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Abstract

This research studies how to e�ciently predict optimal active constraints of an inequal-
ity constrained optimization problem, in the context of Interior Point Methods (ipms).
We propose a framework based on shifting/perturbing the inequality constraints of the
problem.

Despite being a class of powerful tools for solving Linear Programming (lp) prob-
lems, ipms are well-known to encounter di�culties with active-set prediction due essen-
tially to their construction. When applied to an inequality constrained optimization
problem, ipms generate iterates that belong to the interior of the set determined by
the constraints, thus avoiding/ignoring the combinatorial aspect of the solution. This
comes at the cost of di�culty in predicting the optimal active constraints that would
enable termination, as well as increasing ill-conditioning of the solution process. We
show that, existing techniques for active-set prediction, however, su↵er from di�culties
in making an accurate prediction at the early stage of the iterative process of ipms;
when these techniques are ready to yield an accurate prediction towards the end of
a run, as the iterates approach the solution set, the ipms have to solve increasingly
ill-conditioned and hence di�cult, subproblems.

To address this challenging question, we propose the use of controlled perturbations.
Namely, in the context of lp problems, we consider perturbing the inequality constraints
(by a small amount) so as to enlarge the feasible set. We show that if the perturbations
are chosen judiciously, the solution of the original problem lies on or close to the central
path of the perturbed problem. We solve the resulting perturbed problem(s) using a
path-following ipm while predicting on the way the active set of the original lp problem;
we find that our approach is able to accurately predict the optimal active set of the
original problem before the duality gap for the perturbed problem gets too small.
Furthermore, depending on problem conditioning, this prediction can happen sooner
than predicting the active set for the perturbed problem or for the original one if no
perturbations are used. Proof-of-concept algorithms are presented and encouraging
preliminary numerical experience is also reported when comparing activity prediction
for the perturbed and unperturbed problem formulations.

We also extend the idea of using controlled perturbations to enhance the capabilities
of optimal active-set prediction for ipms for convex Quadratic Programming (qp) prob-
lems. qp problems share many properties of lp, and based on these properties, some
results require more care; furthermore, encouraging preliminary numerical experience
is also presented for the qp case.
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1
Introduction and Motivation

In this chapter, we present a brief introduction to Linear Programming (lp) and

Quadratic Programming (qp), as well as to some of the most important state-of-art

algorithms for solving this class of problems. We also present a comprehensive overview

of existing active-set prediction techniques. Next, we state our motivation and give an

outline of this thesis’ contents.

1.1 Linear Programming

Optimisation is “built into nature” [62], as described by Leonhard Euler (1744):

Nothing in the world takes place without optimisation, and there is no doubt

that all aspects of the world that have a rational basis can be explained by

optimisation methods.

From the origin of our species, human beings desire to make e↵ective decisions. In-

vestors attempt to gain a good profit while avoiding high risk. Engineers intend to

design more e�cient and less expensive systems. Manufacturers aim to maximally

utilise their production lines. Pharmacists strive to find the best medicine formulation

to battle disease. Car drivers seek to find the shortest routine to save time and fuel.

Nature also optimises. Physical systems tend to a position with minimal potential

energy. Lights travel through the path that requires least travel time. Optimisation

is a procedure that involves describing such problems mathematically and finding the

‘best’ solution.

Linear Programming (lp) is regarded as one of the most widely used and well-

established optimisation models for real world problems. It was initially developed

for the needs to solve complex military planning problems in World War II. The de-

velopment in this area blossomed after the war, due partly to the realisation of its

valuable uses in industry. Applications of lp models arise in many di↵erent scenarios

such as management, investment, transportation, scheduling, telecommunication, etc.

The world, however, is full of complex problems that are not so simple as expressed by

the linear relations that underlie the lp model. More sophisticated nonlinear models

1



Chapter 1. Introduction and Motivation 2

are studied to better reflect the features of such problems. This does not cast a shadow

over lp models as many nonlinear relations can be approximated by a set of linear

equalities/inequalities. For descriptions of the history of lp, see [27, Chpater 2] and

Notes on polyhedra, linear inequalities, and linear programming in [118].

lp is an optimisation problem for which we intend to minimise (or maximise) an

objective function consisting of a linear combination of decision variables, under a set

of linear constraints, both equalities and inequalities. A particular formulation of lp

can be expressed as

min
x2Rn

cTx subject to Ax = b, x � 0, (1.1)

where A 2 Rm⇥n, b 2 Rm, and c 2 Rn. Geometrically, the feasible region Px =

{x 2 Rn : Ax = b, x � 0} is a polyhedron which is the intersection of linear constraints

in the space of the variables. To solve an lp problem is to find a point in Px that

minimises or maximises the objective function cTx. The optimal value of the objective

function can generally be achieved at a vertex of the polyhedron Px [105].

If we refer to (1.1) as the primal problem, there always exists an associated dual

problem, which has the same optimal objective value as (1.1) but interprets the same

set of data from a di↵erent point of view. The dual problem of (1.1) can be expressed

as

max
(y,s)2Rm⇥n

bT y subject to AT y + s = c, y free, s � 0. (1.2)

The most famous and powerful classes of methods to solve lp problems are the

simplex method(s) and interior point methods, which are introduced in the following

two sections.

1.2 Simplex method

The simplex method for linear programming, introduced by George B. Dantzig [27] in

the late 1940s, is regarded as one of the major breakthrough in optimisation of the

20th century. For several decades, this was the main practical method to solve lp [54].

The simplex method searches along the boundary of the polyhedron Px defined by

the constraints. It moves from one vertex to an adjacent one with a better value of

the objective function, thus exploring the combinatorial structure of the problem; see

Figure 1.1 for an illustration.

A feasible vertex, namely a vertex of the feasible polyhedron Px, is also called a

basic feasible point. A basic feasible point becomes a vertex solution if the optimal

value is obtained at the given point. Due to the way in which the simplex method

operates, it is also considered as an active-set method [39].

Although in the worst case the possible number of steps of the simplex method

to find the solution may depend exponentially on the problem dimensions (Klee &

Minty [72]), practical implementations are e�cient and reliable [65]. It has been im-

2



Chapter 1. Introduction and Motivation 3

Figure 1.1: An illustration of the simplex method

plemented in modern optimisation solvers such as cplex [68]. Other simplex-method-

based open source software includes lp solve [14], glpk [2], clp [1], etc.

1.3 Interior point methods

Having its origin with Dikin’s work [31] and Khachiyan’s [71] and then refined by Kar-

markar [70], interior point methods (ipms) are a class of very e�cient tools to solve

lp problems, especially for problems whose dimensions are very large. Contrary to the

simplex method, ipms reach an optimal solution by travelling through the relative inte-

rior of the feasible polyhedron Px without visiting the possibly-many feasible vertices,

approximately following the so-called central path; see Figure 1.2 for an illustration.

Central path

Figure 1.2: An illustration of a primal-dual path-following ipm

Following the publication of Karmarkar’s method, Gill et al. [45] revealed the equiv-

alence between Karmarkar’s method and the projected Newton barrier method using

logarithmic barrier functions [37]. The logarithmic barrier function was originally pro-

posed by Frisch [43] in 1955 and extensively studied by Fiacco and McCormick [37] for

3



Chapter 1. Introduction and Motivation 4

nonlinear programming. The promising implementation in [45] started a new era for

ipms, which led to the development of the path-following algorithms.

In general, path-following ipms ‘remove’ the inequality constraints by appending

them to the objective with the help of the logarithmic barrier function; then they

approximately solve the resulting subproblem. When applying the method to (1.1),

we replace x � 0 with the logarithmic barrier function �µ
P

n

j=1 log xj , and have the

barrier subproblem

min
x2Rn

cTx� µ
nX

j=1

log x
j

subject to Ax = b, (1.3)

where the positive scalar µ is known as the barrier parameter. This parameter controls

the relation between the barrier term and the original lp objective. A large value of µ

corresponds to preventing the points x from approaching the boundaries of the feasible

region Px of (1.1) (as the barrier term blows up at a boundary); a smaller value of µ

reduces the influence of the barrier term and more attention is paid to the original lp

objective.

Under certain conditions (see Theorem 2.6), problem (1.3) has a unique solution

x(µ), for every µ > 0 [45]. If we continuously decrease the value of µ from a large value

to zero, the corresponding solutions x(µ) will form a path C
P

, which moves towards an

optimal solution (the analytic centre of the optimal solution set) of (1.1). This path is

known as the central path. The central path C
P

of (1.1) is known as the primal central

path, since it only concerns the primal problem. We can also derive a similar central

path for the dual problem (1.2), which converges to the analytic centre of the dual

solution set. The variant of ipms that considers the primal-dual central path is called the

primal-dual path-following ipms, which is considered as the most successful class of ipms;

see Section 2.2 for in-depth descriptions of this class of methods, including a general

algorithmic framework (Algorithm 2.1). There exist many theoretical and practical

algorithms that fit exactly or approximately into the framework of the primal-dual

path-following ipms such as short step [75, 100], long step [76], predictor-corrector [99],

infeasible [74], and Mehrotra predictor-corrector [93, 83] ipms.

Newton’s method [30] is used to compute an approximate solution of the barrier

subproblem (1.3) in its primal/dual or primal-dual form. One or more Newton steps are

computed for a fixed value of the barrier parameter µ. This procedure is repeated for

a sequence of decreasing values of µ, until µ is small enough to ensure proximity to the

solution of the original lp problem. During each iteration, the Newton search direction

is defined by a certain linear system at the current iterate, some control parameters

and µ. Solving such a system is the main computational cost of each ipm iteration; see

Section 2.2 for the formulation of the Newton direction and how to calculate it.

The coe�cient matrix of the linear system mentioned above becomes more and

more ill-conditioned as the iterates approach the solution set. This may lead to unac-

ceptable di�culty in meeting convergence criteria and undesirably large residuals. The

4



Chapter 1. Introduction and Motivation 5

e↵ects of ill-conditioning for ipms, however, can be relatively benign, mainly due to

the development of modern linear algebra techniques [132, 131, 133]. Another way to

avoid ill-conditioning is to terminate the interior point iterative process early on and

crossover to simplex-like methods, before µ gets too small or the iterates get too close

to the boundaries; see the corresponding descriptions of ‘crossover’ in Section 1.4.

Computational complexity of linear programming. Computational complexity

has played an important role in the history of linear programming, leading to the

research of algorithms with better — namely polynomial — complexity than the simplex

method and thus the birth of interior point methods. The computational complexity

of a problem instance evaluates the total amount of computational cost (running time,

memory) required to solve the problem instance “in some measure of the problem

data” [135]. There are di↵erent models of analysing computational complexity, such as

real-number model [20] and rational-number (Turing) model, with the latter being most

commonly used in interior-point methods literature; see [135, Chapter 3] for details

of di↵erent computational models. In the rational-number model, the data (A, b, c)

of (1.1) is assumed to be rational and thus can be stored exactly in a computer. Let

L denote the total length of the data string required to store all problem data. Then

the complexity results are often an expression of L and n, where n is referred to as the

problem dimension, namely the number of variables for lp1. We restrict our discussion

in the following paragraphs to the rational-number model.

The worst-case complexity measures the ‘worst-case behaviour’ of a given algorithm,

namely it gives an upper bound on the computational cost required by the algorithm

to solve any problem instance from a chosen class [135]. Thus an algorithm is said to

have polynomial worst-case complexity if the computational complexity of solving any

problem instance from a chosen class is bounded above by a polynomial in data string

storing all data and the problem dimension, namely (L, n).

The ellipsoid algorithm developed by Khachiyan [71] was the first polynomial al-

gorithm for linear programming, which requires at most O(n2L) iterations to find an

optimal solution and at most O(n4L) arithmetic operations. This worst-case bound,

however, is achieved on most problems and in practice its performance is generally

worse than the simplex method [135, Page 57]. Karmarkar [70] proposed a polynomial

algorithm with an iteration bound of O(nL) and lowered the overall worst-case com-

putational complexity to O(n3.5L) arithmetic operations. Renegar [112] then improved

this worst-case iteration bound to O(
p
nL), which remains the best known worst-case

iteration complexity bound for ipms for lp. After that, Anstreicher [6] lowered the

overall worst-case complexity to O( n

3

lnn

L) arithmetic operations. Please refer to [135,

Chapter 3] or [6] for details of the complexity results for ipms for lp.

1Some complexity results also include m, the number of rows of A. If we assume A has full row
rank and so m  n, the complexity bounds always hold if we replace m with n [135, Chapter 3].
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Implementation and software. The most successful commercial or public IPM

codes are generally based on the Mehrotra Predictor-Corrector (mpc) algorithm [135,

Chapter 10], which has been shown numerically to be much faster than other ipm

approaches especially for large-scale problems, although no global convergence or poly-

nomial complexity results are known for the variant implemented in state-of-art codes.

Popular ipm implementations include the barrier solver of CPLEX (CPLEX Optimiza-

tion Inc.), MOSEK (Erling D. Andersen et al.), HOPDM (Gondzio et al.), PCx

(Czyzyk et al.), LOQO (Vanderbei et al.), LIPSOL (Zhang et al.), etc.

Large-scale optimisation. Interior point methods are in general more e�cient than

the simplex method when solving large-scale problems [18, 54, 82, 83, 93]. Successful

application of ipms to solving large-scale problems has occurred in di↵erent scenar-

ios, for instance, Gondzio and Grothey [57] solved a nonlinear portfolio optimisation

problem with 109 variables and Koh et al. [73] used a variant of ipms to solve a large

machine learning problem with millions of features and examples in under an hour on

a pc. Other applications of ipms to large-scale problems can also be found in [97].

Surveys. For a history of interior point methods, please refer to the survey by Potra

and Wright [111] and the more recent one by Gondzio [54]. For more technical details on

ipms for linear programming, see Wright’s comprehensive textbook [135] and Nocedal

and Wright [105, Chapter 14]. A description of ipms for general convex optimization

problems can be found in [21, Chapter 11] and in Renegar’s dedicated monograph [113].

1.4 Active-set prediction

Consider an inequality-constrained optimisation problem, which minimises (or max-

imises) the objective function over the feasible region composed of points satisfying

the constraints. An active constraint is an inequality constraint that holds as equal-

ity at a feasible point. Optimal active-set prediction — namely, identifying the active

inequality constraints at the solution of a constrained optimisation problem — plays

an important role in the optimisation process by removing the di�cult combinatorial

aspect of the problem and reducing it to an equality-constrained one that is in general

easier to solve [35]. Consider lp problems as an example: if we know the correct active

constraints at the optimal solution, we are able to locate the optimal vertex directly by

solving a simple linear system of equations without having to consider the combinato-

rially large number of vertices of the polyhedron; see an illustration in Figure 1.3. A

strongly active constraint is an active constraint whose corresponding Lagrange multi-

plier2 is strictly positive; for details, see [105, Definition 12.8]. The set of all strongly

active constraints is called the strongly active set. It is straightforward to see that the

strongly active set is a subset of the active set.

2For an inequality constraint xi � 0 in (1.1), its Lagrange multiplier is the dual variable si in (1.2),
i = 1, . . . , n; for the definition of Lagrange multiplier, please refer to [105, Chapter 12].
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optimal

feasible region

active

inactive
inactive

Figure 1.3: An illustration of active constraints in the context of linear programming

Active-set prediction has been part of optimisation techniques and literature for

decades [39] and it usually takes place while running an iterative algorithm. Existing

active-set prediction techniques have been developed mostly in the context of Nonlinear

Programming (nlp), while some of them have been proposed specifically for ipms.

Active-set prediction for nlp. Fletcher [38] proposed an active-set algorithm for

solving quadratic programming problem, an essential part of which concerns the strat-

egy of adding and/or deleting predicted active constraints. In this approach, no more

than one constraint should be exchanged from one iteration to the next. On the other

hand, Goldfarb [49] presented a method where more than one constraint could be

deleted from the predicted active set. Lenard [77] numerically compared di↵erent pro-

cedures for determining active constraints at each iteration in the context of a quasi-

Newton projection method for nonlinear problem with linear constraints and concluded

that keeping the predicted active set as small as possible considerably saves comput-

ing time when the optimal solution is not a vertex; otherwise, the active set should

be as large as possible. Bertsekas [16] proposed a two-metric algorithm for solving an

nlp subject to only simple bound constraints, with a strategy of estimating the active

bounds at a local solution. When the iterates fall into a neighbourhood of a local solu-

tion, strongly active constraints3 at this solution can be predicted. This is also proved

by Lescrenier [78] for a trust region method. Di↵erent methods have been proposed for

identifying/predicting the optimal active set for the more general case when the feasi-

ble points form a convex set. In this context, optimal active-set prediction corresponds

to identifying the optimal face upon which the objective function attains its (local)

optimal value; see [22] for a technique for predicting the “quasi-polyhedral” faces ([22,

Definition 2.5]) near a local solution, and [134] for identifying the “class-Cp identifiable

surface”under a nondegeneracy assumption.

