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ABSTRACT 

This study concerns the analysis of plant disease incidence data when the 
observations are made as presence and absence of disease symptoms on plants or 
plant units. 

If diseased plants (or plant units) are randomly dispersed, the frequency 
distribution of diseased plants (or plant units) per sample may be described by a 
binomial distribution, and statistical analyses may be based on the linear logistic 
model. Since most disease incidence data do not have a random spatial pattern, the 
binomial distribution can hardly ever, in practice, be used to describe observed 
frequencies. In this study, the use of conditional probability distributions, such as 
the logistic -normal binomial distribution, for such data is illustrated. Both 
descriptive distribution fitting and statistical modelling are discussed. 

The study evaluates several methods for analysis of incidence data which do not 
exhibit a random spatial pattern. Some of these methods are applied to plant 
disease data for the first time. A method of choosing between the different 
analyses is discussed. All the techniques are illustrated using examples and, as an 
application, survey data collected on pineapple wilt disease in Sri Lanka are 
extensively studied. 

As an alternative method of describing disease incidence data with a non random 
spatial pattern, the use of two- dimensional distance class (2DCLASS) analysis 
was evaluated using the same survey data. 2DCLASS analysis is widely accepted 
in plant disease epidemiology as a method of analysing non -random spatial 
patterns when the observations are made as presence or absence of the disease on 
individual plant basis. We demonstrate the possibility of using quadrat -based data 
in 2DCLASS analysis. We investigate the use of 2DCLASS analysis as a 
methodology and find some drawbacks with this technique, which are discussed in 
detail. Moreover, this study introduces a new parameter in the 2DCLASS analysis 
called Scaled Core Cluster size, that may be more suitable to use for comparison 
of datasets of different sizes. 
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1. INTRODUCTION 

In an experiment in which the variable of interest is disease incidence, the 

observations made on an individual experimental unit (a plant, say) may take one of 
two possible forms, i.e., presence or absence of the disease (or its symptoms). The 

data in this form are said to be binary (quantal) and the two possible forms for each 

observation are often described generically by the terms 'success' and 'failure'. 

In most circumstances, interest centres not just on the response of one particular 

experimental unit (individual plant) but on a group of units that have all been treated 

in a similar manner. Thus the individual responses from each plant in an 

experimental plot, in which all plants have been treated alike, may be combined to 

give the proportion of plants diseased. The resulting data are then referred to as 

grouped binary data, and represent the number of successes out of the total number of 
units exposed to a particular set of experimental conditions. It is well known that the 

data in the form of proportions are often modelled using the binomial distribution 

(Cox and Snell, 1989). 

If every plant in the field has an equal and independent chance of becoming diseased, 

the resulting distribution of disease incidence over the field will be random one. 

However, the actual disease incidence may deviate from a random one due to 

diseased plants occurring together more often than would occur by chance (Cochran, 

1936). The diseased plants may occur randomly over the field, as could happen if the 

distributing agent of the disease is an insect species, and the insects had an equal 

access to all the plants in the field. On the other hand, the deviation from randomness 

may be of a more regular type, infection being higher, for instance, near the borders 

of a field or plot than in the interior. However, a regular pattern of incidence seldom 

occurs in practice (Collett, 1991). 

In plant epidemiology, dispersion of disease incidence is characterised by the spatial 

pattern of diseased plants (Pielou, 1977; Campbell and Madden, 1990). Occurrence 

of diseased plants in groups or patches is often referred to as 'aggregation' or 

'patchiness'. According to Jeger (1989), aggregation is the pattern of disease 

commonly observed in epidemiological studies. Sometimes aggregation is referred to 

as 'clustering'. This is the spatial pattern observed in contrast to random pattern of 

diseased plants. Thus some authors refer to this situation as a non -random pattern or 

'heterogeneity' of diseased plants (Campbell and Madden, 1990). 



In statistical analysis, this condition is referred to as overdispersion (Collett, 1991), 

and data of this type are often called clustered binary data (Rao, 1992). 

Overdispersion is so common in practice that some would maintain that 

overdispersion is the norm and random dispersion the exception. The incidence and 

the degree of overdispersion encountered depend greatly on the field of application 

(McCullagh and Nelder, 1989). In the statistical literature, overdispersion has been 

explained as variation between binary response probabilities or correlation between 

binary responses (Collett, 1991). Such variability is often referred to as extra - 

binomial variation (Crowder, 1978; Williams, 1982; Brooks, 1984: Boos, 1993). 

Aggregated disease incidence exhibits overdispersion while regular disease incidence 

leads to underdispersion. Standard statistical procedures (section 3.2.1) are not 

appropriate to analyse disease incidence data when disease incidence has any spatial 

pattern other than random. 

The first task in the statistical analysis of disease incidence data is to examine the 

randomness of the observations. The use of probability distributions in determining 

the randomness is a well- established technique in plant disease epidemiology 

(Madden, 1989; Hughes and Madden, 1993). In plant disease epidemiology, data are 

often collected in the form of incidence maps (Madden et al., 1987). For incidence 

maps, an examination of whether the disease incidence is random or not may be done 

by dividing the area into sample units (quadrats) containing the same number of 

plants, say from 6 to 12 per quadrat, and by comparing observed and expected 

quadrat frequencies of number of plants diseased per quadrat (Cochran, 1936). Given 

certain assumptions (Cochran, 1977), the binomial distribution provides expected 

frequencies based on the supposition of spatial randomness for disease incidence. 

When the disease incidence is not random, the binomial distribution cannot provide 

an adequate description of the data (Hughes and Madden, 1993). On many occasions, 

the observed disease frequency distribution contains higher frequencies in the upper 

and lower tails compared to the expected binomial frequencies. For such situations, 

conditional distributions such as the beta -binomial (Skellam, 1948) and logistic - 

normal binomial (Pierce and Sands, 1975) may provide a better description of the 

data. 

Experiments often aim to investigate the effect of an explanatory variable on a 

response variable. For instance, several fungicide regimes may need to be compared 

for their effect on disease incidence. Or, if more than one explanatory variable is 
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under study, an experiment may be extended to investigate the interaction between 

explanatory variables in their effect on a response variable of interest. On such 

occasions it is necessary to model the data (Collett, 1991) and the parameters based 

on the fitted model are used for comparison between treatments. The experimental 

design suggests an analysis of variance (ANOVA) (Snedecor and Cochran, 1989) 

approach, but data in the form of proportions present a number of problems (section 

3.2) for 'normal theory' ANOVA. Instead of forcing the data into the framework of 

ANOVA, it may be more appropriate to use Generalised Linear Models (Neider and 

Wedderburn, 1972; McCullagh and Neider, 1983; 1989) to analyse such data 

(section 3.2). 

It is well established that the most useful analogue for incidence data of the linear 

model for normally distributed data is provided by the linear logistic model (Cox and 

Snell, 1989) in which maximum likelihood estimates can easily be obtained. 

However, if the incidence is overdispersed, the linear logistic model is not a suitable 

model for the data (Haseman and Kupper, 1979). 

Several methods have been suggested for statistical analysis when incidence is 

overdispersed. Most of these techniques were originally developed in the area of 

teratology and toxicology. Thus this study attempts to investigate the applicability of 

these techniques in plant disease epidemiology. These methods have been discussed 

in chapter 3. Section 3.5 describes some guidelines for choosing the most efficient 

from among the available methods. 

In chapter 4, the analysis of disease incidence data is illustrated using survey data 

collected in Sri Lanka on pineapple wilt disease. 

1.1 Pineapple wilt disease 

A wilt disease of pineapple (Ananas comosus) was first described in Hawaii in the 

early 1900s (Larsen, 1910) and since then has been reported as a serious problem in 

most areas of the world where pineapple is cultivated (Carter, 1963). The disease has 

been associated consistently with the presence of mealybugs (Carter, 1932; Singh 

and Sastry, 1974). The etiology of mealy bug wilt of pineapple has been 

controversial for many years. The theory that it is caused by a toxin secreted by 

mealybugs during feeding on pineapple was proposed by Carter (Carter, 1932; 1933). 

Later, biological data (Carter, 1963) suggested that mealybug wilt of pineapple was 
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not caused solely by toxins in mealybug salivary secretions, but that an unidentified 

"latent transmissible factor" was also associated with the disease. The concept of a 

viral etiology began to emerge (Carter, 1963). Some recent work (Rohrbach et al., 

1988) has clearly identified the presence of a virus in mealybug -wilt- affected 

pineapple plants. 

Several different species of mealybugs have been associated with wilt disease of 

pineapple in Hawaii and in other areas where pineapple is grown (Rohrbach et al.; 

1988). Because the taxonomy of these mealybugs was not well understood until 

relatively recently, some confusion exists in the published literature dealing with 

these pests (Gunasinghe and German, 1989). Early references (Carter, 1932) to the 

mealybugs associated with wilt generally refer to Pseudococcus brevipes (Cockerell) 

(currently named as Dysmicoccus brevipes) as the pineapple mealybug. However, Ito 

(1938) pointed out that there were two distinct types of pineapple mealybugs 

associated with wilt disease in Hawaii, which he referred to as the pink form and the 

grey form. Beardsley (1959) demonstrated that there were valid morphological 

differences between pink and grey forms and recognised the grey form as a distinct 

new species, Dysmicoccus neobrevipes. 

Ants are a problem in pineapple fields only because of their association with 

mealybugs (Rohrbach et al., 1988). It is the ants' caretaking behaviour that allows the 

mealybug species to prosper. In the literature, there are two hypotheses that attempt 

to explain why mealybugs flourish as a result of ant tending (Nixon, 1951). The first 

is that ants protect mealybugs from any potential parasites and predators. The second 

hypothesis is that benefits to the mealybugs result from removal of honeydew 

(secreted by mealybugs) by ants. Honeydew removal prevents the accumulation of 
honeydew on the plant and mealybugs, and impedes sooty mold build -up, both of 
which may be detrimental to mealybugs. 

When the plants are contaminated with the virus, the first symptoms appear in the 

roots, which cease growth, collapse and rot. Above - ground symptoms then follow. 

Carter (1956: 1963) described the sequential above -ground symptoms of pineapple 

wilt as follows. 
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1. The preliminary reddening of the leaves 

2. A definite colour change from red to pink and with an inward reflexing of the 

leaf margins (Fig.1.1) 

3. Loss of rigidity of affected leaves (wilted appearance). 

Then either, 

4a. A recovery state in which the centre of the plant grows out with fresh, 

apparently normal leaves. This stage is called "terminal wilt, normal leaves" 

or 

4b. According to the Department of Agriculture of Sri Lanka (1993), after loss of 

rigidity of leaves, leaf tips start to dry followed by death of plants. 

Carter first reported the presence of pineapple wilt disease in Sri Lanka (Carter, 

1956). According to this report, in Sri Lanka, the mealybug is found attended 

principally by fire ants (Monomorium indicum) often with a huge nest built around 

mealybug infested plants. In 1993, the Department of Agriculture of Sri Lanka 

(1993) reported wilt disease as the biggest phytopathological problem of the 

pineapple industry in Sri Lanka, and it is known to occur in all pineapple growing 

areas in Sri Lanka. That report also confirmed the continuous association of ants with 

pineapple wilt. 

According to the literature (Rohrbach et al., 1988), in the history of controlling 

pineapple wilt, the first control measure was direct control of mealybugs by spray 

application of chemicals. Thus the intent of research in controlling pineapple wilt had 

been to develop cheap and effective chemical to eliminate mealybugs. With the 

realisation of an active association of ants with mealybugs, researchers also started 

paying attention to the control of ants in pineapple fields. In addition to the use of 
chemicals, physical control methods have been introduced to control ants. The 

Department of Agriculture of Sri Lanka (Department of Agriculture of Sri Lanka, 

1993) has recommended control of both ants and mealybugs simultaneously, in 

controlling wilt disease. 

In Hawaii, currently, ants are controlled by use of mirex and heptachlor (Rohrbach et 

al., 1988). Since mealybugs are generally controlled by controlling ants, no specific 

control measures for mealybugs have been implemented. In Sri Lanka, use of 
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prophenopos or prothiopos as a prophylactive measure has been recommended 

(Department of Agriculture of Sri Lanka, 1993). Moreover, if diseased plants are 

found in the field, further application of chemicals or rogueing, depending on the 

extent of disease, is also being practised. 

Fig. 1.2 shows a pineapple plantation affected by the pineapple wilt disease. In this 

figure it is easy to identify rows of affected plants and healthy plants. This is not the 

spatial pattern one would expect if disease incidence was random. Thus, at least in 

this case, incidence of the pineapple wilt disease is not random but aggregated. As 

mentioned earlier, an appropriate statistical analysis of disease incidence data must 

take account of the spatial pattern of incidence. Thus, spatial pattern analysis is an 

important aspect of epidemiological studies. Moreover, the use of spatial pattern in 

statistical analysis is required for the proper assessment of disease control strategies. 
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1.2 Objectives of the study 

This study has several objectives. 

1) To illustrate possible techniques that can be used to analyse disease 

incidence data, specifically in the presence of extra -binomial variation. We introduce 

some newly applied techniques. In addition we generalise some techniques available 

for analysis of incidence data to facilitate wider application, specifically in the 

analysis of disease incidence data. 

2) To identify criteria for choosing appropriate statistical procedures from 

among the possible procedures that can be used. 

3) As an application of these techniques, detailed analysis of new 

epidemiological data for pineapple wilt disease is presented. 

4) To further develop the use of two -dimensional distance class (2DCLASS) 

analysis as a tool for spatial pattern analysis in plant disease epidemiology (Nelson 

et al., 1992). 

A number of computer software programs were used in this study to implement the 

procedures discussed. Chapter 2 gives some uses of these software programs, and the 

applications of these software programs are described along with the procedures in 

chapter 3. Chapter 4 gives the details about the survey data collected on pineapple 

wilt disease, followed by the statistical analysis of these data. Chapter 5 describes the 

2DCLASS analysis of these data, and gives details of the investigation of the effects 

quadratisation and sample size on the results of 2DCLASS analysis. Finally, chapter 

6 gives an overall conclusion. 

9 



2. COMPUTER SOFTWARE FOR ANALYSIS OF DISEASE INCIDENCE 

DATA 

Several computer software programs were used to illustrate the various 

methodologies described in this study. Among them GLIM and SAS are widely 

being used in statistical analysis and EGRET is less well known. These packages can 

be used to implement most of the procedures illustrated in this study, but certain 

other software was used for some procedures. Among these were BBD, 2DCLASS 

and MATHCAD. A summary of some properties and uses of these packages is given 

in sections 2.1 -2.6, and applications are described along with the statistical analysis 

procedures in chapter 3. Throughout this study these applications and uses are based 

on the versions of each packages are as follows. 

Version 3.77 of GLIM 

Version 0.23.26 of EGRET 

Version 1.2 of BBD 

Version 1 of 2DCLASS 

Version 5.0+ of MATHCAD 

Release 6.04 of SAS 

Version 4 of Microsoft EXCEL for Windows. 

2.1 GLIM 

GLIM (Generalised Linear Interactive Modelling) was written to enable fitting of the 

family of generalised linear models described by Neider and Wedderburn (1972). 

GLIM provides powerful statistical modelling facilities which extend beyond 

standard normal linear models and enable many different types of response variable 

to be modelled in a consistent way. The command language sets GLIM apart from 

many other interactive statistical packages and this gives the flexibility of modelling 

data in different ways. 

Instructions are issued to the GLIM system by means of directives. Directive' is the 

term used in GLIM syntax to refer a function command. Each directive consists of a 

name which begins with the directive symbol $. The format of the input file with the 

necessary directives are described in GLIM user guide and in Aitken et al. (1989). 

The operational commands necessary to implement procedures on GLIM are 

described along with the methods in chapter 3. 
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One important feature of GLIM is the use of 'macros'. A macro is simply a string of 

characters, usually a set of GLIM directives, which is stored by the program for 

subsequent use as often as needed. The macro begins with directive $MACRO 

followed by a user defined macro name. The macro is ended by the directive 

$ENDMAC and a created macro subsequently called by typing $USE directive 

followed by the macro name. 

A large number of GLIM macros are distributed with the package, and additional 

macros are published in issues of the GLIM Newsletter. This has made GLIM useful 

for a variety of non -standard statistical analyses. 

2.2 EGRET 

EGRET (Epidemiological, Graphics, Estimation and Testing program) is a package 

specifically developed for the analysis of data from epidemiological studies. This 

package provides the user with menu options. EGRET can easily be used for linear 

logistic modelling as well as to fit models associated with conditional probability 

distributions. In fact this is the only package which has the ability of fitting such 

models as a standard option. 

EGRET package consists of two modules. The first module is called DEF and is for 

data definition. The second module is called PECAN (Parameter Estimation through 

Conditional Probability Analysis) and the purpose of this part is data analysis. This 

package is not designed for data management and thus the facilities for data 

manipulation within the package are extremely limited. Details of the uses of this 

package are given in EGRET (1990) 

2.3 BBD 

BBD (Beta- Binomial Distribution Fitting Program) was developed by Madden and 

Hughes (1994a) to fit the beta -binomial distribution to frequency distributions of 
disease incidence data. The program is written in Microsoft FORTRAN and 

compiled by version 5.1 of Microsoft's Professional Development System (Microsoft 

Corporation, One Microsoft Way, Redmond, WA 98052- 6399). To run the program 

this requires DOS 3.2 or higher. This program can be used to obtain the expected 

frequencies of binomial and beta -binomial distributions unless sample unit sizes vary 

(where it is impossible to define the expected values). The expected frequencies are 

11 



computed based on the Maximum Likelihood Estimates (MLEs) and MLEs of the 

parameters and standard errors of the estimates are calculated using a damped 

Newton -Raphson Technique. Description of the software is given in Madden and 

Hughes (1994a) and the operational commands are given in the BBD manual 

(Madden and Hughes, 1994b). This software program does not need any operational 

commands other than specifying the input file and the output file. The required 

format of the input file is described in the user guide (Madden and Hughes, 1994b). 

2.4 2DCLASS 

2DCLASS (Two -Dimensional Distance Class Analysis Software) was developed by 

Nelson et al. (1992) to perform Gray's (Gray et al., 1986) 2DCLASS analysis. This 

program is an adaptation of Gray's program (Gray et al., 1986) and is written and 

compiled in the Microsoft Quick BASIC language (Microsoft Quick BASIC Version 

4.5). To run the program it requires DOS 2.0 or higher. As in BBD this software 

program also does not need any operational commands other than specifying input 

and output files. Description of the software and the required format of the input file 

is given in Nelson et al. (1992). 

2.5 MATHCAD 

The MATHCAD software program is widely used for variety of mathematical 

computations. One important facility of version 5.0+ is that it can perform numerical 

integrations. In this study this software was used to perform a numerical integration 

associated with the logistic -normal probability density function (section 3.1.3 and 

3.4.4). This is a 'Windows environment software program' and the details of this 

software package is described in the user guide (MATHCAD 5.0 +, 1994). 

2.6 SAS 

The software program SAS (Statistical Analysis System) is extensively being used 

for statistical analysis in variety of study areas. As in GLIM, SAS also allows the use 

of macros which consist of sequences of SAS statements. But most of the non- 

standard analyses are programmed using a specific software module, IML 

(Interactive Matrix Language) included in SAS. Since most of the macros used in 

this study were written for GLIM, SAS is rarely used in this study. But the 

12 



possibilities of the use of SAS, with necessary operational commands are discussed 

under relevant topics in section 3.2. All these operational commands are based on the 

release 6.04 of SAS. The detail use of this software program is given in the SAS user 

guide (SAS, 1990). 

2.7 Microsoft EXCEL 

In addition to the software programs in sections 2.1 to 2.6, the Microsoft EXCEL 

spreadsheet program was also used in this study. In data collection, automated spread 

sheets (chapter 4) were prepared using this software program. In section 3.1 this 

software was used for fitting binomial distributions to example data. Moreover, in 

section 3.4.4 this program was used to compute the estimates, design effect and the 

effective sample size, which required for the analysis described in section 3.4.4. 

Details of this spreadsheet program are given in the manual (Microsoft EXCEL, 

1992). 
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3. DESCRIPTION OF THE STATISTICAL ANALYSIS OF DISEASE 
INCIDENCE DATA 

3.1 Fitting probability distributions to incidence data 

3.1.1 The binomial distribution 

When the observation made is number of successes out of a total, i.e. when the 

response variable is the proportion of successes, the most satisfactory approximate 

distribution for finite populations is often the binomial distribution (Cochran, 1977). If 

the proportion of successes, nr, remains constant, i.e. sampling is done with 

replacement or the original population is large relative to the sample unit n and each 

success is independent of other successes in the sample unit, the probability that the 

sample unit contains y units of successes is 

P(Y=y)=(ny)zrY (1 - n-)n-Y (3.1) 

For instance, if the location of a diseased plant is independent of the location of other 

diseased plants and there is a constant probability, r, of a plant being diseased, then 

the probability of observing a particular number of diseased plants, Y, out of n in a 

sample unit, a quadrat say, has the binomial distribution and could be expressed in the 
form (3.1). In this case P(.) represents probability and y takes the values 0,1,2,..,n. 

The mean and variance of Y are then nor and n7r(1- 21), respectively. A ¡test 
goodness -of -fit provides a quantitative test of discrepancies between the observed and 

the expected frequencies in such a comparison. This gives a test of the null 

hypothesis: The observations are randomly drawn from a specified binomial 

distribution. Thus, non -rejection of null hypothesis indicates homogeneity and the 

rejection of null hypothesis implies non -randomness. 

Table 3.1 shows data presented by Bald (1937) for the number of plants infected with 

tomato spotted wilt virus (TSWV) for the cultivar Early Dwarf Red irrigated by 

trenches with the expected frequencies based on the binomial distribution. There are 

40 sample units with 9 plants per sample (quadrat). 

The expected binomial frequencies were calculated from equation (3.1) using the 

software program Microsoft Excel. In Microsoft EXCEL, the command 

FREQUENCY can produce the observed frequency distribution and the command 
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BINDIST can produce the expected binomial probabilities from which expected 

frequency distribution can be derived, given the mean of disease incidence, 7r. 

Table 3.1 Disease frequency of Bald's data for the cultivar Early Dwarf Red irrigated by 
Trenches. 

Number of 
diseased 

plants per 
quadrat 

Observed 
frequency 

Expected 
binomial 

frequency 

0 0 0.00 
1 0 0.01 
2 0 0.07 
3 0 0.43 
4 3 1.82 
5 3 5.16 
6 12 9.73 
7 12 11.81 
8 7 8.35 
9 3 2.63 

Total 40 40.01 

12 

2- 
0 r 

O N 4 CD 07 

No. ofdiseased plants 
per quadrat 

111 Obs. 

E Exp. 

Fig. 3.1 Frequency distribution of tomato plants infected by TSWV in 40 quadrats with 9 plants 
per quadrat. Observed (Obs.) and expected frequencies (Exp.) based on binomial distribution 
are shown. Estimated parameters and goodness -of -fit test statistic are given in the text. 

Fig. 3.1 shows the observed frequencies along with expected binomial frequencies. It 

clearly illustrates that observed frequencies agree with the expected binomial 

frequencies. For the binomial distribution the estimate of 7c is 0.74 and the goodness - 
of -fit f =2.97, with 2 degrees of freedom (P= 0.23). In applying the X2 test of 

goodness -of -fit between observed and expected frequencies classes 0 -5 and 8 -9 were 

pooled to make the smallest expectation greater than 5 (Snedecor and Cochran, 
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1989). The probability value, which is much greater than 0.05, indicates consistency 

of observed values with expected values, implying random pattern of diseased plants 

in the field. 

