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Abstract 

Allergic asthma is a chronic inflammatory disease of the airways characterised by type 2 

immune responses in the lungs. Increased mucus production, airway hyperresponsiveness 

and eosinophilia are the main features of the asthmatic lung, and they are caused by an 

increased production of IL-5 and IL-13. A strong inducer of these cytokines is the alarmin 

IL-33 that it is released upon necrotic death of epithelial cells. IL-33 can be released in 

the lung due to damage caused by inhalation of proteolytic allergens, parasite migration 

or respiratory viral infection. IL-33 activates several immune cell populations such as 

mast cells, TH2 lymphocytes and type 2 Innate Lymphoid cells (ILC2s). Parasitic 

infection is associated with a decreased risk of developing allergic immune responses, 

and this prevention appears to be mediated by the release of  immunomodulatory 

excretory/secretory products (ES).  

 

The aims of this project are to study ES products from the intestinal murine nematode 

Heligmosomoides polygyrus (HES), and in particular identifying and characterising 

single proteins that interfere with the IL-33 pathway. HES administration has been shown 

to suppress both IL-33 and ST2 (the IL-33 receptor) in a mouse model of asthma. 

Therefore parasites may suppress the development of allergic asthma via the secretion of 

soluble mediators.  

 

Firstly, before the beginning of this project,  a single protein from HES was identified as 

suppressor of IL-33: the H. polygyrus Alarmin Release Inhibitor (HpARI). Through direct 
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binding assay, HpARI was shown to bind directly to the active cytokine, blocking IL-33-

ST2 interaction. In vitro HpARI suppressed the release of IL-5 and IL-13 in response to 

IL-33. In vivo, administration of HpARI in an asthma model using the fungal allergen 

Alternaria alternata reduces ILC2s activation and eosinophilic inflammation.  

 

Next, type 2 inflammation was analysed in a neonatal model of RSV infection. 

Respiratory viral infections during childhood have been associated with increased risk of 

asthma development later in life, especially in those infant hospitalised with severe RSV 

bronchiolitis. In a neonatal mouse model of RSV infection IL-33 play an important role 

for the development of type 2 immune responses. In our model, RSV infection in neonates 

induces activation of lung ILC2s 24h post-infection. When HpARI was co-administered 

with RSV, ILC2 activation was suppressed at primary RSV infection, and at RSV re-

infection in later life. A trend for reduced viral titre was observed when HpARI was co-

administered with RSV suggesting that HpARI might interfere with viral infectivity.  

 

Finally, the next focus of the project was identifying a novel single protein involved in 

the suppression of ST2. Fractionation of HES was used to identify a novel protein which 

in recombinant form suppresses ST2. We named this novel protein H. polygyrus Binds 

Alarmin Receptor and Inhibits (HpBARI). HpBARI is a CCP domain-containing protein 

that suppresses IL-33 responses in vitro and in vivo. Using ELISA, direct binding assay 

and surface plasmon resonance, I showed that HpBARI binds directly to ST2 and that 
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this interaction prevents IL-33 from binding to its receptor, blocking  initiation of type 2 

immune responses.  

 

These two newly identified parasite proteins, HpARI and HpBARI, both interfere with 

the IL-33 pathway. HpARI and HpBARI are related proteins as they each consist of 3 or 

2 CCP domains, respectively, and they give insight into how parasites can immune 

modulate the host immune system. 
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Lay summary 

Parasitic worm infections still affect much of the population of developing countries such 

as those in south-east Asia, sub-Saharan Africa, central and south Americas. Parasites 

establish long-term and recurrent infection in humans due to poor sanitation systems and 

the lack of access to clean drinking water. Long-term infections reflect the ability of the 

parasites to control the host immune system to increase the chances of survival. We 

believe that parasites suppress the immune system by producing soluble molecules.  

Asthma has become far more common in the last century in developed nations such as 

those in Europe, USA, Canada and other industrialised areas, due to the improvement of 

sanitation system as well as changes in life style and changes in exposure to infection, 

especially parasites.  

We think that molecules secreted by parasites can interfere with the mechanisms involved 

in the development of asthma, and that these secreted parasite molecules can provide a 

novel approach for the development of new medicines for allergies and asthma. 

Human parasitic infections are difficult to study in a laboratory setting, but mouse models 

can closely mimic human infection. In this project we will use the secretions of the mouse 

parasite Heligmosomoides polygyrus, which has been shown to modulate asthmatic 

responses, to investigate the presence of single immunomodulatory proteins. 

In this project, we characterised a previously-identified parasite protein called HpARI, 

and identified and characterised a previously unknown protein called HpBARI. 
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These proteins interfere with the IL-33 pathway involved in the initiation of the 

inflammatory responses associated with asthma. HpARI binds to IL-33 and HpBARI 

binds to its receptor. 

HpARI has been widely studied both in vivo and in vitro, while the recently discovered 

HpBARI has been tested in vitro and in vivo. Both proteins are promising tools to develop 

new therapeutic to target this pathway in human disease. 
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Chapter 1 

Introduction 

 

1.1 Asthma 

Asthma is a chronic inflammatory airway disease clinically characterised by wheeze, 

chest tightness, breathlessness, with reversible airflow limitations (Edwards et al. 2012; 

Barnes 2008; Holgate 2009). Asthma involves epithelial cells, smooth muscle cells, 

innate and adaptive immune cells that in different ways orchestrate asthmatic 

immunopathology (Global Asthma Network 2018; Whitsett & Alenghat 2015; Schatz & 

Rosenwasser 2014).  

Around 5.4 million people currently suffer from asthma in the UK. The estimated cost of 

asthma is £5 billion/year in the United Kingdom alone (Edwards et al. 2012; Global 

Asthma Network 2018), associated not only with the cost of healthcare services and 

medicines, but also to the loss of work productivity.  

Asthma is a heterogeneous disease with multiple different phenotypes, and the 

pathobiology is still unclear (Wenzel 2006; Holgate 2009). Allergic asthma is the most 

common phenotype of the disease, onset of which is observed usually during childhood, 

but can occur at any age (Holgate 2009). Asthma is typically characterised by TH2 

inflammation with eosinophilic and mast cell infiltrates, mucus production, and goblet 

cell hyperplasia (Wenzel 2006; Fahy 2015; Peters et al. 2018; Holgate 2009). The first-
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line treatment for asthma is b2-agonists, which act on the airway smooth muscle, so as to 

reverse the airway narrowing. Steroidal inhalers may be prescribed for severe or chronic 

asthma sufferers to target the inflammatory response in the airway (Global Asthma 

Network 2018; Holgate 2009). However, some forms of asthma are poorly controlled 

with the current treatment. Corticosteroids are usually effective in controlling TH2 

inflammation. Furthermore, a subpopulation of around 5%-25% of asthmatics do not 

respond to corticosteroid treatment. These corticosteroid-resistant sufferers account for 

around US$8 billion/year to the health system in Europe, Australia and the United States 

combined (Hansbro et al. 2017; Peters et al. 2018). Multiple mechanisms have been 

implicated in steroid-resistant asthma, and these sufferers are the target of biological 

therapeutics.  

 

1.2 Helminth infection 

Helminths are parasites that affect an estimated 1.5 billion people worldwide (Jourdan et 

al. 2018). Helminths are divided into the following three categories: trematodes (e.g. 

schistosomes); cestodes (e.g. tapeworms); and nematodes (e.g. hookworms). Helminth 

infections are common in developing countries, with soil-transmitted nematodes (e.g. 

Ascaris lumbricoides, Trichuris trichiura and Ancylostoma duodenale) being the most 

prevalent (Jourdan et al. 2018; Hotez et al. 2008). Helminthiasis are more frequent in 

young children, causing symptoms such as diarrhoea, anaemia, and impaired 

development. Anthelminthic therapy is effective in clearing the infection, although eggs 
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or larvae contaminate the environment, which allows for continuous reinfection 

(Sorobetea et al. 2018).  

There is significant difference in the biology of helminths. For example, the intermediate 

host varies from species to species, as does the route of infection. Eggs, larvae and adult 

worms can all coexist in the human host, and the site of infection changes depending on 

the species (van Riet et al. 2007). Despite all these differences, most helminths elicit host 

type 2 immune responses, which are required for protection (van Riet et al. 2007; Allen 

& Maizels 2011). On the other hand, type 2 inflammatory responses have a detrimental 

role during asthma and allergic reaction.  

  

 

1.3 Type 2 immune responses 

The immune system evolved to protect our body from the external environment. The 

innate immune system offers rapid, but non-specific, responses, though it can activate the 

adaptive immune system to elicit antigen-specific responses. Antigen presenting cells 

(APCs) can polarise naïve T cells and generate effector T cells. Polarisation occurs 

through synergistic and antagonistic signals that lead to the generation of, for example, 

helper T type-1 (TH1), helper T type-2 (TH2) immune responses, as well as helper T type-

17 (TH17) and regulatory T cells (TREG).  

Type 1 immune responses are elicited by intracellular bacteria and viruses, and are also 

required to eliminate cancer cells. Type 1 responses are characterised by the production 

of IFNg, IL-2, and TNFa. In contrast, Type 2 immune responses are triggered by parasites 
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and allergens. Type 2 responses can mediate allergic inflammation, rapid healing 

responses and ejection of parasites, and they are characterised by the secretion of IL-4, 

IL-5, and IL-13. Type 2 responses are associated with involvement of the entire mucosal 

tissue, the production of mucus by goblet cells, and smooth muscle contraction. TH1 and 

TH2 cells cross-regulate one another, for instance IFNg suppresses production of IL-4 and 

type 2 immune responses, while IL-4 is associated with reduction of TH1 responses and 

IFNg (Pulendran & Artis 2012; von Moltke & Pepper 2017; Hammad & Lambrecht 2015; 

Kaiko et al. 2008). TH1 and TH2 responses were believed to be counter balance 

themselves, and being the major response to pathogens and allergens. This paradigm was 

valid until 2005 when the TH17 subset was firstly described. TH17 might have evolved 

for protecting the organism from microbes and fungi that cannot be eliminated by TH1 

and TH2 (Tesmer et al. 2008). Another important T cell subset that is essential to maintain 

homeostasis and to prevent autoimmunity and reduce inflammation is the TREG. TREG are 

potently induced by TGFb and have been involved in preventing the development of 

inflammatory disorder such IBD and asthma (Vignali et al. 2008). 

In general, type 2 immune responses (Fig.1.1) have evolved to protect us from parasitic 

infection; they are an inflammatory response, which is accompanied by a phase of tissue 

repair and remodelling, in order to balance tissue damage induced by the migrating 

parasite (Lloyd & Snelgrove 2018; Pulendran & Artis 2012). However, when 

dysregulated, type 2 immune responses can cause asthma, allergies, dermatitis, and 

fibrosis, due to aberrant healing processes (Lloyd & Snelgrove 2018).  
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Molecular initiators of type 2 immune responses include epithelial-derived cytokines, 

such as TSLP, IL-25, and IL-33. For the purpose of this project, I will focus on IL-33, on 

which I shall expand in the next section. Epithelial-derived cytokines activate different 

immune cells to produce classical type 2 cytokines, including (but not exclusively) IL-4, 

IL-5, and IL-13. IL-5 is essential for the recruitment and survival of eosinophils, both 

during helminth infections and in allergic asthma. IL-4 is required for IgE class switching 

by B cells, while IL-13 acts on the effector phase of asthma and helminth expulsion due 

to the induction of mucus production and smooth muscle contraction (Allen & Maizels 

2011; Lloyd & Saglani 2015; Hammad & Lambrecht 2015; Halim et al. 2012). While 

during parasitic infections, the initiation of type 2 inflammatory responses is required for 

an optimal parasite clearance, these responses are detrimental during allergic reactions 

and asthma. Allergic asthma is the most common phenotype of the disease, onset of which 

is usually observed during childhood, although it can occur at any age. Allergic asthma 

is characterised by TH2 immune response (Holgate 2009).  

In recent years, particular interest has been given to a subtype of asthma sufferers 

characterised by TH17 responses. The TH17 subset is elicited in response of extracellular 

bacteria and fungi, and it induces the recruitment of neutrophils. TH17 differentiation is 

promoted by IL-6, IL-23 and the absence of both IFNg and IL-4. Production of IL-17, IL-

22, TNFa and GMCSF is a characteristic of the TH17 subset. The role of the TH17 subset 

has been controversial. Neutrophilic infiltrates have been observed in the lungs of 

asthmatic patients and TH17 immune responses have been associated with those 
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asthmatics suffering from steroid resistant asthma (Chesné et al. 2014; Andersson et al. 

2017; Eagar & Miller 2019; McCracken et al. 2016). 
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Figure 1.1 Type 2 immune responses are initiated by helminth infection and allergen.  

Cellular damage in the airway or gut epithelium induces release of epithelial-derived cytokines such as 

IL-25, TSLP and IL-33. These cytokines act on several immune cells to start type 2 immune responses 

characterised by the production of IL-5, IL-13 and IgE, and the induction of mucus production, goblet 

cell hyperplasia and smooth muscle contraction. 
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1.4 Immune cells involved in type 2 immune responses 

1.4.1 Epithelial cells 

Epithelial cells (ECs) are the first barrier against the external environment and important 

contributors to the innate immune system. ECs can directly contribute to innate immunity 

to bacteria through the production of enzymes (such as peroxidases and lysozyme) and 

permeabilising peptides (e.g. cathelicidins and defensins) (Schleimer et al. 2007). ECs 

also express a broad range of Pattern Recognition Receptors (PRRs), such as Toll-like 

receptors (TLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLRs), to 

respond to damage-associated molecular patterns (DAMPs) and pathogen-associated 

molecular patterns (PAMPs). In response to signalling through these PRRs, epithelial 

cells produce and release chemokines, cytokines and antimicrobial peptides that attract 

and activate innate and adaptive immune cells (Hammad & Lambrecht 2015; Holgate 

2009; Schleimer et al. 2007).  

The airway and intestinal ECs act on the most proximal events in the initiation of type 2 

immune responses. For instance, expression of TLR4 on airway ECs is essential for the 

responses against House dust mite (HDM) and LPS. Epithelial TLR4 is necessary to 

induce type 2 immune responses, such as production of IL-5 and IL-13, and recruitment 

of eosinophils. Treatment with TLR4 antagonist or absence of epithelial TLR4 expression 

reduces the asthmatic phenotype (Hammad et al. 2009). EC TLR4 signalling during HDM 

administration induces release of IL-1a, GM-CSF, IL-25, TSLP and IL-33, resulting in 
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recruitment of dendritic cells (DCs), and TH2 induction (Hammad et al. 2009; Willart et 

al. 2012).  

Gut ECs are critical in the detection and mediation of responses to parasitic antigens. For 

instance, the lyso-phosphatydilserine glycolypids and glycans from Schistosoma mansoni 

are recognised by CLRs (Ritter et al. 2010; Van der Kleij et al. 2002). Migrating parasites 

can provoke release of damage-induced IL-25, alarmins (such as IL-33), and other danger 

signals that can drive anti-helminthic type 2 immune responses (Sorobetea et al. 2018). 

During T. muris infection, absence of NF-kB specifically in epithelial cells prevents 

mounting of a protective immune response against the parasite (Zaph et al. 2007). 

Recently, a rare intestinal epithelial-like cell type has been identified and called: Tuft 

cells, which play an important role in the induction of IL-25-dependent type 2 immune 

responses.  

Tuft cells expand during parasitic infection and are the major source for IL-25 in response 

to infection. They have chemosensory properties as isolated gut tuft cells highly express 

the G-protein gustducin and TRPM5, which have been associated with the taste sensory 

system (Howitt et al. 2016). Tuft cells can sense the metabolite succinate produced by 

bacteria and parasites such as N. brasiliensis, and, through calcium signalling, lead to the 

induction of type 2 immune responses  (Von Moltke et al. 2016; Gerbe et al. 2016; Howitt 

et al. 2016; Schneider et al. 2018; Nadjsombati et al. 2018).  

In the respiratory system, the existence of tuft cell-like chemosensory cells has been 

observed. In the nasal mucosa, chemosensory cells are responsible for the reactions in 

response to bacterial metabolite or irritant molecules, with these cells highly expressing 
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gustducin and TRPM5 (Tizzano et al. 2010). In the trachea and lungs, chemosensory tuft 

cells have been identified, and are known as brush cells (Gour & Lajoie 2016; Krasteva 

et al. 2011). However, their role in IL-25 secretion, and in allergies and asthma, has not 

yet being investigated. It is known that a subtype of asthma sufferers have an IL-25-high 

profile, with increased expression of IL-25 in the epithelium and increased levels in the 

blood (Cheng et al. 2014). IL-25 is also associated with asthma exacerbation, which is 

triggered by viral infections (Reid et al. 2005; Beale et al. 2014). These clinical 

observations may indicate a role for tuft cells in IL-25-high asthma.   

 

 

1.4.1.1 The alarmin IL-33 

Cytokines are known to be key to shape the immune responses, for instance tolerance to 

food in the gut and inhaled antigen in the airway is achieved with the secretion of TGFb 

that acts on dendritic cells (DCs) to have a tolerogenic phenotype (Iliev et al. 2009; Wang 

et al. 2009). Conversely, in the initiation of immune responses, ECs can produce and 

release granulocyte macrophage stimulating factor (GM-CSF) which acts on DCs and 

macrophages, and is an important factor in allergic sensitisation inducing expression and 

release of IL-33 (Llop-Guevara et al. 2014). 

In response to allergen, or during infection with parasites or viruses, ECs secrete IL-25, 

IL-33 and TSLP, cytokines that will act on a broad range of immune cells such as 

dendritic cells, type 2 innate lymphoid cells (ILC2s), basophils and mast cells (Kumar et 

al. 2014; Schmitz et al. 2005; Hammad & Lambrecht 2015). IL-33 has been mostly 
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studied in allergies, asthma and helminth infection. However, it could play an important 

role in other inflammatory conditions such as LPS-induced endotoxin shock, tissue repair 

and cancer (Kamijo et al. 2013; Serrels et al. 2017; Liew et al. 2016).   

 

DAMPs have been recognised as inflammatory mediators of sterile inflammatory 

responses to injury and trauma for several years. They were believed to be stored inside 

the cells and passively released during necrosis, acting as alarm signals (alarmins). IL-33 

is an alarmin as it is stored preformed in the nucleus and release upon cell necrosis.   

IL-33 binds to its receptor ST2, which was discovered 20 years earlier than the cytokine 

and referred as an orphan receptor. IL-33 was identified in 2005 as a member of the IL-1 

family (Schmitz et al. 2005). IL-33 was identified for its nuclear localisation and named 

nuclear factor from high endothelial venules (NF-HEV) (Kamijo et al. 2013; Schmitz et 

al. 2005; Martin & Martin 2016).  

 

Full length IL-33 is constitutively expressed in the nuclei of epithelial cells at mucosal 

sites. In contrast with commonly secreted cytokines, IL-33 lacks a leader peptide, which 

is required for secretion. In addition IL-33 contains a nuclear localisation signal and DNA 

binding domain at its N terminus that results in IL-33 being trafficked to the nucleus and 

binding to chromatin (Travers et al. 2018; Cayrol & Girard 2018; Pichery et al. 2012). In 

addition to its N terminal chromatin binding domain, the  IL-33 protein consists of a 

central domain and an interleukin-1-like domain at the C-terminus. In contrast to previous 

studies that suggested a possible role for IL-33 as a transcription factor due to its nuclear 
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localisation (Ali et al. 2011), recently, overexpression of IL-33 in an esophageal cell line 

was shown to not affect gene expression, ruling out a role as a transcription factor in this 

specific model (Travers et al. 2018). During apoptosis, IL-33 is processed and cleaved by 

caspase-3 and -7 which inactivate the cytokine. Cleavage occurs at a single conserved 

site in the interleukin-1-like domain as single amino acid mutation in the caspase cleavage 

site completely abrogates the activity of IL-33, indicating the important role of this 

domain for the cytokine activity (Lüthi et al. 2009; Cayrol & Girard 2018). As a DAMP, 

IL-33 is rapidly released in case of necrosis. In the absence of necrosis IL-33 is released 

in response to oxidative stress and ATP, however the specific mechanism involved in this 

release is still unclear and it might involve cell death or necrosis (Kouzaki et al. 2011; 

Uchida et al. 2017). Increasing the expression of antioxidant molecules in the airway 

epithelium reduced the release of IL-33 and reduced the asthmatic inflammatory 

phenotype (Uchida et al. 2017). In addition, released full-length IL-33 activity can be 

increased up to 10-fold by epithelial-derived calpain and allergen proteases such as 

Alternaria-derived cysteine proteases as well as cysteine- and serine- proteases produced 

by inflammatory cells (Scott et al. 2018; Lefrancais et al. 2012; Cayrol et al. 2018). 

Recently, IL-33 was shown to be released bound to histones and this association increased 

IL-33 activity if compared to full-length IL-33 alone (Travers et al. 2018). Histones have 

been considered as an alarm signal in sterile liver injury (Huang et al. 2011) and this 

newly-described synergistic activity of IL-33 and histones could give further insights into 

the inflammatory signals in this system. In sum, IL-33 is a cytokine that is stored pre-

formed in the nuclei of epithelial cells and its released upon necrosis in complex with 
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histones or on its own. Once released, IL-33 can be activated by inflammatory proteases 

or inactivated by caspase, and it binds its receptor, ST2.  

 

1.4.1.2 IL-33 receptor: ST2 

After release IL-33 binds to ST2. ST2 was identified as member of the IL-1 receptor 

family due the presence of an intracellular domain called Toll/interleukin-1 receptor 

(TIR). ST2 is a typical class I receptor formed by three extracellular IgG-like domains, a 

transmembrane domain and an intracellular TIR domain (Sims et al. 1988), placing the 

receptor in two structurally defined families : triple IgG-domains that recognise b-trefoil 

class cytokines (i.e. IL-33, IL-1a/b); and cytosolic TIR domains involved in NF-kB 

signalling (Lingel et al. 2009). The affinity of IL-33 for ST2 is high and measured at 

dissociation constant (Kd) of 0.46 nM, and the formation of a 1:1 stochiometric complex. 

IL-33 engages ST2 in an extensive area of contact using 2 separate regions. Specifically, 

IL-33 region 1 is composed of strand b3 which interacts with ST2 domain 1 (D1) and 

domain 2 (D2), while IL-33 region 2 is the base of the b foil and interacts with ST2 

domain 3 (D3) (Lingel et al. 2009). The electropositivity of ST2 D1 binds the IL-33 

electronegative surface, initiating the specific recognition of IL-33 (Liu et al. 2013). 

IL-33 binds to the extracellular domain of ST2 inducing a conformational change that 

leads to the recruitment of IL-1 receptor accessory protein (IL-1RAcP). The affinity of 

IL-1RAcP for the IL-33/ST2 complex has a Kd of 76 nM and a stoichiometry of 1:1:1. 

ST2 makes extensive contact with IL-1RAcP through its D3 region, and this stabilises 

the interaction. Interestingly, IL-33-induced ST2 conformational change is essential to 
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change the conformation of ST2 such that it can engage IL-1RAcP and form the IL-33R 

complex (Fig.1.2). 

 

ST2 is expressed on several types of immune cells such as ILC2s, mast cells, TH2 

lymphocytes, basophils, eosinophils and M2-polarised macrophages (Martin & Martin 

2016; Ball et al. 2018; Griesenauer & Paczesny 2017). IL-1RAcP is essential for the 

activation of the signal pathway cascade, the recruitment of MyD88 and the activation of 

NF-kB and MAP kinase (Griesenauer & Paczesny 2017), which lead to the production of 

pro-inflammatory cytokines, and GATA3 and Foxp3 expression (Schiering et al. 2014). 

While IL-1RAcP is promiscuously expressed in immune cells, ST2 expression dictates 

whether a cell will respond to IL-33 (Cayrol & Girard 2018). Ligation of ST2 by IL-33 

induces internalisation of ST2 through activation of Focal Adhesion Kinase (FAK) and 

glycogen synthase kinase 3β (GSK3β). GSK3β interacts with ST2 at Ser446, inducing 

ST2 internalisation and degradation in the proteasome (Zhao et al. 2015; Zhao et al. 

2012). ST2 exists in two isoforms, one membrane bound (ST2) and the other soluble 

(sST2), obtained through differential splicing (Iwahana et al. 1999). Soluble ST2 can be 

produced by activated T cells and mast cells (Lécart et al. 2002; Bandara et al. 2015), and 

it works as a decoy for IL-33 sequestering the cytokine and blocking signalling 

(Griesenauer & Paczesny 2017; Bandara et al. 2015).  
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Figure 1.2 Formation of the IL-33 receptor complex.  

The binding of IL-33 to ST2 occurs with all three domains of ST2. IL-33 binding induces a 

conformational change that induces the recruitment of IL1RAcP, which is required for IL-33-induced 

signalling. IL-1RAcP interacts with two of its three domains with ST2 
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1.4.1.3 Regulation of the IL-33 pathway 

Activity and regulation of both IL-33 and ST2 exist at multiple levels to constrain the 

strong pro-inflammatory effect of the cytokine. As mentioned previously, one method of 

IL-33 regulation is  through caspase cleavage during apoptosis (Cayrol & Girard 2018). 

Another mechanism is through IL-33 oxidation. The IL-1-like domain of IL-33 contains 

4 free cysteines which are kept in a reduced state (not forming disulphide bonds) in the 

reducing environment of the nucleus. Release of the cytokine into the oxidative 

environment of the extracellular milieu induces a rapid oxidative process and formation 

of 2 disulphide bonds between the 4 free cysteines. This process induces a conformational 

change in IL-33 rendering it inactive and incapable of binding ST2. Oxidation occurs 

both in vivo and in vitro, and within 1h of IL-33 release almost 40% of the cytokine is 

inactivated (Cohen et al. 2015). The presence of a soluble form of both ST2 and IL-

1RAcP inhibits IL-33 activity when it is released into the extracellular space, adding a 

further mechanism to block IL-33 responses (Ohto-Ozaki et al. 2010).  

 

IL-33 signalling regulation also occurs at the level of ST2 signalling. ST2 can be 

negatively regulated by single immunoglobulin domain IL-1R-related molecule 

(SIGIRR, also known as TIR8), which binds to ST2 disrupting the dimerization with IL-

1RAcP and stopping IL-33 signalling (Bulek et al. 2009; Liew et al. 2016). Specificity of 

IL-33 responses is achieved in some immune cells with ST2 interacting with other 

receptors: for instance IL-33 activation of mast cells requires interaction of ST2 and c-kit 

(Drube et al. 2010), and ST2-epidermal growth factor receptor (EGFR) interaction is 
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required to induce antigen-independent IL-13 production in T cells (Minutti et al. 2017; 

Monticelli et al. 2015; Molofsky, Savage, et al. 2015). The presence of multiple 

regulatory mechanisms implicates that IL-33-dependent exuberant immune responses 

need to be tightly regulated to avoid damaging inflammation.  

 

 

1.4.1.4 IL-33 in asthma and helminth infection 

The role of IL-33 in type 2 inflammation has been reported by several groups. Lethal 

multi-organ inflammation is induced by uncontrolled IL-33 release when the chromatin-

binding domain is removed (Bessa et al. 2015). IL-33 is known to be a strong inducer of 

type 2 inflammation even in the absence of adaptive immunity: for instance intranasal 

administration of IL-33 induces IL-13-dependent goblet cells hyperplasia and airway 

hyperresponsiveness (AHR), even in RAG-/- mice that lack adaptive immunity (Kondo et 

al. 2008). Intraperitoneal administration of IL-33 induces accumulation of eosinophils, 

increased blood levels of IL-5 and IL-13, splenomegaly and mucus production in the lung 

(Ohto-Ozaki et al. 2010).  

The involvement of IL-33 in asthma has been shown to be particularly important after the 

publication of several genome-wide association studies linking the il33 and il1rl1 genes 

to asthma susceptibility (Moffatt et al. 2010; Bønnelykke et al. 2013; Bønnelykke et al. 

2014; Shrine et al. 2019). Clinical studies showed that IL-33 expression is increased in 

bronchial epithelial cells from patients with asthma compared to healthy controls 

(Prefontaine et al. 2009; Préfontaine et al. 2010), and IL-33 release is increased in asthma 
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sufferers compared to a control group, with IL-33 levels negatively correlating with lung 

function (Christianson et al. 2015). 

Recently, IL-33 has been shown to accumulate physiologically in the developing lungs 

due to the mechanical damage induced by the first breath and the replacement of the 

aqueous environment with gas (Saluzzo et al. 2017; de Kleer et al. 2016). This release 

induces a type 2 environment during the alveolarization phase at days 7-14 of life in mice 

with accumulation of IL-33-responding immune cells, for example ILC2s, mast cells, 

eosinophils and TH2 lymphocytes. Subsequently, mice at 14 days of age are more 

susceptible to allergic sensitisation that adult mice (de Kleer et al. 2016).  

Increased IL-33 expression is observed in bronchiolar epithelium and smooth muscle 

from asthmatic patients (Préfontaine et al. 2010; Prefontaine et al. 2009). In addition, IL-

33 has been correlated with disease severity: IL-33 detected in BAL of asthmatic patients 

positively correlates with levels of IL-13 and eosinophils, and negatively correlates with 

FEV1 (Li et al. 2018). In paediatric patients, IL-33 has been correlated with airway 

remodelling and corticosteroid resistance (Saglani et al. 2013). Several different mouse 

models of asthma have demonstrated that IL-33 is required for driving the type 2 immune 

responses, and the cytokine can be detected in BAL within 15 min post allergen 

administration (Hammad et al. 2009; Snelgrove et al. 2014; McSorley et al. 2014; Halim 

et al. 2014; Scott et al. 2018).  

The importance of the role of IL-33 during helminth infections comes mainly from mouse 

studies. ST2-deficient mice have a much slower expulsion of Heligmosomoides polygyrus 

and Nippostrongylus brasiliensis, both intestinal nematodes in mice (Coakley et al. 2017; 
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Hung et al. 2013), indicating that IL-33 signalling is required for optimal expulsion. 

Furthermore, recombinant IL-33 administration induces expulsion of H. polygyrus by 

recruitment of macrophages in the intestine (Yang et al. 2013). N. brasiliensis infection 

induces release of IL-33 and activation of IL-13-producing ILC2s which are required for 

parasite expulsion (Moro et al. 2010; Neill et al. 2010; Oliphant et al. 2014). In 

Schistosoma mansoni infection, ST2 signalling is required for the optimal development 

of TH2 responses, formation of granulomas and recruitment of eosinophils (Townsend et 

al. 2000). IL-33 plays a key role during infection with Trichuris muris: administration of 

exogenous IL-33 induces parasite expulsion and IL-33 mRNA is upregulated at early 

stages of infection (Humphreys et al. 2008). Thus, IL-33 seems to be required for 

nematode expulsion. The importance of the IL-33 pathway is underlined by the fact that 

H. polygyrus targets the IL-33 pathway using several strategies that I will discuss in 

section 1.7.4. 

 

1.4.2 Innate Lymphoid cells 

Innate lymphoid cells are tissue-resident cells that originate in the bone marrow from 

common lymphoid progenitors (CPLs) (Diefenbach et al. 2014). Since 2008, it was 

believed that CPLs were able to generate only T and B lymphocytes – adaptive immune 

cells that express antigen receptors. However, with the isolation of lymphoid cells that 

did not express antigen receptor such as Natural killer cells (NK cells) and lymphoid 

tissue inducer (LTi), opened the identification of other subtypes of immune cells derived 
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from this lineage: these were named Innate Lymphoid cells (ILCs) (Spits et al. 2013) 

(Fig.1.3).  
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Figure 1.3 Innate Lymphoid Cells (ILCs) differentiation.  

ILC progenitors differentiate from common lymphoid progenitor (CLP) under the production of IL-7. 

ILC subtypes originate  
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ILCs do not express recombination activating gene (RAG)-dependent rearranged antigen 

receptors, they lack phenotypical markers expressed by myeloid cells and dendritic cells, 

and they have a lymphoid morphology (Spits et al. 2013). They share a developmental 

process similar to T lymphocytes and they share phenotypic and functional similarities. 

In contrast to T lymphocytes, they respond rapidly to cytokines, stress signals, alarmins 

and microbial compound and they produce effector cytokines associated with helper T 

cells, and they are classified as ILCs type 1 (ILC1s) similar to TH1 cells, type 2 (ILC2s) 

similar to TH2 and type 3 (ILC3s) resembling TH17 cells, and the already mentioned NK 

cells (Eberl et al. 2015). Further classification can be made between cytotoxic (NK cells) 

and non-cytotoxic ILCs (ILC1, ILC2 and ILC3) (Spits et al. 2013). 

 

ILC1s are associated with the production of IFNg and TNFa in response to intracellular 

bacteria (Fig.1.3). ILC2s respond to parasites and allergen by producing TH2 cytokines 

such as IL-5, IL-13, IL-9 and they can produce amphiregulin to promote tissue repair 

(Klose & Artis 2016; Monticelli et al. 2011) (Fig.1.3 and 1.4). ILC3s produce IL-17A, 

IL-17F, IL-22, GM-CSF and TNF depending on the stimulation and they are believed to 

promote antibacterial immunity and chronic inflammation (Artis & Spits 2015) (Fig.1.3). 

ILCs do not express any classical lineage marker (i.e. CD3, CD4, CD5, CD8, CD19) and 

they do not express the T-cell receptor (TCR) (Halim 2016).  

 

As a mirror of the TH2 subset, and for their importance of type 2 immune responses in 

asthma and parasite infection, ILC2s will be the focus of this section (Fig.1.4).  
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ILC2s were first identified in the lung of N. brasiliensis infected mice and shown to be 

highly responsive to IL-33 and IL-25. These cytokines were essential for inducing IL-13-

producing ILC2s and for worm expulsion (Neill et al. 2010). ILC2s require the 

transcription factors GATA3 and RORa and they are activated principally by IL-33 and 

IL-25, with further activation via TSLP, prostaglandins and neuromedin U (Moro et al. 

2010; Neill et al. 2010; McKenzie et al. 2014; Klose & Artis 2016; Cardoso et al. 2017). 

Other cytokines that play a key role in ILC2 development and proliferation are IL-2 and 

IL-7. IL-7, together with IL-33, is required for type 2 cytokine production from ILC2s 

stimulated in vitro while a significant reduction of ILC2s is observed in IL-7-deficient 

mice (Moro et al. 2010; Moro et al. 2016). 

The perinatal phase is essential to determine the ILC2s niche and IL-33 seems to play a 

key role for egression of ILC2 progenitors (ILC2Ps) from the bone marrow (de Kleer et 

al. 2016; Stier et al. 2018). ILC2s present a specific transcriptome depending on the tissue 

of residence, and tissue-derived signals drive ILC2s maturation: for example skin ILC2s 

development is independent from IL-25, TSLP and IL-33 (Ricardo-Gonzalez et al. 2018). 

ILC2s are major producers of IL-5, which induces eosinophilia, and IL-13, responsible 

for goblet cell hyperplasia, mucus production and airway hyperresponsiveness (AHR) 

(Diefenbach et al. 2014; Halim 2016). In addition, ILC2s can secrete amphiregulin to 

promote tissue repair (Monticelli et al. 2011; Klose & Artis 2016) and IL-9 that 

exacerbates type 2 inflammation, inducing mast cell activation, IgE production and goblet 

cell proliferation (Wilhelm et al. 2011; Klose & Artis 2016). ILC2s usually do not secrete 

significant quantities of IL-4, though isolated gut ILC2s can produce IL-4 in response to 
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leukotriene D4 in vitro. Production of IL-4 from gut ILC2s is not observed if stimulated 

with IL-33 or IL-25 (Pelly et al. 2016). Interestingly, ILC2s express MHCII indicating a 

possible role for antigen presentation. ILC2s cannot process intact protein antigens as 

dendritic cells can, however they can present pre-processed antigen peptides through 

MHCII and they can activate CD4+ T cells towards TH2 both in vitro and in vivo 

(Mirchandani et al. 2014).  MHCII expression is essential for helminth expulsion, and in 

vitro MHCII+ ILC2s can activate T cells, albeit to a lower degree than DCs (Oliphant et 

al. 2014). 

Recently, activation of ILC2 has been linked to neuronal regulation. ILC2 are closely 

associated with neurons in the lungs and they respond to neuronally-derived neuromedin 

U (NmU). NmU induces production of IL-5, IL-13 and AREG from cultured ILC2s in a 

MAPK-dependent and Ca2+-dependent pathways (Cardoso et al. 2017). During N. 

brasiliensis infection NmU is induced in the lung at 2 dpi and in the gut at 6 dpi and 

NmU-KO mice have increased worm burden due to a lack of ILC2s responses (Cardoso 

et al. 2017). Hypothetically, the ILC2-neuron interaction might be important in the gut to 

induce contractility of the smooth muscle cells to induce worm expulsion and bronco-

constriction in the airways during asthma. It is difficult to work on ILC2s in parasite-

infected humans, therefore all our mechanistic data comes from mice. Nonetheless, 

human ILC2 could be activated in a similar way for example skin-penetrating parasites 

could induce release of TSLP or IL-33 and similarly parasites with a lung stage might 

induce release of IL-33 (Nausch & Mutapi 2018; Neill et al. 2010). Boyd and colleagues 

showed ILC2 and ILC3 expansion during filarial infections and the transcriptional 
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profiling suggests that these cells are ready for antigen sensing and ready to produce 

cytokines and chemokines (Boyd et al. 2014).  

Several genome wide-association studies (GWAS) associated the risk of developing 

asthma with IL-33, IL-33 receptor, IL-13 and RORa, essential components of ILC2 

responses (Moffatt et al. 2010; Bønnelykke et al. 2013), and a selection of these genes 

associated with asthma are shown in table 1.1. 

 

Table 1.1 Gene associated with risk of asthma development 

Asthma 

risk gene  

Product Cellular 

expression  

Asthma involvement Reference 

IL-6R IL-6 receptor T and B 

lymphocytes 

 

Induction of TH17 

Suppression of TREG 

(Westra et al. 

2013) 

FCER1G IgE Fc 

receptor type 

1 - g 

Eosinophils and 

mast cells 

 

Mast cells 

degranulation and 

release of 

inflammatory 

mediators involved in 

allergic reaction 

(Wu et al. 

2010) 

IL18RAP IL-18 

Receptor 

Accessory 

Protein   

TH1 and TH2 

NK cells  

Mast cells 

Atopic asthma 

IL-18 signalling 

IL-4 and IL-13 

production 

(M. A. R. 

Ferreira et al. 

2017)(Moffatt 

et al. 2010) 
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IL1RL1 ST2 – 

receptor for 

IL-33 

TH2, mast cells, 

ILC2, eosinophils 

and TREG 

 

Initiating type 2 

immune responses 

(Zhernakova 

et al. 2017; 

Bønnelykke 

et al. 2013) 

TSLP TSLP Epithelial cells Initiation of type 2 

immune responses – 

DC polarisation 

(Zhernakova 

et al. 2017; 

M. A. R. 

Ferreira et al. 

2017) 

ORMDL3 Orosomucoid 

like 3 

Epithelial cells Cellular stress and 

ureic acid production 

AHR and eosinophils 

recruitment 

(M. A. R. 

Ferreira et al. 

2017) 

IL-33 IL-33 Epithelial cells Released in case of 

necrosis  

Drives type 2 immune 

responses 

(Moffatt et al. 

2010) 

RORa RAR-related 

orphan 

receptor 

alpha 

TH2, ILC2s and 

TREG  

Transcription factor 

associated with ILC2s 

development 

(Moffatt et al. 

2010) 

IL-2RB IL-2 receptor 

subunit b 

T lymphocytes, 

ILC2s, NK cells 

and TREG 

Differentiation and 

survival of immune 

cells 

(Moffatt et al. 

2010) 

IL-13 IL-13 ILC2s, TH2 and 

mast cells 

Mucus production 

AHR 

(Moffatt et al. 

2010) 
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Stadhouders and colleagues analysed lung and mesenteric lymph node (MLN) ILC2 

populations by RNAseq. ILC2s from the airways showed a more inflammatory phenotype 

with higher expression of ST2 and OX40, pro-inflammatory cytokines such as IL-9, IL-

13 and IL-5, and chemokines such as CXCL3 (Stadhouders et al. 2018). MLN ILC2s 

present increased expression of genes involved in cell-cell interaction such as OX40L and 

MHCII (Stadhouders et al. 2018). These differences arise from a similar epigenome 

suggesting that ILC2s have a “flexible epigenome” that allow plasticity of ILC2s to 

respond and adapt to different stimulation in different compartments. Furthermore, it was 

demonstrated that ILC2s can become ILC1s under IL-12 stimulation, and this can be 

reversed with IL-4 (Bal et al. 2016). The switch between ILC2 to ILC1 is important 

during COPD and influenza virus infection as these conditions induce a reduction in the 

GATA-3 expression from ILC2s that transition to become ILC1s with a mixed TH1-TH2 

phenotype (Bal et al. 2016; Ohne et al. 2016; Silver et al. 2016). All these data show the 

importance of ILC2 during parasitic infections and asthmatic responses, and the key role 

in inflammation, homeostasis and repair (Klose & Artis 2016). 
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Figure 1.4 ILC2 transcription factor and activation.  

Epithelial-derived cytokines such as IL-33 and IL-25, and the neuropeptide neuromedin U, can activate 

ILC2 to produce and release cytokines associated with type 2 immune responses e.g. IL-5, IL-13, IL-9; 

and cytokines associated with tissue repair and healing such as amphiregulin. ILC2s have been shown to 

present peptides through MHCII to naïve T cells, inducing TH2 polarisation 
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1.4.3 Dendritic cells 

Dendritic cells (DCs) play a key role for the initiation of type 2 immune responses. At the 

mucosal surfaces, DCs sense allergen and pathogens, they migrate to the lymph node 

where they activate CD4+  T cells which in turn differentiate into TH2, producing classical 

TH2 cytokine such as IL-4, IL-5 and IL-13 (Lloyd & Snelgrove 2018).  

DCs can be activated by allergen and parasite-derived products through different 

mechanisms, one of which is the presence of proteases in both allergen and parasite 

secretions (Lambrecht & Hammad 2010). For instance, the fungal allergen Alternaria 

alternata induces increased expression of surface molecules such as MHCII and co-

stimulatory molecule such as CD40, CD80, CD86 and OX40 ligand (OX40L) involved 

in TH2 polarisation (Kobayashi et al. 2009). Alternaria-activated DCs induce type 2 

cytokine production in vitro and in vivo (Kobayashi et al. 2009). Activated DCs express 

CCR7, the receptor for the chemokines CCL19 and CCL21, which induce migration of 

DCs to the closest lymph node (Cook & MacDonald 2016) and in the lung CD11c+ 

MHCII+ have been shown to have a sentinel role, picking up antigen and presenting it to 

T cells in the lymph node (Vermaelen et al. 2001).  DCs are a link between innate and 

adaptive immunity, and play a key role in allergen sensitisation process due to 

communication with epithelial cells. DCs can respond to the epithelial-derived cytokines 

IL-25, TSLP and IL-33, as well as reactive oxygen species, ATP and other DAMPs 

produced in response to allergens such as HDM. These signals can induce maturation of 

DCs that will polarise naïve CD4+  T cells to TH2 cells (Lambrecht & Hammad 2014; 

Cook & MacDonald 2016). For instance, TSLP is overexpressed in human asthmatic 
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airways suggesting a role in initiation of the disease (Ying et al. 2005). In addition, TSLP-

activated DCs have increased expression of OX40L and ICOSL. OX40L has been shown 

to be essential activation of naïve T cells towards IL-4-, IL-5- and IL-13- producing TH2 

(Pattarini et al. 2017; Soumelis et al. 2002).  

IL-33 can also activate DCs, inducing IL-6 production. IL-33-activated DCs had an 

increased expression of MHCII and they induced IL-5 and IL-13 production from CD4+ 

T cells in vitro (Rank et al. 2009). In the context of HDM-induced allergic lung 

inflammation, DCs highly express ST2 and OX40L, which has been shown a strong 

costimulatory signal for TH2 development (Pattarini et al. 2017; Plantinga et al. 2013; 

Gao et al. 2013). 

Induction of type 2 immune responses are required during parasite infections and DCs 

plays a key role in this polarisation. In particular products secreted by parasites can drive 

the TH2 polarisation observed in vivo. The excretory/secretory of the nematode N. 

brasiliensis (NES) can increase markers associated with TH2 polarisation such as CD86 

and OX40L in DCs cultured in vitro and this might explain the TH2 responses observed 

in vivo (Balic et al. 2004; Lawrence et al. 1996). Another parasite associated with a strong 

induction of type 2 immunity is Schistosoma mansoni, and this strong polarisation is 

associated with eggs production (Pearce 2005). In particular, S. mansoni egg antigen 

(SEA) activated DCs to polarise naïve T cells towards TH2 (MacDonald et al. 2001; 

Everts et al. 2009), however activation with SEA did not induce overexpression of 

OX40L, CD86 or other DCs co-stimulatory molecules (MacDonald et al. 2001). Among 

others, omega-1 has been identified as a single component of SEA identified for 
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conditioning DCs to polarise TH2 cell (Everts et al. 2009; Everts et al. 2012). To underline 

the important role of DCs during S. mansoni infection, complete depletion of the DCs 

population dysregulates the induction of type 2 immune responses, resulting in an 

increased production of IFNg (Phythian-Adams et al. 2010). These data are confirmed 

using other intestinal parasite such as N. brasiliensis and H. polygyrus as depletion of 

CD11c+ DCs alters the TH2 development without influencing innate type 2 immune 

responses (Smith et al. 2012). In conclusion, it is clear that DCs play an important role in 

influencing the adaptive immune responses in the gut and in the lungs, and these 

responses can be targeted by parasites such as H. polygyrus (Segura et al. 2007). 

 

1.4.4 Eosinophils 

Eosinophils are circulating granulocytes, described as cytotoxic cells and in some 

infection required for helminth expulsion (Jacobsen et al. 2012). They are produced in 

the bone marrow and they circulate in low levels in the blood stream in healthy 

individuals (1-3% of the leukocyte population), however they increase in asthmatic 

sufferers (6% of the leukocyte population) (Possa et al. 2013; Malm-Erjefält et al. 2005). 

IL-5 is a cytokine that drives eosinophilopoiesis, expansion and egression of eosinophils 

from the bone marrow (Possa et al. 2013). Recruitment of eosinophils in the tissue is 

driven by the production of eotaxin (CCL11), and expression in the vascular cells of 

vascular cell adhesion molecules-1 (VCAM-1) and P-selectin (Brightling 2011). For 

instance, increased eotaxin levels in human serum is observed both in severe asthmatic 

patients and during co-infection of intestinal helminth and S. mansoni  (Geiger et al. 2013; 
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Lilly et al. 1999). During eosinophil maturation, driven by GATA1, eosinophils produce 

and store in their cytoplasmic granules major basic protein (MBP), peroxidase (EPO), 

cationic protein (ECP), neurotoxins and also cytokines and immune mediators, expanding 

the role of eosinophils in homeostasis and inflammation (Possa et al. 2013; Sonar et al. 

2012; Roufosse 2018). The release of toxic granules from eosinophils induces tissue 

damage and leakage, mucus secretion and airway smooth muscle contraction (Liu et al. 

2006). Eosinophils express receptors for multiple cytokines including IL-5, IL-13, IL-33 

and TSLP, and chemokine receptors, particularly CCR3 which binds to CCL11 / eotaxin 

(McBrien & Menzies-Gow 2017). 

Although there is large variability in eosinophil levels in asthmatic patients, eosinophilic 

infiltrates have been associated with asthma where they promote AHR and lung 

dysfunction (Wenzel 2006; Fahy 2015; Lambrecht & Hammad 2015). Eotaxin production 

by epithelial cells and IL-5 from ILC2 and TH2 cells induces expansion and recruitment 

of eosinophils from the blood stream to the inflamed tissue (Sonar et al. 2012; Felton et 

al. 2014). Eosinophilia is observed in both acute and chronic mouse models of asthma 

using ovalbumin (Lloyd et al. 2018; Fernandez-Rodriguez et al. 2008), and the allergens 

papain (Halim et al. 2014; Kamijo et al. 2013), Alternaria alternata (Snelgrove et al. 

2014; McSorley et al. 2014) and house-dust mite (HDM) (Hammad et al. 2009). These 

results support the findings in which alarmins such as IL-33 and IL-25 are essential to 

induce eosinophilia and type 2 immune responses (Morita et al. 2015; Stock et al. 2009). 

IL-33 not only induces eosinophil egression from the bone marrow through IL-5 
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production, but also seems to induce eosinophil survival in the tissue due to IL-5 and GM-

CSF production (Willebrand & Voehringer 2016; Johnston & Bryce 2017).  

Blood eosinophil levels correlate with disease severity and reduction in lung function 

(Bousquet et al. 1990). Eosinophil recruitment into the airways  correlates with severity, 

and degranulation can be observed in the lung parenchyma and among epithelial cells 

(Bousquet et al. 1990). The release of EPO and MBP can be associated with the 

development of AHR, as EPO/MBP administration in vivo to primates and rats induces 

AHR. However the role of eosinophils in AHR development may be redundant due to 

other cells contributing to the asthmatic phenotype (Coyle et al. 1995; Gundel et al. 1991; 

McBrien & Menzies-Gow 2017; Grünig et al. 1998). Asthma severity correlates with 

reduced eosinophil apoptosis in sputum samples (Duncan et al. 2003) and therapies 

targeting IL-5 and eosinophils have been developed and showed promising results in 

those patients with eosinophilic asthma (Fahy 2015; Roufosse 2018).  

In the gut during parasite infections eosinophils have been described to aid in worm 

expulsion (Huang & Appleton 2016). Eosinophils migrate towards different parasite 

species such as C. elegans and N. brasiliensis and this migration is driven by leukotrienes 

induced by the parasites (Patnode et al. 2014).  S. mansoni eggs induce release of IL-5, 

resulting in eosinophilia, which is required for production of IL-4 in this model (Sabin et 

al. 1996), and IL-4 is known to be an important inducer of type 2 immune responses and 

IgE antibody production (Allen & Maizels 2011). Eosinophils promote repair and TH2 

responses through secretion of IL-4, and with the secretion of proteases they can directly 

target parasites (Buys et al. 1981; Goh et al. 2013; Huang & Appleton 2016). Therefore, 
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eosinophils are recruited at the site of parasitic infections and they characterise a subtype 

of asthmatic sufferers. Biological therapies targeting IL-5 reduced sputum and blood 

eosinophilia in asthmatic patients without affecting the allergen-induced later asthmatic 

responses, suggesting that eosinophils might not be a requisite for allergen challenge but 

it may play a role in reducing severity of asthma exacerbation (Leckie et al. 2000). 

 

1.4.5 Mast cells  

The skin, the gastrointestinal tract and the airways are enriched with mast cells (MCs). 

MCs derive from granulocyte/monocyte progenitors (GMPs) in the bone marrow, they 

circulate in the blood as mast cells progenitor (MCp) and they undergo complete 

differentiation in the tissue (Galli et al. 2005; Dahlin & Hallgren 2015). MCs are long-

lived cells in the tissue, they undergo self-renewal, re-granulation and expansion, but 

MCp can be also recruited from the circulation to expand the MC population (Dahlin & 

Hallgren 2015). They mature under the influence of stem cell factor (SCF), IL-3 and other 

cytokines. The receptor for SCF, c-Kit, is required for MC maturation (Theoharides et al. 

2007; Meurer et al. 2016; Gilfillan et al. 2011). The cytoplasm of MCs is filled with 

granules containing heparin, histamine, tryptase and TNF. Degranulation can be triggered 

by binding of IgE to the FceR1 and MCs are common mediators of allergic inflammation 

(Joulia et al. 2015). MC degranulation releases large amounts of histamine, which induces 

bronchoconstriction, mucus production and oedema, mediating acute allergic responses, 

or anaphylaxis when systemic (Holgate 2000; Gilfillan et al. 2011). During parasitic 

infection, MCs have an essential role in induction of type 2 immune responses and so 
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contribute to worm expulsion (Hepworth et al. 2012; Reynolds et al. 2012). Recently, it 

was shown that mast cells can be activated by ATP released from necrotic cells during H. 

polygyrus infection. ATP induces release of IL-33 from MCs, which in turn activates 

ILC2s and contributes to the type 2 immune response (Shimokawa et al. 2017). Mast cells 

can recognise pathogens via surface-bound IgE, and secrete mediators that activate both 

the innate and adaptive immune system (Abraham & St. John 2010). 

 

1.4.6 CD4+ T lymphocytes  

Different CD4+ T cells subset have been identified to contribute to the immune-pathology 

of asthma. Naïve CD4+ T cell polarisation occurs in the lymph nodes and, depending on 

specific stimulation and signals, several subset of helper T cells arise e.g. TH1, TH2, TH9, 

TH17 and TREG (Ling & Luster 2016).  

In this section I will focus the attention to the TH2 subset, however due to the different 

asthmatic phenotypes other TH- subsets have been involved in some asthmatic features, 

e.g. IL-9-producing TH9 cells is involved in IgE class switching and mast cell activation, 

IL-17 produced by TH17 cells might be involved in neutrophils recruitment and steroid-

resistant asthma while TREG and IL-10 could reduce allergic inflammation in the lungs 

(Lloyd & Hessel 2010). 

 

CD4+ TH2 cells can produce IL-2, IL-4, IL-5 and IL-13 that contribute to the type 2 

inflammation, and they are required for activation and IgE production from B cell 

(Muehling et al. 2017). A central cytokine in TH2 development is IL-4 (Pelly et al. 2016). 
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In the absence of IL-4, CD4+ T cells from N. brasiliensis-infected mice produced less 

type 2 cytokines (Kopf et al. 1993) while blocking IL-4 reduces protective immunity 

against H. polygyrus (Urban et al. 1991). TH2 cells have been found to be elevated in 

asthmatic patients and they produce type 2 cytokines such as IL-4, IL-5 and IL-13. 

