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ABSTRACT: I begin by discussing several of the existing ways of proving the

validity of transfinite induction up to Eq and argue that it is at least conceivable that

there is room for a new proof that is more constructive than any of them. An

attempt which I pay particular attention to is that made by Mariko Yasugi (1982).

The centrepiece of her theory is the so-called "construction principle", a principle

for defining computable functionals. I argue that, in principle, it ought to be

possible to set up a theory whose terms denote or range over functionals of a sort

constructed by a similar principle, in which the accessibility (a term to be defined

below) of £q is provable, yet which dispenses with quantifiers as well as with some

strong axioms which she uses in order to achieve the same result. My theory,

described in chapter 2, is called TF (for "term-forms"). In chapters 3, 4 and 5, a

proof of the accessibility of £q in TF is presented. This thesis ends (chapter 6) with

a proof of the computability of the functionals that can be represented in TF.

DECLARATION: This thesis has been composed by me and is my work.
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Prefatory Remarks and Acknowledgements

By the "accessibility" of a totally ordered set let us understand the property that every

strictly decreasing sequence of members of the set is finite. Then the main technical result

of this thesis can be stated as follows: the accessibility of the standard representation of Eq

by Cantor Normal Forms is provable in the theory TF which I set up in chapter 2. The

program to which this thesis is intended as a first contribution therefore concerns provable

and unprovable cases of accessibility and not, despite what was advertised in the tide,

transfinite induction. The problem is that there seems to be no word in universal use for

the property which I call "accessibility", but from now on I shall use the word in the sense

just defined. By the way, I do not see that the equivalence of a statement of the

accessibility of an ordinal number and a statement of the validity of transfinite induction up

to that number is provable in every theory; but it does not seem urgent to investigate this

question here.

A great many interesting metamathematical theorems are proved by transfinite induction

(or deduced from a statement of accessibility) alongside otherwise finitist methods (by

which I understand, as is usual, methods that can be formalised in primitive recursive

arithmetic). If there is any merit in constructivism at all, it therefore makes sense to ask

what the best way is of proving the validity of initial cases of transfinite induction. I must

immediately disclaim any pretence that I can argue in any very satisfactory way that my

proof in TF is superior, from the point of view of constructiveness, to any of the existing

proofs of the accessibility of £q , so I can only hope that I have indicated, in chapter 1



below especially, some reasons for thinking that some such view might be defensible.

Primum vivere. deinde philosophari.

I am not now inclined to think that the use I have made of the theory TF is the best use

that could possibly have been made of it. The theory contains terms which denote

computable functionals of a slightly more versatile kind than the primitive recursive

functionals — as is conclusively shown by the fact that the accessibility of £q can be proved

within it. I can only hope that the reader will believe that this shows that the theory is an

interesting one. But I have not had time, within this thesis, to explore other possible

applications.

Semantic questions about TF have been entirely ignored. For philosophical purposes, I

quite accept that I cannot do so for ever. But it would have been impossible to treat of

every possible question that arises concerning the theory within this thesis.

Perhaps it is necessary to add a word or two about the style ofmy proofs. This is

variable: some proofs are presented in an almost completely formalised style, while others

are only sketches of proofs. While it is therefore possible, indeed likely, that the latter

contain some mistakes, I do not see that, practically speaking, any other approach would

have been preferable. I do not imagine that many readers would have had the stomach to

read this thesis in its entirety if it contained twice as many fully formalised proofs as it

does; indeed I shall be presently surprised if they have the stomach to read it even in its

present state. I hope that the readers who do take the trouble to read the more formal

sections will accept them as evidence that I can be formally correct when I want to be and,

perhaps more important, I have very good intuitions about what can be proved in TF and

what cannot be.

Expressions of indebtedness now follow, in approximate order of importance.

The spare time which made it possible to write this thesis is due to the exceptionally

generous financial support that I have received — from the Scottish Education Department,

the Deutschen Akademischen Austauschdienst and the Cross Trust — and I can only wish

that the final result did more justice to the opportunities which I have enjoyed. I am also

thankful to the people who have helped me obtain scholarships from these organisations:



Professor D.R.P. Wiggins, Mr. J. Broackes, Mr. S. Rasmussen and Dr. L. Briskman.

Perhaps, at this point, I should single out Mr. Rasmussen for special thanks on account of

an enormous amount of encouragement and emotional support as well as for numerous

pints of ale which he has bought me..

Intellectually my main debt is to authors whom I only know through their writings. But

as far as personal contact is concerned, I must thank Dr. Alan Smaill of the Department of

Artificial Intelligence, who has generously spent many hours talking to me about logic and

reading bits of this thesis and its ancestors. I have made many alterations in response to

his criticisms and, since I am sure that the result has been in every case an improvement, it

is possible that I should have made even more. Dr. P. Milne has undertaken what must

have been for him the thankless task of reading a draft of three chapters and allowed me the

satisfaction of talking to him about them. Both these men have made particular suggestions

for improvements which I have adopted, but I think it is more important to stress that it is

always helpful to be able to talk about a subject with someone other than oneself.

It was a great relief to be able to spend a year in a department which contains a very

impressive concentration of logicians, namely the Institut fuer mathematische Logik und

Grundlagenforschung in Muenster. Many people in that institute made some effort to make

the time that I spent there pleasant. In particular, practically all members of the institute

who have some interest in recursive functionals were good enough to attend a lecture

which I gave there on 15 July 1992, and I would like to thank them heartily, especially

Professor Diller and Professor Pohlers on account of the favourable remarks which they

made afterwards. For hospitality I am indebted to Herrn E. Folkerts of the institute and

Herrn H. Reiter, a citizen ofMuenster. Dr. M. Rathjen has helpfully given me the benefit

of his knowledge about the ordinal strength of the sub-system of second-order number

theory discussed in the first chapter and, while I do not make use of that information in the

present thesis, it will be indispensable to me in my further investigation of the properties of

TF.
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CHAPTER 1

SOME REFLECTIONS ON PROFESSOR YASUGI'S

CONSTRUCTION PRINCIPLE

Logicians have often been concerned to find constructive proofs of the validity of initial

cases of transfinite induction. The first important initial case is, of course, transfinite

induction up to £q and the first attempt of the kind I speak of was probably that of Gentzen,

presented in the article in which he first proved the consistency of Peano number theory

(1936, pp.554-6). This first attempt suffers from the disadvantage that the author makes

no thorough attempt to analyze what axioms and rules of inference his proof is based on.

The first satisfactory proof, so far as I know, was that of Bernays, presented in the last

section of the book by Hilbert and Bernays. In fact, this proof was later turned into a more

formal proof by Gentzen (1943, pp.146-151), who is therefore commonly described as the

author of the proof. But this must be a mistake, due to ignoring the remarks at the

beginning of the article (p. 140), in which he says that he is merely presenting a formalised

version of an existing proof. Actually Bernays presents two proofs, though they are

related.

Probably most logicians regard this proof as the last word on the subject, as far as Eq is

concerned, though of course there were infinitely many more extensive cases of transfinite

induction which still had to be tackled. But a few have thought that the Bernays-Gentzen

proof, which uses a weak sub-system of intuitionist second-order number theory, was not

the most constructive proof possible. In this chapter I shall discuss in detail an article by

Mariko Yasugi called "Construction Principle and Transfinite Induction up to £o", which

begins with the following paragraph:

It is well-known that the accessibility of the ordered structure which is a
canonical representation of the ordinals below Eq (the first e-number) cannot
be proved in elementary number theory (see Gentzen (1943)), while it is
provable if an analytic method is employed, namely it is provable in first-
order arithmetic augmented by the IT-induction (see Gentzen (1943)). The
full power of the H'-induction is not needed, however, and attempts have
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been made to establish the accessibihty along more concrete hnes, for
example in Gentzen (1936) and Takeuti (1975).

I would be interested to know what Professor Yasugi means by the "power" of the

Id!-induction rule. It is tempting to think that she thinks that the power of a theory — in this

case, second-order number theory with the Ilo -comprehension and n,'-induction rules ~ is

measured by the ordinal number of the theory, that is, the smallest standard well-ordering

whose existence is not provable within the theory. But if this is what she means, then her

article suffers from the disadvantage that she does not present any evidence that the same

result is provable in a weaker theory. Indeed, in that article, she never properly formulates

a theory, with a language, axioms and rules of inference, as far as I can tell. However it is

quite possible that to improve on the Bernays-Gentzen proof, by setting up a less powerful

theory (in the sense just explained) but in which the same result can be proved, was never

her intention.

The paragraph which I quoted just above is followed by the following:

In this article we are to propose a theory of "construction principle", a
principle on the ground of which some functionals can be defined ... The
principle above is considered here as the basis of the functional interpretation
of transfinite induction up to Eg.

The phrase "construction principle" ought not to be too unfamiliar to the reader; it had been

used by Goedel (1960, p.78) to denote the principle on the basis of which the functionals

needed to interpret Heyting Arithmetic can be defined. Professor Yasugi's construction

principle, presented in section 4 of her article (pp. 15-19), yields a more inclusive class of

functionals, however. By a "functional interpretation of transfinite induction up to £o", I

think she means the production of the functional N (p. 13), which has the following two

properties: (1) it maps any strictly decreasing sequence of ordinal numbers smaller than Eg

onto a strictly decreasing sequence of natural numbers; (2) it maps only finite sequences

onto finite sequences. Thus the existence of N entails that Eg is accessible. Her article

ends (pp. 19-23) with a demonstration that N can be derived from the construction princple.

I think, and will argue below, that there are other things one could understand by a
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"functional interpretation of transfinite induction up to ep"; but I am concerned at the

moment with exegesis of the purpose of Professor Yasugi's article.

In the third paragraph she writes

Section 2 consists in the interpretation of transfinite induction up to £q in an
arithmetic with infinite reasoning. Although the local technicalities used in
this section are borrowed from section 2 of Gentzen (1943), our scheme is a
"uniform version" of the provability demonstration, so to speak, thus
reaching up to £p.

(I conjecture that by "scheme" she means "goal".) From this point onwards, I must admit

that I find the purpose of her article seriously obscure. However the emphasis on

uniformity is at least not surprising. Section 2 of Gentzen's article of 1943 (op.cit.,

pp. 146-150) presents a method for constructing, within pure number theory, a proof of the

validity of transfinite induction up to any number smaller than Ep. He proved that, if the

validity of transfinite induction up to (% is provable in this theory, the same goes for tOk+i-

However — if we use TI(a) as an abbreviation for the formula expressing validity of

transfinite induction up to a — the statement

TI(cok) TI(cok+1) (*)

where k is a variable, is not provable within pure number theory. Otherwise we could

apply induction in order to get a proof of the validity of transfinite induction up to £p within

that theory.

If (*) is provable in some theory, then we can say that the proofs in that theory of the

validity of transfinite induction up to each value of are uniform in k, in the sense that the

proof for one value of k would be the same as the proof for another value, except that

certain numerals occurring within the proof would be different. For there would be a

proof, in which k occurs as a free variable, from which we can get a proof of the validity

of transfinite induction up to any of these numbers by sutstituting some natural number for

k throughout the proof.
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I think that if Professor Yasugi's argument for the existence of N were to be semi-

formalised, it would employ the co-rule. She does not draw attention to this fact, although

she is presumably aware of it, but a careful study of her proof has left me with no other

impression. She defines a sequence of two-place predicates Gq, Gj, G2 . .. (p.6f.) and

she writes Gj((j), x), <j) here being a variable whose type depends upon i, as G(i; (j), x). In

the course of proving proposition 3.2(2) in her article she wishes to prove the following

sequent, in which i is a free variable, x is a bound variable and X^q) a term-form already
defined:

(4) G(0; x, 0) G(0; x(i>0)(x), wi+1)

To prove each instance of (4), she recommends that we start with the following sequent

(1) G(i+1; (J), 0) —> G(i+1; coo)

and gradually derive the appropriate instance of (4) using the properties of x. But this

means that infinitely many instances of both (1) and (4) must be used in the proof in order

to get (4) itself, as i may take infinitely many values. For we must recall that G(i+1; <\>, 0)

is not a formula of our theory but merely a schema from which formulae are derived by

substituting particular numbers for i.

If I am not mistaken, the proofs of propositions 3.1(2), 3.1(3), 3.1(4) and 3.2(1) also

cannot be formalised rather than merely semi-formalised. Taken by itself, this fact is not

fatal to the argument as a whole. It could be that these results are stronger than any that

need actually to be used in the remainder of the article. Because of this, it is not remarkable

that the author, in her proof of proposition 3.2(1), seems to show some awareness of the

fact that the proof of which she is giving an outline is not one that can be formalised. I

suspect she manages to admit this with equanimity because, for the purpose of deriving

each closed instance of (4) from the relevant closed instance of (1), not proposition 3.2(1)

itself but only finitely many closed instances of it are required. Furthermore it may well be
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that, in order to prove each closed instance of 3.2(1), only finitely many closed instances

of 3.1(2), 3.1(3) and 3.1(4) are required. Therefore it seems that Professor Yasugi makes

only one essential use of the co-rule. That use, however, is essential because undoubtedly

(4) itself and not merely a finite number of closed instances of it are necessary for the

argument as a whole.

It would be possible to interpret Professor Yasugi's proof as containing not infinitely

many predicates Gj, but a single, inductively defined, three-place predicate G. However

this is not only not her intention, as far as I can tell (see especially the remarks on the

predicates Aj on p.4), but it is also well-known that you can get an extension of pure

number theory, in which the accessibility of £q is provable, by adding to it an inductive

definition of such a predicate as an axiom. A proof of this kind will even be sketched in

chapter 3 below. However it is equally well-known that you can get a theory with the

same property by adding the co-rule; indeed Professor Yasugi sketches such a proof herself

in section 2 of her article. The possibility remains that she thinks that the proofs of the

premisses of her application of the rule to prove sequent (4) are uniform in a way that the

proofs of the premisses in the familiar demonstration are not. However, in view of the

summary presented above of how (4) was to be derived, I see no justification for thinking

this.

All in all, I therefore find it impossible to see what is gained by her talk about

"uniformity" and, even more so, the idea, which the first paragraph of Professor Yasugi's

article may have encouraged us to have, that she was going to present a proof of the

accessibility of Eq which would use less "powerful" methods than the existing proofs

seems to have been entirely left by the wayside. What I do think is of value in the article is

the programme which the second paragraph (also quoted above) suggested: the

construction principle itself and the idea of using the functionals defined by it in order to

produce a functional interpretation of the statement that £q is accessible.

By a functional interpretation, in some specified quantifier-free theory Tj, of some

sequent in the language of some other theory T2,1 mean a proof in Tj of a sequent from

which the sequent, which we wanted to interpret, can be derived simply by applying the



rules for the introduction of quantifiers in T2. Obviously the formulae in any such sequent

have to be in prenex form and it is usual to stipulate, as well, that the existential ones must

precede the universal ones. I shall make this stipulation as well and I shall call sequents of

the kind described "sequents in 3V-form". Some theories have the convenient property

that every sequent can be proved equivalent to a sequent in 3V-form. When we are dealing

with such a theory, therefore, it makes sense to talk about "the 3V-form of a sequent" and,

even when we are not dealing with a theory of this kind, it is often clear how one could

extend the theory so as to make it of this kind, in which case it again makes sense to use

that expression.

The statement that Eq is accessible can be formulated in the theory which I shall call HA
— by this I mean the theory HAto, which is described in the next chapter, but without

quantifiers of higher types -- and it can be proved equivalent, within the theory which I call

HAco+, to a certain sequent in 3V-form. I shall explain in chapter 3 below what the

respective sequents look like. The important thing about the accessibility-statement, for

our present purposes, is that it contains just one existential quantifier, which occurs within

the scope of a universal quantifier and a free variable. On my understanding of the

intuitionist tradition, a canonical proof of that statement will consist in the production of a

functional which maps any values of the free variable and the universal variable onto an

appropriate value for the existential variable together with a canonical proof that it does do

so. Thus a canonical proof of the accessibility-statement will be almost the same thing as a

functional interpretation of its 3V-form. This statement will be supported by a slightly

more detailed discussion in chapter 3 below, but the discussion there requires some

technical apparatus which is not at present at our disposal.

It might be ojected that writers on functional interpretations, if they discuss the issue at

all, generally go out of their way to deny that, in defining a translation of sequents into

their 3V-forms and then defining what would constitute a functional interpretation of these

3V-forms, you are explaining what the original sequents "really mean", from an

intuitionist point of view. In particular, Goedel, in the article where he first described the

kind of functional interpretation which I am concerned with, wrote:



Selbstverstaendlich wird nicht behauptet, dass die Definidonen 1-6 den Sinn
der von Brouwer und Heyting eingefuehrten logischen Partikel wiedergeben.
Wieweit sie diese ersetzen koennen, bedarf einer naeheren Untersuchung
(1960, p.82).

but this does not contradict the claim I have made just above. To say that a canonical proof

of the accessibility-statement is almost the same thing as a functional interpretation of its

3V-form is not the same as to make this claim for all statements whatsoever, that occur

within some branch of mathematics. The accessibility-statement (which, as I have already

promised, will be discussed in detail in chapter 3) is an exceptionally simple statement: it

contains only two quantifiers, and none of them occurs in the antecedent of a conditional.

The program which I intend to carry out for £q resembles not so much Professor

Yasugi's program in "Construction Principle and Transfinite Induction up to £o" as her

program of proving the accessibility of any system of ordinal diagrams based on a pair of

sets for which a constructive accessibility-proof is already given. This program is carried

out in her (1985/6), in which she introduces a construction principle (the "hyper-principle")

of a much stronger kind than that used to treat of £q. I shall quote some bits of the

introductory section of that article to illustrate the similarity:

Let (£.,< ) be a linearly ordered structure such that there is a method to
determinewhether or not an object x belongs to £ and let c be in C.
acc(C, -< , c, M) will express thatM is a method such that, for every f a
< -decreasing sequence from C led by c, M(c, D gives a modulus of
finiteness of f, that is Vn < M(£, D(f(o) = empty).
... We are therefore naturally led to an intuitionistic system (ASOD) in the
attempt to formalize the accessibility proof, and the nature of the accessibility
can be embodied by the functional interpretation of the existential quantifiers.
They occur in the form V£3n P(f, n), where P(f, n) is 3-free. A functional
X such that Vf P(f, Xff)) will represent the modulus of finiteness (of f)
(1985, p.227f.).

That is, she gives two proofs of the accessibility of systems of ordinal diagrams: the first is

in the theory which she calls ASOD and uses quantifiers. Then she presents a method for

functionally interpreting every statement of that theory which is in V3-form, and this yields

a quantifier-free proof of a quantifier-free statement which closely resembles the original
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accessibility-statement. I think the remarks she makes towards the end of the introductory

section (p.229) could be taken as meaning that she thinks the second proof will be more

constructive than the first, though I am not sure about this. But in any case, for reasons

explained above, I think it is plausible to maintain that the second proofwill more closely

resemble an intuitionist canonical proof.

There is another aspect of Professor Yasugi's thought which I have not yet done justice

to. This is expressed in the following quotation:

The essence of the diagrams can be characterized by its functional structure,
that is, by determining the universe of functionals which produce "moduli of
finiteness" for various decreasing sequences of the diagrams (ibid., p.227).

What she means by "modulus of finiteness" is explained in the last quotation. The

quotation just cited seems to me to express the idea that, for each statement of accessibility,

there is something to be gained by discovering some optimally weak (in ordinal-theoretic

terms) system of functionals which can interpret that statement. What she does in that

article for systems of ordinal diagrams of the kind described is almost the same as what I

am going to do in this thesis for £q. It has to be admittted that neither she nor I presents

any evidence that the system of functionals we use is optimally weak, but, on the other

hand, there is at least some evidence that each system is weaker than the other systems that

could be used for this purpose.

What precisely is the illumination to be gained from determining the "universe of

functionals" associated with each accessibility-statement, I must admit I do not yet see.

But I am prepared to take it on trust that Professor Yasugi knows what she is talking about.

To produce a functional interpretation of the BV-form of the statement that £q is

accessible is, by itself, not a novel achievment. By a functional interpretation of a theory, I

mean an algorithmic method for transforming a proof of a statement of it in BV-form into a

functional interpretation of its conclusion. There are many functional interpretations of

theories in which that accessibility-statement can be proved and translated into BV-form as

well. But they suffer from the disadvantage that the theories in question are all, so far as I

know, very much stronger than £q and that the functionals required in many cases do not



admit of a constructive computability-proof. The proof of the computability of the

functionals which I use in this thesis is presented in chapter 6 and it turns out to be

remarkably simple.

A survey of the kinds of functional which can be used to interpret theories stronger than

pure number theory, at least so far as this subject had been developed by 1973, is

presented by Troelstra (1973, pp.81-4). A particularly interesting theory of functionals is

Girard's system F (ibid., p.84; Girard 1989, pp.82-94). The theory was introduced for

the purpose of interpreting second-order number theory and the types of Girard's terms are

precisely the formulae of that theory. It would be interesting to know whether Girard's

system can be divided into sub-systems, each of which can be used to interpret the

corresponding sub-system of second-order number theory. But I do not know whether

this has been done, or whether it would be as easy as it sounds. In any case, the

comparative values of Girard's approach and the one adopted in this thesis is a matter I

intend to discuss at a later date.

In this thesis I set up a theory of functionals which is much weaker than any of the

theories just mentioned. Not only does it have the advantage of admitting a very simple

computability-proof, I also guess that, since the theory was devised for the purpose of

interpreting the statement that e0 is accessible, it will be better adapted to the study of the

very weak sub-systems of second-order number theory than the strong theories I have just

mentioned.



CHAPTER 2

THE THEORIES HAco, TF AND RELATED THEORIES

There is a cluster of theories in the logical literature which are called "HAco" or some

similar name. In this chapter I shall set up a theory of this kind and prove that it at least

contains one of the existing theories with that name. I am primarily interested in the

quantifier-free part of the theory, qf.-HAco, from which my own theory TF, also without

quantifiers, is obtained by generalising in a certain way.

There is a subject called "the philosophy of formal systems", whose name comes from

H.B. Curry, though earlier logicians had also made contributions to it. When you read a

logician's definition of a calculus, theory or formal system which he is setting up, it is

necessary to know what his particular philosophy of formal systems is, in order to

understand fully what he is doing. Many logicians do not say anything explicit on the

subject. Fortunately, as a result of convention, there are not too many different ways of

setting up a formal system in actual use, so it is generally possible to make sense of the

procedures of logicians when they are doing just that. My own way of defining TF is not

very different from the procedure ofmany other logicians. Someone who has no great

interest in the philosophy of formal systems might therefore do better to skip the next few

pages. But, especially as TF is a very unfamiliar theory, I believe I have some obligation

to put my views on the subject on record.

