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ABSTRACT 

Neural stem cells (NSCs) are multipotent cells capable of differentiating into 

neurons, astrocytes and oligodendroctyes in response to developmental signals. 

Although they do not have the required gene expression patterns to identify a 

differentiated stage, their chromatin will be epigenetically modified to achieve 

distinct stages of differentiation. The most abundant epigenetic modification in 

vertebrate DNA is methylation, which is normally associated with transcriptional 

silencing. This occurs primarily through recruitment of methyl-CpG binding proteins 

(MeCPs) to methylated DNA, which further recruits chromatin-modifying activity, 

resulting in the formation of repressive chromatin. 

Additionally, another protein from the MeCP family, Mbd3 does not itself bind 

methylated DNA but acts as a scaffold protein of the Nucleosome Remodelling and 

Deacetylation complex, NuRD. Previous evidence has outlined a central nervous 

system function for the MeCPs, but MeCPs mutant mice are viable and fertile, with 

the exception of MeCP2 deficient mice. However, Mbd3 has a role in early cell fate 

decisions during development, and Mbd3 mutant mice do not survive post-

implantation stage. 

In my thesis I have investigated the role of the two different mechanisms of 

epigenetic silencing: Methyl-CpG binding protein-dependent repression and 

chromatin remodelling activity in the neural stem cell system. I hypothesised firstly, 

that MeCPs may have a redundant role in neural stem cell function. Secondly, that 

the effect of lacking Mbd3 in neural stem cells may be different and more severe 

than the absence of the methyl-CpG binding proteins. The approach to investigate 

these hypotheses consisted of a first stage in the study of the neuroectoderm 

differentiation capacity of ES cells lacking one MeCP, Kaiso, followed by studying 

the function of neural stem cell (NS) lines derived from the cortex of mice lacking 

the MeCPs Kaiso, MeCP2 and 1\4bd2. I have found no defects in proliferation or 

self-renewal of triple null NS cells. Additionally, although triple null NS cells 

present a normal astrocyte differentiation, they present a delay in neuronal 

differentiation, a defect that is only visible at early differentiation stages. Therefore, 



these proteins are dispensable for viability and differentiation of NS cells ex vivo. In 

contrast, I have found that Mbd3 is important for differentiation of neuroectoderm in 

culture, as Mbd3 null ES cells differentiate into neurons at very low frequency but do 

not differentiate into astrocytes. Moreover, Mbd3 is essential for establishment 

and/or maintenance of ES óell-derived NS cell lines. Thus while there is no evidence 

for a role of three MeCPs in NS cell maintenance or differentiation, the activity of 

the NuRD co-repressor complex is important for both properties. 
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CHAPTER 1 

INTRODUCTION 

1. 1 Chromatin compaction 

Chromatin structure in eukaryotic nuclei is highly ordered. DNA is wrapped 

around histone proteins, forming the nucleosome. The nucleosome consists of 146 

base pairs of DNA wrapped around a core histone octamer which consists of two 

molecules each of histories H2A, 142B, H3 and H4 (Kornberg and Lorch, 1999; 

Luger et al., 1997). Additionally, the linker histone Hi binds to nucleosome core 

particles and organizes the linker DNA on either side of the nucleosome to facilitate 

the folding of chromatin into a -'30 nm fiber in vitro (Bednar et al., 1998; Thoma et 

al., 1979). 

To gain access to the highly compacted structure of the chromatin, there are in 

the cells chrornatin remodelling activities that can be divided in two major 

mechanisms: The first one relies on the use of the energy derived from ATP 

hydrolysis to remodel nucleosomes (Kadonaga, 1998; Travers, 1999; Tsukiyama and 

Wu, 1997; Varga-Weisz and Becker, 1998). The other mechanism involves covalent 

modification of the histone tails of the nucleosome. These modifications include 

methylation, acetylation, phosphorylation, ubiquitylation, sumoylation and ADP-

ribosylation. The acetylation of lysine residues on histone N-terminal tails is 

catalyzed by histone acetyltransferases (HATs) (Woiffe and Pruss, 1996) and is 

generally associated with transcriptional activation. In contrast, deacetylation carried 

out by histone deacetylases (HDACs). (Pazin and Kadonaga, 1997) is generally 

associated with transcriptional repression. Both groups of proteins function in 

different large multiprotein complexes, where sequence-specific DNA-binding 

proteins target them to specific genes, leading to chromatin modification. 

1. 2 NuRD 

The NuRD (Nucleosome Remodeling and Histone eacetylation) co-repressor 

complex (Wade et al., 1998; Xue et al., 1998b; Zhang et al., 1998a) is a co-repressor 

implicated in silencing in mammals, flies, nematodes, and plants (Ahringer, 2000; 

Bowen et al., 2004). In vertebrates, NuRD is a multi-subunit protein complex 
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containing both histone deacetylase and nucleosome-dependent ATPase subunits. In 

mammals NuRD plays a role in cell fate decisions by transcriptional silencing 

mechanisms in B-cell (Fujita et al. 2004), thymocyte (Hutchins et al., 2002) and 

erythroid development (Hong et al., 2005; Rodriguez et al., 2005). 

The largest subunit in the NuRD complex is Mi-2, a member of the 

SWI2/SNF2 helicase/ATPase family (Eisen et al., 1995; Tong et al., ; Zhang et al.) 

that also associates with histone deacetylases. in mammals there are two highly 

similar proteins Mi-2a and Mi-2f3 transcribed from two different genes Mi-2a and 

Mi-213 (Seelig et al., 1996). In the NuRD complex, the predominant form is Mi-213 

(Feng and Zhang, 2003; Zhang et al., 1998a). Mi-2P contains two PHD (plant homeo 

domain)-zinc finger domains, two chromodomains and a SWI2/SNF2-type 

ATPase/helicase domain. 

Another subunit consists of a four-unit complex formed by two histone binding 

proteins, RbAp46 and RbAp48, and two histone deacetylases, HDAC1 and HDAC2. 

This complex is also present in the co-repressor complex Sin3. Hdac 1-deficient ES 

cells have slow growth, and Hdac 1-deficient mice die by 9.0 dpc (Lagger et al., 

2002). A compensation effect of Hdac2 and Hdac3, which are upregulated in Hdacl 

deficient mice, could explain this late embryonic lethality. 

There is a major polypeptide of approximately 70-8OkDa called Mta2, that is 

thought to have a role in modulating histone deacetylase activity in NuRD (Zhang et 

al., 1999b). MTA2 is 65% similar to the metastasis associated protein MTA1, which 

has also been reported to associate with NuRD (Xue et al., 1998a);(Mazumdar et al., 

2001). Further, MTA3, the shorter isoform translated from the MTA3 gene in 

humans, does also form part of NuRD (Fujita et al., 2003a). It is currently believed 

that individual members of MTA family associate with NuRD depending of the, 

location and function (Bowen et al., 2004). 

The smallest component of the NuRD complex is the MBD3 protein (Wade et 

al., 1999; Xue et al., ; Zhang et al., 1999a). MBD3 was originally identified in mice 

and humans as a protein containing a region with high homology to the methyl-CpG 

binding domain (MBD) of MeCP2 that, unexpectedly, did not specifically bind 

methylated DNA (Hendrich and Bird, 1998). Mammalian MBD3 does not bind 

methylated DNA because it has two amino acid residues different than the rest of 
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MBD containing proteins that eliminate the methyl-CpG binding activity (Ohki et 

al., 2001; Saito and Ishikawa, 2002). 

Nevertheless, the NuRD complex can interact with methylated DNA by 

association with another methyl-CpG binding protein, MBD2 (Feng and Zhang, 

2001; Ng et al., 1999). The transcriptional repressor complex formed by Mbd2 and 

NuRD complex was originally named MeCP1 complex (Meehan et al., 1989). 

Mbd3 is ubiquitously expressed from morula to the egg cylinder stage (6.5 

dpc) and is localised into the nucleus. Maternal Mbd3 protein is expressed until the 

morula stage. The development of Mbd3 null embryos is morphologically normal 

until 5.5 dpc, when they display a runted morphology with a reduced number of 

pluripotent Oct4 positive cells. This population will be gradually lost in time 

synchrony with the lost expression of maternal Mbd3, since a majority of diapaused 

Mbd3 blastocysts fail to express Oct4. By 5.5 dpc, Mbd3 null embryos fail to 

initiate rapid proliferation, cavitation and distal displacement of 1CM population, 

together with a failure of extraembryonic development. Thus, Mbd3 is required for 

transition of pluripotent cells in pen-implantation embryos. Hence Mbd3 is 

necessary for maintenance of pluripotent population (Kaji and Hendrich, 

unpublished). 

Mbd3 ICMs fail to downregulate expression of a number of preimplantation 

specific genes, possibly contributing to the failure of embryonic development beyond 

5.5 dpc. This gene missexpression correlates with inappropriate expression of those 

genes in Mbd3 ES cells (Kaji et al., 2006; Kaji et al., unpublished). This aberrant 

expression is accompanied by increased levels of histone acetylation, providing 

evidence of a failure of histone deacetylation. On the other hand, expression of 

Dppa3, an early marker of primordial germ cells (also known as Pgc7 or Stella) 

(Saitou et al., 2002; Sato et al., 2002) is inappropriately silenced in Mbd3 ES cells 

(Kaji et al., 2006). 

While Mbd3 1CM cells fail to mantain expression of Oct4, Mbd3-deficient ES 

cells are viable, and show persistent Oct4 expression when induced to differentiate in 

vivo and in vitro. Mbd3 ES cells show no difference in gene expression of NuRD 

subunits compared with wild type ES cells but their protein levels are reduced for 

Mtal, Mta2 and RbAp48, although the levels of Hdacl are not changed. 
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Additionally, Mtal, Mta2, Hdacl and Mbd3 can not be coimmunoprecipitated in 

Mbd3 ES cells. These facts indicate that Mbd3 is necessary for the formation of 

NuRD complex. 

There are three independent Mbd3 isoforms in the NuRD complex differing in 

their N-termini: Mbd3a, b, and c (Kaji et al., 2006; Zhang et al., 1999b). Mbd3b is 

the major isoform in ES cells, but Mbd3a and Mbd3c are also detectable (Kaji et al., 

2006). Mbd3b is also the prevalent isoform in NuRD of proliferating HeLa cells 

(Zhang et al., 1999b) and in embryonic neural cells (Jung et al.,2003). Interestingly, 

the ratio between Mbd3a and b will vary during brain development and hence it may 

indicate a role for Mbd3 in development. Mbd3 is expressed in the embryonic 

forebrain, including cortical neuroepithelia, striatum and hippocampus. These 

regions show expression of Mbd3 during adulthood though at decreased levels. 

Meanwhile, olfactory bulb and cerebellum will show an increase in levels of Mbd3 

during adulthood (Jung et al., 2003). 

Mbd3 in Xenopus binds to methylated DNA and is essential for embryonic 

development (Wade et al., 1999). xMbd3 is highly expressed during embryogenesis, 

specifically in the developing eye, brain and bronchial arches. Concordantly, partial 

inhibition of xMBD3 affects the eye formation and brain development. This eye 

phenotype occurs also with the over expression of xMbd3. When xMbd3 is almost 

completely depleted, the embryos are arrested at the late gastrula or early neurula 

stages, in concordance with Mbd3 deficient mice (Iwano et al., 2004). 

1.3 DNA methylation 

DNA methylation in vertebrates is achieved by the transfer of a methyl group 

to cytosine by a DNA methyltransferase to the 5 'position of the pyrimidine ring. This 

cytosine is followed by a guanine forming a dinucleotide CpG (Johnson, 1925); 

(Hotchkiss, 1948). 

DNA methylation is found in most organisms, from bacteria to mammals, but 

the distribution of methylation in animals varies between species. Caenorhabditis 

elegans does not have methylated cytosines in its genome and does not encode a 

DNA methyl-transferase. Drosophila melanogaster has a DNA methyltransferase-

like gene (Hung et al., 1999; Tweedie et al., 1999) and contains very low levels of 
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methylcytosine, mostly in the CpT dinucleotide (Gowher et al., 2000; Lyko et al., 

2000). In contrast, another invertebrate, Ciona intestinalis, has blocks of methylated 

DNA separated by equivalent domains of unmethylated DNA (Bird et al., 1979; 

Tweedie et al., 1997). In vertebrates, DNA methylation is present throughout the 

genome at 60-90% of all CpGs. The majority of the unmethylated CpG dinucleotides 

occurs in CpG islands. CpG islands are found in short regions of 1-2kb containing 

unmethylated cytosine, GC-rich in —60-70%, meanwhile the rest of the genome has a 

GC content of 40%. These regions are usually functioning as strong promoters, being 

found in all the house keeping genes and majority of genes with a tissue-restrictive 

pattern of expression (Delgado et al., 1998; Gardiner-Garden and Frommer, 1987). 

The majority of CpG islands are unmethylated in the germline, at all stages of 

development and in all somatic tissue types. Thus, CpG islands can remain 

methylation-free even when their associated gene is silent. 

1.4 The roles of DNA methylation 

Methylation interferes with protein-DNA interactions, leading to changes in 

chromatin structure. This interference can cause transcriptional repression. 

Methylation of CpG rich promoters is used by mammals to prevent transcriptional 

intitiation and to ensure the silencing of genes on the inactive X chromosome, 

imprinted genes and parasitic DNAs (Colot and Rossignol, 1999; Yoder et al., 1997). 

The most direct mechanism of repression is to interfere with the binding of 

basal transcriptional machinery or transcription factors that require contact with 

cytosine in the major groove of the double helix (Watt and Molloy, 1988). However, 

the majority of the repression of methylated genes occurs by the binding to methyl 

CpG to methyl-CpG binding proteins (Boyes and Bird, 1991). Transcription can then 

be inhibited by steric impediment, where the MeCP bound to the DNA blocks the 

access of the transcription factor, by impediment of RNA polymerase activity or by 

chromatin changes directed by Methyl-CpG binding proteins (MeCPs). 

1.4.1 X chromosome inactivation 

During early development in mammals, one X chromosome is inactivated in 

females. This inactivation is random in embryonic cells, and inactivation status will 
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be propagated to their daughter cells creating a mosaic of X chromosome 

inactivation. The extraembryonic lineages placenta and primitive endoderm in mice 

are the exception since it is the paternal X chromosome that remains silenced (Huynh 

and Lee, 2003; Mak et al., 2004; Okamoto et al., 2004). X chromosome inactivation 

is controlled by the X chromosome inactivation centre, from where are expressed 

two non coding RNAs: Xist and its antisense Tsix. The initiation of X inactivation by 

Xist starts very early in development (2-4 cell stage). Xist will coat the entire X 

chromosome initiating the inactivation process (Huynh and Lee, 2003; Okamoto et 

al., 2004). The maintenance of the silencing state is achieved by chromosome wide 

inactivation, where the combination of methylation of CpG islands of most of the 

genes, recruiting of polycomb group proteins Ezh2/Eed and histone modification 

leads to a heterochromatin status and stable silencing (de Napoles et al., 2004; Fang 

et al., 2004) (Brockdorff, 2002; Plath et al., 2003). 

1.4.2 Imprinting 

Genomic imprinting results in the differential expression of the two alleles of 

a gene in somatic cells due to epigenetic modification of the parental chromosome in 

the gamete or the zygote (Efstratiadis, 1994). This differential expression is due to 

the specific heritable parental methylation patterns, termed differentially methylated 

regions (DMR5). DMRs include imprinting control regions (ICRs), which control 

gene expression within imprinted domains, often over large distances. These ICRs 

carry allele-specific methylation patterns established in the germ line and retained 

thereafter (Reik and Walter, 2001). ICRs subsequently will influence epigenetically 

the modulation of allele-specific, tissue-specific or temporal-specific regulation of 

imprinting genes (Ferguson-Smith and Surani, 2001). 

A number of in vivo and in vitro studies of ICRs have revealed that the 

chromatin insulator protein CTCf binds only to the unmethylated parental allele, and 

then regulates the ability of distant enhancers to access promoters in an allele-

specific manner (Kurukuti et al., 2006; Ling et al., 2006; Schoenherr et al., 2003). 

Currently, there are 80 genes known to be imprinted, being this number in 

continuous increase. 
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1.4.3 DNA methylation and disease 

Loss of imprinting (LOl) is the disruption of imprinted epigenetic marks 

through gain or loss of DNA methylation, losing normal allele-specific gene 

expression (Robertson, 2005). This aberrant imprinting leads to human diseases 

normally as a result of activation of a normally silent allele. Hence, it is present in 

many tumour types as a consequence of LOl of growth inhibitory imprinting genes. 

Examples are Wilms' tumour and some types of breast and ovarian cancer, lung and 

colon. 

In general, loss of genomic methylation is a frequent event in cancer that 

correlates with disease severity and metastasic potential in many tumor types 

(Widschwendter et al., 2004). The abnormal methylation of CpG islands in tumor 

suppressor genes is frequent in tumorigenic cells, although it is currently unknown 

whether this silencing is a cause or consequence of the onset of tumorigenesis 

(Prokhortchouk and Hendrich, 2002). Early and general demethylation in 

tumorigenesis may predispose cells to genomic instability meanwhile a gene-specific 

demethylation might occur later as a adaptative mechanism of the tumorigenic cell to 

the local environment and promote metastasis (Robertson, 2005). 

Apart from cancer, there are an extensive number of diseases known to be 

related with an aberrant imprinting such as Beckwith-Wiedeman, Prader-Willi and 

Angelman syndrome. - 

1.4.4 Silencing of parasitic DNA elements 

A high fraction of methylated CpG dinucleotides are located within parasitic 

DNA elements or retrotransposons, which are inactivated copies of repetitive DNA 

in the mammalian genome. These elements are classified in SINE or short 

interpersed DNA elements, LINE or long interpersed DNA elements and LTR 

containing elements (Smit and Riggs, 1996), and can be activated or inserted in 

novel locations causing chromosome rearrangements or translocations with 

devastating effects (Kazazian and Moran, 1998; Montagna et al., 1999). SINES and 

LINEs are very CpG rich, heavily methylated and may recruit chromatin modiflying 

repression (Yoder et al., 1997). Intracisternal A particules or TAPs, -are a class of 
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LTR that tend to decrease its methylation levels during aging in mouse with the 

consequence of increase in transcriptional activation of these elements (Barbot et al., 

2002). 

1. 5 DNA cytosine methyl transferases: 

1.5.1 Dnmtl 

Maintenance methylation describes the process that reproduces DNA 

methylation patterns between cell generations (Riggs, 1975). During DNA 

replication, both new double-stranded DNA molecules are hemimethylated, being 

only methylated on the parental strand. Dnmtl, which has a strong preference (15 

fold) for hemimethylated DNA (Goyal et al., 2006), will methylate the cytosine on 

the unmethylated strand restoring the symmetry. With this mechanism, methylation 

patterns are inherited to the next cell generation (Bird, 2002). The recruitment of 

Dnmtl to the replication fork is targeted by the proliferating cell nuclear antigen, 

PCNA (Chuang et al., 1997). PCNA has a role in DNA replication and repair. This 

interaction can be disrupted by the cell cycle regulator, p21WAF/CIP  which can bind 

PCNA in an exclusive manner in relation with Dnmtl. Therefore, p2 1WAF/CIP , whose 

function is to mediates the ability of p53 to arrest cell division in response to DNA 

damage (Li et al., 1996), prevents Dnmtl access to damaged DNA and consequently 

can lead to hypomethylation (Chuang et al., 1997). 

The catalytic domain of Dnmtl, which is common to the Dnmt family, 

consists on a set of six highly conserved motifs located in the C-terminal domain 

(Kumar et al., 1994). Additionally, Dnmtl has a region of alternating glycine and 

lysine residues and in its N-terminal region has several domains attributed with a 

number of functions. Firstly, there is a nuclear localisation signal (NLS) that is 

required for import Dnmtl into nuclei. Secondly, the N-terminal region is believed to 

be necessary to target the association with replication foci in S phase (Leonhardt et 

al., 1992). Furthermore, the N-terminal region is believed to confer specificity for 

hemimethylated DNA (Bestor et al., 1992) and also play a role in coupling 

stabilization of DNA to the growth state of cells (Ding and Chaillet, 2002). Dnmtl 

has a diffuse nucleoplasmic distribution in GI but associates with replication foci 
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during S phase, being expressed at very low levels in non-cycling cells (Fan et al., 

2001). 

Role of Dnmtl through the study of the Dnmtl deletion 

There is a severe demethylation in mice and ES cells homozygous for null 

alleles of Dnmtl, although methylation levels persist in 5% (Lei et al., 1996). As a 

result, multiple consequences are observed in null mice and ES cells. Firstly, mutant 

mice lacking a functional Dnmtl gene are normal during pre-implantation 

development but they start to show developmental delay at around 9.5 dpc, failing to 

develop past 12.5 dpc (Li et al., 1992). Secondly, deletion of Dnmtl causes the 

biallelic expression of most imprinted genes in homozygous embryos; some, such as 

H19 are expressed from both alleles, whereas others such as Igf2 are not expressed 

(Li et al., 1993). Thirdly, there is an inactivation of all X chromosomes in 

homozygous mutant embryos due to the demethylation and activation of Xist 

(Panning and Jaenisch, 1996). Lastly, deletion of Dnmt] causes demethylation and 

expression of very high levels of transposons of the intracisternal A particle (lAP) 

class, (Walsh et al., 1998). The Dnmtl is the only gene known to be required for the 

repression of transposons in mammalian somatic cells, protecting these elements 

from demethylation during cleavage. The study of Dnmtl deficient ES cells revealed 

an enhaced mutation rate at several endogenous loci (Hprt and tk) caused by 

chromosomal rearragements, namely loss of heterozygosity because of increased 

mitotic recombination (Chen et al., 1998). 

Interestingly, ES cells that lack Dnmt 1 grow normally in the undifferentiated 

state and retain low but detectable levels of DNA methylation through more than 20 

cell divisions (Lei et al., 1996). However, Dnmtl null ES die by apoptosis when 

induced to differentiate in vivo or in vitro. These effects are paralleled by the 

apoptosis observed in Dnmtl deficient embryos (Li et al., 1992). The mechanisms 

that lead to apoptosis are not known. 

Dnmtl is highly expressed in the cytoplasm of postmitotic neurons. The 

cytoplasmic localisation of Dnmtl could be explained by a regulatory mechanism of 

the neuron to ensure the optimal protein in a post-mitotic state, or by an additional 

function in the cytoplasm. Conditional mutant transgenic studies where Dnmtl is 

specifically deleted in the central nervous system have been used to show that Dnmtl 
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is necessary for the regulation of the respiratory function and the survival of post-

mitotic neurons (Fan et al., 2001). 

Dnmtl deletion has been shown to affect the differentiation of CD8 T cells 

in the presence of a viral infection (Chappell et al., 2006). Additionally, when Dnmtl 

is knocked out with a mutation that leads to 10% expression levels of Dnmtl, this 

mutation causes a very high rate of lethal T-cell lymphomas (Gaudet et al., 2003). 

Demethylation and mobilization of endogenous retrovirus cause the majority of 

leukemias and lymphomas in most mouse strains. And ultimately, studies of 

overexpression of Dnmtl reveal both that Dnmtl has de novo methylase activity and 

that high levels of Dnmtl are lethal because it causes de novo methylation of 

normally unmethylated allele at imprinted loci (Biniszkiewicz et al., 2002). 

1.5.2 Dnmt2 

Dnmt2 has sequential and structural high affinity with the other DNA 

methyltransferases Dnmtl and Dnmt3. However, Dnmt2 lacks biochemically 

detectable methyltransferase activity (Okano et al., 1998b; Yoder and Bestor, 1998) 

and Dnmt2 deficient ES cells (Okano et al., 1998b) D.melanogaster and A. thaliana 

are viable, fertile and morphogically indistinguishable from wild type (Goll et al., 

2006). The role of Dnmt2 is to methylate the small RNA aspartiá acid transfer 

tRASP INA , function that is highly conserved in among mammals, flies and plants. 

Dnmt2 shares with the rest of Dnmts an indirect sequence recognition requirement in 

eukaryotes, giving the hypothesis of an ancestral Dnmt2 as origin of eukaryote 

Dnmts (Goll et al., 2006). 

1.5.3 Dnmt3 

There are two known de novo methyltransferases, Dnmt3A and Dnmt3B 

(Okano et al., 1999; Okano et al., 1998a) which primarily methylate CpG 

dinucleotides. A third homologue, Dnmt3L lacks cytosine methyltransferase activity, 

but interacts with de novo methyltransferases targeting methylation to the dispersed 

retrotransposon elements (Bourc'his and Bestor, 2004; Bourc'his et al., 2001; Hata et 

al., 2002). Dnmt3L functions as well as a regulatory factor in male and female germ 

cells, playing an important role in genomic imprinting (Bourc'his and Bestor, 2004; 
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Hata et al., 2002). Dnmt3a and Dnmt3b are highly similar proteins. Both have C-

terminal catalytic domains, and in their N-terminal domain they have a PWWP 

domain and a cysteine rich zinc-binding region related to the one contained in the 

chromatin remodelling protein ATRX (Xie et al., 1999). The PWWP domain is a 

highly conserved aminoacid sequence found in many chromatin associated proteins 

(Qiu et al., 2002; Slater et al., 2003; Stec et al., 2000). 

The question of how the methyltransferases are targeted to unmethylated 

DNA has been extensively studied with in vitro cell culture systems. There are three 

working possibilities. Firstly, in mouse cells Dnmt3 enzymes might be targeted to the 

pericentromeric heterochromatin regions by its PWWP domain (Chen et al., 2004). 

An alternative targeting mechanism might be by transcription factors that interact 

with the Dnmt to recruit methyltransferase activity as part of a molecular silencing 

signal to shutdown gene expression (Brenner et al., 2005; Di Croce et al., 2002). A 

third way of targeting could be via an RNA-mediated interference system targeting 

de novo methylation to specific DNA sequences (Santoro and Grummt, 2005). A 

combination of the three mechanisms should be also considered. 

Dnmt3a and b are highly expressed in early embryonic cells, where most 

programmed de novo methylation events occur, and to much lesser extent in 

differentiated cells and adult tissues (Okano et al., 1998a). Because DNA 

methylation is believed to play an important role in the central nervous system, 

extensive studies of Dntm3a and Dnm3b in the mouse CNS have been made. Both 

proteins are, expressed throughout the developing cortex in neural precursors. While 

Dnmt3b is preferentially expressed between E10.5 and E13.5, Dnmt3a remains 

expressed through E17.5 and switches its expression from neural precursors to post-

mitotic neurons with an increased expression through the first 3 weeks of postnatal 

development followed by a decreased expression into adulthood (Feng et al., 2005). 

The same pattern of expression is followed in other sensory systems, as in the 

olfactory system Dnmt3b is expressed in mitotic olfactory precursors, while Dnmt3a 

is expressed only in post-mitotic immature neurons. Furthermore, in the vomeronasal 

organ, the retina and taste buds, Dnmt3b is found in more primitive mitotic 

progenitors, whereas Dnmt3a is expressed in more highly differentiated post-mitotic 

neurons (MacDonald et al., 2005). 
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Dnmt3b is thought to be involved in methylation of specific genomic 

regions: including pericentromeric repetitive DNA sequences and CpG islands on the 

inactive X chromosome. This is known because Dnmt3b null mice and also human 

patients with DNMT3B mutations are deficient in methylation of pericentromeric 

repetitive DNA sequences and CpG islands on the inactive X (Okano et al., 1999). 

Point mutations in human DNMT3B are responsible for the rare autosomal recessive 

human disorder immunodeficiency, centromere instability, and facial anomalies 

syndrome (ICF) (Hansen et al., 1999; Xu et al., 1999). ICF is characterised by 

developmental defects, mental retardation and distinct facial features. Patients have a 

specific loss of methylation of classical satellite DNA, also known as satellites 2 and 

3 at the pericentromeric regions of chromosomes 1, 9, and 16 in their lymphocytes. 

Dnmt3a' mice are born but die after 4 weeks, while Dnmt3b mice are not 

viable and have multiple developmental defects (Okano et al., 1999). Both present 

global demethylation of their genomes, although in lesser degree than Dnmt1 

mutant embryos. Dnmt3b/Dmt3a double mutant ES cells are unable to 

methy!ate newly integrated retroviral DNA. Conditional deletion of Dnmt3a in germ 

cells results in sex-specific phenotypes. Female Dmt3a germ cells die in utero 

lacking methylation and allele-specific expression of maternally imprinted genes. 

Meanwhile conditional Dmt3a null male germ cells have impaired 

spermatogenesis and misregulation of paternally imprinted genes. On the other hand, 

germ cells are not affected by deletion of Dnmt3b (Kaneda et al., 2004a; Kaneda et 

al., 2004b). 

Lsh forms part of the chromatin remodelling SNF family of proteins. Lsh 

control normal heterchromatin sturucture and function in mice, contributing to the 

silencing of repetitive elements (Huang et al., 2004; Yan et al., 2003a; Yan et al., 

2003b). Concordantly, Lsh mutant mice have developmental defects and early 

lethality (Dennis et al., 2001; Geiman et al., 2001). Recently it has been discovered 

that Lsh interacts with Dnmt3a and Dnrnt3b and it is required for their function in de 

novo methylation of endogenous genes (Zhu et al., 2006). 
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1.6 Epigenetic reprogramming cycle 

Epigenetic modification undergoes reprogramming during the life cycle in 

two phases: during gametogenesis and preimplantation development. 

In the zygote, after fertilization, the paternal genome has been carried by the 

mature sperm and is single copy packaged densely with protamines. The maternal 

genome is arrested at metaphase II and is packaged with histories. Upon fertilization, 

protamines in the sperm chromatin are rapidly replaced with highly acetylated 

histones (Adenot et al., 1997; Santos et al., 2002) although histone methylation is 

also detectable (Erhardt et al., 2003; Lepikhov and Walter, 2004; Santos et al., 2005). 

Meanwhile, the maternal genome completes meiosis. Following this process begins 

the genome wide demethylation: The paternal genome undergoes active 

demethylation and is completed by one cell stage before DNA replication starts in 

the paternal pronucleus. On the contrary, the maternal genome undergoes passive 

demethylation, and is completed by the morula stage (Santos et al., 2002). There are 

some regions of the genome that are designed to not become demethylated; These 

are heterochromatin in the centromeres and close regions, probably to maintain 

chromatin stability (Rougier et al., 1998; Santos et al., 2002), TAP retrotansposons to 

avoid transpositions (Lane et al., 2003) and paternally methylated imprinted genes 

for imprinting maintenance (Olek and Walter, 1997). These processes have been 

observed in the mouse, rat, pig, bovine and human zygotes. However, DNA 

methylation dynamics of sheep zygotes are slightly different because the paternal 

pronucleus retains more DNA methylation. 

At the blastocyst stage in the mouse there are two cell lineages, the inner cell 

mass (1CM) and the trophectoderm (TE). DNA methylation is still decreased through 

the cleavage divisions (Monk et al., 1987) because of the exclusion of oocyte Dnmtl 

(Dnmtlo) from the nucleus during the first three cleavage divisions (Carlson et al., 

1992). This progressive demethylation that depends on DNA replication (Howlett 

and Reik, 1991) is known as passive demethylation. As a result, there will be a low 

level of methylation in the TE meanwhile the 1CM will go through an extensive de 

novo methylation starting from morula stage (Santos et al., 2002). This difference 

may be the cause of the fact that Dnmt3b is detectable in blastocyst in the 1CM but 

not in the TE (Watanabe et al., 2002). The difference in DNA methylation changes 
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between 1CM, and TE could be that the differentiation potential and longevity of 

extraembryonic tissues are much more limited than the embryonic tissues (Morgan et 

al., 2005). 

