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Abstract 

 
The characteristics of smoke traveling in an HVAC duct have been observed along with 
the response of selected duct smoke detectors.  The simulated HVAC system consists of a 
9 m long duct, 0.45 m in diameter.  An exhaust fan is placed at one end of the duct and is 
capable of inducing airflow rates that range from 0 to 1.5 m3/s.  The flow is controlled by 
means of a manual damper.  On the upstream end of the duct there is a square exhaust 
hood approximately 2.2 m at the bottom and 0.3 m at the top.  The bottom of the hood is 
approximately 2.5 m above the floor a shroud extends down to approximately 1.5 m 
above the floor.  The test section, placed immediately downstream of the hood, is 3.5 m 
long duct with a square cross section of 0.4 m on a side.  The instrumentation includes 
oxygen, carbon monoxide and carbon dioxide gas analyzers and a load cell to determine 
the energy release rate of the fires tested.  The smoke within the duct is characterized by 
means of a laser light sheet and CCD camera, two white light source and photocell 
ensembles, a Pitot tube and an array of eight thermocouples placed on the vertical plane 
of symmetry.  A smoke detector was placed at the downstream end of the test section.  
Two types of detectors were tested, ionization and photoelectric, with a single sampling 
probe geometry.  The fires tested cover a wide range of fuels (propane, heptane, toluene, 
toluene/heptane mixture, shredded paper, polyurethane foam, wood cribs) with the peak 
energy release rates up to 800 kW. The smoke detector performance, temperature, flow 
field, smoke particle size and particle distributions are dependent on the fire 
characteristics and airflow through the duct. The different measurements could be scaled 
by means of the fire size and airflow rate but left a strong dependency on the fuel and 
burning characteristics (i.e. smoldering, flaming). The optical density and mass optical 
density are analyzed as metrics for characterizing smoke and smoke detector response. 
Detailed comparisons between the different metrics used are presented throughout this 
work. Clear evidence of stratification and aging of the smoke along the duct are also 
presented.  The limitations of the present configuration and the need for a larger scale 
study are also discussed.  
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Introduction 
The active spread of smoke by the heating, ventilation, and air-conditioning 

(HVAC) system in the event of a fire has been a concern for many years.  The purpose of 

a duct smoke detector is to provide for shutdown of the HVAC system in the event of a 

fire to avoid actively re-circulating smoke through a building. 

Extensive research has been conducted in the area of fire detection, with excellent 

general summaries provided by Grosshandler (1995, 1997), Mulholland (1995), Schifiliti 

(1995) and Milke (1999). Nevertheless, little work has been conducted into the 

effectiveness of duct smoke detectors.  In light of the lack of research there has been only 

anecdotal evidence of their efficacy.  The placement of duct smoke detectors has been 

based on rules, rather than analysis of performance.  It has been suggested that the 

dilution of the smoke produced by a fire is so great that only fires that could be 

characterized as “major involvement,” would trigger duct detector response.  There has 

been little evidence to either support or refute the effectiveness of duct smoke detectors. 

Currently, the Underwriters Laboratories (UL) listing process provides the 

principal test of the effectiveness of a duct smoke detector (1997, 1998).  The test is not 

intended to evaluate the sensitivity of the detector response to different parameters related 

to the fire but to give an assessment of relative performance.  For this purpose several 

common fire scenarios have been defined to test the detector performance as compared to 

that of a standard measuring ionization chamber.  Tests are conducted for rigorously 

defined optical densities obtained with a white light source. The fire tests performed as 

part of the UL listing process for duct smoke detectors essentially consist of tests with 

two different fuel sources over a range of five air flow velocities.  The fuels used are 

smoldering Ponderosa pine sticks and flaming n-heptane pool fires.  The fire size is 

varied depending upon the flow rate of the test.  Velocities range from 1.52 to 20.32 m/s 

in the duct section where the detector is mounted.  The rate of buildup of smoke is 

required to stay within specified limits based upon optical density measurements made 

with a white light source and selenium barrier-layer type photocell and the output current 

of a measuring ionization chamber. 

The relationship between the optical density measurements in the duct and the 

response of the duct smoke detector is not a direct one.  The optical density is a constant 
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that is evaluated by measuring the decay in light intensity as a function of the path, 

representing a global measurement that incorporates complex effects such as forward 

scattering and absorption (van de Hulst (1981), Mulholland (1995) and Quintiere (1982)). 

Smoke detectors are traditionally of two types, ionization and photoelectric.  Ionization 

detectors work on the principle of a current drop generated by the presence of smoke in 

an electrical field induced by a radioisotope and photoelectric by detecting light scattered 

by the smoke in a specific direction (Schifiliti (1995)). The optical density is not a direct 

measure of either mechanism of detection, resulting in great confusion when evaluating 

detector performance.  This confusion has led to great controversy in the comparative 

assessment of the performance of different detectors (Meland and Lovnik (1991), 

Johnson and Brown (1986), Schifiliti (1995), Spearpoint and Smithies (1997)).  

Significant work has been conducted to establish better metrics for detector 

performance.  The optical density is not only difficult to correlate with the detector output 

but also depends on many variables intrinsic to the fire, such as fire size, fuel and 

ventilation.  In an effort to eliminate the fire size and ventilation as variables, the optical 

density can be normalized leading to a constant that the fire community terms “mass 

optical density.” The mass optical density has been found to be independent of fire size 

and ventilation conditions. Furthermore, it has been measured to be fairly constant for 

different fuels (Quintiere (1982), Seader and Einhorn (1977)). 

The above approach has been questioned many times mainly due to inaccuracies 

generated by the way the measurements are conducted.  Classical optical density 

measurements (UL (1997, 1998)) are done using a polychromatic light source.  Analysis 

of the light obscuration measurement requires the use of Bouguer’s law (Van de Hulst, 

1981). Bouguer’s law is strictly valid for light of a single wavelength greater than the size 

of the scattering particle.  Therefore, precise measurements require the use of a 

monochromatic light source with a wavelength larger than the largest expected smoke 

particle size (Mulholland et. al. (2000) and Putorti, 1998).  These studies have also shown 

that corrections for forward scattering of light are necessary and depend on the 

characteristics of the individual particles.  

The integral nature of the measurement has also been a matter of concern. 

Mulholland (1995) points out that the mass optical density varies throughout the 



trajectory of the smoke and shows that the specific extinction coefficient is a complex 

function of the smoke particle size distribution.  The smoke size distribution evolves due 

to changes in the nature of the smoke, i.e. agglomeration and coagulation (aging of the 

smoke) (Mulholland, 1995) or simply due to uneven distribution of the smoke. The effect 

of aging of the smoke on the mass optical density can be significant and its evaluation by 

means of a polychromatic light source leads to significant error (Mulholland and 

Croarkin (2000)) but can be effectively quantified using a monochromatic light source 

(Clark (1985), Dobbins et. al. (1994)). Although aging is an issue of concern, for pool 

fires, it has been found that aging of smoke occurs very early and progresses little after 

the smoke leaves the fire (Levine, 1976). This supports the assumption that the mass 

optical density remains invariant once the smoke leaves the fire (Quintiere, 1982).   

Several studies have been conducted to describe the characteristics of smoke 

particles. Mechanisms related to coagulation of smoke in fire plumes have been described 

by Baum and Mulholland (1979) and experimental studies have explored soot oxidation 

and agglomeration (Ezekoye and Zhang (1997), Hoffmann and Koopmann (1996), 

Hoffmann and Koopmann (1997)).  Sophisticated techniques have been developed to 

characterize smoke and establish properties such as size distributions (Lee and 

Mulholland (1977), Mulholland and Ohlemiller (1982), Cashdollar et al. (1977)), 

scattering properties of smoke (Chung and Dunn-Rankin (1996)) or particle flow 

interactions (Gonzalez et al. (2000)).  Alternative metrics from complex experimental 

arrangements have been proposed in the literature but they have not proven viable for 

practical applications.  

Despite this wealth of information and the many problems associated with the 

current protocols, the optical density remains the norm when characterizing smoke 

detectors mainly due to the simplicity of its determination. The present study provides an 

in-depth evaluation of the current metrics for the application of HVAC smoke detectors.  

The use of the mass optical density as a proper criterion for assessment of detector 

performance is studied systematically by varying the three main variables affecting it: 

fuel, ventilation and fire size.  Alternate metrics are used to identify possible limitations 

of this approach and to explain differences that can be attributed to phenomena such as 

flow stratification and aging. 



