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0.1 Abstract 

This thesis describes the calculation of the form factors for four semileptonic 

decays. The decays considered are those where a pseudoscalar meson composed 

of a heavy and a light valence quark decays to a vector meson containing only 

light valence quarks. The form factors were calculated in nonperturbatively 0(a) 

improved quenched lattice QCD. To estimate discretisation effects the calculation 

was done at 3 = 6.0 and 0 = 6.2, with lattice sizes 16 x 48 and 24 x 48 

respectively. 

Results are presented for the following semileptonic decays of charmed mesons: 

D -+ q, D -* K* and D -* p. The /3 = 6.2 and 0 = 6.0 results agree within 

errors. The /3 = 6.2 results were used to calculate integrated decay rates and 

form factor ratios at q2  = 0. The lattice predictions for integrated decay rates 

are in reasonable agreement with experiment. In some cases the lattice form 

factor ratios differ significantly from experiment. 

The simulation results were extrapolated in heavy quark mass to obtain 

B -+ p form factors at high q2 . These were used to determine jVubj  from the 

CLEO collaboration's measurement of the partial decay rate B -* p in the range 

14 GeV2  < q2  < 21. This gave IV,,bl = 3.4t + 0.7 + 0.6 x iO where the 

errors are statistical, systematic and experimental. This is in agreement with the 

determination of IVub I by the Particle Data Group. 
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Chapter 1 

Introduction 

Particle physics is the study of the most fundamental constituents of matter. 

The aim is to identify the building blocks of matter and understand their inter-

actions. The Standard Model (SM) of particle physics describes the observed 

particles and their interactions in terms of a quantum field theory. The SM is a 

spectacularly successful theory; it gives a unified description of a vast range of 

different phenomena and agrees with all experimental results to date 1 . This in-

troduction describes aspects of the SM relevant to this thesis, and reviews recent 

work to confront the theory of flavour changing interactions with experiment. 

1.1 Charged currents 

The electroweak sector of the standard model is an elegant and intricate theory. 

It gives a unified description of electromagnetism and the weak force in terms of 

a spontaneously broken gauge theory. Without the symmetry breaking all the 

particles in the theory are massless. The symmetry breaking generates an effective 

mass for the fermions and three of the gauge hosons. The residual signature of 

the symmetry breaking mechanism is a particle, the Higgs boson. Despite much 

effort, the Higgs boson has not yet been observed. It is the only SM particle that 

1 The recent strong evidence that neutrinos have mass is the only exception to this [1]. 

However, the SM can be generalised to accommodate neutrino mass [2]. 

1 
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has not been observed. 

The weak interactions relevant to this work are the interactions of the W 

bosons with fermions. After symmetry breaking the interaction between the W, 

leptons, and neutrinos is given by the effective Lagrangian density [3], 

Lwe =(WJ7 + WJ7t).  

The current jL  is given by 

	

J7 = t7e 'Y'1L6 + 17IL PL1L + 17, -YPL 7- , 	 ( 1.2) 

where the neutrino and lepton fields in this expression are four-component Dirac 

fields. PL  projects out the left-handed component of a spinor, 

PL = (1 _5). 	 (1.3) 

The leptons only interact with neutrinos from the same generation. 

The interaction between the W and quarks is given by the effective-Lagrangian 

density [3], 

(1.4) 

where the current JqL  is 

Vud Vus Vub 	d 

J=(u 	T)'yPL 	1 d V. Vb 	 . 	 ( 1.5) 

Vtd 14 Vib 	b 

The matrix in the above expression is the Cabibbo-Kohayashi-Maskawa (CKM) 

matrix. It is not diagonal, so quarks from different generations do interact. 

The coupling constant g, in (1.1) and (1.4), measures the strength of the 

interaction between the W boson and fermions. It turns out that g is much 

smaller than unity [4]. This is very fortunate for theoretical calculations, because 

perturbation theory can be accurately applied. The decays of interest in this 

work involve the exchange of a highly virtual W boson; the four-momentum 

of the boson (q) satisfies q2  << Ma,. For these decays the W boson field 

can be integrated out of the Lagrangian. The resulting effective Lagrangian has 

interactions between four fermions, with coupling GF = g21(8M,). 
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1.2 Quantum chromodynamics 

Quantum chrornodynamics (QCD) is the theory that describes the interaction 

between quarks and gluons. From a theoretical point of view QCD is the most 

complicated part of the standard model. In many interesting processes perturba-

tion theory cannot be applied to QCD. 

Quantum field theories have UV divergences and need to he renormalised to 

give finite results. Renormalisation causes the parameters of a quantum field 

theory to depend on the energy scale at which they are measured. In the case of 

QCD the coupling between quarks and gluons is [5] 

l2ir 
as (i 2 ) = 	 ( 1.6) 

(33 - 2NF) 

where AQCD is approximately 0.2 CeV, NF is the number of quark flavours, and 

is the energy scale. This result is calculated in perturbation theory, and is 

only valid if a is small. In modern collider experiments quarks interact at high 

enough energies for c to he fairly small. Perturhative QCD calculations agree 

very well with the results of collider experiments. This is the main reason that 

Q CD has become established as the correct theory of strong interactions. 

The quarks bound in a hadron interact at low energies, at which oz ., is large. 

Perturbation theory cannot he applied to the quarks in a hadron. A nonpertur-

hative approach is required. This thesis is about a calculation of nonperturhative 

QCD effects using the lattice QCD approach. 

1.3 Weak decays of mesons 

The weak decays of mesons are of interest because they can be used to deter-

mine elements of the CKM matrix. The theoretical description of these decays 

requires electroweak theory and QCD. The electroweak part of the decay can 

he accurately calculated in perturbation theory, but the QCD part is inherently 

nonperturhative. Weak decays which take place by single 14' exchange have an 

amplitude of O(GF). The contribution from loops to these decays is insignificant 
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because Gp is so small. The decays mediated by single W exchange can he di-

vided into three classes: leptonic, semileptonic and nonleptonic. In a nonleptonic 

decay one meson decays to two mesons, for example K -+ These are difficult 

to describe theoretically because the final state mesons interact by the strong 

force. In the case of semileptonic and leptonic decays there is one or no mesons 

in the final state, and the QCD effects can he separated from the weak effects. 

An example leptonic decay is shown in figure 1.1. The diagram shows a specific 

leptonic decay, but can easily he generalised. Figure 1.1 is the tree-level Feynman 

diagram for the decay in a world without QCD. In the real world low energy QCD 

interactions strongly bind the quarks in the initial state. This binding cannot be 

visualised with a Feynman diagram or calculated in perturbation theory. The 

amplitude for the decay in figure 1.1 is [6], 

CF M(B -+ tv) = 	 (1.7) 

were q 11  is the four-momentum of the B, the leptonic current is 

LL = 	- 	 ( 1.8) 

and fB  describes the nonperturhative QCD effects. 

Figure 1.1: The tree-level Feynman diagram for B -+ t17, in the absence of 

QCD. This is a leptonic decay. 

An example semileptonic decay is shown in figure 1.2. The amplitude for this 

decay is [6], 

M(B 	
CF

°  -+ pti) = i 	 , 	 (1.9) 

where 

H, = (pIüy(1 - 75)bIB°) . 	 (1.10) 
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The current H, is called a weak matrix element. It describes the QCD effects 

in the semileptonic decay. Symmetry arguments show that H,., can he expressed 

in terms of a few functions of q 2 , called form factors. This is shown explicitly in 

section 5.1. 

1 

/ 
/ 

/ 
'I b 	 U 

M. 

Figure 1.2: The tree-level Feynman diagram for the decay B °  -4 pe-ií, in the 

absence of QCD. This is a semileptonic decay. 

1.4 The CKM matrix 

The CKM matrix is a unitary matrix. A general 3 x 3 unitary matrix is defined by 
32  free parameters. In the case of the CTKM matrix five of these free parameters 

are unphysical. Five arbitrary phases can he absorbed into the definition of the 

quark fields. 

A convenient parametrisation of the CIKM matrix was introduced by Wolfen-

stein [7]. The pararnetrisation uses four real parameters A, i, p, and A. The 

parameters A, i, p are of the order of unity, but A is small; experiment gives 

A = 0.223 ± 0.004 [4]. The Wolfenstein parametrisation neatly summarises the 

hierarchy in the magnitudes of CKM matrix elements. This hierarchy is an ex-

perimental observation and is not derived from the SM. The parametrisation is 

= 

 (

1 - A 2 /2 	A 	AA 3 (p - ij) 

) 

—A 	1 - A 2 /7 	AA 2 	+ 0(A 4 ),  

AA3(1 - p - i) —AA 2 	1 

where the suppressed 0(A 4 ) terms have been omitted. 
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There is one phase in VCKM  which cannot he absorbed into the quark fields. 

The physical significance of this is that the interaction between the W boson and 

quarks (1.4) is not invariant under a combined charge parity (CP) transformation. 

This is the only interaction in the standard model which violates CP symmetry. 

Several of the alternatives to the SM predict new mechanisms for flavour 

changing interactions, and for CF violation. In these alternative models the 

effective Lagrangian for flavour changing interactions would have a nonunitary 

CKM matrix. Therefore it is important to test experimentally the unitarity of 

VCKM. The unitarity condition, 

7cIMVJM = 1, 	 (1.12) 

gives six independent relations for the elements of VCKM.  The most interesting 

relation is 

1/'v4Vub + 1 db + 14db = 0 

Each of the terms on the left hand side are Q4)  in the Wolfenstein parametri-

sation. Each term is similar in magnitude and two of them are expected to have 

a large phase. This equation can he elegantly presented as a unitarity triangle. 

The three terms in the equation are represented as vectors in the complex plane, 

and these vectors form a closed triangle if the terms sum to zero. The unitarity 

triangle for (1.13) is shown in figure 1.3. Note that many authors rescale the sides 

of the triangle in some way. 

vu  

T/ 11* 
j V cb 

Figure 1.3: The unitarity triangle for relation (1.13). 

The unitarity triangle gives a beautiful way of visualising the experimental 

tests of unitarity. Each test is interpreted as restricting the apex of the triangle to 
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a region of the complex plane. For example the measurement of IV d Vl restricts 

the apex of the triangle to an annular region. The width of the annulus is the 

error on VudV,bL  The different experimental results for the apex of the triangle 

are combined by superimposing the different allowed regions of the complex plane. 

At present there is a region of the complex plane where all the allowed regions 

overlap and so experiment is consistent with the Standard Model. 

1.5 jVubj  from B decays 

The CKM matrix element jVubj  gives an important constraint on the apex of 

the unitarity triangle. Its current value from the Particle Data Group is Vb = 

0.0035 ± 0.0015 [4]. Knowledge of the unitarity triangle (figure 1.3) would he 

greatly increased if 11141  could he determined more accurately. 

The inclusive semileptonic decay B —+ Xjv can he used to determine l v. bl . 

The measured branching ratio 8 is used to compute 

VbI = 
8(B —* X) 

'ihyfl 
(1.14) 

whereTi3  is the B life time, and rthy  is calculated from theory. A sernileptonic 

decay is described by three kinematic variables. These are E, the lepton energy, 

EF, the neutrino energy (in the B rest frame) and q2 , where q = pe — p. The 

formula (1.14) is correct for a branching ratio integrated over part or all of phase 

space, although of course the value of ['thy  changes. If the branching ratio is 

integrated over all of phase space thenPthy  can be calculated as a series in a5 (rnb) 

and AQCD/mb, using an operator product expansion (OPE). The error onrthy  is 

estimated to he about 8% [8]. If the experimental measurement could he made, 

this would allow a determination of IibI  with a 4% theoretical error. In practice 

however, the decay B —+ X a ei7 has a huge background of B —+ XFD events. To 

distinguish the two decays, cuts are placed on the kinematic variables. There are 

two widely used cuts, 777. B! 2  > Ee > (m—m)/2mB and (mB — mD) 2  < q < n4. 
Unfortunately, imposing these cuts makes the OPE calculation unreliable [8, 9] 

and results in a large theoretical error on 1114  1 . Recently two solutions for this 
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problem have been proposed. One strategy is to apply an unconventional cut that 

uses both Ee  and q2  [10]. It should he possible to use the cut for the experimental 

measurement and the OPE is well behaved. Another strategy uses the data for 

!3(B -~ X8 -y) with the conventional cut mB/2 > E > (rn - m)/2mB. The 

uncontrolled terms in the OPE are determined from experimental measurement 

of the inclusive decay B -* Xy [11]. These methods are expected to allow a 

determination of with 10% theoretical errors. However, neither method has 

yet been implemented. 

An alternative way to determine IVubI  is to use exclusive decays of B mesons. 

Currently the best exclusive and inclusive determinations of IV & I have similar 

errors [9]. The simplest exclusive decay is the leptonic decay B -+ e- v where the 

nonperturhative effects are described entirely by the decay constant fB.  However 

the branching ratio for leptonic B decay is predicted to he very small and is 

unlikely to be observed experimentally for some time. The semileptonic decays 

B -+ p&i and B -+ ir&, offer a good opportunity to determine lV b I. Both these 

decays have now been observed by the CLEO collaboration [12, 131. To determine 

VbI the weak matrix elements (1.10) for these decay needs to be calculated. 

With the weak matrix element as the theoretical input 11141  is obtained by a 

formula similar to (1.14). At the moment the best measured inclusive decay is 

B -+ p1?v. The CLEO collaboration use five different theoretical calculations of 

the weak matrix element to determine IV b I and estimate a theoretical error from 

the spread of results. They obtain [13] 

VUbI = 3.25 + 0.141 + 0.55 x 10 	, 	 (1.15) 

where the errors are statistical, systematic and theoretical. The dominant error 

is the theoretical uncertainty. 

This thesis describes a lattice QCD calculation of the matrix element for the 

decay B -+ peii. In principle this is the best method for calculating the necessary 

weak matrix element. The lattice is the only fundamental approach to nonper-

turbative QCD. However the current systematic errors on lattice calculations are 

large, and comparable to the systematic errors claimed for light cone sum rules 

[14] and quark models [15]. 
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There are two major experiments currently gathering data, which are devoted 

to B physics. These are Barhar in California, and Belle in Japan. These exper-

iments are expected to greatly improve knowledge of B decays over the coming 

years. 



Chapter 2 

Lattice QCD 

This chapter gives an overview of some theoretical aspects of lattice QCD. More 

detailed accounts can he found in [16, 171. 

2.1 The path integral 

In QCD all important information is contained in the Green functions. These 

can be formally expressed in terms of a path integral. 

ir 	- 	- 	- 
TO['çb, 5, A] 0) = 	J Th1bTh/'VA O[, ?J', A]e'' ]  

Z = j 
	

(2.1) 

where 0 is a function of fields, and T is the time ordering operator. The functional 

integral V means an integral over all possible values of the field at every point in 

spacetime. Equivalently the functional integral can be thought of as an integral 

over all possible field configurations. 

Lattice QCD is a way of defining what (2.1) means. The first step is to for-

mulate the theory in Euclidean space time. Let (x ° , x 1 , x 2 , x3 ) be the coordinates 

of Minkowski spacetime. If instead of x 0  the imaginary time coordinate 

x 4  = ix 0 
	

(2.2) 

10 
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is used, then the set of coordinates (x 1 ,x 2 ,x 3 ,x 4 ) have a Euclidean metric. The 

change from real to imaginary time can he thought of as a rotation in the complex 

time plane and is known as a Wick rotation. It has been proved that Euclidean 

correlation functions can he analytically continued to Minkowski space. 

In Euclidean space (2.1) is modified to 

(01 TO[b, , A] 0) = f VbThVA O[, , A]e'1 

Z 
= J 	, 	 ( 2.3) 

where SE is the Euclidean action and is, in general, different from S. SE is a 

positive real quantity. The key benefit of (2.3) is that each field configuration 

receives a weighting as opposed to a phase in (2.1). This is an essential feature 

for Monte Carlo calculations and is also much better defined mathematically. 

2.2 Discrete spacetime 

In lattice QCD spacetime is reduced to a finite number of points. As a conse-

quence fields have a finite number of degrees of freedom, and the path integral 

can he given a precise definition. A hypercubic lattice is used with coordinates 

(x 1 , x 2 , x 3 , x 4 ). The lattice consists of all points whose coordinates satisfy 

an/l. 	0<n<Lfor=1,2,3 

0<724 <T, 	 (2.4) 

where a is the lattice spacing and has dimensions of length, L is dimensionless. 

To define an action boundary conditions are required. For fermion fields the 

boundary conditions are periodic in the space dimensions and antiperiodic in the 

time dimension. The boundary conditions for scalar and gauge fields are periodic 

in all dimensions. It follows that momentum space is discretised. In the case of 

fermion fields momentum space is discretised on the lattice 

7f=&L 0<n<L for=1,2,3 
aL 

0<n° <T . 	 ( 2.5) 
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Note that there is a maximum allowable momentum so there are no UV diver-

gences in lattice quantum field theory. 

Other discretisation schemes are possible, but are not considered here. 

2.3 Lattice gauge fields 

In this section fields with an SU(N) symmetry are considered, as specialising to 

SU(3) does not simplify the discussion. For a more thorough discussion see [18]. 

The simplest discretisation of the gauge fields would he to have the gauge 

field at each lattice point and replace the derivatives in the continuum action 

with finite differences. Classically gauge invariance is broken for finite a and is 

restored in the limit a -+ 0. However, in the quantum theory renormalisation 

interferes and gauge invariance may not he restored as a —+ 0. 

A discretisation is required which retains gauge invariance for all a. To do this 

the theory is formulated in terms of variables living on the links between nearest 

neighbour lattice sites. The link variables are SU(N) matrices. Let U he the 

link variable from lattice site x to site x + A. The link variable in the opposite 

direction is not an extra degree of freedom and is defined to be 

UX+ii,_,L = 	. 	 ( 2.6) 

The gauge transformation of a link variable is given by 

2; - A 	;+fL ' 	 (2.7) -  

where the A are SU(N) matrices. 

The trace of the product of link variables around a closed path is gauge invari-

ant. The simplest, nontrivial closed path is around a unit square of the lattice. 

This gives the plaquette variable, 

P2;, = Ux,/J.Ux+UfJ!LU 	. 	 ( 2.8) 

The plaquette variable is shown diagramatically in figure 2.1. 
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x + i~  

x 	 x+ft 

Figure 2.1: Graphical representation of the closed path of link variables which 

gives the plaquette variable (2.8). 

The Wilson action for pure gauge theory is a sum over plaquettes 

S9 [U1=>(l—ReTrP), 	 (2.9) 

where the sum over plaquettes means all distinct plaquettes. 

The integration measure for gauge fields is an integral over the group manifold 

for each link, 

vu 	fldU . 	 (2.10) 

The integral over the group manifold is defined in a gauge-invariant way and is 

known as the Haar measure. 

In the limit a -* 0 the lattice gauge theory in terms of link variables tends to 

continuum Yang-Mills gauge theory. The starting point for showing this is 

UX3L 1 
urn 	 = T1  A(x)  
a-#O 	a 

where {T} are SU(N) generators and {A(x)} are continuum gauge fields. The 

,8 parameter in (2.9) is related to the continuum bare coupling by 

9N 
g0 	

(2.12) 
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2.4 Free lattice fermion fields 

Fermion fields have to he discretised carefully to avoid what is known as the 

doubling problem. In this section the problem and its resolution are discussed 

for the case of a single Dirac spinor. The fields and mass parameter are chosen 

to he dimensionless. To relate them to their continuum counterparts they need 

to he multiplied by the appropriate power of a. 

The naive approach to lattice fermions is to define the field at each site and 

replace the derivatives in the Lagrangian with finite differences. The naive action 

using a convenient notation is 

8naive = 	 , 	 ( 2.13) 

where the index is spacetime and spin, and the summation convention is used 

for the repeated indices. The quark matrix is 

I 	= 	 - 	+ rnJ.,y 	 (2.14) 
Ii 

where spinor indices have been suppressed. Note that the quark matrix is mod-

ified at the boundary to satisfy the antiperiodic boundary condition [16]. The 

integration measure for the fermion field is given by 

ThbD 	fi dbd'çb. 	 (2.15) 

The lattice free-quark propagator is a countable number of Gaussian integrals. 

Evaluating the integrals by the standard generating functional technique gives 

= K'. 	 (2.16) 

The matrix inverse in (2.16) can he done explicitly. In the limit a -+ 0 this quark 

propagator describes 16 propagating fermions. For the interacting theory this is 

a disaster. This is known as the fermion doubling problem. 

The solution used in this work was first proposed by Wilson [18]. An extra 

term is added to 8naive;  which is suppressed by a positive power of a in the classical 
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continuum limit. The extra term gives a large mass to 15 of the fermions, leaving 

a theory with 1 propagating fermion as desired. The Wilson action is 

Siison = 8naive + x,a[ 
	

( 8 y+ + 28xy  - 8,_)] 	, 	(2.17) 

where the index a is spin and r is a free parameter known as the Wilson pa-

rameter. The penalty for the extra term in the action is that chiral symmetry is 

explicitly broken. 

2.5 Lattice QCD action 

The lattice QCD Lagrangian consists of link variables and fermion fields. The 

fermion fields are triplets of Dirac spinors. There is a triplet of spinors for each 

flavour of quark. The components of the triplet correspond to the three colours 

of QCD, referred to as red, green and blue. The lattice QCD Lagrangian is con-

structed to be invariant under an SU(3) gauge transform. The gauge transform 

for the link variables is given in (2.7), the gauge transform for the fermion fields 

is 

(2.18) 

where Ax  is an SU(3) matrix. The Wilson action is 

SQCD = Sq [U,?I',uI'] + S.q [U] , 	 (2.19) 

where S. is the gauge action given in (2.9) and 8q  is 

Sq [U,i/),'cb] = 	, 	 (2.20) 

where the index is spacetime, spin, colour and flavour. The quark matrix is 

I( [UI = JXY 
- 	[6x,Y-A(r - L)UX, + 8(r + )U] . 	(2.21) 

The spinor indices are carried by the gamma matrices, the colour indices by the 

link variables and there is a Kronecker delta in flavour space. All these indices 

are suppressed. The hopping parameter, ic, is related to the free quark mass by 

1 

- 2rn + 8 
(2.22) 

and the quark fields have been rescaled from those in (2.17) for convenience. 
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2.6 The continuum limit 

The formulation of Lattice QCD presented in this chapter is dimensionless, so any 

lattice observable 0Latt, such as a hadron mass, is dimensionless. For simplicity 

0Latt is assumed to he independent of quark mass for the following discussion. 

