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Abstract

The task of inferring articulatory configurations from a given acoustic signal is a problem for 

which a reliable and accurate solution has been lacking for a number of decades. The 

changing shape of the vocal-tract is responsible for altering the parameters of sound. Each 

different configuration of articulators will regularly lead to a single distinct sound being 

produced (a unique mapping from the articulator to the acoustics). Therefore, it should be 

possible to take an acoustic signal and invert the process, giving the exact vocal-tract shape 

for a given sound. This would have wide-reaching applications in the field of speech and 

language technology, such as in improving facial animation and speech recognition systems. 

Using vocal-tract information inferred from the acoustic signal can facilitate a richer 

understanding of the actual constraints in articulator movement.

However, research concerned with the inversion mapping has revealed that there is often a 

multi-valued mapping from the acoustic domain to the articulatory domain. Work in 

identifying and resolving this non-uniqueness thus far has been somewhat successful, with 

Mixture-Density Networks (MDN) and articulator trajectory systems presenting probabilistic 

methods of finding the most likely articulatory configuration for a given signal. Using an 

subset of an EMA corpus, along with a combination of an instantaneous inversion mapping 

and a non-parametric clustering algorithm, I aim to quantify the extent to which acoustically 

similar vectors to a given phone can exhibit qualitatively different vocal-tract shapes. 

Categorical identification of acoustically similar sounds that can have shown a multi-valued 

mapping in the articulatory domain, as well as identifying which articulators this occurs for, 

could be key to resolving issues in the reliability and quality of the inversion mapping.
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Chapter 1. Introduction

Acoustic-Articulatory Inversion Mapping

The task of inferring articulatory configurations from a given acoustic signal is a problem for 

which a reliable and accurate solution has been lacking for a number of decades. The 

changing shape of the vocal-tract is responsible for altering the parameters of sound. Each 

different configuration of articulators will regularly lead to a single distinct sound being 

produced (a unique mapping from the articulator to the acoustics). Therefore, it should be 

possible to take an acoustic signal and invert the process, giving the exact vocal-tract shape 

for a given sound. This would have wide-reaching applications in the field of speech and 

language technology. 

One such application of this technology implements the inversion mapping to provide more 

realistic lip and mouth movements to computer-generated characters in video games and in 

computer generated animations. As this uses just the acoustic signal, this is more cost-

effective and accurate method of providing facial animation than is in use currently,  wherein 

an actor has reflective pellets attached only to the lip articulators, resulting in less realistic 

mouth animation. A successful inversion method could also aid the advance of many speech 

synthesis and recognition systems. Using vocal-tract information inferred from the acoustic 

signal can facilitate a richer understanding  of the actual constraints in human articulator 

movement.

However, research concerned with the inversion mapping has revealed that there is often a 

multi-valued mapping from the acoustic domain to the articulatory domain. Work in 

identifying and resolving this non-uniqueness thus far has been somewhat successful, with 

Mixture-Density Networks (MDN) and articulator trajectory systems presenting probabilistic 

methods of finding the most likely articulatory configuration for a given signal. Though these 

are currently the most reliable and accurate inversion mapping systems, as discussed in 

chapter 2, evidence for non-uniqueness in the acoustic-articulatory mapping is still a 
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rigorously researched field in speech technology.

Overview

Categorical identification of acoustically similar sounds that can have shown a multi-valued 

mapping in the articulatory domain, as well as identifying which articulators this occurs for, 

could be key to resolving issues in the reliability and quality of the inversion mapping. The 

experiments undertaken in this dissertation project share similar methodological steps to 

previous studies that have investigated non-uniqueness in the acoustic-articulatory inversion 

mapping (Qin & Carreira-Perpiñán (2007), Neiberg, Ananthakrishnan & Engwall (2008)).

Using an subset of an EMA corpus, consisting of electromagnetic articulography coordinate 

data for 6 articulatory positions (3 sets of x & y coordinates on the midsagittal plane for the 

tongue, 2 for the lips and one for the lower-incisor) and concurrent labelled audio data from 

1263 utterances (799,159 pairs of acoustic-articulatory vectors), I will be quantifying the 

extent to which acoustically similar vectors to a given phone can exhibit corresponding 

qualitatively different vocal-tract shapes. Furthermore, I will be investigating for which 

phones and for which articulators this non-unique inversion mapping occurs, and in what 

quantity.

To achieve this, I will be selecting a specified reference frame, taking the 1500 closest vectors 

in the acoustic data-set to that reference frame, and finding the corresponding articulatory 

coordinates for each and every articulator. As a distance measure, I will be using a kD-tree, 

which is an efficient technique of partitioning multidimensional data such as parametrised 

speech, and can subsequently be used to perform a nearest neighbour search using Euclidean 

distance. Finally, I will be using a non-parametric Gaussian-blurring mean-shift algorithm to 

efficiently cluster the data that exists in distinctly dense regions in articulatory space. This 

will be discussed further in my detailed methodology (chapter 3).

A broad empirical investigation such as this has not been performed on the new mngu0 EMA 

corpus, and as such this study will hopefully provide both a further insight into the quality of 

9



B005324

the mngu0 corpus (after Richmond (2009) & (2011)), whilst also facilitating a comparison of 

the extent of acoustic-articulatory non-uniqueness in the corpus with previous & future 

studies (e.g. Qin & Carreira-Perpiñán (2007)).

Layout

This dissertation consists of three sections; Literature Review & Background, Methodology 

and Conclusion & Further Work.
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Chapter 2. Literature Review

The Ill-Posed Problem

The acoustic-articulatory inversion mapping has long been sought after, but the nature of the 

task has been found to be ill-posed (Richmond 2002). An ill-posed problem refers to a 

problem for which multiple possible solutions can occur, and this has been found to be 

applicable to the inversion task as multiple articulatory configurations can map to a single 

acoustic vector. Evidence for this has come from a number of fields, and this acoustic-

articulatory non-uniqueness is a problem for which multiple solutions have been proposed.

Bite-blocks

Experiments using bite-blocks in the 1970s provided some of the first qualitative evidence 

suggesting that non-uniqueness existed. Using bite-blocks of either 2.5mm or 22.5mm 

thickness, Lindblom, Lubker & Gay (1979) fixed the position of 6 speaker’s jaws to see if 

they could produce four Swedish vowels (/i,u,o,a/). Then, in comparing the formants of the 

resulting acoustic signal with the formants of the speaker’s vowels without any impediment, 

they discovered that the speakers utilised a degree of articulatory compensation in their 

impeded speech. This meant that the speakers varied their articulation of a vowel to match the 

formants of their regular unimpeded vowels. Although the jaw was fixed in an unnatural 

position, the sounds produced were perceptually well within the variation of their normal 

vowels.

Inversion

Tube-Models
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A small proportion of research into the inversion mapping attempted to infer the size and 

shape of the vocal tract for a given sound. These analyses utilise the concept of the source-

filter model of speech production.

The source of a sound during speech production can be categorised into two types; voiced 

speech, where regular vibration of the vocal folds occurs in response to pulmonic airflow 

from the lungs, and voiceless speech (eg. vowels), where irregular vibrations are caused by 

the constriction of the vocal-tract itself (eg. fricatives). The filter in speech production is the 

vocal-tract, where a change in its shape can alter the spectral envelope of the source sound. A 

model of speech production system treats the vocal-tract as a tube that is closed at one end. 

The tube resonates at certain frequencies, and these resonances, or harmonics, can be seen as 

peaks in the spectral envelope at integer multiples of the source frequency, called the 

fundamental frequency. The frequency levels of the first and second peaks, or formants, can 

often be used to differentiate different vowels. (Ladefoged 1996)

 

Figure 1. The Source-Filter model of Speech Production

Changing the length or area of the tube means that a different wavelength now fits the tube, 

resulting in a different sound. In speech production, different articulatory configurations can 

modify this speech signal. Wakita (1979) in particular used mathematical analysis of the 

acoustic signal from vowels to infer the area function of the vocal-tract. However, combining 

the complexity of multiple articulatory positions and the complex shape of the vocal tract with 

the lack of a measure for nasal sounds and unvoiced consonants meant that this particular 

analytical method was ill-suited to the inversion task.
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Synthesis Models

Using synthesised speech as a means of studying the acoustic-articulatory inversion 

introduced trained models as a viable inversion method. The first articulatory synthesis 

models used methods that took samples of articulatory parameters from a model of the 

articulatory feature space and synthesised the corresponding acoustic signal based on these 

parameters. Databases, or codebooks, of these acoustic-articulatory pairs could then be made 

available for studying the range of articulatory configurations possible. Also, it allowed a 

lookup of articulatory parameters to be performed for a given sound.

A study by Atal et al (1978) investigated the inversion mapping using 4 parameters that would 

best describe the articulatory process; vocal-tract length, the size of the mouth opening, 

distance from the glottis and the area function  at maximum constriction. From these 

parameters, over 30,000 different vocal-tract configurations were generated. These parameters 

were then used to generate acoustic counterparts using calculated formant and frequency. The 

acoustic-articulatory pairs were computer-sorted (due to the large size of the resulting 

database). A later study by Rahim, Kleijn, Schroeter & Goodyear (1991) used an articulatory 

model by Mermelstein (1973) to sample randomly from a set number of “reasonable” 

articulatory shapes and generate an acoustic-articulatory parameter pair database. This 

synthesised articulatory model was used as the basis for training a Multi-layer 

Perceptron(MLP).

An MLP is a feed-forward neural network that can be used to map input data onto output data. 

Each node in the network can be considered a separate processing unit that is activated by a 

specified function, such as sigmoidal or hyperbolic tangent functions, which respond to 

parametrised acoustic data. Multiple layers of nodes are connected together, with a hidden 

layer consisting of a given number of nodes. The number of hidden nodes to choose depends 

on the dimensionality and type of data. Too many nodes, and you risk over-fitting the data to 

random noise. Each connected node has a weight assigned to it. Using a supervised learning 

method called backpropagation, the error of the output units is calculated and compared with 

the target output using an error function.  Connection weights are then iteratively altered after 

propagating through the network to see which connection weight contributes most to the 
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calculated error. (Bishop 1995, Richmond 2002).

Figure 2. An MLP network consisting of 3 input nodes, 5 hidden nodes and 2 output nodes.

In Rahim et al. (1991), preprocessing the synthesised model of generated acoustic-articulatory 

parameter pairs required clustering in two stages. Initially, the acoustic data was clustered into 

32 distinct regions in acoustic space, and then each cluster was segmented into a further 4 

corresponding regions in articulatory space in an attempt to resolve non-uniqueness. For the 

acoustic and articulatory data, a cepstral distance measure (derived by a Fourier Transform of 

the log spectrum(Jurafsky & Martin 2009)) and a log-area distance measure were used, 

respectively. Each cluster was  used in training a separate MLP, and optimum articulatory 

trajectories (the path the parameters take) were recovered using dynamic-programming.

The quality of such a system was ultimately dependent on the accuracy of the synthesised 

speech data in approximating real human speech. In this respect, this inversion model was an 

insufficient representation of real speech. The acoustic-articulatory pairs were generated by 

randomly sampling articulatory configuration parameters. This becomes a problem when 

assessing the validity of whether or not these articulatory configurations actually occur in real 

human speech. Each articulator has the ability to move to a certain extreme, such as the lips 

protruding far forward whilst the tongue tip is retroflexed as an extreme example, but they 

would hardly move to these extremes in real human speech. Furthermore, the importance 

placed on the uncommon sampled regions may affect the accuracy of the weights updates 

during backpropagation training. The number of articulatory configurations physiologically 

available is therefore not a good approximation of the frequency of these configurations in 

real speech. 
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Mimic algorithms

Later, combinations of human speech data and synthesised vector pairs that made the 

synthesised output iteratively match the real acoustic data. This mimic method is too 

computationally expensive to be used with a large dataset, but offers a fast and accurate 

method of estimating acoustic-articulatory parameters of synthesised data when a smaller 

dataset is used to train an MLP, with a study by Kobayashi, Yagya & Shirai (1991) showing a 

10 fold increase in estimation speed over basic mimic model systems.

