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Abstract 

The thesis addresses the problem of deciding whether a homotopy equivalence of manifolds 

is splittable along a codimension 1 submanifold. If g : W - Y is a homotopy equivalence of 

manifolds, and X C Y is a codimension 1 submanifold, g is split if it is transverse to X and 

letting M = g'(X), f = g i m : M -f X is a homotopy equivalence. g is splittable if it is 

h-cobordant to a split homotopy equivalence g' : W' - Y. We restrict our attention here to 

the case where Y = Y1  Ux 1'2 and H = iri(X) - iri (Y) = G 1  are injections. 

Such problems were first studied in detail by Cappell in the 1970s using high dimensional 

surgery theory, initially by considering the effect of handle exchanges - which vary g by a 

homotopy and perform surgery on the map f: M - X inside g : W - Y. Cappell showed that 

not every homotopy equivalence of the above form is splittable. In particular, in the case when 

X is even-dimensional (dim X = 2k > 6) there are 2 obstructions to g being splittable: the 

first is a K-theory obstruction (r(g)); the second is an L-theory type obstruction x(g) lying in 

the so-called unitary nilpotent group UNil2k +2(7L[H]; 7L[G 1 ], Z[G21) which consists of UNi1 forms: 

pairs of quadratic forms taking values in 7L[G1]. 

The thesis begins with a slightly modified presentation of Cappell's results, which is more 

closely linked to the language of the quadratic forms which define the L-groups. In the same 

way that Ranicki defined a correspondence between quadratic formations and short odd com-

plexes and defined the L-groups as highly connected cobordism classes of short odd complexes, 

a correspondence between UNi1 formations and short odd nilcomplexes is established, and 

UNil2k +3(Z[H]; Z[G1], z[G21) is defined as cobordism classes of short odd nilcomplexes. This 

definition is related to the chain complex formulation of the splitting problem due to Ranicki 

and a map is defined UNil2k +3 -4 L2k+3. 

It is shown that given a splitting problem of the form above, with dim X = 2k + 1 > 5 and 

(r(g)) = 0, there is an obstruction x(g) E UNil2k+3(7L[H]; 7L[G1], 7L[G2 1) such that (g) = 0 if 

and only if g is splittable. 
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Chapter 1 

Introduction 

Let yn+l = Y1 Ux 1'2 where X'2  is a codimension 1 submanifold of Y, and suppose that 

g: W -4 Y is a homotopy equivalence of manifolds. Assume that g is transverse regular to X, 

so that M = g 1 (X) is a codimension 1 submanifold of W, with W = Wi UM W2. g is split, if 

I = g I M : M - X is a homotopy equivalence, and g is splittable if there exists an h-cobordism 

V of g : W - Y with g' : W' - Y where g' is split. This thesis addresses the question: 

Question 1.1 Is every homotopy equivalence g: W - Y splittable? 

Note that the fundamental group of Yis given by the Seifert-van Kampen theorem as the 

pushout of the diagram: 

iri(X) 	iri (Yi ) 

1. 
iri(Y2) ........... 

Henceforth, assume that the maps 7r(X) -+ iri(Y) are injective (so that the maps ir i (Y) 

iri(Y) are also injective), and write H = iri (X), G2  = ir,() and G = ir i (Y). Then G is an 

amalgamated free product G = G1 *H G2. 

We shall call the question of deciding whether a homotopy equivalence of the above form 

is splittable a splitting problem. The techniques to be used are essentially the techniques of 

surgery theory. 

For many X C Y, the answer to this question is yes, but it is not always so; there is a counter-

example due to Cappell (see Cappell [21). In later work Cappell constructs two obstructions to 

g being split when ii is even; the first is a K-theory obstruction 

(r(g)) e H(Z2; I = ker(Ko (Z[H] - k0 (7L[G 1]) ko (7L[G2 ]))); 

the second is an L-theoretic obstruction (g) lying in an obstruction group (the unitary nilpotent 

group UNi1) which depends only upon the fundamental groups H, G1, G2 (see CappellL3}). He 

was then able to show the vanishing of the obstruction group for a wide class of fundamental 

groups; in particular for the square-root closed condition where g2  e H g e H. The thesis 

addresses the case when n is odd, which has previously eluded a solution. 
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It has been shown that the UNil groups fit into a Mayer-Vietoris-like sequence of surgery 

groups (Cappell[4], Ranicki[9]): 

-4 L(7L[H])UNil +i  -4 L(7z[G 1 ])L(Z[G2]) - L(Z[G]) -4 L_ 1 (7L[H])eUNil 

(where the undecorated L-groups are the free L-groups L(R) = L(R), and the groups 

L(Z[G]) are the intermediate L-groups defined first by Cappell). Here UNiln  is described 

in terms of chain complexes as described in chapter 10. The map L (7L[G]) - UNiln is then 

shown to be a split surjection. 

The splitting question has many similarities to the main question of surgery theory: 

Question 1.2 Suppose f: M - X is a degree 1 normal map of n-dimensional manifolds. Is 

f normal bordant to a homotopy equivalence? 

The solutions to these two problems are very heavily related, although the theory relating 

to the surgery question is more developed. In this thesis, to make the similarities clear, we 

try to recap the relevant surgery theory in parallel with defining the splitting obstruction and 

proving the necessity and sufficiency of its vanishing. For this reason, in prose, when we refer to 

a splitting problem as being even-dimensional, we mean that the codimension 1 submanifold X 

is even-dimensional, and that Y is odd-dimensional, in contrast with Cappell's use. Throughout 

the thesis, n will be used to refer to the dimension of X when considering surgery or splitting 

problems. 

The methods in use are as usual restricted to high-dimensional manifolds and it is assumed 

that n > 5. 

In order to modify a map to become closer to a homotopy equivalence, the simplest operation 

that can be used is a handle exchange: given a homotopy equivalence g : W - Y cut along 

f : M - X, a handle exchange on g has the effect of a surgery on 1. In this chapter we recall 

the effects of surgeries and handle exchanges on maps. 

1.1 Surgeries 

Here, let M and X be compact n-dimensional manifolds, and f: M -' X a degree 1 map such 

that I I9M : 9M -f 5X is a homotopy equivalence. (In fact X need not be a manifold - it 

could also be any CW-complex with Poincaré duality; however for most of our applications it 

will be a manifold.) Then the map H (M) - H. (X) is a split surjection; the kernel homology 

groups are to be denoted K. (M), so that H. (M) = H. (X) K, (M). 

The goal of the surgery program is to make f increasingly connected, by first making 

iri(M) - iri(X) an isomorphism, and then 'killing off' the kernel homology groups of the 

lowest dimension, in which the Hurewicz map Kk(M) --4  7rk+1(f) is an isomorphism; by White-

head's theorem, f is a homotopy equivalence if and only if iri(M) -p iri(X) is an isomorphism 

and Kk(M) = 0 for all k. 
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The primary tool for this is that of surgery: 

Definition 1.3 A framed k-embedding in f is a commutative square e: 

	

sk X 	Dk 	M 

	

.1' 	_____ 
Dc+l x Dn_k ° X 

such that 50 is an embedding. The result of a k-surgery on f : M - X removing a framed 

k-embedding e, is the map f' : M' -4X where 

M' = M \ (Sk X  Dn_k) US-XS—.-1 Dc X Sn_k_i 

	

with f'= f on M \ (Sic x  Dn_c)  and f'= 	g on 	x Sn_c_i 

	

Implicitly, we are noting that 5(D 4  x 	= Sk x Dn_ku s k x s_k_1 Dc+l x 5n-k-1,  so 

we can cut out the embedding of SC  x Dn_c  and replace it by an embedding of D' x 

Examples 1.4 (i) Suppose that M is disconnected, with two components M1  and M2. Then 

there is an obvious embedding S °  x D -' M with 0 x Dn C M1 and 1 x D'1  C M2. Then 

a surgery on this embedding corresponds to forming the connected sum of M1 and M2. 

(ii) Suppose that M is n = 2k-dimensional. Then a surgery on a null-homotopic (k - 1)-sphere 

has the effect of taking the connected sum with 5k  x Sk. 

Definition 1.5 The trace of the above surgery is the cobordism (W; M, M') where 

W = Mx IUsk D-k X {1} D' x Dn_k, 

together with a (normal) map to X x I. 

Hence manifolds which are related by surgery are cobordant. The converse is also true: 

given a cobordism of two manifolds, a Morse function can be constructed on the cobordism; 

then by considering the critical points of the Morse function a handle decomposition of the 

cobordism can be defined. But every handle addition arises as the trace of a surgery, and hence 

two manifolds are cobordant if and only if there is a finite sequence of surgeries from one to the 

other. 

1.2 Handle exchanges 

For this section, (and this notation is to be fixed whenever a splitting problem is referred to), 

assume that g : W - Y is a homotopy equivalence of (n + 1)-dimensional manifolds which is 

transverse to X, so that M = g'(Y) is a codimension 1 submanifold of W and f = gIM is a 

map f: M - X. 
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In order to make f increasingly connected, we would like to kill off the homotopy groups by 

surgery - but in this case we need to perform ambient surgery inside W. This is made precise 

in the following proposition: 

Proposition 1.6 (Handle exchange, Cappell[5]) Suppose that 

a : (Di, S' - 1 ) x 	 (W1, M) 

is an embedding and let T be a neighbourhood of M U Im a. Then f is homotopic to a map f' 

by a homotopy fixed outside of T with f' 1 (Y2) = W2 U Ima and f' 1 (X) = M' where M' is 

obtained from M by a surgery on the restriction of a to 9a: x -* M. 

Examples 1.7 (i) Suppose that M is disconnected, so is a disjoint union M = M1 U M2 as 

in example 1.4. Then there is a homotopy G : W x I - Y to a map g' : W - Y such 

that the effect on f is the effect of a 0-surgery. Furthermore, G'(X) is the trace of the 

surgery. 

(ii) Performing a handle exchange on an embedding of a null-homotopic sphere in M has the 

effect of taking the connected sum with a product of spheres. 

The following proposition (Cappell [51) gives sufficient conditions to be able to represent a 

homotopy class by an embedding. 

Proposition 1.8 Let a e ir(Wj , M) so that f. (a) = 0 E ir(, X). Then if 2i < n + 1, a 

can be represented by an embedding a: (Di, S i— ') x 	- (Wi, M) 

Lemma 1.9 (Cappell [5]) Suppose that n 5. Then g is homotopic to a map g' where the 

restriction f, : M' -+ X is 2-connected. 

f is then made highly connected inductively by starting at the bottom dimension and killing 

off the lowest dimensional homology groups. Surgery and handle exchanges are unobstructed 

below the middle dimension. The details of how to make I highly connected are given in chapter 

6. 

1.3 Obstructions 

The first splitting obstruction is a K-theory obstruction due to Cappell and Waldhausen, which 

is well understood. We recall the details in chapter 5 using the treatment given in Ranicki[7]. 

In answering both the surgery and splitting problems, surgeries or handle exchanges can be 

performed in order to make f : M - X k-connected, if dim  = n = 2k or 2k + 1. 

The cohomology of M also splits as Hc(M) = Kc(M)Kk(X) and the Poincaré duality map 

—n[M] : Hc(M) - Hk(M) splitsas (-fl[M])e(-n[X]) : Kk(M)KJc(X) - Hk(M)Hk(X). 

Hence if dim X = 2k, K 3  (M) = 0 unless j = k. In this case the surgery obstruction is given 

by an equivalence class of 7L[H]-valued quadratic forms on Kk (M); those forms which are zero 

4 



are those which admit a Lagrangian, a submodule of maximal rank on which the form vanishes. 

In the case of the splitting problem, Kk(M) = P Q, and the splitting obstruction is given by 

two quadratic forms, over P and Q, taking values in Z[Cj] and Z[G2] respectively. In chapter 

7, we give a new treatment of this splitting obstruction, in terms of the 91i1 category defined by 

Waldhausen in [17]. In chapter 8 the definitions of the even-dimensional surgery and splitting 

obstructions are recalled. 

The key step of Cappell in showing that the vanishing of his obstruction is sufficient for g 

being splittable was the construction of the 'nilpotent normal cobordism'. This is a cobordism 

of g to a split problem g : W" - Y; the surgery obstruction for this was computed. Details of 

this are given in chapter 10 in some detail, as they will be used later. 

Ranicki also gave a homotopy invariant definition of the surgery obstruction in terms of 

quadratic structures on chain complexes (a homotopy invariant generalization of quadratic 

forms on modules); this obviates the need to make all maps highly connected, and makes it 

much easier to follow through the results of surgeries. This theory is reviewed in chapters 11 

and 12. In Ranicki[7] a description of the UNi1 groups in terms of chain complexes was given. 

In chapter 12 this is revisited (with a slight extra assumption). The algebraic version of the 

nilpotent normal cobordism given there is considered in chapter 13 and its surgery obstruction 

is computed explicitly. 

If dim  = 2/c + 1, K3  (M) = 0 unless j = k, k + 1. In this case, Ranicki defines the surgery 

obstruction groups in terms of formations and also in terms of short odd complexes - these are 

highly connected chain complexes with a quadratic structure, so much of the theory follows from 

the previous theory. Chapter 14 recalls this theory, and constructs two equivalent structures, 

UNil formations and short odd nilcomplexes; these bear the same relation to formations and 

nilcomplexes as our redefined UNil forms bore to quadratic forms. Thus in chapter 15 we are 

able to define the odd-dimensional splitting obstruction and show that it is well-defined. 

In chapter 16, we construct an odd-dimensional nilpotent normal cobordism, and compute 

its obstruction. This completes the proof of our main theorem: 

Theorem 1.10 If k > 2 and g : W - Y 22  is a splitting problem such that (r(g)) = 0, 

then there is an obstruction x(g)  E UNil2k+3(7L[H]; 7L[G1 ], Z[G21) such that g is splittable if and 

only if x() = 0. Furthermore there is a map a : UNil2k+3 - L2k+3 such that for all splitting 

problems g: W -* y2k+2 a((g)) = 0 if and only if x() = 0. 
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Chapter 2 

Algebraic Preliminaries 

2.1 Rings with involution 

In most of our applications, we shall be considering left modules over R where R = Z[7r] is the 

group ring of a fundamental group of a manifold. When ir is not abelian, R is not commutative; 

however the orientation character determines an involution on the ring, which is used to convert 

right R-modules into left R-modules as described in this section, and so one obtains a homology 

theory with coefficients in the group ring with involution for both oriented and non-orientable 

manifolds. 

Definition 2.1 An involution on a ring R is a map 	R - R such that for all r, s E R: 

• r + S = r + s; 

• r.s = s.r; 

• T = 1; 

• i = r. 

Example 2.2 Let ir be a group, and w : ir - 7L2 = {+1} a group homomorphism. Then 

defining 7L[7r] - Z[7r] by Eag = Eagw(g)g 1  makes 7L[ir] into a ring with involution. In 

particular, taking w(g) = 1 for all g E ir gives an involution on Z[ir]. The integral group ring 

with involution w is denoted by Z' [ ,7r], or simply by Z[ir] if w = 1. 

Definition 2.3 

Let K and K' be modules over a ring with involution (R,), f K - K' an R-module 

homomorphism. 

• K* = HomR(K, R) is the abelian group of left R-module homomorphisms 0 K - R, 

made into a left R-module via (r.0)(k) = 

• 	: K!* - K* is the R-module homomorphism defined by f *(0)(k) = 0(1(k)); 

• eK K - K** is the R-module homomorphism defined by eK(k) = (0 - 0(k)). 
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Proposition 2.4 Let K be a f.g. projective R-module. Then eK is an isomorphism. 

Definition 2.5 Let K be an R-module. Then let Kt  be K considered as a right R-module, 

with the right action given by k.r = r.k. 

2.2 Chain complexes 

Definition 2.6 Let C be a chain complex of R-modules. C is: 

. n-dimensional if C. = 0 for r V {0,.. . , n}; 

finite dimensional if it is n-dimensional for some n E 

. finite if Cr is a f.g. free R-module for all r. 

Definition 2.7 (Ranicki[14]) Let C be a left R-module chain complex. Define Ct to be the 

right A-module chain complex formed by using the involution as above. 

Definition 2.8 (Ranicki[14]) Let C and D be R-module chain complexes such that for some 

rO, Cr =Dr  = 0 when r > r0. Define 7L-module chain complexes: 

• (CI  ®D) = 	Crt 	d(x®y)=x®d(y)+(-1) 8d(x)®y; 
r+s=ri 

. Hom(C, D)n = 	HomR(C, D3 ), d(0)(x) = d(f(x)) + (-1) 8 f(d(x)); 

Definition 2.9 Let C be a finite-dimensional projective R-module chain complex. 

• The transposition involution T: Ct 0 C - C 0 C is defined by 

T(x(Dy) = ( 1)r8yox(x E Cr,y E C3 ) 

• The slant isomorphism is the map \ : C 0 C - Hom(C_*, C), given by x\y = (1 - 
f(x).y); 

• The transposition involution on the chain complex Ct  0 C is given by: 

	

T(f) = ()r8f* 	(1: C" - C8 ) 

Definition 2.10 

Let f : C - D be a map of R-module chain complexes. Define the algebraic mapping cone 

C(f) by 

C(f)r = Dr Cr_i 

dr 	

(

dD (_1)rf) : C(f)r+i - C(f)r 
0 	dc 

Then define the homology of the map H(f) = H(C(f)). 
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Proposition 2.11 Let f : C - D be a map of finite-dimensional f.g. projective R-module 

complexes. f is a homotopy equivalence if C(f) is contractible. 

2.3 Triads 

Definition 2.12 A triad of projective R-module chain complexes is a diagram 

I 

9L\4h  
C' 

with f, f', g and h chain maps, and h a map of degree 1 such that dk + kd = hf - f'g. 

A triad determines a map (h (_1)rk) : C(f) - C(f') so that we can define a mapping 

cone: 

Definition 2.13 Given a triad r as above, define C(1') by: 

C(r)r D.EC_1  Dr-i Cr_2 

dD' (_l)rfi (_1_ 1 h 	k 

	

- 0 	d' 	0 	(_1)r-lg  

	

- 0 	dD 	0 	(_1)r-f 

	

0 	0 	0 	dc 

Then define the homology groups H(F) = H(C(r')). 

Then these fit into a commutative diagram: 

	

_ 1. _ 	'If _ _ 

	

H. (C) 	H. (C') 	H. (g) 

	

_____ 	_____ I 

	

> H(D) h  H(D') 	H. (h) 	> 

_ I I_ _ I _ 

	

H(f) 	H(f') 	H(r) 

I 	I 	I 



Chapter 3 

Geometric Preliminaries 

In this chapter, for the sake of consistency and completeness, we recall some standard definitions 

and results upon which we shall later rely. 

3.1 Homology and homotopy groups 

Recall that the homotopy groups ir(A) are defined to be the set of (based) homotopy classes 

of maps S -* A. 

Now for it > 2, 7r(A) ir(A). Furthermore, the action of ir i (A) on A induces an action 

on 7r,2 (A) = ir(A). Therefore the following is an equivalent definition of the homotopy groups, 

which makes it easier to describe the action of Z[ir i  (A)]; we shall take it as our definition: 

Definition 3.1 Given a pathwise connected space A, together with basepoint ao,  the ho-

motopy group ir(A) is the set of homotopy classes of pairs (g, y) where g : S' -* A and 

y: [0,1] - A is a path such that y(0) = a0 and y(l) = g(1,0,. . . ,0) (homotopy keeping y(0) 

fixed). Given a loop a E iri(A) and (g, -y) E 7r. (A), a.(g,y) = (a . -y, g) (where . means 'take 

the join of the two paths'). 

In future we shall give all further definitions of homotopy groups in this way, to facilitate 

the description of the group action. 

Definition 3.2 Given a map of pathwise connected spaces with basepoints f : (A, ao) -* 

(B, b0), let Irk 1(f) be the set of homotopy classes of commutative squares: 

I  
Dk 

_ h 
' B 

together with paths -y: [0, 11 -* B such that -y(0) = b0 and -y (1) = f(g(1, 0,. . . , 0)). 

Definition 3.3 Suppose that f : (B, A) - (Y, X) is a map of pairs of pathwise connected 

spaces (with basepoints) such that f : iri (B) -p iri(Y) is an isomorphism. Then: 

• lrk+l(B,A)=lrk+l(i:A —+ B) 
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lrk+2 (f) = homotopy classes of diagrams 

S 	9
'A 

Dk+l 	,X I L 

	\~  i j  

D' 2 	Y 

together with paths y : [0,11 --4 Y  such that 'y(0) = yo and -y (1) = f(i(g(l, 0,.. . , 0))); 

where D J 1  and DJ  1  are the upper and lower hemispheres of S' 1  = D' 2 , with 

intersection in 

Definition 3.4 Let 0 be a space, pair, map, or map of pairs (where all spaces are connected). 

Then 0 is k-connected if 7r() = 0 for i < k. 

In addition to acting on homotopy groups, the fundamental group also acts upon the singular 

chain complex of the universal cover C.s ing (At), so that there is also an action on homology. 

Also, if M is a CW complex then there exists a cellular chain complex for M with an action 

of 7L[7rj (M)], so that Cw(AJ)  can be considered as a Z[-7r]-complex. In this thesis, unless 

otherwise specified, C (M) will be used to refer to a 7L[ir]-module complex, either singular or 

cellular, with cochain complex C* (M) = Homz[,,.](C(It),Z[7r]). 

Definition 3.5 Given a connected manifold M with fundamental group ir and universal cover 

M, define the homology with local coefficients: 

Hk(M;7L[7r]) = Hk(C*(M)) 

and the cohomology with local coefficients: 

HIc(M;7Z[ir]) = Hk(Homz[11](C(M, 7Z[ir]))) 

both considered as 7Z[7r]-modules. 

Note that Hk(M;  Z[ir]) = Hk(M; Z) considered as Z-modules. The same is not true for 

cohomology. 

Convention 3.6 From now on, unless otherwise specified, all homology will be taken with 

local coefficients; specifically H,, (M) shall mean H. (M; Z[iri (M)]). 