Production of IL-4 and IL-5 depends on the transcription factor GATA-3 and STAT-6, 

and both cytokines and transcription factors have been found elevated in bronchiolar 

byopsies from asthmatic patients (Taha et al. 2003; Lloyd & Hessel 2010). Disruption of 

the STAT-6 pathway in mice abrogates the activation of IL-4 signalling resulting in the 

loss of type 2 immune responses and IgE production (Shimoda et al. 1996). These results 

were supported by a study using N. brasiliensis infection in mice, in which splenic T cells 

from infected STAT-6-deficient mice have reduced production of IL-4, IL-5 and IL-10, 

while serum IgE was reduced in STAT-6-deficient mice compared to infected wild-type 

(Takeda et al. 1996). CD4+ T cells are known to play a role together with ILC2s to induce 

protective immunity in the lungs against N. brasiliensis. In particular, CD4+ T cells 

sustain the ILC2 population through production of IL-2, and IL-13 production by both 

ILC2s and TH2 is required for M2 macrophage activation and worm killing (Bouchery et 

al. 2015). During helminth infections, CD4+ TH2 cells play an important role for 

protection against helminth infection and in case of secondary infection through the 

generation of a memory population. After H. polygyrus infection TH2 memory cells 

persist in the lamina propria and in the peritoneal cavity, and they act as innate cells 

responding to cytokines such as IL-33 (Steinfelder et al. 2017).  
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As well as their beneficial effect in clearing parasitic infections, TH2 cells also cause 

pathology in allergy, where CD4+ TH2 cells contribute to the immune-pathogenesis of 

asthma. Allergen-specific CD4+ T cells respond quickly during allergen challenge, and in 

humans they have been described as a CD161hi sub-population of TH2 which produce 

larger amounts of IL-5 and IL-9 compared to conventional TH2 (Muehling et al. 2017; 

Fahy 2015; Wambre et al. 2017). At transcription levels the allergen-specific TH2 have 

higher expression of the gene encoding for ST2, IL-25 receptor (IL-17RB), IL-5, IL-9 

and genes involved in the arachidonic acid synthesis, all of which are involved in 

asthmatic responses (Wambre et al. 2017). CD4+ TH2 cells and ILC2s play similar roles 

in asthma pathogenesis, driving overlapping effector pathway depending on the 

availability of epithelial-derived cytokine and receptor expression (Lloyd & Hessel 

2010). In addition, age of allergen exposure seems to be another factor to that can affect 

T cell responses. Administration of IL-33 or HDM to mice aged 3 days resulted in a large 

increase in IL-13+  CD4+ TH2 cells, while adult mice showed a predominant increase in 

IL-13+ ILC2s. In early life IL-13+  CD4+ TH2 play an important role in the induction of 

AHR (Saglani et al. 2018). This is supported by the observations that in the developing 

lungs different immune cell populations have different dynamics, for instance 

accumulation of ILC2s is observed by day 7 and peak at 14 days post-birth while T cells 

peaks at day 1 post-birth, thus ILC2s may be more important in mice aged between 3 

days and 21 days (de Kleer et al. 2016).  
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1.4.7 B lymphocytes, a focus on IgE 

B lymphocytes are generated from haemopoietic stem cell (HSC) in the fetal liver and in 

the bone marrow during adulthood, circulating as pre-B cells and undergoing maturation 

to mature B cells in the spleen and lymph nodes (Lebien & Tedder 2008). B lymphocytes 

are known for the production of antibodies but they also contribute to an optimal 

lymphoid tissue development and they produce cytokines and signals that help the 

development the immune system (Lebien & Tedder 2008). B cells can specifically 

recognise antigen directly through expression of membrane-bound IgM and IgD. This 

first activation through antigen recognition is required to induce cross-talk with T 

lymphocytes. B cells present the antigen to T cells through MHCII, in response they 

stimulate heavy chain class switching through CD40L and production of specific 

cytokines will determine which antibody will be produced (Abbas et al. 2017). IgE 

production is frequently associated with parasite infections, allergen sensitisation and 

allergic responses. TH2 cells induce IgE class switching through the production of IL-4, 

IL-13, IL-9 and CD40/CD40L interaction (Poulsen & Hummelshoj 2007; Geha et al. 

2003).  

Helminth infection induces a physiological type 2 immunity with production of IgE and 

induction of eosinophils to help with helminth clearance (Fitzsimmons et al. 2014; Svetić 

et al. 1993). It was shown that in the skin, IgE helps to block N. brasiliensis larvae in case 

of a second infection and this is mediated by basophils (Obata-Ninomiya et al. 2013). 

Studies in human infection with S. mansoni and S. haematobium also showed the 

protective role of IgE. Resistence to infection is associated with increased levels of IgE 
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against numerous parasite antigens. These IgE were shown to bind directly the parasite 

and they induced mast cell degranulation at the site of infection (Rihet et al. 1991; Hagan 

et al. 1991). In general IgE responses are believed to contribute to protection against 

helminth infections (Yazdanbakhsh et al. 2002). On the other hand, allergic asthma is an 

IgE-mediated disease and the release of IgE, which binds to FceR1 expressed on mast 

cells, eosinophils and basophils, induces the release of pro-inflammatory mediators, 

driving type 2 immune responses and clinical symptoms (Oliveria et al. 2017). IgE-

mediated allergic reactions occur rapidly and allergic (anaphylactic) reactions and asthma 

exacerbations can be fatal (Poulsen & Hummelshoj 2007). For this reason IgE production 

is negatively-regulated by cytokines such as IFNg and IL-21 to control exuberant 

responses (Geha et al. 2003).  
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1.5 Respiratory Syncytial Virus (RSV) 

Type 2 immune responses are physiologically elicited by parasite infections and they are 

necessary to have a “weep and sweep” effect against the worms. In contrast, type 2 

immune responses mediate asthma via the mechanisms described above. Genetics play a 

role in the development of allergic immune responses and asthma, but an important role 

is played by environmental factors such as respiratory viral infections.  

 

1.5.1 Respiratory Syncytial Virus structure and replication 

RSV is single-stranded negative sense RNA virus, and is a member of the 

Paramyxoviridae family. Other members of this family include highly contagious viruses 

such as mumps and measles (Kiss et al. 2014). The RSV genome is formed by 10 open 

reading frames (ORFs) that encode for 11 structural and non-structural proteins (Huang 

et al. 1985) (Fig.1.5). The RSV envelope is formed by 3 proteins: the receptor attachment 

glycoprotein (G), the fusion protein (F), and the short hydrophobic protein (SH) (Kiss et 

al. 2014). As the names suggest, protein G and protein F are necessary for attachment to 

the cell membrane and fusion of the viral envelope and the cell membrane. Protein SH is 

less characterised but seems to form a pentameric ion channel and is associated with RSV 

pathogenesis (Gan et al. 2012; Whitehead et al. 1999). Other proteins are the non-

structural protein 1 and 2 (NS1 and NS2), the nucleocapsid (N), the phosphoprotein (P), 

the large protein (L), which encodes the RNA polymerase, and the matrix protein (M) 

and M2, which has 2 open reading frame (Fig.1.6). The L gene is the last transcribed and 
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is often used as a measure of viral replication by qPCR, as it indicates a complete round 

of viral genome replication (Barik 1992; Braun et al. 2017; Lambert et al. 2014). Upon 

fusion of RSV to the cell membrane, the viral RNA is replicated in a positive-sense 

complimentary copy (antigenome), used as a template for synthesis of new genome 

copies. Transcription involves the generation of 10 mRNAs which are then translated into 

the viral proteins. The viral genome is then transported to the membrane of the infected 

cells and assembled together with the viral protein to form a new enveloped viral particle 

that will propagate the infection (Cowton et al. 2006). 
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Figure 1.5 RSV genome 

 

 

Figure 1.6 Respiratory Syncytial Virus structure 
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1.5.2 RSV epidemiology and disease 

Isolated for the first time in 1956 in chimpanzees (Blount et al. 1956), RSV was detected 

in children with lower respiratory tract infection and was subsequently defined as a 

human pathogen (Lambert et al. 2014; Chanock et al. 1957). Shi et al. estimated that in 

2015 around 33 million people worldwide suffered from RSV-dependent lower 

respiratory tract infection, with 3 million people hospitalised and 60,000 deaths in 

children younger than 5 years, with an overall mortality of 120,000 individuals, mainly 

in developing countries (Lambert et al. 2014; Shi et al. 2017). By the age of two, almost 

every child has experienced at least one RSV infection. The majority will develop mild 

symptoms, mainly restricted in the upper airways. A small portion will develop 

bronchiolitis, a lower respiratory tract infection characterised by inflammatory infiltrates, 

necrosis of epithelial cells and oedema (Lambert et al. 2014). These inflammatory 

processes lead to airway narrowing and impaired gas exchange, and in severe cases 

wheeze and hypoxia (Lambert et al. 2014; Tregoning & Schwarze 2010). Post-mortem 

characterisation of RSV pathology identified inflammatory infiltrates in the submucosa, 

dominated by T lymphocytes and alveolar macrophages with RSV infection extended 

from bronchial to alveolar airway epithelial cells (Johnson et al. 2007). Epithelial cells 

are believed to initiate inflammatory responses during RSV infection. BAL from children 

with RSV bronchiolitis have high levels of pro-inflammatory cytokines TNFa and IL-6, 

and chemokines CXCL10 and IL-8 (McNamara et al. 2005; McNamara et al. 2004). 

Neutrophils are recruited in the early stages of infection, with both beneficial and 
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pathogenic effects – neutrophils damage infected cells while simultaneously releasing 

proteases that damage the surrounding epithelium (McNamara et al. 2003).  

No vaccine is available against RSV, and the only method to induce passive immunisation 

is palivizumab, a monoclonal antibody against RSV protein F. Palivizumab is only 

administrated to high risk infants (Blanken et al. 2013; Lambert et al. 2014), as it is 

prohibitively expensive, with a single dose costing around £5000 (Murray et al. 2014).  

RSV infection can occur multiple times throughout life as people do not develop 

protective immune responses against the virus. In addition, poor understanding of RSV 

immunopathology, especially in determination of which responses are detrimental and 

which ones are protective lead to difficulties in developing efficient vaccination (Murray 

et al. 2014). 

 

1.5.3 RSV and asthma 

Numerous epidemiological studies have associated early-life severe RSV bronchiolitis 

with recurrent wheeze and development of asthma later in life (Henderson et al. 2005; 

Sigurs et al. 2005). Evidence for a causative role of RSV in the development of asthma 

comes from a study showing that children born 4 months before the winter peak of RSV 

transmission were more prone to develop early diagnosed asthma by the age of 5 (Wu et 

al. 2008). However, controversies still exist in defining a causative or correlative effect 

of RSV in subsequent asthma development due to possible shared genetic susceptibility 

between asthma and RSV infection. Several studies have been carried out using 

palivizumab as a prevention against RSV infection. Prevention of RSV infection reduced 
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reported wheeze up to 12 months after suspension of the treatment (Blanken et al. 2013). 

However, in another study in a 6 year follow-up, preventive RSV treatment did not affect 

asthma development or lung function (Scheltema et al. 2018).  

Several considerations have to be taken into account when analysing these 

epidemiological studies. In particular, some studies consider wheeze episodes reported 

by parents and in this case it is essential to have a randomised design to avoid bias 

creation, while other focus on asthma diagnosed by a medical doctor. Another point is 

that assessing lung function in children younger than 6 years can be unreliable, creating 

further difficulties to standardise all these studies. 

 

 

1.5.4 RSV and the IL-33 pathway 

In recent years research has focussed on the role of RSV during childhood and in 

particular in type 2 immune responses associated with asthma. RSV replication occurs in 

the lung epithelium and it is hypothesised that extensive cellular damage induced the 

release of epithelial alarmins such as IL-33 (Kumar et al. 2014). In infants hospitalised 

with RSV bronchiolitis IL-33 is detectable in nasal aspirates, and IL-33 levels correlate 

with IL-13 (Saravia et al. 2015; García-García et al. 2017). Furthermore, SNPs in the 

il1rl1 gene (encoding ST2) have been associated with the risk of RSV bronchiolitis while 

polymorphisms in the il33 gene and il1rl1 gene have been implicated in asthma 

development (Bønnelykke et al. 2013; Faber et al. 2012; Moffatt et al. 2010). In human 

challenges exist in studying the interaction between RSV and IL-33. Firstly because only 
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children hospitalised for severe RSV-bronchiolitis will be analysed and secondly it is 

challenging to determine at which day post infection children have been hospitalised. 

Therefore, detection of IL-33 in humans might be missed in most of the cases of RSV 

infection due to the fact that IL-33 is rapidly released and oxidised (Cohen et al. 2015). 

Mouse models of RSV infection have been developed to help understand the mechanisms 

linking the IL-33 pathway and asthma. IL-33 has been detected in the airway of RSV 

infected mice, and anti-ST2 antibody treatment reduced the expression of type 2 

cytokines and histopathology without affecting viral replication (Zeng et al. 2015). ILC2s 

and eosinophils accumulated in the lung of infected mice, and RSV-dependent IL-33 

release induced ILC2s to produce IL-13 (Liu et al. 2015).  

Other groups have carried out experiments using Pneumonia Virus of mice (PVM), a 

virus that is closely related to RSV and also causes pathology in the lower airways, but 

in contrast to RSV is a natural pathogen in mice (Rosenberg & Domachowske 2008). Co-

administration of PVM and low dose of cockroach extract in neonatal mice induced the 

release of IL-33, which was responsible for sensitisation to the cockroach extract as 

blocking IL-33 prevented sensitisation. The PVM-cockroach allergen model is 

characterised by the development of type 2 immune responses and the onset and 

progression of asthma due to the IL-33 release (Lynch et al. 2016; Werder et al. 2018). 

Therefore, these studies suggest an important role for IL-33 in inducing sensitisation to 

allergen. 
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1.5.5 The neonatal model of RSV infection 

RSV is a virus that infects human multiple times during the lifespan, however infants and 

the elderly are the two categories that have higher risk of RSV-dependent pathology. As 

RSV infection might be linked with the development of asthma, a neonatal mouse model 

of RSV infection is informative when studying pro-asthmatic responses. More than 15 

years ago it was shown that age of first RSV infection can shape the responses at re-

infection later in life. Especially, RSV infection in mice at 1 day of age induces TH2 

responses at re-infection 12 weeks after primary infection. TH2 responses were not 

elicited if primary infection occurred in adulthood (Culley et al. 2002). In neonatal 5 day 

old mice, higher levels of IL-33 were observed 24 post-RSV infection compared to adults. 

Neonatal IL-33 release was associated with type 2 immune responses and asthmatic 

phenotype later in life upon re-infection. Type 2 immune responses at re-infection were 

prevented by administration of anti-IL-33 antibodies to neonates (Saravia et al. 2015). In 

adult mice, RSV reinfection did not induce a TH2-skewed immune response, but 

intranasal administration of recombinant IL-33 during primary infection lead to the 

development of an asthmatic phenotype (Saravia et al. 2015). Therefore, IL-33 in early 

life infection might play a key role in the development of asthma later in life.   

Recent studies on immune response dynamics in the developing lungs showed that IL-33 

is released physiologically in the developing lung, providing a link between early life 

stimuli and increased induction of type 2 immune responses (de Kleer et al. 2016). In 

early life, DCs seems to play an important role. IL-33 was shown to activate DCs, 

increasing expression of OX40L and helping polarise naïve T cells to a TH2 phenotype 
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(Murakami-Satsutani et al. 2014). IL-33 activates and recruits DCs in vivo, and in ST2 

KO mice the absence of IL-33 signalling fails to activate DCs and to induce allergic 

responses (Besnard et al. 2011). The differences in DCs between neonatal and adult mice 

can be possibly explained from the different expression of IL-4Ra (Shrestha et al. 2017) 

as well as the increase of IL-33/ILC2s accumulation in neonatal lung (de Kleer et al. 

2016).  

DCs from neonatal mice express higher levels of IL-4Ra, which is linked with the 

suppression of maturation of DCs during RSV infection and TH2-skewing of immune 

responses. Inducing DCs overexpression of IL-4Ra in adult mice during RSV infection 

reduces the presence of IFNg+ CD4+ Th1 cells and increased IL-4+ Th2 cells (Shrestha et 

al. 2017). As mentioned in the previous section, the role for IL-33 in inducing type 2 

immune responses has also been analysed in PVM models in neonatal mice. PVM induces 

release of IL-33 at 10 dpi, and this release is enhanced if mice were co-exposed with 

cockroach allergen (CRE). CRE induces an ATP-dependent release of IL-33 at 3 dpi that 

reduces anti-viral immunity and predispose to the development of an asthmatic phenotype 

(Lynch et al. 2016). IL-33-release after CRE administration downregulates TLR7 

expression on pDCs that induces a status of hypo-responsiveness with lower IFNa/b and 

higher IL-33 and a TH2 skewed environment (Lynch et al. 2016). IL-33 and IFNs are able 

to counter-regulate each other, IFNg has been shown to reduce ILC2s responsiveness to 

IL-33 in vitro and in vivo, and this is a mechanism to reduce type 2 immunopathology 

(Molofsky, Van Gool, et al. 2015; Duerr et al. 2016).  
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Therefore, in the developing lung the natural release of IL-33, accumulation of ILC2s and 

the specific pro-TH2 DC phenotype leads to increase susceptibility to allergen. De Kleer 

and colleagues suggested that any increase in IL-33 levels, induced by allergen and 

possibly by RSV infection, cause sensitisation and development of asthma later in life.  

 

1.6 Biological therapies in allergic asthma 

Aberrant inflammatory responses are known to be responsible for the pathogenesis of 

asthma. However, the development of novel therapeutic has been challenging due to the 

heterogeneity of the disease. Around 5%-25% of asthma sufferers do not respond to 

traditional corticosteroids treatment and in the past decades several biological therapies 

have been developed and studied in clinical trials (McCracken et al. 2016; Global Asthma 

Network 2018). The attention of biological therapies has been focused on initiators of 

type 2 inflammation such as IL-33 and effector elements that are known to be responsible 

for the asthmatic pathogenesis such as IL-5, IL-4, IL-13 (and their receptor) and IgE. In 

this section I will give a brief overview on the current clinical trials and novel therapeutics 

in the field of asthma and allergies. 

 

IgE has been targeted in biologic therapy against asthma and being one of the first 

clinically approved. Omalizumab is a monoclonal antibody against IgE that has been 

tested in phase III clinical trials for severe allergic asthma sufferers showing an reduction 

in incidence of exacerbations (Humbert et al. 2005; Djukanović et al. 2004; McCracken 



 

50 

 

et al. 2016). Omalizumab is clinically approved under the name of Xolaris and it is 

recommended for the treatment of allergic asthma and urticaria. 

 

Dupilumab is a monoclonal antibody direct against IL-4Ra which is required for IL-4 

and IL-13 signalling. In atopic dermatitis the drug is widely used due to its efficacy in 

reducing pruritus and symptoms of anxiety and depression with an evident quality of life 

improvement (Simpson et al. 2016). In severe asthma sufferers dupilumab has been 

observed to improve lung function when associated with corticosteroid treatment, 

reducing exacerbation cases and improving quality of life (Wenzel et al. 2016).   

 

An effector cytokine widely associated with type 2 immune responses and eosinophilic 

inflammation in asthma is IL-5. Mepolizumab and reslizumab are anti-IL-5 therapies 

approved in the treatment of eosinophilic asthma. During clinical trials results were 

variable between the two compounds but in general they both showed a significant 

improvement in lung function, eosinophilia, improving asthma symptoms and quality of 

life (Pelaia et al. 2017; Castro et al. 2015; Castro et al. 2011). The only therapeutic drug 

targeting the IL-5R is benralizumab which has been shown to improve asthmatic 

symptoms in sufferers with no eosinophilic infiltrates as well as sufferers with 

eosinophilic asthma (Nair et al. 2017; FitzGerald et al. 2016; Castro et al. 2014). 

Analysing the data from 10 different clinical trials no differences in efficacy are observed 

using mepolizumab, reslizumab and benralizumab, and the conclusion is that therapies 
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targeting the IL-5 pathway have high efficacy in treatment of eosinophilic asthma (Cabon 

et al. 2017). 

 

To target the initiation of asthmatic responses, several compounds are tested for targeting 

the IL-33 pathway. ANB020, an anti-IL-33 antibody, has been shown to be safe in 

patients and it is currently tested in asthma, peanut allergy and atopic dermatitis (Londei 

et al. 2017; AnaptysBio 2018). Another compound that target IL-33 is AMG282 used in 

patients with asthma and nasal polyps but no result have been published about safety and 

efficacy (NCT01928368).  

GSK3772847 is another compound that targets ST2. It has been used in patients with 

moderate and severe asthma, but no results have been reported (NCT03207243), and in 

asthma sufferers with allergic fungal airway disease with the recruitment phase ongoing 

(NCT03393806).  

Other clinical trials targeting epithelial-derived such as TSLP are underway, but no 

clinical trials for IL-25 have been reported. Anti-TSLP are being tested in asthma and 

COPD (NCT03423693, NCT02698501). Tezepelumab is an anti-TSLP mAb that showed 

improvement in uncontrolled asthma patients treated with b-agonist and inhaled 

corticosteroids, showing lower rates of asthma exacerbation compared to placebo (Corren 

et al. 2017). 

  

In general, the heterogeneity of asthma makes challenging the development of a single 

treatment for asthmatic sufferers. Understanding the immune-pathophysiology of asthma 
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is a key factor for defining and stratifying asthmatic patients. Different subtypes of asthma 

have been identified depending on the presence of immune cells such as neutrophils or 

eosinophils, specific cytokines and resistance to corticosteroids treatmen. Key targets 

have been shown to drive disease and they can be targeted by novel therapeutics, showing 

improvement in the symptoms and quality of life of sufferers (Lawrence et al. 2018). 
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1.7 Hygiene hypothesis and parasite 

immunomodulation 

1.7.1 Hygiene hypothesis  

A rise in the prevalence of autoimmune diseases and allergic disorders has been observed 

in the last decades in industrialised countries and in the urbanised areas of developing 

countries (Bach 2002; Smits & Yazdanbakhsh 2007; Eder et al. 2006). This increase has 

been observed from the second half of the 20th century, for instance in 1964 19% of 

Australian children were reported to have diagnosed asthma or wheeze, while by 1990 

such symptoms were present in 49% of children (Asher et al. 2006; Robertson et al. 1991).  

Changes in environmental factors, lower rate of infections and changes in the life style 

can influence our immune system (Lambrecht & Hammad 2017). For instance, reduced 

sanitation and no access to clean drinking water during childhood induce a spontaneous 

IL-10 production up to 8 years later of life (Figueiredo et al. 2009).  

Environmental factor seems to play a key role, for instance, comparing two farming 

populations settled in the United States with a similar genetic background, the Amish and 

Hutterites, it was observed that the Amish had much lower levels of allergies and asthma. 

The Amish preserve a traditional farming society, where children are exposed to animals 

and to an environment rich in microbes, while the Hutterite have a modernised farming 

and children are exposed to much cleaner environments (Stein et al. 2016). This effect on 

asthma rates was hypothesised to be due to exposure to microbes or endotoxins influences 

the innate immune system, preventing hyperresponsiveness to allergen (Stein et al. 2016; 
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Braun-Fahrländer et al. 2002; Ege et al. 2011). Exposure to low dose of endotoxin (LPS) 

or farm dust (containing microbial products) abrogates the development of HDM-induced 

asthma, suppressing epithelial cytokines such as GM-CSF and IL-33 that recruit and 

activate DCs. The protective effects were lost if there is a loss in ubiquitin-modifying 

enzyme A20 in the lung epithelium (Schuijs et al. 2015), which has been shown to 

suppress TLR and IL-1 family signalling, and suppressing inflammasome activation 

(Jäättelä et al. 1996; Duong et al. 2015). These observations support the “hygiene 

hypothesis” developed in the 70s and formally defined in the late 80s, which stemmed 

from the detection of lower rates of eczema and allergies in children grown up in large 

families, due to the fact that these children were exposed to more recurrent infections 

(Strachan 1989). Early-life exposure to microorganisms and parasites is recognised to 

shape the immune responses in adulthood (Djuardi et al. 2011), and in the last decades 

several factors have been implicated in shaping our immune system e.g. mode of giving 

birth, breast feeding, number of siblings, infections, and contact with animals (Lambrecht 

& Hammad 2017).  

 

1.7.2 Parasite and the hygiene hypothesis 

A branch of the hygiene hypothesis involved the study of the immunomodulatory effect 

of parasites, due to the observation that in those area of the world were parasite infection 

are still common there is less incidence of allergies, asthma and auto-immune diseases.  

A quarter of the world population is affected by parasitic infections (Jourdan et al. 2018). 

Helminths infections are common in developing countries, with soil-transmitted 
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nematodes (e.g. Ascariasis lumbricoides, Trichuris trichiura and hookworms such as 

Ancylostoma duodenale) being the most prevalent (Jourdan et al. 2018; Hotez et al. 2008).  

In industrialised countries many parasitic infections have been virtually eradicated in 

contrast to bacterial infection which have only been reduced (McSorley et al. 2013). A 

systematic review and meta-analysis identified the decreased risk of developing asthma 

in endemic hookworm infection areas (Leonardi-Bee et al. 2006). Thus, epidemiological 

observation suggested that parasites can modulate the immune system. This led to the 

proposal of using live parasitic infection to treat immune disorders, termed “helminth 

therapy”. The first trials of helminth therapy were carried out to determine the safety of 

a porcine parasite, Trichuris suis, in patients suffering from Crohn’s disease (CD) and 

ulcerative colitis (UC) (Summers et al. 2003). No adverse effects were detected during 

the infection and improvement in both CD and UC was observed (Summers et al. 2003; 

Summers et al. 2005). However, efficacy was not observed in the treatment of coeliac 

disease, allergic rhinitis and more recently Crohn’s disease, even if immune responses 

were suppressed (Bager et al. 2010; McSorley et al. 2011; Daveson et al. 2011; 

Schölmerich et al. 2017). Using helminth therapy to treat asthma led to clinical trials with 

the hookworm Necator americanus. However these studies did not show improvement in 

lung function nor asthma amelioration (Blount et al. 2009; Feary et al. 2010).  

Helminth therapy has been studied in auto-immune diseases such as multiple sclerosis 

(MS), following studies where in endemic helminth infection area helminth-infected MS 

patients showed the induction of a regulatory phenotype and reduced lesions (Correale et 

al. 2008). Clearing the infection using anti-helminthic drugs induced reappearance of the 
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symptoms suggesting that helminths were suppressing the exuberant immune responses 

(Correale & Farez 2007; Correale & Farez 2011). Recent studies using T. suis ova showed 

in general no clinical improvement in the treatment of MS, even if in the last trials results 

were variable (Voldsgaard et al. 2015; Fleming et al. 2017). Negative results from 

helminth therapy trials might depend on the fact that parasitic infections occur naturally 

in endemic areas. Infection can occur from a young age and recurrent infections are 

common, therefore in endemic areas, differently from a clinical setting where parasites 

are administered in pre-existing disease, parasites modulate the immune system for a 

longer period and before the initiation of the disease. In addition, other factors that can 

influence the outcome of the helminth therapy are when to administrate the helminth 

therapy after the disease started and the other challenging part is to decide the optimal 

dose of parasites. 

1.7.3 Parasites immunomodulation and excretory/secretory 

products (ES) 

Mouse model of parasitic infections have helped to understand their ability to modulate 

the host immune system. S. mansoni and H. polygyrus infection in mice reduces OVA-

induced type 2 immune responses and airway hyperresponsiveness (Mangan et al. 2006; 

Smits et al. 2007; Wilson et al. 2005). Protection in the S. mansoni model was dependent 

on IL-10 production (Mangan et al. 2006). In a chronic model of S. mansoni infection, 

IL-10 was still necessary to induce suppression of OVA-induced type 2 inflammation, 

and B cells and T cells were involved in suppression (Smits et al. 2007). Moreover, 

isolated eggs from S. mansoni suppressed bystander OVA-specific TH2 responses even if 
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a strong induction of type 2 immune responses was observed in response to the eggs. 

Eggs induced the generation of regulatory T cells and they impaired the recruitment of 

DCs, with reduced CCL2 levels in the BAL of egg-treated mice (Obieglo et al. 2018; 

Pacífico et al. 2009). Recently, there has been a focus on identifying  a single component 

of S. mansoni eggs that replicates the immunomodulatory effect observed. Until now, a 

protein from S. japonicum called SjP40 has been shown to induce TH1 immune responses 

suppressing allergic TH2 inflammation (Ren et al. 2016), and recently the glycoprotein 

IPSE/alpha-1 from SEA was shown to induce IL-10 production from regulatory B cells, 

although the authors do not exclude the presence of other immunomodulatory molecules 

in SEA (Haeberlein et al. 2017).  

Evidence that the immunomodulatory effects of parasites could be replicated by their 

excretory/secretory products have been observed in N. brasiliensis infection. N. 

brasiliensis infection is associated with reduction of allergen-dependent eosinophilia 

(Wohlleben et al. 2004) and reduced allergic type 2 immune responses were observed 

after N. brasiliensis ES (NES) administration (Trujillo-Vargas et al. 2007). Suppression 

by NES was independent from TLR2, TLR4, IFNg and IL-10 and it was mediated by a 

nonprotein components of NES, as heat treatment or proteinase treatment did not affect 

NES effects (Trujillo-Vargas et al. 2007).  

Similarly, infection with the nematode H. polygyrus suppressed allergen-induced TH2 

inflammation (Wilson et al. 2005) and this can be replicated by HES administration 

(McSorley et al. 2012). In the next section (1.7.3 Heligmosomoides polygyrus: life cycle 

and immunomodulation) I will analyse the immunomodulatory effects of H. polygyrus.  
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ES products have been characterised by mass spectrometry and together with a better 

knowledge of the parasites genomes, lead to the discovery of single proteins contained in 

ES with immunomodulatory effects (Maizels et al. 2018). For instance, ES-62 from the 

filarial nematode Acanthocheilonema viteae has been widely studied and it was shown 

that post-translational modification including phosphorylcholines moieties are 

responsible for the anti-inflammatory effects observed with ES-62 administration in a 

model of arthritis (Pineda et al. 2014; McInnes et al. 2003) and in a model of asthma 

(Rzepecka et al. 2013). This molecule targets several immune components, such as the 

BCR, TCR and TLRs, and suppresses aberrant MyD88 activation (Melendez et al. 2007; 

Ball et al. 2018; Pineda et al. 2014). Small molecule analogues have been created which 

mimic ES-62 phosphorylcholine moieties and some of them can replicate ES-62 effect in 

vivo and protect against collagen induced arthritis (Al-Riyami et al. 2013) and in models 

of asthma using cockroach extract and HDM (Janicova et al. 2016). 

In addition, two proteins from the hookworm N. americanus and Ancylostoma caninum, 

anti-inflammatory protein 1 AIP-1 and AIP-2, have been identified and reduce 

inflammatory responses in model of colitis and allergic inflammation respectively. AIP-

1 induces expansion of regulatory T cells in the gut mucosa due to increased production 

of IL-10 and TGFb  (I. B. Ferreira et al. 2017) while AIP-2 acts on CD103+ DCs to induce 

regulatory T cells and reduce OVA-induced airway inflammation (Navarro et al. 2016). 

Therefore, parasite secretions have been shown to induce modulatory effect on the host 

immune system and these effects can be replicated by single molecules that can be 

identified and studied in clinically-relevant model of disease. An optimal model to use in 
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the lab is the strictly intestinal nematode Heligmosomoides polygyrus which ES has been 

shown to have immunomodulatory effect (McSorley et al. 2015; Johnston et al. 2015; 

Maizels et al. 2012), and it will will my focus on the next section.  

 

1.7.4 Heligmosomoides polygyrus: life cycle and 

immunomodulation 

Heligmosomoides polygyrus is a natural wild mouse parasite that has been successfully 

transferred to laboratory mice, and for years was called Nematospiroides dubius (Dobson 

& Owen 1977; Dobson & Tang 1991). It is an optimal model to study immunity and 

immune evasion. It is in the same Order (Strongylida) as the human hookworms (e.g. 

Necator americanus and Ancylostoma duodenale) and similarly to hookworms, it can 

establish a long-lasting chronic infection. In the laboratory setting, H. polygyrus L3 larvae 

are introduced by oral gavage in the mouse. Within 24h, larvae reaches the small intestine 

penetrating the submucosae (beneath the lamina propria) where they undergo two 

developmental molts. They subsequently emerge into the lumen as adult worms where 

they coil around the villi.  Eggs are produced and released in the external environment 

through the faeces, eggs have to hatch and go through developing moults to generate 

infective L3 larvae, which can then spread the infection to other mice (Reynolds et al. 

2012) (Fig.1.7). Adult worms from the intestine can be collected and used to produce 

HES (Reynolds et al. 2012; Johnston et al. 2015). 
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Live infection with H. polygyrus has shown protection in several model of allergic airway 

inflammation. Wilson et al. showed that infection with H. polygyrus suppresses OVA-

dependent type 2 immune responses. Live infection induces reduction in inflammatory 

infiltrates in the lungs, especially eosinophils, mucus production and mast cell 

degranulation. Protection was observed if infection occurred at both sensitisation phase 

or challenge, and suppression was dependent on regulatory T cells. CD4+ CD25+ cells 

were transferred into OVA-sensitised mice and these cells were able to induce protection 

(Wilson et al. 2005). Kitagaki et al. showed suppression of pathology in an OVA-

dependent model of asthma, although in contrast to the study by Wilson et al., they found 

this suppression was dependent on IL-10 (Kitagaki et al. 2006). In another model of 

allergen-induced asthma using the Der p1, an allergen found in HDM, H. polygyrus was 

still be able to suppress type 2 immune responses, and suppression could be transferred 

with CD4+ , CD4-  and CD19+ B cells isolated from the mesenteric lymph nodes of 

infected mice. In another model using HDM and H. polygyrus-infected mice, reduction 

in allergic responses associated with alteration of the gut microbiome with an increase 

production of short chain fatty acids (SCFAs). Transferred of the altered microbiota from 

infected mice was sufficient to induce protection against allergic asthma (Zaiss et al. 

2015). H. polygyrus not only suppressed allergic responses but had immunomodulatory 

effects in an experimental model of autoimmune encephalomyelitis  (Wilson et al. 2010), 

and, in a model of co-infection with RSV, H. polygyrus larvae induced protection against 

RSV pathology in an IFN-dependent and microbiota-dependent manner (McFarlane et al. 
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2017). Therefore, the enteric parasite H. polygyrus is able to modulate immune responses 

distally for example in the lungs and in the central nervous system.  
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Figure 1.5 Heligmosomoides polygyrus life cycle  

Infective L3 larvae are transmitted by feco-oral transmission in wild-mice and by oral gavages in the 

laboratory setting. Larvae migrate in the subserosa layer beneath the lamina propria of the duodenum and 

emerging in the intestinal lumen after approximately 8 days post infection. 
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1.7.5 H. polygyrus excretory/secretory products (HES) and its 

modulatory effects 

Infection with H. polygyrus has been demonstrated to have broad effects in allergic 

airway inflammation. The immunomodulatory effects in allergic inflammation can be 

replicated with administration of HES (McSorley et al. 2012).  

Adult worms can be collected from the gut of infected mice and cultivated in vitro to 

obtain HES (Johnston et al. 2015). HES is a complex mixture of molecules that contains 

around 400 identified proteins, with abundance of proteases, apyrases, 

acetylcholinesterase (AChE), and venom allergen-like (VAL) proteins, a conserved 

family identified in other parasites (Hewitson et al. 2011). Protein expression is different 

between larval ES and adult ES, underlining the different need of the parasite depending 

on the developmental stage and the location in the intestine (Hewitson et al. 2013). VAL 

proteins have been shown to exert some immunomodulatory effects such as suppressing 

basal immunity in plants, inhibition of cell adhesion and signalling pathway in B cells in 

mammals (Wilbers et al. 2018). However, in H. polygyrus no immunomodulation has 

been proved yet. Recently, HpVAL-4 protein has been show to bind to palmitate and 

sterol but more studies need to be carried out to determine possible immunomodulatory 

effect (Asojo et al. 2018). Another family of proteins that has been detected in HES and 

other parasites ES is the Sushi- or complement control protein (CCP) domain family 

(Hewitson et al. 2013). CCP domains are consensus sequences of around 60 amino acids 

containing 4 conserved cysteines residues linked by disulphide bonds and the presence of 

conserved tryptophan, leucine, glycine, proline and hydrophobic residues (Kirkitadze & 
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Barlow 2001; Soares et al. 2005). They were discovered in proteins from the complement 

system but subsequently found in neurotransmitters, interleukin receptors and other 

proteins outwith the complement system have been identified to be CCP domain proteins 

(Blein et al. 2004; Hewitson et al. 2013). Nematodes produce CCP domain-containing 

proteins and the CCP domain family underwent expansion in the H. polygyrus genome, 

with around 40 CCP domain proteins identified in H. polygyrus ES (Maizels et al. 2018; 

Hewitson et al. 2013). Different species of nematodes evolved independently, but 

evolution was driven by common environmental and host factors (Coghlan et al. 2019). 

Recently, the H. polygyrus genome was published, identifying around 27 thousand 

protein coding genes (Coghlan et al. 2019) (PRJEB1203). Sequencing the whole genome 

and knowing the protein produced by the parasite allows identification of further 

immunomodulatory molecules.  

 

HES represent a major focus for immunological analyses due to its multiple 

immunomodulatory effects (Fig.1.8). HES induces expansion of Foxp3+ T regulatory 

cells (Grainger et al. 2010), reduces activation of DCs (preventing subsequent stimulation 

of T cells) (Segura et al. 2007) and reduces airway inflammation by suppressing IL-33 

responses (McSorley et al. 2012; McSorley et al. 2014). The importance of the IL-33 

pathway is underlined by the fact that H. polygyrus targets this pathway using several 

strategies: reducing its expression through induction of IL-1b and targeting the expression 

of ST2 through miRNA from parasite-derived EV (Zaiss et al. 2013; Buck et al. 2014; 

Coakley et al. 2017). In addition these parasite-derived EV not only suppressed the 
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alternative activation of macrophages but also LPS-induced macrophage activation with 

suppression of IL-6, TNFa and inducible nitric oxide synthetase (iNOS) mRNA (Coakley 

et al. 2017). Therefore, the RNAs contained in the EV might play an important role in 

immunomodulation, however the authors do not exclude that another components of HES 

(such as protein or carbohydrates) can mediate the observed effects as HES depleted of 

EVs could still suppress responses (Coakley et al. 2017).  

 

In a model of asthma inducing sensitisation to OVA with alum adjuvant intraperitoneally 

to mice, co-administration of HES suppressed OVA-dependent type 2 immune responses. 

HES reduced inflammation in the lungs, eosinophilia, airway hyperresponsiveness, and 

production of IL-4, IL-10, IL-13, IL-17A and IFN-γ. These effects were not dependent 

on the TGFb activity of HES, and they depended on a heat-stable component of HES 

(McSorley et al. 2012). In addition, this suppressive effect was independent of MyD88 

and TRIF: important downstream signalling adaptors of TLRs and the IL-1 receptor 

family (McSorley et al. 2015). It was shown that HES acted on the suppression of early 

type 2 immune responses and in the suppression of ILC2 activation (McSorley et al. 

2015). However, using the alum as an adjuvant is not a clinically-relevant model to study 

asthma but rather study vaccination-like responses. In particular the observed unchanged 

inflammation after OVA-alum administration in MyD88-KO mice suggest that in 

contrast to the evidence from human asthma and other mouse models of asthma, these 

type 2  inflammatory responses are not dependent on IL-33 but on other pathways that 

HES suppresses. 
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Furthermore, in another model of asthma using a single dose of the fungal allergen 

Alternaria in combination with OVA mice can be sensitised against OVA and OVA-

dependent type 2 immune responses can be elicited at challenge. Similarly, a single 

administration of HES at sensitisation suppressed eosinophilic infiltrates in the lung tissue 

and in the BAL but in this model the suppressive effect was associated with a heat-labile 

component of HES. HES reduced production of type 2 cytokine e.g. IL-5, IL-13 and IL-

4 (McSorley et al. 2014).  

IL-33 had a key role in this model, as ST2-deficient mice did not develop type 2 

inflammation in response to Alternaria and administration of recombinant IL-33 

abrogated HES suppressive effects (Snelgrove et al. 2014; Kouzaki et al. 2011). In this 

model HES suppressed the early IL-33 release in response to Alternaria, and early type 

2 immune responses such as eosinophils 24h post-Alternaria administration and ILC2 

activation (McSorley et al. 2014).  

 

The several immunomodulatory effects associated with HES administration led to the 

identification of single molecules that can replicate the same effect. A single protein that 

has been identified from H. polygyrus genome is the cysteine protease inhibitor (HpCPI), 

which affects maturation of dendritic cells. This protein suppressed cysteine protease 

activity and when incubated with dendritic cells suppressed expression of MHCII (Sun et 

al. 2013). HpCPI reduced production of IL-6, IL-12 and TNFa from DCs stimulated with 

CpG, indicating that the recombinant protein affects DC responses, and this suppressive 
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effect can be observed in a T cell co-culture system in which HpCPI-treated DCs did not 

activate T cells (Sun et al. 2013).  

In addition, as mentioned previously HES induced expansion of Foxp3+ TREG through the 

TGFb pathway, and the transfer of TREG from H. polygyrus infected animals induced 

protection in an asthma model (Wilson et al. 2005), while HES-induced TREG suppressed 

TH2 immune responses in a similar manner as TGFb-induced TREG (Grainger et al. 2010). 

Recently a parasite-derived TGFb mimic named HpTGM was identified. This protein 

consists of 5 CCP domains and does not show homology with TGFb (Johnston et al. 

2017; Smyth et al. 2018). HpTGM binds directly to the TGFb receptor, activating the 

signal transduction cascade associated downstream of the type I and type II TGFb 

receptor. HpTGM is a promising molecule showing anti-inflammatory effects in a mouse 

model of skin allograft rejection (Johnston et al. 2017). 

In conclusion, the advances in genomic and proteomic analysis lead to the understanding 

of how parasites interact with their host. Through their secretion parasites can release a 

broad range of molecules from protein to small RNAs that influences and modulate the 

host immune system. These molecules help to understand the mechanisms used by the 

parasites to survive within the host as well as giving the opportunity to use these 

molecules as therapeutic agents for human diseases. 
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Figure 1.6 Administration of HES both in vitro and in vivo is associated with immune-modulatory 

effects 
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1.8 Hypothesis and aims 

In the past years several groups have been studying how parasites modulate the host 

immune system, focusing on parasite ES products. Various proteins have been identified 

and to modulate the immune system. H. polygyrus is an intestinal nematode that has been 

used as an optimal laboratory model for chronic helminth infection. It modulates the 

immune system at different levels, and in particular it modulates the IL-33 pathway using 

different mechanisms.  

H. polygyrus ES products called HES block IL-33 release and suppress ST2 (the IL-33 

receptor) (Buck et al. 2014; Coakley et al. 2017; McSorley et al. 2014). 

At the start of my project, a single protein called HpARI had been identified from HES 

which suppresses IL-33 release. Recombinant HpARI was produced in the lab and 

showed to suppress detection of IL-33 in vitro using freeze/thaw-induced IL-33 release. 

HpARI was tested in vivo and showed to suppress early IL-33 responses similarly to HES 

(Osbourn et al. 2017; McSorley et al. 2014). However, the mechanism was still unclear 

and it will be investigated with this project.  

The hypotheses of this project are: 

1) HpARI blocks IL-33 release by binding directly to the cytokine, preventing the 

cytokine from binding to its receptor. 

2) IL-33 released during RSV infection is essential for inducing type 2 immune 

responses, and HpARI can suppress RSV-induced IL-33 release. 

3) Another protein in HES suppresses ST2 expression.  
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The aims of this project are to: 

1) Characterise the mechanistic effect of HpARI on IL-33 suppression. Binding 

studies will be performed to assess the ability of HpARI to bind murine IL-33 and 

human IL-33, and to block IL-33-ST2 interaction. 

2) Develop an in vitro assay using bone marrow cells to study the induction of IL-

33 dependent responses and the suppressive effect of parasite-derived proteins. In 

addition, this assay will test the specificity of the proteins against the IL-33 

pathway.  

3) Investigate whether HpARI can suppress IL-33-dependent RSV-induced immune 

responses in a neonatal mouse model of RSV infection and allergic sensitisation.  

4) Analyse HES fractionation and HES mass spectrometry data to identify a novel 

protein which suppresses ST2. The protein will be recombinantly produced and 

analysed both in vitro and in vivo. The mechanism of action will be assessed. 
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Chapter 2 

Materials and Methods 

2.1 Mice and experimental model 

BALB/cOlaHsd, C57BL/6JOlaHsd, IL-13-eGFP (C57BL/6 background (Neill et al. 

2010)) and ST2-deficient mice (BALB/c background- kindly provided by Dr Andrew 

McKenzie, MRC Laboratory of Molecular Biology, Cambridge) were bred in house at 

the University of Edinburgh. For bone marrow collection males aged > 8 weeks were 

used. 

For experimental procedures in adult mice, 6-10 weeks old female mice were used. For 

the neonatal model, breeding pairs were set up by technician in the animal facilities at the 

University of Edinburgh with a ratio of 1 male to 2 females. Pregnant mice were handled 

for 3 days a week prior to birth. After birth, dams were olfactorily conditioned with 

isofluorane, the anaesthetic used, and the ink used for tattooing neonates. Neonates were 

marked in the foot with tattooing ink as ears marking was not possible to perform because 

ears were too small at this age. Neonatal mice aged between 5 and 7 days were used in 

experimental procedure.  

At the collection day, depending on the experiment BAL fluid 4x0.5 ml washes in cold 

PBS were collected for cytokine analysis and cellular analysis by flow cytometry. Half 

lung lobe was collected, homogenised and analysed by flow cytometry. The other half 

was used for RNA extraction and lung homogenate. 
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2.2 Culture media, cell lines and reagents 

Complete culture media was supplemented with 10% fetal bovine serum (FBS), 1% 

penicillin-streptomycin, 1% L-glutamine (all supplied by Gibco, ThermoFisher).  

CMT-64 obtained from ECACC were cultured in complete DMEM (Gibco).  

Hep2 cells were obtained from ATCC and cultured in complete RMPI (Gibco). 

Expi293T obtained from Thermo Fisher Scientific were cultured as described by the 

manufacturer guidelines. Cells were grown in Expi293 Expression Medium (Gibco) at 

37°C 8% CO2 in constant shaking at 125 rpm and split when concentration was at 3-5x106 

cells/ml.  

Human nasal epithelial cells (hNECs) were obtained by brushing the medial aspect of the 

inferior turbinate of healthy volunteers under informed consent. Cells were collected in 1 

ml BEGM media (Lonza) and plated immediately in BEGM. Cells were split when at 

80% confluence, washed twice with HBSS (Gibco), trypsinised with trypsin/EDTA 

(Lonza) for 10 minutes at 37°C. Trypsin was neutralised using Trypsin Neutralising 

Solution (Lonza).  Cells were used at passage 3 or 4.  

General reagents: 

FACS buffer 

PBS 0.5% BSA 0.05% Sodium Azide 

ELISA Block Buffer  

PBS 1%BSA 

ELISA Wash Buffer 
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1XTBS 0.05% Tween-20 

Mouse ST2-Fc, mouse TRAP-Fc, human TRAP-Fc kindly provided by Suzanne Cohen 

(MedImmune, Cambridge, UK). 

Alternaria alternata extract (Greer XPM1D3A25) was resuspended in PBS and 

concentration assessed by Pierceä BCA assay (Thermo Fisher Scientific). 

2.3 RSV, immunoplaque assay and in vitro RSV 

infection 

Plaque-purified human RSV (Strain A2; ATCC, Manassas, Va) was grown in Hep-2 cells 

as previously described (Currie et al. 2013). The viral stock used in this study was 

produced and provided by the Schwarze lab (University of Edinburgh). Briefly, Hep2 

cells were cultured and seeded at 5x106 in a T175 flask and incubated overnight at 37°C 

5% CO2 in complete RPMI. The next day, cells were infected with human RSV A2 at a 

final concentration of 0.1 pfu/cell in a 3 ml volume of serum-free RPMI. Cells were 

incubated at 37°C 5% CO2 for 2 hours and rotated 90° every 15 minutes to be sure surface 

was covered equally. After 2 hours, 27 ml of complete RPMI were added to the culture 

and incubated until cytopatic effect was observed and 50% of the cells were floating 

(approximately around 5 days after). Cultures were then centifugated at 2000 rpm for 5 

minutes, supernatants collected and aliquoted as viral stock. Tubes were snap frozen in 

liquid nitrogen.  
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Adult mice were infected with 50 µl of RSV stock  (65000 PFU). Neonates were infected 

with 3250 PFU/ grams of body weight.  

UV-RSV was generated by placing RSV stock on ice in the UV-Stratalinker 2400 

(Stratagene, Agilent Technologies, Cheshire UK) and UV-irradiated for 15 minutes.  

 

RSV titres were assessed diluting lung homogenates from infected mice in Hep-2 cells 

monolayers in 96-well flat bottom plate. Cells were washed with PBS 24h after infection 

and fixed with methanol 2% hydrogen peroxide (Sigma). Fixed cells were washed with 

PBS and incubated with biotin-conjugated goat anti-RSV antibody (Bio-rad, Watford, 

United Kingdom) diluted in PBS 1% BSA for 1 hour at RT. After, cells were washed 

three times with PBS. Cells were incubated with ExtrAvidinâ-peroxidase (Sigma) 

diluted in PBS 1%BSA for 1 hour at RT. Infected cells were detected with 3-amino-9-

ethylcarbazole, and infectious units were enumerated using light microscopy.  

 

Human NECs obtained as described previously were infected with RSV (MOI 0.1) in the 

presence or absence of HpARI (1 ug/ml), when at around 60% confluence. Three day 

post infection NECs were washed with PBS and harvested using TRIzol. The study was 

approved by NHS Lothian. 
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2.4 HES/Exosomes preparation and fractionation 

HES was prepared by Henry McSorley as described by Johnston et al. 2015. Exosomes 

were obtained from the Buck lab and prepared using ultracentrifugation as described by 

Buck et al. 2014 (Buck et al. 2014; Johnston et al. 2015). HES fractionation was 

performed by Henry McSorley as described in (Osbourn et al. 2017). In brief, Superdex 

200 10/300 GL column was used for the size fractionation while MonoQ 5/50 GL column 

was used for the charge fractionation. A volume gradient from 20 mM TrisHCl pH 8 to a 

maximum of 30% 20 mM TrisHCl + 1 M NaCl pH 8 used as elution buffer and to obtain 

the charge fractionation. 

 

2.5 Single lung cell suspension 

A single lung cells suspension was obtained by digesting lung tissue from mice in 2 U/ml 

liberase TL (Roche, Burgess Hill, UK) and 80 U/ml DNase (Life technologies, Paisley, 

UK) shaking for 35 minutes at 37°C. Digested tissue was passed through a 70um strainer 

and red blood cell lysed with Red Blood Cells Lysis Buffer (Sigma). Live cells were 

counted using a haemocytometer and dead cells excluded using trypan blue.  

 

2.6 In vitro HES fraction assay  

Lung cells were resuspended at 5x105 cells/well in a 96-well round bottom plate. Each 

HES fraction (1 µl of fraction in a 200 µl culture) were tested in the lung cells suspension 

for 24 h. HES, HpARI, exosomes and supernatants were added at the concentration 
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indicated in the respective graph and incubated at 37°C for 24 h. After 24 h supernatants 

were collected, cells were spin at 400 g for 5 minutes, washed and stained for flow 

cytometry.  

 

2.7 Helminth-derived recombinant protein 

HpARI was identified as described in (Osbourn et al. 2017). For ST2 suppression, 

candidate genes were selected comparing emPAI and ST2 suppression profile obtained 

by flow cytometry. The candidate Hp_I25642_IG17586_L548 was selected according to 

the suppression profile and the similar structure with HpARI, and for this reason was 

already being expressed in the lab as a part of another project to characterise the CCP 

domain protein family. Hp_I25642_IG17586_L548 was codon optimised for Homo 

sapiens and gene synthesised (GeneArt, Thermo Fisher) with AscI and NotI at the 5’ and 

3’ respectively. The sequence was ligated into a pSecTAG2A expression vector (Thermo 

Fisher) using AscI and NotI-HF restriction enzymes (New England Biolabs). 

JM109 cells were transformed with ligated construct and the plasmid was obtained using 

miniprep kit (Qiagen) according to manufacturer’s instruction and Sanger sequenced 

using the service from Edinburgh Genomics.  

Expi293 transfection system was used as described by the manufacturer’s instruction and 

mainly performed by other members of the lab. In brief, 5x106 cells/ml >95% viable were 

prepared into a 30 ml culture. Plasmid DNA (1 µg) was diluted in 3 ml Opti-MEMä I 

reduced Serum Medium and incubated with ExpiFectamineä293 Reagent 

(ThermoFisher) for 20 minutes at room temperature, and added to the cells. The next day 
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transfection was enhanced using ExpiFectamineä 293 Enhancer 1 and 2. Supernatants 

were collected 7 days after enhancement and purified using HisTrap excel column (GE 

Healthcare) and imidazole gradient to elute the bound protein. Fractions were assessed 

for protein content using Bradford assay and 5 µl of each fraction was run into a 4-12% 

Bis-Tris protein gel and stained with Coomassie blue. Fractions containing protein were 

pooled, dialysed into PBS, sterile filtered and assessed by absorbance at 280 nm to 

determine protein concentration. Concentration was corrected by the extinction 

coefficient calculate on Expasy protparam.  

 

 

2.8 In vitro IL-33 release assay and oxidation assay 

Confluent CMT-64 were plated at 5x105 cells/well in a 96-well flat bottomed plate, frozen 

on dry ice and thawed at 37°C. Thawed plates were centrifuged at 400 g for 5 minutes 

and supernatants from all the wells collected and pooled together.  In a new 96-well flat 

bottomed plate, 100 µl of thawed supernatants were added with or without 100 µl HpARI 

(2 µg/ml) and IL-33 levels assessed by ELISA. 

 

2.9 In vitro bone marrow cultures  

Tibias and femurs were obtained from euthanised mice in the animal facilities. Bones 

were placed in PBS and processed in the lab. Bones were placed in 70% ethanol for 5 

minutes and washed with PBS. Bone marrow was flushed using a syringe with complete 
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RPMI and it was passed through a 70 µm strainer. Red blood cells were lysed using red 

blood cell lysis buffer (Sigma). Cells were resuspended in complete RPMI (Gibco). 1x106 

or 5x105 cells were plated in a round bottom 96-well plate and co-cultured with IL-2, IL-

7, IL-33 at 10 ng/ml (Biolegend), and our recombinant parasite-derived proteins at the 

concentration indicated in the experiment, at 37°C 5% CO2 for 24h, 3 days or 5 days as 

indicated in the figure legend. After incubation cells were washed and surface stained.  

 

2.10 Flow cytometry staining 

2.10.1 Flow cytometry surface staining 

Lung cell suspension or bone marrow cells suspension were centrifuged at 400 g for 5 

minutes after incubation. Supernatants were collected for further analysis or discarded. 

Cells were washed 3 times with PBS (200 µl/well for all washes). Cells were then 

incubated with 200 µl/well Fixable Blue Live/Dead (Thermo Fisher; 1:1000 in PBS) at 

4°C for 20 minutes in the dark. Cells were spin down washed once with PBS and once 

with FACS buffer. Cells were blocked with anti-mouse CD16/32 antibody (Biolegend; 

1:500 in FACS buffer) at 4°C for 10 minutes. Cells were washed twice with PBS and 

surface stained using antibodies indicated in table 2.1  at 4°C for 20 minutes. Cells were 

washed twice with FACS buffer and resuspended in 250 µl ready for analysis. Samples 

were aquired using 5L or 6L LSRFortessa (BD Biosciences) and analysed using FlowJoä 

software (version 10). 
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2.10.2 Intracellular cytokine stain 

To determine activation and to quantify type 2 immune responses, intracellular cytokine 

stain was performed to detect IL-5 and IL-13 by flow cytometry. Lung cells (3x106 

cells/well) were stimulated with PMA (500 ng/ml), ionomycin (1 µg/ml) and brefeldin 

A(10 µg/ml) for 4h at 37°C 5%CO2. Cells were surface stained as described previously. 