In addition to the above methods, Facchinei, Fischer, and Kanzow [35] describe

3Please refer to the description of the strongly active constraints and strongly active set on page 6.
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the use of a class of special functions, the identification functions, which provide an

estimate of the distance from the current iterate to the solution set. Based on this es-

timate, threshold tests are proposed to predict the active and strongly active sets3 in a

neighbourhood of a local solution. They state that the formulation of an identification

function is “the crucial point in the identification of active constraints”. We discuss

this technique in detail and propose to apply it to lp in Section 3.1. Oberlin and

Wright [106] define a new identification function that requires a linear programming

problem to be solved in order to predict the active set at a local optimum. For more

results based on [35, 106], see, for example, [80] for an extension to linearly constrained

minimisation without derivatives, [79] for the composite nonsmooth minimisation prob-

lem, [66] for constrained minimax problems, and [121] for large scale bound constrained

optimization.

Similar active-set prediction techniques can be extended to the monotone Linear

Complementarity Problem (lcp) and the monotone Nonlinear Complementarity Prob-

lem (ncp); see, for example, the paper of Monteiro and Wright [102] for the former and

Yamashita, Dan, and Fukushima [136] for the latter.

Active-set prediction for ipms for lp. Various ways have been devised for ipms

to predict the optimal active set during their run. The simplest one is to conduct a

threshold test with a fixed constant [45, 69, 89], namely, split the variables into active

or inactive based on whether they are less than a user-defined small value. The most

well-known class of active-set prediction techniques for ipms is indicators [32] which

form functions of iterates and identify the optimal active-set based on whether the

values of these functions are less than a threshold; we discuss the formulations of two

state-of-art indicators [32] in Section 3.2. Mehrotra [92] suggests determining the active

set by a simple comparison of the relative increments of primal and dual iterates, and

Mehrotra and Ye [94] propose a strategy to identify the active set by comparing the

primal variables with the dual slacks; see [129] for a review of active-set prediction

techniques for ipms for lp.

Applications of active-set prediction techniques. Here we give some examples

of applications of active-set prediction techniques in di↵erent scenarios.

• Warmstarting. Warmstarting is a technique that uses the information obtained

from solving an initial lp problem to accelerate the re-optimisation of one or more

closely related problems with only minor changes from the original problem struc-

ture. If the active set of the closely related problem can be identified from the

optimal or nearly-optimal solution of the original problem, it may greatly en-

hance the e�ciency of the warmstarting process and hence the solution time for

the perturbed problem. Related active-set prediction techniques have been de-

veloped in this context; see for example, the surveys [34, 120]. We briefly review

relevant contributions here. One of the main warmstarting strategies focuses on

8
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the ‘iterates’, namely it manipulates the (ipm-computed) near optimal or optimal

iterates of the initial problem to obtain a primal-dual feasible and well-centred

point for the perturbed problems, see for example, [53, 60, 139, 58, 120]. An-

other category of approaches works on the ‘problem formulation’, namely modify

the problem formulation by relaxing the nonnegativity constraints in the form of

shifted logarithmic barrier variables, which has some similarity to our approach.

Earlier works in this framework include Freund [40, 42, 41], Mitchell [96] and

Polyak [110] with promising theoretical properties. Freund’s papers [40, 42] only

relax the nonnegativity constraints for the primal problem and his paper [41] re-

laxes the equality constraints of the primal and dual problem. In [110], Polyak

applies modified barrier functions to derive ipms, but still only relaxes the primal

nonnegative variables. Mitchell’s paper [96] applies Freund’s method in [40] to

column generation. These methods only loosely relate to our approach. More

relevant warmstarting approaches to our idea are Benson and Shanno [11] and

Engau, Anjos and Vannelli [33, 34]. The former proposes a primal-dual penalty

strategy relaxing the nonnegativity constraints for both primal and dual decision

variables and then penalising the relaxation variables in the objective; the latter

applies a simplified primal-dual slack approach introducing slack variables for non-

negative constraints and penalising the slack variables in the objective. For the

di↵erence between these approaches and our method, please refer to Section 1.6.

• Crossover to simplex and basis recovery. When the given lp problem has

multiple solutions, ipms find a solution in the relative interior of the solution set

instead of a vertex solution. Since it is di�cult to perform post-optimality anal-

ysis from such an ‘interior’ solution [19], obtaining a basic optimal solution (i.e,

a vertex solution) is essential for some applications, such as determining ‘shadow

prices’ when allocating resources [67, Section 4.7]. Thus it makes sense to convert

the ipm solution to a basic feasible solution and then switch (‘crossover’) to the

simplex method from this basic feasible solution. Such a procedure is known as

crossover [28, 114, 135]. A good prediction of the optimal active set is essential

for crossover since it will provide a good approximation of the basic and nonbasic

partition and thus help generate a basic feasible point that is close to the vertex

solution. Similar ideas also appear in the literatures of ‘basis recovery’. Tapia

and Zhang [122] proposed an indicator, which uses the diagonal information of

the matrix from normal equations (for details, see (2.16)), to predict the optimal

basis during the run of ipms. Other than directly predicting basic and nonbasic

variables, there are also methods that apply simplex-like pivoting strategies to

recover the basis from an (almost) exact or approximate optimal solution gener-

ated by ipms; please refer to [91, 19, 5]. For a general description of crossover,

see also [135, Chapter 7]. The functionality of crossover has been implemented

in many optimisation routines of di↵erent pieces of software, such as cplex [68],

lingo [81], and sas [115], which reveals its importance in real world applications.

9



Chapter 1. Introduction and Motivation 10

• Finite terminations for ipms. Active-set prediction is closely related to the

so-called finite termination, which is a technique that calculates an exact solution

in a finite number of steps by projecting the current solution estimate onto the

solution set. This is especially useful for ipms because ipms only converge to the

solution set asymptotically [137]. A good active prediction is crucial to ensure

good performance of finite termination procedures.

• Constraint reduction for ipms. Tits, Absil and Woessner [125] propose to use

the dual active set to form a reduced version of normal equations (see (2.16)),

so as to reduce the computational cost when calculating the Newton directions.

Winternitz et al. [130] present a result based on [125] for Mehrotra’s Predictor-

Corrector (mpc) Algorithm and give the global convergence under significantly

milder assumptions than [125]. Encouraging numerical results are presented.

• Multicommodity flow problems. Babonneau, Merle and Vial [8] propose an

active-set strategy, a threshold test on the capacity usage of an arc, in order to re-

duce the problem dimension, when solving large-scale linear multicommodity flow

problems. Babonneau and Vial [9] extend this strategy to nonlinear constrained

multicommodity flow problems by applying it to arcs where the cost function can

be approximated by a linear function.

• Column generation. Gondzio, González-Brevis and Munari [56] incorporate a

similar strategy as [8] in their implementation of a primal-dual column generation

method where the algorithm starts with optimising a subproblem with a small set

of constraints. They improve the cost by adding new potentially active constraints

at each iteration. For more literature in this area, please refer for example to [95,

48, 98, 7].

• Machine learning. De Leone and Lazzari [29] also employ the idea of the

identification function to predict the active constraints of a specific qp problem

arising in the area of Support Vector Machines (svms).

1.5 Quadratic programming

A Quadratic Programming (qp) problem minimises or maximises a quadratic function

subject to linear constraints. qpmodels are also widely used for solving real world prob-

lems, such as Markowitz mean-variance portfolio optimisation problem [86] in finance,

demand-supply response [88] in economics and electrical energy production [107, 104] in

engineering. Without loss of generality, a particular formulation of qp can be expressed

as

min
x2Rn

cTx+
1

2
xTHx subject to Ax = b, x � 0, (1.4)

where H 2 Rn⇥n is symmetric, A 2 Rm⇥n, b 2 Rm, and c 2 Rn. If the Hessian

matrix H is positive semidefinite, then (1.4) is a convex qp problem. In this thesis,

10
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we always consider convex qp problems. A local minimum of a convex qp is always

a global minimum, namely the general first-order necessary conditions given to qp

are also su�cient for a global minimum when H is positive definite; otherwise, we

can only say that they are necessary. In addition, if the qp problem is convex, it is

solvable in polynomial time; otherwise it is np-hard [109]. The feasible region of the

qp problem (1.4), similarly to that of the lp problem (1.1), is also a polyhedron, but

the optimal solution of (1.4) may be found anywhere within the polyhedron or on its

surface. See Figure 1.4 for an illustration.

contour lines of the objective

feasible region

optimal

Figure 1.4: An illustration of the optimal solution of a two-dimensional qp problem

Active-set methods are a main class of methods for solving qp, which move from

a feasible point towards a solution along the edges and faces of the feasible set. Each

iteration involves solving an equality-constrained qp. Active-set methods for qp di↵er

from the simplex method for lp in that neither the iterates nor the optimal solution are

required to be vertices of the feasible polyhedron. For details, please refer to a classic

book of Fletcher [39] or a more recent survey by Gill and Wong [47].

The interior point methods for qp are general extensions from those for lp with

the coe�cient matrix H of the quadratic terms taken into consideration when solving

for the Newton directions [54]. The presence of H, however, makes the Newton system

much more costly to solve than that arising in linear programming [105]. Exploiting

the structure of the coe�cient matrix of the Newton system [59], or, alternatively,

employing an appropriate preconditioner for an iterative solver (such as projected CG

method) [55] is often needed.

ipms for lp converge to a so-called strictly complementary solution (which always

exists for lp; see Section 2.1) which leads to a unique optimal active and inactive

partition of the constraints. ipms for qp, however, may not find such a solution, due

essentially to the fact that such a solution may not exist for qp [12, 13]. This leads to

the analysis of the ‘tripartition’ (Section 2.3) instead of the optimal active and inactive

partition, which is the main reason why we perform separate analyses of active-set

predictions for lp and qp in this thesis.

Existing active-set solvers for qp include qpopt [46] and qpa [61]; for interior

11
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point solvers, please refer to qhopdm [3] (qp version of hopdm [51]) and loqo [127]

for example.

1.6 Motivation and outline of thesis

In this thesis, we focus on developing active-set prediction/identification techniques for

ipms in the context of linear and quadratic programming.

Active-set prediction is trivial for simplex method, since it moves from one vertex to

an adjacent one, and on every iteration it has a working active set. ipms, however, are

well-known to encounter di�culties with active-set prediction due essentially to their

construction. They generate iterates that progress towards the solution set through

the (relative) interior of the feasible set, and thus avoid visiting possibly-many feasible

vertices (see Figure 1.2 for an illustration). This may also prevent ipms from getting

accurate information about the optimal active set early enough during their running.

When this information is more readily predictable/available towards the end of a run,

as the iterates approach the solution set, the algorithm has to solve increasingly ill-

conditioned and hence di�cult, subproblems.

Finding ways to improve (even just partial) active-set prediction for ipms could thus

be beneficial as it would allow earlier termination of an otherwise ill-conditioned and

computationally expensive process, by say, projecting onto the solution set (as in finite

termination [137]). It can also help with reducing the problem size or with obtaining a

vertex solution at the cost of just a few additional (and less expensive) simplex method

iterations (see Section 1.4 earlier).

Although active-set prediction techniques for ipms have existed for over a decade,

their performances could be improved due to the di�culties in making an accurate

prediction at the early stage of the iterative process of ipms. In the case of indicators [32]

for example, to get a good prediction, the iterates still need to be close to optimality

(small duality gap). For instance, in Table 8.2 in [32], at the third from the last iteration,

3 out of the 6 problems predict only a very small portion of the active constraints (less

than 15%) using Tapia indicators. Similar behaviour of indicators is observed in our

numerical tests; see Section 3.4 for details.

In this thesis, our main aim is to develop active-set prediction techniques that can

predict a large portion of the optimal active set before reaching the very end of the

iterative process (before the duality gap is too small), in the hope of decreasing the

level of ill-conditioning.

To this end, we propose the use of controlled perturbations [24] for active-set predic-

tion for ipms. Namely, we perturb the inequality constraints of the lp problem (by a

small amount) so as to enlarge the feasible set of the problem, then solve the resulting

perturbed problem(s) using a path-following ipm while predicting on the way the active

set of the original lp problem. As Figure 1.5 illustrates, provided the perturbations are

chosen judiciously, the central path of the perturbed problem may pass close to the op-

timal solution of the original lp problem when the barrier parameter for the perturbed

12
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Figure 1.5: Enlarge the feasible set and predict the original active set

problem is ‘not too small’. Thus we expect that while still ‘far’ from optimality for the

perturbed problem, some ipm iterates for the perturbed problem would nonetheless be

close to optimality for the original lp problem (such as the third and fourth iterate in

Figure 1.5) and would provide a good prediction of the original optimal active set. As

it may happen that the chosen perturbations are ‘too large’ or not su�ciently e↵ective

for active-set prediction, we allow them to shrink after some ipm iterations so that

the resulting perturbed feasible set is smaller but still contains the feasible set of the

original lp.

Relevant existing literature. Using controlled perturbations was first introduced

by Cartis and Gould [24] for finding well-centred points in Phase I of ipms, a di↵erent

focus and approach than here.

Since we employ perturbed problems, albeit artificially, our proposal may be remind-

ful of warmstarting techniques for ipms and the related active-set prediction techniques

that have been developed in that context; see relevant literature reviews on page 8.

More relevant and closer in spirit to our approach here is [11], where Benson and

Shanno propose a primal-dual penalty strategy relaxing the nonnegativity constraints

for both primal and dual decision variables and then penalising the relaxation vari-

ables in the objective; encouraging numerical results are also reported. Engau, Anjos

and Vannelli [33, 34] apply a simplified primal-dual slack approach: instead of shift-

ing the bounds and penalising the relaxation variables, slack variables for nonnegative

constraints are introduced and penalised in the objective. One of the main di↵erences

between the above techniques and our approach is that we consider perturbations as

parameters, not variables that are updated in the run of the ipm; furthermore, our

focus is di↵erent from that of warmstarting as we specifically aim to predict the active

set of the original optimisation problem by using these ‘fake’ perturbations.

Another technique, regularisation for interior point methods [116, 117, 4], is also

‘loosely’ related to our approach. In order to improve the conditioning of the coe�-
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cient matrix arising in calculating Newton directions, regularisation terms are added to

the objective function (and sometimes the equality constraints [116, 117]). With extra

terms present on the diagonal, the resulting augmented system of the regularised prob-

lem can be considered as a ‘perturbed’ version of the original one. The regularisation

method, however, does not allow negative components of the primal and dual variables

(they do not perturbed the inequality constraints) and is not developed for active set

prediction.

Contributions. When considering the proposed perturbed problems (see (PD
�

) on

page 46), we show that under certain conditions, the optimal solution of the original

problems lies on or in a neighbourhood of the central path of the perturbed problems.

Furthermore, we derive that under certain non-degeneracy assumptions, the perturbed

problem has the same active set as the original one. We also prove that under certain

conditions that do not necessarily require problem nondegeneracy, our predicted active

sets bound well the optimal active set of the original (unperturbed) lp, and exactly

predict it under a certain nondegeneracy assumption (but without requiring that the

perturbed active set coincides with the original one). We also find conditions on problem

conditioning that ensure that our prediction of the optimal active set of the original

lp can happen sooner than the prediction of the optimal active set of the perturbed

problems (so that our approach may not need to solve the perturbed problems to high

accuracy). Similarly, we characterise the situations when our approach allows an earlier

prediction of the original active set as compared to the case when we solve and predict

the original lp directly.