Description of the Experimental Facility 
A schematic diagram of the experimental facility is presented in Figure 1.  This 

facility consists of a fully instrumented 3 m long duct (test section) connected on the 

upstream side to a square hood (approximately 2 m x 2 m) and on the downstream side to 

a 6 m duct leading to a fan that can provide a nominal range of airflow velocities of 0 to 

10 m/s. A throttling device adjusts the airflow rate in the duct.  Flanges provide a 

transition from the 0.45 m diameter round cross-section of the rest of the duct system to 

the 0.4 m square cross-section. 

The test section has 3 sets of openings for optical access.  At each location 

openings are made in all four sides of the duct.  Each opening is 0.12 m in width and 

covers almost the entire 0.4 m of the test section.  The openings can be covered by metal 

plates or by Pyrex windows depending on the measurement to be conducted. As shown in 

Figure 1, one set of openings is placed at each end of the test section and one in the 

middle. Windows are sealed to the duct using a high temperature RTV type sealant.  One 

window of each set can be removed by pulling a cutting wire through the RTV sealant 

creating a gasket.  The window is reattached using metal clips.  This system allowed for 

the cleaning of all four of the viewing windows at that location with the removal of only 

one window. In order to reduce the reflection of light within the duct and allow for more 

precise optical measurements to be made, the inside of the duct is painted with high 

temperature matte black paint. 

Eight type-K (24-gauge) thermocouples are mounted in the duct just downstream 

of the middle set of viewing windows (approximately 1.5 m from the upstream entrance 

to the test section).  The thermocouples are mounted horizontally with the bead on the 

plane of symmetry with one end of the wires extending to either side of the duct.  The 

wires penetrate small holes drilled in the side of the duct and are held in place using a 

strip of metallic tape.  The beads form a vertical array, where each thermocouple is 

separated by 50 mm with bottom and top thermocouple 25 mm from the ceiling and floor 

of the test section.  The purpose of the thermocouples is to provide a representative 

temperature distribution along the vertical plane of symmetry of the duct. 

Commercially available duct smoke detectors are mounted to the duct at 2.30 m 

from the inlet flange along the length of the duct.  Although a number of different 



detectors are used, this paper only presents the results of one representative ionization 

detector and one light scattering photoelectric type detector to emphasize the objectives 

of this study. Each detector employs a sampling tube to direct air from the duct into a 

housing containing the detector.  The discrete analog output from the sensors is stored on 

a computer providing a response curve from the detectors.  The sampling tube is placed at 

the center point of the duct profile.  The pressure difference between the inlet and outlet 

tubes on the duct detector housing is measured as a function of the flow rate in the duct 

prior to testing.  The pressure difference is within the manufacturer’s specifications for all 

flow rates used during testing.   

The above measurements are complemented with oxygen consumption 

calorimetry, optical density measurements and two different types of video images of the 

light scattered by the smoke.  The application of these techniques for this particular study 

required significant development, so detailed descriptions of the protocols and procedures 

follow.  

 

Oxygen Consumption Calorimetry 

Oxygen consumption calorimetry is applied within the present experimental 

configuration following the same methodology as that proposed by Huggett (1980), 

Parker (1984), Babrauskas (1984), Janssens (1991, 1995) and ASTM (1995(a)).   The 

calibrated range of the system limits the maximum size of the fire for these experiments. 

Oxygen consumption calorimetry provides accurate results for an energy release rate up 

to approximately 350 kW. Nevertheless, a reduced number of tests are conducted with 

fires of an approximate size of 800kW. Details of the basic principles behind this 

approach are presented in the above references; therefore, this presentation is limited to 

describe the specific characteristics of the current experimental facility.  

The energy release rate is the product of the mass of oxygen consumed during 

burning and 13.1 MJ/kg (of oxygen consumed) (Huggett (1980)). In order to calculate the 

oxygen consumption the mass flow rate of air taking part in the combustion process is 

determined.  The mass flow rate of air taking part in the combustion process is 

determined indirectly by measuring the flow rate in the duct (Figure 1).  A 0.34 m 

diameter orifice plate was installed in the duct system to determine the flow rate of 



exhaust gases.  Pressure taps are located before and after the orifice plate and are 

connected to the pressure transducer (Omega PX126 0 to 5 psi pressure transducer).  

This, along with the thermocouple installed within the duct near the orifice plate, allows 

the flow rate through the duct to be calculated. 

To approximate the oxygen intake, the stoichiometry of the reaction is assumed. 

Stoichiometry of the process is incorporated by means of the expansion factor; a constant 

value of 1.105 is used for all fuels in this study (Janssens, 1995).  The molecular weight 

of the exhaust gases is equated to the molecular weight of the air entrained into the fire.   

Oxygen concentration measurements are performed using a Siemens 

Paramagnetic Oxymat 6 oxygen analyzer. Corrections due to incomplete combustion are 

incorporated by including in the calculations measurements of carbon monoxide and 

carbon dioxide obtained by means of a Siemens  Ultramat 23 analyzer.  Cooling of the 

hot exhaust gas in the sampling line and the sensitivity of paramagnetic oxygen analyzers 

to moisture require that the moisture in the sample gas be removed prior to analysis.  

Thus, gas concentration measurements are made on a dry basis, and a correction to all 

concentrations, due to the elimination of humidity, is incorporated in the calculations.    

Preliminary experiments revealed a stratified flow within the duct upstream of the 

orifice plate.  Because the inclusion of a mixing plate upstream of the orifice plate might 

have affected the flow measurement using the orifice plate and interfered with smoke 

measurements planned in the upstream portion of the duct, a mixing plate was not 

installed.  Instead, two smaller holes were cut in the gas sampling tube to obtain samples 

across the duct cross-section and the sampling tube was moved downstream of the orifice 

plate.  Experimental calibration of the calorimeter and comparison with data available in 

the literature (Tewarson, 1995) show this to be an acceptable sampling configuration, and 

therefore, errors due to stratification were assumed to be negligible. 

The above measurements provide the time evolution of the oxygen consumed by 

the fire and thus of the energy release rate. Finally, the heat of combustion of the fuel can 

be determined by dividing the energy release rate by the mass loss rate.  Placing the 

sample on a load cell (Automatic Timing and Controls load cell), mass loss rate and 

energy release rate can be measured simultaneously and the effective heat of combustion 

can be calculated as a function of time.   



 

White Light Source Optical Density System 

The system used to measure the optical density of the smoke in the duct consisted 

of a white light source and photocell mounted to the top and bottom of the duct.  The 

system is similar to that used by UL for the measurement of optical density during the 

standard detector listing test (UL, 1997 and 1998).  Thus, the optical density 

measurements made during these experiments are designed to be comparable, without 

correction, to those specified by UL.  The quantitative results, however, cannot be 

compared directly because the size constraints and windows imposed by the test section 

result in differences. Nevertheless, the trends and conclusions presented throughout this 

work apply to the optical densities measured using the set-up proposed by UL.  

The light source is a 6-volt rated (type 4515) automotive spotlight. The bulb was 

powered by a variable alternating current power supply run through a power conditioning 

circuit used to protect the bulb from overload.  The power to the bulb was adjusted to 

2.40 volts using a Fluke 75 Series II auto ranging multimeter.  The photocell was a 

Weston model 594 photronic cell.  The photocell is a selenium barrier-layer type with a 

33 mm diameter active area. Output from the photocell was recorded using the same data 

acquisition system used for the calorimeter. The bulb and photocell were mounted to a 

single mounting bracket, which allowed for proper alignment of the two components and 

controlled adjustment of the bulb and the photocell relative to one another.  The bracket 

could be moved to any of the three sets of windows along the length of the duct.   

The light shone vertically through the duct to obtain an integral measurement of 

the obscuration.  This measurement was intended to be a reference measurement to be 

compared with other parameters; therefore no horizontal measurements were made.  

While horizontal measurements at different heights could have been made, the Laser light 

sheet (described later), provides a more accurate representation of smoke stratification. 

 

Smoke Characterization by Means of Light Scattering 

Evaluation of light scattering by means of a CCD camera is used to establish a 

signature that is representative of the particle size and count.  Light scatter is used 

because it provides a well-established correlation between the intensity of the scattered 



light and particle size and density. Detailed description of the Mie theory for scattering 

can be found in the work of van de Hulst (1981) and will not be presented here.  

