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Abstract

Self-organising processes occurring in isotropic turbulence and homogeneous

magnetohydrodynamic (MHD) turbulence are investigated in relation to the

stability of helical flow structures. A stability analysis of helical triad interactions

shows that compared to hydrodynamics, equilibria of the triadic evolution

equations have more instabilities with respect to perturbations on scales larger

than the characteristic scale of the system. Some of these instabilities can be

mapped to Stretch-Twist-Fold dynamo action and others to the inverse cascade

of magnetic helicity. High levels of cross-helicity are found to constrain small-

scale instabilities more than large scale instabilities and are thus expected to

have an asymmetric damping effect on forward and inverse energy transfer.

Results from a numerical investigation into the influence of helicity on energy

transfer and dissipation are consistent with this observation. The numerical

work also confirms the predictions of an approximate method describing the

Reynolds number dependence of the dimensionless dissipation coefficient for

MHD turbulence. These predictions are complemented by the derivation of

mathematically rigorous upper bounds on the dissipation rates of total energy

and cross-helicity in terms of applied external forces.

Large-scale helical flows are also found to emerge in relaminarisation events

in direct numerical simulations of isotropic hydrodynamic turbulence at low

Reynolds number, where the turbulent fluctuations suddenly collapse in favour

of a large-scale helical flow, which was identified as a phase-shifted ABC-flow.

A statistical investigation shows similarities to relaminarisation of localised

turbulence in wall-bounded parallel shear flows. The turbulent states have

an exponential survival probability indicating a memoryless process with a

characteristic lifetime, which is found to depend super-exponentially on Reynolds

number akin to well-established results for pipe and plane Couette flow. These

and further similarites suggest that the phase space dynamics of isotropic
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turbulence and wall-bounded shear flows are qualitatively similar and that the

relaminarisation of isotropic turbulence can also be explained by the escape from

a chaotic saddle.

Lay summary

Chaotic flows of liquids or gases far away from any boundary, like many

atmospheric and oceanic flows, are often viewed by scientists as real-life

realisations of isotropic turbulence - a classical idealised description of turbulent

motion that dates back to the beginning of the 20th century. This picture can

be extended to so-called magnetofluids, which are electrically conducting fluids

such as liquid metals or plasmas, in order to facilitate the study of their turbulent

dynamics, and is believed to give a good approximation of the behaviour of space

plasmas.

This thesis is concerned with self-organisation events occurring within the

framework of this description of turbulence. A self-organisation event can be the

sudden collapse of turbulence or the emergence of a large-scale magnetic field out

of a sea of small-scale chaos. Magnetic self-organisation processes are important

in many areas of geo- and astrophysics, for example the Sun’s magnetic field is

generated by such a self-ordering process. The aim of this project was to further

understand why turbulent magnetofluids are more likely to self-organise compared

to fluids which do not interact with a magnetic field. By analysing the elementary

mechanisms that are the building blocks of the system, it was found that flows and

magnetic fields with a spiral geometry are unstable and feed disturbances at larger

scales if these have a similar orientation. These special spiral structures are thus

mainly responsible for the emergence of large-scale order, and they occur more

frequently and are more unstable in turbulent magnetofluids than in ordinary

fluids.

The investigations also showed that isotropic turbulence can suddenly disappear

and that this process is very similar to turbulence in flows between boundaries,

like flow in a pipe. Surprisingly, the non-turbulent, organised flow which appeared

out of the turbulence has the same structure as the flow structures which were

identified as the main culprits for self-ordering in magnetofluids. This suggests

that these special flows have a more general connection to self-organisation.
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Chapter 1

Introduction

Turbulence is a multidisciplinary problem of remarkable complexity. It is of

interest to pure and applied mathematicians, physicists and engineers due to

the many theoretical and practical problems that are connected to (or perhaps

inherent in) turbulence. Since Leray’s proof of the existence of weak solutions1 in

1934, pure mathematicians are generally concerned with the problem of finding

smooth and globally defined (strong) solutions of the Navier-Stokes equations

with finite energy per unit volume, given smooth initial conditions. Since both

turbulent and laminar flow is believed to be described by the Navier-Stokes

equations, finding a (unique) smooth, physically reasonable solution of these

equations would imply that both laminar and turbulent behaviour in a given fluid

would become predictable. This problem is of such importance that it is included

in the list of Millenium Prize Problems of the Clay Mathematics Institute2. From

a physicist’s point of view, the phenomenon of turbulence in fluids has not been

solved in the sense of a ‘theory of turbulence’ or a model that adequately describes

all its features.

Turbulence is of practical importance as it occurs in many situations. Sometimes

it is desired because it facilitates mixing of two different fluids, in other situations

it should be avoided e.g. because it leads to increased drag compared to laminar

flow and thus lower mean flow speed, which is problematic in situations such as

1A weak solution is a solution of the corresponding integral equation, where the spatial
derivatives act on test functions.

2The problem is also considered solved if it can be proven that for sufficiently smooth
initial conditions and forces no smooth and physically reasonable solution of the Navier-Stokes
equation exists.
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heat conduction in cooling applications. The transition to turbulence deserves

special attention due to its detrimental effects in engineering applications, where

a sudden spike in pressure due to the onset of turbulence can lead to material

failure. Turbulence control is therefore of interest for many real-world situations,

and a further understanding of turbulence may lead to steps forward to achieve

turbulence control.

In many situations a flow is coupled to a magnetic field, for example in a

magnetised plasma or a liquid metal flow. Liquid metal flows occur in liquid

planetary cores such as the Earth’s liquid iron core, they are also used in

the cooling blankets of Fast Breeder Reactors (FBR) and tokamak-type fusion

reactors. In the latter two applications, turbulence in the liquid metal flow is

problematic as turbulent flow results in less efficient cooling. Furthermore, in a

tokamak reactor the hot plasma is confined by a magnetic field which influences

the liquid metal flow in the cooling blanket. Magnetohydrodynamic (MHD) flows

also occur in industrial applications such as in steel processing. In summary,

turbulence in conducting and non-conducting flows is a complex problem with

many important applications and poses interesting theoretical and even formal

mathematical questions.

One of these questions concerns the emergence of large-scale structures out of a

turbulent flow, which in turn poses immediate further questions connected with

turbulence control. Examples of these self-organisation events are the formation

of large-scale magnetic fields in certain types of MHD flows and the sudden

collapse of localised turbulence in wall-bounded parallel shear flows.

Self-organisation is not specific to fluid dynamics. It occurs in many systems

described by nonlinear partial differential equations in physics, mathematics,

chemistry, biology, economics, etc., such as bird flocking or the behaviour of

pedestrians in a crowded shopping mall. As such, self-organisation is a broadly

defined term and the dynamics leading to self-ordering events will differ between

different systems. In this thesis self-organisation is defined as the collective

disappearance of small-scale motion and/or the amplification of large-scale motion

by small-scale motion. As such, both aforementioned examples of the emergence

of large-scale structure will be treated in this thesis as aspects of self-organisation

in turbulent flows.
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1.1 Non-conducting fluids

The dynamics of the flow of a non-conducting Newtonian fluid is governed by the

Navier-Stokes equations here written in component form

∂t(ρui) = −∂iP − uj∂j(ρui) + ∂j
(
µ[∂jui + ∂iuj] + λ∂kukδij

)
+ fu,i , (1.1)

where a summation over repeated indices is implied, and where u = (u1, u2, u3)

denotes the velocity field, µ and λ the shear and bulk viscosities, P the

thermodynamic pressure, fu an external force which may be present, and ρ

the density. Together with the appropriate initial and boundary conditions, the

Navier-Stokes equations describe fluid flow in both laminar and turbulent regimes.

The Navier-Stokes equations are usually derived by considering a test volume

of fluid using conservation of mass and Newton’s second law. Alternatively,

they can be derived in the kinetic theory of gases by taking moments of the

Boltzmann equation, where the probability density function for the individual

particles is considered close to Maxwellian. That is, a perturbation expansion

around a Maxwellian distribution for the individual particles is considered using

the Chapman-Enskog method3.

If the flow is incompressible, the velocity field is solenoidal and obeys

∇ · u = 0 , (1.2)

since the density is constant. In this case eq. (1.1) reduces to

∂tu = −1

ρ
∇P − (u · ∇)u+ ν∆u+ fu , (1.3)

where ν = µ/ρ is the kinematic viscosity. The nonlinear term (u · ∇)u on

the right-hand side of the Navier-Stokes equations is responsible for mixing and

energy transfer across different scales, while the viscous term ν∆u represents

dissipation, that is, conversion of kinetic energy into heat due to friction. Very

different behaviour of a fluid is thus expected depending on which of these two

terms dominates. Fluid flows are usually described by a dimensionless parameter,

the Reynolds number

Re =
UL

ν
, (1.4)

3The Navier-Stokes equations which are derived by this procedure formally apply to dilute
gases only.
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where U and L are velocity and length scales characteristic of the flow. For

flow through e.g. a straight pipe, U may be the rms flow velocity and L the

diameter of the pipe. If the Navier-Stokes equations are made dimensionless by

rescaling all variables with the appropriate powers of U and L, the inverse of the

Reynolds number appears in front of the Laplace operator ∆ on the right-hand

side (RHS) of eq. (1.3) replacing the viscosity ν. The Reynolds number thus

quantifies the relative importance of inertial compared to viscous effects. For

ν = 0 the dissipative term in the Navier-Stokes equation (without forcing) is

absent and the resulting equation is called the Euler equation. Since this reduces

the order of the differential equation, the limit Re→∞ is singular.

The pipe flow experiments by Osborne Reynolds [152] showed that fluid flow in

a straight pipe is laminar at low flow speeds and turbulent at high flow speeds.

Since the fluid and the pipe were the same in the experiments and only the

flow speed was varied, the statement can be expressed in terms of the Reynolds

number: at low Reynolds number the flow is laminar and it is turbulent at high

Reynolds number. The Reynolds number is thus the universal control parameter

for (isothermal) fluid flows. Increasing the Reynolds number should lead to a

transition from laminar to turbulent flow, and it is of interest how this transition

proceeds. In certain types of flows the transition to turbulence is due to a

linear instability of the laminar profile. However, there are flows (such as pipe

flow) where the laminar profile is linearly stable. In these cases the transition

to sustained turbulence occurs through a more complicated process, where

relaminarisation and proliferation of localised turbulence, in other words self-

organisation and increasing disorder, compete [7]. The study of self-organisation

processes may therefore be of interest for the general study of turbulence in fluids.

1.2 Magnetohydrodynamics

Self-organisation processes are known to occur in magnetohydrodynamic flows,

where the flow of a conducting fluid interacts with a magnetic field. In order

to describe an MHD flow, Maxwell’s equations are coupled with the Navier-

Stokes equations [21]. The MHD equations can be derived in the kinetic

theory of gases/plasmas from the Boltzmann equation by the Chapman-Enskog

procedure. In plasma physics the MHD approximation is only valid for strongly

collisional plasmas, however, most astrophysical and laboratory plasmas are

weakly collisional. In these cases MHD gives a good approximation to plasma
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dynamics on time scales larger than the characteristic time for a collision.

Similarly, the MHD approximation breaks down for the description of dynamics

of the very small scales. The equations describing an incompressible MHD flow

are

∂tu = −1

ρ
∇P − (u · ∇)u+

1

ρ
(∇× b)× b+ ν∆u+ fu , (1.5)

∂tb = (b · ∇)u− (u · ∇)b+ η∆b+ fb , (1.6)

∇ · u = 0 and ∇ · b = 0 , (1.7)

where u denotes the velocity field, b the magnetic induction4 expressed in

units of velocity, ν the kinematic viscosity, η the magnetic resistivity, P the

thermodynamic pressure, fu and fb are external mechanical and electromagnetic

forces, which may be present, and ρ denotes the density which is set to unity for

convenience.

The MHD equations describe the action of the Lorentz force (∇× b)× b on the

fluid as well as the dynamics of the magnetic field due to interaction with the fluid

flow. It can be seen from eq. (1.5) and eq. (1.6) that a magnetic field can cause

a fluid to flow through the action of the Lorentz force, but (not surprisingly) the

flow cannot generate a magnetic field by itself. The action of the fluid on the

magnetic field has two contributions corresponding to the two interaction terms

on the right-hand side of the induction equation. The term (u · ∇)b describes

advection of magnetic field lines by the flow while the term (b · ∇)u corresponds

to magnetic field line stretching by the fluid flow, it is this term that is responsible

for the conversion of kinetic to magnetic energy.

The MHD equations can be formulated more symmetrically using Elsässer

variables z± = u± b [68]

∂tz
± = −1

ρ
∇P̃ − (z∓ · ∇)z± + (ν + η)∆z± + (ν − η)∆z∓ + f± , (1.8)

∇ · z± = 0 , (1.9)

where f± = fu±fb and the pressure P̃ consists of the sum of the thermodynamic

pressure P and the magnetic pressure 0.5ρ|b|2. Which formulation of the MHD

equations is chosen often depends on the physical problem, for some problems

the Elsässer formalism is technically convenient, while the formulation using the

4The magnetic induction b is often referred to as the magnetic field, although the magnetic
field is h = b/µ0, where µ0 is the permeability of free space.
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primary fields u and b facilitates physical understanding.

1.2.1 Alfvén waves

In the presence of a strong uniform background magnetic field the MHD equations

admit wave solutions. In order to obtain these solutions let b0 be the background

magnetic field subject to perturbations u′ and b′. The MHD equations can then

be linearised about b0, and one obtains

∂tu
′(x, t) = (b0 · ∇)b′(x, t) + ν∆u′(x, t) , (1.10)

∂tb
′(x, t) = (b0 · ∇)u′(x, t) + η∆b′(x, t) . (1.11)

These equations can be solved by making a plane-wave ansatz for u′ and b′ leading

to Alfvén waves5. Alfvén waves are transverse waves propagating at the Alfvén

speed

vA = |b0| cosϕ (1.12)

where ϕ is the angle between the the direction of propagation and the background

field. Since vA → 0 for ϕ→ π/2, Alfvén waves cannot propagate perpendicular to

b0. Alfvén waves are central to the Iroshnikov-Kraichnan cascade picture of MHD

turbulence, where turbulence is generated by collisions of counter-propagating

Alfvén wave packets as further explained in sec. 1.3.2.

1.2.2 Dimensionless parameters describing MHD flows

For non-conducting fluids the Reynolds number parametrises the relative impor-

tance of inertial compared to viscous effects. Similarly, a magnetic Reynolds

number can be defined

Rm =
UL

η
, (1.13)

which parametrises the relative importance of inductive effects compared to

Ohmic dissipation. A third parameter which is often used to characterise MHD

flows is the magnetic Prandtl number

Pm =
Rm

Re
=
ν

η
, (1.14)

5Hannes Alfvén received the 1970 Nobel prize in physics for his work on MHD.
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Situation Re Rm Pm

turbulent pipe flow [7] > 2040 n/a n/a
laminar pipe flow [7] < 2040 n/a n/a
liquid metal experiments [144] 107 10 10−6

liquid sodium coolant (FBR) [144] 108 100 10−6

earth’s core [144] 109 1000 10−6

convection zone (sun) [144] 1013 108 10−5

possible DNS 1− 1000 1− 1000 10−3 − 103

most DNS 1000 1000 1
interstellar medium [144] 103 1015 1012

Table 1.1 Magnetic and inertial Reynolds numbers Rm and Re, and magnetic
Prandtl numbers Pm = Rm/Re for different flows occurring in
nature, experiments and in numerical simulations. DNS stands for
Direct Numerical Simulation and FBR for Fast Breeder Reactor.

which is a measure of the ratio of viscous to Ohmic dissipation. For magnetised

plasmas the Lundquist number

S =
BL

η
, (1.15)

is often used as an alternative to Rm [21], where the B is the rms magnetic

field (in units of velocity). The Lundquist number is thus mainly a measure of

resistive effects in configurations dominated by the behaviour of the magnetic field

such as in studies of magnetic reconnection events. Typical Lundquist numbers in

laboratory plasmas range from 102−108, for astrophysical plasmas the Lundquist

number can exceed 1020 [151]. In MHD flows where the coupling between the

turbulent flow and the magnetic field becomes important, in other words, in

nonlinear MHD problems, Rm is usually regarded as the more important quantity

[21].

A list of typical magnetic Prandtl and Reynolds numbers for different physical

systems and numerical simulations is given in table 1.1. As can be seen from the

table, in most physical situations Pm is either very large, such as for a plasma in

the fluid approximation, or very small, such as in a liquid metal flow. However,

in most numerical simulations Pm = 1. This is due to limited computational

power. Even using the latest HPC architectures small-scale Reynolds numbers of

over 1000 are hard to attain. If the aim is to study the interaction of a magnetic

field with a turbulent flow, compromises thus have to be made with respect to

the attainable magnetic Prandtl number.
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Location liquid metal flow types

Perm, Russia sodium high rotation shear dynamo
Riga, Latvia sodium driven constrained counter-current

helical dynamo
Karlsruhe, Germany sodium driven constrained counter-current

helical dynamo
Princeton, USA gallium Ekman layer driven turbulence,

Couette flow, MRI
Cadarache, France sodium/ Von Kármán flow, unconstrained,

gallium DJ dynamo
Univ. Maryland, USA sodium unconstrained, DJ dynamo, thermal

convection driven turbulence, MRI
Univ. Wisconsin, USA sodium unconstrained, DJ dynamo, MRI
Swarthmore, USA sodium Couette flow, turbulence-induced

enhanced resistivity
Los Alamos, USA sodium Couette flow, helicity induced by

driven plumes, MRI

Table 1.2 Liquid metal MHD experiments (adapted from Ref. [43]). MRI
stands for magneto-rotational instability and DJ refers to Dudley-
James two-vortex flow.

1.2.3 Experimental situation

Experiments in MHD flows are fraught with considerable difficulties. Liquid

metals are chemically very aggressive and thus the containing vessels must be

made of adequate materials. Hot wire anemometry measurements for turbulent

flows are even more problematic as the probe must resolve the smallest scales

generated by the turbulence, therefore a very thin wire must be used. The

chemical aggressiveness of the liquid metal then precludes measurements at high

Reynolds number as the necessarily thin wires do not withstand the chemical

deterioration caused by contact with the liquid metal.

A possibly non-exhaustive list of liquid metal experiments is given in the review

article by Colgate [43]. For convenience this list is reproduced here in tbl. 1.2.

Several of these experiments are concerned with the so-called dynamo, which in

this context refers to the amplification of a magnetic field by the fluid flow. This

is of particular interest especially in geo- and astrophysical applications. Some

aspects of dynamo action will be discussed in sec. 1.3.3.

For magnetised plasmas, the experimental situation is even more difficult, as
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prolonged confinement of a turbulent plasma must be achieved. Therefore,

researchers often use spacecraft measurements of turbulence in the solar wind.

This is expensive and effects such as expansion of the solar wind may make

observations difficult in certain parameter ranges [42]. The alternative is then

Direct Numerical Simulations (DNSs), which are carried out by many researchers

in order to gain insight into the fundamental properties of turbulent dynamics in

MHD flows. However, as mentioned above, the achievable Reynolds and magnetic

Prandtl numbers are constrained by computational resources. As can be seen in

tbl. 1.1, typical DNSs fall short of simulating real-world flows, especially in terms

of achievable values of Pm.

MHD flows are particularly interesting to study in view of self-organisation

processes. More linear instabilities occur due to the interaction of the fluid flow

with the magnetic field, however, turbulent MHD flows show a tendency to self-

organise depending on certain topological constraints, which will be introduced

in sec. 1.3.3.

1.3 Theoretical approaches to turbulence

Unless the external force is explicitly stochastic, the Navier-Stokes equations (1.3)

are deterministic differential equations. However, even without any stochastic

input, they give rise to ever more complex and irregular behaviour such that

at some point the deterministic dynamical system given by the Navier-Stokes

equations appears to be of stochastic nature6. This motivated the use of statistical

methods to characterise turbulent flows, however, the statistical approach cannot

explain how this complexity comes about, that is, it cannot describe the transition

to turbulence.

As mentioned in the introduction, fluid flows are laminar at low Reynolds number

and turbulent at high Reynolds number. As the Reynolds number is varied

the dynamics of the system change, in other words, a bifurcation should occur.

The nature of this change in behaviour, that is, the nature of the transition

to turbulence is an active area of research in the dynamical systems approach to

turbulence. Depending on the type of laminar profile, the transition to turbulence

6This means despite being a deterministic system it is so complex that a statistical approach
is justified in the sense that not enough precise knowledge about the system can be obtained
to predict its behaviour.
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is well described by either linear instabilities or, in cases where the transition to

turbulence occurs before linear instabilities set in or where the laminar flow is

linearly stable, by a more complex process explained in further detail in the

following section. As such the transition to turbulence falls naturally into the

realm of dynamical systems theory.

Another area of research into turbulent flows makes use of topological constraints

on the flow evolution due to inviscidly conserved quantities, which have a

topological interpretation. As outlined earlier on, the Navier-Stokes equations

also remain an active area of research in pure mathematics. In summary, the

theoretical study of turbulent flows has developed into different branches, which

are pursued sometimes without significant interaction between the subfields.

Perhaps the variety of approaches somewhat reflects complexity of the problem.

1.3.1 Turbulence and dynamical systems

The dynamical systems approach to turbulence seeks to describe the properties

of a fluid-dynamical system given by the Navier-Stokes equations with the

appropriate boundary conditions by mapping out the phase (or state) space of

that system. The starting point is often a linear stability analysis of the laminar

profile depending on the Reynolds number, leading to a bifurcation analysis.

A continuous dynamical system is given by a manifold M (the state space), a

semigroup X and a smooth family of functions φt such that

φ : M ×X −→M

(v, t) 7−→ φ(v, t) = φt(v). (1.16)

If X = R and φ is differentiable, the system is called a flow with flow map φt,

which describes the time evolution of a state in the system starting from an initial

state v0

φt : R −→M

t 7−→ φt(v0) = v(t), (1.17)

where φ0(v0) = v(0) = v0. A flow with an infinite dimensional state space can

be associated with a partial differential equation, where φt(v) is a solution of

∂tv = F (v) for the vector field F defined by F (v) = φ̇t(v0). If the evolution
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depends on an additional (bifurcation) parameter, then the states of the system

will change when this parameter is varied. A stationary point or equilibrium is

given by a solution of the equation ∂tv = 0 and much information about the

behaviour of a dynamical system can be gained by studying the stability of the

equilibria under variation of the bifurcation parameter(s).

A bifurcation occurs if the topological properties of the system change suddenly

under a small and smooth variation of the bifurcation parameter(s). Bifurcations

can be local or global, where a local bifurcation is found by linearising about an

equilibrium point of the dynamical system and occurs if the real part of at least

one of eigenvalues of the Jacobian matrix of F vanishes at this point. The nature

of the bifurcation depends on the value of the imaginary part of this eigenvalue

[5, 141].

Local bifurcations thus describe how the stability of an equilibrium point changes

under variations of the bifurcation parameter, since the real part of the eigenvalues

of the Jacobian describe the growth rate of infinitesimal perturbations about the

equilibrium point. If the real part of at least one eigenvalue is positive, the

perturbations grow exponentially and the equilibrium point is linearly unstable.

If none of the eigenvalues has a positive real part and at least one has a vanishing

real part, then the stability of the equilibrium point cannot be assessed by

this method and nonlinear terms have to be taken into account [5, 141]. The

localness is inherent in this definition, since due to the linearisation only a small

neighbourhood around the equilibrium point is considered. Global bifurcations

are defined as changes in the topological structure of phase-space trajectories

which do not only affect a small neighbourhood around an equilibrium point.

They occur if invariant sets intersect with each other or with an equilibrium

point in phase space [5, 141, 188], as such they cannot be captured by a linear

stability analysis of equilibrium points.

In fluid dynamics, the state space M of a system consists of all possible flow

states given by exact solutions of the evolution equations under consideration,

and the properties of these flow states may change with variations in the Reynolds

number. The stability of a given flow state is thus investigated with respect to

the Reynolds number as the bifurcation parameter [59], and the linear stability

of a given laminar profile is of interest to transition to turbulence. Many

systems exhibit linear instabilities above a critical Reynolds number, such as

plane Poiseuille flow, Rayleigh-Bénard convection or Taylor-Couette flow [59].

The occurrence of a linear instability is often connected to inflection points in the
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laminar profile. For a flow with a linear instability of the laminar profile, above the

critical Reynolds number the laminar profile disappears and gives rise to other

flow states with their own stability properties. For these flows the transition

to turbulence occurs through a series of bifurcations starting with the linearly

unstable laminar profile. This scenario is called a supercritical transition.

There are also many flows where the laminar profile is linearly stable at all (finite)

Reynolds numbers and nevertheless the flows become turbulent with increasing

Reynolds number, such as in pipe and plane Couette flow, or the flow becomes

turbulent at Reynolds numbers below the critical threshold, such as for plane

Poiseuille flow. In this case other stationary flow states in the state space

exist alongside the laminar profile below the critical Reynolds number for linear

instability. These additional states are usually created in saddle-node bifurcations

and as such have stable and unstable directions. A finite-amplitude perturbation

can destabilise the laminar state by pushing it in the vicinity of one of these

(saddle) states. Since this occurs at Reynolds numbers below the critical threshold

for a linear instability, the transition has been named subcritical. It also occurs if

the base flow is linearly stable at all Reynolds numbers, in which case the scenario

is also referred to as a bifurcation from infinity [138, 156].

The prime examples of a subcritical transition to turbulence are pipe and plane

Couette flow. In pipe flow these coexisting unstable flow states have been

identified as travelling waves with different symmetries [69, 184, 185]. In both

cases, a finite-amplitude perturbation develops into a localised turbulent patch (a

puff in pipe flow or a spot in plane Couette flow) which exists as an independent

entity [8, 52, 61, 62, 85, 124, 139, 162]. Experiments [7, 86] and numerical

simulations [9, 70, 161] have shown that the localised patches of turbulence can

spontaneously disappear (relaminarise), that is, turbulent dynamics can suddenly

collapse to a much simpler, typically linearly stable, laminar state like the Hagen-

Poiseuille profile in pipe flow [59] for example.

Relaminarisation events show that laminar and turbulent states coexist in the

state space of the system and that a sudden escape from the turbulent region of

the state space is possible. In other words, the boundary between the turbulent

and laminar regions of the state space must be somewhat permeable. This has

been explained with a pinball-type state space dynamics of the turbulent state,

by which the flow state is attracted and repelled by the many exact stationary

saddle states, until it eventually escapes into the laminar region of the state space

[66, 82]. That is, the turbulent region of phase space is a non-attracting chaotic
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set [141] and the probability to escape from this region does not depend on the

amount of time the system has spent in the turbulent region of the state space.

This implies that the probability of escape after time t, P (t), is exponential

P (t) ∼ exp (t/τ) , (1.18)

where τ is the mean time spent in the turbulent state. This exponential law

for the survival probability of localised turbulence has been confirmed in many

experiments and numerical simulations of pipe [7, 9, 66, 84, 86] and plane Couette

flow [24, 161, 164]. The characteristic timescale τ depends on the Reynolds

number and this dependence is connected to the transition to sustained turbulence

in wall-bounded shear flows. This will be discussed in further detail in chapter 6.

The dynamical systems approach to turbulence is not only concerned with

transitional flows. An active area of research consists of investigations of the

structure of attractors of the system, and this includes high Reynolds number

flows. Since the dynamical system under consideration is dissipative, it has

attractors [141], which are bounded volumes in phase-space populated by the

asymptotes of a subset of possible initial conditions. These phase-space structures

may be of multifractal nature in high Reynolds number turbulent flows [72].

1.3.2 The statistical approach to turbulence

In the statistical approach to turbulence the velocity field is taken to be a random

function u of space and time and the aim is to extract information about the

statistical properties of u by studying a large ensemble of realisations of the

random variable u. A realisation of u is then given by the instantaneous velocity

field u(x, t) at a specific space-time point (x, t). In the statistical approach to

MHD turbulence both the magnetic and the velocity field are interpreted in a

statistical sense.

The ensemble average of any quantity F (u1, . . . ,un, t) which depends on the

instantaneous velocity fields is then given by

〈F 〉 =

∫
R3

dx1 . . . dxnF (u1, . . . ,un,x1, . . .xn, t)p(u1, . . . ,un,x1, . . .xn, t) ,

(1.19)

where p(u1, . . . ,un,x1, . . .xn, t) is the joint probability density function describ-

ing the probability that u(xi, t) takes a value in the infinitesimal range ui + dui.
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In order to calculate the ensemble average p must be known, which is a main

difficulty in the statistical theory of turbulence. Furthermore, this method of

averaging does not correspond to most measurement techniques where a probe

(e.g. a hot wire) is located at a particular point in space and measurements are

taken at different times. To circumvent this problem, the ergodic hypothesis

is often invoked, by which space, time and ensemble averages are regarded

as equivalent. However, this is not applicable to decaying turbulence and

furthermore there is no proof of whether even sustained turbulence satisfies all

necessary requirements for ergodicity. A further discussion of ergodicity in the

context of the statistical approach to turbulence can be found in the book by

Frisch [72]. In this thesis all averages are ensemble averages unless otherwise

stated.

Statistical symmetries

The concept of homogeneous isotropic turbulence was introduced in 1935 by

Taylor [174] as a simplified concept facilitating the theoretical study of turbulent

flows in the framework of a statistical theory of turbulence as initiated by Osborne

Reynolds. Reynolds split the velocity field into a mean and a randomly fluctuating

part,

U = 〈U〉+ u , (1.20)

where the lower case letter refer to the fluctuations about the mean, hence 〈u〉 =

0. An analogous decomposition can be written down for the magnetic field

B = 〈B〉+ b , (1.21)

with 〈b〉 = 0. In this statistical framework homogeneous isotropic turbulence

is defined by requiring the probability density function of the (turbulent)

fluctuations u and b to be independent of position (homogeneity) and direction

(isotropy) [11, 72, 135]. In other words, the probability density function shall be

invariant under translations and rotations:

� Homogeneity: Invariance of the probability density function under spatial

translations.
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� Isotropy: Invariance of the probability density function under rota-

tions and reflections. In mathematical terms, invariance under O(3)-

transformations. With this definition, statistically isotropic turbulence is

also mirror-symmetric.

� Isotropy without mirror-symmetry: Invariance of the probability den-

sity function under rotations but not under reflections, that is, invariance

under SO(3)-transformations.

The notion of isotropy in this thesis refers to the latter definition, the reason for

this is discussed in connection with topological invariants in sec. 1.3.3.

Real-world flows do not satisfy these properties, since the presence of boundaries

precludes homogeneity while a mean flow direction violates isotropy. However,

chaotic flows of liquids or gases far away from any boundary, like many

atmospheric and oceanic flows, are often viewed by scientists as real-life

realisations of homogeneous isotropic turbulence. This leads to the concept

of local homogeneity and local isotropy [97, 135], implying that the concept

of homogeneous isotropic turbulence is relevant to turbulent dynamics in high

Reynolds number real-world flows at scales small enough compared to the system

size [119]. Homogeneous isotropic turbulence can therefore be viewed as an

attempt to reduce the external complexity of the problem in order to study the

fundamental properties of turbulent flows.

Isotropic turbulence has been realised to a good approximation in the laboratory

by wind tunnel experiments, where the anisotropy connected to the existence of

a mean flow is circumvented by the use of coordinates moving with the mean

flow [78, 179]. That is, the streamwise distance is translated into a timescale and

the experiments are able to test predictions on decaying isotropic turbulence. An

overview is given in the book by Sagaut [157] on p. 52, table 3.1.

The simplest case to study analytically is statistically stationary isotropic

turbulence, however, no consensus has been reached on the experimental

realisation of sustained isotropic turbulence. A globally decaying flow may

locally be approximately stationary, but this restricts the observation times

significantly and may introduce additional errors in the measurements [135].

Sustained isotropic turbulence is therefore mainly studied by DNS in order to

refine the phenomenology and to test theoretical models and predictions (for a

non-exhaustive list see Ref. [157], p. 52, table 3.2), where the emphasis is on
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achieving high Reynolds numbers.

For the velocity field the presence of a mean flow does not pose serious problems,

as 〈U〉 = 0 can be achieved by a Galilean transformation into coordinates that

move with the mean flow. This is not possible for the magnetic field, therefore in

MHD turbulence it must be distinguished whether a non-zero mean background

field B0 = 〈B〉 is present. In most physical situations (such as in solar physics)

this is the case. However, again, in order to treat the simpler problem first many

theoretical efforts in MHD turbulence start with case B0 = 0. In the remainder

of this thesis B0 = 0 unless otherwise stated.

Correlation tensors

As in any statistical theory, correlations of the random variables are of paramount

importance. In MHD turbulence, the two-point second-order correlation tensors

are defined as

Cuu
ij (x,x′, t) = 〈ui(x, t)uj(x′, t)〉 , (1.22)

Cbb
ij (x,x′, t) = 〈bi(x, t)bj(x′, t)〉 , (1.23)

Cub
ij (x,x′, t) = 〈ui(x, t)bj(x′, t)〉 . (1.24)

The two-point third-order correlation tensors are defined similarly

Cuuu
ij,k (x,x′, t) = 〈ui(x, t)uj(x), t)uk(x

′, t)〉 , (1.25)

Cbbu
ij,k(x,x

′, t) = 〈bi(x, t)bj(x), t)uk(x
′, t)〉 , (1.26)

Cbub
ij,k(x,x

′, t) = 〈[ui(x, t)bj(x, t)− bi(x, t)uj(x, t)]bk(x′, t)〉 . (1.27)

For homogeneous random vector fields their joint probability density function

is invariant under spatial translations, and this carries over to the correlators.

Therefore, the two-point correlators only depend on the displacement r = x−x′

and not on the individual points x and x′.