Primordial germ cells (PGC) are derived from epiblast cells in the posterior 

primitive streak at embryonic day E7.5, from where they start to migrate to the 

genital ridge and arrive at E11. 5  (McLaren, 2003). Female PGCs enter meiotic arrest 

in prophase of meiosis I, while male PGCs enter mitotic arrest about birth when 

mitosis of spermatogonial stem cells is resumed. The epigenetic marks that the PGCs 

are carrying are similar to other epiblast cells, such as random X chromosome 

inactivation, imprinted gene expression and DNA methylation. However, these 

marks need to be erased, and indeed this happens when the PGCs reach the genital 

ridges with a wave of demethylation that occurs between E1l.5 and E12.5 (Hajkova 

et al., 2002). This demethylation is believed to be active because it happens in very 

short period of time and in presence of Dnmtl in the nucleus. Following 

demethylation, the genomes of the gametes are de novo methylated and acquire 

parent-specific imprints. This process continues until E18.5 in males and in maturing 

oocytes before ovulation. in females (Morgan et al., 2005) (figure 1.1). 
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Figure 1.1 Epigenetic reprogramming cycle. After fertilisation, the 
paternal DNA undergoes active demethylation, while maternal DNA 
undergoes passive demethylation that is completed at morula stage. At 
blastocyst stage, the inner cell mass undergoes extensive de novo 
methylation, while the trophectoderm chromatin remain demethylated. 
Epigenetic marks at primordial germ cells (PGCs) are erased by another 
wave of demethylation between embryonic age El 1.5 and E12.5. 
Subsequently, the genomes of the gametes are de novo methylated and 
acquire parent-specific imprints. This process continues until E18.5 in 
males and in maturing oocytes before ovulation in females. Adapted from 
Morgan ci al., 2005. 



1.7 Methyl-CpG binding proteins 

The first entity found to bind methylated DNA and mediate transcriptional 

repression was MeCP1 (Meehan et al., 1989). This factor later was revealed as a 

multi-component complex. Subsequently, another was identified capable to bind 

methylated DNA, MeCP2 (Lewis et al., 1992) that can bind a single symmetrically 

methylated CpG pair. MeCP2 contains both a methyl-CpG binding domain (MBD) 

and a transcriptional repression domain (TRD) (Nan et al., 1997; Nan et al., 1993). 

By searching for sequences homologous of the MBD from the MeCP2, the MBD-

containing protein Mbdl was identified (Cross et al., 1997), and subsequently Mbd2, 

Mbd3 and Mbd4 (Hendrich and Bird, 1998) (figure 1.2 and figure 1.3). 

The multi-component complex MeCP 1 was shown to contain a methyl-CpG 

binding protein able to repress transcription in a methyl-CpG binding dependent 

fashion. This protein was initially believed to be Mbdl (Cross et al., 1997), but 

subsequent studies revealed that Mbd2 was the methyl-CpG binding activity in the 

complex (Ng et al., 1999). Additionally, MeCP1 was later on shown to be a complex 

formed by the Nucleosome Remodelling and Deacetylation Repressor NuRD 

Complex, and the Mbd2 protein (Feng and Zhang, 2001). 
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Figure 1.2 Methyl-CpG binding proteins. MePC2, Mbdl-4 share MBD 
domain which allows the proteins to bind methylated DNA, while Kaiso bind 
methylated DNA through its zinc fingers. Mbdl also contains three zinc 
finger domains (CxxC), one of them allows MbdI to bind non-methylated 
CpG dinulceotides. MeCP2 and Mbdl have a transcriptional repression 
domain TRD. Kaiso repress transcription in a methylation dependent manner 
with involvement of both zinc fingers and POZ domain. Mbd2 and Mbd3 are 
70% homologous, but Mbd3 MBD does not bind methylated DNA in 
mammals due to two amino acid residues different that eliminate the methyl-
CpG binding activity. Mbd4 can bind methylated DNA through its MBD 
domain and repair mismatched base pairs through its glycosilase domain. 
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Figure 1.3 Transduction of the methylated signal. MeCPs bind methylated 
DNA (red circles) targeting the chromatin remodeling complexes where they 
are included, which leads to silencing of gene expression. In HeLa cells Kaiso 
forms part of the NCoR corepressor complex and Mbd I associates with the 
H3-lysine9-specific methylase SETDBI. Mbd3, which does not bind 
methylated DNA in mammals, forms part of the nuclear corepressor NuRD, 
which associates with Mbd2 that bind methylated DNA. MeCP2 may 
associate with several co-repressor complexes including Dnmtl, CoREST, 
Suv39HI, and Sin3a.Adapiedfro,n Bird., 2002. 



1.8 MeCP2 

MeCP2 is a 80kDa protein that binds a single symetrically methylated CpG 

(Lewis et al., 1992). Its MBD, as in the rest of MBD proteins, is located in the N-

terminus of the protein. In the middle of the protein is located its transcription 

repression domain (TRD) of 100 amino acids (Nan et al., 1997) that can repress 

transcription up to 2kb from the transcription initiation site. The transcriptional. 

repression activity is linked to histone deacetylation (Jones et al., 1998; Nan et al., 

1998) and histone methylation (Fuks et al., 2003b). There are several co-repressor 

complexes that may associate with MeCP2 in mammals including Dnmtl, CoREST, 

Suv39Hl, c-SKI andSin3a (Kimura and Shiota, 2003; Kokura et al., 2001; Lunyak 

et al., 2002; Nan et al., 1998). This last complex, once believed to be the corepressor 

partner of MeCP2, has been demonstrated to intereact with MeCP2 in low proportion 

with a non stable interaction (Kiose and Bird, 2004). 

Recently it has been demonstrated that MeCP2 requires an AlT run of four or 

more base pairs adjacent to the methyl-CpG for efficient binding (Kiose et al., 2005). 

In the absence of another MeCP, Mbd2, MeCP2 can not bind to the sites normally 

bound by Mbd2 in the majority of the cases. On the other hand, in the absence of 

MeCP2, Mbd2 can bind to most of the normal MeCP2 binding sites (Kiose et al., 

2005). Therefore, Mbd2 can functionally compensate for MeCP2 but not vice versa. 

There are two MeCP2 isoforms as a result of alternate splicing of the four 

exon MeCP2 gene. These are termed Mecp2a/3 in mice, and MECP2A/B in humans, 

and they differ in the aminoacid composition of the N-terminus (Kriaucionis and 

Bird, 2004; Mnatzakanian et al., 2004). MECP2B in humans or Mecp2a in mouse 

are more highly expressed than MECP2A1Mecp2J3 transcripts in most tissues. 

Although MeCP2 is ubiquitously expressed through the mouse and human tissues, is 

the brain where the expression is remarkably high. 

Within the brain, MeCP2 is predominantly expressed in neurons, with 

strongest expression in the more mature neurons (Kishi and Macklis, 2004; Mullaney 

et al., ; Shahbazian et al.). The extensive studies of Mecp2 expression in rat 

(Mullaney et al., 2004) and mouse (Braunschweig et al., ; Shãhbazian et al., 

2002b)Shahbazian et al., 2002) have revealed a pattern of expression that correlates 
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with the maturation of the different brain regions, and indicates a function for 

MeCP2 in mature neurons. Moreover, neuronal precursor differentiation assays 

reveal no evidence for defects in the proliferation or fate decisions of neuronal 

precursors in the absence of MeCP2 (Kishi and Macklis, 2004). However, increasing 

evidence suggests a role for MeCP2 in maturation and maintenance of postmitotic 

neurons in murine brains (Kishi and Macklis, 2004; Matarazzo et al., 2004). 

1.8.1 Rett syndrome (RTT) 

Rett syndrome is caused by mutations in the MECP2 gene (Amir et al., 1999). 

RTT is a neurological disorder that affects primarily girls, with an incidence of 

1/10000 to 1115000 live births (Hagberg, ; Kerr and Stephenson, 1985; Rett, 1966). 

The affected individuals are born asymptomatic and develop normally during the 

first few months of life, achieving the expected milestones in motor language and 

social areas. After 6-18 months of age, however, acquired speech and motor skills 

begin to be lost (Hagberg). Purposeful hand movements are replaced by 

characteristic hand-wringing motions and gait apraxia, followed by growth 

retardation and deceleration of head growth. In addition, half of affected individuals 

develop seizures and autistic behaviour, and by 4-7 years display gross cognitive and 

motor impairment together with profound hypoactivity which remains throughout 

their lives (Hagberg and Witt-Engerstrom). 

Histopathological studies on post-mortem RTT brains have revealed that the 

observed microcephaly correlates with reduced brain size, particularly of the 

prefrontal, posterior frontal, and anterior temporal regions (Subramaniam et al.). This 

characteristic reduction in size roughly correlates with both a decrease in the size of 

individual neurons and increased neuronal packing densitiy in these regions (Bauman 

et al., 1995a; Bauman et al., 1995b). Additionally a reduction of dendritic 

arborization in cerebral cortical layers II and IV in the frontal, motor and inferior 

temporal regions has been observed (Armstrong et al., 1995). 

1.8.2 MeCP2 mutant mice models 

Once MeCP2 was linked to be the cause of Rett syndrome, many laboratories 

started the generation of mouse models to try to understand the function of MeCP2. 

Mecp2 heterozygous female mice are viable, fertile, and appear normal well into 
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adulthood (Chen et at., 2001; Guy et al., 2001) even though they have the same 

genotype as RTT girls. At around six months of age, however, these females begin to 

show neurological symptoms reminiscent of RTT (Guy et al., 2001), indicating that 

the onset of Rett Syndrome is unlikely to depend upon the developmental stage of 

affected individuals, as humans and mice develop a similar disease after the same 

amount of time, despite being at completely different developmental stages. 

Hemizygous null male or homozygous null female mice appear healthy at birth, but 

began to display RTT-like phenotypes after about six weeks and die at an average 

age of approximately 8 weeks (Chen et al., 2001; Guy et at., 2001). Brain 

architecture in null mice is grossly normal, although a slight decrease in the size of 

neurons and an increased packing density in the hippocampus, cerebral cortex and 

cerebellum could be identified (Chen et al., 2001; Kishi and Mack!is, 2004). This 

finding correlates with disease pathology in humans where a decrease in the size of 

individual neurons and increased packing density are likely contributory factors to 

the smaller brain size often observed in RTT patients (Armstrong et al., 1995; 

Bauman et al., 1995a; Bauman et al., 1995b). 

Another mouse model was produced that expresses a truncated form of MeCP2 

often seen in RTT patients (Shahbazian et al., 2002a). These Mecp2 mutant males 

(MeCP2308 ) were aphenotypic until 4- 5 months of age, after which time they began 

to display tremors, kyphosis and motor dysfunction. Heterozygous females 

(MeCP2308 'X) have impaired motor features at 35-39 weeks and show phenotypic 

variability ascribed to differences in patterns of X chromosome inactivation. In early 

studies, results of learning and memory tests were reported to be normal (Shahbazian 

et al., 2002a). However, recent thorough studies of behaviour, synaptic function, 

electrophysiological and ultrastructural experiments revealed compound memory and 

learning deficits associated with synaptic function (Moretti et al., 2006). 

Mice in which MeCP2 was deleted in Nestin-positive neural precursors (and 

their progeny, i.e. all neurons and glia) displayed a phenotype indistinguishable from 

that seen in MeCP2-null mice (Chen et at., 2001; Guy et al., 2001), indicating that 

the primary site of action for MeCP2 is in the brain. Furthermore, Chen et al. 

produced mice in which the Mecp2 gene was only deleted in cells expressing 

aCamKII, a kinase specifically present in postmitotic neurons (Chen et al., 2001). 
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The aCamKII promoter is normally active in postnatal excitatory neurons of the 

forebrain, hippocampus and brainstem, and to a much lesser degree in the cerebellum 

(Silva, 2003), although the exact distribution and strength of its activity within the 

forebrain can vary from one transgenic line to another (Chen et al., 2001; Tsien et al., 

1996). These mice appeared normal until about 3 months of age, at which time they 

began to display ataxic gait and reduced nocturnal activity. Histological analysis 

revealed reduced brain weights and smaller neuronal cell bodies in cortex and 

hippocampus (Chen et al., 2001). interestingly, these phenotypes were not seen in the 

cerebellum where aCamKII is not expressed (Caballero et al., 2005). 

1.8.3 MeCP2 in Xenopus 

- MeCP2 is also expressed in Xenopus ubiquitously, and concordantly with 

mice and human, it is also highly expressed in all neural tissues. However, the 

depletion of xMeCP2 results in arrest of development at the neurula stage, which 

results in significant developmental defects such as reduced dorsal axis and abnormal 

head structures (Stancheva et al., 2003). Hence, xMeCP2 play an essential role in 

early development of Xenopus in contrast with the situation in mammals where 

MeCP2 is not essential for embryogenesis. Xenopus Hairy2a was identified as a 

target gene for repression by xMeCP2. xHairy2a is a downstream gene of the 

Notch/Delta signalling pathway. When Xenopus embryos express a truncated form of 

MECP2, (a frequent mutation in Rett syndrome), xHairy2a is inefficiently repressed 

which causes an increase in neuronal precursors with consequent disruption in 

neuronal patterning (Stancheva et al., 2003). Hence, identified target genes in 

Xenopus are related with neuronal precursor functionality, but given the differences 

on the onset of the phenotype as a consequence of depletion of MECP2 in human 

and mice versus Xenopus, its target genes may differ between species. 

1.8.4 MeCP2 target genes 

Since MeCP2 is involved in transcriptional repression when bound to the 

widely distributed methyl-CpGs of the genome, it was predicted that loss of MECP2 

in a cell would result in inappropriate expression of a large number of genes (Willard 

and Hendrich, 1999). However, microarray studies with cell lines and tissues of mice 
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or mutant human patients found only very subtle gene expression changes 

(Colantuoni et al., 2001; Matarazzo and Ronnett, 2004; Tudor et al., 2002) or protein 

expression changes (Matarazzo and Ronnett, 2004). Some of the genes found to be 

discretly upregulated are involved with glucocorticoid signaling pathway like Sgk 

and Fkbp5 (Nuber et al., 2005). Interestingly, the changes appear before the onset of 

Rett-like symptoms in the mice which indicates that the upregulation of these genes 

may not be consequence of the Rett-like phenotype (which includes misregulation in 

metabolism). Additionally, both genes have been linked to neuronal function and 

therefore is plausible that misregulation of these genes would be involved in the Rett 

syndrome phenotype. 

On the other hand, candidate gene approaches have lead to the identification of 

additional MeCP2 bona fide target genes. The first example was the brain-derived 

neurotrophic factor (BDNF), which was found to be misexpressed in Mecp2-null 

brains. This missexpression occurs only in certain cell types, and only to a level of 

about two-fold (Chen et al., 2003; Martinowich et al., 2003). BDNF is  neurotrophin 

required for survival, growth, and maintenance of neurons during development 

(Barde, 1994). BDNF is known to be involved in learning and memory and has the 

ability to modulate synaptic plasticity by regulating axonal and dendritic branching 

and remodeling (Alsina et al., 2001; Lo, 1995; Lom and Cohen-Cory, 1999; Shimada 

et al., 1998; Yacoubian and Lo, 2000). MeCP2 was found to associate with and 

maintain repression of Bdnf in resting neuronal cultures. Following neuronal 

depolarization, MeCP2 becomes phosphorylated and disassociates from the Bdnf 

promoter, allowing for full transcription of the gene. In the absence of MeCP2, Bdnf 

repression becomes leaky in unstimulated neurons, resulting in a two-fold increase of 

Bdnf mRNA levels (Chen et al., 2003). This increase in mRNA levels does not 

constitute 'activation' of the Bdnf gene, as transcript levels in resting Mecp2-

deficient neurons are still approximately 100-fold lower than those found in activated 

neurons (Chen et al., 2003). Rather, the absence of MeCP2 results in incomplete 

repression of Bdnf. No difference in Bdnf expression was detectable in depolarised 

neuronal cultures derived from Mecp2-deficient or wild-type mice (figure 1.4). 
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Figure 1.4. MeCP2 regulation of the neurotrophic factor Bdnf. A. In resting neurons, 
MECP2 (orange) and its associated co-repressor (HDAC, in green) represses transcription of 
the Bdnf promoter. III. B. In the absence of MeCP2, repression of Bdnf is leaky, resulting in 
low-level transcription and, presumably, Bdnf protein production that may cause a variety of 
downstream effects leading to dysfunction at different levels such as reduced long term 
potentiation (LTP), altered learning and memory and decreased dendritic arborization. C. 
Upon membrane depolarisation (i.e. neuronal stimulation), MeCP2 is displaced from 
promoter III and Bdnf transcription is activated, resulting in Bdnf protein production. Figure 
adapted from Kandel, Schwartz, Jessell, Principles of Neural Science. 41/2  Edition 2000. 

Although MeCP2 has been shown to physically associate with the silent alleles 

of various imprinted genes (Drewell et al., 2002; Fournier et al., 2002; Gregory et al., 

2001), no loss of imprinting could be found at these loci in Mecp2-deficient mice 

(Chen et al., 2001; Guy et al., 2001). However, the imprinted D1x5 gene was recently 

found as a target for MeCP2 repression (Horike et al., 2005). D1x5 and D1x6 encode 

homeobox proteins known to regulate the expression of genes involved in 

neurotransmitter production (Stuhmer et al., 2002) and are important in various 

aspects of embryonic development, including brain patterning (McLarren et. al., 

2003). 

Moreover, another imprinting gene, Ube3a has been found to be misregulated 

in Mecp2-deficient animals (Samaco et al., 2004). The deficiency or deletion of this 

gene is the cause of Angelman Syndrome (Kishino et al., 1997; Matsuura et al., 

1997). Again, a small but significant decrease in expression of Ube3a/UBE3A was 

found in brains of Mecp2-deficient mice and RTT patients (Samaco et al., 2004). 

Further, expression of a nearby non-imprinted gene implicated in autism, 

Gabrb3IGABRB3, was reduced in the same samples. A similar reduction in UBE3A 

and GABRB3 expression was also found in brain samples from autism and Angelman 

Syndrome patients, indicating that the similarities in phenotype between these 

syndromes may have a common molecular etiology (Samaco et al., 2004). In this 

case no evidence for loss of imprinting or for direct MeCP2 binding to either gene 

was found. 

Recently MECP2 has been reported to have a direct role in splicing regulation 

through its association with YB-1 (Young et al., 2005), which controls multiple steps 

of mRNA processing (Raffetseder et al., 2003), giving a new vision to MeCP2 as a 

multifunctional protein. 



1.9 MBD2 

Mbd2 has two isoforms, Mbd2a, which is the full-length protein and Mbd2b 

that has an N-terminal truncation expressed by an alternative start codon. Both 

isoforms can bind methylated DNA (Hendrich and Bird, 1998). 

Mbd2 shares an identical genomic structure with Mbd3 in mammals. Methyl-

CpG binding protein Mbd3, forms part of the methyl binding domain (MBD) family 

of proteins, but does not bind methylated DNA in mammals in contrast with the rest 

of the family. Mbd2 and Mbd3 encode proteins that are 70% identical. These facts 

support the theory that Mbd2 and Mbd3, could have been separated in vertebrates by 

a gene duplication event from the ancestral Mbd2/Mbd3 gene. in invertebrates 

(Hendrich and Tweedie, 2003). 

1.9.1 Mbd2 knock out mice and Mbd2 function 

The function of Mbd2 has been investigated through the study of the knock 

out mice (Hendrich et al., 2001). Mbd2" mice are viable and fertile, and their DNA 

methylation and imprinting levels are normal. Mbd2 is a transcriptional repressor and 

therefore, when Mbd2 is deleted from fibroblast cell lines there is a decrease in 

repression of methylated reporter genes. However, the level of expression is only 

25% of the expression level with unmethylated promoters. This data indicates a 

possible redundancy between MeCPs in the repression of methylated promoters 

(Hendrich et al., 2001). 

Abnormal maternal behaviour. 

The Mbd2 pups were observed to be smaller than normal because a defect 

in nurturing behaviour of the Mbd2 mothers. This observation was concluded after 

cross-fostering experiments showed that pups from Mbd2 	mothers developed 

normally when nurtured by wild type mothers, whereas when nurtured by Mbd2 

mothers the pups showed low weight. This low weight was proven to be independent 

of the maternal milk composition (Hendrich et al., 2001). 

Normal postpartum nurturing behavior in rodents is quite stereotyped and 

includes creating a nest, cleaning the pups, retrieving them to the nest and crouching 

over them for warmth and nursing (Barnett and Burn, 1967). The ability of the 
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postpartum mother to retrieve the newborn pups to their nest is the definitive 

diagnosis of a possible abnormal nurturing behaviour (Li et al., 1999). Mbd2 

mothers were significantly slower than the wild type in this task. The postpartum 

nurturing response has two components, one experiential and one hormonal 

(Rosenblatt, 1994). Both require specific hippocampal circuitry involving the main 

olfactory bulb that receives the olfactory stimulus from the newborn pup. This signal 

is transmitted to the amygdala and preoptic area (POA) of the hypothalamus. 

Therefore, it is possible that Mbd2 null mice suffer from an unidentified neurological 

defect related with neuronal circuitry. 

A mutation in the fosB gene, which is involved in the POA circuitry, causes a 

nurturing behavior phenotype while other sensory and cognitive functions are normal 

(Brown et al., 1996). By a targeted disruption of the dopamine-/3-hydroxylase gene, 

mice are unable to synthesise norepinepbrine (NE) and epinephrine (Thomas and 

Palmiter, 1997). With the absence of the ligand NE mice present nurturing 

abnormalities, which have been specifically associated with a disruption of 

noradrenergic input in the olfactory bulb and other primary olfactory regions of the 

CNS. Both gene disruptions, foxB and Dbh results in a dysfunction of the induction 

of early genes in response to pup exposure. 

Other proteins involved with maternal nurturing behavior are Peg3 and Mest, 

which are imprinting genes. No misexpression of imprinted genes has been shown in 

Mbd2 mutant animals, including Peg3 or Mest. Therefore it is more likely that Mbd2 

is required as a transcriptional repressor in the olfactory circuitry of the central 

nervous system. 

T cell differentiation. 

Looking closely to possible gene misregulations in the absence of Mbd2, 

investigators studied organization of T cell development in absence of Mbd2. Helper 

T cell differentiation comprises a complex cascade of gene expression that is known 

to involve transcriptional reprogramming and developmental effects (Bird et al., 

1998). The progenitor naïve helper T cell starts a differentiation program under 

microbial threat and differentiates into Thl or Th2 lineage. Thi is characterised by 

the expression of the transcription factor T-bet and the secretion of IFN-y. 
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Meanwhile, Th2 is characterised by the expression of the transcriptional activator 

Gata-3 and secretion of IL-4 (Mullen et al., 2001; Ouyang et al., 1998; Szabo etal., 

2000; Szabo et al., 2002; Zheng and Flavell, 1997). However, when Mbd2 is not 

present, both Thi and Th2 cells, and also the progenitor helper T, express 1L4, 

bypassing the transcriptional differentiation effect of Gata-3. In normal conditions, 

Gata-3 is believed to compete with the binding of Mbd2 to the 1L4 enhancers, so in 

the absence of Mbd2 1L4 is expressed regardless the cell type (Hutchins et al., 2002). 

Additionally, it was found that Mbd2 also competes with T-bet in the expression of 

WN-y, since Mbd2 repress and T-bet activates expression of IFN-y. Consequently, 

the number of IFN-y expressing cells is higher in Mbd2 null mice. These in vitro 

observations have recently been assayed one step further when Mbd2 deficient mice 

were challenged with parasitic pathogens. The interesting outcome from these 

experiments is that Mbd2 deficiency confers enhanced resistance to Leishmania 

major because of the enhanced population of IFN-y expressing cells, but impaired 

immunity to Trichuris murs. This intestinal helminth activates the immune response 

of Th2 cells that secrete IL-4, and the resistance to the infection is antagonized by 

IFN-? (Hutchins et al., 2005). 

Tumorigenesis. 

Another characteristic of Mbd2 null mice is that they have a decreased 

incidence of tumour formation. Mice that are heterozygous for the tumour suppressor 

Apc gene are very susceptible to develop intestinal tumours (Su et al., 1992). Mbd2 

homozygous null mice, on an Apc Min/+  heterozygous background present less number 

of tumours with less size, and consequently they live longer. The absence of Dnmtl 

has been also shown to reduce the intestinal tumours in Apc minl+  mice (Laird et al., 

1995). It is believed to be related with a decrease in the aberrant methylation of 

tumour suppressor genes (Campbell and Szyf, 2003). However, the hypomethylation 

of the genome caused by Dnmtl deficiency can also result in increased or 

accelerated tumorigenesis. The type of tumours seen with Dnmtl defficiency appears 

to be linked with chromosomal instability, in particular sarcomas and aggressive T 

cell lymphomas (Eden et al., 2003; Gaudet et al., 2003). In contrast, Mbd2 null mice 

do not develop lymphomas. This conclusion was derived from the study of Mbd2- 
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null mice crossed with lymphomagenesis-prone p53-deficient mice (Sansom et al., 

2005). p53 misregulation is the most established model of lymphomagenesis, and 

does not induce intestinal tumorigenesis. 

It is an open question what methylated sequences Mbd2 binds (Klose et al., 

2005). There is no sequence specificity known for this protein, and therefore it could 

be targeted to any selected sequence. This idea has been reinforced with the 

discovery of a protein named MIZF (Mbd2-interacting zinc finger), that can repress 

transcription in an HDAC-dependent manner (Sekimata et at., 2001). This protein 

has been shown to enhance the repression function of Mbd2 in co-transfection 

experiments. Since this protein can bind to a specific 5bp recognition sequence with 

a subsequent repression of transcription of the genes that have that consensus 

sequence within its promoter (Sekimata and Homma, 2004), it is plausible that MIZF 

targets Mbd2 and the NuRD complex to specific genomic regions. 

1.10 Mbdl 

Ectopically expressed of Mbdl, 2, and 4 can bind to methylated CpG 

sequences that in mouse cells is concentrated in the major satellite. These 

heterochromatic foci can be visualized as DAPI bright spots (Miller et al., 1974). 

However, this localisation is lost for Mbd2 and Mbd4 in methylation deficient 

mutant cells (Hendrich and Bird, 1998). In contrast, Mbdl can still be visualized at 

DAPI bright spots in deficient cells because it can also bind unmethylated CpGs. 

This particular binding capability will be described below (Jorgensen et al., 2004). 

Mbdl is the largest protein in the MBD family. In the C-terminus, Mbdl has 

a specific transcriptional repression domain TRD that is capable of strong methyl-

dependent repression from binding sites far upstream of its promoter (Ng et al., 

2000) (Fujita et al., 2003b). Since TSA treatment variably relieves the repression by 

Mbdl, histone deacetylation may not be consistently involved in the repression (Ng 

et at., 2000). 

Both human and mouse cells have several isoforms of MBD 1 protein, derived 

from alternative splicing of MBDJ mRNA and differing in the number and spacing 

of cysteine rich motifs (CxxC) (Fujita et al., 1999; Hendrich and Bird, 1998). These 

CxxC motifs are located in the N-terminal domain, which also contains the MBD 
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that can bind a single symmetrically methylated mCpG pair. In mice there are three 

known Mbdl transcripts, Mbdla, b and c. The three of them have two CxxC, and 

Mbdla has additionally a third CxxC. Mbdla can bind to unmethylated CpGs and 

repress transcription through its CxxC (Jorgensen et al., 2004). This special 

capability confers Mbdl the ability to bind to CpG sequences regardless their 

methylated status. Similar CxxC domains can be found in Dnmtl, CpG binding 

protein (CGBP), and the mixed lineage leukemia protein (MLL) (Ng et al., 2000), all 

-of which have been demonstrated to bind to nonmethylated CpG sites in vitro (Birke 

et al., 2002;-Lee et al., 2001; Voo et al., 2000). 

In HeLa cells MBD1 associates with the histone H3-lysine9-specific 

methylase SETDB 1 via its second CxxC motif and to a chromatin assembly factor, 

CAF-1 by the first CxxC motif (Sarraf and Stancheva, 2004). CAF-1 is a complex of 

three subunits, p150, p60, and p48, and is responsible for the assembly of 

nucleosomes onto newly replicated DNA (Kaufman et al., 1995). The p150 subunit 

is known to interact with the proliferating cell nuclear antigen PCNA, a protein 

implicated in a wide range of DNA replication and repair processes (Moggs et al., 

2000; Reese et al., 2003) that functions in S phase. This complex meets a neat 

process of transmission of transcriptional silencing through the cell cycle. MBD1 

and SETDB1 form a stable pair in all the cell cycle stages. At GI, MBD1/SETDB1 

complex is bound to methylated DNA to repress transcription. When the cell enter S 

phase to start the DNA replication, MBD1 recruits CAF-1, and the CAF -

1/MBD1/SETDB1 complex is formed. CAF-1 then recruits PCNA. This complex is 

transient because it may prevent spreading of 113-K9 methylation beyond the 

methylated DNA region. During S phase, this complex may associate with Dnmt 1, 

which also binds to PCNA, to copy the parental methylation pattern to the daughter 

DNA strand, and together with the histone methylation activity by the SETDB 1, the 

epigenetic status of the silenced chromatin is maintained at the replicated DNA. 

1.10.1 Mbdl expression 

Mbdl is expressed in the majority of somatic tissues, being expressed highly in 

brain and only at very low levels in ES cells. In the mouse brain Mbdl is expressed 

everywhere and the highest expression is in the hippocampus, being particularly high 
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the Cornu Ammoni 1 (CAI) and dentate gyrus (DG) regions. The cells that express 

Mbdl most abundantly are Neuronal Nuclei (NeuN)-positive neurons, but it is also 

expressed in Nestin-positive precursor cells. Mbdl is not expressed in 

oligodendroctyes neither in astrocytes. The CAI and DG are the neuronal layers with 

higher expression of Mbdl. 

1.10.2 Mbdl deficient mice and Mbdl function 

Mbd1 	mice are healthy and fertile with a normal life span (Zhao et al., 

2003). They display no defects in routine neurological tests and the cellular and 

structure brain arrangements are normal. In vitro studies showed normal proliferation 

rates in hippocampal adult neural stem cells but revealed a decrease in neuronal 

differentiation while astrocytic differentiation was not affected. Given this finding, in 

vivo studies followed the neuronal differentiation phenotype to find that cell 

proliferation as measured by BrdU incorporation was not affected in the null 

hippocampus. However 4 weeks after injection there were less 50 percent of 

proliferating cells in the (DG) of Mbdl null than wild type, and from this percentage 

around 50 percent were newborn neurons, giving it a total of approximately 75% less 

newborn neurons in total in null adult mice. Ultimately, the neuronal differentiation 

and survival impairment in null Mbdl hippocampus was conclusively linked with 

specific DG hippocampal learning and memory tests studies, since this test showed 

impaired spatial learning ability and a three-fold decrease in LTP in the DG-specific 

region, which has been associated with decreased neurogenesis (van Praag et al., 

1999). 

Adult hippocampal neural stem cells were used in microarray studies in the 

search for genes misregulated in Mbdl-null cells. From these experiments 

intracisternal A particles (lAP) were found to be expressed at higher level in null 

adult neural stem cells (ANCs) than in wild type. As described before, the increased 

expression in lAPs has also been observed in the absence of Dnmtl (Walsh et al., 

1998) since TAPs are heavily methylated (Yoder et al., 1997). In contrast, in Mbd1 

ANCs there is no evidence of demethylation. Interestingly, upon TSA treatment the 

lAP expression increases three times more in null cells than in wild type cells, giving 

evidence of a mechanism of repression that involves deacetylation machinery. lAP 
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expression is a signal for chromosomal aberrations, and in concordance, Mbdl null 

ANC have double aneuploidy rates than in wild type cells, namely gaining of 

chromosomes. Given that aneuploidy is a cause of cell death, it is possible that the 

decreased cell survival in the DG is the cause of the increased expression of lAP 

found in their precursors. 

Another piece of evidence that corroborate a function for Mbdl in regulation 

of precursor cell fate is the recent discovery that Mbdl is required in hematopoietic 

precursors to fully prevent cell differentiation. This function requires Mbdl 

association with methylated PML-RARa target promoters, namely RARI32 via 

HDAC3 repression (Villa et al., 2006). 