My procedure is, on the whole, derived from Curry. I shall therefore quote part of his

statement of how a definition of a particular formal system (its "primitive frame", as he

calls it) proceeds, before adding a few remarks ofmy own.

He stipulates (1952, p. 11) that a primitive frame shall consist of three parts. First rules

are given for constructing terms of the system, then rules for constructing statements and,

thirdly, rules for determining which statements are axioms and when a statement follows

from certain other statements. The third part therefore obviously consists of two sub-parts.

Concerning the first part of the primitive frame, Curry stipulates that it, in turn, shall

consist of three sub-parts. That is, his hst of the parts of which a primitive frame should
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consist begins as follows:

I. TERMS
A. Tokens, or primitive terms. This is simply a list, which may be infinite, of the
terms of each kind. Nothing else is specified concerning them.
B. Operations, i.e. modes of combination for forming new terms. There is a list
of these with the number and kind of the arguments for each.
C. Rules of formation, specifying how new terms are to be constructed. These
will be of the form: If such and such an operation is applied to a sequence of
terms of the proper number and kind, the result is a term of such and such a kind
(1952, p.ll).

In this chapter, I shall adopt the convention that the statements of a formal system are

constructed by a procedure analogous to that by which the terms are constructed. By

"objects of the formal system", or "formal objects" I mean all objects of the following four

categories: terms, connectives, predicates and formulae. The formulae and statements

(sequents) are constructed out of the terms, connectives and primitive predicates by

operations similar to those used in the construction of the terms.

To return now to Curry's statement of how the terms of a formal system are

constructed, I would like to comment in detail on each of his three clauses:

A. It is an important ingredient of Curry's philosophy (though here he only hints at it with

the words 'Nothing else is specified concerning them') that it is quite unnecessary for a

primitive frame to say what the primitive terms look like. Indeed, he is quite sympathetic

to the idea that the terms should be regarded as abstract objects, which perhaps do not look

like anything at all (ibid., p.29).

In this respect, Curry's attitude to a formal system contrasts with the more traditional

attitude (exemplified by Kleene's Introduction to Metamathematics). according to which the

terms of the formal system are symbols of an "object-theory" and actually appear on the

page in the course of defining the formal system. However, if the system is defined in

Curry's way, it is probably necessary that at least the names of the primitive terms appear on

the page. It is probably also necessary ~ Curry does not make this stipulation, but I wish to

be understood as making it - to stipulate that different names should, in general, be

regarded as names of different terms. I shall give explicit rules for determining when two
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different names of terms should be regarded as names of the same term. Otherwise it

should be assumed that different names denote different terms.

The list of primitive terms may, as Curry says, be infinite. If it is, we cannot give the

names of all of them, but we can indicate a method for generating them: for example, we can

say that xo, xi, X2,. .. shall be one class of primitive terms.

Curry's use of the word "list" may require some comment. It is tempting to think that a

list of primitive terms will be composed out of the terms which it lists. In fact, it will be

composed of their names. This is in accordance with how we normally use the word "list":

a shopping list, for example, does not consist of the items which one intends to buy, but of

words.

This talk about "names" of terms impels me to draw another distinction. It is necessary

to distinguish between names of terms, and other objects, of the formal system, on the one

hand, and variables which range over such objects, on the other. Whereas one has to be

careful to insure that all objects have names and that distinct objects have distinct names, one

can be relatively ad hoc in the use of variables, indicating, on each occasion on which one

introduces a variable, what sort of objects it is meant to range over.

B. Curry's attitude to operations illustrates another peculiarity of his approach.

Traditionally, all objects (which were, traditionally, all symbols) are formed by writing

down atomic objects in sequence: this way of forming expressions is necessitated by the

two-dimensional nature of paper. But once we have abandoned the prejudice that the

formal system has to consist of symbols, it makes sense to imagine that there is more than

one way of combining objects to form new objects. This attitude ultimately makes it

possible to make do with a smaller number of primitive objects than would otherwise be

needed. That is, if M and N are terms of a formal system and we wish to imagine that the

formal system contains a term which is formed by performing a certain operation on M and

N, it is unnecessary to suppose that, in order to perform this operation, you need any other

object besides M and N. The result of the operation might be denoted, in the language we

use to talk about the formal system, by something like 'fMN', but it would not necessarily
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be correct to suppose that 'f here is a name of anything in the formal system, for the

reason just given. This is shown by the fact that the result of the operation could just as

well be denoted by 'MN' or 'MN' or even 'NM\ etc.

Because of this, I cannot agree with Curry's procedure when, in the chapter entitled

'Examples of Formal Systems' (1952, pp. 17-27), he seems to treat expressions like 'f' in

the above example as names of operations. Certainly it is useful to have names for the

operations, but 'f in the above example is not a name of anything: it looks like a name for

something in the system, but the operations are not elements of the system but things we do

to elements. So the sort of expression that it would be suitable to use for names of the

operations would include verbal nouns. For example, if it is possible to perform an

operation on a term that transforms it into another term called its "successor", it would be

natural to call the operation "forming the successor".

There is admittedly a price to be paid for accepting Curry's innovations. Where the

terms of the formal system are linguistic expressions of a familiar kind, such ideas as

substitution, the length of a term and the number of occurrences of a sub-term within a term

have an obvious meaning. But now these expressions have to be carefully defined, though

how they are to be defined is still reasonably obvious. For definitions, I refer to Curry et.

al. (1958, pp.44-59; 1972, pp. 15-19).

For the sake of precision, it is necessary to stipulate that, ifM and N are terms

constructed by different processes, then M and N are different terms.

C. It is clear from Curry's examples that this part of the definition of the class of terms will

contain stipulations like 'Ifa and £ are terms, then nu and are terms' (p. 19). This

means that, once the names of the primitive terms are given, we may substitute them for the

German letters in that statement and get a true statement. In this particular formal system the

primitive terms are called 'pi', p2% 'P3', etc.

What sort of linguistic act is being performed by Curry's stipulation 'If a.and 6 are

terms, then and xo & are terms' ? I think it is best to take it as an implicit definition of the

symbols '7' and ' -y'. It implies, but does not say explicitly, that there is at least one way of
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getting a new term from any two terms and, for one of these ways, the name of the new

term can be constructed by writing down the names of the old terms with '3' between them.

I believe the definition could be given more explicitly as follows: "For any terms m and £ ,

the result of the one-place operation ona is denoted by ""Jaj ' and the result of the two-place

operation on a and ti (in that order) is denoted by 1m o C". This, of course, involves

quantifying into quotation marks, so an explanation of how that is to be interpreted will have

to be added; though, in this particular case, I think I have already indicated how it is to be

interpreted.

Partly because I reject Curry's idea that, in the example under consideration, '7' and 'z>'

are names of operations, and partly to save space, I shall in practice run together parts B and

C of the definition of the terms in a primitive frame. But, in describing each operation, I

shall still have two distinct things to say about it. One is what sort of terms, and how many,

the operation has to be performed on, and what sort of term results from the operation.

Another is what the name of the term that results from the operation will look like, once the

names of the terms upon which it is performed are given.

Now I have some more general remarks to make before I actually define the set of terms of

HAco. By a 'definition' of the terms, I emphatically do not mean an explanation of what

they mean — that will come later ~ but only a definition of the conditions that a system of

objects will have to satisfy in order to be a plausible candidate for being the terms of HAco.

Every term of HAco has a type. I will define the types and the type-functors first, as if

they were terms of a formal system themselves. They are not terms of HAco, but they

could easily be terms of another formal system.

In reading a symbol for a type or object of HAco or TF, or ranging over such objects, it

is necessary to know which sub-symbols of that symbol denote, or range over, the objects

to which the last operation in the construction of the resulting object(s) was applied. That

is, it is necessary to know which strings of symbols within the whole symbol actually

denote, or range over, components of the objects described by the whole symbol. As is

usual, I use brackets for this purpose: any expression which is enclosed within brackets
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does denote, or range over, a genuine component, or range of components. Other

conventions will be described as I come to them.

A. The Formal System HAff).

There are many formulations in the literature of formal systems similar to this one, and

some systems may have been formulated more than once. The formulations I have

especially studied are those of Yasugi (1963), Troelstra (1973 chapter 1, especially p.46)

and Schuette (1977 chapters 6 and 7, especially pp.149-151). Viewed in Curry's way, it

would seem that Professor Yasugi's set of terms is built up from the primitive terms,

which are 0 and variables, by means of four different operations, while Schuette's is built

up from a more complicated set of primitive terms by means of just one two-place

operation. My approach is closer to Yasugi's, but I use a no fewer than seven operations,

of which the first four resemble her four and the last three correspond to the application of

pairing and decoding operators to terms of suitable types (see Troelstra, p.47).

1.Tvpes.

In the following, letters like 'p', 'a', 'x' range over types.

1.1. There is one primitive type, o (omikron).

1.2. There are two two-place operations on types: one operation on p and G yields pa, the

other yields pxG. In reading a type-symbol, one should observe the following

conventions: PG1G2 ... Gn should be thought of as formed from p and G\G2 • • • <^n

respectively while piP2---Pmx<7iG2...Gn should be thought of as formed from pip2--Pm

and oiG2...an. The type oo is also called T. The level of a type g, called 1(g), is

defined as follows: l(o) = 0; 1(gxt) = max{g, x}; 1(gt) = max{l(g), l(x)+l}. The level of

a term is the level of its type.

2,Terms.

Letters like 'M', 'N', 'P', with type-symbols in the superscript position where these are

A!



deemed necessary, range over terms of HAco of the indicated type, while the letters 'r', 's',

't' range over terms of type o.

2.1. There are two main kinds of primitive term, 0 and variables.

2.1.1. 0 is a term of type o.

2.1.2. For every type a, there are denumerably many variables belonging to that type.

They are called , Xf , x£ etc. If a is o, the variables are also called xo, xi, X2,...

To save space, the variables X \ , where 0 < i < 5, are also called U°, VCT, Wa, X°, YCT

and TP. Likewise, xi, for 0 < i < 5, is also called u, v, w, x, y or z respectively. The

numeral written in the subscript position of the name of a variable is said to denote the

shape of the variable.

Underlined letters like 'Xa', 'Ya' and 'Z°' shall be used as metamathematical variables

ranging over variables of the indicated type.

2.2. The following are the operations that may be performed upon terms.

2.2.1. For every term of type o, there is an operation which is said to transform that term

into its successor. The successor of s is s' The terms 0', 0", 0"' etc are called numerals

and are also denoted by '1', '2', '3' etc.

2.2.2. IfM is a term of type x and X a variable of type a, there is an operation called 'X-

binding the variable X in M', which yields the result XX.M, a term of type ax. This

operation may only be applied ifX is not already bound in M.

2.2.3. IfM is of type at, for some a and t, and N is of type a, there is an operation

called 'application ofM to N', which yields the result MN, of type x. To economize on

brackets, I stipulate that "M1M2... MnN" should be taken to denote the result of

applying M1M2. .. Mn to N.

2.2.4. IfM is of type oaa and N is of type a, p[M, N, s] is of type a. This operation is

called 'primitive recursion'.

A term of HAco of level not greater than 1, in whose construction this operation is

applied only to terms whose level is likewise not greater than 1 while the operations

2.2.5-7 are not used at all, is called a 'primitive recursive functor'. The letters T, 'g' etc.

are used as metamathematical variables ranging over such functors while letters like 'k',
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'm' and 'n' range over such as are of type o. The order of f, which we call 0(f), is

computed from its type, as follows: if the type is o, the order is 0 and if the type is oa, for

some a, the order is greater by one than if the type were o. (Semantically speaking, the

order of a primitive recursive functor is the number of argument-places of the primitive

recursive functions which it represents or ranges over.)

2.2.5. For any terms M and N, of types p and a respectively, (M, N} is a term of type

pxo. This operation is called 'pairing' and the result of it is called the 'pair' of M and N.

2.2.6-7. IfM is a term of type pxa, for some p and a, there are two operations called

'decoding' which transform M into a term of type p and a term of type a respectively.

The results of the operations are Mo and Mi respectively.

3.Formulae and Statements of HAco.

I shall use letters like 'F', 'G' etc. as variables ranging over formulae. There is one

predicate, =. Every atomic formula is formed from = and two terms of type o; the

formula formed from s and t (in that order) is s=t. Molecular formulae are built up from

atomic ones using the propositional connectives &, v, d and c° and existential (3) and

universal (V) quantifiers binding variables of every type. The formation-rules for

formulae are the usual ones and all the connectives have their usual meaning. I write FsG

as an abbreviation for FdG.&.GidF.

In order to show the order in which the operations used in the construction of formulae

are applied, I use brackets, as before, and dots. Brackets take precedence over dots, in

the sense that any string of symbols enclosed within brackets denotes a sub-formula or

ranges over some sub-formulae, regardless of how many dots occur at junctures within

and without it. Each group of dots will be placed between a symbol denoting a connective

and a symbol denoting, or ranging over, sub-formulae within the scope of that

connective. The latter symbol will be bounded, on the one side, by the group of dots just

mentioned, on the other by either a bracket or a larger group of dots or the end of the

whole formula. For example
i

, 1

f=DG.£.Ccv,.F-3G\<£.(3orJ



is made of the sub-formulae (1) and (2). (2), in turn, is composed out of (3), in the first

instance, while (3) is composed out of (4) and (5).

The statements ofmy version of HAto are not formulae but sequents. Since it is meant

to be an intuitionistically acceptable theory, I will impose the restriction that at most one

formula containing quantifiers can occur in the succedent position of any sequent (this is a

feature of Yasugi's formulation; see p. 103). The sequent-connective is denoted by an

arrow (->). As is usual, I use letters like T, A etc. as variables ranging over sequences of

formulae.

4. Redexes and their Contraction.

In order to state the axioms of HAa), it is necessary to state which terms are redexes and

how the contractum of a redex is determined. A term can only be a redex if the last

operation in its construction is application, primitive recursion, or decoding.

4.1. A term of the shape MN is a redex only ifM is formed by A.-binding some variable,

say within some term, say Q. In that case, the contractum ofMN is Q[X:=N], which

notation means the result of substituting N for X within Q. The exact definition of

substitution is a slightly complicated matter, and will be left until the end of this chapter.

4.2. p[M, N, s] is a redex if and only if s is 0 or a successor. If s is 0, it contracts to N.

If s is a successor, say r', the term contracts to Mr(p[M, N, r]).

4.3. Mo and Mi are redexes if and only ifM is a pair, say {N, Q}. If it is, then Mo

contracts to N and Mi to Q.

5. a-Convertible Terms of HAco.

Let M and N be terms of the shape A,X£.P and AX^.Q respectively. Suppose that, if weG

replace X^, wherever it occurs in P, and X^, wherever it occurs in Q, with some variable
not occurring in either P or Q, we get the same term. Then M and N are said to be a-

convertible to one another. The transitive closure of this relation is also called a-

convertibility. Finally, any two terms which are formed from each other by replacing a

sub-term of one with a term to which it is a-convertible are also a-convertible.
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6. Mathematical Axioms of HAco.

All mathematical axioms are required to be free of logical symbols. They fall into four

groups. The first two groups consist entirely of sequents with a single succedent formula.

3.1. Axioms of a-conversion. For any terms M and N which are a-convertible to one

another, —>M=N is an axiom of HAco.

3.2. Axioms of reduction. A term N is said to reduce to M in one step ifM can be obtained

from N by replacing some sub-term of N, which is a redex, with its contractum. The

transitive closure of reduction in one step is called simply reduction. For any terms M and

N, such that one reduces to the other, —>M=N is an axiom of HAco.

3.3 Axioms of number. Under the interpretation of the terms of type o which follows from

giving the symbol '0' and the general terms 'successor' and 'variable' their usual

meanings, there are one or two truths about numbers which are not otherwise derivable in

HAco, for example t' = 0 —Some people also take s'=t' —> s=t as an axiom, but I guess

it is probably derivable; see below. However, there is no particular reason to be

parsimonious about which sequents one accepts as axioms of number, so I shall leave this

set of axioms open-ended.

3.4. Axioms of equality.

-*tzt
5 -1 —? t -5

r-s, s-1 —* t
i-.t -- <T{ -tj

In the fourth axiom-schema here, the symbol q denotes only a particular occurrence of a

term q and r[q:=t] means that that occurrence of q is replaced with an occurrence of t. It is

not necessary that every occurrence of q be replaced. If I wanted to indicate the result of

replacing every occurrence, I would have written simply r[q:=t].

7. Loeical Axioms and Rules of Inference.

The logic is LK (introduced in Gentzen 1935, pp. 191-3), subject to the restriction that only

7.5



one succedent formula in any sequent may contain quantifiers. This logic is more liberal

than LJ, but is a conservative extension of the theory with the logic LJ. This can be proved

by proving

—z>: 5 ~t

without any use of multiple succedents. A proof is given by Schuette (pp. 139-141) for a

corresponding statement in his negationless system of pure number theory. The proof can

certainly be carried over to my version of HAco without multiple succedents. However, as

it employs quantificational rules, it is a lot harder to adapt it to qf.-HAco. On the basis of a

hasty inspection, I think it can be done, but the proof in qf.-HAco requires a number of

technical tricks, notably theorem 4.6, which will not be introduced until later in this thesis.

But informally speaking, the rule of double-negation elimination for equations is certainly

justified, as all closed equations are decidable: see chapter 6.

Granted that the sequent written above is provable, the law of excluded middle and the

law of double negation are presumably provable for all quantifier-free formulae in my

language, by means of LJ. This has probably already been proved somewhere.

The induction-rule is formulated as follows

r-^Ffo) F(V), F(i')
r, (9 —»AA, FftJ

subject to the condition that x should not occur in the main premiss except at the places

indicated, t is any term of type o in the language.

Every instance of modus ponendo ponens

f,fd&, r -*a,&

is provable. Sequents of this form will therefore be given axiomatic status and annotated

with 'MPP'.

In the proofs which I shall present in chapters 4 and 5, the sequents shall be numbered

and each will be followed by a brief indication of how it is derived. Mathematical Axioms
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and Logical Basic Sequents will be annotated with 'M' and 'L' respectively. Sequents

derived by inference will be annotated with the numbers of the sequents from which they

are derived and the names of the main inferences involved. Each introduction-rule is called

by the name of the connective introduced, followed by 'E' or 'I', depending on whether

the connective is introduced in the antecedent or succedent.

8. The Theory HAco+

For certain purposes, it is desirable to consider the theory obtained by adding to HAco the

following three rules of inference. The first rule is called the axiom of choice (AC)

r—>A, \/r;3/T. f(x.y)
r-^A, 3/1 F(x./x)

the second is called 'the rule of the independence of premiss' (IP)(this rule is equivalent to

Troelstra's IPq; see p.238)

r-^A, H3 3X( FfX)
BrfHDFfxJ)

where H must be in prenex form and contain no existential quantifiers, nor the variable X°;

and the third is called 'Markov's Principle' (MP), where H must be free of quantifiers:

r —* A,

r-*Aj 3K: Hff)

9. Some Special Combinators of HAco.

For every type cr, we can form a combinator Ja, of type o(aa)aa, with the property that

Jo0MOCTNa reduces to NCT while JCTs'M00N° reduces to the same term as

Moa(J0sMooNa). Namely, we define Ja to be XyXoaYc.p[A,x.XOCT, YOCT, y].

Using J0, we may construct a term P, which represents the predecessor function and

terms called Xxy.x+y and \xy.x~y, which represent addition and subtraction
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terms called Xxy.x+y and Xxy.x-y, which represent addition and subtraction respectively.

For proofs I refer to Schuette (pp. 120-124).

I shall also use the (contextually) defined predicates <, >, and :>. set, for example,

may be regarded as a definitional abbreviation for^.t-s = 0.

B. The Formal System TF.

1. Tvpe-functors.

A type-function is a primitive recursive function which takes as values types of terms of

HAco. To make this conception precise, I must fix some way of encoding types by natural

numbers. The code of a is called #g; it is calculated as follows:

#o = 1 #<xc = 2#°-3#* #(oxx) = 3#°-5#T

Given an n-place primitive recursive function which takes codes of types as values, the

corresponding type-function is defined to be the function which maps n-tuples of numbers

onto the types which are encoded by the values of the first function for the same n-tuples.

Types count as 0-place type-functions.

If the terms of HAto are interpreted in the natural way, some of the primitive recursive

functors I defined in section A can be interpreted as (if they are closed) representing, or

otherwise ranging over, the numerical functions corresponding to type-functions. Hence it

is possible also to think of them as representing, or ranging over, the type-functions

themselves. However, if a primitive recursive functor is to be thought of in this way, I

shall call it a tvpe-functor and write its name within corners, so the type-functor

corresponding to f is 'fl The order of Y1 is the same as the order of f.
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I shall be especially interested in type-functorsV which are derived from a term h of

HAco so that either the following pair of equations, for all numerals ni,... nq:

hOn,...r>^ - j-n,. ■ ■ f\
. / qkn,. ..n„ hR.o,. ..n,
hth,...ol - 2 -3

or the following pair:

hOn,... - Jin,...

hH n,..- nl 3J .5 1
for some g of order n+1 and f of order m, such that max{m, n} = q, is provable in HAco.

A term which satisfies one of the above pairs of equations, for some f and g, will be called

RLfg or Rcfg respectively.

In setting up the theory TF, when I wish to refer to a type, I shall allow myself to do so

either by using a name for the type of the kind introduced in section A, or else by using a

name for a numeral enclosed within corners. I shall call the type-functors rRLg(Xx.fj71 and

rRcg(Xx.fj11 'f1 "g1 and rf lxrgn respectively (here x must be a variable not occurring in f). If

f1and rgn are types, this idiom can easily be translated into that which I used to talk about
r i

types in section A. For if f is a and rgn is x, f will denote the number encoding a while g

denotes the number encoding x. Therefore RLg(kx.f)l, for example, will be the number
jf<r
2 -3 . But this number is the code of the type ax, by our rules for coding. Therefore

rf lg"1 is the same type as ax.

Furthermore, if f and g are both type-functors and f* and g* are corresponding

primitive recursive functors, I shall write fg in place of rRLg*(Xx.f*)11 and? x g*in place

of ' RCg^Xx.f*)1!. This notation almost suggests itself, since it simply means that I

combine names of type-functors in the same way as I formerly combined names of types.

If the type-functors in question are types, then the notation means the same whichever way

it is interpreted.
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2. Shape-Functors.

The first difference between the terms of HAco and the terms of TF is that every variable

(and consequently every term) of TF is required to have a type-functor whereas every

variable of HAco is required to have a type. Every variable of TF also has a shape-functor,

which is a primitive recursive functor of HAco of type o or 1. If a shape-functor is a

numeral, then we may regard the variable in question as a variable of HAco and identify the

shape-functor in question with what I previously called the 'shape' of the variable.

Henceforth, therefore, if a shape-functor is a numeral, I shall also call it a 'shape'.