Human Articulatory Data Systems

While synthesis models of acoustic-articulatory speech parameters laid the groundwork for 

how the inversion mapping could be performed, the introduction of large databases of human 

articulatory data and concurrent acoustic data have enabled the possibility of learning trained 

acoustic-articulatory models of speech. These databases facilitate a more accurate inversion 

mapping system, as the true range of articulatory configurations can e analysed. Moreover, 

these trained inversion systems have the measured articulatory data itself for use in evaluating 

system performance and accuracy.

X-Ray microbeam cinematography

X-Rays have been used previously as a method of visualising the movements of articulators. 

However, recent advances in the technology have allowed more precise measurements of 

articulatory movement with a reduced exposure to X-Rays, which are widely recognised as 

being harmful under prolonged or repeated exposure. X-Ray microbeam cinematography is 

one such technique for providing human articulatory data and is widely used, with a number 

of studies in particular using the Wisconsin X-Ray microbeam cinematography Database 

(XRDB).
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This particular technique uses a number of gold pellets on each of the speaker’s articulators, 

and a narrow beam of X-rays and an X-Ray detector on either side of the speaker’s head. 

Using the known positions, velocity and accelerations of the pellets, scans are taken of the 

estimated articulator postions using the microbeam and the pellet locations cast a shadow on 

the X-ray detector. (Westbury 1994)

Figure 3 – Pellet locations used in X-Ray microbeam cinematography. (Image from the 

Westbury (1994))

X-Ray microbeam cinematography, whilst safe, is an expensive procedure, with only a 

handful of facilities available. Mis-tracking of the pellets can also occur, resulting in 

disappearing pellets. Gathering a large amount of human speech data using X-Ray microbeam 

cinematography is therefore both costly and somewhat impractical on this scale.

Electromagnetic Articulography

Electromagnetic Articulography (EMA) is a more recent method for obtaining human 

articulatory data that is both less invasive and less costly than X-Ray microbeam 

cinematography. In Electromagnetic Articulography, the position of receiver coils attached to 

articulators can be made known by calculating voltage differences between the coils and a 
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transmitter electromagnet. A current is induced in a coil when the electromagnet that is 

alternating at a given frequency comes within a certain distance from the coil. Each coil 

responds to a unique frequency, meaning that using a number of transmitter electromagnets 

allows multiple articulatory configurations to be measured relative to the transmitter. (Perkell 

et al 1992)

Older EMA systems, such as the Carstens AG100 and AG200, took only 2D measurements (x 

& y coordinates). Using only 2 dimensions, this method introduced errors whenever a coils 

position moved from being parallel with the transmitter. The accuracy of these systems 

depended on the orientation of the coil because the transmitter was situated directly above the 

middle of the coil. Any movement away from this optimum relative position resulted in the 

measured voltage difference to decrease and a subsequent increase in error to occur when 

calculating the coils position relative to the transmitter. New 3D EMA systems such as the 

AG500 avoid this problem by taking 5 measurements from each sensor coil in 3D space, 

allowing the coils to rotate and move naturally along with the articulator. (Richmond 2009)

There are a number of advantages to using this new 3D EMA system to obtain human 

articulatory data. Previously, as with X-Ray microbeam cinematography and 2D EMA 

systems, the speaker’s head wasn’t allowed to move around, as it would lead to the mis-

tracking of pellets or errors the induced voltage measurements. This also meant that the 

number of utterances that could be recorded in a given session was severely limited. A 3D 

EMA system allows much longer recording sessions and therefore a much larger corpora of 

human articulatory data. (Richmond 2009). For this dissertation, I will be using the day one 

subset of a new EMA corpus (mngu0), which will be discussed in detail in Chapter 4.

Inversion Studies using Human Articulatory Data

A study by Papcun et al (1992) used X-ray microbeam human-articulatory data to perform the 

inversion task, specifically analysing the movement of the tongue during production of 6 

American-English stop consonants. The acoustic waveform was parametrised into frames 

using an overlapping Welch window of length 15.98ms. A Fast Fourier Transform (FFT) was 
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performed to convert the frames to the frequency domain, the resulting coefficients were 

normalised, and the articulatory data was interpolated with the acoustic data-frame shift and 

normalised. A separate MLP was then used to train each of the three articulatory positions of 

the tongue (tip, blade and dorsum). Backpropagation gradient descent reduced root mean 

square (RMS) error between input and output until an optimum was achieved. RMS error is a 

frequently used measure in inversion systems, as it can tell you the distance between the 

estimated and actual articulatory trajectories.

The aim of this particular study was also to see which articulators were critical to the 

production of a particular phone, and Papcun et al (1992) found that for the critical articulator 

trajectories the RMS error was higher than for non-critical articulators trajectories. They 

concluded that their neural network was better able to estimate larger movements, such as 

those by critical articulators, than the smaller movements of non-critical articulators, which 

had a smaller range of movement.

A further study by Zach & Thomas (1994) into MLP use in the inversion task utilised a 

different error function that improved the accuracy of the trained neural network. Using an 

MLP trained using a correlational & scaling error (COSE) function resulting in a vowel 

classification accuracy of 87% compared to the 73% accuracy received by MLPs trained 

using a standard squared error function. However, this work, along with most other work 

using human articulatory data for the inversion task, focuses on a finite number of sounds, 

rather than whole continuous utterances of speech.

Furthermore, an MLP inversion system succumbs to the problem of ill-posed/multi-valued 

mappings. An MLP output is the estimate of the conditional average of the target vectors 

given the input vectors. The network is trained using a sum-of-squares error function 

backpropagating through the network. However, this error-function essentially performs 

unimodal Gaussian regression on the target data. Therefore, an MLP assumes a single 

Gaussian distribution for the target data points, and so non-Gaussian distributions and multi-

valued mappings are not modelled. The accuracy of the MLP output is therefore limited to 

normally distributed data.(Richmond (2002), Richmond, King & Taylor (2003)).
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Mixture Density Networks

Richmond (2001) and Richmond, King & Taylor (2003) proposed using an augmented MLP 

with a Gaussian Mixture Model (GMM) in a Mixture Density Network (MDN) to perform 

acoustic-articulatory inversion. The MDN provides a full conditional probability density 

function of  an articulatory position in the entire articulatory domain given an acoustic vector. 

The GMM typically has three components, defined by control parameters of the mixing 

coefficients (or priors), the means and the variances. Adding more components means that 

potentially any distribution could be modelled, though too many could lead to over-fitting.

Here, an MDN was trained using Scaled Conjugate Gradient optimisation, which has been 

shown to converge to the optimal solution 20 times faster than standard gradient descent, used 

previously in MLP training. Training the MDN also minimizes the negative log likelihood of 

the target data given the component parameters. The MDN takes an input vector and, after 

backpropagation training, maps it to the control parameters of the mixture components. 

In Richmond et al (2003), EMA articulatory data and corresponding acoustic data from the 

Multichannel Articulatory (MOCHA) database for a female Southern English speaker (fsew0) 

was used to train both an MLP and an MDN. Richmond et al propose an evaluative method of 

comparing the two systems by interpreting the MLP output (mean and variance) and the 

global variance of each channel per frame as a Gaussian PDF, meaning likelihood can be 

calculated. As the hypothesis in this study was to see if an MDN could provide a better model 

of possible articulatory points than an MLP, then an MDN would achieve a higher mean 

likelihood of the target data given the frame-wise probability density functions for each 

articulatory channel.

In comparing the two methods, it was found that an MDN did indeed show a higher mean 

likelihood for the target data than the MLP, with an average improvement of between 2.6% to 

21.8% for all articulators, except the velum. They also showed a higher likelihood of the y 

coordinate over the x coordinate for the speaker, which could not be explained without more 

speakers being tested.
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A more recent study undertook by Richmond (2009) used a new dataset (the same as used in 

this  dissertation project) that was found to be more consistent than that of the MOCHA EMA 

data. Inconsistency in the fsew0 articulatory data occurred when coils became detached during 

the recording, which is a common occurrence in EMA techniques, especially with 2D 

articulographs when movement of the head is restricted and can cause measurement errors, as 

discussed previously. The new dataset, as discussed in chapter 4, is demonstrably far more 

consistent than fsew0. Using this mngu0 dataset, by including velocity and acceleration 

features of the articulatory data to train an MDN. An additional maximum likelihood 

parameter generation algorithm (MLPG) was applied to the resulting PDFs, obtaining the 

most probable trajectory for each frame and each articulator. This system is called a 

Trajectory MDN (TMDN), and had been developed in a previous study by Richmond (2007), 

using the fsew0 dataset. 

Comparing these two studies, the average RMS error for the fsew0 dataset was 1.54mm, while 

the new mngu0 dataset resulted in an improved 0.99mm RMS error, which demonstrates the 

importance in obtaining a consistent dataset.

MDNs have also been shown to be an excellent method of examining articulatory non-

uniqueness in the inversion mapping, as Figure 4 shows. As the MDN outputs a frame-wise 

probability density, this can be used to visualise probability density for an articulators range of 

movement (x or y coordinate) in what is called a probabiligram.  The denser a frame, or 

sequence of frames, the darker it will appear on the graph. Conversely, frames with a high 

PDF variance will appear lighter and wider. For frames that exhibit non-uniqueness or multi-

modal distributions, multiple dense regions will appear, as evident in Figure 4. 
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Figure 4 – Frame-wise MDN output of the y coordinate of the lower-lip (LL) for the Words 

“March Ninth”. At frame 140 onwards, clear multi-modality can be seen.

Previous studies in Non-Uniqueness

Previous work concerning the study of non-uniqueness have used widely different 

methodologies in an attempt to both resolve and quantify the extent of non-uniqueness in the 

inversion mapping. 

Roweis (1999)

Roweis (1999) used a large database of paired acoustic Line spectral pairs (LSP) and X-Ray 

microbeam articulatory data to empirically investigate the inversion mapping. Roweis 

selected a key frame, such as the centre frame of a given phone, and, using a Mahalanobis 

distance measure, found the nearest 1000 data points to it from the entire database in LSP 

space. The corresponding articulatory vectors for each  articulator (x,y) were then scatter-

plotted to reveal the distribution and spread of the data points. Roweis discovered that a large 

proportion of the resulting plots showed a wide spread of data points for a single frame. 

Multi-modal distributions were also apparent in the scatter plots, indicating varying possible 

configurations of articulatory positions that can produce a single sound. Going further, 

Roweis examined the spectral envelopes of these 1000 LSP data points and found that these 
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distributions did indeed have similar spectral shapes.

Qin & Carreira-Perpiñán (2007)

The first systematic large-scale empirical study into non-uniqueness in the inversion mapping 

was carried out by Qin & Carreira-Perpiñán (2007), and aimed to quantify exactly how much 

of human speech could be considered to exhibit a non-unique inversion mapping. Using the 

Winconsin X-Ray microbeam database (XRDB), which provided acoustic and articulatory 

pairs of vectors (x,y) for a single speaker, Qin & Carreira-Perpiñán used statistical machine 

learning techniques to investigate the number of modes returned from the inversion mapping. 

Their method consisted of two stages; inversion and clustering. 