3.1.2 The beta -binomial distribution 

As observed in the previous section, the binomial distribution provides expected 

frequencies based on the supposition of spatial randomness. However, when the 

occurrence of disease incidence is not random, the binomial distribution cannot 

adequately describe the observed frequencies. Williams (1975), Crowder (1978), Paul 

(1982), pointed out the use of beta -binomial distribution to describe non -random 

incidence frequencies. Shiyomi and Takai (1979), Qu et al. (1993), and Hughes and 

Madden (1993) reported the beta -binomial distribution to be appropriate to describe 

aggregated disease frequencies. 

The beta -binomial distribution is formed by compounding the binomial distribution 

with a beta density function (Skellam, 1948). Suppose there are j binomial 

observations made under uniform condition. In principle the exact distribution of 
y = r3 , where r3 is the number of diseased plants for the quadrat of size nj, can be 

determined under this random compounding model. In particular if u (0 <_ u <_ 1) has 

the beta density 

then 

ua-1(1- u)b-1 I B(a, b), 

\ 1 u(1 - u)n-yua-1(1 - u)b-1 
P(Y = Y) = 

Y 
ó B(a,b) 

du 

Cn i I'(a +b)I'(a + y)I'(b +n- y) 
Y I'(a)I'(b)I'(a+b+n) 

which is called the beta -binomial distribution. 

Note that B(a b) =10-1 (1- u)b -1du = 
F(a)r(b) 

o F(a +b) 
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where 

and 

F(a) = Jo ua-le-udu 

Joua -ie -udu 

I'(a+b) = Jouca+b-i>e- udu. 

Basically, the beta -binomial distribution is an extension of the binomial distribution 

which assumes that the probability of success varies between samples according to a 

two parameter beta distribution. 

With a convenient reparameterization, 

and 

p = a(a+b)-' 

9=(a +b)-1, 

equation (3.2) may be rewritten as (if a and b are integers) 

y-1 n-y-1 
IÌ 1 (1- p+r9) 

p(Y 
Y 

,\=(n), 
r=0 

n_ir=0 

rI(1+r9) 
r=0 

Here p is the mean disease incidence of the binomial parameter r and 9 is a measure 

of the variation in 7r. The case of pure binomial variation corresponds to 9= 0 

whereas the original a,b parameterization, it corresponds to infinite parameter values. 

The parameters p, 9 are more stable than a,b as described by Ross (1970). 

According to Williams (1975) stability could be further enhanced by introducing a 

parameter such that r= 9(1+ 9) -' rather than 9 itself but the difference between the 

p, 9 and p, r parameterization will be of practical significance only if 9 is not small. 

Theoretically, p is the expectation of the underlying beta distribution, and given p, 
the parameter9 determines the shape of the distribution. In practice the parameter 9 

takes account of overdispersion or aggregation. In the literature 9 is often referred to 
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as an aggregation parameter and sometimes as random effect parameter (EGRET, 

1991). The beta -binomial distribution can facilitate a wide variety of shapes such as J, 

L or U, depending on values of a and b (Mendenhall et al., 1990). The derivation of 

the beta -binomial is analogous to the derivation of negative binomial distribution by 

compounding the Poisson with a gamma distribution (Moran, 1968). The Poisson 

distribution is a special case of binomial distribution when n is large and p is small 

(Patil and Joshi, 1968). The negative binomial is in fact a special case of beta -binomial 

distribution when n and a + b are large (Patil and Joshi, 1968; Skellam, 1948). 

For the reparameterised form (p, 9) mean and variance of beta -binomial distribution 

are np and np(1- p)(1 +n9)(1- WI respectively (Skellam, 1948). When 9> 0, the 

variance of the beta -binomial distribution is larger than that of binomial with the same 

mean and when 9= 0, the beta -binomial distribution is exactly the same as the 

binomial distribution. The parameters can be estimated by moments. If the observed 
mean and the variance of y are and s2 respectively, then the moments estimates are 

(Griffith, 1983) 

p=yin 

9= s2 -np(1-p) 
n2P(1-p)-s2 

and maximum likelihood estimates of p and 9 can be obtained using Smith's 

algorithm using moments estimates as the starting point for the iterative estimating 

procedure (Smith, 1983). 

The software program BBD uses Smith's algorithm to calculate the maximum 

likelihood estimate of the beta -binomial distribution. Moreover, it computes the 

expected beta -binomial frequencies based on these maximum likelihood estimates. In 

using BBD there is no specific command necessary to specify, other than specifying 

input file (data file) and the output file. The format of input file required is described 

in the BBD operating manual. 

Table 3.2 shows the data reported by Snedecor and Cochran (1989), in a quantitative 

study of tomato spotted wilt virus (TSWV). The observed number of diseased tomato 
plants out of 9 (quadrat size of 9) for 160 quadrats was compared with the expected 

frequencies based on the binomial distribution and the beta -binomial distribution. 
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Table 3.2 Observed and expected (binomial and beta -binomial) frequencies for the tomato 
TSWV data reported by Snedecor and Cochran (1989). 

Number of 
diseased 

plants per 
quadrat 

Observed 
frequency 

Expected 
binomial 

frequency 

Expected 
beta - 

binomial 
frequency 

0 36 26.45 36.32 
1 48 52.70 47.81 
2 38 46.67 37.69 
3 23 24.11 22.21 
4 10 8.00 10.45 
5 3 1.77 3.98 
6 1 0.25 1.21 
7 1 0.03 0.28 
8 0 0.00 0.04 
9 0 0.00 0.00 

Total 160 159.98 160.26 

N 4 C9 CO 

No. ofdiseased plants 
per quadrat 

Fig. 3.2 Frequency distribution of tomato plants infected by TSWV in 160 quadrats with 9 
plants per quadrat. Observed (Obs.) and expected frequencies for the binomial (Bin.) and beta - 
binomial (BBD) distributions are shown. Estimated parameters and goodness -of -fit test statistic 
are given in the text. 

Using BBD, for the data in Table 3.2, estimate of p is 0.181 (standard error 

[SE]= 0.0119) and 9= 0.053 (SE= 0.0204). From Fig. 3.2, it is very clear that the 
expected beta -binomial frequencies are much closer to the observed frequencies than 
the expected binomial frequencies. For the binomial, goodness -of -fit ,2 is 7.968, with 

3 degrees of freedom (P = 0.047) suggesting a deviation from randomness. For the 
beta -binomial the goodness -of -fit x2 is 0.10, with 3 degrees of freedom (P >0.99) 

and giving a far better description of the observed frequency distribution. In applying 
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the f test of goodness -of -fit between observed and expected binomial frequency 

classes 4 -9 were pooled to make the smallest expectation greater than 5. 

Correspondingly, classes 5 -9 were pooled when applying x2 test of goodness -of -fit to 

the beta -binomial distribution fitting. 

3.1.3 The Logistic -normal binomial distribution 

Another conditional distribution available for the description of aggregated patterns is 

the logistic- normal binomial distribution. In this distribution the logit of the variability 

in r is assumed to have normal distribution with a constant variance (Pierce and 

Sands, 1975). The probability density function of the logistic- normal binomial 

distribution is more complicated than that of beta -binomial distribution and thus 

details of this distribution are delayed until section 3.4.2. 

There is no particular software program which can be used to calculate the logistic - 

normal binomial expected frequencies. However, EGRET in association with 

MATHCAD 5.0+ can be used to obtain expected logistic -normal binomial frequencies 

as follows. 

First, maximum likelihood estimates of the logistic -normal binomial distribution 

parameters (linear predictor, 77, and the parameter associated with the random effect 

component, y) (see section 3.4.2) are obtained using EGRET. 

Then, define n, r¡, y and y in MATHCAD 5.0+ as shown in Fig. 3.3. Note that n,17, y 

take single values while y take multiple values as number of frequency classes, 0 -9 

say, if the quadrat size, n, is 9. 

Thereafter, define the operational probability density function of logistic -normal 

binomial distribution function (3.3) (Collett, 1991) as in the Fig. 3.3 

P(Y=yn, rl,y)= 
ii2 Ì 

A 
n ) [exp(rl+yu)y 
y [1+exp(r7+-5,yu)]" 

20 

exp{-u2}du, (3.3) 



n =9 r! :=-1.046 y :=0.691 y =0,1..9 

20 

n 
2 

--20 

0.113 

0.207 

0.225 

0.187 

0.13 

0.077 

0.039 

0.016 

0.005 

9.85210 4 

Y 

(ex p(71 ) n! p exp(- u2) du 
n y!(11- y)! 

(1 + exp(r! +12.7 u)) 

Fig. 3.3 MATHCAD 'Windows' screen view for obtaining expected logistic -normal binomial 
probabilities 

The integral limits beyond the range ±20 do not make any difference in the 

computation of expected probabilities. Thus -coand coin the equation can be replaced 

as -20 and 20 respectively, as in the Fig. 3.3. 

After that press the ' =' sign. The outcome should appear as Fig. 3.3. The resulting 

column of values provides the expected probabilities for number of diseased plants per 

quadrat (0 to n) respectively. Finally, by multiplying these probabilities by the total 

number of quadrats, the corresponding expected quadrat frequencies can be obtained. 

When the logistic -normal binomial distribution is fitted to the observed data in Table 

3.2 using EGRET and MATHCAD 5.0 +, the expected frequencies given in Table 3.3 

are found. The estimate of 77 and the aggregation parameter y (see section 3.4.2) 

were -1.617 (SE= 0.0932) and 0.5989 (SE= 0.1180) respectively. From Table 3.3 and 

Fig. 3.4, it is very clear that expected frequencies from the logistic -normal binomial 

(LNB) distribution are much closer to observed frequencies than the expected 
binomial frequencies. The goodness -of -fit f is 0.10 with 3 degrees of freedom 

(P > 0.99), and this implies logistic -normal binomial distribution can give a far better 
description of the observed frequencies than can the binomial distribution. Frequency 
classes 5 -9 were pooled in applying the 2 goodness -of -fit between observed and 
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expected logistic -normal binomial frequencies. For the data in Table 3.2 there is 

hardly any improvement of logistic -normal binomial distribution over beta -binomial 

distribution in describing frequency distributions. Nevertheless, it should be noted that 

logistic- normal binomial distribution has more liberal mathematical properties (see 

section 3.4.2) than beta -binomial distribution (Anderson, 1988). 

Table 3.3 Observed and expected (binomial and logistic -normal binomial) frequencies for 
the tomato TSWV data reported by Snedecor and Cochran (1989). 

Number of 
diseased 

plants per 
quadrat 

Observed 
frequency 

Expected 
binomial 

frequency 

Expected 
LNB 

frequency 

0 36 26.45 36.00 
1 48 52.70 48.64 
2 38 46.67 37.76 
3 23 24.11 21.76 
4 10 8.00 10.24 
5 3 1.77 4.00 
6 1 0.25 1.28 
7 1 0.03 0.03 
8 0 0.00 0.00 
9 0 0.00 0.00 

Total 160 159.98 159.71 

O N 4 CO OD 

No. ofdiseased plants per 
quadrat 

Fig. 3.4 Frequency distribution of tomato plants infected by TSWV in 160 quadrats with 9 
plants per quadrat. Observed (Obs.) and expected frequencies for the binomial (Bin.) and 
Logistic- normal binomial (LNB) distributions are shown. Estimated parameters and goodness - 
of -fit test statistic are given in the text. 
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3.2 Fitting models to binomial data 

Suppose the observations of the binary response are made as 'success' and 'failures' for 

each individual in a quadrat size n. Then the probability of y (1,2,..,n) being a 

success (diseased) can be estimated using equation (3.1) given 7r. This is called the 

distribution of success. For this distribution of success, y is symmetric when r= 0.5, 

positively skewed when 2t < 0.5 and negatively skewed when Tr> 0.5. An important 

property of binomial distribution is that as n increases, the degree of asymmetry in the 

distribution decreases, even when Tr is close to 0 or 1. From the central limit theorem 

it can be shown that as n increases, the binomial distribution can be approximated by 

normal distribution. Thus an ordinary z -test (Steel and Torrie, 1980) can be performed 

to make inferences and comparisons about the success probabilities when n is large. 

The x2 test is also often applied to compare differences in success probabilities when 

the data is arranged in the form of contingency tables (Snedecor and Cochran, 1989). 

These techniques for analysing incidence data can be useful when the structure of the 

data is not particularly complicated. 

An alternative approach to analysing incidence data is based on the construction of a 

statistical model to describe the relationship between the observed response and 

explanatory variables. In other words, the objective of modelling is to derive a 

mathematical representation of the relationship between an observed response variable 

and a number explanatory variables, together with a measure of the inherent variability 

of any such relationships which might eventually helpful to understand certain 

systems. 

Suppose that for binary or binomial data, the response from the ith unit, i = 1,2..n, is a 

proportion k = y, /n where n; is the sample size for Ì`h unit and y, is the number of 
successes out of n, the Ph unit (If the data is binary n; = 1 and y, 0 or 1, i.e. 

either failure or success). Rather than directly modelling the dependence of E(y,) on 

explanatory variables, it is customary to explore how the success probability 
7r; = E(y; / n;) can be described by observed explanatory variables, x . where, 

j 1,2.. k . One approach to modelling such data is to use the model 

=ßo +ßxl,+...ßkxk( 
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and apply the method of least squares to obtain values of /30,/3 .../3 for which 

( 2 

¡ Yi - = r 1 l k -Qo -. ..Qkxk: ) 

(where = y; l ni) is minimised. 

2 

The first problem with this approach concerns the assumption made about the 

variance of Fri. Since y actually has a binomial distribution, Var(k ) = n (1- ) / n, , 

which varies with rc; (not a constant) even if the binomial denominator, n is constant 

(Collett, 1991). The constant variance is a requirement in the ordinary least squares 

analysis in order to 'pool' the variance estimates so that t -test and confidence intervals 

can be calculated (Cox and Snell, 1989). According to the literature this is not a 

serious problem if then-; lie in the range of 0.25 -0.75 (Snedecor and Cochran, 1989). 

One early approach to overcome this problem was to transform the data in such a way 

that the resulting data have a constant variance. A variance stabilising transformation 

often adopted was the arc sine or angular transformation (sin -' [Tc;) (Snedecor and 

Cochran, 1989). A better procedure which is now being adopted, appropriate whether 

or not n; are equal, is to use the method of weighted least squares to minimise the 

function 

2 

where the weights, w; are reciprocals of the variance of k given by 

w; = [7-c,(1- ;) / n;]-1 . An iterative scheme is adopted to obtain weighted parameter 

estimates. Starting with the initial estimates of the Tl = y; / n; and hence 

w;o = [ ko (1- k0) / n ]-1, the iteration is continued until the parameter estimates 

converge to ,ß, (j = 1, 2.. k) and the fitted probabilities converge to 7T; . In the literature 

this is referred to as the iteratively weighted least squares method, although it is 

equivalent to maximum likelihood estimation (Aitkin et al., 1989; Collett, 1991). 

The second problem is that since the data are not normally distributed, the elegant 

distribution theory associated with fitting linear models to normal data cannot be 
applied. When y;'s are not normally distributed, no method of estimation that is linear 

in the y ;'s will in general be fully efficient (Cox and Snell, 1989). 
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The third problem is that unless restrictions are imposed on ß3 the estimates of ß1 

may lie in the range (-00,00). Since the fitted probabilities are obtained from (3.4) 

there is no guarantee that the fitted values will lie in the interval (0,1) if no restrictions 
are imposed on ß..Then, the expression 71; as a linear combination would be 

inconsistent with the laws of probability. The simple and effective way of avoiding this 

difficulty is to use a transformation g(7r), the link function, that maps the unit interval 

onto the whole real line (-00,00). This remedy leads to instances of generalised linear 

models (Nelder and Wedderburn, 1972; McCullagh and Neider, 1983; 1989) in which 

systematic part is 

g(n-,)= rlr =ßo+/3;x1i+...ßkxk,;i=1,2..n. (3.5) 

The logistic, probit and complementary log -log are three transformations that are 

commonly used as link functions with binomial data. Of the three transformations, the 

logistic transformation is the most widely used. Cox and Snell (1989) compare some 

transformation methods and explain the usefulness of probit and logistic 

transformations over the angular transformation. According to them, when the 

probability is outside the range 0.1 -0.9, the finite limits on the angular transformation 

usually seriously restrict its usefulness. 

3.2.1 Fitting the linear logistic model 

For n binomial observations of the form = y, / n,, the linear logistic model, which is 

a generalised linear model for the dependence of 7r; on the values of the k 

explanatory variables, x xZ; ... xk;, is given by 

Therefore, 

logit( ir; ) = log[ K; / (1- 7-1,)]= r = ßo +131x1, +... 

71; = exp(q)/[1+exp(rJ)]. 

(3.6) 

Here the g(2r) is log[7r /(1 -7r)] which is also called logit or logistic transformation 

and log is the natural logarithm, base 2.71828.. 

The maximum likelihood estimates of the parameters ß are the values of the 

parameters that maximise the fitted log likelihood function, 
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Z(¡3)= rlog[n; /(1-7c)]+nlog(1-n-;). (3.7) 

The derivative of this log likelihood function with respect to is, 

al y; - n; zr; 

OT; -Tr;) 

Using the chain rule, the derivative with respect to /1 is 

al n y; -n . ; 

- '_, K; (1- ,; ) op; 

In the case of generalised linear models, it is usually express 
óßc 

as a product 
aß; 

Thus, 

OTC,. OK, a; oh; 

a/3; aq; aß dr7 
x. 
' 

d7r 
x.. 

a/3; ` 
77-r (1- Tri) 

For the linear logistic model, this may be expressed as, 

and in matrix notation, 

c7 / a¡3 =X' ( y - 71), 

(3.8) 

(3.9) 

where X is the model matrix of order n x p, y is the vector of y and ¡ is the vector 

of n; . Then the Fisher information for )6' is 

E 
/ 

l(1+0)1x;;x,. 
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-nyc,(1- Iri)xijx;r 

={ XT WX } jr (3.11) 

where W = diag{w, = nn; (1- Tr )} . The likelihood equation then amounts to equating 

the sufficient statistic, XTY, to its expectation as a function of ß. Given initial 

estimates /30, vectors 'it() and 770 are computed. Using these computed values an 

adjusted dependent variable, Z, is defined with components 

z = +Y; 
rI , 

n; dTr; 
(3.12) 

all quantities being computed at the initial estimate /30. Maximum likelihood estimates 

satisfy the equation (McCullagh and Nelder, 1989) 

XTWX/3 = XTWZ, 

which can be solved iteratively using standard least square methods. The revised 

estimate is 

= \XTWX)-1 XTWZ 

where all quantities appearing on the right are computed using the initial estimate. 

Once /3 has been obtained, the estimated value of the systematic component of the 

model is 

= No +Nlxli +...fikxk7, (3.13) 

which is also called the 'linear predictor'. Thus the fitted probabilities c; can be 

obtained as 

= exp(rJ;)/[1+exp(r)]. (3.14) 
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Under any given model, Ho, with fitted probabilities, 2z;, the likelihood can be 

obtained using (3.7). The maximum achievable log likelihood is attained at the point 

= y; l n;, which does not usually occur in the model space under Ho. The residual 

deviance is defined as twice the difference between the maximum achievable log 

likelihood and that attained under the fitted model. The deviance function is therefore 

D(y; 2l(i;y)-2lCir,y) (3.15) 

= {y,log(Y, /Y) +(n,_Y,)log ; , 
J}. 

n, - , 
where 5 = n; r . Since D(y; "ic) is asymptotically distributed as , where p is 

number of fitted parameters under Ho, D(y; nr) is used as a goodness -of -fit statistic 

for testing the adequacy of the fitted model. 

Table 3.4 shows the data presented by Bald (1937) for his 2 factor factorial 

experiment of 2 cultivars (Burwood Prize and Early Dwarf Red) and 2 irrigation 

methods (by overhead spray and by trenches). Part of the data has already been 

presented in Table 3.1. 

Table 3.4. Bald's data for his two factor factorial experiment of 2 cultivars and two 
irrigation methods 

Number of 
diseased 

plants per 
quadrat 

Cv. Burwood Prize Cv. Early Dwarf Red 
Overhead 

spray 
Trench Overhead 

spray 
Trench 

0 0 0 0 0 

1 0 0 0 0 

2 0 0 0 0 

3 0 0 2 0 

4 0 0 6 3 

5 0 0 13 3 

6 3 0 6 12 

7 7 6 7 12 
8 20 12 6 7 

9 10 22 0 3 

Total 40 40 40 40 

If a linear logistic model is considered, including both main effects and interaction 

effect, such a model can be written in subscript notation, for the observed probability 
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for the k`" quadrat of the i`" level of cultivar (A) and the j`" level of irrigation method 

(B), t,jk 

logit(7rijk) - ylijk = ¡I+ al +/3j +(a¡N (3.16) 

where i = 1, 2; j = 1, 2; k = 1, 2..40. The parameter ,u represents the overall mean, a; 

and /3. represent fixed main effects of cultivar and irrigation method, respectively, and 

(a/3) represents the interaction between cultivar and irrigation method. The residuals 

6¡;k are assumed to have mean 0 and a constant variance. Thus 3.16 may be written 

A 

rl;j = ,u+ â +16.,+(a13),./ . (3.17) 

GLIM can be implemented to fit the linear logistic model. The directives $YVAR 

followed by the response variable identifier, $ERR B followed by the binomial 

denominator identifier and $FIT followed by the terms to be included in the model, fit 

the target linear logistic model in GLIM. 

If EGRET is implemented, using DEF module, first the data file (which should be in 

ASCII form [EGRET, 1990]) should be specified. Then the format of the data file 

should be defined as explained in the EGRET user guide. After that variables in the 

data file should be defined. Finally, default analysis model and associated variables 

such as outcome variable and group size (binomial denominator) variables should be 

specified. When specifying the default analysis model, for instance, 'logistic regression' 

should be selected if the required model to be fitted is a linear logistic model. Then in 

the PECAN module, selecting 'auXcmd', factors (if there are any) can be specified. 

After that, selecting 'New' and specifying terms (variables or factors) to be included in 

the model, followed by selecting the 'Fit' fits the intended model (User guide may be 

consulted for details). 

Table 3.5 shows the resulting deviances and corresponding degrees of freedom with 

different linear logistic models (with different components included in the model) for 

the data in the Table 3.4 using GLIM. (EGRET also produces exactly same results). 

The deviance difference (A deviance) (Table 3.5) which also has asymptotic x2 

distribution can be used as a guideline whether to include a particular component into 

the model. 
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Table 3.5 Analysis of deviance table for Bald's data 

Model Deviance d.f. A deviance A 
d.f. 

mean only 294.60 159 
A only 181.37 158 113.23 1 

B only 280.61 158 13.99 1 

A +B 166.24 157 15.10 (after A) 1 

114.37 (after B) 1 

A *B 166.01 156 0.23 1 

The change in the deviance on adding the interaction term into the model is 0.23 on 1 

degree of freedom, and P(x2 > 0.23) with 1 degree of freedom is 0.632, providing no 

evidence for the interaction effect. The deviances for main effects were significant 

(P < 0.01) and therefore we can conclude that an adequate model comprises both 

main effects only. The residual deviance of 166.24 with 157 degrees of freedom 

(P = 0.29) also indicates that the fitted model adequately describe the data and that 

the linear logistic model has provided the basis for valid tests of significance. 

If SAS is implemented, procedures PROC LOGISTIC, PROC PROBIT with the 

option D= LOGISTIC or PROC CATMOD can be used to fit linear logistic models. 

For instance, Table 3.6 shows resulting log likelihoods for possible models when 

PROC PROBIT with the option D= LOGISTIC is executed for the data in the Table 

3.4. Clearly, in the Table 3.6, the A deviance values, on which the 'significance tests' 

are based, closely resemble to those in Table 3.5. 

Table 3.6 Analysis of log likelihood table for Bald's data 

Model Log 
likelihood 

A deviance A 
d.f. 