3. Computation of Type- and Shape-Functors.

At this point I would like to define what I mean by "equality". I shall use the symbol "ix>"

in the following contexts. "MmN" shall mean, ifM and N are of type o, M=N. If they
p T rhi

have a common type-functor other than o, say f, then it means X r °M = X 1 °N . In

place of "-»MixJN", I shall also say that M "is equal to" N. This should not be

misunderstood as meaning that M is the same term as N, though it could reasonably be

taken as meaning thatM and N would have the same semantic value under a normal

interpretation.

In the following, I shall in effect identify type- and shape-functors which are equal to

each other. To be more exact, in stating the rules for the formation of term-forms and the

determination of their type-functor, I shall give clauses along the lines of "If the type-

functor ofM is equal to rf and if the type-functor of N is equal to rg1, the type-functor of

the result of such-and-such an operation on M and N is the result of such-and-such an

operation on fnand g1"-

4. Terms of TF.

In this paragraph, we reach the actual terms of TF for the first time. The terms are 'term-

forms', in the sense of Professor Yasugi, in that they are obtained by generalising the

terms of HAco in a way similar to hers. I use letters like 'L', 'M', 'N' and 'P' as variables
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ranging over terms of TF in general and letters like 'r', 's' and't' as variables ranging over

terms whose type-functor is equal to o. Every term has a type-functor.

4.1 .There are two kinds of primitive term, 0 and variables.

4.1.1. 0 is a term-form of type o.

4.1.2. For every type-functor Yand shape-functor g there is a variable having that type-

functor and that shape-functor. This variable is called 'X^'. When f is o and g is a
shape, the variables of type-functor f are also called 'xo', 'xi', 'x2', etc. The same

abbreviations apply as were introduced when we were dealing with HAco.

N.B. It is important to stipulate that a primitive recursive functor occurring within a type-

or shape-functor also counts as occurring within any term which possesses that type- or

shape-functor. If the primitive recursive functor in question is a variable, it may be A,-

bound or used as the eigenvariable of an induction.

4.2. The following are the operations that may be performed on terms.

4.2.1. Successors can be formed just as in HAco and are denoted in the same way.

4.2.2. IfM has type-functorYof order n and XY is a variable which may or may not

occur in M, then there is an operation called 'lambda-binding the variable X-jj' which may
be applied to M to yield a new term of type-functor rgI 'f1, provided that the variable XJ hash

not already been lambda-bound in the construction ofM or of f. The result of the
rQ?

operation is AX p .M.
n

4.2.3. If M and N are terms and the type-functor of N is Y and the type-functor ofM is

equal to Y'g1 for some rg1, then there is an operation called 'application ofM to N' which

yields a term of type-functor rg"1, unless M has the shape Ajq.Q, for some Q and i, and xi

occurs in rg1, in which case the result of the operation has the type-functor

rg[xi:=N]"'. The result of the operation is MN.

(In order that MN be well-formed we must ensure that taq P, where Xi occurs in the

type-functor of P, only be applied to N when N is a possible value of k, m, n,...)

To economize on brackets, I stipulate that MiM2...MnN should be read in the same
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way as if it were a term of HAco.

4.2.4. If M and N are terms whose type-functors are equal to o'fT and Trespectively, for

some rf"', then p[M, N, s] is the result of an operation on M, N and s having the type-

functor fl

4.2.5. For any term-forms M and N of type-functors f and g , the operation called

'pairing M and N' yields a new term-form called the 'pair of M and N', of type-functor

rfx lg*1. This is {M, N}.

4.2.6-7. IfM is a term-form having type-functor rf1x'g\ there are two operations, called

'decoding', applicable to M, which yield term-forms of type-functors Yand rgn

respectively. The results of the two operations are Mo and Mi respectively.

Remark: If, in clauses 4.1 and 4.2.1-7, all variables ranging over type-functors and shape-

functors are restricted so as to range over types and shapes respectively, these clauses

define the terms of HAco.

4.2.8. Let M be a term of type-functor Yand let rg1 be a type-functor and h a shape-functor

so that OCjfJ'OOO = 1. Then there is an operation which transforms M, X J and any m

into a term of type-functor rRLfg'1m. The result of the operation is ([XXjj'.M]; m). (N.B.
this operation does not count as binding the variable X^ within M.)
4.2.9. Let M be a term of type-functor Yand let L be a term of type-functor rg"' of order 1.

Then, for each such M and L, there is a term formed from them and any m having type-

functor rRcfg'1m. This term is ([L, M]; m).

4.2.10. Let M be a term whose type-functor is equal to YLfgYi+l and N one whose type-

functor is equal to rR<-(gO)(/\.x.gx')1m; then ApMNm has type-functor Y.
4.2.11. Let M be a term whose type-functor is equal to 'fyrfvn, for some f and v, and N a

term with a type-functor equal to rf0*1. Then R'tVt^Y.M, N, m] has the type-functor' fm1.

5.Redexes and their Contraction.

In order to state the axioms of TF, it is necessary first to state which terms are redexes and



how the contractum of each redex is determined.

Furthermore, it is necessary to introduce a new piece of notation. (M; m) shall denote

the term determined by terms M and m in the following way (the following sub-paragraphs

correspond to the sub-paragraphs of B.4 and the definition of (M; m) is by recursion on the

complexity ofM):-

1.1 (0; m) is identical to 0.
171

1.2 (X ^ ; m) depends on the orders of f and g. If 0(f)-0(g) > 0, then the term is identical
to If O(f) > 0 and 0(g) = 0, it isX^\ If 0(f) = 0 and 0(g) = 1, it is X*C . If 0(f)
+ 0(g) = 0, it is xV.
2.1 (t'; m) is identical to (t; m)'.

2.2 (AXj.N; m) is identical to A.(X;m).(N; m).
2.3 (MN; m) is identical to (M; m)(N; m).

2.4 - 2.7 are determined in the obvious way.

2.8 (([XX^1 .N]; m); n) is identical to ([A,X^ .(N; n)]; m).

2.9 (([L, M]; m); n) is identical to ([L, (M; n)]; m).

2.10 (ApMNn; m) is identical to Ap(M; m)(N; m)n.
2.11 (Rrfv1[X,v.M, N, m]; n) is identical to Rrfv1[(A,v.M; n), (N; n), m].

Theorem 2.1: For any M and m, (M; m) is a well-formed term of TF and its type-functor is

determined in the following way. IfM has type-functor rf and 0(f) > 0, then (M; m) has

the type-functor rfm1. IfM has type-functor f and 0(f) = 0, then (M; m) has the type-

functor rf.

Proof: By induction on the complexity ofM. IfM is 0 or a variable, the theorem is true by

definition. For the induction-step, we must consider the various clauses in B.4.2. The

following clauses are numbered correspondingly:-

2.2 We have stipulated that (A,XPf1.N; m) is identical to A,(2£ *3 m).(N; m). Let N have the

type-functor rg1; then XX f1.N will have the type-functor rRLg(A,x.f)l1. The task is to
rfi

deduce, given what the type-functors of (X 1; m) and (N; m) must be, that (AX f .N; m)
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will have the type-functor rRLg(^x.f)l''orrRLg(A,x.f)lm1-- the former only if
0(RLg(Xx.f)l), which is max{0(f), 0(g)}, is 0. Now the basis of the induction tells us

that (X f; m) has the type-functor rfmn or *f 1 depending on what 0(f) is; and the induction-

step tells us that (N; m) has the type-functor rgm"' or rg1 similarly. If 0(f) + 0(g) = 0, then

0(RLg(Xx.f)l) is also 0 and X(X f1; m).(N; m) has the type-functor Yrg7 which is also, of

course, the type-functor of (XX f1.N; m). If max{0(f), 0(g)} > 0, then X(X f ; m).(N; m)

has the type-functor 'fm1 rgm\ rfm1rg1or YgnT, depending on the orders of f and g

respectively. But these three terms all denote the same type-functor, viz., rRLg(Xx.f)lrh'.
2.3 Since MN is well-formed, M must have a type-functor of the shape1 f^"1, where rf"is

r ,*7
the type-functor of N. If N is capable of being substituted into the type-functor ofM, f

must be a type, and otherwise the type-functor of MN is rg1
There are therefore four main cases to distinguish: (1) 0(f)-0(g) > 0; (2) 0(f) > 0,

0(g) = 0; (3) 0(f) = 0, 0(g) > 0; (4) 0(f) + 0(g) = 0; and the last two must again be

divided into two sub-cases, depending on whether N does or does not require to be

substituted in g. Now by the hypothesis of the induction, (M; m) will have the type-

functor ?m1 rgm7, fin rg\Y'gm1 or Yrg\ depending on what the orders of f and g are; and

(N; m) will have the type-functor rg or rgm1 similarly. If we work through all the cases, it

turns out that (M; m)(N; m) has the type-functor rg1 or gin1, modulo a possible

substitution.

2.8 We have stipulated that ([XX f .N]; n) has the type-functor rRLgfn1, where rg1 is the

type-functor of N. The type-functor of (N; m) is rgm'1 or rg7, depending on what the order

of rg1 is. But depending on exactly that, the type-functor of ([XxY(N; m)]; n) will be
either rRLgfn' or rRLgfnrn, which is also the type-functor of (([Xx~f -N]; n); m).
2.9 We have stipulated that ([L, M]; m) has type-functor rRcfgm7, where Y and rg7 (the

last of order 1) are the type-functors ofM and L respectively. The order of YCfgrn1 is

therefore the order ofM. By the induction hypothesis, (M, n) has the type-functorY (if

0(f) = O)or rfn1 (otherwise), so that ([L, (M; n)]; m) has the type-functorrRc(fn)gm"1,
which is equal, by paragraph B.l, to rRcfgmn\ if 0(f) > 0; and 'RCfgm'1 otherwise. But

this is by definition equal to the type-functor of (([L, M]; m); n).:
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2.10 By the conditions for ApMNm to be well-formed, together with the hypothesis of the

induction we are making, (M; n) and (N; n) have the type-functors rRLfg(m+l)n1 and

rRc(gO)(A.x.gx')mn respectively, provided that 0(f)-0(g) > 1. These are equal to

rRL(fn)(A,x.g*x)(m+l)1 and rRc(g*0)(Xx.g:|'x')in' (where g* is defined to be Xy.gyn)

respectively, so that Ap(M; n)(N; n)m has the type-functorrfn1, where 0(f) > 0, andV
otherwise.

2.11 By the condition for Rq^jXy.M, N, m] to be well-formed, together with the
induction hypothesis, (Xv.M; n) and (N; n) have the type-fuctors rfvn rfy'n1 and

rfOnl respectively, so long as 0(f) > 1 - the case where 0(f) = 1 is actually simpler. These

type-functors are equal torf*y"f*y'n and f*0 respectively, where f* is defined like g*

above. But that being so, Rrf*yi[()iv.M; n), (N; n), m] is well-formed and has the type-
functor rf*m\ which is equal to rfmn\ which is precisely the type-functor that we wanted

(Rrfyi[^v.M, N, m]; n) to have.

Now we can get around to stating which terms are redexes and how they are contracted.

The following sub-paragraphs correspond, again, to the various sub-paragraphs of B.4.2.

2.3. MN is a redex if and only ifM is a term formed by X-abstraction, say .P. In

that case, N will have type-functor f"! The contractum ofMN is formed by taking P and

substituting N for X^1, wherever that variable occurs in P or in its type-functor.
2.4, 6, 7: Terms which have primitive recursion or decoding as the last stage in their

construction are contracted under the same conditions, and in the same way, as similar

terms of HAco. The only difference is that whereas the rules for the latter were stated

using metamathematical variables ranging over types, variables ranging over type-functors

must now be read in their place.
0,1 r,i

2.8. ([XX* .M]; m) is only a redex if m is 0 or a successor, say n'. ([XX^ .M]; 0)
contracts to M. ([XX^ .M]; n') contracts to X(X*|; ml([XXa .M]; n).

j J J

2.9. ([L, M]; m) is only a redex if either m is 0 or m is a successor, say n'. In the first

case it contracts to M, in the second to {(L; n), ([L, M]; n)}.

2.10. Ap(M)(N)m is a redex if and only if m is 0 or a successor. If 0, it contracts to MN.



If a successor, say n', it contracts to Ap(MNo)Nin.

2.11. If n is 0 then Rffv'1[^v.M, N, n] contracts to N. If n is a successor, say p', it

contracts to (Xv.M)p(Rrj;y [Xv.M, N, p]).

Theorem 2.2. Every contractual of a redex is itself a well-formed term and has a type-

functor equal to that of the redex.

Proof: The theorem can only be proved by going through the rules for the formation of

term-forms one-by-one and comparing them with the contraction-rules. I shall omit the

treatment of some of the simpler cases.

2.3. We have stipulated that (XX^ ,M)N shall have the type-functor which is got from the
type-functor ofM by substituting N for xj\ wherever occurs in M. It is necessary to
prove thatM[Xt :=N] will have the same type-functor. I distinguish two cases,

according as X'f7 does or does not occur within the type-functor ofM. If it does not, the

theorem obviously holds. If it does, we have to do an induction on the number of

operations in the construction of M. The only non-vacuous basis case is where M is a

variable. Obviously, M cannot itself be X^ , so the only change that has to be made will
be in the type-functor (and possibly the shape-functor) of M.

Remark: We see now why the rule for determining the type-functor of terms of the form

LN in TF is so much more complicated than the corresponding rule for HAco. The

problematic case is where L has the form (Xx.M) and x occurs in the type-functor of M.

Then substituting N for x will change that type-functor, so we cannot simply stipulate that

LN shall have the same type-functor as M, or this theorem would not hold.

2.8. ([Xxf .M]; 0) will have type-functor Y1, where Vis the type-functor of M.
.J

([XX^.M]; n') has a type-functor equal to rgn r(RLfgn)7, precisely the type-functor of
X(X; n).([XX^M]; n).



It is clear that ([XX^.M]; n") reduces to XX^ .XX^ .([XX*.M]; n), to give an

example. It is perfectly possible that the type-functors rf7n' and rf1n compute to the same

type-functor, in which case, by our stipulation that a variable may only be lambda-bound

once, we are in danger of transgressing the limits of well-formedness. However this can

be avoided by ensuring that, when the two type-functors are equal, the shape-functors hn'

and hn shall be nonequal.

2.9. ([M, N]; 0) has type-functor tRcgfl0, where tf1 and rg"' are the type-functors of M and

N respectively; but this computes to rg', while the term-form contracts to M.

([M, N]; n') has type-functor 'RcgfV, which reduces to rfn xr(Rcgf)i? , but the latter is

also the type-functor of {(M; n), ([M, N]; n)} (we use theorem 2.1 at this point).

2.10. By the condition for ApMNO to be well-formed, M and N must have the type-

functorsrRLfgf and rRc(g0)(Xx.gx')0_l respectively. These reduce to 1 gOY and rg(f
respectively, so that MN has the type-functor rf7. But this is exactly what we stipulated

ApMNO would reduce to.

To treat terms of the shape of ApMNn', let n be formed by k applications of the

successor operation to a term, say j, which is not a successor. We now do an induction on

k. By our stipulations, M and N have type-functors equal to rgn'TRLfgnr' and
rgrfx rRc(gO)(Xx.gx')1 n. The contractum of ApMN(n') is the result of operation 4.2.10

on M(No), Ni and n. The first of these term-forms obviously has type-functor rRLfgV
while the second has 'R^gOXXx-gx')1 n. But by definition of operation 4.2.10, the result

of the operation on these two term-forms has the required type-functor.

6. Mathematical Axioms of TF,

These are generated by precisely the same schemata as the axioms of HAco, but they apply,

of course, to a wider class of terms.

Now that the concept of reduction has been defined for terms of TF, it is time to prove

the following important theorem.

Theorem 2.3 (Church-Rosser property); Let M be a term that reduces to both P and R.
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Then there is another term which can be obtained from both P and R by reductions and a-

conversions.

Proof:- We proceed by induction on the sum of the number of contractions used to get P

from M and the number of contractions used to get R from M respectively, taking as the

basis the first non-trivial case, namely, where this number is 2. The induction-step of the

proof can be dealt with very easily, using standard methods (e.g. Curry and Feys 1958,

pp. 110-115). The difficult part of the proof is the basis.

Let Q be the sub-term ofM that is contracted to get P and let N be the sub-term ofM

that is contracted to get R. Since there may be more than one occurrence of either Q or N

in M, we shall call the occurrences that are contracted Q and N respectively. Following

Curry and Feys (ibid., pp. 113-116), we define what it is for an (occurrence of a) subterm

of P to be a residual of N.

(1) If N is identical to Q, there is no residual of N in P.

(2) If N is not a component of Q nor Q a component of N, there will be an occurrence of a

term-form identical to N in P, at a similar position to that of N in M, and it will be the

residual of N in P.

(3) If Q is a component of N, the residual of N in P is the component of P got from N by

replacing Q within it with its contractum.

(4) We now treat the case where N is a component of Q, dividing this case according to

what was the last operation in the construction of Q.

4.2.3. Let Q be KL; then K was formed by lambda-binding some variable with respect to

some term. Let the occurrences of K and L in Q be called K and L respectively. Then the

contractum of Q will contain any number of occurrences of L; let these be called Li, L2,..

If N was in L, there will be corresponding occurrences of N in each of Li, L2,... and all

these occurrences will be residuals of N in P. If N was in K, N will occur at a

corresponding position in the contractum of Q and that occurrence of N will be the residual

of N.

4.2.4. If Q is p[K, L, s], then, if r is 0, N has a residual in the contractum of Q only if it



occurs in L. If it does, the residual is the occurrence corresponding to N. If Q contracts to

K(s1l)p[K, L, s-1], then the residual of N is the occurrence within both occurrences of K

resp. the occurrence of L that corresponds to N within K, resp. L, within Q.

These definitions ought to give the reader a general idea of what a residual is. The one

further clause in the definition of "residual" to which I feel I had better draw attention is the

one dealing with the case where Q is a redex formed by operation 2.9. In that case, if Q is

([L, M]; m') and N occurs within L, then the a residual of N in the contractum of Q occurs

not only in L but also in (L; m).

To prove the basis of the theorem, it is necessary to show that it makes no difference

whether you first contract Q and then the residuals of N in P, or whether you first contract

N and then the residuals of Q in R. The cases where Q and N either coincide or are totally

disjoint are easily dealt with; it is the other two cases which are difficult. They are,

however, totally symmetrical, so it suffices to consider the case where N is a proper

subterm of Q.

We run through the various possibilities as to what was the final operation in the

construction of Q. The following sub-paragraphs are numbered like the sub-paragraphs of

section 4.

2.3. Q is (AX.K)L. This is the most difficult case. I distinguish two sub-cases: (a) N

occurs within K; (b) N occurs within L.. In treating both cases, I assume that De¬

conversions have been carried out to ensure that none of the bound variables in K concides

with a free variable in L.

(a) Q contracts to K[X:=L] and the residual of N in this term is N[X:=L], On the other

hand, if we contracted N first and if its contractum be called N*, the result of contracting

the result of that reduction, namely (?iX.K[N:=N*])L will be K[N:=N*][X:=L], In the

other case, the result of the second contraction is K[X:=L][N[X:=L];=(N[X:=L])*], where

the asterisk after the name of a redex again shows that we are talking about the contractum

of that redex. Since the respective terms that we are now considering differ, if at all, only
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in that in the one N*[X:=L] occurs where, in the other, (N[X:=L])* occurs, it suffices if

we can show that these two symbols in fact denote the same term, modulo a-conversions.

It is now necessary to consider the form of N; either N is of the shape (AY.S)T or it is

not. I again assume that none of the bound variables in S coincides with a free variable in

T. If it is not, then it must be a rcdex formed by one of operations 2.4 - 2.11, and my

treatment of the cases where Q is of one of these forms will show that Q*[X:=L] is indeed

identical to (Q[X:=L])*. For the moment, therefore, I shall only consider the other

possibility. N* is S[Y:=T] so that N*[X:=L] is S[Y:=T][X:=L]while (N[X:=L])* is

S [ X:=L] [Y:=T[X:=L] ].

The part of the proof currently in hand consists in showing that S[Y:=T][X:=L] is

identical to S[X:=L][Y:=T[X:=L]], at least modulo a-conversions. We do it by induction

on the number of steps in the construction of S. If S is 0 or a variable other than X or Y,

the statement obviously holds. If S is X or Y, the two expressions above either both

denote L or both denote T[X:=L],

For the induction-step, let us suppose that S is formed by operation O from immediate

sub-terms Sj,.... Sn. Then, according to the obvious recursive definition of

replacement, S[Y:=T][X:=L] denotes 0(S1[Y:=T][X:=L],...Sn[Y:=T][X:=L]) while

S[X:=L][Y:=T[X:=L]] denotes 0(S1[X:=L][Y:=T[X:=L|J,...Sn[X:=L][Y:=T[X:=L]]).

But the induction-hypothesis says that these two expressions denote exactly the same term.

(b) Q contracts to K[X:=L] and the further contraction of the residuals of N carries us to

K[:=L][S:=S*], where "S" denotes all the residuals of N. Since these residuals all occur

within L, it can be easily shown by induction on the construction of K that this is

equivalent to K[X:=L[S:=S*]].

2.4 - 2.11. When Q is of one of these forms, the theorm can be established much more

simply, as the process of contracting Q can be described without reference to any such

complicated operation as substitution.

For this stage of the proof it is essential to note that, with most of the reduction-rules, if
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Q is formed by a sequence of operations O from sub-terms Q\, ■ ■ ■ Qn, then the
contractuin of Q is formed by a different sequence of operations, say Oj, from at most the

sub-terms Qj,... Qn. The only exceptions to Uiis generalisation are where Q is formed

by operation 4.2.8 or 4.2.9, because in these cases its contractum will include a sub-term

of the shape (Q,; n), which is not a sub-term of Q. I will leave these cases till last.

Let Q be formed by O from subterms Qt,... Qn, so that we may describe it as

0(Qi,... Qn). Let Q" be tire redex obtained from Q by replacing N therein with some

variable not occurring in Q, say Z — Q~ must be a redex because N cannot be 0 or a

successor. Q" may now be described as 0(Q„ ... Q£) (in fact, this is the obvious way of

defining "the result of replacing N in Q with Z"). Since the relation "Xuz.x is obtained

from y by replacement of u by z" is transitive, the term obtained from Q by contracting N

within it is identical to Q"[Z:=N*]. Similarly, Q* is identical to Q"*[Z:=NJ. This is

because the same rule holds for the contraction of 0(Q,,... Qj) as for 0(Q1;... Qn); that

is, these two terms are composed out of their respective subterms by the same sequence of

operations. Let us therefore call them O^QI",... Qa> and O^Q^ ... Qn) respectively. In

virtue of the definition of replacement, Q~*[Z:=N] is identical to Oi(Qj [Z:=N],... Qn
[Z:=N]), is identical to O^Qj,... Qn), is identical to Q*. But that was the claim just

made.