Proposition 3.7 (Prop. 10.21, Ranicki[111) Suppose that f : M —p X is a degree 1 map 

of connected manifolds, and suppose that f : iri(M) —p iri(X) is an isomorphism. Then the 

homology and cohomology of M decompose as: 

Hk(M) = Kk(M) Hk(X), 	Hk(M) = K"(M) Hk(X) 

and the Poincaré duality isomorphisms split as [M] n - = ([M] n -) ([X] n -) 
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These groups Kk (M), the homology kernel groups, are clearly such that I induces an iso-

morphism on homology if and only if they are all zero. They are also the homology groups of 

the mapping cone of the map f : M -* X (sometimes denoted by Hk+1(f)),  and as such there 

is a Hurewicz homomorphism from the above homotopy group which permits representations 

of elements of the groups: 

Theorem 3.8 (Hurewicz, theorem 3.26 Ranicki[11]) Given a 1-connected map f: M - 

X of connected spaces, there is a Hurewicz map 7rk+1(f) -4  Hk+1(f) Kj(M) such that if f 

is k-connected (k> 1) then 

7rk+1(f) Hk+1(f) Kk(M). 

Corollary 3.9 If f: M - X is a degree 1 map of connected spaces, f is k-connected if and 

only if f : iri (M) - ir i (X) is an isomorphism and K(M) = 0 for i < k. 

Theorem 3.10 (Whitehead, theorem VII.11.14 Bredon[1]) A map f : M - X of 

connected CW complexes is a homotopy equivalence if and only if 7r(f) = 0 for all i, or 

equivalently, f : iri(M) -+ iri(X) is an isomorphism and ir(f) = 0 for all i. 

Furthermore, the kernel homology groups behave as a homology theory, respecting the 

relative long exact sequence, as well as excision, (and hence the Mayer-Vietoris sequence.) We 

shall also need the following variant of Mayer-Vietoris (the proof is a trivial modification of 

that of Mayer-Vietoris.) 

Theorem 3.11 There is an exact sequence: 

Proof. See, for example, Bredon [1] problem IV.18.4. 	 El 

Theorem 3.12 (Whitehead) • There is a Hurewicz map 7rk+1(f) -4 Hk+1(f). 

• For k > 2, f is k-connected if and only if f induces an isomorphism of fundamental groups, 

and K(M) =0 for i< k. 

• For k > 2, if f is k-connected then the Hurewicz map is an isomorphism 7rk+1(f) Kk(M) 

(or Kk(N,  M) when f is a map of pairs). 

Finally we shall need a technical lemma of Wall ([201, Lemma 2.3). 

Lemma 3.13 Let f: (N, M) -p (Y, X) be a map of pairs with Y connected (M and X may 

be empty). Suppose that H(f) = 0 for i < k, as a module with A = 7L[iri(Y)] coefficients. 

Then: 

If H(f; B) = 0 for every A-module B, then Hk(f)  is a projective A-module. 

If N and Y are finite, Hk(f)  is finitely generated. 
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(c) If, in addition to (a) and (b), Hi  (f = 0 for i k, then Hk(f)  is stably free. 

3.2 Covering spaces 

Suppose that g : W -p Y is a splitting problem. In order to understand the maps on homology 

induced by the inclusions M -+ W0,2}, it is necessary first to consider the structure of the 

covering spaces of W and Y. 

Let k denote the universal covering space of Y, with covering map lry : - Y. Choose a 

fixed point x E X, and choose a lift z E Y. 

Now ir'(X) will have many connected components, with each component giving a simply 

connected covering space for X. The component containing z will be denoted X. Similarly we 

denote the covering spaces containing Y1 and Y2 containing z by l'i  and Y respectively. 

Now denote by k , and 	the quotient spaces of the action of H on Y, Y1 and 1' 

respectively. 

Figure 3.1: The covering space W 

4 
IAI 	 AI 

Lemma 3.14 The covering space of Y has the following properties: 

ir1(X) = 	Xa 
aE[G;H] 

7r1(Yi)= U f,a 

cE[G;G1J 

7r1(Y2) = U Ya 
cEIG;G2J 

Note now that Y\X has 2 components, one of whose closure contains Y1. Following Cappell, 

denote this component by YR and the other by YL. 

The quotients YR/H and YL/H are to be denoted by Yr  and 11 respectively. 

12 



If g1 m is 2-connected, the covering space of W satisfies the same properties. we define in 

the same way W, WR and WL,  and their quotients under the action of H, W, Wr, W1.g (See 

figure 3.1 for a picture.) 
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Chapter 4 

Nilpotency 

We stated in the introduction that Cappell's obstruction to splitting a homotopy equivalence 

lies in a group called UNi1, the unitary nilpotent group. In our attempts to kill off all kernel 

homology of f by embedding representatives of homology classes, we find that we can not 

extend an arbitrary embedding of a sphere to an embedding of a disk in W1. However, it is the 

nilpotency of a certain map which provides a filtration of the homology modules, and provides 

the means below the middle dimension to always kill off the homology. 

In this chapter, we describe an additive category, 'YtU = 'YtU(Z[H]; Z[G 1 }, Z[G 2 1), first defined 

by Waidhausen ([17], pg. 148), and put an involution on it. We shall describe how a splitting 

problem determines objects in this category, in the same way that a map determines objects 

in the category of modules via the homology with local coefficients. These objects share many 

desirable properties with the usual homology. 

This will enable us in following chapters to show how a splitting problem can be made 

increasingly highly connected, and how in the middle dimensions certain maps determine the 

splitting obstruction. When the obstructions are formulated in terms of ¶YU[ ojects, the similar-

ities with the surgery obstructions are particularly noticeable. 

Definition 4.1 Given a subgroup H < G, define Z[G] to be the additive subgroup of Z[G] 

generated by G 2  \ H. This is then also a Z[H]-bimodule, and as a 7L[H]-bimodule, Z[G] 

7L[H] 7L[G]. Furthermore, Z[G] is free as a right 7L[H]-module, with basis representatives of 

the right cosets of Z[H] in 7L[G]. 

Convention 4.2 In this thesis, ®Z[G} is always to be interpreted as ®Z[H]  7L[C2 ] unless oth-

erwise specified. 

41 Nilpotent category 

The next 2 definitions define the nilpotent category of Waldhausen. 

Definition 4.3 

Let P and Q be f.g. 7Z[HJ-modules. A nilpotent structure on (P, Q) is a pair of maps 
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(p1, p2) where p1 : P - ZIG 1 ] ® Q, p2 : Q - 7Z[G2] 0 P such that there exist filtrations of 

P and Q as Z[H]-modules: 

P=P0JP1J...2Pr =O 
Q=Qo 	Qi 	... 	Q8 O 

such that pi(P3 ) c 7L[G 1 ] 0 Q31 and similarly for P2. 

• Define Obj()tU) = {(P,Q;pi,p2) : P,Q are f.g. Z[H]-modules and (Ph p2) is a nilpotent 

structure on (F, Q)}. 

Definition 4.4 

If (P, Q) and (F', Q') have nilpotent structures (p1, p2) and (p, p) respectively, then a 

map (f, g) : (P, Q) - (F', Q') is compatible with the nilpotent structures if the following 

diagram (and its obvious counterpart in P2, P'2) commutes 

P 
Pi 

 Z[G1 J®Q 

P' 

Hom j ((P,Q;pi,p2),(P',Q';pç,p')) = { UP, fQ)IfP : P-4 P',IQ : Q - Q' 

compatible with the nilpotent structures} 

Definition 4.5 Let gfree (resp. ¶Tti( ° ) denote the full sub-categories of 91i1 of objects 

(P, Q; P1, P2) such that P and Q are free (resp. projective). 

We now define an involution on the projective category (for definition of category with 

involution, see Ranicki [8]). 

Definition 4.6 

Given (P,Q;p1,p2) E 0'proj define p : 	- Z[G 1 ] 0 P' that p(g) is the unique 

element ofZ[G i]®P* Hom(P,Z[Gi]) satisfying p(g)(p) = (lOg)(pi(p)) for allp E P. 

We define an involution functor * : 	 [P0i by: 

• (p Q;p1,p )* (Q* , p* ; _p, _p ) 

• (f,g) * = (g* , f *) 

Lemma 4.7 The above involution is a well-defined involution on the category. 

Proof. We must show that (Q * ,  *; 
p, p) E Obj(91ii 0J) ,  i.e. construct filtrations of modules 

for * and Q*. Let P and Q have filtrations: 

PzP02P12 ... 2PrO 
Q = Qo 2 Q 2 ... 2 Q3 =O 
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such that p, (Pi) c 7L[Gi]®Q +1 etc.' Assume, by adding zero terms to the end of one sequence 

if necessary, that r = s. We claim that the following is a filtration associated to (Q * ,  *; p, ps): 

P*=PDPrO l  D 	J Poo =O 
= Q 2Q_ 2 ... 2 Q=O 

Suppose that I e F 1 . Then f(p) = 0 for all p e P21 . Let q E Q2. Then  p(f)(q) = 

f(p(q)) = 0 since p(q) E Z[G2]eP+1 . Hence p(f) E Z[G2]®Q and the above is a filtration 

as claimed. Similarly for p. 	 ' 	 0 

Definition 4.8 If A i  are objects in 91i[, and f : Ai  —p 	are morphisms, then the sequence: 

Ii  >A_i 

is exact if for all i, letting ft = (f", f), ker 	=Tm 1p and ker f 	= Im J.  

Remark 4.9 Not every short exact sequence in 97UP"i splits - for example, we shall see 

later that not every Lagrangian in a UNi1 form has a complementary Lagrangian, which gives 

an example of a short exact sequence which does not split. 

4.2 Objects in the category 

In the same way that with suitable connectivity assumptions, a manifold determines homology 

and cohomology objects in the category of projective modules, a 'splitting problem determines 

objects in the 'nilpotent category. In this section, we shall demonstrate the construction of 

these objects, and show that (in some cases) they satisfy the usual reasonable properties, such 

as relative exact sequences, Poincare duality and universal coefficient theorem. 

For clarity of presentation, we shall first describe the case where W and M are closed. This 

is precisely the case described by Cappell in [5], so we omit details of many of the proofs where 

they are not relevant to further work. 

4.2.1 Homology splitting 

In this section, we assume that g: W - Y is a splitting problem, and consider those homology 

groups of the restriction I : M - X which are well behaved (finitely generated projective). An 

example is the group Kk(M)  where n = 2k + 1 and f is k-connected. The nilpotent object that 

we construct will be a splitting of Kk (M). In the next section we shall consider the more general 

case of a pair, however for ease of exposition we shall consider the simpler case separately first. 

Proposition 4.10 (Cappell[5]) Suppose that g : W --4Y  is a splitting problem and that 

f : M —+ X is k-connected. Then: 

Kk(M) = PQ where P= Kk+l(Wr,M) Kk(Wj) and Q = Kk+l(WL,M) Kk(Wr) 

are fig. 7L[H]-modules; 

Kk(Wl) 7L[G1] ®ZfHJ Q and Kk(W2) Z[G2] ®Z[H]  P; 
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The maps P - Kk(M) -4  Kk(W1) 7L[G 1 ]®Q and Q - Kk(M) -4  Kk(W2) Z[G2]0P 

factor through maps p : P - Z[G1] ® Q and  Q - 7L[G2] 0 P respectively; 

The map (1 P2) : Z[G] ® (P Q) -4 Z[G] 0 (P ED Q) is an isomorphism; 

(P,Q;pi,p2) is an object in 'Nit. 

Definition 4.11 With the terms as defined above: 

Spl k (M) := (P,Q;pi,p2) 

Before we proceed further, we shall say a little about the meaning of the terms defined 

so far. p  represents the obstruction to being able to represent a E P by an embedding 

(Dl,Sk) - (W 1,  M). In particular a E ker(Kk(M) - 4 K, (W)) if a e P and pj(a) = 0 

(and similarly for W2). The map p is nilpotent, and we use this nilpotency below the middle 

dimension to show that f can be made highly connected. In the middle dimension it will form 

part of our obstruction. 

The proof of this will be deferred until the next section, when it will be given in more 

generality. We shall, however, note that the nilpotent structure follows from (4) by the following 

lemma from [5], Lemma 1.9: 

Lemma 4.12 Let P, Q be finitely generated 7L[H]-modules and p: Z[G] ® (P & Q) - Z[G] 0 

(P Q) a Z[G]-linear map, satisfying: 

I + p is an isomorphism, I the identity map of Z[G] (OZ[H]  (P Q) 

p(P) C 7L[G1] 0 Q, p(Q) C 	®Z[H] ' 

Then p is nilpotent, and (P, Q) has an upper-triangular filtration. 

Before we leave this section, we make one further observation which will be needed later on: 

Lemma 4.13 Kk+j(Wl,M;Z[Gl]) Z[Gi]®P. The map 

Kk+1(W1, M; Z[G1]) -4 Kk+1(M; Z[G1]) 7L[G] (D (P Q) 

is given by (—Pi). 

Proof. There is a Mayer-Vietoris exact sequence with coefficients in 7L[G1]. 

Kk+l(M,M)=0 	Kk+l(Wl,M)Kk+1( U W1  U M) 	Kk+1(W,M)--0 
[Gi;IJ] 	(G,;Ifj 

Z[G1j ® (P JQ)  Kk(M) 

So consider the composite of the two isomorphisms, call it (a 
	). By the definition of the 

isomorphism Kk(M) = P Q, and the long exact sequence of the pair (W1, M) it follows that 
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= 0 and ö = 1. Hence c is an isomorphism. Henceforth, we use c to identify Kk+1(Wl, M) 

with Z[G1] ® P. 

The composite 

Z[G1] ® P Kk+1(Wl,  M; 7L[G 1 ]) —* Kk(M) 	® (PEB Q) —p Kk(W1; 7L[G11) 7L[Gi } ® Q 

is zero, by the long exact sequence of the pair (W1 , M). The second map is (p'  1) by definition. 

The first component of the first map is 1 since it is simply the identification made above. Hence 

the map Z[G1] ® P —* Z[G 1 j ® (P Q) is 
(1) 

 as claimed. 	 D 

4.2.2 Relative homology splitting 

Proposition 4.14 We now suppose that g : T — Y is a splitting problem with boundary 

5g: W — t9Y, and that Kk(f,  af) : (N, M) —* (X, X) is finitely generated. (For example if 

K(N, M) = 0 for j <k.) Then: 

Kk(N,M) = PQ where P = Kk+l(Tr,Wr UN) = Kk(Tj,WI) and Q = Kk+1(Tj, W1 U 

N) = Kk(Tr, Wr); 

Kk(T1,  W1) 7L[G1] ®Z[H] Q and Kk(T2,  W2) Z[G21 ®Z[H] P; 

The maps 

P—*Kk(N,M) — Kk(T1,W1)Z[G11®Q 

and 

Q — K(N, M) —+ Kk(T2, W2) Z[G2] ® P 

factor through maps p' : P — Z[G 1 ] 0 Q and  Q — Z[G2] 0 P respectively; 

The map (1 c2) : Z[G] ® (P 	— Q) Z[G] 0 (P ED Q) is an isomorphism; 

(F, Q; p1, p) is an object in YtU. 

See figure 4.1 for picture. 

Definition 4.15 With the terms as defined above: 

Spl k (N,M) := (P,Q;pl,p2) 

Proof of 4.14.  The proof is simply the relative version of Proposition 4.10. Note that 1C3 (M) 

and K3  (N, M) decomposes as a direct sum of modules P Q for all j; however Sp13  (N, M) is 

only an object in Mif if K3 (N, M) is a finitely generated 7L[H]-module. 

(i) Follows from the braid of 7L[H]-modules: 

Kk+l(Tr, Wr  UM N) 	 Kk(T1, W1) 

Kk+l(T,W) =0 	 Kk(N,M) 	 Kk(T,W) = 0 

Kk+l(T1, W1 UM N) 	 Kk(Tr, Wr) 
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Figure 4.1: The covering space T 

Consider the decomposition T = T1 U[G i ; H] 9i; HIT1 and similarly for W. Since 

K(T, W) = 0 for all i, the Mayer-Vietoris sequence gives isomorphisms: 

Kk(N, d; ZL[G 1 ]) 	Kk(Tj, W1; 7L[G i ]) Kk(T1, Wi; 7Z[Gi) 

Z[G1]®(PQ) 	Z[Gl]®PKk(Tl,Wl) 

By construction, the map 7L[G1] & (P Q) - Z[G1] 0 P is the map (1 0), so we have 

an isomorphism Q 0 Z[G] Kk(Tl, W1). Similarly for Kk(T2, W2). 

Follows from commutativity of the diagram: 

J 	Kk+l(Tr .Wr UMN) 	>Kk+l(Tr ,Wr UT1) 

I __ I 
Kk(N,M) 	 Kk(Tl,Wl) 

From the Mayer-Vietoris sequence for W, we have an isomorphism of 7L[G]-modules: 

Z[G] OZ[H] Kk(N, M) - Z[G] ®z[c i ) Kk(T1, W1) 7L[G] OZ[G2] Kk(T2, W2) 

Note that in part (ii) above, the map 7L[G1] 0 (P Q) - 7L[G 1 ] 0 P Z[G 1 ] 0 Q 

is given by (1 
	). In particular, therefore, the map Kk(N,  M; Z[G 1 1) = Z[G1] 0 

(P Q) -* Kk(Tl, WI; Z[Gl]) = 7L[G 1 ] 0 Q is given by (p1 1). Similarly, the map 

Kk (N, M; Z[Gl]) -' Kk(T2,W2) = Z[G2] OP is given by (1 p2).  Hence the Mayer- 

Vietoris map is 
(p,P2 

 as claimed. 
 lj 

0 

Lemma 4.16 Wherever the objects referred to are defined (for example if K3 (M) = 0 unless 

j = k, K3 (N,M) = 0 unless j = k+ 1): 
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If çb: W -+ W' is a map of splitting problems over Y, there is a map 4 : Splk(M) - 

SPik (M'); 

Given a splitting problem with boundary (T, W), there is a connecting homomorphism 

8: Splk+l (N,M) -4 Spl / (M); 

The sequence ... --4 Sp1, 1 (N, M) - Spl k (M) -+ Splk (N) -+ Spl,(N, M) --+ ... is exact. 

Proof. 	(i) Clear from the construction. 

(ii) Consider the diagram in figure (4.1). The maps are all natural, and all squares are 

commutative. 

U 

4.2.3 Cohomology splitting 

We shall now proceed further and show that cohomology as well as homology defines an object 

in UNi1. Later on we shall show analogues of Poincaré duality and the universal coefficient 

theorem. There are two choices of cohomology splitting: one construction is essentially the 

Poincaré dual of the homology splitting; the other is the dual of the homology splitting. These 

are related by a factor of —1. It is for this reason that the - signs appeared in the definition of 

the involution on UNi1 given earlier. 

Proposition 4.17 Suppose again that g: W - Y is a splitting problem and that f : M - X 

is k-connected. Then: 

Kc(M) = PEBQ where P = KC(Wr) K''(W1, M) and Q = Kk (Wr) K''(W1, M); 

Kk(W1,  M; Z[G1]) Z[Gi] ®z[H] Q and K'(W2, M; Z[G21) Z[G2] ®z[H] P; 

The maps P - 7Z[G1] ®K'(M) - Kk(Wl,M) 	Z[Gi] ® Q and  Q - K'(M) 

K(W2, M) Z[G2] ® P factor through maps p' : P - Z[G 1 ] ® Q and  Q -p Z[G2] ® P 

respectively; 

The map (1 P2) : Z[G] 0 (P Q) - Z[G] ® (P Q) is an isomorphism; 

(P, Q; p1, p2) is an object in YtU. 

Definition 4.18 With P,Q,pi,p2 as above: 

Sp1c(M) := (P,Q;pi,p2) 
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Proof of 4.1 7. 	(i) Follows from the braid of 7L[H}-modules: 

	

Kk(W r) 	 K(Wz,M) 

Kk(W) = 0 	 K"(M) 	 K 1 (W) = 0 

	

K'(W1) 	 Kk(W r,M) 

(ii) Consider the decomposition of W = W1 U[Q1 
•HJJJ  [Gi; H] W1. All components are equipped 

with a 7L[Gi]-action giving us a Mayer-Vietoris sequence (see theorem 3.11): 

Kk(M; Z[Gi]) K''(W1, 9'; 7L[G11) K'(W1, M; 7L[G 1 ]). 

If C (k) is a free Z[H]-module chain complex, then: 

Hc(C* (M) ;  Z[G1 1) = Hk(l{omz[G,] (Z[G1] ®z[H] C(I), Z[G 1 ])) 

Hk ( 7L[G1] ®Z[H] Homz[H] (C (Ax), Z[H]) 

7L[G] ®z[H] Hk(Homz[H](C(M),Z[H])) 

= Z[G1] ®Z[H] Hk(M;7L[H]) 

where the first isomorphism is from the fact that C. (M) is free and the second is from 

the fact that Z[G] is a free 7L[H]-module. 

The rest of the result follows precisely as before, with p1  being the map P -+ Z[G1] ® 

(P Q) - K 4 (W1, M; 7L[G1]) Z[G I ] ® Q. 

D 

A straight-forward compilation of the results in the previous 2 sections then allows us to 

make the following definition 

Definition 4.19 Suppose that g : T -p  Y is a splitting problem with boundary ag: W - 

and that K' (N, M) is f.g. projective. Then: 

. Let P:= Kk(T1,  W1) and Q := Kk (Tr , Wr ); 

. Let pi 

. Let p2:=Q_Kk (N,M)_.K c (N,M)_4Z[G2JØPcK ll (T2,W2UMN) 

Proposition 4.20 Wherever the objects referred to are defined: 

If 0 : W --4 W'  is a map of splitting problems over Y, there is a map 	: Spl k (M') 

Spl k (M); 

Given a splitting problem with boundary (T, W), there is a connecting homomorphism 

ô: Splc(M) 	Sp1c(N , M) ;  
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Proposition 4.21 (Poincaré duality) If (TTh; W, W') is a cobordism of splitting problems, 

then there is a Poincaré duality isomorphism 

S pin_c(N ,  M) Spl k (N, M'). 

Proof. Consider the following commutative diagram, where the horizontal arrows are all the 

Poincaré duality isomorphisms. 

