m) 

L2 34.27665 77.5764 5164 0.147 34.4 0.6 2 

L3 34.2757 77.57951 5148 0.063 61.2 0.6 1 

L4 34.27518 77.58269 5104 0.117 160.2 0.25 0 

L5 34.27502 77.58594 5080 0.051 110 0.3 0 

L6 34.27359 77.58876 5074 0.033 48.3 0.55 0 

L1A 34.27315 77.5926 5034 0.198 8 1 5 

L7 34.27258 77.59579 5015 0.096 110 1.2 0 

L8 34.27232 77.59916 4995 0.077 82.7  0 

L9 34.27075 77.60172 4975 0.037 94.2  0 

L10 34.26897 77.60411 4976 0.021 43.9  0 

L11 34.26733 77.60664 4963 0.061 35.7 0.8 0 

L12 34.26559 77.60955 4903 0.059 36.9 0.9 0 

L13 34.26433 77.61238 4864 0.009 64.8 0.6 0 

L14 34.26297 77.6153 4825 0.014 34 1.4 0 

L15 34.26072 77.61768 4790 0.082 5.7 1.8 3 

L16 34.25808 77.6184 4763 0.042 31.8 1.5 2 

L17 34.25545 77.61914 4733 0.091 56.6 1.3 1.5 

L18 34.25283 77.61942 4690 0.098 19.1 1.5 4 

L19 34.25018 77.6189 4664 0.106 15.2 1.6 13.5 

L20 34.24758 77.618 4628 0.155 15.2 1.8 16 

L21 34.24544 77.61601 4588 0.193 11.7 3 24.5 

L22 34.24281 77.61554 4526 0.204 32.5 1.7 35 

L23 34.24039 77.61409 4476 0.146 50.3 2 62 

L24 34.23831 77.61201 4418 0.233 49.3 2.3 65 

L25 34.23582 77.61085 4357 0.216 32.5 1.7 52 

L26 34.23312 77.61089 4399 0.089 23.6 2.8 60 

L27 34.23045 77.61088 4262 0.119 43.9 3.1 44 

L28 34.22776 77.61135 4234 0.201 46.3 2.7 55 

L29 34.22509 77.61157 4196 0.149 46 2.8 45 

L30 34.22274 77.60999 4137 0.117 36.8 2.1 26 

L31 34.22113 77.6088 4112 0.115 51.9 3.4 30 

L32 34.21783 77.60676 4062 0.066 89.7 2.4 20 

L33 34.21508 77.60651 4018 0.070 35.4 3.1 8.5 

L34 34.21365 77.60929 3991 0.070 41.1 2.6 4 

L35 34.21215 77.61209 3971 0.058 52.7 1.65 1 

L36 34.20931 77.61225 3966 0.095 26.3 2.1 1 

L37 34.20787 77.60949 3906 0.075 30.5 2.4 1.9 

L38 34.20484 77.60405 3855 0.066 88  1.3 

L39 34.20262 77.60059 3837 0.058 80  3.5 

L40 34.19954 77.59773 3802 0.061   2 

L41 34.19498 77.59565 3762     
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D3.  Field Season 2008 – Sobu Valley 

 

TABLE D3.  FIELD DATA FROM SOBU VALLEY 

Locality Longitude (°) Latitude (°) Elevation (m) 

(from GPS) 

Slope Bankfull 

width (m) 

Bankfull 

depth (m) 

Max. gorge 

height (m) 