In the preliminary numerical tests for lp, we carry out two type of tests, one

comparing the accuracy of the predicted active sets and the other one exploring the

case of crossover to simplex method. When verifying the accuracy of our active-set

predictions using certain correctness comparison ratios, we observe that when using

perturbations, the precision of our predictions is generally higher than that when we

do not use perturbations. When crossing over to simplex method, we test the e�ciency

of our active-set predictions by comparing the number of simplex iterations needed to

solve the original problem to optimality, after some initial ipm iterations. We find that

when using perturbations for the ipm iterations, we can save (on average) over 30%

simplex iterations compared to the case of not using any perturbations before crossover

to simplex.

We then extend the prediction results to qp and also derive theorems on predicting

the optimal tripartition of a qp problem without the strictly complementary assump-

tion. Although our prototyped algorithm in matlab is not optimized or e�cient enough

and so we can not test large scale problems, the tests on random test problems and the

small sized qp problems from Netlib and Maros and Meszaros’ convex qp test set do

show some promising performance.
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Outline of thesis. In Chapter 2, we review the theoretical fundamentals needed for

the results of this thesis. We first introduce the terms related to lp, including the

standard form, solution set, degeneracy, multiplicity, etc (Section 2.1). Section 2.2

is concerned with some basic concepts of the primal-dual path-following ipms for lp,

such as the central path and its neighbourhoods, general algorithmic framework and

implementations. In Section 2.3, the basics of qp are introduced. Section 2.4 focuses

on deriving error bounds for both linear and quadratic programming problems, which

are extensively used in this thesis.

Chapter 3 introduces the details of existing techniques for active-set predictions

for ipms, namely the identification function, indicators and simple cut-o↵. Numeri-

cal experiments are conducted to compare the performance (accuracy, etc.) of these

techniques. Furthermore, we investigate the limitations of current techniques.

In Chapter 4, we investigate the use of controlled perturbations for active-set predic-

tion for ipms for lp, after introducing them and the associated primal-dual perturbed

lp problems (Section 4.1). We then show the relations between the solution of the

original lp problem and the central path of the perturbed problems (Section 4.2.1), as

well as the relation between the optimal active set of the perturbed problems and the

original problems (Section 4.2.2).

In Chapter 5, we present our main theoretical results for the active-set prediction

for lp. After introducing some useful preliminary results (Section 5.1), we present our

main prediction results for lp in Section 5.2. Comparisons between the perturbed and

unperturbed active-set predictions are shown in Section 5.3.

In Chapter 6, we present the perturbed algorithm framework for lp (Section 6.1).

Then we introduce the test problems and show some useful observations related to the

perturbed problems (Section 6.2). In our preliminary numerical experiments for lp,

we conduct tests with the simple cut-o↵ (Sections 6.3) and the identification function

(Section 6.4) as the active-set prediction strategies.

In Chapter 7, we first briefly present the formulations of perturbed qp problems

(Section 7.1) and show their properties which are similar to the linear case (Section 7.2).

We then extend the prediction results to qp and derive theorems on predicting the

optimal tripartition of a qp problem (Section 7.3). In Section 7.4, we present the

structure of the perturbed algorithm for qp and the promising preliminary numerical

experience.

In Chapter 8, we summarise the main contributions of this thesis and point out

potential future research directions.
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2
Theoretical Aspects of Linear and Quadratic Programming

In this chapter, we present the theoretical background required by the results in this

thesis. In Section 2.1, we briefly introduce the standard form of the primal-dual pair

of lp problems, the structure of the solution set, the notion of degenerate problems

and problems with multiple solutions. Section 2.2 focuses on some basic concepts of

the primal-dual path-following interior point methods for lp, including the central path

and its neighbourhoods, general algorithmic framework and implementation techniques.

Then we briefly introduce the primal-dual pair of convex qp problems and present the

di↵erence between the structure of the solution set of qp and that of lp in Section 2.3.

Finally in Section 2.4, we derive a global error bound for lp and qp. The error bounds

obtained in this section measure the distance to the solution set of lp or qp problems,

which plays an important role in our theoretical development, in Chapters 5 and 7.

2.1 Linear Programming

We consider the following pair of primal-dual lp problems,

Primal Dual

min
x

cTx

s.t. Ax = b,

x � 0,

max(y,s) bT y

s.t. AT y + s = c,

s � 0,

(PD)

where A 2 Rm⇥n has full row rank, x, s, c 2 Rn and y, b 2 Rm with m  n. (Note that

the primal problem in (PD) in problem (1.1).) The primal and dual problems are closely

related to each other in many ways, such as in the key duality result Theorem 2.1.

If a primal-dual pair (x, y, s) satisfies Ax = b, A>y + s = c and (x, s) � 0, it is a

primal-dual feasible point of (PD). The set of all feasible points forms the feasible set,

namely,

F = {(x, y, s) |Ax = b, AT y + s = c, x � 0, s � 0}. (2.1)

A primal-dual feasible point is said to be strictly feasible if all components of x and s

16
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are positive. So we can define the strictly feasible set for (PD) as follows

F0 = {(x, y, s) |Ax = b, AT y + s = c, x > 0, s > 0}. (2.2)

Let (x, y, s) 2 F . Then we have

cTx� bT y = cTx� (Ax)T y = xT (c�AT y) = xT s � 0.

Thus the quantity xT s measures the di↵erence between the primal objective function

and that of the dual at a feasible point. We refer to it as the duality gap. The gap is

zero at an optimal solution of (PD) according to the next theorem.

Theorem 2.1 (Duality for lp [135]). The primal problem in (PD) has a solu-

tion if and only if the dual problem has a solution and the optimal objective values

are the same for the two problems.

A di↵erent formulation of Theorem 2.1 follows next.

Theorem 2.2. A primal-dual pair (x⇤, y⇤, s⇤) is a primal-dual optimal solution of

(PD) if and only if it satisfies the following conditions,

Ax = b, (2.3a)

A>y + s = c, (2.3b)

XSe = 0 (2.3c)

(x, s) � 0, (2.3d)

where x = (x1, . . . , xn), s = (s1, . . . , sn), X = diag(x), S = diag(s) and e is a

vector of ones.

These optimality conditions are a special case of the well known kkt conditions,

which hold for general constrained optimisation [135]. It can be derived for (PD)

according for example to [105, Theorem 12.1].

For the reminder of this thesis, we denote by ⌦P and ⌦D the primal and dual

solution sets of the lp problems in (PD), respectively,

⌦P = {x⇤ |x⇤ solves the primal problem in (PD) }, (2.4a)

⌦D = {(y⇤, s⇤) | (y⇤, s⇤) solves the dual problem in (PD) }. (2.4b)

The primal-dual solution set ⌦ is the Cartesian product of ⌦P and ⌦D [135, Chapter

17
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2], namely,

⌦ = ⌦P ⇥ ⌦D = {(x⇤, y⇤, s⇤) | (x⇤, y⇤, s⇤) satisfies (2.3)}.

Relation (2.3c) implies that at least one of x⇤
i

and s⇤
i

should be zero for all i 2
{1, . . . , n}. If x⇤

i

+ s⇤
i

> 0, 8i 2 {1, . . . , n}, we say that (x⇤, y⇤, s⇤) is a strictly com-

plementary solution of (PD). The strictly complementary solution plays an important

role in the construction of interior point methods. The following theorem shows that

any primal-dual feasible lp problems have a strictly complementary solution.

Theorem 2.3 (Goldman-Tucker Theorem [50]). If (PD) has a solution, then

there exists at least one primal solution x⇤ 2 ⌦P and one dual solution (y⇤, s⇤) 2 ⌦D

such that

x⇤ + s⇤ > 0. (2.5)

See [50] or [135, Chapter 2] for a proof using Farkas’s Lemma .

Let (x⇤, y⇤, s⇤) be a (PD) solution. We employ the following notations

A(x⇤) := {i 2 {1, . . . , n} |x⇤
i

= 0}, (2.6a)

A+(s⇤) := { i 2 {1, . . . , n} | s⇤
i

> 0} , (2.6b)

I(s⇤) := {i 2 {1, . . . , n} | s⇤
i

= 0}. (2.6c)

A(x⇤) and A+(s⇤) are referred to as the optimal (primal) active and strongly (primal)

active sets at (x⇤, y⇤, s⇤); I(s⇤) as the dual active set.

If (x⇤, y⇤, s⇤) is a strictly complementary solution of (PD), (2.5) implies that

A ⌘ A(x⇤) = A+(s⇤),

I ⌘ I(s⇤) = {1, . . . , n} \ A+(s⇤) = {1, . . . , n} \ A(x⇤).
(2.7)

Thus

A(x⇤) \ I(s⇤) = ; and A(x⇤) [ I(s⇤) = {1, 2, . . . , n},

namelyA(x⇤) and I(s⇤) form a strict complementary partition of the index set {1, . . . , n}
for (PD). The strict complementary partition is the same for all strictly complementary

solutions [138, Theorem 1.16] and so we can simplify our notations to (A, I) for the

active-inactive strictly complementary partition.

Degeneracy and multiplicity in the solution set. Next, we describe the concept

of lp problem degeneracy, as the local convergence properties of ipms [63, 123] require

problem nondegeneracy assumptions and more importantly, so do some of our theorems

on active-set prediction. We use the same meaning of the terms ‘nondegenerate’ and

18



Chapter 2. Theoretical Aspects of Linear and Quadratic Programming 19

‘degenerate’ as in [135]. The definitions are given below; also see Figure 2.1 for an

illustration.

Definition 2.4 (Degeneracy for lp [135]). In the context of lp,

• Primal degenerate refers to the primal problem in (PD) having a solution x⇤

containing less than m positive components; the solution x⇤ is called a primal

degenerate solution.

• Dual degenerate refers to the dual problem in (PD) having a solution (y⇤, s⇤)

such that s⇤ contains less than n�m positive components; the solution (y⇤, s⇤) is

called a dual degenerate solution.

• (PD) is called primal nondegenerate if it is not primal degenerate; and dual

nondegenerate if it is not dual degenerate.

x1

x2

x3

1

1

1

(0, 0.5, 0.5)
0.5

0.5

x1 + x2 + x3 = 1 (yellow)

x1 + 2x2 = 1 (green)

x

1
+
2x

3
=
1
(p
ur
pl
e)

min
x2R3.5 x1 + 2x3

subject to
x1 + x2 + x3 = 1,
x1 + 2x2 = 1,
x1 � 0, x2 � 0.

It is clear that all points on the red
line segment are optimal solutions of
the given lp problem, among which
(1, 0, 0) is primal degenerate.

Figure 2.1: An illustration of the primal degeneracy for lp.

lp multiplicity, namely, that a given lp problem has multiple solutions, is similar

and related to degeneracy. We summarise some of these relations in the following

theorem.

Theorem 2.5 (Multiplicity and degeneracy [119, Theorem 4.5]).

For a pair of primal and dual linear programming problems in (PD), the

following implications hold:

a. If the primal problem has multiple solutions, then the dual is degenerate.

b. The primal problem has a unique and nondegenerate solution if and only if

the dual has a unique and nondegenerate solution.

c. If the primal problem has multiple and nondegenerate solutions, then the dual

has a unique and degenerate solution.
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d. If the primal problem has a unique and degenerate solution, then the dual has

multiple solutions.

2.2 Primal-dual path-following ipm for lp

2.2.1 The primal-dual central path

To solve the barrier subproblem (1.3) of the lp problem (1.1) — or equivalently, of the

primal problem in (PD) — we express its Lagrangian as follows,

L(x, y) = cTx� µ

nX

j=1

log x
j

� yT (Ax� b),

where y 2 Rm is the Lagrangian multiplier and the first order optimality conditions

for (1.3) are

r
x

L(x, y) = c�AT y � µX�1e = 0,

r
y

L(x, y) = Ax� b = 0,

where X = diag(x) and e is a vector of ones. Setting s = µX�1e, we have

Ax = b,

AT y + s = c,

XSe = µe,

(x, s) � 0,

(2.8)

where S = diag(s), and µ is the strictly positive barrier parameter. The system (2.8)

can also be derived from the logarithmic barrier subproblem of the dual problem (1.2).

The only di↵erence between (2.8) and (2.3) is the perturbation of the complemen-

tarity equations (2.3c), namely, instead of zero, the product x
i

s
i

is set to µ > 0 in (2.8).

(2.8) has a unique solution under mild assumptions, including

Assumption: A has full row rank m.4 (2.9)

Theorem 2.6 (Existence of the (PD) central path [135]). Let (2.9) hold.

Then the system (2.8) has a unique solution for each µ > 0, provided F0 in (2.2)

is nonempty.

See [135, Theorem 2.8] or [90] for a proof.

4This assumption is usually not di�cult to ensure numerically; see Section 6.1.
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When µ is fixed, the unique solution of (2.8), (x(µ), y(µ), s(µ)) with (x(µ), s(µ)) >

0, is a primal-dual strictly feasible point of (PD). As µ decreases continuously, the

corresponding solution (x(µ), y(µ), s(µ)) of (2.8) will form a path C
PD

of primal-dual

strictly feasible points, which is the central path of (PD). And when µ approaches 0,

(x(µ), y(µ), s(µ)) will approach a strictly complementary solution of the (PD) problems.

Theorem 2.7 (Convergence of the central path [138, Theorem 2.14]).

Let (2.9) hold and F0 6= ;. As µ ! 0, the unique solution (x(µ), y(µ), s(µ))

of (2.8) converges to a strictly complementary solution of (PD).

Unlike the primal central path C
P

introduced in Section 1.3, the path C
PD

contains

both primal and dual points, so it is also called the primal-dual central path. For the

rest of this thesis, the term ‘central path’ always refers to the ‘primal-dual central path’.

Neighbourhoods of the central path. As mentioned before, primal-dual path-

following ipms generate iterates that follow the central path. It is not recommended to

generate iterates exactly on the central path because finding a point that solves (2.8) can

be as di�cult as solving the optimisation problem itself [24]. Therefore we only require

the iterates to lie in some neighbourhood of the central path. To achieve this, di↵erent

lower and/or upper bounds are applied to the pairwise complementarity products,

namely x
i

s
i

for i = 1, . . . , n. In theoretical developments, one of the most commonly

used neighbourhoods is the one sided l1-norm (wide) neighbourhood, defined by

N�1(�) = { (x, y, s) 2 F0 | x
i

s
i

� �µ, i = 1, . . . , n } (2.10)

with given � 2 (0, 1), where F0 defined in (2.2) is the strictly feasible set of (PD) and

µ is equivalent to the average complementarity products (i.e. µ = x

T
s

n

). The use of

the N�1(�) neighbourhood is to keep the pairwise complementarity products bounded

from below (with respect to their mean value) and so prevent the components of x

and s from being too close to zero when their mean value is not. N�1(�) is a wide

neighbourhood and can enclose all points in F0 by pushing � to 0.

In addition to the above neighbourhood, Gondzio [52] also introduced the following

symmetric neighbourhood,

N
s

(�) = { (x, y, s) 2 F0 | �µ  x
i

s
i

 µ

�
, i = 1, . . . , n }, (2.11)

where � 2 (0, 1) and µ is also the average complementarity products. Within the N
s

(�)

neighbourhood the pairwise complementarity is bounded below and also above.

Note that for the ease of theoretical development, the neighbourhoods mentioned

above require the iterates to be primal-dual feasible. Thus, methods developed with

these neighbourhoods fall into the category of feasible primal-dual path-following ipms.
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In practice, the infeasible primal-dual path-following ipms are more commonly used,

which allow iterates to violate the equality constraints ((x, s) still need to be positive).

In the following section, we describe the general framework for this type of ipms.

2.2.2 A general primal-dual path-following ipm framework

Let (xk, yk, sk), k � 0, be the current iterate of the ipm applying to the (PD) problems

and having (xk, sk) > 0. We apply Newton’s method to (2.3) to determine the search

direction (�xk,�yk,�sk), namely we solve the following system of equations,

2

64
A 0 0

0 A> I

Sk 0 Xk

3

75

2

64
�xk

�yk

�sk

3

75 = �

2

64
Axk � b

A>yk + sk � c

XkSke� µe

3

75 , (2.12)

where Xk = diag(xk) and Sk = diag(sk). A full step along this direction may violate

the constraints (x, s) � 0, so we need to do a line search to decide the stepsize. After one

step, the ipms shrink µ by a factor � 2 (0, 1), which is called the centering parameter.