A only -670.844 
B only -720.460 
A +B -663.276 15.14 (after A) 1 

114.37 (after B) 1 

A *B -663.163 0.23 1 
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3.2.2 Parameterisation in the linear logistic model 

By analogy with the ANOVA, a linear model for r), can be formulated as 

where 

=,u+ a; +/3 +(a/p);./. 

,u = intercept 

a; = effect of i117 level of A 

= effect of j`'' level of B 

(a13) = interaction of i ̀ `' level of A and 11h level of B 

with symmetric constraints, 

ar ( a13); _ L(a13)ii = 0 . 

But GLIM uses the asymmetric "corner- point" constraints 

ai=O,A=O,(afl)ri=0 d(a/j)i =0 d. 

Thus the parameters are 

j=1 j=2 
i=1 u 11+/32 

i=2 ,u + a2 /I+ a2 +,ß2 + ( 03)22 

Correspondingly, in the GLIM output, the parameters written as 

j=1 j=2 
i=1 1 B(2) 

i=2 A(2) A(2).B(2). 

For instance after fitting the full model for the data in Table 3.3 GLIM output is as 

follows. 



estimate s.e. parameter 

1 1.998 0.1625 1 

2 -1.451 0.1959 A(2) 

3 0.6414 0.2664 B(2) 

4 -0.1477 0.3120 A(2).B(2) 

Thus the estimates of the equation (3.17) may be obtained as, 

x721 = 1+A(2) 

7112 =1+B(2) 

122 =1 + A(2) + B(2) + A(2). B(2) 

of which values (subjected to some rounding errors) are given in Table 3.7. The 

parameters and the standard errors in the GLIM output may be explained as follows. 

parameter(GLIM) 

1 

A(2) 

B(2) 

A(2).B(2) 

actual estimate 

7711 

7721 - 7111 

7712 7711 

7722Y1 ( 7%217 

( -\'/12 - '/11 

7711) 

) 7 
'/11 

actual S.E. 

s.e.(r711) 

s.e.(7121 - 7711) 

s.e.(7712 -7711) 
(( S.e.[r722 -\%21 - 7711) 

(7712 - "!11) 7711] 

Therefore significant tests for the above estimates can be made directly from the 
GLIM output. For instance test for 7t1 - 7t21 is equivalent to, 

7121-7111 A(2) 
s.e.[A(2)]' 

and numerically above î statistic is -7.41 and it gives (P < 0.001) significance. Note 
that î is compared with the standard normal distribution (GLIM, 1985; Collett, 
1991). However, confidence intervals for each r7;ß and correspondingly TCy cannot be 
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derived from the above GLIM output. Nevertheless GLIM directives $EXTRACT 

%VL and $PRINT %LP %VL produce the estimates and variances of estimates for 
each 77;,3 . The standard error for each î can be obtained by taking the square root of 

each variance. For the data in Table 3.4, after fitting the model with all main effects 
and interactions, and then above directives, resulted ;j and corresponding standard 

errors are given shown in Table 3.7. 

Table 3.7 Parameter estimates for the linear logistic model (3.17) 

cultivar Irr. Method S.E. 

Burwood 
Prize 

Overhead 
spray 

1.998 0.1623 

Burwood Trenches 2.639 0.2112 
Prize 

Early Dwarf 
Red 

Overhead 
spray 

0.5465 0.1095 

Early Dwarf Trenches 1.040 0.1200 
Red 

These estimates could be used to derive confidence intervals for actual proportions as 

follows. 

The confidence interval for 77,, is 

±1.96xs.e.rhi 

where s. e. are from Table 3.7. 

From equation 3.14, 

Therefore the confidence interval for z is 

e7'-1.96xs.e.î7 e?7'+1.96xs.e.î7, 
< L 

1+eik-I.96xs.e.î7j 
< 

7;1 
1+erhj+1.96xs.e.î7 
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3.3 Replication in epidemiological studies 

In an experimental design, to test all main effects and interactions it is necessary to 

have replicates. These replicates, other than providing the basis for an estimate of 

error, generate the residual degrees of freedom necessary to test all main effects and 

interactions. Moreover, random allocation of treatments into replicates makes this 

estimate of error unbiased. In ordinary ANOVA, the errors are assumed to be 

normally distributed with mean zero and a constant variance which does not depend 

on the treatment. This leads to an estimate of a common variance and it is estimated 

as the unexplained variability of an experiment. Then all effects are tested against the 

residual, especially when the levels of the factors are fixed, not random. In contrast, if 

the observations are binary, the variance is related to the mean and thus the residual is 

not simply the unbiased estimate of unexplained variability. This makes any 

comparison against residual invalid. Therefore, when the data are binary, the 

appropriate testing procedure is to compare deviance change with the corresponding 

change of degrees of freedom as a guideline for whether to include a particular 

component into the model. The residual deviance is then used to test the adequacy of 

the fitted model. 

Epidemiological studies in general do not have proper experimental designs. Analysis 

of disease incidence usually start with distribution fittings. In the distribution fitting, 

usually a field plot of a particular treatment combination is divided in to subplots and 

distributions are fitted to the subplot frequencies of number of diseased plants per 

subplot (quadrat). Since these subplots do not have a random allocation they do not 

provide a basis for an estimate of error even if one assumes normal distribution for the 

response variate. 

When the data are binary, although the subplots do not provide any basis for test for 

main effects and interactions (between plot analysis), they can be used as a basis for 

within plot (intra plot) analysis. Thus in statistical analysis of the epidemiological 

studies these subplots provide the necessary degrees of freedom for testing spatial 

randomness. A good illustration of this aspect is given in Anderson (1988). 

3.4 Modelling overdispersion in disease incidence data 

When overdispersion is present, the variance of the response Y exceeds the nominal 

variance, nn(1- ir) . Thus the actual variance can no longer be obtained from 
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nrc(1- 2) for a given ,r (mean). If a linear logistic model is fitted to overdispersed 

data, the residual deviance exceeds its expected value (n p), where n is the number of 

binomial observations and p is the number of parameters fitted in the model. If the 

residual deviance, after fitting the full model, exceeds its expected value, the 

assumption of binomial distribution for the responses is no longer valid. Then the data 

are said to exhibit overdispersion. Large residual deviance may occur due to number 

of reasons (Collett, 1991) such as outliers, inadequate terms in the model, 

inappropriate relationship between the response and the independent variable(s) (for 

instance linear relationship might have been assumed for the model when the 

relationship is non linear), inappropriate link function (for instance logit link function 

may not be appropriate). If the large residual deviance occurs even after eliminating 

all potential causes then the data are said to exhibit overdispersion. 

Example data 

Munkvold et al. (1993) reported these data from one of their experiments. This 

experiment consisted of disease assessments made in eight different sites over three 

different years (1989 -1991). Altogether there were 22 disease assessments (22 disease 

incidence maps) recorded by means of presence or absence of the disease eutypa 

dieback on grapevines. Table 3.8 shows data extracted from this experiment for three 

locations (Oak Knoll -SB, Carneros-Ch and Delta -Cb) in 1990 (three field maps). In 

the process of extracting, each field was divided in to quadrats of 9 plants (3 rows 

consisting 3 plants per row) and number of diseased plants were recorded for each 

quadrat. A single layer of plants along the border of the field was omitted when the 

field map was divided into quadrats to accommodate rest of the plants fitted into 

quadrats of nine plants. Eventually there were 144, 256 and 304 quadrats for sites 

Oak Knoll -SB, Carneros-Ch and Delta -Cb respectively. Thus this layout may be 

described as a single factor experiment with 3 levels and, the levels one, two and three 

consisting sample units 144, 256 and 304 respectively. 

When the model 

logit(70 = r/; =u+a; (3.18) 

where 7r, is the actual probability for the Ì`h location, ,u is the overall mean and a, 

the 11h location effect, is fitted to the data in the Table 3.8 using GLIM, the resulting 

deviance is 1199.5 with 701 degrees of freedom. Parameter estimates and their 
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standard errors associated with the model (3.18) (in GLIM convention) are given in 

the Table 3.9. The resulting deviance is much greater than the expected x2 with 701 

degrees of freedom (P <0.001). Since the fitted model is the saturated model, the 

large residual deviance compared to its degrees of freedom is a clear indication that 

the data are overdispersed. 

Table 3.8. Disease frequency for the data extracted from the field maps of three locations for 
the year 1990, presented by Munkvold et al. (1993) . 

Number of 
diseased 

plants per 
quadrat 

Observed frequency 

Oak Knoll -SB Carneros-Ch Delta -Cb 

0 0 29 15 

1 3 54 49 
2 4 58 75 
3 17 45 69 
4 21 33 51 

5 27 21 23 
6 32 12 14 

7 25 3 4 
8 10 1 2 

9 5 0 2 

Total 144 256 304 

Table 3.9 Parameter estimates for the linear logistic model (3.18) 

Parameter Estimate S.E. 
11 0.3907 0.0566 
site 2 (Carneros -Ch) -1.340 0.0732 
site 3 (Delta -Cb) -1.152 0.0699 

As explained in section 3.1, this identification of overdispersion in the data may 

descriptively explained by distribution fitting. For instance, for the site Carneros-Ch, 

the observed and the expected frequencies of binomial and beta -binomial and logistic - 

normal binomial are shown in Fig. 3.5. From Fig. 3.5 it is clear that the expected beta - 

binomial and the logistic- normal binomial frequencies are closer to the observed 

frequencies than the expected binomial frequencies, indicating aggregation. The 

goodness -of -fit j tests (Fig. 3.5) also show that the beta -binomial and the logistic - 

normal binomial distributions provide far better fits to observed frequencies than the 

binomial distribution. 
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Fig. 3.5. Frequency distributions to Carneros -Ch site disease incidence. (a) Observed frequency; 
(b) Observed and expected binomial frequencies. Observed Expected; (c) Observed and 
expected beta- binomial frequency Observed Expected; (d) Observed and expected logistic - 
normal binomial frequency Observed Expected. 
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3.4.1 Fitting the beta -binomial model 

The beta -binomial model is a well known member of the general class of conditional 

binomials and sometimes categorised under random compounding models. Williams 

(1975) first demonstrated the modelling of overdispersion using the beta -binomial 

model. Crowder (1978) illustrated the use of the beta -binomial model for a factorial 

layout in which parameters are estimated by maximum likelihood. 

For y1 diseased plants among n plants in the th quadrat of the Ph treatment group, 

where 1 <_ j <_ m; and 1 i <_ t, equation (3.3) can be generalised as (Smith, 1983), 

(Y; =y;)= 

y-1 nu-yu-1 

n p +r9; II (1- p; + rq) 
nj r=0 r=0 

J 
n;.-1 

n (1+r6) 
r=0 

The mean and the variance of y, may be written as 

E (Yz ) = nrP 

(3.19) 

(3.20) 

Var (y)= nP(1- Pr)z,. (3.21) 

where Ti =1/ 1/(1+a1 + b;) and a and b are as in section 3.1.2. 

In equation (3.21), z,. is sometimes called the 'heterogeneity factor', and it depends not 

only n, but a,, and b, as well. This implies that the beta -binomial model can take 

account of different amounts of heterogeneity that may occur with different 

treatments. But if z is constant over different treatments (3.21) becomes 

Var (y)=nP(1-Pr)z (3.22) 

If there is a reason to believe that values of z near zero or unity are unlikely, the 

density function of the beta distribution must be unimodal, and zero at both zero and 

unity. Then, a; > 1 and b,> 1, and so the variance of z cannot exceed p,(1- p) l 3. 

This could be rather restrictive (Collett, 1991). 
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Ignoring the constants involving only the observations, the log likelihood of (3.19) 

may be written as (Williams, 1975) 

nu-yu-1 nu-1 
L= E log(p; +rB; ) + log(1- p; -r0;) - log(l +r8; ) . (3.23) 

i=lj=1 r=0 r=0 r=0 

EGRET can easily be implemented to obtain the maximum likelihood estimates of the 

beta -binomial model parameters. A GLIM macro published by Brooks (1984) can also 

be used if the model- fitting is done using GLIM, but this produces only approximate 

estimates. Table 3.10 shows the results of six different beta -binomial models to the 

data in Table 3.8 using EGRET. The equivalent models for each of the fits in Table 

3.10 are shown in Table 3.11. Table 3.12 uses likelihood ratio statistics based on 

these fits (Table 3.10) to analyse the data. 

Table 3.10 Six fits to the Munkvold et aL data, using the beta -binomial model with and 
without random effects 

Model Fixed effect 
parameters 

Random effect 
parameters 

Deviance d.f 

A %GM 1586.79 703 
B %GM, SITE 1199.56 701 
C %GM %SCL 1335.81 702 
D %GM,SITE %SCL 1116.97 700 
E %GM %SCL,SITE 1301.20 700 
F %GM,SITE %SCL,SITE 1114.59 698 

Table 3.8 Equivalent models specified in Table 3.7 

Model Fixed effect Random 
component effect 

component 
A p 
B p+ a; 
C p 9 
D ,u + a; 9 
E p B,. 

F ,u+ a, 9,. 

In the Table 3.10, %GM refers to overall mean, ,u, and %SCL refers to the 

aggregation parameter, 9. This is the notation adopted by EGRET in model fitting. 
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Model A is fitting a common mean (ignoring the site effect and aggregation) to all the 

data. Model B is fitting common mean including site effect, a, ignoring aggregation. 

Model C is fitting common mean and common B for all the data. Model D is fitting 

common mean and site effect including an aggregation parameter (common). Model E 

is fitting common mean and (different) aggregation parameters for each level of the 

site factor. Model F is fitting common mean, site effect and different aggregation 

parameters to three different sites. 

In Table 3.12, test 1 is the traditional test for site (treatment) effect when there is no 

extra- binomial variation, and it is seen that disease incidence varies between sites. 

Test 2 is the test for extra -binomial variation, given that there is site effect. The results 

of test 2 indicate that there is an excess variation. In this test, the testing hypothesis is 

Ho: B= 0 versus H: 9> 0. Since O is not allowed to be negative, the test compares the 

likelihood ratio statistic against the square of a one -tailed normal distribution, rather 

than a x2 as is usually done, i.e. test 2 does not necessarily have 1 d.f since likelihood 

ratio statistic not necessarily have x2 distribution. Test 3 tests for site effect again, but 

this time accounting for the presence of excess variation. From the results of this test, 

it is clear that the site effect is still substantial. Test 4 goes on to test whether excess 

variation differs across three different sites, given that the site effect is present. 

According to the results, there is no evidence to say that excess variation differs 

between sites. As in the case with test 2, test 4 also does not necessarily have 2 d.f. 

Test 5 again tests for treatment effect, but this time accounting for different levels of 

excess variation in three sites. This test also suggests that there is a site effect. Thus 

the most appropriate model for the data seems to be Model D. Parameter estimates 

and their standard errors associated with Model D are given in Table 3.13. The 

parameterisation used in EGRET is same as the parameterisation used in GUM. 

The estimates in the Table (3.13), except B, are very similar to those in Table 3.9, 

without allowing for overdispersion. But the standard errors have been inflated, in this 

particular case by nearly 23 %. This in turn means that quantities derived from these 

estimates, such as fitted probabilities, will have larger standard errors than they would 

have had in the absence of overdispersion. The corresponding confidence intervals for 

these quantities will then be wider than they would have been if no adjustment were 

made for overdispersion. 

It is important to note that the deviance of the saturated model is still much larger 

than the residual degrees freedom (698). This is an apparent indication that the data 
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set could still be fit better. In addition, though the beta -binomial model is an attractive 

option from a theoretical point of view compared to standard linear logistic model, in 

practice it seems there is no reason to rely on a specific form of overdispersion. 

Table 3.12 Analysis of the fits of the Munkvold et al. (1993) data reported in Table 3.8 

Test Compare 
s models 

Likelihood 
ratio 

statistic 

d.f. P- 
value 

1. Test for site effect ignoring A vs. B 387.23 2 <0.001 
excess variation 

2. Test for excess variation B vs. D 82.59 1 <0.001 
3. Test for site effect in the C vs. D 218.84 2 <0.001 

presence excess variation 
4. Test for different levels excess D vs. F 2.38 2 0.304 

variation in the sites 
5. Test for site effect in the E vs. F 186.61 2 <0.001 

presence of differing levels of 
excess variation 

Table 3.13 Parameter estimates for the beta -binomial model (D) 

Parameter Estimate S.E. 
/1 0.3900 0.0696 
site 2 (Carneros -Ch) -1.346 0.0901 
site 3 (Delta -Cb) -1.146 0.0859 
e 0.0688 0.0102 

3.4.2 Fitting the logistic -normal binomial model 

Luning, Sheridan, Ytterborn and Gullberg (1966) suggested an alternative to beta - 

binomial in which they assumed the variability in the response probability follows a 

normal distribution rather than beta distribution. Then the response probability is not 

restricted to the (0,1) range. Since in practice the response probability could not occur 

outside (0,1) range, their proposed model hardly became known. Pierce and Sands 

(1975) adjusted this procedure, incorporating the assumption that the variability in the 

logit of the response probability rather than response probability itself, varies normally 

with the expectation r = ,ß1x . Then the variability in the response probability has 

a logistic- normal distribution, which is equivalent to the beta -distribution in the beta - 

binomial model. When the logistic- normal distribution is compounded with the 

binomial distribution, the response probability has a logit scale and the resulting 
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distribution is logistic- normal binomial distribution. The logistic- normal binomial 

distribution does not violate the restriction imposed by the fact that probabilities must 

lie in the (0,1) range (Aitchison and Shen, 1980). The rationale behind logistic -normal 
binomial model is that if the fixed effects rz, exert their influence linearly on the logit 

scale, it is reasonable to assume that the random effect z; would also act similarly. 

The logistic -normal binomial model may be formulated as 

logit(70 = + yz;, (3.24) 

where Tc; is the true response probability, i.e. the expected response probability and 

the variability in the response probability together, r), _ EAxj; , y is the coefficient of 

the random term z, . The z; is the standardised variable (zero mean and unit variance) 

for the random effect (variability in the response probability) and thus y is the 

standard deviation of the random effect variable. 

Thus 

E[logit ( n; )] = 

and 

Var[logit(ir, .)]= yZ. 

The likelihood function of the logistic -normal binomial model may be written as 

LÚßY,z;)=11(' je (1-r;)nt-Yt 

(ni) 
[1+e p(h+nn,)]n, 

(3.25) 

Likelihood estimations of the models that involve random variables with specified 

distributions need integration of the likelihood function with respect to the distribution 

of these variables. The resulting function is a marginal likelihood function, 

) [exp( r; + ni )Yi exp[-z; / 2] 
L Uj Y) = II 1 v, n, ; [1+exp(rI; +Yz)] (27r) 
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This function involves only /3 and y, and not z as in (3.25) and maximum likelihood 

estimates are the estimates of these parameters that maximise this likelihood function. 

(Note that in equation (3.26) ir is the mathematical constant 3.141..). 

By taking u = we may write 

dz = 

Then equation (3.26) becomes 

n12 n 
°° 

(( [ exp (77; + ru; Yi 
2 L(ß, y) = II 1 \Y; / 

P( 7; 2711i Ani eXp(-u )dut [1+ex + (3.27) 

This integral can only be integrated numerically. The technique EGRET employs for 

numerical integration is use of Gauss -Hermite quadrature formula: 

ff (u) eXp(-u2)du j , c;f (s; ), 

where values of c, and s, are given in standard tables (Abramowitz and Stegun, 

1972). Pierce and Sands (1975) reported m =10 is acceptable but recommended that 
m to be approximately equal to 20 for assured precision. However, using c and s 

equation (3.27) can be written as a summation and thus equation (3.27) may be 

written as (Collett, 1991) 

Y; 

L(ßy)=z'ni2n;lc [eXp(1;+ys 2)] 
' Y; Ji= ' [1+exp(r; +ys)]nt 

(3.28) 

In equation (3.28) 7r is the mathematical constant 3.141.. The values of fi and 

which maximise the equation (3.28) can then be determined numerically. 

EGRET can be used to fit logistic- normal binomial models. After fitting a model, the 

deviance for the model can be computed and the deviance difference from two nested 

models with random effects will have an approximate j distribution. This can be 

used to test the significance of the nesting component in the usual way. But the 
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deviance difference of two models, one with a systematic component and a random 

effect and the other with the same systematic component alone, can not be used to 

test for the excess variation as explained in the section 3.4.1. The appropriate testing 
procedure was also discussed in the section 3.4.1. 

Table 3.14 shows the results of fitting six different logistic -normal binomial models (in 

EGRET notation) to the data in Table 3.8, using EGRET. The description of the 

models and model fitting procedures are exactly the same as for fitting beta -binomial 

models. Table 3.15 shows the results of the analysis of the possible likelihood ratio 

tests. 

Table 3.14 Six fits to the Munkvold et al. data, using the logistic -normal binomial model with 
and without random effects 

Mo 
del 

Fixed effect 
parameters 

Random effect 
parameters 

Deviance d.f 

A %GM 1586.79 703 
B %GM,SITE 1199.56 701 
C %GM %SCL 1333.20 702 
D %GM,SITE %SCL 1117.02 700 
E %GM %SCL,SITE 1277.56 700 
F %GM,SITE %SCL,SITE 1113.84 698 

Table 3.15 Analysis of the fits of the Munkvold et aG data reported in Table 3.8 

Test Compares 
models 

Likelihood 
ratio 

statistic 

d.f. P -value 

1. Test for site effect 
ignoring excess variation 

C vs. D 387.23 2 <0.001 

2. Test for excess variation B vs. D 82.54 1 <0.001 
3. Test for site effect in the 

presence of excess 
variation 

C vs. D 216.18 2 <0.001 

4. Test for different levels 
excess variation in the 
sites 

D vs. F 3.18 2 <0.204 

5. Test for site effect in the 
presence of differing 
levels of excess variation 

E vs. F 163.72 2 <0.001 
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According to Table 3.15, the site effect is significant in the presence of random effect 

but there is no evidence for different random effects over different sites. It is 

important to note that the conclusions made using this method are the same as the 

conclusions made when the data were analysed using the beta -binomial model. The 

parameter estimates and their standard errors, obtained for the best fit (Model D) 

using EGRET are shown in Table 3.16. 

Table 3.16. Parameter estimates for the logistic -normal binomial model (D) 

Parameter Estimate S.E. 
ki 0.4204 0.0762 
site 2 (Carneros -Ch) -1.442 0.0982 
site 3 (Delta -Cb) -1.237 0.0940 
Y 0.5804 0.0453 

The estimates and standard errors in Table 3.16 can be used to test the difference 

between disease intensities of three different sites. However, since little is known 

about the properties of the parameter estimates of the logistic -normal binomial model 

it would be prudent to use percentage points of t- distribution rather than the standard 

normal distribution in performing such tests. 

In comparison with Table 3.13, standard errors produced with logistic -normal 

binomial model are larger than those produced with beta -binomial model. 

According to the Table 3.14 the residual deviance of the most satisfactory model is 

1117.02 with 700 degrees of freedom. The deviance is much larger than expected 

value, the residual degrees of freedom. Even after fitting the saturated model (Fit F) 

the residual deviance is still larger than its expected value. The distribution of the 

residual deviance for a logistic- normal binomial model is not known (Collett, 1991). 