Statistical isotropy and solenoidality of the vector fields further restrict the form

of the two-point correlation tensors [11, 31, 154], which can be expressed through
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the longitudinal correlation functions

Cbb
LL(r, t) = 〈bL(x, t)bL(x+ r, t)〉, (1.28)

Cuu
LL(r, t) = 〈bL(x), tbL(x+ r, t)〉, (1.29)

Cuuu
LLL(r, t) = 〈uL(x, t)uL(x, t)uL(x+ r, t)〉 , (1.30)

Cbbu
LLL(r, t) = 〈uL(x, t)bL(x, t)bL(x+ r, t)〉 , (1.31)

where r = |r| and vL = v · r/r denotes the longitudinal component of a vector

field v, that is its component parallel to the displacement vector r, and

δLv(r) = [v(x+ r)− v(x)] · r
r
, (1.32)

its longitudinal increment. In terms of the longitudinal correlators, the second

order correlation tensors are given by

Cuu
ij (r, t) =

(
Cuu
LL(r, t)− ∂r

2r

(
Cuu
LL(r, t)

)) rirj
r2

+−∂r
2r

(
Cuu
LL(r, t)

)
δij , (1.33)

Cbb
ij (r, t) =

(
Cbb
LL(r, t)− ∂r

2r

(
Cbb
LL(r, t)

)) rirj
r2

+−∂r
2r

(
Cbb
LL(r, t)

)
δij , (1.34)

Cub
ij (r, t) = Cub(r, t)εijk

rk
r
, (1.35)

where δij denotes the Kronecker delta and εijk the totally antisymmetric Levi-

Civita tensor. For the third-order tensors one obtains

Cuuu
ij,k (r, t) =

∂r
4r2

(
r2Cuuu

LLL(r, t)
) (
δjk

ri
r

+ δik
rj
r

)
− r2∂r

(
Cuuu
LLL(r, t)

2r

)
rirjrk
r3

− Cuuu
LLL(r, t)δij

rk
2r

, (1.36)

Cbbu
ij,k(r, t) =

∂r
4r2

(
r2Cbbu

LLL(r, t)
) (
δjk

ri
r

+ δik
rj
r

)
− r2∂r

(
Cbbu
LLL(r, t)

2r

)
rirjrk
r3

− Cbbu
LLL(r, t)δij

rk
2r

, (1.37)

Cbub
ij,k(r, t) = Cbub(r, t)

(rj
r
δik −

ri
r
δjk

)
. (1.38)

Since the time evolution of the correlation tensors is determined by the

longitudinal correlation functions and the correlation functions Cub(r, t) and

Cbub(r, t), the statistical information about the turbulent dynamics is encoded in

these functions. The second and third-order correlation functions are related to

each other through the so-called von Kármán-Howarth equation (vKHE), which

is derived by writing the momentum equation (1.5) and the induction equation
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(1.6) in component form, multiplying by the appropriate field components and

averaging. This results in the following energy balance equation, here stated for

MHD7 in the case of free decay [31]

−∂tE(t) = −∂t(Buu
LL +Bbb

LL) +
3

2r4
∂r

(
r4

6
Buuu
LLL + r4Cbbu

LLL

)
+

6

r
Cbub

+
1

r4
∂r
(
r4∂r(νB

uu
LL + ηBbb

LL)
)
, (1.39)

where E(t) denotes the total energy per unit volume. The terms Buu
LL, Bbb

LL and

Buuu
LLL are the second and third-order longitudinal structure functions, defined as

Buu
LL(r, t) = 〈(δuL(r, t))2〉 =

2

3
Ekin(t)− 2Cuu

LL(r, t) , (1.40)

Bbb
LL(r, t) = 〈(δbL(r, t))2〉 =

2

3
Emag(t)− 2Cbb

LL(r, t) , (1.41)

Buuu
LLL(r, t) = 〈(δuL(r, t))3〉 = 6Cuuu

LLL(r, t) , (1.42)

where homogeneity and isotropy have been used to determine their relations to

the longitudinal correlation functions.

Equation (1.39) and its equivalent for non-conducting fluids are some of the rare

exact equations in the statistical approach to turbulence. However, the vKHE is

not a closed equation. The time-evolution of the second-order moments depends

on the third-order moments, and by a similar argument an equation can be derived

relating the time-evolution of the third-order moment to the fourth-order moment

and so forth. Again, the main problem in the statistical approach arises, that

is the lack of information about the probability density function (pdf) and as

such about its moments. If there were a closure to the hierarchy of moment

equations, then the pdf could be determined. Much effort has therefore been

made in the past in order to derive a statistical theory of turbulence which solves

the closure problem, such as Kraichnan’s Direct Interaction Approximation (DIA)

[99, 100], the Eddy-Damped Quasi-Normal Markovian closure (EDQNM) [110]

and McComb’s Local Energy Transfer (LET) [120]. However, the problem is still

unsolved despite the advances which these approaches represent. Furthermore,

there are features of turbulent flows that escape closure theory, such as the

description of regions with weak nonlinearity. A critical discussion of this point

can be found in the book by Frisch [72].

The second-order longitudinal correlation functions can be used to define

7The corresponding equation for a turbulent non-conducting fluid follows by setting b = 0.
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characteristic length scales of the system. The integral scales are defined as

Lu(t) =
1

U2

∫ ∞
0

Cuu
LL(r, t)dr , (1.43)

Lb(t) =
1

B2

∫ ∞
0

Cbb
LL(r, t)dr , (1.44)

and describe the correlation of fluctuations at the large scales. A second

characteristic length scale is the Taylor microscale [174], which is defined by the

limit r → 0 of the second-order spatial derivative of the second-order longitudinal

correlation function. This definition can be shown [11] to simplify to

λu =

√
15νU(t)2

εkin(t)
, (1.45)

where εkin(t) is the rate of dissipation of kinetic energy. The Taylor microscale

λb for the magnetic field is defined analogously.

Fourier representation

The requirement of statistical homogeneity permits the random fields to be viewed

at any given instant in time as stationary random processes in space. That is,

results from the theory of stationary random processes can be carried over to

homogeneous turbulence, such as the Wiener-Khintchine theorem. This theorem

asserts that the autocorrelation function of a stationary random process has a

spectral decomposition. In other words, it is given as the Fourier transform

of a monotone function, and the important point is that this is true without

the stationary random process itself having a Fourier transfrom. In general,

stationary random processes do not satisfy the requirements for the existence of a

Fourier transform, that is they are not absolutely integrable or square-integrable.

This can be understood by considering homogeneous turbulence on the infinite

domain R3. For the random fields u(x, t) and b(x, t) to be square-integrable (i.e.

L2(R)3) or absolutely integrable (i.e. L1(R)3), at any time they must decrease

sufficiently rapidly for |x| → ∞, thus violating homogeneity.

Generalising the Wiener-Khintchine theorem to multidimensional stationary

random processes, Cramér [46] and independently Kolmogorov [96] showed that

the correlation tensor Cjl(r) of a multidimensional stationary random process can
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be expressed as the Fourier transform of a tensor in wavenumber space, namely

Cjl(r, t) =

∫
R3

dFjl(k, t) e
ik·r , (1.46)

where Fjl(k, t) is a complex tensor of finite total variation and the integral

a Fourier-Stieltjes integral. If Fjl(k, t) is differentiable or in other words if a

continuous tensor Ĉjl(k, t) exists such that

dFjl(k, t) = Ĉjl(k, t) dk , (1.47)

then the above integral is a Lebesgue (or Riemann) integral. According to

Batchelor [11] (footnote on p. 25) the continuity of Ĉjl(k, t) can be safely assumed

as the nonlinear process would smooth out any discontinuity very quickly. From a

purely mathematical point of view there is no proof of the continuity of Ĉjl(k, t).

However, conforming with practice in the field it is assumed throughout the

following work that the spectral correlation tensors are continuous. That is,

there are continuous tensors Ĉuu
ij (k, t) and Ĉbb

ij (k, t) such that

Cuu
ij (r, t) =

∫
R3

dk Ĉuu
ij (k, t)eik·r , (1.48)

Cbb
ij (r, t) =

∫
R3

dk Ĉbb
ij (k, t)eik·r . (1.49)

The use of the Fourier representation of the magnetic and velocity fields is justified

if the random fields are considered on a periodic domain Ω = [0, L]3 ⊂ R3 such

that

u(x, t) =
∑

k

û(k, t)eik·x with û(k, t) =
1

L3

∫
Ω

dx u(x, t)e−ik·x , (1.50)

and similarly for the magnetic field. Since the magnetic and velocity fields are

real functions, their Fourier transforms must obey Hermitian symmetry

û(−k, t) = û∗(k, t) and b̂(−k, t) = b̂∗(k, t) , (1.51)

where ∗ denotes the complex conjugate. Now the correlators of the discrete

Fourier-transformed homogeneous random fields can be calculated. For this

purpose, let A and C be general homogeneous random vector fields defined

on the periodic domain Ω, which can represent b and u as appropriate. The
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second-order correlation tensor is

〈Âi(k, t)Ĉj(k′, t)〉 =
1

L6

∫
Ω

dx

∫
Ω

dx′ 〈Ai(x, t)Cj(x′, t)〉e−i(k·x+k′·x′)

=
1

L6

∫
Ω

dx

∫
Ω

dr CAC
ij (r, t)e−i(k+k′)·xe−ik

′·r

= δ(k + k′)
1

L3

∫
Ω

dr CAC
ij (r, t)e−ik

′·r

= δ(k + k′)ĈAC
ij (k,k′, t) = ĈAC

ij (k, t) , (1.52)

that is, homogeneity induces unimodal coupling between the different Fourier

modes for the second-order correlator [119]. The Fourier transform of the third-

order correlator for three homogeneous random vector fields A, C and D is

〈Âi(k)Ĉj(p)D̂k(q)〉 =

(
1

L

)9 ∫
Ω

∫
Ω

∫
Ω

dx dx′ dx′′〈Ai(x)Cj(x
′)Dk(x

′′)〉 (1.53)

× e−i(k·x+p·x′+q·x′′) , (1.54)

where the term in the angled brackets on the right-hand side is the real-space

correlation tensor Cijk of the three fields. Since the fields are homogeneous, the

real-space correlator only depends on the displacements r = x−x′ and r′ = x−x′′

and as such is independent of x

〈Ai(x)Cj(x
′)Dk(x

′′)〉 = Cijk(r, r
′) . (1.55)

The integration over x then results in a three-dimensional δ-distribution imposing

the condition that the triple correlation in Fourier space is nonzero only when

the wavevectors form a triad, i.e.

〈Âi(k)Ĉj(p)D̂k(q)〉 = δ3(k + p+ q)

(
1

L

)6 ∫
Ω

∫
Ω

dr dr′ Cijk(r, r
′)e−i(p·r+q·r′) .

(1.56)

Since the fields A, C and D were arbitrary homogeneous random fields (defined

on the periodic domain Ω), this result holds for any combination of triple

correlations of the magnetic and velocity fields in homogeneous MHD turbulence.

That is, homogeneity induces triadic coupling between the different Fourier modes

for the third-order correlator [119].

In order to obtain the continuous Fourier transforms of the random variable

u and b usually the limit L → ∞ is taken [72, 119]. However, this limit
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procedure is problematic [177] due to exchanges in the order of two limits

which may not be well defined8. In short, the use of Fourier transforms for

the individual fields in homogeneous turbulence on the infinite domain R3 is

mathematically not rigorous. This problem may be circumvented by considering

the continuous Fourier-representation only for the correlation tensors for which it

can be rigorously established9. This is the view taken here, and any occurrence

of a continuous Fourier-representation of u and b should be viewed as a purely

formal expression, written down in order to facilitate a more direct access to the

relation of certain spectral quantities with the random fields u and b.

The angle-integrated traces of the spectral autocorrelators are the kinetic and

magnetic energy spectra

Ekin(k, t) =
1

2

∫
|k|=k

dk Ĉuu
ii (k, t) =

1

2

∫
|k|=k

dk 〈|û(k, t)|2〉 , (1.57)

Emag(k, t) =
1

2

∫
|k|=k

dk Ĉbb
ii (k, t) =

1

2

∫
|k|=k

dk 〈|b̂(k, t)|2〉 , (1.58)

where a sum over repeated indices is implied. The kinetic energy (per unit

volume) is then given by

Ekin(t) =

∫ ∞
0

dk Ekin(k, t) =
1

2

∫ ∞
0

dk

∫
|k|=k

dk 〈|û(k, t)|2〉

=
1

2

∫
R3

dk 〈|û(k, t)|2〉 , (1.59)

= 〈|u(x, t)|2〉 . (1.60)

The analogous equation holds for the magnetic energy (per unit volume)

Emag(t) =

∫ ∞
0

dk Emag(k, t) =
1

2

∫
R3

dk 〈|b̂(k, t)|2〉 = 〈|b(x, t)|2〉 . (1.61)

Spectral energy transfer and turbulent cascades

The energy balance as expressed through the vKHE (1.39) can also be stated in

the Fourier representation. By taking the inner product of the MHD equations

in the Fourier representation with the appropriate fields and ensemble averaging,

8For a discussion of this point, see Ref. [177], p. 433.
9Except for the continuity of the spectral tensor.
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one obtains evolution equations for the magnetic and kinetic energy spectra

∂tEmag(k, t) = Tmag(k, t)− 2ηk2Emag(k, t) +Wmag(k, t) , (1.62)

∂tEkin(k, t) = Tkin(k, t) + TLF (k, t)− 2νk2Ekin(k, t) +Wkin(k, t) , (1.63)

where Wmag(k, t) and Wkin(k, t) denote the contributions from the external forces

Wmag(k, t) =

∫
|k|=k

dk 〈b̂(k, t) · f̂b(−k, t)〉 , (1.64)

Wkin(k, t) =

∫
|k|=k

dk 〈û(k, t) · f̂u(−k, t)〉 , (1.65)

and the transfer terms, which originate from the inertial, Lorentz force and

induction terms in the MHD equations, are given by

THD(k, t) =

∫
|k|=k

dk

∫
R3

dp

× 〈û(−k, t) · [û(p, t)× (i(k − p)× û(k − p, t))]〉 , (1.66)

TLF (k, t) = −
∫
|k|=k

dk

∫
R3

dp

× 〈û(−k, t) · [b̂(p, t)× (i(k − p)× b̂(k − p, t))]〉 , (1.67)

and

Tmag(k, t) =

∫
|k|=k

dk

∫
R3

dp 〈b̂(−k, t) · [ik × (û(p, t)× b̂(k − p, t))]〉 . (1.68)

The term THD(k, t) distributes kinetic energy between the Fourier modes due to

the coupling of the velocity field to itself, TLF (k, t) converts magnetic to kinetic

energy due to the Lorentz force acting on the fluid, while the redistribution of

energy due to advection of the magnetic field by the flow and conversion of kinetic

to magnetic energy, that is, due to dynamo action, are contained in Tmag(k, t).

The splitting of ∇× (u× b) into an advective term (u · ∇)b and a dynamo term

(b · ∇)u, is somewhat obscured in Fourier space.

The evolution equation of the total energy spectrum E(k, t) = Emag(k, t) +

Ekin(k, t) is given as the sum of eqs. (1.62) and (1.63)

∂tE(k, t) = T (k, t)− 2k2(ηEmag(k, t) + νEkin(k, t)) +W (k, t) , (1.69)
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where W (k, t) = Wmag(k, t) + Wkin(k, t) is the total energy input per Fourier

mode. Since the sum T (k, t) of the individual transfer terms only redistributes the

total energy between the different Fourier modes its integral over all wavenumbers

must vanish and the rate of change of the total energy per unit volume, E(t), is

given by the difference of energy input and dissipation

∂tE(t) = −ε(t) + εW (t) , (1.70)

where ε(t) = εmag(t) + εkin(t) denotes the total dissipation rate given by the sum

of Ohmic and viscous dissipation

εmag(t) = 2η

∫ ∞
0

dk k2Emag(k, t) , (1.71)

εkin(t) = 2ν

∫ ∞
0

dk k2Ekin(k, t) , (1.72)

and εW (t) = εmag,W (t) + εkin,W (t) the total energy input where

εmag,W (t) =

∫ ∞
0

dk Wmag(k, t) , (1.73)

εkin,W (t) =

∫ ∞
0

dk Wkin(k, t) . (1.74)

As can be seen from the spectral energy balance equations (1.62), (1.63) and

(1.69), the dissipative terms are higher weighted at the large wavenumbers,

leading to an energy sink at the small scales and an average transfer of energy

from the small wavenumbers to the large wavenumbers. That is, kinetic and

magnetic energy injected by some physical process into the magnetofluid at small

wavenumbers (large scales) will excite Fourier modes at higher wavenumbers

before it is dissipated by Joule and viscous heating. If the magnetic and kinetic

Reynolds numbers are high, that is the dissipation coefficients small, dissipative

effects are pushed to very large wavenumbers, or equivalently, very small scales.

That is, there is a separation between the scales (or wavenumbers) where

dissipation becomes important and where energy is injected into the system. In

the intermediate, so-called inertial, range of wavenumbers which is approximately

unaffected by direct energy input and dissipation, energy ‘cascades’ from lower

to higher wavenumbers. In hydrodynamic turbulence this concept of an inertial-

range energy cascade was introduced by Richardson [153], it implies that in the

inertial range the flux of energy through a given wavenumber k, Π(k, t), does not

depend on k.
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Kolmogorov’s theory

The perhaps most famous results in the statistical approach to turbulence are

Kolmogorov’s 1941 phenomenological theory [95, 97] and its refinement in 1962

[98]. Kolmogorov’s 1941 theory was based on two hypotheses (or universality

assumptions, here paraphrased from Ref. [72]):

1. “At high Reynolds numbers the statistical properties of the small scales are

universal. They are only determined by the mean energy dissipation rate

ε, the viscosity ν and the length scale l” [72].

2. “In the limit of infinite Reynolds number, the statistical properties of the

small scales are universal and only determined by ε and l” [72].

The small scales referred to in these two assumptions are called the universal

equilibrium range. The two hypotheses imply that the small scales are statistically

independent from the large scales where the turbulence is generated. Therefore

it should be possible to estimate the characteristic size of the small scales from

the parameters they depend on, that is, from the viscosity and the mean energy

dissipation rate. From dimensional analysis one obtains the Kolmogorov scale

ηD =

(
ν3

ε

) 1
4

. (1.75)

Similarly, a characteristic velocity scale for the small scales can be derived by

dimensional analysis

uD = (νε)
1
4 , (1.76)

and for the associated small-scale Reynolds number one obtains

ReD =
uDηD
ν

=

(
ν3

ε
νε
) 1

4

ν
= 1 . (1.77)

Since the Reynolds number is viewed as measure of the relative importance

of nonlinear interactions to viscous dissipation, ReD = 1 implies that the

Kolmogorov microscale gives an estimation of the size of the small scales where

nonlinear mixing is balanced by dissipation, that is, of the smallest scales

generated by the turbulence before kinetic energy is converted by viscous friction

into heat. In MHD there is an additional Kolmogorov scale associated with the

smallest magnetic scales generated before magnetic energy is dissipated by Joule
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heating. In experiments and numerical simulations it is therefore important that

all scales at least down to the Kolmogorov microscale are resolved in order to

obtain measurements which accurately represent turbulent dynamics. That is,

for experiments using hot wire anemometry the size of the wire must be smaller

than the Kolmogorov microscale, while in numerical simulations the grid spacing

must be smaller than the Kolmogorov microscale.

Kolmogorov’s theory is most known for the prediction of the functional form for

the kinetic energy spectrum in the inertial range

Ekin(k) ∼ ε
2
3k−

5
3 , (1.78)

which is known as Kolmogorov’s five-thirds law. The inertial (sub)range is the

subrange of scales l of the universal equilibrium range where dissipation is yet

unimportant and the dynamics are governed by nonlinear mixing. Therefore, the

second hypothesis can be applied to the inertial range and thus the dynamics in

this range of scales should be determined only by ε and the length scale l = 1/k.

It may appear contradictory that the mean energy dissipation should determine

the dynamics in the inertial range, which was defined as the range of scales

dominated by nonlinear transfer and not by dissipation. However, the amount of

energy dissipated at the small scales must equal the amount of energy transferred

across the inertial range from the large, energy containing, scales. In this way the

dynamics of the inertial range depends on the mean energy transfer rate which

must equal the mean energy dissipation rate.

The five-thirds law (eq. (1.78)) is derived by dimensional analysis invoking

Kolmogorov’s two hypotheses. According to the first hypothesis, the dynamics

of the universal equilibrium range only depends on ε, ν and l = 1/k, that is, on

dimensional grounds the kinetic energy spectrum10 should be given by

Ekin(k) ∼ ε
1
4ν

5
4f(kηD) , (1.79)

where f(kηD) is a dimensionless function. For the inertial subrange, this

expression must be made independent of the viscosity ν. Assuming power-law

form for the dimensionless function f(kηD) = (kηD)α one obtains

Ekin(k) ∼ ε
1
4ν

5
4kα

(
ν3

ε

)α
4

= ε
(1−α)

4 ν
(5+3α)

4 kα , (1.80)

10Note that [E(k)] = [U2][L] = [L3][T−2].
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which only becomes independent of ν for α = −5/3. Kolmogorov’s form of the

kinetic energy spectrum has been confirmed in many experiments and numerical

simulations (see e.g. [72, 135]) of turbulent flows at high Reynolds number.

MHD cascades

The situation in MHD with respect to inertial-range scaling is more complicated

due to the additional degrees of freedom and the possibility of wave solutions of

the MHD equations. This led to several different approaches predicting different

values for the spectral exponent in the inertial range. The Iroshnikov-Kraichnan

(IK) theory is based on the assumption that the small scales are dominated by the

Alfvén-effect, that is, the small-scale magnetic fluctations are well approximated

as Alfvén wave packets travelling along the field lines of the large(r) scale magnetic

field [87, 101]. The characteristic velocity is therefore the Alfvén speed vA leading

to a characteristic timescale, the Alfvén time

τA =
L

vA
, (1.81)

where L is a characteristic length scale of the system. This leads to a power-law

form for the energy spectrum

E(k) ∼ ε1/2v
1/2
A k−3/2 . (1.82)

The Kolmogorov theory and the IK theory thus predict different scaling laws for

the energy spectra in the inertial wavenumber range depending on the chosen

interaction timescale, where IK results in a spectral exponent of −1.5, while

Kolmogorov scaling predicts the value of −5/3 ' −1.667.

Although the IK scaling exponent for the energy spectrum is derived from the

assumption that MHD turbulence is mainly governed by (many) interactions of

Alfvén wave packets, it was originally derived for isotropic turbulence and does

not imply the presence of a mean magnetic field. Iroshnikov and Kraichnan

argued that the magnetic field fluctuations at larger scale act as guide fields for

the smaller scales. For MHD turbulence in the presence of a mean magnetic

field Kolmogorov scaling has been predicted by Goldreich and Sridhar [77] for

wavenumbers perpendicular to the direction of the background magnetic field.

The different predicted values of the spectral exponent are not only numerically
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close and thus difficult to distinguish in measurements, the predictions are model-

dependent. To complicate things further, they also depend on the strength of the

external field, which highlights one of the difficult aspects of MHD as a multi-

parameter problem.

1.3.3 Topological invariants in fluid flows

Supposing dissipation is absent from the system, the first question that may come

to mind then concerns possible conserved quantities. For non-conducting fluids

the total energy is conserved, as the nonlinear term in the Euler equation only

redistributes energy between different scales of motion. In MHD, similarly the

total energy is conserved, while kinetic and magnetic energies are not individually

conserved, because energy conversion from kinetic to magnetic (dynamo action)

and magnetic to kinetic (through the Lorentz force acting on the fluid) takes

place.

However, there are more conserved quantities, which are related to the topology of

the flow and these conserved quantities have important effects even in dissipative

systems. In the case of Euler evolution, this is the kinetic helicity [131] of the

flow, while in ideal MHD there are two additional ideal invariants, the magnetic

helicity and the cross-helicity. The kinetic helicity is no longer conserved in MHD.

The kinetic helicity Hkin(t), the magnetic helicity Hmag(t) and the cross-helicity

Hc(t) are defined as

Hkin(t) ≡
∫

Ω

dx u(x, t) · ω(x, t) =

∫
Ω

dk û(k, t) · ω̂(−k, t) , (1.83)

Hmag(t) ≡
∫

Ω

dx a(x, t) · b(x, t) =

∫
Ω

dk â(k, t) · b̂(−k, t) , (1.84)

Hc(t) ≡
∫

Ω

dx u(x, t) · b(x, t) =

∫
Ω

dk û(k, t) · b̂(−k, t) , (1.85)

where ω(x, t) = ∇× u(x, t) is the vorticity of the flow and a(x, t) the magnetic

vector potential. Topologically speaking, the kinetic helicity is a measure of the

linkage and twist of infinitesimal vortex tubes, the magnetic helicity a measure

of the linkage and twist of magnetic field lines, and the cross-helicity a measure

of the linkage of vortex lines with magnetic field lines [16, 131]. The topological

interpretation of helicity conservation is that the linking number of infinitesimal

flux tubes remains constant, leading to a topological constraint.
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The magnetic helicity is gauge-independent on simply-connected volumes Ω with

perfectly conducting boundaries and for periodic domains provided no mean field

is present [14]. If the magnetic field does not vanish at the boundary of a simply

connected volume, the magnetic field lines have endpoints on the boundary and

the linking number becomes ill-defined [15]. In this case a generalised helicity

can be defined by splitting the magnetic field into a closed internal field and

an irrotational field with vanishing helicity, which circumvents this problem [16].

This construction does not solve the problem for periodic systems with a mean

field [14], however, in this thesis no background magnetic field is present, as such

the aforementioned complications do not arise.

In the statistical approach to MHD turbulence the helicities are of course defined

in the statistical sense. As for the energy, one can straightforwardly define helicity

spectra

Hkin(k, t) =

∫
|k|=k

dk 〈û(k, t) · ω̂(−k, t)〉 , (1.86)

Hmag(k, t) =

∫
|k|=k

dk 〈â(k, t) · b̂(−k, t)〉 , (1.87)

Hc(k, t) =

∫
|k|=k

dk 〈û(k, t) · b̂(−k, t)〉 , (1.88)

whose Fourier transforms give the correlations of the respective vector fields at

different points in real space. The helicities therefore yield information about the

correlations of different vector fields. Statistically isotropic turbulence defined

with respect to O(3)-invariance of the pdf excludes helical flows by definition,

as a helical flow breaks reflectional symmetry. The distiction between O(3) and

SO(3) invariance of the pdf in the definition of isotropy has been highlighted in

sec. 1.3.2 for this reason.

From the topological constraint of helicity conservation it is expected that the

level of helicity (helicities) influences the nonlinear interactions taking place in

the system. This can be illustrated as follows. Let Ω′ ⊂ Ω be a subvolume where,

say, |Hkin(t)| is maximal, leading to alignment of velocity and vorticity in this

subvolume. That is, the velocity field in the subvolume Ω′ is a so-called Beltrami

field as it obeys the differential equation

∇× u(x) = ω(x) = αu(x) , (1.89)

for a coefficient α (which must have dimensions of inverse length). The alignment
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of ω|Ω′ and v|Ω′ forces the nonlinear term in the Navier-Stokes equation to vanish

which can be seen from writing it in rotational form

(u · ∇)u = (∇× u)× u+
1

2
∇|u|2 . (1.90)

Since the gradient term can be absorbed into the pressure term, the inertial

dynamics are given by the term (∇ × u) × u which vanishes for a Beltrami

field. Beltrami fields and their connection to self-organisation in homogeneous

turbulence will play a major role in this thesis.

Magnetic and kinetic helicities have known self-organising effects in MHD flows

through their connection to large-scale dynamo action and the so-called inverse

cascade of magnetic helicity. These concepts are briefly introduced in the

following sections.

Dynamo action and helicity

Kinetic helicity has received much attention in astrophysics due to its connection

to dynamo action, in particular to the Stretch-Twist-Fold (STF) mechanism

[36, 125, 178]. In this picture a closed magnetic flux tube is first stretched and

then twisted by a necessarily helical flow before folding enables reconnection of

magnetic field lines which results in more large-scale magnetic flux, i.e. a stronger

large-scale magnetic field11. This process creates small and large-scale magnetic

helicity of opposite sign, with the small-scale magnetic helicity being of the

same sign as the kinetic helicity responsible for the twisting of the magnetic flux

tube. This process has a mean-field description, the so-called α-effect [104, 132].

It is also an example of large-scale dynamo action, where a magnetic field on

scales larger than the characteristic scale of the flow is amplified. This implies

that kinetic energy on a smaller scale is converted into magnetic energy on a

larger scale, that is, in spectral space energy is transferred from larger to smaller

wavenumbers.

Inverse cascade of magnetic helicity

The magnetic helicity has peculiar dynamics. Using arguments borrowed from

equilibrium statistical mechanics, Frisch et al. [73] predicted the magnetic helicity

11This is similar to a rubber band becoming stronger by twisting and folding it back on itself.
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to have an inverse cascade. That is, it should be transferred from the large

wavenumbers to the small wavenumbers, which is the opposite of the established

Kolmogorov-Richardson (forwards) cascade picture of turbulence. Alongside

magnetic helicity, some magnetic energy must also be transferred to the large

scales due to the realisability condition

|Hmag(k, t)| 6
2Emag(k, t)

k
, (1.91)

leading to the emergence of large-scale magnetic fields. Over the years the

predictions of Frisch et al. have been numerically verified by many groups

[4, 10, 12, 25, 27, 137, 149, 150].

Helical decomposition

The connection of magnetic and kinetic helicity with the emergence of large-

scale magnetic fields and the brief discussion of the relation between helicity and

Beltrami fields in view of weaked nonlinear interactions already hint at Beltrami

fields being of some relevance to self-organisation in turbulent flows. Furthermore,

Beltrami fields have an intricate connection to homogeneous turbulence, as they

can be viewed as the ‘building blocks’ of solenoidal (square-integrable) vector

fields. As first proposed by Constantin and Majda [45], the Fourier transform of

a solenoidal vector field can be decomposed into circularly polarised waves, which

themselves are nothing other than Beltrami fields.

The action of the curl operator on a square-integrable real vector field v(x) can

be viewed in spectral space as the action of a linear operator on the Fourier

transform v̂(k) of v(x),

Ik : C3 −→ C3

v̂(k) 7−→ ik × v̂(k) .

The linear operator Ik(·) = ik × (·) commutes with its adjoint I†k = Ik, hence

it is diagonalisable and has a set of mutually orthogonal complex eigenvectors

defining a basis of C3. As such, v̂(k) can be expressed as a linear combination of
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eigenvectors ik, h+(k) and h−(k) of the curl operator Ik, where

ik × hsk = skkhsk , (1.92)

−ik × h∗sk = skkh
∗
sk
, (1.93)

sk = ±1 and skk = ±k being the nonzero eigenvalues of the curl operator in

spectral space12. The complex eigenvectors are fully helical, since

|hsk · (−ik × h∗sk)| = |hsk · skkh
∗
sk
| = k|hsk |2 , (1.94)

that is, the realisability condition (1.91) is saturated.

Since the velocity field û(k) and the magnetic induction b̂(k) are solenoidal, they

can be expressed in terms of h−, h+ only

û(k, t) = u−(k, t)h−(k) + u+(k, t)h+(k) =
∑
sk

usk(k, t)hsk(k) , (1.95)

b̂(k, t) = b−(k, t)h−(k) + b+(k, t)h+(k) =
∑
sk

bsk(k, t)hsk(k) , (1.96)

where usk and bsk are complex coefficients. The subscript sk = ±1 denoting the

sign of the respective eigenvalues of Ik describes now the positive or negative

helicity modes for the velocity and magnetic modes respectively. The coefficients

usk and bsk can be calculated by taking the inner product of the basis vectors

with the appropriate fields

usk(k, t) =
h∗sk(k) · u(k, t)

hsk(k) · h∗sk(k)
, (1.97)

and

bsk(k, t) =
h∗sk(k) · b(k, t)
hsk(k) · h∗sk(k)

. (1.98)

The helical basis vectors are normalised to unit vectors for the remainder of this

thesis.

In summary, any square-integrable solenoidal vector field is given as a superpo-

sition of Beltrami fields, which are fully helical, and helicity appears to play a

12The curl operator can have eigenvectors with nonzero eigenvalues, as it involves the cross
product of two complex vectors. This is not necessarily orthogonal to the plane spanned by the
two complex vectors, instead it is orthogonal to the plane spanned by the complex conjugates
of the two vectors.
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central role in self-organising processes occurring in homogeneous turbulent flows.

Beltrami fields are known to appear locally in turbulent flows [134].

1.4 Self-organisation

Since the contributions by Richardson and Kolmogorov it is well established

that the average transfer of kinetic energy occurring in isotropic non-conducting

turbulent fluids in three dimensions proceeds from the large scales to the small

scales, or, in the Fourier representation, from small to large wavenumbers.

However, as we have seen, electrically conducting turbulent flows deviate from

this behaviour, showing a variety of phenomena resulting in a transfer of energy

from the small scales to the large scales, such as large-scale dynamo action or

the inverse cascade of magnetic helicity. Furthermore, self-ordering effects in the

form of an inverse cascade of kinetic energy have been predicted [181] and indeed

observed in numerical simulations [18] of the Navier-Stokes equation projected

onto the eigenspace of the operator Ik corresponding to positively helical Fourier

modes. In all these examples of self-organisation in homogeneous turbulence,

energy is transferred in spectral space from large to small wavenumbers, and a

lack of mirror symmetry (i.e. the presence of kinetic and/or magnetic helicity)

facilitates these types of energy transfer.

Many turbulent flows occurring in nature and/or in industrial applications also

show self-organising behaviour, such as rotating flows [127], two-dimensional flows

[22, 102, 128] and flows carrying polymeric additives [60]. Self-organisation also

occurs in wall-bounded parallel shear flows. In these flows self-organisation is con-

nected to the transition to turbulence and major advances in the understanding of

this process from a dynamical systems perspective have been made in recent years.

That is, self-organisation in wall-bounded shear flows is much better understood

than the self-organising behaviour observed in homogeneous MHD turbulence.

The general picture which emerges for wall-bounded parallel shear flows is that

the state space of the system consists of a complicated collection of unstable flow

states and the linearly stable laminar profile. Turbulence is then characterised as

the system revolving around these unstable flow states, which are exact solutions

or periodic orbits of the Navier-Stokes equations (so-called ‘exact coherent

structures’) [47, 69], and the important point is that the laminar profile and

the turbulent states remain dynamically connected such that a sudden ‘escape’
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from the turbulent region of state space can occur. In other words, the flow can

self-organise.

In summary, self-organisation in turbulent flows is not uncommon, and in

this thesis an attempt is made to further understand self-organising behaviour

in homogeneous (magneto)hydrodynamic flows and its connection to Beltrami

flows. One of the rather surprising outcomes is that isotropic turbulence can

also spontaneously relaminarise and the resulting large-scale flow is a Beltrami

field. Furthermore, the statistical signature of this process is very similar to

relaminarisation events in wall-bounded parallel shear flows, suggesting a state-

space picture of self-organisation similar to the established results in wall-bounded

parallel shear flows also for this dynamical system.