Light scatter is a function of many variables; these include the view angle ( θ ) as 

measured from the direction of the light beam, the scattering cross section (C (cm2)) and 

the ratio of the particle diameter to the wavelength ( λπ=α D ).  Furthermore, the 

scattering cross section is strongly dependent on the geometry and composition of the 

particles.  For proper interpretation of the signals collected, the intensity of the scattered 

light needs to be maximized.  This makes the signal to noise ratio small and the results 

accurate.  The constraints imposed by the duct and the strong concern for simplicity did 

not allow for an optimized signal to noise ratio.  Nevertheless, the experimental set-up 

was designed to obtain the strongest signal within the bounds of the objectives of this 

study. 

The intensity of the scattered light is proportional to the scattering cross-section 

(van de Hulst (1981)), which increases with the value of “α.” Eckbreth (1988) shows the 

dependence of the cross section on “α” for carbonaceous particles.  Particles from a wide 

range of fires have been shown to range between 0.05 µm and 5 µm (Lee and 

Mulholland, 1977) and their mean diameters between 0.4 µm and 3 µm (Mulholland, 

1995), therefore, the light scattered from visible sources lead to values of “α” that range 

from approximately 0.2 to 25 for the entire range of particles, or 2 to 25 if the mean 

diameters are considered.  Within this range the scattering cross section is large so the 

wavelength of the light source is of little relevance. Of more relevance is the maximum 

intensity produced by the light source.  

Diode Lasers can be found in wavelengths that cover the entire visible spectrum, 

but the power to cost decreases with the wavelength. For this study a 500 mW SDL-

7432-H1 diode Laser centered on 0.674 µm was used as the light source.  This choice 

was made to maximize the power and to keep the light within the visible range.  It is 

important to remain within the visible range so that a standard CCD camera can be used 

to record the light scattered by the particle. 

The image acquisition process uses a monochrome COHU-4915 CCD video 

camera and zoom lens with a resolution of 752 pixels vertically and 480 pixels 

horizontally.  The camera records the images in the RS-170/CCIR format.  This 



resolution provides a minimum pixel size of 10.02 µm vertically and 8.58 µm 

horizontally. A light filter centered at 0.678 µm and a bandwidth that ranges from 0.674 

µm to 0.682 µm was used to minimize the contributions of ambient light. 

Two cylindrical lenses produce a 10 mm wide light sheet that is approximately 1 

mm in thickness across the view field of the camera. As shown in Figure 1, the light sheet 

is reflected on a 45o mirror and directed from the bottom to the top of the duct.  The light 

sheet is parallel to the side surfaces of the duct. 

The image is captured at 90o with the CCD camera (Figure 1) and the intensity 

recorded by each pixel represents a lumped estimation of the light scattered by the 

particles at a specific location.  As mentioned before, the intensity of the scattered light 

depends on the view angle and is maximized for (van de Hulst, 1981).  

Measurement of backward scattering is thus optimal for a point measurement.  To obtain 

spatial distribution of the scattered light, and thus be able to define particle size and 

concentration, a compromise needs to be achieved between intensity and the deformation 

induced by the view angle.  For this particular study the spatial resolution was prioritized, 

therefore, the view angle was set as perpendicular to the light sheet ( ). 

o180=θ

o90=θ

Image processing of the recordings leads to a signature that is representative of 

size distribution and particle count.  Since the particle images are not being captured 

directly this approach does not produce accurate measurements of quantity and size but, 

nevertheless, can provide a signature that can characterize the evolution of these variables 

with the different test parameters. 

The computer used to capture the images and process them is a Pentium III 600 

MHz machine equipped with an EPIX PIXCI imaging board that captures the images.  

The software used is XCAP image grabbing and treatment software.  

Macroscopic Images 

Images of the entire beam are obtained by means of the CCD camera and are used 

to determine the relative smoke density along a vertical line traversing the duct from top 

to bottom.  If an invariant particle size distribution is assumed for the entire light sheet, 

then the light intensity recorded by the CCD camera can be directly related to the smoke 

particle quantity.  The light intensity recorded by the camera can be interpreted as an 

indirect measurement of the particle concentration at each pixel.   Assuming that the 



particle size distribution remains invariant is reasonable since aging is expected to occur 

mostly in the stream-wise direction and not on the plane perpendicular to the flow.  Wall 

effects as well as temperature variations across the cross-section of the duct might affect 

the particle size distribution, but are considered negligible.  An accurate estimation of this 

error could be achieved by conducting local sampling of the smoke at different heights 

and establishing the particle size and density distributions.  This calibration involves 

great experimental complexity (Mulholland, 1995); therefore, it was considered beyond 

the scope of this work.  Nevertheless, while these measurements do not provide a 

quantitative estimate of the particle count, they do provide a relative evaluation of the 

particle concentration at each pixel location.   

 

Smoke Signatures Obtained From a Magnified View of Light Scattering 

A particle scatters light as it passes through the light sheet; the camera sees the 

scattered light.  If the image captured by the camera is magnified sufficiently and the 

particle density is small, then the light scattered by a single particle can be recorded 

without overlaps with the light scatter by other particles. Under these conditions, analysis 

of the intensity recorded by each pixel can provide a signature of the number of particles 

within the field of view as well as the size of these particles. 

The view from the camera, however, is not an actual measurement of the particle 

size but is a representative size.  If the particle is much smaller than the pixel, then a 

single pixel is illuminated.  As the particle increases in size, the intensity recorded by the 

pixel increases until the light scattered from the particle covers more than one pixel.  In 

this case the pixels that neighbor the one containing the particle are also illuminated. 

Therefore intensity and the number of contiguous pixels illuminated provide an estimate 

of the particle size relative to the pixel size. 

As noted previously, without magnification the dimensions of a pixel seen by the 

camera are approximately 10.02 µm vertically and 8.58 µm horizontally.  Because the 

mean diameter of typical smoke ranges between 0.4 µm and 3 µm (Mulholland, 1995), 

magnification of at least 25 times is necessary to resolve the particles.  The magnification 

required does not have to provide a resolution comparable to the particle size.  The light 

intensity reaching a pixel is originated in a particle that is much smaller than what is 



perceived by the camera (several diameters according to van de Hulst, 1981).  Evaluation 

of the required magnification that provides pixel resolution for the projected size was 

performed under idealized conditions prior to the duct experiments showing that images 

recorded by the camera corresponded to 3-5 particle diameters. 

To achieve this resolution a magnification system was developed.  The 

magnification system consisted of two achromatic lenses in alignment.  The 

magnification obtained is proportional to the ratio of the focal length of the second lens to 

the first.  The characteristics of the camera and space constraints led to a maximum focal 

distance of 0.44 m.  To obtain the required magnification, the lenses selected had an EFL 

= 50.29 mm and BFL = 60 mm for the first lens and an EFL = 394.33 mm and BFL = 

400 mm for the second lense. The EFL is the focal distance measured from the surface of 

the lens and BFL is the focal length measured from the center of the lens. The 

magnification is given by the ratio of the EFL of the second to the first lens, which for 

this case results in a net magnification of 6.67.  This combination of achromatic lenses 

and the cameras optical zoom provided a maximum pixel resolution of 1.29 µm 

horizontally and 1.50 µm vertically.  This provides a pixel resolution on the same order 

as that of the image projected by the particles.   

Extrapolation of the particle size can be done theoretically, but the precision of 

the results is questionable due to the uncertainty in the shape of the smoke particles.  In 

contrast, direct comparison of the pixel illumination distribution with experimental data 

corresponding to well characterized fires could provide an adequate particle distribution. 

This calibration involves a complex arrangement (Mulholland, 1995) and therefore goes 

beyond the scope of the present work. In this study, the analysis will be done comparing 

the recorded images without defining the corresponding particle sizes.  

Measurements of the representative particle sizes were made at the windows 

placed at the inlet and outlet of the duct (Figure 1).  

 

Image Processing 

The images obtained from the CCD camera through the image board provide an 

array of pixel intensities in the ASCII file format.  The pixel intensity includes any 

background noise, which is present in the system due to dust, electronic interference, or 



any other unknown source of noise. Averaging the measured intensities of 50 images 

captured under clean conditions (no smoke) and subtracting this mean noise from the 

measured intensities removes the background.  Any pixel intensities with a negative 

value are considered as zero.  Once the noise has been eliminated, two different 

treatments are performed to analyze the images obtained for these experiments.   