After surface stain, cells were incubated with 100 µl/well of IC Fixation buffer 

(eBioscience, UK) for 20 minutes at 4°C. Cells were washed twice with permeabilization 

buffer (eBioscience). Antibodies for intracellular cytokine stain were diluted in 

permeabilization buffer and cells were incubated at 4°C for 20 minutes. Subsequently 

cells were washed twice with FACS buffer and resuspended in 250 µl FACS buffer ready 

for flow cytometry.  

 

2.10.3 BAL surface stain 

Bronchoalveolar lavages were collected washing lungs with 4x0.5 ml in cold PBS placing 

an 18G x2” needle in the trachea. The first wash of 0.5 ml was used for cytokines 

measurement while the next 3x0.5 ml used for immune cells surface stain. Red blood 

cells were lysed and cells resuspended in FACS buffer. The surface stain protocol was 

followed starting from the blocking step.   

 

Type 2 innate lymphoid cells (ILC2s) were identified in the live cell population as 

CD45+ICOS+CD4-Lineage- (include CD11b, CD3, CD5, CD19,CD49b, GR1, TER-119). 
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CD25 geometric mean fluorescence intensity (MFI) and ST2 MFI were calculated within 

the ILC2 population. Eosinophils were identified as CD45+SiglecF+CD11c- . 

 

Table 2.1 List of antibodies used for flow cytometry 

Antibodies 
(anti-mouse) 
 

Clone Source Dilution Fluorochrome 

CD3 145-2C11 Biolegend 1:200 

1:50 

FITC 

 Biotin 

CD5 53-7.3 Biolegend 1:200 FITC  

CD11b M1/70 Biolegend 1:200 

1:50 

FITC  

Biotin 

CD19 6D5 Biolegend 1:200 FITC 

CD49b DX5 eBioscience 1:200 FITC 

GR1 RB6-8C5 Biolegend 1:200 

1:50 

FITC  

Biotin 

TER-119 TER-119 Biolegend 1:50 Biotin 

CD45R/B220 RA3-6B2 Biolegend 1:50 Biotin 

CD45 30-F11 Biolegend 1:200 AF700 

CD25 PC61 Biolegend 1:200 BV650 

ICOS 15F9 eBioscience 1:100 PCP 

ST2 RMST2-2 eBioscience 1:100 APC 

CD4 RM4.5 Biolegend 1:200 PeDazzle 
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IL-5 TRFK5 Biolegend 1:200 PE 

IL-13 eBio13A eBioscience 1:200 PECy7 

CD11c N418 Biolegend 1:200 APC 

Ly6C HK1.4 Biolegend 1:200 PECY7 

Ly6G 1A8 Biolegend 1:200 PerCP 

SiglecF ES22-10D8 Miltenyi 1:200 PE 

Streptavidin   eBioscience 1:200 eF450 

 

2.11 Enzyme-linked immunosorbent assay (ELISA) 

Ready-SET-Goä mouse IL-5, IL-13, IL-6 and IFNg from eBioscience were used 

according to manufacturer’s instructions. In brief, Nunc MaxiSorpä plates (Thermo 

Fisher, UK) were coated with 50 µl/well of capture antibody diluted in 1X Coating buffer 

and incubated at 4°C overnight. The following day the plate was washed with ELISA 

Wash buffer three times and blocked with 150 µ/well of ELISA Blocking Buffer for 1h 

at RT. Block buffer was removed, plate washed three times with ELISA wash buffer and 

standard and samples (50 µl/well) were added to the plate. For bone marrow culture, 

supernatants were diluted 1:5 (3 days culture) or 1:10 (5 days culture) in block buffer. 

Samples and standards were incubated for 2h at RT. Plate was washed four/five times in 

ELISA wash buffer and incubated 1h at RT with 50 µl/well of detection antibody. After 

incubation, plate was washed four/five times and 50 µl/well of avidin-HRP (1:250 in 

block buffer) added to the plate for 30 minutes at RT. Plates were washed and 50 µl/well 
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of TMB substrate added to the plate and the reaction stopped with 50 µl/well of 2N 

H2SO4. Absorbance was read at 450 and background at 570 nm subtracted.  

 

2.12 Solid-phase ELISA 

Solid-phase ELISA was used to determine if constructs obtained from MedImmune were 

binding our parasite recombinant proteins. 

Corning ä Costar ä 96-well EIA/RIA plate (Fisher Scientific, Thermo Fisher, UK) were 

coated overnight at 4°C with 1 µg/ml of HpBARI N-terminus or C-terminus tagged or 

HpARI diluted in 1X Coating buffer (eBioscience) ( all at 50µl/well). Plate was washed 

three times with ELISA wash buffer and blocked with 150 µl/well ELISA block buffer 

for 1h at RT. Molar equivalents were used for mouse ST2-Fc, mouse and human TRAP-

Fc and a 10-fold dilutions were performed starting at 11.1 nM. Constructs were diluted 

in ELISA block buffer, added to the protein-coated plate (50 µl/well) and incubated for 

2h at room temperature. After the incubation, the plate was washed four times with 

ELISA wash buffer. Anti-human IgG HRP (Invitrogen) diluted 1:3000 in ELISA block 

buffer (50 µl/well) was incubated 1h at room temperature. Plate was washed four times 

and 1X TMB substrate was used (50 µl/well), stopping the enzymatic reaction with 2N 

H2SO4 (50 µl/well). Absorbance was read at 450.  
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2.13 Direct binding assay 

Protein G dynabeads (Thermo Fisher) were coated with 5 µg anti-c-Myc (clone Myc.A7, 

Thermo fisher) or MOPC IgG1 isotype control antibody (in a volume of 200 µl). Mouse 

ST2-Fc, mouse TRAP-Fc and human IgG (MedImmune) were used at 20 mM (diluted in 

100 µl of PBS 1%BSA). Conjugated beads were washed on a DynaMag-2 magnet with 

PBS 0.02% Tween 20. These were then used to immunoprecipitate human IL-33 and 

HpBARI. HpARI and HpBARI were used at 1 µg, while 100ng of IL-33 were used 

(diluted in 100 µl of PBS 1%BSA). Complexes were eluted using 30 µl of 50 mM glycine 

pH 2.8. Eluted proteins and unbound materials were ran on 4-12% SDS-PAGE gels 

(ThermoFisher) under non-reducing conditions using 1X MES buffer (Life technologies) 

for 35 minutes at 200V, and transferred to nitrocellulose membrane using 1X Transfer 

Buffer (Life Technologies) + 20% methanol (Scientific Laboratory Supply) for 80 

minutes at 35V.  

 

2.14 Western blot 

Protein were transferred to nitrocellulose membrane and blocked with 5% BSA for 1h at 

room temperature. Membrane was washed 5 x 5 minutes with PBS containing 1% BSA 

and 0.05% Tween-20. Membranes were then incubated with primary antibody (e.g. anti-

IL-33 or anti-c-myc) in constant shaking for 1h at room temperature or overnight at 4°C. 

Anti-mouse/human IL-33 (R&D System, goat polyclonal cat. AF3626/AF3625) were 

diluted 1:500 in PBS 1%BSA. Anti-c-myc (Thermo Fisher Scientific, mouse monoclonal 
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cat. MA1-21316 ) was diluted 1:2000 in PBS 1%BSA. After incubation, membrane was 

washed 5 x 5 minutes with PBS 1%BSA 0.05% Tween-20 and incubated with secondary 

antibody in constant shaking for 1h at room temperature. Secondary antibodies were 

diluted in PBS 1%BSA. Goat anti-mouse-HRP (Bio-Rad) diluted 1:3000 and donkey 

anti-goat (Thermo fisher Scientific) diluted 1:5000 were used, depending on primary 

antibody species. Membrane was washed 4 x 5 minutes with PBS 1%BSA 0.05% Tween-

20 and one wash x 5 minutes with PBS. Membrane was incubated with WesternSureâ 

Premium chemiluminescent substrate (LI-CORâ) for 5 minutes at room temperature, and 

signal detected using LI-CORâ C-DiGitä Chemiluminescence Western Blot Scanner.  

 

2.15 RNA extraction, reverse transcription and PCR 

RNA was extracted from whole lung tissue or cells in culture.  

From lung tissue, lung were placed in RNALaterä Stabilizing Solution (Thermo Fisher 

Scientific) and stored at -20°C. Lung tissues were transferred from RNALaterä to TRIzol 

(Thermo Fisher Scientific) and homogenised using 3mm stainless steel beads (Qiagen) in 

a TissueLyser II (Qiagen) set up at 25 Hz for 2 minutes.  

Adherent nasal epithelial cells were washed 3 times with PBS and placed in 1 ml TRizol.  

RNA was extracted using the phenol/chloroform method. Complememtary DNA was 

made using Qiagen QuantiTect Reverse Transcription Kit (Qiagen) for RSV L-gene and 

IFNg qPCR or High-Capacity cDNA Reverse Transcription Kit (Applied Biosustems by 

Thermo Fisher Scientific) for ST2 expression. Primers were diluted in TE buffer to a final 
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concentration of 0.025 nM/µl and probes to 0.005 nM/µl. Custom primers and probes 

were purchased from Jena Bioscience or Applied Biosystems. IFNγ and ST2 primer were 

purchased from Life technologies. PCR amplification for RSV L-gene was carried out in 

a 25 µl volume made up of custom 7 µl primer probe mix (300nM primers and 200nM 

probe), 12.5 µl TaqMan mastermix (Applied Biosystems); 1.75 µl H20; 1.25 µl 18S 

(Applied Biosystems); 2.5 µl DNA template.  

For ST2 or IFNg, PCR amplification was carried out in a 25 µl volume made up of 1.25 

µl of pre-made primer probe mix, 12.5 µl TaqMan mastermix; 7.5 µl H20; 1.25 µl 

housekeeping primer ; 2.5 µl DNA template. Amplification was carried out using 

StepOne 48-well plate (Applied Biosystems). PCR data were analysed using the 2-ΔΔCT 

method. In brief, relative gene expression between different samples was calculated using 

the threshold cycles (CTs) generated by StepOne 48-well plate machine and software. 

ΔCT for each samples was calculated subtracting CT of the housekeeping gene (18s or 

RPL37) from the CT of the gene of interest. To obtain the relative gene expression 

between control group and treatment, ΔΔCTs were then obtained subtracting the average 

of the control group ΔCTs (e.g. PBS or RSV infected cells/mice) from the ΔCT of the 

sample. Subsequently, 2-ΔΔCT was calculated and plotted in a graph.  

 

Table 2.2 RSV L-gene custom primer sequence 

Gene  Probe (FAM-TAMRA 5’-3’)  

RSV-L  TTTGAACCTGTCTGAACATTCCCGGTT  
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2.16 Surface Plasmon Resonance (SPR) 

SPR was performed at the Edinburgh Protein Production Facilities (EPPF) (University of 

Edinburgh) by the experience of Dr. Martin Wear. Measurements were performed using 

a BIAcore T200 instrument (GE Healthcare). Mouse ST2-Fc, mouse TRAP-Fc and 

human TRAP-Fc (10 nM) were immobilised on a Protein G sensor chip to 200 response 

unit (RU) for mouse ST2-Fc and to 400 RU for mouse and human TRAP-Fc. Five 3-fold 

dilution were made for HpBARI starting at 10 nM and run on the immobilised sensor or, 

a single 10 nM injection of HpBARI or IL-33 were performed, as described in figure 

legends. 

 

 

2.17 Statistical analysis  

Statistical analysis was  performed using GraphPad Prism 8. One way ANOVA followed 

by Bonferroni’s multiple comparison post test or non-parametric t-test were used  as 

indicated in each graph.   Differences were considered to be significant  at a P value <0.05 

and represented by *p<0.05, **p<0.005, ***p<0.0005 , ****p<0.0001. 
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Chapter 3 

A helminth suppressor of the alarmin IL-33 

 

3.1 Introduction 

HES is a complex mixture of thousands of molecules excreted and secreted by H. 

polygyrus and a source of immunomodulatory molecules. HES administration replicates 

some of the effects of a live H. polygyrus infection (Hewitson et al. 2011; Segura et al. 

2007; Grainger et al. 2010). Following these results, McSorley and colleagues decided to 

study responses in the airway epithelium using an allergen extract from Alternaria 

alternata (McSorley et al. 2014). Using this approach it is possible to sensitise mice 

against OVA and re-call type 2 immune responses at challenge (McSorley et al. 2014). 

Administration of HES during sensitisation abrogates the development of type 2 immune 

responses, reducing eosinophilia and TH2 cytokine production. In particular, HES blocks 

IL-33 release and suppresses early type 2 immune responses such eosinophil infiltrates 

and ILC2s activation (McSorley et al. 2014).  

Before the starting of my project, a parasite-derived protein HpARI (Heligmosomoides 

polygyrus Alarmin Release Inhibitor) was identified through HES fractionation and mass 

spectrometry analysis. A codon-optimised HpARI sequence was cloned into a 

pSecTAG2A vector and transfected into the HEK293T mammalian cell line using 

calcium-phosphate transfection, collecting supernatants containing expressed protein and 
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purifying by nickel-affinity cheomatography. The purified protein was tested both in vitro 

and in vivo and showed to suppress IL-33. HpARI was shown to bind to murine IL-33, 

but it was not known what form of IL-33 it could bind (reduced or oxidised) and whether 

its effect could be translated to human IL-33. 

The main hypothesis is that HpARI binds directly to IL-33, preventing the cytokine from 

being detected and from activating pathways that lead to development of type 2 immune 

responses.  
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3.2 HpARI binds to IL-33 

HpARI had been shown to bind murine IL-33 (Osbourn et al. 2017). Subsequently, we 

wanted to test if HpARI could bind in a similar way to human IL-33. Direct binding assay 

was performed: anti-c-Myc antibody was bound to protein G-coated beads. Myc-tagged 

HpARI was incubated with recombinant human IL-33 and analysed for interaction with 

the anti-myc tag conjugated beads. As revealed by an anti-human IL-33 western blot (Fig 

3.1), HpARI bound to IL-33 and heat-treatment of HpARI ablated the ability to bind the 

cytokine. Heat-treatment was used to denature HpARI and to confirm that the IL-33 

binding was due to the conformation of the protein. A weaker band could be detected in 

the unbound fraction when HpARI was used, confirming that HpARI was removing IL-

33 from the solution by binding it. 
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Figure 3.1 HpARI binds to human IL-33. 

Protein G dynabeads were coated with anti-myc tag antibody or isotype control (iso). HpARI (1 µg) or 

heat-treated (HT) HpARI (90°C for 15 minutes) were incubated with human IL-33 (100 ng) to allow the 

formation of a complex. Subsequently, complexes were incubated with the coated beads and eluted using 

50 mM glycine pH 2.8. Samples run in 4-12% Bis-Tris protein gel under reducing conditions. The line 

showing rhIL-33 is not a direct binding assay but it shows the recombinant protein used as a control. 

Western blot was probed using anti-human IL-33 antibody. Representative of 2 independent experiments. 

Published in (Osbourn et al. 2017) 
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3.3 HpARI does not bind inactive oxidised IL-33 

To further study HpARI binding activity, a mouse lung epithelial carcinoma cell line 

CMT-64, which expresses high level of IL-33 in the nuclei (Osbourn et al. 2017), was 

used. Cells were exposed to freeze and thaw cycle to induce necrosis and release of IL-

33. The hypothesis was that IL-33 released from necrotic CMT-64 can be detected by 

ELISA, and addition of HpARI prior to freeze/thaw will reduce IL-33 detection. As 

shown in Fig.3.2, CMT-64 cells exposed to freeze/thaw released IL-33 in the supernatants 

as detected by ELISA. If HpARI was added prior to freeze/thaw, lower level of IL-33 

were detected by ELISA (Fig.3.2).  

Furthermore, Cohen et al. showed that upon release, IL-33 is rapidly inactivated through 

the formation of two disulphide bonds that alter the structural conformation of the 

cytokine (Cohen et al. 2015). Thus, incubation of supernatants from necrotic CMT-64 at 

37°C would induce IL-33 oxidation. However, the available commercial antibody against 

IL-33 cannot differentiate between reduced and oxidised form (Cohen et al. 2015).  

It was hypothesised that HpARI can bind to reduced but not oxidised IL-33, if this is the 

case HpARI will suppress IL-33 detected by ELISA at earlier time point, when IL-33 is 

still mostly reduced, but not at later time points. After freeze/thaw supernatants were 

collected, pooled to achieve a uniform IL-33 concentration and 100 µl/well of thawed-

CMT64 supernatant was plated in a 96-well plate.  

To study IL-33 oxidation and HpARI binding, CMT-64 supernatants were incubated at 

37°C for 0h, 1h, 2h and 4h, and compared to supernatants taken directly after thaw (0h).  

These time points were chosen according to the study by Cohen. et al in which they show 
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that after 1h almost 50% of IL-33 is in the oxidised form and more than the 90% by 4h 

(Cohen et al. 2015). 

At each time point 100 µl of HpARI or proteinase K heat-treated HpARI (pK HpARI) 

were added to the supernatants and incubated for 1h at 37°C (Fig.3.3A). They were then 

collected and tested for IL-33 by ELISA. Proteinase K was used to proteolytically cleave 

HpARI and exclude any non-protein contaminant to have an effect in the binding. HpARI 

reduced IL-33 detection at 0h and 1h post IL-33 release but not after 2h or 4h. Proteinase 

K treatment of HpARI completely abrogated its effect (Fig 3.3B). These results were 

further confirmed by direct binding interaction assay and western blot in our group, 

showing HpARI specifically binding to reduced IL-33  (Osbourn et al. 2017). Therefore, 

HpARI discriminated between the two forms of IL-33, binding specifically to the active 

form and not to the oxidised cytokine.  
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Figure 3.2 HpARI suppresses IL-33 in supernatants from necrotic CMT-64.  

CMT-64 (5x105 cells/well) were plated in a 96 flat bottom well plate. HpARI (1 µg/ml) was added to the 

cells and the plate was frozen using dry ice. Thawed supernatants were collected and analysed by murine 

IL-33 ELISA kit. Bars representing mean ± SEM. Analysed with unpaired t test. ****<0.0001 

 

 

 

 

 

 

 

 

 

 

 

Freeze/thaw Freeze/thaw
+HpARI

0

500

1000

1500

2000

IL
-3

3 
(p

g/
m

l)
****



 

94 

 

 

 

 

Figure 3.3 HpARI binds only active IL-33.  

Experimental design showed in (A) and results in (B). CMT-64 cell cultures were frozen and thawed, 

supernatants were collected, pooled and incubated at 37°C. As indicted by the graph HpARI (1 µg/ml)  or 

proteinase K treated HpARI (pK HpARI) (1 µg/ml) were added to the CMT-64 supernatants. 

Supernatants were incubated in medium alone, or with HpARI/pK HpARI for 1h at 37°C and analysed 

for mIL-33 concentration by ELISA. Point representing mean ± SEM. Representative graph of 3 

independent experiments. N=4. Analysed by 2way ANOVA with Bonferroni multiple comparison test 

comparing MEDIA vs HpARI and HpARI vs pK HpARI. ***=<0.005; ****=<0.0001 
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3.4 HpARI blocks IL-33-ST2 interaction 

ST2 is the cell-surface receptor for IL-33. We obtained two recombinant constructs from 

MedImmune: an Fc-tagged mouse ST2 (mST2-Fc) and a construct called mouse IL-33 

TRAP (mTRAP-Fc) formed by the fusion of mouse ST2, mouse IL-1RAcP and an Fc-

tag (Economides et al. 2003; Cohen et al. 2015). These constructs were used for binding 

studies, to test if HpARI could prevent IL-33 from binding to the IL-33R. The Fc-tag 

allowed binding of mST2-Fc or mTRAP-Fc to protein-G coated beads, and subsequent 

co-precipitation of IL-33 in the presence or absence of HpARI. Protein-G is a 

immunoglobulin derived from group G streptococci with high affinity for monoclonal 

and polyclonal antibodies, so optimal to conjugate beads or other surface with antibodies 

(Akerström et al. 1985). Human IgG antibody was used as a control to show that the 

binding is specific to the recombinant protein and not to the Fc-region. Fig 3.4 shows an 

anti-IL-33 western blot in which IL-33 was precipitated by bead-bound mST2-Fc and 

mTRAP-Fc. However, incubating IL-33 with HpARI completely abrogated the capability 

of the cytokine to bind both mST2 and mTRAP. Therefore, HpARI binds directly to IL-

33 blocking binding of the cytokine to its receptor.  
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Figure 3.4 HpARI blocks IL-33 from binding its receptor.  

Protein G dynabeads where coated with the same molar equivalent of mST2, mTRAP and human IgG (20 

mM) as a control. IL-33 (100 ng) was incubated with HpARI 1 µg) for 20 min at RT and then the IL-33 ± 

HpARI was added to the coated beads. 50 mM glycine pH 2.8 was used to elute the samples. Samples 

were run on a 4-12% Bis-Tris protein gel, transferred to a nitrocellulose membrane and probed using anti-

mouse IL-33 antibody. Representative of 2 independent experiments 
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3.5 Bone marrow assay to study IL-33-dependent 

responses and the effect of HpARI 

The finding that HpARI binds IL-33 and blocks binding of IL-33 to ST2 in the direct 

binding assay suggests that HpARI might block IL-33-dependent responses. To further 

investigate if HpARI blocks IL-33 dependent responses, I set up an in vitro assay using 

whole bone marrow cells.  

IL-33 signalling leads to development of type 2 immune responses with an increase in 

IL-5/IL-13 production (Halim 2016). The whole bone marrow preparation contains 

multiple cell populations, including type 2 innate lymphoid cells and their precursors. 

ILC2 can be activated in vitro to produce IL-5 and IL-13 when stimulated with IL-33 

(Johansson et al. 2018; Brickshawana et al. 2011). Whole murine bone marrow (BM) was 

collected from wild-type C57BL/6 or IL-13eGFP transgenic mice, the latter of which 

express enhanced green fluorescence protein (eGFP) under the IL-13 gene (Neill et al. 

2010). BM cells were incubated with IL-2 and IL-7 to induce ILC2 proliferation 

(Brickshawana et al. 2011; Neill et al. 2010), in the presence or absence of IL-33 and 

HpARI. Figure 3.5 shows the gating strategy used to identify the ILC2 population and 

the IL-13eGFPhigh population in the bone marrow after 120 hours of culture. BM cultured 

in media without IL-2 and IL-7 contained less viable cells (Fig.3.6), and absence of ILC2 

populations (Fig.3.7), especially at 120h (Fig.3.7B) compared with cells cultured in 

media supplemented with IL-2 and IL-7. IL-33 co-culture induced a decrease in viable 

cells and that might be due to cell activation and subsequent death. Further information 
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that can be obtained from this experiment is that co-culturing bone marrow cells with 

HpARI does not decrease cell viability, thus the protein does not induce cell death 

(Fig.3.6). Adding IL-33 induces expansion of the ILC2 population (Fig.3.7). 

Furthermore, it was investigated which cells are producing IL-13 (Fig.3.8). IL-33 induces 

an increase in the IL-13eGFPhigh populations both at 72h (Fig.3.8A) and 120h (Fig.3.8B). 

The major population producing IL-13 at 72h seems to be an ICOS- Lineageintermediate 

population (Fig. 3.8A). I hypothesises that these could be mast cells or their precursors. 

Mast cells can be derived from the bone marrow and they can respond to IL-33 producing 

IL-13 (Ball et al. 2018; Meurer et al. 2016). However, by 120h the major population 

producing IL-13 were ILC2, identified as ICOS+Lineage- (Fig.3.8B). Following the 

gating strategy in Fig.3.5 ILC2s were gated and the percentage of ILC2 IL-13eGFPhigh 

analysed. IL-33 induces an increase of IL-13eGFP+ cells (Fig.3.9), and blocking IL-33 

with HpARI suppresses the response at 72h (Fig.3.9A) and 120h (Fig.3.9B). However, 

the increase of ILC2 IL-13eGFPhigh was greater in the 120h culture. To further confirm 

the suppressive effect of HpARI, I focused on the IL-13eGFPhigh from the whole live cells 

population, showing that IL-33 increased the percentage of 13eGFPhigh and decrease of 

this population is observed with HpARI both at 72h and 120h (Fig.3.10). 

To analyse cytokine secretion from whole bone marrow cultures and to test if HpARI 

suppresses IL-33-dependent responses, BM from C57BL/6 was cultured and stimulated 

with IL-33 +/- HpARI for 120h. Supernatants were collected and analysed for IL-5 and 

IL-13 by ELISA. IL-33 induced a significant increase in IL-5 and IL-13 production, while 

HpARI suppressed these responses (Fig.3.11). Furthermore, as showed in Fig.3.6 HpARI 
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did not reduce the number of viable cells, however, it might still reduce the general 

activation status of ILC2s, regardless of the stimulus used. To test this possibility, I 

stimulated bone marrow cells with IL-25. IL-25 is another alarmin that activates ILC2 

and induce type 2 immune responses. Here I tested the release of IL-5 in response to IL-

25, and the effect of HpARI, in whole bone marrow culture from wild-type and ST2 KO 

transgenic mice. Both IL-33 and IL-25 induces release of IL-5 in wild-type bone marrow 

culture while only IL-25 induces IL-5 in ST2 KO mice (Fig 3.12). HpARI only suppresses 

the IL-33-dependent response and not the IL-25-induced IL-5 production (Fig 3.12), 

confirming that HpARI is specific to IL-33 and it does not affect the activation status of 

ILC2 as they respond to another stimulation. 

Therefore, HpARI blocks IL-33 from binding to ST2 as analysed by direct interaction 

and it suppresses only the IL-33-dependent responses in the bone marrow assay. In 

addition, the bone marrow assay is a useful method to test parasite-derived protein 

efficacy. 
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Figure 3.5 Gating strategy to identify the IL-13eGFPhigh population and the ILC2s population 

from 120h bone marrow cultures 
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Figure 3.6 Live cells gate in 72h and 120h bone marrow culture.  

IL-13eGFP bone marrow was harvested and cultured with media alone or supplemented with IL-2, IL-7 

and IL-33 (all at 10 ng/ml) and HpARI (1 µg/ml) as indicated in the figure. After 72h (A) or 120h (B) 

incubation, cells were surface stained and analysed by flow cytometry. Representative FACS plot of 2 

independent experiments (A) and one single experiment (B) 
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Figure 3.7 ILC2 activation in BM culture.  

IL-13eGFP bone marrow was harvested and cultured with media alone or supplemented with IL-2, IL-7 

and IL-33 (all at 10 ng/ml) as indicated in the figure. 72h culture (A) and 120h culture (B) were FACS 

stained and samples acquired by flow cytometry. ILC2s were identified as ICOS+ Lineage-. FACS plot 

showing one single experiment for B and a representative plot from 2 independent experiments for A 
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Figure 3.8 IL-13eGFP+ populations in cultured bone marrow cells.  

Bone marrow cells were cultured with IL-2, IL-7, ± IL-33 (all cytokines at 10 ng/ml) and HpARI (1 

µg/ml) for 72h (A) or 120h (B). Cells were then surface stained and analysed by flow cytometry. IL-

13eGFP+ were gated from the live cells, singlets, CD45+ population. FACS plot from 72h representative 

of 2 independent experiments. FACS plot from 120h one single experiment. Showing percentages of 

cells. 
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Figure 3.9 IL-13eGFPhigh ILC2s suppression with HpARI.  

BM cells collected from IL-13eGFP mice were analysed by flow cytometry after 72h (A) and 120h (B) of 

culture. Cells were cultured with 10 ng/ml of IL-2 and IL-7, ± IL-33 and HpARI (1 µg/ml). Cells were 

surface stained and analysed. IL-13eGFPhigh ILC2 were  gated considering around 1% of IL-

13eGFPhigh in the IL-2 + IL-7 group. Representative FACS plot of 2 independent experiments for 72h 

time point. One single experiment for 120h time point 
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Figure 3.10 HpARI suppresses the total IL-13eGFPhigh population.  

 BM cells collected from IL-13eGFP mice was analysed by flow cytometry after 72h (A) and 120h (B) of 

culture. Cells were cultured with IL-2 and IL-7, ± IL-33 (all cytokines at 10 ng/ml) and HpARI (1 µg/ml). 

Cells were surface stained and analysed. IL-13eGFPhigh were considered from the live and singlets cells 

population. Representative FACS plot of 2 independent experiments for 72h time point. One single 

experiment for 120h time point 
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Figure 3.11 Release of IL-5 and IL-13 in response to IL-33 in the bone marrow assay 

Whole C57BL/6 BM cells (1x106 cells/well) were cultured with IL-2, IL-7 in the absence or presence of 

recombinant IL-33 (all cytokines at 10 ng/ml) +/- HpARI (1 µg/ml) in a 96-well plate for 120h. 

Supernatants were collected and tested by ELISA. Bars representing mean and SEM. Results were 

analysed with One-way ANOVA with Bonferroni post-test. ***=0.005; ****=<0.0001. Representative 

graph of 4 independent experiments 

 

 

 

 

 

 

 

 

 

 

 

+
-
-

+
+
-

+
+
+

+
-
+

+
-
-

+
+
-

+
+
+

+
-
+

0

5000

10000

15000

0

5000

10000

15000

pg
/m
l *** ***

**** ****

IL-2+IL-7
IL-33
HpARI

mIL-13 mIL-5
pg/m

l



 

107 

 

 

Figure 3.12 HpARI suppresses only IL-33-dependent responses 

 Whole BM cells (1x106 cells/well)  from wild-type (BALB/c) and ST2-deficient mice (BALB/c 

background) were cultured with IL-2 and IL-7, plus IL-33 or IL-25 (all cytokines at 10 ng/ml) +/- HpARI 

(1 µg/ml) in a 96-well plate for 120h. Supernatants were collected and tested for IL-5 ELISA. Bars are 

mean and SEM. Data analysed with One-way ANOVA with Bonferroni multiple comparison post-test. 

****<0.0001. Representative of 2 independent experiments 
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3.6 IL-33 titration in the bone marrow assay  

The bone marrow assay is a useful tool to study IL-33 dependent responses and the effect 

of parasite-derived proteins before moving on to in vivo models. In this assay, bone 

marrow cells were treated with IL-2, IL-7 and IL-33 all at 10 ng/ml, this concentration 

was following a previous study by Duerr and colleagues, which had not determined an 

optimal concentration to stimulate bone marrow cells (Duerr et al. 2016). An IL-33 

titration to test if maximal amounts of IL-5 and IL-13 were induced at 3 days post-

stimulation with 10 ng/ml of IL-33. Due to the presence of different cell populations in 

the bone marrow culture, supernatants were also tested for IL-6 and IFNg.  

In BM culture, IFNg may be produced by precursor of NK cells or gd T cells (Liang et al. 

2015) and IL-6 may be released by ILC2 and mast cells (Moro et al. 2010). 

Maximal release of IL-5 (Fig.3.13A) and IL-13 (Fig.3.13B) is achieved at lower doses of 

IL-33 between 1 ng/ml and 0.5 ng/ml. IL-6 (Fig.3.13C) and IFNg (Fig.3.13D) can be 

detected in the supernatants, and in contrast to IL-5 and IL-13 maximal release is 

observed at 10 ng/ml of IL-33. All data are presented in one graph (Fig.3.13E) as 

percentage of max value to appreciate those differences. Hence, lower dose could be used 

in the BM assay to test type 2 cytokine release.  
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Figure 3.13 Maximum release of type 2 cytokine is observed at lower dose of IL-33 in the BM assay  

C57BL6 BM was cultured with IL-2, IL-7 (10 ng/ml) and IL-33 (from 10 ng/ml to 0.01 ng/ml). 

Supernatants were collected at 72h and analysed for IL-5 (A), IL-13 (B), IL-6 (C), IFNg (D) by ELISA. 

Merged data presented as % of max value (E).  Points are mean ± SEM. N=6. Representative of 2 

independent experiments 
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3.7 Suppression of ILC2 activation by HpARI in vivo 

Allergens are commonly known to elicit asthma attacks. Fungal allergens like Alternaria 

alternata have proteolytic activity that can damage lung epithelial cells, inducing necrosis 

and release of IL-33, driving asthmatic inflammation (Snelgrove et al. 2014; McSorley et 

al. 2014). Previous experiments in this chapter show that HpARI is able to bind IL-33, 

preventing IL-33 from binding to ST2, and suppressing IL-33-dependent bone marrow 

responses in vitro. HpARI was tested in vivo, using Alternaria alternata as an allergen to 

induce release of IL-33 and activation of the ILC2 population using the same system that 

was used used to show suppression of IL-33-dependent responses by HES (McSorley et 

al. 2014). Mice were administered intranasally with Alternaria allergen, and lungs were 

harvested at 24 h after administration of the allergen. Lung cells were surface stained and 

intracellularly stained for IL-5 and IL-13. The gating strategy is shown in Fig.3.14. 

Alternaria induces ILC2 activation, increasing the percentage (Fig 3.15A-C) and the cell 

counts (Fig. 3.15B-D) of ILC2 positive for IL-5 and IL-13. CD25 expression was 

measured as a marker of ILC2 activation, and Alternaria significantly increased the 

expression of CD25 on the surface of ILC2 (Fig. 3.15E). Blocking the IL-33 pathway 

using HpARI in vivo abrogated ILC2 activation, reducing expression of CD25, IL-5+ and 

IL-13+ ILC2s (Fig 3.15).  
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Figure 3.14 Lung cell suspension gating strategy with FMOs  

Lung cells suspension was obtained as described in material and methods. Cells (3x106 cells/well) were 

then plated in a 96-well round bottom plate and incubated with PMA, ionomycin and brefeldin A for 4h. 

Next, cells were surface stained followed by intracellular staining. Stained cells were analysed by flow 

cytometry. Live cells then singlets were gated. ILC2s are identified as CD45+ CD4- ICOS+ Lineage-. IL-

5+ cells, IL-13+ cells and CD25 MFI cells were measured and quantified 
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Figure 3.15 HpARI suppresses ILC2s activation induced by Alternaria allergen 

 Alternaria (25 µg) was administered intranasally with OVA protein (10 µg) and HpARI (10 µg). Lungs 

were collected at 24 h. Lung cells were stimulated with PMA, ionomycin and brefeldin A for 4h, 

intracellularly stained and analysed by flow cytometry. Bars represent mean and SEM. Data analysed 

with One-way ANOVA with Bonferroni multiple comparison post-test. *=<0.05, **=<0.005, 

***=<0.001. One single experiment. Published in (Osbourn et al. 2017) 
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3.8 Discussion 

Several immune modulatory effects have been associated with the excretory/secretory 

products of the helminth parasite Heligmosomoides polygyrus (HES) (Segura et al. 2007; 

Grainger et al. 2010; McSorley et al. 2014). Recent work showed that HES induction of 

T regulatory cells is performed by a mimic of host TGFb named HpTGM (Grainger et al. 

2010; Johnston et al. 2017). In recent years, researchers have been focusing on finding 

single immune modulatory molecules in parasite secretions with the purpose of 

identifying new therapeutical agents for allergic asthma (Navarro et al. 2016; Melendez 

et al. 2007; Johnston et al. 2017; Park et al. 2009; Ebner et al. 2014). HES administration 

is associated with suppression of IL-33 responses and it prevents inflammatory type 2 

responses in a model of asthma (McSorley et al. 2014). Therefore, the focus of this project 

was to characterise a single protein identified in HES that could replicate the observed 

effect in vivo.  

 

Here we investigate the mechanism of action of HpARI, a protein identified from HES 

and expressed in recombinant form in a mammalian cell line HEK293T. HpARI was 

discovered for its ability to block IL-33 release from necrotic epithelial cells. 

Mechanistically, HpARI binds directly to mouse and human IL-33, specifically blocking 

IL-33-dependent responses in the bone marrow assay in vitro, and ILC2 activation in 

response to Alternaria allergen in vivo. The HpARI binding affinity was confirmed using 

Surface Plasmon Resonance (SPR) by other members of the lab in collaboration with Dr 

Martin Wear. Binding affinity is measured by the Kd value. 
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Lower Kd values indicates stronger binding affinity, and in the case of IL-33 binding to 

ST2 the Kd is 0.46  nM (Lingel et al. 2009; Liu et al. 2013). The Kd of HpARI for murine 

IL-33 is 0.56 ± 0.1 nM, and 260 ± 13 nM for human IL-33, showing a strong affinity for 

murine IL-33 being similar to that of IL-33 to its receptor (Osbourn et al. 2017). Further 

experiments in the McSorley lab, measuring IL-33 by western blot led to the observation 

that HpARI not only suppresses detection of IL-33 by binding to the cytokine directly, 

but also inhibits release of IL-33. In addition HpARI localises in the nucleus of necrotic 

cells only by binding directly to DNA, as DNAse treatment ablates detection of HpARI. 

This was confirmed by a gel shift assay, in which if a protein binds to DNA this DNA 

will be bigger in size and will run more slowly in a DNA gel electrophoresis (Osbourn et 

al. 2017).  

 

Subsequent experiments in the McSorley group, which I assisted with, showed that 

HpARI suppresses type 2 immune responses in a sensitisation and challenge model as 

described in (McSorley et al. 2014). Briefly, Alternaria allergen is able to induce 

sensitisation against a harmless protein: ovalbumin (OVA). After 14 days type 2 immune 

responses can be re-called using OVA in those mice that have been sensitised, while 

administering HpARI during sensitisation reduced antigen-specific type 2 immune 

responses and abrogated inflammatory changes in the lung, and lung resistance and 

compliance at challenge (Osbourn et al. 2017).  
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Helminths can establish chronic infection in the host, due to their ability to reduce type 2 

immune responses that, if not controlled, will lead to parasite expulsion. H. polygyrus is 

an intestinal nematode of mice that can control at multiple levels the immune system 

through the secretion of HES products and exosomes (Segura et al. 2007; Johnston et al. 

2017; McSorley et al. 2014; Buck et al. 2014; Coakley et al. 2017). The IL-33 pathway 

is targeted at different levels during H. polygyrus infection: for example HpARI binds 

and blocks IL-33; ST2 is suppressed at the transcriptional level by exosomes (Buck et al. 

2014; Coakley et al. 2017); and an unidentified molecule induces IL-1b that subsequently 

downregulates IL-33 (Zaiss et al. 2013). The importance of IL-33 is demonstrated not 

only by the multiple ways the parasite uses to interfere with this pathway but experiments 

also showed increased infection burden in parasite-infected ST2-deficient mice (Coakley 

et al. 2017; Townsend et al. 2000). In particular, the H. polygyrus life cycle might induce 

multiple release of IL-33 due to epithelial cell damage. Larvae penetrate the intestinal 

submucosa 24h post-ingestion and after 10 days adult worms will migrate to the intestinal 

lumen (Maizels et al. 2012). This process can induce cell damage, and potentially release 

of IL-33, due to the fact that adult worms measure around 6-12 mm and they need to 

disrupt the epithelium to migrate into the lumen (Pritchett-Corning & Clifford 2012) . 

That suggest that the parasite needs to tightly regulate this pathway and this is an 

evolutionary adaptation to survive in the host. In particular, HpARI is produced both at 

the larval stage and by the adult worm (Hewitson et al. 2013) indicating the possibility of 

suppressing early anti-parasite immunity. To define the role of HpARI during live 

infection, mice could be vaccinated with HpARI prior to infection with H. polygyrus. 
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Protection could be assessed by numbers of eggs in the faeces and adult worm burden. 

Previous studies showed that vaccination with HES or exosomes provide protection 

against H. polygyrus (Hewitson et al. 2015; Coakley et al. 2017).  

The main aim of this chapter is to understand the mechanism of action of HpARI and try 

to use HpARI as a model to develop novel therapeutic agents derived from a parasite. A 

parasite-derived molecule that has been developed toward the clinic is ES-62, a filarial 

protein. In humans, filariasis can be taken as an examples for immunomodulation. Filarial 

nematodes can survive in the host for several years, and this is believed to be due to the 

creation of a tolerance between the host and the parasites. Especially, the ES-62 protein 

from Acanthocheilonema viteae was shown to be extremely immune-modulatory 

affecting dendritic cells, LPS-responses, CD4+ T cells, B lymphocytes (Harnett et al. 

2004; Harnett et al. 2010), and reducing inflammation in a model of arthritis (McInnes et 

al. 2003; Doonan et al. 2018) and asthma (Rzepecka et al. 2013). ES-62 is conjugated 

with phosphorylcholine that sequestrates the adaptor MyD88 blocking TLR and IL-33 

signalling (Pineda et al. 2014; Ball et al. 2018).  

However, ES-62 is an immunogenic tetrameric protein not suitable to be used as a drug 

per se. The understanding of the molecular structure and its activity helped the 

development of small molecule analogues of phosphorylcholine that can be used as a 

therapeutic agents (Al-Riyami et al. 2013).  

In light of this, HpARI is a smaller protein compared to ES-62, 26kDa versus 240 kDa 

respectively (Osbourn et al. 2017; Al-Riyami et al. 2013), but still immunogenic. Further 

experiments are planned to understand HpARI crystal structure and to understand at 
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which molecular site IL-33 and HpARI interact. It is known that the presence of 3 CCP 

domains is essential for the function of HpARI. CCP1 has been shown to bind DNA and 

the other 2 domains are required to selectively bind to active IL-33. These findings 

together with a structural characterisation could help to build a smaller and less 

immunogenic molecule that will resemble and mimic HpARI function. In particular, these 

CCP domains seems to undergo expansion in H. polygyrus (Maizels et al. 2018). CCP 

domain molecules have been associated with the complement system, cytokine receptors 

(i.e. IL-2) and neurotransmitters and many others. It is therefore interesting that in other 

living organism such as parasites, CCP domains have evolved to modulate the host 

immune system.  

Several CCP domain molecules have been identified from HES, and two of them are: 

HpARI that blocks and suppresses IL-33-dependent responses, and is a promising 

molecule to be used against asthma initiation (Osbourn et al. 2017); and HpTGM which 

binds to TGF-b receptor but has no homology to TGF-b (Johnston et al. 2017), with 3 

CCP domains out of 5 being required for its activity (Smyth et al. 2018). Taken together 

these findings indicate that CCP domain-containing proteins can be a target to identify 

immunomodulatory molecules from parasite secretions.  

  

In conclusion, parasites have evolved to survive within the host and they modulate the 

host immune system during inflammatory initiation, adaptive responses and remodelling. 

Single molecules form parasite secretions can mimic the immunomodulatory effect of 

live infection (Harnett et al. 2010; Yazdanbakhsh & Matricardi 2004a; Lambrecht & 
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Hammad 2017), and in the case of HpARI used to target IL-33 and possibly asthma 

development. IL-33 is an emerging cytokine that plays a key role in asthma development 

by inducing a strong type 2 inflammation with activation of ILC2s (Cayrol & Girard 

2018; Halim et al. 2014; Lloyd & Saglani 2015; Brickshawana et al. 2011). A role for IL-

33 is supported by several GWAS studies (Bønnelykke et al. 2014; Moffatt et al. 2010; 

Bønnelykke et al. 2013). IL-33 can be detected in sputum and lung of patients with TH2-

asthma, together with activated ILC2s and IL-33 levels correlate with pathology 

(Kortekaas Krohn et al. 2018; Smith et al. 2016; Seys et al. 2013; Christianson et al. 

2015). Consequently, IL-33 seems a promising target for asthma treatment and clinical 

trials are ongoing to test anti-IL-33 mAb in atopic dermatitis, asthma and COPD 

(AnaptysBio 2018; Londei et al. 2017). In particular mouse experiments suggest that 

blocking IL-33 reduces asthmatic responses during exacerbation (Werder et al. 2018). 

Asthma exacerbations are commonly triggered by respiratory virus infections, with IL-

33 released in the airway upon viral infection (Werder et al. 2018; Kumar et al. 2014; 

Jackson et al. 2014) . Lower respiratory tract infection, especially caused by Rhinovirus 

or Respiratory Syncytial Virus (RSV), during childhood increase the risk to allergen 

sensitisation and recurrent wheeze (Sigurs et al. 2000; Sigurs et al. 2005; Jackson et al. 

2014; Korppi et al. 2004; Sigurs et al. 2010), with the mechanisms still poorly understood. 

Understanding the role for IL-33 in respiratory viral infection, and using HpARI to block 

IL-33, can offer new insight on the role of IL-33 for allergen sensitisation as well as a 

dampening role for anti-viral responses. 
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Chapter 4 

Investigating the RSV-induced type 2 immune 

response and the effect of HpARI 

 

4.1 Introduction 

Respiratory Syncytial Virus (RSV) is the most common respiratory viral infection in 

children and leading cause of severe bronchiolitis (Smyth & Openshaw 2006; Lambert et 

al. 2014). Several epidemiological observations showed that RSV-induced severe 

bronchiolitis in children is a risk factor for the development of wheeze, allergic asthma 

and allergic rhinitis later in life (Korppi et al. 2004; Henderson et al. 2005; Sigurs et al. 

1995; Sigurs et al. 2005; Sigurs et al. 2010). There is currently no vaccine against RSV 

and the only prophylactic treatment available is the humanized monoclonal antibody 

palivizumab for high-risk infants (Blanken et al. 2013; Olchanski et al. 2018; Mochizuki 

et al. 2017). Administration of palivizumab in healthy pre-term infants is associated with 

reduction in recurrent wheeze both during the first year of life and in a 6 year follow up 

(Blanken et al. 2013; Mochizuki et al. 2017). These studies suggest a possible causal link 

between RSV bronchiolitis during infancy and asthma development.  

 

Lack of treatments and vaccination are in part due to a poor  understanding RSV infection, 

especially when we consider detrimental and protective immune responses. In infants, 
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severe RSV infection is associated with airway obstruction, peribronchiolar 

inflammation, airway epithelium destruction and mucus production (Johnson et al. 2007). 

Damaged epithelium is known to release alarmins such as IL-33, which is a mediator for 

initiating type 2 immune responses and believed to be an important factor for allergen 

sensitisation and asthma development (Hammad & Lambrecht 2015; de Kleer et al. 

2016). 

Mucus production is a characteristic feature of type 2 immune inflammation driven by 

IL-13 production (Stier et al. 2016). Single nucleotide polymorphisms (SNPs) in the IL-

13 gene have been associated with severe RSV bronchiolitis during infancy, and these 

polymorphisms are associated with increased production of IL-13 (Forton et al. 2009). 

An emerging role for ILC2s has been shown in respiratory virus infection, and activation 

depending on pro-allergic epithelial cytokines release such as IL-33, IL-25 and TSLP 

(Monticelli et al. 2011; Hong et al. 2014; Chang et al. 2011; Stier et al. 2016). In 

particular, SNPs in the locus for the IL-33 receptor (IL1RL1) have been linked to asthma 

and allergic development (Bønnelykke et al. 2013) as well as disease severity of RSV 

infection (Faber et al. 2012), suggesting a key role for IL-33 in both asthma and RSV 

bronchiolitis.  

To reproduce and study RSV infection, several groups have been using a neonatal mouse 

model of infection. Neonatal mice (<7 day old) mount a type 2 inflammation that is 

observed in human infants, and interestingly secondary RSV infection in later life lead to 

the development of IL-13-dependent AHR and mucus production. The induction of type 

2 immunity in response to RSV infection in early life can drive the development of 
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asthma-like inflammation and phenotype, suggesting an important link between early life 

infection and subsequent asthma development later in life. Type 2 immune responses can 

be driven by alarmin cytokines like IL-33. Respiratory viruses replicate in the airway 

epithelial cells, inducing cell death during viral replication and consequent release of 

alarmins (Kumar et al. 2014). IL-33 has been shown to play a key role in a neonatal model 

of RSV infection. In neonatal mice, RSV induces release of IL-33 that is essential for the 

type 2 inflammation associated with subsequent RSV-reinfection and increased IL-33 

levels are detected in nasal aspirates from human infants hospitalised for RSV infection 

(Saravia et al. 2015). In another study, using Pneumonia virus of mice (PVM) and 

cockroach extract, IL-33 is shown to play a pivotal role in the induction of asthma-like 

responses and decrease anti-viral immunity (Lynch et al. 2016). 

PVM is a natural pathogen of mice, it is similar to RSV and as a natural pathogen, it 

induces pathology in mice at lower viral titre then RSV (Rosenberg & Domachowske 

2008). 

 

With this project I aim to study HpARI as a possible treatment for asthma. The risk of 

developing asthma and asthma exacerbation is associated with respiratory viral 

infections, especially severe RSV bronchiolitis. IL-33 seems a promising target, as it is 

released in the airway upon viral infection (Werder et al. 2018; Kumar et al. 2014; 

Jackson et al. 2014). More studies need to be carried out to understand the role of IL-33 

in RSV bronchiolitis. Our aims are to investigate the role of IL-33 in a neonatal model of 
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RSV bronchiolitis, determining if HpARI has an effect and could subsequently be used 

as a treatment.  

 

4.2 ILC2 activation 24h post RSV infection and the 

effect of HpARI  

Saravia et al. showed a critical role for IL-33 during neonatal RSV-infection in mice. 

Early IL-33 release induces production of IL-13 in the neonatal airway with an increased 

accumulation of ILC2 (Saravia et al. 2015). In this study they infected neonatal mice aged 

5 day or adult mice (4 weeks old) with RSV A2 at 2×105 50% tissue culture infectious 

dose (TCID50) per gram of body weight and they looked for ILC2s 1 day post-infection 

(dpi) and for lung histopathology, lung and BALF at 6 days post re-infection (Saravia et 

al. 2015). 

Here we investigate the activation status of the ILC2 population, using flow cytometry to 

assess intracellular expression of IL-5 and IL-13. BALB/c timed matings were set up at 

least 20 days prior to the start of the experiment. Pregnant mice were carefully handled 

to let them become familiar with human presence and smell for 3 days one week before 

birth. After birth, dams were handled and underwent olfactory conditioning with 

isoflurane (anaesthetic used during the experimental procedure) and the ink used to mark 

the mice, for 3 days before the start of the experiment. Neonates were weighed and 

marked on the feet by tattooing, as ear marking was not an option due to the small size of 

neonatal ears. All these procedures were performed to reduce cannibalism, and none was 
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observed. A schematic representation of the procedure involved in the set-up of the 

experiments is shown in Figure 4.1 and in Figure 4.2 are shown some representative 

gating.  

 

Neonatal mice, aged 7 days, were infected with RSV and culled 24h after infection. 

Active RSV infection induced an increase in lung IL-5+/IL-13+ ILC2s, while UV-

inactivated RSV did not induce ILC2 activation (Fig.4.3). Co-administration of HpARI 

with RSV reduced subsequent ILC2 activation (Fig 4.3). ST2-deficient mice were also 

used to determine the role of IL-33 signalling on ILC2 activation and eosinophilic 

inflammation in the contest of RSV infection. Fig 4.3 shows IL-5+/IL-13+ ILC2 were 

significantly increased upon RSV infection, and this ILC2 activation was significantly 

reduced in the presence of HpARI. Infection of ST2-deficient mice did not result in an 

increase of IL-5+/IL-13+ ILC2s. This suggests that ILC2 activation in neonatal RSV 

infection depends on IL-33, and HpARI can be used to block this response and possibly 

reduce type 2 inflammation.  

 

 

 

 

 



 

124 

 

 

 

Figure 4.1 Representation of the dams’ conditioning prior to start a neonate experiment 
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Figure 4.2 Representative FACS plot for the 24h RSV experiment 

 Lung cells were gated in live cell population, singlets, CD45+, CD4- and ILC2 identified as 

ICOS+Lineage-. Showing gate for ICOS+Lineage- population with ICOS FMO (A), IL-13 FMO and IL-5 

FMO (B) and representative FACS plot from ICOS+Lineage- showing IL-5+IL-13+ for experiment in 
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Figure 4.3 ILC2 activation 24h post-RSV infection of BALB/c neonates and ST2-deficient neonates 

 RSV (6.5x103 PFU/g) was administered intranasally to BALB/c neonates. Mice were sacrificed 24h 

post-infection and whole lung collected for intracellular cytokine stain.  ILC2 were identified as CD45+ 

CD4- ICOS+ Lineage-. Bars showing mean ± SEM. N=3 to 8 from 2 independent experiments. Analysed 

with one-way ANOVA with Bonferroni’s multiple comparison post-test. ***=<0.005, ****=<0.0001 
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4.3 Blocking IL-33 during primary infection reduces 

type 2 immune responses at re-infection 

Re-infection in mice infected with RSV as neonates is associated with development of 

IL-33-dependent type 2 inflammation, which is not observed in adult mice (Saravia et al. 

2015). In our model, BALB/c and ST2-deficient neonatal mice (day 5) were infected with 

RSV in the presence or absence of HpARI. Re-infection was performed 2 weeks after 

primary infection (Fig.4.4A). Immune responses were analysed 3 days post re-infection 

by collecting BALF, to analyse eosinophil numbers (gating strategy showed in Fig.4.4B), 

and lungs for intracellular cytokine staining of ILC2s. RSV re-infection seemed to 

increase eosinophil numbers in the BAL, and HpARI administered together with the virus 

at primary infection appeared to suppress this response. However, an outlier was 

identified which is shown in the graph, but has not been used to calculate the mean (Fig 

4.5A – RSV-HpARI:RSV). Due to the large variance in the RSV-RSV group, statistical 

significance was not achieved. There was also a minor increase in eosinophil numbers at 

re-infection in ST2-deficient mice, which did not reach statistical significance. This 

suggests that eosinophilic responses are not completely IL-33-dependent (Fig 4.5A). 

When ILC2 activation was analysed, RSV re-infection induced a significant increase in 

IL-5+/IL-13+ ILC2s and blocking IL-33 with HpARI at primary infection decreased this 

response. ILC2 activation is IL-33 dependent in this model as no increase in IL-5+/IL-13+ 

ILC2s was observed in ST2 KO mice (Fig 4.5B). 
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Figure 4.4 Experimental plan for the RSV re-infection experiment and eosinophil gating strategy 

Experimental design for the re-infection experiment (A). Eosinophils were identified as 

CD45+SIglecF+CD11c- (B). 
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Figure 4.5 Eosinophils and ILC2 activation during RSV re-infection 

 Neonatal BALB/c and ST2 KO mice at 7 days of life were infected with RSV (6.5x103 PFU/g) (Day 0) 

and co-administered with HpARI (10 µg). 2 weeks after primary infection (Day 14) mice were re-infected 

with RSV and lungs collected 3 days after. BAL were collected and analysed for eosinophil infiltrates (A) 

and IL-5+/IL-13+ ILC2 (B). Bar graph representing mean ± SEM. N=3, one single experiment. Analysed 

with one-way ANOVA with Bonferroni’s multiple comparison test. *=p<0.05, **=<0.005 
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4.4 Analysis of RSV L-gene and IFNg expression by 

real time PCR  

So far, I have shown that RSV infection in mice aged 7 days induces activation of ILC2s. 