First, using Linear predictive coefficients (LPC) for accurate spectral representations of the 

vocal tract, a single representative acoustic frame was chosen and fixed. From this frame, the 

Itakura distance measure, approximate to perceptual distance, was used to search for 

acoustically similar frames within a given threshold. Here, a threshold of 0.04 was chosen as 

the database frames were 0.06-0.1 apart. Too large a threshold would result in too many 

clusters, and too small a threshold would result in too few. Given the returned set of acoustic 

vectors, a set of corresponding articulatory vectors could be obtained.

To cluster the set of articulatory vectors, Qin & Carreira-Perpiñán (2007) used a non-

parametric mode-finding algorithm called Mean-Shift. This is a hill-climbing algorithm that 

treats data points as probability density functions and can be used to find the modes in a given 

cluster. This will be discussed in further detail in chapter 3.. As the number of clusters were 

not known, a density was defined using a non-parametric kernel density estimate, and this 

bandwidth was used to determine which data point belongs to which cluster. 

The inversion and clustering steps were performed on every acoustic-articulatory pair in the 

45000+ database, and resulted in approximately 5% of all acoustic vectors showing multi-

modal distributions of corresponding articulatory vectors. Inspection of the resulting point 

clouds for a selection of vowels such as /ae/ /u:/ and /y/ showed uni-modality, whilst 
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approximants such as /w/, /l/ and / / showed non-uniqueness and multiple modes in theɹ  

resulting point clouds. For those phonemes that showed multi-modality, Qin & Carreira-

Perpiñán then examined the spectral envelopes of the returned acoustic frames and found that 

they were of similar shape. Overall, they concluded that whilst non-uniqueness did occur in 

human speech, it was infrequent.

Qin & Carreira-Perpiñán (2010)

Following their work on articulatory non-uniqueness in the inversion mapping, Qin & 

Carreira-Perpiñán (2010) investigated the use of conditional density modes in performing the 

inversion task. This time they focussed on the multiple articulations of American English 

alveolar approximant / /. This particular phone can be produced in two different ways;ɹ  

‘bunched’, where the tongue dorsum is raised and the tongue tip is lowered, and ‘retroflex’ 

where the tongue tip is raised and the tongue dorsum is lowered. Using the XRDB and pairs 

of acoustic-articulatory vectors, a Gaussian Mixture Density model was learnt using the EM 

algorithm. Conditional densities (p(x|y)) were estimated from this model for every acoustic 

frame of /r/, and a variation of the mean-shift algorithm was used to initialise at each centroid 

of the conditional mixture data.

Carreira-Perpiñán (2000, 2003) had previously researched mode-finding in Gaussian 

mixtures. According to scale-space theory, for a 1 dimensional mixture of Gaussians, the 

number of modes is equal to the number of components when the scale is small, and this 

number decreases as the scale gets larger. Conversely,  Carreira-Perpiñán found that when the 

dimensionality of the Gaussian mixture is larger than 1 and the components aren’t isotropic, 

the number of modes can be higher than the number of components.

Ultimately, the ‘smoothest’ trajectory of modes is then recovered by using dynamic 

programming to  minimize the objective function over all the modes. This trajectory is the 

sequence of modes that move the slowest (minimum-energy of motion).

The algorithm chosen used the density model to predict and recover multiple articulatory 

23



B005324

configurations, and was successful in the task, finding clear instances of non-uniqueness for 

alveolar approximant / / in initial, intervocalic and final positions. However, the mode-ɹ

finding algorithm used was computationally costly, especially when increasing the number of 

components in the Gaussian mixture, but this complexity could be reduced by using an 

accelerated mean-shift algorithm, or by thresholding out mixture components far from the 

acoustic reference frame.

Neiberg, Ananthakrishnan & Engwall (2008)

Neiberg, Ananthakrishnan & Engwall (2008) used Gaussian Mixture Models (GMMs) to try 

to quantify the non-linearity and non-uniqueness of the inversion mapping seen in previous 

studies. Using normalised EMA data and MFCCs (at a sampling rate of 125Hz) for the 

acoustic data, Neiberg et al chose to ivnestigate clusters in the resulting distribution. The 

inversion data was fitted to a GMM and the Expectation Maximization (EM) algorithm was 

used to find Maximum Likelihood (ML) estimate vectors of the data, with Bayesian 

Information Criterion being minimized to result in optimum clustering.

To study non-linearity, Neiberg et al (2008) took the articulatory data points corresponding to 

the acoustic Gaussian and modelled a corresponding number of Gaussians. If there were 

multiple articulatory Gaussians for the corresponding acoustic Gaussian, then that mapping 

could be said to be non-linear. Keen to stress that multi-modality in a given inversion 

mapping does not necessarily mean that non-uniqueness has occurred, Neiberg et al  

(2008)presents a further measure to differentiate non-linearity and non-uniqueness.  If the 

acoustic data points have exactly the same distribution in acoustic space, but varying 

distributions in articulatory space, then that mapping can be said to be non-unique. Using 

Non-Gaussianity of the data (examining kurtosis) & Bahattacharaya distance as a measure, 

Neiberg et al define non-uniqueness as the inverse of Bahattacharaya distance weighed by its 

Gaussianity.

Investigating non-linearity and non-uniqueness for a number of consonant phonemes in the 

database, Neiberg et al found that stop consonants and fricatives showed high levels of non-
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uniqueness, whilst liquids (eg. /l/  &  /r/) were shown to be highly non-linear but unique in the 

inversion. Neiberg et al, postulated that voiceless alveolar fricative /s/ and voiced /z/ showed 

this articulatory non-uniqueness due to an inability of the EMA data to fully capture the exact 

location of the tongue tip for a given acoustic frame.

Anathakrishnan, Neiberg & Engwall (2011)

In a study by Anathakrishnan, Neiberg & Engwall (2011), continuity constraints were 

proposed as a way of resolving all instances of non-uniqueness found in the inversion 

mapping. Estimating the trajectory of an articulator, or how it actually moves, can be achieved 

using the acceleration and velocity coefficients of the sampled articulatory data and had 

previously been shown to occasionally reduce instances of non-uniqueness in phones such 

as / / by Qin & ɹ Carreira-Perpiñán (2010).

Acoustic/articulatory vector pairs from the MOCHA-TIMIT database were used. The acoustic 

data was parametrised as Mel Frequency Cepstral Coefficients (MFCCs), so as to provide a 

good representation of the vocal tract and to eliminate the chance that instances of silence in 

the data would be deemed non-unique. Principal Component Analysis (PCA) was used to 

reduce the dimensionality of the acoustic features to be closer to the articulatory data, and the 

x and y coordinates of the articulatory data was low-pass filtered and down-sampled to match 

the acoustic frame-shift. Conditional distribution of the inversion mapping was constructed by 

modelling the data to a GMM, and the peaks in this conditional probability function were 

obtained using Box Induction, which is a bump-hunting algorithm.

Plotting the resulting conditional probability function for the inversion mapping over a 

sequence of frames in an utterance produced a ‘path’ of the most likely movement of the 

articulator. Anathakrishnan et al classified the instances of non-uniqueness into two distinct 

paths types: ‘Along the same path’ (ASP), where the path has a minimized continuity 

constraint before and after the non-unique instance, and ‘With a change in path’ (WCP), 

where different paths minimize the continuity constraint before and after the non-unique 

instance. ASP was found to be more frequent during a lengthier sequence of non-uniqueness, 
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and overall the continuity constraints reduced prediction error by as much as 53%. However, 

up to 22% of non-unique mappings could not be accurately predicted using continuity 

constraints or by using the mean value of the two paths, which was unexplained by the 

authors. Ultimately, non-uniqueness is left unresolved by Anathakrishnan et al, but the paper 

offered further evidence that applying continuity constraints can help resolve a substantial 

proportion of non-unique instances found in the inversion mapping.

Discussion

The outline for this dissertation is to empirically quantify the amount of non-uniqueness in a 

given dataset. Depending on the dataset, and how you try to define it, non-uniqueness can 

occur in 5% of the dataset (Qin & Carreira-Perpiñan 2007) or it can be shown to exist to some 

level in nearly all phonemes (Neiberg et al 2008). A conditional probability density estimate 

of the data, as used by Qin & Carreira-Perpiñan (2010) or by the MDN models of Richmond 

(2001, 2009) and Richmond et al (2003), can provide an increasingly accurate estimation of 

articulatory configurations conditioned on the corresponding acoustic frames. However, in 

this project I not concerned with estimating the most likely acoustic-articulatory inversion 

mapping.  Rather, I am trying to quantify from the acoustic-articulatory pairs, how much of 

the dataset when inverted yields a multi-modal cloud, and concurrently, which articulators and 

phones contribute most to non-uniqueness in the dataset. 

The studies by Qin & Carreira-Perpiñan (2007, 2010) focused on using a mode-finding 

algorithm to determine the number of modes in a point cloud, with the latter paper using these 

modes to derive the single most likely trajectory from the resulting modes. For this study, I 

intend to use a variation of this mean-shift algorithm not to find the modes in the dataset, but 

to determine the articulatory distribution of the data through the number of clusters found 

(discussed in detail in chapter 3). This non-parametric segmentation algorithm is suited to my 

aims as, though it does not find the individual modes of a dataset, it is a very fast clustering 

algorithm that, depending on the threshold you use, will segment an elongated cloud or 

distinct dense areas in the cloud into a clear number of clusters.
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The size of the data-set, nearly (800 000) vectors, means that if I was to truly determine the 

percentage of non-unique frames, using the definition of mean-shift mode-finding, then the 

order of complexity would be very large (O(In2), given I iterations and n data-points).. 

Furthermore, I believe that many instances of non-uniqueness have as much to do with the 

parametrisation of the acoustic data itself. As will be discussed, acoustic data that has been 

normalised and parametrised may, if grouped by parametric similarity, be shown as more 

similar as they may actually be, perceptually (this sentence doesn’t make sense). In this 

respect, a non-unique articulatory cloud may not show multiple articulatory configurations. 

Rather the parametric similarity of a number of acoustic frames may be misleading.

Following Neiberg et al (2008), I will be quantifying the level of articulatory non-uniqueness 

that occurs for selected  phones in the dataset, in order to determine which phones are 

quantifiably the most unique in the data-set. Extending this premise, I intend to discover 

which articulators contribute most to non-uniqueness. The range of movement for a particular 

articular, such as the lower incisor, may be lesser than, say, the tongue tip,  which must be 

taken into account. Discovering for which phone and articulator non-uniqueness occurs in the 

mngu0 acoustic-articulatory dataset would be pertinent and this particular data-set is 

demonstrably more consistent and larger than the datasets used by Qin & Carreira-Perpiñan 

(2007, 2010), Neiberg et al (2008) and Anathakrishnan & Engwall (2011).
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Chapter 3. Methodology

Overview

The content of this methodology is concerned with, and segmented into two main steps. First, 

there is the inversion step, which here consists of using a data-partitioning technique to allow 

a distance measure to be quickly and efficiently performed on a set of acoustic vectors. This 

will allow acoustically similar sounds to be compared parametrically, extracted, and paired 

with corresponding articulatory vectors. As the acoustic and articulatory frames are frame-

aligned, this is a straightforward task. Secondly, in order to both explore and quantify 

articulatory non-uniqueness in the inversion mapping, a method of clustering the data into 

distinct articulatory parts will be employed. This will allow a thorough exploration of the 

inversion mapping.

Inversion

KD-Trees

Binary Space-Partitioning (BSP) is a commonly used method of handling complex spatial 

data, and is typically used in computer graphics. A data-set is recursively divided into two, 

partitioning the data based on a set of requirements. The subdivision of the space into convex 

sets by hyperplanes means the resulting data-structure is a hierarchical tree structure with a set 

of linked nodes. kD-trees are a special case of BSP and multidimensional data-structures. 

