PROVABLE AND UNPROVABLE CASES OF TRANSFINITE
INDUCTION IN A THEORY OBTAINED BY ADDING TO HA®w

SO-CALLED "TERM-FORMS" OF THE KIND INTRODUCED
BY M. YASUGI

WILLIAM ROBERT STIRTON

DOCTOR OF PHILOSOPHY' UNIVERSITY OF EDINBURGH 1995

T
SN Es
& 2

o‘g\
o)

EX 8

o~



ABSTRACT: I begin by discussing several of the existing ways of proving the
validity of transfinite induction up to &g and argue that it is at least conceivable that
there is room for a new proof that is more constructive than any of them. An
attempt which I pay particular attention to is that made by Mariko Yasugi (1982).
The centrepiece of her theory is the so-called "construction principle”, a principle
for defining computable functionals. I argue that, in principle, it ought to be
possible to set up a theory whose terms denote or range over functionals of a sort
constructed by a similar principle, in which the accessibility (a term to be defined
below) of g is provable, yet which dispenses with quantifiers as well as with some
strong axioms which she uses in order to achieve the same result. My theory,
described in chapter 2, is called TF (for "term-forms"). In chapters 3,4 and 5, a
proof of the accessibility of € in TF is presented. This thesis ends (chapter 6) with

a proof of the computability of the functionals that can be represented in TF.
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Prefatory Remarks and Acknowledgements

By the "accessibility" of a totally ordered set let us understand the property that every
strictly decreasing sequence of members of the set is finite. Then the main technical result
of this thesis can be stated as follows: the accessibility of the standard representation of €
by Cantor Normal Forms is provable in the theory TF which I set up in chapter 2. The
program to which this thesis is intended as a first contribution therefore concerns provable
and unprovable cases of accessibility and not, despite what was advertised in the title,
transfinite induction. The problem is that there seems to be no word in universal use for
the property which I call "accessibility", but from now on I shall use the word in the sense
just defined. By the way, I do not see that the equivalence of a statement of the
accessibility of an ordinal number and a statement of the validity of transfinite induction up
to that number is provable in every theory; but it does not seem urgent to investigate this
question here.

A great many interesting metamathematical theorems are proved by transfinite induction
(or deduced from a statement of accessibility) alongside otherwise finitist methods (by
which I understand, as is usual, methods that can be formalised in primitive recursive
arithmetic). If there is any merit in constructivism at all, it therefore makes sense to ask
what the best way is of proving the validity of initial cases of transfinite induction. I must
immediately disclaim any pretence that I can argue in any very satisfactory way that my
proof in TF is superior, from the point of view of constructiveness, to any of the existing

proofs of the accessibility of € , so I can only hope that I have indicated, in chapter 1

L+



below especially, some reasons for thinking that some such view might be defensible.
Primum vivere, deinde philosophari.

I am not now inclined to think that the use I have made of the theory TF is the best use
that could possibly have been made of it. The theory contains terms which denote
computable functionals of a slightly more versatile kind than the primitive recursive
functionals -- as is conclusively shown by the fact that the accessibility of £y can be proved
within it. I can only hope that the reader will believe that this shows that the theory is an
interesting one. But I have not had time, within this thesis, to explore other possible
applications.

Semantic questions about TF have been entirely ignored. For philosophical purposes, I
quite accept that I cannot do so for ever. But it would have been impossible to treat of
every possible question that arises concerning the theory within this thesis.

Perhaps it is necessary to add a word or two about the style of my proofs. This is
variable: some proofs are presented in an almost completely formalised style, while others
are only sketches of proofs. While it is therefore possible, indeed likely, that the latter
contain some mistakes, I do not see that, practically speaking, any other approach would
have been preferable. I do not imagine that many readers would have had the stomach to
read this thesis in its entirety if it contained twice as many fully formalised proofs as it
does; indeed I shall be presently surprised if they have the stomach to read it even in its
present state. I hope that the readers who do take the trouble to read the more formal
sections will accept them as evidence that I can be formally correct when I want to be and,
perhaps more important, [ have very good intuitions about what can be proved in TF and
what cannot be.

Expressions of indebtedness now follow, in approximate order of importance.

The spare time which made it possible to write this thesis is due to the exceptionally
generous financial support that I have received -- from the Scottish Education Department,
the Deutschen Akademischen Austauschdienst and the Cross Trust -- and I can only wish
that the final result did more justice to the opportunities which I have enjoyed. I am also

thankful to the people who have helped me obtain scholarships from these organisations:
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Professor D.R.P. Wiggins, Mr. J. Broackes, Mr. S. Rasmussen and Dr. L. Briskman.
Perhaps, at this point, I should single out Mr. Rasmussen for special thanks on account of
an enormous amount of encouragement and emotional support as well as for numerous
pints of ale which he has bought me..

Intellectually my main debt is to authors whom I only know through their writings. But
as far as personal contact is concerned, I must thank Dr. Alan Smaill of the Department of
Artificial Intelligence, who has generously spent many hours talking to me about logic and
reading bits of this thesis and its ancestors. I have made many alterations in response to
his criticisms and, since I am sure that the result has been in every case an improvement, it
is possible that I should have made even more. Dr. P. Milne has undertaken what must
have been for him the thankless task of reading a draft of three chapters and allowed me the
satisfaction of talking to him about them. Both these men have made particular suggestions
for improvements which I have adopted, but I think it is more important to stress that it is
always helpful to be able to talk about a subject with someone other than oneself.

It was a great relief to be able to spend a year in a department which contains a very
impressive concentration of logicians, namely the Institut fuer mathematische Logik und
Grundlagenforschung in Muenster. Many people in that institute made some effort to make
the time that I spent there pleasant. In particular, practically all members of the institute
who have some interest in recursive functionals were good enough to attend a lecture
which I gave there on 15 July 1992, and I would like to thank them heartily, especially
Professor Diller and Professor Pohlers on account of the favourable remarks which they
made afterwards. For hospitality I am indebted to Herrn E. Folkerts of the institute and
Herrn H. Reiter, a citizen of Muenster. Dr. M. Rathjen has helpfully given me the benefit
of his knowledge about the ordinal strength of the sub-system of second-order number
theory discussed in the first chapter and, while I do not make use of that information in the
present thesis, it will be indispensable to me in my further investigation of the properties of

TE.



CHAPTER 1
SOME REFLECTIONS ON PROFESSOR YASUGI'S
CONSTRUCTION PRINCIPLE

Logicians have often been concerned to find constructive proofs of the validity of initial
cases of transfinite induction. The first important initial case is, of course, transfinite
induction up to £ and the first attempt of the kind I speak of was probably that of Gentzen,
presented in the article in which he first proved the consistency of Peano number theory
(1936, pp.554-6). This first attempt suffers from the disadvantage that the author makes
no thorough attempt to analyze what axioms and rules of inference his proof is based on.
The first satisfactory proof, so far as I know, was that of Bernays, presented in the last
section of the book by Hilbert and Bernays. In fact, this proof was later turned into a more
formal proof by Gentzen (1943, pp.146-151), who is therefore commonly described as the
author of the proof. But this must be a mistake, due to ignoring the remarks at the
beginning of the article (p.140), in which he says that he is merely presenting a formalised
version of an existing proof. Actually Bernays presents two proofs, though they are
related.

Probably most logicians regard this proof as the last word on the subject, as far as g is
concerned, though of course there were infinitely many more extensive cases of transfinite
induction which still had to be tackled. But a few have thought that the Bernays-Gentzen
proof, which uses a weak sub-system of intuitionist second-order number theory, was not
the most constructive proof possible. In this chapter I shall discuss in detail an article by
Mariko Yasugi called "Construction Principle and Transfinite Induction up to £y", which

begins with the following paragraph:

It is well-known that the accessibility of the ordered structure which is a

canonical representation of the ordinals below g (the first e-number) cannot
be proved in elementary number theory (see Gentzen (1943)), while it is
provable if an analytic method is employed, namely it is provable in first-

order arithmetic augmented by the [Ti-induction (see Gentzen (1943)). The
full power of the ITi-induction is not needed, however, and attempts have



been made to establish the accessibility along more concrete lines, for

example in Gentzen (1936) and Takeuti (1975).
I would be interested to know what Professor Yasugi means by the "power" of the
[1i-induction rule. Itis tempting to think that she thinks that the power of a theory -- in this
case, second-order number theory with the I, -comprehension and ITj-induction rules -- is
measured by the ordinal number of the theory, that is, the smallest standard well-ordering
whose existence is not provable within the theory. But if this is what she means, then her
article suffers from the disadvantage that she does not present any evidence that the same
result is provable in a weaker theory. Indeed, in that article, she never properly formulates
a theory, with a language, axioms and rules of inference, as far as I can tell. However it is
quite possible that to improve on the Bernays-Gentzen proof, by setting up a less powerful
theory (in the sense just explained) but in which the same result can be proved, was never
her intention.

The paragraph which I quoted just above is followed by the following:
In this article we are to propose a theory of "construction principle”, a

principle on the ground of which some functionals can be defined ... The
principle above is considered here as the basis of the functional interpretation

of transfinite induction up to .

The phrase "construction principle" ought not to be too unfamiliar to the reader; it had been
used by Goedel (1960, p.78) to denote the principle on the basis of which the functionals
needed to interpret Heyting Arithmetic can be defined. Professor Yasugi's construction
principle, presented in section 4 of her article (pp.15-19), yields a more inclusive class of
functionals, however. By a "functional interpretation of transfinite induction up to gg", I
think she means the production of the functional N (p.13), which has the following two
properties: (1) it maps any strictly decreasing sequence of ordinal numbers smaller than &,
onto a strictly decreasing sequence of natural numbers; (2) it maps only finite sequences
onto finite sequences. Thus the existence of N entails that g is accessible. Her article
ends (pp.19-23) with a demonstration that N can be derived from the construction princple.

I think, and will argue below, that there are other things one could understand by a



"functional interpretation of transfinite induction up to €y"; but I am concerned at the
moment with exegesis of the purpose of Professor Yasugi's article.

In the third paragraph she writes

Section 2 consists in the interpretation of transfinite induction up to € in an
arithmetic with infinite reasoning. Although the local technicalities used in
this section are borrowed from section 2 of Gentzen (1943), our scheme is a
"uniform version" of the provability demonstration, so to speak, thus

reaching up to g.

(I conjecture that by "scheme" she means "goal".) From this point onwards, I must admit
that I find the purpose of her article seriously obscure. However the emphasis on
uniformity is at least not surprising. Section 2 of Gentzen's article of 1943 (op.cit.,
pp-146-150) presents a method for constructing, within pure number theory, a proof of the
validity of transfinite induction up to any number smaller than €. He proved that, if the
validity of transfinite induction up to @y is provable in this theory, the same goes for Wy, 1.
However -- if we use TI(cv) as an abbreviation for the formula expressing validity of

transfinite induction up to o -- the statement

TI(wy) = TI(Wy41) ()

where k is a variable, is not provable within pure number theory. Otherwise we could
apply induction in order to get a proof of the validity of transfinite induction up to &y within
that theory.

If (*) is provable in some theory, then we can say that the proofs in that theory of the
validity of transfinite induction up to each value of @y are uniform in k, in the sense that the
proof for one value of k would be the same as the proof for another value, except that
certain numerals occurring within the proof would be different. For there would be a
proof, in which k occurs as a free variable, from which we can get a proof of the validity
of transfinite induction up to any of these numbers by sutstituting some natural number for

k throughout the proof.



I think that if Professor Yasugi's argument for the existence of N were to be semi-
formalised, it would employ the @-rule. She does not draw attention to this fact, although
she is presumably aware of it, but a careful study of her proof has left me with no other
impression. She defines a sequence of two-place predicates Gg, G1, G, . .. (p.6f.) and
she writes G;(0, x), ¢ here being a variable whose type depends upon i, as G(i; ¢, x). In
the course of proving proposition 3.2(2) in her article she wishes to prove the following
sequent, in which 1 is a free variable, ) is a bound variable and 7; ) a term-form already

defined:
@) G(O; %, 0) = GO; 7(;,0)(X) ®i41)

To prove each instance of (4), she recommends that we start with the following sequent
(1)  G@+1; 9, 0) = GG+1; 7(4.0y(9), W)

and gradually derive the appropriate instance of (4) using the properties of T. But this
means that infinitely many instances of both (1) and (4) must be used in the proof in order
to get (4) itself, as i may take infinitely many values. For we must recall that G(i+1; ¢, 0)
is not a formula of our theory but merely a schema from which formulae are derived by
substituting particular numbers for i.

If I am not mistaken, the proofs of propositions 3.1(2), 3.1(3), 3.1(4) and 3.2(1) also
cannot be formalised rather than merely semi-formalised. Taken by itself, this fact is not
fatal to the argument as a whole. It could be that these results are stronger than any that
need actually to be used in the remainder of the article. Because of this, it is not remarkable
that the author, in her proof of proposition 3.2(1), seems to show some awareness of the
fact that the proof of which she is giving an outline is not one that can be formalised. I
suspect she manages to admit this with equanimity because, for the purpose of deriving
each closed instance of (4) from the relevant closed instance of (1), not proposition 3.2(1)

itself but only finitely many closed instances of it are required. Furthermore it may well be

1,



that, in order to prove each closed instance of 3.2(1), only finitely many closed instances
of 3.1(2), 3.1(3) and 3.1(4) are réquired. Therefore it seems that Professor Yasugi makes
only one essential use of the w-rule. That use, howevgr, is essential because undoubtedly
(4) itself and not merely a finite number of closed instances of it are necessary for the
argument as a whole.

It would be pos.sible to interpret Professor Yasugi's proof as containing not infinitely
many predicates G;, but a single, inductively defined, three-place predicate G. However
this is not only not her intention, as far as I can tell (see especially the remarks on the |
predicates A; on p.4), but it is also well-known that you can get an extension of pure
number theory, in which the accessibility of &g is provable, by adding to it an inductive
definition of such a predicate as an axiom. A proof of this kind will even be sketched in
chapter 3 below. However it is equally well-known that you can get a theory with the
same property by adding the w-rule; indeed Professor Yasugi sketches such a proof herself
in section 2 of her article. The possibility remains that she thinks that the proofs of the
premisses of her application of the rule to prove sequent (4) are uniform in a way that the
proofs of the premisses in the familiar demonstration are not. However, in view of the
summary presented above of how (4) was to be derived, I see no justification for thinking
this.

All in all, I therefore find it impossible to see what is gained by her talk about
"uniformity" and, even more so, the idea, which the first paragraph of Professor Yasugi's
article may-have encouraged us to have, that she was going to pméent a proof of the
accessibility of £y which would use less "powerful" methods than the existing proofs
seems to have been entirely left by the wayside. What I do think is of value in the article is
the programme which the second paragraph (also quoted above) suggested: the
construction principle itself and th_e idea of using the functionals defined by it in order to
produce a functional interpretation of the statement that & is accessible.

By a functional interpretation, in some specified quantifier-free theory T, of some
sequent in the language of some other theory Ty, I mean a proof in Ty of a sequent from

which the sequent, which we wanted to interpret, can be derived simply by applying the



rules for the introduction of quantifiers in T,. Obviously the formulae in any such sequent
have to be in prenex form and it is usual to stipulate, as well, that the existential ones must
precede the universal ones. I shall make this stipulation as well and I shall call sequents of
the kind described "sequents in 3V-form". Some theories have the convenient property
that every sequent can be proved equivalent to a sequent in 3V-form. When we are dealing
with such a theory, therefore, it makes sense to talk about "the 3V-form of a sequent" and,
even when we are not dealing with a theory of this kind, it is often clear how one could
extend the theory so as to make it of this kind, in which case it again makes sense to use
that expression.

The statement that € is accessible can be formulated in the theory which I shall call HA
-- by this I mean the theory HA®, which is described in the next chapter, but without
quantifiers of higher types -- and it can be proved equivalent, within the theory which I call
HAw', to a certain sequent in 3V-form. I shall explain in chapter 3 below what the
respective sequents look like. The important thing about the accessibility-statement, for
our present purposes, is that it contains just one existential quantifier, which occurs within
the scope of a universal quantifier and a free variable. On my understanding of the
intuitionist tradition, a canonical proof of that statement will consist in the production of a
functional which maps any values of the free variable and the universal variable onto an
appropriate value for the existential variable together with a canonical proof that it does do
so. Thus a canonical proof of the accessibility-statement will be almost the same thing as a
functional interpretation of its 3V-form. This statement will be supported by a slightly
more detailed discussion in chapter 3 below, but the discussion there requires some
technical apparatus which is not at present at our disposal.

It might be ojected that writers on functional interpretations, if they discuss the issue at
all, generally go out of their way to deny that, in defining a translation of sequents into
their 3V-forms and then defining what would constitute a functional interpretation of these
3V-forms, you are explaining what the original sequents "really mean", from an
intuitionist point of view. In particular, Goedel, in the article where he first described the

kind of functional interpretation which I am concerned with, wrote:



Selbstverstaendlich wird nicht behauptet, dass die Definitionen 1-6 den Sinn

der von Brouwer und Heyting eingefuehrten logischen Partikel wiedergeben.

Wieweit sie diese ersetzen koennen, bedart einer nacheren Untersuchung

(1960, p.82).
but this does not contradict the claim I have made just above. To say that a canonical proof
of the accessibility-statement is almost the same thing as a functional interpretation of its
dV-form is not the same as to make this claim for all statements whatsoever, that occur
-within some branch of mathematics. The accessibility-statement (which, as I have already
promised, will be discussed in detail in chapter 3) is an exceptionally simple statement: it
contains only two quantifiers, and none of them occurs in the antecedent of a conditional.

The program which I intend to carry out for & resembles not so much Professor

Yasugi's program in "Construction Principle and Transfinite Induction up to &;" as her
program of proving the accessibility of any system of ordinal diagrams based on a pair of
sets for which a constructive accessibility-proof is already given. This program is carried
out in her (1985/6), in which she introduces a construction principle (the "hyper-principle")

of a much stronger kind than that used to treat of €. I shall quote some bits of the

introductory section of that article to illustrate the similarity:

Let (C, < ) be a linearly ordered structure such that there is a method to
determinewhether or not an object x belongs to C and let ¢ be in C.

acc(C, < , ¢, M) will express that M is a method such that, for every fa

< -decreasing sequence from C led by ¢, M(c, f) gives a modulus of
finiteness of £, that is Vn < M(c, D)(f(n) = empty).

... We are therefore naturally led to an intuitionistic system (ASOD) in the
attempt to formalize the accessibility proof, and the nature of the accessibility
can be embodied by the functional interpretation of the existential quantifiers.

They occur in the form V{3n P(f, n), where P(f, n) is 3-free. A functional

X such that Vf P(f, X(f)) will represent the modulus of finiteness (of f)
(1985, p.227f.).

That is, she gives two proofs of the accessibility of systems of ordinal diagrams: the first is
in the theory which she calls ASOD and uses quantifiers. Then she presents a method for
functionally interpreting every statement of that theory which is in V3-form, and this yields

a quantifier-free proof of a quantifier-free statement which closely resembles the original



accessibility-statement. I think the remarks she makes towards the end of the introductory
section (p.229) could be taken as meaning that she thinks the second proof will be more
constructive than the first, though I am not sure about this. But in any case, for reasons
explained above, I think it is plausible to maintain that the second proof will more closely
resemble an intuitionist canonical proof.
There is another aspect of Professor Yasugi's thought which I have not yet done justice
to. This is expressed in the following quotation:
The essence of the diagrams can be characterized by its functional structure,
that is, by determining the universe of functionals which produce "moduli of
finiteness" for various decreasing sequences of the diagrams (ibid., p.227).
What she means by "modulus of finiteness" is explained in the last quotation. The
quotation just cited seems to me to express the idea that, for each statement of accessibility,
there is something to be gained by discovering some optimally weak (in ordinal-theoretic
terms) system of functionals which can interpret that statement. What she does in that
article for systems of ordinal diagrams of the kind described is almost the same as what I
am going to do in this thesis for £y. It has to be admittted that neither she nor I presents
any evidence that the system of functionals we use is optimally weak, but, on the other
hand, there is at least some evidence that each system is weaker than the other systems that
could be used for this purpose.
What precisely is the illumination to be gained from determining the "universe of
functionals" associated with each accessibility-statement, I must admit I do not yet see.
But I am prepared to take it on trust that Professor Yasugi knows what she is talking about.
To produce a functional interpretation of the 3V-form of the statement that g is
accessible is, by itself, not a novel achievment. By a functional interpretation of a theory, I
mean an algorithmic method for transforming a proof of a statement of it in 3V-form into a
functional interpretation of its conclusion. There are many functional interpretations of
theories in which that accessibility-statement can be proved and translated into 3V-form as
well. But they suffer from the disadvantage that the theories in question are all, so far as I

know, very much stronger than € and that the functionals required in many cases do not



admit of a constructive computability-proof. The proof of the computability of the
functionals which I use in this thesis is presented in chapter 6 and it turns out to be
remarkably simple.

A survey of the kinds of functional which can be used to interpret theories stronger than
pure number theory, at least so far as this subject had been developed by 1973, is
presented by Trbelstra (1973, pp.81-4). A particularly interesting theory of functionals is
Girard's system F (ibid., p.84; Girard 1989, pp.82-94). The theory was introduced for
the purpose of interpreting second-order number theory and the types of Girard's te;'ms are
precisely the formulae of that theory. It would be interesting to know whether Girard's
system can be divided into sub-systems, each of which can be used to interpret the
corresponding sub-system of second-order number theory. But I do not know whether
this has been done, or whether it would be as easy as it sounds. In any case, the
comparative values of Girard's approach and the one adopted in this thesis is a matter I
intend to discuss at a later date.