This activation depended on IL-33 as ST2-deficient mice showed no ILC2 activation and 

HpARI suppressed this response. In addition, HpARI given only at primary infection 

reduced ILC2 activation at re-infection. Thus, HpARI can suppress ILC2 activation upon 

RSV infection presumably through blocking IL-33-mediated immune responses. 

However, another possibility is that HpARI reduces infectivity of RSV, inducing less 

cellular damage and less release of IL-33. 

Next, to confirm that ILC2 suppression was due suppression of IL-33 and not anti-viral 

activity of HpARI, adult mice were infected with RSV and viral load was analysed by 

qPCR at 4 dpi. Two independent experiments were performed, lungs were collected, 

RNA extracted and converted to cDNA. To analyse viral replication, expression levels of 

the L-gene were tested. The L-gene is the last gene expressed during RSV infection and 

replication, and it has been used as a marker of active infection (Lambert et al. 2014). 

Merging together the results from the two experiments a decrease in L-gene transcription 

was observed with co-administration of HpARI during RSV infection (Fig.4.6A). 

Therefore, the reduction in type 2 immune responses might be caused by fewer viral 

particles as well as IL-33-blocking by HpARI. IL-33 has been associated with dampening 

anti-viral immunity in particular IFNs (Lynch et al. 2016; Werder et al. 2018). Thus, a 

decreased viral titre could be driven by increased IFNg production due to lower level of 
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IL-33 and increased NK cells activity. I tested the IFNg expression in this experiment 

(Fig.4.6B), and did not find any significant change following HpARI treatment. Thus, 

these results suggest that HpARI affect directly the viral particles and suppression of type 

2 immune responses associated with viral infection can be explained with fewer infected 

cells and less IL-33 release.  
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Figure 4.6 L-gene RSV and IFNg expression in RSV infected mice and the effect of HpARI 

HpARI (10 µg) was simultaneously intranasally administrated during RSV infection in adult BALB/c, 

and lungs collected 4 dpi. RNA was extracted and converted into cDNA as described in Materials and 

Methods. RSV L gene and IFNg expression were analysed by qPCR. Gene expression was corrected for 

variation using 18S as the housekeeping gene, and normalised to the mean DCT of the RSV group. Bar 

graph showing fold change of expression ± SEM. Data pooled from two independent experiments, for a 

total N of 8 per group (A). Data from one single experiment, for a total N of 4 per group (B). Analysed 

with unpaired t-test. p=0.013 
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4.5 HpARI might affect RSV infectivity 

To confirm the qPCR results and to assess viral replication, an ex vivo plaque assay was 

performed. The same experiment presented in the last chapter was repeated including 

more groups to better understand the suppressive effect of HpARI on RSV. HpARI was 

intranasally administered at several timepoints: 24h and 2h pre-infection to determine if 

the protein could have an effect on the epithelium and induce protection; simultaneously 

with RSV to check if it has a direct effect on the virus; and 2h post-infection to test the 

possibility of reducing viral spreading to the neighbouring cells. Importantly, HpARI can 

still block IL-33 even if administered 24h prior to stimulation (Osbourn et al. 2017).  

As shown in Figure 4.7, at 4dpi a trend towards lower viral load was observed when 

HpARI was administered at the same time of the virus, and not with pre- or post-

administration, however no statistical significance was observed.  

A similar experiment was performed by Abbie Payne during an MSc project that I 

supervised. RSV and HpARI were co-administered to mice simultaneously, plaque assay 

was performed 4dpi and a similar trend towards viral titre suppression was observed. In 

Figure 4.8 the new experiment (performed by Abbie Payne) is shown together with the 

previous experiment shown in Fig.4.7 for the simultaneous administration only, and 

analysing these data with t-test statistical significance was achieved.  
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Figure 4.7 Ex vivo plaque assay – time course 

Adult BALB/c mice were intranasally administered with HpARI (10 µg) 24h and 2h prior, 

simultaneously and 2h after RSV infection as indicated in the graph. 4 dpi mice were culled and lungs 

collected. Lung homogenate from each mouse was diluted and co-cultured with Hep2 cell line plated in a 

96-well plate and a plaque assay was carried out. One single experiment, for a total of N of 4 per group. 

No statistical significance observed analysing the data with one-way ANOVA with Bonferroni’s multiple 

comparison post-test. 
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Figure 4.8 Ex vivo plaque assay 

Adult BALB/c mice were intranasally co-administered with HpARI (10 µg) and RSV. 4 dpi mice were 

culled and lungs collected. Lung homogenate from each mouse was diluted and co-cultured with Hep2 

cell line plated in a 96-well plate and a plaque assay was carried out. Showing 2 independent 

experiments, one already shown in Figure 4.7 (red symbols) and the experiment performed during MSc 

project (green symbols). Analysed with unpaired t-test. N=7-9. *=<0.05 
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4.6 Reduced viral replication in human nasal 

epithelial cells 

RSV is a human virus, and not a natural pathogen in mice. I had the opportunity to 

perform some experiments using human nasal epithelial cells (hNECs) obtained from 

volunteers as described in Materials and Methods. hNECs were cultured for 4 days with 

RSV in the presence or absence of HpARI. Analysing viral load by qPCR showed a 

significant reduction in RSV L gene in this culture (Fig.4.9). Therefore, HpARI might 

have a directly antiviral effect. This experiment provided more evidence that the 

inhibitory effect observed in the RSV model may be explained by reducing RSV 

infectivity rather than IL-33 suppression.  
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Figure 4.9 Antiviral effect of HpARI in human nasal epithelial cells (hNECs) 

 hNECs were obtained from volunteers as described in Materials and Methods. Cells were infected with 

RSV MOI 1 and simultaneously treated with HpARI (1 µg/ml). After 3 days RNA was extracted, cDNA 

converted and analysed by qPCR for L-gene expression. Gene expression was corrected for variation 

using 18S as the housekeeping gene, and normalised to the mean DCT of the RSV group. Bar graph 

showing fold change of expression. Data from 3 different biological replicates. Analysed with paired t 

test. p=0.023 
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4.7 Discussion 

Asthma is a chronic airway disease characterised by reversible airflow obstruction with 

shortness of breath, wheeze and chest tightness. Respiratory viruses infection during 

childhood, especially RSV, have been associated with wheeze and asthma development 

later in life (Henderson et al. 2005; Sigurs et al. 2010). Studies in mice suggests that RSV 

infection could lead to a dysregulation of the response to bystander antigen and allergen 

(Schwarze et al. 1997; Siegle et al. 2010). The relationship between RSV infection and 

asthma development it is a subject of continuing discussion. In the past years, high interest 

has been focused on the epithelial-derived alarmin IL-33 as initiator of type 2 immune 

responses and it has been strongly associated with allergen sensitisation in the developing 

lung (de Kleer et al. 2016). 

 

In this chapter, HpARI the H. polygyrus-derived IL-33 blocker was tested in a neonatal 

model of RSV infection. Setting up an RSV neonatal model was challenging due to 

unpredictable numbers of neonates, difficulties in breeding mice and tissue collection. 

For these reasons low numbers of mice were used, and low numbers of repeat experiments 

were carried out. 

I have shown that RSV induces ILC2 activation 24h post RSV infection in a neonatal 

model and this response was significantly reduced with HpARI.  

According to the study of Saravia and colleagues, IL-33 released during primary RSV 

infection induced type 2 immune responses at re-infection later in life (Saravia et al. 

2015), therefore I tested HpARI in a re-infection model. IL-5+ IL-13+ ILC2 were 



 

139 

 

significantly increased at re-infection and IL-33 plays a pivotal role as ILC2s were not 

activated in ST2-deficient mice upon RSV re-infection. Eosinophil numbers in the BAL 

did not show statistical significance but a trend towards increased numbers was observed 

in the re-infection group. However, eosinophils numbers were lower than seen in other 

asthma models (e.g. between 5x105/1x106 eosinophils compared to an average of 5000 

eosinophils in our model) and possibly higher numbers might be observed at a later time 

point after re-infection e.g. 6 or 7 days after re-infection (Saravia et al. 2015; Schwarze 

et al. 1999, 2000; You et al. 2015). IL-33 has been suggested to be responsible for 

increasing sensitisation to allergen in the developing lung (de Kleer et al. 2016), raising 

the possibility to prevent allergic sensitisation by inhibition of IL-33 e.g. with HpARI. In 

addition, the key role of IL-33 during sensitisation has been shown in a respiratory viral 

model using pneumonia virus of mice (PVM). Co-exposure of mice to PVM and 

cockroach extract (CRE) induces an IL-33 dependent asthmatic phenotype with 

eosinophilia and mucus production and blocking IL-33 reverses this outcome. IL-33 

blockade induces an increase in type I, type II and type III IFNs responses, restoring the 

anti-viral responses (Lynch et al. 2016; Werder et al. 2018). If on one side, during 

respiratory viral infection, IL-33 seems to be important in the initiation phase (Saravia et 

al. 2015; de Kleer et al. 2016), on the other side IL-33 could play a role during viral-

induced exacerbation in experimental asthma model, in particular suppressing TH1 

development (Ravanetti et al. 2018; Werder et al. 2018). The role of RSV in exacerbation 

has not been studied yet in a laboratory setting, however blocking IL-33 with HpARI 
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might have a role during asthma exacerbation induced by viruses such as influenza or 

PVM (Ravanetti et al. 2018; Werder et al. 2018; Lynch et al. 2016). 

 

Next, the viral load was measured after RSV infection by qPCR of the L-gene or ex vivo 

plaque assay. HpARI co-administration resulted in reduced RSV load, whether measured 

by qPCR or plaque assay, but this effect was only observed on co-administration and not 

if HpARI was administered before or after RSV. To test the effect of HpARI on RSV in 

a more relevant model I used primary human nasal cells obtained from healthy volunteers. 

Nasal cells were obtained from the inferior turbinate and cultured as described in 

Materials and Methods. Nasal cells were infected with MOI 0.1 and viral titre determined 

by qPCR 3 days post-infection. Co-administration with HpARI significantly reduced 

RSV-titre by almost 100-fold therefore HpARI might have direct effect on viral particles. 

I did not measure expression of type I or type III IFNs such as IFNb or IFNl in this 

experiment and I cannot exclude that HpARI induces other anti-viral responses. However 

in the in vivo experiment administration of HpARI 24h prior to RSV infection seemed 

not to affect the viral load, possibly indicating no effect of HpARI in IFNs production by 

epithelial cells. I believe that the anti-viral effect observed is dependent on the positively 

charged CCP1 domain of HpARI as similarly observed for the human cathelicidins LL-

37 that through its cationic residues directly affects bacteria and disrupts viral membrane 

of Influenza A virus  (Li et al. 2006; Tripathi et al. 2013; Currie et al. 2013; Sousa et al. 

2017). Preliminary results from a MSc project in the lab which I supervised have shown 

that HpARI CCP1/2 reduced RSV infectivity in Hep2 cells but reduction was not 
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observed with HpARI CCP2/3. Therefore, HpARI could suppress RSV-induced ILC2s 

activation independently in two different ways. In neonate mice infected with RSV, 

HpARI reduces infectivity and consequently a reduced release of IL-33 induces decreased 

ILC2s responses. Released IL-33 could be still blocked by HpARI, further suppressing 

ILC2s activation. 

 

More studies need to be carried out to understand the role of IL-33 in RSV bronchiolitis 

and the increased risk of developing allergies and asthma later in life. IL-33 seems to be 

a link between respiratory viral infections and asthma initiation in early life. In particular 

during the alveolar phase of the developing lung (between day 3 and day 21 post birth) 

an increase in ILC2, mast cells and eosinophils is observed in mice peaking at day 14 

post birth  (de Kleer et al. 2016), and this is driven by IL-33 which induce remodelling of 

the lungs. However, any further release of IL-33 induced by allergen, and possibly by 

viral infection, lead to sensitisation and to an asthmatic phenotype later in life (de Kleer 

et al. 2016; Saravia et al. 2015). Therefore in mice, the developing lung is already a TH2 

polarised environment with physiological release of IL-33 and ILC2s infiltrates 

accumulating in the lungs. Epithelial cells damaged by RSV infection can release IL-33 

and ILC2 activation, lowering the threshold to induce immunity to allergens during viral 

infection. In the neonatal model used in this chapter, lower eosinophil numbers were 

observed if compared with other asthma-like model. I suggest that to obtain increased 

type 2 immune responses neonatal mice might be infected at the peak of ILC2 and mast 

cells, thus using mice aged 14 days instead of 7 days as used here. In humans, Saravia 



 

142 

 

and colleagues reported an increased IL-33 and IL-13 release in nasal aspirates from 

infants hospitalised with severe RSV bronchiolitis. Levels of IL-33 increased in RSV-

infected infants and IL-13 levels correlates with IL-33. With these results they showed a 

possible connection between severe RSV infection and the induction of a cytokine 

involved in type 2 immunity associated with asthmatic responses. However, it is 

important to appreciate that not all children with severe RSV bronchiolitis develop 

allergies or asthma later in life. These differences are still poorly understood, in particular 

genetic factor such as polymorphism in the IL1R (Faber et al. 2012) could be associated 

with the risk of asthma later in life as a consequence of severe infection. Also to be taken 

into consideration are potential differences in RSV clinical isolates, some of which have 

been shown to cause different immune responses (Moore et al. 2009; Stokes et al. 2011; 

You et al. 2006). Several factors might be responsible for these differences, as mentioned 

genetic factor, viral strain and recently the microbiome has been implicated in shaping 

the immune responses against RSV and the maturation of the gut microbiome is 

associated with the risk of asthma development (De Steenhuijsen Piters et al. 2016; Man 

et al. 2017; Stokholm et al. 2018). Nonetheless, developing new therapies for RSV or IL-

33 might help the fight against allergies and asthma, while helping understand the basic 

biology of asthma induction. 
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Chapter 5 

Helminth-derived suppressor of ST2 

 

5.1 Introduction  

Heligmosomoides polygyrus is a helminth parasite that establishes long-lasting infections 

in laboratory mice (Johnston et al. 2015). Infection occurs via the faecal-oral route when 

infective L3-stage larvae are ingested. Larvae reach the submucosa and they undergo 

maturation to L4-stage larvae and this period is associated with formation of granulomas. 

Adult worms start emerging from the gut wall around 8-10 days and emerge by day 14 

into the lumen (Valanparambil et al. 2014; Johnston et al. 2015). Infection is restricted to 

the intestine but systemic effects are observed i.e. induction of both TH2 and regulatory 

immune response (Maizels et al. 2012; Reynolds et al. 2012; McSorley et al. 2013). These 

effects can be mimicked by the H. polygyrus excretory/secretory products (HES) 

(Grainger et al. 2010; McSorley et al. 2014; McSorley et al. 2015), and dissected to single 

proteins produced by the parasite (Osbourn et al. 2017; Johnston et al. 2017; Smyth et al. 

2018). HES administration is associated with decreased activation of dendritic cells 

(Segura et al. 2007), regulatory T cell induction (Grainger et al. 2010), interference with 

IL-33 (McSorley et al. 2014) and lower level of ST2 expression, the receptor for the 

alarmin IL-33 (Coakley et al. 2017; Buck et al. 2014). The IL-33 pathway, and ST2 in 

particular, is a promising target to develop treatments for asthma, as polymorphisms in 
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IL-33 and the ST2 coding genes are associated with asthma (Moffatt et al. 2010; 

Bønnelykke et al. 2013).  

Parasitic E/S are a complex mixture of molecules including proteins, carbohydrates and 

lipids. Recently extra cellular vesicles (EV) (or “exosomes”) have been identified in the 

E/S of various parasites. For example, EV-derived microRNAs from the parasite have 

been detected in the bloodstream of patients with Schistosomiasis (Meningher et al. 

2017), as well as helminths such a Fasciola hepatica and Echinostoma caproni (Marcilla 

et al. 2012). EV have been hypothesised to play a role in communication and 

immunomodulation as they contain a subset of secreted proteins and miRNA (Buck et al. 

2014; Deatheragea & Cooksona 2012; Filbey et al. 2014; Hewitson et al. 2011). Proteins 

and microRNAs within helminth EV have been shown to protect mice in experimental 

models of colitis: Intraperitoneal administration of N. brasiliensis-deried EV suppressed 

IL-6, IL-1b, IFNg and IL-17a while inducing anti-inflammatory IL-10 in a mouse model 

of colitis (Eichenberger et al. 2018) and similar observations were made with 

administration of F. hepatica EV (Roig et al. 2018). Buck et al. showed that exosomes 

released by H. polygyrus are able to suppress Dusp1, and expression of ST2  on ILC2 and 

in an epithelial cell line, at the level of both surface ST2 protein, and ST2 gene 

transcription (Buck et al. 2014). However, depleting HES of the EV component still 

suppresses ST2 in M2 polarised macrophages both at surface protein levels and gene 

transcription (Coakley et al. 2017), indicating that non-EV mediators might also be 

responsible for ST2 suppression.  
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Prior to the start of this project, further data from the McSorley lab indicated a potent 

effect of HES on ST2 surface expression and that this suppression was not mediated by 

HpARI. Taken together with the results from Coakley and colleagues, HES, EV and non-

EV components suppresses in two distinct ways: ST2 at surface protein expression and 

transcription levels.  

In this chapter I will focus on the protein component of HES that are involved in ST2 

suppression. Previous studies analysed HES, and  different genes expression during larval 

stage and adult stage of H. polygyrus as well as the proteins content both in EV and non-

vesicular component (Buck et al. 2014; Hewitson et al. 2013), giving information at 

which stage the protein is majorly produced by the parasite and where in the secretions 

each protein is most prevalent.  

Our hypothesis was that a protein contained in HES is responsible for ST2 suppression. 

The aims for this part of the project are to identify the responsible molecule, through a 

process of screening HES fractions, and generate a recombinant protein to test in vitro 

and in vivo. 
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5.2 HES suppresses ST2 detection in vitro 

As mentioned in the introduction, HES is a complex mixture of thousands of molecules, 

such as proteins, carbohydrates, lipids and EVs. HES can be obtained by cultivating adult 

H. polygyrus parasites in vitro as described in (Johnston et al. 2015). Buck and colleagues 

concentrated the EV components of HES from the non-vescicular supernatant component 

(EV-depleted HES) through ultracentrifugation (100,000 g) (Buck et al. 2014). EV were 

tested in vivo using the Alternaria model, showing suppression of type 2 immune 

responses and expression of ST2 on the surface of ILC2s. EV suppressed transcription of 

ST2  and ST2 detection by flow cytometry in an epithelial cell line and in M2 polarised 

macrophages (Buck et al. 2014; Coakley et al. 2017).  

To confirm these data, suppression of ST2 on lung cells by HES components was tested 

in vitro. Lungs were obtained from BALB/c mice,  a single cell suspension was obtained 

and cells were cultured with a titration of HES, HES-derived exosomes (Exo) and 

exosomes-depleted HES (Sup). After 24h, cells were surfaced stained and expression of 

ST2 was measured in ICOS+Lineage–CD4–CD45+ ILC2s (lung flow cytometry gating 

shown in Figure 5.1). Lung cells cultured with media alone were used to determine the 

baseline levels of ST2 geometric Mean Fluorescence Intensity (MFI) on ILC2 (Fig.5.2A). 

Similarly, bone marrow cells from the same mice were cultured in media alone or HES, 

Exo and Sup for 24 h and analysed by flow cytometry (Fig.5.2B). ST2 was downregulated 

on ILC2s surface when lung and bone marrow cells are cultured with HES, exosomes or 

Sup. Lower concentration of HES preparation (0.01 µg/ml) do not affect ST2 detection. 

Thus, all HES preparations are able to suppress ST2 detection by flow cytometry in our 
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in vitro model and in addition, the suppression is similar among the preparations 

suggesting that there is a soluble element both in HES and HES-exosomes that carry out 

the suppression.  

A timecourse was carried out to measure how long the suppressive effect of HES took to 

act.  

After digestion, lung cells were incubated with HES for 30 minutes up to 24h. After the 

37°C incubation cells were stained at 4°C and fixed with 2% paraformaldehyde. Fig. 5.3 

shows that suppression occurs rapidly, after 30 minutes incubation, and that expression 

of ST2 increase overtime possibly due to the release of IL-33 from necrotic epithelial 

cells in these cultures (Osbourn et al. 2017). Hence, in our system ST2 expression is 

rapidly reduced by HES. I then hypothesised that this reduction is too rapid to involve a 

transcriptional effect and a reduction on the surface protein. Transcription regulation 

cannot be excluded at later time points, as shown in Buck et al (Buck et al. 2014; Coakley 

et al. 2017). 
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Figure 5.1 Lung gating strategy for measuring ST2 MFI in the ICOS+ Lineage- population 

Gate made on live cells (UV450), Singlets, Lymphocytes, CD45+, CD4- and ST2 MFI was measured on 

the ICOS+ Lineage - 
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Figure 5.2 ST2 MFI in lung ICOS+ Lineage- populations 

Lung and bone marrow cells (1x106 cells) were incubated with a titration of HES, HES-derived 

exosomes and exosomes-depleted HES (Sup) as indicated in the figures. Cells were harvested after 24h, 

surface stained and analysed by flow cytometry. ST2 MFI was measured as Geometric Mean of the 

ICOS+ Lineage- population (ILC2s). Graph showing ST2 MFI (A) and representative histogram for 1 

µg/ml concentration (B). Dotted line representing the control expression of ST2 (A). One single 

experiment. 
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suspension and incubated for 24h at 37 
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Figure 5.3 HES suppresses ST2 even at the earliest time points 

WT mice lungs were harvested and digested to obtain a single cell suspension.  After digestion, cells were 

incubated with total HES (1 µg/ml) as indicated in the graph. After incubation cells were surface stained, 

fixed and analysed by flow cytometry. One single experiment.  
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5.3 Identification of the ST2 suppressive protein 

HES fractionation and mass spectrometry analysis were performed in the lab before I 

started the project as part of the identification of HpARI. The mass spectrometry data 

contains each protein in HES and the estimated abundance of each protein in the size and 

charge fractions. This proteomic data was compared to an in-house transcriptomic dataset 

from H. polygyrus (manuscript in preparation). Therefore, I tested each size and charge 

fraction for ST2 suppression by flow cytometry and the peak of ST2 suppression was 

identified from fraction 10 to fraction 13 for the size fractions and from fraction 45 to 

fraction 48 for the charge fractionation. Considering all the proteins that were in the ST2 

suppression peak for the size fractionation (from fraction 10 to 13), 619 protein were 

identified, while for charge fraction (from 45 to 48) 578 proteins were identified. 

Matching the proteins shared between the 2 sets 113 proteins were identified. Among 

these 113 proteins, 20 of these contained a signal peptide. A signal peptide is a short 

amino acid sequence that indicates the possible secretion of the protein, and as we are 

interested in protein that have been secreted by the parasite, a signal peptide makes the 

protein a better candidate (Petersen et al. 2011). In the group of proteins that were 

expressing a signal peptide: 5 were identified as a apyrase, which have a highly conserved 

enzymatic function (Faria-Pinto et al. 2008) and unlikely to perform something novel as 

ST2 suppression; 2 were identified as VAL-family proteins that are protein expressed in 

almost all parasites secretions (Hewitson et al. 2013; Hewitson et al. 2011). Other proteins 

were identified as containing saponin B-like domain, thierodoxin, heat-shock protein and 

CCP domain proteins, which is an interesting family as two CCP domain-containing 
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proteins, HpARI and HpTGM, have been already identified as immunomodulators 

(Osbourn et al. 2017; Johnston et al. 2017) (Table 5.1). One candidate 

Hp_I25642_IG17586_L548, a CCP domain-containing protein, had already been gene 

synthesised in a parallel project in the lab to study the CCP-domain family and it was 

decided to be tested first. A schematic representation of the process is illustrated in Figure 

5.4A. The ST2 suppression profile was compared to the exponentially modified protein 

abundance index (emPAI), which gives an estimation of the absolute protein content in 

complex mixture. In our case specifically, the emPAI profile estimates the protein content 

for the candidate Hp_I25642_IG17586_L548 in each charge and size fractions. 

The emPAI profile of Hp_I25642_IG17586_L548 peaked at size fraction 11 while ST2 

suppression peaked at fraction 10-13 (Fig 5.4B), and at charge fraction 46, with the 

suppression peak at fraction 42-44 (Fig 5.4C). As a reference, applying the same analysis 

system for Hp_I08175_IG02172_L1570 (HpARI) we can see that according to the size 

fractionation the emPAI value peaks at fraction 12, making it a good match with the ST2 

suppression (Fig.5.4D). However, the peak for the charge fractionation is around fraction 

24-25 making it a poor fit for the ST2 suppression (Fig.5.4E), and further confirming that 

Hp_I08175_IG02172_L1570 was not a good candidate.   

 

Table 5.1 Protein screening for ST2 suppressor candidate and annotation of protein superfamily 

identified with BLAST  

Genomic sequence Protein superfamily 

Hp_I30191_IG22135_L475 Unknown 
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Hp_I30075_IG22019_L477 Metallophosphoesterase 

Hp_I28383_IG20327_L491 Unknown 

Hp_I25828_IG17772_L540 Unknown 

Hp_I25642_IG17586_L548 CCP domain 

Hp_I25217_IG17161_L558 CCP domain 

Hp_I21830_IG13774_L655 Unknown 

Hp_I17392_IG09336_L916 Unknown 

Hp_I15979_IG07923_L1089 Apyrase 

Hp_I15931_IG07875_L1098 Apyrase 

Hp_I12919_IG04863_L2064 Thioredoxin 

Hp_I10525_IG03347_L606 Abhydrolase 

Hp_I09769_IG02969_L1009 CCP domain 

Hp_I08147_IG02158_L2251 Heat shock protein 

Hp_I04668_IG00729_L1906 Apyrase 

Hp_I04148_IG00569_L936 Saposin B-like domain 

Hp_I01450_IG00104_L975 VAL protein 

Hp_I04668_IG00729_L1906 Apyrase 

Hpb-VAL7.1 VAL protein 

Hp_I04667_IG00729_L1917 Apyrase 
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Figure 5.4 Identification of the ST2 suppressor protein 

Candidate protein selection strategy (A). Size and charge fractions (1 µl per well in a 200 µl culture 

volume) were incubated with a single cell suspension from lungs (1x106 cells) obtained as described in 

Materials and Methods. Cells were collected 24h later, surface stained and analysed by flow cytometry. 

Suppression of ST2 was measured in the ILC2 population, comparing ST2 MFI decrease with the media 

alone group. Candidate Hp_I25642_IG17586_L548 emPAI profile and ST2 suppression profile in size 

(B) and charge (C) fractions. Hp_I08175_IG02172_L1570 emPAI profile and ST2 suppression profile in 

size (D) and charge (D) fractions. 
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5.4 Hp_I25642_IG17586_L548 is a CCP domain 

molecule  

Hp_I25642_IG17586_L548 nucleotide sequence was identified through the available 

transcriptome data (manuscript in preparation). An identical transcript 

HPOL_0001228301-mRNA was identified using WormBase ParaSite, and that it has 

been annotated to be formed by 5 exons (546 nucleotide) that encodes for a 163 aa protein 

including a 18 aa signal peptide identified through SignaIP 4.1 (Petersen et al. 2011). 

Exons boundaries were mapped using WormBase ParaSite. Analysing the protein 

sequence by Expasy Prosite and EMBL-EBI InterPro predict a single CCP domain. 

However, when the amino acid sequence was aligned with other CCP domains, it 

appeared to have 2 CCP domains. In addition, as shown previously for HpARI and 

HpTGM, each CCP domain is encoded by 2 exons, confirming that 

Hp_I25642_IG17586_L548 has 2 CCP domains encoded by 2 exons each (Osbourn et al. 

2017; Johnston et al. 2017; Smyth et al. 2018) (Fig.5.5). Furthermore, HpARI and 

Hp_I25642_IG17586_L548 CCP domains was aligned with two well-characterised CCP 

domain proteins: complement factor H CCP10 (Factor H CCP10) and complement 

receptor type 2 CCP2 (CR2 CCP2); as described in (Osbourn et al. 2017) (Fig. 5.6). 

Hp_I25642_IG17586_L548 CCP1 and CCP2 were aligned and it is possible to observe 

the 4 cysteines (C) in position 5, 69, 93 and 110, which define the CCP domain. At aa 99, 

another characteristic of a CCP domain is the presence of a tryptophan residue (W) that 

we can observe for Hp_I25642_IG17586_L548 CCP1 and CCP2, HpARI CCP2 and 3, 
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and CR2. A leucine (L) is observed in the same position for HpARI CCP1, but it is an 

atypical substitution that is observed in the sequence of complement factor H (Osbourn 

et al. 2017). Some other conserved traits can be observed in position 62 and 98 where a 

highly conserved glycine (G) residue is observed, and in position 66 with the presence of 

a valine (V) residue. Two atypical insertions can be found in HpARI CCP2 and CCP3 

(from residue 7 to 33) that are not present in either Hp_I25642_IG17586_L548 CCP 

domains or the CR2 or Factor H CCP domains shown, as described in Osbourn et al. 

(Osbourn et al. 2017). However, Hp_I25642_IG17586_L548 CCP2 show an atypical 

insertion of 10 residues after the second cysteine which is not present in the other CCP 

domains analysed. This sequence analysis is presented to underline that 

Hp_I25642_IG17586_L548 shows typical characteristic of a CCP-domain protein with 

some divergences, similarly to HpARI, which also has atypical insertion in a different 

part of the sequence. These atypical insertion might have been developed by H. polygyrus 

to generate protein with activity or specific binding sites.  
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gtttaattacccaagtttgagatgcttcttctccaactacttcttgccgcgttcatcgct 
                     M  L  L  L  Q  L  L  L  A  A  F  I  A 
gaaggagcagatcaaagctgtaatgaagccccaaagggatactatgttcggctcaagtat 
E  G  A  D  Q  S  C  N  E  A  P  K  G  Y  Y  V  R  L  K  Y 
agcggagataatcgcgtaagcggaaaatatcccagtggtacactagttgaagcatcctgt 
S  G  D  N  R  V  S  G  K  Y  P  S  G  T  L  V  E  A  S  C 
acaaacggactacagatgatagaagggaagaatttttctcgatgcacaaacggaaagtgg 
T  N  G  L  Q  M  I  E  G  K  N  F  S  R  C  T  N  G  K  W 
gtaccagggcttggccgctgcccatatcactgtccacttggcttcttcactggaagcaaa 
V  P  G  L  G  R  C  P  Y  H  C  P  L  G  F  F  T  G  S  K 
taccaagtcgagccatatcctaacaaaggcaaaaaaaaaatggaatggagacctgatgga 
Y  Q  V  E  P  Y  P  N  K  G  K  K  K  M  E  W  R  P  D  G 
tctaaggttttggcttattgcggatggaagagttccggtgcccaagagagaggcgaatat 
S  K  V  L  A  Y  C  G  W  K  S  S  G  A  Q  E  R  G  E  Y 
ggcgaatttcaagcgcgctcttacacctgtcgcgatggagactggctgacggacgacgga 
G  E  F  Q  A  R  S  Y  T  C  R  D  G  D  W  L  T  D  D  G 
gaaccacacgatcaatgtattccagaaagttaggccgtttctctagttgtcaaataaagg 
E  P  H  D  Q  C  I  P  E  S  -   
tcattccg 
 

Exons boundaries: Exon1 Exon2 Exon3 Exon4 Exon5 
MLLLQ =  Signal peptide 
CNEAP= CCP-1 Hp_I25642_IG17586_L548 
YTCRD= CCP-2 Hp_I25642_IG17586_L548 
C = cysteine  
W = tryptophan  
 

Figure 5.5 Hp_I25642_IG17586_L548 genomic and amino acid sequence 

The genomic sequence shows highlight of the 5 exons. The nucleotide sequence highlights the presence 

of 2 CCP-domains. The translated protein is showed in bold in the nucleotides sequence, the presence of 

8 cysteine residues (C) is indicated with purple letters and the tryptophan (W) residues in red. 
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5.5 Cloning and expressing 

Hp_I25642_IG17586_L548 

I identified the Hp_I25642_IG17586_L548 gene that encodes a possible candidate for 

ST2 suppression. To start producing the recombinant protein, a sequence optimised for 

mammalian expression was generated. The sequence was codon optimised to increase 

expression in a mammalian cell line with Invitrogen GeneArt Gene Synthesis and 2 

restriction sites were added to the sequence: AscI at the 5’ and NotI at the 3’ (Fig.5.7), to 

allow sticky-end cloning into an expression vector. Gene codon optimisation consists in 

choosing the most common tRNAs for the species where the protein will be produced, 

adding these tRNAs at the codons of the sequence.  

Figure 5.8A shows an alignment of the genomic sequence of Hp_I25642_IG17586_L548 

directly from the parasites genome versus the sequence obtained after codon optimisation, 

to show the divergences in the nucleotide sequence. However, even if the two nucleotide 

sequences have some divergences in figure 5.8B the alignment of the translated amino 

acid sequence showed that they both generate the same protein and they align after the 

end of the signal peptide of _548. The codon optimised sequence was gene synthesised 

in a pMA-RQ plasmid and subsequently restriction digested, purified and ligated into a 

pSecTAG2A vector that includes a myc-tag and a polyhistidine tag (6-His) at the C-

terminus of the protein (Fig.5.9). The 6-His tag allows purification of the protein from 
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transfected cell supernatants by nickel affinity chromatography using HisTrap excel 

columns and eluting bound proteins using an imidazole gradient.  

Figure 5.9 shows the amino acid sequence cloned into the pSecTAG2A vector 

highlighting enzyme restriction sites. JM109 competent cells were transformed with the 

pSecTAG2A vector containing Hp_I25642_IG17586_L548 sequence. As described in 

Materials and Methods bacterial midiprep was carried out and the plasmid transfected 

using Expi293T system. Supernatant containing protein were collected and purified with 

a HisTRAP excel column. Purified protein was run in a 4-12% Bis-Tris protein gel and 

the gel stained with Coomassie blue (Fig.5.10). Hp_I25642_IG17586_L548 is 163 aa 

long protein, with a predicted molecular weight of 18.1 kDa and a theoretical pI of 7.50. 

The recombinant protein generated, including tags, is a 209 aa long protein, and has a 

predicted molecular weight of 23 kDa, however in the protein gel the size of the protein 

appears to be around 30 kDa. Using NetNGlyc 1.0 and NetOGlyc 4.0, no N-glycosylation 

or O-glycosylation sites respectively are predicted for the protein, thus the differences 

between the predicted molecular weight and the protein gel might be dependent on other 

post-translational modification than N- or O- glycosylation. Moreover, these are 

prediction algorithms only and protein glycosylation might still occur.  
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Codon optimised Hp_I25642_IG17586_L548 sequence with AscI, NotI and TEV 

sites: 

 

GGCGCGCCTCTTGTAACGAGGCCCCCAAGGGCTACTACGTGCGGCTGAAGTACAG 

CGGCGACAACCGGGTGTCCGGCAAGTACCCTTCTGGCACCCTGGTGGAAGCCAGC 

TGCACCAACGGCCTGCAGATGATCGAGGGCAAGAACTTCAGCAGATGCACCAATG 

GCAAATGGGTGCCCGGCCTGGGCAGATGCCCTTACCATTGCCCCCTGGGCTTTTT 

CACCGGCAGCAAGTACCAGGTGGAACCCTACCCCAACAAGGGCAAAAAGAAAATG 

GAATGGCGGCCTGACGGCTCCAAGGTGCTGGCCTACTGTGGCTGGAAGTCCTCTG 

GCGCCCAGGAAAGAGGCGAGTACGGCGAGTTTCAGGCCAGAAGCTACACCTGTCG 

GGACGGCGACTGGCTGACCGATGATGGCGAACCCCACGACCAGTGCATCCCCGAG 

AGCGAGAACCTGTACTTCCAGTCTGCGGCCGC 

 

Figure 5.7 Hp_I25642_IG17586_L548 codon optimised sequence 

Invitrogen GeneArt Gene Synthesis was used to generate a codon optimised sequence. AscI and NotI 

restriction enzyme sites were added to the sequence and they are highlighted in red and green 

respectively. 
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Figure 5.9 Schematic representation of the cloning strategy with sequences 

 Representation of pSecTAG2A vector used to insert Hp_I25642_IG17586_L548 optimised genomic 

sequence (A). Amino acid sequence of Hp_I25642_IG17586_L548 cloned in the pSecTAG2A vector 

highlighting leader sequence (black), AscI sequence (green), Hp_I25642_IG17586_L548 (blue), TEV 

cleavage site (brown), NotI sequence (orange), myc-tag (purple) and 6-His (light blue). 

 

 

 

 

 

 

 

T7---ATG---IgκLeader--- AscI---NotI---myc epitope---6 HIS- Tag---STOP

pSecTAG2A

pSectAG2A leader sequence, Other pSectag2A sequence, AscI sequence, Hp_I25642_IG17586_L548 , 
TEV site, NotI sequence, myc epitope, His tag 

-METDTLLLWVLLLWVPGSTGDAAQPARRASCNEAPKGYYVRLKYSGDNRVSGKYPSGTLVEASCTNGLQ
MIEGKNFSRCTNGKWVPGLGRCPYHCPLGFFTGSKYQVEPYPNKGKKKMEWRPDGSKVLAYCGWKSSGA

QERGEYGEFQARSYTCRDGDWLTDDGEPHDQCIPESENLYFQSAAARGGPEQKLISEEDLNSAVDHHHHHH-

A

B
Ampicillin resistance 



 

164 

 

 

Figure 5.10 Coomassie blue gel of purified C-terminus tagged Hp_I25642_IG17586_L548 

Purified protein (1 µg) was run into a 4-12% Bis-Tris protein gel and subsequently the gel was stained 

with Coomassie Brilliant Blue for 1h. Lanes in the gel have been removed  
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5.7 The C-terminus tag affects the functionality of the molecule 

After purification, the protein was tested in a bone marrow assay. A titration was 

performed to detect the optimal concentration to use the protein. Compared to HES, the 

recombinant protein suppressed IL-5 and IL-13 at a very high concentration of 100 µg/ml, 

while HES suppressed at 1 µg/ml (Fig.5.11A-B). As shown by Osbourn and colleagues, 

recombinant HpARI suppresses IL-33 at lower concentrations compared to HES, and this 

is what should be observed as we are purifying a protein that it is contained in HES 

(Osbourn et al. 2017). In addition, ST2 suppression seems not to correlate with cytokine 

production in response to IL-33 (Fig.5.11C).  

Hp_I25642_IG17586_L548 seems to reduce expression of ST2 at 100 µg/ml and 10 

µg/ml if compared with cell cultured with IL-33 (Fig.5.11C). However, HES suppresses 

ST2 better even below baseline level (IL-2+IL-7 group). The fractionation screening 

identified Hp_I25642_IG17586_L548 as an optimal candidate to be the ST2 suppressor. 

The purified protein seems to be less active than the endogenous HES protein. I believe 

it is the correct protein as using HpARI or other control protein did not shown the same 

effect (Data not shown).  
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Figure 5.11 Hp_I25642_IG17586_L548 effects in the BM culture 

 BM cells (5x105 cells/well) were incubated with IL-2, IL-7, IL-33 (10 ng/ml) and _548 titration as 

indicated in the graph. Supernatants were collected at 72h and analysed for IL-5 (A) and IL-13 (B). Cells 

from 3 wells were surface stained and analysed by flow cytometry for ST2 expression (C). 

A

B

C
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5.8 N-terminus tagged Hp_I25642_IG17586_L548 suppresses 

IL-33 dependent responses  

This difference between HES and purified protein suggests that the purified _548 protein 

has lost activity compared to the endogenous form of _548 contained in HES. I 

hypothesised that the C-terminal tags might have an effect on protein functionality. 

Through PCR and using a specific reverse primer containing a stop codon after the TEV 

cleavage site, a construct was made to express a protein without C-terminal tags. In 

addition, a new sequence was made to have a N-terminus tagged protein. Codon 

optimisation was performed, the new sequences cloned and transfected in Expi293T 

mammalian cell line. Amino acid sequence alignment is shown in Figure 5.12A. In Figure 

5.12B is shown the sequence as it was cloned in the pSecTAG2A vector. The untagged 

protein has a predicted molecular weight of 17.9 kDa while the N-terminus tagged protein 

has a predicted molecular weight of 18.2 kDa.  

Proteins were then purified as shown in the Coomassie blue stained protein gel (Fig.5.13). 

In Table 5.2 are reported the predicted molecular weight (MW) and the approximate MW 

from the protein gel.  
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Table 5.2 Predicted molecular weight of tagged and untagged protein (using the ExPASy 

protparam tool) and approximate molecular weight in Coomassie blue gel.  

 Predicted MW MW protein gel (approx.) 

C-terminus _548 23.4 kDa 30 kDa 

N-terminus _548 18.2 kDa 28 kDa 

Untagged _548 17.9 kDa 26-27 kDa 

 

Subsequently, purified C-terminus and N-terminus tagged protein, and untagged protein 

supernatants were tested in bone marrow cells stimulated with IL-33 and measuring IL-

5, IL-13 and IL-6 by ELISA. Purified N-terminus and untagged proteins suppress IL-33 

responses in a similar manner. Suppression of IL-5 production (Fig.5.14A) and 

suppression of IL-13 (Fig.5.14B) are observed up to 0.1 µg/ml of purified protein and 0.1 

µl of supernatants from transfected cells with the untagged _548 protein. As a control, 

empty-vector-transfected supernatants had no effect (data not shown). Production of IL-

6 (Fig.5.14C) was observed with IL-33 and suppression was observed with N-terminus 

and untagged protein up to 0.01 µg/ml or 0.01 µl of protein respectively. C-terminus 

tagged protein do not suppresses any of the IL-33 dependent responses in this assay, at 

any concentration up to 10 ug/ml (Fig.5.14). Therefore, the C-terminus tags affected the 

functionality of the protein while the N-terminus tags allow to purify and retain protein 

activity.  
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A 

                METDTLLLWVLLLWVPGSTGDAAQPARRASCNEAPKGYYVRL 
                METDTLLLWVLLLWVPGSTGDAAQPARRASCNEAPKGYYVRL                           
HHHHHHEQKLISEEDLMETDTLLLWVLLLWVPGSTGDAAQPARRASCNEAPKGYYVRL 
 
KYSGDNRVSGKYPSGTLVEASCTNGLQMIEGKNFSRCTNGKWVPGLGRCPYHCPLGFF 
KYSGDNRVSGKYPSGTLVEASCTNGLQMIEGKNFSRCTNGKWVPGLGRCPYHCPLGFF 
KYSGDNRVSGKYPSGTLVEASCTNGLQMIEGKNFSRCTNGKWVPGLGRCPYHCPLGFF 
 
TGSKYQVEPYPNKGKKKMEWRPDGSKVLAYCGWKSSGAQERGEYGEFQARSYTCRDGD 
TGSKYQVEPYPNKGKKKMEWRPDGSKVLAYCGWKSSGAQERGEYGEFQARSYTCRDGD 
TGSKYQVEPYPNKGKKKMEWRPDGSKVLAYCGWKSSGAQERGEYGEFQARSYTCRDGD 
 
WLTDDGEPHDQCIPES- 
WLTDDGEPHDQCIPESENLYFQSAAARGGPEQKLISEEDLNSAVDHHHHHH- 
WLTDDGEPHDQCIPES- 
 
 

B 

 

 

 

 

Figure 5.12 Sequence alignment of different tagged version of Hp_I25642_IG17586_L548 

 Untagged (red), C-terminus tag (black) and N-terminus tag (purple) Hp_I25642_IG17586_L548 

alignment. Underlined is the _548 sequence. Highlighted in green is the TEV cleavage site, in yellow the 

myc tag and in light blue the polyhistidine tag. Final aa sequence cloned in pSecTAG2A (B). 

 

pSecTAG2A leader sequence, Other pSectag2A sequence, AscI 
sequence, His tag, myc epitope,Hp_I25642_IG17586_L548 

 
METDTLLLWVLLLWVPGSTGDAAQPARRAHHHHHHEQKLISEEDLSCNEAPKGYYVRLK
YSGDNRVSGKYPSGTLVEASCTNGLQMIEGKNFSRCTNGKWVPGLGRCPYHCPLGFFTG
SKYQVEPYPNKGKKKMEWRPDGSKVLAYCGWKSSGAQERGEYGEFQARSYTCRDGDWLT

DDGEPHDQCIPES- 
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Figure 5.13 Coomassie blue-stained SDS-PAGE gel of purified _548 protein and untagged _548-

transfected HEK293 supernatants  

Tagged _548 protein (1 µg) and untagged _548 protein (5 µl of unpurified supernatant) were run into a 4-

12% Bis-Tris protein gel electrophoresis under reducing conditions. Gel was stained with commassie 

blue. Lanes were removed for clarity.  
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Figure 5.14 N-terminus tagged Hp_I25642_IG17586_L548 suppresses IL-33 dependent responses 

 Bone marrow cells (5x105 cells/well) were cultured with a titration of untagged _548-transfected 

HEK293 supernatants (“_548 notag”) and a titration of purified C-terminus and N-terminus tagged 

proteins for 72h. Supernatants were collected and tested for IL-5 (A), IL-13 (B) and IL-6 (C) by ELISA. 

Symbols are mean ± SEM of three replicate cultures. Representative of >3 repeats. 
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5.9 Discussion 

Suppression of ST2 is associated with HES administration both in vitro and in vivo (Buck 

et al. 2014; Coakley et al. 2017). EV contained in HES are able to suppress ST2 

transcription and ST2 receptor protein on the cell surface, but when HES was depleted of 

its EV component ST2 suppression at both transcription level and membrane receptor 

was still observed (Coakley et al. 2017), suggesting that a soluble element was still able 

to suppress ST2. In addition, blocking IL-33 with the newly discovered parasite protein 

HpARI during Alternaria allergen stimulation in vivo did not suppress ST2 expression, 

as was shown in previous results prior my project start. Taken together all this data 

suggests the presence of a protein, different from HpARI, that suppresses ST2.  

 

In the in vitro model used in this section, a single lung cell suspension or bone marrow 

cells were cultured with a titration of HES, EV and EV-depleted HES (kindly provided 

by Dr. Amy Buck) and suppression of ST2 detection was observed with all HES 

components, replicating what already showed by Coakley and colleagues using a 

different system. 

Here we identified the Hp_I25642_IG17586_L548 gene that encodes a protein that 

suppresses ST2. The gene was identified by screening the available HES fractions for 

ST2 suppression and matching these results with HES mass spectrometry analysis and 

genome sequencing. Among the proteins that correlated with suppression of ST2 and 

expressed a signal peptide Hp_I25642_IG17586_L548 was tested first as was already 

being expressed in the lab for another project involving the CCP domain proteins family. 
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A C-terminus tagged protein was purified and proved that suppressed IL-5 and IL-13 in 

bone marrow cultures, and ST2 expression on ILC2s, but it was less effective than 

expected.  It was shown that the tag modified the efficacy of the protein as 1 µg/ml HES 

suppressed IL-33-dependent responses in the BM assay compared to 100 µg/ml of 

purified protein. An untagged version and an N-terminus tagged version were generated 

and both were able to suppress production of IL-5, IL-13 and IL-6 in response to IL-33 

at lower concentration compared to the C-terminus tagged protein, indicating that the N-

terminus tagged protein is more effective. Taking this observation, the C-terminus of the 

protein might contain the key element for the protein functionality and in particular, 

blockade of IL-33 responses. Adding a tag in this section might induce a conformational 

change or steric hinderance of an active site that is detrimental for the protein activity.  

 

From a mechanistic point of view, and from the results showing HES suppressing ST2 

detection after 30 minutes incubation, it was hypothesised that the protein binds directly 

to ST2 and I will discuss this in the next chapter. As I have now shown that the 

Hp_I25642_IG17586_L548 protein is the active constituent that blocks ST2 detection 

and prevents responses to the alarmin cytokine IL-33, the protein was renamed as 

Heligmosomoides polygyrus Binds Alarmin Receptor and Inhibits or HpBARI. 

 

HpBARI was considered as an optimal candidate for two reasons: suppression peak 

matched the emPAI profile; and EMBL-EBI InterPro identified the protein as a CCP 

domain-containing protein. From the translated sequence some conserved CCP domain 
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features can be observed for example: the 4 cysteines that form a CCP module and the 

presence of leucine, tryptophan, glycine and valine residues. The alignment of the 

sequence to other CCP domain-containing proteins highlighted the presence of 2 CCP 

modules.  

HpARI CCP domains have some conserved characteristics but they show some atypical 

divergences that are not observed in other CCP proteins (Osbourn et al. 2017). In 

particular, two insertion of » 20 aa between cysteine 1 and cysteine 2 in CCP2 and CCP3. 

Other experiments in the McSorley lab showed that these atypical insertions might be 

essential for HpARI binding activity to IL-33, as deleting them ablates HpARI’s activity 

(unpublished data). An atypical insertion of around 10 aa is observed in HpBARI CCP2 

that is not observed in either CR2 CCP2 and factor H CCP10. The presence of this 

atypical insertion might be the reason why both Expasy Prosite and EMBL-EBI InterPro 

do not predict the second CCP domain in Hp_I25642_IG17586_L548. 

The presence of this atypical insertion in HpBARI CCP2 is of high interest to be 

considered in future studies for analysing the mechanism of action of the protein. In 

particular, next steps will be to clone and express the single HpBARI CCP domains and 

determine if both are required for its activity. Furthermore, it is possible to modify or 

remove the atypical insertion from HpBARI sequence and determine if this is essential 

for the protein function as showed for HpARI. Analogously to HpARI and HpTGM, 

HpBARI is a CCP domain protein. HpARI and HpTGM CCP domains are essential for 

the protein function (Smyth et al. 2018; Osbourn et al. 2017). We hypothesise that CCP 

domains represent an adaptable scaffold used by numerous parasites, especially H. 
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polygyrus, to achieve immune modulation (Maizels et al. 2018). HpBARI CCP domains 

need to be consider for its functionality and in particular if each of them execute a 

different function.  

In summary, a novel protein that suppresses ST2 detection by flow cytometry and blocks 

IL-33-dependent responses was identified from HES. The protein was named HpBARI, 

as it is hypothesised that it binds to the alarmin receptor ST2, and inhibits the responses. 

It shows typical characteristics of a CCP domain protein indicating with more evidence 

that H. polygyrus uses these modules as an evolutionary conserved system to modulate 

the host immune system. The HpBARI gene sequence show no close homologues with 

other parasites. In addition, analysing the proteomic data from the Buck and colleagues, 

HpBARI is predominantly detected in the non-EV fraction of HES (Buck et al. 2014). 

This indicates that suppression of ST2 transcription by EV is unlikely to be mediated by 

HpBARI, but potentially by the miRNAs detected in the EV. Further investigation need 

to be carried out to understand the mechanism of action of HpBARI. In vitro HpBARI 

shows suppression of IL-33-dependent responses, therefore I hypothesised that HpBARI 

may suppress in IL-33-dependent mouse models of asthma in vivo. Furthermore, due to 

the rapid suppression of ST2, I further hypothesised that the HpBARI mechanism of 

action is through direct binding to ST2. These hypotheses will be tested in the next 

chapter. 
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Chapter 6 

Dissecting the mechanisms of action of HpBARI 

 

6.1 Introduction 

In the previous chapter a new transcript Hp_I25642_IG17586_L548 was identified from 

the excretory/secretory products of H. polygyrus, and it was re-named HpBARI. In vitro, 

HpBARI suppresses the production of IL-5, IL-13 and IL-6 in bone marrow culture in 

response to IL-33. The HpBARI protein consist of 2 atypical CCP domain and it 

suppresses detection of ST2 by flow cytometry. I hypothesised that suppression of ST2 

induces blockade of IL-33-dependent responses in vivo. I will use the Alternaria model 

to induce rapid release of IL-33 and I will detect eosinophils in both lung tissue and 

BALF. In addition, I will analyse ILC2 activation in lung tissue, and ST2 transcription 

levels. After I will test my second hypothesis that HpBARI suppresses ST2 detection by 

binding directly to ST2.  

To test the binding I will carry out two assays: direct binding assay using ST2-conjugated 

beads and solid-phase ELISA, coating the ELISA plate with the protein of interest and 

using ST2 to determine binding activity. I hypothesise that the binding of HpBARI to 

ST2 is sterically interfering with the detection of ST2 by flow cytometry antibodies and 

that explains why HpBARI reduced detection of ST2. Furthermore, I hypothesise that this 

binding might interfere with the IL-33 binding site on ST2 and subsequently, the cytokine 

cannot bind and induce type 2 immune responses.  
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6.2 HpBARI in vivo suppresses ST2 and type 2 

immune responses  

HpBARI N-terminus tagged has been shown to suppress IL-33-dependent responses in 

whole bone marrow cell cultures. Next, HpBARI was tested in vivo using the Alternaria 

model used for HpARI (Osbourn et al. 2017). Type 2 immune responses were assessed 

24h after Alternaria allergen administration. As expected Alternaria administration 

induces an increase in BAL (Fig.6.1A) and lung eosinophils (Fig.6.1B), and HpBARI 

significantly suppressed this response.  

I then checked IL-13+ ILC2 by intracellular cytokine stain (ICS). Alternaria induced an 

increase percentage of IL-13+ ILC2 (Fig.6.1C), and while HpBARI co-administration 

appeared to suppress this, it did not quite reach statistical significance (p=0.0566). IL-5+ 

ILC2 were also analysed by ICS, while an increase was observed with Alternaria 

administration only a small trend toward suppression was observed with HpBARI 

(Fig.6.1D). CD25 MFI was measured in the ILC2 population as a measure of cellular 

activation (Bartemes et al. 2011), showing significant increase with Alternaria and CD25 

MFI reduction with HpBARI co-administration (Fig.6.1E). When the BAL fluids were 

analysed for IL-5 levels, Alternaria significantly increased the IL-5 levels and HpBARI 

suppressed this response (Fig.6.1F). IL-13 ELISA was performed but IL-13 levels were 

below the detection limits (data not shown).  

The levels of ST2 detected on ILC2 was significantly suppressed with HpBARI when 

Alternaria was co-administered, compared to PBS control levels (Fig.6.2A-B-C). 
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Furthermore, as total HES and its EV content is associated with reduced ST2 

transcription, ST2 expression was examined in this experiment. ST2 transcription was 

significantly increase with administration of Alternaria, and this increase was suppressed 

by blocking ST2 and IL-33 responses (Fig.6.2D). However no further suppression below 

baseline (PBS group) was observed. Therefore, taken together all these data indicate that 

HpBARI reduces type 2 immune responses in vivo, suppressing ST2 on ILC2s surface 

and this suppression is specific to the protein level and not to the transcription of ST2. 
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Figure 6.1 HpBARI effects in the in vivo Alternaria model.  

