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T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy
Institute of Computing Systems Architecture

School of Informatics
University of Edinburgh

2013







Abstract

The main challenge faced by a dynamic compilation system is to detect and
translate frequently executed program regions into highly efficient native code
as fast as possible. To efficiently reduce dynamic compilation latency, a dy-
namic compilation system must improve its workload throughput, i.e. com-
pile more application hotspots per time. As time for dynamic compilation
adds to the overall execution time, the dynamic compiler is often decoupled
and operates in a separate thread independent from the main execution loop
to reduce the overhead of dynamic compilation.

This thesis proposes innovative techniques aimed at effectively speed-
ing up dynamic compilation. The first contribution is a generalised region
recording scheme optimised for program representations that require dynamic
code discovery (e.g. binary program representations). The second contribu-
tion reduces dynamic compilation cost by incrementally compiling several
hot regions in a concurrent and parallel task farm. Altogether the com-
bination of generalised light-weight code discovery, large translation units,
dynamic work scheduling, and concurrent and parallel dynamic compilation
ensures timely and efficient processing of compilation workloads. Compared
to state-of-the-art dynamic compilation approaches, speedups of up to 2.08
are demonstrated for industry standard benchmarks such as BioPerf, Spec
Cpu 2006, and Eembc.

Next, innovative applications of the proposed dynamic compilation scheme
to speed up architectural and micro-architectural performance modelling are
demonstrated. The main contribution in this context is to exploit runtime
information to dynamically generate optimised code that accurately models
architectural and micro-architectural components. Consequently, compila-
tion units are larger and more complex resulting in increased compilation
latencies. Large and complex compilation units present an ideal use case for
our concurrent and parallel dynamic compilation infrastructure. We demon-
strate that our novel micro-architectural performance modelling is faster than
state-of-the-art Fpga-based simulation, whilst providing the same level of
accuracy.
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• I.Böhm, B.Franke, and N.Topham, “Cycle-Accurate Performance Mod-
elling in an Ultra-fast Just-in-Time Dynamic Binary Translation In-
struction Set Simulator,” in International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS’10),
2010.
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1

—For over a decade prophets have voiced the con-
tention that the organization of a single computer
has reached its limits and that truly significant ad-
vances can be made only by interconnection of a mul-
tiplicity of computers.

Gene Amdahl - 1967

1
Introduction

This chapter gives a general introduction to the goals and
main contributions of, and challenges addressed by this thesis.

Programming language implementations using portable program repre-
sentations [26, 60, 67, 82], simulation systems (e.g instruction set simula-
tors [14, 15]), dynamic binary translators [3, 16], and dynamic optimisation
systems [9, 22] all rely on implementations that defer machine specific code
generation and optimisation until runtime [5] to enable satisfactory execu-
tion speeds. Translation that occurs after a program begins execution is
referred to as dynamic compilation or Just-In-Time (JIT) compilation [7].
Its purpose is to improve the time and space efficiency of programs. The
technology is so effective that it has become a part of our everyday lives,
embedded in web browsers (e.g. JavaScript engines), virtual machines (e.g.
Oracle HotSpot/JRockit JVM, Common Language Runtime), mobile device
operating systems (e.g. Google Android), and many more.

Dynamic compilation occurring at runtime inevitably incurs an overhead
and thus contributes to the total execution time of a program. There is a
trade-off between the time spent for dynamic compilation and total execution
time. If, on the one hand, lots of effort is spent on aggressive dynamic
compilation to ensure generation of highly efficient native code, too much
compilation time will be contributed to the total execution time of a program.
If, on the other hand, too little time is spent on optimising code for execution
during dynamic compilation, the runtime performance of the target program
is likely to be suboptimal. This thesis presents a dynamic code discovery and
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compilation strategy that is aimed at reducing dynamic compilation latency
by adaptively prioritising the hottest most recently executed program regions
to be compiled in parallel, concurrently with the execution of the target
program.

1.1 Problem - Dynamic Compilation Latency

The purpose of a dynamic compilation system is to achieve the lowest possi-
ble total execution time of a target program. The main challenge is to quickly
discover executable code and translate frequently executed code as fast as
possible into highly efficient native code. In this Section we first outline the
problem of code discovery followed by strategies for dynamic translation of
executable code. Finally, we conclude by recognising that dynamic compi-
lation latency indeed is a problem and a metric we should try to optimise.
Reducing dynamic compilation latency enables a reduction in total execu-
tion time (i.e. performance improvement) and improves response time for
interactive applications.

1.1.1 Code Discovery

In general there are two classes of program representations. The first class
includes program representations where instructions can be separated from
data (e.g. Java byte-code, Common Intermediate Language, JavaScript).
Such representations are amenable to static translation ahead of execution.
The second class includes binary program representations in the form of
hardware machine instructions where “the identification of executable code,
i.e. the separation of instructions from data [...] is equivalent to the Halting
Problem and is therefore unsolvable in general” [55].

Consequently it is harder to detect program regions for dynamic com-
pilation for the latter class of program representations as this cannot be
done statically. Instead, executable code discovery is performed dynamically,
translating sections of code incrementally as the program reaches them [93].
In research literature dynamic discovery of instruction sequences is commonly
referred to as tracing [9] and the process of dynamically compiling traces as
trace compilation. The dynamic code discovery strategy presented in this
thesis falls into this category, but can equally well be applied to program
representations that allow static discovery of executable code.
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The data-structure used for recording traces must be carefully chosen
as it is manipulated on the critical path of program execution. It must be
compact in terms of size, enable fast trace recording and analysis, and permit
efficient native code generation. Various linear and tree-like data-structures
have been proposed and are used in state-of-the-art systems [9, 40]. More
recent implementations transform linear trace data-structures into graph-
based structures [11, 49, 50] to work around the problem of excessive code
duplication that occurs due the fact that a single basic block can be recorded
as a part of multiple traces.

1.1.2 Dynamic Compilation

Once executable code has been discovered it must be translated into effi-
cient native code as fast as possible. Deciding when and how to dynamically
compile a region of code is the next challenge. State-of-the-art dynamic
compilation systems [9, 26, 60, 67, 82] are threshold based. They consider a
program region for compilation or re-compilation when a user defined exe-
cution threshold is reached. Choosing a low execution threshold results in
the selection of many program regions for compilation and a high workload
for the dynamic compilation subsystem. While a high execution threshold
causes less pressure on the dynamic compiler as only very frequently executed
regions of code are considered for compilation, more time is spent executing
code in a slow interpreter or unoptimised machine code.

Application runtime parallelism is another factor affecting the workload
of a dynamic compiler. A multi-threaded task parallel application executing
different code in each thread puts much more pressure on a dynamic compila-
tion system than a data-parallel or sequential application. Finally, a dynamic
compiler must decide how to compile a region of code by committing to a set
of optimisations it applies. Again, there is a trade-off between the quality of
generated machine code and time spent on optimisation.

1.1.3 Compilation Latency

Faster availability of optimised native code minimises the time spent in an
interpreter or unoptimised machine code, thereby improving application per-
formance. As dynamic compilation adds to the overall execution time, it is
often decoupled and operates concurrently in a separate thread independent
from the main execution loop [47,63,64] (see 1© in Figure 1.1). This approach
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improves application responsiveness by reducing pause times due to dynamic
compilation. It does not, however, reduce dynamic compilation latency.

Dynamic compilation workload has a significant impact on dynamic com-
pilation latency. As new program regions are discovered and dispatched for
dynamic compilation, the dynamic compiler may still be busy compiling pre-
vious code regions. To avoid waiting until the dynamic compiler has finished
its current work, a common solution is to put pending translations into a
queue [67] for later processing. While this solution avoids waiting, it does
not solve the dynamic compilation latency problem. An overloaded dynamic
compilation system will have many pending program regions in its queue as
the dynamic compilation thread cannot keep up with the workload, causing
a long delay between code region dispatch and native code availability.

Especially in the context of high-speed architectural and micro-archi-
tectural processor simulation, dynamic compilation latency is a significant
problem. To enable effective exploration of the architectural and micro-
architectural processor design space, customised code simulating architec-
tural and micro-architectural components (e.g. processor pipeline, caches,
closely coupled memories, memory management unit, brach prediction unit)
is dynamically compiled. Consequently compilation units are larger and more
complex resulting in high compilation latencies.

1.2 Solution - Speeding up Dynamic

Compilation

In this Section the high-level idea for speeding up dynamic compilation is
outlined followed by a number of key research innovations aimed at improving
dynamic code discovery and reduction of dynamic compilation latency in
state-of-the-art virtual machines and execution environments.

To effectively reduce dynamic compilation latency, a dynamic compilation
system must improve its workload throughput, i.e. compile more application
hotspots per unit of time. This problem is related to the workload static com-
pilers face when compiling large scale applications. To improve compilation
throughput, build systems or static compiler drivers identify independent
translation units and exploit separate compilation, a feature supported by
most programming languages, to compile independent translation units in
parallel [111]. Given unlimited hardware parallelism, the speedup achievable
by a parallel compiler is limited by the time it takes to compile the largest
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Compile Dynamic CompilationInterp Interpretation

Profile Interpretation with Profiling Native Native Code Execution
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Dynamic Compilation using one Concurrent JIT Compiler 

Dynamic Compilation using Concurrent and Parallel JIT Compiler Task Farm 

Figure 1.1: Motivating Example: 1© Dynamic compilation using one concurrent
Jit compiler decoupled from main execution thread. 2© Demonstrates concurrent
and parallel dynamic compilation task farm to effectively reduce dynamic compi-
lation latency and enable earlier transition to native code execution.

translation unit, plus a sequential fraction that consists of discovering in-
dependent translation units and linking the final executable. Successfully
exploiting concurrent and parallel compilation in the context of a dynamic
compiler using dynamic code discovery is the key research contribution of
this thesis.

First, a novel way to dynamically discover, i.e. trace, executable code
incrementally for dynamic compilation is presented. This can be applied
to program representations where static code discovery is not possible. It
records dynamic control flow and is light-weight, enabling tracing right from
the first instruction. This avoids a period of interpretation until either specific
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structures (e.g. loop headers) are encountered or execution thresholds are
exceeded. Consequently more opportunities for dynamic compilation can be
discovered earlier.

Being able to discover more independent code regions for dynamic com-
pilation, the idea of decoupled dynamic compilation is taken a step further.
A scalable, truly parallel dynamic compilation scheme based on the parallel
task farm design pattern [104] is proposed. It is designed to execute concur-
rently with the target program and effectively reduces dynamic compilation
latency by exploiting the concept of parallel compilation. Figure 1.1 illus-
trates that improved code discovery and task parallel dynamic compilation
2© improves compilation throughput and reduces the time until native code

execution can start in comparison to current approaches 1©.

Finally, it is paramount that the proposed techniques scale and adapt
automatically to changing workloads, and efficiently exploit parallelism and
concurrency available on contemporary multi-core architectures. Given re-
source constraints (e.g. number of dynamic compilation threads) execution
frequency thresholds adapt automatically to achieve a good balance between
dynamic compilation throughput and execution speed. Given several compi-
lation units awaiting dynamic compilation an efficient dynamic work schedul-
ing scheme ensures that the most important compilation units are priositised
for compilation.

1.3 Contributions

This thesis presents new techniques and approaches for dynamic code discov-
ery and dynamic compilation exploiting parallel design patterns to improve
dynamic compilation throughput, better response times, and utilise multi-
core architectures. Among the main contributions of this thesis are:

1. The introduction of a novel interval based and light-weight dynamic
code discovery approach. Dynamic application control flow is recorded
and analysed for incremental dynamic compilation, considering all fre-
quently executed paths (i.e. hot regions) and not just traces restricted
to regular loops,

2. the introduction of an innovative parallel task farming strategy for truly
concurrent dynamic compilation of hot regions,
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3. the development of dynamic work scheduling and adaptive hotspot
threshold selection schemes that give priority to the most recent, and
frequently executed regions in order to reduce time spent in interpreted
or unoptimised execution mode, and

4. an extensive evaluation within a dynamic binary translator targeting
the Arcompact Isa, and

5. the application of the proposed dynamic compilation scheme to ar-
chitectural and micro-architectural simulation demonstrating how run-
time information can be exploited to generate optimised code accu-
rately modelling architectural and micro-architectural components at
high speeds.

To demonstrate the effectiveness of the proposed techniques three indus-
try standard benchmark suites, Eembc, BioPerf and Spec Cpu2006, as
well as a variety of custom benchmarks based on real world applications such
as operating system simulation, audio and video decoding have been used.
Across short- and long-running benchmarks the proposed scheme is robust
and never results in a slowdown. In fact, using four processors total execu-
tion time can be reduced by on average 11.5% over state-of-the-art concurrent
dynamic compilation.

1.4 Thesis Structure

This thesis is organised as follows.

Chapter 2 introduces different dynamic compilation techniques and ap-
proaches used throughout this thesis.

Chapter 3 presents the related work. Prior work on dynamic binary trans-
lation, trace compilation and optimisation, as well as parallel and concurrent
dynamic compilation is discussed. Then work related to architectural and
micro-architectural performance modelling is reviewed, and in particular, ap-
proaches aimed at speeding up execution and simulation performance.

Chapter 4 investigates our concurrent and parallel dynamic compilation
approach in the context of a dynamic binary translator using region based
dynamic code discovery. Adaptive heuristics for selecting and scheduling
units of compilation that adjust automatically to dynamic compilation work-
loads and the underlying hardware architecture are presented. The proposed
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dynamic compilation scheme allows a significant reduction of compilation
latency and a rigorous evaluation and analysis demonstrates its robustness,
efficiency and good performance. This chapter is based on the work published
in [3, 16,66].

Chapter 5 applies dynamic compilation in the context of architectural
and micro-architectural simulation. This exploration shows how runtime
information can be exploited to generate optimised code modelling micro-
architectural components. Again, the presence and complexity of additional
dynamically generated code has a negative impact on compilation latency
providing the perfect application scenario for the proposed dynamic compi-
lation scheme. This is the first application of concurrent and parallel dynamic
compilation to micro-architectural performance modelling resulting in signif-
icant speedups over state-of-the-art hardware and software solutions. This
chapter is based on the work published in [14,15].

Chapter 6 finally concludes this thesis by summarising the contributions,
providing a critical analysis of this work and discussing future work.

1.5 Summary

This chapter has introduced this thesis, outlining the key problems and chal-
lenges. It advocates the use of a scalable, region-based, concurrent and par-
allel dynamic compilation scheme based on the parallel task farm design
pattern to speedup dynamic compilation and exploit contemporary multi-
core architectures. The key contributions of this work have been listed and
an outline of the thesis described. The next chapter provides a short intro-
duction to the dynamic compilation background used throughout this thesis.
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2
Dynamic Compilation Background

This chapter presents a short overview of dynamic compila-
tion techniques. First, a classification of dynamic compilation
approaches is given. Then, the structure of a typical dynamic
compiler is outlined, establishing common terminology. Fi-
nally, after demonstrating approaches for deciding when to
compile program regions, the focus is directed to handling and
scheduling of dynamic compilation workloads.

2.1 Introduction

Approaches to dynamic compilation differ in several aspects, including the
degree of transparency, the extent and scope of dynamic compilation, and
the encoding of the program representation. On the highest level, dynamic
compilation systems can be divided into transparent and nontransparent sys-
tems. In a transparent system the executable program representation is not
specially prepared for dynamic compilation or optimisation, and may execute
with or without a dynamic compilation stage. In contrast, nontransparent
approaches to dynamic compilation rely on staged runtime specialisation
techniques and try to prepare for dynamic compilation as much as possible
at static compilation time. Figure 2.1 shows a classification of various trans-
parent and non-transparent dynamic compilation approaches as presented
in [1].
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Dynamic Compilation

Transparent Nontransparent

Binary Code Program 
Representation

Intermediate Virtual Machine
Code Program Representation

Native-to-Native Nonnative

Hardwired into Program
Representation

Just-In-Time Compilation

Runtime Specialisation

Dynamic Optimisation Dynamic Binary Translation

Figure 2.1: Classification of Dynamic Compilation approaches [1].

Transparent dynamic compilation systems can be divided into systems
that operate on binary code and systems that operate on intermediate platform-
independent program representations. A dynamic compiler for binary code
program representations starts out with a loaded fully executable binary. In
one scenario the dynamic compiler acts as a dynamic optimiser performing
native-to-native optimising transformations based on runtime information
such as runtime control and data flow values [9]. In the other scenario the
loaded input binary is in nonnative format and dynamic compilation is used
to retarget the code to a different host architecture. This process is referred to
as dynamic binary translation and may also include optimisations [35,91,102].

Just-In-Time (Jit) compilers [26, 60, 67, 82] present a different class of
transparent dynamic compilers. Their input is code in an intermediate,
platform-independent representation that targets a virtual machine. The
Jit compiler serves as an enhancement to the virtual machine improving
target application runtime performance. This is done by compiling the in-
termediate input program to native code at runtime instead of executing it
in an interpreter or emulator. Typically, semantic information is attached
to the code, such as symbol tables or constant pools, which facilitates the
compilation.
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In the nontransparent dynamic compilation approach the dynamic com-
pilation stage is integrated explicitly, i.e. hardwired, into the target program
by earlier static compilation stages. The static compiler works together with
the dynamic compiler by delaying certain parts of compilation until runtime
to improve performance. The dynamic compilation agent compiled into the
executable fills and links in prepared code templates for delayed compila-
tion regions. Several techniques have been developed to perform runtime
specialisation of a program in this manner [33,46,70,85].

Runtime specialisation techniques are tightly integrated with the static
compiler, whereas transparent dynamic compilation techniques are generally
independent of the static compiler. Transparent dynamic compilation, how-
ever, still benefits from static information passed down by a static compiler
such as a symbol table or other annotations [62]. While nontransparent dy-
namic compilation is mentioned in this Chapter for the sake of completeness,
the work in this thesis focuses on transparent dynamic compilation.

2.2 Code Discovery

Identifying executable code is a precursor of dynamic compilation. The pro-
gram representation determines whether executable code can be discovered
statically or must be discovered dynamically as the program executes.

2.2.1 Static Code Discovery

For program representations where instructions can be statically separated
from data, such as Java byte-code, Common Intermediate Language, C++,
and JavaScript, executable code can be discovered statically. This means
that a program can be compiled in its entirety before execution using only
static program information. In the context of dynamic compilation this is
known as ahead-of-time compilation [67].

2.2.2 Dynamic Code Discovery

For binary program representations in the form of hardware machine instruc-
tions “the identification of executable code [...] is equivalent to the Halting
Problem and is therefore unsolvable in general” [55].
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Consider the following example: A sequence of instructions to be trans-
lated contains an indirect jump instruction. The target of the jump instruc-
tion is held in a register that is assigned at runtime. In general it is impossible
to determine the register contents statically. In addition, there is no guar-
antee that the locations immediately following the jump instruction contain
valid instructions, as data can be interspersed with code in binary program
representations.

Conventional binary program representations contain variable-length in-
structions, register indirect jumps, pads to align instructions, and data in-
terspersed with instructions. For this reason executable code discovery is
performed dynamically, discovering executable code incrementally as the pro-
gram reaches them [93].

2.2.3 Hybrid Code Discovery

Even when static code discovery and therefore ahead-of-time compilation
is possible, state-of-the-art execution environments [45, 60, 67, 82] combine
static program knowledge with dynamically discovered program knowledge
to enable optimisations that can not be inferred statically. For example, a
dynamic compiler for an object oriented language may decide to de-virtualise
a polymorphic call site as an optimisation, if at runtime it only observes
monomorphic calls. If such an assumption is invalidated in the future, e.g. by
loading new classes, the dynamically compiled code must be deoptimised and
invalidated. Deoptimisation is the process of interrupting program execution
while in optimised code and resuming it in an interpreter or unoptimised
version. Dynamic deoptimisation was pioneered in Self [54] to allow for
source-level debugging of globally optimised code. We use this technique to
handle self-modifying dynamically compiled binary code (see Section 4.4).

2.3 Dynamic Compilation

Dynamic compilation or just-in-time (Jit) compilation is a means to im-
prove runtime efficiency of programs. To the end user a dynamic compiler
should behave like a black box taking a computer program representation
as its input, and producing a dynamically translated and optimised version
at runtime. This chapter deals with the structure of a dynamic compiler,
its internal components, and their interaction. Figure 2.2 depicts a typical
infrastructure found in most modern dynamic compilation systems:



Dynamic Compilation 13

Compile Dynamic CompilationExec Execution

Profile Execution with Profiling Opt Exec Optimised Execution

Opt ExecExec Profile

TimeProgram Exection

Profile Opt Exec

TimeDynamic Compilation

Exec

C
on

st
ru

ct
 IR

O
pt

 1

O
pt

 2

O
pt

 n

C
od

eg
en

Li
nk

Re
gi

st
er

Front
End Optimiser Back End

C
on

st
ru

ct
 IR

O
pt

 1

O
pt

 2

O
pt

 n

C
od

eg
en

Li
nk

Re
gi

st
er

Front
End Optimiser Back End

Runtime System Infrastructure
Profiling, Dynamic Control Flow, Code Caches, Memory Management,...

1 2

3

4

Input Program

Figure 2.2: Structure of a typical Dynamic Compilation System.

• Initially the input program is executed or interpreted 1© until a fre-
quently executed program region is detected by exceeding an execution
threshold (e.g. method execution count).

• Subsequently execution continues with profiling 2© enabled. During
profiling runtime information such as dynamic control flow and runtime
type information is recorded.

• The recorded profiling data gathered from the currently running work-
load is used to drive the dynamic compiler 3© and focus optimisations
on frequently executed parts of the program.

• After a frequently executed program region has been dynamically com-
piled and optimised it is linked and registered and program execution
continues by running the optimised version 4©.

The “Infrastructure” box at the bottom of Figure 2.2 highlights the im-
portance of choosing efficient data structures and algorithms since those
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choices greatly impact the performance, resource usage, and complexity of a
dynamic compilation system.

2.3.1 Deciding When to Compile

Dynamic compilation schemes are based on compilation units reaching thresh-
old frequencies of execution to determine when to trigger compilation. There
exist two approaches to determine when threshold frequencies are exceeded,
namely sampling-based and instrumentation-based profiling [95].

On the one hand a sampling-based profiling [107] approach keeps track
of program regions where the application spends most of its time by period-
ically sampling program threads, thereby identifying which code regions are
currently executed. At each sampling period a frequency counter associated
with each region is incremented. On the other hand instrumentation based
profiling instruments the target program by dynamically generating code for
collecting specified counters from target code regions. After a program re-
gion counter update has reached its threshold, dynamic compilation kicks in
and typically generates an optimised version without instrumentation code
to minimise the performance impact.

In Section 4.2 of this thesis we propose a novel scheme to determine when
execution frequencies are exceeded. It is a hybrid between sampling- and
instrumentation-based profiling schemes. Initially execution starts with in-
strumentation based profiling enabled during emulation until a trace interval
expires. The end of a trace interval constitutes a sampling point where all
code regions profiled during that interval are analysed, and regions exceed-
ing a certain execution threshold are dispatched for dynamic compilation.
Code regions that have already been dynamically compiled or dispatched for
dynamic compilation are not profiled any longer.

2.3.2 Handling Dynamic Compilation Workload

Given a set of selected compilation units for dynamic compilation, there
exist several strategies aimed at handling dynamic compilation workload.
Some state-of-the-art approaches [9,12,45,77,106] are blocking and wait for
dynamic compilation of a frequently executed program region to finish before
continuing execution ( 1© in Figure 2.3) in the optimised version.

Another possible approach to dynamic compilation [39] is to split dynamic
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compilation into multiple, parallel pipeline stages operating at instruction
granularity ( 2© in Figure 2.3). While the compiler pipeline can – in principle –
be parallelised, synchronisation of up to 19 pipeline stages for every compiled
instruction adds significantly to the overall compilation time while execution
of the target program does not make any progress. This results in consistent
slowdowns over all benchmarks in [39]. The approach in 3© is implemented by
Oracle’s JRockit Java VM [67]. It keeps synchronous dynamic compilation
and optimisation requests in a queue. The queue is consumed by one or more
dynamic compilation threads, depending on system configuration.

The HotSpot Jvm [82] and [47] are examples of systems that implement
a concurrent dynamic compilation strategy by running the dynamic compiler
in one separate helper thread whilst the master thread continues to interpret
code ( 4© in Figure 2.3).

We build on this approach and extend it to run several dynamic compilers
in a parallel task farm whilst target program execution continues (see Section
4.3). We do this to further hide dynamic compilation cost and switch to
native execution of hot program regions even sooner and for longer ( 5© in
Figure 2.3) than current state-of-the-art approaches.

The objective of our concurrent and dynamic compilation strategy 5© out-
lined in Figure 2.3 is translating frequently executed program regions into
native code faster when compared to e.g. 1© 2© 3© 4© [39,40,47,67,77,82,106].
Figure 2.3 also illustrates that concurrent task parallel dynamic compila-
tion 5© reduces the time until native code execution starts in comparison to
current approaches 1© 2© 3© 4©.

2.3.3 Scheduling Dynamic Compilation Workload

In any kind of dynamic compilation environment it is paramount to translate
hot code regions as fast as possible into highly efficient native code. A good
strategy for scheduling dynamic compilation tasks is needed when one or
more code regions are pending dynamic compilation.

For sequential dynamic compilation systems (see 1© in Figure 2.3) such as
the V8 JavaScript engine [45], frequently executed program regions are not
compiled immediately when execution thresholds are exceeded. Instead, they
are marked for dynamic compilation at the function level, thereby delaying
dynamic compilation or optimisation until the marked function is entered
again. An advantage of using function entries as safe points for dynamic
compilation and optimisation is that it simplifies the design of the runtime
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system. A disadvantage of this design is that compilation is unnecessarily
delayed for functions with hot loops.

Oracle’s JRockit Java VM [67] (see 3© in Figure 2.3) keeps synchronous
dynamic code generation requests in a code generation queue, and dynamic
optimisation requests in an optimisation queue. The optimisation queue
runs at a lower priority than the code generation queue as its work is not
strictly necessary for code execution, but just for code performance. “Also,
an optimisation request usually takes orders of magnitude longer than a stan-
dard code generation request to execute, trading compile time for efficient
code” [67]. Approaches based on one concurrent dynamic compilation thread
(see 4© in Figure 2.3) can schedule dynamic compilation workload by adapt-
ing dynamic compiler thread priorities [64].

In Section 4.3.4 we present a novel approach to adaptively handle dynamic
compilation workloads by prioritising the most recently and frequently exe-
cuted program regions first. The key idea behind our scheduling scheme is to
consider temperature and recency of regions in order to prioritise hot regions
that are being executed right now and to dynamically compile and optimise
them first.

2.4 Summary

This chapter presented a short overview of dynamic compilation techniques.
After providing a classification of dynamic compilation approaches the struc-
ture of a typical dynamic compiler was outlined to establish common termi-
nology. Finally, dynamic compilation strategies for handling and scheduling
dynamic compilation workloads have been presented together with the key
contributions of this thesis. The next Chapter discusses related work.
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3
Related Work

This chapter presents prior research relevant to this thesis.
First, state of the art applications of dynamic compilation in
the context of dynamic binary translation and optimisation are
presented. Then, trace- and region-based dynamic compilation
in the context of virtual execution environments and language
runtimes are outlined. Finally, related work in the field of ar-
chitectural and micro-architectural performance modelling ex-
ploiting dynamic compilation to achieve execution speedup is
presented.

3.1 Dynamic Binary Translation and

Optimisation

Dynamic binary translation (Dbt) techniques are used to overcome the lack
of flexibility and performance inherent in statically-compiled interpreters,
emulators, and simulators. Among the main uses of Dbt are cross-platform
virtualisation for the migration of legacy applications to different hardware
platforms. Prominent examples are Dec Fx!32 [27], Hp Aries [115], Qemu
[12], and solutions based on Transitive’s QuickTransit technology such as
Apple Rosetta and Ibm PowerVM Lx86 [94].
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Dec Fx!32 [27] combines emulation and dynamic binary translation to
provide both fast and transparent execution of x86 Cisc binaries on the
Alpha Risc processor. The first time an x86 application is run, the entire
application is emulated. Whilst transparently running the application, the
emulator generates an execution profile that describes the application’s exe-
cution history. The profile shows which parts of the application were heavily
used and which parts are less important or rarely used. Later, after the ap-
plication exits, the profile data directs the background optimiser to generate
native Alpha code as replacement for all the frequently executed procedures.
When the application is executed again, the native Alpha code is used and
the application executes much faster.

Dynamo [9] is a dynamic optimisation system, implemented entirely in
software. Its operation is transparent: no preparatory compiler phase or
programmer assistance is required, and even legacy native binaries can be
dynamically optimised by Dynamo. It focuses its efforts on optimisation
opportunities that tend to manifest only at runtime. Our approach to con-
current and parallel dynamic compilation is also fully transparent. However,
contrary to Dynamo, dynamic compilation runs concurrently with interpre-
tation and is not on the critical execution path. Additionally, we enable
parallel dynamic compilation by extracting independent compilation units
encoding dynamic control flow during code discovery, further reducing dy-
namic compilation latency.

Qemu [12] is a fast emulator using an original dynamic translator. Each
target instruction is divided into a simple sequence of micro-operations, the
set of micro-operations having been pre-compiled offline into an object file.
During emulation the code generator accesses the object file and concatenates
micro-operations to form a host function that emulates the target instructions
within a block. Compared to Qemu our dynamic compilation infrastructure
is concurrent and parallel (i.e. non-blocking) and uses regions of multiple
basic blocks instead of single basic blocks as compilation units. Regions ex-
pose more optimisation opportunities to the dynamic compiler by exploiting
runtime control flow information (see Section 4.3.1).

Other current and emerging uses of Dbt include, but are not limited
to, generation of cycle-accurate architecture simulators [14, 37], dynamic in-
strumentation [51], program analysis, cache modelling, and workload charac-
terisation [72], software security [113], and transparent software support for
heterogeneous embedded platforms [32].
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3.2 Trace- and Region-based Dynamic

Compilation

Tracing is a well established technique for dynamic profile guided optimisa-
tion of native binaries. Bala et al. [9] introduced tracing as a method for
runtime optimisation of native program binaries in their Dynamo system.
They use backward branch targets as candidates for the start of a trace, but
do not attempt to capture traces of loops. Zaleski et al. [114] use Dynamo-
like tracing in order to achieve inlining, indirect jump elimination, and other
optimisations for Java. Their primary goal was to build an interpreter that
could be extended to a tracing VM.

Whaley [108] uses partial method compilation to reduce the granularity of
compilation to the sub-method level. His system uses profile information to
detect never or rarely executed parts of a method and to ignore these during
compilation. If such a part is reached at a later stage, execution continues in
the interpreter. Compilation still starts at the beginning of a method. Simi-
larly, Suganuma et al. [96] propose region-based compilation to overcome the
limitations of method-based compilation. They use heuristics and profiles to
identify and eliminate rarely executed sections of code, but rely on expensive
runtime code instrumentation for trace identification. Our dynamic code dis-
covery and incremental region construction scheme also avoids dispatching
never or rarely executed regions of code using very low profiling overhead
(see Section 4.2.1). In contrast to Whaley [108] and Suganuma et al. [96] we
hide dynamic compilation latency by partitioning regions (see Section 4.2.2)
in a way that enables effective parallel dynamic compilation.

Gal et al. [40, 41] propose an approach to building dynamic compilers in
which no control flow graph (Cfg) is ever constructed, and no source code
level compilation units such as methods are used. Instead, they use runtime
profiling to detect frequently executed cyclic code paths in the program.
The compiler then generates code for dynamically recorded code traces along
these paths. It assembles these traces dynamically into a trace tree, a tree-
like data-structure, that covers frequently executed (and thus compilation
worthy) code paths through hot code regions. Trace trees can suffer from
the problem of code explosion when many control-flow paths are present in a
loop, causing them to grow to very large sizes due to excessive tail duplication
as outlined in [11]. Compared to Gal et al. [40, 41] our system constructs a
dynamic control flow graph during code discovery and profiling resulting in
a compact program representation.
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To solve the problem of excessive tail duplication Bebenita et al. [11]
propose trace-regions as a data-structure for tracing in their implementation
of Hotpath, a trace-based Java Jit compiler in the Maxine VM. Trace-regions
are an extension to trace trees as they can include join nodes instead of using
tail duplication. Locations where trace recording can be enabled, so called
anchors, are determined statically during byte-code verification, and trace
regions are restricted to method boundaries. In contrast, our approach does
not rely on statically determined anchors for tracing and trace regions are
not confined to method boundaries.

3.3 Parallel and Concurrent Dynamic

Compilation

Dynamic compilation has a long history dating back to the 1960s [7]. The
possibility of reducing the overhead of dynamic compilation by decoupling
the Jit compiler from the main execution loop and executing it in a separate
thread has been suggested by several researchers, e.g. [47,63,103].

Krintz et al. [63] pushed JIT compilation into the background while in-
terpreted execution continued. Only single compiler and execution threads
were employed and hot method detection was performed by offline profiling.
More aggressive background compilation is exploited in [103] to choose the
best way to compile a program on an embedded device as its battery level
changes. Again, only single execution and compiler threads are used. Kulka-
rni et al. [64] dynamically increase the priority of its compilation thread to
increase compiler throughput. Their technique is useful when the number of
application threads is greater than the number of physical cores.

Some approaches [25,39] attempted to exploit pipeline parallelism in the
Jit compiler. However, pipelining of the Jit compiler has significant draw-
backs. First, compiler stages are typically not well balanced and the overall
throughput is limited by the slowest pipeline stage – this is often the front-end
or Ir generation stage. Second, unlike method based compilers, trace-based
Jit compilers operate on relatively small translation units in order to reduce
the compilation overhead to a bare minimum [40]. Small translation units
and long compilation pipelines, however, increase the relative synchronisa-
tion costs between pipeline stages and, again, limit the achievable compiler
throughput. Third, compilation pipelines are static and do not scale with
the available task parallelism in inherently independent translation units.
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Work by [87] pioneered the concept of parallel and concurrent Jit com-
pilation workers to speed up dynamic binary translation, but suffers from a
number of flaws. First, rather than taking a region- or trace-based compi-
lation approach entire pages are translated – this is unnecessarily wasteful
in a time-critical Jit compilation environment. Second, there are no provi-
sions for a dynamic work scheduling scheme that prioritises compilation of
hot code pages – this may defer compilation of critical code and lower over-
all efficiency. Third, Jit compilers reside in separate processes on remote
machines – this significantly increases the communication overhead and lim-
its scalability. This last point is critical, as results shown in [87] are based
solely on Cpu time of the main simulation process rather than the more rel-
evant wall clock time that includes Cpu time, I/O time and communication
channel delay.

Bruening et al. [20, 21] explore dynamic compilation in multi-threaded
execution environments. In their work, the dynamic compilation of traces is
performed on the execution thread, rather than asynchronously in the back-
ground as in our case, resulting in progress on that thread stalling during the
compilation. Their compilation units are dynamically recorded linear traces,
rather than regions. In multi-threaded execution environments Bruening et
al. [20,21] consider the benefits of sharing linear traces in the context of multi-
thread application. We build on this work and extend the concept of sharing
linear trace compilation units to sharing region based compilation units to
reduce dynamic compilation workload. Additionally, we propose novel and
truly scalable dynamic code discovery approach for multi-threaded execution
environments (see Section 4.5).

Ha et al. [47] use a tracing JavaScript interpreter together with a sin-
gle background compiler thread to dynamically compile frequently executed
traces. The transitions from interpreted execution to native execution are
managed without locks by attaching a “Compiled State Variable” (CSV)
to each trace anchor. We also build on this particular use of a state vari-
able indicating the translation state of dynamic compilation units allowing
for lock-free synchronisation between dynamic compilation threads and the
execution loop.

Wimmer et al. [109] note that tracing enables simple phase change de-
tection by comparing the ratio of side exits taken to the time spent in the
trace itself. Traces can be discarded and recompiled when a phase change is
detected. Their work uses a global trace cache and permits only one back-
ground compiler thread. Inoue et al. [57] implement a trace-based compiler
retrofitted from a method-based compiler in the mixed-mode IBM J9/TR
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JVM. Only one background compilation thread is used for Jit trace compi-
lation.

Oracle’s JRockit Java VM [67] is a commercial virtual machine with-
out an interpreter and relies on total Jit compilation. All Java methods
are compiled to native code immediately when they are first encountered.
The advantage is that no interpreter has to be implemented, but the dis-
advantage is that compile time becomes an important factor in the total
runtime. Execution cannot continue until the compilation of the currently
executed method has finished, causing potentially large pause times when a
large method is executed for the first time. For multi-threaded applications
this problem is only exacerbated. For this reason JRockit uses a work
queue based appraoch to keep track of dynamic compilation workloads, and
enables the usage of several parallel dynamic compilation workers in an at-
tempt to reduce excessive dynamic compilation latency for multi-threaded
applications. The use of parallel dynamic compilation in JRockit, however,
is only beneficial for multi-threaded applications. It does not resolve the
problem that dynamic compilation is blocking, i.e. execution can not con-
tinue while the currently executed method is in translation. In contrast, our
dynamic compilation system is non-blocking (i.e. concurrent) and capable of
successfully exploiting parallel dynamic compilation even for single threaded
applications (see Chapter 4).

3.4 Architectural Performance Modelling

Instruction set simulators (Iss) provide a platform on which experimental
instruction set architectures can be tested, and new compilers and applica-
tions may be developed and verified. They help to reduce the overall develop-
ment time for new microprocessors by allowing concurrent engineering during
the design phase. This is especially important for embedded system-on-chip
(Soc) designs, where processors may be extended to support specific appli-
cations. However, increasing size and complexity of embedded applications
challenge current Iss technology and there is an increasing need for fast Iss
technology to keep up with performance demands of real world applications.

To speed up instruction set simulation Mills et al. [76] employ in-line
macro expansion in a statically-compiled simulator and demonstrate their
system to run up to three times faster than an interpretive simulator. Target
code is statically translated to host machine code which is then executed di-
rectly within a switch statement. The disadvantage of this approach however
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is that applications containing self-modifying code (e.g. operating system,
dynamic compilers) can not be simulated.

The Mimic simulator [74] simulates Ibm System/370 instructions on
the Ibm Rt Pc and translates groups of target basic blocks into host in-
structions. Shade [31] and Embra [68] use Dbt with translation caching
techniques in order to increase simulation speeds. The Ultra-fast Instruction
Set Simulator [116] improves the performance of statically-compiled simula-
tion by using low-level binary translation techniques to take full advantage
of the host architecture.

The SimIcs full system simulator by Magnusson et al. [73] translates
target machine-code instructions into an intermediate format before inter-
pretation. They have developed a specification language to encode various
aspects of the target instruction-set architecture, from which a simulation
kernel based on threaded-interpretation is generated automatically. The In-
struction Set Compiled Simulation (Ic-Cs) simulator [88] was designed to
be a high performance and flexible functional simulator. To achieve this
the time-consuming instruction decode process is performed during the com-
pile stage, whilst interpretation is enabled at simulation time. Just-In-Time
Cache Compiled Simulation (Jit-Ccs) [19] executes and caches pre-compiled
instruction-operation functions for each function fetched.

More recent approaches using dynamic binary translation in instruction
set simulation are presented in [18, 59, 87, 101]. Apart from different target
platforms these approaches differ in the granularity of translation units (ba-
sic blocks vs. pages or Cfg regions) and their Jit code generation target
language (Ansi-C vs. Llvm Ir).