Hfl_k(HomzHJ(C(Tj, W1), Z[H])) 	 Hk+l(C(Tj, W[ UM N)) 

Hfl_k(Homz[ff)(C(N, M), 7L[H])) 	 Hk(C(N, M')) 

I 	 I 
Z[G] ®z[H] Hfl_k(Homz[H](C(N,M),Z[H]))_ 7L[G 2 ] 	'k(C(N,M')) 

I 	 I _ 

Hfl_k(Homz[a](Z[G1 ®Z[H] C(N, M), Z[G])) 	Hk( 7Z[G] ®Z[HJ C(N, M')) 

I 	 I 
Hfl_k+1(Homz[Q1(C(T1, W1 UM N), 7L[G])) 	 Hk(C(Tl, Wi)) 

The composite on the left hand side is precisely the map p'  in the cohomology splitting. The 

composite on the right hand side is the map p1  in the homology splitting. 	 11 

Proposition 4.22 (Universal coefficient theorem) Suppose that Hk_1(M) = 0. Then 

there is an isomorphism 

S plc(M) Spl k (M). 

Proof. From the commutative diagram, with the horizontal maps all isomorphisms from the 

universal coefficient theorem. 

HIc(Homz [ H](C(Wj), 7L[H])) 

1 
Hc(Homz[H] (CM,  Z[H])) 

I 

- Homz[H] (Hk (W,), Z[HJ) 

I 
Homz [HJ(Hk(C(M)), ?L[H]) 

I 
7L[G] ®Z[H]  HIc(Homz [ff ](C(M),7L[H])) 	7L[G1} OZ[H]  Homz I HJ(Hk(C(M),Z[H}) I I 
H'(Homz[c](Z[G] Z[H]  C(M),7L[G2])) 

_ 
Homz[c](Hk(Z[G2 ] ØZ[H) C(M)),Z[G2]) 

I 	__ 	I 
H  (Homztci (C(W 1 , M), 7L[G])) 	 - Homz [c ] (Hk (C(Wi, M)), Z[G 2 ]) 

The composite map on the left hand side is p'1  in the definition of the cohomology splitting. 
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Chapter 5 

K-theory 

In this chapter the K-theoretic part of the obstruction is discussed. As in the introduction, 

fix I = ker(Ko (7Z[H]) - k0(7Z[G1]) e k0 (Z[G2 1)). Let Z2 act on k0 (7L[H]) in the usual way 

T[M] = [M*] It was shown by Cappell that there is an element lying in H(7Z2; I) which is the 

obstruction to g being normal bordant to a split homotopy equivalence. Much of the following 

theory is due to Waidhausen in the unpublished notes Waldhausen[16]. Some of the treatment 

was reworked by Ranicki in [7] pp.  672-678; where available we use this treatment. 

Definition 5.1 Let E be a based 7L[G]-module chain complex. A Mayer- Vietoris presentation 

of E, (C, D 1 , D2, f, g), consists of: 

• A f.g. free based 7L[H]-module chain complex C; 

• A f.g. free based 7L[Gi]-module chain complex Di; 

• A f.g. free based Z[G 2 ]-module chain complex D2; 

• Maps fi  Z[G] ®Z[H]  C - 

• Maps gj  : Z[G] ®Z[G]  D1 - E 

such that 

Z[G] ®Z[H]  C - 7L[G] ®z[c i ] D1 Z[G] ®Z(G2]  D2 - E 

is a short exact sequence and the given basis of E coincides with the basis induced by 91 — 92. 

Note that if Ii e f2 is a Z[G]-homotopy equivalence then E is contractible and r(E) = 

12). 

Every f.g. free based Z[G]-module chain complex admits a presentation. Denote Er  when 

considered as a Z[H]-module rather than a Z[G]-module by ErIZIH].  Then: 

Proposition 5.2 (Ranicki [9], Remark 8.7) Let E be a f.g. free based 7L[G]-module chain 

complex. There exist f.g. free subcomplexes D 1  C EIz[c1J, D2 C EIz[c2], and C C EIZ[H] such 

that (C,Di,D2,f,g 2 ) 

0 --+ Z[C] OZ[H]  C - 7L[G] ®zc,j  D e Z[G] ®Z[G2]  D2 -* E —40 
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is a Mayer-Vietoris presentation. 

To define the map Wh(G) - k0 (7L[H]), it is necessary to decompose Z[G] as a 

bimodule. We use the notation of Cappell; here if g E G = C1 *H C2, then g can be written in 

normal form as hgi . . . 9k where each g2  e C1 or C2, and for example, g e A i  if i = k and 91 

and g, are both in G1. 

Lemma 5.3 (Cappell [5], pg. 84) Define 	 inductively: 

A1 = Z[G1], B1 = 0, 

A+i = 1.i ®ZH]  Z[C1], 

= Bi ®Z[H]  Z[C2], 

r 1 =zj, A, =O 

B +1  = r, ®z[H]  Z[G1J 

= A ®Z[HJ  Z[G2} 

Then as a 7L[H]-bimodule, 

The following algebraic result corresponds to the decomposition of the covering space shown 

in the previous chapter. 

Definition 5.4 ([17] pg. 146, [7] pg. 673) Suppose that (C, Di, f2 ,g2 ) is a Mayer-Vietoris 

presentation such that Ii ED 12  is a homotopy equivalence over Z[C]. Then consider the following 

diagram: 

... r®c 	C e A1®C 	L2®C 	A3®C 	ED 
- 	 ¼ 	' 

A1®D2 	i2®D1 	A3®D2e... 

The top row is a decomposition of Z[G] OZ[H]  C, the bottom is Z[G] ®z[a1]  D1 Z[G] ®z(G2]  D21 

and the arrows are the only component maps which can be non-zero. 

Define D to be the union of everything on the right hand side of C, i.e. the mapping cone 

of the map: 

Define D_ similarly. 

Definition 5.5 (Ranicki[7], pg. 674, [16], section 5) Let r(E) E Wh(G) for some 

contractible f. g. free based 7L[G]-module chain complex E, and let 

0 - Z[G] ®Z[H)  C - Z[G] øzc1j D1 Z[G] ®z[a2]  D2 - E _+ 0 

be a Mayer-Vietoris presentation of E. Then C(C -f D) is finitely dominated; define 

= [C(C - D)] E k0(Z[H]). 0 is a well-defined map Wh(C) -+ k0(Z[H]). 

Lemma 5.6 (Waldhausen[16], section 6) Suppose that P and Q are finitely dominated 

Z[H]-module complexes such that C P G Q, D1 Z[G1] 0 Q, D2 Z[C2] ® P, with maps 
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P - 7L[G 1 ]®Q, P2: P - 7L[G2]®P, such that ( 	) : Z[G] -p 7L[G] is an isomorphism 

such that 
11 	

D1 

Z[G1](PQ51°'  ® 	Z[G1]®Q 

and its counterpart involving p2  and  Q, commute up to chain homotopy. Then C(C - D+) P. 

In particular, (r(C)) = [F]. 

Proof. We must interpret the mapping cone C(C - D+) in terms of P, Q and p1 . Since the 

projective class is a chain homotopy invariant, we may assume that C = PWQ, D1 = 7L[G1]®P, 

D2=7z[G2]ØQ. Now: 

A®D2 Ai ®Z[G2] 

A 2 øZ[G2]®PA®P 

Similarly, Ai 0 D2 i 0 Q ED Ai 0 Q. Thus the mapping cone C(C - D) is the mapping 

cone 

Define l+p=1®(1+ pi)  on 

(A)®P, and 1+p = 10( 1 +p2) on (Ai  A i ) ®P. Then C(C - D) C(C' - PC') 

where the restriction C' -* C is given by the chain isomorphism l+p. Hence, C(C -* D) P. 

The second conclusion is immediate from the definition of 0. E 

The K-theory splitting obstruction of Cappell is a 7L2 cohomology class: 

Lemma 5.7 (Cappell[51, Lemma 11.4) Let g: W . yfl+l be a splitting problem. Then 

çb(r(g)) = (_1)lq(r(f))*, and so determines an element 

(r(g)) E H'+2  (Z2;  ker(.ko(H) -* k0 (G 1 ) ED  K0(G2))). 

(r(g)) = 0 if and only if g is bordant to g': W I 	Y such that 0(7- (g')) = 0. 

This will always be the first splitting obstruction. For the remainder of this thesis, we 

assume that (r(g)) = 0. 
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Chapter 6 

Below the Middle Dimensions 

It was seen in the introduction that in order to perform surgery on a normal map f : M -* X, 

an embedding Sk  x -* M whose image under f is null-homotopic in X is required. Given 

• homotopy class a E irj (f), there are two ways of deciding whether it can be represented by 

• framed embedding: either make it an embedding first, and then try to find a framing (as in 

Ranicki[11], chapter 10), else find a framing first and then try to change it to an embedding by 

a regular homotopy (as in Wall[20], chapters 1 and 5). We follow Wall, and fix a framing first, 

and then try to represent it by an embedding. 

It was stated in the introduction that it is always possible to perform surgeries / handle 

exchanges to make surgery/splitting problems highly connected. In this chapter we assume that 

M is connected and that f: M -* X induces an isomorphism of fundamental groups. We then 

proceed to state how surgery problems can be made highly connected, and the extent to which 

splitting problems can be made homotopy equivalences is determined in proposition 6.11. 

6.1 Surgery 

In this section we review how framed embeddings of spheres can be constructed inside a normal 

map and the result of surgery on such embeddings. 

First recall the definition of a normal map (following Wall): 

Definition 6.1 Let X be a Poincaré complex, with 77 a bundle over X: 

. A normal map is a map f : M - X together with a stable trivialisation F of TM 

• A normal bordism consists of a cobordism (W; M, M') together with maps (g; f, f') 

(W; M, M') -4X together with a stable trivialisation C of Tw 
g*77 

The following theorem of Wall provides the regular homotopy classes of framed immersions 

which must be used to perform surgery in order to produce normal bordisms. 

Theorem 6.2 (Wall[20], Theorem 1.1) Let M be a smooth or PL manifold (with bound- 

ary), f : M - X a continuous map, v a vector bundle or PL bundle over X, and F stable 
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trivialisation of TM f* v . Then any a E ir+i(f), r < n - 2, determines a regular homotopy 

class of immersions Sr  x D-' - M. The embedding : Sr x DT - M can be used for a 

surgery killing a if and only if f is in this class. 

We shall be using this result frequently, often without direct reference. A general position 

argument then gives the corollary: 

Corollary 6.3 With notation as above, if n> 2r then we can do surgery on a. 

The following result says that it is always possible to perform surgery up to the middle 

dimension. Moreover, there exist normal maps f: M --4X  which are not normal bordant to 

homotopy equivalences, so that this result is the best general result. 

Proposition 6.4 (Wall [20], chapter 1) Suppose that f : M -p XI is a degree 1 normal 

map. Then f is normal bordant to a [n/2]-connected map. 

The proof is by induction, by showing that, given a k-connected map of n-dimensional 

manifolds, with 2 < k < [n/2], there is a normal bordant (k+1)-connected map: (The arguments 

which show that it is always possible to make a map 2-connected are similar to the following.) 

Assume that f is k-connected. Since there is a Hurewicz isomorphism Kk(M) lrk+1(f), 

every non-zero kernel homology class a is represented by a map (D'1, Sk)  (X, M). By the 

above, there is a framed embedding (D 1 , S") x D" - (X, M) on which surgery produces 

a normal bordant map with the class a 'killed' in the following sense. 

Proposition 6.5 Suppose that M is the result of a k-surgery on a class a E Kk(M) where 

k < [n/2]. Then the homology of the resulting manifold M' is determined by: 

{  
K(M') 	

K2  (M) 	ifi<k 

= Kk(M)/(a)z[T] if j = k 

6.1.1 Manifolds with boundary 

Suppose that f : (N', Mn) 	(yfl+l, X) is a degree 1 normal map of manifolds with 

boundary, where ON = M, OY = X. There are 2 ways of performing surgery to obtain a 

normal bordant map: firstly by performing surgeries on the interior as above, and secondly by 

performing surgeries on the boundary: 

Proposition 6.6 Suppose that N is a manifold with boundary M (together with a degree 

1 normal map f : (N, M) - (Y, X)). Let M' be the result of a surgery on M with trace 

W. Then there is a normal bordism g : (V,OV) - (Y, X) x I with I : (N, M) -* (Y, X) of 

f' : (N', M') - (Y, X). 

Proof. The cobordism is constructed in the following way: 

Let V = (NUM W) xl. Then .9V = (NUW) x {O}UM' x IU(NUW) x {1}. This can be 
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vJ .  
N M 

rebracketed as DV = N UM (W U M' x I) UM'  (N U W), hence V is a cobordism of manifolds 

with boundary, of (N, M) with (NUW, M'). See figure 6.1.1. Note that we need also to smooth 

over the corner at M' x {O}. 

Figure 6.1: A cobordism of manifolds related by surgery on the boundary 

Vx{O} 

IMI 

Hence surgeries on the boundary of a manifold can be used to make the restriction map 

highly connected, and then surgeries on the interior of the manifold make the map highly 

connected. 

If N = N2 ' then the above results imply that there is a normal bordant manifold with 

boundary (which we continue to denote by N and M) such that Kk_l(N) = Kk_l(M) = 0. 

However we can do better than this: 

Proposition 6.7 (Wall[20], Theorem 1.4) Suppose that N 2'' is a manifold with bound- 

ary M and f : (N, M) -* (Y, X) a degree 1 normal map, with f and  I IM k-connected. Then 

there is a normal bordant manifold with boundary (M', N') such that in addition Kk(N, M) = 0. 

Proof. We outline the proof of this theorem, since we wish to generalize it later on. 

From the above, surgery below the middle dimension on M can be used to make M - X 

k-connected, followed by surgery on N relative to M to make N --4Y  k-connected. 

Hence there is an exact sequence ... -- Kk(N) - Kk(N, M) -- 0. 

Kk(N, M) is a finitely generated Z[iri (N)] module by 3.13. Take a finite set of generators. 

Then each is represented by a sphere ai e lrk(N). Remove a disc D C ai  and join a tube 

x I with S' x {0} C a and S 1  x {1} C M. By theorem 6.2 this procedure can %

be framed, to give embeddings (Dk,  S') x D' 1  -* (N, M). We denote the union of these 
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handles by H, and let No = N \ H, M0 = ONO. 

By excision Hk+l(N,  H U ON) Hk+l(No,  ON0) 

Then there is a commutative braid diagram: 

Hk(HUON0,ONo) 	 Hk(N,ON) 	 Hk(Y,X) 

Hk+1(f) 	 Hk(NO, ONo) 

Hk+l(Y,X) 	 Hk+1(fo) 	 Hk_l(NUON0,ONO) 

Since three of the sequences are exact, it follows from Wall [19] that the fourth must also be 

exact. Combining this with the excision isomorphism above, gives the following exact sequence: 

HZ (H U ON0, ON) - K(N, M) - K(No, Mo) - H 2 _1(H U ON,, ON) 

But by excision, Hi (H U ONO, ON) Hi (H, H nON) = () if j = k 10 	else 

Hence Hk_l(HU ONO , ON) = 0 and Hk(HU  ONO , ON) -4 K,(N,M) is surjective. It follows 

from exactness that Kk(No,  Mo) = 0. 

The effect on M is to perform trivial (k - 1)-surgeries, each of which has the effect of 

forming the connected sum with Sk  x  Sk,  and therefore leaves untouched homology below the 

kth dimension, 1J 

6.1.2 Connectivity results 

For convenience, we now put the previous sections together in the following key results: 

Corollary 6.8 Suppose that f: M -* X 1  is a degree 1 normal map. Then there exists a 

normal bordant map f': M' - X which is [n/2]-connected. 

Corollary 6.9 Suppose that f : (N, M) 	(yn+l, X) is a degree 1 normal map of pairs. 

Then there is a normal bordant map fo: (N0, M0) - (Y, X) such that 

• fo is [(n + 1)/2]-connected 

• foiM is [n/2]-connected 

• Kk(N,M)=Oifn.=2k. 

6.2 Handle exchanges 

The following procedure of Cappell [5] performs an equivalent procedure to make a splitting 

problem highly connected. We are not able, as we want, to represent every element by an 

embedding (D' 1 , Sk) (W2 , M) - although we have shown that we can find a basis with 

respect to which every element is represented by an embedding (D' 1 , Sic) _ (W{ r l}, M). 
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However, there are associated to SPik (M) filtrations of P and Q. We perform handle exchanges 

to make f highly connected by reducing the length of these filtrations. This works in the 

following manner: 

Suppose that a E P" is such that p(a) = 0. Then a E ker(K(M) - K3 (Wi)). Then a 

can be represented by a null-homotopic embedding (Di+l,  Si) - (W1, M) and hence can 

be killed by a handle-exchange. 

• The resulting map is such that the homology groups are the same up to the jth dimension, 

where the result is that P is replaced by P/(a), so we can kill off the submodule pr• 

• Inductively we then kill off all other submodules until r + s = 0. 

6.2.1 Manifolds with Boundary 

We want to be able to apply the methods of section 6.1.1 to the split problem; in particular if 

we are to mirror the results in the splitting case, we wish to prove the following theorem: 

Proposition 6.10 Suppose that g: (V, W) - (Y212 , 8Y) is a homotopy equivalence of pairs, 

X is a codimension 1 submanifold of Y and g-1 (X, ÔX) = (N, M), f = gIN. Suppose that f 

and f I M  are k-connected. Then g is h-cobordant to g' : V' -* Y such that Kk(N',  M') =0. 

This will be instrumental in proving the necessity of the vanishing of the surgery obstruction. 

The proof will run along the same lines as 6.7, once we show how to perform the geometric 

moves in the context of the codimension 1 splitting problem. 

Proof. Let Spl k (N, M) = (P, Q; P1, p2). As with the previous handle exchanges, the argument 

will proceed by induction on the length of the filtration. We shall begin by explaining how to 

perform a handle subtraction (as in 6.7) on x E P such that pi  (x) = 0. We shall then formalize 

the inductive hypothesis, and show that a finite number of such handle subtractions results in 

a splitting problem with the desired connectivity property. 

Thus suppose that P is such that p 1 (P) = 0 and such that P2 ((2) C P i.e. let P and Q be 

the top of the filtrations of P and Q. Take a set of generators for P, {x}. Then as before, 

for each x2  there is an immersion O : (D 1 , Sk) (V1, N) which is an embedding on the 

boundary since dim  = 2k + 1. As in the surgery case, join S' to M by a tube 5k-1  x I 

bounding Dc  x I which joins O(D'') to the boundary W1. This gives an immersed disk 

Dlc - V1 with embedded boundary D' USk-1 Dv - N UM V1. Then the methods of 

the ir - ir theorem of Wall (Wall[20], pg 40) apply. Namely the only intersections and self-

intersections of the çf j  are isolated points in the interior of V1. Therefore at each intersection 

point either 2 branches of the same disc intersect or else 2 different discs intersect. Take a path 

along each branch to Wi (NB not to W1 UM N). Then since iri(Vi) = 7r, (W i ) there exists a 

triangle in V1 bounding these 2 paths and a path in Wi joining the 2 endpoints. Then the Oi 

can be changed by regular homotopy to new embeddings removing the intersection points and 
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leaving fixed all but a neighbourhood of these triangles. Then in particular the representatives 

xi e Kk(N,M) have been left fixed. These embeddings can be framed in the usual way. 

Displace the embedding q5i slightly into W2 so that the boundary of Oi is transverse to N. Now 

remove the embeddings Dk  x D'* Let V °  be the space formed by removing the Oi . Then 

V = V° UDkXDk+lukskDk+lxsk D' V so V V ° , and in particular g°  : V 0  — V is a 

	

homotopy equivalence. Also V2 = V20  UDkXDk+ 1  D'' x 	V2 . 

Then the exact sequence of 6.7 extends to an exact sequence of ¶fli( objects: 

(Z[H]',O;O,O) — (P,Q;pi,p) —' (P',Q';p,p) --+ 0. 

Clearly then Q = Q'. We claim that if q e Q is such that p(q) e P, then p(q) = 0 and 

therefore the length of the filtration has been reduced. For the following diagram commutes 

and the rows are exact: 
_______  

0 	Q 
jQ ).Q 	0 

I 	1 P/
2 

j' 	)F 	Ø Xi 	 ip 

Suppose that p(q) E P. Then p(q) = >(ajxj), so p(jQ(q)) = jp(p(q)) = 0 by commutativity 

and exactness. 

We have now shown that if x E P is such that p1(P) = 0, then a handle subtraction can 

be performed inside the splitting problem; we now finish the argument by induction in the 

following way: 

Take generators for a filtration to construct a sequence f 	, , 9r : 	— Q such that 

• P° = Q° = 0. 

• For each r either P1 = pr ED Z[H]n,  and Q' 1  = Qr or vice versa; 

• For each r, p1(fr)  c 7L[G1I 0 gr .1 (Qr_ 1 ) and vice versa. 

• For some R, PR = P, QR = Q. 

The inductive claim is then that there is a sequence of handle subtractions of the above 

form so that 

prr —* Kk(N,M) — Kk(z'r,Mr) __+ 0 

is exact. Clearly when r = R this implies that Kk(N R , MR) = 0 as required. To prove it, 

suppose that the claim is true for r (clearly true for 0) and assume wlog that Q'1 = 
Qr 

and that pr+1 = Pr  e (x1,. . . , x). Then the images fr+l(x)  are represented by discs in 

(N, M) which can be taken as disjoint from any previous embeddings. Furthermore, since 

p1(fr+l) ® Qr and the map Q' —p  Q' is zero by exactness. Hence these embeddings 

bound in V1' as before and handle subtractions can be performed as above. The result of the 

handle subtractions is a pair (N 1 , Mr+l)  such that 
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is exact. We claim that the sequence 

is therefore exact. 

To see this consider the commutative braid diagram: 

pr 	 P 	 pit 
 

pr+l 	 P' 	 0 

7L[H1Th 

Three of the sequences are exact hence the fourth is also and the result is shown. 	 D 

6.2.2 Connectivity results 

Once again, we conclude the section with a summary of the results regarding handle exchanges 

below the middle dimension. 

Corollary 6.11 Suppose that g : W 41 	Y 1  is a splitting problem restricting to f 

M -* X. Then there exists a bordant splitting problem g': W' - Y such that f' : M' - X 

is [n/2]-connected. 

Corollary 6.12 Suppose that g: (V, W) -p (Y, ÔY) is a pair of splitting problems, restricting 

to (f, 3f) : (N, M) - (X, OX) a degree 1 map of pairs. Then there is a bordant splitting 

problem g' restricting to (f', Of') : (N', M') -* (X, OX) such that 

• f' is [(n + 1)/2]-connected 

• f'jM is [n/2]-connected 

• Kk(N,M)=Oifn-=2k. 