The continuum value of the observable is given by 

Occnt = lim 	, 	 (2.23) 
ci—*O 	a V 

where N is the dimension of 0cont  in energy units. However the lattice spacing, 

a, does not appear explicitly in the lattice QCD action. The free parameter of 

the action is 0(go),  which is a function of a. The relation between a and 0 can be 

calculated in perturbation theory using the renormalisation group . To leading 

order this gives [17] 
1 __L 

a = 12 	 (2.24) 
1 '-1att 

where Aiatt  is the free parameter of massless QCD and /3o  is the first coefficient 

in the power series expansion of the 0-function. 

00= 162(11 — nf) 	 (2.25) 

where nj is the number of flavours. In the Standard Model nj = 6, so Oo  is 

positive and continuum limit a —+ 0 is equivalent to 0 -- oo. 

IViassless lattice QCD contains one free parameter, so one observable is used 

to determine the lattice spacing before predictions can be made. In the theory 

with quark masses additional observables are needed to determine these. The 

lattice spacing is given by 

a = (0Latt 10cont ) 1 h/ 	 ( 2.26) 

The value of lattice spacing obtained will depend on the observable used, because 

different observables have different discretisation errors. If the lattice spacing is 

fine enough and there are no other sources of error, then the variation in a will 

be small. 



Chapter 3 

Numerical techniques of Lattice 

QCD 

In general lattice QCD path integrals cannot he solved analytically. However, 

given certain hounds on the number of lattice points and on the free parameters 

of the Lagrangian, integrals can he done numerically to an acceptable accuracy. 

They are done most efficiently by algorithms based on the Monte Carlo principle. 

This chapter describes some of the techniques and theory used in Monte Carlo 

calculations. 

3.1 The quark propagator 

The QCD path integral is over gauge and fermion fields. The fermion field is 

composed of Grassmann variables. These are rather formal mathematical objects 

and very difficult to handle on a computer. Fortunately the action is quadratic 

in the fermion fields and the fermion path integral can he performed analytically. 

This leaves a path integral over gauge fields which can be expressed in terms of 

integrals over real numbers. The simplest case of integrating out the fermions 

is the quark propagator. The quark propagator is the expectation value of the 

17 
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product of a 0 and field, 

= f vvvu 6-SgSq 

z = I DVVD~DU 	 (3.1) 

where the index i is space, spin, colour and flavour. The gluonic part of the 

action, S, is given in (2.9) and the fermionic part of the action, 8q,  is given in 

(2.20). The quark propagator is not gauge invariant because independent gauge 

transformations can he applied to the fields at x and y. After doing the fermion 

integral 

= 	vu e_S9(d etK)I = f DU 
	

K7 1  
z 

	

Z = f VU e' , 	 (3.2) 

with the effective action given by 

	

Seff = 8 - log detK . 	 (3.3) 

It is useful to introduce the quark propagator, C = K', for gauge configuration 

U, 

y; U)K(fi,b, Y ),(, C , Z )[U1 = Sc y &c8xz 	 (3.4) 

where a, P , y are spin, a, b, c are colour and x, y, z are space time indices, and re-

peated indices are summed over. The flavour dependence of C is just a Kronecker 

delta so it is suppressed. For a given gauge configuration it is possible to solve 

the matrix equation (3.4) using an iterative algorithm. An efficient algorithm 

exploits the fact that K is a sparse matrix. 

3.2 Monte Carlo integration 

It is convenient to approximate the path integral as 

(0) = 	0[U]P[U] , 	 (3.5) 
{U} 

where 
e Se;f [U] 

	

P[U] = 	VU 	 (3.6) 
z 
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is the probability associated with gauge configuration U. The sum corresponds 

to some unbiased discretisation of the space of gauge configurations, and VU is 

the volume of gauge configuration space associated with U. Note that computers 

store floating point numbers with a finite number of bits so the space of gauge 

configurations on a computer is finite. The algorithms used to evaluate (3.5) 

randomly samples N gauge configurations. This is done in such a way that the 

probability of sampling gauge configuration U1  is P[U1 ]. Then 

N 
1 

(0) = lim - 	0 	 (3.7) 
N—oo N 

1=1 

where Oi  is the value of 0 for the i'th gauge configuration. In a simulation 0, is 

calculated for N configurations and averaged. This gives an unbiased estimate of 

(0), i.e. the result of the simulation is from a distribution with mean (0). This 

determination of (0) has an error which can he estimated using the bootstrap 

method. The error decreases with increasing N. More precisely, the result of the 

simulation is from a distribution with standard deviation 

N 

[standard deviation]2 = K 
((0)— 
	

) o 
	 (3.8) 

1=1 

where the outer expectation value is over different sets of N configurations. 

Gauge configurations are generated from the correct distribution by a Markov 

chain. A sequence of gauge configurations is generated one after the other, start-

ing with a typical gauge configuration. Whenever a new configuration is added to 

the chain it is selected from a distribution depending on the current configuration. 

Configurations which are close on the chain will he correlated and, for instance, 

(3.8) will not he true. A subset of configurations with negligible correlations is 

used for the final analysis. 

3.3 The quenched approximation 

The correct action for lattice QCD is SeJf.  This is nonlocal because of the sec- 

ond term in (3.3). Unfortunately, generating a Markov chain for a system with 

a nonlocal action is much slower than generating a Markov chain for a similar 
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system with a local action. This study uses the quenched approximation, which 

is a modification of lattice QCD with a local action. The determinant in (3.2) 

is replaced by a gauge field independent constant. In perturbation theory the 

quenched approximation corresponds to omitting closed fermion loops. Although 

the quenching is an uncontrolled approximation, the theory still retains the es-

sential features of QCD. Calculations of the light hadron spectrum in quenched 

QCD are within about 10 % of the experimental results [19, 20]. It is hoped that 

the error on other hadronic quantities is similarly small. 

3.4 Symanzik improvement programme 

The purpose of the improvement programme is to eliminate the 0(a) errors of 

lattice QCD expectation values. The hope is that results will he closer to the 

continuum limit values without the expense of going to a finer lattice spacing. 

For a detailed discussion see [21, 22]. 

An expectation value calculated exactly in lattice QCD has a discretisation 

error. This error can he written as 

(0)1attice  = (0) cont inuum  + a(O')conjjnuum  + 0(a2 ) 	 ( 3.9) 

where the subscript on the expectation value indicates whether an expectation 

value is taken with respect to lattice QCD or continuum QCD. The lattice theory 

at non-zero a can he thought of as an effective continuum field theory with action 

Sejj = So  + aS1  + 0(a2 ) 	 ( 3.10) 

where SO  is the QCD action and S 1 ... are unwanted additional operators with 

the correct symmetries and dimension. Local composite, gauge invariant renor-

malised fields on the lattice (e.g. , referred to simply as fields for the rest 

of this section) are also expanded as a power series in the effective continuum 

theory. The lattice field q is expanded as 

qjj = '10 + a4 1  + 0(a2 ) 	 ( 3.11) 

where 00  is the continuum analogue of 0 and 01... are unwanted operators with 

the correct symmetries and dimension. In the fully 0(a) improved theory the 
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operator O'in (3.9) is 0. This is achieved if Si  and ci  in (3.10, 3.11) are cancelled 

by adding 0(a) terms to the lattice action and fields. 

There are five operators with the appropriate dimension and symmetries that 

can he added to the action. Only one of these has a non-trivial effect on the 

physics, the clover term. 

CSW 	XVFX,LVX , 	 ( 3.12) 

where 	is the lattice analogue of the continuum field strength tensor [21], 

= 	- Pm), 	 (3.13) 

with 

T) 	- TI 	IT 	ITt 	ITT 
I X,/tII - '-ix,TL 	x+it,v '' X+V,L 

+ Ux,v U, 	UX _A,V Ux_ 

+ U_ 	 U_ 

+ U_ 	 U 	. 	 (3.14) 

The 0., in (3.12) are dimensionless as in chapter 2. The clover term gets its name 

because the four plaquettes of 	look like a four leaf clover. 

To discuss the counter terms added to lattice fields the following hilinears are 

defined: 

= 	(x)T(x) 

A 1 (x) = 	( x)y,y5T (x) 

T(x) = 

	

pa = 	
( 3.15) 

where Ta  are the Pauli matrices, is a doublet of quark fields. The continuum 

notation &(x) is used for dimensionful lattice spinors. The counter terms for 

these fields are constrained by dimension counting and symmetry giving 0(a) 

improved fields 

1/1 = V+cvaDT, 

= A, + CAaaP 	 (3.16) 
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where 3,, is the symmetrical lattice derivative. 

The final step of improvement is to rellormalise the fields by multiplication 

with a mass dependent renormalisation factor. The improved renormalised oper-

ator is 
I 
Ren = Z(1 + 	 ( 3.17) 

where '7tare  are the improved hare fields V', A', etc. 

To implement improvement the dimensionless factors weighting the counter 

terms, c,, and the renormalisation parameters Ze and b,!,  need to he determined. 

These parameters are functions of 0 . A great deal of effort has been put into 

calculating these parameters. They can he calculated using perturbation theory, 

but this is unsatisfactory because there are still discretisation errors of O(aa). 

More recently many of the parameters have been determined nonperturbatively 

[23, 24]. The coefficients used in this work are discussed in later chapters. 

3.5 Meson operators 

Meson operators, Q m are used to create and annihilate mesons on the lattice. A 

meson operator must have non-zero overlap with the state it is intended to relate 

to and no overlap with lighter states. The operator for the state I M) must satisfy 

(OlMM)O, 

(Ol1MM') = 0 , 	 (3.18) 

where M') is any state lighter than M). The states considered here are eigen-

states of the angular momentum (J), parity (P) and charge conjugation operators 

(C). The pseudoscalar meson has eigenvalues 0, —1, +1 and the vector meson has 

eigenvalues 1, —1, —1. 

The simplest meson operator is a local bilinear of the quark fields, generically 

= 0i ( x)Fjt4 b 2 (x) 	 (3.19) 

where FM is a gamma matrix or some combination of gamma matrices chosen 

so that the operator satisfies (3.18). The index on 0 and 0 is flavour. A local 
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meson operator has overlap with the meson ground state as desired but also 

unwanted overlap with higher energy states with the same quantum numbers. 

A good meson operator maximises the overlap with the groundstate relative to 

the excited states, especially the first excited state. This is achieved by using a 

non-local gauge invariant operator. In its most general form this is 

M(X, t) = 	, t).TW, , t)IM/2(, t) 	 (3.20) 

where F(q, , t) is a weighted sum of path ordered products of link variables. An 

efficient procedure for implementing an operator of this type, used here, is known 

as fuzzing [25]. Another method used here is Boyling [26]. 

3.6 Two-point correlation functions 

The two-point correlation function of meson operators has simple time depen-

dence in the limit of large time. It is used to determine the mass and the overlap 

of the meson operator with the state. 

The two-point correlator is defied as 

C(t,j) = 0) . 	( 3.21) Af 

Specialising to the time ordering t > 0 and inserting a complete set of energy 

eigenstates gives 

-ip.x 

= 	2L3Es(k) (O1(x)S,)(S, q (0)1O), 	(3.22) 

x,S,k 

where the states have norm 

(S,IS,k) = 2Es(k)L 3  . 	 (3.23) 

The complete set of states in (3.22) is discrete for a finite lattice. Multiparticle 

states have a discrete spectrum because they are restricted to discrete momenta. 

A quantum operator 0 obeys the Heisenberg equations of motion 

0(x) = 	 , 	 (3.24) 
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where H is the Hamiltonian and 15 is the three-momentum operator. There is no 

factor of i in front of the Hamiltonian in Euclidean space. Using this to rearrange 

(3.22) gives 

iT 	-. 
C(t,pl = 	e 	 . e_E5t (UI w(0)IS,i)(S,iIS(0) 0) . (3.25) 

..L Es(k) 

The time dependence in this expression is all in the exponential; the matrix 

element is time independent. It is simplified further by noting that it contains a 

Kronecker delta in the form 

= 	 . 	 (3.26) 

This result is trivial for k = # and is proved for k =A j5 by noting that it is the 

sum of a finite geometric series. Performing the sum over k and Y in (3.25) gives 

C(t, = 2Es(j) 
I(01 M(0)IS,p)I 2 . (3.27) 

This formula is correct for an infinite lattice. On the finite lattices used in this 

work it is modified to 
e_(plt + e_((T_t) 

C(t,y5 = 	 ( 01 	O)lS,pI2 . 	(3.28) 

	

S 	2Es( 

If T - t and t are large then the ground state meson dominates the sum and 

e_Esot + e_E5o(T_t) 

	

C(t,pi) 	
9 	

(01 Qi,i(0)lSo,j5)l2 , 	(3.29) 

where So  is the ground state meson. 

3.7 Pseudoscalar mesons 

The operator used to put a pseudoscalar meson onto the lattice is of the form 

(3.19) or (3.20) with FM = 	For example the local operator is 

p(x) = 1(x)y52(x) 	 (3.30) 

It is conventional to define 

Zp(p = ( 01 	0) ISo , 	. 	 (3.31) 

Lorentz invariance implies that Zp is independent of jii if Qp is local. 
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3.8 Vector mesons 

The local operator used to put the vector meso'ri onto the lattice is 

x) = 1(x)y2(x), 	 (3.32) 

and the fuzzed operator has the same 'y matrix structure. The operator has a 

Lorentz index so the two-point vector correlator has two indices, 

	

CpT(t,J5) = 	 ( 01 	(x)t(0) 0) . 	(3.33) 

There is a slight complication to analysing the time dependence of this function. 

When the complete set of states is inserted in (3.22), these states come in de-

generate triplets. The states in a triplet are distinguished by the three possible 

independent polarisations of a vector meson. Rewriting (3.25) for a vector meson 

with an explicit sum over polarisation gives 

CAV 
	= 	 (0(0)lS,,iir ) (8,j5,u7r (0)I0), 	(3.34) 

S,r 	2E8(p) 

where r labels the three polarisation axial vectors 77r 

The matrix element in (3.34) is an axial vector. The only axial vector that 

the matrix element can depend on is 17r  50 

= (0l(0)lSü ,i5,uir > 	 ( 3.35) 

which defines Zv. Lorentz invariance implies that Zv is independent of j5 if Qm 

is local. Rewriting (3.34) in terms of Zv gives 

_. IZvI2 —Evi 
CV2pT(t,p) 	

2Ev e 
	 * , 	 (3.36) 

r 1 

where higher excited states have been omitted. It can be shown that for massive 

vector mesons 
PAP 

 

—g + 	 (3.37) 7r1r - 	 2 
r 
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3.9 Evaluating twO-point correlation functions 

To obtain the two-point correlator (3.21) the required matrix element is evaluated 

by Monte Carlo. The approach is shown here for the case of the local meson 

operator (3.19). The expectation value needed is 

= (lM(x)QM(0)) = (lFM02(x) b2F114'01(0)) , 	( 3.38) 

where 1, 2 are flavour indices and 

FM = -)4 Ft/)4 . 	 ( 3.39) 

After analytically evaluating the fermion integrals 

M2 
= -( 

Tr(FMG2(x,0;U)FMG1(0,x;U)) 
 ) 	

( 3.40) 
I 

where the trace is over spin and colour and G is the quark propagator. Note 

that if flavour 1 and 2 are the same then there is an additional term. It saves 

computer time to calculate C only for the case G(0, x). The quark propagators 

have the following7 5  symmetry, 

G(x, y; U) = 'y5 G(y, x; U)y 	 (3.41) 

where t  is the adjoint with respect to spin and colour. Then 

	

= -( Tr(r,,Y5  G 2t (0,  X; 
U) 75 f m G'(0, x; U) ) 

)& ff 	
(3.42) 

3.10 Three-point correlation functions 

Three-point correlation functions are used to calculate weak matrix elements. 

The three-point correlation functions used in this work are of the form 

CJLV 
	t, 7, t) = 	e 	(01 T{ip(, t)J(, t)t"(0)}  0> 	(3.43) 

gg 

where J is the local, flavour changing axial or vector current. To analyse the 

time dependence specialise to the case t > ti,, > 0. The procedure is similar 
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to analysing the time dependence of the two-point correlator. First insert two 

complete sets of states 

= 	
1 	1 	

x CT  
2L 3 EB(k l ) 2L 3 EA (k 2 ) 

,k2 BAr 

(UI Qp (x)B, 1 1 )(B, iiIJ(y)IA, i2, 7JrXA, k 2 , 77r(0) 0) . (3.44) 

Shifting the current and pseudoscalar operators to the origin using the Heisen-

berg equations of motion and summing over Y , 7, ki, k 2  using the Kronecker delta 

identity (3.26) gives 

e_EB( 0)(ta_tv) _()ty 
CT 	 2E0 	2EA() BAr 

(01 Qp (0)IB,p(B,pJ(0)IA, , r)(A, , rI(0 ) 0) 	(3.45) 

where k 	- . For large t,, and t - t, only the slowest-decaying exponentials 

in (3.45) are significant and 

e_EI(ttL) 	e_Ety 
C' 3PT 	2E 	

ZP 2E ZiJ" KP,pJIV,k,ii r), 	(3.46) 
r 

where P is the ground state pseudoscalar meson and V is the ground state vector 

meson. The above expression contains a polarisation-averaged matrix element 

which is the object of interest for calculating form factors. 

An important alternative time ordering is t,, > t. In this case the asymptotic 

form of the three-point correlation function is 

CT 	2Ep2Ev e_Tete_t 	_Ev) 	?(V, _k, 7r 	t(0)  I, 	. (3.47) 

The t on the flavour-changing current is not made explicit elsewhere in this work, 

but is implied by context. A Hermitian definition of the 'y  matrices was used so 

the f does not change the sign of the correlation function. 

3.11 Evaluating three-point correlation functions 

To numerically evaluate a three-point function we need the matrix element in 

(3.43). For local meson operators this is 

M3 = ( 1 7502 (x) 	2 F 3 (y) 	3''b1(0)) 	 (3.48) 
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where 11I 2,  3 are flavour indices, 	= y4 'y'y4  and r4 = 	or yy5 . Analytically 

integrating out the fermions in the path integral expression for (3.48) gives 

M 3  = _(Tr (G'(O, x; U) 5  C2  (x, y; U)FG3 (y, 0; U)Y))Slff  , 	(3.49) 

with the same notation as (3.40). Calculating (3.49) in terms of quark propa- 

gators is computationally expensive because it contains an all-to-all propagator, 

y; U). Recall that the two-point function only requires origin to all prop-

agators. A more efficient approach is to calculate (3.49) in terms of a quark 

propagator and an extended propagator. The extended propagator is 

E(0,y;U) = G1 (0,x;U)'y 5 C2 (x,y;U) , 	 (3.50) 

so 

	

E(0,y;U)I[U] = C' (0,x;U)y58 . 	 ( 3.51) YZ 

The extended propagator is given by a matrix equation similar to the equation 

for the quark propagator (3.4) and can he calculated using an iterative algorithm. 

The matrix element can now he rewritten as 

= -( 	 )Seff 

, 	(3.52) 

which contains no all-to-all propagator. 

3.12 Discrete symmetries 

The action used to generate the gauge configurations is invariant under the 

discrete symmetries parity (P), charge conjugation (C) and time reversal (T) 

[27, 281. If gauge configurations U and U' are related by one of these discrete 

symmetries then the quark propagators calculated on U and U' are related. The 

relations are [29] 

• Parity 

	

G(x,y;U) =y4 G(x',y';U'y 4 	 (3.53) 

• Hermiticity 

G(x, y; U) = y 5 C(y, x; U)y 5 	 (3.54) 
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• Time reversal 

	

G(x, y; U) = y 4 y 5 G(y T ,  x T ;  UT)y5y4 	 (355) 

• Charge conjugation 

G(x, y; U) = y4 72 C(y, x; U 6 )72 -y 4 	 (3.56) 

Note that the gamma matrices appearing on the right hand side of these re-

lations are particular to the gamma matrix convention used in this work. The 

discrete symmetries show that the three-point correlators, averaged over all gauge 

configurations are pure real or pure imaginary. However, a three-point correla-

tor calculated on a particular gauge configuration has nonzero real and nonzero 

imaginary parts. One of these parts is a stochastic estimator of zero and can be 

discarded. 

3.13 Fits 

In a generic lattice calculation a set of observables {d} is calculated on N gauge 

configurations. This set of numbers is referred to as data. Typically the di  are 

values of a correlation function at a particular time slice. To extract physical 

quantities the data are fitted to a model by minimizing chi-square with respect 

to the model parameters [30]. 

For correlated data chi-square is defined as 

x2&) 	(cii  - ?fl(X))C'(d - rn()) , 	 (3.57) 
ij 

where di  is the average value of quantity %',Y are the free parameters of the model, 

rn() is the model prediction for quantity di  and C is the covariance matrix. 

The elements of the covariance matrix are estimated from the data according 

to N 
1 

Cij= 
- 1) 	

(d - (l)(Cl - d) , 	 (3.58) 
a1 
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where d is the value of di  measured on configuration a. In the limit of an infinite 

number of configurations (3.58) tends to the true covariance matrix. 

The minimum of chi-square is the point at which 

Dx 2  
clxi 

(3.59) 

for each model parameter. If the model function is linear then (3.59) is a set of 

linear equations which can he solved analytically. For a nonlinear model function 

x 2  is minimised numerically. The algorithm used in this work is the Marquardt-

Levenberg algorithm [30]. 

If there are enough configurations then, to a good approximation, the data 

averages (cli ) are from Gaussian distributions and the covariance matrix is accu-

rately estimated. In this case chi-square can he used to rigorously test if a fit is 

acceptable at a particular confidence level. This is done by Q(x2, ii), where the 

number of degrees of freedom is 

ii = [Fit parameters] - [Data points] . 	 (3.60) 

Q is the probability that chi-square exceeds x 2  assuming that the model function 

is exactly right. In a typical lattice fit it isn't possible to apply a stringent test to 

Q, but it can still he used as a guide to whether a fit is acceptable. Another useful 

guide is reduced chi-square = x 2 /'-'. This should he about 1 for an acceptable fit. 