The commercial xIss simulator [99] employs Dbt technology and targets
the same Arcompact

TM
Isa that has been used in this paper. It achieves

simulation speeds of 200+ Mips. In contrast, our dynamic binary translator
operates at 500+ Mips in functional simulation mode.

3.5 Micro-architectural Performance

Modelling

Dynamic binary translation combines interpretive and compiled simulation
techniques in order to maintain high speed, observability and flexibility.
Common to all approaches in the previous Section is that they implement
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functional or instruction accurate instruction set simulation. They do not
provide a detailed micro-architectural performance model as achieving ac-
curate state, and even more so micro-architectural observability, remains in
tension with high speed simulation.

A dynamic binary translation approach to architectural simulation has
been introduced in [24]. The PowerPC Isa is dynamically mapped onto
Pisa in order to take advantage of the underlying SimpleScalar [23] tim-
ing model. While this approach enables hardware design space exploration
it does not provide a faithful performance model for any actual PowerPC
implementation. Relevant to our work is an architectural and microarchi-
tectural performance modeling approach based on a variant of the func-
tional model/timing model partitioning implemented in systems such as
Ramp [105] and Fast [28, 29]. This kind of microarchitectural performance
modeling uses Fpga’s to model microarchitectural components and thereby
provide a timing model, while functional simulation is done using an Iss. The
functional model sequentially executes the program, generating a functional
path instruction trace, and pipes that stream to the Fpga based timing
model. While this approach is accurate and faithfully models the simulated
target microarchitecture, it is not a software only simulation strategy and
relies on Fpga based simulation.

Most relevant to our work is the performance estimation approach in the
HySim hybrid simulation environment [42–44, 61]. HySim merges native
host execution with detailed Iss. For this, an application is partitioned and
operation cost annotations are introduced to a low-level intermediate repre-
sentation (Ir). HySim “imitates” the operation of an optimising compiler
and applies generic code transformations that are expected to be applied in
the actual compiler targeting the simulation platform. Furthermore, calls to
stub functions are inserted that handle access to data managed within the
Iss where the cache model is located. No executable for the target platform
is ever generated and, hence, the simulated code is only an approximation of
what the actual target compiler would generate. No detailed pipeline model
is maintained. Hence, cost annotations do not reflect actual instruction la-
tencies and dependencies between instructions, but assume fixed average in-
struction latencies. Even for relatively simple, non-superscalar processors
this assumption does not hold. HySim has been evaluated against an Iss
that does not implement a detailed pipeline model. Hence, accuracy figures
reported in e.g. [43] only refer to how close performance estimates come to
those obtained by this Iss, but it is unclear if these figures accurately reflect
the actual target platform. A similar hybrid approach targeting software
energy estimation has been proposed earlier in [78,79].
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Statistical performance estimation methodologies such as SimPoint and
Smarts have been proposed in [48, 112]. The approaches are potentially
very fast, but require preprocessing (SimPoint) of an application and do
not accurately model the micro-architecture (Smarts, SimPoint). Unlike
our accurate pipeline modelling this introduces a statistical error that cannot
be entirely avoided.

Machine learning based performance models have been proposed in [10,17,
81] and, more recently, more mature approaches have been presented in [38,
86]. After initial training these performance estimation methodologies can
achieve very high simulation rates that are only limited by the speed of faster,
functional simulators. Similar to Smarts and SimPoint, however, these
approaches suffer from inherent statistical errors and the reliable detection
of statistical outliers is still an unsolved problem.

3.6 Summary

This chapter has presented prior work related to dynamic binary translation,
concurrent and parallel dynamic compilation, and architectural and micro-
architectural performance modelling. The work in the field of concurrent and
parallel dynamic compilation has mostly been limited to program represen-
tations that allow static code discovery. Approaches targeted at execution
environments requiring dynamic code discovery use the dynamic compiler
on the critical execution path, effectively stoping emulation until the trans-
lation of the current application hotspot is finished. In contrast, the work
presented in Chapter 4 of this thesis introduces an innovative parallel task
farming strategy for truly concurrent dynamic compilation. It is designed
to execute concurrently with the target program and effectively reduces dy-
namic compilation latency by exploiting the concept of parallel compilation.
It has been used for execution environments that rely on dynamic code discov-
ery, but can equally well be applied to execution environments and program
representations that allow static code discovery.

Prior work on architectural performance modelling uses dynamic binary
translation to speed up simulation but does not use a concurrent and parallel
dynamic compiler to speed up the translation process. Exploiting dynamic
compilation in the context of micro-architectural performance modelling has
not been previously explored and provides an ideal application scenario for
the dynamic compilation infrastructure presented in this thesis. In Chapter 5
we demonstrate how to use our concurrent and parallel dynamic compiler for
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architectural and micro-architectural performance modelling, to achieve sim-
ulation speeds that surpass hardware based (Fpga) simulation approaches.
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4
Concurrent and Parallel Dynamic

Compilation

This chapter starts by demonstrating the workload a concur-
rent dynamic compiler has to handle in the context of a dy-
namic binary translator. This motivates the idea of concurrent
and parallel dynamic compilation. Then, the selection of pro-
gram regions for dynamic compilation is outlined. Next, a sys-
tem architecture for concurrent and parallel dynamic compila-
tion is proposed followed by a description of adaptive heuris-
tics for selecting and scheduling units of compilation. Finally,
a rigorous evaluation and analysis of the proposed scheme
demonstrates its robustness, efficiency, and good performance.

Efficient dynamic binary translation (Dbt) heavily relies on dynamic
compilation for the translation of target machine instructions to host ma-
chine instructions. Although dynamically compiled code generally runs much
faster than interpreted code, dynamic compilation incurs an additional over-
head. For this reason, only the most frequently executed code regions are
translated to native code whereas less frequently executed code is still in-
terpreted. Using a single-threaded execution model (see 1© in Figure 2.3),
the interpreter pauses until the dynamic compiler has translated its assigned
compilation unit and the generated native code is executed directly. How-
ever, it has been noted earlier [7,47,63,84,100] that program execution does
not need to be paused to permit compilation, as a dynamic compiler can
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operate in a separate thread while the program executes concurrently (see
4© in Figure 2.3). This decoupled or concurrent execution of the dynamic

compiler increases complexity of the Dbt, but is very effective in hiding
the compilation latency – especially if the dynamic compiler can run on a
separate processor.

The main contribution of this thesis is to demonstrate how to effectively
reduce dynamic compilation overhead and speedup execution by performing
concurrent and parallel dynamic compilation, exploiting the broad prolifer-
ation of multi-core processors. The key idea is to detect independent, large
translation units in execution traces and to farm out work to multiple, parallel
dynamic compilation workers. To ensure that the latest and most frequently
executed code regions are compiled first, we apply a priority queue based
dynamic work scheduling strategy where the most recent, hottest traces are
given highest priority.

This novel, concurrent and parallel dynamic compilation methodology is
integrated into the Llvm-based state-of-the-art ArcSim [3, 14–16, 59, 101]
Dbt implementing the Arcompact Isa and its performance is evaluated us-
ing three benchmark suites: Eembc [36], BioPerf [8] and Spec Cpu2006
[52]. The concurrent and parallel dynamic compilation approach yields an
average speedup of 1.17 across all 61 benchmarks – and up to 2.08 for individ-
ual benchmarks – over decoupled dynamic compilation using only a single
compilation worker thread on a standard quad-core Intel Xeon host plat-
form. At the same time the proposed scheme is robust and never results in
a slowdown even for very short- and long-running applications.

4.1 Motivating Example

Consider the full-system simulation of a Linux OS configured and built for
the Arc 700 processor family (Risc Isa). The complete boot-up sequence,
the automated execution of a set of commands emulating interactive user
input at the console, followed by the full shut-down sequence is simulated
on a standard quad-core Intel Xeon machine. This example includes rare
events such as boot-up and shut-down comparable to the initialisation phase
in an application, but it also includes very frequent events occurring after
the boot-up sequence during interactive user mode. In a full-system OS
simulation there are frequent calls to interrupt service routines that must be
simulated. Our generalised tracing approach can easily identify frequently
executed regions including interrupt service routines that would otherwise be



Motivating Example 31

92%

8%

77%

23%

Decoupled/Only Decoupled/Parallel/3/Threads

Interpreted/vs./Native/Execution
higher&%&of&native&execution&is&better

2

0s

15s

30s

45s

60s

34

55

0&MIPS

33&MIPS

65&MIPS

98&MIPS

130&MIPS

112

62

Simulation/Time
lower&is&better

Simulation/Rate
higher&is&better

Decoupled
Only

Decoupled
Parallel&
3&Threads

Decoupled
Only

Decoupled
Parallel&
3&Threads

1

0

15

30

45

60

75

90

105

120

135

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 24 30 32

Histogram/I/Hot/Regions/per/Trace/Interval

Amount&of&Hot&Regions&per&Trace&Interval

Fr
eq

ue
nc
y

3

Interpreted&Execution Native&Execution

Figure 4.1: Full-system Linux OS simulation - comparison of 1© simulation time
in seconds, rate in Mips, and 2© interpreted vs. natively executed instructions in
%, between decoupled only and decoupled parallel dynamic compilation using three
compilation worker threads. Histogram 3© demonstrates how often more than one
hot region per trace interval is found.

missed if we would restrict tracing to loop or function boundaries.

Our dynamic binary translator speeds up the simulation by identifying
and translating hot dynamically discovered regions to native x86 code during
simulation. As simulation runs concurrently with dynamic compilation we
continue to discover and dispatch more hot regions to the dynamic compiler.
In fact, it is possible that dynamic compilation of the previous regions has
not yet been completed by the time new regions are discovered. In this case,
work is distributed over several dynamic compilation threads. To ensure that
the most profitable regions are compiled first, a dynamic work scheduling
strategy that dynamically prioritises compilation tasks according to their
temperature and recency is implemented.

For the purpose of this motivating example a simulation using only one de-
coupled dynamic compiler thread (current state-of-the-art) is compared with
a simulation using multiple decoupled dynamic compiler threads in parallel
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(see 5© in Figure 2.3). In Chart 1© of Figure 4.1 the overall simulation time
in seconds and the simulation rate in Mips is compared for both approaches.
The new approach using three decoupled dynamic compilers in parallel com-
pletes the previously outlined sample application 21 seconds earlier. This
results in an improvement of 38% and, thus, achieves a speedup of 1.6 when
compared to using only one decoupled dynamic compiler. The overall sim-
ulation rate (in Mips) improves from 62 to 112 Mips by using the new
approach. As several dynamic compilers work on hot regions in parallel,
native translations are available much earlier than using a single decoupled
dynamic compiler (see 4© in Figure 2.3), leading to a substantial increase
from 77% to 92% of natively executed target instructions (see Chart 2© of
Figure 4.1).

The obvious question to ask is where does the speedup come from? His-
togram 3© in Figure 4.1 shows how often a certain amount of frequently exe-
cuted regions is found per trace interval. The fact that 65% of the time there
are at least two or more hot regions discovered per interval clearly demon-
strates the benefits of having more than one dynamic compiler available on
today’s multicore machines. Even if only one hot region per interval is dis-
covered, the dynamic compilation of the previous hot region might not have
finished. Having several dynamic compilers that can already start working
on the newly discovered hot regions before others have finished helps to ef-
fectively hide most of the dynamic compilation latency (see Box 1© in Figure
4.2).

4.2 Trace Based Dynamic Region Detection

Typically dynamic compilation schemes [39, 40, 47, 77, 80, 106] are based on
compilation units reaching threshold frequencies of execution to determine
when to trigger compilation. The approach proposed in this thesis is based
around the concept of trace intervals during which regions are dynamically
discovered and execution frequencies are maintained. An interval based
scheme was selected as it generates more uniformly sized compilation units,
resulting in better and more predictable load balance between compilation
and execution. It also avoids the problem of profiling counters eventually
overflowing the size of their count field if the trace interval length is chosen
appropriately, eliminating the need for overflow checks. In the next sections
the process of dynamically constructing and partitioning regions is explained.
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Figure 4.2: Concurrent dynamic compilation of hot regions - 2© demonstrates how
to exploit task parallelism by dynamically compiling independent hot regions in
parallel. 1© shows how several concurrent dynamic compilation threads can effec-
tively hide most of the dynamic compilation latency by overlapping compilation
of hot regions. 3© and 4© highlight interval based temporal, and memory space
spatial region partitioning.

4.2.1 Tracing Regions

The term region refers to a compilation unit, which results from dynamically
collecting executed code from the original program but excluding all never
or rarely executed portions [96]. This enables a repartitioning of the original
program into desirable compilation units [71]. Box 3© in Figure 4.2 shows
the partitioning of simulation time into trace intervals during which dynamic
code discovery is performed. The length of a trace interval is user definable
and determines the number of interpreted instructions. During a trace inter-
val a region is constructed incrementally from a sequence of interpreted basic
blocks as demonstrated in Figure 4.3. The back-bone data structure behind
a region is a directed graph whose vertices and edges represent dynamically
discovered basic blocks and control flow edges.
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Figure 4.3: Incremental 1© 2© 3© region construction from sequence of interpreted
basic blocks 4©.

At the end of a trace interval a traced region is scheduled for dynamic
compilation if it is considered to be hot. The temperature of a region is
defined as the sum of the execution frequencies of its constituent basic blocks.
As an optimisation, counters for interpreted basic blocks of regions that have
already been dispatched for dynamic compilation but not yet compiled, are
not maintained. It has already been determined that such basic blocks are
worthy of compilation so further profiling is not necessary.

4.2.2 Partitioning Regions

The absence of static structural information (e.g. classes, functions, modules)
in binary program representations poses a problem for region partitioning. A
good strategy is needed to efficiently partition dynamically discovered code
into uniformly sized and compilation worthy regions to enable quick transla-
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Figure 4.4: Spatial and temporal partitioning of regions. Regions 1, 2, 3, and 5
are hot regions selected for dynamic compilation.

tions and exploit parallel dynamic compilation. To solve this a novel incre-
mental partitioning scheme that is simple, yet very effective at partitioning
dynamically discovered code into regions is proposed.

Interval based tracing results in a temporal partitioning (see 3© in Figure
4.2 and Figure 4.4) where a region is bounded by the start and end of a
trace interval. In addition, the notion of spatial partitioning where a region
is bounded by address ranges within the target address space is introduced
(see 4© in Figure 4.2 and Figure 4.4). Spatial partitioning is necessary to
enable efficient architectural simulation of target memory components such
as a memory management unit [93]. For this reason regions are partitioned
at target page boundaries (see Figure 4.2 and 4.4). Spatial partitioning
is inherent in non binary program representations in the form of classes,
methods, or functions. Together, temporal and spatial region partitioning
are the key to structured and more uniformly sized dynamic compilation
units.

Tracing regions is light-weight because only basic block entry points (i.e.
target memory addresses) are recorded as vertices, and pairs of source and
target entry points as edges in the per-page regions. At the end of a trace
interval all regions that have been touched during that interval are analysed.
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For the hottest regions compilation units are constructed and dispatched to
a translation priority queue for dynamic compilation (see Figure 4.5).

4.3 Concurrent and Parallel Dynamic

Compilation

The main contribution of this thesis is the demonstration, through practical
implementation, of the effectiveness of a concurrent and parallel dynamic
compilation task farm based on the Llvm [69] compiler infrastructure. By
parallelising dynamic compilation we effectively hide dynamic compilation la-
tency and exploit the available parallelism exposed by our generalised region
construction scheme. Executing parallel dynamic compilation concurrently
with target program execution benefits highly interactive applications as it
further reduces pause times. The following sections outline our dynamic com-
pilation flow focusing on the most relevant components of our concurrent and
parallel dynamic compilation system.

4.3.1 Dynamic Compilation Flow

The interpreter loop is responsible for tracing regions during dynamic code
discovery. At the end of a trace interval recorded regions are analysed and
frequently executed regions are dispatched to a translation priority queue for
dynamic compilation before interpretation continues (see 1© 2© in Figure 4.5).
The translation priority queue is a concurrent and shared data-structure act-
ing as the main interface between the interpreter loop and multiple dynamic
compilation workers (see 3© in Figure 4.5). Dynamic compilation worker
threads dequeue regions and compile them to native code in parallel (see 4©
in Figure 4.5).

After dequeing a region a dynamic compilation worker generates its cor-
responding Llvm intermediate representation (Ir). During Llvm Ir gener-
ation a very effective control flow optimisation called software indirect jump
prediction via inline caching is applied [34,53,93]. This optimisation is based
on the observation that an indirect jump target never or very seldom changes.
So for each indirect jump site an inline cache including one or more cached
lookups is generated to speed up the transition from the simulated program
counter to its corresponding dynamically compiled block (see 1© in Figure
4.6).
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Indirect Jump Prediction via Inline Caching

if      (Rx == 0x00A0) goto BB2;
else if (Rx == 0x00F4) goto BB3;
else lookup(Rx);
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Figure 4.6: 1© Demonstrates an example for software indirect branch prediction
via inline caching. 2© Shows a flow diagram for source to target program counter
address translation.

In case of an inline cache miss a second level translation cache is used to
find the translated target block. If the lookup in the second level translation
cache fails we search for the translated target block in a map abstract data
type, using a balanced binary search tree as its backbone data-structure.
This search will fail for transitions to target basic blocks that have not been
seen or translated yet, causing a return of control to the interpreter (see 2©
in Figure 4.6).

After applying software indirect jump prediction via inline caching, a se-
quence of Llvm optimisation passes such as instruction combining, jump
threading, commutative expression reassociation, constant propagation, fol-
lowed by corresponding clean up passes (i.e. Cfg simplification pass) are
applied to further optimise the generated Llvm Ir. Finally we use Llvm’s
ExecutionEngine to dynamically compile and link the generated Llvm Ir
code. Each dynamic compilation worker thread receives its own private
ExecutionEngine instance upon thread creation to minimise the amount
of synchronisation. The next section outlines how the interpreter loop is
notified about the availability of native region translations.
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Figure 4.7: Basic block translation state transitions.

4.3.2 Interpretive - Native Execution Mode Transition

In our concurrent and parallel dynamic compiler the interpreter uses a trans-
lation state variable to mark unseen basic blocks for dynamic compilation
and to determine if a native translation for a block already exists. While
regions are dynamically compiled, the interpreter continues target program
execution. As soon as dynamic compilation of a previously dispatched re-
gion is finished, the dynamic compilation worker immediately modifies the
translation states of its constituent basic blocks. The interpreter is thereby
notified about available translations and can immediately transition from in-
terpretive to native execution mode on a basic block boundary. A basic block
can be in one of the following three translation states:

• Untranslated - When a basic block is seen for the first time, its state
is initialised to untranslated by the interpreter. Self-modifying code
(see Section 4.4) affecting basic blocks that are either in translation or
translated causes the state of a basic block to be reverted to untranslated
by the interpreter.

• In Translation - When a basic block is dispatched for dynamic com-
pilation the interpreter changes its state from untranslated to in trans-
lation.

• Translated - When a dynamic compilation worker is finished with
the translation of a region it changes the state of its constituent basic
blocks from in translation to translated.
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1 // Container c l a s s f o r f r e q u e n t l y executed reg ion
2 //
3 c l a s s Com p i l a t i o n U n i t {
4 f r i e n d P r i o r i t i z eC o m p i l a t i o n U n i t s ;
5 u i n t 6 4 t Timestamp ;
6 u i n t 6 4 t ExecFreq ;
7 // . . .
8 } ;
9 // Comparator f o r Compi lat ionUnits

10 //
11 s t r u c t P r i o r i t i z eC o m p i l a t i o n U n i t s {
12 b o o l ( ) (CompilationUnit ∗ x ,
13 CompilationUnit ∗ y ) {
14 i f (x−>Timestamp = y−>Timestamp )
15 r e t u r n x−>ExecFreq < y−>ExecFreq ;
16 e l s e

17 r e t u r n x−>Timestamp < y−>Timestamp ;
18 }
19 } ;
20 // P r i o r i t y Queue a b s t r a c t data type
21 //
22 std : : p r i o r i t y queue<CompilationUnit∗ ,
23 std : : vector<CompilationUnit∗>,
24 PrioritizeCompilationUnits> queue ;

Listing 4.1: Dynamic work scheduling based on recency and frequency.

This particular use of a state variable indicating the translation state of
a basic block allows for lock-free reading of basic block translation states by
the interpreter loop (see Figure 4.7). Synchronisation is only required for
invalidations caused by self-modifying code (see Section 4.4). This approach
is similar to the compiled state variable concept implemented in [47].

4.3.3 Scheduling Compilation Workload

In any kind of dynamic compilation environment it is paramount to translate
hot code regions as fast as possible into highly efficient native code. Thus
having discovered multiple regions across several trace intervals we would like
to dynamically compile the most recently and frequently executed regions
first.

To efficiently implement a dynamic work scheduling scheme based on
both recency and frequency of interpreted regions, a priority queue is used
as an abstract data type using a binary heap as the backbone data-structure.
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1 // Compute h o t s p o t Threshold based on queue s i z e .
2 //
3 u i n t 6 4 t Threshold = ComputeHotspotThreshold(queue . s i z e ( ) ) ;
4

5 // Extrac t Compi lat ionUnits from dynamica l ly d i s c o v e r e d
6 // Regions based on e x e c u t i o n Threshold .
7 //
8 l i s t <CompilationUnit∗> CompUnits = Extract(Regions ,
9 Threshold ) ;

10 // Dispatch Compi lat ionUnits f o r compi la t ion and cont inue
11 // i n t e r p r e t a t i o n o f t a r g e t program .
12 //
13 DispatchHotspotsForCompilation (CompUnits ) ;

Listing 4.2: Adaptive hotspot threshold selection and compilation unit dispatch.

We chose a binary heap because of its worst case complexity of O(log(n)) for
inserts and removals. Our sorting criteria insert the most frequently executed
region from the most recent trace interval at the front of the priority queue
(see Listing 4.1).

4.3.4 Adaptive Hotspot Threshold Selection

It is possible that the proposed region-selection and dispatch system can
produce more tasks than the dynamic compilation workers can reasonably
handle. Dynamic workload scheduling mitigates this problem by ensuring
that the hottest and most recent regions are compiled first, leaving relatively
colder and older tasks waiting until the important work has been completed.
However, it would also be beneficial to reduce the number of tasks actu-
ally being dispatched to the translation queue in the event of an overloaded
dynamic compilation task farm.

In order to avoid large amounts of waiting translation tasks, we imple-
mented an adaptive hotspot threshold scheme. Initially, the hotspot thresh-
old is set to a constant value based on the number of dynamic workers avail-
able – as the number of workers increases, the threshold can be set more
aggressively. This threshold is then adjusted based on the priority queue’s
current length, where a longer queue raises the threshold at which new poten-
tial regions are considered to be hot enough (see Listing 4.2). The threshold
can either be tied directly to the length of the queue, or a certain queue
length can trigger an increase in the hotspot threshold.
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4.4 Self-Referencing and Self-Modifying Code

There are cases where an application program either refers to itself by reading
from its code regions, or attempts to modify itself by writing to its code
regions. This presents a problem for dynamic binary translators when the
code that is actually executed is translated code. In the context of concurrent
and parallel dynamic compilation this problem is exacerbated by the fact that
regions that are in translation can be invalidated by concurrently executing
self-modifying code in the interpreter. It is important that self-referencing
and self-modifying code is handeled accurately and efficiently as such code
occurs frequently for certain application domains such as full system OS
simulation.

The basis for the solution is the same for both, self-referencing and self-
modifying code. In particular, an accurate memory image of program code
must be maintained at all times and all load and store addresses in the trans-
lated version must be mapped into the simulated memory region, regardless of
whether code or data is being addressed. “Consequently, the self-referencing
code case is automatically implemented correctly” [93].

There are several solutions to handle self-modifying code [93]. One pos-
sible solution is to write-protect memory regions that contain code. This
can be done by the runtime system via appropriate operating system specific
calls. Any attempt to write to a page that contains regions of dynamically
translated code results in a protection trap and the delivery of a signal to
the runtime. Unfortunately this method has relatively high overhead [93],
portability issues, and complicates the integration of the runtime into other
tools that may wish to register custom signal handlers for memory protection
traps. More importantly it is not applicable in our context as the systems
we simulate have configurable page sizes that do not necessarily correspond
to simulation host page sizes. Therefore we implement a portable yet effi-
cient scheme using a combination of write barriers together with block based
translation caches as proposed in [58].

The proposed scheme uses direct mapped block translation caches for
read, write, and instruction memory operations. These caches serve two
purposes: (1) to speedup the mapping from simulated addresses onto under-
lying host memory addresses, and (2) to enable efficient permission checking
and self-modifying code detection. A block translation cache is indexed by
simulated addresses and stores base pointers to blocks of host memory. See
Figure 4.8 for an example of how the simulated memory address 0x00004002
is translated to the appropriate host memory location.
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Figure 4.8: Mapping simulated address 1© 0x00004002 onto host memory block
entries 3© using a block translation cache 2©.

When a write block translation cache miss occurs, the underlying host
memory block is looked up. The resulting host memory block base address
is entered into the write block translation cache. Before allowing the write
to succeed the block translation cache containing instruction fetch addresses
is checked to determine if it contains an entry for the same simulated write
address. If that is the case a write to a block containing executable code
has occurred and a further lookup is made to determine whether the write
hit a code address for which dynamically compiled code exists. Writes to
addresses containing dynamically compiled code cause an invalidation of the
corresponding native translation. If a write from dynamically compiled code
invalidates itself, the compiled code is deoptimised and invalidated.

This design is efficient as it is optimised for the common case where
simulated address translations frequently hit into block translation caches. It
also enables fast detection of writes to simulated memory regions that contain
executable code in which case an additional lookup is performed to check
if dynamically compiled code has been generated for the given simulated
address.
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4.5 Scaling for Multi-threaded Execution En-

vironments

In single threaded execution environments frequently executed areas of code
are identified for dynamic compilation and, therefore, native execution. When
a single core is being simulated, discovering, dynamically compiling, and
storing the natively translated code sections is straightforward. In the multi-
core case, however, a number of issues arise about how individual simulator
threads will cooperate in the compilation process. If and how they will share
translated code sections, who will be responsible for performing the transla-
tions, and how the costs of any required synchronisations will be mitigated,
are crucial questions that must be resolved to achieve high performance.
In this section we demonstrate how to effectively scale our dynamic code
discovery and concurrent and parallel dynamic compilation task farm for
multi-threaded execution environments.

In multi-threaded execution environments that rely on dynamic code dis-
covery, a näıve approach would operate on a single, global trace or region
data structure, which would need to be protected from concurrent updates
using an expensive locking mechanism. This approach has been taken in
e.g. [57]. An alternative approach that avoids this problem is to maintain
thread-private traces [41,49], i.e. for each application thread a separate trace
data structure is maintained. While this approach does not suffer from ex-
cessive synchronisation cost, it introduces a new problem. Multiple threads,
especially in data parallel applications, may produce nearly identical traces
that differ only in thread-specific constants and accesses to thread-private
variables. Clearly, this approach increases pressure on the dynamic compila-
tion subsystem and does not scale.

In region-based multi-threaded execution environments using dynamic
code discovery, no work has investigated different methods to parallelise the
simulation environment. The work closest to ours is not region-based but
trace-based. In [20] the benefits of sharing linear traces over keeping private
traces has been considered. The compilation of traces is performed on the ex-
ecution thread, rather than asynchronously in the background as in our case,
resulting in progress on that thread stalling during dynamic compilation. In
addition, because the compilation units are traces rather than regions, only
one linear trace can exist per trace head.

As a consequence, if the next executed tail happens to be non representa-
tive of the general behaviour of the current thread, or indeed the many other
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threads in the system, that poorly chosen trace will be forever attached to
the trace head for all threads. In contrast, our system builds up regions of
hot basic blocks. Each thread individually discovers which regions are im-
portant to it and shares identical regions with other threads. Our system
permits threads to have overlapping regions between threads. In this way,
each thread is not penalised by the occasional poor choices of other threads
but benefits from sharing amongst threads which exhibit the same behaviour.

In this thesis, we propose a novel and scalable scheme for region-based dy-
namic compilation of multi-threaded applications. The key idea is to extend
the thread-private region compilation model with the capability for sharing
of regions between threads. Central to this idea is the generation of thread-
agnostic regions, i.e. regions that do not contain thread-specific constants
or data accesses, but are generic enough to be executed in the contexts of
different threads. With these two features in place, we demonstrate that
region sharing is both effective, and scalable.

4.5.1 Code Discovery in Multi-threaded Applications

Before we take a more detailed look at our approach to scaling region-based
concurrent and parallel dynamic compilation for multi-threaded applications,
we provide a comparison of state-of-the-art code discovery schemes to high-
light our key concepts (see Figure 4.9). Recording of execution paths in
terms of traces or regions is either triggered by detecting a special construct
(e.g. loop header, method entry) [11,40,47,57,109], or always enabled when
interpreting code [16].

Various backbone data structures have been suggested to capture dynam-
ically discovered execution traces such as trace-trees [39], control-flow-graphs
(Cfg) of traced basic blocks [16], or hybrids between trace-trees and Cfgs
called trace-regions [11] or trace-graphs [49]. In general, dynamic code discov-
ery approaches for multi-threaded execution environments can be categorized
based on how they manipulate their underlying data-structures:

• Global Recording Structure - Most [11,39,40,47,49,57,109] trace-recording
dynamic compilation systems use one shared global recording structure
( 1© in Figure 4.9) to incrementally build a trace. This scheme works
well for single-threaded execution environments but does not scale to
multi-threaded applications as additional synchronisation is required
when recording traces in parallel for multiple threads.
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• Local Recording Structures - Another approach is to use private local
recording structures for each traced thread ( 2© in Figure 4.9). While
this approach avoids synchronisation altogether, it causes threads exe-
cuting data-parallel sections of code to independently trace nearly iden-
tical code paths and compile multiple thread-specific traces specialised
for each thread.

Our approach builds on 2© and extends it to compile thread-agnostic re-
gions for data-parallel sections of code once and share the compiled region
with all threads that traced the code region (see 3© in Figure 4.9). Con-
sequently, the pressure on the underlying dynamic compiler is reduced and
translations become available instantaneously to all threads that execute the
same region as soon as the first of a number of identical regions has been
compiled. We take the idea of region-based dynamic compilation for multi-
threaded execution environments a step further. Using a lock free region
recording strategy and a dynamic code generation approach enabling the
sharing of compiled code for regions recorded by threads executing data-
parallel sections of code, we demonstrate that our multi-threaded region-
based dynamic compilation scheme is highly scalable.

4.5.2 Motivating Example

Consider the multi-threaded benchmark water-spatial from the Splash-2
benchmark suite, when executed with 128 threads. Of all the regions handled
by the concurrent and parallel dynamic compilation subsystem, 79% were ac-
tually similar to previously requested regions (see 2© in Figure 4.10). This
shows that there is a large potential saving to be made in sharing regions
between threads for data-parallel applications. We demonstrate that our ap-
proach leads to a speedup of 2.4x for this benchmark (see 1© in Figure 4.10).
This is made possible through the use of regions that can be executed by any
thread – these are said to be thread-agnostic (see 2© in Figure 4.11). These
regions then allow us to develop a scheme where commonality between traced
regions is identified as they are dispatched for dynamic compilation, allowing
multiple threads to use the result of a region translation. This will reduce
the amount of time threads have to continue executing in interpreted mode
until a region is dynamically compiled. It enables earlier execution of native
code and reduces the pressure on the dynamic compilation subsystem. As a
result, the total dynamic compilation time for this benchmark is reduced by
73%.
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Figure 4.9: Code discovery approaches for multithreaded applications.

4.5.3 Thread Agnostic Code Generation

To enable the sharing of regions between threads, native code must access
the thread state structure in a manner that will work for any thread that
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Figure 4.10: Splash-2 water-spatial benchmark 1© demonstrating the achievable
speedup using our novel region sharing optimisation, while 2© shows the scope of
region sharing for this benchmark.

may execute the compiled region. As this native code is generated at run
time, the memory location of each thread state structure is known, and
it would be obvious to reference the structure directly using the known,
constant memory addresses. We call this a thread-specific region (see 1©
in Figure 4.11). This code generation scheme, however, prohibits region
sharing between threads. Constant references to thread-private data make
it impossible to reuse the translated region for any other thread other than
the one it has been generated for,

Instead, we propose a scheme whereby the generated native code accesses
the thread state structure indirectly through a base pointer. Each interpreter
must then provide the base pointer to its own thread state structure when
switching over to executing native code. We call these regions thread-agnostic
(see 2© in Figure 4.11). In this case, both threads can use the same region as
thread-specific constants and thread-private variables are accessed via base
pointer indirections.

It would be natural to assume that thread-agnostic regions are likely to
be slower than thread-specific ones, due to the additional memory accesses
and offset calculations. Surprisingly, we can see that the use of thread-
agnostic regions is often faster than using thread-specific regions - a speedup
of 1.09x on average. One would expect that having to obtain the thread
state pointer and calculate an offset would be more expensive than simply
accessing a constant known at runtime. However, this does not take into
account the issue of code size. On the x86 host architecture used throughout
this thesis, an instruction that accesses a memory location using register +
offset calculations should not require more than 4 bytes to encode. On the
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…
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}
…… 
……
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  uint32 r0 = r1 + r1;
  ctx->r[0] = r0;

}
…… 
……
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Figure 4.11: 1© and 2© highlight the key difference between thread-specific and
thread-agnostic code generation, namely thread context independent code genera-
tion, enabling the sharing of dynamically compiled regions.

other hand, encoding a 32 or 64-bit immediate constant requires at least 4
or 8 bytes to encode the constant alone, ignoring the rest of the instruction.

We have observed that the use of thread-specific regions leads to an in-
crease in overall code size, even if the number of instructions generated may
decrease. This larger code may lead to slower execution, for instance, if
sections of code can no longer reside completely in the simulation host in-
struction cache. These results show that the use of thread-agnostic regions
actually results in faster execution of threads, even before enabling the shar-
ing of regions between threads.

4.5.4 Inter-thread Region Sharing

As regions are dispatched to a translation priority queue for concurrent and
parallel dynamic compilation, it would be beneficial to identify which regions
cover identical code paths, and can therefore be shared between threads of
execution. To quickly determine if two regions can be shared, a signature for
each region is computed incrementally as it is constructed. The signature is
the 32-bit result of a hash function applied to the physical addresses of all
basic blocks in the trace. Only if two signatures are equal, a more expensive
check for equality is to be performed to establish beyond doubt that the
regions indeed cover the same code paths and rule out hash collisions.
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A hash table is maintained alongside the translation priority queue. For
a given key signature, this table stores all threads that are interested in the
associated region that is currently waiting for dynamic compilation. Adding
any region that matches signatures with a region already in the queue will re-
sult in this region being added to the hash table, instead of the priority queue
itself. These regions are bundled in a manner which includes a reference to
the requesting thread, so that dynamic compilation workers can update the
requesting thread with the result of the compilation (see 1© Figure 4.12).

Dynamic compilation worker threads continue to fetch regions from the
queue. After dynamically compiling a region, the worker checks the hash
table for all threads that are registered for the result of the compilation, al-
lowing them to be updated with the native code generated from the region.
See Figure 4.12 for an example demonstrating how regions are discovered,
dispatched, and shared between threads in a multi-threaded execution en-
vironment. This technique has the dual effect of reducing the period many
threads must wait between region dispatch and availability time of a trans-
lation. It also reduces the number of similar regions in the priority queue,
thereby reducing the pressure on the underlying dynamic compilation sub-
system.

4.5.5 Region Translation Caching

The previous section described how to share regions if a thread attempts
to dispatch a region while a similar region is currently waiting for dynamic
compilation. What if a particular thread dynamically constructs a hot region
much later than other threads? In this particular case, there are no similar
regions currently in translation, so a dynamic compilation worker would need
to compile the region again.

One possible solution for this problem would be to register a translated
region with all threads once it has been dynamically compiled. The drawback
of this solution is that translations might be registered for threads that have
not yet traced that specific code path, thereby adding complexity to the
region recording interpreter loop. Furthermore, for task-parallel workloads
most if not all translated regions cannot be shared and will only be used by
one thread.

Instead we use a software cache for region translations and add a reference
to each dynamically compiled region to this region translation cache. When
a region is dispatched for dynamic compilation we first check if a translation
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Figure 4.12: Region sharing for sample multi-threaded application - Frequently
executed program regions from two threads T1 and T2 are recorded and dispatched
for dynamic compilation. As soon as a region is compiled it is cached and its
availability is registered with the thread responsible for its dispatching. 1© Shows
how T1 records Region 2 that is equal to a previously dispatched Region 1 by
T2. The previously dispatched region is still in translation, hence it is tagged
to record the fact that an additional execution thread, namelyT1 is interested in
its translation. 2© When a thread records a new region that has already been
translated by another thread, its translation is immediately retrieved from the
translation cache, enabling almost instant availability of native code.

is already present in the region translation cache. If so, all native code
generation is skipped, and the translation can be registered straight away for
the thread that dispatched the region (see 2© Figure 4.12). Region translation
caching thereby removes redundant re-compilation from the critical path of
execution for many threads, improving overall performance.
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Caching and sharing of dynamically compiled regions in the contex of
multi-threaded self-modifying code requires additional book keeping and in-
frastructure. In principle the detection and invalidation of self-modifying
code remains as outlined in Section 4.4. Self-modifying code affecting trans-
lations present in the translation cache must be purged from the cache. Ad-
ditionally other threads must be notified about invalidations due to self-
modifying code to enable them to synchronise and update their thread local
translation mappings, potentially causing deoptimisation of code executing
in native mode, before any code modification can occur.

It is difficult to provide support for self-modifying multi-threaded code
without a cost to efficiency. Fortunately multi-threaded self-modifying code is
relatively uncommon and mainly restricted to language runtimes [4]. There-
fore we have decided to implement a simple scheme that synchronises and
halts all execution threads before modifying dynamically compiled code at
runtime based on [97]. Further performance optimisations based on research
done by [4, 97] are certainly possible and subject to future work.

4.6 Evaluation and Analysis of Results

We have evaluated our region-based concurrent and parallel dynamic compi-
lation and work scheduling approach across more than 60 industry standard
benchmarks, including BioPerf, Spec, Eembc, and CoreMark, from
various domains. We also evaluate the performance benefits resulting from
the use of region sharing to improve region-based concurrent and parallel
dynamic compilation in multi-threaded execution environments using the
Splash-2 [110] parallel benchmark suite. In this section we describe our ex-
perimental setup and methodology before we present and discuss our results.

4.6.1 Benchmarks and Experimental Setup

We have evaluated our region-based concurrent and parallel dynamic compi-
lation approach using the BioPerf benchmark suite that comprises a com-
prehensive set of computationally-intensive life science applications [8]. It is
well suited for evaluating our concurrent and paralle region-based dynamic
compiler as it exhibits many different potential hotspots per application for
most of its benchmarks. We also used the industry standard Eembc 1.1, and
CoreMark [36] embedded benchmark suites. These benchmarks represent
small and relatively short running applications with complex algorithmic ker-
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Vendor & Model Dell
TM

PowerEdge
TM

1950

Number Cpus 4 (quad-core)

Processor Type Intel c©Xeon
TM

processor E5430
Clock/Fsb Frequency 2.66/1.33 Ghz
L1-Cache 32K Instruction/Data caches
L2-Cache 12 Mb
Main Memory 8 Gb
Operating System Scientific Linux 5.5 (64-bit)

Table 4.1: Simulation Host Configuration.

nels. An evaluation using Spec Cpu 2006 benchmarks [52] is included as
they are widely used and considered to be representative of a broad spectrum
of application domains.