1.11 Mbd4 

Mbd4 binds symmetrically methylated CpG sites through its MBD (Hendrich 

and Bird, 1998) although it has a higher affinity for 5mCpG/TpG mistmatches 

(Hendrich et al., 1999), which are common mutation products of the deamination of 

methylcytosine at mCpGs and account to more than 20% of all base substitutions in 

human genetic diseases (Krawczak et al., 1998). Mbd4 also contains a glycosylase 

domain (Hendrich and Bird, 1998; Petronzelli et al., 2000) which can remove T or U 

in a mismatched base pair in vitro with G without cleaving the DNA strand 

(Hendrich et al., 1999). Both domains confer upon Mbd4 the appropriate 

characteristics to function as a mutability repair enzyme to reduce mutation at 

methylated CpG sites in vivo, and indeed mice lacking Mbd4 have an increase in the 

frequency of mutation at m5CpG pairs, and are prone to intestinal tumorigesis on an 

ApcMmn background (Millar et al., 2002; Wong et al., 2002). Moreover, loss of Mbd4 

alters wild type Ape allele due to CpG to TpG mutations that causes APC protein 

truncation (Millar et al., 2002). Deficiency of Mbd4 also causes reduction of the 

apoptosis response in DNA damage (Sansom et al., 2003). Additionally, the MBD 

has recently been found to function not only to direct the enzyme to possible 

mismaches, but also as part of the transcriptional repressor machinery (Kondo et al., 

2005). Mbd4 is involved in transcriptional repression at hypermethylated promoters, 

which are also H3/H4 deacetylated and H3K9 methylated. Repression of 
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transcription probably occurs through recruitment of HDAC1/Sin3A (Kondo et al., 

2005). 

1.12 Kaiso 

Kaiso protein is a member of the BTB/POZ (broad complex, Tramtrack, Bric 

A brac/pox viruses and zinc fingers) family of proteins. The BTB/POZ domain 

consists of a highly conserved hydrophobic domain of approximately 120 amino 

acids located at the extreme N terminus. This POZ/BTB domain enables Kaiso to 

homodimerize or heterodimerize and interact with other proteins, recruiting 

corepressor complexes such as N-CoR, Sin3a and possibly Groucho or TLE (van 

Roy and McCrea, 2005). However, in the Kaiso-containing methyl-CpG specific 

complex, mSin3a, HDAC1 or SMRT where not isolated (Prokhortchouk et al., 

2001). 

In the carboxy-terminal there are three krupple-like C 2H2  zinc fingers that 

have the ability to bind from two to three consecutive methyl-CpG base pairs with 

the highest reported affinity of any protein for DNA methylated at CpG 

(Prokhortchouk et al., 2001). Kaiso binds to DNA through its zinc fingers 2 and 3 

and localised, as the rest of the MeCPs with the major satellite repeats in the 

chromosome, although mouse major satellite repeats do not contain the sequence 

CGCG and therefore Kaiso may not be targeted by methylation binding (Filion et al., 

2006). 

p120 catenin (p120) is a member of the armadillo family of proteins, 

characterised by the presence of an Armadillo domain which consist of series of ten 

or more tandem copies of a 42 amino acid repeats in helical conformation (Huber et 

al., 1997; Kobe, 1999). The function of the armadillo domain is protein-protein 

interaction (Peifer et al., 1994). As other catenins of this family, like 13  and y 

catenins, p120 is involved in cell-cell adhesion, and hence related to metastasic 

events, but also is directly involved in regulation of gene expression by regulating 

the transcriptional repression activity of Kaiso (Daniel et al., 2002). Through its 

NLS, p120cm  is translocated to the nucleus and associates through its armadillo 

domain with Kaiso. Steric hindrance of Kaiso by p120cth  may inhibit Kaiso 

transcriptional repression activity (Kelly et al., 2004b). 



Intracellular localisation of Kaiso is still controversial. There have been 

reported two different nuclear localisations: both a bright dot spots and diffuse 

localisation, with a variation between cell lines but also among same cell lines 

(Daniel and Reynolds, 1999; Filion et al., 2006). Apart from nuclear localisation, 

some cases of cytosolic localisation have also been reported for Kaiso. Although a 

role for p120 in sequestering Kaiso to the cytosol to modulate its transcriptional 

repression activity was initially postulated (Daniel and Reynolds, 1999), it has been 

recently shown that a NLS mutant form of p120 unable to translocate to the nucleus 

and fails to inhibit Kaiso-mediated transcriptional repression (Kelly et al., 2004b). 

Additionally, Kaiso itself has a highly basic ten amino acid NLS, upstream of the 

Kaiso zinc-finger domain that target Kaiso to the nucleus and that is involved in the 

transcriptional repression activity of the protein (Kelly et al., 2004a). One report 

assigned Kaiso a cellular localisation that is environment-dependent. For example, in 

vitro cultured cells were shown to mainly have a nuclear Kaiso localisation, while 

three dimensional cultures, normal tissues and tumor growths seemed to show 

predominantly cytoplasmic localisation, perhaps being cell density dependent 

(Soubry et al., 2005). However, other immunocytochemistry studies have pointed out 

a predominantly nuclear localisation in vivo in mice colon tumors (Prokhortchouk et 

al., 2006). 

Kaiso can repress transcription in a methylation dependent manner and both 

POZ and zinc finger domains are necessary. Transcriptional silencing may not 

depend upon histone deacetylase activity since addition of TSA does not disturb the 

repression activity (Prokhortchouk et al., 2001). Additionally, through its zinc fingers 

Kaiso can bind the consensus Kaiso binding site (KBS) TCCTGCNA. Through this 

consensus Kaiso has been shown to repress the transcription of the genes 

MATRYSILIN (Spring et al., 2005) in humans and Wnt-11 in Xenopus (Kim et al., 

2004), but also is able to activate the transcription of rapsyn (Rodova et al., 2004). 

Additionally, Kaiso interacts with the DNA binding protein CTC-binding factor 

(CTCF) through its Kaiso binding site (KBS). The enhancer blocking activity of 

CTCF has been shown to be negatively regulated by Kaiso (Defossez et al., 2005). 

Through recognition of mCGmCG Kaiso can repress transcription of MTA2 (Yoon 

et al., 2003b), and can bind to the human tyrosine hydroxylase TH gene (Aranyi et 



al., 2005). TH is essential for catecholaminergic neuronal specification and display 

different tissue specific methylation status, which determines KAISO binding. 

Therefore, it would be interesting to check whether the absence of Kaiso in neural 

stem cells increases their TH specification. However, these characterised target genes 

were not found to be upregulated in Kaiso-null tissues (Prokhortchouk et al., 2006). 

1.12.1 Kaiso in Xenopus 

In Xenopus, xKaiso is essential for development. Depletion of Kaiso in 

Xenopus embryos causes a striking phenotype consisting of developmental arrest and 

cellular apoptosis, characteristics that mimic the phenotype of Dnmtl depletion in 

Xenopus (Stancheva et al., 2001) and mouse embryos (Jackson-Grusby et al., 2001). 

These severe effects are consequence of the premature activation of genes expressed 

in the mid blastula stage that are normally silenced by DNA methylation. Mid 

blastula transition is the time when a dependence upon maternal transcripts gives 

way to the start of zygotic transcription, and precedes a period of transcriptional 

silencing lasting 12 cell divisions. Thus, loss of Kaiso results in up-regulation of 

more than 10% of genes in early development. 

xKaiso cooperates with the' T cell factor/lymphocyte enhancer factor 

(TCF/LEF) family to repress transcription of targets from the canonical Writ 

signalling pathway with the recruitment of the corepressor N-CoR (Kim et al., 2004). 

Particularly, xKaiso interacts with xTCF-3, and exogenous xTCF-3 can rescue some 

defects resulting from xKaiso depletion (Park et al., 2005). xKaiso represses 

transcription of Siamois, Xnr3 (Park et al., 2005) and xWnt-1 1(Kim et al., 2004), and 

other t3-catenin gene targets such as PPAR- , c-Myc, Cyclin Dl and Matrilysin, 

which has a Kaiso consensus site adjacent to TCF binding site. From these targets, 

Cyclin Dl and c-myc have been shown to be upregulated after xKaiso depletion in 

vitro and further confirmed in vivo for cyclin Dl (Park et al., 2005). To circle the 

pathway, it is interesting to note that Xp120-catenin can relieve xKaiso repression of 

Siamois and xWnt-l1. 

1.12.2 Kaiso and the family of MeCP Zinc finger proteins 
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Recently two human proteins were identified containing Kaiso-like zinc 

fingers, ZBTB4 and ZBTB38 (Filion et al., 2006). These two proteins can bind 

sequences containing a single methylated CpG and have been shown to be methyl-

dependent transcriptional repressors. The homolog of ZBTB38 in rat is called Zenon 

(Kiefer et al., 2005), and in mouse is called CIBZ (Sasai et al., 2005). Kaiso protein 

is common to all vertebrates and it might have duplicated in evolution from an 

ancestor that originated Kaiso and another protein that probably duplicated itself in 

ZBT38 and ZBT134 because they are 75% similar within each other and around 40% 

with Kaiso. ZBT38 is expressed in brain and in neuroendocrine tissues, while 

ZBTB4 is expressed in most tissues, being the highest in brain, lung, kidney, muscle 

and heart, intermediate level in placenta, liver, spleen and thymus, and lowest 

expression in the testis (Filion et al., 2006). 

1.13 Nuclear CoRepressor Complex 

N-CoR is a class I HDAC-containing corepressor, primarily associated with 

HDAC3 (Guenther et al., ; Li et al., 2000; Wen et al.). N-CoR purified from HeLa 

nuclear extract contains 10-12 proteins (Yoon et al.): Among these are: TBL1 and 

TBLR1, two highly related WD-40 repeats histone-binding proteins; GPS2, an 

intracellular signalling protein and TRIO a coronin-like actin binding protein. 

TBL1/TBLR1 bind to histones H2B and H4 preferentially through their N-terminal 

region (Yoon et al., 2003a). Additionally, Kaiso has been identified as a component 

of the N-CoR complex in HeLa cells. N-CoR has been shown to repress transcription 

in a methylation-dependent manner in vivo (Yoon et al., 2003b). 

Neuron-specific genes have a conserved 21-23 base pair DNA response 

element, known as RE-for NRSE (repressor elementi/neuron restrictive silencer 

element) which is bound by the RE-i silencing transcription factor/neuronal 

restricted silencing factor (REST-NRSF) (Chong et al., 1995; Schoenherr and 

Anderson, 1995). N-CoR associates with the REST/NRSF transcriptional repressor 

and brings together histone deacetylase activity (HDAC3) to the promoter of 

neuronal genes, which is essential for the repression of these genes in non-neuronal 

cells (Jepsen et al., 2000). 
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1.13.1 N-CoR function through N-CoR null mice 

N-CoR-deficient embryos exhibit defects in the developmental progression of 

specific erythroctye, thymocyte and neural events (Jepsen et al., 2000). MAP2 

expression, a marker for late neuronal differentiation, was reproducibly enhanced in 

the outer cortical layers in N-CoR embryos (Jepsen et al., 2000). MAP2 can be 

induced by retinoic acid and harbours Retinoic Acid Response Elements (RAREs) in 

its promoter, and its upregulation in the cortex at the onset of neurogenesis identifies 

it as a putative target gene for N-CoR mediated repression through unliganded RAR 

(Neuman et al.). Decreased levels of Map2 have been suggested to inhibit neuronal 

differentiation and neurite formation (Dinsmore and Solomon, 1991). Concordantly, 

E12.5 N-CoR-deficient embryos also express decreased levels of Nestin (Jepsen et 

al.). Additionally, Gfap expression, indicative of astrocytic differentiation, is 

increased and precocious in N-CoR deficient embryos, starting the expression as 

early as E14.5 (Jepsen et al., 2000). These results indicate an early fate specification 

of nestin- expressing neural stem cells differentiated cells. 

In addition to the in vivo studies, detailed in vitro experiments have been used 

to dissect the specific role of N-CoR in neural stem cell function. Neural stem cells 

are able to be maintained in an undifferentiated state and retain the capacity to self-

renew in response to fibroblast growth factor-2 (FGF2) (Temple). Cultured in vitro 

cortical progenitors derived from E13 N-CoR mice fail to proliferate and self-

renew, and undergo spontaneous differentiation into astrocytes even in the presence 

of high concentrations of FG172 (Hermanson et al.). Therefore, the phenotype of N-

CoR neural stem cells may be due to an intrinsic inability to maintain the FGF2-

mediated undifferentiated and proliferative state. 

Treatment with ciliary neurotrophic factor (CNTF), which promotes a rapid 

and efficient differentiation of neural stem cells into Gfap-expressing astrocytic cells 

(Johe et al., 1996), results in a translocation of N-CoR from the nucleus to the 

cytoplasm which may result in degradation (Hermanson et al., 2002). This 

mechanism occurs by enzymatic regulation: CNTF co-ordinately down-regulates 

protein phosphatase- 1 (Aggen et al., 2000; Egloff et al., 1997) and activates Aktl - 

kinase (Bellacosa et al.), resulting in an increased phosphorylation and cytoplasmic 

localisation of N-CoR. Since Fgf2-treated neural stem cell cultures show endogenous 
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nuclear N-CoR localisation, and overexpression of N-CoR inhibits the astrocytic 

differentiation and Gfap expression that occurs in response to CNTF stimulation, it 

can be concluded that N-CoR is a principal component of cell type determination. 

Platelet-derived growth factor (Pdgf) increases neuronal differentiation of 

neural stem cells after initial Fgf2-dependent expansion (Johe et al., 1996). 

Treatment with Pdgf in N-CoR neural stem cell cultures did not increase the 

number of TuJ 1-positive cells compared with wild-type cells. This indicates that in 

contrast to the spontaneous differentiation along the glial pathway, neuronal 

differentiation is not induced by the absence of N-CoR in cultured cells. 

1.14 Self-reinforcing cycle of repressed epigenetic status 

At the earliest developmental stages the embryo is formed by cells that have 

the potential to give rise to any cell of the adult organism. This pluripotency will 

gradually be restricted through multiple cell divisions, giving a range of 

differentiated cells with specialised protein expression patterns to function in the 

different tissues of the organism. Cell memory is the process by which the cell 

inherit its protein expression pattern and it is established early in development. There 

are two important epigenetic mechanisms that regulates cell memory: DNA 

methylation and histone modification. Considerable evidence indicates that these two 

mechanisms are interegulated in mammals. 

Firstly, DNA methyltransferases and methyl-CpG binding proteins recruit 

histone deacetylase-containing corepressor complexes (Bird, -2002). Secondly, the 

MeCP Mbdl binds to the histone H3-lysine9-specific methylase SETDB1 and 

together with the chromatin-assembly factor CAF-1 favours the stable transmission 

of silenced chromatin states at methylated DNA (Sarraf and Stancheva, 2004). 

Similar interaction with histone methylases may occur with the other MeCPs. In 

mammals, Dnmt transferases require interaction with the Suv39h H3K9 

methyltransferase and heterochrornatin protein 1 adaptor molecule (HP 1). This has 

been concluded from the observation that Suv39h-knockout ES cells decrease 

Dmmt3b-dependent CpG methylation at major centromeric satellites (Fuks et al., 

2003a; Lehnertz et al., 2003). 
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Another repression mechanism is methylation at histone H3 at lysine 27 

(H3K27) by the Polycomb group protein EZH2. This enzyme form together with the 

EED and SUZ12 proteins the Polycomb repressive complexes 2 and 3 (PCRC2/3) 

(Kuzmichev et al., 2004). Whether EZH2 methylates Hi or H3 will depend upon 

which other proteins are in the complex (Kuzmichev et al., 2004). Recently, EZH2 

has been shown to interact with the three DNA methyltransferases (DNMT1, 

DNMT3A and DNMT3B) in vivo and in vitro (Vire et al., 2006). Repression of 

EZH2 target genes require both EZH2 and DNMTs. Depletion of EZH2 disturbs 

recruitment of DNMTs to the regulatory regions of the EZH2 target genes which 

cause the expression of these genes. 

1.15. Mouse Embryonic Stem Cells 

The mouse 3.5 days post-coitum (d.p.c) embryo is called a blastocyst. It 

consists of around 60 cells organised in two different structures: the inner cell mass 

or 1CM and the trophectoderm where the former is attached. The cells contained in 

the 1CM are pluripotent and they will give rise to all the tissues of the organism with 

the exception of the trophctoderm. 

Arresting the further development of the blastocyst and culturing the 

outgrowth of the 1CM in vitro makes it possible to obtain a very special type of cells, 

embryonic stem cells, that are also pluripotent and undergo symmetrical self-renewal 

divisions so they can be maintained for indefinite time in in vitro cultures in defined 

conditions. (Evans and Kaufman, 1981; Martin, 1981). The confirmation of 

pluripotency is obtained by their capacity to be reintroduced in the mouse embryo 

and contribute to a variety of tissues of the resulting chimera and even to pass 

through the germline (Bradley et al., 1984). 

There is an orchestrated signalling network involved in the maintenance of 

pluripotency of the embryonic stem cells that has been extensively studied and fairly 

well established. An embryonic stem cell maintains its pluripotency during its 

replication by its capacity to self renew by a symmetric cell division into two 

identical daughter embryonic stem cells. There are two cytokines indispensable for 

the self-renewal of ES cells, Leukaemia Inhibitory Factor, LIF (Smith et al., 1988; 

Williams et al., 1988) and Bone Morphogenetic Protein, Bmps (Ying et al., 2003a). 
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Each one stimulates a signalling pathway through the cell involving many 

downstream elements. Lif is a member of the 1L6 family of cytokines and targets a 

heterodimeric cell surface receptor complex comprising the Lif receptor subunit 

(Gearing et al., 1991), and glycoprotein 130 (Davis et al., 1993). The downstream 

signalling is followed by JAK-kinase mediated recruitment, activation and nuclear 

translocation of the signal transducer and activator of transcription factor Stat3. 

There are other related cytokines, like CNTF, that interact with the Lif receptor 

LIFRIgp 130 complex and can substitute LIF for ES cell self-renewal (Pennica et al., 

1995). Gp130 cytokines can also activate the mitogen activated protein kinases 

(MAPK) Erki and Erk2 (Fukada et al., 1996) of the ERK pathway, which appears to 

be a pro-differentiative signal (Burdon et al., 1999b). Thus it has been found useful 

to reduce ERK signalling in order to facilitate ES cell derivation (Buehr and Smith, 

2003) and to promote self-renewal (Burdon et al., 1999a). In the absence of LIF, ES 

cells lose their self-renewal capacity and differentiate into flattened epithelial-like 

cells. In the absence of BMP4, ES cells differentiate into the neural lineage (Ying et 

al., 2003a). Bmp family members known to contribute to pluripotency and self-

renewal are Bmp2, Bmp4 and Gdf6 and they act by inducing expression of members 

of the Id family of negative transcriptional modulators (Ying et al., 2003a). 

Additionally, .there are two key transcription factors involved in self-renewal, 

Oct4 and Nanog, which together with Sox2 complete a transcription cascade, to 

active genes involved in self-renewal and pluripotency and to inactivate genes 

involved in differentiation (Boyer et al., 2005; Loh et al., 2006). Depletion of Oct4 in 

ES cells causes their differentiation into trophectodermal cells, meanwhile 

overexpression of Oct4 induces differentiation into primitive endoderm and 

mesoderm lineages (Niwa et al., 2000). Nanog confers cytokine independent self-

renewal, acting synergistically with Stat3 signalling since overexpressing Nanog 

cells form pure stem cell colonies at clonal density but with significant increased 

efficiency when LIF is added (Chambers et al., 2003). 

1.16. Neural Induction 

ES cells have the capacity to differentiate into any cell of any tissue of the 

organism. Different cell types can be obtained under specific in vitro conditions, 
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despite the lack of germ line signals and normal developmental environment, or 

niche signals. There is a very important potential for ES cell differentiation as a tool 

for tissue regeneration since the amplification of ES cells is almost unlimited. 

Additionally, ES cells provide a practical system to study which signals govern cell 

specification. Neuronal differentiation from ES cells is a well-established 

differentiation system since there is a great interest in understanding the origins of 

neurodegenerative diseases in order to design therapeutic approaches. 

A high percentage of ES cells growing in the presence of L1F, but in the 

absence of BMP ligands, will become specified towards neural lineages and 

consequently a high percentage will adopt a neuronal fate (Ying et al., 2003a). An 

established, though debated hypothesis is that of neural induction by default. This 

model considers that in the absence of repressive signals from BMP a mouse ES cell 

will adopt a neural fate (Tropepe et al., 1999). This theory origines from work in 

Xenopus laevis with the identification by Speman and Mangold of a region that could 

induce neural specification, which was called the organizer (known as Spemann-

Mangold organizer (Spemann and Mangold, 2001) or, in the chick, as Hensen's 

node) (Hensen, 1876; Waddington, 1936). The signals released by the organizer that 

were needed for the neural induction were identified subsequently to be antagonists 

of BMP receptors, namely Noggin, Chordin, Cerberus, Xn3 and follistatin 

(Hemrnati-Brivanlou et al., 1994; Hemmati-Brivanlou and Melton, 1994). However, 

later observations suggested that the default mechanism may not explain the 

complete picture of neural specification. For example, mice deficient for Noggin and 

Chordin can form neural tissue, although they have severe forebrain defects 

(Anderson et al., 2002). Additionally, ES cells require FGF/MAPK signalling in 

order to generate neural derivatives in vitro (Ying et al., 2003b)(and it will be 

explained in the next section). It is most likely that neural induction depends upon a 

variety of signals, including Fgf signalling and Wnt signalling which are both 

involved in repression of Bmps (Linker and Stem, 2004) but may also act 

independently of BMP repression. 
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1.17. ES neural specification in vitro 

The so-called monolayer differentiation system permits us to dissect signals 

and conditions that may be important for ES cells to differentiate into neurons (Ying 

et al., 2003b). This adherent culture system is relatively homogenous and the 

components of media culture are defined. From this system we know, firstly the time 

course with which neural precursors start to appear in the cultures; and secondly, 

that cell density is critical for differentiation, since high density leads to no neuronal 

differentiation, and low density leads to poor cell survival. Hence, cell-cell 

communication is necessary for cell specification. In concordance, a culture system 

with a high percentage of dopaminergic neuronal specification from ES cells 

described the importance of cell contact of the stromal feeder cell layer from mouse 

skull bone marrow and the ES cells, stromal-cell-derived inducting activity or SDIA 

(Kawasaki et al., 2000). 

These ideas correlate with what have been previously described from other 

less homogenous culture systems, such as neurospheres generated from low density 

cultures of ES cells in the presence of LIF, possibly as a cell survival cytokine 

(Tropepe et al., 1999). After 7 days, FGF signalling start to play an important role in 

neural specification, since FGF receptor 1 FGFR1 deficient ES have a decrease in the 

number of neural colonies (Ciruna et al., 1997; Tropepe et al., 2001). 

1.18. Development of the mouse nervous system 

The cells within the inner cell mass will generate two layers: the hypoblast or 

primitive endoderm and the epiblast. The primitive endoderm will contribute to 

extraembryonic tissues, and the epiblast will give rise to the three main germ layers 

in the embryo. The innermost layer is the endoderm, which gives rise to the gut, 

lungs, liver and pancreas. The middle layer or mesoderm, gives rise to connective 

tissues, muscle and vascular system, and the ectoderm, which is the outermost layer, 

gives rise to the central and peripheral nervous system and epidermis. Al! layers have 

a common origin from the primitive streak formed at 6.5 dpc. At the gastrula stage, 

around 7, or 7.5 dpc the ectoderm forms a sheet called neural plate that, receiving the 

joint influence of signals from the node and the axial mesoderm, acquires neural 

properties. At 9.5 dpc, the neural plate will fold into the neural tube. The caudal 
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region of the tube will give rise to the spinal cord, and the rostral region will form the 

prosencephalon. Because of a difference in the proliferation rate. among the cells 

forming the neural tube, it will develop in different 'bulbs'. Thus, the 

prosencephalon will form three brain vesicles: the forebrain, the midbrain and the 

hindbrain. The forebrain will give rise to the telencephalon and diencephalons, and 

the hindbrain vesicle will give rise to the metencephalon and myelencephalon. The 

dorsal part of the telencephalon or Pallium, is the origin of the cerebral cortex, that 

itself is divided in three structures: neocortex, paleocortex or piriform cortex and 

hippocampus or archicortex. 

Cerebral cortex development follows an inside-out model, so the newly 

generated neurons migrate towards the more apical brain areas through the older 

neuronal layers already formed (Angevine and Sidman, 1961). The cerebral cortex 

will be populated with a majority of excitatory glutamatergic projecting neurons that 

form layers by radial migration from the germinal zone of the dorsal telencephalon. 

The ventral part of the telencephalon will generate the basal ganglia or subpallium, 

primarily arising from the medial and lateral ganglionic eminences, or primordial 

globus pallius and primordial striatum, respectively, at the wall of the ventricle. 

Gabaergic interneurons are formed in the basal ganglia, and basal ganglia neurons 

migrate tangentially to the cerebral cortex, where they become cortical interneurons 

(Anderson et al., 1997; Nery et al., 2002; Wichterle et al., 2001). The spatial and 

temporal origin of the eminence progenitors is correlated with the type of mature 

cortical interneuron that will originate from them (Butt et al., 2005). A third 

eminence, the caudal ganglionic eminence or CGE contributes to layer-5 cortical 

neurons, the striatum and the limbic system. Interestingly, the migratory routes taken 

appear to be cell intrinsic to the CGE-derived neurons (Nery et al., 2002) (figure 

1.5). 

58 



Olfactory cortex ---- 
DORSAL 

Hippocampus 

Neoc >/rcT7 
Origin  of pyramidal neurons and 
coicai astroces 

Origin of \Z 	
—GABAerigic 

LGV interneurons 

Basal 
Ganglia 

MGE 	
Origin of 

Origin of 	 oligodendro 
Cholinergic 	 cytes 
neurons 

VENTRAL 

Figure 1.5. Developmental telencephalon representation. 

Pyramidal neurons arise from the dorsal proliferative zone or ventricular 

zone (red), and migrate outward in an inside-out manner giving rise to the 

six layers of the neocortex. GABAergic interneurons arise in the 

proliferative zone of the ganglionic eminences (green) and will migrate 

tangentially towards the neocortex. Oligodendrocytes are born from the 

most ventral region of the telencephalon (dark green) and will also migrate 

dorsally. Cholinergic neurons, and striatal astrocytes are born in the ventral 

telencephalon and will remain in the basal ganglia. LGE: lateral ganglionic 

eminence. MGE: medial ganglionic eminence. Adapted from Ross et al.. 
2003 and GuiIIe,not. 2005. 



1.19 Progenitor cells in the Telencephalon 

1.19.1 History of developmental neurobiology 

Golgi was the first to describe epithelial cells in the developing neural tube 

that extended radial fibres from the ventricular surface to the pial surface (Golgi et 

al., 2001). Golgi preparations were invaluable to neurobiologists to study the 

morphology of cells in the developing cortex and study their temporal sequence. He 

defined them as spongioblasts, but designated the neural source to the rounded 

germinal cells visible at the ventricular surface. In contrast, Magini proposed that the 

spongioblasts where immature nerve cell, and called them radial neuroglial cells after 

the observed varicositites along their filaments (Magini, 1888) Morest presented 

evidence to show that neurons grow radial processes and subsequently translocate to 

the cortex (Morest, 1970). In the 70's Rakik defined the epithelial or spongioblasts as 

radial glial cells, being glial supportive cells with the role to guide ñeuronal 

migration (Rakic, 1971; Rakic, 1972). Thus radial glial cells were considered as a 

type of glial support cell. Surprisingly, in 2000 was discovered that radial glial cells 

not only could generate cortical neurons, but that they are the major source of 

cortical pyramidal neurons, which was originally proposed by Magini in 1888 

(Malatesta et al., 2000; Miyata et al., 2001; Noctor et al., 2001). 

1.19.2 Neuroepithelial cells 

Neuroepithelial cells are the first progenitor cells to appear during the 

formation of the neural plate and neural tube. They have epithelial characteristics and 

are polarized, with an apical distribution towards the inner or ventricular lumen, and 

basal distribution forming the basal lamina at the outer or pial surface. The apical 

membrane presents tight junctions and adherens junctions which are important for 

the apical-basal polarity of the cell, and the basal membrane presents receptors for 

basal lamina (Huttner and Brand, 1997). The neuroepithelium appears layered 

because of the interkinetic nuclear migration of the neuroepithelial cells, or the 

nuclear migration during mitosis from the apical surface at GI and G2 and to basal 

lamina at S phase and M phase (Sauer, 1935). 
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During forebrain development, neuroepithelial cells give rise to the earliest 

born neurons of the cortex by asymmetric cell division at El 0, and by the onset of 

neurogenesis, neuroepithelial cells lose some epithelial features such as the tight 

junctions, and the apical-versus-basal polarity of delivery of certain plasma-

membrane proteins (Langman et al., 1966; Martin, 1967; Reid et al., 1995). 

Neuroepithelial cells express Rcl and Rc2 markers (Misson et al., 1988) together 

with intermediate filament protein Nestin (Lendahl et al., 1990) and can be detected 

at E9/E10. 

1.19.3 Radial glia 

With the onset of neurogenesis between E12 and E14, neuroepithelial cells 

become a more fate-restricted population called radial glia. This population 

constitutes the most common neuronal precursor in the central nervous system 

(CNS). Characteristic radial glia markers are glycogen granules (Gadisseux and 

Evrard, 1985), astrocyte- specific glutamate transporter Glast, TN-C, vimentin, and 

subsets have Blbp, s10013, and glutamine synthase GS and Rc2 in some species 

(Malatesta et al., 2003; Malatesta et al., 2000; Mori et al., 2005). Human, primates 

and adult mouse radial glia also express GFAP. Radial glial cells have 

neuroepithelial characteristics, such as the expression of intermediate filament 

protein Nestin (Hartfuss et al., 2001), apical-basal polarity, adherent junctions and 

interkinetic nuclear migration (Chenn and McConnell, 1995; Gotz and Huttner, 

2005). This last feature differs with neuroepithelial cells being more restricted 

nucleus migration through the cytoplasm. 

Radial glia cells act both as neuronal precursors boundary and patterning and 

guide structures for migrating neurons. They primarily divide asymmetrically, 

generating a radial glial cell and a postmitotic neuron, or a radial glial cell and a 

basal progenitor (Noctor et al., 2001). They generate neurons in many distinct areas 

of the CNS. In most brain regions, radial glia cells constitute the majority of 

progenitors at El 3/E 14, and they persist until the end of neurogenesis, when the 

remainder transforms into astrocytes (Noctor et al., 2004). Radial glia generate 

neurons in many distinct areas of the CNS, but the numbers are highest in dorsal 
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telencephalon, while the majority of ventral telencephalon neurons are most likely 

derived from basal progenitors. 

Pax6 is a neurogenic fate determinant factor for radial glial cells. Pax6 also 

inhibits the generation of basal progenitors, since Pax6 mutant mice have an 

increased population of basal progenitors. In this mutant neurogenesis still happens 

by differentiation from basal progenitors and migration from ventral sources 

(Hartfuss et al., 2001; Hems et al., 2002). Pax6 can induce neurogenesis in non 

neurogenic postnatal astrocytes (Hems et al., 2002) and is sufficient to stimulate 

adult neurogenesis (Hack et al., 2005). Additionally, Pax6 is expressed specifically 

by dopaminergic interneurons in the glomerunal layer during adult neurogenesis 

(Hack et al., 2005). 

1.19.4 Basal progenitors 

Basal progenitors originate from the asymmetric division of neuroepithelial and 

radial glial cells at the apical surface of the neuroepithelium and ventricular zone 

respectively. They are characterised by the absence of ventricular or apical contact, 

they have a long G2 phase and undergo mitosis at the basal side of the ventricular 

zone (Haubensak et al., 2004; Miyata et al., 2004; Noctor et al., 2004). Their 

molecular characterisation includes Tbr2 (Englund et al., 2005), Ngn2 (Miyata et al., 

2004) and the absence of Glast or Pax6 (Haubst et al., 2004; Malatesta et al., 2003). 