In this thesis I set up a theory of functionals which is much weaker than any of the
theories just mentioned. Not only does it have the advantage of admitting a very simple
computability-proof, I also guess that, since the theory was devised for the purpose of
interpreting the statement that g is accessible, it will be better adapted to the study of the
very weak sub-systems of second-order number theory than the strong theories I have just

mentioned.



CHAPTER 2
THE THEORIES HA®, TF AND RELATED THEORIES

There is a cluster of theorics in the logical literature which are called “HA®” or some
similar name. In this chapter I shall set up a theory of this kind and prove that it at least
contains one of the existing theories with that name. I am primarily interested in the
quantifier-free part of the theory, gf.-HA®, from which my own theory TF, also without
quantifiers, is obtained by generalising in a certain way.

There is a subject called “the philosopiy of formal systems”, whose name comes from
H.B. Curry, though earlier logicians had also made contributions to it. When you read a
logician’s definition of a calculus, theory or forrnal system which he is setting up, it is
necessary to know whalt his particular philosophy of formal systems is, in order to
understand fully what he is doing. Many logicians do not say anything explicit on the
subject. Fortunately, as a result of convention, there are not too many different ways of
setting up a formal system in actual use, so it is generally possible to make sense of the
procedures of logicians when they arc doing just that. My own way of defining TF is not
very different from the procedure of many vther logicians. Someone who has no great
interest in the philosophy of formal systems might therefore do better to skip the next few
pages. But, especially as TF is a very unfamiliar theory, I believe I have some obligation
to put my views on the subject on record.

My procedure is, on the whole, derived from Curry. I shall therefore quote part of his
statement of how a definition of a particular formal system (its “primitive frame”, as he
calls it) proceeds, before adding a few remarks of my own.

He stipulates (1952, p.11) that a primitive frame shall consist of three parts. First rules
are given for constructing terms of the system, then rules for constructing statements and,
thirdly, rules for determining which statzments are axioms and when a statement follows
from certain other statements. The third part therelore cbviously consists of two sub-parts.
Concerning the first part of the primitive [rame, Curry stipulates that it, in turn, shall

consist of three sub-parts. That is, his list of the parts of which a primitive frame should
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consist begins as follows:

I. TERMS

A. Tokens, or primitive terms. This is simply a list, which may be infinite, of the

terms of each kind. Nothing else is specified concerning them.

B. Operations, i.e. modes of combination for forming new terms. There is a list

of these with the number and kind of the arguments for each.

C. Rules of formation, specifying how new terms are to be constructed. These

will be of the form: If such and such an operation is applied to a sequence of

terms of the proper number and kind, the result is a term of such and such a kind

(1952, p.11).
In this chapter, I shall adopt the convention that the statements of a formal system are
constructed by a procedure analogous to that by which the terms are constructed. By
“objects of the formal system”, or “formal objects” I mean all objects of the following four
categories: terms, connectives, predicates and formulae. The formulae and statements
(sequents) are constructed out of the terms, connectives and primitive predicates by
operations similar to those used in the construction of the terms.

To return now to Curry’s statement of how the terms of a formal system are

constructed, I would like to comment in detail on each of his three clauses:

A. It is an important ingredient of Curry’s philosophy (though here he only hints at it with
the words ‘Nothing else is specified concerning them’) that it is quite unnecessary for a
primitive frame to say what the primitive terms look like. Indeed, he is quite sympathetic
to the idea that the terms should be regarded as abstract objects, which perhaps do not look
like anything at all (ibid., p.29).

In this respect, Curry’s attitude to a formal system contrasts with the more traditional
attitude (exemplified by Kleene’s Introduction to Metamathematics), according to which the
terms of the formal system are symbols of an “object-theory” and actually appear on the
page in the course of defining the formal system. However, if the system is defined in
Curry’s way, it is probably necessary that at least the names of the primitive terms appear on
the page. Itis probably also necessary -- Curry does not make this stipulation, but I wish to
be understood as making it -- to stipulate that different names should, in general, be

regarded as names of different terms. I shal! give explicit rules for determining when two
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different names of terms should be regarded as names of the same term. Otherwise it
should be assumed that different names denote different terms.

The list of primitive terms may, as Curry says, be infinite. If it is, we cannot give the
names of all of them, but we can indicate a method for generating them: for example, we can
say that xq, X1, X2, . . . shall be one class of primitive terms.

Curry’s use of the word “list” may require some comment. It is tempting to think that a
list of primitive terms will be composed out of the terms which it lists. In fact, it will be
composed of their names. This is in accordance with how we normally use the word “list”:
a shopping list, for example, does not consist of the items which one intends to buy, but of
words.

This talk about “names” of terms impels me to draw another distinction. It is necessary
to distinguish between names of terms, and other objects, of the formal system, on the one
hand, and variables which range over such objects, on the other. Whereas one has to be
careful to insure that all objects have names and that distinct objects have distinct names, one
can be relatively ad hoc in the use of variables, indicating, on each occasion on which one

introduces a variable, what sort of objects it is meant to range over.

B. Curry’s attitude to operations illustrates another peculiarity of his approach.
Traditionally, all objects (which were, traditionally, all symbols) are formed by writing
down atomic objects in sequence: this way of forming expressions is necessitated by the
two-dimensional nature of paper. But once we have abandoned the prejudice that the
formal system has to consist of symbols, it makes sense to imagine that there is more than
one way of combining objects to form new objects. This attitude ultimately makes it
possible to make do with a smaller number of primitive objects than would otherwise be
needed. Thatis, if M and N are terms of a formal system and we wish to imagine that the
formal system contains a term which is formed by performing a certain operation on M and
N, it is unnecessary to suppose that, in order to perform this operation, you need any other
object besides M and N. The result of the operation might be denoted, in the language we

use to talk about the formal system, by something like ‘fMN’, but it would not necessarily
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be correct to suppose that ‘f” here is a name of anything in the formal system, for the
reason just given. This is shown by the fact that the result of the operation could just as
well be denoted by ‘MN’ or ‘MN’ or even ‘NM’, etc.

Because of this, I cannot agree with Curry’s procedure when, in the chapter entitled
‘Examples of Formal Systems’ (1952, pp.17-27), he seems to treat expressions like ‘f” in
the above example as names of operations. Certainly it is useful to have names for the
operations, but ‘f’ in the above example is not a name of anything: it looks like a name for
something in the system, but the operations are not elements of the system but things we do
to elements. So the sort of expression that it would be suitable to use for names of the
operations would include verbal nouns. For example, if it is possible to perform an
operation on a term that transforms it into another term called its “successor”, it would be
natural to call the operation “forming the successor”.

There is admittedly a price to be paid for accepting Curry’s innovations. Where the
terms of the formal system are linguistic expressions of a familiar kind, such ideas as
substitution, the length of a term and the number of occurrences of a sub-term within a term
have an obvious meaning. But now these expressions have to be carefully defined, though
how they are to be defined is still reasonably obvious. For definitions, I refer to Curry et.
al. (1958, pp.44-59; 1972, pp.15-19).

For the sake of precision, it is necessary to stipulate that, if M and N are terms

constructed by different processes, then M and N are different terms.

C. Itis clear from Curry’s examples that this part of the definition of the class of terms will
contain stipulations like ‘If «and € are terms, then 7¢ and 4> ¢ are terms’ (p.19). This
means that, once the names of the primitive terms are given, we may substitute them for the
German letters in that statement and get a true statement. In this particular formal system the
primitive terms are called ‘p1’, p2’, ‘p3’, etc.

What sort of linguistic act is being performed by Curry’s stipulation ‘If 4« and & are
terms, then 7¢ and w2 & are terms’? [ think it is best to take it as an implicit definition of the

symbols ‘7‘ and ‘> °. It implies, but does not say explicitly, that there is at least one way of
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getting a new term from any two terms and, for one of these ways, the name of the new
term can be constructed by writing down the names of the old terms with ‘> between them.
I believe the definition could be given more explicitly as follows: "For any terms « and 6,
the result of the one-place operation on 4 is denoted by ‘7« ‘ and the result of the two-place
operation on 4 and § (in that order) is denoted by ‘« 2 ¢*". This, of course, involves
quantifying into quotation marks, so an explanation of how that is to be interpreted will have
to be added; though, in this particular case, I think I have already indicated how it is to be
interpreted.

Partly because I reject Curry’s idea that, in the example under consideration, ‘7‘ and ‘> °
are names of operations, and partly to save space, I shall in practice run together parts B and
C of the definition of the terms in a primitive frame. But, in describing each operation, I
shall still have two distinct things to say about it. One is what sort of terms, and how many,
the operation has to be performed on, and what sort of term results from the operation.
Another is what the name of the term that results from the operation will look like, once the

names of the terms upon which it is performed are given.

Now I have some more general remarks to make before I actually define the set of terms of
HAwm. By a ‘definition’ of the terms, I emphatically do not mean an explanation of what
they mean -- that will come later -- but only a definition of the conditions that a system of
objects will have to satisfy in order to be a plausible candidate for being the terms of HA .

Every term of HA® has a type. I will define the types and the type-functors first, as if
they were terms of a formal system themselves. They are not terms of HAw, but they
could easily be terms of another formal system.

In reading a symbol for a type or cbject of HAw or TF, or ranging over such objects, it
is necessary to know which sub-symbols of that symbol denote, or range over, the objects
to which the last operation in the construction of the resulting object(s) was applied. That
is, it is necessary to know which strings of symbols within the whole symbol actually
denote, or range over, components of the objects described by the whole symbol. As is

usual, I use brackets for this purpose: any expression which is enclosed within brackets
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does denote, or range over, a genuine component, or range of components. Other

conventions will be described as I come to them.

A. The Formal m HA@.

There are many formulations in the literature of formal systems similar to this one, and
some systems may have been formulated more than once. The formulations I have
especially studied are those of Yasugi (1963), Troelstra (1973 chapter 1, especially p.46)
and Schuette (1977 chapters 6 and 7, especially pp.149-151). Viewed in Curry’s way, it
would seem that Professor Yasugi’s set of terms is built up from the primitive terms,
which are 0 and variables, by means of four different operations, while Schuette’s is built
up from a more complicated set of primitive terms by means of just one two-place
operation. My approach is closer to Yasugi’s, but I use a no fewer than seven operations,
of which the first four resemble her four and the last three correspond to the application of

pairing and decoding operators to terms of suitable types (see Troelstra, p.47).

1. Types.

In the following, letters like 'p', 'c’, 't' range over types.

1.1. There is one primitive type, o (omikron).

1.2. There are two two-place operations on types: one operation on p and © yields po, the
other yields pxo. In reading a type-symbol, one should observe the following
conventions: pG102 . . . Op should be thought of as formed from p and 6162 ... Op
respectively while p1p2...pmx61672...0, should be thought of as formed from p1p2...pm
and 0107...0n. The type oo is also called '1'.  The level of a type o, called 1(0), is
defined as follows: 1(0) = 0; 1(6%1) = max{o, t}; I(61) = max{l(0), I(t)+1}. The level of

a term is the level of its type.

2. Terms.

Letters like ‘M’, ‘N’, ‘P’, with type-symbols in the superscript position where these are
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deemed necessary, range over terms of HA® of the indicated type, while the letters ‘r’, ‘s’,
‘t’ range over terms of type o.
2.1. There are two main kinds of primitive term, O and variables.
2.1.1. 0 is a term of type o.
2.1.2. For every type o, there are denumerably many variables belonging to that type.
They are called X‘: X7 sz etc. If o is o, the variables are also called xg, x1, X2, . . .
To save space, the variables Xf' , where 0 <1< 5, are also called U%, VO, WO, XO, YO
and ZO. Likewise, xj, for 0 <1< 5, is also called u, v, w, X, y or z respectively. The
numeral written in the subscript position of the name of a variable is said to denote the
shape of the variable.

Underlined letters like ‘X9’, ‘YS” and ‘Z°‘ shall be used as metamathematical variables
ranging over variables of the indicated type.
2.2. The following are the operations that may be performed upon terms.
2.2.1. For every term of type o, there is an operation which is said to transform that term
into its successor. The successor of s is ' The terms 0', 0", 0" etc are called numerals
and are also denoted by ‘1’, 2°, ‘3’ etc.
2.2.2.If M is a term of type T and X a variable of type o, there is an operation called ‘A-
binding the variable X in M’, which yields the result AX.M, a term of type ot. This
operation may only be applied if X is not already bound in M.
2.2.3. If M is of type oT, for some ¢ and t, and N is of type o, there is an operation
called ‘application of M to N’, which yields the result MN, of type T. To economize on
brackets, I stipulate that "M1M2. . . MyN" should be taken to denote the result of
applying M{M2. ..M, to N.
2.2.4. If M is of type 0oo6 and N is of type o, p[M, N, s] is of type c. This operation is
called ‘primitive recursion’.

A term of HAw of level not greater than 1, in whose construction this operation is
applied only to terms whose level is likewise not greater than 1 while the operations
2.2.5-7 are not used at all, is called a ‘primitive recursive functor’. The letters ‘f’, ‘g’ etc.

are used as metamathematical variables ranging over such functors while letters like ‘k’,
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‘m’ and ‘n’ range over such as are of type o. The order of f, which we call O(f), is
computed from its type, as follows: if the type is o, the order is 0 and if the type is oG, for
some o, the order is greater by one than if the type were 6. (Semantically speaking, the
order of a primitive recursive functor is the number of argument-places of the primitive
recursive functions which it represents or ranges over.)

2.2.5. For any terms M and N, of types p and o respectively, {M, N} is a term of type
pxo. This operation is called ‘pairing’ and the result of it is called the ‘pair’ of M and N.
2.2.6-7. If M is a term of type pxo, for some p and o, there are two operations called
‘decoding’ which transform M into a term of type p and a term of type G respectively.

The results of the operations are Mg and My respectively.

lag an ments of HA
I shall use letters like ‘F’, ‘G’ etc. as variables ranging over formulae. There is one
predicate, =. Every atomic formula is formed from = and two terms of type o; the
formula formed from s and t (in that order) is s=t. Molecular formulae are built up from
atomic ones using the propositional connectives &, v, D and « and existential (3) and
universal (V) quantifiers binding variables of every type. The formation-rules for
formulae are the usual ones and all the connectives have their usual meaning. I write F=G
as an abbreviation for F—oG.&.GDF.

In order to show the order in which the operations used in the construction of formulae
are applied, I use brackets, as before, and dots. Brackets take precedence over dots, in
the sense that any string of symbols enclosed within brackets denotes a sub-formula or
ranges over some sub-formulae, regardless of how many dots occur at junctures within
and without it. Each group of dots will be placed between a symbol denoting a connective
and a symbol denoting, or ranging over, sub-formulae within the scope of that
connective. The latter symbol will be bounded, on the one side, by the group of dots just
mentioned, on the other by either a bracket or a larger group of dots or the end of the

whole formula. For example
i L

o . 7
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is made of the sub-formulae (1) and (2). (2), in turn, is composed out of (3), in the first
instance, while (3) is composed out of (4) and (5).

The statements of my version of HA® are not formulae but sequents. Since it is meant
to be an intuitionistically acceptable theory, I will impose the restriction that at most one
formula containing quantifiers can occur in the succedent position of any sequent (this is a
feature of Yasugi’s formulation; see p.103). The sequent-connective is denoted by an
arrow (—). As is usual, I use letters like I', A etc. as variables ranging over sequences of

formulae.

4. Redexes and their Contraction

In order to state the axioms of HAw, it is necessary to state which terms are redexes and
how the contractum of a redex is determined. A term can only be a redex if the last
operation in its construction is application, primitive recursion, or decoding.

4.1. A term of the shape MN is a redex only if M is formed by A-binding some variable,
say within some term, say Q. In that case, the contractum of MN is Q[X:=N], which
notation means the result of substituting N for X within Q. The exact definition of
substitution is a slightly complicated matter, and will be left until the end of this chapter.
4.2. p[M, N, s] is a redex if and only if s is 0 or a successor. If s is 0, it contracts to N.
If s is a successor, say r’, the term contracts to Mr(p[M, N, r]).

4.3. Mg and M) are redexes if and only if M is a pair, say {N, Q}. Ifitis, then Mg

contracts to N and M to Q.

-Convertible T HA
Let M and N be terms of the shape ?LX?.P and ?\.X,f’Q respectively. Suppose that, if we
replace XT, wherever it oé:curs in P, and er.' wherever it occurs in Q, with some variable
not occurring in either P or Q, we get the same term. Then M and N are said to be o-
convertible to one another. The transitive closure of this relation is also called o-

convertibility. Finally, any two terms which are formed from each other by replacing a

sub-term of one with a term to which it is ci-convertible are also o-convertible.
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6. Mathematical Axioms of HA®.

All mathematical axioms are required to be free of logical symbols. They fall into four
groups. The first two groups consist entirely of sequents with a single succedent formula.
3.1. Axioms of a-conversion. For any terms M and N which are c-convertible to one
another, ->M=N is an axiom of HA®.

3.2. Axioms of reduction. A term N is said to reduce to M in one step if M can be obtained
from N by replacing some sub-term of N, which is a redex, with its contractum. The
transitive closure of reduction in one step is called simply reduction. For any terms M and
N, such that one reduces to the other, -M=N is an axiom of HA®.

3.3 Axioms of number. Under the interpretation of the terms of type o which follows from
giving the symbol '0' and the general terms 'successor' and 'variable' their usual
meanings, there are one or two truths about numbers which are not otherwise derivable in
HAw, for example t' = 0 —. Some people also take s'=t' — s=t as an axiom, but I guess
it is probably derivable; see below. However, there is no particular reason to be
parsimonious about which sequents one accepts as axioms of number, so I shall leave this
set of axioms open-ended.

3.4. Axioms of equality.
=>t-= t
5=t —S¢t=5

r=¢ s=t —>r=t
Sf-t -—-a'f[{," -_—5] = r\]icL : :t]
In the fourth axiom-schema here, the symbol q denotes only a particular occurrence of a
term q and r{q:=t] means that that occurrence of q is replaced with an occurrence of t. Itis

not necessary that every occurrence of q be replaced. If I wanted to indicate the result of

replacing every occurrence, I would have written simply r[q:=t].

7. Logical Axioms and Rules of Inference.
The logic is LK (introduced in Gentzen 1935, pp.191-3), subject to the restriction that only
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one succedent formula in any sequent may contain quantifiers. This logic is more liberal
than LJ, but is a conservative extension of the theory with the logic LJ. This can be proved

by proving

—Seesation§ st

without any use of multiple succedents. A proof is given by Schuette (pp.139-141) for a
corresponding statement in his negationless system of pure number theory. The proof can

certainly be carried over to my version of HA® without multiple succedents. However, as
it employs quantificational rules, it is a lot harder to adapt it to qf.-HA®. On the basis of a
hasty inspection, I think it can be done, but the proof in gf.-HA® requires a number of
technical tricks, notably theorem 4.6, which will not be introduced until later in this thesis.
But informally speaking, the rule of double-negation elimination for equations is certainly
justified, as all closed equations are decidable: see chapter 6.

Granted that the sequent written above is provable, the law of excluded middle and the
law of double negation are presumably provable for all quantifier-free formulae in my
language, by means of LJ. This has probably already been proved somewhere.

The induction-rule is formulated as follows

r—>AF() F),®—A,F()
rLe—sANMNFkt)

subject to the condition that x should not occur in the main premiss except at the places
indicated. tis any term of type o in the language.

Every instance of modus ponendo ponens

F ,FD C,r —=>A G
is provable. Sequents of this form will therefore be given axiomatic status and annotated
with ‘MPP’.
In the proofs which I shall present in chapters 4 and 5, the sequents shall be numbered

and each will be followed by a brief indication of how it is derived. Mathematical Axioms
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and Logical Basic Sequents will be annotated with 'M' and 'L' respectively. Sequents
derived by inference will be annotated with the numbers of the sequents from which they
are derived and the names of the main inferences involved. Each introduction-rule is called
by the name of the connective introduced, followed by 'E' or 'T', depending on whether

the connective is introduced in the antecedent or succedent.

Th HA®*
For certain purposes, it is desirable to consider the theory obtained by adding to HA® the

following three rules of inference. The first rule is called the axiom of choice (AC)

r—A, 93 F(X.Y )

r—A, HZH: k‘/i(f_ F(Z(. ZZ(>

the second is called 'the rule of the independence of premiss' (IP)(this rule is equivalent to

Troelstra’s IP{;; see p.238)

r—58, H23X F(X)
r—A4, 3X"(HoF(x))

where H must be in prenex form and contain no existential quantifiers, nor the variable XO:

and the third is called 'Markov's Principle’' (MP), where H must be free of quantifiers:

[ 5 A NV)_(H(Z(‘)
T—A, IXTHX)

m ial Combin fHA®
For every type ¢, we can form a combinator Jg, of type 0o(c6)c0, with the property that
JoOMOONGS reduces to N© while Jos'MPONC reduces to the same term as
MO0(J5sMOONC). Namely, we define J5 to be AyX9YS.p[Ax. X590, YOO, y].
Using Jo, we may construct a term P, which represents the predecessor function and

terms called Axy.x+y and Axy.x ~y, which represent addition and subtraction



terms called Axy.x+y and Axy.x~y, which represent addition and subtraction respectively.
For proofs I refer to Schuette (pp.120-124).
I shall also use the (contextually) defined predicates <, <, >, and 3. s<t, for example,

may be regarded as a definitional abbreviation for=t=s = 0.