To evaluate the performance benefits resulting from the use of region
sharing to improve concurrent and parallel dynamic compilation in multi-
threaded execution environments we use the Splash-2 benchmark suite
[110]. Splash-2 is a set of 12 parallel benchmarks covering a range of appli-
cation domains such as linear algebra, complex fluid dynamics and graphics
rendering. In cases where both contiguous and non-contiguous versions of a
benchmark are provided, we have used the contiguous version.

The BioPerf benchmarks were run with “class-A” input data-sets avail-
able from the BioPerf web site. The Eembc 1.1 benchmarks were run for
the default number of iterations and CoreMark was run for 1000 itera-
tions. For practical reasons we used the largest possible data set for each of
the Spec Cpu 2006 benchmarks such that simulation time does not become
excessive.

Our main focus has been on simulation speedup by reducing the overall
simulation time. Therefore we have measured the elapsed real time between
invocation and termination of our simulator using the Unix time command.
We used the average elapsed wall clock time across 10 runs for each bench-
mark and configuration (i.e. interpreted-only, concurrent dynamic compi-
lation, concurrent and parallel dynamic compilation) in order to calculate
speedups. Additionally, we provide error bars for each benchmark result de-
noting the standard deviation to show how much variation there is between
different program runs.

We use a strong and competitive baseline for our comparisons, namely
a concurrent region-based dynamic compiler using one asynchronous thread
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for dynamic compilation [47]. Relative to that baseline we plot the speedups
achieved by our concurrent and parallel region-based dynamic compiler us-
ing three asynchronous dynamic compilation threads. Furthermore, we also
present speedups (i.e. slowdowns) relative to our baseline when using inter-
preted simulation only (i.e. disabling region-based dynamic compilation).

All measurements were performed on a standard x86 Dell
TM

Pow-
erEdge

TM
quad-core outlined in Table 4.1 under conditions of low system

load. To evaluate the scalability of our approach, when adding more cores,
we performed additional measurements on a parallel symmetric multiprocess-
ing machine with 16 2.6 GHz Amd Opteron

TM
(Amd64e) processors running

Scientific Linux 5.0 (see Section 4.6.3).

4.6.2 Speedup

Key Results

Our novel concurrent and parallel region-based dynamic compilation ap-
proach is always faster than the baseline decoupled dynamic compiler and
achieves an average speedup of 1.38 equivalent to an average execution time
reduction of 22.8% for the BioPerf benchmark suite. This corresponds
directly to an average increase of 14.7% in the number of natively executed
instructions compared to the baseline.

For some benchmarks (e.g. blastp, clustalw) our proposed scheme is
more than twice as fast as the baseline. This can be explained by the fact
that 59% of the time we find more than one hot region per trace interval
for blastp. From this it follows that blastp exhibits a large amount of task
parallelism (see Box 2© in Figure 4.2). Clustalw mainly benefits from hiding
dynamic compilation latency by using several dynamic compilation worker
threads (see Box 1© in Figure 4.2).

Shorter running BioPerf benchmarks perform particularly well with our
scheme (e.g. tcoffee, hmmsearch, clustalw) because more dynamic com-
pilation workers can deliver translations much quicker as they can split the
workload (i.e. hide compilation latency). Especially for hmmsearch where the
baseline decoupled dynamic compiler performs worse than the interpreted-
only version, our scheme can significantly boost execution speed and reduce
overall simulation time by 34.4%. Even for very long running BioPerf
benchmarks (e.g. fasta-ssearch, promlk, hmmer-hmmpfam, ce), where dy-
namic compilation time typically represents only a small fraction of the over-
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STDEV-T3[%] STDEV-T3[%]
Negative

STDEV-T3[%]
Positive

R-T1 R-T3 Speedup-T1 Speedup-T3 INT-R1 INT-R2 INT-R3 INT-AVG
blast-blastn TOO SHORT 3.18 3.17 3.16 3.17 3.15 3.16 3.16 3.16 3.15 3.15 3.26 3.26 3.28 3.39 3.31 3.28 3.26 3.30 3.49 3.27 3.15 3.26 3.18 3.49 3.16 3.31 0.01 0.07 0.30% 0.15% 0.15% 2.25% 1.12% 1.12% 100.00% -4.71% 1.00 0.95 2.88 2.66 2.70 2.75
clustalw 11.14 11.11 11.08 11.15 11.07 11.21 11.05 11.12 11.16 11.19 5.32 5.32 5.31 5.77 5.29 5.30 5.30 7.31 5.30 5.75 11.05 5.29 11.21 7.31 11.13 5.60 0.05 0.63 0.93% 0.46% 0.46% 11.27% 5.64% 5.64% 100.00% 49.70% 1.00 1.99 29.80 29.81 29.77 29.79
fasta-ssearch 84.28 84.46 84.33 85.14 84.47 85.07 84.33 84.42 84.47 85.28 78.52 78.70 78.54 78.47 79.25 79.45 79.49 79.18 78.64 78.47 84.28 78.47 85.28 79.49 84.63 78.87 0.38 0.42 0.48% 0.24% 0.24% 0.53% 0.27% 0.27% 100.00% 6.80% 1.00 1.07 664.43 668.43 665.86 666.24
promlk 127.09 130.88 128.76 126.97 127.14 127.46 126.72 128.28 127.36 135.46 123.75 124.64 127.69 129.83 123.54 125.57 127.34 125.95 127.04 123.65 126.72 123.54 135.46 129.83 128.61 125.90 2.70 2.08 2.15% 1.07% 1.07% 1.65% 0.83% 0.83% 100.00% 2.11% 1.00 1.02 1900.98 1925.88 1899.03 1908.63
grappa 9.76 9.78 9.72 9.75 9.72 9.72 9.73 9.76 9.72 9.72 7.20 7.21 7.20 7.20 7.22 7.22 7.19 7.24 7.21 7.20 9.72 7.19 9.78 7.24 9.74 7.21 0.02 0.01 0.31% 0.16% 0.16% 0.20% 0.10% 0.10% 100.00% 25.97% 1.00 1.35 19.12 19.31 19.52 19.32
hmmer-hmmsearch CFG 5.13 5.13 5.17 5.12 5.14 5.15 5.12 5.15 5.11 5.11 3.34 3.36 3.36 3.37 3.38 3.37 3.39 3.37 3.36 3.36 5.11 3.34 5.17 3.39 5.13 3.37 0.02 0.01 0.58% 0.29% 0.29% 0.40% 0.20% 0.20% 100.00% 34.42% 1.00 1.52 5.08 5.10 5.11 5.10
hmmer-hmmpfam 213.35 213.13 212.45 213.76 213.34 213.06 212.21 213.70 211.86 214.40 207.54 207.90 207.53 207.82 207.36 206.38 208.38 207.17 208.89 208.99 211.86 206.38 214.40 208.99 213.13 207.80 0.77 0.80 0.37% 0.19% 0.19% 0.38% 0.19% 100.00% 2.50% 1.00 1.03 1752.48 1746.59 1751.64 1750.24
tcoffee 11.53 11.56 11.51 12.58 11.55 11.53 11.53 13.19 11.50 11.54 9.13 9.21 9.12 9.23 8.87 9.23 9.22 9.02 9.15 9.16 11.50 8.87 13.19 9.23 11.80 9.13 0.59 0.11 6.45% 3.22% 3.22% 1.24% 0.62% 0.62% 100.00% 22.61% 1.00 1.29 13.19 13.17 13.25 13.20
blast-blastp 40.18 40.28 40.30 40.32 40.20 40.28 40.40 40.75 40.15 40.15 19.33 19.72 19.17 19.11 19.77 18.78 19.06 19.66 19.72 19.43 40.15 18.78 40.75 19.77 40.30 19.38 0.18 0.34 0.92% 0.46% 0.46% 1.76% 0.88% 0.88% 100.00% 51.92% 1.00 2.08 53.17 52.97 53.41 53.18
glimmer 21.74 21.70 21.61 21.43 21.68 21.65 21.70 21.67 21.65 21.68 14.96 15.15 15.52 15.05 14.93 15.12 15.07 15.14 15.03 15.02 21.43 14.93 21.74 15.52 21.65 15.10 0.09 0.16 0.56% 0.28% 0.28% 1.09% 0.55% 0.55% 100.00% 30.26% 1.00 1.43 105.09 105.37 105.25 105.24
ce 125.24 125.56 127.86 125.50 126.89 128.04 125.21 124.91 128.93 125.50 124.93 125.10 125.12 125.58 125.06 124.76 125.20 124.95 124.89 124.65 124.91 124.65 128.93 125.58 126.36 125.02 1.44 0.26 1.15% 0.58% 0.58% 0.21% 0.10% 0.10% 100.00% 1.06% 1.00 1.01 1421.09 1424.69 1422.43 1422.74
average 1.29% 0.65% 0.65% 1.91% 0.95% 0.95% 100.00% 22.74% 1.00 1.34
a2time01 2.90 2.89 2.89 2.88 2.88 2.88 2.88 2.88 2.88 2.89 2.49 2.51 2.49 2.49 2.48 2.49 2.49 2.48 2.47 2.47 2.88 2.47 2.90 2.51 2.89 2.49 0.01 0.12 0.28% 0.14% 0.14% 5.01% 2.50% 2.50% 100.00% 13.83% 1.00 1.16 18.95 17.31 17.30 17.85
aifftr01 2.56 2.54 2.56 2.56 2.54 2.52 2.55 2.55 2.55 2.57 1.70 1.73 1.57 1.71 1.54 1.71 1.71 1.67 1.70 1.57 2.52 1.54 2.57 1.73 2.55 1.66 0.01 0.27 0.85% 0.43% 0.43% 16.18% 8.09% 8.09% 100.00% 34.86% 1.00 1.54 4.34 4.33 4.39 4.35
aifirf01 0.68 0.67 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.67 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.67 0.68 0.68 0.67 0.67 0.68 0.68 0.67 0.68 0.01 0.01 0.76% 0.38% 0.38% 0.76% 0.38% 0.38% 100.00% -0.59% 1.00 0.99 0.67 0.66 0.65 0.66
aiifft01 2.48 2.43 2.50 2.42 2.42 2.49 2.48 2.42 2.47 2.48 1.38 1.60 1.40 1.41 1.42 1.59 1.40 1.45 1.45 1.40 2.42 1.38 2.50 1.60 2.46 1.45 0.03 0.34 2.24% 1.12% 1.12% 23.58% 11.79% 11.79% 100.00% 41.03% 1.00 1.70 4.22 4.17 4.20 4.20
autcor00 2.35 2.25 2.25 2.25 2.27 2.25 2.25 2.25 2.25 2.25 2.26 2.26 2.26 2.25 2.26 2.26 2.25 2.26 2.27 2.25 2.25 2.25 2.35 2.27 2.26 2.26 0.03 0.01 1.40% 0.70% 0.70% 0.30% 0.15% 0.15% 100.00% 0.18% 1.00 1.00 11.79 11.76 11.95 11.83
basefp01 2.73 2.72 2.72 2.71 2.73 2.72 2.72 2.72 2.71 2.71 2.07 2.07 2.06 2.07 2.07 2.07 2.08 2.07 2.06 2.07 2.71 2.06 2.73 2.08 2.72 2.07 0.01 0.20 0.36% 0.18% 0.18% 9.91% 4.95% 4.95% 100.00% 23.91% 1.00 1.31 15.71 14.93 14.92 15.19
bezier01 1.19 1.17 1.17 1.17 1.17 1.17 1.17 1.18 1.17 1.17 1.19 1.18 1.19 1.18 1.17 1.18 1.17 1.19 1.17 1.17 1.17 1.17 1.19 1.19 1.17 1.18 0.01 0.01 0.57% 0.29% 0.29% 0.57% 0.29% 0.29% 100.00% -0.51% 1.00 0.99 20.08 20.08 21.14 20.43
bitmnp01 2.69 2.68 2.68 2.69 2.76 2.77 2.68 2.67 2.67 2.68 1.72 1.72 1.72 1.72 1.71 1.71 1.72 1.70 1.69 1.72 2.67 1.69 2.77 1.72 2.70 1.71 0.04 0.31 2.13% 1.07% 1.07% 18.18% 9.09% 9.09% 100.00% 36.48% 1.00 1.57 3.06 3.04 3.04 3.05
cacheb01 0.61 0.61 0.60 0.61 0.61 0.61 0.61 0.61 0.62 0.61 0.61 0.61 0.61 0.60 0.61 0.66 0.62 0.61 0.61 0.62 0.60 0.60 0.62 0.66 0.61 0.62 0.00 0.00 0.77% 0.38% 0.38% 0.77% 0.38% 0.38% 100.00% -0.98% 1.00 0.99 0.50 0.48 0.49 0.49
canrdr01 0.93 0.94 0.93 0.92 0.93 0.92 0.94 0.92 0.93 0.93 0.93 0.93 0.91 0.91 0.93 0.91 0.92 0.91 0.92 0.92 0.92 0.91 0.94 0.93 0.93 0.92 0.01 0.01 0.80% 0.40% 0.40% 0.80% 0.40% 0.40% 100.00% 1.08% 1.00 1.01 0.95 0.98 0.95 0.96
coremark 3.45 3.44 3.43 3.45 3.45 3.44 3.46 3.44 3.44 3.44 2.56 2.55 2.55 2.57 2.56 2.55 2.57 2.54 2.55 2.56 3.43 2.54 3.46 2.57 3.44 2.56 0.01 0.28 0.33% 0.16% 0.16% 10.93% 5.47% 5.47% 100.00% 25.78% 1.00 1.35 11.99 12.08 12.01 12.03
cjpeg 60.07 61.47 60.14 59.97 60.06 59.95 59.92 59.84 60.01 60.27 56.92 56.55 56.35 56.64 56.39 56.52 56.46 57.12 56.79 56.45 59.84 56.35 61.47 57.12 60.17 56.62 0.47 1.13 0.83% 0.42% 0.42% 2.00% 1.00% 1.00% 100.00% 5.90% 1.00 1.06 538.25 536.14 537.75 537.38
conven00 1.04 1.03 1.03 1.02 1.04 1.03 1.03 1.03 1.03 1.03 0.99 1.00 1.01 1.00 1.00 1.00 1.02 0.99 1.00 1.00 1.02 0.99 1.04 1.02 1.03 1.00 0.01 0.01 0.57% 0.28% 0.28% 1.35% 0.67% 0.67% 100.00% 2.91% 1.00 1.03 10.10 10.19 10.24 10.18
dither01 6.27 6.27 6.27 6.24 6.28 6.25 6.24 6.27 6.29 6.25 6.96 6.26 6.27 6.26 6.27 6.27 6.27 6.28 6.27 6.24 6.24 6.24 6.29 6.96 6.26 6.34 0.02 0.22 0.27% 0.13% 0.13% 3.49% 1.75% 1.75% 100.00% -1.15% 1.00 0.99 56.05 56.07 61.15 57.76
djpeg 47.29 47.24 47.22 47.26 47.25 47.30 47.37 47.29 47.27 47.23 45.13 44.85 44.81 44.82 44.89 45.13 44.71 44.85 44.81 44.88 47.22 44.71 47.37 45.13 47.27 44.89 0.04 0.68 0.10% 0.05% 0.05% 1.51% 0.76% 0.76% 100.00% 5.04% 1.00 1.05 480.74 487.90 482.63 483.76
fbital00 2.81 2.83 2.82 2.89 2.81 2.80 2.80 2.82 2.80 2.81 2.89 2.81 2.81 2.78 2.82 2.86 2.82 2.85 2.89 2.85 2.80 2.78 2.89 2.89 2.82 2.84 0.03 0.03 0.95% 0.47% 0.47% 1.22% 0.61% 0.61% 100.00% -0.67% 1.00 0.99 32.40 32.49 32.19 32.36
fft00 0.88 0.87 0.87 0.90 0.87 0.87 0.87 0.87 0.88 0.88 0.69 0.68 0.68 0.68 0.68 0.69 0.68 0.68 0.69 0.69 0.87 0.68 0.90 0.69 0.88 0.68 0.01 0.06 1.41% 0.71% 0.71% 8.69% 4.35% 4.35% 100.00% 21.92% 1.00 1.28 1.89 1.85 1.85 1.86
idctrn01 1.26 1.11 1.25 1.12 1.11 1.13 1.14 1.14 1.12 1.13 1.13 1.16 1.14 1.14 1.13 1.13 1.14 1.13 1.14 1.14 1.11 1.13 1.26 1.16 1.15 1.14 0.06 0.04 4.91% 2.45% 2.45% 3.58% 1.79% 1.79% 100.00% 1.13% 1.00 1.01 1.02 1.00 1.01 1.01
iirflt01 1.65 1.64 1.66 1.65 1.65 1.66 1.64 1.65 1.65 1.67 1.12 1.12 1.11 1.14 1.12 1.13 1.26 1.11 1.13 1.12 1.64 1.11 1.67 1.26 1.65 1.14 0.01 0.17 0.81% 0.40% 0.40% 14.84% 7.42% 7.42% 100.00% 31.23% 1.00 1.45 1.75 1.73 1.73 1.74
matrix01 8.99 8.91 8.92 8.93 8.94 8.91 8.94 8.96 9.04 8.94 7.61 7.62 7.63 7.69 7.59 7.60 7.60 7.60 7.65 7.62 8.91 7.59 9.04 7.69 8.95 7.62 0.04 0.42 0.53% 0.26% 0.26% 5.55% 2.78% 2.78% 100.00% 14.83% 1.00 1.17 65.76 65.59 65.50 65.62
ospf 0.29 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.29 0.28 0.28 0.29 0.29 0.28 0.29 0.00 0.00 1.46% 0.73% 0.73% 1.46% 0.73% 0.73% 100.00% -2.48% 1.00 0.98 0.20 0.19 0.19 0.19
pktflow 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.27 0.24 0.24 0.25 0.24 0.24 0.28 0.24 0.25 0.25 0.25 0.25 0.28 0.24 0.24 0.27 0.28 0.24 0.25 0.01 0.01 3.82% 1.91% 1.91% 3.82% 1.91% 1.91% 100.00% -3.69% 1.00 0.96 0.19 0.18 0.18 0.18
pntrch01 1.21 1.21 1.20 1.20 1.21 1.21 1.21 1.20 1.20 1.21 1.17 1.16 1.15 1.15 1.16 1.15 1.15 1.16 1.15 1.15 1.20 1.15 1.21 1.17 1.21 1.16 0.01 0.01 0.45% 0.22% 0.22% 1.06% 0.53% 0.53% 100.00% 4.23% 1.00 1.04 1.83 1.86 1.84 1.84
puwmod01 0.83 0.83 0.82 0.82 0.85 0.82 0.82 0.82 0.85 0.84 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.82 0.83 0.82 0.82 0.85 0.84 0.83 0.83 0.01 0.01 1.50% 0.75% 0.75% 1.50% 0.75% 0.75% 100.00% 0.00% 1.00 1.00 0.63 0.62 0.62 0.62
rgbcmy01 4.56 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.54 4.58 4.56 4.55 4.55 4.54 4.56 4.58 4.55 4.55 0.00 0.00 0.07% 0.03% 0.03% 0.00% 0.00% 0.00% 100.00% -0.04% 1.00 1.00 65.62 63.17 66.25 65.01
rgbhpg01 0.97 0.96 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.97 0.97 0.96 0.96 0.01 0.01 0.74% 0.37% 0.37% 0.54% 0.27% 0.27% 100.00% -0.52% 1.00 0.99 9.90 13.25 9.79 10.98
rgbyiq01 13.26 13.25 13.27 13.29 13.47 13.23 13.24 13.29 13.22 13.21 13.12 13.04 13.07 13.21 13.64 12.87 13.07 13.13 13.15 13.14 13.21 12.87 13.47 13.64 13.27 13.14 0.07 0.09 0.57% 0.28% 0.28% 0.68% 0.34% 0.34% 100.00% 0.97% 1.00 1.01 15.10 13.53 13.53 14.05
rotate01 3.27 3.25 3.23 3.24 3.25 3.25 3.24 3.26 3.27 3.26 3.25 3.27 3.30 3.27 3.28 3.28 3.25 3.29 3.25 3.28 3.23 3.25 3.27 3.30 3.25 3.27 0.01 0.01 0.40% 0.20% 0.20% 0.35% 0.18% 0.18% 100.00% -0.62% 1.00 0.99 17.45 17.47 17.40 17.44
routelookup 0.68 0.67 0.68 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.67 0.68 0.69 0.69 0.68 0.69 0.01 0.01 0.92% 0.46% 0.46% 0.92% 0.46% 0.46% 100.00% -0.59% 1.00 0.99 0.70 0.69 0.69 0.69
rspeed01 0.86 0.85 0.85 0.87 0.85 0.85 0.90 0.85 0.85 0.85 0.85 0.86 0.86 0.85 0.86 0.86 0.85 0.86 0.86 0.86 0.85 0.85 0.90 0.86 0.86 0.86 0.02 0.02 1.89% 0.94% 0.94% 1.91% 0.95% 0.95% 100.00% 0.12% 1.00 1.00 0.83 0.83 0.81 0.82
tblook01 2.70 2.69 2.68 2.69 2.67 2.67 2.68 2.68 2.68 2.68 2.04 2.02 2.06 2.04 2.07 2.07 2.06 2.06 2.05 2.04 2.67 2.02 2.70 2.07 2.68 2.05 0.01 0.20 0.45% 0.22% 0.22% 9.87% 4.94% 4.94% 100.00% 23.53% 1.00 1.31 9.70 9.67 9.74 9.70
text01 4.89 4.86 4.86 4.84 4.83 5.00 4.87 4.83 4.86 4.84 4.62 4.59 4.59 4.59 4.60 4.59 4.60 4.59 4.61 4.59 4.83 4.59 5.00 4.62 4.87 4.60 0.05 0.09 1.09% 0.54% 0.54% 2.00% 1.00% 1.00% 100.00% 5.57% 1.00 1.06 29.97 29.63 29.64 29.75
ttsprk01 2.17 2.15 2.19 2.15 2.21 2.14 2.16 2.17 2.15 2.14 1.88 1.88 1.87 1.88 1.87 1.88 1.87 1.87 1.87 1.86 2.14 1.86 2.21 1.88 2.16 1.87 0.02 0.09 1.21% 0.60% 0.60% 4.91% 2.46% 2.46% 100.00% 13.41% 1.00 1.15 1.83 1.68 1.69 1.73
viterb00 1.73 1.72 1.72 1.72 1.72 1.73 1.72 1.73 1.72 1.73 1.70 1.69 1.69 1.70 1.69 1.70 1.70 1.70 1.69 1.69 1.72 1.69 1.73 1.70 1.72 1.70 0.01 0.01 0.30% 0.15% 0.15% 0.52% 0.26% 0.26% 100.00% 1.68% 1.00 1.02 18.07 18.25 18.05 18.12
average 1.05% 0.53% 0.53% 4.67% 2.33% 2.33% 100.00% 8.76% 1.00 1.12
400.perlbench 23.54 23.62 23.63 23.49 23.56 23.39 25.15 23.50 23.44 23.51 20.08 21.20 19.80 20.08 19.76 19.99 20.15 19.88 20.03 19.64 23.39 19.64 25.15 21.20 23.68 20.06 0.52 1.26 2.60% 1.30% 1.30% 6.26% 3.13% 3.13% 100.00% 15.29% 1.00 1.18 25.02 24.68 24.66 24.79
401.bzip2 80.07 80.29 79.85 79.95 79.76 79.57 80.27 79.89 80.04 79.89 74.60 74.41 73.96 74.46 73.87 73.98 74.76 74.76 74.15 75.00 79.57 73.87 80.29 75.00 79.96 74.40 0.22 1.70 0.30% 0.15% 0.15% 2.29% 1.15% 1.15% 100.00% 6.96% 1.00 1.07 735.27 737.24 739.50 737.34
403.gcc 213.55 213.14 214.10 213.78 213.17 213.79 213.82 214.24 213.33 213.21 104.66 105.09 103.36 104.04 105.86 105.72 106.72 105.44 103.99 104.43 213.14 103.36 214.24 106.72 213.61 104.93 0.39 34.46 0.38% 0.19% 0.19% 32.84% 16.42% 16.42% 100.00% 50.88% 1.00 2.04 243.58 241.98 242.78 242.78
429.mcf 45.12 44.92 45.14 45.04 45.11 45.04 44.99 45.09 45.14 45.96 42.38 43.19 42.72 42.04 42.39 42.35 42.38 42.56 42.45 42.95 44.92 42.04 45.96 43.19 45.16 42.54 0.29 0.93 0.69% 0.34% 0.34% 2.18% 1.09% 1.09% 100.00% 5.79% 1.00 1.06 196.26 216.53 195.71 202.83
433.milc 1027.22 1032.01 1028.59 1027.97 1033.52 1026.02 1034.81 1024.79 1037.65 1033.10 1035.10 1029.19 1030.59 1028.40 1022.55 1026.61 1034.62 1036.27 1027.98 1033.41 1024.79 1022.55 1037.65 1036.27 1030.57 1030.47 4.23 4.27 0.41% 0.21% 0.21% 0.41% 0.21% 0.21% 100.00% 0.01% 1.00 1.00 12962.82 13338.62 12937.77 13079.74
445.gobmk 378.07 382.92 380.29 378.25 378.47 378.47 378.52 378.69 378.71 378.13 352.87 351.51 352.47 352.95 351.75 354.81 354.71 352.41 350.85 351.41 378.07 350.85 382.92 354.81 379.05 352.57 1.50 8.44 0.42% 0.21% 0.21% 2.39% 1.20% 1.20% 100.00% 6.99% 1.00 1.08 2158.96 2151.81 2141.71 2150.83
450.soplex 421.21 425.89 417.43 422.48 417.40 420.77 418.47 418.92 422.32 417.34 411.89 413.75 413.24 413.65 416.93 412.41 414.78 413.92 412.17 435.43 417.34 411.89 425.89 435.43 420.22 415.82 2.82 3.82 0.68% 0.34% 0.34% 0.92% 0.46% 0.46% 100.00% 1.05% 1.00 1.01 3726.76 3685.72 3692.08 3701.52
453.povray 151.02 151.40 149.70 149.73 150.63 150.51 150.84 150.79 149.98 150.38 126.68 125.33 125.06 125.66 125.28 127.01 124.67 125.43 124.46 126.31 149.70 124.46 151.40 127.01 150.50 125.59 0.56 7.53 0.45% 0.22% 0.22% 6.00% 3.00% 3.00% 100.00% 16.55% 1.00 1.20 972.43 974.41 972.21 973.02
456.hmmer 183.65 183.26 186.38 188.85 181.52 183.43 182.79 183.08 181.75 182.53 180.28 180.61 180.77 178.64 178.54 179.23 179.82 186.88 181.55 181.28 181.52 178.54 188.85 186.88 183.72 180.76 2.24 2.49 1.24% 0.62% 0.62% 1.38% 0.69% 0.69% 100.00% 1.61% 1.00 1.02 2067.77 2061.32 2272.90 2134.00
458.sjeng 133.49 133.19 135.24 134.67 133.85 133.98 133.13 133.84 132.77 133.46 130.30 130.77 130.34 128.88 130.62 129.63 133.63 129.30 129.98 130.58 132.77 128.88 135.24 133.63 133.76 130.40 0.74 1.33 0.57% 0.28% 0.28% 1.02% 0.51% 0.51% 100.00% 2.51% 1.00 1.03 719.91 708.63 710.65 713.06
462.libquantum 107.77 107.46 107.88 110.11 107.86 108.65 108.51 107.60 107.53 107.33 103.74 104.08 104.17 104.68 103.81 103.74 104.62 104.34 104.15 103.66 107.33 103.66 110.11 104.68 108.07 104.10 0.84 1.61 0.80% 0.40% 0.40% 1.55% 0.77% 0.77% 100.00% 3.67% 1.00 1.04 1276.53 1276.94 1277.77 1277.08
464.h264ref 397.58 398.34 395.29 396.47 396.04 398.64 396.10 405.67 396.42 396.54 375.39 372.39 380.22 373.63 374.08 370.12 372.41 372.32 378.49 373.92 395.29 370.12 405.67 380.22 397.71 374.30 2.99 7.67 0.80% 0.40% 0.40% 2.05% 1.02% 1.02% 100.00% 5.89% 1.00 1.06 3953.28 3948.90 3964.63 3955.60
470.lbm 1032.50 1035.54 1028.97 1042.34 1034.24 1020.46 1030.52 1018.96 1027.47 1021.92 1014.70 1009.13 1019.58 1016.95 1013.28 1008.40 1016.73 1016.08 1016.92 1015.61 1018.96 1008.40 1042.34 1019.58 1029.29 1014.74 7.36 8.56 0.73% 0.36% 0.36% 0.84% 0.42% 0.42% 100.00% 1.41% 1.00 1.01 6448.58 6982.09 6463.18 6631.28
471.omnetpp 107.63 107.50 107.46 108.17 107.31 107.05 107.20 107.23 107.68 107.74 91.92 92.97 92.98 92.79 92.71 92.41 92.48 92.50 93.21 92.82 107.05 91.92 108.17 93.21 107.50 92.68 0.33 4.93 0.35% 0.18% 0.18% 5.32% 2.66% 2.66% 100.00% 13.78% 1.00 1.16 413.65 412.78 413.63 413.35
473.astar 101.50 101.52 101.11 101.58 101.27 104.89 101.42 101.65 101.56 101.50 94.64 95.34 95.41 94.91 95.41 95.77 94.96 94.65 95.52 95.31 101.11 94.64 104.89 95.77 101.80 95.19 1.10 2.52 1.15% 0.58% 0.58% 2.65% 1.33% 1.33% 100.00% 6.49% 1.00 1.07 1009.25 1010.02 1013.72 1011.00
482.sphinx3 202.35 201.71 202.15 201.31 201.45 201.90 200.41 202.62 201.41 202.23 194.13 194.19 194.67 191.94 191.95 193.90 194.14 193.20 192.18 192.47 200.41 191.94 202.62 194.67 201.75 193.28 0.64 2.47 0.33% 0.17% 0.17% 1.28% 0.64% 0.64% 100.00% 4.20% 1.00 1.04 2136.46 2134.09 2126.62 2132.39
483.xalancbmk CFG thresh:2 34.10 34.07 34.02 33.94 34.04 33.96 34.04 34.03 34.02 34.12 23.28 23.28 22.99 22.87 22.83 22.96 23.00 23.09 23.13 23.43 33.94 22.83 34.12 23.43 34.03 23.09 0.06 3.40 0.24% 0.12% 0.12% 14.72% 7.36% 7.36% 100.00% 32.17% 1.00 1.47 27.11 27.09 27.08 27.09
average 0.71% 0.36% 0.36% 4.95% 2.47% 2.47% 100.00% 10.31% 1.00 1.15

11.48%

InterpretedEonlyHSimulation
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Performance Improvement Results Graphs used in Paper
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Benchmark SPEEDUP-0 
T1/T3

SPEEDUP-1 
T1/T3

SPEEDUP-2 
T1/T3

SPEEDUP-3 
T1/T3

SPEEDUP-4 
T1/T3

SPEEDUP-5 
T1/T3

SPEEDUP-6 
T1/T3

SPEEDUP-7 
T1/T3

SPEEDUP-8 
T1/T3

SPEEDUP-9 
T1/T3

STDEV-
BASELINE

STDEV-SPEEDUP 
T1/T3

INTERPRETIVE 
SPEEDUP (OLD!)

BASELINE T1 AVG-SPEEDUP 
T1/T3

INTERPRETIVE 
TIME (OLD!)