1.5 Thesis outline

The study of self-organisation of turbulent flows and the connection to Beltrami

fields is the main theme of this thesis, which consists of several analytical and

numerical results on this topic. Before presenting the results, the code developed

for the numerical simulations is described in chapter 2 alongside a presentation

of tests carried out to ensure correctness of results produced by the code.

Chapter 3 contains the main analytical results on the influence of helicity on

the dynamics of MHD flows. The helical decomposition of solenoidal vector

fields is used to derive a dynamical system which describes triad interactions

of fully helical magnetic and velocity field modes, and a linear stability analysis

of steady solutions of this dynamical system is carried out. The interpretation

of the results from the stability analysis is that unstable solutions lead to energy

transfer between the interacting modes, and a dependence of possible interscale

energy and helicity transfers on the helicities of the interacting modes is derived.

Chapter 4 presents analytical and numerical results on the scaling of the total

dissipation rate with Reynolds number. An approximate equation predicting

the behaviour of the dimensionless dissipation rate at large Reynolds number is

derived. The predictions of the equation are successfully compared against results

from DNSs of decaying MHD turbulence with different levels of magnetic and

cross-helicities, as well as against DNS results from mechanically forced stationary

MHD turbulence using different forcing routines. The results from the DNSs of
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decaying MHD turbulence are further discussed in view of the analytical results

presented in chapter 3.

The analytical results of chapter 4 were obtained by asymptotic analysis.

However, a more rigorous approach can be taken using the existence of weak

solutions of the MHD equations. This leads to upper bounds for the total

dissipation rates and Reynolds number scalings consistent with the approximate

equation derived in chapter 4. This material is presented in chapter 5.

Chapter 6 consists of a numerical investigation of the collapse of isotropic

turbulence onto a large-scale Beltrami flow. It is shown that the statistical

signature of this process is analogous to relaminarisation of localised turbulence

in wall-bounded shear flows, which raises further questions about the connection

of Beltrami fields (and therefore helicity) with the suppression/collapse of

homogeneous turbulence.

A summarising discussion of the individual results contained in chapters 3-6 is

provided in chapter 7 with an emphasis on open problems and further work.
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Chapter 2

The MHD code

A fully functional and extensively tested parallelised hydrodynamic code [187] was

extended from hydrodynamics to MHD, where tasks specific to MHD calculations

were implemented using pre-processor directives, in order to avoid the evaluation

of conditional statements at runtime specifying whether an MHD or a purely

hydrodynamic simulation is carried out. The main features of the code and its

MHD extension are described in this chapter, along side a series of tests.

2.1 Description of the code

The extended MHD-capable version of the code numerically solves a system of

two coupled nonlinear partial differential equations on a 3D regular mesh. It steps

the MHD equations (1.5) - (1.7) forward in time using Heun’s method [83], which

is a 2nd-order predictor-corrector scheme. The viscous and resistive terms are

treated exactly by integrating factors. The nonlinear term is calculated using the

pseudospectral method, that is, all spatial derivatives become algebraic vector

operations coupling the wavevectors with the respective Fourier-transformed

fields. Since the nonlinear terms are convolutions in Fourier-space which translate

to multiplications in real space, the fields are Fourier-transformed back to real

space after the derivatives are taken1. This procedure requires several Fast

Fourier Transforms (FFTs) to be performed at each timestep, which are the

main source of computational workload of this program. The FFTs are carried

1A detailed explanation of the pseudospectral method can be found in the thesis by Dr
Samuel Yoffe [187], who developed the original hydrodynamic version of the code.
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out in parallel using the FFTW3.3 library, whose parallel (MPI2) option allows

only 1D decomposition of the 3D computational domain. Apart from the parallel

FFTs the code requires very little communication between MPI-tasks as can be

seen from the basic profiling analysis presented in sec. 2.3.

The input is either specified by an input file which lists all the necessary

parameters of the simulation or, in case of a restart, by snapshots of the magnetic

and velocity fields, which have been saved to disk by a previous run. Snapshots of

both fields can also be saved at user-defined intervals, which allows visualisation

of the flow and the magnetic field using visualisation tools such as Paraview [1].

Aside from the snapshots, the code saves several quantities of interest at user-

defined intervals, such as kinetic and magnetic energy spectra, all helicities and

all transfer terms. The data is post-processed separately in order to calculate

all derived quantities, and since this requires much less computational resource,

post-processing is usually carried out on local Linux workstations.

2.1.1 Forcing routines

The hydrodynamic version of the code could be used for decaying and statistically

stationary simulations of isotropic turbulence. For the stationary simulations,

the energy input was achieved by feeding the rescaled velocity field back into the

system at the large scales. More precisely, the corresponding force f1 is given by

f̂1(k, t) = (εW/2Ef )û(k, t) for 0 < |k| 6 kf ;

= 0 otherwise , (2.1)

where f̂1(k, t) is the Fourier transform of the forcing, û(k, t) is the Fourier

transform of the velocity field, and Ef is the total energy contained in the forcing

band. The parameter kf is the largest wavenumber at which the forcing is applied

and can be set in the input file. The advantage of this method is that the energy

input rate εW is known at the start of the simulation. However, it does not

allow direct control over kinetic helicity injection. Therefore an additional type

of forcing has been implemented which allows the injection of fixed amounts

of kinetic, magnetic and cross-helicity. This allows more direct control over

the evolution of the ideal invariants. Furthermore, specific types of numerical

simulations requiring helical forcing (such as dynamo simulations) can now be

2Message Passing Interface

38



carried out. The forcing function is defined as

f̂2(k, t) = A(k, t)e1(k) +B(k, t)e2(k) , (2.2)

where A ∈ C and B ∈ C, ei(k) ⊥ k for i = 1, 2 and e1(k) · e2(k)∗ = 0. The

complex numbers A and B are given by

A = (F (k))
1
2 gAe

iα(k) , (2.3)

B = (F (k))
1
2 gBe

iα(k) , (2.4)

where g2
A + g2

B = 1, eiα(k) a uniformly distributed random phase chosen at each

time-step and F (k) a normalisation factor. The basis vectors ei(k) (i = 1, 2)

correspond to the helical basis vectors introduced in chapter 1.3.3, that is, the

Fourier transform f̂2(k, t) of the force f2(x, t) is expanded into helical modes.

More precisely, at the initial instant a unit vector e is randomly chosen and the

helical basis vectors are given by

e1(k) =
k × (k × e)− ik(k × e)√

2[k4 − k2(k · e)]
, (2.5)

e2(k) =
k × (k × e) + ik(k × e)√

2[k4 − k2(k · e)]
, (2.6)

as in Ref. [25], such that

ik × e1(k) = ke1(k) , ik × e2(k) = −ke2(k) , e1(k) · e∗2(k) = 0 . (2.7)

The helicity Hf2(k) of the forcing can then be adjusted through the coefficients

gA and gB, since the relative helicity input is given by

ρ =
Hf2(k)

k|f̂2(k, t)|2
=
g2
A − g2

B

g2
A + g2

B

= g2
A − g2

B , (2.8)

which is then adjusted using gA = sinφ and gB = cosφ for a fixed angle φ.

This forcing mechanism has been implemented for the magnetic and the velocity

field, that is, fixed levels of kinetic and magnetic helicity can be injected into the

system. In order to inject a set amount of cross-helicity, the helical basis vectors

for the mechanical force are rotated by an adjustable angle. The resulting helical

basis vectors are then used to generate the electromagnetic force. A very similar

method has been used in the numerical simulations of helical MHD turbulence
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carried out by Müller et al. [137] and Malapaka et al. [116]. The forcing routine

can also be used as a static (i.e. deterministic) force by omitting the random

phases.

2.1.2 Initial conditions

The initial conditions for the velocity and the magnetic field with prescribed

magnetic and kinetic energy spectra are constructed by assigning a Gaussian

random vector to each point in space for both fields. The resulting fields are

subsequently Fourier-transformed and expanded into helical modes in order to

set the initial kinetic, magnetic and cross-helicities to the levels appropriate for

the problem under consideration. Finally both Fourier-transformed fields are

rescaled according to the desired energy spectra in the form

Emag,kin(k) = Ak4 exp(−k2/(2k0)2) , (2.9)

where A > 0 is a real number which can be adjusted according to the desired

amount of initial energy. The wavenumber k0 which locates the peak of the initial

spectrum can be adjusted freely and is mostly taken to be k0 = 5, unless otherwise

stated. No background magnetic field is imposed.

2.2 Tests and verification

Since the hydrodynamic version of the code had already been extensively tested

[187], only tests specific to the newly developed MHD functions have been carried

out. Since all new functions specific to MHD have been implemented using pre-

processor directives, the hydrodynamic base version of the code has been left

untouched.

2.2.1 Conserved quantities

A first important test for correctness of a given code is whether any conserved

quantities are indeed conserved. As outlined in chapter 1, there are three ideal

invariants in MHD, the total energy and the cross- and magnetic helicities.

Instead of carrying out simulations of the ideal MHD equations the conservation
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of the ideal invariants can be tested in dissipative simulations by tracking the

time evolution of the nonlinear terms corresponding to the ideal invariants. Since

the nonlinear terms do no work on the system and only redistribute energy and

cross- and magnetic helicities, respectively, between the Fourier modes, the spatial

integrals of these terms should vanish

ΠE(0, t) =

∫ ∞
0

dk Tkin(k, t) + Tmag(k, t) = 0 , (2.10)

ΠHmag(0, t) =

∫ ∞
0

dk THmag(k, t) = 0 , (2.11)

ΠHc(0, t) =

∫ ∞
0

dk THc(k, t) = 0 . (2.12)

This is indeed the case to a good approximation, as can be seen in fig. 2.1,

where the time evolution of the spatially integrated transfer terms is shown for a

statistically steady simulation on 5123 collocation points using the forcing routine

f2 for both magnetic and velocity fields. The time averages are 〈ΠE(0, t)〉t = 0 to

machine accuracy, 〈ΠHmag(0, t)〉t = 5.85684× 10−10 and 〈ΠHc(0, t)〉t = 2.27055×
10−10. Lower resolved stationary simulations and simulations of decaying MHD

turbulence behave similarly.

2.2.2 Tests against results in the literature

The 3D Orszag-Tang vortex was used for comparison against results by Mininni

et al. [130] and Morales et al. [136]. The initial conditions are

u = (−2 sin y, 2 sinx, 0) ,

b = β(−2 sin 2y + sin z, 2 sinx+ sin z, sinx+ sin y) , (2.13)

where β = 0.8 has been chosen according to [130, 136]. The comparison is carried

out with respect to the the time evolution of the total dissipation ε(t) and the

maximum of the current density in real space max|j|. The same number of grid

points and dissipation coefficients as in Ref. [136] was used, that is ν = η = 0.01

on 643 grid points (OT1), ν = η = 0.005 on 1283 grid points (OT2) and ν = η =

0.001 on 2563 grid points (OT3).

The results obtained are in agreement with both aforementioned sources. By

comparison of the top panel of fig. 2.2 with the corresponding fig. 11 in Ref. [136]

for the evolution of the total dissipation, the same delay in the peak of the
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dissipation rate as the Reynolds number increases is observed. The maximum of

the current density shows Reynolds number independent exponential growth until

t = 0.4, in agreement with Morales et al. , while Mininni et al. observe exponential

growth up to t = 0.6. This is most likely due to a slightly different definition of

the initial condition in Ref. [130]. After the initial period, algebraic growth ∼ t3

in agreement with both sources is observed. With increasing Reynolds number

the temporal maxima of max|j| are achieved at later times, also in agreement

with both sources. Furthermore, the data shows very good agreement in direct

comparison to a dataset obtained from Morales et al. [136] as shown in fig. 2.2.

Results from simulations of decaying MHD turbulence with random initial data

were also compared against results in the literature. Figure 2.3 shows magnetic

helicity, magnetic energy and kinetic energy spectra shortly after the onset of

power-law decay for a simulation of decaying MHD turbulence3 with maximal

initial magnetic helicity at an initial Taylor-scale Reynolds number Rλ(0) =

645.47 carried out on 10323 grid points. The magnetic helicity spectra have been

multiplied by the wavenumber k for dimensional reasons, and have been shifted

downwards in the figure to facilitate visual analysis. The inset shows constancy

of helicity flux ΠH(k) for the wavenumber interval 21 6 k 6 33, indicating an

inertial range for the magnetic helicity in the direct cascade region. It can be

seen in the figure that power-law scaling of Hmag(k) extends over a larger interval,

showing the scaling Hmag(k) ∼ k−3.6, which is in agreement with recent results

on decaying 3D MHD turbulence [137]. The flux is k-dependent in the reverse

spectral transfer region, as shown in the inset of fig. 2.3. This is also in agreement

with Müller et al. [137], who report the same behaviour. The present simulations

support Kolmogorov scaling for the magnetic field as indicated by the bar parallel

to Emag(k).

2.3 Scaling and performance of the code

A basic profiling and scaling analysis of the MHD version of the code has been

carried out for two problem sizes, that is DNSs of MHD turbulence using 10323

and 20643 collocation points. For the smaller problem size (10323 grid points)

the code shows linear scaling up to 516 cores. At 1032 cores the amount of data

per core becomes small and communication costs begin to matter, this can be

3This simulation was carried out for a different project [12], which is outwith the scope of
this thesis. It is the largest Reynolds number run of Ref. [12].
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Figure 2.1 Time evolution of integrated transfer terms of total energy
(top), cross-helicity (middle) and magnetic helicity (bottom) for a
statistically steady simulation on 5123 collocation points using the
forcing routine f2 for both magnetic and velocity fields.
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Figure 2.3 Energy and magnetic helicity spectra. The solid line shows Emag(k),
the middle dashed line shows Ekin(k) and the bottom dotted line
shows kHmag(k), which has been shifted for easier comparison. The
inset shows the flux of Hmag(k), which is constant in the higher
k region, indicating an inertial range. The straight lines indicate
scaling regions for Emag(k) ∼ k−5/3 and kHmag(k) ∼ k−2.6, which
results in Hmag(k) ∼ k−3.6.

seen in fig. 2.4. This data point shows the largest core count possible for the

studied problem size, where the restriction is due to the one-dimensional domain

decomposition, which restricts the number of MPI-tasks that can be used for a

given problem size. For a grid using N3 collocation points the maximal number

of MPI-tasks is N. The larger problem size (2064 grid points) extends the linear

scaling up to 2064 cores, which can also be seen in fig. 2.4, where the data of

the larger problem has been rescaled by problem size in order to facilitate visual

comparison between the two data sets. The scaling analysis in fig. 2.4 shows that

the code has a parallel efficiency of 87% for the largest problem sizes, as given by

the slope of the dashed line in fig. 2.4. In summary, the code scales well up to

thousands of processing elements (PEs) for the largest currently viable problem

sizes. Larger simulations would require further parallelisation of the code.

Results from a basic profiling analysis using the CrayPAT profiling tool are

shown in tbl. 2.1. The percentage of execution time spent is split into library

functions (ETC), which includes MPI-functions called from the FFT library, user-

implemented functions (USER), communication due to user-defined functions

(MPI) and I/O. The analysis clearly shows that most of the time is spent in

the FFT routines, however, this included MPI-communication within the FFT
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library calls. This basic analysis shows that code optimisation of user-defined

functions would have little effect as most time is spent in FFTW-calls, thus any

further optimisation work should concentrate on the FFTs.
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Figure 2.4 Strong scaling results for two problem sizes. The times measured for

the larger problem size have been scaled according to the difference

in problem size (divided by a factor of 8) in order to facilitate

comparison to the smaller runs.

N3 # of PEs ETC USER MPI I/O

10323 129 90.7% 8.4% 0.2% < 0.5 %

10323 172 91.0% 8.1% 0.2% < 0.5 %

10323 344 91.2% 7.7% 0.1% < 0.5 %

10323 512 90.9% 7.7% 0.2% < 0.5 %

10323 1032 93.6% 4.1% 0.4% 1.2 %

Table 2.1 Profiling data corresponding to the runs on 10323 collocation points

as shown in percentage of time spent in computation, communication

and I/O. The percentage of time spent in computation is split between

library functions (ETC), which includes MPI-functions called from

the FFT library. USER refers to user implemented functions, while

values in the column labelled MPI shows the percentage of time spent

in communication due to user-defined functions.
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Chapter 3

Helical mode interactions and

self-organisation in MHD turbulence

In this chapter spectral transfer processes in homogeneous MHD turbulence are

investigated analytically in order to gain information on the deeper connection

between helicity and self-organisation in homogeneous MHD turbulence. The

decomposition of the velocity and magnetic fields into helical Fourier modes as

explained in chapter 1 leads to a dynamical system describing the evolution of the

helical coefficients, and a stability analysis of steady solutions of this system is

carried out. The interpretation of the analysis is that instabilities lead to energy

transfer between the interacting modes. From this, a dependence of possible

interscale energy and helicity transfers on the helicities of the interacting modes

is derived and the direction of the inertial-range fluxes are calculated.

As expected from the inverse cascade of magnetic helicity in 3D MHD turbulence,

mode interactions with like helicities lead to transfer of energy and magnetic

helicity to smaller wavenumbers, that is, systems mainly containing modes of like

helicities should tend to self-organise into large-scale structures. Furthermore, it

is found that high values of the cross-helicity may have an asymmetric effect on

forward and reverse transfer of energy, where forward transfer is more quenched

in regions of high cross-helicity than reverse transfer.

Some specific helical interactions can be mapped to large- and small-scale

kinematic dynamo action such as the STF-scenario mentioned in chapter 1, in

these cases the analysis is much simpler. The results are discussed in the context

of numerical simulations of MHD turbulence and observations of MHD turbulence
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in the solar wind.

3.1 Introduction

The effect of helicity on energy transfer and evolution in non-conducting

turbulent fluids has received considerable attention in the literature [6, 18–

20, 32, 33, 131, 142, 145, 146, 181]. It has been studied in a variety of

ways, e.g. using analytical methods, closure calculations, conventional DNSs and

novel approaches in DNS. Waleffe [181] decomposed the Fourier transform of

the velocity field into eigenfunctions of the curl operator and derived evolution

equations for these eigenfunctions by substitution of the decomposed field into the

Navier-Stokes equations for incompressible flow. Since the nonzero eigenvalues

of the corresponding eigenfunctions are related to the helicity of a given velocity

field mode, the evolution equations were further analysed in order to derive the

dependence of the possible energy transfers on the helicities of the interacting

modes. If the largest two wavenumbers of a given wavevector triad had helicities

of opposite sign energy was transferred forward in wavenumber space, while a

reverse transfer of energy became possible if the helicities were of the same sign.

The analysis also showed that the triads responsible for an inverse energy cascade

contribute to a direct cascade of kinetic helicity. The possibility of an inverse

cascade of kinetic energy and a forward cascade of kinetic helicity had previously

been predicted by Brissaud et al. [28].

Biferale et al. [18] investigated numerically whether this reverse spectral transfer

caused by interactions of helical modes of the same sign occurs. By defining a

projection operation on the nonlinear term the authors altered the Navier-Stokes

equations so to ensure that only modes of, say, positive helicity were present in the

system. That is, the dynamics were restricted to one eigenspace of the operator Ik

introduced in chapter 1. The altered Navier-Stokes equations were subsequently

solved numerically using the standard pseudospectral method in conjunction with

small-scale forcing. As predicted by Waleffe’s analysis, kinetic energy was indeed

transferred downwards in wavenumber space. This was the first observation of

an inverse energy cascade in three-dimensional isotropic turbulence.

In a subsequent paper [19], the same authors forced the system at the large

scales in order to study the predicted forward cascade of kinetic helicity, which

was indeed observed in the simulations. Since the subset of positively helical
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modes does not transfer energy to the small scales, it was expected that the

resulting dynamical system would not show finite dissipation in the limit of

infinite Reynolds number. Hence the projected Navier-Stokes equation which

governs the evolution should be globally regular, which was subsequently proven

by Biferale and Titi [20].

Thus, in summary, the decomposition of the Fourier transform of the turbulent

velocity field fluctuations into helical modes has been proven to be very useful

in terms of understanding some fundamental features of turbulent flows, which

go beyond the established Kolmogorov-Richardson (direct) cascade of kinetic

energy. In view of the effects of kinetic and magnetic helicities on the direction of

energy transfer in MHD turbulence, and inspired by the successes of the helical

decomposition used in hydrodynamics, in this chapter the decomposition of both

the magnetic and velocity fields into helical modes is used in order to perhaps

shed some more light on why MHD turbulence shows much more transfer from the

small scales to the large scales than turbulence in non-conducting fluids. In other

words, this approach is an attempt at finding out why self-ordering processes

occur more frequently in MHD than in hydrodynamic turbulence.

Before embarking on the derivation of the main equations and the subsequent

stability analysis, some terminology is briefly discussed. As the precise meaning

of the term varies in the literature, it is not always evident what is meant by an

inverse cascade. In the astrophysical literature, transfer of energy and helicity

from higher to lower wavenumbers is often described as an inverse cascade [38, 39,

168], while the fluid dynamics literature requires any cascade process to possess

a wavenumber-independent flux [4, 18, 20, 27, 120, 137]. It is thus of interest to

not only classify the different types of reverse transfer that can occur in MHD

turbulence, but also to perhaps clarify the terminology. Therefore the umbrella

term reverse (or inverse) spectral transfer is proposed here, which includes all

the phenomena described above as subcategories according to their properties.

It is defined as any process that produces an increase in a spectral quantity

(total energy, magnetic helicity, etc.) at low wavenumbers due to transfer of

that quantity away from higher wavenumbers into smaller wavenumbers. In this

framework an inverse cascade is a reverse spectral transfer showing constant flux

of the cascading quantity over a certain wavenumber range. Concerns have been

raised in MHD over the use of the term ‘cascade’ [137], as it may be understood

to imply energy (or magnetic helicity) transfer mainly due to local interactions,

which might not be the case in MHD turbulence [3, 37, 53, 137]. This point will
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be addressed in the discussion section of this chapter.

3.2 The evolution of the helical modes

For simplicity at first consider periodic boundary conditions on a domain Ω =

[0, L]3 ⊂ R3, thus working with the discrete Fourier transformed MHD equations

(∂t + νk2)û(k) = − FT
[
∇
(
P +

|u|2

2

)]
+

∑
k+p+q=0

[
−(ip× û(p))∗ × û(q)∗ + (ip× b̂(p))∗ × b̂(q)∗

]
,

(3.1)

(∂t + ηk2)b̂(k) = ik ×
∑

k+p+q=0

û(p)∗ × b̂(q)∗ , (3.2)

where FT denotes the three-dimensional Fourier transform as a linear operator

acting on L2(Ω)3 functions. In order to determine the contribution of specific

interactions to the fluxes of magnetic helicity and magnetic energy, eventually

the formal limit L → ∞ will be taken in sec. 3.6, necessarily assuming that the

relevant functions are then well-behaved at infinity to ensure the convergence of

the respective Fourier integrals, as discussed in chapter 1.

The decomposition of the Fourier transform of a solenoidal vector field in

circularly polarised waves as introduced in chapter 1 has been used in several

investigations of hydrodynamic turbulence [18, 20, 181] in order to establish

the properties of energy transfer depending on the kinetic helicity. It was first

applied to incompressible MHD flows by Lessinnes et al. [111], who derived a

dynamical system in Fourier space describing helical triadic interactions in MHD.

This system was subsequently used to construct a helical shell model of MHD

turbulence.

The equations describing the evolution of the helical coefficients usk and bsk
are derived by substituting the decompositions (1.95) and (1.96) into the MHD

equations for incompressible flow and then taking the inner product with hsk on

both sides of the respective equations [111, 181]. The resulting evolution equation
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for the helical coefficient usk is

(∂t + νk2)usk = h∗sk·
(
−FT

[
∇
(
P +

|u|2

2

)])
+ h∗sk·

∑
k+p+q=0

[
−(ip× û(p))∗ × û(q)∗ + (ip× b̂(p))∗ × b̂(q)∗

]
= − 1

2

∑
sp,sq

∑
k+p+q=0

(spp− sqq)
[
h∗sp × h

∗
sq · h

∗
sk

]
(u∗spu

∗
sq − b

∗
spb
∗
sq) ,

(3.3)

where the dummy variables p and q were exchanged in order to symmetrise

the momentum equation with respect to p and q and thus to obtain the factor

(spp − sqq)/2. Following an analogous procedure [111] for the helical coefficient

bsk of the magnetic field leads to

(∂t + ηk2)bsk = h∗sk·
[
ik ×

∑
k+p+q=0

û(p)∗ × b̂(q)∗

]

=
skk

2

∑
sp,sq

∑
k+p+q=0

[
h∗sp × h

∗
sq · h

∗
sk

]
(u∗spb

∗
sq − b

∗
spu
∗
sq) . (3.4)

In order to study the interaction of helical modes, that is the evolution of the

helical coefficients due to the mode coupling only, the dissipation coefficients are

from now on omitted. For a given triad k,p, q of wavevectors, expressions for the

first time-derivatives of each helical coefficient are obtained from (3.3) and (3.4)

and from the corresponding equations for bsp , bsq , usp and usq . This leads to the

following system of coupled ordinary differential equations (ODEs) describing the

evolution of the helical coefficients in a single triad interaction

∂tusk = (spp− sqq) gkpq (u∗spu
∗
sq − b

∗
spb
∗
sq) ,

∂tusp = (sqq − skk) gkpq (u∗squ
∗
sk
− b∗sqb

∗
sk

) ,

∂tusq = (skk − spp) gkpq (u∗sku
∗
sp − b

∗
sk
b∗sp) , (3.5)

∂tbsk = −skk gkpq (u∗spb
∗
sq − b

∗
spu
∗
sq) ,

∂tbsp = −spp gkpq (u∗sqb
∗
sk
− b∗squ

∗
sk

) ,

∂tbsq = −sqq gkpq (u∗skb
∗
sp − b

∗
sk
u∗sp) , (3.6)

where the geometric factor

gkpq = −1

2
h∗sp × h

∗
sq · h

∗
sk
, (3.7)
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is introduced for conciseness [111, 181]. It can also be written as

gkpq =
skspsq

2
eiα(k,p,q) N

2kpq
(skk + spp+ sqq) , (3.8)

where α is a wavenumber-dependent real number determined by the orientation

of the triad and N a factor depending on the shape of the triad. Further details

and a derivation of (3.8) can be found in Ref. [181].

The total energy, the magnetic helicity and the cross-helicity can be expressed in

terms of the helical coeffients

E =
1

2

∑
k

〈|û(k)|2 + |b̂(k)|2〉 =
1

2

∑
k,sk

(
〈|usk |2〉+ 〈|bsk |2〉

)
, (3.9)

Hmag =
∑

k

〈â(k)b̂(−k)〉 =
∑
k,sk

sk
k
〈|bsk |2〉 , (3.10)

Hc =
∑

k

〈û(k)b̂(−k)〉 =
∑
k,sk

<
(
〈uskb∗sk〉

)
, (3.11)

where < denotes the real part of a complex number. All three ideal invariants

are conserved per triad interaction [111].

3.3 Stability of steady solutions

Examining the linear stability of steady solutions of the system (3.5)-(3.6) can

reveal the influence which the helicities of the interacting modes have on the

interscale transfer of a given quantity of interest. The system (3.5) without a

magnetic field (that is for bs = 0) was analysed by Waleffe [181] with respect

to the linear stability of its steady solutions. Linearly unstable solutions were

found depending on the helicities of the interacting modes. This result was then

interpreted following the instability assumption inspired by the formal analogy to

rigid-body rotation, where rotation around the axis of middle inertia is unstable.

The existence of a linearly unstable solution involving a velocity field mode û is

interpreted as the û-mode losing energy to the other two modes it interacts with1.

A similar approach is taken here, that is, the linear stability of steady solutions of

the system (3.5)-(3.6) is investigated in view of possible applications to spectral

transfer processes in MHD with particular emphasis on self-ordering processes

1An equivalent assumption had already been used by Kraichnan [102] for two-dimensional
hydrodynamic turbulence.
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such as inverse transfers of total energy and magnetic helicity. In principle, a

similar analysis could be carried out for the remaining ideal invariant, the cross-

helicity.

3.3.1 The steady solutions

The system (3.5)-(3.6) of six coupled ODEs has several equilibria one can linearise

about. To simplify the notation, a (formal) solution of the system (3.5)-(3.6)

consisting of helical û- and b̂-field modes interacting in a given triad k,p, q is

written as:

(usk , usp , usq ; bsk , bsp , bsq) . (3.12)

In order to find the steady solutions of the system (3.5)-(3.6), it is assumed

(without loss of generality) that the middle components bsp = Bsp and usp = Usp

are constant in time. Then (3.5) and (3.6) require the other four components

to vanish by the following argument. A steady solution requires ∂tusk = 0, and

the only way that this can happen nontrivially is if both products u∗spu
∗
sq and

b∗spb
∗
sq vanish2. Since usp = Usp is constant in time, usq = 0 and similarly bsq = 0.

Applying the same argument to ∂tusq , it follows that usk and bsk must also vanish.

Therefore a steady solution of the system (3.5)-(3.6) has the form

(0, Usp , 0; 0, Bsp , 0) .

It can now be checked for consistency that ∂tbs = 0 for k, p and q as well.

Therefore the solution is steady for the magnetic field and for the velocity field

alike. Aside from the just explained example, steady solutions of the form

(Usk , 0, 0;Bsk , 0, 0) and (0, 0, Usq ; 0, 0, Bsq) are obtained in the same way.

Thus the steady solutions of (3.5)-(3.6) are of the same form as for the

hydrodynamic case [181], where at least two of the three interacting modes vanish.

However, there are two special cases: one where the magnetic field component Bs

also vanishes, while Us 6= 0 and the other, where the velocity field component Us

vanishes, while Bs 6= 0. The former case may perhaps be connected to a dynamo

process. For the kinematic dynamo, where the back-reaction of the magnetic field

on the velocity field can be neglected, the (linear) stability of the velocity field

2This requires assuming that no cancellations occur. However, the occurrence of
cancellations would require the system to be in a specific state, which is unlikely to happen
frequently in a chaotic system.
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coefficients us is only determined by hydrodynamic interactions. This point will

be further discussed in sec. 3.7.

3.3.2 Linear stability analysis

In order to assess whether a given steady solution is linearly unstable in this

particular setting, it is assumed without loss of generality that the coefficients

usp and bsp corresponding to wavevector p are nonzero and constant in time, that

is, the linear stability of the solution (0, Usp , 0; 0, Bsp , 0) is studied with respect

to infinitesimal perturbations of the four modes that had been set to zero. As

the first-order equations (3.5)-(3.6) involve the coupling of all three modes of a

given triad, little information can be obtained from them at first sight. Taking

time-derivatives on both sides of eqs. (3.5)-(3.6) and subsequently substituting

any occurrence of a first-order time-derivative on the RHS by the appropriate

evolution equation, one obtains

∂2
t usk = |gkpq |2(spp− sqq)

(
(skk − spp)|Usp |2 + sqq |Bsp|2

)
usk

− |gkpq |2(spp− sqq)
(

(skk − spp)U∗spBsp + sqq UspB
∗
sp

)
bsk , (3.13)

∂2
t bsk = |gkpq |2skk

(
sqq U

∗
spBsp + (skk − spp)UspB∗sp

)
usk

− |gkpq |2skk
(
sqq |Usp|2 + (skk − spp)|Bsp |2

)
bsk . (3.14)

These equations do not depend on modes at wavenumber q. The evolution

equations of the helical coefficients usq and bsq can be obtained similarly and

show no dependence on k, therefore attention is restricted to the evolution of usk
and bsk .

The system (3.13) and (3.14) can be written as a matrix ODE

ẍ =

(
α β

γ δ

)
x , (3.15)
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where x ≡ (usk , bsk) and the matrix elements are

α = |gkpq |2(spp− sqq)
[
(skk − spp)|Usp|2 + sqq |Bsp |2

]
, (3.16)

β = −|gkpq |2(spp− sqq)
[
(skk − spp)U∗spBsp + sqq UspB

∗
sp

]
, (3.17)

γ = |gkpq |2skk
[
sqq U

∗
spBsp + (skk − spp)UspB∗sp

]
, (3.18)

δ = −|gkpq |2skk
[
sqq |Usp |2 + (skk − spp)|Bsp |2

]
. (3.19)

The linear stability of this system can be determined from the eigenvalues λ1 and

λ2 of the matrix in (3.15). These eigenvalues depend not only on the helicities

of the interacting modes and on the magnitudes of Usp and Bsp relative to each

other, but also on the alignment between the magnetic and velocity field modes

at wavevector p, that is, on the cross-helicity. For a given steady solution to be

unstable the perturbations have to be exponentially growing, and so at least for

one of the eigenvalues,
√
λi (for i = 1, 2) must have a positive real part. The next

step is to assess under which conditions this is possible.

The eigenvalues λi (i = 1, 2) are given by

λ1,2 =
α + δ

2
±
√

(α + δ)2

4
− αδ + βγ . (3.20)

For convenience define

x ≡ α + δ

2
and Q ≡ αδ − βγ , (3.21)

such that

x = − |gkpq|
2

2
|Usp |2[skksqq + (skk − spp)(sqq − spp)]

− |gkpq|
2

2
|Bsp |2[skk(skk − spp) + sqq(sqq − spp)] , (3.22)

and

Q = |gkpq|4skksqq(skk − spp)(sqq − spp)
(
(|Usp |2 + |Bsp |2)2 − 4Hc(p)

2)
)
, (3.23)

hence the cross-helicity Hc(p) enters the dynamics through the parameter Q.

The derivation of (3.23) can be found in appendix A. The term |Usp|4 + |Bsp |4 +

2|Usp |2|Bsp|2 − 4Hc(p)
2 is always positive, regardless of the value of Hc since

|Hc(p)| 6 |Usp ||Bsp|, thus the sign of Q is determined by the helicities of the

interacting modes and the wavenumber ordering.
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The eigenvalues λi can now be written more concisely as

λ1,2 = x±
√
x2 −Q , (3.24)

therefore the possibility of finding exponential solutions of the system (3.15)

depends on the values of x and Q. Apart from the trivial case, where x = 0

and Q = 0, there is only one case for which no linear instability occurs: this is

if x < 0 and |x| > |
√
x2 −Q|, since then

√
λ1 and

√
λ2 are imaginary numbers

allowing only oscillatory solutions of the matrix ODE (3.15). All other cases lead

to exponentially growing as well as exponentially decaying solutions.