Additionally basal progenitors express neuronal markers (Englund et al., 2005). 

At E13 in the ventral telencephalon and E15 in the dorsal telencephalon, 

basal progenitors become abundant enough to form a secondary progenitor layer 

called the subventricular zone (SVZ), located on top of the precursors lining the 

ventricle in the ventricular zone. The basal progenitors usually divide symmetrically 

and generally produce two neurons (Haubensak et al., 2004; Miyata et al., 2001; 

Noctor et al., 2002) (Haubensak et al., 2004). However, after E15, they will acquire 

EGF receptor expression, that will be sometimes distributed asymmetrically in 

correlation with the generation of astrocytes or oligodendroctyes (Sun et al., 2005). 

Therefore, early SVZ precursors are mostly neurogenic, and late SVZ precursors 

produce mainly glia. 
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1.20 Neural stem cell! Neural progenitors signalling 

During the central nervous system development, neural progenitor cells are 

immersed in a variety of signals that will direct the cell fate specification of these 

cells. In this section, some of the key factors involved in neural specification are 

described (figure 1.6) 

1.20.1 Retinoic Acid 

Retinoic acid (RA) has long been identified as a efficient neural differentiation 

signal for ES cells in vitro (Bain et al., 1995; Doetschman et al., 1985; Fraichard et 

al., 1995; Okabe et al., 1996; Strubing et al., 1995). RA treated embryoid bodies 

dissociated and replated originate high percentage of differentiated neurons (Li et al., 

1998). 

In addition to being able to induce neural and neuronal differentiation, RA 

has an effect on the regional identity and subtype of the neurons that are generated. 

Very similar protocols can generate either glutaminergic neurons when RA is added 

(Bibel et al., 2004) or GABAergic neurons when RA is not added (Conti et al., 

2005). There is also some evidence that RA restricts progenitors to CNS rather than 

PNS identity (Plachta et al., 2004) and can posteriorise CNS identity (Blumberg et 

al., 1997). There is however, opposite evidence from studies where RA was used to 

promote neural crest derivatives, motoneurons and GABAergic interneurons (Barberi 

et al., 2003; Mizuseki et al., 2003; Renoncourt et al., 1998; Wichterle et al., 2002). 
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1.20.2 bHLH factors 

Neurogenin 1, Neurogenin 2, Mashi and NeuroD are basic helix-loop-helix 

(bHLH) genes which promote neurogenesis and are expressed in the developing 

cortex. These factors form heterodimers with the ubiquitously expressed bHLH 

protein E2A and activate neuronal gene expression by binding to the E box 

(CANNTG) (Guillemot and Joyner, 1993). Expression of neurogenic bHLH 

transcription factors are downregulated by another pair of bHLH transcription 

factors, Hesi and Hes5. These factors can repress neurogenic effects not only by a 

direct binding to a N box (CACNAG), but as well through competitive binding to the 

heterodimeric binding of the E box (Akazawa et al., 1992; Sasai et al., 1992; 

Takebayashi et al., 1995). The proneural proteins bHLH Neurogenin 1 and 

Neurogenin 2 are responsible for both 

neuronal cell migration and cell fate specification by separate mechanisms. These 

proteins are primarily expressed in the cortical ventricular zone, and Ngn2 is also 

expressed in the intermediate zone. Ngnl and Ngn2 are implicated together with 

Pax6 in the acquisition of cortical neuron specification as well as to repress genetic 

programs that would regulate non cortical neuronal differentiation such as those 

operating in the ventral telencephalon. In the absence of these factors, cortical 

progenitors are misspecified, expressing genes typical of ventral telencephalic 

progenitors. The result seems to be a respecification toward ventral neuronal fates. 

Indeed, the cells generated appear molecularly more akin to the GABAergic 

interneurons produced in the ganglionic eminences (Fode et al., 2000; Schummers et 

al., 2004; Stoykova et al., 1997; Sun et al., 2001; Toresson et al., 2000). 

1.20.3 Notch 

The Notch signalling pathway is involved in cell-cell signalling. In 

vertebrates there are four Notch receptors, and Notch 1-3 are expressed in developing 

brain and postnatal CNS germinal zones (Irvin et al., 2001). When the ligands, which 

are grouped into Delta and Jagged families, bind to their receptors, the intracellular 

domain of Notch (NICD) is released from the plasma membrane and translocates 

into the nucleus (Schroeter et al., 1998), where it converts the Cbfl (or RBPJ-K) 



repressor complex into an activator complex (Weinmaster, 1997). The NICD/CDBF 1 

activator complex upregulates Hes, Hey and Herp genes, which are basic helix-loop-

helix transcriptional regulators that antagonize proneural genes such as Mash 1 and 

the neurogenins (Iso et al., 2001a; Iso et al., 2001b; Jarriault et al., 1995; Leimeister 

et al., 1999). This antagonism blocks early neuronal gene expression and is central to 

the inhibition of neuronal differentiation (Ohtsuka et al., 1999). 

In mammals Notch activation is involved in maintaining the undifferentiated 

state by blocking neuronal gene expression, in a process called lateral inhibition 

(Lardelli et al., 1996). The disruption of Notch leads to precocious neuronal 

differentiation (de la Pompa et al., 1997) of mouse neural precursors. However, 

Notch can also function to promote neighbouring cells to adopt the same cell fate, in 

a process called lateral induction. 

In the striatum, Notch governs the asymmetric division that leads to neuronal 

differentiation at different stages of neurogenesis (Mason et al., 2005). In the mouse 

forebrain, Notch signalling directly activates the radial glia marker brain lipid 

binding protein (Blbp) (Anthony et al., 2005). Moreover, Notchi and Notch3 

promotes radial glia identity during embryogenesis and to dispersed and 

periventricular astrocytes postnatally (Dang et al., 2006; Gaiano et al., 2000). It has 

been shown that activated Notch 1 promotes a proliferative response to bFGF in vitro 

(Yoon et al., 2004). 

1.20.4 bFGF 

The FGF family of proteins consists of 22 members that can be grouped into 

seven subfamilies based on sequence similarities and functional properties (Popovici 

et al., 2005). FGFs bind four high-affinity lingand-dependent FGF receptor tyrosine 

kinase molecules (FGFR1-4) forming stable dimers in the presence of heparan 

sulfate glycosaminoglycans and in the presence of heparan sulfate HS 

glycosaminoglycans (Zhang et al., 2006). Basic fibroblast growth factor (bFGF, also 

denominated FGF2) is a single-chain polypeptide composed of 146 amino acids, 

which was first purified from the bovine pituitary by high affinity binding to heparin, 

and was named after its biological activity of promoting the growth of fibroblasts 

(Gospodarowicz et al., 1984; Gospodarowicz et al., 1986). 



bFGF binds to the four cell surface receptors, binding with the highest affinity 

to FGFR1 (Stachowiak et al., 1997). bFGF signals through its receptor tyrosine 

kinase activity linked to the G-protein Ras, which activates ERKIMEK 

phosphorylation signaling. Additionally, heparin and cell surface heparan sulfate 

proteoglycan modulate FGF activity. Independently of the bFGF paracrine effect, 

another three bFGF isoforms with a higher molecular weight localize to the nucleus 

and exert activities through an intracrine pathway (Arese et al., 1999). 

bFGF has been reported to have both mitogenic and neurotrophic actions. 

bFGF is a survival factor for cultured CNS neurons (Vescovi et al., 1993). It also has 

an effect in the promotion of axonal branch growth (Aoyagi et al., 1994). 

Additionally bFGF has been reported to regulate proliferation of purified populations 

of astrocytes (Eccieston and Silberberg, 1985; Pettmann et al., 1985; Sensenbrenner 

et al., 1987) and oligodendrocytes (Eccieston and Silberberg, 1985). 

bFGF induces ventralisation of cortical neural precursors independently of 

their age. Cortical progenitor cultures in the presence of bFGF increase their 

expression of ventral markers like Mash 1, and Olig2 (which is a marker of 

oligodendroctye precursors) and downregulate Emxl, Pax6, (Hack et al., 2004), 

Neurogenini and Neurogenin2 (Abematsu et al., 2006). Although GABA neurons 

are differentiated from ventral neural precursors, the ventralising effect of bFGF is 

not sufficient to induce GABAergi c- specific differentiation of cortical progenitors 

(Abematsu et al., 2006). That effect is in concordance with the lack of any increase 

of D1x2 in cortical progenitors, a transcription factor necessary for GABAergic 

specification. In the contrary, in neurosphere cultures the addition of bFGF appears 

to induce differentiation of a GABAergic neuronal phenotype (Hack et al., 2004). 

Further, neurosphere cultures appear to present an increase in GABAergic neurons 

independently of the brain regional origin (Ciccolini et al., 2003; Hitoshi et al., 2002; 

Parmar et al., 2002). Interestingly, neurosphere cultures appear to be close to ES 

cells in terms of transcriptional factors expression (Ramaiho-Santos et al., 2002), 

which may explain the reason for the high percentage of GABAergic neuronal 

differentiation from ES cell derivation in vitro (Ying et al., 2003b). 
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1.20.5 EGF 

Egf signals via the 1 70-kD tyrosine kinase Egf receptor (EgfR) (Pimentel 

1994). EgfR can influence cortical progenitor fate choice, as its overexpression at 

midgestation causes astrocyte differentiation at the expense of neuronal lineages 

(Burrows et al., 1997). EgfR expression increases during cortical development at 

E13, which is the peak of neurogenesis, and the time when Egf-responsive stem cells 

arise (Kornblum et al., 1997; Tropepe et al., 1999). During cortical development, 

EgfR is asymmetrically distributed between two daughter cells, correlates distinct 

cell fates. The cell with higher EgIR expression will also express markers of radial 

glia such as Rc2, Glast, CD-15/Lewis X. In contrast, the cell expressing the lowest 

level of EgfR will preferentially become an oligodendrocyte precursor (Sun et al., 

2005). 

Egf responsive stem cells from the striatal subventricular zone are capable of 

differentiating into GABAergic neurons (Kornblum et al., 1995). 

1.20.6 Neuregulin-ErbB signalling 

Migrating neurons expressing the ErbB ligand Neuregulin signal through 

ErbB receptors to maintain radial glia (RG) characteristics. In the absence of NRG 

there is a reduction in Rc2 expression in cortical explants, and this can be rescued by 

addition of exogenous NRG. Furthermore a dominant form of erB2 can turn RG cells 

into astrocytes (Schmid et al., 2003). 

1.20.7 SOX Proteins 

The Sox proteins comprise a group of transcription factors with an SRY box, 

which is a 79 amino acid motif that encodes an high mobility group (HMG) DNA 

binding domain. There are seven groups within the Sox family, from which three 

groups have representation in the nervous system with a total of 12 proteins 

(Kamachi et al., 2000). These include the SOXB1 and SOXB2 subgroups in the 

CNS and SOXE subgroup in the PNS. The SOXB 1 subgroup comprises SOX1, 2 

and 3 which share more than 90% amino acid identity in the HMG-DNA binding 

domains (Bowles et al., 2000; Pevny and Lovell-Badge, 1997). 



In mice, the initial phase of Sox2 and Sox3 expression is pan-ectodermal; 

Sox2 being expressed from pluripotent ES cells (Yuan et al., 1995) and Sox3 from 

very early stages of differentiation towards the neurectodermal fate (Collignon et al., 

1996; Wood and Episkopou, 1999). Soxi expression appears as the earliest 

transcription factor to be expressed in ectodermal cells committed to the neural fate 

(Pevny et al., 1998). Concomitanly, expression of Sox2 and Sox3 becomes confined 

to cells that are committed to a neural fate. Forced expression of Sox] or Sox2 

promotes the differentiation of mouse embryonic stem cells into neuroectoderm at 

the expense of mesoderm and endoderm (Zhao et al., 2004). SoxBl proteins interact 

with POU domain factors to activate a Nestin neural enhancer directly (Tanaka et al., 

2004). 

Sox2 plays an essential role in early embryo precursor cells, as Sox2-null 

embryos can not give rise to embryonic or trophectoderm lineages. Additionally, 

Sox2 is also expressed in the adult subventricular zone of the lateral ventricles and in 

the subgranular layer of the hippocampal dentate gyms, where stem cells are found 

in the adult brain (Ferri et al., 2004; Wegner and Stolt, 2005). Sox2 is also expressed 

in adult-brain derived neural stem cells grown in vitro (Conti et al., 2005; Fern et al., 

2004). High expression of Sox2 was found in subtypes of postmitotic neurons 

including pyramidal cells of the cerebral cortex, thalamic neurons, medial dorsal L 

striatum and septum of the adult brain. It is possible that Sox2 has a role in neuronal 

function and maintenance, since mice Sox2 deficient display neurological 

abnormalities that correlates with the neuronal disruption of the neuronal type where 

Sox2 is expressed (Fantes et al., 2003). Furthermore, SOX2 mutation is linked to the 

neurological symptoms of anophtalmia in humans (Ragge et al., 2005). Sox]-null 

adult mice exhibit spontaneous epileptic seizures associated with the loss of Soxl 

expressing neurons in the ventral striatum, and the phenotype of Sox3-null mice 

suggests a role for Sox3 in a subset of hypothalamic neurons that regulate the 

hormonal output, of the anterior pituitary. Overall these phenotypes are relatively 

mild, and given the strong overlapping expression between them and their 

biochemical and functional similarities, there must be most likely functional 

redundancy between these proteins. 	 . 



1.21 In vitro neural stem cells 

Neural stem cells (NSCs) are undifferentiated cells with the ability to: (1) 

proliferate, (2) exhibit self-renewal, (3) generate a large number of differentiated 

progeny, (4) retain their multilineage potential over time, and (5) generate new cells 

in response to injury or disease (Reynolds and Weiss, 1996). NSCs appears in the 

CNS as early as E8.5 and are characterised by their proliferation, in vitro, in response 

to Fgf 2 (Tropepe et al., 1999). At Ell-12 a second population of NSCs appears that 

divide in response to Egf or transforming growth factor (Tgf) (Tropepe et al., 1999). 

1.2 1.1 Asymmetric versus symmetric cell division 

Asymmetric cell division occurs when a precursor cell undergoes mitosis and 

divides into two different cell types. An asymmetric cell division usually produces 

another precursor cell, maintaining self-renewal, and a more restricted cell type. 

Symmetric cell division is characterised by the origination of two cells of the 

same type after mitosis. These two daughter cells can be the same cell type as the 
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mother self-renewal, or two differentiated daughter cells. There are certain genes 

responsible for the intrinsic cell determination such as NOtch (Conlon et al., 1995) 

and Numb (Zhong et al., 2000). These genes are dispensable before the onset of 

neurogenesis, meanwhile extrinsic signals such as Wnts, BMPs and Sonic Hedgehog 

Shh are all essential for neural patterning during this period. 

• 1.21.2 NS cells 

ES cells can differentiate in vitro into a pure population of neural stem (NS) 

cells niche independent cultured in monolayer. These NS cells can undergo 

symmetric cell divisions giving two same cell NS daughters at a rate of double every 

24 h (Conti et al., 2005). They need Egf and bFgf signalling to maintain their 

characteristics. In the absence of Egf cells undergo apoptosis, and in the absence of 

bFGF differentiation occurs. The NS phenotype corresponds with radial glia cells 

because they are positive for Glast, Blbp, Nestin, Vimentin, and Pax6. However, in 

contrast with radial glia cells, NS cells also express markers of the entire 

telencephalon. Therefore, these cells may represent an isolated temporal neural stem 

cell that occurs in vivo at a specific time during radial glia formation, and being 

isolated in vitro and by continuous stimulation with Egf and bFgF they aquire the 

capacity for indefinite self-renewal capacity through symmetric cell division. The 

NS-derived neurons appear to be preferentially GABAergic as they show GAD67 

and GABA expression. 

Neural precursors obtained through different protocols, including embryoid 

body formation and addition of Retinoic Acid are also phenotypically defined as 

radial glia expressing RC2, Glast, Blbp, and Pax6. In contrast with NS-derived 

neurons, and as expected from this gene expression pattern, these cells will 

differentiate into predominantly of glutamatergic cells that express the vesicular 

glutamate transporter vGlut 1, a membrane protein specific to pyramidal cortical 

neurons (Bibel et al., 2004). 

The cause of the lack of consistency between the two protocols may reside in 

the two different signalling pathways to which both neural precursors are exposed: 

Retinoic Acid in one, and Egf and bFgF in the other. Additionally, NS cells can be 
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clonally isolated, proliferate and self-renew indefinitely, meanwhile RA-derived 

radial glia cells can not. Furthermore, NS cells can be isolated from different 

forebrain regions maintaining the same neural stem cell characteristics and 

apparently the same differentiation capabilities. Egf responsive stem cells from the 

striatal subventricular zone are capable of differentiating into GABAergic neurons 

(Kornblum et al., 1995). The presence of Fgf2 activates the expression of 

transcription factors ganglionic eminence. Overall, the preferential GABAergic 

specification of NS differentiation may be related with the continuous Egf and bFgf 

signalling. 

1.22 Neuronal specification 

Many genes are known to be involved in neuronal fate specification. The 

gene expression profile of a restricted neuronal precursor will determine their final 

neuronal phenotype. Restricted post-mitotic neuronal precursors that have been 

specified to a particular neuronal fate will migrate to their final destination and 

acquire dendritic morphology, generating an axon that will connect to the correct 

target. The proneural genes Neurogenin] and Neurogenin2 promote dorsal 

telencephalic fate by repressing the ventral proneural gene Mash] (Fode et al., 2000) 

and by specifying cortical projection neuron characteristics like glutamatergic 

neurotransmission and dendritic morphology (Hand et al., 2005; Schuurmans et al., 

2004). Striatal neuronal specification is led by Gsh2 expression with the involvement 

of retinoic acid (Waclaw et al., 2004). Cortical interneurons are directed towards 

tangential migration by Dlxi and Dlx2 (Cobos et al., 2005), and they require of Gdnf 

(glial derived neurotrophic factor) to delimit their morphology and axonal growth. 

Apart from its role in dorsal radial glia specification, Pax6, together with the nuclear 

receptor Tlx are involved in cortical neuronal specification, particularly of superficial 

neurons, which are the last neurons generated during development (Hack et al., 2005; 

Roy et al., 2004). 

1.23 Cell intrinsic mechanisms of cell fate determination 

Forebrain neural progenitors can differentiate into neurons early in 

development, starting from El1.5 with a peak of neurogenesis around E14.5. 
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However, gliogenesis will not occur until after completion of neurogenesis, peaking 

at E16.5 (Levers et al., 2001; Qian et al., 2000). This time-directed cell fate 

specification can be also observed within isolated neural progenitors in vitro (Qian et 

al., 1998; Qian et al., 2000). Interestingly, neuroepithelial cells aquire gliogenic 

potential simultaneously with loss of their neurogenic potential. Time specification 

of gliogenesis is crucial in forebrain development to ensure a coordinated nervous 

tissue organization; glial cells are important in critical neuronal maturation processes 

such as axonal pathfinding, synapse formation, and myelination (Shu and Richards, 

2001; Ullian et al., 2001). Since oligodendrocytes are generated from the ventral 

telencephalon, gliogenesis in the developing cortex is mostly directed towards 

astrocytic differentiation. There are a variety of mechanisms involved in 

astrocytogenesis, both intrinsic or extrinsic to the neuroepithelial cell. The main 

signalling astrocytic pathway is the JAK-STAT pathway, which is itself dynamically 

regulated through development (He et al., 2005). Several factors activate this 

pathway, including Cnft, Lif and IL-6 (Bonni et al., 1997). Bmp2, which belongs to 

the transforming growth factor 3 (TGF-13) super-family, and Lif share gpl30 as a 

signal transducing receptor component (Taga and Kishimoto, 1997) and both signal 

through Stat3 activation (Nakashima et al., 1999a). Activated Stat3, in its 

phosphorylated state, associates with the transcriptional coactivator Creb binding 

protein (CBP/p300) to activate expression of astrocyte-specific genes (Nakashima et 

al., 1999b). On the other hand, neurogenic bHLH family members are shown to 

suppress gliogenesis by sequestering Smadl-CBP/p300 complex away from 

astrocyte-specific genes and inhibiting activation of Stat3 (Nieto et al., 2001; Sun et 

al., 2001). 

Stat3 acts downstream of these cascade through the glial fibrillary acidic 

protein (Gfap) promoter. Gfap is the major intermediate filament protein in mature 

astrocytes (Eng et al., 2000) and is highly conserved throughout vertebrates (Messing 

and Brenner, 2003). The access of Stat3 to the Gfap promoter is strongly regulated as 

well by a number of mechanisms including histone methylation, DNA methylation, 

and transcriptional repressor complexes. 

bFGF regulates Stat3 access to the Gfap promoter by inducing an increase in 

lysine-4 methylation, which facilitates Gfap transcription, and a decrease in lysine 9 
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methylation at the Stat-binding site of the Gfap promoter with the opposite effect 

(Song and Ghosh, 2004). This chromatin-regulated mechanism is similarly seen at 

another astrocyte- specific gene s]00f3. Equally, bFgf stimulation modifies histone 

methylation switch from repressive lysine 9 methylation to permissive lysine 4 

methylation at the s10013 promoter (Song and Ghosh, 2004). 

A second mechanism of control over access to the Gfap promoter is DNA 

methylation-dependent repression. The Stat3 binding element in the Gfap promoter 

is highly methylated in E11 . 5 neuroepithelial cells, post-mitotic neurons and non 

nervous system cells, but is demethylated in cells where Stat3 induces the expression 

of Gfap (Takizawa et al., 2001). In parallel, the s]0013 promoter sequence also 

contains a highly methylated CpG site at El 1.5 neuroepithelial cells that is 

significantly demethylated in E14.5 neuroepithelial cells. Furthermore, Mecp2 binds 

to this methylated CpG dinucleotide at E11 . 5 stage which results in inactivation of 

the gene and does not bind it at E14.5 stage (Namihira et al., 2004). At this stage of 

high level methylation state, MeCP2 has been also shown to bind to the promoters of 

Gfap and Stat] (Fan et al., 2005). Moreover, these promoters have inactive histone 

marks during neurogenesis (dimethyl-lysine 9 of histone H3; H3dmK9) and active 

histone marks during astrogliogenesis (di- or tri-methyl-lysine4 of histone 113; 

H3dItmK4). Therefore DNA methylation plays an important role in astrocytogenesis. 

Transgenic nestin-Cre Dnmtl mice, which suffer from global hypomethylation 

during CNS development show precocious astrocytogenesis. This effect is caused by 

a precocious elevation of JAK-STAT signalling, which as discussed previously, 

controls the onset of astrogliogenesis. Consistenly, Dnmtl-deficient neural 

precursors display an increase in H3dltmK4 (active chromatin status) and decrease in 

H3dmK9 (inactive chromatine status) (Fan et al., 2005). 

In addition to DNA methylation, several transcription regulators are 

implicated in the control of astrocytogenesis, such as the nuclear corepressor 

complex N-CoR, and the orphan nuclear receptor TLX (Tailéss homolog) (Shi et al., 

2004). In parallel with precocious Gfap expression in N-CoR deficient mice, TLX 

deficient adult NSC show increased differentiation into Gfap-positive astrocytes 

together with upregulation of Gfap and slOOP in the TLX deficient forebrain. As 

previously discussed, N-CoR is associated with histone deacetylation, and this is also 
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the case for the neuron-restrictive silencer factor/repressor element- 1 silencing 

transcription factor (NRSF/REST). 

NrsffRest is a major controller of neuronal differentiation (Chong et al., 1995; 

Schoenherr and Anderson, 1995). Nrsf/Rest represses neuronal genes containing a 

region called repressor element 1 or Nrse/Rest. Rest mediates repression via 

recruitment of its corepressors mSin3a (Huang et al., 1999; Roopra et al., 2000) and 

CoRest (Andres et al., 1999). This in turn promotes additional transcriptional 

silencing by recruiting MeCP2, histone H3-lysine9 methyltransferase Suv39Hl and 

heterochromatin protein 1 (Hpl), which causes compactation of chromatin. The 

chromatin where this machinery acts will show histone deacetylation, the absence of 

H3-K4 methylation and the presence of H3-K9 methylation, creating a condensed-

silenced state of neuronal genes in non-neuronal cells (Lunyak et al., 2002): 

An alternative mechanism is necessary to maintain a semi-permissive 

chromatin state for embryonic stem cells that have the potential to differentiate into 

mature neurons. In ES cells Rest binds to Re] sites and repress gene expression, but 

when ES cells differentiate into mature neurons, the Rest corepressor complex 

dissociates from Re] sites allowing the expression of fundamental neuronal genes. 

However, evidence suggests that there are other neuronal genes that contain an extra 

repression mechanism, where in addition to the Re] site binding and repression, a 

methylated site is bound by MeCP2 which recruits mSin3a and HDAC and CoREST 

and is not released until an additional stimulus occurs, for example neuronal 

depolarization, which leads to MeCP2 phosphorilation and de-repression of the 

neuronal gene (Ballas et al., 2005), as investigated in the Bdnf promoter (Chen et al., 

2003) (Martinowich et al., 2003). 

In contrast with the transcriptional repression activity of REST, small 

noncoding double-stranded RNA (dsRNA) have been identified which have the 

ability to bind to REST sequences in neuronal progenitors of the adult hippocampus 

(Kuwabara et al., 2004). These dsRINAs have the ability to convert REST from a 

repressor to an activator complex, which leads to the activation of neuron-specific 

genes necessary for the induction of neurogenesis. 

In adult neural precursors and neurons, global levels of H3 and H4 

acetylation are increased as compared with oligodendrocytes and astrocytes (Hsieh et 
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al., 2004). Concordantly, an anti-epileptic drug, vaiproic acid, which has been shown 

to inhibit HDAC activity (Gottlicher et al., 2001; Phiel et al., 2001), have a 

interesting effect of increasing neuronal differentiation both in vivo and in vitro in 

adult neural precursors at the expense of oligodendrocyte and astrocyte 

differentiation (Hsieh et al., 2004). 

Overall, it can be concluded that dynamic changes in chromatin status such as 

DNA methylation and histone modifications are crucial in cell fate determination 

(figure 1.8) 
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Figure 1.8 Diagram of epigenetic signaling pathways that control cell 
fate specification. At embryonic age El 1.5 and in post mitotic 
neurons, STAT3 activation is blocked by DNA methylation. At 
embryonic age E14.5 onwards, Stat3 binding site is demethylated 
which leads to Gfap activation and astrocyte differentiation. bI-ILH 
neurogenic transcription factors as Neurogenin I block Stat3 pathway 
and activates neuronal gene transcription. P=Phosphorylation. 
Adapted from Sun et al., 2003, Fukuda et al., 2004 and Hsieh et al. 
2004. 



1.24 Aim of the thesis 

During brain development, an orchestra of signals are necessary to drive the 

correct patterning that lead pluripotent stem cells to give rise to all the cell types 

necessary for brain tissue function. individual cell chromatin status will determine 

active or repressive transcriptional signals that will dictate its cell fate within its time 

and space environment. 

The aim of this thesis is the study of epigenetic mechanisms involved in 

neural stem cell function. Here I will describe the functional analysis I carried out to 

understand the role of the methyl-CpG binding proteins in neural stem cell function. 

The chapters 3 and 4 are concentrated in answering the question: What are the 

consequences of the absence of methyl-CpG binding proteins MeCP2, Kaiso and 

Mbd2 in neural development. The chapter 5 is focused in the study of an epigenetic 

silencing mechanism independent of binding to methylated DNA. Mbd3 forms part 

of the Nucleosome remodelling and deacetylation complex (NuRD), and in contrast 

with the rest of MBD proteins do not bind methylated DNA in mammals. This last 

chapter will uncover the key role of Mbd3 in stem cell fate decisions. 
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Chapter 2 

MATERIALS AND METHODS 

2.1 Materials 

Analytical grade chemicals were obtained from either Sigma or BDH Laboratory 

Supplies (unless otherwise specified). Stock solutions were prepared with reverse 

osmosis purified (ROP) water (MilliQ biocel, Millipore) and filtered or autoclaved as 

necessary. Synthetic oligonucleotides were synthesised by SIGMA. Agarose for 

electrophoresis was supplied by Invitrogen. Radioisotopes were supplied by 

Amersham Biosciences. 

2.1.1 Solutions and reagents 

DEPC treated water: 0.2% DEPC, mixed well and autoclaved. 

SSC 20x: 3M NaCl, 0.3M tn-Na citrate. 

TE: 10mM Tris-HCL, 1mM EDTA pH=8. 

Orange G DNA loading buffer: 15% Ficol, 0.2 M EDTA, 0.33% Orange G. 

TAE electrophoresis buffer (lOx): 0.4 M Tris-acetate, 100mM EDTA, pH=8.5. 

TBE electrophoresis buffer (lOx) 890 mM Tris, 890 mM Boris acid, 20mM EDTA, 
ph=8. 

TBS: 20mM Tris-HCL, 100mM NaCL pH=8. 

Loading buffer (SDS-sample buffer) 2X: 100mM Tris-HCL pH=6.8, 4% SDS, 
0.2% bromophenol blue, 20% glycerol, 200mM DTT. 

5X tri-glycine electrophoresis buffer: 125mM Tris, 1.25 •M glycine, 1% SDS. 

Transfer buffer SDS-PAGE: 48mM Tris, 390 mM glycine, 0.1% SDS, 20% 
methanol (for high molecular weight proteins), 25mM Tris, 190mM glycine, 20% 
methanol (for low molecular weight proteins). 

Phosphate buffered saline (PBS): 2.7 mM KC1, 137 mM NaCl, 4.3 mM 
Na2HPO4 .7H20, 1.4 mM KH2PO4  (pH 7.4). 



PBST: 1% Tween in PBS. 

Blocking solution for protein blots: 5% skimmed milk powder, PBST. 

Stripping buffer protein blot membranes: 20% SDS, 0.5 M Tris p11=6.8, 2.8% 2-
mercaptoethanol. 

Luria-Bertani (LB) broth: 1% (w/v) tryptone (Difco), 0.5% (w/v) yeast extract, 
85mM NaCl. 
LB agar: 1.5% (w/v) agar (Difco) in LB broth. 

STE buffer: 10mM Tris-Ci (pH 8.0), 0.1M NaCl, 1mM EDTA pH 8.0. 

PEG-Hybridisation buffer: 0.25 M NaCL, 1mM EDTA, 7% SDS, 10% PEG-6000, 
50tg/ml salmon sperm DNA, 125 mM NaPi pH=7.2. 

Lysis buffer for genomic PCR: 10% NP40, 10% Tween, 25 mg/ml Proteinase K 
(Roche) added just before use. 

PCR buffer: 750mM Tris pH=8.8, 200mM (NH 4)2504, 0.1% Tween, 30mM 
MgCL2. 

Lysis buffer for DNA extraction: 20% SDS, 25 mg/ml Proteinase K, TE buffer. 
CaC12  solution: 60mM CaC12, 10MM Pipes pH=7, 15% glycerol. (Filtered, and 
autoclaved). 

EMSA binding buffer: 0.2 M Hepes, 10mM EDTA, 20mM MgCl2, 100 tM 2-
mercaptoethanol, 40% glycerol, 500mM NaCl. 

Homogenization buffer: 2M sucrose, 10% glycerol, 25mM KCL, 20mM Hepes 
pH=7.8, 0.15 Spermine, 0.5mM Spermidine, 1mM EDTA, 0.5mM EGTA, 0.5mM 
PMSF and protease inhibitors cocktail (Sigma). 

Resuspension buffer: 75mM KCL, 25mM MgCl 2 , 1mM EDTA, 0.5mM EGTA, 
0.5mM Spermidine, 0.5 mM Spermine, 10mM 2-mercaptoethanoi, 20% glycerol, 
0.23M sucrose, 20mM Hepes 7.9. 