Total 
Instructions

MIPS 
Interpretive

MIPS T1 
Baseline

MIPS T3 REAL SPEEDUP INT SPEEDUP-1 INT SPEEDUP-2 INT SPEEDUP-3 AVG INT 
SPEEDUP

STDEV INT 
SPEEDUP

blastn TOO SHORT 0.9696319018 0.9696319018 0.9637195122 0.9324483776 0.9549848943 0.9637195122 0.9696319018 0.9578787879 0.905730659 0.9666666667 0.0031459314 0.02074486374471 1.07 1 0.96 2.96 60657542 22.08 19.19 18.33 0.95 1.0975694444 1.1883458647 1.1707407407 1.15 0.05
clustalw 2.0917293233 2.0917293233 2.0956685499 1.9285961872 2.1035916824 2.0996226415 2.0996226415 1.5222982216 2.0996226415 1.9353043478 0.0046752008 0.18363907550598 0.34 1 2.01 32.77 833343182 27.97 74.89 148.89 1.99 50.17% 0.3734228188 0.3732975512 0.3737991266 0.37 0.00
fasta-ssearch 1.0777508915 1.0752858958 1.0774764451 1.0784376195 1.0678233438 1.0651353052 1.0645993207 1.0687673655 1.0761063072 1.0784376195 0.0044956649 0.00571308411717 0.11 1 1.07 742.10 18390729671 27.60 217.32 233.17 1.07 6.80% 0.1273648089 0.1266026360 0.1270912804 0.13 0.00
promlk 1.0392888889 1.0318677792 1.0072206124 0.9906185011 1.0410555286 1.0242255316 1.0099890058 1.0211353712 1.0123740554 1.0401293975 0.021027706 0.01677789571546 0.06 1 1.02 1988.84 46020920830 24.11 357.83 365.54 1.02 2.13% 0.0676556303 0.0667809002 0.0677251018 0.07 0.00
grappa 1.3525 1.3506241331 1.3525 1.3525 1.3487534626 1.3487534626 1.3543810848 1.3450276243 1.3506241331 1.3525 0.0023114867 0.0027108894057 0.47 1 1.35 20.88 493553641 25.55 50.68 68.46 1.35 25.97% 0.5093096234 0.5042982910 0.4988729508 0.50 0.01
hmmsearch 1.5368263473 1.5276785714 1.5276785714 1.5231454006 1.5186390533 1.5231454006 1.514159292 1.5231454006 1.5276785714 1.5276785714 0.0037921427 0.00611789383993 0.94 1 1.52 5.45 118797407 23.31 23.14 35.29 1.52 34.43% 1.0104330709 1.0064705882 1.0045009785 1.01 0.00
hmmpfam 1.0269152934 1.0251370851 1.0269647762 1.0255317101 1.027806713 1.0326872759 1.0227756982 1.0287493363 1.0202786155 1.0197904206 0.0036188193 0.00392758625288 0.12 1 1.03 1839.56 40880624840 23.36 191.81 196.73 1.03 2.50% 0.1216139414 0.1220240583 0.1216722614 0.12 0.00
tcoffee 1.2926615553 1.2814332248 1.2940789474 1.2786565547 1.3305524239 1.2786565547 1.2800433839 1.3084257206 1.2898360656 1.2884279476 0.0498961729 0.01628987209955 0.81 1 1.29 14.49 319332249 24.19 27.06 34.96 1.29 22.62% 0.8947687642 0.8961275626 0.8907169811 0.89 0.00
blastp 2.0848939472 2.0436612576 2.102295253 2.108895866 2.0384926657 2.1459531416 2.1144281217 2.0498982706 2.0436612576 2.0741636644 0.0044007347 0.03680448758088 0.68 1 2.08 59.31 1369011548 25.74 33.97 70.66 2.08 51.94% 0.7579650179 0.7608268831 0.7545590713 0.76 0.00
glimmer 1.4472593583 1.4291089109 1.3950386598 1.4386046512 1.4501674481 1.4319444444 1.4366954214 1.4300528402 1.4405189621 1.4414780293 0.0039339073 0.01536851598321 0.19 1 1.43 113.60 2447437589 23.26 113.04 162.09 1.43 30.27% 0.2060234085 0.2054759419 0.2057102138 0.21 0.00
ce 1.0114784279 1.0101039169 1.0099424552 1.0062430323 1.010426995 1.0128566848 1.0092971246 1.0113165266 1.0118023861 1.0137505014 0.0114243869 0.00208139229408 0.08 1 1.01 1501.42 33897449616 23.83 268.25 271.13 1.01 1.06% 0.0889204765 0.0886957865 0.0888367090 0.09 0.00
average 0.0102474685 0.02819777786723 0.44 1 1.38 24.89 135.80 158.69 1.38 22.79% 0.41 0.00
a2time01 1.1586345382 1.1494023904 1.1586345382 1.1586345382 1.1633064516 1.1586345382 1.1586345382 1.1633064516 1.1680161943 1.1680161943 0.0024509767 0.00547002454655 0.14 1 1.16 20.25 488927341 27.39 169.47 196.67 1.16 13.83% 0.1522427441 0.1666666667 0.1667630058 0.16 0.01
aifftr01 1.5 1.4739884393 1.6242038217 1.4912280702 1.6558441558 1.4912280702 1.4912280702 1.5269461078 1.5 1.6242038217 0.0055459355 0.06865357798617 0.50 1 1.54 5.08 126654467 29.09 49.67 76.25 1.54 34.98% 0.5875576037 0.5889145497 0.5808656036 0.59 0.00
aifirf01 0.9911764706 0.9911764706 0.9911764706 0.9911764706 1.0059701493 0.9911764706 0.9911764706 1.0059701493 0.9911764706 0.9911764706 0.0076616881 0.00623756260741 0.85 1 1.00 0.79 19488282 29.53 28.91 28.74 0.99 0.00% 1.0059701493 1.0212121212 1.0369230769 1.02 0.02
aiifft01 1.781884058 1.536875 1.7564285714 1.7439716312 1.7316901408 1.5465408805 1.7564285714 1.695862069 1.695862069 1.7564285714 0.0132054536 0.08780574681911 0.49 1 1.70 4.97 122143760 29.10 49.67 84.24 1.70 41.18% 0.5827014218 0.5896882494 0.5854761905 0.59 0.00
autcor00 1.0008849558 1.0008849558 1.0008849558 1.0053333333 1.0008849558 1.0008849558 1.0053333333 1.0008849558 0.9964757709 1.0053333333 0.0139489061 0.00280515366258 0.16 1 1.00 14.17 389802673 32.94 172.33 172.63 1.00 0.18% 0.1918575064 0.1923469388 0.1892887029 0.19 0.00
basefp01 1.31352657 1.31352657 1.3199029126 1.31352657 1.31352657 1.31352657 1.3072115385 1.31352657 1.3199029126 1.31352657 0.0027137359 0.0036063335463 0.17 1 1.31 16.12 389397481 25.64 143.21 188.21 1.31 23.91% 0.1730744749 0.1821165439 0.1822386059 0.18 0.01
bezier01 0.9857142857 0.9940677966 0.9857142857 0.9940677966 1.0025641026 0.9940677966 1.0025641026 0.9857142857 1.0025641026 1.0025641026 0.0057540372 0.00737960614081 0.05 1 1.00 24.39 574815994 28.13 490.04 487.55 0.99 0.00% 0.0584163347 0.0584163347 0.0554872280 0.06 0.00
bitmnp01 1.5680232558 1.5680232558 1.5680232558 1.5680232558 1.5771929825 1.5771929825 1.5680232558 1.5864705882 1.5958579882 1.5680232558 0.0135446973 0.00980731083504 0.75 1 1.57 3.58 86004464 28.23 31.89 50.21 1.57 36.49% 0.8813725490 0.8871710526 0.8871710526 0.89 0.00
cacheb01 1 1 1 1.0166666667 1 0.9242424242 0.9838709677 1 1 0.9838709677 0.007727943 0.02517233032893 1.05 1 1.00 0.58 13458448 27.47 22.06 21.85 0.99 0.00% 1.2200000000 1.2708333333 1.2448979592 1.25 0.03
canrdr01 0.9989247312 0.9989247312 1.0208791209 1.0208791209 0.9989247312 1.0208791209 1.0097826087 1.0208791209 1.0097826087 1.0097826087 0.0079425704 0.00961629129924 0.85 1 1.01 1.09 26309364 27.41 28.32 28.63 1.01 1.08% 0.9778947368 0.9479591837 0.9778947368 0.97 0.02
coremark 1.3453125 1.3505882353 1.3505882353 1.340077821 1.3453125 1.3505882353 1.340077821 1.3559055118 1.3505882353 1.3453125 0.0024485309 0.00509130331981 0.26 1 1.35 13.39 349006189 29.02 101.34 136.54 1.35 25.78% 0.2872393661 0.2850993377 0.2867610325 0.29 0.00
cjpeg 1.057097681 1.0640141468 1.0677905945 1.0623234463 1.0670331619 1.0645789101 1.0657102373 1.0533963585 1.0595175207 1.0658990257 0.0078509794 0.00468382175134 0.10 1 1.06 590.32 15379979678 28.62 255.61 271.64 1.06 5.90% 0.1117882025 0.1122281494 0.1118921432 0.11 0.00
conven00 1.0414141414 1.031 1.0207920792 1.031 1.031 1.031 1.0107843137 1.0414141414 1.031 1.031 0.0055057829 0.00894785682912 0.08 1 1.03 12.81 289588760 28.46 280.88 289.30 1.03 2.92% 0.1020792079 0.1011776251 0.1006835938 0.10 0.00
dither01 0.8998563218 1.0004792332 0.9988835726 1.0004792332 0.9988835726 0.9988835726 0.9988835726 0.9972929936 0.9988835726 1.0036858974 0.0027190462 0.03158613792601 0.09 1 1.00 72.89 1737243150 30.08 277.38 274.23 0.99 0.00% 0.1117395183 0.1116996611 0.1024202780 0.11 0.01
djpeg 1.047462885 1.0540022297 1.0549430931 1.0547077198 1.053063043 1.047462885 1.0573026169 1.0540022297 1.0549430931 1.0532976827 0.0009237052 0.00320173273687 0.09 1 1.05 503.90 13340652937 27.58 282.21 297.20 1.05 5.04% 0.0983317386 0.0968887067 0.0979466672 0.10 0.00
fbital00 0.975432526 1.003202847 1.003202847 1.014028777 0.9996453901 0.9856643357 0.9996453901 0.989122807 0.975432526 0.989122807 0.0095259 0.01263949865372 0.08 1 1.00 34.72 929808652 28.73 329.84 327.63 0.99 0.00% 0.0870061728 0.0867651585 0.0875737807 0.09 0.00
fft00 1.2695652174 1.2882352941 1.2882352941 1.2882352941 1.2882352941 1.2695652174 1.2882352941 1.2882352941 1.2695652174 1.2695652174 0.011028445 0.00964118616447 0.38 1 1.28 2.33 54650671 29.33 62.39 79.90 1.28 21.92% 0.4634920635 0.4735135135 0.4735135135 0.47 0.01
idctrn01 1.0185840708 0.9922413793 1.0096491228 1.0096491228 1.0185840708 1.0185840708 1.0096491228 1.0185840708 1.0096491228 1.0096491228 0.048537711 0.00808810042157 0.90 1 1.01 1.28 29951770 29.66 26.02 26.32 1.01 1.14% 1.1284313725 1.1510000000 1.1396039604 1.14 0.01
iirflt01 1.475 1.475 1.4882882883 1.449122807 1.475 1.4619469027 1.3111111111 1.4882882883 1.4619469027 1.475 0.0055625701 0.05232360283899 0.84 1 1.46 1.97 41887404 24.12 25.36 36.87 1.45 31.32% 0.9440000000 0.9549132948 0.9549132948 0.95 0.01
matrix01 1.1758212878 1.1742782152 1.1727391874 1.1635890767 1.1789196311 1.1773684211 1.1773684211 1.1773684211 1.1696732026 1.1742782152 0.0044950389 0.00459727517689 0.12 1 1.17 75.23 1861408323 28.37 208.03 244.25 1.17 14.83% 0.1360705596 0.1364232352 0.1366106870 0.14 0.00
ospf 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 1.0071428571 0.9724137931 0.0149516674 0.01098229433704 1.04 1 1.00 0.27 4937091 25.54 17.51 17.08 0.98 0.00% 1.4100000000 1.4842105263 1.4842105263 1.46 0.04
pktflow 0.976 1.0166666667 1.0166666667 0.8714285714 1.0166666667 0.976 0.976 0.976 0.976 0.8714285714 0.0395939255 0.0538230773772 0.94 1 1.00 0.26 4395822 23.98 18.02 17.37 0.96 0.00% 1.2842105263 1.3555555556 1.3555555556 1.33 0.04
pntrch01 1.0307692308 1.0396551724 1.0486956522 1.0486956522 1.0396551724 1.0486956522 1.0486956522 1.0396551724 1.0486956522 1.0486956522 0.0042819053 0.00635624305552 0.57 1 1.04 2.12 52958916 28.73 43.91 45.85 1.04 4.23% 0.6590163934 0.6483870968 0.6554347826 0.65 0.01
puwmod01 1 1 1 1 1 1 1 0.9880952381 1.012195122 1 0.0150267365 0.00568072691474 1.06 1 1.00 0.78 17108240 27.45 20.61 20.61 1.00 0.00% 1.3174603175 1.3387096774 1.3387096774 1.33 0.01
rgbcmy01 1.0002197802 1.0002197802 1.0002197802 1.0002197802 1.0002197802 1.0002197802 1.0024229075 0.9936681223 0.9980263158 1.0002197802 0.0006948534 0.00231683471454 0.06 1 1.00 73.63 2073605735 31.90 455.64 455.44 1.00 -0.04% 0.0693538555 0.0720436916 0.0686943396 0.07 0.00
rgbhpg01 0.9947916667 0.9947916667 1.0052631579 0.9947916667 0.9947916667 0.9947916667 0.9947916667 0.9947916667 0.9947916667 0.9845360825 0.0074042595 0.00488563056414 0.08 1 0.99 12.14 318655386 29.02 333.67 331.93 0.99 -0.52% 0.0964646465 0.0720754717 0.0975485189 0.09 0.01
rgbyiq01 1.0116615854 1.0178680982 1.0155317521 1.0047691143 0.9730938416 1.0313131313 1.0155317521 1.0108910891 1.0093536122 1.0101217656 0.0056049007 0.01479778322284 0.82 1 1.01 16.16 399361740 28.42 30.09 30.38 1.01 0.99% 0.8790066225 0.9810051737 0.9810051737 0.95 0.06
rotate01 1.0006153846 0.9944954128 0.9854545455 0.9944954128 0.9914634146 0.9914634146 1.0006153846 0.988449848 1.0006153846 0.9914634146 0.0040484661 0.0053212067969 0.17 1 1.00 19.41 453987119 26.03 139.60 138.75 0.99 0.00% 0.1863610315 0.1861476817 0.1868965517 0.19 0.00
routelookup 1.0029411765 0.9884057971 0.9884057971 1.0029411765 0.9884057971 0.9884057971 1.0029411765 0.9884057971 0.9884057971 1.0029411765 0.0092735415 0.00750603763033 0.84 1 1.00 0.81 20005912 28.85 29.33 29.16 0.99 0.00% 0.9742857143 0.9884057971 0.9884057971 0.98 0.01
rspeed01 1.0094117647 0.9976744186 0.9976744186 1.0094117647 0.9976744186 0.9976744186 1.0094117647 0.9976744186 0.9976744186 0.9976744186 0.0188732833 0.00566967681178 0.95 1 1.00 0.90 20171779 24.50 23.51 23.54 1.00 0.12% 1.0337349398 1.0337349398 1.0592592593 1.04 0.01
tblook01 1.3147058824 1.3277227723 1.3019417476 1.3147058824 1.2956521739 1.2956521739 1.3019417476 1.3019417476 1.3082926829 1.3147058824 0.0034263109 0.01021042813601 0.24 1 1.31 11.18 261754809 26.98 97.60 127.62 1.31 23.53% 0.2764948454 0.2773526370 0.2753593429 0.28 0.00
text01 1.0536796537 1.0605664488 1.0605664488 1.0605664488 1.0582608696 1.0605664488 1.0582608696 1.0605664488 1.0559652928 1.0605664488 0.0102848443 0.00243383194908 0.15 1 1.06 33.16 811209623 27.27 166.64 176.47 1.06 5.57% 0.1624290958 0.1642929463 0.1642375169 0.16 0.00
ttsprk01 1.1505319149 1.1505319149 1.156684492 1.1505319149 1.156684492 1.1505319149 1.156684492 1.156684492 1.156684492 1.1629032258 0.0104633966 0.0041668595724 1.16 1 1.15 1.87 45070732 26.00 20.84 24.06 1.15 13.41% 1.1819672131 1.2875000000 1.2798816568 1.25 0.06
viterb00 1.0141176471 1.0201183432 1.0201183432 1.0141176471 1.0201183432 1.0141176471 1.0141176471 1.0141176471 1.0201183432 1.0201183432 0.0029953467 0.00316264455629 0.08 1 1.02 20.72 524503493 28.94 304.24 309.44 1.02 1.68% 0.0954067515 0.0944657534 0.0955124654 0.10 0.00
average 0.009588738 0.01484316850676 0.47 1 1.13 28.01 139.29 149.02 1.12 9.10% 0.57 0.01
perlbench 1.1794322709 1.1171226415 1.1961111111 1.1794322709 1.1985323887 1.1847423712 1.1753349876 1.1912977867 1.1823764353 1.2058553971 0.0219855753 0.02447852714426 0.88 1 1.18 26.90 542360736 21.88 22.90 27.04 1.18 15.33% 0.9465627498 0.9596029173 0.9603811841 0.96 0.01
bzip2 1.0718230563 1.074559871 1.0810978908 1.0738383024 1.0824150535 1.0808056231 1.06952916 1.06952916 1.0783277141 1.0661066667 0.0027576277 0.00564846989277 0.10 1 1.07 805.39 20161793814 27.34 252.15 271.01 1.07 6.96% 0.1087464469 0.1084558624 0.1081244084 0.11 0.00
gcc 2.0410185362 2.0326672376 2.0666892415 2.0531814687 2.0178821084 2.0205542944 2.0016210645 2.0259199545 2.0541686701 2.0455137413 0.0018455696 0.01984445680043 0.85 1 2.04 251.01 5320894430 21.92 24.91 50.71 2.04 50.88% 0.8769726579 0.8827713034 0.8798624269 0.88 0.00
mcf 1.0654789995 1.0454966427 1.0569990637 1.074096099 1.065227648 1.0662337662 1.0654789995 1.0609727444 1.0637220259 1.051338766 0.006455963 0.0082425874507 0.21 1 1.06 210.91 4771964279 23.53 105.68 112.17 1.06 5.79% 0.2300774483 0.2085392324 0.2307240305 0.22 0.01
milc 0.9956216791 1.001338917 0.999978653 1.0021081291 1.0078411814 1.0038554076 0.9960835862 0.994497573 1.0025175587 0.9972498815 0.0041078277 0.00423152498096 0.08 1 1.00 13337.82 303526077274 23.21 294.52 294.55 1.00 0.01% 0.0795018368 0.0772619656 0.0796557676 0.08 0.00
gobmk 1.0741972965 1.0783533897 1.0754163475 1.0739538178 1.0776176262 1.0683238917 1.068625074 1.0755994438 1.0803819296 1.0786602544 0.0039484527 0.00405262534333 0.17 1 1.08 2218.72 45647616202 21.22 120.43 129.47 1.08 6.99% 0.1755715715 0.1761549579 0.1769856797 0.18 0.00
soplex 1.0202311297 1.015644713 1.0168981706 1.0158902454 1.0078982083 1.0189447395 1.0131226192 1.0152275802 1.0195380547 0.965075902 0.0067182574 0.01647319525171 0.11 1 1.01 3988.16 93308474696 25.21 222.05 224.40 1.01 1.07% 0.1127582672 0.1140138155 0.1138174146 0.11 0.00
povray 1.1880170508 1.2008138514 1.2034063649 1.1976603533 1.2012931034 1.1849303204 1.2071709313 1.1998564937 1.2092077776 1.1914971103 0.0037159401 0.00797601819075 0.15 1 1.20 995.95 20797215668 21.37 138.19 165.60 1.20 16.55% 0.1547648674 0.1544503854 0.1547998889 0.15 0.00
hmmer 1.0191036166 1.0172415702 1.0163412071 1.0284594716 1.0290355102 1.0250739274 1.0217105995 0.9831121575 1.0119746626 1.0134819064 0.0121849149 0.01313388968513 0.08 1 1.02 2226.98 51953814038 24.35 282.78 287.42 1.02 1.63% 0.0888512746 0.0891292958 0.0808324167 0.09 0.00
sjeng 1.0265694551 1.0228798654 1.0262544115 1.0378801986 1.0240545093 1.0318753375 1.0009878021 1.034508894 1.0290967841 1.0243682034 0.0055421729 0.00999777541102 0.18 1 1.03 738.67 15901509810 22.30 118.88 121.94 1.03 2.52% 0.1858037810 0.1887614129 0.1882248646 0.19 0.00
libquantum 1.0417389628 1.0383358955 1.037438802 1.0323844096 1.041036509 1.0417389628 1.0329764863 1.0357485145 1.0376380221 1.0425429288 0.0077381468 0.00365098652674 0.07 1 1.04 1499.71 38187323203 29.90 353.36 366.84 1.04 3.68% 0.0846591933 0.0846320109 0.0845770366 0.08 0.00
h264ref 1.0594554996 1.0679905475 1.0459970543 1.0644461098 1.063165633 1.0745406895 1.0679331919 1.0681913408 1.0507780919 1.0636205605 0.0075174705 0.00857266645664 0.09 1 1.06 4246.13 101327503194 25.62 254.78 270.71 1.06 5.89% 0.1006022847 0.1007138697 0.1003142790 0.10 0.00
lbm 1.0143806051 1.0199795864 1.0095254909 1.0121362899 1.0158021475 1.0207179691 1.0123552959 1.0130029132 1.0121661488 1.0134717067 0.0071547072 0.00355689142675 0.15 1 1.01 7077.16 153348932962 23.13 148.98 151.12 1.01 1.42% 0.1596152952 0.1474188961 0.1592547322 0.16 0.01
omnetpp 1.1694625762 1.1562547058 1.1561303506 1.1584976829 1.1594973574 1.1632615518 1.1623810554 1.1621297297 1.1532775453 1.1581232493 0.003036328 0.00460085726075 0.26 1 1.16 412.25 7532317390 18.22 70.07 81.27 1.16 13.79% 0.2598742899 0.2604220166 0.2598868554 0.26 0.00
astar 1.0756551141 1.0677574995 1.0669741117 1.0725950901 1.0669741117 1.0629633497 1.0720303286 1.0755414686 1.0657453936 1.0680935893 0.0107788761 0.00428072454259 0.09 1 1.07 1113.25 25581176691 25.30 251.29 268.73 1.07 6.49% 0.1008669804 0.1007900834 0.1004222073 0.10 0.00
sphinx3 1.0392726523 1.0389515423 1.0363897878 1.0511305616 1.051075801 1.0405054152 1.0392191202 1.0442753623 1.0498178791 1.0482360887 0.0031891897 0.00571034268697 0.09 1 1.04 2165.71 47902613777 22.46 237.43 247.84 1.04 4.20% 0.0944337830 0.0945386558 0.0948707338 0.09 0.00
xalancbmk 1.4619415808 1.4619415808 1.4803827751 1.4881504154 1.4907577749 1.4823170732 1.4797391304 1.4739714162 1.4714223952 1.4525821596 0.0016341818 0.01237856605839 1.22 1 1.47 27.96 541816954 20.00 15.92 23.47 1.47 32.17% 1.2554039100 1.2563307494 1.2567946824 1.26 0.00
average 0.0064888942 0.00922530030058 0.28 1 1.15 23.35 171.43 182.02 1.15 10.32% 0.30 0.00
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Figure 4.13: Speedups for BioPerf benchmark suite comparing (a) interpreted-
only simulation, (b) simulation using a concurrent dynamic compiler, and (c) sim-
ulation using our novel, concurrent and parallel dynamic compiler with three dy-
namic compilation worker threads including dynamic work scheduling.

all execution time, our scheme achieves a reduction of execution times of up
to 6.8%.

Worst-Case Scenarios

The BioPerf benchmark suite is well suited to show the efficacy of our
concurrent and parallel region-based dynamic compiler. Additionally we also
demonstrate its favorable impact on benchmarks where we would not expect
to see significant speedups from our technique - so called worst-case scenarios.

For this analysis we have considered short running embedded benchmarks
(Eembc, CoreMark) containing few application hotspots (i.e. algorithmic
kernels). Some of these benchmarks are so short that interpreted only execu-
tion takes less than two seconds, leaving very little scope for improvement by
a dynamic compiler. At the other end of the scale are very long running and
Cpu intensive benchmarks (Spec Cpu 2006) where dynamic compilation
time contributes only a marginal fraction to the overall execution time.

Across the Spec Cpu 2006 benchmarks our concurrent and parallel
region-based dynamic compiler is never slower than the baseline and achieves
an average speedup of 1.15, corresponding to an average increase of 4.2%
in the number of natively executed instructions. The best speedups are
achieved for gcc (2.04x), xalancbmk (1.47x), povray (1.2x), and perlbench
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(1.18x). For perlbench and gcc the number of natively executed instruc-
tions improves by 19.5% and 38.0%, respectively, when using our concurrent
and parallel region-based dynamic compiler. The gcc benchmark greatly
benefits from our approach as it runs a compiler with many optimization
flags enabled resulting in a multitude of application hotspots representing
compilation phases.

Xalancbmk is one of the shorter running Spec Cpu benchmarks perform-
ing Xml transformations. Due to its short runtime and abundance of applica-
tion hotspots the code discovery and region construction overhead causes the
baseline concurrent dynamic compiler to be slower than the interpreted-only
version. Our concurrent and parallel dynamic compiler can easily recover
this overhead resulting in a speedup of 1.47 when compared to the base-
line, and a speedup of 1.21 when compared to interpreted-only simulation.
Povray represents a long running benchmark where we achieve a speedup of
1.2. This is again due to an abundance of application hotspots across the
runtime of the povray benchmark.

For the Eembc and CoreMark benchmark suites our approach achieves
an average speedup of 1.12 over the baseline, and an average improvement
of 3.8% in the number of natively executed instructions. Small embedded
benchmarks do not often benefit from task parallelism because they rarely
exhibit more than one hot region per trace interval. The speedups are mostly
due to the fact that dynamic compilation workers can already start work-
ing on newly discovered regions while previous regions are being translated
by other workers. Also profiling and and region construction must be light-
weight, causing only very little overhead, to enable speedups for small bench-
marks like Eembc and CoreMark.

For all benchmarks performing Fast Fourier Transforms (i.e. aifftr01,
aiifft01, fft00) speedups ranging from 1.46 to 1.7 are achieved by our con-
current and parallel dynamic compiler. The bit manipulation (bitmnp01) and
infinite impulse response filter (iirflt01) benchmarks also show speedups
of 1.57 and 1.46 using our scheme. Three Eembc benchmarks (cacheb01,
puwmod01, ospf) yield very short runtimes using interpreted-only mode (i.e.
below one second) causing a small slowdown of the baseline concurrent dy-
namic compiler and our concurrent and parallel dynamic compiler. This
is entirely due to the fact that for very short benchmarks a dynamic com-
piler has almost no chance to speed up execution, actually causing a slight
slowdown due to the overheads caused by profiling and dynamic compilation
worker thread creation.
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Benchmark R0-T1 R1-T1 R2-T1 R3-T1 R4-T1 R5-T1 R6-T1 R7-T1 R8-T1 R9-T1 R0-T3 R1-T3 R2-T3 R3-T3 R4-T3 R5-T3 R6-T3 R7-T3 R8-T3 R9-T3 R-MIN-T1 R-MIN-T3 R-MAX-T1 R-MAX-T3 R-AVG-T1 R-AVG-T3 STDEV-T1[s] STDEV-T3[s] STDEV-T1[%] STDEV-T1[%]
Negative

STDEV-T1[%]
Positive

STDEV-T3[%] STDEV-T3[%]
Negative

STDEV-T3[%]
Positive

R-T1 R-T3 Speedup-T1 Speedup-T3 INT-R1 INT-R2 INT-R3 INT-AVG
blast-blastn TOO SHORT 3.18 3.17 3.16 3.17 3.15 3.16 3.16 3.16 3.15 3.15 3.26 3.26 3.28 3.39 3.31 3.28 3.26 3.30 3.49 3.27 3.15 3.26 3.18 3.49 3.16 3.31 0.01 0.07 0.30% 0.15% 0.15% 2.25% 1.12% 1.12% 100.00% -4.71% 1.00 0.95 2.88 2.66 2.70 2.75
clustalw 11.14 11.11 11.08 11.15 11.07 11.21 11.05 11.12 11.16 11.19 5.32 5.32 5.31 5.77 5.29 5.30 5.30 7.31 5.30 5.75 11.05 5.29 11.21 7.31 11.13 5.60 0.05 0.63 0.93% 0.46% 0.46% 11.27% 5.64% 5.64% 100.00% 49.70% 1.00 1.99 29.80 29.81 29.77 29.79
fasta-ssearch 84.28 84.46 84.33 85.14 84.47 85.07 84.33 84.42 84.47 85.28 78.52 78.70 78.54 78.47 79.25 79.45 79.49 79.18 78.64 78.47 84.28 78.47 85.28 79.49 84.63 78.87 0.38 0.42 0.48% 0.24% 0.24% 0.53% 0.27% 0.27% 100.00% 6.80% 1.00 1.07 664.43 668.43 665.86 666.24
promlk 127.09 130.88 128.76 126.97 127.14 127.46 126.72 128.28 127.36 135.46 123.75 124.64 127.69 129.83 123.54 125.57 127.34 125.95 127.04 123.65 126.72 123.54 135.46 129.83 128.61 125.90 2.70 2.08 2.15% 1.07% 1.07% 1.65% 0.83% 0.83% 100.00% 2.11% 1.00 1.02 1900.98 1925.88 1899.03 1908.63
grappa 9.76 9.78 9.72 9.75 9.72 9.72 9.73 9.76 9.72 9.72 7.20 7.21 7.20 7.20 7.22 7.22 7.19 7.24 7.21 7.20 9.72 7.19 9.78 7.24 9.74 7.21 0.02 0.01 0.31% 0.16% 0.16% 0.20% 0.10% 0.10% 100.00% 25.97% 1.00 1.35 19.12 19.31 19.52 19.32
hmmer-hmmsearch CFG 5.13 5.13 5.17 5.12 5.14 5.15 5.12 5.15 5.11 5.11 3.34 3.36 3.36 3.37 3.38 3.37 3.39 3.37 3.36 3.36 5.11 3.34 5.17 3.39 5.13 3.37 0.02 0.01 0.58% 0.29% 0.29% 0.40% 0.20% 0.20% 100.00% 34.42% 1.00 1.52 5.08 5.10 5.11 5.10
hmmer-hmmpfam 213.35 213.13 212.45 213.76 213.34 213.06 212.21 213.70 211.86 214.40 207.54 207.90 207.53 207.82 207.36 206.38 208.38 207.17 208.89 208.99 211.86 206.38 214.40 208.99 213.13 207.80 0.77 0.80 0.37% 0.19% 0.19% 0.38% 0.19% 100.00% 2.50% 1.00 1.03 1752.48 1746.59 1751.64 1750.24
tcoffee 11.53 11.56 11.51 12.58 11.55 11.53 11.53 13.19 11.50 11.54 9.13 9.21 9.12 9.23 8.87 9.23 9.22 9.02 9.15 9.16 11.50 8.87 13.19 9.23 11.80 9.13 0.59 0.11 6.45% 3.22% 3.22% 1.24% 0.62% 0.62% 100.00% 22.61% 1.00 1.29 13.19 13.17 13.25 13.20
blast-blastp 40.18 40.28 40.30 40.32 40.20 40.28 40.40 40.75 40.15 40.15 19.33 19.72 19.17 19.11 19.77 18.78 19.06 19.66 19.72 19.43 40.15 18.78 40.75 19.77 40.30 19.38 0.18 0.34 0.92% 0.46% 0.46% 1.76% 0.88% 0.88% 100.00% 51.92% 1.00 2.08 53.17 52.97 53.41 53.18
glimmer 21.74 21.70 21.61 21.43 21.68 21.65 21.70 21.67 21.65 21.68 14.96 15.15 15.52 15.05 14.93 15.12 15.07 15.14 15.03 15.02 21.43 14.93 21.74 15.52 21.65 15.10 0.09 0.16 0.56% 0.28% 0.28% 1.09% 0.55% 0.55% 100.00% 30.26% 1.00 1.43 105.09 105.37 105.25 105.24
ce 125.24 125.56 127.86 125.50 126.89 128.04 125.21 124.91 128.93 125.50 124.93 125.10 125.12 125.58 125.06 124.76 125.20 124.95 124.89 124.65 124.91 124.65 128.93 125.58 126.36 125.02 1.44 0.26 1.15% 0.58% 0.58% 0.21% 0.10% 0.10% 100.00% 1.06% 1.00 1.01 1421.09 1424.69 1422.43 1422.74
average 1.29% 0.65% 0.65% 1.91% 0.95% 0.95% 100.00% 22.74% 1.00 1.34
a2time01 2.90 2.89 2.89 2.88 2.88 2.88 2.88 2.88 2.88 2.89 2.49 2.51 2.49 2.49 2.48 2.49 2.49 2.48 2.47 2.47 2.88 2.47 2.90 2.51 2.89 2.49 0.01 0.12 0.28% 0.14% 0.14% 5.01% 2.50% 2.50% 100.00% 13.83% 1.00 1.16 18.95 17.31 17.30 17.85
aifftr01 2.56 2.54 2.56 2.56 2.54 2.52 2.55 2.55 2.55 2.57 1.70 1.73 1.57 1.71 1.54 1.71 1.71 1.67 1.70 1.57 2.52 1.54 2.57 1.73 2.55 1.66 0.01 0.27 0.85% 0.43% 0.43% 16.18% 8.09% 8.09% 100.00% 34.86% 1.00 1.54 4.34 4.33 4.39 4.35
aifirf01 0.68 0.67 0.67 0.68 0.67 0.68 0.67 0.68 0.67 0.67 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.67 0.68 0.68 0.67 0.67 0.68 0.68 0.67 0.68 0.01 0.01 0.76% 0.38% 0.38% 0.76% 0.38% 0.38% 100.00% -0.59% 1.00 0.99 0.67 0.66 0.65 0.66
aiifft01 2.48 2.43 2.50 2.42 2.42 2.49 2.48 2.42 2.47 2.48 1.38 1.60 1.40 1.41 1.42 1.59 1.40 1.45 1.45 1.40 2.42 1.38 2.50 1.60 2.46 1.45 0.03 0.34 2.24% 1.12% 1.12% 23.58% 11.79% 11.79% 100.00% 41.03% 1.00 1.70 4.22 4.17 4.20 4.20
autcor00 2.35 2.25 2.25 2.25 2.27 2.25 2.25 2.25 2.25 2.25 2.26 2.26 2.26 2.25 2.26 2.26 2.25 2.26 2.27 2.25 2.25 2.25 2.35 2.27 2.26 2.26 0.03 0.01 1.40% 0.70% 0.70% 0.30% 0.15% 0.15% 100.00% 0.18% 1.00 1.00 11.79 11.76 11.95 11.83
basefp01 2.73 2.72 2.72 2.71 2.73 2.72 2.72 2.72 2.71 2.71 2.07 2.07 2.06 2.07 2.07 2.07 2.08 2.07 2.06 2.07 2.71 2.06 2.73 2.08 2.72 2.07 0.01 0.20 0.36% 0.18% 0.18% 9.91% 4.95% 4.95% 100.00% 23.91% 1.00 1.31 15.71 14.93 14.92 15.19
bezier01 1.19 1.17 1.17 1.17 1.17 1.17 1.17 1.18 1.17 1.17 1.19 1.18 1.19 1.18 1.17 1.18 1.17 1.19 1.17 1.17 1.17 1.17 1.19 1.19 1.17 1.18 0.01 0.01 0.57% 0.29% 0.29% 0.57% 0.29% 0.29% 100.00% -0.51% 1.00 0.99 20.08 20.08 21.14 20.43
bitmnp01 2.69 2.68 2.68 2.69 2.76 2.77 2.68 2.67 2.67 2.68 1.72 1.72 1.72 1.72 1.71 1.71 1.72 1.70 1.69 1.72 2.67 1.69 2.77 1.72 2.70 1.71 0.04 0.31 2.13% 1.07% 1.07% 18.18% 9.09% 9.09% 100.00% 36.48% 1.00 1.57 3.06 3.04 3.04 3.05
cacheb01 0.61 0.61 0.60 0.61 0.61 0.61 0.61 0.61 0.62 0.61 0.61 0.61 0.61 0.60 0.61 0.66 0.62 0.61 0.61 0.62 0.60 0.60 0.62 0.66 0.61 0.62 0.00 0.00 0.77% 0.38% 0.38% 0.77% 0.38% 0.38% 100.00% -0.98% 1.00 0.99 0.50 0.48 0.49 0.49
canrdr01 0.93 0.94 0.93 0.92 0.93 0.92 0.94 0.92 0.93 0.93 0.93 0.93 0.91 0.91 0.93 0.91 0.92 0.91 0.92 0.92 0.92 0.91 0.94 0.93 0.93 0.92 0.01 0.01 0.80% 0.40% 0.40% 0.80% 0.40% 0.40% 100.00% 1.08% 1.00 1.01 0.95 0.98 0.95 0.96
coremark 3.45 3.44 3.43 3.45 3.45 3.44 3.46 3.44 3.44 3.44 2.56 2.55 2.55 2.57 2.56 2.55 2.57 2.54 2.55 2.56 3.43 2.54 3.46 2.57 3.44 2.56 0.01 0.28 0.33% 0.16% 0.16% 10.93% 5.47% 5.47% 100.00% 25.78% 1.00 1.35 11.99 12.08 12.01 12.03
cjpeg 60.07 61.47 60.14 59.97 60.06 59.95 59.92 59.84 60.01 60.27 56.92 56.55 56.35 56.64 56.39 56.52 56.46 57.12 56.79 56.45 59.84 56.35 61.47 57.12 60.17 56.62 0.47 1.13 0.83% 0.42% 0.42% 2.00% 1.00% 1.00% 100.00% 5.90% 1.00 1.06 538.25 536.14 537.75 537.38
conven00 1.04 1.03 1.03 1.02 1.04 1.03 1.03 1.03 1.03 1.03 0.99 1.00 1.01 1.00 1.00 1.00 1.02 0.99 1.00 1.00 1.02 0.99 1.04 1.02 1.03 1.00 0.01 0.01 0.57% 0.28% 0.28% 1.35% 0.67% 0.67% 100.00% 2.91% 1.00 1.03 10.10 10.19 10.24 10.18
dither01 6.27 6.27 6.27 6.24 6.28 6.25 6.24 6.27 6.29 6.25 6.96 6.26 6.27 6.26 6.27 6.27 6.27 6.28 6.27 6.24 6.24 6.24 6.29 6.96 6.26 6.34 0.02 0.22 0.27% 0.13% 0.13% 3.49% 1.75% 1.75% 100.00% -1.15% 1.00 0.99 56.05 56.07 61.15 57.76
djpeg 47.29 47.24 47.22 47.26 47.25 47.30 47.37 47.29 47.27 47.23 45.13 44.85 44.81 44.82 44.89 45.13 44.71 44.85 44.81 44.88 47.22 44.71 47.37 45.13 47.27 44.89 0.04 0.68 0.10% 0.05% 0.05% 1.51% 0.76% 0.76% 100.00% 5.04% 1.00 1.05 480.74 487.90 482.63 483.76
fbital00 2.81 2.83 2.82 2.89 2.81 2.80 2.80 2.82 2.80 2.81 2.89 2.81 2.81 2.78 2.82 2.86 2.82 2.85 2.89 2.85 2.80 2.78 2.89 2.89 2.82 2.84 0.03 0.03 0.95% 0.47% 0.47% 1.22% 0.61% 0.61% 100.00% -0.67% 1.00 0.99 32.40 32.49 32.19 32.36
fft00 0.88 0.87 0.87 0.90 0.87 0.87 0.87 0.87 0.88 0.88 0.69 0.68 0.68 0.68 0.68 0.69 0.68 0.68 0.69 0.69 0.87 0.68 0.90 0.69 0.88 0.68 0.01 0.06 1.41% 0.71% 0.71% 8.69% 4.35% 4.35% 100.00% 21.92% 1.00 1.28 1.89 1.85 1.85 1.86
idctrn01 1.26 1.11 1.25 1.12 1.11 1.13 1.14 1.14 1.12 1.13 1.13 1.16 1.14 1.14 1.13 1.13 1.14 1.13 1.14 1.14 1.11 1.13 1.26 1.16 1.15 1.14 0.06 0.04 4.91% 2.45% 2.45% 3.58% 1.79% 1.79% 100.00% 1.13% 1.00 1.01 1.02 1.00 1.01 1.01
iirflt01 1.65 1.64 1.66 1.65 1.65 1.66 1.64 1.65 1.65 1.67 1.12 1.12 1.11 1.14 1.12 1.13 1.26 1.11 1.13 1.12 1.64 1.11 1.67 1.26 1.65 1.14 0.01 0.17 0.81% 0.40% 0.40% 14.84% 7.42% 7.42% 100.00% 31.23% 1.00 1.45 1.75 1.73 1.73 1.74
matrix01 8.99 8.91 8.92 8.93 8.94 8.91 8.94 8.96 9.04 8.94 7.61 7.62 7.63 7.69 7.59 7.60 7.60 7.60 7.65 7.62 8.91 7.59 9.04 7.69 8.95 7.62 0.04 0.42 0.53% 0.26% 0.26% 5.55% 2.78% 2.78% 100.00% 14.83% 1.00 1.17 65.76 65.59 65.50 65.62
ospf 0.29 0.28 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.28 0.29 0.28 0.28 0.29 0.29 0.28 0.29 0.00 0.00 1.46% 0.73% 0.73% 1.46% 0.73% 0.73% 100.00% -2.48% 1.00 0.98 0.20 0.19 0.19 0.19
pktflow 0.25 0.24 0.24 0.24 0.24 0.24 0.24 0.27 0.24 0.24 0.25 0.24 0.24 0.28 0.24 0.25 0.25 0.25 0.25 0.28 0.24 0.24 0.27 0.28 0.24 0.25 0.01 0.01 3.82% 1.91% 1.91% 3.82% 1.91% 1.91% 100.00% -3.69% 1.00 0.96 0.19 0.18 0.18 0.18
pntrch01 1.21 1.21 1.20 1.20 1.21 1.21 1.21 1.20 1.20 1.21 1.17 1.16 1.15 1.15 1.16 1.15 1.15 1.16 1.15 1.15 1.20 1.15 1.21 1.17 1.21 1.16 0.01 0.01 0.45% 0.22% 0.22% 1.06% 0.53% 0.53% 100.00% 4.23% 1.00 1.04 1.83 1.86 1.84 1.84
puwmod01 0.83 0.83 0.82 0.82 0.85 0.82 0.82 0.82 0.85 0.84 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.84 0.82 0.83 0.82 0.82 0.85 0.84 0.83 0.83 0.01 0.01 1.50% 0.75% 0.75% 1.50% 0.75% 0.75% 100.00% 0.00% 1.00 1.00 0.63 0.62 0.62 0.62
rgbcmy01 4.56 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.54 4.58 4.56 4.55 4.55 4.54 4.56 4.58 4.55 4.55 0.00 0.00 0.07% 0.03% 0.03% 0.00% 0.00% 0.00% 100.00% -0.04% 1.00 1.00 65.62 63.17 66.25 65.01
rgbhpg01 0.97 0.96 0.95 0.95 0.95 0.96 0.95 0.96 0.95 0.95 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.97 0.97 0.96 0.96 0.01 0.01 0.74% 0.37% 0.37% 0.54% 0.27% 0.27% 100.00% -0.52% 1.00 0.99 9.90 13.25 9.79 10.98
rgbyiq01 13.26 13.25 13.27 13.29 13.47 13.23 13.24 13.29 13.22 13.21 13.12 13.04 13.07 13.21 13.64 12.87 13.07 13.13 13.15 13.14 13.21 12.87 13.47 13.64 13.27 13.14 0.07 0.09 0.57% 0.28% 0.28% 0.68% 0.34% 0.34% 100.00% 0.97% 1.00 1.01 15.10 13.53 13.53 14.05
rotate01 3.27 3.25 3.23 3.24 3.25 3.25 3.24 3.26 3.27 3.26 3.25 3.27 3.30 3.27 3.28 3.28 3.25 3.29 3.25 3.28 3.23 3.25 3.27 3.30 3.25 3.27 0.01 0.01 0.40% 0.20% 0.20% 0.35% 0.18% 0.18% 100.00% -0.62% 1.00 0.99 17.45 17.47 17.40 17.44
routelookup 0.68 0.67 0.68 0.68 0.69 0.68 0.69 0.68 0.69 0.68 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.69 0.69 0.68 0.67 0.68 0.69 0.69 0.68 0.69 0.01 0.01 0.92% 0.46% 0.46% 0.92% 0.46% 0.46% 100.00% -0.59% 1.00 0.99 0.70 0.69 0.69 0.69
rspeed01 0.86 0.85 0.85 0.87 0.85 0.85 0.90 0.85 0.85 0.85 0.85 0.86 0.86 0.85 0.86 0.86 0.85 0.86 0.86 0.86 0.85 0.85 0.90 0.86 0.86 0.86 0.02 0.02 1.89% 0.94% 0.94% 1.91% 0.95% 0.95% 100.00% 0.12% 1.00 1.00 0.83 0.83 0.81 0.82
tblook01 2.70 2.69 2.68 2.69 2.67 2.67 2.68 2.68 2.68 2.68 2.04 2.02 2.06 2.04 2.07 2.07 2.06 2.06 2.05 2.04 2.67 2.02 2.70 2.07 2.68 2.05 0.01 0.20 0.45% 0.22% 0.22% 9.87% 4.94% 4.94% 100.00% 23.53% 1.00 1.31 9.70 9.67 9.74 9.70
text01 4.89 4.86 4.86 4.84 4.83 5.00 4.87 4.83 4.86 4.84 4.62 4.59 4.59 4.59 4.60 4.59 4.60 4.59 4.61 4.59 4.83 4.59 5.00 4.62 4.87 4.60 0.05 0.09 1.09% 0.54% 0.54% 2.00% 1.00% 1.00% 100.00% 5.57% 1.00 1.06 29.97 29.63 29.64 29.75
ttsprk01 2.17 2.15 2.19 2.15 2.21 2.14 2.16 2.17 2.15 2.14 1.88 1.88 1.87 1.88 1.87 1.88 1.87 1.87 1.87 1.86 2.14 1.86 2.21 1.88 2.16 1.87 0.02 0.09 1.21% 0.60% 0.60% 4.91% 2.46% 2.46% 100.00% 13.41% 1.00 1.15 1.83 1.68 1.69 1.73
viterb00 1.73 1.72 1.72 1.72 1.72 1.73 1.72 1.73 1.72 1.73 1.70 1.69 1.69 1.70 1.69 1.70 1.70 1.70 1.69 1.69 1.72 1.69 1.73 1.70 1.72 1.70 0.01 0.01 0.30% 0.15% 0.15% 0.52% 0.26% 0.26% 100.00% 1.68% 1.00 1.02 18.07 18.25 18.05 18.12
average 1.05% 0.53% 0.53% 4.67% 2.33% 2.33% 100.00% 8.76% 1.00 1.12
400.perlbench 23.54 23.62 23.63 23.49 23.56 23.39 25.15 23.50 23.44 23.51 20.08 21.20 19.80 20.08 19.76 19.99 20.15 19.88 20.03 19.64 23.39 19.64 25.15 21.20 23.68 20.06 0.52 1.26 2.60% 1.30% 1.30% 6.26% 3.13% 3.13% 100.00% 15.29% 1.00 1.18 25.02 24.68 24.66 24.79
401.bzip2 80.07 80.29 79.85 79.95 79.76 79.57 80.27 79.89 80.04 79.89 74.60 74.41 73.96 74.46 73.87 73.98 74.76 74.76 74.15 75.00 79.57 73.87 80.29 75.00 79.96 74.40 0.22 1.70 0.30% 0.15% 0.15% 2.29% 1.15% 1.15% 100.00% 6.96% 1.00 1.07 735.27 737.24 739.50 737.34
403.gcc 213.55 213.14 214.10 213.78 213.17 213.79 213.82 214.24 213.33 213.21 104.66 105.09 103.36 104.04 105.86 105.72 106.72 105.44 103.99 104.43 213.14 103.36 214.24 106.72 213.61 104.93 0.39 34.46 0.38% 0.19% 0.19% 32.84% 16.42% 16.42% 100.00% 50.88% 1.00 2.04 243.58 241.98 242.78 242.78
429.mcf 45.12 44.92 45.14 45.04 45.11 45.04 44.99 45.09 45.14 45.96 42.38 43.19 42.72 42.04 42.39 42.35 42.38 42.56 42.45 42.95 44.92 42.04 45.96 43.19 45.16 42.54 0.29 0.93 0.69% 0.34% 0.34% 2.18% 1.09% 1.09% 100.00% 5.79% 1.00 1.06 196.26 216.53 195.71 202.83
433.milc 1027.22 1032.01 1028.59 1027.97 1033.52 1026.02 1034.81 1024.79 1037.65 1033.10 1035.10 1029.19 1030.59 1028.40 1022.55 1026.61 1034.62 1036.27 1027.98 1033.41 1024.79 1022.55 1037.65 1036.27 1030.57 1030.47 4.23 4.27 0.41% 0.21% 0.21% 0.41% 0.21% 0.21% 100.00% 0.01% 1.00 1.00 12962.82 13338.62 12937.77 13079.74
445.gobmk 378.07 382.92 380.29 378.25 378.47 378.47 378.52 378.69 378.71 378.13 352.87 351.51 352.47 352.95 351.75 354.81 354.71 352.41 350.85 351.41 378.07 350.85 382.92 354.81 379.05 352.57 1.50 8.44 0.42% 0.21% 0.21% 2.39% 1.20% 1.20% 100.00% 6.99% 1.00 1.08 2158.96 2151.81 2141.71 2150.83
450.soplex 421.21 425.89 417.43 422.48 417.40 420.77 418.47 418.92 422.32 417.34 411.89 413.75 413.24 413.65 416.93 412.41 414.78 413.92 412.17 435.43 417.34 411.89 425.89 435.43 420.22 415.82 2.82 3.82 0.68% 0.34% 0.34% 0.92% 0.46% 0.46% 100.00% 1.05% 1.00 1.01 3726.76 3685.72 3692.08 3701.52
453.povray 151.02 151.40 149.70 149.73 150.63 150.51 150.84 150.79 149.98 150.38 126.68 125.33 125.06 125.66 125.28 127.01 124.67 125.43 124.46 126.31 149.70 124.46 151.40 127.01 150.50 125.59 0.56 7.53 0.45% 0.22% 0.22% 6.00% 3.00% 3.00% 100.00% 16.55% 1.00 1.20 972.43 974.41 972.21 973.02
456.hmmer 183.65 183.26 186.38 188.85 181.52 183.43 182.79 183.08 181.75 182.53 180.28 180.61 180.77 178.64 178.54 179.23 179.82 186.88 181.55 181.28 181.52 178.54 188.85 186.88 183.72 180.76 2.24 2.49 1.24% 0.62% 0.62% 1.38% 0.69% 0.69% 100.00% 1.61% 1.00 1.02 2067.77 2061.32 2272.90 2134.00
458.sjeng 133.49 133.19 135.24 134.67 133.85 133.98 133.13 133.84 132.77 133.46 130.30 130.77 130.34 128.88 130.62 129.63 133.63 129.30 129.98 130.58 132.77 128.88 135.24 133.63 133.76 130.40 0.74 1.33 0.57% 0.28% 0.28% 1.02% 0.51% 0.51% 100.00% 2.51% 1.00 1.03 719.91 708.63 710.65 713.06
462.libquantum 107.77 107.46 107.88 110.11 107.86 108.65 108.51 107.60 107.53 107.33 103.74 104.08 104.17 104.68 103.81 103.74 104.62 104.34 104.15 103.66 107.33 103.66 110.11 104.68 108.07 104.10 0.84 1.61 0.80% 0.40% 0.40% 1.55% 0.77% 0.77% 100.00% 3.67% 1.00 1.04 1276.53 1276.94 1277.77 1277.08
464.h264ref 397.58 398.34 395.29 396.47 396.04 398.64 396.10 405.67 396.42 396.54 375.39 372.39 380.22 373.63 374.08 370.12 372.41 372.32 378.49 373.92 395.29 370.12 405.67 380.22 397.71 374.30 2.99 7.67 0.80% 0.40% 0.40% 2.05% 1.02% 1.02% 100.00% 5.89% 1.00 1.06 3953.28 3948.90 3964.63 3955.60
470.lbm 1032.50 1035.54 1028.97 1042.34 1034.24 1020.46 1030.52 1018.96 1027.47 1021.92 1014.70 1009.13 1019.58 1016.95 1013.28 1008.40 1016.73 1016.08 1016.92 1015.61 1018.96 1008.40 1042.34 1019.58 1029.29 1014.74 7.36 8.56 0.73% 0.36% 0.36% 0.84% 0.42% 0.42% 100.00% 1.41% 1.00 1.01 6448.58 6982.09 6463.18 6631.28
471.omnetpp 107.63 107.50 107.46 108.17 107.31 107.05 107.20 107.23 107.68 107.74 91.92 92.97 92.98 92.79 92.71 92.41 92.48 92.50 93.21 92.82 107.05 91.92 108.17 93.21 107.50 92.68 0.33 4.93 0.35% 0.18% 0.18% 5.32% 2.66% 2.66% 100.00% 13.78% 1.00 1.16 413.65 412.78 413.63 413.35
473.astar 101.50 101.52 101.11 101.58 101.27 104.89 101.42 101.65 101.56 101.50 94.64 95.34 95.41 94.91 95.41 95.77 94.96 94.65 95.52 95.31 101.11 94.64 104.89 95.77 101.80 95.19 1.10 2.52 1.15% 0.58% 0.58% 2.65% 1.33% 1.33% 100.00% 6.49% 1.00 1.07 1009.25 1010.02 1013.72 1011.00
482.sphinx3 202.35 201.71 202.15 201.31 201.45 201.90 200.41 202.62 201.41 202.23 194.13 194.19 194.67 191.94 191.95 193.90 194.14 193.20 192.18 192.47 200.41 191.94 202.62 194.67 201.75 193.28 0.64 2.47 0.33% 0.17% 0.17% 1.28% 0.64% 0.64% 100.00% 4.20% 1.00 1.04 2136.46 2134.09 2126.62 2132.39
483.xalancbmk CFG thresh:2 34.10 34.07 34.02 33.94 34.04 33.96 34.04 34.03 34.02 34.12 23.28 23.28 22.99 22.87 22.83 22.96 23.00 23.09 23.13 23.43 33.94 22.83 34.12 23.43 34.03 23.09 0.06 3.40 0.24% 0.12% 0.12% 14.72% 7.36% 7.36% 100.00% 32.17% 1.00 1.47 27.11 27.09 27.08 27.09
average 0.71% 0.36% 0.36% 4.95% 2.47% 2.47% 100.00% 10.31% 1.00 1.15

