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Abstract 

The results of three projects are reported in this thesis. 

The first project was an experimental test of the hypothesis of 

Two Scale Factor Universality. This was achieved by measuring, 

using neutron diffraction, the intensities of the magnetic Bragg 

and critical scattering associated with the antiferromagnetic 

phase transition in Rb2CoF4 . It is shown how, from these 

measurements, a value for a Universal combination of three 

critical amplitudes R, embodied in the hypothesis, was obtained. 

This value of R for Rb2C0F4  was compared with the value taken 

from the exact solution of the d = 2 Ising model and fair agree-

ment was obtained. 

The second project was an experimental study, by neutron 

diffraction, of the phase transition and magnetic ordering of 

the dilute antiferromagnets Co x 1-x 2 	x 1-x 2 Zn F and Mn Zn F in an 

external magnetic field. The effect of the magnetic field was 

found to be drastic, destroying long range antiferromagnetic 

order for all the non-zero fields applied. A comparison of 

the results of these measurements with the theoretical pred-

ictions for the d = 3 Ising model in a random magnetic field, 

which is believed to be in the same Universality class, is given. 

The results reported disagree with the theoretical predictions 

for the magnetic order in d = 3 although a number of qualifi-

cations to this result are made. 

The third project was a theoretical study, using a computer 



simulation technique, of the spin wave spectrum of diluted and 

magnetically mixed compounds of FeCe.2 . Of the two mixed compounds 

studied, one, FeCoi_C-e.2I was also studied experimentally by 

inelastic neutron diffraction for a sample with x = 0.85. A 

comparison of the computational and experimental results shows 

that there exists in Fe 0 85Co0 15ce.21
' a magnetic excitation 

which is inconsistent with a ground state of complete uniaxial 

order. 
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Fundamental Constants and Units of Energy  

A number of fundamental constants occur regularly in the 

following chapters and therefore the symbols used for these 

constants and their values are tabulated here. 

Jfi - Planck's constant divided by 2 

B - Bohr magnetofl 

• - Nuclear magneton 
N 

IflN - Mass of the neutron  

- 1.054 x 10 34J5 

- 9.274 x 10 24J/T 

- 5.051 x 10 27J/T 

- 1.675 x 10 27kg 

YN 
- Gyromagnetic ratio of the neutron - -1.91 

k - BoltZmafln's constant 
B 

- 1.381 x 10 2337K 

The units of energy used vary from chapter to chapter 

depending on which is the most suitable unit. The conversion 

factors between the three units used and the Joule are given 

below. 

1 meV 	= 1.6 x 10 22J 

1 THz 	= 4.14 meV 

-1 
1 cm 	= 0.1241 meV 
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CHAPTER ONE 

Introductory Review 

1.1 Introduction 

The work reported in this thesis can be divided into three topics 

which, although there is some cross reference between them, were 

essentially independent projects. As a consequence only a very brief 

outline of each project will be given in this introduction and a more 

detailed background for each project will be given in the introduction 

sections of the relevant chapters. There are however two common 

features to these projects. Firstly, they have been investigated 

experimentally by neutron scattering methods and secondly the samples 

used in these experiments have all been antiferromagnetiC insulators. 

The choice of antiferromagnetic insulators has been prompted both 

because they have relatively simple magnetic interactions whose form 

is known and because of the availability of good single crystal 

samples. The simplicity of the magnetic interactions therefore makes 

these materials excellent systems on which to test the predictions 

of theoretical models. 

The first project considered is a test of the hypothesis of 

Two Scale Factor universality (Stauffer et al (1972)). This 

hypothesis predicts that at a continuous phase transition there 

should be certain combinations of three critical amplitudes which 

should have the same Universality properties as the critical 

exponents for the transition. It has been shown by Bruce (1981) 

that one of these combinations of critical amplitudes could be 

measured in a neutron scattering experiment. Therefore in order to 

test the hypothesis of Two Scale Factor Universality a neutron 

scattering experiment has been performed to measure this combination 
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of amplitudes in the antiferromagnetic insulator Rb2CoF4 . This 

project is reported in Chapter Two. 

The second project reported is a study by neutron scattering 

of the phase transition and magnetic ordering of the dilute anti- 

ferromagnets Co x l-x 2 	x 1-x 2 
Zn F and Mn Zn F in an external magnetic field. 

A dilute antiferromagnet in an external magnetic field is believed to 

be an experimental realisation of the so called random field problem 

(Fishman and Aharony (1979)). In recent years there has been a great 

deal of theoretical activity and controversy concerning the prop-

erties of random field systems. The results of these measurements 

are therefore interpreted in terms of the different theoretical 

predictions for random field systems. This project is reported in 

Chapter Three. 

The third project is concerned with the calculation of the low 

temperature spin wave excitations in site disordered magnets. 

Calculations have been performed using the Alben and Thorpe (1975) 

'Equation of Motion' computer simulation method for the diluted 

and mixed compounds of the magnetic insulator Fed 2 . In Chapter 

Four the method for these calculations and the results for the 

compounds Fe x 1-x 2 	x l-x 2 
Mg Cl and Fe Mn Cl are presented. The calcul- 

ations of the spin wave energies for the latter compound are 

compared with those measured by Bertrand et al (1981) using inelastic 

neutron scattering techniques. 

In Chapter Five measurements of the spin wave spectrum for the 

compound Fe Co1 xCl2 by inelastic neutron scattering are reported. 

This compound is an example of a system with random competing aniso-

tropies (Wong et al (1980)). The measured spectrum is compared to 

the results of computer simulations performed using the techniques 

described in Chapter Four. These calculations were performed for a 
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model ground state of FeCoi_Cl2 proposed by Wiltshire (1981). The 

results are discussed in terms of the applicability of this ground 

state. 

The measurements reported in Chapters Two and Three have involved 

a large amount of data analysis. The methods used for performing the 

various data analyses are given as an appendix. Included in this  

appendix are methods which have been devised to improve the efficiency 

and accuracy of data analysis computer programs. 

Each of these four chapters and the appendix contains an intro-

duction of its own explaining the background to that particular problem. 

The rest of this introductory chapter is taken up with brief descript-

ions of the 'common features'. In the following section a brief 

review of the origin of the magnetic interactions in magnetic insul-

ators is given. The third and fourth sections of this chapter 

describe how measurements of the neutrons scattered by a magnetic 

insulator may be used to probe its magnetic properties. Of these 

two sections the first describes the theoretical aspects while the 

second describes how measurements are made in practice. 

1.2 Magnetic Interactions in Magnetic Insulators 

In this section it is intended to indicate the origins of the 

magnetic properties of the materials considered in Chapters Two to 

Five. These materials are the insulating compounds Rb 2COF4 , C0F2 , 

FeF2 , MnF2 , FeC1 2  and CoC1 2 . It is therefore the magnetic prop-

erties of the divalent transition metal ions Co2+, Fe 2+ and Mn2+ that 

are of interest. Calculations of the magnetic properties of ionic 

solids such as these, even though they may well be the simplest type 

of magnetic material, are still highly involved and occupy large 

chapters of books on magnetism (for example Zeiger and Pratt (1973)). 
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This section is therefore not intended to be a review of such 

calculations but merely an outline of the effects that occur. 

The magnetic ground state of a free transition metal ion, 

ignoring the effects of spin-orbit coupling, can be found from Hund's 

rules (see for example, Mattis (1965) p. 94). These rules arise from 

minimising the coulomb and exchange energies between electrons on the 

ion and as a consequence the gap between the ground state and excited 

states is large. For the three ions given above the ground states 

given by Hund'S rules are 4F, 5D and 65 states respectively. Since 

the effects that arise for these ions by being part of a solid are 

small compared to the gap to the excited states, their effect. is 

evaluated in perturbation theory using these free ion states as 

the starting point. 

Schematically the perturbing part of the Hamiltonian for these 

transition metal ions in the compounds referred to abovemay be 

written as 

CRYSTAL+  * SPIN-ORBIT 	EXCHANGE 	 1 2 1 
FIELD 	COUPLING 

In this equation the effects are ordered from left to right in 

descending size. The effect that makes these compounds good models 

for the problems outlined in section (1) is the exchange effect. 

However, since it is the smallest of the perturbing terms for the 

Co 
2+  and Fe 2+ ions its final form is strongly affected by the two 

preceding terms. For the Mn 2+ ion these two preceding terms turn 

out to be zero to first order in perturbation theory. 

The first term in equation (1.2.1) arises from the electro-

static interactions between the electrons on the magnetic ion sites 

and those on surrounding sites. The electrostatic potential at the 

magnetic ion site therefore has the symmetry of the surrounding 
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sites on the lattice. Since the interaction is electrostatic this 

crystal field term is a function of the components of the total 

orbital angular momentum only. First principles calculations of this 

term are not possible and it is usually constructed by group theory 

techniques using the method of operator equivalents (Zeiger and 

Pratt (1973) p. 142, Hutchings (1964)). This gives the dependence 

on the orbital angular momentum operators but does not give the 

absolute size of the effect which is left as a phenomenological 

parameter to be determined by experimental measurements. In the 

CoF2 , FeF 2 , Fed 2  and CoC12  compounds this crystal field effect is 

usually split into two terms. This is because in these compounds 

the ions surrounding the magnetic ions lead to an electrostatic 

potential which can be represented as the sum of the potentials due 

to a high symmetry structure plus a small distortion to that struct- 

ure. The effect of the high symmetry term is larger than that due 

to the distortion term and the spin orbit coupling term and therefore 

the effect of this term on the free ion ground state is evaluated 

to first order in perturbation theory first. 

The next step after evaluating the wavefunctions that result 

from the effect of the high symmetry crystal field is to evaluate 

the effect of the distortion to the crystal field and the spin orbit 

coupling as a perturbation to these levels. The form of the distort-

ion term in terms of the components of the total angular momentum 

operator is given by group theory as before and the spin-orbit coup-

ling term will be - XL.S where L and S are the total orbital and 

spin angular momenta and A is a phenomenological parameter. These 

terms need to be evaluated at the same time since they are usually 

of the same size. 



Hence it is possible to obtain the wavefunctions and energy 

levels of the single ions in terms of phenomenological parameters 

for the crystal field and spin-orbit coupling terms by successive 

applications of perturbation theory. The values of these para-

meters can then be found by experimental meaurement of the excit- 

ations between different levels. 

In the following chapters it is only the very lowest levels 

of the magnetic ions which play any role in the observed phenomena. 

It is usual rather than to use a complicated superposition of orbital 

and spin angular mementum wavefunctions for these levels to associate 

them with the levels of a pseudo spin. Then by a suitable use of 

proportionality constants the matrix elements of true angular momentum 

operators within these levels can be represented by the matrix 

elements of the pseudo spin operator. If the pseudo spin operator is 

represented by a small s, then this association leads to replacing 

the operators for. the components of the orbital and spin angular 

momenta L and S and the magnetic moment U by 

k k 
L 	= 	L s 
	 (1.2.2a) 

k 	 (1.2.2b) 

k 	"k 
Ii 	= 	1-18(L + 2S ) = g 1-Is s 	 (1.2.2c) 

where 
gk = 	+ 

L 	S 

So far the terms in equation (1.2.1) which have been discussed 

have been single ion terms applying only to the angular momentum 

operators on a single ion. The final term 9 Exchange couples 

together angular momentum operators on different ions in the crystal. 

Its form can be written approximately as (Mattis (1965) P. 32): 
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= 	- • 	J. 	S. .S. 	 (1.2.3) 
Exchange 	13 13 1 j 

where S. and S. are the true total spin angular momentum 

operators on the magnetic ions at positions r. and r.. The 

origin of this term lies in the overlap of the electronic wave- 

functions of the transition metal ions and the cations. This over-

lap leads to an electronic exchange effect between the electrons 

on the magnetic ion and the cation. The overlap of the cation 

wavefunctions with the wavefunctiOns of other -ions will lead to an 

electronic exchange between these ions and so on until another 

magnetic ion is reached. There is therefore an indirect exchange 

between the total spin angular momenta of the two magnetic ions 

via the intermediate cations known as superexchaflge (Zeiger and 

Pratt (1973) p. 231). The factor J therefore represents the
ij 

overlap integrals of the electronic wavefunctions along the paths 

from-the magnetic ions i to j. This factor cannot be calculated 

from first principles although there are empirical rules for 

estimating its size and sign (Zeiger and Pratt (1973) p. 244). 

In the compounds referred to earlier the superexchange only extends 

as far as at most the third nearest magnetic neighbour of a 

magnetic ion. 

The importance of the exchange Hamiltonian is that it 

leads to co-operative phenomena. That is to say that instead of 

solving a Hamiltonian involving only one magnetic ion it is 

necessary to evaluate the properties of a many body problem, i.e. 

one that involves all of the magnetic ions in the crystal simult-

aneously. In the following chapters the temperatures at which 

measurements were performed and the energy of the incident neutrons 

is insufficient to appreciably excite any states other than the very 

lowest levels of these ions. Therefore it is the effect of the 
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exchange Hamiltonian within these levels that is of interest. For 

the Mn ion equation (1.2.3) will retain its isotropic form since 

the lowest levels are eigenStateS of the total real spin operators. 

However, this is not the case for the Co 2+ and Fe 2+ ions. The 

simplest way of representing the exchange Hamiltonian within the 

levels of these ions is to replace the components of the real spin 

by the components of the pseudo spin multiplied by the relevant 

proportionality constant. This is known on theoretical grounds to 

be incorrect (Elliott and Thorpe (1968)) but experiments (Buyers 

et al (1971)) have been unable to detect the difference between 

this simple prescription and more complicated procedures. In 

Chapter Five this point will be discussed again but until then 

this simple diagonal Hamiltonian will be assumed to give a very 

good reproduction of experimental results. Since in general the 

proportionality constants differ for different components of the 

pseudo spin the exchange Hamiltonian is an anisotropic function of 

the pseudo spin operators. 

Thus the magnetic properties of these compounds provide an 

excellent test for the theoretical predictions on co-operative 

phenomena. The exchange interactions within the pseudo spin levels 

are short range, have a simple diagonal form and have a variety of 

symmetries for the different compounds. Further to this the size 

and form of the various parameters, crystal field, spin-orbit and 

exchange are well known from previous measurements on these.compoufldS. 

1.3 Neutron Scattering -- Theoretical Aspects 

In this section the basic formalism for the cross section of 

neutrons scattered from a magnetic sample is briefly reviewed. If 



am 

a monochromatic beam of neutrons with kinetic energy E and of unit 

flux is incident upon a target (i.e. the sample) then the number of 

neutrons scattered into a solid angle d2 within the energy range 

E to dE is defined to be the partial differential cross section 
2 

In the Born approximation the partial differential cross 

section is given by (Marshall and Lovesey (1971) p. 7: 

2 
tmN 2  E 	E 	 2 

PIBPO 1< k a nVik a m>I 	x 2 76 	ma na 	. -ff 	-ii 

5('iw + E 
rn 

- E n ) 	 (1.3.1) 

In equation (1.3.1) i and f refer to the incident and final states 

of the neutron, which are assumed to be plane wave states with wave-

vector k and polarisation Y. The states rn> and In> are the 

initial and final states of the sample, which have energies Em  and 

E. The frequency w is related to the energy difference of the 

initial and final states of the neutron and is given by: 

= E. - E 	= -----(k - k 2 ) 	 ( 1.3.2) 
1 	f 	2m 1 	f 

An average over the initial state of the sample and the initial 

polarisation of the neutron is included in equation (1.3.1) by the 

probabilities P and P of the sample and neutron being in these 

states. The operator Q in equation (1.3.1) represents the inter-

action potential between the neutron and the sample and can be 

written as 

= E 
22 

 b. 	(r - R.) - p . H 	(r) 	 (1.3.3) 
MN 

 -N eff- 

The first term in equation (1.3.3) is the Fermi pseudo-potential 

(Marshall and Lovesey (1971) p. 8) which models the atomic nuclei 

at positions R. as a delta function interaction with a strength 
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given by the scattering length b.. Since in a crystal the atomic 

nuclei are arranged on a periodic lattice, including this term alone 

in equation (1.3.1) would give the partial differential cross section 

for the scattering from the lattice. This term will, however, be 

neglected for the rest of this section since it is the purpose to 

review the theoretical aspects of the use of neutron scattering as a 

probe of magnetic properties. The second term in equation (1.3.3) 

represents the interaction between the magnetic moment of the neutron 

and the effective magnetic field at a point r in the sample due 

to the unpaired electrons. The magnetic moment 	can be written as 

where y N 
is the gyrdmagnetic ratio of the neutron, j.i

N 
 is the 

IV N— 

nuclear  magneton and the &a which are the elements of the vector a 

where at = x,y or z are the Pauli matrices. If the effective field 

is written as the sum of the fields due to the unpaired electrons 

then it can be shown after some algebra (Marshall and Lovesey (1971) 

pages 107 and 128) that the matrix element H ff (r) between the states 

1 k.> and 1k f > is just -1 	 — 

	

< k I n 	(r) I k.> 	J d 3  r e- 	x {Mr x 	 (1.3.4) 
—f -eff - -i 

where Q = k - k is the wavevector transfer, = 	and M(r) is 
--f —i 

the magnetisation density operator. In a magnetic insulator the 

magnetic electrons are at the lattice sites and therefore if IQI' 

is much greater than the mean radius of the electronic orbitals then 

the right hand side of equation (1.3.4) may be approximated by: 

fd 3  r e iQ . ?x [M (r) x 	E e 2 	f.(Q) 	x 	x c;] (1.3.5) 

In equation (1.3.5) it is assumed that the magnetisation around a 

magnetic ion may be replaced by the total magnetic moment operator 

J.L. for that ion multiplied by a form factor f. (Q). The form factor f. (Q) 
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is the Fourier transform of the magnetic moment density on the ion. 

Substituting back through equations (1.3.5) to (1.3.3) and then into 

equation (1.3.1) gives the partial differential cross section for the 

magnetic scattering from localised magnetic ions as: 

iQ . = II m 	
2 	 Pm Z 	r'ajl 	e 	(2.) < m a f l 

aq ~E 	
% 	nm ) 	 a. if 

(Qx 1~j x Q] )Ima>I 26(hU)  + Em - E ). n 	
(1.3.7) 

If the dot and crds products within the matrix element of equation 

(1.3.7) are performed and the matrix element expanded then equation 

(1.3.7) can be rewritten as: 

* 
z 	Ik f  I inN 	 - - 	iQ.(RL) f(Q)f(Q)  

- 

= 	

2 	(cS 	- QQ E e - 

—i• 	 je 

x 	p 	<mktI  n >< ni 41m> 6 (,hW  + Em 
- E ) 	 (1.3.8) 
 n 

mn m 

In going from equation (1.3.7) to (1.3.8) use has been made of the 

result that E laf >< 
a is a unit operator and that for unpolarised 

Cy 
f 

neutrons E p 	< a. Ic? aa i 
> =S • where a. and 	are x,y,z, 

1 
a.a 	i 

 
the cartesian components. The magnetic moment operators in equation 

	

a
^

"a i 	
th 

(1.3.8) can be replaced by g S where S 	
s the a component of 

the pseudo-spin operator. Equation (1.3.8) can be simplified further 

by noting that 

iCt 	14(t)lm> 	 (1.3.9) 
m 	n <nI$lm> 

6(hw + E - E ) - dt e 	< n 

where 4(t) = exp(-) 4 exp (_- t) and 	is the Hamiltonian 

for the spins in the sample. The use of equation (1.3.9) means that the 

partial differential cross section may be written in the form: 
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2 	lfI 	m 	2 (1.3.lOa) 
E - k 	

(;-) 	N S DO 	
I

(Q,w) 

ii 

where S(Q, w) = 	(5 	- Q. c  Q )S 
	(Q, w) 	 (1.3.10b) 

ct  

. -! 

and 	S 	(Q, w) = 	g.
ct 	 iQ. (R 

g 	f.(Q) f(Q) e 	—J 	) x 

fat e 	<S 
i(A)t 	(0)4(t)> 	 (1.3.10c) 

where the angular brackets denote a thermal average which is 

equivalent to E P < m ....Im. 	The factor S(Q, w) is known as 

the dynamic structure factor and the S 	(Q, w) are partial dynamic 

structure factors. EquatiOn(1.3.10c) is important because it 

relates the partial differential cross section to the spatial and 

temporal Fourier transforms of the spin-spin correlation function. 

Although equation (1.3.10) contains S 	(Q, w) for uniaxial or 

isotropic magnets the number of partial dynamic structure factors is 

reduced by symmetry. In these casesS(Q, w) may be written as 

1+ 2  -  

S(Q,w) = (1 - Q) SZZ(Q, w) + 	2 
Z) 

ISXXQ, (A)) + S '  (Q, w)I1 
where the z direction is now implicitly the direction of magnetic 

ordering. The first term in equation (1.3.11) the z-z dynamic 

structure factor measures the correlations of the magnetic order at 

different points in the system, while the second term measures the 

correlations between the components of the spins perpendicular to the 

ordering direction. The second term therefore measures the contrib-

ition to the cross section from spin waves. A further discussion of 

the s( Q , w) is given in section (2) of Chapter Two and a discussion 

of the dynamic structure factor for the spin waves in section (3) of 

Chapter Four. 
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1.4 Neutron Scattering - Experimental Aspects 

This section describes briefly how in practice a beam of neutrons 

is scattered from a sample and how the measured intensity of scattered 

neutrons relates to the partial differential cross section. It is 

intended that this section should essentially define terms that will be 

used repeatedly in the following chapters and is not intended as a 

general review. 

A diagram of a triple axis spectrometer for neutron scattering is 

shown in figure (1.4.1). It is this type of spectrometer that has been 

used to perform the measurements reported in the later chapters. In 

general a triple axis spectrometer allows both the wavevector and 

energy transfers of the scattered neutrons to the sample to be meas-

ured. If the neutrons incident on the sample have a wavevector k. 

and those scattered by the sample have a wavevector k f  then the wave- 
L:- 

vector transfer  Q and energy transfer hu are defined by the equations: 

(1.4. 1 a) 
.i 

and 1w = 
	

- 	) 	 (1.4.1b) 

Therefore the components of the spectrometer shown in figure (1.4.1) 

are arranged in such a way as to be able to define the wavevectorS 

k. and k before and after the sample. 
-1 	—f 

The source of the neutrons is the moderator of a nuclear reactor. 

These neutrons have a Maxwell-Boltzmann distribution of energies 

corresponding to the temperature of the moderator, nominally room 

temperature. These neutrons pass through a collimator in order to 

limit the horizontal divergence of the neutron beam. A collimator 

consists of a series of parallel blades of steel coated with cadmium 

or mylar coated with gadolinium in a holder. Since cadmium or 

gadolinium absorb neutrons only those neutrons whose divergence from 



Figure (1.4.1) 

This figure shows the arrangement of the different 

components of a triple axis spectrometer 
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the axis of the collimator is less than the spacing between the blades 

divided by the length of the collimator will, at least in principle, 

pass through. 

A particular wavevector component IkI is selected out from this 

distribution of neutron energies by using a monochromator crystal 

(Bacon (1975) p. 5). This is done by utilising Bragg's law for the 

scattering of neutrons (or x-rays) from a solid. The arrangement for 

Bragg scattering is shown in figure (1.4.2) where T is a known recip-

rocal lattice vector of the monochromator, and III is the wavevectOr 

of the incident beam. The incident beam will only be scattered if 

IkI satisfied the condition: 

1.1 1 = 21k1 sine 	 (1.4.2) 

Hence when orientated at a given angle to the beam from the reactor 

the monochrOmatOr crystal will only scatter one wavevector component 

of the beam, given by equation (1.4.2). Different wavevector comp-

onents can be selected out.of the beam from the reactor by varying 

the orientation of the monochrOmator. 	
The neutrons scattered from 

the monochromator then pass through another collimator on their way 

towards the sample. This collimator is mounted in a drum of shielding 

which surrounds the monochromatOr to protect against the radiation. 

The drum rotates with the monochomatOr in order to maintain the 

0 - 20 relation between incident and scattered beams shown in figure 

(1.4.2). 

Before the neutrons are incident on the sample they pass through 

a monitor counter which measures the flux of the neutron beam. The 

monitor usually consists of a thin layer of 235U in some suitable 

container and the flux is measured from the number of 235 U nuclei 

which undergo fission as the beam passes through. The efficiency of 

this type of monitor varies with wavevector as 1k! 



Figure (1.4.2) 

This figure shows the arrangement of the 

monochromatOr, the incident beam and the 

scattered beam for Bragg scattering 
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The sample is mounted on a table which can be rotated at the end 

of an arm, labelled arm 1 in figure (1.4.1) which is attached to the 

drum of shielding. Therefore once the positions of the crystallographic 

axes of the sample are known, it is possible to rotate the sample so 

that a chosen reciprocal lattice vector will be at some given angle 

to the incident wavevector k.. 
-1 

In order to determine the number of neutrons scattered by a process 

in the sample with wavevector and energy transfers given by equations 

(1.4.1), it is necessary for the spectrometer to define the wavevectcr 

of the scattered neutrons, kE, that are measured. The direction of 

kf  is defined by the collimator on arm 2, shown in figure (1.4.1). In 

order to define the magntiude of k f  an analyser crystal is used. This 

crystal is used in the same way as the monochromator crystal. A known 

reciprocal lattice vector is oriented at a given angle to the 

scattered beam so that only neutrons of a particular wavevector will 

be scattered by the analyser. Those neutrons that are scattered then 

pass through a final collimator on arm 3 shown in figure (1.4.1) and 

then into the detector to be counted. 

The operation of the spectrometer is controlled by a computer 

which runs the motors to position the arms and crystals. Once the 

computer has been given a set of crystallographic co-ordinates for 

the sample and a 'zero-angle' to relate these co-ordinates to the 

position of the sample table it can calculate the positions of the 

spectrometer components for Q and w to correspond to a given scattering 

process in reciprocal space from equations (1.4.1). There is, however, 

an ambiguity in equations (1.4.1) since for a given Q and w there are 

an infinite number of solutions for k. and k . In order to overcome 

this problem it is normal to fix the magnitude of either k 1  or kf  

to some chosen value. This leads to a unique solution of equations 
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(1.4.1). 

The spectrometer is used to make measurements on the sample by 

measuring the intensity of neutrons scattered at a series of points 

along a path in Q and w space. This scan then represents, up to 

intervening proportionality factors, a section through the dynamic 

structure factor S(Q,W). There are two types of scan that are 

frequently used, the constant Q scan, where the value of Q is fixed 

and the value of w is varied and the constant E where w is fixed and 

Q is varied along some path in reciprocal space. 

The proportionality factor between the measured intensity and 

S(Q,W) depends on whether the spectrometer is operated with a fixed 

1k.1 orIEI. The two cases will be considered in terms of equation 

(1.3.10a) which related the partial differential cross section 

to S (Q, w). In practice it is usual to measure the intensity for a 

given number of monitor counts. Since the monitor efficiency varies 

as lk.11 the factor of k 1 in equation (1.3.10a) will be cancelled 

out in both cases. Therefore if the spectrometer has II fixed the 

measured intensity is directly proportional to S(Q, W). If however, 

a 2  a 
is fixed then instead of measuring 	the spectrometer 

a 2  
actually measures Mae 

where 0A is the Bragg angle for the analyser. 

A  
As a result, for lk1 fixed the measured intenity is proportional to 

k Cot °A (Q,W). 

Further to the above comments there is another intervening factor 

between the measured intensity and S(Q, w). The spectrometer has 

so far been discussed only for neutrons with the preset wavevectors 

k. and k. Since the monochrOmator, analyser and sample are not 

ideal crystals and the collimators have a small but non-zero divergence 

neutrons with wavevectors only slightly different from k. and 
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will have a finite probability of passing through the spectrometer 

and being counted. This finite resolution effect will not be 

described here since it is discussed in section (4) of Chapter Two 

where it plays an important role in the measurements. In inelastic 

measurements the resolution function plays an important role in 

deciding at what points to perform measurements due to 'focussing' 

effects (see for example Dolling (1975) p. 570). 
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CHAPTER TWO 

An Experimental Test of Two Scale Factor Universality 

2.1 Introduction 

In this chapter the results of a neutron scattering experiment 

on the critical properties of the antiferromagnet Rb 2C0F4  will be 

described and discussed. These experimental measurements were 

initiated following the suggestion of Bruce (1981, 1982) that data 

collected in a neutron or X-ray scattering experiment could be used 

to test the hypothesis of Two Scale Factor Universality (Stauffer 

et al (1972)). The general features of second order continuous 

phase transitions are now well known and are reviewed in detail in 

many texts (see for example Stanley (1971)). This introductory 

section will therefore not be a review of these features but instead 

will set out the notation for the rest of this chapter and will 

briefly describe the Universality hypothesis. The latter objective is 

itself divided into two parts, the first describes the Universality 

hypothesis as originally applied to critical exponents and the second 

to its extension to combinations of critical amplitudes via the hypo-

thesis of Two Scale Factor universality. 

Since Rb2C0F4  is an antiferromagnet the critical temperature for 

the phase transition is the Nel temperature TN. For temperatures 

close to the Nel temperature the thermodynamic quantities such as 

the sublattice magnetisation, staggered susceptibility and specific 

heat capacity are proportional 

C = (T - TN)/TN. These powers 

for the three quantities above 

and also the critical amplitud 

to powers of the reduced temperature 

are known as critical exponents, and 

the critical exponents , y and a, 

± 	± 
as M 

0 	0 	0 
, X and A are therefore 

defined by the equations: 



-19- 

(M (- c) , c <0 (sublattiCe magnetisation) 
 

M(E) = 

I0 	 , C>0 

k 	
+

x() = x(±e)1 (staggered susceptibility) 	 (2.1.1b) 
B   

+ 
A. -c 

C ± (c) = 
o 
 (±c) 	(specific heat capacity) 	 (2.1.1C) 

Ot 

The plus and minus signs refer to e >0 and C <o respectively. 

The critical exponents for the thermodynamic quantities are 

related to each other through the scaling hypothesis (Stanley (1971) 

p. 185). This hypothesis assumes that the part of the Helmholtz 

free energy that is singular at the phase transition may be written as 

a homogeneous function (see for example Stanley (1971) p. 175). 

The standard form for the singular part of the free. energy is 

therefore given by: 

+ 	 [±ee] 2_cx  +l.hh 	1 
F(C, h) = 	 f - 
	

(2.1.2) 

where 	and £.h are 'length scales' for the reduced temperature 

and magnetic field. For an antiferroinagnet the magnetic field h 

is a staggered field which alternates from sublattice to sublattice. 

The length scales 	and Z are such that by a suitable choice of 

their values the 	
+ 

functions f 	(x) will be universal. If equation 

(2.1.2) is differentiated in order to obtain the thermodynamic 

quantities in equation (2.1.1) then the critical amplitudes M, 

X and A will be given in terms of the lengths Z. and £h and 

the numerical values of the functions f (x) and its derivatives at 

x = 0. 

Apart from the thermodynamic quantities mentioned previously 

the function of most interest close to the phase transition is the 

correlation function. For an Ising system the correlation function 
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is defined as (mit (1978) p. 20) 

g(r) = : < S
z Sz 	

> - < S
Z 	 Z 
>< S 	> 	 (2.1.3) 

hh+ 	h 

The correlation function does not measure the degree of alignment 

of the spins but rather measures the correlation between the fluct-

uations of the spins from their expectation values. The correl-

ation function is related to the susceptibility by the equation: 

k B T 	= (g 	2 E  g(r) 
r 

(2.1.4) 

where gZt relates the magnetic moment to the pseudo spin. It is, 

however, more frequent to consider the properties of the Fourier 

	

transform of g(r) given by G(q) rather than g(r). 	This leads to 

a generalisation of equation (2.1.4) whereby the wavevector dependent 

susceptibility x(q,c) is given in terms of G(q) by the relation: 

k B T x(') = (gZ2 G(q) 
	 (2.1 .5) 

The correlation length 	(c) is defined from the correlation 

function by the relation (Amit (1978) p. 27): 

12 
2 () Jr g(r) d  d  r - - dG(q) 

dq2 	q=0(q0) 	
(2.1.6) 

__________ -  
j g(r) d 

d  r 

As with the thermodynamic quantities, close to the Neel temperature, 

the correlation length is proportional to a power of the reduced 

temperature. Therefore the critical exponent v and the critical 

amplitudes E 
+

are defined by the equation: 
0 

+ 	
+ (t E) 	 . 7 (E) = ç  

From equation (2.1.7) it can be seen that at the Neel temperature the 

correlation length is infinite. The properties of the correlation 

function at the Neel temperature were considered by Fisher (1964) 
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who showed that G(q) would be proportional to q(2 
	which serves 

as a definition of the critical exponent r. 

A generalisation of the scaling hypothesis to the wavevectOr 

dependent susceptibility leads to the relation (Fisher and Aharony 

(1974) )that: 

k 
B 
 T x(q, C) = x (±c '' )D(q) 

 

where the functions D 
+ (x) are Universal. The introduction of the 

wavevector q leads to the need for a third length scale £4\. There- 

fore if the functions D (x) are to be Universal the amplitude 

must be equal to the product of £q (eC ) v  and a Universal constant. 

This constant will be different for the two critical amplitudes 

since the functions D+(x) and D(x) will not be the same. 

The universality hypothesis is an important feature of the 

modern theory of the critical phenomena associated with second order 

continuous phase transitions. In the universality hypothesis systems 

are grouped into Universality classes. The hypothesis then states 

that for a given Universality class, Universal quantities such as 

± 
the critical exponents and the functions f ± (x) and D (x) are the 

same for all systems within that Universality class. 	The values 

+ 
of the critical exponents and the forms of the functions f (x) and 

D 
+ (x) are therefore irrespective of the details of the Hamiltonian 

for the system and should only depend on those factors which deter-

mine the Universality class. Unfortunately there is no 'set of 

rules' which determine the members of a Universality class which 

apply in absolutely all cases. However, Kogut (1979) has listed 

three rules which apply for nearly all cases, certainly to this 

chapter and chapter three. These rules are that the Universality 

class depends on: 
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the spatial dimensionality of the system (d) 

the dimension of the local variables in the Hamiltonian (n) 

the symmetries of the coupling between the local variables. 

The first rule is obvious and needs no explanation. For magnetic 

systems the second rule depends on the symmetry group of a spin 

in the system. Uniaxial symmetry would imply n = 1 (Ising), 

planar symmetry n = 2 (X - Y) and isotropic symmetry n = 3 (Heisenberg) 

Universality classes. The final rule would for a magnetic system apply 

to the exchange or to the coupling to an external magnetic field if one 

is present in the Hamiltonian. 

In order that the functions f ± (x) and D 
± (x) were Universal it 

was necessary to introduce three length scales th t and £. From 

the dependence of the critical amplitudes X ' A 0 
 and E on these 

lengths imposed by the requirement that f (x) 'and D (x) are Universal 

it is necessary that the ratios X/X, A+/A and 	are also 

Universal. The Universality of these ratios and the functions f (x) 

and D 
+ (x) therefore depends on the existence of the three independent 

length scales or scale factors as they are alternatively known. This 

formulation of the Universality hypothesis could therefore be dubbed 

'Three Scale Factor Universality'. 

The hypothesis of Two Scale Factor Universality, as originally 

given by Stauffer et al (1972), proposes that the products 

± 	±d F(E, 0) ( ) should be Universal quantities. The temperature indep-

endence of these products within the scaling region had been noted 

earlier by Kadanoff (1966) as a heuristic argument for the hyper-

scaling relation of dv = 2 - cL. A Universal value for these 

products however goes further than this and implies that there is a 

Universal relation between the length scales £q  and Z given by: 

q = a Universal constant 	 (2.1.9) 
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This relation reduces the number of independent length scales from 

three to two, hence the name Two Scale Factor Universality. Since 

the critical amplitudes are related to the length scales a conseq-

uence of this relation is that certain combinations of critical 

amplitudes which mix the critical amplitudes of the thermodynamic 

quantities with the critical amplitudes of the correlation length 

should be Universal. If the dependences of the critical amplitudes 

M 	X and A on the length scales 2.. , 2. and 2. are found from 
o 	o 	o 

+ 	± 	
n c 	q 

differentiating equation (2.1,2) then two such combinations would 

be: 

0 • (+) d 	
= 	a Universal constant 	 (2.1.10a) 

a 	0 

and 

M 
2 	+d 

() = a Universal constant 	 (2.1.10b) 

X 

Equation (2.1.10a) was used by Stauffer et al (1972) to test the 

hypothesis with experimental data taken from the literature. A 

discussion of the results of this test will be given in section (6) 

where they will be compared with the result of the measurements 

reported in this chapter. 

The hypothesis of Two Scale Factor Universality was considered 

within the renormalisation group framework by Hohenberg et al (1976) 

and by Bervillier (1976). It was shown by these authors that to 

order (4 - d) 2  for the Ising model and to order 11 2  for X - Y and 

Heisenberg models that the combinations of critical amplitudes such 

as equations (2.1.10a - b) were universal. Another verification of 

the hypothesis was given by Bruce (1981) who showed that the 

combination of critical amplitudes in equation (2.1.10b) was equal 

to an integral which had a universal value. This result was 

derived by Bruce from a theoretical study of the temperature dependence 
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of the neutron (or x-ray) scattering cross section close to a second 

order phase transition. In this study it was shown by Bruce that 

the combination of critical amplitudes (2.1.10b) could be obtained 

from the data taken in a single neutron scattering experiment. 

Following the suggestion of Bruce (1981) these measurements 

on Rb2C0F4  were performed in order to test the hypothesis of Two 

Scale Factor Universality. The quantity measured was not quite 

that given in equation (2.1.13b) but rather was given by: 

X
+ 

(K+ )  dK
+d 

R = (2.1.11) 
.5 	M2 

where K+ is the critical amplitude for the inverse correlation 

length in reciprocal lattice units and is related to 	by K = 

Rb2C0F4  has critical exponents 
corresponding to the d = 2 

Ising Universality class and the value of R obtained for Rb 2C0F4  

has been compared - to the value of R calculated from the exact solution 

of the ferromagnetic Ising model of 0.051 (Bruce (1981)). 

The rest of this chapter is set out as follows. In section 
o 

(2) the relation between R and the quantities measured in a 

neutron scattering experiment is derived. The magnetic properties 

of Rb2C0F4  are discussed in section (3) along with 
a description of 

the instrumental conditions and the temperature control. In 

section (2) it will be shown that the instrumental resolution function 

plays an important part in the theory and therefore in section (4) 

the formalism used for the resolution function is discussed. The 

results of the experiment are given in section (5) and finally 

section (6) contains a discussion of these results. 
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Connection with Neutron Scattering 

In this section it will be shown how the combination of critical 

amplitudes R (equation (2.1.14)) occurs as a proportionality constant 

when the ratio of the intensities at an antiferromagnetic Bragg peak 

position above and below the Neel temperature is taken. The measure-

ment of these intensities and the wavevector dependent susceptibility 

gives sufficient information to determine R . In order to derive the 
5 

formula for R the dynamic structure factor S(Q, w), introduced in 

Chapter One, is written for a uniaxial magnet as: 

S(, w) 	Sin2  cL(g 	)2 S"(Q, w) + ( 1 + Cos2a) (gZ.j)2 	Qw)  

where ci. is the angle between the wavevector Q and the magnetic 

ordering direction z, S"(Q, w) is the scattering from the z comp-

onents of the spins and S(Q,w) is the scattering from the x-y 

components. The S(Q, w) gives the contribution from the spin waves 

and is neglected. since Rb 2CoF4  is an Ising antiferromagnet and the 

spin waves will not play a part in either the theory or the experi-

mental measurements. The structure factor S"(Q,w) is given by the 

equation: 

	

1 	-iwt 	1Q.r 	<SZ(o)SZ(t)> 	 . 
S"(Q,w)= 	

ij - dt e 	e 
- 	2J 1 

1J 

where the angular brackets < > denote a thermal average. Since the 

hypothesis of Two Scale Factor Universality is formulated for static 

critical phenomena S"(Q, w) must be integrated over all frequencies 

to obtain the static structure factor S"(Q) which will be given by 

iQ. r. 
S"(Q) = 	dw S" (0 w) = E e 	<Sz  S> 	 (2.2.3) 

	

- 	 ii 	
J 

Because Rb2CoF4  is a two sublattice antiferromagnet with a ground 

state pseudo-spin S = 4 level, S can be replaced by: 

i T,R. 
S 	= S e 	

-1 	 (2.2.4) 
1 	 1 
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where the set of vectors -r are the antiferromagnetic reciprocal 

lattice vectors, y is an Ising variable which can take on the 

values ±1 and S = 4. Then on substituting equation (2.2.4) into 

equation (2.2.3) and using equation (2.1.2) and the translational 

invariance of <0 .> the static structure factor S"(Q) becomes: 

S 11 (Q) = N2  S 2  <cy> 2  tJQ) + S2 A (Q+ q) G(q) 	 (2.2.5) 

where the delta function (q) constrains Q to be an antiferromagnetic 

lattice vector. The first term in equation (2.2.5) is the antiferro 

magnetic Bragg peak and the second term is the Fourier transform of 

the correlation function. 

The intensity measured with the spectrometer set for elastic 

scattering is given in terms of the dynamic structure factor by the 

equation 

= 	
If()IJJ dg& R(Q,g, w) S(Q, w) 	 (2.2.6) 

where I is an overall scale factor, f(Q) is the form factor of 

the magnetic ion and R(Q,g,w) is the resolution function. The 

resolution function is defined to be the probability of observing 

a neutron scattered with wavevector Q + g and frequency w given 

that the spectrometer was set to observe a wavevector transfer Q 

and zero frequency transfer. It is assumed for the present and 

will be shown in section (4) that the integration over frequency 

in equation (2.2.6) is a good approximation of equation (2.2.3). The 

resolution function is then just a function of Q and g and is defined 

so that R(Q, 0) = 1. Then by using equations (2.2.1) and (2.2.5) the 

intensity I (Q) can be written as 

IIf(Q)12 sin2 ctJdg  [M 2 (c) ix(Q+g) + k 	x( 	g,C)(Q+ q)] 

	

x R(Q,g) 	 (2.2.7) 
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where M(c) = NgZ 	S<a> is the sublattice magnetisation and the 

temperature dependence has been specifically included by writing 

The form factor f(Q) and sin 2 ()t factors are outside the 

integration since they only vary slowly with Q and are essentially 

constant over the resolution function. 