As can be seen from the structure of the terms x and Q, the relative magnitudes

and the ordering of the wavenumbers in a given triad will influence the linear

stability of the equilibria of the system (3.5)-(3.6). In view of the continuous

interest in nonlocality of interactions in MHD turbulence [3, 25, 37, 53, 137],

specific results for local and nonlocal interactions will be discussed where

appropriate. Following Ref. [181], for wavenumbers ordered k < p < q, the

nonlocal limit is defined as k << p ' q, while local interactions are characterised

by k ' p ' q.

3.4 Instability and helical interactions

Since s = ±1, interactions between helical modes which all have helicities of

opposite signs are not possible, and at least two modes will always have helicities

of the same sign. Therefore, four classes of possible helicity combinations appear

sk = sp 6= sq , sk = sq 6= sp , sk 6= sq = sp and sk = sq = sp ,

each of which occurs twice as s can take the values ±1. These four possible

(classes of) combinations are now studied on a case-by-case approach in order to

determine when a certain combination of helicities leads to exponentially growing

solutions of the system (3.15).
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3.4.1 The case sk = sq 6= sp

Since the expressions in square brackets of (3.22) become

kq + (k + p)(q + p) > 0 and k(k + p) + q(q + p) > 0 , (3.25)

one obtains x = (α + δ)/2 < 0. For an unstable equilibrium |x| < |
√
x2 −Q| is

required, however, Q > 0 since

Q ∼ sksqkq(skk − spp)(sqq − spp) , (3.26)

which is positive for sk = sq 6= sp. Furthermore Q < x2 (see appendix B.1)

and thus |x| > |
√
x2 −Q|, which results in negative eigenvalues of the matrix in

eq. (3.15). Therefore there are no exponentially growing solutions of eq. (3.15) for

the case sk = sq 6= sp, and this is independent of the ordering of the wavenumbers

k, p and q. This implies that exponentially growing solutions of eq. (3.15) are

impossible if the perturbations usk , usq , bsk and bsq have helicities opposite to the

helicities of the modes Usp and Bsp constituting the equilibrium point.

For the remaining helicity combinations, which do result in instabilities, the

ordering of wavenumbers matters. The arguments used to decide whether or not

an exponentially growing solution becomes possible are similar to the procedure

used for the case sk = sq 6= sp described above.

3.4.2 The case sk 6= sp = sq

In this case

Q ∼ kq(k + p)(q − p) , (3.27)

and

x = −|gkpq|
2

2
|Usp |2[−kq−(k+p)(q−p)]− |gkpq|

2

2
|Bsp|2[k(k+p)+q(q−p)] . (3.28)

The linear stability of a steady solution depends on the signs of these terms which

in turn depend on wavenumber ordering, cross-helicity and the ratio |Usp|/|Bsp|.

� For k < p < q instabilities occur if |Usp | ' |Bsp |, since then x > 0. For

|Bsp| > |Usp | instabilities are still possible, provided Hc(p) is small and

|Bsp| not much larger than |Usp |. Thus in regions of large cross-helicity
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instabilities only occur for weak magnetic fields. The method by which

these results are obtained is explained in appendix B.2.

For nonlocal interactions (k << p ' q) the term Q vanishes, hence the sign

of x determines whether instabilities occur. The term x is now of the form

x ' |gkpq|
2

2
kq(|Usp|2 − |Bsp |2) , (3.29)

hence nonlocal interactions lead to instabilities if |Bsp | < |Usp |.

� For k < q < p, Q will become negative, leading to unstable solutions

regardless of the ratio |Usp |/|Bsp | and the value of Hc(p).

� For p < k < q, again instabilities are possible if |Usp | ' |Bsp|, since then

x > 0. For |Bsp | > |Usp | instabilities are still possible, provided Hc(p) is

small and |Bsp |/|Usp| not >> 1 (see appendix B.2). Nonlocal interactions

(p << k ' q) lead to instabilities if |Usp | > |Bsp|, because then

x ' |gkpq|2k2(|Usp |2 − |Bsp|2) > 0 . (3.30)

In summary, a given steady solution in this case is less likely to be unstable if the

nonzero mode is at medium or low wavenumbers in regions of high cross-helicity.

3.4.3 The case sk = sp = sq

In this case

Q ∼ kq(k − p)(q − p) , (3.31)

and

x = −|gkpq|
2

2
|Usp |2[kq+(k−p)(q−p)]− |gkpq|

2

2
|Bsp |2[k(k−p)+ q(q−p)] . (3.32)

� For k < p < q we obtain Q < 0 and thus x +
√
x2 −Q > 0, leading

to exponentially growing solutions independent of Hc(p) and the ratio

|Usp |/|Bsp |. In the present case both velocity and magnetic field modes

have positive and negative contributions to the sign of x. For both local

(k ' p ' q) and nonlocal (k << p ' q) interactions Q = 0 and the sign of

x determines whether unstable solutions occur. For the nonlocal case only
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the magnetic field term is positive, and x has the form

x ' |gkpq|
2

2
kq(|Bsp |2 − |Usp |2) . (3.33)

leading to unstable solutions if |Bsp| > |Usp |, while for local interactions

no instability occurs as the only term in x that does not vanish is

−|gkpq|2|Usp |2kq < 0.

� For k < q < p, the possibility of exponentially growing solutions depends

on the ratio |Usp |/|Bsp| and on the relative magnitudes of the wavenumbers

k,p and q, as now Q > 0. Since the magnetic field term in x is now positive,

instabilities occur for |Usp |/|Bsp| < 1. If |Usp|/|Bsp | > 1 it depends also

on the cross-helicity whether instabilities occur. For maximal Hc(p) one

obtains x2 −Q > 0, hence the perturbations cannot grow exponentially. If

Hc(p) = 0 and |Usp |/|Bsp | is not too small, instabilities will occur, depending

also on the shape of the triad (see appendix B.2 for further details). In

general, the smaller |Usp |/|Bsp | the more unstable is the solution.

� For p < k < q we obtain x < 0 and Q > 0, furthermore x2 − Q > 0

independent of |Usp|/|Bsp | and Hc(p) (see appendix B.1), thus no linear

instabilities occur. Nonlocal interactions (p << k ' q) do not lead to

instabilities, since

x ' −|gkpq|2[k2 − kp](|Usp |2 + |Bsp |2) < 0 . (3.34)

3.4.4 The case sk = sp 6= sq

The terms determining the stability in this case are

Q ∼ kq(k − p)(q + p) , (3.35)

and

x = −|gkpq|
2

2
|Usp |2[−kq−(k−p)(q+p)]− |gkpq|

2

2
|Bsp|2[k(k−p)+q(q+p)] . (3.36)

� For k < p < q instabilities occur independent of the ratio |Usp |/|Bsp |, and

since both magnetic and velocity field terms have positive and negative

contributions to the sign of x, the situation is similar to the previous case.

However, in the present case Q ' 0 only for local (k ' p ' q) interactions.
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Helicities Hc constraint stability
sk 6= sq = sp n/a |Usp |/|Bsp | ' 1 unstable

max |Bsp| > |Usp | not unstable
0 |Bsp |/|Usp | not >> 1 unstable

sk = sp 6= sq n/a n/a unstable
sk = sq = sp n/a n/a unstable

Table 3.1 Summary of possible instabilities for the middle wavenumber modes
k < p < q.

It is now the velocity field term |gkpq|2|Usp |2kq > 0 which ensures that

exponentially growing solutions of eq. (3.15) exist for local interactions

provided |Usp| > 2|Bsp |.

� For k < q < p the result is the same, since reversing the relative ordering

of p and q does not change the sign of Q. That is, exponentially growing

solutions occur.

� For p < k < q the term Q is positive and the term proportional to |Usp |2 is

positive while the term proportional to |Bsp|2 is negative. Thus instabilities

occur if |Usp |/|Bsp | ' 1. For |Usp |/|Bsp | < 1 the occurrence of instabilities

depends on the value of Hc(p). If Hc(p) is maximal and the magnetic and

velocity field are fully aligned, exponential growth of the perturbations does

not occur. For zero cross-helicity and |Bsp| being not much larger than |Usp |,
the equilibria are linearly unstable (see appendix B.2).

This type of helicity combination is another possibility for nonlocal

interactions of the type p << k ' q leading to exponentially growing

solutions if |Usp| > |Bsp |, since then

x ' |gkpq|2k2(|Usp |2 − |Bsp|2) > 0 . (3.37)

The results of the dependence of the occurrence of instabilities on combinations

of helicities, wavenumber ordering, relative magnitudes of the u and b modes and

cross-helicities at wavenumber p are summarised in tables 3.1-3.3.
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Helicities Hc constraint stability
sk 6= sq = sp n/a n/a unstable
sk = sp 6= sq n/a n/a unstable
sk = sq = sp n/a |Bsp | > |Usp | unstable

max |Usp | > |Bsp | not unstable
0 |Usp |/|Bsp| not >> 1 unstable

Table 3.2 Summary of possible instabilities for the largest wavenumber modes
k < q < p.

Helicities Hc constraint stability
sk 6= sq = sp n/a |Usp|/|Bsp | ' 1 unstable

max |Bsp | > |Usp | not unstable
0 |Bsp |/|Usp| not >> 1 unstable

sk = sp 6= sq n/a |Usp|/|Bsp | ' 1 unstable
max |Bsp | > |Usp | not unstable

0 |Bsp |/|Usp| not >> 1 unstable
sk = sq = sp n/a n/a not unstable

Table 3.3 Summary of possible instabilities for the smallest wavenumber modes
p < k < q.

3.5 Energy transfers and the instability assumption

In order to use the results of the previous section to derive results for the transfers

of the ideal invariants total energy E and magnetic helicity Hmag, the instability

assumption [181] is invoked. This assumption asserts that energy is transferred

away from the mode at an unstable equilibrium into the other two modes it is

coupled to by a triad interaction given through the system (3.5)-(3.6).

Therefore the results of the stability analysis determine whether a given helicity

combination mainly contributes to forward or reverse transfer of energy. That is,

if a steady solution at wavenumber p is unstable and energy is transferred away

from Bsp and Usp into the modes they interact with (note that Bsp and Usp do

not interact with each other directly), then the wavenumber ordering k < q < p

results in reverse transfer of energy, while p < k < q results in forward transfer

and k < p < q in a split transfer with contributions to forward and reverse

directions of energy transfer.

Several immediate results can be deduced from the summary of the stability

analysis for the different helicity combinations presented in tables 3.1-3.3. First,
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unlike in non-conducting fluids modes corresponding to the largest wavenumber

in a given triad can be unstable, leading to more possibilities for reverse

spectral energy transfer in MHD compared to hydrodynamics, thus MHD flows

should be more likely to self-organise. Second, all three helicities influence the

direction of energy transfers, and reverse transfers are also possible for cases

of unlike helicities. Third, forward transfers appear to be more quenched in

regions of high cross-helicity than reverse transfers. Fourth, very nonlocal triads

contribute mainly to reverse transfers in magnetically dominated systems through

interactions of modes with like helicity. They only contribute to forward transfers

through interactions of modes with unlike helicity and mostly if the kinetic energy

is larger than the magnetic energy. Therefore, reverse spectral transfer becomes

much more likely in MHD turbulence than in turbulence of non-conducting fluids,

which reflects the predictions from absolute equilibrium spectra [73, 189] and the

well-established numerical results on inverse cascades, and more generally reverse

transfer, in MHD turbulence [4, 10, 12, 25, 27, 137, 149, 150].

The transfer directions deduced so far may or may not contribute to forward

and inverse cascades of energy and magnetic helicity, as no information on

the constancy, or otherwise, of the fluxes of these quantities through a given

wavenumber is available at this point. The aim of the next section is to determine

the contribution of the individual transfers to energy and magnetic helicity

cascades.

3.6 Transfer and cascades of total energy and

magnetic helicity

In order to determine the contribution of a given interaction of helical modes

to energy and magnetic helicity cascades, the fluxes of these quantities need

to be calculated and studied in the respective inertial ranges where they are

wavenumber-independent. However, several technical details need to be discussed

before proceeding to this calculation.

In the discrete Fourier representation the evolution equations of the kinetic and

magnetic energy spectra Ekin(k) and Emag(k) are obtained by multiplying the

relevant equations in the system (3.5) by u∗sk and b∗sk , respectively, then summing

over all triads and helicity combinations and finally carrying out shell- and
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ensemble averages. For the kinetic energy spectrum this leads to

∂tEkin(k) =
1

2

∆∑
p,q

8∑
i=1

(t
(i)
HD(k, p, q) + t

(i)
LF (k, p, q)) , (3.38)

where
∑∆

p,q denotes a sum over all wavenumbers p and q whose wavevectors p

and q form a triad with k such that k+ p+ q = 0 and the superscript (i) labels

the eight possible helicity combinations. The transfer terms in this equation are

given by

t
(i)
HD(k, p, q) = (spp− sqq)

∑
S(k,p,q)

gkpq〈uskUspusq〉+ c.c. , (3.39)

and

t
(i)
LF (k, p, q) = −(spp− sqq)

∑
S(k,p,q)

gkpq〈uskBspbsq〉+ c.c. , (3.40)

where S(k, p, q) indicates a summation over all wavevectors in shells of radius

k, p and q and c.c. denotes the complex conjugate. Homogeneity allows the

summation over the shells without explicitly restricting the sum to wavevectors

satisfying k + p + q = 0, since triple correlations with k + p + q 6= 0 vanish for

homogeneous MHD as shown in chapter 1.3.2. For the magnetic energy spectrum

one obtains

∂tEmag(k) =
1

2

∆∑
p,q

8∑
i=1

t(i)mag(k, p, q) , (3.41)

where

t(i)mag(k, p, q) = −skk
∑

S(k,p,q)

gkpq〈bskBspusq − bskUspbsq〉+ c.c. . (3.42)

The evolution equation for the total energy spectrum E(k) = Ekin(k) + Emag(k)

is given by the sum of the respective evolution equations for Ekin(k) and Emag(k)

∂tE(k) =
1

2

∆∑
p,q

8∑
i=1

t(i)(k, p, q) , (3.43)

and the total energy transfer term t(i)(k, p, q) consists of the sum of the three

transfer terms t
(i)
HD(k, p, q), t

(i)
LF (k, p, q) and t

(i)
mag(k, p, q).

These terms are still written in the discrete Fourier representation of the magnetic

and velocity fields. However, the calculation of the energy and magnetic helicity
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fluxes requires a continuous Fourier representation. The continuous transfer

terms are given in terms of Fourier integrals and can formally be obtained by

taking the period L to infinity, assuming that the respective integrals are well-

defined. The sums then become integrals and the continuous counterpart of

e.g. the hydrodynamic transfer term t
(i)
HD becomes

T
(i)
HD(k, p, q)dk dp dq = lim

L→∞
t
(i)
HD(k, p, q)

= (spp− sqq)
∫
|k|=k

dk

∫
|p|=p

dp

∫
|q|=q

dq gkpq〈uskUspusq〉+ c.c. .

(3.44)

The transfer terms T
(i)
LF and T

(i)
mag are obtained analogously.

3.6.1 Total energy transfer

In the absence of dissipation the total energy is conserved and the transfer term

T (k, p, q) in the spectral evolution equation of the total energy redistributes

energy between the Fourier modes and vanishes if integrated over all space.

Therefore the flux of total energy through wavenumber k due to a given

interaction (i),

Π(i)(k) = −
∫ k

0

dk′
∫ ∞
k

∫ ∞
k

T (i)(k′, p, q)dpdq , (3.45)

can be written as the sum of two contributions: the flux of total energy into all

modes at wavenumber k′ due to triads with p, q < k < k′ minus the flux of total

energy into all modes at k′ due to triads with k′ < k < p, q

Π(i)(k) =
1

2

∫ ∞
k

dk′
∫ k

0

∫ k

0

T (i)(k′, p, q)dp dq−1

2

∫ k

0

dk′
∫ ∞
k

∫ ∞
k

T (i)(k′, p, q)dp dq .

(3.46)

The next step consists of a procedure introduced by Waleffe [181] which renders

the two integrals in eq. (3.46) independent of k. This is achieved using a scaling

argument, where the two integrals are treated separately. For conciseness the

procedure is outlined briefly for the first integral on the RHS of (3.46), the full

derivation can be found in appendix C. The aim is to express the transfer function
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in the first integral on the RHS of (3.46) in terms of new variables

v =
q

p
, w =

k′

p
, u =

k

p
, (3.47)

in order to remove k from the integration limits. Since T
(i)
HD(k′, p, q) may scale

differently compared to T
(i)
LF (k′, p, q) and T

(i)
mag(k′, p, q), the term T (i)(k′, p, q) in

(3.46) must be replaced by the individual transfer terms. The transfer terms are

now expressed individually in terms of the new variables u, v and w

T
(i)
HD(k′, p, q) = p−βT

(i)
HD(w, 1, v) =

(
k

u

)−β
T

(i)
HD(w, 1, v) , (3.48)

T
(i)
LF (k′, p, q) = p−β

′
T

(i)
LF (w, 1, v) =

(
k

u

)−β′
T

(i)
LF (w, 1, v) , (3.49)

and

T (i)
mag(k

′, p, q) = p−β
′
T (i)
mag(w, 1, v) =

(
k

u

)−β′
T (i)
mag(w, 1, v) , (3.50)

where β is related to the exponent of the kinetic energy spectrum provided it has

a power-law dependence on k, while the exponent β′ is related to the exponents of

the kinetic and magnetic energy spectra as explained in further detail in appendix

C. In order to write down (3.48)-(3.50) it is assumed that both the magnetic

energy spectrum and the kinetic energy spectrum display power law scaling in

the inertial range. This assumption is made solely to allow estimates of the

direction of the flux. The first term on the RHS of (3.46) then becomes

1

2

∫ ∞
k

dk′
∫ k

0

∫ k

0

T (i)(k′, p, q) dp dq

= k3−β
∫ 1

0

dv

∫ 1+v

1

dw

∫ w

1

du

(
1

u

)4−β

T
(i)
HD(w, 1, v)

+ k3−β′
∫ 1

0

dv

∫ 1+v

1

dw

∫ w

1

du

(
1

u

)4−β′ [
T

(i)
LF (w, 1, v) + T (i)

mag(w, 1, v)
]
.

(3.51)

65



The second term on the RHS of (3.46) can be treated similarly [181], leading to

1

2

∫ k

0

dk′
∫ ∞
k

∫ ∞
k

T (i)(k′, p, q) dp dq

= k3−β
∫ 1

0

dv

∫ 1+v

1

dw

∫ 1

v

du

(
1

u

)4−β

T
(i)
HD(v, 1, w)

+ k3−β′
∫ 1

0

dv

∫ 1+v

1

dw

∫ 1

v

du

(
1

u

)4−β′ [
T

(i)
LF (v, 1, w) + T (i)

mag(v, 1, w)
]
.

(3.52)

The detailed derivations leading to eqs. (3.51) and (3.52) are contained in

appendix C.

Combining the two results and integrating over u yields the following expression

for the total energy transfer flux

Π(i)(k) =k3−β
∫ 1

0

dv

∫ 1+v

1

dw

(
T

(i)
HD(w, 1, v)

[
wβ−3 − 1

β − 3

]
+ T

(i)
HD(v, 1, w)

[
vβ−3 − 1

β − 3

])
+ k3−β′

∫ 1

0

dv

∫ 1+v

1

dw
(
T

(i)
LF (w, 1, v) + T (i)

mag(w, 1, v)
)[wβ′−3 − 1

β′ − 3

]
+ k3−β′

∫ 1

0

dv

∫ 1+v

1

dw
(
T

(i)
LF (v, 1, w) + T (i)

mag(v, 1, w)
)[vβ′−3 − 1

β′ − 3

]
,

(3.53)

where 0 6 v 6 1 6 w 6 1 + v due to the triad geometry. This now enables the

study of the contribution to the total energy transfer from a given interaction

(i), where the scaling of the magnetic and kinetic energy spectra will influence

the transfer through the exponents β and β′. In the inertial range of total energy

the energy transfer flux through a given wavenumber k does not depend on that

wavenumber, which leads to the characteristic values of the scaling exponents

β′ = β = 3, making the split of the total energy transfer term into its individual

components redundant in this wavenumber range. In sec. 3.6.3 the contributions

of the different interactions to transfers in the inertial range of total energy are

calculated. This requires β = 3, necessarily taking into account only the region in

wavenumber space where this scaling is established. Since the values of β and β′

may influence the direction of energy transfer, a similar approach may be useful

to calculate energy and helicity transfer at the very low wavenumbers. However,

this awaits consensus on the low-wavenumber scaling of the magnetic and kinetic

energy spectra. Furthermore, the integrals must be cut off at some wavenumber

such that a single scaling exponent for the wavenumber range of interest can be
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studied. As the extent of the inertial range will grow with increasing Reynolds

number, contributions from the production and dissipation ranges can safely be

neglected, as they will become very small compared to the extent of the inertial

range. However, in the low wavenumber region, this argument is not applicable

and further work is necessary in order to establish if very nonlocal interactions

contribute significantly to the transfers of magnetic energy and helicity in the low

wavenumber range or not.

3.6.2 Magnetic helicity transfer

Using the decomposition into helical modes, the transfer term in the evolution

equation of the magnetic helicity can be expressed through the transfer term in

the evolution equation of the magnetic energy, that is

T
(i)
H (k, p, q) =

sk
k
T (i)
mag(k, p, q) , (3.54)

and only the transfer term which originates from the induction equation is present.

Since Hmag is a purely magnetic quantity, it depends only implicitly on the

evolution of the velocity field.

Since the magnetic helicity is an ideal invariant, the transfer term in the spectral

evolution equation of the magnetic helicity vanishes if integrated over all space,

therefore similar to the flux of total energy, the flux of magnetic helicity through

wavenumber k due to a given interaction (i),

Π
(i)
H (k) = −

∫ k

0

sk′

k′
dk′
∫ ∞
k

∫ ∞
k

T (i)
mag(k

′, p, q)dpdq , (3.55)

can be written as the sum of two contributions

Π
(i)
H (k) =

1

2

∫ ∞
k

sk′

k′
dk′
∫ k

0

∫ k

0

T (i)
mag(k

′, p, q)dp dq

− 1

2

∫ k

0

sk′

k′
dk′
∫ ∞
k

∫ ∞
k

T (i)
mag(k

′, p, q)dp dq . (3.56)

Following the approach explained in sec. 3.6.1 the integral becomes independent

of k and one obtains the following expression for the flux of magnetic helicity
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through k

ΠH(k) =k2−β′
∫ 1

0

dv

∫ 1+v

1

dw

w

×
(
swT

(i)
mag(w, 1, v)

[
wβ
′−2 − 1

β′ − 2

]
+ svT

(i)
mag(v, 1, w)

[
vβ
′−2 − 1

β′ − 2

])
.

(3.57)

3.6.3 Cascades and wavenumber-dependent transfers of

total energy and magnetic helicity

From the expressions (3.53) and (3.57) for the fluxes of total energy and magnetic

helicity, respectively, it is now possible to determine the sign of the fluxes and

hence the direction of energy and magnetic helicity transfers using the results from

the stability analysis. If the total energy flux is positive, energy is transferred

from smaller to larger wavenumbers and if it is negative, energy is transferred from

larger to smaller wavenumbers. As the magnetic helicity is not positive definite,

the situation is slightly different. For positive magnetic helicity a positive flux

indicates forward transfer just as for the total energy. For negative magnetic

helicity a negative flux indicates forward transfer while a positive flux indicates

inverse transfer. However, as this situation is symmetric, positive helicity is

assumed throughout the analysis.

In sec. 3.5 unstable solutions of (3.5) and (3.6) were interpreted as leading to

energy transfer out of the unstable mode into the two modes it interacts with for

a given helical mode interaction (i). If Usp and Bsp are the unstable modes, this

interpretation leads to

∂t|Bsp |2 = T (i)
mag(p, k, q) < 0 , (3.58)

and

∂t|Usp |2 = T
(i)
HD(p, k, q) + T

(i)
LF (p, k, q) < 0 . (3.59)

The instability assumption therefore attributes signs to the transfer terms, which

will determine their respective contributions to the overall energy (and magnetic

helicity) transfer. Note that ∂t|Usp|2 and ∂t|Bsp|2 cannot have different signs, as

both signs are determined from the existence of exponentially growing solutions

of the system (3.15).
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The helicity combinations are now treated separately assuming sp = 1 without

loss of generality. Having determined the signs of the transfer terms within this

framework, these results can now be used to calculate the contributions of the

individual transfer terms to the fluxes of total energy and magnetic helicity though

a given wavenumber.

Total energy cascades

For the (inertial range) energy cascade the flux is wavenumber-independent

leading to β = 3 in (3.53). Hence the integrand in (3.53), which determines

the sign of the total energy flux, becomes

IE = T (i)(w, 1, v) lnw + T (i)(v, 1, w) ln v , (3.60)

where the triad geometry imposes the wavenumber ordering v 6 1 6 w 6 1 + v.

That is, the term T (i)(w, 1, v) describes energy transfer in and out of the largest

wavenumber modes while T (i)(v, 1, w) describes energy transfer in and out of the

smallest wavenumber modes.

Using the signs of the transfer terms determined for the three helicity combina-

tions depending on wavenumber ordering, helicity combinations contributing to

forward or inverse cascades of total energy can now be identified.

� sv = s1 = sw

For this case the results of the stability analysis summarised in tables 3.1-3.3

imply T (i)(1, v, w) < 0, as modes corresponding to the middle wavenumber

are unstable, while T (i)(v, 1, w) > 0, as modes corresponding to the smallest

wavenumber are stable and hence these modes can only receive energy from

the modes at higher wavenumbers. The sign of T (i)(w, 1, v) depends on the

values of cross-helicity and the ratio of magnetic to kinetic energy. For a

magnetically dominated system T (i)(w, 1, v) < 0 and this case results in an

inverse cascade of total energy, as

IE = T (i)(w, 1, v) lnw + T (i)(v, 1, w) ln v < 0 . (3.61)

If the kinetic energy is much larger than the magnetic energy, cancellations

between the two terms in IE occur. The term T (i)(w, 1, v) lnw is now

positive, since the modes at the largest wavenumber can only receive energy,
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thus contributing to a forward cascade. For intermediate cases the value

of the cross-helicity becomes decisive as high cross-helicity quenches the

inverse transfer in this case. In summary, inverse cascade contributions from

this combination of helicities are expected if the magnetic energy dominates,

while for larger kinetic energy high values of cross-helicity quench the inverse

transfer contribution to some extent.

� sv 6= s1 = sw

From tables 3.1-3.3 the instability assumption imposes T (i)(w, 1, v) < 0

and T (i)(v, 1, w) > 0 as modes corresponding to the largest wavenumbers

are unstable, while modes corresponding to the smallest wavenumber are

stable. This implies

IE = T (i)(w, 1, v) lnw + T (i)(v, 1, w) ln v < 0 , (3.62)

hence this combination of helicities leads to an inverse energy cascade as

IE < 0, and this case behaves differently to its hydrodynamic analogue,

where it led to an inverse cascade of kinetic energy [181] for nonlocal

interactions and a direct cascade for local interactions. Furthermore, this

inverse cascade should always be present, as it is not subject to constraints

from Hc(p) and |Usp |/|Bsp|.

� sv = s1 6= sw

Analogously, one obtains T (i)(1, v, w) < 0 and T (i)(w, 1, v) > 0, since the

modes corresponding to the middle wavenumber are unstable while modes

corresponding to the largest wavenumber are stable. As the stability of

the remaining transfer term T (i)(v, 1, w) depends on several constraints, no

clear assessment is possible. If the lowest wavenumber modes are assumed

to be unstable, that is T (i)(v, 1, w) < 0, this case contributes towards a

direct cascade. However, if they are stable, contributions to inverse and

direct cascades are possible. The instability leading to forward transfer in

this case is damped by high values of Hc(p).

� s1 6= sw = sv

In this case the stability analysis leads to T (i)(1, v, w) > 0 and T (i)(w, 1, v) <

0, since the modes corresponding to the middle wavenumber are stable

while modes corresponding to the largest wavenumber are unstable. Again

the sign of the remaining transfer term T (i)(v, 1, w) depends on several

constraints. If the lowest wavenumber modes are assumed to be receiving
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energy, that is T (i)(v, 1, w) > 0, a contribution towards an inverse cascade is

obtained. However, they are unstable and thus losing energy, contributions

to inverse and direct cascades are possible. Now the instability leading to

inverse transfer is damped by high values of Hc(p).

Magnetic helicity transfer in the inertial range of total energy

For β′ = 3, the integrand IH in (3.57) becomes

IH = T (i)
mag(w, 1, v)sw(w − 1) + T (i)

mag(v, 1, w)sv(v − 1) . (3.63)

Using the signs of the transfer terms determined for the three helicity combi-

nations, helicity combinations contributing to a forward or an inverse cascade

of magnetic helicity can now be identified. As can be seen in (3.63), there is an

explicit dependence of the magnetic helicity flux on the helicities of the interacting

modes. In the following s1 = 1 is assumed, that is, positive magnetic helicity at

the intermediate wavenumber.

� sv = s1 = sw

The integrand IH becomes

IH = T (i)
mag(w, 1, v)(w − 1) + T (i)

mag(v, 1, w)(v − 1) . (3.64)

As the signs of the magnetic energy transfer term deduced from the stability

analysis are the same as for the total energy and lnw and w − 1 are both

positive while ln v and v − 1 are both negative, the result for the helicity

transfer reflects the results for the total energy cascade. Thus, for this

helicity combination, total energy and magnetic helicity will be transferred

in the same direction, which can be both forward and inverse in this case.

� sv 6= s1 = sw

The integrand IH becomes

IH = T (i)
mag(w, 1, v)(w − 1)− T (i)

mag(v, 1, w)(v − 1) , (3.65)

where the contributions from the smallest wavenumber modes now enter

with the opposite sign. Compared to the total energy flux, which was purely

inverse in this case, now a forward helicity flux and an inverse energy flux

may occur simultaneously.
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� sv = s1 6= sw

The integrand IH becomes

IH = −T (i)
mag(w, 1, v)(w − 1) + T (i)

mag(v, 1, w)(v − 1) , (3.66)

where the contributions from the largest wavenumber modes now enter

with the opposite sign. Compared to the total energy cascade, again it is

possible that magnetic helicity and total energy are transferred in opposite

directions.

� s1 6= sw = sv

The integrand IH becomes

IH = −T (i)
mag(w, 1, v)(w − 1)− T (i)

mag(v, 1, w)(v − 1) , (3.67)

where the contributions from both transfer terms now enter with the

opposite sign. That is, magnetic helicity and total energy are transferred

in opposite directions.

In this subsection we determined the direction of the magnetic helicity transfer

in the inertial range of total energy for different combinations of helicities and

compared the results to those for the total energy cascade. It is found that a

cascade of total energy is possible in one direction while the transfer of magnetic

helicity may proceed in the opposite direction. A similar result had been obtained

in hydrodynamics [181].

Magnetic helicity cascades

In the inertial range of magnetic helicity the flux of magnetic helicity is

wavenumber-independent resulting in β′ = 2 in (3.57). Therefore the integrand

IH in (3.57) becomes

IH = T (i)
mag(w, 1, v)sw lnw + T (i)

mag(v, 1, w)sv ln v . (3.68)

For the different helicity combinations this leads to

� sv = s1 = sw

The integrand in this case is of the same form as the integrand IE for the
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total energy cascade (that is, if β = 3 in IE)

IH = T (i)
mag(w, 1, v) lnw + T (i)

mag(v, 1, w) ln v , (3.69)

hence the results for the cascades of magnetic helicity are the same as for

the cascades of total energy.

� sv 6= s1 = sw

The integrand in this case has a different form compared to the integrand

IE for the total energy

IH = T (i)
mag(w, 1, v) lnw − T (i)

mag(v, 1, w) ln v , (3.70)

hence the results for the cascades of magnetic helicity are different from

the total energy cascades. In particular, this case may lead to a nonhelical

reverse energy transfer while the helicity cascade may be forwards, due

to the contribution from T
(i)
mag(v, 1, w) now having the opposite sign in IH

compared to IE.

� sv = s1 6= sw

Again, the integrand in this case has a different form compared to the

integrand IE for the total energy

IH = −T (i)
mag(w, 1, v) lnw + T (i)

mag(v, 1, w) ln v , (3.71)

hence the results for the cascades of magnetic helicity differ from the

total energy cascades. In particular, this case may lead to a forward

energy transfer while the helicity cascade may be backwards, due to

the contribution from T
(i)
mag(w, 1, v) now having the opposite sign in IH

compared to IE.

� s1 6= sw = sv

Now IH and IE have opposite signs

IH = −T (i)
mag(w, 1, v) lnw − T (i)

mag(v, 1, w) ln v = −IE , (3.72)

hence this case leads to helicity transfer and energy transfer in opposite

directions.
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Magnetic energy transfer in the inertial range of magnetic helicity

For β′ = 2, the contributions to the integrand IE due to magnetic energy transfer

are

IEmag = −T (i)
mag(w, 1, v)

(
1

w
− 1

)
− T (i)

mag(v, 1, w)

(
1

v
− 1

)
. (3.73)

The signs of Tmag and T are the same by eqs. (3.58)-(3.59), and lnw and w − 1

are both positive while ln v and v−1 are both negative. Hence, the result for the

contributions of these terms to the total energy transfer in the inertial range of

magnetic helicity is the same as in the inertial range of total energy for all helicity

combinations. That is, magnetic energy transfer and conversion in the inertial

ranges of total energy and magnetic helicity proceed in the same direction.

Discussion

This assessment of contributions to forward and inverse transfers and cascades

is based on an analysis of the nonlinear terms in the MHD equations only,

thus neglecting the symmetry-breaking effect of dissipation creating an energy

sink at the small scales. Accounting for this effect, it is plausible that the

contributions from transfer terms leading to forward transfer are weighted higher

than contributions leading to inverse transfer. This is particularly relevant in

interactions where forwards and reverse contributions are present and the overall

transfer depends on cancellations between the two terms. It would perhaps be

safest to attribute these cases to forwards rather than inverse energy cascades.

Although it is not possible to exactly determine which helical interactions

are weighted higher than others, some information can be obtained from the

magnitude of the geometric factor gkpq defined in eq. (3.7). The magnitude of

gkpq depends on the helicity combinations since it involves the helicity-dependent

factor I = skk + spp + sqq. Therefore it parametrises the strength of a given

helical interaction, and the case of all helicities being of the same sign gives the

largest value of |I|, since in this case |I| = |k + p+ q|.