Buffer A for nuclei isolation: 0.5 mM EGTA, 20mM Hepes pH=7.9, 0.23 M 
sucrose, 60mM KCL, 15mM NaCL, 0.25 MM M902, 0.5mM Spermine, 0.15 mM 
spermidine, 14 mM 2-mercaptoethanol, 15 mM Tris-HCL, pH=7.4, 0.5mM PMSF 
and protease inhibitors cocktail (Sigma). 

Buffer B for nuclear extraction: 5mM Hepes pH=7.9, 26% glycerol, 1.5mM 
M902, 0.2mM EDTA, 400mM NaCL, 0.5mM PMSF and protease inhibitors 
cocktail (Sigma). 
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Solution 1 for minipreps: 50mM Glucose, 10mM EDTA, 25mM Tris pH 8, 
100ig/m1 RNase. 

Solution 2 for minipreps: 0.2N NaOH, 1% SDS. 

2.1.2 Antibodies 

Primary Antibody Host/Type Used dilution 
Manufacturer or 

reference 

Ca 	log 
 

ta 

number 

anti-Oct 4 Goat 1:200 Santa Cruz SC-8628 

anti-Oct4 Mouse IgG2b 1:1000 Santa Cruz SC-5279 

anti-GFAP Rabbit 1:200 Sigma G9269 

anti-GFAP(n-18) Goat 1:200 Santa Cruz SC-617 

anti-Tuji Mouse IgG2a 1:1000 Covance MMS435P 

anti-Map2 (a+b) Mouse IgGi 1:200 Sigma M1406 

anti-GABA Rabbit 1:800 Sigma A2052 

anti-TH Rabbit 1:200 PeiFreeze P40101-0 

anti-RC2 Mouse 1gM 1:20 DSHB RC2 

anti-Vimentin Mouse 1gM 1:20 DS}IB 40E-C 

anti-nestin Mouse 1gM 1:50 DSHB Rat-401 

anti-caspase-3 Rabbit 1:400 R&D AF-835 

anti-s10013 Mouse IgGi 1:500 Sigma S-2532 

anti-ER Rabbit 1:50 Santa Cruz EC-20 

anti-MECP2 Rabbit 1;500 WB (Nan et al., 1998) 674 

anti-MECP2 Rabbit 

1:200/1:500 

WB 
Upstate 07-013 

anti-kaiso clone 6F Goat 1:1000 Upstate 05-659 

anti MBD2 Sheep 

1:200/1:1000 

WB 
(Ng et al., 1999) S923 

anti Kaiso (1303) Goat 1:500 Abeam AB1303 

Anti GFP 

polyclonal Chicken 
1:200 Chemicon AB16901 

anti flag M2 Mouse 1:1000 Sigma F3165 

anti-MBD3 c- i 8 Goat 1:1000 Santa Cruz SC-9402 
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Anti MBD3 (N..20) Goat 1:200 Santa Cruz SC-9400 

anti-atubulin Mouse 1:1000 Santa Cruz SC-5286 

anti-GAD65/67 Rabbit 1:200 Chemicon AB 1511 

Anti-Gata4 Goat 1:200 Santa Cruz SC-1237 

Secondary antibodies: 

All secondary antibodies used in immunocytochemistry were Alexa Fluor, 

Molecular Probes, used 1:1000 dilution. 

Secondary antibodies used in western blot were ECL peroxidase labelled anti-mouse 

and anti-rabbit (Amershan) and anti-goat (Sigma). 

2.2 Molecular biology methods 

2.2.1. Plasmid isolation 

Overnight cultures of single bacterial colonies in LB broth were used to 

isolate plasmid DNA using Quiagen's mini, midi and maxiprep kits for small, 

medium and large scale preparations respectively, according to manufacturers 

instructions. 

2.2.2 Genomic DNA isolation 

ES cells and NS cells: 

Cells were grown in 96 well plate (or 4 well plate (Nunc) to confluence, 

harvested, centrifuged 5 minutes at bOg, washed in PBS, centrifuged again, and 

resuspended in 10-25tl of lysis buffer. This solution was incubated at 55 °C for two 

hours and 94°C for 10 minutes. 2t1 of lysis sample was used as template for 

genomic PCR. 

2.2.3 RNA isolation 

Total RNA was isolated from cells using Tri Reagent TM  (Sigma), according 

to the manufacturer instructions. 
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2.2.3 DNA purification 

Same volumes of DNA solution and phenollchlorophorm are mixed and 

centrifuged at 10600g for 3 minutes. The aqueous phase is extracted and mixed with 

same volume of chlorophorm. The solution is centrifuged at 10600g for 3 min and 

the water phase is extracted to precipitate DNA by incubation with 2 volumes of 

100% ethanol and 0.1 volumes of NaOAc at -80 0C for 30 minutes. The solution is 

then centrifuged at 20000g for 30 minutes at 4 0C, washed with 70% ethanol and 

resupended in TE buffer. 

2.2.4 Polymerase chain reaction 

PCR were carried out using Red Hot Taq (Abgene) following manufacturers 

instructions with 7.5pmol4tl of reverse and forward primers, 5-100ng DNA as 

template, Thermocycling incubations were done in DNA engine DYAD. 

2.2.5 RT-PCR 

First strand cDNA was synthesised from 1 tg of total RNA using SuperScript TM  II 

reverse transcriptase or M-MLV RT (Invitrogen) according to manufacturers 

instructions. 

2.2.6 qRT-PCR 

Quantitative real time PCR was done using a Roche light cycler. The 

optimised PCR reaction contained: 2t1 of LightCycler Master SYBR Green I mix 

(Tth DNA polymerase, reaction buffer, dNTP mix and SYBR Green I), 2.5t1 of 

dH20, 0.25tl of reverse and forward primers (10pmol/t1). The following reaction 

conditions were used: 

95°C -5 mm 

95°C -14 sec 

X -5 sec 

72°C -14 sec 

Annealing temperatures (X): 

Gapdh, Sox2 and Kaiso: 58°C 

Mbd2, Mbd3a, Mbd3b: 64°C 
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Mbdl: 60°C 

2.2.7 Methylation of DNA fragments 

Methylation reactions using MSssI methyltransferase (NEB) were carried out 

according to manufacturers instructions with the exception that the methylation 

reactions were incubated for 2-3 hours at 37'C, followed by purification with 

Zymoclean Kit (Zymo Research) and re-methylated for another 2-3 hours at 37 °C. 

2.2.8 Radiolabelling 

Probe radiolabelling was done using replacement synthesis method. 

1 OOng of methylated (MeCG 11) and unmethylated (CG 11) DNA probes were 

incubated with T4 DNA polymerase, 100tM dATP, 1X buffer and BSA(100tgIml) 

for 15 min at 12°C to activate the 3'5' exonuclease activity of T4 DNA polymerse, 

eliminating G bases of the 3' end of the MeCG 11 and CG 11. After this time 100mM 

dTTP and dGTP were added as well as P 32  -adCTP (40tCi, -3000 Ci/mmol, 

Amersham) and incubated for 15 min at 12°C. The enzyme was inactivated by 

addtion of 0.5M EDTA. Final radioactivity of the probe was read with a liquid 

scintillation analyzer (Tri-Carb, Packard). 

2.2.9 Nuclei extraction from mouse liver 

25m1 Homogenization buffer was used to homogenise the liver using a tight 

fitting dounce. The solution was centrifuged through a lOml cushion of 

homogenization buffer at 0 °C 24000 rpm in a SW28 rotor for 40-50 minutes. The 

pellet was resuspended in 5 ml of resuspension buffer and stored at -80 °C 

2.2.10 Nuclei extraction from ES and NS cells 

Cells were washed with PBS and harvested with a cell scraper. Suspension 

was centrifuged at 1500g for 3 minutes and the pellet washed in PBS and 

resuspended in 10 volumes of buffer A and incubated on ice for 10 mm. The 

suspension was centrifuged at 1500g for 5 min and the pellet resuspended in 3 

volumes of buffer A. The suspension was homogenized using a tight fitting dounce 

and then diluted 3 fold in 2M sucrose in buffer A. The lysate was centrifuged at 

85 



1500g for 5 mm, 20% glycerol was added and the sample was stored at -80 °C until 

needed. 

2.2.11 Salt extraction of nuclear protein 

The frozen solution was thawed and resuspended in same volume of buffer C, 

homogenized with a loose fitting dounce, stirred for 1-2 hours on ice and centrifuged 

at 13000 rpm at 4°C for 30 min in a SS-34 rotor. 

2.2.12 Measurement of protein concentration 

Protein concentration was measured using Bradford reagent (Sigma) 

according to manufacturer instructions. The absorbance at 595nm was analysed and 

recorded using a precision microplate reader (Molecular Devices). 

2.2.13 SDS-PAGE 

Gels were prepared as follows: Separating gel (1.5 M Tris pH=8, 20% SDS, 

TEMED, acrylamide and APS concentration depending on percentage of separation 

desired) was casted on an assembly kit (Bio-Rad), and subsequently 5% stacking gel 

was casted on top and assembled in a Bio-Rad mini protean apparatus. Proteins were 

diluted in loading buffer, boiled for 5 min at 100 °C and loaded on the gel. Gels were 

run in tri-glycine electrophoresis buffer at room temperature until the loading dye 

migrated off the bottom of the gel. 

2.2.14 Transfer to nitrocellulose membrane from SDS-PAGE gel 

Gel and nitrocellulose membrane (Protran, Whatman) were assembled in Bio 

Rad mini protean apparatus according to manufacturer instructions and run at 90V 

for 1-2 hours at 4 °C in transfer buffer. 

2.2.15 Western blot 

Membrane was washed in PBST for 10 mm, incubated in blocking solution 

for 30 mm, and incubated with primary antibody in blocking solution overnight. 

Secondary antibody was added after washing with blocking solution for 2x10 mm 

and incubated for 1 hour at room temperature. All washes and incubations were done 



in a shaker. Subsequently the membrane was washed in PBST, air-dried, and 

incubated with freshly mixed ECL reagents (Amershan) for one mm. Membrane was 

wrapped in cling film and exposed to Kodak film. Development of the film was done 

using SRX- 101 A developer. 

2.2.16 Electrophoretic mobility shift assay: 

5 tg of protein, 104cpm methylated (MeCG1 1) or unmethyated (CG 1 1) probe 

(Meehan et al., 1989), and 2tg of E.coli DNA as competitor were incubated on ice 

with binding buffer for 30 mm. The binding reaction was loaded in a 1.5% agarose 

gel in TBE buffer, and run at 4°C for 4-5 hours. Gel was dried on two layers of 

0.2mm Whatman paper in a gel drier (Bio Rad 583) and exposed to a phosphor-

imager screen overnight. Images were developed the next day using phosphoimager 

Fujifilm FLA 3000. 

2.2.17 Cloning and subcloning 

Vector construction involved restriction enzyme digestion, gel purification 

and ligation. Restriction enzyme digestions were performed according to NEB's 

instructions. Digested DNA was isolated by electrophoresis of (TAE) 0.8% -2% 

agarose gel for fragment resolution. DNA was then isolated from desired gel 

fragment using Zymoclean (Zymo Reearch). Vector and insert ligation was done 

using Rapid DNA ligation Kit (Roche) according to manufacturers instructions. 

2.2.18 Transformation of competent cells. 

100tl of competent cells and lO-lOOng of DNA were incubated on ice for 30 

minutes, heat shock treated for 45 seconds at 45 °C and incubated on ice for 3 

minutes. Solution was diluted with 400 .i1 of SOC media (Invitrogen) and incubated 

at 37 °C for 60 minutes. Bacteria were spread evenly over the surface of LB agar with 

antibiotic plates using a sterile bent glass rod. Plates were inverted and incubated 

overnight at 37'C. 

2.2.19 Analysis of transformants 
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Colonies grown in agar plates were screened to isolate the desired vector 

using the following protocol. Single colonies were inoculated in a 5ml LB broth 

containing the appropriate selection and incubated in a shaker at 37 °C overnight. 

3.5m1 of overnight culture was centrifuged for 5 min at 107g. Pellet was 

resuspended in 100tl of Solution 1 and 200tl of Solution 2 (see pg 82), mixed 

gently and added 150tl of 3M NaOAc pH=4.8. The solution was mixed, centrifuged 

at 20000g for 10 mm, and from the supernatant plasmid DNA was purified as 

described before for genomic DNA (2.2.3). 

2.3 Cell culture methods 

Cells were maintained at 7.5% CO2  at 370C in a humidified incubator. All 

solutions were tested for bacteria contamination before use. All tissue culture 

manipulations were undertaken inside a laminar flow sterile hood (Microflow) and 

surfaces and objects were sprayed with 70% industrial methylated spirits (IMS) 

before use. Cell suspension centrifugation was done at 200g for 3.5 min unless 

specified. 

2.3.1 Cell culture media 

ES cell medium: Glasgow modified Eagle's medium (GMEM), 10% fetal bovine 
serum (Gibco), 1mM sodium pyruvate (Gibco), IOOX MEM non-essential amino 
acids, 2mM L-glutamine (Gibco), 0. 1mM 2-mercaptoethanol (BDH). 

N21327 medium: DMEM!F12 and Neurobasal 1:1 mixture (both Gibco), N2 (25 
gIml insulin, 100 [tg/ml apo-transferrin, 6 nglml progesterone, 16 tg!ml putrescine, 
30 nM sodium selenite and 50 pg/ml bovine serum albumin fraction V (Gibco), lOOx 
B27 supplement (Gibco), 1mM L-glutamine and 0.1mM 2-mercaptoethanol. 

NS medium: NS-A (Euroclone), 1mM L-glutamine (Gibco), l0ng!tl bFGF and 
10ngItl EGF (Prepotech). 

Trypsin solution: 0.025% trypsin (Gibco), 1.3mM EDTA, 0.1% chicken serum 
(Flow Labs) in PBS. 

PA-6 co-culture differentiation medium: GMEM, 10% knock-out serum 
replacement (Gibco), 1mM sodium pyruvate, 100X MEM non-essential amino acids, 
2mM L-glutamine and 0. 1mM 2-mercaptoethanol. 

PA-6 co-culture induction medium: N21327 medium supplemented with 200PM 
ascorbic acid, 100X MEM non-essential amino acids, 2mM L-glutamine. 



Neurosphere medium: DMEM/F12 medium supplemented with B27, 25tg4il 
bFGF, lOOx antibiotic-anti-mycotic solution (Invitrogen). 

Neurosphere differentiation medium (NB+): Neurobasal medium supplemented 
with B27, 1mM L-glutamine, 0.1mM 2-mercaptoethanol and lOOx antibiotic-anti-
mycotic solution. 

2.3.2 ES cell routine culture 

ES cells were cultured on 0.1% gelatine-coated tissue culture flasks or plates 

in Glasgow modified Eagle's medium (GMEM) supplemented with 100units/ml 

leukaemia inhibitory factor (LIF). LIF was prepared in house by transfecting COS-7 

cells with a human LIF expression plasmid and harvesting the medium. The 

concentration of LIF was assayed using CPI indicator cells (LIF preparation was 

done by L. Taylor). All media reagents were pre-warmed at 37 °C. 

To passage the cells, media was removed and cells were washed twice with 

PBS. lx (0.025%) trypsin (Invitrogen) was added at the minimum volume required 

to cover the cell monolayer and incubated at 37 °C for 1 mm. Subsequently the cell 

suspension was diluted with GMEM media (4 ml of media per every lml of trypsin). 

The cell suspension was centrifuged and the cell pellet was resuspended in media to 

achieve a cell concentration of 106  cells per 25cm2  culture surface. ES cells were 

passaged every 2-3 days. 

2.3.3 Freezing cells 

Cells were harvested as described above, and the cell pellet was resuspended 

in the required media and 10% dimethylsulphoxide (DMSO, BDH) at concentration 

of 106  cells per cryotube (Nunc) vial. Cryotubes were immediately transferred at - 

80°C overnight and then transferred to a liquid nitrogen cell bank (Series 2300, 

Custom biogenic systems). - 

To freeze cells in 96 or 24 well plates, cells were harvested with trypsin 

solution and cell suspension was diluted with freezing mix (150t1 for 96 well plate 

or 500tI for 24 well plate). Freezing mix for ES cells consisted of ES media, 10% 

DMSO and 20% FCS for ES cells; freezing mix for NS cells consisted of NS-A 



media, 10% DMSO and 3% BSA (Sigma) for NS cells). Plates were placed in a 

polystryrene box and stored at -80 0C. 

2.3.4 Thawing cells 

Frozen cryotubes were thawed at 37 0C for 1-3 min and immediately 

transferred to a universal tube with 9.5ml of required media and centrifuged. Cell 

pellet was then resuspended in lOmi of required media and transferred to a 25cm 2  

flask. An additional media change was done 8-10 hours later to remove dead cells 

and remaining DMSO. 

To thaw cells in 96 or 24 well plates, pre-warmed media was added to cover 

the well, and cell suspension was transferred to a gelatin-coated parallel plate. Media 

was replaced with fresh media after 8-10 hours. 

2.3.5 Monolayer differentiation (ES neuroectoderm differentiation) 

ES cells were passaged the day before the experiment to 90% confluence. 

Next day ES cells were harvested, and resuspended in GMEM media with 10% FCS. 

Cells were centrifuged and the cell pellet resuspended in Neurobasal media and 

centrifuged again. Cell pellet was resuspended in N2B27 and counted using a 

haemocytometer. Culture wells were coated with 0.1% gelatin and incubated for 30 

mm. To aid even cell distribution within the well gelatin was then aspirated and 

N2B27 media was added to the well into half the volume required for the culture. 

Cells suspension was diluted in half the total required volume and plated at a density 

of 106  cells per 10cm2  surface. N2B27 media was replaced with fresh N2B27 media 

every two days to remove dead cells and cell debris. 

2.3.6 Replating monolayer cultures 

Plates (usually 1.88 cm  growth area) were coated with lOOx poly-D-lysine 

(Sigma) in filtered distilled water (MilliQ Biocel, Millipore) and incubated at room 

temperature for at least 30 minutes. Poly-D-lysine (PDL) was removed, wells were 

allowed to dry and washed twice with PBS. Then the wells were coated with 1000x 
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laminin (Sigma) for 3 hours at 37 °C and subsequently removed and washed twice 

with PBS. 

Monolayer differentiation cultures were harvested using pre-warmed PBS, 

incubating for 5 min at 37°C and gently pippetting up and down the cell culture to 

achieve cell suspension. Cell suspension was then diluted with N21327 and 

centrifuged at 200g for 3.5 mm. Cell pellet was resuspended in N21327 media and 

plated in PDL/laminin pre-coated wells as described above at a density of 2-2.5 10 4  

cells/cm2  when replating 7 days old monolayer cultures or 3.5-4 104/cm2  when 

replating 10 day old monolayer cultures. N2B27 media was replaced with fresh 

media every 3-4 days to remove dead cells and cell debris. 

2.3.7 PA-6 co-culture differentiation protocol 

PA-6 feeder cells were routinely cultured in the same conditions as ES cells 

(as described above) in ES media without addition of LIF. PA-6 cells were irradiated 

to arrest proliferation, harvested and plated at a cell density of 8x10 4  cells/cm2  one 

day before the differentiation experiment. ES cells cultured at 90% confluency which 

had been passaged previous day were harvested, centrifuged and resuspended in 

differentiation medium. ES cell suspension was counted and plated on the PA-6 

feeder monolayer at a density of 25-30 cells/cm2. Differentiation media was replaced 

from the wells after 4 days and on the 8th  day replaced with induction media. Media 

was then replaced every 2 days with fresh induction media for 8 days. 

2.3.8 Neurosphere culture 

Embryonic age E14.5 or E16.5 mouse cortices were dissected and dissociated 

by pipetting up and down using a fire polished Pasteur pipette to obtain single cell 

suspension in PBS supplemented with 1 unit (potency contained in 0.60tg of 

Penicillin G master standart) of penicillin, 100 tg streptomycin and 0.0025tg of 

ampothericin B per ml of media (antibiotic-anti-mycotic 100X solution, 

Invitrogen.). Cell suspension was passaged through a 40tm nylon mesh (BD 

Falcon), diluted in DMEMJ'F 12 media and centrifuged. Cell pellet was resuspended 

in neurosphere medium and plated in single cell suspension in 25cm 2  flasks at 

density of 5000 cells/cm 2  for 7 days. After 7 days, primary neurospheres were 
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collected by centrifugation and the cell pellet resuspended in 1-2 ml neurosphere 

media. Suspension was pipetted up and down first with a fired polished Pasteur 

pipette followed by same procedure with a polished Pasteur pipette with narrower 

aperture. The cell suspension was passaged through a 40jtm nylon mesh and diluted 

with neurosphere media. The single cell suspension was centrifuged, resuspended in 

neurosphere media, counted in a haemocytometer and plated at the same density as 

for primary neurospheres. 

2.3.9 Neurosphere differentiation 

Glass coverslips (13mm diameter) were sterilised by ultraviolet exposure for 

30 min and allocated in 24 well plates. Subsequently the coverslips were coated with 

Poly-D-lysine and Laminin as described before. Primary and secondary neurospheres 

grown in 25cm flasks were collected by centrifligation and resuspended in NB+ 

medium. 1:3 of the cell suspension was plated on the coated plates and cultured for 5 

days. 

2.3.10 Routine passage of NS cells 

When they reached 30-60% confluent, NS were harvested and trypsined in 

lOx trypsin solution. Harvested cells were resuspended in NS medium and 

centrifuged at 300g for 4 mm. Cell pellet was resuspended in NS medium to achieve 

a cell density of 8-16x10 4  cells/cm2 . Tissue culture plastic had been incubated with 

0.1% gelatin for at least 30 mm. 

2.3.11 NS cell derivation from embryonic cortex 

Embryonic age E14.5 or E16.5 cortices were dissected and dissociated as 

explained before. The entire cell suspension from each embryonic cortex was plated 

on 25cm2  flasks in NS media. After 1-2 days cells were collected by centrifugation 

and replaced with fresh NS media. Cultures were allowed to form neurospheres for 7 

days. After this time, neurospheres were collected by centrifugation at lOOg for 1 

min and plated on gelatinised 25cm 2  flasks. Flasks had been coated with gelatin at 

37°C for at least 30 mm. From this point cells were maintained in adherent 
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monolayer and passaged when 30-50% confluent aiming for homogeneous cell 

morphology. 

2.3.12 NS cell derivation from ES neuroectoderm monolayer 

10 cm2  dish ES monolayer differentiation cultures were harvested after 7 

days, centrifuged and resuspended in 20ml NS media. The cell suspension was plated 

in 75cm2  flasks for 2-3 days in suspension. After this time, formed neurospheres 

were collected by centrifugation at lOOg for 1 mm, plated in gelatin-coated 75cm 2  

flasks and cultured for 6-8 days. From this point cells were maintained in monolayer 

and passaged when 30-50% confluent as explained before. 

2.4 Transfection of DNA into ES cells by electroporation 

2.4.1 Stable transfection 

200 -300tg of DNA was linearised by appropriate restriction enzyme 

digestion and checked for correct digestion by 1% agarose gel electrophoresis. DNA 

was purified by phenol/clorophorm and ethanol precipitation as described above. 

DNA was resuspended in 80tl of TE buffer inside the laminar flow sterile hood. 90-

100% confluent culture of ES cells in T75cm 2  flask was harvested, centriftigated and 

resuspended in 800tl of PBS. Cell suspension was transferred to a sterile 

electroporation cuvette and mixed with the linearised DNA. Cells were then 

electroporated at 800V and 3tF for 0.1 seconds (BioRad Gene Pulser). Cells were 

left to rest in the cuvette for 10 min and then resuspended in ES media and plated on 

10-15 pre-gelatinised 18cm 2  dishes. After 24 hours, drug selection was added 

(Hygromicin B 100tg!ml, puromycin 1tgIml, Gancyclovir 25mM 0.1N HCL l000x, 

Neomycin 1 66tg/mI) and media was changed every 2-3 days. 6-8 days later medium 

sized ES colonies were selected and transferred into 2-3 96 well plates. When 

colonies formed confluent cultures in 96 well plates, plates were replicated as 

explained above (2.5.6) for freezing stock and for screen the correct targeting by 

genomic PCR. 

2.4.2 Transient transfection 
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5x106  ES cells were electroporated as described above with 50tg of non 

linearised (pCAGCreIP) plasmid to achieve transient Cre recombinase expression. 

After electroporation cells suspension was diluted with ES media and plated in a 

gelatinised 75cm2  flask and cultured for 24-35h. After this time, cells were harvested 

and plated at clonal density in gelatinised dishes. Cells were cultured until colony 

formation and then proceeded as described above for selection of the clones with the 

correct recombination by Cre recombinase. 

2.5 Transfection of DNA into ES cells by lipofection 

Lipofection was done using TransFastTM  tranfection reagent (Promega). DNA 

plasmid was cut and purified as described before and resuspended in TE. 1 ig of 

DNA was incubated with 6tl of TransFast reagent in 250tl pre-warmed media for 

15 min at room temperature. ES cells were harvested, centrifuged and resuspended in 

ES media to a concentration of 2x10 6  cells/ml. Cell suspension is prepared to a 

concentration of 5x10 5  cells/250tl and mixed with DNA-TransFast solution. 

Subsequently the total 500t1 are plated in 24 well plate and incubated for 1 hour. 

After this time, lml of media was added and culture overnight. Next day media was 

replaced with fresh media and 48 h later cells were harvested and plated in 10cm 

diameter dish at clonal density (1000 ES cells). 

2.6 Transfection of DNA into NS cells by eletroporation 

10x106  NS cells were mixed in 100tl PBS solution with 50tg of plasmid 

DNA transferred to a sterile electroporation cuvette and electroporated at 250mV and 

9.6 capacitance. Immediately after cells were resuspended in 10 ml of NS media and 

plated at a density of 106  cellsper 10cm diameter dish. Media was changed every '4 

days until colonies became large enough to be transferred to 96 well plate (about 10-

15 days). 

2.7 Transfection of DNA into NS cells by nucleofection 

Nucleofection was done using Amaxa Biosystems nucleofector and solution 

V cell kit for NS cells. Nucleofector solution was pre-warmed at room temperature 

and NS media with 10% serum was pre-warmed at 37 °C. NS cells were harvested, 



counted and centrifuged at 300g for 4 minutes. Cell pellet was resuspended in 100tl 

of nucleofector solution B to a cell density of 2-5x10 6  cells and 2tg of plasmid DNA 

was mixed to the solution. Subsequently the cell suspension was transferred to a 

nucleofection cuvette and nucleofected using program T-030. Immediately after 

nucleofection, cells were transferred into an eppendorf with lml pre-warmed media 

and left to rest for 5 mm. After this time cells were gently transferred to pre-

gelatinised plates and media was changed to replace any trace of serum in the next 

two hours. 12 hours later drug selection was added to the media. 

2.8 MTT assay 

Cell proliferation quantification was done using the CellTiter' 96 AQueous  one 

solution cell proliferation assay (Promega) according to manufacturer's instructions 

with the following modifications: lOx10 4cells were plated in 150tl of media and 

30p1 of CellTiter reagent was added to the culture. The absorbance was read after 4 

hours using a precision microplate reader (Molecular devices) at 490nm wavelength. 

2.9 Cell sorting 

Cells were harvested and resuspended in 1 ml of FACS sorting solution (10% 

FCS and 100 U/ml penicillin andlOO [tg/ml streptomycin in PBS for ES cells and or 

3% BSA, penicillin/streptomycin in PBS for NS cells and monolayer differentiation 

cultures). Cells were sorted by J. Vrana using Cytomation MoFlo flow cytometer 

into tubes containing N21327 medium. Immediately after cells were plated on pre-

gelatinised plates at desired cell density with appropriate media or lysed for RNA 

extraction as described above. 

2.10 Flow cytometry analysis. 

Sox]-GFP knock-in ES (46C) cultured in 6 well plates in N2B27 serum-free 

monolayer system were harvested at days 3-8, centrifuged and resuspended in lml of 

FACS solution. Analysis was done using FACScalibur flow cytometer (Becton 

Dickinson) using CellQuest software. 10,000 events were scanned. Electronic gates 

were set by forward scatter (size) and side scatter (cell complexity) criteria to 



eliminate cell debris from the analysis. ES with no GFP knock-in after monolayer 

differentiation were used as a control to eliminate autofluorescence events. 

2.11 Immunocytochemistry 

Cells cultured in tissue culture plates were fixed with 4% PFA (pre-warmed 

at 37°C) for 30 mm, and washed three times in PBS. Cells were blocked in a 3% 

serum (goat or donkey if using goat or donkey host respectively as a secondary 

antibody) and 0.1% Triton-X for 60 min. Primary antibodies were diluted in 3% 

serum PBS solution and incubated overnight at 4°C. Cells were washed three times 

in PBS and incubated in secondary antibody solution (3% serum in PBS) for 1 hour 

at room temperature. After this incubation time, secondary antibody solution was 

removed and cells were washed three times in PBS. 4'-6-Diamidino-2-phenylindole 

(DAPI) solution of 1:5000 in PBS was incubated for 10 min and washed with PBS. 

Immunocytochemistry experiments were visualised using Olympus (WO) 

microscope and images were captured with Olympus DP50 camera. 

2.12 Quantification of immunolabelled cells 

Velocity software was used for cell number (DAPI positive nuclei) and 

neuronal number (TuJ1 positive) quantification. 

2.13 Statistical analysis 

Data statistical analysis. was performed using ANOVA test and Bonferroni 

method with XLSTAT software. 
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CHAPTER 3 

INVESTIGATING THE ROLE OF KAISO IN NEURAL STEM CELL 

FUNCTION AND DIFFERENTIATION 

3.1 Introduction 

DNA methylation is a major epigenetic modification in mammalian genomes 

affecting gene expression. DNA methylation mediates transcriptional silencing, 

mainly functioning in tumour suppressor gene inactivation (Herman and Baylin, 

2000), imprinting genes (Reik and Walter, 2001) and X chromosome inactivation 

(Robertson, 2005) by methylation of CpG islands, and to suppress repetitive DNA 

elements during murine embryogenesis. DNA methylation is also implicated in the 

regulation of cell- and tissue-specific gene expression (Bird and Woiffe, 1999; 

Jackson-Grusby et al., 2001). 

Transduction of the DNA methylation signal is primarily induced by the methyl-

CpG binding proteins (MeCP5) that selectively bind methylated CpG dinucleotides. 

The MeCPs can exert transcriptional repression to the methylated locus (even at long 

distances (Kass et al., 1993; Nan et al., 1997)) by recruiting chromatin remodelling 

corepressor complexes to the methylated site and changing the functional gene status 

(Jones et al., 1998; Nan et al., 1998; Ng et al., 1999; Sarraf and Stancheva, 2004; 

Wade et al., 1999; Yoon et al., 2003b). 

MeCPs are ubiquitously expressed in somatic cells while are expressed at very 

low levels in ES cells, giving evidence to support a critical role in regulating tissue-

specific gene expression. MeCP2, Mbd2 and Mbd 1 are members of the MBD family 

of proteins, that share the methyl-CpG binding domain that has the ability to bind to 

methylated CpG dinucleotides (Nan et al., 1993). In contrast, Kaiso belongs to the 

zinc finger family of transcriptional repressors. Kaiso is the only MeCP that binds 

specifically to two to three consecutive methylated CpG dinucleotides by zinc 

fingers with the highest reported affinity of any protein of methylated DNA 

(Prokhortchouk et al., 2001). Two target genes have been found to be bound (Aranyi 

et al., 2005) and repressed (Yoon et al., 2003b) by Kaiso through recognition of its 



specific binding site, human tyrosine hydroxylase TH and MTA2. In addition, Kaiso 

can bind through its zinc fingers unmethylated sequences that contain the consensus 

Kaiso binding site. xKaiso has been shown to repress transcription of the genes 

MATRYSILIN(Spring et al., 2005) and Wnt-11, Siamois and Xnr3 (Kim et al., 2004; 

Park et al., 2005) in Xenopus, which are target genes of the canonical Writ signalling 

pathway. Thus, xKaiso cooperates with TCF/LEF to repress transcription of 

canonical Writ pathway target genes. The canonical writ pathway is very important in 

cell fate specification and development. In the central nervous system, this signalling 

pathway is crucial in the decision of precursors to proliferate or differentiate during 

mammalian neural development (Hirabayashi et al., 2004) (Chenn and Walsh, 2002; 

Otero et al., 2004; Zechner et al., 2003). 