For values of c sufficiently close to zero that the scaling 

forms for M(c) and k  x(q, C) hold the intensity I(T,C), where t 

is an antiferromagnetic reciprocal lattice vector, may be written 

as 

1(i'c )  
- 	 H(-C) + x (±c)' VC + (K) 	

(2.2.8) 

	

•• p (L) - 0 	 0 	
R 

where P(t) = IIf(T) 2  sin2 ct, H(x) is the Heaviside (theta) function 

and C (K) i5 the convolution of R(T, g) with the function D (q/) 

-  
The function D 

+ (x) was introduced in section (1) in equation (2.1.8) 

where its argument was q. The change in argument now reflects the 

specific change to reciprocal lattice units for q and the inverse 

+ 
correlation length K. Explicitly then C (K) is given by the integral: 

+ 	1 f 

	

C(K) = - dgR(T, g) D± ( g/ ) 	 (2.2.9) 

	

R 	
K 

If values of c > 0 are denoted by c then from equation (2.2.8) 

+ C ) is given by: 

+ 
e 

(e) 	V. 	C(K) 	 (2.2.10) 
R  

For values of c <0, denoted by C, I(T, C) contains a contribution 

from both the sublattice magnetisation and the susceptibility. 

However, since the intensity of the susceptibility decreases as c 

becomes more negative and the intensity of the sublattice magnetisation 

increases the intensity 1(i, C) will for values of c sufficiently less 

than zero be given by: 



'1 ,c) 
M.  (-E) 	 (2.2.11) 

	

p(i) 	 0 

Therefore if the ratio of equation (2.2.10) to (2.2.11) is taken 

	

for values of 6 and 	with the same magnitude then the result 

is: 

	

+ 	+ 

	

I( -r, e) 	X 	-'C+ 	+ 
1 6 	( 2°' ' 	c (K) 

M2 	

(2.2.12) 
R 

Hence using the resuiticl (Y2 = (K/K+)-d, which follows from the 

scaling form K = KCV , and the scaling relations (Stanley (1971) 

p. 185) equation (2.2.12) may be written as 

C(K) 
R. V . 	d 	 (2.2.13) 

 K 

where R is given by equation (2.1.11). 

Therefore R can be determined given three quantities as a 

function of reduced temperature, the intensities I('r, 
c+) and 

I(T, c) and the inverse correlation length above the Neel temp- 

erature. In order to obtain K it is necessary to measure I(Q, 
c+) 

as a function of Q about the antiferromagnetic reciprocal lattice 

vector. The intensity I(Q, c) is given by the equation 

Yfdg 	 + 
I.(Q,c + ) = 	x + 

-

0 C 	R(Q g) D 	' 	
(Q+q) 	(2.2.14) 

K  

A value of K can be found from equation (2.2.14) using the tech- 	- - 

niques explained in appendix A if an explicit functional form for 

+ 
D + (x) is known. There 15 no exact form for D (x) and as a result 

there are a number of approxiinaflts. The two best known approximantS 

are, the Ornstein-Zernike form (Stanley (1971) p. 100), which is 

	

D(x) 	1+x2 	
(2.2.15a) 

and the Fisher approximant (Fisher (1964)), which is 

D(x) = (1 
	x1)1 	

/2 	 (2.2.15b) 
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In the work reported in this chapter The Ornstein-Zernike approx-

imant has been used. This choice of approximant was based on the 

results of the work of Tracy and McCoy (1975), who studied the 

applicability of various approxirnantS to D(x) for the d = 2 Ising 

model. Since the d = 2 IsincT model has been solved exactly (Onsager 

(1944))Tracy and McCoy were able to calculate the "exact" D+(x) by 

numerical integration. The results of Tracy and McCoy showed that 

while the Ornstein-Zernike approximant was accurate to within 5% 

for x < 11 the Fisher approximant was only accurate to within 5% 

for x < 0,7 or x > 163. Since Rb 2C0F4  is expected to have a phase 

transition in the d = 2 Ising universality class and the data was 

mostly taken for values of x < 11 the Ornstein-Zernike approximant 

is expected to work very well in this case. 

2.3 Experimental Method 

The purpose of this section is to explain the various aspects 

associated with the experimental measurements. To this end it is 

divided into three subsections. The first subsection describes the 

crystallographic and magnetic properties of Rb 2C0F4 . In the second 

subsection a description and justification of the way in which scans 

were performed to take account of the special features of the magnetic 

ordering in Rb 2C0F4  will be given. The third subsection contains a 

description of the spectrometer used and the apparatus for the temp- 

erature control. 

The experimental measurements were performed at the Institut 

Laue-Langevifl and were carried out with the collaboration of Dr. D. 

McK Paul. 
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2.3 	i) Properties of Rb 2  CoF 

The crystallographic and magnetic structure of Rb
2COF4  is 

of the K2NiF4  type (BirgefleaU et al (1970)) and is shown in figure 

(2.3.1). The Co2+ ions in this structure-are situated on the 

• sites of a body centred tetragonal lattice and are surrounded by 

an octahedron of fluorine ions. Application of crystal field 

theory shows that the lowest level for the Cc 2+ ions is a pseudo 

spin s = doublet (Breed et al (1969)). The anisotropy of the 

exchange interaction within this doublet has been estimated by 

Breed et al (1969) from susceptibility measurements. These 

authors estimated a ratio of transverse to Ising exchange of 0.23. 

A more recent value for this ratio of 0.55 can be obtained from 

the spin wave measurements of Ikeda and Hutchings (1978). This 

large anisotropy in Rb 2COF4  means that the phase transition is 

expected to be dominated by Ising critical behaviour throughout 

the scaling region. 

The crystal structure of Rb2C0F4  is such that the super- 

exchange path between nearest neighbour Co 2+ ions in the a - b 

plane leads to a strong antiferromagnetic exchange. The exchange 

between Co 2+ ions in. different planes is, however, much weaker. 

In the isomorphous system K 2C0F4 , Ikeda and Hirakawa (1974) have 

estimated the interplafle exchange to be 	
times smaller than 

the intraplane exchange. Since Rb 2C0F4  and K2C0F4  have very 

similar lattice parameters and N6el temperatures and there is no 

indication otherwise from spin wave measurements (Ikeda and 

Hutchings (1978)) the interplane exchange in Rb 2COF4  is also 

assumed to be at least 10 times smaller than the intraplane 

exchange. 

The weakness of the out of plane exchange means that above the 



Figure (2.3.1) 

This figure shows the chemical (nuclear) unit cell of 

Rb2C0F4 . At 102 K the cell has lattice parameters 

a = b = 4.128 A and c = 13.622 A. The orientation 

of the spins on the Co 
2+ ions is shown. The energy 

of the body centre spin is the same whether it be 

up or down 
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N'eel temperature the interplafle correlations are insignificant and 

the critical scattering is given by the intraplane correlations. 

Therefore above the Neel temperature the properties of Rb 2COF4  are 

those of a two dimensional Ising system. This two dimensional 

property of the phase transition is typical of the K 2NiF4  type 

magnetic materials and is seen in the neutron scattering cross 

section as rods (or ridges as they are sometimes referred to) of 

scattering parallel to the c axis in reciprocal lattice. 

(BirgefleaU et al. (1970)). In the experiment reported here the 

sample of Rb2C0F4  was mounted with a (1, 1, 0) axis vertical and 

the reciprocal lattice diagram for this scattering plane is shown 

in figure (2.3.2) with the positions of the rods of scattering 

marked by the hashed lines. In figure (2.3.3) some scans along 

the (-, 4, £) rod are shown for various temperatures above the 

Neel temperature. The variation of the rod height with £ is 

through the form factor and sin 2 ° terms in equation (2.2.7). The 

thickness of the rod depends on the correlations between spins in 

the a - b planes and therefore a scan perpendicular to the rod, 

along the line C - D in figure (2...2), measures the wavevector 

dependent susceptibility for the two dimensional magnetisation. 

--Previous work on Rb 2C0F4  has confirmed the qualitative aspects 

of this model but has had a wider variation on the quantitative 

aspects. The bulk susceptibility measurements of Breed et al. 

(1969) were consistent with Rb 2C0F4  being in the d = 2 Ising univ
- 

ersality class. However, the neutron scattering results of 

Samuelsen (1974), although they showed the existence of the rod of 

scattering, gave values for the critical exponents 
 y and V  of 1.34± 

0.22 and 0.89 ± 0.10 which were not consistent with the values of 

1.75 and 1.00 for the d = 2 Ising model. The data analysis in 



Figure 2.3.2 

This figure shows the reciprocal lattice space diagram 

for the scattering plane of the measurements. Nuclear 

Bragg peaks are indicated by triangles. The rods of 

scattering above the Néel temperature are indicated by 

the hashed lines, while the positions of the magnetic 

peaks below are indicated by the circles and squares 

for the magnetic domains. 
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Figure .(2.3.3) 

The variation of the intensity along the rod of 

scattering above the Ne1 temperature is shown 

for three different temperatures in this figure. 

The solid lines are guides to the eye. 
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SamuelSen'S paper was done using the Ornstein-Zernike approximant 

for the wavevector dependent susceptibility. Further neutron 

scattering measurements on Rb 2CoF4  (Ikeda et al. (1979)) and on 

the isomorphous K2CoF4  (Ikeda and HirakaWa (1974)) did give 

values for y and ')S 
in better agreement with the theoretical results. 

Unfortunately in both these papers the data analysis for the wave-

vector dependent su
sceptibility was performed using the Fisher 

approXifliant which, for the range of waveveCtOrs o < 	< 10 used in 

these papers, was shown by Tracy and McCoy (197) to be a very poor 

approximant. Therefore as well as determining a value for the combin-

ation of critical amplitudes R from these measurements on Rb
2COF4  

the critical exponents 'y' and have been determined and the temp-

erature dependence of the inverse correlation length checked. The 

values obtained for the exponents and the results for the temperature 

dependence of the inverse correlation length are presented in section 

(5). These results are consistent with those for the d = 2 Ising 

model. 

The magnetic order in Rb2COF4  below the Neel temperature is, 

however, much more complicated than that above. When the two dimen-

sional long range order has occured within the a - b planes there 

will be an "effective exchange" between the next nearest neighbour 

(n.n.fl.) planes. This "effective exchange" is the product of the 

weak n.n.n. ferromagnetic interplaflar exchange and the number of 

spins in the a - b planes. The "effective exchange" between n.n. 

planes cancels by symmetry with the body centre spin having the same 

energy whether it is up or down. Therefore, when a sample of Rb
2COF4  

is cooled through its Neel temperature the n.n.n. planes attempt to 

order however, since the interaction is weak and there are two 

energetically equal domains a large number of stacking faults occur. 
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The result is that the Bragg scattering below the Nel temperature 

is neither a rod of scattering nor a resolution limited peak but is 

rather the modulus square of the Fourier transform of the stacking 

distribution of the planes. This distribution of Bragg scattering 

is peaked at the points in reciprocal space which correspond to the 

structure factors for a sample with all the body centre spins in an 

up or down domain. In figure (2.3.2) these points are marked with 

(0) 's and (t 's to differentiate between the two domains. Figure 

(2,3.4) shows some examples of scans between points A and B in figure 

(2.3.2) below the Neel temperature which show the distribution of the 

Bragg scattering. This effect has been seen in a number of the 

K2NiF4  type magnetic systems (Birgeneau et al, (1970), Samuelsen 

(1974), Birgeneau et al. (1980)). In Rb 2C0F4  it is known (Samuelsen 

(1974)) that the width and shape of these peaks depends on the rate 

at which the sample was cooled through its Nel temperature and are 

therefore not in general reproducible. 

2.3 	ii) Correcting for the stacking fault effect 

In order to apply, equation (2.2.13) it is not simply enough 

to measure the intensity at a point along the rod, instead a modi-

fication must be made to account for the effect of the stacking faults 

below the Neel. In practice this modification is very simple, 

instead of measuring the intensity at a point a scan is performed to 

measure the integrated intensity between points A and B in figure 

(2.3.2). Each of the data points in the scan is corrected for the 

form factor and Sin 2 (X prefactors before the scan is integrated. 

This was done for both the Bragg scattering below the Neel temp-

erature and for the critical scattering above the Neel temperature. 



Figure (2.3.4) 

The variation of the magnetic scattering between 

the points A and B in figure (2.3.2) is shown at 

three temperatures below the Ne1 temperature. 
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In order to justify this modification two things are shown, firstly 

the structure factor below the Neel temperature with stacking faults 

present is calculated and, secondly, it is shown that variations in 

the resolution function along the length of the scan do not alter 

this result significantly. 

In order to include stacking faults in S 11 (Q) below the Nel 

temperature equation (2.2.4) is rewritten in the form 

= 	1u e
1- 	<cJ> 
	 (2.3.1) 

where the site i is at the position rk  within the uth a - b plane. 

The vector L represents the antiferromagnetic reciprocal lattice 

vector within the a* - b* plane. .Stacking faults are included 

th 
through the variable Q which is ±1 depending on whether the 

plane is up or down. Since the interplane exchange is so weak it 

is quite reasonable to assume that <CY> does not depend on the 

stacking distribution and is therefore translationally invariant. 

Then if the contribution from the susceptibility is neglected below 

the Nel temperature S"(Q) is just given by: 

S°(Q) = N2 S2 	<ci>2 IF (Q, ) l 	 (2.3.2) 

where Q = Q 	+ Q with Q in the a* - b* plane and Q along 
- 

the c* direction. The factor A jQ j constrains Q to be an anti-

ferromagnetic reciprocal lattice vector within the a* - b* plane. 

The F(Q ) in equation (2.3.2) is the Fourier transform of the 
c 

stacking distribution and is given by 

F(Q ) = - 	E el ac 	 (2.3.3) 
c 	N 	 U 

c U 

where N is the number of a - b planes. Therefore if R(Q g) is 

constant along the scan from points A to B then the integrated 

intensity = fdQ I(Q)/P(Q) is given by: 
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= N2  M2  (e) JdQ fag. R()jF(Q + g) 2 	(2.3.4) 
C 

where M(c) is the two dimensional sublattice magnetisation and 

R(g) is the intersection of the resolution function along the 

rod. Since the resolution function is independent of Q the 

double integral is just the product of the integral of R(g) over 

dg 
C 
and the integral of IF(Q) 1 2  over dQ. This last integral can 

be done by Parsevals theorem whereby: 

fdQ IF (Q) 12 	= k 	Iuj2 	N 
	 (2.3.5) 

If the intersection of the resolution function with the rod is a 

Gaussian with standard deviation W  then the integral of R(g) is 

W. Hence equation (2.3.4) is given by 

'2..-L' E:) 	= 	(NJ?T W) M2(E)t(Q) 
	

(2.3.6) 

The integration over Q should be done from zone boundary to zone 

7 
boundary, i.e. from points (4, 4 ,  } to (4, 4, 	b ut since in a 

macroscopic sample an equal population of up and down domains is 

expected it is only necessary in practice to integrate from point 

A (4  4 ,  } to point B (4, 4,  }. 
In order to calculate the integrated intensity above the Nel 

temperature it is necessary to know slightly more about the resol-

ution function than has been so far -assumed. The formalism used 

for the resolution function will be described in section (4), but for the 

present it will suffice to note that the resolution function is a four 

dimensional Gaussian in wavevector and frequency transfer. The 

component of the Gaussian which is described by the component of 

the wavevector transfer that is vertically out of the scattering 

plane decouples from the rest of the function and remains constant 

throughout reciprocal space. Further, for the conditions under 
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which the experiment reported in this chapter was performed, the 

frequency component of the resolution function adequately integrates 

the frequency dependence of the structure factor and may be neglected. 

The component of the resolution function within the scattering plane 

is a Gaussian in the co-ordinates g along the rod and g perpendicular 

to the rod and within the scattering plane. In figure (2.3.5) the 

scattering triangle and full width at half maximum contour of the 

in-plane component of the resolution function are shown superimposed 

on the reciprocal space, (the diagram is not to scale). Above the 

Nel temperature the intensity along the rod is independent of Q 

once the correction for the form factor and sin 2 ct has been performed. 

Hence it is possible to integrate out the g component of the resol-

ution function. The result is that the in-plane component of the 

resolution function is given by: 

eff 
R 	(g) = 	W exp() 

P 

(2.3.7) 

where W is the standard deviation of the Gaussian describing the 

intersection of the resolution function with the rod, and W 
p 
 is 

an effective standard deviation for the g component. If the in- _P 
plane component of the resolution function has standard deviations 

a and b along the semi-major and semi-minor axes and the semi major 

axis is at an angle e to the rod then W   and W are given by: 

b ______________________ 
= a / /2 cos2 e + a2 sin2 	 (2.3.8a) 

= 	Jb2  cos2 0 + a2 Sin2 ® ' 	 ( 2.3.8b) 

Hence if the Gaussian in g in equation (2.3.7) is written as 

R(g) and the vertical component of the resolution function is given 

by R(g) then above the Nel temperature the integrated intensity 

II(QC) is given by 



Figure (2.3.5) 

In this figure the orientation of the scattering 

triangle and the resolution ellipse to the rod 

of scattering is shown at the point ('-, --, }). 

The incident and final wavevectorS used in the 

measurements were k. = k f 
 = 2.662 A 1 . The 

1  

diagram is not to scale. 
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(N t:W) X 	 C(K) 	 (2.3.9) 

where V  = 2* wp Wv and Wv is the standard deviation of the 

vertical component and the function C(K) is now given by 

2 	2 

C(K) = 	ffdgp  dg R(g) R(g) D( 	
V) 	

(2.3.10) 

Therefore the ratio of the integrated intensities given by 

equations (2.3.6) and (2.3.9) is just given by 

+ 

	

(K) 	
(2.3.11)  

s R 
It(Q,C) 	

K 

where now V  is the volume of the resolution function within the 

a* - b* plane and C+(K) is an integral that is performed within 

the a* - b* plane. 

The result in equation (2.3.11) was derived by assuming that 

the resolution function remains constant along the length of the 

scan from points A to B. In practice however, the values of 0, a 

and b in equation (2.3.8) will all change along the the length of 

the scan as will the peak height of the resolution function-R 0 . 

If the values of W and W at the point (4, -k-, 2) are denoted as 

and W and the peak height R at (5 , 2) is defined to be one 

then in figures (2.3.6 a - d) the variation of 0 , R , ( c/W+) and 

with the wavevector (4i 5, £) is shown. The values of 

W and W are 0.00261a* and 0.00575a* respectively. The data shown 
C. 

 

in figures (2.3.6 a - d) were calculated using the formalism described 

in section (4) and the paiameters listed in table (2.4.1)for the set of 

collimations labelled (A). For the range of £. values 1.5 < £ < 2.5 

shown in figures (2.3.6 a - d) all of the parameters 0, R, Wc and 

w vary linearly with £. If the empirical formulae R 0 () 	(1 + 

R £'), W = W (1 + 6w £') and W = W (1 + 6wp £') where £ = £ - 2 
c 	c 	c 	 p 	p 



Figure (2.3.6a) 

This figure shows the variation of the angle of 

orientation (6) of the major axis of the resolution 

ellipse along the length of a scan from points A to 

B in figure (2.3.2). 

Figure (2.3.6b) 

The variation of the peak height of the resolution 

function (R) along the length of a scan from points 

A to B is shown. At the point (4 4, 2), R is 
defined to be 1. 

Figure (2.3.6c) 

The variation of the standard deviation of the component 

of the resolution function parallel to the c-axis along 

the length of a scan between points A and B is shown. 

The values of W are normalised by the value at the point 

( 1 , 

 1 
2' 2). 

Figure (2.3.6d) 

The variation of the standard deviation of the component 

of the resolution function in the (1,1,0) direction along 

the length of a scan between points A and B is shown. The 

values of W are normalised by the value at the point 

( 1 , 

 1 
2' 2). 
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are used then 6R, 6Wc and 6Wp are respectively 0.33, 0.35 and 0.05. 

It is possible using the empirical formulae for R, Wc  and W 

to estimate the "worst case" limit for the percentage error intro-

duced into the integrated intensity by these variations. The 

"worst case" limit below the Nel temperature would be the case of a 

rod of delta function thickness in the a* - b* plane and constant 

intensity in the c*  direction. The limit gives the greatest weight 

to the points at which the variation in the resolution function is 

greatest. If E is the percentage efficiency of integrating the 

intensity in the scan then below the Neel temperature E is given by: 
0.5 

E = J d' (1 - 6R') (1 + 6w ') = (1 - 0,083 6R6W ) 
c 	

(2.3.12) 
c  

-0.5 

Substituting the values of 6R and 6w found earlier into equation 

(2.3.12) gives a value of E = 99%. Above the Neel temperature the 

"worst case" limit is one of a constant intensity throughout recip-

rocal space. In this case E is given by: 

0.5 

E =J d'(1 - 6')(1 + 6W')(1 + wi') = 
0.5 

1 - 0.083(6R6W + 6w 6w - 6&c5w ) 	 (2.3.13) 
C 	pc 

Again if the values of oR, Ow 
C 	p 

and Ow found earlier are 

substituted into equation (2.3.13) the efficiency is E = 99%. 

Therefore in conclusion of this subsection it should be noted 

that (i) the difficulties introduced by stacking faults can be over-

come by using integrated intensities and that (ii) that variations 

in the resolution function along the length of the scan to obtain 

the integrated intensity are not expected to be of any significance 

to the value obtained. 
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2.3 	iii) Experimental apparatus 

The measurements were performed using the 1N2 spectro- 

meterat the Institut Laue Langevin in Grenoble. In figure (2.3.7) 

a schematic diagram of 1N2 is shown. This spectrometer differs 

from the standard triple axis by having a double monochromatOr 

with a 60' collimator between the two monochromatorS and no in-pile 

collimation before the first monochromatOr. The two monochromatiflg 

crystals both rotate and translate in such a way that the scattered 

beam from the second monochrOmator to the sample table is fixed in 

direction. Therefore the sample table has rotational motion only, 

although both the analyser table and detector are free to move on 

air pads. 

The two monochromators which were used in these measurements 

were both pyrolytic graphite crystals utilising the (0,0,2) reflect-

ion. A fixed incident neutron wavevector of 2.662 A 1  was used 

throughout the measurements and this facilitated the use of a pyro-

litic graphite filter (Shapiro and Chesser (1972)) between the 

second monochromatOr and sample to suppress neutrons scattered 

from higher order planes in the monochrOmatOrs. The analyser used 

was also a pyrolitic graphite crystal utilising the (0,0,2) 

reflection. 

Since equation (2.3.11) contains the resolution volume as a 

parameter the measurements were performed for two different resol-

ution volumes in order to act as a check on the results. The 

resolution volume could be varied by changing the horizontal colli-

mations in the monochromatOr to sample, sample to analyser and 

analyser to detector positions. The two sets of collimationS that 

were used were, with respect to the above, 40-40' -60' and 20' -10' -40'. 

The sample of Rb2C0F4  was mounted in an aluminium can with a 



Figure (2.3.7) 

This figure shows the arrangement of the 

components of the triple axis spectrometer 

1N2 at the Institut Laue Langevin. (Taken 

from 'Neutron Beam Facilities Available, 

for users', I.L.L., January 1981 edition). 
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helium gas atmosphere and attached to the copper block of a standard 

CT-14 cryostat. Since the Noel temperature of Rb 2CoF4  is "-i 102 K, 

(Breed et al. (1969) liquid nitrogen was used as the cryogen in both 

the inner and outer bins of the cryostat. The temperature of the 

sample was measured using a platinum resistance thermometer attached 

to the copper block of the cryostat. Thehermometer was connected 

to an IT-LS1 temperature controller which was used to regulate the 

power supplied to the heater attached to the copper block. A temp-

erature stability of ±0.02 K over a period of 3 hours was attain-

able with the IT-LS1 controller. In order to ensure that the sample 

had reached thermal equilibrium with the copper block after the temp-

erature was changed between scans no new scan was started until the 

intensities measured at the points (4, 4,  }, (4,  4, 2) and (4, 4, -) 

had been stable for a number of minutes. 

2.4 The Resolution Function Formalism 

The resolution function for a triple axis spectrometer can 

be defined as the probability of observing a neutron scattered with 

a wavevector transfer Q + g and frequency transfer 0 + Lu given that 

the spectrometer was set for a wavevector transfer Q and a frequency 

transfer Q. The formalism used to describe the resolution function 

for the measurements reported in this chapter is that given in the 

paper of Cooper and Nathans (1967). Although in the paper of Cooper 

and Nathans only spectrometers with a single monochromator were 

considered it has been shown by Pynn and Passel! (1974) that spectro- 

meters with a double monochromator may also be included in this 

formalism. This is simply done by envisaging the double monochrom-

ator as an effective single monochromator in the formalism. When 

later the parameters for the resolution function are tabulated 
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those for the monochromatOr system will refer to an effective single 

monochromator. 

If the wavevector and frequency transfers Q and Q of the neutron 

are given in terms of the incident and final wavevectorS of the 

scattering process k. and k f  by: 

a 	- f 	
(2.4.1.a) 

(k 
1
s. - k) 	 (2.4. 1 b) 

=  

then the resolution function can be thought of as the sum over 

all paths through the spectrometer with wavevectOrs k. 4. Ak. and 

k ~ 
Ak which result in wavevector and frequency transfers Q + 

f 	f   

g and c + w. Therefore for each of the components of the spectro-

meter, collimators, monochromator, analyser and sample, a trans-

mission function can be defined. This transmission function gives 

the probability that a neutron incident with a given wavevector 

relative to the spectrometer co-ordinates is scattered (or trans-

mitted) into a given final wavevectOr relative to the spectrometer 

co-ordinates by that component of the spectrometer. The resolution 

function is thus obtained by convolving all of these transmission 

functions together and integrating over all paths through the 

spectrometer subject to the constraints of the conservation of 

frequency and wavevector transfer. 

In the formalism devised by Cooper and NathanS (1967) the 

transmission functions are assumed to be Gaussian with an approp-

riately chosen standard deviation. Further, the constraints 

imposed by Bragg's law on the scattering processes of the mono-

chromator and the analyser were treated by assuming that the 

angular deviations of the incident and final wavevectorS from 

their set values were small and that small angle approximations 
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could be used. Then with these two assumptions Cooper and Nathans 

were able to perform the convolution integral of the transmission 

functions analytically. The resulting resolution function was a 

four dimensional Gaussian in wavevector and frequency transfer 

centred on the wavevector and frequency Q and 0. This Gaussian 

was written by Cooper and Nathans in the matrix formalism: 

T 
R(Q, g, c, w) = R(Q, 0) exp 	

- 	 (2.4.2) 

where the (4 x 1) column vector x holds the components of g and w, 

and M is a (4 x 4) matrix containing the co-efficients generated 

in the convolution. In the paper of Cooper and Nathans (1967), 

g was given in terms of components parallel to Q, perpendicular to 

Q but within the scattering plane and vertically out of the scatt-

ering plane. It is however easy to convert to the co-ordinates g, 

g and g used in section (3) by an orthogonal transformation. In 

their original paper Cooper and Nathans (1967) did not include 

sample mosaic spread when calculating the elements of M . The 

method for including sample mosaic was given by Werner and Pynn 

(1971). The prefactor R which arises from performing the inte-

grals over the transmission functions was given explicitly in the 

paper of Chesser and Axe (1973) . 	Therefore given the standard 

deviations of the transmission functions along with the magnitudes 

of the incident and final wavevectors and the lattice constants for 

the monochromator and analyser, the resolution function can be 

calculated for any Q and c using equation (2.4.2). 

In experiments where a Bragg peak occurs in the low temperature 

phase, it is usually not necessary to employ this formalism. Since 

S(Q, ) for a Bragg peak is 	(Q - T) S(w) scanning through the 

Bragg peak should project out the resolution function for that 
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wavevector. Therefore if the deviation of Q from T is not too great 

in the scans performed,this measured resolution function may be 

considered as constant throughout the scans performed. Unfortunately 

in Rb2C0F4  there is not a magnetic Bragg peak in the low temperature 

phase and it is necessary to calculate the resolution function using 

the Cooper-Nathans expression. The difficulty with doing this lies 

in determining the standard deviations of the transmission functions. 

The situation can be simplified somewhat by noting that the vertical 

component of the resolution function decouples from the other comp-

onents in equation (2.4.2) (Cooper and Nathans (1967)). For the case 

of zero sample mosaic the standard deviation of the vertical component 

is independent of Q and in the case of a finite but small sample 

mosaic it only depends weakly on Q. The vertical component of the 

resolution function was therefore determined by lining up the spectro-

meter on the (1, 1, 0) nuclear Bragg peak and tilting the sample so 

that the Bragg peak scanned through the scattering plane. From a plot 

of intensity against the angle of tilt a value of W= 0.0219 A 1  was 

obtained. This value was assumed to remain constant throughout 

reciprocal space. 

This therefore left seven standard deviations to be determined 

for the in-plane components of the transmission functions for the 

monochromator, analyser, sample and the four collimators. This was 

done by performing longitudinal, transverse and frequency scans 

through the (0,0,4), (0,0,6) , (1,1,0), (2,2,0), (1,1,2), (1,1,4) 

and (2,2,2) nuclear Bragg reflections. These scans were fitted 

to the expression for the resolution function using a non-linear 

fitting program RESCAL, written by Dr. D. Mck. Paul, which is 

available at the I.L.L. The best fit values for the standard 

deviations using the notation of Cooper and NathanS (1967) are 
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given in table(2..4.1) for both sets of collimations. It should be noted 

that the parameters 	and 	
in table(2.4.1) were held fixed in the 

fitting procedure. This was done because it was found that a number 

of different combinations of the standard deviations could be found 

which described the scans if a and ct were allowed to vary. The 

difference in the calculated resolution function at c4, 1-, -) for 

these different combinations was small and - holding a and 	fixed 

should not therefore have greatly affected the values of the resol- 

ution functions calculated. 

In sections (2) and (3) the resolution function was treated as a 

function of wavevector only and it was assumed that the frequency 

integration of the dynamic structure factor was adequately performed 

by the frequency resolution of the spectrometer. The values for the 

resolution function R(Q, g) referred to in section (3) were values 

for R(Q, g, 0, 0) calculated from equation (2.4.2) . Below the Ne1 

temperature this is clearly the resolution function for the Bragg 

scattering since the Bragg scattering is a delta function in freq-

uency. Above the Neel temperature however, it must be justified that 

S"(Q) R(Q,g,O,O) is a good approximation to the frequency integral of 

S"(Q,w) R(Q,g,O.w). The frequency dependence of the critical 

scattering above the Neel temperature in Rb 2C0F4  has been studied by 

Hutchings et al. (1982) who found that S"(Q,w) was well described by 

the form: 

r 
'i/k T I' (q,c) 

	

S"(T+q,w) = kBT X'I] () 	
(2.4.3)

Tr 

where L was the point (--,-,0.3) on the rod and F is a characteristic 

frequency. The dependence of F on q and e was found to be: 



Table (2.4.1) 

Cooper-NathanS_Parameters 

Set  Set  

Before MonochromatOr 
- 

' 

 

(2cc 
o • 

60.0' 60.0' 

MonochromatOr - Sample (2ct 1 ) 12.2' 5.0' 

Sample - Analyser (2(x 
2 

 ) 29.9' 31.87' 

Analyser - Detector (2cL 3 ) 60.0' 40.0' 

MonochrOmatOr mosaic 2T1M 
20.2' 19.5' 

Analyser mosaic 42.9' 42.9' 

Sample mosaic (2r1 5 ) 13.07' 8.73' 

Other Parameters 

k.
3- 

= k
f 
 = 2.662A 1  

= 	= 3.353A 

Lattice Parameters 

a = 4.128 A 

c = 13.622A 
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r(,o) = 2.7rt3.6 ± 1.2)'q
1.67+0.08

q 	- 	rads. THz 	 (2.4.4a) 

1.69+0.02 

and 	r(o,c) = 27r(O.325 ± 0.013)E: - 	rads. THz 	 (2.4.4b) 

In section (3)it was noted that since above the Neel temperature 

S"((2) did not depend upon g the resolution function could be inte-

grated over g to give an effective resolution function which was given 

in equation (2.3.7). If the frequency integral of S"(Q,w) and 

R(Q, g,) ,w) is integrated over g then it is possible to write 

fdg CfdwS  (Q,w) R(Q,g,O,W) =flW c p p v v R (g )R (g )S"(Q)E(F,g) 	(2.4.5) 

where W , R (g ) and R (g ) are the same as in section (3) and it 
c pp 	v V 

has been assumed that the factor in [ ] in equation (2.4.3) is 

essentially unity over the range of w covered by the resolution 

function. The factor E(F,g) is given by the integral: 

CO 

E(r,g) 
= CO 	

exp[_ (2w2 + 2gw 	 (2.4.6) 

where it was assumed that r is essentially constant over the 

volume of the resolution function and the factors 
2  and will 

be defined shortly. Apart from the factor E(F,g) the right hand 

side of equation (2.4.5) is the same as the integral of the product 

R(Q,g,O,O) S"(Q) over g. After performing the integral over g 

R(Q,g,O,W) is the product of the vertical component and a Gaussian 

in the (g w) co-ordinates. If the parameters given in table (2.1) 

for the collimation set A are used in equation (2.4.2) then the full 

width at half maximum contour of the Gaussian in the (g,w) plane 

for Q = (i-, 	2) is shown in figure (2.4.1) . If the factor R(g) 

is extracted from this Gaussian then the remainder is the exponential 

term in the integrand of equation (2.4.6) where the factors ij 2  

and bare, with respect to figure (2.4.1), given by: 



Figure (2.4.1) 

This figure defines the notation used in 

equations (2.4.7a) and (2..4.7b). For the 

resolution function calculated for the set 

of collimatiOns P, the parameters shown in 

this figure took the values 0 = 78.11 , a = 

0.1032 and b = 0.0089, where the units are 

in mixed THZ and A 
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14)
2 = 	 ® Cos 2 
 a2 	+ 

(2..4.7a) 

and 	4) =4 Sire CosO (-- - i-) 	 (2.4.7b) 

The effect of the finite frequency resolution is therefore 

contained in the efficiency factor E(r, g). 

The integral on the right hand side of equation (2.4.6) may 

be rewritten as 

00 
-t2  

- E(F1g) = expI4() 2  I 	
e 	 dt 	 (2.4.8)  ()J 

(t - 
cPP)2 + ( pr) 2  

14) 2  

The reason for doing this is that the integral in equation (2.4.8) 

is given on page 302 of Abramowitz and Stegun (1964) in terms of the 

complex function W(z). As a result E(r,g) is given by 

E(F,g) = exPi4(T)i Re {W[(_+ i141' )//J} 	(2.4.9) 

From the properties of W(z) given in Abramowitz and Stegun it is 

easy to show that for elastic scattering or complete frequency 

integration (i.e. the limits 0 - 90 and a -3- , in that order) that 

E(F,g) = I. In general, however, E(F,g) must be evaluated numer-

ically. Calculations of E(r,g) at Q = (4 4, 2) show that for 

fixed r its value varies by less than 1% for 0 < g 
p 	p 
< 3w . Thus the 

width of the resolution function in the g p direction is unaffected 

by the frequency integration. In order to assess how efficiently 

the frequency integration is performed E(r,0) was evaluated for 

values of 1' from 0.000 to 0.092 which from equation (2.4.4b) corres-

ponds to reduced temperatures c from 0.00 to 0.16. These values of 

E(F,O) are shown in figure (2.4.2) as a function of the reduced 

temperature. For the range of reduced temperature E <0.05, where the 

quantitative results given in section (5) were determined the efficiency 



Figure (2.4.2) 

This figure shows the variation of the efficiency 

factor E(F,O) for the frequency integration of the 

spectrometer with the reduced temperature. In the 

range of reduced temperatures below 0.05 the 

efficiency factor is better than 96%. 
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of the frequency integration is very good. 

2.5 Experimental Results 

In subsection (2.3.i') two types of scan were described, one 

measured the integrated intensity between points A and B shown in 

figure (2.3.2) and the other measured the wavevector dependent 

susceptibility by scanning between the points C and D shown in fig-

ure (2.3.2) . The results derived from these scans as a function of 

temperature are presented in this section. First the methods by 

which the Nel temperature was found will be given. Then using 

this value for the Nel temperature the results for the exponent 

will be given. Following this the results for the inverse correl-

ation length found from fitting to the scans along the line C to 

D in figure (2.4.2) will be presented. After this the values 

obtained for R from the data are given. Drawing on the conclusions 

from the determination of R an analysis of the temperature depend- 

ence of the inverse correlation length will be given. Finally, 

using the conclusions drawn from the previous determination of R 

and the temperature dependence of the inverse correlation length 

the values for the exponent y extracted from the data will be 

presented. 

In figure (2.5.1a) the temperature variation of the integrated 

intensity between the points A and B in figure (2.3.2) is shown 

for the data taken with the set of collimations (A). As mentioned 
1 

in subsection (2.3.1/1'0, before integrating, each of the data points 

in the scans was corrected for the form factor of the Co + ion and 

the Sin  a term in equation (2.2.7). The values for the form factor 

were found by linearly interpolating between the values of the 

average form factor, as a function of wavevector, tabulated by 



Figure (2,5.1a) 

In this figure the integrated intensity 

between points A and B in figure (2.3.2) 

for the data taken with the set of 

collirnations A is shown as a function of 

temperature. The solid line is a guide 

to the eye. 

Figure (2.5.1b) 

The temperature derivative of the curve in 

figure (2.5.1a) is shown as a function of 

temperature. The solid line is a guide to 

the eye. 
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Watson and Freeman (1961). It is known that the temperature deriv-

ative of the measured intensity at a Bragg peak position should have 

a peak at the transition temperature (Majkrzak et al. (1980), Bruce 

(1981)). Since the integrated intensity between points A and B 

represents the equivalent of the intensity at the Bragg peak 

position its temperature derivative is shown in figure (2.5.1b) for 

the data taken with the set of collimations (A). The derivatives 

were calculated from the integrated intensities by using the forward 

and backward difference approximation. The peak in figure (2.5.1b) 

occurs at a temperature of 102.6 ± 0.1 K. An alternative method 

to find the Neel temperature is to measure the peak position of the 

critical scattering. In figure (2.5.2) the temperature dependence 

of the measured intensity at the point ( 4, 4, } is shown. Since 

below the Neel temperature the stacking of the a - b planes causes 

the Bragg scattering to be peaked at the points. (4 , 4,1), (4, 4, 2) 

etc. it is expected that the intensity at (-, 4, }) wi ll be domin-

ated by the two dimensional critical scattering. In figure (2.5.2) 

the peak in the scattering occurs at a temperature of 102.6 K. The 

residual scattering at this position for temperatures below 102 K 

11 	- 
• is Bragg scattering from the wings of the peaks at (--, -., 1) and 

4,  4, 2). The same value is found for the temperature at which 

the derivative of the integrated intensity and the critical 

scattering peak using the data taken with the set of collimationS B. 

It is therefore concluded that the Neel temperature is 102.6 ± 0.1 K. 

This value is in good agreement with those found previously of 101 K 

(Breed et al. (1969)), 103.03 ± 0.01 K (Samuelsen (1974)) and 

102.06 ± 0.12 K (Ikeda et al (1979)). 

In section (2) it was pointed out that the temperature depend-

ence of the integrated intensity would only be dominated by the (-s) 



Figure (2.5.2) 

The variation of the intensity at the point 

(, -, }) measured as a function of temperature 

is shown - in this figure. The peak in the 

intensity occurs at the Ne1 temperature. 
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term if the Bragg scattering was much greater than the intensity of 

the critical scattering integrated over the resolution function. 

From figure (2.5.2) it can be seen that the critical scattering has 

almost totally disappeared for temperatures below 102.1 K (e= 0.005) 

and that the above condition should certainly be satisfied in this 

region. Therefore in figure (2.5.3) a Log-Log plot of the integrated 

intensity for reduced temperatures C <0.005 against reduced temp-

erature-is shown for both sets of collimations. The solid lines in 

figure (2.5.3) are the best straight line fits and have X2 para-

meters 0.51 and 0.59 for the data taken with the set of collimationS 

(A) and (B) respectively. 	Then, if the integrated intensity is 

written as I'M = I(-e) 	these fits lead to the parameters I = 

29487 ± 171k 	= 0.113 ± 0.002 and I = 11132 ± 78, $ = 0.114 ± 
0 

0.002 for the data taken with the sets of collimationS A and B 

respectively. The parameter I is the product of the overall scale 

factor i introduced in section (2), a factor of v"27 W c and the 
o  

square of the critical amplitude M. The values of $ are highly 

correlated with the value of the Neel temperature. If the Neel 

temperature is varied in the range 102.5 to 102.7 K then best fit 

values of $ which were obtained are in the range 0.109 to 0.117. 

Therefore an average value of = 0.114 ± 0.004 is found where the 

error includes the effect of the error in the Neel temperature. 

This value for $ is in good agreement with values found previously 

for Rb2 C0F4  of 0.119 ± 0.008 (Samuelsen (1974)) and 0.115 ± 0.016 

(Ikeda et al (1979)) but is about 9% lower than the value for the 

d = 2 Ising model of 0.125 (Onsager (1944)). 

In figure (2.5.4) some of the scans performed along the line 

C-Dshown in figure (2.3.2) using the set of collimations A are 

shown for various temperatures. The solid lines in figure (2.5.4) 



Figure (2.5.3) 

A Log-Log plot of the integrated intensity between 

points A and B in figure (2.3.2) below the Neel 

temperature against the reduced temperature is shown 

for the, data taken with both sets of collimationS. 

The solid lines are the best straight line fits as 

explained in the text. 
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Figure (2.5.4) 

This figure shows four scans along the line 

C - D in figure (2.3.2) at temperatures above 

the Nel temperature. These scans have been 

offset by 0, 100, 200 and 300 counts for clarity. 