For the reverse transfers, that is, for k < p, q, the factor |I| takes the smallest

value for the case sk = sp 6= sq, since |I| = |k + (p − q)|. Note that in this case

I becomes small for small k even in the nonlocal limit k << p ' q, suggesting

that the nonhelical reverse transfer found in this case is less efficient in increasing
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spectral power at the very low wavenumbers. The remaining class of helical

interactions sk 6= sp = sq leads to |I| = |k − (p + q)|. In this case |I| does not

necessarily become small for small k which is due to the contribution of nonlocal

interactions, where p and q are large compared to k. According to the results

from the stability analysis, in the nonlocal limit instabilities occur for the case

sk = sp = sq only if |Bsp | > |Usp | and for the case sk 6= sp = sq if |Usp | > |Bsp |.

It is therefore possible to deduce within the framework of the instability

assumption that most of the increase in energy at the very largest scales (in a

magnetically dominated system) is mainly due to a breaking of mirror-symmetry,

which had been established before by [73] using a different approach. That is, it

is due to the presence of kinetic and magnetic helicity, since interactions of the

type sk = sp = sq, which account for most of the inverse transfer, can only occur

in significant numbers for fields consisting of many modes with the same helicity.

Recent numerical results in hydrodynamics showed that there is an overall reverse

flux of energy only when the system mainly contains helical modes of the same

sign. As soon as a small amount of oppositely polarised modes is introduced, the

usual direct cascade is recovered [158].

In summary, in this section the direction of total energy and magnetic helicity

transfers in their respective inertial ranges was determined. Not surprisingly,

fully helical magnetic fields lead to inverse cascades of magnetic helicity and

inverse transfer of magnetic energy, but the analysis also showed that an inverse

energy cascade is possible for nonhelical magnetic fields, which is a new theoretical

result. However, due to the coupling of the momentum and induction equations,

within this framework it is not possible to determine the nature of the energy

transfers resulting from an instability of a given steady solution, since the same

eigenvalue controls the growth of the exponential solution of (3.15) for both the

magnetic and the velocity field. Nevertheless, for some special cases the evolution

equations (3.5)-(3.6) decouple and more detailed information becomes available.

These cases are treated in the following section.

3.7 Special solutions and the (kinematic) dynamo

As mentioned before, special cases exist where the analysis becomes much simpler

and which are relevant to specific problems in MHD such as the kinematic

dynamo. In sec. 3.3.2 the stability of general equilibria of the dynamical system
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(3.5)-(3.6) describing the evolution of a triad of interacting helical modes was

analysed. Using the notation (3.12), the general equilibria were of the form

(0, Usp , 0; 0, Bsp , 0). In this section cases are considered where either Usp = 0 or

Bsp = 0, that is this section is concerned with the stability of steady solutions

of (3.5)-(3.6) which are of the form (0, Usp , 0; 0, 0, 0) and (0, 0, 0; 0, Bsp , 0). The

former case may be of particular interest due to its relation to dynamo action.

3.7.1 The kinematic dynamo

For small magnetic fields the Lorentz force is small compared to inertial forces,

and can be neglected in the momentum equation. This decouples the momentum

equation from the induction equation and defines the kinematic dynamo problem.

In the present setting, it corresponds to |Usp|/|Bsp | >> 1, and terms proportional

to |Bsp | can be neglected as they are very small compared to terms proportional

to |Usp |.

Alternatively, one could also consider the steady solution Bsp = 0 while Usp 6= 0.

This would correspond to a stability analysis of a flow field at a particular length

scale subject to small perturbations of the magnetic and velocity fields, where

the magnetic field perturbation may be viewed as the magnetic seed field to be

amplified by dynamo action. In this setting it can be seen from eq. (3.5) that

the term corresponding to the Lorentz force disappears while in eq. (3.14) terms

involving Bsp disappear, thus the system simplifies to

∂2
t usk = |gkpq|2(spp− sqq)(skk − spp) |Usp |2usk , (3.74)

∂2
t bsk = −|gkpq|2skk sqq |Usp|2bsk . (3.75)

As the only contribution to the evolution of the magnetic field now comes from

the velocity field, the remaining terms in eq. (3.6) are associated with dynamo

action. Equation (3.75) implies that this system has exponential solutions leading

to magnetic field growth if sk 6= sq, regardless of wavenumber ordering. So for

energy transfer from Usp into bsk (and bsq) to become possible, the magnetic modes

at wavenumbers k and q should be of opposite helicity.

For small k, nonlocal interactions with k << p ' q provide most of the transfer

into bsk . This is because the eigenvalue determining the growth of the exponential

solution of (3.75) is larger for q >> k than for q ' k, thus the perturbations

should grow faster in the former than in the latter case. Hence, according to the
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instability assumption, Usp loses energy in favour of bsk mainly due to nonlocal

interactions if bsk describes the largest scales of the system.

The α-effect

One well-known example of a large-scale dynamo is the α-effect of mean-field

electrodynamics (see e.g. [132]), where α is a coefficient in the mean-field

induction equation related to the kinetic helicity of the flow. The α-effect leads to

a generation of large and small-scale magnetic helicities of opposite sign [25, 26]. It

is a mean-field description of the STF dynamo [36, 125, 178] introduced in chapter

1, which describes how a positively helical velocity field generates magnetic

field perturbations leading to the large-scale component of the magnetic field

becoming negatively helical. By conservation of magnetic helicity, the small-scale

component of the magnetic field then has to become positively helical (and more

so if the initial magnetic field was positively helical). That is, the small-scale

magnetic and kinetic helicities are of the same sign.

It is plausible that the type of interaction (0, Usp , 0; 0, Bsp = 0, 0) for k < p, q

with sk 6= sp = sq can be associated with an STF dynamo and hence the α-

effect. First, nonzero small-scale kinetic helicity (we have sp = sq) is present.

Second, the magnetic field growth at the large scales is described by (3.75), where

magnetic fluctuations at k and q of opposite helicities are necessary to obtain an

instability. That is, the large-scale magnetic field has opposite helicity to the

small-scale one, reminiscent of the α-dynamo. This combination of helicities also

produces a transfer of kinetic energy from small to large scales [181]. Thus this

type of interaction feeds into the magnetic and velocity fields on scales larger than

the characteristic scale L = 1/p of the velocity field. The magnetic field mode

which is amplified by this process has helicity opposite to the velocity field at p,

which conforms to expectations in terms of STF dynamo action and the α-effect.
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3.7.2 Excitation of a flow by the Lorentz force

For the other special solution (0, 0, 0; 0, Bsp 6= 0, 0) the system (3.13) - (3.14)

simplifies to

∂2
t usk = |gkpq|2(spp− sqq)sqq |Bsp |2usk , (3.76)

∂2
t bsk = −|gkpq|2skk(skk − spp) |Bsp |2bsk , (3.77)

where the inertial term in (3.5) and the ‘dynamo’ term in (3.6) are now absent

and the system of coupled ODEs has split into two decoupled ODEs. This case

may perhaps be associated with the generation of turbulence caused by the action

of the Lorentz force on the fluid (i.e. energy conversion from Bsp to usk or usq)

and interscale transfer of magnetic energy from Bsp into bsk or bsq . Exponentially

growing solutions of (3.77) only occur if sp = sk and k < p, leading to a reverse

transfer of magnetic energy. Exponentially growing solutions of (3.76) occur for

p > q and sp = sq leading to forward and reverse transfers corresponding to k > p

and k < p, respectively. Interestingly, energy transfer only becomes possible if

the magnetic field is helical and the helicity of the velocity field mode does not

affect the analysis.

3.8 Conclusions

The four main results of the present work are: First, unlike in non-conducting

fluids [181], the stability analysis shows that in MHD turbulence energy can be

transferred away from the smallest scales in a triad interaction. Second, the

stability analysis reveals mechanisms for reverse energy transfer for nonhelical

magnetic fields, in which case it does not need to be driven by the inverse

transfer of magnetic helicity. Third, forward energy transfers are more quenched

in regions of high cross-helicity than reverse energy transfers. Fourth, significant

cancellations are expected to occur between the contributions to forward and

reverse transfers, as on several occasions they occur with opposite signs in the

same equation. The theoretical analysis was conducted within the framework of

the instability assumption, and it is crucial to discuss the results within the wider

context of MHD turbulence research.

Interscale energy transfers between the two different vector fields as well as within

the same fields have been studied by several groups for freely decaying [27, 53] and
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stationary [3, 25, 30, 37] MHD turbulence as well as for the kinematic dynamo

regime [126] and for magnetic helicity transfer [4], using shell-filtered transfer

terms calculated from DNSs or from a helical shell model [172]. In the stationary

case, it was found that transfers between the same fields are mainly local while

transfers between different fields were nonlocal, and transfers from the injection

scale to the largest scales in the system were observed. In the decaying case,

energy transfers were generally found to be mainly local. However, transfers

between different fields were more nonlocal than transfers between the same

fields. Furthermore, large cancellations occurred between the contributions to

forward and reverse transfers [53]. The analysis presented here also predicts

cancellations between these contributions to occur, thus being consistent with

the aforementioned numerical results.

In terms of locality and nonlocality of energy (and helicity) transfer, it was found

that nonlocal interactions contribute to forward transfer only for interactions of

helical modes with unlike helicity and mainly if the kinetic energy exceeds the

magnetic energy. Interestingly, for inverse transfers less constraints on nonlocal

interactions are found. In particular for magnetically dominated systems nonlocal

interactions between modes of like helicity contribute to reverse energy transfer.

In view of the cancellations that occur between forward and reverse transfers,

the inverse cascade may thus have a significant nonlocal component which is not

cancelled by forward transfers within the same triad interaction.

A numerical study of large-scale magnetic field generation in helically forced

globally isotropic MHD turbulence was carried out by Brandenburg [25]. It was

found that the injection of energy from the velocity field into the magnetic field

occurs directly from the forcing scale into the largest resolved scale, implying

that this is a nonlocal process. Due to the non-locality of the observed increase

in spectral power of the magnetic field at the lowest resolved wavenumber k = 1

and the excellent agreement of numerical results with an α-dynamo model, the

transfer of energy into the k = 1 mode is explained by the α-effect rather than

an inverse cascade, and it is shown to occur after saturation of the small-scale

dynamo. The results in sec. 3.7 suggest that one type of helical mode interaction

may be mapped to the α-effect, and it was established that large-scale dynamo

action is more active in the nonlocal limit than certain other types of interactions.

One of the main results of the present work is the possibility of inverse energy

transfer for nonhelical magnetic fields. Such inverse transfer has recently been

found in high resolution DNSs of slightly compressible [27] and relativistic [190]
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MHD turbulence. An analysis of interscale transfers showed that this inverse

transfer was mainly due to energy transfer away from the medium scale (see

Supplemental Material of Ref. [27], last figure), while energy transfer away from

the smallest scales also occurred. The analytic approach put forward here also

shows that energy is transferred away from the medium and small scales for

interactions of modes with unlike helicities, thus being qualitatively consistent

with these numerical results. However, since no numerical work decomposing

the MHD equations into helical contributions as suggested by Biferale et al.in

Refs. [18] and [20] has been carried out so far, no direct numerical confirmation

of the presented analytical results is available at this point.

Another testbed for theoretical results in MHD turbulence are measurements

of energy transfer in the solar wind. Unlike in the present analysis and in the

numerical results discussed so far except for the work by Cho [37], a background

magnetic field is present in the solar wind. Recent measurements at 1 AU showed

negative Elsässer fluxes in regions of high cross-helicity [171], giving possible

evidence of inverse energy transfer in these regions. This cannot be explained

by selective decay, that is the faster decay of the total energy compared to

Hc and Hmag [21], as cross-helicity is predicted to cascade forwards [73]. The

material presented in this chapter may be helpful in explaining this phenomenon

as one of the results obtained here was a quenching of forward energy transfer in

regions of high cross-helicity, leaving more inverse transfer to perhaps dominate

the dynamics in these regions. This point will be discussed in connection to

numerical results in chapter 4.

In subsequent work [42], concerns were raised on the implications of the effect of

expansion in the solar wind especially in regions of high Hc. Expansion effects

had been neglected in the previous analysis. In Ref. [171] the authors restricted

their measurements to regions where the relative cross helicity σc is not too large,

that is 0 6 |σc| 6 0.5 and measure positive energy fluxes on average, while the

instantaneous flux shows large variations including negative values. It is shown

that the broad distribution of the measured instantaneous fluxes is related to

intermittency of the energy cascade in terms of the variability of the energy flux

[93, 147], and not caused by experimental uncertainty. The various possibilities of

energy transfer in forward and reverse directions determined in the present work

are consistent with these measurements, as they also would result in broader

tails of the probability distribution of the energy flux, even if on average energy

transfer proceeds in the forward direction. As for the concerns about the validity
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of the negative fluxes measured by Stawarz et al. [171], the results presented

here do suggest that the measured inverse fluxes may be a genuine effect due to

quenching of forward energy transfers if Hc is large.

Since most of this discussion is based on statements of plausibility rather than

certainty, more work clearly has to be carried out before a decisive result on

energy transfer in MHD turbulence can be achieved. As suggested by Biferale

et al. [18, 20], energy and helicity transfers could be investigated numerically

by projecting out helical modes of a particular sign, similar to work done

by these authors [18, 20] and Sahoo et al. [158] in hydrodynamic turbulence.

However, numerical verification of reverse spectral transfer due to the particular

nonhelical interactions found in the present work may be difficult to obtain in

that framework, and a particular DNS study concentrating on inverse transfer

for nonhelical magnetic fields using the full MHD equations subject to small-

scale forcing may be needed in order to provide further insight. An analysis of

Fourier-filtered transfer terms from DNSs of highly unbalanced MHD turbulence

compared to balanced MHD turbulence could be carried out in order to verify

(or otherwise) the proposed quenching of forward transfers by high values of Hc,

especially as it is not possible to quantify this effect from theoretical analysis

only. On the analytical side, the present work may be extended to include the

effects of a background magnetic field and of compressive fluctuations, which

would be included in the decomposition of the velocity field as modes parallel to

the wavevector k.
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Chapter 4

Self-organisation and

nonuniversality

MHD turbulence is present in many areas of physics, ranging from industrial

applications such as liquid metal technology to nuclear fusion and plasma physics,

geo-, astro- and solar physics, and even cosmology. The numerous different MHD

flow types that arise in these different settings due to anisotropy, alignment,

different values of the diffusivities, to name only a few, lead to the question of

universality in MHD turbulence, which has been the subject of intensive research

by many groups [2, 13, 23, 48, 49, 80, 81, 107, 125, 160, 163, 182]. The behaviour of

the (dimensionless) dissipation rate is connected to this problem, in the sense that

correlation (alignment) of the different vector fields could influence the energy

transfer across the scales [21, 49, 150], and thus possibly the amount of energy

that is eventually dissipated at the small scales. This includes the self-organising

processes discussed in the previous chapters. More precisely, a system with a

pronounced reverse transfer of energy should lead to a lower dissipation rate

compared to a system where such a self-ordering process is absent.

4.1 Introduction

For neutral fluids it has been known for a long time that the dimensionless

dissipation rate in forced and freely decaying homogeneous isotropic turbulence

tends to a constant with increasing Reynolds number. The first evidence for this
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was reported by Batchelor [11] in 1953, while the experimental results reviewed

by Sreenivasan in 1984 [169], and subsequent experimental and numerical work

by many groups, established the now well-known characteristic curve of the

dimensionless dissipation rate against Reynolds number: see [88, 120, 121, 169,

170] and references therein. For statistically steady isotropic turbulence, the

theoretical explanation of this curve was recently found to be connected to the

energy balance equation for forced turbulent flows [121], where the asymptote

describes the inertial transfer flux in the limit of infinite Reynolds number.

For freely decaying MHD, recent results suggest that the temporal maximum of

the total dissipation tends to a constant value with increasing Reynolds number.

The first evidence for this behaviour in MHD was put forward in 2009 by Mininni

and Pouquet [129] using results from DNSs of homogeneous MHD turbulence

without a mean magnetic field. The temporal maximum of the total dissipation

rate ε(t) became independent of Reynolds number at a Taylor-scale Reynolds

number Rλ (measured at the peak of ε(t)) of about 200.

Dallas and Alexakis [50] measured the dimensionless dissipation rate Cε from

DNS data, where ε(t) was non-dimensionalised with respect to the initial values

of the rms velocity U(t) and the integral length scale L(t) (defined with respect

to the total energy), for random initial fields with strong correlations between the

velocity field and the current density. The authors compared data with Ref. [129],

and again it was found that Cε → const. with increasing Reynolds number.

Interestingly the approach to the asymptote was slower than for the data of

Ref. [129].

In this chapter an approximative equation describing the dependence of the

dimensionless dissipation coefficient Cε on a generalised Reynolds number R−

is derived from the energy balance equation in terms of Elsässer variables:

Cε = Cε,∞ +
C

R−
+

D

R2
−

+O(R−3
− ) . (4.1)

The coefficients Cε,∞, C and D depend on several parameters, which themselves

depend on the magnetic, cross and kinetic helicities. That is, they are related to

the aforementioned self-ordering behaviour of the system. In particular, eq. (4.1)

predicts nonuniversal values of the asymptotic value Cε,∞ of the dimensionless

dissipation rate in the infinite Reynolds number limit. The most general form of

this equation for nonstationary flows with large-scale external forcing is presented,

which can be applied to freely decaying and stationary flows by setting the
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corresponding terms to zero.

The resulting theoretical predictions for the stationary case are compared to

DNS data for stationary MHD turbulence for three different types of mechanical

forcing. The DNS data shows good agreement with eq. (4.1) and the different

forcing schemes have no measurable effect on the values of the coefficients in

eq. (4.1). For the case of freely decaying MHD turbulence, several series of

DNSs have been carried out with emphasis on different initial values of the

ideal invariants and resulting nonuniversal values of the asymptotic dissipation

rate. Again, the DNS data agrees with the theoretical prediction and indeed

nonuniversal values of Cε,∞ are measured depending on the initial levels of cross-

and magnetic helicities.

4.2 Derivation of the equation

In hydrodynamics, the dimensionless dissipation coefficient Cε,u is defined in

terms of the Taylor surrogate expression for the total dissipation rate, U3/Lu,

where U denotes the rms value of the velocity field and Lu the integral scale

defined with respect to the velocity field, as

Cε,u ≡ εkin
Lu
U3

. (4.2)

However, in MHD there are several quantities that may be used to define an

MHD analogue to the Taylor surrogate expression, such as the rms value B of

the magnetic field, one of the different length scales defined with respect to either

b or u, or the total energy.

Since the total dissipation in MHD turbulence should be related to the flux of

total energy through different scales, one may think of defining a dimensionless

dissipation coefficient for MHD in terms of the total energy. However, this would

lead to a nondimensionalisation of the hydrodynamic transfer term u · (u · ∇)u

with a magnetic quantity. This can be seen by considering the energy balance

equation in real space [31] introduced in chapter 1 and re-stated here for
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convenience (for the case of free decay)

ε(t) =− ∂t(Buu
LL(r, t) +Bbb

LL(r, t)) +
3

2r4
∂r

(
r4

6
Buuu
LLL(r, t) + r4Cbbu

LLL(r, t)

)
+

6

r
Cbub(r, t) +

1

r4
∂r
(
r4∂r(νB

uu
LL(r, t) + ηBbb

LL(r, t))
)
. (4.3)

As can be seen from their respective definitions given in chapter 1, the functions

Cbbu
LLL and Cubb scale with B2U while the function Buuu

LLL scales with U3. If eq. (4.3)

were to be nondimensionalised with respect to the total energy

E(t) =
1

2

〈
|b(x, t)|2 + |u(x, t)|2

〉
, (4.4)

then the purely hydrodynamic term Buuu
LLL would be scaled partially by a magnetic

quantity. This problem can be avoided by working with Elsässer fields.

4.2.1 The total dissipation in terms of Elsässer fields

As introduced in chapter 1, the total rate of energy dissipation in MHD turbulence

is given by the sum of Ohmic and viscous dissipation

ε(t) = εmag(t) + εkin(t) . (4.5)

Similarly, the total dissipation rate can be decomposed into its respective

contributions from the Elsässer dissipation rates

ε(t) =
1

2

(
ε+(t) + ε−(t)

)
, (4.6)

where the Elsässer dissipation rates are defined as

ε±(t) = ν+

∫
Ω

dk k2〈|ẑ±(k, t)|2〉+ ν−

∫
Ω

dk k2〈ẑ±(k, t) · ẑ∓(−k, t)〉 , (4.7)

with ẑ± denoting the (formally) Fourier-transformed Elsässer fields and ν± =

(ν ± η). The total dissipation rate relates to the sum of the Elsässer dissipation

rates

ε+(t) + ε−(t) = ε(t) + εHc(t) + ε(t)− εHc(t) = 2ε(t) , (4.8)
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where

Hc(t) =

∫
Ω

dk 〈û(k, t) · b̂(−k, t)〉 =
1

2

∫
Ω

dk 〈|z+(k, t)|2 − |z−(k, t)|2〉 , (4.9)

is the cross-helicity and the dissipation rate εHc of the cross-helicity is given by

εHc(t) =
1

2

(
ε+(t)− ε−(t)

)
. (4.10)

As introduced in chapter 1, the total rate of energy input, εW , can be split up in

a similar way into kinetic and magnetic contributions

εW (t) = εmag,W (t) + εkin,W (t) . (4.11)

Similarly, the Elsässer fields have energy input rates ε±W (t), and the total energy

input rate is given in terms of ε±W (t) as

εW (t) =
1

2

(
ε+
W (t) + ε−W (t)

)
. (4.12)

This equation can be rewritten as

ε+
W (t) = εW (t) +

1

2

(
ε+
W (t)− ε−W (t)

)
= εW (t) + εW,Hc(t) , (4.13)

where εW,Hc denotes the input rate of the cross-helicity.

Since the rate of change of the total energy is given by the difference of energy

input and dissipation (see chapter 1), in the most general case the total energy

dissipation rate is given by

ε(t) = εW (t)− dtE(t) . (4.14)

For the stationary case dtE(t) = 0 and one obtains ε(t) = εW (t). For the freely

decaying case εW (t) = 0 and the change in total energy is due to dissipation only,

that is −dtE(t) = ε(t). In terms of Elsässer variables ε(t) can also be expressed

as

ε(t) = εW (t)− dtE(t) = εW (t)− dtE±(t)〉 ∓ dtHc(t) , (4.15)

where E±(t) denote the Elsässer energies.
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4.2.2 A definition for the dimensionless dissipation coefficient

Since the total dissipation rate can be expressed either in terms of the Elsässer

fields or the primary fields u and b, it can also be described by the energy

balance equations for z± [148], which are stated here for the most general case of

homogeneous forced nonstationary MHD flows without a mean magnetic field

−∂tE±(t) + I±(r, t) =− 3

4
∂tB

±±
LL (r, t)− ∂r

r4

(
3r4

2
C±∓±LL,L (r, t)

)
+

3

4r4
∂r
(
r4∂r(ν + η)B±LL(r, t)

)
+

3

4r4
∂r
(
r4∂r(ν − η)B∓LL(r, t)

)
, (4.16)

where I±(r, t) are (scale-dependent) energy input terms and

C±∓∓LL,L (r, t) = 〈z±L (x, t)z∓L (x, t)z±L (x+ r, t)〉 , (4.17)

B±±LL (r, t) = 〈(δLz±(r, t))2〉 , (4.18)

B±∓LL (r, t) = 〈δLz±(r, t)δLz
∓(r, t)〉 , (4.19)

are the third-order longitudinal correlation function and the second-order struc-

ture functions of the Elsässer fields, respectively. As can be seen from

the definition, the third-order correlation function scales with (z±)2z∓, where

z± denote the respective rms values of the Elsässer fields. This permits a

consistent nondimensionalisation of the Elsässer energy balance equations using

the appropriate quantities defined in terms of Elsässer variables. As such the

complication that arose if the energy balance was written in terms of b and u

can be circumvented. Therefore the dimensionless Elsässer dissipation rates can

be defined1 as

C±ε (t) ≡ ε(t)L±(t)

z±(t)2z∓(t)
, (4.20)

where

L±(t) =
3π

8E±(t)

∫
Ω

dk k−1〈|z±(k, t)|2〉 , (4.21)

1The scaling is ill-defined for the (measure zero) cases u = ±b, which correspond to exact
solutions to the MHD equations where the nonlinear terms vanish. Thus no turbulent transfer
is possible, and these cases are not amenable to an analysis which assumes nonzero energy
transfer [148].
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are the integral scales defined with respect to z±. For zero cross-helicity one

should expect C+
ε (t) = C−ε (t), since

E±(t) = 2E(t)± 2Hc(t) = 2E(t) . (4.22)

Therefore all quantities defined with respect to the rms fields z+ and z− should be

the same in this case. Finally, the dimensionless dissipation rate Cε(t) is defined

as

Cε(t) = C+
ε (t) + C−ε (t) ≡ ε(t)L+(t)

z+(t)2z−(t)
+

ε(t)L−(t)

z−(t)2z+(t)
. (4.23)

Using this definition the Elsässer energy balance equations (4.16) can now be

consistently nondimensionalised. For conciseness the explicit time and spatial

dependences are from now on omitted, unless there is a particular point to make.

4.2.3 Dimensionless energy balance

By introducing the nondimensional variables σ± = r/L± [182] and non-

dimensionalising eq. (4.16) as proposed in the definitions of C±ε given in eq. (4.20)

one obtains

−
(
dtE

± − I±
) L±

z±2z∓
=− 1

σ4
±
∂σ±

(
3σ4
±C
±∓±
LL,L

2z±2z∓

)
− Lz±

z±2z∓

(
∂t

3B±±LL
4
− εHc

)
+
η + ν

L±z∓
3

4σ4
±

(
σ4
±∂σ±

B±±LL
z±2

)
+
ν − η
L±z±

3

4σ4
±

(
σ4
±∂σ±

B±∓LL
z±z∓

)
. (4.24)

Before proceeding further, the scale-dependent forcing term on the left-hand side

of this equation needs to be analysed in some detail in order to clarify its relation

to the energy input terms ε±W .

Scale-dependence of the energy input

The energy input I± is given by

I±(r) =
3

r3

∫ r

0

dr′r′2〈z±(x+ r′)f±(x)〉 . (4.25)
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In the limit of infinite Reynolds number, the inertial range extends through all

wavenumbers, formally implying that energy is injected at the lowest wavenumber

and dissipated at infinity [67, 120]. This can be modelled using a δ(k)-input term

[67], such that

W±
∞(k) ≡ ε±W δ(k) , (4.26)

hence formally

lim
Re→∞

I± =
3

r3

∫ r

0

dr′r′2
∫

R3

dk W±
∞(k)e−ik·r

′
= ε±W . (4.27)

Therefore it should be possible to split the term I±(r) into a constant, ε±W , and

a scale-dependent term J±(r), which encodes the additional scale dependence

introduced by realistic, finite Reynolds number forcing. For consistency, this

scale-dependent term must vanish in the formal limit Re→∞, that is

I±(r) = εW + J±(r) , (4.28)

with limRe→∞ J
±(r) = 0.

Formulation of the evolution equation for C±ε

The inverse of the coefficients in front of the dissipative terms in eq. (4.24) have

the form z∓L±/(ν + η) and z±L±/(ν − η), respectively, which is similar to a

Reynolds number. Therefore the generalised large-scale Reynolds numbers

R∓ = z∓L±/(ν + η) and R′± = z±L±/(ν − η) , (4.29)

are introduced, which leads to a dimensionless version of the Elsässer energy

balance equation for homogeneous MHD turbulence in the most general case for

nonstationary flows at any magnetic Prandtl number

C±ε =−
∂σ±
σ4
±

(
3σ4
±C
±∓±
LL,L

2z±2z∓

)
+

L±

z±2z∓

(
dtHc − ∂t

3B±±LL
4
− J±

)
+

1

R∓

3∂σ±
2σ4
±

(
σ4
±∂σ±

B±±LL
z±2

)
+

1

R′±

3∂σ±
2σ4
±

(
σ4
±∂σ±

B±∓LL
z±x∓

)
. (4.30)
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where the splitting of the energy input term derived in the previous section has

been used. For conciseness, the following dimensionless functions are defined

g±∓± =
C±∓±LL,L

z±2z±
, (4.31)

h±±2 =
B±±LL
z±2 , (4.32)

h±∓2 =
B±∓LL
z±z∓

, (4.33)

G± =
L±

z±2z±
∂tB

±±
LL , (4.34)

F± = J±
L±

z±2z±
, (4.35)

such that eq. (4.30) can be written as

C±ε =−
∂σ±
σ4
±

(
3σ4
±

2
g±∓±

)
− F± −G± − 3

4
H±±2

+
3

R∓

∂σ±
σ4
±

(
σ4
±∂σ±h

±±
2

)
+

3

R′∓

∂σ±
σ4
±

(
σ4
±∂σ±h

±∓
2

)
. (4.36)

This equation can be applied to the two simpler cases of freely decaying and

stationary MHD turbulence by setting the corresponding terms to zero. For

the case of free decay there are no external forces therefore F± = 0, while for

the stationary case the term G± vanishes. A further simplification concerns the

case Pm = 1, that is ν = η, where the generalised Reynolds numbers R′± tend to

infinity. In this case the evolution of C±ε depends only on R∓, and an approximate

analysis using asymptotic series is possible. Most numerical results are concerned

with this case due to computational constraints, hence it would be very difficult

to test an approximate equation against DNS data if not only Re but also Pm

needs to be varied. From now on the magnetic Prandtl number is therefore set to

unity, keeping in mind that the analysis should be extended to Pm 6= 1 provided

the approximate equation derived in the following section is consistent with DNS

data.

4.2.4 Asymptotic expansions for the case Pm = 1

Equation (4.36) suggests a dependence of C±ε on 1/R∓, however, the structure

and correlation functions also have a dependence on Reynolds number, which

describes their deviation from their respective inertial-range forms. The highest
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derivative in eq. (4.36) is multiplied by the small parameter 1/R∓, which suggests

that this equation may be viewed as singular perturbation problem amenable

to asymptotic analysis [115]2. The Elsässer energy balance equation had been

rescaled by the rms values of the Elsässer fields and the corresponding integral

length scales, where the integral scales are by definition the large-scale quantities,

the interpretation in hydrodynamics usually being that they represent the size

of the largest eddies. As such, the nondimensionalisation was carried out with

respect to quantities describing the large scales, that is, with respect to ‘outer’

variables. As such, outer asymptotic expansions of the nondimensional structure

and correlation functions are considered with respect to the inverse of the (large-

scale) generalised Reynolds numbers 1/R∓.

The formal asymptotic series of a generic function f (used for conciseness in place

of the functions on the RHS of (4.36)) up to second order in 1/R∓ reads

f = f0 +
1

R∓
f1 +

1

R2
∓
f2 +O(R−3

∓ ) . (4.37)

After substitution of the expansions into (4.36), collecting terms of the same order

in 1/R∓, one arrives at equations describing the behaviour of C+
ε and Cε−

C±ε = C±ε,∞ +
C±

R∓
+
D±

R2
∓

+O(R−3
∓ ) , (4.38)

up to third order in 1/R∓, using the coefficients C±ε,∞, C± and D± defined as

C±ε,∞ = −
∂σ±
σ4
±

(
3σ4
±

2
g±∓±0

)
∓G±0 ∓H±±2 , (4.39)

C± =
3∂σ±
σ4
±

[
σ4
±

(
∂σ±h

±±
2,0 −

g±∓±1

2

)]
∓ F±1 ∓G±1 , (4.40)

D± =
3∂σ±
σ4
±

[
σ4
±

(
∂σ±h

±±
2,1 −

g±∓±2

2

)]
∓ F±2 ∓G±2 , (4.41)

in order to write (4.36) in a more concise way. The zero-order term in the

expansion of the function F± vanishes, since F± corresponds to the scale-

dependent part J± of the energy input which vanishes in the limit R∓ → ∞.

According to the definition of Cε in eq. (4.23), the asymptote Cε,∞ is given by

Cε,∞ = C+
ε,∞ + C−ε,∞ , (4.42)

2The case Pm 6= 1 requires expansions in two parameters, which may not be well defined
especially since R′± can be negative.
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and using the definition of the generalised Reynolds numbers, which implies R+ =

(L−/L+)(z+/z−)R− one can define

C = C+ +
L−
L+

z+

z−
C− , (4.43)

(D is defined analogously), resulting in the following expression for the dimen-

sionless dissipation rate

Cε = Cε,∞ +
C

R−
+

D

R2
−

+O(R−3
− ) . (4.44)

Since the time dependence of the various quantities in this problem has been

suppressed for conciseness, it has to be emphasised that eq. (4.44) is time

dependent, including the Reynolds number R−.

Nonstationary flows at the peak of dissipation

At the peak of dissipation the term G±0 in eq. (4.39) vanishes for constant flux

of cross-helicity (that is, d2
tHc = 0), since in the infinite Reynolds number limit

the second-order structure function will have its inertial range form at all scales.

By self-similarity the spatial and temporal dependences of e.g. B++
LL should be

separable in the inertial range, that is

B++
LL (r, t) ∼ (ε+(t)r)α , (4.45)

for some value α, and

∂tB
++
LL ∼ αε+(t)α−1 dtε

+rα . (4.46)

At the peak of dissipation

dtε
+|tpeak = dtε|tpeak − d2

tHc = dtε|tpeak = 0 , (4.47)

which implies G+
0 (tpeak) = 0. Equation (4.39) taken for nonstationary flows at

the peak of dissipation is thus identical to eq. (4.39) for stationary flows, which

implies that at this point in time a nonstationary flow may behave similarly to

a stationary flow. Due to selective decay, that is the faster decay of the total

energy compared to Hc and Hmag [21], one could perhaps expect dtHc to be small

93



compared to ε in the infinite Reynolds number limit in most situations. In this

case G±0 ' 0 and

C±ε,∞(tpeak) = −
∂σ±
σ4
±

(
3σ4
±

2
g±∓±0

)
, (4.48)

which recovers the inertial-range scaling results of Ref. [148] and reduces to

Kolmogorov’s 4/5th law for b = 0.

4.2.5 Relation of Cε,∞ to energy and cross-helicity fluxes

In analogy to hydrodynamics, the asymptotes C±ε,∞ should describe the total

energy flux, that is the contribution of the cross-helicity flux to the Elsässer flux

should be cancelled by the respective terms G±0 in eq. (4.39). However, since this

is not immediately obvious from the derivation, further details are given here for

the case of free decay. The argument for the stationary case proceeds analogously.