For the macroscopic images the pixel values that will be presented correspond to 

an average of several images.  A single image represents the instantaneous smoke 

distribution, therefore it might not be representative of the average conditions.  It is 

therefore necessary to average a significant number of images that will lead to a proper 

representation of the average conditions.  The number of images is limited by the 

evolution of the fire source, if the source evolves fast the number of images to be 

averaged has to be small, if the source has little or no evolution, the number of images 

can be increased significantly. Sources such as propane or heptane flames tend to attain 

steady conditions for time periods of the order of 30 to 60 seconds, allowing the use of a 

large number of images for the average.  Others sources such as smoldering newspaper 

could never be considered steady-state in which case the number of images recorded and 

averaged had to be reduced. 

Variations originating in passing smoke pockets are characterized by a high 

frequency, while changes in the fire source occur much slower so determination of the 

proper number of images to be averaged can be done from the observation of the time 

evolution of a single pixel. A smooth curve that follows the trend can be superimposed to 

the data and the number of points that has to be averaged to best reproduce the smooth 

curve can be determined.  This can be validated as a function of time and for a number of 

different pixels. For the present study the number of images averaged to produce the 

quantitative data was always greater than 480 images (approximately 16 seconds of 

image recording).  

Image processing was conducted on single images to determine the presence of a 

particle.  The array of data corresponding to a single image show values ranging from 0 

to 255, with 0 referring to black and 255 to white.   

The particles are represented by pixels where the intensity is high due to the 

scattered light. But due to the angular dependency of the scattered light, the pixels on the 



periphery will typically have a lower intensity than those in the “core” of the particle.  

This means that the particle must be represented as a square of pixels, which have the 

same approximate intensity.  If the pixels do not have approximately the same intensity 

then it is most likely several particles and not just one.   

In order to identify those combinations that truly are representative of a single 

particle two different methodologies are used. The first method chooses an arbitrary 

threshold to digitize an image.  All intensity values above the threshold are identified as 

having a particle. Once the image is digitized, particles are counted using a Fortran 

subroutine developed specifically for this study.  The subroutine counts the number of 1 

by 1 pixel particles, 2 by 2 pixel particles, 3 by 3 pixel particles, and 4 by 4 pixel 

particles.  The arbitrary threshold is increased and the process repeated until a significant 

change in particle counts is observed.  Because all pixels within a particle have a similar 

intensity, once the change occurs the particle counts remain constant.  The threshold at 

which the significant change occurs is taken as the threshold for the image.  An average 

particle count is generated by averaging the individual counts of the same number of 

images used for the macroscopic view of the smoke.  

A second methodology was used; this methodology relied on the same principles 

as the previous one but followed a different approach to identify the particles. An initial 

group of pixels (either 1 by 1, 2 by 2, 3 by 3 or 4 by 4 pixel squares) is identified. Within 

this group the pixel intensities are compared and if they match, within a specified 

percentage, the group is defined as an ensemble.  The process starts with 4 by 4 boxes 

moving across the entire array a pixel at a time.  Once the 4 by 4 ensembles have been 

identified, the unidentified areas are swiped by 3 by 3 ensembles, followed by 2 by 2 

ensembles until the single pixels are identified.  Once the ensembles are defined and 

average intensity is obtained for each ensemble, those ensembles with an average 

intensity above a specified threshold are counted as particles. The definition of the 

threshold is very clear because a broad gap is formed between those ensembles identified 

as particles and those identified as not being a particle. In contrast the percentage that 

defines an ensemble is difficult to establish.  It was found that percentage differences 

between 10% and 15% provided the most consistent results.  As for the other technique, a 



particle count was generated for each image and then averaged over the same number of 

images used for the macroscopic view of the smoke. 

The two techniques provided consistent results and were both applied to all 

experiments, but the second method was generally used to report the results. The second 

technique provides a better estimate of error since varying the percentage difference that 

defines the ensemble can serve as a sensitivity analysis.  This was done to show that best 

results can be obtain if the error is defined between 10% and 15%. 

 

 



Experimental Results 

 The objective of this study is to characterize the different variables that have a 

significant effect on the performance of a duct smoke detector. The variables chosen for 

the present experiments are the fuel, fire size and volumetric exhaust flow rate.   

All of the different measurements described in the previous section were 

conducted simultaneously. The optical density system was placed at the opposite end of 

the duct from the Laser system.  That is, for tests where the Laser system was positioned 

at the set of viewing windows at 30 cm, the optical density system was mounted at 300 

cm.  The commercial duct smoke detector was positioned with the sampling tube at 230 

cm from the inlet for each test.  A test was conduced for each fuel using a photoelectric 

and an ionization type duct smoke detector at each of four exhaust flow rates. 

 A total of 98 tests were conducted. Table 1 provides the conditions examined in 

each test series.  A test series generally consists of tests over the range of airflow rates.  

The size of the fire (energy release rate) was varied from a few kW to approximately 800 

kW.  The volumetric flow rates examined were nominally 1.42, 1.07, 0.71, and 0.36 m3/s.  

The highest flow rate is the maximum flow of the exhaust fan.  The other three 

volumetric flow rates correspond to three-quarters, one-half, and one-quarter of the full 

volumetric flow rate. The fire sizes were chosen in order to allow tests to be conducted at 

each of the four flow rates without overflowing the hood and to allow for the full range of 

detector output to be examined.  For the largest fire sizes tests could only be performed at 

the highest flow rate. 

   Fuel sources for the experiments were chosen to provide a wide range of smoke 

characteristics and allow for comparison to the UL listing criteria (1998).  As an example, 

Figure 2 shows, two extreme cases. Figure 2(a) corresponds to a 45 cm diameter n-

heptane fire, a flaming fire with a low soot yield, and Figure 2(b) shows a shredded 

newspaper smoldering fire representing the other extreme of the fires examined.  The 

smoke from the shredded newspaper fire is predominately a liquid aerosol and the energy 

release rate is very low.  Other test fuels were chosen for different reasons; toluene was 

chosen for its high soot yield and the relatively large smoke particle sizes.  The mixture 

of toluene and n-heptane (25 % toluene / 75 % n-heptane) was also tested.  This mixture 

is used in the UL room fire test of smoke detectors (UL, 1997).  Flexible polyurethane 



foam blocks and wood cribs (Douglas-Fir) were tested due to their common applications.  

Polyurethane foam is mainly used as furniture padding and is characterized by very fast 

flame spread rates. The wood cribs are the same as those specified as “Class A” (57 by 

305 by 305 mm) and “Class B” (57 by 152 by 152 mm) cribs in the ASTM E108 test of 

roof coverings (ASTM, 1995(b)). Due to their slow spread rate the wood cribs were 

ignited using 300 mL and 100 mL respectively of methanol placed in a 150 mm diameter 

pan, 60 mm below the suspended crib. 

The shredded newspaper test provides both a period of smoldering combustion, 

during which thick white smoke is produced, and a period of flaming combustion, during 

which almost no visible smoke is produced.  The smoldering period is illustrated in 

Figure 2(b).  A hollow steel cylinder 0.1 m in diameter and 0.3 m long is filled with 42 g 

of shredded newspaper.  The shredded newspaper is packed into the bottom 200 mm of 

the cylinder and the cylinder is placed on a ring stand with a piece of wire mesh holding 

the contents of the cylinder in place.  The newspaper is ignited touching the bottom 

center of the cylinder with a small flame.  The ignition source is removed as soon as the 

production of smoke is observed, following the protocol used in UL 217 (UL, 1997).  

 A propane fire was run each day for the purpose of calibrating the calorimeter.  

Propane was run from a tank through a flow meter and then into a 60 cm diameter round 

burner filled with gravel.  Test data was collected for all of the instruments during the 

propane calibrations. 

 

Smoke Detector Response 

 The signal from two smoke detectors (one photoelectric type detector and one 

ionization type) was used to describe the effect that the three different variables have on 

the signal obtained from the detector.  The signal was gathered directly from the detector 

and plotted as a function of time.  Figures 3 and 4 show the detector response as a 

function of time and compared to the rate of energy released by the fire. Figure 3 

corresponds to the output of a photoelectric detector to a flaming polyurethane foam fire 

and Figure 4 to an ionization detector exposed to the smoke of a fire generated by a 

mixture of 25% toluene and 75% n-heptane placed in a 0.15 m pan. As seen in both 

figures, the detector response closely follows the energy release rate.  In the case of the 



toluene/n-heptane mixture both curves follow almost identical trends and cover the same 

time span.  Figure 3 shows that for the case of polyurethane foam, the detector continues 

to register a significant signal, even after the fire is extinguished.  This is due to the 

smoking residue left after the flame ceases to exist.  For a given fuel, the detector signal 

is proportional to the energy release rate and, thus to the size of the fire. 