Alternaria allergen (10 µg) was co-administered with HpBARI N-terminus tagged (10 µg). BALs were 

collected and analysed for eosinophil numbers (identified as CD45+ SiglecF+ CD11c- ) (A). Lungs were 

collected and a single lung cell suspension was obtained as described in Materials and Methods. Cells 

were surface stained and number of eosinophils determined (B), ST2 MFI of ILC2s (C) and CD25 MFI 

(D). Intracellular cytokine stains was performed in a single lung cell suspension stimulated with PMA, 

ionomycin and brefeldin A and IL-13+ ILC2s determined (E). BAL fluids were analysed for IL-5 by 

ELISA (F). Bar graphs are mean ± SEM. Data pooled from two independent experiment for a total of N 

number of 7-8. Analysed by one-way ANOVA with multiple comparison test with Bonferroni’s post-test 

**=p<0.005, ***=p<0.001, ****=p<0.0001 
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Figure 6.2 HpBARI suppressed ST2 detection by flow cytometry but did not change ST2 

transcription in the lung 

Alternaria allergen (10 µg) was co-administered with HpBARI N-terminus tagged (10 µg).  Analysed 

tissues were from the same experiment in Fig.6.1. Lungs were collected and a single lung cell suspension 

was obtained as described in Materials and Methods. Cells were surface stained and ST2 MFI quantified 

(A). Representative histogram (B) and FACS plot (C) for ST2 suppression. RNA was extracted and 

converted into cDNA as described in Materials and Methods. TaqMan qPCR was performed to analyse 

transcription of the il1rl gene (ST2) (D). Data pooled from two independent experiment (A and D) for a 

total N of 7-8, except for ALT-OVA group which is one single experiment N=4. Analysed with one-way 

ANOVA using Bonferroni’s multiple comparison post-test. **=p<0.005, ***=p<0.001, ****=p<0.0001. 
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6.3 Solid phase ELISA confirms that HpBARI binds 

to ST2 

HpBARI suppresses detection of ST2 by flow cytometry in vivo. This suppressive effect 

is associated with reduced eosinophils and ILC2s activation. The observation that HES 

suppresses ST2 detection after 30 minutes incubation (Fig.5.3) suggests that the protein 

acts rapidly and it might be a direct binding interaction. To test the hypothesis that 

HpBARI was binding to ST2, N-terminus and C-terminus tagged purified protein were 

used to coat an EIA/RIA plate to perform solid-phase ELISA, with HpARI-coated wells 

used as a control. 

I hypothesised that HpBARI binds to ST2 so if I add to the wells the mST2-Fc or mTRAP-

Fc construct, if my hypothesis is true, I should be able to detect the Fc tag in the ST2 or 

TRAP using an anti-human IgG HRP subsequently. When the ELISA plate was coated 

with N-terminus tagged HpBARI, an increase in optical density was observed with 

mST2-Fc and mTRAP-Fc (Fig.6.3A) that was not observed when the plate was coated 

with HpBARI C-terminus tag (Fig.6.3B) and with HpARI (Fig.6.3C). However no 

increase in optical density was observed with the human TRAP construct. Therefore, 

mST2-Fc and mTRAP-Fc can bind to HpBARI N-terminus tagged protein and this 

binding property is lost with the C-terminus tag. In addition, this binding cannot be 

replicated using a human construct suggesting that HpBARI specifically binds to the 

murine receptor.  
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Figure 6.3 mST2 and mTRAP binds to N-terminus tagged HpBARI 

An ELISA plate was coated with 1 µg/µl of purified N-terminus (A), C-terminus tagged HpBARI (B) and 

HpARI (C). A titration of the same molarity of mST2-Fc, mTRAP-Fc and hTRAP-Fc was used as 

indicated in the graph. This was based on the top concentration of mST2-Fc of 1 µg/ml = 11.1 nM. Anti-

human IgG was used as a control. Points represent mean ± SEM from three replicate wells. 

Representative of 3 independent experiments 
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6.4 HpBARI binds to ST2 and blocks binding of IL-33 

to its receptor 

To further test the hypothesis that HpBARI binds to ST2, thus inhibiting IL-33-ST2 

interactions, analysis of direct interactions was performed using mST2-Fc obtained from 

MedImmune. Protein G dynabeads were conjugated with mST2-Fc, HpBARI was 

allowed to bind to ST2-conjugated beads and IL-33 incubated subsequently, to see if it 

could bind to its receptor (Fig.6.4). 

After IL-33 incubation, samples eluted from the beads were collected and anti-myc and 

anti-mouse IL-33 western blots performed. HpBARI was detected by western blot when 

the beads were conjugated with mST2-Fc (Fig.6.5) confirming that HpBARI N-terminus 

was bound to ST2, and the binding was specific to the construct and not to the Fc region 

as IgG-conjugated beads could not interact with HpBARI (Data not shown). IL-33 could 

be detected only in the absence of N-terminus tagged HpBARI. HpBARI C-terminus 

tagged did not show binding to ST2, and IL-33 was able to bind its receptor (Fig.6.4) 

Therefore, HpBARI binds directly to ST2 and this interaction prevents binding of IL-33 

to ST2.  
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 Figure 6.4 HpBARI binds directly to ST2 and blocks IL-33 to bind its receptor.  

Graphic representation of the direct binding assay (A). Protein G dynabeads were conjugated with mST2-

Fc (1 µg) obtained from MedImmune (1). HpBARI N-terminus tag protein was allowed to bind the 

conjugated beads (2). Subsequently, IL-33 (100 ng) was added (3). Samples eluted from the binding 

assay were run in a 4-12% Bis-Tris protein gel and western blot was performed. Top membrane was 

revealed with anti-c-myc antibody to detect tagged HpBARI. Bottom membrane was incubated with anti-

mIL-33 to determine if IL-33 was still able to bind ST2. Representative of 2 independent experiments 
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6.5 Surface Plasmon Resonance   

The solid-phase ELISA result and the direct binding assay result suggested that the N-

terminus BARI can bind ST2 and block IL-33-ST2 interaction. To investigate this further 

and to quantify the affinity of this interaction, surface plasmon resonance (SPR) was 

performed. Surface plasmon resonance is a bioanalytical technique that allows 

quantification of a binding interaction using a gold-coated chip. It is not the purpose of 

this section to explain the bio-physics of SPR but in brief, SPR measures the refractive 

index of light at a specific angle that hit the chip. Any proteins that bind to the chip will 

generate a variation of the refractive index, which can be measured and displayed as a 

sensogram. The sensogram provides real time information about the binding and the 

specificity of the interaction. Mouse ST2-Fc, mTRAP-Fc and hTRAP-Fc were coated 

onto a protein G chip via their Fc tags. The binding of HpBARI N-terminus was measured 

subsequently. HpBARI was run onto the coated chip at five 3-fold dilution starting at 10 

nM. In Fig.6.5 the sensogram shows that HpBARI N-terminus tagged bound mST2-Fc 

and mTRAP-Fc but not hTRAP-Fc. The sensogram is a representative of 3 repeats and 

the analysis was performed with the help of Dr. Martin Wear (Edinburgh Protein 

Production Facility). Modelling the binding curve on a 1:1 stoichiometry interaction the 

mean Kd for BARI binding to ST2 is 0.34 ± 0.25 nM, with a complex half life time of 

760s, that means it takes around 12 minutes for half of the HpBARI molecules to 

dissociate from ST2.   The mean Kd for BARI binding to mTRAP is 0.2 ± 0.16 nM  and 

a complex half life time of 1150 s. The Kd for HpBARI binding to hTRAP was ≥ 100 nM, 

indicating that no binding was observed. Furthermore, the binding profile of IL-33 to 
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mTRAP-Fc was determined by SPR showing that IL-33 is binding to the construct 

mTRAP as expected, with high affinity Kd 0.1 ± 0.4 nM (Fig.6.6A). Following the result 

showing that HpBARI blocked IL-33/ST2 interaction in the binding assay, this blocking 

activity was tested using SPR. Mouse TRAP-Fc (10 nM) was coated onto the SPR chip, 

a single injection of murine IL-33 (10 nM) was carried out and showing binding to the 

mTRAP (Fig.6.6B – black line). A single injection of HpBARI N-terminus (10 nM) was 

performed into a different channel of th coated chip showing binding to the construct 

(Fig.6.6B - red line). After equilibrium was reached between HpBARI and mTRAP, a 

single injection of IL-33 (10 nM) was performed showing no binding (Fig.6.6B). 

Therefore, we confirmed using SPR what we observed in the direct binding assay, 

HpBARI binds to ST2 blocking IL-33/ST2 interaction. 
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Figure 6.5 Surface plasmon resonance using Biacore T200 to determine HpBARI-ST2 binding 

 Protein G chip was coated with 10 nM of mST2, mTRAP and hTRAP. As indicated in the graph, dilution 

of HpBARI N-terminus were run through the coated chip. Reference corrected single kinetic titration 

SPR binding curves (red), and a globally fitted 1:1 kinetic binding model (black). Representative of three 

single runs. Analysis performed by Martin Wear (University of Edinburgh) 
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Figure 6.6 Using SPR to determine IL-33 binding profile to ST2 

 Protein G chip was coated with 10 nM mTRAP and, once stability of the interaction was reached, IL-33 

was run at different concentration as indicate in the graph (A). In panel B, mouse TRAP was coated to the 

chip (binding indicated in the red box by the grey and black line). Injection to the chip are represented by 

small black arrow with indication of construct injected and concentration. Interaction between mTRAP 

and HpBARI was assessed performing a single injection of HpBARI (10 nM) to a mTRAP-coated chip 

(as indicated by the grey line) and, when equilibrium was reached, a single injection of mIL-33 (10 nM) 

was performed. As a control of IL-33 binding, a single mIL-33 injection (10 nM) was performed in a 

mTRAP-coated chip (black line). Analysis performed by Martin Wear (University of Edinburgh). 
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6.6 Discussion 

Here I showed that HpBARI was capable of suppressing IL-33-mediated responses in 

vivo, suppressing ST2 at the level of protein expression, but not ST2 transcript. Using a 

combination of solid-phase ELISA, direct binding assay and SPR, I further showed that 

HpBARI binds directly to ST2, inhibiting the interaction of IL-33 with its receptor. 

Following the discoveries of the H. polygyrus-derived immunomodulatory proteins 

HpARI and HpTGM (Osbourn et al. 2017; Johnston et al. 2017), both of which consist 

of a series of CCP domains, here we identified HpBARI - a novel double CCP domain 

molecule that suppresses IL-33 responses in vitro and in vivo. I showed that the insertion 

of tags at the C-terminus region prevented the protein from binding to ST2 as detected in 

the solid-phase ELISA and western blot of the direct interaction assay. As the orientation 

of CCP domains and the flexibility of intramodular junction are required for their 

functionality (Henderson et al. 2001; Barlow & Campbell 1994), I hypothesised that 

adding tags at the C-terminus could modify the tertiary structure and sterically hinder the 

binding site. In collaboration with Dr Martin Wear, SPR was performed to confirm these 

data. The binding affinity of HpBARI N-terminus tagged for mST2 and mTRAP was 

measured and the affinity of the interactions quantified at a Kd of 0.34 ± 0.25 nM and  0.2 

± 0.16 nM respectively. HpBARI binds strongly this construct considering that the 

affinity for mouse IL-33 to mTRAP showed a Kd of 0.1 nM in our experiment while the 

published affinity of IL-33 to ST2 has been published and being around 0.5 and 0.7 nM 

(Lingel et al. 2009; Günther et al. 2017). Therefore, HpBARI binds with high affinity to 

ST2 and it might compete with IL-33. However, from the in vivo data, HpBARI did not 
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completely suppress eosinophilia and ILC2 activation, suggesting that IL-33 might still 

bind ST2 quicker. This led to partial activation of ILC2s, while any further release of IL-

33 did not activate ILC2 as HpBARI bound to ST2 blocked any IL-33-dependent 

response. Therefore, I hypothesise that HpBARI should be administered prior to 

Alternaria to achieve a better suppression of type 2 immune responses. 

Furthermore, I showed that no binding was observed using the human TRAP-Fc. Mouse 

and human ST2 are 67% identical in the amino acid sequence (Tominaga et al. 1992), 

and HpBARI is a protein produced by a murine nematode, thus it is perhaps not surprising 

that the protein is specific for mouse ST2. As we showed in Osbourn et al., HpARI is a 

recombinant protein that binds to both mouse and human IL-33, however the affinity of 

binding to mouse IL-33 is higher than that to human IL-33 (Osbourn et al. 2017). So far, 

it was demonstrated that HpBARI binds directly to mouse ST2, preventing the interaction 

between IL-33 and its receptor, and our data indicate that it does not bind the human 

target. We could speculate that the binding site might be in one of the region that diverge 

from human and mouse ST2, and possibly a nearby region to the IL-33 binding site as 

HpBARI block IL-33-ST2 interaction. Interaction at the molecular level should be 

characterised performing structural studies, for example obtaining a structure of the 

HpBARI-ST2 complex. I observed a difference in IL-33-suppressive activity between the 

C-terminus tagged and N-terminus tagged protein. C-terminus tagged HpBARI cannot 

suppress IL-33-dependent responses in the bone marrow assay and no binding interaction 

with ST2 was detected by solid-phase ELISA. Adding a tag at the C-terminus of HpBARI 

might compromise the folding of the protein and disrupting, or hiding, the binding site of 
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the protein reducing its stability, inducing a rapid dissociation from the receptor. Thus, 

IL-33 has high affinity for ST2 and once HpBARI has dissociated from the receptor, IL-

33 can still bind ST2 and allowing IL-33-dependent immune cells activation.  

 

In addition to HpARI and H. polygyrus EV, HpBARI identification add a new element 

produced by H. polygyrus to target the IL-33 pathway and the initiation of type 2 immune 

responses. This corroborates previous studies where they showed that EV can suppress 

ST2 and alternative macrophage activation (Coakley et al. 2017). In the study by Coakley 

and colleague, ST2 suppression was observed both at the level of mRNA (measured by 

qPCR) and at surface receptor expression (measured by flow cytometry) both with EV 

and with EV-depleted HES (called supernatants by Coakley and colleagues), and in a 

previous study proteomic characterisation of EV and supernatants indicates that HpBARI 

is more abundant in HES supernatants (Buck et al. 2014). Therefore, HpBARI interferes 

with ST2 protein expressed on the surface of immune cells while miRNAs interfere with 

ST2 transcription.  

Expression levels of ST2 during the Alternaria in vivo experiment were checked. 

Alternaria induced increase of ST2 transcription and, blocking ST2 with HpBARI did 

suppress Alternaria-dependent ST2 transcription but no differences were observed 

between PBS group and HpBARI, indicating that HpBARI did not interfere with ST2 

transcription levels.  

The identification of HpBARI is an addition to the strategies that H. polygyrus uses to 

target the IL-33 pathway indicating that this pathway is essential for type 2 immune 
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responses induction that lead to the parasite expulsion. The importance of the IL-33 

pathway during H. polygyrus infection has been shown in ST2-deficient mice, which are 

more susceptible to infection (Coakley et al. 2017). 

As mentioned before, H. polygyrus has evolved using CCP domain-containing protein to 

modulate the host immune system (Maizels et al. 2018) and it will be interesting in the 

future to determine if human-specific parasites can use a similar strategy to evade immune 

responses.  

Targeting the IL-33 pathway has been shown to reduce allergen sensitisation in early life 

and reducing type 2 immune responses (de Kleer et al. 2016; Lynch et al. 2016; Werder 

et al. 2018). Biological therapies targeting IL-33 or ST2 are currently under investigation 

in clinical trials for the treatment of asthma and dermatitis. Experiments using human 

ST2 indicate that HpBARI does not target the human IL-33 receptor, making this protein 

not exploitable to target human disease. Nonetheless, it is a tool to manipulate ST2 and 

the IL-33 pathway in mice and with further investigation at the structural and interaction 

levels it might offer a strategy to design novel therapeutics. 
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Chapter 7 

Final discussion and future work  

In the past decades an increase in cases of allergies, asthma and auto-immune disease has 

been observed in industrialised countries (Lambrecht & Hammad 2017). The origin of 

asthma is multi-factorial and the heterogeneity of the disease has made it a challenge to 

develop new therapeutics. New biological therapies, which target immuno-mediators 

involved in the pathogenesis of asthma, are currently showing encouraging results in 

clinical trials, and allow specific targeting of asthma endotypes. This project stems from 

epidemiological studies in which a lower incidence in allergic disease and asthma is 

observed in  areas of the world where helminth infections are still common (Leonardi-

Bee et al. 2006; Yazdanbakhsh & Matricardi 2004b).  

 

In the past years various clinical trials have been carried out to test the efficacy of live 

helminth infection on inflammatory disease such as IBD, Crohn’s disease, coeliac 

disease, asthma and multiple sclerosis. Parasites are known to modulate the host immune 

system at different levels through the secretion of soluble molecules, which among other 

effects, target type 2 immune responses (Harnett & Harnett 2017; Maizels et al. 2018). 

Type 2 immune responses are required for fighting parasitic infection, but aberrant type 

2 immune responses have been associated with asthmatic immune responses (Lloyd & 

Snelgrove 2018). Helminth-derived immunomodulators offers a novel approach for the 

design of future therapies as demonstrated with viruses, fungi and bacteria in the past 
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(Kaparakis-Liaskos & Ferrero 2015; Felix & Savvides 2017). Viruses have been shown 

to produce an array of cytokine and chemokine homologues (e.g. homologues of IL-10), 

numerous cytokines-like receptor (e.g. TNF decoy receptor) and proteins that bind 

cytokines and receptors (Felix & Savvides 2017). For instance, viral-derived CC-

chemokine inhibitor (vCCI) a protein derived from pox virus was shown to bind 

specifically to human and rodent CC-chemokines, inhibiting allergic inflammatory 

responses in the lungs (Dabbagh et al. 2000). CCP domain proteins have been identified 

in viruses, for instance vaccinia virus complement control protein (VCP) (Henderson et 

al. 2001). VCP is a 4 CCP domain protein that has been shown to inhibit complement 

proteins as well as playing a role in pathogenesis by blocking antibody-mediated 

neutralisation which is dependent on complement proteins (Agrawal et al. 2017). In the 

last decade the field of immunomodulation by parasite secretion has grown and led to the 

identification of an array of single molecules that can suppress inflammatory responses 

and relevant for this project, aberrant allergic type 2 immune responses (Maizels et al. 

2018). 

 

The IL-33 pathway is emerging as a key initiator of type 2 immune responses. IL-33 is 

an important mediator of the allergic immune responses and a promising clinical target. 

Clinical and genetic studies in human and experimental model in mice have demonstrated 

the important role for the IL-33 pathway in allergic responses. Initiation and exacerbation 

of asthma has been linked to respiratory viral infection, especially severe RSV 

bronchiolitis in early life have been correlated with wheeze and asthma diagnosis later in 
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life (Edwards et al. 2012; Sigurs et al. 2010). In neonatal mice IL-33 has been shown to 

be required for the development of type 2 asthmatic immune responses during RSV re-

infection (Saravia et al. 2015). The cytokine might be an important target for prophylactic 

intervention in high risk infants to develop asthma, and for therapeutic treatment of 

asthma in adults. Several clinical trials are being carried out to test the efficacy of anti-

IL-33 treatment in diseases such as COPD, acute respiratory syndrome and asthma 

(NCT03546907, NCT03469934, NCT02492204), but no results have been published yet. 

IL-33 is not only confined in the lung environment, but it plays a role in driving pathology 

in other organs such as the gut (e.g. IBD), the skin (e.g. atopic dermatitis) and it might be 

involved in metabolic disease, graft-versus-host disease (GVHD) and fibrosis 

(Griesenauer & Paczesny 2017; Scott et al. 2016). On the other hand IL-33 has a 

protective role during sepsis (Alves-Filho et al. 2010) and a role in tissue repair in several 

tissues such as lung, gut and CNS (Molofsky, Savage, et al. 2015). The IL-33/ILC2 axis 

has been demonstrated to be essential for fat metabolism, as IL-33-activated ILC2s have 

been shown to promote metabolic homeostasis and regulation of adipose tissue (Brestoff 

et al. 2015), as well as promoting amphiregulin production, tissue repair and homeostasis 

after influenza infection (Monticelli et al. 2011). Therefore suppression of the IL-33 

pathway need to be careful planned to avoid deleterious side effects. 

 

In this project the excretory/secretory products of the intestinal murine nematode 

Heligmosomoides polygyrus (HES) were studied for their suppressive effects on the IL-

33 pathway (McSorley et al. 2012; McSorley et al. 2014; Buck et al. 2014; Coakley et al. 
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2017), a cytokine involved in the initiation of type 2 immune responses and asthma 

(Johansson & McSorley 2019).  

I studied two HES-derived proteins: H. polygyrus Alarmin Release Inhibitor (HpARI) 

was already identified prior to my project while H. polygyrus Binds Alarmin Receptor 

and Inhibits (HpBARI), was identified de novo from HES. Both proteins interfere with 

the IL-33 pathway. I was able to show that HpARI binds to the reduced (active) form of 

IL-33, suppressing IL-33/ST2 interaction and blocking IL-33-dependent responses in 

vitro using a bone marrow assay and in vivo using a model of allergen-induced asthma. 

HpBARI binds to ST2, blocking IL-33-ST2 interactions and suppressing responses in 

vitro and in vivo. Both HpARI and HpBARI are CCP domain-containing proteins, with 3 

CCP and 2 CCP domains spanning the length of HpARI and HpBARI respectively. 

Further experiments by other members of the McSorley lab showed that HpARI binds 

DNA via its positively-charged CCP1 domain, as expressing a mutated HpARI CCP2/3 

(which lacks CCP1) did not show any DNA binding. Furthermore, HpARI CCP2/3 

mediates the binding to IL-33 (Osbourn et al. 2017): a summary of the mechanism of 

action of HpARI is a shown in Fig.7.1. Although truncation studies of HpBARI have not 

yet been carried out, the fact that the C-terminal tagged HpBARI protein had reduced 

activity may give clues as to the structure and function of HpBARI. In particular, during 

the generation and purification of HpBARI the C-terminus tagged protein showed a 

decreased activity compared to the N-terminus tagged protein. Thus, the C-terminus 

might contain a key site that induces suppression of ST2 and IL-33 responses. Previous 

studies showed that the receptor ST2 is formed by 3 domains, and all of them interact 
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directly with IL-33 (Lingel et al. 2009). HpBARI binds to ST2 and blocks ST2/IL-33 

interaction suggesting that HpBARI might bind one or multiple ST2 domains, blocking 

the cytokine to bind its receptor (Fig.7.2). Future plans will include the expression and 

purification of the single HpBARI CCP domains and determine which CCP domain (or 

both) is required for suppression of ST2 and the IL-33-dependent responses. I speculate 

that the HpBARI CCP2, which contains an atypical insertion of 10 aa, might be required 

to block the responses to IL-33 and as mentioned before, adding a myc and a 6-HIS tag 

at the end of this region might induce the steric hinderance resulting in low affinity to 

ST2. Furthermore, X-ray crystallography would help to better characterise the interaction 

between HpARI/IL-33 and HpBARI/ST2.  

The purpose of this project was to identify immunomodulatory molecules from HES, with 

an ultimate aim of developing novel therapeutic agents against asthma and allergic 

diseases. The development of new tools to experimentally manipulate the IL-33 pathway 

might offer the possibility to better understand the role of IL-33 in disease and 

homeostasis. Understanding the interactions between our parasite-derived proteins and 

their targets will define at which site the binding occurs, and together with the knowledge 

about the CCP domains could lead to the design of smaller and less immunogenic 

molecules that can be further developed for human treatments. Targeting the 

immunogenicity is an essential requirement to prevent the formation of anti-drug-

antibodies (ADAs) that will make the drug ineffective and in rare case induce auto-

immune reactions (Tovey & Lallemand 2011). While HpARI binds to both murine and 

human IL-33, HpBARI binds only to murine (and not human) ST2, making the use of 
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HpBARI more challenging as a human therapeutic. Nonetheless, one strategy that could 

be used is to determine the HpBARI/ST2 binding region through determining the 

structure of the HpBARI-ST2 complex. Knowing the interaction at molecular level could 

lead to engineering a protein, mutating the amino acids involved in the HpBARI/ST2 

interaction and generating a mutant protein that could bind human ST2 with high affinity. 

 

Another strategy that could help with engineering a protein that binds to human ST2 is to 

investigate the presence of homologues of HpBARI, as similarly done with HpTGM 

(Smyth et al. 2018; Johnston et al. 2017). A family of nine related HpTGM molecules 

secreted by H. polygyrus  was identified showing that only two of these homologues were 

as active as HpTGM, while for the others the function is still unclear (Smyth et al. 2018).  

Similarly, homologues of HpARI have been identified showing different affinities to 

mouse and human IL-33 (Manuscript in preparation).  

HpBARI homologues have been identified during the screening for an ST2 suppressor 

candidate and these will be investigated further in the future. 

H. polygyrus seems to have developed the CCP domain as a structural scaffold to generate 

an array of different proteins that act on the host immune system, in particular by blocking 

IL-33 and the induction of type 2 immune responses, and by induction of Foxp3 TREG to 

induce an anti-inflammatory environment. Furthermore, other CCP proteins might have 

been developed by H. polygyrus to target other pathways that are involved in ILC2 

activation and type 2 immune responses, for examples IL-25, neuromedinU and TSLP 

(Cardoso et al. 2017; Zaiss et al. 2013; Ricardo-Gonzalez et al. 2018). CCP domains are 
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present in other parasites and interestingly, in human parasites (Maizels et al. 2018), 

indicating that immunomodulatory molecules could be identified from ES products of 

human parasites. Cultivation and obtaining ES in the lab from human helminths has been 

challenging, and achieved for some species e.g. Schistosoma japonicum, Schistosoma 

mansoni or Brugia malayi (Falcone et al. 1995; Ye et al. 2013; Frahm et al. 2019) 

However, parasite genomic data has been constantly expanded over recent years, with 

new genomes added regularly into the WormBase ParaSite database and recently the 

addition of numerous genomes from helminth species (Coghlan et al. 2019). This 

database can be used to identify similar genomic sequences and proteins secreted by 

different human and murine parasites, and this was used to identify homologues proteins 

of HpARI and HpBARI. In addition, the role of parasite-derived immunomodulators 

could be studied in the context of vaccination. With over one fourth of the human 

population infected by parasites, no vaccine has been developed for human use yet. 

Mouse models have suggested that vaccination against, for example, ES products or EV 

induces protection against infection (Coakley et al. 2017; Hewitson et al. 2013). Future 

works could involve the production of monoclonal antibodies against HpARI or HpBARI 

and test mAb during H. polygyrus live infection, measuring egg count and worm burden 

to determine severity of infection.   

 

In conclusion, using HpARI and HpBARI to modulate the IL-33 pathway in the context 

of pathological responses offers an important tool to better understand the role of IL-33 

and ST2 in disease development. HpARI and HpBARI are further evidence that H. 
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polygyrus secretes a pool of proteins with immunomodulatory effects, and the IL-33 

pathway seems to be essential for parasite expulsion as it is targeted at multiple levels. In 

particular, both proteins are members of the CCP domain family, and so it appears that 

this family has been exploited by H. polygyrus as a scaffold to generate a range of 

immunomodulatory proteins. This is an exciting area as genomic data from parasites has 

been expanding in the last years, enabling the identification of similar or novel 

immunomodulatory molecules in human parasites in the future. Furthermore, 

understanding at molecular levels HpARI/IL-33 and HpBARI/ST2 interaction can help 

to design single peptides or smaller molecules that block the IL-33 pathway, retaining the 

biological function, being less immunogenic. This may lead to further development of 

such compounds as possible therapeutic in different condition where the IL-33 pathway 

plays a key role.  
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Figure 7.1 HpARI mechanism of action 
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Figure 7.2 HpBARI mechanism of action.  

HpBARI binds directly to ST2 blocking IL-33-ST2 interaction. This figure is not representative of the 

interaction between ST2 domains and HpBARI CCP domains as the real interaction between HpBARI 

CCP domains and ST2 domains is still unknown. 



 

205 

 

References 

Abbas, A.K., Lichtman, A.H. & Pillai, S. (2017). Cellular and Molecular Immunology. 
Abraham, S.N. & St. John, A.L. (2010). Mast cell-orchestrated immunity to pathogens. 

Nature Reviews Immunology. 
Agrawal, P., Nawadkar, R., Ojha, H., Kumar, J. & Sahu, A. (2017). Complement evasion 

strategies of viruses: An overview. Frontiers in Microbiology. 
Akerström, B., Brodin, T., Reis, K. & Björck, L. (1985). Protein G: a powerful tool for 

binding and detection of monoclonal and polyclonal antibodies. Journal of 
immunology (Baltimore, Md. : 1950). 

Al-Riyami, L., Pineda, M.A., Rzepecka, J., Huggan, J.K., Khalaf, A.I., Suckling, C.J., 
Scott, F.J., Rodgers, D.T., Harnett, M.M. & Harnett, W. (2013). Designing anti-
inflammatory drugs from parasitic worms: A synthetic small molecule analogue of 
the acanthocheilonema viteae product ES-62 prevents development of collagen-
induced arthritis. Journal of Medicinal Chemistry. 

Ali, S., Mohs, A., Thomas, M., Klare, J., Ross, R., Schmitz, M.L. & Martin, M.U. (2011). 
The Dual Function Cytokine IL-33 Interacts with the Transcription Factor NF- B To 
Dampen NF- B-Stimulated Gene Transcription. The Journal of Immunology. 

Allen, J.E. & Maizels, R.M. (2011). Diversity and dialogue in immunity to helminths. 
Nature Reviews Immunology. 

Alves-Filho, J.C., Snego, F., Souto, F.O., Freitas, A., Verri, W.A., Auxiliadora-Martins, 
M., Basile-Filho, A., McKenzie, A.N., Xu, D., Cunha, F.Q. & Liew, F.Y. (2010). 
Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of 
infection. Nature Medicine. 

AnaptysBio, I. (2018). ANAPTYSBIO PRESENTS UPDATED ANB020 AND ANB019 
CLINICAL DATA AT THE 2018 EAACI CONGRESS. [Online]. 2018. Available 
from: https://ir.anaptysbio.com/news-releases/news-release-details/anaptysbio-
presents-updated-anb020-and-anb019-clinical-data-2018. [Accessed: 11 December 
2018]. 

Andersson, C.K., Adams, A., Nagakumar, P., Bossley, C., Gupta, A., De Vries, D., 
Adnan, A., Bush, A., Saglani, S. & Lloyd, C.M. (2017). Intraepithelial neutrophils 
in pediatric severe asthma are associated with better lung function. Journal of 
Allergy and Clinical Immunology. 

Artis, D. & Spits, H. (2015). The biology of innate lymphoid cells. Nature. 
Asher, M.I., Montefort, S., Björkstén, B., Lai, C.K., Strachan, D.P., Weiland, S.K. & 

Williams, H. (2006). Worldwide time trends in the prevalence of symptoms of 
asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One 
and Three repeat multicountry cross-sectional surveys. Lancet. 



 

206 

 

Asojo, O.A., Darwiche, R., Gebremedhin, S., Smant, G., Lozano-Torres, J.L., Drurey, C., 
Pollet, J., Maizels, R.M., Schneiter, R. & Wilbers, R.H.P. (2018). Heligmosomoides 
polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. 
International Journal for Parasitology. 

Bach, J.-F. (2002). The Effect of Infections on Susceptibility to Autoimmune and Allergic 
Diseases. New England Journal of Medicine. 

Bager, P., Arnved, J., Rønborg, S., Wohlfahrt, J., Poulsen, L.K., Westergaard, T., 
Petersen, H.W., Kristensen, B., Thamsborg, S., Roepstorff, A., Kapel, C. & Melbye, 
M. (2010). Trichuris suis ova therapy for allergic rhinitis: A randomized, double-
blind, placebo-controlled clinical trial. Journal of Allergy and Clinical Immunology. 

Bal, S.M., Bernink, J.H., Nagasawa, M., Groot, J., Shikhagaie, M.M., Golebski, K., Van 
Drunen, C.M., Lutter, R., Jonkers, R.E., Hombrink, P., Bruchard, M., Villaudy, J., 
Munneke, J.M., Fokkens, W., Erjeflt, J.S., Spits, H. & Ros, X.R. (2016). IL-1β, IL-
4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway 
inflammation in the lungs. Nature Immunology. 

Balic, A., Harcus, Y., Holland, M.J. & Maizels, R.M. (2004). Selective maturation of 
dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune 
responses. European Journal of Immunology. 

Ball, D.H., Al-Riyami, L., Harnett, W. & Harnett, M.M. (2018). IL-33/ST2 signalling 
and crosstalk with FcϵRI and TLR4 is targeted by the parasitic worm product, ES-
62. Scientific Reports. 

Bandara, G., Beaven, M.A., Olivera, A., Gilfillan, A.M. & Metcalfe, D.D. (2015). 
Activated mast cells synthesize and release soluble ST2-a decoy receptor for IL-33. 
European Journal of Immunology. 

Barik, S. (1992). Transcription of Human Respiratory Syncytial Virus Genome RNA In 
Vitro: Requirement of Cellular Factor(s). Journal of Virology. 

Barlow, P.N. & Campbell, I.D. (1994). Strategy for studying modular proteins: 
Application to complement modules. Methods in Enzymology. 

Barnes, P.J. (2008). Immunology of asthma and chronic obstructive pulmonary disease. 
Nature Reviews Immunology. 8 (3) pp.pp. 183–192. 

Bartemes, K.R., Iijima, K., Kobayashi, T., Kephart, G.M., McKenzie, A.N. & Kita, H. 
(2011). IL-33-Responsive Lineage-CD25+CD44hi Lymphoid Cells Mediate Innate 
Type 2 Immunity and Allergic Inflammation in the Lungs. The Journal of 
Immunology. 

Beale, J., Jayaraman, A., Jackson, D.J., Macintyre, J.D.R., Edwards, M.R., Walton, R.P., 
Zhu, J., Ching, Y.M., Shamji, B., Edwards, M., Westwick, J., Cousins, D.J., Hwang, 
Y.Y., McKenzie, A., Johnston, S.L. & Bartlett, N.W. (2014). Rhinovirus-induced 
IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary 
inflammation. Science Translational Medicine. 

Besnard, A.G., Togbe, D., Guillou, N., Erard, F., Quesniaux, V. & Ryffel, B. (2011). IL-



 

207 

 

33-activated dendritic cells are critical for allergic airway inflammation. European 
Journal of Immunology. 

Bessa, J., Meyer, C.A., de Vera Mudry, M.C., Schlicht, S., Smith, S.H., Iglesias, A. & 
Cote-Sierra, J. (2015). Altered subcellular localization of IL-33 leads to non-
resolving lethal inflammation. Journal of Autoimmunity. 

Blanken, M.O., Rovers, M.M., Molenaar, J.M., Winkler-Seinstra, P.L., Meijer, A., 
Kimpen, J.L.L. & Bont, L. (2013). Respiratory Syncytial Virus and Recurrent 
Wheeze in Healthy Preterm Infants. New England Journal of Medicine. 

Blein, S., Ginham, R., Uhrin, D., Smith, B.O., Soares, D.C., Veltel, S., McIlhinney, 
R.A.J., White, J.H. & Barlow, P.N. (2004). Structural analysis of the complement 
control protein (CCP) modules of GABABreceptor 1a: Only one of the two CCP 
modules is compactly folded. Journal of Biological Chemistry. 

Blount, D., Hooi, D., Feary, J., Venn, A., Telford, G., Brown, A., Britton, J. & Pritchard, 
D. (2009). Immunologic profiles of persons recruited for a randomized, placebo-
controlled clinical trial of hookworm infection. American Journal of Tropical 
Medicine and Hygiene. 

Blount, R. jr, Morris, J. & Savage, R. (1956). Recovery of Cytopathogenic Agent from 
Chimpanzees with Goryza. Experimental Biology and Medicine. 

Bønnelykke, K., Matheson, M.C., Pers, T.H., Granell, R., Strachan, D.P., Alves, A.C., 
Linneberg, A., Curtin, J.A., Warrington, N.M., Standl, M., Kerkhof, M., Jonsdottir, 
I., Bukvic, B.K., Kaakinen, M., Sleimann, P., Thorleifsson, G., Thorsteinsdottir, U., 
Schramm, K., Baltic, S., Møller, E.K., Simpson, A., St Pourcain, B., Coin, L., Hui, 
J., Walters, E.H., Tiesler, C.M.T., Duffy, D.L., Jones, G., Ring, S.M., McArdle, 
W.L., Price, L., Robertson, C.F., Pekkanen, J., Tang, C.S., Thiering, E., 
Montgomery, G.W., Hartikainen, A.L., Dharmage, S.C., Husemoen, L.L., Herder, 
C., Kemp, J.P., Elliot, P., James, A., Waldenberger, M., Abramson, M.J., Fairfax, 
B.P., Knight, C.J., Gupta, R., Thompson, P.J., Holt, P., Sly, P., Hirschhorn, J.N., 
Blekic, M., Weidinger, S., Hakonarsson, H., Stefansson, K., Heinrich, J., Postma, 
D.S., Custovic, A., Pennell, C.E., Jarvelin, M.R., Koppelman, G.H., Timpson, N., 
Ferreira, M.A., Bisgaard, H. & Henderson, A.J. (2013). Meta-analysis of genome-
wide association studies identifies ten loci influencing allergic sensitization. Nature 
Genetics. 

Bønnelykke, K., Sleiman, P., Nielsen, K., Kreiner-Møller, E., Mercader, J.M., Belgrave, 
D., Den Dekker, H.T., Husby, A., Sevelsted, A., Faura-Tellez, G., Mortensen, L.J., 
Paternoster, L., Flaaten, R., Mølgaard, A., Smart, D.E., Thomsen, P.F., Rasmussen, 
M.A., Bonàs-Guarch, S., Holst, C., Nohr, E.A., Yadav, R., March, M.E., Blicher, T., 
Lackie, P.M., Jaddoe, V.W.V., Simpson, A., Holloway, J.W., Duijts, L., Custovic, 
A., Davies, D.E., Torrents, D., Gupta, R., Hollegaard, M. V., Hougaard, D.M., 
Hakonarson, H. & Bisgaard, H. (2014). A genome-wide association study identifies 
CDHR3 as a susceptibility locus for early childhood asthma with severe 
exacerbations. Nature Genetics. 



 

208 

 

Bouchery, T., Kyle, R., Camberis, M., Shepherd, A., Filbey, K., Smith, A., Harvie, M., 
Painter, G., Johnston, K., Ferguson, P., Jain, R., Roediger, B., Delahunt, B., 
Weninger, W., Forbes-Blom, E. & Le Gros, G. (2015). ILC2s and T cells cooperate 
to ensure maintenance of M2 macrophages for lung immunity against hookworms. 
Nature Communications. 

Bousquet, J., Chanez, P., Lacoste, J.Y., Barnéon, G., Ghavanian, N., Enander, I., Venge, 
P., Ahlstedt, S., Simony-Lafontaine, J. & Godard, P. (1990). Eosinophilic 
inflammation in asthma. NEJM. 

Boyd, A., Ribeiro, J.M.C. & Nutman, T.B. (2014). Human CD117 (cKit)+ innate 
lymphoid cells have a discrete transcriptional profile at homeostasis and are 
expanded during filarial infection. PLoS ONE. 

Braun-Fahrländer, C., Riedler, J., Herz, U., Eder, W., Waser, M., Grize, L., Maisch, S., 
Carr, D., Gerlach, F., Bufe, A., Lauener, R.P., Schierl, R., Renz, H., Nowak, D. & 
von Mutius, E. (2002). Environmental Exposure to Endotoxin and Its Relation to 
Asthma in School-Age Children. New England Journal of Medicine. 

Braun, M.R., Deflubé, L.R., Noton, S.L., Mawhorter, M.E., Tremaglio, C.Z. & Fearns, 
R. (2017). RNA elongation by respiratory syncytial virus polymerase is calibrated 
by conserved region V. PLoS Pathogens. 

Brestoff, J.R., Kim, B.S., Saenz, S.A., Stine, R.R., Monticelli, L.A., Sonnenberg, G.F., 
Thome, J.J., Farber, D.L., Lutfy, K., Seale, P. & Artis, D. (2015). Group 2 innate 
lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 

Brickshawana, A., Shapiro, V.S., Kita, H. & Pease, L.R. (2011). Lineage-Sca1+c-Kit-
CD25+ Cells Are IL-33-Responsive Type 2 Innate Cells in the Mouse Bone Marrow. 
The Journal of Immunology. 

Brightling, C.E. (2011). Eosinophils, bronchitis and asthma: Pathogenesis of cough and 
airflow obstruction. Pulmonary Pharmacology and Therapeutics. 

Buck, A.H., Coakley, G., Simbari, F., McSorley, H.J., Quintana, J.F., Le Bihan, T., 
Kumar, S., Abreu-Goodger, C., Lear, M., Harcus, Y., Ceroni, A., Babayan, S.A., 
Blaxter, M., Ivens, A. & Maizels, R.M. (2014). Exosomes secreted by nematode 
parasites transfer small RNAs to mammalian cells and modulate innate immunity. 
Nature Communications. 

Bulek, K., Swaidani, S., Qin, J., Lu, Y., Gulen, M.F., Herjan, T., Min, B., Kastelein, R.A., 
Aronica, M., Kosz-Vnenchak, M. & Li, X. (2009). The Essential Role of Single Ig 
IL-1 Receptor-Related Molecule/Toll IL-1R8 in Regulation of Th2 Immune 
Response. The Journal of Immunology. 

Buys, J., Wever, R., van Stigt, R. & Ruitenberg, E.J. (1981). The killing of newborn 
larvae of Trichinella spiralis by eosinophil peroxidase in vitro. European Journal of 
Immunology. 

Cabon, Y., Molinari, N., Marin, G., Vachier, I., Gamez, A.S., Chanez, P. & Bourdin, A. 
(2017). Comparison of anti-interleukin-5 therapies in patients with severe asthma: 



 

209 

 

global and indirect meta-analyses of randomized placebo-controlled trials. Clinical 
and Experimental Allergy. 

Cardoso, V., Chesné, J., Ribeiro, H., Garcia-Cassani, B., Carvalho, T., Bouchery, T., 
Shah, K., Barbosa-Morais, N.L., Harris, N. & Veiga-Fernandes, H. (2017). Neuronal 
regulation of type 2 innate lymphoid cells via neuromedin U. Nature. 

Castro, M., Mathur, S., Hargreave, F., Boulet, L.P., Xie, F., Young, J., Jeffrey Wilkins, 
H., Henkel, T. & Nair, P. (2011). Reslizumab for poorly controlled, eosinophilic 
asthma: A randomized, placebo-controlled study. American Journal of Respiratory 
and Critical Care Medicine. 

Castro, M., Wenzel, S.E., Bleecker, E.R., Pizzichini, E., Kuna, P., Busse, W.W., Gossage, 
D.L., Ward, C.K., Wu, Y., Wang, B., Khatry, D.B., van der Merwe, R., Kolbeck, R., 
Molfino, N.A. & Raible, D.G. (2014). Benralizumab, an anti-interleukin 5 receptor 
α monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: A 
phase 2b randomised dose-ranging study. The Lancet Respiratory Medicine. 

Castro, M., Zangrilli, J., Wechsler, M.E., Bateman, E.D., Brusselle, G.G., Bardin, P., 
Murphy, K., Maspero, J.F., O’Brien, C. & Korn, S. (2015). Reslizumab for 
inadequately controlled asthma with elevated blood eosinophil counts: Results from 
two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 
trials. The Lancet Respiratory Medicine. 

Cayrol, C., Duval, A., Schmitt, P., Roga, S., Camus, M., Stella, A., Burlet-Schiltz, O., 
Gonzalez-De-Peredo, A. & Girard, J.P. (2018). Environmental allergens induce 
allergic inflammation through proteolytic maturation of IL-33. Nature Immunology. 

Cayrol, C. & Girard, J.P. (2018). Interleukin-33 (IL-33): A nuclear cytokine from the IL-
1 family. Immunological Reviews. 

Chang, Y.J., Kim, H.Y., Albacker, L.A., Baumgarth, N., McKenzie, A.N.J., Smith, D.E., 
Dekruyff, R.H. & Umetsu, D.T. (2011). Innate lymphoid cells mediate influenza-
induced airway hyper-reactivity independently of adaptive immunity. Nature 
Immunology. 

Chanock, R., Roizman, B. & Myers, R. (1957). Recovery from infants with respiratory 
illness of a virus related to chimpanzee coryza agent (CCA): Isolation, properties 
and characterization. American Journal of Epidemiology. 

Cheng, D., Xue, Z., Yi, L., Shi, H., Zhang, K., Huo, X., Bonser, L.R., Zhao, J., Xu, Y., 
Erle, D.J. & Zhen, G. (2014). Epithelial interleukin-25 is a key mediator in Th2-
high, corticosteroid-responsive asthma. American Journal of Respiratory and 
Critical Care Medicine. 

Chesné, J., Braza, F., Mahay, G., Brouard, S., Aronica, M. & Magnan, A. (2014). IL-17 
in severe asthma: Where do we stand? American Journal of Respiratory and Critical 
Care Medicine. 

Christianson, C.A., Goplen, N.P., Zafar, I., Irvin, C., Good, J.T., Rollins, D.R., Gorentla, 
B., Liu, W., Gorska, M.M., Chu, H.W., Martin, R.J. & Alam, R. (2015). Persistence 



 

210 

 

of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells 
and IL-33. Journal of Allergy and Clinical Immunology. 

Coakley, G., McCaskill, J.L., Borger, J.G., Simbari, F., Robertson, E., Millar, M., Harcus, 
Y., McSorley, H.J., Maizels, R.M. & Buck, A.H. (2017). Extracellular Vesicles from 
a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective 
Vaccine for Protective Immunity. Cell Reports. 

Coghlan, A., Tyagi, R., Cotton, J.A., Holroyd, N., Rosa, B.A., Tsai, I.J., Laetsch, D.R., 
Beech, R.N., Day, T.A., Hallsworth-Pepin, K., Ke, H.M., Kuo, T.H., Lee, T.J., 
Martin, J., Maizels, R.M., Mutowo, P., Ozersky, P., Parkinson, J., Reid, A.J., 
Rawlings, N.D., Ribeiro, D.M., Swapna, L.S., Stanley, E., Taylor, D.W., Wheeler, 
N.J., Zamanian, M., Zhang, X., Allan, F., Allen, J.E., Asano, K., Babayan, S.A., 
Bah, G., Beasley, H., Bennett, H.M., Bisset, S.A., Castillo, E., Cook, J., Cooper, P.J., 
Cruz-Bustos, T., Cuéllar, C., Devaney, E., Doyle, S.R., Eberhard, M.L., Emery, A., 
Eom, K.S., Gilleard, J.S., Gordon, D., Harcus, Y., Harsha, B., Hawdon, J.M., Hill, 
D.E., Hodgkinson, J., Horák, P., Howe, K.L., Huckvale, T., Kalbe, M., Kaur, G., 
Kikuchi, T., Koutsovoulos, G., Kumar, S., Leach, A.R., Lomax, J., Makepeace, B., 
Matthews, J.B., Muro, A., O’Boyle, N.M., Olson, P.D., Osuna, A., Partono, F., Pfarr, 
K., Rinaldi, G., Foronda, P., Rollinson, D., Samblas, M.G., Sato, H., Schnyder, M., 
Scholz, T., Shafie, M., Tanya, V.N., Toledo, R., Tracey, A., Urban, J.F., Wang, L.C., 
Zarlenga, D., Blaxter, M.L., Mitreva, M. & Berriman, M. (2019). Comparative 
genomics of the major parasitic worms. Nature Genetics. 

Cohen, E.S., Scott, I.C., Majithiya, J.B., Rapley, L., Kemp, B.P., England, E., Rees, D.G., 
Overed-Sayer, C.L., Woods, J., Bond, N.J., Veyssier, C.S., Embrey, K.J., Sims, 
D.A., Snaith, M.R., Vousden, K.A., Strain, M.D., Chan, D.T.Y., Carmen, S., 
Huntington, C.E., Flavell, L., Xu, J., Popovic, B., Brightling, C.E., Vaughan, T.J., 
Butler, R., Lowe, D.C., Higazi, D.R., Corkill, D.J., May, R.D., Sleeman, M.A. & 
Mustelin, T. (2015). Oxidation of the alarmin IL-33 regulates ST2-dependent 
inflammation. Nature Communications. 

Cook, P.C. & MacDonald, A.S. (2016). Dendritic cells in lung immunopathology. 
Seminars in Immunopathology. 

Correale, J. & Farez, M. (2007). Association between parasite infection and immune 
responses in multiple sclerosis. Annals of Neurology. 

Correale, J., Farez, M. & Razzitte, G. (2008). Helminth infections associated with 
multiple sclerosis induce regulatory B cells. Annals of Neurology. 

Correale, J. & Farez, M.F. (2011). The impact of parasite infections on the course of 
multiple sclerosis. Journal of Neuroimmunology. 

Corren, J., Parnes, J.R., Wang, L., Mo, M., Roseti, S.L., Griffiths, J.M. & van der Merwe, 
R. (2017). Tezepelumab in Adults with Uncontrolled Asthma. New England Journal 
of Medicine. 

Cowton, V.M., McGivern, D.R. & Fearns, R. (2006). Unravelling the complexities of 
respiratory syncytial virus RNA synthesis. Journal of General Virology. 



 

211 

 

Coyle, A.J., Ackerman, S.J., Burch, R., Proud, D. & Irvin, C.G. (1995). Human 
eosinophil-granule major basic protein and synthetic polycations induce airway 
hyperresponsiveness in vivo dependent on bradykinin generation. Journal of 
Clinical Investigation. 

Culley, F.J., Pollott, J. & Openshaw, P.J.M. (2002). Age at First Viral Infection 
Determines the Pattern of T Cell–mediated Disease during Reinfection in 
Adulthood. The Journal of Experimental Medicine. 

Currie, S.M., Findlay, E.G., McHugh, B.J., Mackellar, A., Man, T., Macmillan, D., 
Wang, H., Fitch, P.M., Schwarze, J. & Davidson, D.J. (2013). The Human 
Cathelicidin LL-37 Has Antiviral Activity against Respiratory Syncytial Virus. 
PLoS ONE. 

Dabbagh, K., Xiao, Y., Smith, C., Stepick-Biek, P., Kim, S.G., Lamm, W.J., Liggitt, D.H. 
& Lewis, D.B. (2000). Local blockade of allergic airway hyperreactivity and 
inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. Journal 
of Immunology. 

Dahlin, J.S. & Hallgren, J. (2015). Mast cell progenitors: Origin, development and 
migration to tissues. Molecular Immunology. 

Daveson, A.J., Jones, D.M., Gaze, S., McSorley, H., Clouston, A., Pascoe, A., Cooke, S., 
Speare, R., Macdonald, G.A., Anderson, R., McCarthy, J.S., Loukas, A. & Croese, 
J. (2011). Effect of hookworm infection on wheat challenge in celiac disease - a 
randomised double-blinded placebo controlled trial. PLoS ONE. 

Deatheragea, B.L. & Cooksona, B.T. (2012). Membrane vesicle release in bacteria, 
eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. 
Infection and Immunity. 

Diefenbach, A., Colonna, M. & Koyasu, S. (2014). Development, differentiation, and 
diversity of innate lymphoid cells. Immunity. 

Djuardi, Y., Wammes, L.J., Supali, T., Sartono, E. & Yazdanbakhsh, M. (2011). 
Immunological footprint: The development of a child’s immune system in 
environments rich in microorganisms and parasites. Parasitology. 

Djukanović, R., Wilson, S.J., Kraft, M., Jarjour, N.N., Steel, M., Chung, K.F., Bao, W., 
Fowler-Taylor, A., Matthews, J., Busse, W.W., Holgate, S.T. & Fahy, J. V. (2004). 
Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway 
inflammation in allergic asthma. American Journal of Respiratory and Critical Care 
Medicine. 

Dobson, C. & Owen, M.E. (1977). Influence of serial passage on the infectivity and 
immunogenicity of Nematospiroides dubius in mice. International Journal for 
Parasitology. 

Dobson, C. & Tang, J.M. (1991). Genetic variation and host-parasite relations: 
Nematospiroides dubius in mice. The Journal of parasitology. 

Doonan, J., Lumb, F.E., Pineda, M.A., Tarafdar, A., Crowe, J., Khan, A.M., Suckling, 



 

212 

 

C.J., Harnett, M.M. & Harnett, W. (2018). Protection against arthritis by the parasitic 
worm product ES-62, and its drug-like small molecule analogues, is associated with 
inhibition of osteoclastogenesis. Frontiers in Immunology. 

Drube, S., Heink, S., Walter, S., Löhn, T., Grusser, M., Gerbaulet, A., Berod, L., Schons, 
J., Dudeck, A., Freitag, J., Grotha, S., Reich, D., Rudeschko, O., Norgauer, J., 
Hartmann, K., Roers, A. & Kamradt, T. (2010). The receptor tyrosine kinase c-Kit 
controls IL-33 receptor signaling in mast cells. Blood. 

Duerr, C.U., Mccarthy, C.D.A., Mindt, B.C., Rubio, M., Meli, A.P., Pothlichet, J., Eva, 
M.M., Gauchat, J.F., Qureshi, S.T., Mazer, B.D., Mossman, K.L., Malo, D., 
Gamero, A.M., Vidal, S.M., King, I.L., Sarfati, M. & Fritz, J.H. (2016). Type I 
interferon restricts type 2 immunopathology through the regulation of group 2 innate 
lymphoid cells. Nature Immunology. 

Duncan, C.J.A., Lawrie, A., Blaylock, M.G., Douglas, J.G. & Walsh, G.M. (2003). 
Reduced eosinophil apoptosis in induced sputum correlates with asthma severity. 
European Respiratory Journal. 

Duong, B.H., Onizawa, M., Oses-Prieto, J.A., Advincula, R., Burlingame, A., Malynn, 
B.A. & Ma, A. (2015). A20 Restricts Ubiquitination of Pro-Interleukin-1β Protein 
Complexes and Suppresses NLRP3 Inflammasome Activity. Immunity. 

Eagar, T.N. & Miller, S.D. (2019). Helper T-Cell Subsets and Control of the 
Inflammatory Response. Clinical Immunology. [Online]. p.pp. 235-245.e1. 
Available from: 
https://www.sciencedirect.com/science/article/pii/B9780702068966000168. 
[Accessed: 28 January 2019]. 

Eberl, G., Colonna, M., Santo, J.P.D. & McKenzie, A.N.J. (2015). Innate lymphoid cells: 
A new paradigm in immunology. Science. 

Ebner, F., Hepworth, M.R., Rausch, S., Janek, K., Niewienda, A., Kühl, A., Henklein, P., 
Lucius, R., Hamelmann, E. & Hartmann, S. (2014). Therapeutic potential of larval 
excretory/secretory proteins of the pig whipworm Trichuris suis in allergic disease. 
Allergy: European Journal of Allergy and Clinical Immunology. 69 (11). p.pp. 
1489–1497. 