The solid lines are the best fits to the Ornstein-

Zernike form for the correlation function convolved 

with the resolution function as explained in the 

text. 
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were given by fitting the data to equation (2.2.14) with the Ornstein-

zernike form (equation (2.2.15a) for D+(),  using a non-linear least 

squares fitting program RB2FIT. In these fits the variable parameters 

were the inverse correlation length and a scale factor which accounted 

for the prefactors to the integral in equation (2.2.14). As pointed 

out in section (3) above the Néel temperature the resolution function 

can be reduced to an effective in-plane component perpendicular to the 

rod and a vertical component. Consequently, the convolution in equation 

(2.2.14) was only done over the vertical and effective in-plane components 

of the resolution function. The performance of the convolution in the 

computer program was greatly expedited by being able to perform the 

convolution over the vertical component analytically. This is 

explained explicitly in subsection (v) of appendix A. The convol-

ution over the in-plane component was done numerically out to plus 

or minus three standard deviations-using a mesh of 101 points. The 

variation of the standard deviation of the effective in-plane comp-

onent W. along the length of the scan from C to D was taken into 

account at each data point in the scan. 

The Ornstein-Zernike form for D +(/) provided very good fits to 

the data, the x2 values lying in the range 0.5 to 2.0, for both sets 

of collimationS. In figure (2.5.5) the values of the inverse correl-

ation lengths obtained from these fits are plotted, in reciprocal 

lattice units 2Tr 	
against temperature. The solid and dashed 

lines in figure (2.5.5) will be explained later in this section, 

when the temperature dependence of the inverse correlation length 

is described. 

Therefore given values for the inverse correlation length K at 

the same temperatures as the integrated intensities measured above 

the Néel temperature, it is possible to calculate the factors C+(K) 



Figure (2.5.5) 

This figure shows the inverse correlation lengths 

determined from the data taken with both sets of 

collimations. The values for collimation set B 

have been offset by 0,005 a* for clarity. 	The 

solid lines are the best straight line fits to 

the data for temperatures below 107 K, while the 

dotted lines are the best fits to equation (2.5.2). 
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in equation (2.3.10). The prescription for calculating R from 

equation (2.3.11) requires the comparison of integrated intensities 

at equivalent reduced temperatures above and below the Nel temp-

erature. Since the integrated intensities measured below the Nel 

temperature do not match exactly in reduced temperature with those 

measured above, it is necessary to interpolate between the inte-

grated intensities measured below the Nel temperature. This was 

	

done simply by using the formulae I = I( -c) 	and the values of 

I and reported earlier. Equation (2.3.11) holds only within the 

scaling region and therefore in order to find the limit of the 

scaling region and hence R a quantity r(c) is defined by the 

equation 
+ 

I'(L,c ) 

= 7__ 	+ 	I' (T 	
(2.5.1) 

R C (K) 	-, 

From equation (2.3.11) within the scaling region r(C) = R. Outside 

the scaling region r() is expected to fall monotonically with 

increasing E. The volume of the resolution function V  is given by 

2rrWW evaluated at the point(,4,2) as explained in subsection 

(2.3., 1,1). ii). For both sets of . 
 collimationS W =0.0144a*, while for 

set A W = 0.00575a*, and for set B W = 0.00518a*. The variation 
p 	 p 

of r(c),, calculated from the experimental data, with e is shown in 

figures (2.5.6 a - b) for the data taken with the sets of collimations 

A and B respectively. An examination of figures (2.5.6a) and (2.5.6b) 

shows that for c < 0.043 r(c) is within experimental error constant 

while for c > 0.043 r(c) falls with increasing c for both sets of 

data. The solid lines in figures (2.5.6 a - b) for C > 0.043 are 

merely guides to the eye while for e < 0.043 they represent the mean 

values of r(C) in that range. These mean values are 0.044 ± 0.004 

and 0.042 ± 0.004 for the data taken with the sets of collimations 



Figure (2.5.6a) 

This figure shows the variation of r(E) (defined 

in equation (2.5.1)) with reduced temperature for 

the data taken with the set of collimationS A. 

For reduced temperatures below 0.043 the solid 

line represents the mean value of the data points. 

At reduced temperatures above 0.043 the solid line 

is a guide to the eye. 

Figure (2.5.6b) 

This figure shows the same plot as in figure 

(2.5.6a) but for the data taken with the set 

of collimationS B. 
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A and B respectively. The x2 values for these means are 1.60 and 

0.40 respectively. These mean values therefore represent the experi-

mentally determined values of R. They are in very good agreement 

with each other but are some 18% lower than the value for the d=2 Ising 

model of 0.051 (Bruce (1981, 1982)). In section (6) some possible 

reasons for this discrepancy will be discussed. 

The change in behaviour of r(C.) atici = 0.043 indicates that the 

limit of one of the scaling regions, above or below the Nel temp-

erature, has been exceeded. An examination of figure (2.5.3) shows 

that it cannot have been the scaling region below the Nel temperature 

which was exceeded since the straight line fits would be essentially 

the same whether. the data for C < 0.043 is included or excluded. It 

is therefore concluded that the change in r(E) occurs because the 

scaling region above the Ne1 temperature has been exceeded. That 

is to say the scaling forms for the susceptibility. (equation 2.1.1b) 

and the correlation length (2.1.7)) are only expected to hold for 

C < 0.043. 

From the exact solution of the d = 2 Ising model (Onsager (1944)), 

the inverse correlation length is predicted to depend linearly on 

within the scaling region. Therefore in figure (2.5.5) the solid 

lines represent a straight line fit of the inverse correlation length 

to the form K = mT - c for temperatures T < 107 K (i.e.0 = 0.043). 

If the results of these fits are recast in the form K = K(T - TN)/TN  

then K = 0,240 ± 0.006 with T = 102.52 ± 0.03 and K 0 
= 0.259 

o 	 N  

0.009 with TN = 102.65 ± 0.03 for the data collected with the sets of 

collimations A and B respectively. The x2 values for these two 

fits are 1.09 and 0.54 respectively. It would appear that the 

values for K and T N obtained with the different sets of collimations 
o  
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are in disagreement. This discrepancy will be discussed in section 

(6) where it will be argued that it arises because of systematic 

errors. Since the d = 2 Ising model has been solved exactly, there 

exists a functional form for the inverse correlation length that is 

valid for all temperatures above the Nel temperature (Onsager (1944)) 

This functional form is 

X 	 Y 	2Y 
K = 2 (Log tCoth()J- 	 (2.5.2) 

2ir 	e 

where for the d = 2 Ising model on a square lattice X = 1 and Y = 

41 • The dashed lines in figure (2.5.5) represents fits of the 
B 	 (eb-fts 

measured inverse correlationXto the form in equation (2.5.2) with 

X and Y 
0 
 as variable parameters. The best fits were obtained with 

o  

X = 0.864 ± 0.013 and Y = 45.18 ± 0.02 for the inverse correlation 
o 	 0 

length obtained from the data taken with the set of collimations A 

and X = 0.873 ± 0.021 and Y = 45.21 ± 0.04 for that taken with 
0 	 0 

the set of collimations B. The x2 values for these fits were 0.92 

and 1.19 respectively. 

In the scaling region above the Nel temperature the integrated 

intensity I'(T,c) divided by the product VR C+(K)  has, from equation 

(2.3.9) the scaling form 1 	. The parameter 1  is the product of 

the overall scale factor, a factor of /11' w and the critical 

amplitude X . A Log-Log plot of these "corrected" integrated 

intensities against the reduced temperature, in the range 0 < c <0.043, 

is shown in figure (2.5.7). The solid lines in figure (2.5.7) are 

the best straight line fits and have X2 values of 0.70 and 0.47 for 

the data taken with the sets of collimations A and B respectively. 

The parameters obtained from these best fits were 1+ = 19872± 1922 

with y = 1.79 ± 0.06 and 1 = 6912 ± 923 with y = 1.7 7  ± 0.05 



Figure (2.5.7) 

A Log-Log plot of the integrated intensity above 

the Neel temperature divided by the product VR.C(K) 

(c.f. equation (2.3.10)) against reduced temperature 

is shown. The solid lines are the best straight 

line fits. 
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respectively. These values for y are in good agreement with each other 

and in reasonable agreement with the value of y = 1.75 from the exact 

solution of the d = 2 Ising model (Onsager (1944)). Previous experi- 

mental measurements on Rb 2CoF4  have yielded values for y of 1.34 ± 

0.22 (Samuelsen (1974)) and 1.67 ± 0.09 (Ikeda et al (1979)). 

2.6 Discussion 

There are a number of aspects of the results presented in section 

(5) which will be discussed in this section. Firstly, since it is 

more of a technical point rather than an interpretive.one, the 

discrepancy between the two sets of data for the values of K and TN 

determined from the straight line fits of inverse correlation length 

against temperature will be discussed. After this, a comparison of 

the various critical exponents and amplitudes for Rb 2C0F4  and the d = 

2 Ising model will be made. Finally, a discussion of how the meas-

ured values of R may be interpreted with respect to the hypothesis 

of Two Scale Factor Universality will be given. 

In general, in section (5) there was a high degree of consistency 

between the values of the critical exponents and amplitudes deter-

mined using the two different sets of collimations. The exception 

to this was the values determined for the amplitude K and the Nel 
0 

temperature TN from the straight line fits of the inverse correlation 

length against temperature. The values obtained from these fits were 

= 0.240 ± 0.006 and T = 102.52 ± 0.03 K and 1C = 0.259 ± 0.009 
0 	 N 	 o 

and TN = 102.65 ± 0.03 K for the data taken with the sets of colli-

mations A and B respectively. The inverse correlation lengths were 

also fitted to the functional form given in equation (2.5.2) which 

is the form given by the exact solution of the d = 2 Ising model 
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but with two variable oarameters X 
0 	 0 	 0 
and Y . The Y parameter is 

related to the Ne1 temperature through the equation TN = 

If equation (2.5.2) is expanded in powers of c 

about c = 0 then the scaling form for K can be extracted as: 

X 
K 	= 	( 1.765c)(1 - 1.129 C + 0(E 2 )) (2.6.1) 

Equation (2.6.1) therefore relates X to K through the equation 

K = 1.765 X/2Tr 	Further, equation (2.6.1) can be used to estimate 

the size of the scaling region. The value of E for a 5% deviation 

from the scaling form is 0.045 which is in good agreement with the 

scaling region found experimentally. If the best fit values of X 

and Y given in section (5) are used to calculate K and T then 
0 	 0 	 N 

the results are K = 0.243 ± 0.004 and T = 
N 	

102.52 ±. 0.05 K, and 
0  

= 0.245 ± 0.006 and T = 102.59 ± 0.09 K for the data taken with 
0 	 N 

the sets of collimations A and B respectively. These values for K + 

and TN  are in good agreement with each other and with the values 

determined from the straight line fit for the data taken with the 

set of collimations A. An explanation for the difference in the 

values determined for collimation set B can be found if there is 

assumed to be an error in the value of W p for this set of collimations. 

This error in W would cause the inverse correlation lengths deter- 
p 

mined in the fitting analysis to have a systematic error in their 

value. However, this error will be much more important the smaller 

the inverse correlation length becomes and would therefore have a 

greater effect on the straight line fit within the scaling region 

than on the fit to equation (2.5.2) which is over the whole of the 

temperature range Of the measurements. An estimate of the systematic 

error in the standard deviation W can be obtained from the magnitude 
p 

of the inverse correlation length calculated from 	. 
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K = 0.259(T - 102.65)/102.65 with T = 102.52. This value is 0.00033a* 

which is 6% of W for collimation set B. Considering the way in which 

the resolution function was determined, an error of 6% in the width of 

the resolution function does not seem unreasonable. 

Apart from the discrepancy discussed above, the temperature 

dependence of the inverse correlation length in Rb 2C0F4  is in good 

agreement with that for the d = 2 Ising model. The critical amplitude 

of the inverse correlation length in Rb 2C0F4  of 0.240 ± 0.006 is 15% 

smaller than the value of 0.281 for the d = 2 Ising model (taken from 

the tabulation of critical amplitudes by Tarko and Fisher (1975)). 

Since critical amplitudes are by themselves non-universal there is 

of course no reason to expect these values to agree. The critical 

exponents y measured for Rb 2CoF4  of 1.79 ± 0.06 and 1.77 ± 0.05 are 

in good agreement with the value of y = 1.75 for the d = 2 Ising 

model. The other critical exponent measured, had an average value 

of 0.114 ± 0.004 forb2CoF4  which is 9% smaller than the value of 

0.125 for the d = 2 Ising model. In obtaining the measured value 

of for Rb.CoF4 , it was assumed that the critical region for the 

sublattice magnetisation extended as far as E = -0.1. This can be 

justified by expanding the functional form for the magnetisation 

taken from the exact solution of the d = 2 Ising model (Onsager 

(1944)) in powers of c about C = 0. The scaling form can therefore 

be extracted as: 

M(-C) = [i - Sinh 	(_j8= 1.223(-C) 8  (10226(C) + 0(c2 )) 	(2.6.2) 

If c = 0.1 is substituted into equation (2.6.2), then the deviation 

from the scaling form would only be 3%. It is therefore unlikely 

that the difference in for Rb 2CoF4  and the d = 2 Ising model is due 
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to the data not being analysed within the scaling region. It is also 

thought unlikely that this difference could be due to extinction in 

the (4, 4, 2) peak because of the presence of the stacking faults. The 

reason for this low value of is therefore not known. Previous 

values of measured for Rb2C0F4  are 0.119 ± 0.008 (Samuelsen (1974)) 

and 0.115 ± 0.016 (Ikeda et al (1979)). There is therefore a consistent 

trend for the experimental value of for Rb2C0F4  to be lower than 

0.125. This is somewhat strange since in the isomorphous compound 

K2C0F4 , 	has been measured to be 0.123 ± 0.008 (Ikeda and Hirakawa 

(1974)) in very good agreement with the value for the d = 2 Ising 

model. Finally, a comparison of the combination of critical ampli-

tudes 	can be made between Rb2C0F4  and the d = 2 Ising model. 

The values of 	can be obtained from the ratios of I to I, 

where I and I were defined when fitting to obtain the exponents y 

and . For the data taken with the sets of collimations A and B 

respectively the values of 1/I are 0.674 ± 0.065 and 0.621 ±0.083. 

The value for the d = 2 Ising model is 	= 0.644, which was 

obtained from the tabulation of critical amplitudes given by Tarko 

and Fisher (1975). Since the value of 	is not a universal 

quantity, the agreement between the values for Rb 2C0F4  and the d = 2 

Ising model is therefore surprising. 

The values obtained for the combination of critical amplitudes 

R of 0.044 ± 0.004 and 0.042 ± 0.004 for the data taken with the 
5 

sets of collimations A and B respectively, are in very good agree-

ment with each other. Their average of 0.043 ± 0.003 is, however, 

some 16% lower than the value of 0.051 calculated from the exact 

solution of the d = 2 Ising model (Bruce (1981)). If the error 

bars on the experimental value is taken at face value, then the theor-

etical value is three standard deviations from the experimental value. 



It should be noted that the error bars indicate the effect of 

random errors only, calculated using standard statistical methods 

and do not include the possibility of systematic errors in the 

measurements. A systematic error in the values of I(o 
because of 

an error in the value used for the width of the resolution function 

has already been discussed. The effect of an error of the size 

estimated for this error in the resolution function is, however, 

not enough to bring the experimental and theoretical values into 

accord. 

It is worth noting that the experimental value of R seems to 

be smaller than the theoretical value because the experimental value 

Of K is lower than thetheoretical value of K for the d = 2 Ising 

model. Even though the value of K0  is not expected to be universal, 

recent measurements on the isomorphous. system K2, CoF4 
 by Cowley et al 

(1983a) have found a value of K = 0.279± 0.005 for this .system, 

which is very close to the theoretical value of K = 0.281 for 

the d = 2 Ising model. Therefore, for K 2C0F4  the critical exponents 

(Ikeda and Hirakawa (1974)) and the critical amplitude K are in 

good agreement with the theoretical values for the d = 2 Ising model, 

while for Rb2C0F4  the values of the exponent and the critical 

amplitude K+ are consistently lower than the theoretical values.. A 

ppssib1è explanation for this difference between these two iso-

morphous systems is the suggestion of Samuelsen (1974) that there 

might be some small amount of magneto-elastic coupling involved in 

the phase transition in Rb 2CoF4 . The effect of magneto-elastic 

coupling on the transition in Rb2C0F4  would be to make it first 

order, although the first order nature of the transition might only 

- be observable very close to the Nel temperature. This would lead 

to a value for which would be less than 0.125 but its effect on 
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the value of K is not known. 
0 

Before drawing a final conclusion on the agreement between 

the theoretical values for R and hence on the hypothesis of Two 

Scale Factor Universality., it is worth briefly reviewing the 

comparison between theory and experiment made by Stauffer et al 

(1972). This comparison was based on equation (2.1.10a) with 

experimental data taken from specific heat, light and neutron 

scattering results and theoretical values from high temperature 

series. In table (2.6.1) the values for the amplitude combin-

ation and the exponents ci. and V tabulated by Stauffer et al are 

given for d. = 3 Ising systems. Apart from CO 2 , the agreement for 

both the amplitude combination and the critical exponents is 

erratic. 

Therefore, in conclusion, notwithstanding the discrepancies 

discussed above, the value of R 
5 
= 0.043 ± 0,003 determined for 

is, to the author's knowledge, the best experimental 

evidence available for believing in the hypothesis of Two Scale 

Factor Universality. 



Table (2.6.1) 

1Q0T 1)  o. 
d= 3 Ising System 

High Temp Series 	(S.C.) 1.65 ± 0.01 0.125 0.638 

High Temp Series 	(F.C.C.) 1.65 ± 0.01 0.125 0.638 

High Temp Series 	(B.C.C.) 1.66 ± 0.01 0.125 0.638 

- brass 1.9 ± 0.3 0.159 0.65 

2.0 ± 0.5 0.080 0.58 
Xe 

1.4 ± 0.2 0.125 0.63 

CO  
4.8 ± 0.9 0.160 0.67 

FeF2 

C6H12 - CH4 O 7.1 ± 0.3 0.125 0.625  

(1)T is the combination of critical amplitudes given in 

equation (2.1.10a) divided by the Boltzmann constant kB. 



CHAPTER. THREE 

Random Fields and Three Dimensional Dilute 

AntiferromagnetS in a Magnetic Field 

3.1 	Introduction 

In the previous chapter the static critical properties of the 

phase transition in an antiferromagnet which essentially possessed 

translational invariance, were described. The general features of 

the phase transitions in simple pure (i.e. translationally invariant) 

systems is now well understood both theoretically and experimentally. 

Therefore, in recent years a great deal of effort, both theoretical 

and experimental, has been expended in studying the phase transitions 

of systems which do not possess translational invariance (i.e. 

disordered systems). 

There are two simple ways in which disorder could be intro-

duced into a magnetic system, either by making the lattice amorphous 

or by substitutional replacement of atoms in the crystal. In this 

chapter and the following two it is the effects of site (i.e. 

substitutional replacement of the magnetic ions) disorder which 

will be considered. 	The use of the term site disorder should be 

taken to imply that there is a well defined lattice, the sites of 

which are randomly occupied by one of the two species of ion. 

There are two cases of site disorder which are easily distinguished, 

the first is where the magnetic ions are replaced by non-magnetic 

ions and is known as dilution, while the second is where the two 

species are both magnetic ionsandis therefore termed a mixed 

magnetic system. This latter case can produce a drastic effect on 

the phase transition if the exchange interactions are competing, 

either in sign (ferromagfletiC/antiferr0m2gflet]) which can lead 
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to a spin-glass state (see for example Maletta (1982)) or in aniso-

tropy which can lead to a state of mixed ordering (see for example 

Aharony (1982)). The situation of random competing anisotropies 

will be considered in Chapter Five, but in this chapter it is the 

properties of dilution that are of interest. 

The effect of dilution on a three dimensional Ising system 

leads to the phase diagram shown in figure (3.1.1). For zero 

dilutant the phase transition is characterised by the critical 

exponents of the pure system. If a small amount of dilutant is 

included in the system then Harris (1974) has shown theoretically 

that a sharp phase transition with different exponents should be 

expected if the critical exponent for the specific heat of the pure 

system a .is positive. For the d = 3 Ising model a is positive and 

this new behaviour has been observed experimentally in Co Zn 1  F2  

(Cowley and Carneiro (1980)) and FexZnixF2 (Birgeneau et al (1983a)) 

In the d = 2 Ising model a = 0 and it is therefore not clear if 

there exists a sharp phase transition. However, the results of 

Ikeda (1981) for the d = 2 dilute Ising antiferromagnet Rb 2Co Mg 
1-x 
 F4 

certainly suggests that there does exist a sharp phase transition. 

The dependence of the transition temperature for a d = 3 

dilute Ising system is linear over a large range of concentrations 

as shown schematically in figure (3.1.1). However, when the 

concentration of magnetic ions has fallen to a point close to the 

concentration x this linearity breaks down and the transition 
p 

temperature falls rapidly to zero at x p .. Along the T = 0 line of 

the phase diagram all the spins will be 'frozen" in their ground 

state and the properties of the system may be mapped onto the 

percolation problem (see for example Cowley(1980)). The problem 

of whether there exists long range magnetic order along the line 



Figure (3.1.1) 

This figure shows a schematic representation 

of the phase diagram of a dilute three dimensional 

Ising magnet. The dotted line is the molecular 

field phase boundary while the solid line is the 

real phase boundary. 
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T = 0 depends on whether there exists an infinitely connected cluster 

of spins. The concentration at which such an infinite cluster 

appears, x, is known as the percolation threshold. Therefore the 

point (T = O X = Xp) 
in figure (3.1.1) is a multicritical point, 

and the behaviour close to this point is different both from the 

behaviour of the pure and dilute systems. Recent reviews of the 

behaviour close to the percolation multicritical point have been 

given by Cowley et al (1980a) on the experimental work, and 

Aharony (1983) on the theoretical work, and there now appears to 

be reasonable agreement between theory and experiment for Ising 

systems. 

The experimental work referred to above was performed on 

simple two sublattice Ising antiferrOlflagflets and it is known that 

in zero external magnetic field these systems should be in the 

same Universality classes as the equivalent Ising ferromagnetS 

(see for example Fisher and Burford (1967)). However, the appli-

cation of an external magnetic field to a disordered Ising anti-

ferromagnet has a drastic effect on the phase transition and 

ordering and it has been suggested (Fishman and Aharony (1979), 

Cardy (1983)) that the disordered Ising antjferromagflet in non-zero 

field is in the same Universality class as the random field Ising 

model (RFIM). The RFIM as proposed by Imry and Ma (1975) is a 

model of an Ising ferromagnet in a magnetic field that takes a 

random value at each site of the lattice. 

In this chapter an experimental investigation of the effect 

that a uniform external magnetic field has on the phase transition 

and ordering of the dilute antiferromagnetS Co Zn F- and x l-x 2 

'' will be described. These systems are examples' of d =  Zn xi-x 2  
dilute Ising and dilute near Heisenberg systems respectively. 
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The results of these measurements are interpreted in terms of the 

theoretical predictions for the R.F.I.M. The rest of this chapter 

is set out as follows. In section (2) a brief review will be 

given of the theoretical work on the random field models. This 

will be followed by a description in section (3) of the different 

mechanisms through which it has been suggested that random fields 

are induced in a dilute antiferromagnet by the external field. 

Section (4) contains a description of the experimental method for 

the measurements on Co Zn F and section (5) contains the 
x 1-x2 

results of these measurements. A discussion of how these results 

relate to the theoretical predictions for the R.F.I.M. will be 

given in section (6). Section (6) will also contain a comparison 

with the results of other experiments on dilute Ising antiferro-

magnets in a magnetic field. Since the experimental conditions 

for the measurements on the sample of Mn x 1-x 2 
Zn F were different 

to those for the CoZni_F2 samples, these will briefly be 

described in section (7). The results of the measurements on the 

sample of MnZni_F2 will be given in section (8) and a discussion 

of them in section (9). An overall discussion of the results for 

both systems will be given in section (10). 

Random Fields - Theoretical Background 

The idea of a ferromagnet in a random field was first introduced 

by Imry and Ma (1975) and was modelled by a Hamiltonian given by: 

= - 	Jij 	- 	—H1
. 
 —
S
1 . 	

. 	 ( 3.2.1) 

<1J> 	 - 	1 

where the magnetic field H varied randomly in direction and 

magnitude frpm site to site in the lattice. These random fields 

were drawn from a distribution function with a mean < H > = 0 1 
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and a variance < H. H. > = . .ô A 2 where c. 	x,y,Z. Imry and Ma 
1 J 	iJ, 

produced a simple domain wall argument to show that for A 0 0 the 

lower critical dimension dt for Ising systems was shifted from 1 

to 2 and for Heisenberg systems was shifted from . 2 to 4. The lower 

critical dimension is the dimension below which a system cannot 

support long range order at any temperature. This simple argument 

gives a great deal of insight into how a random field can effect 

the magnetic order and will be briefly restated here. 

Since the variance of the random fields is non-zero, within 

a local domain of volume L it is possible for the net magnetic 

field to have a non-zero value. This fluctuation in the net field 
d1 2  

would typically be of the order of L 	and would be random in 

orientation. Therefore the spins within this domain could gain a 

magnetostatic energy of the order of gSAL 	by re-orienting 

themselves along the direction of this net field. This gain in 

magnetostatic energy would be at the expense of the energy needed 

to create a domain wall with the rest of the system. Imry and Ma 

considered the situation for creating smooth (i.e. flat) domain 

walls. For an Ising system where the spins may only point up or 

down,the energy cost to create a domain wall is just pLdl, where 

d-1 
L 	is the surface area of the domain and p is the surface energy 

per unit area. In a Heisenberg system however, the spins can be 

rotated continuously and the Bloch domain wall (see for example 

Kittel (1976) p.  489) will be spread over a length of the order of 

L. Hence the energy cost to form a domain wall in a Heisenberg 

system will be pLd2. A comparison between the magnetostatic 

and domain wall energy terms shows that domains will form if a 

length scale L can be found which satisfies the inequality: 
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(2-d) /2 

	

L 	> (P/) (ISing systems) 	 (3.2.2.a) 

(4-d) /2 

	

or L 	> (P/) (Heisenberg systems) 	 (3.2.2b) 

Therefore for A infinitesimally small, but not equal to zero, it 

is possible to satisfy the inequality for the Ising system for 

dimensions d < 2 and for the Heisenberg system for d < 4. The 

inference from this is that d has been shifted from 1 to 2 for
91 

the Ising case and from 2 to 4 for the Heisenberg case by the 

presence of the random fields. It was also shown by Imry and Ma 

that if the random field were included in the Ginzburg criterion 

(Pmit (1974)) then the upper critical dimension d for both Ising 

and Heisenberg systems was shifted from 4 to 6. 

Following the work of Imry and Ma a number of authors 

(Grinstein (1976), Aharony et al (1976) and Young (1977))examifled 

the properties of the random field model in dimensions 4 < d < 6 

using perturbation theory techniques. It was shown by these authors 

that there was an equivalence between the most divergent perturbation 

theory diagramS in the presence of a random field and those of the 

televant pure system in d - 2 dimensions. This implied that the 

critical exponents for a system in the presence of random fields 

in dimensions 4 < d < 6 would be given by the critical exponents 

of the pure system in dimensions 2 < d < 4. This dimensionality 

shift was consistent with the shifts in dc for both Heisenberg 

and Ising systems and with the shift in d for the Heisenberg 

system given by the Imry and Ma argument. Its range of validity 

however, excludes determining d for the R.FI.M. The consistency 

of these results for Heisenberg systems has meant that subsequent 

to this work, nearly all the theoretical effort has been directed 

towards determining d for the R.F.I.M. 



A different derivation of this d goes to d - 2 dimensionality 

shift was given by Parisi and SourlaS (1979). These authors 

constructed a differential equation from the most divergent diagrams 

in the perturbation theory for Ising systems and then studied this 

equation using supersymilletry methods. They argued from this 

analysis that the dimensionality shift d goes to d - 2 for the 

R'.F.I.M. 	
should apply for all dimensions d. Since for the 

pure Ising model de is 1, this implies that for the R.F.I.M. 

is 3 and not 2 as given by the Imry and Ma argument, However, in 

the Imry and Ma argument, only smooth domain walls were considered. 

The effect of having rough domain walls in the R.F.I.M. was, first 

considered by Pytte et al (1981). In order to do this, Pytte et al 

constructed a Hamiltonian for the domain wall interface by extending 

the capillary wave method of Wallace and Zia (1979) to include random 

fields by using the replica trick. Then from a renormaliSatiofl 

group analysis of this Hamiltonian Pytte et al concluded that the 

roughening transition that occurs for d < 3 in the pure Ising model 

would be shifted to d < 5 for the R.F.I.M. As a result of this, 

Pytte et al showed that the roughening of the domain walls would 

shift d from 2 to 3. This result was also obtained by Binder et 

al (1981) using an argument similar to that of Imry and Ma but 

explicitly including the shift in dimensionality for the 

roughening transition. From this analysis Binder et al argued 

that the root mean square deviation (width) of the rough domain 
(5-d) '2 

wall from the smooth domain wall varied as L 	
for a domain 

of volume Ld . Therefore 
 in d = 3 the width of the domain wall is 

of the same order as the linear dimension of the domain and long 

range order is destroyed. 

An alternative derivation of the above result was given by 
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Kogon and Wallace (1981) who studied the Hamiltonian for the domain 

wall interface using the supersyrometry methods of Parisi and Sourlas. 

Apart from showing that the effect of domain wall roughening could 

raise d from 2 to 3, Kogon and Wallace also obtained a functional 

form for the correlation function of the R.F.I.M. in d = 3. This 

correlation function G(q) is the sum of a Lorentzian and a 

Lorentziafl squared and is given by 

A 	 B 
G(q) = q2  + K 2  + (q2  + K2)2 	

(3.2.3) 

where K is the inverse correlation length and A and B are amplitudes. A 

heuristic argument for the existence of the Lorentzian squared term 

comes from noting that for the pure d = 1 Ising model, the real space 

-Kr 
correlation function is a negative exponential e 	which if naively 

Fourier transformed in d = 3, because of the dimensionality shift, 

leads to the Lorentzian squared. A more precise analysis, given by 

Kogon and Wallace, shows that there exists a Lorentzian as well as 

the Lorentzian squared in G(q). 

The argument that the roughening of the domain wall shifts d f  

from 2 to 3 has, however, recently been challenged by Grinstein and 

Ma (1982). These authors use a different form for the Hamiltonian 

describing the domain wall interface in the presence of a random 

field, arguing that the form used by Pytte et al did not include 

all the relevant terms. From renormalisation group methods Grinstein 

and Ma calculate that the root mean square width of the domain wall 

(5-d) / 
varies as L 	. In this;case therefore, the roughening trans- 

ition occurs for d < 5 as was found by Pytte et al, but in d = 3 the 

1 
width only varies as L and not as L. Therefore for large values 

of L, i.e. for small values of A, the domain walls are effectively 

smooth and from the Imry and Ma argument, long range order can be 
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sustained in d = 3. In d = 2 the width of the domain wall, given by 

the GrinStein and Ma calculation, varies as L and it will not be 

possible to sustain long range order. Therefore on the basis of 

the Grinstein and Ma arguments d is 2, as originally predicted by 

Imry and Ma. The variation of the domain wall width with linear 

domain size L has recently been studied by Mackenzie (1983) in d = 

2 and 3 using Monte-Carlo techniques. The results of this study 
(5-d) / 

agree well with the form L 	predicted by Grinstein and Ma. 

The different theoretical approaches do however all agree on 

one point and that is the dependence of the inverse correlation 

length on the variance of the random field in d = d. In this 

case the inverse correlation length is given, for small A and at 

zero temperature by ytte et al (1981), Kogon and Wallace (1981), 

Grinstein and Ma (1982)). 

C 
K 	 K exp(- 	/A2) 

(d = d) (3.2.4) 

where K 
is an amplitude and C is a constant. In dimensioflalities 

0 

less than d  the inverse correlation length is expected to depend 

on A through a power law behaviour (Grinsteifl and Ma (1982)) 

whereby 

K 	= K 0 
	

2 
A, VH = d 	

(d < d) 
	 (3.2.5) 

3.3 Experimental Realisation of Random Fields 

In the previous section the R.F.I.M. was defined as a ferro- 

magnet in a magnetic field that varied randomly from site to site. 

This model clearly cannot in this form be realised in an experiment. 

However, it was pointed out by Fishman and Aharony (1979) that a 

disordered two sublattice uniaxial antiferromagnet in a uniform 



external magnetic field should be equivalent to the R.F.I.M. Fishman 

and Aharony explicitly demonstrated this for an antiferromagnet with 

random exchange interactions. This demonstration involved grouping 

the spins into cells of two spins, one from each sublattice. If 

the spins within these cells were labelled S. 1 
and S. then the 

J 

Hamiltonian could be rewritten in terms of the cell variables 

S. =  S. + S. (ferromagnetic) and S.. = S
i  - Si (antiferrOmagnet)c) 

1 	

. 

13 	J  
The Hamiltonian therefore contains terms of the form 

S S,  S S 

and S S. In zero applied magnetic field the S terms have an 

expectation value zero. However, when an external magnetic field 

is applied, a ferromagnetic moment will be induced and the S 

terms will be non-zero, but will vary throughout the sample because 

of the random exchange interactions. Since there are no critical 

fluctuations in S the S S terms in the Hamiltonian can be 

neglected. However, the effect of the S S terms in the Hamiltonian 

is to introduce a random field on the antiferromagnetic order 

parameter S. The variance of the random field in this case is 

therefore proportional to the square of the induced ferromagnetic 

moment. 

Unfortunately there do not exist any uniaxial antiferromagnets 

with only random exchange interactions. There do, however, exist a 

number of site random uniaxial antiferromagnets. In this case it 

is easy to see qualitatively that there will be a random field 

effect in an external magnetic field, but difficult to quantify 

this effect. Since the sites of the two sub lattice antiferrO' 

magnets are occupied randomly by magnetic ions with different 

magnetic moments the net moment within a local domain can fluctuate. 

This random moment will couple to the external magnetic field and 

will lead to a random field effect. In order to put this argument 
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on a quantitative level, Wong et al (1982) considered the site random 

uniaxial antiferromagnet in an external field using the same 

construction as Fishman and Aharony. As a result, Wong et al found 

two components to the random field acting on the order parameter. 

The first of these components just arises from the Zeeman inter-

action and is proportional to the applied magnetic field. The second 

component which should be much weaker than the first arises from the 

randomness in the exchange interactions induced by the site random-

ness and is proportional to the induced ferromagnetic moment. These 

two components add quadratically to give the variance of the random 

field. This result was also determined independently by Birgeneau 

et al (1983b) 

An alternative formulation of the problem of a site random 

Ising antiferromagnet in a uniform magnetic field has been given by 

Cardy (1983). This has been done by writing the Hamiltonian for the 

site random antiferromagnet in an external field in its field theoretic 

form and comparing this with the field theoretic form of the R.F.I.M. 

As a consequence, Cardy concludes that, up to terms that are irrel-

evant in the renormalisation group sense, the Hamiltonians for the 

two problems are equivalent and should be in the same Universality 

class. Further, Cardy obtained the variance of the random field 

induced by the external field in the site random antiferromagent 

as being proportional to the square of the induced ferromagnetic 

moment. This last result has, however, been questioned (Cowley 

et al (1983b)). 

In applied magnetic fields which are small compared to the 

exchange field the ferromagnetic moment would, at least approximately, 

be expected to be linearly proportional to the external field. 

Therefore all the proposed mechanisms should, in this small field 
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limit, lead to the variance of the induced random field being 

proportional to the square of the external field. 

3.4 Experimental Meth9d (1) - Co Zn1 _x!2 

As discussed in the previous section, a uniform external magnetic 

field applied to a site disordered antiferromagnet should be equivalent 

to the random field problem. The site disordered antiferromagnet for 

which measurements will be described in this and the succeeding two 

sections is CoZniF2. In the main the description of the experi- 

mental method and results will apply to measurements on a sample 

with cobalt concentration x = 35%. The measurements on this sample 

were performed by the author and Dr S.K. Satija, and the data analysis 

for these measurements was performed by the author. Where appropriate, 

reference will also be made to measurements on a sample with 26% cobalt 

performed by Professor R.A. Cowley. The rest of. this section is 

divided into two subsections, the first briefly describes the prop-

erties of C0F 2 	x l-x 2 
and Co Zn F and the second describes the arrangement 

of the spectrometer and magnet. 

3.4 	i). Properties of Co Zn F -x-2 

Both C0F2  and ZnF2  have the same rutile crystal structure 

shown in figure (3.4.1) with very similar lattice parameters 

(Wyckoff (1963)  p. 250. It is therefore possible to obtain good 

single crystals of CoZfli_F2 with a homogeneous distribution of 

Co 
2+  and Zn2+ ions. The samples used for the measurements reported 

here were grown by Dr. H.J. Guggenheim using the Czochralski method. 

Estimates of the concentration of cobalt ions for these two samples 

were obtained from their Néel temperatures. C0F 2  has a Ne1 

temperature of 38.04 K (Cowley and CarneirO (1980)) and ZnF 2  is 



Figure (3.4. 1) 

This figure shows the rutile crystal structure 

of CoF2  and indicates the orientation of the 

magnetic moments of the CO2+  ion within the unit cell. 
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non-magnetic and therefore CoZni_F2 is a dilute antiferromagnet. 

Therefore assuming that the Néel temperature is proportional to 

the number of spins in the infinite cluster, then the observed Nel 

temperatures of 13.25 K and 6.20 K imply concentrations-of 35% and 

26% cobalt respectively. In order to convert the fraction of spins 

in the infinite cluster into a concentration, the results of 

Kirkpatrick (1973) for the number of spins in the infinite cluster 

as a function of concentration on a b.c.c. lattice were used. It 

should be noted that the 26% sample-is very close to the percolation 

threshold for a b.c.c. lattice of 24.5%. 

The orientation of the Co 2+ spins in the unit cell of C0F 2  is 

shown in figure (3.4.1). In this structure the combination of the 

crystal field and spin-orbit coupling cause the ground state of the 

Co 2+ ion to be a pseudo spin s = 4 doublet (Martel et al (1968)). 

The exchange interaction within this doublet is highly anisotropic 

with a strong antiferromagnetic exchange between nearest neighbours 

and a weak ferromagnetic exchange between next nearest neighbours. 

Values for these exchange interactions have been determined from 

spin wave measurements (Cowley et al (1973)) which reveal a ratio 

of transverse to Ising exchange for nearest neighbours of 0.68. 

The critical exponents and v for CoF 2  were measured by Cowley and 

Carneiro (1980) and were found to be in very good agreement with the 

best estimates for the d = 3 Ising model. Further, Cowley and 

Carneiro measured the same critical exponents for a sample of 

Co0 85Zn0 15F2  and found these to be in good agreement with those 

for the dilute d. = 3 Ising model. 
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3.4 ii) Experimental apparatus 

The measurements reported here were performed using the 

H-7 triple axis sprectometer at Brookhaven National Laboratory. 

However, for these measurements the analyser was removed and the 

spectrometer operated in a two-axis mode.. The monochromator used 

was pyrolytic graphite and an incident neutron wavevector of 2.67 A 1  

was obtained by reflection from the (0,0,2) planes. This value of 

the incident wavevector allowed the use of two tunable pyrolytic 

graphite filters to suppress the contamination of the monochromatic 

beam by neutrons scattered from higher order planes in the mono-

chromator. One of the filters was positioned before the monochrom-

ator and the other between the sample and detector. For the 35% 

cobalt sample horizontal collimations of 10 1  .were used before the 

monochromator, in the monochromator to sample position and in the 

sample to detector position. In the measurements on the 26% sample 

20' collimations were used in these positions. A schmatic 

representation of the layout of the components of H-7 spectrometer 

is shown in figure (3.4.2). 

In both cases the samples of Co x l-x 2 Zn F were mounted with 

their (0,0,1) axes vertical in the long tail section of a 

Cryogenics Associates CT-14 flow cryostat. The cryogen used was 

liquid helium which meant that under normal conditions, temperatures 

down to 4.2 K could be attained. In order to obtain temperatures 

down to 1.85 K the bath of liquid helium was "pumped". The temp-

erature of the sample was measured using a germanium resistance 

thermometer attached to the copper block of the cryostat. 

The tail section of the cryostat was mounted inside the coils 

of a Cryogenics Associates superconducting magnet, which could 
I 

produce vertical fields in the range from 0 to 6T. From the 



Figure (3.4.2) 

A schematic representation of the layout 

of H - 7 spectrometer used for the measurements 

on the CoZni_F2 samples is shown. 
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arrangement of the coils of the magnet and the long tail section of 

the cryostat, a uniform magnetic field was produced across the 

sample. The field strength close to the sample position was 

measured by a Hall probe and this value taken as the field strength 

at the sample position. 

The reciprocal space diagram for the scattering plane is shown 

in figure (3.4.3). In this diagram Bragg peaks that are purely 

magnetic are indicated by circles, those that are purely nuclear are 

indicated by squares and those that are mixed nuclear and magnetic 

are indicated by triangles. Measurements of the magnetic structure 

factor were performed about the (1,0,0)- M 
 Bragg peak position. The 

relative positions of the incident and final wavevectors and the 

orientation of the resolution function at the (1,0,0)M position 

is also shown. The frequency width of the critical fluctuations in 

C0F was measured by Cowley et al (1973) and was found to be less 
2   

than 0.12 THz in the range from 38 K to 70 K. Therefore the freq-

uency integration performed by using the spectrometer in a two axis 

mode was very accurate and it is quite satisfactory to treat the 

resolution function for the spectrometer only in terms of its 

wavevector components. 