Now we show the general structure of a primal-dual path-following ipm in Algorithm 2.1.

Algorithm 2.1 A Primal-Dual Path-Following Interior Point Framework [135]

Given (x0, y0, s0) with (x0, s0) > 0;
for k = 0, 1, 2, . . . do
Choose �k 2 (0, 1) and obtain a Newton step (�xk,�yk,�sk) by solving the
system (2.12) with µ = �kµk and

µk =
(xk)>sk

n
; (2.13)

Choose a step length ↵k 2 (0, 1], which su�ciently reduces the duality gap and
the residuals of equality constraints and also keeps (xk+1, sk+1) > 0;
Set (xk+1, yk+1, sk+1) = (xk, yk, sk) + ↵k(�xk,�yk,�sk).

end for

Starting point. A good starting point is essential for primal-dual ipms to make

good progress. We adopt the popular method of finding a starting point proposed by

Mehrotra [93]. Let (2.9) hold. First obtain (x̃, ỹ, s̃) by

x̃ = AT (AAT )�1b, ỹ = (AAT )�1Ac, s̃ = c�AT ỹ,

and then we compute the starting point as follows,

(x0, y0, s0) = (x̃+ �̃
x

e, ỹ, s̃+ �̃
s

e),
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where

�̃
x

= �
x

+ 0.5⇥ (x̃+ �
x

e)T (s̃+ �
s

e)
P

i=n

i=1 (s̃i + �
s

)
and �̃

s

= �
s

+ 0.5⇥ (x̃+ �
x

e)T (s̃+ �
s

e)
P

i=n

i=1 (x̃i + �
x

)
,

and where �
x

= max

✓
�1.5⇥ min

i=1,...,n
(x̃

i

) , 0

◆
and �

s

= max

✓
�1.5⇥ min

i=1,...,n
(s̃

i

) , 0

◆
.

Solving the Newton system. Eliminating �sk in (2.12) with µ = �kµk, we have

"
A 0

�D�2 AT

#"
�xk

�yk

#
= �

"
Rk

p

Rk

d

� (Xk)�1Rk

c

#
, (2.14a)

�sk = �
⇣
Xk

⌘�1 ⇣
Rk

c

+ Sk�xk
⌘
. (2.14b)

where D = � �
Sk

�� 1
2
�
Xk

� 1
2 , Rk

p

= Axk � b, Rk

d

= AT yk + sk � c, Rk

c

= XkSke��kµke

and where

�k = min(0.1, 100µk) 2 [0, 1] (2.15)

and µk is defined in (2.13). The system (2.14) is called the augmented system [135].

We can further eliminated �xk from (2.14a) and then (2.14) is equivalent to

A(Dk)2AT�yk = �Rk

p

�A(Sk)�1(XkRk

d

�Rk

µ

), (2.16a)

�sk = �Rk

d

�AT�yk, (2.16b)

�xk = �(Sk)�1(Rk

µ

+Xk�sk). (2.16c)

This system is known as the normal equations. The normal equations form has been

widely used in both commercial and academic ipm codes that require to handle large-

scale problems e�ciently, because the coe�cient matrix of �yk in (2.16a) can be ef-

ficiently processed by existing advanced numerical linear algebra techniques, such as

e�cient Cholesky factorisations; in our experimental codes, however, we use the aug-

mented system because it is more stable in the presence of ill-conditioning [135].

Stepsizes in the primal and dual space. For e�ciency, instead of imposing the

neighbourhood constraints (2.10) or (2.11), one can choose the stepsize as a fixed frac-

tion of the step to the nearest constraint boundary in the primal and dual space,

respectively. Namely, we compute possibly distinct stepsizes ↵k

p

for the primal iterates

and ↵k

d

for the dual ones as follows

↵k

p

= min
⇣
↵̄ ·min

i :�x

k
i <0

⇣
�x

k
i

�x

k
i

⌘
, 1
⌘

and ↵k

d

= min
⇣
↵̄ ·min

i :�s

k
i <0

⇣
�s

k
i

�s

k
i

⌘
, 1
⌘
, (2.17)
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where ↵̄ 2 (0, 1); usually ↵̄ = 0.9995. Although such a variant of algorithm may

not converge,5 this strategy for selecting stepsizes has been used in many practical

implementations [105, Section 14.2] and proven e↵ective in practice [36].

Termination. We measure the relative residual by

relResk =
|| �Axk � b, AT yk + sk � c,XkSke

� ||1
1 + max (||b||1, ||c||1)

. (2.18)

We can terminate the algorithm when this relative residual is less than the required

accuracy. Recalling (2.3), a small value of relResk indicates we are (relatively) nearly

optimal for (PD).

2.2.3 Bounds on the sequence of iterates

In this section, we discuss two lemmas which are essential to our theoretical develop-

ments later on in this thesis. These lemmas are originally two parts of Lemma 5.13

in [135]. The proofs here follow similarly to the proof of [135, Lemma 5.13]. We sep-

arate the original result into two parts in order to suit our needs. Note that part of

the original proof requires weaker conditions than the other, which is reflected in the

assumptions of the following lemmas.

Lemma 2.8 ([135, Lemma 5.13]). For any (x, y, s) 2 F0, where F0 is defined in (2.2),

we have

0 < x
i

 µ

C1
(i 2 A) and 0 < s

i

 µ

C1
(i 2 I), (2.19)

where

µ =
xT s

n
(2.20)

and

C1 =
✏(A, b, c)

n
(2.21)

with

✏(A, b, c) = min

 
min
i2I

sup
x

⇤2⌦P

{x⇤
i

} , min
i2A

sup
(y⇤,s⇤)2⌦D

{ s⇤
i

}
!

> 0, (2.22)

and ⌦P and ⌦D, defined in (2.4), are the primal and dual solution sets of (PD), respec-

tively, and where (A, I) is the strictly complementary active and inactive partition (2.7)

of the solution set of (PD).

Proof. Assume (x⇤, y⇤, s⇤) is any (PD) solution. Since (x, y, s) is feasible, we

have Ax = Ax⇤ = b and AT y � s = AT y⇤ � s⇤ = c, and so A(x � x⇤) = 0 and

s� s⇤ = AT (y � y⇤). This gives us

(x� x⇤)T (s� s⇤) = (A(x� x⇤))T (y � y⇤) = 0. (2.23)

5In order to have the polynomial complexity, the stepsizes should be chosen such that all iterates
are within a certain neighbourhood of the central path.
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Since (A, I) is the strictly complementary partition, x⇤
i

= 0 for all i 2 A and s⇤
i

= 0

for i 2 I. From this, (2.20) and (2.23) we have

nµ = xT s = xT s⇤ + sTx⇤ =
X

i2A
x
i

s⇤
i

+
X

i2I
s
i

x⇤
i

.

From the nonnegativity of each term in the above summations, we obtain 0 < x
i

<
nµ

s

⇤
i
for all i 2 A, and 0 < s

i

< nµ

x

⇤
i
for all i 2 I, which implies

0 < x
i

<
nµ

sup(y⇤,s⇤)2⌦D s⇤
i

and 0 < s
i

<
nµ

sup
x

⇤2⌦P x⇤
i

,

and since (x⇤, y⇤, s⇤) is any (PD) solution, we have

0 < max
i2A

x
i

<
nµ

min
i2A sup(y⇤,s⇤)2⌦D s⇤

i

and 0 < max
i2I

s
i

<
nµ

min
i2I sup

x

⇤2⌦P x⇤
i

.

Combining these two sets of inequalities and recalling (2.22), we have

0 < max

✓
max
i2A

x
i

,max
i2I

s
i

◆
<

nµ

✏(A, b, c)
,

which implies (2.19). Note that when the feasible set of (PD) is bounded and

nonempty, where ✏(A, b, c) > 0. ⇤

Lemma 2.9 ([135, Lemma 5.13]). For any (x, y, s) 2 N�1(�), where N�1(�) is

defined in (2.10), we have

s
i

� C1� (i 2 A) and x
i

� C1� (i 2 I), (2.24)

where µ is defined in (2.20), C1 in (5.5) and (A, I) is the strictly complementary active

and inactive partition (2.7) of the solution set of (PD).

Proof. From (x, y, s) 2 N�1(�), (2.10) and (2.19) we have

x
i

� µ�

s
i

� µ�
µ

C1

= �C1, for all i 2 I.

Similarly for s
i

, i 2 A. ⇤

25



Chapter 2. Theoretical Aspects of Linear and Quadratic Programming 26

2.3 Quadratic programming

Consider the following pair of primal and dual convex qp problems,

(Primal) (Dual)

min
x

1
2x

THx+ cTx

s.t. Ax = b,

x � 0,

max
(x,y,s)

bT y � 1
2x

THx

s.t. AT y + s�Hx = c,

y free, s � 0,

(QPD)

where H 2 Rn⇥n is symmetric positive semidefinite, A 2 Rm⇥n with m  n, y, b 2 Rm

and x, s, c 2 Rn. When H is an empty matrix, these problems reduce to the (PD)

linear programming problems (see page 16).

The feasible set of (QPD) is denoted as

QF = {(x, y, s) |Ax = b, AT y + s�Hx = c, x � 0, s � 0}, (2.25)

and the strictly feasible set as

QF0 = {(x, y, s) |Ax = b, AT y + s�Hx = c, x > 0, s > 0}. (2.26)

Similarly to lp, we can derive the following kkt conditions for (QPD),

Ax = b, (2.27a)

AT y + s�Hx = c, (2.27b)

XSe = 0, (2.27c)

(x, s) � 0, (2.27d)

where X = diag(x), S = diag(s) and e is a vector of ones. The third term is called the

complementary condition [54].

Structure of the solution set of (QPD). We denote the solution set of the primal

and dual problems in (QPD) as Q⌦P and Q⌦D, respectively, and the primal-dual

solution set Q⌦ of (QPD) is also a Cartesian production of Q⌦P and Q⌦D. Contrary

to linear programming, the Goldman–Tucker Theorem does not hold for (QPD), namely

it is not guaranteed to have a strictly complementary solution for (QPD).

Let (x⇤, y⇤, s⇤) be a solution of (QPD) and define

A(x⇤) = {i 2 {1, . . . , n} |x⇤
i

= 0} , ⇥(x⇤) = {i 2 {1, . . . , n} |x⇤
i

> 0},
I(s⇤) = {i 2 {1, . . . , n} | s⇤

i

= 0} , A+(s⇤) = {i 2 {1, . . . , n} | s⇤
i

> 0}. (2.28)

A(x⇤) is the primal active set of (QPD), ⇥(x⇤) the primal inactive set, I(s⇤) the dual

active set and A+(s⇤) the dual inactive set. From the complementary condition (2.27c),

26



Chapter 2. Theoretical Aspects of Linear and Quadratic Programming 27

it is easy to verify that

A+(s⇤) ✓ A(x⇤), ⇥(x⇤) ✓ I(s⇤) and ⇥(x⇤) \A+(s⇤) = ;. (2.29)

Note that A(x⇤) \ I(s⇤) may not be empty.

We also denote

T (x⇤, s⇤) = {1, . . . , n} \ �A+(s⇤) [⇥(x⇤)
�
, (2.30)

which represents the complement of the optimal primal and dual inactive sets. This

and (2.29) give us that A+(s⇤) \⇥(x⇤) = A+(s⇤) \ T (x⇤, s⇤) = ⇥(x⇤) \ T (x⇤, s⇤) = ;,
and the union of them is the full index set, namely, A+(s⇤), ⇥(x⇤) and T (x⇤, s⇤) form

an optimal tripartition of {1, . . . , n} for (QPD). From the definition of T (x⇤, s⇤), we

have x⇤
i

= s⇤
i

= 0 for any i 2 T (x⇤, s⇤) and thus it is also straightforward to verify

A(x⇤) = A+(s⇤) [ T (x⇤, s⇤) and I(s⇤) = ⇥(x⇤) [ T (x⇤, s⇤).

The primal-dual pair in (QPD) always has a maximal complementary solution, at

which the number of positive components of x⇤+ s⇤ is maximised [64]. Even at a max-

imal complementary solution, T (x⇤, s⇤) may not be empty because of the absence of

the Goldman–Tucker Theorem for (QPD). Note that (A+(s⇤),⇥(x⇤), T (x⇤, s⇤)) forms

a tripartition at any solution of (QPD) but it may be di↵erent at di↵erent solutions;

the tripartitions are only guaranteed to be invariant at maximal complementary solu-

tions [138, Theorem 1.18].

Interior point methods for quadratic programming. The ipms for qp is a nat-

ural extension from that for lp. Besides solving a slightly di↵erent Newton system, the

algorithm follows the same structure as ipms for lp. Because of the presence of the

quadratic terms in (QPD), we have one extra matrix H, the coe�cient matrix of the

quadratic terms, in the dual feasibility equation in (2.27), which leads to solving the

following Newton system,

2

64
A 0 0

�H A> I

Sk 0 Xk

3

75

2

64
�xk

�yk

�sk

3

75 = �

2

64
Axk � b

A>yk + sk �Hx� c

XkSke� µe

3

75 . (2.31)

The augmented system can also be derived by eliminating �sk; normal equations form

can be obtained by further eliminating �xk. The best known IPM algorithm for qp

finds the ✏-accurate solution of a convex qp problem in O (
p
n ln(1/✏)) iterations [54].

27



Chapter 2. Theoretical Aspects of Linear and Quadratic Programming 28

2.4 Error bounds for linear and quadratic programming

Error bounds for an optimisation problem bound the distance from a given point to

the solution set of the problem in terms of a residual function. In the implementation

of iterative optimisation methods, error bounds can be applied to estimate the distance

from the current iterate to the (unknown) optimal face, using local information at

the current iterate [108]. Thus error bounds can sometimes be e↵ective for obtaining

termination criteria. Furthermore, error bounds can be used to identify the active set

by means of an identification function [35]; see for example [29], where the authors

employ error bounds to construct an identification function so as to predict the active

sets of specific qp problems arising from the area of machine learning (support vetoer

machines).

In this section, we first formulate the (QPD) problem as a monotone Linear Com-

plementarity Problem (lcp) and then apply a global error bound for the monotone lcp

to the reformulated qp problem in order to derive an error bound for (QPD); then, by

setting H ⌘ 0
n⇥n

, where 0
n⇥n

stands for n-dimensional zero matrix, we obtain similar

results for lp.

The error bound we employ in this section was proposed by Mangasarian and Ren

in [85]. In their paper, they compared several global error bounds and concluded

that the error bound we describe here, which measures the average of two di↵erent

residuals, can be considered as the best. We also looked at other possibilities, such as the

componentwise error bounds by Wang and Yuan [128], which only works under certain

conditions (such as H-matrix with positive diagonal components). Unfortunately, our

lcp formulation of (QPD) does not satisfy these conditions.

2.4.1 An error bound for qp

By setting s = c � A>y + Hx and y = y+ � y�, where y+ = max(y, 0) and y� =

�min(y, 0), the first order optimality conditions (2.27) for (QPD) can be reformulated

as

Ax� b � 0, �Ax+ b � 0,

c�A>y+ +A>y� +Hx � 0,

xT (c�A>y+ +A>y� +Hx) = 0,

x � 0, y+ � 0, y� � 0.

(2.32)

Let

M =

2

64
H �AT AT

A 0 0

�A 0 0

3

75 , q =

2

64
c

�b

b

3

75 and z =

2

64
x

y+

y�

3

75 . (2.33)

where H, A, b and c are (QPD) problem data, (x, y, s) 2 Rn ⇥Rm ⇥Rn. Then finding
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a solution of (2.32) is equivalent to solving the following problem,

Mz + q � 0, z � 0, zT (Mz + q) = 0, (2.34)

where M , q and z are defined in (2.33), and z is considered to be the vector of vari-

ables. Given the above relations, the equivalence of the qp solution set and that of its

corresponding lcp formulation is straightforward.

Lemma 2.10. (QPD) is equivalent to the lcp in (2.34) with M and q defined in (2.33),

namely,

1. If (x, y+, y�) is a solution of the lcp (2.34), then (x, y, s) is a (QPD) solution,

where y = y+ � y� and s = c�AT y +Hx.