Thus the residual deviance does not necessarily have a 2 distribution. Therefore the 

deviance of the satisfactory model need not be approximately equal to its degrees of 

freedom. Hence, after fitting a logistic -normal binomial model it is not possible to 

evaluate whether there is any additional source of overdispersion in the data. In other 

words, there is no proper goodness -of -fit test for the model. 
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3.4.3 Fitting overdispersed data using Williams procedures 

3.4.3.1 Williams' Model II procedure 

Williams (1982) suggested this method of taking extra -binomial variability into 

account in modelling binomial data. To allow for extra -binomial variation he 
introduced an unobserved continuous random variable 9; independently distributed 

on (0,1) with E(9z) _ n Var (9;) _ qn (1- n;), and assumed that, conditional on 9; , 

y; is distributed binomially with (n., 9; ), i.e., 

and 

Thus unconditionally, 

and 

Therefore 

E(Y,l 0,)=n9; 

Var (y1 Si) - nA(1- 9;) 

E(y) = E{E(Y,l = E(n1191) = nr 

Var (y) = E{Var(y 9;)} +Var {E(y;I 9;)} 

= E{n 9;(1- 9;)} +Var(n9;) 

=n,71;(1- 70[1- 0]+n,2 074'(1- n;). 

(3.29) 

Var (y;)=nnr(1-nr.)[1+(n,-1)0]. (3.30) 

Here 0) is an unknown scale parameter. The equation (3.30) is the Model II of 
Williams (1982). In equation (3.30) the quantity [1+ (n; -1) 0] is referred to as the 

heterogeneity factor. If equation (3.30) is written in the form 

Var (y;)=n;n-;(1-7r;)c4 (3.31) 

where o =1 + (n; -1) 0, then a4, the heterogeneity factor, depends only on no the 

binomial denominator. Equation (3.31) is equivalent to equation (3.21) except that o 
does not take account of possible variable response probabilities between different 

treatments and thus is exactly equivalent to equation (3.22). In equation (3.30), if 

0= 0, i.e. in the absence of random variation in the response probabilities, the 

46 



variance of y; is exactly the binomial variance. Maximum likelihood cannot be used 

for parameter estimation because the distribution of the y; is not fully specified, but if 

0 is known the relationship between the expectation and variance of y; allows the 

definition of a quasi -likelihood (Wedderburn, 1974) which is maximised with respect 

to the parameters ß by the iteratively weighted least square equations 

XTWVXß=XTWVY, (3.32) 

where W =diag (w; ), V = diag (v;) which is [n; n-; (1- 7c;) ] and all quantities are 

computed using the initial estimates. Since 0 is not usually known, Williams (1982) 

suggested the estimate of 0 to be obtained by equating the value of Pearson's X2 

statistic for the model to its approximate expected value. 

For n binomial observations the X2 is given by 

X2 =n (Y; -n;k)2 +[(n; -Yr)-(1-c; )ni ]2 

i_1 ; 
z 

n (Y; -n,r) 
-'-'n;;(1-r) 

If the observations have associated weights w;, X2 is then given by 

n w; (Y; -n;;) -'-' n;k(1-;sr;) 

and the approximate expected value of this statistic is 

, lw;(1-wvd;){1+0(n; -1)) (3.33) 

where v; = n; p; (1- p;) and d; is the it' diagonal element of the variance -covariance 

matrix of the linear predictor, ri = -;0, xi, (i.e. p x p matrix where p is the number 

of parameters). Thus to obtain 0, X2 should be obtained first. But X2 depends on 0. 

Therefore an iterative procedure is required to estimate 0. 
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In the iteration procedure, first X2 is estimated at w; =1 for the full model. Then 

equation (3.33) becomes 

E. (1- v;d; ){1 + -1)} 

=E {1-v4; +(1-v;d;)[0(n; -1)]} 

vd; +(b(n; -1)-v;d;n;0+v;d0} 

=I{1-v;d; +O[n; -1-v;d;(n; -1)]} 

=n- p+ {(n; -1)(1-v;d;)}. 

Therefore the initial estimate of 0 is, 

{X2 -(n- p)} I {(n; -1)(1- v;d; )} ' 

from which the initial estimates of the weights are obtained as 

w -1)k]'. 

Then the model is refitted using weights as w.0 and new X2 is calculated. Then the 

new 0(= 0,) becomes 

-;01= 
{w; (n; -1)(1- w;v;d; )} 

[X2 -Ir{w1(1-w;v;d;)}] 

If X2 still remain large relative to its degrees of freedom (n p) an additional cycle of 
this iterative procedure is carried out and this iteration should be continued until X2 

becomes very close to its degrees of freedom. 

In the Williams' Model II procedure, the iterative scheme forces a fit and thus the 

Pearson X2 statistic is forced down to be close to the residual degrees freedom. 

Hence, the residual deviance cannot be used as a measure of the extent to which the 

model that incorporates overdispersion fits the observed data. Instead, diagnostics for 
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model checking have to be adopted (Collett, 1991). One might argue that 0 is 

overestimated if some of the overdispersion occurs for other reasons such as 

unmeasured covariates. It is true that some believe (as noted in EGRET, 1990) that 
variability in the response probability is may be due to unmeasured covariates and that 
if they could be measured, they would provide enough information to account for the 
differences between similarly treated experimental units. But even if only most 
important variables were taken into account, there would quickly be more variables 

than observations. If the overdispersion problem is seen in this perspective, the 
Williams' Model II procedure may be a good solution. The model is appealing since it 

scales up the variance of the binomial variate without altering the mean. However, the 
Williams' Model II procedure is not applicable for binary (where i = 1) data. One 

other problem with Williams' Model II procedure is that it does not produce an 

estimate for the standard error of . Moore (1986) suggested a method to obtain an 

estimate for this standard error, but one could easily assume that if it is necessary to 
estimate 0, it is obviously different from zero. 

Williams (1982) gives a GLIM listing which can implement this procedure. After 

fitting the full model (all main effects and interactions) in the usual way, a GLIM 

listing in the form of a macro is activated by the directive $USE followed by the 

identifier of the macro. This results a residual deviance followed by quasi -likelihood 

estimates for the saturated model. Then by eliminating terms from the model, the 

residual deviance of reduced model can be obtained. Two nested models can then be 

compared by examining the change in the deviance with the change in the degrees of 
freedom using a j test. The GLIM macro which implements the Williams' Model II 

procedure is given in Collett (1991). 

When the Williams' Model II procedure is used to analyse the data in Table 3.8, after 
fitting the full model (3.18), 0 was found to be 0.0665. The resulting deviances for 

different models using this value for are given in the Table 3.17. 

Table 3.17 Deviances on fitting weighted linear logistic models to the data in Table 3.8 

Terms fitted in 

the model 
Deviance d.f. A deviance A 

d.f. 

,u+ a, 
ki 

782.88 
1035.6 

701 
703 

- 

252.7 
- 

2 
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The deviance after fitting full model, in this case the model including a site effect, is 

quite close to its degrees of freedom, as it must be. Indeed, the only reason for the 

difference observed is that the iterative scheme for estimating 0 is continued until 

Pearson's X2 statistic, rather than the deviance, is close to its degrees of freedom. 

The increment in deviance on removing the term corresponding to the main effect of 

site is 252.7 on 1 degrees of freedom (P <0.001). This suggests different disease 

incidence in three different sites. Parameter estimates and their standard errors shown 

in Table 3.18 can be used to compare disease incidence between the three sites. 

Table 3.18 Parameter estimates and standard errors for the model (3.18) using Williams' 
Model II procedure 

Parameter Estimate S.E. 
,u 0.3907 0.0701 
site 2 (Carneros -Ch) -1.340 0.0906 
site 3 (Delta -Cb) -1.152 0.0865 

The estimates in the Table (3.18) also are very similar to those in Table 3.9, without 

allowing for overdispersion. But the standard errors have been inflated. These 

standard errors are larger than those obtained by the beta -binomial method (Table 

3.13) but smaller than those obtained by the logistic -normal binomial model (Table 

3.16). However, in most situations, Williams procedures produces larger standard 

errors compared to all other procedures Collett (1991). 

3.4.3.2 Williams' Model II as a generalisation of Finney's procedure 

This general method of adjusting the analysis to take account of overdispersion was 

first proposed by Finney (Finney, 1947; 1971). If Y given r has a binomial 

distribution, and 71- has a distribution with mean p and variance o2, then for n >1, 

E(Y)= E[E(YI7r)] = nE(n-)= np 

Var (Y) = Var[E(YI n-)]+ E[Var (Y170] 

= n2oz +nE[n-(1- 7r)] 

=n2az+n[p-(p2+a2)] 

= np(1- p)+ n(n -1)oz . 
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The equation (3.34) clearly shows the effect of varying 71. is to increase the variance 
of y (more than the binomial variance), leading to large residual deviances for models 
which would fit well if the random variation were correctly specified. When n, = n for 

all i, o 2, the heterogeneity factor is an unknown constant. Then the expected value of 
Pearson's X2 statistic for the model that includes all main effects and interactions (full 
model) can be approximated by (n- p) o2 (McCullagh and Neider, 1989). The 

parameter o2 may therefore be estimated by X2 I (n - p), where p is the number of 
parameters and an iterative estimation procedure, which was used in the Williams' 

Model II procedure, is no longer required. Thus Williams' Model II procedure is a 

generalisation of Finney's procedure. 

If linear logistic models are fitted in the usual manner, two nested models can be 

compared by examining the ratio of the difference in deviances divided by the change 

in the degrees of freedom to the mean deviance (which is the residual deviance 

divided by its degrees of freedom) for the full model. This quantity has F distribution 

and is also independent of o-2. So the models can be compared using an F test as in 

ANOVA for continuous response variables. Thus an analysis of deviance table can be 

formed. 

For the data in Table 3.8 the deviances for fitting possible linear logistic models using 

GLIM are given in Table 3.19. Table 3.20 is the analysis of deviance table that can be 

formed Table 3.19. 

Table 3.19 Deviances for the possible linear logistic models for the data in Table 3.8 

Terms fitted in the model Deviance d.f. 
p 
,u+ a, 

1586.8 
1199.5 

703 
701 

Table 3.20 Analysis of deviance table obtained from the Table 3.13 

Source of 
variation 

d.f. Deviance Mean 
deviance 

F -ratio 

Site 2 387.2 193.60 1.13.22 

Residual 701 1199.5 1.71 

Total 703 1586.8 
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The observed value of F- statistic for the site effect is significant (P < 0.001) and thus 
suggests different disease intensities in the three different sites. GLIM can easily be 
implemented to perform this analysis to obtain F ratios. In the terminology of the 
statistical package GLIM, cr2 is referred to as the scale parameter. When there is no 

overdispersion, that is, when standard linear logistic model is fitted, the scale 
parameter, d is taken as 1 for all i. But when overdispersion is present and when n, 

are equal, we can set the scale parameter to be the mean deviance of the full model. 

That is, after fitting the full model of the standard linear logistic model we can declare 

the scale parameter to be taken as the mean deviance of the fitted full model. In 

GLIM, scale parameter settings may be done by the directives, $CAL 

%S= %DV / %DF and %$SCALE %S. Then two nested models can be compared by 

examining the resulting mean deviance difference with the percentage points of the F 
distribution. The appropriate degrees of freedom for percentage points of the F 
distribution are the degrees of freedom corresponding to deviance difference and the 

degrees of freedom corresponding to residual deviance with full model. For this 

particular example the scale parameter is set to 2.257. 

A consequence of this method is that the variance of y, being inflated by a oz . But the 

parameter estimates (Table 3.21) are same as obtained with the standard linear logistic 

model. The standard errors of the parameter estimates (Table 3.21) are the standard 

errors after fitting corresponding standard linear logistic model multiplied by a factor 

of VW. In addition, confidence intervals based on parameter estimates will need to be 

constructed from percentage points of 1-distribution instead of z- distribution (Finney, 

1971; Collett, 1991). Finney's method gives same result as the Williams' Model II 

procedure when n, are all equal. The small numerical differences of SEs in the Table 

3.21 from Table 3.18 result because in the Williams' Model II procedure 0 is based on 

the residual , and the Finney's method the scale parameter is based on the residual 

deviance. 

Table 3.21 Parameter estimates for the model (3.18) using Finney's method implemented in 

GLIM 

Parameter Estimate S.E. 
P 0.3907 0.0715 
site 2 (Carneros -Ch) -1.340 0.0913 
site 3 (Delta -Cb) -1.152 0.0877 
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The major limitation of this procedure is that it is not possible to test the goodness -of- 

fit of the fitted model. In addition, practical situations in which each proportion is 

based on same number of binary observations are comparatively rare. However, 
Finney's method is not very sensitive to differences in n, and thus this method could be 

used to adjust overdispersion even when n, are not all equal. Nevertheless, Williams' 

Model II procedure has the advantage that correct standard errors can be obtained 

directly. Finney's method is therefore recommended only when approximate estimates 

are sufficient (Aitken et al., 1989; Collett, 1991). 

SAS can also be used to implement this procedure. In SAS, PROC PROBIT with 

LACKFIT option produces similar estimates and standard errors of estimates. It is 

important to note that the output produced by SAS will not be a duplicate of the 

output of GLIM because SAS adopts the parameterisation which sets the parameter 

of the last level of the factor to be zero in contrast to parameter of the first level is 

zero in GLIM. Moreover, PROC PROBIT does not identify different observations 

with same treatment combinations as separate individual observations. Therefore 

heterogeneity cannot be taken account for a model which contains all main effect and 

interaction terms. 

3.4.3.3 Williams' Model Ill procedure 

Williams (1982) suggested an approximate method of obtaining parameters (ß) and y 

of the logistic -normal binomial model. The assumption in the logistic -normal binomial 

model is that E[logit(n;)]= rl; and Var[logit(K, )] = y2 (section 3.4.2). If the y is 

sufficiently small, the approximate variance of a function of a random variable can be 

derived for the variance of logit(n-; ). That is (as cited in Collett [1991]), 

2 

)] 
Var [logit(7z;)] 

d[logit(7z; 

dz 
p Var(TZ;) 

1 

(1- P;)Z 
Var (7;), 

Pz 
(3.35) 

where p, is the expected response probability [E(iz ;)] for the i"' observation and gyp, 

stands for 'evaluated at p;'. Then, 
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Var(;) p,2(1-p;)2Var[logitk,)] 

= y2p?(1-pt)2 (3.36) 

which is the Model III of Williams (1982). The expected value and the variance of y, 

then may be written as 

E(y;),n,p, (3.37) 

Var (y,) nip,(1- P;)[1 +7(n,- 1)p,(1 -p,)]. (3.38) 

The difference between (3.38) and (3.30) is that O in equation (3.30) has been 

replaced by yp, (1- p,) . A GLIM macro used to implement Williams' Model II 

procedure can easily be modified to implement this approximation procedure. The 

only change that has to be made to the algorithm is that the quantity [1+ 0(n; -1)] is 

replaced by [1+ y(n, -1)p,(1- pi)]. Then y can be estimated iteratively by equating 

the value of Pearson's X2- statistic to its approximated expected value as in the 

section 3.4.3.1. The complete GLIM listing required to implement this procedure is 

given in Collett (1991). 

When this approximation procedure is used to analyse the data in Table 3.8 after 

fitting model with main effects (3.18), was found to be 0.3094. The resulting 

deviances for the different models using this value for are given in the Table 3.22. 

Table 3.22. Deviances on fitting models using Williams' Model III procedure to the data in Table 3.8 

Terms fitted in 
model 

Deviance d.f. A deviance A 
d.f 

du+ a, 
p 

782.95 
1028.9 

701 
703 

- 

245.9 
- 

2 

The models with different linear systematic components can be compared by 

examining the difference in deviance between two models with percentage points of 
the x2 distribution, after fitting these models with weights based on full model with 

the random effect. Thus, according to Table 3.22, the deviance difference for fitting 

the site effect component is 245.9 with 2 degrees of freedom (P <0.001) and this 

confirms different disease incidence in the three sites. The parameter estimates for the 

best fit [model (3.18)] are shown in Table 3.23. 
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Table 3.23 Parameter estimates for the best fit (full model) using Williams' Model III procedure 

Parameter Estimate S.E. 
P 0.3907 0.0715 
site 2 (Carneros -Ch) -1.340 0.0913 
site 3 (Delta -Cb) -1.152 0.0877 

In this approximation method, as in the Williams' Model II procedure, the resulting 

deviance after fitting the model cannot be used to compare the goodness -of -fit of the 

model, for the very same reason mentioned in section 3.4.3.1. On the other hand, 

since the residual deviance after fitting the full model in logistic -normal binomial will 

not necessarily be as small as its number of degrees of freedom, the estimated variance 

of the random effect, ÿ, obtained using approximate procedure, can be considerably 

smaller than that found using logistic- normal binomial model. When 0.2 <_ p <_ 0.8 

this approximate procedure for fitting logistic- normal binomial model produces similar 

results to the procedure described in the section 3.4.3.1. 

3.4.3.4 A generalised Williams' Model II procedure for modelling overdispersion 

Moore (1987) suggested that the moment and beta -binomial likelihood methods could 

be generalised to allow modelling the extraneous variance. Thus he expressed the z; 

of equation (3.21) or equivalently O of equation (3.30) as a function of p; where p; is 

E(i.), that is, 

AA) - ;dP; (1- P; W-' 

where p and are unknown scale parameters. Thus, 

Var(;) = p[P ;(1 -P;)J' 

This yields the generalisation of the unconditional variance of y;, 

Var ( y,)= n; p ;(1- p;) {1 +(n;- 1)p[p;(1- p;)r-'} (3.39) 

Equation (3.39) is same as the equation 12 of Moore (1987) and is a generalisation of 

Williams' model II (equation 3.30). Moreover, when =1, equation (3.39) reduces to 

equation (3.22) and (3.30), and when 4= 2, equation (3.39) reduces to equation 
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(3.38), which corresponds approximately to a constant variance on logit scale 

(Williams' model III). 

As Moore (1987) suggested, if the beta -binomial likelihood method is generalised, 

maximum likelihood estimates of the parameters may be found by an iterative function 

maximisation routine. If equation (3.30) is generalised without assuming any 

distribution for n;, quasi- likelihood estimates can be obtained for the parameters. The 

estimate of p may be obtained by equating the Pearson X2 statistic to its expected 

value as in the Williams' Model II and Model III procedures, which Moore refers to as 

moment method. He further suggested that an estimate for to be made by 

minimising the function, 

Qg) = ¿n[ê;2 - {LP,(1-P,)ln,]+p[P,(1-19,)nr (3.40) 

where ê; = {(y; / n,)-13 j and Q() is the sum of squares of the residuals about their 

approximate expected values. 

The GLIM listing of Williams (1982) can be easily modified to implement this 

procedure. This listing in association with equation (3.40), can be used to obtain the 

estimates of the parameters in equation (3.39). The optimum estimate of can be 

obtained by trial and error. The complete GLIM macro, including the listing required 

to implement the equation (3.40), is given in the appendix I. First, a value for 

should be introduced to the system. This may be done by the GLIM directive $CALC 

followed by the identifier for followed by the value for with the ' =' sign. Then 

after fitting the full model (separate mean for each assessment) the macro associated 

with equation (3.39) is activated by the directive $USE followed by the identifier of 

this macro. After that the macro associated with the equation (3.40) is activated. 

Thereafter, by trial and error with different values of , the estimate with minimum 

Q() is obtained. At this Q( ), two nested models can be compared by examining the 

change in the deviance with the change in the degrees of freedom using , test. 

According to the algorithm, the estimate of is based on the p; s. Specifically, since 

the estimate of is obtained by trial and error, the estimate may not be reliable with 

only a few p; s. Thus this method is more appropriate when the number of p; values is 

large. Because of this, the method is illustrated with the complete data reported by 

Munkvold et al. (1993), described in the section 3.4.1. When the linear logistic 
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model, with a separate mean for each assessment, was fitted using GLIM to the 

complete data, the residual deviance was 7881.8 with 5113 degrees of freedom, which 

clearly indicates overdispersion. 

Using the GLIM macro in appendix I after fitting the model with a separate mean for 

each assessment, the estimates of p and were found to be 0.0432 and 0.9 

respectively. The resulting deviances for possible models using p = 0.0432 and 

= 0.9 are given in Table 3.24. 

Table 3.24 Deviances on fitting model using generalised Williams' Model II procedure to the 
data of Munkvold et al. (1993) (all assessments) 

Terms fitted in 

the model 
Deviance d.f. A deviance A 

d.f. 

,u+ a; 5589.3 5113 - - 
/I 12240 5134 6650 21 

The increase in deviance on excluding the term corresponding to main effect from the 

model that contains the main effect is 6650 with 21 degrees of freedom (P < 0.001), 

indicating differences between assessments. The parameter estimates for the best fit, 

i.e. the model with main effects are shown in Table 3.25. 

Compared to standard errors obtained using the method in section 3.4.3.1, the 

standard errors in the Table 3.25 have been subjected to possible variability in the 

heterogeneity parameter due to different groups or treatments. Hence one can argue 

that the procedure discussed in this section is more acceptable compared to the 

method discussed in section 3.4.3.1. 

If either the logistic -normal binomial or the beta -binomial model is fitted using 

EGRET, for variable aggregation, a separate aggregation parameter is fitted for each 

treatment. But in generalised Williams' Model II procedure there are only two 

parameters for the similar situation (variable aggregation). Thus, there is an advantage 

of a simpler parameterisation in generalised Williams' Model II procedure. 

The properties of the moment estimates for fixed have been studied by Kleinman 

(1973) and Moore (1986), and they have shown that the estimates are consistent and 

asymptotically normal under reasonable condition, although asymptotic properties of 
would be difficult to establish. One of the advantage of the method described in this 
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section is that it does not require the assumption of a particular distribution for , and 

hence, this method may also have some robustness properties. 

Table 3.25 Parameter estimates for the best fit (full model) in Table 3.24 

Parameter Estimate S.E. Estimate S.E. 
(with generalised Williams' 

Model II procedure) 
(with linear logistic model) 

du -L663 0.0593 -1.663 0.0497 
Assessment 2 0.714 0.0809 0.714 0.0680 
Assessment 3 1.235 0.0768 1.235 0.0646 
Assessment 4 0.507 0.0779 0.507 0.0655 
Assessment 5 0.901 0.0766 0.901 0.0644 
Assessment 6 1.132 0.0741 1.132 0.0623 
Assessment 7 -1.736 0.1884 -1.736 0.1548 
Assessment 8 -1.088 0.1283 -1.088 0.1064 
Assessment 9 0.122 0.0991 0.122 0.0832 
Assessment 10 0.439 0.0850 0.439 0.0714 
Assessment 11 1.174 0.0791 1.174 0.0666 
Assessment 12 2.019 0.0766 2.019 0.0645 
Assessment 13 2.053 0.0894 2.053 0.0753 
Assessment 14 3.074 0.1021 3.074 0.0858 
Assessment 15 1.126 0.0782 1.126 0.0658 
Assessment 16 

Assessment 17 3.161 0.0873 3.161 0.0733 
Assessment 18 1.802 0.0916 1.802 0.0772 
Assessment 19 2.604 0.0983 2.604 0.0827 
Assessment 20 0.053 0.0927 0.053 0.0777 
Assessment 21 0.906 0.0819 0.906 0.0689 
Assessment 22 1.621 0.0793 1.621 0.0667 

3.4.4 Modelling overdispersion based on the concepts of design effect and 

effective sample size 

Rao and Scott (1992) suggested a method for comparing independent experimental 

treatments. This method is based on the concepts of design effect and effective sample 

size widely used in sample surveys (Kish, 1965). According to Rao and Scott (1992) 

this method gives asymptotically correct results as the number of clusters (quadrats, 

say) in each treatment tends to infinity and can be implemented using any standard 

computer program for the analysis of independent binomial data after an adjustment 

to the data. 
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Let y, be the number of responses in n,, units of the h replicate (quadrat) 

(j = 1,2.. m,) of the i` "" treatment group (i = 1,2, .. t), where m, is the number of 
replicates in the i"' treatment group and t is the number of treatment groups. Then the 
proportion of the responses in the i`h treatment group, ç;, is given as 

=Eh/EN.. (3.41) 
l J 

An estimate of the variance of ;sr; for large m may be obtained as (Rao and Scott, 

1992) 

v =m;(mr-1)-lni2E(y;-nr)2, (3.42) 
l=1 

and under mild regularity conditions on the population variances in the n;; and 1;i, 

where r = y -n k, it follows that Riri - îc;) / v,u2 ] is asymptotically N(0,1) as m,. 

increases (Scott and Wu, 1981). 