Kaiso mediates transcriptional repression by association with the corepressor 

complex N-CoR in HeLa cells (Yoon et al., 2003b) and in Xenopus (Kim et al., 

2004). The N-CoR complex is formed by more than ten proteins, containing histone 

binding proteins and histone deactylases. N-CoR associates with the RestlNrsf 

transcriptional repressor bringing histone deacetylase activity to the promoter of 

neuronal genes to drive their repression in noñ-neuronal cells (Jepsen et al., 2000). 

N-CoR plays a crucial role in the regulation of early fate specification in neural 

stem cells (Jepsen et al., 2000). N-CoR deficient mice show during brain 

development early neuronal Map2 positive and astrocytic Gfap positive populations 

while their neural precursor population is decreased, indicating aberrant fate 

specification. Concordantly, N-CoR deficient neural stem cells undergo spontaneous 

astrocytic differentiation bypassing the bFGF-induced self-renewal signal. Moreover, 

N-CoR overexpression inhibits astrocytic differentiation (Hermanson et al., 2002). 

Hence, these detailed in vitro studies revealed that N-CoR regulates nestin positive 

bFGF dependent neural stem cell fate specification. 

Since Kaiso is a key component of N-CoR repressor complex, I decided to study 

its function in vitro in neural stem cells. The hypothesis to be tested in this study is 

that Kaiso will play an important role in neural stem cell function via its role in the 

N-CoR complex. 



3.2 Generation of Kaiso null ES cells expressing Soxl-GFP 

Neural differentiation in vitro from ES cells has been demonstrated to 

correlate in time with neurogenesis in vivo (Qian et al., 2000; Shimozaki et al., 

2003). Soxi is a specific transcription factor of the earliest stages of neural 

development and it is present in the first neuroectoderm cells commited to the neural 

lineage (Pevny et al., 1998). Soxi is largely coexpressed with Nestin in 

neuroectodermal cells and it can be used as a marker for neural progenitors. 

To study the capacity of ES cells to differentiate into neural stem cells, 

previously generated Sox]-Gfp knock-in ES cells (46C) (Ying et al., 2003b), were 

chosen to be targeted with a Kaiso conditional deletion construct (a gift from Dr. E. 

Prokhortchouk) (figure 3.1 .A). This construct consists of two fragments of mouse 

genomic DNA from the Kaiso locus (left arm and right arm) of 1925bp and 1282 bp 

respectively, and a neo/tk selectable marker cassette cloned into pBluescript II SK-

(pBS KS- in Fig. 3.1.A) (Prokhortchouk et al., 2006). The Kaiso fragments right arm 

and left arm confer the homology necessary for homologous recombination to occur 

(Thomas and Capecchi, 1987). The neo/tk cassette contains the neomycin-resistance-

encoding gene which confers neomycin resistance for positive selection and the 

herpes simplex virus type-i thymidine kinase (Tk) gene, which confers ganciclovir 

- sensitivity for negative selection (Hone et al., 1995). The Kaiso cDNA of the 

construct is tagged with C-terminal Flag, although this tag has not been used in this 

thesis. After Flag, the Kaiso cDNA is ended with a stop codon and 3' untranslated 

region (UTR) Kaiso sequence. 

In the first targeting step, G418 resistant clones that had correctly replaced 

Kaiso with the Kaiso foxed construct were selected by genomic PCR (figure 3.1 .A). 

Kaiso is a X-linked gene, allowing me to use PCR genotyping in our XY ES cells. 

One selected clone (46CT) was transfected with a Cre expression construct (PE-

CRE) which expresses under a weak promoter (PE), the Cre recombinase protein that 

efficiently causes recombination between two loxP sites (Muller, 1999). Thus two 

different set of clones were selected: null clones with the selection cassette and Kaiso 

cassette deleted (figure 3.113 I), and foxed clones that have the selection cassette 

deletion only (figure 3.1 .B II) . The PE-CRE plasmid was chosen because of the low 

activity of its promoter in order to obtain both foxed and null lines. 
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Figure 3.1 A) 46C Sox-GFP ES cells were targeted with the Kaiso deleting construct 
(Prokhortchouk et al., 2006). Correctly targeted cells (46CT) were identified by genomic 
PCR. B) Transient transfected with Cre expression vector results in three different 
recombinations I: clones with completed recombination giving a null allele, II: clones with 
Kaiso foxed allele and III: clones with Neo/TK cassette allele. After TK negative 
selection, 46C foxed (II) and 46C Kaiso 1  (I) ES cell clones were identified by genomic 
PCR. C) PCR with genomic DNA from parental line (46C), Targeted clone (46CT), 2 
clones carrying floxed allele (FlO. ElO), 2 Kaiso' 1  clones (C3, E4) and Kaiso deleting 
plasmid as control (pBS KS(-). indicates LoxP site, li ,  0 : indicates primer 
positions for PCR results shown in C) 



3.3 Quantification of neural precursors in the absence of Kaiso 

ES cells require LIF and Bmp4 signalling to maintain an undifferentiated state 

(Ying et al., 2003a), and in the absence of both factors ES cells in monolayer cultures 

undergo differentiation into predominantly (70%) neuronal cells in about 7 days, 

with the first Soxi positive neural precursors appearing at around 4 days in culture 

(Ying et al., 2003b). This well established system was chosen as a tool to study the 

neuroectoderm formation capacity of Kaiso ES cells. 

Two Kaiso ES cell clones, E4 and C3, were challenged to differentiate using 

the monolayer differentiation protocol and Soxl-GFP expression was monitored 

from days 3 to 8 by flow-cytometry of GFP in comparison with the parental ES cell 

line, 46C. During this process of differentiation, GFP-positive 46C cells appear 

around D3, peak at day 6, and start to decrease after day 7. Days 3 to 8 were chosen 

to screen both possibilities of early or delayed differentiation compared with the 

control line. The results of this experiment demonstrate that there is no defect in 

differentiation of ES cells lacking Kaiso protein into Sox 1-positive neural precursor 

cells (figure 3.2). 

3.4 Study of differentiation potential of ES-cell derivated neuroectoderm 

Monolayer differentiation cultures of the null cell lines were studied by 

immunocytochemistry to investigate the expression of markers of terminally 

differentiated cells such as astrocytes and neurons. The markers TuJ1 for post mitotic 

neurons and Gfap for astrocytes were assayed at different time points of 

differentiation to cover both possibilities of delay or early differentiation 

abnormalities, as described above. These experiments demonstrate that Kaiso is not 

necessary for the differentiation into mature neurons and astrocytes in this system 

(figure 3.3). 
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Figure 3.2 Kaiso is not required for neural precursor differentiation from 
ES cells. A) RT - PCR from two independent Kaiso •' clones and wild type 
FACS-sorted Sox]-GFP cells. B) Quantification of Soxl-GFP positive 
neural progenitors generated from day 3 to day 8 during monolayer 
differentiation from two independent Kaiso' clones and its parental one 
wild type 46C cell line. Error bars indicate SETv1 of three independent 
experiments. Test Anova: p=0.980. hence samples are not significantly 
different. C) FACS analysis of typical neuroectoderm differentiation at D4. 
In the top left corner histogram of percentage of GFP populations for 
control cell line with non-modified cells (no Sox]-GFP knock-in), wild 
type cells (46C) and two independent null cell lines (A and B). Left below 
dot plots of cell granularity on the x-axis versus cell size. The gate 
represent all viable cells. On the right panel are histogram that represent 
fluorescence on the x-axis versus the number of cells on the y-axis. Ml is 
set to exclude 99% of control cells (non-modified) and M2 represent SoxI-
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Figure 3.3 Kaiso is dispensable for neuron and astrocyte formation in 
the monolayer differentiation system. Left panels: wild type 46C cells, 
right panes: two independent Kaiso differentiation cultures. Left 
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3.5 Study of neural stem cell function, self-renewal and differentiation. 

Recently an in vitro system has been discovered to cultivate and maintain in 

monolayer culture a pure population of neural stem cells that undergo indefinite 

symmetric self-renewal divisions in the presence of the EGF and bFGF growth 

factors (Conti et al., 2005). This is an extraordinary useful tool to dissect neural stem 

cell function in the dish since analysis of pure clonigenic stem cells can be done. 

This is in remarkable contrast with neurosphere assays where cells undergo various 

differentiation stages within the neurosphere, or neuroepithelial primary cultures, 

where reproducibility is undermined by differences in dissection, various cell 

differentiation phases, and the inability to mantain long term cultures. 

Since ES cell derived neuroectoderm differentiation is not affected by the lack of 

Kaiso, I decided to generate pure population of Kaiso (-/ -v) NS cells to specifically 

study the function of Kaiso from a cell status independent of ES cell differentiation. 

The previously studied Kaiso C3 and E4 ES clones were chosen to derive NS cell 

lines. The derivation of such cell lines appeared normal compared with the control, 

as was their proliferation and self renewal. Imrnunostaining for key neural stem cell 

markers Rc2, Nestin and Vimentin revealed uniform Kaiso NS cultures, where all 

the cells were positive for the three markers, and were indistinguishable from the 

46C wild type NS line (figure 3.4). 

Subsequently, Kaiso 	NS cells were assayed for their differentiation potential 

into neurons and astrocytes. For differentiation into neurons, NS cells are plated on 

Poly-D-Lysine and Laminin coated wells for one week in media with N2 and bFGF 

only, and a second week with B27 only. After 15 days of differentiation, cells are 

fixed and immunostained for markers of neurons and astrocytes. The data processed 

revealed no observable impairment in differentiation into neurons and astrocytes 

(figure 3.5). 
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Figure 3.5 Kaiso ' NS cells have normal differentiation potential. A 
and C wild type 46C, B and D Kaiso) NS cells. A and B TuJI in 
green. Dapi in blue. C and D Gfap in green, Dapi in blue. 



3.6 Summary and discussion 

Kaiso-null ES and NS cells were used to study the role of Kaiso in the 

proliferation, differentiation and self-renewal capacity of neural stem cells. In vitro 

neuroectoderm formation from Kaiso was indistinguishable from wild type 

cultures and the frequency of neuronal and astrocytic differentiation was normal. 

Moreover, the capacity to form neural precursors, which was quantified by a clear-

cut method, was remarkably identical between Kaiso and wild type 46C parental 

lines. From these experiments I can conclude that Kaiso is not required for neural 

stem cell function. Depletion of xKaiso in Xenopus embryos causes an overall 

developmental arrest and cellular apoptosis (Ruzov et al., 2004). In contrast, my 

results presented here and parallel studies demonstrate that Kaiso is dispensable in 

mice (Prokhortchouk et al., 2006). This surprising dissimilarity between Xenopus 

and mice adds more evidence to a wide divergence between mice and Xenopus in 

DNA methylation-dependent function. This could be explained by species-specific 

developmental differences; in Xen opus zygotic transcription occurs later than 

mammalian embryos and the later may not be affected by the earlier transcriptional 

activation in the absence of Kaiso (Prokhortchouk et al., 2006). 

In a recent study, Kaiso labelling by in situ hybridisation has been described 

to be uniform through the whole mouse brain, with a neuronal expression rather than 

glia (Della Ragione et al., 2006). Interestingly, my experiments with quantitative real 

time RT-PCR show astrocytes as the cell type with highest expression of Kaiso (see 

figure 4.1). 

The localisation of Kaiso within the cell is still unknown, and the multiple 

Kaiso studies remain inconsistent whether localisation of Kaiso is predominantly 

nuclear or cytoplasmic. It will be interesting to study the Kaiso localisation further at 

the cell level, since it can bring insight into the function of this protein. I have tested 

several published Kaiso antibodies and none showed a Kaiso-specific band in 

western blot that was not present in null samples. Therefore, these antibodies 

probably also recognises Kaiso-like proteins. 

It is rather surprising that ES and NS cells lacking a component of the N-CoR 

corepressor complex, which has been shown to be essential in neural stem cell 



function, are indistinguishable from wild type cells in all the experiments described 

above. Kaiso is one of the four characterised methyl-CpG binding proteins. There is 

previous evidence of key genes involved in neurogenesis that can function 

redundantly such as the SoxBl family (Wegner, 1999). Their overlapping roles have 

previously precluded the elucidation of the function of the individual proteins with 

the study of individual mice knock out models (Nishiguchi et al., 1998). It is 

plausible that functional redundancy occurs among this family of proteins and even 

in the absence of Kaiso, neural stem cells can function normally. 
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CHAPTER 4 

INVESTIGATING THE ROLE OF THE METHYL-CPG BINDING 

PROTEINS IN NEURAL STEM CELLS. 

4.1 Introduction 

DNA methylation is essential for embryonic development since mice lacking the 

enzymes that establish and maintain methylated DNA cannot survive after day 9.5 

dpc (Li et al., 1992; Okano et al., 1999). The cause of lethality is most likely due to 

an aberrant gene expression that causes disruption of developmental programs, while 

ES cells lacking methyltransferases remain immune to this disruption and can grow 

aphenotypically lacking normal DNA methylation levels (Li et al., 1992; Okano et 

al., 1998b). The maintenance methyltransferase Dnmtl and de novo 

methyltransferases Dnmt3a and Dnmt3b are dynamically expressed in neurons 

throughout development and appear necessary for their function (Feng et al., 2005; 

Goto et al., 1994; Okano et al., 1999). Transgenic mice that specifically lack Dnmtl 

in neural precursor cells from E9-E10 embryonic age have impaired neuronal 

function and die postnatally (Fan et al., 2001). 

Mutations in the MeCP2 gene cause the neurological disorder Rett syndrome in 

girls (Amir et al., 1999) and cause Rett-like phenotype in mice (Chen et al., 2001; 

Guy et al., 2001). Mice lacking Mbd2 are viable and fertile, but show gene 

missexpression in T cells (Hutchins et al., 2002) and mutant mothers show abnormal 

maternal behaviour with nurturing impairment that affect their pups development 

(Hendrich et al., 2001). Mice lacking Mbdl are also viable and fertile, and no 

obvious abnormalities have been found in their brain structures. However, Mbd1 

adult neural stem cells have a defect in neuronal differentiation which encompasses a 

defect in learning ability of the dentate gyms region of the hippocampus (Zhao et al., 

2003). This impairment was discovered with functional analysis in vitro of adult 

neural stem cells. 

Therefore, disruption in the transduction of the methylation signal seems to 

trigger neural malfunction. While methyltransferase disruption has lethal 

consequences, the absence of methyl-CpG proteins leads to relatively mild 
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phenotypes with the exception of Rett-like phenotype in MeCP2 mice or no 

phenotype in the case of Kaiso (previous chapter and Prokhourtchouk et al., 

2006). 

This leads to two interelated questions: why has evolution come up with four 

independent MeCPs in mammals to regulate transcription in methylated sites, and 

what are their functions? It is possible that methylated-dependent transcriptional 

repression occurs simultaneuously through multiple overlapping MeCPs to ensure 

gene silencing. Or it could be that their only function is fine silencing tuning and the 

only consequences of their disruption are visualised in complex neuronal function 

that we are barely beginning to understand. 

In favour of the first possibility multiple methyl-CpG binding proteins have been 

shown to be associated with methylated genes in vivo (Fournier et al., 2002; 

(Ballestar et al., 2003; Fraga et al., 2003; Koizume et al., 2002), raising the 

possibility that these proteins may provide independent, but normally redundant, 

silencing activities at methylated genes. In favour of the second possibility is the 

slow but steady unveiling of specific and unique targets for the most extensively 

studied MeCP, MeCP2, involved in neuronal circuitry (Chen et al., 2003; 

Martinowich et al., 2003; Horike et al., 2005). 

Hence, the question to be addressed in this chapter is: Do MeCPs display 

functional redundancy such that the absence of one has no overt consequence 

because there are still another three known proteins to apply methylated-dependent 

silencing, or is their function specialised in precise but distinct cell functions and 

therefore their absence has no major consequences? 

To address this question, Mbd2MeCP2Kaiso triple null mice (3KO) were 

engineered in our lab. 3K0 mice are viable and fertile but develop same Rett-like 

phenotypes indistinguishable from those displayed by MeCP2" mice although they 

die earlier than do MeCP2 mice (Caballero et al., in preparation). This is evidence 

that the simultaneous lack of three MeCPs is more severe than MeCP2-deficiency, 

consistent with the hypothesis that the MeCPs are redundant. Therefore mice lacking 

three MeCPs have a stronger phenotype than single knock out. 

Given this evidence and since mild phenotypes occurring in the absence of single 

MeCPs were only visualised through ex vivo analysis (Hutchins et al., 2002; Zhao et 
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al., 2003), I decided to investigate the function of MeCP2, Mbd2 and Kaiso 

simultaneously with the well characterised neural stem cell in vitro system. 

4.2 Investigation of MeCP expression levels 

Both Dnmtl and MeCP2 are highly expressed in postmitotic neurons (Fan et 

al., 2001; Shahbazian et al., 2002b). This could be due to a DNA methylation 

independent role of these proteins, or as a strategy of the cell to ensure the necessary 

Dnmtl and MeCP2 protein levels through life. The investigation of the gene 

expression levels on study is crucial to begin the understanding of their function. 

This was achieved with real time PCR on the cell types and tissues I have used 

through my experiments. A particularly important advantage in this experiment is the 

uniformity/purity that most of the cell types used in the extraction of RNA have. 

The cell types chosen were: 

ES cells, 

Soxi positive facs-sorted cells, 

Astrocytes: NS cells after 4 days of differentiation in the presence of 1-3% 

serum. In these conditions, 100% of the cells express the astrocytes marker Gfap. 

Neurons: 15 days NS differentiation cultures, where is believed that only 2 cell 

types are in majority: astrocytes and neurons, with a small population of 

undifferentiated Rc2 positive NS cells. 

Adult brain. 

For the studyof Mbdl expression, triple null adult brain was also analyzed, 

in search of a possible upregulation of Mbdl in the absence of other 3 Mbds, 

following the hypothesis of redundancy. I found an upregulation of Mbdl of about 3 

fold in the triple null brain sample, thus the upregulation of Mbdl in the absence of 

MeCP2, Kaiso and Mbd2 could be caused by a compensation effect (figure 4.1). 

The expression of Mbdl, Mbd2, Mbd3a and Mbd3b, Kaiso and MeCP2 

mRNA was analysed. Additionally, I included Sox2 as a reference gene for which 

expression levels are known. Sox2 is expressed in ES cells (Yuan et al., 1995); after 

neural induction, Sox2 is expressed in proliferating neural precursors along the entire 

antero-posterior axis of the developing embryo and is detected in neurogenic regions 
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in the postnatal and adult CNS (Ferri et al., 2004; Tanaka et al., 2004). Therefore, it 

is expressed in all the cell types chosen in the experiment. 

As predicted, all the cell types express the four MeCPs studied throughout 

this thesis, plus Mbdl, and Sox2. The highest expression of MeCP2 is in neurons, 

being the highest expression among all the Mbds. This finding correlates with 

previous studies (Shahbazian et al., 2002) (figure 4.1). 

To investigate whether MeCPs are expressed in NS cells, which have been 

used as a tool fQr this thesis, western blot and immunocytochemistry were performed 

for MeCP2 and western blot for Mbd2. From these experiments I can confirm the 

expression of both proteins in NS cells (figure 4.2). 
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4.3 Electrophoretic mobility assays 

The defining characteristic of the MeCPs is their ability to bind methylated 

DNA; to a single mCpG dinucleotide in the case of MeCP2 and Mbd2 and to a 

double or triple mCpG dinucleotide in the case of Kaiso. Therefore, it is necessary to 

determine whether these proteins do bind to methylated DNA within NS cells and to 

determine whether the triple null NS cells contain the known MeCP activity encoded 

by Mbd2 and Kaiso (Prokhourtchouk et al., 2001; Hendrich et al., 2001). 

The electrophoretic mobility shift assay (EMSA) is based on the observation 

that protein-DNA complexes migrate more slowly than free DNA molecules when 

subjected to non-denaturing polyacrylamide or agarose gel electrophoresis (Revzin, 

1989). EMSA has been the key assay to investigate the properties of the family of 

methyl-CpG binding proteins, and its binding pattern is well characterised (Cross et 

al., 1997; Hendrich and Bird, 1998; Hendrich et al., 2001; Meehan et al., 1992). A 

methylated or unmethylated probe (CG 11) containing four HhaI sites (GCGC) and 

two HpaII sites (CCGG) (Meehan et al., 1989) was incubated with NS cell nuclear 

extract in the presence of competing bacterial DNA. The mix was loaded on 1.5% 

agarose gel to resolve protein-DNA complexes from free DNA and subsequently an 

autoradiography revealed the complexes formed. 

As expected, nuclear extract from wild type NS cells bound the methylated 

probe MeCG1 1 forming a shift band of similar size to the well-characterised doublet 

band in liver nuclear extract (Meehan et al., 1989). This doublet band is formed by 

two complexes, a slow migrating complex (complex I), and a faster migrating 

complex (complex II) which is not dependent upon Mbd2 for its formation (Hendrich 

et al., 2001) . On the other hand, both Mbd2 MeCP2Kaiso' NS extract and 

Mbd2Kaiso NS cell nuclear extract produced very weak binding. From these 

experiments I can conclude that NS cells do have methyl-CpG binding activity 

(figure 4.3). 

116 



- 
- 

MeCG11 	 CG11 

Q) 
0 

•1 0 
—. a- : 'C') 
oO) (1) 
z z z 

0 

(1) (1) .2 
ZZi 

Alb 	.0  

a) 
4—. 

0 
ct) 

o(/)C/) 
z z z 

0 
c'.J 	F- 

(I)cI) > 
z 	iD 

Figure 4.3. EN'ISA with methylated probe MeCG 11 (left) in comparison 
with unmethylated probe CG II (right). In the MeCG 11 experiment, a 
doublet (indicated by two arrows (complex I and II)) is shifted in wild 
type NS cell nuclear extract as well as wild type liver, meanwhile triple 
MeCP2/Mbd2/Kaiso NS cell nuclear extract (NS 3K0) and double null 
Mbd2/Kaiso NS cell nuclear extract (NS 2K0) does not. Mbd2 null NS 
(Mbd2KO) shift a faint (complex 11) that is not present in the 
unmethylated panel. 



4.4 Neurosphere assays from embryonic cortex 

Embryonic age E14.5 is the peak of neurogenesis in mice, and E16 is the 

starting point of astrocytogenesis (Ghosh et al., 1995). Both stages were chosen to 

study neurosphere formation from mouse embryonic forebrain. 

The neurosphere assay is a well-established method that has been extensively 

used in the field to study neural stem cell function. Hence, I used the neurosphere 

assay as a tool to investigate whether MeCP2, Kaiso and Mbd2 play redundant role 

in neural stem cells. First, I studied the proliferation capacity of single, double and 

triple null neurospheres (see table 4.1) by analysing the frequency that neurospheres 

were formed from single cells. Neurospheres were measured after a week of culture 

in size and number. 

Single null Mbd2 MeCP2 Kaiso 

Double null Mbd2MeCP2 MeCP2'Kaiso Mbd2Kaiso 

Triple null Mbd2MeCP2Kaiso 

Table 4.1 Mouse genotypes analysed by neurosphere assay. 

Secondly, to study the stem cell self-renewal ability in the absence of MeCPs, 

neurospheres that had been cultured for one week were dissociated to single cells in 

cloning conditions to study the ability of each single cell to form a new neurosphere. 

Again the frequency of neurosphere formation and the size were measured. 

The data obtained from these assays was highly variable within the different 

clones obtained from different embryos, regardless their genotype. Therefore, no 

conclusions could be obtained and the data has been disregarded. This observation 

will be discussed at the end of the chapter. 

Finally, to study the potential of neurospheres to differentiate into two 

different post-mitotic cell types, neurons and glia, neurospheres were cultivated for 

one week, plated on PDL/Laminin without growth factors and maintained in 

differentiation medium for 5 days. After this time, cells were immunostained to 

analyze the number of multipotent neurospheres giving rise to both neuronal and 

astrocytic cell types, or neurospheres with only astrocytes or only neurons. 
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Additionally, the same differentiation assay was performed from the second 

neurosphere generation obtained. 

This assay proved to be the only informative neurosphere assay, and I could 

conclude that all the neurosphere populations derived from single, double and triple 

mutant and wild type brains had normal differentiation potential, being multipotent 

in 80% for first neurospheres and 60% for second neurospheres (figure 4.4). 
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Figure 4.4 Neurosphere assay. 1. Neurosphere ICC after 5days in differentiation 
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4.4 Derivation of neural stem cell lines from embryonic cortex. 

As described before, a neural stem cell must be able to proliferate 

indefinitely, have unlimited self-renewal capacity and be clonogenic. Additionally, 

neural stem cells must be multipotent, giving rise to differentiated cell types by 

asymmetric division (Reynolds and Weiss, 1996). Since the neurosphere assay was 

not able to address the question of self-renewal and proliferation, I took the 

advantage of the recent discovery of NS cells, that as I described previously, are a 

pure population of neural stem cell that can be maintained in monolayer conditions 

(Conti et al., 2005), and are a very useful tool to address the questions I needed to 

study. 

As in the neurosphere assays, embryonic stages E14.5 and E16.5, which are 

the beginning of neurogenesis and astrocytogenesis respectively, were chosen. 

Embryonic forebrain was extracted out from the embryonic brain, and the cortex 

was dissected. The tissue was dissociated and single cells were plated regardless of 

cell density in the presence of EGF and bFGF. After two or three days cells were 

forming neurospheres and these were collected and plated on gelatin. After several 

days, characteristic cells attached to the flask were dispersing out of the neurosphere. 

These are the derived NS cells that, after several passages, will form a pure 

population of neural stem cells. The cell lines that were derived are described in table 

4.2. 

Embryonic age E14.5 E16.5 E14.5 E16.5 E14.5 E16.5 

Wild type V V 

Single null bd2' V V MeCP2 V V Kaiso V V 

Double null 
Mbd2 

MeCP2 
V 

Mbd2 

Kaiso 
V V 

Triple null Mbd2 	Me CP2' Kaiso V 

Table 4.2 Genotypes of NS cell lines derived from embryonic cortex. 

However, because previous experiments with neurospheres showed a 

tendency for overlapping characteristics regardless of the genotype, I decided to 

concentrate on the investigation of triple null versus wild type genotypes. 
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4.5 Characterisation of NS lines 

Three independent E14.5 triple null NS cell lines were selected to 

characterise their neural stem cell function. 

4.5.1. Neural stem cell marker expression: 

Cell lines were screened for the proper expression of neural stem cell markers 

Rc2, Nestin and Vimentin, and the absence of differentiated cell markers TuJ1 and 

Gfap. This was done at several points during more than 20 passages within these cell 

lines that have been studied (figure 4.5). 

One working hypothesis was the possibility of spontaneous astrocytic 

differentiation during the culture of NS cells or, the possibility of early astrocytic 

differentiation. This hypothesis was driven by the observation that global 

hypomethylation, caused by deletion of Dnmtl in mice, causes precocious 

astrocytogenesis in the developing central nervous system, due to demethylation of a 

Stat binding element within the Gfap promoter (Takizawa et al., 2001) and the 

overall elevation in Jak-Stat signalling activity (Fan et al., 2005). s10013, GFAP and 

Stat promoters display highly methylated CpGs in neuroepithelial cells at early 

stages of development, and lose their methylation at later stages, in parallel with the 

onset of neurogenesis in the developmental brain. These three promoters are 

associated with MeCP2 during the highly methylated neurogenic stages of the 

neuroepithelial cells (Fan et al., 2005). As explained before, the absence of three 

methyl-CpG binding proteins could result in removal of compensation activities and 

result in a phentoype that resembled the Dnmtl knock out phenotype. However, I 

found no precocious or spontaneous astrocytic differentiation in the triple null NS 

cell cultures. Therfore, I can conclude that the absence of Kaiso, MeCP2 and Mbd2 

does not cause early or spontaneous astrocytic differentiation in NS cells. 
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Figure 4.5. Characterisation of triple NS cell lines. tmmunocytochemistry 
of neural stem cell markers Rc2, Nestin and Vimentin in red, Dapi in 
blue. A Wild type NS clone 4 B. C and D: 3 independent MeCP2/ 
Kaiso/N4bd2 triple null NS clones. 



4.5.2 Proliferation 

The MTT assay measures the bioreduction of the tetrazolium 

compound MTT to a coloured formazan product by the mitochondria of 

living cells, and therefore colorimetric analysis provides an accurate 

quantification of cell proliferation . To study the proliferation rate of the 

triple null NS cell lines, MTT assays were performed in 5 independent 

experiments for 2 different cell lines of each genotype, and 3 

independent experiments for an extra cell line of each genotype. The 

conclusion of these experiments is that proliferation of NS cells is not 

affected by the simultaneous absence of MeCP2, Mbd2 and Kaiso as 

measured by the mitochondria respiration compared with wild type NS 

cells (figure 4.6). 

MTT Proliferation assay 
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Figure 4.6 Triple null NS cells proliferate at a normal rate. NS cell 
proliferation rates were compared by MTT assay. Data for three independent 
MeCP2/Kaiso/Mbd2 triple null NS cell lines and two independent wild type 
NS cell lines are shown. 



4.5.3 Self-renewal 

Triple null NS cells were maintained for between 20 and 60 passages without 

displaying differences in growth rate, maintaining the expression of neural stem cell 

markers and retaining the ability to give rise to neurons and astrocytes when plated 

on differentiation conditions. Triple null NS cells were able to form colonies from 

single cells at a normal rate compared with wild type. 

4.6 Astrocytic differentiation potential 

NS cells are able to differentiate to Gfap expressing astrocytes in less than 48 

hours in the presence of serum or Bmp4 and in the absence of growth factors (Conti 

et al., 2005). Lif and Bmp signalling share gp130 as a signal transducing receptor 

component in the activation of the JaklStat pathway (Fan et al., 2005; Nakashima et 

al., 1999b). As mentioned above, one working hypothesis was the possibility of early 

astrocytic differentiation in 3K0 NS cells. However monitoring of differentiation at 

8h, 12h, 20h, 24h time points I did not observe any difference in astrocytic 

differentiation between triple null and wild type NS cells. Both wild type and triple 

null lines were able to differentiate to astrocytes normally in more than 5 

independent experiments where cell density, serum concentration and 

presence/absence of LIF were tested along the 40 passages of three independent 

3K0 NS cell lines. 

Reverse transcription analysis revealed that both wild type and 3K0 

astrocytes express the expected genes of astrocytes: Gfap and sl00I3 as well as Blbp 

(Feng et al., 1994) (figure 4.7.13). Interestingly, neural stem cell markers such as 

Nestin and Pax6 were also expressed in some cell lines regardless of genotype. These 

results could suggest that not all the cells are fully differentiated into astrocytes 

Figure 4.7 Triple null astrocytes are indistinguishable from WT. Immunostaining 
after 4 days of NS cell culture in presence of serum and removal of growth factors. Left 
panels: bright field. Right panels: GFAP in green, Dapi in blue. A WT NS cells derived 
astrocytes. B and C two independent 3K0 NS-derived astrocytes. D RT-PCR of astrocyte 
and NS cell markers. Cell types from left to right: 2 wild type NS-derived astrocytes (4 and 
Con) two triple null NS-derived astrocytes, one wild type NS cell line, one 3K0 NS cell 
line, Adult brain and ES cells. 
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Figure 4.8 Astrocytes differentiated from E14-derived NS cells have 
different morphology than E16-derived NS cells. A and B: two 
independent E16.5 derived NS cell lines. C and D: two independent E14.5 
derived NS cell lines. E: Astrocytes differentiated from ES-derived NS 
cells. Left panels: bright field Right panels: Gfap in green, Dapi in blue. 