2. If (x, y, s) is a (QPD) solution, then (x, y+, y�) is a solution of the lcp (2.34).

We can see that (2.34) is in the standard form of a classic lcp, which was studied

by Cottle and Dantzig in 1968 [26]. lcp problems can be divided into di↵erent classes

depending on the type of the matrix M . An lcp is called the monotone lcp if and

only if the matrix M is positive semidefinite. For definitions and properties of the

other classes of lcp, see [26]. Next we show that (QPD) can be viewed as a monotone

lcp [26].

Lemma 2.11. The matrix M , defined in (2.33), is positive semidefinite, and so (2.34)

is a monotone lcp.

Proof. 8v 6= 0, v = (v1, v2, v3), where v1 2 Rn, v2 2 Rm and v3 2 Rm. vTMv =

vT1 Hv1 + vT2 Av1 � vT3 Av1 � vT1 A
T v2 + vT1 A

T v3. Since vT2 Av1 = (vT2 Av1)
T = vT1 A

T v2

and vT3 Av1 = (vT3 Av1)
T = vT1 A

T v3, we have vTMv = vT1 Hv1 � 0 as H is positive

semidefinite. Thus M is positive semidefinite. ⇤

In [85], the authors have proved a global error bound for the monotone lcp (2.34).

Now we summarise their result in the following lemma.

Lemma 2.12 (Mangasarian and Ren [85, Corollary 2.2]). Let z be any point

away from the solution set of a monotone lcp(M,q) (2.34) and z⇤ be the closest solution

of (2.34) to z under the Euclidean norm k · k. Then r(z)+w(z) is a global error bound

for (2.34), namely,

kz � z⇤k  ⌧(r(z) + w(z)),

where ⌧ is some problem-dependent constant, independent of z and z⇤, and

r(z) = kz�(z�Mz�q)+k and w(z) = k ��Mz � q,�z, zT (Mz + q)
�
+
k. (2.35)

Next we deduce the error bound for our monotone lcp formulation (2.34).

Lemma 2.13. Given the monotone lcp (2.34) with M and q defined in (2.33), let

(x, y+, y�) be any point away from the solution set of this problem and (x⇤, (y⇤)+, (y⇤)�)
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be the closest solution of this lcp to (x, y+, y�) under the Euclidean norm k · k. Then

we have

k(x, y+, y�)� (x⇤, (y⇤)+, (y⇤)�)k  ⌧(r(x, y+, y�) + w(x, y+, y�)),

where ⌧ is some problem-dependent constant, independent of (x, y+, y�) and (x⇤, (y⇤)+, (y⇤)�),

r(x, y+, y�) =
���min

�
x, c�AT y +Hx

 
, min {y+, Ax� b} , min {y�, b�Ax)} ��� ,

and

w(x, y+, y�) = k(�(c�AT y +Hx), b�Ax, Ax� b, �x, �y+, �y�, cTx� bT y + xTHx)+k ,

and where min {x, s} = (min(x
i

, s
i

) )
i=1,...,n and y = y+ � y�.

Proof. Substituting (2.33) into (2.35) and noting that u� (u� v)+ = min {u, v}
for any u, v vectors, we have

r(x, y+, y�)

=
���x� (x� (c�AT (y+ � y�) +Hx))+, y+ � (y+ � (Ax� b))+, y� � (y� � (b�Ax))+

��� ,

and

w(x, y+, y�)

=
���
��(c�AT (y+ � y�) +Hx), b�Ax, Ax� b, �x, �y+, �y�, cTx� bT (y+ � y�) + xTHx

�
+

��� .

Recalling y = y+ � y�, the lemma follows directly from the above equations. ⇤

Next we show that r(z) + w(z) is a global error bound for the (QPD) problems.

Theorem 2.14 (Error bound for (QPD)). Let (x, y, s) 2 Rn ⇥ Rm ⇥ Rn where

s = c�AT y+Hx. Then there exist a solution (x⇤, y⇤, s⇤) of (QPD) and problem-

dependent constants ⌧
p

, ⌧
y

and ⌧
d

, independent of (x, y, s) and (x⇤, y⇤, s⇤), such

that

kx� x⇤k  ⌧
p

(r(x, y, s) + w(x, y, s)) ,

ky � y⇤k  ⌧
y

(r(x, y, s) + w(x, y, s)) ,

ks� s⇤k  ⌧
d

(r(x, y, s) + w(x, y, s)) ,

where

r(x, y, s) =
���min {x, s} , min

�
y+, Ax� b

 
, min

�
y�,�Ax+ b

 ��� , (2.36)
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and

w(x, y, s) = k(�s, b�Ax, Ax� b, �x, cTx� bT y + xTHx)+k, (2.37)

and where min {x, s} = (min(x
i

, s
i

) )
i=1,...,n, y+ = max {y, 0} and y� =

�min {y, 0}.

Proof. Consider the monotone lcp (2.34) with M and q defined in (2.33) and

z = (x, y+, y�). Let z⇤ = (x⇤, (y⇤)+, (y⇤)�) be the closest solution to z in the

solution set of this lcp. From Lemma 2.10, (x⇤, y⇤, s⇤) with y⇤ = (y⇤)+� (y⇤)� and

s⇤ = c � AT y⇤ +Hx⇤ is a (QPD) solution. From (y+, y�) � 0, s = c � AT y +Hx

and Lemma 2.13, we have

k(x, y+, y�)� (x⇤, (y⇤)+, (y⇤)�)k  ⌧(r(x, y, s) + w(x, y, s)),

where r(x, y, s) and w(x, y, s) are defined in (2.36) and (2.37), respectively. This

and norm properties give

max
�kx� x⇤k, ky+ � (y⇤)+k, ky� � (y⇤)�k�  ⌧(r(x, y, s) + w(x, y, s)),

and so letting ⌧
p

= ⌧ , we deduce kx� x⇤k  ⌧
p

(r(x, y, s) + w(x, y, s)). Also

ky � y⇤k  ky+ � (y⇤)+k+ ky� + (y⇤)�k  ⌧
y

(r(x, y, s) + w(x, y, s)),

where ⌧
y

= 2⌧ . Since s⇤ = c�AT y⇤ +Hx⇤, we also have

ks� s⇤k  kAT kky � y⇤k+ kHkkx� x⇤k
 kAT k(ky+ � (y⇤)+k+ ky� � (y⇤)�k) + kHkkx� x⇤k
 ⌧

d

(r(x, y, s) + w(x, y, s)),

where ⌧
d

= ⌧(2kAT k+ kHk). ⇤

Note that in Lemma 2.12, the solution z⇤ is the closest solution to z, but here in

Theorem 2.14, we may lose the property that (x⇤, y⇤, s⇤) is the closest solution to the

given point in the Euclidean norm.

2.4.2 An error bound for lp

Setting H ⌘ 0
n⇥n

, we can obtain similar results for lp. For clarity, we state them next.

Their proofs follow by setting H ⌘ 0
n⇥n

in Lemma 2.10 and Theoem 2.14.

Lemma 2.15. (PD) is equivalent to the lcp in (2.34) with M and q defined in (2.33)

and H ⌘ 0
n⇥n

, namely,
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1. If (x, y+, y�) is a solution of the lcp (2.34), then (x, y, s) is a (PD) solution,

where y = y+ � y� and s = c�AT y.

2. If (x, y, s) is a (PD) solution, then (x, y+, y�) is a solution of the lcp (2.34).

Theorem 2.16 (Error bound for lp). Let (x, y, s) 2 Rn ⇥ Rm ⇥ Rn where

s = c� AT y. Then there exist a (PD) solution (x⇤, y⇤, s⇤) and problem-dependent

constants ⌧
p

, ⌧
y

and ⌧
d

, independent of (x, y, s) and (x⇤, y⇤, s⇤), such that

kx� x⇤k  ⌧
p

(r(x, y, s) + w(x, y, s)) ,

ky � y⇤k  ⌧
y

(r(x, y, s) + w(x, y, s)) ,

ks� s⇤k  ⌧
d

(r(x, y, s) + w(x, y, s)) ,

(2.38)

where

r(x, y, s) =
���min {x, s} , min

�
y+, Ax� b

 
, min

�
y�,�Ax+ b

 ��� , (2.39)

and

w(x, y, s) = k(�s, b�Ax, Ax� b, �x, cTx� bT y)+k, (2.40)

and where min {x, s} = (min(x
i

, s
i

) )
i=1,...,n, y+ = max {y, 0} and y� =

�min {y, 0}.
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3
Active-set Prediction Strategies for Interior Point Methods

In Section 3.1, we apply the error bound introduced in Theorem 2.16 to construct an

identification function [35] for linear programming and prove that this identification

function can identify/predict the optimal active set when the error bound is small

enough (which means the iterates are close enough to the optimal face). In Sections 3.2

and 3.3, we present the technical details of indicators and simple cut-o↵ procedures

respectively. We end this chapter by numerically comparing the performance of the

identification function, indicators (primal-dual and Tapia indicators) and cut-o↵ tech-

niques, when used in an (infeasible) primal-dual path-following ipm (Algorithm 2.1) on

standard lp test problems.

3.1 An identification function for linear programming

In [35], the authors present an active-set identification/prediction technique for inequal-

ity constrained nonlinear programming problems, relying upon a so-called identifica-

tion function, a function that tends to zero when approaching the solution set but at a

‘slower’ rate than the Euclidean distance from the solution set. However, their idea and

presentation are for nlp and no explicit formulation of the identification function for

lp is given. Though our approach is similar to that of [29], their proposed identification

function is specifically developed for the particular qp formulation of a support vector

machine problem, and it seems their results cannot be applied to our (PD) problems

by simple modifications such as setting quadratic terms to zero.

In this section, we construct a function based on the error bound (Section 2.4.2)

for (PD) problems. Since our function has similar properties to the identification func-

tion mentioned above, we keep using the term ‘identification function’. We define the

following function,

⇢(x, y, s) := (r(x, y, s) + w(x, y, s))
1
2 , (3.1)

where r(x, y, s) and w(x, y, s) are defined in (2.39) and (2.40), respectively.
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Properties of the identification function (3.1). It is clear that ⇢(x, y, s) in (3.1)

is continuous in (x, y, s). Now we show that the ⇢(x, y, s) is zero at a (PD) solution.

Proposition 3.1. Assume (x⇤, y⇤, s⇤) is a (PD) solution. Then

⇢ (x⇤, y⇤, s⇤) = 0.

Proof. Substituting (x⇤, y⇤, s⇤) into (2.39) and (2.40), we have r (x⇤, y⇤, s⇤) =

w (x⇤, y⇤, s⇤) = 0, which implies ⇢ (x⇤, y⇤, s⇤) = 0. ⇤

As mentioned at the beginning of this section, the identification function in [35]

converges to zero when approaching the solution set, at a slower rate than the Euclidean

distance. In the following proposition, we show that ⇢(x, y, s) behaves similarly.

Proposition 3.2. Assume (PD) has a unique solution (x⇤, y⇤, s⇤) and let (x, y, s) 2
Rn ⇥ Rm ⇥ Rn be any point away from (x⇤, y⇤, s⇤), where s = c�AT y. Then

lim
(x,y,s)!(x⇤

,y

⇤
,s

⇤)

⇢(x, y, s)

k(x, y, s)� (x⇤, y⇤, s⇤) k = +1, (3.2)

where k · k denotes the Euclidean norm.

Proof. From Theorem 2.16 and norm properties, we have

⇢(x, y, s)

k(x, y, s)� (x⇤, y⇤, s⇤) k � ⇢(x, y, s)

kx� x⇤k+ ky � y⇤k+ ks� s⇤k � ⇢(x, y, s)

⌧̄ ⇢2(x, y, s)
=

1

⌧̄ ⇢(x, y, s)
,

where ⌧̄ = ⌧
p

+ ⌧
y

+ ⌧
d

. Thus

lim
(x,y,s)!(x⇤

,y

⇤
,s

⇤)

⇢(x, y, s)

k(x, y, s)� (x⇤, y⇤, s⇤) k � lim
(x,y,s)!(x⇤

,y

⇤
,s

⇤)

1

⌧̄ ⇢(x, y, s)
.

This, the continuity of ⇢(x, y, s) and Proposition 3.1 imply that (3.2) holds. ⇤

Active-set prediction using the identification function. Let (x, y, s) 2 Rn ⇥
Rm ⇥ Rn be an arbitrary point away from the (PD) solution set ⌦, and denote

Â(x, y, s) = {i 2 {1, . . . , n}| x
i

 ⇢(x, y, s)}, (3.3)

as the trial/predicted active set, and

Â+(x, y, s) = {i 2 {1, . . . , n}| s
i

� ⇢(x, y, s)}, (3.4)

the trial/predicted strongly active set.

Next we show that the identification function (3.1) can indeed be used to identify

the optimal active and strongly active sets under certain conditions. First we show

that the distance from a triple (x, y, s) to some optimal solution (x⇤, y⇤, s⇤) of (PD) is

bounded by ⇢(x, y, s).
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Lemma 3.3. Let (x, y, s) 2 Rn ⇥ Rm ⇥ Rn, where s = c � AT y. Then there exists a

solution (x⇤, y⇤, s⇤) of (PD) such that

kx� x⇤k  ⌧
p

⇢2(x, y, s) and ks� s⇤k  ⌧
d

⇢2(x, y, s),

where ⌧
p

and ⌧
d

are problem dependent constants in (2.38), independent of (x, y, s) and

(x⇤, y⇤, s⇤).

Proof. It follows directly from Theorem 2.16 and the definition of ⇢(x, y, s)

in (3.1). ⇤

Theorem 3.4. Assume (PD) has a unique solution (x⇤, y⇤, s⇤). Let (x, y, s) 2
Rn ⇥ Rm ⇥ Rn, where s = c � AT y. Then there exists a constant ✏(x⇤) > 0 such

that if ⇢(x, y, s)  ✏(x⇤), then

Â(x, y, s) = A(x⇤),

where Â(x, y, s) is defined in (3.3) and A(x⇤) in (2.6a).

Proof. From Lemma 3.3, (x⇤, y⇤, s⇤) being the unique solution of (PD) and norm

properties, we have

|x
i

� x⇤
i

|  ⌧
p

⇢2(x, y, s), for all i 2 {1, . . . , n}. (3.5)

If i 2 A(x⇤), x⇤
i

= 0. Assume ⇢(x, y, s)  1
⌧p
. This and (3.5) give us that

x
i

 x⇤
i

+ ⌧
p

⇢2(x, y, s) = ⌧
p

⇢2(x, y, s)  ⇢(x, y, s),

which implies i 2 Â(x, y, s) and so A(x⇤) ✓ Â(x, y, s). If i /2 A(x⇤), x⇤
i

> 0.

From (3.5), we have x
i

� x⇤
i

� ⌧
p

⇢2(x, y, s) and so x
i

> ⇢(x, y, s) when E(⇢) ⌘
⌧
p

⇢2(x, y, s) + ⇢(x, y, s) � x⇤
i

< 0. Since x⇤
i

> 0, E(⇢) < 0 is satisfied for 0 <

⇢(x, y, s) < t(x⇤) where t(x⇤) is the positive root of the equation E(⇢) = 0. This

implies Â(x, y, s) ✓ A(x⇤) if ⇢(x, y, s) < t(x⇤). Setting ✏(x⇤) = min
⇣

1
⌧p
, t(x⇤)

⌘
, the

result follows. ⇤

Theorem 3.5. Assume (PD) has a unique solution (x⇤, y⇤, s⇤). Let (x, y, s) 2
Rn ⇥ Rm ⇥ Rn, where s = c � AT y. Then there exists a constant ✏(s⇤) > 0 such

that if ⇢(x, y, s)  ✏(s⇤), then

Â+(x, y, s) = A+(s⇤),
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where Â+(x, y, s) is defined in (3.3) and A+(s⇤) in (2.6b).

Proof. From Lemma 3.3, (x⇤, y⇤, s⇤) being the unique solution of (PD), and norm

properties, we have

|s
i

� s⇤
i

|  ⌧
d

⇢2(x, y, s), for all i 2 {1, . . . , n}. (3.6)

If i 2 A+(s⇤), s⇤
i

> 0. From (3.6), s
i

� s⇤
i

� ⌧
d

⇢2(x, y, s) and so s
i

� ⇢(x, y, s) when

⌧
d

⇢2(x, y, s) + ⇢(x, y, s) � s⇤
i

 0. Thus, since s⇤
i

> 0, there exists some t(s⇤) > 0

such that s
i

� ⇢(x, y, s) when ⇢(x, y, s) < t(s⇤). It follows that A+(s⇤) ✓ Â+(x, y, s)

if ⇢(x, y, s) < t(s⇤). Suppose i /2 A+(s⇤), which implies s⇤
i

= 0. Let ⇢(x, y, s)  1
⌧d
.

