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Scientific Abstract 

Preterm birth is the leading cause of neonatal mortality and morbidity. The uterine 

cervix is key in maintaining a healthy pregnancy. Excisional procedures for the 

treatment of cervical intraepithelial neoplasia (CIN) are associated with preterm birth 

(PTB), but underlying mechanisms are yet to be described. Intrauterine infection is 

involved in 40% of PTB and cervical damage is likely to facilitate ascending infection 

with vaginal bacteria. The aim of this thesis was to establish and characterise an in 

vitro and in vivo model of cervical damage to study its interplay with ascending 

infection. For this, the surfactant N-9 was used as a damage agent.  

N-9 was found to reduce the endocervical epithelial cells’ viability and compromise 

their epithelial permeability in vitro. When vaginally administered in pregnant 

C57Bl/6 mice, N-9 disrupted the structural integrity of the cervical epithelium, caused 

an influx of neutrophils and resulted in increased cell proliferation in the basement 

membrane of the cervix. Similar where the findings in the vaginal epithelium. 

However, N-9-induced epithelial damage had no effect on timing of delivery or pup 

survival.  

Following vaginal infection with a luciferase-expressing Ureaplasma parvum, mice 

previously treated with N-9 exhibited higher rates of ascending infection, with 

increased bioluminescence signal in the upper reproductive tract. They also 

demonstrated higher bacterial titres in the amniotic fluid and higher bacterial product 

copy numbers in the reproductive tissues. This resulted in increased preterm birth rates 

among mice in this group compared to vehicle-treated controls. Infection with 

Ureaplasma parvum was characterised by an inflammatory response in the uterus, the 

placenta and the fetal membranes with increased expression of the proinflammatory 

cytokines TNFa, IL-1b, CXCL-1 and CXCL-2. This effect may be mediated by TLR2, 

the expression of which was also shown to increase accordingly.   
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Overall, these findings suggest that cervical epithelial damage facilitates ascending 

infection. This is a potential mechanism explaining the higher PTB incidence among 

women treated for CIN. The robust model of cervical epithelial damage during 

pregnancy described in this thesis can be used to study the barrier function of the cervix 

and its interplay with ascending infection in future studies. 
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Lay Abstract 

Preterm birth is any birth before 37 completed weeks of pregnancy and it occurs in 

about 10% of pregnancies. It is a very risky situation as babies born early are at 

increased risk of death and are also likely to face problems with any of their developing 

organs. The main reason why babies are born early is an infection with bacteria that 

takes place inside the womb. These bacteria travel there from the vagina, where they 

normally reside. The cervix is a little tube that stands between the vagina and the 

womb. When the cervix is damaged, then women are more likely to deliver preterm. 

Due to obvious ethical restrictions, experiments to find out why this happens cannot 

be done in women. The aim of this thesis was to mimic the above case in the laboratory 

setting using human cells and laboratory mice and to study whether damage in the 

cervix can increase the risk of infection in the womb. A substance called N-9 was used 

to cause cervical injury.  

When N-9 was applied to cells from the cervix in the laboratory, the cells started to 

die. It also disrupted their ability to filter what goes through them, a crucial feature for 

protecting against infection. When mice received N-9 in their vagina, the cells that 

form the lining of the cervix and the vagina, called the epithelium, started to die. In 

addition, specialised cells called neutrophils that participate in repair processes after 

injury were recruited on site. Finally, cells of the epithelium that survived started 

multiplying faster in order to replace the missing parts. These features were indicative 

of a successful mimicking of cervical damage. 

The interplay between cervical damage and infection was studied using N-9 and the 

most common bacteria in preterm birth, Ureaplasma parvum. In mice that had their 

cervix damaged by N-9, it was more likely for Ureaplasma parvum to manage to go 

from the vagina to the womb. This led to more mice in this group delivering preterm 

compared to the ones that had an intact cervix. It was also found that the presence of 
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Ureaplasma parvum causes the immune system of the mice to respond by producing 

specialised agents that cause inflammation.  

Overall, the work in this thesis suggests that damage to the cervix can increase preterm 

birth by allowing bacteria to pass through the cervix and infect the womb. 
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Chapter 1 Literature review 

1.1 Definition 

The definition of Preterm birth (PTB) was suggested by the World Health Organisation 

(WHO) in 1975 and refers to any delivery before 37 completed weeks of pregnancy 

(1). This is the equivalent of 259 days since the day of the last menstrual period (LMP). 

No global definition has been adopted for the lower limit, although this is generally 

set at 20 or 22 weeks of gestation (2). PTB can be further sub-classified into extremely 

preterm for babies born before 28 weeks, very preterm for babies born between 28 and 

32 weeks and moderate or late preterm for those born between 32 and 36 weeks (1). 

1.2 Epidemiology 

Preterm birth affects 11.1% of all live births worldwide with an prevalence that ranges 

from 5% to 18% (3). The incidence is between 5-10% in Europe, more than 10% in 

the United States and approaching 15% or more in Africa and South-East Asia (3). 

This results in about 15 million babies being delivered prematurely on an annual basis 

(4). About 80% of those are in Africa and Asia (5). 

Preterm birth can be iatrogenic due to medical indications or occur after spontaneous 

onset of preterm labour (PTL) or preterm premature rupture of membranes (PPROM). 

Despite this division, a spontaneous PTB increases the risk for a subsequent medically 

indicated PTB and vice versa (6). This indicates that common underlying mechanisms 

are likely to be shared in both conditions (7).  

Medical indications for a preterm delivery account for about 30% of PTBs and include 

conditions that put either the maternal (such as preeclampsia) or fetal (such as 

intrauterine growth restriction) health at risk (3). The number of medically indicated 

PTBs has been shown to have increased in industrialised countries over the past two 

decades (8). This is partly due to an increase in the use of assisted reproductive 
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technology (ART) which in itself increases the risk for preterm delivery, even in 

singleton pregnancies (9).  

1.3 Mortality and morbidity 

1.3.1 Mortality 

Over the past few decades, medical advances have improved mortality rates of babies 

born preterm. These include the use of assisted ventilation (10), surfactant 

administration (11) (12), widespread use of antenatal corticosteroids for preterm lung 

maturation (13) and the treatment of preterm babies in the intensive care unit (14). 

These advances have been pivotal for the striking improvement in preterm mortality 

rates, especially in the extremely preterm group (15). However, by 2013 preterm birth 

and its complications were still the leading cause of death during the neonatal period 

(16). These account for a total of approximately 1 million neonatal deaths annually 

(16).  

The mortality risk largely increases with smaller gestation age (17). Most studies 

report their data by birthweight (18) which can be used as an indication of gestational 

age (19). For example, survival to discharge ranges from less than 20% at 401-500g 

birthweight to more than 90% at 1401-1500g birthweight (20). The high mortality risk 

of this very small group has a vast effect on the overall mortality rates. In particular, 

babies below 1,000g birthweight account for almost half infant deaths in the US 

annually, despite them representing only 0.8% of the total number of births (21). The 

same pattern is also found for infants in the extremely preterm group of earlier than 28 

weeks gestation (21).  

1.3.2 Morbidity 

Surviving infants are potentially exposed to a wide spectrum of short-term 

complications that predispose and may lead to severe long-term outcomes.  

Shortly after delivery, preterm neonates are at increased risk of severe respiratory 

complications such as Acute Respiratory Distress Syndrome (ARDS) and 
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bronchopulmonary dysplasia. These conditions result in a poorer lung function later 

on in life (22) with a concurrent tendency for increased hospitalisation and more 

hospital re-admissions (23).  

Ocular complications such as retinopathy or prematurity are also common, especially 

in the extremely preterm group. This can lead to moderate morbidity such as myopia 

or hypermetropia (24). Importantly, it can lead to severe complications including 

retinal detachment (25), severe visual impairment or even blindness (26). 

Premature babies are also at increased risk of developing type 2 diabetes (27), renal 

(28) and cardiovascular disease (28) in their adulthood. These conditions further 

increase mortality and morbidity risks on their own. 

The most dramatic impact is arguably seen in the preterm infant’s brain. Preterm 

neonates are at increased risk of intraventricular haemorrhage (29). Given the brain’s 

immature status at this critical developmental window, this can lead to cerebral palsy 

(30) and neurosensory disabilities (31). These can evolve into permanent neurological 

disabilities with life-long morbidity (32). This becomes apparent as they face learning 

difficulties (33), cognitive deficit (34) and altered social behaviour (35).  

1.4 Financial implications 

Besides the detrimental effects on life, health and wellbeing of premature infants, PTB-

related morbidity also has important financial consequences on healthcare services 

both in the short and in the long-term. A cohort study from California reported that in 

the short-term, the cost of post-delivery hospitalisation of a premature baby at 24 

weeks has a median value of $216,814 for a median 92-day stay at the hospital (36). 

At 37 weeks however, the hospitalisation cost is at $591 for a 2-day stay (36). This 

highlights a remarkable cost reduction of more than 99%.. Similar results regarding 

hospitalisation length were also reported using a Swedish registry (37). This 

emphasizes the huge cost of PTB, even for those that manage to survive without any 

impairment.  
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Following hospital discharge, re-admissions related to prematurity complications are 

quite likely. Further costs related to social care and special education are also 

implicated as direct consequences of prematurity. In the UK, a fair total estimate of 

the financial burden of PTB to the public sector for 2006 was £2.946 billion which 

corresponds to $4.567 billion at the time the study was conducted (38). Predictably, 

the study found that the average cost for each preterm child increased as the gestational 

length got shorter as part of a direct inverse relationship (38). The respective financial 

burden for the US in 2005 was $26.2 billion, which is in line with the UK data, the 

difference being reflective of the population difference as well as the increased 

incidence (39).  

A recent study has estimated that a relative 5% reduction of preterm births in countries 

with a very high human development index would translate into 58,000 fewer preterm 

deliveries. This would result in global savings of $3 billion annually (40). Collectively, 

these data suggest that reducing preterm birth and/or alleviating its effects will have a 

huge financial benefit on healthcare systems.  

1.5 Key structures in the parturition process 

Parturition is a well-synchronised series of events that result in profound biological 

and clinical changes in three key reproductive tissues: the myometrium, the fetal 

membranes and the cervix. Synchronous activation of the 3 at term marks what has 

been described as “the common pathway of parturition” (41).   

1.5.1 The myometrium 

The reproductive tissue where the conceptus attaches, grows and develops during 

pregnancy is the uterus. The uterus consists of three distinct layers. The outer layer is 

called the perimetrium and the inner layer is called the endometrium. During gestation, 

the endometrium undergoes changes under the influence of the pregnancy-related 

hormones, such as progesterone, to become the decidua (42). The middle muscular 

layer is called the myometrium (42). The myometrium primarily consists of densely 

packed smooth muscle fibres (42). In addition is also has dense vasculature with many 
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blood and lymph vessels as well as connective tissue and immune cells (42). As 

gestation advances, the uterine smooth muscle cells undergo stretch-induced 

hypetrophy (43). The hallmark of myometrial transition to a labouring phenotype is 

initiation of co-ordinated contractions, resulting in the expulsion of the fetus and the 

placenta (44). This transition is termed “activation” (44). 

1.5.2 The fetal membranes 

The fetal membranes are comprised of the chorion and the amnion, the two of them 

being closely adherent (45). The thicker chorion is the exterior layer and mainly 

consists of a dense cellular population (46). The amnion is the thinner and inner-most 

layer and is rich in extracellular matrix formed of collagen fibrils (46). They surround 

the fetus which they manage to retain along with the amniotic fluid (47). 

Constitutively, they protect the fetus by forming a physical protective barrier (48). At 

the same time, they critically contribute to fetal nutrition by secreting nutritious 

substances (48). During parturition, the fetal membranes undergo extensive 

remodelling that leads to their weakening, rupture and finally separation from the fetus 

(49).    

1.5.3 The cervix 

The cervix is a tube-like tissue located between the uterus and the vagina. In the non-

pregnant state, it has an average length of 3-4 cm and it mainly consists of collagen-

rich extracellular matrix with only a minimal cellular component of fibroblasts, smooth 

muscle, epithelial and immune cells (50). It consists of two main areas: the ectocervix 

and the endocervix. The ectocervix is the cervical part protruding into the vagina. Like 

the vagina, it is lined with a non-keratinised stratified squamous epithelium (51). The 

endocervix or the endocervical canal is the tube part of the cervix that connects the 

uterine cavity to the ectocervical opening to the vagina, called the external os. The 

endocervical epithelium is a single layer of mucus-producing columnar cells (51). 

During pregnancy, the mucus produced by the endocervical cells forms the cervical 

plug or operculum (52). This is a physical and functional barrier that contributes to the 

protection of the fetus (53). For parturition to occur, the cervix undergoes effacement 
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and dilatation, which are mainly driven by the mechanical forces exerted by the 

myometrial contractions (54). This allows passage of the fetus through the cervical 

canal (55). 

Activation of one or more of the above-mentioned components of parturition - 

myometrium, fetal membranes, cervix - can lead to spontaneous onset of the 

parturition cascade. Untimely activation can lead to preterm birth.  

 

Figure 1.1 Basic anatomy of the reproductive tissues during pregnancy.  



 Cervical epithelial damage and preterm birth 

Literature review 35 

1.6 Risk factors  

The pathophysiology of preterm birth is still incompletely understood. This is further 

complicated by the fact that it does not represent a single clinical condition, but rather 

a syndrome. The notion that preterm birth is a syndrome is strongly supported by its 

diverse aetiology, with multiple pathologies involved (56).  

Several factors have been shown to increase the risk for preterm delivery. Among 

them, the most consistent is a previous history of preterm birth which results in a 2.5-

fold increase in the risk of preterm birth in the current pregnancy, the effect being 

stronger in extremely preterm deliveries (57). Moreover, recurrent PTB tends to occur 

around the same time as the previous event (58), with most women delivering within 

a couple of weeks of their first delivery (59). In addition, a large population-based 

study from Sweden found that sisters of women that delivered preterm have a 1.8-fold 

increased odds ratio (OR) of delivering preterm themselves (60). As environmental 

factors might be the reason for this association (61), another population-based study 

adjusted for known environmental risk factors only to find an even higher OR of 4.2 

in siblings of women that gave birth preterm (62). Collectively, these data highlight 

the importance of genetic predisposition as a risk factor for preterm birth. 

PTB tends to occur more often and earlier in gestation in black women (63). Racial 

disparities among population sub-groups have long been observed in the USA (64). A 

study in a low income population consisting of 69% black and 31% white women 

found that the higher incidence of PTB in black compared to white women was quite 

consistent even when controlled for other risk factors and cannot be explained based 

on separate maternal characteristics, such as smoking or alcohol consumption (65). 

Disparities in socioeconomic status are also involved, as substantial socioeconomic 

deprivation can increase the risk of very preterm births by a factor of 2 (66). 

Another factor implicated with preterm birth is the work environment. Although 

employment itself does not increase the risk for preterm delivery (67), long hours and 

physically or mentally demanding jobs are associated with increased risks (67) (68). 

These conditions increase the levels of maternal stress, which is an independent risk 
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factor in itself as it almost doubles the risk for preterm delivery (69). Extremes of these 

psychosocial factors, such as maternal depression have also been associated with PTB 

(70). 

The social factor that has been more firmly associated with preterm delivery is 

smoking. The association was first suggested in 1957 (71) and has since been 

confirmed in different cohorts (72) (73). The effect has been shown to be dose-

dependent and is more strongly associated with very preterm birth (74).  

Despite the fact that the above-mentioned conditions are observed risk factors for 

preterm delivery, there is no robust mechanistic evidence that fully explains the 

associations. Conditions that can predispose to preterm birth and for whom some 

mechanistic insights have been described are discussed right below. 

1.7 Causes of preterm birth 

1.7.1 Uterine overdistention  

An abnormal shape or size of the uterus confers an increased risk for preterm birth. In 

support of the former, patients having uterine malformations such as a bicornuate or 

septate uterus are at increased risk for preterm labour and subsequently preterm birth 

(75). This is also the case for patients with an increase in the size of the gravid uterus 

because of conditions such as polyhydramnios (76) (77) and multifetal pregnancies 

(78). This increase in size leads to overdistention of the uterus with a consequent 

stretching of the myometrium. Mechanistically, a stretching-induced increase in 

myometrial contractility that can predispose to preterm labour has long been described 

(79). In addition, myometrial stretching can induce the release of prostaglandins, 

which are key mediators of the activation of all three components of the parturition 

pathway (80). Stretching has also been shown to induce the mRNA levels of the 

contraction associated proteins Connexin-43 (Cx-43) (81) and Oxytocin Receptor 

(OTR) (82).  

However, uterine overdistention also results in the stretching of fetal membranes. 

Similar to what happens in the myometrium, stretching of amniotic epithelial cells in 
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vitro results in the release of prostaglandin E2 (PGE2) and interleukin-8 (IL-8) (83) 

(84). This indicates that stretching can induce an activation phenotype in the amnion 

that is compatible with membrane rupture.          

1.7.2 Vascularisation disorders 

Bleeding and vascularisation disorders have been linked with an increased risk for 

PTB. Intrauterine bleeding caused by conditions such as placental abruption 

significantly increase the risk for preterm delivery (85). Potential mechanistic insights 

have put the coagulation cascade in the centrepiece of the disease pathophysiology 

(86). In particular, the coagulation factor thrombin has been shown to be able to 

stimulate contractions of rat myometrial tissue both in vivo and ex vivo (86). Poor 

vascularisation can result in abnormal placentation and a consequent placental under-

perfusion (87). This unfavourable environment has been associated with PTB (88). A 

cross-sectional study found that patients delivering early after preterm labour with 

intact membranes exhibited higher rates of spiral arteries’ physiological 

transformation failure both in the myometrium and the decidua compared to normal 

term deliveries (88). In further support of the association between vascularization 

factors imbalance and PTB, it has been reported that a subset of women delivering 

prematurely demonstrate an anti-angiogenic profile in the maternal plasma that is 

apparent about 5 weeks prior to spontaneous onset of labour (89). This profile is 

characterised by both an increase in anti-angiogenic factors as well as an increase in 

factors that promote vascularisation (89). 

1.7.3 Insufficient tolerance to the fetus 

Both the fetus and placenta express tissue-specific maternal and paternal antigens. For 

a successful pregnancy to occur, immune tolerance mechanisms are in place both for 

the maternal (90) and the fetal side (91). These mechanisms induce the production of 

tolerogenic maternal and fetal regulatory T cells and safeguard the pregnancy by 

preventing the gestation equivalents of graft rejection and graft versus host disease 

respectively. Dysregulation of this tolerogenic state with maternal effector T cell 

infiltrations and cytokine secretion in the placenta, as in chronic chorioamnionitis, is 
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often observed especially in late preterm births (92). In addition, increased production 

of fetal antigens as is the case in antenatal fetal interventions significantly increase the 

risk for preterm delivery (93) (94). Potential mechanistic insights from mouse models 

have revealed that this increased production of fetal antigens triggers a breakdown of 

maternal-fetal tolerance, with a subsequent activation of maternal effector T cells (95). 

Even though potential mechanistic insights have been described for the above 

conditions, further studies are necessary in order for a causal relationship between 

them and PTB to be established. To date, the only cause of PTB with a well-established 

causality link and a properly described pathophysiology is an intrauterine infection.  

1.7.4 Cervical disorders 

Given the importance of the functions of the cervix for a healthy pregnancy, it is no 

surprise that cervical disorders could account for a number of pregnancy losses and 

preterm deliveries. Cervical insufficiency is a condition characterized by a painless 

dilation of the cervix in the absence of myometrial contractions that leads to a recurrent 

pregnancy loss during in the second trimester. It is reflective of the incompetence of 

the cervix to retain the uterine content within the uterus. 

Cervical insufficiency can be clinically diagnosed depending on specific cervical 

characteristics. Previous obstetric history of recurrent pregnancy loss after painless 

cervical dilation in the second trimester is indicative of cervical insufficiency. Clinical 

presentation with painless cervical dilation in the second trimester is also suggestive 

of cervical insufficiency. Finally, a short cervix as assessed by transvaginal ultrasound 

is associated with an increased risk for preterm delivery and can be a predictor of 

spontaneous PTB, although not necessarily due to cervical insufficiency (96). 

Congenital diseases such as a hypoplastic cervix (97) or exposure to diethylstilbestrol 

in utero (DES) (98) could result in cervical insufficiency (99). Genetic factors have 

also been implicated in the aetiology of cervical insufficiency (100). In particular, 

specific polymorphisms of the genes collagen 1A1 (COL 1A1) and transforming 

growth factor beta (TGF-β) are associated with cervical insufficiency (101). Both of 
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these genes are involved in diseases characterised by dysregulation of the extracellular 

matrix formation, such as osteoporosis (102) and tumour invasion (103). 

The relationship between an inflammatory state and cervical insufficiency is still 

unclear. A study reported that women with cervical insufficiency had higher levels of 

the proinflammatory cytokine IL-6 in the amniotic fluid compared to controls (104). 

From a genetics perspective, a specific polymorphism in the gene of the anti- 

inflammatory cytokine IL-10 appears to occur more frequently in women with cervical 

insufficiency compared to healthy controls (105). This could imply that variations in 

the inflammatory balance during pregnancy might have a role in the pathogenesis of 

cervical insufficiency. 

1.7.5 Infection/inflammation 

The first suggestion that infection is implicated in the pathogenesis of preterm birth by 

being able to cause membrane rupture and preterm labour was reported almost 70 years 

ago (106). For the next decades the focus was given on extrauterine and often systemic 

infections that could compromise the maternal health and thus predispose to preterm 

birth. Examples of such infections include malaria (107) and pyelonephritis (108), 

pneumonia (109), asymptomatic bacteriuria (110) and more recently periodontal 

disease (111). However, for the last 30 years the attention has been shifted towards an 

infection within the intrauterine tissues. This was driven by the finding that bacteria 

that have invaded the amniotic cavity can induce an inflammatory response in the fetal 

membranes and the choriodecidual space in patients presenting with preterm labour 

(112). Overall, infection is considered to account for a minimum of 25-40% of all 

preterm deliveries, making it the most common cause of preterm birth (113). 

Percentages vary significantly with gestational age. In particular, infection is 

implicated in about 10% of late preterm births. By contrast, the rate exceeds 80% in 

the extremely preterm population (114) (115).  The fact that these are the infants facing 

the greatest risks of neonatal morbidity and mortality showcases the importance of 

infection as a cause of preterm birth. 
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The fact that both intrauterine and extrauterine infections have been associated with 

PTB constitutes one line of support for the suggested causal relationship. Further 

evidence comes from the fact that preterm birth can be induced by administering live 

bacteria or bacterial products in different mouse models such as mice (116), rabbits 

(117) and rhesus macaques (118). This effect can be reversed by the use of antibiotics, 

as has been shown from both animal (119) and human studies (120). In humans 

however it has been shown that the only cases that are likely to benefit from antibiotic 

administration are those with evidence of clinical infection, this being consistent with 

the causation argument (121). In addition, the presence of cytokines such as IL-6 (122) 

and matrix degrading enzymes such as MMP-8 (123) in the amniotic fluid significantly 

increase the risk for PTB. These products are indicative of an inflammatory process 

secondary to an infectious trigger that is usually subclinical in nature (124).   

Mechanism of action 

1.7.5.1.1 Toll-like receptors 

Once the microorganisms invade the reproductive tissues, they first encounter the 

innate immune system. To sense the infection, the immune system uses specialised 

soluble, transmembrane or intracellular proteins that are expressed in immune and 

epithelial cells and are termed Pattern Recognition Receptors (PRRs). These receptors 

can recognise molecular structures that are unique to microbes and shared between 

them. Following ligation of such a structure to its receptor triggers the downstream 

activation of a non-specific immune response that helps clear the infection. Among the 

different families of PRRs, the most well-studied in the female reproductive tract that 

has an active role in the pathophysiology of PTB is the family of Toll-like receptors 

(TLRs). 

To date, ten different TLRs (TLR1-10) have been described in humans and thirteen in 

mice (TLR1-13) (125). TLR1, 2, 4, and 6 are expressed on the cellular membrane and 

they can recognize bacterial structures to mount an inflammatory response. By 

contrast, TLR3, 7, 8 and 9 are intracellular receptors expressed on specialized 

compartments that are mostly involved in antiviral immunity. The biological function 
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of TLR10 is not very well defined.In the human reproductive tissues TLR1, TLR2, 

TLR3, TLR4, TLR5 and TLR6 are expressed both in the lower and the upper 

reproductive tract. In particular, the vagina and the cervix express TLR1, 2, 3, 5 and 6 

(126). The upper reproductive tract is dominated by the expression of TLR2 and TLR4, 

although TLR1, 3, 5 and 6 are also expressed in the endometrium and the fallopian 

tubes (127). During pregnancy, the decidua has been shown to express all TLRs 

throughout the course of gestation (128). TLR2 and TLR4 are also expressed in the 

pregnant myometrium (129) and the fetal membranes (130) and the expression of both 

is significantly increased during labour, indicating a role in the parturition process. 

Important downstream molecules involved in the TLR pathway such as the Myeloid 

differentiation primary response element 88 (MyD88) protein and CD14 are also 

expressed in the reproductive tissues (127) (128).  

Overall, this body of literature suggests that the reproductive tissues during pregnancy 

are able to sense a microbial infection to mount an inflammatory response though the 

TLR family of PRRs, similar to what happens in other tissues. Crucial to this 

suggestion has been the finding that blocking the activity of TLR4 either by TLR4-

specific monoclonal antibodies (131) or by using a receptor antagonist (132) can stop 

preterm birth induced by live bacteria or bacterial products. Similarly, mice that 

express a mutant TLR4 receptor are resistant to PTB induced by the same substances 

(133). This has led to the theory that TLR4 signalling could be targeted as a potential 

a therapeutic strategy for PTB (134). 

Recently, it was reported that in the presence of chorioamnionitis, the most common 

infection preceding preterm birth, there is an increased upregulation of TLR-1 and 

TLR-2 in the amnion, the chorion and the decidua (135). In addition, another study 

found that that TLR-1 is also upregulated in pregnancies complicated by 

chorioamnionitis that eventually deliver prematurely (136).   

Upon ligation of specific microbial or viral molecular structures called PAMPs 

(Pathogen-associated molecular patterns), TLRs undergo conformational changes that 

lead to the recruitment of specialised adaptor molecules. These molecules drive the 
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signalling pathways downstream of TLRs. Four such adaptor molecules have been 

discovered to date: MyD88 (137), TIR- associated protein (TIRAP) (138), TIR-

domain-containing adaptor protein-inducing IFN-β (TRIF) (139) and TRIF-related 

adaptor molecule (TRAM) (140). Ligation of different PAMPs stimulates different 

TLRs leading to recruitment and activation of different adaptor molecules. 

Downstream signalling via MyD88 leads to the transcription of genes encoding 

proinflammatory cytokines whereas signalling through TRIF leads to the transcription 

of genes encoding interferons.  

Most TLRs signal through the adaptor molecule MyD88. This signal, via recruitment 

and activation of the intermediate molecules interleukin-1 receptor-associated kinase 

1 (IRAK1) (141) and IRAK4 (142) and then TNF receptor associated factor 6 

(TRAF6) (143) leads to phosphorylation and nuclear translocation of the transcription 

factor nuclear factor kappa B (NFκB). In addition, these pathway leads to the 

phosphorylation of MAP kinase kinase 6 (MKK6) which then subsequently 

phosphorylates further MAP kinases (144). The endopoint of the cascade is the 

production of inflammatory mediators such as cytokines and chemokines (145). 

1.7.5.1.2 Cytokines and chemokines 

Cytokines and chemokines have been central to the pathophysiology of preterm birth. 

The first cytokine to be associated with the mechanisms of infection-induced preterm 

birth was Interleukin 1 (IL-1). The study found that women in preterm labour with 

intra-amniotic infection had increased IL-1 activity in the amniotic fluid that correlated 

with an increase in prostaglandins E2 and F2a (146). The amnion itself can produce 

prostaglandins in response to IL-1 treatment in a dose-dependent manner (147). 

Another reproductive tissue capable of secreting IL-1 is the decidua (148). In addition, 

IL-1 family and IL-1b in particular has been shown to have the capacity to stimulate 

myometrial contractions during pregnancy in a non-human primate model using rhesus 

monkeys. Furthermore, it increased the production of other proinflammatory cytokines 

and prostaglandins in the amniotic fluid on the rhesus monkeys (149). In mice, a 

subcutaneous injection of IL-1 was used to establish the first mouse model of preterm 
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birth as all mice that were injected delivered prematurely (150). In further support of 

the role of IL-1 in this model, abrogating IL-1 activity by using an IL-1 receptor 

antagonist managed to stop preterm delivery in these mice (151). 

Production and release of IL-1b is done through a distinctively characteristic 

intracellular pathway (152). Initially, following gene transcription mediated by NFκB, 

an inactive precursor of IL-1b is produced, termed pro-IL-1b (153). This is then 

proteolytically cleaved by a protease called caspase-1 to acquire its active form, IL-1b 

(154). The activation of caspase-1 is mediated by a protein complex called the 

inflammasome. The different components that form the inflammasome complex are: 

a sensor molecule, an adaptor molecule called ASC and caspase-1 (155). A wide range 

of sensor molecules has been described to date (156). Most of them contain a NOD-

like receptor sensor, most notably, in the case of bacterial infections, NLRP3 (157). 

ASC then mediates the assembly of several pro-caspase 1 molecules, the self-cleavage 

of which leads to the formation of the active caspase-1 which then connects to NLRP3 

(155). 

The number of cytokines with a role in preterm birth expands beyond the IL-1 family. 

Interleukin-6 (IL-6) was the next cytokine to be associated with infection-induced 

preterm birth. It was found that women presenting with preterm labour that have an 

intra-amniotic infection exhibit significantly higher levels of IL-6 in the amniotic fluid 

(158). Higher IL-6 levels were also observed in women in preterm labour failing to 

respond to tocolytic therapy (158). IL-6 can also be used for detecting women at term 

with microbial invasion of the amniotic cavity (MIAC) as it demonstrates significantly 

increased levels in the amniotic fluid (159) (160).  

Similar were the findings for the proinflammatory chemokine Interleukin-8 (IL-8). 

The levels of IL-8 were found to be higher in the amniotic fluid of women in preterm 

labour with PPROM and positive amniotic fluid cultures (161) (162). 

Such is the case also for Tumor necrosis factor A (TNFα). Its levels were measurable 

in the amniotic fluid of women in preterm labour and with intra-amniotic infection as 

opposed to women without infection who had no detectable TNFα levels even in the 
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presence of preterm labour (163). Also bacterial products can stimulate reproductive 

tissues, such as the decidua to produce TNFα (164) (165).  

Other studies examined a series of proinflammatory cytokines rather individual ones. 

Similar to previously described studies, the levels of both IL-6 and IL-8, as well as the 

inflammatory cytokine Granulocyte-colony stimulating factor (G-CSF) were found to 

be increased in the amniotic fluid of women with intrauterine infection, more so for 

those in preterm labour (166). Another study reported that increased levels of IL-1a, 

IL-1b, IL-6, IL-8 and TNFα in the amniotic fluid were associated with histologic 

chorioamnionitis and the presence of bacteria in the amniotic fluid (167). The same 

study also found that elevated levels of the above cytokines can predict delivery with 

7 days of the measurements as well as delivery before 34 weeks (167). Early onset 

neonatal infection is a significant cause of neonatal morbidity and mortality. 

Responsible pathogens can often be acquired in utero. Infected newborns have 

elevated plasma levels of both IL-6 and TNFα (168). 

A very important finding supporting the concept that infection-induced preterm birth 

is mediated by cytokines came from mice. By using animals lacking both the IL-1 and 

TNF receptor, the group made the observation that these mice had significantly lower 

preterm birth rates compared to their wildtype counterparts after intrauterine 

administration of live Escherichia coli (169). This means that the IL-1 and TNF 

signalling pathways are necessary for E. coli-induced preterm delivery in mice, 

highlighting the importance of these cytokines (169). In addition, in mouse models of 

preterm birth that use bacterial products such as Lipopolysaccharide (LPS) (170) and 

Lipotechoic acid (LTA) (171) as a stimulus, there is significant upregulation of an 

array of cytokines and chemokines in the plasma and the amniotic fluid, notably IL-

1a, IL-6 and TNFα. 

Collectively, these data solidify the essential role of proinflammatory cytokines in 

infection-mediated preterm birth. Crucial for the pathophysiology of preterm 

parturition is the ability of these cytokines to regulate the production of the key 

proteins prostaglandins and matrix metalloproteinases.  
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1.7.5.1.3 Prostaglandins and Matrix metalloproteinases       

Both prostaglandins and matrix metalloproteinases (MMPs) are key to the 

inflammatory response and have a central role in the parturition process. 

Prostaglandins are lipid mediators that exert their actions in a paracrine and autocrine 

fashion. The function of prostaglandins is crucial to parturition as they promote 

myometrial contractility, membrane rupture, cervical dilatation, placental separation 

and finally uterine involution (172). MMPs are proteolytic enzymes that participate in 

extracellular matrix degradation processes. They are particularly involved in the 

remodelling and rupture of the fetal membranes and the remodelling and ripening of 

the cervix during parturition (173). 

An important aspect in the pathophysiology of infection-mediated preterm birth is the 

regulation of prostaglandins by proinflammatory cytokines. Both IL-1 and TNF 

stimulation has been shown to increase the expression of prostaglandins or the main 

prostaglandin synthesising enzyme Cyclooxygenase-2 (COX-2) both ex vivo (174) and 

in vitro (175). Such is the case for other tissues of the upper reproductive tract 

including the decidua (176), the amnion (177) and the chorion (178). Other cytokines, 

such as IL-6 (179) and macrophage inflammatory protein-1 alpha (MIP-1a) (180) in 

the amnion and the decidua and in both membranes respectively.  

As further indication of the link between infection, cytokines and prostaglandins, the 

bacterial product LPS has been shown to signal through the TNFα pathway to stimulate 

PGE2 production by human choriodecidual explants (181). In addition, the expression 

of COX-2 in the amnion depends on the NFκB activation, which is downstream of 

TLR signalling and can also be increased by IL-1b (182). Instead of promoting the 

expression of prostaglandin synthesising exzymes, cytokines such as IL-1b and TNFα 

(183), and bacterial products such as LPS (184) act to enhance prostaglandin activity 

by decreasing the catabolic activity of the enzyme Hydroxyprostaglandin 

dehydrogenase (PGDH) (185).    

The production of the extracellular matrix-degrading enzymes MMPs in the 

reproductive tissues can be stimulated both by cytokines and by prostaglandins. In the 
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upper reproductive tract, TNFα, IL-1b and Macrophage colony-stimulating factor (M-

CSF) can increase the secretion of MMP-9 by first trimester trophoblast cells with a 

subsequent increase in its collagenase activity (186). IL-1a can stimulate chorionic 

cells to produce MMP-1 in vitro (187). In vivo, IL-1b can increase the secretion of 

MMP-9 by the chorion and amnion resulting in increased MMP-9 concentrations in 

the amniotic fluid (188). Prostaglandins such as PGF2a  also increase the expression of 

MMP-2 and MMP-9 in decidual explants ex vivo (189).  

Similar is the effect of infectious agents and live bacteria in the production of MMPs. 

LPS can increase the production of both MMP-2 and MMP-9 by human 

amniochorionic membranes, an effect that can be ameliorated by the anti-

inflammatory cytokine Interleukin-10 (IL-10) (190). In non-human primate model 

using rhesus monkeys, the researchers found that group B streptococci bacterial 

infection of the choriodecidual space results in increased MMP-9 expression and 

activity in the amniotic fluid, an effect almost identical to that of IL-1b (188).  