Here, the data is used to determine the splitting value and the splitting dimension for each 

node. The multidimensional space is partitioned into hyperrectangles, which are defined at 

each node, and the left and right children of the node are made known to the node. Each node 

is split according to the defined splitting value and dimension. This split can be represented 

by a hyperplane perpendicular to the splitting dimension’s specified direction (a hyperplane 

28



B005324

has (k -1) dimensions in k dimensional space) (Moore (1991)).

Figure 5. A 3D representation of a kD-tree. Beginning with the root cell (white), each section 

is partitioned into smaller and smaller subsections. (image from Wikipedia commons)

Construction

The construction of the kD-tree begins at the root, taking the training set (here, the acoustic 

frames), and working recursively to split each child of a node until termination. The 

dimension with the greatest variance is chosen as the splitting dimension, and is calculated by 

computing the sample variance Sii from the data-set and choosing to split in the dimension 

where Sii is the largest. The location of the split is chosen by the median value of the data 

along the splitting dimension, and this in turn results in a more balanced tree. If the data is 

unevenly distributed, with the result being skinnier hyperrectangles, then the location of the 

split is chosen by the mean value of the data along the splitting dimension.

In order to construct a kD-tree of the LSF acoustic data for use with a nearest neighbour 

search, I used code1 that took in 799,159 LSF acoustic frames in 40 dimensions and built a 

partitioned tree of the data. From here, a nearest-neighbour search could be performed from a 

given query point.

1 This code was kindly provided by Korin Richmond.
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Nearest-Neighbour Search

The task of finding the closest points in a space is a thoroughly researched problem, and 

primarily Euclidean distance is the measure used for determining the distance between any 

two points. Linear search methods, considered to be naive approaches to the problem, 

compute the distances from a given point to every other point in the data-set, and keep track 

of the closest points. This method has a complexity of n(O(nd)), given the number of training 

examples. The data structure of a kD-tree allows a nearest neighbour search that does not 

require comparison of a query point with every other point in the data-set (Moore (1991)). 

Given the large number of acoustic frames in the data-set, the k-nearest neighbour search will 

be an accurate and fast search method. 

The nearest neighbour search can be performed once the kD-tree is constructed, and 

comprises of a depth-first search and the intersection of a hyperrectangle and a hypersphere. 

The average case complexity of a nearest neighbour search is O(lg n), with the worst case 

complexity being O(n). The advantage of this instance-based learning method is that it just 

involves storing the data, and that it does not perform an exhaustive search.

The  nearest neighbour algorithm is comprised of the following steps 

Working recursively from the root node, the algorithm moves down the tree to the leaf node 

that contains the query point in the leaf node’s hyperrectangle.

This leaf node is saved as the current best estimate of a nearest neighbour.

A hypersphere is constructed around the query point and the radius of this hypersphere is the 

distance to the current leaf node.

At the root node, nothing can be ruled out, and the nearest neighbour must fall within the 

hypersphere. The algorithm checks the left child to see if there is a closer nearest 

neighbour than the current best candidate.

If the left node is closer to the query point, then that is the new current best candidate.

Going back to the parent of the candidate node, the algorithm checks the sibling of the left 
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node to see if any of the right hand children have hyperrectangles that intersect with 

the current best candidate’s hypersphere.

▪ If so, then a depth-first search can be performed to see if it is a new 

best candidate.

▪ If not, then the regions and nodes that don’t intersect with the 

hypersphere can be disregarded.

The number of nearest neighbours that were to be returned for a given frame is largely 

dependent on the size of the data-set and the parametrisation of the acoustic and articulatory 

data. Too many nearest neighbours returned could result in acoustic data that is too far away 

from the query point being included in the search. Too few, and you could miss out on a range 

of possible articulatory configurations for a given frame. Following the study by Roweis 

(1999), the number of frames to be returned from a single query point was decided to be 1500. 

This returned a reasonable distribution of frames that, when plotted, would show regions of 

articulatory and acoustic feature space with clear distribution of dense regions.

In performing the instantaneous inversion mapping, the nearest neighbour kD-tree search 

method returns the indices of the desired number of acoustic frames, sorted by distance to the 

original query point. As the acoustic and articulatory data-sets are aligned by frame, the 

inversion simply required  extracting the corresponding articulatory frames. Scatter plots of 

this inversion can be seen in Figure 6 for the voiceless dental fricative /θ/.  The x and y axes 

correspond to the x and y coordinates of each EMA articulatory coil. As is evident from the 

distributions in the scatter plots, especially for the lower lip and tongue tip for this particular 

phone /θ/, there is visual evidence to suggest a non-unique inversion by the multiple densely 

plotted regions.  In a number of plots, there is quite a wide spread of data-points that suggests 

that there may be more than one cluster and therefore perhaps more than one articulatory 

configuration.
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Figure 6: Inversion results for 1500 frames of /θ/ in day one of the mngu0 corpus for 6 

articulators: from top left; lower lip (LL), upper lip (UL), lower incisor (JAW), tongue tip 

(T1), tongue blade (T2) & tongue dorsum (T3).

Query Point Selection

The acoustic-articulatory data that was provided also contained phone labelling that was 

produced by automatic forced-alignment, using Multisyn and the Combilex lexicon. The 

lexicon is an orthographic-phonemic representation of speech and is provided frame-aligned 

with the acoustic-articulatory data. This meant that for a given frame, the phone label was 

available which could help disambiguate certain frames if their distribution raised suspicions 

as to their identity. However, the labelling is not a fine-grained phonetic representation of the 
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speech data, and so care must be taken in investigating how similar two acoustically similar 

frames are. The context of a phone must also be taken into account, as coarticulation is 

prevalent in continuous and conversational speech. Here, the end of one sound will influence 

the sound of another, as is anticipatory assimilation, such as with nasal consonants shifting 

their place of articulation in anticipation of a following stop consonant (eg. ‘Hand bag’ 

sometimes becomes /hæmbæg/ in continuous speech.). Along these lines, I decided to omit 

diphthongs, triphthongs and affricates, as any frame found could possibly be unrepresentative 

of the entire sound due to the complexity of the sound to begin with.

Using the label set, I returned all the unique phone labels that occurred across the 1263 

utterances. This was to be the basis for selecting a representative phone for the data-set. The 

returned acoustic nearest neighbours were in sequences of frames corresponding to the 

utterances in the database. In order to find a representative frame for a given phone as a query 

point, I used the sequence of frame indices to find the corresponding utterance and chose an 

appropriate context for each phone. This was a manual task, as determining what exactly was 

an appropriate and representative context was both ambiguous and relied on trial and error. 

Listening to the corresponding audio file was one such method of figuring out if the labelling 

was correct, and generally the centre frame from the returned vectors was chosen. Producing a 

scatter plot of a few samples per phone and visualising the distribution to see if it was widely 

different per sample was another such method.

Clustering

The scatter plots of the inversion for each phone can obscure the true density of the data, with 

seemingly elongated point clouds perhaps actually concealing multiple dense regions that 

could indicate a non-unique articulatory distribution for that phone. In Qin & Carreira-

Perpiñán (2007), they indicate that multi-modal distributions can be concealed by elongated 

articulatory clouds. An unsupervised learning method for automatic clustering of subsets in 

the data should disambiguate the point clouds. Though finding the modes of each point cloud 

is not the aim of this project, the number of clusters that emerge from a given point cloud can 

reveal the distribution of phone articulations. A spread distribution in the point cloud could 
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hold many clusters, whilst a denser and more specific point of articulation should present a 

single cluster. Initially, both K-means clustering and Gaussian mixture model clustering were 

explored.

K-Means Clustering

K-means clustering is a fast parametric clustering technique that accepts two inputs; The data 

itself and the number of clusters you want to find. If the number of clusters in the data is 

known, then K-means clustering is an efficient method of partitioning the data into pre-

specified clusters. The algorithm works by initially choosing a certain number of random 

points, making them the initial centroids in each cluster, that being the point of the cluster 

most representative. Every point in the data is assigned to the nearest cluster, and the clusters 

are updated so that the centroid is the average of all the points in the cluster. The resulting 

clusters are all spherical, or elliptical. The algorithm itself has a complexity of O(knT), where 

T is the number of iterations taken and k and n are the number of clusters and the number of 

data-points, respectively. (Mackay (2003)).

The problem with using K-means clustering in this study stems from the fact that we do not 

know how many clusters there are in our data. As previously discussed, visualising the scatter 

plots often showed elongated point clouds that could potentially hold a number of modes or 

clusters, but we do not know exactly how many, and assigning a set number of clusters would 

not be suitable to this task. Furthermore, the shapes of clusters in the point clouds may not be 

spherical or elliptical, rather they may be arbitrarily shaped.

Gaussian Mixture & Expectation Maximisation

One possible solution to the issue of an unknown number of clusters was to fit a Gaussian 

mixture to the returned nearest neighbours using an Expectation Maximisation (EM) 

algorithm. Using the returned Gaussian mixture and the returned nearest neighbours, a 

clustering algorithm partitions the data based on the number of components in the Gaussian 

mixture (Bishop (1995)). The number of components required varies depending on the data 
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itself, and therefore requires visual inspection to ensure how many clusters there actually are.

Following this method, I attempted fitting a Gaussian mixture to the data using either 1,2, 3 or 

4 components, running the EM algorithm and clustering the data. For a single component, 

there was only a single cluster for both visually possible uni-modal and multi-modal 

distributions across all the articulators. For 2 or more components, the point clouds were 

clustered into as many distinct clusters as there were components, which meant that the results 

were often ambiguous as to how accurately the clusters represented the actual data. Though 

not to the same extent as with k-means clustering, the number of resulting clusters appeared to 

be dictated by the number of components. In some examples, visual inspection of the 

resulting clustering indicated that some clusters were perhaps unnecessarily created in dense 

regions of the cloud where one would have been more appropriate. It appeared to be a case of 

the clustering algorithm trying to represent all the components of the mixture model. In other 

examples, correctly distinct clusters were identified, with outliers being represented by a 

component in the mixture.

Mean-Shift

In order to cluster the data in a fast & non-parametric way, I chose to use a Gaussian-Blurring 

Mean-Shift. This algorithm was first proposed by Fukanaga & Hostetler (1975), and was 

adapted and renamed as the ‘blurring mean-shift’ by Cheng (1995), and proposes a way of 

using a Gaussian Mean-Shift algorithm to initialise a converging clustering algorithm that 

results in a similar number of clusters as provided by mean-shift, but at a much faster rate. 

This algorithm is therefore well suited to my task, as the linear order convergence rate of a 

Gaussian mean-shift (p=1) would be computationally costly for a dataset as large as day one 

of mngu0, which I will be using for this project. A Gaussian blurring mean-shift converges in 

a cubic order (p=3). I will provide a detailed description of both algorithms here.

Gaussian Mean-shift
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Gaussian mean-shift is an algorithm that is widely used in image segmentation tasks, such as 

separating out and identifying each distinct colour from the pixels in a picture. Proposed by 

Fukanaga & Hostetler (1975), the mean-shift is a powerful non-parametric algorithm that can 

be utilised to perform tasks in computer vision, such as image-segmentation, image tracking 

and smoothing but can also be used for mode-finding and clustering (Qin & Carreira-Perpiñán 

(2007, 2010) . As it does not require any prior knowledge of the number of clusters, and does 

not assume a spherical shape, its use has become increasingly popular in a number of fields of 

study. The Gaussian Mean-shift is performed in three main stages, and is essentially a local-

maxima finding algorithm similar to the Expectation Maximisation algorithm. These stages 

are that of gradient-ascent, iteration and convergence.

Gradient-Ascent & Convergence

The mean-shift algorithm makes the assumption that each point in a data-set is sampled from 

a probability density function. Each dense region of the point cloud is therefore considered to 

correspond to a mode or area of local-maxima. Stationary points in a dense region are chosen 

as candidates for the modes of the cluster, and the gradient-ascent is used to find these points.