3.14 Statistical errors 

The fitted parameters have an error, called the statistical error, due to the finite 

number of gauge configurations. It is important to estimate this error. In general 

a lattice calculation has a small data sample (N of the order of a few hundred) 

and a non-Gaussian distribution of the data. The method that has been chosen 

to cope with this is the bootstrap. N gauge configurations are picked at random 

(with repetition) from the sample, to create a bootstrap sub-ensemble. The fitting 

procedure is then repeated with the sub-ensemble exactly as for the true sample. 

This gives a new estimate of the fit parameters. This procedure is repeated Nb 
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times to generate a bootstrap distribution for each of the fit parameters. The 

upper and lower bounds on parameter x i  at confidence level X% is given by the 

following procedure. Put the Nb 00t values for x 2  in ascending order, then the 

XJ\TbOQt /200'th value is the lower bound and the (100 - X)Nb 00t /200'th is the 

upper hound. 

3.15 Remarks on the covariance matrix 

To gain an intuitive understanding of correlated chi-square (3.57) diagonalise the 

covariance matrix 
C, = RCRT , 	 (3.61) 

where C is the covariance matrix and R is an orthogonal matrix chosen so that 

C' is diagonal. Chi-square can then he written in the more familiar uncorrelated 

form 

x 2 @) 	(? - 	 F(.))2 , 
	 (3.62) 

where d' = Rd and 3' = Rfil using vector notation instead of the index i. Note 

that Cf. are the eigenvalues of C. The correlated ohservables can be considered 

as a linear combination of uncorrelated observables. 

If two ohservahles i and j have very different systematic errors, or are known to 

he uncorrelated then the covariance matrix elements C 3  and Cji  should be set to 0 

by hand. The covariance matrix can have very small eigenvalues due to statistical 

fluctuations in the data. In extreme circumstances the matrix cannot he inverted. 

The approach taken in this work is to use the singular value decomposition (SVD) 

inverse. Very small eigenvalues are set to infinity for calculating the inverse. 

A more sophisticated approach proposed in [31] is eigenvalue smoothing. The 

N lowest eigenvalues of the covariance matrix are replaced with their average. 

However fits using this method gave the same results as fits using SVD where 

tested in this work. 

The correlation matrix is given by 

Corr 
= _____ . 
	 (3.63) 
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The correlation matrix is a normalised version of the covariance matrix. If an 

element is 1 the observables are completely correlated (so the diagonal elements 

are 1), if 0 not correlated and if -1 completely anticorrelated. As the number of 

gauge configurations increases the correlation matrix tend to a constant matrix. 



Chapter 4 

Analysis of two-point correlators 

4.1 Details of the simulation 

Two ensembles of gauge configurations were used in this work, generated using 

the Wilson plaquette action and the quenched approximation. There are 302 

0 = 6.0 configurations and 216 0 = 6.2 configurations. The propagators were 

calculated using the clover improved Wilson action. The improvement coefficient 

CSW used is the nonperturbative value calculated by the Alpha collaboration [23]. 

This information and hopping parameters (ic) used are summarised in table 4.1. 

18= 6 . 0  0 =6.2 

CSW 1.769 1.614 

L 3  x T 163 x48 24x48 

#config. 302 216 

Light ic 0.13344, 0.13417, 0.13455 0.13460, 0.13510, 0.13530 

Heavy ,'c 0.11230, 0.1730, 0.12230, 0.12730 0.12000, 0.12330, 0.12660, 0.12990 

Table 4.1: Parameters of the simulation. 

The two-point correlators were calculated with momentum J5 for the cases 

Ii = 0, 1, './, in units of 27r/aL (these units are used for momentum 

throughout this chapter). In the I51 0 0 cases several 15 were used to increase 

33 
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statistics. The momenta used for the three lowest values of p are listed in table 

4.2. only one of the pair j, - was used because the corresponding correlators 

are trivially related. 

Ji 
iFi (0,0,0) 

2 (0,0,-1), (0,-1,0), (-1,0,0) 

(-1,-1,0), 	(-1,0,-1), (0,-1,-1), 

(-1,1,0), (-1,0,1), (0,-1,1) 

Table 4.2: Momenta used to calculate the meson correlators, in units of 27r/aL. 

4.2 Operator smearing 

The meson correlators were calculated with smeared operators to increase overlap 

with the groundstate. The situation for the heavy-light mesons is simpler as only 

one smearing combination is of interest here. The heavy quark propagator is 

Boyled at source and sink and the light propagator is local at source and sink. 

This is visualised in figure 4.1. 

LorF 
K heavy 

B_— Boy1ed 

0__~ ~~L 

Figure 4.1: Schematic of the light-light smearing (left) and heavy-light smearing 

(right). F' is fuzzed, L' is local. 

K light 

The light-light meson correlators were calculated with one propagator local 
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at source and sink. The other propagator was local or fuzzed at source and local 

or fuzzed at sink, giving four possibilities. This is visualised in figure 4.1. The 

following notation is used to specify a light-light correlator 

XYIcF, LL1sL 
	

(4.1) 

where quark propagator with hopping parameter Ip has smearing X at source 

and Y at sink, quark propagator with kL is local at source and sink. In total 

there are four correlators for a degenerate meson and seven correlators for a 

nondegenerate meson. In fact not all correlators were calculated. It turns out 

that correlators of the form LFIcF, LLIL are very noisy in comparison with the 

other three possibilities and are not useful. 

Pseudoscalar ULL 
Pseudoscalar: FF,LL 
Vector: LL,LL 

- Vector: FF,LL 

14 	16 	18 	20 	22 

Figure 4.2: The noise on four light-light meson correlators, as a function of time. 

Noise is defined to he [standard deviation]/[mean] for each time slice. The corre-

lator shown is 0 = 6.2, n = 0.13460,0.13460. 

Figure 4.2 shows the noise for four light-light correlators. The noise on the 

pseudoscalar correlator is approximately constant with time whereas the noise on 

the vector correlator increases approximately exponentially. This agrees with the 

simple analytic prediction [32]. The fuzzing reduces the noise on the pseudoscalar 

correlator, but unfortunately it increases the noise on the vector correlator. 

0.06 

0.06 

0.04 
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o 0.03 
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0.01 
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4.3 Overview of the fits 

Fitting lattice correlation functions requires intuition and experience. There is no 

recipe that gives the best procedure. There are several useful ways of visualising 

whether a fit is good or not. These are described here using the 0 = 6.2, ,c = 

0.12000, 0.13460, IiI = 0 correlator as an example. In the graphs shown circles 

are the average of the correlator over configurations, errors are calculated by 

bootstrap. 1000 sub-ensembles are used in the bootstrap analysis. In a few 

cases increasing the number of bootstrap sub-ensembles to 2000 was investigated. 

This was found to have a negligible effect on the error suggesting that 1000 sub-

ensembles is enough. 

A meson two-point correlator is predicted to be a sum of exponentials (3.28). 

The simplest fit ansatz assumes that the groundstate dominates the sum. The 

fit function is 

f(t) = xi(e2t + e_x2(T_t))1 	 (4.2) 

where the x i  are free parameters; x 1  is the overlap of the meson operator with the 

state and x 2  is the meson mass in lattice units. This is referred to as the single 

exponential ansatz because there is only one free parameter in an exponential. 

The single exponential is only good when t and T - t are sufficiently large. A fit 

range must he chosen for which the groundstate approximation is good. 

The two-point correlator is shown on a log plot in figure 4.3. In practice a log 

plot is not very useful for choosing fit ranges. A much more useful quantity to 

plot is effective mass 

?72 eff(t) 
= cosh' C2pT(t - 1) + C 2pT(t + 1) 

(4.3) 
2C2pT(t) 

An effective mass plot is shown in figure 4.4. The correlator at time t has been 

averaged with time slice T - t. If the groundstate approximation is correct, the 

effective mass is constant and equal to the groundstate mass in lattice units. 

A sliding window analysis can he used to investigate different fit ranges. 

Ansatz (4.2) is fitted to the correlator in the range t to tmax for many differ-

ent t. The fit parameters x 1 , x 2  and the goodness of fit criterion Q are plotted as 
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Figure 4.3: Logarithmic plot of the = 6.2 r, = 0.1200,0.13460, jj5j = 0 Boyled 

pseudoscalar correlator. The error bars are smaller than the points. 
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0.86 
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0.84 
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0.83 1 
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9 	 14 	 19 	 24 

Figure 4.4: Effective mass plot. The same correlator as in figure 4.3 is shown. 

a function of t. This is shown in figure 4.5. The fits used correlated chi-square 

and tmaz = 22. Time slice 23 is too noisy to he useful. Nearby time slices are 

extremely correlated. For example time slices 12 to 15 of the correlator have 
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Figure 4.5: Sliding window plots for a single exponential fit. The fit range used 

is from t to 22. The left plot shows how the goodness of fit criterion Q, the right 

plot shows the free parameters of the fit, described in (4.2). The same correlator 

as in figure 4.3 was used in the fits. 

correlation matrix, 

1 	0.983 0.962 0.939 

I 0.983 	1 	0.987 0.969 I 
. 	 (4.4) 

0.962 0.987 	1 	0.988 

0.939 0.969 0.988 	1 

The low value of Q for t < 11 relative to t > 11 in figure 4.5 indicates a bad fit 

when t < 11. 

4.4 The heavy-light pseudoscalar 

As a general principle, estimates of the same quantity are averaged before fitting. 

Time slices t and T - t and all momenta with the same IpI are averaged. From 

looking at sliding window and effective mass plots (e.g. figure 4.4) it was decided 

to use single exponential fits for the pseudoscalar meson. Figure 4.4 shows that 

the Boyle type smearing does a good job of reducing overlap with excited states 
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without making the correlators noisy. All 4 heavy x 3 light 	= 0, 1, v' corre- 

lators were fitted to a single exponential (4.2) with x 1  and x 2  as free parameters. 

The fit range was chosen to he times 12 to 22 for 1)0th 0 = 6.2 and ,8 = 6.0. 

Correlated chi-square fits were used. The ,B = 6.2 results are in tables A.1, A.2 

and A.3, the 9 = 6.0 results are in tables A.7, A.8 and A.9. 

In the continuum, energies at different momenta are related by the dispersion 

relation 

	

E2 = 1 2  + 7722 
	

(4.5) 

On the lattice Lorentz symmetry is broken to hypercuhic symmetry and the 

dispersion relation does not hold exactly. The fitted energies are compared to the 

dispersion relation in figure 4.6. 

0.85 	 1.6 

11 

0.8 
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w 
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w 
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0.75 
	

1.4 

0.7 
	

1.3 
0 
	

2 
	

0 	 1 	 2 
I,2 
	

p1 2  

Figure 4.6: Testing the dispersion relation. The data points are fitted energies, 

the line is the dispersion relation calculated using the fitted mass. Momentum 

is in units of 27r/aL. The left-hand graph is /3 = 6.2, the right-hand graph 

is 8 = 6.0. The kappa combinations are 0.13460, 0.12000 and 0.13344, 0.1230 

respectively. 

Figure 4.6 shows no detectable deviation from the dispersion relation for /3 = 

6.2, but very clear deviation for 6 = 6.0. It would he interesting to continue the 

/3 = 6.2 graph to higher p 2  and try and find at what point the energy noticeably 

deviates from the dispersion relation. However, the sliding window analysis for 
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the 6 = 6.2, 251 2  = 3 correlator indicates an unreliable fit if time slices less than 

15 are included. Fitting times 15 to 23 gives a value for the energy but its errors 

are too large for it to he useful. 

To reduce the error on the parameter x 1  for the 0 = 6.2 case the fits were 

repeated with the energy held fixed at its dispersion relation value. These results 

are in tables A.2 and A.3. 

4.5 The light-light vector, I p 2  = 0 

There is an extra complication to the vector not present for the pseudoscalar; 

there are two Lorentz indices on the correlator (3.33). In the JpJ2 = 0 case 

C 11  V,2PT = -"V,2PT = CPT = ãv otherwise CPT = 0 	(4.6) 

where, in the groundstate dominance approximation, 

- 	- IZvI2 (eEvt + e_Ev(T_t)) . 	 (4.7) Cv(t,1j51)— 2Ev 

The situation is not much different than for the pseudoscalar. The three non-zero 

correlators are averaged for the fit and the other correlators, which are stochastic 

estimators of zero, are discarded. Fit ranges were chosen using the sliding window 

analysis and effective mass plots. The fit parameters are in tables A.4 and A.10. 

In general the fit parameters for the vector have larger errors than the fit pa-

rameters for the pseudoscalar. These error bars reflect the noise on the FF, LL 

correlator. Figure 4.2 shows that the LL, LL correlator is considerably less noisy 

than the FF, LL. The noise level of the FL, LL correlator is in between. Includ-

ing all three correlators in the fit might reduce the errors on the fitted parameters, 

although it requires introducing additional free parameters. Unfortunately the 

groundstate approximation is not good for the LL, LL correlator. To include it 

in the fit a double exponential fit is used which takes account of the groundstate 

and the first excited state. The double exponential ansatz is 

f(t) = xi(e_x2i + e_x2(T_t))  + x3(e4t  + e_T_t)) 
1 
	 (4.8) 
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where x 2  is the energy of the groundstate and x 4  is the energy of the first excited 

state. The three correlators are simultaneously fitted with a double exponential. 

The masses x 2 , x4  are the same for each correlator, x 1 , x3  are different for the 

different correlators but not completely independent. To show this the following 

notation is introduced, 

ZI = (OI, X  (0)ISi,)7r ) , 	 (4.9) 

where X is F or L and i is 0 or 1; So  is the groundstate, S is the first excited 

state. Here L means that the source (or sink) of both quark propagators is local, 

F means that the source (or sink) of one of the quark propagators is fuzzed 

the other is local. The parameters x 1 , x 3  have the following values for the three 

different correlators 

z12 
= 	, x3 = 

L 	for LL,LL 
2x 2 	2x 4  

z o z o 	ZLI  Z i  
X1 	

L  F 	 ____ 
for FL,LL 

2x 2 	2x4  

for FF,LL 
2x 2 	2x4  

In total there are 6 free parameters in the fit. 

In general double exponential fits are unstable. To find the minimum of 

chi-square the algorithm needs to be started from a point already close to the 

minimum. This was achieved by first doing a single exponential fit to obtain 

x2, 4, Z. Secondly the double exponential fit was done, but with the parameters 

x2, 4, Z held fixed at their values from the first fit. This gave the starting point 

for the full double exponential fit. 

Choosing fit ranges for double exponential fits is difficult. Effective mass plots 

are no use, and there are many more parameters to consider in the sliding window 

analysis. There are three correlators and in the full sliding window analysis the 

three fit ranges can be varied independently. Figure 4.7 shows an example sliding 

window plot. The strong dependence of am 1  on fit range makes the fits difficult 

to trust. The final fit range used for 0 = 6.2 was 9 to 23 for all three correlators 

as this was the largest range which gives an acceptable Q. The fitted parameters 
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Figure 4.7: A sliding window plot for the double exponential fits described. The 

fit ranges are 9 to 23 0 = 6.2 for the FE, LL and FL, LL correlators and t to 23 

for the LL, LL. All the fits shown have a good Q. i 0.13460, 0.13460, /3 = 

6.2, JpJ2 = 0 correlators were used in the fit. 

are in table A.12 and a comparison with the single exponential fit is made in 

table A.4. 

The parameters from the double exponential fits agree with those from the 

single exponential fit. This suggests that both methods are reliable. It also 

suggests that the right strategy was used to chose the fit range for the double 

exponential fit. The fuzzing enhances the ground state relative to the first excited 

state. Using the 0.13460, 0.13460 case as an example 

= 0.75 zo 

ql 
	2.6 

zo_ L 
The enhancement of the groundstate is important for the analysis of the three-

point correlators. 
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4.6 The light-light vector, 1 P1 1  0 

At momentum j2 = 1, 2 the diagonal correlators (i.e. of the form CpT)  have 

three different values. Ignoring possible lattice artefacts these are 

I-u
V
i 
,2PT = CV 

(1+( 27r )2) 
V,2PT = 	av 

C44 - 	
2ir )2 

V,2PT = 	 ;-L: CV 

i=1,2,3 pi=0  (casel) 

i=112,3 pLO  (case2) 

(case 3). 

(4.10) 

The factor multiplying Cv is the polarisation sum given in (3.37). In the IT = 1 

case all the off-diagonal correlators are zero. In the 1Ji 2  = 2 case the off-diagonal 

correlators 

C,2pT for i j and p = 	= 1 	 (4.11) 

are non-zero. Unfortunately the off-diagonal correlators were not saved and so 

have not been used in the fits. 

Two approaches were considered for fitting the vector correlator at Izi 	0 1  

which are described in the following subsections. 

4.6.1 Method 1 

The form factor calculation in chapter 5 requires the factor Zv (4.7). The mass-

dependent factors multiplying Cv in cases 2 and 3 of (4.10) need to he dealt with. 

A simple approach is to sum the diagonal correlators giving 

Cp(1,p) = 30v(t, p) . 	 (4.12) 

The mass dependent factors in the sum cancel. The fit procedure is now the same 

as in the pseudoscalar case. 

This method is unsatisfactory because it involves averaging correlators which 

are estimates of different quantities. The three different cases of correlator may 

have different statistical errors. Summing over all the correlators hides this fact 

and could lead to an unnecessarily large error on the fitted parameters. 
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4.6.2 Method 2 

The motivation for this method is to avoid averaging correlators which are not 

equal. Correlators which are equal according to (4.10) are averaged. This gives 

3 average correlators, one for each case. These are simultaneously fitted with the 

ansatz 

f(t) = K( case  i)(1, m)xi(e_s2t + e_x2(T_t)) , 	 (4.13) 

where K is the factor multiplying Ov  in (4.10) and x 1 , x 2  are the free parameters. 

The fitted mass is used to calculate K. Sliding window plots for this method 

are shown in figure 4.8. The fits use correlated chi-square, with a block diagonal 

correlation matrix, that is correlations between the different cases are set to 0. 

The Q values are good for fits starting at t > 10. 

0.007 

0.006 

0.005 

xl 

0.004 

0.003 

0.002 
0 

Figure 4.8: Sliding window plots for fits to the light-light vector meson using 

method 2. The fit range is from t to 23. The FF 0.1346,LL 0.013460 ,8 = 6.2 

191 2 = 1 correlator was used in the fit. 

4.6.3 Comparison of the methods 

Four possibilities were considered for fitting the vector two-point function at 

I pT=A 0. The options were: method 1 or 2, with the energy a free parameter or 
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fixed at its dispersion relation value. The results from the four possible fits to 

the heaviest vector are compared in table 4.3. 

method 1 method 2 

Parameter E fixed E free E fixed E free 

Zv(p2 = 1) 

 

0.0695t 

0.4611 

0.071t 	0.0670t 

0.4641 0.4611 

0.070t 

0.4651 

 

aE(p 2  = 2) 

0.0592 

0.530t 

0.065 °  

0.544t 	0 .530t 

0.0561 0.0551 

0.5271i 13  

Table 4.3: Comparison of the parameters Zv,  aE obtained by different types of 

fit. The correlator FF 3460, LL 3460, ,8 = 6.2 was used. 

The fitted energies in table 4.3 satisfy the dispersion relation within errors. 

This is shown graphically for 0 = 6.2 and fi = 6.0 in figure 4.9. It was decided 

to use a one-parameter fit as these give much smaller errors on Zv. 
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Figure 4.9: Testing the dispersion relation for the light-light vector. The data 

points are fitted energies, using method 2, the line is the dispersion relation 

calculated using the fitted mass. Momenta are in units of 27r/aL. The kappa 

combinations are 0.13460, 0.13460 and 0.13344, 0.13344. 
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The value for Zv depends significantly on whether method 1 or method 2 

is used. The reason is that the vector two-point correlator does not satisfy the 

continuum prediction for the three possible values multiplying Cv given in (4.10). 

This was found by repeating the method 2 fit with the full correlation matrix, i.e. 

correlations between the different cases not set to zero. The value of Q obtained 

indicated a had fit. This is nicely illustrated by dividing the averaged case 2 

correlator by the averaged case 1 correlator. This ratio is referred to as C. The 

numerator and denominator of are highly correlated, so there is a dramatic can-

cellation of statistical errors. In the continuum, and with groundstate dominance 

this ratio is 1 + ()2. The method 2 fit relies on this result. The continuum 
amL 

and lattice ratios are compared in figure 4.10. 

4.6.4 Fuzzing and rotational symmetry 

Figure 4.10 shows that the LL, LL correlator agrees with the continuum predic-

tion for the ratio C , but the LL, FF correlator disagrees. At time slices 12 and 

13 the disagreement is at more than the 6a level. The LL, LF and LL, FL are 

in slight disagreement with the continuum prediction, at between the 1 and 2 a 

level. These results suggest that the local vector operator is more continuum-like 

than the fuzzed vector operator. 

The continuum value of was derived in section 3.8 by using the sum over 

polarisations for a massive vector particle. An equivalent derivation relies on 

rotational symmetry. The vector two-point function (C pT ) is a tensor with 

two indices. The only tensors with the same transformations under rotations are 

plipU and grn'. Therefore 

Zv12 	+ppv)e_t , 	 (4.14) CpT(t,') 
= 

2E (—g 

where the variable ce is not determined by rotational symmetry. The continuum 

Ward-Takahashi identity for a flavour-changing vector current [16] gives 

P,LCPT 	0 , 	 (4.15) 
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Figure 4.10: The ratio ç.  The data points are the lattice value of the ratio, 

the line is the continuum prediction. The filled circles are time slices where the 

groundst ate- dominance approximation is reliable. Each graph is for a two point 

function with different smearing (the smearing is noted on each graph). The 

correlator used is K = 0.13460,0.13460, /3 = 6.2, I1 2  = 1 

so a = 1/m,. Therefore 

CPT(t,P = '(—g + 4)et 	 (4.16) 

as was derived earlier. Results (4.14) and (4.15) are exact in the continuum, 

but not exact on the lattice. However, if the lattice spacing is fine enough these 
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conditions will he approximately true. Fuzzing the vector operator makes either 

(4.14), (4.15) or both a less good approximation. 