B. The F m TE

1. Type-functors.
A type-function is a primitive recursive function which takes as values types of terms of

HAw. To make this conception precise, I must fix some way of encoding types by natural

numbers. The code of ¢ is called #0; it is calculated as follows:
#o=1 #ot = 2#0.3#1 #(oxt) = 3#0.5%1

Given an n-place primitive recursive function which takes codes of types as values, the
corresponding type-function is defined to be the function which maps n-tuples of numbers
onto the types which are encoded by the values of the first function for the same n-tuples.
Types count as 0-place type-functions. |

If the terms of HAw are interpreted in the natural way, some of the primitive recursive
functors I defined in section A can be interpreted as (if they are closed) representing, or
otherwise ranging over, the numerical functions corresponding to type‘-functions. Hence it
is possible also to think of them as repres:nting, or ranging over, the type-functions
themselves. However, if a primitive recursive functor is to be thought of in this way, I
shall call it a type-functor and write its name within corners, so the type-functor

. v TpV v
corresponding to fis f. The order of ' is the same as the order of f.
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I shall be especially interested in type-functors "h’ which are derived from a term h of

HA so that either the following pair of equations, for all numerals ny, . . . ng:

hOnl_,.ncL = :Fn."‘-'ﬂ”\

ngn,,.,nn nRN,...ng

hk_/n‘___ = 3

H:L—

or the following pair:

hOn, .. Ng = £N. N

> 3Rﬂ,...n,\ hRn,‘.-ncL
hr\,ﬂ,---ﬂi = 3 S

for some g of order n+1 and f of order m, such that max{m, n} = g, is provable in HA®.
A term which satisfies one of the above pairs of equations, for some f and g, will be called
RLfg or RCfg respectively.

In setting up the theory TF, when I wish to refer to a type, I shall allow myself to do so
either by using a name for the type of the kind introduced in section A, or else by using a
name for a numeral enclosed within corners. I shall call the type-functors rRI—g(J\.gg.DTI and

"RCg(Ax.0'1 f'g and T'xg" respectively (here x must be a variable not occurring in f). If

tand "g" are types, this idiom can easily be translated into that which I used to talk about
types in section A. For if I'f'P is o and g’ is 7, f will denote the number encoding ¢ while g
denotes the number encoding T. Therefore RLg(Ax.f)1, for example, will be the number
Z#E—S*T But this number is the code of the type ot, by our rules for coding. Therefore
"f'"" is the same type as oT.

Furthermore, if f and g are both type-functors and f* and g* are corresponding
primitive recursive functors, I shall write fg in place of rRLg*(A.;.f*)"l and T % g'n place
of r-ch”‘(kg.f“‘)"1. This notation almost suggests itself, since it simply means that I
combine names of type-functors in the same way as I formerly combined names of types.
If the type-functors in question are types, then the notation means the same whichever way

it is interpreted.
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2. Shape-Functors,

The first difference between the terms of HA® and the terms of TF is that every variable
(and consequently every term) of TF is required to have a type-functor whereas every
variable of HA® is required to have a type. Every variable of TF also has a shape-functor,
which is a primitive recursive functor of HAw of type o or 1. If a shape-functor is a
numeral, then we may regard the variable in question as a variable of HAw and identify the
shape-functor in question with what I previously called the ‘shape’ of the variable.

Henceforth, therefore, if a shape-functor is a numeral, I shall also call it a ‘shape’.

ion of Type- hape-Functor.
At this point I would like to define what I mean by "equality". I shall use the symbol " "
in the following contexts. "MMN" shall mean, if M and N are of type o, M=N. If they
have a common type-functor other than o, say “f", then it means X oM = er10N . In
place of "—>MwN", I shall also say that M "is equal to" N. This should not be
misunderstood as meaning that M is the same term as N, though it could reasonably be
taken as meaning that M and N would have the same semantic value under a normal
interpretation.

In the following, I shall in effect identify type- and shape-functors which are equal to
each other. To be more exact, in stating the rules for the formation of term-forms and the
determination of their type-functor, I shall give clauses along the lines of "If the type-
functor of M is equal to 'f’ and if the type-functor of N is equal to 'g', the type-functor of
the result of such-and-such an operation on M and N is the result of such-and-such an

. I—
operation on f and g".

4. Terms of TF.,
In this paragraph, we reach the actual terms of TF for the first time. The terms are 'term-
forms', in the sense of Professor Yasugi, in that they are obtained by generalising the

terms of HA in a way similar to hers. I use letters like L', 'M', 'N' and 'P' as variables
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ranging over terms of TF in general and letters like 'r', 's' and 't' as variables ranging over
terms whose type-functor is equal to 0. Every term has a type-functor.

4.1.There are two kinds of primitive term, 0 and variables.

4.1.1. 0 is a term-form of type o.

4.1.2. For every type-functor Tand shape-functor g there is a variable having that type-
functor and that shape-functor. This variable is called 'XSg'. When fis 0 and gisa
shape, the variables of type—functorrfﬂ are also called 'xq', 'x1', 'x2', etc. The same

abbreviations apply as were introduced when we were dealing with HA®.

N.B. It is important to stipulate that a primitive recursive functor occurring within a type-
or shape-functor also counts as occurring within any term which possesses that type- or
shape-functor. If the primitive recursive functor in question is a variable, it may be A-

bound or used as the eigenvariable of an induction.

4.2. The following are the operations that may be performed on terms.
4.2.1. Successors can be formed just as in HAw and are denoted in the same way.
4.2.2. If M has type-functor “f"of order n and X? is a variable which may or may not
occur in M, then there is an operation called 'lambda-binding the variable X?" which may
be applied to M to yield a new term of type-functor ‘g f, provided that the variable ng?has
not already been lambda-bound in the construction of M or of . The result of the
operation is ),XE’M |
4.2.3.If M and N are terms and the type-functor of N is "fand the type-functor of M is
equal to T for some g", then there is an operation called 'application of M to N' which
yields a term of type-functor "g", unless M has the shape Ax;.Q, for some Q and i, and x;
occurs in g’ in which case the result of the operaition has the type-functor
"g[x;:=N]". The result of the operation is MN.

(In order that MN be well-formed we must ensure that Ax; P, where x; occurs in the

type-functor of P, only be applied to N when N is a possible value of k, m, n, . ..)

To economize on brackets, I stipulate that M{Mj...MN should be read in the same

3



way as if it were a term of HA.

4.2.4.1f M and N are terms whose type-functors are equal to oT'f " and "f'respectively, for
some T, then p[M, N, s] is the result of an operation on M, N and s having the type-
functor f’

4.2.5. For any term-forms M and N of type-functors f and g, the operation called
'pairing M and N' yields a new term-form called the 'pair of M and N', of type-functor
'f'x . This is {M, N}. .

4.2.6-7. If M is a term-form having type-functor "f'x ", there are two operations, called
'decoding’, applicable to M, which yield term-forms of type-functors ' and "g?

respectively. The results of the two operations are Mg and M respectively.

Remark: If, in clauses 4.1 and 4.2.1-7, all variables ranging over type-functors and shape-

functors are restricted so as to range over types and shapes respectively, these clauses

define the terms of HA®.

4.2.8. Let M be a term of type-functor f and let g’ be a type-functor and h a shape-functor
so that O("g")-O(h) = 1. Then there is an operation which transforms M, X;T and any m
into a term of type-functor "RLfg'm. The result of the operation is ([XXPET.M]; m). (N.B.
this operation does not count as binding the variable X'ijithin M.)

4.2.9. Let M be a term of type-functor ‘t7and let L be a term of type-functor "g’ of order 1.
Then, for each such M and L, there is a term formed from them and any m having type-
functor RCfg'm. This term is ([L, M]; m).

4.2.10. Let M be a term whose type-functor is equal to RLf, g"m+l and N one whose type-
functor is equal to RC(g0)(Ax.gx')'m; then ApMNm has type-functor .

4.2.11. Let M be a term whose type-functor is equal to fv'"fv", for some f and v, and N a

term with a type-functor equal to "f0". Then R7gy[Av.M, N, m] has the type-functor "fm.

X their Contraction

In order to state the axioms of TF, it is necessary first to state which terms are redexes and



how the contractum of each redex is determined.

Furthermore, it is necessary to introduce a new piece of notation. (M; m) shall denote
the term determined by terms M and m in the following way (the following sub-paragraphs
correspond to the sub-paragraphs of B.4 and the definition of (M; m) is by recursion on the
complexity of M):-

1.1 (0; m) is identical to 0.
1.2 (Xrg; m) depends on the orders of f and g. If O(f)-O(g) > 0, then the term is identical

'-f"t-'

to Xj,:n. If O(f) >0 and O(g) =0, itis X3 . IfO(f) =0and O(g) =1, it is X;M . IFO(D)

+0(g) =0, it is xrg’.
2.1 (t'; m) is identical to (t; m)'.

2.2 (AX%N; m) is identical to A(X;m).(N; m).

2.3 (MN; m) is identical to (M; m)(N; m).

2.4 - 2.7 are determined in the obvious way.

2.8 ((AX .NJ; m); n) is identical to ((AX? .(N; n)]; m).

2.9 (([L, M]; m); n) is identical to ([L, (M; n)]; m).

2.10 (ApMNn; m) is identical to Ap(M; m)(N; m)n.

2.11 (Rfy'[Ax.M, N, m]; n) is identical to R'fy'[(Av.M; n), (N; n), m].

Theorem 2.1: For any M and m, (M; m) is a well-formed term of TF and its type-functor is
determined in the following way. If M has type-functor “f" and O(f) > 0, then (M; m) has
the type-functor fm™. If M has type-functor f and O(f) = 0, then (M; m) has the type-

functor f

Proof: By induction on the complexity of M. If M is O or a variable, the theorem is true by
definition. For the induction-step, we must consider the various clauses in B.4.2. The
following clauses are numbered correspondingly:-

2.2 We have stipulated that (AXT.N; m) is identical to MX ", m).(N; m). Let N have the
type-functor 'g"; then AX T'N will have the type-functor RLg(Ax.H)1". The task is to

deduce, given what the type-functors of (ﬁrﬂ; m) and (N; m) must be, that (?LXT.N; m)
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will have the type-functor Rlg(Ax.f)1" or RLg(Ax.f)1m" -- the former only if
O(RLg(Ax.f)1), which is max{O(f), O(g)}, is 0. Now the basis of the induction tells us
that (erq; m) has the type-functor fm” or T depending on what O(f) is; and the induction-
step tells us that (N; m) has the type-functor gm” or " similarly. If O(f) + O(g) =0, then
O(RLg(Ax.H)1) is also 0 and A(X T; m).(N; m) has the type-functor "f'"g”, which is also, of
course, the type-functor of AXTN; m). If max{O(f), O(g)} > 0, then l(xrfq; m).(N; m)
has the type-functor fm' gm", Tm'"g’r T"gm", depending on the orders of f and g
respectively. But these three terms all denote the same type-functor, viz., rRLg(lz.f)lni'.
2.3 Since MN is well-formed, M must have a type-functor of the shape "f'2” where "tis
the type-functor of N. If N is capable of being substituted into the type-functor of M, ¢ o
must be a type, and otherwise the type-functor of MN is g’

There are therefore four main cases to distinguish: (1) O(f)-O(g) > 0; (2) O(f) >0,
O(g) =0; (3) O(f) =0, 0(g) >0; (4 O(f) + O(g) = 0; and the last two must again be
divided into two sub-cases, depending on whether N does or does not require to be
substituted in g. Now by the hypothesis of the induction, (M; m) will have the type-
functor Tm' gm", fiiy 2", T'gm" or 'g", depending on what the orders of f and g are; and
(N; m) will have the type-functor g” or "gm’ similarly. If we work through all the cases, it
turns out that (M; m)(N; m) has the type-functor "g' or gm’, modulo a possible
substitution.

2.8 We have stipulated that ([k}_(_rfq.N]; n) has the type-functor Rlgfn’, where 'g” is the
type-functor of N. The type-functor of (N; m) is ‘gm” or g", depending on what the order
of g'is. But depending on exactly that, the type-functor of ([l,grfﬂ.(N ; m)]; n) will be
either RLgfn’ or RLgfnm) which is also the type-functor of (([Ax £ .NJ; n); m).

2.9 We have stipulated that ([L, M]; m) has type-functor RCfgm”, where ' and g’ (the
last of order 1) are the type-functors 0‘f M and L respectively. The order of RCfgn’ is
therefore the order of M. By the induction hypothesis, (M, n) has the type-functor f" (if
O(f) = 0)or "fn’ (otherwise), so that ([L, (M; n)]; m) has the type-functor "RC(fn)gm?,
which is equal, by paragraph B.1, to RCfgmn’, if O(f) > 0; and "RCfgm’ otherwise. But
this is by definition equal to the type-functor of (([L, M]; m); n)..
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2.10 By the conditions for ApMNm to be well-formed, together with the hypothesis of the
induction we are making, (M; n) and (N; n) have the type-functors "RLf g(m+1)n1 and
"RC(g0)(Ax.gx)mn' respectively, provided that O(f)-O(g) > 1. These are equal to
rRL(fn)OLx.g“';)'(m+15' and 'RC(g*0)(Ax.g*x)m’ (where g* is defined to be Ay.gyn)
respectively, so that Ap(M; n)(N; n)m has the type-functor " fr, where O(f) > 0, and f'
otherwise.

2.11 By the condition for Ry [Av.M, N, m] to be well-formed, together with the
induction hypothesis, (Av.M; n) an;:l (N; n) have the type-fuctors “fvn' fy'n' and

"fOn" respectively, so long as O(f) > 1 -- the case where O(f) = 1 is actually simpler. These
type-functors are equal torf“"g"f*x"' and f*0 respectively, where f* is defined like g*
above. But that being so, Rrp.._‘_,.j[(lz.M; n), (N; n), m] is well-formed and has the type-
functor "P*mi", which is equal to "fmn”, which is precisely the type-functor that we wanted

(R [Av.M, N, m]; n) to have.

Now we can get around to stating which terms are redexes and how they are contracted.
The following sub-paragraphs correspond, again, to the various sub-paragraphs of B.4.2.
2.3. MN is a redex if and only if M is a term formed by A-abstraction, say lXS;.P. In
that case, N will have type-functor f ” The contractum of MN is formed by taking P and
substituting N for X7 wherever that variable occurs in P or in its type-functor.

2.4, 6, 7: Terms which have primitive recursion or decoding as the last stage in their
construction are contracted under the same conditions, and in the same way, as similar
terms of HAw. The only ditference is that whereas the rules for the latter were stated
using metamathematical variables ranging over types, variables ranging over type-functors
must now be read in their place.

2.8. ([?\.Kr’;&1 .M]; m) is only a redex if m is O or a successor, say n'. ([erg.M];'O)
contracts to M. ([R.X?.M]; n') contracts to ?L(er,;; m)([lX'—g.M]; n).

. 2.9. ([L, M]; m) is only a redex if either m is O or m is a successor, say n'. In the first

case it contracts to M, in the second to {(L; n), ([L, M]; n)}.

2.10. Ap(M)(N)m is a redex if and only if m is O or a successor. If 0, it contracts to MN.



If a successor, say n', it contracts to Ap(MNg)N1n.
2.11. If n is O then RFy"[Av.M, N, n] contracts to N. If n is a successor, say p', it

contracts to (Ax.M)p(R 7 [Av.M, N, p]).

Theorem 2.2. Every contractum of a redex is itself a well-formed term and has a type-

functor equal to that of the redex.

Proof: The theorem can only be proved by going through the rules for the formation of
term-forms one-by-one and comparing them with the contraction-rules. I shall omit the

treatment of some of the simpler cases.

2.3. We have stipulated that (xxg‘ "M)N shall have the type-functor which is got from the
type-functor of M by substituting N for XET, wherever X,51 occurs in M. Itis necessary to
prove that M[Xrgz =N] will have the same type-functor. I distinguish two cases,
according as X’é does or does not occur within the type-functor of M. If it does not, the
theorem obviously holds. If it does, we have to do an induction on the number of
operations in the construction of M. The only non-vacuous basis case is where M is a

variable. Obviously, M cannot itself be X%, so the only change that has to be made will

be in the type-functor (and possibly the shape-functor) of M.

Remark: We see now why the rule for determining the type-functor of terms of the form
LN in TF is so much more complicated than the corresponding rule for HA®. The
problematic case is where L has the form (Ax.M) and x occurs in the type-functor of M.
Then substituting N for x will change that type-functor, so we cannot simply stipulate that

LN shall have the same type-functor as M, or this theorem would not hold.

2.8. ([l.X?.M]; 0) will have type-functor.'f', where fis the type-functor of M.
([?\.X?M]; n") has a type-functor equal to ‘gn’ r-(RLfgn)-', precisely the type-functor of

X n).([:\.ngM]; ).
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n‘l

It is clear that ([?LXE?M]; n’’) reduces to ?uer,:ﬂlX?fm .([J\,Xr}’:TM]; n), to give an
example. It is perfectly possible that the type-functors f'n’ and f'n compute to the same
type-functor, in which case, by our stipulation that a variable may only be lambda-bound
once, we are in danger of transgressing the limits of well-formedness. However this can
be avoided by ensuring that, when the two type-functors are equal, the shape-functors hn’
and hn shall be nonequal.

2.9. (M, NJ; 0) has type-functor I-chf“(), where 'f' and 'o" are the type-functors of M and
N respectively; but this computes to g, while the term-form contracts to M.

(IM, NJ; n’) has type-functor RCgfn’, which reduces to 'f'n x (RCgH)i, but the latter is
also the type-functor of {(M; n), ([M, NJ]; n)} (we use theorem 2.1 at this point).

2.10. By the condition for ApMNO to be well-formed, M and N must have the type-
fun.ctorsrRI-'fgl-| and rRC(gO)(7\.}(.gx’)'{].1 respectively. These reduce to '"g()"'rf1 and rgO-I
respectively, so that MN has the type-functor f1 But this is exactly what we stipulated
ApMNO would reduce to.

To treat terms of the shape of ApMNn', let n be formed by k applications of the
successor operation to a term, say j, which is not a successor. We now do an induction on
k. By our stipulations, M and N have type-functors equal to "gn'rRLfgn" and
fgn' X rRC(gO)(}\x.gx’)" n. The contractum of ApMN(n’) is the result of operation 4.2.10
on M(Np), N1 and n. The first of these term-forms obviously has type-functor 'RLfg'n’
while the second has "RC( g0)(Ax.gx’)' n. But by definition of operation 4.2.10, the result

of the operation on these two term-forms has the required type-functor.

 Matl ol ¢ TF
These are generated by precisely the same schemata as the axioms of HA®, but they apply,
of course, to a wider class of terms.

Now that the concept of reduction has been defined for terms of TF, it is time to prove

the following important theorem.

Theorem 2.3 (Church-Rosser property): Let M be a term that reduces to both P and R.
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Then there is another term which can be obtained from both P and R by reductions and o-

conversions.

Proot:- We proceed by induction on the sum of the number of contractions used to get P
from M and the number of contractions used to get R from M respectively, taking as the
basis the first non-trivial case, namely, where this number is 2. The induction-step of the
proof can be dealt with very easily, using standard methods (e.g. Curry and Feys 1958,
pp- 110-115). The difficult part of the proof is the basis.

Let Q be the sub-term of M that is contracted to get P and let N be the sub-term of M
that is contracted to get R. Since there may be more than one occurrence of either Q or N
in M, we shall call the occurrences that are contracted Q and N respectively. Following
Curry and Feys (ibid., pp.113-116), we define what it is for an (occurrence of a) subterm
of Pto beam_si_dgglofﬁ-

(1) If N is identical to Q, there is no residual of N in P.

(2) If Nisnota component of Q nor Q a component of N, there will be an occurrence of a
term-form identical to N in P, at a similar position to that of 1:1 in M, and it will be the
residual of N in P,

(3) If (j is a component of N, the residual of N in P is the component of P got from N by
replacing Q within it with its contractum.

(4) We now treat the case where Nis a component of 6 dividing this case according to
what was the last operation in the construction of Q.

4.2.3. Let Q be KL; then K was formed by lambda-binding some variable with respect to
some term. Let the occurrences of K and L in 6 be called IE and L respectively. Then the
contractum of Q will contain any number of occurrences of L;'let these be called I—..I, Eg, i
If 1-\-1 was in E there will be corresponding occurrences of N in each of -1:1, -[:2, ...and all
these occurrences will be residuals of N in P. If N was in K, N will occur at a
corresponding position in the contractum of Q and that occurrence of N will be the residual
of N.

4.24.1If Qis p[K, L, s], then, if r is 0, EI has a residual in the contractum of Q only if it



occurs in L. If it does, the residual is the occurrence corresponding to N. If Q contracts to
K(s-1)p[K, L, s:1], then the residual of N is the occurrence within both occurrences of K
resp. the occurrence of L that corresponds to N within K, resp. L, within Q.

These definitions ought to give the reader a general idea of what a residual is. The one
further clause in the definition of "residual" to which I feel I had better draw attention is the
one dealing with the case where Q is a redex formed by operation 2.9. In that case, if Q is
([L, M]; m") and N occurs within L, then the a residual of N in the contractum of Q occurs

not only in L but also in (L; m).