The component of the resolution function within the 
scattering 

plane was measured by performing a mesh of scans through the 

(11010 M Bragg peak in zero applied magnetic field. The mesh of 

scans showed that the full width at half maximum (F.W.H.M.) of the 

in-plane component of the resolution function was essentially an 

ellipse with its long axis oriented along the waveveCtor transfer. 

The F.W.H.M. of the resolution function for the 35% cobalt sample 

parallel to the wavevector transfer was 0.0090 A 1  and perpend- 

sfer was 0.0024 A 1 . Consequently icular to the wavevector tran  



Figure (3.4.3) 

A diagram of the scattering plane used for the 

measurements on the Co x 1-x 2 Zn F samples is shown. 

The purely magnetic Bragg reflections are indicated 

by circles and the purely nuclear Bragg reflections 

by squares. Bragg reflections which are mixed 

nuclear and magnetic are indicated by triangles. 

The relative orientations of the incident and 

final neutron wavevectors and the resolution 

ellipse are also shown. The diagram is not to scale. 
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the in-plane component of the resolution function was modelled as 

the product of two GauSSianS in the parallel and perpendicular 

waveveCtOr components with the F.W.H.M. given above. The vertical 

component of the resolution function was measured by tilting the 

sample on the set of calibrated arcs and measuring the intensity 

at the (1,0?0) Bragg peak position as a function of the angle of 
M  

tilt. From this it was found that the vertical component more 

closely resembled a triangle rather than a Gaussian, with a 

F.W.H.M. of 0.085A. As a consequence the vertical component of 

theresolution function was modelled as a triangle with a 

F.W.H.M. of 0.085A_ 1. 

3 • 5 Experimental Results (1) Co Zn F - 	 —x--4 -x-2 

As described in the previous section, the samples of  CoZfli_ F2 

were mounted on the spectrometer in a cryo-magnet which allowed the 

static structure factor to be measured at various temperatures and 

applied magnetic fields. The results will be described in essentially 

two parts. Firstly, a qualitative description of the behaviour when 

the magnetic field was applied will be given. This will be followed 

by a brief description of the data analysis and finally a description 

of the dependence of the parameters obtained from the data analysis 

on temperature and magnetic field. 

The various combinations of magnetic field and temperature at 

which measurements were performed were reached by cooling the 

sample from a temperature above the zero field Néel temperature 

in the desired magnetic field. This 'field cooled' method was used 

because it was found that at low temperatures the spins became 

'frozen' in a given state. That is to say that whatever the line- 

shape was at low temperature it could not be changed simply by 



-76- 

changing the magnetic field at low temperature. The inability of 

the system to respond to changes in the applied field at low temper 

ature held throughout the range of fields from 0 to 5T applied to 

the 35% sample. In the 26% sample, however, this freezing of the 

spins at low temperature only occurred for fields of less than 

1.2T. For fields greater than 1.2T in this sample the same state 

could be reached by any combination of changes in temperature and 

applied field. All the following results described in this section 

were obtained in a field cooled mode. In spin glasses where a similar 

freezing effect has been observed this is the accepted method for 

obtaining an equilibrium state. 

Implicit in the previous comments is the fact that the lineshape 

of the structure factor at the (1,0,01 M position was different with 

a field applied to that in zero field, and further that the line-

shape was different in different applied fields. In figure 

(3. 5.1) the lineshape at 2 K in fields of 3.5T and 5.OT is shown for 

the 35% sample. The lineshape in zero field at 2 K is limited by 

the resolution function, which is shown in figure (3.5.1) for 

comparison with a peak height equal to that of the 1'0'0M Bragg 

peak at 2 K in zero field. A comparison of the peak intensities 

in figure (3.5.1) shows that in 3.5T there has been a reduction by 

a factor of 6, and in 5.OT a reduction by a factor of 100 from the 

zero field value. Although the intensity scale in figure (3.5.1) 

is logarithmic it is still clear that the F.W.H.M. in 3.5T and 5.OT 

fields is considerably greater than that in zero field. Further, the 

lineshapes in 3.5T and 5.OT field have large wings of scattering 

which are significantly greater than the zero field background 

level (horizontal dashed line in figure (3.5.1)). It is therefore 

clear from figure (3.5.1) that the lineshapes at 2 K in 3.5T and 



Figure (3.5.1) 

The lineshape at the 	 Bragg position at 

2 K in fields of 3.5 T and 5.OT are shown for the 

Co0 35Zn0 65F2  sample. For clarity the 3.5T line-

shape has been offset by an order of magnitude. The 

dotted lines represent the resolution function and 

background levels. 

Figure (3.5.2) 

The lineshape at the 	 Bragg position 

at 1.85 K in fields of 0.33T, 0.84T, 1.3T and 1.7T 

are shown for the Co 0 26Zfl074F2  sample. 
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5.OT field do not represent states of long range antiferromagnetic 

order. Since the F.W.H.M. decreases with decreasing magnetic field 

it was not possible for the samileSt non-zero field applied to this 

sample of 0.8T to determine the difference in F.W.H.M. from the 

zero field value. There are, however, at this field, still sign- 

ificant wings of scattering, indicating that the state of the sample 

was not one of long range order. Therefore it is concluded that at 

all of the non-zero magnetic fields applied long range antiferro 

magnetic order was destroyed in this sample. Similar results were 

obtained for the 26% sample and a selection of lineshapeS at 1.85 K 

are shown in figure (3.5.2). Since the concentration of this sample 

is much closer to the percolation threshold, the effect for a given 

magnetic field is very much larger than in the 35% sample. 

The above description of the variation of the peak intensity 

'at 2 K with magnetic field needs to be qualified, for the 35% 

sample. In figures (3.5.3a) and (3.5.3b) the variation of the peak 

intensity as a function of magnetic field is shown for the 35% 

sample at temperatures of 2 K and 12 K and the the 26% sample at 

1.85 K and 4.5 K respectively. For the 26% sample the intensity 

falls monotonically with increasing field at both temperatures. 

This is just what one would naively expect since the induced random 

field is breaking up the long range order. For the 35% sample, 

however, the peak intensity at 2 K increases with increasing 

magnetic field for fields below 1.5T and then falls monotoni
- 

cally for fields above this value. Since at the same time the 

F.W.H.M. is increasing and wings of scattering are developing the 

integrated intensity must also increase with increasing magnetic 

field below 1.5T. In zero magnetic field the (1,0,0)M Bragg peak 

is extinction limited and the explanation for this anomalous 



Figure (3.5.3a) 

The variation of the peak intensity'at the 

position as a function of field at temperatures of 2 K 

and 12 K for the Co 0 35Zn0 65F2  sample is shown. The 

solid lines are merely guides to the eye. 

Figure (3.5.3b) 

A similar plot to that in figure (3.5..3a) is shown 

but for the Co0 26Zn0 74F2  sample at temperatures of 

1.85 K and 4,5 K. 
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increase in intensity lies in the effect the induced random field 

has on extinction. Although the sample is termed a single crystal 

it of course consists of many mosaic blocks whose individual 

crystallographic axes are closely aligned. Each of these mosaic 

blocks may be thought of as an ideal crystal and therefore has a 

small Darwin angle (see for example Bacon 1975) p. 68). The 

induced random field breaks up the mosaic blocks into domains and 

hence increases their Darwin angles, allowing them to scatter a 

greater proportion of the incident neutron beam. As a consequence, 

the integrated intensity will increase until the extinction present 

has been relieved. At 12 K where in zero field the extinction 

would be much smaller, no anomaly is seen in the variation of the 
x 

peak height with magnetic field in this sample. The same effect 

has been observed in samples of Fe x 1-x 2 
Zn F in an external magnetic 

field (Cowley et al (1983c)) and a similar effect has been observed 

in the ferromagnet Rb 2CrCL4  in a magnetic field (Fyne and 

Hutchings (1982)). 

Since there is no long range antiferromagnetic order, the 

magnetic structure factor is simply the Fourier transform of the 

correlation function. The solid lines in figures (3.5.1 ) and 

(3.5.2) represent the best fits obtained using the form for the 

correlation function proposed by Kogon and Wallace (1981) (c.f. 

equation (3.2.3)). These fits involved convolving equation 

(3.2.3) with the instrumental resolution function and then varying 

the values of the parameters A, B and < using the methods described 

in appendix A to obtain the best fit in a least squares sense. The 

fits were performed using a computer program FITIT6. The speed and 

accuracy of this program was greatly enhanced by using the 
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analytical result for the convolution of the structure factor with 

the vertical component of the resolution function. In subsection 

(v) of appendix A the analytical result for this integral is 

described explicitly. 	Equation (3.2.3) provided very good fits 

to all of the data taken in non-zero magnetic field with X 

values less than 2.5 in all cases for the 35% sample. It should 

be emphasised that at low temperatures other forms for the 

structure factor, notably a Gaussian plus LorentZiafl, did not 

provide satisfactory fits. The relative contribution of the two 

components of the structure factor of course varied with magnetic 

field and temperature. In figures (3.5.4a) and (3.5.4b) the regions 

of temperature and field over which the data could be fitted by a 

Lorentzian alone and where it needed a Lorentziafl squared as well 

are shown. The error bars join the highest temperatures for which 

a Lorentziafl squared was required in the fit and the lowest temper-

ature at which a Lorentziafl alone was sufficient for the fit. The 

dashed lines are guides to the eye through these points. If the 

state in which the structure factor was only Lorentzian is 

considered paramagnetic, then for the 26% sample it was possible 

to obtain paramagnetic states all the way down to 1.85 K with fields 

greater than 1.2T. In figure (3.5.5) the variation of the lineshape 

at the (1,0,0 M position as a function oftemperature is shown for 

the 35% sample in 3.5T field. The solid lines are fits to equation 

(3.2.3) and the data has been offset for clarity. 

In figures (3.5.6a) and (3.5.6b) the values of the inverse 

correlation lengths deduced from the fitting procedure are shown 

for the various fields and temperatures at which measurements were 

performed. The general behaviour of the inverse correlation length 

as a function of temperature is the same for each of the applied 



Figure (3.5.4a) 

This figure indicates the regions where for 

the Co0 35Zn0 65F2  sample the magnetic structure 

factor could be represented by a LorentZiafl alone 

and where it needed a Lorentzian plus LorentZian 

squared. 

Figure (3.5.4b) 

A similar plot to that in figure (3.5.4a) is 

shown but for the Co0 26Zn074F2  sample. 
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Figure (3.5.5) 

In this figure the variation of the lineshape 

at the 	 Bragg position in a field of 3.5T 

is shown as a function of temperature. The line-

shapes at different temperatures have been offset 

for clarity. At 4 K and 7 K the solid lines are 

the best fits to Lorentziafl plus Lorentziafl 

squared lineshapes while at 11 K and 12.5 K the 

solid lines represent fits to a LorentZian only. 
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Figure (3.5.6a) 

This figure shows the dependence of the 

inverse correlation length as a function of 

temperature for the various fields applied 

to the Co0 35Zn0 65F2  sample, 

Figure (3.5,6b) 

This figure shows the dependence of the 

inverse correlation length as a function of 

temperature for the various fields applied 

to the Co0 26Zn0 74F2  sample. 
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fields in the 35% sample. Initially the inverse correlation length 

falls rapidly as the temperature is reduced from the region where 

the structure factor is given by a Lorentzian only to the region 

where a Lorentzian squared appears in the structure factor. Once 

within this lower temperature region, however, the inverse corre-

lation length is essentially constant as a function of temperature. 

The low temperature results in a field of 1.5T are of course 

influenced by the extinction effect discussed earlier and these 

values are most probably larger than the 'true' values. In the 

region where the structure factor contains a Lorentzian squared 

in the 26% sample the results are similar, although the data is 

much more sparse in this sample. For fields greater than 1.2T 

where the structure factor is Lorentzian for all temperatures 

greater than 1.85 K the inverse correlation length essentially 

just falls with decreasing temperature. 

At the end of section (2) the theoretical predictions for the 

dependence of the inverse correlation length on the variance of the 

random field were given. 	It was argued at the end of section (3) 

that the variance of the induced random field was proportional to 

the square of the applied field. Therefore if d were 3 for the 

R.F.I.M.,equatiofl (3.2.4) would imply that a graph of the logarithm 

of the inverse correlation length against the reciprocal of the 

square of the applied field at a fixed low temperature would be a 

straight line. In figure (3.5.7) such a plot is shown for the 35% 

sample using the values of the inverse correlation length at 2 K. 

The data in figure (3.5.7) clearly does not fall on a straight 

line. The alternative form for the field dependence of the inverse 

correlation length given in equation (3.2.5) implies that the data 

should fall on a straight line in a Log-Log plot of inverse 



Figure (3.5.7) 

A plot of the logarithm of the inverse 

correlation length against the square of the 

reciprocal of the applied field for the 

Co0 35Zn0 65F2  sample at 2 K is shown. 
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correlation length against applied field. Such plots are shown in 

figures (3.5.8a) and (3.5.8b) for the 35% and 26% samples respect-

ively. The solid lines in these figures are the best straight line 

fits. For the 35% sample the data point at 1.5T has been omitted 

from the fit because it is affected by the presence of the extinction. 

These straight line fits give values for v   
and K (defined in 

equation (3.2.5) of v H =3.63 ± 0.12 with • K = 0.000069 ± 0.000012 

and v = H 	
2.17 ± 0.16 with K = 0.0047 ± 0.004 for the 35% and 26% 

0 

samples respectively. The x2 parameters for these fits are 2.62 

and 1.12 respectively. 

If equation (3.2.3) is to go over smoothly to a Bragg peak as the 

inverse correlation length (i.e. the induced random field) goes to zero, 

then constraints can be placed upon the field dependence of the ampli-

tudes A and B. These are that the integrated intensity in the Lorent-

zian squared term must go over to the integrated intensity of the 

Bragg peak and the Lorentzian term must go to zero. The integrated 

intensity in the Lorentzian squared term in d = 3 is ft 2  B/K ,which 

implies that in the 'small field' limit B/K is a constant. The 

Lorentzian term will be zero at zero field if the amplitude A goes 

to zero as a positive power of the field. In figures (3.5.9a) and 

(3.5.9b) the variation of the amplitude A and the ratio B/K with 

the field at 2 K are shown for the two samples. For the 35% sample 

the ratio B/K is constant within experimental error for fields 

above 2.OT. The fall in (B/K) for fields below 2.OT in this sample 

is dui to the effect of extinction, as would be expected from the 

previous discussion of the extinction effect. In figure (3.5.9a) 

the amplitude A appears to be going to zero at zero field, although 

the extinction effect will also influence the value of this 

amplitude at low fields. The behaviour of A and B/K for 

the 26% sample, shown in figure (3.5.9b) is, 



Figure (3.5.8a) 

A Log-Log plot of the inverse correlation 

length against the applied magnetic field at 2 K 

for the Co0  35Zn0 65 sample is shown. The 

solid line is the best straight line fit to the 

data omitting the data point at 1.5T. 

Figure (3.5.8b) 

This figure shows a Log-Log plot of the inverse 

correlation length against the applied magnetic field 

at 1.85 K for the Co0 26Zn074F2  sample. The solid 

line is the best straight line fit. 



FIGURE (3.5. 8o) 
0.1 

Co 0
.

35Zn065 F2 

S 

0.01 

I— 

z 
LU 
—J 

~0~ 

I-
4 
—J 
LU 
cr 
ir 
8 0.001 

LU 
(f) 
Ir 
LU 
> 
z 

0.0001 1.0 
	 2.0 	3.0 4.0 5.0 

MAGNETIC FIELD H (T) 



F I GURE ( 3. 5. 8b) 
0.1 

0.01 

0.001 

0.0001 

Co 0.26Zn074 F2 

I 	I 	I 	II 
0.2 	0.4 	1 I 2 	4 	10 

H(T) 



Figure (3.5.9a) 

The dependence of the amplitude A and the 

B 
ratio I on the applied magnetic field at a 

temperature of 2 K for the Co 0 35Zn0 65F2  sample 

is shown. 

Figure (3.5.9b) 

A similar plot to that in figure (3.5.9a) 

is shown but for the Co0 26Zn0 74F2  sample at 

1.85 K. The ratio 
B  i / n this figure has been 

K 

multiplied by a factor of 10 relative to the 

amplitude A for clarity. 
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however, quite different. There is no range of applied fields over 

which the ratio 	may be considered constant. Instead B/K  appears 

to fall monotonically and goes to zero at 1.2T, since the structure 

factor is purely Lorentziafl at higher fields. The amplitude A, as 

far as can be determined from the data, is going to zero at zero 

field. Above 1.2T the amplitude AiS, within experimental error, 

constant with increasing field. 

The temperature dependence of the ratio B,, for the 35% sample 

is shown in figure (3.5.10) for the various applied fields. Allowing 

for the effects of extinction the values of B1 for temperatures 

below 10 K appear, to within experimental error, to have collapsed 

to a single curve. Since the temperature at which the Lorentzian 

squared term vanishes varies with the applied field, above 10 K the 

values of the ratio must by necessity deviate from a single curve. 

The temperature dependence of the amplitude A of the 35% sample is 

shown in figure (3.5.11) for the various applied fields. There is 

a peak in the value of A for each of the applied fields, which shifts 

to lower temperature and becomes more rounded with increasing field. 

Again the values at 1.5T will be influenced by the effect of 

extinction. 

3.6 Discussion (1) - Co Zn F —x--1 -x---2 

From the results presented in section (5) it is quite clear that 

in neither sample of CoZni_F2 was there a state of long range anti- 

ferromagnetic order at any of the fields applied. Further to this 

the results also implied that there was not a threshold field, less 

than the fields applied, at which long range order would occur. The 

results of section (5) are therefore inconsistent with a value of 

d = 2 since this would have implied long range order at some non-zero 



Figure (3,5 1 10) 

This figure shows the ratio B/K  plotted for 

the various fields applied to the Co0 35Zn0 65F2  

sample as a function of temperature. 
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Figure (3.5.11) 

This figure shows the temperature dependence 

of the amplitude A for the various fields applied 

to the Co0 35Zn0 65F2  sample. The solid lines are 

merely guides to the eye. 
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field. The very good description of the measured structure factor 

provided by the correlation function proposed by Kogon and Wallace 

(1981) lends some support to the supersymmetry arguments of these 

authors. However, Grinstein and Mukamel (1983) have shown that 

this form can be obtained from other theories which do not predict 

= 3 and have argued that this form may well apply generally to 

systems with competing interactions. On this last point it is 

worth commenting that Rhynne (1983) has found that the magnetic 

structure factor in-amorphous TbFe 2  which is a random anisotropy 

system is well described by the Lorentziafl plus Lorentzian squared 

form. The power law dependence of the inverse correlation length 

on the applied field reported in section (5) is not consistent 

with d = 3. Therefore, if the results reported in section (5) 

are-taken at face value, they imply a value for d which is greater 

than 3. There are qualifications to this conclusion and these will 

be discussed later. However, before this a brief review of other 

measurements on dilute Ising systems in an external magnetic field 

will be given and compared to the results for CoZni_F2. 

Prior to these measurements on Co x 1-x 2 
Zn F a study of the dilute 

Ising antiferromagnet Rb 2Co0 7Mg0 3F4  was performed by Yoshizawa 

et al (1982): (see also Birgeneau et al (1983b)) using neutron 

scattering techniques. As discussed in chapter two, Rb 2C0F4  is in 

the d = 2 Ising Universality class and studies of Rb2CoM 1 _F2  

(Ikeda et al (1979), Ikeda (1981)) have shown the properties 

expected for the dilute d = 2 Ising universality class. In zero 

field the sample of Rb 2Co0 7Mg0 3F4  had a Nel temperature of 

42.5 K. The effect of the applied magnetic field destroyed the 

long range antiferromagnetic order in Rb2Co0 7Mg0 3F4  and lead 

the magnetic structure factor to have a two dimensional Lorentzian 
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plus Lorentziafl squared form. At low temperatures the spins were 

frozen as in Co x 1-x 2 Zn F and measurements were performed in the field 

cooled mode. The inverse correlation lengths at 10 K derived from 

the data analysis depended on the applied field through a power law 

dependence with an exponent u = 1.6 ± 0.1. In d = 2 the integrated 

intensity in the Lorentzian squared term is B/K 2  and a plot of the 

values of B/K 2  obtained from the analysis of the data at 10 K 

against the applied field was constant to within experimental error. 

The results found for Rb2Co0 7Mg0 3F4  in an external magnetic field 

are therefore inconsistent with d = 2. 

Following the measurements on the sample of Co Zn 1  F2  

reported in section (5), Cowley et al (1983c) have studied, using 

neutron scattering techniques another dilute d = 3 Ising antiferro-

magnet Fe Zn1  F2  in an external magnetic field. The crystallo- 

graphic and magnetic structure of FeF2  is the same as that for CoF 2 , 

as shown in figure (3.4.1). The effect of the crystal field and 

spin-orbit coupling in FeF 2  lead to the ground state of the Fe 2+ 

ion being a pseudo-spin S = 2 state. Within this lowest level the 

spin Hamiltonian is the sum of an isotropic exchange interaction 

J.. S..S. and a single ion term D(S) 2  (Hutchings et al (1970)). 

The single ion term leads to a large gap in the spin wave spectrum 

(Hutchings et al (1970)) and causes FeF 2  to have a phase transition 

in the d = 3 Ising Universality class with a Néel temperature of 

78.4 K (Hutchings et al (1972)). A recent study of a sample of 

Fe0 5Zn0 5F2  by Birgeneau et al (1983a) has shown that Fe Zn 1  F2  

is a good example of a system in the dilute d = 3 Ising Universality 

class. The samples of FeZn1_F2 used by Cowley et al had concen-

trations x = 0.35 and 0.50, with zero field Néel temperatures of 

26.7 and 42.5 K respectively. Qualitatively, the results obtained 
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by Cowley et al were very similar to those for the CoZni_ F2 

samples. Once again the spins were frozen at low temperature-and 

measurements were performed in the field cooled mode. The effect 

of the applied field destroyed the long range antiferroiflagnetic 

order and the magnetic structure factor was given by a LorentZiafl 

plus a Lorentzian squared. In both samples the extinction effect 

described for the Co0 35Zfl0 65F2  sample was observed and in the 

Fe ZnF2  this made a reliable determination of the parameters 0 5 0 5   

A, B and K very difficult. As a consequence, only the results for 

the Fe0 35Zn065F2  sample will be considered quantitatively. At 

8 K the inverse correlation lengths obtained from the data analysis 

procedure had a power law dependence on the applied field with an 

exponent vi, = 2.18 ± 0.05. The ratio B/K  was, excluding the 

effects of extinction, constant as a function of field at 8 K and 

essentially collapsed to a single curve as a function of temperature 

for the various fields applied. At low fields and temperatures the 

structure factor could be represented by a LorentZian squared and 

therefore the parameter A was identically zero at zero field. 

Qualitatively the experimental data on dilute Ising anti-

ferromagnets in an external magnetic field is therefore all very 

similar. In each case, long range antiferromagnetic order is 

destroyed by the application of the field and the magnetic structure 

factor becomes a Lorentziafl plus Lorentzian squared. Further to this 

the field dependence of the inverse correlation length is not 

onsistent with values of d = 2 or 3. The results for Co x Zn F 
c. 	 1-x2 

and Fe Zn 1  F2 , however, give differing values for the exponent 'H 

There are two aspects to the difference in the values of 

firstly the difference between the values of VH
for the 26% and 35% 

samples of Co Zn 1  F2  and secondly the difference between the values 
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of v for the 35% samples of Co Zn F and Fe Zn F 
H 	 x 1-x2 	x 1-x2 

The difference between the 26% and 35% samples of Co Zn F x 1-x 2 

is symptomatic of the general differences between the two samples. 

In the 35% sample the ratio B/K  is constant as a function of applied 

field at low temperatures, indicating that the random fields induced 

in this sample are in the small field limit. In the 26% sample the 

reverse is true, at low temperature th ratio B/K  is nowhere constant 

as a function of the applied field and goes to zero at a field of 

1.2T. This behaviour suggests the existence of a large induced 

random field in this sample. An examination of figure (3.5.8b) 

shows that of the 10 data points used to obtain v for this sample, 

8 were for fields greater than 1.OT. As a consequence the 

exponent v = 2.17 ± 0.16 found for this sample corresponds to the 

large field limit. The induction of such a large random field in the 

Co0 260 
74F2  sample can be attributed to the proximity of its concen-

tration to the percolation threshold of 24.5% for b.c.c. type 

lattices (Kirkpatrick (1973)). Indeed, it has been argued by Fhn1e 

(1983) that the application of an external magnetic field to a dilute 

antiferromagnet with a concentration at the percolation threshold 

will destroy long range antiferromagnetic order in all spatial 

dimensions. This argument is based on the large degree of ramifi-

cation of the infinite cluster at the percolation threshold. The 

structure of the infinite cluster for concentrations close to the 

percolation threshold may be considered as a network of nodes, links 

and blobs (Coniglio (1983)). On a lattice, nodes are points which 

are connected to infinity by more than two disjoint paths. The 

paths between nodes consist of blobs (clusters of spins) connected 

together by links (one dimensional chains of spins) . For concen-

trations x which are close to the percolation threshold x 
p 
 the 
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mean distance between nodes L(x) obeys a power law dependence 

L(x) a (x - x)Z where z > 0 (de Gennes (1976)). At the percolation 

threshold the distance between nodes is infinite and therefore if it 

is possible to break up a path of links and blobs into domains by 

applying a magnetic field it is possible to destroy long range 

order. This is always possible for any non-zero field since the 

"domain wall energy" is just the exchange energy required to break 

two links, i.e. two bonds. The magnetostatic energy however, arises 

from the fluctuating moments on the blobs and it is therefore 

possible since L(x) is infinite to find a length of path in which 

the fluctuation in the magnetostatic energy exceeds the energy 

needed to break two bonds. This is essentially the argument that 

would apply to a one dimensional RF.I.M. and it is the one-

dimensional character (ramification) of the infinite cluster that 

leads to this destruction of long range order. 

When the concentration x is greater than x the mean distance 

between nodes is finite and this picture must be modified. The 

"normal" picture of the effect of an induced random field is that 

it leads the system to break up into domains whose linear size L 

is given by the competition between the fluctuation of the 

magnetostatic energy within the domain and the domain wall energy. 

Therefore for x > x if the applied field leads to a domain size 

L >> L(x) then behaviour typical of a d-dimensional system is 

expected while if L << L(x) behaviour typical of that at percolation 

(i.e. one dimensional) is expected. Since x = 0.26 is close to 

this is a very appealing though not rigorous explanation for the 

behaviour of the Co 0 26Zn074F2  sample. 

The 35% samples of Co x 1-x 2 	x 1-x 2 
Zn F and Fe Zn F are however 

sufficiently far from the percolation threshold that the effect 
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described above should be unimportant. Therefore the difference 

between the values of the exponent v 11  of 3.6 ± .3 and 2.18 ± 0.05 

respectively for these two samples is very surprising. This is 

especially so since the samples have (i) the same crystallographic 

and magnetic structure in zero field, (ii) nominally the same 

concentration of magnetic ions and (iii) have been shown experi-

mentally (Cowley and Carneiro (1980), Birgeneau et al (1983a)) to 

both be good examples of a dilute d = 3 Ising system in zero field. 

It would therefore be expected that in non-zero field these two 

systems would belong to the same universality class and have the 

same critical exponent v • Since the difference between CoZni...F2 

and FeZn F lies at the level of the details of the spin Hamiltonian 
x 1-x 2 

this suggests that v depends on the details of the Hamiltonian. If 

this were so, then it would be very surprising indeed since one of 

the postulates of Universality is that the critical exponents are 

independent of the details of the Hamiltonian. 

The results reported in section (5) have so far been presented as 

contradicting the theoretical predictions for the R.F.I.M. There are 

three qualifications to this interpretation of the experimental 

results. Two of these qualifications will be discussed here while the 

third will be discussed in the concluding section of this chapter. 

The first qualification is that the experiments have been 

performed at finite temperature whereas the quantitative theor-

etical calculations for the R,F.I.M. have been performed for zero 

temperature. It is however unlikely that the experimental 

results would be significantly different at temperatures lower than 

those at which quantitative measurements were performed. The 

inverse correlation length in non-zero field is constant as a 



function of temperature at low temperatures in all of the samples of 

Rb 2 x 1-x 4 Co Mg F , x Co Zn 1-x 2 
F and Fe x  Zn 1-x 2 

F discussed and it would be 

very surprising if these low temperature values could not be extra-

polated to zero temperature. 

The second qualification concerns the freezing of the spins 

found at low temperatures in all of the samples discussed so far. 

In a recent paper Grant and Gunton (1983) have considered theoret-

ically the dynamics of the R.F.I.M. and have shown within a certain 

approximation that there is no spin freezing in the R.F.I.M. The 

spin freezing in the experiments must therefore arise from an 

effect peculiar to the experiments, rather than the R.F.I.M. This 

effect is almost certainly 'domain wall pinning' due to the 

dilutant sites. The overall scale of the domain wall energy will 

be reduced if it passes through dilutant sites. Therefore, if 

the field is changed at low temperature there is an energy barrier 

due to this pinning effect which must be overcome in order for the 

domain wall to move through the system and create a new config-

uration of the spins. The question is, therefore, whether the 

state of the system when the spin freezing sets in is typical of 

the random field state or of some transient behaviour. Aharony et 

al (1976) have given a heuristic argument to show that in the 

R.F.I.M. below the zero random field transition temperature it is 

the fluctuations in the random field that are the dominant source 

of disorder rather than the thermal fluctuations. It would there-

fore be expected that the state into which the system freezes is 

one in which the disorder on large length scales is dominated by 

the effect of the induced random field rather than some transient 

behaviour. 
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3.7 Experimental Method (2) - Mn Zn F x-1 -x-2 

In this and the following two sections the effect of applying 

an external magnetic field to a sample of the dilute near-Heisenberg 

antiferromagnet Mn x 1-x 2 
Zn F will be described. The experimental 

measurements on this sample, which had x = 0.65, were performed by 

Professor R.A. Cowley and the data analysis of the results obtained 

was performed by the author. The rest of this section is divided 

into two subsections. In the first subsection the properties of 

MnZniF2 will be described, along with a brief description of 

the results of an earlier neutron scattering experiment on a sample 

of Mn0 78Zn0 22F2  in an external magnetic field performed by 

Cowley and Buyers (1982). The second subsection will contain a 

brief description of the spectrometer arrangement which differed 

from the arrangement for Co Zn F x 1-x 2 

3.7 	i) Properties of MnZn1F2 

The crystallographic structure of MnF2  is the same rutile structure 

as for C0F2 , which was shown in figure (3.4.1). Since the Mn2+  ion has 

a 6S ground state there is no effect on the magnetic interactions from 

either the crystal field or spin-orbit coupling and the exchange is 

therefore of an isotropic Heisenberg character. There is, however, 

because of the tetragonal crystal structure, a dipolar interaction 

between the magnetic moments of the Mn2+  ions which causes them to 

align parallel to the c-axis. This dipolar interaction causes the 

phase transition in MnF 2 , which occurs at 67.5 K (Schulhof et at 

(1971)) to be in the d = 3 Ising Universality class and leads to a 

gap of 0.066 THz in the spin wave spectrum (Nikotin et al (1969)). 

For values of the concentration x away from the percolation 

threshold the spin wave spectrum (Coombs et al (1976)) and the 
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phase transition (Meyer and Dietrich (1978)) of Mn x 1-x 2 
Zn F have 

been measured. The critical properties of MnZni_F2 only cross 

over from Heisenberg to Ising behaviour close to the transition 

temperature and therefore at low temperatures Mn Zn 1  F2 iS a 

dilute near-Heisenberg antiferromagflet. The properties of MnZni_F2 

when x is close to the percolation threshold are however much more 

complicated (Cowley et al (1980b)). Since x = 0.65 is well away 

from the percolation threshold this was not a problem in these 

measurements. 

The effect of a uniaxial random field on a near-Heisenberg 

ferromagnet has been considered theoretically by Aharony (1978). 

For a random field near Heisenberg model (R.F.N.H.M.) the general 

form of the phase diagram is expected to be similar to that shown 

in figure (3.7.1) (Aharony (1978)). If the variance of the random 

field is small then the behaviour of the R.F.N.H.M. is expected to 

be the same as for the R.F.I.M. 'For larger values of the variance 

of the random field the R.F.N.H.M. unlike the R.F.I.M. undergoes a 

spin-flop transition. In this phase there will be long range 

magnetic order since the spins will essentially be perpendicular to 

the uniaxial random field which cannot therefore effect the magnetic 

order. Around the bicritical point Aharony (1978) also predicts 

the possible existence of a mixed phase of both spin-flop and 

R,F.I.M. order. 

In MnF2  the spin flop field at 4.2 K is 9.2T (Shapira and 

Foner (1970)) and therefore in Mn 0 65Zn0 35F2  it has been possible 

to observe the effect of the external magnetic field up to and 

including the spin-flop transition. A preliminary study of the 

magnetic order in the R.F.I.M. phase of Mn x 1-x 2 
Zn F in an external 

magnetic field was performed by Cowley and Buyers (1982) 



Figure (3.7.1) 

This figure shows a schematic phase diagram 

for a near Heisenberg ferromagnet in a uniaxial 

random field (After Aharony (1978)). 
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for a sample with x = 0.78, using neutron scattering methods. The 

results of this study showed properties different to those found 

for Co Zn F and Fe Zn F •  In zero field the sample of 
x 1-x2 	x 1-x2 

Mn0 78Zn0 22F2  had a Nel temperature of 48.7 K. Above the Nel. 

temperature the structure factor was found to have a Lorentzian 

lineshape, while below it consisted of a separable Bragg peak and 

Lorentziafl. The inverse correlation length had a minimum at the 

Nei temperature and the intensity of the critical scattering 

measured at (1, 0.006, 0) peaked at a temperature very close to 

the Nel temperature. This is just the sort of behaviour that 

is expected at a paràmagnetic to antiferromagnetic phase trans-

ition. The application of the 4.OT field changed this behaviour. 

Above 48.2 K the structure factor was found to be Lorentzian as 

before, but in the range from 47 to 48 K the data was only well 

described by a Lorentzian plus Lorentziafl squared structure factor. 

The inverse correlation lengths derived from fitting these forms to 

the data fell monotonically with decreasing temperatures down to 

47 K, As a consquence below 47 K the lineshape at the (1,0,0 M 

position had essentially become a resolution limited peak. There 

was, however, a significant increase in the intensity measured 

between the positions (1, ±0.004, 0) and (l,± 0.016, 0) over that 

in zero field. Further, the peak in the intensity at the position 

(1, 0.006, 0) was shifted down to 47.7 K and was five times more 

intense than in zero field. Attempts to fit the lineshape at the 

11010M position to the Lorentzian plus Lorentzian squared lineshape 

for temperatures below 47 K only produced fits with X 2 parameters 

in the range 6 to 9. 

The dependence of the structure factor and inverse correlation 

length with temperature for Mn0 78Zn0 22F2  in a 4.OT field was 
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therefore quite different to that in Co Zn F and Fe Zn F .x 1-x2 	x 1-x2 

Since the lineshape at the (1,0,0) M position was essentially 

resolution limited at low temperatures, this would seemingly imply 

that a state of long range order had been established. However, 

if there were a state of long range order at low temperature then 

the transition to this state from the paramagnetic state is quite 

different to that in zero field and is certainly not sharp. The 

existence of the wings of scattering in the range (1, ±0.004, 0) to 

(1, ±0.016, 0) suggests the alternative interpretation that long 

range order has not been established. Instead, the size of the 

domains formed is very large, too large to be resolved by the 

spectrometer, because of the higher value of x in the sample used 

by Cowley and Buyers. 

In order to investigate further the properties of the R.F.N.H.M. 

the measurements reported in this and the following two sections were 

performed. The Mn0 65Zn0 35F2  sample used in these measurements has 

a lower concentration of Mn2+ ions than the sample used by Cowley and 

Buyers. Therefore if the difference between the results of Cowley 

and Buyers and those found for Co x 1-x 2 	x 1-x 2 Zn F and Fe Zn F lies in 

the concentration then this should be observable. This sample of 

was the same as that used previously by Belanger et 

al (1982) for birefringence measurements and Yasuoka et al (1982) 

for NMR measurements. 

3.7 ii) Spectrometer arrangement 

As for the measurements on the Co x 1-x 2 	x 1-x 2 
Zn F and Fe Zn F samples 

these measurements on Mn 0 65Zn0 35F2  were performed using the H-7 

triple axis spectrometer at Brookhaven National Laboratory. Unlike 

the previous measurements however on this occasion the analyser was 

left in position. This was done in order to discriminate against 
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scattering from the spin wave modes since it is the ordering of the 

spins that is of interest. The use of the analyser does mean that 

close to and above the zero field Néel temperature it is quite probable 

that the critical scattering will not be adequately integrated over 

frequency. Further, even with the analyser present, at these temp-

eratures there will almost certainly be some scattering from the 

spin wave modes contributing to the observed intensity. However, 

since these measurements are of a more qualitative nature than 

those for Co x 1-x 2 	x 1-x 2 
Zn F and Fe Zn F this should not significantly 

alter the conclusions drawn from the results. The monochromator 

and analyser used were both pyrolytic graphite utilising the 

(0,0,2) planes. The incident neutron wavevector was 2.67 A 1  and 

therefore pyrolytic graphite filters were positioned before the 

monochromator and between the sample and analyser. Horizontal 

collimations of 10' were used, before the monochromatOr, between the 

monochromatOr and sample, and between the sample and analyser with a 

40' collimator between the analyser and detector. 

The components of the resolution function in the scattering 

plane and in the frequency co-ordinates were determined by scanning 

the1'0'0M Bragg peak in zero field. The F.W.H.M. of the resol-

ution function in these co-ordinates at the 1'0'0M position were, 

in the scattering plane 0.0024 A 1  perpendicular to and 0.0094 A- 1 

parallel to the wavevector transfer and in the frequency co-ordinates 

0.12 THz. A F.W.H.M. of 0.10 A- 1 was found for the vertical component 

of the resolution function by rocking the sample on calibrated arcs 

as described previously for CoZni_F2. 

The Mn0 65Zn0 35F2  sample was mounted with its (0,0,1) axis 

vertical in the cryo-magnet as described previously. The arrange-

ment of the magnet, cryostat and temperature sensors were as before 
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for the Co x 1-x 2 
Zn F measurements. Measurements of the magnetic 

structure factor were made, as before for the Co x 1-x 2 
Zn F samples, 

about the (1,0,0) M position using scans along the (0,1,0) reciprocal 

lattice direction. 

3.8 	Experimental Results (2) Mnx-1 _x!2 

In zero applied field the Mn 0 65Zn0 35F2  sample was found to have 

a normal paramagnetic to antiferromagnetic phase transition with a 

Nel temperature of 39.8 K. 	Above the Nel temperature the 

magnetic structure factor was a LorentZiafl and below it was a Bragg 

peak plus Lorentzian. The effect of a 4.OT field on the lineshape 

at the1'0'0M position at temperatures above and not far below the 

zero field Nel temperature is shown in figures (3.8.1a) and (3.8.1b). 

These measurements were performed in a field cooled mode. Since this 

is the same field as used by Cowley and Buyers (1982) the properties 

of these lineshapes may be compared directly with those for 

Mn0 78Zfl0 22F2 . For the lineshape shown in figure (3.8.1a) at temp-

eratures above 38.5 K the solid lines are the best fits in a least 

squares sense to a LorentZian structure factor convolved with the 

resolution function. The solid lines in figures (3.8.1a) and (3.8.1b) 

at temperatures of 38.5 K and below are the best fits with a Lorentziafl 

plus Lorentziafl squared structure factor. These fits had X para-

meters in the range 0.4 to 2.0. As in the measurements of Cowley 

and Buyers the lineshape develops smoothly from a Lorentzian to a 

Lorentziafl plus Lorentziafl squared structure factor, but with a 

F.W.H.M. that continues to narrow until at 33 K it is essentially 

equal to the resolution limit. In the measurements on the Mn 0 78Zn0 22F2  

sample by Cowley and Buyers, this resolution limit for the F.W.H.M. was 

reached at about two degrees below the zero field Ne1 temperature 



Figure (3,8.1a) 

This figure shows the lineshape at the 

Bragg position of the Mn0 65Zn0 35F2  sample in a field 

of 4.OT at the temperatures 39 K, 41 K and 43 K. The 

solid lines are the best fits to a Lorentzian structure 

factor. 

Figure (3.8.1b) 

This figure shows the lineshape at the 

Bragg position of the Mn0 65Zn0 35F2  sample in a field 

of 4.OT at the temperatures 33 K, 35 K and 37.5 K. The 

solid lines are the best fits to a Lorentzian plus 

Lorentzian squared structure factor. 
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while in this sample of Mn0 65Zn0 35F2  the limit was about six 

degrees below the Néel temperature. Even allowing for the difference 

in resolution between these measurements and those of Cowley and 

Buyers this is a significant difference in temperature range and 

clearly shows that the range of temperatures at which observable 

'random field' behaviour occurs does depend strongly on the 

concentration. Although the F.W.H.M. of the lineshape at the 

(1,0,0 M position is resolution limited at 33 K in 4.OT field 

there are significant wings of scattering to this lineshape which 

persist down to 7 K as shown in figure (3.8.2). In figure (3.8.2) 

the peak height of the resolution function is equivalent to the 

peak height of the zero field Bragg peak and the solid line repres- 

ents a fit to a Lorentziafl plus LorentZian squared structure factor. 

The method for performing this fit and the significance of the 

parameters obtained from it will be given later. 

The results in 4.OT described above were obtained in a field 

cooled mode. Since the anisotropy in MnZn1_F2 is much smaller 

than in Co x 1-x 2 	x 1-x 2 
Zn F and Fe Zn F it might be expected that spin 

freezing would be less severe because of the low lying spin waves. 

This was not however found to be the case. In figure (3.8.3) three 

scans of the (1,0,0) M lineshape at 7 K in a field of ST are shown. 