A reasonable conjecture is that rotational symmetry is violated more strongly 

for the LL, FF correlator than for the LL, LL correlator. To justify this consider 

the fuzzed vector meson operator [25] 

Fuzz( t) = 	i( + , t)(, t; 	 t). 	(4.17) 

Here the i i  are in the direction of the lattice axes and .F(, t; i,) is the prod-

uct of fuzzed links between i and i + at time slice t. The fuzzing treats the 

three spatial lattice axes differently from other directions. It is easy to imagine 

a more rotationally symmetric smearing procedure than (4.17), which includes 

additional terms with i;i not in the direction of the lattice axes. This study uses 

= 6a at 3 = 6.0, Ifi l = 8a at /3 = 6.2. At momentum 1 in lattice units the 

wavelength associated with the momentum is aL. The fuzzing length is smaller 

than the wavelength of the momentum, but not insignificant. If rotational sym-

metry is being spoiled by the fuzzing then (4.14) is modified by terms forbidden 

by rotational symmetry, but permitted by hypercuhic symmetry. The additional 

term which is lowest order in the lattice spacing is 

(pL)3pV +p(pv)3. 	 (4.18) 

with no summation convention. The fuzzed vector operator at JpJ =A 0 needs to 

he investigated further. 

The results for fitting the 1 1 1 	0 LL, FF correlator are listed in tables A.5 

A.6 and A.11. The results for method 1 and 2 are both listed. For the form factor 

calculation the method 1 calculation of Zv was used. The difference between the 

two results was treated as a systematic error. 
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4.7 Quark mass 

The free parameter which determines quark mass in a simulation is the hopping 

parameter, K. For free fermions the quark mass is 

amq --4, 	 (4.19) 

which is a rearrangement of (2.22). However in the interacting theory this ex-

pression is modified by renormalisation. For the Wilson action the quark mass is 

modified by an additive renormalisation. The quark mass is given by 

	

am = 1 
	1

---- . 	 (4.20) q 	2 r, 	2i 

where rc  is the critical value of the hopping parameter, at which the quark mass 

vanishes. This work uses the 0(a) improved Wilson action which causes an 

additional mass dependent multiplicative renormalisation of quark mass. In this 

case the quark mass is given by 

m q  = m(1 + bmamqW). 	 (4.21) 

The value used here for bm is the one-loop tadpole improved perturbation theory 

result [33] 

bm  = - - 0.09629 . 	 (4.22) 

bm  has also been calculated nonperturbatively for /3 = 6.2 [34]. There is a fairly 

large error on this result and it is in good agreement with perturbation theory so 

it has not been used. 

Chiral symmetry arguments suggest that the mass of a pseudoscalar meson 

composed of light quarks satisfies 

= B(m q , i  + 7flq,2) , 	 (4.23) 

where m q ,j are the quark masses given by (4.21) and B is a mass independent 

parameter of QCD. This relation (4.23) is used to determine the critical value 

of the hopping parameter and the light quark masses. Substituting (4.21) in to 

(4.23) yields 

2 	Bf 	bm  

	

rn - 
 

( 	
B 	bm )  / 1 	1\ Bbm (1 	1 

+ 2( 	 + 	. (4.24) 
1 
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This relation was used to determine t. The lattice results for amp were fitted 

to 3 x 3 pci, '2 combinations with aB and ic as unknown parameters. This was 

done in [19], giving 

= 0.135252t 6 	(/3 = 6.0) 

= 0.135815t17 	(/3 = 6.2) 14 

(4.25) 

Table 4.4 contains the quark mass for each of the ic values used in the simulation, 

calculated using 4.21. 

0 =6.2 0 =6.0 

am K am 

0.13530 0.014 0.13455 0.019 

0.13510 0.019 0.13417 0.029 

0.13460 0.033 0.13344 0.049 

0.12990 0.15 0.12730 0.20 

0.12660 0.23 0.12230 0.30 

0.12330 0.29 0.11730 0.37 

0.1200 1 	0.35 0.11230 1 	0.42 

Table 4.4: The civark  mass for each of the r, values used in the simulation. 

4.8 Matching quark masses to experiment 

The masses of the light pseudoscalar mesons are used to determine light quark 

masses. Applying (4.23) to the observed light pseudoscalar mesons gives 

= B(m + flid) 

= B(m + ins ) 

= B(md + iris ) . 	 (4.26) 
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In this study isospin symmetry is assumed, i. e. ?7'tu = rnd, and the kaon masses 

are averaged according to 

74 	(m ±  + mo). 	 (4.27) 

The lattice light quark masses are given by 

( rn lr / 0)2 arnd = (aO)2  
2aB 	

(4.28) 

	

a(m + md) = (aO)2 
(nK/0) 	

(4.29) 
aB 

where 0 is the quantity used to set the scale (lattice spacing) and the ratios 

with subscript exp are the experimental values. aB and aO are calculated on the 

lattice. 

The values am 3 , amd calculated by the above procedure depend on which 

physical quantity is used to set the scale. This is not a surprise because the 

theoretical pseudoscalar masses are not calculated in the right theory; they are 

calculated in quenched QCD at nonzero lattice spacing. This problem always 

occurs when comparing quenched calculations with experiment. The standard 

approach is to use several different physical quantities to set the scale, and treat 

the variation in the result as a systematic error. In this work r0  is used to set the 

scale unless otherwise stated. Phenomenological results are also calculated using 

m to test the scale dependence of the result and estimate the systematic error. 

4.9 Quark mass dependence of the pseudoscalar 

The pseudoscalar masses are extrapolated in light quark mass for the form factor 

calculation. This is clone separately for each heavy quark mass. The meson 

masses are linear in light quark mass to a very good approximation, as shown in 

figure 4.11. 

Given the size of the error bars on the data in figure 4.11, it is surprising that 

the central values are so close to the fitted line. This is because the three data 

C) 
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Figure 4.11: The dependence of the heavy-light pseudoscalar mass on the light 

quark mass. The data are fitted masses, the line is a linear fit. /Sh eavy  = 0.12000. 

points are highly correlated. The correlation matrix for the data in figure 4.11 is 

1 	0.979 0.876 

0.979 	1 	0.950 	 (4.30) 

0.876 0.950 	1 

with nlight  in the order 0.13530, 0.13510, 0.13460. The parameters from correlated 

and uncorrelated fits are virtually the same in this case. However, for the fit 

shown in figure 4.11, a correlated fit gives Q = 0.116 and an uncorrelated fit 

gives Q = 0.892. Clearly the uncorrelated fit overestimates Q. Correlated fits 

were used. 

In this situation correlated data is an advantage. Errors on the fit parameters 

are calculated by using the bootstrap method. The fit is repeated for each boot-

strap sub-ensemble. To correctly handle the correlations, the three data points 

fitted always come from the same bootstrap sub-ensemble. To find out what the 

errors would he if the data were uncorrelated the fits are repeated using differ-

ent bootstrap sub-ensembles for the three-points. Comparing the resulting fit 
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parameters: 

Slope : 	1.25t 10  (uncorrelated) 1.25 	(correlated) 

	

Intercept: 0.798 	(uncorrelated) O.798 	(correlated) 

The correlations in the data allow a much more accurate determination of slope 

than would he possible with uncorrelated data. 

4.10 Quark mass dependence of the vector 

Figure 4.12 shows the dependence of vector meson mass on average quark mass. 

As before the data are highly correlated. A linear ansatz fits the data well. 

0.39 

0.37 

> 
0.35 

co 

0.33 

0.31 t 

	

0.01 
	

0.02 	 0.03 

(am 1  +am2)/2 

Figure 4.12: The dependence of the light-light vector mass on averaged quark 

mass. The data are the fitted masses, the line is a linear fit. 



Chapter 5 

Analysis of the three-point 

correlators 

5.1 Form factors 

The three-point correlators depend on the matrix element 

(V,k,?llJ, L IP,p) , 	 ( 5.1) 

where J is either A or V, i is the polarisation vector of the V and p, k 

are four-momenta. This matrix element describes the nonperturbative part of 

a semileptonic decay. The matrix element can he decomposed in terms of form 

factors, that is, the matrix element can he expressed in terms of a few functions 

of q2  (where q = p - k). This is proved by using the Lorentz, parity and charge 

conjugation symmetries of the current and states. 

The matrix element (5.1) with a vector current depends on one form factor. 

The conventional parametrisation, used here, is 

'i 
(V,k,IVIP,p) 

= 7V(q2 I g P kTh*S 	 (5.2) 
mp + mV  

For the case of an axial current the matrix element depends on three form factors. 

A parametrisation convenient for phenomenology is 

(V ; k,iir IA p IP,p) 	= i(rnp + mv)A i ( q2 )g,i 

54 
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iA2(q2) 	
+ k)qi 

- ?Thp + 772v  

+ 2irnvA(q2) (7) - k)(p + k) 	. 	( 5.3) 
q2  

Any three form factors related to A 1 , A 2 , A by an invertible linear transformation 

can he used for the form factor decomposition. The following form factors are 

sometimes useful 

Tflp+7flV 	2 	imp — mv 	2 A 3 (q2 ) = 	Ai(q ) - 	A2(q ) 	 (5.4) 
2m v 	 2mv 

A o (q 2 ) = A(q2) + A3 (q2 ) . 	 ( 5.5) 

At q2  = 0 there are only two independent axial form factors. This is expressed 

by the constraint 

A 0 (0) = A 3 (0) 
	

(5.6) 

The three-point correlators depend on the p olari s ati on- averaged matrix ele-

ments. In terms of form factors these are 

?i(V, k, 77, 1 V'L I,p) 
= 2V(q2 ) 

(5.7) 
imp + mv 

r 

JV 
i,(V,k,ii r IAlP,p) = ifrnp +mv )A i ( q2)(g - ___ 

r 

+ 
jA2(q2) 

 (p + k)(k - Pu) 
iflp + i12V 

2imvA(q2) (p -k)(?4k - p) , 	( 5.8) 
q2  

where r labels the three possible polarisations of the vector. 

The form factor decomposition presented here is for continuum Minkowski 

space. The Euclidean space decomposition is obtained by the substitution 

J4  = ijo  

= 	. 	 (5.9) 

In principle the form factor decomposition is different on the lattice, because 

Lorentz symmetry is modified to hypercuhic symmetry. The lattice form fac-

tor decomposition will tend towards the continuum one as the lattice spacing is 

reduced and is not considered here. 
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5.2 Lattice details 

The same gauge configurations described in chapter 4 were used in the calculation. 

The three-point functions calculated are of the generic form 

CT(J5, , t) = 	 ( 0 T{p(x, tE = 28)J(il, t)t"(0)}  0) , (5.10) 

described in section 3.10. The flavour-changing current J is either A' or V. For 

the improvement counter terms the correlator is also calculated with the flavour-

changing tensor and pseudoscalar. The pseudoscalar operator, Qp, is always at 

time tE = 28. Moving this would require recalculating the extended propagator. 

The three-point function is calculated with all possible values of t. The situation 

t > 28 is referred to as the back of the lattice and t < 28 is referred to as the 

front of the lattice. p is the momentum of the pseudoscalar, q is the momentum 

transfer of the decay. The momentum of the vector is k, where 

k=p — q. 	 (5.11) 

The three-point correlator and most of the notation conventions are shown in 

figure 5.1. The quarks are refered to as active, passive and heavy with hopping 

parameters kA, tcp and ttj respectively. 

J (t,q) 

Active, KA 	 Heavy, KH 

V (O,k) 
	

Ps (t=28,p) 

Passive, K 

Figure 5.1: Schematic of the three-point correlator. 

The combinations of the momenta j  and Ic used in the simulation are listed 

in table 5.1. The 7, k combinations have been grouped into 9 momentum chan- 
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Channel name I 	# I 	 k 

o — 0 (0,0,0) (0,0,0) 

0 — 	1 (0,0,0) (0,0,-1), (0,-1,0), (-1,0,0) 

0 — 2 (0,0,0) (-111-1 1 0), (-1,0 )-1), (0,-1,-i), 

(-1,1,0), (1,0,-i),_(0,-1,i) 

1 —4 0 (0,0,1) (0,0,0) 

1 —+ iii (1,0,0) (1,0,0) 

1 —+ 1 ± (1,0,0) (0,-i 3 O) 

1 -4 ij (1,0,0) (-1,0,0) 

1 -4 2 ii (1,0,0) (1,1,0), (1,0,1), (i,-i 3 O) 

(1,-i ,0) 

1 -4 2 1 (1,0,0) (0,1,1), (0,1 7-1), (0 )-1,1) 

(0,-i,-1) 

Table 5.1: j, k combinations used in the simulation, grouped into momentum 

channels. The momentum channels are referred to by a name of the form Jp 2  —* 

k12. Where necessary the name includes the orientation of 5 and k. For example 

I indicates that j and k are perpendicular. 

nels. All the j5, k combinations in a particular channel are related by hypercubic 

symmetry and have the same q2 . Each channel has a name so that it can be 

referred to in the tables and text. The name is of the form 52  k 2 . If I12 and 

I kI
2  are both nonzero, then the channel name includes the relative orientation 

of # and k. For channel 1 -4 1 there are three possible orientations of j5 and k; 

parallel, perpendicular, and antiparallel. These orientations are included in the 

channel name using the symbols I, i , and ii respectively. For channel 1 —+ 2 two 

orientations were considered. These were referred to as 1 —+ 2 I and 1 —+ 2 ii, 

although q5 and k are not parallel in the latter channel. 

The three-point correlators are calulated with 4 kjq values, 3 !c,4 and 2 tip, 

giving 24 isi combinations in total. The active quark propagator is fuzzed at Q v , 

the heavy quark is Boyled at ci. The flavour-changing current is local and both 

ends of the passive propagator are local. 
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5.3 Improvement and renormalisation 

The action used in the simulation is the 0(a) improved SW action. The axial 

and vector currents need to he improved by adding counter terms, given in (3.16). 

This can he simply implemented by improving the three-point correlator. In the 

case of the axial correlator, 

Cv I - I 	+ icAsin(q) UP,3PT 
I1V ,ç/LLI A13PT - 1 A,3PT + cAsinh(q) UP,3PT 

for i = 1,2,3 

for /1=4, + fort <28, - fort >28 
(5.12) 

where C'PT  is the (improved) axial correlator, CP,3PT  is the three-point corre-

lator with a flavour-changing pseudoscalar and q is in lattice units. q4  is defined 

to be positive. This result is from applying the discretised partial derivative to 

CP,3PT. The case i = 4 assumes that the correlator is decaying exponentially 

and is different for hack (t > 28) and front of the lattice. The constants used for 

improvement and renormalisation are listed in table 5.2. 

coefficient 0 = 6.0 0 = 6.2_1 reference 

zV 0.770 0.7874 LANL 	[24] 

bv  1.53 1.42 LANL 	[24] 

ZA 0.807 0.818 LANL 	[24] 

bA 1.28 1.32 LANL 	[24] 

cv -0.107 -0.09 LANL 	[24] 

CA -0.037 -0.032 LANL 	[24] 

Csw 1.769 1.614 Alpha 	[23] 

bm  -0.5962 -0.5931 Alpha 	[33] 

Table 5.2: Constants needed to implement improvement in this work. All except 

for bm  are calculated nonperturbatively. Note that the Zv in this table is the 

renoramlisation coefficient, not the overlap of a meson operator with the vector 

state. 

In practice it was convenient to fit the improved three-point correlator and 
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then renormalise the form factors. The renormalisation prescription is 

F(0rm) = z (i + bi 
ama  + amh

2 	) 	
(5.13) 

where ma is the active quark mass, mh is the heavy quark mass, and F is the 

form factor. The subscript J is A for the axial form factors or V for the vector 

form factor. 

Apart from bm, the constants in table 5.2 were all determined nonpertur-

hatively. Also they are consistent with each other. The LANL constants were 

calculated with gauge configurations generated using the Alpha value for CSTV. 

bm  is calculated in boosted perturbation theory. This constant is only needed to 

calculate improved quark mass. It does not appear in the form factor calculation 

and is the least important coefficient for this work. 

A nonperturhative calculation of an improvement coefficient has a discretisa-

tion error. Comparing different calculations of the same improvement coefficient 

gives some indication of the discretisation error. Most of the coefficients are found 

to vary slightly between calculations. However cv depends rather strongly on the 

method used to calculate it, especially for 0 = 6.0. 

5.4 Overview of the fits 

The approximate time dependence of the three-point correlator for the back of 

the lattice is 

-ZPZV e_EvTe tEe_t(Ep_Ev) 	(V, 	,?lrIJ(0)IP, 	(5.14) '3PT - 2Ep2Ev r 

This was derived in section 3.10 and is the starting point for the fit. Consider 

CT with a specific ji, k and J. The correlator is calculated for all 16 possible 

combinations of Lorentz indices. The form factor decomposition is applied to 

(5.14) for these 16 cases. In some cases the correlator is zero and is discarded 

from the fit. The remaining correlators may include symmetry-related correlators, 

which have equal magnitude. The symmetry-related correlators are averaged, 

some multiplied by —1 if necessary. This leaves Nave  averaged correlators which 
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all have different form factor decompositions. The other fl , k combinations from 

the channel have the same Nave distinct correlators. All correlators from a channel 

that can he averaged, are averaged. These are then fitted with the form factors 

as free parameters. 

The value of Nave for the different channels and currents is in table 5.3. For 

the vector current and channel 0 -+ 0, Nave  = 0 so the form factor V cannot 

he determined. For the axial current and channel 0 + 0, Na,, = 1, so only one 

linear combination of form factors can he determined. It turns out that only A 1  

can he determined for this channel. For all the other channels used all the form 

factors can be obtained. 

Channel [Nave (A) Nave (V) 

0-+0 1 0 

0-+l 5 1 

0-+2 6 2 

1 	0 3 2 

1-~ lii 4 2 

1*1I 10 3 

1 -4 IR 5 1 

1 	21 10 3 

1-*211 10 notused 

Table 5.3: The number of correlators to fit after averaging and throwing away 

stochastic estimators of zero. 

To fit the three-point function the time-dependent factor multiplying the ma-

trix element in (5.14) is needed. Two ways were considered for estimating this 

factor. One method uses the values for E, Ev, Zv, Zp obtained in chapter 4 

to construct the time-dependent factor. The alternative method uses the result 

C3pT(,tE,k,t) 	 5 ZZp E,7)(P,J'(0)IV,k, r ) 	t <28 

CP,2PT(IL - tEI,i) 0v,2pT(i,7) 	ZvZ 	ij(\1,_k,?/r IJ(0)IP,_j5 	t >28 

(5.15) 

which assumes that the ground state dominates the two-point functions. 
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The two methods can he compared by plotting the three-point correlator 

with the time dependence divided off. These plots are referred to as plateau 

plots because there should he a plateau where the approximations are valid. A 

plateau plot for each method is shown in figure 5.2. The plateau plot using 

fitted energies has a plateau for 33 < t < 47 and possibly a very noisy plateau 

for 12 < t < 20. The plateau plot using meson correlators has a much shorter 

plateau 34 < t < 40 because outside this region the groundstate dominance 

approximation is not valid for the two-point correlators. Even at time slice 38 

there is a difference of about 10% between the two types of plots because the 

groundstate dominance approximation is violated. It was decided that using 

fitted energies is the better method. 

-0.5 

-0.7 

-0.5 

-0.7 

	

-0.9 LL 
	 -0.9 
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10 	20 	30 	40 
	

0 
	

10 	20 	30 	40 

Figure 5.2: Example plateau plots for the two different methods. The same three-

point correlator is used in 1)0th plots. Time dependence is removed in the left 

plot using fitted energies, in the right plot using meson correlators. The plot is 

for single correlator (no averaging) from the 0 -~ 1 case, = 6.2. 

The coefficients appearing in the form factor decomposition were needed for 

the fit. These were calculated using the momenta and the fitted masses. Corre-

lated chi-square fits were used, but with correlations between different averaged 

correlators set to zero. This is thought to he the best procedure because different 

correlators have different systematic errors not taken account of by the correlation 



CHAPTER 5. ANALYSIS OF THE THREE-POINT CORRELATORS 62 

matrix. The error analysis used the bootstrap method and includes the errors on 

the fitted two-point parameters. Exactly the same bootstrap suhensembles were 

used for the two-point fits and three-point fits. This may reduce the errors on 

the fitted form factors because of correlations between two-point and three-point 

correlators. 

5.5 Choosing fit ranges 

There are a large number of correlators to fit. For each 0 there are 9 channels in 

the axial case and 7 channels in the vector case. Each channel has Nav e  averaged, 

improved correlators and 24 ic combinations. Fit ranges were chosen separately 

for each channel, current, 0, and averaged correlator. The same fit ranges were 

used for the 24 ii combinations. The fit ranges were chosen by studying plateau 

plots. All the plateau plots were looked at for two different r, combinations. The 

sliding window analysis, which is very useful for choosing fit ranges for the two-

point functions, is too complicated to apply to the three-point functions. A lot 

of correlators are being fitted and both the start and end of the fit needs to be 

varied. For example, in the axial 1 -+ 1 1 case, Nav e  = 10 so the full sliding 

window analysis is in a 20 dimensional space. 

Some example plateau plots are shown in figure 5.3. The correlators in figure 

5.3 are much noisier at the front than at the back of the lattice. This was found 

to always he the case, so all fit ranges were chosen at the back of the lattice. 

The 0 -+ 1 correlator shown in figure 5.3 has a very long, definite plateau for 

33 < t <47. There is no definite plateau at the front, but time slices 8 <t < 10 

are possibly a noisy plateau and agree with the plateau at the back of the lattice. 

The 1 -+ 0 correlator shown does not have such a good plateau at the back of the 

lattice. It was decided to fit time slices 36 < t < 39 as these are midway between 

the pseudoscalar and vector meson operators and are consistent with the noisy 

plateau on the front of the lattice. The 0 = 6.2 plateau plots typically have a 

plateau which is more definite than the 1 0 case, but less definite than the 

0 -+ 1 case shown in figure 5.3 
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Figure 5.3: Two plateau plots used for picking fit ranges. The left graph is the 

same correlator as figure 5.2 (0 —+ 1, /3 = 6.2), averaged with the other symmetry 

related correlators and improved. The right hand graph is from channel 1 —+ 0, 

/3 = 6.2. 