In the lower reproductive tract, the production of MMPs is also stimulated by 

cytokines. In particular, TNFα has been shown to induce the expression of MMP-1, 

MMP-2 and MMP-9 by cervical smooth muscle cells in vitro (191). There is also a 

correlation between the expression levels of the chemokine IL-8 and those of MMP-8 

and MMP-9 in the lower uterine segment and the cervical stroma that is consistent 

between different studies (192) (193). The same association between IL-8 and MMP-

8 and -9 has also been observed in upper reproductive tissues including the 

myometrium, the decidua and the fetal membranes (194). Furthermore, on top of 

promoting the expression and activity of MMPs, cytokines like TNFα have the 

capacity to suppress the production of the MMP inhibitors called tissue inhibitors of 

metalloproteinases (TIMPs) (195).  

To summarise this section, current evidence describes a well-defined pathophysiology 

of how intrauterine infection can lead to preterm birth. Upon recognition of the 

microorganism by TLRs, an inflammatory process orchestrated by NFκB is initiated. 

This leads to a secretion of cytokines and chemokines by the reproductive tissues 
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involved, which in turn stimulate the production of prostaglandins and MMPs. The 

latter can then activate all three components of the parturition process, the onset of 

which can thus be dictated by the intrauterine infection.  

 

Figure 1.2 Proposed pathway leading from bacterial uterine colonization to 

preterm delivery. Adapted from (113). 

 

Routes of infection and pathogens  

Several hypotheses have been postulated regarding the route leading to an intrauterine 

infection. Potential routes include the following: i) Ascending infection from the 

vagina and through the cervix. ii) Haematogenous dissemination through the placenta. 

iii) Accidental introduction during invasive medical procedures such as amniocentesis 
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and chorionic villous sampling that could penetrate the reproductive tissues. iv) By 

retrograde spread from the abdominal cavity and through the fallopian tubes (113). 

 

Figure 1.3 Most common routes of intrauterine infection. Adapted from (196). 

 

Among the microorganisms that have been associated with preterm delivery are the 

following: Ureaplasma species (197) (198), Gardnerella vaginalis (199) (198), 

Mycoplasma hominis (197) (199), Bacteroides species (199) and Fusobacterium 

species (197). What these bacteria have in common is that they are of vaginal origin 
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and that most of them belong to the genital mycoplasma species. Much rarer is the case 

for bacteria that are commonly implicated in genital tract infections in non-pregnant 

women, such as Chlamydia trachomatis and Trichomonas vaginalis (160). The 

presence of non-genital bacteria has been reported but it is quite rare (200).  This means 

that the microorganisms most frequently isolated from the amniotic cavity of women 

that deliver preterm are of vaginal origin. This suggests the most common route of 

intrauterine infection is the ascending vaginal infection through the cervix. This 

concept is supported by a clinical study which found that microbial invasion of the 

amniotic cavity (MIAC) precedes the invasion of the chorioamniotic membranes in 

most cases of chorioamnionitis (201). The only route of infection consistent with this 

finding is the ascending infection through the cervix.  

Among the bacteria that have been associated with preterm delivery the most common 

ones belong to the Ureaplasma species (198) (202). They are also the bacteria most 

commonly isolated from the amniotic fluid of women with chorioamnionitis (203) and 

of women with chorioamnionits and preterm birth (204).  

1.8 The Ureaplasma species 

The Ureaplasma spp were first discovered in 1954 as a potential causative agent of 

non-gonococcal urethritis in males (205). They do not have a cell wall and thus cannot 

be stained by the Gram staining. Instead, they are surrounded by a plasma membrane 

and can therefore acquire a wide range of shapes and structures. This results in 

significant size variations (100 nm to 1 µm) even between Ureaplasmas of the same 

colony (206). This ranks them among the smallest microorganisms. The colonies 

themselves can range in size from 5 to 20 µm. An important distinguishing figure of 

Ureaplasmas is the fact that they produce a urease enzyme. This enzyme catalyses the 

hydrolysis of urea, in a reaction that allows the bacteria to produce virtually all of its 

energy requirements (207). 

There are two species of the human Ureaplasmas: Ureaplasma urealyticum and 

Ureaplasma parvum (208). Fourteen (14) strains or serovars have been recognised to 

date. Serovars 1, 3, 6 and 14 belong to U. parvum and the rest to U. urealyticum (208). 
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U. parvum is smaller than U. urealyticum (209) and they also have differences in their 

urease genes (210) as well as their main pathogenicity factor, the multiple-banded 

antigen (MBA) (211) (212).  

The potential of Ureaplasmas to adhere to mammalian cells has been described. 

Specifically, they have been shown to adhere to human erythrocytes (213) and 

epithelial cells (214). In addition, their ability to adhere to and stimulate placental 

endothelial cells has also been reported (215). However, little is known about the 

mechanisms utilised by the Ureplasma spp to facilitate this. Cell surface receptors 

terminating in sialic acid have been implicated in these mechanisms, since a marked 

reduction in bacterial adherence to HeLa cells and erythrocytes was noticed following 

pre-treatment with neuraminidase (214). 

With regards to cellular responses to Ureaplasma infection, mechanistic studies have 

provided insights towards stimulation of different pathways. In placental endothelial 

cells, Ureaplasmas can induce a stress response characterised by reduced expression 

of heat shock protein 70 (215). This renders host cells more susceptible to apoptosis 

and is mechanism commonly utilised by different bacteria (216) (217). They can also 

cause a significant significantly increase the levels of intracellular calcium and iron, 

in line with a stress response (215). Furthermore, in vitro studies have demonstrated 

the potential of Ureaplasma spp to induce apoptosis in human type II lung epithelial 

cells and macrophages (218). Both U. parvum and U. urealyticum can also deploy 

immune evasion mechanisms by downregulating the gene expression of antimicrobial 

peptides such as DEFB1, DEFA5, DEFA6 and CAMP in human THP-1 cells (219). 

The major virulence peptide of Ureaplasma spp is called Multiple-Banded Antigen 

(MBA) (220). This is a factor that can only be found in this species (221) and 

constitutes a potent cytokine inducer (222). It is thought to exert its actions by 

stimulating the toll-like receptors -1, -2, -6 and -9 (223) (224) (225). In addition, 

specific U. parvum (Serovar 3) and U. urealyticum (Serovars 4, 8) serovars express 

the enzymes Phospholipase A1, A2 and C (226) (227). These can cause phospholipid 

degradation by hydrolysing acyl ester and phosphodiester bonds respectively (228). 
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This has the potential to destabilise the cellular membrane leading to a reduced cell 

viability (228). 

Ureaplasmas are thought to be commensals of the lower reproductive tract in women. 

In support of this, they can quite often be found in the lower reproductive tract of 

sexually active women. The percentage has been shown to range between 40% (229) 

and 80% (230).  The more common of the two is U. parvum (231). Further evidence 

comes from the report that women presenting with symptoms of lower genital tract 

infections have similar colonization rates of Ureaplasma spp with women of the 

control group with no infection (231). However, this is not always the case as 

Ureaplasmas have been shown to be able to cause infections of the female 

reproductive system. In particular, there are reports associating them with infection of 

both the vagina (232) and the cervix (233), as well as urinary tract infections (234) 

(235) and bacterial vaginosis (236). What determines why this happens in some 

women and not in others has not been elucidated yet.  

Importantly, the presence of Ureaplasmas in the lower reproductive tract has been 

recognized as a potential risk factor for adverse pregnancy outcomes including preterm 

delivery. Vaginal colonization with U. parvum was found to be an independent risk 

factor for preterm birth or late abortion with an OR of 3 (237). The same study 

examined other genital Mycoplasmas but none of them was associated with the above 

outcomes (237). Although not in the same study, U. urealyticum has also been 

described as a risk factor for preterm delivery (238). Similar to the vagina, colonization 

of the endocervix with the Ureaplasma spp was also associated with preterm delivery 

in women presenting with preterm labour and intact membranes (239). As further 

support of this association, a quantitative approach has been also studied. The study 

found that women that had increased titres of U. urealyticum in the vagina were at 

increased risk of preterm birth (240). This was not the case for women colonized with 

low titres (240). Despite being a strong candidate as a risk factor for PTB, lower 

reproductive tract colonization with Ureaplasma spp cannot actually predict PTB 

(241). The reason for this is the high proportion of women than deliver normally at 

term despite having their vagina or cervix colonized with Ureaplasmas (242).  
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Despite normally colonizing the female lower reproductive tract, the Ureaplasma spp 

have also the potential to ascend to the upper reproductive tract as they have also been 

found in tissues such as the endometrium and the fallopian tubes (243) (244). In most 

cases they are not causing any inflammation, however they possess the capacity to 

cause an infection, which is more often subclinical in nature (245). 

Quite crucial to the association between Ureaplasma spp and PTB is the fact that these 

bacteria are also considered to be causing chorioamnionitis, the infection implicated 

to 40-70% of all preterm births (246). The first study that described the potential link 

was back in 1975 and used culture methods on swabs from the infants’ ears, throat, 

umbilicus, external genitalia and the perineum. They found a significant association 

between fetal colonization with Ureaplasma spp and histological lesions in the 

placenta that were consistent with chorioamnionitis (247). Later, the presence of 

Ureaplasma spp in the fetal serum and the fetal cerebrospinal fluid were also 

associated with chorioamnionitis (248). Their isolation in these compartments could 

potentially imply a role in cases of intraventricular haemorrhage as well. The results 

are also similar when examining the presence of Ureaplasmas in the cord blood, as an 

association with chorioamnionitis, PROM and earlier gestation has been noticed (249). 

Most studies that have addressed this question have chosen to examine the presence of 

Ureaplasma spp either in the amniotic fluid or the placenta. High titres of Ureaplasma 

spp in the amniotic fluid have been found to be associated with higher incidence of 

both intra-amniotic inflammation (250) and histological chorioamnionitis (251). 

Consistent with the findings in the other tissues and body fluids, placental colonization 

with Ureaplasma spp is associated with histological chorioamnionitis and low birth 

weight (252). This has been described in different gestational ages. The presence of 

Ureaplasma spp was found to increase the risk for histologically confirmed 

chorioamnionitis and intra-amniotic inflammation in moderate and late preterm births 

(253). This is also the case for extremely preterm deliveries (254). In these instances, 

chorioamnionitis is also increased risk of intraventricular haemorrhage and subsequent 

brain lesions (254) as well as chronic lung disease (255). 
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From a pathophysiological perspective, studies in animal models have shown that 

Ureaplasmas can stimulate the mechanistic pathways that are implicated in 

infection/inflammation-induced preterm birth. Specifically, intrauterine infection with 

U. urealyticum has been shown to increase the protein expression of TLR2 and the 

important TLR co-factor CD14 (256), which is also found upregulated in the amniotic 

fluid of women infected with Ureaplasma spp (257). In a sheep model of intra-

amniotic infection, administration of U. parvum can mount an inflammatory response 

that is characterised by increased expression of the proinflammatory cytokines IL-1b, 

IL-6 and IL-8 in the chorion and the amnion (258) as well as the fetal lung (259).  

Studies in non-human primates further are also consistent with the above findings. IL-

6 and IL-8 were increased in the amniotic fluid and the fetal lung of pregnant baboons 

2-3 days post-intra-amniotic inoculation with U. urealyticum (260). After 

administration of U. parvum to rhesus monkeys, a mild inflammatory response is 

observed with upregulation of TNFα, CXCL-8 and CCL-8 (261). In another study on 

non-human primates, intra-amniotic administration of U. parvum to pregnant rhesus 

monkeys was found to elicit an inflammatory response that resulted in a significant 

increase of IL-1a, IL-1b, IL-6, IL-8 and TNFα in the amniotic fluid after 2-3 days 

(262). This study also reported increased amniotic fluid levels of the prostaglandins E2 

and F2a and increased activity of MMP-9 (262). These resulted in increased uterine 

contractions as measured by the intrauterine pressure changes and ultimately led to 

preterm delivery (262).   

Overall, these data highlight the importance of Ureaplasma spp as microorganisms 

commonly associated with preterm delivery. This is in large due to their role as 

causative agents of chorioamnionitis, the most common antecedent of preterm birth. 

Furthermore, the Ureaplasma-induced pathophysiology during pregnancy is 

compatible with the mechanisms involved in inflammation-induced PTB. Therefore, 

the Ureaplasma spp are clinically relevant bacteria for preterm birth.       
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1.9 The role of the cervix 

As discussed before, the cervix constitutes one of the three components of the 

parturition process. However, its role during pregnancy extends well beyond 

parturition itself.  

1.9.1 The cervix during pregnancy 

During the course of gestation, the cervix remains closed and firm in order to support 

and keep the conceptus within the uterus. At the same time, it undergoes progressive 

remodelling that ultimately leads to parturition related changes, effacement and 

dilatation. 

Remodelling of the cervix is divided into four phases. These phases overlap with one 

another and are termed softening, ripening, dilation and postpartum repair. Cervical 

softening is a long procedure that spans across the whole of gestation and is 

characterised by a progressive increase in tissue distensibility that can be clinically 

assessed in the first trimester of pregnancy. The main feature of cervical softening is 

the change in the structure of collagen, the most abundant protein of the cervical 

extracellular matrix. This is characterised by a decrease in the formation of cross-links 

between collagen fibres (263). An important reason for this is the decrease in the 

expression of the key enzymes thrombospondin 2 and tenascin C, which are involved 

in the cross-link formation (264). The end result is a gradual increase in collagen 

solubility and a subsequent loss in tensile tissue strength in the absence of an increase 

in tissue hydration. 

In contrast with the long and progressive nature of cervical softening, ripening and 

dilation occur very rapidly at the end of pregnancy. They thus overlap to a great extent 

as the ripening process allows maximum compliance of the cervical tissue, something 

that facilitates dilation to allow the fetus to pass through. This maximum compliance 

is achieved by an increase in the diameter of the collagen fibres and their in-between 

spacing (265). 
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Finally, timely recovery of the cervix postpartum is essential to maintain protection 

from potential environmental threats. The tissue repair process initiated results in 

increased cross-linking of collagen fibrils to promote return of the cervix to the pre-

pregnancy state (266).  

1.9.2 Barrier function against infection 

By being located between the uterus and the vagina, the cervix is what separates the 

uterine content from the bacteria-rich vaginal environment. To exert its role in 

safeguarding pregnancy, the cervix forms both a physical and a functional barrier 

against infections that could potentially be detrimental to pregnancy by leading to 

preterm birth and other complications. Central to these, is the role of the cervical 

epithelium.  

Physical barrier 

The cervical epithelium is divided into two parts: the columnar endocervical and the 

stratified squamous ectocervical epithelium. The physical part of the barrier to 

infections is achieved by a precise regulation of the expression of specific proteins that 

participate in inter- and intra-cellular adhesions. Among these proteins are tight 

junction proteins, adherens junction proteins and desmosomes (267) (268). In 

particular, the mouse cervix expresses the tight junction proteins claudin 1 and claudin 

2. During pregnancy, the expression of the tight junction protein claudin 1 in the mouse 

cervical epithelium progressively increases (269). At the same time, the expression of 

claudin 2 decreases in a similar fashion (269). This phenotype is characterised by a 

much more efficient barrier function with increased tightness between the adjacent 

cells (270). Loss of claudin function has been shown to compromise the epithelial 

barrier (271).  

Other junction proteins expressed in the cervix include occludin (272) (273), zona 

occludens (274) and junctional adhesion molecule-A (JAM-A) (275). Specific 

microRNAs that target the expression of these proteins can be expressed during 

pregnancy (276) (277). Importantly, a study on cervical smears found that women that 
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went on to deliver preterm had an increased expression of miR-43 and miR-45 earlier 

during gestation (278). These microRNAs target JAM-A and could thus compromise 

the epithelial barrier function of the cervix to increase susceptibility to PTB (279). It 

has also been found that inappropriate differentiation of the cervical epithelial cells of 

the mouse results in loss of the barrier function and increased preterm birth rates after 

vaginal administration of E.coli (280). 

Functional barrier 

The epithelium also plays a major part in the functional barrier of the cervix during 

pregnancy. Cervical epithelial cells can sense a bacterial infection, as they have been 

shown to express TLRs, in particular TLR2 and TLR4 (281). They can also secrete 

proinflammatory cytokines and chemokines to stimulate the immune response (282). 

In addition, the epithelial cells participate in the effector mechanisms of innate 

immunity by secreting antimicrobial peptides. In particular, they can secrete Secretory 

Leukocyte Protease Inhibitor (SLPI) (283), Elafin (284) (283), and LL-37 (285). A 

study in mice reported that the expression of TLRs and the expression and function of 

antimicrobial peptides can be diminished by a viral infection (286). This could lead to 

a disruption of the functional arm of the cervical barrier function and increase 

susceptibility to infection-induced preterm birth. Overall, these data suggest that 

cervical epithelial cells have an important role in the innate immunity of the cervix and 

therefore the whole pregnancy.  

Cervical mucus and plug 

Cervical epithelial cells also have a pivotal role on the formation of the mucosal barrier 

of the cervix by secreting significant amounts of mucus. During pregnancy, the 

epithelial cells secrete a much thicker mucus that forms a plug. This thick layer of 

mucus ends up filling the cervical canal and sealing off the uterine cavity. Thus, 

another important layer of physical protection is added by the cervix during pregnancy.  

In addition, the mucus plug has some unique immunological properties that are crucial 

to the functional barrier function of the cervix during pregnancy. Innate immune 

mechanisms are in place in the cervical mucus plug. Various antimicrobial factors can 
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be found into the mucus including SLPI, lysozyme, calprotectrin, lactoferrin and 

human β-defensin 1 (HBD-1) (287) (288). Furthermore, the proinflammatory 

cytokines IL-1b, IL-6, IL-8 and TNFα have been found to be present in the cervical 

mucus (289) (290). Levels of proinflammatory cytokines like IL-18 in the mucus plug 

are not associated with the levels in the amniotic fluid (291). This is indicative of the 

fact that the cervix is a separate compartment that has to respond to infectious 

challenges distinctively. Among these cytokines, IL-6 in particular has shown 

potential as a biomarker for pregnancy complications. Increased levels of IL-6 on 

cervical secretions are associated with chorioamnionitis. In addition, they have been 

associated with PPROM (292). Finally, several studies have found an association 

between IL-6 and preterm delivery (292) (293) (294). As its levels are only moderately 

predictive of preterm birth, it has limited use as biomarker (295). However, this is still 

reflective of the role of the cervix as an immunological barrier to infection.  

Factors of the highly-specialized adaptive immune response are also present in the 

mucus plug. The immunoglobulins IgA, IgG and IgM can be found in abundance 

within the mucus plug (296). This is a specific adaptation to pregnancy as the levels 

of IgA and IgG are actually much higher in the mucus plug compared to the mucus 

from non-pregnant women (296). Also, the IgA levels in the cervical mucus plug are 

much higher than their respective serum levels in pregnant women (297).  

These antimicrobial properties of the mucus plug have been proven in vitro. Cervical 

mucus plugs from healthy pregnant women can completely inhibit the growth of 

bacteria such as Staphylococcus saprophyticus, E.coli, Pseudomonas aeruginosa and 

Group B Streptococcus (298).    

1.9.3 Cervical epithelial injury 

Iatrogenic cervical injury has also been associated with preterm birth and as a potential 

cause of cervical insufficiency. Procedures that damage the cervix are commonly 

performed for the treatment of cervical intraepithelial neoplasia. This is a pre-

cancerous state of the cervical epithelium that in some cases evolves into invasive 

cervical cancer. Excisional procedures like cold knife conisation, laser conisation and 
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large loop excision of the transformation zone (LLETZ) (also termed loop 

electrosurgical excision procedure-LEEP) are used to remove the lesions once the 

diagnosis is confirmed (299). 

All excisional procedures have been consistently associated with a subsequent preterm 

delivery. Laser conisation and LLETZ were reported to increase the risk for PPROM 

in a retrospective cohort study from a colposcopy clinic in New Zealand by 2.7- (95% 

CI, 1.3-5.6) and 1.9-fold (95% CI, 1.0-3.8) respectively (300). A population based 

cohort study from Norway found that cervical conisation treatments  had a relative risk 

of 4.4 for extremely preterm delivery, a risk of 3.4 for very preterm delivery and a risk 

of 2.5 for late preterm delivery (301). A smaller but still significant risk of preterm 

birth after conisation treatments was also reported in a cohort study from England, 

where the relative risk was 1.19 (95%CI, 1.01-1.41)  Similar were the findings for 

LLETZ from another population based cohort study from Denmark, which identified 

a relative risk of 2.07 (95% CI, 1.88-2.27) among women that were treated with the 

procedure (302).   

Secondary analyses that took place confirmed the above findings. A secondary 

analysis on pregnant women participating in multicentre studies and randomized for 

treatment interventions in London found an increased risk for preterm delivery both 

before and after 34 weeks gestation in women previously treated with LLETZ (303). 

The relative risk was 2.71 (95% CI, 1.63-4.52) (303). A systematic review and meta-

analysis found that both cold knife conisation and LLETZ are significantly associated 

with a subsequent preterm birth (304). The relative risks were 2.59 (95% CI, 1.80-

3.70) and 1.70 (95% CI, 1.24-2.35) respectively (304). These findings were in 

agreement with a later systematic review and meta-analysis that reported an increased 

risk of preterm delivery in women previously treated with excisional procedures 

compared to the control group (RR 1.96, 95% CI 1.46-2.64) (305). 

What these procedures have in common is the fact that they remove a part of the 

epithelium along with the underlying stroma. As described earlier, the importance of 

the cervical epithelium in the barrier function of the cervix against infection is 
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paramount. However, no satisfactory explanation has been provided for the association 

between excisional procedures and preterm birth. 

1.10 Animal models of Preterm Birth 

Despite the growing body of literature that provides new insights into the 

pathophysiology of preterm birth, the incidence of the syndrome has not changed 

substantially over the past decades. This may reflect the fact that our current 

understanding of the mechanisms implicated in preterm birth is incomplete. Due to a 

series of ethical and practical restrictions, mechanistic studies in humans are difficult.  

From an ethical perspective, human samples cannot be collected at predefined time 

points to ensure optimal experimental design. Also, experiments can only be 

performed ex vivo or in vitro, making it hard to link any intervention with the 

pregnancy outcome. Practical restrictions include the limited number of human tissues 

that can be readily available for research purposes. With the exception of the placenta 

and the fetal membranes, the other reproductive and fetal tissues cannot be collected 

as a whole from humans. More tissues become available in the case of caesarean 

sections, but still not as a whole.  For example, decidual samples are usually collected 

only from the superficial layers and myometrial samples are usually collected from the 

upper flap of the lower transverse incision through the uterine wall (306). This makes 

the effort to extrapolate the findings very difficult. Overall, these limitations have 

necessitated the use of animal models for an in-depth study of the preterm birth 

pathophysiology. Different species have been used in preterm birth research and, 

despite their limitations, each has significantly contributed to our current 

understanding. 

1.10.1 Sheep 

Historically, sheep has been the first animal model to contribute to the basic 

understanding of the mechanisms of parturition. The size of sheep is closer to humans 

compared with most other animal models. Importantly, the fetal weight of the sheep at 

birth is very similar to the fetal weight of humans (307). Such is also the size of the 
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litter as the sheep usually have 1-2 fetuses per pregnancy. The gestational length at an 

average of 147 days is also closer to the human average of 280 days than any other 

model that has been studies, with the exception of non-human primates (308). The 

development of surgical techniques that enabled catheterization of intrauterine 

compartments was crucial for the widespread use of this model (308). 

The use of sheep has been pivotal for the current understanding of the endocrinology 

of parturition. The studies that identified the role of the fetal Hypothalamus-Pituitary-

Adrenal (HPA) axis were first conducted in sheep. In particular, it was first reported 

50 years ago that a continuous and prolonged administration of Adrenocorticotropic 

hormone (ACTH) to fetal lambs mid- to late- gestation induces preterm delivery within 

one week (309). Administration of cortisol to the fetus yielded similar results (309). 

The same group also found that glucocorticoids administered to the fetus can induce 

preterm birth in sheep (310). 

From the maternal side, it was found in sheep that a single administration of estradiol 

benzoate induces delivery within 48 hours (311). Studies in sheep also helped establish 

the role of prostaglandin F2a as a potential agent to stimulate myometrial contractions 

(312). This prostaglandin was also shown to be able to induce preterm birth, albeit at 

lower rates compared to glucocorticoids such as flumethasone (FLU) (313). An 

increased in the levels of prostaglandin F2a is achieved by a shift in the hormonal 

balance with towards a decrease in progesterone activity with a concurrent increase in 

estradiol levels, which initiates labour (314). When continuously administered 

prostaglandin E2 can cause preterm birth in sheep as well, by activating the fetal HPA 

axis (315). Collectively, these data were crucial helped to clarify the series of hormonal 

events leading to the onset of labour. Briefly, increased ACTH secretion from a mature 

fetal HPA axis stimulates corticosteroid secretion from the fetal adrenal gland. The 

increased cortisol secretion, along with promoting maturation of the fetal lung it 

stimulates the placental conversion of progesterone to estrogen. This increases the 

levels of prostaglandins in the process of a pro-labour phenotype acquisition (316). 
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When studying the mechanisms of infection-mediated preterm birth, the sheep model 

has also been valuable. The big gestational length allows for samples to be collected 

at various time points and it also potentiates the study of the effect of chronic exposure 

to infectious stimuli. However, creating a sheep model of infection-induce preterm 

birth has been very challenging. Intravenous infusion of LPS derived from Salmonella 

typhimurium can has been shown to cause birth within 28 hours (317). Still, this model 

does not satisfactorily recapitulate the most clinically relevant case of intrauterine 

infection. Intra-amniotic administration of E. coli-derived LPS has also been reported 

to induce preterm delivery, in this case within 72 hours (318). Yet, this is not the case 

in most studies that have been performed so far. In fact, despite the initiation of a 

potent inflammatory response at the gestational tissues, preterm birth was not achieved 

after administration of either intra-amniotic (319) (320) or extra-amniotic LPS (319) 

(321) or live U. parvum (322).    

On the positive side, this allows for the study of the effects of infectious agents to the 

fetus to be examined in utero and at different time points, since preterm delivery does 

not occur. However, the very fact that bacterial products and live bacteria cannot 

consistently induce preterm birth restricts the use of sheep as a clinically relevant 

model to study infection-mediated preterm delivery. In addition, the sheep’s immune 

system is not very well characterised and there is a shortage of available molecular 

tools to develop proper mechanistic studies (308). Lastly, practical reasons such as the 

requirement for large landholdings and specialized storage facilities further limits the 

use of this model.       

1.10.2 Non-human primates 

The species more closely related to humans, is the nonhuman primates. Pregnancy in 

this species resembles human pregnancy much closer compared to sheep or rodents 

(323). The gestational length of around 170 days which is longer than any other PTB 

model and the singleton pregnancies which are usually the case, are two features of 

the species alignment (324). They also possess a unicornuate uterus like humans (323). 
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As in sheep, the biotechnology tools necessary for catheterisation of the intrauterine 

compartments have been fully developed (325) (326) (118). 

Nonhuman primates have been an invaluable model for the in vivo study of uterine 

electrophysiology during pregnancy. It was first found that cynomolgus monkeys have 

synchronous uterine contractions at the third trimester that could resemble those 

observed in humans (327). Based on this knowledge of the uterine contraction 

pathways, potential tocolytic drugs have been tested in nonhuman primates. As in 

humans, oxytocin induces preterm labour in cynomolgus monkeys (328). The oxytocin 

receptor antagonists Barusiban and Atosiban are highly efficient in reducing oxytocin-

induced uterine contractions and can delay the onset of labour and therefore prolong 

the pregnancy (328). However, they were ineffective in stopping normal labour (329). 

The pathways of infection-induced preterm birth have also been studied in non-human 

primates. The first model was described in the rhesus monkeys where an intra-amniotic 

administration of live Group B Streptococci resulted in significant increases in the 

levels of the proinflammatory cytokines TNFα, IL-1a and IL-6 in the amniotic fluid 

(330). This was then followed by an increase in the levels of prostaglandins E2 and F2a 

which resulted in an increase in myometrial contractility (330). The end result was 

delivery within 28 hours of the inoculation (330). The same research group then took 

this model one step closer to recapitulating the more clinically relevant scenario of 

ascending infection by administering the Group B Streptococci in the choriodecidual 

space instead (331). This resulted in intra-amniotic inflammation with the same 

features that were described before (331). When high bacterial doses were 

administered, this was followed by microbial invasion of the amniotic fluid and an 

even more robust inflammatory response that led to preterm labour (331). In a 

following study, the administration of the antibiotic ambicillin could not reverse the 

intra-amniotic proinflammatory phenotype induced by Group B Streptococci despite 

eradicating the infection (332). This is in line with observations in humans rendering 

the antibiotics incapable of delaying preterm birth. However, when they targeted the 

inflammatory response by using the COX inhibitor indomethacin plus dexamethasone 
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at the same time as targeting the bacteria by ampicillin, they managed to delay the 

onset of labour (332). 

The same series of events can also be induced by the cytokines IL-1b and TNFα (333) 

(334). On the other hand, IL-6 and IL-8 could not stimulate the same pathway, 

indicating that they most likely have a bystander role in triggering inflammation-

mediated preterm birth (334). Similar to the live bacterial infection, the IL-1b-

mediated uterine contractions could be prevented by pre-treatment with indomethacin. 

This further confirms the validity of the perceived pathway of infection-associated 

preterm delivery in this model (335).  

LPS administered intra-amniotically can also induce the cytokine and prostaglandin 

milieu that has been associated with preterm birth in rhesus monkeys (336). This effect 

has been shown to be alleviated by the use of a TLR-4 antagonist, indicating the central 

role of TLRs in this process (336).  

Overall, nonhuman primates have some outstanding features that make them suitable 

for investigating preterm birth mechanisms. On top of anatomical resemblance and the 

common pregnancy characteristics with humans, they also appear to share the same 

pathophysiological pathways that lead to infection-mediated preterm birth. However, 

their use in parturition research has been limited. The main reason is the high financial 

costs associated with their research use, as they require specialized facilities and care. 

In addition, they sometimes exhibit aggressive behaviour and can thus only be handled 

by specialized personnel. This results in only a few selected centres worldwide being 

able to meet the above requirements. Consequently, the vast majority of researchers 

has focused on the use of the much more pragmatic alternative of rodent models.    

1.10.3 Rodents  

Despite their drawbacks as a model, rodents are overall the most extensively used 

species in parturition research. These drawbacks include massive anatomical 

differences such as the size difference and the presence of a bicornuate uterus (337). 

Their very small size in particular is a huge barrier in trying to study individual 
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intrauterine compartments as can be done in sheep and nonhuman primates. This is 

further intensified by the much bigger litter size compared to humans. The size varies 

depending on the strain and can range from 7 to 20 pups per dam (338). In addition, 

different mouse strains can respond differently to the same stimuli, something that 

makes the attempt to extrapolate relatively hard even for the same species. Also, the 

very short gestational length of approximately 20 days is both very far from the human 

length and does not allow for the study of chronic conditions and effects in a rigorous 

manner (306). Nevertheless, the very short rodent gestation can also pose a significant 

advantage as it allows for a much bigger number of experiments to be conducted within 

the timeframe. It also allows for quicker acquisition of sufficient numbers to ensure 

validity of the results obtained.  

Perhaps the most substantial difference between the rodent and human parturition 

relates to its hormonal regulation. In rodents, the main source of progesterone during 

pregnancy is the corpus luteum (339), whereas in humans the placenta takes over from 

the corpus luteum at around 8 to 10 weeks of gestation (340). Importantly, a systemic 

progesterone withdrawal precedes and is necessary for the onset of term parturition in 

rodents (341). In humans, progesterone levels do not drop at the end of pregnancy and 

rather a functional withdrawal of progesterone has been described (342) (343). 

However, in infection-induced preterm birth using E. coli in mice, progesterone 

withdrawal is not necessary for preterm delivery to occur (344). Furthermore, 

exogenous progesterone supplementation cannot rescue preterm delivery induced by 

either bacterial products (345) or live bacteria (344). Thus, the fundamental difference 

of absolute versus functional progesterone withdrawal appears to be less relevant in 

the context of infection-mediated preterm birth.  

Rats 

The use of rodent models and especially mice has been particularly important on the 

field of infection-related preterm birth. Rats have been useful for establishing the role 

of prostaglandins in labour processes as it was first found in a rat model that the 

administration of prostaglandin F2a can stimulate myometrial contractions in vivo 
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(346). The main disadvantage of the use of rats is the absence of a consistent model of 

infection/inflammation-induced preterm birth. There are reports that both systemic, 

after intraperitoneal injection (347), and intrauterine, after catheterisation (348), 

administration of LPS can significantly shorten the timing of delivery. However, other 

studies either reported much lower preterm birth rates (349) or even failure to induce 

preterm birth at all (350). In line with these findings, intrauterine administration of live 

E. coli bacteria also failed to cause preterm delivery in rats (351). Therefore, the use 

of the much more consistent mouse models of preterm birth has been widely adopted. 

Mice 

In this context, mice have the significant advantage of having a well-studied immune 

system that is very similar to the human (323). The mouse immune system can be 

genetically manipulated, something that offers the ability to dissect specific pathways 

involved in the parturition mechanisms (323). For example, it was found that mice 

lacking the prostaglandin F2a receptor cannot go into labour, highlighting the 

importance of this mediator for the parturition process (352). These findings were also 

confirmed by knocking out the prostaglandin synthase COX-1, which accounts for 

much of PGF2a production (353) (354). The COX-1 deficient mice exhibited delayed 

parturition (353). Studies in KO mice helped elucidating mechanisms involved in the 

hormonal and biochemical events that stimulate labour. For instance, KO of the 

cannabinoid receptor 1 (CB1) disrupts the progesterone/estrogen balance leading to a 

pro-labour phenotype that results in preterm birth (355). Also, a K+ channel with an 

important function in parturition was identified (small conductance calcium activated 

K+ channel isoform 3) in by genetic manipulation. Mice overexpressing this channel 

demonstrated failed parturition (356) and were also resistant to preterm birth induction 

by LPS and mifepristone (RU486) (357), suggesting its down-regulation is necessary 

for labour to occur. Finally, chemical ablation of the myometrial gap junction Cx-43 

resulted in pregnancy prolongation, indicating the crucial role of this protein for the 

parturition process (358). 
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Mouse KO models were also crucial for studying the mechanisms underlying 

infection/inflammation-induced preterm birth. KO of the TLR signalling downstream 

adaptor molecule MyD88 protected mice from preterm delivery caused by intrauterine 

injection of E.coli, while their wildtype (WT) delivered prematurely (359). This 

finding suggested that PTB induced by E.coli or its products depends upon TLR 

signalling. This was not the case for the IL-1b receptor, as mice deficient in it were 

vulnerable to preterm labour induction by an intrauterine E. coli administration (360). 

Such a finding is likely to reflect the redundancy of the cytokine network in 

intrauterine infection. 

Specific pathways through which the inflammatory response secondary to bacterial 

infection could stimulate myometrial contractions were identified using mouse KO 

models. The phosphodiesterase PDE4 is involved in regulation of inflammation and 

smooth muscle contractility and the inhibition of its action in mice prevents LPS-

induced preterm labour (361). Furthermore, inhibition of the Rho/Rho-kinase pathway 

which is involved in myometrial contractions also managed to stop preterm LPS-

stimulated preterm delivery (362). Both of these finding support a role for the 

respective pathway in the pathophysiology of infection-mediated preterm birth and 

suggest potential therapeutic targets. 