 The effect of the airflow velocity through the duct on the detector output is shown 

in Figure 5.  The response of an ionization detector is presented in Figure 5(a) and that of 

a photoelectric detector in Figure 5(b).  As indicated in both figures, as the air velocity 

increases, the signal from the detector decreases due to dilution of the smoke.  The 

relative signal from the ionization detector is generally larger than that obtained from the 

photoelectric one.  The results presented correspond to several different tests; therefore, 

the time shift does not correspond to a delayed response from the photoelectric detector 

but to the time taken to start the experiment. 

 The final parameter to be studied is the fuel type.  average detector responses for 

the different fuels used at a fixed optical density of 0.1 m-1 are presented in Figure 6.  The 

detector response depends significantly on the fuel and the combustion mode.  The 

extreme scenario of smoldering newspaper shows a strong response of the photoelectric 

detector compared to a very weak response of the ionization type detector.  In contrast, 

the other extreme condition, flaming n-heptane shows the opposite trend.  If toluene (high 

soot yield fuel) is present, both detectors will respond in a similar manner. 

 The above paragraphs showed that the fire size (Figures 3 and 4), dilution (Figure 

5) and fuel type (Figure 6) affect the response of both photoelectric and ionization smoke 

detectors. In a later section, the effect of these same parameters on smoke characteristics 

is presented to assess the impact of fire size, dilution and fuel type on detector 

performance.  

 

Mass Optical Density 

 Light obscuration was measured across the duct using a white light source 

following the recommendations given by UL (1997 and 1998).  The measurements 

presented in this section were made at 3 m from the smoke intake (Figure 1).  

Measurements were also conducted at the inlet but followed the same trends.  Further 



discussion of the differences between the two locations will be presented in following 

sections.  

An extinction coefficient or optical density is extracted from the attenuation of 

light by means of Bouguer’s law. 
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Where Iλ,L is the attenuated intensity of radiation (W/m2), Iλ,0 the source intensity of 

radiation (W/m2), L the path length (m), Dλ the monochromatic optical density (m-1) and 

Kλ the monochromatic extinction coefficient (m-1). Both expressions are equivalent and 

can be integrated under the assumption that the optical density remains constant over the 

path length, L.  Furthermore, for a white light source that consists of multiple 

wavelengths, the integration of equation (1) leads to an average optical density (D) or 

extinction coefficient (K) 
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The optical density is therefore linked to the extinction coefficient by a factor of 2.303 

where K/D=2.303. It is more common for fire related studies to use the optical density 

(D), therefore this parameter will be used for the analysis of the data. 

It is important to state that the assumptions of a constant optical density through 

the path length and that an average optical density can be obtained from integration of 

equation (1) are difficult to support.  The smoke density, and therefore the optical 

density, varies along the cross section of the duct.  Horizontal measurements of the 

optical density at different heights along the duct conducted throughout this study showed 

that the variation of the optical density throughout the duct could be very significant and 

is intimately related to other variables of the problem such as the flow velocity and the 

fire size.   Furthermore, Bouguer’s law is strictly valid for light of a single wavelength 

(Van de Hulst, 1981).  Many studies have shown that a monochromatic light with a 

wavelength larger than the largest expected particle size is necessary for precise 

measurements (Mulholland et. al. (2000) and Putorti, 1998).  These studies have also 

shown that corrections for forward scattering of light are necessary and depend on the 

characteristics of the individual particles.  



Despite these problems, an average optical density has been the norm when 

characterizing smoke detectors, mainly due to the simplicity of its determination.  In the 

present study, this parameter is used as a benchmark, but the results are compared with 

more precise measurements.  As detailed in the description of the experimental facility, 

the current optical measurements, other than the optical density, conform to the 

requirements defined by Mulholland et al. (2000) and Putorti (1998). 

As an example, the evolution of the optical density (D) with the energy release 

rate for a 0.15 m Toluene fire is presented in Figure 7.  A single fire is used to describe 

the different observations but the trends are similar for all experimental conditions.  As 

the fire grows in size, the energy release rate and optical density grow in an analogous 

manner.  A direct dependency of the optical density on the energy release rate can be 

extracted from Figure 7.   

The fluctuations of the flame that can barely be observed from the energy release 

rates are very clear from the optical density measurements.  Although there is a 

significant difference in the magnitude of the response of the different measurements to 

the fluctuations there is coincidence on the timing and frequency.  The large size of 

smoke particles preclude them from following turbulent fluctuations, therefore, the 

diffusivity of these particles is less affected by turbulence, resulting in a particle 

distribution that is less homogeneous than the oxygen concentration used to obtain the 

energy release rate measurements.  The smoke particles are more likely to follow the 

flame fluctuations and consequently the flame pulsating frequency will clearly show on 

the time evolution of the optical density. 

A comparison of the energy release rate obtained from oxygen measurements 

with that obtained from the recorded mass loss is presented in Figure 8.  At the location 

of the measurement, oxygen can be assumed to be well mixed therefore the fluctuations 

are attenuated.  In contrast, mass loss follows the fluctuations of the flame.  The optical 

density traces (Figure 7) thus resemble more those of the energy release rate obtained 

through an average heat of combustion (Tewarson (1995) (Figure 8). In contrast, Figure 7 

shows that the timing of optical measurements conducted at 3 m from the inlet tends to 

correspond with the energy release rate calculated from oxygen consumption 

measurements.  Figure 8 shows a time delay between the energy release rate obtained 



from the fuel mass loss and that calculated from oxygen consumption measurements. 

Therefore, the mass loss measurements are used to isolate the effect of fire size from the 

optical density, but all times are adjusted using a time delay equivalent to the delay 

between the two measurements of the energy release rate.  

Figure 9 shows the dependence of the optical density on the flow velocity.  An 

increase of the airflow through the duct will result in dilution of the smoke and a decrease 

in the average optical density.  If the fire is too large, the dependence of the optical 

density on the airflow changes because the extraction system cannot take in all of the air 

entrained by the fire.   Because fires that significantly overwhelm the flow within the duct 

provides results that depend on the characteristics of the particular set-up, these results 

cannot be generalized to other scenarios and thus set the limits for the fire size.  

Based on the information extracted from Figures 7 and 9, the optical density, D 

[1/m], can be assumed to be proportional to the mass of smoke moving through the 

control volume ( [g/s]) and inversely proportional to the airflow rate ( [mfm& V& 3/s]).  The 

constant of proportionality is generally termed the mass optical density (Dm [m2/g]).  The 

above statements can be expressed mathematically in the following form: 
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Quintiere (1982) and Seader and Einhorn (1977) present an analytical justification to 

equation (3).  The analysis presented by Quintiere (1982) and Seader and Einhord (1977) 

shows that the mass optical density can be expressed by  
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Where σs (m2/g) is the specific extinction coefficient and yS is the soot yield. The 

constant of 2.303 comes from the conversion from extinction coefficient to optical 

density.  The specific extinction coefficient is a function of the structure of the soot 

particles and can be considered dependent only on the fuel. Similarly, the soot yield can 

be considered a function only of the burning fuel. In summary, the mass optical density 

can be deemed a function only of the fuel. 

 Based on the above arguments, equation (3) can be used to calculate the mass 

optical density from the measurements presented in Figures 7 and 9.  Mulholland (1995) 



proposes that the mass optical density will vary throughout the trajectory of the smoke.  

Mulholland (1995) shows that the specific extinction coefficient is a complex function of 

the smoke size distribution, which evolves due to agglomeration and coagulation 

(Mulholland, 1995).  This process is termed aging of the smoke.  For pool fires, aging of 

the smoke has been found to occur very early and progress little after the smoke leaves 

the fire (Levine, 1976), which supports the assumption that the mass optical density 

remains invariant once the smoke leaves the fire (Quintiere, 1982).  Nevertheless, 

collection of smoke into a duct precludes dilution and enhances turbulence, thereby 

promoting aging.  Thus, the observations by Mulholland (1995) regarding the effect of 

aging on the mass optical density need to be considered with great attention in this study.  

Indeed, throughout the present experiments, it was found that under identical 

experimental conditions the optical density measured at the inlet of the duct differed from 

measurements conducted 3 m downstream.   