11.48%
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Benchmark SPEEDUP-0 
T1/T3

SPEEDUP-1 
T1/T3

SPEEDUP-2 
T1/T3

SPEEDUP-3 
T1/T3

SPEEDUP-4 
T1/T3

SPEEDUP-5 
T1/T3

SPEEDUP-6 
T1/T3

SPEEDUP-7 
T1/T3

SPEEDUP-8 
T1/T3

SPEEDUP-9 
T1/T3

STDEV-
BASELINE

STDEV-SPEEDUP 
T1/T3

INTERPRETIVE 
SPEEDUP (OLD!)

BASELINE T1 AVG-SPEEDUP 
T1/T3

INTERPRETIVE 
TIME (OLD!)

Total 
Instructions

MIPS 
Interpretive

MIPS T1 
Baseline

MIPS T3 REAL SPEEDUP INT SPEEDUP-1 INT SPEEDUP-2 INT SPEEDUP-3 AVG INT 
SPEEDUP

STDEV INT 
SPEEDUP

blastn TOO SHORT 0.9696319018 0.9696319018 0.9637195122 0.9324483776 0.9549848943 0.9637195122 0.9696319018 0.9578787879 0.905730659 0.9666666667 0.0031459314 0.02074486374471 1.07 1 0.96 2.96 60657542 22.08 19.19 18.33 0.95 1.0975694444 1.1883458647 1.1707407407 1.15 0.05
clustalw 2.0917293233 2.0917293233 2.0956685499 1.9285961872 2.1035916824 2.0996226415 2.0996226415 1.5222982216 2.0996226415 1.9353043478 0.0046752008 0.18363907550598 0.34 1 2.01 32.77 833343182 27.97 74.89 148.89 1.99 50.17% 0.3734228188 0.3732975512 0.3737991266 0.37 0.00
fasta-ssearch 1.0777508915 1.0752858958 1.0774764451 1.0784376195 1.0678233438 1.0651353052 1.0645993207 1.0687673655 1.0761063072 1.0784376195 0.0044956649 0.00571308411717 0.11 1 1.07 742.10 18390729671 27.60 217.32 233.17 1.07 6.80% 0.1273648089 0.1266026360 0.1270912804 0.13 0.00
promlk 1.0392888889 1.0318677792 1.0072206124 0.9906185011 1.0410555286 1.0242255316 1.0099890058 1.0211353712 1.0123740554 1.0401293975 0.021027706 0.01677789571546 0.06 1 1.02 1988.84 46020920830 24.11 357.83 365.54 1.02 2.13% 0.0676556303 0.0667809002 0.0677251018 0.07 0.00
grappa 1.3525 1.3506241331 1.3525 1.3525 1.3487534626 1.3487534626 1.3543810848 1.3450276243 1.3506241331 1.3525 0.0023114867 0.0027108894057 0.47 1 1.35 20.88 493553641 25.55 50.68 68.46 1.35 25.97% 0.5093096234 0.5042982910 0.4988729508 0.50 0.01
hmmsearch 1.5368263473 1.5276785714 1.5276785714 1.5231454006 1.5186390533 1.5231454006 1.514159292 1.5231454006 1.5276785714 1.5276785714 0.0037921427 0.00611789383993 0.94 1 1.52 5.45 118797407 23.31 23.14 35.29 1.52 34.43% 1.0104330709 1.0064705882 1.0045009785 1.01 0.00
hmmpfam 1.0269152934 1.0251370851 1.0269647762 1.0255317101 1.027806713 1.0326872759 1.0227756982 1.0287493363 1.0202786155 1.0197904206 0.0036188193 0.00392758625288 0.12 1 1.03 1839.56 40880624840 23.36 191.81 196.73 1.03 2.50% 0.1216139414 0.1220240583 0.1216722614 0.12 0.00
tcoffee 1.2926615553 1.2814332248 1.2940789474 1.2786565547 1.3305524239 1.2786565547 1.2800433839 1.3084257206 1.2898360656 1.2884279476 0.0498961729 0.01628987209955 0.81 1 1.29 14.49 319332249 24.19 27.06 34.96 1.29 22.62% 0.8947687642 0.8961275626 0.8907169811 0.89 0.00
blastp 2.0848939472 2.0436612576 2.102295253 2.108895866 2.0384926657 2.1459531416 2.1144281217 2.0498982706 2.0436612576 2.0741636644 0.0044007347 0.03680448758088 0.68 1 2.08 59.31 1369011548 25.74 33.97 70.66 2.08 51.94% 0.7579650179 0.7608268831 0.7545590713 0.76 0.00
glimmer 1.4472593583 1.4291089109 1.3950386598 1.4386046512 1.4501674481 1.4319444444 1.4366954214 1.4300528402 1.4405189621 1.4414780293 0.0039339073 0.01536851598321 0.19 1 1.43 113.60 2447437589 23.26 113.04 162.09 1.43 30.27% 0.2060234085 0.2054759419 0.2057102138 0.21 0.00
ce 1.0114784279 1.0101039169 1.0099424552 1.0062430323 1.010426995 1.0128566848 1.0092971246 1.0113165266 1.0118023861 1.0137505014 0.0114243869 0.00208139229408 0.08 1 1.01 1501.42 33897449616 23.83 268.25 271.13 1.01 1.06% 0.0889204765 0.0886957865 0.0888367090 0.09 0.00
average 0.0102474685 0.02819777786723 0.44 1 1.38 24.89 135.80 158.69 1.38 22.79% 0.41 0.00
a2time01 1.1586345382 1.1494023904 1.1586345382 1.1586345382 1.1633064516 1.1586345382 1.1586345382 1.1633064516 1.1680161943 1.1680161943 0.0024509767 0.00547002454655 0.14 1 1.16 20.25 488927341 27.39 169.47 196.67 1.16 13.83% 0.1522427441 0.1666666667 0.1667630058 0.16 0.01
aifftr01 1.5 1.4739884393 1.6242038217 1.4912280702 1.6558441558 1.4912280702 1.4912280702 1.5269461078 1.5 1.6242038217 0.0055459355 0.06865357798617 0.50 1 1.54 5.08 126654467 29.09 49.67 76.25 1.54 34.98% 0.5875576037 0.5889145497 0.5808656036 0.59 0.00
aifirf01 0.9911764706 0.9911764706 0.9911764706 0.9911764706 1.0059701493 0.9911764706 0.9911764706 1.0059701493 0.9911764706 0.9911764706 0.0076616881 0.00623756260741 0.85 1 1.00 0.79 19488282 29.53 28.91 28.74 0.99 0.00% 1.0059701493 1.0212121212 1.0369230769 1.02 0.02
aiifft01 1.781884058 1.536875 1.7564285714 1.7439716312 1.7316901408 1.5465408805 1.7564285714 1.695862069 1.695862069 1.7564285714 0.0132054536 0.08780574681911 0.49 1 1.70 4.97 122143760 29.10 49.67 84.24 1.70 41.18% 0.5827014218 0.5896882494 0.5854761905 0.59 0.00
autcor00 1.0008849558 1.0008849558 1.0008849558 1.0053333333 1.0008849558 1.0008849558 1.0053333333 1.0008849558 0.9964757709 1.0053333333 0.0139489061 0.00280515366258 0.16 1 1.00 14.17 389802673 32.94 172.33 172.63 1.00 0.18% 0.1918575064 0.1923469388 0.1892887029 0.19 0.00
basefp01 1.31352657 1.31352657 1.3199029126 1.31352657 1.31352657 1.31352657 1.3072115385 1.31352657 1.3199029126 1.31352657 0.0027137359 0.0036063335463 0.17 1 1.31 16.12 389397481 25.64 143.21 188.21 1.31 23.91% 0.1730744749 0.1821165439 0.1822386059 0.18 0.01
bezier01 0.9857142857 0.9940677966 0.9857142857 0.9940677966 1.0025641026 0.9940677966 1.0025641026 0.9857142857 1.0025641026 1.0025641026 0.0057540372 0.00737960614081 0.05 1 1.00 24.39 574815994 28.13 490.04 487.55 0.99 0.00% 0.0584163347 0.0584163347 0.0554872280 0.06 0.00
bitmnp01 1.5680232558 1.5680232558 1.5680232558 1.5680232558 1.5771929825 1.5771929825 1.5680232558 1.5864705882 1.5958579882 1.5680232558 0.0135446973 0.00980731083504 0.75 1 1.57 3.58 86004464 28.23 31.89 50.21 1.57 36.49% 0.8813725490 0.8871710526 0.8871710526 0.89 0.00
cacheb01 1 1 1 1.0166666667 1 0.9242424242 0.9838709677 1 1 0.9838709677 0.007727943 0.02517233032893 1.05 1 1.00 0.58 13458448 27.47 22.06 21.85 0.99 0.00% 1.2200000000 1.2708333333 1.2448979592 1.25 0.03
canrdr01 0.9989247312 0.9989247312 1.0208791209 1.0208791209 0.9989247312 1.0208791209 1.0097826087 1.0208791209 1.0097826087 1.0097826087 0.0079425704 0.00961629129924 0.85 1 1.01 1.09 26309364 27.41 28.32 28.63 1.01 1.08% 0.9778947368 0.9479591837 0.9778947368 0.97 0.02
coremark 1.3453125 1.3505882353 1.3505882353 1.340077821 1.3453125 1.3505882353 1.340077821 1.3559055118 1.3505882353 1.3453125 0.0024485309 0.00509130331981 0.26 1 1.35 13.39 349006189 29.02 101.34 136.54 1.35 25.78% 0.2872393661 0.2850993377 0.2867610325 0.29 0.00
cjpeg 1.057097681 1.0640141468 1.0677905945 1.0623234463 1.0670331619 1.0645789101 1.0657102373 1.0533963585 1.0595175207 1.0658990257 0.0078509794 0.00468382175134 0.10 1 1.06 590.32 15379979678 28.62 255.61 271.64 1.06 5.90% 0.1117882025 0.1122281494 0.1118921432 0.11 0.00
conven00 1.0414141414 1.031 1.0207920792 1.031 1.031 1.031 1.0107843137 1.0414141414 1.031 1.031 0.0055057829 0.00894785682912 0.08 1 1.03 12.81 289588760 28.46 280.88 289.30 1.03 2.92% 0.1020792079 0.1011776251 0.1006835938 0.10 0.00
dither01 0.8998563218 1.0004792332 0.9988835726 1.0004792332 0.9988835726 0.9988835726 0.9988835726 0.9972929936 0.9988835726 1.0036858974 0.0027190462 0.03158613792601 0.09 1 1.00 72.89 1737243150 30.08 277.38 274.23 0.99 0.00% 0.1117395183 0.1116996611 0.1024202780 0.11 0.01
djpeg 1.047462885 1.0540022297 1.0549430931 1.0547077198 1.053063043 1.047462885 1.0573026169 1.0540022297 1.0549430931 1.0532976827 0.0009237052 0.00320173273687 0.09 1 1.05 503.90 13340652937 27.58 282.21 297.20 1.05 5.04% 0.0983317386 0.0968887067 0.0979466672 0.10 0.00
fbital00 0.975432526 1.003202847 1.003202847 1.014028777 0.9996453901 0.9856643357 0.9996453901 0.989122807 0.975432526 0.989122807 0.0095259 0.01263949865372 0.08 1 1.00 34.72 929808652 28.73 329.84 327.63 0.99 0.00% 0.0870061728 0.0867651585 0.0875737807 0.09 0.00
fft00 1.2695652174 1.2882352941 1.2882352941 1.2882352941 1.2882352941 1.2695652174 1.2882352941 1.2882352941 1.2695652174 1.2695652174 0.011028445 0.00964118616447 0.38 1 1.28 2.33 54650671 29.33 62.39 79.90 1.28 21.92% 0.4634920635 0.4735135135 0.4735135135 0.47 0.01
idctrn01 1.0185840708 0.9922413793 1.0096491228 1.0096491228 1.0185840708 1.0185840708 1.0096491228 1.0185840708 1.0096491228 1.0096491228 0.048537711 0.00808810042157 0.90 1 1.01 1.28 29951770 29.66 26.02 26.32 1.01 1.14% 1.1284313725 1.1510000000 1.1396039604 1.14 0.01
iirflt01 1.475 1.475 1.4882882883 1.449122807 1.475 1.4619469027 1.3111111111 1.4882882883 1.4619469027 1.475 0.0055625701 0.05232360283899 0.84 1 1.46 1.97 41887404 24.12 25.36 36.87 1.45 31.32% 0.9440000000 0.9549132948 0.9549132948 0.95 0.01
matrix01 1.1758212878 1.1742782152 1.1727391874 1.1635890767 1.1789196311 1.1773684211 1.1773684211 1.1773684211 1.1696732026 1.1742782152 0.0044950389 0.00459727517689 0.12 1 1.17 75.23 1861408323 28.37 208.03 244.25 1.17 14.83% 0.1360705596 0.1364232352 0.1366106870 0.14 0.00
ospf 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 0.9724137931 1.0071428571 0.9724137931 0.0149516674 0.01098229433704 1.04 1 1.00 0.27 4937091 25.54 17.51 17.08 0.98 0.00% 1.4100000000 1.4842105263 1.4842105263 1.46 0.04
pktflow 0.976 1.0166666667 1.0166666667 0.8714285714 1.0166666667 0.976 0.976 0.976 0.976 0.8714285714 0.0395939255 0.0538230773772 0.94 1 1.00 0.26 4395822 23.98 18.02 17.37 0.96 0.00% 1.2842105263 1.3555555556 1.3555555556 1.33 0.04
pntrch01 1.0307692308 1.0396551724 1.0486956522 1.0486956522 1.0396551724 1.0486956522 1.0486956522 1.0396551724 1.0486956522 1.0486956522 0.0042819053 0.00635624305552 0.57 1 1.04 2.12 52958916 28.73 43.91 45.85 1.04 4.23% 0.6590163934 0.6483870968 0.6554347826 0.65 0.01
puwmod01 1 1 1 1 1 1 1 0.9880952381 1.012195122 1 0.0150267365 0.00568072691474 1.06 1 1.00 0.78 17108240 27.45 20.61 20.61 1.00 0.00% 1.3174603175 1.3387096774 1.3387096774 1.33 0.01
rgbcmy01 1.0002197802 1.0002197802 1.0002197802 1.0002197802 1.0002197802 1.0002197802 1.0024229075 0.9936681223 0.9980263158 1.0002197802 0.0006948534 0.00231683471454 0.06 1 1.00 73.63 2073605735 31.90 455.64 455.44 1.00 -0.04% 0.0693538555 0.0720436916 0.0686943396 0.07 0.00
rgbhpg01 0.9947916667 0.9947916667 1.0052631579 0.9947916667 0.9947916667 0.9947916667 0.9947916667 0.9947916667 0.9947916667 0.9845360825 0.0074042595 0.00488563056414 0.08 1 0.99 12.14 318655386 29.02 333.67 331.93 0.99 -0.52% 0.0964646465 0.0720754717 0.0975485189 0.09 0.01
rgbyiq01 1.0116615854 1.0178680982 1.0155317521 1.0047691143 0.9730938416 1.0313131313 1.0155317521 1.0108910891 1.0093536122 1.0101217656 0.0056049007 0.01479778322284 0.82 1 1.01 16.16 399361740 28.42 30.09 30.38 1.01 0.99% 0.8790066225 0.9810051737 0.9810051737 0.95 0.06
rotate01 1.0006153846 0.9944954128 0.9854545455 0.9944954128 0.9914634146 0.9914634146 1.0006153846 0.988449848 1.0006153846 0.9914634146 0.0040484661 0.0053212067969 0.17 1 1.00 19.41 453987119 26.03 139.60 138.75 0.99 0.00% 0.1863610315 0.1861476817 0.1868965517 0.19 0.00
routelookup 1.0029411765 0.9884057971 0.9884057971 1.0029411765 0.9884057971 0.9884057971 1.0029411765 0.9884057971 0.9884057971 1.0029411765 0.0092735415 0.00750603763033 0.84 1 1.00 0.81 20005912 28.85 29.33 29.16 0.99 0.00% 0.9742857143 0.9884057971 0.9884057971 0.98 0.01
rspeed01 1.0094117647 0.9976744186 0.9976744186 1.0094117647 0.9976744186 0.9976744186 1.0094117647 0.9976744186 0.9976744186 0.9976744186 0.0188732833 0.00566967681178 0.95 1 1.00 0.90 20171779 24.50 23.51 23.54 1.00 0.12% 1.0337349398 1.0337349398 1.0592592593 1.04 0.01
tblook01 1.3147058824 1.3277227723 1.3019417476 1.3147058824 1.2956521739 1.2956521739 1.3019417476 1.3019417476 1.3082926829 1.3147058824 0.0034263109 0.01021042813601 0.24 1 1.31 11.18 261754809 26.98 97.60 127.62 1.31 23.53% 0.2764948454 0.2773526370 0.2753593429 0.28 0.00
text01 1.0536796537 1.0605664488 1.0605664488 1.0605664488 1.0582608696 1.0605664488 1.0582608696 1.0605664488 1.0559652928 1.0605664488 0.0102848443 0.00243383194908 0.15 1 1.06 33.16 811209623 27.27 166.64 176.47 1.06 5.57% 0.1624290958 0.1642929463 0.1642375169 0.16 0.00
ttsprk01 1.1505319149 1.1505319149 1.156684492 1.1505319149 1.156684492 1.1505319149 1.156684492 1.156684492 1.156684492 1.1629032258 0.0104633966 0.0041668595724 1.16 1 1.15 1.87 45070732 26.00 20.84 24.06 1.15 13.41% 1.1819672131 1.2875000000 1.2798816568 1.25 0.06
viterb00 1.0141176471 1.0201183432 1.0201183432 1.0141176471 1.0201183432 1.0141176471 1.0141176471 1.0141176471 1.0201183432 1.0201183432 0.0029953467 0.00316264455629 0.08 1 1.02 20.72 524503493 28.94 304.24 309.44 1.02 1.68% 0.0954067515 0.0944657534 0.0955124654 0.10 0.00
average 0.009588738 0.01484316850676 0.47 1 1.13 28.01 139.29 149.02 1.12 9.10% 0.57 0.01
perlbench 1.1794322709 1.1171226415 1.1961111111 1.1794322709 1.1985323887 1.1847423712 1.1753349876 1.1912977867 1.1823764353 1.2058553971 0.0219855753 0.02447852714426 0.88 1 1.18 26.90 542360736 21.88 22.90 27.04 1.18 15.33% 0.9465627498 0.9596029173 0.9603811841 0.96 0.01
bzip2 1.0718230563 1.074559871 1.0810978908 1.0738383024 1.0824150535 1.0808056231 1.06952916 1.06952916 1.0783277141 1.0661066667 0.0027576277 0.00564846989277 0.10 1 1.07 805.39 20161793814 27.34 252.15 271.01 1.07 6.96% 0.1087464469 0.1084558624 0.1081244084 0.11 0.00
gcc 2.0410185362 2.0326672376 2.0666892415 2.0531814687 2.0178821084 2.0205542944 2.0016210645 2.0259199545 2.0541686701 2.0455137413 0.0018455696 0.01984445680043 0.85 1 2.04 251.01 5320894430 21.92 24.91 50.71 2.04 50.88% 0.8769726579 0.8827713034 0.8798624269 0.88 0.00
mcf 1.0654789995 1.0454966427 1.0569990637 1.074096099 1.065227648 1.0662337662 1.0654789995 1.0609727444 1.0637220259 1.051338766 0.006455963 0.0082425874507 0.21 1 1.06 210.91 4771964279 23.53 105.68 112.17 1.06 5.79% 0.2300774483 0.2085392324 0.2307240305 0.22 0.01
milc 0.9956216791 1.001338917 0.999978653 1.0021081291 1.0078411814 1.0038554076 0.9960835862 0.994497573 1.0025175587 0.9972498815 0.0041078277 0.00423152498096 0.08 1 1.00 13337.82 303526077274 23.21 294.52 294.55 1.00 0.01% 0.0795018368 0.0772619656 0.0796557676 0.08 0.00
gobmk 1.0741972965 1.0783533897 1.0754163475 1.0739538178 1.0776176262 1.0683238917 1.068625074 1.0755994438 1.0803819296 1.0786602544 0.0039484527 0.00405262534333 0.17 1 1.08 2218.72 45647616202 21.22 120.43 129.47 1.08 6.99% 0.1755715715 0.1761549579 0.1769856797 0.18 0.00
soplex 1.0202311297 1.015644713 1.0168981706 1.0158902454 1.0078982083 1.0189447395 1.0131226192 1.0152275802 1.0195380547 0.965075902 0.0067182574 0.01647319525171 0.11 1 1.01 3988.16 93308474696 25.21 222.05 224.40 1.01 1.07% 0.1127582672 0.1140138155 0.1138174146 0.11 0.00
povray 1.1880170508 1.2008138514 1.2034063649 1.1976603533 1.2012931034 1.1849303204 1.2071709313 1.1998564937 1.2092077776 1.1914971103 0.0037159401 0.00797601819075 0.15 1 1.20 995.95 20797215668 21.37 138.19 165.60 1.20 16.55% 0.1547648674 0.1544503854 0.1547998889 0.15 0.00
hmmer 1.0191036166 1.0172415702 1.0163412071 1.0284594716 1.0290355102 1.0250739274 1.0217105995 0.9831121575 1.0119746626 1.0134819064 0.0121849149 0.01313388968513 0.08 1 1.02 2226.98 51953814038 24.35 282.78 287.42 1.02 1.63% 0.0888512746 0.0891292958 0.0808324167 0.09 0.00
sjeng 1.0265694551 1.0228798654 1.0262544115 1.0378801986 1.0240545093 1.0318753375 1.0009878021 1.034508894 1.0290967841 1.0243682034 0.0055421729 0.00999777541102 0.18 1 1.03 738.67 15901509810 22.30 118.88 121.94 1.03 2.52% 0.1858037810 0.1887614129 0.1882248646 0.19 0.00
libquantum 1.0417389628 1.0383358955 1.037438802 1.0323844096 1.041036509 1.0417389628 1.0329764863 1.0357485145 1.0376380221 1.0425429288 0.0077381468 0.00365098652674 0.07 1 1.04 1499.71 38187323203 29.90 353.36 366.84 1.04 3.68% 0.0846591933 0.0846320109 0.0845770366 0.08 0.00
h264ref 1.0594554996 1.0679905475 1.0459970543 1.0644461098 1.063165633 1.0745406895 1.0679331919 1.0681913408 1.0507780919 1.0636205605 0.0075174705 0.00857266645664 0.09 1 1.06 4246.13 101327503194 25.62 254.78 270.71 1.06 5.89% 0.1006022847 0.1007138697 0.1003142790 0.10 0.00
lbm 1.0143806051 1.0199795864 1.0095254909 1.0121362899 1.0158021475 1.0207179691 1.0123552959 1.0130029132 1.0121661488 1.0134717067 0.0071547072 0.00355689142675 0.15 1 1.01 7077.16 153348932962 23.13 148.98 151.12 1.01 1.42% 0.1596152952 0.1474188961 0.1592547322 0.16 0.01
omnetpp 1.1694625762 1.1562547058 1.1561303506 1.1584976829 1.1594973574 1.1632615518 1.1623810554 1.1621297297 1.1532775453 1.1581232493 0.003036328 0.00460085726075 0.26 1 1.16 412.25 7532317390 18.22 70.07 81.27 1.16 13.79% 0.2598742899 0.2604220166 0.2598868554 0.26 0.00
astar 1.0756551141 1.0677574995 1.0669741117 1.0725950901 1.0669741117 1.0629633497 1.0720303286 1.0755414686 1.0657453936 1.0680935893 0.0107788761 0.00428072454259 0.09 1 1.07 1113.25 25581176691 25.30 251.29 268.73 1.07 6.49% 0.1008669804 0.1007900834 0.1004222073 0.10 0.00
sphinx3 1.0392726523 1.0389515423 1.0363897878 1.0511305616 1.051075801 1.0405054152 1.0392191202 1.0442753623 1.0498178791 1.0482360887 0.0031891897 0.00571034268697 0.09 1 1.04 2165.71 47902613777 22.46 237.43 247.84 1.04 4.20% 0.0944337830 0.0945386558 0.0948707338 0.09 0.00
xalancbmk 1.4619415808 1.4619415808 1.4803827751 1.4881504154 1.4907577749 1.4823170732 1.4797391304 1.4739714162 1.4714223952 1.4525821596 0.0016341818 0.01237856605839 1.22 1 1.47 27.96 541816954 20.00 15.92 23.47 1.47 32.17% 1.2554039100 1.2563307494 1.2567946824 1.26 0.00
average 0.0064888942 0.00922530030058 0.28 1 1.15 23.35 171.43 182.02 1.15 10.32% 0.30 0.00
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Figure 4.14: Speedups for Spec Cpu 2006, Eembc and CoreMark benchmark
suites comparing (a) interpreted-only simulation, (b) simulation using a concurrent
dynamic compiler, and (c) simulation using our novel, concurrent and parallel dy-
namic compiler with three dynamic compilation worker threads including dynamic
work scheduling.

We have also evaluated the impact of our novel dynamic work scheduling
scheme in comparison to a simpler approach that schedules regions based on
their order of creation for concurrent and parallel dynamic compilation. For
BioPerf, we measured an average improvement of 8.9%, which is equivalent
to an average speedup of 1.13. For the Spec Cpu 2006 benchmarks, the
average improvement and speedup are 3.5% and 1.04, respectively.