Thus the ratio of observed variance, v, , to the estimated binomial variance denoted 

by, 

d=nvl Fri. (1-k)]. (3.43) 

The a' represents the inflation of variance due to overdispersion and referred to as the 

'design effect'. The sample size adjusted for the inflation, known as the 'effective 

sample size', is obtained as ñ, = n. / d; and effective response is obtained as 

= y. / d,. Thus the estimate r, is given as ir; = ÿ; l ñ; and the adjusted estimated 

binomial variance is given by v; = r, (1- r); / ni . Therefore, 

( 71, - / v; 

is asymptotically N(0,1). Thus the ÿ, and n1 may be used to model the effect of 

factors on response variables using the standard linear logistic model. 

For the data in Table 3.8, using equations (3.41), (3.42) and (3.43), the inflation 

factors can be computed as d, = 1.2, d2 = 2.3 and d3 = 3.7 for Oak Knoll -Sb, 

Carneros -Ch and Delta -Cb sites respectively. Using these estimates, values of ÿ;; and 
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ñ, can be computed as above. Then the standard linear logistic models can fitted to 

the adjusted values as described in section 3.2. The deviance on fitting possible linear 

logistic models using GLIM for the adjusted data are shown in Table 3.26. 

In the Table 3.26, ,u and a represent the mean and site effect respectively. The 

deviance difference for including the term for a site effect into the model is 257.7 with 

2 degrees of freedom (P < 0.001), indicating differences in disease incidence at 

different sites. The residual deviance after fitting full model, 782.04, is almost equal to 

the residual deviance obtained using Williams' Model II procedure after fitting the full 

model. However, in this method, no iteration scheme forces the residual deviance to 

be close to its degrees of freedom and this method is mathematically much simpler 

than all other procedures. One other advantage of this method is that this method can 

be applied to a variety of statistical procedures involving independent treatment 

groups of clustered binary data such as testing homogeneity of proportions, testing 

trend of proportions, and computing Mantel -Haenszel f statistic for independence. 

Moreover this method do not assume any dependence structure among binomial 

observations and thus the estimates are robust. However, Rao and Scott (1992) 

themselves observed some loss of the power of significant testing in this method 

compared to optimal tests under a specified model for overdispersion, provided the 

assumed model fits the data adequately. Nevertheless, according to Table 3.23 the 

deviance difference due to including the site effect term is 257.7, which is slightly 

higher than the corresponding deviance difference observed under some procedures 

such as the Williams procedures. 

Table 3.26 Deviances on fitting possible linear logistic models for the data in Table 3.8 after 
adjusting for overdispersion using Rao and Scott (1992) suggestions 

Terms fitted in 

the model 
Deviance d.f. A Deviance A 

d.f 
ft+ a; 782.04 701 - - 
/1 1039.7 703 257.7 2 

A major limitation one may find with this procedure is that it is not very clear how 

design effect is computed for factorial situations. We suggest, for instance, that for a 

two factor factorial layout one may compute design effects and effective sample size 

as follows. First, design effects, d for each factorial combination are computed 

separately and, using d., effective sample size, ñ and i may be computed as 

= n / du and = yy / du respectively. Then, using the adjusted data, linear 

logistic model can be fitted using GLIM in the usual way. 
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However, if interactions are non -significant it is not very sensible that the adjustment 

is carried out for each factorial combination separately. Thus, if interaction is non- 
significant a design effect for each factor, d, and c11, may be computed separately and 

ñu and u may be computed as ñu = [nu / (did] )1/2] and = [yu / (d ;df )v2 

respectively. Then the linear logistic model can be fitted in the usual way and test for 

the main effects. If only one main effect is detected the data have to be adjusted only 

for the significant main factor only and the linear model can then be fitted for the 

significant main effect. The asymptotic properties of this proposed method have not 

been studied yet and we hope to investigate it in the near future. 

3.5 Choosing an appropriate statistical procedure 

Sections 3.1 to 3.4 described statistical techniques that can be used to analyse 

epidemiological data expressed as disease incidence. It is clear that if there is no 

overdispersion, the most appropriate statistical procedure is to model the data using a 

linear logistic model. When overdispersion is present there are several methods 

available to analyse the data. Thus it is necessary to choose the most appropriate 

procedure to analyse a particular set of data. 

Hughes and Madden (1992) investigated the relationship between observed variance 

and binomial variance for aggregated disease incidence data and reported that a good 

description of epidemiological data were provided by this relationship: 

log(ó) = log(c) +m[log(vb)], (3.44) 

where ló is the observed variance, vb is the expected binomial variance and c and m 

are parameters to be estimated. 

If the mean disease incidence is p, where p = E(ìr), Vb is obtained as p(1- p) / n and 

ó is obtained as variance of rc in the usual way. For instance, let there be N quadrats 

for the 1'h treatment. First, disease incidence for each quadrat Ur) is obtained by 

dividing number of diseased plants per each quadrat by the quadrat size, n. Then the 

estimate of p for 1'h treatment is obtained as the sum of (iz) divided by N. The ó for 

the Ì'h treatment may be obtained as the variance of of the i'h treatment in the usual 

way. 
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As an illustration data reported Munkvold et al. (1993) consists 22 assessments 

(experiment details were given in the section 3.4) and for these 22 assessments 

variance -variance plot is shown in Fig. 3.5. 

Fig. 3.5 Variance -variance plot on a log -log scale for the Munkvold et at: (1993) data (all 22 
sites; years 1990 -1992) 

In Fig. 3.5, the continuous line represents the expected binomial variance. In a 

variance -variance plot, a scatter point lying above the binomial line indicates that the 

observed variance is greater than the expected binomial variance while a point below 

the binomial line indicates observed variance is less than the expected binomial 

variance. If the disease incidence is random all data points should lie on the binomial 

line. Thus the points above the binomial line represent overdispersion and points 

below the binomial line represent underdispersion. 

Since all of the points in the Fig. 3.5 lie above the binomial line it is clear that disease 

incidence is aggregated in this case. Moreover, since all the points lie more or less 

parallel to the binomial line, this suggest that aggregation does not vary between 

treatments. The straight line regression fit for observed variance against the binomial 

variance gave a slope of 0.97, of which the 95% confidence interval was 0.86 and 

1.09. The slope equal to unity confirms that aggregation does not differ between 

treatments. Thus the variance -variance plot gives an indication of spatial pattern of a 

diseased plants. In addition, since the variance -variance plot indicates the nature of the 

dispersion, this plot may be used as a tool of choosing an appropriate statistical 

technique to analyse epidemiological data. The link between variance- variance 
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relationship and aggregation parameter 9 (section 3.1.2) is established (Madden and 

Hughes, 1995). According to them, this link is given as 

B=lcn-m .f(:)l1 [%(P)-cñ 

where 9 is the aggregation parameter, f (p)=[p(1- p)]` -m and c,p and in are as in 

equation (3.44) and n is the sample unit size. 

It is clear if there is no overdispersion all the points lie more or less on the binomial 

line of the variance -variance plot. Then, as described earlier, the most appropriate 

statistical procedure is to model the data using linear logistic model. 

When overdispersion is present, the most appropriate procedure for the analysis of a 

particular set of data can be chosen using the nature of aggregation as described by 

the variance -variance plot as a guideline. If the data set has only a few groups 

(treatment combinations), for instance if it is a 2 x 2 factorial, then there will be only 

four points in the variance -variance plot. With a few scatter points on the plot it is 

often difficult to decide on the nature of aggregation. Under these circumstances, 

fitting either the beta -binomial model or the logistic -normal binomial model using 

EGRET would be more appropriate. The beta -binomial has a limitation that for 

positive a, b, variance of 71; cannot exceed /3,0 - p) / 3 as described in the 

section 3.4.1. Moreover, there is no particular reason to justify the assumption in the 

beta -binomial model that ' is to have a beta distribution. In contrast logistic -normal 

binomial model has an intuitive rationale that the random effects and fixed effects are 

added together on the same logit scale. These reasons have made us prefer the 

logistic- normal binomial model rather than the beta -binomial model. 

If there is a substantial number of scatter points on the variance -variance plot, some 

possible relationships between observed variance and the binomial variance are shown 

in Fig. 3.6. Fig 3.6(a) is a situation where there is random occurrence of incidence. In 

this case all the scatter points in the graph lie along the binomial line. The data in the 

Table 3.4 are an example for such situations, and the linear logistic model gives an 

adequate fit. Fig. 3.6(b) illustrate a situation where the data points lie above and 

parallel to the binomial line. Since all the scatter points lie above the binomial line, for 

all the assessments, observed variances are larger than the binomial variance. In other 

words this is the situation of overdispersion. All the scatter points lying parallel to the 

binomial line implies the slope of the graph is equal to one, and this suggests constant 
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aggregation for all treatments. Fig. 3.5 is an example for this situation. For analysis, 

Williams' Model II procedure would be the most efficient, though beta -binomial, 

logistic -normal binomial on EGRET, generalised Williams' Model II procedure and 

the method associated with design effect and effective sample size are also 

appropriate. Fig. 3.6c is the situation where slope of the graph is larger than one. As 

shown in Fig. 3.6c this situation may be of two types. The first is where all the scatter 

points lie along a straight line with all points above the binomial line (Fig. 3.6c[i]). 

The data of Madden et al., (1987) are an example of this situation. The generalised 

Williams' Model II procedure would be the most efficient for this situation, as 

explained in section 3.4.3.2, and the method associated with design effect and 

effective sample size is also appropriate for the analysis. The second type is where the 

data lie along a straight line but the line crosses the binomial line with in the range of 

the data (Fig. 3.6c[ii]), i.e. data points exhibit both overdispersion and 

underdispersion. Data on grape downy mildew (Madden et al., 1994) provide an 

example for this type. EGRET may not be suitable for this situation because the 

algorithm adopted in EGRET does not converge under underdispersion (EGRET, 

1990), and the generalised Williams' Model II procedure and the method associated 

with design effect and effective sample size are appropriate for the analysis. Between 

both methods, the generalised Williams' Model II procedure may be more efficient 

because of the convenience in implementation. 

It is important to note that this second type (Fig. 3.6c[ii]) could be quite crucial. If 

first half of the data points lie below that binomial line the other half lie above the 

binomial line, fitting the binomial model might apparently give an adequate fit. The 

reason for this is that when the scatter points are below the binomial line the residual 

deviance is less than the expected under binomial and this could compensate for the 

large deviance due to overdispersion. Thus, fitting an apparently adequate linear 

logistic model might produce misleading conclusions. Hence, examination of the 

variance -variance plot, where possible, may be a useful precursor to the analysis of 

epidemiological data in the form of incidence. 
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Fig. 3.6 Some possible variance -variance plots on a log -log scale for epidemiological data. X axes 
- Binomial variance; Y axes - Observed variance. In all four plots the continuous line represent 
the binomial line. 

(a). All the scatter points lie on the binomial line 

(b). All the scatter points lie more or less parallel to the binomial line and above the 
binomial line 

(c)[i]. The slope of the scatter line greater than unity and all the scatter points above the 
binomial line 

(c)[ii]. The slope of the scatter line greater than unity and the line crosses the binomial line. 

(d)[i]. The slope of the scatter line less than unity and the line crosses the binomial line. 

(d)[ii]. The plot consists of only a few scatter points and all the points lie above the binomial 
line. 

(d)[iii]. The plot consists of only a few scatter points and some points lie below the binomial line, 
but still exhibit overall overdispersion 
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Fig. 3.6d is the situation where the slope of the line is less than the slope of the 

binomial line, i.e. slope is less than unity. According to our experience this situation is 

not very common. Nevertheless, if the scatter points occurs along a line but the line 

crosses the binomial line within the range of the data (Fig. 3.6d[í]) generalised 

Williams' Model II procedure may be suitable to take account of deviation from the 

randomness. Even a negative slope would not be a problem with the generalised 

Williams' Model II procedure. If the number of scatter points is low and the scatter 

points lie above the binomial line (Fig. 3.6d[ii]) the method associated with EGRET 

would be the most efficient. However, if some of these scatter points lie below the 

binomial line (Fig. 3.6d[iii]), but still showing overall overdispersion, the method 

associated with design effect and effective sample size may be the most appropriate 

method. Table 3.27 summarises the analyses appropriate for data following each of the 

observed- binomial variance relationships shown in Fig. 3.6. 

Table 3.27 Summary table of the choice of the statistical procedure 

Variance -variance 
relationship (Fig. 3.6) 

Suggested analysis Section reference 

(a) Linear logistic model 3.2.1 

(b) Williams' model II 
procedure 

3.4.3.1 

[(c)i] Generalised Williams' 3.4.3.4 
Model II procedure 

[(c)ii] Generalised Williams' 3.4.3.4 
Model II procedure 

[(d)i] Generalised Williams' 3.4.3.4 
Model II procedure 

[(d)ii] Logistic -normal 
binomial model 

3.4.2 

[(d)iii] Method based on 
design effects and 

effective sample size 

3.4.5 

67 



4 ANALYSIS OF PINEAPPLE WILT DISEASE INCIDENCE DATA 

4.1 Data collection 

In order to investigate the effect of certain factors, such as cultivation practices, on 

the occurrence of pineapple wilt disease and the spatial pattern of this disease, a 

survey of commercial pineapple plantations was conducted during November 1993 to 

May 1994 in Gampaha and Kurunegala districts of Sri Lanka (Fig 4.1). Pineapple is a 

popular fruit crop in Sri Lanka, often grown under coconut in plantations in 

Gampaha and Kurunegala districts of the low -country (0 -300 m altitude) wet -zone 

(150 -250 cm rainfall per annum). Pineapple is a perennial crop, for which the 

economic life span lasts four years. 

Ageing is one possible factor among the many factors that may affect wilt disease 

incidence on pineapple. Ageing might cause the plants more susceptible to the 

disease, so that disease incidence might vary on plantations in different years of 

stand. So we decided to include age ('year of stand') of the crop as a factor in our 

study. 

In an investigation with years of stand of the crop as a factor on disease incidence, 

we may want to examine contrasts between different years of stand for disease 

incidence. Pineapple being a perennial crop (with a productive cycle of four years), 

in order to fully investigate year of stand of the crop as a factor on wilt disease 

incidence, we would need to examine the crop in four different years of stand. Thus 

if we want to establish a designed field experiment (field trial) to investigate year of 

stand of the crop as a factor on disease incidence, we need to establish field plots 

with year of stand one, year of stand two, year of stand three and year of stand four. 

Therefore, for establishment of the field trial alone, it takes four years. 

On the other hand, if we conduct a survey of established commercial plantations, we 

have the opportunity of observing disease incidence on plantations in different years 

of stand. This enables the collection of disease incidence data for various years of 

stand of the crop in a single season without having to establish plots and waiting for 

them to mature. 

In a purposely established field experiment the field plots are normally substantially 

smaller than commercial plantations. The size of plots in field experiments very often 
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Fig. 4.1 Districts and areas in which the survey was conducted in Sri Lanka. 
G - Gampaha district, K - Kurunegala district, 
i- Attanagalla, ii - Nittambuwa, iii -Wariyapola, iv - Kuliyapitiya 
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is restricted by the cost and by practical reasons, such as availability of resources and 

time, involved in establishing the field plots. The use of relatively small plots could 

disrupt the spatial patterns of disease incidence that may occur in large plantations. 

Small plots are more prone to edge effects (per unit area) than large plantations. 

These edge effects may mask the spatial patterns that we actually observe in large 

plantations. Thus the spatial patterns we observe in small plots in a field trial may not 

be the spatial pattern that may occur in large commercial plantations. Moreover, in a 

field trial it is quite difficult to prevent the field plots being affected by treatments 

applied in adjacent plots. Because of this interference, unless we control the 

experiment carefully, the spatial pattern and the disease incidence we observe under 

particular treatment conditions may not be fully representative of that particular 

condition alone. After considering all these reasons, we decided to conduct a survey 

rather than establish a field trial to collect the data on the occurrence of pineapple 

wilt disease. 

In the survey, after visiting district agricultural advice centres of Gampaha and 

Kurunegala districts, a list was made of commercial plantations where pineapple wilt 

disease had been reported. We categorised these plantations into areas (villages). 

Categorising the plantations in this way allows us to make an assumption that all the 

sites in a given area are subject to reasonably homogeneous environmental 

conditions, so that sites within the area can be compared for the differences in 

occurrence of disease under different 'treatment' conditions. From the list of areas, we 

selected two areas randomly for each district (see Fig 4.1). Since the aim of this study 

is to apply statistical tests for factorial experiments to plant pathological data, we 

wanted to obtain data that have a 'factorial structure'. So we chose four plantations 

from each selected area, from which we could collect the data under such a factorial 

framework. The details of the conditions that the pineapple crops on these plantations 

have been subjected are given in the section 4.2. We sampled a total of sixteen 

plantations, four plantations from each area, two areas from each of two districts. 

From each plantation we decided to sample 12 row x 30 plant array. Although 

pineapple plantations are fairly large, all the plants in a plantations are not 

necessarily arranged in one large array. Usually several smaller arrays can be found 

in a plantation. These arrays can be found in various shapes. The 12 row x 30 plants 

array size was a reasonable size for which we could take random samples from all 

selected plantations. This made us to decide on this array size for our samples. 

Moreover, in a similar study on tomato spotted wilt virus disease, Bald (1937) also 
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used same sample size. The reason for choosing a fixed array size is that, then we can 
avoid possible difficulties concerned with scale- dependence of spatial pattern of 
disease incidence. 

Samples were obtained randomly, one from each plantation. Random number tables 
were used to select the initial position of the sample in the plantation. Depending on 
number of rows and plants per row in a chosen plantation, the initial position was 

selected, giving equal chance to each position (individual plant). If it was impossible 
to cover an array size of 12 rows x 30 plants per row from the chosen initial position, 
the initial position was reselected. 

The plant arrangement in a plantation is illustrated in the Fig. 4.2. The distance 

between rows was 1.5 m. Each row consisted of plants arranged in a triangular 
manner, spaced 45 cm apart (Fig. 4.2). In a well -established plantation the 'double 
row' is hardly distinguishable. 

From each plantation, as explained earlier, a 12 rows x 30 plant array was selected 

randomly, and the presence or absence of pineapple wilt disease symptoms on each 

plant was recorded. All the recording (mapping) was done on automated pre -prepared 

spreadsheets implemented in Microsoft Excel. Thus, a separate map was made for 

each sample from every plantation examined. No guard rows were considered when 

collecting data because the randomly selected areas were within established 

plantations. 

5 

45cm 

1<->1 
x x x x x x x - 

45 cm 
x x x x x - x 

X X X X X x x - 
1.5 m 

Fig. 4.2 Field plant arrangement of pineapple 
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4.2 Structure of the collected data 

Two different areas in each district were surveyed. For each area, four different 

plantations were examined. Apart from different cultivation practices in given areas, 

all the fields had been subjected to similar conditions. The data collected can be 

summarised as follows. 

District - Gampaha; Area - Attanagalla 

Plantation Conditions 

Kattota Cultivar Murici, treated with pesticide, fertiliser applied and 

two years old 

Kalagedihena Cultivar Murici, treated with pesticide, fertiliser applied and 

four years old 

Navadiga Cultivar Kew, treated with pesticide, fertiliser applied and two 

years old 

Urapola Cultivar Kew, treated with pesticide, fertiliser applied and four 

years old 

District - Gampaha; Area - Nittambuwa 

Plantation Conditions 

Walgammana Cultivar Murici, treated with pesticide, fertiliser applied and 

one year old 

Welhena Cultivar Murici, treated with pesticide, fertiliser applied and 

four years old 

JEDB Cultivar Murici, no pesticide applied, fertiliser applied and one 

year old 

Aluwala Cultivar Murici, no pesticide applied, fertiliser applied and 

four years old 
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District - Kurunegala; Area - Wariyapola 

Plantation Conditions 

Hettipola Cultivar Murici, no pesticide applied, fertiliser applied and one 

year old 

Panduwasnuwara Cultivar Murici, no pesticide applied, no fertiliser applied and 

one year old 

Bingiriya Cultivar Murici, treated with pesticide, fertiliser applied and 

one year old 

Kobeigane Cultivar Murici, treated with pesticide, no fertiliser applied 

and one year old 

District - Kurunegala; Area - Kuliyapitiya 

Plantation Conditions 

Devasarana Cultivar Murici, no pesticide applied, fertiliser applied and one 

year old 

Akkarawatta Cultivar Murici, treated with pesticide, fertiliser applied and 

one year old 

Munamaldeniya Cultivar Murici, no pesticide applied, fertiliser applied and 

four years old 

Mukalanyaya Cultivar Murici, treated with pesticide, fertiliser applied and 

four years old 

Here the application of pesticide refers to application of either profenofos or 

prothiofos at rates recommended by the Department of Agriculture of Sri Lanka 

(Department of Agriculture of Sri Lanka, 1993) and application of fertiliser refers to 

mixture of fertiliser applied at rates recommended by the Department of Agriculture 

of Sri Lanka (Department of Agriculture of Sri Lanka, 1993). Maps of disease 

incidence made for each plantation is shown in figures 4.3 -4.6. 

These data were not from designed experiments. However, since the structure of the 

data from each area is similar to that of a factorial experiment, and one of the 

objectives of this study is to illustrate the statistical analysis of disease incidence 

data, the structure in each area are considered as a 'factorial experiment'. In this study 

the set -ups in each area is henceforth referred to as factorial experiments. Thus the 

factorial set -up of each experiment can be summarised as follows. 
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Factorial experiment 1: District - Gampaha; Area - Attanagalla 

2 x 2 factorial set -up, two types of cultivars, Murici and Kew, and two different years 

of stand, two year old and four years old. 

Factorial experiment 2: District - Gampaha; Area - Nittambuwa 

2 x 2 factorial set -up, application of pesticides, with or without, and two different 

years of stand, one year old and two years old. Here, pesticides were either 

profenofos or prothiofos, with the quantities recommended by the Department of 

Agriculture (Department of Agriculture, 1993). 

Factorial experiment 3: District - Kurunegala; Area - Wariyapola 

2 x 2 factorial set -up, application of pesticide, with or without, and application of 

fertiliser, with or without. Here application of fertiliser refers to the mixture of 

fertiliser applied in quantities recommended by the Department of Agriculture 

(Department of Agriculture, 1993). 

Factorial experiment 4: District - Kurunegala; Area - Kuliyapitiya 

2 x 2 factorial set -up, application of pesticides, with or without, and two different 

years of stand, one year old and two years old. Here also, pesticides were as in the 

second set -up. 
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Plantation - Navadiga Plantation - Urapola 

Fig. 4.3 Diseased incidence maps. District - Gampaha, Area - Attanagalla. - Infected plant; o 

- Healthy plant; C - Agronomic rows runs vertically; R - Plants within agronomic rows. 
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Fig. 4.4 Diseased incidence maps. District - Gampaha, Area - Nittambuwa. - Infected plant; o 

- Healthy plant; C - Agronomic rows runs vertically; R - Plants within rows. 
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Fig. 4.5 Diseased incidence maps. District - Kurunegala, Area - Wariyapola. - Infected plant; 
o - Healthy plant; C - Agronomic rows runs vertically; R - Plants within rows. 
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Plantation - Mukalanyaya 

Fig. 4.6 Diseased incidence maps. District - Kurunegala, Area - Kuliyapitiya. - Infected 
plant; o - Healthy plant; C - Agronomic rows runs vertically; R - Plants within rows. 
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4.3 Examination of randomness of the disease incidence data 

4.3.1 Fitting the binomial distribution 

As described in the chapters 1 and 2, the starting point for the statistical analysis of 
experiments of this nature is to examine the pattern of disease incidence. In order to 

investigate pattern, each incidence map was divided into sample units (quadrats) and 

then observed quadrat frequencies were compared with the expected binomial 

frequencies. When the maps were divided into quadrats, each map was divided into 

36 quadrats, each consisting of 10 plants along a single row. From the incidence 

maps (Fig. 4.3 -4.6) it is noticeable that disease clusters occur more often along the 

columns (agronomic rows) than across columns. For this reason the shape of the 

quadrats was made long and thin. As Cochran (1936) reported, quadrat size is usually 

taken to be 6 to 12 plants. After dividing the field maps into quadrats of size 10, the 

binomial distribution was fitted to each map separately. Expected binomial 

frequencies were calculated using Microsoft Excel. Expected frequencies after fitting 

the binomial distribution, along with observed frequencies for each map, are shown 

in figures 4.7 -4.10. 