At each point of the data-set, hill-climbing is performed based on the density contour. The 

density of the data-point is calculated using a kernel density estimate which returns the 

weighted mean of the region. In gradient ascent, the data-point is considered the centre of a 

window. The mean of this window is calculated, and the window then moves so that the 

newly calculated mean is the new centre of the window. This process is repeated until all 

points converge to a particular local-maxima, or mode, that are the stationary points of the 

cluster. The size of the window, or the kernel density, is therefore important in determining 

how the data-points converge through the weight it gives to nearby data-points in re-

estimation of the mean, and requires tuning so that the number of clusters returned is neither 

too few or too many.

Depending on the size of the data-set,  the complexity of Gaussian mean-shift can limit its 

applicability in certain task. Given n data-points, and I iterations, the order of complexity on 
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standard mean-shift is O(In2). Acceleration strategies for Gaussian mean-shift have therefore 

been required that make this algorithm computationally more efficient and its usage more 

widespread. One such strategy would be to use a less stringent tolerance, or bandwidth, 

between each mean-shift window. This would mean that the number of iterations would be 

reduced as larger areas around data-points are considered per mean calculation, and therefore 

the convergence rate would be more rapid. Care must therefore be taken to ensure that the true 

modes of each cluster in the data-set are found. 

Another method of GMS acceleration is that of the adaptive mean-shift algorithm, wherein 

the k number of nearest neighbours are used as a means of adjusting the bandwidth for each 

data-point. This way, a closer data-point will require a smaller bandwidth than a further away 

data-point. This would be useful as not all data is linearly spaced. A final strategy is to 

iteratively alter the position of the data-points, moving each closer together to speed up 

convergence. The Gaussian Blurring Mean-Shift (GBMS) takes this idea and expands it for 

use as a fast non-parametric clustering algorithm.

Gaussian-Blurring Mean-Shift

In blurring mean-shift, each point xm in a given data-set X containing {x1,...,xN} moves 

towards a specific point f(xm) in a region, and becomes a new data-point called Xy This stage 

utilises the first step of the mean-shift algorithm. Applying this to each data-point in turn 

reduces, or blurs, the size of the data-set. Iterating this process results in the creation of 

several incrementally smaller data-sets that can be used vastly reduce the dimensionality of 

the data-set and thus reduce the complexity of Gaussian mean-shift in clustering (Carreira-

Perpiñán (2000)).

Work in developing this technique by Fukanaga & Hostetler (1975) used a kernel density 

called the Epanechnikov kernel, defined as so;
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Further work by Cheng (1995) demonstrated that convergence was possible with blurring 

mean-shift using a Gaussian kernel, which better models data distribution by showing the 

mean μ and variance σ 2   in a bell-shaped curve, the function of which is defined as so;

    

However, though Cheng (1995) demonstrated that GMBS with an Epanechnikov kernel was 

computationally efficient, Carreira-Perpiñán showed that use of a Gaussian kernel produced a 

better segmentation of the data as it could allow the data to be modelled more accurately. In 

this paper (Carreira-Perpiñán (2000)), each data-point was treated as a Gaussian-mixture and 

was used as the kernel-density estimate needed for the mean-shift procedure. The algorithm 

proposed by Carreira-Perpiñán demonstrated that by stopping the blurring mean-shift 

algorithm just as the data has been segmented into distinct regions then rapid convergence 

occurs. This would result in an accelerated clustering technique that produces excellent 

segmentation of a point cloud. 

Though the values and number of modes in the data-set are not used in cluster convergence, 

Carreira-Perpiñán (2000) notes that the segmentation quality of the procedure is comparable 

to standard mean-shift algorithms. For the task of quantifying the level of non-uniqueness 

apparent in the entire data-set, in distinct phones and across all articulators, the number of 

resulting clusters found by the GMBS algorithm should give a good indication what 

articulatory non-uniqueness may be occurring and where, depending on the bandwidth 

chosen.

The GMBS algorithm moves each data-point, or centroid, according to the local average 

defined by its neighbours in the data-set. At each iteration in the algorithm, each centroid 

moves closer together, and this changes the shape and size of the data-set. The resulting 

clusters become compacted after a few iterations, and are distinct from each other. However, 

once each cluster is compact, further iterations proceed to move each centroid cluster towards 
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each other until convergence. This increases the possibility of clusters merging, reducing the 

accuracy of the segmentation in terms of the number of clusters returned. This also increases 

computation time in the event of clusters not-changing much. 

To combat this, Carreira-Perpiñán (2000) proposed a stopping criterion, coming into effect 

once distinct clusters emerge, using histogram theory. In a histogram, data is partitioned into 

10 linearly spaced containers (or bins), storing the frequency of each value in a separate bin. 

Using this, the stopping criterion compares the non-empty bins of each data-point in each 

cluster. Considering that each point in a cluster moves equally, comparison of the entropy of 

each cluster’s histograms at two subsequent iterations will determine when the points in a 

cluster have stopped moving separately. Thus, the algorithm will stop, and distinct but non-

converged clusters will be returned.

The algorithm I will be using to cluster my articulatory point clouds is an accelerated 

variation of this algorithm, developed by Carreira-Perpiñán (2000). Comparable to the 

connected-components stage of GBMS but applied at every iteration, the accelerated GBMS 

algorithm replaces the distinct clusters that collapse into a tightly compact point with a single 

data-point. This point is weighted according to the number of points it replaced in the cluster. 

This turns out to reduce the complexity of the GBMS dramatically, from O(kN2) to an 

accelerated O(N2), at no reduction in quality.

In this project, the number of clusters obtained is my measure of articulatory non-uniqueness, 

and so whilst the clusters themselves may contain modes that could be obtained and 

quantified using a more thorough  local-maxima finding algorithm, such as by GMS, I may 

not always be finding clusters that correspond to the true mode or modes of a dense region of 

feature space. Interpretation of the results of this study will need to bear in mind this caveat.

Bandwidth tuning

To obtain a description of clusters found in a given articulatory point cloud, the bandwidth 

setting of the GBMS algorithm, or tolerance level, needed to both accurately reflect the 
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number of distinct clusters and also not result in too many spurious clusters. An articulator’s 

position and movement during production of a recurrent phone in a recurrent context can 

naturally vary per occurrence. The human tongue, whilst extraordinarily accurate and 

consistent in facilitating sounds through its movement and positioning, will not reach the 

exact same coordinate each and every time. Moreover, the acoustically similar frames that 

give the corresponding articulatory positions may result in a seemingly larger number of 

articulatory configurations that is more to do with the parametrisation of the acoustic data 

than the actual way it was articulated.

Taking these points into consideration, visualising the resulting clusters and fine-tuning the 

bandwidth is a very good idea. Qin & Carreira-Perpiñán (2007) noted that the bandwidth 

parameter in clustering can make the difference between spurious modes (and therefore 

spurious clusters) and one large cluster. Using too small a bandwidth, or too large a bandwidth 

would result in either an incorrect multiple clusters or a single incorrect large cluster, 

respectively.

Both the acoustic and articulatory data-set have been z-score normalised, and so the range of 

the data falls between [-0.9 ; 0.9]. As the GBMS treats each point in the data-set as a 

probability density function, and because I will be assuming that the data is normally 

distributed for use with the algorithm, the kernel density estimate of the data is essentially a 

Gaussian mixture, albeit one where there are as many components as data-points, all with the 

same covariance and weight. In initial tests, a bandwidth of  σ=0.02 was chosen based on 

histogram plots of similar and different phones in the data-set. The results showed a huge 

number of clusters for a number of phones that have previously been shown to have a unique 

mapping (Qin & Carreira-Perpiñán (2007)), and generally for every frame I tested. Voiceless 

alveolar fricative /s/, for example, has been shown previously to yield a uni-modal cluster for 

the tongue tip (T1) in the articulatory domain, but here, with a small bandwidth, spurious 

clusters arose, as shown in Figure 7.
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Figure 7. GBMS clustering of tongue-tip (T1) articulatory coordinates associated with 1500 

acoustically close frames of /s/. As shown, though predominantly uni-modal, spurious clusters 

have been identified.

The tongue tip needs to be in a particularly definite position to produce this particular phone, 

and previous studies have shown the tongue tip to have a lower variance than other 

articulators. For example, in Richmond, King & Taylor (2003), they ranked the phone 

dependent averages from the MDN output by average variance σ2 for the tongue-tip 

articulator, and showed that fricatives (/s/,/t/,/ /) had a lower variance (ʃ σ2 =0.003) than, for 

example, /p/ (0.017). The authors commented that the MDN output demonstrated that the 

variance for a phone was lower when the articulator could be said to exert a strong influence 

on a phone. Using this as a rule of thumb, visually inspecting the point clouds for a low 

bandwidth across all articulators and phones indicated that a higher bandwidth would be 

required. Incrementally altering this figure until the number of clusters returned per phone 

was in line with the visual distribution of the articulatory points. A bandwidth of σ=0.15 was 

settled on after rigorous analysis of each phone and articulator, along with guidance from past 

studies of criticalness by Richmond et al (2003) and Singampalli & Jackson (2007) that 

indicated what articulators exert the greatest influence on each phone.
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Summary of Method

To summarise, inversion is performed by a kD-tree being built around LSF acoustic data from 

a database of paired, parametrised and normalised acoustic-articulatory data. A nearest 

neighbour search is then performed to extract 1500 acoustically similar acoustic frames to 

every frame in the data-set. The returned frame indices correspond to articulatory frames, 

which can be plotted and clustered in the articulatory domain to reveal whether certain sounds 

can be produced by multiple articulatory configurations. A frame that is non-unique will be 

defined in this study as exhibiting more than 1 cluster
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Chapter 4. Experiments

In this chapter, first I will describe the data-set used, then I will proceed to describe the 

experiments and analyse the results obtained.

Articulatory & Acoustic Data

The acoustic-articulatory data set I will be using was provided by the University of 

Edinburgh, and is called mngu0. I will be using a subset of this corpus, day one, which was 

recorded at Ludwig-Maximilians-Universitat Muchen using a Cartsens AG500 

electromagnetic articulograph. The data set is comprised of 1263 utterances spoken by a male 

RP speaker, which were derived from prompts generated from newspapers and a text-

selection algorithm. This algorithm is used primarily in the speech synthesis system Festival 

and aims to select text that will be phonetically diverse so as to maximise coverage of as 

many phonetic contexts as possible. (Richmond (2011)2).

A total of 6 EMA sensor coils were attached to the speaker’s articulators, one for each of the 

following; tongue dorsum (T3), tongue blade (T2), tongue tip (T1), lower incisor (JAW), 

upper lip (UL), and lower lip (LL). A total of 12 channels were then obtained, sampled at 

200Hz, one for each x and y coordinate per sensor coil on the midsagittal plane. On the 

second day of recording, a sensor coil was attached to the velum, but is not present in the data 

set that I will be using. This data has then been z-score normalised, which allows a better 

comparison of the range of movement of each articulator. This is important, as, for example, a 

tongue-tip has a greater range of movement than, say, the lower lip. This normalisation is 

achieved by subtracting the global mean from each channel and dividing by 4 times the 

channel’s global standard deviation. This preprocessing of the data also allows further 

experiments carried out on this dataset to be accurately compared.

The corresponding acoustic data was recorded using a Sennheiser MK50 hypercardioid 

microphone, and the acoustic waveforms were saved to wavefiles (RIFF). Parametrisation of 

2 This data-set was provided by Korin Richmond & Steve Renals

43



B005324

these waveforms is then required to obtain the spectral envelope  of the speech signal.