1.10.3.1.1 Mouse models of infection/inflammation-induced preterm birth 

These many advantages that the mouse has as a model led many groups to the effort 

of creating mouse models of preterm birth. The first one was described back in 1991 

and involved the subcutaneous administration of IL-1b which resulted in preterm 

delivery in all treated mice (116). Since then, different bacteria and bacterial products 

have been utilised. The use of LPS is perhaps the most widespread in mouse models 

of preterm birth. The first study managed to induce PTB via intraperitoneal 

administration of LPS (363). Later studies also managed to induce preterm birth by 

administering LPS in the intrauterine compartment, either by open laparotomy (364) 

or using ultrasound guidance to guide the injection (170). There is also a study 

reporting induction of preterm labour after intravaginal inoculation of LPS (365). 
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Other bacterial products have also been used in mouse models of PTB. LTA, a product 

of gram-positive bacteria was shown to induce preterm delivery after intraperitoneal 

injection, although not as effectively as LPS (366). In addition, co-administration of 

the TLR2 agonist peptidoglycan (PGN) and the TLR3 agonist polyinosinic:cytidilic 

acid [poly(I:C)] in the uterus also stimulated preterm birth in a mouse model (367). 

Another study managed to induce preterm delivery by stimulating another family of 

PRRs, the intracellular Nod-like receptors (NLRs) (368). In particular, they reported 

that an intraperitoneal injection of the Nod1 agonist γ-D-glutamyl-meso-

diaminopimelic acid (iE-DAP) results in preterm birth within 24 hours (368).  

Different bacterial have also been used in preterm mouse birth models. Firstly, an 

intrauterine injection of E.coli after open laparotomy resulted in delivery within 48 

hours (306). Later studies used other bacteria as well. Intravaginal administration of 

Chlamydia trachomatis on day 5 during mouse gestation resulted in preterm delivery 

on days 15 to 16 (369). However, none of the above bacteria have been strongly 

associated with preterm birth in humans. Another study reported the induction of 

preterm birth in mice after intravenous administration of Fusobacterium nucleatum 

(370). This is an oropulmonary pathogen that has been associated with preterm birth 

in humans (371). This model tries to recapitulate the concept of preterm birth caused 

by periodontitis that leads to intrauterine infection via hematogenous dissemination. 

Although, clinically relevant, it does not mimic the most clinically relevant scenario 

of ascending infection of vaginal bacteria through the cervix. 

1.10.3.1.2 Other models of preterm birth 

Several mouse models of preterm birth that used non-infectious stimuli have also been 

described. The most widely used among them involves the subcutaneous injection of 

the progesterone receptor antagonist RU486 (372). Systemic progesterone withdrawal 

is essential for parturition to occur in mice, albeit not in humans. The effect of alcohol 

was also examined. A study found that repeated alcohol administration via oral 

gavages resulted in increased rates of preterm delivery (373). This was achieved 

through the upregulation of prostaglandins E and F2a (373). Intraperitoneal injection of 
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prostaglandin F2a alone was shown to induce preterm birth in a different study (374). 

The uterine smooth muscle relaxation function of nitric oxide (NO) was also 

investigated in a study which reported that a subcutaneous injection with the NO 

inhibitor NG-nitro-L-arginine methyl esther (L-NAME) caused preterm birth (375). 

Similarly, the peptide neuromedin B which is thought to stimulate smooth muscle 

contraction in the urogenital and gastrointestinal tract, could cause preterm birth after 

intraperitoneal administration (376). Another model used an intra-amniotic injection 

of the lung surfactant SP-A, which is produced only by a mature fetal lung, to induce 

preterm delivery identifying its crucial role in the endocrinology of parturition (377).  

Sterile inflammation models have also been established in the context of preterm birth. 

In particular, both intrauterine administration of fetal fibronectin (378) and intra-

amniotic injection of the damage-associated molecular pattern (DAMP) high-mobility 

group box 1 (HMGB1) (379) can cause preterm delivery in mice. 

1.10.4 The need for a new model 

The above-mentioned models and their successors have substantially contributed to 

our current understanding of preterm birth and its underlying mechanisms. However, 

as discussed earlier, the preterm birth rates have not significantly reduced and the 

current therapeutic options are very limited. This is an indication of the fact that our 

current knowledge is not sufficient to effectively tackle the problem. To this end, the 

development of new and more clinically relevant models is of paramount importance. 

Most current models use either bacterial products but not live bacteria, or bacteria that 

are not clinically relevant, or an administration route that is not reflective of the current 

consensus of ascending infection.  

In addition, the role of the cervix in the mouse models of preterm birth has been 

underappreciated. To our knowledge, no mouse model of cervical damage during 

pregnancy has been described. To this end, an aim of this thesis was to create and 

characterise a mouse model of cervical damage during pregnancy. For this purpose, 

the surfactant Nonoxynol-9 (N-9) was identified as potent damage inducer candidate. 
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1.11 Nonoxynol-9 

Nonyl-phenoxy-polyethoxy-ethanol or Nonoxynol-9 (N-9) belongs to the family of 

isononyl-phenyl-polyoxyethylene ethers. It is a non-ionic surfactant, meaning that its 

chemical structure consists of a hydrophobic and a hydrophilic group, the latter having 

no electrical charge. It has been extensively used as a spermicidal agent in various 

contraceptive methods, such as condoms or cervical barrier methods.  

 

Figure 1.4 Chemical structure of Nonoxynol-9. 

Its spermicidal function is based on the molecule’s structural affinity to the cell 

membranes’ lipids (380). When N-9 comes in contact with sperm, its molecules start 

to lyse the cell membranes of spermatozoa, resulting in their detachment, 

immobilization and ultimately cell death (381). This leads to a complete cessation of 

sperm motility within 4-6 minutes (382). Eventually, the membranes lose their 

integrity resulting in sperm death (382). However, the Centres for Disease Control and 

Prevention (CDC), have recommended against the use of N-9-containing condoms in 

the absence of evidence from clinical trials that they confer superior protection (383). 

The use of N-9 is significantly declining and is now banned from most European 

counties. This was decided based on the several concerns that have been raised 

regarding cytotoxicity, especially against epithelial surfaces. Although initially 

considered to be the safest among spermicides (384), this perception changed when a 

study in rabbits found that N-9 vaginal application resulted in significant ulceration of 

the vaginal epithelium (385). Similar findings were also reported in rats, in this case 

as inflammation in both the vagina and the cervix as acute cervicovaginitis (386). 

Another study in the same species found that N-9 application results in increased 
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vaginal epithelial permeability in vivo (387). This could potentially imply a decreased 

epithelial protection against infection. 

Studies in nonhuman primates further confirmed the above findings. A single N-9 

vaginal application on pigtailed macaques caused irritation of the lower reproductive 

tract with erythematous lesions as observed by colposcopy (388). A different study 

found that a single application can cause significant epithelial damage with whole 

sheets of vaginal epithelia identified in the vaginal lavage fluid (389). The same study 

also reported large infiltrations of neutrophils and macrophages in the vaginal lumen 

(389). The cervical epithelium was found to be even more susceptible to epithelial 

disruption, especially after repeated exposures to N-9 (390). 

More recently, mouse studies have reported similar results. The first one found that a 

single vaginal application of N-9 results in significant disruption of the cervical 

epithelium that is apparent at 2 hours post-administration and reaches the maximum 

toxicity levels at 8 hours post-administration (391). The vaginal epithelium had only 

minor disruptions (391). A later study reported identical findings and also found that 

N-9 application resulted in significant infiltration of monocytes and tissue resident 

macrophages in the cervical stroma (392). 

Overall, these data confirm that N-9 is an agent of high cytotoxicity against epithelial 

cells in vivo and is also a potent stimulator of an inflammatory response. Importantly, 

a higher selectivity if these effects towards the cervix as opposed to the vagina has 

been suggested. However, all these studies have been conducted in non-pregnant 

animals. This means that the effects of N-9 during pregnancy, particularly with regards 

to its potential interplay with an ascending infection, have not been studied. 

1.12 Summary 

Preterm birth is a worldwide healthcare problem as it represents the leading cause of 

neonatal mortality and morbidity. Despite extensive research in the field, the incidence 

of preterm birth remains steady over the past decades. At the same time, no proper 

etiological treatment for preterm birth has been found. This is reflective of the fact that 
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our current understanding of the disease mechanisms is not sufficient and makes the 

need for new approaches using clinically relevant models all the more necessary.  

The most common cause of spontaneous preterm birth is an intrauterine infection with 

bacteria that reside in the vagina, the most common of which is the Ureaplasma 

species. The cervix stands between the vagina and the uterus to form a physical and 

functional barrier that protects the uterine content from ascending infection with 

vaginal bacteria. This protective function largely depends on the presence of a healthy 

cervical epithelium. Human data have shown cervical epithelial damage after 

excisional procedures to be associated with an increased risk for preterm delivery but 

without any satisfactory mechanistic explanation. The surfactant N-9 has also been 

shown to cause cervical epithelial damage in various models but its effects during 

pregnancy remain unknown.    

1.13 Hypothesis 

The hypothesis of the study presented in this thesis is that Nonoxynol-9:  

i) damages the cervical epithelium   

ii) facilitates ascending infection and  

iii) predisposes to preterm birth. 

1.14 Aims 

To address this hypothesis, the aims that were set were: 

- To investigate the effect of N-9 on cervical epithelial cells in vitro. 

- To create and characterise a mouse model of cervical epithelial damage during 

pregnancy using N-9. 

- To examine whether N-9-induced cervical epithelial damage during pregnancy 

facilitates ascending infection with Ureaplasma parvum. 

- To determine whether Ureaplasma parvum can mount an inflammatory 

response in maternal and fetal tissues and that could lead to preterm birth.
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Chapter 2 Materials and Methods 

2.1 Cell culture 

2.1.1 End1/E6E7 cells 

End1/E6E7 ATCC CRL-2615TM (ATCC, Manassas, VI, USA) are immortalized 

human endocervical cells, isolated from a 43-year-old premenopausal woman that had 

undergone hysterectomy for endometriosis (393). Immortalisation was made possible 

by transducing a retroviral vector expressing the HPV16 oncogenes E6 and E7 (LXSN-

16E6E7) (393). These proteins have been shown to help human epithelial cells 

increase their proliferative capacity and avoid cell senescence (394) (395) (396). 

End1/E6E7 cells were cultured in Keratinocyte Serum-free Medium (Gibco, 

ThermoFischer Scientific, Paisley, UK) supplemented with CaCl2 (1:5000), Epidermal 

Growth Factor (EGF) (0.1 ng/ml; Gibco, ThermoFischer Scientific) and Bovine 

Pituitary Extract (BPE) (0.05 mg/ml; Gibco, ThermoFischer Scientific). Cells were 

incubated at 37oC in a humid incubator with 5% CO2 in the air and grown in T75 flasks 

with media changing every 2-3 days until they reached 80-90% confluence. 

2.1.2 HeLa cells 

HeLa are human malignant epithelial cells derived from an epidermoid carcinoma of 

the cervix (397). HeLa cells (ATCC) were cultured in Dulbeco’s Modified Eagle 

Medium (DMEM) supplemented with 10% v/v heat-inactivated Fetal Bovine Serum 

(FBS), 0.1 mM non-essential amino acids, 1.0 mM sodium pyruvate, 10 mM (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid or HEPES and 100 U/mL 

penicillin/streptomycin (ThermoFisher Scientific, Waltham, MA, USA). Cells were 

incubated at 37oC in a humid incubator with 5% CO2 in the air and grown in T75 flasks 

with media changing every 2-3 days until they reached 80-90% confluence. 

2.1.3 HESC cells 

HESC are immortalized human fibroblast stromal cells obtained from an adult female 

with myomas (398). HESC cells were cultured in DMEM supplemented with 15% v/v 
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heat-inactivated FBS, 0.1 mM non-essential amino acids, 1.0 mM sodium pyruvate, 

10 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid or HEPES and 100 U/mL 

penicillin/streptomycin. Cells were incubated at 37o in a humid incubator with 5% CO2 

in the air and grown in T75 flasks with media changing every 2-3 days until they 

reached 80-90% confluence. 

2.1.4 Swan 71 cells 

Swan 71 cells are immortalized human first trimester trophoblast cells (399). Swan 71 

cells were cultured in Dulbeco’s Modified Eagle Medium: Nutrient Mixture F-12 

(DMEM/F12) supplemented with 10% v/v FBS, 0.1 mM non-essential amino acids, 

1.0 mM sodium pyruvate, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

or HEPES and 100 U/mL penicillin/streptomycin. Cells were incubated at 37o in a 

humid incubator with 5% CO2 in the air and grown in T75 flasks with media changing 

every 2-3 days until they reached 80-90% confluence. 

2.1.5 Mycoplasma testing 

All cell lines were routinely monitored for the presence of mycoplasma using the 

MycoAlert™ Mycoplasma Detection Kit (Lonza, Basel, Switzerland). This assay is 

used to detect the presence of enzymes that are released from lysed mycoplasmas. 

Addition of the enzymes’ MycoAlert™ substrate results in the conversion of 

adenosine diphosphate (ADP) to adenosine triphosphate (ATP). The ATP level can be 

measured before and after MycoAlert™ is added. ATP levels are proportionate to the 

presence of mycoplasmal enzymes.  

The assay was performed by Dr Forbes Howie, following the protocol described below 

(Specialised Assay Service, University of Edinburgh). 

Cells were seeded at 1.5x105 cells/ml (3x105 cells in 2 ml) in 6-well plates and cultured 

in 10% FBS DMEM, omitting P/S and G418, for 48 h. An aliquot of medium was 

removed and centrifuged at 200g for 5 min to remove cell debris and 100 μl of 

supernatant was collected for analysis. The MycoAlert™ reagent was then added in an 

equal volume of 100 μl and the samples were incubated for 5 min at room temperature. 

The first luminescence reading was then taken on a FLUOstar OPTIMA (BMG 
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Labtech, Ortenberg, Germany). Then, 100μl MycoAlert™ substrate was added to the 

sample, followed by a 10-min incubation at room temperature. The luminescence was 

then read again and the ratio between the two readings was calculated. Ratios greater 

than 1.2 suggested mycoplasma contamination. 

 

2.2 Ureaplasma spp culture 

2.2.1 Ureaplasma urealyticum 

Ureaplasma urealyticum ATCC 27618 (ATCC, Manassas, VA, USA) was cultured in 

SP4 Broth with urea (Hardy Diagnostics, Santa Monica, CA, USA). The key aspect of 

Ureaplasma growth in medium is the conversion of urea to ammonium ions, which 

increases the pH of the growth medium from pH=6.2 to pH>9, resulting in a colour 

change from yellow to dark pink. The SP4 Broth with urea contains 1.0 g/L urea. 

Culture of the bacteria was performed at the Reproductive Immunology Unit, Yale 

University School of Medicine. 

Using a 96-well plate, 20μl of Ureaplasma urealyticum ATCC 27618 were added to 

180μl of SP4 Broth in the top well of a given column. The rest of the wells in that 

column were filled with 180μl of SP4 Broth each. 10-fold serial dilutions of the 1st 

well’s bacterial concentration were created across the column by transferring 20μl 

from the 1st well to the 2nd, from the 2nd to the 3rd etc. Depending on the volume of 

Ureaplasma urealyticum needed, several columns could be used in each 96-well plate. 

Plates were sealed with adhesive tape and incubated at 37°C in a humidified cell 

culture incubator with ambient CO2 overnight. The following morning, the last 2 wells 

from each column showing pH change consistent with the threshold of detection based 

on colour change (dark pink) were pooled with the 2 subsequent wells that did not 

reach this threshold (yellow). The pooled aliquots were returned to a humidified cell 

culture incubator with ambient CO2 and left to incubate for 3-4 h in order to form a 

homogeneous population in log phase growth. Following this incubation period, 

aliquots were frozen and stored in -80oC. 
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2.2.2 Ureaplasma parvum 

Luciferase expressing HPA5 Ureaplasma parvum serovar 3 was donated by Dr Brad 

Spiller from Cardiff University. The bacteria expresses NanoLuc, a luciferase 

engineered by Promega (Madison, WI, USA), coming from the deep sea shrimp 

Oplophorus gracilirostris (400). Upon administration of the NanoLuc 

imidazopyrazinone substrate called furimazine, glow-type luminescence is produced 

(400).  

The same culture method as for U. urealyticum was used. Ureaplasma parvum was 

cultured in Ureaplasma Selective Medium (USM) (Mycoplasma Experience ltc, 

Surrey, UK). Bacteria were shipped to Edinburgh as individual aliquots in dry ice and 

were stored in -80oC until use. 

2.2.3 Determination of Ureaplasma concentration 

Determination of Ureaplasma concentration is based on the culture method and 

utilizes the colour change visual detection resulting from the pH change. It is expressed 

in Colour Changing Units per ml (CCU/ml).    

Using a 96-well plate, 20μl of Ureaplasma urealyticum of unknown concentration 

were added to 180μl of SP4 Broth in the top well of a given column. The rest of the 

wells in that column were filled with 180μl of SP4 Broth each. 10-fold serial dilutions 

of the 1st well’s bacterial concentration were created across the column by transferring 

20μl from the 1st well to the 2nd, from the 2nd to the 3rd etc. Plates were sealed with 

adhesive tape and incubated at 37°C in a humidified cell culture incubator with 

ambient CO2 overnight. After 48 h, the last well from each column showing pH change 

consistent with the threshold of detection based on colour change (dark pink) 

represented 1 Colour Changing Unit (CCU). As this well was a 10-fold dilution of the 

previous one, the previous well represented 10 CCU. Consequently, if n number of 

wells in the column showed pH change consistent with the threshold of detection based 

on colour change (dark pink) and the last well represented 1 CCU, the top well 
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containing 20μl of the Ureaplasma of unknown concentration represents 10n-1 CCU. 

In this case, the initial concentration is 5x10n CCU/ml.      

 

2.3 MTT metabolic activity assay 

To assess the effect of N-9 on End1/E6E7 cells’ viability, a metabolic activity assay 

was performed. The assay uses the yellow tetrazolium dye 3-(4,5-dimethylthiazol-2-

yl)-2,5-dyphenyltetrazolium or MTT, which is being processed in the mitochondria of 

metabolically active cells into an insoluble purple formazan by the enzyme succinate 

dehydrogenase. In this case, the metabolic activity of a cell population is directly 

proportionate to the cell viability of the population. 

80-90% confluent End1/E6E7 cells were transferred to 96-well plates (2 x105 cells/ml) 

and allowed to set for 48 h in Growth medium (200 μl/well). After 48 h supernatant 

was discarded and N-9 or vehicle control was added to the wells (200 μl; 2, 4, 8, 16, 

32, 64, 128, 256, 512 μg/ml in Growth medium; AbCam, Cambridge, UK). Cells were 

incubated in N-9 for various time points (30 min, 1, 2, 4, 24 h). After that, supernatant 

was discarded and 200 μl of Growth medium was added to each well. This was then 

followed by adding 10 μl of MTT (5 mg/ml; ThermoFisher Scientific, Waltham, MA, 

USA) in each well and left to incubate for 4 h. Supernatant was then discarded and 100 

μl of Acidified Isopropanol (4M HCl 1:100 in Isopropanol; Sigma-Aldrich, Poole, 

UK) was added in each well as a solubilizing agent. Solution was mixed in a shaking 

platform for 20 min and absorbance was read at 540mm. Four independent 

experiments were conducted. 
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2.4 In vitro cell permeability assay 

 

Figure 2.1 In vitro permeability assay principle. Adapted from (401). 
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The semi-permeable membranes of specialised inserts (MilliporeSigma, Burlington, 

MA, USA) were first hydrated at RT for 15 min with 250 μl of Growth medium. Then, 

200 μl of medium was removed and 200 μl of End1/E6E7 cell suspension was added 

to each insert (2.5 x106 cells/ml in Growth medium). They were left to incubate for 72 

h. Supernatant was discarded and N-9 or vehicle control was added to the wells (200 

μl; 3, 10, 30, 100 μg/ml) and left to incubate for 2 h. Supernatant was discarded and 

500 μl of Growth medium was added to the receiver wells. A Fluorescein-tagged 

dextran solution was added to the inserts (150 μl; 1:40 in Growth medium; 

MilliporeSigma) for 1 h, protected from light, at RT. Following this, dextran 

permeation was stopped by removing the inserts from the receiver wells. Medium in 

the receiver wells was thoroughly mixed and 100μl out of each well was transferred to 

a 96-well opaque plate. Five independent experiments were conducted. Fluorescence 

intensity of the medium in the receiver wells was measured in a CLARIOstar 

multimode microplate reader at 485 mm excitation/535 mm emission wavelengths 

(BMG Labtech, Ortenberg, Germany). 

Inserts that were removed to stop permeation were placed in a new receiver wells. A 

cell stain solution (Part # 20294; MilliporeSigma) was added to the inserts (100 μl) for 

20 min at RT. Following this, the cell stain solution was removed and inserts and 

receiver wells were washed x2 with PBS. 

Images were taken on a Leitz Labovert inverted brightfield microscope (Leitz, 

Wetzlar, Germany) using an AxioCam ICc 1 camera (Carl Zeiss AG, Oberkochen, 

Germany). 

2.5 Human cytokine proteomic array 

2.5.1 Principle 

The assay uses selected capture antibodies against human cytokines that have been 

spotted in duplicate on nitrocellulose membranes. Samples are mixed with a cocktail 

of biotinylated detection antibodies and then incubated with the membranes. 

Streptavidin- Horseradish peroxidase (HRP) and a chemiluminescence-based 
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detection system are used resulting in light production that can be quantified using 

light detectors. 

2.5.2 Kit reagents 

Table 2-1 Human cytokine proteomic array kit reagents (R&D Systems) 

Array Buffer 4 (Part #895022) Buffered protein base with preservatives 

Array Buffer 5 (Part #895876) Buffered protein base with preservatives 

Wash Buffer Concentrate (Part 

#895003) 

Concentrated solution of buffered surfactant 

with preservatives 

Detection Antibody Cocktail (Part 

#898261) 

 

Streptavidin-HRP (Part #893019)  

Chemi Reagent 1 (Part #894287) Stabilised hydrogen peroxide with 

preservative 

Chemi Reagent 2 (Part #894288) Stabilised luminol with preservative 

 

2.5.3 Assay procedure 

Supernatants (200 µl each) from 4 different experiments were pooled after 

centrifugation to get rid of the debris. Each membrane was blocked with 2 ml of Array 

Buffer 4 for 1 h on a rocking platform shaker making sure the membrane is rocking 

end to end. 

To prepare the sample/detection antibody mix, samples were first diluted by adding up 

to 1 ml of each sample to 0.5 ml of Array Buffer 4 in separate tubes. Final volume was 

adjusted to 1.5 ml with Array Buffer 5. Then, 15 μl of reconstituted Human Cytokine 

Array Detection Antibody Cocktail was added to each prepared sample. Mix was left 
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to incubate at room temperature for 1 h. Array Buffer 4 was then aspirated and 

sample/antibody mix was added. Mix was left to incubate with the membrane 

overnight at 2-8 °C on a rocking platform. After overnight incubation, membranes 

were carefully removed and placed in individual plastic containers with 20 ml of 1X 

Wash Buffer. Each membrane was washed with 1X Wash Buffer for 10 min on a 

rocking platform shaker for a total of three washes. 

Streptavidin-HRP was prepared in Array Buffer 5 according to the dilution factor on 

the vial label. Membranes were incubated in Streptavidin-HRP for 30 minutes at room 

temperature on a rocking platform shaker. Each membrane was then washed with 1X 

Wash Buffer for 10 min on a rocking platform shaker for a total of three washes. Each 

membrane was then placed on the bottom sheet of the plastic sheet protector with the 

identification number facing up. 1 ml of the prepared Chemi Reagent Mix (1:1 Chemi 

Reagent 1: Chemi Reagent 2) was added on top of each membrane and allowed to 

spread evenly. Membranes were left to incubate for 1 min. Chemiluminescence signal 

was read in a LI-COR Odyssey Fc (LI-COR Biotechnology, Lincoln, NE, USA). 

 

 

2.6 DuoSet Enzyme-linked immunosorbent assay 

(ELISA) 

2.6.1 ELISA solutions preparation 

Table 2-2 Generic ELISA reagents 

Preservatives Methylisothiazolone (20%, 2 g) 

Bromonitrodioxane (20%, 2 g) 

Dimethylsulfoxide (DMSO, 5 ml) 

Dimethylformamide (DMF, 5 ml) 
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Dry coat solution Polyvinyl pyrollidone (20%, 2 g) 

Bovine serum albumin (BSA, 0.5%; 5 g) 

Ethylenediaminetetraacetic acid (EDTA, 5 mM; 1.68 g) 

Tris base (50 mM; 6.05 g) 

Preservatives (0.1%; 1 ml)         

ELISA Buffer Tris base (100 mM; 12.11 g) 

Sodium chloride (NaCl, 0.9%; 9 g) 

EDTA (2 mM; 0.744 g) 

BSA (0.5%; 5 g) 

Phenol red solution (0.03%; 300 µl) 

TWEEN 20 (0.03%; 300 µl) 

Preservatives (1ml) 

Deionized H2O (800 ml)  

Wash Buffer (x20)  NaCl (0.9%; 360 g) 

Tris base (10 mM; 48.4 g) 

TWEEN 20 (0.05%; 20 ml) 

dH2O (1.7 L) 

pH adjusted to 7.5 

Buffer made to 2 L            
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Substrate Buffer Sodium acetate anhydrous (100 nM; 4.1 g) 

Preservatives (0.1%; 0.5 ml) 

dH2O (405 ml)   

pH adjusted to 6 

Buffer made to 500 ml                     

Solution A 3, 3’, 5, 5’- Tetramethylbenzidine (TMB; 0.3%; 0.3 g) 

DMF (100 ml) 

Solution B Urea hydrogen peroxide (0.5%; 0.5 g) 

Sodium acetate buffer (50 mM; 100 ml) 

Stop solution Sulfuric acid (2N H2SO4) 

 

2.6.2 DuoSet ELISA reagents 

Table 2-3 DuoSet IL-6 and IL-8 ELISA reagents (R&D Systems) 

Capture Antibodies  

Mouse anti-human IL-6 (R&D 

Systems, Abington, UK) 

1:120 in PBS 

Mouse anti-human IL-8 (R&D 

Systems) 

1:120 in PBS 

Detection Antibodies  
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Biotinylated goat anti-human IL-

6 (R&D Systems) 

1:60 in ELISA buffer 

Biotinylated goat anti-human IL-

8 (R&D Systems) 

1:60 in ELISA buffer 

Streptavidin HRP 1:40 in ELISA buffer 

 

2.6.3 Assay procedure 

96-well plates werecoated with the following capture antibodies: anti-human IL-6 and 

anti-human IL-8 (100μl/well; 1:120 in PBS). Plates were seal-covered and incubated 

overnight at 5o. The following day, plate contents were discarded and the plate was 

blot-dried on tissue. 100μl of Dry Coat Solution was added to each well and left to 

incubate for 1 h. After this, contents were discarded, plates were blot-dried and left to 

air-dry at RT for 3-4 hours. Plates were then washed x4 in Wash Buffer and blotted 

dry in tissue. A 7-point standard curve was created by adding 100μl/well of a solution 

with known cytokine concentration and diluting it 2-fold across the plate’s column 

(top standard 600pg/ml for IL-6 and 2000pg/ml for IL-8 serially diluted 2-fold in 

ELISA Buffer). All samples were in duplicates. The plate was sealed and incubated 

overnight at 5oC. The following day, contents were discarded and plates were washed 

x4 in Wash Buffer and blotted dry. 100μl of detection antibody (1:60 in ELISA Buffer 

for all 3 cytokines) was added to each well and the plates incubated for 1o at RT under 

gentle agitation. After this, well contents were discarded and plates were washed x4 in 

Wash Buffer and blotted dry. 100μl of a Streptavidin-HRP solution was added to each 

well (1:40 in ELISA Buffer) and plates incubated for 20 min at RT under gentle 

agitation and protected from direct sunlight. Well contents were then discarded and 

plates were washed x4 in Wash Buffer and blotted dry. 100μl of the substrate solution 

(for a full plate: 10 ml Substrate buffer + 1 ml Solution A + 1 ml Solution B) was then 

added to each well and incubated for 20 min at RT. The reaction was stopped and 

colour development was quenched by adding 50μl of the Stop solution to each well. 
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The colour absorbance was then immediately read at 450 nm using the Softmax Pro 

software and plate reader (Molecular Devices, Sunnyvale, CA, USA). 

2.7 Protein quantification assay 

Total secreted protein is directly proportionate to the total number of cells. To quantify 

total protein, a colorimetric microplate assay was performed. 

All samples were cell culture supernatants collected from the experiment described in 

section 2.1.4. Using a 96-well plate, 5 μl of each sample or Radioimmunoprecipitation 

Assay Buffer (RIPA Buffer) (Bio Rad, Hercules, CA, USA) used as blank were added 

per well. A 7-point standard curve was created by adding 100μl/well of a solution with 

known protein concentration (1.37mg/ml serially diluted in RIPA Buffer) (Bio Rad). 

25 μl of “Working Reagent A” were added to each well (20 μl of Reagent S to each 

1ml of Reagent A needed for the assay, Bio Rad). After this, 200 μl or Reagent B (Bio 

Rad) were added to each well and plates were left to incubate on bench for 15 min. 

The colour absorbance was then read at 650 nm using the Softmax Pro software and 

plate reader (Molecular Devices, Sunnyvale, CA, USA). 

2.8 LDH cytotoxicity assay 

LDH is present in all cell membranes and, upon damage, it is released by the damaged 

cells in the Growth medium. This assay utilizes the ability of LDH to oxidize lactate 

and generate NADH, which then reacts with WST resulting in yellow colour 

production. Colour intensity is directly correlated with the cell number lysed.   

All samples were cell culture supernatants collected from the experiment described in 

section 2.1.4. Using a 96-well plate, 10 μl of each sample or Growth medium used as 

negative control were added per well. 100 μl of LDH Reaction Mix (200 μl of WST 

Substrate Mix in 10 ml of LDH Assay Buffer for every 100 reactions) (BioVision, 

Milpitas, CA, USA) was then added to each well and incubated for 30 min at room 

temperature. To stop colour development, 10 μl of Stop Solution (BioVision) were 

added in each well and mixed thoroughly. The colour absorbance was then read at 450 
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nm using the Softmax Pro software and plate reader (Molecular Devices, Sunnyvale, 

CA, USA). 

 

2.9 Bio-Plex cytokine assay 

To measure secreted cytokines in cell culture supernatant, the Bio-Plex ProTM Human 

Cytokine, Chemokine and Growth Factor Magnetic Bead-Based Assay was used (Bio 

Rad, Hercules, CA, USA). This assay utilizes 6.5μm magnetic beads to capture the 

cytokines of interest. Biotinylated detection antibodies are then added to the mix. The 

addition of Streptavidin-Phycoerythrin (PE) results in light emission after sample 

excitation that allows for cytokine quantification against a standard curve. The 

experiment was performed by Mrs Paulomi Aldo at Yale University School of 

Medicine. 

A standard flat-bottom 96-well plate was first pre-wet with 100 μl/well Bio-Plex Assay 

Buffer (Bio Rad) and then vacuum-filtered. The vacuum pressure was set to 2 inches 

Hg. The bottom of the plate was then blotted on tissue.  

50 μl of Working Bead Solution (25-fold dilution of the Anti-cytokine Bead Stock 

Solution in Bio-Plex Assay Buffer A, Bio Rad) was then added to each well. Before 

being added, the Working Bead Solution was vortexed for 20 sec. The plate was then 

vacuum-filtered and blotted on tissue. Plate was then washed x2 with 100 μl of Bio-

Plex Wash Buffer/per well (Bio Rad). 

A 7-point standard curve was created by adding 50μl/well of a standard solution 

reconstituted in tissue culture media and diluting it 4-fold across a plate’s column (top 

standard 32,000 pg/ml, low standard 0.2 pg/ml). 50 μl from each sample was then 

added in appropriate wells (each sample was tested in duplicate). The plate was 

covered with foil and samples and standards were incubated at room temperature for 

30 min in a shaking platform. Initially, the shaking frequency was slowly ramped up 

to 1,100 rpm and the plate was then shaken for 30 sec. After this, the speed was reduced 
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to 300 rpm for the remainder of the incubation time. Plate sealer was then removed 

and the plate was washed x3 with 100 μl of Bio-Plex Wash Buffer/per well.  

25 μl of the Detection Antibody Mixture was then added to each well (10-fold dilution 

of the Detection Antibody Mix Stock Solution in Bio-Plex Detection Antibody 

Diluent, Bio Rad). The plate was covered with foil and samples and standards were 

incubated at room temperature for 30 min in a shaking platform. Initially, the shaking 

frequency was slowly ramped up to 1,100 rpm and the plate was then shaken for 30 

sec. After this, the speed was reduced to 300 rpm for the remainder of the incubation 

time. Plate sealer was then removed and the plate was washed x3 with 100 μl of Bio-

Plex Wash Buffer/per well.  

50 μl of Streptavidin-PE Working Solution was then added to each well (100-fold 

dilution of the Streptavidin-PE Stock Solution in Bio-Plex Assay Buffer, Bio Rad). 

The plate was covered with foil and samples and standards were incubated at room 

temperature for 30 min in a shaking platform. Initially, the shaking frequency was 

slowly ramped up to 1,100 rpm and the plate was then shaken for 30 sec. After this, 

the speed was reduced to 300 rpm for the remainder of the incubation time. Plate sealer 

was then removed and the plate was washed x3 with 100 μl of Bio-Plex Wash 

Buffer/per well. 

To resuspend the beads, 125 μl of Bio-Plex Assay Buffer was then added to each well. 

Plate was covered with an adhesive plate sealer and the bottom of the plate was 

thoroughly blotted. The plate was then shaken on a platform shaker. The shaking 

frequency was slowly ramped up to 1,100 rpm and the plate was then shaken for 30 

sec. Plate sealer was then removed and the plate was read in a Bio-Plex Reader ((100 

beads/region in a volume of 50 μl in the low Photomultiplier Tube (PMT)) (Bio Rad).   

2.10 RNA extraction 

2.10.1 RNA extraction from cells 

Cells were lysed using Buffer RLT (Qiagen Ltd., Maryland, USA) with beta-

mercaptoethanol (β-ME; Sigma-Aldrich). They were then further lysed by being 
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repeatedly passed through a blunt 20-gauge needle (0.9mm diameter; BD 

Microlance™) in an RNase-free syringe (BD Plastipak™). An RNAeasy mini kit 

(Qiagen) was used to extract total RNA with the solutions supplied. EtOH (70%) was 

added to the homogenised lysate (v/v) and mixed well by pipetting. Each sample was 

then added to an RNeasy mini spin column within a 2 ml collection tube for RNA 

extraction. All samples were centrifuged for 15 sec at 8000 x g (10, 000 rpm). Each 

column was then washed with 350 μl Buffer RW1 under centrifugation for 15 sec at 

8000 x g (10, 000 rpm) to remove carbohydrates and proteins. To eliminate genomic 

DNA contamination, a DNase digestion step was performed by adding 10 μl DNase I 

stock, in 70 μl Buffer RDD (Qiagen), directly onto the spin column membrane for each 

sample. Samples were then incubated for 15 min at room temperature. Each column 

was then washed with 350 μl Buffer RW1 under centrifugation for 15 sec at 8000 x g 

(10,000 rpm). To remove residual salts, samples were washed twice with Buffer RPE 

under centrifugation at 8000 x g (10, 000 rpm) for 15 sec and 2 min, respectively. A 

final centrifugation step was performed for 1 min at full speed to eliminate any possible 

Buffer RPE carryover. RNA was eluted from the spin column membrane using 30 μl 

RNase-free H2O under centrifugation for 1 min at 8000 x g (10,000 rpm). Extracted 

RNA was stored at -80°C until further use. 