4.6.3 Scalability

According to Amdahl’s law we expected only marginal improvements with
increasing numbers of dynamic compilation worker threads, so it is remark-
able how well some benchmarks scale (see Figure 4.15) on a 16-core system.
For blastp 1© from BioPerf the maximum speedup of 3.1 is reached with
14 dynamic compilation workers. The gcc 4© and perlbench 5© benchmarks
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Benchmark Wall time W1 Wall time Improvement Workers Speedup
blast-blastn 4.07 4.07 0.00% 1 1.00
blast-blastn 4.07 4.12 -1.23% 2 0.99
blast-blastn 4.07 4.22 -3.69% 3 0.96
blast-blastn 4.07 4.26 -4.67% 4 0.96
blast-blastn 4.07 4.31 -5.90% 5 0.94
blast-blastn 4.07 4.34 -6.63% 6 0.94
blast-blastn 4.07 4.14 -1.72% 7 0.98
blast-blastn 4.07 4.06 0.25% 8 1.00
blast-blastn 4.07 4.00 1.72% 9 1.02
blast-blastn 4.07 4.49 -10.32% 10 0.91
blast-blastn 4.07 4.49 -10.32% 11 0.91
blast-blastn 4.07 4.57 -12.29% 12 0.89
blast-blastn 4.07 4.52 -11.06% 13 0.90
blast-blastn 4.07 4.23 -3.93% 14 0.96
blast-blastp 52.45 52.45 0.00% 1 1.00
blast-blastp 52.45 33.24 36.63% 2 1.58
blast-blastp 52.45 25.83 50.75% 3 2.03
blast-blastp 52.45 23.50 55.20% 4 2.23
blast-blastp 52.45 23.14 55.88% 5 2.27
blast-blastp 52.45 20.57 60.78% 6 2.55
blast-blastp 52.45 18.25 65.20% 7 2.87
blast-blastp 52.45 18.67 64.40% 8 2.81
blast-blastp 52.45 19.13 63.53% 9 2.74
blast-blastp 52.45 18.01 65.66% 10 2.91
blast-blastp 52.45 17.55 66.54% 11 2.99
blast-blastp 52.45 17.25 67.11% 12 3.04
blast-blastp 52.45 17.37 66.88% 13 3.02
blast-blastp 52.45 17.08 67.44% 14 3.07
ce 168.07 168.07 0.00% 1 1.00
ce 168.07 159.99 4.81% 2 1.05
ce 168.07 158.30 5.81% 3 1.06
ce 168.07 161.14 4.12% 4 1.04
ce 168.07 157.24 6.44% 5 1.07
ce 168.07 161.70 3.79% 6 1.04
ce 168.07 165.04 1.80% 7 1.02
ce 168.07 157.31 6.40% 8 1.07
ce 168.07 156.94 6.62% 9 1.07
ce 168.07 161.79 3.74% 10 1.04
ce 168.07 157.35 6.38% 11 1.07
ce 168.07 158.15 5.90% 12 1.06
ce 168.07 157.98 6.00% 13 1.06
ce 168.07 156.53 6.87% 14 1.07
clustalw 14.50 14.50 0.00% 1 1.00
clustalw 14.50 9.46 34.76% 2 1.53
clustalw 14.50 7.63 47.38% 3 1.90
clustalw 14.50 7.34 49.38% 4 1.98
clustalw 14.50 8.16 43.72% 5 1.78
clustalw 14.50 7.58 47.72% 6 1.91
clustalw 14.50 7.83 46.00% 7 1.85
clustalw 14.50 7.66 47.17% 8 1.89
clustalw 14.50 8.23 43.24% 9 1.76
clustalw 14.50 7.77 46.41% 10 1.87
clustalw 14.50 7.74 46.62% 11 1.87
clustalw 14.50 9.09 37.31% 12 1.60
clustalw 14.50 7.96 45.10% 13 1.82
clustalw 14.50 8.21 43.38% 14 1.77
fasta-ssearch 111.89 111.89 0.00% 1 1.00
fasta-ssearch 111.89 103.25 7.72% 2 1.08
fasta-ssearch 111.89 103.68 7.34% 3 1.08
fasta-ssearch 111.89 101.47 9.31% 4 1.10
fasta-ssearch 111.89 101.61 9.19% 5 1.10
fasta-ssearch 111.89 100.60 10.09% 6 1.11
fasta-ssearch 111.89 100.30 10.36% 7 1.12
fasta-ssearch 111.89 96.42 13.83% 8 1.16
fasta-ssearch 111.89 98.23 12.21% 9 1.14
fasta-ssearch 111.89 97.87 12.53% 10 1.14
fasta-ssearch 111.89 98.53 11.94% 11 1.14
fasta-ssearch 111.89 100.05 10.58% 12 1.12
fasta-ssearch 111.89 99.70 10.89% 13 1.12
fasta-ssearch 111.89 99.70 10.89% 14 1.12
grappa 12.46 12.46 0.00% 1 1.00
grappa 12.46 9.80 21.35% 2 1.27
grappa 12.46 9.44 24.24% 3 1.32
grappa 12.46 8.23 33.95% 4 1.51
grappa 12.46 8.21 34.11% 5 1.52
grappa 12.46 7.95 36.20% 6 1.57
grappa 12.46 7.18 42.38% 7 1.74
grappa 12.46 7.11 42.94% 8 1.75
grappa 12.46 7.54 39.49% 9 1.65
grappa 12.46 7.21 42.13% 10 1.73
grappa 12.46 7.40 40.61% 11 1.68
grappa 12.46 7.53 39.57% 12 1.65
grappa 12.46 7.19 42.30% 13 1.73
grappa 12.46 7.35 41.01% 14 1.70
hmmer-hmmsearch 7.09 7.09 0.00% 1 1.00
hmmer-hmmsearch 7.09 4.77 32.72% 2 1.49
hmmer-hmmsearch 7.09 4.42 37.66% 3 1.60
hmmer-hmmsearch 7.09 4.09 42.31% 4 1.73
hmmer-hmmsearch 7.09 3.78 46.69% 5 1.88
hmmer-hmmsearch 7.09 3.95 44.29% 6 1.79
hmmer-hmmsearch 7.09 3.78 46.69% 7 1.88
hmmer-hmmsearch 7.09 3.89 45.13% 8 1.82
hmmer-hmmsearch 7.09 3.96 44.15% 9 1.79
hmmer-hmmsearch 7.09 3.84 45.84% 10 1.85
hmmer-hmmsearch 7.09 3.72 47.53% 11 1.91
hmmer-hmmsearch 7.09 3.95 44.29% 12 1.79
hmmer-hmmsearch 7.09 3.82 46.12% 13 1.86
hmmer-hmmsearch 7.09 3.79 46.54% 14 1.87
tcoffee 14.31 14.31 0.00% 1 1.00
tcoffee 14.31 13.31 6.99% 2 1.08
tcoffee 14.31 12.32 13.91% 3 1.16
tcoffee 14.31 10.71 25.16% 4 1.34
tcoffee 14.31 10.06 29.70% 5 1.42
tcoffee 14.31 9.35 34.66% 6 1.53
tcoffee 14.31 9.33 34.80% 7 1.53
tcoffee 14.31 9.36 34.59% 8 1.53
tcoffee 14.31 8.84 38.23% 9 1.62
tcoffee 14.31 9.01 37.04% 10 1.59
tcoffee 14.31 8.41 41.23% 11 1.70
tcoffee 14.31 9.10 36.41% 12 1.57
tcoffee 14.31 9.24 35.43% 13 1.55
tcoffee 14.31 8.89 37.88% 14 1.61
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Bioperf Scalability

SPEC Scalability

Benchmark Wall time W1 Wall time Improvement Workers Speedup
400.perlbench 36.05 36.05 0.00% 1 1.00
400.perlbench 36.05 33.72 6.46% 2 1.07
400.perlbench 36.05 33.15 8.04% 3 1.09
400.perlbench 36.05 30.91 14.26% 4 1.17
400.perlbench 36.05 28.65 20.53% 5 1.26
400.perlbench 36.05 27.40 23.99% 6 1.32
400.perlbench 36.05 26.44 26.66% 7 1.36
400.perlbench 36.05 25.63 28.90% 8 1.41
400.perlbench 36.05 25.69 28.74% 9 1.40
400.perlbench 36.05 24.81 31.18% 10 1.45
400.perlbench 36.05 24.31 32.57% 11 1.48
400.perlbench 36.05 24.48 32.09% 12 1.47
400.perlbench 36.05 24.50 32.04% 13 1.47
400.perlbench 36.05 24.57 31.84% 14 1.47
401.bzip2 99.72 99.72 0.00% 1 1.00
401.bzip2 99.72 94.54 5.19% 2 1.05
401.bzip2 99.72 92.66 7.08% 3 1.08
401.bzip2 99.72 93.86 5.88% 4 1.06
401.bzip2 99.72 92.17 7.57% 5 1.08
401.bzip2 99.72 91.68 8.06% 6 1.09
401.bzip2 99.72 92.78 6.96% 7 1.07
401.bzip2 99.72 92.11 7.63% 8 1.08
401.bzip2 99.72 92.51 7.23% 9 1.08
401.bzip2 99.72 92.01 7.73% 10 1.08
401.bzip2 99.72 90.65 9.10% 11 1.10
401.bzip2 99.72 90.93 8.81% 12 1.10
401.bzip2 99.72 92.65 7.09% 13 1.08
401.bzip2 99.72 90.82 8.92% 14 1.10
403.gcc 281.29 281.29 0.00% 1 1.00
403.gcc 281.29 172.86 38.55% 2 1.63
403.gcc 281.29 147.97 47.40% 3 1.90
403.gcc 281.29 134.60 52.15% 4 2.09
403.gcc 281.29 124.05 55.90% 5 2.27
403.gcc 281.29 118.37 57.92% 6 2.38
403.gcc 281.29 111.37 60.41% 7 2.53
403.gcc 281.29 110.42 60.75% 8 2.55
403.gcc 281.29 106.97 61.97% 9 2.63
403.gcc 281.29 106.86 62.01% 10 2.63
403.gcc 281.29 107.61 61.74% 11 2.61
403.gcc 281.29 107.1 61.93% 12 2.63
403.gcc 281.29 106.9 62.00% 13 2.63
403.gcc 281.29 106.9 62.00% 14 2.63
429.mcf 59.25 59.25 0.00% 1 1.00
429.mcf 59.25 56.67 4.35% 2 1.05
429.mcf 59.25 55.85 5.74% 3 1.06
429.mcf 59.25 56.23 5.10% 4 1.05
429.mcf 59.25 56.57 4.52% 5 1.05
429.mcf 59.25 55.98 5.52% 6 1.06
429.mcf 59.25 55.16 6.90% 7 1.07
429.mcf 59.25 54.68 7.71% 8 1.08
429.mcf 59.25 54.97 7.22% 9 1.08
429.mcf 59.25 55.04 7.11% 10 1.08
429.mcf 59.25 55.32 6.63% 11 1.07
429.mcf 59.25 55.57 6.21% 12 1.07
429.mcf 59.25 56.26 5.05% 13 1.05
429.mcf 59.25 55.86 5.72% 14 1.06
453.povray 211.92 211.92 0.00% 1 1.00
453.povray 211.92 180.57 14.79% 2 1.17
453.povray 211.92 182.35 13.95% 3 1.16
453.povray 211.92 178.46 15.79% 4 1.19
453.povray 211.92 173.68 18.04% 5 1.22
453.povray 211.92 173.17 18.29% 6 1.22
453.povray 211.92 172.79 18.46% 7 1.23
453.povray 211.92 169.11 20.20% 8 1.25
453.povray 211.92 171.83 18.92% 9 1.23
453.povray 211.92 167.84 20.80% 10 1.26
453.povray 211.92 167.49 20.97% 11 1.27
453.povray 211.92 168.39 20.54% 12 1.26
453.povray 211.92 166.81 21.29% 13 1.27
453.povray 211.92 168.54 20.47% 14 1.26
456.hmmer 240.26 240.26 0.00% 1 1.00
456.hmmer 240.26 236.98 1.37% 2 1.01
456.hmmer 240.26 238.02 0.93% 3 1.01
456.hmmer 240.26 236.39 1.61% 4 1.02
456.hmmer 240.26 235.76 1.87% 5 1.02
456.hmmer 240.26 237.79 1.03% 6 1.01
456.hmmer 240.26 235.13 2.14% 7 1.02
456.hmmer 240.26 235.67 1.91% 8 1.02
456.hmmer 240.26 243.78 -1.47% 9 0.99
456.hmmer 240.26 239.02 0.52% 10 1.01
456.hmmer 240.26 239.73 0.22% 11 1.00
456.hmmer 240.26 240.09 0.07% 12 1.00
456.hmmer 240.26 247.14 -2.86% 13 0.97
456.hmmer 240.26 237.26 1.25% 14 1.01
458.sjeng 161.46 161.46 0.00% 1 1.00
458.sjeng 161.46 152.58 5.50% 2 1.06
458.sjeng 161.46 155.38 3.77% 3 1.04
458.sjeng 161.46 153.79 4.75% 4 1.05
458.sjeng 161.46 153.44 4.97% 5 1.05
458.sjeng 161.46 150.84 6.58% 6 1.07
458.sjeng 161.46 150.62 6.71% 7 1.07
458.sjeng 161.46 152.75 5.39% 8 1.06
458.sjeng 161.46 152.50 5.55% 9 1.06
458.sjeng 161.46 151.63 6.09% 10 1.06
458.sjeng 161.46 150.63 6.71% 11 1.07
458.sjeng 161.46 149.17 7.61% 12 1.08
458.sjeng 161.46 153.75 4.78% 13 1.05
458.sjeng 161.46 151.90 5.92% 14 1.06
462.libquantum 139.84 139.84 0.00% 1 1.00
462.libquantum 139.84 137.02 2.02% 2 1.02
462.libquantum 139.84 135.94 2.79% 3 1.03
462.libquantum 139.84 136.29 2.54% 4 1.03
462.libquantum 139.84 135.04 3.43% 5 1.04
462.libquantum 139.84 137.64 1.57% 6 1.02
462.libquantum 139.84 135.17 3.34% 7 1.03
462.libquantum 139.84 134.38 3.90% 8 1.04
462.libquantum 139.84 134.56 3.78% 9 1.04
462.libquantum 139.84 134.73 3.65% 10 1.04
462.libquantum 139.84 134.75 3.64% 11 1.04
462.libquantum 139.84 134.41 3.88% 12 1.04
462.libquantum 139.84 137.16 1.92% 13 1.02
462.libquantum 139.84 135.26 3.28% 14 1.03
471.omnetpp 134.56 134.56 0.00% 1 1.00
471.omnetpp 134.56 117.40 12.75% 2 1.15
471.omnetpp 134.56 111.20 17.36% 3 1.21
471.omnetpp 134.56 110.14 18.15% 4 1.22
471.omnetpp 134.56 109.80 18.40% 5 1.23
471.omnetpp 134.56 108.86 19.10% 6 1.24
471.omnetpp 134.56 108.66 19.25% 7 1.24
471.omnetpp 134.56 108.80 19.14% 8 1.24
471.omnetpp 134.56 107.97 19.76% 9 1.25
471.omnetpp 134.56 108.50 19.37% 10 1.24
471.omnetpp 134.56 105.09 21.90% 11 1.28
471.omnetpp 134.56 107.31 20.25% 12 1.25
471.omnetpp 134.56 105.88 21.31% 13 1.27
471.omnetpp 134.56 108.15 19.63% 14 1.24
473.astar 129.98 129.98 0.00% 1 1.00
473.astar 129.98 122.07 6.09% 2 1.06
473.astar 129.98 121.59 6.45% 3 1.07
473.astar 129.98 120.82 7.05% 4 1.08
473.astar 129.98 120.15 7.56% 5 1.08
473.astar 129.98 127.92 1.58% 6 1.02
473.astar 129.98 119.53 8.04% 7 1.09
473.astar 129.98 119.93 7.73% 8 1.08
473.astar 129.98 118.98 8.46% 9 1.09
473.astar 129.98 125.14 3.72% 10 1.04
473.astar 129.98 121.09 6.84% 11 1.07
473.astar 129.98 119.29 8.22% 12 1.09
473.astar 129.98 119.66 7.94% 13 1.09
473.astar 129.98 119.50 8.06% 14 1.09
482.sphinx3 270.66 270.66 0.00% 1 1.00
482.sphinx3 270.66 250.34 7.51% 2 1.08
482.sphinx3 270.66 241.05 10.94% 3 1.12
482.sphinx3 270.66 247.22 8.66% 4 1.09
482.sphinx3 270.66 243.60 10.00% 5 1.11
482.sphinx3 270.66 242.01 10.59% 6 1.12
482.sphinx3 270.66 240.24 11.24% 7 1.13
482.sphinx3 270.66 240.68 11.08% 8 1.12
482.sphinx3 270.66 247.20 8.67% 9 1.09
482.sphinx3 270.66 237.53 12.24% 10 1.14
482.sphinx3 270.66 246.51 8.92% 11 1.10
482.sphinx3 270.66 236.14 12.75% 12 1.15
482.sphinx3 270.66 242.55 10.39% 13 1.12
482.sphinx3 270.66 249.49 7.82% 14 1.08
483.xalancbmk 43.81 43.81 0.00% 1 1.00
483.xalancbmk 43.81 43.50 0.71% 2 1.01
483.xalancbmk 43.81 45.54 -3.95% 3 0.96
483.xalancbmk 43.81 46.02 -5.04% 4 0.95
483.xalancbmk 43.81 37.60 14.17% 5 1.17
483.xalancbmk 43.81 34.91 20.31% 6 1.25
483.xalancbmk 43.81 34.05 22.28% 7 1.29
483.xalancbmk 43.81 32.28 26.32% 8 1.36
483.xalancbmk 43.81 32.28 26.32% 9 1.36
483.xalancbmk 43.81 31.14 28.92% 10 1.41
483.xalancbmk 43.81 31.28 28.60% 11 1.40
483.xalancbmk 43.81 31.22 28.74% 12 1.40
483.xalancbmk 43.81 31.55 27.98% 13 1.39
483.xalancbmk 43.81 31.59 27.89% 14 1.39
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Figure 4.15: Scalability charts for selected benchmarks from BioPerf 1© 2© and
Spec Cpu 2006 4© 5© 6© demonstrating the effect of additional dynamic compila-
tion workers on speedup. Top right cumulative histogram 3© shows % of bench-
marks benefiting from given number of dynamic compilation threads.

from Spec Cpu reach their maximum speedup of 2.6 and 1.5 with 10 and 11
dynamic compilation workers, respectively. Not all benchmarks show ben-
efits from adding more dynamic compilation threads. For bzip2 6© from
Spec Cpu the peak speedup is reached with 3 dynamic compilation threads,
thus adding more threads does not improve execution time.

As shown in the scalability charts in Figure 4.15, the peak speedup is
reached with different numbers of dynamic compilation worker threads. So
what is the maximum number of dynamic compilation threads such that
100% of all benchmarks show speedup, i.e. how far does it scale? The
cumulative histogram 3© in Figure 4.15 answers this question by depicting
the number of benchmarks (in %) that show an improvement by adding more
dynamic compilation threads. From the histogram we can see all benchmarks
show speedups with 3 dynamic compilation worker threads and 50% of all
benchmarks benefit from 9 or more dynamic compilation threads.
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Figure 4.16: Compiled regions per time interval and translation queue length per
time interval using an aggressive threshold for hot region selection using (a) a
concurrent dynamic compiler, and (b) our novel concurrent and parallel dynamic
compiler with three compilation worker threads.

4.6.4 Throughput

The key performance indicator of our concurrent and parallel region based
compilation scheme is the reduction of overall simulation time. In this section
we give a more detailed overview of two additional performance indicators,
namely (1) the number of compiled regions per time interval (i.e. rate at
which work is completed), and (2) the resulting translation queue lengths
over the runtime of three selected benchmarks (see Figure 4.16). We chose
one benchmark from each benchmark suite exhibiting a variety of application
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hotspots over time, and used a rather aggressive threshold for hot region
selection to highlight some of the main advantages of using more than one
dynamic compilation thread.

A comparison of the number of compiled regions and translation queue
lengths over time indicates that our concurrent and parallel dynamic com-
pilation task farm is able to translate regions significantly faster than the
decoupled scheme which relies on a single dynamic compilation thread. On
average, three parallel dynamic compilation threads can translate 2.1, 3.1
and 1.5 times as many regions per time interval than the decoupled dy-
namic compiler for blastp, gcc and matrix01, respectively. Consequently,
the average translation queue length is 43%, 52% and 51% shorter, and the
maximum observed queue sizes are 33%, 37%, and 9% shorter for the same
three benchmarks, respectively. At the same time, the queue length grows
at a noticeably slower rate.

Using a very aggressive initial hotspot threshold, the amount of hot re-
gions identified per trace interval and the resulting translation queue lengths
quickly exceed the number of available dynamic compilation workers, even
for a short benchmark such as matrix01. This demonstrates the need for our
dynamic work scheduling and adaptive hotspot threshold selection schemes.
Dynamic work scheduling ensures that the most recent and hottest regions
are scheduled for translation first, whereas adapting the hotspot threshold
based on the translation queue length aims at improving the utilisation of
available resources.

4.6.5 Region Sharing

Key Results

For multi-threaded execution environments we evaluated the runtime per-
formance improvements gained by applying the proposed region sharing op-
timisation. Figure 4.17 presents speedups obtained for multi-threaded data
parallel Splash-2 benchmarks when executing 4, 32 and 128 threads on the
4-core host machine outlined in Table 4.1. The baseline is the same private
region dynamic binary translator – still with thread-agnostic regions, but
without region sharing. As the number of threads increases, so too should
the potential for sharing regions between threads resulting in improved per-
formance.

We observe that in all cases the use of region sharing improves over-
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4 Threads 1.0280192092 1.0947080826 1.0329258995 1.1078404315 1.0323971426 1.0309911848 1.0283419814 1.0817068005 1.0829877074 1.0125474317 1.0715242797 1.0886048849 1.057716253
32 Threads 1.2569055108 1.2139315012 1.053254089 1.3792420496 1.1601326062 1.11396359 1.1110195597 1.2449900327 1.1587324311 1.0921081359 1.4126806806 1.4504195781 1.2206149804
128 Threads 1.5990859088 1.1670464459 1.0736716967 1.2897723946 1.4842786173 1.2169245914 1.3372488274 1.7348848292 1.3388500802 1.0661250864 1.5259849374 2.4019034364 1.4363147376
4 Threads Error 0.0072893502 0.0165618734 0.0024685318 0.0065570404 0.0082419585 0.0058986659 0.0044402187 0.0132514782 0.0134449408 0.0037011657 0.003518853 0.0042952746 0.0074724459
32 Threads Error 0.0422169643 0.0420107799 0.0142201107 0.0507844972 0.0403515083 0.0103643648 0.0258365448 0.0667824187 0.0408403731 0.02795342 0.0438770864 0.0463998041 0.0376364894
128 Threads Error 0.0720625696 0.0438903998 0.0139791416 0.0285600818 0.075387651 0.0414583063 0.0659300767 0.1298583124 0.1002674429 0.0157031497 0.0651457655 0.1159141051 0.0640130835
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Figure 4.17: Speedups achieved through the use of region sharing, over a baseline
execution where region sharing is not used. Speedups are presented when executing
4, 32, and 128 application threads with all benchmarks from the Splash-2 suite.

all execution time. The average improvement for 4 threads is 1.06, 1.22
for 32 threads, and for 128 threads, 1.44. The highest speedup of 2.4 is ob-
tained for water-spatial with 128 threads. On average, we can see that the
speedup obtained when sharing regions increases as the number of executed
threads increases. However, three benchmarks do not follow this average
trend: cholesky, fmm, and volrend. This is due to a lower potential for
region sharing resulting from non-homogeneous compute patterns in these
benchmarks. Fewer shared regions lead to reduced savings in dynamic com-
pilation time in relation to the overheads added by increasing the number of
threads.

Our results clearly highlight the benefits of region sharing between appli-
cation threads. Extending our concurrent and parallel dynamic compilation
system with a scheme to tag sharable regions ensures that multiple threads
can be served simultaneously from just a single region translation. Additional
caching of recently handled regions supports this sharing concept further.
More threads reach native code execution sooner. This is demonstrated by
an overall larger percentage of natively executed code.

Region Sharing Optimisation Scope

The speed-ups presented in the previous section are due to the ability to
share regions between threads, reducing the time that threads need to spend
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interpreting until they can execute native code, and reducing pressure on the
concurrent and parallel dynamic compilation subsystem. For each bench-
mark, it would be interesting to know how many regions that are handled by
the dynamic compilation subsystem are similar to regions that have already
been handled for the case where region sharing is disabled. This would im-
ply that in a perfect situation, all the time spent compiling sharable regions
could be saved. Figure 4.18 shows the percentage of unique and sharable
regions for each benchmark, when executed across 128 application threads.

With the exception of radiosity, all benchmarks have over 65% of their
regions marked as sharable, with an average of 76%. The largest percentage
seen here was the 94% of regions generated during the execution of radix.
The low 47% of radiosity are explained by the fact that the benchmark
was built without parallel preprocessing enabled, increasing the total per-
centage of the program that was executed sequentially. These percentages
demonstrate the great potential that exists to speed up execution of data-
parallel multi-threaded programs when using region based concurrent and
parallel dynamic compilation. On average 76% of all regions are sharable,
this means that 76% of all time spent dynamically compiling regions could be
saved if region translations are shared between threads using thread-agnostic
regions, inter-thread region sharing, and region translation caching.

Thread-Specific vs. Thread-Agnostic Regions

Section 4.5.3 discussed the use of thread-agnostic and thread-specific regions,
explaining that thread-agnostic regions enable sharing of dynamically com-
piled regions between threads. Code generated for thread-agnostic regions
requires the use of indirection via a pointer to access a thread’s state, versus
direct access to runtime addresses known at dynamic compilation time. It
would be natural to presume that this indirection imposes a penalty on the
overall performance of execution, so we present the effect this code generation
approach has on the runtime of the Splash-2 benchmarks - when executing
only one thread - in Figure 4.18.

Surprisingly, the use of thread-agnostic regions is often faster than using
thread-specific regions - a speed-up of 1.09 on average. One would expect
that having to obtain the thread state pointer and calculate an offset would
be more expensive than simply accessing a constant known at runtime. How-
ever, this does not take into account the issue of code size. On the x86 host
architecture used throughout this thesis, an instruction that accesses a mem-
ory location using register + offset calculations should not require more than
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Shareable Unique
barnes
cholesky
fft
fmm
lu
ocean
radiosity
radix
raytrace
volrend
water-nsquared

water-spatial
average

80.79 19.21 0.44
74.77 25.23 1.40
89.16 10.84 0.36
69.34 30.66 1.81
83.08 16.92 0.39
81.33 18.67 0.83
46.54 53.46 0.84
93.74 6.26 0.69
69.04 30.96 1.15
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80.89 19.11 0.19
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10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ba
rn

es
ch

ol
es

ky ff
t

fm
m lu

oc
ea

n
ra

di
os

ity
ra

di
x

ra
yt

ra
ce

vo
lre

nd
w

at
er

-n
sq

ua
re

d
w

at
er

-s
pa

tia
l

av
er

ag
e

Sharable Regions
Unique Regions

Percentage of Sharable Regions - Splash-2

baseline
speedup
stdev

barnes cholesky fft fmm lu ocean radiosity radix raytrace volrend water-
nsquared

water-spatial Average

Thread-Specific 237.605 10.062 599.73 169.64 35.482 64.616 1149.141 9.097 28.755 164.736 443.595 156.724 255.76525
Thread-Agnostic 198.839 10.721 531.051 158.078 33.756 60.446 988.461 8.751 27.134 147.106 398.473 141.903 225.39325

Thread-Specific Error Margin 0.6729025099 0.3161773222 2.9718064635 0.9667528013 0.2269635057 0.3435732776 20.535948182 0.0732673558 0.4711138042 0.9159436826 2.7832384153 0.6136448494 2.5742776808
Thread-Agnostic Error Margin 2.0526005458 0.33052018 2.7757762264 0.7379919616 0.1131179117 0.2165377989 23.262154026 0.1563799939 0.5213245765 0.4613075333 1.9135676151 1.07146599 2.80106203

@barnes @cholesky @fft @fmm @lu @ocean @radiosity @radix @raytrace @volrend @water-
nsquared

@water-
spatial

@barnes @cholesky @fft @fmm @lu @ocean @radiosity @radix @raytrace @volrend @water-
nsquared

@water-
spatial

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GENERIC 199.1 11.69 528.86 158.99 33.99 61.02 981.4 8.92 28.29 147.12 401.4 140.92 237.91 10.19 595.49 167.8 35.97 65.63 1071.71 9.28 28.36 163.75 443.74 155.42
-----> 195.96 10.91 526.35 160.25 33.91 60.59 1002.43 9.02 26.44 146.7 401.65 144.39 236.61 9.87 596.06 170.17 35.7 64.62 1165.1 9.11 28.62 163.87 453.51 156.05

199.56 9.99 531.53 157.09 33.71 60.41 988.4 8.27 26.59 148.54 396.49 140.64 237.79 10.73 596.97 169.74 35.62 64.38 1162.49 9.19 27.86 164.54 444.29 155.86
205.82 10.37 540.6 158.23 33.62 59.98 1032.06 8.82 27.32 147.14 399.01 141.86 238.37 10.64 600.31 168.83 35.09 64.16 1155.09 9.07 28.25 166.17 443.2 157.03
196.93 10.63 527.98 157.88 33.83 60.2 999.22 8.65 26.73 146.81 399.47 141.8 236.72 9.35 597.53 168.85 35.41 64.17 1157.48 9.14 28.4 163.2 444.72 156.74
196.96 10.74 532.29 156.67 33.47 60.21 996.75 8.67 26.84 147.11 396.67 144.14 239.06 9.88 600.53 167.51 35.54 64.06 1145 9.02 30.17 167.39 440.69 157.68
198.69 11.13 532.38 158.05 33.87 60.74 994.96 8.73 28.58 147.34 393.25 141.36 238.24 9.66 601.55 171.6 35.3 64.86 1161.53 8.98 29.11 164.76 441.32 156.98

200.2 10.69 529.9 157.5 33.77 60.55 987.08 8.83 26.95 146.12 399.64 140.28 238.26 10.17 596.18 170.94 35.19 64.62 1152.94 9.11 28.76 163.58 439.42 156.31
199.05 10.39 529.3 158.64 33.6 60.51 904.47 8.98 26.93 146.64 400.65 140.5 236.17 10.39 604.45 170.5 35.1 64.58 1144.85 8.93 29.39 165.07 443.69 156.88
196.12 10.67 531.32 157.48 33.79 60.25 997.84 8.62 26.67 147.54 396.5 143.14 236.92 9.74 608.23 170.46 35.9 65.08 1175.22 9.14 28.63 165.03 441.37 158.29

@barnes @cholesky @fft @fmm @lu @ocean @radiosity @radix @raytrace @volrend @water-
nsquared

@water-
spatial

@barnes @cholesky @fft @fmm @lu @ocean @radiosity @radix @raytrace @volrend @water-
nsquared

@water-
spatial

Count 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Avg 198.839 10.721 531.051 158.078 33.756 60.446 988.461 8.751 27.134 147.106 398.473 141.903 237.605 10.062 599.73 169.64 35.482 64.616 1149.141 9.097 28.755 164.736 443.595 156.724
Variance 8.2330988889 0.2134766667 15.056476667 1.0642844444 0.0250044444 0.0916266667 1057.4365211 0.0477877778 0.5310933333 0.4158488889 7.1555344444 2.2434233333 0.8848277778 0.1953511111 17.2582 1.8263555556 0.1006622222 0.2306711111 824.10769889 0.01049 0.4337166667 1.6394266667 15.137538889 0.7358488889
Std error 0.9073642537 0.1461084072 1.2270483555 0.3262337267 0.0500044442 0.0957218192 10.283173251 0.0691287044 0.2304546232 0.203923733 0.8459039215 0.4736479002 0.2974605483 0.1397680618 1.3137046852 0.4273588136 0.1003305647 0.1518786065 9.0780377775 0.0323882695 0.2082586533 0.4048983412 1.2303470603 0.2712653477
Degs of free 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
T Value 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628 2.2621571628
Margin error 2.0526005458 0.33052018 2.7757762264 0.7379919616 0.1131179117 0.2165377989 23.262154026 0.1563799939 0.5213245765 0.4613075333 1.9135676151 1.07146599 0.6729025099 0.3161773222 2.9718064635 0.9667528013 0.2269635057 0.3435732776 20.535948182 0.0732673558 0.4711138042 0.9159436826 2.7832384153 0.6136448494
Lower limit 196.78639945 10.39047982 528.27522377 157.34000804 33.642882088 60.229462201 965.19884597 8.5946200061 26.612675424 146.64469247 396.55943238 140.83153401 236.93209749 9.7458226778 596.75819354 168.6732472 35.255036494 64.272426722 1128.6050518 9.0237326442 28.283886196 163.82005632 440.81176158 156.11035515
Upper limit 200.89160055 11.05152018 533.82677623 158.81599196 33.869117912 60.662537799 1011.723154 8.9073799939 27.655324577 147.56730753 400.38656762 142.97446599 238.27790251 10.378177322 602.70180646 170.6067528 35.708963506 64.959573278 1169.6769482 9.1702673558 29.226113804 165.65194368 446.37823842 157.33764485

a 198.839 10.721 531.051 158.078 33.756 60.446 988.461 8.751 27.134 147.106 398.473 141.903
b 237.605 10.062 599.73 169.64 35.482 64.616 1149.141 9.097 28.755 164.736 443.595 156.724
vara 8.2330988889 0.2134766667 15.056476667 1.0642844444 0.0250044444 0.0916266667 1057.4365211 0.0477877778 0.5310933333 0.4158488889 7.1555344444 2.2434233333
varb 0.8848277778 0.1953511111 17.2582 1.8263555556 0.1006622222 0.2306711111 824.10769889 0.01049 0.4337166667 1.6394266667 15.137538889 0.7358488889
alpha 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
count 20 20 20 20 20 20 20 20 20 20 20 20

Baseline Speedup
barnes 1 1.194962 3.36E-05
cholesky 1 0.9385319 0.000350389
fft 1 1.129327 1.36E-05
fmm 1 1.073141 1.28E-05
lu 1 1.051132 1.18E-05
ocean 1 1.068987 9.64E-06
radiosity 1 1.162556 0.0002422559
radix 1 1.039538 8.52E-05
raytrace 1 1.059741 0.0001469797
volrend 1 1.119846 1.05E-05
water-nsquared 1 1.113237 1.59E-05
water-spatial 1 1.104445 1.81E-05
average 1 1.0879536583 0.0000792336

USING STANDARD 
DEVIATION

barnes cholesky fft fmm lu ocean radiosity radix raytrace volrend water-
nsquared

water-spatial average

1 1 1 1 1 1 1 1 1 1 1 1 1

1.1951815523 0.9400698417 1.1293802919 1.073182057 1.0511524422 1.0690112837 1.1637558729 1.0401354271 1.0604092214 1.1198648559 1.1132826042 1.1045546419 1.08833167435

0.0053526403 0.0125594906 0.0025838516 0.0022047569 0.0015595191 0.0016901746 0.0128299355 0.0084023336 0.0087492479 0.0015471686 0.0023721542 0.0036637111 0.0052929153333

0.2

0.4

0.6

0.8

1

1.2

1.4

ba
rn

es
ch

ol
es

ky ff
t

fm
m lu

oc
ea

n

ra
di

os
ity

ra
di

x

ra
yt

ra
ce

vo
lre

nd
w

at
er

-n
sq

ua
re

d
w

at
er

-s
pa

tia
l

av
er

ag
e

Thread-Specific Regions
Thread-Agnostic Regions

Speedup using Thread-Agnostic Regions - Splash-2

Sp
ee

d
up

Figure 4.18: Left hand chart shows the percentage of sharable regions for the
Splash-2 benchmark suite when executing 128 threads. The right hand chart
demonstrates the relative performance when using thread-agnostic over thread-
specific regions, when executing one thread for the Splash-2.

4 bytes to encode. On the other hand, encoding a 32 or 64-bit immediate
constant requires at least 4 or 8 bytes to encode the constant alone, ignoring
the rest of the instruction.

Therefore the use of thread-specific regions leads to an increase in overall
code size, even if the total number of instructions generated may decrease.
This larger code may lead to slower execution, for instance, if sections of
code can no longer reside completely in the instruction cache of the simulation
host. While these results may differ on other architectures, they show that on
the x86 platform the use of thread-agnostic regions actually results in faster
execution, even before enabling the sharing of regions between threads.

4.7 Summary

This chapter presented an incremental region construction scheme enabling
concurrent and parallel dynamic compilation based on the task farm design
pattern. By combining concurrent and parallel dynamic compilation with
light-weight dynamic code discovery, region-based translation units and dy-
namic work scheduling, we not only minimize and hide dynamic compilation
overhead, but fully exploit the available hardware parallelism in standard
multi-core desktop PCs. Across three full benchmark suites comprising non-
trivial and long-running applications from various domains we achieve an
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average reduction in total execution time of 11.5% – and up to 51.9% – for
four processors. Our innovative, concurrent and parallel dynamic compila-
tion scheme is robust and never results in a slowdown. Given that only a
small fraction of the overall execution time is spent on dynamic compilation,
and the majority of time is spent executing natively-compiled code, these
results are more than remarkable.

Furthermore, we have demonstrated that our scheme also scales for multi-
threaded execution environments. Using thread-agnostic regions – as well as
the sharing of regions that this enables – leads to faster execution of multi-
threaded programs when using region-based dynamic compilation to enhance
performance. These effects are often more pronounced as the number of
cores increases – with an average speedup of 1.44x with 128 threads. For the
Splash-2 benchmark suite, 76% of all regions produced could be shared on
average, when executing 128 threads.

While primarily developed for dynamic binary translation, the concept
of region-based concurrent and parallel dynamic compilation may also be
exploited elsewhere to effectively reduce dynamic compilation overheads and
speedup execution. Prime examples are Jit-compiled Java Virtual Machines
(Jvm) or JavaScript engines. The next Chapter discusses how to successfully
exploit this technology in the context of architectural and micro-architectural
performance modeling.
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5
Architectural and Microarchitectural

Modelling

Achieving accurate architectural and micro-architectural ob-
servability for microprocessor simulation is in tension with
high speed simulation - accuracy vs. performance. In this
chapter we propose the application of dynamic compilation
techniques to enable ultra-high speed, software only, micro-
architectural simulation. The technology surpasses FPGA based
simulation in terms of performance whilst maintaining micro-
architectural observability.

Simulators play an important role in the design of today’s high perfor-
mance microprocessors. They support design-space exploration, where pro-
cessor characteristics such as speed and power consumption are accurately
predicted for different architectural and micro-architectural models. The in-
formation gathered enables designers to select the most efficient processor
designs for fabrication. On a slightly higher level instruction set simula-
tors provide a platform on which experimental instruction set architectures
can be tested, and new compilers and applications may be developed and
verified. They help to reduce the overall development time for new micro-
processors by allowing concurrent engineering during the design phase. This
is especially important for embedded system-on-chip (SoC) designs, where
processors may be extended to support specific applications. However, in-
creasing size and complexity of embedded applications challenges current Iss
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technology. For example, the Jpeg encode and decode Eembc benchmarks
execute between 10∗109 and 16∗109 instructions. Similarly, aac (Advanced
Audio Coding) decoding and playback of a six minute excerpt of Mozart’s
Requiem using a sample rate of 44.1 kHz and a bit rate of 128 kbps results in
≈ 38 ∗ 109 executed instructions. These figures clearly demonstrate the need
for fast Iss technology to keep up with performance demands of real-world
embedded applications. The broad introduction of multi-core systems, e.g.
in the form of multi-processor systems-on-chip (MPSoC), has exacerbated
the strain on simulation technology and it is widely acknowledged that im-
proved single-core simulation performance is key to making the simulation
of larger multi-core systems a viable option [6].

In this chapter we extend the dynamic compilation architecture outlined
in chapter 4 to enable ultra-fast Iss. Dynamic binary translation (Dbt)
combines interpretive and compiled simulation techniques in order to main-
tain high speed, observability and flexibility. However, achieving accurate
state and even more so microarchitectural observability remains in tension
with high speed simulation. In fact, none of the existing Iss [18, 59, 92, 101]
based on dynamic binary translation maintains a detailed microarchitectural
model. This thesis presents a novel methodology for fast and cycle-accurate
performance modelling of the processor pipeline, instruction and data caches,
and memory within a Dbt Iss. The main contribution is a simple, yet power-
ful software pipeline model together with an instruction operand dependency
and side-effect analysis pass that allows to retain an ultra-fast instruction-
by-instruction execution model without compromising micro-architectural
observability. The essential idea is to reconstruct the microarchitectural
pipeline state after executing an instruction. This is less complex in terms
of runtime and implementation than a cycle-by-cycle execution model and
reduces the work for pipeline state updates by more than an order of mag-
nitude.

In our Iss we maintain additional data structures relating to the proces-
sor pipeline and the caches and dynamically compile highly optimised code
that maintains the processors micro-architectural state. In order to maintain
flexibility and to achieve high simulation speed our approach decouples the
microarchitectural model in the Iss from the architectural model, thereby
eliminating the need for extensive rewrites of the simulation framework to
accommodate micro-architectural changes. In fact, the strict separation of
concerns (functional simulation vs. microarchitectural performance mod-
elling) enables the automatic generation of a pipeline performance model
from a processor specification written in an architecture description language
(Adl) such as Lisa [90]. This is, however, beyond the scope of this thesis.
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Figure 5.1: Dynamic compilation flow for micro-architectural simulation.

The microarchitectural modelling methodology presented in this thesis is
suitable for any interlocked processor pipeline implementation. It has been
evaluated using the industry standard Eembc, CoreMark, and BioPerf
benchmark suites, against the silicon proven EnCore embedded processor,
implementing the Arcompact [98] Isa. The EnCore processor was selected
to verify the model due to the availability of a hardware implementation. The
microarchitectural model faithfully models the 5-stage interlocked EnCore
processor pipeline (see Figure 5.4) with forwarding logic, its mixed-mode
16/32-bit instruction set, zero overhead loops, static and dynamic branch
prediction, branch delay slots, and four-way set associative data and instruc-
tion caches. To demonstrate its portability we also provide results for the
7-stage EnCore processor pipeline variant. Across all 44 benchmarks from
Eembc, CoreMark, and BioPerf the speed of simulation reaches up to
88 Mips on a standard x86 desktop computer and outperforms that of a
speed-optimised Fpga implementation of the EnCore processor.
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5.1 Motivating Example

Before taking a more detailed look at how to dynamically compile code to
faithfully model microarchitectural components, a motivating example is pro-
vided to highlight the key concepts. Consider the block of Arcompact in-
structions in Figure 5.2 taken from the CoreMark benchmark. Our Iss
ArcSim identifies this region of code as a hotspot and compiles it to native
machine code using the sequence of steps illustrated in Figure 5.1. Each
region maps onto a function denoted by its address (see label 1© in Figure
5.2), and each instruction is translated into semantically equivalent native
code faithfully modelling the processors architectural state (see labels 2©, 3©,
and 6© in Figure 5.2). In order to correctly track microarchitectural state,
each translated Arcompact instruction is augmented with calls to specialised
functions (see labels 3© and 7© in Figure 5.2) responsible for updating the
underlying microarchitectural model (see Figure 5.4).

Figure 5.4 demonstrates how the hardware pipeline microarchitecture is
mapped onto a software model capturing its behaviour. To improve the
performance of microarchitectural state updates we emit several versions of
performance model update functions tailored to each instruction kind (i.e.
arithmetic and logical instructions, load/store instructions, branch instruc-
tions). Section 5.2.2 describes the microarchitectural software model in more
detail. After code has been emitted for a region of executed basic blocks,
it is dynamically compiled and linked by a concurrent and parallel dynamic
compiler as outlined in Section 4.3.