These scans correspond to three different ways of obtaining that 

combination of field and temperature, which were: field cooled, 

cooled in zero field and the field then raised to 5.OT, and, 

cooled in the spin flop phase in a field of 7.OT and the field 

then lowered to 5.OT. As can be seen from figure (3.8.3) there is a 

significant difference between the field cooled results and those 

obtained by changing the field at low temperature. Again the solid 

line through the field cooled data is the result of a fit to a 



Figure (3.8.2) 

The lineshape at the (1,0,0) M  Bragg position 

is shown for the Mn0 65Zn035F2  sample in a field 

of 4.OT at a temperature of 7.0 K. The solid line 

is the best fit to a Lorentzian squared structure 

factor and the dotted line is the resolution 

function with a peak intensity equal to the zero 

field peak intensity. 
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Figure (3.8.3) 

The lineshape at the 	 Bragg position 

at 7 K in 5.OT field for three different approaches 

to that combination of field and temperature. The 

solid line for the field coo  led data is the best fit 

to a LorentZian plus LorentZiafl squared lineshape. 
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Lorentziafl plus Lorentziafl squared structure factor. It is apparent 

that at low temperatures the spins were frozen and could not respond 

to changes in the magnetic field. 

In figures (3.8.2) and (3.8.3) the peak height of the field 

cooled results is greater than the zero field results and the results 

obtained by changing the field at low temperature. Since there are 

wings of scattering in the field cooled results this increase in 

peak height implies an increase in integrated intensity as well. In 

figure (3.8.4) the variation of the integrated intensity with field 

at 7 K is shown both for the data taken in the field cooled mode and 

that taken after varying the field at 7 K. The increase in the 

integrated intensity for fields below 5.OT can be explained by the 

extinction effect discussed for the Co0 35Zn065F2  sample. Above 

5.OT the rapid decline in the integrated intensity is attributed to 

the system being in the spin-flop phase. Apart from the decline in 

the integrated intensity there are two other indicators of a spin flop 

transition at 5.0±0.2T. Firstly, above 5.OT the (1,0,0) M lineáhape 

cannot be fitted by a Lorentziafl plus Lorentzian squared structure 

factor but can by a Bragg peak plus Lorentzian structure factor. 

Secondly, the intensity at the point (1, 0.005, 0) peaks as a 

function of field at 5.OT, as shown in figure (3.8.5) for both the 

data taken in the field cooled mode and that taken by varying the 

field at 7 K. If the random field effect is ignored then Brady-

Moreira et al (1977) have calculated that in Mn Zn 1  F2  the spin-flop 

critical field should scale with the concentration x. From the spin-

flop field of 9.2T in MnF 2  (Shapira and Foner (1970)) this would imply 

a critical field in Mn0 65Zn0 35F2  of "5.8T at zero temperature. The 

observed spin flop field is 16% lower than this value and therefore 

suggests that the spin-flop transition has been lowered by the presence 



Figure (3,8.4) 

This figure shows the integrated intensity in 

the lineshape at the (1,0,0) M 
 position at 7.5 K as 

a function of field both for data taken in the 

field cooled mode (solid line) and for the data 

taken by altering the field at 7.5 K. 

Figure (3.8.5) 

This figure shows the intensity at the point 

(1, 0.005, 0) at 7.5 K as a function of field both 

for the data taken in the field cooled mode 

(triangles) and the data taken by altering the 

field at 7.5 K (circles)..  
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of the induced random field, in a similar way to the prediction by 

Aharony (1978) that the R.F.N.H.M. would undergo a spin flop trans-

ition. A similar lowering of the spin flop field has been observed 

by Shapira and Oliveira (1983) in a sample of Mn 0 875Zfl0  125F2  using 

magnetostriction and ultrasonic attenuation measurements. Shapira 

and Oliveira have given in their paper a discussion of why the 

induced random field causes a spin flop transition at a field lower 

than that expected for an antiferromagnet. The peak in the intensity 

at the point (1, 0.005, 0) can be used to estimate the spin-flop 

field at higher temperatures and in figure (3.8.6) these peaks are 

shown at higher temperatures. The critical field for the spin-flop 

transition rises with increasing temperature and has a value of 

about 6.0T in the temperature range from 30 - 36 K. 

As mentioned previously the lineshape at the (1,0,0) M position 

in a 4.OT field, in the temperature range from 33 to 43 K, could 

be fitted using a Lorentziafl plus Lorentziafl squared form for the 

structure factor. For temperatures above and not far below the 

zero field Nel temperature this was also true for the fields 2.OT 

and 5.OT in which the lineshape was measured as a function of temp-

erature. tIn figure (3.8.7) the inverse correlation lengths deduced 

from the fits at these three fields are shown as a function of temp-

erature. The solid lines in figure (3.8.7) are merely guides for 

the eye. The shape of the curves through the data points is qual-

itatively similar to that in the good Ising systems Rb 2CoM 1 _F4  

Co x 1-x 2 
Zn F , 	

x 
Fe Zn 1-x 2 

F for temperatures above and just below their 

zero field Nel temperatures. However, in the Ising systems the 

inverse correlation length does not continue to fall with decreasing 

temperature but at a lower temperature becomes a constant as a 

function of temperature. The difficulty in determining whether this 



Figure (3.8.6) 

The intensity at the point (1, 0.005, 0) is 

shown as a function of field at various temperatures. 

The data was taken in the field cooled mode. 
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Figure (3.8,7) 

The temperature dependence of the inverse 

correlation lengths in fields of 2.OT, 4.OT and 

5.OT are shown for the temperature range from 

30 to 43 K. The solid lines are merely guides 

to the eye, 
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also happens in this sample of Mn0 65Zn0 35F2  lies in the fact that 

the inverse correlation length is becoming very small at lower temp-

eratures. This leads to two problems, firstly in performing the 

fits to the experimental scans accurately to obtain the parameters 

A, B and K and determine the goodness of fit, and secondly in 

deciding what significance to attach to these derived parameters. 

The first of these problems was overcome by noting'that in a 

certain limit the convolution of the Lorentzian plus Lorentzian 

squared structure factor with the resolution function could be done 

analytically for the wavevector components in the (1,0,0) and 

(0,0,1) directions. In subsection (vi) of appendix A the method 

for performing this convolution is given explicitly. For the scans 

in which the inverse correlation length was greater than 0.0015* 

the FITIT computer program was used to perform the data analysis. 

This was the program used to analyse the Co Zn1 F2 data, with the 

exception of the 1.5T data below 12 K in the Co0 35Zn065F2  sample, 

and it uses the convolution method given in subsection (v) of 

appendix. However, to analyse the scans in which the inverse corre-

lation length was less than 0.0015a* a new computer program SHARP 

was written, which used the convolution method given in subsection 

(vi) of appendix A. This program was also used to analyse the 1.5T 

data for temperatures below 12K in the Co 0 35Zn0 65F2  sample. 

The second problem concerns how accurately the inverse correl-

ation length obtained from the fitting analysis represents the 'true' 

inverse correlation length. The origin of this difficulty can be 

illustrated by rewriting equation (3.2.3 ) as a power series in 

(K/q) whereby 

3(q) = A + 
	 K 
 —IF

B 
- 	2B2 + 0(()) 	 (3.8.1) 
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Hence for wavevectors q > K the difference between the K = 0 form for 

K 	2 

S(q) and that for K ~ 0 is only of order ( /q) • Since in an 

experimental scan there is a limit to the step size with which one 

can scan through the (1,0,0) lineshape as- .K gets smaller so the 

number of data points significantly affected by the value of K 

gets smaller. As an example the 'worst case' shown in figure 

(3.8.7) of K = 0.000225a* for a temperature of 33 K and a field of 

4.OT will be considered. The scan through the (1,0,0) position in 

a field of 4.OT at a temperature of 33 K was shown previously in 

figure (3.8.1b). If the convolution over the resolution function 

is performed using the method given in subsection (vi) of appendix A 

then at (1, 0.004, 0) the difference in the Lorentzian squared term 

with K = 0 and K 34 0 has fallen to 5%. Therefore in the fitting 

analysis of a scan along (1, ,0) only those data points with 

II<0.004 will have a significant effect on the value of 
K. In 

the scan at 33 K in 4.OT field there were in total 41 data points 

over a range = -0.02 to 0.02 with 9 data points in the range 

I I < 0.004. The data points outwith the range JE J <0.004 because 

they are insensitive to the value of K will determine the values of 

the amplitudes A and B. Therefore in effect what the fitting program 

will do is to obtain the best fit values for the amplitudes A and B 

from the wings of the scan and then to adjust K to obtain the best 

fit to the lineshape and intensities in the centre of the scan. As 

a consequence the values of K obtained by the data analysis can be 

expected to be within a factor of perhaps 2 or 3 of the 'true' value 

for K. There is a qualification of course, because of the possible 

effects of extinction which will disproportionately affect the centre 

points of the scan because these are the most intense. An examination 



-101- 

of figure (3.8.8) which shows the temperature dependence of the peak, 

intensity suggests that extinction should not be a severe problem in 

the temperature range from 30 K upwards. 

The lineshape at the (1,0,0) position at temperatures lower than 

30 K have been fitted using the SHARP program for the data taken in 

fields of 4.0 and 5.OT. In figure (3.8.9) the values of the inverse 

correlation lengths deduced from these fits along with those deter-

mined at higher temperatures in these fields are shown. If these 

values for the inverse correlation length are taken at face value 

then qualitatively the behaviour is very similar to that for the 

Ising systems. The fits which gave these values for the inverse 

correlation lengths had x2 parameters in the range 0.3 to 1.5. It 

should be noted that at low temperature the scans fitted are expected 

to contain some degree of extinction. 

From an examination of figure (3.8.7) it can be seen that it 

would not have been possible to determine values for K at lower 

temperatures from the data taken in 2.OT field. However, even at. 

temperatures as. low as 7.0 K in 2.OT field there are significant 

wings of scattering on the peak at the (1,0,0) position.. In order 

to determine whether these wings of scattering were consistant 

with a Lorentzian plus Lorentzian squared form,another fitting 

program ABFIT was written. This program fitted the data points in 

a scan along (1, E, 0) to equation (3.2.3) with K set equal to zero 

for values of JEJ >0.006. As argued above, the dependence of the 

intensity in K for JEJ >0.006 should be insignificant. As a conseq-

uence of setting K to zero the calculated intensity depends linearly 

on the variable parameters, i.e. the amplitudes A and B, and the 

linear fitting methods given in subsection (ii) of appendix A were used. 

The convolutiri:ôf the q2fld qLf  terms with the resolution function 



Figure (3.8.8) 

The measured peak intensity at the 

Bragg position is shown for various magnetic 

fields as a function of temperature. 
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Figure (3.8.9) 

The inverse correlation lengths in fields 

of 4.OT and 5.OT are shown as a function of 

temperature in the range from 7 K to 43 K. 
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was done using the convolution method given in subsection (vi) of 

appendix A. In figure (3.8.10) the scan at 7.0 K in 2.OT field is 

shown along with the fit to the wings of the scan given by the program 

ABFIT which is given by the solid line. The x2 parameter for this 

fit was 1.28. It should be pointed out that the value of A found 

from this fit was essentially zero. An analysis of the scans in 

2.OT field using ABFIT showed that the amplitude A became zero at a 

temperature of about 32 ± 2 K. This also occurred for the data taken 

in 4.OT where the amplitude A essentially became zero at a temperature 

of about 20 K. However, for the data analysed in 5.OT field the 

amplitude A was significantly non-zero at all temperatures above 7 K. 

In the Co x 1-x 2 	x 1-x 2 
Zn F and Fe Zn F samples it was found that the 

ratio 	for various different fields and temperatures essentially 

collapsed to a single curve as a function of temperature. A plot of 

the various ratios B/ K  determined from the fits to the Lorefltziafl 

plus LorentZian squared structure factor for the Mn 0 65Zn0 35F2  

sample in the temperature range from 30 to 38.5 K is shown in figure 

(3.8.11). 	Although the spread from a single curve is somewhat 

larger in figure (3.8.11) than for the Co0 35Zfl065F2  data shown in 

figure (3.5.10) the data points do seem to indicate the existence of 

a common curve. The solid line in figure (3.8.11) is merely a guide 

to the eye. In figure (3.8.12) the variation of the amplitude A 

with temperature is shown for the applied fields of 2.OT, 4.OT and 

5.OT in the temperaturerange from 30 K to 43 K. The behaviour shown 

in figure (3.8.12) is very reminiscent of the temperature dependence 

of the amplitude A in the Co 0 35Zn0 65F2  sample. 

In figure (3.8.13) the results obtained for this sample of 

Mn0 65Zn0 35F2  are summarised in a "phase diagram" showing the 



(Figure (3.8.10) 

The lineshape at the (1,0,0) M Bragg position is 

shown at a temperature of 7.0 K in a field of 2.OT. 

The solid lines are the best fits of the wings to a 

Lorentziarl squared form with K = 0, while the 

dotted lines are the resolution function and 

background level. 
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Figure (3.8.11) 

A plot of the ratio B, is shown as a function 

of temperature for the fields 2.OT, 4.OT and 5,OT. 

The solid line is merely a guide to the eye. 
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Figure (3.8.12) 

The temperature dependence of the amplitude 

A is shown for the fields 2.OT, 4.OT and 5OT. 

The solid lines are merely guides to the eye. 
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Figure (3.8.13) 

A 'phase diagram' for the Mn0 65Zn0 35F2  sample 

is shown. The different symbols represent the 

combinations of field and temperature at which, a 

LorentZiafl squared is needed in the structure factor 

as well as a LorentZiafl (1,.), only a LorentZian 

squared is needed in the structure factor (a), 

there is a spin flop transition (0) and there is a 

transition from the paramagnetic to spin flop states 

(V). The solid lines are merely guides to the eye. 
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different regions of behaviour. The lines drawn are guides to the 

eye through those points where a change is known to take place. The 

error bars were drawn in the same way as for figure (3.5.4). No 

detailed measurements of the behaviour around, or the position of, 

the bicritical point were made and the lines drawn in this region 

are merely extensions of the other lines. 

3.9 Discussion (2) - Mn Zn F -x-1 -x--2 

A comparison of the results reported in section (8) 	with 

those obtained by Cowley and Buyers (1982) shows a similar qualit-

ative behaviour at temperatures around the zero field Néel temp-

erature. The effects observed in this sample of Mn0 65Zn0 35F2  

are significantly bigger than those observed by Cowley. and Buyers 

in a Mn0 78 Zn0 22F2  sample in the same applied field. In the 

Mn0 65Zn0 35F2  sample there is evidence to suggest that long range 

order is not established in any of the non-zero fields applied for 

temperatures above 7 K. This evidence comes from two sources. 

Firstly, the relief of extinction as a function of applied field 

observed in the integrated intensity for the (1,0,0) lineshape at 

7 K. Secondly, the wings of scattering found at low temperatures 

in non-zero field are consistent with a Lorentzian plus Lorentzian 

squared structure factor. However, the correlation length at these 

low temperatures is very large, of the order of at least 1000 

lattice spacings. The qualitative similarity between these results 

and those of Cowley and Buyers suggests that this was also the case 

in their measurements on Mn 0 78Zn0 22F2 . The poor fits to the 

Lorentzian plus Lorentzian squared structure factor at low temp-

eratures obtained by these authors being attributable to extinction 



-104- 

effects and difficulty in accurately performing the convolution 

with the resolution function. 

The results of section (8) for fields of 5.OT and less are also 

qualitatively similar to those obtained for the Ising.systems 

Co x 1-x 2 	x 1-x 2 
Zn F and Fe Zn F . These similarities are apart from the 

Lorentzian plus Lorentzian squared structure factor, the temperature 

B 
dependence of the ratio I and the amplitude A and the effect of the 

spin freezing. The temperature dependence of the inverse correl-

ation length also has a similar shape to that in the Ising systems. 

The difference with the Ising systems is one of the magnitude of 

the inverse correlation length at low temperatures. In the sample 

of Fe0 5Zn0 5F2  studied by Cowley et al (1983c) the inverse correl-

ation length at 10 K in 5.5 T field was 0.0015a* while forMn0 65 

Zn0 35F2  it was 0.0005a* in 5.OT field at 7.5 K. This is a 

surprising result since the Mn ion has a moment that is 25% larger 

than that of the Fe2+ ion and an exchange JS 2  which is 14% lower. 

It is most unlikely that the magnitude of the inverse correlation 

length would depend so strongly on the difference in concentration 

in this region. 

As mentioned in section (7.i) this sample of Mn 0 65Zn0 35F2  

has been used previously by Belanger et al (1982) and Yasuoka et al 

(1982) for the measurement in an applied field of the birefringence 

and NMR relaxation time respectively. The results of these authors 

will be briefly described and their significance discussed. As 

discussed by Gehring (1977) the birefringence 6n of an Ising magnet 

is related to a two site correlation function by Sn c.Z g. 
1J 

< ? S z > where g.. is a short range coupling term. The birefringence 

is therefore similar to the internal energy U = I. J. < S SZ> 13 1] 	1 J 
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when J.. is of short range and it is believed that the temperature 

derivative of the birefringence follows the specific heat capacity. 

Belanger et al measured the birefringence in the sample of Mn 	Zn 0.350.65 

for temperatures around the zero field Néel temperature and in 

magnetic fields of 2.OT and less. The temperature derivatives of 

the measured birefringence showed sharp peaks as a function of 

temperature in these fields. Accordingly these authors interpreted 

this as a transition from paramagnetic to long range antiferrO-

magnetic order. The position of these peaks shifted to lower temp-

erature with increasing magnetic field. Assuming these peaks 

indicated the Nel temperature in non-zero field Belanger et al 

fitted their data to the form 

TN (H )  = TN(H = 0) - bH2 - aH21 
	 (3.9.1) 

Equation (3.9.1) was proposed by Fishman and Aharony (1979) for the 

reduction of the Nel temperature in a dilute antiferrotnagnet by 

induced random fields. The exponent is a crossover exponent which 

Fishman and Aharony argued should be equal to the susceptibility 

exponent, which for a d = 3 Ising system is 1.25. From their data 

analysis Belanger et al found a value for of 1.4 ± 0.1, in fair 

agreement with the prediction of Fishman and Aharony. 

Yasuoka et al (1982) measured the NMR relaxation time of 19F 

ions-with no magnetic neighbours in this sample for temperatures 

around the zero field Ne1 temperature and applied fields of less 

than 2.3T. The N4R relaxation time is related to the dipolar field 

at the 19F ion sites due to the surrounding magnetic ions. This 

dipolar field will be proportional to the average of the sublattice 

magnetisation over the range of the dipolar interactions. From their 

NMR relaxation time measurements Yasuoka et al were able to determine 
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the temperatures at which there was a spontaneous magnetisation as a 

function of field. Again, this was interpreted asa phase transition 

from paramagnetic to long range antiferromagnetic order and these 

authors fitted their data to equation (3.9.1) to obtain an exponent 

= 1.38 ± 0.20. 

However, in an antiferromagnet. such as MnxZni_xF2 the dipole 

sum converges rapidly because of the alternating two sublattice 

structure and therefore the dipole field experienced by the 19 

nucleus is only related to the average sublattice magnetisation 

within a short range from that site. This was also true for the 

birefringence measurements which will only measure the spin-spin 

correlation function between nearest or perhaps also next nearest 

neighbours. The domains induced in the small fields applied by 

Belanger et al and Yasuoka et al will be large in size, very much 

larger than the range of correlations over which these measurements 

are sensitive. As a consequence these measurements do not indicate 

a phase transition from paramagnetic to antiferromagnetic long range 

order but instead measure the properties of the spins within the 

large domains formed by the induced random field. As a consequence 

these measurements indicate the temperatures at which there is a 

change from behaviour dominated by thermal fluctuations to that 

dominated by random field fluctuations. 

3.10 Overall Discussion 

A comprehensive comparison of the experimental results for the 

properties of dilute antiferrotnagnets in an external magnetic field 

and the theoretical predictions for the R.F,I.N. and R.F.N.H.M. were 

given in sections (6) and (9). This section will not repeat the 

previous two sections but instead will discuss the outstanding 
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qualification to the experimental results from section (3) and will 

then conclude with a brief discussion of possible future experiments 

and theories to elucidate further on the current knowledge. 

The final qualification to the experimental results is a some-

what fundamental qualification to the interpretation of the results. 

This qualification is that of whether the dilute antiferrornagnet in 

an external magnetic field is in the same Universality - class as 

the random field problem. Although the different mechanisms 

discussed in section (3) all gave rise to induced random fields, the 

HainiltonianS they lead to are not exactly the same as that for the 

random field model originally proposed by Imry and Ma (1975) 

There are two differences between the dilute antiferrornagnet in a 

field and the R,F.I.M. The first is the presence of the randomness 

in the exchange part of the Hamiltonian due to the dilution and 

the second is the existence of short range correlations between the 

induced random. fields. This last point by itself should not be 

important since short range correlations amongst the random fields 

are known not to change the behaviour of the R.FI.M. (Aharony et al 

(1976)). However since the random fields are induced because of the 

dilution,there .is a correlation between the distribution of induced 

random fields and the distribution of exchange interactions. This 

correlation may remove the dilute antiferromagnet in a field from 

the same Universality class as the random field problem (Imry (1983)) 

The full extent of such a correlation is not known at this time. 

Future work, both experimental and theoretical should, therefore, 

be aimed firstly at resolving this last qualification. It is well 

recognised that the problem of a dilute antiferromagnet in an 

external magnetic field is a difficult theoretical problem. However, 

a useful theoretical study would be to consider the effect of 
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dilution on the R.F.I.M. itself. Apart from the question of the lower 

critical dimension for such a system, it would be interesting to know 

whether the effect of domain wall pinning occurs and if the spins 

become frozen at low temperatures. Experimentally the objective 

should be to move in the opposite direction and remove the effect 

of dilution from the systems studied. This can be done by studying 

mixed antiferromagnets with differing magnetic moments. Although 

this would still leave a correlation between the distributions of 

the induced random fields and the exchange interactions, this 

effect should be much smaller. Further to this any effect from 

domain wall pinning should also be much smaller. 

As a final conclusion, whether the dilute antiferromagnet in 

an external magnetic field is in the same Universality class as the 

random field problem or not, the effect of the magnetic field on 

the phase transition and ordering is drastic. it destroys long 

range antiferromagnetic order in both d = 2 and 3 and leads to a 

completely new state of order. 
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CHAPTER FOUR 

Spin Waves in Diluted and Mixed FeCL.2  

4.1 	Introduction 

Whereas the previous two chapters have been on the phase trans-

itions and ordering of magnetic systems, this chapter and the next 

will be concerned with the low temperature spin-wave excitation 

spectra of disordered magnets. A spin wave is the linear excitation 

of a magnet from its groundstate .to a state in which the total 

angular momentum has been reduced by h. In pure ferromagnets with 

simple interactions the methods for calculating the spectrum of 

spin wave energies is well known (see for example Ziman (1971) p. 

366). The situation for antiferromagnetS is more complicated 

because of problems in determining the quantum mechanical ground 

state (see for example Keffer (1966) p. 113). However, for anti-

ferromagnets in which the magnetic interactions are of a simple form 

there is good agreement between experimental measurements of the spin 

wave spectrum (for references to many of these systems see the 

review of Cowley (1982)) and calculations using simple spin wave 

theory (see for example Ziman (1971) p.  3721. These methods for 

calculating the excitation spectrum in pure systems all utilise the 

translational invariance of the system to diagonalise the Hamiltonian 

via a Fourier transform of the spatial co-ordinates. In a site 

disordered magnet, however, the translational invariance is broken 

and, consequently, the calculation of the spin wave excitations is 

a much harder problem than for pure systems. 

In the last fifteen years a great deal of work has been done 

in developing techniques to calculate the excitation spectra of 
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disordered systems. The simplest approximation that can be applied 

in an effort to calculate the spin wave spectrum of a disordered 

magnet is the Virtual Crystal Approximation (V.C.A.) (see for example 

Ziman (1979) p. 325). In this approximation the Hamiltonian is 

written as the sum of an average Hamiltonian, which is translation-

ally invariant (i.e. a virtual crystal) plus a perturbation term 

which includes the fluctuations from the average Hamiltonian. The 

V.C.A. ignores the effect of the perturbation term and calculates 

the excitation spectra of the average Hamiltonian. Since this is 

translationally invariant the Hamiltonian can be diagonalised by a 

Fourier transformation and the spin waves are eigenstates of the 

wavevector but with energies shifted by the disorder. In practice 

the V.C.A. is almost never valid and the perturbation term must be 

included. Therefore, in order to go beyond the V.C.A. by analy-

tical techniques it is necessary, to evaluate the perturbation series 

arising from the perturbation term. The techniques developed so far 

have only been able to sum certain classes of term in the perturb-' 

ation series and therefore have had varying degrees of success. The 

most successful analytical method is the Coherent Potential Approx-

imation (C.P.A.) (a review of the development from the V.C.A. to 

C.P.A. is included in the article by Elliott (1982)). The C.P.A. 

has been applied to magnetic systems by a;  number of authors (Coombs 

and Cowley (1975), Buyers et al (1972), Tonegawa ,(1974)) and has 

been successful for cases of weak disorder. However, for strong 

disorder the C.P.A. has not provided a good description of the spin 

wave spectrum. A review of the successes and limitations of the 

C.P.A. applied to magnetic systems is included in the article by 

Cowley (1982). Therefore, in recent years computer simul- 

ation. techniques has been developed to calculate the spin wave 
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spectrum of highly disordered magnets. There are two basic methods 

for carrying out these simulations, one due to Kirkpatrick and Harris 

(1975) and the other due to Alben and Thorpe (1975). In both of these 

methods a finite, but large, model of a disordered magnet is constructed 

within the computer and the equations of motion for the Greens functions 

(see for example Elliott (1982)) describing the motion of the spins on 

the lattice solved numerically. The spin wave spectrum of this model 

is then taken to be a good approximation to the spectrum of an 

infinite system. The two methods differ in the way in which the 

equations of motion are solved. 

In the Kirkpatrick and Harris method the temporal°FoUrier trans-

form of the differential equations of motion for .the real space 

Greens function is taken, which transforms the equations of motion 

into a set of linear simultaneous equations. Kirkpatrick and Harris 

demonstrated that for a fixed frequency w these simultaneous equat-

ions could be solved efficiently using specialised algorithms. It 

should be noted that for a lattice of N sites there are N 2  simult-

aneous equations. The solution of these equations are the real 

space Greens functions at a given frequency. The imaginary part of 

the spatial Fourier transform of these Greens functions for various 

wavevectorS is equivalent to a section through the dynamic structure 

factor S(Q) (Marshall and Lovesey (1971)  p. 241) at fixed w. In 

other words the results of such calculations simulate a constant E 

scan in a triple axis neutron scattering experiment. 

The method of Alben and Thorpe (1975) however, effectively 

reverses the order of these operations. There are N2  linear differ-

ential equations for the real space Greens function in the time 

domain. The number of these equations is reduced to N by performing 
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a one sided spatial Fourier transform and the resulting differential 

equations are then solved by a numerical integration scheme. This 

integration results in the partially Fourier transformed Greens 

functions as a function of time. If the spatial Fourier transform 

is then completed the result is the time dependence of the Greens 

function for a particular wavevector. The temporal Fourier trans-

form of this Greens function for various frequencies, therefore, 

leads to a section through S(q, w) for fixed q and varying w. In 

other words, this method simulates a constant Q scan in a triple 

axis neutron scattering experiment. This method is usually referred 

to in the literature as the 'Equation of Motion' (E.O.M.) method. 

Since for most disordered magnetic insulators inelastic 

neutron scattering measurements are performed in the constant Q 

mode the E.O.M. method has been used by a number of authors for 

comparisons with neutron scattering experiments. This comparison 

has so far been for antiferromagfletS rather than for ferromagnets. 

In the paper of Thorpe and Alben (1976) a comparison between the 

spectra calculated for the mixed two dimensional antiferromagnet 

Rb2Mn0 5Ni0 5F4  was made with the measurements of Als-Nielsen et al 

(1975). This comparison between simulation and experiment was very 

favourable with the simulations reproducing the frequencies and 

features of the experimentally measured lineshapes very well. A 

comparison between E.O.M. method simulations and inelastic neutron 

scattering measurements was made by Cowley et al (1977) for the 

dilute two dimensional antiferromagnet Rb 2Mn054Mg046F4 . This is 

a case of very strong disorder since the concentration of Mn ions 

is less than the percolation threshold for a d = 2 square lattice. 

The simulation technique however, produced very good agreement with 

the experimental measurements, very much better than the results of 
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C.P.A. calculations. In another paper, Cowley et al (1980d) have 

compared the results of E.O.M. simulations for the two dimensional 

dilute antiferromagnet Rb2Co0 59Mg0 42F4  with experimental measure-

ments. Although not as good as the agreement for Rb 2Mn054Mg046F4  

there was' still good agreement between simulation and experiment. 

The E.O.M. method has also been used by Alben et al (1977) for 

calculations of the spin wave spectra of mixed and diluted three 

dimensional ferrornagnetS. Since there are very few three dimensiona'-

ferromagnetic insulators these calculations have'not, to the author's 

knowledge, been compared with experimental measurements. 

However, the results of the calculations for the two dimensional 

antiferromagnetS have been questioned by Halley and Holcomb (1978). 

In the calculations quoted above for the two dimensional antiferro-

magnets the assumed ground state was the Nel state. Halley and 

Holcomb tested the self consistency of this assumption within the 

E.O.M. framework for the Rb 2 x 1-x '4 Mn Mg F case.. Halley and Holcomb drew 

two conclusions from this study. The first was that a linearised 

Greens function technique would not adequately calculate the excitation 

spectrum of small clusters of spins. This was a point that had been 

noted previously by Cowley and Buyers (1972). The second point made 

by Halley and Holcomb was that close to the percolation threshold 

there is a large effect in dilute antiferromagnetS due to zero point 

motion which is not correctly accounted for in the E.O.M. method. 

In this chapter and the next the results of E.O.M. method 

simulations for the diluted and mixed compounds of FeC.e 2  are presented. 

FeC.e.2  is a layered antiferromagnet but has a low temperature spin wave 

spectrum which can be treated as that of an anisotropic two-dimensional 

ferromagnet. The simulations presented have been performed assuming 

that the low temperature spin wave spectrum of diluted and mixed 
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FeC.2 
 is well approximated by the spin wave spectrum of a two-

dimensional anisotrOpiC ferromagflet. As a consequence the second 

point made by Halley and Holcomb is not applicable to these simulations. 

In the dilute study the first point made by Halley and Holcomb was 

taken into account by removing all of the small clusters from the 

simulation. 

The calculations presented in this chapter are for dilute FeCL- 2  

e.g. FeMg 1 _CL 2  and for FeC..2  mixed with MnC.e
2 . In the next chapter 

the case of FeCt.2  mixed with CoCL 2  will be considered. The rest of 

this chapter is set out as follows. Section (2) contains a description 

of the magnetic properties of FeCL. 2 . The E.O.M. method for calcul-

ating the dynamic structure factor &-(q, w) is described in section 

(3) and its implementation for FeC.L 2  in section (4). The results 

for FeMgi_xCL2 are presented and discussed in section (5) . In 

section (6) results for FeMflj_xCL.2 are presented and compared with 

the inelastic neutron scattering measurements of Bertrand et al (1981) 

4.2 Properties of Fec 2  

The crystallographic structure of FeC..
2  is of the rhonthohedral 

cdce type (Wyckoff (1963) p. 272) and the primitive unit cell is 2   

shown in figure (4.2.1). However, it is usual to consider FeC.e2  in 

terms of a hexagonal set of crystallographic axes. The structure 

shown in figure (4.2.1) can be generated by an ABCAB 	
stacking 

of hexagonal planes of Fe 2+ ions with cL. ions at relative positions 

±(0,0,u) where u = 0.25. FeC. 2  is an antiferromagnet and has a N6-el 

temperature of 23.6 K (Yelon and Birgeneau (1972)). The magnetic 

moments of the Fe 2+ ions order parallel to the c-axis in ferro- 

magnetic sheets alternately stacked along the c-axis (Wilkinson et al 



Figure (4.2,1) 

This figure shows the crystal structure of 

FeCL 2 . The cell indicated is the rhombohedral 

primitive unit cell, 
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(1959)). As a consequence the magnetic unit cell is double the length 

of the nuclear unit cell along the c-axis. From now on all reference 

to unit cell and reciprocal space co-ordinates will be with respect 

to this magnetic unit cell. The cell has lattice parameters a = 

3.583 A and c = 34.89 A at 2k-K (BirgeneaU et al (1972)). The structure 

factor rules for the allowed Bragg peaks for this cell are: 

h - k+ 	= 3n 	 (nuclear) 	 (4.2.1a) 

- h + k + £ = 3n and £ odd (magnetic) 	
(4.2.1b) 

where n is an integer and (h,k,L.) are the hexagonal reciprocal space 

co-ordinates. In figure (4.2.2) the reciprocal space diagram of the 

k = 0 plane is shown with a magnetic BrillOuin zone indicated. 

The Fe free ion has a 	ground state. In FeCL.
2  the crystal 

field su
rrounding the Fe 2+ ion can be decomposed into a cubic field 

5  
plus a trigonal distortion. The strong cubic field splits the D 

level and makes the ground state a 5T g  orbital triplet. This triplet 

can be treated as an effective £ = 1 level (BirgeneaU et al (1972)) 

i.e. a 5 P state. Then acting on this state is the trigonal crystal 

field and the spin orbit coupling which may be written as: 

	

= 6 [z2 - 	- X £.s 	 (4.2.2) 
3 .1 

where 6 and X are the phenomenological parameters for the trigonal 

crystal field an&spin orbit coupling respectively. Values for 6 

and A have been determined by Alben (1969) and are: 

6 =-88 cm. 1, 	X=67 cm-  1 	 (4.2.3) 

The splitting of the 5 P level by these two terms has been evaluated 

be calculating the matrix elements of equation (4.2.2) within the 15 

states and diagon
alising the resulting (15 x 15) matrix. In figure 

(4.2.3) the resulting energy level picture is shown along with the 

wavefunctions for the three lowest levels. It is the excitation 



Figure (4.2.2) 

The reciprocal space diagram a* - c* plane of 

FeCe.2  is shown. Magnetic Bragg peaks are indicated 

by triangles and nuclear and magnetic Bragg peaks 

are indicated by circles. A magnetic Brillouifl 

zone is shown about the (1,0,7) Bragg peak. 
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Figure (4.2.3) 

2+ i 
The various single ion levels of an Fe 	on 

in FeCL.2  are shown. The diagram is not to scale 

and nor is necessarily the level with respect to 

the 5 P level correct. Also shown are the wave-

functions for the three lowest levels. 
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spectrum of FeCe 2  within these levels that is of interest in this 

chapter and the next. These three levels may be approximated as a 

pseudo spin s = 1 level (Birgeneau et al (1972)). From the wave-

functions given in figure (4.2.3) the various proportionality factors 

(cf equation (1.2.2)) are calculated to be 

= 	1.672 	- •' - 	1.403 	 (4.2.4a) 

	

S 	 S 

= - 0,673 	, 	= - 0.398 	 (4.2.4b) 

gZ = 	4.02 	, g = 	3.20 	 (4.2.4c) 

For this chapter and most of the next chapter it will be 

assumed that FeC. 2  has an isotropic exchange interaction between 

- 	the real spins of the Fe 2+ ions. Then from the above description 

of the lowest three levels the Hamiltonian within these levels, 

including exchange, may be written as 

=-E D. 	
13 

(s)2-E 	 (4.2.5) 

	

1 1 	 1J 1 J 	13 1 3 	1 3 

where the pseudo spin operators have been written as small S's. 

The spin wave spectrum of FeCL 2  in the (h,0,0) direction has been 

measured by Birgeneau et al (1972) and fitted in terms of the 

Hamiltonian given in equation (4.2.5). In table (4.2.1) the values 

of the exchange interactions and the single ion anisotropy energy 

given by 2D(s - 4, determined by Birgeneau et al are given. The 
exchange between nearest neighbour Fe2+ spins within the a-b plane 

is strong and ferromagnetic while that between next nearest neighbour 

spins, both interplanar and intraplanar, is weak and antiferromagnetic. 

Birgeneau et al observed no measurable dispersion along the (0,0,L) 

direction and the spin wave spectrum therefore strongly resembled 

that of an anisotropic two dimensional ferromagnet. Although the 



Table (4.2.1) 

Exchange Interactions for FeC.e 2  

In-plane (n.n.) 21i = 0.97 meV, 2J 1  = 0.68 meV 

In plane (n.n.fl.) 212 = -0.13 meV, 2J 2  = -0.09 meV 

Out of plane (n.n.n.) 21 = - 0.04 meV, 2J = -0.03 meV 

Single ion anisotropy 2D(s - -) = 1.043 MeV 

(After BirgeneaU et al (1972)) 
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spin wave spectrum of FeC 2  is insensitive to the interplanar 

the critical properties of FeC 2  are, and the phase transition is in 

the d = 3 Ising Universality class (Yelon and Birgeneau (1972)). 

In the calculations of the spin wave spectra to be presented 

in this chapter and the next, FeC 2  has been modelled as a two 

dimensional anisotropic ferromagnet on a hexagonal lattice. 

Further to this only the nearest neighbour exchange interaction has 

been included in the model Hamiltonian since this is the dominant 

interaction. As a consequence of these two approximations the 

resulting calculations may not precisely represent the spin wave 

spectra in 'real' diluted and mixed compounds of FeCe 2  However, 

the calculations should be quantitatively close to the 'real' 

spectra and should certainly contain all the qualitative features 

to be expedted. 

4.3 The Equation of Motion Method 

In this section the equation of motion formalism as applied to 

Fe X. C 2 , where X = Mg or Mn (this chapter) or Co (next chapter), 

will be set out. The aim of this formalism is to arrive at a series 

of equations that can be easily converted into a computer program, 

the output from 'which should be directly comparable to the results 

of an inelastic neutron scattering experiment. 

In the previous section the form of the exchange Hamiltonian for 

FeCL2  within the lowest three levels of the single ion spectrum was 

discussed. The form of the Hamiltonian was 

= - 
1  
E D. (S) 2  - E I.. S S + 3. .(S S + sY SY) 	 (4.3.1) 

1 	
iJ 

1 	 13 1 3 	13 1 J 	1 3 

This Hamiltonian will suffice to discuss the Fe Mg cL and 
X 1-x 2 

Fe Mn C.e compounds and will also be used for the Fe Co C 
x 1-x 2 	 x 1-x 2 
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compound, although its applicabili€Y in this case will be discussed 

further in the next chapter. The disorder caused by the Mg 2+ and 

ions will enter into equation (4.3.1) through the variation of 

the exchange interactions and single ion energies throughout the 

crystal. In order to calculate the spin wave excitation spectrum 

for equation (4.3.1) the operators S., 
z 
 , S. x and S.Y  are replaced by 

the operators (Ziman (1971) p. 368) 

S = S. - at a. 
1 	1 	1 1 

(4.3.2a) 

	

= 	(a. + a) 
	 (4.3.2b) 

1 	2 	1 	1 

SY 	Si-  = 	Fi
(a - a) 	 (4.3.2c) 

where the operator at creates a spin deviation on site i and a. 
3. 

destroys a spin deviation on site i. Equations (4.3.2) already 

involve an approximation whereby the operator 4! has been 
replaced by Vr9i  (Ziman (1971) p. 368). If the equations (4.3.2) 

are substituted into equation (4.3.1) and the terms higher than 

quadratic in the operators ai 
 and at are neglected then the exchange 

Hamiltonian becomes: 

= E 2D.(S._.1 	
j 

) a ia.  + 2 E I.. S a a. - J.. 
i i2 	i 	 ij 	ii 	ij  

ij 
2. 

(a. a + at a.) 	 (4.3.3) 

where 	is the ground state energy and is independent of the 

operators a. and a*. The earlier approximation of replacing 

by /T' can be shown (Keffer (1966) p.  55) only to effect higher 

terms than quadratic and therefore equation (4.3.3) is consistent 

up to quadratic order. 

Following Thorpe and Alben (1976) a •  function Cig(t) is.defined, 
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by the equation: 

C. (t) =j E g 	/' e- < o La, (t , a(0)J 10 > 	 ( 4.3.4) 

for times t that are greater than or equal to zero. The C.(t) are 

related to the dynamic structure factor S (q, w) (equation (1.3.10)) 

through the relation: 

00 

S(q, ) = 
	Re 	dt et  E g. 	e 	 -C. (t) 	 (4.3.5) 

	

- 	 1 	1 

	

21TVN 	0 	 1 	 - 

Therefore if it is possible to obtain the C iq (t) as a function of t 

then it is possible to calculate S (q, w) from the integral in 

equation (4.3.5) 

The equation of motion for C. (t) is: 

i .  iq. _ ____ 
i 	(t) = 	E g 	e. 	< 0 [[a, (t),)*] , 9(0)] 0 > 	(4.3.6) a 	

r 

t 

The commutator of a.(t) with 	can be evaluated by :rioting that the 

time dependence of a.(t) commutes with 	so that one only needs to 

calculate the commutator of a. with 	. Using equation (4.3.3) for 

equation (4.3.6) can be evaluated as: 

ac. (t) 
iq 

= c. C.(t) - E 	 C.(t) 	 (4.3.7) 

where Q. = 2D. (S. - -i-) +2.Z I.. S. is the Ising energy for the 1th 
1 	1 	1 	2 	ij J .  

spin. Equation (4.3.7) is one of N coupled linear differential 

equations, one for each of the C jq (t) 	These equations along with 

the initial conditions given by the Cig(t = 0) in principle contain 

all the information required to describe the spin wave spectrum. The 

'Equation of Motion' method (Alben and Thorpe (1975) seeks to solve 

the equations (4.3.7) by numerical integration.- The simplest and 

most easily applied scheme for doing this is to use the method of 

forward and backward difference, in which the derivative in equation 

(4,3.7) is approximated by: 
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3 Cjq(t) 	Cjq (t + tSt) - Cjq (t - tSt)

2St 	

2 

at 	= 	 : - 	
+ O( (6t) (4.3.8) 

where the timesteP ót is small. Therefore neglecting terms that 

are cubic in ôt the coupled first order differential equations in 

equation (4.3.7) can be replaced by a set of N coupled second order 

difference equations given by: 

C. (t + t) = C.. (t - ôt) - 2 trQC (t) -2E J. .j -.s?C. (t)7 (4.3.9) 
Iq 	 L 	 1] 1) 3 	J 

Therefore given the sets of initial conditions C.. (t 0) and 

C. ,  (t = 5t) equations (4.3.9) may be iterated to obtain the 
C.. (t) 

iq 

at later times. The first of these initial conditions is easily 

evaluated from equation (4.3.4) and is given by: 

- iq. r. 