To prove the basis of the theorem, it is necessary to show that it makes no difference
whether you first contract Q and then the residuals of N in P, or whether you first contract
N and then the residuals of (3 in R. The cases where Q and N either coincide or are totally
disjoint are easily dealt with; it is the other two cases which are difficult. They are,
however, totally symmetrical, so it suffices to consider the case where Nisa proper
subterm of 6

We run through the various possibilities as to what was the final operation in the
construction of Q. The following sub-paragraphs are numbered like the sub-paragraphs of

section 4.

2.3. Qis (AX.K)L. This is the most difficult case. I distinguish two sub-cases: (a) N
occurs within K; (b) N occurs within L In treating both cases, I assume that o
conversions have been carried out to ensure that none of the bound variables in K concides
with a free variable in L.

(a) Q contracts to K[X:=L] and the residual of N in this term is N[X:=L]. On the other
hand, if we contracted N first and if its contractum be called N*, the result of contracting
the result of that reduction, namely (AX.K[N:=N*])L will be K[N:=N*][X:=L]. In the
other case, the result of the second contraction is K[X:=L][N[X:=L]:=(N[X:=L])*], where
the asterisk after the name of a redex again shows that we are talking about the contractum

of that redex. Since the respective terms that we are now considering differ, if at all, only
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in that in the one N*[X:=L] occurs where, in the other, (N[X:=L])* occurs, it suffices if
we can show that these two symbols in fact denote the same term, modulo o-conversions.

It is now necessary to consider the form of N; either N is of the shape (AY.S)T or it is
not. Iagain assume that none of the bound variables in S coincides with a free variable in
T. If it is not, then it must be a redex formed by one of operations 2.4 - 2.11, and my
treatment of the cases where Q is of one of these forms will show that Q*[X:=L] is indeed
identical to (Q[X:=L])*. For the moment, therefore, I shall only consider the other
possibility. N* is S[Y:=T] so that N*[X:=L] is S[Y.:=T][X:=L]while (N[X:=L])* is
SIX:=L][X:=T[X:=L]].

The part of the proof currently in hand consists in showing that S[Y:=T][X:=L] is
identical to S[X:=L][Y:=T[X:=L]], at least modulo o-conversions. We do it by induction
on the number of steps in the construction of S. If S is 0 or a variable other than X or Y,
the statement obviously holds. If S is X or Y, the two expressions above either both .
denote L or both denote T[X:=L].

For the induction-step, let us suppose that S is formed by operation O from immediate
sub-terms Sy, . . .. S,,. Then, according to the obvious recursive definition of
replacement, S[Y:=T][X:=L] denotes O(S1[Y:=T][X:=L],...S,[Y:=T][X:=L]) while
S[X:=L][X:=T[X:=L]] denotes O(S{[X:=L][Y:=T[X:=L]],...S,[X:=L][X:=T[X:=L]]).

But the induction-hypothesis says that these two expressions denote exactly the same term.

(b) Q contracts to K[X:=L] and the further contraction of the residuals of N carries us to
. K[:=L][S:=8*], where "S" denotes all the residuals of N. Since these residuals all occur
within L, it can be easily shown by induction on the construction of K that this is

equivalent to K[ X:=L[S:=S*]].

2.4 -2.11. When Q is of one of these forms, the theorm can be established much more
simply, as the process of contracting Q can be described without reference to any such
complicated operation as substitution.

For this stage of the proof it is essential to note that, with most of the reduction-rules, if
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Q is formed by a sequence of operations O from sub-terms Qy, . . . Qn, then the
contractum of Q is formed by a different sequence of operations, say Oy, from at most the
sub-terms Qy, . . . Qn. The only exceptions to this generalisation are where Q is formed
by operation 4.2.8 or 4.2.9, because in these cases its contractum will include a sub-term
of the shape (Q;; n), which is not a sub-term of Q. I will leave these cases till last.

Let Q be formed by O from subterms Qy, . . . Qn, so that we may describe it as
0(@Qy, . - - Qn). Let Q be the redex obtained from Q by replacing N therein with some
variable not occurring in Q, say Z -- Q™ must be a redex because N cannot be O or a
successor. Q- may now be described as O(Q,, . . . Q) (in fact, this is the obvious way of
defining "the result of replacing N in Q with Z"). Since the relation "Auz.x is obtained
from y by replacement of u by z" is transitive, the term obtained from Q by contracting N
within it is identical to Q [Z:=N*]. Similarly, Q* is identical to Q *[Z:=N]. This is
because the same rule holds for the contraction of O(Q,, . . . Q) as for 0(Qy, - - - Qn); that
is, these two terms are composed out of their respective subterms by the same sequence of
operations. Let us therefore call them O,(Q,, . .. Q) and 0,(Qy, - - . Qn) respectively. In
virtue of the definition of replacement, Q-*[Z:=N] is identical to OI(Q'; [Z:=N].; .. On
[Z:-—-N]), is ideﬁﬁéal t0 O,(Qy, - - - Qn), is identical to Q*. But that was the claim just
made.

Now (Q[N:=N*])*, that is, the result of contracting N within Q and then contracting the
result, is identical to (Q [Z:=N*])*, is identical to (0,(Q, [Z:=N*], ... Q3[Z:=N*]). But
in view of the above, this is obviously equivalent to O,(Qy, . . . Qn)[N:=N*]. -

Let us finally consider the case where Q is formed by operation 42.8 or4.2.9. We can
ignore the former, however, because if it has the shape ([AX.M]; n") N necessarily occurs
in M and not in X. If Q has the shape ([L, M]; n') and N occurs in L, then the main thing
required is to prove that (L[N:=N*]; n) is identical to (L; n)[N":=N"*], where N' is the

residual of N in (L; n).

7. Logical Rules.

The logic is the same as for HA® but without quantifiers. This means that the succedent
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position of a sequent may contain any number of formulae of any kind.

For heuristic purposes, it is sometimes useful to imagine a theory got by adding to HA®
the the mathematical axioms of TF or, alternatively, adding to TF the quantificational rules
of HAm as well (if we like) the rules peculiar to HA®*. Such a theory might be called
HA+TF. But since I will not use it actually to prove anything, it seems unnecessary to
formulate it exactly. For some purposes, I shall even be considering a theory which is like

HAw+TF, but in which formulae may be infinitely long.

I ion.
The induction-rule, of course, is also a rule of TF, but I have decided to formulate it
differently from the induction-rule of HA®. I am interested in the former theory on
account of the initial cases of transfinite induction which may, and which may not, be
proved valid in her. It is therefore necessary to suppose that she contain terms denoting
transfinite ordinal numbers. It would be possible, but laborious, to select a subset of the
closed terms already defined and state which numbers they are to stand for. It is more
convenient simply to stipulate that new closed terms shall be added to the theory, to denote
all transfinite numbers smaller than €y. These terms will be denoted by the usual symbols
for transfinite ordinal numbers below €, in Cantor Normal Form. Axioms of number
governing these terms must also be added. Addition, multiplication and ordering among
transfinite numbers shall be indicated by the same symbols as for natural numbers. For
every term k, wg shall compute as follows: @y is equal to ®° and @y is equal to W®n.

Like Gentzen (1943, p.142), I think this expansion of the set of terms is justified by the
fact that not only the ordinal numbers smaller than £¢ but also the functions of addition,
multiplication and exponentiation upon them may be coded by natural numbers and
(primitive recursive) functions of natural numbers. This expansion of the language I am
using means that ordinary induction must now be viewed as an initial case of transfinite

induction: that is, we add the formula t < o to the antecedent of the conclusion of an

induction.
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Remark: This completes the definition of TF.

me Important Properties of TF

1. Theorem ality.
Theorem 2.3. Every instance of the schema
s=t, F, ' > A, F[s:=t]

is provable in TF.

Proof: by induction on the number of logical symbols in F. The basis is the case where F
is an equation, say q =r. Then we prove s =t, q = — q[s:=t] = r[s:=t] by the following

derivation:

1/ s=t—q[s:=s] =q[s:=t] axiom on equality
2/ s=t—q[s:=t]=q 1, axiom on equality, cut
3/ qls:=t} =q,q=r—q[s:=t] =r axiom on equality
4/ s=t—r=r[s:=t] axiom on equality
5/ q[s:=t] =r,r=rfs:=t] = g{s:=t] =r[s:=t] axiom on equality
6/ gqls:=t]l =q, g =r,r=1s:=t] = qIs:=t] =rs:=t] 3, 5,cut
7/ s=t,q=rr1=r[s:=t] = g[s:=t] =r[s:=t] 2, 6,cut
8/ r=r[si=t],s=t,q=r— q[s:=t] =r[s:=t] 7, interchanges

9/ s=t,s=t,q=r— q[s:=t] =rfs:=t] 4,8, cut
As for the induction-step, let F, Fp be the subformulae of F that are joined by the main
connective: then, if the theorem holds for Fj and Fp, the sequent we want can be derived

by introduction-rules and structural inferences.

Remark: This theorem gives us in effect a new rule of inference. If some sequent of the
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shape I' = A, s =t is provable, as is another of the shape A = O, F, then T, A = A, O,
F[s:=t] will also be. I shall therefore use the annotation 'theorem 2.3' whenever I have
two sequents of the former shapes, to justify deriving one of the latter shape.

Theorem 2.3 does not enable us to replace a term occurring in F if that term has a type-

functor other than o. But the following theorem does:

Theorem 2.4: Every sequent of the shape
Mea N, F, " = A, F[M:=N]

is provable in TF.

Proof: Let M and N have the type-functor 'f. Then "MxN" denotes the formula
X rf‘OM = erQON. I shall treat first the case where F is s = t. If M does not occur in either
s or t, the theorm is vacuously true. Suppose now that M occurs in s. Let Y be a variable

having the same type-functor as M; then (AY.s[M:=Y) will have the type-functor 0.

Furthermore,
x Tom = x ToN — ax T'o x TomyLy s[M:=Y]) = AX T0.X TON)(AY.s[M:=Y])

is an instance of the fourth axiom-schema on equality. Plainly
AX ff-'o.er qOM)(?L_Y_'.s[M:=_‘£]) reduces in two steps to s while
(?LXrfRO.XFfQON)(?LLs[M:i]) reduces in the same number of steps to s{M:=N]. So from
two axioms of reduction, together with the sequent written above, by a number of axioms
on equality and structural inferences, we get the sequent

M»~N,s=t 1 — A, siM:=N] =t.
By a repetition of the same argument we get

MMN,s=t, ' = A, s[M:=N] = t[M:=N],
which is theorem 2.4 for the case where F is an equation. The induction-step proceeds as

for theorem 2.3.



Remark: We now have another new rule of inference, of which the following is a special

case: if I' — A, F is provable and if M reduces to N, then I' = A, F[M:=N] is provable.

I shall now give an example of a derivation in TF, which makes extensive use of theorem
2.4. For the definition of the type-functor f", I must refer forward to the beginning of
chapter 5. The sequent which I shall prove will be used extensively in chapter 5, in

particular, as a premiss for applications of theorem 2.4. That sequent is
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2 ms on Combinator mpleteness
Traditionally (Curry and Feys 1958, pp.5 and 186f.; Barendregt 1981, p.30f.) a theory T

is said to be "combinatorially complete" if it possesses the following property: for every

term M of T and every sequence N1, . .. Ny, of terms, there is a term of T, say Q,

containing none of N1, . .. Ny, so that QN7 .. . N, is equal within T to M.

It is obvious that TF is combinatorially complete in this sense. A more interesting
question is whether we can find a generalisation of the property just defined so that TF, in
contrast to HAw, will be combinatorially complete in the stronger sense as well. I have
come up with the ff;llowing: let N be made up of the components N1, . . . Nk, combined
by means of operations 4.2.5 and 4.2.10. Let M be a term in which all occurrences of N1,
... Nk that occurred within N as the left component of a sub-term formed by operation
4.2.10 also occur in this context. Then there is a term of TF, which we might as well call
Q, in which none of N1, . .. Nk occur, so that QN is equal within TF to M.

Why do I call this property "combinatory completeness"? TF is meant to be a
generalisation of qf.-HAw in the sense that properties which can be established in the latter
theory for finitely long sequences of objects -- the objects denoted by its closed terms --
can now be shown to hold of some infinite sequences. Operation 4.2.10 is one of the
operations by which we can construct terms that can be used to express properties of
infintely long sequences. For ([M, N]; v) is a term which, whenever a numeral, say
OL;.') is substituted for v, reduces to a sequence having k+1 components, combined by k
applications of the pairing operation, 4.2.5. Thus it is reasonable to think that ([M, N]; v)
is a term which can be used to express generalisations about all such sequences.

In the same way the term N, mentioned in the paragraph before the last, may "describe”
(to use a suitably vague word) an infinitely long sequence. The terms N1, . .. Nx may
therefore be taken to describe either individual members or sub-sequences of that sequence.

To prove that TF is combinatorially complete in the sense defined would, I think, be
quite a messy task. I shall therefore prove only a special case which will be important in

chapter 5. Let the term M and the variables X1, . . . . Xg be as described in definitions 5.3

in chapter 5. I would like to prove that, for each i so that 0 < i < 10, there is a term



AX(: M so that, for each i so that iis 2,4, 5,7, 9, AX‘f M is equal to M; and, for each i
so thatiis 1, 3, 6 or 8 and for any K, ([ AXY M, KJ; dv) is equal to ([M;, K]; dv).

I shall treat first the case where iis 2,4, 5, 7 or 9. 1 shall begin by proving that
Ap([AXg.AX9.X9]; dv)([Mg, Mg]; dv)dv is equal to Mg.
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I would now like to prove a theorem which is, approximately speaking, converse to the last

one. Whereas the last theorem showed that it is possible to construct a term which, applied

to a term formed from components N, . . . Nk by operations 4.2.5 and 4.2.10, splits that

term up into its components, the theorem now in question shows that, when we have a
term constructed in the way described, it is possible to form another term equal to it, but

which is formed by means of just one application of operation 4.2.10. That is, I shall

prove that, for every M, N and P of type-functors f 1 ; rfi ,and 'g’, there is a term Q so

that
— (M, (N, P]; w)]; v)ea ([Q, P]; u+v)

is provable. Q will have a type-functor f where x <u — fx = foxandusx<v

— fx = f1x are provable in HA®.

We define Q to be Ap([lX?_: . .X.rp

A

1; u+v)(IM, ([N, P]; u)]; v)(u+v) and construct the

following derivation:
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3. Remarks on Substitution,
I must begin by defining substitution. In the first place, it should be recalled that I identify

variables whose type- and shape-functors are equal. Thusif - e =fand - g=hare

provable in HA®, we may always write "X'g" in place of "Xiﬂ": this is merely replacing

one name for a variable with another name for the same variable.
The obvious definition of substitution is as follows: the result of substituting N for X

in M, which I shall denote by "M[X?’::N]", assuming that xé is free in M and that it has

the same type-functor as N, is N if M is X

r-
=
J

which is not equal to g, it is M itself. These are the cases where M is a primitive term. If

; if M is O or a variable with a shape-functor

M is formed by an operation from components Py, . . . Py, then M[X':‘CT:=N] is the result

N)
of the same operation on P l[x; :=N], ... Pp[X 7% :=N].

J

In practice it is desirable to modify this definition somewhat. Following Curry and Feys
(1958, p.94) I would like to define substitution so that no free variable within N becomes bound
when the substitution is made. So if M is JLX';‘;".Q, for some e, h and Q, then M[X?::N] is
defined to be AX s QX" =X, ][X'vé’;:N], where d is the first shape-functor in some
enumeration of the shape-functors so that X'_f does not occur free in either Q or N. This enables
us to state without qualification that, where — P = Q is an axiom of reduction in which Q is
obtained from P or vice versa by one AB-conversion, the result of substituting something for
some variable occurring in P and Q is still an axiom.

I would now like to formulate a substitution-rule, that is, a statement of the conditions under
whi;:h it is possible to substitute something for a variable occurring in a statement provable in
TF and get another statement which is also provable in TF. First I need a definition of
substitution within a formula, though this is easier than defining substitution within a term. If
the formula is an equation, substitution of such-and-such a term (of the same type-functor) for
such-and-such a variable is substitution of it for the variable in both sides of the equation. If the
formula is complex, substitution is defined in the obvious recursive way.

It is now necessary to work through the axioms and rules of inference in order to see

whether provability is always preserved under substitution. In fact it is not, unless we import

some restrictions into our definition of substitution. Consider the following axiom of reduction,
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featuring a redex formed by operation 4.2.9:

S (X5 EYim) 5 § (KT ) (X0 XD ]

In this case it is obviously not possible to substitute an arbitrary term for the variable (XrﬂFT ; m)
and another arbitrary term for the variable Xrg and get a sequent which is still an axiom of TF
-- indeed, I doubt if it is possible in this way to get a sequent which is provable in TF at all. The
solution is to observie that the first variable is in a sense derived from the second and what we
substitute for the first must be constrained by what we substitute for the second. I would
therefore state the substitution-rule as follows: if Z has either a type- or a shape-functor whose
order is greater than 0, and another variable, Y, occurs in the statement in which the substitution
is being made which is identical to (Z; m) for some m, and N is the term which is being
substituted for Z, then (N; m) must be substituted for Y in the same statement. Similarly, if we
want to make a substitution for Y and Y is identical to (Z; m) for any m and for any Z occurring
in the same statement, then we must make an appropriate substitution for Z. It is clear that if
substitution is defined in this way, axioms of reduction of the kind considered above are closed
under it.

Axioms of reduction in which at least one of the redexes contracted is formed by operationi
4.2.9 are the only kind of axiom that consists in an equation in which a variable can occur on
one side but not on the other. All the others are closed under substitution because the syntactic
variables used in stating the contraction-rules range over arbitrary terms and terms which are
identical continue to be so if we make a uniform substitution for variables occurring within
them.

We must now consider rules of inference. The logical rules of inference preserve provability
under substitution in the following sense: if we make a substitution in the conclusion of a rule,
that conclusion co;lﬁnues to be provable so long as we make appropriate substitutions in the
premisses. This follows from the way the logical rules (which in TF are all propositional) are
stated, together with the definition of substitution in formulae.

In the case of the induction-rule, it is obviously correct to substitute anything for a variable in

the conclusion that occupies the place of the eigenvariable in the premisses, just so long as the
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result is well-formed.

It is not clear to me whether it is effectively possible to decide whether any given proposed
substitution is legitimate or not in TF. This does not matter for my purposes, though. Itis
essential only that, whenever I make a substitution in the proofs following, it is possible to

check that there are no variables which I ought to have replaced and have not.
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CHAPTER 3
PRELIMINARY SKETCH OF OUR PROOF OF THE ACCESSIBILITY OF €

The argument of this thesis is complicated and some readers of the following chapters may
feel, on account of the multitude and complexity of the trees, that they have well and truly
lost sight of the wood. To minimise this feeling, I shall summarise here what I am going to
do. Through chapters 4 and 5 I shall be working towards the conclusion that the
accessibility of €9 can be proved in TF. Chapter 6 is devoted to proving a complementary
result and does not require a knowledge of the intervening chapters. At this point,
therefore, I shall merely give an outline of how our proof of the accessibility of g is going
to proceed.

The proof bears some resemblance to the proof of Bernays and Gentzen discussed in
chapter 1. That proof uses intuitionist second-order number theory with one application of
the Is-comprehension rule and one application of the induction-rule to a ITi-formula. I
have already defined what I mean by a functional interpretation of a statement (in so far as it
is in 3V-form) and by a functional interpretation of a theory. It follows from these
definitions that, if you have a proof of a sequent in 3V-form in some theory, you can get a
functional interpretation of that sequent by producing a functional interpretation of the entire
theory. This is a task which I hope to accomplish one day but in the meantime I have
concentrated only on producing a functional interpretation of a particular sequent, which
will be exhibited shortly. Whether or not this is a simpler task than producing a functional
interpretation of the whole theory I do not know. My original reason for concentrating on a
single statement rather than an entire theory was that I conjectured that this task might
require a weaker theory, in ordinal-theoretic terms, than any that could be used to interpret
the whole of that sub-system of second-order number theory which has just been specified.

The fact that I do not know the answer to either of these questions makes it urgent to
enquire whether that theory can be interpreted in TF or in a slight extension thereof. The

task I have undertaken in this thesis should at least make good practice for an assault on

those problems.
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At this point I will sketch a proof of the accessibility of & in a theory which I call
HA". Iwill begin by explaining how the theory HA" is derived from HA. Let us add to
the objects of HA a new category of objects called one-place complex predicates. Each
such object is the result of an operation upon a formula and a variable that occurs free in
that formula. The result of the operation is denoted by sticking 'Ay', where y is the free
variable in question, in front of the name of the formula. We now postulate that it is
possible to apply a one-place predicate to a term of type o to get a formula; this is indicated
just like application of terms to terms. Each such formula may be contracted, just like the
result of applying a A-term to a suitable argument, and the contractum is again a formula.
Let X be a variable replaceable by one-place predicates and let us add X to the language of
HA.

It is well-known that, in the theory so obtained, the validity of transfinite induction up to
any number smaller than g is provable. In the proofs of this statement, the formula

53(){, z), defined as follows:
g ™ / / & \
i>{><.,2.) :-"Af. Vq(‘v’x.i<j = X(x):‘ Vx. 9(<j+’2_ vo! X(x/)

may play an important role. The exact structure of the proofs suggest a method by which
we may prove the validity of transfinite induction up to € itself, in an extension of HA.
Let us introduce a new predicate, Av. (v, z), in the context of the following pair of

axioms:

'%OC(IOJZ) = &(XJZ)
Se(s,2) = Blwdliv), 2)

In reading these axioms, we should take it that, for any one-place predicate F, {(F, z) is
the result of substituting F for X in £ (X, z).