2.10.2 RNA extraction from tissue 

Placental tissue was lysed in 1ml TRI reagent® (Sigma-Aldrich) with one sterile 5 mm 

stainless steel bead (Qiagen) per Eppendorf/sample. The tissue was lysed at 25Hz 

using a Tissue Lyser II (Qiagen), 2x3 min, with tubes rotated half way through. The 

samples were then incubated for 15 min at room temperature. Following this, they 

were centrifuged at 14, 000 x g for 10 minutes at 4°C. The supernatant was then 

transferred to a 2 ml phase-lock tube (5-PRIME, Hamburg, Germany) and 200 μl of 

1-bromo-3-chloropropane (BCP; Sigma-Aldrich) were added to each sample. Samples 

were shaken for 15 sec, incubated for 10 min at room temperature and then centrifuged 

at 14, 000 x g for 15 min at 4°C. The upper aqueous phase was transferred to a new 

2ml Eppendorf and 550μl of 70% EtOH was added. Each sample was then added to 

an RNeasy mini spin column within a 2ml collection tube for RNA extraction. All 
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samples were centrifuged for 15 sec at 8000 x g (10, 000 rpm). Each column was then 

washed with 350 μl Buffer RW1 under centrifugation for 15 sec at 8000 x g (10, 000 

rpm) to remove carbohydrates and proteins. To eliminate genomic DNA 

contamination, a DNase digestion step was performed by adding 10μl DNase I stock, 

in 70 μl Buffer RDD (Qiagen), directly onto the spin column membrane for each 

sample. Samples were then incubated for 15 min at room temperature. Each column 

was then washed with 350 μl Buffer RW1 under centrifugation for 15 sec at 8000 x g 

(10,000 rpm). To remove residual salts, samples were washed twice with Buffer RPE 

under centrifugation at 8000 x g (10, 000 rpm) for 15 sec and 2 min, respectively. A 

final centrifugation step was performed for 1 minute at full speed to eliminate any 

possible Buffer RPE carryover. RNA was eluted from the spin column membrane 

using 30μl RNase-free H2O under centrifugation for 1 minute at 8000 x g (10,000 

rpm). Extracted RNA was stored at -80°C until further use. 

2.10.3 RNA quantification 

Nucleic acid concentration was quantified by measuring sample absorbance at 260nm 

on a NanoDrop ONE (ThermoFisher Scientific, Waltham, USA). RNA absorbs at 

260nm, while protein contaminants absorb closer to 280nm. RNA purity is determined 

by the 260:280 ratio. Acceptable 260:280 ratios were between 1.8 and 2.1. 

 

2.11 Reverse transcription (RT)- cDNA preparation 

2.11.1 RNA extract from cells 

Total RNA was reverse transcribed using the iScriptTM cDNA Synthesis kit (Bio Rad).  

An RT mastermix was prepared on wet ice. This included the following reagents; 5X 

iScript Reaction Mix, iScript RT enzyme and Nuclease-free H2O. RNA (300ng/μl) 

was added to the mastermix and pipetted gently to mix, then centrifuged at 10,000 rpm 

for 30 seconds to remove any air bubbles. A “no reverse transcriptase” control was 

included, omitting the enzyme, to control for genomic DNA contamination. A “no 

template” control, omitting the RNA, was included to control for general 

contamination of reagents. A G-Storm GS1 Thermal Cycler (G-Storm, Somerset, UK) 
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was set to perform the following cycles; 25°C for 5 minutes, 42°C for 30 minutes, 

85°C for 5 minutes, then held at 4°C. Samples were stored at -20°C until required for 

quantitative real time polymerase chain reaction (qRT-PCR) analysis. 

Table 2-4 Reverse transcription reagents 

Reagent Volume (μl) per sample 

for each reaction 

5x iScript Reaction Mix 4 

iScript Reverse Trascriptase 1 

Nuclease-free H2O x 

RNA template (up to 1 μg Total RNA) x 

Total Volume 20 

 

2.11.2 RNA extract from mouse tissues 

Total RNA was reverse transcribed using the High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, Life Technologies, ThermoFisher Scientific). 

A 2X RT mastermix was prepared on wet ice. This included the following reagents; 

10X RT buffer, 25X deoxyribonucleotide triphosphates (dNTPs), 10X random 

primers, RNase inhibitor, MultiScribe™ RT enzyme and RNA-free H2O. RNA (300 

ng/μl) was added to the mastermix and pipetted gently to mix, then centrifuged at 

10,000 rpm for 30 seconds to remove any air bubbles. A “no reverse transcriptase” 

control was included, omitting the enzyme, to control for genomic DNA 

contamination. A “no template” control, omitting the RNA, was included to control 

for general contamination of reagents. A G-Storm GS1 Thermal Cycler (G-Storm, 

Somerset, UK) was set to perform the following cycles; 25°C for 10 minutes, 37°C for 
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120 minutes, 85°C for 5 minutes, then held at 4°C. Samples were stored at -20°C until 

required for quantitative real time polymerase chain reaction (qRT-PCR) analysis. 

Table 2-5 Reverse transcription reagents 

Reagent Volume (μl) per sample for 

2x RT Mastermix 

10x RT Buffer 2 

25x dNTPs 0.8 

10x Random primers 2 

RNase inhibitor 1 

MultiScribeTM RT enzyme 1 

RNA-free H2O 3.2 

RNA (300ng) 10 

Total volume 20 

 

2.12 Quantitative Real-time Polymerase Chain 

Reaction (qRT-PCR) 

2.12.1 In vitro experiments 

To quantify the mRNA expression of specific genes of interest, qRT-PCR was 

performed using predesigned iTaqTM universal SYBR® Green supermix assay (Bio 

Rad). All samples and controls were added in duplicate in a 96-well PCR plate 

(Applied Biosystems). A reagent mixture was prepared with iTaqTM universal SYBR 

Green supermix, forward and reverse primers, cDNA sample and Nuclease-free H2O. 

In addition to the cDNA samples, wells containing the following controls were 
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included; “no reverse transcriptase”, “no template” and finally a H2O-only control, 

replacing cDNA, to determine any reagent contamination. Plates were sealed with 

optical adhesive film (MicroAmp®, Applied Biosystems) and then centrifuged at 500 

x g for 1 minute. All qRT-PCR analyses were performed on a CFX ConnectTM Real-

Time PCR System. The instrument was set to perform the following cycles: 95°C for 

30 seconds, then 95°C for 15 seconds and 60°C for 30 sec, repeated for 40 cycles. 

Target gene expression was normalised for RNA loading using the housekeeping gene 

GAPDH. The expression in each sample was calculated relative to a calibrator sample 

(vehicle-treated cells) using the 2−ΔΔ threshold cycle (CT) method of analysis. 

Table 2-6 iTaqTM Universal SYBR® Green assay reagents              

Reagent Volume (μl) per sample 

for each reaction 

iTaqTM Universal SYBR® Green supermix (x2) 10 

Forward and reverse primers (500 nM) x 

cDNA template (100ng) x 

Nuclease-free H2O x 

Total Volume 20 

 

Table 2-7 Primers for qRT-PCR (in vitro experiments) 

Gene Forward(5’-3’) Reverse(5’-3’) 

Tlr1 AAAAGAAGACCCTGAGGGCC 

 

TCTGAAGTCCAGCTGACCCT 

Tlr2 CAAATGACGGTACATCCACG 

 

GGGTAAATCTGAGAGCTGCG 
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Tlr3 AACAGCATCAAAAGAAGCAGAAA 

 

AAACATTCCTCTTCGCAAACAG 

Tlr4 GACAACCTCCCCCTTCTCAACC 

 

ATAGTCCAGAAAAGGCTCCCAG 

Tlr6 AGAACTACATCGCTGAGC 

 

CTGAAACTCACAATAGGATGG 

Tlr7 TGTGGTTTGTCTGGTGGGTTA 

 

CCACACATCCCAGAAATAGAGG 

Tlr9 CAGCAGCTCTGCAGTACGTC 

 

AAGGCCAGGTAATTGTCACG 

 

2.12.2 Mouse experiments 

To quantify the mRNA expression of specific genes of interest, qRT-PCR was 

performed using predesigned TaqMan gene expression assays from Applied 

Biosystems. All samples and controls were added in duplicate in a 384-well PCR plate 

(Applied Biosystems). A reagent mixture was prepared and 14 μl was added to each 

well, together with 1 μl of cDNA sample.  In addition to the cDNA samples, wells 

containing the following controls were included; “no reverse transcriptase”, “no 

template” and finally a H2O-only control, replacing cDNA, to determine any reagent 

contamination. Plates were sealed with optical adhesive film (MicroAmp®, Applied 

Biosystems) and then centrifuged at 500 x g for 1 min. All qRT-PCR analyses were 

performed on an Applied Biosystems 7900HT instrument set to perform the following 

cycles; 50°C held for 2 minutes, 95°C held for 10 minutes, then 95°C for 15 seconds 

and 60°C for 1 minute, repeated for 40 cycles. Target gene expression was normalised 

for RNA loading using β-actin (ACTB VIC, Mouse: 4352341E, Applied Biosystems). 

Previous studies from our laboratory found this endogenous gene to be consistent 

during late pregnancy in the mouse (170). The expression in each sample was 



 Cervical epithelial damage and preterm birth 

Materials and Methods 93 

calculated relative to a calibrator sample (vehicle control) using the 2−ΔΔ threshold 

cycle (CT) method of analysis. 

Table 2-8 Taqman gene expression assay reagents (Applied Biosystems) 

Reagent Volume (μl) per sample for 

TaqMan reagent mixture 

 

TaqMan Universal Master Mix II 7.5 

Primer/probe or β-actin 0.75 

Nuclease-free H2O 5.75 

 

Table 2-9 Taqman gene expression assays 

Gene Species Code 

TNFa Mouse Mm99999068_m1 

Il1b Mouse Mm00434228_m1 

Cxcl1 Mouse Mm04207460_m1 

Cxcl2 Mouse Mm00436450_m1 

Il6 Mouse Mm00446190_m1 

Tlr1 Mouse Mm00446095_m1 

Tlr2 Mouse Mm01213946_g1 

Tlr6 Mouse Mm02529782_s1 
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Tlr9 Mouse Mm00446193_m1 

β-actin Mouse Mm00607939_s1 

UreC* Ureaplasma parvum *Provided by Dr Brad 

Spiller 

 

2.13 Experimental procedures 

2.13.1 N-9 effect on cytokine secretion by End1/E6E7 

cells 

80-90% confluent End1/E6E7 cells were put in 12-well plates (1 ml; 2 x105 cells/ml 

in Growth medium) and left to incubate for 48 h. Following this, supernatants were 

discarded and N-9 (1 ml; 4 μg/ml in Growth medium) or vehicle control was added to 

the wells and left to incubate for 2 h. After this, supernatants were discarded, cells 

were washed x2 in PBS and Lipopolysaccharide (LPS O111:B4) (1 ml; 1 μg/ml in 

Growth medium: Sigma-Aldrich, St Louis, MO, USA) or vehicle control was added 

to the cells and left to incubate for 24 h (Fig 2.2). For all experiments the E. coli LPS 

serotype O111:B4 was used in line with the in vivo experiments described below. At 

the end of this time point, supernatants were collected and stored at -20oC until further 

use and cells were frozen at -20oC. Four different independent experiments were 

performed. 
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Figure 2.2 Experimental outline. Effect of N-9 on basal and LPS-stimulated 

cytokine secretion by End1/E6E7 cells. 

 

Cytokine levels were determined using the human cytokine proteomic array and 

ELISA. Ideal N-9 concentration was decided by assessing the viability at the end of 

the experiment using MTT and LDH assays. To take the reduced cell viability in the 

N-9 treated groups into account when assessing the N-9 effect on cytokine secretion, 

the cytokine concentrations found using ELISA were normalized against the 

concentration of total secreted protein. 

2.13.2 Effect of Ureaplasma urealyticum infection on 

HeLa and HESC cells’ wound healing capacity 

Confluent HeLa and HESC were transferred to 24-well ImageLock plates (Essen 

BioSciences, Ann Arbor, MI, USA) (5x104 and 1x105 cells/ml in 500 μl of Growth 

medium per well for HeLa and HESC respectively) and allowed to set for 48 h. 

Following this, an artificial wound was created across the wells by scratching the cells 

with a pipette tip using a standardized semi-manual system (Fig 2.3). Growth medium 

was then discarded and the cells were then washed x2 with PBS. Cells were then 

treated either with Ureaplasma urealyticum (5μl/well; 5x107 CCU/ml in SP4 Broth) 
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or with vehicle control (10μl/well of SP4 Broth) and the plates were placed in an 

IncuCyte ZOOM system (Essen BioSciences) to monitor the wound closure. The 

plates were scanned every 2h for 48h. 

 

Figure 2.3 Semi-manual system used for the Wound Healing Assay 

2.13.3 Effect of N-9 on Ureaplasma parvum growth 

To examine the effect of N-9 on Ureaplasma parvum growth, the Minimum Inhibitory 

Concentration (MIC) of N-9 was determined using an adaptation of a previously 

described microdilution technique (402). MIC is the lowest concentration of an 

antimicrobial substance that will inhibit the visible growth of a microorganism after a 

given incubation time. 
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Using a 96-well plate, an N-9 gradient was created from 1024 μg/ml to 1 μg/ml across 

the plate columns, the last column being N-9 free for unrestricted growth comparison 

(180μl of each N-9 concentration/per well). 20 μl of Ureaplasma parvum from the 

overnight culture of unknown CCU was added to each well in the columns A1 to A12 

(1:10 dilution). A 10-fold dilution curve of bacteria was then titrated at 90 degrees 

across the N-9 gradient. Plates were sealed with adhesive tape and incubated at 37°C 

in a humidified cell culture incubator with ambient CO2 for 48 h, at which time color 

change within the growth control had ceased. The MIC was defined as the lowest 

concentration of antibiotic that prevented a color change after 48 h when read at 

104 CCU (relative to growth in the antibiotic-free medium). USM (with and without 

antibiotics) was also incubated in the absence of added Ureaplasma isolates to serve 

as a negative color-changing control. 

 

2.14 Animal studies 

All animal studies were performed under UK Home Office License 70/8927 (PPL) to 

Professor Jane Norman and in accordance with the UK Animals (Scientific 

Procedures) Act of 1986. All researchers that carried out procedures as part of this 

thesis were Personal License holders (PIL). Practical training was provided by the 

Establishment’s designated trainers until the PIL holder was signed off as competent 

to perform the relevant procedure unsupervised. Before each experiment, an 

Experimental Request Form (ERF) was submitted for review by the Named Veterinary 

Surgeon (NVS). ERF approval was a prerequisite for ordering mice to be used in an 

experiment. 

Virgin female C57Bl/6J mice aged 5-7 weeks were obtained from Charles Rivers 

Laboratories (Margate, UK). Mice were acclimatized for at least 7 days prior to any 

further experimental action. Upon mice arrival and until the start of each experiment, 

mice were housed in groups of 5-6 per cage and provided with food and water. Timed 

mating and vaginal copulatory plug checks of the animals were performed by the 

Animal Facility technicians, Mrs Carrie Owen and Mr Michael Dodds. During each 
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experiment, pregnant mice were housed in individual cages and were closely 

monitored either in person at least twice a day, or by CCTV. They were checked for 

signs of delivery and severity endpoints as defined by the PPL. Temperature (19-23oC) 

and humidity (~55%) were tightly controlled, with constant 12-hour light/dark cycles. 

Animals were euthanized using methods permitted in the Schedule 1 of the UK 

Animals Scientific Procedures Act of 1986. In particular, dams were sacrificed by the 

inhalation of rising concentrations of CO2 in a sealed chamber and death was 

confirmed be cervical dislocation. Pups were sacrificed by cervical dislocation. For all 

the experiments described below, embryonic day 1 (D1) of mouse pregnancy was 

defined by the presence of a vaginal copulatory plug. 

2.14.1 Mouse model of cervical damage during 

pregnancy using N-9 

In the morning of D17 of pregnancy, mice were anaesthetized using inhalational 

isoflurane (5% for induction of anaesthesia, 2.5% for maintenance) and a pipette was 

used for intravaginal administration of either N-9 ((60 μl; 2%, 5%, 10% v/v in PBS or 

PBS (60 μl)). Mice were randomly assigned to each group. Care was taken to avoid 

spillage of treatment outside the vagina. Mice were allowed to recover from 

anaesthesia on a piece of tissue. Maintenance of treatment in the vagina after recovery 

from anaesthesia was assessed by observing potential leakage on the tissue. Only 

minor leakage incidents were observed. Following successful recovery, mice were put 

in individual cages for 8 h. During this period, they were checked in person twice per 

day for signs of potential adverse effects. At 8 h post-treatment, mice were culled by 

Schedule 1 procedures (CO2 asphyxiation followed by cervical dislocation) for tissue 

collection (Fig 2.4). Pups were culled by Schedule 1 (cervical dislocation followed by 

decapitation). 
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Figure 2.4 Mouse model of cervical damage assessment experimental outline. 

Pregnant C57Bl/6 mice were administered 60 μl of 2%, 5%, 10% N-9 or PBS control 

intravaginally in the morning of D17 of gestation. 8 h post-administration, mice were 

sacrificed for tissue collections to assess the effect of N-9-induced damage. 

Tissue collection and processing 

The vagina, the cervix and part of the uterus were collected as a single tube-like 

tissue and, after the surrounding fat was trimmed off, it was immediately transferred 

to 4% v/v Paraformaldehyde (polymeric formaldehyde) (PFA) for fixation. Tissue 

samples were fixed overnight in 4% PFA overnight (ON). Following fixation, tissue 

samples were stored in 70% v/v Ethanol. Samples were then made into paraffin 

blocks by a specialist technician, Mr Garry Menzies.  

2.14.2 Mouse model of cervical damage using N-9 and 

vaginal inflammation using LPS 

In the morning of D17 of pregnancy, mice were anaesthetized using inhalational 

isoflurane (5% for induction of anaesthesia, 2.5% for maintenance) and a pipette was 

used for intravaginal administration of either N-9 and Lipopolysaccharide (LPS) ((60 

μl; 10% v/v N-9 and 100 μg LPS O111:B4 (Sigma-Aldrich) in sterile PBS) or N-9 

alone (60 μl; 10% v/v N-9 in sterile PBS) or LPS alone (60 μl; 100μg in sterile PBS) 

or 60 μl sterile PBS alone. For all experiments the E. coli LPS serotype O111:B4 was 

used. This was recently showed to be the most potent in inducing preterm birth in mice 

when administered intrauterine (403). Mice were randomly assigned to each group. 

Care was taken to avoid spillage of treatment outside the vagina. Mice were allowed 

to recover from anaesthesia on a piece of tissue. Maintenance of treatment in the vagina 
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after recovery from anaesthesia was assessed by observing potential leakage on the 

tissue. Only minor leakage incidents were observed. Following successful recovery, 

mice were put in individual cages to monitor the time to delivery. During this period, 

they were checked in person twice per day for signs of potential adverse effects.  

In a different set of experiments, in the afternoon of D16 of pregnancy, mice were 

anaesthetized using inhalational isoflurane (5% for induction of anaesthesia, 2.5% for 

maintenance) and a pipette was used for intravaginal administration of either N-9 (60 

μl; 10% v/v N-9 in sterile PBS) or 60 μl sterile PBS alone. Mice were randomly 

assigned to each group. 16 h later, in the morning of D17, mice were anaesthetized 

using inhalational isoflurane (5% for induction of anaesthesia, 2.5% for maintenance) 

and a pipette was used for intravaginal administration of either LPS O11:B4 (1 mg in 

60 μl sterile PBS) or 60 μl sterile PBS alone. Following successful recovery from 

anaesthesia, mice were put in individual cages to monitor the time to delivery. During 

this period, they were checked in person twice per day for signs of potential adverse 

effects. 

 

 

Figure 2.5 Effect of N-9-induced cervical damage and vaginal LPS on timing of 

delivery. Pregnant C57Bl/6 mice were administered 60 μl of a solution containing 

10% N-9 and 100 μg of LPS, or10% N-9 alone or 100 μg LPS or PBS control 

intravaginally in the morning of D17 of gestation (A). Alternatively, mice were 

administered 60 μl of a solution containing 10% N-9 or PBS control intravaginally in 

the afternoon of D16 of gestation and this was followed by intravaginal administration 
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of 60 μl of either 1mg LPS or PBS control 16h later, in the morning of D17 of gestation 

(B). Timing of delivery after the above treatment schemes was monitored using CCTV 

cameras.  

 

2.14.3 Mouse model of cervical damage-mediated 

ascending infection with Ureaplasma parvum 

To assess the effect of N-9-induced cervical damage on facilitating ascending vaginal 

infection with Ureaplasma parvum, in vivo bioluminescence imaging and amniotic 

fluid cultures for the presence of Ureaplasma parvum were performed. 

Bioluminescence imaging allows for optical detection and quantification of the 

Nanoluc-expressing bacteria after administration of the Nanoluc substrate, 

Furimazine, in a highly specific and non-invasive manner. Amniotic fluid cultures for 

the presence of Ureaplasma parvum allow for the detection and quantification of live 

and growing bacteria within the amniotic fluid. 

In the afternoon of D16 of pregnancy, mice were anaesthetized using inhalational 

isoflurane (5% for induction of anaesthesia, 2.5% for maintenance) and a pipette was 

used for intravaginal administration of either N-9 (60 μl; 10% v/v N-9 in sterile PBS) 

or 60 μl sterile PBS alone. Mice were randomly assigned to each group. 16 h later, in 

the morning of D17, mice were anaesthetized using inhalational isoflurane (5% for 

induction of anaesthesia, 2.5% for maintenance) and a pipette was used for intravaginal 

administration of either Ureaplasma parvum (108 CCU/ml in 40 μl of USM) or 40μl 

USM alone. Following successful recovery from anaesthesia, mice were put in 

individual cages. During this period, they were checked in person twice per day for 

signs of potential adverse effects. 24 h later, in the morning of d18, mice were 

anaesthetized to undergo in vivo bioluminescence imaging. After imaging was 

complete, a Norwegian Formula Deep Moisture Body Lotion was applied to the 

shaved abdomen to allow for quicker wound healing (Neutrogena, Los Angeles, USA). 

Following successful recovery from anaesthesia, mice were put in individual cages to 
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monitor the time to delivery. During this period, they were checked in person twice 

per day for signs of potential adverse effects. 

Mice that had not delivered any of their pups 48 h after the administration of either 

Ureaplasma parvum or vehicle control, in the morning of D19, were deemed term and 

were sacrificed for tissue collections using Schedule 1 methods (CO2 asphyxiation 

followed by cervical dislocation). Term pups that were culled by cervical dislocation 

followed by decapitation. Mice that had delivered at least 1 of their pups before 48 h 

after the d17 administration, were deemed preterm. Preterm mice were culled using 

Schedule 1 methods (CO2 asphyxiation followed by cervical dislocation). Preterm 

pups were culled by cervical dislocation followed by decapitation. 

 

Figure 2.6 Effect of N-9-induced cervical damage on ascending infection with 

Ureaplasma parvum during pregnancy. Pregnant C57Bl/6 mice were administered 

60 μl of 10% N-9 or PBS control intravaginally in the afternoon of D16 of gestation. 

This was then followed by intravaginal administration of 40 μl of Ureaplasma parvum 

in Ureaplasma medium (USM) or USM alone 16 h later, in the morning of D17. Mice 

underwent in vivo bioluminescence imaging 24 h later, in the morning of D18. Mice 

that had not delivered by the morning of D19 were sacrificed for tissue collections. 

Tissue collection and processing 

The following tissues were collected and snap-frozen in dry ice from all term dams: 

vaginal flush (60 μl of PBS were flushed into the vagina right after the mouse was 

culled) and cervix. 4 pups were chosen for tissue collections from each term dam, 2 

from each horn: the one closest to the cervix (proximal) and the one furthest from the 
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cervix (distal). The following tissues were collected and snap-frozen in dry ice from 

all term pups: amniotic fluid, placenta, uterus, fetal membranes, and fetal lung. Unless 

used immediately, tissues were stored in -80oC. 

 

Figure 2.7 Tissue collection strategy. From each term mouse, tissues were collected 

from 4 different pups: The ones in both horns that were closest to the cervix (Proximal) 

and the ones in either horn than were furthest from the cervix (Distal). 

2.14.4 Time to delivery 

Following recovery from anaesthesia, individual cameras were placed at each cage and 

mice were recorded using a digital video recorder. Time to delivery was calculated as 

the number of hours from the time of intravaginal administration until delivery of the 

first pup. 

2.14.5 Proportion of live-born pups 

Following delivery of the first pup and after recording the timing of delivery, mice 

were left in the cage for a further 24 h to deliver the rest of the pups. The proportion 

of live pups was then calculated for each mouse by dividing the number of live pups 

by the total number of pups and being presented as a percentage. Any live pups still 



 Cervical epithelial damage and preterm birth 

Materials and Methods 104 

within the uterine horns 24 h after the first pup was delivered were not considered as 

live-born, as they had not been through labour. 

2.15 In vivo Bioluminescence imaging 

Mice were anaesthetized using inhalational isoflurane (2.5% for induction of 

anaesthesia, 2.5% for maintenance). To minimize signal interference through 

absorbance, scattering or diffraction of light by the mouse fur, mice abdomens were 

shaved before imaging. 100 μl of the Nanoluc substrate Furimazine (Nano-Glo Live 

Cell Assay System) were injected intraperitoneally (Promega, Madison, WI, USA). 

Mice were placed in a PhotonIMAGERTM OPTIMA for optical imaging (Biospace 

Lab, Nesles-la-Vallee, France). The PhotonIMAGERTM OPTIMA uses a photon 

counting technology based on intensified Charge-Coupled Devices (CCDs). This 

allows real-time display of the bioluminescence signal and recording of kinetics 

information. 

Imaging started right after Furimazine administration. The following imaging 

parameters have been used: 

Table 2-10 Parameters for in vivo bioluminescence imaging 

Software Photo Acquisition (Biospace Lab, Nesles-la-Vallee, 

France) 

Cryostat temperature -25oC 

Stage temperature 37oC 

Aperture 50mm f/1.2 

Stage height 560mm 

Field of view 210x158mm 

Image size 313.40371875 x 234.546203125 mm 
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Pixel size 169.133145574744 x 168.616968457944 µm 

Acquisition mode BLI Bioluminescence (61 ms per frame) 

Illumination power 10-20% 

Acquisition time 10:00 min 

Quantification Units ph/s/cm2/sr 

 

2.15.1 Imaging analysis 

Imaging analysis was performed using the M3 Vision software (Biospace Lab, Nesles-

la-Vallee, France). The same elliptical ROI was drawn around the area that 

corresponded to each mouse’s abdomen, including the lower abdomen and the cervix. 

Since the Photo Acquisition software allows the display of signal kinetics, 

quantification analysis was performed during a time frame where the signal intensity 

was in the plateau phase for each of the ROIs on display. 

Quantification unit was photons per second per centimeter square per steradian 

(ph/s/cm2/sr). This unit normalizes for differences in the mice size and position on the 

stage as well as the time frame used for the quantification analysis.  

 

2.16 Amniotic fluid cultures 

Detection and quantification of Ureaplasma parvum in amniotic fluid samples from 

D19 of pregnancy followed the principles described earlier. 

Using a 96-well plate, 15μl of amniotic fluid were added to 135μl of USM in the top 

well of a given column. The rest of the wells in that column were filled with 135μl of 

USM each. 10-fold serial dilutions of the 1st well’s bacterial concentration were 

created across the column by transferring 15μl from the 1st well to the 2nd, from the 2nd 
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to the 3rd etc. Plates were sealed with adhesive tape and incubated at 37°C in a 

humidified cell culture incubator with ambient CO2 overnight. After 48 h, the last well 

from each column showing pH change consistent with the threshold of detection based 

on colour change (dark pink) represented 1 Colour Changing Unit (CCU). As this well 

was a 10-fold dilution of the previous one, the previous well represented 10 CCU. 

Consequently, if n number of wells in the column showed pH change consistent with 

the threshold of detection based on colour change (dark pink) and the last well 

represented 1 CCU, the top well containing 15μl of amniotic fluid of unknown 

Ureaplasma parvum concentration represents 10n-1 CCU.  

2.17 Cervical damage assessment 

To assess tissue damage, the following tissue processing and analysis strategy was 

decided (Fig 2.8): For each mouse, 3 consecutive longitudinal 5μm-thick sections from 

3 different levels (L1, L2, L3) would be used for morphological damage, inflammatory 

infiltrations and mitotic activity analysis respectively. Each level would be 50μm 

deeper than the preceding one. This strategy allows for potential differences in the 

damage severity across different parts of the vagina and the cervix to be taken into 

account.     

 

Figure 2.8 Tissue processing and analysis strategy for the cervical damage model. 

At each of the 3 levels (L1, L2, and L3) one section would be used for morphological 

damage analysis, one for inflammatory infiltrations analysis and one for mitotic 
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activity analysis. L2 would be 50μm deeper than L1 and L3 would be 50μm deeper 

than L2. 

 

2.18 Alcian Blue/Periodic Acid Schiff (AB/PAS) 

staining 

AB/PAS special staining was used to stain the mucus-producing epithelial cells of the 

mouse vagina and cervix. This would allow to identify subtle changes in the integrity 

of the epithelial layers of both tissues. Alcian Blue pH 2.5 imparts a blue colour to the 

acidic mucins and other carboxylated or weakly sulphated acid mucosubstances. The 

periodic acid Schiff (PAS) reaction is then used to stain basement membranes, 

glycogen and neutral mucosubstances pink to red. Mixtures of neutral and acidic 

mucosubstances will appear purple due to positive 

reactions with both Alcian Blue and PAS. The AB/PAS special stain was performed 

by the Shared University Research Facilities (SuRF) team of the University of 

Edinburgh according to their standard protocols. 

2.18.1 Deparaffinisation and rehydration 

For deparaffinization, slides were immersed 2x5 min in Xylene (Cell Path Ltd, 

Newtown, UK). This was followed by progressive rehydration of the samples through 

a sequential immersion in 100%, 95%, 80%, 70% Ethanol, for 20 sec each.  

2.18.2 Staining 

Following rehydration, slides were immersed in 1% Alcian Blue for 10 min. Slides 

were then washed under running cold tap water for 10 min. Following this, slides were 

rinsed in deionized H2O and were then oxidized in an acquous solution of 0.5% 

periodic acid for 10-20 min. Slides were then washed under running cold tap water for 

the same length of time. After a rinse in deionized H2O, slides were treated with 

Schiff’s reagent for the same length of time. Slides were then washed under running 

cold tap water for the same length of time. 
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2.18.3 Counterstain 

Slides were immersed in Harris’ Haematoxylin for 30 sec. After a 5-min wash under 

running tap water, slides were placed in Scott’s Tap Water Substitute until sections 

were blue. Slides were then dehydrated through a sequential immersion in 70%, 80%, 

95%, 100% Ethanol followed by 2x5 min in Xylene. Mounting media (ThermoFischer 

Scientific, UK) mounting medium was added to the slides. All slides were sealed with 

cover slips. 

2.19 Immunohistochemistry 

Immunohistochemistry was used to localize polymorphonuclear neutrophils in the 

epithelium and stroma of the cervix and vagina. It was also used to localize 

proliferating cells, being in the active phases of the cell cycle, within the cervix 

basement membrane. 

2.19.1 Deparaffinisation and rehydration 

For deparaffinization, slides were immersed 2x5 min in Xylene (Cell Path Ltd, 

Newtown, UK). This was followed by progressive rehydration of the samples through 

a sequential immersion in 100%, 95%, 80%, 70% Ethanol, for 20 sec each. Slides were 

then left for 5 min under running tap water to further remove residual ethanol. 

2.19.2 Antigen retrieval 

For antigen unmasking, Heat-Induced Epitope Retrieval (HIER) using a Pressure 

Cooker was performed. Slides were put in a plastic slide holder containing 300 ml of 

Sodium Citrate Buffer (10mM Sodium Citrate, pH 6.0 in distilled H2O, Sigma-

Aldrich, St Louis, USA). The slide holder was then placed in an InstantPot IP-LUX60 

6L/6.33Qt Pressure Cooker containing 500ml of distilled H2O (InstantPot, Ottawa, 

Canada). The slides were left in the Pressure Cooker for approximately 20 min until 

boiling temperature was reached, the pressure was then released and the slides were 

left for a further 20 min to cool down. 
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Upon return of the samples temperature to room temperature, slides were washed 1x5 

min in distilled H2O on a rocker platform at 35 revolutions/min. This was followed by 

1x5 min wash in 1% Tris-buffered saline (TBS) on a rocker platform at 35 

revolutions/min (Sigma-Aldrich, St Louis, USA).  

2.19.3 Blocking 

On every slide, a circle was drown around each tissue section using a 5mm 

hydrophobic PAP pen for immunostaining (Sigma-Aldrich, St Louis, USA), to confine 

reagent incubation around the tissue. 

To block the endogenous peroxidase activity of the samples, slides were immersed in 

300ml of a Hydrogen Peroxide (H2O2) blocking solution and left to incubate for 30 

min on a rocker platform at 35 revolutions/min (10% H2O2 in methanol). This was then 

followed by 2x5 min washes in TBS on a rocker platform. 

To prevent non-specific binding of antibodies to tissue or to Fc receptors, 100 μl of a 

blocking solution was applied on each sample. The blocking solution was a 20% v/v 

non-immune normal goat serum (NGS) (primary antibodies were raised in different 

species) and 5% w/v Bovine Serum Albumin (BSA) in PBS (Sigma-Aldrich, St Louis, 

USA). Samples were left to incubate in a dark humidified chamber to minimize reagent 

evaporation. 

2.19.4 Primary antibodies incubation 

To identify polymorphonuclear neutrophils, the following primary antibody 

preparation was used: Purified rat anti-mouse Ly-6G (Lymphocyte antigen 6 complex, 

locus G) (1:500 in blocking solution, Biolegend, San Diego, USA). To identify 

proliferating cells, 100 μl of the following primary antibody preparation was applied 

on a different set of slides: rabbit anti-Ki67 (ab15580, 1:1000 in blocking solution, 

Abcam, Cambridge, UK). One section per slide was used as negative control, where 

blocking solution alone was applied. Samples were left to incubate overnight in a dark 

humidified chamber at 4oC. After overnight incubation, slides were washed 1x5 min 
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in TBS-Tween (0.05% v/v Tween in TBS, Sigma-Aldrich, St Louis, USA) and 2x5 

min in TBS on a rocker platform. 

In slides where an anti-Ly-6G primary antibody was applied, 100 μl of the following 

Horseradish Peroxidase (HRP)-conjugated secondary antibody preparation was 

applied: ImmPRESS HRP Anti-Rat IgG (Vector Laboratories, Burlington, USA). In 

slides where an anti-Ki67 primary antibody was applied, 100 μl of the following 

Horseradish Peroxidase (HRP)-conjugated secondary antibody preparation was 

applied: ImmPRESS HRP Anti-Rabbit IgG (Vector Laboratories, Burlington, USA). 

Slides were left to incubate with the above-mentioned secondary antibody preparations 

for 1 h. This was then followed by slides being washed 1x5 min in TBS-Tween and 

2x5 min in TBS on a rocker platform.  