34 



Chapter 7 

Forms 

The even-dimensional L-groups and UNi1 groups are both defined as equivalence classes of 

forms. In this chapter we describe the groups algebraically, and give some relevant results, 

before describing in the next chapter how a geometric problem determines an obstruction in 

these groups. We shall first recall the theory of quadratic forms which define the surgery 

obstruction groups, together with the definition of Ranicki of split quadratic forms. We shall 

then recall the definition of UNil forms of Cappell, give a slight reformulation in terms of the 

category defined in chapter 4 to make them resemble quadratic forms more closely, and define 

split quadratic UNil forms. 

7.1 Basic properties of forms 

In this section we establish the basic definitions of quadratic forms over a ring with involution, 

and some results which we shall use later on. 

Throughout this section, R is a ring with involution, M is an R-bimodule with involution, 

K and L are projective R-modules and € = ±1. 

Definition 7.1 A sesquilinear pairing is a map A : K x L - M, additive in each compo-

nent, such that A(rk, si) = s.A(k, l).. The additive group of sesquilinear pairings is denoted 

S(K, L; M). In the case that M = R, we shall write simply S(K, L). 

Lemma 7.2 

S(K, L; M) HomR(K, HomR(L, M)) M OR  HomR(K, L*) 

If A E S(K, L; M) then A : K - Hom(L, M) is given by A(k) = (1 - A(k, 1)). 

Definition 7.3 • S(K;M) := S(K,K;M); 

• T6  S(K; M) -* S(K; M), the e-transposition morphism, is the morphism given by 

T(A)(x,y) = EA(y,x) 

• The €-symmetric group over M is 

Q 6 (K; M) = {A E S(K; M) : A(x, y) = eA(y, x)} = ker(1 - T6 ); 
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• An c-symmetric form over M is a pair (K, A) where A E Q(K; M); 

• The c-quadratic group over M is Q(K;M) := coker(1 - T) : S(K;M) -. S(K;M). 

Then in particular, using the isomorphism M - S(R; M) given by m - ((r, s) -p sm), 

Q6 (R;M) = M/{x - c: x E M}; 

• Q(K) := Q(K; R), Q6 (K) := Q(K; R); 

• An c-quadratic form over M is a triple (K, A, t) such that (K, A) is an c-symmetric form 

and p : K - Q, (R; M) such that 

(x + y) - /2(x) - ji(y) = A(x, y) E Q € (R; M) 

/2(x)±c1_t(x) = A(x,x)M 

/2(ax) = a/2(x) E Qe (R; M) 

Lemma 7.4 The c-transposition T6  on M ®R  HomR(K, K*)  defined by A - EA* corresponds 

to the c-transposition defined above under the isomorphism S(K, K; M) M®RHOmR(K, K*). 

7.2 The surgery obstruction group, L2k(R) 

7.2.1 Quadratic forms 

We shall explain in detail in the next chapter how a surgery problem is represented by a 

quadratic intersection form on its middle dimensional homology (Kk(M), A, ). If M bounds 

some (highly connected) manifold N then there is a boundary map (a: Kk+1(N, M) - Kk(M)) 

such that A(ax, ay ) = 0. Hence the even-dimensional surgery obstruction group is defined to 

be a Witt group of quadratic forms over a ring with involution R, where a form represents 0 in 

the group if and only if it has a Lagrangian. 

Definition 7.5 (i) A sublagrangian L in a symmetric form (K, A) is a direct summand L c K, 

such that A(L,L)=0. 

Given a sublagrangian L in a symmetric form (K, A), define L' = {x E K : A(x, L) = 01. 

A sublagrangian L in a quadratic form (K, A, i) is a sublagrangian L of (K, A) such that 

/2(L) =0. 

A lagrangian L (of a symmetric or quadratic form) is a sublagrangian such that L =  LJ-

Note that L is a Lagrangian of a form (K, A) if and only if the sequence: 

i 	iA 
0____ L—'-K 

is exact. 
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In fact any (_1) tc-symmetric quadratic form over a ring with involution R takes a particular 

form; namely the quadratic intersection form of the map S k  x Sk -p S2 k. In other words, the 

surgery obstruction remains unchanged by taking the connected sum with S' x 

Definition 7.6 (i) The hyperbolic c-symmetric form of a f.g. projective R-module K is (K 

KS, A) where A((x, 1) (g, y)) = 1(y) + cg(x) 

(ii) The hyperbolic c-quadratic form of a f.g. projective R-module K is H(K) := (K 

K 5 ,Aj) where A is as above and t(x,f) := f(x) 

Lemma 7.7 (Prop. 2.2, Ranicki[12]) A non-singular c-quadratic form (K, A, p) over R 

admits a Lagrangian L if and only if it is isomorphic to the hyperbolic form H(L) 

Another fact we shall need later is the following: 

Lemma 7.8 Suppose that (K, A, i) is a representative of x e L,, (Z[GI). Then there is another 

representative given by (k, , ji) with 

K=K5  

= 

ji(x) = ji(A'(x)) 

We complete this section by noting the group structure on the L groups. 

Lemma 7.9 For any form (K, A, 	there exists an isomorphism 

: (K, A, ) (K, —A, -ii) - H, !  (K) 

Definition 7.10 The 2k-dimensional L-group L2k(A) is the set of non-degenerate c-quadratic 

forms (K,A,), modulo the equivalence relation (K,AJL) 	(K',A',jt') if there exist r,s such 

that 

(K, A, j) H(-J)k(AT) 	(K', A', /L ') H(_l)k (A 8 ) 

It is given an additive group structure with addition given by 

(K,A,) e (K',\', IL') := (K K',A A', /.z 

and inverse by 

—(K,A,1t) := (K,—A,—u) 

7.2.2 Split quadratic forms 

It is readily seen that a symmetric form in which all diagonal entries are even can be expressed 

as the sum of an upper triangular matrix and its transpose. This observation motivates the 

consideration of c-quadratic forms by representing each as the sum of a map plus its c-transpose. 

Such maps will be called split c-quadratic forms. 
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Definition 7. 11 • A split f-quadratic form (K, ) is a f.g. stably free A-module K together 

with an element 0  HomA(K, K*). 

An equivalence of split e-quadratic forms (K,ij.'),(K,') is an element x E Q_(K) such 

that " - = (1 - T6). 

• A morphism of split f-quadratic forms (1 x): (K, ) - (K', ') is an A-module morphism 

f E HomA(K, K') together with an element x c Q_ 6 (K) such that f* ?//f - = x - 
K 4 K*. 

Proposition 7.12 The f-quadratic structures (A, t) on a stably f.g. free A-module K are 

in one-one correspondence with the equivalence classes 0 e Q6 (K) of split f-quadratic forms 

(K, V)). 

Proof. We shall simply state the maps. 

A split f-quadratic form (K, ) determines an f-quadratic form (K, A, i) where A = (1+T) 

and p (x) = b(x)(x). 

For the reverse, choose a basis x1,.. . , x for K, with dual basis fi,. . . , 1k. Define 

= 	A(x, x 3 )fZ  + ji(x)f 
i<j 

where /2(x 3 ) is some lift of i(x) to R. 	 0 

Proposition 7.13 Let (K, ) be a representative for the split form corresponding to the c-

quadratic form (K, A, 4 Then i: L C K is a Lagrangian if the inclusion i : L - K is such 

that x - EX* = j*/jj 

Proof. Again choose a basis x1,... , xj for K and a dual basis fi,. . , f. Then define 

x(x 3 ) = > j*j(x)(x)f + i*pi(x)(x) 
i<j 

which is such that x - fX* = 0 since i*(1 + T,/ji = 0 and p(ix) = 0 for all x E L. 	0 

There is also a (trivial) correspondence between split forms and quadratic complexes (to 

be defined later). This is an important use, and split UNi1 forms are defined to bridge the 

gap between Cappell's theory and the algebraic theory of codimension 1 splitting problems (see 

Ranicki [71). 

7.3 The even- dimensional splitting obstruction group UNII 

The UNi1 obstruction group was defined by Cappell to consist of pairs of forms, with values in 

Z[G1] and Z[G21, with a nilpotency condition on their adjoints, as in the MI( category defined 

in section 3. We shall show that these can also be considered as forms on objects in the ¶Tti( 

category. We shall extend the concept of split quadratic forms to split UNi1 forms. Whilst 
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being of apparently little benefit at this stage, this reformulation will play a large part in our 

more general theory. 

Let M1  and M2 be A-bimodules with involution which are f.g. free over R. 

Definition 7.14 hfill 

(i) A non-singular e - UNi1 form over (M1, M2) is a pair C = ((K1, Al) p1), (K2 7  A27 p2)) 

where: 

• K 1  and K2 are f.g. free Z[H]-modules; 

• K i =K; 

• (K, A, p) is an c-quadratic form over M2 . 

• There exist finite filtrations of A-modules such that 

K 1  = K°DK J 	 ... 	 K=O 
K2 = K20  JK 	... 	 K28  

• Letting P1 : K1 - M1 OR  K2 denote the adjoint of A1 and p2 : M2 OR  K2 

denote the adjoint of A2, 

pi(Kfl(Mi) ç  M1 OR  K' 

p2(K)(M2) ç  M2 Or  K 1  

(ii) Set -c = ((K1, —A1, -p1),  (K2, —A2, -p2)). 

(iii) A UN11 Lagrangian of a form C is a pair of free direct summands V ç  Ki such that V2 is 

the annihilator of V1 (V2 c K2 = Kfl with Ai  I vi  , vi  = 0 and piIv = 0. 

(iv) A UNi1 form C is a kernel if it has a UNi1 Lagrangian. 

(v) Define UNil2k (R; M1, M2) to be the set of equivalence classes of non-singular (-1) k.uNil 

forms under the equivalence relation 

C1 '-' C2 if C1 (—C2) is a kernel. 

Note that although a quadratic form has a Lagrangian if and only if it is hyperbolic, there 

'yis no corresponding result for UNi1 forms, as the following example shows: 

Example 7.15 Let (tl)z denote the free Z-module generated by t1. Then there exists 

a (Z; (ti )z,  (t2  )z  )-UNi1 form which possesses a Lagrangian which has no complementary La-

grangian. 

Proof. Let P = 	= (x i , x2, x3), Q = P' = (yl, Y2, Y3). 
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Let 

/0 t1 0 
= 	0 0 

0 0 

/0 0 0 
P2 = ( o 0 0 

0 2t2 

ti(axi+bx2+cx3) = abt1 

t2(ayj+by2+cy3) = c2 t2 

Let L be the Lagrangian ((x3), (y1,y2)). 

Suppose that there exists a complementary Lagrangian ((xi, x'2 ), (y)). 

Then y 	oYi + /3y2 + )'1J3 where y 54 0. 

Then /12(Y) = 122(ayl + y2) + 92('yy3) + A2(ay1 + OY2, )1J3) = _y2 t2 0. 

But this is a contradiction of the assumption that ((x,x), (y)) is a Lagrangian. 	Iff 

7.3.1 UN11 again 

We can reformulate symmetric UNi1 forms in terms of the Oli( defined earlier. This will draw 

an even closer parallel with the surgery obstruction group, and will be more useful for the 

formulation of the odd-dimensional obstruction group in terms of formations. 

Definition 7.16 

An c-symmetric Oli[-form (KS, A) is an object KS E 'Nit together with a morphism A : KS - 

KS* such that A = EA*. It is non-singular if A is an isomorphism. 

An f-quadratic OUt-form (KS, A, pp, /2Q) is an c-symmetric Out-form (KS, A) together with 

maps pp : P - Q€ (Z[H];Z[Gi]), 	Q -" Q€ (Z[HJ;Z[G2 ]), such that /lp(x) + cp(X) 

(—p*A)(x)(x), and Q(x) +qLQ(x) = (— pA)(x)(x). 

Definition 7.17 A Lagrangian of a non-singular symmetric OUt-form (KS, A) is an object LS 

in YtU with an injection i LS -* KS such that the sequence 

0 	' LS 	KS 	LS" 	0 

is exact. 

Similarly a Lagrangian LS = (Lp, LQ) of a non-singular OUt-form (KS, A, jip, /1Q) is a 

Lagrangian of the symmetric Mil-form (KS, A) such that jip(Lp) = 0 and pq (LQ) = 0. 

Lemma 7.18 Non-singular Symmetric/quadratic UNil forms are in 1-1 correspondence with 

non-singular symmetric/quadratic Oui[ forms, and UNil lagrangians are in 1-1 correspondence 

with OUt lagrangians. 

Proof. Suppose that ((P, Q; pi, p2), (Al, A2)) is a symmetric OUt form. Define a UNi1 form by 

(P, Q, A1p, A2p), using A1 = A to identify P Q*. This correspondence is easily seen to be 

reversible. 
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Suppose that (i 1 , i2) : (Li,L2;ai,a2) - (P,Q;pi,p) is the inclusion of a Mil lagrangian. 

Then in particular 
il _________ 

0 	>L1 	P 

is exact. 

Hence L 1  = ker(P -4L*) i.e. L1 is the annihilator of L2 with respect to the isomorphism 

P Q* given by A1. L1 is a direct summand since the short exact sequence is a short exact 

sequence of projective modules and therefore splits. The form L1 - L = iA2p1i1 = * 

A1i1 = 0 (up to sign). Similarly with L2, and hence (L1, L2) is a symmetric UNi1 lagrangian. 

Conversely, suppose that (L1, L2) is a UNi1 lagrangian. Then P = L1 L, Q = L2 @ L. 

Define al  to be the composite L1 - P -+ Z[G1] ®Z(HJ Q - Z[Gi] ®z[H] L2. 	 0 

It would be nice to have an equivalent of the result that every quadratic form with a 

Lagrangian is hyperbolic. As Example 7.15 shows, this is not true in such a naive form. However, 

we can still define hyperbolic forms which are quadratic forms with Lagrangians: 

Definition 7.19 Given a 91U-module KS = (P, Q; p, p2), define the hyperbolic form 

( 0 
P1 o\ (p2 o\ 

* p) 'o P21 

7.3.2 Split UN11 forms 

Definition 7.20 A split f-quadratic UNi1 form (KS, 0, Op, ) consists of: 

• KS=(P,Q;pi,p2)E9111; 

• An isomorphism 0: P - Q*; 

	

• ,bp : P— P*®Z[G l],4,Q  : Q Q*®z[G2 1, such that pG= 	p2 9* 	bQ+fb. 

Definition 7.21 An equivalence of split f-quadratic UNi1 forms 

(KS,0,,hP,ibQ) 	(KS',0',i,',b) 

is a pair (xp, Q) e Q_(P; 7L[G11) Q(Q; Z[G21) such that p - 	T + f)Xp and 

OQ- 	= (1 - T6)XQ. 

Lemma 7.22 The non-singular f-quadratic forms (KS, A, jip, ) on KS E OIU are in 1-1 

correspondence with the equivalence classes of split f-quadratic forms over KS. 
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Chapter 8 

The Even-dimensional UNi1 
Obstruction 

In this chapter, assume that f M 2k 	X (k > 3) is a highly connected degree 1 normal 

map (sitting inside a homotopy equivalence g : W --4Y for the splitting case). We recall the 

definition of the surgery and splitting obstructions defined in the even-dimensional case by Wall 

and Cappell respectively. 

The even-dimensional surgery obstruction o(f) was defined by Wall to be the quadratic 

intersection on the kernel homology of M, and the splitting obstruction x() was defined by 

Cappell similarly, so long as a K-theoretic obstruction vanishes. 

These definitions are here recalled, for use later in the thesis. 

8.1 The Surgery Obstruction 

Once again, before defining the splitting obstruction, we recall the theory of the surgery ob-

struction. In this chapter let f : - X' where n = 2k, X is a Poincaré complex and M is 

a manifold. By previous results, we can further assume that f is highly connected. Then by 

Poincaré duality and the Universal Coefficient Theorem, K3  (M) = 0 for j =A k. 

Given such a map f, the surgery obstruction a(f) E L2k( 7L[lrl (X)]) is the quadratic form 

(K, A, j) with the following components: 

• K=Kk(M) 

A = the homology intersection form on K. 

• j, the 'self-intersection', measures the obstruction to being able to represent an element 

by a framed embedding S" x D k __+ M. 

We follow Wall in not defining 1L on homotopy classes x E 7rk+1 (f), but instead defining it 

only on particular regular homotopy class determined by the normal bundle data. 

Construction 8.1 With f : M -'X as above, suppose that x E Kk(M) 7rk+1(f). Let 
0 :  Sk -* M be in the unique regular homotopy class of immersions determined by the normal 
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data, and assume that 0 is in general position. Then 0 has only a finite set of self-intersections. 

Suppose that p = (yl, y2) is a self-intersection, i.e. 0(yi) = O(y2) with  yl  y. Let 'y be a path 

in Sk from Yl  to  y2  via the base point, and avoiding all other self-intersection points. Fix a 

local orientation at 0(y'), and let e(p) = 1 if transporting the orientation around 0. (-Y) gives 

the same orientation and —1 else. Let g(p) = O(y) E ir i (X). Then let (x) be the sum over 

all self-intersections p, E g(p)e(p). 

/1(x) is then a regular homotopy invariant and is the obstruction to representing x by an 

embedded sphere framed in a manner compatible with the normal map. 

Proposition 8.2 (Chap. 5, Wall[20]) For f : M - X 2 , where k > 3, a(f) = 0 if and 

only if f is normal bordant to a homotopy equivalence. 

Outline of proof. Suppose that F: N - X x I is a normal bordism with f : M - X. Then 

after making F highly connected Kk+1  (N, M) is a Lagrangian of M. 

Suppose that o(f) = (K, A, i) is stably hyperbolic. Then surgeries on 0 E Kk(M) have the 

effect of adding a hyperbolic form (the effect of surgery is to take the connected sum with a 

torus). Hence it can be assumed that the obstruction is hyperbolic. 

Let L be a Lagrangian generated by xi,.. . , X,.. Since the self-intersection of these elements 

is zero, they can be represented by framed embeddings. Surgery on these has the result of 

killing the middle-dimensional homology, resulting in a homotopy equivalence. LJ 

Remark 8.3 Suppose that f : M - X2k is a highly connected normal map of manifolds, 

not necessarily open, but such that the homology and cohomology do satisfy Poincaré duality. 

Then a(f) is defined in the same way as above and is the surgery obstruction to there existing 

a relative Poincaré cobordism to a homotopy equivalence. All the steps outlined above follow 

through without modification. 

8.2 Splitting obstruction 

Again assume that f : M — X 2 k is k-connected, then from the previous chapter, Kk(M) = 

P Q. Assume that (r(g)) = 0 E H°(Z2; ker(Ko(7L[H1) - k0(7L[G1]) k0(z[02]))). Then 

by the results of chapter 5, it can be assumed that (r(g)) = 0 = [P], so that P is stably f.g. 

free. 

Then trivial (k — 1)-handle exchanges can be performed to assume that P is f.g. free, and 

then 5P1k  (M) determines a free 011.1 object. Then the Poincard duality map defines a symmetric 

UNi1 form A = (0,(_i)k9*) : ( P,Q;pi,p2) = Splk(M) - Splk(M)*. 

The splitting obstruction is to be a quadratic UNi1 form, so a quadratic refinement must now 

be defined. Its definition is slightly hidden in the literature — the 'nilpotent normal cobordism' 

is constructed, a cobordism with homology kernel 7L[G] ® (P ED Q), and the splitting intersection 

forms /1p and pQ must be the self-intersection in this cobordism of x - p i  (x) and x - P2 (X) 
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respectively. 

Construction 8.4 Let A be a planar triangle, with three edges e 1 , e2,  e3 . Define: 

W 1' = M X A UMxei W1 X I UMXe2 Wr  X I UMxe3  Wi X I 

(and smoothing corners). Let x E P = Kk+1(Wr, M). Then x can be represented by an 

immersed disc : D' - W1 UM W1 with boundary qS: - M. Since P is a Lagrangian of 

the kernel form of f: M - X, the boundary can be taken to be an embedding. 

In addition, 0 bounds an immersed disc çb' in W,-. Thus q5 U 5' defines an immersion of a 

k + 1-dimensional sphere into (W1 UM W1) UM Wr  which embeds into Wf as shown by the dotted 

lines in the figure. Let p i  (x) E Q(_i)k-i-1 (7Z[G 1 ]) be the self-intersection of the immersion. 

Figure 8.1: W il  used in defining the self-intersection p, (x) 

i(x) is the self-intersection of an immersed sphere in the 2k + 2-dimensional manifold with 

boundary W in figure 8.1. Namely, let i2 be a planar triangle. Then W1' is formed by joining 

W1 x I, WI x I and Wr  x I onto the three edges M x I of A x I (and smoothing corners). Then 

-7r: D'1 - Wi UM W1 C W 1' is an immersed disc, with boundary ir = ç: Sk -* M C W1' an 

embedding. Let 6: S 1  - W' be given by: 

= 6(D' 4  USk  D1) = (Dk+l) USk q5(D'') C (Wi UM W1) UM Wr  C W1'. 

Remark 8.5 / 1 1(X) E Q(_l)k+l(Z[Gl]) is the self-intersection of the above class 0; the map 

P - Q(_l)k+l(Z[Gl]) factors through the inclusion Q(_l)k+l(Z[Gl]) C Q(_l)k+l(Z[Gl]). 

This will follow once we have seen that it is the self-intersection of a certain sphere in the 

nilpotent normal cobordism constructed by Cappell and which is described in the next chapter. 

Definition 8.6 We define the UNi1 obstruction of the map g above to be 

X (g) E UNil2k+2(7L[H];Z[Gl],Z[G21) 

represented by the UNil form: 

((P,)ti,jii ), (Q,.\2,l12)) 

where Al = p0,A2 = f0*. 

Then Cappell proved: 

44 



Theorem 8.7 (Cappell [3]) g is h-cobordant to a split homotopy equivalence if and only 

if x(g) = 0 and (r(g)) = 0. Furthermore, given any a E UNil2k+2(7Z[H];Z[Gl],7L[G21), there 

exist manifolds W, Y and a map g : W -' Y such that (g) = a. 