In this section only data obtained 3 m downstream is presented.  No attempt is 

made to define the effect of aging on mass optical density since Mulholland and Croarkin 

(2000) have shown that polychromatic light results in significant discrepancies in the 

evaluation of the specific extinction coefficient. In contrast, Mulholland and Croarkin 

(2000) and Dobbins et. al. (1994) showed very consistent results when a monochromatic 

light source was used. Therefore, the monochromatic light source (i.e. Laser) is used to 

study the evolution of the smoke along the duct. 

 The mass optical density measured 3 m downstream of the duct for a 0.15 m 

toluene fire is presented in Figure 10 for the four airflows studied.  The mass optical 

density tends to increase slightly over the course of the experiments, reaching 

approximately 0.1 m2/g after approximately 150 seconds.  This delay corresponds well 

with the establishment of a quasi-steady flow within the duct.  Towards the end of the fire 

the mass loss tends to zero resulting in artificial fluctuations of the mass optical density. 

An average mass optical density was calculated for different fuels, different fire 

sizes and different flows.  The mass optical densities obtained for all conditions for each 

fuel were averaged and the averages are presented in Figure 11.  Figure 11 shows that the 

mass optical density for Toluene is significantly larger than values obtained for other 

fuels, with polyurethane foam having the lowest value.  Smoldering newspaper 



measurements have a large uncertainty since the combustion reaction transitioned 

cyclically between smoldering and flaming.   

Except for toluene, all other average mass optical densities can be found within 

the error bars. The large accumulation of soot that occurred on the duct windows for the 

tests conducted with toluene can explain this difference. Throughout an experiment the 

duct windows accumulated soot increasing the light obscuration.  For most experiments 

this increase can be compensated by assuming that the enhanced obscuration has a linear 

dependency with time. The data can thus be corrected by obtaining a reference optical 

density measurement at the beginning and at the end of the test.  This correction was 

effective for most of the cases studied, leading to an almost constant mass optical density 

towards the end of the test (Figure 10).  For toluene fires greater than 0.15 m in diameter, 

even with the correction the mass optical density continued to increase due to a 

significant accumulation of soot on the windows.  The same observation also was made 

for the largest n-heptane fire (0.6 m).  Because this drift was much more significant with 

toluene than with n-heptane at comparable energy release rates, indicates that the drift 

was related to the characteristics of the smoke and not to the effect of the fire on the flow 

within the duct.  

The average values presented in Figure 11 are based on all of the mass optical 

density measurements obtained for energy release rates above 5 kW. Criteria for data 

rejection would have been arbitrary and therefore post processing of the data was not 

performed.  The large values of the mass optical density for toluene can be attributed to 

the drift problem. 

 

Particle Counts  

 This section presents pixel counts for different experimental conditions to further 

address the effects of fire size, dilution and fuel type on the characteristics of the smoke 

within the duct.  These measurements can be expected to provide a more accurate 

description of the smoke, since the experimental methodology is free of many of the 

approximations implied in the optical density measurements stipulated by UL (1997 and 

1998). All the data presented in this section corresponds to a single location in the duct (3 

m from the inlet and 0.1 m from the top of the duct).  



 The evolution of the pixel counts as a function of time is presented in Figure 12.  

The 1 x 1 pixel counts are presented in Figure 12(a) and 2 x 2 pixel counts in Figure 

12(b). Larger pixel counts were obtained and showed similar trends. Trends become more 

difficult to identify as the number of counts decreases, therefore larger pixel counts are 

not presented here. The experimental data corresponds to a 0.15 m n-heptane fire.  

Figures 12(a) and 12 (b) show that the number of pixel counts increases with the energy 

release rate. Fluctuations in the energy release rate are followed by similar changes in the 

number of pixel counts, but with a slight time delay.  When normalizing the pixel data all 

times were adjusted using a time delay equivalent to the delay between the two 

measurements of the energy release rate.  

 The evolution of the 1 x 1 pixel counts for different airflow rates for a 0.15 m 

25% Toluene/75% n-Heptane fire is presented in Figure 13.  Each data point presented 

corresponds to 30 image count averages.  Data was taken for approximately 60 seconds at 

a period where the energy release rate was almost steady. As shown for the detectors 

(Figure 5) and for the optical density (Figure 9), an increase in the flow rate results in a 

decrease in the number of pixel counts as well as a decrease in the optical density and 

detector response. 

 Figures 12 and 13 show that the normalization that leads to the mass optical 

density (equation (3)) is also appropriate for the pixel counts.  Because the light source is 

monochromatic (0.674 µm), errors associated with the effect of wavelength on light 

attenuation and incorporated in the integration of equation (1) are minimized. 

Furthermore, the scattered light is measured at 90o by the CCD camera to enable forward 

scattering to be neglected.  

 The pixel counts obtained for different tests were, normalized by the fuel mass 

loss rate and the airflow velocity per equation (3).  As an example, data obtained for the 

five n-heptane fires ranging from 50 kW to 200 kW is presented in Figure 14. With the 

exception of the earlier and later stages of the test where the energy release rate tends 

towards zero, the normalized pixel counts are consistently at approximately 0.8 x 105 

[m3/g].  The average values for all seven fuels are presented in Figure 15.   

Because average pixel counts can be obtained for periods as short as a few 

seconds, data could be gathered for conditions where mass optical density showed 



dramatic error bars (i.e. wood cribs, flaming newsprint).  Furthermore, extremely sooty 

flames such as toluene could be addressed by short measurements conducted at different 

stages of the fire where the windows would be cleaned and measurements obtained 

immediately after. 

In Figure 15, the normalized pixel counts and the mass optical density follow the 

same trends for all fuels studied.  Single pixel counts (1 x 1) and four pixel counts (2 x 2) 

follow almost identical trends.  The large discrepancy in the mass optical density between 

toluene and other fuels is not present in the normalized pixel counts.  Toluene thus 

appears to produce very similar smoke to the mixture of 25% toluene/75% n-heptane, 

verifying the hypothesis that this discrepancy is introduced by the accumulation of soot 

on the duct windows.  

Comparison of figures 6 and 15 show that the correlation between the 

performance of photoelectric detectors and pixel counts is very good.  This is expected 

since the principle by which photoelectric detectors operate is very similar to the present 

measurements.  In contrast, the present measurements do not correlate as well with the 

output of ionization detectors. 

 

 

Spatial Evolution of the Smoke 

 The previous section described measurements conducted at a specific location 

within the duct.  These measurements helped to identify the effects of dilution, fire size 

and fuel.  Altering the location of the measurement resulted in a significant variation in 

the results providing evidence of changes in the nature of the smoke as it progressed 

through the duct (aging) and an unequal distribution of the smoke across the cross section 

of the duct (stratification).  The size constraints of the present facility do not allow for a 

systematic study of these parameters, but this section will attempt to qualitatively 

illustrate their importance. 

 

Stratification 

 Three different measurements were made to study flow stratification within the 

duct, velocity measurements, temperature measurements and 90o scattered 



monochromatic light recorded by a CCD camera.  The geometric constraints of the 

facility precluded making all three measurements at the same location, therefore 

velocities and temperatures where obtained 1.5 m downstream of the inlet and scattering 

measurements where obtained at the inlet and at 3 m downstream. 

 All three measurements resulted in consistent information. Nevertheless, it was 

clear that many variables affected the structure of the flow within the duct and the effects 

of fire size, fuel and airflow could not be completely isolated.  The scattering 

measurements showed a significant evolution of the particle distribution between the inlet 

and 3 m downstream.  Because measurements could not be made further along the duct of 

the current experimental facility, the possibility of the observed stratification being an 

inlet effect could not be confirmed or refuted.  Because the inlet was open to the fire, the 

nature of the burning fuel had a significant effect on the initial condition and thus on the 

evolution of the flow along the duct.  As an example, the data from a 0.15 m n-heptane 

fire is used in this paper to illustrate the correlation between the different measurements.  

Details of these measurements can be found in Ryder (2000) and Wolin (2000). 

 Figure 16 shows the velocity distribution along the vertical center-plane of the 

duct.  The data is presented normalized, the vertical distance from the flow, y, is 

normalized by the height of the duct, H, and the velocity by the nominal velocity (i.e. 

flow rate divided by the duct area).  Data is presented for the maximum and minimum 

flow rates and for both, a 35 kW fire and the cold flow.  In the absence of a fire the air 

flows parallel to the longitudinal axis of the duct.  The velocity distribution shows a slight 

increase at the top of the duct that is due mostly to the inlet condition.  Nevertheless, the 

divergence from the mean is less than 5%, which is within experimental error for the 

nature of the Pitot tube used for these experiments.  No measurements could be made 

close to the wall due to the intrusiveness of the probe.   