Economides, A.N., Carpenter, L.R., Rudge, J.S., Wong, V., Koehler-Stec, E.M., Hartnett, 
C., Pyles, E.A., Xu, X., Daly, T.J., Young, M.R., Fandl, J.P., Lee, F., Carver, S., 
McNay, J., Bailey, K., Ramakanth, S., Hutabarat, R., Huang, T.T., Radziejewski, C., 
Yancopoulos, G.D. & Stahl, N. (2003). Cytokine traps: Multi-component, high-
affinity blockers of cytokine action. Nature Medicine. 

Eder, W., Ege, M.J. & von Mutius, E. (2006). The Asthma Epidemic. New England 
Journal of Medicine. [Online]. 355 (21). p.pp. 2226–2235. Available from: 
http://www.nejm.org/doi/abs/10.1056/NEJMra054308. 

Edwards, M.R., Bartlett, N.W., Hussell, T., Openshaw, P. & Johnston, S.L. (2012). The 
microbiology of asthma. Nature Reviews Microbiology. 



 

213 

 

Ege, M.J., Mayer, M., Normand, A.-C., Genuneit, J., Cookson, W.O.C.M., Braun-
Fahrländer, C., Heederik, D., Piarroux, R. & von Mutius, E. (2011). Exposure to 
Environmental Microorganisms and Childhood Asthma. New England Journal of 
Medicine. 

Eichenberger, R.M., Ryan, S., Jones, L., Buitrago, G., Polster, R., de Oca, M.M., Zuvelek, 
J., Giacomin, P.R., Dent, L.A., Engwerda, C.R., Field, M.A., Sotillo, J. & Loukas, 
A. (2018). Hookworm secreted extracellular vesicles interact with host cells and 
prevent inducible colitis in mice. Frontiers in Immunology. 

Everts, B., Hussaarts, L., Driessen, N.N., Meevissen, M.H.J., Schramm, G., van der Ham, 
A.J., van der Hoeven, B., Scholzen, T., Burgdorf, S., Mohrs, M., Pearce, E.J., Hokke, 
C.H., Haas, H., Smits, H.H. & Yazdanbakhsh, M. (2012). Schistosome-derived 
omega-1 drives Th2 polarization by suppressing protein synthesis following 
internalization by the mannose receptor. The Journal of Experimental Medicine. 

Everts, B., Perona-Wright, G., Smits, H.H., Hokke, C.H., van der Ham, A.J., 
Fitzsimmons, C.M., Doenhoff, M.J., van der Bosch, J., Mohrs, K., Haas, H., Mohrs, 
M., Yazdanbakhsh, M. & Schramm, G. (2009). Omega-1, a glycoprotein secreted 
by Schistosoma mansoni eggs, drives Th2 responses. The Journal of Experimental 
Medicine. 

Faber, T.E., Schuurhof, A., Vonk, A., Koppelman, G.H., Hennus, M.P., Kimpen, J.L.L., 
Janssen, R. & Bont, L.J. (2012). IL1RL1 gene variants and nasopharyngeal IL1RL-
a levels are associated with severe RSV bronchiolitis: A multicenter cohort study. 
PLoS ONE. 

Fahy, J. V. (2015). Type 2 inflammation in asthma-present in most, absent in many. 
Nature Reviews Immunology. 

Falcone, F.H., Zahner, H., Schlaak, M. & Haas, H. (1995). In vitro cultivation of third-
stage larvae of Brugia malayi to the young adult stage. Tropical Medicine and 
Parasitology. 

Faria-Pinto, P., Rezende-Soares, F.A., Molica, A.M., Montesano, M.A., Marques, M.J., 
Rocha, M.O.C., Gomes, J.A.S., Enk, M.J., Correa-Oliveira, R., Coelho, P.M.Z., 
Neto, S.M., Franco, O.L. & Vasconcelos, E.G. (2008). Mapping of the conserved 
antigenic domains shared between potato apyrase and parasite ATP 
diphosphohydrolases: Potential application in human parasitic diseases. 
Parasitology. 

Feary, J.R., Venn, A.J., Mortimer, K., Brown, A.P., Hooi, D., Falcone, F.H., Pritchard, 
D.I. & Britton, J.R. (2010). Experimental hookworm infection: A randomized 
placebo-controlled trial in asthma. Clinical and Experimental Allergy. 

Felix, J. & Savvides, S.N. (2017). Mechanisms of immunomodulation by mammalian and 
viral decoy receptors: Insights from structures. Nature Reviews Immunology. 

Felton, J.M., Lucas, C.D., Rossi, A.G. & Dransfield, I. (2014). Eosinophils in the lung - 
modulating apoptosis and efferocytosis in airway inflammation. Frontiers in 
Immunology. 



 

214 

 

Fernandez-Rodriguez, S., Ford, W.R., Broadley, K.J. & Kidd, E.J. (2008). Establishing 
the phenotype in novel acute and chronic murine models of allergic asthma. 
International Immunopharmacology. 

Ferreira, I.B., Pickering, D.A., Troy, S., Croese, J., Loukas, A. & Navarro, S. (2017). 
Suppression of inflammation and tissue damage by a hookworm recombinant 
protein in experimental colitis. Clinical & Translational Immunology. 

Ferreira, M.A.R., Jansen, R., Willemsen, G., Penninx, B., Bain, L.M., Vicente, C.T., 
Revez, J.A., Matheson, M.C., Hui, J., Tung, J.Y., Baltic, S., Le Souëf, P., 
Montgomery, G.W., Martin, N.G., Robertson, C.F., James, A., Thompson, P.J., 
Boomsma, D.I., Hopper, J.L., Hinds, D.A., Werder, R.B. & Phipps, S. (2017). Gene-
based analysis of regulatory variants identifies 4 putative novel asthma risk genes 
related to nucleotide synthesis and signaling. Journal of Allergy and Clinical 
Immunology. 

Figueiredo, C.A., Alcântara-Neves, N.M., Veiga, R., Amorim, L.D., Dattoli, V., 
Mendonça, L.R., Junqueira, S., Genser, B., Santos, M., de Carvalho, L.C.P., Cooper, 
P.J., Rodrigues, L. & Barreto, M.L. (2009). Spontaneous cytokine production in 
children according to biological characteristics and environmental exposures. 
Environmental Health Perspectives. 

Filbey, K.J., Grainger, J.R., Smith, K.A., Boon, L., Van Rooijen, N., Harcus, Y., Jenkins, 
S., Hewitson, J.P. & Maizels, R.M. (2014). Innate and adaptive type 2 immune cell 
responses in genetically controlled resistance to intestinal helminth infection. 
Immunology and Cell Biology. 

FitzGerald, J.M., Bleecker, E.R., Nair, P., Korn, S., Ohta, K., Lommatzsch, M., Ferguson, 
G.T., Busse, W.W., Barker, P., Sproule, S., Gilmartin, G., Werkström, V., 
Aurivillius, M. & Goldman, M. (2016). Benralizumab, an anti-interleukin-5 receptor 
α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, 
eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled 
phase 3 trial. The Lancet. 

Fitzsimmons, C.M., Falcone, F.H. & Dunne, D.W. (2014). Helminth allergens, parasite-
specific IgE, and its protective role in human immunity. Frontiers in Immunology. 

Fleming, J., Hernandez, G., Hartman, L., Maksimovic, J., Nace, S., Lawler, B., Risa, T., 
Cook, T., Agni, R., Reichelderfer, M., Luzzio, C., Rolak, L., Field, A. & Fabry, Z. 
(2017). Safety and efficacy of helminth treatment in relapsing-remitting multiple 
sclerosis: Results of the HINT 2 clinical trial. Multiple sclerosis (Houndmills, 
Basingstoke, England). p.p. 1352458517736377. 

Forton, J.T., Rowlands, K., Rockett, K., Hanchard, N., Herbert, M., Kwiatkowski, D.P. 
& Hull, J. (2009). Genetic association study for RSV bronchiolitis in infancy at the 
5q31 cytokine cluster. Thorax. 

Frahm, S., Anisuzzaman, A., Prodjinotho, F., Vejzagić, N., Verschoor, A. & Prazeres da 
Costa, C. (2019). A novel cell-free method to culture Schistosoma mansoni from 
cercariae to juvenile worm stages for in vitro drug testing. PLoS Neglected Tropical 



 

215 

 

Diseases. 
Galli, S.J., Nakae, S. & Tsai, M. (2005). Mast cells in the development of adaptive 

immune responses. Nature Immunology. 
Gan, S.W., Tan, E., Lin, X., Yu, D., Wang, J., Tan, G.M.Y., Vararattanavech, A., Yeo, 

C.Y., Soon, C.H., Soong, T.W., Pervushin, K. & Torres, J. (2012). The small 
hydrophobic protein of the human respiratory syncytial virus forms pentameric ion 
channels. Journal of Biological Chemistry. 

Gao, Y., Nish, S.A., Jiang, R., Hou, L., Licona-Limón, P., Weinstein, J.S., Zhao, H. & 
Medzhitov, R. (2013). Control of T helper 2 responses by transcription factor IRF4-
dependent dendritic cells. Immunity. 

García-García, M.L., Calvo, C., Moreira, A., Cañas, J.A., Pozo, F., Sastre, B., Quevedo, 
S., Casas, I. & Del Pozo, V. (2017). Thymic stromal lymphopoietin, IL-33, and 
periostin in hospitalized infants with viral bronchiolitis. Medicine (United States). 

Geha, R.S., Jabara, H.H. & Brodeur, S.R. (2003). The regulation of immunoglobulin E 
class-switch recombination. Nature Reviews Immunology. 

Geiger, S.M., Jardim-Botelho, A., Williams, W., Alexander, N., Diemert, D.J. & 
Bethony, J.M. (2013). Serum CCL11 (eotaxin-1) and CCL17 (TARC) are 
serological indicators of multiple helminth infections and are driven by Schistosoma 
mansoni infection in humans. Tropical Medicine and International Health. 

Gerbe, F., Sidot, E., Smyth, D.J., Ohmoto, M., Matsumoto, I., Dardalhon, V., Cesses, P., 
Garnier, L., Pouzolles, M., Brulin, B., Bruschi, M., Harcus, Y., Zimmermann, V.S., 
Taylor, N., Maizels, R.M. & Jay, P. (2016). Intestinal epithelial tuft cells initiate 
type 2 mucosal immunity to helminth parasites. Nature. 

Gilfillan, A.M., Austin, S.J. & Metcalfe, D.D. (2011). Mast cell biology: Introduction and 
overview. Advances in Experimental Medicine and Biology. 

Global Asthma Network (2018). The Global Asthma Report 2018. Auckland, New 
Zealand. 

Goh, Y.P.S., Henderson, N.C., Heredia, J.E., Red Eagle, A., Odegaard, J.I., Lehwald, N., 
Nguyen, K.D., Sheppard, D., Mukundan, L., Locksley, R.M. & Chawla, A. (2013). 
Eosinophils secrete IL-4 to facilitate liver regeneration. Proceedings of the National 
Academy of Sciences. 

Gour, N. & Lajoie, S. (2016). Epithelial Cell Regulation of Allergic Diseases. Current 
Allergy and Asthma Reports. 

Grainger, J.R., Smith, K.A., Hewitson, J.P., McSorley, H.J., Harcus, Y., Filbey, K.J., 
Finney, C.A.M., Greenwood, E.J.D., Knox, D.P., Wilson, M.S., Belkaid, Y., 
Rudensky, A.Y. & Maizels, R.M. (2010). Helminth secretions induce de novo T cell 
Foxp3 expression and regulatory function through the TGF-β pathway. The Journal 
of Experimental Medicine. 

Griesenauer, B. & Paczesny, S. (2017). The ST2/IL-33 axis in immune cells during 
inflammatory diseases. Frontiers in Immunology. 



 

216 

 

Grünig, G., Warnock, M., Wakil, A.E., Venkayya, R., Brombacher, F., Rennick, D.M., 
Sheppard, D., Mohrs, M., Donaldson, D.D., Locksley, R.M. & Corry, D.B. (1998). 
Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 

Gundel, R.H., Letts, L.G. & Gleich, G.J. (1991). Human eosinophil major basic protein 
induces airway constriction and airway hyperresponsiveness in primates. Journal of 
Clinical Investigation. 

Günther, S., Deredge, D., Bowers, A.L., Luchini, A., Bonsor, D.A., Beadenkopf, R., 
Liotta, L., Wintrode, P.L. & Sundberg, E.J. (2017). IL-1 Family Cytokines Use 
Distinct Molecular Mechanisms to Signal through Their Shared Co-receptor. 
Immunity. 

Haeberlein, S., Obieglo, K., Ozir-Fazalalikhan, A., Chayé, M.A.M., Veninga, H., van der 
Vlugt, L.E.P.M., Voskamp, A., Boon, L., den Haan, J.M.M., Westerhof, L.B., 
Wilbers, R.H.P., Schots, A., Schramm, G., Hokke, C.H. & Smits, H.H. (2017). 
Schistosome egg antigens, including the glycoprotein IPSE/alpha-1, trigger the 
development of regulatory B cells. PLoS Pathogens. 

Hagan, P., Blumenthal, U.J., Dunn, D., Simpson, A.J.G. & Wilkins, H.A. (1991). Human 
IgE, IgG4 and resistance to reinfection with Schistosomahaematobium. Nature. 

Halim, T.Y.F. (2016). Group 2 innate lymphoid cells in disease. International 
Immunology. 

Halim, T.Y.F., Krauß, R.H., Sun, A.C. & Takei, F. (2012). Lung Natural Helper Cells 
Are a Critical Source of Th2 Cell-Type Cytokines in Protease Allergen-Induced 
Airway Inflammation. Immunity. 

Halim, T.Y.F., Steer, C.A., Mathä, L., Gold, M.J., Martinez-Gonzalez, I., McNagny, 
K.M., McKenzie, A.N.J. & Takei, F. (2014). Group 2 innate lymphoid cells are 
critical for the initiation of adaptive T helper 2 cell-mediated allergic lung 
inflammation. Immunity. 40 (3). p.pp. 425–435. 

Hammad, H., Chieppa, M., Perros, F., Willart, M.A., Germain, R.N. & Lambrecht, B.N. 
(2009). House dust mite allergen induces asthma via Toll-like receptor 4 triggering 
of airway structural cells. Nature Medicine. 

Hammad, H. & Lambrecht, B.N. (2015). Barrier Epithelial Cells and the Control of Type 
2 Immunity. Immunity. 

Hansbro, P.M., Kim, R.Y., Starkey, M.R., Donovan, C., Dua, K., Mayall, J.R., Liu, G., 
Hansbro, N.G., Simpson, J.L., Wood, L.G., Hirota, J.A., Knight, D.A., Foster, P.S. 
& Horvat, J.C. (2017). Mechanisms and treatments for severe, steroid-resistant 
allergic airway disease and asthma. Immunological Reviews. 

Harnett, M.M. & Harnett, W. (2017). Can Parasitic Worms Cure the Modern World’s 
Ills? Trends in Parasitology. 

Harnett, M.M., Melendez, A.J. & Harnett, W. (2010). The therapeutic potential of the 
filarial nematode-derived immunodulator, ES-62 in inflammatory disease. Clinical 
and Experimental Immunology. 



 

217 

 

Harnett, W., McInnes, I.B. & Harnett, M.M. (2004). ES-62, a filarial nematode-derived 
immunomodulator with anti-inflammatory potential. Immunology Letters. 

Henderson, C.E., Bromek, K., Mullin, N.P., Smith, B.O., Uhrín, D. & Barlow, P.N. 
(2001). Solution structure and dynamics of the central CCP module pair of a 
poxvirus complement control protein. Journal of Molecular Biology. 

Henderson, J., Hilliard, T.N., Sherriff, A., Stalker, D., Al Shammari, N. & Thomas, H.M. 
(2005). Hospitalization for RSV bronchiolitis before 12 months of age and 
subsequent asthma, atopy and wheeze: A longitudinal birth cohort study. Pediatric 
Allergy and Immunology. 

Hepworth, M.R., Danilowicz-Luebert, E., Rausch, S., Metz, M., Klotz, C., Maurer, M. & 
Hartmann, S. (2012). Mast cells orchestrate type 2 immunity to helminths through 
regulation of tissue-derived cytokines. Proceedings of the National Academy of 
Sciences. 

Hewitson, J.P., Filbey, K.J., Esser-von Bieren, J., Camberis, M., Schwartz, C., Murray, 
J., Reynolds, L.A., Blair, N., Robertson, E., Harcus, Y., Boon, L., Huang, S.C.C., 
Yang, L., Tu, Y., Miller, M.J., Voehringer, D., Le Gros, G., Harris, N. & Maizels, 
R.M. (2015). Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent 
Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with 
Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection. 
PLoS Pathogens. 

Hewitson, J.P., Harcus, Y., Murray, J., van Agtmaal, M., Filbey, K.J., Grainger, J.R., 
Bridgett, S., Blaxter, M.L., Ashton, P.D., Ashford, D.A., Curwen, R.S., Wilson, 
R.A., Dowle, A.A. & Maizels, R.M. (2011). Proteomic analysis of secretory 
products from the model gastrointestinal nematode Heligmosomoides polygyrus 
reveals dominance of Venom Allergen-Like (VAL) proteins. Journal of Proteomics. 

Hewitson, J.P., Ivens, A.C., Harcus, Y., Filbey, K.J., McSorley, H.J., Murray, J., Bridgett, 
S., Ashford, D., Dowle, A.A. & Maizels, R.M. (2013). Secretion of Protective 
Antigens by Tissue-Stage Nematode Larvae Revealed by Proteomic Analysis and 
Vaccination-Induced Sterile Immunity. PLoS Pathogens. 

Holgate, S.T. (2009). Pathogenesis of Asthma. In: Allergy and Allergic Diseases, Second 
Edition. 

Holgate, S.T. (2000). The role of mast cells and basophils in inflammation. Clinical and 
Experimental Allergy. 

Hong, J.Y., Bentley, J.K., Chung, Y., Lei, J., Steenrod, J.M., Chen, Q., Sajjan, U.S. & 
Hershenson, M.B. (2014). Neonatal rhinovirus induces mucous metaplasia and 
airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. 
Journal of Allergy and Clinical Immunology. 

Hotez, P.J., Brindley, P.J., Bethony, J.M., King, C.H., Pearce, E.J. & Jacobson, J. (2008). 
Helminth infections: The great neglected tropical diseases. Journal of Clinical 
Investigation. 



 

218 

 

Howitt, M.R., Lavoie, S., Michaud, M., Blum, A.M., Tran, S. V., Weinstock, J. V., 
Gallini, C.A., Redding, K., Margolskee, R.F., Osborne, L.C., Artis, D. & Garrett, 
W.S. (2016). Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 
immunity in the gut. Science. 

Huang, H., Evankovich, J., Yan, W., Nace, G., Zhang, L., Ross, M., Liao, X., Billiar, T., 
Xu, J., Esmon, C.T. & Tsung, A. (2011). Endogenous histones function as alarmins 
in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 

Huang, L. & Appleton, J.A. (2016). Eosinophils in Helminth Infection: Defenders and 
Dupes. Trends in Parasitology. 

Huang, Y.T., Collins, P.L. & Wertz, G.W. (1985). Characterization of the 10 proteins of 
human respiratory syncytial virus: Identification of a fourth envelope-associated 
protein. Virus Research. 

Humbert, M., Beasley, R., Ayres, J., Slavin, R., Hebert, J., Bousquet, J., Beeh, K.-M., 
Ramos, S., Canonica, G.W., Hedgecock, S., Fox, H., Blogg, M. & Surrey, K. (2005). 
Benefits of omalizumab as add-on therapy in patients with severe persistent asthma 
who are inadequately controlled despite best available therapy (GINA 2002 step 4 
treatment): INNOVATE. Allergy. 60 (3). p.pp. 309–316. 

Humphreys, N.E., Xu, D., Hepworth, M.R., Liew, F.Y. & Grencis, R.K. (2008). IL-33, a 
Potent Inducer of Adaptive Immunity to Intestinal Nematodes. The Journal of 
Immunology. 

Hung, L.-Y., Lewkowich, I.P., Dawson, L.A., Downey, J., Yang, Y., Smith, D.E. & 
Herbert, D.R. (2013). IL-33 drives biphasic IL-13 production for noncanonical Type 
2 immunity against hookworms. Proceedings of the National Academy of Sciences. 

Iliev, I.D., Spadoni, I., Mileti, E., Matteoli, G., Sonzogni, A., Sampietro, G.M., Foschi, 
D., Caprioli, F., Viale, G. & Rescigno, M. (2009). Human intestinal epithelial cells 
promote the differentiation of tolerogenic dendritic cells. Gut. 

Iwahana, H., Yanagisawa, K., Ito-Kosaka, A., Kuroiwa, K., Tago, K., Komatsu, N., 
Katashima, R., Itakura, M. & Tominaga, S.I. (1999). Different promoter usage and 
multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 
gene in UT-7 and TM12 cells. European Journal of Biochemistry. 

Jäättelä, M., Mouritzen, H., Elling, F., Bastholm, L., Hashemolhosseini, S., Tannapfel, 
A. & Tiegs, G. (1996). A20 zinc finger protein inhibits TNF and IL-1 signaling. 
Journal of immunology (Baltimore, Md. : 1950). 

Jackson, D.J., Makrinioti, H., Rana, B.M.J., Shamji, B.W.H., Trujillo-Torralbo, M.B., 
Footitt, J., Del-Rosario, J., Telcian, A.G., Nikonova, A., Zhu, J., Aniscenko, J., 
Gogsadze, L., Bakhsoliani, E., Traub, S., Dhariwal, J., Porter, J., Hunt, D., Hunt, 
Toby, Hunt, Trevor, Stanciu, L.A., Khaitov, M., Bartlett, N.W., Edwards, M.R., 
Kon, O.M., Mallia, P., Papadopoulos, N.G., Akdis, C.A., Westwick, J., Edwards, 
M.J., Cousins, D.J., Walton, R.P. & Johnston, S.L. (2014). IL-33-Dependent type 2 
inflammation during rhinovirus-induced asthma exacerbations in vivo. American 
Journal of Respiratory and Critical Care Medicine. 



 

219 

 

Jacobsen, E.A., Helmers, R.A., Lee, J.J. & Lee, N.A. (2012). The expanding role(s) of 
eosinophils in health and disease. Blood. 

Janicova, L., Rzepecka, J., Rodgers, D.T., Doonan, J., Bell, K.S., Lumb, F.E., Suckling, 
C.J., Harnett, M.M. & Harnett, W. (2016). Testing small molecule analogues of the 
Acanthocheilonema viteae immunomodulator ES-62 against clinically relevant 
allergens. Parasite Immunology. 

Johansson, K., Malmhäll, C., Ramos-Ramírez, P. & Rådinger, M. (2018). Bone marrow 
type 2 innate lymphoid cells: a local source of interleukin-5 in interleukin-33-driven 
eosinophilia. Immunology. 

Johansson, K. & McSorley, H.J. (2019). IL-33 in the developing lung - roles in asthma 
and infection. Pediatric allergy and immunology : official publication of the 
European Society of Pediatric Allergy and Immunology. 

Johnson, J.E., Gonzales, R.A., Olson, S.J., Wright, P.F. & Graham, B.S. (2007). The 
histopathology of fatal untreated human respiratory syncytial virus infection. 
Modern Pathology. 

Johnston, C.J.C., Robertson, E., Harcus, Y., Grainger, J.R., Coakley, G., Smyth, D.J., 
McSorley, H.J. & Maizels, R. (2015). Cultivation of &lt;em&gt;Heligmosomoides 
Polygyrus:&lt;/em&gt; An Immunomodulatory Nematode Parasite and its Secreted 
Products. Journal of Visualized Experiments. 

Johnston, C.J.C., Smyth, D.J., Kodali, R.B., White, M.P.J., Harcus, Y., Filbey, K.J., 
Hewitson, J.P., Hinck, C.S., Ivens, A., Kemter, A.M., Kildemoes, A.O., Le Bihan, 
T., Soares, D.C., Anderton, S.M., Brenn, T., Wigmore, S.J., Woodcock, H. V., 
Chambers, R.C., Hinck, A.P., McSorley, H.J. & Maizels, R.M. (2017). A 
structurally distinct TGF-β mimic from an intestinal helminth parasite potently 
induces regulatory T cells. Nature Communications. 

Johnston, L.K. & Bryce, P.J. (2017). Understanding Interleukin 33 and Its Roles in 
Eosinophil Development. Frontiers in Medicine. 

Joulia, R., Gaudenzio, N., Rodrigues, M., Lopez, J., Blanchard, N., Valitutti, S. & 
Espinosa, E. (2015). Mast cells form antibody-dependent degranulatory synapse for 
dedicated secretion and defence. Nature Communications. 

Jourdan, P.M., Lamberton, P.H.L., Fenwick, A. & Addiss, D.G. (2018). Soil-transmitted 
helminth infections. The Lancet. 

Kaiko, G.E., Horvat, J.C., Beagley, K.W. & Hansbro, P.M. (2008). Immunological 
decision-making: How does the immune system decide to mount a helper T-cell 
response? Immunology. 

Kamijo, S., Takeda, H., Tokura, T., Suzuki, M., Inui, K., Hara, M., Matsuda, H., Matsuda, 
A., Oboki, K., Ohno, T., Saito, H., Nakae, S., Sudo, K., Suto, H., Ichikawa, S., 
Ogawa, H., Okumura, K. & Takai, T. (2013). IL-33-Mediated Innate Response and 
Adaptive Immune Cells Contribute to Maximum Responses of Protease Allergen-
Induced Allergic Airway Inflammation. The Journal of Immunology. 



 

220 

 

Kaparakis-Liaskos, M. & Ferrero, R.L. (2015). Immune modulation by bacterial outer 
membrane vesicles. Nature Reviews Immunology. 

Kirkitadze, M.D. & Barlow, P.N. (2001). Structure and flexibility of the multiple domain 
proteins that regulate complement activation. Immunological Reviews. 

Kiss, G., Holl, J.M., Williams, G.M., Alonas, E., Vanover, D., Lifland, A.W., Gudheti, 
M., Guerrero-Ferreira, R.C., Nair, V., Yi, H., Graham, B.S., Santangelo, P.J. & 
Wright, E.R. (2014). Structural Analysis of Respiratory Syncytial Virus Reveals the 
Position of M2-1 between the Matrix Protein and the Ribonucleoprotein Complex. 
Journal of Virology. 

Kitagaki, K., Businga, T.R., Racila, D., Elliott, D.E., Weinstock, J. V. & Kline, J.N. 
(2006). Intestinal Helminths Protect in a Murine Model of Asthma. The Journal of 
Immunology. 

de Kleer, I.M., Kool, M., de Bruijn, M.J.W., Willart, M., van Moorleghem, J., Schuijs, 
M.J., Plantinga, M., Beyaert, R., Hams, E., Fallon, P.G., Hammad, H., Hendriks, 
R.W. & Lambrecht, B.N. (2016). Perinatal Activation of the Interleukin-33 Pathway 
Promotes Type 2 Immunity in the Developing Lung. Immunity. 

Van der Kleij, D., Latz, E., Brouwers, J.F.H.M., Kruize, Y.C.M., Schmitz, M., Kurt-
Jones, E.A., Espevik, T., De Jong, E.C., Kapsenberg, M.L., Golenbock, D.T., 
Tielens, A.G.M. & Yazdanbakhsh, M. (2002). A novel host-parasite lipid cross-talk. 
Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects 
immune polarization. Journal of Biological Chemistry. 

Klose, C.S.N. & Artis, D. (2016). Innate lymphoid cells as regulators of immunity, 
inflammation and tissue homeostasis. Nature Immunology. 

Kobayashi, T., Iijima, K., Radhakrishnan, S., Mehta, V., Vassallo, R., Lawrence, C.B., 
Cyong, J.-C., Pease, L.R., Oguchi, K. & Kita, H. (2009). Asthma-Related 
Environmental Fungus, Alternaria, Activates Dendritic Cells and Produces Potent 
Th2 Adjuvant Activity. The Journal of Immunology. 

Kondo, Y., Yoshimoto, T., Yasuda, K., Futatsugi-yumikura, S., Morimoto, M., Hayashi, 
N., Hoshino, T., Fujimoto, J. & Nakanishi, K. (2008). Administration of IL-33 
induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the 
absence of adaptive immune system. International Immunology. 

Kopf, M., Gros, G. Le, Bachmann, M., Lamers, M.C., Bluethmann, H. & Köhler, G. 
(1993). Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature. 

Korppi, M., Piippo-Savolainen, E., Korhonen, K. & Remes, S. (2004). Respiratory 
morbidity 20 years after RSV infection in infancy. Pediatric Pulmonology. 

Kortekaas Krohn, I., Shikhagaie, M.M., Golebski, K., Bernink, J.H., Breynaert, C., 
Creyns, B., Diamant, Z., Fokkens, W.J., Gevaert, P., Hellings, P., Hendriks, R.W., 
Klimek, L., Mjösberg, J., Morita, H., Ogg, G.S., O’Mahony, L., Schwarze, J., Seys, 
S.F., Shamji, M.H. & Bal, S.M. (2018). Emerging roles of innate lymphoid cells in 
inflammatory diseases: Clinical implications. Allergy: European Journal of Allergy 



 

221 

 

and Clinical Immunology. 
Kouzaki, H., Iijima, K., Kobayashi, T., O’Grady, S.M. & Kita, H. (2011). The Danger 

Signal, Extracellular ATP, Is a Sensor for an Airborne Allergen and Triggers IL-33 
Release and Innate Th2-Type Responses. The Journal of Immunology. 

Krasteva, G., Canning, B.J., Hartmann, P., Veres, T.Z., Papadakis, T., Muhlfeld, C., 
Schliecker, K., Tallini, Y.N., Braun, A., Hackstein, H., Baal, N., Weihe, E., Schutz, 
B., Kotlikoff, M., Ibanez-Tallon, I. & Kummer, W. (2011). Cholinergic 
chemosensory cells in the trachea regulate breathing. Proceedings of the National 
Academy of Sciences. 

Kumar, R.K., Foster, P.S. & Rosenberg, H.F. (2014). Respiratory viral infection, 
epithelial cytokines, and innate lymphoid cells in asthma exacerbations. Journal of 
Leukocyte Biology. 

Lambert, L., Sagfors, A.M., Openshaw, P.J.M. & Culley, F.J. (2014). Immunity to RSV 
in early-life. Frontiers in Immunology. 

Lambrecht, B.N. & Hammad, H. (2014). Allergens and the airway epithelium response: 
Gateway to allergic sensitization. Journal of Allergy and Clinical Immunology. 

Lambrecht, B.N. & Hammad, H. (2015). The immunology of asthma. Nature 
Immunology. 

Lambrecht, B.N. & Hammad, H. (2017). The immunology of the allergy epidemic and 
the hygiene hypothesis. Nature Immunology. 18 (10) pp.pp. 1076–1083. 

Lambrecht, B.N. & Hammad, H. (2010). The role of dendritic and epithelial cells as 
master regulators of allergic airway inflammation. The Lancet. 

Lawrence, M.G., Steinke, J.W. & Borish, L. (2018). Cytokine-targeting biologics for 
allergic diseases. Annals of Allergy, Asthma and Immunology. 

Lawrence, R.A., Gray, C.A., Osborne, J. & Maizels, R.M. (1996). Nippostrongylus 
brasiliensis: Cytokine responses and nematode expulsion in normal and IL-4 
deficient mice. Experimental Parasitology. 

Lebien, T.W. & Tedder, T.F. (2008). B lymphocytes: How they develop and function. 
Blood. 

Lécart, S., Lecointe, N., Subramaniam, A., Alkan, S., Ni, D., Chen, R., Boulay, V., Pène, 
J., Kuroiwa, K., Tominaga, S.I. & Yssel, H. (2002). Activated, but not resting human 
Th2 cells, in contrast to Th1 and T regulatory cells, produce soluble ST2 and express 
low levels of ST2L at the cell surface. European Journal of Immunology. 

Leckie, M.J., Ten Brinke, A., Khan, J., Diamant, Z., O’xonnor, B.J., Walls, C.M., Mathur, 
A.K., Cowley, H.C., Chung, K.F., Djukanovic, R., Hansel, T.T., Holgate, S.T., 
Sterk, P.J. & Barnes, P.J. (2000). Effects of an interleukin-5 blocking monoclonal 
antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic 
response. Lancet. 

Lefrancais, E., Roga, S., Gautier, V., Gonzalez-de-Peredo, A., Monsarrat, B., Girard, J.-



 

222 

 

P. & Cayrol, C. (2012). IL-33 is processed into mature bioactive forms by neutrophil 
elastase and cathepsin G. Proceedings of the National Academy of Sciences. 

Leonardi-Bee, J., Pritchard, D. & Britton, J. (2006). Asthma and current intestinal parasite 
infection: Systematic review and meta-analysis. American Journal of Respiratory 
and Critical Care Medicine. 

Li, X., Li, Y., Han, H., Miller, D.W. & Wang, G. (2006). Solution structures of human ll-
37 fragments and NMR-based identification of a minimal membrane-targeting 
antimicrobial and anticancer region. Journal of the American Chemical Society. 

Li, Yan, Wang, W., Lv, Z., Li, Yun, Chen, Y., Huang, K., Corrigan, C.J. & Ying, S. 
(2018). Elevated Expression of IL-33 and TSLP in the Airways of Human 
Asthmatics In Vivo: A Potential Biomarker of Severe Refractory Disease. The 
Journal of Immunology. 

Liang, Y., Jie, Z., Hou, L., Yi, P., Wang, W., Kwota, Z., Salvato, M., de Waal Malefyt, 
R., Soong, L. & Sun, J. (2015). IL-33 promotes innate IFN-γ production and 
modulates dendritic cell response in LCMV-induced hepatitis in mice. European 
Journal of Immunology. 

Liew, F.Y., Girard, J.P. & Turnquist, H.R. (2016). Interleukin-33 in health and disease. 
Nature Reviews Immunology. 

Lilly, C.M., Woodruff, P.G., Camargo, C.A., Nakamura, H., Drazen, J.M., Nadel, E.S. & 
Hanrahan, J.P. (1999). Elevated plasma eotaxin levels in patients with acute asthma. 
Journal of Allergy and Clinical Immunology. 

Ling, M.F. & Luster, A.D. (2016). Allergen-Specific CD4(+) T Cells in Human Asthma. 
Annals of the American Thoracic Society. 13 Suppl 1. p.pp. S25-30. 

Lingel, A., Weiss, T.M., Niebuhr, M., Pan, B., Appleton, B.A., Wiesmann, C., Bazan, 
J.F. & Fairbrother, W.J. (2009). Structure of IL-33 and Its Interaction with the ST2 
and IL-1RAcP Receptors-Insight into Heterotrimeric IL-1 Signaling Complexes. 
Structure. 

Liu, J., Wu, J., Qi, F., Zeng, S., Xu, L., Hu, H., Wang, D. & Liu, B. (2015). Natural helper 
cells contribute to pulmonary eosinophilia by producing IL-13 via IL-33/ST2 
pathway in a murine model of respiratory syncytial virus infection. International 
Immunopharmacology. 

Liu, L.Y., Mathur, S.K., Sedgwick, J.B., Jarjour, N.N., Busse, W.W. & Kelly, E.A.B. 
(2006). Human airway and peripheral blood eosinophils enhance Th1 and Th2 
cytokine secretion. Allergy: European Journal of Allergy and Clinical Immunology. 

Liu, X., Hammel, M., He, Y., Tainer, J.A., Jeng, U.-S., Zhang, L., Wang, S. & Wang, X. 
(2013). Structural insights into the interaction of IL-33 with its receptors. 
Proceedings of the National Academy of Sciences. 

Llop-Guevara, A., Chu, D.K., Walker, T.D., Goncharova, S., Fattouh, R., Silver, J.S., 
Moore, C.L., Xie, J.L., O’Byrne, P.M., Coyle, A.J., Kolbeck, R., Humbles, A.A., 
Stämpfli, M.R. & Jordana, M. (2014). A GM-CSF/IL-33 pathway facilitates allergic 



 

223 

 

airway responses to sub-threshold house dust mite exposure. PLoS ONE. 
Lloyd, C.M., Gonzalo, J.-A., Nguyen, T., Delaney, T., Tian, J., Oettgen, H., Coyle, A.J. 

& Gutierrez-Ramos, J.-C. (2018). Resolution of Bronchial Hyperresponsiveness and 
Pulmonary Inflammation Is Associated with IL-3 and Tissue Leukocyte Apoptosis. 
J Immunol. 

Lloyd, C.M. & Hessel, E.M. (2010). Functions of T cells in asthma: More than just TH2 
cells. Nature Reviews Immunology. 

Lloyd, C.M. & Saglani, S. (2015). Epithelial cytokines and pulmonary allergic 
inflammation. Current Opinion in Immunology. 34 pp.pp. 52–58. 

Lloyd, C.M. & Snelgrove, R.J. (2018). Type 2 immunity: Expanding our view. Sci. 
Immunol. 

Londei, M., Kenney, B., Los, G. & Marino, M.H. (2017). A Phase 1 Study of ANB020, 
an anti-IL-33 monoclonal Antibody in Healthy Volunteers. Journal of Allergy and 
Clinical Immunology. [Online]. 139 (2). p.p. AB73. Available from: 
https://doi.org/10.1016/j.jaci.2016.12.286. 

Lüthi, A.U., Cullen, S.P., McNeela, E.A., Duriez, P.J., Afonina, I.S., Sheridan, C., 
Brumatti, G., Taylor, R.C., Kersse, K., Vandenabeele, P., Lavelle, E.C. & Martin, 
S.J. (2009). Suppression of Interleukin-33 Bioactivity through Proteolysis by 
Apoptotic Caspases. Immunity. 

Lynch, J.P., Werder, R.B., Simpson, J., Loh, Z., Zhang, V., Haque, A., Spann, K., Sly, 
P.D., Mazzone, S.B., Upham, J.W. & Phipps, S. (2016). Aeroallergen-induced IL-
33 predisposes to respiratory virus–induced asthma by dampening antiviral 
immunity. Journal of Allergy and Clinical Immunology. 

MacDonald, A.S., Straw, A.D., Bauman, B. & Pearce, E.J. (2001). CD8- Dendritic Cell 
Activation Status Plays an Integral Role in Influencing Th2 Response Development. 
The Journal of Immunology. 

Maizels, R.M., Hewitson, J.P., Murray, J., Harcus, Y.M., Dayer, B., Filbey, K.J., 
Grainger, J.R., McSorley, H.J., Reynolds, L.A. & Smith, K.A. (2012). Immune 
modulation and modulators in Heligmosomoides polygyrus infection. Experimental 
Parasitology. 

Maizels, R.M., Smits, H.H. & Mcsorley, H.J. (2018). Modulation of Host Immunity by 
Helminths: The Expanding Repertoire of PArasite Effector Molecules. Immunity. 49 
(5). p.pp. 801–818. 

Malm-Erjefält, M., Greiff, L., Ankerst, J., Andersson, M., Wallengren, J., Cardell, L.O., 
Rak, S., Persson, C.G.A. & Erjefält, J.S. (2005). Circulating eosinophils in asthma, 
allergic rhinitis, and atopic dermatitis lack morphological signs of degranulation. 
Clinical and Experimental Allergy. 

Mangan, N.E., van Rooijen, N., McKenzie, A.N.J. & Fallon, P.G. (2006). Helminth-
Modified Pulmonary Immune Response Protects Mice from Allergen-Induced 
Airway Hyperresponsiveness. The Journal of Immunology. 



 

224 

 

Marcilla, A., Trelis, M., Cortés, A., Sotillo, J., Cantalapiedra, F., Minguez, M.T., Valero, 
M.L., Sánchez del Pino, M.M., Muñoz-Antoli, C., Toledo, R. & Bernal, D. (2012). 
Extracellular Vesicles from Parasitic Helminths Contain Specific 
Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells. PLoS 
ONE. 

Martin, N.T. & Martin, M.U. (2016). Interleukin 33 is a guardian of barriers and a local 
alarmin. Nature Immunology. 

McBrien, C.N. & Menzies-Gow, A. (2017). The Biology of Eosinophils and Their Role 
in Asthma. Frontiers in Medicine. 

McCracken, J.L., Tripple, J.W. & Calhoun, W.J. (2016). Biologic therapy in the 
management of asthma. Current Opinion in Allergy and Clinical Immunology. 

McFarlane, A.J., McSorley, H.J., Davidson, D.J., Fitch, P.M., Errington, C., Mackenzie, 
K.J., Gollwitzer, E.S., Johnston, C.J.C., MacDonald, A.S., Edwards, M.R., Harris, 
N.L., Marsland, B.J., Maizels, R.M. & Schwarze, J. (2017). Enteric helminth-
induced type I interferon signaling protects against pulmonary virus infection 
through interaction with the microbiota. Journal of Allergy and Clinical 
Immunology. 

McInnes, I.B., Leung, B.P., Harnett, M., Gracie, J.A., Liew, F.Y. & Harnett, W. (2003). 
A Novel Therapeutic Approach Targeting Articular Inflammation Using the Filarial 
Nematode-Derived Phosphorylcholine-Containing Glycoprotein ES-62. The 
Journal of Immunology. 

McKenzie, A.N.J., Spits, H. & Eberl, G. (2014). Innate lymphoid cells in inflammation 
and immunity. Immunity. 41 (3). p.pp. 366–374. 

McNamara, P.S., Flanagan, B.F., Hart, C.A. & Smyth, R.L. (2005). Production of 
Chemokines in the Lungs of Infants with Severe Respiratory Syncytial Virus 
Bronchiolitis. J Infect Dis. 

McNamara, P.S., Flanagan, B.F., Selby, A.M., Hart, C.A. & Smyth, R.L. (2004). Pro- 
and anti-inflammatory responses in respiratory syncytial virus bronchiolitis. 
European Respiratory Journal. 

McNamara, P.S., Ritson, P., Selby, A., Hart, C.A. & Smyth, R.L. (2003). 
Bronchoalveolar lavage cellularity in infants with severe respiratory syncytial virus 
bronchiolitis. Archives of Disease in Childhood. 

McSorley, H.J., Blair, N.F., Robertson, E. & Maizels, R.M. (2015). Suppression of OVA-
alum induced allergy by Heligmosomoides polygyrus products is MyD88-, TRIF-, 
regulatory T- and B cell-independent, but is associated with reduced innate 
lymphoid cell activation. Experimental Parasitology. 158. p.pp. 8–17. 

McSorley, H.J., Blair, N.F., Smith, K.A., McKenzie, A.N.J. & Maizels, R.M. (2014). 
Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses 
by helminth secreted products in airway allergy. Mucosal Immunology. 7 (5). p.pp. 
1068–1078. 



 

225 

 

McSorley, H.J., Gaze, S., Daveson, J., Jones, D., Anderson, R.P., Clouston, A., Ruyssers, 
N.E., Speare, R., McCarthy, J.S., Engwerda, C.R., Croese, J. & Loukas, A. (2011). 
Suppression of inflammatory immune responses in celiac disease by experimental 
hookworm infection. PLoS ONE. 

McSorley, H.J., Hewitson, J.P. & Maizels, R.M. (2013). Immunomodulation by helminth 
parasites: Defining mechanisms and mediators. International Journal for 
Parasitology. 

McSorley, H.J., O’Gorman, M.T., Blair, N., Sutherland, T.E., Filbey, K.J. & Maizels, 
R.M. (2012). Suppression of type 2 immunity and allergic airway inflammation by 
secreted products of the helminth Heligmosomoides polygyrus. European Journal 
of Immunology. 42 (10). p.pp. 2667–2682. 

Melendez, A.J., Harnett, M.M., Pushparaj, P.N., Wong, W.F., Tay, H.K., McSharry, C.P. 
& Harnett, W. (2007). Inhibition of FcεRI-mediated mast cell responses by ES-62, 
a product of parasitic filarial nematodes. Nature Medicine. 

Meningher, T., Lerman, G., Regev-Rudzki, N., Gold, D., Ben-Dov, I.Z., Sidi, Y., Avni, 
D. & Schwartz, E. (2017). Schistosomal microRNAs isolated from extracellular 
vesicles in sera of infected patients: a new tool for diagnosis and follow-up of human 
schistosomiasis. Journal of Infectious Diseases. 

Meurer, S.K., Neß, M., Weiskirchen, S., Kim, P., Tag, C.G., Kauffmann, M., Huber, M. 
& Weiskirchen, R. (2016). Isolation of mature (Peritoneum-Derived) mast cells and 
immature (Bone Marrow- Derived) mast cell precursors from mice. PLoS ONE. 

Minutti, C.M., Drube, S., Blair, N., Schwartz, C., McCrae, J.C., McKenzie, A.N., 
Kamradt, T., Mokry, M., Coffer, P.J., Sibilia, M., Sijts, A.J., Fallon, P.G., Maizels, 
R.M. & Zaiss, D.M. (2017). Epidermal Growth Factor Receptor Expression 
Licenses Type-2 Helper T Cells to Function in a T Cell Receptor-Independent 
Fashion. Immunity. 

Mirchandani, A.S., Besnard, A.-G., Yip, E., Scott, C., Bain, C.C., Cerovic, V., Salmond, 
R.J. & Liew, F.Y. (2014). Type 2 Innate Lymphoid Cells Drive CD4+ Th2 Cell 
Responses. The Journal of Immunology. 

Mochizuki, H., Kusuda, S., Okada, K., Yoshihara, S., Furuya, H., Simões, E.A.F., 
Asanuma, H., Yoshida, H., Katayose, M., Imamura, T., Suzumura, H., Honma, Y., 
Maruyama, K., Ohki, Y., Ozasa, K., Nariai, A., Uchiyama, A., Uryu, H., Hosono, 
S., Kondo, M., Kawase, Y., Ikeda, K., Naito, A., Minami, Y., Nakamura, T., Baba, 
A., Nagayama, Y., Kaneda, H., Ohki, S., Shirai, M., Henmi, Y., Suzuki, C., Ieda, K., 
Tanaka, T., Kono, Y., Nisizawa, K., Niwa, F., Ito, H., Tokunaga, Y., Takada, Y., 
Nishikawa, Y., Nagata, I., Kajino, Y., Watabe, S., Yoshio, H., Takahashi, N., Sasaki, 
N., Hayashidani, M., Tateishi, H., Matsushita, K., Nakamura, M., Nakayama, H., 
Yamamoto, G., Kanemitsu, N., Takayanagi, T., Sato, A. & Ibara, S. (2017). 
Palivizumab prophylaxis in preterm infants and subsequent recurrent wheezing: Six-
year follow-up study. American Journal of Respiratory and Critical Care Medicine. 

Moffatt, M.F., Gut, I.G., Demenais, F., Strachan, D.P., Bouzigon, E., Heath, S., von 



 

226 

 

Mutius, E., Farrall, M., Lathrop, M. & Cookson, W.O.C.M. (2010). A Large-Scale, 
Consortium-Based Genomewide Association Study of Asthma. New England 
Journal of Medicine. 

Molofsky, A.B., Van Gool, F., Liang, H.E., Van Dyken, S.J., Nussbaum, J.C., Lee, J., 
Bluestone, J.A. & Locksley, R.M. (2015). InterleuKin-33 And Interferon-Γ Counter-
Regulate Group 2 Innate Lymphoid Cell Activation During Immune Perturbation. 
Immunity. 

Molofsky, A.B., Savage, A.K. & Locksley, R.M. (2015). Interleukin-33 in Tissue 
Homeostasis, Injury, and Inflammation. Immunity. 

Von Moltke, J., Ji, M., Liang, H.E. & Locksley, R.M. (2016). Tuft-cell-derived IL-25 
regulates an intestinal ILC2-epithelial response circuit. Nature. 

von Moltke, J. & Pepper, M. (2017). Sentinels of the Type 2 Immune Response. Trends 
in Immunology. 

Monticelli, L.A., Osborne, L.C., Noti, M., Tran, S. V., Zaiss, D.M.W. & Artis, D. (2015). 
IL-33 promotes an innate immune pathway of intestinal tissue protection dependent 
on amphiregulin–EGFR interactions. Proceedings of the National Academy of 
Sciences. 

Monticelli, L.A., Sonnenberg, G.F., Abt, M.C., Alenghat, T., Ziegler, C.G.K., Doering, 
T.A., Angelosanto, J.M., Laidlaw, B.J., Yang, C.Y., Sathaliyawala, T., Kubota, M., 
Turner, D., Diamond, J.M., Goldrath, A.W., Farber, D.L., Collman, R.G., Wherry, 
E.J. & Artis, D. (2011). Innate lymphoid cells promote lung-tissue homeostasis after 
infection with influenza virus. Nature Immunology. 

Morita, H., Arae, K., Unno, H., Toyama, S., Motomura, K., Matsuda, A., Suto, H., 
Okumura, K., Sudo, K., Takahashi, T., Saito, H., Matsumoto, K. & Nakae, S. (2015). 
IL-25 and IL-33 contribute to development of eosinophilic airway inflammation in 
epicutaneously antigen-sensitized mice. PLoS ONE. 

Moro, K., Kabata, H., Tanabe, M., Koga, S., Takeno, N., Mochizuki, M., Fukunaga, K., 
Asano, K., Betsuyaku, T. & Koyasu, S. (2016). Interferon and IL-27 antagonize the 
function of group 2 innate lymphoid cells and type 2 innate immune responses. 
Nature immunology. 

Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., Furusawa, 
J.I., Ohtani, M., Fujii, H. & Koyasu, S. (2010). Innate production of TH2 cytokines 
by adipose tissue-associated c-Kit+Sca-1+lymphoid cells. Nature. 

Muehling, L.M., Lawrence, M.G. & Woodfolk, J.A. (2017). Pathogenic CD4(+) T cells 
in patients with asthma. The Journal of allergy and clinical immunology. 140 (6). 
p.pp. 1523–1540. 

Murakami-Satsutani, N., Ito, T., Nakanishi, T., Inagaki, N., Tanaka, A., Vien, P.T.X., 
Kibata, K., Inaba, M. & Nomura, S. (2014). IL-33 Promotes the Induction and 
Maintenance of Th2 Immune Responses by Enhancing the Function of OX40 
Ligand. Allergology International. 



 

227 

 

Murray, J., Bottle, A., Sharland, M., Modi, N., Aylin, P., Majeed, A. & Saxena, S. (2014). 
Risk factors for hospital admission with RSV bronchiolitis in England: A 
population-based birth cohort study. PLoS ONE. 

Nadjsombati, M.S., McGinty, J.W., Lyons-Cohen, M.R., Jaffe, J.B., DiPeso, L., 
Schneider, C., Miller, C.N., Pollack, J.L., Nagana Gowda, G.A., Fontana, M.F., Erle, 
D.J., Anderson, M.S., Locksley, R.M., Raftery, D. & von Moltke, J. (2018). 
Detection of Succinate by Intestinal Tuft Cells Triggers a Type 2 Innate Immune 
Circuit. Immunity. 

Nair, P., Wenzel, S., Rabe, K.F., Bourdin, A., Lugogo, N.L., Kuna, P., Barker, P., 
Sproule, S., Ponnarambil, S. & Goldman, M. (2017). Oral Glucocorticoid–Sparing 
Effect of Benralizumab in Severe Asthma. New England Journal of Medicine. 

Nausch, N. & Mutapi, F. (2018). Group 2 ILCs: A way of enhancing immune protection 
against human helminths? Parasite Immunology. 

Navarro, S., Pickering, D.A., Ferreira, I.B., Jones, L., Ryan, S., Troy, S., Leech, A., 
Hotez, P.J., Zhan, B., Laha, T., Prentice, R., Sparwasser, T., Croese, J., Engwerda, 
C.R., Upham, J.W., Julia, V., Giacomin, P.R. & Loukas, A. (2016). Hookworm 
recombinant protein promotes regulatory T cell responses that suppress 
experimental asthma. Science Translational Medicine. 

Neill, D.R., Wong, S.H., Bellosi, A., Flynn, R.J., Daly, M., Langford, T.K.A., Bucks, C., 
Kane, C.M., Fallon, P.G., Pannell, R., Jolin, H.E. & McKenzie, A.N.J. (2010). 
Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. 
Nature. 

Obata-Ninomiya, K., Ishiwata, K., Tsutsui, H., Nei, Y., Yoshikawa, S., Kawano, Y., 
Minegishi, Y., Ohta, N., Watanabe, N., Kanuka, H. & Karasuyama, H. (2013). The 
skin is an important bulwark of acquired immunity against intestinal helminths. The 
Journal of Experimental Medicine. 

Obieglo, K., Schuijs, M.J., Ozir-Fazalalikhan, A., Otto, F., van Wijck, Y., Boon, L., 
Lambrecht, B.N., Taube, C. & Smits, H.H. (2018). Isolated Schistosoma mansoni 
eggs prevent allergic airway inflammation. Parasite Immunology. 

Ohne, Y., Silver, J.S., Thompson-Snipes, L.A., Collet, M.A., Blanck, J.P., Cantarel, B.L., 
Copenhaver, A.M., Humbles, A.A. & Liu, Y.J. (2016). IL-1 is a critical regulator of 
group 2 innate lymphoid cell function and plasticity. Nature Immunology. 

Ohto-Ozaki, H., Kuroiwa, K., Mato, N., Matsuyama, Y., Hayakawa, M., Tamemoto, H. 
& Tominaga, S.I. (2010). Characterization of ST2 transgenic mice with resistance 
to IL-33. European Journal of Immunology. 

Olchanski, N., Hansen, R.N., Pope, E., D’Cruz, B., Fergie, J., Goldstein, M., Krilov, L.R., 
McLaurin, K.K., Nabrit-Stephens, B., Oster, G., Schaecher, K., Shaya, F.T., 
Neumann, P.J. & Sullivan, S.D. (2018). Palivizumab prophylaxis for respiratory 
syncytial virus: Examining the evidence around value. Open Forum Infectious 
Diseases. 



 

228 

 

Oliphant, C.J., Hwang, Y.Y., Walker, J.A., Salimi, M., Wong, S.H., Brewer, J.M., 
Englezakis, A., Barlow, J.L., Hams, E., Scanlon, S.T., Ogg, G.S., Fallon, P.G. & 
McKenzie, A.N.J. (2014). MHCII-mediated dialog between group 2 innate 
lymphoid cells and CD4+T cells potentiates type 2 immunity and promotes parasitic 
helminth expulsion. Immunity. 

Oliveria, J.P., Salter, B.M., Phan, S., Obminski, C.D., Munoz, C.E., Smith, S.G., Scime, 
T., Watson, R.M., Sehmi, R. & Gauvreau, G.M. (2017). Asthmatic subjects with 
allergy have elevated levels of IgE+ B cells in the airways. Journal of Allergy and 
Clinical Immunology. 