5.2 Dynamic Compilation of

Microarchitectural Components

In common with the EnCore processor, the ArcSim Iss is highly con-
figurable. Architectural features such as register file size, instruction set
extensions, the set of branch conditions, the auxiliary register set, as well as
memory mapped Io extensions can be specified via a set of well defined Apis
and configuration settings. Furthermore, microarchitectural features such as
pipeline depth, per instruction execution latencies, cache size and associa-
tivity, cache block replacement policies, memory subsystem layout, branch
prediction strategies, as well as bus and memory access latencies are fully
configurable. The microarchitectural configurations used for all experiments
are listed in Table 5.1.
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extern CpuState cpu;             // global processor state
void BLK_0x00000848(void) {
  cpu.r[2] = (uint16_t)(cpu.r[9]);
  pipeline(0,cpu.avail[9],&(cpu.avail[2]),0x00000848,1,0);
  cpu.r[3] = cpu.r[12] ^ cpu.r[2];
  pipeline(cpu.avail[12],cpu.avail[2],&(cpu.avail[3]),0x0000084c,1,0);
  cpu.r[3] = cpu.r[3] & (uint32_t)15;
  pipeline(cpu.avail[3],0,&(cpu.avail[3]),0x00000850,1,0);
  cpu.r[3] = cpu.r[3] << ((sint8_t)3 & 0x1f);
  pipeline(cpu.avail[3],0,&(cpu.avail[3]),0x00000854,1,0);
  cpu.r[2] = cpu.r[2] & (uint32_t)7;
  pipeline(cpu.avail[2],0,&(cpu.avail[2]),0x00000858,1,0);
  cpu.r[3] = cpu.r[3] | cpu.r[2];
  pipeline(cpu.avail[3],cpu.avail[2],&(cpu.avail[3]),0x0000085c,1,0);
  cpu.r[4] = cpu.r[3] << ((sint8_t)8 & 0x1f);
  pipeline(cpu.avail[3],0,&(cpu.avail[4]),0x00000860,1,0);
  // compare and branch instruction with delay slot
  pipeline(cpu.avail[10],cpu.avail[13],&(ignore),0x00000864,1,0);
  if (cpu.r[10] >= cpu.r[13]) {
    cpu.pl[FE] = cpu.pl[ME] - 1; // branch penalty
    fetch(0x0000086c);           // speculative fetch due to branch pred.
    cpu.auxr[BTA] = 0x00000890;  // set BTA register
    cpu.D = 1;                   // set delay slot bit
  } else {
    cpu.pc = 0x0000086c;
  }
  cpu.r[4] = cpu.r[4] | cpu.r[3];// delay slot instruction
  pipeline(cpu.avail[4],cpu.avail[3],&(cpu.avail[4]),0x00000868,1,0);
  if (cpu.D) {                   // branch was taken
    cpu.D = 0;                   // clear delay slot bit
    cpu.pc = cpu.auxr[BTA];      // set PC
  }
  cpu.cycles = cpu.pl[WB];       // set total cycle count at end of block
  return;
}

 ....
0x00000848:
 [0x00000848] ext     r2,r9

 [0x0000084c] xor     r3,r12,r2

 [0x00000850] and     r3,r3,0xf

 [0x00000854] asl     r3,r3,0x3

 [0x00000858] and     r2,r2,0x7

 [0x0000085c] or      r3,r3,r2

 [0x00000860] asl     r4,r3,0x8

 [0x00000864] brcc.d  r10,r13,0x2c

 [0x00000868] or      r4,r4,r3
 ....

5

1

2

3

4

Basic Block of
ARCompact™ Instructions JIT Translated Block with Performance Model

Data Structures

// pipeline stages
typedef enum {
  FE,    // fetch 
  DE,    // decode
  EX,    // execute 
  ME,    // memory
  WB,    // write back
  STAGES // 5 stages
} Stage;

// processor state
typedef struct {
  uint32_t pc;
  uint32_t r[REGS];          // general purpose registers
  uint32_t auxr[AUXREGS];    // auxiliary registers
  char     L,Z,N,C,V,U,D,H;  // status flags (H...halt bit)
  uint64_t pl[STAGES];       // per stage cycle count
  uint64_t avail[REGS];      // per register cycle count
  uint64_t cycles;           // total cycle count
  uint64_t ignore;           // used when insn. does not produce result
} CpuState;

6

7

[Pseudo Code]

[Pseudo Code]

Figure 5.2: Dynamic binary translation of Arcompact basic block with CpuState

structure representing architectural 6© and microarchitectural state 7©. See Fig-
ure 5.4 for an implementation of the micro-architectural state update function
pipeline().

The following sections outline the processor pipeline model and describe
how to account for instruction operand availability and side-effect visibility
timing. Additionally cache and memory models and the integration of control
flow and branch prediction into the microarchitectural model is discussed.
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Processor Microarchitecture EnCore
Pipeline 5-Stage and 7-Stage Interlocked
Execution Order In-Order
Branch Prediction Yes
Isa Arcompact
Register Set 32 baseline registers
Instruction Set Extensions None
Floating-Point Hardware

Memory System

L1-Cache

Instruction 32k/4-way associative
Data 32k/4-way associative
Replacement Policy Pseudo-random

L2-Cache None
Bus Width/Latency/Clock Divisor 32-bit/16 cycles/2

Instruction Set Simulator ArcSim
Simulator Full-system, cycle-accurate
Jit Compiler Llvm
I/O & System Calls Emulated

Table 5.1: Configuration and setup of the simulated target microarchitectures
together with the instruction set simulator. Fpga and Asip implementations of
the outlined microarchitectures were used for verification.

5.2.1 Microarchitecture

To demonstrate the effectiveness of our approach we use a state-of-the-art
processor implementing the Arcompact Isa, namely the EnCore [83]. Its
microarchitecture is based on an interlocked pipeline with forwarding logic,
supporting zero overhead loops (Zol), freely intermixable 16- and 32-bit
instruction encodings, static and dynamic branch prediction, branch delay
slots, and predicated instructions. There exist two pipeline variants of the
EnCore processor, namely a 5-stage (see Figure 5.3) variant and a 7-stage
variant which has an additional Align stage between the Fetch and De-
code stages, and an additional Register stage between the Decode and
Execute stages.



Dynamic Compilation of Microarchitectural Components 71

ENCORE 5-Stage Pipeline Hardware Model

FETCH

PC ZOL
Logic

Instruction Cache
Tags Data

Hit &
Select
Logic

Next  Fetch 
PC

Align
Logic

Q

B

DECODE

PC

Inst

Limm

Inst
Decode
Logic

Register 
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Bcc/Jcc Target
Logic

EXECUTE

PC
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Logic

ALU

Select
Result

MEMORY

PC

BRcc/BBIT Target
Logic
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MAX

SELECT

WRITEBACK

PC

Exception
&

Replay
Logic

Data
Cache
Input
Select

&
Control
Logic

Hit &
Select
Logic

Load
Align

DATA MEMORY PIPELINE

Bypass
Logic

Data Cache
Tags Data

Figure 5.3: EnCore processor 5-Stage pipeline microarchitecture.

The processor was configured using 32K 4-way set associative instruction
and data caches with a pseudo-random block replacement policy. Because
cache misses are expensive, a pseudo-random replacement policy requires ac-
curate modelling of cache behaviour to avoid large deviations in cycle count.
Although the above configuration was used for this work, the processor is
highly configurable. Pipeline depth, cache sizes, associativity, cache block
replacement policies, byte order (i.e. big endian, little endian), bus widths,
register-file size, and many other instruction set specific options are config-
urable. The processor is fully synthesisable onto an Fpga and fully working
Asip silicon implementations have been taped-out.

5.2.2 Pipeline Model

The granularity of execution on hardware and Rtl simulation is cycle based
—cycle-by-cycle. If the designer wants to find out how many cycles it took
to execute an instruction or program, all that is necessary is to simply count
the number of cycles. While this execution model works well for hardware it
is too detailed and slow for Iss purposes. Therefore fast functional Iss have
an instruction-by-instruction execution model. While this execution model
yields faster simulation speeds it usually compromises microarchitectural ob-
servability and detail. Our dynamically compiled software pipeline model
together with an instruction operand dependency and side-effect analysis
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WRITEBACK

MEMORY

EXECUTE

DECODE

FETCH

ENCORE 5-Stage Pipeline JIT Generated Software Model

void
pipeline(uint64_t  opd1,  uint64_t  opd2,
         uint64_t* dst1,  uint64_t* dst2,
         uint32_t  faddr, uint32_t  xc,   uint32_t mc)
{
  // FETCH     - account for instruction fetch latency
  cpu.pl[FE] += fetch(faddr);
  // INVARIANT - see section 3.1 processor pipeline model
  if (cpu.pl[FE] < cpu.pl[DE]) cpu.pl[FE] = cpu.pl[DE];

  // DECODE    - determine operand availability time 
  cpu.pl[DE] = max3((cpu.pl[FE] + 1), opd1, opd2);
  if (cpu.pl[DE] < cpu.pl[EX]) cpu.pl[DE] = cpu.pl[EX];

  // EXECUTE   - account for execution latency and destination availability time
  cpu.pl[EX] = *dst1 = cpu.pl[DE] + xc;                   
  if (cpu.pl[EX] < cpu.pl[ME]) cpu.pl[EX] = cpu.pl[ME];

  // MEMORY    - account for memory latency and destination availability time
  cpu.pl[ME] = *dst2 = cpu.pl[EX] + mc;
  if (cpu.pl[ME] < cpu.pl[WB]) cpu.pl[ME] = cpu.pl[WB];

  // WRITEBACK
  cpu.pl[WB] = cpu.pl[ME] + 1;                           
}

2

1

3

4

5

[Pseudo Code]

Figure 5.4: Jit generated EnCore 5-Stage pipeline microachitectural software
model.

pass allows to retain an instruction-by-instruction execution model without
compromising microarchitectural observability. The essential idea is to re-
construct the microarchitectural pipeline state after executing an instruction.
This approach is also known as functional-first simulation [28,29].

Thus the processor pipeline is modelled as an array with as many elements
as there are pipeline stages (see definition of pl[STAGES] at label 7© in Figure
5.2). For each pipeline stage the corresponding latencies are added up, and
the cycle-count at which the instruction is ready to leave the respective stage
is stored. The line with label 1© in Figure 5.4 demonstrates this for the
fetch stage cpu.pl[FE] by adding the amount of cycles it takes to fetch the
corresponding instruction to the current cycle count at that stage.

The next line in Figure 5.4 with the label 2© is an invariant ensuring
that an instruction cannot leave its pipeline stage before the instruction in
the immediately following stage is ready to proceed. Figure 5.5 contains
a detailed example of the microarchitectural performance model determin-
ing the cycle count for a sample Arcompact instruction. It demonstrates
the reconstruction of microarchitectural pipeline state after the instruction
has been executed using the final instruction of the basic block depicted in
Figure 5.2.
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Pipeline Model

if (cpu.pl[FE] < cpu.pl[DE]) 
    cpu.pl[FE] = cpu.pl[DE];

cpu.pl[FE] += fetch(0x00000868);

// INITIAL STATE AT FETCH

if (cpu.pl[DE] < cpu.pl[EX])
    cpu.pl[DE] = cpu.pl[EX];

cpu.pl[DE] = max3((cpu.pl[FE]+1),
                  opd1, opd2);

// INITIAL STATE AT DECODE

if (cpu.pl[EX] < cpu.pl[ME])
    cpu.pl[EX] = cpu.pl[ME];

cpu.pl[EX] = cpu.pl[DE] + 1;
*dst1      = cpu.pl[EX];

// INITIAL STATE AT EXECUTE

if (cpu.pl[ME] < cpu.pl[WB])
    cpu.pl[ME] = cpu.pl[WB];

cpu.pl[ME] = cpu.pl[EX] + 0;
*dst2      = cpu.pl[ME];

// INITIAL STATE AT MEMORY

// FINAL PIPELINE STATE

cpu.pl[WB] = cpu.pl[ME] + 1;

// INITIAL STATE AT WRITEBACK

FE DE EX ME WB

Instruction or r4,r4,r3

FETCH

DECODE

EXECUTE

MEMORY

WRITEBACK

Per Pipeline Stage Cycle Count

110102 103 115102

103 115101 110102

115110103102100

110105 103 115102

103 115102 110105

115110103102102

110105 110 115102

106 115102 110105

115110103105102

115105 110 115102

110 115102 111105

115110110105102

115105 110 116102

110 116102 115105

115115110105102

Figure 5.5: Detailed example of microarchitectural performance model determining
the cycle count for a sample Arcompact instruction. Bold red numbers denote
changes to cycle-counts for the respective pipeline stages, bold green numbers
denote already committed cycle-counts.
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5.3 Instruction Operand Dependencies and

Side Effects

To determine when an instruction is ready to leave the decode stage it is
necessary to know when its operands become available. For instructions with
side-effects (i.e. modification of register contents) it must be recorded when
side-effects will become visible. This operand availability timing information
is encoded and maintained in the avail[GPRS] array (see label 7© in Figure
5.2) for each operand. Instruction execution latencies are configurable and it
is also possible to have variable execution latencies for specific instructions
that depend on operand values or the state of processor flags. Figure 5.4
demonstrates how variable execution latencies are passed as a parameter
and accounted for in the execute stage of the processor pipeline model.

Microarchitectural update functions are parameterised with source operand
availability times and pointers to destination operand availability memory lo-
cations determined during dependency analysis (see label 3© in Figure 5.2).
This information is then used to compute when an instruction can leave the
decode stage (see label 3© in Figure 5.4) and to record when side-effects be-
come visible in the execute and memory stage (see labels 4© and 5© in Figure
5.4). Because not all instructions modify general purpose registers or have
two source operands, there exist several highly optimised versions of micro-
architectural state update functions, and the function outlined in Figure 5.4
demonstrates only one of several possible variants.

5.3.1 Control Flow and Branch Prediction

When dealing with explicit and implicit control flow instructions (e.g. jump,
branch, branch on compare, zero overhead loops) special care must be taken
to account for various types of penalties and speculative execution. The
Arcompact Isa allows for delay slot instructions and the EnCore proces-
sor and ArcSim Iss support various static and dynamic branch prediction
schemes.

The code highlighted by label 4© in Figure 5.2 demonstrates how a branch
penalty is applied for a mis-predicted branch using a static branch predic-
tion scheme. The pipeline penalty depends on the pipeline stage when the
branch outcome and target address are known, and the availability of a delay
slot instruction. These latencies can typically be derived from a microarchi-
tectural hardware model such as the one depicted in Figure 5.3, by looking
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up at which stages target addresses for various control flow instructions such
as Bcc/Jcc1 and Brcc/Bbit2 are available.

It is also necessary to account for speculatively fetched and executed
instructions in case of a mis-predicted branch. For the example in Figure
5.2 this means that the instruction after the delay slot instruction must be
fetched to maintain an accurate microarchitectural memory model state for
a taken branch.

5.3.2 Memory Model

Because cache misses and off-chip memory access latencies significantly con-
tribute towards the final cycle count, ArcSim maintains an accurate cache
and memory model. In its default configuration the EnCore processor im-
plements a pseudo-random block replacement policy where the content of a
shift register is used in order to determine a victim block for eviction. The
rotation of the shift register must be triggered at the same time and by the
same events as in hardware, requiring a faithful microarchitectural model.

The Arcompact Isa offers very flexible and powerful load and store

operations. Therefore memory access simulation is a critical aspect of high-
speed full system simulation. Section 4.4 describes in detail how simulated
memory addresses are mapped onto host memory address locations enabling
the architectural simulation of load and store instructions at the high-
est possible rate. To enable high speed microarchitectural memory timing
simulation, different timing models can be plugged in by implementing a pre-
defined interface. Then, for each load, store, and instruction fetch event, the
pipeline model calls specific methods implemented by memory timing model
plugins to determine memory access latencies. For instruction fetch latencies
such a call is demonstrated in 4© Figure 5.2 and 1© Figure 5.4.

Our primary objective was to enable high-speed microarchitectural sim-
ulation of the processor pipeline. Cache and memory interconnect timing
models faithfully model the silicon behaviour of the EnCore processor using
state-of-the-art memory modelling approaches [13, 89]. Improving state-of-
the-art of microarchitectural memory model simulation is a research topic of
its own and is being actively worked on by other members of the research
group.

1Bcc/Jcc - Branch/Jump conditionally instructions.
2Brcc/Bbit - Compare and Branch, Branch on Bit test instructions.
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Vendor & Model Hp
TM

Compaq
TM

dc7900 Sff

Number Cpus 1 (dual-core)

Processor Type Intel c©Core
TM

2 Duo processor E8400
Clock Frequency 3 Ghz
L1-Cache 32K Instruction/Data caches
L2-Cache 6 Mb
Fsb Frequency 1333 Mhz

Table 5.2: Simulation Host Configuration.

5.4 Evaluation and Analysis of Results

We have extensively evaluated the proposed dynamically compiled micro-
architectural modelling approach and in this section we describe the experi-
mental setup and methodology before presenting and discussing the results.

5.4.1 Benchmarks and Experimental Setup

We have evaluated our dynamically compiled microarchitectural modelling
approach using the BioPerf benchmark suite that comprises a comprehen-
sive set of computationally-intensive life science applications [8]. We also
used the industry standard Eembc 1.1, and CoreMark [36] embedded
benchmark suites comprising applications from the automotive, consumer,
networking, office, and telecom domains.

All codes have been built with the Arc port of the Gcc 4.2.1 compiler
with full optimisation enabled (i.e. -O3 -mA7). Each benchmark has been
simulated in a stand-alone manner, without an underlying operating sys-
tem, to isolate benchmark behaviour from background interrupts and virtual
memory exceptions. Such system-related effects are measured by including
a Linux full-system simulation in the benchmarks.

The BioPerf benchmarks were run with “class-A” input data-sets avail-
able from the BioPerf web site. The Eembc 1.1 and CoreMark bench-
marks were configured using large iteration counts to execute at least 109

instructions. All benchmarks were simulated until completion. The Linux
benchmark consisted of simulating the boot-up and shut-down sequence of
a Linux kernel configured to run on a typical embedded Arc700 system
with two interrupting timers, a console Uart, and a paged virtual memory
system.
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Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed 
Optimised FPGA

Speed 
Optimised ASIP

ISS Interpretive 
Mode

Time@INTRP Cycles@INTRP Accuracy ABS(Accuracy)

a2time01
aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitmnp01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fbital00
fft00
idctrn01
iirflt01
matrix01
ospf
pktflow
pntrch01
puwmod01
rgbcmy01
rgbhpg01
rgbyiq01
rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
coremark
average
Maximum

42.76 27.65 1661673708 1182378613 1.405 35.58 249.05 14.32 82.56 1717955864 3.28% 3.28%
44.88 24.44 2035127484 1097009731 1.855 26.95 188.66 14.42 76.07 2011085954 -1.20% 1.20%
36.73 31.82 2364356106 1168832029 2.023 24.72 173.02 15.05 77.66 2347298145 -0.73% 0.73%
44.00 23.91 1935893704 1051923424 1.840 27.17 190.18 14.20 74.06 1912428735 -1.23% 1.23%
55.43 21.09 2797405413 1169362673 2.392 20.90 146.31 16.90 69.18 2797390606 -0.00% 0.00%
35.20 33.19 1685823346 1168152409 1.443 34.65 242.52 13.30 87.82 1703736603 1.05% 1.05%
58.94 19.50 2256182622 1149063994 1.963 25.46 178.25 15.92 72.19 2256176777 -0.00% 0.00%
24.51 46.79 1938134229 1146599000 1.690 29.58 207.06 13.97 82.06 1921162121 -0.88% 0.88%
34.89 38.47 2798103201 1342104542 2.085 23.98 167.88 13.55 99.02 2780017320 -0.65% 0.65%
36.03 36.50 1733677905 1315041407 1.318 37.93 265.48 13.88 94.76 1708436543 -1.48% 1.48%
46.43 331.25 35286971472 15379979678 2.294 21.79 152.55 13.64 1127.48 35134308222 -0.43% 0.43%
58.65 19.75 1517042138 1158328760 1.310 38.18 267.24 14.65 79.05 1517023038 -0.00% 0.00%
55.33 31.40 2905044798 1737243150 1.672 29.90 209.30 14.84 117.09 2783844800 -4.35% 4.35%
56.61 235.68 33033780199 13340652937 2.476 20.19 141.35 13.21 1009.74 32849326961 -0.56% 0.56%
64.58 17.28 1580193755 1115769652 1.416 35.30 247.13 14.97 74.53 1527449587 -3.45% 3.45%
52.73 19.81 1577863337 1044759671 1.510 33.11 231.75 15.13 69.05 1558246996 -1.26% 1.26%
28.56 38.47 2158004991 1098794030 1.964 25.46 178.21 14.45 76.04 2141915426 -0.75% 0.75%
25.11 41.71 1800892174 1047094989 1.720 29.07 203.50 12.81 81.74 1774249285 -1.50% 1.50%
38.76 43.22 2276968768 1675270000 1.359 36.79 257.51 14.43 116.13 2370317384 3.94% 3.94%
58.27 21.82 2153228335 1271291691 1.694 29.52 206.64 13.14 96.73 2163414356 0.47% 0.47%
29.60 36.36 2896657669 1076477772 2.691 18.58 130.07 13.88 77.54 2878501543 -0.63% 0.63%
54.24 19.52 1232839594 1058835946 1.164 42.94 300.60 15.09 70.18 1231792904 -0.08% 0.08%
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58.41 35.50 6455758016 2073605735 3.113 16.06 112.42 15.19 136.55 6455758016 0.00% 0.00%
63.65 20.03 2162813708 1274562786 1.697 29.47 206.26 14.76 86.38 2070645379 -4.45% 4.45%
20.36 78.48 3395278387 1597444740 2.125 23.52 164.67 16.56 96.45 3360334387 -1.04% 1.04%
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ISS Interpretive Mode Speed Optimised FPGA ISS JIT DBT Mode

Benchmark R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 STDEV
a2time01   
aifftr01   
aifirf01   
aiifft01   
autcor00   
basefp01   
bezier01   
bitmnp01   
cacheb01   
canrdr01   
cjpeg      
conven00   
dither01   
djpeg      
fbital00   
fft00      
idctrn01   
iirflt01   
matrix01   
ospf       
pktflow    
pntrch01   
puwmod01   
rgbcmy01   
rgbhpg01   
rgbyiq01   
rotate01   
routelookup
rspeed01   
tblook01   
text01     
ttsprk01   
viterb00   
coremark   

42.12 41.71 42.33 42.06 42.05 42.76 42.43 42.10 42.62 42.58 0.3240
43.84 43.53 43.35 43.96 43.58 44.88 44.11 44.14 43.61 43.62 0.4421
36.47 36.41 36.73 36.11 36.68 36.17 36.64 36.25 35.46 34.33 0.7319
44.00 43.50 43.42 43.28 43.43 43.57 43.53 43.47 43.45 43.47 0.1881
54.87 55.30 54.88 54.31 54.52 55.11 55.43 55.16 55.11 55.41 0.3696
35.09 34.87 35.15 35.20 35.13 34.83 34.84 35.05 35.14 35.11 0.1400
57.68 57.44 58.94 57.40 57.84 58.01 57.80 58.84 58.26 56.60 0.6926
24.44 24.51 24.21 24.11 24.25 24.27 24.37 24.32 24.25 24.49 0.1293
34.89 34.65 34.26 34.22 34.50 34.38 34.04 34.63 34.52 34.69 0.2550
35.49 35.63 35.34 35.39 35.33 35.42 35.29 35.90 36.03 35.54 0.2503
46.36 45.28 46.27 45.81 45.81 46.36 46.29 46.25 46.43 45.88 0.3672
57.63 57.40 58.65 58.19 57.34 57.22 56.49 58.20 56.76 56.92 0.6928
55.33 54.77 55.20 53.95 54.95 54.90 54.49 54.68 54.12 54.57 0.4365
55.38 55.59 42.55 55.32 56.47 56.61 56.49 56.10 56.32 56.51 4.3088
63.02 63.07 63.05 63.84 64.58 62.96 63.86 63.88 63.47 63.37 0.5252
52.30 51.95 52.05 52.48 52.09 52.73 52.53 51.55 51.69 51.86 0.3821
28.51 28.39 28.48 28.42 28.51 28.56 28.37 28.45 28.45 28.43 0.0587
24.78 24.94 24.79 25.02 25.08 24.99 24.77 24.79 25.11 24.83 0.1333
38.51 38.67 38.65 38.65 38.70 38.67 38.68 38.33 38.76 38.60 0.1215
56.93 57.01 58.23 57.00 57.72 57.17 56.63 56.87 55.76 58.27 0.7540
29.24 29.45 29.10 29.46 29.57 29.47 28.93 28.83 29.31 29.60 0.2669
54.03 53.88 53.54 53.76 53.52 53.49 54.24 54.05 53.54 53.85 0.2642
34.88 34.48 34.63 34.96 34.77 34.28 34.78 34.48 34.34 34.76 0.2313
56.82 58.41 57.78 58.38 57.85 57.32 56.92 57.48 57.33 58.33 0.5860
63.24 62.49 62.53 62.47 63.65 62.40 62.61 62.44 62.46 63.37 0.4653
20.36 19.94 20.29 20.16 20.10 20.02 20.22 20.03 20.03 19.59 0.2152
29.26 29.14 29.44 28.89 29.10 29.08 29.31 29.48 29.34 29.05 0.1877
87.09 87.15 86.47 87.33 86.62 86.07 87.33 87.23 87.12 87.96 0.5285
38.70 39.27 39.02 38.92 38.48 39.39 39.20 38.57 38.75 39.21 0.3162
37.42 36.78 36.78 35.26 36.84 36.78 37.24 36.71 36.74 36.80 0.5698
36.13 36.04 36.08 36.59 36.03 36.19 35.99 36.48 36.47 36.15 0.2164
33.17 33.11 33.15 32.88 33.18 32.89 32.92 32.42 32.94 32.87 0.2270
54.47 53.02 51.75 52.32 51.15 52.62 52.48 52.92 53.45 53.50 0.9395
50.32 50.70 50.36 50.39 50.77 50.15 49.43 50.83 50.39 50.19 0.4008
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Cycle Accurate Simulation Rate EEMBC and CoreMark - Small and Long Running Embedded Benchmarks

Benchmark MIPS Time
clustalw
fasta-ssearch
phylip-promlk
grappa
hmmer-hmmsearch
hmmer-hmmpfam
tcoffee
blast-blastp
blast-blastn
glimmer
ce
average
maximum

140.61 5.93
289.20 63.59
518.77 88.71
69.83 7.07
24.13 4.92

253.27 161.41
37.96 8.41

121.51 11.27
22.41 2.71

202.26 12.10
395.64 85.68
188.69
518.77

EEMBC Results

BioPerf Results

Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed Optimised 
FPGA

Speed Optimised 
ASIP

ISS Interpretive 
Mode

Time@INTRP Cycles@INTRP Accuracy ABS
(Accuracy)

clustalw
fasta-ssearch
promlk
grappa
hmmsearch
hmmpfam
tcoffee
blastp
glimmer
ce
average
maximum

blastn

27.85 29.92 1396066577 833343182 1.675 29.85 208.92 12.44 67.00 1327371250 -5.18% 5.18%
48.22 381.43 1.35156E+11 18595299674 7.268 6.88 48.15 11.86 1550.52 1.33289E+11 -1.40% 1.40%
30.48 1509.90 90403057897 46020931162 1.964 25.45 178.17 12.44 3699.25 90233024890 -0.19% 0.19%
18.64 26.48 863649574 493553641 1.750 28.57 200.02 11.34 43.53 852371861 -1.32% 1.32%
10.68 11.12 257312461 118797407 2.166 23.08 161.59 11.84 10.03 257330678 0.01% 0.01%
30.06 1359.93 91163243813 40880624840 2.230 22.42 156.95 11.74 3482.79 89982946930 -1.31% 1.31%
12.32 25.91 1009100386 319332249 3.160 15.82 110.76 10.47 30.50 999011356 -1.01% 1.01%
27.33 50.09 5173526964 1369014891 3.779 13.23 92.62 11.70 117.04 5102009595 -1.40% 1.40%
26.15 93.59 4922532216 2447437589 2.011 24.86 174.02 11.44 213.95 4853610263 -1.42% 1.42%
33.22 1020.28 64293295821 33897449616 1.897 26.36 184.53 11.96 2833.96 64603015325 0.48% 0.48%
26.50 21.65 151.57 11.72 1.37% 1.37%
48.22 29.85 208.92 12.44 5.18%

10.10 6.00 173940743 60660885 2.867 17.44 122.06 11.43 5.30 173957294 0.01%

Benchmark R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 STDEV
clustalw
fasta-ssearch
phylip-promlk
grappa
hmmer-hmmsearch
hmmer-hmmpfam
tcoffee
blast-blastp
blast-blastn
glimmer
ce

27.83 27.57 26.98 27.12 27.23 27.85 26.69 27.81 27.85 27.78 0.430592614892545
48.04 48.06 48.22 48.11 47.87 48.01 48.12 48.02 47.99 46.09 0.62624187730372
30.44 30.48 30.44 30.42 30.45 30.43 30.29 30.43 30.45 30.32 0.060598863208993
18.58 18.28 18.23 18.49 18.60 18.58 18.58 18.49 18.64 18.57 0.13945927322659
10.68 10.63 10.54 10.63 10.64 10.68 10.53 10.36 10.12 10.20 0.20403975647462
29.98 30.00 29.88 29.87 30.06 30.05 29.82 29.82 29.73 29.96 0.109650961388094
12.16 12.30 12.32 12.07 12.13 12.31 12.31 12.29 12.25 12.30 0.090209632400192
25.54 27.33 22.99 27.27 25.55 25.55 25.54 27.27 25.57 25.46 1.29043532706344
10.08 10.08 9.68 9.91 9.92 10.09 10.08 10.10 9.95 9.67 0.165408585025083
25.88 25.90 26.15 26.13 25.89 25.80 25.96 26.11 26.14 26.04 0.12944325225965
33.15 33.22 31.76 32.60 32.47 32.52 32.06 31.85 32.23 32.25 0.491267069253917
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Cycle Accurate Simulation BioPerf - Computationally-intensive Life Science Benchmarks
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Cycle count deviation in % - Baseline is cycle accurate ISS Interpretive Mode

BioPerf BenchmarksEEMBC and CoreMark Benchmarks

Benchmark Instructions 
EnCore

Cycles EnCore 
SLOW

Cycles 
EnCore FAST

Accuracy MIPS SLOW 
ArcSim

MIPS FAST 
ArcSim

MIPS HySim

des
md5
livermore
djpeg

90725691 114626288 114824713 0.17% 10 23 80
45417100 109978145 110982114 0.91% 10 27 40

235347794 366524621 374858788 2.27% 8 23 51
13340652937 32849322365 33038153698 0.57% 8 37 5

Benchmark ArcSim ISS JIT DBT 
Mode

HySim MIPS HySim

a2time01
aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitmnp01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fbital00
fft00
idctrn01
iirflt01
matrix01
ospf
pktflow
pntrch01
puwmod01
rgbcmy01
rgbhpg01
rgbyiq01
rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
coremark
clustalw
fasta-ssearch
promlk
grappa
hmmsearch
hmmpfam
tcoffee
blastp
glimmer
ce

1182378613 42.76 90725691 80
1097009731 44.88 45417100 40
1168832029 36.73 235347794 51
1051923424 44.00 13340652937 5
1169362673 55.43
1168152409 35.20
1149063994 58.94
1146599000 24.51
1342104542 34.89
1315041407 36.03

15379979678 46.43
1158328760 58.65
1737243150 55.33

13340652937 56.61
1115769652 64.58
1044759671 52.73
1098794030 28.56
1047094989 25.11
1675270000 38.76
1271291691 58.27
1076477772 29.60
1058835946 54.24
1025626849 34.96
2073605735 58.41
1274562786 63.65
1597444740 20.36
1088933319 29.48
1095448312 87.96
1008410197 39.39
1308893896 37.42
1135346823 36.59
1126582732 33.18
1100533535 54.47
1197045183 50.83
833343182 27.85

18595299674 48.22
46020931162 30.48

493553641 18.64
118797407 10.68

40880624840 30.06
319332249 12.32

1369014891 27.33
2447437589 26.15

33897449616 33.22
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Simulated Instructions

5 Stage Pipeline

5 Stage Pipeline

Figure 5.6: 5-Stage Pipeline - Simulation rate (in Mips) using Eembc and Core-
Mark benchmarks comparing (a) Iss interpretive cycle-accurate simulation mode,
(b) speed-optimised Fpga implementation, and (c) our novel Iss Dbt cycle-
accurate simulation mode.

Our main interest has been on simulation speed, therefore we have mea-
sured the maximum possible simulation speed in Mips using various simu-
lation modes (Fpga speed vs. cycle-accurate interpretive mode vs. cycle-
accurate Dbt mode - see Figures 5.6, 5.7, 5.8 and 5.9). Table 5.1 lists the
configuration details of our simulator and target processor. All measurements
were performed on a x86 desktop computer detailed in Table 5.2 under con-
ditions of low system load. When comparing ArcSim simulation speeds to
Fpga implementations shown in Figures 5.6, 5.7, 5.8 and 5.9, we used a
Xilinx Virtex5 XC5 Vfx70t (speed grade 1) Fpga clocked at 50 Mhz.

5.4.2 Speedup

We initially discuss the simulation speed-up achieved by our novel cycle-
accurate Dbt microarchitectural simulation mode compared to a verified
cycle-accurate interpretive simulation mode for a 5-stage processor pipeline
variant. A comparison against a speed-optimised Fpga implementation is
also provided as this has been the primary motivation of our work. Finally,
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Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed 
Optimised FPGA

Speed 
Optimised ASIP

ISS Interpretive 
Mode

Time@INTRP Cycles@INTRP Accuracy ABS(Accuracy)

a2time01
aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitmnp01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fbital00
fft00
idctrn01
iirflt01
matrix01
ospf
pktflow
pntrch01
puwmod01
rgbcmy01
rgbhpg01
rgbyiq01
rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
coremark
average
Maximum

42.76 27.65 1661673708 1182378613 1.405 35.58 249.05 14.32 82.56 1717955864 3.28% 3.28%
44.88 24.44 2035127484 1097009731 1.855 26.95 188.66 14.42 76.07 2011085954 -1.20% 1.20%
36.73 31.82 2364356106 1168832029 2.023 24.72 173.02 15.05 77.66 2347298145 -0.73% 0.73%
44.00 23.91 1935893704 1051923424 1.840 27.17 190.18 14.20 74.06 1912428735 -1.23% 1.23%
55.43 21.09 2797405413 1169362673 2.392 20.90 146.31 16.90 69.18 2797390606 -0.00% 0.00%
35.20 33.19 1685823346 1168152409 1.443 34.65 242.52 13.30 87.82 1703736603 1.05% 1.05%
58.94 19.50 2256182622 1149063994 1.963 25.46 178.25 15.92 72.19 2256176777 -0.00% 0.00%
24.51 46.79 1938134229 1146599000 1.690 29.58 207.06 13.97 82.06 1921162121 -0.88% 0.88%
34.89 38.47 2798103201 1342104542 2.085 23.98 167.88 13.55 99.02 2780017320 -0.65% 0.65%
36.03 36.50 1733677905 1315041407 1.318 37.93 265.48 13.88 94.76 1708436543 -1.48% 1.48%
46.43 331.25 35286971472 15379979678 2.294 21.79 152.55 13.64 1127.48 35134308222 -0.43% 0.43%
58.65 19.75 1517042138 1158328760 1.310 38.18 267.24 14.65 79.05 1517023038 -0.00% 0.00%
55.33 31.40 2905044798 1737243150 1.672 29.90 209.30 14.84 117.09 2783844800 -4.35% 4.35%
56.61 235.68 33033780199 13340652937 2.476 20.19 141.35 13.21 1009.74 32849326961 -0.56% 0.56%
64.58 17.28 1580193755 1115769652 1.416 35.30 247.13 14.97 74.53 1527449587 -3.45% 3.45%
52.73 19.81 1577863337 1044759671 1.510 33.11 231.75 15.13 69.05 1558246996 -1.26% 1.26%
28.56 38.47 2158004991 1098794030 1.964 25.46 178.21 14.45 76.04 2141915426 -0.75% 0.75%
25.11 41.71 1800892174 1047094989 1.720 29.07 203.50 12.81 81.74 1774249285 -1.50% 1.50%
38.76 43.22 2276968768 1675270000 1.359 36.79 257.51 14.43 116.13 2370317384 3.94% 3.94%
58.27 21.82 2153228335 1271291691 1.694 29.52 206.64 13.14 96.73 2163414356 0.47% 0.47%
29.60 36.36 2896657669 1076477772 2.691 18.58 130.07 13.88 77.54 2878501543 -0.63% 0.63%
54.24 19.52 1232839594 1058835946 1.164 42.94 300.60 15.09 70.18 1231792904 -0.08% 0.08%
34.96 29.34 1641344348 1025626849 1.600 31.24 218.70 13.10 78.31 1618582314 -1.41% 1.41%
58.41 35.50 6455758016 2073605735 3.113 16.06 112.42 15.19 136.55 6455758016 0.00% 0.00%
63.65 20.03 2162813708 1274562786 1.697 29.47 206.26 14.76 86.38 2070645379 -4.45% 4.45%
20.36 78.48 3395278387 1597444740 2.125 23.52 164.67 16.56 96.45 3360334387 -1.04% 1.04%
29.48 36.94 1875857693 1088933319 1.723 29.02 203.17 13.51 80.58 1932046104 2.91% 2.91%
87.96 12.45 1411905096 1095448312 1.289 38.79 271.55 14.33 76.43 1401202101 -0.76% 0.76%
39.39 25.60 1627370761 1008410197 1.614 30.98 216.88 13.13 76.80 1624267366 -0.19% 0.19%
37.42 34.98 1896833261 1308893896 1.449 34.50 241.51 13.59 96.28 1935102815 1.98% 1.98%
36.59 31.02 1776794485 1135346823 1.565 31.95 223.65 13.22 85.86 1745943123 -1.77% 1.77%
33.18 33.95 1909552398 1126582732 1.695 29.50 206.49 13.69 82.31 1911955274 0.13% 0.13%
54.47 20.20 1499950439 1100533535 1.363 36.69 256.80 14.79 74.40 1493696145 -0.42% 0.42%
50.83 23.55 1951650255 1197045183 1.630 30.67 214.67 14.53 82.36 1928258231 -1.21% 1.21%
44.97 29.71 207.97 14.30 1.30% 1.30%
87.96 42.94 300.60 16.90 4.45%

Benchmark MIPS Time
a2time01
aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitmnp01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fbital00
fft00
idctrn01
iirflt01
matrix01
ospf
pktflow
pntrch01
puwmod01
rgbcmy01
rgbhpg01
rgbyiq01
rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
coremark
average
maximum

281.66 4.20
339.52 3.23
124.92 9.36
342.83 3.07
217.08 5.39
283.53 4.12
839.93 1.37
196.73 5.83
214.48 6.26
124.22 10.59
341.58 45.03
504.58 2.30
350.90 4.95
377.13 35.37
459.32 2.43
626.04 1.67
203.77 5.39
211.01 4.96
264.70 6.33
393.47 3.23
233.95 4.60
197.38 5.36
299.91 3.42
649.17 3.19
689.12 1.85

51.04 31.30
201.84 5.39
349.70 3.13
322.89 3.12
225.54 5.80
230.53 4.92
243.10 4.63
353.49 3.11
295.03 4.06
324.71
839.93

Result Graphs used in Journal for EC5
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ISS Interpretive Mode Speed Optimised FPGA ISS JIT DBT Mode