In the presence of a fire, the flow accelerates at the top of the duct.  The   velocity 

overshoot is more significant for the low flow velocity case (~40%) decreasing as the 

velocity reaches its maximum value (~20%).  Stratification occurs when buoyancy 

dominates over the flow inertia, therefore the effects of buoyancy (stratification) are 

reduced as the airflow velocity increases.   



Further evidence of stratification can be obtained from the temperature 

measurements (Figure 17).  The temperatures are scaled by means of a characteristic 

temperature:  
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 Figure 17 shows that for low airflows (0.36 m3/s) the energy of the fire is 

concentrated in the top part of the duct.  As the flow increases the energy is better 

distributed along the duct.  For comparison, the averaged CCD recordings of the scattered 

light are also shown in Figure 17.  The intensity recorded by each pixel in a vertical line 

that goes from top to bottom is recorded and normalized by the saturation value (255).  

The normalized intensity values obtained for several images are then averaged.  The 

averaged intensity distributions across the duct for 0.36 m3/s and 1.42 m3/s, presented in 

Figure 17, show an accumulation of smoke particles at the top of the duct.  The particles 

seem to be more concentrated towards the top than energy and mass. This could be 

attributed to the low diffusivity of the particles, in contrast with a higher diffusivity for 

the gases and energy.  Earlier results related to the energy release rate have provided 

evidence of reduced mixing of smoke as opposed to oxygen, therefore a similar 

interpretation could be used to explain the differences between scattered light and 

temperature and velocity measurements.  In addition, further experimental evidence is 

necessary where all of the measurements are collected at the same location.  However, 

the differences could also be attributed to the evolution of the smoke along the duct. 

 The effects described above do not disappear as the fire decreases in size. Very 

small fires still show a variation of the temperature, velocity and smoke particle density 

across the duct, but the trends are far from clear.  In contrast, as the fire size increases the 

flow begins to deform showing two velocity peaks, one close to the bottom of the duct 

and a second one at the top.  Smoke and temperature measurements seem to follow the 



same trends. Eventually, when the fire saturates the flow and smoke starts accumulating 

in the hood, the importance of the two peaks decreases and all indicators show a well 

mixed flow within the duct.   

 

Aging 

 All of the different measurements pointed to an evolution of the smoke along the 

duct.  This evolution can be divided into two different aspects, the evolution of the flow 

and the evolution of the smoke particles.  The previous section showed that the flow 

mixes as it progresses through the duct and evidence of this evolution could be obtained 

from the temperature, velocity and smoke particle density.  As the flow mixes the nature 

of the smoke particle changes; and this can be seen in the evolution of the particle counts.  

Figures 18 and 19 show normalized measurements of particle counts for 1 x 1 and 2 x 2 

pixel counts respectively for different n-heptane fires.  Only data corresponding to n-

heptane will be presented as an example, with similar trends observed for all fuels 

studied.  These measurements were taken at the same height from the base of the duct 

and in a region where the average intensity of the scattered light was similar.  Again, 

direct comparison of these results is difficult since particle size and distribution affect the 

total scattered light and in these measurements both variables are being modified 

simultaneously.  Independent of this reservation, the trends can be used to qualitatively 

assess the evolution of the smoke particles along the duct. 

 Comparison of the 1 x 1 particle counts (Figure 18) shows that the normalized 

particle counts are consistent for different fire sizes and flow velocities independent of 

the location within the duct.  Nevertheless, the total counts decrease by almost an order of 

magnitude in 3 m.  Furthermore, the artificial increase of the normalized particle counts 

as the energy release rate decreases is much less significant at the inlet than 3 m 

downstream.  This is justifiable since time lags are more difficult to estimate as the 

distance between the fire and the measurement location increases.  Particles remain 

within the duct increasing the number of counts towards the end of the test.  Figure 19 

shows an opposite trend for the larger counts.  This trend is similar for all larger counts so 

only 2 x 2 pixel counts are used to describe this process.  The normalized pixel counts 

increase by approximately 100 % in the 3 m distance between measurements.  A simple 



arithmetic analysis that considers that the mass and density of soot remain constant shows 

if 8 cubes of 1 pixel in side are attached together, a single cube of 2 pixels in side will 

result.  This observation is consistent with the data presented in Figures 18 and 19 and 

leads to the interpretation that the changes in pixel count can be attributed to 

agglomeration of the soot particles along the duct.  



Conclusions 
 An experimental study has been conducted to assess the variables that could affect 

detector performance in HVAC ducts. It has been shown that: 

• For a specific fuel, the response of sample photoelectric and ionization detectors 

is directly related to the smoke concentration within the duct therefore can be 

considered proportional to the energy release rate (i.e. fuel mass burning rate) 

and inversely proportional to the airflow rate. 

• There is a strong relationship between fuel and detector response.  Furthermore, 

for the same fuel, smoldering combustion significantly increases the response of 

a photoelectric detector and has the opposite effect on an ionization detector. 

• The present study only used sample detectors therefore the above conclusions 

cannot be generalized to all detectors and should be used only as reference 

measurements to establish the context for this work. The current paper is part of a 

larger study that addresses the variability of these conclusions as a function of the 

specific characteristics of the detector. 

• The use of optical density following the methodology established by UL 

(1997,1998) has been evaluated for an HVAC duct.  When the optical density is 

normalized leading to a mass optical density, photoelectric detector response and 

mass optical density correlate well for flaming fires despite the limitations of the 

UL technique.  Careful analysis of optical density measurements is necessary to 

prevent misleading results.  For the present experiments, fuels with high soot 

yield such as toluene yield an overestimation of the mass optical density.   

• For a specific fuel, the optical density is proportional to an ionization detector 

response.  The mass optical density and ionization detector response do not 

correlate well when comparing different fuels. 

• For smoldering newsprint the mass optical density is very similar to that of other 

flaming fuels, nevertheless the response of photoelectric detectors is much higher 

and that of ionization detectors is much lower.   

• Monochromatic light scattered at 90o and recorded by a CCD camera was used as 

a parallel metric to determine the effect of fuel, fire size and dilution on the 

characteristics of the smoke within an HVAC duct.  For a specific fuel, the light 



scattered at 90o is also directly related to the smoke concentration within the duct 

and therefore can be considered proportional to the energy release rate (i.e. fuel 

mass burning rate) and inversely proportional to the airflow rate.  Consequently, 

the data could be scaled in the same manner as the mass optical density. 

• Monochromatic light scattered at 90o correlates very well with photoelectric 

detector response, even for smoldering newsprint.   

• For the particular ionization detectors studied, mass optical density and 

monochromatic light scattered at 90o did not show a good correlation with 

detector response. 

• Transition between smoldering and flaming fires lead to high uncertainty in the 

results. Similarly, highly evolving fires such as wood cribs resulted in large error 

bars. 

• Within the constraints of the present experimental facility, velocity and 

temperature measurements showed important stratification of the flow.  

Monochromatic light scattered at 90o also showed stratification, but the results 

cannot be directly compared because data could not be gathered at the same 

location within the duct. 

• Within the constraints of the present experimental study, monochromatic light 

scattered at 90o showed significant evolution of the smoke particles (aging) with 

the distance from the fire source. 