This and (3.6) give us

s
i

 s⇤
i

+ ⌧
d

⇢2(x, y, s)  ⇢(x, y, s),

which implies i /2 Â+(x, y, s) and so Â+(x, y, s) ✓ A+(s⇤). The result follows by

setting ✏(s⇤) = min
⇣

1
⌧d
, t(s⇤)

⌘
. ⇤

Remark on the conditions in Theorems 3.4 and 3.5. In Theorems 3.4 and 3.5,

we require the (PD) problems have a unique primal-dual solution (x⇤, y⇤, s⇤). Then,

note that ⇢(x, y, s) ! 0 if and only if (x, y, s) ! (x⇤, y⇤, s⇤). (The forward implication

follows from Proposition 3.1 and ⇢(x, y, s) continuous while the backward one from

Theorem 2.16 and (x⇤, y⇤, s⇤) unique.) When multiple solutions are present, then (3.5)

and (3.6) may include di↵erent solutions (x⇤, y⇤, s⇤) of (PD). Then, we can still prove,

in the same way as above, that Â+(x, y, s) ✓ A ✓ Â(x, y, s), if ⇢(x, y, s) su�ciently

small, where (A, I) is the strictly complementary partition. Note that in the numerical

tests (Section 3.4), we do not assume or impose uniqueness of solution, and the test

problems generally have multiple solutions.

Similar (but not identical) results for active-set prediction using the identification

function for (PD) can be proved by setting the perturbations in Theorems 5.21 – 5.23

to zero.

3.2 Indicators

The term ‘indicator’ or ‘indicator function’ denote a function that can be used to

identify the optimal active set of a constrained-problem. El-Bakry et al. [32] have

studied and compared various indicators proposed in the literature (for example [124,

45, 69, 122, 84]), especially those that can be used in conjunction with primal-dual ipms

(Algorithm 2.1). The following material is mainly summarised from [32, Sections 3, 5

and 6].
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Consider the indicators defined in the context of primal-dual ipms. We update

the iterates (xk, yk, sk) as described in Algorithm 2.1, namely, (xk+1, yk+1, sk+1) =

(xk, yk, sk) + ↵k(�xk,�yk,�sk), where (�xk,�yk,�sk) is the Newton direction and

↵k stands for the stepsize at iteration k. Let

zk = (xk, yk, sk) and �zk = (�xk,�yk,�sk).

The indicator function Ic is a function of zk and �zk which satisfies the property that

if lim
k!1

zk = (x⇤, y⇤, s⇤), where (x⇤, y⇤, s⇤) is an optimal solution of (PD), then

lim
k!1

Ic
i

(zk,�zk) =

8
<

:
�
i

if i 2 A(x⇤)


i

if i /2 A(x⇤)
, for all i = 1, . . . , n, (3.7)

where �
i

and 
i

are some constants satisfying max
i2A(x⇤) �i < min

i/2A(x⇤) i, and A(x⇤)

is the active set at x⇤ defined in (2.6a). A larger gap between max
i2A(x⇤) �i and

min
i/2A(x⇤) i implies that the given indicator could be more e↵ective (‘sharp separation’

property [32]); see [32, Section 3] for some other properties that an indicator should

ideally satisfy.

Indicators are incorporated inside a threshold test to determine the active con-

straints; x⇤
i

is determined to be zero if Ic
i

is less than a user-defined threshold, namely

Ic
i

(zk,�zk)  threshold =) x⇤
i

= 0.

Next we introduce two types of indicators discussed in [32] and considered them to

be the best. We compare the performance of the identification function defined in (3.1)

with these indicators in Section 3.4.4.

Primal-dual indicator. Define the following indicator function

Ic(zk,�zk,↵k) = (Sk+1)�1Xk+1e, (3.8)

where Sk+1 = diag(sk+1), Xk+1 = diag(xk+1), e is a vector of ones, and zk+1 =

zk + ↵k�zk. This indicator is known as the primal-dual indicator. For theoretical

properties of this indicator in the context of primal-dual ipms, see [32, Section 5.1].

Remark. According to [32, Proposition 7.2], under certain conditions on Algorithm 2.1,

such as (x0, y0, s0) being strictly feasible, (xk)T sk ! 0, min(Xk
S

k
e)

(xk)T s

k bounded below away

from zero, and other conditions on algorithm parameters, we have that Ic
i

(zk,�zk,↵k)

converges to zero Q-superlinearly for all i 2 A(x⇤). This is equivalent to a partial

prediction result, namely for any user-defined positive threshold, when k is su�ciently

large, A(x⇤) ✓ {i 2 {1, . . . , n} | Ic
i

(zk,�zk,↵k)  threshold}. To the best of our knowl-

edge, the converse inclusion has not been proven.
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Tapia indicators. Tapia indicators consist of two indicator functions for the primal

and dual problems in (PD), respectively. Namely,

Ic
p

(zk,�zk,↵k) = (Xk)�1Xk+1e and Ic
d

(zk,�zk,↵k) = e� (Sk)�1Sk+1e. (3.9)

The properties of the above two indicators are discussed in detail in [32, Section 6.1].

Remark. Under the same conditions on Algorithm 2.1 as for the primal-dual indica-

tor, [32, Proposition 6.1] shows that

(Ic
p

(zk,�zk,↵k))
i

!
8
<

:
0 i 2 A(x⇤)

1 i /2 A(x⇤)
and (Ic

d

(zk,�zk,↵k))
i

!
8
<

:
0 i 2 A(x⇤)

1 i /2 A(x⇤)
.

Letting the threshold be between (0,1), this result can be easily transformed into a

prediction result, namely, for su�ciently large k, {i 2 {1, . . . , n} | (Ic
p

(zk,�zk,↵k))
i


threshold} and {i 2 {1, . . . , n} | (Ic

d

(zk,�zk,↵k))
i

 threshold} are both equivalent to

A(x⇤). Under further conditions on algorithm parameters, Proposition 7.3 in [32] gives

that Ic
p

(zk,�zk,↵k) converges with an R-rate of convergence between (1, 2]. A similar

result can be obtained for Ic
d

(zk,�zk,↵k) using both Propositions 7.3 and 7.4 in [32].

3.3 Simple cut-o↵

The term ‘cut-o↵’ stands for the simplest way of performing active-set prediction,

which splits the variables into active or inactive based on whether they are less than a

user-defined small value, namely,

xk
i

 threshold =) x⇤
i

= 0.

This can also be viewed as “using variables as indicators” [32, Section 4]. This strategy

is widely used in our theoretical and numerical approaches in Chapters 5 – 7, due

essentially to its simplicity.

Under certain conditions on problem conditioning (see Theorem 5.7 with � = 0),

the predicted active set coincides with the original (PD) optimal active set when the

duality gap is su�ciently small. This result can be proved by setting the perturbations

in Theorem 5.7 to zero.

3.4 Numerical experiments

3.4.1 Implementation

Primal-dual path-following ipm. All tests in this chapter are conducted in the

context of the infeasible primal-dual path-following ipm (Algorihm 2.1, Section 2.2.2)

with the starting point suggested by Mehrotra [93] (see page 22) and the active-set

38



Chapter 3. Active-set Prediction Strategies for Interior Point Methods 39

prediction step incorporated into it; for details, see Algorithm 3.1 and the explanations

thereafter.

Algorithm 3.1 A Primal-Dual Path-Following ipm with Active Set Prediction

Step 0: Calculate a starting point (x0, y0, s0) with (x0, s0) > 0 for (PD) following

Mehrotra’s procedure [93] (given on page 22);

for k = 0, 1, 2, . . . do

Step 1: solve the system (2.12) by the augmented system approach (2.14) to

obtain the Newton direction (�xk,�yk,�sk);

Step 2: compute possibly distinct stepsizes ↵k

p

for the primal iterates �xk and

↵k

d

for the dual ones (�yk,�sk) following (2.17);

Step 3: update xk+1 = xk + ↵k

p

�xk and (yk+1, sk+1) = (yk, sk) + ↵k

d

(�yk,�sk);

Step 4: predict the optimal active set of (PD) and denote it by Ak;

Step 5: terminate if some termination criterion is satisfied;

end for

Active-set prediction framework. In our numerical test, we apply a more complex

strategy to predict the active constraints, inspired by [32, Step 3 in Procedure 8.1]. We

partition the index set {1, 2, . . . , n} into three sets, Ak as the predicted active set,

Ik as the predicted inactive set and Zk = {1, 2, . . . , n}\ �Ak [ Ik

�
which includes all

undetermined indices. During the running of the algorithm, we move indices between

these sets according to certain threshold tests.

Initialise A0 = I0 = ; and Z0 = {1, 2, . . . , n}. An index is moved from Zk to Ak if

the threshold test is satisfied for two consecutive iterations, otherwise from Zk to Ik.

We move an index from Ak to Zk if the threshold test is not satisfied at the current

iteration. An index is moved from Ik to Zk if the threshold test is satisfied at the

current iteration. We summarise the above as Procedure 3.2.

Identification function. We use both primal and dual information to conduct the

threshold test, namely

xk
i

< ⇢(xk, yk, sk) and sk
i

> ⇢(xk, yk, sk), i 2 {1, 2, . . . , n}.

Indicators. We follow [32] and utilise a combination of the primal-dual indicator and

the Tapia indicators. Assume IPDk

i

is the value of the primal-dual indicator and IT k

i

the value of the sum of two Tapia indicators at iteration k respectively, namely

IPDk

i

=

�����
xk+1
i

sk+1
i

����� and IT k

i

=

�����
xk+1
i

xk
i

�����+

�����1�
sk+1
i

sk
i

����� , 8i 2 {1, 2, . . . , n}.

As suggested in [32], we choose 0.1 as the threshold for the primal-dual indicator and

0.2 for the sum of the Tapia indicators. So the threshold test for indicators is defined
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Procedure 3.2 An Active-set Prediction Procedure
Initialise: A0 = I0 = ; and Z0 = {1, 2, . . . , n}.
At kth iteration, k > 1,
for i = 1, . . . , n do
if i 2 Zk then

if the threshold test is satisfied for iterations k � 1 and k then
Ak = Ak [ {i} and Zk = Zk\{i};

else
Ik = Ik [ {i} and Zk = Zk\{i}.

end if
if i 2 Ak and the threshold test is not satisfied then
Ak = Ak\{i} and Zk = Zk [ {i};

end if
if i 2 Ik and the threshold test is satisfied then
Ik = Ik\{i} and Zk = Zk [ {i}.

end if
end if

end for

as

IPDk

i

< 0.1 and IT k

i

< 0.2, i 2 {1, 2, . . . , n}.

Cut-o↵. We employ the following simple test

xk
i

< 10�5 and sk
i

> 10�5, i 2 {1, 2, . . . , n}.

Preprocessing. A common assumption for ipm algorithms is that the matrix A needs

to have full row rank (Assumption (2.9)). This is not a stringent requirement as a matrix

can always be reduced to a full row rank matrix [135, Page 31-32] without too much

computational e↵ort. In our tests, we apply the preprocessing code from lipsol [140]

to ensure this condition.

3.4.2 Test problems

Randomly generated test problems (TS1). We first randomly generate the num-

ber of constraints m 2 (10, 200), the number of variables n 2 (20, 500) and density of

nonzero entries in A within (0.4, 0.8), where m < n, 2m < n < 7m. Then randomly

generate a matrix A 2 Rm⇥n of given density and a point (x, y, s) 2 Rn⇥Rm⇥Rn with

x � 0, s � 0 and density about 0.5. Finally we generate b and c by letting b = Ax and

c = A>y+ s. Thus (x, y, s) serves as a feasible point. Problems generated this way are

generally well-conditioned and primal nondegenerate. This test set is inspired by the

random problem generation approach in [36, Section 8.3.4 ]. Whenever we use this test

set, (the same) 100 problems are generated.

We checked the degeneracy of 100 test problems generated this way, by looking at

the vertex solutions obtained by the matlab simplex solver. The majority of these
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problems are primal nondegenerate and dual degenerate.

Randomly generated primal-dual degenerate test problems (TS2). Instead

of generating a feasible point as for TS1, we generate (x, y, s) with x � 0, s � 0,

x
i

s
i

= 0 for all i 2 {1, . . . , n} so that the number of nonzeros of x is strictly less than

m and that of s is strictly less than n�m. Then get A, b, c as for TS1. Thus (x, y, s)

serves as a primal-dual degenerate solution. 100 problems are also generated for this

test set and used for all tests.

Netlib problems (TS3). Netlib [44] is a collection of standard lp test problems.

The original test problems can be found at http://www.netlib.org/lp/data/.6

Most Netlib test problems are not in the standard form. We reformulate them into

the standard form by introducing slacks. Since our implementation is basic, in matlab,

and mainly for illustration, we choose a subset of problems in Netlib with the number

of primal variables less than 5000 (including the slack variables). See Table 3.1 for the

list of the 37 Netlib problems selected.

Table 3.1: Selected 37 Netlib problems
Name m n Name m n

25FV47 798 1854 ADLITTLE 55 137
AFIRO 27 51 AGG3 516 758
BLEND 74 114 BNL1 632 1576
BRANDY 149 259 CZPROB 737 3141
E226 220 469 FIT1D 1050 2075
FIT1P 1026 2076 FORPLAN 157 485
GROW7 420 581 ISRAEL 174 316
KB2 52 77 SC50A 49 77
SC50B 48 76 SCAGR7 129 185
SCFXM1 322 592 SCFXM2 644 1184
SCFXM3 966 1776 SCRS8 485 1270
SCSD1 77 760 SCSD6 147 1350
SCSD8 397 2750 SCTAP1 300 660
SCTAP2 1090 2500 SCTAP3 1480 3340
SEBA 1029 1550 SHARE1B 112 248
SHARE2B 96 162 SHIP04L 356 2162
SHIP08L 688 4339 SHIP08S 416 2171
SHIP12S 466 2293 STAIR 362 544
STOCFOR2 2157 3045

In addition, six of these problems, afior, adlittle, scsd1, ship04l, share2b, and

grow7, have also been tested in [32, Section 8] in the aim of analysing the behaviour

of di↵erent indicators.
6We use a matlab version of the same test set, which is obtained from http://www.math.ntu.edu.

tw/

~

wwang/cola_lab/test_problems/netlib_lp/. Additionally, the reader can also download the full
set of test problems in .mat format from my open source collection on Github https://github.com/

YimingYAN/LP-Test-Problems.
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3.4.3 Prediction ratios

Assume Ak is the predicted active set at iteration k and A is the actual optimal active

set. To compare the accuracy of the predictions, we introduce the following three

prediction ratios.

• False-prediction ratio = |Ak \ (Ak \A)|
|Ak [A| .

• Missed-prediction ratio = |A \ (Ak \A)|
|Ak [A| .

• Correctness ratio = |Ak \A|
|Ak [A| .

False-prediction ratio measures the degree of incorrectly identified active constraints,

missed-prediction ratio measures the degree of incorrectly rejected active constraints

and correctness ratio shows the accuracy of the prediction. All three ratios range from

0 to 1. If the predicted set is the same as the actual optimal active set, correctness

ratio is 1. See Figure 3.1 for an illustration. These ratios are employed to compare the

accuracy of active-set predictions in our numerical tests throughout this thesis.

Predicted Actual

False-prediction ratio Missed-prediction ratio

Correctness ratio

Figure 3.1: An illustration of prediction ratios

3.4.4 Numerical results

Randomly generated problems (TS1 and TS2). In this test, we aim to compare

the accuracy of active-set predictions using the identification function, indicators and

cut-o↵. We first obtain the ‘actual optimal active set’ by solving the test problem

using matlab’s solver linprog with the ‘algorithm’ option set to ‘interior point’ and

considering all variables less than 10�5 as active.7 Then we run the Algorithm 3.1,

terminate the algorithm at each iteration, predict the active set using Procedure 3.2,

and compare the predicted active set with the actual optimal active set.