2.19.5 Chromogenic detection 

As the secondary antibody used was conjugated with the enzyme HRP, the substrate 

used was 3,3’- diaminobenzidine (DAB). DAB is a soluble organic substrate that is 

converted by HRP to an insoluble brown product, localized at the sites of epitope 

expression.  Slides were incubated with 100 μl of DAB solution until brown colour 

development for a maximum of 2 min. Colour development was stopped by placing 

the slides in deionized H2O. 

2.19.6 Counterstain 

Slides were immersed in Harris’ Haematoxylin (Cell Path Ltd, Newtown, UK) for 5 

min. Slides were then washed under running cold tap water and put in 0.3% acid 

alcohol (Cell Path Ltd, Newtown, UK) for 2-3 sec to differentiate. After another wash 

slides were put in Scott’s tap water (Cell Path Ltd, Newtown, UK) for 30 sec to stop 

differentiation. Slides were then dehydrated through a sequential immersion in 70%, 

80%, 95%, 100% Ethanol followed by 2x5 min in Xylene. Mounting media 

(ThermoFischer Scientific, UK) mounting medium was added to the slides. All slides 

were sealed with cover slips (Cell Path Ltd, Newtown, UK). 
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2.20 Light microscopy imaging 

Imaging of the samples was performed using a Zeiss Axio Scan.Z1 Slide Scanner (Carl 

Zeiss AG, Oberkochen, Germany). Imaging analysis was performed using Zeiss ZEN 

Blue software (Carl Zeiss AG, Oberkochen, Germany). 

2.21 Statistical analysis 

All statistical analyses were performed using GraphPad Prism version 7 (GraphPad, 

San Diego, CA, USA). Data in graphs are presented as dot plots. Error bars represent 

standard deviation (SD). Data in text are presented as mean± standard error of the 

mean (SEM). Observation of data points and D’ Agostino- Pearson omnibus normality 

test were used to assess normality of the sample distributions. For normally distributed 

groups the following tests were used:  Unpaired or paired Student’s t test was used to 

compare means of two groups. One way analysis of variance (ANOVA) was used to 

compare more than two groups. Dunnett’s post hoc test was used to compare multiple 

groups to a control group. Holm-Sidak test was used to analyse sets of P values 

between multiple groups. For groups that did not follow a Gaussian distribution the 

following tests were used: Mann-Whitney test to compare the means of two groups. 

Kruskal-Wallis test to compare the means between 3 or more groups. Percentages were 

compared by Fisher’s exact test. Inter-rater reliability was assessed using weighted 

Cohen’s kappa.  

Gene expression analysis was performed on DDCt values. Two way ANOVA was 

used to determine statistical significance in the presence of two variables. This was 

followed by post hoc Dunnett’s test in cases where statistically significant results were 

yielded for the particular variable. Spearman’s correlation coefficient was used to 

determine correlation in gene expression studies. A P-value less than 0.05 was 

considered statistically significant.
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Chapter 3 Effects of Nonoxynol-9 and 

Ureaplasma spp on cervical 

epithelial cells in vitro 

 

3.1 Introduction 

The uterine cervix has a key role in maintaining a healthy pregnancy. It provides 

structural support to the uterine content throughout gestation and at the same time 

undergoes progressive remodelling to acquire the necessary distensibility that will 

allow safe passage of the fetus during labour. Importantly, it forms a physical and 

functional barrier to protect the fetus from external insults, such as a bacterial 

infection. This is particularly important given that an ascending infection of vaginal 

bacteria through the cervix is the most common precursor of preterm birth, the leading 

cause of neonatal mortality and morbidity worldwide (3) (16).  

The cervical epithelium is an important component of the barrier function of the cervix 

during pregnancy. In humans, the cervical epithelium consists of two parts: the 

endocervical single-layer columnar epithelium which is proximal to the uterus and the 

ectocervical multi-layered squamous epithelium that is proximal to the vagina. To 

maintain an effective physical barrier, the cervical epithelium strictly regulates the 

temporal expression of tight and gap junction proteins (269) and desmosomes (268). 

This ensures selective pericellular epithelial permeability of useful substances such as 

nutrients while excluding harmful bacteria. In addition, the cervical epithelium forms 

a functional immunological barrier against infection. Cervical epithelial cells express 

Toll-like receptors and are thus able to sense a microbial challenge (268). Upon 

pathogen recognition, the epithelium can stimulate the innate and adaptive immune 

response by secreting proinflammatory cytokines and chemokines (282). Epithelial 
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cells also participate in the effector mechanisms of the adaptive immunity by secreting 

antimicrobial peptides such as SLPI (288), Elafin (284) and LL-37 (285). The 

importance of a healthy cervical epithelium could be clinically demonstrated by the 

fact that excisional procedures for the treatment of CIN like cone biopsy or LLETZ, 

that remove part of the epithelium and the underlying stroma, significantly increase 

the risk for preterm delivery (304) (305). However, the underlying mechanisms remain 

elusive. 

Nonoxynol-9 is a non-ionic surfactant that has been extensively used as a component 

of spermicides due to its ability to solubilize and disrupt the plasma membrane of 

spermatozoa (404) (405). However, it is also highly cytotoxic for epithelial cells of the 

reproductive tract (406). Although it has been shown to cause significant epithelial 

damage in vivo (407) (408) (409), its effects during pregnancy have not been studied 

yet. 

Among the bacteria that have been associated with preterm birth, the most common 

ones belong to the Ureaplasma spp, namely U. parvum and U. urealyticum (410). 

These bacteria have been shown to cause chorioamnionitis that predisposes to PTB 

(253). In addition, they can cause significant fetal injury with disruption of the fetal 

brain development (411). As Ureaplasmas are considered commensals of the vagina, 

they need to break through the cervical barrier to cause an intrauterine infection. 

However, whether the cervical epithelium can mount an effective immune response 

against Ureaplasmas is not known. 

The work described in this chapter investigated the effects of Nonoxynol-9 on cervical 

epithelial cells in vitro. We hypothesized that N-9 treatment could compromise both 

the physical and the functional barrier function of the cervical epithelium. 

Furthermore, we assessed the capacity of cervical epithelial cells to sense an infection 

with U. urealyticum and respond by producing proinflammatory cytokines and 

chemokines. The hypothesis was that cervical epithelial cells could recognize U. 

urealyticum through TLRs and that this recognition could only cause a mild 

inflammatory response.  
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3.2 Results 

3.2.1 N-9 reduces the viability of endocervical End1/E6E7 

epithelial cells 

To assess the effect of N-9 on the viability of endocervical End1/E6E7 cells, a 

metabolic activity assay using MTT assay was performed. MTT assesses the metabolic 

activity of the cells which directly proportionate to the cell viability. Different doses 

of N-9 were used (0, 2, 4, 8, 16, 32, 64, 128, 256, 512 µg/ml in Cell Culture Medium-

CCM) and for different time points (30 min, 1, 2, 4, 24 h). At the end of each incubation 

period, MTT assays were performed. The metabolic activity for each group of cells 

was expressed as a percentage of the metabolic activity of the untreated cells. 

A clear trend was identified (Fig 3.1). The low doses of N-9 (2, 3, 8 µg/ml) had only 

minimal effects on the endocervical cells’ viability, as they resulted in the cells 

demonstrating 80-90% of the metabolic activity of the vehicle-treated cells for all 

incubation times (Fig 3.1). 

Similarly, the high N-9 doses (128, 256, 512 µg/ml) almost completely abolished the 

cells’ metabolic activity to less than 20% of the vehicle-treated cells for all time points 

(Fig 3.1). 

The medium N-9 doses of 16 µg/ml and more so 32 and 64 µg/ml exhibited time-

dependent trends (Fig 3.1). The 16 µg/ml dose started with 81.15±3.18% metabolic 

activity of the vehicle-treated cells after 30 min incubation, to drop to 68.35±6.4% at 

24 h. More dramatic were the changes with the other two dosages. At 32 µg/ml, N-9 

resulted in the metabolic activity being 81.2±7.34% of the vehicle-treated after 30 min 

which gradually dropped to only 12.05±1.69% at 24 h. The 64 µg/ml dose leads to a 

metabolic activity of 66.28±8.8% of vehicle-treated cells at 30 min but then follows a 

steep drop to 26.88±3.26% at 1 h and below 20% for all incubation times after this 

(Fig 3.1). 



 Cervical epithelial damage and preterm birth 

Effects of Nonoxynol-9 and Ureaplasma spp on cervical epithelial cells in vitro 116 

  

Figure 3.1 Treatment of endocervical cells (End1/E6E7) with N-9 results in 

decreased cell metabolic activity in a dose- and time-dependent manner. 

End1/E6E7 cells were incubated with various N-9 concentrations (0, 2, 4, 8, 16, 32, 
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64, 128, 256 and 512 μg/ml) for 30min, 1h, 2h, 4h and 24h. Metabolic activity 

indicating cell viability was determined by an MTT assay and is expressed relative to 

that of the untreated cells. Four independent experiments were conducted. Error bars 

indicate SD. 

 

3.2.2 N-9 compromises the physical barrier function of an 

endocervical End1/E6E7 monolayer 

To assess whether N-9 treatment could compromise the physical barrier function of 

the cervical epithelium, an in vitro permeability assay was performed on a monolayer 

of End1/E6E7 cells. After different N-9 treatments (0, 3, 10, 30, 100 µg/ml) for 2 h, a 

FITC-Dextran solution was administered and the fluorescence intensity (F. I.) was 

measured at the other side of the monolayer (receiver well) (Fig 3.2). 

The low doses of N-9 (3, 10 µg/ml) had no effect on the epithelial barrier function as 

they resulted in practically the same F. I. values (412.2±41.27 units and 452.1±26.44 

units respectively) as the vehicle-treated cells (441.8±48.5 units). They also had no 

effect on the monolayer confluence as observed by microscopy (Fig 3.2). 

The medium (30 µg/ml) and high (100 µg/ml) doses compromised the epithelial barrier 

function as they significantly increased the F. I. in the receiver well compared to both 

the untreated cells and the ones treated with the low doses. The medium dose increased 

the F. I to 968.9±139.3 units (P<0.05 for 30 µg/ml vs 0, 3 and 10 µg/ml). The high 

dose increased the F. I. to 1424±207.1 units (P<0.001 for 100 µg/ml vs 0, 3 and 10 

µg/ml). Under the microscope, both treatments disrupted the continuity of the 

epithelial cell monolayer (Fig 3.2). 
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Figure 3.2 Medium and high doses of N-9 result in compromised epithelial barrier 

function of endocervical (End1/E6E7) cells. Confluent End1/E6E7 cells were seeded 

at 500,000 cells per insert for 72 hours in growth medium. Following this period, the 

monolayers were treated with different concentrations of N-9 diluted in growth 

medium (0 μg/ml, 3 μg/ml, 10 μg/ml, 30 μg/ml and 100 μg/ml) for 2 hours. A FITC-

Dextran solution was added to the inserts for 1 hour and the fluorescence intensity (F. 

I.) of the receiver wells was measured using CLARIOstar multimode microplate 

reader. High N-9 concentrations (30 and 100 μg/ml) resulted in higher F. I. of the 

respective receiver wells compared to low N-9 concentrations (0, 3 and 10 μg/ml), 

indicating increased epithelial permeability. Five independent experiments were 

conducted. Error bars indicate SD. Statistical significance was assessed using 1-way 

ANOVA with Dunnett’s multiple comparisons test against the 0 μg/ml group (*P<0.05 

for 30 μg/ml vs. 0, 3 and 10 μg/ml, ***P<0.001 for 100 μg/ml vs. 0, 3, and 10 μg/ml). 
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3.2.3 N-9 has no effect on the ability of endocervical 

End1/E6E7 cells to secrete proinflammatory cytokines 

and chemokines 

To assess whether N-9 could compromise the functional epithelial barrier to infection 

by disrupting the ability of the epithelial cells to secrete proinflammatory cytokines 

basally and upon LPS-stimulation, End1/E6E7 cells were pre-treated with N-9 for 2 h 

and then treated with Growth medium (CCM) or LPS only.  

Identification of the proper N-9 dose 

As shown in Chapter 3.2.1 (Fig 3.1), after 2 h of N-9 treatment, the N-9 dose that 

results in an acceptable 50% cytotoxicity is 40 μg/ml. For this experiment, after the 2-

hour N-9 treatment, a 24-hour treatment with either CCM or LPS followed. To take 

into account the possibility of a prolonged N-9 effect even after it is removed from the 

treatment, we tried two lower doses of N-9 as well (0.4 and 4 μg/ml). At, the end of 

each experiment, the cell viability was assessed by MTT assay and the findings were 

validated with a cytotoxicity LDH assay.  

The high pre-treatment dose of 40 μg/ml N-9 followed by either CCM or LPS led to 

extremely low viability (2.09±0.32% and 2.44±0.53% respectively) relative to the 

control treatment as assessed by the MTT assay (Fig 3.3A). Similar were the 

cytotoxicity findings of the LDH assay (Fig 3.3B).  

The low pre-treatment dose of 0.4 μg/ml N-9 followed by either CCM or LPS led to a 

viability of 91.89±1.71% and 88.15±1.89% relative to the control treatment 

respectively, using the MTT assay (Fig 3.3A). The cytotoxicity levels of the above 

treatments in the LDH assay mirrored the MTT findings. This dose of N-9 followed 

by CCM resulted in 9.23±3.1% cytotoxicity and the N-9 followed by LPS to 

3.87±0.95% cytotoxicity relative to cytotoxicity of the highest dose of N-9 (Fig 3.3B). 

Finally, the medium dose of 4 μg/ml N-9 followed by either CCM or LPS led to a 

viability of 74.2±4.02% and 75.48±3.88% of the control treatment respectively, using 

the MTT assay (Fig 3.3A). Again the cytotoxicity findings mirrored the viability ones 
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with 23.94±9.52% and 20.62±10.07% of the highest dose of N-9 respectively (Fig 

3.3B). 

As the highest dose of N-9 was proven very toxic and the lowest dose had only a 

minimal effect, the dose of 4 μg/ml was chosen for subsequent experiments. 

Another important finding is that LPS itself does not reduce cell viability as confirmed 

by both the MTT and the LDH assay (Fig 3.3A, B).   

  

Figure 3.3 N-9 pre-treatment at 4 μg/ml for 2 h affects the viability of End1/E6E7 

cells but without exceeding the 50% cytotoxicity limit. Confluent End1/E6E7 cells 

were seeded at 200,000 cells per well for 48 hours in growth medium. Following this, 

cells were treated with 3 doses of N-9 diluted in Cell Culture Medium (CCM) (0.4 

μg/ml, 4 μg/ml and 40 μg/ml) for 2 hours followed by a further 24 h either with 1 

μg/ml LPS in CCM or CCM alone. N-9 at 0.4 μg/ml has no effect on End1/E6E7 cells’ 

viability and at 40 μg/ml results in acceptably low levels of viability as assessed by 

metabolic activity (A) and cytotoxicity (B) levels, relative to those of untreated cells 

(CCM alone). N-9 at 4 μg/ml affects viability but without exceeding the 50% 

cytotoxicity limit. 



 Cervical epithelial damage and preterm birth 

Effects of Nonoxynol-9 and Ureaplasma spp on cervical epithelial cells in vitro 121 

Protein analysis 

To identify proinflammatory cytokines and chemokines secreted by the End1/E6E7 

cells that could have been affected by the treatments, a human cytokine proteomic 

array was performed on pooled cell culture supernatants from experimental repeats. 

The array identified that the following cytokines and chemokines are secreted: IL-6, 

IL-8, CXCL-1 and CXCL-10. All of them are upregulated with LPS treatment 

compared to CCM treatment (Fig 3.4A). 

To examine whether 4 μg/ml N-9 pre-treatment could affect the ability of the 

End1/E6E7 cells to secrete cytokines, ELISA was performed on cell culture 

supernatants from the same experiments. IL-6 and IL-8 were chosen for further 

investigation.   

Pre-treatment with N-9 did not change the levels of basal IL-6 secretion by End1/E6E7 

cells after 24 hours in CCM (374.9±68.68 and 394.5±56.53 pg/ml without and with 

pre-treatment respectively). Similarly, N-9 pre-treatment had no effect in the LPS-

stimulated secretion of IL-6 either (286.3±18.73 and 239.1±34.71 pg/ml without and 

with pre-treatment respectively) (Fig 3.4B). 

The same results were also found for the levels of IL-8. No difference by N-9 pre-

treatment was noticed at a basal level (374.9±68.68 and 394.5±56.53 pg/ml without 

and with pre-treatment respectively) or after LPS stimulation (4,243±260.6 and 

4,050±309.7 pg/ml without and with pre-treatment respectively) (Fig 3.4D). 

To take into account the N-9-induced cytotoxicity that resulted in smaller population 

of cells, the amount of total protein concentration in the cell culture supernatants was 

determined using a protein assay. The levels of IL-6 and IL-8 determined by ELISA 

were subsequently expressed and graphed as a percentage of the total protein produced 

by each group of cells. Similar to the previous findings, no change in the expression 

levels of IL-6 (Fig 3.4C, E) and IL-8 was noticed, either basally or after LPS 

stimulation. 
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Figure 3.4 N-9 pre-treatment has no effect on the ability of End1/E6E7 cells to 

secrete proinflammatory cytokines basally and after LPS stimulation. Confluent 

End1/E6E7 cells were seeded at 200,000 cells per well for 48 hours in growth medium. 

Following this, cells were treated with 4 μg/ml N-9 in CCM or CCM alone for 2 h and 

then with CCM alone or 1 μg/ml LPS in CCM. No effect on IL-6, IL-8, CXCL-1 and 
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CXCL-10 levels was found as assessed using a cytokine array (A). No effect was found 

on IL-6 and IL-8 absolute levels as assessed by ELISA (B, D respectively) or levels 

relative to total protein as assessed by ELISA and total protein assay (C, E 

respectively) (Unpaired t-test with Welch’s correction). 

 

3.2.4 Ureaplasma urealyticum effect on TLR gene expression 

on HeLa cells 

While ascending to the uterus, the bacteria most commonly associated with PTB first 

come in contact with the cervical epithelium. To identify whether an infection with 

Ureaplasma urealyticum could result in upregulation of TLRs by cervical epithelial 

cells, HeLa cells were treated with 107 CCU/ml U. urealyticum for 24 h. The gene 

expression of TLR1, TLR2, TLR3, TLR4, TLR6, TLR7 and TLR9 relative to the 

vehicle-treated cells were analysed by qPCR. 

The expression of the TLRs examined did not demonstrate any statistically significant 

changes between cells treated with U. urealyticum and those treated with the vehicle 

control USM (Fig 3.5). 

 



 Cervical epithelial damage and preterm birth 

Effects of Nonoxynol-9 and Ureaplasma spp on cervical epithelial cells in vitro 124 

Figure 3.5 Ureaplasma urealyticum infection of HeLa cells does not result in 

significant changes of TLRs mRNA levels. Confluent HeLa cells were seeded at 

100,000 cells per well for 48 hours in growth medium. Following this, cells were 

treated either with Ureaplasma urealyticum (107 CCU/ml in USM) or with vehicle 

control (USM alone) for 24 h. Quantitative Real-Time PCR showed no changes in the 

mRNA expression of TLRs in cells infected with Ureaplasma urealyticum. Error bars 

represent SD. Statistical significance was determined using the Holm-Sidak method 

on DDCt values.  

               

3.2.5 Ureaplasma urealyticum effect on cytokine and 

chemokine secretion on HeLa cells 

To assess whether HeLa cells could respond to an infection with U. urealyticum by 

secreting proinflammatory cytokines and chemokines, a Luminex multiplex assay on 

cell culture supernatants after 24-h treatment with with 107 CCU/ml U. urealyticum or 

USM was performed. A panel of 17 cytokines and chemokines was examined. 

Luminex assay revealed 9 of these cytokines (IL-6, IL-8, GM-CSF, INFγ, IP-10, MCP-

1, MIP-1b, RANTES and TNFa) are secreted by the HeLa cells but their levels are not 

altered in the presence of an infection with U. urealyticum (Fig 3.6). 
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Figure 3.6 Ureaplasma urealyticum infection of HeLa cells has no effect on the 

levels of secreted proinflammatory cytokines. Confluent HeLa cells were seeded at 

100,000 cells per well for 48 hours in growth medium. Following this, cells were 

treated either with Ureaplasma urealyticum (107 CCU/ml in USM) or with vehicle 

control (USM alone) for 24 h. A Luminex assay showed no difference in the levels of 

secreted proinflammatory cytokines with Ureaplasma urealyticum infection. 

Statistical significance was determined using the Holm-Sidak method. 

 

3.2.6 Ureaplasma urealyticum effect on TLR gene expression 

on HESC cells 

If the physical epithelial barrier is compromised, the bacteria can then be exposed to 

the underlying stroma. To identify whether an infection with Ureaplasma urealyticum 

could result in upregulation of TLRs by endometrial stromal cells that closely resemble 

cervical stromal cells, HESC cells were treated with 107 CCU/ml U. urealyticum for 

24 h. The gene expression of TLR1, TLR2, TLR3, TLR4, TLR6, TLR7 and TLR9 

relative to the vehicle-treated cells were analysed by qPCR. 
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No significant changes were found in the gene expression of TLRs following treatment 

with U. urealyticum (Fig 3.7). 

 

Figure 3.7 Ureaplasma urealyticum infection of HESC cells does not result in 

significant changes of TLRs mRNA levels. Confluent HeLa cells were seeded at 

100,000 cells per well for 48 hours in growth medium. Following this, cells were 

treated either with Ureaplasma urealyticum (107 CCU/ml in USM) or with vehicle 

control (USM alone) for 24 h. Quantitative Real-Time PCR showed no changes in the 

mRNA expression of TLRs in cells infected with Ureaplasma urealyticum. Error bars 

represent SD. Statistical significance was determined using the Holm-Sidak method 

on DDCt values.                

 

3.2.7 Ureaplasma urealyticum effect on cytokine and 

chemokine secretion on HESC cells 

To assess whether HESC cells could respond to an infection with U. urealyticum by 

secreting proinflammatory cytokines and chemokines, a Luminex multiplex assay on 

cell culture supernatants after 24-h treatment with with 107 CCU/ml U. urealyticum or 

USM was performed. A panel of 17 cytokines and chemokines was examined. 
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Luminex assay revealed 8 of these cytokines (GROa, IL-8, G-CSF, GM-CSF, INFγ, 

MCP-1, MIP-1b and TNFa) are secreted by the HeLa cells but their levels are not 

altered in the presence of an infection with U. urealyticum (Fig 3.8). 

 

Figure 3.8 Ureaplasma urealyticum infection of HESC cells has no effect on the 

levels of secreted proinflammatory cytokines. Confluent HeLa cells were seeded at 

200,000 cells per well for 48 hours in growth medium. Following this, cells were 

treated either with Ureaplasma urealyticum (107 CCU/ml in USM) or with vehicle 

control (USM alone) for 24 h. A Luminex assay showed no difference in the levels of 

secreted proinflammatory cytokines with Ureaplasma urealyticum infection. 

Statistical significance was determined using the Holm-Sidak method. 

 

3.2.8 Ureaplasma urealyticum effect on wound healing 

capacity of HeLa cells 

It is the hypothesis of this thesis that cervical damage predisposes to ascending 

infection. In the case of cervical damage, vaginal bacteria ascending to the uterus will 

encounter a damaged cervical epithelium. To assess the effect of U. urealyticum on 
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the wound healing capacity of cervical epithelial cells, an artificial wound was created 

on a HeLa cells’ monolayer and wound closure efficiency was examined in the 

presence of infection for 48 h. 

24 h after the wound was created the cell density in the wound area relative to the cell 

density outside the wound are was significantly lower for the cells that were infected 

with U. urealyticum (24.02±3.47% for Ureaplasma vs 29.42±2.84% for vehicle, 

P=0.0135). Similar were the findings 48 h after the wound was created (25.68±3.62% 

for Ureaplasma vs 31.95±3.099% for vehicle, P=0.0111) (Fig 3.9A, B). 

During the whole 48 h, the relative wound density of the Ureaplasma-treated cells was 

consistently lower than the vehicle-treated cells (Fig 3.9C). 
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Figure 3.9 Ureaplasma urealyticum infection diminishes the wound healing 

capacity of HeLa cells. Confluent HeLa cells were seeded at 50,000 cells per well for 

48 hours in growth medium. Following this, an artificial wound was created using a 

10μl pipette tip (A, yellow). Cells were treated either with Ureaplasma urealyticum 

(107 CCU/ml in USM) or with vehicle control (USM alone) and the closure of the 

artificial wound (A, blue) was monitored every 2 h using the IncuCyte Zoom system. 

Ureaplasma urealyticum infection results in a significantly decreased relative wound 

density compared to vehicle control at 24 and 48 h (B). Curves comprising all time 

points for Vehicle and Ureaplasma (C) (each data point is an average of n=4 

experimental repeats).  Error bars represent SD. Statistical significance was determined 

using a paired t-test (*P<0.05 for Ureaplasma vs. vehicle at 24 and 48 h). 

 

3.2.9 Ureaplasma urealyticum effect on wound healing 

capacity of HESC cells 

In the case of cervical damage, vaginal bacteria ascending to the uterus will encounter 

an underlying cervical stroma as well. To assess the effect of U. urealyticum on the 

wound healing capacity of stromal cells, an artificial wound was created on a HESC 

cells’ monolayer and wound closure efficiency was examined in the presence of 

infection for 48 h. 

24 h after the wound was created there was no difference in the relative wound density 

between infected and uninfected cells (28.35±3.18% for Ureaplasma vs 30.8±3.15% 

for vehicle). However, at 48 h, the Ureaplasma-infected cells had a significantly lower 

relative wound density compared to the vehicle-treated cells (44.94±2.22% for 

Ureaplasma vs 51.49±3.32% for vehicle, P=0.012) (Fig 3.10A, B). 

During the 48 h-monitoring of the wound, the relative wound density of the 

Ureaplasma-treated cells was similar to that of the vehicle-treated cells for the first 28 

h. After this, infected cells had a consistently lower relative wound density compared 

to the uninfected ones (Fig 3.10C). 
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Figure 3.10 Ureaplasma urealyticum infection diminishes the wound healing 

capacity of HESC cells. Confluent HESC cells were seeded at 50,000 cells per well 

for 48 hours in growth medium. Following this, an artificial wound was created using 

a 10μl pipette tip (A, yellow). Cells were treated either with Ureaplasma urealyticum 

(107 CCU/ml in USM) or with vehicle control (USM alone) and the closure of the 

artificial wound (A, blue) was monitored every 2 h using the IncuCyte Zoom system. 

Ureaplasma urealyticum infection results in a significantly decreased relative wound 

density compared to vehicle control at 48 h (B). Curves comprising all time points for 

Vehicle and Ureaplasma (C) (each data point is an average of n=4 experimental 

repeats).  Error bars represent SD. Statistical significance was determined using a 

paired t-test (*P=0.012 for Ureaplasma vs. vehicle at 48 h). 

 

3.2.10 Ureaplasma urealyticum effect on TLR gene 

expression on Swan 71 cells 

The Ureaplasma spp have been associated with histological chorioamnionitis with 

placental lesions. To identify whether an infection with Ureaplasma urealyticum could 

result in upregulation of TLRs by trophoblast cells, Swan 71 cells were treated with 

107 CCU/ml U. urealyticum for 24 h. The gene expression of TLR1, TLR2, TLR3, 

TLR4, TLR6, TLR7 and TLR9 relative to the vehicle-treated cells were analysed by 

qPCR. 

Among the TLRs that were examined, TLR9 demonstrated a statistically significant 

increase in its gene expression levels relative to the cells treated with the vehicle USM. 

In particular, TLR9 expression increased by 1.8±0.05-fold relative to USM (P=0.049 

for Ureaplasma vs vehicle) (Fig 3.11).  
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Figure 3.11 Ureaplasma urealyticum infection of Swan 71 cells results in a 

significant up-regulation of TLR9 mRNA levels. Confluent Swan 71 cells were 

seeded at 100,000 cells per well for 48 hours in growth medium. Following this, cells 

were treated either with Ureaplasma urealyticum (107 CCU/ml in USM) or with 

vehicle control (USM alone) for 24 h. Quantitative Real-Time PCR revealed a 

statistically significant increase in the mRNA expression of TLR9 in cells infected 

with Ureaplasma urealyticum. Error bars represent SD. Statistical significance was 

determined using the Holm-Sidak method on DDCt values (adjusted P=0.049 for 

TLR9). 

 

3.2.11 Ureaplasma urealyticum effect on cytokine and 

chemokine secretion on Swan 71 cells 

To assess whether Swan 71 cells could respond to an infection with U. urealyticum by 

secreting proinflammatory cytokines and chemokines, a Luminex multiplex assay on 

cell culture supernatants after 24-h treatment with with 107 CCU/ml U. urealyticum or 

USM was performed. A panel of 17 cytokines and chemokines was examined. 
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Luminex assay revealed 9 of these cytokines (GROa, IL-6, IL-8, G-CSF, GM-CSF, 

INFγ, IP-10, MCP-1, MIP-1a, MIP-1b, RANTES and TNFa) are secreted by the HeLa 

cells but their levels are not altered in the presence of an infection with U. urealyticum 

(Fig 3.12). 

 

Figure 3.12 Ureaplasma urealyticum infection of Swan 71 cells has no effect on the 

levels of secreted proinflammatory cytokines. Confluent HeLa cells were seeded at 

100,000 cells per well for 48 hours in growth medium. Following this, cells were 

treated either with Ureaplasma urealyticum (107 CCU/ml in USM) or with vehicle 

control (USM alone) for 24 h. A Luminex assay showed no difference in the levels of 

secreted proinflammatory cytokines with Ureaplasma urealyticum infection. 

Statistical significance was determined using the Holm-Sidak method. 

 

3.3 Discussion 

The cervical epithelium is key for the barrier function of the cervix during pregnancy 

as it protects from ascending infection with vaginal bacteria. Cervical epithelial injury 
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increases the risk for preterm delivery. The surfactant N-9 has been shown to cause 

epithelial damage in the lower reproductive tract, however its effects during pregnancy 

have not been studied. In the first part of this chapter we examined whether N-9 could 

disrupt the physical and functional epithelial barrier against infection by endocervical 

cells in vitro. 

Firstly, we assessed the effect of N-9 on the endocervical cells’ viability. Using a 

metabolic activity MTT assay, we found that N-9 decreased the cells’ viability in dose- 

and time-dependent manner. The low N-9 doses (below 10 µg/ml) had no effect on the 

cells’ viability while the high doses (above 100 µg/ml) practically resulted in killing 

all the cells. The intermediate doses of 16, 32 and 64 µg/ml had an effect that was 

intensified with increased incubation times. These findings are in complete agreement 

with two previous studies. At first, D’Cruz et al. used the same assay to find a very 

similar viability trendline after 24-hours treatments with N-9 (412). Shortly after, 

Fichorova et al. found using the closely related MTS (3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay that N-9 

cytotoxicity levels for End1/E6E7 cells start at 8 µg/ml (413). These results helped 

define the cytotoxicity thresholds that were crucial for the design of subsequent 

experiments. 

To assess the effect of N-9 on the physical barrier function of the cervical epithelium, 

we used an in vitro permeability assay. This assay provides a direct indication of 

permeability by quantifying the movement of FITC-Dextrans through a monolayer. 

We found that high (100 µg/ml) and medium (30 µg/ml) doses of N-9 are able to 

disrupt the continuity of an endocervical cells’ monolayer and thus increase their 

epithelial permeability. This is in agreement with in vivo studies in the rat (387) and 

the rabbit (409) showing an increase in the permeability of the vaginal epithelium after 

N-9 application. In humans, N-9 was also shown to increase the permeability of the 

vaginal (414) as well as the rectal epithelium (415). Low doses of N-9 (3 and 10 µg/ml) 

did not have the same effect. In these cases, the monolayer was intact and the 

permeability remained unchanged. Therefore, the permeability was increased only 

after disruption of the continuity of the monolayer as a result of administering 
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cytotoxic N-9 doses. This suggests that N-9 can compromise the barrier function of 

the cervical epithelium only in doses that are high enough to mediate epithelial 

cytotoxicity. Since N-9 can integrate in the cell membranes due to its characteristic 

chemical structure as a surfactant, it is plausible to assume that it could also increase 

the permeability even without demonstrating its cytotoxic effect. However, N-9 has 

probably no effect in the cell adhesion properties of endocervical cells. This is because 

when the monolayer was intact, even in the presence of low doses of N-9, the 

permeability was stable.   

Next, we investigated the effect of N-9 on the functional barrier of the cervical 

epithelium by assessing whether it could disrupt the ability of endocervical cells to 

secrete proinflammatory cytokines and chemokines basally and upon 24 h LPS 

stimulation.  Using further viability and cytotoxicity assays, we determined that a low 

dose of 4 µg/ml N-9 was ideal for a 2 h pre-treatment of the cells before administering 

growth medium or LPS for a further 24 h. This treatment scheme resulted in around 

75% viability at the end of the experiment, indicating that it did have an effect on the 

cells which was totally attributable to N-9 as LPS alone resulted in practically 100% 

viability. An intermediate dose of 40 µg/ml N-9 resulted in 0% viability at the end of 

the treatment scheme. Our previous results using the same dose for 2 h without an 

extra 24 h of further non-cytotoxic treatments showed a viability of around 75%. Taken 

together, these findings suggest that N-9 has a prolonging cytotoxic effect that 

continues even after its removal from the culture medium. 

Using a cytokine proteomic array, we found no effect of 4 µg/ml N-9 pre-treatment in 

the levels of IL-6, IL-8, CXCL-1 and CXCL-10 after 24 h of treatment either with 

culture medium only or with LPS. The findings for IL-6 and IL-8 were also confirmed 

using ELISA. Since the N-9 pre-treatment at this dose results in about 25% 

cytotoxicity, we quantified the total protein using a protein assay and expressed the 

levels of IL-6 and IL-8 as a percentage of this. As the total secreted protein is directly 

proportional to the amount of viable cells in each well, this allowed us to normalise 

for the cytotoxic effect of N-9. After normalisation, the levels of IL-6 and IL-8 were 

almost identical between samples pre-treated with 4 µg/ml N-9 and those treated with 
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vehicle. Therefore, N-9 had no effect on the ability of these cells to secrete cytokines 

and chemokines. N-9 itself has been shown to increase the secretion of IL-1a, IL-1b 

and IL-8 (413). However, in our experiments we tried to assess the N-9 potential as a 

damage inducer that could predispose to infection. This is why the cells were pre-

treated with N-9 and then, after removal of the medium, treated with LPS. In 

conclusion, we found that the functional barrier of the cervical epithelium against 

infection is not compromised by N-9. 

Ascending infection with vaginal bacteria is the most common cause of preterm birth 

(113). Among the bacteria implicated in preterm birth, the most common ones belong 

to the Ureaplasma spp (410). In the second part of this chapter, we assessed whether 

Ureaplasma urealyticum could stimulate cervical cells to initiate an inflammatory 

response. This set of experiments were performed during the visit of the author of this 

thesis at Yale University School of Medicine. Initial attempts to grow End1/E6E7 cells 

were proven unsuccessful. Given the time constraints, the use of HeLa cells was 

decided instead. HeLa cells are derived from an epidermoid carcinoma of the cervix 

(397) and therefore less representative of the normal cervical epithelial physiology 

compared to End1/E6E7 cells who were isolated from a healthy cervix (393). 

However, they both come from the same tissue and they both avoid cell senescence, 

HeLa being naturally immortal and End1/E6E7 being immortalised by transfection 

with the Human Papilloma Virus 16 (HPV16) oncogenes E6 and E7. 