Benchmark R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 STDEV
a2time01   
aifftr01   
aifirf01   
aiifft01   
autcor00   
basefp01   
bezier01   
bitmnp01   
cacheb01   
canrdr01   
cjpeg      
conven00   
dither01   
djpeg      
fbital00   
fft00      
idctrn01   
iirflt01   
matrix01   
ospf       
pktflow    
pntrch01   
puwmod01   
rgbcmy01   
rgbhpg01   
rgbyiq01   
rotate01   
routelookup
rspeed01   
tblook01   
text01     
ttsprk01   
viterb00   
coremark   

42.12 41.71 42.33 42.06 42.05 42.76 42.43 42.10 42.62 42.58 0.3240
43.84 43.53 43.35 43.96 43.58 44.88 44.11 44.14 43.61 43.62 0.4421
36.47 36.41 36.73 36.11 36.68 36.17 36.64 36.25 35.46 34.33 0.7319
44.00 43.50 43.42 43.28 43.43 43.57 43.53 43.47 43.45 43.47 0.1881
54.87 55.30 54.88 54.31 54.52 55.11 55.43 55.16 55.11 55.41 0.3696
35.09 34.87 35.15 35.20 35.13 34.83 34.84 35.05 35.14 35.11 0.1400
57.68 57.44 58.94 57.40 57.84 58.01 57.80 58.84 58.26 56.60 0.6926
24.44 24.51 24.21 24.11 24.25 24.27 24.37 24.32 24.25 24.49 0.1293
34.89 34.65 34.26 34.22 34.50 34.38 34.04 34.63 34.52 34.69 0.2550
35.49 35.63 35.34 35.39 35.33 35.42 35.29 35.90 36.03 35.54 0.2503
46.36 45.28 46.27 45.81 45.81 46.36 46.29 46.25 46.43 45.88 0.3672
57.63 57.40 58.65 58.19 57.34 57.22 56.49 58.20 56.76 56.92 0.6928
55.33 54.77 55.20 53.95 54.95 54.90 54.49 54.68 54.12 54.57 0.4365
55.38 55.59 42.55 55.32 56.47 56.61 56.49 56.10 56.32 56.51 4.3088
63.02 63.07 63.05 63.84 64.58 62.96 63.86 63.88 63.47 63.37 0.5252
52.30 51.95 52.05 52.48 52.09 52.73 52.53 51.55 51.69 51.86 0.3821
28.51 28.39 28.48 28.42 28.51 28.56 28.37 28.45 28.45 28.43 0.0587
24.78 24.94 24.79 25.02 25.08 24.99 24.77 24.79 25.11 24.83 0.1333
38.51 38.67 38.65 38.65 38.70 38.67 38.68 38.33 38.76 38.60 0.1215
56.93 57.01 58.23 57.00 57.72 57.17 56.63 56.87 55.76 58.27 0.7540
29.24 29.45 29.10 29.46 29.57 29.47 28.93 28.83 29.31 29.60 0.2669
54.03 53.88 53.54 53.76 53.52 53.49 54.24 54.05 53.54 53.85 0.2642
34.88 34.48 34.63 34.96 34.77 34.28 34.78 34.48 34.34 34.76 0.2313
56.82 58.41 57.78 58.38 57.85 57.32 56.92 57.48 57.33 58.33 0.5860
63.24 62.49 62.53 62.47 63.65 62.40 62.61 62.44 62.46 63.37 0.4653
20.36 19.94 20.29 20.16 20.10 20.02 20.22 20.03 20.03 19.59 0.2152
29.26 29.14 29.44 28.89 29.10 29.08 29.31 29.48 29.34 29.05 0.1877
87.09 87.15 86.47 87.33 86.62 86.07 87.33 87.23 87.12 87.96 0.5285
38.70 39.27 39.02 38.92 38.48 39.39 39.20 38.57 38.75 39.21 0.3162
37.42 36.78 36.78 35.26 36.84 36.78 37.24 36.71 36.74 36.80 0.5698
36.13 36.04 36.08 36.59 36.03 36.19 35.99 36.48 36.47 36.15 0.2164
33.17 33.11 33.15 32.88 33.18 32.89 32.92 32.42 32.94 32.87 0.2270
54.47 53.02 51.75 52.32 51.15 52.62 52.48 52.92 53.45 53.50 0.9395
50.32 50.70 50.36 50.39 50.77 50.15 49.43 50.83 50.39 50.19 0.4008
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Benchmark MIPS Time
clustalw
fasta-ssearch
phylip-promlk
grappa
hmmer-hmmsearch
hmmer-hmmpfam
tcoffee
blast-blastp
blast-blastn
glimmer
ce
average
maximum

140.61 5.93
289.20 63.59
518.77 88.71

69.83 7.07
24.13 4.92

253.27 161.41
37.96 8.41

121.51 11.27
22.41 2.71

202.26 12.10
395.64 85.68
188.69
518.77

EEMBC Results

BioPerf Results

Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed Optimised 
FPGA

Speed Optimised 
ASIP

ISS Interpretive 
Mode

Time@INTRP Cycles@INTRP Accuracy ABS
(Accuracy)

clustalw
fasta-ssearch
promlk
grappa
hmmsearch
hmmpfam
tcoffee
blastp
glimmer
ce
average
maximum

blastn

27.85 29.92 1396066577 833343182 1.675 29.85 208.92 12.44 67.00 1327371250 -5.18% 5.18%
48.22 381.43 1.35156E+11 18595299674 7.268 6.88 48.15 11.86 1550.52 1.33289E+11 -1.40% 1.40%
30.48 1509.90 90403057897 46020931162 1.964 25.45 178.17 12.44 3699.25 90233024890 -0.19% 0.19%
18.64 26.48 863649574 493553641 1.750 28.57 200.02 11.34 43.53 852371861 -1.32% 1.32%
10.68 11.12 257312461 118797407 2.166 23.08 161.59 11.84 10.03 257330678 0.01% 0.01%
30.06 1359.93 91163243813 40880624840 2.230 22.42 156.95 11.74 3482.79 89982946930 -1.31% 1.31%
12.32 25.91 1009100386 319332249 3.160 15.82 110.76 10.47 30.50 999011356 -1.01% 1.01%
27.33 50.09 5173526964 1369014891 3.779 13.23 92.62 11.70 117.04 5102009595 -1.40% 1.40%
26.15 93.59 4922532216 2447437589 2.011 24.86 174.02 11.44 213.95 4853610263 -1.42% 1.42%
33.22 1020.28 64293295821 33897449616 1.897 26.36 184.53 11.96 2833.96 64603015325 0.48% 0.48%
26.50 21.65 151.57 11.72 1.37% 1.37%
48.22 29.85 208.92 12.44 5.18%

10.10 6.00 173940743 60660885 2.867 17.44 122.06 11.43 5.30 173957294 0.01%

Benchmark R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 STDEV
clustalw
fasta-ssearch
phylip-promlk
grappa
hmmer-hmmsearch
hmmer-hmmpfam
tcoffee
blast-blastp
blast-blastn
glimmer
ce

27.83 27.57 26.98 27.12 27.23 27.85 26.69 27.81 27.85 27.78 0.430592614892545
48.04 48.06 48.22 48.11 47.87 48.01 48.12 48.02 47.99 46.09 0.62624187730372
30.44 30.48 30.44 30.42 30.45 30.43 30.29 30.43 30.45 30.32 0.060598863208993
18.58 18.28 18.23 18.49 18.60 18.58 18.58 18.49 18.64 18.57 0.13945927322659
10.68 10.63 10.54 10.63 10.64 10.68 10.53 10.36 10.12 10.20 0.20403975647462
29.98 30.00 29.88 29.87 30.06 30.05 29.82 29.82 29.73 29.96 0.109650961388094
12.16 12.30 12.32 12.07 12.13 12.31 12.31 12.29 12.25 12.30 0.090209632400192
25.54 27.33 22.99 27.27 25.55 25.55 25.54 27.27 25.57 25.46 1.29043532706344
10.08 10.08 9.68 9.91 9.92 10.09 10.08 10.10 9.95 9.67 0.165408585025083
25.88 25.90 26.15 26.13 25.89 25.80 25.96 26.11 26.14 26.04 0.12944325225965
33.15 33.22 31.76 32.60 32.47 32.52 32.06 31.85 32.23 32.25 0.491267069253917
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Cycle count deviation in % - Baseline is cycle accurate ISS Interpretive Mode

BioPerf BenchmarksEEMBC and CoreMark Benchmarks

Benchmark Instructions 
EnCore

Cycles EnCore 
SLOW

Cycles 
EnCore FAST

Accuracy MIPS SLOW 
ArcSim

MIPS FAST 
ArcSim

MIPS HySim

des
md5
livermore
djpeg

90725691 114626288 114824713 0.17% 10 23 80
45417100 109978145 110982114 0.91% 10 27 40

235347794 366524621 374858788 2.27% 8 23 51
13340652937 32849322365 33038153698 0.57% 8 37 5

Benchmark ArcSim ISS JIT DBT 
Mode

HySim MIPS HySim

a2time01
aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitmnp01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fbital00
fft00
idctrn01
iirflt01
matrix01
ospf
pktflow
pntrch01
puwmod01
rgbcmy01
rgbhpg01
rgbyiq01
rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
coremark
clustalw
fasta-ssearch
promlk
grappa
hmmsearch
hmmpfam
tcoffee
blastp
glimmer
ce

1182378613 42.76 90725691 80
1097009731 44.88 45417100 40
1168832029 36.73 235347794 51
1051923424 44.00 13340652937 5
1169362673 55.43
1168152409 35.20
1149063994 58.94
1146599000 24.51
1342104542 34.89
1315041407 36.03

15379979678 46.43
1158328760 58.65
1737243150 55.33

13340652937 56.61
1115769652 64.58
1044759671 52.73
1098794030 28.56
1047094989 25.11
1675270000 38.76
1271291691 58.27
1076477772 29.60
1058835946 54.24
1025626849 34.96
2073605735 58.41
1274562786 63.65
1597444740 20.36
1088933319 29.48
1095448312 87.96
1008410197 39.39
1308893896 37.42
1135346823 36.59
1126582732 33.18
1100533535 54.47
1197045183 50.83

833343182 27.85
18595299674 48.22
46020931162 30.48

493553641 18.64
118797407 10.68

40880624840 30.06
319332249 12.32

1369014891 27.33
2447437589 26.15

33897449616 33.22
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Simulated Instructions

5 Stage Pipeline

5 Stage Pipeline

Figure 5.7: 5-Stage Pipeline - Simulation rate (in Mips) using the BioPerf
benchmarks comparing (a) Iss interpretive cycle-accurate simulation mode, (b)
speed-optimised Fpga implementation, and (c) our novel Iss Dbt cycle-accurate
simulation mode.

results for a different pipeline variant, namely the 7-stage pipeline version of
the EnCore, are presented. A summary of all results is shown in Figures
5.6, 5.7, 5.8, and 5.9.

For Eembc and CoreMark benchmarks (Figure 5.6) the proposed cycle-
accurate Dbt simulation mode for the 5-stage pipeline variant is more than
three times faster on average (45 Mips) than the verified cycle-accurate in-
terpretive mode (14 Mips). It even outperforms a speed-optimised Fpga
implementation of the EnCore processor (30 Mips) clocked at 50 Mhz.
For some benchmarks (e.g. autcor00, bezier01, cjpeg, djpeg, rgbcmy01,
rgbhpg01, routelookup) the new cycle-accurate Dbt mode is more than
twice as fast as the speed-optimised Fpga implementation. This can be ex-
plained by the fact that those benchmarks contain sequences of instructions
that map particularly well onto the simulation host Isa. Furthermore, fre-
quently executed blocks in these benchmarks contain instructions with fewer
dependencies resulting in the generation and execution of simpler microarchi-
tectural state update code.

The new cycle-accurate Dbt simulation achieves an average simulation
rate of 26 Mips for the computationally-intensive life science application
programs from the BioPerf benchmark suite (Figure 5.7), again outper-
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Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed 
Optimised 

FPGA

Speed 
Optimised 

ASIP

ISS 
Interpretive 

Mode

Time@INTRP Cycles@INTRP Accuracy ABS(Accuracy)

a2time01
aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitmnp01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fbital00
fft00
idctrn01
iirflt01
matrix01
ospf
pktflow
pntrch01
puwmod01
rgbcmy01
rgbhpg01
rgbyiq01
rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
coremark
average
Maximum

32.37 36.53 1785975219 1182378613 1.510 33.10 231.71 12.79 92.44 1930064669 7.47% 7.47%
31.93 34.36 2034726938 1097009731 1.855 26.96 188.70 13.18 83.21 2036823168 0.10% 0.10%
27.87 41.93 2371321637 1168832029 2.029 24.65 172.52 14.01 83.40 2372460663 0.05% 0.05%
30.90 34.04 1935565667 1051923424 1.840 27.17 190.21 12.94 81.28 1935981481 0.02% 0.02%
45.30 25.81 2797422237 1169362673 2.392 20.90 146.31 15.14 77.25 2797422237 0.00% 0.00%
26.88 43.45 1754744950 1168152409 1.502 33.29 233.00 12.27 95.23 1857635106 5.54% 5.54%
39.34 29.21 2258585815 1149063994 1.966 25.44 178.06 14.15 81.21 2258585815 0.00% 0.00%
21.22 54.03 2270733058 1146599000 1.980 25.25 176.73 12.42 92.32 2282648106 0.52% 0.52%
25.15 53.36 2857765887 1342104542 2.129 23.48 164.37 12.44 107.86 2875695565 0.62% 0.62%
27.21 48.32 1791094729 1315041407 1.362 36.71 256.97 13.12 100.22 1857676863 3.58% 3.58%
36.36 422.94 36325056167 15379979678 2.362 21.17 148.19 12.60 1220.19 36569179019 0.67% 0.67%
39.99 28.97 1599023142 1158328760 1.380 36.22 253.54 13.26 87.38 1599023142 0.00% 0.00%
35.06 49.55 3026342828 1737243150 1.742 28.70 200.91 13.18 131.85 3026346736 0.00% 0.00%
38.84 343.46 34151717925 13340652937 2.560 19.53 136.72 12.26 1088.48 34211134649 0.17% 0.17%
44.78 24.92 1719696892 1115769652 1.541 32.44 227.09 13.44 83.00 1724898292 0.30% 0.30%
43.14 24.22 1580764604 1044759671 1.513 33.05 231.32 13.72 76.13 1581879190 0.07% 0.07%
20.92 52.51 2170529390 1098794030 1.975 25.31 177.18 13.43 81.82 2170763050 0.01% 0.01%
19.91 52.60 1864128218 1047094989 1.780 28.09 196.60 11.90 87.99 1894899071 1.62% 1.62%
30.37 55.17 2437682652 1675270000 1.455 34.36 240.53 12.93 129.59 2670115980 8.70% 8.70%
45.49 27.95 2332472251 1271291691 1.835 27.25 190.76 12.31 103.25 2454277869 4.96% 4.96%
20.54 52.41 2962604759 1076477772 2.752 18.17 127.17 12.50 86.10 2962652787 0.00% 0.00%
37.38 28.32 1245003435 1058835946 1.176 42.52 297.66 13.77 76.91 1397705633 10.93% 10.93%
25.75 39.82 1803481105 1025626849 1.758 28.43 199.04 12.19 84.11 1868486860 3.48% 3.48%
42.58 48.69 6702198006 2073605735 3.232 15.47 108.29 13.98 148.28 6702198006 0.00% 0.00%
43.54 29.27 2132212751 1274562786 1.673 29.89 209.22 13.77 92.58 2132213527 0.00% 0.00%
17.78 89.86 3483215005 1597444740 2.180 22.93 160.51 15.05 106.13 3483215183 0.00% 0.00%
24.87 43.79 2213187950 1088933319 2.032 24.60 172.21 12.17 89.45 2387776150 7.31% 7.31%
50.14 21.85 1440245723 1095448312 1.315 38.03 266.21 13.45 81.48 1629838395 11.63% 11.63%
29.12 34.63 1763120979 1008410197 1.748 28.60 200.18 12.02 83.91 1813631873 2.79% 2.79%
28.88 45.31 2001218549 1308893896 1.529 32.70 228.92 12.37 105.81 2152269661 7.02% 7.02%
27.90 40.69 1831311877 1135346823 1.613 31.00 216.99 12.36 91.85 1879971851 2.59% 2.59%
27.97 40.28 2129140319 1126582732 1.890 26.46 185.19 13.07 86.17 2165861407 1.70% 1.70%
33.99 32.38 1536411658 1100533535 1.396 35.82 250.71 13.53 81.32 1631978323 5.86% 5.86%
35.97 33.28 2010820531 1197045183 1.680 29.77 208.36 13.34 89.73 2164712103 7.11% 7.11%
32.63 28.45 199.18 13.09 2.79%
50.14 42.52 297.66 15.14 11.63%

Result Graphs used in Journal for EC7
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Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed Optimised 
FPGA

Speed Optimised 
ASIP

ISS Interpretive 
Mode

Time@INTRP Cycles@INTRP Accuracy ABS
(Accuracy)

clustalw
fasta-ssearch
phylip-promlk
grappa
hmmsearch
hmmpfam
tcoffee
blastp
glimmer
ce
average
maximum

blastn

23.28 35.80 1397283380 833343182 1.677 29.82 208.74 11.76 70.86 1399718440 0.17% 0.17%
32.58 564.52 1.3602E+11 18595299674 7.315 6.84 47.85 11.11 1655.57 1.36937E+11 0.67% 0.67%
28.55 1611.87 96286670881 46020931162 2.092 23.90 167.29 11.22 4100.35 98699378563 2.44% 2.44%
16.42 30.05 920903747 493553641 1.866 26.80 187.58 10.76 45.89 923701980 0.30% 0.30%

9.81 12.11 279633989 118797407 2.354 21.24 148.69 10.96 10.84 279939715 0.11% 0.11%
23.85 1714.03 93670881830 40880624840 2.291 21.82 152.75 10.77 3794.72 98102379410 4.52% 4.52%
11.32 28.20 1040243985 319332249 3.258 15.35 107.44 10.90 29.30 1039204174 -0.10% 0.10%
21.79 62.82 5270423200 1369014891 3.850 12.99 90.91 11.18 122.50 5314054150 0.82% 0.82%
22.73 107.66 5138499158 2447437589 2.100 23.81 166.70 10.75 227.75 5300055634 3.05% 3.05%
27.65 1226.02 66707331171 33897449616 1.968 25.41 177.85 11.03 3073.02 69474030397 3.98% 3.98%
21.80 20.80 145.58 11.04 1.62% 1.62%
32.58 29.82 208.74 11.76 4.52%

9.73 6.23 180880893 60660885 2.982 16.77 117.38 10.86 5.58 181093137 0.12%
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7 Stage Pipeline

7 Stage Pipeline

Figure 5.8: 7-Stage Pipeline - Simulation rate (in Mips) using Eembc and Core-
Mark benchmarks comparing (a) Iss interpretive cycle-accurate simulation mode,
(b) speed-optimised Fpga implementation, and (c) our novel Iss Dbt cycle-
accurate simulation mode.

forming the previously outlined speed-optimised Fpga implementation (22
Mips). Due to a relatively high cycles per instruction (Cpi) metric of 7, the
speed-optimised Fpga is more than 6 times slower than the cycle-accurate
Dbt for the fasta-ssearch benchmark. For the hmmsearch benchmark the
Dbt cycle accurate simulation is slightly slower than interpretive cycle accu-
rate simulation. This is entirely due to the shorter runtime and abundance of
application hotspots keeping the concurrent and parallel Dbt engine busy,
resulting in a slowdown due to dynamic code discovery and dynamic com-
pilation overheads. A similar effect for the same reasons has been observed
for the xalancmbk benchmark from Spec Cpu 2006 (see Section 4.6.2). The
solution is to use more dynamic compilation worker threads to improve the
throughput of the dynamic compilation subsystem.

For Eembc and CoreMark benchmarks the cycle-accurate Dbt simu-
lation mode for the 7-stage pipeline variant (Figure 5.8) is more than twice as
fast on average (33 Mips) than the verified cycle-accurate interpretive mode
(13 Mips). Again it outperforms the speed-optimised Fpga implementation
of the 7-stage EnCore processor variant (28 Mips) clocked at 50 Mhz. For
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Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed 
Optimised 

FPGA

Speed 
Optimised 

ASIP

ISS 
Interpretive 

Mode

Time@INTRP Cycles@INTRP Accuracy ABS(Accuracy)

a2time01
aifftr01
aifirf01
aiifft01
autcor00
basefp01
bezier01
bitmnp01
cacheb01
canrdr01
cjpeg
conven00
dither01
djpeg
fbital00
fft00
idctrn01
iirflt01
matrix01
ospf
pktflow
pntrch01
puwmod01
rgbcmy01
rgbhpg01
rgbyiq01
rotate01
routelookup
rspeed01
tblook01
text01
ttsprk01
viterb00
coremark
average
Maximum

32.37 36.53 1785975219 1182378613 1.510 33.10 231.71 12.79 92.44 1930064669 7.47% 7.47%
31.93 34.36 2034726938 1097009731 1.855 26.96 188.70 13.18 83.21 2036823168 0.10% 0.10%
27.87 41.93 2371321637 1168832029 2.029 24.65 172.52 14.01 83.40 2372460663 0.05% 0.05%
30.90 34.04 1935565667 1051923424 1.840 27.17 190.21 12.94 81.28 1935981481 0.02% 0.02%
45.30 25.81 2797422237 1169362673 2.392 20.90 146.31 15.14 77.25 2797422237 0.00% 0.00%
26.88 43.45 1754744950 1168152409 1.502 33.29 233.00 12.27 95.23 1857635106 5.54% 5.54%
39.34 29.21 2258585815 1149063994 1.966 25.44 178.06 14.15 81.21 2258585815 0.00% 0.00%
21.22 54.03 2270733058 1146599000 1.980 25.25 176.73 12.42 92.32 2282648106 0.52% 0.52%
25.15 53.36 2857765887 1342104542 2.129 23.48 164.37 12.44 107.86 2875695565 0.62% 0.62%
27.21 48.32 1791094729 1315041407 1.362 36.71 256.97 13.12 100.22 1857676863 3.58% 3.58%
36.36 422.94 36325056167 15379979678 2.362 21.17 148.19 12.60 1220.19 36569179019 0.67% 0.67%
39.99 28.97 1599023142 1158328760 1.380 36.22 253.54 13.26 87.38 1599023142 0.00% 0.00%
35.06 49.55 3026342828 1737243150 1.742 28.70 200.91 13.18 131.85 3026346736 0.00% 0.00%
38.84 343.46 34151717925 13340652937 2.560 19.53 136.72 12.26 1088.48 34211134649 0.17% 0.17%
44.78 24.92 1719696892 1115769652 1.541 32.44 227.09 13.44 83.00 1724898292 0.30% 0.30%
43.14 24.22 1580764604 1044759671 1.513 33.05 231.32 13.72 76.13 1581879190 0.07% 0.07%
20.92 52.51 2170529390 1098794030 1.975 25.31 177.18 13.43 81.82 2170763050 0.01% 0.01%
19.91 52.60 1864128218 1047094989 1.780 28.09 196.60 11.90 87.99 1894899071 1.62% 1.62%
30.37 55.17 2437682652 1675270000 1.455 34.36 240.53 12.93 129.59 2670115980 8.70% 8.70%
45.49 27.95 2332472251 1271291691 1.835 27.25 190.76 12.31 103.25 2454277869 4.96% 4.96%
20.54 52.41 2962604759 1076477772 2.752 18.17 127.17 12.50 86.10 2962652787 0.00% 0.00%
37.38 28.32 1245003435 1058835946 1.176 42.52 297.66 13.77 76.91 1397705633 10.93% 10.93%
25.75 39.82 1803481105 1025626849 1.758 28.43 199.04 12.19 84.11 1868486860 3.48% 3.48%
42.58 48.69 6702198006 2073605735 3.232 15.47 108.29 13.98 148.28 6702198006 0.00% 0.00%
43.54 29.27 2132212751 1274562786 1.673 29.89 209.22 13.77 92.58 2132213527 0.00% 0.00%
17.78 89.86 3483215005 1597444740 2.180 22.93 160.51 15.05 106.13 3483215183 0.00% 0.00%
24.87 43.79 2213187950 1088933319 2.032 24.60 172.21 12.17 89.45 2387776150 7.31% 7.31%
50.14 21.85 1440245723 1095448312 1.315 38.03 266.21 13.45 81.48 1629838395 11.63% 11.63%
29.12 34.63 1763120979 1008410197 1.748 28.60 200.18 12.02 83.91 1813631873 2.79% 2.79%
28.88 45.31 2001218549 1308893896 1.529 32.70 228.92 12.37 105.81 2152269661 7.02% 7.02%
27.90 40.69 1831311877 1135346823 1.613 31.00 216.99 12.36 91.85 1879971851 2.59% 2.59%
27.97 40.28 2129140319 1126582732 1.890 26.46 185.19 13.07 86.17 2165861407 1.70% 1.70%
33.99 32.38 1536411658 1100533535 1.396 35.82 250.71 13.53 81.32 1631978323 5.86% 5.86%
35.97 33.28 2010820531 1197045183 1.680 29.77 208.36 13.34 89.73 2164712103 7.11% 7.11%
32.63 28.45 199.18 13.09 2.79%
50.14 42.52 297.66 15.14 11.63%

Result Graphs used in Journal for EC7
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Cycle Accurate Simulation Rate EEMBC and CoreMark - Small and Long Running Embedded Benchmarks

Benchmark ISS JIT DBT 
Mode

Time@DBT Cycles@DBT Instructions CPI Speed Optimised 
FPGA

Speed Optimised 
ASIP

ISS Interpretive 
Mode

Time@INTRP Cycles@INTRP Accuracy ABS
(Accuracy)

clustalw
fasta-ssearch
phylip-promlk
grappa
hmmsearch
hmmpfam
tcoffee
blastp
glimmer
ce
average
maximum

blastn

23.28 35.80 1397283380 833343182 1.677 29.82 208.74 11.76 70.86 1399718440 0.17% 0.17%
32.58 564.52 1.3602E+11 18595299674 7.315 6.84 47.85 11.11 1655.57 1.36937E+11 0.67% 0.67%
28.55 1611.87 96286670881 46020931162 2.092 23.90 167.29 11.22 4100.35 98699378563 2.44% 2.44%
16.42 30.05 920903747 493553641 1.866 26.80 187.58 10.76 45.89 923701980 0.30% 0.30%

9.81 12.11 279633989 118797407 2.354 21.24 148.69 10.96 10.84 279939715 0.11% 0.11%
23.85 1714.03 93670881830 40880624840 2.291 21.82 152.75 10.77 3794.72 98102379410 4.52% 4.52%
11.32 28.20 1040243985 319332249 3.258 15.35 107.44 10.90 29.30 1039204174 -0.10% 0.10%
21.79 62.82 5270423200 1369014891 3.850 12.99 90.91 11.18 122.50 5314054150 0.82% 0.82%
22.73 107.66 5138499158 2447437589 2.100 23.81 166.70 10.75 227.75 5300055634 3.05% 3.05%
27.65 1226.02 66707331171 33897449616 1.968 25.41 177.85 11.03 3073.02 69474030397 3.98% 3.98%
21.80 20.80 145.58 11.04 1.62% 1.62%
32.58 29.82 208.74 11.76 4.52%

9.73 6.23 180880893 60660885 2.982 16.77 117.38 10.86 5.58 181093137 0.12%

0

10

20

30

40

50

60

70

80

90

100

cl
us

ta
lw

fa
st

a-
ss

ea
rc

h

pr
om

lk

gr
ap

pa

hm
m

se
ar

ch

hm
m

pf
am

tc
of

fe
e

bl
as

tp

gl
im

m
er ce

av
er

ag
e

22

28
2322

11

24

10

16

29
33

23

21
2524

1315
2221

2724

7

30

1111111111111111111112

ISS Interpretive Mode Speed Optimised FPGA ISS JIT DBT Mode

Cycle Accurate Simulation BioPerf - Computationally-intensive Life Science Benchmarks

S
im

u
la

ti
o

n
 r

a
te

 i
n

 M
IP

S

7 Stage Pipeline

7 Stage Pipeline

Figure 5.9: 7-Stage Pipeline - Simulation rate (in Mips) using the BioPerf
benchmarks comparing (a) Iss interpretive cycle-accurate simulation mode, (b)
speed-optimised Fpga implementation, and (c) our novel Iss Dbt cycle-accurate
simulation mode.

some benchmarks (e.g. autcor00, djpeg, rgbcmy01) the novel cycle-accurate
Dbt mode is almost twice as fast as the speed-optimised Fpga implemen-
tation. Average BioPerf benchmark simulation rate figures for the 7-stage
pipeline (Figure 5.9) demonstrate that our cycle-accurate Dbt (22 Mips)
once more outperforms a speed-optimised Fpga implementation (21 Mips)
and is twice as fast as cycle-accurate interpretive simulation (11 Mips).

For the introductory sample application performing Aac decoding and
playback of Mozart’s Requiem outlined in Section 5.1, the cycle-accurate
Dbt mode is capable of simulating at a sustained rate of 31 Mips (7-stage
pipeline) and 36 Mips (5-stage pipeline), enabling real-time simulation. For
the boot-up and shutdown sequence of a Linux kernel cycle-accurate Dbt
simulation mode achieves 12 Mips for both pipeline variants resulting in a
highly responsive interactive environment. These examples clearly demon-
strate that the Iss used in these experiments is capable of simulating system-
related effects such as interrupts and virtual memory exceptions efficiently
and still provide full microarchitectural observability.
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5.5 Summary

We have demonstrated that our approach to microarchitectural Iss easily
surpasses speed-optimised Fpga implementations whilst providing detailed
architectural and microarchitectural profiling feedback and statistics. The
main contribution is a simple yet powerful software pipeline model in con-
junction with an instruction operand dependency and side-effect analysis
pass integrated into a Dbt Iss enabling ultra-fast simulation speeds without
compromising microarchitectural observability. Our cycle-accurate micro-
architectural modelling approach is portable and independent of the imple-
mentation of a functional Iss. More importantly, it is capable of capturing
even complex interlocked processor pipelines. Because our novel pipeline
modelling approach is microarchitecture adaptable and decouples the perfor-
mance model in the Iss from functional simulation, it can be automatically
generated from Adl specifications. Research into auto generation of micro-
architectural Iss using Dbt given an Adl is actively explored within our
research group by another student.

This Chapter investigated fast microarchitectural modelling of interlocked
in order processors. One important area of future research is to improve
microarchitectural simulation of out-of-order, superscalar, and multi-core
processors. Improving the simulation performance of microarchitectural in-
terconnect and memory models is another important research area. Currently
several students within our research group are actively working on problems
in these areas, using microarchitectural modelling, runtime information and
dynamic compilation techniques developed in this thesis in novel ways to
improve performance whilst maintaining accuracy.
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6
Conclusions

This chapter summarizes the techniques and contributions of
this thesis. It provides a critical anlysis and discusses future
work in the area of concurrent and parallel dynamic compi-
lation, and architectural and microarchitectural performance
modelling.

This thesis has investigated techniques and approaches for dynamic code
discovery and dynamic compilation exploiting parallel design patterns to im-
prove dynamic compilation throughput, and to enable the design of more
responsive and interactive virtual machines. In particular, Chapter 4 has
presented a concurrent and parallel dynamic compilation system that can
speed up the execution of target programs. The design is generic and has
been shown to work in the context of dynamic binary translation, architec-
tural, and microarchitectural simulation. Finally, Chapter 5 has presented
a novel application of the concurrent and parallel dynamic compiler design
for microarchitectural simulation, where code updating microarchitectural
models is compiled on the fly.

6.1 Contributions

This section summarises the main contributions of this thesis for dynamic
compilation system, virtual machine, and simulation tool design and imple-
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mentation, exploiting the concept of concurrent and parallel dynamic com-
pilation.

6.1.1 Concurrent and Parallel Dynamic Compilation

Chapter 4 has explored a novel approach to dynamic code discovery and
dynamic compilation. The dynamic compiler runs concurrently with an in-
terpreter that performs region based incremental code discovery. To hide
compilation latency and improve dynamic compilation throughput the dy-
namic compiler compiles detected program hotspots in parallel. Adaptive
and automatically adjusting heuristics for selecting and scheduling units of
compilation give priority to the most recent, and frequently executed regions
to further reduce time spent in interpreted or unoptimised execution mode.
Compared to previously proposed schemes [20, 21, 67, 87], this design of a
concurrent and parallel dynamic compiler is the first end-to-end solution ap-
plicable in contexts where code discovery must be dynamic and self-modifying
code is possible.

Across three full industry standard benchmark suites (Spec Cpu 2006,
BioPerf, Eembc and CoreMark) comprising non-trivial and long-running
applications from various domains, the proposed concurrent and parallel dy-
namic compilation system achieves an average reduction in total execution
time of 11.5% - and up to 51.9% - on a standard quad-core x86 processor.
The proposed scheme is robust and never results in a slowdown. Given that
only a small fraction of the overall execution time is spent on dynamic com-
pilation, and the majority of time is spent executing natively-compiled code,
these results are more than remarkable.

While the proposed dynamic code discovery is optimised for dynamic bi-
nary translation, the concurrent and parallel dynamic compiler design is a
practical solution applicable in any dynamic compilation scenario to reduce
dynamic compilation latency, consequently improving target application ex-
ecution performance

6.1.2 Architectural and Microarchitectural Modelling

It has been shown in Chapter 5 how to apply the proposed dynamic compila-
tion scheme in the context of architectural and microarchitectural simulation.
Program fragments that simulate the behaviour of architectural and micro-
architectural components such as a memory management unit, a processor
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pipeline, caches, and a branch predictor, are optimised and dynamically com-
piled to speedup simulation and enable effective design space exploration.
The presence and complexity of additional dynamically generated code has
a negative impact on compilation latency that can be recovered by using the
previously proposed concurrent and parallel dynamic compilation scheme.

This is the first time dynamic compilation has been explored in the con-
text of microarchitectural simulation. The main contribution is a simple yet
powerful software processor pipeline model designed to work with the dy-
namic compiler to enable runtime optimisations based on instruction kinds
(i.e. arithmetic, memory, logic, and control flow instructions). The model
captures enough microarchitectural detail to enable cycle accurate simula-
tion. Finally, the proposed model is microarchitecture adaptable and decou-
ples the performance model in the Iss from functional simulation.

The performance of the proposed dynamically compiled microarchitectural
modelling technique has been evaluated using industry standard benchmarks
from various domains (BioPerf, Eembc and CoreMark). Model accu-
racy has been verified using Fpga implementations of the modelled microar-
chitectures. On average the proposed microarchitectural modelling scheme
is faster than Fpga implementations of the simulated microprocessors, re-
ducing engineering efforts by an order of magnitude, and enabling effective,
software only, early design space exploration and application performance
evaluation.

6.2 Critical Analysis

This thesis has investigated the design of a concurrent and parallel dynamic
compilation system using region based incremental code discovery. This sec-
tion now conducts a critical analysis of this work.

6.2.1 Dynamic Compilation Methodology

All experimental results presented in this thesis have been obtained through
the use of ArcSim, an instruction set simulator for the ARCompact plat-
form. Apart from the commercial xISS simulator [99], ArcSim is the only
instruction set simulator with full support for the ARCompact Isa. Under
the hood xISS uses dynamic binary translation to speed up instruction set
simulation. According to the xISS product website [99] ArcSim is more
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than one order of magnitude faster than xISS. This performance advantage
has led to its licensing and productisation by the worlds second largest Ip
provider. The concurrent and parallel dynamic compilation engine is now
part of a variety of production tools enabling high speed simulation.

A direct comparison with Jit-based simulators such as Qemu [12] or
Simit-ARM [92] that target the Arm Isa has not been performed due to
the differences of instruction set architectures, compilers targeting those ar-
chitectures, and the level of modelling detail - it would be like a direct com-
parison of the Microsoft Common Language Runtime [75] with a Java virtual
machine [60]. The fact that researchers and industry [2, 56, 65] cite and use
our concurrent and parallel dynamic compilation technology to improve the
runtime performance of Iss and Java virtual machines, is hopefully sufficient
proof for the general applicability of the presented technology.

Once frequently executed program regions have been discovered and dy-
namically compiled, the generated native code does not include any further
profiling code. As a side-effect of this design it is not possible to drive further
optimisations of compiled code (i.e. perform tiered-compilation [9,30,45]) as
no further profiling information during native code execution is collected.
In an experiment we have extended the proposed dynamic compilation in-
frastructure to support tiered compilation. While performance gains for
some benchmarks could be observed, the additional book keeping of run-
time information and profiling logic together with the overhead of dynamic
re-compilation caused the average performance across all benchmarks to de-
grade.

6.2.2 Microarchitectural Modelling

Chapter 5 has shown how to combine the proposed concurrent and parallel
dynamic compilation architecture with a novel microarchitectural processor
pipeline model to enable high-speed microarchitectural simulation. This was
the first time ever that microarchitectural model update code is optimised
and dynamically compiled with the goal to speed up microarchitectural pro-
cessor simulation. The lack of verified microarchitectural simulators that use
dynamic compilation to speedup microarchitectural modelling made a direct
comparison infeasible. A comparison to interpretive microarchitectural sim-
ulators such as Gem5 [13] is unfair because Gem5 only supports interpretive
microarchitectural simulation that is orders of magnitude slower. Therefore
we have chosen state-of-the-art Fpga based simulation of the modelled mi-
croarchitectures as a baseline for a direct performance comparison.
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6.3 Future Work

This thesis has investigated the design and implementation of a concurrent
and parallel dynamic compiler to improve the performance of dynamic binary
translators and instruction set simulators. The dynamic compilation scheme
was then used together with a novel microarchitectural processor modelling
approach that enables dynamic compilation of optimised microarchitectural
state update logic. This combination resulted in significant speedups over
state-of-the-art Fpga based simulation solutions.

One area of future research in the realm of dynamic code discovery and
concurrent and parallel dynamic compilation is that of tiered compilation.
The main challenge in this context is to minimise the overheads of prolonged
profiling, bookkeeping and analysis of additional profiling data together with
dynamic re-compilation. The ideal solution has to outweigh the overheads of
additional runtime profiling and dynamic re-compilation with the potential
performance improvements for a given application hotspot based on dynamic
runtime information.

Another direction of future research is in the area of fast microarchi-
tectural modelling as it has the potential to realise high gains over state-of-
the-art simulation solutions. Improving the design of processor pipeline mod-
els that support high-speed out-of-order, superscalar, and multi-core micro-
architectural processor simulation has the potential to significantly reduce the
design time and risk of future architectures. Advancing the simulation per-
formance of microarchitectural interconnect and memory models is another
important research area. The ideal solutions in the context of microarchi-
tectural simulation will combine dynamic compilation techniques together
with runtime information driving optimisation and code generation decisions
for code manipulating microarchitectural state.

Finally, the high engineering effort that is necessary to create and ver-
ify a highly optimised instruction set simulator that is also capable of fast
microarchitectural simulation, raises the question whether such tools can be
constructed automatically from an architecture description language. The
dynamic code discovery and compilation framework that has been designed
in this thesis is modular and mostly independent of the simulated instruction
set architecture. Therefore it can be integrated into automatically generated
instruction set simulators.
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