The goodness -of -fit x2 values (Fig. 4.7 -4.10) were computed after pooling adjacent 

frequency classes to make the smallest expectation at least 5. For most of the disease 

maps the computed x2 values were significant (P < 0.05), indicating departure from 

the random occurrence, specifically aggregation of diseased plants in the field. 

However, for Fig. 4.9(a)- 4.9(c) computed x2 values were not greater than expected 

(P > 0.05), and indicated a random occurrence of diseased plants in this particular 

case. Thus, it may be concluded that, in general, spatial pattern of pineapple wilt 

disease is aggregated. 
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x2 = 19.89(3df ), P < 0.01 
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No. of diseased plants 
per quadrat 

(d) 
Plantation - Urapola 

x2 = 4.35(3df),P = 0.23 

Fig. 4.7 Expected (after fitting binomial distribution) and the observed disease frequencies 
for the diseased maps in the Fig. 4.3. - Observed Ns- Expected. 
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Plantation - Aluwala 
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Fig. 4.8 Expected (after fitting binomial distribution) and the observed disease frequencies 
for the diseased maps in the Fig. 4.4. - Observed - Expected. 
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Fig. 4.9 Expected (after fitting binomial distribution) and the observed disease frequencies 
for the diseased maps in the Fig. 4.5. - Observed MI - Expected. 
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Fig. 4.10 Expected (after fitting binomial distribution) and the observed disease frequencies for 
the diseased maps in the Fig. 4.6. - Observed 0- Expected. 
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4.3.2 Fitting the logistic -normal binomial distribution 

As explained in chapter 3, when the disease incidence is not random, the binomial 

distribution cannot adequately describe the observed frequencies. For aggregated 

disease incidence, an adequate description of observed frequencies may be obtained 

by fitting either the beta -binomial distribution or the logistic -normal binomial 

distribution. The logistic -normal binomial distribution was chosen for this study for 

the reasons explained in section 3.5. When the logistic -normal binomial distribution 

is fitted to the incidence maps (Fig. 4.3 -4.6), the expected frequencies, along with 

observed frequencies, are shown in Fig. 4.11 -4.14. EGRET in association with 

MATHCAD 5.0+ was used to obtain expected frequencies. 

From the Fig. 4.11 -4.14 it is clear that expected frequencies are much closer to the 

observed frequencies than the expected binomial frequencies. Thus the logistic - 

normal binomial distribution is superior to binomial distribution in describing 

observed frequencies. The goodness -of -fit x2 was non -significant (P > 0.05) for most 

of the incidence maps, confirming these results. The probabilities for goodness -of -fit 

X2 were computed following the same principles as with binomial fitting except for 

Fig. 4.12(d), in which pooling was done only until the smallest expectation greater 

than 4. The reason for this is that none of the frequency classes had a frequency of 5. 

The goodness -of -fit x2 tests for each incidence map are given in Table 4.1. This table 

clearly shows the overall superiority of logistic -normal distribution over the binomial 

distribution for describing aggregated incidence data. 
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Plantation - Urapola 

X2 = 2.39(2df ), P = 0.30 

Fig. 4.11 Expected (after fitting logistic -normal binomial distribution) and the observed 
disease frequencies for the diseased maps in the Fig. 4.3. - Observed ® - Expected. 
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Fig. 4.12 Expected (after fitting logistic -normal binomial distribution) and the observed 
disease frequencies for the diseased maps in the Fig. 4.4. - Observed ®- Expected. 
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Fig. 4.13 Expected (after fitting logistic -normal binomial distribution) and the observed 
disease frequencies for the diseased maps in the Fig. 4.5. - Observed - Expected. 
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Fig. 4.14 Expected (after fitting logistic -normal binomial distribution) and the observed 
disease frequencies for the diseased maps in the Fig. 4.6. - Observed - Expected. 
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Table 4.1 Goodness -of -fit x2 tests for disease incidence maps (Fig. 4.3 -4.6) 

Factorial 
experiment 

No. 

Incidence 
map 

Goodness -of -fit 
(binomial) 

Goodness -of -fit 
(logistic -normal 

binomial) 

xZ d.£ P > x2 x2 d.£ P > 
xZ 

1 Fig. 4.3 (a) 7.62 2 0.02 1.99 1 0.16 
Fig. 4.3 (b) 19.89 3 <0.01 3.04 1 0.08 
Fig. 4.3 (c) 12.12 1 <0.01 1.57 1 0.21 
Fig. 4.3 (d) 4.35 3 0.23 2.39 2 0.30 

2 Fig. 4.4 (a) 10.92 2 <0.01 0.26 1 0.61 
Fig. 4.4 (b) 10.85 3 0.01 1.79 2 0.41 
Fig. 4.4 (c) 4.70 2 0.10 0.37 1 0.55 
Fig. 4.4 (d) 4.40 3 0.22 6.64 1 0.01 

3 Fig. 4.5 (a) 1.12 3 0.77 1.10 2 0.58 
Fig. 4.5 (b) 4.52 2 0.10 6.12 2 0.05 
Fig. 4.5 (c) 7.06 3 0.07 6.87 2 0.03 
Fig. 4.5 (d) 8.45 3 0.04 - - - 

4 Fig. 4.6 (a) 12.44 1 <0.01 0.605 1 0.44 
Fig. 4.6 (b) 16.78 2 <0.01 1.86 1 0.17 
Fig. 4.6 (c) 5.26 2 0.07 3.91 1 0.05 
Fig. 4.6 (d) 8.03 2 0.02 2.62 1 0.11 

The incidence map for plantation Walgammana (Fig. 4.4a) is a typical case of 

overdispersion. The clusters of diseased plants can easily be identified in the 

incidence map. The corresponding binomial distribution fit (Fig. 4.8a) for this 

incidence map clearly indicates that the observed frequency is very different from the 

expected binomial fit (P < 0.01). The corresponding logistic -normal fit (Fig. 4.12a) 

gave a better fit to the observed frequencies (P = 0.61). Thus if the diseased 

incidence is aggregated the logistic- normal binomial distribution can give a better fit 

to the observed frequencies. 

The incidence map for plantation JEDB (Fig. 4.4c) is a typical incidence map for a 

random pattern of disease incidence. In the incidence map it is easy to identify 

individual diseased plants, as well as diseased plants in groups, with varying group 

sizes, all throughout the map. The corresponding binomial distribution fit (Fig. 4.8c) 

shows that the expected binomial frequencies are similar to observed frequencies 
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(P = 0.10). This confirms that if the disease incidence is random, the observed 

frequencies can adequately be described by the binomial distribution. However, the 

corresponding logistic -normal binomial distribution (Fig. 4.12c) also produced an 

adequate fit (P = 0.55) for the observed frequencies. 

The incidence map for plantation Aluwala (Fig. 4.4d) is also an example for a 

situation where the disease incidence is random. The binomial fit (4.8d) clearly 

showed that expected binomial frequencies are similar equal to observed frequencies 

(P = 0.22). The corresponding logistic -normal distribution (Fig. 4.12d) however 

failed to provide an adequate fit (P = 0.01) indicating that binomial distribution 

sometimes can give better fits to random patterns. 

The incidence map for plantation Kobeigane (Fig. 4.5d) is a situation for a regular 

pattern of disease incidence. Regular disease incidence results underdispersion. In the 

event of an underdispersion, the goodness -of -fit x2 for a binomial distribution is less 

than its expected value (d.f.). However, in the Table 4.1 and Fig. 4.9d, the 

corresponding x2 value is larger than its d.f. (P = 0.04). The reason for this is that 

the x2 values in the Table 4.1 were obtained after pooling the frequency classes in 

order to have the expected frequency of at least 5. The logistic -normal binomial 

distribution cannot be produced when the disease incidence is underdispersed 

because the algorithm adopted in EGRET does not converge under underdispersion 

(EGRET, 1990). This is the reason that in Fig. 4.13 the logistic -normal binomial 

distribution fit corresponding to Fig. 4.5d has not been made. 
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4.3.3 Variance -variance plots. 

In section 3.5 we showed that variance- variance plots can be used to describe spatial 
pattern of disease incidence and that this could be used as a guideline from which to 

choose the appropriate statistical technique in the analysis of incidence data. The 

variance -variance plots for each factorial experiment (section 4.1) are shown in Fig. 

4.15. Each point in a plot represents a field map that belongs to that particular 

factorial experiment (section 4.1). These plots were made using Microsoft EXCEL, 
as explained in section 3.5. 
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(d) 

Fig. 4.15 Variance -variance plots for the diseased maps in the Fig. 4.3 -4.6. Plot (a) 
corresponding to Fig. 4.3; plot (b) corresponding to Fig. 4.4; plot (c) corresponding to Fig. 
4.5; plot (d) corresponding to Fig. 4.6 (All graphs are in log -log scale). 
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In the variance -variance plots, the continuous line represents the expected binomial 
variance. In Fig. 4.15 all the scatter points except one lie above the binomial line. 

Thus some degree of overdispersion is clear with all maps except one. In Fig. 

4.15(c), the point below the binomial line indicates that the observed variance is 

smaller than the expected binomial variance. This indicates underdispersion of 
disease incidence in this particular map. This scatter point represents the incidence 

map Fig. 4.5(d), and this is the map for which EGRET fails to compute logistic - 

normal distribution parameters. 

Fig. 4.16 summarises the four plots in Fig. 4.15. This is a useful summary which 

gives an overview of dispersion of disease incidence. Thus Fig. 4.6 may be useful for 

making general comments on the pattern of pineapple wilt disease. Since all the 

scatter points except one lie above the binomial line, the spatial pattern of pineapple 

wilt disease seems to be aggregated. Moreover, the scatter points above the binomial 

line, do not indicate a consistent relationship between the observed and binomial 

variance, and this implies variable aggregation over different factorial combinations. 

In contrast, in the variance -variance plot in section 3.5 (Fig. 3.5), all scatter points 

were parallel to the binomial line indicating consistent aggregation in all factorial 

combinations. 

0.1 

0.01 

0.001 

0.001 0.01 0.1 

Binomial variance 

Fig. 4.16 Variance -variance plot (in log -log scale) for the diseased maps in Fig. 5.3 -5.6 (pooled) 
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4.4 Investigating factorial effects. 

To investigate the effect of the factors and their interactions on disease incidence, 

models were fitted to the data from four factorial experiments. Since the data 

collection for each of the four experiments was done separately, the analyses were 

carried out separately. As the initial step, linear logistic models were fitted to the data 

for each factorial experiment. The residual deviances, after fitting the models with all 

main effects and the interactions were much greater than expected, except for the 

third factorial experiment (Table 4.1 -4.4). A large residual deviance indicates 

overdispersion, and that the linear logistic model is not suitable as a basis to analyse 

such data. Thus one of the procedures discussed in section 3.4 has to be used to 

model the data. As discussed in section 3.5, since each factorial experiment has 2 x 2 

treatment combinations, i.e. there were only four points in the variance -variance plot 

(Fig. 4.15), and all the points in the plots (except in the third experiment) lay above 

the binomial line, EGRET was chosen to perform the analysis. Among the possible 

two types of models on EGRET, the beta -binomial model and the logistic -normal 

model, the logistic- normal model was chosen to perform the analysis, for reasons 

noted in the section 3.5. 

4.4.1 Statistical model fitting for the first experiment 

This experiment consisted of a 2 x 2 factorial. Factor one (X1), was the cultivar with 

2 cultivars, Murici and Kew. Factor two (X2), is the year of stand with two different 

years of stand, year two and year four. 

The deviances after fitting possible models to the data from this experiment using 

EGRET are shown in Table 4.2(a). In Table 4.2(a), the models which do not include 

random effect parameters refer to fitting linear logistic models and the models with 

random effect parameters refer to fitting logistic -normal models. Table 4.2(b) uses 

respective likelihood ratio tests based on these fits to analyse the data. The models 

equivalent to all the fits and interpretation of all the tests are same as described in the 

section 3.4.1. 

From Table 4.2(b) it is evidently the saturated model (fit K) that is the most 

appropriate model to describe the data. That is, all main effects (difference between 

cultivars, and difference between year of stands) and the interaction between 

cultivars and year of stand are present with respect to disease incidence. In addition, 
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varying aggregation among different factorial combinations were also apparent. The 

conclusion from this analysis is that disease incidence varies depending on the 

cultivar and year of stand, and the differences between two cultivars is influenced by 

the year of stand. Furthermore, the aggregation varies depending on the treatment 
combination applied. The parameter estimates and their standard errors for the best 

fit, along with the corresponding linear logistic model parameters and their standard 

errors are given in the Table 4.3. As noted in section 3.4.1, the parameter estimates of 
the best fit are similar to those of the corresponding linear logistic model but the 

standard errors have been inflated. Since these inflated standard errors take into 

account of aggregation, these standard errors should be used for significant testing 

and deriving confidence intervals as illustrated in section 3.2.2. 

Table 4.2 Possible models and likelihood ratio tests for the data in the first factorial experiment. 

(a) Possible models 

Fit Fixed effects parameters Random effects 
parameters 

d.f. Deviance 

A %GM 143 458.113 
B %GM,X1 142 452.054 
C %GM,X2 142 423.541 
D %GM,X1,X2 141 417.333 
E %GM,X1,X2,X1.X2 140 368.540 
F %GM %SCL 142 332.975 
G %GM,X1 %SCL 141 330.714 
H %GM,X2 %SCL 141 318.322 
I %GM,X 1,X2 %SCL 140 315.079 
J %GM,X1,X2,X1.X2 %SCL 139 292.589 
K %GM,X1,X2,X1.X2 %SCL,XI,X2,X1.X2 136 267.975 
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(b) Possible likelihood ratio tests 

Test Description of the test Compare 
fits 

Likelihood 
ratio 

statistic 

d.f. P 
value 

1 Test for effect of factorl 
adjusted for the other factor 

C vs. D 6.207 1 0.01 

2 Test for effect of factor2 
adjusted for the other factor 

B vs. D 34.720 1 <0.01 

3 Test for interaction adjusted for 
both factors 

D vs. E 48.793 1 <0.01 

4 Test for excess variation E vs. J 75.951 1 <0.01 
5 Test for factor 1 (adjusted) in 

the presence of excess variation 
H vs. I 3.243 1 0.07 

6 Test for factor 2 (adjusted) in 
the presence of excess variation 

G vs. I 15.635 1 <0.01 

7 Test for interaction (adjusted) 
in the presence of excess 
variation 

I vs. J 22.491 1 <0.01 

8 Test for differing levels of 
excess variation 

J vs. K 24.614 3 <0.01 

Table 4.3 Estimates and standard error of estimates of the best fit (K) with corresponding 
linear logistic model parameters and their standard errors. 

Factorial 
combination 

Under logistic -normal 
binomial model 

Under linear logistic 
model 

Estimate (rl) S.E Estimate (ri) S.E 

µ -0.9266 0.211 -0.7691 0.113 
Cv. Kew -1.953 0.481 -0.0518 0.161 
Yr.2 -0.1669 0.338 -1.339 0.204 
Cv. Kew *Yr. 2 2.605 0.567 1.743 0.257 
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4.4.2 Statistical model fitting for the second experiment 

This experiment also consisted of a 2 x 2 factorial. Factor one (X1) was the 

application of pesticide, with 2 levels, with pesticide or without pesticide. The 

pesticide had contained either prothiofos or profenofos at recommended dosage 

(Department of Agriculture of Sri Lanka, 1993). Factor two (X2) was the year of 
stand, with two different years of stand, year one and year two. 

As with the experiment one, deviances after fitting possible models are shown in 

Table 4.4(a), and Table 4.4(b) uses respective likelihood ratio tests based on these 

tests to analyse the data. 

From Table 4.4(b), the model with both main effects and common aggregation 

parameter (fit I) seems to be the most appropriate model to describe the data. 

It is important to note that if one takes the critical probability limit as 0.10 instead of 
0.05, test 8 in the Table 4.4(b) might be interpreted as aggregation varying with 

treatment combination including interaction. However, since interaction between 

factors is not evident it is not very sensible to include the varying aggregation 

(including interaction) component into the model. Since only main effects are 

significant one may attempt to fit model K. But test 9 suggests that varying 

aggregation (without interaction) is not significant and therefore the most appropriate 

model is the model with both main effects and common aggregation parameter (fit I). 

Thus the conclusion is that both application of pesticide and year of stand affect the 

disease incidence, but the effect of application of pesticide does not depend on year 

of stand. Moreover, aggregation does not vary with the treatment combination 

imposed. 

The parameter estimates and standard error of estimates for the best fit along with the 

corresponding linear logistic model parameters and their standard errors are given in 

the Table 4.5. As explained with the experiment 1, the estimates and standard errors 

of the best fit have to be used for significant testing and deriving confidence 

intervals. 
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Table 4.4 Possible models and likelihood ratio tests for the data in the second factorial 
experiment. 

(a) Possible models 

Fit Fixed effects 
parameters 

Random effects 
parameters 

d.f. Deviance 

A %GM 143 530.319 
B %GM,X1 142 521.676 
C %GM,X2 142 468.600 
D %GM,X1,X2 141 459.573 
E %GM,X1,X2,X1.X2 140 459.565 
F %GM %SCL 142 360.354 
G %GM,X1 %SCL 141 357.037 
H %GM,X2 %SCL 141 339.755 
I %GM,X1,X2 %SCL 140 335.787 
J %GM,X1,X2,X1.X2 %SCL 139 335.769 
K %GM,X1,X2 %SCL,X1,X2 138 334.338 
L %GM,X1,X2,X1.X2 %SCL,X1,X2,X1.X2 136 328.836 

(b) Possible likelihood ratio tests 

Test Description of the test Compare 
fits 

Likelihood 
ratio 

statistic 

d.f. P 
value 

1 Test for effect of factorl adjusted 
for the other factor 

C vs. D 9.028 1 <0.01 

2 Test for effect of factor2 adjusted 
for the other factor 

B vs. D 62.10 1 <0.01 

3 Test for interaction adjusted for 
both factors 

D vs. E 0.008 1 0.93 

4 Test for excess variation E vs. J 123.796 1 <0.01 
5 Test for factor 1 (adjusted) in the 

presence of excess variation 
H vs. I 3.968 1 <0.05 

6 Test for factor 2 (adjusted) in the 
presence of excess variation 

G vs. I 21.251 1 <0.01 

7 Test for interaction (adjusted) in 
the presence of excess variation 

I vs. J 0.018 1 0.89 

8 Test for differing levels of excess 
variation 

J vs. L 6.933 3 0.07 

9 Test for differing levels of excess 
variation for factor 1 and 2 when 
only main effects of both factors 
are significant 

I vs. K 1.449 2 0.49 
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Table 4.5 Estimates and standard error of estimates of the best fit (K) with corresponding 
linear logistic model parameters and their standard errors. 

Factorial Under logistic -normal Under linear logistic 
combination binomial model model 

Estimate (i) S.E Estimate (II) S.E 
1-1 -1.662 0.220 -1.291 0.106 

Untreated 0.4740 0.238 0.3412 0.114 
Yr.2 1.125 0.240 0.8904 0.115 

4.4.3 Statistical model fitting for the third experiment 

As in the previous experiments, this experiment also consists of a 2 x 2 factorial. 

Factor one (X1) is the application of pesticide with 2 levels, with pesticide or without 

pesticide as in the first experiment. Factor two (X2) is the application of fertiliser, 

with two levels; with or without. The applied fertiliser had contained the fertiliser 

mixture at recommended dosage (Department of Agriculture of Sri Lanka, 1993). 

As with the previous experiments, deviances after fitting possible models are shown 

in Table 4.6(a) and Table 4.6(b) uses respective likelihood ratio tests based on these 

tests to analyse the data. 

Test 4 in table 4.6(b) suggests that there is no overdispersion associated with these 

data and the linear logistic model can accommodate the observed variability. In fact, 

no overdispersion with this experiment was reflected in the distribution fitting with 

these data (section 4.3.1). In this experiment, observed frequencies with all the 

disease incidence maps were adequately described by fitting the binomial distribution 

(Fig. 4.9). 

Test 3 suggests no interaction between application of pesticide and application of 
fertiliser on disease incidence, and only the application of pesticide seems to have an 

influence on disease incidence. Therefore, the most appropriate model to describe the 

data is model B. So the conclusion may be made that application of pesticide affects 

the incidence of disease but application of fertiliser does not. The difference in the 

response at two levels of pesticide does not depend on application of fertiliser. 

Moreover, in this case, the spatial pattern does not vary depending on whether 

pesticide is applied or not. The parameter estimates and their standard errors for the 
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best fit are given in Table 4.7 and these standard errors can be used for significant 
testing and deriving confidence intervals. 

Table 4.6 Possible models and likelihood ratio tests for the data in the third factorial 
experiment. 

(a) Possible models 

Fit Fixed effects 
parameters 

Random effects 
parameters 

d.f. Deviance 

A %GM 143 211.795 
B %GM,X1 142 128.460 
C %GM,X2 142 209.909 
D %GM,X1,X2 141 126.459 
E %GM,X1,X2,X1.X2 140 123.989 
F %GM,X1,X2,X1.X2 %SCL 139 123.989 

(b) Possible likelihood ratio tests 

Test Description of the test Compare 
fits 

Likelihood 
ratio 

statistic 

d.f. P 
value 

1 Test for effect of factorl adjusted 
for the other factor 

C vs. D 83.450 1 <0.01 

2 Test for effect of factor2 adjusted 
for the other factor 

B vs. D 2.001 1 0.16 

3 Test for interaction adjusted for 
both factors 

D vs. E 2.470 1 0.12 

4 Test for excess variation E vs. F 0.00 1 0.50 

Table 4.7 Estimates and standard error of estimates of the best fit (K) with corresponding 
linear logistic model parameters and their standard errors. 

Factorial Under linear logistic 
combination model 

Estimate (rì) S.E 
µ 0.6251 0.0782 

Treated -0.9788 0.109 
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4.4.4 Statistical model fitting for the fourth experiment 

As all the other experiment this experiment also consisted of a 2 x 2 factorial. Factor 

one (X1) was application of pesticide with 2 levels, with pesticide or without 
pesticide (as in the first experiment). Factor two (X2) was the year of stand, with two 

different years of stand, year one and year two. 

As with the other experiments, deviances after fitting possible models are shown in 

Table 4.8(a) and Table 4.8(b) uses respective likelihood ratio tests based on these 

tests to analyse the data. 

From Table 4.8(b) it is evident that there is no interaction between application of 
pesticide and year of stand, and that only the effect of application of pesticide is 

significant. From test 9 it is clear that aggregation varies between levels of 
application of pesticide. Test 8 suggests differing levels of aggregation, but as 

explained earlier, since the interaction and main effect of factor 2 are not significant, 

test 8 becomes obsolete. Thus the most appropriate model to describe the data is 

model K. One may therefore conclude that application of pesticide affects disease 

incidence but that the year of stand does not, and the spatial pattern varies between 

pesticide treatments. 