7We use the default termination tolerance (10�8) for interior point solver in linprog, and we
consider it is accurate enough for our purpose of tests.
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In Figures 3.2 and 3.3, we present the results for TS1 (left) and TS2 (right). The x-

axis shows the number of interior point iterations at which we terminate Algorithm 3.1.

In each figure, the first three plots (from left to right, top to bottom) show the average

value of the three measures mentioned above for the test problems in question. The

last plot at the bottom right corner presents the corresponding log10 scaled relative

kkt residuals defined in (2.18). There are three lines in each plot, representing the

prediction ratios by comparing the active set predicted by the identification function

with the actual active set (solid red line with circle), that by indicators (dashed blue

line with star) and that by cut-o↵ (dashed black line with square) respectively.
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Figure 3.2: Comparing prediction ratios for
the identification function, indicators and cut-
o↵ on randomly generated problems
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Figure 3.3: Comparing prediction ratios for
the identification function, indicators and cut-
o↵ on randomly generated primal-dual degen-
erate problems

• Figures 3.2 and 3.3 show that the average correctness ratios for the identification

function are at least as good and generally better — namely, more than 4 times

higher at certain iterations — than the indicators and cut-o↵.

• The performance of indicators is generally better — namely, about 2 times higher

at certain iterations — than that of cut-o↵ in the context of correctness ratios.

The gap, however, is not as much as that between the identification function and

the indicators.

• At the 10th iteration, when the average relative residual is about 10�4, none of

the three methods can predict more than 40% of the active set. It seems that

none of them are very e�cient for predicting the active set early on.

• After 18 iterations, the correctness ratios do not reach 1. This is due to ill-

conditioning which prevents us from solving any further.

netlib problems (TS3). In this part, we compare the prediction ratios on 37 netlib

problems. For each test problem, we first solve it to optimality (relative residual
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in (2.18) < 10�6) using Algorithm 3.1 and record the total number of iterations needed,

say M . Then we compare the average prediction ratios at the last 6 iterations of each

test case. This is because the number of iterations needed for each netlib test problem

varies too much, and so it is not appropriate to compare at some fixed iterations.8

In Figure 3.4, we observe similar phenomena as for the random tests. For example,

when the average relative residual is about 10�4, the average correctness ratio for the

identification function is the highest, about 43% at M � 3 and 50% at M � 2; for

indicators and cut-o↵, they are only about 5%.
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Figure 3.4: Comparing prediction ratios for the identification function, indicators and
cut-o↵ on 6 netlib problems

Remarks on the choice of cut-o↵.

• We may find an accurate cut-o↵ for each problem if we solve the problem to

a greater accuracy so that the zero and nonzero variables are well separated.

However this is not realistic, because in general it is not known a priori to what

accuracy a particular problem should be solved and ill-conditioning can prevent

the solver from getting to a desired accuracy [32]. In the literature, small values of

cut-o↵ are suggested, for example, 10�6 is used in [45], and in [89] they adopt the

accuracy of their algorithm as the value of cut-o↵, which is 10�8. Considering that

in our tests in general we solve the test problems to the accuracy of O(10�6) and

the active-set prediction procedure (Procedure 3.1) also uses the dual information

as a safeguard, we choose 10�5 as the value of cut-o↵.

• For these particular test sets, we can increase the value of cut-o↵ from 10�5 to

10�3 without a↵ecting the false-prediction ratios too much. Though the perfor-

mance of cut-o↵ can be improved, it is not better than the identification function

8 We have also conducted this test on the random problems and the results are generally the same
as those in Figures 3.2 and 3.3.
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and still can only predict less than 40% of the active set at early stages of the

iterative process (when the relative residual is about 10�4).

3.5 Conclusions

From the above numerical tests, it seems that the identification function works well,

at least the same and generally better than indicators and cut-o↵ when used in an

infeasible primal-dual path-following interior point method. However, none of them

are ideal for predicting the active set early on. Is it possible to have a satisfying

prediction of the active set early on, say for example being able to predict over 70%

of the active constraints before the relative residual (or duality gap) is less than 10�4?

The main focus of the rest of this thesis is to tackle this question. From the next

chapter, we start to derive a method utilising the so-called controlled perturbations to

overcome this di�culty. We will show that even with the simplest prediction method,

the cut-o↵, we often have some ability to predict sooner and better.
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4
Perturbed Linear Programming Problems

The original idea of controlled perturbations was introduced by Cartis and Gould [24],

in the context of finding ‘well-centred’ feasible points for lp. Inspired by their idea, we

enlarge the feasible set of the original primal-dual problems (PD) by using controlled

perturbations to formulate the perturbed variants of the (PD) problems and present

some useful properties. In Section 4.1, we introduce the perturbed problems. In Sec-

tion 4.2.1, we first show that the optimal solution of the original primal-dual problems

lies on or in a neighbourhood of the central path of the perturbed primal-dual problems

for carefully chosen perturbations. In Section 4.2.2, we find conditions such that the

active set of the perturbed (primal) problem is the same as that of the original (primal)

problem.

4.1 Controlled perturbations for linear programming

Consider the pair of primal-dual lp problems in (PD) (see page 16). We enlarge

the feasible set of (PD) by using controlled perturbations [24], namely, we relax the

nonnegativity constraints in (PD) and consider the pair of perturbed problems,

(Primal) (Dual)

min
x2Rn

(c+ �)T (x+ �)

s.t. Ax = b,

x � ��,

max
(y,s)2Rm⇥Rn

(b+A�)T y

s.t. AT y + s = c,

s � ��,

(PD
�

)

for some vector of perturbations � = (�1, . . . ,�n) � 0. Di↵erent perturbations for x

and s could be used, but for simplicity, we use the same vector of perturbations for

both. To make these problems primal and dual to each other, perturbations have to be

added to both the primal and dual objectives. Note that if � is a vector of zeros, (PD
�

)

coincides with (PD). In Proposition 4.1 below we show the problems in (PD
�

) are

indeed dual to each other.

Similarly to the strictly feasible set F0 of (PD), defined in (2.2), we denote the set
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of strictly feasible points of (PD
�

),

F0
�

=
�
(x, y, s)

��Ax = b, AT y + s = c, x+ � > 0, s+ � > 0
 
. (4.1)

Writing down the first order optimality conditions (kkt conditions) for (PD
�

),

according for example to [105, Theorem 12.1], we find that (x⇤
�

, y⇤
�

, s⇤
�

) is a (primal-

dual) solution for (PD
�

) if and only if it satisfies the following system,

Ax = b, (4.2a)

AT y + s = c, (4.2b)

(X + ⇤)(S + ⇤)e = 0, (4.2c)

(x+ �, s+ �) � 0, (4.2d)

where ⇤ = diag(�), X = diag(x), S = diag(s) and e = (1, . . . , 1). The solution

(x⇤
�

, y⇤
�

, s⇤
�

) is a (strictly complementary) solution for (PD
�

) if

(x⇤
�

+ �) + (s⇤
�

+ �) > 0. (4.3)

Denote by ⌦P

�

and ⌦D

�

the primal and dual solution sets of the (PD
�

) problems,

respectively,

⌦P

�

= {x⇤ |x⇤ solves the primal problem in (PD
�

) },
⌦D

�

= {(y⇤, s⇤) | (y⇤, s⇤) solves the dual problem in (PD
�

) }.
(4.4)

Let (x⇤
�

, y⇤
�

, s⇤
�

) be a strictly complementary solution of (PD
�

), and denote

A
�

= {i 2 {1, . . . , n}|(x⇤
�

)
i

+�
i

= 0} and I
�

= {i 2 {1, . . . , n}|(s⇤
�

)
i

+�
i

= 0}. (4.5)

(4.2c) and (4.3) imply that A
�

[ I
�

= {1, . . . , n} and A
�

\ I
�

= ;, and so (A
�

, I
�

) is

the strictly complementary active and inactive partition of the solution set of (PD
�

).

Equivalent formulation of (PD
�

). In some cases, it is more convenient to have

the equivalent ‘standard form’ of (PD
�

). Letting p = x + � and q = s + �, we can

write (PD
�

) in the following equivalent form,

(Primal) (Dual)

min
p

cT
�

p

s.t. Ap = b
�

,

p � 0,

max(y,q) bT
�

y

s.t. AT y + q = c
�

,

q � 0,

(4.6)
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where c
�

= c + �, b
�

= b + A� and � � 0. The kkt conditions (Theorem 2.2) ensure

that (p⇤
�

, y⇤
�

, q⇤
�

) is the (primal-dual) solution of (4.6) if and only if it satisfies

Ap = b
�

,

AT y + q = c
�

,

PQe = 0,

(p, q) � 0,

(4.7)

where P = diag(p), Q = diag(q) and e = (1, . . . , 1).

We now use (4.6) to show the duality of (PD
�

). Note that the following proposition

and its proof are inspired by [24, Lemma 5.1] and associated discussion on the problem

formulation of the perturbed problems.

Proposition 4.1. The pair of problems in (PD
�

) are dual to each other.

Proof. Letting p := x+ � and s := s+ �, we reformulate the problems in (PD
�

)

to a pair of problems that are in the standard form (see (4.6)). It is easy to check

that the problems in (4.6) are dual to each other since they are of the same format

as problems (PD) . ⇤

The following two propositions show that (x⇤
�

, y⇤
�

, s⇤
�

) is a (PD
�

) solution if and only

if (p⇤
�

, y⇤
�

, q⇤
�

), where p⇤
�

= x⇤
�

+ � and q⇤
�

= s⇤
�

+ �, is a solution of (4.6). Thus we can

construct an optimal solution for (PD
�

) from an optimal solution of (4.6) and vice

versa.

Proposition 4.2. If (x⇤
�

, y⇤
�

, s⇤
�

) is an optimal solution of (PD
�

), then (p⇤
�

, y⇤
�

, q⇤
�

) is

an optimal solution of (4.6), where p⇤
�

= x⇤
�

+ � and q⇤
�

= s⇤
�

+ �.

Proof. Since (x⇤
�

, y⇤
�

, s⇤
�

) is an optimal solution of (PD
�

), p⇤
�

= x⇤
�

+ � and

q⇤
�

= s⇤
�

+ �, then from (4.1), we have

Ap⇤
�

= A(x⇤
�

+ �) = b+A� = b
�

,

AT y⇤
�

+ q⇤
�

= AT y⇤
�

+ s⇤
�

+ � = c
�

,

P ⇤
�

Q⇤
�

e = (X⇤
�

+ �)(S⇤
�

+ ⇤)e = 0,

(p⇤
�

, q⇤
�

) � 0,

namely, the kkt conditions (4.7) are satisfied. ⇤

Proposition 4.3. If (p⇤
�

, y⇤
�

, q⇤
�

) is an optimal solution of (4.6), then (x⇤
�

, y⇤
�

, s⇤
�

) is an

optimal solution of (PD
�

), where x⇤
�

= p⇤
�

� � and s⇤
�

= q⇤
�

� �.

Proof. It is obvious that

Ax⇤
�

= A(p⇤
�

� �) = b
�

�A� = b,

AT y⇤
�

+ s⇤
�

= AT y⇤
�

+ q⇤
�

� � = c
�

� � = c,

(X⇤
�

+ ⇤)(S⇤
�

+ ⇤)e = P ⇤
�

Q⇤
�

e = 0,

(x⇤
�

+ �, s⇤
�

+ �) = (p⇤
�

, q⇤
�

) � 0,
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namely, the kkt conditions (4.2) are satisfied. ⇤

The central path of (PD
�

). Following [135, Chapter 2] or the procedure in Sec-

tion 2.2.1, we formulate the logarithmic barrier subproblems of (PD
�

), express the

Lagrangian of this subproblem and then derive its first order optimality conditions,

Ax = b,

AT y + s = c,

(X + ⇤)(S + ⇤)e = µ e,

(x+ �, s+ �) > 0,

(4.8)

where µ > 0 is the barrier parameter for the perturbed problem (PD
�

). (4.8) describes

the central path equations for (PD
�

). The central path of (PD
�

) is well defined under

mild conditions.

Lemma 4.4 (Existence and convergence of the perturbed central path).

Let (2.9)9 hold and � � 0. Then the central path of the perturbed problems (PD
�

) is well

defined, namely, the system (4.8) has a unique solution (x
�

(µ), y
�

(µ), s
�

(µ)) for each

µ > 0, provided F0
�

in (4.1) is nonempty. In particular, if � > 0, F0
�

is nonempty when-

ever (PD) has a nonempty primal-dual feasible set. Furthermore, (x
�

(µ), y
�

(µ), s
�

(µ))

converges to a strictly complementary solution of (PD
�

), as µ ! 0.

The existence result is from of Lemma 5.1 in [24]. Considering the equivalent

form (4.6) of (PD
�

), the convergence result follows from Theorem 2.7.

Remark. Note that if � > 0, the condition required in Lemma 4.4 for the existence

of the perturbed central path is weaker than that for the central path of (PD). The

latter requires (PD) to have a nonempty strictly feasible set F0 in (2.2), namely, for

there to be (PD) feasible points that strictly satisfy all problem inequality constraints

(Theorem 2.6) while for (PD
�

), we only need F , the feasible set of (PD) to be nonempty.

When � = 0, the existence and convergence results are equivalent to those for (PD),

namely Theorems 2.6 and 2.7 respectively.

4.2 Perturbed problems and their properties

4.2.1 Perfect and relaxed perturbations

Geometrically, the original optimal solution (x⇤, y⇤, s⇤) of (PD) may lie on or near the

central path of the perturbed problem (PD
�

) for carefully chosen perturbations; see

Figures 4.1 and 4.2. Algebraically, this happens if (x⇤, y⇤, s⇤) satisfies the third relation

in (4.8) exactly or approximately. We make these considerations precise in the next

two theorems.
9Recall that assumption (2.9) is simply the full row rank assumption for the matrix A.
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Perturbed  central  path Original  central  path

Original  optimal  solution

Figure 4.1: Perfect perturbations.

Perturbed  central  path

Original  central  path

Original  optimal  solution

Figure 4.2: Relaxed perturbations.

Theorem 4.5 (Existence of ‘perfect’ perturbations). Assume (2.9) holds

and (x⇤, y⇤, s⇤) is a solution of (PD). Let µ̂ > 0. Then there exists a vector

of perturbations

�̂ = �̂(x⇤, s⇤, µ̂) > 0,

such that the perturbed central path (4.8) with � = �̂ passes through (x⇤, y⇤, s⇤)

exactly when µ = µ̂.

Proof. Since (x⇤, y⇤, s⇤) is an optimal solution of (PD), it is also primal-dual

feasible, and so (x⇤, y⇤, s⇤) 2 F0
�

for any � > 0. Thus, according to Lemma 4.4, the

perturbed central path is well defined. Furthermore, if there exists a �̂ > 0 such

that ⇣
X⇤ + ⇤̂

⌘⇣
S⇤ + ⇤̂

⌘
e = µ̂e, (4.9)

then (x⇤, y⇤, s⇤) is the unique solution of the perturbed central path equations (4.8)

with � = �̂ and µ = µ̂, which implies the central path of perturbed problems passes

through (x⇤, y⇤, s⇤). It remains to solve (4.9) for �̂ = (�̂1, . . . , �̂n). Since x⇤
i

s⇤
i

= 0,

i = 1, . . . , n, we have that (4.9) is equivalent to

�̂2
i

+ (x⇤
i

+ s⇤
i

) �̂
i

� µ̂ = 0, i = 1, . . . , n,

whose positive root for each i gives the corresponding component of the required �̂.