STRAIGHT analysis (Speech Transformation and Representation by Adaptive Interpolation 

of weiGHTed spectrogram) is a method of using the source F0 information from a waveform 

for extended pitch synchronous spectral analysis to give a smoothed representation of the 

spectral envelope (Banno et al (2007)). The resulting Line Spectral Frequencies (LSF) are 

excellent estimates of speech parameters. In estimating the formants from a speech signal, you 

can extract these formants through inverse filtering, calculate the remaining source 

information and then use that to remove F0 information from the signal leaving a clear 

representation of the spectral envelope. Line Spectral Frequencies are a popular way of 

representing spectral envelope information, such as linear prediction coefficients (LPC), as 

LSFs have a smaller sensitivity to quantization noise. This is particularly useful when 

transmitting the spectral information over a channel.  The spectral envelope of the acoustic 

data here was calculated using a 5msec frame-shift rate so that it matches the 200Hz sample 

rate of the articulatory data, silent frames were removed and the resulting LSFs were also z-

score normalised. (Richmond (2011)).

Experiment 1

To reiterate, a study by Qin and Carreira-Perpiñán (2007) showed that on an acoustic-

articulatory data-set derived by X-Ray microbeam cinematography, approximately 5% of 

articulatory coordinates, associated with a given number of acoustic vectors closest to any 

given reference vector, yielded a multi-modal distribution. Their method utilised search 

strategy of Ikatura-distance for acoustic similarity, a mode-finding mean-shift clustering 

algorithm, and was initialised for each of the 45,000+ acoustic-articulatory vector pairs. Their 

acoustic data comprised of LPCs sampled at 147Hz, which matched the sample rate of the 

articulatory data. Articulatory point clouds that yielded a single mode, or one cluster, were 

deemed uni-modal, whilst clouds that produce multiple modes or clusters are considered 

multi-modal, and therefore non-unique. 

Similarly, I aim to quantify the proportion of frames that show non-uniqueness, when 1500 
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acoustically close vectors to the reference frame are plotted in articulatory space. As the 

mngu0 data-set consists of 799,159 frames, I have partitioned the amount of frames to be 

analysed. Though the GBMS algorithm is an accelerated clustering algorithm, the sequence of 

performing the nearest neighbour search for every multi-dimensional frame (the LSF data is 

of 40 plus gain dimension per frame) and for each of the 6 articulators is still a 

computationally expensive process. Partitioning the data into smaller groups for simultaneous 

processing therefore allows a faster and more convenient solution.

For these experiments, the acoustic and articulatory data is from day one of the mngu0 EMA 

corpus, consisting of line spectrum frequencies (LSF) sampled at 200Hz using STRAIGHT 

analysis to match the corresponding articulatory data. Unlike in Qin and Carreira-Perpiñán’s 

study, day one of the mngu0 corpus does not have articulatory data for the movement of the 

velum. Furthermore, the number of frames is far greater in this data-set than for their speaker 

(jw11, male, 90 utterances), and the subject speaks with a unspecified American English 

accent. In American English,  depending on the regional accent, an alveolar approximant / /ɹ  

can be retroflexed or bunched, which has been show to contribute to articulatory non-

uniqueness (Qin & Carreira-Perpiñán (2010)), particularly for the tongue blade and dorsum 

over a sequence of frames. This isn’t an attribute of RP English, and so the number of clusters 

would in theory be lower for our speaker for the alveolar approximant consonant / /.ɹ  

Depending on the number of frames of / / in the data-set, this and other phonetic differencesɹ  

between the speakers could determine the level of non-uniqueness in the data-set.

Results

The results for this task showed that the number of frames that yielded clouds with multiple 

clusters  was higher in the mngu0 data-set than in the XRDB data-set used in a previous study 

( Qin & Carreira-Perpiñán (2007)). Averaging over the 6 articulators, 19.48% of the 799,159 

frames analysed yielded multiple clusters, and could therefore be considered to exhibit non-

uniqueness. Predominantly, the data-set was uni-modal in nature, with 80.52% of the frames 

analysed yielding a single cluster. As is evident in Figure 8, the level of non-uniqueness (NU) 

differed for each of the different articulators, from 7.5% (T2) to 41% (UL).
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Figure 8 - The percentage of frames in the mngu0 data-set that showed non-uniqueness 

(determined by the number of clusters) for 6 articulators.

The lower-lip (LL = 12.19% NU), lower-incisor (JAW = 12.2% NU) and the tongue-blade 

(T2) exhibit a strongly unique inversion mapping, with the tongue blade in particular showing 

only 7.51% non-uniqueness. The tongue-tip (T1 = 22.46% NU) and the tongue-dorsum (T3 = 

21.49%) exhibited moderately high levels of non-uniqueness, in line with observations made 

by Neiberg et al  (2009) regarding the proportion of non-uniqueness in a given phone for 

which these two articulators are responsible for. Finally, the articulator that shows the highest 

number of non-unique frames in the data-set is the upper-lip (UL), with 41.01% of the frames 

analysed presenting 2 or more clusters. 
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Table 1 -  The number of frames in the data-set analysed for each articulator and the % of 

unique and non-unique frames.

In this broad empirical test, the phone identification of each frame analysed is not considered. 

Different phones will present different levels of non-uniqueness, and the context a phone is 

from can contribute to this. Transitional frames between fully-realised phones are included, so 

the articulators will consistently be moving towards the next phone. This could contribute to 

non-uniqueness, but an analysis of these trajectories is not included here. The reason for the 

large number of frames that have a non-unique mapping for the upper-lip is therefore unclear, 

and disambiguating phones in the 327,735 non-unique frames would be impractical and 

misleading. If a transitional frame between two fully realised phones is used to find the 

nearest 1500 acoustically similar frames, the returned frames may not be from another 

example of the same phone transition, and a mixing-in of other articulatory configurations 

from different phone transitions may occur. Moreover, diphthongs (/ ə/, /a /) and triphthongsɪ ɪ  

(/ ə/), cannot be represented by a single frame, but they are included in this broad empiricalɛɪ  

analysis, nevertheless. 

However, the aim of this particular experiment was to quantify the level of non-unique frames 

in the data-set regardless of phone type. Overall, it has been found that the methodology used 

here has highlighted that 19.48% of the day one subset of the mngu0 EMA data-set 

demonstrates a non-unique articulatory distribution when clustered with 1500 acoustically 

close vectors

Experiment 2
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Articulator Unique Non-Unique Total Frames Unique % Non-Unique %
LL 701742 97417 799159 87.81 12.19
UL 471424 327735 799159 58.99 41.01
JAW 701662 97497 799159 87.8 12.2
T1 619668 179491 799159 77.54 22.46
T2 739142 60017 799159 92.49 7.51
T3 627420 171739 799159 78.51 21.49
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This experiment was concerned with identifying which sounds can be produced by different 

vocal-tract shapes, and for which articulators.

To study the non-uniqueness for representative frames of each phone in the data-set, I used 

the frame-aligned labelling available, whilst omitting diphthongs and triphthongs. 

Furthermore, I omitted analysis of the mid-central vowel /ə/, as phonetically and 

phonemically the vowel is seldom precisely identified, with any unstressed central vowel 

typically being labelled as such.

I ran the same methodology as in Experiment 1, but this time run on a manually constructed 

matrix of the representative frames, so that each phone could be clearly seen to exhibit either 

uniqueness or non-uniqueness, as defined by this study. Using this method for each articulator 

will also allow analysis of the level to which an articulator contributes to non-uniqueness, and 

for which phones.

Results

Overall, the selected phone data-set, comprising of 34 different phones, presented an average 

of 26.47% non-uniqueness across all 6 articulators. The upper-lip, in line with the previous 

experiment, showed the greatest level of non-uniqueness, with 50% the phones tested 

producing multiple clusters. Conversely, the tongue-dorsum and the lower-lip showed the 

lowest level of non-uniqueness, with up to 88.24% presenting a uni-modal distribution. 

However, as will be discussed, the quantity of actual non-uniqueness across all phones is not 

as clear as first indicated.
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Figure 9 – The percentage of frames in the pre-defined phone test set that showed non-

uniqueness (determined by the number of clusters) for 6 articulators.

For the purpose of analysis, the phones will be organised by manner of articulation. I will 

discussed pertinent discoveries for each phone category.

Fricatives

The results of the inversion and clustering for occurring fricatives in the mngu0 data-set (/f, v, 

θ, ð, s, z, , /) demonstrate that the lips (UL & LL) contribute to a large proportion of non-ʃ ʒ

uniqueness in the acoustic-articulatory inversion, but that for a few fricatives that is the result 

of outlying data. For example, while the GBMS algorithm segments voiceless dental 

fricative /θ/ into 2 clusters, visualising the clustered plot itself shows that all but one of the 

1500 data-points is confined to a single moderately dense cluster, as shown in Figure 10. 

Using the frame-aligned labels, the frame in question is found to belong to /f/. This could 

either be because of inaccurate automatic labelling of the corpus, or more likely it is due to 

the acoustic similarity of the query frame of /θ/ and the outlying /f/ frame data. Furthermore, 
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the very same /θ/ acoustic frames, when inverted, in the tongue-tip articulator channel do 

yield a demonstrably non-unique distribution (Figure 11). The actual reference frame is 

located in the blue cluster of Figure 11, and the multi-modal distribution evident is only 

apparent for the y coordinate of the T1 coil, as shown in the histogram. In Figure 12,  the 

single cluster evident for /f/ corresponds to the unidentified cluster in Figure 11, meaning that 

the acoustic frames of /f/ were acoustically similar to /θ/ and were treated as such in the 

inversion.

Figure 10 - Coil locations for 1500 frames closest in LSF space to a centre frame of /th/ for 

the upper-lip (UL). Note that the clustering algorithm has found a single outlying vector 

marked in red at position x=-0.3/y=-0.75.

Figure 11 – Left  - Coil locations for 1500 frames closest in LSF space to a centre frame of /th/ 
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Right – A histogram of the T1y coordinate, showing a non-unique inversion mapping

Figure 12 - Coil locations for 1500 frames closest in LSF space to a centre frame of /f/ for the 

tongue-tip (T1).

In Figure 13, the distribution of the 1500 nearest neighbours for labio-dental fricative /f/ 

before and after clustering demonstrates that the distribution of the UL articulatory points 

appears to be non-unique for the y coordinate. However, a histogram of UL_y for all /f/ 

labelled phones in the data-set (Figure 14) shows no large distribution around -0.4 (UL_y). 

Further analysis of the phonemically similar phone /v/ through clustering and histograms 

(Figure 15), though one would not normally perceptually confuse a voiced and voiceless 

sound, showed an articulatory distribution similar to that of /f/, with mass for UL_y from 0 to 

0.2 (Figure 15). A mixing of acoustically similar frames of /f/ and /v/, whilst explaining their 

similar distributions and subsequent clusters, cannot therefore explain the inclusion of 

articulatory points around -0.5 for the upper-lip’s y coordinate. In this respect, though non-

uniqueness is clear in the clustering, other unknown acoustically similar phones must 

therefore be acoustically close (parametrically at least) to the query frames of /f/ and /v/. 

Therefore, a conclusion cannot be made as to whether or not these clusters actually indicate 

true non-uniqueness.
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Figure 13 - Left - Coil locations for 1500 frames closest in LSF space to a centre frame of /f/

Right – GBMS clustering of the data after 1 iteration.

Figure 14 – Left - A histogram of the frames for 1500 frames closest in LSF space to a centre 

frame of /f/ for the UL_y coordinate.