Remark 8.8 Note that if g is h-cobordant to a split homotopy equivalence, i.e. if there 

exists an h-cobordism (G; g.g') : ( V; W, W') - (Y x I; Y x 10, 1}), restricting to a cobordism 

(F; f, f') : ( N; M, M') - (X x I; X x 10, 1}) with f' a homotopy equivalence, then it can be 

seen by proposition 6.12 that the pair can be made highly connected so that Splk+l (N,M) -* 

SPUN, M) determines a UNi1 lagrangian. If x(g) = 0 and (r(g)) = 0 then g is h-cobordant 

to a homotopy equivalence: this followed from the computation of the surgery obstruction of 

the 'nilpotent normal cobordism', which will be described in the next chapter. 
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Chapter 9 

Even-dimensional Nilpotent 
Normal Cobordism 

In this chapter we describe the nilpotent normal cobordism. This is a cobordism between a 

given splitting problem and a split homotopy equivalence (i.e. a cobordism which is a homotopy 

equivalence on the boundary) whose surgery obstruction can therefore be computed. If the 

surgery obstruction is zero, then the splitting problem is solved. We have defined the splitting 

obstruction (g). 

The realization for elements of the UNi1 group will be achieved via the realization of the 

nilpotent normal cobordism. The monomorphism UNi1 - L is given by the nilpotent normal 

cobordism. Hence we can think of UNi1 C L as consisting of those obstructions which arise as 

the nilpotent normal cobordism of a splitting obstruction. 

We describe the nilpotent normal cobordism construction here since we shall soon give a 

generalization of this construction in terms of algebraic surgery, and it will be useful to have 

some geometric intuition behind it. 

Theorem 9.1 (Cappell[5]) There is a split monomorphism a : UNil 2k +2(H; G1, C2) - 

L2k+2(Gj *H C2). Suppose that k > 3 and g : W __+ Y21 is an even-dimensional splitting 

problem with (r(g)) = 0 and splitting obstruction x(g) E UNil2k+2(H;C1,G2). Then there 

exists a cobordism C: V 2k+2  - Y of g : W -+ Y with g' : W' - Y, where g' is split, with 

o(h) = a(x(g)). In particular, if x (g) = 0 then a(h) = 0 so g is splittable. 

The K-theoretic obstruction has already been described as the relative finiteness obstruction 

of the kernel of the maps of Z[H]-covers W - Yj and Wr ) Yr . Since these kernels are finitely 

dominated, (so finite in this case), P and Q are stably free and so determine Lagrangians of 

Kk(M). Hence it is possible to perform surgeries on f : M -+ X on spheres representing 

generators of P or Q. This gives two cobordisms (Cp; M, Mp) - X and (CQ; M, MQ) -+ X, 

where fp : Mp - X and f : MQ -4 X are homotopy equivalences. 

Construction 9.2 (Nilpotent normal cobordism) Take an embedding M x [-2,21 C W; 

glue Cp x [-2,—i] and CQ X [1,2] onto W x I by joining M x [-2,—i] C Cp x [-2,—i] to 
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M x [-2,–i] x {1} c W x {1} and M x [1,21 C CQ X [1,2] to M x [1,2] x {1} C W x {1}. Call 

the resulting cobordism h : T - Y, Denote W x I by _T and the remainder of the boundary 

of T by .9(T). See Figure 9.1. 

Figure 9.1: Construction of the nilpotent normal cobordism T 

	

Mp 	MQ 

( 	, 
Cp x [-2,-1} 	 x [1,2] 

_ 	I'M 'J 
W2 x1 	 W1 x1 

U T ,- 

Mxix [-2,2] 

Proposition 9.3 (Cappell [5]) The nilpotent normal cobordism has the following properties: 

• 

• h+ : 8+(T) - Y is a split homotopy equivalence; 

• The kernel homology Kk+1(T) = Z[G1 *H G210 (P Q) 

(_l) 1  
• The intersection form AT is such that AT((1 - p)x, (1 - 	

I–A 
 

Kk+1(T) —4 Kk+1 (T)*, and uT((1 - p)x) = pp(x) for x E P, ILT((i - p)x) = pQ(x) 

for x E Q. 

Proof. That it is split is clear, since the maps Mp - X and MQ —4 X are both homotopy 

equivalences. Note that there is an inclusion of Cp UM CQ C W and the restriction Cp UM CQ 

X is a homotopy equivalence (in fact Cp UM CQ is a compact manifold homotopy equivalent 

to 7).  Then 

W' (W2 UM Cp) UM (Cp UM CQ) UMQ  (CQ UM W0. 

Since Kk(W2) = P ®z[H]  Z[G2] and Cp is formed by attaching cells to a basis of P, Kk(W2  U 

Cp) = 0. Similarly with Kk (W1 U CQ) and then the Mayer-Vietoris sequence implies that 

Kk(W') vanishes as claimed. 

Cappell proves that the nilpotent normal cobordism has surgery obstruction AT,  which 

satisfies AT ((1 - p)x,y) = L(x,y), where x,y € P or Q and L = ((_ 1k+1 ). This is proved 
o 

by constructing explicit immersions representing x and (1 - p)x for x E P, Q, and showing 

that their intersection in T is given by the form L. On the other hand, if 6 = (-i)k, then 
L (Oc'\ (1 P2'\ -J 

= i o)' 1 - f) = 	1 ), Pi = Al and p2 = "2 SO 

€\ (–P1 
1 	p2\ 	(–fp 	E ' 	(–A1 	" 	( 	E–Ar 

L(1 - = (? o) 	1 ) = 	1 	p2) = i -p2) = i 	2) 
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In particular the construction of (1 - p)x is the following: 

Construction 9.4 Let x E P. Then x is represented by a sphere SC  which bounds discs in 

Cp and in W1 UM CQ. Thus the union of these discs is a sphere S'1 - TM; as always there 

is a unique regular homotopy class in this homotopy class determined by the normal data. 

At this point we shall depart slightly from the proof of Cappell and define an infinite version 

of the preceding: this will (a) justify the definition of the self-intersection form given earlier, 

and (b) not depend upon the dimension of X being even. 

Lemma 9.5 Let g: W .' Yfl+l be a homotopy equivalence such that (r(g)) = 0, and define 

T to be the open surgery (Maumary [6]) problem given by glueing copies of Wr and W1 where 

Cp and CQ were glued before. Then there is defined a surgery obstruction, o(T) = ox(g)) E 

L 2  (Z[G]). 

Figure 9.2: Infinite nilpotent normal cobordism 

Wr x [_2_1]{ I •, 	x [1,2] 

W2 x1 	MxIx[-2,2] . WxI 

Lemma 9.6 Suppose that (W, M) is a split homotopy equivalence. Then T - T is a 

homotopy equivalence. 

Proof. T1  = W x I UMXJ W x I, so the map is a homotopy equivalence if and only if M - X 

is, since W - Y and W - Y are homotopy equivalences. 	 D 

Proposition 9.7 Let g : W 	Yfl+l be a homotopy equivalence, and let a(T) be the 

surgery obstruction of the infinite nilpotent normal cobordism construction. Suppose that 

(V; W, W') is a cobordism of splitting problems with W' split and with qS(r(W)) = 0. Then 

o(T1 ) = or(V) E L +2(V). 

The benefit of this result is that it does not rely upon the parity of the dimension, or upon 

highly-connectedness, and we will be able to apply this result directly in the odd-dimensional 

case. 

Proof. As before, define T=NxIUVr xIUVxI. Let VO=V1UMV r UVr UMVLUVIUMV2, 

which is homotopy equivalent to Y1 Ux Yr  U Yr  Ux Yj U Y1  Ux  Y2. Then the boundary of T is the 

union of TM, T,, V and V'. Regard T as a cobordism rel D of TM with V U, TM' UM N0, 
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Figure 9.3: Infinite nilpotent normal cobordism construction applied to a cobordism 

V:/

------------------------ --- 

so that these have the same surgery obstruction. Then we claim that the surgery obstruction 

of the latter is the surgery obstruction of V. This is because the following are all homotopy 

equivalences: 

• W'--sY'; 

• T, --s T since W' is split; 

• V0 -+ Yo. 

i 

Remark 9.8 In the case when f : 
M - Xlk is highly connected, the computation of the 

surgery obstruction of the infinite nilpotent normal cobordism is identical to the surgery ob-

struction of the nilpotent normal cobordism, since K (W r, M) K (Cp, M). In particular, the 

definition we gave of lip (x) is such that pp (x) = 49((1 - 

For convenience, we restate the results of this chapter in terms of split UNi1 forms. 

Corollary 9.9 Let JJ = (KS, 0, &4'p, bQ) be a split UNi1-form. a(W) is the split quadratic 

form 
f(_1)co i ,p 	0 

([G] ® (P Q), (_1)k+19 (_1)k5Q)). 
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Chapter 10 

Principles of the Algebraic 
Theory of Surgery 

We have now covered in detail the theory which related to highly connected even-dimensional 

surgery problems and splitting problems. 

In the next few chapters we consider the work of Ranicki, which constructs the surgery 

obstruction without first performing surgery below the middle dimension. The purpose of this 

chapter is to lay out the foundations: to define quadratic structures on chain complexes, pairs 

and triads, to relate them to the geometry, and give some basic results which we shall need 

later. 

For the purposes of surgery, a degree 1 normal map of CW complexes can be represented 

by an algebraic 'quadratic complex', a chain complex with a quadratic structure. If the CW 

complexes satisfy Poincaré duality, there is a corresponding notion for quadratic complexes. 

Given a Poincaré n-ad of CW complexes (e.g. a CW complex satisfying Poincaré duality, or a 

pair satisfying Poincaré-Lefschetz duality), there is a Poincaré pair of quadratic complexes. 

10.1 Quadratic structures 

Example 10.1 f-quadratic forms (E = ± 1) over a module M can be identified with equivalence 

classes of split quadratic forms ' E Hom(M, M*),  with 	,b' if ,b - = x - 	for some x 
This idea goes back to Wall[18]. Let 7L2 = {1,T}, and let 7L2 act on Hom(M, M*)  by TO = 

Then €-quadratic forms over M are in 1-1 correspondence with Z2-hyperhomology classes in 

Ho (Z2; Hom(M, M*)),  called split quadratic forms by Ranicki in Ranicki[12]. 

Definition 10.2 Let W be the 7L[7Z21-module resolution of Z: 

W =... 	Z[Z2] 	z[z2 ] 	Z[Z2] = Wi 	Z[Z2 ] = W0 

Definition 10.3 Let C be a finite R-module chain complex. Define the chain complex: 

(W9'-'C) W ®Z[Z2] (C'(& C). 

50 



Then: 

(W%C) n  = 
s>O r 

d(')
s+1+r(n 8)( n—r—s-1 * = + (_1);d* + +-1) (-1)''(+  ( - ) ) 

s>O r 

where E (W%C), so that & E HomR(C" T8 ,Cr) 

Then define: 

. The group of n-dimensional quadratic structures on C, Q(C) := H(W%(C)); 

• An n-dimensional quadratic complex is a pair (C, [v'])  where C is a chain complex, and 

b E (W%C) n  is a representative for [] € 

• An n-dimensional quadratic complex (C, ) is Poincaré if (1 + T) : 	- C,. is a 

chain equivalence. 

Convention 10.4 When the meaning is clear from the context we shall drop the[] notation. 

Remark 10.5 It is sometimes helpful to represent quadratic complexes diagrammatically. So 

given a chain complex C, we shall represent '' E (W%C) by a diagram of maps: 

C''--->- Ci 	C 1 	> 

I 	k 	 I k-i 

_ 	 ............ 
> Ck 	C_ 

where the complexes C and Cn_* are aligned so that: C'' -4  Ck is represented by a 

vertical arrow, and then 	is represented by an arrow with 'gradient' s. 

Now, any chain map f : C - D gives rise to a chain map 1% : W%C -4 W%D given 

by f%() = fbf*. So (W%C(f)) 3  = (W%C) 3 _l (W9 D) 2 , and there are defined relative 

quadratic structure groups: 

Definition 10.6 • Q,(f : C -* D) = H(C(f%)) 

• An (n + 1)-dimensional quadratic pair is a triple (f : C - D, [(6', 0)]) where (5, ') is 

a representative for [(&', sb)] E Q,(f : C -+ D). 

• An (n+ 1)-dimensional quadratic pair (f : C - D, (ö, 	
(1+T)60  

)) is Poincaré if 	
, 

4 C(f)r is a chain equivalence. 

Similarly with triads, with sign modifications: 

Lemma 10.7 Given a triad r of chain complexes: 

C 

C' 	>- DI 
I 
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so that k is a null-homotopy of f'g—hf, with f'g—hf = dk+kd, define the map I': (W%C) -4 

(W%D') +j  by 

= (_1yl+lk;_lf*h* + (_1)l+r+nfg;k*  + (_l)l+T+(r+l)(n+8)k(,3)*k*. 

(—l)n+lk_lf*h* + (_1)l+r+nfFggk*  + (_1)r+l kT(I S )k*.8+1  

Then r_1d - 	= (-1)'((f'g)% - (hf)%) : (W%C) fl  -4 (W%D') fl . 

Corollary 10.8 The map (g, h; k)% = (hg r'\ : C(f%)l -4 C(f)i is a chain map. 
9%) 

Proof. Recall that C(f%)l = (W%D)+l(W%C),d= (d(-1)'V%\ : 
d 	C(f%)l 	C(f%) n . 

) 

The condition that the map be a chain map is that 

(d (_1)ff

) ( 0
h% r'\ - (h% r_i'\(d (-1)f% 

d 	9%) - 0 	) k,0 	d 

i.e. that dT + (-1)fg% = (—l)'h%f% + r_ 1 d, or that F_1d - dI' = (-1)'(f9cg% - 

Al 

Corollary 10.9 Suppose that g : C -f C' is a homotopy equivalence with homotopy inverse 

h : C' -p C and null-homotopy such that hg - 1 = kd + dk. Suppose that (f : C - D, (ö, 1)) 

is an n + 1-dimensional quadratic pair. Then the triad 

C 

91\f Ii 
C' 	D 

induces a homotopy equivalence of pairs, with the quadratic structure in Q+i(fh)  given by 

= (&,; + (_1y2+lkf;_lf* + (_1)n+l_rfhgl,b;f*k* + (_1)r+lkfT(11!8)f*k* ,  

Definition 10.10 

The triad quadratic Q-groups Q2(F) are defined by: 

Q +2(r) = H 2 (—(g, h; k)%). 

An (n + 2)-dimensional quadratic triad (, ( 5x x S?,b, 'ci')) is Poincaré if 

• (C, ci') is an n-dimensional Poincaré complex; 

• (g: C - C', (x, 'ci')) is an (n + 1)-dimensional Poincaré pair; 

(1: C - D, (6'cb, )) is an (n + 1)-dimensional Poincaré pair; 

4 

( 	(1+To 

h(1+T)Xok* + (_1)n_r(1+T6)f*) : Dn+2_* - C(F) 
(1 +T€ ) of*h* 

is a chain equivalence. 
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Thus the triad quadratic Q-groups fit into the commutative diagram: 

_ I,  _ _ _ 

	

Q. (C) 
£' ' Q(C') 	> Q,(g) 

	

Q(D) h  Q. (D') 	Q. (h) 

_ 1 _ _ I I _ 
, Qn(f) 	' Q(f') 	> Q() 	) 

I 	I 	I 
Lemma 10.11 

w%(r) fl+ 2 = W%f 2  Wcyo fn  = W%D2 ED  W%(C') +l W(D) n+i ED W7. 

with differential given by: 

fd (-1)''f 	(-1)h% (-1)r 
0 	d 	0 	(-1)g% 

I 0 	0 	d 	(-1)'2 f% 

	

0 	0 	d 

Proposition 10.12 (pg. 248, Ranicki[13]) Any degree 1 normal map f : M -* X' 

determines an n-dimensional quadratic Poincaré complex (C, V)), with 11k  (C) Kj (M). A 

map of (n + 1)-dimensional Poincaré pairs f: (N, M) -* (Y, X) determines an n + 1-dimensional 

Poincaré pair (f : C -* D, (6', u')). An n+2-dimensional triad of manifolds likewise determines 

an n + 2-dimensional Poincaré triad. 

Example 10.13 (Quadratic forms revisited) Let f : M - X be a highly connected 2k-

dimensional normal map. Let Ck = Kk (M)*. Let Ok  be a split quadratic form representing 

the surgery obstruction. & is Poincaré since (1 +T)1'o = A, the intersection form. 

10.2 Cobordism of quadratic complexes 

The surgery obstruction group of a ring R is defined to be cobordism classes of f.g. free Poincaré 

complexes over R: so we now define cobordism. 

Definition 10.14 • An n + 1-dimensional cobordism of Poincaré complexes (C, V) ) and 

(C', ') is an n + 1-dimensional quadratic Poincaré pair ((jr j2) : C C' -4D, (&', b 

-,)). 

• An n + 2-dimensional cobordism of Poirtcaré pairs, (1: C --4 D,  (5, )) and  (f' : C' - 
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D', (S', 'b')) is an n + 2-dimensional quadratic Poincaré triad:' 

(ii i2 ) CC' 	) SC 

	

(ff')! 
	 jo e 60 1 , X, Sx)) 

(il j2 ) 
) > SD 

Example 10.15 (Forms again) As before, a highly connected degree 1 normal map f 

M - X2k determines a Poincaré complex with Ck = Kc(M). If f : M - X bounds a 

normal cobordism g : N -* Y with 7ri (N) ir1(Y) then it was seen before that g can be made 

highly connected so that K3  (N) = O(j k + 1), when the map Kk+l(N,  M) - Kk(M) is the 

inclusion of a Lagrangian. Then letting Dk = K 1 (N, M), and setting j : Ck - Dk to be 

j = : Kk(M) K''(N, M), (j : C - D, (0, &)) is a null-cobordism of (C, b). 

The identification is reversible so that given a highly connected map f : M -p X2k and 

a cobordism j : C 4  D, D   is a stably free 7L[iri(X)]-module; then the inclusion jk : D' = 

-4 C, is such that surgeries can be performed on the images of the generators of Dc 

giving a homotopy equivalence f' : M' - X. 

As geometric cobordisms can be glued together, so algebraic cobordisms can be glued to-

gether: 

Proposition 10.16 (Glueing, Ranicki([7], p.77)) Let ((ji j2) : C C' - D, (5, 

—&')) and ((j j) : C' C" — D', (','—")) be n+1-dimensional Poincaré cobordisms. 

Let D" be the chain complex defined by D'= Dr C_ 1  D., with differential given by 

fdD (—l_ 'j2 0 
dD"=( 0 	dci 	0 

0 (1)'_1j dD) 

and define 5 E (W%D") +l by 

S' — (( 1)n-rWr .* 
0 	 0 " 

* — — 	 (_1)n_r_8_ 	 08+1 
8 i 0 

Then the result of glueing the cobordisms along the common boundary component (C',0 i 
the Poincaré cobordism: 

ffj i  o\ 
0 0 : CC" — 

\0j) 

and there is also a relative version: 

Proposition 10.17 (Glueing, Ranicki([7], p.117)) Let r and r' be cobordisms of pairs: 

CC' -L- DD' 	 and 	 C'C" 
f,f,,  
--DD' 

(')j '- (kk') 	I 
(h h') 
	

(l  g")j 	
'') I (W h") 

SC 	>SD 
	

SC' 	
5f' 
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and let (ax, x ö' ED-ö", 1'(D —v") and (ax',  X ' ,(Si,b' —(SP", &'(D —") be cycles in w% (r) 
and W% (r') respectively, so that there are determined Poincaré cobordisms of pairs with a 

common boundary component. Then the union is the cobordism, with 

= C e  C" 	D EI) D 11  
- -, 	I 	I 	- - 

( 	) 	 (h h') 

(SC" 	(SD" 

where: 

(SC" 	= 5CrC_i i(SC, 

d5 ( 
d5" =  0 	d' 0 

o 	(—l)r_1/ dö') 

(SD" 	= (SDr 	D._ 1 	6D 

döD 	ii' ( 0 \ 
d5D" 	= 0 	dD' 0 	I 

o 	(-1'-1i' döD') 

g 	0\ ( 
( i") = 	0 	ol 

o 	g") 

/h 	0" 
(0 	o 

0 	h") 

( 1k;', ) 

	

Ik 	o

o 
= 	

(\o 	
o 
k"\ ) 

X8 ( 0 
F, = 	(_1)n_r+l g * (_1)n-r-sT 1 	0 

o (-1)8g' 	x5) 

8X3 ( 0 

6XII = 	(_1)n_r+l8h* (_1)n_r- sT(S 1 	0 
o (—i)h' 	(Sx9) 

10.3 Algebraic surgery 

In the same way that two normal maps are bordant if and only if they are related by a sequence 

of surgeries, there is a corresponding notion of algebraic surgery so that Poincaré complexes 

(C, ) and (C', ,O ') are cobordant if and only if (C', ') is homotopy equivalent to the result 

of surgery on (C,). In 'Topology of high-dimensional manifolds' ([15]), Ranicki described 

how algebraic surgery can be used to calculate the result of geometric surgery. We review this 

material now, as we shall need to use it later on. 

Definition 10.18 (Ranicki([12]), pg. 145) Let (C,) be an n-dimensional quadratic 

complex. 

• Surgery data is an (n + 1)-dimensional quadratic pair (not necessarily Poincaré) 

(j : C —+ 
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• The result of surgery on the data is the quadratic Poincaré complex (C', ") where 

Cr = Cr  ED Dr+i 

/ d 	0 (_1)n+l(1+Tbof* 

d' = (_1)rf dD 	(_1)r(1+T€ ) o&0 

0 	0 	(_1)rd 

/bo 0 0 
ir 0 0 

1 0 

/;' 	(_1)r+8Tb3 _ 1 f* 0 

= I 0 (—l)_'_ 8To, 3 _ i  0 
0 	0 

• The trace of the surgery is the (i-i + 1)-dimensional quadratic Poincaré cobordism 

((g g'):CC'—.D',(p,',b---'i,b')) 

where 

D = Cr DT 

r 	(dc (_1)n+l(1+T,of*\ 
dD, =0 	(_1)r+1* 

	

D 	I 
9 = () : Cr 4 

'_/loo 9 _001):C—*Dr'  

This gives the effect of geometric surgeries in the following way: 

Lemma 10.19 (Ranicki [15]) 

Suppose that (C, ,O) is the quadratic kernel of an n-dimensional degree 1 normal map f 

M—X. Let D= ... --4O--*Dn_ m ---*0-- ... for some n>m>n/2, with Dk=Z[7r]1 = 
(el, ... , ej) and (j : C - D, (&b,)) be surgery data as above. Then C' is the result of surgeries 

on the homology classes (1 + T)boj*ej E Kk(M). 