During ascending infection the first cells that come in contact with Ureaplasma spp 

are the cervical epithelial cells. We infected HeLa cells with U. urealyticum and 

assessed potential changes in the expression of TLRs at the mRNA level. TLR1, TLR2, 

TLR6 and TLR9 have been implicated in the mechanism of entry of the U. parvum in 

amniotic epithelial cells (223) (224). However, here we found no statistically 

significant changes. In addition, we found that there was no difference in the levels of 

an array of secreted cytokines and chemokines in the supernatant of infected and 

uninfected cells, as assessed by a Luminex assay. This suggests that TLR pathways 

were not stimulated by the infection and there was no overall inflammatory response. 
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The working hypothesis of this thesis is that cervical epithelial damage predisposes to 

ascending infection with Ureaplasma spp. Upon epithelial injury, the cervical stroma 

gets exposed to the infectious stimuli. As a cervical stromal cell line is not readily 

available, we used the closely related endometrial stromal cell line HESC to assess if 

these cells can react to an infection with U. urealyticum by stimulating inflammation. 

Similar to the HeLa cells we found no changes in TLRs gene expression and no effect 

on cytokine secretion after a 24 h-infection, indicating an absence of an inflammatory 

response. 

Ureaplasma spp have been described as causative agents of chorioamnionitis that can 

cause placental lesions (416). Here we tested whether an infection with U. urealyticum 

could result in an inflammatory response by the trophoblast cell line Swan 71. A 

minimal yet statistically significant 2-fold upregulation was noticed only for TLR9, 

with no significant changes in the gene expression of the other TLRs. Taking into 

account the minimal effect along with the absence of any effect on cytokine secretion, 

it is most likely that this observation does not represent a result of biological 

significance. Still, there was again no effect on the levels of secreted cytokines. 

Taken together, data on TLR gene expression and secreted cytokine protein levels 

suggest that U. urealyticum does not stimulate an inflammatory response by these 

cells. This can be explained by both the low virulence of the microorganism and the 

limited capacity of these cells to acquire a strong inflammatory phenotype compared 

to immune cells. 

To simulate cervical damage in vitro, we created an artificial wound at the bottom of 

a well containing HeLa or HESC cells. We found using a wound healing assay that 

infection with U. urealyticum diminishes the wound healing capacity of both HeLa 

and HESC cells. This is a reasonable finding as infection of a wound is known to 

prolong the wound closure or maintain chronicity of the damage (417). However, this 

is the first time such a report is made about the Ureaplasma spp. This is particularly 

important and could have implications on preterm birth mechanisms as cervical 
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damage is associated with PTB and Ureaplasma spp are the most common bacteria 

isolated from the amniotic fluid of preterm deliveries. 

In summary, the results from the first part of this chapter demonstrate the capacity of 

N-9 to compromise the barrier function of the cervical epithelium due to its 

cytotoxicity against cervical epithelial cells. We therefore describe an in vitro model 

of cervical epithelial damage and identify N-9 as a solid damage inducer that could be 

tested in vivo to generate our proposed model of cervical damage during pregnancy. 

This is the focus of the next chapter. Data from the second part suggest that U. 

urealyticum does not stimulate a robust inflammatory response by non-immune cells 

from the reproductive tissues. However, it can negatively affect the ability of epithelial 

and stromal cells to close the wound, as in the event of cervical damage.  
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Chapter 4 Generation and characterisation of a 

new mouse model of cervical 

epithelial damage during pregnancy 

using Nonoxynol-9 

 

4.1 Introduction 

The mouse represents a valuable model for the study of preterm birth mechanisms. In 

parturition research, mouse models of PTB have been extensively used since their 

establishment. Various models have been described including PTB induced in the 

absence of inflammation, by sterile inflammation or by infections/inflammatory 

stimuli. Representative examples of the above models include the progesterone 

receptor antagonist RU486 (372), the DAMP HMGB1 (379) and the gram (-) bacterial 

product LPS (364). Most models use the administration of LPS. 

Cervical damage has also been associated with PTB. Specifically, excisional 

procedures that remove part of the cervical epithelium and the underlying stroma 

significantly increase the risk for preterm delivery by at least 100% (304) (305). 

However, this association has not been studied in experimental models. To our 

knowledge, no model of cervical damage during pregnancy to study its role in PTB 

has been described so far. 

The surfactant N-9 has been used as a spermicidal component for decades. It was also 

considered a potential topical microbicide against sexually transmitted diseases 

(STDs) (406). After a large Randomised Clinical Trial (RCT) found that N-9 actually 

increased the risk for HIV transmission (418), its safety profile has been evaluated in 

preclinical animal models. 



 Cervical epithelial damage and preterm birth 

Generation and characterisation of a new mouse model of cervical epithelial damage 

during pregnancy using Nonoxynol-9 141 

Experiments in these models revealed significant irritation of the cervical and vaginal 

mucosa in non-pregnant rabbits and rats (419). Other studies reported an important 

disruption of the continuity of the epithelial layers with a significant submucosal 

oedema (420). Acute inflammation was also described in the rats (407).    

In non-pregnant mice, a single application of N-9 was also found to cause disruption 

of the cervical and vaginal epithelium, resulting in complete sloughing of the former 

8 h post-administration (391). Single N-9 administration for consecutive days was 

shown to diminish the cervical toxicity observed compared to a single administration 

of like duration (392).  

Studies in non-human primates that more closely resemble the human anatomy and 

physiology yielded similar results. Using colposcopy, the examination of the lower 

genital tract in this species revealed significant irritation with signs of acute 

inflammation (390). This involved the presence of neutrophils and macrophages (389). 

Epithelial disruption was made apparent through the presence of whole sheets of 

epithelial cells in the vaginal fluid (389). 

In humans, erythematous irritation after vaginal application of N-9 is observed, both 

in the vagina and the cervix (421). Once-daily applications for a few days result in 

significant irritation and inflammation but not in epithelial disruption (422). After 

multiple daily applications, cervical and vaginal epithelial disruption was observed by 

colposcopy in a significant percentage of women (423). These abnormalities have been 

shown to be dose-dependent (424). 

Findings from preclinical and clinical models agree that N-9 can cause significant 

damage in the lower reproductive tract. However, its effects during pregnancy have 

not been studied yet.  

The work described in the first part of the previous chapter found that N-9 can 

compromise the barrier function of endocervical cells in vitro. These data, along with 

data from non-pregnant animals and humans described above, suggest that N-9 could 

be used to establish a mouse model of cervical damage during pregnancy.  The aim of 
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this chapter is to develop and characterise this model using N-9 and then assess its 

effects on timing of delivery and pup survival. 
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4.2 Results 

To generate a mouse model of cervical damage during pregnancy, timed pregnant mice 

were treated on D17 with 3 different doses of N-9 (2%, 5% and 10% v/v in PBS) for 

8 h. Tissues were collected to be analysed for signs of damage using histological 

methods. 

4.2.1 Effect of vaginal N-9 on cervical epithelial morphology 

during pregnancy 

To assess the effect of N-9 on cervical epithelial tissue integrity, AB/PAS staining was 

used to identify the epithelial cells of the cervix based on their ability to produce 

mucins. 

To quantify the disruptions of the epithelial morphology caused by N-9, a new 

histopathological epithelial injury score was developed. This involved two different 

features: Epithelial morphology and area involved. Three different morphologies were 

described and scored: Intact morphology was given 1 point, Disturbance was given 2 

points and Sloughing was given 3 points. Representative images can be seen (Fig 

4.1A). For Disturbance and Sloughing only, the area involved was also described and 

scored: less than 10% of the total surface area was given 0 points, 10% to 50% of the 

total surface was given 1 point and more than 50% was given 2 points (Fig 4.1A). The 

total score for each section was Morphology+ Area involved. 

All three N-9 doses resulted in a significantly increased epithelial injury score. The 

2% N-9 was scored at 4.033±0.36 (P=0.0043), the 5% N-9 at 3.89±0.29 (P=0.0265) 

and the 10% N-9 at 4.42±0.48 (P=0.0033) compared to 1.54±0.36 for the PBS control 

(Fig 4.1B). 
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Figure 4.1 Intra-vaginal N-9 disrupts cervical epithelial morphology during 

pregnancy in a mouse model. In the morning of D17 of gestation, mice received 

either N-9 (2%, 5% or 10% in PBS) or PBS control via intravaginal inoculation. 8 h 

later mice were sacrificed for tissue collections. Cervical tissue sections were stained 

with AB/PAS and a morphological damage scoring system was used to assess 

epithelial damage (A). N-9 significantly damages the morphology of the cervical 

epithelium during pregnancy (B). Error bars indicate SD. Statistical significance was 

assessed using 1-way ANOVA with Dunnett’s multiple comparisons test against PBS 

group (**P<0.005 for 2% N-9 and 10% N-9 vs. PBS, *P<0.05 for 5% N-9 vs. PBS). 

 

All samples were assessed by two independent assessors who were blinded to 

treatment allocation. Inter-observer reliability was calculated (Weighted Cohen’s 

kappa=0.952) (Table 4-1). 

Table 4-1 Inter-rater reliability for the assessment of Morphological epithelial 

damage in the cervix. Numbers in bold represent the scores given by the assessors. 

The other numbers represent the amount of samples that were given each score 

combination. 
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4.2.2 Effect of vaginal N-9 on vaginal epithelial morphology 

during pregnancy 

The same epithelial injury score was also utilised to assess the effect of N-9 in the 

vaginal epithelial integrity. Representative images of Intact morphology, Disturbance 

and Sloughing for the vaginal epithelium can be seen in Fig 4.2A. 

As in the cervix, all three N-9 doses resulted in a significantly increased epithelial 

injury score. The 2% N-9 was scored at 4.08±0.37 (P=0.0075), the 5% N-9 at 

3.56±0.95 (P=0.0434) and the 10% N-9 at 4.42±0.37 (P=0.0033) compared to 

1.54±0.36 for the PBS control (Fig 4.2B). 
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Figure 4.2 Intra-vaginal N-9 disrupts the vaginal epithelial morphology during 

pregnancy in a mouse model. In the morning of D17 of gestation, mice received 

either N-9 (2%, 5% or 10% in PBS) or PBS control via intravaginal inoculation. 8 h 

later mice were sacrificed for tissue collections. Vaginal tissue sections were stained 

with AB/PAS and a morphological damage scoring system was used to assess 

epithelial damage (A). N-9 significantly damages the morphology of the vaginal 

epithelium during pregnancy (B). Error bars indicate SD. Statistical significance was 

assessed using 1-way ANOVA with Dunnett’s multiple comparisons test against PBS 

group (**P<0.005 for 2% N-9 and 10% N-9 vs. PBS, *P<0.05 for 5% N-9 vs. PBS). 

All samples were assessed by two independent assessors who were blinded to 

treatment allocation. Inter-observer reliability was calculated (Weighted Cohen’s 

kappa=0.774) (Table 4-1). 

Table 4-2 Inter-rater reliability for the assessment of Morphological epithelial 

damage in the vagina. Numbers in bold represent the scores given by the 

assessors. The other numbers represent the amount of samples that were given 

each score combination. 
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4.2.3 Cervical infiltration of polymorphonuclear neutrophils 

after vaginal N-9 administration during pregnancy 

Upon tissue injury as the one described in the previous section, an inflammatory 

response is initiated and neutrophils are among the first immune cells to arrive on site. 

To assess neutrophil infiltrations following N-9 administration, Ly6G 

immunohistochemistry on tissue sections was performed. 

To allow for accurate quantification of these infiltrations, a new neutrophil infiltration 

score assessing both the epithelium and the sub-epithelial stroma was described. For 

the epithelium: No epithelial infiltrations were given 0 points, infiltrated area 0% to 

10% of the total surface area was given 1 points, infiltrated area 10% to 50% of the 

total surface area was given 2 points and more than 50% was given 3 points (Fig 4.3A). 

For the sub-epithelial stroma: An average of 0-1 neutrophils per field of interest (FOI) 

was given 1 point, an average of 1-3 neutrophils per FOI was given 2 points and more 

than 3 neutrophils per FOI were given 3 points (Fig 4.3B). Representative images can 

be seen (Fig 4.3A, B). The total score for each section was Epithelium+ Sub-epithelial 

stroma. 

The highest dose of 10% N-9 resulted in a significantly increased neutrophil 

infiltration score in the cervix of pregnant mice (3.75±0.75, P=0.0147) compared to 

PBS control (1±0) (Fig 4.3C). The 2% N-9 (2.75±0.75, P=0.1234) and the 5% N-9 

(1.33±0.33, P=0.962) doses did not demonstrate statistically significant differences 

compared to the control group (Fig 4.3C). 
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Figure 4.3 Intra-vaginal N-9 results in polymorphonuclear neutrophils 

infiltrations in the cervix during pregnancy in a mouse model. In the morning of 

D17 of gestation, mice received either N-9 (2%, 5% or 10% in PBS) or PBS control 

via intravaginal inoculation. 8 h later mice were sacrificed for tissue collections. Anti-

Ly6G immunohistochemistry on cervical tissue sections was used to assess the 

presence of neutrophils. A neutrophil infiltration scoring system was used to quantify 
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the presence of neutrophils in the cervical epithelium (A) and stroma (B), the total 

score being the sum of the two. 10% N-9 significantly increased the neutrophil 

infiltrations in the cervix (C). Arrowheads indicate positively stained cells. Error bars 

indicate SD. Statistical significance was assessed using 1-way ANOVA with Dunnett’s 

multiple comparisons test against PBS group (*P<0.05 for 10% N-9 vs. PBS). 

All samples were assessed by two independent assessors who were blinded to 

treatment allocation. Inter-observer reliability was calculated (Weighted Cohen’s 

kappa=0.874) (Table 4-3). 

Table 4-3 Inter-rater reliability for the assessment of neutrophil infiltrations in 

the cervix. Numbers in bold represent the scores given by the assessors. The other 

numbers represent the amount of samples that were given each score 

combination. 
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4.2.4 Vaginal infiltration of polymorphonuclear neutrophils 

after vaginal N-9 administration during pregnancy 

The same neutrophil infiltrations score was also utilised to assess the effect of N-9 in 

the vaginal tissue. Representative images of all conditions for the vaginal epithelium 

and sub-epithelial stroma can be seen in Fig 4.4A, B. 

Similar to the finding in the cervix, the highest dose of 10% N-9 resulted in a 

significantly increased neutrophil infiltration score in the vagina of pregnant mice 

(5.5±0.5, P=0.0032) compared to PBS control (1.25±0.25) (Fig 4.4C). In addition, the 

dose of 2% N-9 resulted in a significantly increased score as well when compared to 

PBS control (4.75±0.63, P=0.0115) (Fig 4.4C). The 5% N-9 (3.67±1.45, P=0.1046) 

dose showed no statistically significant changes (Fig 4.4C). 
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Figure 4.4 Intra-vaginal N-9 results in polymorphonuclear neutrophils 

infiltrations in the vagina during pregnancy in a mouse model. In the morning of 

D17 of gestation, mice received either N-9 (2%, 5% or 10% in PBS) or PBS control 

via intravaginal inoculation. 8 h later mice were sacrificed for tissue collections. Anti-

Ly6G immunohistochemistry on vaginal tissue sections was used to assess the 

presence of neutrophils. A neutrophil infiltration scoring system was used to quantify 
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the presence of neutrophils in the vaginal epithelium (A) and stroma (B), the total score 

being the sum of the two. N-9 significantly increased the neutrophil infiltrations in the 

vagina (C). Error bars indicate SD. Statistical significance was assessed using 1-way 

ANOVA with Dunnett’s multiple comparisons test against PBS group (**P<0.005 for 

10% N-9 vs. PBS, *P<0.05 for 2% N-9 vs. PBS). 

All samples were assessed by two independent assessors who were blinded to 

treatment allocation. Inter-observer reliability was calculated (Weighted Cohen’s 

kappa=0.849) (Table 4-4). 

Table 4-4 Inter-rater reliability for the assessment of neutrophil infiltrations in 

the vagina. Numbers in bold represent the scores given by the assessors. The other 

numbers represent the amount of samples that were given each score 

combination. 
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4.2.5 Increased proliferation of the basal cells of the cervical 

epithelium during pregnancy after vaginal N-9 

administration 

As a response to tissue injury, an epithelial regeneration process is initiated, 

characterised by increased proliferation of the basal cells. To assess whether N-9 

treatment resulted in increased epithelial regeneration as an indirect indication of 

epithelial damage, Ki67 immunohistochemistry was performed on cervical tissues. 

The percentage of proliferating cells at the basal layer of at least 1mm of the cervical 

epithelium was quantified. Representative images are shown on Fig 4.5A. 

All three doses of N-9 significantly increased the percentage of proliferating cells at 

the basal layer of the cervical epithelium compared to PBS control. The 2% N-9 dose 

resulted in 42.21±2.96% of the cells being positively stained (P=0.0437); the 5% N-9 

dose resulted in 43.94±2.66% being positively stained (P=0.0298); and the 10% N-9 

dose resulted in 50.46±3.47% being positively stained (P=0.0011), whereas the 

percentage of proliferating cells for the PBS control was 31.73±1.2% (Fig 4.5B).   
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Figure 4.5 Intra-vaginal N-9 results in increased proliferation of the basal cells of 

the cervical epithelium during pregnancy in a mouse model. In the morning of D17 

of gestation, mice received either N-9 (2%, 5% or 10% in PBS) or PBS control via 

intravaginal inoculation. 8 h later mice were sacrificed for tissue collections. Anti-

Ki67 immunohistochemistry on cervical tissue sections was used to assess cellular 

proliferation at the basal layer of the cervical epithelium. Representative images are 

shown (A). The percentage of Ki-67 positive cells was calculated across an area 

covering at least 1mm of the basal layer. N-9 significantly increases cellular 

proliferation at the cervix basal layer (B). Error bars indicate SD. Statistical 

significance was assessed using 1-way ANOVA with Dunnett’s multiple comparisons 

test against PBS group (**P<0.005 for 10% N-9 vs. PBS, *P<0.05 for 2% N-9 and 5% 

N-9 vs. PBS). 
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4.2.6 No change on cell proliferation at the basal layer of the 

vaginal epithelium during pregnancy after vaginal N-9 

administration 

In the vagina, the percentage of proliferating cells at the basal layer of at least 1mm of 

the epithelium was quantified. Representative images are shown on Fig 4.6A. 

None of the three doses of N-9 significantly increased the percentage of proliferating 

cells at the basal layer of the vaginal epithelium compared to PBS control-treated 

animals. The percentage of proliferating cells in the basal layer was 85.31±2.16% for 

mice treated with 2% N-9, 84.56±4.17 for mice treated with 5% N-9 and 86.08±2.64 

for mice treated with 10% N-9 (Fig 4.6B). In PBS-treated animals, the respective 

proportion was79.58±1.9%.  
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Figure 4.6 Intra-vaginal N-9 has no effect on cell proliferation of the basal cells 

of the vaginal epithelium during pregnancy in a mouse model. In the morning of 

D17 of gestation, mice received either N-9 (2%, 5% or 10% in PBS) or PBS control 

via intravaginal inoculation. 8 h later mice were sacrificed for tissue collections. Anti-

Ki67 immunohistochemistry on vaginal tissue sections was used to assess cellular 

proliferation at the basal layer of the vaginal epithelium. Representative images are 

shown (A). The percentage of Ki-67 positive cells was calculated across an area 

covering at least 1mm of the basal layer. N-9 has no effect on cellular proliferation at 

the vaginal basal layer (B). Error bars indicate SD. Statistical significance was assessed 

using 1-way ANOVA with Dunnett’s multiple comparisons test against PBS group. 
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4.2.7 The effects of N-9-induced epithelial damage on timing 

of delivery and pup survival  

To assess whether N-9-induced cervicovaginal epithelial damage could result in 

preterm delivery and whether there would be any effect on pup survival, a time-to-

delivery experiment was conducted. On D17 of pregnancy, timed pregnant mice were 

given an intravaginal inoculation of the three N-9 doses that were used for generating 

and characterising the model as shown before. A further dose of 40% v/v N-9 was also 

used to generate a dose response. Timing of delivery of the first pup post-

administration was monitored using CCTV. The percentage of pups born alive was 

calculated for each mouse. 

None of the administered doses had any effect on timing of delivery. Mice treated with 

PBS delivered at an average of 57.93±2 hours post-administration. Mice treated with 

2% N-9 delivered 60.05±4.97 hours post-administration. Those treated with 5% N-9 

delivered 58.1±3.58 hours post-administration. The ones that received 10% N-9 

delivered 64.34±4.18 hours post-administration. Finally, mice treated with the highest 

dose of 40% N-9 delivered 68.3±3.66 hours post-administration (Fig 4.7A).  

There was also no effect on the percentage of live born pups for any of the N-9 groups. 

As expected, the average percentage of live born pups for all mice treated with PBS 

98±2%. The percentages for the N-9 treated mice were 97.8±2.2%, 98±2%, 

96.75±2.14% and 90.6±6.49 for 2% N-9, 5% N-9, 10% N-9 and 40% N-9 respectively 

(Fig 4.7B). 
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Figure 4.7 Cervical damage caused by intra-vaginal N-9 does not affect timing of 

delivery and pup survival in a mouse model of cervical damage during pregnancy. 

In the morning of D17 of gestation, mice received either N-9 (2%, 5%, 10% or 40% 

in PBS) or PBS control via intravaginal inoculation. Time to delivery was calculated 

from the moment of intravaginal inoculation until the delivery of the first pup. N-9 had 
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no effect on timing of delivery (1-way ANOVA with Dunnett’s multiple comparisons 

test against 0% N-9) (A).  Percentage of live born pups for each mouse was calculated 

by dividing the number of live pups delivered by the total number of pups. N-9 had no 

effect on pup survival (1-way ANOVA with Dunnett’s multiple comparisons test after 

arcsine transformation of proportions against 0% N-9) (B). Error bars represent SD. 

 

4.3 Discussion 

Cervical epithelial damage has been shown to increase the risk for preterm delivery in 

humans (304). However, no mechanisms underpinning this association have been 

suggested.  It is our hypothesis that cervical epithelial damage predisposes to 

ascending infection with vaginal bacteria. To address this hypothesis, the aim of 

creating a mouse model of cervical epithelial damage during pregnancy was set. In the 

previous chapter, we identified the surfactant N-9 to be a potent inducer of cervical 

epithelial damage in vitro. The work in this chapter describes the establishment and 

characterisation of a new mouse model of cervical epithelial damage during pregnancy 

using N-9. 

N-9 was administered intravaginally in day 17 of the mouse gestation. N-9 has been 

used as a spermicidal component for female-controlled contraception for decades. The 

N-9 doses that we tried in this mouse model (2%, 5%, 10% v/v) represent the whole 

pharmacological spectrum that has been applied in humans (2-12%).  To quantify the 

extent of damage, we described a new scoring system. This system took into account 

the morphology of the epithelium after N-9 application and the extent of the damaged 

area. We found that N-9 caused a significant disruption of the cervical epithelial 

morphology 8 hours post-administration with all three doses. This disruption involved 

the presence of extensive areas of disturbance and complete sloughing of the epithelial 

layers. This findings are in agreement with reports from non-pregnant animal models 

and humans. Significant damage in the lower reproductive tract with epithelial 

disruption and shedding after vaginal application of N-9 has been found in mice (391), 

rats (407), rabbits (425) and non-human primates (390). In addition, the detrimental 
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effects of N-9 appear to extend outside the epithelium of the lower reproductive tract. 

Specifically, it has been shown to cause exfoliation of the rectal epithelium with 

exposure of the underlying stroma in mice (426) (427), rhesus monkeys (390) and 

humans (428). 

A significant disruption with all three doses of N-9 was also found in the vaginal 

epithelium of pregnant mice. The extent of damage was similar to that found in the 

cervical epithelium. Catalone et al. and Lozenski et al. reported that the damage in the 

vagina was minimal compared to the cervix (391) (392). Data from rabbits also suggest 

that the cervical epithelium is more susceptible to N-9-induced damage (420). 

However, the explanation for rabbits lies in the fact that, similar to humans, the vaginal 

epithelium consists of multiple layers of squamous cells, whereas the cervical canal 

only has a simple columnar epithelium (429). Columnar cells have been shown to be 

more susceptible to the N-9 cytotoxicity (409).  Therefore, the vaginal epithelium is 

more protected compared to the cervical. In mice though, the epithelium of the lower 

reproductive tract is continuous from the vagina to the uterus and consists of multiple 

layers of squamous cells (430). More layers are seen in the vaginal epithelium, which 

might explain the differences observed in other non-pregnant mouse models. 

Progesterone treatment has been shown to induce a columnar mucus-producing 

phenotype in the entire cervicovaginal epithelium (406). The very high pregnancy 

levels of progesterone during the course of pregnancy, as in our model, ensure this 

phenotype is consistent across the vaginal and cervical epithelium. Our AB/PAS 

staining confirms the abundance of mucins within the epithelial cells of both the cervix 

and the vagina. Thus, both epithelia are susceptible to N-9 cytotoxicity.  

Using immunohistochemistry, we found that N-9 treatment also leads to 

polymorphonuclear neutrophil populations infiltrating the epithelium and the sub-

epithelial stroma in both the cervix and the vagina. To quantify the extent of the 

infiltrations, we developed another scoring system. This system systematically 

assessed the presence of neutrophils in both the epithelium and the sub-epithelial 

stroma. The effect was stronger with the highest N-9 dose of 10% v/v. This was in fact 

the only dose that yielded statistically significant results both in the cervix and the 
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vagina using our scoring system. However, the clear effect of the highest dose was 

enough proof of the inflammatory infiltrations not to require an increase in sample 

size.   

These findings are consistent with an early immune response to tissue injury as 

neutrophils are among the first immune populations to arrive on site. Therefore, these 

data constitute a further indication of the extent of damage caused by N-9 in our model. 

They are also in line with other histological findings in mice (391). Apart from 

infiltrating the epithelial tissue, high levels of neutrophils after N-9 application have 

also been detected in vaginal secretions from mice (389) and pigtailed macaques (388). 

In addition to confirming the extent of N-9-induced damage, the finding that N-9 can 

cause neutrophil recruitment in the cervix is important. This could have implications 

in cervical damage-induced preterm birth mechanisms as the influx of neutrophils into 

the cervix secondary to intrauterine LPS administration can induce premature cervical 

ripening in mice (431). 

To further investigate the functional effects of N-9-mediated damage in the cervix and 

the vagina, we used immunohistochemistry to determine the percentage of 

proliferating cells across the basement membrane of the cervix. All three doses of N-

9 resulted in a statistically significant increase in the proportion of proliferating cells. 

This increased proliferation of the cells in the basement membrane is characteristic of 

an epithelial regeneration process as a response to acute tissue injury. Catalone et al. 

reported that the epithelium of the cervix in non-pregnant mice is completely 

regenerated within 24 hours of the original insult (391). In our model, this seems 

unlikely given the extent of damage observed 8 hours post-application. However, it 

does suggest that an epithelial regeneration process is in place in response to the 

damage exerted by N-9. In addition, it provides further evidence that validates our 

mouse model and confirms the suitability of N-9 as an epithelial damage inducer.  

In the vaginal epithelium, we found no increase in the percentage of proliferating cells 

in the basement membrane. The vast majority of the cells were proliferating in all 

groups including mice that only received the vehicle treatment. The proportion for the 
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control group in the vagina was around 80% as opposed to 30% in the cervix. As the 

vaginal epithelium has substantially more epithelial layers, it is likely that in any given 

time more cells in the basement membrane are proliferating in order for the cells in the 

apical part to be promptly replaced. High rates of proliferating cells in the basal layer 

of the vaginal epithelium late during the mouse pregnancy have been reported before 

(432). Estrogen is known to stimulate this proliferation in non-pregnant mice and the 

increased levels of estrogen during late pregnancy could have accounted for our 

observation (433). Another factor implicated in increasing vaginal cell proliferation is 

relaxin, the secretion of which by the corpus luteum is also increased during late 

pregnancy in the mouse (434). This means that even if there would have been increases 

in the proliferation of basal cells due to tissue injury, these would not be identified 

because of the high percentage of the cells that are already proliferating.   

Collectively, these experiments confirmed that N-9 significantly damages the 

cervicovaginal epithelium during pregnancy. From the features of damage that we 

assessed, morphological damage and neutrophil infiltrations could have resulted in 

preterm delivery. However, we found no effect of N-9-induced damage on the timing 

of delivery or pup survival. An even higher dose of 40% N-9 was used in these 

experiments to ensure coverage of the whole spectrum, even outside the 

pharmacological limits. Akgul et al. found that loss of Hyaluronic acid (HA) in the 

cervix results in epithelial disorganisation (280). This is not sufficient to cause preterm 

birth on its own (280). It rather predisposes to preterm delivery induced by E. coli 

(280). This is in line with our finding that N-9-induced morphological damage does 

not cause PTB. In addition, we found that the neutrophil infiltrations induced by N-9 

are again not sufficient to cause PTB. Timmons et al. suggested that neutrophils are 

not necessary for cervical ripening to occur in the mouse and are physiologically 

recruited on site in preparation for postpartum repair (435). Still, the activation of 

immune pathways appears to be sufficient to induce preterm cervical ripening in mice 

(436). In our damage model, the neutrophils recruited are targeting the epithelium as 

part of the tissue repair process secondary to N-9 application. Hence, they have no 
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effect on the main bulk of the stroma and are therefore incapable of inducing premature 

cervical ripening and a subsequent preterm birth. 

In summary, data from this chapter reveal that N-9 causes significant damage in the 

morphology of the cervicovaginal epithelium. This initiates a tissue repair process that 

is characterised by neutrophil infiltrations and increased proliferation in the basement 

membrane of the epithelium. However, this damage is not sufficient to cause preterm 

delivery and has no effect on pup survival. Overall, we describe and characterise for 

the first time a mouse model of cervical epithelial damage during pregnancy using N-

9.   
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Chapter 5 The effect of cervical epithelial 

damage on ascending infection and 

preterm birth 

 

5.1 Introduction 

Preterm birth is a syndrome that has been associated with a diverse range of etiologies 

(56). Among them, the most common one affecting at least 25-40% of pregnancies is 

infection (437). In addition, intrauterine infection is the only condition for which a 

causality link has been established and the underlying pathophysiology is well studied. 

There are several routes through which microorganisms can access the uterine cavity 

and cause an intrauterine infection. By ascending from the vagina and through the 

cervix; by disseminating haematogenously and through the placenta; by retrograde 

spread from the abdominal cavity and through the fallopian tubes; or by accidental 

dissemination during invasive medical procedures (196). The bacteria most commonly 

isolated from the amniotic fluid of women delivering preterm are are common to those 

which are also present in the vagina. Therefore, the most common route of intrauterine 

infection is believed to be the ascending pathway of vaginal bacteria through the 

cervix. 

Ureaplasmas are the bacteria most frequently associated with preterm birth, and are 

commonly present in the amniotic fluid of preterm deliveries, as they can be detected 

in more than 40% of patients with preterm labour or PPROM (438). In addition, they 

are associated with potential adverse pregnancy outcomes in the absence of preterm 

delivery. These adverse outcomes include chorioamnionitis (416), fetal brain injury 

(411) and pulmonary disease (439) (440). Ureaplasmas are divided into two species: 

U. urealyticum and U. parvum. The latter is considered to be the more prevalent of the 
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two in the case of PTB, and is considered to be an independent risk factor for PTB 

(231). Despite the rate of around 40% of Ureaplasma infection in early preterm birth 

studies, a causal link is hard establish in humans, as a significant number of women 

with positive Ureaplasma cultures have normal pregnancy outcomes (242). One 

potential explanation is the low virulence of these bacteria. Further evidence on the 

mechanisms of infection during pregnancy is needed to establish the role of 

Ureaplasma spp as PTB-triggering microorgnanisms. 

The cervical epithelium has a pivotal role in protecting against ascending infection 

during pregnancy (282). It has been shown that excisional procedures that damage the 

cervix by removing part of the epithelium and the underlying stroma significantly 

increase the risk for preterm delivery (304) (305), but the association has not been 

explained yet. A potential explanation could involve a compromise of the barrier 

function after cervical damage that could increase the risk for an ascending infection. 

In the previous chapter, we established and characterised a new mouse model of 

cervical epithelial damage during pregnancy using the surfactant Nonoxynol-9. We 

also found that N-9-induced cervical damage per se does not cause preterm birth. Thus, 

the aim of the work described in this chapter is to address whether cervical damage 

could predispose to ascending inflammation and/or infection.  

Intra-vaginal administration of LPS has previously been shown to induce preterm 

delivery (365). However, it is not clear if this is achieved by LPS only causing 

intrauterine inflammation or by causing vaginal inflammation that propagates to reach 

the intrauterine compartment. In addition, our group did not manage to replicate this 

finding before, with mice delivering normally at term after vaginal LPS administration 

(170). Therefore, we hypothesized that N-9-induced cervical epithelial damage and 

inflammation would boost LPS-induced inflammation in the vagina to induce preterm 

birth after co-administration of both substances. We also tested the hypothesis that loss 

of the epithelial barrier function by N-9 pre-treatment would facilitate preterm birth 

induced by a subsequent LPS intra-vaginal administration.    
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Ureaplasma parvum, the most clinically relevant bacteria for preterm birth, was also 

used to model ascending infection. We hypothesized that N-9-induced cervical 

epithelial damage would facilitate ascending infection with U. parvum. We also sought 

to investigate the capacity of U. parvum to mount an inflammatory response in fetal 

and maternal tissues.  
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5.2 Results 

In the previous chapter, the establishment and characterisation of a mouse model of 

cervical damage using N-9 was described. Among the three different doses of N-9 that 

were tested, the one resulting in statistically significant epithelial injury as assessed by 

our scoring systems was the 10% N-9 v/v. Therefore, this was the dose of choice used 

in all subsequent experiments.  

5.2.1 Co-administration of N-9 and LPS has no effect on timing 

of delivery or pup survival 

To assess whether the added inflammatory effects induced by co-treatment of N-9 and 

LPS could result in preterm delivery and whether there would be any effect on pup 

survival, a time-to-delivery experiment was conducted. On D17 of pregnancy, timed 

pregnant mice were given an intravaginal inoculation of a formulation of N-9 and LPS. 

Timing of delivery of the first pup post-administration was monitored using CCTV. 

The percentage of pups born alive was calculated for each mouse. The experimental 

outline can be seen in Materials and Methods (Fig 2.5A). 

Co-treatment with N-9 and LPS had no effect on timing of delivery. Mice treated with 

it delivered at an average of 70±6.06 hours post-administration compared to the ones 

treated with PBS control who delivered at 56.5±1.22 hours post-administration 

(P=0.0636). There was also no effect on timing of delivery for mice treated with either 

N-9 or LPS only, compared with PBS vehicle control only. Mice treated with N-9 

alone or LPS alone delivered at 64.34±4.18 and 65.25±2.85 hours post-administration 

respectively (Fig 5.1A). 

Co-administration of N-9 and LPS had also no effect on the pup survival. Mice in this 

group exhibited an average pup survival of 93.4±6.6% compared to 98±2% for mice 

treated with PBS control. Again, there was also no effect on pup survival for mice 

treated with N-9 or LPS alone. The former had an average pup survival of 

96.75±2.14% while the latter had an average pup survival of 94.33±3.81% (Fig 5.1B). 
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Figure 5.1 The combination of intra-vaginal N-9 with LPS does not affect timing 

of delivery and pup survival in a mouse model of cervical damage during 

pregnancy. In the morning of D17 of gestation, mice received either 10% N-9 in PBS 

or 100 μg/ml LPS in PBS or 10% N-9 and 100 μg/ml LPS in PBS or PBS control via 

intravaginal inoculation. Time to delivery was calculated from the moment of 

intravaginal inoculation until the delivery of the first pup. N-9 and LPS either alone or 

combined had no effect on timing of delivery (A).  Percentage of live born pups for 
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each mouse was calculated by dividing the number of live pups delivered by the total 

number of pups. N-9 and LPS either alone or combined had no effect on pup survival 

(B). Statistical significance was assessed using 2-way ANOVA. Error bars represent 

SD. 