In the 3 = 6.2 case all the channels listed in table 5.3 were used. In the 

/3 = 6.0 case plateau plots for some of the channels did not have a well-defined 

plateau. An example of this is figure 5.4. Many of the 0 = 6.0 channels were not 

fitted because the plateau plots suggest that the form factors would he unreliable. 

Channels 0 —+ 0, 0 —+ 1 and 1 —+ 0 were fitted in the axial case, channels 0 —+ 1, 

1 —+ 0 and 1 —+ 1 1. were fitted in the vector case. 

The form factors are eventually extrapolated in light quark mass. It is im-

portant to check that the extrapolation is not strongly affected by the fit ranges 

used. To do this the plateau plots for the 6 light ic combinations with a particular 

'H were superimposed. An example is shown in figure 5.5. The six plateaus are 

approximately a constant distance apart for the entire fit range. In this case the 

light-quark extrapolation would give similar results irrespective of the fit range 

used. The plateaus in figure 5.5 are highly correlated. 
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H!!! h 
- 0 	10 	20 	30 	40 

Figure 5.4: An example of a plateau plot from a rejected 0 = 6.0 channel. The 

plot is for channel 1 —+ 1 1, !Ip = 0.13417, 1A = 0.13417, iff = 0.12230. 
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Figure 5.5: Comparison of plateau plots with different light quark mass. The 

plateau plots all have /9 = 6.2, tcH = 0.12000, but different ttA, 1-Cp. For clarity 

error bars are not shown. The correlator is the same as the left side of figure 5.3. 
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5.6 Results 

The fitted form factors A, A 1 , A 2  and V for all channels and tc combinations 

are in tables in appendix B. In all cases the fits gave an acceptable Q. Fits 
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were checked visually by comparing the fit with plateau plots. An example visual 

comparison is shown in figure 5.6. 

0.5 

0 

-0.5 

-1 

Figure 5.6: A comparison of the channel 0 —+ 1 correlators, with time dependence 

divided off, and the fit. The sections of plateau used in the fit are shown with error 

bars and the best fit is superimposed. The plateaus have been shifted in time so 

that they do not lie on top of each other. The correlator is Ip = 0.13460, kA = 

0.13460, iH = 0.12000, 8 = 6.2. 

The four B = 6.2 form factors are plotted as a function of q2  in figure 5.7, 

for a particular tc combination. The form factors are expected to he smooth 

functions of q2 , but the results in figure 5.7 are definitely not smooth functions 

of q2 . However the ,8 = 6.2 form factor results are smooth functions of q2  if the 

channels with Iki = and channel 1 —+ 1 ii are excluded. The excluded channels 

are referred to as unreliable. 

The strange results for the Iki = 	form factors were very surprising. The 

same gauge configurations, fuzzing radius and techniques were used to obtain the 

form factors for the transition heavy-light pseudoscalar to light-light pseudoscalar 

in [35]. For these decay channels where the light pseudoscalar has momentum \/ 

agree with lower momentum channels. A possible explanation why the 	= 

results are unreliable for P —+ V is given below. The argument is heuristic and 
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Figure 5.7: The four form factors, for all channels and lcp = 0.13460, 1 A = 

0.13460, IcH = 0.12000, 0 = 6.2. The unreliable channels are open circles. 

needs to he investigated further. 

There is evidence from the two-point correlation functions that the fuzzed 

vector meson operator suffers from large violations of rotational symmetry. This 

was discussed in section 4.6.4. The form factor decomposition of the three point 

correlator used the result (3.35) 

= (0I(0)IV,k ; qr ), 	 (5.16) 



CHAPTER 5. ANALYSIS OF THE THREE-POINT CORRELATORS 67 

which relies on rotational symmetry. On the lattice, additional terms such as 

(ij) 3  need to he included, although these terms are suppressed by powers of the 

lattice spacing. If the operator S is fuzzed using a distance similar to the wave-

length of i, then maybe the additional terms forbidden by rotational symmetry 

are important. The form factor decomposition of the three-point correlator for 

pseudoscalar to pseudoscalar transitions can he derived in a very similar way. 

This uses the result 

Zp = (011p(0)IP,k) , 	 (5.17) 

which does not rely on rotational symmetry. Therefore the large fuzzing length 

is not a problem for pseudoscalar to pseudoscalar transitions. 

The plateau plot for the vector current, channel 1 -+ 1 ii is shown in figure 5.8. 

There is a well defined plateau on the back of the lattice, but with a completely 

different value from the indistinct plateau at the front of the lattice. This is 

evidence that the result for V from channel 1 -+ 1 ii is unreliable. Channel 

1 -4 1 ii was rejected in the axial case because the correlators do not behave 

well as a function of light quark mass. This was determined by looking at a plot 

of the same type as figure 5.5. The unreliable form factors are not used in the 

phenomenological calculations of the next two chapters. 
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Figure 5.8: The plateau plot for channel 1 	1 ii, with the vector current and 

	

= 0.13460, 1A = 0.13460, 1H = 0.12000, 	= 6.2. 
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In section 4.6.3 it was shown that there is a systematic error on the overlap 

factor for a vector meson, Zv. The two different fit methods used to obtain Zv 

give results which differ slightly more than the statistical error. The method 1 

determination of Zv was used to determine the form factors presented in appendix 

B. The method 2 determination of Zv is typically 4% lower (see tables 4.3 and 

A.5). Fortunately the quark mass dependence of Zv is almost the same for both 

methods; extrapolating the form factors in quark mass does not increase this 4% 

difference. Using the method 2 determination of Zv gives form factors which are 

4% higher. In most cases this systematic error is small compared to the statistical 

error and can he ignored. The exceptions are A 1 , V for channel 0 -+ 1 and A 1 , 

V for channel 1 - 1 1. In these cases the statistical errors are about 4%. 

5.7 Issues for a future study 

This section gives some suggestions for how a future study could improve the 

determination of the form factors. The three-point functions are fitted to an 

ansatz which assumes that the three operators are well separated in time. For 

some channels the fit range is only a few time slices. With such a small range 

it is difficult to be sure that the operators really are well separated in time and, 

for example, there is no contamination from excited states. This could be solved 

by using lattices with a slightly longer time dimension. This has already been 

successfully implemented in [36], which used 24 x 62, 0 = 6.2 lattices to study 

the semileptonic decay of a heavy-light pseudoscalar meson to a light-light pseu-

doscalar meson. 

The calculation could he improved by using more gauge configurations. This 

would make it easier to distinguish systematic and statistical fluctuations in the 

plateau plots. A very high statistics study would reveal the systematic devia-

tion of the three-point functions from the continuum form factor decomposition. 

However it turns out in the next two chapters that the statistical error is not the 

dominant source of error for comparison between lattice and experiment. 

In this study the pseudoscalar meson operator was fixed at time slice 28. If 
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this operator is put at the midpoint of the lattice then the three-point correlator 

at the front and back of the lattice can be averaged. This would reduce the 

statistical error. 

In chapter 4 some surprising results for the two-point correlator of fuzzed 

vector-meson operators were presented. A possible explanation of these results 

is that fuzzing enhances violations of rotational symmetry. This effect should he 

investigated further and its implication for the three-point functions assessed. 



Chapter 6 

Semileptonic decays of charmed 

mesons 

Chapter 5 described how form factors were obtained from the lattice simulation. 

The form factors were calculated for many quark mass combinations and values 

of q 2 . To make contact with experimental results the form factors need to be 

extrapolated and interpolated to physical quark masses. This chapter describes 

how the lattice results were applied to semileptonic decays where the heavy quark 

is the charm quark. Three decays were considered; D -+ e+u , D+ + 

pOi+ v . The decay to a 0 meson was treated in the same way as the other 

two decays, although in reality it is more complicated. The 0 was assumed to be 

pure s, and the OZI rule suppressed disconnected diagrams were ignored. 

6.1 Extrapolation in light quark mass 

The form factors are functions of q2  and three quark masses. That is 

F = F(mh,ni,m,q2 ) , 	 (6.1) 

where F is a generic form factor, and 	m a , m are the heavy, active and 

passive quark masses respectively. The quark masses have a lower case subscript 

to avoid confusion with meson masses. The quark masses are the improved masses 

70 
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calculated from ,c as described in section 4.7. 

The form factors were first extrapolated to physical values of the light quark 

masses m a, m. This was done separately for each heavy quark mass and mo-

mentum channel. The heavy quark mass is not changed by the extrapolation. 

However q2  is a function of meson mass and implicitly a function of light quark 

mass, so it is changed by the extrapolation. 

The function used to extrapolate the form factors in light quark mass is mo-

tivated by the following discussion. The q2  dependence of the form factors can 

he modelled by a simple pole, 

F(q2) - 
	F(0) 

- 1—q2/M2 	
(6.2) 

I 	pole 

or the sum of a few simple poles. This is discussed further and shown to give 

a good fit to the data in section 6.5. Mpo ie  is the mass of a heavy-light meson 

composed of the heavy and active quarks. Therefore the variation in Mpo i e  during 

the light-quark extrapolation is approximately 

Mpo le 	a + a277?,a . 	 (6.3) 

It is reasonable to assume that the quark mass dependence of F(0) can be Taylor 

expanded. To first order 

F(0) 	b + b2r7-ta + b3rn . 	 (6.4) 

The form factors are extrapolated at constant channel, i.e. constant A 2, IiI 2 , I1 2 . 

The exact dependence of q2  on meson mass is known, and the meson masses are 

implicitly functions of light quark mass. Substituting (6.3), (6.4) and the ex-

act dependence of q2  on the meson masses into (6.2) and Taylor expanding to 

first-order gives 

F Iconstant channel = C1 + C277'l + C37fla + C4771p + C5?ThV . 	 (6.5) 

The Cj have different values for different channels. The 1a  dependence of F(q2 ) 

due to variation in Mp ole  and F(0) has been combined. This expansion is a good 

approximation provided that the change in both meson masses is small compared 
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to (Moie - q2)1/2. In chapter 4 it was shown that my and rnp are linear in light 

quark mass. Therefore the expansion (6.5) is equivalent to the ansatz 

F = x1  + x2 m + X3?77, a 	 (6.6) 

which was used to extrapolate the form factors. Note that x 1  is the value of F 

with chiral light quarks. All the form factors were fitted with (6.6) and in all 

cases Q indicated a good fit. The lattice values of the strange quark mass and 

up/down quark mass was determined by the method described in section 4.8. 

The form factors for the semileptonic decay heavy-light pseudoscalar -+ light-

light pseudoscalar have been calculated in several lattice studies. These can be 

extrapolated in light quark mass using the expansion (6.5), with my exchanged 

for the mass of the light pseudoscalar. The mass of a light pseudoscalar is not 

linear in quark mass, so an extra term needs to he included in (6.6). 

An example light-quark extrapolation is shown in figure 6.1. The example 

extrapolation was done using both a correlated fit and an uncorrelated fit. The 

uncorrelated fit gives Q = 0.998, the correlated fit gives Q = 0.402. To test good-

ness of fit the correlated fit must be used. However the uncorrelated fit was used 

for the extrapolation. The fit function is only an estimate of the mass dependence 

of the form factors. In fact the form factors are expected to deviate systematically 

from the function due to higher-order terms in the Taylor expansion. Correlated 

and uncorrelated fits both assume that there are no systematic errors. However 

the uncorrelated fit is thought to he more robust to small systematic errors. In 

the example shown in figure 6.1 the uncorrelated fit looks the more reasonable. 

6.2 Interpolation in heavy quark mass 

The four heavy quark masses used in the simulation are around the charm quark 

mass. After the light-quark extrapolation the form factors were interpolated in 

heavy quark mass to the charm quark mass. The interpolation was done in terms 

of the heavy-meson mass, which is implicitly a function of heavy quark mass. 

The value of the interpolated form factor depends very weakly on the inter- 
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Figure 6.1: An example light quark mass extrapolation. The left graph used a 

correlated fit, the right graph used an uncorrelated fit. In each of these cases the 

form factor is plotted against m a  on two separate graphs, one for each /p. The 

form factor shown is A 1 , ,B = 6.2, 0 —+ 1, icj. = 0.1200. 

polation function used if the function is reasonably smooth and fits the data well. 

The ansatz used was 

Fm=(xo +-—+-), 	 (6.7) 

where the x i  are free parameters and N = if F is A l , N = - if F is A 0 , A 2  or V. 

Heavy quark effective theory suggests that this is a good interpolation function 

(this is discussed in more detail in section 7.1). In all cases this interpolation 

function gives a good fit to the data and is smooth. Two example fits are shown in 

figure 6.2. The graphs have horizontal axis 1/(amp) and vertical axis F (amp)N, 

so that the fitted curves are quadratic. 

The point in the interpolation which corresponds to the charm quark was 

determined using experimental meson masses. The results were interpolated to 

the D meson mass if the passive quark is the up/down quark, and interpolated 

to the D3  meson mass if the passive quark is the strange quark. Converting the 

experimental meson mass to lattice units requires a determination of the lattice 

spacing, and introduces a slight scale dependence. The q 2  of a momentum channel 

was calculated using the dispersion relation, experimental meson masses and a 

lCp=O.l35lO 

Kp = 0.13460 
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Figure 6.2: Two examples of interpolating to the D mass. Both graphs are for 

channel 0 -* 1, 8 = 6.2, ma  and m, interpolated to the strange quark mass. 

determination of the lattice spacing. q2  is also a scale dependent quantity. The 

form factors obtained are in tables in appendix C. 

6.3 Comparison of 13 = 6.0 and 13 = 6.2 

After the extrapolation to a physical decay the ,8 = 6.2 and 18 = 6.0 form factors 

are obtained at the same quark masses. The results for the two lattice spacings 

can he directly compared to test for discretisation effects. The comparison is most 

stringent for the decay D -+ e+v  where the data have the smallest errors. To 

put form factors at both fi on the same graph the ratio of the lattice spacings 

is required. The ratio of the 18 6.2 and ,8 = 6.0 lattice spacings is almost 

independent of the physical quantity used to set the scale. The D -+ 0 18 = 6.0 

and 6.2 form factors are compared in figure 6.3. The 18 = 6.2 and 18 = 6.0 

results in figure 6.3 all agree within errors. The same conclusion is reached for 

the D -* K* and D -* p decays, although in these cases the data have larger 

errors. 

In many modern lattice calculations results are extrapolated to the continuum 
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Figure 6.3: Comparison of 	= 6.0 and ,8 = 6.2 form factors for the decay 

-+ 

limit. However this cannot be done reliably with just two 0 values. Also, the 

/3 = 6.0 results have such large errors it is unlikely that a meaningful continuum 

extrapolation would he possible even with 0 = 6.4 results. To compare lattice 

with experiment the 0 = 6.2 data were treated as continuum results. The /3 = 6.0 

data were only used as a consistency check. 
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6.4 Differential decay rate 

The differential decay rate for the decay P —+ \/ is [37] 

dF 
— 	3  

(IH0(q2)2 + H(q2)J2 + H(q2)12) 	(6.8) 
dq2 	192irm, 

where 1'q'  is the appropriate CKM matrix element, 

	

1 	

(_

4rnk2 A
2 (q2 ) — (rn — m - q 2 ) (mp + my) Al(q2)) H° (q2 ) = 

	

2my 	?flp + IflV 

(6.9) 
2rnp Ic'2  

H(q2 ) = (mp + my) A i (q2 ) ± 
m 	fl

V(q) 	(6.10) 
p + 7v 

and 

\(q2 ) = (m + 	— q 2 ) 2  — 4mr4 . 	 (6.11) 

In the above k is the spatial part of Ic in the P rest frame. In explicitly Lorentz 

invariant form, 

Jkl= 
2mp 	

(6.12) 

This differential decay rate formula assumes that the lepton is massless, a good 

approximation for electrons and muons. It is integrated over the angles describing 

the orientations of the neutrino and lepton as these are not relevant here (although 

they are very relevant to experimental studies). The three polarisations of the V 

are summed over. The term in (6.8) proportional to I H°12 is due to longitudinally 

polarised V's, the term proportional to H+12  + H1 2  is due to transversely 

polarised \I's. The kinematically allowed range of q2  is 0 < q2  < ax where 

qm  

6.5 Pole fits 

The most accurate experimental results for semileptonic decays are total decay 

rates. To calculate the total decay rate from the lattice results the form factors 

need to he pararnetrised by some model over the kinematically allowed range 

of q2 . For the form factor A 1  this is an interpolation in q2  because its value is 
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calculated at ax  with the 0 —+ 0 channel. The form factors A 2  and V are not 

known at qmax  so a small extrapolation is needed to parametrise them up to 

qrnax . However A 2  and V are kinematically suppressed by factors of I/I 2  at high 

q2  so this extrapolation does not make the prediction for decay rate unreliable. 

The nearest-pole-dominance approximation [38, 39] predicts the following q2  

dependence of the form factors: 

F(q2) 
— 	F(0) 

(6.13) 
— 1 - q2 /771 

where F is A 0 , A 1 , A 2  or V. The pole mass, mF, is predicted to he the mass of a 

meson composed of the heavy and active quarks with definite spin J and parity 

P. Using the notation jP, rnF is the mass of the 1+  meson for A 1 , A 2 , the 0 

meson for A 0  and the 1 meson for V. The values of the form factors at q2  = 0 

are not predicted by nearest-pole dominance. 

To compare lattice with experiment the form factors should be fitted with 

enough free parameters to avoid strong model dependence and give a good fit to 

the data. Approximations, such as nearest-pole dominance, can then be tested 

from first principles. The form factors were fitted to the single pole ansatz (6.13), 

with F(0) and mF as free parameters. The constraint on the axial form factors 

at q2  = 0 (equation 5.6) was enforced in the fits, reducing the number of free 

parameters by 1. The data for A 2  is very noisy at high q2 , so the pole mass 

associated with A 2  is poorly constrained. The same pole mass was used for A 1  

and A 2  in the fits. This does not introduce much model dependence into the 

prediction for the decay rate because, as stated earlier, the contribution from A 2  

is kinematically suppressed at high q2 . 

In all cases the fit ansätze described above gave a good fit to the data. The 

fit parameters are listed in table C.5 with the lattice spacing determined from 

7-0 . To test for scale dependence the fit parameters were recalculated using 7n 

to set the scale. These results are listed in table C.6. In all cases the error on 

F(0) due to scale dependence is smaller than the statistical error. This is not 

surprising because F(0) is dimensionless. The fitted pole masses in physical units 

are listed in table C.7. The typical scale dependence of a generic quantity with 

mass dimension is that its value in physical units varies as much as the difference 
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determinations of the lattice spacing. The scale dependence of rriF is less than 

this. However the scale dependence of rnF is generally bigger than the statistical 

error. 

The lattice pole masses are compared with the nearest-pole-dominance pre-

diction in table C.7. For all the decays considered the lattice results agree within 

errors with the nearest- p ole-domi nance predictions for my and mA I . The lattice 

result for mA O  is lower than expected for D -+ q and D -* K*. 

6.6 Comparison with experiment 

In the following subsections the lattice data are compared with experimental 

results. Total decay rates are obtained by numerically integrating differential 

decay rates, which are calculated using the fit parameters in tables C.5 and C.6. 

The experimental results in the following subsections are all from the Particle 

Data Group (PDG) [4]. 

6.6.1 D-+qtv 

The 0 is a flavour singlet. It was assumed to he pure ss for the light-quark 

extrapolation. Experiments show that this is a good approximation [4]. Discon-

nected diagrams where the s and . annihilate and are created from the vacuum 

contribute to the decay D -+ çbev . The connected diagram and the simplest 

disconnected diagram for D -4 Oe+v are shown in figure 6.4. The OZI rule pre-

dicts that the connected diagram dominates the decay rate D -+ qev . This 

is a phenomenological rule based on observing a large number of decay modes, 

and has not been derived from QCD. Disconnected diagrams were ignored for the 

calculation of decay rate here. 

Using the PDG value IVCS I = 0.974 + 0.001 the lattice prediction for total 

decay rate is 5.0 + 0.3 x 10 10  s _i. The errors are statistical only. The scale 

dependence of the result gives a systematic error which is much smaller than 

the statistical error. There is also a systematic error due to the two types of fit 
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Figure 6.4: The connected (left) and a disconnected (right) diagram which con-

tribute to the decay D 	qv 

to the vector two-point correlators giving slightly different results for Zv.  The 

result shown used the method 1 fit to obtain Zv.  Using the method 2 fit gives 

form factors which are 4% higher, and a total decay rate which is 8% higher, i.e. 

5.4 + 0.3 x 1010  s'. The lattice decay rate is in reasonable agreement with the 

experimental world average of 4.0 ± 0.5 x 1010 -i• The agreement between the 

lattice and experimental decay rate can be thought of as an example of the OZI 

rule holding. 

Form factor ratios at q 2  = 0 have been measured for this decay and for 

_ K 0 ézi. These ratios are determined without making assumptions about 

the total decay rate and IVI [40]. Experimental determinations of the abso-

lute values of the form factors are strongly model dependent. The lattice and 

experimental form factor ratios are 

V(0)1A 1 (0) = 1.92 + 0.32 (experiment) 1.36t 	(this work) 

A 2 (0)/A 1 (0) = 1.60 + 0.24 (experiment) 0.99 t 	(this work) 

The lattice determination of V(0), A 2 (0) and A 1  (0) are correlated. As a result the 

fractional errors on the form factors ratios are quite small. The scale dependence 

of the ratios is insignificant. The meson overlap factor, Zv,  cancels in the form 

factor ratio, so its uncertainty is not a source of systematic error. There is 

significant disagreement between the lattice form factor ratios and experiment. 
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6.6.2 D —* 

The experimental results for this decay are the most accurate of all the decays 

considered in this work. The K*  is a flavour nonsinglet so the lattice prediction 

does not rely on the OZI rule. The lattice prediction for decay rate is 5.5 ± 0.5 x 

10 10  s_i ,  which is in reasonable agreement with the experimental world average 

4.5 + 0.4 x 1010  s 1 . As for D -* çbeii , the decay rate obtained is 8% higher if 

method 2 fits are used for the two-point correlators. The lattice and experimental 

form factor ratios are 

V(0)/A 1 (0) = 1.82 + 0.09 (experiment) 1.23t 	(this work) 

A 2 (0)/A 1 (0) = 0.78 + 0.07 (experiment) 	1.03i!i(this work) 

There is significant disagreement between the lattice and experimental form factor 

ratios, especially for V(0)/A 1 (0). 