Right - A histogram of all frames in mngu0 of  ‘f’ for the UL_y coordinate.
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Figure 15. Top left - Coil locations for 1500 frames closest in LSF space to a centre frame 

of /v/ for the upper-lip (UL) – Top Right - A histogram of the 1500 frames closest in LSF 

space to a centre frame of /v/ for the UL_y coordinate. - Bottom - A histogram of all frames in 

mngu0 of  ‘v’ for the UL_y coordinate.

To demonstrate a uni-modal clustering for fricative, we take the example of /s/ and /z/. Both 

voiced and voiceless alveolar fricatives /s/ and /z/ are shown to have a unique mapping across 

all articulators, within the confines of the GBMS clustering, as shown in Figure 2. Previous 

evidence of phone variance using training MLP models (Richmond, King & Taylor (2003)) 

indicated that these phones would show low variance, especially for an articulator that is 

critical to the production of the sound, such as the tongue-tip. Figure 16 shows a single 

articulatory cluster for the 1500 acoustically similar frames for /s/ & /z/ for the tongue-tip, 
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converging to a single centroid, and visualising the actual coil locations confirms this.

Figure 16 - Top & Bottom Left - Coil locations for 1500 frames closest in LSF space to a 

centre frame of /s/ & /z/, respectively.Top & Bottom Right – GBMS clustering of the /s/ & /z/ 

frames after 5 iterations.
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Plosives

As shown in Figure (17), all of the plosives examined exhibited non-uniqueness across at least 

two articulators. The upper-lip contributed to 23.5% of all instances of plosive non-

uniqueness, with the tongue-tip contributing up to 29.4%. Conversely, the tongue-dorsum and 

blade showed predominantly unique plosive distribution, with only voiceless velar plosive /k/ 

and voiced velar plosive /g/ showing non-uniqueness on the tongue-dorsum and blade, 

respectively.

Bilabial plosives /p/ and /b/ yield non-unique clouds in articulatory space for the upper-lip, 

lower-incisor and the tongue-dorsum, with voiced /b/ also exhibiting a non-unique 

distribution for the lower-lip. As the lips are essential for the production of the eponymous 

bilabial stop, this result is curious. Scatter plotting the non-clustered 1500 articulatory frames 

closest in LSF space to the centre frame of phone /b/ does indeed show a distribution that 

indicates non-uniqueness, as shown in Figure 17. 

Figure 17 - Left – Coil locations for 1500 frames closest in LSF space to a centre frame of /b/.

Right – GBMS clustering of the data after 2 iterations. Two clusters have been identified, and 

points  have begun to converge to a central point in each cluster.

To investigate further, I made a histogram showing the distribution of all frames of ‘b’ for 
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UL_y (Figure 18i), showing density at 0.2. In Figure 18ii, the 1500 acoustically similar 

frames of /b/ in UL_y shows a large distribution of frames at both -0.5 and 0.2.  Similarly, in 

Figure 18iii, a histogram of ‘p’ shows a high UL_y distribution at 0.2, whereas a scatter plot 

of the 1500 acoustically similar frames in articulatory space (Figure 18iv) shows UL_y 

distribution at both -0.5 and 0.2. As with the similar distributions of /f/ & /v/, what appears to 

be occurring is a mixing of acoustically similar frames of /p/ and /b/ when each phone is 

inverted into articulatory space for this particular articulator through the nearest neighbour 

search.

Figure 18 -  Top left i) Histogram of all frames of ‘b’ in UL_y – Top right ii)A histogram of 

the 1500 frames closest in LSF space to a centre frame of /b/ in UL_y

 Bottom left iii) -  Histogram of all frames of ‘p’ in UL_y – Botttom right iv) – Clustered Coil 

locations for 1500 frames closest in LSF space to a centre frame of /p/
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The parametrisation of the acoustics appears to be the cause of this, rather than the /p/ or /b/ 

actually being produced in multiple articulatory configurations. One possibility could be that 

the LSF data is not adequately modelling unvoiced frames, such as for /p/, which would 

explain the mixing in of /p/ and /b/ frames, as well as the previous example of voiceless labio-

dental fricative /f/ frames mixing in with voiced /v/. This appears to be limited to the upper-lip 

(x,y), though non-uniqueness has also been found for non-critical articulators for /p/. The 

lower-incisor (JAW), tongue-tip (T1) and tongue-dorsum (T3) all show multiple clusters, 

though not to the same degree of density as for the upper-lip. In Figure 19, for example, the 

two clusters are evident, but on examining a histogram of all frames of ‘p’ in the corpus for 

T3_x, there is only a moderate distribution of frames at coordinate -0.4. Likewise, there is a 

only a moderate to small distribution of frames at coordinate 0.4 for T3_y. In Figure *, the 

scatter plot with histograms on each axis shows that there is a very small local minima 

distribution for the acoustically close frames at 0.4 for the T3_y articulator. Furthermore, a 

histogram for all frames of ‘b’ does indicate a higher distribution at 0.4 for the T3_y 

articulator. The GBMS algorithm has identified this as a separate cluster, though it is not clear 

whether or not this is again the result of mixing acoustically close /p/ and /b/ frames due to 

unvoiced frames being insufficiently represented by LSF coefficients.
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Figure 19 - Top - Histograms of the 1500 frames closest in LSF space to a centre frame of /b/ 

(left) and /p/ (right) for the UL_y coordinate. - Bottom -  Coil locations for 1500 frames 

closest in LSF space to a centre frame of /p/ (left) and a combined scatter plot and histogram 

for the coil locations of 1500 frames closest in LSF space to a centre frame of /p/ in UL_y 

(right).

A final example of curious non-uniqueness for plosives is for the voiced velar plosive /g/ and 
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the voiceless plosive /k/. Both of these phones exhibit non-uniqueness on the upper-lip (2 

clusters identified for each phone), but also are partitioned into two clusters for the tongue-

dorsum; their critical articulator. Scatter plots of both /g/ and /k/ (Figure 20 Top) both show a 

clear multi-modal distribution of the 1500 articulatory points. The T3 coordinates that record 

high densities of frames for both /g/ and /k/ are at approximately positions T3_x=-

0.6/T3_y=0.6 and T3_x=0.2-0.5/T3_y=0.2. The actual query frame for both phones in located 

in the top cluster (x=-0.6/y=0.6), where the visible boundary line corresponds to the soft-

palate. What becomes apparent when taking  all frames of ‘k’ and ‘g’ in the data-set and 

plotting a histogram for T3(x,y) is that there is no distribution of ‘k’  or ‘g’ frames below 

coordinate 0 for either T3_y channel (Figure 20 Bottom). This is indicates that most or all of 

the articulatory points below that point should belong to a different phone, and the clustering 

of these points by the GBMS algorithm indicates the inclusion of other phones.

Figure 20 -  Top - T3 coil locations for 1500 frames closest in acoustic space to a centre 
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frame. Left  - /g/. Right - /k/. Bottom – Histograms for all frames of ‘g’ (left) and ‘k’ (right) in 

the data-set.

In investigating the identity of these phones, I found that included in the 1500 acoustically 

close phones to /g/ were the following; / , p, b, t, k/. One of the most common frames that wasʃ  

close to /g/, as labelled by the Combilex LTS system, was ‘k_cl’, which is the closure part of 

the velar plosive /k/. This accounted for 20% of the returned nearest neighbours. However, 

oddly enough, 24% of the frames 1500 that were acoustically similar to /g/ were comprised of 

‘p’, whilst 50% of similar frames to /k/ were comprised of ‘f’. As I doubt that /p/ and /g/, 

nor /f/ and /k/, are actually acoustically equivalent, this must be another instance where, due 

to the parametrisation of the acoustic data, the sounds are acoustically similar. Therefore a 

seemingly non-unique inversion from the acoustic to the articulatory domain such as this one 

needs to be interpreted carefully, as is evident by one cluster containing entirely different 

phones.

Nasals

In total, all five types of nasal phones that occurred in the data-set exhibited non-uniqueness 

over at least one articulator. Of the total non-uniqueness shown by the phone-set, 17.86% 

came from these nasal phones. The syllabic alveolar nasal stop ‘n!’ showed non-uniqueness 

for the upper-lip and all three tongue coils (T1, T2, T3). However, inspection of the 2 clusters 

for T1 shows that all but 2 articulatory frames fall into a single uni-modal distribution. As the 

tongue tip is necessary for production of the syllabic alveolar nasal stop, this was as to be 

expected.

Figure 21 (top left) shows 2 clusters in the articulatory point cloud for 1500 frames of ‘n!’ 

after two iterations of the GBMS clustering algorithm, while Figure * demonstrates clear 

multi-modality in the distribution of ‘n!’ for the UL_y coil. Of the phone labels that make up 

this plot, only 6.8% of the frames are for ‘n!’, whilst 37.2% are derived from the alveolar 

nasal /n/, 26.46% are derived from the bilabial nasal /m/, and 13.8% are derived from the 

velar nasal /ŋ/. The remaining 15.4% consists of numerous frames of the following phones; /t, 
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d, b, v, z/. A histogram for all frames of ‘n!’ in the data-set shows only one distribution peak 

(0.2) for UL_y coil locations, whereas a histogram of all ‘m’ frames for UL_y coil locations 

shows a distribution peak at -0.5. A combination of 26.46% of 1500 acoustically similar ‘n!’ 

frames corresponding to ‘m’ and the total distribution of ‘m’ frames in the data-set peaking 

where the blue cluster of frames is situated is a good indication that non-uniqueness for this 

particular phone is dependent on bilabial nasal /m/ being mixed in. Once again, though it 

appears as if there is a non-unique inversion mapping between the acoustic data and the 

articulatory configurations
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Figure 21 -  Top - UL coil locations for 1500 frames closest in acoustic space to syllabic 

alveolar nasal stop ‘n!’ (left) and a histogram of the 1500 frames closest in LSF space to a 

centre frame of ‘n!’  in UL_y. Bottom – Histograms for all frames of ‘n’ (left) and ‘m’ (right) 

in the data-set.

Approximants

In Qin & Carreira-Perpiñán (2007), the authors found that approximants, specifically 

American-English alveolar approximant / /, lateral approximant /l/, and labio-velarɹ  

approximant  /w/, exhibited multi-modality. Here, the alveolar approximant / / produced,ɹ  

when inverted, a single cluster for each of the tongue coils (T1, T2, T3). According to 

previous studies (Qin & Carriera,  2009), a trajectory of each tongue coil for American 

English /  / showed that multiple tongue-blade shapes occurred (retroflexed and bunched),ɹ  

and but that the modality of the tongue tip and dorsum remained singular. A histogram of this 

phone’s distribution in mngu0 for the tongue-blade for the 1500 frames closest acoustically 

to /  / in articulatory space (Figure 22) does shows a moderately wide spread of articulatoryɹ  

points for the T2_y channel, but the distribution is normal. As the male RP speaker in day one 

of mngu0 does not have the same accent as the speaker used in Qin & Carriera-Perpinan’s 

study (2007), in that the RP is a predominantly non-rhotic accent, the variety of different 

tongue shapes evident for the alveolar approximant / / in the articulatory domain will differ.ɹ  

In this respect, the lack of non-uniqueness for / / here is not directly comparable to Qin &ɹ  

Carriera-Perpinan’s study.
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Figure 22 – Left - T2 coil locations for 1500 frames closest in acoustic space to alveolar 

approximant / /. ɹ Right - A Histogram of the 1500 frames closest in LSF space to a centre 

frame of /ɹ/  for the tongue-blade (T2) y coordinate.