 

5.2.2 N-9 pretreatment induced cervical damage does not 

facilitate vaginal LPS-induced preterm delivery and has 

no effect on pup survival 

To investigate whether cervical damage induced by pretreatment with N-9-induced 

could facilitate vaginal LPS-induced preterm birth, another time-to delivery 

experiment was performed. In the afternoon of D16 of pregnancy, timed pregnant mice 

were given an intravaginal inoculation of N-9 and 16 hours later they were 

administered with vaginal LPS. Timing of delivery of the first pup post-administration 

was monitored using CCTV. The percentage of pups born alive was calculated for 

each mouse. The experimental outline can be seen in Materials and Methods (Fig 

2.5B). 

The administration of N-9 followed by LPS had no effect on timing of delivery. Mice 

treated with this scheme delivered at an average of 64.34±4.18 hours post-

administration compared to the ones treated with PBS control who delivered at 

57.93±2 hours post-administration. There was also no effect on timing of delivery for 

mice treated with either N-9 followed by PBS control or PBS control followed by LPS. 

Mice treated with the former combination delivered at 60.05±4.97 hours post-

administration. Mice treated with the latter delivered at and 58.1±3.58 hours post-

administration (Fig 5.2A). 

N-9 followed by LPS had also no effect on the pup survival. Mice in this group had an 

average pup survival of 66.45±14.59% compared to 87.5±10.03% for mice treated 

with PBS controls only. Again, there was also no effect on pup survival for mice 
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treated with N-9 or LPS alone. The former had an average pup survival of 95.6±2.36% 

while the latter had an average pup survival of 75.21±9.9% (Fig 5.2B). 

 

Figure 5.2 Cervical damage caused by intra-vaginal N-9 does not facilitate intra-

vaginal LPS-induced preterm birth and has no effect on pup survival. In the 

afternoon of D16 of gestation, mice received either 10% N-9 in PBS or PBS control 

via intravaginal inoculation. 16 h later, in the morning of D17 of gestation, mice 
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received either 1 mg/ml LPS in PBS or PBS control via intravaginal inoculation. Time 

to delivery was calculated from the moment of intravaginal inoculation until the 

delivery of the first pup. N-9 and LPS either alone or combined had no effect on timing 

of delivery (A).  Percentage of live born pups for each mouse was calculated by 

dividing the number of live pups delivered by the total number of pups. N-9 and LPS 

either alone or combined had no effect on pup survival (B). Statistical significance was 

assessed using 2-way ANOVA.  Error bars represent SD. 

 

5.2.3 N-9 is more cytotoxic against endocervical cells than 

against Ureaplasma parvum 

N-9 has been shown to be cytotoxic against a wide range of bacteria (441) (442) (443) 

(444) and against epithelial cells (413). Our in vivo experimental design to test the 

hypothesis that cervical epithelial damage predisposes to ascending infection with U. 

parvum involved the sequential administration of N-9 followed by U. parvum 16 h 

later. First, we sought to determine the relative cytotoxicity of N-9 against cervical 

epithelial cells and U. parvum.  To assess whether N-9 is more cytotoxic against 

endocervical cells or against U. parvum, both of them were treated with various N-9 

concentrations for 48 hours and their ability to survive and grow was assessed by an 

MTT assay and colour changing assessment respectively. 

Determination of the minimum N-9 cytotoxic dose against End1/E6E7 

An MTT assay after 48 h of treatment with various doses of N-9 (0, 1, 2, 4, 8, 16, 32, 

64, 128, 256, 512, 1024 µg/ml in Growth medium) revealed that the dose of 32 µg/ml 

was the minimum dose that completely abolished the cells’ metabolic activity (Fig 

5.3). 
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Figure 5.3 Determination of minimum N-9 concentration that stops endocervical 

End1/E6E7 cells’ growth after 48 hours. End1/E6E7 cells were incubated with 

various N-9 concentrations (0, 2, 4, 8, 16, 32, 64, 128, 256 and 512 μg/ml) for 48h. 

Metabolic activity indicating cell viability was determined by an MTT assay and is 

expressed relative to that of the untreated cells. The minimum N-9 concentration that 

stops End1/E6E7 growth is 32 μg/ml. Error bars indicate SD. 

 

Determination of the minimum N-9 cytotoxic dose against Ureaplasma 

parvum 

U. parvum bacteria were allowed to grow in the presence of various doses of N-9 (0, 

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 µg/ml in Ureaplasma selective medium) and 

the microplate assay based on colour change indicative of bacterial growth was used 

to determine the lowest dose of N-9 that inhibited U. parvum growth. The minimum 

cytotoxic dose was found to be 128 µg/ml (Fig 5.4). 
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Figure 5.4 Determination of minimum N-9 concentration that stops Ureaplasma 

parvum growth after 48 hours. The 96-well plate contains an N-9 gradient from 1024 

μg/ml to 1 μg/ml. Pink wells indicate growth and yellow wells indicate no growth of 

Ureaplasma parvum (UP) after 48 h. The minimum N-9 concentration that stops UP 

growth is 128 μg/ml. 
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5.2.4 N-9-induced cervical damage facilitates ascending 

infection with Ureaplasma parvum during pregnancy 

To investigate whether N-9-induced cervical damage could facilitate ascending 

infection with U. parvum, a bioluminescent strain of the bacteria was used. In the 

afternoon of D16 of pregnancy, timed pregnant mice were given an intravaginal 

inoculation of 10% N-9 or PBS control. Sixteen hours later they were vaginally 

administered with U. parvum or Ureaplasma selective medium (USM) control. 

Twenty-four hours later, in the morning of D18, optical in vivo bioluminescence 

imaging was performed to assess the presence of U. parvum in the upper reproductive 

tract. The experimental outline can be seen in Materials and Methods (Fig 2.6). 

Bioluminescence signal (BLI) was quantified in pre-drawn regions of interest (ROI) 

that covered the whole mouse abdomen. A representative image is shown (Fig 5.5A). 

Mice treated with control treatments (PBS+USM) exhibited only background levels of 

BLI (706±48 counts). Such was the case for that received the cervical damage 

treatment but were not administered with U. parvum (N-9+USM) (734±55 counts) 

(Fig 5.5B). 

N-9 induced cervical damage facilitated ascending infection with U. parvum. Among 

mice that were given U. parvum, those that were previously treated with N-9 (N-9+UP) 

exhibited a significantly higher BLI signal (61,2x103±25,7x103 counts; P=0.0245) 

compared to those that received a control treatment for cervical damage (PBS+UP) 

(9,5x103±7,4x103 counts) (Fig 5.5B). 
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Figure 5.5 Cervical damage caused by N-9 results in increased bioluminescence 

signal in the upper reproductive tract after vaginal infection with luciferase-

expressing Ureaplasma parvum during pregnancy. In the afternoon of D16 of 

gestation, mice received either 10% N-9 in PBS or PBS control via intravaginal 

inoculation. 16 h later, in the morning of D17 of gestation, mice received either 

luciferease-expressing Ureaplasma parvum (UP) in Ureaplasma Selective Medium 

(USM) or USM control via intravaginal inoculation. 24h later, in the morning of D18, 

the luciferase substrate Furimazine was injected intraperitoneally to allow UP 

localisation. A representative image is shown (A). Bioluminescence signal was 

quantified in a region of interest (ROI) covering each mouse’s abdomen. 
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Bioluminescence signal coming from luciferase-expressing UP was significantly 

increased in mice that have been pre-treated with N-9 compared to PBS controls (B). 

No difference was found between bioluminescence signal on mice that delivered 

preterm compared to those that delivered at term (C). Error bars indicate SD. Statistical 

significance was assessed using a non-parametric Mann-Whitney test for PBS+UP vs. 

N-9+UP (*P=0.0245) and Term vs. Preterm (P=0.115). 

 

5.2.5 N-9 pre-treatment results in higher Ureaplasma parvum 

titres in the amniotic fluid 

To assess the capacity of Ureaplasma parvum to establish an infection at the 

administration site and whether this is affected by pre-treatment of the site with N-9, 

vaginal flushes with PBS were performed 48 hours post-administration. U. parvum 

titres were quantified in the returned solution. To further investigate the level to which 

cervical epithelial damage facilitates ascending infection, Ureaplasma parvum titres 

were measured in the amniotic fluid from sites located both proximally and distally to 

the cervix 48 hours post-administration of Ureaplasma parvum. 

Ureaplasma parvum can grow in the vagina of pregnant mice either pre-treated with 

N-9 (N-9+UP) or not (PBS+UP). The bacterial titres in the vaginal flushes for the 2 

groups were similar (1.3x106±7x105 CCU/15ul of vaginal flush for PBS+UP; 

1.1x106±7x105 CCU/15ul of vaginal flush for N-9+UP) (Fig 5.6).  

Pre-treatment with N-9 was again shown to facilitate ascending infection with U. 

parvum. At a site proximal to the cervix, Ureaplasma parvum titres were statistically 

significantly higher in the amniotic fluid of mice pre-treated with N-9 (2.2x106±7x105 

CCU/15ul of amniotic fluid; P=0.0356) compared to those pre-treated with PBS 

control (7.2x104±3.7x104 CCU/15ul of amniotic fluid) (Fig 5.6).  

Similarly, the same statistically significant trend was noticed at a site distal to the 

cervix with higher bacterial titres in the amniotic fluid of N-9 pre-treated mice 
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(2.2x106±8.105 CCU/15ul amniotic fluid; P=0.0466) compared to the PBS control pre-

treated ones (3.7x103±2.8x103 CCU/15ul of amniotic fluid) (Fig 5.6). 

 

Figure 5.6 Cervical damage caused by N-9 results in higher Ureaplasma parvum 

titres in the amniotic fluid of pregnant mice after vaginal U. parvum 

administration. In the afternoon of D16 of gestation, mice received either 10% N-9 

in PBS or PBS control via intravaginal inoculation. 16 h later, in the morning of D17 

of gestation, mice received either Ureaplasma parvum (UP) in Ureaplasma Selective 

Medium (USM) or USM control via intravaginal inoculation.  48 h after U. parvum 

administration, vaginal flushes and amniotic fluid (AF) from proximal and distal sites 

were cultured in USM and Ureaplasma parvum titres were calculated using the 

microplate method. There was a significant increase in UP titres at the proximal sites 

and a trend increase at the distal sites in the amniotic fluid of mice pre-treated with N-

9. For AF proximal and distal, each dot in the dot plot represents the average of left 

and right horn for each mouse at either site. Error bars indicate SD. Statistical 
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significance was assessed using unpaired t-test with Welch’s correction on the log-

transformed values of Ureaplasma parvum titres for PBS+UP vs. N-9+UP at all three 

sites (*P<0.05; P=0.0356 for Amniotic Fluid proximal, P=0.0466 for Amniotic Fluid 

distal). 

5.2.6 N-9 pre-treatment results in a higher copy number of the 

U. parvum gene Urease C in the upper reproductive 

tract 

To assess whether cervical damage could facilitate ascending infection with U. parvum 

that results in tissue invasion and/or colonisation, the copy number of the U. parvum-

derived gene Urease C was quantified in the placenta, uterus, fetal membranes and 

fetal lung 48 hours after administration using qPCR. 

Once again, results consistently supported that cervical damage facilitated ascending 

infection. Pre-treatment with N-9 followed by U. parvum administration resulted in a 

significantly higher UreC copy number in the placenta (29,490±5,037 copies) and the 

fetal membranes (48,270±7,716 copies) at a site proximal to the cervix compared to 

pre-treatment with PBS control (10,386±2,862 copies for placenta; 22,602±8,623 

copies for fetal membranes) (P=0.0093 for placenta; P=0.048 for fetal membranes). 

The same trend was noticed in these two tissues at the distal site (12,894±4,420 vs 

4,820±871 for placenta; 43,253±12,036 vs 14,522±6,725 for fetal membranes), 

although statistical significance was not reached (Fig 5.7A, C). 

Similarly, the N-9+UP group demonstrated a higher UreC copy number in the uterus 

both proximally (6,382±1,785 copies) and distally (5,566±2,402 copies) to the cervix 

compared to the PBS+UP group (3,857±1,646 copies for proximal; 3,129±1,384 

copies for distal). The differences observed were not statistically significant (Fig 

5.7B). 

The same trend for UreC gene copy number was followed in the fetal lung at the 

proximal site, albeit at a much lower copy number (333.8±190.1 copies for N-9+UP 
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vs 218.8±108.2 copies for PBS+UP). No difference was observed at the distal site (Fig 

5.7D). 

  

Figure 5.7 Cervical damage caused by N-9 results in a higher copy number of the 

Ureaplasma parvum-derived gene Urease C in the placenta, uterus and fetal 

membranes after vaginal U. parvum administration. In the afternoon of D16 of 

gestation, mice received either 10% N-9 in PBS or PBS control via intravaginal 

inoculation. 16 h later, in the morning of D17 of gestation, mice received either 

Ureaplasma parvum (UP) in Ureaplasma Selective Medium (USM) or USM control 

via intravaginal inoculation. 48 h after U. parvum administration, tissues were 

collected and gene expression of UreC was analysed using qPCR. In mice pre-treated 

with N-9, there was a significant increase in UreC copy number at the proximal sites 

of the placenta and the fetal membranes and a trend increase in all other tissues and 

sites. No difference was observed at the distal site of the fetal lung. Each dot in the dot 

plot represents the average of left and right horn for each mouse at either site. Error 
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bars indicate SD. Statistical significance was assessed using unpaired t-test for 

PBS+UP vs. N-9+UP in all 4 tissues and at both sites (*P=0.048 for N-9+UP vs 

PBS+UP at the fetal membranes’ proximal site, **P=0.0093 for N-9+UP vs PBS+UP 

at the placental proximal site). 

 

5.2.7 Increased preterm birth rates in mice treated with N-9 

followed by ascending infection with Ureaplasma 

parvum 

C57Bl/6 mice normally deliver at around 60 hours after the morning of D17 of 

gestation. Timings of delivery of all control mice that were used in previous 

experiments is shown on Fig 5.8. Delivery occurs 60.45±1.76 hours post-

administration, 95% Confidence Intervals (CI) [56.81, 64.08] (Fig 5.8). No mice 

delivered before 48 hours post-administration. 
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Figure 5.8 C57Bl/6 mice normally deliver at around 60 hours after the morning 

of D17 of gestation. Data from all experiments conducted in the previous chapters 

using control-treated animals (A). No mice delivered before 48 hours post-

administration (A). Timing of delivery of mice that delivered preterm using the 48-

hour threshold in subsequent experiments are also depicted (B). 

 

To assess whether ascending infection with U. parvum facilated by N-9-induced 

cervical damage can cause PTB, a time threshold at 48 hours post U. parvum 

administration was set up. Delivery of the first pup before 48 hours after U. parvum 

administration deemed the respective pregnancy to be called preterm. 

N-9 pre-treatment followed by U. parvum administration (N-9+UP) resulted in 

significantly increased PTB rates. 10/36 (28%) mice in this group delivered 

prematurely (P=0.0104) as opposed to 0/19 (0%) in the group that received control 

treatments only (PBS+USM) (Fig 5.9). Only 1/16 (6%) of mice treated with N-9 but 

without Ureaplasma parvum (N-9+USM) delivered preterm (P=0.4571). Mice that 

were infected with U. parvum but without prior N-9 treatment (PBS+UP) exhibited a 

13% preterm birth rate (4/31; P=0.1476). None of these groups differed significantly 

from the group that received the control treatments only (Fig 5.9). Total numbers and 

percentages can be seen on Table 5-1. 
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Figure 5.9 Cervical damage caused by N-9 facilitates a significant increase in 

preterm birth rates after vaginal infection with Ureaplasma parvum. In the 

afternoon of D16 of gestation, mice received either 10% N-9 in PBS or PBS control 

via intravaginal inoculation. 16 h later, in the morning of D17 of gestation, mice 

received either Ureaplasma parvum (UP) in Ureaplasma Selective Medium (USM) or 

USM control via intravaginal inoculation. Preterm birth was defined as delivery of the 

first pup before 48 completed hours from the moment of the D17 inoculation. The 

combination of N-9-induced cervical damage and Ureaplasma parvum infection 

resulted in a significant increase in preterm birth rates compared to controls. Statistical 

significance was assessed using Fisher’s exact test (*P=0.0104 for PBS+USM vs. 

N9+UP). 

Table 5-1 Preterm birth rates in mice after cervical damage and/or vaginal 

infection with Ureaplasma parvum. 
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5.2.8 Inflammatory gene response in the placenta following 

vaginal infection with Ureaplasma parvum 

To assess whether ascending infection with U. parvum facilitated by cervical damage 

could mount an inflammatory response in the reproductive tract during pregnancy, 

maternal and fetal tissues from the previous experiment were collected 48 h after 

vaginal U. parvum administration that was preceded by cervical damage or control. As 

defined in the previous section, these mice were deemed term. Changes in the gene 

expression of proinflammatory cytokines and TLRs were examined using RT-qPCR. 

The analysis was performed both at the proximal and at the distal site. 

Proinflammatory cytokine gene expression in the placenta 

Infection with U. parvum but not damage with N-9 was a statistically significant source 

of variation in the expression of Tnfa (P<0.0001 for proximal, P=0.0141 for distal), 

Il1b (P<0.0001 for proximal and distal), Cxcl1 (P<0.0001 for proximal, P=0.0004 for 

distal) and Cxcl2 (P<0.0001 for proximal and distal) both at the proximal and at the 

distal site. No interaction between the two independent variables was detected. No 

differences were found for Il-6. 

At the proximal site, the genes Tnfa, Il1b, Cxcl1and Cxcl2 were significantly 

upregulated in the two groups infected with U. parvum (N-9+UP, PBS+UP) compared 

to the vehicle-treated group (PBS+USM). For the N-9+UP group, TNFa expression 

increased by 2.35±0.3-fold, Il1b increased 10.71±2.59-fold, Cxcl1 increased 

3.82±0.48-fold and Cxcl-2 increased 61.3±12.26-fold. For the PBS+UP group, TNFa 

expression increased by 1.85±0.32-fold, Il1b increased 7.27±1.56-fold, Cxcl1 

increased 3.26±0.57-fold and Cxcl2 increased 39.01±12.83-fold. Il6 levels did not 

change. No differences were found for the group that received N-9 but not U. parvum 

(N-9+USM). All changes can be seen in Table 5-2 and Fig 5.10. 

At the distal site, the genes Il1b and Cxcl2 were significantly upregulated in the two 

groups infected with U. parvum (N-9+UP, PBS+UP) compared to the vehicle-treated 

group (PBS+USM). For the N-9+UP group, Il1b increased 4.14±0.87-fold and Cxcl-2 
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increased 29.79±8.04-fold. For the PBS+UP group Il1b increased 2.64±0.39-fold and 

Cxcl-2 increased 8.51±1.41-fold. Tnfa, Cxcl1 and Il6 levels did not change. No 

differences were found for the group that received N-9 but not U. parvum (N-9+USM). 

All changes can be seen in Table 5-2 and Fig 5.10. 

The changes for Il1b, Cxcl1 and Cxcl2 were significantly higher at the proximal site 

compared to the distal. Tnfa followed the same trend without reaching statistical 

significance (Fig 5.10). 

A significant correlation was noticed between the copy number of the Urease C gene 

derived from U. parvum and the increase in the expression of Tnfa (r=0.51, P=0.0072), 

Il1b (r=0.72, P<0.0001), Cxcl1 (r=0.71, P<0.0001) and Cxcl2 (r=0.78, P<0.0001).  
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Table 5-2 Inflammatory cytokine gene changes in the placenta after vaginal 

administration of Ureaplasma parvum preceded by cervical damage or control 

treatments (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). 
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Figure 5.10 Ureaplasma parvum infection causes significant upregulation of 

proinflammatory genes in the placenta of pregnant mice. In the afternoon of D16 

of gestation, mice received either 10% N-9 in PBS or PBS control via intravaginal 

inoculation. 16 h later, in the morning of D17 of gestation, mice received either 

Ureaplasma parvum (UP) in Ureaplasma Selective Medium (USM) or USM control 

via intravaginal inoculation. Tissues were collected 48 h later and analysed using RT-

qPCR. Mice that were infected had an increase in the mRNA levels of Tnfa (A), Il1b 

(B), Cxcl1 (C) and Cxcl2 (D) compared to vehicle-treated controls. The effect was 
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stronger at the proximal site. Error bars indicate SD. Statistical significance of the 

treatment effect was assessed using 2-way ANOVA with post hoc Dunnett’s multiple 

comparisons test on the DDCt values against the PBS+USM group for the proximal 

and distal site. Statistical significance for the site effect was assessed unpaired t-test 

for Proximal vs Distal for each treatment group. (*P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001). In collaboration with MSc student Gabriella Sammut Demarco. 

Toll-like receptors gene expression in the placenta 

Infection with U. parvum but not damage with N-9 was a statistically significant source 

of variation in the expression of Tlr1 (P=0.0336 for proximal, P=0.0346 for distal) and 

Tlr2 (P<0.0001 for proximal, P=0.0016 for distal). No interaction between the two 

independent variables was detected. No differences were found for Tlr6 and Tlr9.At 

the proximal site, Tlr2 was significantly upregulated in the two groups infected with 

U. parvum (N-9+UP, PBS+UP) compared to the vehicle-treated group (PBS+USM). 

For the N-9+UP group, Tlr2 expression increased by 2.22±0.13-fold. For the PBS+UP 

group, Tlr2 expression increased by 2.03±0.34-fold. The levels of Tlr1 also increased 

by 1.98±0.41-fold but only for the N-9+UP group. Levels of the other TLRs did not 

change. No differences were found for the group that received N-9 but not U. parvum 

(N-9+USM). All changes can be seen in Table 5-3 and Fig 5.11. 

At the distal site, Tlr2 was significantly upregulated only in the group infected with U. 

parvum and preceded by cervical damage (N-9+UP) compared to the vehicle-treated 

group (PBS+USM). In this case, Tlr2 expression increased by 1.72±0.21-fold. Levels 

of the other TLRs did not change. No differences were found for the group that 

received N-9 but not U. parvum (N-9+USM) or U. parvum but not N-9. All changes 

can be seen in Table 5-3 and Fig 5.11. 

No differences were detected between the proximal and the distal site (Fig 5.11). 

A significant correlation was noticed between the copy number of the Urease C gene 

derived from U. parvum and the increase in the expression of Tlr1 (r=0.66, P=0.0002), 

Tlr2 (r=0.70, P<0.0001), Tlr6 (r=0.45, P=0.0219) and Tlr9 (r=0.42, P=0.0323). 
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Table 5-3 TLR gene changes in the placenta after vaginal administration of 

Ureaplasma parvum preceded by cervical damage or control treatments (*P<0.05, 

***P<0.001, ****P<0.0001). 
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Figure 5.11 Ureaplasma parvum infection causes significant upregulation of TLR2 

gene expression in the placenta of pregnant mice. In the afternoon of D16 of 

gestation, mice received either 10% N-9 in PBS or PBS control via intravaginal 

inoculation. 16 h later, in the morning of D17 of gestation, mice received either 

Ureaplasma parvum (UP) in Ureaplasma Selective Medium (USM) or USM control 

via intravaginal inoculation. Tissues were collected 48 h later and analysed using RT-

qPCR. Mice that were infected had an increase in the mRNA levels of Tlr2 (B) and 

those that were pre-treated with N-9 followed by U. parvum also had an increase in 

Tlr1 (A) mRNA at the proximal site compared to vehicle-treated controls. There was 

no site effect. Error bars indicate SD. Statistical significance of the treatment effect 

was assessed using 2-way ANOVA with post hoc Dunnett’s multiple comparisons test 

on the DDCt values against the PBS+USM group for the proximal and distal site. 

Statistical significance for the site effect was assessed unpaired t-test for Proximal vs 

Distal for each treatment group. (*P<0.05, ***P<0.001, ****P<0.0001). In 

collaboration with MSc student Gabriella Sammut Demarco. 
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5.2.9 Inflammatory gene response in the uterus following 

vaginal infection with Ureaplasma parvum 

Proinflammatory cytokine gene expression in the uterus 

Infection with U. parvum but not damage with N-9 was a statistically significant source 

of variation in the expression of Tnfa (P<0.0001 for proximal, P=0.0086 for distal), 

Il1b (P<0.0001 for proximal, P=0.0042 for distal), Cxcl1 (P<0.0001 for proximal, 

P=0.002 for distal) and Cxcl2 (P<0.0001 for proximal, P=0.0017 for distal) both at the 

proximal and at the distal site. No interaction between the two independent variables 

was detected. No differences were found for Il-6. 

At the proximal site of the uterus, the genes TNFa, Il1b, Cxcl1and Cxcl2 were 

significantly upregulated in the two groups infected with U. parvum (N-9+UP, 

PBS+UP) compared to the vehicle-treated group (PBS+USM). For the N-9+UP group, 

TNFa expression increased by 6.46±0.73-fold, Il1b increased 7.2±0.98-fold, Cxcl1 

increased 9.11±1.87-fold and Cxcl-2 increased 24.32±6.19-fold. For the PBS+UP 

group, TNFa expression increased by 2.87±0.63-fold, Il1b increased 3.66±1.27-fold, 

Cxcl1 increased 7.54±2.5-fold and Cxcl-2 increased 14.46±4.88-fold. No differences 

were found for the group that received N-9 but not U. parvum (N-9+USM). All 

changes can be seen in Table 5-4 and Fig 5.12. 

At the distal site, the genes TNFa, Cxcl1and Cxcl2 were significantly upregulated in 

only in the N-9+UP compared to the vehicle-treated group (PBS+USM). For the N-

9+UP group, TNFa expression increased by 5.47±1.95-fold, Cxcl1 increased 

7.63±3.22-fold and Cxcl-2 increased 11.66±5.64 -fold. No differences were found in 

the other two groups. All changes can be seen in Table 5-4 and Fig 5.12. 

Although a trend difference was noticed when comparing the site effect, this only 

reached significance in the case of Il1b for the N-9+UP group (Fig 5.12). 

A significant correlation was noticed between the copy number of the Urease C gene 

derived from U. parvum and the increase in the expression of Tnfa (r=0.76, P<0.0001), 

Il1b (r=0.79, P<0.0001), Cxcl1 (r=0.80, P<0.0001) and Cxcl2 (r=0.84, P<0.0001). 
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Table 5-4 Inflammatory cytokine gene changes in the uterus after vaginal 

administration of Ureaplasma parvum preceded by cervical damage or control 

treatments (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). 
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Figure 5.12 Ureaplasma parvum infection causes significant upregulation of 

proinflammatory genes in the uterus of pregnant mice. In the afternoon of D16 of 

gestation, mice received either 10% N-9 in PBS or PBS control via intravaginal 

inoculation. 16 h later, in the morning of D17 of gestation, mice received either 

Ureaplasma parvum (UP) in Ureaplasma Selective Medium (USM) or USM control 

via intravaginal inoculation. Tissues were collected 48 h later and analysed using RT-

qPCR. Mice that were infected had an increase in the mRNA levels of Tnfa (A), Il1b 

(B), Cxcl1 (C) and Cxcl2 (D) compared to vehicle-treated controls. The effect was 
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stronger at the proximal site. Error bars indicate SD. Statistical significance of the 

treatment effect was assessed using 2-way ANOVA with post hoc Dunnett’s multiple 

comparisons test on the DDCt values against the PBS+USM group for the proximal 

and distal site. Statistical significance for the site effect was assessed unpaired t-test 

for Proximal vs Distal for each treatment group. (*P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001). In collaboration with MSc student Gabriella Sammut Demarco. 

Toll-like receptor gene expression in the uterus 

Infection with U. parvum but not damage with N-9 was a statistically significant source 

of variation in the expression of Tlr2 (P=0.041 for proximal, P=0.028 for distal). No 

interaction between the two independent variables was detected. No differences were 

found for Tlr1, Tlr6 and Tlr9. 

Statistically significant upregulations were only noted for the Tlr2 gene and for the 

group were U. parvum administration was preceded by N-9 administration. At the 

proximal site, Tlr2 expression increased by 2.67±0.4-fold for the N-9+UP group. 

Levels of the other TLRs did not change for this group. No changes were noticed for 

the PBS+UP group. No differences were found for the group that received N-9 but not 

U. parvum (N-9+USM). All changes can be seen in Table 5-5 and Fig 5.13. 

At the distal site, Tlr2 was significantly upregulated only in the group infected with U. 

parvum and preceded by cervical damage (N-9+UP) compared to the vehicle-treated 

group (PBS+USM). Tlr2 expression increased by 2.47±0.51-fold. Levels of the other 

TLRs did not change. No differences were found for the group that received N-9 but 

not U. parvum (N-9+USM) or U. parvum but not N-9. All changes can be seen in 

Table 5-5 and Fig 5.13. 

No differences were detected between the proximal and the distal site (Fig 5.13). 

A significant correlation was noticed between the copy number of the Urease C gene 

derived from U. parvum and the increase in the expression of Tlr2 (r=0.63, 

P<0.0001). 
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Table 5-5 TLR gene changes in the placenta after vaginal administration of 

Ureaplasma parvum preceded by cervical damage or control treatments (*P<0.05, 

**P<0.01). 
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Figure 5.13 Ureaplasma parvum infection causes significant upregulation of TLR2 

gene expression in the uterus of pregnant mice. In the afternoon of D16 of gestation, 

mice received either 10% N-9 in PBS or PBS control via intravaginal inoculation. 16 

h later, in the morning of D17 of gestation, mice received either Ureaplasma parvum 

(UP) in Ureaplasma Selective Medium (USM) or USM control via intravaginal 

inoculation. Tissues were collected 48 h later and analysed using RT-qPCR. Mice that 

were infected with UP and had a previously damaged cervix by N-9 had an increase 

in the mRNA levels of Tlr2 (B) both at a proximal and at a distal site. There was no 

site effect. Error bars indicate SD. Statistical significance of the treatment effect was 

assessed using 2-way ANOVA with post hoc Dunnett’s multiple comparisons test on 

the DDCt values against the PBS+USM group for the proximal and distal site. 

Statistical significance for the site effect was assessed unpaired t-test for Proximal vs 

Distal for each treatment group. (*P<0.05, **P<0.01). In collaboration with MSc 

student Gabriella Sammut Demarco. 
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5.2.10 Inflammatory response in the fetal membranes 

following vaginal infection with Ureaplasma parvum 

Proinflammatory cytokine gene expression in the fetal membranes 

Infection with U. parvum but not damage with N-9 was a statistically significant source 

of variation in the expression of Tnfa (P<0.0001 for proximal, P=0.0006 for distal), 

Il1b (P<0.0001 for proximal, P=0.0134 for distal), Cxcl1 (P<0.0001 for proximal, 

P=0.0455 for distal) and Cxcl2 (P<0.0001 for proximal, P=0.0001 for distal) both at 

the proximal and at the distal site. No interaction between the two independent 

variables was detected. No differences were found for Il-6.At the proximal site of the 

membranes, the genes TNFa, Il1b, Cxcl1and Cxcl2 were significantly upregulated in 

the two groups infected with U. parvum (N-9+UP, PBS+UP) compared to the vehicle-

treated group (PBS+USM). For the N-9+UP group, TNFa expression increased by 

15.69±3.51-fold, Il1b increased 13.38±3.15-fold, Cxcl1 increased 6.49±1.77-fold and 

Cxcl2 increased 63.6±12.51-fold. For the PBS+UP group, TNFa expression increased 

by 14.67±7.99-fold, Il1b increased 10.98±3.97-fold, Cxcl1 increased 5.48±1.35-fold 

and Cxcl-2 increased 59.73±32.43-fold. No differences were found for the group that 

received N-9 but not U. parvum (N-9+USM). All changes can be seen in Table 5-6 

and Fig 5.14. 

At the distal site, the genes Cxcl2 was significantly upregulated in the two groups 

infected with U. parvum (N-9+UP, PBS+UP) compared to the vehicle-treated group 

(PBS+USM) and Tnfa and Il1b were upregulated only in the N-9+UP group. For the 

N-9+UP group, TNFa expression increased by 8.92±3.28-fold, Il1b increased 

8.6±3.25-fold and Cxcl-2 increased 28.21±12.67-fold. For the PBS+UP group, Cxcl-2 

increased 6.52±2.15-fold. No differences were found for the group that received N-9 

but not U. parvum (N-9+USM). All changes can be seen in Table 5-6 and Fig 5.14. 

Although a trend difference was noticed when comparing the site effect, this only 

reached significance in the case of Cxcl2 for the N-9+UP group (Fig 5.14). 
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A significant correlation was noticed between the copy number of the Urease C gene 

derived from U. parvum and the increase in the expression of Tnfa (r=0.84, P<0.0001), 

Il1b (r=0.78, P<0.0001), Cxcl1 (r=0.70, P<0.0001), Cxcl2 (r=0.87, P<0.0001) and Il6 

(r=0.39, P=0.0059). 

Table 5-6 Inflammatory cytokine gene changes in the fetal membranes after 

vaginal administration of Ureaplasma parvum preceded by cervical damage or 

control treatments (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). 
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Figure 5.14 Ureaplasma parvum infection causes significant upregulation of 

proinflammatory genes in the fetal membranes of pregnant mice. In the afternoon 

of D16 of gestation, mice received either 10% N-9 in PBS or PBS control via 

intravaginal inoculation. 16 h later, in the morning of D17 of gestation, mice received 

either Ureaplasma parvum (UP) in Ureaplasma Selective Medium (USM) or USM 

control via intravaginal inoculation. Tissues were collected 48 h later and analysed 

using RT-qPCR. Mice that were infected had an increase in the mRNA levels of Tnfa 

(A), Il1b (B), Cxcl1 (C) and Cxcl2 (D) compared to vehicle-treated controls. The effect 
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was stronger at the proximal site. Error bars indicate SD. Statistical significance of the 

treatment effect was assessed using 2-way ANOVA with post hoc Dunnett’s multiple 

comparisons test on the DDCt values against the PBS+USM group for the proximal 

and distal site. Statistical significance for the site effect was assessed unpaired t-test 

for Proximal vs Distal for each treatment group. (*P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001). In collaboration with MSc student Gabriella Sammut Demarco. 

Toll-like receptor gene expression in the fetal membranes 

Infection with U. parvum but not damage with N-9 was a statistically significant source 

of variation in the expression of Tlr2 (P<0.0001 for proximal, P=0.0078 for distal). No 

interaction between the two independent variables was detected. No differences were 

found for Tlr1, Tlr6 and Tlr9. 

At the proximal site, Tlr2 was significantly upregulated in the two groups infected with 

U. parvum (N-9+UP, PBS+UP) compared to the vehicle-treated group (PBS+USM). 

Tlr1 and Tlr6 were only upregulated in the N-9+UP group. For the N-9+UP group, 

Tlr1 expression increased by 2.14±0.5-fold, Tlr2 expression increased by 5.25±1.03-

fold and Tlr6 expression increased by 1.74±0.13-fold. For the PBS+UP group, Tlr2 

expression increased by 2.91±0.65-fold. Levels of the other TLRs did not change. No 

differences were found for the group that received N-9 but not U. parvum (N-9+USM). 

All changes can be seen in Table 5-7 and Fig 5.15. 