However, during the process of characterization, I have observed a morphological 

divergence that make astrocytes differentiated from E14.5-derived NS cells (E14A) 

distinguishable from astrocytes differentiated from E16.5-derived NS cells (E16A) 

independently of their genotype. E16A were spiky, with long processes and 

connections to neighbour cells while E14A were short processed and fibrous with 

more cytoplasmic surface (figure 4.8). This different morphology could be a cell 

density effect, given that in a less dense environment cell-cell contact could be 

affected. I investigated further the morphology that E14.5 and E16.5 NS derived 

astrocytes were having at different densities. Wild type E14.5 derived NS cells were 

plated for astrocytic differentiation at densities of X, 2X, X/2, and 1 2.5X. In these 

experiments I observed no morphological difference between different densities and 

no similar morphology to E16.5 in the more dense cultures. Therefore I conclude that 

the morphological difference is independent of cell density at the time of 

differentiation (figure 4.9). 

Figure 4.9 Astrocyte morphology is independent of cell density during 
differentiation from NS cells. E14.5 embryonic age wild type NS derived cells were plated 
at densities of lO, 8x104  4x104  and 2xlO4cells/well and cultured in astrocytic conditions 
without observing morphological differences. Left panel bright field. Right panel: Gfap in 
green, Rc2 in red and Dapi in blue. 
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The cause of a cell morphology difference is difficult to dissect; 

immunostaining markers were similar in both cases, with all cells being Gfap 

positive. Additionally, in both groups there was always present a small population of 

Rc2 positive cells that were simultaneously Gfap positive. 

Radial glia and subventricular zone neural stem cells differentiate into 

primarily protoplasmic astrocytes. NS cells are believed to have characteristics of 

radial glia, and are indeed derived from cells residing where radial glia are located, 

lining the subvcntricular zone. However, protoplasmic astrocytes hardly express 

Gfap while NS derived astrocytes do express Gfap. Therefore, the astrocytie 

morphology expected to be predominant from NS cell differentiation would be closer 

to E 14 morphology than EI6A morphology. 

Pure NS cell cultures are most likely to be independent of the embryonic age 

from which they were derived. This independency can be due to two explanations: 

first, neural stern cells in vivo at those stages are immersed in a different 

concentration of growth factors and other signalling molecules, while in vitro are 

exposed to the exactly same conditions and concentration of growth factors. 

Secondly, the effect of cultivating and passaging the cells is likely to unify the age-

derived possible differences. However, morphology is indeed different in two E16.5 

NS derived astrocyte cultures compared with two wild type E14.5 NS derived 

astrocyte cultures, and it is independent of the cell density. Furthermore, ES-derived 

NS cells differentiate into astrocytes resembling the type from E14.5 NS cell-

derived. This difference is in relation with the findings that cultured radial cells 

produce different progeny depending on the age where they were isolated, being 

primarily neuronal colonies with few glial or mixed colonies when isolated from 

E14-E16 embryos and mostly glial colonies with few neuronal colonies when 

isolated from E18 (Qian et al., 2000; Takizawa et al., 2001; Malatesta et al., 2000). 

In conclusion, the different morphology of the astrocytes differentiated from E14.5-

derived NS cells and E16.5-derived NS cells could be due to an epigenetic readiness 

after E 16 to differentiate into astrocytes. 
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4.6 Neuronal Differentiation potential 

To investigate the role of the simultaneous action of MeCP2, Mbd2 and 

Kaiso in neuronal differentiation, I next studied the capacity of 3K0 NS cells to form 

post-mitotic neurons with wild type parallel experiments as comparison. NS cells 

were plated on PDL/Laminin for a period of 7 days in the presence of bFGF and 

further 7 days without growth factors in the presence of B27 for nutrition of the 

neurons. This protocol yields the highest NS neuronal differentiation (Conti et al., 

2005). After 15 days in differentiated conditions three populations of cells could be 

identified: post-mitotic neurons, astrocytes and Rc2 positive NS cells. In these 

conditions, post-mitotic neurons marked by TuJ1 were in the 3K0 NS cell cultures at 

the same frequency as wild type (figure 4.10). Hence, 3K0 NS display normal span 

neuronal differentiation. 

However, neuronal differentiation frequency achieved after only 7 days, 

where bFGF was still present, was remarkably lower than in wild type NS cells. 

Three NS lines derived from three independent E14.5 triple null embryos were 

investigated in comparison with four independent wild type cell lines, which one was 

derived from E16.5 wild type embryo and three from three independent E14.5 wild 

type embryos. The rate of Tuj I positive neurons was dramatically reduced in the 

triple null cultures with statistical significance (p<0.0024) according to the 

Bonferroni method (Gordi and Kkiamis, 2004). In summary, while a normal 

differentiation span leads to indistinguishable neuronal differentiation capacity 

between wild type and triple null NS cells, 3K0 NS cells show an initial delay in 

neurogenesis as compared to wild type NS cells (figure 4.11). 
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Figure 4.10 Neural differentiation of triple null NS cells is not impaired. NS cells 
are cultured for 15 days in neuronal differentiation conditions and subsequently 
immunostained. A and B, cultures derived from wild type NS cell clones: A wild 
type NS clone derived from embryonic age Eló.5. B wild type clone derived from 
embryonic age E14.5. C and D cultures derived from two independent triple null NS 
cell clones TuJI in green. Gfap in red, Dapi in blue. E and F,MAP2 as a marker for 
mature neurons. G and I-I Gad67, GABAergic marker. E and G wild type. F and H 
triple null. Scale bars represent 5lAm  in A-D. and 31.lm  in E-H 
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Figure 4.11 A) Triple null NSs have fewer differentiated TuJI positive neurons after 7 days 
of differentiation. A, Wild type E14.5 derived NS. B triple null E14.5 derived NS. TuJ1 in 
green, Dapi in blue.C. Wild type El 6.5 derived NS. D, Wild type E14.5 derived NS. E and 
F, triple null E14.5 derived NS. TuJ 1 in green, RC2 in red. Dapi in blue. A and B scale bars 
represent 1Otm.C,D,E,F scale bars represent Slim. B) Quantification of NS-derived TuJI 
positive neurons after 7 days of differentiation. On the left wild type NS cells form 2.5 fold 
more neurons than triple null NS cells on average. This phenotype is independent of 
embryonic age. All NS cell lines are E14.5 embryonic age-derived, with the exception of 
first left wild type NS cell line, which is E16.5 embryonic age-derived. 

4.7 Summary and Discussion 

4.7.1 MeCP2, Kaiso and Mbd2 are dispensable for neural stem cell 

function 

Following the postulated hypothesis of functional redundancy among the 

methyl-CpG binding proteins, triple null neural stem cell lines were analysed in 

order to study their function. 1 can conclude that the triple null neural stem cell lines 

have no abnormal capability compared with the wild type, as both wild type and null 

NS cells showed comparable proliferation, self-renewal and differentiation 

capacities. Hence, my results do not support any role for MeCP2, Kaiso and Mbd2 in 

neural stem cell function. 

4.7.2 Methyl-CpG binding protein and functional redundancy 

This surprising finding raises the question of why there is no abnormal neural 

stem cell function in the absence of three out of four methyl-CpG binding proteins? 

One possible explanation for these results is that there are more methyl-CpG 

binding proteins currently uncharacterised, and therefore the absence of three 

proteins is not sufficient to disrupt neural stem cell function. Indeed, two additional 

methyl-CpG binding proteins have been discovered. These proteins, called ZBT134 

and ZBT1338, are closely related to KAISO in that they can bind sequences 

containing a single methylated CpG and can function as methyl-dependent 

transcriptional repressors (Filion et al., 2006). Given their expression pattern and 

homology it is very plausible that they share functional redundancy with the first 

BTB/POZ methyl-CpG binding protein discovered. Hence, the lack of phenotype 

observed in my studies could be attributed to functional redundancy with other 

methyl-CpG binding proteins. 
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Another explanation could be that although all the evidence indicates a role 

of the methyl-CpG binding proteins in neural stem cell function, it could be that only 

Mbdl is involved in the mechanisms of differentiation of neural precursors. In 

concordance with this possibility, a role for MeCP2 in neural stem cell function has 

been recently ruled out, being in contrast confirmed a neuronal role for this protein 

(Kishi et al., 2004). 

4.7.3 A role for methyl-CpG binding proteins in neuronal function 

My experiments demonstrate that despite the dispensability of Kaiso, 

MeCP2, and Mbd2 for neural stem cells, the number of TuJ 1 positive neurons after 

seven days of differentiation in vitro is dramatically reduced in triple null cultures, 

while after a complete period of differentiation of 15 days there is no observable 

difference. 

These results could be the consequence of a delay in neuronal maturation in 

3K0 lines, and therefore after an extended neuronal differentiation period would be 

indistinguishable from wild type. On the other hand, as only the expression of the 

postmitotic neuronal protein f3 tubulin III has been quantified, it is plausible that 

only the expression of this particular marker is delayed in 3K0 lines. Therefore, it 

would be interesting to investigate the expression of additional neuronal genes that 

mark different neuronal differentiation stages, such as early maturation events (NeuN 

and Map2) and more advanced stages of differentiation (Neurofilament triplet 

proteins NF-L, NF-H, NF-M and synaptophysin) (Izant and McIntosh, 1980; Matus, 

1990; Mullen et al., 1992; Przyborski and Cambray-Deakin. 1995; Steinschneider et 

al., 1996) 

Consistenly with a delay in neuronal maturation phenotype in 3KO lines, 

several groups have suggested a role for MeCP2 in neuronal maturation (Shahbazian 

et al., 2002; Kishi et al., 2004; Matarazzo, 2004). Matarazzo et al, studying olfactory 

receptor neurons identified a delay in terminal differentiation of olfactory neurons 

that also leads to axonal disruption. On the other hand, Young and colleagues 

(Young et al., 2004) described a possible role of MeCP2 in neuronal survival, when 

plating 1:1 wild type and null neurons observed that after 7 days the majority of the 

cells were wild type, suggesting that the MeCP2 null neurons would die during 
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culture. If this were the case, neuronal survival should be affected both at day 7 and 

day 15, but I only see an observable difference after the first week of differentiation. 

Additionally, Kishi et al described a reduced size and arborisation of MeCP2-

null neurons in the neocortex that is linked to a defect in late stage post migratory 

maturation of the neurons. Moreover, MeCP2 is also believed to have a role in the 

establishment and maintenance of synapses (Johnston et al., 2001; Kaufmann et al., 

2005; Moretti et al., 2006) (Fukuda et al., 2005). Therefore, MeCP2 is essential for 

proper regulation of neuronal gene expression that is fundamental in the complex 

balance of transcriptional factors involved in neuronal function (Chen et al., 2003; 

Horike et al., 2005; Martinowich et al., 2003; Nuber et al., 2005; Samaco et al., 

2004). 

Given this evidence it is not surprising to find delayed neuronal 

differentiation in my in vitro system. However, an additional role for Mbd2 or the 

combination of MeCP2, Kaiso and Mbd2 in controlling the specific transition 

between neural stem cells and neurons cannot be ruled out. 

4.7.5 Astrocyte morphology 

During my NS differentiation studies I observed an unequivocal 

morphological difference in astrocytes that was embryonic age-related instead of 

genotype dependent. I concluded that E14.5 embryo-derived NS cells differentiate 

into more flat and less spiked astrocytes with fewer connections than do E16.5 

embryo-derived NS cells. As explained before, this is a surprising effect given that 

these cell lines are thought to be very homogenous since there are a pure population 

of cells that undergo continuous asymmetric divisions and are maintained in the 

same constant balance of growth factors. 

This morphological difference is not observed in other differentiation assays 

when astrocytes are not induced by BMP4 present in the serum but other factors are 

involved in the process (PDL/Laminin, bFGF and b27)(figure 4.10). It would be very 

interesting to study what is the cause of the morphological difference. Which are the 

signals and factors that determine one shape or the other? Does different astrocytical 

morphologies correlates with different functions? 
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4.7.6 Heterogeneity of neurosphere assay 

The neurosphere assay, although extensively used, has the drawback of 

heterogeneity. In the neurosphere, apart from the neural stem cell population that 

maintains the neurosphere status, there are other cells at various differentiation 

stages. Therefore, there are different cell growth rates and self-renewal capabilities 

within the same neurosphere. Hence, unless a study would involve a very dramatic 

phenotype it is very possible to dismiss it through this system, or alternatively, obtain 

results that are not easily reproduced in independent experiments involving different 

embryos. 

The variability I found in the results of proliferation and self-renewal could 

be due to the combination of no differential phenotype and heterogeneity of 

neurospheres formed from individual embryos regardless their genotype. 
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CHAPTER 5 

INVESTIGATION OF THE ROLE OF MBD3 IN NEURAL STEM CELLS 

5. 1 Introduction 

Mbd3 forms part of the NuRD complex and may function as a scaffold 

protein, since in the absence of Mbd3 the complex is not correctly formed. This is 

shown by the failure of components of the complex to coimmunoprecipitate in the 

absence of Mbd3 (Kaji et al., 2006). Mbd3 is required for the transition of 

pluripotent cells of the blastocyst to mature into epiblast upon implantation, resulting 

in early post implantation lethality. Accordingly, Mbd3 ex vivo inner cell mass 

culture fail to differentiate into epiblast (Kaji et al., 2006). 

Mbd3 was also fished out in an mRNA substractive cDNA hippocampal 

library as a gene that was being expressed higher in the embryonic brain than in the 

adult brain (Jung et al., 2003). The consequent immunohistochemical and in situ 

analysis of Mbd3 in mouse and rat brain delineated an early Mbd3 expression in 

embryonic cortex and hippocampus around the onset of neurogenesis that decrease 

toward adulthood. In contrast, striatum, olfactory bulb and cerebellum had a later 

expression during embryonic development that continued into adulthood. This 

differential expression parallels the presence of progenitor neural cells in these 

structures, and it could correlate with a role for Mbd3 in neural stem cell function. 

5.1.1 Generation of Mbd3 ES cells 

Although Mbd3 	blastocysts fail to proliferate in culture making the 

derivation of Mbd3' ES cells from blastocysts impossible, Mbd3 ES cells have 

been made by selecting for loss of the wild type allele and duplication of the mutant 

allele by homologous recombination (Fix2 and Sp12 ES cell lines)(Kaji et al., 

2006)(figure 5.1 .A). A second null line was generated through the targeting of loxP 

sites flanking the entire Mbd3 gene (31'lox ES cell line) and consequent 

recombination of loxP sites by transient expression of Cre recombinase (3K0 cell 

line)(Kaji et al., 2006). 
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There are three Mbd3 isoforms, Mbd3a, Mbd3b and Mbd3c (figure 5.1.B). 

Cre recombination of loxP sites in the 21ox ES cell line resulted in Mbd3c-expressing 

ES cell line (A7), as explained in figures 5.1 .A and 5.1 I.C. To ensure that the defects 

explained below are a consequence of the absence of Mbd3 in the cells, rescued cell 

lines were generated by stable transfection of Mbd3a or Mbd3b isoforms in Mbd3 

ES cells (Kaji et al., 2006). 

Previous experiments have shown decreased proliferation of Mbd3 	ES 

cells compared with wild type (Kaji et al., 2006). Mbd3 ES cells can grow at 

clonal density in the absence of LIF. Furthermore Mbd3 ES cells expressing 

Puromycin and GFP under the Oct4 promoter (Oct4-GFP-ires-pac (Ying et al., 

2002)) could be cultured and passaged under puromycin selection and the absence of 

LIF for more than 2 weeks, with the aberrant expression of Fgf5, which is reversed 

after addition of LIF to the culture (Kaji et al., 2006). These experiments demonstrate 

that Mbd3 ES remain pluripotent (Oct4 positive) independently of LIF signalling. 
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Figure 5.1 A) Schematic representation of the generation of Mbd3"21°, Mbd3 

and Mbd3 (1,)  cell lines. !4bd32 1 ES cell line which have exon I foxed 
between two loxP sites was generated from ES cells which have 
Hygromycin/Thymidine Kinase cassete upstream of Exon I (HyTk/-). Mbd3 (h/) 

ES cell line (A7) with Exoni deletion in one allele was generated from I4bd3 21"' 

ES cell line by Cre recombination. A4bd3 ES cell lines (clones Sp12 and Fix2) 
were obtained by loss of the wild type allele and duplication of the mutant allele 
from HygTk/- cells by gancyclovir selection. Exons are indicated as boxes and 
non-coding sequences as unfilled boxes. Exon I contain both coding and non-
coding sequences. Black triangles represent loxP sites. ES cell line names are 
indicated in red. These cell lines were generated by Dr. Hendrich and R. Macleod. 
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Figure 5.1 B) Schematic representation of the generation of Mbd3(30)  and 
Mbd3 clone named 3K0. A cell line (I lox) was generated from foxed ES 
cell lTlyTkI- by Cre recombination, then subsequently targeted with a construct 
designed to leave the entire Mbd3 gene flanked by two loxP sites (Mbd3 31 "). 
After Cre recombination of Mbd3(51.t.)  cell line, Mbd3 	3K0 is generated. C) 
Schematic representation of Mbd3 isoforms: Mbd3b is a splice isoform, which 
lacks half of methyl CpG binding domain. Mbd3c might be translated from 

I  methionine in exon 2 as the transcripts are detectable in AT SDsplice donor. 
SA=splice acceptor D) Western blot using Mbd3" . l-lyTK)/-, Mbd3 
(A7), and Mbd3 	cell lines cell lines from left to right (Kaji et al., 2006). 



5.1.2 Studies of differentiation capacity in Mbd3&'  ES cells 

In the analysis of differentiation capacity, there were previously performed 

embryoid body (EB) differentiation experiments in the absence of LIF and gene 

expression analysis by RT-PCR at key time points of differentiation (Kaji et al., 

2006). In embryoid bodies, the external endoderm signals, which correlates with the 

primitive endoderm in the embryo, differentiation and endoderm specific gene 

expression are necessary to form the columnar ectoderm layer (Li et al., 2004). 

The results from these experiments (Kaji et al., 2006) revealed an 

unequivocal defect in differentiation of Mbd3 ES cells, denoted by two reasons. 

Firstly, Mbd3 embryoid bodies expressed pluripotent markers Oct4, Nanog and 

Rexi after 10 days of differentiation, and secondly, Mbd3 EBs could be 

dissociated and cultured as ES cells, being positive for alkaline phosphatase. While 

Mbd3 ES cells seem to maintain undifferentiated conditions in absence of LIF, 

they do have activation of trophectoderm markers Tbpa, and Pi-1 after 10 days, 

informing of an aberrant gene expression (Kaji et al., 2006). 

Interestingly, Fgf5, which is normally activated in EBs after 3 days was also 

activated in Mbd3 EBs but failed to downregulate its expression after more than 

10 days in culture. Mbd3 ES cells differentiate efficiently and lose Oct4 

expression in presence of retinoic acid, giving evidence that differentiation is not 

fully blocked and Mbd3 is not required for survival of differentiated cells (Kaji et al., 

2006). 

Chimera analysis shows that Mbd3 ES cells can undergo some level of 

differentiation into primitive ectoderm and early mesoderm when placed in the 

appropriate signalling context. This differentiation is abnormal, and impedes the 

normal embryonic development of the host blastocyst, in a degree directly dependent 

on the level of Mbd3 contribution. Chimera analysis with Oct4-GFP labelled 

Mbd3(./): FI) ES cells shows continuous expression of Oct4 at 8.5 dpc, long after 

Oct4 should be switched off, reflecting that this defect is cell autonomous. These 

deficiencies could be restored upon addition of Mbd3b or partially restored upon 

addition of Mbd3a (Kaji et al., 2006). 
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These studies lead to an interesting question: What is the role of Mbd3 in 

neuroectoderm differentiation from ES cells? In contrast with embroid bodies, in the 

serum-free monolayer differentiation system the primitive endoderm and endoderm 

gene expression are absent, and therefore it makes an ideal system to investigate 

Mbd3 ES differentiation capacity in the absence of endodermal and mesodermal 

signalling. Additionally, I became interested to study the function of Mbd3 in cells 

independent of Oct4 signalling, and given the previous reports of a possible Mbd3 

function in the developing nervous system (Jung et al., 2003), I aimed to isolate 

Mbd3 neural stem cells to study their function. 

5.2 Neuroectodermal differentiation of Mbd3 null ES cells 

The parental cell lines 3171ox (Mbd3(3F10)  and 2Lox (Mbd3(210 ); the 3K0, 

Sp12 and Fix2 (Mbd3') ES cell lines and the A7 (Mbd3 X1)  (figure 5.1 .A)ES 

cell line (Mbd3c expressing ES cell line) were challenged to differentiate in 

monolayer cultures in serum-free medium. These cultures were fixed and 

immunostained at different time points for the plunpotency marker Oct4, neural stem 

cell marker Nestin, the postmitotic neuron marker TuJ 1, and the astrocytic marker 

Gfap. 

5.2.1 Neural and neuronal differentiation 

Very consistently during the 5 independent experiments performed, all three 

Mbd3 ES cell lines used presented a deficiency both in differentiation and in 

proliferation compared with wild type. These cells showed deficient differentiation 

into not only neurons but also Nestin positive neural stem cells. Both cell types were 

identified very rarely in the cultures after 10 days of differentiation in 12 well plates 

(figure 5.3). A7 cell line (Mbd3 displayed different behaviour, since there was 

no observable proliferation defect, but the cells showed a differentiation defect. The 

cultures have few colonies positive for neural precursor and neuron markers although 

more than in null cell lines. In general, A7 cultures present a high number of cells 

with a characteristic flat, geometrically shape and an apparent normal proliferation. 

This is consistent with previous studies in the lab, were there was no proliferation 

defect identified in the A7 cell line (figure 5.2.A) 
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Figure. 5.2 Serum-free monolayer differentiation time course from day 2 to day 8. 
Mbd3' cultures remain as tight round ES colonies during the 8 days, and the 
proliferation is reduced; Mbd3 (AF"

"') do not display a proliferation defect but do display 
a differentiation defect with characteristic flat geometrically shaped cells in the cultures. 
A) Cell lines: Mbd3j'°' Mbd3 and Mbd3 "'E"" B) Cell lines Mbd3'21°"' Mbd3 
Mbd3a Ibd3dI3b .  

To demonstrate that the above phenotype is caused by the lack of Mbd3, 

parallel experiments were performed with the two rescued cell lines previously 

described (5.1.1). Both rescued cell lines showed normal differentiation 

undistinguishable from wild type cultures (figure 5.3.B). The Mbd33a  cell line 

showed an overall better degree of differentiation (even more than wild type) (figure 

5.3.E, F). Although this observation can be merely due to intrinsic cell line 

differences, it could be also due to the presence of the Mbd3a isoform and absence of 

Mbd3b and Mbd3c isoforms. As mentioned before, in ES cells the more abundant 

Mbd3 isoform is Mbd3b, although Mbd3a and c can also be detected (Kaji et al., 

2006). Mbd3b is also reported to be more prevalent in the embryonic brain, although 

Mbd3a increases its expression during differentiation (Jung et al., 2003). 

Additionally, the Mbd3b-rescued lines express near normal levels of Mbd3b, while 

Mbd3a lines express approximately two-fold higher levels of rescuing protein. 

Taking all together, the higher degree of differentiation observed in the Mbd3a-

rescued cell line in monolayer differentiation conditions could be explained by 2 

independent possibilities. First, Mbd3a could be involved in maintenance and/or 

differentiation of neural precursors into post-mitotic neural cells in a higher level 

than Mbd3b. This possibility would be backed by the increased presence of Mbd3a 

in the mature brain. Secondly, the increased levels of Mbd3 in the Mbd3 a-rescued 

cell line could be responsible to push ES cell differentiation into neuroectoderm 

lineages to a higher degree than in wild type ES cells. This possibility will be 

discussed further below. 
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5.4.2 Oct4 positive cells 

Mbd3 	ES cell lines differentiated for 10 days had a majority of Oct4 

expressing cells in the culture. (figure 5.4 and figure 5.5). Although Oct4 positive 

cells can be observed in wild type cell lines after ten days of differentiation, there are 

very few compared with the null cell lines, as it is shown in figure 5.5. Further, 

colonies entirely positive for Oct4 are often observed in Mbd3 null cell lines. This is 

also the case for the Mbd3 cell line, although still the phenotype is less severe 

than in the null cell lines. In general, Mbd3 null cells appear during the entire 

differentiation protocol as ES cell-like compact rounded colonies and they fail both 

to proliferate and to differentiate (figures 5.2.A, 5.3.C-D and 5.4). 
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Figure 5.4 A4bd3 	cells remain Oct4 positive after 10 days of 
differentiation conditions. lmmunocytochemistry on monolayer culture 
system after 10 days of differentiation conditions. Oct4 red, TuJ I green in 
left panels, DAPI blue in right panel. 
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Figure 5.5 Mbd3 	and Mbd3 A1M3h rescued cell lines do 
differentiate in the same degree as foxed cell lines 3flox and 21-ox. Left 
panels: TuJI in green and Oct4 in red. Right panels: Dapi in blue. 



5.4.3 Astrocyte differentiation 

In order to obtain Gfap positive cells in the monolayer cultures, I replated 

seven day old monolayer cultures in Poly-D-Lysine and Laminin-coated 12 well 

plates. In general, with the serum-free monolayer system I have observed that the 

presence of Gfap positive cells is dependent upon time of differentiation requiring at 

least 15 days in culture. I have also observed that replating the cultures increases the 

proportion of Gfap positive cells. This is consistent with previous findings describing 

that in vitro cultures tend to mirror what happens in vivo in terms of timing in the 

appearance of neurons versus astrocytes differentiation (Fan et al., 2005; Qian et al., 

2000; Takizawa et al., 2001). Replating may benefit from the elimination of both non 

neuroectodermal differentiated and dead cells three dimensionally clustered in the 

monolayer; but most importantly from the enrichment of neural precursors that 

adhere in PDL coated surfaces (figure 5.6). 

Fetal calf serum contains Bmp4, which is a potent astrocytic induction signal 

(Gomes et al., 2003; Gross et al., 1996), therefore I studied whether addition of 

serum after the first days of neural induction in serum-free monolayer system would 

have an effect in astrocytic differentiation. I have found that addition of 10% serum 

in N21372 culture media after 6-7 days does not improve astrocytic differentiation 

nor neuronal differentiation in this culture system. On the other hand, I have detected 

that addition of serum improves cell survival (figure 5.8), which is a positive factor 

given the long term culture necessary to obtain astrocytes in this system. 

Neither Mbd3' ES cells, from two independent cell lines or Mbd3 ES 

cells differentiated into astrocytes in any of the conditions described above (figures 

5.6 and 5.7). These results suggest that Mbd3 is necessary for astrocytic 

differentiation, since no Mbd3' astrocytes can be generated from Mbd3"' ES cells. 
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Figure 5.6 Mbd3 	can not 
differentiate into astrocytes in 
N21327 differentiation 
conditions. Monolayer cultures 
replated after 7 days and 
cultured for additional 4 or 6 
days. A, B wild type cell lines 

1bd3(2t 	C, D 
.%ibd3 	cell lines. E, F Rescued 
cell lines, isoform Mbd3b (E). 
isoform Mbd3a (F). G, Mbd3 



Figure 5.7 Immunocytochemistry 
for Gfap (green), TuJI (red) and 
DAPI (blue) in replated 
monolayer cultures 6 days old in 
addition of serum. 



5.4.4 Long term cultures and apoptosis 

Although my experiments this far show that Mbd3 is important for 

neuroectoderm differentiation after 10 days, it remain possible that this effect is due 

to a delay in differentiation more than a block in dfferentiation. To address the 

question of whether Mbd3 cells show a delay in differentiation defect instead of a 

lack of differentiation, non replated long term cultures of 17 days were stained for 

TuJ1, Gfap and activated Caspase-3 which is a marker of apoptosis. Cleavaged or 

activated Caspase-3 belongs to the protease subfamily of caspases that execute the 

apoptotic response during programmed cell death (Boatright and Salvesen, 2003). 

The 11 components of this subfamily are present in neural precurors, neurons and 

glia, since apoptosis plays an important role in brain development. Activated 

Caspase-3 filters the pro-apoptotic signals from both the mitochondria (intrinsic 

pathway) and the membrane (extrinsic pathway) to catalyse the specific cleavage of 

key cellular proteins (Troy and Salvesen, 2002). 

My conclusion from these experiments is that Mbd3 	cells do not present a 

delay in differentiation because there was no improvement in the phenotype in longer 

cultures (figure 5.9). in general, long term cultures show better survival in addition 

of serum, but the differentiation capacity is compromised (figure 5.8). Hence, these 

experiments demonstrate that the absence of Mbd3 prevents ES cells from 

undergoing neuroectoderm differentiation regardless the time in culture. 
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Figure 5.8. lmmunocytochemistry for Caspase-3 (green), TuJI (red) and 
DAPI (blue) after monolayer differentiation for 17 days with two independent 
WT ES cell lines. Addition of serum improved cell viability but interferes 
with differentiation ratio. 
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Figure. 5.9 Mhd3 	cells do not shov delayed neural differentiation. 
Immunocytochemistry on monolayer cultures after 17 days of differentiation 

conditions. TuJI red, Gfap green and DAPI blue. This assay confirms that 

addition of serum does not improve astrocytic differentiation but rather 

decrease differentiation capability. 



5.4.5 Time points monolayer differentiation RT-PCR 

To investigate the expression of genes known to be important in neural stem 

cell fate decisions, RNA was extracted from five time points of monolayer 

differentiation from day 0 to day 12 from the seven different cell lines, and 

subsequently RT-PCR was performed for the stem cell markers Sat], Sox2, Sox3, 

Pax6 and Blbp. In parallel, the expression of Oct4, TuJJ and Gfap was assayed. As 

can be observed in figure 5. 10, AIbd3 cell lines show a complete lack of detectable 

expression for neural stem cell markers from day 2 to day 8. On the other hand, the 

exon one deleted cell line does express the studied neural stem cell markers although 

not as high as the wild type cultures. In contrast, the Mbd3Mb(!31  rescued cell line 

has recovered the expression of the studied genes in a parallel pattern to the wild 

type cell line. These experiments suggest that Mbd3 is involved in the differentiation 

from ES cells into neuroectoderm lineages, such that Mbd3 cells fail to express 

genes that are key of neural stem cell differentiation, at least at detectable levels by 

RT-PCR (figure 5.10). 

In summary, although there are usually differences among the cell lines in 

terms of degree of differentiation capacity, there is always consistency among the 

wild type, null and rescued genotypes in the phenotypic overview. 
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Figure 5.10 Mb13' -) cells do not express NSC markers in differentiation conditions. Ri'-PCR panel with neural stem 
adult brain markers gene expression from ES cells to D12 of monolayer differentiation NS= NS cells. Br  



5.5 PA-6 co-culture differentiation system. 

My previous studies demonstrated that Mbd3 is necessary for the transition 

from UclA-positive ES cells to differentiated neuroectoderm. Very few Nestin 

positive neural precursor cells and neurons and no astrocytes can be observed when 

Mbd3 ES are challenged to differentiate in vitro. These results generate a 

subsequent question: Can Mbd3 differentiated cells survive, or do Mbd3 ES 

cells fail to transit to a differentiated cell fate? 

To address this question, the PA-6 co-culture differentiation system was used 

(Kawasaki et al., 2000). In this system, differentiation of ES cells proceeds in 

adherent co-cultures of ES cells with PA-6 stromal cells in serum free media. The 

main difference of this system is the decreased cell death compared with the 

monolayer differentiation system. Therefore, I could investigate whether Mbd3 

cells die during the differentiation process by studying the apoptotic behaviour of 

Mbd3 cells in comparison with wild type ES cells. This protocol consists of 

plating a low number of ES cells in a layer of PA-6 cells in serum-free media 

containing knock out serum replacement KSR, known as 'differentiation medium' 

for a period of 7 days, followed by another 7 days in N2B27 medium containing 

ascorbic acid described as 'induction medium'. 

PA-6 cells are derived from skull bone marrow and produce an inducing 

signal called stromal cell-derived inducing activity or SDIA (Kawasaki et al., 2000). 