Osbourn, M., Soares, D.C., Vacca, F., Cohen, E.S., Scott, I.C., Gregory, W.F., Smyth, 
D.J., Toivakka, M., Kemter, A.M., le Bihan, T., Wear, M., Hoving, D., Filbey, K.J., 
Hewitson, J.P., Henderson, H., Gonzàlez-Cìscar, A., Errington, C., Vermeren, S., 
Astier, A.L., Wallace, W.A., Schwarze, J., Ivens, A.C., Maizels, R.M. & McSorley, 
H.J. (2017). HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-
33. Immunity. 47 (4). p.pp. 739-751.e5. 

Pacífico, L.G.G., Marinho, F.A.V., Fonseca, C.T., Barsante, M.M., Pinho, V., Sales, P.A., 
Cardoso, L.S., Araújo, M.I., Carvalho, E.M., Cassali, G.D., Teixeira, M.M. & 
Oliveira, S.C. (2009). Schistosoma mansoni antigens modulate experimental allergic 
asthma in a murine model: A major role for CD4+ CD25+ Foxp3 + T cells 
independent of interleukin-10. Infection and Immunity. 

Park, S.K., Cho, M.K., Park, H.-K., Lee, K.H., Lee, S.J., Choi, S.H., Ock, M.S., Jeong, 
H.J., Lee, M.H. & Yu, H.S. (2009). Macrophage Migration Inhibitory Factor 
Homologs of Anisakis simplex Suppress Th2 Response in Allergic Airway 
Inflammation Model via CD4+CD25+Foxp3+ T Cell Recruitment. The Journal of 
Immunology. 

Patnode, M.L., Bando, J.K., Krummel, M.F., Locksley, R.M. & Rosen, S.D. (2014). 
Leukotriene B 4 amplifies eosinophil accumulation in response to nematodes. The 
Journal of Experimental Medicine. 

Pattarini, L., Trichot, C., Bogiatzi, S., Grandclaudon, M., Meller, S., Keuylian, Z., 
Durand, M., Volpe, E., Madonna, S., Cavani, A., Chiricozzi, A., Romanelli, M., 
Hori, T., Hovnanian, A., Homey, B. & Soumelis, V. (2017). TSLP-activated 
dendritic cells induce human T follicular helper cell differentiation through OX40-
ligand. The Journal of Experimental Medicine. 

Pearce, E.J. (2005). Priming of the immune response by schistosome eggs. Parasite 
Immunology. 

Pelaia, C., Vatrella, A., Busceti, M.T., Gallelli, L., Terracciano, R., Savino, R. & Pelaia, 
G. (2017). Severe eosinophilic asthma: From the pathogenic role of interleukin-5 to 
the therapeutic action of mepolizumab. Drug Design, Development and Therapy. 

Pelly, V.S., Kannan, Y., Coomes, S.M., Entwistle, L.J., Rückerl, D., Seddon, B., 
Macdonald, A.S., Mckenzie, A. & Wilson, M.S. (2016). IL-4-producing ILC2s are 
required for the differentiation of TH2 cells following Heligmosomoides polygyrus 



 

229 

 

infection. Mucosal Immunology. 
Peters, M.C., Kerr, S., Dunican, E.M., Woodruff, P.G., Fajt, M.L., Levy, B.D., Israel, E., 

Phillips, B.R., Mauger, D.T., Comhair, S.A., Erzurum, S.C., Johansson, M.W., 
Jarjour, N.N., Coverstone, A.M., Castro, M., Hastie, A.T., Bleecker, E.R., Wenzel, 
S.E. & Fahy, J. V (2018). Refractory Airway Type-2 Inflammation in a Large 
Subgroup of Asthmatics treated with Inhaled Corticosteroids. Journal of Allergy and 
Clinical Immunology. [Online]. Available from: 
http://dx.doi.org/10.1016/j.jaci.2017.12.1009. 

Petersen, T.N., Brunak, S., von Heijne, G. & Nielsen, H. (2011). SignalP 4.0: 
discriminating signal peptides from transmembrane regions. Nature Methods. 

Phythian-Adams, A.T., Cook, P.C., Lundie, R.J., Jones, L.H., Smith, K.A., Barr, T.A., 
Hochweller, K., Anderton, S.M., Hämmerling, G.J., Maizels, R.M. & MacDonald, 
A.S. (2010). CD11c depletion severely disrupts Th2 induction and development in 
vivo. The Journal of Experimental Medicine. 

Pichery, M., Mirey, E., Mercier, P., Lefrancais, E., Dujardin, A., Ortega, N. & Girard, J.-
P. (2012). Endogenous IL-33 Is Highly Expressed in Mouse Epithelial Barrier 
Tissues, Lymphoid Organs, Brain, Embryos, and Inflamed Tissues: In Situ Analysis 
Using a Novel Il-33-LacZ Gene Trap Reporter Strain. The Journal of Immunology. 

Pineda, M.A., Lumb, F., Harnett, M.M. & Harnett, W. (2014). ES-62, a therapeutic anti-
inflammatory agent evolved by the filarial nematode Acanthocheilonema viteae. 
Molecular and Biochemical Parasitology. 

Plantinga, M., Guilliams, M., Vanheerswynghels, M., Deswarte, K., Branco-Madeira, F., 
Toussaint, W., Vanhoutte, L., Neyt, K., Killeen, N., Malissen, B., Hammad, H. & 
Lambrecht, B.N. (2013). Conventional and Monocyte-Derived CD11b+Dendritic 
Cells Initiate and Maintain T Helper 2 Cell-Mediated Immunity to House Dust Mite 
Allergen. Immunity. 

Possa, S.S., Leick, E.A., Prado, C.M., Martins, M.A. & Tibério, I.F.L.C. (2013). 
Eosinophilic inflammation in allergic asthma. Frontiers in Pharmacology. 

Poulsen, L.K. & Hummelshoj, L. (2007). Triggers of IgE class switching and allergy 
development. Annals of Medicine. 

Prefontaine, D., Lajoie-Kadoch, S., Foley, S., Audusseau, S., Olivenstein, R., Halayko, 
A.J., Lemiere, C., Martin, J.G. & Hamid, Q. (2009). Increased Expression of IL-33 
in Severe Asthma: Evidence of Expression by Airway Smooth Muscle Cells. The 
Journal of Immunology. 

Préfontaine, D., Nadigel, J., Chouiali, F., Audusseau, S., Semlali, A., Chakir, J., Martin, 
J.G. & Hamid, Q. (2010). Increased IL-33 expression by epithelial cells in bronchial 
asthma. Journal of Allergy and Clinical Immunology. 

Pritchett-Corning, K.R. & Clifford, C.B. (2012). Parasitic Infections of Laboratory Mice. 
In: The Laboratory Mouse. 

Pulendran, B. & Artis, D. (2012). New paradigms in type 2 immunity. Science. 



 

230 

 

Rank, M.A., Kobayashi, T., Kozaki, H., Bartemes, K.R., Squillace, D.L. & Kita, H. 
(2009). IL-33-activated dendritic cells induce an atypical TH2-type response. 
Journal of Allergy and Clinical Immunology. 

Ravanetti, L., Dijkhuis, A., Dekker, T., Sabogal Pineros, Y.S., Ravi, A., Dierdorp, B.S., 
Erjefält, J.S., Mori, M., Pavlidis, S., Adcock, I.M., Rao, N.L. & Lutter, R. (2018). 
IL-33 drives influenza-induced asthma exacerbations by halting innate and adaptive 
antiviral immunity. Journal of Allergy and Clinical Immunology. 

Reid, L., Meyrick, B., Antony, V.B., Chang, L.Y., Crapo, J.D. & Reynolds, H.Y. (2005). 
The mysterious pulmonary brush cell: A cell in search of a function. In: American 
Journal of Respiratory and Critical Care Medicine. 2005. 

Ren, J., Hu, L., Yang, J., Yang, L., Gao, F., Lu, P., Fan, M., Zhu, Y., Liu, J., Chen, L., 
Gupta, S., Yang, X. & Liu, P. (2016). Novel T-cell epitopes on Schistosoma 
japonicum SjP40 protein and their preventive effect on allergic asthma in mice. 
European Journal of Immunology. 

Reynolds, L.A., Filbey, K.J. & Maizels, R.M. (2012). Immunity to the model intestinal 
helminth parasite Heligmosomoides polygyrus. Seminars in Immunopathology. 

Ricardo-Gonzalez, R.R., Van Dyken, S.J., Schneider, C., Lee, J., Nussbaum, J.C., Liang, 
H.E., Vaka, D., Eckalbar, W.L., Molofsky, A.B., Erle, D.J. & Locksley, R.M. 
(2018). Tissue signals imprint ILC2 identity with anticipatory function. Nature 
Immunology. 

van Riet, E., Hartgers, F.C. & Yazdanbakhsh, M. (2007). Chronic helminth infections 
induce immunomodulation: Consequences and mechanisms. Immunobiology. 

Rihet, P., Demeure, C.E., Bourgois, A., Prata, A. & Dessein, A.J. (1991). Evidence for 
an association between human resistance to Schistosoma mansoni and high anti-
larval IgE levels. European Journal of Immunology. 

Ritter, M., Gross, O., Kays, S., Ruland, J., Nimmerjahn, F., Saijo, S., Tschopp, J., 
Layland, L.E. & Prazeres da Costa, C. (2010). Schistosoma mansoni triggers Dectin-
2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. 
Proceedings of the National Academy of Sciences. 

Robertson, C.F., Heycock, E., Bishop, J., Nolan, T., Olinsky, A. & Phelan, P.D. (1991). 
Prevalence of asthma in Melbourne schoolchildren: changes over 26 years. BMJ 
(Clinical research ed.). 

Roig, J., Saiz, M.L., Galiano, A., Trelis, M., Cantalapiedra, F., Monteagudo, C., Giner, 
E., Giner, R.M., Recio, M.C., Bernal, D., Sánchez-Madrid, F. & Marcilla, A. (2018). 
Extracellular vesicles from the helminth Fasciola hepatica Prevent DSS-induced 
acute ulcerative colitis in a T-lymphocyte independent mode. Frontiers in 
Microbiology. 

Rosenberg, H.F. & Domachowske, J.B. (2008). Pneumonia virus of mice: severe 
respiratory infection in a natural host. Immunology Letters. 

Roufosse, F. (2018). Targeting the Interleukin-5 Pathway for Treatment of Eosinophilic 



 

231 

 

Conditions Other than Asthma. Frontiers in Medicine. 
Rzepecka, J., Siebeke, I., Coltherd, J.C., Kean, D.E., Steiger, C.N., Al-Riyami, L., 

McSharry, C., Harnett, M.M. & Harnett, W. (2013). The helminth product, ES-62, 
protects against airway inflammation by resetting the Th cell phenotype. 
International Journal for Parasitology. 

Sabin, E.A., Kopf, M.A. & Pearce, E.J. (1996). Schistosoma mansoni egg-induced early 
IL-4 production is dependent upon IL-5 and eosinophils. J Exp Med. 

Saglani, S., Gregory, L.G., Manghera, A.K., Branchett, W.J., Uwadiae, F., Entwistle, L.J., 
Oliver, R.A., Vasiliou, J.E., Sherburn, R., Lui, S., Puttur, F., Vöhringer, D., Walker, 
S.A., Buckley, J., Grychtol, R., Fainardi, V., Denney, L., Byrne, A., von Mutius, E., 
Bush, A. & Lloyd, C.M. (2018). Inception of early-life allergen-induced airway 
hyperresponsiveness is reliant on IL-13+CD4+ T cells. Science immunology. 

Saglani, S., Lui, S., Ullmann, N., Campbell, G.A., Sherburn, R.T., Mathie, S.A., Denney, 
L., Bossley, C.J., Oates, T., Walker, S.A., Bush, A. & Lloyd, C.M. (2013). IL-33 
promotes airway remodeling in pediatric patients with severe steroid-resistant 
asthma. Journal of Allergy and Clinical Immunology. 

Saluzzo, S., Gorki, A.D., Rana, B.M.J., Martins, R., Scanlon, S., Starkl, P., Lakovits, K., 
Hladik, A., Korosec, A., Sharif, O., Warszawska, J.M., Jolin, H., Mesteri, I., 
McKenzie, A.N.J. & Knapp, S. (2017). First-Breath-Induced Type 2 Pathways 
Shape the Lung Immune Environment. Cell Reports. 

Saravia, J., You, D., Shrestha, B., Jaligama, S., Siefker, D., Lee, G.I., Harding, J.N., 
Jones, T.L., Rovnaghi, C., Bagga, B., DeVincenzo, J.P. & Cormier, S.A. (2015). 
Respiratory Syncytial Virus Disease Is Mediated by Age-Variable IL-33. PLoS 
Pathogens. 

Schatz, M. & Rosenwasser, L. (2014). The Allergic Asthma Phenotype. Journal of 
Allergy and Clinical Immunology: In Practice. 2 (6). p.pp. 645–648. 

Scheltema, N.M., Nibbelke, E.E., Pouw, J., Blanken, M.O., Rovers, M.M., Naaktgeboren, 
C.A., Mazur, N.I., Wildenbeest, J.G., van der Ent, C.K. & Bont, L.J. (2018). 
Respiratory syncytial virus prevention and asthma in healthy preterm infants: a 
randomised controlled trial. The Lancet Respiratory Medicine. 

Schiering, C., Krausgruber, T., Chomka, A., Fröhlich, A., Adelmann, K., Wohlfert, E.A., 
Pott, J., Griseri, T., Bollrath, J., Hegazy, A.N., Harrison, O.J., Owens, B.M.J., 
Löhning, M., Belkaid, Y., Fallon, P.G. & Powrie, F. (2014). The alarmin IL-33 
promotes regulatory T-cell function in the intestine. Nature. 

Schleimer, R.P., Kato, A., Kern, R., Kuperman, D. & Avila, P.C. (2007). Epithelium: At 
the interface of innate and adaptive immune responses. Journal of Allergy and 
Clinical Immunology. 

Schmitz, J., Owyang, A., Oldham, E., Song, Y., Murphy, E., McClanahan, T.K., 
Zurawski, G., Moshrefi, M., Qin, J., Li, X., Gorman, D.M., Bazan, J.F. & Kastelein, 
R.A. (2005). IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-



 

232 

 

related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 
Schneider, C., O’Leary, C.E., von Moltke, J., Liang, H.E., Ang, Q.Y., Turnbaugh, P.J., 

Radhakrishnan, S., Pellizzon, M., Ma, A. & Locksley, R.M. (2018). A Metabolite-
Triggered Tuft Cell-ILC2 Circuit Drives Small Intestinal Remodeling. Cell. 

Schölmerich, J., Fellermann, K., Seibold, F.W., Rogler, G., Langhorst, J., Howaldt, S., 
Novacek, G., Petersen, A.M., Bachmann, O., Matthes, H., Hesselbarth, N., Teich, 
N., Wehkamp, J., Klaus, J., Ott, C., Dilger, K., Greinwald, R. & Muellerp, R. (2017). 
A randomised, double-blind, placebo-controlled trial of Trichuris suis ova in active 
Crohn’s disease. Journal of Crohn’s and Colitis. 

Schuijs, M.J., Willart, M.A., Vergote, K., Gras, D., Deswarte, K., Ege, M.J., Madeira, 
F.B., Beyaert, R., Van Loo, G., Bracher, F., Von Mutius, E., Chanez, P., Lambrecht, 
B.N. & Hammad, H. (2015). Farm dust and endotoxin protect against allergy 
through A20 induction in lung epithelial cells. Science. 

Scott, I.C., Houslay, K.F. & Cohen, E.S. (2016). Prospects to translate the biology of IL-
33 and ST2 during organ transplantation into therapeutics to treat graft-versus-host 
disease. Annals of translational medicine. [Online]. 4 (24). p.p. 500. Available from: 
https://www.ncbi.nlm.nih.gov/pubmed/28149862. 

Scott, I.C., Majithiya, J.B., Sanden, C., Thornton, P., Sanders, P.N., Moore, T., Guscott, 
M., Corkill, D.J., Erjefält, J.S. & Cohen, E.S. (2018). Interleukin-33 is activated by 
allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity 
during epithelial damage. Scientific Reports. 

Segura, M., Su, Z., Piccirillo, C. & Stevenson, M.M. (2007). Impairment of dendritic cell 
function by excretory-secretory products: A potential mechanism for nematode-
induced immunosuppression. European Journal of Immunology. 

Serrels, B., McGivern, N., Canel, M., Byron, A., Johnson, S.C., McSorley, H.J., Quinn, 
N., Taggart, D., Von Kreigsheim, A., Anderton, S.M., Serrels, A. & Frame, M.C. 
(2017). IL-33 and ST2 mediate FAK-dependent antitumor immune evasion through 
transcriptional networks. Science Signaling. 

Seys, S.F., Grabowski, M., Adriaensen, W., Decraene, A., Dilissen, E., Vanoirbeek, J.A., 
Dupont, L.J., Ceuppens, J.L. & Bullens, D.M.A. (2013). Sputum cytokine mapping 
reveals an ‘IL-5, IL-17A, IL-25-high’ pattern associated with poorly controlled 
asthma. Clinical and Experimental Allergy. 

Shi, T., McAllister, D.A., O’Brien, K.L., Simoes, E.A.F., Madhi, S.A., Gessner, B.D., 
Polack, F.P., Balsells, E., Acacio, S., Aguayo, C., Alassani, I., Ali, A., Antonio, M., 
Awasthi, S., Awori, J.O., Azziz-Baumgartner, E., Baggett, H.C., Baillie, V.L., 
Balmaseda, A., Barahona, A., Basnet, S., Bassat, Q., Basualdo, W., Bigogo, G., 
Bont, L., Breiman, R.F., Brooks, W.A., Broor, S., Bruce, N., Bruden, D., Buchy, P., 
Campbell, S., Carosone-Link, P., Chadha, M., Chipeta, J., Chou, M., Clara, W., 
Cohen, C., de Cuellar, E., Dang, D.A., Dash-yandag, B., Deloria-Knoll, M., Dherani, 
M., Eap, T., Ebruke, B.E., Echavarria, M., de Freitas Lázaro Emediato, C.C., Fasce, 
R.A., Feikin, D.R., Feng, L., Gentile, A., Gordon, A., Goswami, D., Goyet, S., 



 

233 

 

Groome, M., Halasa, N., Hirve, S., Homaira, N., Howie, S.R.C., Jara, J., Jroundi, I., 
Kartasasmita, C.B., Khuri-Bulos, N., Kotloff, K.L., Krishnan, A., Libster, R., Lopez, 
O., Lucero, M.G., Lucion, F., Lupisan, S.P., Marcone, D.N., McCracken, J.P., Mejia, 
M., Moisi, J.C., Montgomery, J.M., Moore, D.P., Moraleda, C., Moyes, J., 
Munywoki, P., Mutyara, K., Nicol, M.P., Nokes, D.J., Nymadawa, P., da Costa 
Oliveira, M.T., Oshitani, H., Pandey, N., Paranhos-Baccalà, G., Phillips, L.N., Picot, 
V.S., Rahman, M., Rakoto-Andrianarivelo, M., Rasmussen, Z.A., Rath, B.A., 
Robinson, A., Romero, C., Russomando, G., Salimi, V., Sawatwong, P., Scheltema, 
N., Schweiger, B., Scott, J.A.G., Seidenberg, P., Shen, K., Singleton, R., Sotomayor, 
V., Strand, T.A., Sutanto, A., Sylla, M., Tapia, M.D., Thamthitiwat, S., Thomas, 
E.D., Tokarz, R., Turner, C., Venter, M., Waicharoen, S., Wang, J., 
Watthanaworawit, W., Yoshida, L.M., Yu, H., Zar, H.J., Campbell, H. & Nair, H. 
(2017). Global, regional, and national disease burden estimates of acute lower 
respiratory infections due to respiratory syncytial virus in young children in 2015: a 
systematic review and modelling study. The Lancet. 

Shimoda, H., Van Deursen, J., Sangster, M.Y., Sarawar, S.R., Carson, R.T., Tripp, R.A., 
Chuo, C., Quelle, F.W., Nosaka, T., Vignali, D.A.A., Doherty, P.C., Grosveld, G., 
Paul, W.E. & Ihle, J.N. (1996). Lack of IL-4-induced Th2 response and IgE class 
switching in mice with disrupted Stat6 gene. Nature. 

Shimokawa, C., Kanaya, T., Hachisuka, M., Ishiwata, K., Hisaeda, H., Kurashima, Y., 
Kiyono, H., Yoshimoto, T., Kaisho, T. & Ohno, H. (2017). Mast Cells Are Crucial 
for Induction of Group 2 Innate Lymphoid Cells and Clearance of Helminth 
Infections. Immunity. 

Shrestha, B., You, D., Saravia, J., Siefker, D.T., Jaligama, S., Lee, G.I., Sallam, A.A., 
Harding, J.N. & Cormier, S.A. (2017). IL-4Rα on dendritic cells in neonates and 
Th2 immunopathology in respiratory syncytial virus infection. Journal of Leukocyte 
Biology. 

Shrine, N., Portelli, M.A., John, C., Soler Artigas, M., Bennett, N., Hall, R., Lewis, J., 
Henry, A.P., Billington, C.K., Ahmad, A., Packer, R.J., Shaw, D., Pogson, Z.E.K., 
Fogarty, A., McKeever, T.M., Singapuri, A., Heaney, L.G., Mansur, A.H., 
Chaudhuri, R., Thomson, N.C., Holloway, J.W., Lockett, G.A., Howarth, P.H., 
Djukanovic, R., Hankinson, J., Niven, R., Simpson, A., Chung, K.F., Sterk, P.J., 
Blakey, J.D., Adcock, I.M., Hu, S., Guo, Y., Obeidat, M., Sin, D.D., van den Berge, 
M., Nickle, D.C., Bossé, Y., Tobin, M.D., Hall, I.P., Brightling, C.E., Wain, L. V. 
& Sayers, I. (2019). Moderate-to-severe asthma in individuals of European ancestry: 
a genome-wide association study. The Lancet Respiratory Medicine. 

Sigurs, N., Aljassim, F., Kjellman, B., Robinson, P.D., Sigurbergsson, F., Bjarnason, R. 
& Gustafsson, P.M. (2010). Asthma and allergy patterns over 18 years after severe 
RSV bronchiolitis in the first year of life. Thorax. 

Sigurs, N., Bjarnason, R., Sigurbergsson, F. & Kjellman, B. (2000). Respiratory syncytial 
virus bronchiolitis in infancy is an important risk factor for asthma and allergy at 
age 7. Am.J.Respir.Crit Care Med. 



 

234 

 

Sigurs, N., Bjarnason, R., Sigurbergsson, F., Kjellman, B. & Bjorksten, B. (1995). 
Asthma and immunoglobulin E antibodies after respiratory syncytial virus 
bronchiolitis: a prospective cohort study with matched controls. Pediatrics. 

Sigurs, N., Gustafsson, P.M., Bjarnason, R., Lundberg, F., Schmidt, S., Sigurbergsson, F. 
& Kjellman, B. (2005). Severe respiratory syncytial virus bronchiolitis in infancy 
and asthma and allergy at age 13. American Journal of Respiratory and Critical 
Care Medicine. 

Silver, J.S., Kearley, J., Copenhaver, A.M., Sanden, C., Mori, M., Yu, L., Pritchard, G.H., 
Berlin, A.A., Hunter, C.A., Bowler, R., Erjefalt, J.S., Kolbeck, R. & Humbles, A.A. 
(2016). Inflammatory triggers associated with exacerbations of COPD orchestrate 
plasticity of group 2 innate lymphoid cells in the lungs. Nature Immunology. 

Simpson, E.L., Bieber, T., Guttman-Yassky, E., Beck, L.A., Blauvelt, A., Cork, M.J., 
Silverberg, J.I., Deleuran, M., Kataoka, Y., Lacour, J.-P., Kingo, K., Worm, M., 
Poulin, Y., Wollenberg, A., Soo, Y., Graham, N.M.H., Pirozzi, G., Akinlade, B., 
Staudinger, H., Mastey, V., Eckert, L., Gadkari, A., Stahl, N., Yancopoulos, G.D. & 
Ardeleanu, M. (2016). Two Phase 3 Trials of Dupilumab versus Placebo in Atopic 
Dermatitis. New England Journal of Medicine. 

Sims, J.E., March, C.J., Cosman, D., Widmer, M.B., Macdonald, H.R., Mcmahan, C.J., 
Grubin, C.E., Wignall, J.M., Jackson, J.L., Call, S.M., Friend, D., Alpert, A.R., 
Gillis, S., Urdal, D.L. & Dower, S.K. (1988). cDNA expression cloning of the IL-1 
receptor, a member of the immunoglobulin superfamily. Science. 

Smith, K.A., Harcus, Y., Garbi, N., Hämmerling, G.J., MacDonald, A.S. & Maizels, R.M. 
(2012). Type 2 innate immunity in helminth infection is induced redundantly and 
acts autonomously following cd11c+ cell depletion. Infection and Immunity. 

Smith, S.G., Chen, R., Kjarsgaard, M., Huang, C., Oliveria, J.P., O’Byrne, P.M., 
Gauvreau, G.M., Boulet, L.P., Lemiere, C., Martin, J., Nair, P. & Sehmi, R. (2016). 
Increased numbers of activated group 2 innate lymphoid cells in the airways of 
patients with severe asthma and persistent airway eosinophilia. Journal of Allergy 
and Clinical Immunology. 

Smits, H.H., Hammad, H., van Nimwegen, M., Soullie, T., Willart, M.A., Lievers, E., 
Kadouch, J., Kool, M., Kos-van Oosterhoud, J., Deelder, A.M., Lambrecht, B.N. & 
Yazdanbakhsh, M. (2007). Protective effect of Schistosoma mansoni infection on 
allergic airway inflammation depends on the intensity and chronicity of infection. 
Journal of Allergy and Clinical Immunology. 

Smits, H.H. & Yazdanbakhsh, M. (2007). Chronic helminth infections modulate allergen-
specific immune responses: Protection against development of allergic disorders? 
Annals of Medicine. 

Smyth, D.J., Harcus, Y., White, M.P.J., Gregory, W.F., Nahler, J., Stephens, I., Toke-
Bjolgerud, E., Hewitson, J.P., Ivens, A., McSorley, H.J. & Maizels, R.M. (2018). 
TGF-β mimic proteins form an extended gene family in the murine parasite 
Heligmosomoides polygyrus. International Journal for Parasitology. 



 

235 

 

Smyth, R.L. & Openshaw, P.J. (2006). Bronchiolitis. Lancet. 
Snelgrove, R.J., Gregory, L.G., Peiró, T., Akthar, S., Campbell, G.A., Walker, S.A. & 

Lloyd, C.M. (2014). Alternaria-derived serine protease activity drives IL-33-
mediated asthma exacerbations. Journal of Allergy and Clinical Immunology. 

Soares, D.C., Gerloff, D.L., Syme, N.R., Coulson, A.F.W., Parkinson, J. & Barlow, P.N. 
(2005). Large-scale modelling as a route to multiple surface comparisons of the CCP 
module family. Protein Engineering, Design and Selection. 

Sonar, S.S., Ehmke, M., Marsh, L.M., Dietze, J., Dudda, J.C., Conrad, M.L., Renz, H. & 
Nockher, W.A. (2012). Clara cells drive eosinophil accumulation in allergic asthma. 
European Respiratory Journal. 

Sorobetea, D., Svensson-Frej, M. & Grencis, R. (2018). Immunity to gastrointestinal 
nematode infections. Mucosal Immunology. 

Soumelis, V., Reche, P.A., Kanzler, H., Yuan, W., Edward, G., Homey, B., Gilliet, M., 
Ho, S., Antonenko, S., Lauerma, A., Smith, K., Gorman, D., Zurawski, S., Abrams, 
J., Menon, S., McClanahan, T., De Waal-Malefyt, R., Bazan, F., Kastelein, R.A. & 
Liu, Y.J. (2002). Human epithelial cells trigger dendritic cell-mediated allergic 
inflammation by producing TSLP. Nature Immunology. 

Sousa, F.H., Casanova, V., Findlay, F., Stevens, C., Svoboda, P., Pohl, J., Proudfoot, L. 
& Barlow, P.G. (2017). Cathelicidins display conserved direct antiviral activity 
towards rhinovirus. Peptides. 

Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J.P., Eberl, G., Koyasu, S., 
Locksley, R.M., McKenzie, A.N.J., Mebius, R.E., Powrie, F. & Vivier, E. (2013). 
Innate lymphoid cells-a proposal for uniform nomenclature. Nature Reviews 
Immunology. 

Stadhouders, R., Li, B.W.S., de Bruijn, M.J.W., Gomez, A., Rao, T.N., Fehling, H.J., van 
IJcken, W.F.J., Lim, A.I., Di Santo, J.P., Graf, T. & Hendriks, R.W. (2018). 
Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes 
to asthma susceptibility. Journal of Allergy and Clinical Immunology. 

Stein, M.M., Hrusch, C.L., Gozdz, J., Igartua, C., Pivniouk, V., Murray, S.E., Ledford, 
J.G., Marques dos Santos, M., Anderson, R.L., Metwali, N., Neilson, J.W., Maier, 
R.M., Gilbert, J.A., Holbreich, M., Thorne, P.S., Martinez, F.D., von Mutius, E., 
Vercelli, D., Ober, C. & Sperling, A.I. (2016). Innate Immunity and Asthma Risk in 
Amish and Hutterite Farm Children. New England Journal of Medicine. 

Steinfelder, S., Rausch, S., Michael, D., Kühl, A.A. & Hartmann, S. (2017). Intestinal 
helminth infection induces highly functional resident memory CD4+T cells in mice. 
European Journal of Immunology. 

Stier, M.T., Bloodworth, M.H., Toki, S., Newcomb, D.C., Goleniewska, K., Boyd, K.L., 
Quitalig, M., Hotard, A.L., Moore, M.L., Hartert, T. V., Zhou, B., McKenzie, A.N. 
& Peebles, R.S. (2016). Respiratory syncytial virus infection activates IL-13–
producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. 



 

236 

 

Journal of Allergy and Clinical Immunology. 
Stier, M.T., Zhang, J., Goleniewska, K., Cephus, J.Y., Rusznak, M., Wu, L., Van Kaer, 

L., Zhou, B., Newcomb, D.C. & Peebles, R.S. (2018). IL-33 promotes the egress of 
group 2 innate lymphoid cells from the bone marrow. The Journal of Experimental 
Medicine. 

Stock, P., Lombardi, V., Kohlrautz, V. & Akbari, O. (2009). Induction of Airway 
Hyperreactivity by IL-25 Is Dependent on a Subset of Invariant NKT Cells 
Expressing IL-17RB. The Journal of Immunology. 

Strachan, D.P. (1989). Hay fever, hygiene, and household size. BMJ. 
Summers, R.W., Elliot, D.E., Urban, J.F., Thompson, R. & Weinstock, J. V. (2005). 

Trichuris suis therapy in Crohn’s disease. Gut. 
Summers, R.W., Elliott, D.E., Qadir, K., Urban, J.F., Thompson, R. & Weinstock, J. V. 

(2003). Trichuris suis seems to be safe and possibly effective in the treatment of 
inflammatory bowel disease. American Journal of Gastroenterology. 

Sun, Y., Liu, G., Li, Z., Chen, Y., Liu, Y., Liu, B. & Su, Z. (2013). Modulation of 
dendritic cell function and immune response by cysteine protease inhibitor from 
murine nematode parasite Heligmosomoides polygyrus. Immunology. 

Svetić, A., Madden, K.B., Zhou, X.D., Lu, P., Katona, I.M., Finkelman, F.D., Urban, J.F. 
& Gause, W.C. (1993). A primary intestinal helminthic infection rapidly induces a 
gut-associated elevation of Th2-associated cytokines and IL-3. Journal of 
immunology (Baltimore, Md. : 1950). 

Taha, R., Hamid, Q., Cameron, L. & Olivenstein, R. (2003). T helper type 2 cytokine 
receptors and associated transcription factors GATA-3, c-MAF, and signal 
transducer and activator of transcription factor-6 in induced sputum of atopic 
asthmatic patients. Chest. 

Takeda, H., Tanaka, T., Shi, W., Matsumoto, M., Minami, M., Kashiwamura, S.I., 
Nakanishi, K., Yoshida, N., Kishimoto, T. & Akira, S. (1996). Essential role of Stat6 
in IL-4 signalling. Nature. 

Tesmer, L.A., Lundy, S.K., Sarkar, S. & Fox, D.A. (2008). Th17 cells in human disease. 
Immunological Reviews. 

Theoharides, T.C., Kempuraj, D., Tagen, M., Conti, P. & Kalogeromitros, D. (2007). 
Differential release of mast cell mediators and the pathogenesis of inflammation. 
Immunological Reviews. 

Tizzano, M., Gulbransen, B.D., Vandenbeuch, A., Clapp, T.R., Herman, J.P., Sibhatu, 
H.M., Churchill, M.E.A., Silver, W.L., Kinnamon, S.C. & Finger, T.E. (2010). Nasal 
chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. 
Proceedings of the National Academy of Sciences. 

Tominaga, S. ichi, Yokota, T., Yanagisawa, K., Tsukamoto, T., Takagi, T. & Tetsuka, T. 
(1992). Nucleotide sequence of a complementary DNA for human ST2. BBA - Gene 
Structure and Expression. 



 

237 

 

Tovey, M.G. & Lallemand, C. (2011). Immunogenicity and other problems associated 
with the use of biopharmaceuticals. Therapeutic Advances in Drug Safety. 

Townsend, M.J., Fallon, P.G., Matthews, D.J., Jolin, H.E. & McKenzie, A.N.J. (2000). 
T1/St2-Deficient Mice Demonstrate the Importance of T1/St2 in Developing 
Primary T Helper Cell Type 2 Responses. Journal of Experimental Medicine. 

Travers, J., Rochman, M., Miracle, C.E., Habel, J.E., Brusilovsky, M., Caldwell, J.M., 
Rymer, J.K. & Rothenberg, M.E. (2018). Chromatin regulates IL-33 release and 
extracellular cytokine activity. Nature Communications. 

Tregoning, J.S. & Schwarze, J. (2010). Respiratory viral infections in infants: Causes, 
clinical symptoms, virology, and immunology. Clinical Microbiology Reviews. 

Tripathi, S., Tecle, T., Verma, A., Crouch, E., White, M. & Hartshorn, K.L. (2013). The 
human cathelicidin LL-37 inhibits influenza a viruses through a mechanism distinct 
from that of surfactant protein d or defensins. Journal of General Virology. 

Trujillo-Vargas, C.M., Werner-Klein, M., Wohlleben, G., Polte, T., Hansen, G., Ehlers, 
S. & Erb, K.J. (2007). Helminth-derived products inhibit the development of allergic 
responses in mice. American Journal of Respiratory and Critical Care Medicine. 

Uchida, M., Anderson, E.L., Squillace, D.L., Patil, N., Maniak, P.J., Iijima, K., Kita, H. 
& O’Grady, S.M. (2017). Oxidative stress serves as a key checkpoint for IL-33 
release by airway epithelium. Allergy: European Journal of Allergy and Clinical 
Immunology. 

Urban, J.F., Katonat, I.M., Paul, W.E. & Finkelman, F.D. (1991). Interleukin 4 is 
important in protective immunity to a gastrointestinal nematode infection in mice. 
Proceedings of the National Academy of Sciences of the United States of America. 

Valanparambil, R.M., Segura, M., Tam, M., Jardim, A., Geary, T.G. & Stevenson, M.M. 
(2014). Production and analysis of immunomodulatory excretory-secretory products 
from the mouse gastrointestinal nematode Heligmosomoides polygyrus bakeri. 
Nature Protocols. 

Vermaelen, K.Y., Carro-Muino, I., Lambrecht, B.N. & Pauwels, R.A. (2001). Specific 
Migratory Dendritic Cells Rapidly Transport Antigen from the Airways to the 
Thoracic Lymph Nodes. The Journal of Experimental Medicine. 

Vignali, D.A.A., Collison, L.W. & Workman, C.J. (2008). How regulatory T cells work. 
Nature Reviews Immunology. 

Voldsgaard, A., Bager, P., Garde, E., Akeson, P., Leffers, A.M., Madsen, C.G., Kapel, 
C., Roepstorff, A., Thamsborg, S.M., Melbye, M., Siebner, H., Sondergaard, H.B., 
Sellebjerg, F. & Sorensen, P.S. (2015). Trichuris suis ova therapy in relapsing 
multiple sclerosis is safe but without signals of beneficial effect. Multiple sclerosis 
(Houndmills, Basingstoke, England). 21 (13). p.pp. 1723–1729. 

Wambre, E., Bajzik, V., DeLong, J.H., O’Brien, K., Nguyen, Q.A., Speake, C., Gersuk, 
V.H., DeBerg, H.A., Whalen, E., Ni, C., Farrington, M., Jeong, D., Robinson, D., 
Linsley, P.S., Vickery, B.P. & Kwok, W.W. (2017). A phenotypically and 



 

238 

 

functionally distinct human TH2 cell subpopulation is associated with allergic 
disorders. Science Translational Medicine. 

Wang, H., Su, Z. & Schwarze, J. (2009). Healthy but not rsv-infected Lung epithelial 
cells profoundly inhibit t cell activation. Thorax. 

Wenzel, S., Castro, M., Corren, J., Maspero, J., Wang, L., Zhang, B., Pirozzi, G., 
Sutherland, E.R., Evans, R.R., Joish, V.N., Eckert, L., Graham, N.M.H., Stahl, N., 
Yancopoulos, G.D., Louis-Tisserand, M. & Teper, A. (2016). Dupilumab efficacy 
and safety in adults with uncontrolled persistent asthma despite use of medium-to-
high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised 
double-blind placebo-controlled pivotal phase 2b dose-ranging trial. The Lancet. 

Wenzel, S.E. (2006). Asthma: defining of the persistent adult phenotypes. Lancet. 
Werder, R.B., Zhang, V., Lynch, J.P., Snape, N., Upham, J.W., Spann, K. & Phipps, S. 

(2018). Chronic IL-33 expression predisposes to virus-induced asthma 
exacerbations by increasing type 2 inflammation and dampening antiviral immunity. 
Journal of Allergy and Clinical Immunology. 

Westra, H.J., Peters, M.J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., 
Christiansen, M.W., Fairfax, B.P., Schramm, K., Powell, J.E., Zhernakova, A., 
Zhernakova, D. V., Veldink, J.H., Van Den Berg, L.H., Karjalainen, J., Withoff, S., 
Uitterlinden, A.G., Hofman, A., Rivadeneira, F., Hoen, P.A.C., Reinmaa, E., 
Fischer, K., Nelis, M., Milani, L., Melzer, D., Ferrucci, L., Singleton, A.B., 
Hernandez, D.G., Nalls, M.A., Homuth, G., Nauck, M., Radke, D., Völker, U., 
Perola, M., Salomaa, V., Brody, J., Suchy-Dicey, A., Gharib, S.A., Enquobahrie, 
D.A., Lumley, T., Montgomery, G.W., Makino, S., Prokisch, H., Herder, C., Roden, 
M., Grallert, H., Meitinger, T., Strauch, K., Li, Y., Jansen, R.C., Visscher, P.M., 
Knight, J.C., Psaty, B.M., Ripatti, S., Teumer, A., Frayling, T.M., Metspalu, A., Van 
Meurs, J.B.J. & Franke, L. (2013). Systematic identification of trans eQTLs as 
putative drivers of known disease associations. Nature Genetics. 

Whitehead, S.S., Bukreyev, A., Teng, M.N., Firestone, C.Y., St Claire, M., Elkins, W.R., 
Collins, P.L. & Murphy, B.R. (1999). Recombinant respiratory syncytial virus 
bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. 
Journal of virology. 

Whitsett, J.A. & Alenghat, T. (2015). Respiratory epithelial cells orchestrate pulmonary 
innate immunity. Nature Immunology. 

Wilbers, R.H.P., Schneiter, R., Holterman, M.H.M., Drurey, C., Smant, G., Asojo, O.A., 
Maizels, R.M. & Lozano-Torres, J.L. (2018). Secreted venom allergen-like proteins 
of helminths: Conserved modulators of host responses in animals and plants. PLoS 
Pathogens. 

Wilhelm, C., Hirota, K., Stieglitz, B., Van Snick, J., Tolaini, M., Lahl, K., Sparwasser, 
T., Helmby, H. & Stockinger, B. (2011). An IL-9 fate reporter demonstrates the 
induction of an innate IL-9 response in lung inflammation. Nature Immunology. 

Willart, M.A.M., Deswarte, K., Pouliot, P., Braun, H., Beyaert, R., Lambrecht, B.N. & 



 

239 

 

Hammad, H. (2012). Interleukin-1α controls allergic sensitization to inhaled house 
dust mite via the epithelial release of GM-CSF and IL-33. The Journal of 
Experimental Medicine. 

Willebrand, R. & Voehringer, D. (2016). IL-33-Induced cytokine secretion and survival 
of mouse eosinophils is promoted by autocrine GM-CSF. PLoS ONE. 

Wilson, M.S., Taylor, M.D., Balic, A., Finney, C.A.M., Lamb, J.R. & Maizels, R.M. 
(2005). Suppression of allergic airway inflammation by helminth-induced 
regulatory T cells. The Journal of Experimental Medicine. 

Wilson, M.S., Taylor, M.D., O’Gorman, M.T., Balic, A., Barr, T.A., Filbey, K., 
Anderton, S.M. & Maizels, R.M. (2010). Helminth-induced CD19+CD23hi B cells 
modulate experimental allergic and autoimmune inflammation. European Journal 
of Immunology. 

Wohlleben, G., Trujillo, C., Müller, J., Ritze, Y., Grunewald, S., Tatsch, U. & Erb, K.J. 
(2004). Helminth infection modulates the development of allergen-induced airway 
inflammation. International Immunology. 

Wu, H., Romieu, I., Shi, M., Hancock, D.B., Li, H., Sienra-Monge, J.J., Chiu, G.Y., Xu, 
H., del Rio-Navarro, B.E. & London, S.J. (2010). Evaluation of candidate genes in 
a genome-wide association study of childhood asthma in Mexicans. Journal of 
Allergy and Clinical Immunology. 

Wu, P., Dupont, W.D., Griffin, M.R., Carroll, K.N., Mitchel, E.F., Gebretsadik, T. & 
Hartert, T. V. (2008). Evidence of a causal role of winter virus infection during 
infancy in early childhood asthma. American Journal of Respiratory and Critical 
Care Medicine. 

Yang, Z., Grinchuk, V., Urban, J.F., Bohl, J., Sun, R., Notari, L., Yan, S., Ramalingam, 
T., Keegan, A.D., Wynn, T.A., Shea-Donohue, T. & Zhao, A. (2013). Macrophages 
as IL-25/IL-33-Responsive Cells Play an Important Role in the Induction of Type 2 
Immunity. PLoS ONE. 

Yazdanbakhsh, M., Kremsner, P.G. & Van Ree, R. (2002). Immunology: Allergy, 
parasites, and the hygiene hypothesis. Science. 

Yazdanbakhsh, M. & Matricardi, P.M. (2004a). Parasites and the Hygiene Hypothesis: 
Regulating the Immune System? Clinical Reviews in Allergy and Immunology. 26 
(1) pp.pp. 15–23. 

Yazdanbakhsh, M. & Matricardi, P.M. (2004b). Parasites and the Hygiene Hypothesis: 
Regulating the Immune System? Clinical Reviews in Allergy and Immunology. 

Ye, Q., Dong, H.F., Grevelding, C.G. & Hu, M. (2013). In vitro cultivation of 
Schistosoma japonicum-parasites and cells. Biotechnology Advances. 

Ying, S., O’Connor, B., Ratoff, J., Meng, Q., Mallett, K., Cousins, D., Robinson, D., 
Zhang, G., Zhao, J., Lee, T.H. & Corrigan, C. (2005). Thymic Stromal 
Lymphopoietin Expression Is Increased in Asthmatic Airways and Correlates with 
Expression of Th2-Attracting Chemokines and Disease Severity. The Journal of 



 

240 

 

Immunology. 
Zaiss, M.M., Maslowski, K.M., Mosconi, I., Guenat, N., Marsland, B.J. & Harris, N.L. 

(2013). IL-1β Suppresses Innate IL-25 and IL-33 Production and Maintains 
Helminth Chronicity. PLoS Pathogens. 

Zaiss, M.M., Rapin, A., Lebon, L., Dubey, L.K., Mosconi, I., Sarter, K., Piersigilli, A., 
Menin, L., Walker, A.W., Rougemont, J., Paerewijck, O., Geldhof, P., McCoy, K.D., 
Macpherson, A.J., Croese, J., Giacomin, P.R., Loukas, A., Junt, T., Marsland, B.J. 
& Harris, N.L. (2015). The Intestinal Microbiota Contributes to the Ability of 
Helminths to Modulate Allergic Inflammation. Immunity. 

Zaph, C., Troy, A.E., Taylor, B.C., Berman-Booty, L.D., Guild, K.J., Du, Y., Yost, E.A., 
Gruber, A.D., May, M.J., Greten, F.R., Eckmann, L., Karin, M. & Artis, D. (2007). 
Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. 
Nature. 

Zeng, S., Wu, J., Liu, J., Qi, F. & Liu, B. (2015). IL-33 Receptor (ST2) Signalling is 
Important for Regulation of Th2-Mediated Airway Inflammation in a Murine Model 
of Acute Respiratory Syncytial Virus Infection. Scandinavian Journal of 
Immunology. 

Zhao, J., Wei, J., Bowser, R.K., Traister, R.S., Fan, M.-H. & Zhao, Y. (2015). Focal 
Adhesion Kinase–Mediated Activation of Glycogen Synthase Kinase 3β Regulates 
IL-33 Receptor Internalization and IL-33 Signaling. The Journal of Immunology. 

Zhao, J., Wei, J., Mialki, R.K., Mallampalli, D.F., Chen, B.B., Coon, T., Zou, C., 
Mallampalli, R.K. & Zhao, Y. (2012). F-box protein FBXL19-mediated 
ubiquitination and degradation of the receptor for IL-33 limits pulmonary 
inflammation. Nature Immunology. 

Zhernakova, D. V., Deelen, P., Vermaat, M., Van Iterson, M., Van Galen, M., Arindrarto, 
W., Van’t Hof, P., Mei, H., Van Dijk, F., Westra, H.J., Bonder, M.J., Van Rooij, J., 
Verkerk, M., Jhamai, P.M., Moed, M., Kielbasa, S.M., Bot, J., Nooren, I., Pool, R., 
Van Dongen, J., Hottenga, J.J., Stehouwer, C.D.A., Van Der Kallen, C.J.H., 
Schalkwijk, C.G., Zhernakova, A., Li, Y., Tigchelaar, E.F., De Klein, N., Beekman, 
M., Deelen, J., Van Heemst, D., Van Den Berg, L.H., Hofman, A., Uitterlinden, 
A.G., Van Greevenbroek, M.M.J., Veldink, J.H., Boomsma, D.I., Van Duijn, C.M., 
Wijmenga, C., Slagboom, P.E., Swertz, M.A., Isaacs, A., Van Meurs, J.B.J., Jansen, 
R., Heijmans, B.T., Hoen’t, P.A.C. & Franke, L. (2017). Identification of context-
dependent expression quantitative trait loci in whole blood. Nature Genetics. 

 
 
 

 

 



 

241 

 

 

 

Appendix 

HpARI Protein Secreted by a Helminth Parasite 
Suppresses Interleukin-33  
 
 
Immunity, (2017)  Oct 17; 47(4):739-751.e5. 
 
 
Osbourn M, Soares DC, Vacca F, Cohen ES, Scott IC, Gregory WF, Smyth DJ, 
Toivakka M, Kemter AM, le Bihan T, Wear M, Hoving D, Filbey KJ, Hewitson JP, 
Henderson H, Gonzàlez-Cìscar A, Errington C, Vermeren S, Astier AL, Wallace WA, 
Schwarze J, Ivens AC, Maizels RM, McSorley HJ.  
 
 
 

 



Article

HpARI Protein Secreted by a Helminth Parasite
Suppresses Interleukin-33

Graphical Abstract

Highlights
d HpARI is a suppressor of IL-33 release and consequent

allergic sensitization

d HpARI binds active IL-33 and nuclear DNA, tethering IL-33

within necrotic cells

d HpARI is active against both human and murine IL-33

Authors

Megan Osbourn, Dinesh C. Soares,

Francesco Vacca, ..., Alasdair C. Ivens,

Rick M. Maizels, Henry J. McSorley

Correspondence
rick.maizels@glasgow.ac.uk (R.M.M.),
henry.mcsorley@ed.ac.uk (H.J.M.)

In Brief
Osbourn et al identified HpARI, a protein

secreted by a helminth parasite that is

capable of suppressing allergic

responses. HpARI binds to IL-33

(a critical inducer of allergy) and nuclear

DNA, preventing the release of IL-33 from

necrotic epithelial cells.

Osbourn et al., 2017, Immunity 47, 739–751
October 17, 2017 ª 2017 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.immuni.2017.09.015

https://doi.org/10.1016/j.immuni.2017.09.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2017.09.015&domain=pdf


Immunity

Article

HpARI Protein Secreted by a Helminth Parasite
Suppresses Interleukin-33
Megan Osbourn,1,9 Dinesh C. Soares,1,9 Francesco Vacca,1,9 E. Suzanne Cohen,2 Ian C. Scott,2 William F. Gregory,1

Danielle J. Smyth,3,4 Matilda Toivakka,1,3 Andrea M. Kemter,3,4 Thierry le Bihan,5 Martin Wear,6 Dennis Hoving,4

Kara J. Filbey,3 James P. Hewitson,3,7 Holly Henderson,1 Andrea Gonzàlez-Cı̀scar,1,3 Claire Errington,1 Sonja Vermeren,1
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SUMMARY

Infection by helminth parasites is associated with
amelioration of allergic reactivity, but mechanistic
insights into this association are lacking. Products
secreted by the mouse parasite Heligmosomoides
polygyrus suppress type 2 (allergic) immune re-
sponses through interference in the interleukin-33
(IL-33) pathway.Here,we identifiedH. polygyrusAlar-
min Release Inhibitor (HpARI), an IL-33-suppressive
26-kDa protein, containing three predicted comple-
ment control protein (CCP)modules. In vivo, recombi-
nant HpARI abrogated IL-33, group 2 innate lymphoid
cell (ILC2) and eosinophilic responses to Alternaria
allergen administration, and diminished eosinophilic
responses toNippostrongylusbrasiliensis, increasing
parasite burden. HpARI bounddirectly to bothmouse
and human IL-33 (in the cytokine’s activated state)
and also to nuclear DNA via its N-terminal CCP mod-
ule pair (CCP1/2), tethering active IL-33 within
necrotic cells, preventing its release, and forestalling
initiation of type 2 allergic responses. Thus, HpARI
employs a novel molecular strategy to suppress
type 2 immunity in both infection and allergy.

INTRODUCTION

Infection with helminth parasites negatively correlates with prev-
alence of allergic disease, and parasitic infection is associated

with immunosuppression (Maizels and McSorley, 2016). Many
researchers, ourselves included, have demonstrated that
helminths release immunomodulatory proteins to control anti-
parasite immune responses and maintain their persistence in
the host (Maizels and McSorley, 2016). We previously showed
that the excretory–secretory products of the mouse intestinal
parasite Heligmosomoides polygyrus (HES) suppress allergic
responses in mouse models of asthma (Buck et al., 2014;
McSorley et al., 2015; McSorley et al., 2014; McSorley et al.,
2012). HES administration blocks the interleukin-33 (IL-33)
response to inhaled Alternaria (fungal) allergen (McSorley et al.,
2014) leading to reduced type 2 innate lymphoid cell (ILC2)
responses and abrogating lung pathology.
IL33 and its receptor (IL1RL1) are both among the 10 genes

most strongly linked to allergic sensitization (Bønnelykke et al.,
2013) and asthma (Bønnelykke et al., 2014; Moffatt et al.,
2010) in genome-wide association studies. IL-33 concentration
is increased in the lungs of severe asthmatics (Castanhinha
et al., 2015; Saglani et al., 2013), correlating negatively with
lung function (Christianson et al., 2015). Respiratory viral infec-
tions are implicated in both initiation and exacerbation of
asthma, an effect that is also associated with IL-33 release
(Jackson et al., 2014; Saravia et al., 2015).
The IL-33 receptor (ST2, IL1RL1, IL-33R) is expressed by a

wide range of cells, notably T cells, macrophages, endothelial
cells, epithelial cells, and ILC2 (Cayrol and Girard, 2014).
Through these interactions, IL-33 drives type 2 immune
responses in a range of diseases including asthma, atopic
dermatitis, food allergy, COPD, eosinophilic inflammatory bowel
disease, eosinophilic esophagitis, and age-related macular
degeneration (De Salvo et al., 2016; Liew et al., 2016; Simon
et al., 2015; Tordesillas et al., 2014). IL-33 is a member of the
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IL-1 family of cytokines. It is stored preformed in the nucleus
bound to heterochromatin, and its dominant function is as an
alarmin cytokine. Active IL-33 is released from the nucleus under
conditions of necrosis, while during apoptosis active caspases
cleave IL-33within its receptor-binding domain, abolishing activ-
ity (Lefrançais and Cayrol, 2012). Although the full-length, 30 kDa
form of IL-33 is functional, the activity of IL-33 is increased
10-fold through cleavage between the DNA-binding and recep-
tor-binding domains by proteases such as calpain-2 (Hristova
et al., 2016), neutrophil elastase, cathepsin G (Lefrançais et al.,
2012), and mast cell tryptase (Lefrançais et al., 2014) releasing
18–21 kDa mature forms. Active IL-33 is released in a reduced
form, which under physiological conditions rapidly oxidizes,
forming new disulfide bonds and changing conformation,
rendering it unable to bind to the IL-33R beyond a short temporal
and spatial range (Cohen et al., 2015).

Here, we identified H. polygyrus Alarmin Release Inhibitor
(HpARI), a HES-derived recombinant protein that can replicate
the IL-33-suppressive effects of total HES. HpARI bound directly
to active murine or human IL-33 and nuclear DNA. This dual bind-
ing blocked the interaction of IL-33 with its receptor, and tethered
IL-33 within necrotic cells, preventing its release, and blocking
allergic response initiation. Thus,HpARI prevents initiationofpara-
site-toxic IL-33-mediated type 2 immune responses and sup-
presses the development of allergic airway inflammation.

RESULTS

In Vitro Suppression of IL-33 by HES
Previous studies established that HES ablates detectable IL-33
in the bronchoalveolar milieu after Alternaria allergen administra-
tion, suppressing downstream allergic responses (McSorley
et al., 2014). To further investigate the IL-33-suppressive activity
of HES, we developed an in vitro assay for IL-33 release: a single
cell suspension of naı̈ve total murine lung cells cultured for 1 hr in
the presence of Alternaria allergen and HES. In this assay, HES
markedly reduced the amount of IL-33 in culture supernatants,
as detected by ELISA (Figure 1A).