Now (Q|N:=N*])*, that is, the result of contracting N within Q and then contracting the

result, is identical to (Q~[Z:=N*])*, is identical to (Q!(Q7[Z:=N*],... Qn[Z:=N*]). But

in view of the above, this is obviously equivalent to O^Qj,. . . Qn)[N:=N*].

Let us finally consider the case where Q is formed by operation 4.2.8 or 4.2.9. We can

ignore the former, however, because if it has the shape ([XX.M]; n') N necessarily occurs

in M and not in X. If Q has the shape ([L, M]; n') and N occurs in L, then the main thing

required is to prove that (L[N:=N*]; n) is identical to (L; n)[N':=N'*j, where N' is the

residual of N in (L; n).

7. Logical Rules.

The logic is the same as for HAto but without quantifiers. This means that the succedent



position of a sequent may contain any number of formulae of any kind.

For heuristic purposes, it is sometimes useful to imagine a theory got by adding to HAco

the the mathematical axioms of TF or, alternatively, adding to TF the quantificational rules

of HAco as well (if we like) the rules peculiar to HAco+. Such a theory might be called

HAco+TF. But since I will not use it actually to prove anything, it seems unnecessary to

formulate it exactly. For some purposes, I shall even be considering a theory which is like

HAco+TF, but in which formulae may be infinitely long.

8. Induction.

The induction-rule, of course, is also a rule of TF, but I have decided to formulate it

differently from the induction-rule of HAco. I am interested in the former theory on

account of the initial cases of transfinite induction which may, and which may not, be

proved valid in her. It is therefore necessary to suppose that she contain terms denoting

transfinite ordinal numbers. It would be possible, but laborious, to select a subset of the

closed terms already defined and state which numbers they are to stand for. It is more

convenient simply to stipulate that new closed terms shall be added to the theory, to denote

all transfinite numbers smaller than Eo. These terms will be denoted by the usual symbols

for transfinite ordinal numbers below eo, in Cantor Normal Form. Axioms of number

governing these terms must also be added. Addition, multiplication and ordering among

transfinite numbers shall be indicated by the same symbols as for natural numbers. For

every term k, C0k shall compute as follows: co0 is equal to co° and C0n+i is equal to CO0311.

Like Gentzen (1943, p. 142), I think this expansion of the set of terms is justified by the

fact that not only the ordinal numbers smaller than eo but also the functions of addition,

multiplication and exponentiation upon them may be coded by natural numbers and

(primitive recursive) functions of natural numbers. This expansion of the language I am

using means that ordinary induction must now be viewed as an initial case of transfinite

induction: that is, we add the formula t < CO to the antecedent of the conclusion of an

induction.



Remark: This completes the definition of TF.

C. Some Important Properties of TF

1. Theorems on Equality.

Theorem 2.3. Every instance of the schema

s = t, F, T —> A, F[s: -t]

is provable in TF.

Proof: by induction on the number of logical symbols in F. The basis is the case where F

is an equation, say q = r. Then we prove s =t, q = r —» q[s:=t] = r[s:=t] by the following

derivation:

1/ s = t —> q[s:=s] = q[s:=t] axiom on equality

2/ s = t —» q[s:=t] = q 1, axiom on equality, cut

3/ q[s:=t] = q, q = r —> q[s:=t] = r axiom on equality

4/ s = t —> r = r[s:=t] axiom on equality

5/ q[s:=t] = r, r = r[s:=t] —> q[s:=t] = r[s:=t] axiom on equality

6/ q[s:=t] = q, q = r, r = r[s:=t] —» q[s:=t] = r[s:=t] 3, 5, cut

7/ s = t, q = r, r = r[s:=t] —> q[s:=t] = r[s:=t] 2, 6, cut

8/ r = r[s:=t], s = t, q = r —» q[s:=t] = r[s:=t] 7, interchanges

9/ s = t, s = t, q = r —> q[s:=t] = r[s:=t] 4, 8, cut

As for the induction-step, let Fi, F2 be the subformulae of F that are joined by the main

connective: then, if the theorem holds for Fi and F2, the sequent we want can be derived

by introduction-rules and structural inferences.

Remark: This theorem gives us in effect a new rule of inference. If some sequent of the



shape T —> A, s = t is provable, as is another of the shape A —> 0, F, then T, A —» A, 0,

F[s:=t] will also be. I shall therefore use the annotation 'theorem 2.3' whenever I have

two sequents of the former shapes, to justify deriving one of the latter shape.

Theorem 2.3 does not enable us to replace a term occurring in F if that term has a type-

functor other than o. But the following theorem does:

Theorem 2.4: Every sequent of the shape

Mto N, F, T —> A, F[M:=N]

is provable in TF.

Proof: Let M and N have the type-functor T. Then "Mt^N" denotes the formula
V V

X 1 °M = X 1 °N. I shall treat first the case where F is s = t. IfM does not occur in either

s or t, the theorm is vacuously true. Suppose now that M occurs in s. Let Y be a variable

having the same type-functor as M; then (XY.s[M:=Y) will have the type-functor T<o.

Furthermore,

Xrf1°M = X f1°N -> (^XrfVxrf1°M)(XY.s[M:=Y]) = (XXf\x'f1°N)(XY.s[M:=Y])

is an instance of the fourth axiom-schema on equality. Plainly

(XX f °.X f °M)(XY.s[M:=Y]) reduces in two steps to s while

(XX f °.X f °N)(XY.s[M:=Y]) reduces in the same number of steps to s[M:=N]. So from

two axioms of reduction, together with the sequent written above, by a number of axioms

on equality and structural inferences, we get the sequent

M N, s = t, T —> A, s[M:=N] = t.

By a repetition of the same argument we get

MWN,s = t,T —» A, s[M:=N] = t[M:=N],

which is theorem 2.4 for the case where F is an equation. The induction-step proceeds as

for theorem 2.3.

4-H-



Remark: We now have another new rule of inference, of which the following is a special

case: if T —» A, F is provable and ifM reduces to N, then T —» A, F[M:=N] is provable.

I shall now give an example of a derivation in TF, which makes extensive use of theorem

2.4. For the definition of the type-functor f, I must refer forward to the beginning of

chapter 5. The sequent which I shall prove will be used extensively in chapter 5, in

particular, as a premiss for applications of theorem 2.4. That sequent is

(Lx^- jx*.
-X ILXm.JC' x, '];ewi

Proof: We derive the sequent written above by induction from two premisses, of which the

basis is

\k

and the induction-step is derived as follows:

X [l XaX.^ +3^^
r '.tfv+qefv-hj-u ~t~' /_

LXva ° (\ yto.rf(*<'0e(*+0-x' ■ -y>n3
; Ax. jt' J^+VXJ-'C+I

- X ^y+s+o; /r
U Xxx.^j +q + o;

IV 4V ,lLXta-*' .OvlH

J

So-tK of "the last two cow be bj fab/w fh.e
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or. koths.VUs of 0* e^wt.'0A5 oaA mWocj th«v, E»
PtfrPlrii. -fofAl .

c(4f</«)erv/v0)(^-f^efv/v0'x')fa+'!,+2"^/r(L. Ax ^

9 / y7 X

£ ^ ^xx.cff^)e^tt)-*/'' 2.'

fiz(f(v+>Je(vH)j(/r r
^I L Aaa.U+^+x , c A^3

■Vl"~
J

-X
^A«-U

z

1-ftH
/

rA

~z'Jr /^-Hve<v+-0-^-
* X

lXy4lv+z
^

(i x^T"'e(v"]'x'\ x7'"k"HVi
y+))Y)' Z'J~\ - ,^^^H;ervv,))^^)«(v+,)-y'X^34 7.^JX

dXa+^t ^XJt3 J
A*.*'

,

2 )?
fhiww i.if

~bf ^ fM-ffv+ijefvvi)^-X- ^f^+3> + "2- X/r
3a.cf(v-t-0e<v+ij-^-

^ X
1L X^j,^^4^

r^V+ij e(V>.}
0

X

r C ■f^Oe^O-^-l' /j- to.^Jefrf.5-^' '^Xv^ + 3 j C*y.+a JLAAX.X-
-■ •

, A<

/- r^fv+iJe(V-Hj"" M~ H- "Z."1 fr - A^c.A^rv*-»^eCvP+ ij ~ H- - X° r -^cfvtO-j-2LA^^t , (LXjVx.vj + 1***
, £ Xj + 3
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OXi'ov^ 0£ ^o'JJcb'J'"'

u*:r^-i\(i x*rh<^, rt,"),];^)j]i 2^7
" *

I Kjt^x
r yx*-rf^)«/"-o-;j-3-x' r r*^><v*) • ^ -»LAw.y3+j< £ ^j4"^ " (£ ^XxSi(^yil^)-^''n
x?"*"^±v0l};z+0? . ...O ^OXlOr^ <0^ yT(XU.G'A",0ri

V a.We.vt cf x
sfv+0

AL/W.*'
^ X; J^vjiJ, Z+iJ po

/r KSf(v+0#««)^-*~*r Syyv+OW+O'^-Z1 ,, MSJf(«+,)<>('+0-*'~'I L A-Ax.vj+V^ y ,(La^.oc'
"^v^ijefvn)'7 7. -y^-. ->.Xo j, y+vjJ.: 2-ti j

-fro- 2,3, t U two o^Ucdjb'O^i 0Jj. thcorw 1.M-

6/ -h> (Lx^w J , lXj„ J ,11-
xMi- J-y+vij^+v *
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(u-»r-»-,x?'-. ■•);r®1; ) ^
L ^Z(^\)¥l , { L A^.^t-i+ot
^.tfc^)e(v«px' Jji^M-znY •X-Aa.X'

j ' x<3 ^Ji-J.J+Vi W

**"*'
, X* J ",

v>„)e(,n,^(aTg . 1

r-$(V-nJe(vW)~j- 1
1

yvwo^+v-i-' r
V„tlewn^-*~' /f2-Ca+/z-7+^ - c\^+t>i ((L

tr{vrx)t(^yy ■**"*''
' J ) Z(^j+!)-!'?_J ^ih£Of«i^ iZ.Lf

«•*
, XV ];i(j+z)+z) IX?

c zC^Zj-z'1 rex««.. .5<:r",,3",",)(L
v/AA.^rv+t^efvf,; ;_*/ n
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2. Theorems on Combinatory Completeness.

Traditionally (Curry and Feys 1958, pp.5 and 186f.; Barendregt 1981, p.30f.) a theory T

is said to be "combinatorially complete" if it possesses the following property: for every
term M of T and every sequenceNj,... Nm of terms, there is a term of T, say Q,

containing none of Nj,. .. Nm, so that QNj ... Nm is equal within T to M.

It is obvious that TF is combinatorially complete in this sense. A more interesting

question is whether we can find a generalisation of the property just defined so that TF, in

contrast to HAco, will be combinatorially complete in the stronger sense as well. I have

come up with the following: let N be made up of the componentsNj,... N^, combined

by means of operations 4.2.5 and 4.2.10. Let M be a term in which all occurrences ofNl,

... Nk that occurred within N as the left component of a sub-term formed by operation

4.2.10 also occur in this context. Then there is a term of TF, which we might as well call

Q, in which none ofNj,... occur, so that QN is equal within TF to M.

Why do I call this property "combinatory completeness"? TF is meant to be a

generalisation of qf.-HAco in the sense that properties which can be established in the latter

theory for finitely long sequences of objects — the objects denoted by its closed terms —

can now be shown to hold of some infinite sequences. Operation 4.2.10 is one of the

operations by which we can construct terms that can be used to express properties of

infintely long sequences. For ([M, N]; v) is a term which, whenever a numeral, say

OLccris substituted for v, reduces to a sequence having k+1 components, combined by k
K.

applications of the pairing operation, 4.2.5. Thus it is reasonable to think that ([M, N]; v)

is a term which can be used to express generalisations about all such sequences.

In the same way the term N, mentioned in the paragraph before the last, may "describe"

(to use a suitably vague word) an infinitely long sequence. The terms N},... 1% may

therefore be taken to describe either individual members or sub-sequences of that sequence.

To prove that TF is combinatorially complete in the sense defined would, I think, be

quite a messy task. I shall therefore prove only a special case which will be important in

chapter 5. Let the term M and the variables X\,.... Xg be as described in definitions 5.3

in chapter 5. I would like to prove that, for each i so that 0 < i < 10, there is a term
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AX*"-' M so that, for each i so that i is 2, 4, 5, 7, 9, AX^ M is equal to and, for each i

so that i is 1, 3, 6 or 8 and for any K, (['AX^. M, K]; dv) is equal to ([M^ K]; dv).
I shall treat first the case where i is 2, 4, 5, 7 or 9. I shall begin by proving that

Ap([7-XgAX9.X9]; dv)([Mg, M9]; dv)dv is equal to M9.

-Vfe«-A)£,.*,l;oX£M*'K3;o)o * M,
axa'ow of rtcbtch'on

M At fCXXi'At' ];*)*
;5 <xa oxaow Of rtdjsjho^ ■ the /edMobo* clw fr0Ceeh

^8;
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do tA,

L, Q_, theorem l-t
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i/!v«?U/e<Jl, I p^5u>v\e ove ca/i <Jt£ thzcrewS Oj
-» Ap ([ tt,.«,{[M,. XXH.W', ■ (tW 6. XX, .ftVXs.AX,. X ,1;<

(dv) txl |"\; fi - lj^-,5, "7, 9 )

S2



~TKjJ.5> vA/e See Kjovv to ^ I ^ ;for C<XJ£
lA/^ L \5 1,^,5, ~7 or 9 . T<? ^kxJ^ kow "to define
it -j"cr tke ctW" eases 1 cujcu/1 becji'fl cu^ ovef-
-Sir^U-pi'eJv ye/sic^ ©t the tKex»»-^v> to be. ^foveA, */]_£- ,

I jbdiA prove thctt (\.Ap(L?J&a-X^^. h^Xcivl^
Kl;t^J li e^utt,( to (CM8, k];CW),
V

,W « K)Th"'5
,CtU1 be bu ^ucq botf, SiJ„ or f*<r*«» 6. W J for^ f e

V
.^''X^M,];*')*', k];*')

(t
K] xj]

^ ^—- -

/-Aff[«1.«,.,M„,)];o)(£„i>|t].i);o K^
OXio/^ O-j fejaujcicr)

«dua:,o,, p,ov.^ ^

S 3



occur Me — 'f ^ ^°tSy ^ee<A to ctacie cwcot^
Van'dJole. i/i ^>lo.ce_ (?p Lj.
5/ ^p(tAXrAXv(M£;^];cj)(Lhe>)i*
^ptAX^-AXi.^fi^jli^XLMg.hO^^y D<I (v\£,\x

L, 4 tWcOirew 2.,Mr
/ x<cj Ap(b\X«-Mi.Ov*}]KI (He;

3y S, l/)cLici:ioo

O,*')

a

ei^XMf (Cxx^X-,. x3l- M,V)x', KT x%
*~2.

f 6 t}^zx) few Q_. 4

&/

[X/

&•«. ■ Xi3; «'Xt 'mO;»0*'

tXXJOM 0-f i^Au-Cjfcio^

-''(LAfd'lXe^AX,, XsXa'XLMj.MjiJC'/x'^ *!.*')
i(K*), (UfN« »■*. X^,-xXCm«,MO^> , K"];*)\

^
/ S

t the.ore^> *2. .

K^;;5< ^

X



§
n>

%

X

rv

a

CA
CA

O) ft

h

wo

x-

4s

o

"4

ft

I

7T

u as

\

Co

Ook>
X

"'?

v.

*

■S

$

a

X

x£
<r —.£

Ni

«

«*o

*

I/
4

y

X

?-

ro

C_£

a

X-

f-
c

9

s
1

X

s' cT3
$

^TCx*I $£
r-drr

0^

(X

r~^V*X
"Vv_Q.
IX

o*>
? 8

-4

c
3
c

6*

X
y

<T> <X

I

'X

'H
cv>

§

£-

o>

r

x

%̂
7A

»̂

' I
<X>

r

p

%•

l-

x

o 3

V

?>

rr, \3

X

>j>

IX
Cte

IX
IX CSQ I)

.V

CO

X

y

ZL

V..
%

X

t_J
V.•
* £

l—*
X

CO
X

Cs

y

m
o
§ >

!° -f

E

yx

£"=>

X

X

■>

,s
>x

oo

X

oo ~z

x
N

X

r-P
>

—o "rX

I§•
Xs

Oo

<> ^—' Z?

Oo

y

_c

X

X

X

X

X

0
1

<0

-h

3
e>

3

I

CO

y
X

\

r^w, 1? o>

X

c

XT
X

I^O

J\

1

j"

CO

g?x
pXX a*-

1

(°

y
s-

4
a>

V-

p
* ~£>

X Lr-\J



I would now like to prove a theorem which is, approximately speaking, converse to the last

one. Whereas the last theorem showed that it is possible to construct a term which, applied

to a term formed from components N^,... by operations 4.2.5 and 4.2.10, splits that

term up into its components, the theorem now in question shows that, when we have a

term constructed in the way described, it is possible to form another term equal to it, but

which is formed by means of just one application of operation 4.2.10. That is, I shall

prove that, for every M, N and P of type-functors f { , rf2 , and rg\ there is a term Q so

that

—»([M, (N, P];u)];v)m([Q, P]; u+v)

is

—>

-

IX]

S.ciex

provable. Q will have a type-functor 'f1 where x < u —> fx = f2x and u <x < v

► fx = f}x are provable in HAco.

We define Q to be Ap([Xxt „ .X,^ ]; u+v)([M, ([N, P]; u)]; v)(u+v) and construct the

following derivation:

f];c) ix7 P
. (l-Aj'o) ; 1 tku cosi be pcov/ejv re<lua>cj both

Co "their f\OfCA cL \

/*<*-»fifdxc-L. ;
Mto. The
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tke fhe ecyjJLfciof) be w
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3. Remarks on Substitution.

I must begin by defining substitution. In the first place, it should be recalled that I identify

variables whose type- and shape-functors are equal. Thus if —» e = f and -» g = h are

rpi rv-1
provable in HAco, we may always write "X^" in place of "X*this is merely replacing
one name for a variable with another name for the same variable.

The obvious definition of substitution is as follows: the result of substituting N for X

in M, which I shall denote by "M[X^1;=N]", assuming that X^ is free in M and that it has
the same type-functor as N, is N ifM is X^ ; ifM is 0 or a variable with a shape-functor
which is not equal to g, it is M itself. These are the cases where M is a primitive term. If

M is formed by an operation from components Pj,... Pj^, then M[X^ :=N] is the result
rr" V

of the same operation on ?l[X^ :=N],... Pk[Xj :=N],
In practice it is desirable to modify this definition somewhat. Following Curry and Feys

(1958, p.94) I would like to define substitution so that no free variable within N becomes bound
r i r>"»

when the substitution is made. So ifM is AX£ .Q, for some e, h and Q, then M[X£ :=N] is
'e1 r<€ V v-1

defined to be AX^ -Q[XK :=X^ ][X^ :=N], where d is the first shape-functor in some
rV

enumeration of the shape-functors so that X j, does not occur free in either Q or N. This enables
us to state without qualification that, where —» P = Q is an axiom of reduction in which Q is

obtained from P or vice versa by one Ap-conversion, the result of substituting something for

some variable occurring in P and Q is still an axiom.

I would now like to formulate a substitution-rule, that is, a statement of the conditions under

which it is possible to substitute something for a variable occurring in a statement provable in

TF and get another statement which is also provable in TF. First I need a definition of

substitution within a formula, though this is easier than defining substitution within a term. If

the formula is an equation, substitution of such-and-such a term (of the same type-functor) for

such-and-such a variable is substitution of it for the variable in both sides of the equation. If the

formula is complex, substitution is defined in the obvious recursive way.

It is now necessary to work through the axioms and rules of inference in order to see

whether provability is always preserved under substitution. In fact it is not, unless we import

some restrictions into our definition of substitution. Consider the following axiom of reduction,

5?



featuring a redex formed by operation 4.2.9:

j //Jixi t^\(l Xe
In this case it is obviously not possible to substitute an arbitrary term for the variable (X ^ ; m)0

rf1
and another arbitrary term for the variable X ^ and get a sequent which is still an axiom of TF
— indeed, I doubt if it is possible in this way to get a sequent which is provable in TF at all. The

solution is to observie that the first variable is in a sense derived from the second and what we

substitute for the first must be constrained by what we substitute for the second. I would

therefore state the substitution-rule as follows: if Z has either a type- or a shape-functor whose

order is greater than 0, and another variable, Y, occurs in the statement in which the substitution

is being made which is identical to (Z; m) for some m, and N is the term which is being

substituted for Z, then (N; m) must be substituted for Y in the same statement. Similarly, if we

want to make a substitution for Y and Y is identical to (Z; m) for any m and for any Z occurring

in the same statement, then we must make an appropriate substitution for Z. It is clear that if

substitution is defined in this way, axioms of reduction of the kind considered above are closed

under it.

Axioms of reduction in which at least one of the redexes contracted is formed by operationi

4.2.9 are the only kind of axiom that consists in an equation in which a variable can occur on

one side but not on the other. All the others are closed under substitution because the syntactic

variables used in stating the contraction-rules range over arbitrary terms and terms which are

identical continue to be so if we make a uniform substitution for variables occurring within

them.

We must now consider rules of inference. The logical rules of inference preserve provability

under substitution in the following sense: if we make a substitution in the conclusion of a rule,

that conclusion continues to be provable so long as we make appropriate substitutions in the

premisses. This follows from the way the logical rules (which in TF are all propositional) are

stated, together with the definition of substitution in formulae.

In the case of the induction-rule, it is obviously correct to substitute anything for a variable in

the conclusion that occupies the place of the eigenvariable in the premisses, just so long as the
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result is well-formed.

It is not clear to me whether it is effectively possible to decide whether any given proposed

substitution is legitimate or not in TF. This does not matter for my purposes, though. It is

essential only that, whenever I make a substitution in the proofs following, it is possible to

check that there are no variables which I ought to have replaced and have not.

61



CHAPTER 3

PRELIMINARY SKETCH OF OUR PROOF OF THE ACCESSIBILITY OF e0

The argument of this thesis is complicated and some readers of the following chapters may

feel, on account of the multitude and complexity of the trees, that they have well and truly

lost sight of the wood. To minimise this feeling, I shall summarise here what I am going to

do. Through chapters 4 and 5 I shall be working towards the conclusion that the

accessibility of eo can be proved in TF. Chapter 6 is devoted to proving a complementary

result and does not require a knowledge of the intervening chapters. At this point,

therefore, I shall merely give an outline of how our proof of the accessibility of eo is going

to proceed.