The articulatory distribution of lateral alveolar approximant /l/ from the phone-set is uni-

modal across the three tongue coils (T1, T2, T3), which is different to what was found in Qin 

& Carriera-Perpinan’s study. Figure 23 (Top) shows the single cluster, as identified by GBMS, 

and the histograms for T2_x and T2_y show a normal distribution for the returned nearest 

neighbours. This does not, however, necessarily mean that there are not frames from other 

phones mixed in due to acoustic similarity. A look at the frame identities in the returned data-

set shows that, indeed, only 5.6% of the returned frames were drawn from phones labelled ‘l’ 

or ‘l!’ (syllabic lateral stop). Predominantly, vowels such as the mid-central unstressed /ə/, or 

front close vowels such as /y/ or /i:/, were often deemed acoustically similar to /l/. A 

histogram of the distribution of all frames of ‘l’ for T2_x shows that there is a very wide 

spread of possible T2_x positions in the data-set. The tongue-tip, however, shows an almost 

exclusively uni-modal distribution (Figure 23 Bottom) as it makes contact with the alveolar 

ridge, which is to be as expected as the variance of a phone is lower for its critical articulator 

(Richmond, King & Taylor (2003)).
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Figure 23 – Top - T2 coil locations for 1500 frames closest in acoustic space to lateral 

approximant /l/ and histograms for T2 x & y. Bottom -  T1 coil locations for 1500 frames 

closest in acoustic space to lateral approximant /l/ and histograms for T1 x & y.

Finally, the labio-velar approximant /w/ shows no non-uniqueness for the lips (UL, LL), but 

shows a similar pattern of non-uniqueness to that of /k/ and /g/, as shown in Figure 24. The 

GBMS algorithm has clustered the data into 2 distinct clusters, with the actual query frame 

located at coordinates T3_x=0.14/T3_y=0.26, at the top of the blue cluster. In the production 
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of the voiced labio-velar approximant, the tongue-dorsum is raised to narrow the vocal-tract 

and produce a turbulent airflow. The tongue-dorsum does not make contact with the soft-

palate, unlike /k/ and /g/ phones. Figure 24 (bottom left) demonstrates that in the inversion 

there is a significant distribution mass at T3_y=0.6 and a lesser sized distribution at T3_y=0.2. 

As before, a histogram of the distribution of ‘w’ in the entire data-set for T3_y (Figure 24 

bottom right) shows only a single peak around position 0.2, which corresponds to the query 

point. Inspecting the frame-aligned labels for these 1500 frames shows that there is indeed 

mixing of other velar phone frames, with voiceless velar plosive /k/ in particular contributing 

28.93% of the nearest neighbour frames. As with each example that has been found that 

demonstrates the mixing of acoustically similar phones, it is important to reiterate that this 

does not necessarily mean that /w/ and /k/ are acoustically equivalent. Rather, that these 

particular articulatory configurations are able to produce similar acoustic parameters.
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Figure 24 - Top - T3 coil locations for 1500 frames closest in acoustic space to labio-velar 

approximant /w/  - Bottom – A Histogram of the 1500 frames closest in LSF space to a centre 

frame of /w/  for the tongue-dorsum (T3) y coordinate (left) and a histogram for all frames of 

‘w’ in the data-set (right).

Vowels

Of the vowels in the data-set that were not diphthongs, triphthongs or the mid-central 

unstressed schwa, the GBMS clustering algorithm found that 87.5% were demonstrably uni-

modal in distribution. This is in line with Qin & Carreira-Perpiñán’s study (2007), where 

/æ/, /i/ and /u / were shown to be uni-modal, yielding a single cluster. Of the 12.5% of vowelsː  

that yielded multiple clusters, such as /æ/ for the upper-lip, an examination of the point clouds 

shows that they do show a predominantly singular clustering, with a small number of data-

points in each of remaining clusters. This can be seen in Figure 25 (left), which shows the 

upper-lip coordinates associated with the 1500 nearest neighbours to /æ/. In disambiguating 

the acoustically similar frames, I found frames from diphthongs (/a /, /au/), as well as theɪ  

occasional consonant (/f/,/k/). However, we can conclude that, as previous studies have 

shown, vowels are predominantly uni-modal in distribution, as with / / in Figure 25 (ɪ right)
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Figure 25 - UL coil locations for 1500 frames closest in acoustic space to the vowel /æ/ (left) 

and / / (ɪ right).
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Figure 26 – A chart of all phones that demonstrated non-unique articulatory configurations 

from articulatory points associated with 1500 acoustically close frames to that particular 

phone, along with the percentage to which each articulator contributed to this articulatory 

non-uniqueness.
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Conclusion & Further Work

Conclusion

Through this project, I have sought to quantify the extent to which different vocal-tract shapes 

can produce parametrically similar sounds in the day one subset of the mngu0 EMA data-set. 

Through acoustic-articulatory inversion, subsequent clustering of the data using non-

parametric methods, I found that 19.48% of the 799159 frames tested showed what could be 

considered a non-unique inversion from the acoustic domain to the articulatory 

domain,yielding multiple clusters, while the remaining 80.52% yielded a single cluster. In 

comparing the number of clusters found here to the proportion of multiple modes and clusters 

found in Qin & Carreira-Perpiñán’s study (2007), my clustering algorithm found an average 

of approximately 14.48% more instances of inversion non-uniqueness in this data-set. 

However, the size and type of the data-sets differed (Qin used X-Ray microbeam 

cinematography, whereas I used a much larger EMA corpus derived from a 3D EMA system 

which was more consistent) and so one would expect the larger data-base to present an 

increased proportion of non-uniqueness. Furthermore, as no frames of speech were omitted 

from this broad empirical study, such as diphthongs, triphthongs and transitional frames 

between fully realised phones, a proportion of the non-uniqueness found may be merely an 

attribute of continuous speech. For example, the schwa sound is attributed to many unstressed 

mid-central vowel sounds, but in the transition from one phone to another, different 

configurations of articulators in the vocal tract could produce an acoustically similar sound to 

the /ə/ vowel.  Moreover, in investigating a selection of representative frames of phones in the 

data-set, it became clear that the level of non-uniqueness was not as easily quantifiable as 

initially thought.

Across different categories of phones, namely fricatives, plosives, nasals and approximants, 

some phones showing apparent articulatory non-uniqueness were revealed to produce 
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clustered point clouds that consisted of acoustically similar, but not equivalent, frames from 

other phones. Labiodental fricatives /f/ and /v/ were shown to contain clusters of articulatory 

frames from each other, which could suggest that unvoiced acoustic frames in the data-set are 

not being appropriately represented by the LSF acoustic parametrisation. Further examples of 

this are with bilabial plosives /p/ and /b/ and velar plosives /k/ and /g/, which all showed 

evidence of voiced and unvoiced phones produced by the same place of articulation being 

categorised as acoustically similar to a reference point and grouped into distinct clusters in the 

articulatory domain.

Across all 799159 frames, the upper-lip was the highest contributor of non-unique 

distributions of articulatory coordinates associated with 1500 acoustic vectors closest to a 

given acoustic reference frame, and this contribution increased when acoustic-articulatory 

inversion of individual phones was examined (50% of all phones tested demonstrated 

articulatory non-uniqueness in the distribution of 1500 acoustically similar frames). For 

example, the acoustic nearest neighbours to syllabic alveolar nasal stop ‘n!’ showed a non-

unique articulatory distribution for the upper-lip through a substantial number of voiced 

bilabial plosive /m/ frames being mixed in the overall articulatory distribution. Though 

syllabic alveolar nasal stop ‘n!’ is not normally produced with a bilabial closure, in certain 

contexts alveolar consonants can be subject to anticipatory coarticulation towards initial 

consonant of another word (e.g. Utterance 580 in mngu0 - ‘Prison Garth’ can sound more like 

‘Prism Garth’ ). This could explain the acoustic similarity between a given acoustic frame of 

‘n!’ and ‘m’, and thus the corresponding non-unique articulatory distribution.

The level of articulatory unique distributions of acoustically similar acoustic frames has been 

shown to be especially low for most articulators that are especially necessary to the 

production of a given phone. For example, fricatives such as unvoiced dental /t/ and unvoiced 

alveolar /s/ yield a single cluster for the tongue-tip, their critical articulator. However, as 

discussed, the upper-lip, lower-lip and tongue-dorsum differ in this respect. These articulators 

demonstrate, for a phone that uses that place of articulation critically, dense clusters as well as 

other clusters pertaining to phones that do not share the same articulatory distribution. From 

this, it becomes clearer that each articulator has a different range of possible articulations as 

well as different number of phones that use the articulator critically, and that this corresponds 
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to the number of clusters that can be found for any given articulator.

To summarise, the methodology outlined in this dissertation has allowed the superficial 

quantification of the level to which non-unique articulatory coordinate distributions, 

associated with 1500 acoustic vectors close to a given frame, exist in the day one subset of the 

mngu0 EMA corpus. Phones such as bilabial plosives /p, b/, velar plosives /k, g/ and syllabic 

alveolar nasal stop ‘n!’, have been shown to contribute highly to the total non-uniqueness 

discovered. My results compare similarly to Qin & Carreira-Perpiñán’s study (2007) with 

regards to vowels yielding uni-modal clouds, but differ in our findings for approximants, 

where I found that both lateral alveolar approximant /l/ and alveolar approximant / / yieldedɹ  

only uni-modal distributions for the tongue articulators (T1, T2, T3). However, the real 

question is whether or not these clusters actually correspond to a phone being articulated in 

numerous ways, or whether, as is more likely shown in the results of this dissertation, that the 

parametrisation of the acoustic data allows multiple articulatory combinations to correspond 

to a single acoustic sound.

Further work

In many respects, the methodology put forth and tested in this paper is an outdated and 

insufficient way to model the inversion mapping, and thus non-uniqueness. More recent 

papers by Qin & Carreira-Perpiñán (2009) derived conditional densities for an articulatory 

configuration given an acoustic vector. Their data was modelled using a Gaussian mixture and 

an EM algorithm, which allows a more accurate description of the density of the data. They 

then used a true Gaussian mean-shift algorithm to find the modes of the dense regions, and 

filtered out spurious modes to find true multi-modal distributions. I did initially attempt to use 

a 2 component GMM along with a Gaussian mean-shift algorithm, but this resulted in two 

problems. Firstly, as previously discussed, I experienced difficulties in determining how many 

components to use for each articulator, leading to an otherwise uni-modal cloud to be 

clustered, and secondly, the computational complexity in performing the true Gaussian mean-

shift over all 799159 frames in the corpus was too large, taking an average of 25 seconds to 

process each frame. However, there are a number of methods to accelerate this process. 
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First, as suggested in Qin & Carreira-Perpiñán (2010), thresholding out components that are 

beyond a certain distance from a given acoustic vector would reduce the computational 

bottleneck.  Secondly, Carreira-Perpiñán (2006) proposed several acceleration strategies for 

Gaussian mean-shift, one of which used a spatial discretion strategy to divide the data into 

cells and make all points within a cell converge to the same mode, reducing iterations and 

computational complexity. Unfortunately, due to time-constraints, I could not implement an 

acceleration strategy here, and so used the GBMS algorithm to find clusters instead of modes 

(though the modes of the data will likely be within each cluster).

In further work, I would implement an accelerated mode-finding GMS algorithm but instead 

using Mixture-Density Networks (MDNs) as a trained model to provide a full frame-wise 

probability density function for each articulatory configuration conditioned on a 

corresponding acoustic vector. An MDN can model arbitrary distributions in data using 

numerous components, meaning articulatory configurations can be modelled far more 

accurately that other trainable inversion mapping systems (eg. MLPs). The conditional 

probability density outputted for each frame could then be used with a Gaussian mean-shift 

algorithm, using a fixed-point iteration at each centroid of the conditional mixture. From this, 

a richer description of the level of articulatory non-uniqueness in the mngu0 corpus by way of 

mode-finding could be quantified. However, the question still remains as to whether 

articulatory non-uniqueness truly exists, and whether or not it is actually just a product of the 

parametrisation of the acoustic data.
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