I shall call the theory that is obtained by adding those axioms to HA HA'".

I take the validity of transfinite induction up to the ordinal number denoted by t to be

expressed by the sequent



V’g(bfz.2'<53)((7—)-'°i X(.j).) = X(t)

of which I shall abbreviate the antecedent to 'Prog(X)'. In HA, one can prove

P(GB(X) - pr‘o‘ﬂ (Mij (XJ1)> (l)

the latter formula being the result of replacing X in Prog(X) with Az.5(X, z). Therefore

one can prove

P-rg_cj(l/z.cil(u, zD —> P(%(M.&["M-oﬁ(uﬂ), ZD (Z>

in HA". The succedent of this last sequent is equivalent to Prog(Az.L(u', z)). Using (1)

and (2) as the premisses of an induction, one gets

P(oﬁ(X) — P(Oﬁ(ﬂa,cﬁ(u}1>> (3)

and, applying transfinite induction up to w+1 to the predicate Az.{ (u, z),

10(05 (X) ——B)OC{M,(_AJ+|) ,/X->

Anyone familiar with the properties of the predicate Az.&(X, z) will know how to derive

from this last sequent

P‘roﬂ (X) — Vu. X(Lqu )
in HA'".
Unlike HA', TF contains no predicate variables, but the sequent I described as asserting

that transfinite induction up to €g is valid contains the predicate-variable X. It is necessary,
therefore, to consider which sequent of TF it is that we want to prove. I shall concentrate

on proving that g is accessible, as this can be expressed in a theory which has function-

variables of type 1, but no predicate-variables, by the formula

VVE/\{\:’ ¥ D X‘(v’) £ lek &Xi\f - DX'(W/: O‘g.;‘:l::)(io -(eo'.:?.']_\j‘ X\B: 9

which says, translated into English:
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X1is a function which enumerates a strictly decreasing sequence of
numbers:D: the first term of the sequence enumerated by X! is smaller than £

.D. at some point, X! has the value 0.

Let us abbreviate the formula to Acc(gg). Then, since Prog(Az.Acc(z)) is easily provable in
HA, we may substitute the predicate Az.Acc(z) for the predicate-variable X and get a proof

of the sequent
— Acc (&)

in a theory which is obtained from HA' by replacing the variable X, in the axioms peculiar
to HA', with the predicate Az.Acc(z). I shall call the resulting theory HA" and the
predicate that is introduced by the new pair of axioms Av.C*(v, z).

It is well-known (Yasugi 1963, p.106) that every sequent of HA is deductively
equivalent, within HA®™, to a sequent in 3V-form. When I speak of the 3V-form of a
sequent in the language of HA, I therefore mean the sequent got by the procedure she

describes. The IV-form of —Acc(gp) is

S5 IV v (xe) >0 2 V((XV)7 )< VIXV) g,
v(xv)=0 5 v((xv)")=0 ::D:(\/c <& > V(rv)= O)E

By a functional interpretation of this sequent in TF, we therefore mean a proof in TF of

some sequent of the form

= (V'(n) 20 oV (W) )<V (INV e VNV ) = 0 o
VI((NV‘)I): C’)' >. (Vio<e > \/'fKM\/i) = O)

for some M and N which are terms of TF, both of type 1o, in which V1 does not occur.
The task of chapters 4 and 5 is to find terms M and N with the relevant properties and a
proof in TF of some sequent of the form just presented. I shall call the last sequent

—Acc'(gg).



I shall now give an outline how the proof will go, emphasizing especially points of
resemblance to the proofs in HA' and HA" that I have already sketched. In the proof in

HA", the sequent which corresponds to the crucial sequent (*) will be

"‘5’&(‘/*(“_,{/\)‘?1) (*“’)

so the main task that faces us at this point is to see what will correspond to (**) in a proof
of =Acc'(ep) in TF. There are no axioms in TF that resemble the axioms introducing

Av.& (v, z) in HA' or Av.£*(v, z) in HA". However it is clear that if, in (**), we replace
u with a numeral, the succedent formula of the resulting sequent is equivalent, within

HA", to a sequent of HA. For the numerals 1, 2, 3, . . ., I shall call the relevant formulae
of HA L1(w+1), Lo(w+1), L3(w+1),.... Each of those formulae also hasan 3V
-form, in HA®. I shall call the formulae in the latter sequence £ H@+]), L £(w+l),

;.C3f(m+1), .. .. Now the sequents
— { [eu+ /

—> L (L,J-ﬂ)
"_"’.:Ccsf (W-'*I‘)

can all be functionally interpreted in the quantifier-free part of HAw (hence in TF), by

proofs ending with sequents of one succedent formula. Let the succedent formulae in
question, corresponding to L{(w+1), £3(w+1), L3(@+1), . . ., be called Ll+]),

L3(w+1), L3 (@+1), . . ..

The situation now is as follows. Every one of the sequents
—L* (l L Lo )
*
~5 % (1, o +1)
—Lf (3 W)
§ 4

)
o



can be derived, within HA", from — £ *(u, w+1). Secondly, every one of the last

series of sequents is, by itself, derivable in HA without any extra axioms. Thirdly, every

one of the sequents
— LY (W)
2 :
&L, (W)

———)OL; (Ld+l)

is provable in the quantifier-free part of HA®. What, however, we do not yet have is a
theory which corresponds to the quantifier-free part of HAw (henceforth gf.-HA®) as HA"
corresponds to HA. That is to say, we do not yet have a theory in which we can prove a
sequent from which, just by replacing a variable with a numeral, we can get any one of the
sequents in the sequence drawn above.

I maintain that TF is -- almost -- the theory we are looking for. Strictly speaking,
though, the theory we are looking for does not actually exist, because each one of
L@+, C5@+1), L3(@+1), . . ., as well as containing different terms from all the
others, also has a more complicated propositional structure than all its predecessors.

We can overcome this problem by considering, in place of each of the formulae
LHw+), L5(@+1), £5(@+1), .. ., an equation which is equivalent to it in qf.-HA®.
The left-hand term in the equation will be a characteristic term of the corresponding
formula, which contains, as subterms, all the terms which occur in the formula. The right-
hand term will be 0. Let the characteristic terms be called yc1(w+1), y£2(w+1),
x<3(w+1), ... For each of the formulae in question, it is provable in qf.-HA® that a term
with the required properties exists. So now the task that faces us is to find an equation of
the shape yc(u, w+1) =0, provable in TF, with the property that, by substituting a numeral
for u, we get something equivalent, within TF, to any one of the equations yg1(w+1) = 0,
xe2(@+1) =0, x3(0+1) =0, . ..

In chapter 5 I shall present some discussion of the heuristic considerations that led to me

picking on the term I did, but the main purpose of that chapter is to prove that the term I



pick on has the required properties. The proof might be divided into four stages. Firsta
matrix of terms ¥ (Y)(u, z), where Y is a variable of suitable type-functor is defined. I
immediately prove that, given some suitable substitution for Y , the resulting term stands in
the required relation to the characteristic terms Yg1(@+1), xc2(0+1), X&3(w+1), ... The
demonstration of this occupies lemmata 5.5 and 5.6 of chapter 5.

Secondly I find a term N of TF so that — (N)(v+2, 0) = 0 is provable in TF. The
proof works by induction on v. This demonstration occupies lemmata 5.7 - 5.9.

Thirdly I prove that there is a term Q so that =X&(Q)(v+1, w+1) =0 is a theorem of
TF. This section of the proof uses the fact, which follows from lemma 5.6, that
X=(N)(v+2, 0) = 0 implies that the predicate Au.(Yz(P)(v+1, u) = 0) is progressive, for
some P which depends on N. With this established, I now use something like transfinite
induction up to w+1 as applied to that last predicate. In fact I use a special sort of
induction-rule, which will be justified by theorem 4.5 in the next chapter.

In both of these last two sections of the proof, the terms N, P and Q are so constituted
that every substitution of a numeral for v in ¥ (Q)(v+1, w+1) = 0 really does yield an
equation equivalent within TF to one of Li(0+1), L3(w+1), ﬂc,_%,'(m+1) < 5%

It is this third section of the proof which gives us a sequent of TF which corresponds to
the sequents (*) and (**) in HA' and HA" respectively. The fourth section of the proof,
with which chapter 5 will end, consists in a derivation, from the conclusion of the third
section, of the sequent —=Acc'(®,). This is a quantifier-free proof which imitates the
corresponding section in the proof of —Acc(m,) in HA".

I shall now add some remarks as to why it is reasonable to expect that a term with the
properties of ¥ (u, w+1) in TF can be constructed. ¥ ¢1(@+1), Xg2(@+1), xe3(0+1), . ..
are required to be characteristic terms of £Y(@+1), LH(w+1), £5(w+1), . . . , while the
latter series of formulae are required to be the succedent formulae of the conclusions of
functional interpretations of &£ 1(@+1), L2(w+1), £5(@+1), . . .. Now every formula in
the last sequence will contain more quantifiers and quantifiers of an (in general) higher type
than all its predecessors. Consequently each formula in the series £(w+1), £5(w+1),

.,Cg(mﬂ), ..., and hence each term in the series X z1(0+1), Xx2(®+1), ¥ 3(0+1), . . . will



contain more and more complex terms than its predecessors in the series. So can there
really be a term with the properties we want e (u, @+1) to have?

But precisely what distinguishes the terms of TF from the terms of HAw is that the
former theory contains terms which, whenever a numeral is substituted for some variable
occurring in them, reduce to some term of HA® whose number of components and their
types depends on what numeral was substituted. In this connection, I would request the

reader to reflect again on what happens when we substitue a numeral for v in a term of the

shape ([M, NJ; v).

@)\
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CHAPTER 4
CHARACTERISTIC TERMS AND INDUCTION-RULES

In this chapter I shall establish two important properties of TF. First, every formula has
a characteristic term (this notion will be defined below). Secondly, certain rules of
inference, which are related to the induction-rule, are derivable. Connoisseurs of
functional interpretations will know that, given functional interpretations of the premisses
of a contraction or an induction inference in HA®, it is a by no means trivial task to
derive from them a functional interpretation of the conclusion. Special theorems are
required, which in effect constitute derived rules of qf.-HA. In this chapter I find

corresponding rules for TF, which is, after all, a generalisation of qf.-HA®.

Definition: For any formula F of TF, a characteristic term of F is a term f such that all

of the following four sequents are provable:
F— X =0 JLF =0 —=> F

~F— xe >0 Xe>0 —> oF

Theorem 4.1.: For every formula F of TF, let a corresponding term ) be defined as

follows: Ys=t = (s = )+(t=8); X~F = Sg(XF) (sg being a term for a function that maps 0
onto 0 and any nonzero number onto 1; and sg being a term for the opposite function);
XE &E, = XF, + XEXEvE, = XE -XE’ XEoE = S8(XE ).XE- Then XF is a characteristic

term for F.

Proof: We prove the theorem by induction on the number of logical connectives in F.
The case where F is an equation has been treated by Schuctte (pp.129-131) for equations
between terms of HAm, but in fact the proof works without further ado for terms of TF.

As an example of how to prove the induction-step, I shall consider the case where F is



F1&F;. F—yg=0and F—-axp?.: 0 are both obviously provable. =0+0=01isa
mathematical axiom. By two applications of theorem 2.3 to the last sequent, we get
XE, =0,%X5 =0 XF + XE, = 0. By two cuts (with the first two sequents as the
respective left-hand premiss) and a contraction, we get F — g + g, =0.

We now have to prove the converse. g =0, XE, =0 — F follows from the
induction hypothesis by an &-introduction. Xg + g, =0 — (XF + XE)= XE, = 0=xE,
follows from theorem 2.3. From this, using two applications of theorem 2.3 and two
mathematical sequents, we get X, +XE=0— Xg=0. Similarly

XF, +XE= 0— XE= 0. By two cuts, involving the last two sequents and the first one in

this paragraph, and a contraction we get X, +¥g,=0— F.

When we recall that xr > 0 is defined to be equal to ~Jo0PxF = 0 and that Jo0PyF 18
equal to X, it is clear that the sequents ~F — xg > 0 and g >0 — ~F are derivable
from yr=0— Fand F — x = 0 respectively by a negation-introduction and

elimination and an application of theorem 2.3.

Theorem 4.2.: If F, G, I" — A is provable, where G is obtainable from F by the
replacement of certain terms in F -- let us call them My, Ma, ... My -- by Ni, No, . ..

Np; then there are terms D(M1, N1), D(M3, N2), . . . D(Mp, Np) such that
FMe=pmenvd)l. T =4 (1sign)

is provable.

Proof: D(M;j, Nj), for each i, is defined to be J(Sgyr)(AX.Nj)M;, where X has the same

type-functor as M;. Then, obviously, for each i
= DMLV MM 20 F S D(MON) N2

are provable in TF. Therefore

(1) = ~F. > FLM:=P(M,N:)] = F
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(1) = F.o F[Mi=pm, v )]126
are provable, by n applications of theorem 2.4 Now from F, G, " = A one gets
[' - A,~F,~G. But from sequent (2) above and F — F, one can also prove F,~G,
F[M;:=D(M;, Ni)] =. By a cut with I' = A,=F, =G, this yields ', F,
F[M;:=D(Mj, Nj)] = A,”F. By negation-introduction and a contraction, [,
F[M;:=D(Mj, Ni)] = A,<F. By an argument parallel to that by which we got F,*G,
F[M;:=D(Mj, Nj)] = we also get <F, F[M;:=D(M;, Nj)] =. By a cut involving this and

I, F[M;j:=D(Mj, Nj)] = A,*F and another contraction we get the desired sequent.

Theorem 4.3: If ' = A, F, G is provable where F and G are related as in the above
theorem, then there are terms D(M;j, Nj) so that I' = A, F[M;:=D(Mj, Nj)] is also

provable.
Proof: parallel to the proof for 4.2.

Remark: the theorems just proved are used in functjonally interpreting instances of the

contraction rules.

Lemma 4.4: Let two sequents of the forms
(I.) " ‘—(([Xi:;:, J E;o*r] M) o>

and

(2) F(({AP(W'&)( 3;11 X;o] m)m qP(Q )([X)u«u
m],m)m m) )__) F(LXM” 33] ) )

respectively be provable in TF, where Ap(Qoz)([)(“ o 5 ,] m)m has the same type-
functor as X‘ *(i.e., T0) and Ap(Qz)([X"M ;x 3 X ]- m)m has the same type-functor as

Xﬁ ;‘: These conditions are satisfied if and only if Q has type-functor

T2



0 RL(Ax.fx")(Ay.fy)m+1 and Qo has type-functor o"RL(f0)(Ax.fx)m+1I. Thus 1 is the

1

order of the type-functor of Ap(Qz)([X}:\ ji ; ;f; |; m)m, as is required by our

definition of operation 4.2.10, in order that a term may be formed by it from those two

components. Under the said circumstances, the sequent
A TH R '$07 7 ) )
-_} F (L X ’J. v G X ﬂc ] 4 ™M o x

is also provable in TF.
Proof: We define a term-form T(v) of type-functor rRC(fO)OL)c.fx’)rri"‘, as follows:
2 e 5
. 5o

Here X is of type-functor rRC(fO)(?LX.fX’)m.' We can now establish that T(s) reduces as

follows:

—
i

O
o

1

(xer 25 Vo)

T(5') = (g Lap@0r )X, ApQu¥2 )X Lim)s (1f5)
(2 (LApQ(w=s7) xm, Ap@u(x257) X :o0])(TE5)
([A(JQ@(:;’)T(&)M, ,Ap@o(“’““)-r(—‘)m’]im)

By the first theorem on combinatory completeness [here are two terms which may be

substituted for X“ “ ,and Xq\, respectively in ([X XM ]; m) so that the result is

vu:‘ L]
equal to T(y). Upon making this substitution in (2) and applying theorem 2.4, we find

that the following sequent will be derivable:
3/ FlLap@aTism, Ap@ea(Tt))m)im) ) =
= (T(j ), 2~ )
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which entails, by theorem 2.3

o gz F{LapQleey M), ApQelocy Ty ] m) ) Bty ey )

similarly by substituting in (1) we get

5/ —F(T(x),0)

We now make the following derivation:
6/ — T(g’) X ([Ap@(«'-g’)—l—(y)m;

AP ()(a(x-\\,)’)'l_(ﬁ)m],m) o of i

) F(’T(jf)“, 7('«3") — F(T(j),x}j>
t6, theovem 2.4
8/ a:y=2- Ay =2 presunably prosahie
1/ = YR F(Tly ) %y ) 2 Fﬁ'(:j)"xiﬁ )
7,8, ok, °I oI |
10/3<;5 =0 = F(T(y), Xy )

| gikitition of 5 For X, theorem 273

g b L R F(T(S)"),xg’) > F(T(j),x;\j)
19,51, 9, ﬁ\inﬂinj, nduction
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Ry ), kg ) FT(92.xy)

1 MPP, cuk | cut with hyewty, np ok
* Ry xy) B (rey),ang) 5 F(T(0),x)
—* F(T(O),Jc) MPP

4/ F(T(ﬂ),:&;ﬂja F(T(O),X) \
T F(T(y),xy7)> 7(T(0), %)
L, 13, cut , 21

5/ = F(1(0),%:0) 5 £ (1(0), X )

Theorem 2.3 » cut wifh - x-0=-X P 3

/= B (T(x), x2x )5 F(T(0), %)
14,15 induction

= Et(e), )

from E CJ\C\
QE.P.

17 éj various gbvious L']ference_s_



Theorem 4.5: Let two sequents of the forms
(v, (LX2E X Lm)hin), 0) ()

and

IO, ([Arou(ﬁxu;:::j [X;flz];fﬂ’)];n>(m+n+1))

AL q(.mx S

APG&(L uf(:i; (LX 7_] )_] :\)(M+ﬂ+j>] \M)J -’1) 2) -
FlappO ) i, (DG X Ym)ln) 27 ) (2)

respectively be provable in TF. Here ApP([ngﬁf:fjJ: z]; m)m has the type-functor

"Ax.f(m+x)'as does N. This means that the type-functor of P must be determined as
follows: let h be a primitive recursive functor so that — h0 = #0 and — hx' = f(m+x')
are provable in HA®. Then P has the type-functor RL(Ax. f(m+x" ) n+1.

ApQo (X ;;:f j} : ([X—q, z]; m+1)]; n)(m+n+1) must have type-functor T0", so let d be

be a functor so that — d0 = #o0 and — dx' = fx are provablc, then Qo has the type-

functor RL(f0)d'm+n+2, because ([X%;'::;} ([Xj , z]; m+1)]; n) has the type-

functor RC(d(])OLx.dx‘) m+n+1, as the reader may check. Similarly Q must have the
type-functor r'RL(?»x.fx’)d-1m-i-xl+2. When the conditions described here are fulfilled, the

sequent
S F((56), O X5 Ln )10 ), 2)
is also provable, where S(x) is defined as follows:
S(.X) :Af- e[Ml)_(_(APP([ )_(,?-1} n)ﬂ ) N ; X ]

Here X has the same type-functor as N and so does S(x).

Proof: Reflection on S will show that S(t) reduces as follows:
S() = NV
S(s7) = (_M.M_(AFP@E,QM)*\DS (S(ﬁﬂ
= ApP(LsG).s]5n)n
76



The fact that S(0) reduces to N together with theorem 2.4 entails that (1) entails
— e((Ls(e), LX2%" X5 1,m)Ln), 0) (3

. AT
Substituting S(z) for X;i.f(fmx ) in (2) we get

E((Ls(=), ./LAPQ([9(1),,([X?ﬂ];m’)]iﬂ)(m“*'),
.AFG%([S(U, (X3 20,m La)lmear)]im)]in), 2>
— B ApP(Ls(=). 2, n, (LY m ) )in) 27) ()

Again using the fact that S(z') reduces to ApP([S(z), z]; n)n and theorem 2.4, we get

ankecedent of & —F(([87), ([X25 x5 m)): £) 2 )( 5)

Now the term-forms ApQ([S(z), ([23-(?31 , z];: m+1)]; n)(m+n+1) and

ApQo([Sz, ([Xr{ , z]; m+1)]; n)(m+n+1) may be rewritten as

ApLz( [X\{lgf : , Xj 1]; m)m and ApLoz([Xig;: — , Xrgfl; m)m for some term-forms L
and L,. But once sequents (3) and (5) have been re-written according to this device, they

turn out to have the same form as hypotheses (1) and (2) of the lemma, so we apply the

lemma and get the desired conclusion.
Theorem 4.6: Let two sequents of the forms

— F(NO, MO, . . MO, F P .,21.,0>

and

BlE . B o Koo DK K o Ho e 5 QX KaXso Yoz, 2)

respectively be provable in TF. Then

E((52).,(S2), g g < o e LB Lo s 2
2RO () Y 2, )



is also provable, where S is defined so that

SO0 = {N10, {N70, . .. {Nn-10, N0} ... }}
Sz'={(ApP1(S(z))m)z, {(ApP2(Sz)m)z, . .. {(ApPn-1(Sz2)m)z, (ApPp(Sz)m)z}...} }

that is, it is defined as

Ax.p[AzAX. {(ApP1X(m =1))z, {(ApPrX(m 1))z, . . .{(ApPpy_ 1 X(m=1))z,
(ApP 1 X(m =1))z}...}}, {N10, {N50, . .. {Np.10, NL,O} ... }}, x]

where X has the same type-functor as Sz. The reader may check that, if
Pi(Sz)o((Sz)1)g ... ((...(Sz)1...)1)1 is well-formed (which it must be), then so is

ApP;(Sz)(m=1), which, in fact, reduces to it.