	

1 -- 	-. -1 
C.. (t = 0) = - g. fl e 

1. 	 fi1 	1 

(4.3.10) 

The second initial condition, however, can only be obtained approx-

imately by expanding C jq (t) in a Taylor expansion about t = 0, so 

that 

3c. (t) 	 32C. iq 
 (t) 

C. (t = t) = C. (t = 0) + 6t 	I 	+ 4(ot)2 3t2 	
0((t)3 

1It -AO

)  

t=0  . 	 1. 

(4.3.11) 

The second derivatives in equation (4.3.11) can be calculated by 

differentiating equation: (4.3.6) 

Two questions arise from replacing equation (4.3.7) by equation 

(4.3.9). The first is, what is the size of the timesteP 6t and the 

second is, how good an approximation is the C jq (t) calculated from 

equation (4.3.9) after a given number of timesteps. The answer to 
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the first question is that ôt must be smaller than the minimum periodic 

time for the oscillation of the spins. If E 	is the upper bound onmax 

the spectrum of the disordered system then cSt will be given by: 

c5t = l
( h 

n  
max 

(4.3.12) 

where n is a number whose value will be subject to criteri to be 

	

discussed later. The value for E 	can be found from a knowledge max 

of the various exchange interactions (Ziman (1979) p.  345). An 

answer to the second question can be estimated in the limit of trans-

lational invariance, where both equations (4.3.7) and (4.3.9) may be 

solved analytically. These solutions are: 

	

.L. 	iq.r. -iSt2(q) 	ip6t2(q) 

	

C . (t = (p + 1)6t) = 	1 g. 	e 	e 	e 	(4.3. 13a) 

	

qi 	1 

1 
C. 	ft = (p + 1) 6t) =- I g.  

VV q 

(W(q)) 2  

	

)e 	
Sin 	 (4.3.13b) 

2  

for equations (4.3.7) and (4.3.9) respectively where c2(q) is the 

dispersion relation of the pure system. The magnitude of the differ- 

ence between these solutions is of the order of (6tQ(q)) 3 . If the 

difference in the phase of the two solutions is denoted by, then 

after p timesteps $ is given, in the limit of the worst possible 

case where 1(q) = E/h, by: 

	

- 	r- 	-1 2 	2-ru 

	

() 	= P 	
rr 

---- 
	

(4.3.14) 

Equation (4.3.14) can be inverted to obtain an estimate of the number 
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of timesteps for which equation (4,3.9) will not vary by more than 

say 10% from the phase of the exact solution. 

Therefore, given a set of values of C(t) at discrete times 

S (q, w) can be calculated by numerical integration. However, the 

integral in equation (4.3.5) has an upper limit of whereas the 

C.(t) can. only be calculated up to some finite time T. Therefore 

instead of using equation (4.3.5)to calculate S (q, w) an approx- 

-I- 
imation to the integral is made so that S (q, w) is given approx- 

imately by: 

£ 	 1  
S (q,  W ) 	Re JO =- 

-it _X t2 
dte 	e 	C(t) (4.3.15) 

where C (t) is given by: 

1 

 

3-q . r 

	

C (t) = - E g. 	e -- C. (t) 

	

v/,iiii 	
1 iq  

If the limits T -- and A + 0+ were taken for equation (4.3.15) 

(4.3.16) 

then equation (4,3.5) would be recovered. The effect of the finite 

limit to the integral and the damping factor e 
-At2 can be demon-

strated by evaluating equation (4.3.15) in the limit of translational 

invariance. In this limit the factor Cq (t) will be given by: 

--  
C (t) 	(g 

2 
 Se 

 ic~ (q)t 	 (4.3.17) ) 	- 

Then substituting equation (4.3.17) into equation (4.3.15) leads 

to the result: 

-(U)-) 
)2 

-XT 

e 	 + S(q,w) = 	(g) 2 S  {A (T) 	
4A 	e 	wc2(9))} (4.3.18) 

2T 

where A(T) = 1 - erfc() 	 (4.3.19) 

AT 
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and 

f(x) = e -x 
2 (X 

e? Sin (2./'TY)dY 
	 (4.3.20) 

0 

There are two parts to equation (4.3.18). The first is a Gaussian 

centred on the spin wave energy 0(q) and the second is an oscillatory 

noise term. The magnitude of the noise term can be estimated by 

noting that 

lf(x)I < 	e 
_x2 

J 	
e? dy < 0.55 

o 
(4.3.21) 

where the integral in between the inequalities is DawsonS integral 

'(Abramowitz and Stegun (1964) P. 298). Hence by a suitable choice 

of A and T the ratio of the amplitude of the noise term to the 

Gaussian can be reduced to a small value. The result is that 

S (q,w) calculated from equation (4.3.15) instead of being a delta 

function centred on 0(q) is a Gaussian lineshape centred on 0(q). 

-t. 
In general, therefore, S (q,w) calculated from equation (4.3.15) 

is the convolution of the temporal Fourier transform of Cq (t) 

with a Gaussian frequency resolution function. Since the spectro-

meter in a triple axis neutron scattering experiment has a Gaussian 

resolution function in frequency, a direct comparison between the 

calculated S (q, w) and the measured intensity of neutrons can be 

made by adjusting A to reproduce the experimental resolution function. 

Therefore having chosen a value for A the parameter T is 

chosen to reduce the level of the noise term. However, T will be 

equal to pmax 6t where pmax is the total number of timestepS. 

Substituting Pmax  into equation (4,3.14) and fixing a value for 

then leads to the value of n needed to-obtain the required degree 

of accuracy. In practice the amount of computer time required to 
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perform the calculations also has some effect on the values chosen 

for these parameters. 

There is a final manipulation to be made to equation (4.3.15) 

to put it in a more tractable form for computational purposes. This 

is to write it in the form: 

T 
1  

S (q, w) = - - 	dt e-Xt2Siniwt) Im C (t) 
	 (4.3.22) 

40 	 a 

In going from equations (4.3.15) to (4.3.22) use has been made of 

the relation: 

Cos(wt) Re C a 
(t) = - Sin (wt) Im C a (t) 	

(4.3.23) 

which is a result of Cq (W) satisfying the Kr arnerS-Kronig relations 

(Marshall and Lovesey (1971)  p. 576). 

Method of Implementation 

In this section a brief description will be given of how the 

formalism set out in the previous section was implemented in the 

various computer programs written. As discussed in section (2), the 

model employed for FeC.e2  is that of a two dimensional anisotropic 

ferromagnet on a hexagonal lattice. The hexagonal lattice was 

modelled by decomposing it into two interpenetrating-rectangular - sub-

lattices as shown in figure (4.4.1). A site on a given sublattice 

therefore has two horizontal nearest neighbours on its own sub-

lattice and four nearest neighbours on the other sublattice. In 

the calculations each of the sublatticeS was an (- x L) array 

giving a total number of sites N = L 2 . The value of N used varied 

for the different calculations but has always been in the range from 



Figure (4.4. 1) 

This figure indicates how a hexagonal lattice 

was constructed from two interpenetrating rectangular 

sublattiCes. The two sublattices are indicated by 

the triangles and circles. 



FIGURE (4.4.1) 

/\ /\ /\ / 
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3600 to 6400 sites. 

The occupation of the sites on the lattice by "Fe 2+ ions" was 

determined using a random number generator G05CAF contained in the 

NAG library (NAGFLIB (1977)). This routine generates a random 

number in the range 0 to 1 from a rectangular distribution. The 

occupation of each site was tested by generating a random number 

2  and then comparing this number to the preset concentration of Fe 

ions. If the number was smaller than the concentration the site was 

occupied by an Fe 2+ ion. For the lattice sizes used the concent-

ration of sites occupied in this way was always veryclose to the 

preset concentration. Further, the 'randomness' of the occupation 

was tested by determining the distribution of the number of nearest 

neighbour sites to an occupied site that were occupied, from the 

generated lattice. For an infinite lattice of randomly occupied 

sites this should be a binomial distribution given by: 

p(n) =t, n (1 - x)6' 	 (4.4.1) 

where n is the number of sites occupied, p(n) is the probability 

of occupation and x is the concentration of Fe 2+ ions. The distrib-

utions obtained from the generated lattices were in agreement with 

this distributin for the values of N quoted above and concen- 

trations x > 0.55 to better than 5%. 

As mentioned previously, linearised equations of motion do 

not accurately calculate the excitation spectra of small clusters 

of spins. Therefore, in the calculations for FeMg 1 _C.2  and 

FeMni_ci2 isolated clusters of spins were eliminated and only 

the excitation spectra of spins in the "infinite cluster" were 

calculated. The method for eliminating clusters or rather for 

identifying the infinite cluster was a very simple algorithm, and 
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uses the fact that only the infinite cluster can touch all four sides 

of the lattice. If an occupied site on one side of the lattice is 

initially labelled and an iterative scheme of labelling sites if 

their nearest neighbours are labelled is employed then only when 

the initial site is in the infinite cluster can sites on the other 

three sides of the lattice become labelled. Therefore sequentially 

the occupied sites on one side of the lattice were tested to see if 

they belonged to the infinite cluster. Once a site in the infinite 

cluster was found,the labelling scheme was carried out exhaustively 

until all the sites in the infinite cluster were labelled. Hence, 

it was possible to separate the infinite cluster from the clusters 

The model for FeC.e 2  used in the calculations only assumed 

that the nearest neighbour exchange interaction was of any sign-

ificance. Therefore, in equation (4.3.9) the summation over the 

index j was for nearest neighbours only. 	In order to identify 

the sites in the lattice each one was given a numerical label from 

1 to N. However, rather than labelling the sites sequentially the 

2+ 	 2+ 
labels were first attached to the Fe sites so that the Fe 

sites always had labels less than IFE = Nx + I. For the 

Fe Ca 
 CZ calculations the remaining sites were then labelled 

x 1-x 2 

from IFE up to N. In labelling the sites in this way the type of 

each site can be identified from the value of its label. After 

this labelling a 'dictionary' was created of the labels of the 

nearest neighbours to a site. This dictionary was a two dimensional 

array with the labels of the nearest neighbours in the (1,3) element 

where I is the label of the site and 3 runs from .
1 to 6 for the 

nearest neighbours. The summation over j in equation (4.3.9) was 
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therefore, done by using the dictionary to 'look up' the labels of 

the nearest neighbours. The lattice was constructed with periodic 

boundary conditions so that sites at one side of the lattice had 

nearest neighbours on the opposite side of the lattice. 

The real and imaginary parts of the function Cig(t) were 

contained in two two-dimensional arrays. These arrays had elements 

(I,J) in which the index I was the label of a site and the index 3 

represented the timestep. Since at any one point in the iteration 

procedure only the values of Cig(t) at t = 6t t and t + ôt are 

required, the index 3 only ran from one to three. In order to 

keep track of the position of a value for a particular timestep 

the index 3 was calculated using periodic boundary conditions. 

Explicitly, if the number of the timestep was M then the positions 

of the three values of C. (t) would have been in the elements with 

index 3 given by: 

C. (t - ôt) in J = 1 + MOD (N - 1,3) 

C. (t) 	in 3 = 1 + MOD (N, 3) 

Cjq (t + 6t) in 3 	1 + MOD (M + 1,3) 	 (4.4.2) 

At each timestep a new value is calculated for C. (t + 5t) and 
Iq 

stored in the 1 + MOD (M + 1,3) element which overwrites the 

value for Cjq (t - 6t) from the previous timestep. 

The arrays holding the real and imaginary parts of C(t) 

were initialised for the first two timesteps using equations 

(4.3.10) and (4.3.11) respectively. Successive values for the 

Cig(t) were therefore calculated at each timestep using equation 

(4.3.9) and the dictionary of nearest neighbours and stored in the 

elements given by equation (4.4.2). At each timestep C q (t) was 
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calculated from equation (4.3.16). Since the waveveCtor q is equal 

to (h,O,O) all of the elements in a given horizontal row of the 

lattice (cf figure (4.4.1)) had the same complex exponential pre- 

factor. Therefore it was only necessary to calculate L cosines 

and sines corresponding to the real and imaginary parts of the 

exponential prefactors for the rows. These values were calculated 

prior to the iteration scheme and were stored in an array, to be 

called when needed. The summation in equation (4.3.16) was there-

fore done by summing the real and imaginary parts of C jq (t) along 

a row in the lattice, then multiplying this sum by the exponential 

prefactor and then summing with successive rows. 

The integral for S 
.3- 
(q,w) given in equation (4.3.22) was 

evaluated using the trapezoidal rule for numerical integration 

.1- 

(Stephenson (1973) p. 245). Therefore S (q,w ) was stored in an 

array whose elements corresponded to discrete values of w • At 

each timestep the values of 
Sin(wt ) e Xt ImCq (t) were evaluated 

for the various values of w and then added to the respective 

-4- 
elements of the array holding S (q,w ). 

4.5 Results of Simulations for Fe Mg CL. x—1 -x-2 

In this section the results of the simulations of S(qw) 

for diluted FeCL.2  are presented. The values used for the exchange 

interaction and single ion anisotropy in this simulation were those 

of BirgeneaU et al (1972) given in table (4.2.1). A value of A = 

0.075 (rads. THz) 2  was used in the Gaussian damping factor in 

equation (4.3.15) which gave an energy resolution corresponding to 

a full width at half maximum of 0.6meV. Since the possible freq-

uencies in the model of FeCL.2  are less than 8 meV this was chosen 
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as the value of E• The parameter n(cf equation (4.3.12) was chosen 
a   

to be 30 and the iteration procedure was carried out for 300 time-. - 

.1 
steps. This meant that the noise term S (q, w) was less than 1%. 

Numerical values of S (q, w) were calculated for five wavevectorS in 

the (h,0,0) direction with values of h= 0.000,. 0.125, 0.250, 0.375 

and 0.500, and for energies in the range 0.1 to 8.0 meV at intervals 

of 0.1 meV. 

The effect of site disorder on S (q, w) is greatest at the zone 

boundary wavevector qzB
= (0.5, 0, 0). Consequently in figures 

(4.5.1a — e) the calculated s 	w) are shown for various concen- 

trations. Figure (4.5.1a) shows the zone boundary spin wave calcul-

ated by the E.O.M. method for x = 1.0, which is, as expected, a 

"resolution limited" Gaussian lineshape with a full width at half 

maximum of 0.6 meV. The "intensity" scale in figures (4.5.1a — e) 

is in arbitrary units. However, the relative scale of these figures 

is such that they all have the same integrated intensity as in 

figure (4.5.1a). In figure (4.5.1b) S(B 	for x = 0.80 is 

shown. The most striking .effect shown in this figure is the large 

decrease in the peak intensity, by a factor of nu 3 from the peak 

intensity in the x = 1.0 simulation, The peak intensity has. also 

been shifted down in energy from the x = 1.0 simulation by about 

0.5 meV. Also, the peak is much broader than the x = 1.0 result 

by a factor of " 3 at the full width at half maximum. Further 

to this, the lineshaPe has a tail extending down through the 

band of spin wave energies which appears to contain some structure. 

In figure (4.5,1c) S( 3 , w) for x = 0.70 is shown, and shows 

the further development of the features noted for figure (4.5.1b). 

The peak intensity has fallen further, both in intensity and 

energy, and there is an increased intensity for energies 



Figures (4.5.la - e) 

These figures show the zone boundary lineshape 

computed for S-'- (q, w) computed for various concent-

rations from x = 1.0 to 0.55, 
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at the lower edge of the spin wave band. Further to this, the peak 

has broadened and is now clearly showing the existence of structure 

in its lineshaPe. 	Figure (4.5.1d) shows 	
w) for x = 0.60. 

The shift in intensity to lower energies has continued and has led' 

to the in
teresting feature of a second peak at an energy just less 

than 2.0 MeV. This energy is lower than the bottom of the spin 

wave band for x = 1.0. Finally, in figure (4.5.1e) s 	
Z' 

for x = 0.55 is shown. 	
In this figure the peak at low energy is 

now more clearly resolved and the peak at higher energy shows the 

existence of some structure. The peak intensity has now fallen to 

5.0 meV which is 1.74 meV lower than the x = 1.0 energy. The 

percolation threshold for a two dimensional triangular lattice is 

x = 0.5 and therefore simulations were not performed for lower 

concentrations. 

In figures (4.5.2a - d) the lineshaPes for S (q, w) for the 

concentration x = 0.55 are shown at other points across the 

BrilloUifl zone in the (h,0,0) direction. The lineshape of S (q,w) 

at the zone centre, shown in figure (4.5.2a), has essentially 

remained a resolution limited Gaussian. A small tail which extends 

into the higher energies in the band has arisen and 
consequently 

the peak intensity is slightly lower than in figure (4.5.1a). The 

energy of the peak has fallen from the x = 1.0 zone centre energy 

of 2.04 meV to 1.55 meV. In figure (4.5.2b) the lineshape of 

S (q, w) at h = 0.125 is shown. The effect on S (q, w) of moving 

away from the zone centre is to reduce the peak intensity and to 

increase the intensity in the tail to higher energies. The line- 

-'- shape of S (q, w) half way across the zone, at h = 0.250 is shown 

in figure (4.5.2c) . The peak intensity has fallen further and the 



Figures (4.5.2a - d) 

These figures indicate the lineshape of 

S (q, w) for a concentration x = 0.55 at 

wavevectors q = (h,0,0) where h = 0.000, 

0.125, 0.250 and 0.375. 
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lineshape shows signs of structure, with 'a width that is much 

greater than the resolution limit of 0.6 meV. In figure (4.5.2d) 

the lineshape of S (q,w) at h = 0.375 is shown. The lineshape 

now clearly shows the double peak structure of the zone boundary 

line shape. 

In figure (4.5.3) the variation with concentration of the 

energies of the peak intensities at the zone centre and zone 

boundary are shown. The zone centre energy (lower points in 

figure (4.5.3)) falls linearly with concentration. The solid 

line through these points is the V.C.A. result for the zone 

centre energy which is: 

E(q = 0,x) = ?D (S - -) + 2(I. - J) [6(1 7 x)j (4.5.1) 

Since the q = 0 mode corresponds to a uniform excitation of 

all the spins it is not surprising that the excitation energy 

is fairly well described by the V.C.A. The energy of the peak 

intensity at the zone boundary (upper points in figure (4.5.3)), 

however does not follow the V.C.A. as a function of concentration. 

The V.C.A. result for the energy of the zone boundary spin wave 

is shown in figure (4.5.3) by the dotted line while the solid 

line is a guide to the eye. 

unfortunately there is no experimental data available on 

the spin wave spectrum of diluted Feci2 . As a consequence of 

this no further analysis of the calculations has been performed 

and no new calculations carried out. 



Figure (4.5.3) 

This figure shows the variation with concentration 

of the peak intensities in S (q, w) at the zone centre 

(lower points) and zone boundary (upper points). 

The solid line through the lower points and the dotted 

line are the V.C.A. predictions for the concentration 

dependence of these energies. The solid line through 

the upper points is a guide to the eye. 
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4.6 Results for Fe Mn CL Mn,  -x-2 

Although experimental measurements of S (q, w) are not 

available for dilute FeCL2 , there are some experimental measure-

ments in the literature for Fe 	 2 x 1-x 
Mn Ce. . These measurements were 

performed by Bertrand et al (1981) using inelastic neutron 

scattering techniques on Sam pl'of Fe 0 91Mn0 09CL2  and Fe075Mn025  

• Since the Mn2+ ion has a magnetic moment Fe 	 2 x 1-x 
Mn CL is a 

2  
mixed compound rather than dilute. However, MnCL only has a Néel 

temperature of,'" 2 K (Bertrand et al (1981)) and therefore the 

exchange between Mn 2+ - Mn2+ ions can be estimated fràm the Néel 

temperatures to only be 0.013 times that of the Fe 2+ - Fe 2+ 

2+ 
exchange in Fe 2 . The exchange interaction between the Fe CL 

	and 

Mn2+ ions in Fe Mn cL. has been determined by Tuchendler et al 
x 1-x 2 

(1980) from AFMR measurements to be: 

I 	= 0.019 meV, 	i Fe,Mn = 0.017 meV 	
(4.6.1) 

Fe,Mn 

The excitation spectrum of FexMni_xCL.2 is therefore expected 

to be dominated by the Fe 2+ ions. A complication that arises on 

the introduction of the Mn + ions into the lattice is that the 

strength of single ion crystal field term D. for the Fe 2+ ions 

changes. This presumably arises due to the change in the lattice 

parameter from FeCL. 2 	x 1-x 2 
to Fe Mn CL . The evidence for such a 

change is that the energy of the zone centre spin wave falls 

2+ morc rapidly with decreasing concentration of Fe ions than the 

(1 - x) dependence expected. In the simulation to be discussed 

below the single ion energy for the Fe 2+ ion has been determined 

by fitting the experimentally observed energy for the zone centre 

spin wave to the formula: 
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E(q 4 = 0) = 2D(S - ) + 	- FF5F 
+ 6(1 - x) 'FM - FMFFFF 

(4.6.2) 

where labels F and M refer to Fe 2+ and Mn 
2+  ions respectively, 

and the exchange energies I and J are the values for pure FeC.e2  

and those given in equation (4.6.1). For x = 0.75 D was found 

to be 0.20 rneV, a considerable change from the 1.043 meV for 

FeC.e2 . This change in the crystal field will also affect the 

value of g for the Fe 
2+ ions. However, since the effect of the 

change in crystal field has not been included in the proportionality 

factors between real and pseudo spins, it was also neglected for g 

and the value for pure FeC 2  used. Since the Mn ion is a 

state the value of g is 2. 

A calculation of S(q, w) for Fe 0 75Mn0 25c.e2  was performed 

using the methods described previously and the parameters 

described above. The exchange interaction between the Mn2+ - 

Mn 
2+ ions was set equal to zero in the calculation since it is 

so much smaller than the other interactions. A model of Fe Mn x 1-x 2 

was constructed in the computer by generating a lattice as for the 

dilute FeC. 2  case and labelling those dilutant sites which were 

nearest neighbours of occupied sites. The infinite cluster was 

then found as before and isolated Fe2+ and Mn ion sites discarded. 

.1 
In figures (4.6.1a - e) S (q, w) is shown for wavevectors across 

the Brillouin zone in the (h,0,0) direction. A comparison with 

the results calculated for dilute FeC.e 2  for concentrations x = 0.70 

and 0.80 shows that there is a marked increase in intensities at 

the lower edge of the spin wave band in Fe Mn 1  C1 2 . The peak 

at very low energy is a localised mode on the Mn2+ ions. 



Figures (4.6.1a - e) 

These figures show the computed lineshape of 

S(q, w) for Fe 	 2 x 1-x 
Mn cL. with x = 0.75 at wave- 

vectors q = (h,0,0) where h = 0.000, 0.125, 

0,250, 0.375 and 0.500. 

Figure (4.6.2) 

This figure shows the dispersion relations for 

the peak intensities in figures (4.6.1a - e) (circles 

and triangles) and the measured peak intensities of 

Bertrand et al (1981) (squares). The solid lines are 

guides to the eye. 
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Unfortunately it is not possible to compare the lineshapeS calculated 

with the results of Bertrand et al since the published paper did not 

contain detailed lineshapes or a value for the energy resolution of 

their spectrometer. However, this paper did contain a dispersion 

curve for the peak intensity in the lineshape. In figure (4.6.2) 

the positions of the measured peak intensities are indicated by 

squares and the calculated peak positions by circles. The solid 

line is a guide to the eye found by making a cubic interpolation 

through the calculated values. 	At the zone centre where the 

experimental and calculated values overlap only the calculated 

value has been plotted. The agreement between the calculated 

and measured dispersion curves is quite good. 
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CHAPTER FIVE 

Spin Waves in the Random Anisotropy System Fe Co 1  c.e2  

5.1 	Introduction 

In this chapter the results of computer simulations of, and 

inelastic neutron scattering measurements of the spin wave 

spectrum of a sample of Fe 0 85C00 15C 2  are presented. FeCoi_CL.2 

is an example of a magnetic system which has random competing 

anisotropieS. As discussed in section (2) of the previous 

chapter FeCL2  is a layered antiferromagnet in which the ordered 

state of the spins is parallel to the c-axis. coct is also a 

layered antiferromagnet but one in which by contrast the spins 

in the ordered state point along the (1,2,0) direction in the 

hexagonal a - b plane. 

The magnetic ordering of systems with random orthogonal 

anisotropies has been studied theoretically by a number of 

authors using different techniques. These theoretical studies 

have considered the properties of a Hamiltonian of the form: 

z z 	x x 	y 
ii i 

=-E I 	S S + J ii i j 	i (S S + S S 
J

) 
j  ii 

where the sites i and j are randomly occupied by two species of 

magnetic ion of types A and B and where the exchange interactions 

satisfy the inequalities: 

I> J 	and IBB< i BB 	
(5.1.2)

AA 
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The pure A material has uniaxial ordering and the pure B material 

has planar ordering. The exchange interactions I and J are
AB 

non-zero so that the two species interact in the mixed system. 

The phase diagram for the system described by the Hamiltonian 

in equation (5.1.1) is shown in figure (5.1.1). The form of the 

phase diagram has been studied by molecular field theory 

(Matsubara and Inawashiro (1977)), renormalisation group techniques 

(Fishman and Aharoriy (1978)) and Monte Carlo simulation (Inawashiro 

et al (1979)). These different techniques have all shown the exist-

ence of four phases all separated by second order continuous phase 

transitions whose phase lines meet at a tetracritical point. There 

are three ordered phases at low temperature. At the two ends of 

the concentration range there are phases in which only the spin 

components corresponding to the ordered components of the end 

members are ordered. In between these two phases however, there 

is a third phase in which the spins are arranged in such a way that 

both uniaxial and planar -components of the spins are ordered. This 

phase has been termed the mixed phase (Fishman and Aharony (1978)). 

The magnetic ordering of a number of materials which are 

believed to be examples of random anisotropy systems have been 

studied experimentally. A review of some of these studies is given 

in the article of Katsumata (1982). However, the material that has 

received the most comprehensive study of its magnetic ordering is 

Fe x 1-x 2 
Co 	C. 	(Wong et al 1980, 1983). In section (2) the results 

of this work will be briefly reviewed. 

It is, however, the low temperature spin wave spectrum of 

Fe 	
2 x 1-x 

CO CL. that is of interest in this chapter. The effect of 

a random anisotropy adds a new problem to calculating the spin wave 



Figure (5.1.1) 

This figure shows the theoretical form for 

the phase diagram of a random anisotropy system. 
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spectrum of a mixed magnet, that of knowing the ground state of 

the system. As mentioned at the beginning of this section, in this 

chapter the results of inelastic neutron scattering measurements of 

the spin wave spectrum of a sample of Fe0.85C'0.15 C'P_ 2  are presented. 

These results are compared with the results of an E.O.M. method 

calculation of the spin wave spectrum for a particular model of the 

ground state. Therefore the rest of this chapter is set out as 

follows. In section (2) the properties of coce 2  and the experi-

mentally observed properties of the magnetic ordering in FeCoi_C t2 

are described. Also in this section, a discussion of the theor-

etical results for the ground state in the different phases is 

given. The model for the computer simulations is given in section 

(3). A description of the experimental arrangement of the spectro- 

meter used for the inelastic neutron scattering measurements is 

contained in section (4). The results of the computer simulation 

and neutron scattering measurements are presented together in 

section (5) for comparison. A discussion of these results is 

given in section (6). 

5.2 properties of CoCk and Fe Co Cle 2 	—x-1 -x--2 

This section is divided into-three subsections. In the first 

the properties of CoC 2  and its spin wave spectrum are described. 

The second subsection contains a brief description of the ordering 

properties of FeCoi_Ce2 known from experimental measurements. 

Finally, the third subsection contains a brief discussion of the 

theoretical models considered for the ordering in the zero temp- 

erature ground state of Fe Co a
x 1-x 2 



-138- 

5.2 i) Properties of CoCe2  

CoC.2  has the same rhombohedral CdCL crystal structure 

'Jyckoff (1963) p.  272) as FeCL.2  and also like FeCL.2  is a layered 

antiferromagnet. Therefore CoC 2  has the same hexagonal anti-

ferromagnetic unit cell as FeC.e2  with lattice parameters a = 

3.553 A and c = 34.718 A. However, unlike FeCe. 2  the spins in 

coc.e2  order along the (1,2,0) crystallographic direction (Wilk-

inson et al (1959)) below a Nel temperature of 24.9 K 

(Hutchings (1973)). 

The Co 2+ free ion has a 4 F ground state.. Since C0C.e2  is 

structurally isomorphous to FeC. 2 , the crystal field has the same 

symmetry as in FeC 2 . The strong cubic crystal field splits the 

4F level and makes a 4T
19 
 triplet the lowest level. This triplet 

can be treated as an effective £ = 1 level, i.e. a 
4 
 P state, if 

the matrix elements of the total orbital angular momentum are 

replaced by - times the matrix elements of the effective orbital 

angular momentum (Lines (1963)). The trigonal crystal field, spin-

orbit coupling and exchange interaction may therefore be written 

as: 

= - 	 - 	
+} 	+ zT 	 (5.2.1) 

In figure (5.2.1) the various levels are shown when the trigonal 

crystal field and. spin-orbit coupling are included. The energy 

levels indicated are those measured by Christie and Lockwood (1971) 

by Raman scattering at a temperature of 4.2 K. These energy levels 

cannot be reproduced by the trigonal crystal field and spin-orbit 

coupling terms alone (Christie and Lockwood (1971)). Also, it is 



Figure (5.2.1) 

This figure shows the various single ion 

levels of C0C.e2 . The diagram is not to scale. 
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not possible to obtain a value of g for the lowest doublet which 
-'- 

is in agreement with the measured value of .g = 6.0 (Jacobs et al 

(1965)), only by including the trigonal field and spin orbit coup-

ling. It was shown by Silverstein (1965) that the calculated 

value for g 
-4- could be improved by including the effect of the 

exchange interaction on the wavefUnctioflS of the lowest doublet 

via a combination of perturbation theory and molecular field 

theory. More recently, KardOntchik et al (1977) have obtained 

the different energy levels by di agonalising the Hamiltonian in 

(5.2.1) in its entirety by including the exchange term in a mole-

cular field approximation. Kardontchik et al have been able to 

explain fairly well all of the available experimental data using 

the parameters: 

6 .  = - 405 cm ' , X = - 159 cm- 1 

Ti 	
-1 	 -' 

 = 
	2.56cm) 	2= -0.18cm 

where Ti  and T 2  are the isotropic exchange interactions 

between nearest neighbour Co 2+ ions in the plane and next 

nearest neighbours out of the plane. 

The lowest doublet shown in figure (5.2.1) may be treated 

as a pseudo-Spin S = doublet. Then within this doublet the 

exchange Hamiltonian may be written as: 

= - I I. . S S '  + J. (S.'  S + S S) 
.4 13 1 j 	 1 j 	i j 

1J 

where the x direction is along the 
crystallographic c axis and 

the z direction is along the (1,2,0) 
crystallographic direction. 

The spin wave excitation spectrum in the (h,0,0) direction for 

C0CL.2  has been measured by Hutchings (1973) using inelastic 

(5.2.2a) 

(5.2.2b) 

(5.2.3) 
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neutron scattering. In table (5.2.1) the exchange parameters 

deduced from these measurements are given for the interactions 

between nearest neighbour in plane and next nearest neighbour., 

both interplanar and intraplanar, Co 2+ ions. Of these exchange 

interactions the dominant interaction is the ferromagijetic 

nearest neighbour exchange. As a consequence, the excitation 

spectrum of C0C.L 2  strongly resembles that of a two dimensional 

planar ferromagnet. 

5.2 ii) Properties of Fe Co ce x-1 -x-2 

The magnetic ordering and phase transitions in Fe Co 1-xc.e2 

over the whole concentration range 0 < x < 1 has been studied - by 

Wong et al (1980, 1983) by neutron scattering and bulk susceptibility 

measurements. In figure (5.2.2) the results of Wong et al are 

summarised in a diagram showing the different regions observed as 

a function of concentration and temperature. At low temperature, 

there are three regions which can be characterised. 'At the two 

ends of the concentration range there are phases in which only 

the unia.xial or the planar components of the spin are observed to 

order. In between these regions there is a third region in which 

peaks are observed at the Bragg positions which correspond to both 

the uniaxial and the planar components of the spin being ordered. 

There is however a problem with classifying this central 

region as the mixed phase predicted by Fishman and Aharony (1978). 

The phase lines in figure (5.1.1) all corresponded to continuous 

second order phase transitions which were sharp and decoupled in 

the spin components. Measurements of the wavevector dependent 

susceptibility by Wong et al show that this is not the case for 



Table (5.2.1) 

In-plane (n.n.) 	21,= 1.08 meV, 2J 1  = 2.46 meV 

Out of plane (n.n.n.) 212 = 0.09 meV, 2J 2  -0.19 meV 

(After Hutchings (1973)) 



Figure (5.2.2) 

This figure shows the measured 'phase diagram' 

of Wong et al (1980) for FeCoi_C2. The open 

circles are points determined by neutron diffraction 

and the closed circles by bulk susceptibility 

measurements. 
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FeCoi_C2. The "phase transitions" between the mixed phase and 

the other two low temperature phases are rounded and the ordering 

in the spin components is coupled. An explanation for this behaviour 

has recently been proposed by Wong et al (1983) and will be discussed 

in section (6). However, until then it will suffice to note that in 

the uniaxial phase only the uniaxial components of the spin are 

observed to order. 

5.2 iii) Ground state of Fe Co CZ x-1-x-2 

The measurements briefly reviewed above do not answer the 

questionof what is the ground state order in FeCoi_C.e2 at zero 

temperature. They do show that in the uniaxial phase, for example, 

the arrangement of the spins in the ground state must be such that 

the net value of the uniaxial component of the spin is non-zero 

while the net value of the planar component is zero. This 

restriction can, however, be achieved in different ways. For 

example, all the spins, both for the Fe 2+ and Co 2+ ions, could be 

aligned along the c-axis. Alternatively, the spins could be canted 

from the c-axis in such a way that the planar components are random 

in size and direction, or only have very short range order. 

There is only one exact analytical solution for the ground 

state of a random anisotropy system. As is common in disordered 

systems this is the case of a single defect in an otherwise trans-

lationally invariant host. The case of a single Co 2+ ion in FeC 2  

and a single Fe 
2+ 
 in CoC 2  has been studied by Oguchi and Ishikawa 

(1977). These authors modelled FeCL.2  and CoC 2  as two dimensional 

ferromagnetS with classical SflS on a hexagonal lattice. Then, by 

exploiting the symmetry of the lattice sites surrounding the defect 
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Oguchi and Ishikawa constructed a difference equation for the cant 

angles of the spins, which minimised the Hamiltonian, at various 

equivalent distances from the defect. These authors then solved 

this equation using the cant angles of the defect and its nearest 

neighbours as initial conditions. Oguchi and Ishikawa calculated 

the exchange interaction between a Co 2+ and Fe 2+ ion by using the 

ansatZ (Cowley and Buyers (1972)) that it was given by the geometric 

mean of the exchange interactions in the pure systems. Then using 

this value and the values of the exchange interactions in the pure 

systems, Oguchi and Ishikawa showed that the solution was only 

self consistent if the single defect aligned itself in the same 

direction as the host. That is to say, a single Co 2+ spin in 
2+ 

FeC- would align itself along the c-axis and a single Fe 
S1fl in 

2   

C0C.e2 
 would align itself along the (1,2,0) direction in the a - b 

plane. 

Therefore, for small concentrations of either Co 2+ ions in 

FeCe.2  or Fe 2+ ions in CoC. 2  the ground states are expected to be 

complete uniaxial and complete planar order respectively. When 

the concentration i5 
not small, so that the single defect result is 

inapplicable, the situation is not so clear. Wiltshire (1981) 

has considered the stability of the ground states of complete 

uniaxial and complete planar order against the excitation of spin 

waves. This was done using the E.O.M. method described in the 

previous chapter. Essentially Wiltshire's method was to calculate 

S (q = 0, w) from the assumed ground state for various concentrations. 

The concentration at which a spin wave went to zero energy was then 

taken as the concentration at which there was a transition from the 

assumed groundstate, either all uniaxial or planar to the. mixed phase. 
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Wiltshire reported that spin waves were found to go "soft", from 

the uniaxial ground state at a concentration x = 0.79 and from the 

planar ground state at a concentration x = 0.57. These are both 

in very good agreement with the results of Wong et al (1980). 

It is, however, difficult to assess the accuracy of Wiltshire's 

calculations. The model of Fe x 1-x Co c2 2 used by Wiltshire was a 

three dimensional layered antiferromagnet with the nearest neighbour 

and next nearest neighbour exchange interactions calculated in the 

geometric mean ansatz. 	In the ground state with all the spins 

aligned uniaxially, Wiltshire took the value for the single ion 

energy D of the Fe 2+ ions to be the same as in pure FeC.e 2 , but in 

the ground. State with all the spins planar D. was set to zero. The 

only details of the computational method published by Wiltshire 

were the size of the lattice (10 x 12 x 14) and the energy resol-

ution which was 0.4 meV full width at half maximum. Further,to 

this, Wiltshire did not publish any diagrams of the lineshape he 

obtained. 

The use of the E.O.M. method to calculate spin wave energies 

in this context is questionable for two reasons. Firstly, since 

it is a q = 0 mode which is calculated finite size effects will be 

at their greatest. Since the next nearest neighbour exchange inter-

actions only have a small effect on the.spin wave energies, there is 

little to be gained from constructing a three dimensional lattice. 

A consequence of this construction is that the size of the lattice 

in the a - b planes, within which the exchange interactions are 

-'- 
strong, is small. Calculations of S (q = 0, w) by the author on 

lattices as small as 10 x 10 have shown considerable finite size 

effects. Further to this, Wiltshire's energy resolution of 0.4 meV 



-144- 

means that to reduce the noise term - to say. 5% he would have had to 

iterate the equations of motion for" 350 timestepS. This would have 

greatly accentuated any finite size effects. The second point that 

is questionable is that Wiltshire is attempting to calculate in the 

limit that w is becoming very small. The response at very small 

energies is dependent on the long time behaviour of the equations 

of motion which is inherently the most inaccurate part of an E.O.M. 

method calculation. 

1. 

5.3 Model for Calculations of S (q,w) for Fe Co Ce x—1 -x--2 

In order to use the E.O.M. method it is necessary to know the 

ground state of the system. The calculations presented in this 

chapter have been performed assuming that the groundstate in the 

uniaxial phase is one with all the spins aligned along the c-axis. 

Fe Co at has been considered to be a two dimensional ferromagnet 
x 1-x 2 

with nearest neighbour interactions only. 

The lattice size used was one of 6400 spins distributed as 

described in the previous chapter. The value of the parameter X 

(cf equation (4.3.15)) was chosen to be X = 0.8368 (rads. THz) 2  

which corresponds to an energy resolution of 2.0 meV full width 

at half maximum. A maximum energy for the spectrum of 12 meV was 

used for E 	along with ' a value n = 40 (cf equation (4.3.12)). max 

The equations of motion were iterated for 230 timesteps and 

S 
L.(q, w) calculated for values of w corresponding to the energy 

range 0 to 12 meV in intervals of 0.1 meV. 

The values of the exchange energies, single ion energy and 

_L
g 's used are given in table (5.3.1). 



Table (5.3.1) 

Exchange Parameters for Fe Co C.e Simulation 
x-1-x-2 

2 1 F 	= 0.97 meV, 2 J FF = 0.68 meV 

2 1 	 = 1.08 meV, 2 1 = 2.46 meVcc 

2 DF(SF - 	= 1.043 meV 

-I- 

= 3.20 	 1 	 = 6.00 

SF = 1.0 	 SC 	=0.5 
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5.4 Experimental Technique 

The spin wave spectrum of the sample of Fe 0 85C60 15cL.2  was 

measured by inelastic neutron scattering using the Pluto triple 

axis spectrometer at A.E.R.E, Harwell. A schematic representation 

of the spectrometer layout is given in figure (5.4.1). The mono-

chromator and analyser used were both pyrolytic graphite and 

neutrons were scattered from the (0,0,2) planes in both cases. A 

fixed final neutron wavevectOr of 2.67 A- 1 was used throughout the 

measurements and a pyrolytic graphite filter was mounted between 

the sample and analyser to suppress contaminant neutrons that would 

be scattered by higher order planes in the analyser. The colli- 

mationS used in the monochromatOr to sample, sample to analyser 

and analyser to detector positions were respectively 30', 30' and 

60'. Scans were performed in the constant Q mode for neutron energy 

loss. 

The sample of Fe0 85Co0 15ct2  was grown by Dr. T.E. Wood of 

the Inorganic Chemistry Laboratory, University of Oxford. The 

quoted concentration x = 0.85 corresponds to the concentrations of 

the constituents of the material at the start of the crystal growing 

method. The sample was aligned with its a* and c* hexagonal axes 

in the scattering plane and mounted in a standard CT-14 cryostat 

with liquid helium as the cryogen. Although the sample could be 

heated up from 5 K in the cryostat the temperature could not be 

measured accurately and it was not therefore possible to determine 

the concentration from the Neel temperature. 

The reciprocal space diagram for the scattering plane was the 

same as that shown in figure (4.22) and the measurements were 

performed about the (1,0,7) Bragg peak. These measurements were 

made along the line (1-h, 0, 7) for h in the range 0.0 to 0.5. 