The experimentally measured ratio A 2 (0)/A 1 (0) is very different for D -+ 
K*o 1, and D? -+ 4t11 . This is surprising because the two decays are related 

by SU(3) flavour symmetry. The lattice results do not predict strong breaking 

of SU(3) flavour symmetry for this ratio. 

6.6.3 D 

The form factors for D --~ p can he applied to the decays D+ 	p0 v  and 

Do  -4 ptv. However only D+ 	p° t'v has been observed experimentally. 

In the standard quark model its wave function is (ut - dd)/\/. Unlike the 

disconnected diagrams do not contribute to the decay D 	because any 

disconnected diagram involving a d quark is exactly cancelled by a disconnected 

diagram involving a it quark. The decay rate formula (6.8) is for the decay 

p+ z,. Isospin symmetry gives 

F(D 	p°ev) = F(D0 	pev). 	 (6.14) 

The lattice prediction for total decay rate is F(D -4 p° v) = 0.19 + 

0.02 x 1010  s 1 . This is in good agreement with the experimental result F(D _ 
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pO e+ve ) = 0.21 + 0.08 x 1010  s_i. As mentioned in the previous two sections, the 

lattice decay rate is 8% higher if method 2 fits are used for the two-point correla-

tors. The total decay rate has also been measured for the case where the lepton 

is a muon. The experimental result is F(D+ pO/i+v,i) = 0.26 ± 0.07 x 10 10  s_i .  

The two measured decays cannot he directly compared because the phase space 

available for the final state is smaller in the muon case. The phase space effect 

has been estimated for the decay D+ _ K*+v in [41]. In terms of decay rates 

the phase space effect is estimated to give 

F(D _ k*O/.L+v) 
= 0.9 . 	 (6.15) F(D+ _ K*Oe+i) 

This result uses a model for the q2  dependence of the form factors. Although 

the two decay rates in (6.15) are strongly model dependent, much of the model 

dependence cancels in the ratio. SU(3) flavour symmetry suggests that the phase 

space factor will he similar for the decay D+ _ pO?+i,. Therefore the decay rates 

for D+ _ pO e+ve  and D+ _ pO+ disagree at about one standard deviation. 

The form factors for D+ _ p0 +z, have not been measured. 

6.7 Comparison with other theoretical work 

The form factors presented in this chapter have been calculated in several other 

works. The UKQCD collaboration calculated the form factors using quenched, 

= 6.2 improved QCD in [42]. This work uses fully nonperturhative 0(a) im-

provement, whereas the earlier UKQCD calculation used perturbative improve-

ment. The leading discretisation errors of the earlier UKQCD calculation are 

0( 8 a), the leading errors for this work are 0(a 2 ). The results in [42] are com-

pared with results from this work in table 6.1. The axial form factors from both 

calculations are in good agreement, although those calculated in this work are all 

slightly lower. There is some disagreement in the value of V(0). 

The form factors for P -+ V decays have also been calculated using quark 

models and sum rules. Theoretical results for A 1 (0), A 2 (0) and 1/(0) for the 

decays D -+ p and D -+ K* are listed in [43]. The axial form factors calculated 
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_____ UKQCD [42] This work UKQCD [42] This work 

A 0 (0) 0.75t 1  0.64ii 0.63t 0.591 

A 1 (0) 0.70 +7 
-10 0.65t 0.63t 0.60t 

A 2 (0) 0.66t 0.67t 0 	1'°  • 	-15 0.61t 

17 (0) i.oit o.8ot 0.95 0.711 

F 6.0t 5 . 51 1 	0.43 ± 0.11 0.40 + 0.04 

Table 6.1: Comparison of some parameters related to the semileptonic decays 

D -+ K* and D -4 P. The decay rates are in units of 1010 -i• Errors for this 

work are statistical only. 

in this work are within the spread of other theoretical results. The value of V(0) 

calculated in this work is lower than all the other calculations in [43]. 



Chapter 7 

The semileptonic decay B - p 

This chapter describes how the lattice form factors were extrapolated from sim-

ulation heavy quark masses of around charm to the mass of the b quark. The 

reliability of the extrapolation is tested. The form factors are compared with the 

experimental results of the CLEO collaboration and with other theoretical work. 

7.1 Heavy quark scaling of the form factors 

Heavy quark effective theory (HQET) is an approximation to QCD which can be 

applied to processes involving a heavy quark. The approximation requires that 

light quark degrees of freedom have four-momenta which are negligible compared 

with the mass of the heavy quark, mH. 

For the semileptonic decay considered in this work, HQET predicts how the 

form factors depend on rnH. The prediction is exact in the limit of infinite mH. 

For finite mH there are corrections suppressed by powers of AQCD/TnH. In the 

infinite rnH limit, the form factor F obeys the scaling law [44] 

F a(771ff) 2"°  m = constant , 	 (7.1) 

where N = - for F = V, A0 , A 2  and N = for F = A1 . The strong coupling 

ce, appears because of the anomalous scaling of the flavour-changing current. fl o  

83 
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is the first coefficient of the QCD 0 function. For a general number of flavours 

(nj) 
2 
j-flf (7.2) 

In the quenched approximation there are no sea quarks so Po  = 11. 

In HQET mif is taken to infinity with the heavy quark four-velocity held 

fixed. Therefore the scaling laws (7.1) are at fixed w where 

Ci) = V.V '  = 
n2+m, — q2  

2mp my 
(7.3) 

Here v and v' are the four-velocities of the heavy-light pseudoscalar and the light 

vector respectively. The scaling laws (7.1) are derived by assuming that all the 

light quarks have energy which is negligible in the rest frame of the heavy quark. 

The light quark in the heavy-light meson always satisfies this. However the light 

quarks in the light vector meson violate this condition when q2  is small. Therefore 

the scaling laws (7.1) are most reliable when q 2  is close to qax,  or equivalently 

w is close to 1. 

7.2 Extrapolation of the form factors to rn, 

The form factors were first extrapolated in light quark mass as described in 

section 6.1. Then the heavy quark mass dependence was extrapolated from the 

simulation masses to mb. The function used for the extrapolation is motivated 

by the heavy quark scaling laws described in the previous section. 

It is convenient to extrapolate in terms of the pseudoscalar meson mass, which 

is a function of heavy quark mass. HQET predicts that [45] 

mP = 	+ A, 	 (7.4) 

where A is independent of mH. At finite mH (7.4) is modified by terms suppressed 

by powers of AQCD/mH. 

The ansatz used to extrapolate the form factors was 

1 2 F O(mp) m' = x0  + 	+ T 	 (7.5) 

	

imp 	iflp 
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where the x i  are free parameters and the value of N is given below (7.1). The 

function 0 is 	
2 

0 = 

 

(log (rnp/AQCD)) 	
, 	 (7.6) 

log(rn B /A QCD ) 

which is chosen to be 1 at the B meson mass (rnB) for convenience. In the leading 

logarithm approximation for a, 

2 

O(mp) (as(rnP)) 

IT 

= a3(rnB) 	
(7.7) 

In the heavy-quark limit the ansatz (7.5) reduces to the correct scaling law. This 

is shown by rewriting it in terms of heavy quark mass. Substituting the rnH 

dependence of mp (7.4) into (7.5) and expanding gives 

F a8 (mH) 2°  in = x + + —i- + suppressed terms . 	( 7.8) 
772H mH 

This includes finite rflH corrections to mp. The suppressed terms are mainly 

0(1/m). There are also suppressed terms from expanding 0 which are not 

inverse powers of TnH. The most significant of these is 

2x 0 A 

llmH  log(mff /AQcjj ) 
(7.9) 

Ignoring the suppressed terms, x 1  and x 2  in (7.5) allow for the leading and sub-

leading corrections to the HQET scaling law. 

7.2.1 Extrapolation of 1A = 0 channels 

The heavy quark scaling laws are for form factors at constant W. Therefore the 

extrapolation ansatz (7.5) must he applied to form factors at constant w for it to 

have the correct heavy-quark limit. For channels with IpI = 0, w is independent 

of imp, so the results of these channels can be extrapolated immediately after the 

light-quark extrapolation. The function 0 depends on the QCD parameter AQCD. 

This was set to he AQCD = 0.2 Ge\T [4] The result of the extrapolation is very 

weakly dependent on the value of AQCD used, so the uncertainty in this value is 

an insignificant source of error. Two example extrapolations are shown in figure 

7.1. The results are extrapolated to the point where the pseudoscalar mass is 
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Figure 7.1: Examples of the extrapolation in heavy quark mass for channel 0 —+ 1. 

Quadratic (solid line) and linear (dashed line) extrapolations are shown. The open 

square is the result of the quadratic extrapolation to 

equal to the experimental B meson mass. The lattice spacing is used to convert 

the B meson mass to lattice units, which introduces some scale dependence. 

Extrapolations using (7.5) are referred to as quadratic, because the right-

hand side is quadratic in i/rnp. To test for systematic errors the heavy-quark 

extrapolation was also done using a linear extrapolation, i.e. (7.5) with x 2  fixed 

to 0. In general the linear extrapolation gives a had fit to the four data points 

(see figure 7.1), so the linear extrapolation was done using only the three heaviest 

mass points. The linear and quadratic extrapolations are compared in figure 7.1. 

Both types of extrapolation have the correct HQET limit and agree with the 

data. Therefore the difference between the two extrapolations gives an indication 

of systematic errors. 

7.2.2 Extrapolation of li1 0 channels 

Channels with 1i51 =A 0 are more difficult to extrapolate because w is a function of 

heavy quark mass. The four different values of w and q 2  for an example Ii1 =A 0 
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channel are listed in table 7.1. The final column of the table is explained later in 

this section. 

w a 2  q  2 La2q2 

0.1200 1.48 0.08204 -0.0196 

0.1233 1.50 -0.00021 -0.0086 

0.1266 1.54 -0.0662 0.0048 

0.1299 1.62 -0.1140 0.0233 

Table 7.1: Dependence of w on heavy quark mass for channel 1 —+ 1 1, light 

quarks extrapolated to up/down. 

The form factors for 1 1 0 channels can he extrapolated using (7.5), ignoring 

the variation in w. However such an extrapolation does not satisfy the HQET 

scaling law and will have additional systematic errors. Instead the form factors 

with different 1H  were interpolated in q2  to constant w, then extrapolated. A 

possible interpolation procedure is to use the pole fits described in section 6.5. 

However this procedure does not take advantage of the correlations in the data. 

Form factors from the same channel but with different 'H  are highly correlated. 

Therefore when the extrapolation ansatz (7.5) is fitted to the 75 = 0 channels the 

parameters x 1  and x 2  have small statistical errors. Form factors from different 

channels are only slightly correlated. Therefore form factors with different 1 H 

interpolated with a basic pole fit are only slightly correlated, and the resulting 

extrapolated form factor has large statistical errors. 

The interpolation procedure used was designed to retain as much as possible 

of the correlations in the data. For each channel was chosen, where Co lies 

within the range of the four different w. The form factors can he obtained at Co 

with a small shift in q2 . The form factors were shifted in q2  using a simple pole 

ansatz. The fit was constrained to pass through the channel being shifted, i.e. a 

one parameter fit. This fit was used to obtain the form factor at constant CO for 

each of the Ii1 =A 0 channels. Co was chosen to minimise the shifts in q2  in a least 

squares sense. That is, the function 

(Aq 2 (, 	 (7.10) 
all 4 mp 
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was minimised with respect to Co. Here Aq 2  is the shift in q2 . The Aq 2  for the 

example channel, with Co obtained in this way are listed in table 7.1. The /.q2  are 

generally small, so that most of the correlations between data at constant channel 

is retained. The lowest q2  determination of the form factors is for channel 1 —+ 1 . 

Then a negative shift in q2  is a small extrapolation of the data. For this channel 

only, Co was chosen to be w(icH = 0.1200), so that all the Aq 2  are positive. Two 

example 1 #1 =h 0 extrapolations are shown in figure 7.2. 

0.8 

0.7 

0.5 

0.4 L  
0 

0.9 

0.8 

0 

0.6 

J0.5 

0.4 
2 	 0 01 

1/aM p 	 1/aM p  

Figure 7.2: Examples of the extrapolation in heavy quark mass for 	0 chan- 

nels. Quadratic (solid line) and linear (dashed line) extrapolations are shown. 

The right graph is channel 1 —+ the left is 1 —+ 1 I. The open square is the 

result of the quadratic extrapolation to mB. 

7.2.3 Results 

The extrapolation starts with form factors in the range negative q2  to qax•  After 

the extrapolation the form factors are all at high q2 . For HQET to be reliable 

q2  should be close to This is violated by some channels at the simulation 

mH but is satisfied after the extrapolation. The B —+ p form factors obtained are 

shown in figure 7.3. The difference between the linear and quadratic extrapolation 

is always less than the statistical error and, in many cases, is small in comparison 
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Figure 7.3: B -4 p form factors. The results from the quadratic extrapolation 

(filled circles) and linear extrapolation (open squares) are both shown. The lin-

early extrapolated data is slightly offset in q2 
. 

with the statistical error. 

The form factors shown in figure 7.3 were calculated using r o  to set the scale. 

To test for scale dependence the calculation was repeated using in,, to set the 

scale. The results change in two ways; the value of a form factor from a partic-

ular channel changes, and also the q2  associated with a channel changes. As an 
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example figure 7.4 shows A 1  with the scale set by the two different quantities. 

The scale dependence is smaller than the statistical errors, but not small enough 

to he ignored. 

0.6 

0.5 

04 
12 	14 	16 	18 	20 	22 

q2  (GeV2) 

Figure 7.4: The form factor A 1  calculated using r 0  to set the scale (closed circles) 

and m to set the scale (open squares). 

7.3 Comparison of 13 = 6.0 and 3 = 6.2 

The 6 = 6.0 form factors were calculated for only a few channels and have large 

errors, so they cannot he interpolated to constant w. Therefore only the 0 —* 0 

and 0 —* 1 channels were extrapolated to mb. The comparison between the two 

/3 is most interesting for 0 —+ 0, because then q2 =ax and is independent of 

,8. The two heavy-quark extrapolations at different 0 can he directly compared. 

Note that to compare the two extrapolations in lattice units the ratio of the 

lattice spacings is needed. Only A 1  can be determined from the 0 —+ 0 channel. 

The two extrapolations of A 1  from the 0 —+ 0 channel are compared in figure 

7.5. The form factors have been interpolated in light quark mass to strange for the 

comparison, because then the statistical errors are smallest. The fitted parame-

ters used in the extrapolation are listed in table 7.2. The agreement between the 
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two extrapolations is quite spectacular. There are several instances in this work 

where correlations between data points mean that spectacular agreement is not 

surprising. However, the,@ = 6.0 and 0 = 6.2 form factors are calculated using 

different gauge configurations and are completely uncorrelated. Therefore, given 

the size of the statistical errors on the x, the spectacular agreement between the 

two extrapolations is surprising. 

0.7 

0.6 

0.5 

a. 

0 

0.4 

0.3 L 

0 
	

0.2 	 0.4 	0.6 	0.8 
1/Me  (GeV) 

Figure 7.5: Comparison of the heavy-quark extrapolations for channel 0 —+ 0 at 

= 6.2 (filled circles) and 0 = 6.0 (open squares). 

xo 	a; 1 	 a;2 

	

= 6.2 1.111i 	—0.43t 	0.084t 13  

/3 = 6.0 1.05t 0  —0.42t 	o.o8t 

Table 7.2: The parameters used in the extrapolations shown in figure 7.5. The 

ansatz is (7.5). All the parameters are made dimensionless by multiplying by the 

appropriate power of the /3 = 6.2 lattice spacing. 

The form factors at different /3 have different discretisation errors. The dis-

cretisation errors in this simulation are expected to he small at the charm scale. 

However there is a risk that the heavy-quark extrapolation amplifies the discreti-

sation errors, giving a large systematic error on the B —+ p form factors. The 
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comparison in figure 7.5 is good evidence that discretisation errors are under 

control after the extrapolation. 

For channel 0 -+ 1 q2  is a function of ,8, so a direct comparison cannot 

he made between extrapolations at different /3. The extrapolated 0 = 6.0 form 

factors for channel 0 -* 1 were compared with the /3 = 6.2 form factors and found 

to he in agreement. However the extrapolated 0 = 6.0 results have very large 

errors and do not give much information. 

7.4 Comparison with other theoretical work 

There have been several other theoretical calculations of the B - p form factors. 

They have been calculated with light cone sum rules (LCSR [141), quark models 

([46] and [151) and with lattice QCD (UKQCD95 [47, 48]). The previous lattice 

calculation of the form factors is very similar to this work. The calculation used 

18 = 6.2, quenched improved lattice QCD. However the calculation was improved 

perturbatively, and the passive quark mass was not extrapolated from strange to 

up/down. 

In figure 7.6 the results of UKQCD95, LCSR and this work are compared. 

The LCSR approach can he applied in the range 0 < q2  < 17GeV 2 . The three 

calculations are in reasonable agreement for A 0  and V. For A 1  and A 2  the results 

of this work are significantly higher than UKQCD95 and LCSR. 

The UKQCD95 calculation is very similar to this work, so it is surprising that 

the two calculations give different results for A 1  and A 2 . The UKQCD95 calcula-

tion assumed that the form factors are independent of passive quark mass. The 

simulation used a passive quark mass of about strange and did not extrapolate; 

the form factors were actually extrapolated to the decay B -+ K* ,  although 

q2  was calculated as if extrapolated to B -4 p. To test if this assumption of 

UKQCD95 is reliable, it was used to calculate A 1  in this work. Figure (7.7) 

compares the A 1  for B -+ p calculated with, and without, the assumption of 

UKQCD95. Figure (7.7) shows that the assumption has a small effect on the 

form factor and does not explain the disagreement between UI<QCD95 and this 
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Figure 7.6: Comparison of three theoretical calculations of the B -+ p form 

factors; this work (closed circles) UKQCD95 (open squares) and LCSR (lines). 

work. 

The U KQCD 95 calculation implemented improvement perturbatively. This 

reduced the leading discretisation error to 0(a 8 a). This calculation uses non-

perturhative improvement, and has leading discretisation errors of 0(a2 ). The 

different results of the two calculations is probably due to the different discreti-

sation errors. 
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Figure 7.7: The form factor A 1  for B —+ p, using the full extrapolation (closed 

circles) and omitting the passive quark extrapolation (open squares). The open 

squares are slightly offset in q2 . 

7.5 Comparison with experiment 

The CLEO collaboration are the only experimental group to observe the decay 

B °  —* pei'. They measured the total decay rate and also the partial rate (SF) 

in three bins of q2  [13]. The partial rate is dF/dq2  integrated over part of the 

kinernatically allowed range of q 2 . The LF measured by the CLEO collaboration 

are shown in figure 7.8. 

The measurement of total decay rate is F = 17t x iO 	This has smaller 

errors than the measurements of AF so, in principle, this is the best measurement 

to compare with theory. However the lattice results give the form factors for 

q2  > 14 GeV2 . To compare the lattice results with F the form factors need 

to he extrapolated in q2  to cover the whole kinernatically allowed range. This 

extrapolation is strongly model dependent and, as a result, the lattice prediction 

for F has a large systematic error. A safer procedure, used here, is to compare 

the lattice results with AF at high q2 . 

The lattice results were used to calculate dF/dq2  for each channel, using (6.8). 
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Figure 7.8: The partial decay rates for B° 	p+v , measured by the CLEO 

collaboration. The errors are statistical, systematic and theoretical, combined in 

civadrature. 

This was then interpolated in q2  and integrated to obtain AU. The interpolation 

used the method of [47] and is motivated by the following discussion. The q2  

dependence of dF/dq2  can he factored into the product of two functions; the q2  

dependence of the volume of phase space and the q2  dependence of the matrix 

element. The phase space factor is q2[\(q2)],  which changes rapidly at high q2  

and is 0 at q2  = The rest of the q2  dependence of dF/dq2  is due to 

MI 2 	IH°1 2  + IH 2  + 1112 , 	 ( 7.11) 

which depends on the form factors A 1 , A 2  and V. The lattice determination of 

I MI2 is shown in figure 7.9. In the range of q2  for which the form factors have 

been determined the largest contribution to I MI2 is from the form factor A 1 . The 

contribution from A 1  becomes increasingly dominant as q2  tends to qax•  At 

ax 1M12 is proportional to (A 1 ) 2 . This is fortunate, because A 1  is the best 

determined of the three form factors. 

Figure 7.9 shows that IM12  varies slowly with q2  over the range for which it 

has been measured. This is because the form factors vary slowly over this range. 

The q2  dependence of IMI 2  can he accurately approximated by a first-order Taylor 
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Figure 7.9: The q2  dependence of the B°  -+ ptE ii matrix element, calculated 

using the lattice form factors. The extrapolation was quadratic and r0  was used 

to set the scale. 

expansion, i.e. 

MJ 2  = a0  + oi (q2  — q) . 	 (7.12) 

This ansatz was used to fit the lattice results, with the ai  as free parameters. This 

ansatz is not expected to he reliable over the whole kinematically allowed range 

of q 2 , but the numerical results show that it is accurate in the range 14 0eV 2  < 

q2  In terms of the ai  the differential decay rate is 

dF 	= 	
(+ ai(q — 	. 	( 7.13) 

192ir 3 rn 

The highest q2  bin in which the CLEO collaboration measured L[ is 14 < 

q2  < 21 0eV 2  (this is called t[' > i4 from here on). The lattice a, were corn-

pared with this measurement. The differential decay rate (7.13) was numerically 

integrated in the range 14 < q2  < qax• This gives a result of the form 

= VbI2 X [Lattice factorl . 	 (7.14) 

The comparison between lattice and experiment was made in two equivalent ways. 

was calculated using the PDG's best value of I'bI = 3.5 x iO. The error 
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on VbI was not included in the lattice prediction for zF>14 , so that it is clear 

whether or not the lattice result and the CLEO measurement favour I VJ = 3.5 x 

10. For the alternative comparison the lattice factor of (7.14) was used to obtain 

jVubj from the CLEO measurement. The results for the a, and the comparison 

with AF>14  are shown in table 7.3. For comparison, results of UKQCD95, the 

CLEO measurement and the PDG IVub I are also shown. To investigate systematic 

errors the form factors were obtained in four slightly different ways. Two different 

extrapolations were used (linear, quadratic) and two different quantities were used 

to set the scale (in n , ro ). 

o (GeV 2 ) U1 

Quadratic, ro Q8+S .J 	-5 —o Q+'.9 

Linear, ro QQ+7 
.Jj - 4 —0.5t 1.2 

Quadratic, m p 36 +8  
5 —o 6+2.2 . 