S1 34.21043 77.68285 4894 0.038 7.9 0.44 5.5 

S2 34.20848 77.68136 4897 0.099 8.5 0.77 4.8 

S3 34.20794 77.67881 4881 0.103 5.7 0.54 10.4 

S4 34.20552 77.67809 4851 0.089 10.3 0.42 7 

S4B 34.20457 77.67681 4816    13.1 

S5 34.20379 77.67642 4806 0.188 7.3 0.53 19.3 

S6 34.20180 77.67502 4738 0.155 7.1 0.65 14.8 

S7 34.19948 77.67370 4680 0.124 3.2 0.72 13.7 

S8 34.19768 77.67299 4656 0.178 5 0.72 14.4 

S9 34.19559 77.67264 4611 0.164 8.9 0.58 36.4 

S10 34.19398 77.67083 4574 0.171 17.5  58.3 

S11 34.19208 77.66906 4519 0.251 25.1  50.1 

S12 34.19042 77.66807 4478 0.223 32.8  91.8 

S13 34.18820 77.66715 4446 0.171 18  76.2 

S14 34.18597 77.66636 4371 0.154 5.7 0.7 81.6 

S15 34.18378 77.66616 4356 0.134 15  62.8 

S16 34.18182 77.66426 4308 0.169 22.6  60.8 

S17 34.18086 77.66183 4273 0.150 7.7 0.61 78 

S18 34.17835 77.66125 4228 0.140 6.8  77.6 

S19 34.17646 77.66355 4195 0.126 3.7 >0.23 46.5 

S20 34.17414 77.66400 4134 0.119 3.6 0.56 37.6 

S21 34.17173 77.66383 4110 0.117 4.9 0.6 26.1 

S22 34.16931 77.66297 4081 0.115 3.6 0.55 40.3 

S23 34.16689 77.66233 4058 0.094 4.6 0.72 28.7 

S24 34.16430 77.66304 4012 0.133 5.5 0.83 18.9 

S25 34.16208 77.66249 3974 0.103 4.4 0.87 19 

S26 34.15911 77.66265 3944 0.091 4.5 0.9 24 

S27 34.15714 77.66260 3912 0.103 3 0.78 18.4 

S28 34.15512 77.66092 3883 0.096 4.9 1.3  

S29 34.15470 77.65891 3863 0.098 5.6 0.58 5.7 

S30 34.15208 77.65751 3829 0.087 4.3 0.83 2.9 

S31 34.14671 77.65370 3768 0.101 5.7 0.98 4.8 

S32 34.14416 77.64940 3722 0.080 5.5 0.67 5.3 

S33 34.13702 77.64069 3630 0.072 7.6 1.34 6.6 

S34 34.13411 77.63291 3585 0.079 5.8 0.85 3.1 

S35 34.12913 77.62007 3471 0.066 25.1 1.08 7.3 
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D4. Field Season 2008 – Karu Valley 

 

TABLE D4.  FIELD DATA FROM KARU VALLEY 

Locality Longitude (°) Latitude (°) Elevation (m) 

(from GPS) 

Slope Bankfull 

width (m) 

Bankfull 

depth (m) 

Max. gorge 

height (m) 

K1 34.01468 77.90000 4784 0.080 3.9 0.5 1.6 

K2 34.01653 77.89769 4762 0.073 6 0.66 11 

K3 34.01759 77.89591 4728 0.176 28.3 0.43 16.9 

K4 34.01768 77.89350 4664 0.300 20.3 0.7 20 

KG1 34.01738 77.89142 4598    37.9 

KG2 34.01722 77.88830 4478    105.3 

K5 34.01866 77.88461 4405 0.143 10.3 1.17 54 

K6 34.01807 77.88149 4386 0.124 7.8 1.33 47.6 

K7 34.01812 77.87913 4346 0.166 8.7 1.2 35 

K8 34.01724 77.87587 4302 0.115 6.3 1.1 26.1 

K9 34.01576 77.87368 4266 0.131 4.6 1.35 29 

K10 34.01396 77.87195 4227 0.099 5.4 0.96 27.3 

K11 34.01149 77.87042 4184 0.089 12.4 0.67 28.5 

K12 34.00984 77.86886 4178 0.061 3.3 0.94 37.1 

K13 34.00861 77.86708 4179 0.098 6.6 1.06 25 

K14 34.00684 77.86502 4127 0.080 4.1 0.6 14.7 

K15 34.00566 77.86326 4131 0.063 4.9 1.5 16.2 

K16 34.00533 77.86018 4103 0.073 6 1.09 12.7 

K17 34.00363 77.85803 4068 0.084 6.7 1.22 5.2 

K18 34.00166 77.85646 4060 0.052 5.8 0.75 6.2 

K19 33.99979 77.85551 4042 0.101 15 0.93 7.2 

K20 33.99977 77.85278 4029 0.066 9.4 0.78 4.5 

K21 33.99913 77.85135 4014 0.061 11 1.1 4.8 

K22 33.99854 77.84857 3990 0.072 8.4 1.32 4.6 

K23 33.99731 77.84205 3955 0.089 18.5 1.55 1.7 

K24 33.99724 77.83099 3871 0.077 7.5 1  

K25 33.99529 77.82620 3854 0.056 8.7 0.83 4.1 

K26 33.99344 77.82126 3824 0.077 5.7 1.18 5.8 

K27 33.98501 77.80849 3742 0.037 16.5 1.95 6.5 

K28 33.98291 77.80698 3739 0.021 17.4 1.8 9.1 

K29 33.98111 77.80594 3733 0.031 13 1.8 9.3 

K31 33.96018 77.79250 3609 0.030 7 1.3 3 

K30 33.95887 77.79186 3598 0.044 18.7 1.75 5.4 

K32 33.95812 77.79103 3619 0.009 11.6 1.45 5.3 

 

 