Moreover, if the surgeries succeed in giving a homotopy equivalence, then the surgery data 

is just the trace: 

Lemma 10.20 The following are equivalent: 

• The surgery data (j : C - D, (8i4', ))) is a Poincaré pair; 

• The result of surgery (C', ') is contractible and the trace of surgery is homotopy equiv-

alent as a Poincaré pair to (j : C - D, (ö'', &)). 

We shall also need to compute the effect of surgery on the interior of manifolds with boundary 

(algebraically on Poincaré pairs). This is accomplished by means of the following correspondence 

between Poincaré pairs and (non-Poincaré) quadratic complexes. 

Definition 10.21 (Ranicki [12] pp. 141-144) Let (f : C - D, (&4', )) be an (n + 1)- 

 dimensional Poincaré pair and let (E, x) be an (n + 1)-dimensional quadratic complex. 
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The boundary of (E, x) is the Poincaré pair 5(E, x) = (DE, (9x) where 

t9Er  = Er+i ED E_T 

(dE (1Y(1+T)Xo 

	

8E - 	
\ 

0 	(-1)r'd, 	) 

- ((1)n_r_s_11,xr+i0'\ 
3-1 

	

- 	0 	 o) 

The Poincaré thickening of (E, x) is the Poincaré pair 

(iE : 8E -4E n+l—*, (0, DX)) 

where iE = (0 1) : OE, = Er+i Nn+l— r - Dn+l— r 

• The algebraic Thom complex of (f : C -p D, (5, )) is the quadratic complex (C', v") 
where 

C'=C(f) 

I: 
 
- ( 	

0 
- (_l)fl_r_lf* (_l)n-r-ST 'r-1 6V's+lJ 

Proposition 10.22 (Ranicki [7], Prop. 1.3.3) The algebraic Thom complex construc-

tion and algebraic Poincaré thickening operations are inverse to each other up to homotopy 

equivalence, defining a natural 1-1 correspondence between homotopy equivalence classes of 

(n + 1)-dimensional Poincaré pairs and homotopy equivalence classes of (n + 1)-dimensional 

quadratic complexes. The correspondence preserves boundaries. 

Moreover, algebraic surgery does not change the homotopy type of the boundary, so the 

effect of surgery on the interior of a Poincaré pair can be computed as the Poincaré thickening 

on the result of surgery on the algebraic Thom complex. 

Remark 10.23 We can also perform handle additions on the boundary. Suppose that 

(f : C-4D,(5,J)) 

is a Poincaré pair, and 

(j : C-p E,ö,O) 

is surgery data on the boundary. Then, letting the result of the surgery be (C', ') and the 

trace of the surgery be the cobordism ((g g') : C ED C' - E', (0, ,L' ')), the result of handle 

additions is the union 

(f:C-D,(5),))U((g g') 

which is a Poincaré pair of the form (f' : C' - D', (5', ')). 
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Chapter 11 

Surgery and Splitting 
Obstruction Groups 

In the final chapter of 'Surgery on Compact Manifolds' ([20]), after defining the L-groups 

separately in the odd and even-dimensional cases, Wall suggested that it should be possible to 

replace these definitions of the L-groups with one in terms of some kind of generalized quadratic 

form on chain complexes, independent of the polarity of the dimension. 

This was completed by Ranicki in 'The Algebraic Theory of Surgery' (Ranicki [12]). The 

techniques developed in these papers were then applied -in 'Exact Sequences in the Algebraic 

Theory of Surgery' ([7]), section 7, to give a definition of the UNi1 groups independent of the 

polarity of the dimension of the splitting problem. In Ranicki[10], the odd-dimensional L groups 

were defined in terms of 'short odd complexes', a slight refinement of 1-dimensional complexes 

in the theory above; it was also shown that every degree 1 normal map I : M -p  X 2 ' 1  has a 

'presentation' (definition 14.1) which determines a short odd complex. 

This then will be our outline for the next few chapters: 

In this chapter, we shall recall the chain complex version of the definition of the L-groups, 

and give (a slight reworking of) Ranicki's definition of the UNi1 groups in terms of algebraic 

splitting problems. Furthermore, we shall give a map from this group into the corresponding 

surgery obstruction group, analogous to the even-dimensional nilpotent normal cobordism. 

In the next section, we shall again restrict to the odd-dimensional splitting problems, and 

define UNil2 k +3  as a group of 'short odd nilcomplexes', which will be highly connected algebraic 

splitting problems. We shall need to use the notion of a highly connected cobordism of splitting 

problems, which we shall show is an equivalence relation. We shall also see that the construction 

of this section gives a well-defined map UNil 2 k +3  -p L2k+3(7L[G]). 

In the final chapter, we shall show that every highly connected odd-dimensional splitting 

problem determines a well-defined element of this UNil group, such that the obstruction vanishes 

if and only if the splitting problem is soluble. 
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11.1 Surgery obstruction groups 

Lemma 11.1 Cobordism is an equivalence relation on n-dimensional Poincaré complexes. 

Proof. 	• Symmetry is clear; 

• Transitivity follows from the glueing formula; 

• Reflexivity follows from the fact that ((1 1): C C —+ C, (0, 5 	-)) is a Poincaré 

pair. 

D 

Definition 11.2 L(Z[ir]) is the group of cobordism classes of quadratic Poincaré complexes 

of f.g. free Z[ir]-modules. 

Example 11.3 (Construction of L2k(7L[7r]))  Let K be a f.g. free 7L[7r]-module, and let C be 

the chain complex with Ck = K*, C3  = 0 else. Then (W%C)2k = (W%C)2k+1 = Hom(K,K*), 

and the differential is given by d() = x + x. 
So Q2k(C) is precisely the equivalence classes of split quadratic forms over K, which are 

given by the surgery obstruction. 

Now let D be the chain complex with Dk = L*, and let j : Ck — Dk. (W%D)2k+1 = 

Hom(L, L*).  Suppose that (j : C - D, (5i/, 0)) is a quadratic pair. Then = 	: K - K*, 

= 	: L - L*, and d(, 5',) = 0 = 601 + 5i/ = /,js, so that j is the inclusion of a 

Lagrangian in a split form (j, 6); (L, 0) — (K, ). 

11.2 Splitting obstruction groups 

In ([7]), Ranicki defined the LS and UNi1 groups in terms of Poincaré complexes, and provided 

a dimension-invariant definition of the UNil groups. In this section, we recall (a slight special-

ization of) this definition, and show how it gives rise to a map from the UNi1 groups defined 

in this way, to the L groups defined in terms of chain complexes. We show that this agrees 

with the previous definitions in the case of highly connected even-dimensional codimension 1 

splitting problems. Note - in this section the letters P and Q will, unless otherwise specified, 

be f.g. free 7Z[H]-module chain complexes. 

11.2.1 Nilcomplexes 

Definition 11.4 A nilcomplex CS = (F, Q; P1, p2) consists of: 

• Free Z[H]-module chain complexes P and Q; 

• Chain maps p1 :P—+Z[Gi]®Q,p2:Q—+7L[G2]®P 

such that ( ') is a homotopy equivalence of 7L[G]-modules. (We are again using the multi-

plication map Z[G] ®Z[H]  Z[G] - 7L[G] to extend p 2  to 7L[G]-linear maps.) 
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The notation is motivated by the result of Cappell which is quoted in proposition 4.9, which 

states that if P and Q are 0-dimensional complexes then (P, Q; P1, p2) is an object in 9111. 

Definition 11.5 A map of nilcomplexes 

F = (fp, fQ; kp, kQ) : CS= (P,Q; PI,  p2) —CS' = (P',Q';p,p) 

is a pair of chain maps fp : P -* P' and f : Q -* Q', with homotopies k1 : fpi pifp, and 

k2 : IPP2 p2fQ. 

Lemma 11.6 Suppose that (P,Q;p1,p2) is a nilcomplex and that fp : P --+ P' and f : Q --4  

Q' are homotopy equivalences. Then there exists a nilcomplex (P', Q'; p', P'2) and homotopies 

kp, kQ such that (fp, f; kp, kQ) is a map of nilcomplexes. 

Proof. Choose homotopy inverses fp and fQ  for gp and gQ respectively. Let p = fQPi9P and 

fppg. Let hp be such that gpfp—1 = dh+hpd, hQ be such that gQfQ—1 = dhQ+hQd. 

Then fpp2-p'2fQ = fpp2(1—gQfQ) = fpp2(dkQ+hQd) = d(fpp2hQ)+(fpp2hQ)d and similarly 

for p'. 

Then (fp, f; fQplhp, fpp2hQ) is a map of nilcomplexes. 	 D 

Lemma 11.7 Suppose that (fp, f; kp, kQ) : CS -* CS' is a map of nilcomplexes, such that 

each map is a homotopy equivalence. Then there exists a map of nilcomplexes (gp, gQ; k,, k) 

CS' -* CS such that gp and gQ  are homotopy inverses for fp and fQ respectively. 

Proof. Let gp and gQ be homotopy inverses for fp and f. Then pigpfp gQfQpi gQpfP. 

So p1gpfpgp gQp'fpgp, and therefore pigp 9Qp. 	 D 

11.2.2 Quadratic structures on nilcomplexes 

Lemma 11.8 Let (g: W --+  y'fl+l,f : M --+ X'2 ) be a splitting problem, so that: 

• C(f)PWQ; 

• C(gj) F; 

• C(gr) 

• C(92) 	Z[G2 ] 0 P; 

• C(gi) Z[G1] 0 Q; 

• (1 0): C(f) - C(g1); 

• (0 1) :C(f)—C(gr); 

• (1 p2) : C(f) - C(92); 

• (P1 1): C(f) - C(gi); 



Then (P,Q;p1,p2) is a nilcomplex, and there exists 0 : 	- Q a homotopy equivalence, 

E (W% (7L[G2 ] ® P)n+i), 50f E (W%(Z[Gl] 0 Q)+i) such that letting 

((o o\
)  t'= 	o o 	ifs=0 

	

10 	otherwise 

the quadratic signatures are: 

• a(f) =(PeQ,); 

• cr(gz )=((1 0):PQ—P,(0,0); 

• cr(gr)=((0 1):PQ—Q,(04)); 

• a(g2)=((1 P2) :PQ-4Z[G2]®P,(ö',,b)); 

• o(gi)=((Pi l):PQ-Z[Gi](9Q,(&//,iJ.')); 

Proof. By Prop. 1.4 of Ranicki [12], Q,,, (P Q) 	Q. (P) Q. (Q) Hom(P'",Q). Let 

= or(f)
= ( 	

), where a E (W%P), i3 E (W%Q), 0 e Hom(Pn_*, Q) and let a(gj) = 

((1 0): P(BQ - P,(,)) (so 0 = 0 for s>1). The content of the lemma is that a and 3 

can be taken to be 0, and that a(gl)  and o(gr) are of the form claimed. 

Since o(g) is a quadratic pair: 

	

d() = (1 O)%(h) 	
a 

(i 0) (° 
	) o) = a. 

Then (0,00))   E (W(1 0))n+2, and d(0, ( )) =(, ( d(x=a )). Hence 

	

 

(x) = (x,) - d(0,
( 	

)) = (0, ( 
	

)) E Q+i(gz). 

Similarly, we can arrange that 0 = 0 so that = ( 8)  E  Q(f), and then o(gl)  and a(gr ) are 

in the stated form. 0 

Lemma 11.9 

Suppose that 0 E Hom(Pn_*, Q) is a homotopy equivalence. Then any quadratic pair 

((1 P2) : P Q - P, (50p , 0)) or ((1 P2) : p @ Q . 	, (6 ,0P , 0)) is a Poincaré pair. 

Proof. Up to sign, 

(1+T)bo=( TO) Pfl*Qfl_*PQ 

is a chain homotopy equivalence since both 0 and TO are. 

(dp (_1)r (_iyp2\ 
C((1 p2))r=PrPr-ieQr_i,d= ( 0 	dp 	0 	:Pr+iP,'Qr -4 

0 	dQ J 
PrPrl Qr-i 
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The Poincaré duality map Pn1 - C((1 p2))  is, given by c = 
	

which is a 

homotopy equivalence if and only if the mapping cone C(a) is contractible. 

The mapping cone is C(a)r = PrEDPr—i Qr-iED pn+2_r, and the differential is given by: 

td p 1 P2  (1+T)8b'\ 

	

d— 0 dp 0 	TO 	1 
- 0 	0 dQ 	'0 	I 

	

0 0 	d 	) 

Let E' be the complex with E,'. = C(a), and 

fdp 1 0 o\ 
0 dp 0 0 

d'— I - 0 0 dQ 0 
0 0 d) 

The map 
100 	0 
0 1 P2  (1+T)6L'' 
001 	0 
000 	1 

is a chain isomorphism C(a) - E', and E' is contractible (since it is the direct sum of the 

mapping cone of 1: P.  -- P and 0: -* Q). Hence the Poincaré duality map is a hornotopy 

equivalence, and so ((1 p2), (ØP, 
)) 

is a Poincaré pair. The case (p' 1) is similar, and the 

remaining two claims follow from these by applying the above with p2  = 0 and öi/' = 0. D 

Definition 11.10 

Let (P,Q;pi,p2) be a nilcomplex. Then define a chain complex W%(P,Q;pl,p2) by: 

(W%(P, Q; p, P2))n = Hom(Pn_*, Q) (W(P (D 7L[G 2 ])) +1  (W(Q (O Z[G 1 ])) +1  

d%(0,,ö&) = (dO+ (_1)rod*,d%(s)  + (-1)p2O,d%(ö) + (-1 )" 0p) 

Then as before, define Q(P,Q;pi,p2) = H(W%(P,Q;p1,p2))), and calla triple (e,5P,5Q) 

a quadratic structure on (P, Q; P1, P2). 

Definition 11.11 An n- dimensional quadratic nilcomplex is a pair (CS, 1' = (0 , 8P , 5Q0)) ,  

where CS is a nilcomplex and (0, 6Q) is an n-dimensional quadratic structure on it. It 

is Poincaré if in addition 0 is a homotopy equivalence. 

Lemma 11.12 A map of nilcomplexes F : CS - CS' induces a map F% : W%(CS) -4 

W%(CS'). 

Proof. Define 

F%(0,,5) = 	 + (-1)'k2Of, 

(-1)'fQ6Q'f, + (_1)?fQ0kfl. 

Al 
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Definition 11.13 Given a map of nilcomplexes F as above, define Q(F) = H(C(F%)). 

Definition 11.14 An (n + 1)-dimension quadratic nilpair (F : Cs - DS, (x')) is: 

. An n-dimensional quadratic nilcomplex (CS, i,b); 

. A map of nilcomplexes F = (fp, fc; kp, kQ) : CS - DS; 

• (X ,  V, ) E Q + (F)) where x = (c 5'x,öfx). It is Poincaré if () is a chain equiva-

lence. 

Lemma 11.15 Let (F : CS - DS, (x ,  V5 )) be a quadratic Poincaré nilpair as above, and 

CS = (P,Q;p1,p2), DS = (P,;,i,,32). Then 

f/f 1' o\ 
: P(DQ — PEO, ((0 0), (0 0))) Xo 

is a Poincaré pair; (rp,wp E Q+2 (r1')) is a Poincaré triad, where rp is the triad: 

(1 p2) 
PQ >p 

' kefp 

PED (1 p2) 

iL', / 0 0\\ andwp = (ö"X,,ö" 	o ,). 

Proof. The first statement is immediate from the definition of the Poincaré property of pairs 

(cf. 11.9). That the structures claimed are quadratic structures, quadratic pair structures, 

quadratic triad structures etc. is immediate from the definitions. It remains to check that the 

triad is Poincaré. 

Note first that the mapping cone of the triad Cl' is homotopy equivalent to SC(fQ) : Q - 

where S is the suspension of the chain complex. This is because C(l') r  = r Pr-iQr-j 
0\ 

Pr-1 Pr_ 	
10 0 1 0 0 	i Qr-2 and the map o 0 0 0 0 i) s a chain equivalence. (rp,wp) is 

Poincaré if and only if 

/ 	(i+T)c5'o 	\ 

pn+2—r . C(F) 
p28k,+(1+T) ,0of I 

9f 

Of 	 I 

is a chain equivalence, which is (by the above) true if (. )Pn+2_ 	or-i Q,--2 = SC(fQ) 

is a chain equivalence. 	 D 

Definition 11.16 A cobordism of n-dimensional quadratic Poincaré nilcomplexes a= (CS, x) 
and & = (CS, ), (3; a, a) is an n + 1-dimensional Poincaré quadratic nilpair (F : CS ED CS 

DS, (x x  

Definition 11.17 UNil +2 (Z[H]; Z[Gi], 7Z[G 2 1) is the group of cobordism classes of quadratic 

n-dimensional Poincaré nilcomplexes. 
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Example 11.18 (Even-dimensional UNi1 groups) Suppose that P and Q are just chain 

complexes of the form 0 - Pk -4 0 and 0 -+ Qk -b 0, so pi and P2  are just module homomor-

phisms. 

Then (W%(P, Q; P1, p2))2k = Hom(P* ,  Q)Hom(P*, P®Z[G 2])Hom(Q*, Q(&7Z[G1]), and 

a cycle is just (0, 50F',  S,Q) such that P20 = 60F' + 8i,b', and piO = 5b + which again 

is precisely a split UNi1 form. 
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Chapter 12 

Nilpotent normal cobordism 

Before we move on to consider odd-dimensional obstructions, we consider the nilpotent normal 

cobordism in the generality of the preceding chapter. The nilpotent normal cobordism should 

be interpreted as a cobordism of the original splitting problem 

(lp2) PQ (Pi 4) 
P4— 

with the (splittable) splitting problem 

(01) 
PQ 	P. 

When f: M - X is a highly connected map of even-dimensional manifolds, the nilpotent 

normal cobordism of 9.1 is seen to have this effect algebraically by considering the following 

diagram. (Note that since CQ is defined so that Kk+1(Cp,  M) = P, Kk(Cp) = Q and similarly 

Kk(CQ) = P.) 

(0 1) 	 (10) 
PWQ 

CpxI 

M4D 2  

W2x1 	I 	 W1x1 

PQ 
(1 p2) 	 (pu) 

Geometrically, we obtain a map from splitting problems to surgery problems by computing 

the nilpotent normal cobordism. Algebraically, the following proposition does the same thing: 

Proposition 12.1 Given an algebraic splitting problem x E UNil +2(Z[H]; Z[G11,  Z[G2}), the 

algebraic nilpotent normal cobordism is a() E L+2(7L[G]), given by (P Q, ij), with: 

; - ((_l)n+r+sjPV)r-1 

	

0 
- 	(_l)TO 1 	(_1)n+r+s5Qr). 	 (12.1) 

We use the definition of Lk ( Z[G]) as the group of cobordism classes of free Poincaré Z[G}-module 

complexes; a is then well-defined. 
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Lemma 12.2 The surgery obstruction of the nilpotent normal cobordism is given by 

with 
r ((_l)n+r+sjPor-1; 

= 	
(1y9r 	(_i)n+r+8Q/ 

+1) 

Proof. We construct the nilpotent normal cobordism algebraically by mimicking Cappell's nilpo-

tent normal cobordism construction. The nilpotent normal cobordism is to be subdivided as 

(Cp UM CQ) x IUM X J W x I as in the following diagram, where again the dotted lines represent 

homotopy equivalences. 

(1p) 
PQ_(

01) 

W2x1 	 CpxI 

M4D 2  

W1 x1 	 CQXI 

(PI 1) PQ (10) 

Hence, for the purposes of algebraic glueing, it can be considered as the union of two null-

cobordisms of pairs corresponding to 

((W x I, Wi U W2); (M x I, MUM), (W, 0)) 

and 

(((Cp UM CQ) x I, Cp U Cq); (M x I, MUM), (Cp UM CQ, MP U MQ)). 

Thus on the chain level, the surgery obstruction of the nilpotent normal cobordism is the 

union of glueing two triads: 

JO = 1¼ 
"P2 0 0\ 	 (0010\ 

D°=PEBQ 	
0 0 pu ) 

C=PEDQEBPEBQ 

I =(11) 	 I 
0 	 D2 =PEDQ 	 >0 

with quadratic structures 

- (oiIoo 
0 0 0 0 

\ 
- 	0 0 0 0 J E Q(C) 	 (12.2) 

\o 0 IP oJ 

- ( " P '0 01 
  \ - 	
0 5Q) EQ1(fo) 	 (12.3) 

= 0EQ +1(fi) 	 (12.4) 

= 0 E Q1(g) 	 (12.5) 

By Ranicki([7]), the result of the glueing is the Poincaré pair 

(0  
o 0 0 0 1 0 1 0" 

0 0 0 0 1 0 



with 

= (DP, (12.6) 

= Pr—i Qr—i (12.7) 

/dp 0 	0 0 (_1)r (_l)rp2  0 0 \ 

0 dQ 	0 0 0 0 (—l)rpi (_1)' 
0 0 	dp 0 0 0 (_1)" 0 

d'c= 
0 0 	0 dQ 0 (_1 0 0 i (12.8) 
0 000 dp 0 0 01 
0 0 	0 0 0 dQ 0 0 I 
0 0 	0 0 0 0 dp 0 
o 0 	0 0 0 0 0 dQ) 

d' 	= (dP o\ (12.9) 
dQ) 

/ 5Pr 0 0 0 	0 0 0 	o\ 
0 0 0 	7P 0 0 	ol 
0 0 00 0 0001 
0 0 0 0 	(_1)SOr 0 0 	0 I (12.10) 
0 0 00 0 0001 

(_1)n_r9r_ 1  0 0 0 	0 0 0 	0 
0 0 00 0 0001 
0 (_1)n_rO7p 0 0 	0 0 0 	0) 

= 	0 (12.11) 

Now d'r  is of the form 
(d (_1)r4) 

with 

	

(1 P2  0 o\ 	fi 0 0 — P2 

	

A_10 0 p' ii 	A_1_10 0 0 	1 

—10 0 	1 0' 	—100 	1 	0 

	

1 0 0) 	 '\o 1 —p' 	0 

Then there is a null-homotopy of the above pair to (0 : 0 -* D, (, 0)) which is the image of 

the above structure under the map of pairs given by the triad: 

C 
1\5f 	1 
+ \+ 
0 	>D 

By corollary 10.8, 

= (_1)2fz'_hf* + (_1)r+lkT(_?'_8)k* : Dn+2_T_8 - 

where L 
= ( 	

which satisfies d'cL + d' = 1. 