Figure (5.4,1) 

A schematic representation of the layout of 

Pluto triple axis spectrometer for the measurement 

of the spin wave spectrum of the Fe 0 85Co0 15c.e2  

sample is shown. 
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Since Pluto triple axis spectrometer is a 'right-handed' spectro-

meter the reason for scanning in this direction was to focus the 

resolution function (Dolling (1975), p. 57)). The energy resol-

ution of the spectrometer was estimated from a Vanadium scan to be 

2.0 nieV. 

5_5 Results 

In figures (5.5.1a - g) are shown the results of constant Q 

scans at 5 K along the direction (1-h, 0, 7) for the sample of 

Fe0.85 Coo   15Ce 2 . In these figures the solid lines are the results 

of the E.O.M. method simulations and the dotted lines represent 

the background and quasi-elastic scattering. The overall scales 

of the lineshapes from the simulations have been adjusted by eye 

to give a 'best fit' to the experimental data. 

In figure (5.5.1a) which is at the zone boundary, the simulation 

result describes the observed spin wave very well, both in terms of 

the peak position and the lineshape. This IS also true in figures 

(5.5.1b) and (5.5.1c) which are the lineshapeS corresponding to 

values of h = 0.425 and 0.350 respectively. In figure (5.5.1d) the 

calculated lineshaPe although at about the right energy is not broad 

enough to fit the experimental data. Figure (5.5.1e) shows that at 

h = 0.20 the experimental lineshape has developed a double peak 

structure but the calculated lineshape only fits the lower peak 

and not the upper. In figure (5.5.1f) which corresponds to h = 

0.10 the double peak structure has become clearly resolved. The 

lower peak however, is beginning to be submerged in the quasi 

elastic scattering. The position of the upper peak has increased 

in energy from that in figure (5.5.1e). Finally in figure (5.5.1g) 



Figures (5.5.1a -g) 

These figures show the measured inelastic 

lineshaPeS for the Fe0 85Co0 15cL 2  sample at 5 K 

for various fixed wavevector transfers. The 

solid lines are the computed lineshaPeS using 

the Equation of Motion method, while the dotted 

lines represent the background level and the 

quasi-elastic scattering. 

Figure (5,5.2) 

A dispersion relation for the observed peak 

intensities in the inelastic spectrum of 

Fe0 85Co0 15C.2  is shown. The solid line is a 

cubic interpolation through the computed peak 

positions. 
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the zone centre scan is shown. The lower peak is now lost in the 

quasi-elastic scattering while the upper peak has continued to 

increase in energy. These results are summarised in a dispersion 

relation shown in figure (5.2.2).. The solid line in figure (5.2.2) 

is drawn through the calculated points by cubic interpolation. 

From figures (5.5.1a - g) and (5.5.2) it can be seen that the 

simulation results model quite well the lower mode in the spectrum 

but do not show any indication of the upper mode. 

'A number of points should be made for the 'authenticity' of 

this upper mode as a magnetic excitation, As far as it could be, 

the sample was checked to make sure it was a single crystal. There 

was certainly no '60 twinning' about the c-axis, as is common in 

this crystal structure (see for example Hutchings (1973)). Also 

there was no evidence of any clustering of the, c2+ ions. This 

would have lead to an (0,0,9) magnetic Bragg peak which was 

explicitly absent. 

The possibility that the upper mode was a phonon was also 

checked. This was done both by going to'a larger wavevector transfer 

and by changing the temperature. The intensity of a phonon should 

increase if the wavevectOr transfer is increased while the intensity 

of a spin wave should decrease because of the magnetic form factor. 

A scan was performed at the (2,0,5) magnetic Bragg peak position. 

At this wavevector transfer an excitation was found at the same 

energy as that at (1,0,7) but with a peak intensity which was only 

half that at (1 ,0,7). Although the temperature of the sample 

could not be measured precisely, it was possible to determine when 

the sample was above the Néel temperature by observing the 

magnetic Bragg peak intensity. A constant Q scan was performed 
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at the (1,0,7) position at a temperature above the Néel temperature 

and the upper mode excitation was observed to have disappeared. A 

phonon would of course have still been present and would have 

increased in intensity because of the Bose popilatiOfl factor. 

Apart from directly being a phonon there are two other ways 

in which phonons could have interfered with the measurements. 

Firstly, it is possible in FeCL 2  to have phonon_magnon hybrid-

isation (LoveseY (1974) 	
). This effect has been measured by 

ziebeck and HoumaflflS (1976) but is very small and 'is therefore 

very unlikely to have affected the measured spin wave spectrum in 

such a large way. The second po
ssibility is through magneto-

vibrational scattering (Marshall and LoveSey (1971), p. 233). 

This IS 
where a phonon mode can be observed through the elastic 

magnetic cross section because the magnetic spin is situated on a 

lattice site that is vibrating. Since the magnetic zone centre 

would then be a nuclear zone centre the upper mode would be an 

optic phonon. The number and symmetry of the zone centre optic 

phonons in CdCL.2  structure crystals has been calculated by Lockwood 

(1973). There are four optic phonons of which two are Raman 

active and two are infra-red active. The energies of the two 

Raman active optic phonons in Fe Co 1-xcL.2 have been measured by 

Lockwood et al (1982) for x in the range 0 to 1. At x = 0.85 the 

lowest of these two modes is between 142 and 159 cm- 1, much too 

high in energy to be the upper mode in figure (5.2.2). This holds 

true for the whole range of x. The energies of the infra-red 

active optic phonons for pure FeC 2  and CoCL 2  have been measured 

by Campbell and Vickers (1983). The energies of the lowest modes 

in these materials are respectively 201 and 213 cm 1 , again much 

too high in energy to be the upper mode in figure (5.2.2). 
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The upper mode in figure (5.2.2) can therefore only be inter-

preted as a magnetic spin wave excitation. 

5.6 Discussion 

A point not considered in section (5) which could have lead 

to a 'spurious' upper mode in figure (5.5.2) is the possibility 

of chemical ordering of the Fe 2+ and Co 2+ ions. This could not 

have been clustering of Co 2+ ions as discussed in section (5) but 

might be an anticlustering of Co 2+ ions. The existence of a two 

component structure to FexCoi_xC'e2 should have led. to new magnetic 

Bragg peaks. No new Bragg peaks were observed experimentally, 

although this could of course have been because the points where 

these peaks occurred were not checked out. In order to assess 

whether two component ordering could lead to an upper mode this 

possibility was simulated using the E.O.M. method. The lattice 

for the simulation was constructed in the computer so that the 

Co 2+ ions could only occupy alternate sites on one of the rect-

angular sublattices. This meant that every Co 2+ site was 

surrounded by 6 Fe 2+ sites. These sites were occupied randomly_ 

and the spin wave spectra calculated as before. This two component 

ordering did not lead to a new mode and only slightly changed the 

calculated dispersion relation. Although it may be possible to 

think of other combinations of Co.+ and Fe2+ sites which lead to 

two component ordering it is not felt by the author that these 

would lead to significantly different results. 

The upper mode in the spin wave spectrum of Fe Co 1-x
C.e2 

cannot therefore be explained on the basis of a ground state in 

the uniaxial phase with all the spins aligned parallel to the c-axis. 
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Also intuitively it would not be expected that a small amount of 

canting of the spins would lead to such an upper mode. A small 

amount of canting would be expected only to lead to a renormal-

isation of the spin wave energies and an increase in the width of 

the lineshape. The existence of this upper mode in the spin wave 

spectrum of FeCoi_C.2 therefore suggests that there is a consider-

able canting of the spins at a concentration x = 0.85, in the 

uniaxial phase. 

As mentioned in section (2) Wong et al (1983) have recently 

proposed a new model for the Hamiltoniari in FeCoi_C.e2 in order 

to explain their results on the magnetic ordering. It has so far 

been assumed that the exchange interaction between the magnetic 

ions could be adequately represented by equation (1.2.3) . However, 

it is known that in systems where the orbital angular momentum is 

not quenched by the crystal field a more complicated interaction 

can arise (Elliott and Thorpe (1968)). The Fe2+ and Co 2+ ions in 

FeCoi_CL.2 are of course examples of ions with unquenched orbital 

angular momentum. Therefore Wong et al (1983) have suggested that 

the Hamiltonian for Fe 	 2 x 1-x 
Co CL. should include terms of the form 

- 	- Z K. . (r. .,S.) (r. ..S.) + G. . r. .. (S. x S.) 
	 (5.6.1) 

- - 
	

1] —13 -1 -1 J •-J 	1 J 7-13 	-1 —J 

where r.. is a unit vector pointing from site i to site j. In 

Pure FeCL.2  or C0CL.2  these terms would be absent by symmetry but 

in Fe Co CL. the local symmetry is broken by the site disorder. 1 	2   

The effect on the phase diagram of FexCoi_xCL.2 of including 

equation (5.6.1) in the Hamiltonian has been considered by Wong et 

al within the molecular field approximation. The terms in equation 
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(5.6.1) lead to random molecular fields which destroy the sharp 

second order phase transitions between the mixed phase and the 

uniaxial and planar phases. The effect of terms such as those in 

equation (5.6.1) on the spin wave spectrum is unknown. If these 

terms do exist in the Hamiltonian for Fe x 1-x 2 Co CL then the ground 

state can never be one of either complete uniaxial or complete 

planar order. 

The future calculation of the spin wave spectrum for a random 

anisotropy system therefore requires the ground state to be deter-

mined first. If the spins in the system are treated as classical 

spins then it is possible to find the ground state of a finite 

size model on a computer using the method devised by Walker and 

Walstedt (1980). The spin wave spectrum may then be calculated 

in a qualitative manner by using the classical equations of motion. 

It should be possible from such a simulation to determine whether 

an upper mode in the spin wave spectrum 9f FeCoi_CL2 can be 

generated either by a large canting of the spins or by including 

terms such as those in equation (5.6.1). It is hoped that it will 

be possible to carry out these simulations in the future. 
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APPENDIX A 

Data Analysis Methods 

i) Introduction 

It is the purpose of this appendix to describe the methods 

referred to in Chapters Two and Three to analyse the experi-

mental data collected. For the experiments described in Chapters 

Two and Three the aim of the data analysis was to vary the para-

meters governing the structure factor to find the 'best fit'. 

The 'best fit' is defined to be the set of parameters which 

minimise the function X2  given by: 

(Iobs 	calc 2 
11 	-I. 

X2 

- (ii:k) 	cY 

where i labels the data points in a scan, N is the number of data 

points, 1obs are the observed intensities which have standard 

deviations a. and 1calc is the calculated intensity which has k 

adjustable parameters. Estimating the values of the parameters 

by minimising X2  is known as the Method of Least Squares (Frodesen 

obs 
et al (1979) p. 259) . If the observed intensities I 	 are each 

distributed about their mean values with standard deviation a, 

by a Gaussian distribution function, then minimising X2  is equiv- 

alent to maximising the likelihood (probability) of having observed 

the set of intensities 1obs (Frodesen et al (1979) p. 261). The 

definition of X2  equation (A.i.1) is not in general equivalent to 

the usual statisticians definition of the chi-square variable 

(Hoel (1971) p. 228). However, in a number of limiting cases X2  

can be shown to be a chi-square variable (Frodesen et al (1979) 
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p. 285) and it is common in the literature to refer to the values 

of X2  as the 'chi-square values'. In Chapters Two and Three refer-

ence to chi-square values, in fact referred to the values of X2  as 

defined by equation (A.i.1). 

The factor N - k in equation (A.i.1) is a normalisation factor. 

If the calculated intensity in equation (A.i.1) depends linearly on 

the adjustable parameters then the expectation value of equation 

(A.i.1) is one. When the calculated intensity depends non-linearly 

on the adjustable parameters the expectation value cannot be eval- 

calc 
uated exactly. However, if the functional form of 1 

	and the 

best fit estimate of the adjustable parameters provide a good 

description of the observed data then 1calc may be replaced by 

its tangent plane and the expectation value of equation (A.i.1) 

is then one as in the linear case. The value of X2  has the 

physical interpretation that it measures the mean variance 

(normalised) of the observed values from the calculated values. 

The value of X2  is therefore used as a goodness of fit test where, 

since the expectation value of X2  is one, values of X2  less than 

two are taken to indicate a good fit between theory and experiment. 

A value of X2  less than 2 indicates that "-. of the observed values 

are less than 1.4 standard deviations from the respective calcul 

ated values. 

Since the mechanics of minimising X2  requires a large amount 

of numerical work, the process is carried out on a computer. In 

the following five sub-sections the methods underlying the computer 

programs that were written to do this in various circumstances are 

described. The methods for calculating the best fit parameters are 

contained in subsections (ii) to (iv) and the methods for calculating 
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the 1calc for ChapterS Two and Three given in subsections (v) and 

(vi) 

Subsection (ii) contains the method of solution for the situation 

where the 1calc depends linearly on the adjustable parameters. The 

results of this section were used in writing the programs LINFIT 

and ABFIT. In subsection (iii) Newton's method of solution for a 

set of non-linear equations is described. This method is used in 

subsection (iv) in the solution for the case where 1calc depends 

non-linearly an the adjustable parameters. In subsection (iv) the 

results of the previous two subsections are combined to describe 

the method of solution used when the calculated intensity depends 

non-linearly on the adjustable parameters. This was the method 

used in the program RB2FIT referred to in Chapter Two and the 

FITIT6 program referred to in Chapter Three. 

The methods described in subsections (ii) to (iv) do not 

depend on the explicit form for 1calc, only on whether it depended 

linearly or n
on-linearly on the adjustable parameters. The calcul- 

caic 
atlon of the I. 	

from a given form for the structure factor there- 

fore takes place in a separate subroutine in the fitting programs. 

This calculation is not, however, as simple as it might seem since 

the observed intensity is the convolution of the structure factor 

with the resolution function. This means that the calculated 

intensity applicable to Chapters Two and Three is given by the 

convolution integral: 

1calc (Q)= 1dt R(Q., T) S(Q + 	
(A.i.2) 

—i ) 

where Q. is the wavevector transfer for the i data point, 
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R(Q., i.)-is the  resolution function and S(Q. + - t) is the structure 

factor. It is common in general fitting programs, available at 

such institutions as the I.L.L. for example, to perform the inte-

grals in equation (A.i.2) numerically by summing over a three 

dimensional mesh. There are two problems with performing the 

integrals applicable to Chapters Two and Three in this way, (1) it 

would take an 'exceptionally large amount of computer time (prohibit-

ively so) and (2) if the mesh size is compromised to account for (1) 

systematic errors will be introduced into the estimated parameters. 

In subsection (v) and (vi) the methods for performing the integrals 

in equation (A,i.2) for the structure factors used in Chapters Two 

and Three are described. These methods overcome problems (1) and 

(2) by performing some of the integrals analytically and hence 

only summing over a reduced mesh. Subsection (v) is applicable to 

both chapters and describes how the integration over the vertical 

component of the resolution function can be done. This result is 

extended in subsection ,'M.. - ) to show how, in a certain limit, the 

integration over the longitudinal component of the resolution 

function may also be done analytically. Subsection (vi) is only 

applicable to some of the results in Chapter Three. 

ii) 	Linear Regression 

If the form for the calculated intensity is such that it can 

be written as 

1calc = 

	

 
i 	m 1 m xi 

 
=m 

where X is the. th independent ndependent variable for data point 1 and 
IM 

m isan adjustable parameter, then equation (Ai.1) can be 

minimised exactly in one step. The set of calculated values 
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corresponding to the observed values can be written in the matrix 

notation: 

calc = 	
(A. ii. 2) 

where ca1c is an (N x 1) matrix containing the calculated values, 

p is a (k x 1) matrix c
ontaining the adjustable parameters and x 

is an (N x k) 
matrix containing the independent variables. Then, 

with the definition of two more matrices, jobs an (N x 1) matrix 

containing the observed values and V an (N x N) diagonal matrix 

holding the variances of the observed values, then equation (A.i.1) 

can be written as: 

X2 = 	( 10b5 - 1calc ) T _1 (10b5 - 1calc) 	 (A.ii.3) 

N  

Then the set of parameters which minimise X2  will be the solutions 

to the equations 

() dp = 0 	
(A. ii. 4) 

= E  ap 

If equation (A.ii.2) is substituted into equation (A.ii.3) then 

the set of equations (A.ii.4) can be writtenaS 

- 	I
T -1 -obs 	-T --1 - - - 	 (A. ii. 5) 

-2(x V 	- 	xp) xV 	- 

where 0 is a (k x 1) matrix of zeroes. The solution to equation 

(A.ii.5) is then: 

- 	-T --1 - -1 - -- -obs 	 (A.ii.6) 
p =.(x V 	x) 	xV 	I 
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This solution minimises the value of X2  as can be shown from the 

values of the second partial derivatives of X2  with respect to the 

adjustable parameters: 

(x. )2 im 

	

2 E 	> 0 for all m 

m 	1 

(A. ii. 7) 

Since there exist uncertainties in the observed values there 

will be correspondingly uncertainties in the estimated parameters 

given by equation (A.ii.6). In order to calculate the effect of 

the uncertainties in the observed values, which are denoted by 

obs 5I. , on the estimated parameters a Taylor expansion is performed 

about the values of the estimated parameters such that: 

A 	 m 	61obs  
p 	 + higher order terms 	 (A.ii.8) PM  Pm = m + 	obs v iI. 

1 	p 

where the p are the estimated parameters given by equation (A.ii.6). 

In this case where the dependence is linear the higher order deriv-

atives are zero. The next step is to consider the co-variance 

between the parameters p 	
th 

and p which forms the (m,n) 	element 

of the co-variance matrixV(p), The element V(p) is given by: 

2  
V () = E Em - 	n - n1 = z ( 
	c.( 0 ) 

mn i 	I. 

(A. ii. 9) 

where E [ denotes an expectation value and the result for 

uncorrelated data that E[6I?b5. 61obs1 = 	S. 	The derivatives 
1 	3 	.J 	1 iJ 

in equation (A.ii.9) can be performed by noting from equation 

m 	 th 
(A.ii.6) that (-) is the (m,i) 	element of the matrix S = 

1obs 
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(T J
l  ) 1xV 1  Equation (A.ii.9) may therefore be written in 

the matrix form: 

V(p) = 	
= ( T -1 ;1 
	

(A. ii. 10) 

The uncertainties in the estimated parameters are calculated from 

the matrix V-(p) by taking the square roots of the diagonal elements. 

This last step can be given a more physical interpretation by noting 

from equation (A.ii.9) that the square roots of the diagonal elements 

of V(p) are given by: 

6pm = fV()' = 
mm 'Pm 
	c2 

3 obs 
(A. ii. 11) 

which is the result that would have been obtained by. considering 

the pm 
 as functions of the variables 1obs and using the method of 

small changes (Squires (1976) p. 37) 

The results of this subsection have been used in writing the 

computer programs LINFIT and ABFIT. The LINFIT program performed 

obs 	caic 
a straight line fit whereby the I. 

1 
and I 1.  . 	were replaced by the 

bs 	caic 
general dependent variables y.

o  and y. 	• All the straight line 

fits that were reported in the earlier chapters were done using 

this program. 

In subsection (vi) when the evaluation of the 1calc for the 

Mn 650 
35F2  data described in Chapter Three is discussed, it will 

be shown that the 1calc in this case depends linearly on two adjust-

able parameters A and B and non-linearly on two others K and q. 

The ABFIT program performed a fit to some of the Mn0 65Zn0.35 F 

data in a special limit where K was fixed to zero and q determined 

caic 
independently. In this situation the I. 	is only linearly 
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dependent on the remaining adjustable parameters and the above 

results can be applied. The two independent variables in this 

case were functions of the reduced waveveCtor transfer of the 

.th data point in the scan. 

iii) Newton's solution for non-linear equations 

This subsection deals with the method of solving a set of 

n non-linear equations which depend on n_variables. The solution 

of such a set of equations is necessary for minimising X 2  when 

caic 
I. 	depends no

n-linearly on the adjustable parameters. The 

equations are written in the form: 

f (a ....a ) = 0, for m. =  1 to n 
 

n 

where the f are the n nonlinear equations and the a's are the 

n variables. Then assuming that an approximate set of solutions 

exist which are 'close' to solving equations (A.iii.l) then the 

values of the functions for nearby values of the variables can 

be found from a Taylor expansion: 

n 
(-2)(a.-a.)+ 

m I 	n 	m 1 	n 	
a. 	i 	. 

i=l 	1 

(A.iii.2) 
higher order terms 

If the Taylor expansion is truncated above the linear terms, then 

these equations can be written in a matrix formalism 

= F(a) + 	- a) 
	 (A. iii. 3) 

where F is an (n x 1) matrix with the values of its elements given 

n (n x 1) matrix with its 
by the functions f (a 11 ...a)i a is a  
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elements given by the values of the variables and ID is an (n x n) 
af 

matrix with its elements D given by derivatives (—s-). The 
MI 	 aa. 

1 

equations (A.iii.3) are an approximation to the equations (A.iii.1) 

which can be solved exactly. The solution is 

V = ' 
	

( a') 	 (A.iii.4) 

Since equations (A.iii.3) were only an approximation to (A.iii.1) 

the solutions given in equation (A.iii.4) are only an approximate 

solution to the equation (A.iii.1). However, if the conditions 

are right, the a' are a better approximation than the a and the 

solutions to equations (A.iii.1) can be found by successive approx-

imation. This is done by turning equation (A.iii.4) into an 

iteration formula 

= 	 ' 	(a - _l  (a) F 	V) (A. iii. 5) 

where v labels the iteration. The iteration stops when the 

variables satisfy equations (A.iii.1) up to some preset numerical 

accuracy. 

The convergence of equation (A.iii.5) to the solution of 

equations (A.iii.1) is unfortunately not guaranteed. There are 

a number of problems that can arise, (1) there could be a 

number of solutions to the equations (A.iii.1) or, (2) there 

could be a maximum, minimum or saddle point of the functions 

between the starting values and the solutions. There is not a 

general method for overcoming these problems except for finding 

a set of starting values that is sufficiently close to the 

solutions that problems (1) and (2) do not matter. The choice 

of the starting values therefore relies heavily on a knowledge 

of the Physics behind the equations (A.iii.1). 
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iv) Nonlinear regression 

The set of parameters which minimise X2  as given in equation 

(A.i.1) are the solutions to the equations (A.ii.4). If the 

dependence of I. calc on the adjustable parameters is non-linear 

then the equations resulting from (A.ii.4) will be .a set of 

coupled non-linear equations given by: 

	

(1obs - 1calc ) 	1calc 

	

x2 	_____________ 

	

2 E 	 (_p 	
= 	 (A. iv. 1) 

ap 

	

m 	i 	i 	 m 

If the identification 	 = (s-) is made then the 

method of solution for equation (A.iv.1) was that given in sub-

section (iii). The solution is found by iteratively solving the 

equation: 

= 	- D(p) F(p) 	
(A. iv. 2) 

where the elements of the matrix D are given by 

	

1ca1c 	1calc 	(1obs - 1calc ) 21calc 

1 	i 
D(p) =

= 	m 	 - 
a.  

Pm n 

(A. iv. 3) 

and the elements of the matrix F are given by: 

(1obs - 1calc ) 	1calc 

F(p) =E 
M m 

(A. iv. 4) 

The solution given by equation (A.iv.2) will minimise X2  if the 

matrix D is positive definite as can be seen from equation (A.iv.3). 

There is a further approximation that is made which greatly 

simplifies the implementation of the solution. The second derivatives 

in equation (A.iv.3) are weighed by the residual values which 
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should, on average, be small; Consequently, the second 

derivatives in equation (A.iV.3) are therefore dropped leaving only 

the need to calculate the first derivatives of the calculated 

intensity to obtain the elements of F and D. This is known as the 

Gauss approximation (Bard (1974) p. 96). The Gauss approximation 

has a physical interpretation which is very useful in 
evaluating 

the uncertainties in the estimated parameters. In dropping the 
caic 

second derivatives in equation (A.iv.3) the function i. 	
has 

effectively been replaced by its Taylor expansion truncated after 

the linear terms, i.e. 

caic 

caic 	k - 	31 
1CalC(I) 	1 	) + 	(, - p) 	

(A.iV.5) 

m=1 	 m 	p 

If this is substituted into equation (A.i.1) and the identifications 
 

caic 
(1obs - 1calc())+ i?, (i-) -* Xim and (p1 - 	

m are made 

then the result is the linear regression problem of subsection (ii). 

However, since equation (A.iv.5) is an approximation so the 

solution to this equivalent linear problem will only be an approx 

imate solution which must be iterated to find the non-linear 

solution. The solution of the non-linear regression problem 

using the Gauss approximation can therefore be considered as a 

multiple linear regression (Bard (1974) p. 99). The identification 

of the non-linear problem at each stage of the iteration with a 

linear problem means that the identification 

-T--1 - 	- 
x V 	x 	D 	

(A.iv.6) 

can be made. Therefore the uncertainties in the estimated para-

meters is found from equations (A.ii.9), (A.ii.lO) and (A.iv.6) 

to be the square roots of the diagonal elements of the co- 

variance matrix given by: 
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V(p) = 
	 (A. iv. 7) 

when the iteration has converged to the non-linear solution. 

v) Evaluating the calculated intensities 

T11e previous subsections have described how given a set of 

calculated intensities which depended on a. set of adjustable para-

meters the best fit parameters could be found. This subsection 

and the following one deal with the evaluation of the calculated 

intensity from equation (A;i.2) .for the structure factors considered 

in Chapters Two and Three. In Chapter Two the structure factor was 

given by: 

	

S(q) 
=- 	+ K 2 . 

	 (Ai v.1) 

where q is a two dimensional reduced wavevector and the adjustable 

parameters are %, K and A. The structure factor considered in 

Chapter Three was given by: 

A 	 B 
S(q) 

= q) 2  + K2 + [(a - o ) 2  + K2 ] 2  
(A.v.2) 

which differs from equation (A.v.1) because the reduced wavevector 

is now three dimensional and the Lorentzian squared term has been 

added with an adjustable parameter B. The Lorentziafl squared term 

can be written as the derivative of the Lorentzian with respect to 

K, in the form: 

1 	- - 	 1 	 (A.v.3) 

La - q) 2  + K232 - 	2K 3 	a - q-0 

)2 + K 2 
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and therefore, in principle, if the integration of the LorentZiafl 

over the resolution function can be performed then so too can the 

integration of'the Lorentziafl squared by differentiation under the 

integral sign. 

The calculation of equation (A.i.2) depefldS on the form of 

the resolution function as well as the structure factor. The 

complete forms for the resolution functions are given for each 

case in Chapters Two and Three. However, it will suffice for 

this subsection to note that the resolution functions can be 

written in the form: 

R(t, T, T 	 x z 	p 
) = R ('t , r 

y 
 ) . R (t 

V Z 
(A.v.4) 

	

where T1  T are the in-plane and 	the out of plane components 

of the wavevector,afld then to assume a functional form for R(i). 

The decoupling of the vertical component of the resolution 

function R(r) from the in-plane component R(T, T y ) is.a well 

known result (Cooper and NathanS (1967)). Therefore equation 

(A.i.2) becomes: 

1calc 	- I dTdT dt R (t 	T ) R ( ) S (q 	- q + t , T , T 
x y z px y v z 	-xi 	o 	x y  z 

(A. V. 5) 

where the direction in which the scan is performed is 

arbitrarily labelled x. 

In a general fitting program equation (A.v.5) would be 

evaluated numerically as a summation over a three-dimensional 

mesh with the result that: 

n 	n 	n 

calc 	
_x 	 Z 

(q) = dx dy dz 	I 	I R (rdx, sdy). R (tdz) 
r :-n 	-n L:-n 	

V 

x 	y 	z 

S(q. - q + r dx, S dy, t dz) 	 (A.v.6) 
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where dx, dy, dz are the finite step sizes for the mesh and the 

limits of the integration are ± n dx, ± n dy and ± n dz. The 

derivatives of 1calc(q) with respect to the adjustable para-

meters 	(K, 
q, A, B) are then usually evaluated by finite 

differences using the approximation 

caic 	 caic 
1calc 	 ajp + 	- I 	 - P.) 

+ O(Sp.) (A.v.7) 
b- 	 (q,P) 	 2 &p 

and equation (A.v.6) to evaluate the 1calc on the right hand 

side of equation (A.v.7). A general fitting program using the 

results of subsection (iv) and equations (A.v.6) and (A.v.7) is 

therefore almost oblivious to the functional forms of the resol- 

ution function and structure factor since these are calculated 

in function subroutines which contain only a few lines of computer 

program. The price that is paid for this general applicability is 

the relatively large amount of computer time required. The 

requirement that the time taken by the fitting program should 

not be too great is perhaps more important than it would seem. 

As pointed out in subsection (iii) and (iv), the starting values 

for the adjustable parameters should be reasonably close to the 

best fit values to ensure convergence. The choice of starting 

parameters therefore requires a degree of human judgment based 

on the values obtained from the data analysis of previous scans. 

It is c
onsequently not possible to simply 'load up' the computer 

with batch jobs and leave it to get on with them. Thus, a 

relatively fast 'turn round' of batch jobs is required. A general 

fitting program which takes of the order of an hour to run would 

have a turn round time of many days on the presently overcrowded 
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ERCC ICL 2900 computers. The need to reduce the amount of computer 

time the fitting program takes to run to the level of a few minutes 

is therefore of great importance. 

The rest of this subsection shows how from a knowledge of the 

functional forms for R(t) and S(
q)eqatiofl (A.v.5) may in part be 

integrated analytically and how the derivatives with. respect to the 

adjustable parameters may also be done analytically. The first 

step is to write equation (A.v.5) as: 

caic 
:(q.) 	 E 	dx. dy. R(r dx,sdy)) i() 	

(A.v.8) 

r=n 	s=fl x 	Y 

where 

I  v 
()

= f R V 
(T Z ) S(c, ¶ Z 
	z 
)dT 	 (A.v.9) 

and 4 	= v'(q - q 
o 

~ r dx)' + K--for S(q) given by equation (A.v.1) 

and = - q + r dx)2 + 	(S dy) 2  + K 2 ' for S(q) given by 

equation (A.v.2). The integral Iv() can be done exactly for the 

structure factors given in equations (A.v.1) and (A.v.2) and 

the functional forms for R(tz) given in Chapters Two and Three. 

Equation (A.v.8) therefore only requires a summation over a two-

dimensional rather than a three dimensional mesh and reduces the 

number of summations (computer time) by ".. 2n 
z 

The structure factor applicable to Chapter Two is equation 

(A.v.1) and the functional form for R(T) is a Gaussian given by 

R (T ) = 	- exp( 
 

-  

V Z 
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where a is the standard deviation, which is 0.425 of the full width 

at half maximum. Therefore, in this case, equation (A.v.9) is given - 

by (Abramowitz and Stegun (1964) P. 302), 

-r 2  /2a2 	 02 

A 	e 	 1T 	
erfc(---) 	 1) 

z 	 A 

v 	 2 + 0 	dr = .j. 
1 
 . e 2o 
	 (A.v.1 

-. G - Z 

The appearance -of three functions in equation (A v.11), the 

exponential, the complementary error function and the square root 

in evaluating 4), does not slow down the program by as much as 

removing the z summation speeds it up. A comparison of the use of 

equations (A.v.6) with n = 10 and equation (A.v.8) using equation 

(A.v.11) in the fitting program RB2FIT showed a reduction by a 

factor of ' 5 in the computer time taken. The next step is to 

calculate the derivatives of 1calc with respect to the adjustable 

parameters which are in this case, A, K and q. Since these para-

meters are all contained in equation (A.v.11) it suffices to find 

the derivatives of (A.v.11) with respect to A, K and q and then 

the sum of these over the x - y mesh as in equation (A.v.8). The 

derivative of (A.v.11) with respect to A is very simple because 

of the linear dependence of 1(4)) on A and hence, 

31 v 
	tir 	1 	4)21202 	

---) 
TA (4)) = 	 e 	erfc (

Jiizi 

(A.v.12a) 

The dependence of 1(4)) on K and q is through its dependence on 4) 

and the derivatives of 1(4)) with respect to K and q can be 

obtained from the equations: 



and 

91 A 	+ 	 er 
2 	2 

v 	 fc — --)e = 	 2 	2 
(A. V. 12c) 
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91 	 91 	 91 	 (q... — q + rdx) 31 
V 

= - -W  () and 	() = — xl 
	 - 	() 

(A.v. 12b) 

The effect of calculating these derivatives analytically and 

summing them over the x — y mesh in equation (A.v.8) at the same 

time as I() reduces the computer time taken by a factor of nu 7. 

In Chapter Three the structure factor used was equation 

(A.v.2) and as a consequence the integral i() is written as: 

1() = A. 	— B - 	
9 

 
(A.v.13) 

where the integral IL(4) is given by: 

I 
Rv z 

(T ) 
I  

= 	z 	2 dT z 
z 

(A.v. 14) 

with $ = 	
—q + r 	2 + ( s dy) 2  + < 2  and use has been made 

of equation (A.v.3) in incorporating the LorentZiafl squared into 

equation (A.v.13). The functional form of R(T) in Chapter Three 

is that of a triangle given by: 

QV 	QV 
	I T z I < 

(A. V. 15) 
R (T 
V Z 

Eel 
	

I TI > 

where Qis the full width at half maximum of the triangle. 
v  
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Hence, the integral IL() is given by: 

f 	1  2 	V ,) 	 -1 

IL 	= 	_-- di 
	Tan ( ) - 	Log (1 + (

7 )2) 

Q 	e z 	 4,  

vj
z 	 v 

0 	 (A. V. 16) 

The derivative of I(4,) with respect to K can be done using the 

chain rule such that: 

3'2K 	-1 
(4,) = - 	= - 
	

Tan (-i) (A.v. 17) 

and therefore equation (A.v.13) for 1(4,) can be evaluated as: 

I (4,) = ( 2A + 	)(Tafl1()) - A Log e 
 (1 + 

( V)2) 	 (A.v.18) 

v 

The derivatives of 1(4,) with respect to A and B are therefore 

given by: 

31 v 	2 	QV Log (1 + 
v 	

()2) 	 (A.v.19a) l 
= 	Tan 	 e 

31 	1 	-1 QV 	 (A.v.19b) 
Tan 

B 

and the derivatives with respect to K and q given by equations 

(A.v.12b) and: 

3B 1  3'  1  
(2A + 	)(Tan (i) 	

(A.v.19c) ) - ( B 3)( 	 2)  
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(vi) Evaluating both vertical and longitudinal convolutions 
 

analytically 

In the experiments described in Chapter Three, the resol- 

utiofl function  R(Ti t, 
r) decouples to an even greater extent 

than equation (A.v.4) and can be written as, 

R(T X T 
Y 

, 	, T z ) 	= R 
T 
 (t 

 X 
 )..R L (t 

y 
 ). R 

V' (T z ) 
(A.vi.l) 

where the labels T and L refer to the transverse and longitudinal 

directions discussed in Chapter Three. This subsection shows how, 

given equation (A.vi.1) and a triangular form for RL(Ty) that 

equation (A.v.8) may be further integrated analytically to give 

the result: 

nx  
1calc(q) = dx. RT(r dx) IL(4)) 	

(A. vi. 2) 

r=-n 
X 

where 

= 	R (T ) 	I () d T 	
(A.vi.3) 

IL ( J)) 	L y 	v 	y 

with I() given by equation (A.v.18) and 	= T2 + 

whereby i = IT 	- q + r dx) 2  + K 2 . In order to perform the 

integral IL(1P) some of the terms in the integrand are replaced by 

a power series expansion which is integrated term by term. The 

radius of c
onvergence for this expansion sets a limit to the use 

of equation (A.vi.2) rather than equation (A.v.8). It will be 

shown later that the series converges if i 	I 	- Q, where Q 

and Q are the full width half maxima of the vertical and longi-

tudinal components of the resolution function. However, in 

practical terms the use of equation (A.vi.2) ceases to be 
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advantageous if i1) > 0.6vi because of the large number of 

terms that must be included in the power series. Equation (A.vi.2) 

is therefore very useful if K 
is small, since the range over which 

an experimental scan is appreciably different from the background 

level will satisfy this condition. The advantage in using equation 

(A.vi.2) in such circumstances lies not just in time saving, but 

also in a greatly improved accuracy. Since with the vertical 

and longitudinal integrations done analytically the step size for 

the numerical integration in the transverse direction can be 

considerably reduced. 

Therefore if the longitudinal component of the resolution 

function is given by: 

It I 

J - 	 I •Ty I 

RL ( y)  = 	
L 

T 	

(A.vi.4) 

T I>Q y 	L 

then the integral 
 IL(l1)) given in equation (A.vi.3) is: 

I 	 ________ 
2A1 	 ty 	2 	-1(v 	)- Tan  

	

d t (1 	 ________ - ç) L 
2 +11)2 T 	+ 

0 	 y 

	

+ 	2 + t 2 ) - 	Log (1 2  + 	 + 
Log 

Q 	e 	 Y 
V 

1L ty 	______ 

	

d(1 	
1 	 _______ - 	

L 	
+ 11)2 ) 3/2 

Tan 	
(V 

t 	
)] 

QLJ 	
y 	L 	Y 

0 

(A.vi.5) 

The evaluation of equation (A.vi.5) requires a total of ten 

integrals to be performed, of which eight can be done analytically 
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and two must be done by power series expansion. These integrals 

are labelled with a notation i which refers to equation (A.vi.5),
MN  

where M = L or LS for an integral which contributes to the 

LorentZiafl or LorentZiafl squared components of equation (A.vi.5) 

and N numbers the respective integrals from left to right in 

equation (A.vi.5). 

The integrals which contribute to the Lorentzian component 

are considered first. The integral 'L3 is given by: 

1QL 
T 

	

'L3 = 	
(1 - -) Loge 	+ P2)dT 	 (A.vi.6a) 

v) 	
e y 

0 

(QL 	 (L 

	

- 	I Log 
[ + T 	 1 I 	Log 	+ () 2 dTy  - 

	

- 	
j 	e 	

(Y)2J dTy  - 	
J 	y 	e I 	1P 

V 0 

QL 
T 

Log (iv) 	(1 - -)dt 	 (A.vi.6b) 
e 	

0 	QL 

= 
QL 

r() (Log [i+( 2]2 2 Tan 1  (f)] - 2Q 

I(1 + ()2) (Log [ + ()2] - 1) + 1]- 	Log()  QV 	
e 

where the results 

li-b2  
b 

Log (1 + x2 )dx. 	 dz = 41 	Log(Z) 	
- (Log(z) - 2) + = 

Ja 	 ul+a2 

2 Tan '  (/z -I'  ) 1 1+b2 	 (A.vi.7a) 

j 11-a2 

which is given on page 204 of Gradsteyn and Ryzhik (1965) and, 
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b 	
b 

X Log (1 + x2)d = 4 ge 

a 	

[(1 + x 2 ) (Lo(i 	x2
) 

have been used. The integral 'L2 is the same as 1L1. but with 

replaced by I+ ii 2  and therefore I is given by: 
v 	 L2 

1L2 = 	L 
(1 - 	Log (T' + Q2 + 2)dT 	 (A.vi.8a) 

	

/+ij,2 	
v  

(Loge  [i + - 	+ 2 2) +2. 

Tan 	
L 	)1 	

+ )2) 	Q2 

e 

	

+ 	J 
- 2Q 	L 	L 

(1 
+ 	

2)  (Log 

2 
L 1 	Q 	 _______ 

+ ij - 	Log( I _+) 	 (A.vi.8b) 

	

L1 + (Q7 + 
2 	1) 

The integral 'LI. given by: 

	

JQL 	T 	 Q 
I = 2 	(1 - 1) Tan1(_V 	_______ dT 	 (A.vi.9) 
Li 	 L 	JT 2 + 2  /T+P2 	

y 

must be split into two parts I 	and I 	which separate the 

terms in the triangle. Thus, the integral I 	is given by Ll 

	

= 2 JQL 
	

Tan 1 ( 	) 	
1 	dT 	 (A. vi. lOa) 

y 
/+ 	fr,+i'  

' /+i 

2 Q 	I V 	 Tan1(z) I  

	

dz 	 (A. vi. lOb) 

+ 

	

2 Q 	. 	1 	1 + 2 1 

	

v 	Tan _(z)  
2 

= 	L 	I 	z 	2 	e 	z 	jv 	

(A.vi.lOc) 
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where in going from equation (A.vi.lOa) to (A.vi.lOb) the 

substitution z = Q//'r, 
	was used and the integral (A.vi.lOb) 

is given on page 210 of Gradsteyn and Ryzhik (1965). The 

remaining integral for the LorentZian component is I 	and it is Ll 

given by: 

QL 	1 	-1 _______ 

	

= 2 j Jt2 ~ 	2' 
Tan (_______ ) di 	 (A.  Vi. lla) 

Ll 	
o 	y 	

p' 

	

di 	 Tan-1 ( t2 + 
Y 	21 	di 	 (A.  vi. llb) = 

JQL 

	

 + - j 	+ 	 Y 
o y 	 0 	Y 

where the result Tan1(1/) ='2 - Tan (x)has been used in going 

from (A.vi.11a) to (A.vi.11b). The first integral on the right hand 

side of equation (A.vi.11b) can be done using the substitution r = 

ijSinhG. However, the second integral on the right hand side of 

equation (A.vi.11b) cannot be done in closed form and therefore it 

is necessary to expand the inverse tangent as a power series and 

integrate term by term. The Taylor series for Tan - 

1 
an 1  (x) can be 

written as: 

- 
Tan1(x) 

= 	

dx  J 1 + x2  

CO 

1  E (1)m Jx2m  dx = 
m=o 

CO (1) m 2m+1 
x 

2m + 1 	' lxl<i. 	(A.vi.12) 
M=O 

where the term by term integration is allowed for IxI< 1  since the 

binomial expansion of the integrand satisfies the condition for 

uniform convergence (Arfken (1970) p.  256). In equation (A.vi.11b) 

it is the power series expansion for Tan 1 (x)/x that is used, which 

can be shown to be uniformly . convergent for IxI<j. 	Hence, if 
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equation (A.vi.12) is substituted into equation (A.vi.ilb) the series 

may be integrated term by term, which if the substitution y = Yry  

is made gives: 

¶ Sinh

00 (U rn  ()2m+1 J 	(1+Y2) m . dY 	(A.vi.13a) 

Li 	

L) 	
2 E 2m+1 	Q = 	 ( 	- 

rn=o 	v 

m 
2 	(1)m (ip)2rn 	

Cfl 	L 2n 
= 	Sixth () - ( 	 (2m+1) Q 	 n+1) 	

(A.vi.13b) 

	

rn=o 	v 	n=O 

M.I. 

where m  C is the binomial coefficient  n 	 (m-n)n 

The convergence properties of the summation on the right hand 

side of equation (A.vi.13b) need to be considered since they 

determine the usefulness of this result. If the mt term in the 

summation over m is denoted as S m 	 m then the magnitude of S is such 

that: 

2 + Q2  
Is m 	2m +l l< 	

1 _I) 
( 	2 

(A. vi. 14) 

Since the summation over m is an alternating series, the series 

converges by the Leibnitz criterion (Arfken, (1970) p.. 250) if 

< J 	. The range of ji for which the series result is 

useful in practice is limited by the number of terms that need 

to be taken in the summation to obtain a given numerical precision. 