The proof bears some resemblance to the proof of Bemays and Gentzen discussed in

chapter 1. That proof uses intuitionist second-order number theory with one application of

the He-comprehension rule and one application of the induction-rule to a ni-formula. I

have already defined what I mean by a functional interpretation of a statement (in so far as it

is in 3V-form) and by a functional interpretation of a theory. It follows from these

definitions that, if you have a proof of a sequent in 3V-form in some theory, you can get a

functional interpretation of that sequent by producing a functional interpretation of the entire

theory. This is a task which I hope to accomplish one day but in the meantime I have

concentrated only on producing a functional interpretation of a particular sequent, which

will be exhibited shortly. Whether or not this is a simpler task than producing a functional

interpretation of the whole theory I do not know. My original reason for concentrating on a

single statement rather than an entire theory was that I conjectured that this task might

require a weaker theory, in ordinal-theoretic terms, than any that could be used to interpret

the whole of that sub-system of second-order number theory which has just been specified.

The fact that I do not know the answer to either of these questions makes it urgent to

enquire whether that theory can be interpreted in TF or in a slight extension thereof. The

task I have undertaken in this thesis should at least make good practice for an assault on

those problems.
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At this point I will sketch a proof of the accessibility of Eq in a theory which I call

HA". I will begin by explaining how the theory HA" is derived from HA. Let us add to

the objects of HA a new category of objects called one-place complex predicates. Each

such object is the result of an operation upon a formula and a variable that occurs free in

that formula. The result of the operation is denoted by sticking 'XV, where v is the free

variable in question, in front of the name of the formula. We now postulate that it is

possible to apply a one-place predicate to a term of type o to get a formula; this is indicated

just like application of terms to terms. Each such formula may be contracted, just like the

result of applying a A.-term to a suitable argument, and the contractum is again a formula.

Let X be a variable replaceable by one-place predicates and let us add X to the language of

It is well-known that, in the theory so obtained, the validity of transfinite induction up to

any number smaller than £q is provable. In the proofs of this statement, the formula

may play an important role. The exact structure of the proofs suggest a method by which

we may prove the validity of transfinite induction up to £o itself, in an extension ofHA.

Let us introduce a new predicate, Xv.£(v, z), in the context of the following pair of

axioms:

In reading these axioms, we should take it that, for any one-place predicate F, £(F, z) is
the result of substituting F for X in cC(X, z).

I shall call the theory that is obtained by adding those axioms to HA HA'.

I take the validity of transfinite induction up to the ordinal number denoted by t to be

expressed by the sequent

HA.

£> (X, z), defined as follows:
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X(-2.):o\ XOj)) ^ K(-t )
of which I shall abbreviate the antecedent to 'Prog(X)'. In HA, one can prove

Pro^fXj (^'b (Xj tS) (] ^
the latter formula being the result of replacing X in Prog(X) with A,z.S<X, z). Therefore

one can prove

Procj.cLz J) —-> Proc^A/2_.jb j/WXp.v^ z)y (Z^)
in HA'. The succedent of this last sequent is equivalent to ProgXz.oCfu', z)). Using (1)

and (2) as the premisses of an induction, one gets

Psc^X) —> Procj ^3 J
and, applying transfinite induction up to co+1 to the predicate Xz.jC (u, z),

P'Ocj fX J —=» cC (Us -b I J (£ )
Anyone familiar with the properties of the predicate XzX(X, z) will know how to derive

from this last sequent

Prctfj fx) —> Vu, )
in HA'.

Unlike HA', TF contains no predicate variables, but the sequent I described as asserting

that transfinite induction up to eo is valid contains the predicate-variable X. It is necessary,

therefore, to consider which sequent of TF it is that we want to prove. I shall concentrate

on proving that eo is accessible, as this can be expressed in a theory which has function-

variables of type 1, but no predicate-variables, by the formula

VvX >0 z>x'(v) < x'v, ^-0dX'(vJ-^:X'(}<eo-2.%.Xu- 0
which says, translated into English:
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X1 is a function which enumerates a strictly decreasing sequence of

numbers:z>: the first term of the sequence enumerated by X1 is smaller than eo

.10. at some point, X1 has the value 0.

Let us abbreviate the formula to Acc(eo). Then, since Prog(A,z.Acc(z)) is easily provable in

HA, we may substitute the predicate Xz.Acc(z) for the predicate-variable X and get a proof

of the sequent

—* f\cc (£o )

in a theory which is obtained from HA' by replacing the variable X, in the axioms peculiar

to HA', with the predicate ^z.Acc(z). I shall call the resulting theory HA" and the

predicate that is introduced by the new pair of axioms XvX*(v, z).

It is well-known (Yasugi 1963, p. 106) that every sequent of HAco is deductively

equivalent, within HAco+, to a sequent in 3V-form. When I speak of the 3V-form of a

sequent in the language of HAco, I therefore mean the sequent got by the procedure she

describes. The 3V-form of —>Acc(eo) is

W'£vfXv) d v((&v)/)<
V(xv)-Q o v((wj')z0 :3:(vo<£0 ^ V(yv]- oj]
By a functional interpretation of this sequent in TF, we therefore mean a proof in TF of

some sequent of the form

^(v'(W'J >o DV'ffvv'X^VYiw').^ VYK/V'J - o o

Xfwv')')= G),?. (v'c<e„ d V'(M') - o}
for some M and N which are terms of TF, both of type lo, in which V1 does not occur.

The task of chapters 4 and 5 is to find terms M and N with the relevant properties and a

proof in TF of some sequent of the form just presented. I shall call the last sequent

—>Acc'(eo).
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I shall now give an outline how the proofwill go, emphasizing especially points of

resemblance to the proofs in HA' and HA" that I have already sketched. In the proof in

HA", the sequent which corresponds to the crucial sequent (*) will be

so the main task that faces us at this point is to see what will correspond to (**) in a proof

of -+Acc'(£o) in TF. There are no axioms in TF that resemble the axioms introducing

A,v.£(v, z) in HA' or >.v.£*(v, z) in HA". However it is clear that if, in (**), we replace

u with a numeral, the succedent formula of the resulting sequent is equivalent, within

HA", to a sequent of HA. For the numerals 1, 2, 3,... , I shall call the relevant formulae

of HA £i(co+l), £2(00+1), £3(00+1),.... Each of those formulae also has an 3V

-form, in HAco. I shall call the formulae in the latter sequence £i(co+l), £2(00+1),
£3(00+1), .... Now the sequents

can all be functionally interpreted in the quantifier-free part of HAco (hence in TF), by

proofs ending with sequents of one succedent formula. Let the succedent formulae in

—(oJ + 1 J
(w.+ l)

question, corresponding to £f(co+l), £2(00+1), £3(00+1),. .., be called £i(co+l),

£2(00+1), £3(00+1),
The situation now is as follows. Every one of the sequents

—(l, CO +1

(3, wti)
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can be derived, within HA", from —» £ *(u, co+1). Secondly, every one of the last

series of sequents is, by itself, derivable in HA without any extra axioms. Thirdly, every

one of the sequents

—»£* (t^r\)
(cj+I;

" T \ ^

is provable in the quantifier-free part of HAco. What, however, we do not yet have is a

theory which corresponds to the quantifier-free part of HAco (henceforth qf.-HAco) as HA"

corresponds to HA. That is to say, we do not yet have a theory in which we can prove a

sequent from which, just by replacing a variable with a numeral, we can get any one of the

sequents in the sequence drawn above.

I maintain that TF is — almost — the theory we are looking for. Strictly speaking,

though, the theory we are looking for does not actually exist, because each one of

oCl(co+l), £2(<d+1), £3(00+1),. . . , as well as containing different terms from all the

others, also has a more complicated propositional structure than all its predecessors.

We can overcome this problem by considering, in place of each of the formulae

aC+l(co+l), cC2(^+1), £+3(g>+1), .. -, an equation which is equivalent to it in qf.-HAco.

The left-hand term in the equation will be a characteristic term of the corresponding

formula, which contains, as subterms, all the terms which occur in the formula. The right-

hand term will be 0. Let the characteristic terms be called Xci(co+l), %,t2(co+l),

%£3(ol)+1), ... For each of the formulae in question, it is provable in qf.-HAco that a term

with the required properties exists. So now the task that faces us is to find an equation of

the shape Xc(u, co+1) = 0, provable in TF, with the property that, by substituting a numeral

for u, we get something equivalent, within TF, to any one of the equations %j:i(co+l) = 0,

XL2(co+l) = 0, XX3(co+l) = 0,

In chapter 5 I shall present some discussion of the heuristic considerations that led to me

picking on the term I did, but the main purpose of that chapter is to prove that the term I



pick on has the required properties. The proofmight be divided into four stages. First a

matrix of terms fofYKu. z), where Y is a variable of suitable type-functor is defined. I

immediately prove that, given some suitable substitution for Y , the resulting term stands in

the required relation to the characteristic terms %xi(oo+l), X£2(oo+1), %.C3(oo+l),... The

demonstration of this occupies lemmata 5.5 and 5.6 of chapter 5.

Secondly I find a term N of TF so that —>Xc(N)(v+2, 0) = 0 is provable in TF. The

proof works by induction on v. This demonstration occupies lemmata 5.7 - 5.9.

Thirdly I prove that there is a term Q so that —>%£(Q)(v+l, co+1) = 0 is a theorem of

TF. This section of the proof uses the fact, which follows from lemma 5.6, that

x^(N)(v+2, 0) = 0 implies that the predicate Xu.(xx(P)(v+l, u) = 0) is progressive, for

some P which depends on N. With this established, I now use something like transfmite

induction up to co+1 as applied to that last predicate. In fact I use a special sort of

induction-rule, which will be justified by theorem 4.5 in the next chapter.

In both of these last two sections of the proof, the terms N, P and Q are so constituted

that every substitution of a numeral for v in Xx/QXv+1, co+l) = 0 really does yield an

equation equivalent within TF to one of a£|(co+l), £2(00+1), £3(00+1)...

It is this third section of the proof which gives us a sequent of TF which corresponds to

the sequents (*) and (**) in HA' and HA" respectively. The fourth section of the proof,

with which chapter 5 will end, consists in a derivation, from the conclusion of the third

section, of the sequent ->Acc'(oov). This is a quantifier-free proofwhich imitates the

corresponding section in the proof of -+Acc(oov) in HA".

I shall now add some remarks as to why it is reasonable to expect that a term with the

properties of Xc(u' co+l) in TF can be constructed. %£i(oo+l), Xx2(oo+1), Xx3(°o+l),...
are required to be characteristic terms of £*((0+1), £2(00+1), £^(co+l),..., while the

latter series of formulae are required to be the succedent formulae of the conclusions of

functional interpretations of £ i(co+1), £2(01+1), £3(00+1),.... Now every formula in

the last sequence will contain more quantifiers and quantifiers of an (in general) higher type

than all its predecessors. Consequently each formula in the series £*((0+1), £2(00+1),

£3(00+1),.. . , and hence each term in the series %^i(oo+l), X£-2(oo+l), Xk3(oo+1), .. . will
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contain more and more complex terms than its predecessors in the series. So can there

really be a term with the properties we want %c(u, co+1) to have?

But precisely what distinguishes the terms of TF from the terms of HAco is that the

former theory contains terms which, whenever a numeral is substituted for some variable

occurring in them, reduce to some term of HAco whose number of components and their

types depends on what numeral was substituted. In this connection, I would request the

reader to reflect again on what happens when we substitue a numeral for v in a term of the

shape ([M, N]; v).
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CHAPTER 4

CHARACTERISTIC TERMS AND INDUCTION-RULES

In this chapter I shall establish two important properties of TF. First, every formula has

a characteristic term (this notion will be defined below). Secondly, certain rules of

inference, which are related to the induction-rule, are derivable. Connoisseurs of

functional interpretations will know that, given functional interpretations of the premisses

of a contraction or an induction inference in HAco, it is a by no means trivial task to

derive from them a functional interpretation of the conclusion. Special theorems are

required, which in effect constitute derived rules of qf.-HAco. In this chapter I find

corresponding rules for TF, which is, after all, a generalisation of qf.-HAco.

Definition: For any formula F of TF, a characteristic term of F is a term %f such that all

of the following four sequents are provable:

FXf = 0

Theorem 4.1.: For every formula F of TF, let a corresponding term %F be defined as

follows: %s=t = (s -t)+(t-s); x~F = sg(%F) (sg being a term for a function that maps 0

onto 0 and any nonzero number onto 1; and sg being a term for the opposite function);

XE &E. = XF, + XF1 ;XF,v/F1 = XF.-XFZ; Xf3F,_= sg(XF,)-XFa- Then %F is a characteristic
term for F.

Proof: We prove the theorem by induction on the number of logical connectives in F.

The case where F is an equation has been treated by Schuette (pp.129-131) for equations

between terms of HAco, but in fact the proof works without further ado for terms of TF.

As an example of how to prove the induction-step, I shall consider the case where F is

7V



Fj&F2- F—>Xf, = 0 and F—>Xf,,= 0 are both obviously provable. ->0+0 = 0 is a

mathematical axiom. By two applications of theorem 2.3 to the last sequent, we get

XI- = 0, Xl\ = 0 —» XF, + XFi= 0. By two cuts (with the first two sequents as the
respective left-hand premiss) and a contraction, we get F —> XF; + XF„ = 0.

We now have to prove the converse. XF = 0, XF = 0 —> F follows from the• z

induction hypothesis by an &-introduction. XF, + XFa= 0 —> (Xf, + X^)~ XF^ = 0 -XF,
follows from theorem 2.3. From this, using two applications of theorem 2.3 and two

mathematical sequents, we get XF, + XF,= 0 —> XF(= 0- Similarly
Xf^ + XF,= 0 —> XF = 0. By two cuts, involving the last two sequents and the first one in
this paragraph, and a contraction we get xf, + XFZ= 0 —> F.

When we recall that XF > 0 is defined to be equal to ^JqOPxf = 0 and that Jo0PXF is

equal to XF> it is clear that the sequents F —> XF > 0 and XF > 0 —» -* F are derivable

from XF = 0 —> F and F —> XF = 0 respectively by a negation-introduction and

elimination and an application of theorem 2.3.

Theorem 4.2.: If F, G, T —> A is provable, where G is obtainable from F by the

replacement of certain terms in F — let us call them Mi, M2,... Mn — by Ni, N2,.. •

Nn; then there are terms D(Mi, Ni), D(M2, N2),.. . D(Mn, Nn) such that

is provable.

Proof: D(Mi, NO, for each i, is defined to be J(sgXF)(^X.NOMi, where X has the same

type-functor as Mi. Then, obviously, for each i

are provable in TF. Therefore

(1) —> F, o, fLmI - K/i)l - f
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(1) —* 1-• 3 P[rV = P(MOWJJ = G
are provable, by n applications of theorem 2f±. Now from F, G, T —> A one gets

r —> A,*»F,«"»G. But from sequent (2) above and F —> F, one can also prove F^G,

F[Mi:=D(Mi, NO] —By a cut with T —> A^F, «"G, this yields F, F,

F[Mi:=D(Mi, NO] —> A^F. By negation-introduction and a contraction, T,

F[Mj:=D(Mi, Nj)] —» A,^F. By an argument parallel to that by which we got F^G,

F[Mi:=D(Mi, NO] —» we also get <-*F, F[Mi:=D(Mi, NO] By a cut involving this and

r, F[Mj:=D(Mi, NO] —> A^F and another contraction we get the desired sequent.

Theorem 4.3: If T —» A, F, G is provable where F and G are related as in the above

theorem, then there are terms D(Mj, NO so that T —» A, F[Mi:=D(Mi, NO] is also

provable.

Proof: parallel to the proof for 4.2.

Remark: the theorems just proved are used in functionally interpreting instances of the

contraction rules.

Lemma 4.4: Let two sequents of the forms

(i j F ((I „ 7 ] j m j, o
and

) F((lAffSj)([x-J*". X,XffQ.1J(tCp'\
»), »)~ -)

respectively be provable in TF, where Ap(Q0z)([X^^-, X^]; m)m has the same type-
r,01 f ^

functor as X*0 (i.e., f 0) and Ap(Qz)([X^,,, X^ ]; m)m has the same type-functor as^ J 0

x££,. These conditions are satisfied if and only jf Q has type-functor
vJ
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orRL(A.x.fx')(?iy.fy)m+f and Q0 has type-functor orRL(fO)(tac.fx)m+l\ Thus 1 is the

order of the type-functor of Ap(Qz)([XAA^<A-, X^0 ]; m)m, as is required by our
definition of operation 4.2.10, in order that a term may be formed by it from those two

components. Under the said circumstances, the sequent

-A F f(t. x'!
is also provable in TF.

Proof: We define a term-form T(v) of type-functor lRC(fO)(Xx.fx')m>, as follows:

fl'Wax .|Kp (q(x, Af(q/« - z-JXfn, f[xw,;x];«),/
Here X is of type-functor rRC(fO)(A,x.fx')m~? We can now establish that T(s) reduces as

follows:

Tfoj- (LxZp ]; P

T|S'^ - XpQo(y-v)Xn"],r>i2)s (Tfij

[ ,Ap Q Cot - , A f> I o) ; ^

By the first theorem on combinatory completeness, there are two terms which may be

substituted for and X^c respectively in , X*g]; m) so that the result is
3 ° ' J J

equal to T(y). Upon making this substitution in (2) and applying theorem 2.4, we find
that the following sequent will be derivable:

V FffEApQiTfyjw, ApQo-2.(T^J)n^;M),
FfTUUx-

1
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which entails, by theorem 2.3

'« H

similarly by substituting in (1) we get

-» F(T(x), 0
We now make the following derivation:

€ TL(jV M (L oc "3
'o ( X - *j

X ~L h ! T P X1

o j — "2- -1 y x —

■» a-j-.i', ^

"J ~-

6, thex)\r<u^\ - Lt

)PrOv/cJjie

' ' x-> X-

"7/^, CIJT, OJ Dl

X -y-c ^ FfT^;y x^)
I, sJasti*PuX:(oo c^i J for X, tla^co^eAi 7—3

-x-jj-3. F( Df(T
tfidbic^n'on

a

x-
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i7-/ f(t(y}, x-y ~) f(t(v^x-j)
ii/ y\f P/ c^k/ cxk wi

13 / ffr^lx-j), ffrfj/x-j) o f(t(o),x)
f(t(o),a) mp|°

'v fk^x-ojo f (t(o);x)
-^(tfyl^vjo5 f(t(o"),x)

a, :3y cvct, =>l

i5/ —» f(t(o)/3(-o} 3 f(t(o),x}
theow 1.3 , cuk vs,th -^a-o-x, ^ i

lfe/ —* f(t(x), x-xj3f(t"(c>), x}
'^y 15, ulcwjrio^

-frovvi 5 oac\ '"? bjj vari'oai otavloui i/l-^erencts
Q-B.p.
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Theorem 4.5: Let two sequents of the forms

-+ F■([K (L Xflj,n) , 0) )
and

,(lAfQ(IX^'lt ft■C *11,1 ft > ")(•*+«+0,
apo, ftx"(j (L xl'+] ,«'jl («+1+1}]; ^7X11z)
F^pfc>griO;n>,*0 ft)
respectively be provable in TF. Here ApP([X™^^*/, z]; m)m has the type-functor
^x.ffm+x'^as does N. This means that the type-functor of P must be determined as

follows: let h be a primitive recursive functor so that —> hO = #o and —> hx' = f(m+x')

are provable in HAco. Then P has the type-functor TU^tac.ffm+x')!^n+1.

ApQ0([Xug^) , ([Xj, z]; m+1)]; n)(m+n+l) must have type-functor To"1, so let d be
be a functor so that —» dO = #o and —» dx' = fx are provable, then Q0 has the type-

functor rRL(fO)d~rn+n+2, because 0 , ([Xj , z]; m+1)]; n) has the type-
functor rRC(dO)(Xx.dx'j1m+n+l, as the reader may check. Similarly Q must have the

r
type-functor RL(tac.fx')d m+n+2. When the conditions described here are fulfilled, the

sequent

-* F((tS4;. (LX^ft 0
is also provable, where S(x) is defined as follows:

5(x) rdf. t\](\ j X ^
Here X has the same type-functor as N and so does S(x).

Proof: Reflection on S will show that S(t) reduces as follows:

5(c) - IV

S(s') - (A4.Ai.(AfP(fX,-0;n)/T)s (Sp))
-- /lpPfL5(0-0^)"
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The fact that S(0) reduces to N together with theorem 2.4 entails that (1) entails

^ F((is(oT o) (s y
JV* rc(<*\+X'T

Substituting S(z) for in (2) we get

F(7LSW/ ([_ ApQfLsfOTtXg j +

F((L/*pP(CsW-2-1;X^]; <*)Xn), "z-'J f+y
Again using the fact that S(z') reduces to ApP([S(z), z]; n)n and theorem 2.4, we get

OAjtececle/vA vj ^ ~Ly j(^ j
fr ^

Now the term-forms ApQ([S(z), ([Xa , z]; m+1)]; n)(m+n+l) and

ApQ0([Sz, ([X« , z]; m+1)]; n)(m+n+l) may be rewritten as

ApLz( [XXp 'Xa° ]; m)m and ApL0z([X ]j m)m for some term-forms L

and L0. But once sequents (3) and (5) have been re-written according to this device, they

turn out to have the same form as hypotheses (1) and (2) of the lemma, so we apply the

lemma and get the desired conclusion.

Theorem 4.6: Let two sequents of the forms

—(MA K0,. . . v„c, Y,, /tJ... X, 0~)
and

-» F(fx;.-.Ax)..XA,. Lx,...y,t-z/ )
respectively be provable in TF. Then

-,
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is also provable, where S is defined so that

SO = {NiO, {N20, . . . {Nm.iO, Nm0} . . . }}

Sz'={(ApPi(S(z))m)z, {(ApP2(Sz)m)z, . . . {(ApPm_i(Sz)m)z, (ApPm(Sz)m)z}...}}
f,

that is, it is defined as

A,x.plA,zAX.{(ApP1X(m— l))z, {(ApP2X£m—l))z,. . .{(ApP^Xfrn— l))z,

(ApPm-i^m—-l))z}...}}, {b^O, {N20, . . . {N^O, Nm0} ...}}, x]

where X has the same type-functor as Sz. The reader may check that, if

Pi(Sz)o((Sz)i)o (Sz)i .. . )i)i is well-formed (which it must be), then so is

ApPi(Sz)(m—1), which, in fact, reduces to it.

Remark: This theorem is familiar from the literature on HAco and is in fact the special case

of which the preceding theorem is a generalisation. The proof uses the following lemma,

of which lemma 4.4 is a generalisation.