Linear, rn, 30t 	—o -1.4 

UKQCD95 2 11 +3 3 
1 	-7+0.8 

-1.3 

CLEO - - 
PDG - - 

zF>14  (10 s') I IVubI X io 
8.7t 3.2 + 0.6 

7.6t 3.4 ± 0.7 

8.it  3.3 ± 0.7 

6.9t 3.6 ± 0.7 

6.1t 3.8 + 0.7 

7.1+2.4 - 
- 3.5+1.5 

Table 7.3: The high q2  behavior of dF/dq2 (B °  -+ ptv ). The lattice results of 

this study and of UKQCD95 are listed. For comparison the experimental result 

of the CLEO collaboration and the PDG value for JVub I are also shown. Lattice 

errors are statistical only. The error on the PDG result is a 90% confidence 

interval, the other errors are 68% confidence intervals. 

The lattice results and IV b I = 3.5 x iO agree within errors with the CLEO 

measurement. This comparison uses only the lattice statistical errors. The sys-

tematic errors on the lattice results are much harder to estimate. The dominant 

sources of systematic error are discretisation effects, errors due to the heavy -

quark extrapolation and quenching effects. Comparing the ,8 = 6.0 and /3 = 6.2 

lattice results for charm meson decays and for the 0 —f 0 extrapolation suggest 

that discretisation errors are small, probably about 10% for the form factors. The 

heavy-quark extrapolation truncates the finite mH corrections to the heavy-quark 

scaling laws. The effect of this truncation is tested by comparing the linear and 
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quadratic extrapolations. A conservative assessment of this comparison suggests 

an error of 15% on the form factors. The scale dependence is small enough to 

ignore. The error due to using the quenched approximation cannot he assessed 

from the lattice results alone. The decay rates for charm mesons are in good 

agreement with experiment. Quenched calculations of the heavy-light semilep-

tonic decays B -+ D, D*  [49] and D -p K [36] are also in good agreement with 

experiment. This suggests that quenching effects are not too large. Precision 

calculations of the quenched light hadron spectrum find a disagreement of 10% 

between the lattice results and experiment [19, 20]. Therefore the quenching er-

ror for the form factors is estimated to be 10%. This error estimate should he 

regarded as an educated guess. 

The four determinations of tF >14  in table 7.3 are all equally valid, so the best 

estimate of '>14  is their average. This gives 

LF - — 	+ 3.2 x 	s' , 	 (7.15) 

where the errors are lattice statistical and systematic. The statistical error is 

taken to be the largest statistical error of the results in table 7.3. The systematic 

error is the three estimated systematic errors combined in quadrature. Note that 

a 10% error on the form factors gives a 10% error on VbI, but a 20% error on 

F. Averaging the four determinations of 111Lbj gives 

3.4+ 0.2 
0.4 

	0.7 + 0.6 x iO 	, 	 (7.16) 

where the errors are statistical, systematic and experimental. Adding the three 

sources of error in quadrature gives I1/L&I = 3.4+1.0 x iO, which is in agreement 

with the PDG. 



Chapter 8 

Conclusions 

This thesis describes the results of a lattice QCD calculation of the form factors 

for the semileptonic decay of a heavy-light pseudoscalar meson to a light-light 

vector meson. The calculation used two values of the coupling to investigate dis-

cretisation errors. The results obtained using the finer of the two lattice spacings 

(0 = 6.2) were compared with experimental results. 

Form factors were calculated for the decays of charmed mesons. The decay 

rates for these decays depend on VSI  and I Vdl,  which have been accurately 

determined by other methods. Therefore charmed meson decays are a good test of 

the reliability of the lattice results. The relevant decays are D -+ 0 , D -+ K* and 

D -+ p. The decay D -~ 0  receives a contribution from disconnected diagrams, 

which was ignored. The lattice predictions for decay rate are compared with the 

experimental results in table 8.1. There is reasonable agreement between the 

lattice and experimental results. 

D—cb D 	K* D-+p 

Experiment F (1010  s') 

Lattice F (10 10  s) 

4.0 ± 0.5 

5.0 ± 0.3 

4.5 + 0.4 

5.5 + 0.5 

0.21 + 0.08 

0.19 + 0.02 

Table 8.1: Comparison of lattice and experimental total decay rates. Lattice 

errors are statistical only. 

99 
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Two form factor ratios have been measured for the decays D -+ 0 and D -+ 
K* ,  rather accurately in the latter case. The lattice and experimental ratios 

are compared in table 8.2. There is significant disagreement between lattice and 

experiment. 

A 2 (0)/A 1 (0) V(0)/A 1 (0) A 2 (0)/A 1 (0) 1/'(0)/A 1 (0) 

Experiment 1.60 ± 0.24 1.92 + 0.32 1.82 ± 0.09 0.78 ± 0.07 

Lattice 0.99t 1.36 1.03 1.23k  

Table 8.2: Comparison of lattice and experimental form factor ratios. Lattice 

errors are statistical only. 

Form factors for the decay B -+ p were calculated. These were obtained by 

extrapolating simulation results in heavy quark mass. The lattice results were 

interpolated in q2  to obtain a prediction for 

differential decay rate/I V)Lb1 2 	 (8.1) 

in the range 14 0eV 2  < q 2 < qax• The partial decay rate in this range has 

been measured experimentally by the CLEO collaboration. Using the lattice and 

experimental results gives 

Vub =  3.4 	± 0.7 + 0.6 x iO 3  , 	 ( 8.2) 0.2 

where the errors are statistical )  systematic and experimental. This is competitive 

with the Particle Data Group which quote I11&I = 3.5 ± 1.5 x iO. Note that 

the PDG error is a 90% confidence interval, (8.2) is a 68% confidence interval. 

This study used two values of fi. The form factors at the different lattice 

spacings are in agreement, which gives confidence that discretisation errors are 

small. To reduce discretisation errors to the level where they are insignificant a 

continuum extrapolation should he used. 

The heavy-quark extrapolation used to obtain B —+ p form factors causes a 

large systematic error. The form factors can )  in principle, he calculated with a 
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static heavy quark. If this is implemented then the heavy-quark extrapolation 

would become an interpolation which is a much more stable procedure. 

The most difficult source of systematic error to eliminate is the quenched 

approximation. Ultimately the form factors should he calculated in full QCD, 

without the quenched approximation. The next generation of high performance 

computers will be powerful enough to do this calculation. However, initial un-

quenched calculations are likely to he on coarse lattices with low statistics. There-

fore precision quenched form factor calculations are likely to be important in the 

short term. 



Appendix A 

Results for mesons 

This appendix contains the results of fits to two-point correlation functions. Most 

fits used the single exponential ansatz, 

C = A(e°' + e_T_t)) 

In many cases the j5 	0 fits were done with aE determined by the dispersion 

relation, i.e. a one parameter fit. For fits using the dispersion relation the pa-

rameter A is given the superscrip DR  Table A.12 contains the results of two 

exponential fits. The two exponential ansatz and the notation are explained in 

section 4.5. 
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APPENDIX A. RESULTS FOR MESONS 

Table A.1: Heavy-light pseudoscalar mesons 1#12 = 0, 0 = 6.2. 

1 heavy 1 1ight A am 

0.12000 0.13460 54.0t °  -10  
13  

0.13510 5O.9t O.8231t 

0.13530 5O.0t O.8165t 

0.12330 0.13460 58.8t O.7387t2 12  

0.13510 55.5t O.72O5t 15  

0.13530 54.5t 12  0.7136t 

0.12660 0.13460 64.3t 0.6284f' 

0.13510 61.0t 1+14 
 

0.13530 60.0t - 12 
 16  

0.12990 0.13460 70.4t 0.5051t °  

0.13510 67.3t 13  0.4840t 13  

0.13530 66.5t 13  0.4758t 14  

Table A.2: Heavy-light pseudoscalar mesons jj512 = 1, /3 = 6.2. 

heavy 	I  Nlight A aE ADR__] 

0.12000 0.13460 39.5t 0.8789 40.2 

0.13510 36.7t °  0.863t 37.3t. 

0.13530 8+11 0.856t -10 36.3t 

0.12330 0.13460 43.3t 0.7831t 	43.6th 

0.13510 40.3j 0.7663t 40.4t 

0.13530 3 9 	11  0.760t 39.3  +8  
-10 

0.12660 0.13460 47.3t 0.6808t 47.3 

0.13510 44 1+11 
11 

06635+20 
-14 

4.)Q+7 
°-10 

0.13530 0+12  0.657t 
. 

42. 6  +8 
-11 

0.12990 0.13460 5i.0t 0.5697t 	5 0 . 5 -10 

0.13510 47 6+13 -12 0.5516t  +22  46.9 -11 

0.13530 46.5t 0.545t 	45.6t 2  
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Table A.3: Heavy-light pseudoscalar mesons Ii2 = 2, B = 6.2. 

Iheavy 'light A aE ADR 

0.12000 0.13460 29.7 O.921t 28.81 

0.13510 27.8t O.908t 	26.1t 

0.13530 27.4 0.903t 25.21 

0.12330 0.13460 33.0t 0.831t 	31.3t 

0.13510 31.1t 0.818t 	2 8.31 

0.13530 31t 0.814t 	27.3t 

0.12660 0.13460 36.7t 15  0.736t 	34.0t 

0.13510 35t 0.724t 	3 0.71 

0.13530 3 5+ 
-2 0.720t 29.5t 

0.12990 0.13460 40t 0.636t 	3 6.2 

0.13510 40t 0.625t 	32.7t 

0.13530 40t 0.622t 	31.5t 0  

Table A.4: Light-light vector mesons 1,51 2  = 0, 0 = 6.2. The results of single 

exponential fits are shown and also, for comparison, the same parameters deter-

mined from double exponential fits. The results from double exponential fits have 

the superscript 2E  

A am A 2 E am2E 

0.13460 0.13460 0.00881 0.380t 	0.0090t 0.382t 

0.13510 0.00841 0.361t 	0.0086t 0.3641 

0.13530 0.00831 0.354t 0.0084t 0.357 

0.13510 0.13460 0.0083t 0.359t 	0.0085t 0.3621 

0.13510 0.0079t 0.341t 	0.0082t 0.3441 

0.13530 0.00781  0.334t 	o.008ot 0.338t 1  

0.13530 0.13460 o.008it 0.3511 0.0083 0.354t 

0.13510 0.0076t 0.331t 0.00781 k  0.335 	12 

0.13530 0.0074t° 0.324t2 12   0.0076t 	0.328t 12 
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Table A.5: Light-light vector mesons I 1 12 = 1, 0 = 6.2. 

method 1: ADR  method 2: ADR 

0.13460 0.13460 0.0053 0.0049 

0.13510 0.0049 0.0046t 

0.13530 0.0047t 0.0044t 

0.13510 0.13460 0.0050t 0.0046t 

0.13510 0.0047t 0.0043 

0.13530 0.0046t 0.0042 

0.13530 0.13460 0.0049t 0.0045 

0.13510 0.0045t 0.0041t 

0.13530 0.0044t 0.0041 

Table A.6: Light-light vector mesons 	= 2, 0 = 6.2. 

KF 1L fl method 1: ADR  method 2: ADR 

0.13460 0.13460 0.0033t 0.0030t 

0.13510 0.0030t 0.0027t 

0.13530 0.0030t 0.0026ji 

0.13510 0.13460 0.0032t 0.0028t 

0.13510 0.0030t 0.0025 

0.13530 0.0030 0.0024t 

0.13530 0.13460 0.0032 0.0027 

0.13510 0.0029ii 0.0024t 

0.13530 0.0029 0.0023t 
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Table A.7: Heavy-light pseudoscalar mesons 1#1 2  = 0, /9 = 6.0. 

1'heavy klight 	fl A am 

0.11230 0.13344 22.7t 1.145i 

0.13417 21.8t 1.120t 

0.13455 21.7t 1.109t 

0.11730 0.13344 26.4t 1.0058t 15  

0.13417 25.4t 0.980t 

0.13455 25.41 0.9681 

0.12230 0.13344 30.31 0 . 8506 -11 

0.13417 29.2t 0.824t 

0.13455 29.2 0.811t 

0.12730 0.13344 35 . 31 0.6748t 13  

0.13417 34.51  0.6450t 15  

0.13455 34.61 0.630t 

Table A.8: Heavy-light pseudoscalar mesons 	= 1, /3 = 6.0. 

heavy 	I  '1ight A aE 

0.11230 0.13344 14.4t 1.1991 

0.13417 13.7 +-6 
6  1.176t 

0.13455 13.8t 1.167t 

0.11730 0.13344 16.7t 5  1.069t 

0.13417 15.8t 1.046t 

0.13455 i5.8t 1.035t 

0.12230 0.13344 19.51 0.929t 

0.13417 18.5t 0.9051 

0.13455 i8.5t 0.S94t 

0.12730 0.13344 22.71 0.7761 

0.13417 21.9t 0.7521 

0.13455 22.0t 0.740t 
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Table A.9: Heavy-light pseudoscalar mesons II 2  = 2, 6 = 6.0. 

heavy 1 1ight A aE 

0.11230 0.13344 9.0t 1.253t 

0.13417 8.6t 1.235t 

0.13455 9 1' -11 1.232t 

0.11730 0.13344 10.5t 1.130t 

0.13417 10.22  1.113 °  

0.13455 11.018 
15 

1 .111+14  
-12 

0.12230 0.13344 12 4+12 i.00it -10 

0.13417 10 	±18 
14 

0 986+13 
-10 

0.13455 14i 0.986i-15 

0.12730 0.13344 15i 0.865 -11 

0.13417 16ii 0.86t 

0.13455 19+8 
1 0.86t _ 

Table A.10: Light-light vector mesons Ii2 = 0, ,8 = 6.0. 

F [ 	L A am 	] 
0.13344 0.13344 0.0329t 13  0.538t 

0.13417 0.0319t 14  0.511t 

0.13455 0.032 0.499t 

0.13417 0.13344 0.0319+ 15 
 

0.13417 0.0307t 18  0.482t 

0.13455 0.030t 0.470t 

0.13455 0.13344 0.032 0.496th 

0.13417 0.030t 0.467t 

0.13455 0.030ii 0 . 455 -10 
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Table A.11: Light-light vector mesons I5i 2  = 1, 0 = 6.0. 

method 1: ADR  method 2: ADR 

0.13344 0.13344 0.0169t  0.0161t 

0.13417 0.0166i 0.0150th 

0.13455 0.0166t 0.0146t 

0.13417 0.13344 0.0157t 7  0.0155+11  
0.13417 0.0154t 0.0143 

0.13455 0.0155t 0  0.0140t °  

0.13455 0.13344 0.0153t 0.0152t 

0.13417 0.0152t 0  0.0140t °  

0.13455 0.0154t 0.0138t 12 

Table A.12: Double exponential fits to light light vector mesons IT = 0, /3 = 6.2. 

[_k'  [_  am0  Zj Zj, [_am1 

0.13460 0.13460 0.083 0.042t 	0 .382t 0.062t 0.1 1 0.71 

0.13510 0.079t 0.039t 	0 .364 0.07t 0.1 1 0.7it 

0.13530 0.078t 0.038t 0.357t 0.07 0.iit 0.71 ' 

0.13510 0.13460 0.079 0.039 0.362 0.07t 0.1 1 0.70 

0.13510 0.075t 0.037t 0 .344ii 0.08t 0.11i 0.70ii 

0.13530 0.074 0.036t 	0.338 0.08 o.iit 0 . 70 -10 

0.13530 0.13460 0.077t 0.037t 0 .354 0.07 0.10 0.68t °  

0.13510 0.072 0.035t 0.335t 	o.o8t o.iot 0.67t 5  
0.13530 0.071 0.034t 0.328 0.08 o.iot °  0.66tg 



Appendix B 

Results for form factors 

This appendix lists the form factors obtained from fits to the lattice three-point 

correlation functions. Every channel that was fitted is listed, including channels 

regarded as unreliable. 
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Table B.1: Form factors. channel 0 -* 0, J = 6.2. 

kH r1P KA q 2  a  2 	
] _A A2 KLi 

2000 3460 3460 0.212t 0.77t - - 

3510 0.232t 0.74t - - - 

3530 0.240t 0.731 - - - 

3510 3460 0.213t 0.77t - - - 

3510 0.233t 0.74t - - - 

3530 0.242t 0.72t - - - 

2330 3460 3460 0.1291 0.77t - - - 

3510 0.1441 0.741 - - - 

3530 0.151t 0.731 - - - 

3510 3460 0.129t 0.771 - - - 

3510 0.i44t 0.74t - - - 

3530 0.1521 0.72t - - - 

2660 3460 3460 0.062t 0.77t - - - 

3510 0.072t 0.74t - - - 

3530 0.077t 0.73t - - - 

3510 3460 0.0621  0.77t - - - 

3510 0.072t 0.741 - - - 

3530 0.0771 0.73t - - - 

2990 3460 3460 0.01581 0.78t - - - 

3510 0.0213t 13  0.75t - - - 

3530 0.024t 0.74t - - - 

3510 3460 0.0151 0.781 - - - 

3510 0.0211 0.75t - - - 

3530 0.023t 0.741 - - - 
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Table B.2: Form factors, channel 0 - 1, 8 = 6.2. 

H P A 
22 qa A A 

2000 3460 3460 O.O75t O.63t 0.75t 0.121 0.87t 

3510 0.0881 0.60t 0.71t 0  0.14t 0.851 

3530 0.0941 0.60t 	0.71t 0.151 0.841 

3510 3460 0.0741 0.651 0.8O1 O.12t O.86t 

3510 0.0861 0.631 0.78 0.16t O.83t 

3530 0.0921 0.631 0.79 O.17t 0.82t 

2330 3460 3460 0.O08t O.63t 	0.70th 0 .0141 O.85t 

3510 0.018t 0.60 t 	0.66th 0.031t 0.821 

3530 0.022t 0.60t 	0.65t 0.040th 0.81t 

3510 3460 0.0071 0.65t 0.741 0.013t 0.8 31 

3510 0.0161 0.63t 0.721w  0.032t 0.801 

3530 0.021t 0.63t 	0.73t 0.043t 0.791 

2660 3460 3460 -0.0406 0.63t 0.64t 	-0.079' 0.83t 

3510 -0.0348 0.60t 0.60t 	-0.0701°  0.801 

3530 -0.032t 0.601 0.60t -0.0661 0.79t 

3510 3460 -0.0419t 0.65t 	0.681 -0.089t 0.81t 

3510 -0.036t 0.63t 	0.66t -0.082j 0.77t  

3530 -0.033t 0.63t 0.66i -0.0791i 	0.761 

2990 3460 3460 -0.0666t 0.63t 	0.581 -0.16t 0.831 

3510 -0.0649t 0.611 0.541 -0.16t 0.79t 

3530 -0.0640t 0.60t 	0.53 1 -0.161 0.771 

3510 3460 -0.0671t 0.65t 	0.621 -0.181 0.801 

3510 -0.0656t 0.641 0.59t -o.i8t 0.76t 

3530 -0.06471 0.631 0.59t -0.19t 0.73t 
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Table B.3: Form factors. channel 0 -* 2. ,B = 6.2. 

rb  H IP 	I  K,j  q 2  a 2 A A 
 

2000 3460 3460 -0.041t 0.36t 	0.25t -0.016t 0.871 

3510 -0.O32t 0.34t 0.23t -O.013t 0.85t 

3530 -0.028t 0.33t 	O.23t -0.O12t 0.84t 

3510 3460 -0.043t 0.361 0.25th 	-0.019t 0.86t 

3510 -0.035t 0.33t 	O.23t -0.016t O.83t 

3530 -0.03Ot 0.32t O.23t -0 .0151 O.82t 

2330 3460 3460 -0.0937t 0.36t 	0.25t -0.043t 0.85t 

3510 -0.0875t 14  0.34t 	0.23t -0 .042 0.821 

3530 -0.0851 0.33t 	0.23t -0 .043 0.81t 

3510 3460 -0.0957 0.36t 0.251 -0.047t 0.83t 

3510 -0.090t 0.33t 	0.22t -0.047t 0.80t 

3530 -0.087t 0.33t 	0.22t -0 .051 0.79 

2660 3460 3460 -0.1275t 0.37t 	0.26t -0 .070 0.83t 

3510 -0.1244th 0.35t 0.23t -0.071 0.80t 

3530 -0.1230 0.341 0.231 -0.08t 0.791 

3510 3460 -0.1286t 0.36t 0.251 -0.07t 0.811 

3510 -0.125St 0  0.341 0.22t -o.08t 0.771 

3530 -0.1244t 0.331 0.22t -0 .081 0.76t 

2990 3460 3460 -0.13645 0.37t 0.281 -0.iot 0.83t 

3510 -0.13696ii 0.35t 	0.251 -o.iit 0.7 9 

3530 -0.137061 0.351 0.24t -0.iit 0.77t 

3510 3460 -0.13601 0.371 0.27t -0 .101 0.801 

3510 -0.13671t 0.35t 0.24t -0.111 0.761 

3530 -0.13692t 0.34t 	0.23t -0.12t 0.73t 
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Table B.4: Form factors, channel 1 - 0, 0 = 6.2. 