At the distal site, Tlr2 was significantly upregulated only in the group infected with U. 

parvum and preceded by cervical damage (N-9+UP) compared to the vehicle-treated 

group (PBS+USM). In this case, Tlr2 expression increased by 3.52±0.88-fold. Levels 

of the other TLRs did not change. No differences were found for the group that 

received N-9 but not U. parvum (N-9+USM) or U. parvum but not N-9. All changes 

can be seen in Table 5-7 and Fig 5.15. 

No differences were detected between the proximal and the distal site (Fig 5.15). 
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A significant correlation was noticed between the copy number of the Urease C gene 

derived from U. parvum and the increase in the expression of Tlr1 (r=0.34, P=0.0153), 

Tlr2 (r=0.69, P<0.0001) and Tlr6 (r=0.36, P=0.0108). 

Table 5-7 TLR gene changes in the fetal membranes after vaginal administration 

of Ureaplasma parvum preceded by cervical damage or control treatments 

(*P<0.05, **P<0.01, ****P<0.0001). 
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Figure 5.15 Ureaplasma parvum infection causes significant upregulation of TLR2 

gene expression in the fetal membranes of pregnant mice. In the afternoon of D16 

of gestation, mice received either 10% N-9 in PBS or PBS control via intravaginal 

inoculation. 16 h later, in the morning of D17 of gestation, mice received either 

Ureaplasma parvum (UP) in Ureaplasma Selective Medium (USM) or USM control 

via intravaginal inoculation. Tissues were collected 48 h later and analysed using RT-

qPCR. Mice that were infected had an increase in the mRNA levels of Tlr2 (B) and 

those that were pre-treated with N-9 followed by U. parvum also had an increase in 

Tlr1 (A) and Tlr6 (C) mRNA at the proximal site compared to vehicle-treated controls. 

There was no site effect. Error bars indicate SD. Statistical significance of the 

treatment effect was assessed using 2-way ANOVA with post hoc Dunnett’s multiple 

comparisons test on the DDCt values against the PBS+USM group for the proximal 

and distal site. Statistical significance for the site effect was assessed unpaired t-test 

for Proximal vs Distal for each treatment group. (*P<0.05, ***P<0.001, 

****P<0.0001). In collaboration with MSc student Gabriella Sammut Demarco. 
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5.2.11 Inflammatory gene response in the fetal lung 

following vaginal infection with Ureaplasma parvum 

Proinflammatory cytokine gene expression in the fetal lung 

In the fetal lung, no change was noticed in the gene expression of any of the above-

mentioned cytokines with any of the treatments. Fold changes can be seen in Table 5-

8 and Fig 5.16. 

The gene copy number of Urease C did not correlate with changes in the relative 

expression of any of the proinflammatory genes. 

Table 5-8 Inflammatory cytokine gene changes in the placenta after vaginal 

administration of Ureaplasma parvum preceded by cervical damage or control 

treatments. 
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Figure 5.16 Ureaplasma parvum infection does not affect the expression of 

proinflammatory genes in the fetal lung. In the afternoon of D16 of gestation, mice 

received either 10% N-9 in PBS or PBS control via intravaginal inoculation. 16 h later, 

in the morning of D17 of gestation, mice received either Ureaplasma parvum (UP) in 

Ureaplasma Selective Medium (USM) or USM control via intravaginal inoculation. 

Tissues were collected 48 h later and analysed using RT-qPCR. No changes were 

detected between the different treatments. Error bars indicate SD. Statistical 

significance of the treatment effect was assessed using 2-way ANOVA for the 
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proximal and distal site. Statistical significance for the site effect was assessed 

unpaired t-test for Proximal vs Distal for each treatment group. (*P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001). In collaboration with MSc student Gabriella Sammut 

Demarco. 

 

As no change was found in the gene expression of proinflammatory cytokines in the 

fetal lung, gene expression analysis was not performed for TLRs in this tissue. 

5.2.12 Correlations between the three methods that 

demonstrate Ureaplasma parvum ascension to the upper 

reproductive tract 

In this chapter we used three different methods to study whether vaginally 

administered U. parvum can ascend to the uterus and whether this is facilitated by prior 

cervical epithelial damage with N-9. Specifically, 24h hours after U. parvum 

administration, mice that were still pregnant underwent in vivo bioluminescence 

imaging. The following day, 48 hours after U. parvum administration, amniotic fluid 

was cultured for the presence of U. parvum and gestational tissues were analysed for 

gene expression of the U. parvum-derived gene, Urease C. 

A statistically significant moderate correlation was found between the levels of 

bioluminescence and the amniotic fluid titres the following day (r=0.59, P<0.0001). A 

further statistically significant strong correlation was found between the levels of 

bioluminescence and the gene expression of UreC in the fetal membranes only (r=0.67, 

P<0.0001). 

The amniotic fluid titres also showed statistically significant moderate correlations 

with UreC gene expression in the fetal membranes (r=0.55, P<0.0001) and the placenta 

(r=0.47, P=0.0005). 
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5.3 Discussion 

The epithelium is the first line of defence against infectious agents and the cervical 

epithelium is crucial for the barrier function of the cervix during pregnancy. As 

cervical epithelial damage has been associated with preterm birth and ascending 

infection is widely considered as the most common cause of PTB, we hypothesised 

that cervical epithelial damage predisposes to ascending infection. In the previous 

chapter we developed and characterised a mouse model of cervical damage during 

pregnancy using N-9. Here, we utilised this model to address our hypothesis. Since the 

dose of 10% v/v was consistently shown to cause more significant damage in the cervix 

compared to the other doses as assessed by our scoring systems, this was the dose of 

choice for all subsequent experiments. We found that N-9-induced cervical epithelial 

damage facilitated ascending infection with Ureaplasma parvum, leading to increased 

PTB rates. 

First, we examined whether N-9 could facilitate preterm birth induced by vaginally 

administered LPS. After administering a formulation containing both N-9 and LPS 

intravaginally, we found the combination treatment to have no effect on the timing of 

delivery or pup survival. There was also no effect on timing of delivery or pup survival 

when each of N-9 or LPS were administered alone. In all these experiments, we used 

the O111:B4 LPS, which is shown to be the most rapid inducer of PTB when 

administered intrauterine compared to other commonly used serotypes (403). LPS 

O55:B5 was reported to induce preterm birth when administered intravaginally (365). 

However, our group did not manage to reproduce this finding. This was also the case 

for LPS O111:B4 (170). Our results for LPS alone in the current experiments are in 

line with our previous findings, although they contradict Gonzalez et al (365). In 

addition, our data from the previous chapter that 10% N-9 alone does not induce PTB 

were successfully replicated here. Our group has previously used as high as 250 µg 

LPS intravaginally (170). In this case, we used 100 µg LPS, as the potential additive 

inflammatory effect of N-9 was taken into account. Failure of the co-administration 

scheme to cause PTB could potentially be due to the fact that by the time N-9 has 
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caused substantial epithelial damage, LPS might have already be metabolised to non-

toxic levels.    

To this end, we pre-treated the mice with N-9 16 hours before LPS administration to 

examine whether the inflammatory effect of LPS could benefit by being exerted on the 

ground of an already damaged cervix. Since mice in the previous experiments of co-

administration of N-9 and LPS showed no adverse effects, the LPS dose used in this 

case was very high at 1mg. Still, we found no effect on timing of delivery. The effect 

on pup survival was again not significant. However, we noticed that there were three 

mice that demonstrated 100% fetal demise despite delivering at term. This could 

potentially indicate that the combination of N-9 followed by LPS does initiate an 

inflammatory response that can propagate to reach the intrauterine compartment. In 

certain cases, this effect can be potent in inducing fetal death but is still not strong 

enough to prematurely initiate the labour cascade and this is why these mice deliver at 

term. 

Overall, N-9-induced cervical damage does not appear to promote cervicovaginal 

inflammation to an extent sufficient enough to induce preterm birth. For the next set 

of experiments, we investigated its potential to facilitate ascending infection with live 

Ureaplasma parvum bacteria. 

To compare the susceptibility of cervical epithelial cells and U. parvum to N-9 

cytotoxicity, we determined the minimum N-9 dose that resulted in 0% cell viability 

and completely inhibited bacterial growth respectively. We found N-9 to be much 

more cytotoxic against endocervical cells than against U. parvum. Specifically, the 

minimum N-9 dose was 128 µg/ml for U. parvum while only 32 µg/ml for End1/E6E7 

cells after 48 hours incubation time. Similarly, Krebs et al. found cervical HeLa cells 

to be more susceptible to N-9 toxicity compared to HIV virions by a factor of 8 (445). 

Human lymphocytes were also shown to be more susceptible than HIV virions (446).  

Our experimental design had N-9 administered 16 hours before U. parvum. When 

applied in the vagina as an aqueous solution in saline as in our case, the majority of N-

9 is absorbed by the cervicovaginal wall within 3-4 hours (447). This means that in 
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our experiment, N-9 would first induce cervical damage. Then, by the time of U. 

parvum administration, N-9 would be completely absorbed and thus it would be very 

unlikely for it to inactivate the bacteria. 

Using in vivo bioluminescence imaging we found that mice pre-treated with N-9 had 

a significantly higher BLI signal in their upper reproductive tracts 24 hours after 

vaginal administration of our NanoLuc-expressing U. parvum compared to the ones 

pre-treated with vehicle control. This finding is supportive of our hypothesis that 

cervical damage predisposes to ascending infection. Roberts et al. also found that N-9 

can facilitate a viral infection with HPV16 in non-pregnant mice by disrupting the 

cervicovaginal epithelium (448). The fact that cervical epithelial damage predisposes 

to ascending infection with the most clinically relevant bacteria suggests a potential 

mechanism underlying the higher PTB incidence among women that have undergone 

excisional treatments of the cervix. 

To provide further proof that cervical damage facilitates ascending infection in our 

model, we quantified the U. parvum titres in the amniotic fluid of mice 48 hours after 

vaginal inoculation. We found U. parvum titres to be significantly higher in mice that 

were pre-treated with N-9 compared to PBS pre-treated controls. This was the case 

both at a proximal and at a distal site to the cervix. This finding is in agreement with 

our imaging results and has significant translational importance as it shows that the 

fetus can also get exposed to infection since it swallows the amniotic fluid. In addition, 

by culturing the amniotic fluid we identify bacteria that are capable of growing and are 

therefore able to establish an active infection.  

Moreover, we detected significantly higher levels of mRNA expression of the U. 

parvum gene Urease C both in the fetal membranes and the placenta at the proximal 

site of mice pre-treated with N-9 using qPCR. The effect was similar at the distal site 

as well, although it did not manage to reach statistical significance. Higher levels of 

UreC were also found in the uterus of pre-treated mice, despite the results not being 

statistically significant. The UreC copy number in the uterus was lower than that of 

the fetal membranes or the placenta. As the whole part of the uterus surrounding each 



 Cervical epithelial damage and preterm birth 

The effect of cervical epithelial damage on ascending infection and preterm birth 218 

mouse was analysed, it is likely that levels are artificially low since that majority of 

the bacteria would probably colonise the decidua. Racicot et al. also used qPCR to 

show that the other Ureaplasma species, U. urealyticum can ascend to the uterus after 

vaginal administration and this effect is aided by a viral infection (286). 

Furthermore, when examining the preterm birth incidence among mice that had only 

cervical damage, only infection with U. parvum, or both, we found that only the last 

group had significantly higher PTB rates compared to the group that only received 

vehicle treatments. This finding highlights the importance of a healthy cervical 

epithelium for a safe pregnancy outcome. It is also in agreement with a study from 

Akgul et al. which found that inappropriate differentiation of the cervical epithelium 

increases the risk of PTB induced by an ascending infection with E. coli (280). A viral 

infection of the cervical epithelium was also shown to increase PTB rates after E. coli 

administration (449). The preterm birth incidence in these studies was higher 

compared to what we found. This is not unexpected as E. coli is a much more virulent 

bacterium than U. parvum. Also, the PTB rate of 28% that we found is consistent with 

the finding that vaginal colonisation with U. parvum is an independent risk factor for 

PTB in humans (237). 

Since U. parvum does ascend to the upper reproductive tract and can increase the PTB 

rates, we examined its potential to stimulate an inflammatory response in fetomaternal 

tissues after vaginal administration using qPCR. We found the gene expression of the 

cytokines Tnfa and Il1b and the chemokines Cxcl1 and Cxcl2 to be significantly 

upregulated in the placenta, uterus and fetal membranes of the groups of mice infected 

with U. parvum. Tnfa and Il1b were shown to be upregulated in mouse peritoneal 

macrophages that were treated with U. parvum-derived lipoproteins, such as MBA 

(225). They also demonstrated a slight upregulation in vivo, in the placentas of mice 

where U. parvum was administered intrauterine after laparotomy (256). These findings 

are in agreement with a study from von Chamier et al. that reported a mild 

chorioamnionitis after intrauterine administration of U. parvum (222). Importantly, we 

found medium to strong correlations in the increases of these cytokines and 

chemokines with the copy number of UreC produced by U. parvum in all three of the 
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tissues. This further supports a causal role for U. parvum in this inflammatory 

response. Collectively, the gene expression changes observed after vaginal U. parvum 

administration are compatible with an inflammatory pre-labour phenotype. Of note, 

these experiments were conducted in mice that did not deliver during the 48-hour 

preterm birth window and were thus deemed term. Consequently, the levels of changes 

caused by U. parvum in these cases were not sufficient to cause PTB. 

Trend differences in the expression levels were also identified in mice pre-treated with 

N-9 compared to those pre-treated with vehicle control. These are reflective of the 

higher titres of U. parvum in the tissues of mice pre-treated with N-9, as N-9 was found 

in our previous experiments to facilitate ascending infection. 

Another important finding was that the increase in the expression of the cytokines and 

chemokines was higher at the proximal site compared to the distal. This further 

supports the notion of ascending infection. By being closer to the administration point, 

tissues at the proximal site were colonised potentially earlier than those at the distal 

site. This could have allowed more time for the bacteria to establish an infection which 

led to more significant changes in gene expression of proinflammatory molecules as 

part of the immune response.   

To gain further insights as to which pathway was stimulated by U. parvum to result in 

these proinflammatory gene expression changes, we examined the expression of TLRs 

in those tissues using qPCR. We found a mild but consistent upregulation in the 

expression of Tlr2 in all three tissues and a less consistent increase in Tlr1 and Tlr6, 

mostly in the fetal membranes. Uchida et al. have also found that the proinflammatory 

changes caused by U. parvum in macrophages are mediated by TLR2 (225). Another 

study, however, found no change in the levels of Tlr2 or Cd14 (256). In support of our 

findings, two other studies suggested a key role of TLR2, both in human amniotic cells 

(224) and in a human kidney cell line (223). Still, we cannot conclude on the role of 

TLR2 in the inflammatory response stimulated by U. parvum based solely on an 

upregulation in the gene expression. These studies also described a role for TLR6 (224) 

and TLR1 (223) respectively, something we also noticed, albeit at a lower extent. 
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Triantafyllou et al. implied that TLR9 can also participate in U. parvum recognition 

by internalising the bacterium as a whole (224). We found no changes in the expression 

of Tlr9 in any group and there was no correlation between its relative expression and 

the levels of UreC. 

Finally, we assessed whether any changes were caused by U. parvum in the fetal lung. 

No differences were found in the expression of any of the cytokines and chemokines 

that we tested and found to be increased in the other tissues between infected and sham 

mice. This is in contrast with a study that found an increase in the levels of IL-1b, IL-

6 and CXCL-2 in the fetal lungs after intra-amniotic administration of U. parvum 

(411). This study however was performed on CD-1 mice. While CD-1 fetuses have 

been shown to be susceptible to U. parvum infection, the foetuses of the C57Bl/6 strain 

that we used are considered to be resistant (222). This was in line with our findings. 

Given the high U. parvum titres that we found in the amniotic fluid, we expected high 

copy numbers of UreC to be found in the fetal lung as the fetuses swallow the amniotic 

fluid. However, we only found very low copy numbers at levels barely detectable. This 

was also the finding of von Charmier et al. who only detected the bacteria in the 

intestinal lumen and not the lungs (222). Therefore, U. parvum cannot establish an 

infection at the fetal lungs, something explaining the unchanged levels of the 

expression of proinflammatory cytokines in our model.    

In summary, using our mouse model of cervical damage during pregnancy we provide 

strong evidence that N-9-induced epithelial damage facilitates ascending infection 

with U. parvum. This leads to increased preterm birth rates. We also report that U. 

parvum can induce an inflammatory response in fetomaternal tissues with increased 

expression of proinflammatory cytokines and chemokines.  
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Chapter 6 General Discussion 

6.1 Main findings 

The cervix is key in protecting pregnancy from ascending infections that can cause 

preterm birth. The cervical epithelium, in particular, is a major contributor to the 

physical and functional barrier of the cervix to infection (282). Excisional procedures 

that damage the cervix by removing part of the epithelium and the underlying stroma 

have been associated with PTB, but no explanation of this association has been 

proposed (304) (305). The overarching hypothesis of this thesis is that cervical 

epithelial injury predisposes to ascending infection. To address this hypothesis we used 

the surfactant N-9 as an inducer of epithelial damage. N-9 has been shown to cause 

epithelial damage in the lower reproductive tract of non-pregnant animals and in 

humans (391) (392) (386) (387) (450) (388). The aims that we set were to: i) 

investigate the effect of N-9 on cervical epithelial cells in vitro, ii) to generate and 

characterise a mouse model of cervical epithelial damage during pregnancy using N-9 

and ii) to investigate the effect of cervical epithelial damage on ascending infection 

and preterm delivery. 

The main findings are summarised below: 

- N-9 is cytotoxic against cervical epithelial cells in vitro in a dose-dependent 

manner. Low doses (less than 10 µg/ml) do not have a strong effect, resulting 

in less than 20% cytotoxicity within 24 hours. High doses (more than 100 

µg/ml) rapidly exert 100% cytotoxicity. The effect of the intermediate doses is 

also time-dependent with cytotoxicity increasing with longer incubation times. 

At 32 and 64 μg/ml, N-9 cytotoxicity increases from 20% and 30% at 30 

minutes respectively, to 90% after 24-hour treatments.  
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- N-9 compromises the physical barrier function of the cervical epithelium in 

vitro by increasing its permeability through direct cell cytotoxicity. 

 

- N-9 does not affect the ability of cervical epithelial cells to secrete 

proinflammatory cytokines basally or after LPS stimulation. 

 

- The wound healing capacity of cervical epithelial cells and endometrial stromal 

cells can be diminished by a concurrent infection with Ureaplasma 

urealyticum. 

 

- N-9 causes cervical epithelial damage in pregnant mice after vaginal 

administration in late gestation. Features of this damage include severe 

disruption of the epithelial morphology and infiltrations of polymorphonuclear 

neutrophils. However, it is not sufficient to cause preterm delivery. 

 

- N-9-induced cervical epithelial damage followed by vaginal administration of 

high dose of LPS does not cause preterm birth in a mouse model 

 

- N-9-induced cervical epithelial damage facilitates ascending infection with 

Ureaplasma parvum. This is accompanied by an increase in preterm birth rates 

in a mouse model 

 

- Ureaplasma parvum is capable of ascending to the upper reproductive tract and 

colonise the fetal membranes, the placenta, the uterus and the amniotic fluid. 

In the first three tissues it can induce an inflammatory response in a mouse 

model.  
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6.2 Cervical damage facilitates ascending infection 

with Ureaplasma parvum  

We used 3 different methods to identify the presence and quantify the levels of U. 

parvum in the upper reproductive tract. The first was in vivo bioluminescence imaging 

24 hours after vaginal administration of the bacteria. The second was by collecting the 

amniotic fluid 48 hours after administration and then culturing it with Ureaplasma 

Specific Medium, to detect and quantify a population of actively growing bacteria. The 

third was by measuring the copy number of the U. parvum-derived gene Urease C in 

the fetal membranes, placenta and uterus by qPCR. Previous studies have used PCR 

(286) or culture-based methods (440) or a combination of the two (261), but this is the 

first study using three different methods to confirm the presence of U. parvum. The 

use of robust methodoly to address our main question is a strength of the current thesis.  

We could detect U. parvum in the upper reproductive tract with all three of these 

methods. Therefore, U. parvum can ascend to the uterus during mouse gestation. This 

is an interesting finding as Ureaplasmas are non-motile bacteria. Using in vivo 

imaging, we could determine the presence of U. parvum in the upper reproductive tract 

in some of the mice 24 hours after intravaginal administration. This indicates that U. 

parvum can deploy transport mechanisms that can lead to it ascending in the uterine 

compartment. These may include the bacteria itself actively moving over epithelial 

surfaces or passively being moved over. The capacity of other non-motile bacteria such 

as Staphylococcus aureus (451), Mycobacterium spp (452) and a non-motile mutant 

of Listeria monocytogenes (453) to move has also been described. Future studies could 

investigate potential mechanisms of attachment, detachment and re-attachment by U. 

parvum on epithelial cells. This will help in the design of more effective prevention 

strategies against pregnancy complications in women colonised by Ureaplasma spp.  

After quantifying the levels of U. parvum, a consistent pattern was identified with all 

three methods: U. parvum was more abundant in the upper reproductive tract of mice 

that have been pre-treated with N-9. In Chapter 4, we characterised the damage that 

N-9 causes to the cervical epithelium, which involves significant disturbance and 



 Cervical epithelial damage and preterm birth 

General Discussion 224 

sloughing. Consequently, these lesions can compromise the barrier function of the 

cervix to facilitate ascending infection. This finding is supportive of our hypothesis 

and could represent a potential pathway explaining the increased risk for preterm 

delivery among women that were treated with excisional procedures. 

Different potential mechanisms have been proposed in an effort to explain the 

epidemiological association between cervical damage-inducing procedures and 

preterm delivery. These can be broadly divided into three different etiologic factors: 

impairment of mechanical support (454), decreased protection against infection (455) 

or both (456). The former is mainly supported by studies reporting that while minimal 

excisions confer no increased risk of preterm birth, with larger excisions the risk 

almost doubles (457). The bigger the thickness and the overall volume of cervical 

tissue excised, the higher the incidence of a subsequent preterm delivery (458). 

Importantly, this is independent of the interval time between the procedure and 

conception (457) (459). Current evidence is limited to retrospective cohort studies and 

as such the validity of these claims is hard to be confirmed. To our knowledge, no 

studies have been conducted to evaluate whether damage to the cervical epithelium 

can increase susceptibility to ascending infection. 

Our findings support the fact that cervical epithelial injury compromises the barrier 

function of the cervix to render the uterine content more susceptible to ascending 

infection with the most clinically relevant bacteria. This suggests a potential 

mechanism explaining the observation that women with a damaged cervical 

epithelium are at increased risk for preterm delivery. Our model assesses the effect of 

the acute phase of cervical epithelial damage characterised by areas of complete 

epithelial sloughing. As such, the only group of women directly comparable to this 

scenario would be the ones that conceive very soon after the cervical intervention, a 

practice that is discouraged by obstetricians. However, our data also have indirect 

implications for all pregnancies following excisional procedures. A mature cervical 

epithelium can take up to 7 weeks to cover the affected area (460). This is sufficient 

time to allow for ascending infection and colonisation of the upper reproductive tract, 

which can lead to an increased risk of intrauterine infection should a pregnancy occur. 
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Even after epithelial regeneration, the development of scar tissue has been reported 

(454). A scarred surface conveying limited protection compared to a healthy 

epithelium as a result of an excisional treatment could account for an increased risk of 

ascending infection during pregnancy. Overall, our findings highlight the importance 

of a healthy epithelium in the protection against microbial invasion.    

Apart from the cervical epithelium, the lower reproductive tract has other barriers 

against infection that could lead to an adverse pregnancy outcome. A beneficial 

composition of the vaginal microbiome is important in preventing proliferation of 

potentially pathogenic vaginal microorganisms. A dysbiotic state, as in bacterial 

vaginosis, has been shown to increase the risk for preterm delivery (461) (462) (463). 

Another important barrier is the cervical mucus which forms the mucus plug. Mucus 

from women at high-risk for preterm birth can have altered biophysical properties 

leading to a reduced capacity to form strong gels (464). It would be interesting for 

future studies to assess whether disruption of these barriers could also predispose to 

ascending infection with Ureaplasma spp and compare the respective findings with 

the effect of cervical epithelial damage. This will help for future risk stratification 

strategies.   

6.3 Ascending infection pathway 

An interesting observation regarding the pathway of ascending infection can be made 

when considering the levels of U. parvum as assessed by culture and qPCR. At first, 

bacterial cultures revealed very high titres of U. parvum in the amniotic fluid, in a 

magnitude of about 107-108 CCU/ml. Next, using qPCR, we found the UreC copy 

number, which is indicative of the U. parvum presence, to be higher in the fetal 

membranes compared to the placenta or the uterus. These apparent higher levels might 

reflect a pattern that is consistent with the following pathway of ascending infection: 

From the vagina where it is administered, U. parvum passes through the cervix. This 

is aided by cervical epithelial damage. From there, the bacteria invade the amniotic 

cavity through a certain region of the fetal membranes. In the amniotic fluid they 

proliferate rapidly before colonising the fetal membranes and then reaching the 
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placenta and uterus. This potential pathway of ascending infection was first proposed 

back in 1961 (465) and is further supported by a human study from Kim et al (201). 

Using qPCR and culture-based methods for general bacterial populations, they found 

the bacteria to be more abundant on the amniotic fluid than in the fetal membranes 

(201). Then the genomic DNA copy number was greater in the amnion than in the 

chorion (201). Thus, bacterial proliferation in the amniotic fluid is likely to precede 

colonisation of the fetal membranes and subsequent chorioamnionitis. Using detection 

systems specific for U. parvum, we found this to be the case in our study as well. Based 

on this model of ascending infection, it is likely that U. parvum can induce preterm 

delivery by leading to premature activation and rupture of the fetal membranes. The 

potential of U. parvum to drive PPROM can be studied by assessing its ability to 

upregulate the expression of prostaglandins and MMPs in the fetal membranes. The 

other Ureaplasma species, U. urealyticum was reported to increase the production of 

PGE2 by human choriodecidual explants in vitro (466). In addition, a recent study 

found that U. parvum could stimulate an upregulation in the expression of MMP-9 by 

both maternal and fetal human monocytes in vitro (467). Expanding these findings in 

an in vivo setting will provide further evidence about U. parvum pathogenicity with 

regards to pregnancy complications. The activation status of the MMPs can be 

examined using zymography. Alternatively, preterm birth induced by U. parvum could 

have premature myometrial contractions as its main feature. Our group has extensive 

experience using gel contraction assays to examine the pro-contractile potential of 

different agents. These could be deployed to assess the potency of U. parvum as a 

contraction stimulator. 

The much higher U. parvum titres in the amniotic fluid compared to the tissues could 

also be reflective of the composition of the amniotic fluid. The concentration of urea 

significantly increases in the amniotic fluid during late gestation in the mouse, 

potentially due to an increase in the fetal urine output (468). Ureaplasmas hydrolyse 

urea to generate virtually 100% of its energy requirements (469). They appear to be 

the sole bacteria capable of producing ATP via this mechanism. Therefore, the 
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amniotic fluid late during mouse pregnancy represents an environment that favours the 

growth of U. parvum.                     

6.4 Inflammatory changes after Ureaplasma infection 

Inflammatory cytokines are central to the mechanisms of infection/inflammation-

induced preterm birth. Levels of several key cytokines and chemokines, such as IL-1b 

(149), IL-6 (158), IL-8 (161) and TNFa (163) increase in the amniotic fluid after 

microbial invasion of the amniotic cavity (MIAC) and they can also be used as 

predictors of intra-amniotic infection (160). In our study, we found U. parvum to 

invade the amniotic cavity after vaginal administration. As the amount of amniotic 

fluid rapidly decreases during late gestation (470) and our samples were collected on 

D19, we used all of it for culture-based detection of U. parvum. Therefore, we 

examined the in situ gene expression of the cytokines of interest in the fetal 

membranes, placenta and uterus. We noticed a mild inflammatory response with 

increases in the gene expression levels of TNFa, IL-1b, CXCL-1 and CXCL-2 

correlating with the gene copy number of the U. parvum-derived gene Urease C in the 

respective tissues. Previous studies using intrauterine administration of U. parvum 

have reported similar results (222) (256) (225). In vitro stimulation of human 

monocytes by U. parvum was also found to cause an increased expression of TNFa, 

IL-1b and IL-8, the human ortholog of CXCL-1 and CXCL-2 (471). Importantly, our 

experiments were conducted in term mice, as they had not delivered by the morning 

of D19 and consequently their tissues were available antenatally. Given the strong 

correlation between the levels of U. parvum and the increase in inflammatory gene 

expression in these tissues, it can be postulated that in mice that did deliver preterm, 

higher bacterial levels in the reproductive tissues resulted in a stronger inflammatory 

response that was potent in inducing preterm delivery. This could be the pathway of 

U. parvum-induced PTB, as these cytokines are known stimulators of the labour-

associated prostaglandins E2 and F2a and their synthesising enzyme COX-2 (181) (174) 

(175). They can also induce several MMPs (186) (188).  Nevertheless, this hypothesis 

is not backed up by our in vivo imaging data as there was no difference in the levels of 

bioluminescence of mice that ended up delivering preterm compared to those that 



 Cervical epithelial damage and preterm birth 

General Discussion 228 

delivered at term. However, BLI imaging was performed on D18 so these results are 

not directly comparable to the qPCR and culture results from D19.  

Importantly, by using qPCR, we assessed changes at the gene expression level. This 

does not necessarily mean that there is an inflammatory response in those tissues. 

Further studies are required to determine changes of the above-mentioned cytokines at 

the protein level. This will validate our findings and solidify the role of U. parvum as 

a trigger for preterm birth. In addition, future studies could also assess whether 

immune cells are recruited in the reproductive tissues after infection with U. parvum 

and determine their activation status. This will provide further information regarding 

the magnitude of the inflammatory response induced by U. parvum in the reproductive 

tissues and will be important for designing potential etiological treatment strategies.  

6.5 Pathway of Ureaplasma-induced inflammation 

Since we found U. parvum to increase the expression of proinflammatory cytokines 

and chemokines, we sought to identify Pathogen Recognition Receptors (PRRs) that 

are involved in triggering this response. Using qPCR, we found a significant 

upregulation in TLR2 gene expression across all tissues where an inflammatory 

response has been observed, namely the fetal membranes, placenta and uterus. Trend 

increases were also noticed in the gene expression of TLR1 and TLR6, more so in the 

fetal membranes. This findings are in agreement with a previous study in mice 

identifying TLR2 as the receptor activated by MBA (225), the Ureaplasma main 

virulence factor. In addition, studies in human cell lines suggested that TLR1/TL2 

(223) and TLR2/TLR6 (224) dimers are involved in the cytokine responses stimulated 

by U. parvum. Activation of TLR2 in mouse macrophages has been shown to elicit a 

mild inflammatory response (472). This is consistent with our findings that do not 

represent a robust inflammatory reaction. It is also consistent with the pregnancy 

outcome in these mice, as none of them delivered preterm.   

However, our findings on TLR2 expression are at the gene expression level. Further 

studies evaluating changes at the protein level are needed to evaluate the role of this 

receptor in the Ureaplasma-induced inflammation in the reproductive tissues during 
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pregnancy. Future experiments using TLR2 KO mice could identify whether this 

receptor is necessary for the induction of an inflammatory response by U. parvum.  

At a molecular level, the key transcriptional events leading to the increased expression 

of cytokines after U. parvum infection should also be assessed. Previous studies have 

demonstrated that U. parvum-derived products can lead to increased cytokine secretion 

by activating the NFĸB pathway via TLR2 (225). NFĸB is an important regulator of 

the inflammatory and pro-contractile pathways leading to preterm birth (473). In 

addition, the transcription factor Activator ptotein-1 (AP-1) has also been suggested 

as a key driver of the inflammatory events preceding the onset of labour and a 

sufficient inducer of preterm labour (474). It would be interesting for future studies to 

assess whether an infection with U. parvum could also activate AP-1 during pregnancy 

to stimulate the expression of labour-associated genes. Phosphorylation of the AP-1 

sub-unit c-Jun results to activation and nuclear translocation of the complex (475). 

Measuring the levels and localisation of phosphorylated c-Jun after U. parvum 

infection in the uterus by Western blot and immunofluorescence will provide an 

indication on the activation status of this transcription factor. Chromatin 

immunoprecipitation (ChIP) in combination with high-throughput sequencing will 

allow the identification of specific genes (476) stimulated by these transcription factors 

during pregnancy in relation to U. parvum infection. This will help identify potential 

targets for therapeutic interventions. 

6.6 Ureaplasma virulence 

As we identified that U. parvum is able to elicit an inflammatory response in 

reproductive tissues, it is important to determine its specific virulence factors that 

could contribute to an adverse pregnancy outcome. In our study, we found the gene 

copy number of Urease C to have a strong positive correlation with the increase in the 

gene expression of TNFa, IL-1b, CXCL-1, CXCL-2 and TLR2 in the fetal membranes, 

placenta and uterus. A study by Ligon et al found that intravenous administration of 

Ureaplasmas can kill mice within 5 min of the injection (477). This lethal effect can 

be rescued by administering a urease inhibitor (477). In humans, Ureaplasma-derived 
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urease causes increased precipitation of minerals leading to increased formation of 

urinary struvite stones and urolithiasis (478). During sheep pregnancy, it has been 

shown to increase the pH of the amniotic fluid due to increased production of ammonia 

as part of the urea hydrolysis process (479). This can lead to significant damage in the 

fetal lung (479). Therefore, urease has the potential to cause adverse pregnancy 

outcomes. 

The Ureaplasma multiple-banded antigen (MBA) is also considered a major virulence 

factor of Ureaplsama spp. It can stimulate dimers between TLR2 and TLR1 or TLR6 

to activate NFĸB leading to the production of proinflammatory cytokines (223) (225). 

Phospholipase A and phospholipase C have also been suggested as virulence factors, 

as they can cleave and destabilise the cell membrane phospholipids of the host cells 

(480). Immunoglobulin A (IgA) protease is also pivotal for Ureaplasma spp survival 

and can contribute to the disease pathogenesis by helping the bacteria escape the 

mucosal immune surveillance (481) (482) (483). Future studies should focus on 

identifying the relative contribution of these factors to an adverse pregnancy outcome. 

One way through which this can be achieved is by genetic manipulation of 

Ureaplasma strains that will elucidate a definitive role for its virulence factors by 

examining the relative pathogenicity of mutant strains. This will determine candidate 

molecules that could be targeted for preventing and treating infections with 

Ureaplasma spp that could lead to adverse pregnancy outcomes. 

6.7 Summary and conclusions 

In conclusion, the findings of this thesis highlight the importance of a healthy cervical 

epithelium for a healthy pregnancy. We confirmed the potential of the surfactant N-9 

as a damage-inducing agent capable of compromising the barrier function of the 

cervical epithelium in vitro. We then used N-9 to establish the first mouse model of 

cervical epithelial damage during pregnancy that has been described. To quantify the 

extent of damage caused by N-9 in the epithelial surfaces of the lower reproductive 

tract, we developed a robust epithelial injury scoring system. This model could be 

broadly used to study the barrier function of the cervical epithelium.  
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Finally, using this model we showed that cervical epithelial damage predisposes to 

ascending infection with Ureaplasma parvum from the vagina to the uterus. This 

causes a mild inflammatory response in the upper reproductive tract and increases 

preterm birth rates among these mice. We provide evidence that the most clinically 

relevant bacteria for preterm birth in humans are also capable of causing adverse 

pregnancy outcomes in the mouse. Further studies are needed to decipher the 

pathogenetic mechanisms of Ureaplasma spp-induced preterm delivery. This will 

have broad implication in the prevention, proper identification of at-risk individuals 

and treatment of a series of pregnancy complications.  
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