The summation from m = 0 to.Oin equation (A.vi.13b) is therefore 

replaced by a sum S(u) given by: 

m
L2n u Q 	 2m ___ 

= 	
(_1)m () 	 n 

rn=o 	v 	
+ 1) 	v 	

z 	(2n+1)1P 	
(A. vi. 15) 

S(u) 	E 	( 	)  
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Since the series is alternating and Is M+11 < Ism it is guaranteed 

that the sum from u to will be less than the difference ISM - 

S(u - 1)1 
and the summation may be truncated when the difference 

between successive terms is less than some prescribed value. In 

figure (A.vi.1) the value of u as a function of i2 is plotted, 

where the value of u was found by evaluating equation (A,vi.15) 

until u satisfied the condition ISM - S(u - 1)1 < 0.0001 S(u). 

The values Q = 0.0517 and Q = 0.00765 were used which are 

applicable to the results for the Mn 0 65Zn0 35F2  data reported 

in Chapter Three. The best fit straight line shown in figure 

(A.vi.1) gives the empirical relation U = exp((0.96 ± 0.11) + 

(1032 ± 63)2) 

The choice of a percentage cut off rather than an absolute 

cutoff to the summation is easily justified. Since, in equation 

(A.i.1) the difference between the observed and calculated values 

is compared to the error in the observed value the effect that 

the percentage truncation has can be found by comparing the error 

introduced in the calculated value to the error in the observed 

value. The error in the calculated value will be 0.02n x per cent 

which for n = 50, the value used in Chapter Three, is insignif-

icant compared to the error in the observed value. However, the 

advantage of a percentage cut off is that it requires fewer terms 

to be summed when i is 'large'. The amount of time taken to eval-

uate S(u) is expected to go as the number of terms that need to be 

summed, which is -(u2 + u). If the empirical formula for u is 

substituted into this relation, then it can be seen that the 

amount of computer time taken to evaluate S(u) varies rapidly with 



Figure (A.vi.1) 

This figure shows the variation of the. 

upper limit U of the sum in equation (A.vi.15) 

for which convergence was obtained as a function 

of iIi2. The solid line is the best straight 

line fit. 
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For the values of the resolution function for the Mn 0 65Zn0 35F2  

measurements in Chapter Three, a practical limit on the computer 

time used meant that only values of < 0.6 /5J- Q could be 

calculated. 

The integration for the LorentZian squared component is done 

in a similar way to that for the LorefltZiafl. The integral 'Lsl is 

given by: 

1 L 	T 

1LS1 = 
	(1 	Y (r  

) 	1  

Jo 	

+ 2 ) 3 /2 Tan -1 	 Y ( 	
' 	)dT 	 (A. vi. 16) 

J+ p2'  
y 

This integral is broken up into two parts so that 1 	 is given 

by, 

Ory(2) = 1QL() 	1 	/2 Tan 1 ( 	)dt 	 (A. vi. 17a) 

LS1 	
+ 23 	

-t-; 2 	y 

Iv 

= 	LV 1Q4QZ+2 
Tan '  (z) dz 	 . 	. 	(A.. vi. 17b) 

r 1  

= LL 	
(z Tan-1  (z) - 	Log (1 + z2 )) 1  

2 	e 

where in going, from equation (A'.vi.17a) to (A.vi.17b) the 

substitution z = v"' 	
2' was used and the integral (A.vi.17b) 

is given on page 82 of Abramowitz and Stegun (1964). The integral 

is given by: 

(1.) 
 

ioL 

	
1 
	Tan1( 	

v 	
)dT 	 (A.vi.18a) 

'LSl = 	(t2 	
j)2)3/2 	

/T 2  + 1p2 r 	Y 
y 	 y 
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1 L 	dT 	
Tan 	

! +? 
1 	-14 ' —dT 	 (A.vi.18b) 

l 	 - V 

=_Jo 	
~ 2)3I 

where the result Tan 1  (-) = - Tan- 
I 

an 1  (x) has been used. The 

first integral on the right hand side of equation (A.vi.18b) 

can be done by using the substitution Ty =  sin.kG, and the 

result is: 

1L 	dT
y  

L  

ir 	
(A.vi.19) 

lTj 
+ 	 = 	Tanh  [Sinh  (-)= 

0 

The second integral on the right hand side of equation (A.vi.18b) 

must be done by expanding the inverse tangent using equation 

(A.vi.12). The result is that: 

1L 	 T2+42 	 rn 	2rn+i 
1 	-i (_Y -_-_ dT = 	

E (-1) 

+ 2  ) 312 Tan 	 m=o (2m+1) 
(ç) 	X 

(1 
rn 

~ y') 	
-i 
 dy (A.vi.20a) 

0 

QL  
dy 

(1)m 
(L)2rn+i 

Q /p L 	
(l+?) rn  dy 	(A.vi.20b) 

(2m+3) 
m=o 

Q v 0 

0 

-i 
(1)m 

Z 
rn 

	

2 	
m 

	

(ç) 	Z 

rn C 	2n n 	 (A.vi.20c) 

= 
Tan - 

v 
(2m+3) 

m=o n=0 
(2n+1) 

Hence, the integral I 
(1) is: 
LS 1 

1T  QL 1 	-1 L 	L 	(-1)m (li))2m x Tan (—) + —i-- 	(2rn+3) Q 
'LSi = 	 v 	 V m=o 

m 
m 	Cn 	QL 2n 	 (A.vi..21) 
no T+ 1) 
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The summation on the right hand side of equation (A.vi.21) differs 

from the summation in equation (A.Vi.18b) only through having a 

factor of (2m + 3) rather than (2m + 1) in the denominator. It is 

therefore clear that the c
onvergence properties for this summation 

will be the same as those for the summation discussed earlier. 

Therefore IL(4)) can be written in terms of the various 

integrals as: 

2A ( ('i) - 	(2) + 2B ((i) - 

L 

	
(A vi 22) 

Li 	Li 	L2 	L3 	
L LSi 	LS 

L  

The evaluation of the right hand side of equation (A.vi.22) may 

seem to require the evaluation of a large number of inverse 

tangents and logarithms. However, the functions that occur in 

the integrals contributing to equation (A.vi.22) occur many times 

and it is possible to write equation (A.vi.22) interulS of what 

is a reasonably limited set of quantities. These are 

2 
a1 Q 

22 
a2Qv+IP 	1 	

r2j' 

2 	2 	2 (A.vi.23) 
a3=Qv+QL+1P 

	

	
,  

QL  
Si = / VL 
	

2 =
QV 

= 
=- -.-, 

= r 	z 4 

ti = Tan -1 (z 1 ) , t2 = Tan , t3 = Tan_ i  (z 3 ) , t4 - Tan -1 (z4) 

= Log 	(a 1), 2 = Log (a 2), i3 = Log e 	3 
(a ), £4 	e 

= Log 	(2) 

QL  U 1 	-i M 
m mc 

(Z)n 
F(L) = (—) E (2m+L) (2n+1) 

M=O 
M=O 
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Then equation (A.vi.22) is given in terms of the quantities in 

equation (A.vi.23) as: 

	

1 4 	 2 
I OP) = 	

H
Sinh-   (z 1 ) - 4F(1) - 	3 - —) - 	( 3  - £2 )  

+ s2[ 	 +c - ( 1 - 4)3] [!4£21 	
t 

	

+ 	-Z4 	z1 	Z4J 	-  

B N + 

	
r 	

2S1  (z1t1 ' z 2t2  - z 3t3 ) + S 1  ( 	+ £2 - £3  - £4 ) 

+ 2F(3)] 

	
(A.vi.24) 

The derivatives of IL(fl with respect to A and .B can still 

be done analytically because of the linear dependence. The 

dependence of IL(P)  on the parameters K and q has, however, 

become very involved and as a result the derivatives of 

with respect to these parameters was done by finite differences. 
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The phase transition and ordering of the d = 3 diluted Ising antiferromagnet CoZn, -x  F2  has been 
studied using two-axis neutron diffraction for the cases (i) where x is close to the percolation thresh-
old, in zero applied magnetic field, and (ii) as a function of applied magnetic field for samples with 
x =0.26 and 0.35. The results of the percolation study show complicated behavior, probably due to 
concentration gradient problems. Nevertheless, there is strong evidence that the inverse correlation 
length decreases to zero at the onset of long-range order. The results of the magnetic field study are 
compared with the theoretical predictions for the d = 3 Ising model in a random field. It is found 
that when the samj,Ies are cooled in even the smallest (nonzero) fields the long-range magnetic order 
is destroyed and that the structure factor is well described by the Lorentzian plus Lorentzian 
s4uared form. The inverse correlation length is found to have a power-law dependence on the ap-
plied magnetic field at low temperature with exponents VH = 2.17 ±0.3 for the x = 0.26 sample and 
VH = 3.63±0.3 for the x = 0.35 sample. This result is not consistent with the current theoretical pre-
dictions for the field dependence of the inverse correlation length in the d = 3 Ising model in a ran-
dom field. The measurements also show that the system is frozen at low temperatures and this 
freezing may be responsible for the discrepancy between theory and experiment. 

I. INTRODUCTION 

The effect of a random field on the ordering of Ising 
models has been studied theoretically in several recent pa-
pers. Imry and Ma' showed by comparing the random-
field energy to the energy needed to produce a smooth 
domain wall that an Ising model is unstable against the 
breakup into domains for all dimensionalities less than 

d = 2. In contrast, there have been c-expansion 2 ' 3  and su-
persymmetry arguments4  which suggest that in the pres-
ence of random fields the behavior of a system is similar 
to that of the pure system in two less dimensions. Since 

d = 1 for the Ising model this would suggest that d = 3 in 
the presence of a random field. 

It was the existence of these two results that led us to 
begin an experimental study of the effect of a random 
field on a three-dimensional Ising model. Fishman and 
Aharony 5  first pointed out that a uniform field applied to 
a random antiferromagnet produced a randomly directed 
staggered field. They initially considered a random bond 
antiferromagnet when the random field is proportional to 
the ferromagnetic susceptibility and the applied uniform 
field. In practice, site random antiferromagnets are more 
readily available, and then the random staggered field has 
two components: a part proportional to the ferromagnetic  

susceptibility as discussed by Fishman and Aharony; and 
another part, which is probably dominant in practice due 
to the randomness in the dipole moment from site to site. 
The strength of this latter term is directly proportional to 
the applied field and is independent of temperature. Our 
experiments were performed on the antiferromagnet CoF 2  
diluted with the nonmagnetic material ZnF 2 . CoF2  is an 
antiferrornagnet with exchange interactions between 
nearest and next-nearest neighbors; due to the crystal-field 
effects the exchange is very anisotropic. 6  CoF2  and ZnF2  
form mixed crystals in which there is no tendency toward 
short-range chemical order of the Co and Zn. Both the ex-
citations 7  and the phase transitions  of this system have 
been measured, so that it is quite well characterized. 

When this work was begun we intended to study the 
phase transitions and the onset of long-range order close 
to the percolation threshold. This was intended to com-
plement earlier work 9 ' on the percolation problem, by 
providing more reliable measurements of the thermal ex-
ponents for a three-dimensional Ising system and further 
information about the ordering of three-dimensional sys-
tems. In three-dimensional systems with close to Heisen-
berg interactions, 11  the inverse correlation length K 1S not 
zero at the onset of long-range order and in a 
KMnZn,.F3  crystal the long-range order was found 
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to decrease below 6.0 K. Experiments on a three-
dimensional Ising system would clarify whether these 
unexpected features result from unexpected aspects of 
three dimensions or are present only in the systems with 
nearly Heisenberg-type interactions. 

Our experiments were performed using neutron scatter -
ing techniques at the Brookhaven National Laboratory 
High Flux Beam Reactor and are described in detail in 
Sec. II. The results of the percolation experiments are 
described only briefly in the Appendix because they were 
not wholly successful. The effect of applying a uniform 
field to these samples is described in Sec. III, and these ex-
periments yielded many interesting new results which are 
analyzed in Sec. IV; some of these have already been brief -
ly described. 12 - 

Since we first began this experimental work there have 
been several theoretical papers on the effect of random 
fields on Ising models. Pytte et al. 13 have extended the 
work of Wallace and Zia 14  on capillary waves to systems 
with a random field. The model proposed by Pytte et al. 
included in - the Hamiltonian the lowest-order analytic 
term introduced by the random field and then used the re-
plica technique to perform the averaging over the disor-
der. In this model Pytte et al. found that, as a result of 
the critical dimension for the roughening transition being 
shifted from dR = 3 to 5 by the random field, the lower 
critical dimension for the model was 3 and not 2. A phys-
ical interpretation of this result, giver by Binder et al., 15  
was that the shift in dR meant that in d = 3 the width of a 
domain wall increased at the same rate as the domain size 
and that the interface must be considered as rough on all 
length scales. In a recent paper, however, Grinstein and 
Ma 16  have argued that the random field introduces a non-
analytic term into the Hamiltonian, rather than an analyt-
ic one. Their renormalization-group calculations with this 
Hamiltonian show that, although dR shifts from 3 to 5, 
the variation of the domain wall width in d = 3 is not as 
fast as the domain size, and as a consequence for large 
length scales the domain walls are effectively smooth. 
They then argue that d = 2 as given by Imry and Ma. 
Similar results have been obtained by Villian.' 7  

An alternative approach was used by Kogen and Wal-
lace.' 8  They extended the supersymmetry argument of 
Parisi and Sourlas 4  and showed within this framework 
that capillary waves destroyed the long-range order for 
d <d = 3. In a recent paper Cardy' 9  has argued that this 
is an exact result for T=0 and similar arguments have 
been given by Niemi. 19  

Clearly, in 'view of this theoretical controversy and ac-
tivity, experiments must be performed to test these 
theories. As we shall describe in detail in the conclusion, a 
cursory glance at our experimental results suggests that all 
these theories are incorrect, but a more circumspect 
analysis suggests caution. There is no doubt that although 
aspects of these theories are correct, much work needs to 
be done before they will provide a complete description of 
our results. 

Specifically, the theories described above are all for a 
ferromagnet with uniform interactions in the presence of a 
random field. Our experiments, on the other hand, are for 
an antiferromagnet with vacancies in a uniform applied  

field. It is believed that near six dimensions 16  these prob-
lems are equivalent. However, it is not at all obvious that 
the vacancies do not become relevant in d =3;  certainly 
domain walls will preferentially be located near the vacan-
cies and this could affect the scaling of the domain-wall 
width with length thus altering d. 

H. 'EXPERIMENTAL TECHNIQUES 

Crystals of CoZn,_F2  were grown from very pure 
CoF2  and ZnF2  by using the Czochralski method of 
growth. The samples had a volume of several cm  and 
consisted of several large single-crystal grains. These crys-
tals were cleaved to obtain single crystals with a volume of 
about 1 cm 3.  Several of these crystals with x nominally 
0.25 and hence close to the percolation concentration wee 
studied in detail as a function of temperature in the hope 
of elucidating the percolation properties of this three-
dimensional Ising system. The results are reported in the 
Appendix. 

One of these crystals and another with a nominal con-* 
centration of x = 0.35 were selected for studying in an ap-
plied magnetic field. It is unfortunately very difficult to 
determine accurately the concentrations, x, in these sam-
ples. Approximate values of x for these two samples can 
be obtained from the measured Néel temperatures of 
6.70±0.05 and 13.25±0.01 K, respectively. As a rough 
estimate, if we assume that the Néel temperature is pro-
portional to the number of spins in the infinitely connect-
ed network, and that the fraction of spins in the infinitely 
connected network is taken from the work of Kirkpa-
trick,20  then the concentrations x are 0.26 and 0.35, 
respectively. The former concentration is very close to the 
percolation concentration of 0.24 for a bcc lattice. 21 

The neutron-diffraction measurements were performed 
at the Brookhaven National Laboratory High Flux Beam 
Reactor using a two-axis spectrometer. An incident neu-
tron wave vector of 2.67 A — ' was obtained by reflec-
tion from the (002) planes of a pyrolitic graphite mono-
chromator. In order to suppress neutrons reflected from 
higher-order planes two pyrolitic graphite filters were 
used. In the percolation experiments the samples were 
mounted with the [010] axis vertical in a variable tempera-
ture cryostat. The collimation used was 20' before the 
monochromator, 20' between the monochromator and 
sample, and 20' between the sample and detector. The 
resolution function was then measured at the (100) reflec-
tion to be 0.015 A' full width at half maximum 
(FwHM) parallel to the wave-vector transfer and 0.005 
A — ' perpendicular to the wave-vector transfer. 

In order to perform the random-field experiments the 
samples were aligned with the [001] axis vertical and 
placed in the variable temperature insert of a supercon-
ducting magnet which produced a vertical magnetic field 
of up to 7.5 T. The measurements on the x =0.26 sample 
were performed with the same collimations as the zero-
field experiments. However, for the measurements on the 
x=0.35  sample the 20' collimators were replaced by 10' 
collimators throughout. The resolution function in the 

o 

scattering plane was then measured as 0.009 A' 
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As discussed in the Introduction a uniform field applied 
to a random antiferromagnet produces a randomly direct-
ed staggered field. We have therefore performed experi-
ments by applying a uniform field to the CoZn 1 _F2  sys-
tem. In the sample for which x = 0.26 x is close to the 
percolation point, and the applied field is relatively large 
so that the results are undoubtedly strongly influenced by 
the proximity of the percolation threshold. Consequently, 
we also performed experiments on a more concentrated 
system with x =0.35. 

One of the difficulties of working with Ising systems at 
low temperatures is the problem of ensuring that the re-
laxation times for the establishment of thermodynamic 
equilibrium are always shorter than the time of the experi-
ment. Because of this problem the experiments were 
mostly performed by changing the magnetic field while 
the sample was at a temperature above TN,  and then cool-
ing the sample while keeping the magnetic field fixed. Al-
though there is no guarantee that this procedure gives the 
low-temperature ground state, it. is accepted as giving the 
best approximation to the ground state in spin-glasses. 
We measured the scattering in the neighborhood of the 
(1,0,0) lattice point for several different magnetic fields as - 
shown in Fig. I forx=0.26 and in.Fig. 2 forx=0.35. In 
the former case the peak intensity at the (1,0,0) lattice 
point monotonically decreased with increasing field as also 
shown in more detail in Fig. 3. This decrease is similar to 
that observed for the scattering in the absence of a field as 
a function of temperature (see Fig. 16, sample A) suggest-
ing-that there might be a phase transition at about 1.0 T. 
The behavior is, however, quite different as can be seen 
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fràm inspection of Figs. 1 and 2. The width of the 
scattering as a function of the wave vector is steadily in-
creasing with increasing magnetic field, unlike the case of 
decreasing temperature. Since the width of the (2,0,0) nu-
clear Bragg peak is unchanged on applying the field, this 
increase in the width means that the long-range antifer-
romagnetic order has been destroyed for magnetic fields 
much less than 1.0 T. The behavior of the width in the 
sample with x =0.35 is very similar, as shown in Fig. 2, 
although the increase in the width is much smaller for a 
given magnetic field strength than in the more dilute sam-
ple. The peak intensity in the x =0.35 sample initially in-
creases as a function of magnetic field; the peak intensity 
is a maximum for a field of about 1.5 T, and at larger 
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III. EXPERIMENTAL RESULTS 
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fields the peak intensity falls uniformly as a function of 
magnetic field in a similar way to that for x = 0.26. We 
believe that this "anomalous" increase for small fields can 
be explained by considering the effect of extinction. This 
crystal, even though it is site disordered, has a sufficiently 
small mosaic spread so that in the zero field the intensity 
of the (1,0,0) reflection is extinction limited. When the 
sample is cooled in an applied field the magnetic order 
within the mosaic blocks is broken up into domains by the 
random-field effect, and as a consequence the Darwin an-
gle of the magnetic domains within the mosaic block will 
be increased allowing a greater proportion of the incident 
beam to be scattered. The effect of the random field on 
the peak intensity is thus manifested in two ways; one 
reduces the scattering power of a magnetic domain by the 
destruction of long-range order while the other increases 
the proportion of the beam that each mosaic block is able 
to scatter. The initial effect of a random field might 
therefore increase the magnetic peak intensity by lifting 
the extinction present in the (1,0,0) reflection. This 
behavior makes it very difficult to make precise state-
ments about the small field measurements in this sample. 
It should be emphasized that this behavior occurs only for 
the magnetic scattering and that the nuclear Bragg peaks 
are unaffected. 

The behavior of the scattering as a function of tempera-
ture at fixed field is illustrated in Fig. 4 for x = 0.26 and 
in Fig. 5 for x =0.35. At low temperatures the width of 
the scattering is almost independent of temperature but 
then increases with increasing temperature, while the in-
tensity generally decreases with increasing temperature. 

At the beginning of this section we discussed the diffi-
culty of knowing whether the 'system is in the thermo-
dynamic equilibrium state at low temperatures. In both 
samples the state of the system is frozen at low tempera-
tures below about 4.0 K but in the case of x = 0.26 only 
for fields below 1.2 T. This is illustrated in Fig. 6 where 
we compare the scattering observed when the system is 
cooled in zero field, with that resulting from cooling in a 
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FIG. 5. Scattering for wave-vector transfers Q=(14,O) with 
H = 3.5 T at various temperatures for Co 0 , 35Zn065F2 . The solid 
hues are Lorentzian plus Lorentzian-squared fits to the measure-
ments for temperatures below 11 K and Lorentzian fits for 11 K 
and 12.5 K. 

field of 2.5 T and then reducing the field to zero. In the 
latter case the scattering is fairly similar to that observed 
when the sample is cooled in a field of 0.8 T. We do not 
understand the origin of the small shift in peak position in 
Fig. 6, especially as the nuclear Bragg reflections were not 
changed. Clearly one expects strong magnetoelastic ef -
fects accompanying the domain wall formation and such 
effects presumably account for the distortions evidenced 
in Fig. 6. This result demonstrates that at low tempera-
tures and fields the scattering is dependent on the immedi-
ate prior history of the sample. Similar results were ob-
tained even at the largest fields used in the x =0.35 sam-
ple. We cannot therefore be certain that the results ob-
tained by cooling in a field, shown in Figs. 1-5 and dis-
cussed in the rest of this paper, are characteristic of the 
thermodynamic equilibrium state at low temperatures. 
They are characteristic of the state obtained by cooling in 
a field and the scattering is then constant over periods of 
several days. 

IV. ANALYSIS OF THE RESULTS 

The scattering, shown in Figs. 1 and 2, was initially 
analyzed by fitting it to a Lorentzian profile, which has 
proved to be so successful at describing the scattering ob-
served in many other circumstances. The intensity was 
fitted to the form 

FIG. 4. Scattering for wave-vector transfers Q =(l,,0) with 	 A 
H=1.3 Tat various temperatures for COO. 26ZnO.74F2. The solid 	I(Q) If(Q)12 2 -o 2 ' 

lines are Lorentzian fits to the measurements. 	 K + ( q 
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where f(Q) is the form factor of the Co 2+  ion  22  and * is 
the difference between Q and the reciprocal-lattice vector 
(1,0,0) expressed in reciprocal-lattice units. The analysis 
was performed by convoluting Eq. (1) with the measured 
experimental resolution and fitting the parameters A and K 

to the experimental results. Equation (1) gave a good 
description of the experimental results for temperatures 
above TN and in the x = 0.26 sample for fields above 1.2 
T. At lower temperatures and fields, the results could not 
be described by Eq. (1). We attempted to fit these results 
by the Lorentzian form [Eq. (1)], and an additional central 
Gaussian to represent an increased mosaic spread for the 
magnetic structure. This combination of functions failed 
to describe many of these results, because the scattering 
falls off more slowly than a Gaussian for small q*,  but 
more rapidly than a Lorentzian in the wings. 

Several different functional forms have been tried to 
describe the results for low temperatures. Before the re-
cent theoretical advances described in the Introduction, 
fits to the .x = 0.26 data were made assuming that 

I(Q)= If()I2 	A 	
(2) 

This form gives a good description 12  of the x = 0.26 exper- 
imental results when convoluted with the experimental 
resolution function. The exponent 77 is close to zero for 
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H =1.2 T and at a temperature of 2.0 K and then steadily 
decreases with decreasing field and approaches —1 when 
H=0. The exponent is given approximately by 
'q =-1+(H/H) 2  when T, and the amplitude A 
depends at least approximately on the applied field such as 
H 2 . 

Although this form gives a reasonably accurate descrip-
tion of the experimental results, recent theoretical 
work 13,18  suggests that a more appropriate form is 

J()_If()I2I 

	

A 	 B 
K2+I4I2 + (K2+IOI2)2 

(3) 

As discussed in the paper 23  on Rb2C0Mg,_F4, the 
Lorentzian-squared term continuously evolves into a 
Bragg peak as H—.0, provided that B - (S')2 K 4—d , where 
d is the dimensionality of the system. We find that Eq. (3) 
does give a very satisfactory description of the results, so 
that the results can be described either by Eqs. (2) or (3). 
A similar conclusion was found 23  in the two-dimensional 
system Rb2CoMg, _F4. However, since current theory 
strongly favors the Lorentzian plus Lorentzian-squared 
form, most of our efforts have concentrated on fitting the 
parameters in Eq. (3), A, B, and K, to the experimental re-
sults. 

As shown in Figs. 1, 2, 4, and 5, Eq. (3) gives a good 
description of our experimental results. The results for 
the temperature dependence of the inverse correlation 
length K for various different fields are shown in Fig. 7 for 
x =0.26 and in Fig. 8 for x = 0.35. In both cases, on cool-
ing from high temperatures K sharply decreases with de-
creasing temperature and is then constant or even slightly 
increases on further cooling. 

As noted previously, the random staggered field con-
tains both a direct Zeeman contribution due to the ran-
domness in the moment and an induced contribution due 
to the randomness in the interaction. The former, which 
is dominant, is temperature independent whereas the latter 
peaks near TN. These two fields both are generated by the 
dilution and further they oppose each other locally. The 
diminution of the bond-randomness term with decreasing 
temperature below TN may account for the observed de-
crease in the correlation length as T—+0. 

In Fig. 9 we show the low-temperature behavior of B/K 
and A as a function of field for the two samples. For 
x=0.35 B/K IS nearly constant except at the lowest fields 
where the effect of the extinction is to reduce its value. 
For x = 0.26 B/K decreases to zero at about 1.2 T. The 
amplitude of the Lorentzian A is almost constant for fields 
above 1.2 T in the x = 0.26 sample and decreases as the 
field is reduced. In the x =0.35 sample the amplitude A 
increases with increasing field in a similar way to the 
x = 0.26 sample, but does not become constant even at the 
highest fields. These results are, we believe, characteristic 
of both high- and low-field behavior respectively. At low 
fields A-->0 and the Scattering is almost purely Lorentzian 
squared with B/K a constant. The scattering then 
develops smoothly into a Bragg peak as K10. At relative-
ly large fields the amplitude of the Lorentzian squared de- 
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FIG. 9. Amplitude of the Lorentzian A and Lorentzian 
squared B divided by K deduced for Co026Zn074F2  at 1.85 K and 
Co0 35Zn0 65F2  at 2.0 K. - 

creases and the system becomes a normal paramagnet. 
The behavior of B/K is very similar to that of the 

square of an order parameter. In Fig. 10 we show its 
behavior as a function of temperature for various fields 
and the data collapses, at least approximately, to a single 
curve which is very similar to that of the Bragg peak in-
tensity (see Fig. 16, sample A). The behavior is more com-
plex in the x = 0.26 sample because the amplitude of the 
Lorentzian-squared term is nonzero only within a circle 
described approximately by 

I-i:- 12[H 1=R2=1 

where T  =6.7 K and H = 1.2 T. In Fig. 11 we have 
therefore shown B/K plotted against R. Although the er-
rors are considerable the behavior is not inconsistent with 
that of the order parameter (see Fig. 16, sample A). This 
behavior is thus consistent with our heuristic prediction 
that B (S')2 K in three dimensions. 

As described in the Introduction there is considerable 
interest in the behavior of the three-dimensional Ising 
model in small random fields and at low temperatures. 
Our results show that the scattering is broader than a 
Bragg peak and evolves smoothly into a Bragg peak as the 
field is reduced. Although we cannot determine K with 
any accuracy at the smallest fields, there is a marked in-
crease in the intensity of the wings of the Bragg peak for 
fields as small as 0.17 T for x=0.26 and 0.8 T for 
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x =0.35. These fields correspond to temperatures 
gL B H/kB  of 0.48 and 2.3 K, respectively, which are much 
smaller than the transition temperatures of 6.7 and 13.7 K 
and of the energy needed to turn one Co 2+  ion in the pres-
ence of only one of its antiferromagnet neighbors: 11.1 
K.6 ' 7  These results show that cooling the samples in these 
fields which are considerably smaller than the other fields 
in the system results in the crystals being in a magnetic 
state with no long-range order at low temperatures. If 
d 3 then it would be expected 13"8  that at low tempera-
tures Kxexp[- (Ho  /H)2 ], where H0  is some constant. In 
Fig. 12 we show lnx plotted against 1/H 2  for the x = 0.35 
sample, and the results clearly do not give a straight line. 
We also test a power-law description in Fig. 13 and this 
gives a much better description of the results apart from 
the result at lowest fields which may be influenced by the 
extinction problem discussed above. A least-squares fit 
omitting this point gives 

K = K0[I 'H 

with VH=3.63±O.l2, 'co=O.000069±O.000012, and X 2  is 
2.62, where K is in reciprocal-lattice units and the magnet-
ic fields in tesla. A similar analysis has been performed 
on the results for the x =0.25  sample and gives 
vjj =2.17±0.16 while K0 =0.0047±0.0004, while X 2  is 
1.12; the fit is shown in Fig. 14. It' is not too surprising 
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that the results for v11  for the two concentrations are dif-
ferent because all the results are in the Lorentzian-squared 
quasiordered phase for the x=0.35 sample whereas for 
x = 0.26 the fit was performed over the whole range of H. 
It is more likely therefore that VH = 3.63 is the appropriate 
"random-field exponent" for this system. There is also a 
very large difference in the values of 1(0 by nearly 2 orders 
of magnitude. Such a large change cannot be accounted 
for by statistical factors such as x or 1 —x. The effect of 
the random field must increase very rapidly as the per -
colation point is approached. As discussed by Fähnle, 24  
this probably reflects the highly ramified and hence 
quasi-one-dimensional nature of the infinite network near 
percolation. 

Finally in Fig. 15 we show the low-temperature struc-
ture factor 1(1,0,0); that is, the intensity for Q=(1,0,0) 
corrected for the finite experimental resolution as a func-
tion of magnetic field for both systems. The results for 
x =0.35 are approximately linear apart from the point at 
the lowest fields. When this is omitted a least-squares fit 
to the form 

I = 10H - 

gives YH = 10.9 ±0.6. In the case of x=0.26  the three 
points at the largest fields clearly are not part of the same 
straight line and omitting these points gives 7H = 8.0±0. 6. 

V. DISCUSSION AND CONCLUSIONS 

The main conclusion of the experiment is that the appli-
cation of a magnetic field whose energy is much smaller 
than the exchange energy or UN  has a drastic effect upon 
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the phase transition and ordering of CoZn 1  _F2. When 
the system is cooled in a uniform magnetic field, the state 
reached at low temperatures is not one of long-range anti-
ferromagnetic order. The scattering at low fields is dom-
inated by a Lorentzian squared with a width which in-
creases with increasing field. This Lorentzian-squared 
term represents, we believe, a quasiordered random-field 
state. Firstly, this is because the intensity of the scattering 
at low fields is the same as that of the Bragg reflection 
describing the long-range order in the absence of a mag-
netic field. This result holds not only at low temperatures 
but at all temperatures below TN. Secondly, at large 
fields, 1.2 T -when x=0.26, the intensity of the 
Lorentzian-squared term decreases and the system be-
comes a normal paramagnet. This critical field corre-
sponds to a single-site field energy of only about ~ TN or 
0.31 of the nearest-neighbor exchange energy. 

The detailed behavior of the inverse correlation length 
as a function of field is undoubtedly complex. In the 
x=0.35 sample ,cczH 1" with, Vff =3.63±0.12, at low 
temperatures. A different power 2.17±0.16 was obtained 
for the x = 0.26 sample, but this latter result is dominated 
by the results in the high-field paramagnetic region, 
H> 1.2 T, and the results at low fields were of insufficient 
accuracy to determine the limiting low-field behavior. 

These results appear to be inconsistent with current 
theories of the d = 3 Ising model in a random field. Those 
theories for which d =. 2 predict long-range order at low 
temperatures while the theories which give d = 3 suggest 
that- K—'exp[ — (H o  /H)2 ]. Our results, if simply interpret-
ed, would suggest that d > 3. 

There may be several reasons for the discrepancy other 
than errors in the theories or the experiments. As men-
tioned in the Introduction, it may be that a uniform field 
applied to a random antiferromagnet does not give the 
same behavior as a random field applied to a uniform fer-
romagnet. The physics of random-field systems has been 
found to be unexpectedly subtle and the effect of the ran-
dom exchange interactions and, specifically, vacancies 
which provide a soft path for the domain walls may be 
more severe than currently thought. 

Another difficulty may arise because of the difficulty of 
establishing the thermodynamic ground state at low tem-
peratures. We know that this system is frozen at 2.0 K 
and so, if long-range order is the equilibrium state only for 
temperatures somewhat below the freezing temperature, 
then this state could not be sampled in the experiment. 
The theories might then be correct but, so far as experi-
mental work is concerned, they are irrelevant to the 
behavior in real experiments. 

Birefringence measurements 25  show a sharp peak at low 
fields for these three-dimensional antiferromagnets. 
Indeed the peak in d(in )/dT, which is proportional to 
the heat capacity, appears to be sharper in a field than for 
H=0, reflecting a crossover in the heat-capacity -exponent 
a from —0.09 to —0.0. In addition, the temperature of 
the peak as a function of field follows the theoretically 
predicted changes in TN (ETN — H 21 ) quite well. In 
FeZn i F2  a comparison of the neutron scattering re-
sults with the birefringence results shows that the peak 
occurs at a temperature just above that at which K reaches  

its minimum value. Our results indicate that the peak is 
not associated with the development of true long-range an-
tiferromagnetic order. Current theories describe the break-
up of long-range order in a random field as due to the 
presence of domains walls. Most likely these walls are suf -
ficiently far apart in the region probed by the 
birefringence measurements that the ordering within the 
antiferromagnetic domains gives a peak in the heat capaci-
ty with negligible rounding. The change in a suggests 
that new critical behavior is being observed but, presum-
ably, this critical behavior is cut off by entry into the 
domain-wall state. Extension of the birefringence mea-
surements to higher fields, especially in more dilute sam-
ples, would test this latter idea. 

Clearly these experiments show that random fields 
drastically change the properties of systems close to phase '  
transitions and prevent the establishment of long-range or-
der. The random fields may have an energy which is very 
much less than kTN and yet produce a very large effect. 
Since impurities in crystals can frequently produce ran-
dom fields, their effects may be more important than hith-
erto considered. 

Finally, these experiments present a challenge to theory. 
The theory should be extended to include the effect of 
temperature when our experiments show unambiguously 
that large effects occur close to TN for the d =3 Ising 
model. The theory should then be extended to consider 
the establishment of the thermodynamic equilibrium state 
at lower temperatures. Random fields produce large and 
dramatic effects on the ordering and phase transitions of 
d = 3 Ising models and we hope this paper will lead to fur-
ther experimental and theoretical work on this difficult 
problem. 
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APPENDIX: PERCOLATION IN CoZn 1 _F2  

1. Experimental results 

The neutron scattering from the magnetic fluctuations 
in CoZn 1 _F2  was studied for six samples with x nomi-
nally equal to 0.25. In two of these samples the magnetic 
scattering observed for wave vectors close to the (1,0,0) 
lattice point was weak and only slowly varying with the 
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wave vector even at 1.2 K. This presumably meant that 
the concentrations of these samples were so much less 
than the percolation threshold that all the magnetic spins 
were in relatively small independent clusters. 

In each of the other four samples the results were quali-
tatively similar although different in detail and so we 
describe the results for only two of the samples labeled A 
and B. In each of these samples there was intense magnet-
ic scattering at the (1,0,0) reciprocal-lattice point at low 
temperatures, the width of which was determined by the 
experimental resolution. This scattering is indicative of 
long-range order at low temperatures and its temperature 
dependence is shown in Fig. 16. The intensity of the 
scattering is closely proportional to TN - T for each sam-
ple except that close to TN, where there is evidence of 
rounding, presumably due to concentration fluctuations. 
The onset of long-range order occurred at a similar tem-
perature between 5.5 and 7.0 K in each sample. 

The diffuse scattering observed for a wave-vector 
transfer Q=(l,0, —0.008) is shown in Fig. 17 for samples 
A and B. It increases rapidly as the phase transition is ap-
proached and has a maximum at a temperature somewhat 
below the onset of long-range order. On further cooling 
the amplitude of the critical scattering decreases slightly 
for sample A but at temperatures below 2.5 K increases 
again. This increase in the critical scattering intensity at 
low temperatures is unexpected.' It also occurs in the 
x =0.35 sample in the applied magnetic field. This sug-
gests that the low-temperature behavior for sample A may 
arise from random fields possibly arising from impurities 
or from dipolar interactions.. 
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FIG. 16. Integrated Bragg intensity of the (100) magnetic lat-
tice point for two samples of CoZn i _F2  with x = 0.26. 

The diffuse scattering was measured in detail using 
scans with wave vectors along the direction [00] and 
[00] through the (1,0,0) lattice point. The diffuse 
scattering was then analyzed assuming that it could be 
described by a Lorentzian profile, Eq. (1). The results are 
displayed in Figs. 18 and 19. The inverse correlation 
length decreased as the temperature was reduced from 10 
K and would appear to be heading towards zero at TN. 
Somewhat above TN the inverse correlation length ceases 
to decrease and is then almost independent of temperature 
until possibly at low temperatures, below 2 K, when it de-
creases again. The amplitude A decreases with decreasing 
temperature. 

2. Discussion of results 

As mentioned in the Introduction the initial objective of 
these experiments was to perform a detailed study of the 
percolation in a three-dimensional Ising system similar to 
that performed for other systems. Unfortunately, the 
crystal-growth problems made a detailed study impossible. 
The results described above and shown in Figs. 16-19 are 
in some respects unexpected but can probably be under-
stood if there is a considerable spread in TN in different 
parts of the crystal. Indeed, in an Ising system it is ex-
pected that the transition temperature increases very rap-
idly with concentration close to the percolation point, be-
cause the temperature is determined by the one- 
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FIG. 17. Scattering observed for a wave-vector transfer of 
=(1,0, —0.008) from two samples of CoZn 1 _F2. The 

wave-vector transfer was chosen to be close to the (1,0,0) 
reciprocal-lattice point but not so close that the scattering was 
contaminated by the Bragg reflection. 
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FIG. 18. Inverse correlation length K as a function of tem-
perature for two samples of CoZn i _F2  with x = 0.26. 

dimensional weak links 26  which order as exp( -J/kB T). 
Specifically then TN -ln(c-cp ) so that a small spread in 
concentration will produce a very broad distribution of 
Néel temperatures; it is interesting to note that because of 
the singular dependence of TN on concentrations the peak 
in the TN distribution will come near the temperature ap-
propriate to the large concentration limit. This may ex-
plain why all samples which ordered had similar apparent 
Neel temperatures. For a system with a distribution of 
Néel temperatures it is known that an analysis of the criti-
cal scattering, such as that described above, gives a 
nonzero value of K at TN as we indeed observe. The 
mean-field-like behavior of the intensity at the (1,0,0) re-
flection has two possible origins. First, the spread in Néel 
temperatures tends to linearize the behavior near the mean 
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FIG. 19. Amplitude A of the Lorentzian critical scattering 
for CoZn i _F 2  with x0.26. 

TN. Second, for systems near the percolation threshold 
the infinite network is highly ramified with many dan-
gling ends connected by one-dimensional links. These 
dangling ends will come into registry with the backbone 
only gradually with decreasing temperature. This could 
produce the observed linear behavior. As shown in Fig. 
18, between 10 and 7 K the inverse correlation length ex-
hibits behavior consistent with that expected 27  for a 
three-dimensional Ising model. We have argued above 
that K does not gci to zero at (TN ) 6.4 K because of the 
distribution of Néel temperatures. The diffuse scattering 
below (TN ) presumably arises from scattering from each 
of finite clusters, dangling ends on the infinite network, 
and critical fluctuations in regions with a reduced TN. 

In conclusion, we believe that these results strongly sug-
gest that the inverse correlation length would decrease to 
zero at TN in a homogeneous Ising system, unlike the 
behavior found in three-dimensional Heisenberg systems." 
We believe that the unusual results found in the Heisen-
berg systems are a consequence of the importance of dipo-
lar forces in these systems. 
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