Lemma 4.7: If two sequents with the shapes

and

F(o,y,QzV,.
j... --Yy Ffy,...Yn7 z^J

are provable in TF, where QiXiY2. .. Yn has the same type-functor as Yj, then so is

f (y> . y« j-L)
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Proof: We define a term T, containing, Yj,... Yn, with the following properties

T0 = {Y1; {Y2,...{Yn.i,Yn}...}}

Tz'= {Q1(Tz)0((Tz)1)0.4(...(Tzh^)i)1, {Q2(Tz)0((Tz)1)0...((...(Tz)^)1, {, . .

.., {Qn.1(Tz)0((Tz)1)0...((...(Tz)1...)1)1, Qn(Tz)0((Tz)1)0...((...(Tz)1...)i)1}...}}

That is, we define T as

Xx.p[Xz.^.{Q1QO0((2Oi)0...((...(Xvi:^)i)1, {Q2(X)o((2Di)o-((...(X)1...)i)i,
{, • • , Qn(2Q0((X)1)0...((...(X)1...)i)i{Yb {, . . Yn}...}}, x]

The proof now proceeds rather like the proof of the preceding lemma. We prove

F(0vX((Tv;x. -S- fo'XjJ, , *-*')
.1-1

(tO,._ x-2-)
which I shall abbreviate to G(Tz', x— z') —» G(Tz, x—z). This sequent is derivable from

(1) and (2) using properties of T and theorem 2.3 and it gives us

G(T-L/X--L)DQ(TO, X) G(TZ^ X-Z'J D Q(TC, xj
which we can use as the right-hand premiss of an induction, with

&(to,x) o G(royx)
as the left-hand premiss. The conclusion we derive is,

—> Z'T-j D gCtO^-I^)
But the antecedent sub-formula can be got from (1) by substituting (Tz)o, ((Tz)i)o, • • •

(( . . . (Tzh^Olh for Yi, Y2„ . . Yn in (1). Thus G(TO, z) is provable.
.1-,

77



Proof of theorem 4.6: The first premiss can now be rewritten as

-> F((SO)0, ((SO)!)o, . - ((...(SO^h)!, Yh. . ,,Yn, 0)
Nb- i

and the second yields, after a substitution

F((Sz)0,((Sz)1)0, . . ((...(Sz)!...)!)!, (ApQ1(Sz)(m-l))Y1...Ynz, . . .

(ApQn(Sz)(m—l))Y1...Ynz, z) ->

F((Sz')0. ((Sz1)!^, ((...(Sz')!...)!)!, Yh. . .,Yn, z')

The terms (ApQj(Sz)(m- l))Yj. . . YnZ may now be re-written as LiYj. .. Ynz for some

Lj. When this is done, we now have two sequents to which we can apply the lemma.

Remark (1): Grzegorczyk (1964, p.81) is sometimes credited with being the first logician

to show that, in a formulation of HAco in which the operations of pairing and decoding

(represented in our formulation by operations 5.2.5-7 upon terms) can be represented, so

can all functionals of finite type defined by simultaneous primitive recursion. In

constructing the terms S and T used in theorem 4.6 and lemma 4.7 respectively, I have

followed his method (loc. cit.) pretty closely. For the actual proofs, on the other hand, I

have followed Schuette (1977, pp.l28f. and 163f.); Grzegorczyk does not supply a

proof.

The reader who has understood how my operations 5.2.10 and 5.2.11 are mere

generalizations of the operations of pairing and application will see easily enough that

lemma 4.4 and theorem 4.5 are quite simple generalizations of the subsequent lemma and

theorem. The term-forms T and S in that lemma and theorem respectively are constructed

by a method exactly parallel to Grzegorzyk's, except that I have had more powerful

resources to use (in fact I also use my operation 5.2.11 in constructing S in theorem 4.5,

but this is just for greater conciseness; it would have been possible to do without it). The

proofs themselves are practically identical.
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Remark (2): Theorem 4.6 tells us, when we are given functional interpretations of the

premisses of an induction inference in HAco, how to construct a functional interpretation

of the conclusion and, in particular, how to construct the terms (Sz)G, ((Sz)i)0,...

((... (Sz)i ... )i)i which serve as witnesses for the existential quantifiers in the

conclusion. Theorem 4.5 resembles an extension of this method to the case where the

premisses and the conclusion to be interpreted contain infinitely many quantifiers, but

subject to the constraint that all the terms which occupy the places of bound variables in

the interpreting sequents can be derived by specifying the same term-form by successive

numerals.

Si



CHAPTER 5

PROOF OF THE ACCESSIBILITY OF E0

We start by defining some type-functions. Obviously there is a primitive recursive

function, which I shall call -v, with the following properties: -v(O) = 3; as(\) = 9;

-v(x+2) = 2(Ar(x+l))+3. There is another, which I shall call with the following

properties: <^(0) = 2; t^(x+l) = ^(-^(x+l)—1).

Using notation similar to that employed in chapter 2,1 shall stipulate that, where£ and
are an m-place and an (m+l)-place function respectively:

-. o* - -pv. .fi |TV\

I shall now define three two-place primitive recursive functions,^*> and ^2,
simultaneously and by cases:

- 5owe ^loiValue

- #c(oloj(olo)0\o t^ I ^ A 2 3
- it q (o loj(oli?)o'' 'f a -

- A - £ 8

- ttolc n - ^ 0r
- if *'

g-'f"'") - m

- -/K &(«)-*) ^ ^
- A • 3 if C/ - v
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jfff ^ ; If Q f W ~CP (a j
$0 1'f or -Y(m)i-\

tfc A-f'1, ^r(n)r i- ^ j
9- o \ f 1 "\ w> ^ -y (/] j

R (i"0 3Kw'"9(Ax.g,,
if 0 < /v\ <; x9 f^4 | J

f\ \-\)lt) if w - tPfa+iJ-H

if ^f/i41y+ \ < ^ -vh+i j+1
~#0 If 'Vf^+Q-k'L -vfn+ !_}+- (n4ij-r 2>

' Z-3 If -Y(w)t1 < ^ f-Kf+.;

~ f t^-i- ly ^-^(n+i)-3f if -r(/Hij+ 3
< rv\ <: -is-(V\+f

It can be checked thatf is a primitive recursive function and, except where I have written

'some arbitrary value', takes only code-numbers of types as values. Let d, e, f, gi and g2

be terms of HAco, of types 1, 1, ol, ol and ol respectively, which represent , (fi
and f 2 respectively. Then rf, rgf and rg2 are type-functors of order 2.

On the basis of the wayf was defined, it will be clear that the type-function represented
r

by fl enumerates the types o(olo)(olo)olo @ 3, o(olo)(olo)oll, o, olo @ 2, o and 1

respectively. rf(n+2)1 enumerates types as follows:

$(^+% on) -
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/- - (o?^+,)^+»y ycrf
r-f(W<l^ -- ofo^.^r jforf(r,+^J ...

^fa+l^fn+i)7 1 ofo^fo+QrJfo'ffn+O^- }• -- (°fM+»M^+0 J

r-fji J(or^J . . (O'-Rfl-H Ids

r-ff^^af^i)+rr-f^+i)c{(^i>^.. ,r-ff/i
- ofo^o+Orjfo^+Ol1). . .

fMA(n+0+rfff^Odl^+»>a1 - ■ Sf(M\)e{A+rfrj(ArfmO+f
<J

+U 0

r-ffrt+2)e(rt+i)ti'1 = o(orfM+Orfcfoti)i''
O>t,Mf«+l>rr^rt+t^(/>+0+{'

.. ^+l>fA+,)" f fM)e(Mtff(^>fn+i>2n z o

r-ff^+/z-)ef^+ Q+3^ - orf (a-H)!1

(-1
n+11

rf(A+i]e(rtH}+cV(n+^^ ' r-fM<W0+f
r-p(oi-'L^efr'-cv^ +-cX + " rf

rffA^}ef"t2) . = 'ffA+ijetA+ij
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Now I shall investigate some of the properties of the term-forms constructed by rules

4.2.8-12 from chapter 2B. Let us suppose that Mi,... M9 are a nonuple of term-forms

having the following type-functors:

Xx.rf(v+l)dv-x1

T(v+l)dv+r
A,x.rf(v+l)ev-x1

"f(v+l)ev+l

rf(v+l)ev+2~l
Ax. If(v+1 )ev+dv+2—x1

rf(v+l)ev+dv+37
Ax. rf(v+1 )e(v+1) —x'1

rf(v+l)e(v+l)'

Lemma 5.1: For 2 < i < 4, the terms

Ap Mi {M5, ([M6, {M7, ([M8, M9]; dv)}]; dv)}(ev+l)

are well-formed and have the type-functors 0, Ax.rfv(ev—x')1 and Tvev1 respectively.

Proof: Referring to the definition of operation 4.2.11 in chapter 2B, we see that it suffices

if, for some g of order 1, (1) Mi has a type-functor equal to rRL#o g'(ev+2),

rRL(Ax.fv(ev—x'))g''(ev+2) or rRL(fvev)g7(ev+2) respectively; (2) the type-functor of

{M5, ([M6, {M7, ([Mg, M9]; dv)}]; dv)} (1)

is equal to rRc(gO)(Ax.gx')1(ev+l), for the aforesaid g.

If we consult the definition of-f, we see that, since f represents^,
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dv+1 < x.&.x < ev+1 —> tiV+^ev-^-x = RL(fv(ev- x')) g2v (ev+2)

ought to be provable in TF. On the other hand, the type-functor of (1) can be shown to be

equal to

f"5 )>#«.)a/«w+i-xJcU/
r3 -S

by applying the definition of operation 4.2.11 so as first to determine the type-functor of

([Ms, M9]; dv) and then working leftwards. By induction on dv, it can be proved that that
P 1

type-functor is equal to RC hO (Xxhx') (ev+1), where h is a type-functor of order 2 so

defined that the following sequents are provable:

—» h(v+l)ev+l = f(v+l)ev+2

dv+1 < x.&.x < ev —» h(v+l)x = f(v+l)ev+2+x

—» h(v+l)dv+l = f(v+l)ev+dv+3

0 < x.&.x < dv —> h(v+l)x = f(v+l)ev+2+x

—» h(v+l)0 = f(v+l)e(v+l)

Consulting the definition of g2, we now see that

0 < x.&.x < ev+1 —> h(v+l)x = g2vx

is provable. Consequently the type-functor of (1) is equal to rRc(g2vO)(^x.g2vx')(ev+l)\
So the two conditions we set out to satisfy are satisfied, taking g2v as g.
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Remark: I shall henceforth, relative to any given nonuple of the kind described, abbreviate

Ap Mi {M5, ([Me, {My, ([Mg, M9]; dv)}]; dv)}(ev+l)

r-o jo o-J

to M2, M3 or M4 accordingly.

Lemma 5.2: The term-form

Ap Mi {M4 ([M6, My]; dv)} dv+1

is well-formed and has type-functor Xx.o<fv(dv—x)1.

Proof: As for 5.1. I shall henceforth abbreviate the term-form in question to Mi.

Definitions 5.3: for every nonuple of the kind described

([Ml, {M2, ([M3, {M4, {M5, ([Me, {My, ([Mg, M9]; dv)}]; dv)}}]; dv}]; dv),

which has type-functor rRc(f(v+l)e(v+l))(A,x.f(v+l)e(v+l)-x'^eCv+l)— 1), shall be

called simply M and its type-functor shall be abbreviated to ^(v+l)1, of order 0.

Remark: We should recall the first theorem on combinatory completeness (from chapter 2,

section C2) and the terms AXj(v)M, for i between 1 and 9, defined there.

We can now begin to construct the term Xvz.y^iy+l, z), discussed in chapter 3. As was

already announced there, I shall approach the task in stages, first defining a matrix of terms

called A,vz.%c(Y)(v+l, z), where Y is of the same type-functor as M and where all

occurrences of it are, as usual, fully indicated in this notation. Then I shall find an

appropriate M to be substituted for Y, to yield the term we are looking for.
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Definition 5.4: The term XY^X^Viz.XAcctY10, X10, Vtyz) of type (lo)(lo)loo (from

which, when suitable terms of types lo and a variable of type 1 not occurring in them are

plugged in, we get the characteristic term of the accessibility-predicate discussed in chapter

3) is defined to be:

ay'"X"v'Tis3Kxyl}+[v((Xv/J- vfxvj]]'
CLvrxW t sj (v((Xyj'))} L fafro ■- *JJ■ (vfy\r)-o)]]

Lemma 5.5: There is a term of TF with the properties I require of X,c(Y)(v+l, z); namely

that x^(M[v:=0])(l, z) reduce to

ffvMjt
- h5+z > xUfo; 0' - c), M,

and that X^(M[v: = n+l])(n+2, z) reduce to

I(K- hs) + 53xs. (im6K ,(t^3, Pw3 ;cV("+o]fcUfl+OjH, if

Proof: To get a term that solves these equations, we use operation .2.12. First we define

a term-form N, of type-functor o(rh(v+l)'oo)rh(v+2)1oo as follows:

avz/^i(Axr/-Axry) +
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and another, Q, of type-functor rhf oo, as follows:

A,Yrh(u+l)'y.%£(YrKu+l) )(u+l, y) is now defined to be R^v+lfoo [N, Q, u]. By the

definition of operation 4.2.11, this term has the type-functor rh(u+l)oo. We prove by

induction on u that (XYVu+l)ny.^£(YVu+l)1)(u+l, y))M[v:=u]z has the properties we

require of it. When u is 0 it reduces to Q M[v:=0] z, which, considering the definition of

Q, reduces by two XP-conversions to

[ (ax?n -_/ixfrO+3mj i),
CCAX„ ;o)/ AX?M)]{(7lx";n-7LXf'M
+1 )■ Xa/Ux?^I).Ux?A:c], AX?r\)(AX?M)]

(oO
which further reduces, considering that we may replace AX; M[v:=0] etc. with Mi etc.,to

1(n,-ns)iS3xacc(K^;0, XfA.o), 30(30)]-

£(M'~Ms+OxA<0(b'< 0, (

which is exactiy what we wanted. When u is n+1 for some n, it reduces to

NnCRfyy+ifoo [N, Q, n]) M[v:=n+1] z which, applying the induction hypothesis, is equaj
to Nn (XYVn+l)1y.^jXYVn+l)1)(n+l, y)) M[v:=n+1] z. If we replace the variables YVn-hf

and y by the rule of oc-conversion and then do a couple of XP-conversions, we get



(?y,MMi\.\(Axry-AxrV) + s3 .Jji^j
(™. m^rrhxfy,(Uxfy,Axfyl^
^M)Uxr / fAXr X ■

^h" x.^rz^tL^fUx^y/fTlCV
)

AX'C'y] ;^+0)],cU^O)axr,J/)]) M z
and then, by -five more A,|3-conversions

[fAXf'rM - yuf"M> %7U (KM?"n)xCr^
fcAXi^M, AxrTM] Axrt)].
[(Axr^M^/upM +il>3a(Ux,f";M ,

(lAX^'XAxXXX+O)] ;JtM)(Ax!AtJh)']
which is equivalent, when we simplify the terms AX(-*,JM[v:=n+l] etc., to

£(fv -Ms)+ (LXPXA"+0)X(
(K)]- [(h, - n5 ♦ ?}u(iA, fX-M

^0



Lemma 5.6: For any M, the equivalences

O : = : 3 i),
h*~)(^z).0. !><]-,< tAs + 2 => Ac.

and

-MllXn+'1J7')r F\s ,

(L^JW;ctK0}J;cU"+i)J(MiJ = O.Z). M7<Ms+2* d

& fo■, ft Me. m,i oU^})] ;aK)>w} = o

are provable in TF.

Proof: These statements hold in virtue of the way the matrix of terms j^yVv+I) )(v+l, z)
was defined. To verify the first statement, one should substitute 0 for v and then M[v:=0]

for Yrhl. The resulting term will then reduce to a characteristic term of the formula on the

right-hand side, considering that %Acc(Ml°, Nl°, Q!)(z) = 0 is also equivalent to Acc(Mlo,

Nl0, Q!)(z). Similar remarks apply to the second statement. By theorem 4.1 a term related

to a formula in the relevant way really will be a characteristic term, that is, the two sequents

written above must be provable.

Heuristic Remarks on Lemma 5.6: Where M5,... M9 are variables, the right-hand sub-

formula of the biconditional in the first sequent entails <£ i(z) in HAco (see chapter 3), so a

proof of the sequent consisting of that formula may be taken as a functional interpretation

of —> cCi(z) and its conclusion may be identified with —> £*(z). In virtue of the

equivalence just proved, we also know that a proof of —» Xc(M[v:=0])(l, z) = 0 can be



transformed into a proof of —> <C"l(z) in qf.-HAco and hence into a proof of —> £ i(z) and
therefore of —»<£ i(z) in the full HAco.

The important point about the formula Xt(M[v:=n])(n+l, z) = 0 is that, where n is a

numeral, it entails <fT n+i(z), within HAco, and therefore also £ n+l(z). I shall now

indicate briefly how this could be proved. First it should be noted that, where n is a

numeral, term-forms of the shape of ([N, M]; dn) reduce to sequences of C?(n)+1 terms

combined by means of the pairing operation. Therefore a term of the shape of

([N2, N3]; dn)]; dn)(n, z) reduces to a term containing -v(n) sub-terms obtained

by specifying the terms Ni, N2, N3.

My definitions of the function -v and the type-function ^ have been motivated by the
properties of <£■ n(z). It can be calculated (see chapter 3) that it will begin with £"(n)

existential followed by £>~(n) +1 universal quantifiers and that the quantifiers, all together,

will have the types (n, 1), J: (n, 2), j. (n, 3),. .. oC n+2(z) will be obtained by
taking the formula

vj 2) Xa + i . \/x. X<^jT"T a-H J

and translating it into 3V-form. Let us suppose, as an induction hypothesis, that, if n is a

numeral,

axrs 3Ci...3CWvcr-Vxrr:.vcr**-.
xXixrxJC .. • •. j = 0

is equivalent within HAco to £n+j(z). Here XgX+i).i.2' ■ • • Xq" j is the

sequence of variables got by replacing Mi[v:=n],... M9[v:=n] within M[v:=n] with

variables of the same type-functors and then reducing the result to its normal form. By this

induction hypothesis, (X) is equivalent to

x
"fn+Oeffl+i)



iu xrtft*,;7>+'^) - o]
so that the 3V-form of this last formula will be equivalent to <£n+2(z)- We now have to

consider in detail what the 3V-form of this last formula will look like, and what the

conclusion of a functional interpretation of it will look like. In fact the latter will be of the

shape

= 0.5. i% s Ms+i ,(Ltts, IX,XcUmO)];A(mi)(.'HiJM7

subject to the requirement thatM5,... M9 be variables. This is in virtue of what

([M6M2, ([M3, M4]; en+1)]; en+1) and ([Mi, ([Ms, M9]; en+1)]; en+1) reduce to, when n

is a numeral.

Therefore, if we succed in proving a sequent of the shape of

where M5,.. . M9 are variables, it will be possible to derive from that sequent any one of

—> c£i(z), —> 2(z)' ^3(z)' • • • within HAco once the appropriate numeral has been

substituted for v. Thus the program set out in chapter 3 shall have been fulfilled. If we
achieve this goal, it will suggest that, since —» Acc(ci)2)> ~> Acc(<»3), —> Accltity),... may

be derived from

—>cC2(0), 3(0), —>^4(0),. . . respectively, (***) will entail —> Acc(cOy)- To prove

(***) is therefore the main task of this chapter and, once it is proved, —> Acc(cOy) follows

reasonably easily.
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Lemma 5.7: (This yields the basis for an induction inference that has (***) as conclusion)

there are terms, which we shall call Mi,.. . M4, of TF of type-functors rf11 ,... rfl47 so

that

i i*r:... xri. o

is provable in TF.

Proof: We can take the following four terms for Mi,... M4:

n, pujx"'*/°'\x'.9(0,(x*°(x'o]fa-x'<')) )
y°tofx'o)(^.x'v))

tv -if. Ai)X0'0y°'TxV. xV-
Here D(0, (Xolo(xlO)(kv.XV))') and D(0, Y°1o(X10)(A,v.X1v')), both terms of type 0,

are of the kind which, in virtue of theorems 4.2-3, we may use to interpret instances of the

contraction rules in HAco, the former enabling us to contract the formulae XT) = 0 and

XlfXo^fXiOXAw.XV))' = 0 in the succedent position of a sequent, the latter enabling us

to contract Decr.^XLO, Xo) and Decr.(^X1.X2 (X10)(Xv.X1v'), Xo) in the antecedent.

I have introduced "Decr.(Nl0, Q1)" (meaning "N functionally interprets the statement

that Q of type 1 enumerates a stricdy decreasing sequence") as an abbreviation for

Qfua>0 = (5((ws)0«3^S).£.e(w6!>Oofi((K/(3y)=Ci
The derivation now goes as follows:

Xlo
: x=c >c 3 Xl\<XoO J, X0G -0 ^X0\ - 0
X0G MPP, thjmAibcK

q^



2./X.0 >0^ Pzcr.((^X°l°/'l\x\o)X^ . ..X,, Xo J->
X0l 1

, Aefirih'crt of peer. y thecrc^ 2_-H~
/OAX e CeAe/vt of i -» hitX^...XoC? < XoO

1, clefiaaXio^ of tt^eoreAi 'i-M*

Xot? <Xlv M*X<*.„ XoC <

L tT\eJDrew> Q_.3

V 1% X«t... X0P < X^ •^' Pecr.(X2(haX^...Xo0)J l\X^. - X*)
X0o < ^3 Xt.--X0o

^X*. - X. (X3(^.-Xo)KX . - . Xo) - 0,
cWteoeete^t Of ly Xo 0 < ^ , p€ cr/Xf^X.-Xc
- ^ rvo*.- X> [Xifh3Xt+...Xoo^xwx^... Xoy^ ~o

H" j CoXj <~uX , ^y t^OW) Cu^--

x.Cf^rV^ x[(xtcto)^.xvp/x,...*0--o
L y tK^o ^. £f

"7/ anjte.ce<i.e»\yt oji ^ cx 6 ET fcycuX

?/ fxuX'V\ x'. X'fx'o jfxv. XV'Xx, ■ ■ - X,

kj ^tWotroAj c/x' rata> on e c^uaX X
ss



Vpecf^xV'zX'. x.)
-* Peer. (XtfrvsX- Xo), M„X,■. X<0

Lj 8, theorem '2..3

10/ Pecr.c^x'V^x'. /•Y^MWK-.x.a),Peer- (fXjX^/^zX'.oX'-X., Xj, Xo >0/ &<*,,I^X^.-Xs <X^-o- Peer.