This gives that 

((_1)n+s+rT(84'3+1 ) + (_1)r+8P26r_l 	0 
qOQ = 	 (1)ror_l 	 (_l)n+s+rT6 +,) 

((_l)n+s +rT(JPV).+l) 	0 
= 	

(-1)rO'— 	(_1)n+8+rT51) 

since 

P29 = (1 p2) ( 
	) ('k) = 0 E Q1(P ® Z[G1]). 

This structure is equal to that claimed since T(o"I') = 5"J' e Q +1(P) 
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The proposition is then proved once the following lemma is proved: 

Lemma 12.3 Let F = ( fp, fQ; kp, kQ) : CS - DS, where DS = (P, ; ,3 1 ,,32 ), be a pair 

of nilcomplexes, and let (F : CS - DS, (x, )) be a Poincaré nilpair. Let (7L[G] 0 (P 
Q) 1,NNC) be the result of the nilpotent normal cobordism on (CS, v'). Then there is a 

Poincaré pair 

(fp fc : 7L[G] ® (P Q)*—i---'  7L[Gj ø(P 	(54NNC NNC)) 

where 

(NNC)r - ((_1)n+r+&UP,,r-1 	

0 
- 	(_ly.O 	(_i)n+r+s5Q) 

and 
/i P\r-1 

,NNcr - I '.yX 13+1 
. W 	13 - 	9r-1 	

(o);-1' 

Note that this apparently is a different structure on the nilpotent normal cobordism, but this 

,/JNNC 	e Q.+2 ((P Q)—i) above. 

Proof. First check that the structures are indeed quadratic structures. For convenience from 

now on we omit the NNC superscript in the notation. Let = (0, ö'i4', ö/) and x = 
(, 6P X , 6'x). We must check first that 

+(_1);d* + 	 + (-1)'(T)) 1 ) = 0. 

P \
I )

r-1 
It can be checked that (T1 = (_1)3+r (T 	s+2 	0 

	

(5 
0 	T(öQ)32r-1 )". Hence, checking first 

the top left entry in the matrix (which is identical to the bottom right): 

r-1 (_l)r+8(doPb;+1 + 	 + 
(_l)fl+1_3(8Pr;  + (_1) 3T(o') 3+2)) = 0 

since the bracket is 	 The other brackets follow similarly. The verification that the 

pair structure is a quadratic pair structure is almost identical. 

Finally we check that the pair is Poincaré: Since 

o T(cb) 
0 

o T(0) 
o 	0 

is a homotopy equivalence, and 

1 
— ,5i 0 k1 

P2 1 k2 0 
o 0 1 

— p' 
o 0 — P2 0 

is a homotopy equivalence, 

-,51 + kiOf* 	 T(çb) 
-02T() + k2T(0)f* 

_p19f* 	 T(0)f* 
01* 	_p2T(Of*) 

M. 



is also a homotopy equivalence. Hence 

/ (_1)n+1-r(1 - T)opV)'—1 	(_1)r+lT()r-1 

1 (1 + T)81 '\ 	I 	 (_1)n+1+(1 - T) ox' 
I* (1 + T)iJj_hf*) 	I (1y---'-'(1 - 	 (_1)r+ 1T(0)r -1 

 = 	
1 ) (_lyor_l 	(_1)n+1+r(1 - 

(_1) r+ 1 ,3 + kiof*  
(-1) 	 (_1)rT( ,bf; + fOk) 

(_)r 	 (-1)'T(0) 
(-1O 	 (_1)rT(Op) 

is a homotopy equivalence, hence the pair is Poincaré. 	 D 

Note that the above formula for (1 + T)o agrees with the formula given by Cappell for the 

intersection form on the even-dimensional nilpotent normal cobordism. 

69 



Chapter 13 

Formations and Short Odd 
Complexes 

The odd-dimensional surgery obstruction groups have been described in several equivalent ways. 

The first, by Wall in [20], was in terms of automorphisms of hyperbolic quadratic forms. Later, 

they were described by Ranicki as quadratic formations, quadratic (hyperbolic) forms with pairs 

of Lagrangians. As forms had a refinement in terms of split forms, so formations carried an 

equivalent notion of split formations. 

Once again, we begin by reviewing the surgery obstruction— it is necessary to compute the 

surgery obstruction of the odd-dimensional nilpotent normal cobordism; and then we extend 

the ideas to the splitting obstruction. 

13.1 Surgery obstruction group 

The surgery obstruction group will be described in two ways in this section. The first, in terms 

of formations, is more closely related to the original definition due to Wall, who described 

the odd-dimensional L-groups as groups of automorphisms of forms. The second, in terms of 

short odd complexes, is the highly connected version of the chain complex description of the 

odd-dimensional L-groups, and was explicitly described by Ranicki in [10]. 

The definitions of the odd-dimensional UNi1 groups will be given analogously using short odd 

complexes, and when the surgery obstruction of the nilpotent normal cobordism is computed it 

will be given as a short odd complex. However, where possible connections will be made both 

between short odd complexes and formations and between their UNi1 equivalents. The reason for 

this is a trade-off between the merits of short odd nilcomplexes and UNiI formations : the odd-

dimensional L-groups are described as equivalence classes: representatives of equivalence classes 

are best described by UNi1 formations, but the equivalence relation is most easily expressed in 

terms of short odd nilcomplexes. 
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13.1.1 Formations 

A formation is a quadratic form with a pair of Lagrangians. For surgery problems, a formation 

describes a Heegaard-type decomposition, although no generalization of this is known for split-

ting problems. Therefore this will not be described in this thesis; instead an alternative means 

of obtaining formations will be used. 

Definition 13.1 • A quadratic formation over a ring with involution R, (K, A, a; F, G) is a 

nonsingular quadratic form (K, A, i) together with an ordered pair of lagrangians (F, G). 

• An isomorphism of quadratic formations 

f: (K,A,p) -' (K', A', 

is an isomorphism of forms f; (K, A, j) - (K', A', ii') such that 1(F) = F', 1(G) = G. 

Lemma 13.2 Every quadratic formation is isomorphic to one of the type (H, (F); F, cr(F)) 

for some automorphism a H6  (F) -f H6  (F). 

Definition 13.3 

• A formation T = (K, A, ji; F, G) is trivial if it is isomorphic to (116 (F); F, F*) 

• A stable isomorphism of formations 

f (K,A,/L;F',G) -+ (K',A',2';'F,G') 

is an isomorphism of quadratic formations of the type 

f: (K, A, i; F, G) T -* (K', A', '; F', G') T' 

with T and T' trivial. 

• Given a (—e)-quadratic form (K, A, ji), the graph lagrangian is the lagrangian 

= {(x,A(x)) E KK*Ix e K} 

in the hyperbolic c-quadratic form H6 (K). 

• The boundary of (K, A, p)  is the graph formation 

U(K,AJL) = (H6 (K);K;F(K A)). 

• Quadratic formations (K, A, i; F, G) and (K', A', j'; F', G') are cobordant if there exists a 

stable isomorphism 

1: (K, A, j; F, G) B -* (K', A', /i; F', G') B' 
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Definition 13.4 The (2k+ 1)-dimensional L-group L2k+1(R) of a ring with involution A is the 

group of cobordism classes of (_1)Ic-quadratic formations (K, A, t; F, G) over R, with addition 

and inverses given by: 

(Ki,A i jti;Fi,Gi ) + (K2,A2,i2;F2,G2) 

= (K1  K2, A, eA2,/11 A2; F1 F2, G1 G2) 

—(K,Ajt;F,G) = (K, —A, —p; F, G) 

13.1.2 Short odd complexes 

Definition 13.5 A 2k + 1-dimensional short odd complex (denoted (C, cl')) over a ring R 

consists of: 

• f.g. free R-modules Ck+1,Ck; 

. d: Ck+1 —4 Ck; 

• bo:Cc_-4Ck+l where C ( :=C,; 

• 01 : Ck 

such that: 

• d0 + ecoi + (_ i)k+1) = 0; 

• The chain complex: 
(d'  ____ 	( d) 

Ck 	bO6k+1C 	 Ck 

is contractible. 

In other words, a short odd complex is just a highly connected 2k + 1-dimensional Poincaré 

complex (C,) (in the notation of 10.3) with l'' = i/'o, 	= 	= 0. 

The equivalence relation is given by (highly connected) Poincaré cobordism: 

Definition 13.6 A null-cobordism of (C, l'), denoted (j : C - D, (5'&, l')) is 

• A f.g. free R-module Dk+1; 

• j : Ck+1 —4  Dk+1; 

• &cl,  : D!c 	- 

such that ((j 
	

1I)o*j* 	d
&o + (_l)k+1 	.1) is an isomorphism. 

Definition 13.7 A cobordism of short odd complexes (C,) and (C', '),(j : C - D, (60, OE) 

-v,')), is a null-cobordism of (C @ C', 4' - cl"). 
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Definition 13.8 A map of short odd complexes (f, x) : ( C, ) - (C', çb') is a chain map 

f : C - C, x = {xi : C/k 	C+i,X2 : C/ic 	CA;  I such that 

ff * 
- = Xi 	and 	ff* -'1 =d +X2 +(-1)'X. 

A homotopy equivalence of short odd complexes is a map of short odd complexes which is 

a homotopy equivalences of chain complexes. 

Then the odd-dimensional surgery obstruction groups are defined as follows: 

Definition 13.9 L2k+1(R)  is the group of cobordism classes of (2k + 1)-dimensional short 

odd complexes, with addition given by direct sum, and —(C, '') = (C, -v'). 

Remark 13.10 The correspondence between formations and short odd complexes is as fol-

lows: 

Suppose that (H(_l)k+l (F); F, G) is a formation. Let i = (1) be the inclusion C -p FeF*. 

Define a short odd complex (C4)  by letting Ck+1 = F, Ck = G', d = if, L'o = y, and 01 is 

any map such that -y1f &i + (l)k+1/, (since i is the inclusion of a Lagrangian, using 7.13). 

For details, see Ranicki[10]. 

Under this correspondence, two short odd complexes are homotopy equivalent if the corre-

sponding formations are stably isomorphic, and are cobordant if the corresponding formations 

are cobordant. This result has not been extended to short odd nilcomplexes. 

13.2 Splitting obstruction group 

13.2.1 Short odd nilcomplexes 

In 'An Introduction to the Algebraic Theory of Surgery' (Ranicki, [101), the odd-dimensional 

L-groups were expressed in terms of short odd complexes - which are essentially highly con-

nected quadratic Poincaré complexes, with the equivalence relation given by highly connected 

cobordisms of quadratic Poincaré complexes. However instead of working with homology 

classes [&I E Q(C), short odd complexes were defined as highly connected complexes to-

gether with cycles 0 E (W%C) of a particular form, and the cobordism relation was such that 

if [] = [',b'} E Q(C), then the short odd complexes (C, ) and (C'.1") are cobordant. 

In this section, we do the same thing with nilcomplexes - short odd nilcomplexes are defined 

in terms of highly connected nilcomplexes CS together with a cycle in (W%CS). 

For the sake of clarity, note that in this section, if the symbols P and Q are used, they will 

refer to 7L[H]-modules, not chain complexes. 

Definition 13.11 A (2k + 1)-dimensional short odd nilcomplex (CSk +1, CSk, d, 0, 8", 6) 

consists of: 

• CSk +1 = (Pk+1,Qk +j;pl,p2) E ottrfe; 
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• CSk = (Pk, Qk; p1, p2) 
E ¶fl(free. together with morphisms in 91i( 

• d = (dp,dQ) : CSk 1  - CS; 

• 0 = (Op,O) : GS' _ CSk+1 such that dO = (_1)10*d* is a (_1)k  -symmetric UNi1 

form with quadratic refinement &,b", 60Q such that 

• ö'b °  + (_l)260* = p2dpOQ; 

• ö 	+ (l)k+2Q*  pidqOp, 

such that the mapping cone: 

0 	CSk 	CS k +l CSk +l 	CSk 	> 0 

is contractible. 

In the next chapter, we shall show that any highly connected odd-dimensional splitting 

problem gives rise to a short odd nilcomplex. The connection between this definition and the 

preceding chapter is given by the following lemma: 

Lemma 13.12 Let (CSk +1,CSk,O,d,p,&Q) be a short odd nilcomplex. Then there is a 

Poincaré nilcomplex (, &°w, 8gw) given by: 

k+1 = OQ 

cbk = 

Sw : pk 	 pk+1 

	

Pk+1 	 >- Pk 
dp 

110 O\' 

	

Proof. We have to prove that d(( 
)) 

= 0, and that d(S"w) + (_l)21 ( 1 p2 ) 	o)) = 0. 

Firstly, 

fdp 0 

	

'\I'd, 	0 \ 
0 dp)(O 	

)+(_1)k(* 0 0
o)o d) 

= (dQoQ+(1)k0d 0) =0 

since it was assumed, that d9 = (_1)+O*d*.  

Secondly, to check that (1 P2)% (( g) ) = d% (6'w), there are 3 things to check: 

d(w)' - 	OQ 0 	- p 

d(6'w) =P2O' 

d(6pLo)k = 0 
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/1* * - Firstly, d(5" w)' = _6P+1 = — ( — pO). Secondly, d(ö"w) = (_p9Q)* = — VQP ,  
2 - 

P29k. Finally, d(5'w) = —dpp'29Q + öbp + (l)c8çb, = 0. 

0 

13.2.2 Cobordism of short odd nilcomplexes 

We now define highly connected cobordisms: 

Definition 13.13 

A cobordism between short odd nilcomplexes a = (CSk+l,CSk,d,O,öbc ,öi/3) and a' = 

2 	2 (fi = ((P,,/3j,/32), UP, fQ),(O,ö',ö));a,—a'), is: 

• 	 ,3 1 ,,32 ) e cnhrfe 

• Maps öibp : 	-* F, 8,bQ 

• kp : Qk+1 Qk+1; -  P®Z[Gl],kQ : Pk+1 Pk+1;—* 0 Z[G i ] 

such that 

• fP(p2(Dp) - ,32fQ = kp(dq ED d); 

• fQ(plepç) - plfP =kQ(dpEd,); 

• 5bp+ö,b,+1329+kpO=0; 

• 6VQ+5lP+P10+kQO*f=0. 

Lemma 13.14 Cobordisms according to the above definition are precisely those cobordisms 

in the previous section which arise from maps of UNil triads (P, Q; P1, P2) (P', Q'; p'1 , p'2 ) 

(P, ; , /31, ,ô) considering modules as 0-dimensional chain complexes in the obvious way. 

It is not obvious that this notion of cobordism is in fact an equivalence relation on the set of 

short odd nilcomplexes. Symmetry is obvious. To show transitivity, we need to be able to glue 

two cobordisms to give another highly connected cobordism. To show reflexivity, we show that 

given any short odd nilcomplex, there exists a cobordism with another short odd nilcomplex. 

Reflexivity then follows by applying symmetry and transitivity. 

Lemma 13.15 The union of two highly connected cobordisms is again a highly connected 

cobordism. 

Proof. Suppose that a, a', a" are short odd nilcomplexes, and let (; a, —a') and (/3'; a', —a") 

be cobordisms. Then by lemma 13.14, the cobordisms determine Poincaré nilpairs. Apply 

lemma 10.17 giving another Poincaré nilpair, = ( P, ,. . 

Claim: 113 (P) = H3  (Q) = 0 unless j = k + 1. 
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Proof: Given a nilcomplex, a = (P, Q .... ) define C = P Q. Given a cobordism 3 = 

(P,Q .... ), define Do = PQ. 

Then D4  = Do Uc,  Dry, and there is a Mayer -Vietoris sequence: 

H3 (C') 	 > H(D) 	Hj_i(Ca') 

For j :5 k and j ~: k +3, since Dp and D,3 are highly connected cobordisms, and 	is a 

short odd nilcomplex, there is an exact sequence 

H(D) H(D0) 	H3  (D) 	> H3 _(C) 

so H(D,) = 0 since all the other terms are. 

It remains to consider Hk+2(D). By Poincaré-Lefschetz duality, this is isomorphic to 

H'(CO3 	- D) Hk(C  C' -p D)*. From the long exact sequences of the pairs, 

Hk(C 	D0) = 0 = Hk(Ca" - Do, ). Then there is a Mayer-Vietoris sequence 

•..Hk(CQ  _* DO ) EHk(Ca l 4 D0) 	Hk(Ca Ca" 

Hence 0 = Hk(C 	- 	 so Hk+2(D) = 0. 	 EM 

The following purely algebraic result will be seen later to have a geometric background - 

it also guarantees that given a short odd nilcomplex a, there exists a short odd nilcomplex a' 

and a highly connected cobordism (/3;  a, a'). 

Lemma 13.16 

Given a short odd nilcomplex (CSk +l, CSk, d = (dp, dQ), 0 = (0,0'), o', 5w), there exists 

a highly connected cobordism between 

a = (CS, CSk, d, 0, 8&', f?) 

and 

' = (CS' , CSk, 	ko*, * _1)c+154'*, (_l)k+1p*)a 	 d, (  

Proof. First we must check that a' is a short odd nilcomplex. All properties are clear apart 

from the quadratic refinement, where (_i)160/)* + (_l)k+ 2 ((_l)k+ 1 6P*)* _(6P + 
(_i)k+25°t) = _(p2 dp 0Q )(_1)k+ 1 0pd = p2 (_1)k0d,. 

Now we construct a (not highly connected) cobordism. However it will be homotopy equiv-

alent to a highly connected cobordism. In particular: 

Let 

• k+1 =Pk+1Q 1 ,Qk+1=Qk+1P'' 

• 

• 1p = (dp (_1)''07),JQ = (dQ (_i)k9,) 
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( \ 

	

P2 is the chain map P2 = \ P2 
	O 

O 	— p ) 
-' (pg); similarly i; 

/ 
• 0 is the chain map 	0 

0 —i\ 	k+1 

• bxp e (W'Y,,i)2k+3 is the structure: 

) 

Pk pk (d 

	
= pk+1 

>0) - P; 

(p2 9  
0 

 Pk 

	

Pk+1 = Pk+1 	 > = (d 9) 
and JXQ similarly. 

•fp is the chain map 	

0 	
Pk 

(d 	0 

Pk+1 Qk+1 

10)j,  

Pk+1 Qk+1 (_1)l9) 

and fc is similar. 

Now we claim that (P,,,51,,52,6,5x"5x') is a cobordism in the sense of the preceding 

chapter. 

First we have to show that f(0 _d*)f* = 1O + ( 1)rOd*. There are only two non-zero 

terms: 

= (dQ (_1)Ic0) ((_)k 	
') = (

o 	dQ) 

- 	0 —d Q) 	
: pk+1 

) —(1 i) 1'  ( 	
0 "('i 0 	_ 

/ 

	

 
(_lyod* = (_1)k+1 	0 	_1"\

) 

 ( d, \_(0Q\ 

(_1)k 0 	(_1)k0QJ - 

(1 o\(0 	0 '(i) 
= 0 i)o _dQJ1 +1 

Let x = ( ). Then we have to show that 

flOpa 0\ 
0 P'2) 

t= pP'QQ' 

	

P(DQ(o
fP 0 I 
	

(1 p2) 	

fP 
fQ) _______ 

is a triad, and that ((öx x), (60 —&', i/, —I)) E (W%())2k+3 is a cycle. 
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First note that the maps Pi, actually commute with the maps f, fc, not just up to 
homotopy. Hence ID is a triad. It just remains to show that 

f\ d(8x)_—fP%(s_p'P)_(1 
P2)%(O o 

o O 
) 	 (13.1) 

All of the terms in the above expression are terms in (W%P 02k+2, and so consist of 4 
maps as shown below: 

pk 	.pk+lQ 

Qs+i -'.- Pk 

Now compare terms in each structure: 

d(6): 

( 	0 
WO = 	kp 

O 
0) 

- (1)k+1 (0 	

(-1)kp2) - ( 	
0 	P2'\ 

0 	- 	(_1)k* 	
) 

W 	( 	
1)k+1( 

= 	
- (_l)lcp 

0 0)( 
0 	(_1)COQ) 

d, 	
"i 	(P20Q\ 	(—P20Q) 

	

-0  ) 	—pd 

W O  = (dp 	(_1)"O) (4 ) - ((pO 	0) = 0 

W2 = dpp2 O 

(1 P2) % ( g ): 

WO = P2° 
= (, -) 	

—

1) = ((_1)'p 
_P2) 

Wil  = 0;w 	0;w2 = 0 

fp%(8P e 

wo = 0 

- 
(—pe - _pd*) 

= 0 

= T'bp + (_1)k5, 

Comparing term by term, we see that equation (13.1) is satisfied. The proof for Pi  runs 
similarly, so that we have indeed defined a quadratic cobordism. 

The last stage is to prove that the nilpair is Poincaré, i.e. that 

CS,. 

I  
CS,.1CS1 	

_ 
CSk 

is a chain equivalence. The projection of the bottom row onto 0 - CSk -p 0 is a chain 
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equivalence, and therefore, the mapping cone is contractible if and only if the mapping cone 

CSk 	CS'CSk+1 

If 
CSk 

is contractible. But this is just the condition that CSk+1 -4  CSk be a Poincaré complex. 	0 

Lemma 13.17 The above notion of cobordism is an equivalence relation on the set of short 

odd nilcomplexes defined above. 

Proof. As noted before, symmetry is obvious. Transitivity follows directly from (13.16). For 

reflexivity, let 

a = (CSk+l,CSk,d,O,P ' , 51/4) 
be a short odd nilcomplex. Then by lemma 13.16, there exists a cobordism (/3; a, a'), where 

a' = (CSk+ 1 , CSk ,O*,d*,,5I)). 

Then there exists a cobordism (0'; a', a), so the union (0  U  01 ; a, a) is a highly connected 

cobordism of a with itself. 	
0 

Then finally the UNi1 groups can be defined: 

Definition 13.18 UNil2k+3(7L[H]; Z[G1], Z[G21) is the group of highly connected cobordism 

classes of (2k + 1)-dimensional short odd nilcomplexes. 

Proof that this is a group. (We use additive notation.) 

The sum (C,) + (C, ,  V),) = (C C', 	'). 

The 0 is given by the complex 0 - 0. 

—(C, çb) = (C, —cl'). Then associativity is clear, 0 is a zero, and (C, ) + (C, —') = 0 by the 

definition of the equivalence relation. 	
0 
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Chapter 14 

The Odd-dimensional UN11 
Obstruction 

14.1 Surgery obstruction 

As mentioned before, the surgery obstruction will be defined here not as by Wall in terms of a 

Heegaard-type splitting, but rather as by Ranicki, in terms of a presentation. In this chapter, 

we assume that f: M -* X 21  is highly connected, and that k > 2. 