H /P kA q2 i2  A 1  A 2  A V 

2000 3460 3460 0.1821 0.72t 	1.2t 0.6t 0.87t 

3510 0.2031 0. 7Ot 	1 .4t 0.8t 0.851 

3530 0.2121 0.691 1.6 i.Ot 0.841 

3510 3460 0.1841 0.72t 	1 .2t 0.6t 0.86t 

3510 0.205 0.70t 1.51 i.0t 0.831 

3530 0.215t  0.69t 1.8t °  1.2t 0.82t 

2330 3460 3460 0.0951 0.71t 	0.9t 0.27t 0.85t 

3510 0.112t 0.69t 	i.0t 0.4t 0.82t 

3530 0.119t 0.68t 	i.it 0.5t 0.81t 

3510 3460 0.096t 0.72t 	0.8t 0.3t 0.83t  

3510 0.1131 0.691 i.0t 0.41 0.80t 

3530 0.121t 0.68t 	1.2t 0.6t 0.79t 
2660 3460 3460 0.022t 0.71t 	0.6t 0.06t 0.83t 

3510 0.035t 0.68t 	0.7t o.iit 0.80t 

3530 0.040t 0.671 0.71 0.151 0.79t 

3510 3460 0.023t 0.71t 	0.61 0.06t 81t 0.8 

3510 0.0351 0.68t 	0.7t 0.12t 0.77t 
3530 0.042t 0.67t 	o.8t 0.17t 0.76t 

2990 3460 3460 -0.0327t 13  0.691 0.43t -0.09t 0.83t 

3510 -0.0251 0.67t 	0.43t -0.08t 0.79t 
3530 -0.021it 0.66t 	0.5t -0.071 0.77t  

3510 3460 -0.033t 0.69t 	0.39t -0.091 o.sot 

3510 -0.025t 0.67t 	0.4t -0 .081 0.76t 

3530 1 	-0.0201 0.66t 0.4t 	-0.07t 0.73t 
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Table B.5: Form factors, channel 1 -* 1 ii. 6 = 6.2. 

[_IH P rz, q2 a2  A 1  A 2  A V 

2000 3460 3460 0.176t 0.70t 	1.8t 0.8t 0.8711 

3510 0.19011  0.65118 1 Q+11 0 0.8511 8 -6 -10 

3530 0.196t 0.62t 8 1 1+12 
-1 1  0.6t 0.84t 

3510 3460 0.174t O.68t 1  6+15 
• 	

-1 4  
O.8t 0.86t 

3510 0.188t 5 0 62+12  1 0+14 -13 -1 1  0.6t 0.83t 

3530 0.195 9+13 0 	±15 "-' 0.8211 -6 -11 -13 -8 

2330 3460 3460 0.10411 0.71t 7 
±12 

' -12 0 	-5 0.85t 

3510 0.115t 0.65118 
8 

1 	.- +12  
'ii 0 	±6 

"-' -5 0.82t 

3530 0.120t 0.63t 	i.ot 0.411 0.81t 

3510 3460 0.10311 0.6811b0 1 4+16 
-15 10  0.5t 0.8311 

3510 0.114t 0.61 +12  0 Q±15 0.311 0.80t ° -14 -1 1 

3530 0.119 	5 0 .0 
Q+13  

_fl 0 	16  0.211 "-'-14 0.79t 

2660 3460 3460 0.0482t 13  0.7111 1 	715 
-1 4  0.311 0.83t 

3510 0.056t 0.66118 
8 

, 	i+15 
..J 	4 0.80t 

3530 0.05911 0.63t 0.2t 0.79t 

3510 3460 0.047t 0.6811b0 
10 

i +2 0.211 •2 0.81t 

3510 0.054t 0 62+12  o.t -1 1  o.it 0.77t 

3530 0.058t 0.59t 0.112  2 0. 0 -6 0.761i _________ 

2990 3460 3460 0.0116t 0.72t 2.11 o.i11 0.8311  

3510 0.0155t 0.67118 1 +2  0 i t" 
-4  

o.79t 

3530 0.017311 0.641110 
9 

1 +2 0 i+4  
.1_4 o.7711 

3510 3460 0.0109118  0 6°h1  1 0 O o.sot 9 3 -i o -5 

3510 0.0146t 12  0.62t o.t -o.it 0.76t 
3530 0.016511 15 0.59t 	o.t -o.it 0.73t 
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Table B.6: Form factors, channel 1 -f 1 1, 6 = 6.2. 

H'cp[_i qa2  A 1  A 2  A V 

2000 3460 3460 O.O39t 0.6Ot 	0.601 0.046t O.87t 

3510 0.0531 0.  581 0.57t o.o64g 0.851 

3530 O.O59t 0.571 0.561 0.073t 0.84t 

3510 3460 0.O37t 0.61t 	0.631 0.0481° 	O .86t 

3510 0.051t 0.591 O.591 0.067t 0.831 

3530 0.058t 0.581 0.58 O.O8t 0.82t 

2330 3460 3460 -0.033t 0.58t 	0.55t -0.042t O.85t 

3510 -0.0221 0.56t 	0.521 -0.029t 0.821 

3530 -0.017t 0.561 0.511 -0.0231 0.81t 

3510 3460 -0.034t 0.60 t 	0.561 -0.0471 0.831 

3510 -0.024t 0.58t 	0.53t -0 .033t 0.80t 

3530 -0.0181 0.57t 	0.52t -0.026t 0.79t 

2660 3460 3460 -0.0889 0.57t 	0.481 -0.125t 0.83t 

3510 -0.081t 0.55t 	0.46t -0 .118 0.80t 

3530 -0.078t 0.551 0.45t -0.116t 0.791 

3510 3460 -0.0901 	0 .59t 0.49t -0.13t 0.81t 

3510 -0.0831 0.57t 	0.46t -0.13t 0.771 

3530 -0.0791 0.571 0.46t -0.12t 0.76t 

2990 3460 3460 -0.1255t 0.55t 	0.41t -0.20t 0.83t 

3510 -0.1216t 0  0.54t 0.39t -0.201 0.79t 

3530 -0.1198i 0.531 0.381 -0.20t 0.771 
3510 3460 -0.1262t 0.58t 	0.41 t -0 .221 0.801 

3510 -0.1225t 12  0.561 0.39t -0 .221 0.761 

3530 -0.1206t 0.56t 0.39t -0.22t 0.731 
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Table B.7: Form factors, channel 1 -+ 1j, 0 = 6.2. 

!H P A 
q 2 2 a 111 P1 / 

2000 3460 3460 -0.098 0.54t 	0.541 -0.102t 0.871 

3510 -0.0841 0.52t 0.521 -O.09Ot 0.85t 

3530 -0.0781 0.511 0.511 -O.084t ° 	0.84t 

3510 3460 -o.ioot 0.58t 	0.58t -0.115t 0.861 

3510 -0.086t 0.551 0.56t -0.i0ot 0.831 

3530 -0.079t 0.54t 	0.55t -0 .094 0.821 

2330 3460 3460 -0.170t 0.52t 0.46t -0 .181 0.85t 

3510 -0.159t 0.50t 	0.45t -0 .171 0.82t 

3530 -0.154t 0.491 0.44t -0.17t o.Sit 

3510 3460 -0.1711 0.561 0.50t -0.201 0.831 

3510 -0.161t 0.53t 0.481 -0.19t 0.801 

3530 -0.155t 0.52t 	0.47t -0.18t 0.79t 

2660 3460 3460 -0.2259 0.50t 0.39t 	-0.24t 0.83t 

3510 -0.218t 0.48t 	0.381 -0.24t o.80t 

3530 -0.215t 0.481 0.37t -0.24t 0.791 

3510 3460 -0.227t 0.551 0.411 -0.271  0.811 

3510 -0.2201 0.52t 	0.40t -0.26t 0.771 

3530 -0.216t 0.51t 	0.391 -0.26t 0.761 

2990 3460 3460 -0.26251 0.49t 	0.311 -0.291 0.83t 

3510 -0.2587ii? 0.47t 0.311 -0.30t 0.791 

3530 -0.2569t 0.461 0.30t -0.301 0.77t 

3510 3460 -0.2633t 0.531 0.33t -0.331 0.801 

3510 -0.2596i 0.51t 0.32t -0.33t 0.76t 

3530 -0.2577t 0.511 0.32t -0.331 0.731 
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Table B.8: Form factors, channel 1 - 2 1, ,8 = 6.2. 
q2 a2 J A 1  A 2  A 

2000 3460 3460 -0.083t 0.29t 	0.141 -0.0121 O.87t 

3510 -0.073t 0.27t 	0.121 -0.012t 0.851 

3530 -0.068t 0.27t 	0 .11 -0.013t 0.84t 

3510 3460 -0.0S6t 0.28t 	o.iit -0 .008 0.861 

3510 -0.0761 0.27t 	0.i0t -0 .010 0.83t 

3530 -0.0711 0.26t 	0 .1O -0.012t 0.82t 

2330 3460 3460 -0.1414t 13  0.29t 	0.i5t -0.03t 0.85t 

3510 -0.134t 0.27t 	0.12t -0.03t 0.82t 

3530 -0.131t 0.26t 	0 .12t -0.03t 0.81t 

3510 3460 -0.1431 0.28t 	0.12t -0 .021 0.831 

3510 -0.136t 0.26t 	0.i0t -0 .021 0.80t 

3530 -0.133t 0.26t 	o.iit -0.031 0.791 

2660 3460 3460 -0.1830t 0.28t 	o.i5t -o.o5t 0.831 

3510 -0.1785t 0.27t 	0.13t -0.051 0.80 

3530 -0.1764t 12  0.26t 	0.13t -0.05t 0.79t 

3510 3460 -0.1844t 0. 28t 	0.131 -0.041 0.811 

3510 -0.1801t 0.26t 	0 .11 -0.04t 0.77t 

3530 -0.i78t 0.26t 	0.111 -o.ost 0.76t 

2990 3460 3460 -0.2041t 0.27t 	0.16t -0.071 0.831 

3510 -0.2028t 0.261 0.14t -0 .081 0.791 

3530 -0.20211 0.26t 	0.131 -0.091 0.77t 

3510 3460 -0.2045t 0.27t 	0.14t -0 .06t 0.80t 

3510 -0.20341 0.261 0.12t -0 .071 0.761 

3530 -0.20271 0.261 0.12t -0.08t 0.731 
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Table B.9: Form factors, channel 1 -+ 2 ii, 8 = 6.2. 

IH KP KA _]J q2 a2  A 1  A 2  A V 

2000 3460 3460 0.054t 0.45 O.35 0.036t - 

3510 0.064t 0.43 0.30 0.05t - 

3530 O.069t 0.42 0.29t O.05t - 

3510 3460 0.052t 0.441 O.3t 0.041 - 

3510 0.061t 0.411 0.31 0.05t - 

3530 0.066t 0.401 0.21 0.061 - 

2330 3460 3460 -0.0043t 0.46t 0.35t -0.003t - 

3510 0.003t 0.44t 0.30t 0.0031 - 

3530 0.006t 0.43t 0.29 0.005t - 

3510 3460 -0.0061 0.45t 	0 .31 -0.0051 - 

3510 0.00it 0.42t 	0.3t 0.00it - 

3530 0.004t 0.41t 	0.2t 0.0041 - 

2660 3460 3460 -0.04591 0.47t 	0.36t -0 .041 - 

3510 -0.0414t 0.45t 	0.30t -0.04t - 

3530 -0.0393t 12  0.44t 	0 .29 -0.04t - 

3510 3460 -0.0473t 0.461 0.31t -0.051 - 

3510 -0.0430t 14  0.431 0.24t -0 .041 - 

3530 -0.0411 0.42t 	0.2t -0.04t - 

2990 3460 3460 -0.0670t 0.47t 	0.36t 0  -0.081 - 

3510 -0.0657t 0.45t 	0.29t -0.081 - 

3530 -0.06501 0.44t 	0.28t -0.09t - 

3510 3460 -0.0674t 0.46t 	0.31t -0 .081 - 

3510 -0.0663t 0.44t 	0.23t -0.08t - 

3530 -0.0656t 0.43t 	0.22t 14 -0.091 - 
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Table B.10: Form factors, channel 0 - 0, f3 = 6.0. 

FH Kp kA q 2  a  2 A 1  112 AIV 
1230 3344 3344 0.368t 0.78 - - - 

3417 0.403t 0.75t - - - 

3455 0.421 0.74t - - - 

3417 3344 0.371t 0.77t - - - 

3417 0.408t 0.74t - - - 

3455 0.427 0.73t - - - 

1730 3344 3344 0.219t 0.78t - - - 

3417 0.246t 0.76t - - - 

3455 0.260 0.75t - - - 

3417 3344 0.220 0.78t - - - 

3417 0.249t 0.75t - - - 

3455 0.264t 0.74 - - - 

2230 3344 3344 0.098t 0.78t - - - 

3417 0.116t 0.75t - - - 

3455 0.126 0.75t - - - 

3417 3344 0.098t 0.78 - - - 

3417 0.117t 0.75t - - - 

3455 0.127t 0.75t - - - 

2730 3344 3344 0.0187 2  0.78 - - - 

3417 0.0271i 0.76t - - - 

3455 0.032t 0.76t - - - 

3417 3344 0.0i80t 0.79t - - - 

3417 0.027t 0.77t - - - 

3455 0.032t 0.77 - - - 
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Table B.11: Form factors, channel 0 -+ 1, 0 = 6.0. 

kH kP A 
22 qa A A 

1230 3344 3344 0.075t 0.59 0.50t 0.036t 0.78 

3417 0.097t 0.56t 0.45t 0.046 0.75t 

3455 0.108 0.55t 0.42 0.05t 0.74t 

3417 3344 0.072 0.59 0.47 0.04 0.76t 

3417 0.095t 0.55t 	0 .4 0.05t 0.74t 

3455 0.106t 0.53 0.4t 0.05 0.72t 

1730 3344 3344 -0.039 0.59t 0.50t0 -0.024 0.771 

3417 -0.023t 0.57t 	0 .46 -0.0141 0.74t 

3455 -0.015t 0.551 0.42t -0.009t 0.72t 

3417 3344 -0.0411 0.601 0.50 -0.028t 0.74t 

3417 -0.025t 0.57t 0.44t -0.0171 0.72t 

3455 -0.017t 0.55t 	0.4t -0 .011 0.70t 

2230 3344 3344 -0.120213  0.59t 	0.48th -0.09t 0.74t 

3417 -0.1115t 13  0.56t 	0.43t -0.09t 0.72t 

3455 -0.107t 0.551 0.401 -0.081 0.701 

3417 3344 -0.1221+1 2 
 0 .49 -o.iit 0.7 2 

3417 -0.113t 0.57t 	0.43t -o.iot 69t 0.6 

3455 -0.109t 0.55t 	0.38t -0.09t 0.67t 

2730 3344 3344 -0.15414t 0.60t 	0.45t -0.17t 0.75t 

3417 -0.15331 0.57t 	0.40t -0.171 0.72t 

3455 -0.1524t 0.551 0.361 -0.17t 0.701 

3417 3344 -0.154212 0.62t 0.451 -0.20t 0.721 

3417 -0.15371 0.591 0.39t -0.20t 0.68t 

3455 -0-1530 +-4 0.561 0.33t -0.20t 0.661 
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Table B.12: Form factors. channel 1 -+ 0. 0 = 6.0. 

H &P KA q 2  a  2 A 1  A 2  A 	
} _v 

1230 3344 3344 0.297t 0.801 0.6t 0.21 0.78t 

3417 0.336t 0.791 0.7t 0.3t 0.75t 

3455 0.35610  0.781 0.9t 1 	0.4t 0.741 
3417 3344 0.3031 o.8i t 	0 .7 0.2t 0.761 

3417 0.3431 0.79t 	0 .8 0.3t 0.74 

3455 0.365t 0.79t 	0.8t 0.4t 0.72t 

1730 3344 3344 0.139 0.78t 0.6t 	0 .ii 0.771 

3417 0.1701 0.77t 	0.8t .19t 0. 0.741 
3455 0.187t 0.77t 	0.9t 0.3t 0.721 

3417 3344 0.143t 0.79t 	0.7t 0.it 0.74t 

3417 0.1761 0.77t 	0.8t 0.2t 0.72t 

3455 0.193t 0.78t 	0.9t 1  0.3t 0.70t 

2230 3344 3344 0.005t 0.741 0.6t 0.0051 0.741 

3417 0.028t 0.73t 	0.7t 0.041 0.721 

3455 0.040t 0.73t 	0.7t 0.061 0.70t 

3417 3344 0.0071 0.75t 	0.71 0.008t 0.72t 

3417 0.0311 0.73t 	0.71 0.05t 0.691 

3455 0.045t 0.74t 	0.8i 0.08t 0.671 

2730 3344 3344 -0.095t 0.691 0.46t -0 .111 0.75t 

3417 -0.081t 0.68t 	0.5t -0.12t 0.72t 

3455 -0.073t 0.69t 	0.51 -0.13t 0.70t 

3417 3344 -0.095t 0.70t 0.5t -0.13t 0.72t 

3417 -0.0801 0.681 0.51 -0.141 0.68t 

3455 -0.0711 0.691 0.51 -o.i5t 0.66t 
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Table B.13: Form factors, channel 1 -+ 1 1-8 = 6.0. 

r.  H 'P 	I  r1A 	11  q2 a2  A 1  A 2  A V 

1230 3344 3344 —0.013t - - - 0.78t 

3417 0.012t - - - 0.75t 

3455 0.025t - - - O.74t 

3417 3344 —0.014t - - - 0.76t 

3417 0.012t - - - 0.74 

3455 0.025th - - - 0.72 

1730 3344 3344 —0.137t - - - 0.77t 

3417 —o.iiSt - - - 0.74t 

3455 —0.108 - - - 0.72t 

3417 3344 —0.139t - - - 0.74t 

3417 —0.1201i - - - 0.72t 

3455 -0.109t - - - 0.70t 

2230 3344 3344 —0.2352+ 14 
 - - 0.74t 

3417 —0.223t - - - 0.72t  

3455 —0.216t - - - 0.70t 

3417 3344 —0.237t - - - 0.72 

3417 —0.224t - - - 0.69 

3455 —0.217t - - - 0.67t 

2730 3344 3344 —0.2953t - - - 0.75t 

3417 —0.2897t 2  - - - 0.72t 

3455 —0.2864t 12  
- - - 0.70 

3417 3344 —0.2962t 0  - - - 0.72t 

3417 —0.2906?j - - - 0.6S 

3455 —0.287i -  - - 0.66t 



Appendix C 

Phenomenological results 

Table C.1: Form factors for the decay D -+ ev . q is in lattice units. 

Channel q2  A 0  A 1  A 2  V 

o - 0 0.106 - 0.75t - - 

0 - 1 -0.012 0.581 0.63t 	0.69t 0.801 

1 -* 0 0.072 1 0.88t 0.70i 0.8 - 11 
 12  

1 -* 1 1 -0.054 0.53t 0.58t 0.51t 	0.701 

1 -p hr -0.191 0.341 0.531 0.441 0.58 

Table C.2: Form factors for the decay D -+ K*Otv . q 2 is in lattice units. 

Channel q2  A o  A 1  A 2  V 

0 	0 0.112 - 0.75t - - 

0 	1 -0.012 0.591 0.68t 	0 .78 0.76t 

1 -+ 0 0.081 1 0.90t 	0.70t 0.9t 2t 1.2 

1 -* 1 1 -0.053 0.561 0.61t 	0.53t 0.63t 

1 -* 1j -0.190 0.381 0.591 0.481 0.631 

123 
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Table C.3: Form factors for the decay D+ 	 j2  is in lattice units. 

Channel q2  A 0  A 1  A 2  V 

o - 0 0.142 - 0.70t - - 

0 -+ 1 0.004 0.58t 0.64ii 0 p74+14 
.1 	-15 0.71j 

1 	0 0.115 0 90' -14 0.66 -6 
1 i+8 
1 . 1 8 1.2j 

1 -0.034 0.56t 	0.58t 0.48t 0.59ji 

in -0.171 0.36t 0.55t 	0.46t 0 	9+10 
S'-' 	 -10 

Table C.4: Form factors for the decay B ° 	 . q2  is in lattice units, the 

quadratic heavy quark extrapolation was used. 

Channel q2  A 0  A 1  A 2  V 

0 - 0 2.396 - 0.61t - - 

0 - 1 2.006 1.36t' 0.57+6 
5 1. 4  +4 

4 
1 16  

-14 

1 -~ 0 2.314 1.7t 0.6 1+ -5 6t 1.9t 

1 -+ 1 1 1.891 1.24+ 16  i.ot i.ot 
1 -+ 1j 1.624 0.9i 0.54t8 8 

1 i+4  
1.14 

1 	1+4  
1.13 

Table C.5: Results from fitting the lattice form factors to the ansätze described 

in section 6.5. Pole masses are in lattice units. 7- 0  was used to set the scale, which 

gives a = 2.913 GeV. 

decay V(0) A0 (0) A 1 (0) A 2 (0) A4 v2  

D 	-* ev 0.85i 0.63 0.63 0 . 69 -10 

 

0.621 0.531 0.24 

K*0e+v 

D 

0.801 

0.711 

0.641 

0.591 

0.651 

0.60t 

0.67 

0.61 

O.58 

0.57t 4  

0.281 

0.31t i.ot 
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Table C.6: Results from fitting the lattice form factors to the ansätze described 

in section 6.5. Pole masses are in lattice units. m p  was used to set the scale, 

which gives a = 2.54 0eV. 

decay V(0) A 0 (0) A 1 (0) A 2 (0) MV2 MA02  M 1  

D? -+ 0.831 0.61 0.621 0.63t 0.57 0.301 O.74' 

D 	-+ K*oe+ v  0.79 0.641 0.661 0. 701 0.63' 0.37 1 
1.1 6 3 

D 0.67t 0.591 0.60t 0.611 0.60i6 0.38t7  5 
1 4+12 
1. 	_ 

Table 0.7: The pole masses obtained from fitting the lattice data compared with 

the nearest-pole-dominance prediction of [38]. All masses are in GeV. Lattice pole 

masses are calculated with both r0  and m, used to set the scale. The nearest-

pole-dominance predictions are meson masses; in all cases the experimental error 

on the meson mass is smaller than the accuracy auoted. 

decay mass Lattice (r 0 ) Lattice (m a ) Pole dominance 

my 2.13 °  1.92 2.11 

D 	-* 	ev mA I  2.41 2 	-14 2.54 

mA O  1.44i 1.40 1.97 

my 2.01 2.11 

*oe.1j) 771 A, 2 . 8+6  
4 

o •t4 2.54 

A0 t13 1.55 	11 
+17 

"-''-13 1.97 

TflV 2.2 +-1 1.97 -11 2.01 

D 	-+ p° eLJ 771A 1  2.9t 3.0t'  2.42 

771A0 1.62 1.56 1.87 
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