KX+.-.^J■°- M^... X0o < Xtf :>

Kx^.x(X/xx*...X0o)m+X*...Xo) ~OSucceeU'vt 0-f "7 ' , 9 J 7 X th <rtercharaC^ J J coX
1 '/Peer. (X.)Clt...x/ Xc/XoO 0.0, Xo0 < X* J McU/1cw edenX j^^^UrLcv G^T 10 —> s^cceX^-vt o_j: 10

\Gy fKeorexx X 2_

1--/' —■» X00 ■? C? v Xt)0 = O proved i" cKaptte 4-'Vx0o ec X0("^X-loXl\x'.o)X,...X.)
L_ ) \\\?_Vr£rA 2>. 3

^ / )(GC 0 V XoO ^-0
j Peer. fMiXh-- -X,y X>^), Xo0 K X* ,wvcar aAjfce^ €cISAX ^<? rw *jgU^ o-^ I I -—> SuccecleAXUy SacceX^^X G£ 13 ''vl3>
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/ cvotecedejvt Of —> M, .. )(/( -o

1% tKeO^ 1.^ ^re^. 4-.3

Peer. X^y Xo) f mcu/1. OA^ececieA^
fomuU Of IS, XoO<X+ —> X,

'^-/ CelX

'V^C-Xo Of, 3 Acc /aOW^.X0),
XHjX'mt- -- XoO)
f—A Deer. (MiX^.X", jX,}- 3. Xo <X

'X-.-X, -0 |67 de^rij tion of Acc, 3>I, r> T

Fxo^\ eow Iti Oc-S c^bbrsvic^e- IA, X', t»
l^i X^... /, to fA^

^ lA 3 Xut- • • AX to M-t, cxaX tA h X<+ - - • XX
, T"he/> 1"^ ca/) be rtAA/Vx tte/^ exs

^30<Xc 3AccfxiP\io), XfPuo), Pv)(ft*o)
Acc(n,xu,xXxA



\i/X, <-X„+l —» X, <X, VX, - fropwtj Of <
vVx,o < X,, X, <XH -» X,o < xH siw",a/"

10/X<Xh,X„° <^3X,M=O _s>rs/
'^o0 ^ x, ^ x0~]-o Mppy coA w \% oi

Pecr.C^K X),
XoO

D X(V\, X0 )-0IV /

^/ooXececltaX t?_j: "2.1, ^ Xo < X\ 3 XClJi X<0 --0

±o,1\ ,utk

X,
f ^ccfe , Mt, Ko)X^Mc(^%i,xM

IX, Ol

zx / X - Xh,/Ucfrji, Mx, X0)CX. /Uc (t? n ^ ')0 ("Xi")
•ffv^orey^ 7-- ^

iS/;X, < X,+2
, /WtS^>OX) -*

>0)(X)
1\lf , Vf, CoA 0A/>'th lo

18



V Aci(K<, X>

X, < X^+l

0-5, interchange

17/ M50 <AV ^ /WfofPUo^Xifi'to), Mr)
x, < xt +1 °/4c Ay,yrv, x

n, 7-6, CUyt

O ^euv)A theorem (7^ cxjnAhi'viatouj cvupltitne^ y
-there are te/M( |M «<"<*■ X & (^,<0 ,j
<?<juoA to Mi , (Mj I J 15 ec/aoA to Mu (*><0 15
6<^UdX Co Xr COlA (^ j\ J Co X5 . Then , -frc/v)
Ul bvj col O-oi Crcctuctco unA Severt-vA ajPp acot iC^S

<xf thec^m 7_A C/IV/OWKJ these gij^AtieS , VA* get
°/°A

.3. x1<x,+7.S/w(fBXXM,o)/ xc'0

'"f ^ f/c>A5lajte tin's i/lto do-1 e^JMSjkiOl USiACj le»M»^CV
t ^ and tKfijo eC'Au^c'ote cxiA occurrenrej ££

£perceto»r\ 4-.0_.ll, us I vxcj theorem 0.4", t/1 -jT^00^
4-.0-.5, we get the segueriAr u/k/ch va«15 to he
pro ve^t

bc/



Lemma 5.8: There is a term N(v+2), of type-functor Xx.rf(v+2)e(v+l)+l -x\ in which
none of the variables

^ ^

iVt"!
occurs, so that the following sequent is provable in TF:

& ii r\ix:f^ ^:^10>c

Proof: We start by defining some term-forms, (j) is short for ((KX^, , X^., , z), that is,

a term of type o containing the three variables indicated, and with the properties that the

sequents —>£*< 2: and z> 0 —>(j) < z are provable in qf.-HAco (that such a term exists

was proved by Schuette; see his (1950)). We define U of type-functor

A,x.rf(v+l)ev+dv+2- x to be

a /r Y) A A
"PCAevti j Xj^, Jj
and X of type-functor o to be

»

y.^rvZ+f^+i"'^ .<Jfai-,1 &J+1? ~<j> fc ,, /- /f/V-t-Qev+AV-+ 3
ApX^^ £X„t, ril.lLWTX^,

Vl of type-functor Ax.rf(v+l)e(v+l)-x'and V2 of type-functor rf(v+l)e(v+l)7 are defined
like X, but with x£^£* andX^^+' respectively in place ofX^tj '• We now
construct the following derivation:

l/X <C~^>fc(tuX, fKw]>J3>>A>o
'w, T^ J yUvL-'r

«"■ +i/(Ld,)(w,
5 )-,oiMleteW

$ul>
aj tKj's ^oroould- —> i-b saccedenX X\p p

\0V



,

Z '^~/ —^ 1. ^ 1~.
prope^"tLj 0p (p

y x::m\ x'f'''^\ctv +■ I ^

2_; prope^iriei op <

1

D

xi«' x x
, XA„, ^

f
cxv~ju,xrr""']A»"'XjL IL A

u^r't('^'\xy^)iyy
-o

u ' 7\jL. <A

Xi(^fx-w^„o<lxw,
, (LU,X^, J'^/3 '

r

AXrfJC'1
rfrv>i)i?^*,)'1 -1

\ /

^(V+iJev+tW+VS

LXxa..*-
, A.

J;cU-Jj.'cU/J(^^ X^i/v, J ' 0

MfP
¥,rt^«V >

^
°f X

A<w+, ^ ^
y

^ 3 Mr,
—-> 5acceJle/\^ °f

< 9&!fvAcu^ cuoteceAe/X pbrMuiA (XT X XjJl/+l

5acc^«vt fcy~u^ Of x 5, to+trchanj
7/ oX-£tckt«X Of I <1 -3 ytc.

\> 6, Coct
^ 3 X

10!



I i. 18/ <w *7, bui w.^ T + l i* fldCe °f ^ *
the o/iececWJ: 7, -theorem 1. M-

V . Vf'+OcW+i"' /• /l"ffv+i)ev*'L"' A- ^A>^ff>/+■^)ev-Kiu/+'^.-•X-*, r ^tX«*. ,£X,

< X~ 3 A
/r ^>.rf^+0evt<u+i-^. / ipr*tO«w r r, , •,(| y I Ar) V S V * leV*z (r M rf("+\)*'«L*<r'L-X\LAx*cW+i+* IX^, f X

1 l^^..«v+3 + X ^/\ev+,/"r 7u./f^+0eA/-t(V+'L- /■

LXAx.cV4r+> , \ x, [\y y ^ y? "J; cUy)^^t\/-X I
A~ y -ffr+Oev+tV rfrw()ev-+2.7 /X

r /1XW., ,([xj^ AX,(K,Ve]
cWj]3|CU/^ev-n "j ;<w}];<W)(^

a r /
, fx, (C\/w\/j>^];£w^«v+^ r o

D y ^ v/^v+i;^2.7 <f)' x~ +1 ^W)(/I:xao>;]>;
4)-°,

a/vtecede/vt 5\Jo"fhe Uls^- f°r"\uXd.
—1> its SaccecLoj\J: Sui>--forwvu/U, X\PP

10 oAXeced^xil &p ^ mcuA arj(rece6te»\jt op 5
■> 5acceJU/vt -pOfMU>l&- (f -- ^ J C) y cajC

\0Z



We must now inspect the two main antecedent formulae of 10, with a view to contracting

them into one by an application of theorem 4.2. Reading the two formulae, and referring to

the definitions of U, X, Vi, and V2, we see that the two formulae are identical, apart from

the fact that there are some five terms occurring in either, each of which differs from the

term occurring at the same position in the other formula. The following table shows the

five pairs of terms which are responsible for the differences between the two formulae.

The left-hand column contains the relevant terms which occur in the main antecedent

formula of 8, the right-hand column shows the differing terms occurring at corresponding

positions in the main antecedent formula of 9:

•

^ A
, "ffv+\)ev+dy+1
■ cW-t-iA zUj, ,

K

By theorem 4.2, we can construct five new terms, of the same type-functors as the terms in

either of these columns, which can be used to replace the terms in both columns. Let these

new terms be called Di,... D5. Then the following sequent will be provable, by an

application of theorem 4.2 and a 3-introduction:

x.dtAlA'p

aPxrnp, fa,ip„ )]>;]>;
( A V rff-/+,)ctv'+'V /MpSD,.(10^1K(W m\ -0 :D:

(-K. p2 ) - 0

\03



tl,
-

^r ^
i ^ eV4du/+3 c e*/+>

/ xx..d^+i-+jC i C • ' ' ^

(Ul^fev-n) < Wrfr^)w/+a- /r fcurfv*oe^dvTt-x / w-^OcWn"'
^--1 Ap^, ^ Y.r\L^w.dwtuo( np AS1/.J./^

eA/"'H X<£^ AAx.dv+^oc (/Ap
ixrrx (txrnrr£x,(iy., ^
f
^ ^^/'-fb'+Oev-X f ^r^vfi^ev + X7 /r >>.r,ffV>V} -iA/TtW+l-X.1 ^"p A ^.ew^+x L-Aev+t

, ( L X A>.eU/ + 1+>X
, £X

c v, ,/ti >^3 ,-cU33ftv+i3 / ^ x'^w£ xr,*'wul ft^>-r^-M)ev4dA/-r'L1X7 f- r

A>t.(Wr^+x 7cX y (Lv„ \fC\ -cVy]y'du/
A
^ v/f^O^r'Y ^/flV-rOeA/rl1 /V yAX-Y^-H)^- X1 . /

' ^f Aev+^3 LXC^+I
, (LXAX.cUA^X

, / (L V», Vl ] i

r^lev+cWi1 rff^jiv^7 A-A^+i ^ 'Aev-n A
* L» ^P Xx.ev+cXv+ v + x

.
. y / ^tx.ffCV+0*(*+%''?xrrX few, (usr,*

xr,^,r]>)],^;^ xrr^O --o

1^ / /j. w.^YcY-x1 x ,rffw.)Av+i'' /|- ^A>L.rff^eV'X',r 'f+.]^i' C pX<£. l^- Ax-ev^tUz+^-x ' C- ev+dX/'T'S xlLA^g^j^^ t ^«v+l ^ "' ^ '/

[DzyiP*>&P+,P$3'^)T]i<^)331 {*+\, <x

Succeden/t 0^- I I \\/ |eroA\cx 5". 6, p«"ojpo5i'bo'V*A Ade5

j'OH-



rV<£<Mfix"'1J+X yC \e«+(W-n- y l*" X/-u.ev+2-+x_ tM,7evrr
r /-,& ALPiSP^ftP^Ps];cw)J3>^]]ioW^];cU,('v-H ^ ) - ,o A( V+l, <t ) - 0 r

Xj, (tKAiyx:^ c

v i>c

15/ , °f *
-p CLt/) /-[ ^ yf e> /- „ J J.

Succ^ 0f ^ CtoU °f * -
,3/ ,lv, Co*

J oc. |t"
" Su^eAe/J: Of II

1 i>
, coX"

fiViiT thecfevn on Cc/ubinc'clo^j ccr^pkA^tSSwe con abstract terns Lu. . . ^ 5c fW: fy€
Se^uwb mcUcj with the ^Oow^ci fow" e^Uoiionj(VejpeotiveAyj) ore jorovublz ^ pp .

/pL,I (tesr",cr'-'uoSM
«ifcnncw ,«M. xr~v»*.)

0 vy^W,)ev+^"' /•_ ,APLJX„+, ,([X:i—/fy,.^«^C/\dV+.
, (LA^ ^

/r'™''1^;^^,) „



wv+oaWC ft ^AA.nFrvt.M+AA/fi-x*' ^AfX^. 1XW„ ,(LXto.v^ , tX,
(iVi

I ^ vr^r,W+^ fr ^x.cff^)ev-^cU>+l.-x', r ^^i-Oe^+Av+V/ifUiXw, / \L A^.dLv+^tJf
, dA^t

7

XxETTfc ];Av)]];cW)]rw+,)
IX Arty^r/^:x1C/-f^^1 /r r

^Xy AAX.6V+3+X 6 ^ev+i , (LAAX.^^-+X ; y

(CY> ✓ Va. 11 c^)^] ,'CXa/J3 (W-t f J
r yW*)&s+V /r ^.jfs+Oev-rcb/ti^xn r r^+V) &v+dU/+3npL^lA^., , lLXAx.dUAt+x ;dA<Wfi

tx£W'*-*Y ;
■* ^p^;wfx^-Yr^w<v-^ ?/i'W.

y vu A Ax.dU^-^Jc y tA

Tfu/iy cca oiio be cavort a eA £o tha^t Lv ■ ■ < L~n
J_ .

^ 44 ■ I I yiC'+Of-L1 /kKSff^)^!-1 XCcaJTCU^ PVone of the vtarafilej Xe^+,
^ Xt^.^+U*

jyW«)V,+to+*AcUr.
/ XAX.X'

or Xfvfl)ef"0

n

/

106



O We bcuij 04 the* e^tes, Jy f^ple ofpUtot^S
0! {decree 1.4- to Sof/AeX <6, we jet
•vz>o,^z oUa ^rrr,
(USS«S*, lv,, (LPt, &, (LP*, P5T>^];

cU/J(V+ /y (j)) - Q ^

X"p^'V+^eV+'i /?" y ^• r"f^v>7^^'-t <2-~ .x c v-r-fK+i)ev/+J[v+'!)"1 /f
I ^ ev+l

y IL ^xx.dv-fLfjf

xr^3;^;^r^o < X~1
1 w /? yM-^«)v'+&*j+rL--?-( * > r y^^Oe^t1 L?C«£-IL A^x.^-ri+Jt (n^pLat^ev+t ; IL X^-div-t^-*

y

dxsr'""""" lxr^
(1L *Pu ixr*^ (ixsr^^;. ixz:*"^,
(l xZTM""^, xr*MlJA)] 1>)!K1),
Ap^icr^' fusr^r1^,
xsr^^'X xr)e,^j ;]:aJ';]>j
x /(fusctesr**™', sxl, , *• ] ;

. D,

X-^!,<ctl1^ xx fiApL, ^xL;w ftxffir"
xL, 3;<v^LL, it X0]>)3LjfvAL)

-O
10 7



/ rfU+oeA/+cU'-t-V rfC'+OeAz+z118/ ^ < 7-+\ , Xj^/ri < Xevrl + ^ ^

y^Ow-KW+V r+Ww'L'1 T-< Xev+j I" I jOr'opoXiP-f <7^ ^ claX ~b
|9 / CffV+iJeiy+Au+'S1 re.(v+\)ty+1. "2,7 X*«. < Xm, +• 1

,

r^+,)evt<iv4'J,
r-jYv+Oev+2. z (r a i fv/' /? \/^'9Xj"" <XWt. +2. . "f (v/+i) ev+cW-t •Z.-x"1

. <il/-t-'2--+ 31

rf//+i)eA/+<l>/+31X-f'Tiycv-rftA^rj- -i . ->♦, J;cU'yOj,> /r w,„jeW-) v,' I Law.*' yXo J;cJU/y_,JU/ , y' 'f^W+clV-f 3! jl ' X^, /- 0 ^ , /-
' X*(UpL, etc. Mpp

i0/ j < z+1, XdL+l"'^ < X^"£V+£' + o^
Wcu/i a/\X&ceJ.enX ^OX^UIA op 19 —> Sutceje/iX cp '9

I?/ I^y CuX

"" ^X^v-
A j C yrfrv+lJ^t^

evf, eX~C - —^ rf(V+0ev+<0/+-^x<™ < <r1-%
MAtax-:-'-\t.. 10,3r
^ / a/XececVe/vt op |7, oj < Z-+-1 —> sacceXe/\A of )"
buX Wi trh Lj l/^ p^cLC^. C?p 7_ — —

bvj pz-opositn'oodA (/ipe/zncej pro/^ 17 cuxX 2-1

1(78



the e^uju/ai.e/>(re co leA^d. S.G to the
CorujO hcajteA 5u.cc£<^£Ajt -p^utA 0^~ , we ^eh, Kj
prcpositio^aX (Ape/e/ice.-s -fro/v> that etyMvoJLwcz a^A
1.1-

Wz > o, 4, < z 3^ ([ XM.'f^Odv^ . rfw,0(W

^ AXEV+3 +^ y yW+Ow+P (■ , r

,? 'iXW 3P,fDUpjLP^];
/. 1 J ^ Z+) —•>

^(U,i/.x/(tL3<£/.lt/^«w /> „.WwtUl,x,

;' w a;
=0

iv /

2-V z --

Ai/ n~o

y A Z-f I > y prop«^tl€-T < 0J\X +
) V f\ YM*'f(V+^'X^ C fy't'l^+P frJ /L^vL Ate..^O+&s+Z+x , I Ae^+27+cU/+, , (L

r

r/f W rff/^;e</tcU+i-x"' <- nfr^J^v+dW+3Ate.ef^W+-x' / £_A&/+» , (L AA^.cU/t-zfX
/ ^ACU^I'l" yAx.^Wef^.;-*'1 N/Iffvr«)ervn;7-| .

L AAx.X-
j A0 J/

Ja/VfX/+1> ^ ^' y ft v^-rf .^' ^•er^ij+du/+i+x j ...... cJU/ft(V+U>Q
theorem ^2_- 3

" Oy y < Z-\r | / irv>cuo Qj\AeceJeA^ -poenAutd 2_~5
—* 5aa^e/v(: c.p ^L5 *2-^, IS, cair

I OA



^ Z — 0 v Z Z C? pi-cvtA C/7 chapter
/ Z - 0 v/ "2_ ~^C?, Lj < 2_+ I ^ n^cu/i o/Ctececle/o£ -for/M^UX

Of 16, ^cu/1 ar\i;eceJ.elt -po^^uiA cp 13, j < z.-h
—> SuccecleA^ Cp 16 , Succecta/ofc Cp 13

l^/ fncu/1 cuoiecePwvt por<\AxcU>v op 161, y<2.+ |^
cinleceleAl po^ulA op 13 —>

Saccedefvi op 16, jaccelenl ©f -3
13, l<§y struc-turcbl i/pereoces

In vL"tu^ op "the. re_5ejv\blan.ce hel^een Lu/o
^oc€cJL?y\l po^.aldL^ Cp 1^ we ivpWj nppUjj "thooreW*
^3 Co coAirttci thenA i^-fco one pcr^ulv .. Thdl i^y
tKe/e o-re pour te/n\-p0\rM5, Sapj Ci, ...C^, op
5^e fjpe-pun^tors cu LtJ . .. y 5v fhaJ: ^
pc lloeviAj ScpjLAe/vl C-S provrcdolo i/1 TF:
3o/dnlecelenl 0p -* ([<:*, [cH, }

fr Ax.r-ff^0«v+cU/+/2.-x1 r rffvtOevnW+31 fr ^Ax/ff^iJe-fv+iJ-A'1 ~i
(L AA^.eU+2.+* / 0^,^/+^ > l LA A*.*' , Aojy

;dv/ j (V+ p j )

n o



•3,/ (r r/ %k\b /W.efa+2.>dv+i-*x. •> t Aefv+t)+J>+i y \L 'W-efWO-t-*' , C/^ef^") j

C v'fWw+t1 ( x/i(^lw+k/n'' fr ^Ajr.tWv+oe^+0-X'IX^, JLAm.^X ^A^, A^ax.^
<k> f^>,o) - o

i Xr /A*.rfC^0^'*7 C vrf^0<W /r<^ < Z C>^ (lXAx.wt<U/+s+* , 1 Aev.avtt , (J-X>*.«,**+*

ktr, ^ (CP„^^^ds]jcw)]]>)^>)
cU/^(v+i, ^ j - o '3- M<2-"1"' ^ Xi ^"<" w £'~2"1 \^<"'3'
r V>$rv*i)ev+'L1 /V _>J rffv+0«v+<U'+'L- -X1 ' .rf^+0ev+tWfv^Ctt, A«V4.|

y (LXA*J*/+I.+> /i-'XcW+t
J

v+l^j) 30
y ^tercAo/lje, 3 J./ ol

\ wouAcV Uke -bo vwAe sc^e replacement*,
jast^kd theorem a.M-, ^ tKe M>cw se^uaxjt.
We scua/ Oi 5?ot\oxi CI 0-f ctAOL^ir^r 2. thcxAL "b^eSob - terrA f /"f

c x/^+0ev+^Vev"

^Xjv+1(t vrff^Jer^O1! i Y)-| k A-)
vLA**-"

, X0 JjcU/yj J;cU/J)j *<ui be
w.^ fLx^r0e'"t,"'bxr>Mt;,^^v+o).

SiA-WUj "the le^-(:-k<incX ter^ <of the e^uutfaoo wk



,s the arttecei^ W* ^ be
•uila^^ , (LX^, ;x, J)xfv+ijyjJ

W+0)(Wq}
It \5 ax)w tWe to Si^Yy tYe terns eccu/rXUj P) 31
bj vUi'fUj ("he JeooAcV theorem ol coMibiAaAoAj cc»uj>iei&1e«
We tcin coas trad two te/wj; p,, and P^ 0^
"f uAcdoo W^fv+QeYh^w'1 and rfMPe(V-h)1 y^JrKei/j,So thcot {LxZZT"^ W"^ /fv^'

. !lX( £p, , fLCn, 0S ],'-W]],c'YY3 <CY]],
<Y)May fee replace wlth i,

?N-]J^fv+ipJ;cir</+,)_); ^ another
, pl; 0| type-

-funcYor ta/f , so thcut fLC,, ^Ct
w, icM/ rLxrr*^", xreMYaM;w$w
nAau be rfpUcX vTh XX , XX.XX""' * xX*J''"":"J
r*/+0I];XX+|)) _

As a rtsOt Of these oeplw^esob, Wt ^
f rov^A I

^/Xc\LXM.e(v+i>sX . (L^AX-X- WO J,

cY^+o)) dc^+i)}6^ P 09 ■* t? —>

Hi



^ ^j[x:r:r^ /[ &. pj,c.uw)W(W)
y<z+i ixalq.axr^ij c\^+o)i AM) (v+y"): o

We A/Ova/ AAoJke th/ee saijstvtu^iOrt* ^tKo^ujh l/1 t^<?ca5e3 thtLU couiol be /vcjardeA CU ft - ACJn'^Sf oj5 i "\ i K
^ . ,r4(v+i)e{^i)tci-(v'+0-t''iSc«e wiailej. z is ftpMA. with XM+,\ jj rf(<stl)e.(v+0+1?