Remark: This theorem is familiar from the literature on HA® and is in fact the special case
of which the preceding theorem is a generalisation. The proof uses the following lemma,

of which lemma 4.4 is a generalisation.

Lemma 4.7: If two sequents with the shapes

—F. %, Y 0)

and

FOY. %, QY Ao, Qv 2 ) Rl Y2 )

are provable in TF, where Q;Y1Y5. . . Y, has the same type-functor as Yj, then so is

SE(Y, Y, )



Proof: We define a term T, containing, Y1, . . . Yy, with the following properties

TO={XY1, {Y2,... {¥n-1.Ya}... }}
o s §Qxe 1(Té)o((TZ)1)0---((---(T2)1 )1)1, Qu(Tz)o((T2z))g...((...(T2);.. )1)1} 3
That is, we define T as

lx.p{?tzl&{Q1(&)o(()_()1)0---((---(51.-.)1)1, {Q2X)o((X)1)g---((..(X)1--) 115
(. .,Qn(mg(@_c_)1)0...((...@)1...)1)1}...'n (X1 6. Xabo}h X1

The proof now proceeds rather like the proof of the preceding lemma. We prove

Fltrad, ek i el /) g
= (™), (. (T?.) RIPEDS

which I shall abbreviate to G(Tz’, x=z") = G(Tz, x~z). This sequent is derivable from

(1) and (2) using properties of T and theorem 2.3 and it gives us
G(_I‘?_) X = 7.)3 GlTo, %) =56 (T2~ x'-::,’) >G(To, x )
which we can use as the right-hand premiss of an induction, with

— G(To,x) > G(To, x)

as the left-hand premiss. The conclusion we derive is,

— G(Tz,?_l-‘z.jD G(TO, 1>

But the antecedent sub-formula can be got from (1) by substituting (T2)o, ((Tz)1)o, . . .

(... (TD1...)D1 for X1, Y2, . . Ypin (1). Thus = G(TO, z) is provable.
o S |

A=y

A



Proof of theorem 4.6: The first premiss can now be rewritten as

— F((S0)g, ((S0)1)gs - - ((...(SO0)1..)11, Xp5- - X, 0)
)

M=)

and the second yields, after a substitution

F((S2)g, (SD)1)g - - ((-(S2)1.-)D1 (ApQy(SDYm=1)Y1.. X7, . . .
(ApQn(Sz)(m=1))Y;..X,z,2) =
F((S2)0, ((SZ)1)0s - - + - (8210115 X1 + Xy Z)

The terms (ApQ;i(Sz)(m=1))Yj. .. Y,z may now be re-written as L;Yj . . . Yz for some

Li. When this is done, we now have two sequents to which we can apply the lemma.

Remark (1): Grzegorczyk (1964, p.81) is sometimes credited with being the first logician
to show that, in a formulation of HA® in which the operations of pairing and decoding
(represented in our formulation by operations 5.2.5-7 upon terms) can be represented, so
can all functionals of finite type defined by simultaneous primitive recursion. In
constructing the terms S and T used in theorem 4.6 and lemma 4.7 respectively, I have
followed his method (loc. cit.) pretty closely. For the actual proofs, on the other hand, I
have followed Schuette (1977, pp.128f. and 163f.); Grzegorczyk does not supply a
proof.

The reader who has understood how my operations 5.2.10 and 5.2.11 are mere
generalizations of the operations of pairing and application will see easily enough that
lemma 4.4 and theorem 4.5 are quite simple generalizations of the subsequent lemma and
theorem. The term-forms T and S in that lemma and theorem respectively are constructed
by a method exactly parallel to Grzegorzyk’s, except that I have had more powerful
resources to use (in fact I also use my operation 5.2.11 in constructing S in theorem 4.5,
but this is just for greater conciseness; it would have been possible to do without it). The

proofs themselves are practically identical.

g0



Remark (2): Theorem 4.6 tells us, when we are given functional interpretations of the
premisses of an induction inference in HA®, how to construct a functional interpretation
of the conclusion and, in particular, how to construct the terms (Sz)o, ((S2)1)o, - - -
((...(Sz)1...)1)1 which serve as witnesses for the existential quantifiers in the
St
conclusion. Theorem 4.5 resembles an extension of this method to the case where the
premisses and the conclusion to be interpreted contain infinitely many quantifiers, but
subject to the constraint that all the terms which occupy the places of bound variables in

the interpreting sequents can be derived by specifying the same term-form by successive

numerals.

ol



CHAPTER 5

PROOF OF THE ACCESSIBILITY OF g,

We start by defining some type-functions. Obviously there is a primitive recursive
function, which I shall call 47, with the following properties: 4°(0) = 3; (1) =9;

A(x+2) = 2(4(x+1))+3. There is another, which I shall call ¢%,with the following
properties: £+0) = 2; % (x+1) = S (x+1)=1).

Using notation similar to that employed in chapter 2, I shall stipulate that, where # and o8
are an m-place and an (m+1)-place function respectively:

RLth,Oﬂ,- S TR - T P

i P gRA A, R'I' Rn,...0m
Ripgois.n, 2 B

[ shall now define three two-place primitive recursive functions. jf. ) 9’1 and 92,
simultaneously and by cases:
:F(.CJ n ) = some cu’lf)itr@ vedue

F(,n) = #o(olo)(olo)olo i 1xn <3

i

’ﬁ’o(ob)(olu)oll i€ n= 4

‘:.H‘C "f {\:501‘8
:_%O(O 11\" n36 or 7

=
=)
\A

9’:(”‘;‘“) = Ko (™M 2 {}(Y‘)



gulrm) = o, vy ig Oxm $<Ffa)
4% 0 | £ M:(y(n)-i'l or V(n)+|

1]

wo R, a(a)r1-m)
SO

iF H)H <m < v [a)

jt(m/L, m) = R'— (1{40. 3“”"'”)(?\7(‘9/- (“*'JVKD((SL(nH]-rZ)

£ 0<m g P4

\

RL(#?O)(AX.gt _("‘Jrl,?('D(/\/(nH;'%’L;) £ m= (,Qfﬂh)—H

A

RL@(V‘H,\M; l))(ﬂx-gl(mum))(V(nn)%'?..)

g]c «fj(n-kl;*%— | <M 5'1/('%1)4'!

THO i Mz AN+ L of fnk)y ()L

Ao j."l"ﬂH}m;/V{l""ﬂ)l’L) _ ) R
7. *3 i A )+ L < <rinty

F 7200+ )+

= :}Ht\\"‘--ﬂj m;/‘r’(ﬂﬂ;‘;?)) i€ V(") )¥ (9((1-!-1)-#3

<m £ ¥(n+1)

It can be checked thatF is a primitive recursive function and, except where I have written
‘some arbitrary value’, takes only code-numbers of types as values. Letd, e, f, g1 and go
be terms of HAw, of types 1, 1, o1, ol and ol respectively, which represent <%, 4~, F.91
and & 7 respectively. Then f, "g{ and "g7 are type-functors of order 2.

On the basis of the way4 was defined, it will be clear that the type-function represented

by "f17 enumerates the types o(olo)(olo)olo @ 3, o(olo)(olo)oll, 0,0lo @ 2,0 and 1

respectively. rf(n+251 enumerates types as follows:
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" = oldFne” [oe(ar1)2” ). (%t H)A(0+)" o)
Fo )L - O(G'rf("'*');,"(or‘ﬁ“‘-)f) ¥ (Orfff‘ﬂ)ri [,1,.(01/\0;((”“)21

o)l < cfcrf{nﬂ)l")(Or‘f(nh)ﬁq). = (Ugf(ﬂ'ﬂ)rz\(”ﬂ)q)

o)A (n+1)
Fn42 )d (g )11 - o(off(n+,_)lﬁ)(c;r_f (nh)’f) . (o;t(ﬂﬂ)cl(nﬂ)q)
0 fln+)d(ne) ) r{(ﬂﬂ)c{(ﬂ e ?(ﬂﬂ)e(nﬂ)q 0
Fls)a(aei)en” - o(G%f(ﬂ-H)I‘])(Or{(ﬂH)Q_?)_ . (Or-f(ﬂfl)c\(i’l—i-l)?)

o r{(ﬂﬂ)d(n )+l f H)d (1 H)#)

ey rf(ﬂﬂ)e(nﬂ)q ;((n+1)&(ﬂ+0+l1

Fs)e(rr )+ - o (O{f(r\+1)lq)(0;‘(”“)f)

| S
o ﬂnﬂ)d(nﬂ)ﬂqr.p(m\)c{(f‘ﬂ)*f )

N r{(ﬂ'ﬂ)@(ﬂ-}-l)ﬂ r’_ g S
r Fn+1 Je(n+

-F(”*'?—)G(/H»l)i-iq . )ﬁ’(ﬂ )
r,((nm)e(nh)mq = Or{(ﬂﬂ)(?

£ (ﬂ+-’l)e(n+i) L Orﬂﬂﬂ) 2—1

Fl)e(nr) rd(nr) 42 > 0flne)d(n+1)
"{(mfz,)eWn)Jrc‘k(mw)+’51 -0
Florefarrdinn) 447 = Fine)d(n) 47
Far2)enn)+d (141) 457 = Flan)A(re)+2]

Sl )elnrd) <= Flor)e(ar)’

g



Now I shall investigate some of the properties of the term-forms constructed by rules
4.2.8-12 from chapter 2B. Let us suppose that My, . . . Mg are a nonuple of term-forms

having the following type-functors:

Ax.T(v+1)dy <x
Tv+1)dv+T"
Ax.f(v+Dev=x

r1§(v+ Lev+ &
Fv+ev+2"

Ax. T(v+Dev+dv+2 =x
Fv+Dev+dy+3
Ax.Tv+De(v+1) =x7

v+ De(v+1)
Lemma 5.1: For 2 £1 < 4, the terms
Ap M; {Ms, ([Me, {M7, (Mg, Mo]; dv)}]; dv) }(ev+1)
are well-formed and have the type-functors o, Axffv(ev=x") and Tvev’ respectively.
Proof: Referring to the definition of operation 4.2.11 in chapter 2B, we see that it suffices
if, for some g of order 1, (1) M; has a type-functor equal to "RL#o g'(ev+2),
!i'{L(?Lx.fv(ev;x’))g1(ev+2) or rRL(f\zev)g-'(e\H-Z) respectively; (2) the type-functor of

{Ms, ([Mg, {M7, ([Mg, Mo]; dv)}]; dv)} (D)

is equal to RC( g20)(Ax. gx')-'(ev-i-l), for the aforesaid g.

If we consult the definition of §, we see that, since f represents Jt ;

85



dv+1 < x.&.x <ev+l = f(v+l)ev=x = RL(fv(ev-x")) gav (ev+2)

ought to be provable in TF. On the other hand, the type-functor of (1) can be shown to be

equal to

R (st 2 g vk )elmz )
onan_ e e s
;

by applying the definition of operation 4.2.11 so as first to determine the type-functor of
([Mg, Mo]; dv) and then working leftwards. By induction on dv, it can be proved that that

type-functor is equal to RChO (lxhx’)“(ewl) , where h is a type-functor of order 2 so

defined that the following sequents are provable:
= h(v+1Dev+1 = f(v+1)ev+2
dv+l < x.&.x <ev — h(v+1)x = f(v+1)ev+2+x
— h(v+1)dv+1 = f(v+1)ev+dv+3
0<x.&x<dv = h(v+1)x = f(v+1)ev+2+x
— h(v+1)0 = f(v+1)e(v+1)
Consulting the definition of g7, we now see that

0<x.&x<ev+l = h(v+1)x = gyvx

is provable. Consequently the type-functor of (1) is equal to rRC(ggva)(lx. govx’)(ev+1).

So the two conditions we set out to satisfy are satisfied, taking g2v as g.

36



Remark: I shall henceforth, relative to any given nonuple of the kind described, abbreviate
Ap M; {Ms, ([Ms, {M7, (Mg, Mo]; dv)}]; dv)}(ev+1)
to Kadz, ﬁg or ﬁ4 accordingly.
Lemma 5.2: The term-form
Ap M1 {M4 ([Mg, M7]; dv)} dv+1
is well-formed and has type-functor Ax.o "-fv(dv-‘— x).
Proof: As for 5.1. Ishall henceforth abbreviate the term-form in question to Mj.
Definitions 5.3: for every nonuple of the kind described
(M1, {M2, ([M3, {Mg, {Ms, ([Ms, {M7, (M3, Mo]; dv)}]; dv)}}]; dv}]; dv),
which has type-functor f—RC(t'(\/-+~1)e(v+l))(?x.::c.f(v+l)'f:(v-i-l)-':- x’)-1(e(v+1)—'- 1), shall be

called simply M and its type-functor shall be abbreviated to rfl(v+f)’, of order 0.

Remark: We should recall the first theorem on combinatory completeness (from chapter 2,

section C2) and the terms AX;(YYM, for i between 1 and 9, defined there.

We can now begin to construct the term Avz.xg(v+1, z), discussed in chapter 3. As was

already announced there, I shall approach the task in stages, first defining a matrix of terms

called Avz.ye (Y)(v+1, z), where Y is of the same type-functor as M and where all
occurrences of it are, as usual, fully indicated in this notation. Then I shall find an

appropriate M to be substituted for Y, to yield the term we are looking for.



Definition 5.4: The term AY10X10V1z y A .o(Y10, X10, V1)(z) of type (10)(10)100 (from
which, when suitable terms of types 1o and a variable of type 1 not occurring in them are
plugged in, we get the characteristic term of the accessibility-predicate discussed in chapter

3) is defined to be:

VX2 5 (V V) +LVRY) ) = v (xV) 13
v s5xe) DL (Vo2 k()20 I3

Lemma 5.5: There is a term of TF with the properties I require of ;(Y)(v+1, z); namely

that e (M[v:=0])(1, z) reduce to

(P12 M)+ 55 e (M6F1es1), (Mefies0), 12, YR, ).
(o =mMee D) Hac(01), (B150), Ma )M,

and that y -(M[v: = n+1])(n+2, z) reduce to

(B tag )45 e (PP (LR, By 5 0)) Lidtnr)Yow, LR

(e =M+ )y (109, (EMg Mg ) i dna) [ony M, )3

Proof: To get a term that solves these equations, we use operation .2.12. First we define

a term-form N, of type-functor o( rh(v+1)"oo)rh(v+2)-‘00 as follows:

» Zrh{v.h}“od )/rh(wl}’tj.z(ﬂxiﬂl)y = J/\-X;\m'}y) 4 551

(LOS"INXT (L, axtey ), s dcen)
(ﬁ_xmu )/32 Z(AXM')Y j\,)(w))”rl) Z([ L)(m”

(L, A7 Y a ) i) (A )Z

§

(/\0



and another, Q, of type-functor "1 0o, as follows:

% jzét Y = 0xY )+ 5 xae (M7 )AXE ),
(AXAXEY 500, AXTDAXTY REQr = Axy
Y - A iy oy
2 R (AXZT ), (AX759), 7 ) (axoy ]

).Y‘h(uHTy.x& (th(U+13 )(u+1, y) is now defined to be Rh(y+1y%00 [N, Q, u]. By the
definition of operation 4.2.11, this term has the type-functor h(u+1)'00. We prove by
induction on u that (7\,‘{"h(u+l)"y_;(“C (Y'h+1 ) (u+1, y))M[v:=u]z has the properties we
require of it. When u is 0 it reduces to Q M[v:=0] z, which, considering the definition of

Q, reduces by two AB-conversions to

PN = XM+ o0 XM xPm)
CAXTMIAXM 1 0), AXTM) (;in‘”Mﬂ{ (XM= A XM
F1 ) Hadl X0 ) (X7 M0), AXW)Y XM )]

which further reduces, considering that we may replace AX f”M[v::O] etc. with M etc..to

z(ﬁ\_ Mg )+ SBXAC( ((Méﬁl;i)) (MJM;O), ﬁ\%)mt))g

(1 M40 ) s ((2:51), (10,00, Me)M4 )]

which is exactly what we wanted. When u is n+1 for some n, it reduces to
Nn(Rhv+1)'00 [N, Q, n]) M[v:=n+1] z which, applying the induction hypothesis, is equal
to Nn (erh(n+1)1y_h(th(n+1)1)(n+l, y)) M[v:=n+1] z. If we replace the variables Y h(n+)"

and y by the rule of a-conversion and then do a couple of AB-conversions, we gq,



hra)

W“‘“”ﬁg(ﬂxf Oy SAXSY) 5 (a2*"x. m(z"’“/

(n+1, x))( (A )(; +”)/)/LX)(,_'1+')/} (E/’Lxﬂ?my‘_/L)(iﬂﬂ))/;]}'c\(ﬂﬂ)];
AR AXE7 y J3 (AxCy YEAXs Y +D).

h(]

AL «x. )(5_(2 7(n+|Jo<))([ -"LXMHY /[_/}_XW”Y
A A d ) (AX R M o

and then, by $ive more AB-conversions
E(_/L X:M\TM = ﬂ’)(;m} M)+ g‘i'jxo[ ([ {./.:'LX((:*UM>JLX?+BJM ;
([ AXy MM , A\ X:’JMl ;,A(Ml))];&(nﬂj)(nwuu JLX,,EM'?NDR.

AT M 4! ) g (LA M

)

(CAXE7M, XM dbon))] e )" Mﬂ

which is equivalent, when we simplify the terms AX‘:“)M [v:=n+1] etc., to

(R =16 5 (e, (TP, ) d6n)] d )
(A3 § (1 =mg # D)o (0, (Mg, A ae)],
L&(n-ﬂ))(l"\-;)i

TV



Lemma 5.6: For any M, the equivalences
—-)Xc((M[V::O])(l, 1)-‘- 0O:= : Mq_< M5 2 ACC((MGR’\Q; 1) }

(M@FJ\']_JO)J F/\q)( l),D. M7<M5+/f— DAC.C.((E-:\'.;')}

(M50), Mg )(M, )

and
= (Ml zan] 02, 2)2 022 < Mg S (MM |
(Lg\m%&1-}&(-’\%))][c[(ﬂ-rl))([:;\l):(j DMy < MS“"Z.Z ;5

X (D:}» (0 Mﬂ}ci("‘*'))];cl(“l))("’\v) =0

are provable in TF.

Proof: These statements hold in virtue of the way the matrix of terms my’h(wl)‘)(\;“, zZ)
was defined. To verify the first statement, one should substitute 0 for v and then M[v:=0]
for Y1 The resulting term will then reduce to a characteristic term of the formula on the
right-hand side, considering that xacc(M1o, Nlo, Ql)(z) = 0 is also equivalent to Acc(M1o,
Nlo, QI)(z). Similar remarks apply to the second statement. By theorem 4.1 a term related
to a formula in the relevant way really will be a characteristic term, that is, the two sequents

written above must be provable.

Heuristic Remarks on Lemma 5.6: Where Ms, . . . Mg are variables, the right-hand sub-
formula of the biconditional in the first sequent entails & f (z) in HA® (see chapter 3), so a
proof of the sequent consisting of that formula may be taken as a functional interpretation
of = «L1(z) and its conclusion may be identified with — &ﬁ(z). In virtue of the

equivalence just proved, we also know that a proof of — yc(M[v:=0])(1, z) =0 can be



transformed into a proof of — & (z) in qf.-HA® and hence into a proof of = £ 1(z) and
therefore of — & 1(2) in the full HA®.

The important point about the formula ¥z (M[v:=n])(n+1, z) = 0 is that, where n is a
numeral, it entails & 74+1(2), within HA®, and therefore also &£ p+1(z). I shall now
indicate briefly how this could be proved. First it should be noted that, where n is a
numeral, term-forms of the shape of ([N, M]; dn) reduce to sequences of ¢Xn)+1 terms
combined by means of the pairing operation. Therefore a term of the shape of
X&([N1, ([N2, N3]; dn)]; dn)(n, z) reduces to a term containing - (n) sub-terms obtained
by specifying the terms N1, Np, N3.

My definitions of the function -+~ and the type-function J have been motivated by the
properties of oC;(z). It can be calculated (see chapter 3) that it will begin with t’l(n)
existential followed by ¢*(n) +1 universal quantifiers and that the quantifiers, all together,
will have the types £ (0, 1), }F(n,2), F(n,3),... o }42(2) will be obtained by

taking the formula

fvcncy 280Ut Vraeyr T 2K (JE (8

and translating it into 3V-form. Let us suppose, as an induction hypothesis, that, if n is a

numeral, .
Y latr)eln+r)

'f("‘*')' 3 X?‘m*ﬂ‘lﬂ' 3 X'::FM*':')EI’IH VX T(ﬂﬂ'?ﬂ’\-ﬂ- ngl’nﬂ'k‘,ﬂ-f%j \{X .
v e & @y ] ]

e'{"'”" e(n+)=7 en+l on
({ il T i ‘”ffﬂ*ﬂewo’g BXM— ) =0
LK o Boiin, . - e« K ,2 )=

1';{;\1«\'}]" ‘}(nu}f .;m Jeln

is equivalent within HA® to £ |/1+1(Z)- Here {X(n+1)~ 1> Xe+1)22> - - ‘] is the
sequence of variables got by replacing M1[v:=n], .. . Mg[v:=n] within M[v:=n] with
variables of the same type-functors and then reducing the result to its normal form. By this

induction hypothesis, (&£ ) is equivalent to
Fa+em+)”

VﬂiVx:x<\j > 3?(:::;1 ¥X, A (gxf;rm‘;..q x;f‘"*””“*'fj_n“g)

k)= , - -«



(ﬂ+ "J ‘X}: 0 o 2 \'/\X'J( {j.r.zz 3 axl;!'n-u}ﬂ VX-';rnrl)crnuf

A o , Xo(
X X0 = 0]

so that the 3V-form of this last formula will be equivalent to £ n/+2(z). We now have to

PR

consider in detail what the 3V-form of this last formula will look like, and what the
conclusion of a functional interpretation of it will look like. In fact the latter will be of the

shape

F/\,,_ < Mg D¢ ([Mep\i, ({_ p\'s, MH],’ ck[n—kt))l&(ﬂﬂ))(.m|J F’\l)
=05 My < Ms+ 2o x (T1, (Mg, M) &) Al (ne1, M, )= 0

subject to the requirement that Ms, . . . Mg be variables. This is in virtue of what
([Méﬁlz, ([I'\J/I3, f/l4]; en+1)]; en+1) and ([Ml, ([Mg, Mo]; en+1)]; en+1) reduce to, when n
is a numeral.