The parameter estimates and their standard errors for the best fit, along with the 

corresponding linear logistic model parameters and their standard errors are given in 

the Table 4.9. As explained with the experiment 1 and 2, the estimates and standard 

errors of the best fit have to be used for significant testing and deriving confidence 

intervals. 
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Table 4.8 Possible models and likelihood ratio tests for the data in the fourth factorial 
experiment. 

(a) Possible models 

Fit Fixed effects 
parameters 

Random effects 
parameters 

d.f. Deviance 

A %GM 143 546.778 
B %GM,X1 142 527.691 
C %GM,X2 142 544.667 
D %GM,X1,X2 141 525.551 
E %GM,X1,X2,X1.X2 140 525.450 
F %GM %SCL 142 349.023 
G %GM,X1 %SCL 141 340.474 
H %GM,X2 %SCL 141 348.165 
I %GM,X1,X2 %SCL 140 339.600 
J %GM,X1,X2,X1.X2 %SCL 139 339.391 
K %GM,X1 %SCL,X1 140 328.984 
L %GM,X1,X2,X1.X2 %SCL,X1,X2,X1.X2 136 326.056 

(b) Possible likelihood ratio tests 

Test Description of the test Compare 
fits 

Likelihood 
ratio 

statistic 

d.f. P 
value 

1 Test for effect of factorl 
adjusted for the other factor 

C vs. D 19.115 1 <0.01 

2 Test for effect of factor2 
adjusted for the other factor 

B vs. D 2.140 1 0.14 

3 Test for interaction adjusted 
for both factors 

D vs. E 0.101 1 0.75 

4 Test for excess variation E vs. J 186.05 1 <0.01 
5 Test for factor 1 (adjusted) in 

the presence of excess 
variation 

H vs. I 8.565 1 <0.01 

6 Test for factor 2 (adjusted) in 
the presence of excess 
variation 

G vs. I 0.874 1 0.35 

7 Test for interaction (adjusted) 
in the presence of excess 
variation 

I vs. J 0.209 1 0.65 

8 Test for differing levels of 
excess variation 

J vs. L 13.335 3 <0.01 

9 Test for differing levels of 
excess variation for factor 1 

when only main effect of 
factor 1 is significant 

G vs. K 11.490 1 <0.01 
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Table 4.9 Estimates and standard error of estimates of the best fit (K) with corresponding 
linear logistic model parameters and their standard errors. 

Factorial Under logistic -normal Under linear logistic model 
combination binomial model 

Estimate (ri) S.E Estimate (II) S.E 

11 -2.358 0.361 -1.360 0.0925 
Untreated 1.350 0.394 0.5329 0.123 

4.5 Conclusions of the analysis 

It is important to note that conclusions made here were separately for each 

experiments and that it is difficult to make general conclusions for the pineapple wilt 

disease pathosystem based on these results. Since four experiments were from four 

different situations, comparison among experiments are not valid. This is why 

different conclusions have been made with different experiments, even with same 

factors (Table 4.4 and 4.8). This suggests that factors other than those recorded here 

may also influence disease incidence. 

However, influence of each of the factors on disease incidence, in each experiment 

can be summarised as in the Table 4.10. 

Table 4.10 Summary of the factors investigated and their influence 

Exp. 
No. 

Factors investigated and their effect 

Cultivar Year of Application Application 
stand of Pesticide of Fertiliser 

1 Significant Significant Not 
investigated 

Not 
investigated 

2 Not 
investigated 

Significant Significant Not 
investigated 

3 Not Not Significant Not 
investigated investigated Significant 

4 Not Not Significant Not 
investigated Significant investigated 
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From Table 4.10 some general comment could be made on the influence of the 

factors investigated. All experiments in which pesticide application was investigated 

clearly showed the effect of pesticide on controlling the disease. The year of stand 

seems to have an influence on the disease incidence. The experiment where the effect 

of fertiliser application was investigated failed to show any effect of fertiliser on 

disease incidence. The type of cultivar also seems to have some effect on disease 

incidence although choice between them is based largely on fruit quality 

characteristics (Department of Agriculture of Sri Lanka, 1993). 
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5 TWO- DIMENSIONAL DISTANCE CLASS ANALYSIS 

In chapter 3 we discussed ways of examining spatial patterns, by means of statistical 

distribution fitting, model fitting and variance -variance plots. For all these methods, 

the form of data required was the number of plants diseased in each quadrat of a 

particular size. Although it is well established (Cochran, 1936) that a quadrat size of 
6 -12 plants is usually used in epidemiological studies, one may still argue that all 

these methods are size (scale) dependent, i.e. conclusions based on these methods 

depend on the size of the quadrat. 

Methods such as two -dimensional distance class (2DCLASS) analysis, which can be 

used to describe spatial patterns, utilise the data on an individual plant basis. Thus 

one may suggest that methods such as 2DCLASS analysis are scale independent. 

In the literature, several methods which utilise incidence data on an individual plant 

basis have been employed to describe the spatial pattern of plant disease. Among 

them, the ordinary runs test and doublet analysis are quite common in plant disease 

epidemiology (Madden et al., 1982; Converse et al., 1979). These methods only 

considered the spread of disease between adjacent plants in one direction (within 

rows) and were intolerant of missing data. (Gray et al., 1986). 

Gray et al. (1986) first described the method of analysing the two- dimensional 

spread of incidence of a virus disease within row crops (which may be regarded as 

plant distribution lattices) known as two -dimensional distance class (2DCLASS) 

analysis. One of the advantages of this 2DCLASS analysis is that missing data within 

the lattice neither limit the analysis nor affect the interpretation of the data. This 

method is a development of the method described by Proctor (1984). 2DCLASS 

analysis, other than being useful for the detection of non -random spatial pattern, can 

also be used for quantification of average cluster size, distance between clusters, 

relative cluster location within the lattice, within and across row aggregation, and 

edge effects (Nelson et al., 1992). 

2DCLASS analysis is based on the concept of grouping pairs of infected plants into 

distance -orientation classes. According to Proctor (1984) a distance orientation class 

is defined as the number of horizontal (X) and vertical (Y) unit moves that separate a 

pair of infected plants from each other in a lattice. The horizontal distance (number 

of agronomic rows) is the abscissa and the vertical distance (number of plants within 
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the agronomic row) is the ordinate. Thus the [X,Y] distance classes do not identify 

the position of the infected plants in the lattice, but refer to the absolute distance 

between plants by means of horizontal and vertical distances between a pair. The 

number of distance -orientation classes is defined by the overall dimensions of the 

lattice. For instance, 5 x 4 lattice (4 agronomic rows and 5 plants within an 

agronomic row) (Fig. 5.1) contains 19 different distance -orientation classes (Table 

5.1). For a 5 x 4 lattice, number of plant pairs for each of these 19 different distance- 

orientation classes are given in Table 5.1. 

[R] 

[C] 

Fig. 5.1 5 x 4 lattice. [C] Agronomic rows, [R] Plants within agronomic rows 

Table 5.1 Distance -orientation classes and number of possible plant pairs for each distance - 
orientation class 

Distance 
orientation class 

[X,Y] 

Number of 
possible pairs 

[0,1] 16 

[0,2] 12 

[0,3] 8 

[0,4] 4 
[1,0] 15 

[1,1] 12 

[1,2] 9 

[1,3] 6 

[1,4] 3 

[2,0] 10 

[2,1] 8 
[2,2] 6 

[2,3] 4 
[2,4] 2 

[3,0] 5 

[3,1] 4 

[3,2] 3 

[3,3] 2 

[3,4] 1 

Total 130 
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The specific software 2DCLASS (Nelson et al., 1992) is capable of performing 

2DCLASS analysis. This program allows for rapid and concise analysis of the spatial 

pattern of binary data within a two -dimensional matrix (where each plant has a 

specific location in the field; row number and plant number with in row). In the 

analysis, first, the pairs of infected plants are grouped into two -dimensional [X,Y] 

distance classes. Since the total possible number of pairs vary among [X,Y] distance 

classes, the number of pairs of diseased plants in each [X,Y] distance class is 

standardised by dividing the total possible number of pairs of living plants within the 

same [X,Y] distance class. The standardised number of pairs of diseased plants is 

generally referred to as 'standardised count frequency' [SCF]. The program calculates 

the expected SCFs by simulation. Expected SCFs are determined when the same 

number of infected plants are randomly assigned to locations within a lattice of the 

same dimensions. In this process, the location of the infected plants in the lattice are 

generated by a pseudo -random function and the missing plants observed in the field 

are assigned the same fixed X and Y co- ordinates (Nelson et al., 1992). The expected 

SCFs are computed for all [X,Y] distance classes for each of user -specified number 

of sets of simulator data. Nelson et al. (1992) recommend the use of 400 sets of 

simulated data. 

Comparison of observed and expected standardised counts in each [X,Y] distance 

class is used to define and quantify the randomness of diseased pairs of plants and 

their orientation within the lattice. The mean SCF and the standard deviation of the 

expected SCF for each [X,Y] distance class is computed in the program. The 

significance level on the observed SCF for each [X,Y] distance class is computed 

directly by counting the number of times the simulated expected SCF exceeds the 

observed SCF during the specified number of simulations. In addition, the program 

calculates 95% lower and upper confidence limits on the significance level using the 

formula; 

p±\11.96x px(1-p)ln 

where p is the expected SCF based on specified number of sets (n) of simulations. 

Moreover, the program calculates the number of [X,Y] distance classes with an 

observed SCF significantly higher (upper confidence limit on significance <_ 0.05) 

than expected (indicated by a ' +' in 2DCLASS matrix [Fig. 5.2]) and significantly 

lower (lower confidence limit on level of significance > 0.95) than expected 
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(indicated by a '$' in 2DCLASS matrix). In the 2DCLASS matrix non -significant 

classes, i.e. observed SCF is neither greater or less than expected SCF, are indicated 

by '0'. 

According to the program, a pattern is considered to be non -random if more than 5% 

of the total number of [X,Y] classes have SCFs that are significantly greater 

(P <_ 0.05) than expected with a random pattern of diseased plants (Gray et al., 1986; 

Nelson and Campbell, 1993; Hughes and Nelson, 1995). Strength of non -randomness 

is interpreted as being directly proportional to the number of significant SCFs 

(Hughes and Nelson, 1995). It is very important to note that in 2DCLASS analysis, 

non -randomness does not mean aggregation. It could either be aggregation or regular 

spatial pattern. 

The property of minimum 'core cluster size' is defined as the number of significant 

(P <_ 0.05) and adjacent distance classes (including the [0,0] class) that constitute a 

discrete, contiguous group in the [0,0] corner. For instance, Fig. 5.2a represents a 

minimum core cluster size of four and Fig. 5.2c represents a minimum core cluster 

size of fifteen. Resolution of the core cluster size is limited to a range of values, 

because the significance level calculated for classes, for example, is based on both 

unidirectional and bi- directional comparison of plants within the incidence map. Bi- 

directional refers to each plant being compared with all other plants in that distance 

class, into both sides of the row (within row) from a reference plant and only into one 

side of the row in the case of unidirectional. For instance the core cluster size of four 

in Fig. 5.2a consists of distance classes [0,0], [0,1], [0,2] and [0,3]. 

All distance classes having [X] =0 in the core cluster implies that the cluster of 

diseased plants does not involve more than one agronomic row, i.e. the cluster occurs 

along a single row. The class [0,0] indicates the reference plant itself. For 

unidirectional resolution, the class [0,1] implies that the adjacent plant (in one 

direction, i.e. either up or down along the agronomic row) of the reference plant is 

diseased. The class [0,2] implies second plant next to the reference plant (in the same 

direction) is diseased. The class [0,3] implies the third plant next to the reference 

plant (in the same direction) is diseased. Thus according to unidirectional resolution, 

four plants are diseased (including the reference plant). If the other direction was 

considered, a similar conclusion would be made. Thus if both directions were 

considered it would be concluded that seven plants are diseased (since the reference 

plant is common to both directions). Thus the core cluster size is four to seven. An 
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intuitive formula may be made, that if the number of adjacent distance classes with 

SCFs significantly greater (P <_ 0.05) than expected SCF in the [0,0] corner is u 

excluding [0,0], the core cluster size is (u +1) to (2u + 1). 

Elsewhere, other than the core cluster in the 2DCLASS matrix, the occurrence 

proximal distance classes with SCFs significantly greater than expected (P <_ 0.05) 

reflects similar arrangements of diseased plants in the corresponding plot map 

(Nelson and Campbell, 1993). Similar arrangements of healthy plants are likewise 

reflected by proximal distance classes with SCFs significantly less than expected 

(P >_ 0.95). For instance, in Fig. 5.3b, elsewhere other than the core cluster, classes 

[4,0 -13] and [5,0 -16] having observed SCFs greater (P _< 0.05) than expected SCFs 

implies that clusters are found at a distance of 4 to 5 rows and 0 -16 plants within 

row, in the incidence map. The corresponding incidence map (Fig. 4.4b) reflects this 

finding. Thus this information reflects the relative location of the clusters in an 

incidence map. 

According Nelson et al. (1992), if more than 12.5% of the [X,Y] classes in the 

outermost row and column (other than in the core cluster) of the distance class 

analysis are significant (P 0.05), an 'edge effect' is indicated. For instance 

2DCLASS matrix of Fig. 5.6c, seventeen such significant classes out of forty-one in 

the outermost row and column (which is more than 12.5 %) can be identified thus an 

edge effect is detected in this particular case. However, all the incidence maps made 

in this study (Fig. 4.3 -4.6) are not complete crop fields or plots, but part of a field 

within a site. Since an edge effect cannot really exist without a proper crop boundary, 

Fig. 5.6(c) does not represent a true edge effect. For this reason, edge effects will not 

be discussed in relation to 2DCLASS analysis of the incidence maps (Fig. 4.3 -4.6) in 

section 5.1. 

5.1 2DCLASS analysis of pineapple wilt disease incidence data 

Experiment 1 

The 2DCLASS matrix of the incidence maps of experiment 1 (Fig. 4.3) are shown in 

Fig. 5.2. Fig. 5.2a represents four distance classes having observed SCFs 

significantly greater (P <_ 0.05) than expected SCFs in the [0,0] corner, implying a 

core cluster size of four to seven. As explained earlier, since the classes in the core 
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cluster are [0,0 -3], clustering along the agronomic rows is evident. The proportion of 
significant SCFs is greater than 5% and thus a non -random spatial pattern is detected. 

No clusters of significant classes can be identified in the distance class matrix other 

than the core cluster. 

The distance class matrix of Fig. 5.2b represent six distance classes having observed 

SCFs significantly greater (P <_ 0.05) than expected SCFs in the [0,0] corner, 

indicating a core cluster size of six to eleven. The classes in the core cluster are [0,0- 

5] and this implies that clusters occur along the agronomic rows. The proportion of 

significant SCFs is greater than 5% and thus a non -random spatial pattern is detected. 

As in Fig. 5.2a, other than the core cluster no specific clusters of significant classes 

can be identified. 

The distance class matrix of Fig. 5.2c reveals a core cluster size of fifteen to twenty - 

nine. The significant (P <_ 0.05) distance classes in the core cluster are [0,0 -7] and 

[1,0 -6] and this implies that a clusters of diseased plants involve two agronomic 

rows. Other than the core cluster, clusters of distance classes [2,1 -2], [2,4 -6] and 

[2,8 -9], of which observed SCFs are greater than expected (P <_ 0.05), can be 

identified. This implies that the clusters occur more or less two rows apart. The 

proportion of distance classes with significant SCFs is greater than 5% and thus a 

non -random spatial pattern is detected. 

The distance class matrix of Fig. 5.2d represents a core cluster size of three to five. 

Since the core cluster consists of significant (P <_ 0.05) distance classes [0,0 -2], the 

clusters of diseased plants occur along the agronomic rows. Other than the core 

cluster some clusters of significant distance classes (P <_ 0.05) can be identified in 

the lower right quarter of the distance class matrix. This may be interpreted as 

clusters occurring more -or -less six to ten rows apart. The proportion of significant 

classes with significant SCFs is greater than 5% and thus a non -random spatial 

pattern is detected. 

Thus the 2DCLASS analysis of experiment 1 may be summarised as follows. A non- 

random spatial pattern is evident and average core cluster size is seven to eleven. In 

general, clusters occur along the agronomic rows and it is not clear that the different 

clusters have similar relative locations in the field. 
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Fig. 5.2 The 2 -D Class matrices for the experiment 1. X - No. of row distance; Y- No. of plants 
distance within the row. 
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Experiment 2 

The 2DCLASS matrices of the incidence maps of experiment 2 (Fig. 4.4) are shown 
in Fig. 5.3. According to Fig. 5.3a, the core cluster size is nine to seventeen and 

clusters occur along the agronomic rows. Other than the core cluster, clusters of 
significant (P <_ 0.05) distance classes [1,3 -11], [4,0 -6], [5,0 -3] and [5,5 -6] may be 

interpreted as relative locations of clusters that could be either one row apart or four 

to five rows apart. The proportion of significant classes with significant SCFs is 

greater than 5% and thus a non -random spatial pattern is detected. 

The 2DCLASS matrix of Fig. 5.3b reveals a core cluster size of nine to seventeen, 

and clusters involve two agronomic rows. As in Fig. 5.3a, clusters of significant 

(P <_ 0.05) distance classes [4,0 -13] and [5,0 -16] may be interpreted as relative 

locations of clusters four to five rows apart. The proportion of significant classes 

with significant SCFs is greater than 5% and thus a non -random spatial pattern is 

detected. 

The 2DCLASS matrix of Fig. 5.3c represents a core cluster size of four to seven 

plants, and the clusters occur along the agronomic rows. Other than the core cluster, 

the clusters of significant (P 0.05) distance classes can be identified at the row 

distance of three in the 2DCLASS matrix, indicating relative locations of clusters 

three rows apart. The proportion of significant classes with significant SCFs is 

greater than 5% and thus a non -random spatial pattern is detected. 

The 2DCLASS matrix of Fig. 5.3d reveals a core cluster size of four to seven and 

occurrence of clusters along the rows. Other than the core cluster, significant 

(P <_ 0.05) distance classes [0,7 -14] and [1,8 -13] indicate relative location of clusters 

as seven to fourteen plants apart in the same row, or one row apart. The proportion of 
significant classes with significant SCFs is greater than 5% and thus a non -random 

spatial pattern is detected. 

Thus the conclusion from experiment 2 is that a non -random spatial pattern is evident 

and that the average core cluster size is about seven to twelve. Moreover, aggregation 

is predominantly along the rows and the relative location of clusters varies from 

several plants in the same row to five rows apart. 
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Fig. 5.4 The 2 -D Class matrices for the experiment 2. X - No. of row distance; Y- No. of plants 
distance within the row. 
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Experiment 3 

The 2DCLASS matrices of the incidence maps of experiment 3 (Fig. 4.5) are shown 

in Fig. 5.4. According to the 2DCLASS matrix of Fig. 5.4a, core cluster size is two 

to three and clusters occur along the rows. Other than the core cluster some 

significant (P <_ 0.05) distance classes can be identified at the row distance of ten in 

the distance class matrix. This situation is quite common (Nelson et al., 1992) when 

the edge effect is significant. However, in this case, the criteria for identification of 
an edge effect were not met. The proportion of significant classes with significant 

SCFs is greater than 5% and thus a non -random spatial pattern is evident. 

The 2DCLASS matrix of Fig. 5.4b reveals a core cluster size of four to five, and the 

clusters involve two agronomic rows. A special feature of this 2DCLASS matrix is 

that large number of significant (P <_ 0.05) distance classes in the bottom half of the 

matrix. This may be interpreted as clusters in any of the agronomic rows twenty to 

twenty -nine plants apart. The proportion of significant classes with significant SCFs 

is greater than 5% and thus a non -random spatial pattern is evident. 

The 2DCLASS matrix of Fig. 5.4c reveals a core cluster size of three to five, and 

clusters involve two agronomic rows. No specific cluster of significant distance 

classes can be identified other than the core cluster. The proportion of significant 

classes with significant SCFs is greater than 5% and thus a non -random spatial 

pattern is evident. 

The 2DCLASS matrix of Fig. 5.4d indicates a core cluster size of four to seven, and 

clusters involve two agronomic rows. The group of significant distance classes at the 

bottom of the distance class matrix suggests that the distance between clusters is 

about four to eight rows and twenty -six to twenty -eight plants apart. The proportion 

of significant classes with significant SCFs is greater than 5% and thus a non -random 

spatial pattern is detected. 

Thus the results of the experiment 3 may be summarised as follows: aggregation is 

evident and average core cluster size is about three to five. Moreover, clusters 

predominantly involve two agronomic rows. The relative location of clusters is 

mostly at twenty to twenty -eight plants apart along the agronomic rows. 
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Fig. 5.5 The 2 -D Class matrices for the experiment 1. X - No. of row distance; Y- No. of plants 
distance within the row. 
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Experiment 4 

The 2DCLASS matrix of the incidence maps of experiment 4 (Fig. 4.6) are shown in 

Fig. 5.5. The 2DCLASS matrix of Fig. 5.5a reveals a core cluster size of thirty -five 

to sixty -nine and clusters involve four agronomic rows. Apart from core cluster, no 

other groups of clusters of distance classes could be identified in the 2DCLASS 

matrix. The proportion of significant classes with significant SCFs is greater than 5% 

and thus a non -random spatial pattern is evident. 

The 2DCLASS matrix of Fig. 5.5b represents a core cluster size of fifteen to twenty - 

nine, and clusters involve two agronomic rows. Apart from the core cluster, distance 

classes [0,11 -18], [1,15 -19], [2,1 -6] and [3,1 -6] can be identified in the 2DCLASS 

matrix and this may be interpreted as distance between clusters is eleven to eighteen 

plants apart in the same row, to three rows apart. The proportion of significant 

classes with significant SCFs is greater than 5% and thus a non -random spatial 

pattern is detected. 

The 2DCLASS matrix of Fig. 5.5c reveals a core cluster size of four to seven and 

clusters occur along the agronomic rows. Other than the core cluster, a group of 

significant distance classes can be identified in the bottom of the 2DCLASS matrix 

and, as explained under experiment 3, this may also be interpreted as the relative 

location of clusters being twenty -three to twenty -seven plants apart. In addition, 

clusters of distance classes [7,4 -17], [8,1 -3] and [9,13 -15] may be interpreted as 

clusters also at seven to nine rows apart. The proportion of significant classes with 

significant SCFs is greater than 5% and thus a non -random spatial pattern is evident. 

The 2DCLASS matrix of Fig. 5.5d reveals a core cluster of four to seven, and 

clusters occur along the rows. Other than the core cluster, a group of significant 

distance classes can be identified at the row distance of four to six in the 2DCLASS 

matrix and this may be interpreted as clusters at four to six rows apart. The 

proportion of significant classes with significant SCFs is greater than 5% and thus a 

non -random spatial pattern is evident. 

The results of experiment 4 may be summarised as follows: aggregation is evident 

and average core cluster size is fifteen to twenty eight. Moreover, clusters occur 

predominantly occur along the rows, but could involve several rows. 