.

oaoV j w.th X^v+0+l . Under theie Suiwti^o^
(I? beeowe5 cjr fX^ r^*o<iMAri r^+oefv+.^v+iM'' "\MMA^,

> A. «v+i
, Adf^o+i ry

w^'ch ttrn sUlU. henceforth be cWuXeJv SiWplu )yT- Th« OurA SaMtufw is Cr
/+0evu|. x

xx-ev+i+x ,

1 ikcJjv henceforth use the na/v\e5 "Pi'/pf' oncX
pet to denote "tl>e t-e/^5 tfiotcu/JeA fbcm P|y oncV

boj theie iaii-b'-tujtiortS — tho uncu^e w»U (X
•AO ainb^uu'ti'es „ *5 I kuu/e. no U5e -for the r "

P>
y P-b , PH in th&Jir cUl 5e^5C cvuj nco/e „

8uj fW't theorem cciuiouic^0^
CcwJf)[?JtQr\£sS there Ooe. terms , which sVvdld ^°e Cc[^^°
p, X j Pi X , Awuid tjpe-j.^cto<-5 ta.r^«/u)A(v+7-x <

rJffv+l)cA(*'+7"1'1'1 ( ;iz :^(u+1-jr(u+l'j-X1 cur) rfuu'l-yl'ifu+7+''

f. V ^-fMev-t i - xSj-or X

113



re5fec*weUj , thoJt ttie -four s^uerA ./i
the foLLowiM ecfyaJ:i<"Ŵ p^le * TF :

^ rffv+iJefr+O+l. /- ax. ,r^(v+ 2.)e(V+0*A(V+<)+^- X° ^v+t^ef^O-fcirv+O+l7")/Ap PicXefV+O+t J\L ^/V-<^M0+2.+ot J XcLfv+O+i -J I

<k(v+\))lM\/+\)+\ 1X3 P,

if r^fv-t^eO'W-^7 a to.<^fv>t)ef^+0*cMV-H)+2-'X r ^!ffmje(V+<}+dl(V-<,i?+3'1Ap ^ c A€fv+,)+1 j (L AAX Af^O+^-f^
7 C^d(V+t)-M J

A- vAx.^v)euvtJ-^ vrv-^)e(V+A)7n .

, vO ,(L>W , X0

IXJ

7) C /r r -WeN4(w,M7ApP'ic ^aiv+ovi 7 I LA ^x.cLfv+ij^+x 7cXdrv/+o+i
,

r r yAA.^rv^^^TCU
-X~];aM)3],A(.+0)]e(,+l>l

\XI P3
$

Ap Pl, eAc - W P^
Fiurth^ryvLo/^e P, AeeX ooaACIA) A,oi0e c7_p tAe \/aAc*i)l£5
v/ffWatefr+O+i1

. . -,X vM.'ff^)erv+,)+cH(-v+(^__x-' Arv+^+o+<kv+0+3f'
' AxAfv+()+/2_+oc (JAX A^f^ + i

wWle $ j ^ co-vidLW nuttier these aor

A*.*' l^vor Xc

L eX the terw fLP,, [ cj> j ([_ ^ P^ y [ ^+,M"+^'7
MMv+Q*M ,.iA;Ntl

zW+\)w

^Ax.x'
>

|l'+



oWiooaLj Kdi the tjpe.-func*o<- 'hfV+t)^ be
ci>brtviajteA to IV

, thp *,•„«, A „ ->- L/ ^r\e cov^ciOe/btr ikjowo
be^a aJleck K/,, ...[\/9.

The/i jjsow s^aitni: 32. j bj tTKe Sai^tibuirioAS
ju3b ckso^'be^k ancX tbe

oU.3cr\ 2_. 4" y we

oovteceA^>bt op 32_ —> < ^s -

Xd^t-K>, f[_^3 j K/^-l ^ ol(v+i)]3JdCv/^^(^/+^ b/^J^O
. 0. KJ, < WS+2.C 3 (Lw&;

fv+l, N-,)-0

6vj I 0MHA 5. 6 '•
"in/ ^eceMt Of

■ I X' ^ rr Kl M tK^orn^
rlcwever, coASic^H^j G0A5"ti w 10 C-y
1.4- cvncX the seccnktheo/e^ o* co-^A^j
G0Mf\dt&\&», 34 AAA-j be replace^ jy ^ 3e^W:
Of freuid^ the jkufe th<^ we a* U>olu«) for.
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Heuristic Discussion of Lemmata 5.7 and 5.8: The reader will have noticed that, while the

deductions required to prove these two lemmata are quite short and the prepositional

complexity of the formulae involved is not great, some of the terms occurring in these

formulae are very complicated. My choice of terms arises from the need to satisfy the

conditions for the applications of theorems 4.2 and 4.3. For example, if we have two

formulae, F and G, occurring in the antecedent position of some sequent and we wish to

replace them with a single formula, this is only possible if the terms occurring in F stand in

a certain relation to the terms occurring in G. In order to construct F and G in such a way

that this condition is satisfied, it is sometimes necessary to use quite complicated terms.

I shall now try to summarise the considerations that I have used in constructing these

deductions.

It has long since been known that, given a proof of a sequent in HA, there is an

algorithmic method for finding a functional interpretation within qf.-HAco of the 3V-form

of that sequent. I have used these established methods to find the termsMj,... M4 in the

proof of lemma 5.7. Since we know in advance that such terms as Mj,.. . M4 must exist,

I am not now inclined to think that it was really necessary actually to exhibit them. But

having discovered them, I thought I might as well include in this thesis the calculations by

which I did so, in case they subsequently turn out to be of interest.

Lemma 5.8 is much more remarkable. I have found out the deduction contained in its

proof by imagining that I am doing a functional interpretation of a proof in a certain theory

of a highly fictitious kind. Let us recall the theory HA" defined in chapter 3. Then the

sequent

f'M 0)

is equivalent to a sequent of HA when (and only when) n is a numeral. The 3V-form of

the relevant sequent ofHA will have the shape

dX'1...3xtcf'ojV7^. . . V/^roj+r ^ j 0) —>
3v,... 9 Vcpfi\+i)VZ1... ]-h 1 > <3 (V>,... 0

I\6



Let us now imagine that, in place of ^(n) and tffn+l), I had written names of variables of

HA. The resulting expression might be incoherent nonsense — there may be something

illogical about the idea of a sequent containing a variable number of quantifiers — but it is

heuristically valuable. In the first place, the accessibility of e0 will be provable in the

theory so created. Furthermore, what I have imagined myself to be doing, in proving

lemma 5.8, is functionally interpreting a sequent of the kind just described. The functional

interpretation would use imaginary terms of the shape of

where v is a variable. And then I replace imaginary terms of HAco with genuine terms of

TF; for example the above-named imaginary term is replaced with

In summary, by using firstly the standard method for interpreting the 3V-forms of

sequents provable in HA in qf.-HAco, and secondly the method just described for replacing

imaginary terms of qf.-HAco with genuine terms of TF, we can replace an imaginary

formula containing a variable number of quantifiers with a genuine formula containing no

quantifiers at all. We can do something similar to the prepositional connectives, as I have

already explained in chapter 3. Using characteristic terms, we can likewise replace an

imaginary formula containing a variable number of prepositional connectives with a

genuine formula containing no prepositional connectives.

A
p -j

Lemma 5.9: There is a term M(v+1) of type-functor A,x. f(v+l)(ev+l—x) so that

(v*n,t o) - o

I 17



is provable in TF.

^ /\ —

Proof: It suffices if we can define M(v+1) so that it reduces as follows: M(l) reduces to M,

where M is any term so defined that (M; i) for 1 < i < 4 is equal to Mj as used in the proof

of lemma 5.7 (by the second theorem on combinatory completeness, there must be such a
/\

term). Secondly M(v+2) reduces to

ivw)[cr:rr':::
where N(v+2) is the term which appeared in the statement of lemma 5.8. For the sequent

we want to derive can be derived by induction in TF from two premisses. The first

was proved in lemma 5.7. Let us now take the basic sequent

(v*\Jo)-C ijt.

as the left-hand premiss of a cut, of which the right-hand premiss is the sequent got by

substituting M(v+1) for in the sequent proved in lemma 5.8. We now have

the two premisses required for an induction.

We define M(u+1) to be

r\ r, v/'Vc/frv+Oeu+t-x"* / ^ - -]
• N J , N , VA J

18



It can now be proved by a metamathematical induction on the values of u that M(u+1) has
/v — /■>

the properties we require of it. M(l) reduces to M; M(n+2) reduces to

N(n+2)* :=M(n+l)], by the induction hypothesis.

Lemma 5.10: There is a term S(v+1), of type-functor Xx.T^v+^ev+l—x"', so that

+0SW+O, (t xT"'^1P;d I co+0 -- o

is provable in TF.

Remark: I conjecture that the reader of this thesis, like its author, is becoming tired of

reading proofs that are almost fully formalised. From now on I shall merely sketch how,

given lemma 5.9, one can produce a functional interpretation in TF of the 3V-form of the

statement that eo is accessible.

Proof of lemma 5.10: By the first theorem on combinatory completeness together with the

equation proved in chapter 2C1, there is a term

(LN,A, (Lw,,1 tv»,iws,(Lim6f, (LWj, KM;i10)1],

, XTC xm . , , ... • r 'f(V+O)e6>+0+1 Mrft/+'Vie^-t.1>aC^+OAt-xwhere N5,... N9 are variables (they will in fact be Xe;^+,-,+ ,

etc.), which term we shall abbreviate to N, so that the sequent whose provability was

established by lemma 5.9 is equivalent to —>X&(N)(v+2, 0) = 0

By lemma 5.6 this last sequent is equivalent to

HI



k < 3 V ([ fa (I faVfr+Ovi jfaji\L'WCUV+O+I+.A w J * 0 J

kfa^kUM)ki fa:),o -*xr~""<
yrf^+i)e^+i>i"' rr r -n-i ~\ / 0 -

Xef^0+t +"1 - 0

If we use, in particular, the operation of generalised ^-abstraction (5.2.9), it is clear that we

may construct a matrix of formulae F(Y, z), where Y has the type-functor

rRc(f(v+l)e(v+l))(A,x.f(v+l)e(v+l)-x')(ev)1 and all occurrences of Y and z are fully

indicated, so that the above sequent is equivalent to

f(tlw6 ,ik iwj,nA^O)13;CV(^ .]), xir^o
^.rffv+t3etv+0+dfvti)->i'^('' v^r^fv+i)e(v«-q+Afv+-i)+i7u />r » a j fr -^vtzXvKj+AfvFO^-r iii \_ /-AplV, IL ^ A,irv+1>i J J

dfv+l)-l)(cl|j(1 ^

)CllN)]];l(v4^+ i) ft)
' *0

For example, if we abbreviate ([X^^'r^ , Y]; d(v+l) + 1) to Y, an acceptable definition
of F(Y, z) would be

-Axr/ ? xAUxfakjix"1/x'ky

-Ax,'A] ;d(>/+ij)]jCl^+i)) (V+i u

\ 10



I shall now show that, using the same operation, we may construct a term-form P, of type-

functor ?ix.rf(v+2)d(v+l)~x\ in which andX^, do not occur, so that

ap , xW)
. , fry+1 -1 ^rf(W)*CvH)+Mvn)-tz' ~j A >

M /lPW^LAWfv+,)+^j J J; cl(\/-n) Ufv+l

is provable in TF. The proof proceeds by our finding a proof of

A fr / V,
/i*p(L AAW jn • /^Ag(v+'2.)+cli,(V+i')+'2.' AAe(v>z)+tl(V+i)+'$+'Z_* \ | 1

I Aefv«.Wfv„,»5+i , J, v^+yj; y
H-Aax.A^O+^OL , J; 2-+1)("2-+iy
^WALXM.M)3ti ,)(^ 3;

IX/

2--H ;(2-+|)

in which we then substitute d(v+l)— 1 for z. I get this, in turn, by proving

f • Werv+o+Arv+,;<-Z.. AXeA„tMfv+/)+s +v

ApW. , ft iCTTTT"1 ftx^*"""^'^Ax-ACv+0^3+(i^4-x > \u \ Ax-eCv4<a+Ar^3+(i^p4
Gpv+O e fv+1) fd fv+t^ v

f2- -^XO; X- fz. f2.+^ "2. - a )
(l V"AX'^:fu+Z^e<^<n) >+<2.- tjw+ilcfc.'7vL A^fv^i+x +

X y^/>N/, etc.



for, if this is proved for the case where y = 0, the equation becomes equivalent to the

theorem to be proved, using an axiom of reduction and theorem 2.4.

We get the last-written sequent by induction on z—y. Finding a derivation of the two

inductive premisses requires tittle more, so far as I can see, than a knowledge of the

reduction-rules of TF.

I take it that by a similar argument one can show that there are terms Qi, Q2 and Q3 so

that the following three sequents are provable:

tx? ,V,

—* AfWUL A**.* , Xe(v+.^| I

5XJ IVo

^ Ap Q 3, &tc .

P<1 IVq

Then sequent (2) is equivalent to

' 1 ; Vy+O+I

efv+,jo>X+,>,) , ([ApQjlxZr*^'
j /V(V-h)-H J

J ^efv+O+i J >



' 1 '^€(V+\9+i

p (ff AnOf[ Y^•cff^^+0+Jfv+i;-f^-X1
V' L/>P I ( L A^x.JtCv+0+2.+^ y,rf^l)efv/+(')+AT 7 _

J AeCv/+,;+i J^l)
cVWu)^ ([(dlfv+O) f

' /x A rv/+i )-

^Ax.x'
J

xT-n^m-aH), cr™"* H

At the same time, it is clear that

_ /7r ^?«.rffvrt.)e(v+i><ifv+-OH--^ £ y^vvzJefv+^^fv'+O+V1P *—^AxAfv-t-O^ox* (A /^clfv-h)-H ^

C dM)]PMX 0

rfV+i ,ei:c A
is provable in TF (because < 0 —» is provable). Thus we have the two

premisses required for an application of theorem 4.5, of which the result is

rfCv+i)efv-H)+c5.(V-n,>+3 7z <cc> F(([S(i) , £XP1P"H
^ V

where S is constructed according to the prescription given in the proof of theorem 4.5. The

above sequent is equivalent to

> 7V^
yr^Ve(v+iAX« J '^OjlclCv,,])^,^V-t-l

y 1 J n

m



in virtue of the way F was defined. We now want four term-forms, s, C, D and Do, the

last three having the type-functors ^x.rf(v+l)e(vj+ l~x , A,x.rf(v+l)e(v+l)—x'1 and

rf(v+l)e(v+l)'1, so that

-xAxTT"7LP,
Xt (Lc, Xml^6)

is provable. In fact, a sequent having nearly this shape (sequent 17) appeared in the proof

of lemma 5.8, so I do not think it is necessary to repeat the proof. We make some

substitutions in the last two sequents and then do a cut. We then take sequent (1) above,

make some substitutions and do another cut, thus getting the sequent which was to be

proved.

Remark: this lemma concludes what I described in chapter 3 as the "third section" of the

proof of the accessibility of £q. That is, I have now found the sequent of TF which

corresponds to (*) of HA' and (**) of HA".

Lemma 5.11: There is a term Q(u) having type-functor >»x.rf(v+l-u)e(v—u)+l-x1and in

which all occurrences of u are indicated, so that

A(Wl -vf))(v,+ l-U, ~Q

X, ([Q(u,o, u))3;



is provable in TF. Here 0^x.rf(v+l-u)e(v+l- u)-x° o^x.rf(v-u)e(v-u)«x',are new terms,

closed apart from the variables indicated, whose properties will be described below.

Proof: In virtue of lemma 5.6, the formula

Xi (L v,, I ,(LWj, iivl, , I Ui,(t W6 u„ (i, V,1'

AC^u)^]W-tfJt],M*-* ))(*+
- 0

is equivalent to

b'z < k/5 ^ XdL , (t^
fv-u, K>0
(tw$, K/c, 3jc.iC^-a^3;cX^-a))^^ay (V7 y
So, substituting 0 for N5 we get

>.,c(tK. f Nx_ (f Iv?, j? ivy^. . |o, (CK4, ^NA, (t K/a, K/^3 (

^-))I],:ct(-a))^]; clf,-u))]X- J (^)) X+X (w+l j)
" 0 -* ^ (tAf W, lc,(CW6/K/7l;^f^u])](^-a)+|^
K/8;W,l;cV(v-a))];cifv'u)),X-U/la+,fu;+|)) - Q

It is at this point that I make use of the terms 0^x rf(v+l—u)e(v+l—u)—x'"1 ancj
p n

0>.x. f(v-u)e(v- u)-tx etc. All that is important about the way they are defined is that, when

a substitution for the variables v or u and a plugging in of some argument into the type-
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functor makes the type-functor equal to o, the term should be equal to 0. Then, if we

substitute terms of this kind for some of the variables, the result of the substitution is

ct(v+|-u^J; cX(V- u) )33; ^Uv' uJ)(v-m - a /2U (Wl)) - o

+l),
<ffv-a))(v-u, 1ut,(^r0) -0
The lemma is therefore proved if we can define Q(u) so that Q(0) is equal to S(v+1) (from

the previous lemma) and, if

is equal to

([Q,fO/ [QJuKCQ^). fa fa),

then Q(u+1) is equal to

/If Q.fu) o];J(-a)ti>t(^u)+i
These provisions can be realised by defming Q(u) to be

P-r;w.5('+,-z;di(v+,-z>x-> L/V2--^ • \ ^f (Vl/,

1^6



/j-rfC/+i-t')erv/+i-i)1 jJ ■*• J ' \

AC^zjALG S(Vtl )j ^
Here the two main terms to which the operation is applied are of the following type-

functors respectively: (1) orXx.f(v+l—zjdlV+l-z)— xir?ix.f(v-z)d(v— z)—x7, which is

equal to o((A,zx.'f(v+l-z)d(v+l— z) -x )z)(((A,zx. f(v+l—z)d(v+l—z)—xl)z');

(2)A.x.rf(v+l)d(v+l)^-x\ which is equal to (A,zx.'f(v+1—z)d(v+l-:-z)2-x1)0. The term just

defined is therefore well-formed and has the type-functor Xx.rf(v+1—u)d(v+l- uHxl

Conclusion to chapter 5: We can now take the two sequents whose provability was

established in lemmata 5.10 and 5.11 respectively and use them as premisses of an

induction-inference. Introducing v in place of u in the conclusion, we get

iorr io**\ xrim-d
,1/co+O) - 0

If we expand the last formula here in accordance with lemma 5.6, it is obvious that we get a

formula from which a functional interpretation of the 3V-form of the accessibility-statement

discussed in chapter 3 can be derived.



CHAPTER 6

THE COMPUTABILITY OF THE TERM-FORMS

That every term of TF can be reduced to a normal form is established by a very simple

generalisation of methods standardly used to prove the same result for HAco. For an

example of a proof of the latter kind, I refer to Troelstra (1973, p.l03f.).

I shall define a concept of computability for terms of TF. First, though, it is necessary

to explain what I mean by the applicative complexity of a term. If the type-functor of the
ri rf" rV

term is not of the form f rg~1 i.e., not equal to 2 -3 for some f and g, its applicative

complexity is 0. If the type-functor is equal to rf1 'g1, for some f and g, then its applicative

complexity is 1 greater than the sum of that of any term with the type-functor' f and any

term with the type-functor 'g1.
I do not know whether the applicative complexity of a term can be effectively

established. I do not think that this matters, though. Unless I know that the applicative

complexity ofM is greater than 0,1 will not imagine that there is such a term as MN, for

any N. So the following computability-proof at least establishes the existence of a normal

form for every term that anyone will ever actually form. Computability is defined as

follows: if the applicative complexity of a term is 0, it is computable if and only if it has a

normal form. If the term has a type-functor of the shape rf fgl, then the term is computable

if and only if it has a normal form and, when applied to a computable term of type-functor

rf, the result is a computable term. This definition is well-founded because the

computability of a term of applicative complexity n is defined in terms of the computability

of terms having a lower applicative complexity.

To show that every term has a normal form it obviously suffices to show that every

term is computable. Predictably, the proof proceeds by showing first that the primitive

terms are computable and then that the property of computability is preserved under each of

the operations by which molecular terms are formed from others.

0 is obviously computable. Every variable is already in normal form. Let X be a

variable and letM^,... M^ be a sequence of computable terms so that XM^... M^ has

lis



the applicative complexity 0. Let the normal forms ofMj,.. . be M]/,.. . M^'; then

examination of the forms of redexes will show that XM^'... neither is nor contains a

redex. Therefore X is computable.

I shall now run through the operations by which terms are formed from other terms.

Obviously the successor and application operations transform computable terms into

computable terms. AX.M will be computable if and only if every term obtained from M by

substituting a computable term for all occurrences ofX is computable, so the problem

reduces to showing that computability is invariant under the other operations.

That p[M, N, t] is computable if its immediate components are can be shown by

familiar methods. Computability is also obviously invariant under operations 4.2.5-7.

Let M and m be computable; then m has a normal form, say nCui, where n is not a
K

successor. Then ([XX.M]; m) reduces to XY^ . . . A,Yj<:.([A,X.M]; n). Here ([A.X.M]; n)

has the applicative complexity 0. The task therefore again reduces to showing that that

term remains computable whenever computable terms are substituted for the variables Y],.

• • ^Y^ wherever they occur in M.

([M, N]; n) is equal to N if n is equal to 0; otherwise it has the applicative complexity 0,

so it is computable if M, N and n are.

Let the normal form of m be n'LC* again. We prove by induction on k that ApMNm is
K

computable ifM and N are. If k is 0, ApMNm is either equal to MN or else has the

applicative complexity 0. If k is equal to 1+1, N is equal to a pair of computable terms and

ApMNm reduces to Ap(MN())N^(n"—'). But from the assumptions that M and N are

computable, it follows that MNq and Nj are.

Rrfv~,[Xv.M, N, mj is treated pretty similarly to p[M, N, t].

The existence of normal forms for all terms of type o entails that TF is consistent, by a

familiar argument (Schuette 1977, p,116f.).

It is difficult to extract any precise additional information, of the sort that can be

expressed by numbers, from the above computability-proof. However I think it shows

that TF is as acceptable a theory, to a constructivist, as HAco. The computability-predicate

used in the proof of the computability of the terms of HAco that I alluded to earlier is n', in



terms of the recursion-theoretic hierarchies (for a proof of this, see Troelstra (1973,

p.l 19f.) and Hinman (1978, p.82)). The computability-predicate I have defined in this

chapter, although rather different, does not appear to be any more complicated.
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