• For the present study, aging and stratification are intimately related to the 

experimental facility; therefore these results require validation in a larger scale 

facility where the evolution of the flow can be tracked through a distance larger 

than 3 m.  
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Table 1.  List of Experiments 
 Fuel Comments Detector Laser 

Position

1 Propane 60 cm diameter burner None 30 cm 
2 Toluene 212 g in 15 cm pan - 1 test at full flow None 30 cm 
3 Propane 60 cm diameter burner Photoelectric 1 30 cm 
4 Heptane 150 g in 15 cm pan Photoelectric 1 30 cm 
5 Polyurethane 

Foam 
18.5x29x15 cm block Photoelectric 1 30 cm 

6 Propane 60 cm diameter burner Photoelectric 2 30 cm 
7 Polyurethane 

Foam 
26x16x16 cm block Photoelectric 2 30 cm 

8 Propane 60 cm diameter burner Photoelectric 2 30 cm 
9 25% Toluene 

75% Heptane 
150 g in 15 cm pan Photoelectric 2 30 cm 

10 Heptane 150 g in 15 cm pan Photoelectric 2 30 cm 
11 Propane 60 cm diameter burner Photoelectric 2 30 cm 
12 Propane 60 cm diameter burner Photoelectric 3 30 cm 
13 Propane 60 cm diameter burner Photoelectric 3 30 cm 
14 Small Wood Crib 152x152x57 mm Douglas Fir crib  

(ignition unsatisfactory) 
Photoelectric 3 30 cm 

15 Small Wood Crib 152x152x57 mm Douglas Fir ignited w/ 100 mL Methanol Photoelectric 3 30 cm 

16 Propane 60 cm diameter burner Photoelectric 3 30 cm 
17 Large Wood Crib 305x305x57 mm Douglas Fir ignited w/ 300 mL Methanol Photoelectric 3 30 cm 

18 Propane 60 cm diameter burner Photoelectric 3 30 cm 
19 Newspaper 42.6 g in 102 mm diameter by 305 mm long column Photoelectric 3 30 cm 

20 Propane 60 cm diameter burner Photoelectric 4 30 cm 
21 Heptane 150 g in 15 cm pan Photoelectric 4 30 cm 
22 Large Wood Crib 305x305x57 mm Douglas Fir ignited w/ 300 mL Methanol Photoelectric 4 30 cm 

23 Heptane 60 cm diameter pan Photoelectric 4 30 cm 
24 Propane 60 cm diameter burner Photoelectric 4 30 cm 
25 Toluene 150 g in 15 cm pan Photoelectric 4 30 cm 
26 Propane 60 cm diameter burner Ionization 1 300 cm 
27 Heptane 150 g in 15 cm pan Ionization 1 300 cm 
28 Heptane 45 cm pan - 1 test - full flow - no load cell Ionization 1 300 cm 
29 Propane 60 cm diameter burner Ionization 1 300 cm 
30 Propane 60 cm diameter burner Ionization 1 300 cm 
31 Small Wood Crib 152x152x57 mm Douglas Fir ignited w/ 100 mL Methanol Ionization 1 300 cm 
32 25% Toluene 

75% Heptane 
150 g in 15 cm pan Ionization 1 300 cm 

33 Propane 60 cm diameter burner Ionization 2 300 cm 



34 Polyurethane 
Foam 

26x16x16 cm block Ionization 2 300 cm 

35 Propane 60 cm diameter burner Ionization 2 300 cm 
36 Newspaper 42.6 g in 102 mm diameter by 305 mm long column Ionization 2 300 cm 

37 Toluene 150 g in 15 cm pan Ionization 2 300 cm 
38 Toluene 800 g in 30 cm pan Ionization 2 300 cm 
39 Propane 60 cm diameter burner Photoelectric 4 30 cm 
40 Newspaper 42.6 g in 102 mm diameter by 305 mm long column - full 

flow 
Photoelectric 4 30 cm 

41 Heptane 45 cm pan on load cell - 1 test at full flow Photoelectric 4 30 cm 
42 Heptane 60 cm pan on load cell - 2 tests at full flow - spillover from 

hood 
Photoelectric 4 30 cm 

 



List of Figures 
 
Figure 1 Schematic of the experimental setup.  The fire is placed under the hood on top of a load cell. 

All of the different measurements performed in the duct are indicated on the figure. 
 
Figure 2 Photographs of two extreme cases corresponding to the different fires tested (a) Fuel is n-

Heptane placed in a 0.45 m diameter pan.  The fire is a flaming fire. (b) Fuel is shredded 
newspaper placed in a hollow steel cylinder (0.1 m in diameter and 0.3 m long) and filled with 
42 grams of shredded newspaper. The fire is smoldering.    

 
Figure 3 Energy release rate and detector response time histories for a flaming polyurethane foam fire.  

The detector is of the photoelectric type and the response is plotted as a percentage of the full 
output.  

 
Figure 4 Energy release rate and detector response time histories for a fire generated from a mixture of 

25% toluene and 75% n-heptane placed in a 0.15 m pan.  The detector is of the ionization type 
and the response is plotted as a percentage of the full output.  

 
Figure 5 Detector response for different air flow velocities.  (a) Response of an ionization detector. (b) 

Response of a photoelectric detector. The response is plotted as a percentage of the full 
output. The time shift between the two plots corresponds to the particular ignition time and 
not to a delay in the response of the detector. All tests correspond to a 0.15 m n-heptane fire. 

 
Figure 6 Average detector response for different fuels and a fixed optical density of 0.1 m-1.  The 

average values were obtained for different air-flow velocities and fire sizes.  The detector 
response is plotted as a percentage of the full output. 

 
Figure 7 Evolution of the energy release rate [kW] and the optical density [1/m] as a function of time 

for a 0.15 m toluene fire and 1.07 m3/s airflow through the duct.  
 
Figure 8 Evolution of the energy release rate [kW] calculated from O2 measurements conducted in the 

duct and from mass loss measurements as a function of time. The heat of combustion for 
toluene is ∆HC= 27.7 kJ/gFUEL and was obtained from Tewarson (1995). The experiment 
corresponds to a 0.15 m Toluene fire and 1.07 m3/s airflow through the duct. 

 
Figure 9 Evolution of the optical density [1/m] as a function of time for a 0.15 m toluene fire and 

different airflow rates through the duct.  
 
Figure 10 Evolution of the mass optical density [m2/gFUEL] as a function of time for a 0.15 m Toluene 

fire and different airflow rates through the duct.  
 
Figure 11 Average value of the mass optical density [m2/gFUEL] for the different fuels studied. 
 
Figure 12 Pixel counts and energy release rate [kW] as a function of time for a 0.15 m n-heptane fire 

and 1.42 m3/s airflow through the duct (a) 1 * 1 pixel counts (b) 2 * 2 pixel counts.  The 
measurement was made at 3 m from the duct inlet. 

 
Figure 13 Pixel counts and energy release rate [kW] as a function of time for a 0.15 m 25% toluene/75% 

n-heptane fire. The measurement was made at 3 m from the duct inlet. 
 
Figure 14 Pixel counts normalized by the fuel mass burning rate [g/s] and the airflow velocity [m3/s]. 

The data is presented as a function of time for different n-Heptane fires ranging from 50 kW 
to 200 kW. The data presented corresponds to 1 * 1 pixel counts. The measurement was made 
at 3 m from the duct inlet. 

 



Figure 15 Average pixel counts normalized by the fuel mass burning rate [g/s] and the airflow velocity 
[m3/s]. The data presented was obtained for different fuels and fires ranging from 50 kW to 
200 kW. For comparison the mass optical density [m2/g] is also presented. The pixel count 
data corresponds to measurements made at 3 m from the duct inlet. 

 
Figure 16 Normalized velocity distribution along the plane of symmetry of the duct.  Measurements 

were made at 1.5 m from the inlet and are normalized by the nominal flow rate.  
 
Figure 17 Normalized intensity and temperatures along the plane of symmetry of the duct.  A 

characteristic temperature calculated from the energy release rate was used to normalize the 
temperatures and the saturation value for a pixel (256) to normalize the intensity.  

 
Figure 18 Pixel counts normalized by the fuel mass burning rate [g/s] and the airflow velocity [m3/s]. 

The data corresponds to n-heptane fires ranging from 50 kW to 200 kW. The pixel count data 
corresponds 1 x 1 pixel counts and measurements made at the inlet and at 3 m downstream. 

 
Figure 19 Pixel counts normalized by the fuel mass burning rate [g/s] and the airflow velocity [m3/s]. 

The data corresponds to n-heptane fires ranging from 50 kW to 200 kW. The pixel count data 
corresponds 2 x 2 pixel counts and measurements made at the inlet and at 3 m downstream. 
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	The objective of this study is to characterize the different variables that have a significant effect on the performance of a duct smoke detector. The variables chosen for the present experiments are the fuel, fire size and volumetric exhaust flow rate.
	All of the different measurements described in the previous section were conducted simultaneously. The optical density system was placed at the opposite end of the duct from the Laser system.  That is, for tests where the Laser system was positioned at t
	A total of 98 tests were conducted. Table 1 provides the conditions examined in each test series.  A test series generally consists of tests over the range of airflow rates.  The size of the fire (energy release rate) was varied from a few kW to approx
	Fuel sources for the experiments were chosen to provide a wide range of smoke characteristics and allow for comparison to the UL listing criteria (1998).  As an example, Figure 2 shows, two extreme cases. Figure 2(a) corresponds to a 45 cm diameter n
	A propane fire was run each day for the purpose of calibrating the calorimeter.  Propane was run from a tank through a flow meter and then into a 60 cm diameter round burner filled with gravel.  Test data was collected for all of the instruments during t
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