Although other stromal cells promote neural differentiation when used as feeders, 

PA-6 cells have been found to produce higher induction. The SDIA effect remains 

through a filter (though results in weaker induction), does not condition the media 

and is not destroyed by fixation of stromal cells (Kawasaki et al., 2000). Therefore 

SDIA could be mediated by secreted factors that would anchor to the cell surface. 

The experiment was designed to screen the presence of apoptosis at 

correlated time points during the process of PA-6 co-culture differentiation by 

immunocytochemistry for activated caspase-3. The time points selected were day 0, 

day 4, day 8, day 12 and day 16. It was observed in these experiments that cells 

lacking Mbd3 do not die by apoptosis in different fashion than wild type (figure 

5.11). 
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Figure 5.11 Mbd3do not die by apoptosis upon differentiation conditions. 
Immunocytochemistry analysis after 4 time points in PA-6 co-culture 
differentiation system. Caspase-3 green, TuJ I red. DAPI blue. 



In summary, the previous experiments demonstrate that Mbd3 ES cells 

induced to undergo neural induction neither show a delay in differentiation nor die 

during the process. Rather, Mbd3 ES cells maintain their undifferentiated Oct4 

positive state without expression of neural genes throughout the time in culture. In 

conclusion, these data suggest that Mbd3 is necessary to switch off pluripotency 

markers to transit ES cell to differentiated cell state. 

5.6 Study of Soxi overexpression in Mbd3 overexpressing cell lines 

I have previously demonstrated that the lack of Mbd3 impairs ES cells to 

differentiate into neuronal lineages. A following question is whether overexpression 

of Mbd3 would lead to the opposite effect increasing the degree of differentiation in 

ES cells. During neuroectoderm differentiation experiments from ES cells I observed 

that the 	 rescued cell line achieved a higher degree of neuronal 

differentiation than wild type or Mbd3Mh7(i3I  rescued cell lines. Mbd3 	'id3ci ES 

cells overexpress Mbd3 approximately two-fold (K.Kaji personal communication). 

Further, I also observed that Mbd31,13a  ES were marked by Soxi expression by 

RT-PCR (figure 5.10). Sox! is a marker of neural precursors and is not observable in 

ES cells by RT-PCR in normal conditions. Soxl overexpression has been shown to 

direct neuroectodermal differentiation in ES cells (Zhao et al., 2004). Given these 

previous observations, I decided to investigate whether an overexpression of Mbd3, 

which presumably leads to Soxi overexpression, could cause an increased and/or 

premature neural differentiation. 
-  

Overexpressing ES cell lines 46C Mbd3a  and 46C 	-
Mbdih  were created by inserting 

Mbd3a and Mbd3b expression construct respectively into Sox]-GFP knock-in ES 

cells (46C). Additionally, a mock construct with only puromycin selection was 

inserted in 46C ES cells as a control (46C' °"). Colonies from these transfections 

were obtained at normal rates and the clones selected had no obvious abnormalities. 

However, RT-PCR experiments revealed no overexpression of Sox  (figure 5.12). 

To study whether Mbd3 overexpression could lead to premature and/or increased 

neuronal differentiation, two Mbd3a and two mock transfected 46C ES clones were 

selected to undergo neuroectoderm differentiation by serum-free monolayer system. 

The degree of differentiation was monitored from day 0 to day 10, and no obvious 
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neuronal differentiation was found in 46CMM31  ES cell lines compared witth wild 

type (figure 5.12). To study a possible premature neural differentiation, 3 day and 4 

day cultures were immunostained to check the expression of Nestin to quantify 

neural precursor differentiation. I observed same degree of Nestin positive staining 

in ,mock and wild type cultures (figure 5.13). 

From these experiments I can conclude that the overexpression of Mbd3 in ES 

cells does not lead to precocious or increased neural differentiation. 
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Figure 5.12 A) Mbd3 overexpressing ES cells were differentiated and immunostained for 
Nestin at day 3 and 4 of monolayer differentiation. B) RT-PCR reveal no overexpression of 
Soxi in 46C ES cell lines overexpressing Mbd3a or Mbd3b compared with mock 46C 
lines. The highest Sox I expression corresponds to Mhd3 	ES cells after 8 days in 
serum-free monolayer differentiation conditions. From left to right: Mhd3(3 /'b0 	ES cells, 

Mbd3- -tlhd3a  Mbd3a overexpressing ES cells, 46C ES cells, 46C Mbd3a overexpressing 
ES cells, 46C Mbd3b overexpressing ES cells, 46C Mock ES cells, D8 monolayer 
differentiation sample from Mbd3 -"° ES cells, minus reverse transcriptase and negative 
(water) sample. 
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Figure 5.13 Monolayer differentiation at D8 and D 1 live cultures shows 
no precocious or increased neuronal differentiation in overexpressing 
46CM 3 a cell line, in comparison with both its parental line 46C and Mock 
cell line. 



5.7 Study of neural stem cells lacking Mbd3 

5.7.1 Mbd3 NS from Mbd3 -'I-1  ES 

I observed a differentiation defect of Mbd3 ES cells into neural precursors and 

terminally differentiated neural cells. These observations raise the question of 

whether this deficiency is due to a defect in ES-specific signalling pathways, or 

whether Mbd3 is involved in other stages of differentiation. To answer that question, 

I aimed to obtain a pure population of Mbd3' neural stem cell lines (NS cells). 

A first attempt to derive Mbd3 NS cells from Mbd3 ES cells was 

unsuccessful. This result was expected since the number of neural progenitors in the 

first step of neuroectoderm differentiation in monolayer is dramatically reduced in 

Mbd3 cultures. This was the case both for Mbd3' and Mbd3' ES cells, 

although the later formed neurosphere-like colonies that failed to produce NS cells. 

These experiments may indicate that Mbd3 is necessary for the ES-NS cell 

transition. 

5.7.2 Mbd3° iiI ) NS Crc-deletion 

Subsequently, a variety of strategies were tested to obtain Mbd3 NS cell lines. 

In first place, Mbd3 foxed NS cells (Mbd3 (3FIox/-))  which have two loxP sites 

flanking the entire Mbd3 gene, were electroporated with CAG-CRE-IP. This 

construct contains a CAG promoter that drives the expression of the Cre 

reco,nbinase and puromycin-N-acetyltrans[erase (pac) genes simultaneously due to 

the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) 

(Mountford et al., 1994). The CAG promoter, which includes chicken 3-actin 

promoter and a CMV immediate-early enhancer element (Niwa et al., 1991), drives 

robust transgene expression in ES cells (Niwa et al., 2000; Chambers et al., 2003). 

Additionally, the plasmid CAG-IP was electroporated in a control set of cells 

(mock experiment). I also co-transfected 1/10 amount of a CAG-GFP-IP construct, 

as an early marker for transfected cells. With this strategy, GFP positive NS cells 

were sorted out and replated at clonal density. However, no NS colonies could be 

obtained by this strategy in comparison with the mock transfected group where 

colonies were recovered at expected frequencies. 
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These results could be due to three reasons; first, Mbd3 NS cells may not be 

viable, and as soon as Mbd3 is not present in the cell, NS cells die. Second, Mbd3 

NS cells may survive but can not proliferate and divide symmetrically in NS 

daughter cells to give rise a colony. Third, Mbd3 NS may be viable and can 

proliferate but the efficiency of Cre transfection is so low that colonies cannot be 

detected. 

5.73 Mbd3 NS from 1Ibd3 °' Cre-ER T2  ES 

To determine whether Mbd3 	NS cells are viable, a second strategy was 

designed to obtain Mbd30  NS cells where Mbd3 could be deleted at a determined 

time point. This strategy consisted in making conditional knock out Mbd3 ES cells 

using the tamoxifen inducible form of the Cre recombinase, Cre-ER T2, where the Cre 

recombinase is fused with the ligand binding domain of the estrogen receptor (ER) 

(Metzger et al., 1995). A mutation in the binding site of the receptor prevents the 

binding of cell endogenous estradiol, and is only activated by synthetic ligand 4-

h1droxytarnoxifen (OHT or tamoxifen) (Fell et al., 1996; Fell et al., 1997). This 

strategy would allow discerning in which different steps from ES cell to 

differentiated cell Mbd3 is necessary. 

Mbd301 ES were stably transfected with the vector CAG-Cre-ER T2-IP and 

CREERT2 -ES clones were selected based on a correct response to tamoxifen. This 

selection screened those clones where Mbd3 was not detected by genotyping PCR in 

addition of tamoxifen. However, PCR experiments denoted that some clones already 

contained cells where Mbd3 had been deleted in absence of tamoxifen. This effect 

may be caused by the strong CAG promoter of the construct that would start the 

synthesis of Cre in the absence of tamoxifen. Nevertheless, I decided that it would be 

worth while to continue with the derivation of the NS cell lines (from the clones with 

less "leaking"), since my previous data showed that Mbd3 ES cells are unable to 

differentiate into NS cells and so, those undifferentiated cells would be eliminated by 

the differentiation conditions. 

Subsequently, four different clones of Mbd3'°  CRE-ERT2  ES cells were 

chosen to derive NS cell lines (A8, C4, Fl and F4), and once obtained, Mbd30 

CRE-ERT2  NS cells were further characterised. To ensure that the tamoxifen 
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concentration necessary for the experiment is not toxic for the NS cells, I tritated the 

tamoxifen concentration that NS cells can tolerate and found that wild type cells can 

be maintained in double the working tamoxifen concentration without any 

observable effect. During derivation of NS cell lines, the cultures consist of a mixed 

population of cells, yet they become progressively more homogenous with the 

passages in the presence of EGF, bFGF and NS-A media. Hence, although, 

Mbd30 CRE-ER ' 2  NS cultures were expressing neural stem cell markers (Rc2, 

Nestin and Vimentin) (figure 5.14.2A-2E) in this non-pure first step, they had 

different morphology than Mbd3 NS cultures (figure 5.14. 1A-1E), and other 

non NS cell types were found in the cultures. Mbd3 deletion on addition of 

tamoxifen was confirmed by PCR genotyping. However, as in the case of the ES 

cells, a percentage of NS cells were already Mbd3 null even without addition of 

tamoxifen (figure 5.14.3). 
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Figure 5.14. 1&2.Both Mbd3 3"° and Mbd3'3flbCREERT 2  cell lines express 
neural stem cell markers after 3 passages from ES derivation. Panel I. 
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D. E. F. bright field. Panel 3. Genotyping PCR, from left to right wild type NS 

cells. !vfbd3 3 t1  foxed clones A8, C4, Fl and F4, Cre plasmid, Mbd3 ES 
cells and negative control (water sample) with and without tamoxifen. From up 
to down, set of primers to amplify Cre, foxed allele (Flox) and null allele. 
Mbd31can be detected in absence of tamoxifen. 
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During subsequent passages the control wild type NS cell line was forming a 

uniform looking culture, consisting of a pure population of NS cells. In contrast the 

four CRE-ERT2  NS lines were losing their ability to proliferate and self renew until it 

was not possible to maintain the lines. Concordantly, these lines stopped expressing 

neural stem cell markers. This effect was observable both in the presence or absence 

of tamoxifen, although those not treated with tamoxifen showed a slightly higher 

proliferation rate (figure 5.15). 

To study the effect of lack of Mbd3 in differentiated cells, Mbd3 lHoO  Cre-

ERT2 NS lines were differentiated into astrocytes in the presence of serum and 

absence of growth factors. In these experiments 1 could observe that, although there 

were some Gfap positive astrocytes in the cultures (figure 5.17), they were dying by 

apoptosis within 6 days, in contrast with control experiments with Mbd3'°' Mock 

NS lines (figure 5.16). This effect was observable both in the presence and absence 

of tamoxifen, and it cannot be definitely concluded that Mbd3 is necessary for the 

maintenance of healthy astrocytes, because without tamoxifen, not all of the 

astrocytes might be Mbd3 null. 
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Figure 5.17 lmmunocytochemistry of differentiated astrocytes from 
Mbd3" CRE-ER12  cell lines in comparison with wild type. The frequency 
of astrocyte differentiation is dramatically lower, which correlates with a 
slower proliferation, loss of neural stem cell markers, and apoptotic process as 
seen in fig 5.17. Upper panel, immunostained for Gfap in green and Rc2 in 
red. Lower panel stained for Vimentin. The results are independent of 
tamoxifen addition. First and third row, Tamoxifen added. Second and fourth 
row, no tamoxifen added. 



Given that the CreERT2  system could not give a conclusive answer to 

whether Mbd3 is necessary for NS cell formation, a third strategy was designed. The 

drawback of transfection by electroporation in NS cells is the low cell viability after 

electroporation, thus I felt necessary to test whether the absence of Mbd3 NS 

colonies after transfection was due to the inability for NS cells to survive in the 

absence of Mbd3 or to the combination of very low transfection efficiency and very 

low cell survival after electroporation. To test this hypothesis the nucleofection 

system was used instead. This system allows much higher cell viability after 

transfection and happens very rapidly because it delivers the DNA directly into the 

nucleus. The biggest benefit is, however the higher efficiency of transfection of 70% 

compared with 20% by electroporation. 

Mbd3° NS cells were nucleofected with the CAG-Cre-IP and CAG-IP( 

as control) constructs. The transfected cells were separated in two groups, one was 

cultured in the presence of puromycin, and in another group Gfp positive cells were 

FACS sorted. These experiments were done in duplicate. In the first experiment drug 

selection was maintained for 5 days and in the second experiment drug selection was 

maintained for 3 days. Surprisingly, colonies were recovered in both groups, 

although in a much lower frequency than same cells electroporated with a Mock 

plasmid GFP-IP (table 5.1) 

CAG-CRE-IP 

PURO FACS sorted 

Expi CRE 5.6% 22.29% 

Exp2 CRE 17.53% 17.32% 

Table 5.1 Percentage of recovered colonies after deletion of Mbd3 by Cre 

recombination of Mbd30 NS cells in two independent experiments. In 

experiment 1 puromycin selection was maintained for 5 days, while in experiment 2 

puromycin selection was maintained for 3 days. 
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All the surviving colonies were picked, expanded and genotyped. The 

approximate frequency of Mbd3 colonies by genotyping PCR was 23%, and from 

them 5 were expanded and stocked (figure 5.18.A). Thus, Mbd3 is not required for 

NS cell viability. 

5.7.4 Mbd3 NS astrocytic differentiation 

Two Mbd3" NS cell lines were selected for astrocytic differentiation. Mbd3 

NS cells, in the presence of serum and absence of EUF and bFGF, did differentiate 

into morphologically normal astrocytes. Immunocytochemistry confirmed that 100% 

of the cells were Gfap positive. Hence, astrocytes can be maintained in the absence 

of Mbd3 (figure 5.18.13) 

In addition, I wanted to study whether deletion of Mbd3 would affect astrocytic 

viability. To determine this, Mbd3"° were plated in astrocyte differentiation 

conditions for 7-10 days, and subsequently were harvested and co-transfected by 

nucleofection with Cre expression and Gfp constructs previously described. The 

survival after replating of differentiated astrocytes was proven to be very low 

independently of transfection, since non-transfected replated astrocytic cultures show 

similar recovery to transfected cultures. The efficiency of transfection, estimated by 

the number of Gfp positive cells, was as well very low, and there was no evidence 

for proliferation. Genotyping PCR showed no Mbd3' in the cultures. It is possible 

that in order the gene to be deleted in the nucleus the cell need to be in a proliferative 

state (figure 5.19.A). 

In a independent experiment, Mbd3'°" NS were transfected with Cre 

expression construct and consequently exposed to serum to promote astrocytic 

differentiation at different time points. In addition, a set of clones were cultured with 

puromycin selection and other set without purornycin selection. Subsequently, these 

clones were genotyped by PCR. From these experiments I can conclude that Mbd3 

Gfap positive astrocytes can be maintained in vitro (figure 5.19.13). 

In summary my experiments demonstrate by two independent strategies that 

surprisingly, Mbd3 NS cells can differentiate into astrocytes. 
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Figure 5.19 

Mbd30 -) NS-derived astrocytes 10 days old are transfected with Cre or 
Mock plasmid. The efficiency of transfection is low. Below, genotyping PCR 
to amplify wild type allele (WT) and null allele (Null) for 40 cycles reveals 
no deletion of Mbd3. Samples from left to right: Mbd3 1" NS-derived 
astrocytes transfected with Cre plasmid (Cre), with Mock plasmid (Mock), 
Mbd3( -  -, ES as positive control, and negative control (-ye). 

NS cells were transfected and subsequently serum was added after 24 
hours. Immunoctychemistry reveals Gfap/Gfp coexpression (Gfap is in red 
and Gfp in green). Below, genotyping PCR reveals Cre deletion of Mbd3 in 
NS derived astrocytes. From left to right NS-derived astrocytes in the 
following conditions: Crc transfected (Cre), Cre transfected with puromycin 
selection (Cre Puro), Mock transfected (Mock), Mock transfected with 
puromycin selection (Mock Puro), Cre transfected (Cre), Mock transfected 
(Mock), wild type, Mbd3 -) ES as negative control (Null), and water sample 
as negative control (-ye). 



5.8 Summary 

Mbd3 ES cells show neuroectodermal differentiation impairment. Mbd3 

ES cell neuronal differentiation efficiency is extremely low and they cannot 

differentiate into astrocytes in two different systems tested: serum free monolayer 

differentiation and PA-6 co-culture. Mbd3 cells do not die during differentiation 

since the number of caspase-3 positive cells is not higher, rather is lower, than wild 

type cells. Mbd3 cells can remain as undifferentiated ES cells positive for Oct-4 

in the absence of LIF and serum for minimum of two weeks, and neural stem cell 

markers cannot be detected by RT-PCR. Overall, these experiments demonstrate that 

Mbd3 is necessary for ES cells to transit from Oct4 positive pluripotent cell to neural 

cell. 

The efficiency of colony formation in conditionally deleted Mbd3 NS cells 

is much lower than the control. However, Mbd3 NS cells can be obtained, and can 

differentiate into Gfap positive astrocytes. Hence, Mbd3 is not essential for NS cell 

and astrocyte survival. 

5.9 Discussion 

5.9.1 Why only neurons? 

Why are Mbd3 ES cells able to differentiate into post-mitotic neurons and 

not other cell types that could be marked by Gata4 or Gfap in the monolayer 

differentiation system? Is it because cells have an intrinsic neuronal differentiation 

default mechanism (Tropepe et al., 1999) and therefore, even in impaired 

differentiation conditions such as the lack of Mbd3 is still possible for the cell to 

become a neuron? Although Nestin is a marker for all neural precursors and there are 

TuJ1 positive cells, there is a negligible proportion of Nestin positive cells in the 

cultures. Is this transition specifically faster in the absence of Mbd3 so that Nestin 

positive cells are rarely detected? 

5.8.2 Terminally differentiated astrocytes? 

Interestingly, although Mbd3 ES cells did not differentiate into astrocytes, 

Mbd3" NS cells could, apparently healthily and efficiently. Is this because once the 
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null NS cell is developmentally beyond the Mbd3-dependent signal that prevents 

differentiation and maintains its pluripotency can function normally? This is unlikely 

to be the case given the extreme difficulties and low efficiency of Mbd3 NS cell 

derivation. On the other hand NS cells can differentiate into Gfap positive cells in 

less than 8 hours in the presence of Bmp4, and surprisingly, they can regain neural 

stem cell characteristics with Bmp4 withdrawal and bFGF/EGF signalling (S. 

Pollard, personal communication). Hence, it is possible that Gfap positive NS 

derived cells are quiescent progenitor cells and not fully differentiated post-mitotic 

astrocytes. Although Gfap is the key astrocytic marker in the field, it is increasingly 

clear that Gfap "positiveness" is not synonymous with terminal differentiated post-

mitotic cell. Mouse post natal and adult radial glia, and human and primate radial 

glia are GFAP positive regardless of neurogenic capability (Choi and Lapham, 1978; 

Levitt and Rakic, 1980) (Malatesta et al., 2000). There are as well several reports 

where astrocytes have neurogenic potential (Casper and McCarthy, 2006; Garcia et 

al., 2004; Sanai et al., 2004). Therefore, I suggest that Gfap should be considered 

more as stem cell marker than as post-mitotic fully differentiated marker. 

In conclusion, it may be possible that Gfap positive Mbd3 cells obtained 

after growth factor withdrawal and addition of serum are quiescent progenitor cells 

and not terminally differentiated Mbd3 astrocytes. If this would be the case, the 

question of whether astrocytes can survive without Mbd3 would remain to be 

answered. 

5.8.3 Aberrant TuJ1 expression 

In Mbd3 monolayer cultures, there are cells stained with the antibody TuJ1, 

and though the signal is not high, it is above the background. TuJl is a monoclonal 

antibody that reacts with c-terminal class III f3 tubulin, which is the earlier marker of 

neuronal differentiation after or during cell division (Lee et al., 1990b). There is 

evidence of TuJ 1 positive cells in sertoli cells of the testis (Lewis and Cowan, 1988), 

transiently in non neuronal embryonic tissues (Lee et al., 1990a) and in some types 

of tumorigenic cells (squamous cell carcinomas, lymphomas and melanomas) (Scott 

et al., 1990). Perhaps, the immunoreactivity of Mbd3 ES cells to TuJ1 in 

differentiation conditions could be associated with its differentiation into another 

179 



type of embryonic tissue or its differentiation deficiency, which could lead to 

aberrant cell types TuJ1 positive. 

5.8.4 Further directions 

A key cell model to understand the function of Mbd3 in a non pluripotent cell 

is the use of NS cell technology. As explained in this chapter, to obtain Mbd3 NS 

cells is extremely difficult. However, I have demonstrated that Mbd3 NS cells can 

survive and can undergo apparent astrocytic differentiation. It will be very interesting 

to characterise these cells further and analyse their proliferation, self-renewal and 

differentiation into neuronal lineages. 
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CHAPTER 6 

GENERAL DISCUSSION AND FUTURE DIRECTIONS 

6.1 DNA methylation, MeCPs and history 

Great discoveries in the field of DNA methylation have been achieved during 

the last few years. These frantic advances have lead to an evolution in the 

comprehension of the function of the methyl-CpG binding proteins. Biochemical 

analysis demonstrated the existence of four methyl-CpG binding proteins to 

interprete the DNA methylation signal (Cross et al., 1997; Hendrich et al., 1998). 

The MeCPs can induce transcriptional repression by the recruitment of chromatin 

remodelling complexes to the methylated DNA. The repression machinery partners 

for each MeCP have already been revealed (Jones et al., 1998; Nan et al., 1998; Ng 

et al., 1999; Sarraf and Stancheva, 2004; Wade et al., 1999; Yoon et al., 2003b). 

Several years ago, researchers in the field were expecting global gene 

expression changes in the MeCP2 null animal models (Nan et al., 1997;(Willard and 

Hendrich, 1999). Given that MeCP2 was shown to require only a single methylated 

CpG base pair to bind, it was predicted that this protein would act as a global 

transcriptional repressor, and its absence would cause transcriptional noise (Nan et 

al., 1997). This binding capability is also shared by Mbdl and Mbd2 (Cross et al., 

1997, Hendrich et al., 1998). Later, and progressively, it was understood how 

MeCP2 was most likely involved in silencing of individual targets- (Chen et al., 2003; 

Martinowich et al., 2003). Recently, K!ose and colleages discovered that MECP2 

needs an AlT run in its binding site. This finding opens a new view for MeCP2 and 

its relation with the rest of the MeCPs. In the first place this specificity will allow to 

quickly find new targets for MeCP2, which before was believed to only need a single 

methylated mCpG (Kiose et a! 2006). Although MeCP2 can not occupy Mbd2 

binding sites, Mbd2 can bind MeCP2 binding sites, thus Mbd2 could fit in the role of 

global transcriptional repressor. However, Mbd2 null mice have proven this not to be 

the case (Hendrich et al, 2001). In contrast, specific target genes have been revealed 

to be regulated by Mbd2 (Hutchins et al., 2002; (Auriol et al., 2005). Mbdl can bind 

specifically with its zinc finger domain to unmethylated CpGs as well as mCpGs 
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with its MBD (Jorgensen et al., 2001). Mbdl was found to bind the human FGF2 

CpG island promoter via its CxxC zinc finger domain (Ueba et al., 1999), although 

further studies have ruled out FGF2 as a target gene of Mbdl (Jorgensen et al., 

2001). The Kaiso binding site has two consecutive mCpG pairs and consequently, 

several candidate target genes have been proposed . However, Kaiso null mice have 

recently been shown to have no misregulation of these candidate genes 

(Prokhortchouk et al., 2006). 

6.2 MeCP- redundancy or tailor-made MeCPs? 

It has been widely hypothesised a possible functional redundancy between 

the MeCPs, as a clever mechanism to ensure silencing of methylated genes. The 

hypothesis was driven to answer two obvious questions: why does the vertebrate 

genome encode four methyl-CpG binding proteins, and why does the disruption of 

Mbdl, Mbd2 or Kaiso cause mild phenotypes in mouse models (Zhao et al, 2003; 

Hendrich et al., 2001; Prokhortchouk et al., 2006)? In concordance with this 

hypothesis, studies carried out in our lab demonstrated how the mice survival to the 

RTT-like disease was directly regulated with the number of MeCPs that they still had 

left. 

In disagreement with this hypothesis, and as discussed above, Mecp2 can not 

bind Mbd2 sites, and the knock down of Mbd2 does not cause binding to Mbd2 sites 

by MeCP2 or Mbdl (Ariol et al., 2005). It is possible that each MeCP targets 

repression to currently unkown individual target genes but as part of several other 

layers of transcriptional repression machinery to ensure correct silencing. 

Surprisingly, this year was demonstrated the existence of another two methyl-

CpG binding proteins, closely related with Kaiso and enlarging the family (Filion et 

al., 2006). What is more, this study opens the door to the possibility of many other 

unknown methyl-CpG binding proteins! 

6.3 MeCPs and the central nervous system 

Irrespective of whether there is functional redundancy between the 6 MeCPs 

or they play very specific silencing roles, what is still clear is that MeCPs have an 

important role in the central nervous system. This is where they are primarly 
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expressed, and the absence of MeCP2, Mbdl or Mbd2 causes cognition-related 

dysfunctions. In addition to Rett Syndrome, there is a number of other neurological 

diseases caused by epigenetic dysfunction in which defects in synaptic circuits and 

neuronal maturation are involved (Zoghbi et al., 2003; Martin and Sun, 2004) . This 

demonstrates the consequences of the aberrant activation or silencing of 

epigenetically regulated genes that are crucial for neuronal function. 

In this thesis I have investigated the hypothesis of whether MeCPs Mbd2, 

MeCP2 and Kaiso control neural stem cell decisions and whether this process occurs 

in a functionally redundant manner. This hypothesis was driven by the observations 

that MeCP2 control neural stem cell neurogenesis in Xenopus laevis (Stancheva et 

al., 2003), that Mbdl is involved adult neural stem cell neurogenesis (Zhao et al., 

2003) and that the Kaiso-containing NCoR complex is necessary to maintain 

undifferentiated neural stem cells (Jepsen et al., 2000, Hermanson et al., 2003). 

My studies reveal that MeCPs are not necessary for neural stem cell function. 

This conclusion is driven by studies both from individual MeCPs as well as a triple 

knock out of the MeCP2, Mbd2 and Kaiso genes. This conclusion agrees with 

parallel findings in the study of MeCP2 function in neurospheres where MeCP2 is 

found innocent of 'neural stem cell-ness matters' in mouse (Kishi and Macklis, 

2004). In concordance with the lack of a role for Kaiso in neural stem cells, Kaiso 

has not been found to be a component of NCoR in mouse cells (Prokhortchouk, 

personal communication). 

On the other hand, I found that MeCPs may be important in neuronal 

differentiation and maturation, following the train of recent discoveries in the field 

that appoint the most extensively studied MeCP, MeCP2 as an important player in 

neuronal maturation. Hence, although there may not be functional redundancy 

because the proteins have specific targets, it is possible that the maturation reflects 

several deficits accumulated within the cell to differentiate into neuronal fate. It will 

be very interesting to discern this question by studying the neuronal differentiation in 

MeCP2 and Mbd2 single null NS lines. 

Once determined in vitro which protein or proteins are involved in neuronal 

maturation, it would be worth while to undertake detailed in vivo behavioural tests 

and learning and memory assays in mice to study whether the absence of MeCPs do 
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cause disruption of the complex neurocircuitry of the brain, in addition to what is 

already known for MeCP2-null mice. 

6.4 Mbd3 rules pluripotency. What about multipotency? 

In contrast with these findings, the only MBD protein that does not bind 

methylated DNA has been revealed in this study and in combination with the work 

of Dr. Hendrich and Dr. Kaji in the lab, indispensable for cell fate determination in 

embryonic stem cells. Mbd3 is the scaffold protein that brings together the NuRD 

corepressor complex. Although Mbd3-deficient ES cells present a severe defect in 

the differentiation into post-mitotic neurons, this differentiation pathway is not 

completely blocked and may correspond with a derepression of genes involved in 

this pathway by NuRD complex. Hence, the isolation of neural stem cell state in the 

absence of Mbd3 was proven to be possible, although inefficient. Since Mbd3 

NS cells have been generated, it would be very interesting to use them as a base for 

microarray experiments comparing wild type and null NS cells to search for possible 

gene upregulations in Mbd3 NS cells that could aid the finding of candidate genes 

involved in neural stem cell function. 

The next question to ask is whether Mbd3/NuRD regulates gene 

signalling involved in neural specification and/or neural self-renewal. Is Mbd3 only 

involved in early cell fate decisions so that the consequences are driven into blocking 

all types of tissue specification or is Mbd3 involved in most cell fate decisions? In 

agreement with this last hypothesis, Mbd3 is ubiquitously expressed throught the 

organism and MTA-3, a cell-specific subunit of NuRD is involved in B cell fate 

determination (Fujita et al., 2005). It would be very interesting to compare these 

results with the microarray studies performed previously in the lab between wild type 

and null ES cells and study whether there would be many or few overlapping 

upregulated candidate genes (figure 6.1) 
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Figure 6.1 Diagram of hypothetical NuRD target genes. Mbd3-containing 
NuRD corepressor complex has been shown to be necessary for ES cell 
differentiation (Kaji et al., 2006). The next question to be resolved is whether 
NuRD plays a role in multipotency decisions. In the neural stem cell system, 
NuRD may mediate transcriptional silencing of genes involved in neural stem 
cell fate decisions. A and B represent hypothetical NuRD target genes and C 
represent a target gene of B gene. 



6.5 Mbd3 and the central nervous system 

Evidence accumulated over the past three years suggests a specific role for 

Mbd3 in neurogenesis ((Fan and Hutnick, 2005; Jung et al., 2003) and this thesis). 

Since the absence of Mbd3 results in such dramatic consequences from very early 

development, it it has not been possible to study the role of Mbd3 in the brain. It is 

demanding to develop conditional Mbd3 animal models to allow the study of the 

role of Mbd3 in vivo at different times of brain development and adult brain. It will 

be very interesting to study Nestin-Cre/Mbd3'° animal models where Mbd3 will 

be deleted by Cre recombination once neural precursors start to be formed in the 

developing brain (E9-E10 dpc) (Bates et al., 1999; Trumpp et al., 1999), as well as 

aCamKII-CreIMbd3'31°  mouse models where the deletion of Mbd3 occurs only in 

cells expressing aCamKII, which is a postmitotic specific kinase (Tsien et al., 1996). 

These animal models are in preparation in the lab. Further information would be 

retrieved by the generation of Cre-ER T2/Mbd3 3°  mice, to study selectively at a 

variety of time points through the development the consequences of Mbd3 deletion 

in the central nervous system. 

Through the neuroectoderm differentiation model system used in my studies I 

found that in parallel with the Mbd3 ES differentiation deficiency, ES cells 

expressing Mbd3c isoform, Mbd3' had impaired differentiation although less 

severe. Therefore, it would be very interesting to study the consequences of the 

exclusive presence of Mbd3c in mice, to determine the extent to which it can rescue 

the Mbd3-null phenotype. 
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