For decaying turbulence at the peak of dissipation, eq. (4.39) for the asymptotes

C±ε,∞ reduces to

C±ε,∞ = −
∂σ±
σ4
±

(
3σ4
±

2
g±∓±0

)
±G±0 . (4.49)

The dimensional version of this equation is

ε = −∂r
r4

(
3r4

2
C±∓±LL,L

)
± dtHc , (4.50)

where it is assumed that the function C±∓±LL,L has its inertial range form

corresponding to g±∓±0 . The function C±∓±LL,L can also be expressed through the

Elsässer increments [148]

C±∓±LL,L =
1

4

(
〈(δLz±(r))2δLz

∓(r)〉 − 2〈z±L (x)z±L (x)z∓L (x+ r)〉
)
, (4.51)

which can be written in terms of the primary fields u and b as

C±∓±LL,L =
1

4

2

3
〈(δLu(r))3 − 6bL(x)2uL(x+ r)〉

∓ 1

4

2

3
〈(δLb(r))3 − 6uL(x)2bL(x+ r)〉 , (4.52)

(see e.g. Ref. [148]). The two terms on the first line of eq. (4.52) are the flux

terms in the evolution equation of the total energy, while the two terms on last

line correspond to the flux terms in the evolution equation of the cross-helicity
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[148].

Now eq. (4.50) can be expressed in terms of the primary fields

ε = −∂r
r4

(
3r4

2
C±∓±LL,L

)
± dtHc

= −∂r
r4

(
r4

4
〈(δLu(r))3 − 6bL(x)2uL(x+ r)〉

)
± ∂r
r4

(
r4

4
〈(δLb(r))3 − 6uL(x)2bL(x+ r)〉

)
± dtHc

= εT ± εHc ± dtHc = εT , (4.53)

where εT is the flux of total energy and εHc the cross-helicity flux, which must

equal −dtHc for freely decaying MHD turbulence. Thus the contribution from

the third-order correlator C±∓±LL,L resulting in εHc is cancelled by dtHc, or, after

nondimensionalisation, the cross-helicity flux εHcL±/[(z
±)2z−] is cancelled by G±0 .

In the stationary case the same reasoning applies where εHc and the cross-helicity

input rate εHc,W cancel out.

4.3 Nonuniversality and self-organisation

Since Cε,∞ is a measure of the flux of total energy across different scales in the

inertial range, differences for the value of this asymptote should be expected for

systems with different initial values for the ideal invariants Hmag and Hc. The flux

of total energy and thus the asymptote Cε,∞ is an averaged quantity. This implies

that cancellations between forward and reverse fluxes may take place leading on

average to a positive value of the flux, that is, forward transfer from the large

scales to the small scales. In case of Hmag 6= 0, the value of Cε,∞ should therefore

be less than for Hmag = 0 due to a more pronounced reverse energy transfer in

the helical case, the result of which is less average forward transfer and thus a

smaller value of the (average) flux of total energy. For Hc 6= 0 the asymptote Cε,∞

is expected to be smaller than for Hc = 0, since alignment of u and b weakens

the coupling of the two fields in the induction equation, leading to less transfer

of magnetic energy across different scales and presumably also less transfer of

kinetic to magnetic energy. In short, nonuniversal values of Cε,∞ are expected.

Furthermore, from the analysis of triad interactions carried out in chapter 3,

it may be expected that high values of cross-helicity have a different effect on
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the asymptote Cε,∞, depending on the level of magnetic helicity. The analytical

results suggested that the cross-helicity may have an asymmetric effect on the

nonlinear transfers in the sense that the self-ordering reverse triadic transfers are

less quenched by high levels of Hc compared to the forward transfers. The triads

contributing to reverse transfers were mainly those where magnetic field modes

of the same sign interact, and so for simulations with maximal initial magnetic

helicity the dynamics will be dominated by these triads. If the reverse fluxes are

less affected by the cross-helicity than the forward fluxes, then the expectation is

that for a comparison of the value of Cε,∞ between systems with (i) high Hmag

and Hc, (ii) high Hmag and Hc = 0, (iii) Hmag = 0 and high Hc and finally (iv)

Hmag = 0 and Hc = 0, the value of Cε,∞ should diminish more between cases (i)

and (ii) compared to between cases (iii) and (iv).

4.4 Comparison to DNS data

Before comparing eq. (4.44) with DNS data and addressing this question of

nonuniversality numerically, the numerical method is briefly outlined. Equations

(1.5)-(1.7) are solved numerically in a periodic box of length Lbox = 2π using the

fully de-aliased pseudospectral MHD code described in chapter 2. All simulations

resolve the Kolmogorov magnetic and kinetic Kolmogorov scales ηmag and ηkin,

that is kmaxηmag,kin > 1. No background magnetic field is imposed, and both the

initial magnetic and velocity fields are random Gaussian with zero mean with

energy spectra as described in chapter 2.

Several series of simulations have been carried out for stationary and freely

decaying MHD turbulence. In the case of free decay the dependence of the

asymptote on the initial level of the ideal invariants is studied while for the

stationary simulations all helicities are initially negligible. Different external

mechanical forces were used to maintain the system in stationary state in order

to assess the influence different forcing methods may have on the system.

For the stationary simulations all helicities are initially negligible. In the

simulations of freely decaying MHD turbulence the initial relative magnetic

helicity was either maximal (series H and CH) or negligible (series NH and CNH),

while the relative cross-helicity ρc was adjusted to range from 0 6 ρc 6 0.8 for

series CH and CNH as specified in tables 4.2 and 4.3.
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4.4.1 Specification of different forcing schemes

Three different types of mechanical forces labelled f1, f2 and f3 have been applied

at wavenumbers k 6 kf = 2.5. The first type of mechanical force f1 has been

introduced in chapter 2, eq. (2.1), and corresponds to the DNS series ND in

tbl. 4.1. It essentially feeds the rescaled velocity field back into the system at the

large scales and as such there is no direct control over the injected helicities.

The second type of mechanical force f2, which corresponds to the DNS series HF

in tbl. 4.1 has also been introduced in chapter 2. It is based on the decomposition

of the Fourier transform of the force into helical modes as explained in chapter

1 and has the advantage that the helicity of the force can be adjusted at each

wavenumber [25, 116, 137], which gives optimal control over the helicity injection.

For all simulations using this type of forcing the relative helicity of the force was

set to zero.

The third type of mechanical force3 corresponds to the DNS series SF in tbl. 4.1

and is given by

f3 = f0

∑
kf

sin kfz + sin kfy

sin kfx+ sin kfz

sin kfy + sin kfx

 , (4.54)

where f0 is an adjustable constant. This type of force is nonhelical by

construction.

All three forces have been used in several simulations of stationary homogeneous

MHD simulations. The scheme labelled f1 was shown by Sahoo et al. [159] to

keep the helicities at negligible levels even though zero helicity injection cannot be

guaranteed with this forcing scheme. At low Reynolds number this conservation

of helicities appears to be broken and induces peculiar self-ordering effects which

will be discussed in further detail in chapter 6. The adjustable helicity forcing f2

has been extensively used in the literature [25, 116, 137], mainly when nonzero

levels of kinetic [25] or magnetic [116, 137] helicity injection are required. The

third forcing scheme f3 has been employed in the simulations by Dallas and

Alexakis [51], where it was shown that despite zero injection of all helicities,

the system self-organised into large-scale fully helical states. This point will be

further discussed in chapter 6 in the connection with relaminarisation events.

3This scheme was implemented by E. Goldstraw [79].
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4.4.2 Decaying MHD turbulence

Figure 4.1 shows fits of eq. (4.44) to DNS data for datasets that differ in the

initial value of Hmag and Hc. As can be seen, eq. (4.44) fits the data very well.

For the series H runs and for R− > 70 it is sufficient to consider terms of first

order in R−, while for the series NH the first-order approximation is valid for

R− > 100. The cross-helical CH06H runs gave consistently lower values of Cε

compared to the series H runs, while little difference was observed between series

CH06NH and NH. The asymptotes were Cε,∞ = 0.241 ± 0.008 for the H series,

Cε,∞ = 0.265 ± 0.013 for the NH series, Cε,∞ = 0.193 ± 0.006 for the CH06H

series and Cε,∞ = 0.268± 0.005 for the CH06NH series.

As predicted by the qualitative theoretical arguments outlined previously, the

measurements show that the asymptote calculated from the nonhelical runs is

larger than for the helical case, as can be seen in fig. 4.1. The asymptotes of the

series H and NH do not lie within one standard error of one another. Simulations

carried out with Hc 6= 0 suggest little difference in Cε for magnetic fields with

initially zero magnetic helicity. For initially helical magnetic fields Cε is further

quenched if Hc 6= 0. In view of nonuniversality, an even larger variance of Cε,∞

can be expected once other parameters such as external forcing, plasma β, Pm,

etc., are taken into account. Here attention is restricted to nonuniversality caused

by different degrees of vector field correlations in view of their connection to self-

ordering effects as discussed in chapter 3.

4.4.3 Stationary MHD turbulence

Figure 4.2 shows error-weighted fits of eq. (4.44) to DNS data. As can be seen,

eq. (4.44) fits the data very well, provided terms of second order in R− are

included. For R− > 80, it is sufficient to consider terms of first order in R−

only. The asymptote has been calculated to be Cε,∞ = 0.223 ± 0.003, where

the error is obtained from the fit. Furthermore, the figure shows that the result

is independent of the forcing scheme, as the datasets obtained from simulations

using the three different forcing functions are consistent with each other. This

is likely to change if the strategy of energy input is fundamentally changed, for

example if an electromagnetic force is used or the system is forced at the small

scales. The independence of Cε of the forcing scheme established here only shows

independence of the specific implementation of the forcing.
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Figure 4.1 The solid and dotted and dash-dotted lines show eq. (4.44) fitted to
helical, non-helical and cross-helical DNS data, respectively. The red
(grey) lines refer to fits using eq. (4.44) up to first order, while the
black lines use eq. (4.44) up to second order in 1/R−. As can be
seen, the respective asymptotes differ for the data sets.

4.5 Discussion and conclusions

The behaviour of the dimensionless dissipation coefficient Cε in homogeneous

MHD turbulence with Pm = 1 and no background magnetic field is given by

Cε = Cε,∞ +
C

R−
+

D

R2
−

+O(R−3
− ) . (4.55)

This equation was derived from the energy balance equations for z± in real

space by outer asymptotic expansions in powers of 1/R∓, leading necessarily to a

large-scale description of the behaviour of the dimensionless dissipation rate. The

approximative equation (4.55) has been shown to agree well with data obtained

from medium to high resolution DNSs of decaying and statistically steady MHD

turbulence sustained by large-scale forcing.
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Figure 4.2 The expression given in eq. (4.44) fitted to DNS data from the ND-
series. The red line shows a fit to data for R− > 80 to first order
in 1/R−, the black line results from a fit using all data points and
including terms up to second order in 1/R−. The error bars show
one standard error.

The asymptote in the limit R− → ∞ comes from the sum of the nonlinear

terms in the momentum and induction equations, that is, it measures the total

transfer flux, which is expected to depend on the values of the ideal invariants.

As predicted, the values of the respective asymptotes from the datasets differ,

suggesting a dependence of Cε,∞ on different values of the helicities, and thus

a connection to the questions of universality and self-organisation in MHD

turbulence. For maximally helical magnetic fields Cε,∞ is larger than for

nonhelical fields. This is expected from the inverse cascade of magnetic helicity.

The dependence of Cε,∞ on the remaining ideal invariant, the cross-helicity, is

more complex. Since Cε,∞ describes the flux of total energy across the scales,

this flux is expected to diminish for increasing cross-helicity. This is indeed the

case for helical magnetic fields, where Cε,∞ depends on the cross-helicity in the

expected way. Surprisingly, for nonhelical magnetic fields Cε,∞ does not depend

on the cross-helicity. This is consistent with the asymmetric effect of the cross-
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helicity on forward and reverse fluxes of total energy suggested by the analysis of

triad interactions in chapter 3, where high levels of cross-helicity quench forward

transfer more than reverse transfer.

The numerical results also showed that Cε,∞ is universal with respect to different

forcing schemes applied to the same field in the same wavenumber range, thus

confirming that the particular functional form of a large-scale force is irrelevant to

the small-scale turbulent dynamics as long as the ideal invariants remain the same

for the different forcing schemes. However, this may not be the case for forces

applied at smaller scales. The analysis presented here relies on taking outer

asymptotic expansions of all scale-dependent functions in the energy balance

equation, including the energy input from the forcing. Here it was crucial to

assume that the system was forced at the large scales, as the limit of infinite

Reynolds number was defined as energy input at the lowest wavenumbers k → 0

and removal of energy at the largest wavenumbers k →∞. This clearly precludes

the application of the present analysis to situations where the system is forced at

intermediate or small scales. Therefore, it can be expected that systems forced

at intermediate scales deviate from the 1/R−-scaling of Cε. For hydrodynamics,

this seems to be the case.

In hydrodynamics, mathematically rigorous bounds have been derived for

sufficiently smooth forcing functions from the existence of weak solutions of the

Navier-Stokes equations [55, 57], where it was necessary to assume that the force

function was square-integrable with square-summable Fourier coefficients [54].

The resulting bound for the dimensionless dissipation rate was

Cε 6 C1 +
C2

Re
, (4.56)

where C1 and C2 are constants depending on the shape (i.e. the wavenumber-

dependence) of the forcing function [55]. This inequality is consistent with the

large-scale analysis presented here when applied to hydrodynamic turbulence

[121]. The constants C1 and C2 diverge for less well-behaved forcing functions

[54], in particular, this may be the case for forces applied at the small scales

for which the asymptotic analysis presented here does not apply. However,

weak solutions of the Navier-Stokes equation still exist for less regular (rougher)

forcing functions, leading not to an unbounded dissipation rate but to a different

Reynolds number scaling. In particular, this applies to forces acting at the small

scales [54]. Bounds for the energy dissipation rate have been derived for forces
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which are not square-integrable [34] and indeed lead to a different prediction

for the Reynolds number dependence of the dimensionless dissipation rate for

hydrodynamic turbulence sustained by rough forces, which is consistent with

results from numerical simulations using fractal forcing functions [17, 54, 118].

In view of the inverse cascade of magnetic helicity, there is growing interest in

small-scale forcing in MHD turbulence, for which a large-scale asymptotic analysis

is not directly applicable, as discussed above. Therefore it may be of interest to

extend the mathematically rigorous results obtained in hydrodynamics to MHD

in order to gain insight into the many interesting flow configurations making up

the complex problem of MHD turbulence. Some basic results in this direction

are presented in the next chapter.

The results presented here were restricted to the simplest cases of homogeneous

MHD turbulence. In the general case in plasmas there will be a mean magnetic

field, which leads to spectral anisotropy and the breakdown of the conservation of

magnetic helicity [117]. This might introduce several difficulties to be overcome

when generalising this method, as the spectral flux will then depend on the

direction of the mean field [182, 183] and a more generalised description and

role for the magnetic helicity would be needed. Other questions concern the

generalisation of this approach to MHD flows with magnetic Prandtl numbers

Pm 6= 1, the influence of other vector field correlations on the dissipation rate,

the effect of compressive fluctuations, as well as to turbulent systems where the

flow carries other quantities such as temperature, pollutants or additives.
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Chapter 5

Bounds on the dissipation rates

Rigorous estimates for the dimensionless dissipation coefficient Cε,u in hydrody-

namics have been derived using the existence of weak solutions of the Navier-

Stokes equations [55, 57, 71]. In order to derive these estimates, it is assumed

that the flow is maintained by an external body force f , which needs to satisfy

certain regularity conditions and may or may not be time-dependent. The MHD

equations also have weak solutions, therefore it should be possible to derive

estimates for the dissipation rate of total energy for MHD by a very similar

method.

In this chapter the results obtained in hydrodynamics are extended to MHD. In

order to facilitate a comparison to the results of the approximate methods put

forward in chapter 4, the MHD equations are analysed in the Elsässer formulation.

This also permits a straightforward extension of the results on the dissipation rate

of total energy to the dissipation rate of cross-helicity. As in the rest of this thesis,

it is assumed that no background magnetic field is present.

5.1 Notation and definitions

This chapter is different in nature from the rest of this thesis and requires

mathematical concepts and definitions which are not used elsewhere. In order to

keep the material compact and accessible, these relevant concepts are introduced

here.
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As in chapter 3, the MHD equations are considered on a three-dimensional domain

Ω = [0, L]3 with periodic boundary conditions and sufficiently well-behaved initial

conditions to allow weak solutions. A weak solution to a partial differential

equation (PDE) is a solution of the corresponding integral equation where all

derivatives act on test functions, which are by definition infinitely many times

differentiable. That is, weak solutions solve a given PDE in the distributional

sense, they may not be differentiable and are usually not unique.

Physically reasonable solutions of the Navier-Stokes equations are required to

have finite kinetic energy and finite mean square vorticity, while physically

reasonable solutions of the MHD equations also require finiteness of the magnetic

energy and the mean square current. In mathematical terms, this can be

formulated by requiring the appropriate norms

||u||2 ≡ (u,u)1/2 =

(∫
Ω

dx |u(x, t)|2
)1/2

, (5.1)

||u||H1 ≡ (u,u)
1/2

H1 =

(∫
Ω

dx |∇u(x, t)|2
)1/2

, (5.2)

to be finite, where the inner products on the respective function spaces are given

by

(u,v) ≡
∫

Ω

dx u(x, t) · v(x, t) , (5.3)

(u,v)H1 ≡
∫

Ω

dx ∂jui(x, t)∂jvi(x, t) . (5.4)

The first norm, ||·||2, is the familiar L2-norm, where ||u||22 essentially describes the

total kinetic (or magnetic) energy. The square of the norm on the Sobolev space

H1 describes the mean square vorticity and the mean square current, provided

the vector fields have zero spatial mean which is the case here. Therefore || · ||2
and || · ||H1 are the natural choices for the mathematical study of fluid flows. Two

additional norms are required for particular steps using the Hölder inequality,

these are the L1-norm and the L∞ norm, defined as

||u||1 ≡
∫

Ω

dx |u(x, t)| , (5.5)

||u||∞ ≡ sup
x∈Ω
|u(x, t)| . (5.6)

In the statistical approach to turbulence, the dissipation rates are given as time
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or ensemble averages. The time average can be put on rigorous mathematical

grounds by considering statistical solutions to the Navier-Stokes and MHD

equations [71], and a long-time average can be defined. A proper definition of a

statistical solution and the corresponding time average requires the introduction

of measure spaces and a reformulation of the notion of weak solutions in terms

of probability measures. For reasons of clarity and conciseness this is not carried

out here, the necessary mathematical details can be found in the book by Foias

et al. [71]. The long-time average is denoted by 〈·〉t in this chapter.

The arguments presented in the following sections use several functional inequal-

ities in order to derive the bounds. These are Hölder’s inequality, Grönwall’s

inequality and the Cauchy-Schwarz inequality. Hölder’s inequality states that for

functions v ∈ Lp(Ω)3 and w ∈ Lq(Ω)3 with 1/p+ 1/q = 1

||v ·w||1 6 ||v||p ||w||q , (5.7)

where the p-norm for 6 p <∞ is given by

||v||p ≡
(∫

Ω

dx |v|p
)1/p

. (5.8)

The Hölder inequality also holds for the L∞ norm, that is

||v ·w||1 6 ||v||∞ ||w||1 . (5.9)

Grönwall’s inequality asserts that for functions u, v and w the inequality

dtu(t) 6 u(t)v(t) + w(t) implies

u(t) 6 u(0) exp

(∫ t

0

ds v(s)

)
+

∫ t

0

ds w(s) exp

(∫ t

s

ds′ v(s′)

)
. (5.10)

The Cauchy-Schwarz inequality, which follows from the Hölder inequality for

p = q = 1, states that for v,w ∈ L2(Ω)3

|(v,w)| 6 ||v||2 ||w||2 . (5.11)
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5.2 Weak solutions on periodic domains

In 1934 Leray established the existence of weak solutions of the Navier-Stokes

equation in three spatial dimensions for square-integrable sufficiently regular

initial conditions and external forces [109] (see also [44, 56, 71, 106]). These

weak solutions are square-integrable and the existence result is valid for the 3D

torus as well as for the whole space R3 with the appropriate boundary conditions.

The analogous result has been obtained for the incompressible MHD equations

in the primary variables [63, 75], which carries over to the Elsässer formulation.

Regarding the external force, sufficiently regular usually means that the Fourier

coefficients of the force and its spatial derivatives are bounded at all times, that

is, f± ∈ L2(Ω)3 and

sup
t>0
||(−∆)−1/2f±||22 = L3 sup

t>0

∑
k 6=0

1

|k|2
|f̂±(k, t)|2 <∞ . (5.12)

Furthermore, the forces must be solenoidal at all times.

In summary, given sufficiently regular initial conditions z±0 ∈ L2(Ω)3 and external

forces f± with the aforementioned properties, it is possible to find vector fields

z± ∈ L2(Ω)3 such that for all test functions ϕ ∈ C∞(Ω) and all solenoidal (test)

vector fields v ∈ C∞(Ω)3, which have compact support in time,∫ ∞
0

dt

∫
Ω

dx z± · ∂tv + z± · (∇v) · z∓ + (ν+z
± + ν−z

∓) ·∆v

+

∫ ∞
0

dt

∫
Ω

dx f± · v +

∫
Ω

dx z±0 (x) · v(x, 0) = 0 , (5.13)

and ∫ ∞
0

dt

∫
Ω

dx z± · ∇ϕ = 0 , (5.14)∫ ∞
0

dt

∫
Ω

dx f± · ∇ϕ = 0 . (5.15)

As z± are not necessarily differentiable, any occurrence of a derivative acting on

z± in this chapter is understood as short-hand notation for the derivatives acting

in the distributional sense on test functions.
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All solutions z± of eqs. (5.13) - (5.15) satisfy the energy inequality

1

2
dt

(
||z−||22 + ||z−||22

)
6− ν+(||∇z+||22 + ||∇z−||22)

− ν−
∫

Ω

dx
[
(z+ ·∆z−) + (z− ·∆z+)

]
+

∫
Ω

dx
(

(f+ · z+) + (f− · z−)
)
, (5.16)

which is an equality for strong solutions (if they exist). Physically reasonable weak

solutions should saturate this inequality as otherwise the total energy would not

be conserved. Weak solutions which saturate eq. (5.16) also satisfy the following

equality for the cross-helicity evolution

1

2
dt

(
||z+||22 − ||z−||22

)
=− ν+(||∇z+||22 − ||∇z−||22)

− ν−
∫

Ω

dx
[
(z+ ·∆z−)− (z− ·∆z+)

]
+

∫
Ω

dx
(

(f+ · z+)− (f− · z−)
)
. (5.17)

In the same way as for the Navier-Stokes equations, Grönwall’s inequality (5.10)

applied to eq. (5.16) and eq. (5.17) guarantees that the time-derivatives are

uniformly bounded, therefore the long-time average 〈·〉t of the respective time-

derivative vanishes in eq. (5.16) and eq. (5.17), leading to

L3ε =
〈
−ν+(||∇z+||22 + ||∇z−||22)− ν−(||∇z+ +∇z−||22 − ||∇z− −∇z+||22)

〉
t

6

〈∫
Ω

dx
(

(f+ · z+) + (f− · z−)
)〉

t

6 〈||f+||2 ||z+||2〉t + 〈||f−||2 ||z−||2〉t , (5.18)

which again would be an equality for strong solutions (if they exist). Similarly,

for the cross-helicity

L3|εHc | =|
〈
ν+(||∇z+||22 − ||∇z−||22) + ν−(||∇z+ +∇z−||22 + ||∇z− −∇z+||22)

〉
t
|

6

∣∣∣∣〈∫
Ω

dx
(

(f+ · z+)− (f− · z−)
)〉

t

∣∣∣∣
6 〈||f+||2 ||z+||2〉t + 〈||f−||2 ||z−||2〉t , (5.19)

where the absolute value of εHc needs to be considered, since the cross-helicity is

not positive definite.
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The aim is now to estimate the L2-norms of the forces with a view of extracting a

dependence on the characteristic quantities describing the system. These are the

dissipation parameters ν±, characteristic length scales associated with the forces

and the rms values of the Elsässer fields.

5.3 Estimating the forces

Characteristic length scales of the forces f± can be defined with respect to the

Laplacian acting on the forces. In order to do this while requiring as little as

possible in terms of additional constraints on the forces, the length scales Lf,±

can be defined as

Lf,± =

(
〈||(−∆)−1/2f±||2〉t
〈||(−∆)1/2f±||2〉t

)1/2

, (5.20)

following Ref. [71]. The forces f± have been assumed to lie in the domain

of the operator (−∆)−1/2 by eq. (5.12) and are further assumed to obey

||(−∆)1/2f±||2 <∞ at all times, such that the above definition is possible. The

L2-norm of (−∆)−1/2f± can be expressed as an inner product

||(−∆)−1/2f±||22 = ((−∆)−1/2f±, (−∆)−1/2f±) = (f±, (−∆)−1f±) , (5.21)

which motivates the next step, that is, to take the inner product of the MHD

equations with (−∆)−1f±, in order extract the length scale Lf,±. The resulting

equation reads

1

2

(
dt(z

±, (−∆)−1f±)− (z±, ∂t(−∆)−1f±)
)

= −ν+(z±,f±)− ν−(z∓,f±)

−
∫

Ω

dx (−∆)−1f± · (z∓ · ∇)z± + (f±, (−∆)−1f±) , (5.22)

where in the penultimate term on the RHS a spatial derivative acts on z∓, which

introduces an unknown length scale. This can be remedied by integrating this

term by parts resulting in

−
∫

Ω

dx (−∆)−1f± · (z∓ · ∇)z± =

∫
Ω

dx z± · (z∓ · ∇)(−∆)−1f± , (5.23)

where all spatial derivatives now act on the forces. The surface terms which arise

in the integration by parts are not present since z± and f± vanish at the boundary

∂Ω. It is this and other integrations by parts where a background magnetic field,
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which by definition does not vanish at the boundary, poses problems.

The next step consists of obtaining an estimate on the L2-norm of the forces

from eq. (5.22). The argument proceeds similarly to the derivation of eq. (5.18),

where Grönwall’s inequality (5.10) implied that the kinetic energy was uniformly

bounded in time such that the long-time average of the time derivative vanishes.

Since the force was assumed to be bounded in time, and the Elsässer fields are

bounded as a consquence of the energy inequality, the long-time average of all

terms involving a time-derivative must vanish, hence

〈||(−∆)−1/2f±||22〉t 6 〈ν+(z±,f±) + ν−(z∓,f±)〉t

+

〈∫
Ω

dx z± · (z∓ · ∇)(−∆)−1f±
〉
t

. (5.24)

The dissipative terms on the RHS can be estimated by the Cauchy-Schwarz

inequality (5.11)

ν+(z±,f±) 6 ν+||z±||2 ||f±||2 (5.25)

ν−(z∓,f±) 6 |ν−| ||z∓||2 ||f±||2 , (5.26)

while for the last term on the RHS the Hölder inequality (5.7) is applied twice to

obtain∫
Ω

dx z± · (z∓ · ∇)(−∆)−1f± 6 ||∇(−∆)−1f±||∞ ||z± · z∓||1

6 ||∇(−∆)−1f±||∞ ||z±||2||z∓||2 . (5.27)

Combining these results leads to

〈||(−∆)−1/2f±||22〉t 6 ν+〈||z±||2 ||f±||2〉t + |ν−|〈||z∓||2 ||f±||2〉t
+ 〈||∇(−∆)−1f±||∞ ||z±||2 ||z∓||2〉t . (5.28)

Now the derivatives of the forces need to be determined with a view of making the

dependence on the characteristic scale of the forces explicit. Following Doering

and Foias [55], the forces f± are decomposed into an amplitude F± and a shape

function φ±, such that

f±(x, t) = F±φ±(x/Lf,±, t) , (5.29)

where most importantly the force is time-dependent but it acts at the same
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characteristic length scale Lf,± at all times. This mimicks practise in numerical

simulations, where the forcing is applied in a fixed range of wavenumbers and may

or may not be time-dependent. In most numerical work the time-dependence of

the force is given by the evolution of phase factors, in other words, it is contained

in the shape function and not in the amplitude F±. Alternatively, the amplitude

could be time-dependent while the shape function is constant. In order to conform

with numerical simulations, here it is assumed that the amplitude F± is constant

and that the shape function depends on time. The distinction is important since

the long-time average of the ||f±||2 is taken, and if both F± and φ± are time-

dependent the time average 〈||f±||2〉t may not factorise in 〈F±〉t〈||φ±||2〉t, which

is necessary in one step of the argument. The shape function is further restricted

by the requirement ||∇(−∆)−1φ±||∞ <∞ at all times.

Using the Fourier representation φ̂± of the shape function φ±, the dependence

of ||(−∆)−1/2f±||22 on Lf,± can be made explicit

||(−∆)−1/2f±||22 =

∫
Ω

dx f± · (−∆)−1f± = F 2
±L

2
f,±L

3
∑
k 6=0

|φ̂±(k, t)|2

k2

= F 2
±L

2
f,±L

3C1,± , (5.30)

where

C1,± ≡
∑
k 6=0

|φ̂±(k, t)|2

k2
, (5.31)

which is finite, since the forces were assumed to satisfy eq. (5.12). Similarly, Lf,±

can be extracted from the L∞-norm of ∇(−∆)−1f±, that is

||∇(−∆)−1f±||∞ = F±||∇(−∆)−1φ±(x/L±f , t)||∞ = F 2
±L

2
f±L

−1
f,±||∇(−∆)−1φ±||∞

= F±Lf,±D± , (5.32)

where D± ≡ ||∇(−∆)−1φ±||∞ . Combining the two estimates then gives

F 2
±〈C1,±〉tL2

f±L
3 6ν+F±〈||z±||2 ||φ±||2〉t + |ν−|F±〈||z∓||2 ||φ±||2〉t

+ F±Lf±〈D±||z±||2 ||z∓||2〉t , (5.33)
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which can be rearranged to

F± 6
1

L3
ν+
〈||z±||2 ||φ±||2〉t
L2
f±〈C1,±〉t

+
1

L3
|ν−|
〈||z∓||2 ||φ±||2〉t
L2
f±〈C1,±〉t

+
1

L3

〈D±||z±||2 ||z∓||2〉t
L2
f±Lf±

. (5.34)

5.4 Estimating the dissipation rates

For the next step is it useful to recall the estimation of the dissipation rate from

the energy inequality

ε 6
1

L3
〈||f+||2 ||z+||2〉t +

1

L3
〈||f−||2 ||z−||2〉t

=
1

L3
F+〈||φ+||2 ||z+||2〉t +

1

L3
F−〈||φ−||2 ||z−||22〉t , (5.35)

which can be further estimated by applying the bounds on F± given in eq. (5.34)

ε 6
1

L6
ν+
〈||z+||2 ||φ+||2〉2t
L2
f,+〈C1,+〉t

+
1

L6
|ν−|
〈||z−||2 ||φ+||2〉t 〈||z+||2 ||φ+||2〉t

L2
f,+〈C1,+〉t

+
1

L6
ν+
〈||z−||2 ||φ−||2〉2t
L2
f,−〈C1,−〉t

+
1

L6
|ν−|
〈||z+||2 ||φ−||2〉t〈||z−||2 ||φ−||2〉t

L2
f,−〈C1,−〉t

+
1

L6

〈D+||z+||2 ||z−||2〉t〈||z+||2 ||φ+||2〉t
Lf,+〈C1,+〉t

+
1

L6

〈D−||z−||2 ||z+||2〉t〈||z−||2 ||φ−||2〉t
Lf,−〈C1,−〉t

. (5.36)

Using the definition of the spatial rms values of the Elsässer fields

z± ≡
(

1

L3

∫
Ω

dx |z±|2
)1/2

=
1

L3/2
||z±||2 , (5.37)

115



it becomes evident that the estimate of the energy dissipation rate ε does not

depend on the system size, and the estimate can be written more concisely

ε 6 ν+
〈(z+)2 C0,+〉t
L2
f,+〈C1,+〉t

+ |ν−|
〈z−
√
C0,+〉t〈z+

√
C0,+〉t

L2
f,+〈C1,+〉t

+ ν+
〈(z−)2 C0,−〉t
L2
f,−〈C1,−〉t

+ |ν−|
〈z−
√
C0,−〉t〈z+

√
C0,−〉t

L2
f,−〈C1,−〉t

+
〈D+z

+z−〉t〈z+〉t
Lf,+〈C1,+〉t

+
〈D−z+z−〉t〈z−〉t
Lf,−〈C1,−〉t

, (5.38)

where

C0,± ≡ ||φ±||22/L3 =
∑
k 6=0

|φ̂±|2 . (5.39)

All time averages of the form 〈(z+)2 C0,+〉t can be bound from above by taking

the supremum of the respective coefficients C0,± and D±, such that for example

〈(z+)2 C0,+〉t 6 〈(z+)2〉t supt>0C0,+. Equation (5.38) can thus be bounded from

above and expressed more compactly by defining the coefficients

A± ≡
supt>0C0,±(t)

〈C1,±〉t
and B± ≡

supt>0D±(t)

〈C1,±〉t
, (5.40)

which results in

ε 6 ν+
〈(z+)2〉
L2
f,+

A+ + |ν−|
〈z−〉t〈z+〉t
L2
f,+

A+ + ν+
〈(z−)2〉t
L2
f,−

A− + |ν−|
〈z+〉t〈z−〉t
L2
f,−

A−

+B+
〈z+z−〉t〈z+〉t

Lf,+
+B−

〈z+z−〉t〈z−〉t
Lf,−

. (5.41)

In order to express this estimate in terms of dimensionless parameters, generalised

Reynolds numbers are defined similarly to eq. (4.29)

R∓ =
〈z∓〉tLf,±

ν+

and R′± =
〈z±〉tLf,±
|ν−|

, (5.42)

where the only difference to the definition given in eq. (4.29) is the length scale

used. The generalised Reynolds numbers relate to each other by

R+ =
〈z+〉tLf,−
〈z−〉tLf,+

R− and R′− =
〈z−〉tLf,−
〈z+〉tLf,+

R′+ , (5.43)
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such that ε can be estimated in terms of the generalised Reynolds numbers

ε 6
〈z+z−〉t〈z+〉t

Lf,+

(
B+ +

A′+
R−

)
+
〈z+z−〉t〈z−〉t

Lf,−

(
B− +

A′−
R−

[
〈z−〉t
〈z+〉t

Lf,+
Lf,−

])
+
〈z−〉2t 〈z+〉t

Lf,+

A+

R′+
+
〈z+〉2t 〈z−〉t

Lf,+

A−
R′+

[
〈z−〉t
〈z+〉t

Lf,−
Lf,+

]
, (5.44)

where A′± ≡ (A±〈z+〉t〈z−〉t)/(〈z+z−〉t). This inequality is the main result of

this chapter and applies to the most general case of MHD flows on the 3D-torus

without any restrictions regarding the magnetic Prandtl number. In the limit

ν → 0 and η → 0, the residual dissipation rate is thus bounded by

ε 6
〈z+z−〉t〈z+〉t

Lf,+
B+ +

〈z+z−〉t〈z−〉t
Lf,−

B− . (5.45)

This procedure also results in a very similar estimate for the cross-helicity

dissipation rate

|εHc | 6
〈z+z−〉t〈z+〉t

Lf,+

(
B+ +

A′+
R−

)
+
〈z+z−〉t〈z−〉t

Lf,−

(
B− +

A′−
R−

[
〈z−〉t
〈z+〉t

Lf,+
Lf,−

])
+
〈z−〉2t 〈z+〉t

Lf,+

A+

R′+
+
〈z+〉2t 〈z−〉t

Lf,+

A−
R′+

[
〈z−〉t
〈z+〉t

Lf,−
Lf,+

]
, (5.46)

which is derived from eq. (5.19) using the estimates of F± given in eq. (5.34).