Definition 14.1 Let f : M -* X 21  be a highly connected degree 1 normal map. Then a 

presentation of f is a normal bordism F: N - X with f' : - X where F and f' are highly 
connected. 

OD 
M 2 c+l N M' 

Presentations of surgery obstructions can always be constructed in a straightforward manner: 

Construction 14.2 Let Kk(M) be generated by ci, . .. , er as a Z[H] -module. Let these be 
represented by framed disjoint embeddings O : Sk x -p M. Let N be the trace of surgeries 
on these O, with map F: N -p X. Then F: N - X is a presentation of f : M - X. 

A presentation determines a short odd complex (and thence a formation) in the following 

way: 

Definition 14.3 

Let Ck+1 = Kk+1(N, M)* Kk+l(N, M'), Ck = Kk+l(N)* Kk+l(N, ON), d = p where 
Pi : Kk+1(N) -4 Kk+l(N, M) is the usual projection map, 00  is the composite Kk+l(N) -p 
Kk+l(N, M') - Kk+l(N, M)* ,  and 01  : Kk+l(N) - K k+1 (N)* is a splitting of the (usually 

singular) quadratic intersection form. It is Poincaré since the sequence 

0 	- Kk+l(N) 	) Kk+l(N, M)  Kk+l(N, M') - Kk+1(N, ON) -- 0 

is exact. 
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The surgery obstruction is then defined to be (f) = (C,i,b) E L2k+l(7Z[H]). 

Remark 14.4 Given two different sets of generators e2  and f2, disjoint embeddings 02, q5  

S< x DIc  can be found representing e2  and fi  respectively. Then the presentations N1 and 

N2 from these generators can both be embedded inside the presentation N which is obtained 

from surgery on the generators e2  U f2 and this induces a homotopy equivalence of short odd 

complexes (see example 6.9, Ranicki([10}). This proof will not generalize when we consider 

splitting problems. 

From the short odd complex, the result of surgery can be computed (which is otherwise 

quite hard): 

Lemma 14.5 Let f : M —, X be a degree 1 normal map with a(f) = (C,'). Algebraic 

surgery data (j, Dk+l.ö) consists of an f.g. free module Dk+1 together with map j : Ck+1 —p  

Dk+j and o :—' 

The result of surgery on the data, is the short odd complex (C") where C 1  = Ck+1 

Dk+l, C = C e Dk+1, d' 
= ( 	+ ko), 	= (° ?) 	= ( 

ii).  

If (j : C - D, (5o, v')) is a Poincaré cobordism, then the result of surgery is a contractible 

chain complex, and D is the trace of a cobordism of f with a homotopy equivalence. 

Moreover, all algebraic surgeries on (C, ) are realized by geometric surgeries. (See Prop. 

12.36 (Ranicki [ 111).) 

14.2 Splitting problem 

Assume that Y = y2k+2 (k > 2) and that f is k-connected. In order to define the splitting 

obstruction, we shall first construct a presentation of our splitting problem. We shall then use 

the associated UNi1 objects to define a formation. 

Definition 14.6 Given a splitting problem g: W - Y22  cut along f: M - X 2'' such 

that 0(r(f) = 0, a presentation is a cobordism T, with 82' = W U W', a map h : T Y x I 

transverse to X so that N = h— 1  (X x I) is a (k +1)-connected cobordism of M with a manifold 

M', and such that (r(h)) = 0. (See figure (14.1).) 

Figure 14.1: A presentation 

- 

Convention 14.7 The above notation shall be fixed for the remainder of this section - fur-

thermore, we shall neglect to mention the maps g and h, taking their existence as read. 
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Proposition 14.8 Any odd-dimensional splitting problem g: W - Y has a presentation. 

Proof. Consider the map h : W x I - Y x I. This gives a (2k + 2)-dimensional splitting 

problem (with boundary), so handle exchanges can be performed on the interior of M x I 
giving a (k + 1)-connected map to X x I as required. 

In fact this is a presentation with the same splitting problem g: W - Y on both ends. El 

Proposition 14.9 Let g : W 	y2k+2 be an odd-dimensional splitting problem, and h 
W x I -p Y x I be a presentation of it. Then let: 

• CSk+l = Splk+l(N, MI) 
; 

• CSk = Spl k+l  (N, ON); 

• d= ir: Splk+l(N,M') - Splk+l(N,ON); 

• U ir o i : Splk+l(N, ON) -f  Splk+l (N) -4 Spl 1 (N, M') 

Then pidO = 81,bQ + JO* , along with a similar expression in '/Jp is given by the split quadratic 
UNiI form on W. Then x(g; h) = (CSk+l, CSk, d, O, 8 4'p, ö)Q) E UNil2k+3. Note that all 

modules are stably free, and may be stabilized to be free; the reason for the stable freedom is 

the following: Splk+l (N) E UNilf ree since we assume that (r(h)) = 0. Thus Splk+l (N)* 

CSk e 91ir 1 , and since (r(g)) = 0, CSk+l E UNilfe. The map 

CSk = Splk +l (N) 	d> 
CSk+1 = Sjl, 1  (N, M) 

CSk+l = Splk+l (N,M') 	)  
d 	

CSk = Splk +l(N,OM) 

is a chain equivalence, since the mapping cone is just the Mayer Vietoris sequence. 

This apparently depends upon the choice of presentation. However, it follows from the 

following 2 results that it is independent of choice of presentation: 

Lemma 14.10 Let (h;g,g') : W x I - Y x I be a presentation of the splitting problem 
g: W - Y. Then this can also be regarded as a presentation of g': W - Y. Then (g; h) = 
x(g'; h) e UNil2k +3. 

Proof. The proof of this is the promised geometrical foundation of lemma 13.16. Consider again 

the diagram: 

CSk = Splk+l(N) 	d 	
= Splk+l(N, M) 

ot 	
__ 	

10 
__ _ 

CSk+l = Splk+l(N,M') 	-i CSk = Spl k+l (N,OM) 

As seen previously, the presentation determines a short odd nilcomplex for g, by taking the 

short odd nilcomplex to be the bottom row. But it also determines a short odd complex for 

g', which is no more than the right hand column. So if x(g; h) = (CSk+l, CSk, d, 0, 5i4'p, 8/)Q ) 
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then x(g'; h) = (CS'', CSk, O, d, 5p, 6'Q). The cobordism of these two complexes is given 

in lemma 13.16. 

In fact we can say more: the cobordism constructed is the cobordism C(M) -p C(N) - 

C(M'), where in this case C(M) is constructed as the mapping cone (C(N, M) C(N, M') - 

C(N, ON)), which is homotopy equivalent to C(N) precisely because the mapping cone of the 

above map is contractible. 

Lemma 14.11 Suppose that (h; g, g') is a presentation of g, and (h'; g', g") is a presentation 

of g'. Then (h U h'; g, g") is a presentation of g' and is such that x(g; h) = x(g; h'). 

Figure 14.2: A union of presentations 

Proof. Consider the following commutative diagram: 

	

Spl k+l (N", M") 	- Spl k+l (N" )  M U M') 

	

IN I  _
SpI k+l(, N') 	- Spl k+l(N, M U N') 

____ 	I 

	

Splk+l (N, M') 	-'.- Spl k+l (N", MU M") 

This shows 2 maps of nilcomplexes - the second is an isomorphism, since both maps are 

isomorphisms by excision. The first is a homotopy equivalence, since the mapping cone 

SpI k+l(N", M") 	- Spl k+l (N", M U M') w Splk+l(N , N') 	- Spl k+l(N , Mu N') 

is just a Mayer-Vietoris sequence, and is therefore contractible. 	 0 

It follows immediately from these results that the UNil obstruction is independent of the 

choice of presentation: 

Lemma 14.12 Let (h; g, g') and (h'; g, g") both be presentations of g. Then x(g; h) = x(g; h'). 

Hence an obstruction (g) E UNil2k+3 is defined. 

Proof. Form the union h" = h Ug  h'. Then by the previous 2 results, ,1 (g; h) = x(g'; h) = 

x(g'; h") = x(g"; h") = x(g"; h') = x(g; h'). 
	 EM 

Theorem 14.13 Let k > 2 and g : W - Y 2 ' 2  be a homotopy equivalence. There are 

2 obstructions to g being splittable: (r(g)) and (g) e UNil2k+3(Z[H]; 7LG 1 ], 7L[G2 ]). If 

(r(g)) = 0 and g is splittable then (g) = 0. 
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Proof. The K-theory has already been covered in chapter 5. From above, (g) is well-defined, 
and independent of choice of presentation. 

An h-cobordism with a split homotopy equivalence can be made highly connected and then 

gives a presentation, which then gives a null-cobordism, so if g is h-cobordant to a split homotopy 

equivalence then x() = 0. 
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Chapter 15 

Odd-dimensional Nilpotent 
Normal Cobordism 

Given a splitting problem, an obstruction x() E UNil2k+3(Z[H]; Z[G1], Z[G21) has been defined. 

Furthermore, short odd nilcomplexes have been identified with Poincaré nilcomplexes, and the 

surgery obstruction associated to the algebraic nilpotent normal cobordism has been calcu-

lated. In this chapter, it is shown that this defines a map from UNil2k+3(Z[H]; Z[G 1 ], Z[G21) -+ 

L2k+3(Z[G1) such that if g: W --4Y  is a highly connected 2k + 1-dimensional splitting problem 

such that (r(g)) = 0, there is a cobordism with a split homotopy equivalence with surgery 

obstruction a(x(g)). 
The nilpotent normal cobordism has already been described algebraically when the dimen- 

sion of X is odd; the purpose of this chapter is to show how to realize this geometrically. It 

has been shown that the quadratic kernel of f is the chain complex P Q where P and Q 

are projective chain complexes, and if we assume that (T(g)) = 0, then [F] = 0, so that 

[Pk+1] = [Pk]. 

15.1 Bordisms of f: M —p X 

A critical part of the construction of the even-dimensional nilpotent normal cobordism was 

the construction of the spaces Cp and CQ which were cobordisms with homotopy equivalences 

fp : Mp -4X and f : MQ -4 X with the same homology kernels as Wr and W1. 

Before constructing the odd-dimensional nilpotent normal cobordism, it is useful to under-

stand how the pairs (Wr, M) and (W1, M) determine, when [P] = 0, bordisms of f : M -, X 

to a homotopy equivalence. The crucial result is the following: 

Proposition 15.1 Suppose that [P] = 0. Then f,. : Wr 	Yr is bordant (by finitely many 

surgeries on the interior) to a map f : V,. -4 Yr , where Vr CQ UMQ  Ur, fIc 0  : CQ - X is 

the trace of surgeries on M, with f, I 	: Mp - X a homotopy equivalence and f, : Ur 4 Yr 

a homotopy equivalence. 

The proof will proceed by making Wr  highly connected, and then using the proof of the 
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-,7r theorem. The following lemma is therefore useful, computing the result algebraically of 

making Wr  highly connected by surgeries on the interior. 

Lemma 15.2 Suppose that (P Q - P, (0,0)) is a Poincaré pair of free 7L[H]-modules, 
where Pr  = 0 if r V {k, k + l}. Then surgeries can be performed on the interior to give a highly 

connected Poincaré pair (P Q -f P', (ö&, 0)) where P = 0 for r 54 k + 1. 

Proof. The Thom complex of the pair gives the quadratic complex 

Pk 	 pk+l®pkQk 	 >pk+1Qk+1 

( 	
0 00 
0 0 I e,00,i 9 	 1 

Pk+1Qk+1 	 Pk+1PkgQk 

	

(-l)k+1 0 	 (dp (_1)k o) 
( 	

dp 	0 
0 	d01 

and projection onto SQ is a homotopy equivalence with the quadratic complex (SQ, 0) ,where 
SQ is the suspended chain complex SQr+i = Qr. 

Since the algebraic mapping cone 

dfl 

pk 	(Q 	 (8d0 

	

k+1 	 ) 
Qk+1 	 - Qk 

is a short exact sequence of projective modules, it splits, and so we can find maps (a ) 

pk+1 Qk+1 - Qk pk and () : Qk : pk+1 eQk+1 such that ( 
	)(°' ) ( ). 

Hence perform surgery on SQ corresponding to surgery on the interior of the pair, to make 

SQ highly connected by taking the following surgery data: 

SQk+2 = Qk+1 >- SQ+i = Qk 1  0 

Pk 

The result of the surgery is the quadratic complex: 

pk  ED 	> Qk+1 

I (000 
11000 
'Jr \0 10 

Qk+1 d QPek 

13) 0 

The following is a chain equivalence: 

dQ 
13  
0 ) (D 	 (D  Qk+1 --- _.QkPkPk 

j(yd,0 

4' 	4'0 0 1 

0 	3pk+lp 

inducing the quadratic structure on the target given by o 
(d°p ) : 	

pk 	pk+1 
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Then the resulting pair, given by the Poiricaré thickening is: 

S 0 d'\

Pk+1 p" 
0
!pk+1  ED  pk  

(i?) 

Pk+1 pk 

The quadratic structure on the pair is (0, ') E Qk+2(j) where j is the map in the pair, and 

where VY is the structure: 

Pk+lP 	pk+Ipk 

(

10 	(0d) °'1 	0 0 

Pk+l Pk 	pk+lepk 
(0 d,) 

dp 0 

(As a check, this is easily seen to be equivalent to (P @ Q, ') where i& is the usual quadratic 

structure). U 

Proof of 15.1. Suppose that P = C(Wr ) 
given by the presentation is such that [P] = 0. Then 

[Pk+1] = [Pkl, so letting M be any module so that [M] = —[Pk], P is homotopy equivalent 

to the free 7L[H]-module chain complex Pk+1 M - Pk M with differential given by (?)• 

Similarly Q 
can be stabilized, and the above analysis then gives surgery data for performing 

surgery on Wr  to give Vr  which is highly connected. 

Now apply the ir - ir theorem to the preceding example. Since V,. is (2k + 2)-dimensional, 

M is (2k + 1)-dimensional and everything is highly connected, Kk+1(Vr, M) is the only relative 

homology kernel and is free; therefore choose a basis e. The proof of the ir - ir theorem then 

implies that these e1  can be represented by disjoint framed embeddings O : (D x D'1, Sk x 

_* (Vr , M) which are null-homotopic in (Yr , X); moreover, the result of surgery on these 

embeddings on M gives a homotopy equivalence Mp - X, and the result of removing the 

embeddings from Vr  is a homotopy equivalence f, : Yr . In other words, letting Cp be the 

trace of the surgeries, V,. = Cp U, Ur  where Ur  Y,., MP X. 

15.2 Construction of the nilpotent normal cobordism 

The construction of the nilpotent normal cobordism when M is odd-dimensional is somewhat 

less direct than when M is even-dimensional. 

Proposition 15.3 Let g be a splitting problem such that (r(g)) = 0. Then there exists 

a cobordism with a split homotopy equivalence, called the 'nilpotent normal cobordism', with 

surgery obstruction cl(g). 

Proof. Since (r(g)) = 0, [P] = [Q] = 0. Then by proposition 15.1, there exist cobordisms Cp 

and CQ of M with Mp and MQ homotopy equivalences, where Cp and CQ sit inside Vt and Vr  

respectively. 
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Then perform the same construction as Cappell with these Cp and CQ. The result is shown 

in figure 15.1. In that figure, the dashed lines signal that the restriction of g to those subspaces 

is a homotopy equivalence. 

Figure 15.1: The first stage of the nilpotent normal construction 

Cp UM CQ 

W2UP W1UMCQ 

............... 	 f .........  
W2x1 	 WxI 

Since it is not true that the kernel chain complex C(CQ UM W1) is contractible, the boundary 

of the above is not a homotopy equivalence. However, the boundary can be decomposed into 

3 relboundary a surgery problems: h1 : (W2 UM Cp, MP) -* (1'2, X), h2 : (Cp UM CQ) -p 

(X x I,X x {O, 1}), h3: (W1 UM CQ,MQ) - (Y1, X) where the boundaries of all 3 problems 

are homotopy equivalences. 

All of these surgery problems are soluble: Consider h 1 : 

By the above, h1 : can be extended to h' : (W2 UM V) - (1' 2  UX  1', X). Since h'1  is 
formed by joining a homotopy equivalence U, - Y along a homotopy equivalence Mp - X, 
o(h i ) = o(h). But by the construction of V, h'1  is just formed by joining W2 -+Y2  to V, -4 

and so is formed by joining W2 - Y2 to W,  Y1 and performing surgeries on the interior. Since 

W2 U W, - Y2 U Yj is a homotopy equivalence, it follows that o(h) = 0 and hence o(hi) = 0. 

Similarly for h2 and h3. 

Hence surgery can be performed on each of these maps to homotopy equivalences. Join 

the trace of the handle exchanges onto the boundary, and hence obtain a cobordism with a 

split homotopy equivalence as claimed. (See figure 15.2; here both dashed and dotted lines are 

homotopy equivalences.) 

Figure 15.2: The final stage of the nilpotent normal construction 

W2 x1 	 W1x1 
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15.3 Computation of the obstruction of the nilpotent nor-

mal cob ordism 

It remains to compute the surgery obstruction of the nilpotent normal cobordism. The algebraic 

effect has already been computed on the chain complex level, so this computation effectively 

verifies that the quadratic Poincaré pairs defined from the splitting obstruction are correct. 

Proposition 15.4 Suppose that (g) = (Spl k+j ,Spl k ,d,O, 	is the short odd nil- 

complex coming from the presentation ((V, N); (W, M), (W'M')). The surgery obstruction of 

the nilpotent normal cobordism &(x) is the short odd complex: 

Z[G] ® (pk Qk) 	 - 7L[G] ® (pk+1 e  Qk+1) 

(p20Q Op 
\J 	

5p0 ) I , 9  P19P J 	 dpOp 5I °  

Z[G] ® (Pk+1 Qk+1) 	 Z[G] ® (Pk Qk) 
(dp 

o ) 0 d 

Proof. The obstruction of the nilpotent normal cobordism will not be computed directly, since 

its construction was slightly involved. The proposition is immediate from proposition 9.7 af- 

ter the next lemma which computes the surgery obstruction of the infinite nilpotent normal 

cobordism. 	
0 

Remark 15.5 The nilpotent normal cobordism construction applied to the Poincaré nilcom-

plex determined by the short odd nilcomplex gives the short odd complex: 

7L[G] ® (pk & Qk) 	 -- 7L[G] ® (pk+1 Qk+1) 

(p2 8q O p  (5t1)p 0 \ 	 1 0 0 

OQ piOp) 	 " 0 5) 	 'x e;, o 

Z [G] ® (Pk+1 e Qk+1) 	 - Z[G] ® (Pk Qk) 
(dp 0 

0 d 

which is an equivalent quadratic structure on the same complex. 

Lemma 15.6 With hypotheses as above, define T to be the non-compact Poincaré surgery 

problem given by glueing copies of W,. and W1 where Cp and CQ as in proposition 9.7. Then 

the surgery obstruction, o(T) = a((g)) E Lk+3(7L[G]). 

Proof. Let ((V, N); (W, M), (W'M')) be the presentation used to give the surgery obstruction. 

Construct a presentation of T by taking V x I and glueing on copies of V x I and Vr  X I. 

Denote the resulting space T (with an implicit map to Y U ') which has two boundary 

components: one is TM; denote the other by TM'. 

Let the short odd complex of TM given by this presentation be the short odd complex of 
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Z[G]-modules: 

	

Dk 	> X0  N 

	

Dk+1 	- Dk 

• Now recall the definition of the surgery obstruction. Dk = Kk+2(TN) *  = Z[G] ® (Pk Qk) 
(as before by the Mayer-Vietoris sequence). Similarly Dk+1 = Kk+2(TN, TM)* = 
Qk+ 1). 

5 is the map induced by the natural map Kk+2(TN,TM)* - Kk+2(TN)* which is therefore 

( ). Xo : Dk+1 is the composition of the maps: Kk+2(TN) Kk+2(TN,TM) 
Kk+2(TN,TM). If the map Splk+l (N) -4 Splk+l (N,M') is (fp,fQ), then the first of these 
maps is fp f. Let A : Kk+l(N,M) x Kk+l(N,M') be the bilinear form inducing the 
isomorphism Kk+l(N, M') Kk+l(N, M)*.  Then the same arguments as in the straightforward 

even-dimensional case imply that the form 4 : Kk+2(TN, TM) x  Kk+2(TN, TM') is given by 
4((i - p)x, y)) = A'(x, y), and hence that )tT((1 - p)x, (1 - p)y) = L((1 - p)x, y). Therefore 
(1_p)*XO(1 _ p)* ( POQ 

p2°;P). 
Similarly, by 9.9(1 — p)i(1 —p) = ( 7' Q). Hence the 

chain map (1 - p) induces an isomorphism between the short odd nilcomplex associated to the 

presentation and that claimed. 0 
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Chapter 16 

Concluding Remarks 

We have now established the theorem which was the stated goal of this thesis: 

Theorem 16.1 Let k> 2 and g: W - Y 22  be a splitting problem. Then g is splittable if 

and only if(r(g)) = 0 and x() = 0 E UNil2k+3(7ZV-4 Z[Gi],7L[G2]). 

Proof. It was seen in chapter 14 that (g) is an h-cobordism invariant. Therefore if g is 

splittable, a(x(g)) = 0. Suppose that x() = 0. It was seen in chapter 12 that a is a group 

homomorphism, so a((g)) = 0; hence the nilpotent normal cobordism constructed above has 

0 surgery obstruction, and therefore is bordant rel a to a homotopy equivalence, which is then 

an h-cobordism of W with g' : W' -* Y where g' is split. 0 

We would like to show two things more: 

. That every element of UNjl2k+3 is realized as the splitting obstruction of some splitting 

problem; 

. That a is a split monomorphism. 

There is an obvious candidate for a splitting of a; namely let /3: L2k+3(7L[G]) - UNil2k +3 be 

defined in the following way: Realize y E L2k+3 (ZEGI) as the surgery obstruction of a cobordism 

(h; 1, g) : (V; Y, W) -p (Y x I; Y, Y) with çb(r(h)) = 0, and where g is a homotopy equivalence, 

as is always possible by the realization theorem of Wall. Define 0(y) = x(g). It remains to 

prove that (a(x)) = x. 
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