IL-33 is released from lung epithelial cells under conditions of
necrosis, whereas activated caspases cleave IL-33 within the

IL-1-like cytokine domain, inactivating IL-33 under conditions
of apoptosis (Lefrançais and Cayrol, 2012). We therefore hy-
pothesized that HES could be activating caspase and/or
apoptosis pathways. Propidium iodide and annexin V staining
showed that cells incubated with Alternaria allergen were highly
necrotic and that this was unaffected by the presence of HES
(Figure 1B). Necrosis induced by freeze-thaw treatment of
lung cells also resulted in substantial IL-33 release, which again
was abrogated by treatment of cells with HES immediately prior
to freezing (Figure 1C). Therefore we conclude that HES sup-
pression of IL-33 does not depend on activation of the
apoptosis pathway, but instead acts on pre-formed IL-33
released from necrotic cells.

Identification and Characterization of HpARI Protein
A process of fractionation, screening, and proteomic analysis of
HES was used to identify candidate IL-33-suppressive proteins.
Gel filtration and anion exchange FPLC were used to fractionate
HES by size and charge, respectively. IL-33 suppressive activity
peaked around size fraction 11 (Figure 2A) and charge fraction
25 (Figure 2B). Each size and charge fraction was subjected to
trypsin digestion followed by liquid chromatography-electro-
spray tandem mass spectrometry (LC-MS/MS), and the expo-
nentially modified protein abundance index (emPAI) value for
each HES protein in every fraction was calculated, and
compared to the profile of IL-33 suppression.
By size fractionation, 220 proteins were found with emPAI

values which peaked around size fraction 11 (peak value in frac-
tions 10–12), while 371 proteins were found with emPAIs which
peaked around charge fraction 25 (peak value in fractions
23–27), 54 of which were shared between the two fractionation
techniques. Proteins were prioritized wherein more than one
peptide was detected in size fraction 11 and charge fraction
25, resulting in a short-list of 25 candidate proteins (Table S1).
The emPAI values for each of these 25 candidates for all size
and charge fractions was then manually compared to the IL-33
suppression profile (Figure S1A), and 4 candidates were
selected for initial screening (Figure S1B).
The 4 candidate IL-33 suppressive genes were transfected

into HEK293T cells for expression, and screened for suppression
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Figure 1. HES Suppression of IL-33
(A) IL-33 levels (ELISA) in supernatants of naive murine lung cells (13 105 per well), cultured for 1 hr with Alternaria (Alt) allergen (200 mg/ml) and HES (10 mg/ml).

(B) Propidium iodide (PI) and annexin V (AnnV) staining of cells from (A) was used to assess apoptosis (PI–AnnV+) versus necrosis (PI+AnnV+).

(C) IL-33 levels (ELISA) in supernatants of naive murine lung cells, freeze-thawed in the presence of HES.

All data shows SEM of 2–3 replicates, and are representative of 2–3 repeat experiments. Error bars show SEM.
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Figure 2. Identification and Bioinformatic Characterization of HpARI Sequence and Structure
(A) IL-33 suppression by HES size fractions.

(B) IL-33 suppression by HES charge fractions.

Data in (A) and (B) are percentage suppression of the IL-33 signal compared to Alternaria-only control. Dotted rectangles indicate peaks used for selection of

candidates.

(C) IL-33 levels (ELISA) in supernatants of naı̈vemurine lung cells, freeze-thawed in the presence of supernatants of HEK293T cells transfected with four candidate

genes. Mean and SEM are shown of three replicate wells, representative of three repeat experiments.

(legend continued on next page)
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of the IL-33 signal in vitro. Of the 4 candidates, only the transcript
named Hp_I08176_IG02172_L1157 in our in-house sequencing
(candidate ‘‘D’’ in Figure 2C) significantly suppressed IL-33;
this protein was consequently renamed as H. polygyrus Alarmin
Release Inhibitor (HpARI). Subsequently, an identical transcript
was found at WormBase Parasite: HPBE_0000813301.

The HpARI gene is made up of 7 exons, encoding a 251-aa
protein including a 16-aa signal peptide motif (Figure S2A),
with a deduced mature molecular weight of 26 kDa. The mature
protein contains three predicted Complement Control Protein
(CCP)-like modules (also known as Short Consensus Repeats
(SCRs) or sushi-domains, PFAM00084) (Figure 2D). CCP1–3 all
contain features of a CCP module such as the four consensus
Cysteine residues (CysI to CysIV, consistent with formation of
disulfide bonds in a CysI-CysIII and CysII-CysIV pattern), the
Trp/Leu residue between CysIII and CysIV and other structurally
important residues typical of a CCP module (Figures 2D and
2E and STAR Methods) (Kirkitadze and Barlow, 2001; Soares
et al., 2005). Compared to archetypal CCP modules (Soares
and Barlow, 2005), all three are atypical in part with divergent
sequence features, including an absence of conserved Proline
residues after CysI in CCP1, and atypical insertions of!20 amino
acid residues between CysI and CysII in CCP 2 and CCP3, which
are unique compared to previously identified CCP domains.
Each CCP module is encoded by two exons with the second
exon boundary in each case falling between adjacent predicted
CCP modules (i.e. between CysIV of one module and CysI of the
next) lending further support to the discerned domain bound-
aries (Figure 2E and Figure S2A).

The three predicted HpARI CCP module sequences were
modelled individually based upon their top ranked CCP module
template structures. Each CCP module 3-D model is character-
ized by a b-sheet framework, held together by two disulfide
bridges. Other key structural features such as the location of
the buried Trp/Leu, hypervariable loop, and potential N-glycosyl-
ation sites are indicated along with the relative positions of the
novel insertions in CCP2 and CCP3, which could not be
modelled on conventional experimentally determined CCPmod-
ule structures (Figure 2F).

In Vitro and In Vivo IL-33 Suppression by HpARI
Recombinant mature 6-His and Myc-tagged HpARI protein was
purified by metal chelating chromatography (Figure S2B), and
tested for IL-33 suppression in vitro. HpARI was active at
<10 ng/ml, while HES required an approximately 50-fold higher
concentration for a similar effect (Figure 3A). The IL-33-suppres-
sive activity of HpARI in response to Alternaria culture or freeze-
thaw was ablated on heat-treatment, as with HES (Figures S3A
and S3B).

HpARI also effectively suppressed IL-33 detected in bron-
choalveolar lavage (BAL) fluids in response to Alternaria allergen

in vivo (Figure 3B). Again this effect replicated that of HES
(McSorley et al., 2014) and suppression was ablated when
HpARI was proteolytically cleaved and heat-treated, ruling out
a role for non-protein contaminants. In addition, the IL-33-sup-
pressive effects of HpARI could pre-condition airway tissues,
substantially reducing the IL-33 response to Alternaria allergen
24 hr later, with a degree of protection in some animals even after
72 hr (Figure 3C). Thus, HpARI appears to be a critical IL-33-sup-
pressive factor in HES.

Suppression of In Vivo Type 2 Responses by HpARI
Alternaria exposure induces a rapid T cell-independent eosino-
philia within 24 hr of administration. This response is driven by
ILC2 cytokine release, and is critically dependent on IL-33 (Bar-
temes et al., 2012). Recombinant HpARI co-administration with
Alternaria allergen abrogated BAL eosinophilia (Figure 3D) and
lung ILC2 IL-5 (Figure 3E) and IL-13 production (Figure 3F),
24 hr later, again replicating the effects observed with total
HES. IL-13-eGFP reporter mice were used to assess ILC2 cyto-
kine responses in the absence of PMA and Ionomycin stimula-
tion, confirming profound suppression of IL-13 reporter expres-
sion in ICOS+CD90.2+IL-33R+CD127+CD45+lineage– ILC2s by
HpARI (Figures S3C–S3E).
HpARI was administered in a T cell-dependent model of

asthma, in which OVA protein is first co-administered with Alter-
naria, and antigen-specific type 2 responses recalled 2 weeks
later by challenge with OVA protein alone (McSorley et al.,
2014). Again HpARI replicated the suppressive effects of HES
on BAL eosinophilia and lung ILC2 responses (Figures 4A–4C).
Furthermore, this suppression led to significantly abrogated
lung resistance and compliance at challenge (Figures 4D and
4E), as well as reduced inflammation and mucus production as-
sessed by histological staining (Figure 4F–4H).
Finally, the role of HpARI in parasite infections was addressed

using Nippostrongylus brasiliensis infection, a parasite which
(unlike H. polygyrus) migrates through the lung and leads to early
IL-33-dependent type 2 responses (Hung et al., 2013). Similarly
to the phenotype seen in an IL-33-deficient mouse, HpARI
administration did not affect worm burden at early timepoints,
but increased numbers of adult parasites found in the intestinal
lumen at day 6 (Figures 4I and 4J). This suppression of parasite
rejectionwasassociatedwith reducedBALeosinophilia, reaching
significance at day6 (Figure 4K). Thus,HpARI abrogates parasite-
or allergen-induced IL-33-dependent type 2 immune responses,
abrogating parasite ejection and suppressing allergic pathology.

HpARI Binding to IL-33
We hypothesized that HpARI could act by binding directly to
IL-33. To investigate this, we incubated Myc-tagged HpARI
with murine lung cell homogenates, and immunoprecipitated
with anti-c-Myc antibody bound to protein G-coated beads.

(D) Alignment of HpARI CCP-like modules with complement receptor type 2 CCP2 (CR2-CCP2) and complement factor H CCP10 (FH-CCP10). The putative

disulfide bonding pattern (CI-CIII; CII-CIV), conserved tryptophan (W) and structurally-important proline (P), glycine (G), and hydrophobic amino acid residues (h),

characteristic of a CCP-module are indicated. Atypical insertions in CCP2/3 (green box), the hypervariable loop (cyan box), and beta-strands (pink arrows) are

indicated, based on known CCP secondary structure of CR2-CCP2, as well as three potential N-linked glycosylation sites (light green box).

(E) HpARI domain schematic, with putative disulfide bonding pattern and location of insertions indicated.

(F) Structural models of the three HpARI CCP-like modules.

Error bars show SEM.
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HpARI immunoprecipitated a clear band at !18 kDa in Myc-
tagged complexes eluted from anti-c-Myc-coated, but not iso-
type control-coated beads, as revealed by anti-IL-33 western
blotting (Figure 5A). Unbound material (supernatants from co-
immunoprecipitation) showed undetectable or very faint bands
for IL-33 under these conditions, reflecting the manner in which
immunoprecipitation concentrates ligand sufficiently for detec-
tion. No band could be detected for full-length IL-33 (30 kDa)
in these experiments (data not shown).
Despite human andmurine IL-33 sharing only 52% amino acid

identity, we found that human IL-33 also co-immunoprecipitates
with HpARI after incubation with human lung homogenates, seen
as an!18 kDa band corresponding to mature human IL-33 (Fig-
ure 5B). In this case, unbound human IL-33 could be detected in
supernatants from co-immunoprecipitation or control condi-
tions, also at !18 kDa.
To biochemically characterize the binding of human and

mouse IL-33 with HpARI, we assessed the interactions between
these proteins by surface plasmon resonance (SPR) (Figures 5C
and 5D). The equilibrium dissociation constant (KD) of HpARI for
murine IL-33 is 0.56 ± 0.1 nM, and 260 ± 13 nM for human IL-33.

Oxidation of IL-33
Recently, it was shown that IL-33 is released in an active reduced
form, which is quickly oxidized (<4 hr after release) and inacti-
vated under physiological conditions (Cohen et al., 2015).

Commercially-available IL-33 ELISA kits do not differentiate be-
tween the reduced and oxidized forms. Therefore we decided to
investigate whether HpARI preferentially bound to reduced or
oxidized IL-33.
To attain a source of oxidized and reduced IL-33, we sub-

jected lung cells to freeze and thaw-mediated necrosis,
harvested IL-33-containing supernatants immediately post-
thaw, and incubated these at 37"C for 1–4 hr to oxidize IL-33
(Cohen et al., 2015). When HpARI was added to supernatants
directly post-thaw, or up to 2 hr later, it was able to significantly
reduce the IL-33 signal as measured by ELISA, whereas by 4 hr
post-thaw, no effect of HpARI could be seen (Figure 5E and Fig-
ure S4A). Therefore we hypothesized that HpARI binds only to
active (reduced) IL-33.
HpARI co-immunoprecipitation experiments were then

repeated with either untreated recombinant murine IL-33
(rmIL-33) or rmIL-33 which had been oxidized by incubation
for 24 hr at 37"C in tissue culture medium. Eluted complexes
were run on non-reducing SDS-PAGE gels to distinguish
reduced and oxidized IL-33 by their differential migration un-
der non-reducing conditions, the more compact oxidized
form migrating more rapidly (Cohen et al., 2015). A strong
bias for binding of HpARI to the reduced form could be
seen, with unbound supernatants containing the oxidized
form, while no unbound reduced IL-33 could be detected
(Figure 5F).
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Figure 3. HpARI Suppresses Responses to Alternaria Allergen
(A) IL-33 levels (ELISA) in supernatants of naive mouse lung cells, cultured for 1 hr in the presence of Alternaria (200 mg/ml) and HES or HpARI.

(B) IL-33 levels (ELISA) in BAL 1 hr after Alternaria allergen administration with HpARI (5 mg) or proteinase K-degraded and heat-treated HpARI (‘‘HpARI (prK)’’).

(C) IL-33 levels (ELISA) in BAL 1 hr after Alternaria allergen administration, with HpARI (5 mg) administered 1, 24, 72, or 168 hr prior to Alternaria allergen.

(D) BAL eosinophil numbers 24 hr after Alternaria allergen, HpARI, and HES administration.

(E) Lung ILC2 IL-5 staining from mice in (D).

(F) Lung ILC2 IL-13 staining from mice in (D).

All data representative of 2–3 repeat experiments, each with 3–4 replicates/mice per group. Error bars show SEM.
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Figure 4. HpARI Suppresses Responses to Alternaria Allergen
(A) Day 17 BAL eosinophil numbers after Alternaria allergen, OVA protein, and HpARI administration on day 0 (sensitization), and OVA protein alone on days 14,

15, and 16 (challenge).

(B) Lung ILC2 IL-5 production from mice in (A).

(C) Lung ILC2 IL-13 production from mice in (A).

(D) Lung resistance in methacholine challenge from mice treated as in (A).

(E) Lung compliance in methacholine challenge from mice treated as in (A).

(F) H&E- (top panels) and PAS-stained (bottom panels) lung sections from mice treated as in (A). Scale bars indicate 100 mm.

(G) H&E scoring of sections from mice treated as in (A).

(H) PAS scoring of sections from mice treated as in (A).

Alternaria model data representative of 2–3 repeat experiments, each with 4–6 mice per group.

(I) Mice were subcutaneously infected with N. brasiliensis, and HpARI administered intranasally on days 0, 1, and 2 of infection. Lung larvae were counted 3 days

after infection.

(J) Day 6 intestinal N. brasiliensis worms from mice treated as in (I).

(K) Day 3 and day 6 BAL eosinophil numbers from mice treated as in (I).

Error bars show SEM.
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Co-immunoprecipitation was repeated with recombinant
human IL-33 (rhIL-33), either untreated or oxidized under the
same conditions as applied to murine IL-33. Similarly to murine
IL-33, rhIL-33 could only be bound by HpARI in its reduced,
active form, with oxidation of IL-33 abolishing its ability to be
co-precipitated (Figure 5G).
Finally, we ensured that the binding of HpARI is specific to

IL-33, by binding studies with the closely-related IL-1 family
cytokine IL-1a. No binding of HpARI to IL-1a could be detected,
either by co-immunoprecipitation (Figure 5H) or by SPR (Fig-
ure S4B). Thus, HpARI specifically and with high affinity, binds
to the active, reduced form of IL-33.

HpARI Prevents Binding of Active IL-33 to the IL-33
Receptor
To investigate whether HpARI binding IL-33 consequently
affected downstream responses to IL-33, we investigated the
binding of IL-33 to its receptor ST2. Recombinant mIL-33
was incubated alone or with HpARI, then immunoprecipitation
was carried out using an ST2-Fc fusion protein bound to pro-
tein G-coated magnetic beads. The presence of HpARI
completely blocked immunoprecipitation of rmIL-33 by
ST2-Fc (Figure 6A), implying that HpARI prevents IL-33 from
binding to its receptor.
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Figure 5. HpARI Binds Active Murine and
Human IL-33
(A) Murine IL-33 western blot (non-reducing) of

HpARI immunoprecipitation of mouse lung ho-

mogenates, using anti-c-Myc antibody, or MOPC

isotype control (iso).

(B) Human IL-33 western blot (non-reducing) of

HpARI immunoprecipitation of human lung ho-

mogenates, as in (A).

(C) Characterization of the interaction of mouse

IL-33 (mIL-33) with HpARI by surface plasmon

resonance (SPR - BIAcore T200). Reference cor-

rected single kinetic titration SPR binding curves

(black), and a globally fitted 1:1 kinetic binding

model (grey).

(D) Characterization by SPR of the interaction of

human IL-33 (hIL-33) with HpARI, as in (C).

(E) IL-33 levels (ELISA) in supernatants of freeze-

thawed murine lung cells, incubated at 37!C for 0,

1, 2, or 4 hr, before addition of 1 mg/ml HpARI, and

a further incubation for 1 hr at 37!C.

(F) Untreated or oxidized recombinant murine

IL-33 immunoprecipitated with HpARI as in (A).

(G) Untreated or oxidized recombinant human

IL-33 immunoprecipitated with HpARI as in (B).

(H) Immunoprecipitation experiments repeated

with recombinant murine IL-1a, and probed with

anti-murine IL-1a.

Arrows indicate specific IL-33 or IL-1a bands, and

IL-33 reduced (‘‘red’’) or oxidized (‘‘ox’’) bands. All

data are representative of at least two independent

repeats. Error bars show SEM.

Furthermore, when rmIL-33 was
administered intranasally to mice, IL-33-
mediated ILC2 activation (measured by
IL-5 and IL-13 production) was effectively

ablated by HpARI co-administration (Figures 6B and 6C). Thus
HpARI, through binding to IL-33, can prevent the activation of
ILC2s through ST2 ligation.

HpARI Inhibits Release of IL-33
As HpARI directly binds IL-33, it could also interfere with detec-
tion of the cytokine by ELISA through masking epitopes bound
by assay antibodies. This could affect our early screening re-
sults, (Figures 1, 2, and 3) as these are largely dependent on
ELISA to measure concentrations of IL-33. To investigate the
possibility of undetectable HpARI-bound IL-33 in BAL superna-
tants, wemeasured IL-33 by both ELISA and western blot, as the
latter reduces, denatures and dissociates protein complexes.
Mice were treated with Alternaria allergen and BAL taken
15 min later (at which timepoint the majority of IL-33 released
is active and reduced [Cohen et al., 2015]), HpARI coadministra-
tion ablated the IL-33 signal by ELISA (Figure 6D), and signifi-
cantly inhibited (but did not ablate) the IL-33 signal by western
blot (Figure 6E), implying that although HpARI binding interferes
with IL-33 detection by ELISA, IL-33 release is indeed diminished
with HpARI administration. In contrast, HpARI could not affect
the release of HMGB1, another nuclear-localised alarmin cyto-
kine released on necrosis, (Figure S4C), demonstrating that the
effects of HpARI are specific to IL-33.

Immunity 47, 739–751, October 17, 2017 745



To translate these results to humanbiology, we cultured human
lung explants for 1 hr withHpARI, a systemand timepoint in which
lungexplantsspontaneously release reduced (active) human IL-33
(Cohen et al., 2015). Similarly to the murine system, a reduction in
IL-33 signal was seen with HpARI coadministration, as measured
by both ELISA andwestern blot (Figures 6F and 6G). Furthermore,
HpARIwasadministeredwithAlternaria tohuman IL-33 transgenic
mice (Cohen et al., 2015), where it again suppressed human IL-33
release into the BAL (Figures 6H and 6I). Thus, HpARI reduces the
release of both mouse and human IL-33.

Immunofluorescent Localization of HpARI
To further investigate the mechanism of action of HpARI, we
utilized the CMT-64 mouse lung epithelial carcinoma cell line,
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Figure 6. HpARI Blocks IL-33-ST2 Interac-
tions and Inhibits IL-33 Release
(A) IL-33 western blot (non-reducing) of ST2-Fc

fusion protein immunoprecipitation of recombinant

murine IL-33 in the presence or absence of HpARI.

(B) Lung ILC2 IL-5 production 24 hr after intranasal

administration of recombinant murine IL-33

(200 ng/mouse) with 5 mg HpARI.

(C) Lung ILC2 IL-5 production frommice described

in (B).

(D) Murine IL-33 levels (ELISA) in BAL 15 min after

Alternaria allergen and HpARI were intranasally

administered.

(E) Murine IL-33 western blot (!20 kDa band and

densitometry analysis) of BAL frommice described

in (D).

(F) Human IL-33 levels (ELISA) in supernatants of

human lung explants cultured for 1 hr with HpARI.

(G) Human IL-33 western blot (!20 kDa band and

densitometry analysis) of supernatants from

human lung explants cultures described in (F).

(H) Human IL-33 levels (ELISA) in BAL fluid of hu-

man IL-33-transgenic mice, 30 min after Alternaria

allergen and HpARI intranasal administration.

(I) Human IL-33 western blot (!20 kDa band and

densitometry analysis) of BAL from human IL-33-

transgenic mice described in (H).

Mouse data (A–E, H–I) representative of 2–4 repeat

experiments, each with 3–4 mice per group. Hu-

man data (C and D) shows 5 independent subjects.

Error bars show SEM.

which we found stores high amounts of
IL-33 in the nucleus (Figure S5A). Similarly
to lung cells cultured in vitro, IL-33 is
released from freeze-thawed CMT-64
cells, and this response is suppressed
byHpARI (Figure S5B).We then produced
an HpARI_mCherry fusion protein, allow-
ing fluorescent localization of HpARI
binding, while retaining IL-33-suppres-
sive activity (Figure S5C).

Although we found no HpARI_mCherry
staining of live CMT-64 cells, binding was
evident in freeze-thaw treated necrotic
cells (Figure 7A), where it bound in the nu-
cleus (Figure 7B). Surprisingly, we found

HpARI_mCherry binds the nucleus independently of IL-33
expression, as similar staining could be seen in HEK293 cells
(Figure 7C), from which no IL-33 could be detected (data not
shown). As binding of HpARI in the nucleus of CMT-64 or
HEK293 cells was ablated by addition of DNAse I (Figure 7C),
we hypothesized that HpARI binds directly to DNA in the nucleus
of necrotic epithelial cells.
In vivo, DNAse co-administration with Alternaria allergen

abrogated HpARI suppression of IL-33 as measured by west-
ern blot, but not by ELISA, in the latter case presumably due
to steric hindrance of ELISA antibodies on released HpARI-
bound IL-33 (Figures 7D and 7E). We conclude that dual bind-
ing of DNA and IL-33 by HpARI results in retention of IL-33
within the necrotic cell nucleus, conferring a tethering function
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on HpARI in addition to its ability to block IL-33 in the
fluid phase.
Binding of DNA by HpARI was confirmed using a gel shift

assay, in which addition of HpARI retarded themigration of linear
plasmid DNA through an agarose gel in a concentration-depen-
dent manner (Figure 7F), and by immunoprecipitation of plasmid
DNA by HpARI (Figure S5D). We hypothesised that HpARI could
bind DNA through electrostatic interactions, as shown for other
CCP module-containing proteins (Sjöberg et al., 2007; Trouw
et al., 2005). When the isoelectric point (pI) of each of the three
CCP domains of HpARI were calculated, CCP2 and CCP3
were found to be relatively acidic (pI 6.32 and 5.34 respectively),
while CCP1 was strongly basic (pI 9.79). Indeed, an electrostatic
surface representation of our 3-D model of CCP1 (Figure S5E),
reveals clusters of solvent-exposed positively charged residues
that could serve as a binding site for oppositely-charged (acidic)
DNA. We produced truncated versions of HpARI, either encod-
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Figure 7. HpARI Binds Nuclear DNA, Teth-
ering IL-33 within Necrotic Cells
(A) Live (top panels) or freeze-thawed (bottom

panels) CMT-64 cells were incubated for 1 hr at

37!C with 5 mg/ml HpARI_mCherry.

(B) HpARI_mCherry-stained freeze-thawed CMT-

64 cells, with Hoechst 33342 nuclear co-stain.

(C) Freeze-thawed CMT-64 or HEK293T cells were

stainedwithHpARI_mCherrywith100U/mlDNAse I.

(D) Murine IL-33 western blot densitometry of BAL

taken 15 min after Alternaria allergen, HpARI and

DNAse (100 U) intranasal administration.

(E)Murine IL-33 levels (ELISA) IL-33 inBAL fluid from

mice described in (D)

(F) Gel shift assay of linearised plasmid DNA, incu-

bated with 100, 50 or 25 pmol of HpARI, CCP1/2 or

CCP2/3 truncated proteins.

(G) Murine IL-33 western blot densitometry of BAL

taken 15 min after Alternaria allergen, HpARI or

CCP1/2 or CCP2/3 HpARI truncated proteins intra-

nasal administration.

(H) Murine IL-33 levels (ELISA) in BAL from mice

described in (G).

All data representative of at least 2 repeat experi-

ments. Data in (D) and (E) showsmean and SEMof 3

pooled experiments, data log-transformed for sta-

tistical analysis to equalize variances. Scale bars =

100 mm. Error bars show SEM.

ing CCP1/2 or CCP2/3. As predicted, we
found that only the CCP1/2 truncation
caused a shift in DNA migration (Fig-
ure 7F), supporting a role for CCP1 in
binding to DNA.
In vivo, only the CCP1/2 HpARI trunca-

tion could inhibit the release of IL-33 as
measured by western blot, while CCP2/3
actually increased total quantities of
IL-33 detected in the BAL (Figure 7G).
Both constructs suppressed IL-33 detec-
tion by ELISA (Figure 7H), indicating they
could both bind IL-33 and inhibit binding
of ELISA antibodies. Therefore we pro-
pose that CCP2/3 does not inhibit IL-33

release but instead binds it in solution, prevent it from being
degraded or taken up via its receptor. This data supports a
model by which HpARI binds to IL-33 through its CCP2 domain,
and to DNA through its CCP1 domain, tethering IL-33 within the
necrotic cell nucleus.

DISCUSSION

IL-33 has emerged as a critical initiator of allergic responses in
diseases such as asthma, sparking an array of type 2 reactions
in innate lymphoid cells, eosinophils, macrophages, and T cells
(Liew et al., 2016). Through screening of the secreted products
of a helminth parasite we identified HpARI, a CCP module-con-
taining protein that inhibits IL-33 release. Recombinant HpARI is
non-cell permeable, and can only gain access to the nucleus of
necrotic cells, where it binds directly to IL-33 and nuclear DNA,
tethering IL-33 within necrotic cells and preventing binding to
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the IL-33R, thereby suppressing ILC2 responses and eosino-
philia in the lung after Alternaria administration.

The primary mechanistic effect of HpARI is to bind IL-33:
remarkably, this extends from murine to human IL-33. Although
the affinity of HpARI for human IL-33 is lower than that of mouse
IL-33, this binding is sufficient to prevent human IL-33 release,
with a reduced IL-33 signal in human lung explant supernatants
when cultured with HpARI, and reduced human IL-33 release in
the lungs of human IL-33 transgenic mice. In the mouse, HpARI
proved to be highly suppressive in vivo, recapitulating and
exceeding the effects of total parasite secretions (HES), and
able to inhibit IL-33 release even when administered 24 hr prior
to allergen challenge.

Although it is clear that IL-33 is released at high levels during
tissue injury and necrosis, it is presently unclear how IL-33 is
secreted during homeostasis (Liew et al., 2016). We showed
that HpARI was not able to penetrate intact cells thus, in the
absence of cell membrane damage, HpARI would be unable to
mediate the nuclear retention of IL-33. HpARI’s unique mecha-
nism of action and specificity provide an interesting tool to inves-
tigate the role of IL-33 as an alarmin—preventing the release of
IL-33 from necrotic cells while leaving other responses (necrosis,
HMGB1 or IL-1a release) unaffected. Recently, IL-33 production
and release by activated mast cells in response to extracellular
ATP release was demonstrated inH. polygyrus infection (Shimo-
kawa et al., 2017), and extracellular ATP has previously been
shown to induce IL-33 release in response to Alternaria adminis-
tration (Kouzaki et al., 2011). These findings might explain the
lack of total ablation of IL-33 release with HpARI administration,
as some cytokine might be actively secreted by live mast cells,
against which the tethering function of HpARI would be inactive,
without exposed DNA in a necrotic, lysed cell. In this context, the
role of H. polygyrus secreted apyrases (Hewitson et al., 2011)—
enzymes which degrade extracellular ATP—might have a
further role.

Binding to nuclear DNA allows HpARI to hold active IL-33
within the necrotic cell, and ablates allergic sensitization.
Although the affinity for DNA was not determined in this study,
evidence from gel shift and co-immunoprecipitation assays, as
well as ablation of necrotic nuclear localization and IL-33 teth-
ering function on DNAse treatment, strongly supports binding
of HpARI to DNA. Truncated HpARI lacking CCP1 has no ac-
tivity in the gel shift assay and lacks IL-33 tethering function-
ality, and molecular modeling of CCP1 revealed 2 exposed
basic patches as putative DNA binding sites. Of note, the
mammalian CCP domain-containing proteins C4b-binding
protein (C4BP) (Trouw et al., 2005) and complement factor
H (Leffler et al., 2010), also bind DNA through basic CCP mod-
ules. The importance of IL-33 localization to the nucleus has
been shown in transgenic mice lacking the nuclear localization
domain of IL-33, which develop lethal eosinophil-dominant
multi-organ inflammation (Bessa et al., 2014), and in human
endothelial cells, where extracellular IL-33 leads to inflamma-
tory responses, while nuclear IL-33 does not (Gautier
et al., 2016).

Three predicted CCP modules span the length of mature
HpARI. CCP module-containing proteins are present in different
phyla including chordates and nematodes, with notable expan-
sion and diversification in parasitic species such as

H. polygyrus (Hewitson et al., 2013). The functions of CCP mod-
ules are diverse, underlining the versatility of this structural scaf-
fold that has evolved to serve many purposes (Kirkitadze and
Barlow, 2001; Soares and Barlow, 2005; Soares et al., 2005).
Of note, no non-host CCP module-containing protein has previ-
ously been shown to have immunomodulatory function outside
of the complement system, and hence the co-option of this mod-
ule by a parasite to block a mammalian immunological pathway
is remarkable.
The suppression of the IL-33 pathway by H. polygyrus at the

level of the IL-33 cytokine (mediated by HpARI) and the IL-33
receptor (mediated by secreted exosomes [Buck et al., 2014])
indicates that this pathway might be critical to persistence of
the parasite. Indeed administration of exogenous IL-33 induces
expulsion of H. polygyrus (Yang et al., 2013), while IL-33R-defi-
cient mice are slow to expel this parasite even when immunized
with a vaccine that induces sterile immunity in wild-type mice
(Coakley et al., 2017). Similarly, in many helminth infections
IL-33 administration can drive immunity, while deficiency of
IL-33 or the IL-33 receptor leads to increased parasite load (Mai-
zels and McSorley, 2016). Hence, the ability of H. polygyrus to
pre-empt the IL-33 alarmin system is likely to be a pivotal evolu-
tionary adaptation to allow establishment in the mamma-
lian host.
HpARI administration suppressed the eosinophilic response

to N. brasiliensis infection, leading to reduced ejection of adult
parasites from the intestinal lumen, similarly to the phenotype
seen in IL-33-deficient animals (Hung et al., 2013). Thus HpARI
is capable of suppressing early innate anti-parasite immunity,
a role we hypothesize it to play in the early stages of
H. polygyrus infection where IL-33 is critical for resistance
(Coakley et al., 2017).
During an H. polygyrus infection, larvae penetrate the gut wall,

undergo two molts in the subserosal membrane, and emerge
back into the lumen of the gut as adults (Maizels et al., 2012).
As the parasite penetrates the intestinal wall, it damages epithe-
lial cells which could result in the release of pre-formed IL-33 and
induction of a parasite-toxic type 2 immune response. HpARI is
secreted by the parasite larvae and adult (Hewitson et al., 2013)
and so is well positioned to ablate this IL-33 response.
Recently, IL-33 was implicated in activation of intestinal

Foxp3+ regulatory T (Treg) cells (Schiering et al., 2014) raising
the possibility that HpARI could interfere with Treg cell-medi-
ated suppression. However, in mouse models of asthma,
IL-33 signaling to IL-33R+Foxp3+ Treg cells results in their
expression of Th2 cytokines, and abrogation of suppressive
ability (Chen et al., 2017). Thus, in asthmatic responses at least,
IL-33 appears to have an inflammatory, rather than suppressive
effect.
In conclusion, we have identified a CCP module-containing

protein with the unique ability to selectively bind to IL-33 and
DNA within necrotic epithelial cells. This activity potently sup-
presses the release and the biological activity of IL-33, resulting
in suppression of type 2 responses to allergen challenge. IL-33 is
a critical mediator in allergic disease and an important clinical
target. HpARI could be a potent agent for prevention of IL-33-
mediated pathology, as well as a new tool for manipulation of
IL-33 release, leading to better understanding of the IL-33
pathway.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD3 (clone 145-2C11) Biolegend 100306

Anti-mouse CD4 (clone RM4.5) Biolegend 100566

Anti-mouse CD5 (clone 53-7.3) Biolegend 100606

Anti-mouse CD11b (clone M1/70) Biolegend 101224

Anti-mouse CD11c (clone N418) Biolegend 117312

Anti-mouse CD19 (clone 6D5) Biolegend 11506

Anti-mouse CD25 (clone PC61) Biolegend 102038

Anti-mouse CD45 (clone 30-F11) Biolegend 103128

Anti-mouse CD49b (clone DX5) eBioscience 11-5971-85

Anti-mouse CD127 (clone A7R34) Biolegend 135013

Anti-mouse ICOS (clone 15F9 eBioscience 46-9940-82

Anti-mouse GR1 (clone RB6-8C5) Biolegend 108406

Anti-mouse IL-5 (clone TRFK5 Biolegend 504304

Anti-mouse IL-13 (clone eBio13A) eBioscience 25-7133-82

Anti-mouse Ly6G (clone 1A8) Biolegend 127616

Anti-mouse SiglecF (clone ES22-10D8) Miltenyi 130-102-274

Anti-mouse ST2 (clone RMST2-2) eBioscience 17-9335-82

Anti-mouse TER119 (clone TER-119) Biolegend 116220

Anti-HMGB-1 rabbit polyclonal Abcam Ab18256

Anti-c-myc (clone Myc.A7) Thermo Fisher Scientific MA1-21316

Anti-human IL-33 goat polyclonal R&D Systems AF3625

Anti-mouse IL-33 goat polyclonal R&D Systems AF3626

Anti-mouse IL-1a R&D Systems AF-400-NA

IgG1 isotype control antibody (clone MOPC-21) Produced in-house N/A

Bacterial and Virus Strains

Heligmosomoides polygyrus (Johnston et al, 2015) N/A

Nippostrongylus brasiliensis (Lawrence et al, 1996) N/A

Biological Samples

Human lung tissue Lothian NRS Bioresource 15/ES/0094

Chemicals, Peptides, and Recombinant Proteins

Recombinant mouse IL-1a Biolegend 575002

Recombinant mouse IL-33 Biolegend 580506

Recombinant human IL-33 Biolegend 581806

ST2-Fc Biolegend 557904

Dynabeads Protein G Thermo Fisher Scientific 10004D

Proteinase K Sigma 557904

DNAse (protease-free) Sigma 4536282001

Liberase TL Sigma 05401020001

Methylcholine chloride Sigma A2251

Hoescht 33342 Thermo Fisher Scientific H3570

Critical Commercial Assays

Mouse IL-33 Duoset ELISA R&D systems DY3626

Human IL-33 Duoset ELISA R&D systems DY3625B

(Continued on next page)

e1 Immunity 47, 739–751.e1–e5, October 17, 2017



CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and request for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Henry
McSorley (henry.mcsorley@ed.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
BALB/cOlaHsd, C57BL/6JOlaHsd, IL-13-eGFP (C57BL/6 background) (Neill et al., 2010) and ST2-deficient (BALB/c background,
kindly provided by Dr Andrew McKenzie, MRC Laboratory of Molecular Biology, Cambridge) mice, male or female (single sex within
an experiment), 6-10 weeks old, were bred in-house at the University of Edinburgh. hIL-33+/+, mIL-33–/– (humanised IL-33) transgenic
mice (BALB/c background) (Cohen et al., 2015) were bred in-house at the Babraham Institute, Cambridge. All mice were accommo-
dated, and procedures performed under UK Home Office licenses with institutional oversight performed by qualified veterinarians.

Human Tissue Samples
Non-cancerous adjacent tissue from lung cancer patients was collected by Lothian NRS Bioresource, and cultured as previously
described (Cohen et al., 2015). The study was approved by Lothian NRS Bioresource (15/ES/0094) and tissue was donated with
the informed consent of patients.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Annexin V Apoptosis Detection Kit eBioscience 88-8005-72

Limulus Amoebocyte Lysate assay Lonza QCL-1000

Experimental Models: Cell Lines

HEK293T ATCC CRL-3216

CMT-64 ECACC 10032301

Experimental Models: Organisms/Strains

Mouse: IL-13-eGFP (C57BL/6J) (Neill et al., 2010) N/A

Mouse: hIL-33+/+ / mIL-33–/– (humanized IL-33) (BALB/c) (Cohen et al., 2015) N/A

Recombinant DNA

pSecTAG2A plasmid Thermo Fisher Scientific V90020

Software and Algorithms

ClustalX (Thompson et al., 1997) www.clustal.org

Mascot v2.4 Matrix Science www.matrixscience.com

SMART (Letunic et al., 2015) smart.embl-heidelberg.de/

HHpred (Söding, 2005) toolkit.tuebingen.mpg.de/#/

tools/hhpred

Modeller v9.12 (Sali and Blundell, 1993) salilab.org/modeller/

APBS (Baker et al, 2001) www.poissonboltzmann.org/

ESPript v3 (Robert and Gouet, 2014) espript.ibcp.fr/

PyMOL Schrödinger, LLC www.pymol.org

PROSITE (de Castro et al., 2006) prosite.expasy.org/

Protein Data Bank (Berman et al., 2000) www.rcsb.org/pdb

Wormbase ParaSite (Howe et al., 2016) parasite.wormbase.org/

FlowJo v9.1 Flowjo, LLC www.flowjo.com/

Prism v7 Graphpad Software www.graphpad.com/

scientific-software/prism/

BIAcore T200 software v2.01 GE Healthcare N/A

Other

Superdex 200 10/300 GL GE Healthcare 17517501

MonoQ 5/50 GL GE Healthcare 17-5166-01

Series S Sensor Chip NTA GE Healthcare BR-1005-32
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METHOD DETAILS

Parasite lifecycles, Infection, and HES Preparation
The life cycle ofH. polygyrus bakeriwasmaintained, andHES products prepared, as previously described (Johnston et al., 2015). The
life cycle of N. brasiliensis was maintained in Sprague-Dawley rats as previously described (Lawrence et al., 1996), and infective L3
larvae were prepared from 1-3 week rat fecal cultures. BALB/c mice were subcutaneously infected with 500 L3 N. brasiliensis larvae.
At day 3 post-infection, larvae were counted in the bronchoalveolar lavage and in lung tissue, by dicing lungs and placing them in a
cheese-cloth bag in a 50 ml tube containing PBS at 37!C for at least 3 h. Day 3 lung counts reflect a sum of the BAL and lung larval
counts for each animal. At day 6 intestinal worms were recovered from intestinal tissue using an adapted Baermann apparatus.

Reagents
Alternaria alternata extract (Greer XPM1D3A25) was resuspended in PBS, filter sterilized and concentration assessed by BCA assay
(Pierce). CMT-64 cells (ECACC 10032301) and HEK293T cells (ATCC CRL-3216) were maintained by serial passage in DMEM
medium containing 10% fetal bovine serum, 2 mM L-glutamine and 1 mg ml-1 penicillin/streptomycin. Human and murine IL-33
and murine IL-1a were purchased from BioLegend.

In Vitro IL-33 Release Assay
HES, candidate proteins or HpARI were cultured with total murine lung cells prepared by Liberase/DNAse digestion of naı̈ve mouse
lungs or CMT-64 cells for 1 h at 37!C, 5% CO2, with Alternaria allergen (200 mg ml-1), or were frozen on dry ice, and thawed at 37!C.

Preparation of Murine Lung Single Cell Suspension
Single-cell suspensions of naı̈ve murine lung tissue were prepared by digesting in 2 U ml-1 liberase TL (Roche, Burgess Hill, UK) and
80 U ml-1 DNase (Life Technologies, Paisley, UK) at 37!C with agitation for 35 min. Digested tissue was macerated through a 70 mm
cell strainer (BDBiosciences), treatedwith red blood cells lysis buffer (Sigma), and live cells counted on a haemocytometer, excluding
dead cells by trypan blue staining.

Cytokine Measurement
R&D Systems Duoset kits were used to measure human and murine IL-33 by ELISA, while western blotting was carried out using
polyclonal goat anti-mouse IL-33, goat anti-human IL-33 or goat anti-mouse IL-1a (R&D Systems) with a rabbit anti-goat IgG HRP
secondary antibody (Thermo Fisher), and detected using WesternSure Premium reagent (Licor).

Fractionation and Mass Spectrometry
HES was separated into 1 ml fractions by size exclusion chromatography using a Superdex 200 10/300 GL column, or by anion ex-
change chromatography using a MonoQ 5/50 GL column (GE Healthcare) in a 40 column volume gradient from 20 mM TrisHCl pH 8
(start buffer) to a maximum of 30% 20mM TrisHCl + 1 M NaCl pH 8 (elution buffer). All fractions were trypsinized and analyzed by LC
MS/MS on an on-line system consisting of a capillary-pump Agilent 1200 HPLC system (Agilent, UK) coupled to an Orbitrap XLmass
spectrometer (Thermo Scientific) as previously described (Hewitson et al., 2011; Hewitson et al., 2013). LC MS/MS data was
analyzed using Mascot (v2.4, Matrix Science) and searched against an improved in-house BLASTx annotated database obtained
by 454 sequencing of H. polygyrus adults, with additional full length H. polygyrus sequences from NCBI, WormBase ParaSite
(Howe et al., 2016) and our own Sanger sequencing (Harcus Y. et al, manuscript in preparation). Peptides identified were ranked
by Mascot protein score, with a minimum cutoff score of 20, with a significance threshold of p<0.05. Protein abundance was esti-
mated by emPAI (exponentially modified protein abundance index).

Protein Expression and Purification
Candidate genes were selected by comparison of emPAI and IL-33-suppression profiles in all fractions (Figures S1 and S2). Candi-
date genes A-D (Figure 2A, respectively Hp_I10793_IG03481_L623, Hp_I15874_IG07818_L1106, Hp_I46029_IG37973_L313 and
Hp_I08176_IG02172_L1157 transcripts) were codon optimised for Homo sapiens and gene synthesised (GeneArt, Thermo Fisher)
with 5’ AscI and 3’ NotI restriction enzyme sites. CCP1/2 (amino acids 17-165) and CCP2/3 (amino acids 80-251) constructs
were created using PCR of codon-optimised HpARI, and primers which added a NotI site 3’ of the CCP2 module
(5’GCGGCCGCCTTGGGGCACACGCCCAG3’, primes reverse of LGVCPK amino acid sequence, for CCP1/2 construct), or an
AscI site 5’ of the CCP2 module (5’ 5’GGCGCGCCGGCTGCAAGGGCATCCTG3’, primes GCKGIL amino acid sequence, for
CCP2/3 construct), combined with vector-specific T7 (5’ of insert) and BGH (3’ of insert) primers. The HpARI_mCherry fusion protein
was created by cloning in a codon-optimised gene-synthesised mCherry sequence (ANO45948.1) at the C-terminus of the HpARI
protein, using an mCherry 5’ NotI site and a 3’ ApaI site. These constructs were sub-cloned into the pSecTAG2A expression vector
(Thermo Fisher), using AscI, NotI-HF and Apa-1 restriction enzyme digestion (New England Biolabs), followed by T4 DNA ligation
(Thermo Fisher).

JM109 cells were transformed with ligated constructs and plasmids were midiprepped using the PureLink HiPure midiprep kit
(Thermo Fisher) according to manufacturer’s instructions, and Sanger sequenced. Plasmid constructs were transfected into
HEK293T cells using the calcium phosphate technique (Jordan et al., 1996), using 15 mg plasmid DNA per 100 mm tissue culture
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dish of HEK293T cells at 20% confluency. Stable cell lines weremaintained using Zeocin (Thermo Fisher) selection in DMEMmedium
containing 10% fetal bovine serum, 2 mM L-glutamine and 1 mg ml-1 Penicillin/Streptomycin.
Resulting expressed proteins secreted to themedium contained C-terminal myc and 6-His tags. For large scale expression of con-

structs, transfected cells were transferred to 293 SFM II media (Thermo Fisher) and protein purified from supernatant by nickel affinity
chromatography using HiTrap chelating HP columns (GE Healthcare), eluting bound proteins using an imidazole gradient. Fractions
containing pure expressed protein were pooled, dialysed into PBS, sterile filtered and concentration assessed by absorbance at
280 nm, corrected by calculated extinction coefficient.
Purified HpARI had an endotoxin content of below 0.5 U LPS per mg protein, as measured by the Limulus Amoebocyte Lysate

assay (Lonza).

Bioinformatics Characterization and Modeling
Domain identification and assignment were undertaken using a combination of SMART (Letunic et al., 2015), an HHPred search
against the pdb70 database (accessed March 2016) (Berman et al., 2000; Söding, 2005), and refined manually based upon posi-
tioning of the four Cysteine residues that typify CCP module sequences (Soares et al., 2005). PROSITE (de Castro et al., 2006)
was used for short motif searches. ESPript v3 (Robert and Gouet, 2014) was used for alignment figure preparation.
The three predicted HpARI CCP module sequences were modeled based upon their top ranked CCP module template structure

‘hits’ as suggested by HHPred. HpARI-CCP1wasmodeled based upon CR2-CCP2 (PDB ID: 1LY2) (Prota et al., 2002) (after amanual
switch of Leu69 with Trp69 to help identify this CCP module using HHPred; note Leu/Trp substitutions exist in other experimentally-
determined CCP module structures such as complement Factor H CCP10 and CCP20 (Makou et al., 2012; Morgan et al.,
2012); HpARI-CCP2 on CSMD1-CCP3 (PDB ID: 2EHF) (RIKEN Structural Genomics/Proteomics Initiative); HpARI-CCP3 on
GABABR1a-CCP2 (PDB ID: 1SRZ) (Blein et al., 2004). The target-template alignment in each case was based upon the initial HHPred
alignment, then extended to include the first Cysteine residue in each domain, realigned using ClustalX (Thompson et al., 1997), and
finally subjected to manual editing to optimally position known consensus residues, secondary structure elements and gaps (Soares
et al., 2005). Note, an alternative alignment for the atypical insertion in CCP3 is possible where it can be accommodated after the
hypervariable loop (not shown). A total of 100 models for each CCP module were built using Modeller v9.12 (Sali and Blundell,
1993), and the model with the lowest DOPE (Shen and Sali, 2006) energy score selected as the representative model in each
case and evaluated for valid stereochemistry (Lovell et al., 2003). Electrostatic surface potential was calculated using APBS (Baker
et al, 2001). PyMOL (http://www.pymol.org/; Schrödinger, LLC.) was used for visualization, and figure preparation.

Alternaria Models
Alternariamodels, lung cell preparation, flow cytometry and lung histology were carried out as previously described (McSorley et al.,
2014). Alternaria allergen (25 mg) was administered intranasally with 20 mg OVA protein (Sigma) and HpARI (10 mg). In some exper-
iments, the OVA-specific response was recalled by daily intranasal administration of 20 mg OVA protein on days 14, 15 and 16. Mice
were culled 15 min, 1 h, 24 h or 17 days after the initial administration, as indicated. Bronchoalveloar lavage was collected (4 lavages
with 0.5 ml ice-cold PBS), followed by lung dissection for tissue digestion and single cell preparation (see below), or lungs were in-
flated with 10% neutral buffered formalin for histology. Formalin-fixed lungs were transferred into 70% ethanol 24 h after collection,
paraffin, embedded and sectioned (5 mm), prior to staining with haemotoxylin and eosin (H&E) or Periodic Acid Schiff (PAS). H&E and
PAS-stained sections were scored blindly according to the following criteria: H&E stain at 200X magnification on an increasing
severity score of 1–4 in both the peri-vascular and peri-bronchiolar compartments (1 = <5, 2 = 5-20, 3 = 20-100, 4 = >100 cells), giving
an average overall score of 5-10 fields of view per section. PAS stained sections were scored at 100Xmagnification, on percentage of
mucous-positive epithelial cells (1 = <1%, 2 = 1-20%, 3 = 20-50%, 4 = 50-100%), of 5-10 fields of view per section.

Measurement of Airway Hyperresponsiveness
A Flexivent system (Scireq, Montreal, Canada) was used to measure dynamic resistance and compliance. Mice were anaesthetised
with intraperitoneal ketamine 200 mg/kg and pentobarbitone (50 mg/kg), tracheotomised and mechanically ventillated. Lung resis-
tance and compliance were measured in response to nebulised methacholine (Sigma).

Immunoprecipitation
Protein G dynabeads (Thermo Fisher) were coated with 5 mg anti-c-Myc (clone Myc.A7, Thermo Fisher), MOPC (IgG1 isotype control
antibody) or ST2-Fc fusion protein (Biolegend), and washed on a DynaMag-2 magnet with PBS containing 0.02% Tween 20. These
were then used to immunoprecipitate HpARI-IL-33 complexes, following manufacturer’s instructions.
Where human or mouse lung homogenates were used, these were prepared by homogenizing (Tissuelyser II, QIAGEN) one lung

lobe (mouse) in 1 ml PBS, or 400 mg human lung tissue in 1 ml PBS. Lung homogenates (100 ul) or 100 ng human or murine recom-
binant IL-33 (Biolegend) were then mixed with 1 mg HpARI in PBS containing 100 ug/ml OVA protein, and incubated for 30 min at
37!C. Complexes were then added to coated dynabeads, incubated for 10 min at room temperature, and unbound material
collected. Bound material on beads was washed 3 times in PBS+0.02% PBS on a DynaMag-2 magnet, before transferring to a fresh
tube and eluting bound complexes using 50 mM glycine pH 2.8 (non-denaturing), before neutralising in 1M Tris buffer, pH 8. Eluted
proteins and unbound supernatants were ran on 4-12% SDS-PAGE gels (Thermo Fisher) under non-reducing conditions, and trans-
ferred to nitrocellulose membranes for western blotting.
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Surface Plasmon Resonance (SPR)
SPR measurements were performed using a BIAcore T200 instrument (GE Healthcare). Ni2+-nitrilotriacetic acid (NTA) sensor chips
were purchased from GE Healthcare. HpARI was immobilised on an NTA sensor surface to 400 RU, which gave essential zero base-
line drift over the time course of the experiments performed: the apparent k- for the His-tagged HpARI Ni2+-NTA surfaces was signif-
icantly slower than the complex being studied !5310-5 s-1 for HpARI-Ni-NTA vs !14-400310-5 s-1 for HpARI-IL-33, therefore short
cycle (400-600 s total run times) single kinetic analysis could be reliably performed. Following Ni2+ priming (30 sec injection of 500 mM
NiCl2 at 5 ml$min-1) 50 nM HpARI, in 10 mM NaH2PO4, pH 7.5; 150 mM NaCl; 50 mM EDTA; 0.05% surfactant P20, was captured via
the 6-His tag by injection for 15 seconds, at 30 ml$min-1. Surface regeneration between cycles and/or experiments was performed by
dissociating any immobilisedHis-tagged protein or complex by a 90 s injection of 350mMEDTA, in 10mMNaH2PO4, pH 7.5; 150mM
NaCl; 0.05% surfactant P20 followed by a 30 s injection of 50 mM NaOH at the same flow rate.

SPR kinetic titration binding experiments were performed at 25"C. Three-fold dilution series of mIL-33 (6.2 nM to 167 nM) or hIL-33
(0.062 mM to 1.67 mM), were injected over the sensor surface, in 10 mM NaH2PO4, pH 7.5; 150 mM NaCl; 50 mM EDTA; 0.05%
surfactant P20, at 30 ml.min-1 for 30 s followed by a 60 s dissociation phase. The same concentration series of mIL-33/hIL-33
were ran over Ni2+-charged NTA surfaces, and showed no evidence of non-specific interaction of mIL-33/hIL-33 interacting with
these surfaces. All experiments were performed on Ni2+-charged surfaces following non-specific binding assessment and were
double referenced using similar blank surface responses for run-noise corrections. The on- (k+) and off-rate (k–) constants and the
equilibrium dissociation constant (KD) were calculated by global fitting all three surfaces simultaneously to a 1:1 interaction model,
with mass transport considerations, to the double reference corrected sensorgrams, using analysis software (v.2.01, GE Healthcare)
provided with the BIAcore T200 instrument.

Both interactions were extremely well fit by a simple 1:1 interaction model (Chi2 values of 0.457 and 0.395, mIL-33 and hIL-33
respectively), with RUmax values close to the theoretical maximum expected for a 1:1 stoichiometric interaction with high specific
activity (! 180 RU; 173 RU and 169.3 RU, mIL-33 and hIL-33 respectively) and showed no evidence of mass transport issues.

Human Lung Explant Culture
Approximately 5 g of lung tissue was washed 3 times in PBS and !0.5 mm2 tissue explants prepared using sterilized scissors.
Explants were incubated in 400 ml PBS+0.1% BSA +/- 10 mg/ml HpARI in wells of a 48-well tissue culture plate (Costar) for 1 h, at
37"C, 5% CO2. Each condition was performed with 8 replicates for IL-33 measurement by ELISA, and pairs of supernatants were
pooled (to make 4 replicates) for IL-33 western blot. After culture, tissue pieces were weighed, and IL-33 levels calculated relative
to tissue weight.

Gel Shift Assay
Linearized Not-HF-cut pSecTAG2A plasmid (10 ng) was mixed with HpARI, CCP1/2 and CCP2/3 proteins, in 10 mM TrisCl, 1 mM
EDTA, and incubated for 30 min at 37"C. Complexes were ran on a 0.7% agarose gel and imaged with Gelred (Biotium).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data was analyzed using Prism (Graphpad Software Inc.). Where two groups were compared, Student’s t-test was used, where
there were 3 or more groups, one-way ANOVA with a Bonferroni’s post test was used, and for comparing groups at multiple
timepoints two-way ANOVA with a Sidak’s post test was used. **** = p<0.0001, *** = p<0.001, ** = p<0.01, * = p<0.05, N.S. = Not
Significant (p>0.05).

DATA AND SOFTWARE AVAILABILITY

The accession number for the HpARI transcript sequence as reported in this paper is Wormbase Parasite: HPBE_0000813301.

e5 Immunity 47, 739–751.e1–e5, October 17, 2017