Therefore, if we succed in proving a sequent of the shape of
"‘)XOQ(M)(V*\IZ):O (#fﬂ‘)

where Ms, . . . Mg are variables, it will be possible to derive from that sequent any one of
- L12), > OC’Z(Z), — OC—;(Z), ... within HA® once the appropriate numeral has been
substituted for v. Thus the program set out in chapter 3 shall have been fulfilled. If we
achieve this goal, it will suggest that, since = Acc(w,), = Acc(wz), = Acc(@y), . .. may
be derived from

—L5(0), 5>£5(0), > £30), . . . respectively, (***) will entail — Acc(y). To prove
(***) is therefore the main task of this chapter and, once it is proved, — Acc(®y) follows

reasonably easily.

93



Lemma 5.7: (This yields the basis for an induction inference that has (***) as conclusion)
there are terms, which we shall call My, . . . My, of TF of type-functors ‘11, . . . F14' so

that

Sl s Em X EXT X RBR)(0)= 0

1s provable in TF.

Proof: We can take the following four terms for My, . . . M4:
M, 2dg 2y X7 X D0, (X*(x(5)(m. X)) )
Mz, g Xr%, X' p (o, Y™ (Xo)w. X))
M3 24, X7V X X0
Mo 245 XY X, X v

Here D(0, (X°1o(X10)(Av.X1v*))") and D(0, Yolo(X10)(Av.X1v)), both terms of type o,
are of the kind which, in virtue of theorems 4.2-3, we may use to interpret instances of the
contraction rules in HA®, the former enabling us to contract the formulae X10 =0 and
X1(Xolo(x10)(Av.X1v*))’ = 0 in the succedent position of a sequent, the latter enabling us
to contract Decr.(AX 1.0, Xq) and Decr.(AX1.X7 (X10)(Av.X1v’), X() in the antecedent.

I have introduced “Decr.(N10, Q1) (meaning “N functionally interprets the statement

that Q of type 1 enumerates a strictly decreasing sequence”) as an abbreviation for
QNa)>0>Q(NG) ) <QINR).£.QING )=0>Q(N&)") =0
The derivation now goes as follows:
/X0 0 X050 2 XI<X.0.8. X0=02X1=0
= Xl < X, 0 MPP, thinaing &E

qQh



2/X0>0 Dea.(()gX“'“,f"“zX‘, o)Xﬁ,_-XU Xo)—-a
Xl <X.0 1, deginition of Decr. , theorem 2.4
B/ cikecedank 0f L =>MXe. X0 < X.0
L, degimtion of My theoem 2.4
‘T/Xao <Xy = MaXg... o0 < X o

L, tneorem 1.3
5/ My Xan. Xo0 < X 53¢ Decr (Xe(MeX,,..X,0), M, X, )
-2 M X X0 K Ma Xy o0 S
M- X (X6 (Mo oo M e X, ) = 0
ankecedonl 9f 2, X0 <t Deor (X(MXenn o) MuXe X.)
7 M X G M X o0 )M, X )= 0
MPE, 9, eak, WPF wit, 'L, Bhotrem Lok, ek
6/ My Xa. .. X, (XQ(M3X¢,....X00>ML+XL‘-... J(o) =0 —
X»((ﬂijx"'“}”"z X (G (K ) (e x v ) X, )=0
L, theorem 2.4

7/ m’&tceol%& Of Y —_ Su,c(,gdef\/f O_)C 6 Eﬁ,cu/t

8/ — (XX (o ) X D, X)X

= (Xz (M3X‘*“‘X°O>)M*X+--- X
b:j reductions  and vudes on e,(f/padb'\(j
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1/ peat (X, iyt (X‘o)(;w.x‘w))%_% X)
T Peee (X (M X Xi0) MX, )

L, 8, theorem 2 3

ro/ Decr. ((@X Y"i"?_)(' y“"‘()(;;

vaec\ » d\afai‘t“.f’ Lf‘
3 ) o1 ol
/ X020 = XX X X x) o

L_), fheOYEM Q—- S

I
/xcmovxoc:—oJ Decr- (MeXe X, ), Xoo <

of [l iy Succedent of
s, VE

M.aun antecedent jCorMuL,Qx
H, succe denk of I3
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15/ ontecedent Of Iy — M Yo X 20

%) theorem Lt g, 4 3

)(o/pecr- (sz*.--)(., X0>J man  antecedenk
ek o 8, Rewll, ~sMyg. ¥ o

I,l‘/ lg; (u\/t

17/M3 X*,..XQO <Xe D Acc (Xz (MS X ch), X’L(M3X'+-">(°O);
(M3X‘r---xoo)
MeXo Xo ) = Decr (Mlx*_,xuxo) > X0 <X,

DM'X“"’X- =@ l6, desini tign of Ace, 31,57
From now on et ws abbreviate MlX-t---X, €3 I:\';

MQ,X*”-)(, & ﬂz; M'sxq---)(otn R}\g aﬂo\ My Xs... X

to Me. They 17 con be renrtten s
M0 < X, > Ace (XM40), X, (W30), F’\Q(’;‘BO) -
ACC(Q{!, y [‘32 J Xo)(x‘ﬁ-7

Q7



" ]:X‘_\_ Pror)w\tj e: K
Siwa lar
ZO/X, <X,

X00<X‘f =
KO DK(‘:}O(J-O —

P<Xo2 Xy X.)=0  mpp

cuk wi th 9 1
2\/ Decr o

(rj}l, X°)) ACC ([:j] J r:)’—/)(o)()(%)
Xoo ‘(Xq_

75 A
/CU\JQECecRU\Jt O_F 2’}—"9 XO’\')(
X ol 0 )

> X(MX)=0  mpp
= )C,(MIXb)LO

20,21, ek

Q—S/X
XA (B MU X)X, 5 pec i, Mo, XXX, )

22 oT
‘?_"\'/)(,: j
Xw ACC(M1, Mz,)(fj)(x*)—)ACC(M\ M‘L X)(X;)
theoem 2.7
25/X <X

25,04, VE | cak with 18

@]
<
o



26/ Acc (M, M, X )(Xy) =

X1 <X%+’£ > Acc_(t:\l,rgm;xa)(x,)

—

25, Lnferohan\c)e o 21

17/ ['\.V/\,SO < Xq- 2 AC(_(X3(&@O>)X1(§R'SO>; Fﬂ*)
(M3O) == Ao % X4+10 > Acc(rﬂ',mtim)()(‘)

17, 26, cut

Hee are térms M ard X so that (!‘7\,0) i
GC‘LWA e My, (M ‘) '3 ec{/w:vk t M, (X,0) is
equek & X, and (X ) to Xs. Then ,from
27 by o S-intreduction and  seen A applicat ons

% theorem L4 unvolwng These eqpalities | we gek

= H‘M@C < er > Acc_(()z(ﬁao); O, (X—(F’\S‘{))J_O)J ﬁq)
(Xw) s B8 X, T Xa +20 2 Acc ( E\ ) \), (94;0); XOD(){]>

£ we  fraslake ths oto an ecﬁua;{'r'on usir\l_(j Lo
h.6 and.  then &UWC&Q cd/k OCCuurences \"}.F
operakion L. I, using theorem 2.4, 0 fowvowr 0

1.5, we Se/t the sequent which was G be
P'(ove,(k .
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Lemma 5.8: There is a term N(v+2), of type-functor Ax. F(v+2)e(v+1)+1 =x, in which

A% %fvﬂkrv«)—x" Rt g )efurd)z X7

none of the variables X, . i or

Fwtlefvir)’ - . - :
R occurs, so that the following sequent is provable in TF:

spur)dlvr)=x? e (v Je(vei)= x-1 " "
}/& ([ X;:{sz; x J (L X;:i(, Je(v+()= x jIM)e(M) ] ) ow:)‘];&”?(\f%' "-J, O): C
s ([, [ s ] g )] Y 0)

Proof: We start by defining some term-forms. ¢ is short for 6(X’.., , X‘;W , Z), that is,
a term of type o containing the three variables indicated, and with the properties that the
sequents — 2% 247“ and z > () = ¢ < z are provable in gf.-HA® (that such a term exists
was proved by Schuette; see his (1950)). We define U of type-functor
Ax.T(v+1)ev+dv+2~ X to be

A (v e - X!

floeieirt SNt dara L XD (v enrdut
APXM w+d~+»+x%_xe”' ( \ad.w:.ia. , ij:‘ e ]} cLV)E (di\/-}'l)
and X of type-functor o to be
Tflvajdwa ffv*{'*w’f’f ¢ ( Tp v+ evtow4 3‘1
APXW*GW*'-% Exeaw-- -f-fl- s ]- L/( 7 EXM+F J
“rf\r/)efb‘-!-ll X7 Ve (ve)? ")
([ >< f i | Xjrwuefw\) ];- CW/)S]: ctﬂ)j (&/-H)

V1 of type-functor Ax. Fv+1)e(v+1)=x and V2 of type-functor fv+1)e(v+1) are defined

s 1
T flvarjen+ ) . R -j-'.'uf-i-l)Clﬂ‘?']
like X, but with X, e:,:;:’; *'and Xv, ¥ respectlvely in place of X4, . - We now

construct the following derivation:

/X <X st (LuX, [V v s 3idw ) X )=0

-
F(V41) evrdw3? et
X Steyest A (vtydw =x

W+ <X¢w+| ‘!'?. DX,,((LAPX e du g4 X
Clveensn] V) ek du
DX (L, XY g ) ([

AN+

X:‘H"*')Ef“'f -luﬁ . ’ (Ve +das 3
J‘C ﬂ,dw)( 4 Xf,m. ) =4 . adececﬁenfc
Sub-gormula of Wus formula —>its succedenk  MpPPp
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Propety or ¢

e = i

g < 2¢H

2, ProPEr‘HE; of

it < 2 )(’cmm*d“?

( X 2¢+' 5
A"l X (T E IV "
Yol 2 Xa;i iitq«,x EX; Jeur? ([ U x fi\:ﬂ)w-rduﬂ’] ,Cjw)zaﬂw/

Lo Tl xJ;a)
{lb :'CL/ :Ff'ﬂji‘*'cwq—g
(v, x ) <o

XliﬁA h::vh)ix E .f{m)ew,z ( Fvrdevs dur
Xew ([ u X ke c@gmh

(I:X;anf( ne(va)z 41
Sl ) x’ff’"’“*‘*””’)

X X Horelagp
=0

S/ X-f( H)evedas 3’ 2 M'OP
AW 4 ’<2 y Maun an)ﬁecec@er\/t {ovmw{é\ O{ C’(

> Succedent Formula o ¢ S5, cak

2

5/ main autecedent formula, of &, Xo <2

]

— succedenk  formuda of & i Lﬂ{'ercﬁlanﬂe_
7/“]&60&“0\}: %L AE X{([ etc

L6, cck  oT
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g+
8/ as 7T, but with Q_cb*lcp Y lolaCe of = o

the arfecedent = ~ 7, theorem 2.4

Cl//q X-ff Ddw+y? .frh}e.vq_ ([ MIF(Vr) evadar 2 - X EX

i A v S 6
o B <y

2 X«
(‘: X A Tf(vi)evrdvag - x Fve)dw?

"Zf(ﬂ.j evyp? s (v+)l&v'+e[~f’2_5}(1
A AW+ + (APXW*'A"“"‘gX ([ X”‘ o
]

Modw 49 4 X

I O e

Stvn)evr 7
Rews3,x gx
C[ AxFvr)evtdvy s AT

Kok dvags x EX ((_V ‘/]Aﬂ)g C\*’)ge’“’*' )

/

AP Xfr )e,wng)(::“}ew?_? ( X;,;ziv;)i:wz x7 %X ([\/ \/Z];
T B L0 St ) o, g e

MG ) evadwr 2 27

5 e §X(IVLQAwKLyEwﬂ):o

. e X < X;f\.fﬂ)eyrz

(v.X)=0,

antecedent 5u}0-fo:mM of the (ast f"“‘“m

+ Zrlb DXJ.([ Uux, ({:VU Vi],obv)],(h/)

—>1ts succedent Su.b-'formu,l,o\ MPP

IO/ ankecedent of 9) mar artec edent jformwf.ck of 8
—> succedent formuut& of § = 9}5/ =il

|0 2



We must now inspect the two main antecedent formulae of 10, with a view to contracting
them into one by an application of theorem 4.2. Reading the two formulae, and referring to
the definitions of U, X, Y], and \:’2, we see that the two formulae are identical, apart from
the fact that there are some five terms occurring in either, each of which differs from the
term occurring at the same position in the other formula. The following table shows the
five pairs of terms which are responsible for the differences between the two formulae.

The left-hand column contains the relevant terms which occur in the main antecedent
formula of 8, the right-hand column shows the differing terms occurring at corresponding

positions in the main antecedent formula of 9:

Xjﬁ\:hhﬂﬂ_" " ’?_fp X'-j:(«n)en.g:'
g,;':h)exd»-r-‘z_ &

L:{, , X Axdw 14
X'&(vh]é#-fc{_u-r’& X

dwva '

A Fvn)e(va)> x4 V,
e !
X(g(m)dqﬂ)" Vl

o

By theorem 4.2, we can construct five new terms, of the same type-functors as the terms in
either of these columns, which can be used to replace the terms in both columns. Let these
new terms be called Dy, . . . Ds. Then the following sequent will be provable, by an

application of theorem 4.2 and a D-introduction:

'/ ApX s £9..(10,,10,, (0, 051:00 300 304D < D, 5
Ka (0. (Ap X a0, (L0, 50, ([0, 957, 0 ) Jicer )3 (e41))
(t AP X:L::j:” 4 g D, ([ De, 5173, ()—_DLU DJ ; cw)ﬂ&u)g( v+ 1)}

A Y Ferdevi
9 K80 (10,0, (09, 0, 3T 80 et )] )

(v, Apxml,iﬂ(,b (Lo, 50, (LP 0\, ch;)j] Jw)j &v+|)) O :D:

AR A R (V3 i T }du Rlduar)
Booda)a)(v,0)=0
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T (vn) I’

APXGAH-&.V*S g)(ew“)””' ([ A):j:/:z?;dwl : EX: ([v'/\./z] ;dy>§];‘

M)i (e‘vﬂ) < X fwﬂ]wﬂ' ([ Xh-“ﬂvn)eurd»v*?.;aﬁ

‘Zf{'-.nﬂn)::hl1'I'.‘lI
eArt) M. dwr L+ (AP X

evidy +iy
EXEF n)evyy 7 ( A f ) utdwry = x T
wer ([ X

M.t +x E X . (E V! y V‘&] :'A")g]*AOLV)i(E’Vﬂ));

({‘,ﬂ X;\xigj:v X gxrffw-‘)e.wv ([ijt:;.g:xdy 2=x" E)( ,
([\/ \/] ch)g] CUJE(W'f'l) A X::::)wn E flvenevt] (L

X (v, vl 3], JL»«)E(W*I)] )] )

(v, Ap X[ e DRI 5% fvovy
&Jil/&k}i(@\/ﬂ)) = O i D

T vi) evedwsr s x 7
XN(-O'\A/‘F'Z..*X

a2
X Tffve) evida ¢y’ . X F_F[.r+,)w+1'l' A ff\/H)c‘M/-—vx
A+

e+ I (_. 2 X (LAP M W4 b+ X
(v )eym. f(VH)e,wM-f'; W ([ XA::. TV )ew) =x
e X ([w, xX Jiw )3t |

"-f(\(+)€(\f+i}1] chf)] JU/)( Xf(«n)w cm'ﬂj -5

i/ X< ([ Xu‘rfmﬂdﬁx F g™ ([ P i

vk Jew+
gX - D' K
Axevidipgiy s euf rdwrzy / AX.ew 3+ iy

(0., £0:.(L0,. 0530 3T0)R) WSV di )1, 6) =6

—> Succedent op | | Jemma 56, pm‘oosi{—\-grw{ rules

Tekss



l%/ ﬂ; <2 J Cp <2 DX&([X‘J:E‘:T‘:;:“J EXF-F(VﬂJ(h/H_' ([/\/Rz»';f(wau(;x"
Ulvt)ever™
§ X

evidat4 AX. e+t B
WL A T 1%
(vi $)=0 = Xz (EK&%OM’“’

Fvrdact
A eu1du 454 x " EXGV-MMH- , E’/f( . MPP

]Lf/ 2 >0 ——->c§><z

Porety of ¢
5/ 2 50

£ Ma antece,

(ot Formula of 3 —
s-bxcceclertk Of’

|?> ‘31 'L*/ C.b\.k

16/ (U\JQE?CEQ{E’U{- Of- A — SuCCe(/QQ.th Df' il

}2/ "51 Cb\k

By the fivsT  theorem on C,cmb[naitiij oomfole,f%’lejsl
we con CO:‘\SUULC/% terms L_JJ-..L—L‘- S¢ M f‘fqe

Seccw_ﬁ tL-’lcUn\j with  the )Cou)ow‘fj fouw ECL,_LM\J(TOM
(PC’}‘DL’u{'iveAjj) ore ’WOVa,ble % Tf::

F(Viey +—?_1 AX.fve Jewy duan i

. -,
w+ti MQw+2 +uc 2 d‘i:]w - JicW)j(&”*')
it kx-ffrm)duix"E Flrdevsq? ( Fov+leurdn+3? )
A(’XMWMM X... ) [U . X, ], dw 3(6\-'/4"

L E Xf;rv-ﬁliexf'l‘l ( Ax ?(V, ')w A+ = JL-‘ 2
At ovs - Fvhloveduyy AFvaelva)=x 7
AP 2 e+ ; [ AX.dwan g a JEXCJJJ-P' 5 ([X -f'(\(ﬂ Vi )-X

L R R o)

2

X Fvnlen V) 7
o

7



'}fm]dwf'g Yvn)evyq? ( AR lvr)evtdvr - X 7 ¢
Ap X Xewo (LX 2 X

L tdatu Ax.dw+ Lt A /

(L% AT 3) 0 o)

Hyve)ever? A (Vﬂ)ﬂl/‘hk\/*k’l.;xq v dwt 27
AP L3EX$+. L; ([x?dib/-r?.ﬁx ) gxdﬁ; Rk

(LGE2% TR Lo Rern)

/

B py Y T 1§ Flvn)ewsr! A ) WA
X?A/‘i' } .

X RN44 X p ([.: X?\X_J.y-+9_+~?( J EX;
(O e w3003 (or

i e+ ( ax. v evrdwa s x 7 " 7
: - = (v dw
APLH‘EXQ,Vﬂ / [X?Lx.da/.rz:rx ; g f‘.;‘]w+ +3/

ATV H)e(ve)) o - vhle(ve, } ]
(Lopmeeors? e " TS T en )

D Pt 47
AP Xew'?. ’ EXQT%)MU ([. X”-%ﬁ)eww-@x"
ks M-d'\"ff:f'.)( i g)_( J

(Cv, v Lav )37, dw /3 @;ﬂ)

T}w"js can olso  be qvran eA so thal Lo,... L4

Contain none Of the Var-'able_; X’%‘W*'JUH’ X?a.tf(m)ewaéx

) ) Ev+ AR dwt 2+ x
flv)evedw+g =
Xdﬂ i X;‘Lx-'-fﬁ’ﬂ}ﬁ“ﬁ)‘_xf 7
S

Ax. X o Xo‘f‘ te(v+)
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On the basis of these eciuah‘dea Ej mulhple a_{)r)[,icuifoﬂﬂ
C’{ theoverm 7.4 to SC(bU\Uli {6, Wwe j&t

]7 v Z & a5 e[ (b/ i}
/Z‘)O ; d?‘(l DXD((LXM.{NH&/ X , EX{VH) 1

A ev+das §+X vtdvte
A Hlvn)ew=x7
(EX}\;- E.,,q%-fx g X':F(Vﬂ)w"ﬂ‘,

4 ev+ 2 i gp; J ([-.D?_, 593, ((—D‘-h Dsjfd‘v)gl
WJE}]}ME];M)@H} $) =0 —

APL g er( Vi)evsy ( 3
2 ALF O+ Jevadugn & L
oo 49~ X v+)e 2
+ y [ Xnolw’z.i-x " EXIM:: RS ([
X?\X.tf(\fﬁ]ef\fﬂ).‘.xa“l ) -

Y e 01 P IO B

D %.,C ([ X%ﬁ:{?ﬁe:;&*l—x (A P Ll %Xzf:) t-’_xff?.-z (I; th"lf(ﬁ!)&”d/f?—;x 7

A dat Lt x

/
X (LI Y R b R

efve 1 Celva)evedia 22 x? -
([ ApLs § XEeren™ ([ xusfmunsentss” ¢y cunsiser’
/

(LGS oMY Y R (o),
A }O L-'-r g th(m?w-r’t-' ([—_ XMﬁF(vh)u¢¢LV+1; x‘: EX r.f{:‘ Yewrdus ?f n:

e+ , AX . w42 4 x
M e (v )~ x- 1

i XS )3T a0 R ¢ et ) T )i dw )

7 L 9 ( X F(vn)evidu a2z x?
( y AP '2-EX®V+., [Xh.dmf?,{-x ' EX;\/ {[XML’Wﬂ)eww;x,j XJJ :
Y ¥y Ax.x7 v o |

w3l )3) =0 5
Xiﬂd@( v)+dw+3’

<X ey e’ 2 “Fvrlen+2 . X

v+ +2 ) ’XQC (ﬂAFL! %Xe,\/"ﬂ p ([ Xﬁ:g:);:?fihx
Sl )evtdus 31 /
Xduo

Via)S @) (i G " X )3 32 )

=0
07



vy ewrdv+ ! vt)eypr! j
|8/3< 241 Xy < Xour +77 —

Xffrm]em dw+y”

du) < X;i::‘)mqj 1'?_1 lﬂroper{‘l‘f’f 7f < and +
19 / C’:N-rl)w-tdu«l-'S Tf(vH)es +2 z
e+ T )
iﬁf’wwﬁdﬁf e +2 2y ([ ApLEXCn X2 ﬁ:ﬁflw"_f}
X‘ﬁ’:n}mb&a’ CWJE At (LXU -ff\/ﬂ)e(u'ﬂ) -Xxr r,crm Je(va)?