Again, since the cross-helicity is not positive definite, care has to be taken with

the estimates, and eq. (5.46) is only valid for weak solutions of the MHD equations

which saturate the energy inequality.

5.5 Special cases

Equation (5.44) simplifies for specific cases, the most relevant are f+ and f−

acting on the same scales, while not necessarily having the same magnitude or

shape function, for example in the case of mechanical forces where f− = f+.

Another simplifying case is Pm = 1, for which ν− = ν − η = 0.
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5.5.1 Mechanical and electromagnetic forcing

For mechanical forcing f− = f+ while for electromagnetic forcing f− = −f+,

as such in both cases there is a single length scale Lf and a single parameter

F+ = F− = F associated with the force. This results in the generalised Reynolds

numbers relating to each other only through the ratios of the rms Elsässer fields.

For the coefficients one obtains in the case A+ = A− = A, B+ = B− = B and

A′+ = A′− = A′, such that the estimate for the dissipation rate simplifies to

ε 6

(
〈z+z−〉t〈z+〉t

Lf
+
〈z+z−〉t〈z−〉t

Lf

)
B

+
〈z+z−〉t〈z+〉t

Lf

A+ A′

R−
+
〈z+z−〉t〈z−〉t

Lf

A+ A′

R′+
. (5.47)

and in the ideal limit one obtains

ε 6

(
〈z+z−〉t〈z+〉t

Lf
+
〈z+z−〉t〈z−〉t

Lf

)
B . (5.48)

5.5.2 Pm = 1

This case is particularly simple, since the dependence of ε on the generalised

Reynolds number R′+ disappears

ε 6
〈z+z−〉t〈z+〉t

Lf,+

(
B+ +

A′+
R−

)
+
〈z+z−〉t〈z−〉t

Lf,−

(
B− +

A′−
R−

[
〈z−〉t
〈z+〉t

Lf,+
Lf,−

])
.

(5.49)

5.6 Discussion and Conclusions

Equation (5.48) is very similar in structure to the definition of the dimensionless

dissipation rate Cε given eq. (4.23) in the previous chapter. Furthermore, the

dependence of Cε in eq. (4.44) on the generalised Reynolds number R− is the

same as in eq. (5.49), taking into account that in chapter 4 R− was defined with

respect to the integral scale of z+ and not with respect to the external force.

Similar to hydrodynamics, there are thus two ways at arriving at very similar

expressions for the dimensionless dissipation coefficient. The method proposed
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in chapter 4 resulted in an approximate equation while the second method

described here results in a rigorous bound. In that sense the two approaches

are complementary. Furthermore, it is interesting to see that the coefficients

Cε,∞ and B, which describe the asymptotes obtained by the respective methods,

are given by different quantities. In the first case, Cε,∞ was related to the third-

order longitudinal structure function in the infinite Reynolds number limit, while

in the second case B is given by the ratio of the L∞-norm to the L2-norm of

the shape function describing the spatial form of the external force. That is, the

forward flux of energy across the scales is bounded from above by a quantity

related to the regularity and type of the force. As such it may be possible to

devise a particular type of force which minimises the forward flux of energy, thus

leading to a suppression of nonlinear mixing and therefore of turbulence.

Systems only showing inverse transfer (i.e. self-organising systems) should be

regular, since in these cases the asymptote of the forward flux vanishes in the

infinite Reynolds number limit. As mentioned in chapter 3, this has been

rigorously proven to be the case for the Navier-Stokes equation with dynamics

projected onto the one of the eigenspaces corresponding to nonzero eigenvalues of

the curl operator Ik(·), that is, projected onto one helicity eigenspace. Therefore

there may be external forces which ‘regularise’ the system by restricting the

dynamics to evolve mostly in one helicity eigenspace. For the MHD equations

with electromagnetic forcing only, Dallas and Alexakis [51] showed that a fully

helical electromagnetic force acting on a particular length scale led to an estimate

for the dissipation rate of total energy which vanishes in the limit η → 0. The

same argument may be applicable to the Navier-Stokes equations subject to a

fully helical mechanical force. Fully helical forces acting on a particular length

scale are Beltrami fields, therefore another connection between Beltrami fields

and the suppression of turbulence has been found, now in terms of Beltrami-type

forces. This will become more apparent in the next chapter in the context of

relaminarisation events.
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Chapter 6

Relaminarisation of isotropic

turbulence

In parallel wall-bounded shear flows such as flow in a pipe or a channel the

transition to turbulence does not occur due to a linear instability of the laminar

profile, which poses difficulties in understanding how the transition to turbulence

proceeds in these systems. However, recent years have seen significant advances

in the understanding of this transition, which turns out to be much more complex

than the transition to turbulence in other flows which do have linear instabilities.

In contrast to turbulence in wall-bounded shear flows, stationary isotropic

turbulence, that can be thought of as a turbulent flow far away from boundaries

[135], is believed to exhibit much simpler dynamics: its motion is turbulent for

all Reynolds numbers and there is no actual transition. This chapter reports

evidence for an unexpected connection between isotropic turbulence and wall-

bounded parallel shear flows: at low Reynolds number isotropic turbulence can

suddenly collapse onto a large-scale flow (i.e. relaminarise), and the statistical

signature of these relaminarisation events is very similar to established results in

relaminarisation of wall-bounded parallel shear flows.

Sudden breakdowns of the turbulent dynamics in favour of a much simpler state

are observed in DNSs of stationary isotropic turbulence at moderately large1

Reynolds numbers, with the asymptotic state given by a large-scale Beltrami

flow. A detailed study of the nature of this self-ordering process shows that

1The analysis does not concern Stokes flow, that is, although the Reynolds number may be
considered low they are greater than unity.
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it is analogous to the relaminarisation events in wall-bounded parallel shear

flows. Forced isotropic turbulence at relatively low Reynolds numbers is therefore

transient and the rate of its collapse is constant in time, resulting in exponentially

distributed lifetimes of the turbulent state similar to pipe [7, 9, 66, 86] and plane

Couette flow [24, 161, 164].

Before presenting results, the background material and recent developments on

relaminarisation and transition to turbulence in parallel wall-bounded shear flows

is summarised in order to facilitate the understanding of the presented results in

this context.

6.1 Relaminarisation and transition to turbulence

in wall-bounded shear flows

As outlined in chapter 1, localised turbulence in wall-bounded parallel shear

flows can suddenly relaminarise. Relaminarisation events have been explained by

dynamical systems theory as the escape from a chaotic saddle in state space with

a constant (time independent) rate of escape [29, 64–66, 141]. More precisely, it

has been found that relaminarisation is a memoryless process, that is, it does not

depend on the amount of time the system has spent in the turbulent region of the

state space. The characteristic timescale associated with this process increases

with Reynolds number as a double exponential [84], which implies that there is

always a finite probability of relaminarisation, even at high Reynolds numbers:

localised turbulence in parallel wall-bounded shear flows is transient.

At first sight the transient nature of turbulence is at odds with ubiquitous

observations of sustained turbulence at high Reynolds numbers. In fact,

relaminarisation of localised turbulence is not the only process at work in parallel

shear flows. The transition to sustained turbulence occurs due to the presence

of a competing process: the splitting of a locally turbulent region into two [7].

This process also has a characteristic timescale which decreases with Reynolds

number as a double exponential [7]. The critical Reynolds number for sustained

turbulence is then defined as the point where the two timescales are equal

[7], marking the point where it is equally probable for localised turbulence to

relaminarise or to proliferate. In pipe flow this occurs at a Reynolds number

of about 2040 [7], for other types of shear flows such as plane Couette flow or
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counter-rotating Taylor-Couette flow this number will be different.

Since a critical point for the transition to sustained turbulence has been identified,

immediate questions about the nature of the transition arise. Turbulence is

a driven-dissipative system and as such far from equilibrium, therefore it is

natural to ask whether the transition to sustained turbulence may fall into one

of the known universality classes of nonequilibrium phase transitions. Recent

research suggests that the transition to sustained turbulence in parallel shear

flows constitutes a second-order nonequilibrium phase transition belonging to

the Directed Percolation universality class [108, 164, 165, 167]. Spatio-temporal

visualisations of localised turbulence show remarkable similarities to percolation

models, allowing identification of spatial and temporal correlation lengths as well

as the fraction of ‘occupied sites’. Hence much effort is put into measurement

of critical exponents close to the critical point for different parallel shear flows.

Depending on the type of flow this poses considerable difficulty. For example the

aspect ratio of pipes needed to resolve the dynamics near the critical Reynolds

number is very large, leading to prohibitively long pipe lengths. Very recently,

critical exponents have been measured in plane Couette flow which are in close

agreement with the values predicted for the Directed Percolation universality

class [108].

There is mounting evidence that the transition scenario that has been developed

for parallel shear flows may be more generally applicable. For example, a cellular

automaton model of nucleation of turbulent spots in boundary layers based on

a Directed Percolation model has reproduced results from numerical simulations

of the full system to remarkable accuracy [173], thus connecting boundary layer

transition with the Directed Percolation picture of the transition to turbulence

in wall-bounded shear flows. The results presented in this chapter suggest that

certain periodic flows may show a similar type of transition to turbulence.

6.2 Observations from DNS

The dynamical system under consideration consists of the incompressible Navier-

Stokes equation together with the large-scale force f1 as defined in chapter 2.

Random initial conditions for the velocity field with a prescribed energy spectrum

are constructed as described in chapter 2 with negligible initial kinetic helicity.

This system was stepped forward in time using the standard fully de-aliased
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pseudospectral method [187] on a three-dimensional periodic domain of length

Lbox = 2π with the smallest wavenumber being kmin = 2π/Lbox = 1.

The functional form of the large-scale forcing function f1 as defined eq. (2.1) is

restated here for convenience

f̂(k, t) = (εW/2Ef )û(k, t) for 0 < |k| < kf ;

= 0 otherwise. (6.1)

At wavenumbers kmin 6 k 6 kf = 2.5 the Fourier transform û of the velocity field

is normalised by the energy content Ef in this wavenumber band and subsequently

rescaled by the energy input rate εW . This has the advantage that the energy

input is known at the start of the simulation and can be held constant while

other parameters such as the viscosity may be varied. Here εW has been set to

εW = 0.1 for all simulations.

This forcing provides an energy input that does not prefer any particular direction

and has a complicated, time-dependent spatial profile. The choice kf = 2.5

corresponds to 80 possible wavevectors and thus 80 different velocity field modes

are being forced. This type of energy input is commonly used in numerical

investigations of homogeneous isotropic turbulence [90, 92, 121, 123, 186], the

prime example being the series of high-resolution simulations of Kaneda et al. [91].

It has been studied theoretically by Doering and Petrov [57], leading to bounds

on the dissipation rate similar to those presented in chapter 5.

The simulations are evolved for 1271 initial large-eddy turnover times t0 = L/U ,

where U denotes the initial rms velocity and L is the initial integral length scale;

t0 = 0.78 in simulation units. The parameter that is varied in the simulations is

the kinematic viscosity ν changing from 0.1 to 0.055, and the results are presented

in terms of a system-scale Reynolds number Re = L
4/3
boxε

1/3
W /ν that ranges from

53.80 to 97.82 for different simulations; in each individual run, Re is kept constant

during the whole simulation. The system-scale Reynolds number is used instead

of a Reynolds number based on one of the usual length scales characteristic

to turbulence, since this allowed the systematic change of only one parameter.

Furthermore, as alluded to in the introduction, turbulence collapses during the

simulations, that is a Reynolds number based on the the integral scale L or the

Taylor microscale λ would not remain constant during the evolution of the flow.

In order to facilitate comparison to other simulations of isotropic turbulence,

the range of viscosities quoted above corresponds to the integral scale Reynolds
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numbers RL = 9.3 − 17.5 and the Taylor-Reynolds numbers Rλ = 7.7 − 13.5

during turbulent evolution. All simulations [176]2 are carried out using 323

collocation points where the product of the largest resolved wavenumber kmax

and the Kolmogorov lengthscale η is in the range of 2.85 6 kmaxη 6 1.82.

As mentioned above, the form of the forcing term employed here, eq. (2.1),

is routinely used in DNS of isotropic turbulence as its complicated spatial

form would seem to guarantee that the system is turbulent at any Reynolds

number larger than unity. Indeed, even at sufficiently low Reynolds numbers,

the simulations reach a turbulent stationary state, where the energy injection

is balanced by the average dissipation and there is motion at all length scales.

However, after staying in this steady state for a long time, the system exhibits a

transition to a different state, as shown, for example, in fig. 6.1 for Re = 76.86.

The figure shows the time evolution of the total energy of the system,

E(t) =

∫ kmax

kmin

dk E(k, t) , (6.2)

and the energy content of small scales,

E ′(t) =

∫ kmax

k>kmin

dk E(k, t) , (6.3)

as a function of time, where the largest scale in the system corresponds to kmin =

2π/Lbox = 1.

As fig. 6.1 demonstrates, the turbulent dynamics persists until about t/t0 ≈ 240.

After that, the total energy becomes constant and the small-scale fluctuations

in the kinetic energy produced by the characteristic turbulent cascade process

suddenly disappear. This implies that for t/t0 > 240 the kinetic energy is confined

to the largest scale of the system and no nonlinear transfer exciting the smaller

scales takes place. The system thus transitions from a turbulent to a large-

scale ‘laminar’3 state. This can also be seen in fig. 6.2, which shows streamlines

of the flow for two snapshots in time, one before and one after the collapse of

turbulence. The streamlines in the top image, which corresponds to the snapshot

taken in the turbulent flow state, are entangled and follow quite complicated

paths showing the complexity and disorder of the flow. For the snapshot taken

after relaminarisation shown in the bottom image, the streamlines appear to be

2Some of this data was generated and post-processed by Bernardas Jankauskas [89].
3In this context laminar means having the same spatial structure as the force with vanishing

nonlinearity.
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Figure 6.1 Time evolution of the total energy E(t) and the energy content of the
small scales E′(t) for Re = 76.86 normalised by the initial energy
E0. Time is given in units of initial large eddy turnover time t0 =
L/U , where U is the initial rms velocity and L the initial integral
scale. The point around t/t0 ≈ 240 when E′(t) vanishes and the
total energy becomes constant marks the onset of the self-organised
state as discussed in the main text.

nearly parallel to each other and no entanglement is visible, the flow is now in a

much simpler state.

The existence of such a large-scale state with vanishing nonlinearity can be

understood by considering a model velocity field with ux ∼ cos(y) while uy =

uz = 0. This flow profile is similar to a simple shear flow: it satisfies the

incompressibility condition, it does not produce any pressure gradient in the

system, and the non-linear term vanishes exactly for this profile. It is, therefore,

an exact solution of the equations of motion, eqs. (1.3)-(1.2), with its magnitude

being set by the injection rate εW and the kinematic viscosity ν. In general,

one can construct many exact solutions of the Navier-Stokes equations with

k = 1, similar to the model profile discussed above, for which the non-linear

term vanishes. What is surprising, however, is that this self-organised large-scale

state is dynamically connected to isotropic turbulence at sufficiently low Reynolds

numbers.

6.2.1 Discussion

Since the observed collapse of the small-scale turbulent fluctuations is surprising,

the results should be carefully tested and independently verified. Therefore a
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Figure 6.2 Top: Streamlines of the flow before the collapse of turbulence
showing the complexity and disorder of the flow. Bottom:
Streamlines of the flow after the collapse of turbulence. Compared
to the top panel the flow is now in a much simpler state.
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small number of test cases were run using the publicly available code hit3d [40,

41], which confirmed the self-organising behaviour of the fluid. Test simulations

were also carried out using a larger box size and at higher small-scale resolution.

The flow relaminarised in all test cases, further details of all test simulations are

included in appendix D. In summary, the observed relaminarisation of isotropic

turbulence, as modelled by the Navier-Stokes equations and the forcing f1, is

robust under increasing both small-scale and large-scale resolution, and has been

verified with a different code.

The results presented so far show that relaminarisation events occur in forced

isotropic turbulence at low Reynolds number as modelled by the Navier-Stokes

equation with the forcing as specified in eq. 2.1. One could infer that the observed

self-organising behaviour may thus be an artifact of this specific type of forcing

and as such of little relevance. It is certainly possible to construct external forces

which should preclude the formation of the observed large-scale ‘laminar’ flow,

as relaminarisation is only possible for forces f that actually allow a sustained

laminar state, that is, for which the nonlinear term vanishes exactly while the

energy input is balanced by the energy dissipation. Therefore any forcing function

that does not satisfy f × (∇× f) = 0 should suppress relaminarisation events.

The type of forcing given in eq. 2.1 (here re-stated in eq. 6.1) feeds the velocity

field back into the system at the large scales. If the flow is turbulent then nonlinear

mixing is active and the forcing function is unlikely to satisfy f × (∇ × f) = 0

because it is given by the turbulent velocity field restricted to the large(r) scales.

That is, there is no obvious reason for the flow to self-organise if sustained by this

type of energy input, and the numerous studies of isotropic turbulence cited above

confirm that a turbulent state is generally maintained by this type of forcing.

Nevertheless, at low Reynolds number the flow relaminarises. An important

consequence of the forcing function used here is that it does allow a laminar state

to form. This is because once the flow has self-organised the nonlinear coupling

of the different Fourier modes of the velocity field, and hence of the forcing

function, is no longer active. That is, the laminar flow cannot be destabilised by

the forcing. The observed relaminarisation should therefore be a consequence of

the flow dynamics, allowed by a forcing which cannot destroy the laminar state.

The observed relaminarisation process can proceed in two ways, either by

formation of a flow where ∇×u = 0 as for the example profile ux ∼ cos(y), uy =

uz = 0 mentioned in the previous section, or alternatively by formation of a large-
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scale Beltrami flow. This is studied in further detail in sec. 6.4, where properties

of the self-ordered state are discussed.

6.3 Statistical analysis of lifetimes in isotropic

turbulence and connection to wall-bounded

shear flows

As discussed in the introduction, relaminarisation events occur in wall-bounded

parallel shear flows and are well understood in terms of dynamical systems theory.

If the collapse of isotropic turbulence observed in the present DNSs shows similar

features to relaminarisation of wall-bounded parallel shear flows, the dynamical

systems picture of the transition to turbulence may be more generally applicable.

Furthermore, it would give further justification for the theoretical study of

isotropic turbulence (modelled by the Navier-Stokes equations and the forcing

f1) as a simplified system with important similarities to real-world turbulent

flows.

6.3.1 Statistics of relaminarisation events

At a fixed Reynolds number, the time of self-organisation (t/t0 ≈ 240 in the

example above) strongly depends on the initial conditions. This variability can

be investigated systematically by starting 100 runs with different initial conditions

for a fixed value of Re. In each simulation, the time-evolution of the total kinetic

energy E(t) and the dissipation rate ε(t) is monitored. In order to identify the

moment when the turbulent dynamics collapses onto the self-organised state, a

criterion is used which is based on the observation that since the kinetic energy in

the self-organised state is confined to modes with k = kmin = 1, the asymptotic

value E∞ for all individual runs in a given ensemble (at a given Re) can be

calculated from the energy input rate εW and ν. For statistically stationary flows

the energy input rate εW must equal the dissipation rate ε, hence the total energy

of the self-organised state is given by

E∞ = E(kmin) =
εW

2νk2
min

=
εW
2ν

= constant. (6.4)
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Figure 6.3 Survival probability as a function of the dimensionless time t/t0 from
the beginning of a simulation.

The data confirms that in every simulation, the total energy eventually reaches

the asymptotic value E∞, and the self-organisation time can be defined as the

time when E(t) = E∞.

The variability of the self-organisation times is then quantified by introducing

a survival probability PRe(t) which at a given Re gives the probability that the

system is still turbulent at time t, having started in a turbulent state at time

t = 0. For each t, this probability is estimated by dividing the number of runs

that are still turbulent after time t by the total number of runs carried out at this

Reynolds number. The resulting survival probabilities are shown in fig. 6.3 for

a range of Re. After some initial lag time during which the system has evolved

from the initial condition into the turbulent state, the survival probability follows

a simple exponential law

PRe(t) ∼ exp(−t/τ(Re)), (6.5)

where τ(Re) is the typical lifetime of turbulence that only depends on the

Reynolds number. The exponential form of the survival probability suggests

that the process is memoryless, i.e. at each time the rate of relaminarisation is

constant and does not depend on the previous dynamics of the system. This

behaviour is identical to what was observed in wall-bounded shear flows, such as

pipe [7, 9, 66, 84, 86] or plane Couette flow [24, 161, 164]. There, it was attributed

to the escape from a chaotic saddle associated with relaminarisation of localised

turbulence [64, 66, 84].
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The characteristic lifetime τ is obtained at each Reynolds number from fitting the

survival probabilities to eq. (6.5), see the solid lines in fig. 6.3. A steep increase

in τ with increasing Reynolds number is found, as shown in fig. 6.4. In order

to find the functional form τ = τ(Re), the observed lifetime is fitted to various

model expressions. First, a power law with an exponent n < 0 in the form

τ ∼ (Rec − Re)n is considered, which would suggest a divergence of the lifetime

at some critical Reynolds number Rec. It is found that this is not compatible with

the data for any value of n; fig. 6.4 shows an example with n = −1. The same

applies to an exponential increase of τ with Re. However, a super-exponential

scaling in the form
τ(Re)

t0
= c exp [exp(a+ bRe)] (6.6)

is compatible with the data for a fixed amplitude c = 15.63 and a = −3.48 ±
0.51, b = 0.052 ± 0.005, see fig. 6.4. Again, this conclusion parallels the super-

exponential scaling of the lifetimes in wall-bounded shear flows [64, 84, 86].

In order to further check that the statistics of relaminarisation events follow a

simple exponential law with a super-exponential lifetime, the results obtained

above for the survival probability can be combined, yielding

P (t) = exp

(
− t− 35

20 exp
[
exp(−3.48 + Re

19.23
)
]) . (6.7)

Now the collection of the relaminarisation times for various values of Re from

the simulations can be used to calculate the survival probability of the system

being still turbulent after a fixed time t as a function of the Reynolds number.

In fig. 6.5 these results are compared to the prediction of eq. (6.7) for various

values of the observation times t, where the constant dividing Re is held fixed

while letting the additive constant a = 3.48 ± 0.51 vary within its error bounds

calculated from the fitting procedure specified above. As can be seen in fig. 6.5,

the agreement between the two data sets is good. This provides further support to

the exponential form of the survival probability with a superexponential lifetime.

The characteristic S-shape of the curves shown in fig. 6.5 is very also similar to

the results in wall-bounded parallel shear flows [64, 84, 86].

The super-exponential law given in eq. (6.6) is not the only possible functional

form that produces an acceptable fit to the data. Another super-exponential

dependence, τ(Re)/t0 = exp[−a′ + (b′Re)5.6]) with a′ = −3.18 ± 0.14 and b′ =

0.0136± 0.0003 also gives a good agreement with the dataset, as can be seen in
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Figure 6.5 Reynolds number dependence of the survival probabilities at different
dimensionless observation times t/t0.

fig. 6.4. The Reynolds number range where the two superexponential forms differ

from each other is not accessible for precise measurements, since at these low

Reynolds numbers the turbulent lifetimes become comparable to the transient

time that needs to pass before the system has evolved away from the artificial

initial condition.

In order to verify that the results do not depend on the size of the simulation

box, one ensemble of 100 runs was created using a larger simulation box with
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Lbox = 4π. The collapse of turbulence is also observed in these runs and leads to

an exponential survival probability with the same characteristic lifetime as the

reference dataset at Lbox = 2π. Further details and results of these simulations

are contained in appendix D.

6.3.2 Stability of the self-organised state

When the system selects the self-organised state, it stays there for as long as

the simulations continue. Together with the fact that this state is dynamically

selected by the system, it seems to imply that this state is linearly stable. In order

to further probe this statement, exploratory simulations have been carried out

where the self-ordered state was subjected to random perturbations with different

amplitudes. For sufficiently small amplitude of the perturbations, simulations

always returned to the self-organised state, while for larger perturbations the

system became turbulent, as shown in fig. 6.6 for an example run at Re = 75.78.

Simulations are started from the self-organised state obtained at the end of a

long run after a relaminarisation event at the same Reynolds number. This state

is perturbed by a random initial perturbation of various amplitudes. Figure 6.6

shows the time evolution of three runs, with relatively small, medium and large

amplitudes. The small and medium amplitude runs return to the laminar state

after some transient dynamics, while the large amplitude run becomes turbulent

until its dynamics again collapses to the self-organised state. The lifetime of

turbulence in the large-amplitude run is similar but not equal to the lifetime of

the original run, which is shown in fig. 6.6 for comparison, as can be expected

from a process with an exponential survival probability.

Therefore the simple asymptotic state has the same property as the laminar state

in many wall-bounded parallel shear flows (cf. the Hagen-Poiseuille profile in pipe

flow [59]): it is a linearly stable simple exact solution that can be destabilised by

a finite-amplitude perturbation.

6.3.3 Phase-space dynamics

The phase space of turbulent wall-bounded shear flows is organised by exact

solutions and periodic orbits of the Navier-Stokes equations [47, 69] and the

relaminarisation events are associated with a sudden escape from this part of
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Figure 6.6 Stability of the self-organised state for Re = 75.78.

the phase space [141]. Since the same phenomenology is observed, the phase

space of forced isotropic turbulence could perhaps also be organised by coherent

structures (exact solutions and periodic orbits). Figure 6.7 shows the energy

content of the k = 2 mode plotted against the energy content of the k = 1 mode

for a run at Re = 76.86. Each point corresponds to a particular moment in time

and the dynamics proceeds from left to right, until the system relaminarises (i.e.

E1 = E∞ and E2 = 0). The dynamics revolves around several points in phase

space that are very suggestive of exact unstable solutions [47].

Periodic orbits in isotropic turbulence have been found by van Veen et al. [180],

where the period-5 solutions were shown to reproduce Kolmogorov scaling of the

energy spectrum. Furthermore, the turbulent state appeared to stay close or

evolve around the period-5 orbit.

6.4 Helicity dynamics and properties of the

laminar attractor

There is a dynamic scenario that may lead to the observed self-organisation and

that is by amplification of helicity fluctuations. The kinetic helicity was initially

negligible for all simulations. However, during the evolution of the system,

fluctuations in the kinetic helicity may occur. If these fluctuations happen in the

forcing shell, the force will also become slightly helical, leading to an injection

of helicity into the system. High kinetic helicity implies alignment between
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Figure 6.7 Phase portrait E2 vs E1 for Re = 76.86. Each point corresponds to
a particular moment in time. All energies are scaled with the initial
total kinetic energy E0. Inset: Zoom of the turbulent region of the
main graph showing that the dynamics is organised by several points
in phase space suggestive of unstable exact solutions.

vorticity and velocity and hence a depletion of inertial transfer, consistent with

the observations in sec. 6.2.

As explained in chapter 2, the kinetic helicity is invariant under Euler evolution.

That is, at large Reynolds numbers an initially nonhelical velocity field will stay

approximately nonhelical. This does not imply that helicity does not fluctuate,

as conservation of helicity under Euler evolution is a only statement about the

spatial average. Fluctuations of positive helicity at one length scale are thus

possible if accompanied by fluctuations of negative helicity at another length

scale. A build-up of kinetic helicity is not expected at high Reynolds number

and high resolution numerical simulations confirm this picture, as shown in the

right panel of fig. 6.8 for a simulation on 20483 grid points4 at Re = 48935.1

(Rλ = 435.2). However, the kinetic helicity is not conserved at low Reynolds

number and thus an increase in kinetic helicity over time is possible, and could

eventually lead to relaminarisation of the flow.

The time evolution of the relative kinetic helicity

ρkin(t) =

∫
u(x, t)ω(x, t)dx(∫

|u(x, t)|2dx
)1/2 (∫ |ω(x, t)|2dx

)1/2
, (6.8)

is shown in fig. 6.8 for a typical simulation at Re = 75.78 (left panel) and

4This simulation has been carried out for a different project [121], which is outwith the scope
of this thesis.
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Figure 6.8 Left: Evolution of the relative kinetic helicity ρkin(t) for a typical
run at Re = 75.78. Right: Evolution of ρkin(t) for a run at Re =
48931.5.

at high Reynolds number run (right panel). It is clearly visible that ρkin is

initially negligible for both simulations. For Re = 48931.5 this remains so for the

duration of the simulation, however for Re = 75.78 there are already much larger

fluctuations in ρkin(t) during the transient turbulent state. Eventually |ρkin(t)|
starts to increase and during self-organisation |ρkin(t)| → 1. The turbulent

fluctuations thus collapse in favour of a large-scale fully helical flow at kmin = 1,

which necessarily satisfies eq. (1.89). That is, the asymptotic laminar state u∞

is a Beltrami field at k = 1, that is

∇× u∞(x) = ±u∞(x) , (6.9)

where

u∞(x) = û(k1)eix1 + û(k2)eix2 + û(k3)eix3 + c.c. , (6.10)

with k1 = (1, 0, 0)t, k2 = (0, 1, 0)t, k3 = (0, 0, 1)t and x = (x1, x2, x3)t.

The occurrence of localised Beltrami fields in fluid flows and the connection to

turbulence has been explored theoretically and numerically in the 1980s, after

Moffatt’s [133] suggestion that high local values of ρkin(t) should occur in regions

of low dissipation. Pelz et al. [143] carried out DNSs of steady channel and Taylor-

Green flow at 323 grid points, calculating the pdf of the relative kinetic helicity.

For channel flow they found that the pdf has two distinctive peaks, one at zero

and one at unity. The peak at zero was related to the viscous sublayer near the

channel walls, while the peak at unity originated mainly from regions towards the

middle of the channel. This implies that high localised alignment between u and

ω indeed occurs in the bulk flow. Strong relative helicities were also measured in

136



DNSs of decaying and stationary isotropic turbulence [103, 142, 155, 166]. The

numerical study by Kerr [94], which was carried out using the same type of forcing

as in the present analysis but at higher Reynolds number (Rλ = 83) and thus

on a larger number of grid points (1283), showed no particular strong alignment

of velocity and vorticity. Higher levels of helicity were found in the forcing shell,

but this did not appear to affect the helicity distribution at the smaller scales.

6.4.1 Relation to ABC-flows

Equation (6.9) further determines the structure of u∞, and e.g. a positively helical

solution has the form

u∞(x) = 2

 <(u2) cosx2 −=(u2) sinx2 + <(u3) cosx3 −=(u3) sinx3

<(u1) cosx1 −=(u1) sinx1 −<(u3) sinx3 −=(u3) cosx3

−<(u1) sinx1 −=(u1) cosx1 + <(u2) sinx2 + =(u2) cosx2

 ,

(6.11)

where < and = denote the real and imaginary parts of a complex number,

respectively, while u1, u2 and u3 parametrise û(k1), û(k2) and û(k3). Setting

A ≡ |u3| and φ3 ≡ arccos (=(u3)2/|u3|2) ,

B ≡ |u1| and φ1 ≡ arccos (=(u1)2/|u1|2) ,

C ≡ |u2| and φ2 ≡ arccos (<(u2)2/|u2|2) ,

shows that the final state u∞ can be written as a phase-shifted ABC-flow [35, 58]

u∞(x) =

A sin (x3 + φ3) + C cos (x2 + φ2)

B sin (x1 + φ1) + A cos (x3 + φ3)

C sin (x2 + φ2) +B cos (x1 + φ1)

 . (6.12)

As shown in sec. 3.3.2, the self-ordered ABC-flow u∞ is linearly stable. The

linear stability of ABC-flows has been investigated by Galloway and Frisch [74]

for specific cases where either A = B = C or where one or two out of the three

coefficients A,B and C vanish. ABC flows with A = B = C are linearly unstable

with respect to perturbations at the same wavelength of the base flow for Reynolds

numbers RABC ≡ LboxUABC/ν < 15, where UABC is the velocity magnitude of

the ABC-flow. Similar results hold for the case where, say A = 0 and B = C.

However, the linear stability properties are different for the specific case where

two of the coefficients vanish. In this case, the base flow is linearly stable at all
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Reynolds numbers. At lower Reynolds numbers in all cases the flow is unstable

with respect to perturbations of larger wavelength compared to the wavelength

of the base flow for RABC >
√

2. The simulations carried out in this study were

at viscosities in the range 0.1 6 ν 6 0.055 with 1 6 |u∞| 6 1.35, so at Reynolds

numbers 63 6 RABC 6 154 well above the threshold of linear stability of the two

aforementioned cases. Since the final ordered state is at k = 1 which corresponds

to the largest scales available in the simulation box, the large-scale instabilities

cannot be present.

The flow profile for the case where two out of the three coefficients A,B and C

vanish, e. g. ux,∞ = 0, uy,∞ ∼ sin(x) and uz,∞ ∼ cos(x) is very similar to the

(generalised) Kolmogorov flow ux ∼ sin(y), uy = uz = 0 studied by van Veen and

Goto [105] in the same periodic domain [0, 2π]3 used here. The authors provide

a direct proof of the stability of the laminar flow (at k = 1) and show that the

transition to turbulence in this system is subcritical. Furthermore, they tracked

a state on the boundary between the turbulent and laminar regions of the state

space and found that a saddle-node bifurcation occurs at finite Reynolds number.