115 



Y 0 I 2 3 4 5 6 7 8 9 10 1 1 

0 
1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

22 
23 
24 
25 
26 
27 
28 
29 

o 

2 

3 

4 

5 

6 
7 

8 

9 

10 

n 
12 

13 

14 

15 

16 

17 

18 

19 

20 
21 

22 
23 
24 
25 
26 
27 
28 
29 

+ + + + 0 0 0 0 0 $ 0 0 
+ + + + 0 0 0 0 $ 0 $ 0 
+ + + + 0 0 0 0$ 0$ 0 
+ + + + 0 0 0 0 0 0 $ 0 
+ + + + 0 0 0 0 0 0 $ 0 
+ + + + 0 0 0 0 $ 0 0 0 

+ + + + 0 0 0 0 $ 0 0 0 

+ + + + 0 0 0 0 5 0 0 0 

+ + + o 0 0 0 0 $ 0 0 0 

O + + 0 0 0 0 0 $ 0 0 0 

+ + + + 0 0 0 0 $ 0 0 0 

O + + 0 0 0 0 0 0 $ 0 0 

O + 0 0 0 0 0 0 $ $ 0 0 

O 0 0 0 0 0 0 0 s $ 0 0 

O 0 0 0 0 0 0 0 s s 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 $ $ 0 0 0 0 

O 0 0 0 0 0 $ 0 $ 0 0 0 

O 0 0 $ $ 0 $ $ $ 0 0 0 

0 s s $ $ 0 $ $ 0 0 0 0 

O 0 $ $ 0 5 5 5 0 0 0 0 

O $ s $ s 0 $ $ 0 0 0 0 

$ S $ $ 0 0 $ $ 0 0 0 0 

O 0 $ $ 0 0 0 0 0 0 0 0 

O $ 0 $ 0 0 0 0 0 0 0 0 

0 
0 
0 

0 

0 

0 S 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

(a) 
Plantation - Devasara 

+ o 0 o 

+ 0 $ 0 
+ o o s 
+ o o s 
o o o s 
+ o o o 
o o o o 

o o s s 
o o o s 
+ o s s 
o o s a 
O o S 5 

o o s o 

o o s s 

o s o o o o o+ 
0 5 5 0 + 0 + + 

o s s o++++ 
s s o o+ o o+ 
s s s + o o o+ 
s s o+ o o++ s$ o + + o o+ 
s s o+ o o o+ 
o o o+ o o + + 

s o o + + + + + 

o s a+ o+ o+ 
0 5 0+ 0 0 0+ 
o o o+ o o + + 

s a o+ o+ o+ 
0 S 0 0 0 0 0 + 0 + 0 + 

0 0 0 0 0 0 0 + 0 + 0 + 

0 0 0 0 0 0 0 + 0 0 0 0 

0 0 0 0 0 0 0 + 0 0 + + 

0 0 0 0 0 0 0 0 0 0 0 0 

o o o o o o o o o+ o o 

0 0 0 0 0 + 0 0 + 0 0 0 

0 0 0 0 + 0 0 + 0 0 0 0 

0 0 0 0 0 0 0 + 0 0 + 0 

o o o o o o+ o s o o o 

o o + + o o+ o o o o o 

o o+ o o + + o o o o 0 

+ + + o o + + o o o+ o 

0 0 + + + + + 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 + 0 

0 0 0 0 0 0 0 0 0 0 0 0 

(e) 
Plantation - Munamaldeniya 

O I 2 3 4 5 6 7 8 9 10 11 

+ + 0 0 0 0 0 0 $ 0 0 0 
+ + + + 0 0 0 0 $ $ $ 0 

+ + + + 0 0 0 0 $ $ $ 0 

+ + + + 0 0 0 $ $ $ $ 0 
+ + + + 0 0 0 0 $ s $ 0 
+ 0 + + 0 0 0 0 $ 0 $ 0 
+ + + + + 0 $ 0 $ $ $ 0 

+ 0 0 0 + 0 5 0 0 5 $ 0 
+ 0 0 0 0 0 $ 0 5 0 5 0 
+ + 0 0 0 0 $ 0 $ s $ 0 

O + 0 0 0 0 $ $ $ $ $ 0 

+ 0 0 0 0 0 5 5 5 5 5 0 
+ 0 + 0 0 0 0 5 5 5 5 0 
+ 0 0 0 0 0 0 $ $ 5 5 0 

+ 0 0 + 0 0 0 $ $ $ 0 0 

+ + + 0 0 0 $ S S $ 0 0 
+ + o o o o s s o o o o 
+ + + 0 0 0 $ $ 0 0 0 0 

+ + 0 0 0 0 0 0 0 0 0 0 

0 + 0 0 0 0 0 0 $ $ 0 0 

0 0 0 0 0 0 0 0 $ 5 0 0 

0 0 0 0 0 0 0 0 5 0 0 0 

0 0 0 0 0 0 0 0 $ 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

$ 0 0 0 0 0 0 $ 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

(b) 
Plantation - Akkarawatta 

+ o o o + + 0 0 0 0 0 0 
+ o 0 0+ 0 0 0 0 0 0 0 

+ o o o + + o o o o o o 

+ o o o o + + a o o o o 

o o o+ o o+ o o o o o 

O 0 0+ 0++$ 0 0 0 0 

o o o o o o+ o o o o o 

O 0 0 0 0 + 0 0 0 0 0 0 

o o 0 0 0+ 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 + $ 0 0 0 0 0 

o o o o o o s o o o o o 

o o o o o o o o o o o o 

o o o o+ o o s o o o o 

O 0 + 0 + 0 0 5 0 0 0 0 

O 0 + 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 

0 $ 0 0 0 0 0 0 $ 0 0 0 

o o o o o o s o o o o o 

0 0 0 $ 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 

O 0 5 0 0 0 $ 5 5 0 0 0 

s o s s s o s o s o o o 

o o s s s o$ o s o o o 

o o s o o o s o o o o o 

o o s s o o o s s o o o 

O 0 $ 0 0 0 0 $ 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 + 

O 0 0 0 0 0 0 0 0 0 0 + 

(d) 
Plantation - Mukalanyaya 

Fig. 5.6 The 2 -D Class matrices for the experiment 1. X - No. of row distance; Y- No. of plants 
distance within the row. 
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It is important to note that the incidence maps in Fig. 4.3 -4.6 are not complete crop 

fields but part of the fields within the sites. Moreover, each field had been subjected 

to different conditions, such as control measures applied and year of stand. Thus it is 

impossible to make solid conclusions about the pineapple wilt pathosystem from 

these results. However, one common feature with all 2DCLASS matrices is the 

aggregation of disease incidence. In addition, all incidence maps reveal more clusters 

along rows than across rows and this is a good indication that the spread of the 

disease occur along the rows compared to across rows. The conventional conclusion 

from this analysis would be that average core cluster size of 8 -14 plants within the 

row may be the general cluster size of pineapple wilt disease. This assumes the 

analysis to be scale -independent, a quality discussed further in section 5.3. 

5.2 Effect of quadratization in 2DCLASS analysis 

In section 5.1 we investigated complete field maps in order to understand the spatial 

pattern of the disease. But very often epidemiological data are collected on the basis 

of quadrats. Moreover, if the field under study is large and 2DCLASS analysis is 

done on the basis of individual plants, the problem of software limitation may also 

arise. If a single value could be used for the information in a quadrat, i.e. if quadrat 

information is converted into a single value and then used in the 2DCLASS analysis, 

software limitation might be easily overcome. In addition, if this is possible, data 

collected on the quadrat basis may be directly used in the 2DCLASS analysis. 

In order to investigate the effect of this quadratization we analysed a 32 x 32 array 

map of pineapple wilt disease (Fig. 5.6). When the 2DCLASS analysis is performed 

on the basis of individual plants, the resulting 2DCLASS matrix is shown in Fig. 5.7. 

From the 2DCLASS matrix a core cluster in the top left corner with distance class 

having observed SCFs significantly greater than expected SCFs (P <_ 0.05) can easily 

be recognised, and it identifies an average core cluster size of approximately 26 to 53 

plants. In addition, large 'reflected cluster' with distance classes having observed 

SCFs significantly greater than expected (P <_ 0.05) can be identified at the right one- 

third of the matrix. A cluster of distance classes having observed SCFs significantly 

less than expected (P >_ 0.95) occurs in lower left of the 2DCLASS matrix. These 

reflect consistent periodicities between pairs of diseased (or healthy) plants over the 

array map. 
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Then the map was divided in to quadrats of size two (two plants). The quadratization 

was made along the rows, since the observed pattern suggests that the disease spread 

was predominantly in this direction. For the 2DCLASS analysis, quadrats with mean 

disease incidence greater than the overall mean incidence were coded as 'diseased' 

and the rest as 'healthy'. When 2DCLASS analysis is performed for this quadratized 

map, the resulting 2DCLASS matrix is shown in Fig. 5.8. Fig. 5.9 is the equivalent 

map when quadrat size is taken as four plants (also along the rows). 

A careful examination of Fig. 5.8 and 5.10 reveals that almost all the properties 

observed in Fig. 5.7 have been reflected in Fig. 5.8 and 5.10. For instance, more or 

less proportional reduction of core cluster size may be identified along with the 

increase of quadrat size. In addition, clusters of distance classes having observed 

SCFs significantly greater (P <_ 0.05) and less (P >_ 0.95) can be observed in same 

locations, with proportional scale. In other words output of the 2DCLASS analysis 

has been consistent irrespective of quadratization. This suggests that data based on 

quadrats may directly be used in 2DCLASS analysis with little if any loss of 

information in return. 
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Fig. 5.7 2DCLASS matrix of Fig. 5.6 (individual plant basis). X -No. of row distance, Y -No. of 
plant distance with in row. 
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Fig. 5.8 2DCLASS matrix of Fig. 5.6 (for the quadrat size 2), X -No. of rows distance; Y -No. 
of plant distance within row. 
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Fig. 5.9 2DCLASS matrix of Fig. 5.6 (for the quadrat size 4), X -No. of rows distance; Y -No. 
of plant distance within row. 
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5.3 Sampling from a large array 

In section 5.1 we performed 2DCLASS analysis for arrays of 12 x 30 plants. In 

section 5.2 we performed the same analysis for an array of 32 x 32 plants scoring the 

same pineapple wilt disease. The properties observed with array 32 x 32 were 

different to those observed with the array of 12 x 30. For instance, 2DCLASS 

analysis for all disease incidence maps of size 12 x 30 identified an average 

minimum core cluster size of eight plants in contrast to twenty -six with the 32 x 32 

array. There is no published information about how array size could effect on 

properties observed in 2DCLASS analysis although researchers seem to make the 

tacit assumption that array size has no effect on the analysis. We investigated the 

effect of array size on the property of minimum core cluster size, which is perhaps 

the most important information obtained from 2DCLASS analysis. 

From the 32 x 32 array (Fig. 5.6), we obtained random subsamples of different size 

arrays (Table 5.2). The smallest size (5 x 15) was sufficient to include the core cluster 

identified from the analysis of the full 32 x 32 array. Random number tables were 

used to identify the initial positions of these arrays in the original map (32 x 32 

array). In addition, in selecting the co- ordinates of the sample arrays, number of 

plants per each row was always taken to be greater than number of rows since 

aggregation was more dominant along the rows compared to across rows. For each 

sample array, 2DCLASS analysis were performed. From each analysis, the average 

minimum core cluster size was determined (Table 5.2). 

According to Table 5.2, the average minimum core cluster size corresponding to 

array size 12 x 30 is eight, and this tallies well with the average minimum core 

cluster identified with all 12 x 30 arrays in section 5.1. 

Fig. 5.10 shows the relationship between array size as a proportion of the total area 

and average minimum core cluster size. This clearly shows a linear relationship 

between minimum core cluster size and the array size (proportion). A regression fit 

of a linear relationship showed a coefficient of determination (R2) of 92 %, and the 

fitted model with slope equal to 23.3 and intercept equal to 0.24. This shows that the 

average minimum core cluster size is directly proportional to the array size of the 

incidence map. In other words, the average minimum core cluster seems to be a 

scale -dependent characteristic. 
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Table 5.2 Average minimum core cluster size for different sample arrays 

Sample size* Number of 
grid points for 

the sample 

Average 
minimum core 

cluster size 
5x 15 (15) 75 2.07 
10 x 20 (3) 200 3.67 
10 x 30 (3) 300 9.33 
12 x 30 (3) 360 8.00 
15 x 30 (3) 450 9.67 
20 x 30 (3) 600 16.00 
25 x 30 (3) 750 13.67 
32 x 32 (1) 1024 25.00 

* The values in the parenthesis are the number of array samples 
obtained for each array size and the largest array corresponding to 
the original incidence map of 32x32 array. 
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Fig. 5.10 Relationship between average minimum core cluster size and sample size as a 
proportion of the total area 

Dr. S.C. Nelson (personal communication) suggested examining the relationship 

between minimum core cluster size as a proportion of the size of the distance class 

matrix (referred to as the Scaled Core Cluster [SCC]), and the proportion of the array 

size to the total area. This relationship is shown in Fig. 5.11. 
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Fig. 5.11 Relationship between scaled core cluster (SCC) and sample size as a proportion of 
the total area 

The fitted line is parallel to the x -axis in Fig. 5.11 confirming the findings of Fig. 

5.10 that minimum core cluster as identified by 2DCLASS analysis is directly 

proportional to the array size. Since SCC is scale independent it may be a better 

parameter to be used in comparisons than the core cluster. However, SCC gives no 

information about the cluster size in a pathosystem. These findings suggest that 

caution should be exercised in drawing general conclusions with respect to the 

epidemiology of a disease on the basis of 2DCLASS analysis (Samita and Hughes, 

1995) especially when array size has not been held constant. For instance, in 

Munkvold et al. (1993), 2DCLASS analysis has been carried out for different array 

sizes, but conclusions have been made with out taking account of the array size. 

However, conclusions in this section were based only on the data used in this study 

and further investigations will be carried out to find out whether these findings are 

repeated with other data sets. 
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6 CONCLUSION 

Fitting the binomial distribution, or equivalently the linear logistic model, is the 

conventional method to analyse incidence data. It is true that if the incidence data 

satisfy the assumptions underlying the binomial distribution, this procedure is the 

most appropriate method to model the such data. However, in practical 

circumstances, sometimes, incidence data do not satisfy the assumptions underlying 

the binomial distribution. Thus, fitting the binomial distribution (or linear logistic 

model) is often inadequate to analyse such data. Use of binomial models in practical 

situations, such as toxicological testing, has been criticised (Haseman and Kupper, 

1979) on the grounds that they generally provide a poor fit to actual experimental 

data. 

Epidemiological studies of aggregated spatial patterns of disease incidence are very 

common in practice (Jeger, 1989). Fitting the binomial distribution (or linear logistic 

model) does not adequately describe disease incidence when the disease incidence is 

aggregated. The use of binomial models when unsuitable gives misleading results 

and thus should not be used at all in such situations. Clearly, routine use of x2 or 

Fisher's exact test for comparing the overall proportion of successes (diseased), 

which continues to be widespread in the biological literature, such as germination 

and epidemiological experiments, should be avoided. These procedures ignore the 

aggregation effect, and as a result may greatly inflate the type I error rate (Kruger, 

1970; Schardein et al., 1973; Haseman and Hogan, 1975; Haseman and Soares, 

1976). One possible approach would be to carry out preliminary homogeneity tests, 

i.e. testing goodness -of -fit to the binomial distribution or linear logistic model and 

identifying any departure from random spatial pattern. If aggregation is present, an 

appropriate method for analysing such data could be chosen based on variance - 

variance plots (section 3.5). Since a variance -variance plot gives an insight into the 

spatial pattern of disease incidence, in model fitting, it is advisable to investigate the 

variance -variance plot in the first place, even before fitting the linear logistic model. 

From chapter 4 we found that the logistic -normal binomial distribution (section 

3.4.2) is far superior to the binomial distribution in describing disease frequencies for 

the data we analysed in this study. In the literature, the beta -binomial distribution 

(section 3.4.1) has been used as an alternative to binomial distribution in describing 

disease frequencies when the disease incidence is aggregated. However, the logistic - 

normal binomial distribution is much more appealing than the beta -binomial 

distribution in describing aggregated disease incidence, because the underlying 
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assumptions of the logistic -normal binomial distribution agree with the intuitive 

notions (section 3.5) of what is happening in such data. This is the first study to 

illustrate the use of the logistic -normal binomial distribution in describing disease 

incidence data. However, our extensive investigation on the possibility of use of this 

distribution in describing disease incidence revealed that this distribution can 

effectively be used to describe and characterise aggregated spatial patterns in 

epidemiological studies. Thus we recommend to use the logistic -normal as an 

alternative to the beta -binomial distribution to describe aggregated disease incidence 

data. 

As a basis for hypothesis testing, the logistic -normal binomial model is appealing 

intuitively since it provides a quantitative measure of the heterogeneity and usually 

gives a much better fit to real data than the simple binomial model. Because of the 

nature of the aggregation of the pineapple wilt disease incidence data (section 4.4.1) 

we chose the logistic -normal binomial model to analyse those data and we found that 

the logistic -normal binomial model is an effective statistical tool to analyse 

aggregated disease incidence data. 

From the results of the statistical analysis of pineapple wilt data we found that, 

among the cultivars used in commercial cultivation, the cultivar Kew is more 

susceptible to the wilt disease than the cultivar Murici. The pesticides profenofos and 

prothiofos are effective in controlling pineapple wilt diseases. Moreover, the disease 

incidence can substantially increased with time and therefore control of the disease at 

the early stage is crucial. 

As an alternative method to distribution fitting, 2DCLASS analysis, provides a 

quantitative assessment of the spatial pattern of infected plants. The dispersal from 

the initial loci may lead to random or clustered patterns of disease. Presence of small 

core cluster sizes may be due to the dispersal by a single vector. Although this 

information may be obtained by 2DCLASS analysis, summary statistics cannot be 

obtained by 2DCLASS analysis. Thus no quantitative comparisons can be made 

among different systems. Hence, 2DCLASS analysis may have to be carried out in 

association with statistical modelling in order to get better understanding of 

epidemiological data. 

The 2DCLASS analysis was originally developed for the spatial evaluation of 

disease whose incidence is measured on individual plant basis using a presense or 
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absense classification. But from this study we found that information based on 

quadrats can be used in 2DCLASS analysis with little loss of information. With the 

understanding of disease symptoms a single code could be made to a quadrat either 

as diseased or healthy. This may overcome the limitation of 2DCLASS software to 

accommodate large number of data points. Moreover, it saves time spent on data 

collection. Sampling being a part of a disease management program, this information 

could eventually help to economise the cost on such program. 

Section 5.3 clearly demonstrated that 2DCLASS analysis is array size dependent 

(scale dependent). One may argue that aggregation may be dependent on field size. 

But section 5.3 confirms that the properties of 2DCLASS analysis, especially the 

core cluster size, are scale dependent. Thus the properties should strictly be discussed 

with reference to the size of the sample. 

One other problem we found with 2DCLASS analysis is the criterion for identifying 

non -random spatial patterns. For instance, according to 2DCLASS software (Nelson 

et al., 1992), if the proportion of distance classes with observed SCFs greater 

(P < 0.05) than 5 %, then the incidence is said to have a non -random spatial pattern. 

But there is no objective basis for that 5% criterion. In section 4.3.1, we found certain 

disease incidence maps to have random spatial pattern. But in 2DCLASS analysis, all 

these maps appear to have non -random spatial pattern. As explained in chapter 5, in 

2DCLASS analysis, strength of non -randomness is interpreted as being directly 

proportional to number of significant (P < 0.05) SCFs (Nelson et al., 1992) and, in 

distribution fitting, strength of aggregation is accounted by means of the value of the 

aggregation parameter after fitting the logistic -normal binomial distribution (section 

3.4.2). Fig. 6.1 shows the scatter plot of proportion of significant (P < 0.05) distance 

classes in 2DCLASS analysis versus the aggregation parameter obtained in logistic - 

normal binomial distribution fitting for the disease incidence maps (Fig. 4.3 -4.6). 

Fig. 6.1 clearly shows that there is no relationship (rank correlation coefficient 

[Spearman's rho] estimated to be 0.16 with 14 degrees of freedom [P = 0.55]) 

between these two supposed indices of aggregation. 

In distribution -fitting there is a definite statistical basis on which to decide whether a 

particular spatial pattern is random or not. Therefore it is well understood and 

established that distribution -fitting can be used to characterise spatial patterns. In 

contrast, in 2DCLASS analysis, the only statistical criterion used is to decide whether 

a SCF is significantly different from that expected on the basis of randomness. There 
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is no agreed formal statistical basis to distinguish spatial patterns. It seems that the 

two methods measure different aspects of the data. More work is required on 

2DCLASS analysis, especially on the development of 2DCLASS 'guidelines'. 
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0 0.5 1 1.5 2 2 5 

Frequency distribution aggregation 
parameter 

Fig. 6.1 The plot of proportion of significant (P < 0.05) distance classes verses frequency 
distribution aggregation parameter 

Based on this study, we recommend use of 2DCLASS analysis only to investigate 

characteristics of spatial patterns (such as core cluster size, edge effect and relative 

location of clusters) with respect to the array size. The aggregation parameter in the 

logistic -normal distribution can be used to determine the spatial pattern of the disease 

incidence. If the logistic -normal binomial distribution is a significantly better fit to 

the data than the binomial, the data can be considered to be aggregated, and the 

aggregation parameter of the distribution is then a measure of the extent of 

aggregation. If the binomial distribution is an adequate description of the data, 

disease incidence can be considered as randomly dispersed. This is equivalent to 

assuming that the aggregation parameter of the logistic -normal binomial distribution 

is equal to zero. When the spatial pattern is regular (i.e., the data are underdispersed) 

the algorithm adopted in EGRET does not converge. In this scheme the extent of 

underdispersion cannot be evaluated by estimation of parameter, but in practice this 

is not much of a drawback. 
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From the available software, EGRET has of most of the required facilities to analyse 

disease incidence data. In fact EGRET is the only software which has facilities to fit 

models with random effects as a standard option. MATHCAD has the facilities for 

numerical integration and thus it can be used to fit logistic -normal binomial 

distribution. Spreadsheet software programs play an important role in data 

management in epidemiological studies. As reported earlier (Chapter 4) automated 

prepared spreadsheets (using spreadsheet software) were used in data collection in 

this study. With the availability of portable computers, these spreadsheets software 

programs can save time spend on data collection and thus can be used efficiently in 

epidemiological studies. 

A number of different analysis techniques are available to analyse epidemiological 

data. Different techniques may illustrate different aspects of the data, and techniques 

can be misinterpreted easily. The properties described in all published analyses are 

not always well- understood. Careful selection of an appropriate technique plays a 

major role in reaching correct decisions. But the responsibility of interpretation 

should lie with the investigator, not with authors of software or analyses. 
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Appendix I 

$macro disp 
$cal %z1 = %coc $out $warn $cal %z2 =1 : %z3 = %z4 =0 : pw_ =1 

$swi %pwf pwt_ $cal w_ pw_ $while %z2 est_ $out %z1 
$pr : 'estimate of phi = ' %z3 ' after ' *i %z4 ' iterations' : 

: 'deviance for full model, parameter estimates and standard errors' 
: 'using a heterogeneity factor are as follows:' : $wei w_ $f + $dis e 

$pr : 'note: weight directive with weights in w_ is operative' : 

$warn $del wv_ n1_ 
$$endmac 

$macro est_ 
$wei w_ $f + $ext %vl $cal wv= %wt*%vl*%pw : %z5=%z3 
$cal n1= (%bd-1)*(%wt/%bd)**(%b-1) 
: %z3=(%x2-%cu(%pw*(1-wv_)))/%cu(n1_*(Yopw*(1-wv_)) : w_=(1+%z3*n1_) 
: w= pw_/w_ : %z2=%z5-%z3 : %z2=%sgrt(%z2*(Yoz2)>=0.0001 : %z4=%z4+1 
$$endmac 

$macro pwt_ $cal pw_=%pw $$endmac 

$m fn 
$ca %f=%cu(((%yv/%bd-%fv/%bd)**2 

-(%fv/%bd*(1-%fv/%bd)/%bd 
+%z3*(%fv/%bd*(1-%fv/%bd))**%b))**2) 

$pr %z3 : %b $ 

$ac 8 $pr %f $$e 

$return 
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