Jaw)la)
(\/; Xffm)ewdm;/ iy

s = ¥ ([APL. te.  Mpp

vy 1‘0‘-”"'3 Yoy
?'O/'*j <2+l Xf”_,_,)w K X *Friev+) _}_,)3

A+

e

J

Maun wi&cecgefvt jﬁo(mu,l.& Of '9ﬁ Sug(edM 0)( 19

18, 19, cut

1"/ \Ej <2+ ') X:{if:}u*d"* X-fr#r)e,w.')_"' 2

e +2 > A (L
APL.EXZ'j')”*Z

e/f‘ ¢ — | Fvrdersduss v e
Xom: ‘<)(J:,, ) eu- z+ Q‘\jD
. S Jevy
?C&([APL,EXJL,”"JC. 20, 5T

22/ ankeced et of 17, \«j(Z.H

—> Succedenk O ’7,
but with 3 n

P(dﬁc of 7 --

bj Proposih'onaA '{ﬂfw“cej from 17 cand 21

10¢



AP?\:‘ji‘tﬂ the ECEuLvalence desoribed on lewmd 5.6 to the
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Heuristic Discussion of Lemmata 5.7 and 5.8: The reader will have noticed that, while the
deductions required to prove these two lemmata are quite short and the propositional
complexity of the formulae involved is not great, some of the terms occurring in these
formulae are very complicated. My choice of terms arises from the need to satisfy the
conditions for the applications of theorems 4.2 and 4.3. For example, if we have two
formulae, F and G, occurring in the antecedent position of some sequent and we wish to
replace them with a single formula, this is only possible if the terms occurring in F stand in
a certain relation to the terms occurring in G. In order to construct F and G in such a way
that this condition is satisfied, it is sometimes necessary to use quite complicated terms.

I shall now try to summarise the considerations that I have used in constructing these
deductions.

It has long since been known that, given a proof of a sequent in HA, there is an
algorithmic method for finding a functional interpretation within qf.-HA® of the 3V-form
of that sequent. I have used these established methods to find the terms My, . . . My in the
proof of lemma 5.7. Since we know in advance that such terms as My, . . . M4 must exist,
I am not now inclined to think that it was really necessary actually to exhibit them. But
having discovered them, I thought I might as well include in this thesis the calculations by
which I did so, in case they subsequently turn out to be of interest.

Lemma 5.8 is much more remarkable. I have found out the deduction contained in its
proof by imagining that I am doing a functional interpretation of a proof in a certain theory
of a highly fictitious kind. Let us recall the theory HA" defined in chapter 3. Then the

sequent

L*(n,0) = L*(vh, 0)

is equivalent to a sequent of HA when (and only when) n is a numeral. The 3V-form of

the relevant sequent of HA will have the shape

;X‘agfﬁfﬂjv-z/" . \(/‘Z,(_;r:n)+|.}:()_(‘:"- _),/C,Qf’n)“ J O) —

-ﬂ\_/. - 3\_./‘0‘3{_’}”.,/)\0(;| “ o G Vgﬁfﬂ4!)+!¢6(\Z' s s E(Q(M-t)-r” O)



Let us now imagine that, in place of «*(n) and <Xn+1), I had written names of variables of
HA. The resulting expression might be incoherent nonsense -- there may be something
illogical about the idea of a sequent containing a variable number of quantifiers -- but it is
heuristically valuable. In the first place, the accessibility of £, will be provable in the
theory so created. Furthermore, what I have imagined myself to be doing, in proving
lemma 5.8, is functionally interpreting a sequent of the kind just described. The functional

interpretation would use imaginary terms of the shape of
EP/\-., E M’L diih i3 'EMV;‘-) M\(E. . z?)

where v is a variable. And then I replace imaginary terms of HA® with genuine terms of

TF; for example the above-named imaginary term is replaced with
/f .

In summary, by using firstly the standard method for interpreting the 3V-forms of
sequents provable in HA in gf.-HA®, and secondly the method just described for replacing
imaginary terms of qf.-HA® with genuine terms of TF, we can replace an imaginary
formula containing a variable number of quantifiers with a genuine formula containing no
quantifiers at all. We can do something similar to the propositional connectives, as I have
already explained in chapter 3. Using characteristic terms, we can likewise replace an
imaginary formula containing a variable number of propositional connectives with a

genuine formula containing no propositional connectives.

Lemma 5.9: There is a term h?l(v+1) of type-functor Ax."F(v+1)(ev+1<x) so that

-}K)-‘i[‘\n/l (v+,2—>1 (( X::-_j.’(wﬂﬂfn-t}; X7 X"ffn'!.)e(n?.)"] J DL(\/Q-'L)}]JL\ (\.H’ Z_D

4 [¢)

(\/-’r’ll O) = Q)
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is provable in TF.

I8 ra) —_—
Proof: It suffices if we can define M(v+1) so that it reduces as follows: M(1) reduces to M,
where M is any term so defined that (f\?l; 1) for 1 £1<41is equal to M; as used in the proof
of lemma 5.7 (by the second theorem on combinatory completeness, there must be such a

N
term). Secondly M(v+2) reduces to

Ny )] X Hro 2 M v+ ]

where N(v+2) is the term which appeared in the statement of lemma 5.8. For the sequent

we want to derive can be derived by induction in TF from two premisses. The first

e=x)" %W e -
s LR [ ymni=a’ o5 1;40140(,0)=
was proved in lemma 5.7. Let us now take the basic sequent

XDC [L M | \(+‘) (L Xi\x. -f-(v’ﬂk(w') - Xjrﬁ{)e(\u.)qj }C'i(v+\))]r6k(\/+|>j

4

(V-\—L.O):Q — id.

as the left-hand premiss of a cut, of which the right-hand premiss is the sequent got by
substituting M(v+1) for X?xﬂ;:jg:f in the sequent proved in lemma 5.8. We now have
the two premisses required for an induction.

We define l\Jr\I(u+l) to be

Ax.F vt Jevaz k™

R"}\xﬂfwﬂ]wn;{' [/ d Xi\ze(vf?.)&x . N(V-!-Q_J p M y U]

e



It can now be proved by a metamathematical induction on the values of u that 1/\|/1(u+1) has
the properties we require of it. ﬂ‘d( 1) reduces to E/I; Kd(n+2) reduces to

N(n+2)[X",‘j'fi‘,';,'5§j"fj\"“:=l(\/[(n+1)], by the induction hypothesis.

Lemma 5.10: There is a term S(v+1), of type-functor Ax. f(v+1)ev+1+x’, so that

AKX R4 e ) - 2 wvhjelived’ =5 ' ~
> @[[S(‘”’*Lﬁ e } o )]Jd(\fﬂ)))-L-,l(\fHD(\H\)wH): 0

is provable in TF.

Remark: I conjecture that the reader of this thesis, like its author, is becoming tired of
reading proofs that are almost fully formalised. From now on I shall merely sketch how,

given lemma 5.9, one can produce a functional interpretation in TF of the 3V-form of the

statement that £ is accessible.

Proof of lemma 5.10: By the first theorem on combinatory completeness together with the

equation proved in chapter 2C1, there is a term

(LN, §N,, (DN, § Ve, EN, (LN £, (LN, Mg e,

L)) AR ) d(vr)

T, X n ~ - oo L |
. e F'r“"qu(‘“”?l T e (v +dlva) ¥ L X
where N3, . .. N9 are variables (they will in fact be X, i\, » Ak A 47 4 X

etc.), which term we shall abbreviate to N, so that the sequent whose provability was
established by lemma 5.9 is equivalent to =y g(N)(v+2, 0) =0

By lemma 5.6 this last sequent is equivalent to



e ";[..41_)3{««')4-21 ax v+ Je(va ) +d (v 1)4-7..—
Na < X g [ R . ([N,

efv+)y AZ.d [var)+24 %

(]{I“*]; L’{(Uﬂ))] s (vt O} (\H' |, ‘;f-;_) 2 @ Fewndvay =

A (vet)

Fvar)elva+) N c
Rewirr 11220 LV, [ENa N AT dur))61, X, ) = 0 (1)
If we use, in particular, the operation of generalised A-abstraction (5.2.9), it is clear that we

may construct a matrix of formulae F(Y, z), where Y has the type-functor

'.RC(f(v+1)e(v+l))(?Lx.f(v+l)c(v+1)—'x’)(ev)'l and all occurrences of Y and z are fully

indicated, so that the above sequent is equivalent to

.'/[_‘Nb :%, R]?. 3 (i :‘{{}; :(j%]&(\{‘ﬂ))gj,(,\(b’ﬁ“ [DJ X"{m-:_}e{wmt'a)

eivai)+

2 Fvar)elvr)rd (v 5 "f.{wfﬂt'(\fh']%ak(“’“)* 27
- : (({ AF‘\]* "L ><'\1 Alve e x j dlve D -} ,'

d..{\d"—‘r 1_‘)- = l)((l {U{* U:_ O ({' X"{Nri)@{v‘n}l‘&\{\!n‘}*3 ([ ><M"'{Nf?.]e(¢+’?ﬂ>;(’
1L

(i)
A.\.‘hﬂ't ’ AX x° J

(]
i

XA da) e ) :

elv+)+ 2

~J
For example, if we abbreviate ([X“;*:: fe{:‘u Y]; d(v+1) + 1) to Y, an acceptable definition

of F(Y, z) would be

AXSY <2 o LX) xy ([ axey

N

_/LXM y] \/+1ﬂ] d (v+|)) (VH”"/LXW ) = {J



I shall now show that, using the same operation, we may construct a term-form P, of type-

t % . ; s . rgm)emnw-,
functor Ax.'f(v+2)d(v+1)<X, in which Xﬁjﬁ?ﬁi x and X . do not occur, so that

k'ﬁvrﬂﬁfvﬂi-cl{‘w-t)-&’l. A _.F(,.v.n,')e[w.)fq_

"_)AP ([ X;\xarwqu ] d(\/'*D)(l VH

1 C(w-n}h

vyl rd v ) +1= X ><ffm-}erv+‘) rd (vt

X A P M" G— XM-d[\rh)’(‘hl divhra ]; &(\/‘HD(K (v+ ’4)

is provable in TE. The proof proceeds by our finding a proof of

AKX wﬂerwﬂi-a(m)n;x’ urt) v dlvmn)eg? Thtvrr)e urdrd (Unil41 227
'_?A ([ ;\X g > A Nl
e (vt (vH)+3+ s el )+ (v4)+72.° einz]»&(v-n)-f's-fz-

sxl}(vrﬂeiv«ﬁ&{wn}ﬂ—l (I._ K”-"{(‘fﬂ)\’(v*\)ﬂ‘(\fﬂ}ﬂ'ﬁ(’ 'Iy-(wq_)eh j \\
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A N ( elvet)e(ve) rd(ve i+ 2 -
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in which we then substitute d(v+1)-=1 for z. I get this, in turn, by proving

. | -
i A ([ ;\XM.@{W'L%(V*'}*&(\M}n-X r‘f““’")e(‘"‘)*"‘(wmq evere(vi )t Vi) 42T
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4
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for, if this is proved for the case where y = 0, the equation becomes equivalent to the
theorem to be proved, using an axiom of reduction and theorem 2.4.

We get the last-written sequent by induction on z=y. Finding a derivation of the two
inductive premisses requires little more, so far as I can see, than a knowledge of the

reduction-rules of TF.

I take it that by a similar argument one can show that there are terms Qq, Q2 and Q3 so

that the following three sequents are provable:

Axfvez)e(viz )~ T (varlelvey) +2" _
-a-AP@ ([X £ )= X-f( 2elve) '1]);@(\/-;—\)-}-!)(6(%1)—'“)

J eV
~J
X N,

Fovez)e(v )+’

-—eA‘DQ (E Axffwz)e(wz) 2" ) XEM‘)H ],e(u+|)+l>e(\/+\)+}

>V,

2

= Ap@s etc.

~

< Ny

Then sequent (2) is equivalent to

"y Mpvrdelad( Tglver)2lv " 1
F ((L Xu_dw:}ﬂ*x Vi) EAPLx' ([ X?’U‘ fver)dvin)= x7 Xg(wz}e(w.)q ] -

v (V)41
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J e[V 41 J
e(vey+ )(e(v)t ) , Ap K (E X R X FARlbyae? 1;
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e(vr ) )(e(vn )+ D] ;A( v+\))3} A(vt |h X Ak ”ﬁ) —

elv+i4

B ap pll speetteidtonsd et
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(C’\ (\/‘H)) , E erffwlz;_lc(\m)-rc\[\f“)-f 3 /[ Xu.ff(vn)cf\ffi)‘:’(’1
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e R dlom), X 41

At the same time, it is clear that

M Fver)elv ) A fve ) += X 7 C Fovr)elva) {3y’
s d s (([.Xa;(,.lrw.m,m ; C /N A vryh 7
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is provable in TF (because XW,,,)*, < ( — is provable). Thus we have the two

premisses required for an application of theorem 4.5, of which the result is
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where S is constructed according to the prescription given in the proof of theorem 4.5. The

above sequent is equivalent to
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in virtue of the way F was defined. We now want four term-forms, s, C, D and Dy, the
last three having the type-functors Ax.T(v+De(v)+1+x , Ax f(v+1)e(v+1)~x" and

|hf(\H—l)f:(v+1)", so that
S<9 2 (OXCE2 (1, po )t dveion,s) =

g [ (X ™ v g0

is provable. In fact, a sequent having nearly this shape (sequent 17) appeared in the proof
of lemma 5.8, so I do not think it is necessary to repeat the proof. We make some
substitutions in the last two sequents and then do a cut. We then take sequent (1) above,
make some substitutions and do another cut, thus getting the sequent which was to be

proved.

Remark: this lemma concludes what I described in chapter 3 as the "third section” of the

proof of the accessibility of &). That is, I have now found the sequent of TF which

corresponds to (*) of HA' and (**) of HA".

Lemma 5.11: There is a term Q(u) having type-functor lx.r[’(v+1 2u)e(v=u)+1=x"and in

which all occurrences of u are indicated, so that
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is provable in TF. Here OAx.T(v+1=uwe(v+1=u)<x"" yng OAx.Hv=0)e(v<w)=x"3re new terms,

closed apart from the variables indicated, whose properties will be described below.

Proof: In virtue of lemma 5.6, the formula
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is equivalent to
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So, substituting 0 for N5 we get
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It is at this point that I make use of the terms OAXT(v+1=ue(v+1=w<x" gpd
Orxf(v=we(v<w<x"etc. All that is important about the way they are defined is that, when

a substitution for the variables v or u and a plugging in of some argument into the type-

>
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functor makes the type-functor equal to o, the term should be equal to 0. Then, if we
substitute terms of this kind for some of the variables, the result of the substitution is
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The lemma is therefore proved if we can define Q(u) so that Q(0) is equal to S(v+1) (from

the previous lemma) and, if
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then Q(u+1) is equal to
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These provisions can be realised by defining Q(u) to be
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Here the two main terms to which the operation is applied are of the following type-
functors respectively: (1) or?\.x.f(v+1-5-z)d(v+1-'- z)>x r?u*c.f(v +7)d(v=z)=x, which is
equal to 0((?»zx.rf(v+1-'- 2)d(v+1+2) 2x)z)(Azx. f(v+1=2z)d(v+1+2)=X)z");
(2)Ax.F(v+1)d(v+1)<x", which is equal to (Azx. f(v+1=z)d(v+1=z)=x)0. The term just

defined is therefore well-formed and has the type-functor Ax. f(v+1<u)d(v+1<u)<x".

Conclusion to chapter 5: We can now take the two sequents whose provability was
established in lemmata 5.10 and 5.11 respectively and use them as premisses of an

induction-inference. Introducing v in place of u in the conclusion, we get
( e %G@Ibﬂ E LA 1o LAV LI PP
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If we expand the last formula here in accordance with lemma 5.6, it is obvious that we get a

formula from which a functional interpretation of the 3V-form of the accessibility-statement

discussed in chapter 3 can be derived.
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CHAPTER 6
THE COMPUTABILITY OF THE TERM-FORMS

That every term of TF can be reduced to a normal form is established by a very simple
generalisation of methods standardly used to prove the same result for HA®. For an
example of a proof of the latter kind, I refer to Troelstra (1973, p.103f.).

I shall define a concept of computability for terms of TF. First, though, it is necessary
to explain what I mean by the applicative complexity of a term. If the type-functor of the
term is not of the form f g i.e., not equal to .‘.)rf‘-i’:aqfor some f and g, its applicative
complexity is 0. If the type-functor is equal to f’ %", for some f and g, then its applicative
complexity is 1 greater than the sum of that of any term with the type-functor "f'and any

term with the type-functor ‘g’.

I do not know whether the applicative complexity of a term can be effectively
established. I do not think that this matters, though. Unless I know that the applicative
complexity of M is greater than 0, I will not imagine that there is such a term as MN, for
any N. So the following computability-proof at least establishes the existence of a normal
form for every term that anyone will ever actually form. Computability is defined as
follows: if the applicative complexity of a term is 0, it is computable if and only if it has a
normal form. If the term has a type-functor of the shape rf"g", then the term is computable
if and only if it has a normal form and, when applied to a computable term of type-functor

"f", the result is a computable term. This definition is well-founded because the
computability of a term of applicative complexity n is defined in terms of the computability
of terms having a lower applicative complexity.

To show that every term has a normal form it obviously suffices to show that every
term is computable. Predictably, the proof proceeds by showing first that the primitive
terms are computable and then that the property of computability is preserved under each of
the operations by which molecular terms are formed from others.

0 is obviously computable. Every variable is already in normal form. Let X be a

variable and let M, . . . M be a sequence of computable terms so that XMj. . . M has



the applicative complexity 0. Let the normal forms of My, ... Mg be My, ... My'; then
examination of the forms of redexes will show that XM'. .. My' neither is nor contains a
redex. Therefore X is computable.

I shall now run through the operations by which terms are formed from other terms.
Obviously the successor and application operations transform computable terms into
computable terms. AX.M will be computable if and only if every term obtained from M by
substituting a computable term for all occurrences of X is computable, so the problem
reduces to showing that computability is invariant under the other operations.

That p[M, N, t] is computable if its immediate components are can be shown by
familiar methods. Computability is also obviously invariant under operations 4.2.5-7.

Let M and m be computable; then m has a normal form, say ni.;: where n is not a
successor. Then ([AX.M]; m) reduces to ALY . .. AYk.([(AX.M]; n). Here ([AX.M]; n)
has the applicative complexity (. The task therefore again reduces to showing that that
term remains computable whenever computable terms are substituted for the variables Y, .
. . AX wherever they occur in M.

([M, NJ; n) is equal to N if n is equal to O; otherwise it has the applicative complexity 0,
so it is computable if M, N and n are.

Let the normal form of m be n'l:é:i again. We prove by induction on k that ApMNm is
computable if M and N are. If k is 0, ApMNm is either equal to MN or else has the
applicative complexity 0. If k is equal to 1+1, N is equal to a pair of computable terms and
ApMNm reduces to Ap(MN)N(n"-"). But from the assumptions that M and N are
computable, it follows that MN() and N are.

Ry [Av.M, N, m] is treated pretty similarly to p[M, N, t].

The existence of normal forms for all terms of type o entails that TF is consistent, by a
familiar argument (Schuette 1977, p.116f.).

It is difficult to extract any precise additional information, of the sort that can be
expressed by numbers, from the above computability-proof. However I think it shows
that TF is as acceptable a theory, to a constructivist, as HAw. The computability-predicate

used in the proof of the computability of the terms of HA® that I alluded to earlier is IT}, in

)
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terms of the recursion-theoretic hierarchies (for a proof of this, see Troelstra (1973,
p.119f.) and Hinman (1978, p.82)). The computability-predicate I have defined in this

chapter, although rather different, does not appear to be any more complicated.
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