The results from the numerical tests presented in sec. 3.3.2 together with known

results on the stability of ABC-flows suggest that the base flow found here may

be a particular stable type of ABC-flow. Until the system finds this stable

state, it may visit the many possible unstable ABC-states. This would result

in relaminarisation attempts with a signature consistent with the behaviour of

the blue curve in fig. 6.6, where the system bounced back into turbulence from a

highly helical large-scale state.

As discussed earlier, the linear stability of ABC-flows is only known for specific

values of A, B and C. In view of the present results, it may be interesting to

construct a phase diagram showing the linear stability of ABC-flows depending on

the values of the coefficients A, B and C. Such a study would require considerable

effort, and may be restricted to the most relevant cases. ABC-flows are known

to form six regions of high flow speed aligned in pairs with the x, y and z-axes

of the simulation box [58]. The streamlines of u∞ shown in the bottom panel of

fig. 6.2 confirm the presence of only one pair of such regions (only one of which

is shown), therefore at least one of the coefficients A, B or C must vanish and

a systematic study of the stability properties of the case where e.g. A = 0 while

the ratio |B/C| ranges from 0 6 |B/C| 6 1 may be sufficient.

Large-scale Beltrami fields with the same spatial signature as u∞ have also
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been observed in connection to symmetry-breaking in magnetohydrodynamic

flows subject to large-scale static electromagnetic forcing [51]. Interestingly,

relaminarisation of these flows also occurred at high Reynolds numbers.

6.5 Conclusions

The results presented here show that there is a surprising analogy between the

behaviour of isotropic turbulence forced at large scales by the procedure decribed

in eq. (6.1) and wall-bounded parallel shear flows at low Reynolds numbers.

There is a spontaneous transition from turbulence to a spatially-simple state,

which is identified here being a phase-shifted ABC-flow, and this ‘laminar’ state

is linearly stable but can be destabilised by a finite-amplitude perturbation.

The turbulent-laminar transition is abrupt and memoryless, and the associated

survival probability is exponential in time, cf. [7, 9, 66, 84, 86, 141]. The

turbulent lifetimes do not diverge with an increase in Re, instead they grow

super-exponentially, cf. [76, 84]. This analogy implies that the phenomena of

the transition to turbulence in wall-bounded shear flows and forced isotropic

turbulence, typically thought of as a high-Re phenomenon away from boundaries,

are dynamically similar and can be understood within the same theoretical

framework.

Isotropic turbulence is thus not as featureless as previously thought. Furthermore,

periodic motion is present in isotropic turbulence and appears to represent much

of the statistical signatures of it [180]. Therefore extending the dynamical systems

approach from shear flows to isotropic turbulence may help in understanding some

of its dynamical properties which are not accessible from the statistical approach

to the problem [180].
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Chapter 7

Conclusions

In this thesis the dynamics of homogeneous turbulence occurring in incompress-

ible flows of conducting and non-conducting fluids was studied in view of self-

organising effects connected to the occurrence of fully helical structures. The

main outcome can be summarised as:

The stability properties of helical structures are responsible for self-ordering

processes in homogeneous (MHD) turbulence and are related to the transition

to homogeneous turbulence occurring in MHD and non-conducting flows, because

1. Helicity influences the stability of steady solutions of the Navier-Stokes and

MHD equations. Large-scale instabilities lead to self-ordering, while small-

scale instabilities lead to increasing disorder. Since large-scale instabilities

occur more frequently in the MHD equations compared to the Navier-Stokes

equation, homogeneous turbulence occurring in MHD flows is more prone

to self-organisation than turbulence in non-conducting flows.

2. Homogeneous isotropic turbulence as modelled by the Navier-Stokes equa-

tion and sustained by feeding the rescaled velocity field back into the system

at the large scales can suddenly relaminarise similar to localised turbulence

in wall-bounded shear flows. The ‘laminar flow’ onto which the system

collapses is a large-scale linearly stable helical structure.

The theoretical analysis presented in chapter 3 showed that self-ordering is much

more likely to occur in homogeneous MHD turbulence compared to homogeneous

141



turbulence in nonconducting fluids. This was due to a specific result from a

stability analysis of triadic interactions, taking into account the helicities of the

interacting modes. Compared to nonconducting fluids, steady unimodal solutions

of the triadic evolution equations in magnetofluids have more instabilities with

respect to perturbations on scales larger than the characteristic scale of the

system. Furthermore, high correlation between the magnetic and velocity field

was found to constrain small-scale instabilities more than large scale instabilities.

Therefore it is expected that high levels of magnetic and cross-helicity damp the

average forward interscale energy transfer characteristic for developed turbulence

by which smaller and smaller scales are excited.

This average forward energy transfer was shown in chapter 4 to correspond to the

residual dissipation in the infinite Reynolds number limit. That is, the residual

dissipation can be interpreted as a proxy for the amount of turbulent activity in

the system and thus dissipation rate quenching can be interpreted as a form of

drag-reducing effect. The results in chapter 4 confirmed expectations that the

turbulent activity is lower for MHD turbulence consisting mainly of modes with

like-signed magnetic helicity. Additionally, if the magnetic and velocity field are

strongly correlated, the turbulent activity was even further quenched, consistent

with the theoretical analysis presented in chapter 3.

The turbulence-damping feature of helical structures became more clear due

to numerical results on relaminarisation of isotropic hydrodynamic turbulence

modelled by the Navier-Stokes equation plus an external force keeping the kinetic

energy constant in the forcing shell. The observed relaminarisation process, where

the turbulence collapes in favour of a large-scale Beltami flow, was shown to have

the same statistical signature as relaminarisation of localised turbulence in wall-

bounded parallel shear flows. The dynamics of stationary isotropic turbulence

has been thought to be simpler than that of parallel shear flows, that is, it

is not expected to show transitional behaviour and little is known about its

phase space structure. The observed collapse of turbulence happens despite

the continuous stirring of the flow at the large scales and has very similar

features to relaminarisation events in pipe flow: it is a memoryless process with

a characteristic timescale that increases with Reynolds number in much the same

way as in parallel wall-bounded shear flows. Furthermore, the base flow appears

to be linearly stable. That is, isotropic turbulence at low Reynolds numbers

is transient and the presented results suggest that the phase space dynamics

of parallel shear flows and isotropic turbulence may be very similar, with the
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laminar state given by a Beltrami field. This result highlights that there may be

a connection between the occurrence of (localised) Beltrami fields in homogeneous

turbulence and relaminarisation events and suggests that the stability properties

of locally occurring Beltrami fields are connected to the transition to turbulence.

7.1 Further work

As recent research shows, the transition to turbulence in wall-bounded parallel

shear flows belongs to the directed percolation universality class [108, 164, 165,

167], and it can be argued that the same might be valid for forced isotropic

turbulence as modelled by the Navier-Stokes equation plus the forcing used here.

In view of this current research into the nature of the transition to turbulence,

the alignment between vorticity and velocity fields may be a useful marker to

determine the turbulent fraction in the present system, since the laminar state

is a Beltrami field where vorticity and velocity are aligned. However, so far only

relaminarisation events have been observed and there should be another process

leading to sustained turbulence, which is yet to be identified.

The results presented here may help to identify or construct new potential target

states for turbulence control. Since there are stable large-scale states hidden

in what appears to be homogeneous turbulence, a particular choice of external

force may be sufficient to push the system into the basin of attraction of one of

these stable states. Furthermore, the helical decomposition implies that Beltrami

states are intrinsic to fluid flows in the sense that any sufficiently well behaved1

solenoidal vector field (and therefore any incompressible flow at least in the bulk)

can be seen as a superposition of Beltrami flows, and it should be possible to

identify the stable subset of these states. That is, linearly stable Beltrami states

may be useful targets for turbulence control.

One immediate question then arises: how can these stable Beltrami fields be

found? The combination of results from chapters 4 and 5 shows that the residual

dissipation, in other words the ‘turbulent activity’, can be estimated either from

the spatial structure of the external force or the level of magnetic, kinetic and

cross-helicities. It should therefore be possible to find a connection between

the two descriptions, which may help in finding a force function that perhaps

minimises the turbulent activity while maximising the helicities.

1In this context this means having a Fourier transform.
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Appendix A

The dependence of Q on the

cross-helicity

In section 3.3, the parameter Q was defined as Q = αδ − βγ, where α, β, γ and

δ were the entries of the matrix in (3.15). Using the expressions for these terms

given in (3.19), we obtain

Q = |gkpq|4skksqq(skk − spp)(sqq − spp)
(
|Usp |4 + |Bsp|4 − 2Re([U∗spBsp ]

2)
)
.

(A.1)

In general, the helical coefficients Usp and Bsp are related by a complex number

M = m + in such that Bsp = MUsp . Expressions for m and n can be found by

decomposing the two fields into their real and imaginary parts. Let Usp = U1+iU2

and Bsp = B1 + iB2. Then

m =
1

|Usp|2
(U1B1 + U2B2) and (A.2)

n =
1

|Usp|2
(U1B2 − U2B1), (A.3)

where n is constrained by n2 = |Bsp |2/|Usp |2−m2 which follows from the definition

of M . Decomposing the cross-helicity in the same way results in Hc(p) = |Usp|2m.

Now the expression Re([U∗spBsp ]
2) can be related to the cross-helicity by rewriting
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it in terms of the components of Usp and Bsp :

Re([U∗spBsp ]
2) =(U1B1 + U2B2)2 − (U1B2 − U2B1)2 (A.4)

=|Usp |4m2 − |Usp|4
(
|Bsp|2

|Usp |2
−m2

)
(A.5)

=2Hc(p)
2 − |Usp |2|Bsp |2 , (A.6)

and (3.23) is obtained by substitution of this expression for Re([U∗spBsp ]
2) into

(A.1).

Since the maximum and minimum values of |Hc(p)| are |Usp ||Bsp | and 0

respectively, it is useful to define the relative cross-helicity ρ = Hc(p)/(|Usp ||Bsp |),
which takes values between -1 and 1. We obtain1

Re([U∗spBsp ]
2) = |Usp |2|Bsp|2(2ρ2 − 1) , (A.7)

which is bounded by −|Usp |2|Bsp|2 and |Usp|2|Bsp |2, where the first value is the

case of vanishing cross-helicity and the latter occurs when there is maximal cross-

helicity. This implies that the term (|Usp|4 + |Bsp |4 + 2|Usp|2|Bsp |2 − 4Hc(p)
2) in

(3.23) cannot be negative.

1This particular form of the equation is due to M. McKay.
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Appendix B

Determination of unstable triad

interactions

B.1 x2 −Q > 0 for specific cases

In section 3.4.1, the result was dependent on whether x2−Q is positive or negative.

Recall that the helicity combinations in question were sk = sq 6= sp and sk = sp =

sq with the wavenumber ordering p 6 k, q for the latter case. Therefore x2 − Q
becomes1

x2 −Q =
1

4
[|Usp |4(kq + (k ± p)(q ± p))2 + |Bsp|4(k(k ± p) + q(q ± p))2

+ 2|Usp |2|Bsp|2[kq + (k ± p)(q ± p)][k(k ± p) + q(q ± p)]]

− [kq(k ± p)(q ± p)](|Usp |4 + |Bsp|4 − 2Re([U∗spBsp ]
2))

=
1

4
[|Usp |4(kq − (k ± p)(q ± p))2 + |Bsp |4(k(k ± p)− q(q ± p))2

+ 2|Usp|2|Bsp |2[kq + (k ± p)(q ± p)][k(k ± p) + q(q ± p)]]

+ 2Re([U∗spBsp ]
2)[kq(p± p)(q ± p)] . (B.1)

In general, |Re([U∗spBsp ]
2)| 6 |Usp |2|Bsp |2 (see appendix A), hence it is assumed

that Re([U∗spBsp ]
2) = −|Usp|2|Bsp |2 as this would be the most negative value this

term can take. It corresponds to zero cross-helicity at p. Equation (B.1) is now

1The particular simple form of this proof for the case sk = sq 6= sp is due to M. McKay and
the case sk = sp = sq with the wavenumber ordering p 6 k, q is joint work with M. McKay.
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an inequality and reads

x2 −Q >
1

4

[
|Usp |4(kq − (k ± p)(q ± p))2 + |Bsp |4(k(k ± p)− q(q ± p))2

]
+

1

2
|Usp |2|Bsp |2[kq + (k ± p)(q ± p)][k(k ± p) + q(q ± p)]

− 2|Usp |2|Bsp|2[kq(k ± p)(q ± p)] , (B.2)

hence the result x2 −Q > 0 follows immediately if one can show

[kq + (k ± p)(q ± p)][k(k ± p) + q(q ± p)]− 4kq(k ± p)(q ± p) > 0 . (B.3)

For this purpose, set a± ≡ (k ± p) and b± ≡ (q ± p). The expression on the

left-hand side of (B.3) can now be further simplified

[kq + a±b±][ka± + qb±]− 4kqa±b±

= k2qa± + (a±)2kb± + q2kb± + (b±)2qa− 4kqab

= qa±(k − b±)2 + kb±(q − a±)2 > 0 . (B.4)

The last line follows for the case sk = sq 6= sp since both a+ > 0 and b+ > 0,

while for the case sk = sp = sq both a− > 0 and b− > 0 due to the wavenumber

ordering p 6 k, q. Hence the inequality (B.3) is satisfied and x2 −Q > 0 in both

cases.

B.2 Graphical determination of contraints on

stability

As explained in the main body of the text, the term Q given in (3.23) determines

the stability of the system (3.15) if x < 0. As such, a solution is unstable if Q < 0

or if x2 − Q < 0, where the latter case is the more difficult to determine, as the

sign of x2 −Q depends on the shape of the wavenumber triad, the cross-helicity

and the ratio |Usp |/|Bsp |. Given the multitude of possibilities that can emerge for

this, the simplest way of determining the constraints on the stability of a solution

of (3.15) is using a graphical method. For each combination of helicities x2−Q is

plotted2 for several set values of |Usp |/|Bsp| and Hc(p) in order to show in which

parameter range instabilities are more likely to occur.

2All figures were produced by M. McKay.
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The dependence of x2 − Q on the triad k, p, q can be reduced to a dependence

on the triad’s shape by rescaling each wavenumber similar to the procedure in

appendix B.1, which enables the use of two-dimensional plots and the triad

geometry to obtain the necessary information. Figures B.1-B.4. show the

function x2(v, w)−Q(v, w) for the different cases shown in tables 3.1-3.3, where

v and w correspond to the smallest and largest wavenumber in a given triad,

rescaled by the middle one such that the triad geometry enforces the contraint

0 < v 6 1 6 w < 1 + v, hence each wavenumber pair (v, w) describes a shape

of triad. Each subfigure corresponds to set values of Hc(p) and |Usp |/|Bsp |, while

each point (v, w) in a particular graph corresponds to a class of triad interactions

characterised by their shape. Regions in wavenumber space excluded from the

analysis by the constraints of the triad geometry are shaded in grey, positive

values of x2 − Q leading to stability are indicated in black and negative values

of x2 − Q leading to unstable solutions are marked white. Across the main

four figures, Hc(p) increases towards the bottom of the figure while |Usp|/|Bsp|
increases from left to right, leading to the constraints summarised in tables 3.1-

3.3. Depending on the wavenumber ordering, the definitions of v and w are

slightly different, and the procedures for each case are explained individually.

� sk 6= sp = sq and k < p < q

In this case all wavenumbers are divided by p, such that v ≡ k/p and

w ≡ q/p. As can be seen in fig. B.1, for decreasing |Usp|/|Bsp | and increasing

Hc(p) less and less unstable solutions occur, which leads to the constraints

on split transfer shown in tbl. 3.1.

� sk 6= sp = sq and p < k < q

In this case all wavenumbers by are devided k, such that v ≡ p/k and

w ≡ q/k. As can be seen in fig. B.2, for decreasing |Usp |/|Bsp | and increasing

Hc(p) less and less unstable solutions occur which leads to the constraints

on forward transfer shown in tbl. 3.3.

� sk = sp 6= sq and p < k < q

In this case all wavenumbers are rescaled by k, such that v ≡ p/k and

w ≡ q/k. As can be seen in fig. B.3, for decreasing |Usp |/|Bsp | and increasing

Hc(p) less and less unstable solutions occur which leads to the constraints

on forward transfer shown in tbl. 3.3.

� sk = sp = sq and k < q < p

In this case all wavenumbers are rescaled by q, such that v ≡ k/q and
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w ≡ p/q. As can be seen in fig. B.4, now for increasing |Usp|/|Bsp | and

increasing Hc(p) less and less triads lead to unstable solutions and the

constraints on reverse transfer shown in tbl. 3.2 are obtained.
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Figure B.1 Plots of f(v, w) = x2 − Q for various values of |Usp |/|Bsp | and

cross-helicity for case 1 in appendix B.2 (sk 6= sp = sq, k < p < q).

The upper grey triangle is ruled out by the condition w < 1 + v and

unstable values are shown in white. The ratio |Usp |/|Bsp | increases

from left to right, with each column of subfigures taking the values

0.01, 0.1 and 1 respectively, while each row takes the following

values of relativ cross-helicity: Hc(p)/(|Usp ||Bsp |) = 0, 0.5, 0.9 and

1. These figures were produced by M. McKay.
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Figure B.2 Plots of f(v, w) = x2 − Q for various values of |Usp |/|Bsp | and
cross-helicity for case 2 in appendix B.2 (sk 6= sp = sq, p < k < q).
The upper grey triangle is ruled out by the condition w < 1 + v and
unstable values are shown in white. The ratio |Usp |/|Bsp | increases
from left to right, with each column of subfigures taking the values
0.01, 0.1 and 1 respectively, while each row takes the following
values of relative cross-helicity: Hc(p)/(|Usp ||Bsp |) = 0, 0.5, 0.9 and
1. These figures were produced by M. McKay.
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Figure B.3 Plots of f(v, w) = x2 − Q for various values of |Usp |/|Bsp | and
cross-helicity for case 3 in appendix B.2 (sk = sp 6= sq, p < k < q).
The upper grey triangle is ruled out by the condition w < 1 + v and
unstable values are shown in white. The ratio |Usp |/|Bsp | increases
from left to right, with each column of subfigures taking the values
0.01, 0.1 and 1 respectively, while each row takes the following
values of relative cross-helicity: Hc(p)/(|Usp ||Bsp |) = 0, 0.5, 0.9 and
1. These figures were produced by M. McKay.
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Figure B.4 Plots of f(v, w) = x2 − Q for various values of |Usp |/|Bsp | and
cross-helicity for case 4 in appendix B.2 (sk = sp = sq, k < q < p).
The upper grey triangle is ruled out by the condition w < 1 + v and
unstable values are shown in white. The ratio |Usp |/|Bsp | increases
from left to right, with each column of subfigures taking the values 1,
10 and 100 respectively, while each row takes the following values of
relative cross-helicity: Hc(p)/(|Usp ||Bsp |) = 0, 0.5, 0.9 and 1. These
figures were produced by M. McKay.
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Appendix C

Similarity scaling

For theoretical convenience it is assumed that both kinetic and magnetic energy

spectra have power law scalings in the inertial range, that is

Ekin(αk)/Ekin(k) = α−n, Emag(αk)/Emag(k) = α−m (C.1)

where α is a real number and n > 0 and m > 0 are the spectral indices of the

kinetic and magnetic energy spectra, respectively. From

Ekin(αk) =
1

2

∫
|αk|=αk

d(αk)

∫
R3

d(αp) 〈u+(αk)u+(αp) + u−(αk)u−(αp)〉

=
α2

2

∫
|k|=k

dk α3

∫
R3

dp α2ξ〈u+(k)u+(k) + u−(k)u−(p)〉

= α5+2ξEkin(k) , (C.2)

and

Emag(αk) =
1

2

∫
|αk|=αk

d(αk)

∫
R3

d(αp) 〈b+(αk)b+(αp) + b−(αk)b−(αp)〉

=
α2

2

∫
|k|=k

dk α3

∫
R3

dp α2ζ〈b+(k)b+(k) + b−(k)b−(p)〉

= α5+2ζEmag(k) , (C.3)

where ξ and ζ are the scaling exponent of u±(k) and b±(k), respectively, one
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obtains

u±(αk) = αξu±(k) = α−(5+n)/2u±(k) , (C.4)

b±(αk) = αζb±(k) = α−(5+m)/2b±(k) . (C.5)

The scaling of T
(i)
HD(k, p, q), T

(i)
LF (k, p, q) and T

(i)
mag(k, p, q) is then found by a similar

argument, outlined here for T
(i)
LF (k, p, q)

T
(i)
LF (αk, αp, αq) = −α(spp− sqq)

∫
|αk|=αk

d(αk)

∫
|αp|=αp

d(αp)

∫
|αq|=αq

d(αq)

× gkpq〈usk(αk)bsp(αp)bsq(αq)〉+ c.c.

= −α(spp− sqq) α6

∫
|k|=k

dk

∫
|p|=p

dp

∫
|q|=q

dq

× gkpqα2ζ+ξ〈usk(k)bsp(p)bsq(q)〉+ c.c.

= α7−(5+m)−(5+n)/2 T
(i)
LF (k, p, q) = α−(1+n+2m)/2 T

(i)
LF (k, p, q) .

(C.6)

The remaining cases proceed analogously. In summary, the transfer terms scale

as

T
(i)
HD(αk, αp, αq)

T
(i)
HD(k, p, q)

= α−(1+3n)/2 = α−β , (C.7)

T
(i)
LF (αk, αp, αq)

T
(i)
LF (k, p, q)

= α−(1+n+2m)/2 = α−β
′
, (C.8)

T
(i)
mag(αk, αp, αq)

T
(i)
mag(k, p, q)

= α−(1+n+2m)/2 = α−β
′
, (C.9)

In hydrodynamics n = 5/3 in the inertial range, while in MHD there are different

predictions for the spectral exponent, either m = 3/2 (Iroshnikov-Kraichnan) or

m = 5/3 (Kolmogorov). Note that n = m = 5/3 implies β′ = β = 3 while

n = 5/3 and m = 3/2 implies β′ = 2 + 5/6. In both cases β − 2 > 0.

Derivation of eq. (3.53)

In chapter 3, the flux of total energy was given by two contributions,

Π(i)(k) = Π
(i)
+ (k)− Π

(i)
− (k) , (C.10)
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where

Π
(i)
+ (k) =

1

2

∫ ∞
k

dk′
∫ k

0

∫ k

0

T (i)(k′, p, q)dp dq , (C.11)

describes the flux of total energy into all modes at wavenumber k′ due to triads

with p, q < k < k′ and

Π
(i)
− (k) =

1

2

∫ k

0

dk′
∫ ∞
k

∫ ∞
k

T (i)(k′, p, q)dp dq , (C.12)

which describes the flux of total energy into all modes at k′ due to triads with

k′ < k < p, q.

The integrals can be made independent of k by changing variables. Since p and

q are dummy variables one can write

1

2

∫ k

0

∫ k

0

T (i)(k′, p, q)dp dq =

∫ k

0

dp

∫ p

0

dq T (i)(k′, p, q) , (C.13)

1

2

∫ ∞
k

∫ ∞
k

T (i)(k′, p, q)dp dq =

∫ ∞
k

dp

∫ ∞
p

dq T (i)(k′, p, q) . (C.14)

For eq. (C.11), define

v =
q

p
, w =

k′

p
, u =

k

p
, (C.15)

where the constraint p, q < k < k′ enforces v < u < w and u > 1, and the

triad geometry is reflected by the inequality w 6 1 + v. The integral over p in

eq. (C.11) can now be written as∫ k

0

dp = −k
∫ k/u=k

k/u=0

du
1

u2
= k

∫ ∞
1

du
1

u2
= k

∫ 1+v

1

du
1

u2
, (C.16)

where the last equality follows from the constraint u < w < 1 + v. Using q =

vp = vk/u, the integral over q in eq. (C.11) becomes∫ p

0

dq =
k

u

∫ vk/u=p

0

dv =
k

u

∫ 1

0

dv . (C.17)

The remaining integral over k′ is rewritten using k′ = wp = wk/u∫ ∞
k

dk′ =
k

u

∫ ∞
0

dw =
k

u

∫ 1+v

u

dw , (C.18)

where the ultimate step follows from u < w < 1 + v. Combining these results

157



then gives ∫ ∞
k

dk′
∫ k

0

dp

∫ p

0

dq = k3

∫ 1

0

dv

∫ 1+v

1

du
1

u4

∫ 1+v

u

dw ,

= k3

∫ 1

0

dv

∫ 1+v

1

dw

∫ w

1

du
1

u4
. (C.19)

For eq. (C.12), define

v =
k′

p
, w =

q

p
, u =

k

p
, (C.20)

where the constraint k′ < k < p, q enforces v < u < w and u < 1, and the triad

geometry is reflected by the inequality w 6 u+ v < 1 + v. The integral over p in

eq. (C.12) can now be written as∫ ∞
k

dp = −k
∫ k/u=∞

k/u=k

du
1

u2
= k

∫ 1

0

du
1

u2
= k

∫ 1

v

du
1

u2
, (C.21)

where the last equality follows from the constraint v < u. Using q = wp = wk/u,

the integral over q in eq. (C.12) becomes∫ ∞
p

dq =
k

u

∫ ∞
wk/u=p

dw =
k

u

∫ 1+v

1

dw , (C.22)

where the last step follows from u < w < 1 + v. The remaining integral over k′

is rewritten using k′ = vp = vk/u∫ k

0

dk′ =
k

u

∫ vk/u=k

0

dv =
k

u

∫ u

0

dv . (C.23)

Combining these results then gives∫ k

0

dk′
∫ ∞
k

dp

∫ ∞
p

dq = k3

∫ 1

0

du

∫ 1+v

1

dw

∫ u

0

dv
1

u4
,

= k3

∫ 1

0

dv

∫ 1+v

1

dw

∫ 1

v

dv
1

u4
. (C.24)

Equations (C.9), (C.19) and (C.24) together produce eq. (3.53) after integrating

over u.
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Appendix D

Test simulations (chapter 6)

A small number of test cases were run using the publicly available code hit3d

[40, 41], which confirmed the self-organising behaviour of the fluid reported in

chapter 6. Figure D.1 shows a comparison between a simulation using the in-

house code and hit3d at the same Reynolds number and at a higher resolution

(643 grid points). As can be seen from the figure, both simulations show the

saturation of the total energy E(t) characteristic for self-organisation of the flow.

Moreover, for both codes E(t) saturates at the same asymptotic value.

In order to demonstrate that the observed collapse of (transient) isotropic

turbulence shown in chapter 6 is not an artefact of a too small simulation box

(Lbox = 2π in the runs presented in chapter 6), an ensemble of 100 runs was

created using a box of size Lbox = 4π. The left panel in fig. D.2 shows the time

evolution of the total energy E(t) and the energy content of the small scales

E ′(t) for one simulation belonging to this ensemble. The collapse of the small-

scale fluctuations is clearly visible, and the figure looks qualitatively very similar

to fig. 6.4. The survival probabilities for this ensemble and an ensemble using

Lbox = 2π at the same Reynolds number are shown in the right panel of fig. D.2.

The simulations using Lbox = 4π take longer to reach a (transient) turbulent

stationary state compared to the simulations using Lbox = 2π. This is the reason

for the shift between the survival probabilities visible in the figure. However, the

slopes of the two exponentials, and, hence, the characteristic lifetimes obtained

from the two datasets are almost indistinguishable, and certainly well within the

error bars obtained from eq. (6.7). Since the simulations carried out on the larger

box size show very similar features to the data obtained from simulation using the
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conventional box size Lbox = 2π, it can be concluded that the results presented

in chapter 6 are not induced by the size of the simulation box.
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Figure D.1 Verification of the observed self-organisation using a competitor
code. The solid line shows results for E(t) from the in-house code
and the dashed line results from hit3d. Both simulations have been
carried out using 643 collocation points.
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Figure D.2 Time evolution of the total energy E(t) and the energy content of the
small scales E′(t) for Re = 68.10 normalised by the initial energy
E0 for Lbox = 4π. Time is given in units of initial large eddy
turnover time t0 = L/U , where U is the initial rms velocity and L
the initial integral scale. Right: Survival probabilities as a function
of the dimensionless time t/t0 from the beginning of a simulation
using Lbox = 2π (black) and Lbox = 4π (red) for Re = 68.10.
The solid lines represent fits of P (t) = exp(−t/τ) to the respective
datasets.

160



Bibliography

[1] http://www.paraview.org/.

[2] A. Pouquet and P. Mininni and D. Montgomery and A. Alexakis.
Dynamics of the Small Scales in Magnetohydrodynamic Turbulence. In
Y. Kaneda, editor, IUTAM Symposium on Computational Physics and New
Perspectives in Turbulence, pages 305–312. Springer, 2008.

[3] A. Alexakis, P. D. Mininni, and A. Pouquet. Shell-to-shell energy transfer
in magnetohydrodynamics. I. Steady state turbulence. Phys. Rev. E,
72:046301, 2005.

[4] A. Alexakis, P. D. Mininni, and A. Pouquet. On the inverse cascade of
magnetic helicity. Astrophy. J., 640:335–343, 2006.

[5] K. Alligood, T. D. Sauer, and J. A. Yorke. Chaos - An Introduction to
Dynamical Systems. Springer, New York, 1997.
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[149] A. Pouquet, U. Frisch, and J. Léorat. Strong MHD helical turbulence and
the nonlinear dynamo effect. J. Fluid Mech., 77:321–354, 1976.

[150] A. Pouquet and G. S. Patterson. Numerical simulation of helical
magnetohydrodynamic turbulence. J. Fluid Mech., 85:305–323, 1978.

[151] E. Priest and T. Forbes. Magnetic Reconnection: MHD theory and
applications. Cambridge University Press, 2000.

[152] O. Reynolds. An experimental investigation of the circumstances which
determine whether the motion of water shall be direct or sinuous, and of
the law of resistance in parallel channels. Philos. Trans. R. Soc. London,
174:935–982, 1883.

170



[153] L. F. Richardson. Weather Prediction by Numerical Process. Cambridge
University Press, 1963.

[154] H. P. Robertson. The theory of axisymmetric turbulence. Proc. Camb.
Phil. Soc., 36:209, 1940.

[155] M. M. Rogers and P. Moin. Helicity in incompressible turbulent flows. Phys.
Fluids, 30:2662, 1987.

[156] S. Rosenblat and S. H. Davis. Bifurcation From Infinity. SIAM J. Appl.
Math., 37:1–19, 1979.

[157] P. Sagaut and C. Cambon. Homogeneous Turbulence Dynamics. Cambridge
University Press, Cambridge, 2008.

[158] G. Sahoo, F. Bonaccorso, and L. Biferale. On the role of helicity for large-
and small-scales turbulent fluctuations. Phys. Rev. E, 92:051002, 2015.

[159] G. Sahoo, P. Perlekar, and R. Pandit. Systematics of the magnetic-Prandtl-
number dependence of homogeneous, isotropic magnetohydrodynamic
turbulence. New Journal of Physics, 13:013036, 2011.

[160] A. A. Schekochihin, S. C. Cowley, and T. A. Yousef. MHD Turbulence:
Nonlocal, Anisotropic, Nonuniversal? In Y. Kaneda, editor, IUTAM
Symposium on Computational Physics and New Perspectives in Turbulence,
pages 347–354. Springer, Berlin, 2008.

[161] A. Schmiegel and B. Eckhardt. Fractal stability border in plane Couette
flow. Phys. Rev. Lett., 79:5250–5253, 1997.

[162] T. M. Schneider, D. Marinc, and B. Eckhardt. Localized edge states
nucleate turbulence in extended plane Couette cells. J. Fluid Mech.,
646:441–451, 2010.

[163] S. Servidio, W. H. Matthaeus, and P. Dmitruk. Depression of Nonlinearity
in Decaying Isotropic MHD Turbulence. Phys. Rev. Lett., 100:095005, 2008.

[164] L. Shi, M. Avila, and B. Hof. Scale Invariance at the Onset of Turbulence
in Couette Flow. Phys. Rev. Lett., 110:204502, 2013.

[165] H.-Y. Shih, T.-L. Hsieh, and N. Goldenfeld. Ecological collapse and the
emergence of travelling waves at the onset of shear turbulence. Nat. Phys.,
Letter, 2015.

[166] L. Shtilman, R. B. Pelz, and A. Tsinober. Numerical investigation of helicity
in turbulent flow. Computers & Fluids, 16:341–347, 1988.

[167] M. Sipos and N. Goldenfeld. Directed percolation describes lifetime and
growth of turbulent puffs and slugs. Phys. Rev. E, 84:035304, 2011.

[168] D. T. Son. Magnetohydrodynamics of the Early Universe and the Evolution
of Primordial Magnetic Fields. Phys. Rev. D, 59:063008, 1999.

171



[169] K. R. Sreenivasan. On the scaling of the turbulence dissipation rate. Phys.
Fluids, 27:1048, 1984.

[170] K. R. Sreenivasan. An update on the energy dissipation rate in isotropic
turbulence. Phys. Fluids, 10:528, 1998.

[171] J. E. Stawarz, C. W. Smith, B. J. Vasquez, M. A. Forman, and B. T.
MacBride. The turbulent cascade for high cross-helicity states at 1 AU.
Astrophys. J., 713:920–934, 2010.

[172] R. Stepanov, P. Frick, and I. Mizeva. Joint inverse cascade of magnetic
energy and magnetic helicity in MHD turbulence. Astrophys. J., 798:L35,
2015.

[173] T. Kreilos and T. Khapko and P. Schlatter and Y. Duguet and B. Eckhardt.
Bypass transition in boundary layers as an activated process. http://www.
etc15.nl/proceedings/proceedings/documents/352.pdf.

[174] G. I. Taylor. Statistical theory of turbulence. Proc. R. Soc., London, Ser.
A, 151:421, 1935.

[175] The data is publicly available. see http://dx.doi.org/10.7488/ds/247.

[176] The data is publicly available. http://dx.doi.org/10.7488/ds/295.

[177] E. C. Titchmarsh. The Theory of Functions. Oxford University Press,
Oxford, 2nd edition, 1939.

[178] S. I. Vainshtein and Y. B. Zeldovich. Origin of magnetic fields in
astrophysics. Sov. Phys. Usp., 15:159–172, 1972.

[179] M. van Dyke. An album of fluid motion. Parabolic Press, Stanford, CA,
1981.

[180] L. van Veen, S. Kida, and G. Kawahara. Periodic motion representing
isotropic turbulence. Fluid Dyn. Res., 38:19–46, 2006.

[181] F. Waleffe. The nature of triad interactions in homogeneous turbulence.
Phys. Fluids A, 4:350–363, 1992.

[182] M. Wan, S. Oughton, S. Servidio, and W. H. Matthaeus. von Kármán
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