⇤

It is a stringent and impractical requirement to force the optimal solution of the

original problem to be exactly on the central path of the perturbed problems. Thus

we relax this requirement to allow for the original solution to belong to a small neigh-

bourhood of this path.
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Theorem 4.6 (Existence of relaxed perturbations). Assume (2.9) holds and

(x⇤, y⇤, s⇤) is a (PD) solution and let µ̂ > 0 and ⇠ 2 (0, 1). Then there exist vetors

�̂
L

= �̂
L

(x⇤, s⇤, µ̂, ⇠) > 0 and �̂
U

= �̂
U

(x⇤, s⇤, µ̂, ⇠) > 0 such that for �̂
L

 �  �̂
U

,

(x⇤, y⇤, s⇤) is strictly feasible for (PD
�

) and satisfies

⇠µ̂e  (X⇤ + ⇤)(S⇤ + ⇤)e  1

⇠
µ̂e. (4.10)

Proof. Clearly, (x⇤, y⇤, s⇤) satisfies (4.1) and so (x⇤, y⇤, s⇤) 2 F0
�

for any � =

(�1, . . . ,�n) > 0. The inequalities (4.10) are equivalent to

(
�2
i

+ (x⇤
i

+ s⇤
i

)�
i

� ⇠µ̂ � 0

�2
i

+ (x⇤
i

+ s⇤
i

)�
i

� 1
⇠

µ̂  0,
(4.11)

for all i 2 {1, . . . , n} and ⇠ 2 (0, 1). Solving (4.11) for �
i

, we obtain

8
>><

>>:

�
i

� �(x⇤
i+s

⇤
i )+

p
(x⇤

i+s

⇤
i )

2+4⇠µ̂
2 = 2⇠µ̂

x

⇤
i+s

⇤
i+
p

(x⇤
i+s

⇤
i )

2+4⇠µ̂
= (�̂

L

)
i

,

0 < �
i

 �(x⇤
i+s

⇤
i )+

q
(x⇤

i+s

⇤
i )

2+ 4µ̂
⇠

2 =
2µ̂
⇠

x

⇤
i+s

⇤
i+

q
(x⇤

i+s

⇤
i )

2+ 4µ̂
⇠

= (�̂
U

)
i

,
(4.12)

for all i 2 {1, . . . , n}. For any ⇠ 2 (0, 1), it is easy to see that (4.12) yields a well-

defined interval for �
i

, i 2 {1, . . . , n}. ⇤

Note that (4.10) is the symmetric neighbourhood (2.11) for the perturbed problems.

From the above theorem, we see that by choosing the perturbations judiciously, we

can bring any solution of the original problem into a ‘neighbourhood’ of the perturbed

central path. This implies that we can generate a series of iterates along the central path

of the perturbed problems and may have a point on the central path of the perturbed

problems that is very close to the original optimal solution but still far from the optimal

boundaries of the perturbed problems.

4.2.2 Preserving the optimal active set

Since we are interested in predicting the optimal active set of the original problem, this

section addresses the relation between the active set of the perturbed problem and that

of the original lp. We find that for su�ciently small perturbations, these two active

sets remain the same provided the original problem is nondegenerate.

Theorem 4.7 (Preserving the optimal active set). Assume (2.9) holds and

the original pair of (PD) problems has a unique and nondegenerate primal solution
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x⇤. Then there exists a positive scalar �̂ = �̂(A, b, c, x⇤) such that the pair of

perturbed problems (PD
�

) with 0  k�k < �̂ has a strictly complementary solution

(x⇤
�

, y⇤
�

, s⇤
�

) with the same active and inactive sets as x⇤.10

Proof. Since (PD) has a unique and nondegenerate primal solution, it must

have a unique primal-dual nondegenerate solution (x⇤, y⇤, s⇤) (Proposition b in

Theorem 2.5), which must be strictly complementary (due to Theorem 2.3) and

so x⇤+ s⇤ > 0. Thus, letting (A, I) be the strictly complementary partition defined

in (2.7), the kkt conditions (2.3) for (PD) at (x⇤, y⇤, s⇤) become

x⇤A = 0, x⇤I > 0 and s⇤I = 0, s⇤A > 0, (4.13a)

AIx
⇤
I = b, AT

I y
⇤ = cI , AT

Ay
⇤ + s⇤A = cA, (4.13b)

where A = [AI AA], x⇤ = (x⇤A, x
⇤
I) and s⇤ = (s⇤A, s

⇤
I). As the (PD) solution is also

nondegenerate, we must have |I| = m and rank(AI) = m, namely, AI is nonsin-

gular. We work with the equivalent form (4.6) of problems (PD
�

), and construct a

solution (p̂, ŷ, q̂) of (4.6) such that p̂+ q̂ > 0, p̂A = 0 and q̂I = 0, namely,

p̂A = 0, p̂I = x⇤I + �I +A�1
I AA�A, (4.14a)

ŷ = y⇤ + (AT

I )
�1�I , q̂I = 0, q̂A = s⇤A + �A � (A�1

I AA)
T�I . (4.14b)

Using (4.13), it is straightforward to show that (p̂, ŷ, q̂) in (4.14) satisfies all linear

and nonlinear equality constraints in the kkt conditions (4.7). It remains to prove

that p̂I > 0 and q̂A > 0. Let �max be the largest singular value of A�1
I AA, and

define a positive scalar �̂ as

�̂ =
min [x⇤I s⇤A]

�max
, (4.15)

where min [x⇤I s⇤A] is a scalar that denotes the smallest element of x⇤I and s⇤A. From

� � 0 and from norm properties, we have that

p̂I � x⇤I � kA�1
I AA�AkeI � x⇤I � kA�1

I AAk · k�AkeI
� x⇤I � kA�1

I AAk · k�keI

and
q̂A � s⇤A � k �A�1

I AA
�
T

�IkeA � s⇤A � k �A�1
I AA

�
T k · k�IkeA

� s⇤A � k �A�1
I AA

�
T k · k�keA.

Using matrix norm properties, we obtain that
��A�1

I AA
�� =

��(A�1
I AA)T

�� = �max.

This and 0 < k�k < �̂ now imply

p̂I > x⇤I � �max�̂eI � x⇤I �min [x⇤I s⇤A] eI � 0,

10The norm k · k denotes the Euclidean norm.
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and

q̂A > s⇤A � �max�̂eA � s⇤A �min [x⇤I s⇤A] eA � 0,

where we also use the definition of �̂. ⇤

An equivalent non-degeneracy assumption that would be su�cient here is to re-

quire that all (PD) solutions are primal-dual nondegenerate (see [63, Section 5] or

Theorem 2.5).

Remark on the assumptions and proof of Theorem 4.7. We have assumed

in this theorem that (PD) is primal-dual nondegenerate and has a unique solution,

which guarantees AI is nonsingular. Considering the general case when (x⇤, y⇤, s⇤) is a

possibly non-unique strictly complementary solution, to construct the desired solution

(p̂, ŷ, q̂) of (4.6) with the same active set and strictly complementary partition, one

needs to satisfy exactly primal-dual feasibility requirements such as

AI p̂I = b+A� = b+AA�A +AI�I . (4.16)

Clearly, one can only guarantee (4.16) to be consistent for � > 0 if AA�A belongs

to the range space of AI . Alternatively, one could consider satisfying (4.16) only

approximately and look for a solution p̂ of the form

p̂A = 0 and p̂I = x⇤I + �I + û, (4.17)

where û is the least-squares/minimal norm solution of AIu = AA�A. For instance in

the case when |I|  m, we have kAI û�AA�Ak  kAA�Ak. The right-hand side of the

latter inequality goes to zero as � ! 0 and so primal feasibility can be approximately

achieved. It can also be shown that p̂I in (4.17) stays positive. We will employ this

idea for qp problems and prove a general result in Section 7.2.2; see Theorem 7.4 and

its proof for details. ⇤
Note that the nondegeneracy assumption in Theorem 4.7 is not required in the re-

sults of the next chapter or in our implementations and numerical experiments. Thus

this theorem and its assumptions do not restrict our algorithmic or even main theo-

retical approach of predicting the optimal active set of the (PD) problem by solving a

perturbed (PD
�

) problem.

A simple example of preserving the optimal active set. To illustrate Theo-

rem 4.7, we consider the following example,

min �5x1 �4x2,

s.t. 2x1 +x2 +x3 = 8,

�3x1 +2x2 +x4 = 6,

x1 +2x2 +x5 = 6,

x
i

� 0, i = 1, . . . , 5.

(4.18)
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The unique solution of (4.18) is x⇤ = (103 ,
4
3 , 0,

40
3 , 0) and the corresponding dual solution

is y⇤ = (2, 0, 1) and s⇤ = (0, 0, 2, 0, 1). So A = {3, 5} and I = {1, 2, 4},

AI =

2

64
2 1 0

�3 2 1

1 2 0

3

75 and AA =

2

64
1 0

0 0

0 1

3

75 .

And thus �max ⇡ 3.6813 (the largest singular value of (AI)�1AA). From (4.15), we

have that the largest value of the perturbations is

�̂ ⇡ min(103 ,
4
3 ,

40
3 , 2, 1)

3.6813
⇡ 0.2716.

If we choose �
i

= 0.1 for all i = 1, . . . , 5, all conditions in Theorem 4.7 are satisfied.

Solving the corresponding perturbed primal problem

min (�5 + �1)x1 +(�4 + �2)x2 +�3x3 +�4x4 +�5x5,

s.t. 2x1 +x2 +x3 = 8,

�3x1 +2x2 +x4 = 6,

x1 +2x2 +x5 = 6,

x
i

� ��
i

, i = 1, . . . , 5,

and its dual, we deduce that the primal-dual optimal solution of the perturbed problems

is

x⇤
�

= (
10.1

3
,
4.1

3
,�0.1,

40.1

3
,�0.1), y⇤

�

= (1.7,�0.1, 1.2), s⇤
�

= (�0.1,�0.1, 1.7,�0.1, 1.2).

Clearly, the strictly complementary partition of (PD
�

), (A
�

, I
�

) in (4.5) coincides with

(A, I) in (2.7), the strictly complementary partition of (PD). ⇤
This example is only meant as an illustration of the theory, not the implementation

or numerical results, for which we do not require the assumption of a unique solution

or that the optimal perturbed and unperturbed active sets coincide.
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5
Active-set Prediction Using Controlled Perturbations

In this chapter, recalling our main aim, we present results for predicting the optimal

active set of (PD). We solve a perturbed problem of the form (PD
�

) instead of the

original one using ipms, but attempt to predict the active set for the original problem

during the run of the algorithm. Some useful results are derived in Section 5.1. We

prove that under certain conditions and given proper perturbations, when the duality

gap of (PD
�

) is su�ciently small, the predicted (strongly) active set for (PD) using cut-

o↵ coincides with the actual optimal (strongly) active set of (PD) (Theorems 5.7, 5.8

in Section 5.2). We also find conditions on problem conditioning that ensure that our

prediction based on cut-o↵ of the optimal active set of the original lp can happen

sooner than the prediction of the optimal active set of the perturbed problems (so

that our approach may not need to solve the perturbed problems to high accuracy)

(Theorem 5.10 in Section 5.3). Similarly, we characterise the situations when our

approach allows an earlier prediction of the original active set as compared to the case

when we solve and predict the original lp directly (Theorem 5.13 in Section 5.3). At

the end of this chapter (Section 5.5), we derive a similar set of prediction results but

using the identification function (defined in Section 3.1) instead of cut-o↵ for active-set

prediction.

5.1 Some useful results

We first derive a bound on the distance between the original optimal solution set and

strictly feasible points of the perturbed problems (PD
�

).

Lemma 5.1. Let (x, y, s) 2 F0
�

, where F0
�

is defined in (4.1), and � � 0. Then there

exists a (PD) solution (x⇤, y⇤, s⇤) such that

kx� x⇤k  ⌧
p

(r(x, s) + w(x, s)) and ks� s⇤k  ⌧
d

(r(x, s) + w(x, s)) , (ER)

where ⌧
p

> 0 and ⌧
d

> 0 are problem-dependent constants independent of (x, y, s) and
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(x⇤, y⇤, s⇤), and

r(x, s) = kmin {x, s} k and w(x, s) = k(�x,�s, xT s)+k, (5.1)

and where min {x, s} = (min(x
i

, s
i

) )
i=1,...,n and (x)+ = (max(x

i

, 0) )
i=1,...,n.

Proof. Since (x, y, s) 2 F0
�

, (4.1) gives Ax = b and AT y + s = c. Then the result

follows directly from Theorem 2.16. ⇤

Recall the quantity ✏(A, b, c) in (2.22) for (PD), which has been defined in Lemma 2.8

and used to construct an upper bound for some components of x and s (see page 24).

Similarly, for (PD
�

) we denote

✏(A, b
�

, c
�

) = min

 
min
i2I�

sup
x

⇤
�2⌦

P
�

{ (x⇤
�

)
i

+ �
i

} , min
i2A�

sup
(y⇤�,s

⇤
�)2⌦

D
�

{ (s⇤
�

)
i

+ �
i

}
!

> 0, (5.2)

where ⌦P

�

and ⌦D

�

are the primal and dual solution sets of (PD
�

) defined in (4.4) and

(A
�

, I
�

) is the strictly complementary partition for (PD
�

) defined in (4.5). When the

feasible set of (PD) is nonempty, that of (PD
�

) is also nonempty, and so, from the

proof of Lemma 2.8, ✏(A, b
�

, c
�

) > 0. Next we rephrase Lemma 5.13 in [135], apply it

to (PD
�

), and show that ✏(A, b
�

, c
�

) can also be used to construct an upper bound for

some components of x+� and s+�; note that [135, Lemma 5.13] has been reproduced

in this thesis for (PD) as Lemmas 2.8 and 2.9.

Lemma 5.2. For any (x, y, s) 2 F0
�

, where F0
�

is defined in (4.1), we have

0 < x
i

+ �
i

 µ
�

C1
(i 2 A

�

) and 0 < s
i

+ �
i

 µ
�

C1
(i 2 I

�

), (5.3)

where

µ
�

=
(x+ �)T (s+ �)

n
(5.4)

and

C1 =
✏(A, b

�

, c
�

)

n
(5.5)

with ✏(A, b
�

, c
�

) defined in (5.2) and (A
�

, I
�

) in (4.5).

Proof. Apply Lemma 2.8 to (4.6) and recall x = p� � and s = q � �. ⇤

In Lemmas 5.3 and 5.4, we derive upper bounds for r(x, s) and w(x, s), in order to

further derive upper bounds for kx� x⇤k and ks� s⇤k in Lemma 5.5.

Lemma 5.3. Let (x, y, s) 2 F0
�

, where F0
�

is defined in (4.1) for some � � 0. Then

r(x, s)  µ
�

C1

p
n+ k�k, (5.6)

where r(x, s) is defined in (5.1) and µ
�

in (5.4).
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Proof. If i 2 A
�

, where A
�

is defined in (4.5), from (5.3) we have

min (x
i

+ �
i

, s
i

+ �
i

)  x
i

+ �
i

 µ
�

C1
.

Similarly, we also have min (x
i

+ �
i

, s
i

+ �
i

)  µ�
C1

for i 2 I
�

. Thus

0 < min {x+ �, s+ �}  µ
�

C1
e,

and so from (5.1),

r(x, s) = kmin {x+ �, s+ �}� �k  kmin {x+ �, s+ �} k+ k�k  µ
�

C1

p
n+ k�k.

⇤

Lemma 5.4. Let (x, y, s) 2 F0
�

, where F0
�

is defined in (4.1) for some � � 0. Then

w(x, s)  nµ
�

+ 2k�k+ k�k2, (5.7)

where w(x, s) is defined in (5.1) and µ
�

in (5.4).

Proof. Since x+� > 0 and s+� > 0, we have �x < � and �s < �, which implies

0  (�x)+ < � and 0  (�s)+ < �. (5.8)

Using (5.4), � � 0 and (x+ �, s+ �) � 0, we have

xT s = nµ
�

+ �T�� �T (x+ �)� �T (s+ �)  nµ
�

+ k�k2. (5.9)

From (5.1), (5.8) and (5.9), we obtain

w(x, s)  k(�x)+k+ k(�s)+k+ (xT s)+  nµ
�

+ 2k�k+ k�k2.

⇤

Lemma 5.5. Let (x, y, s) 2 F0
�

, where F0
�

is defined in (4.1) for some � � 0. Then

there exists a (PD) solution (x⇤, y⇤, s⇤) and problem-dependent constants ⌧
p

and ⌧
d

that

are independent of (x, y, s) and (x⇤, y⇤, s⇤), such that

kx� x⇤k < ⌧
p

(C2µ
�

+ 4k�kmax (k�k, 1)) and ks� s⇤k < ⌧
d

(C2µ
�

+ 4k�kmax (k�k, 1)) , (5.10)

where

C2 =
n
p
n

✏(A, b
�

, c
�

)
+ n, (5.11)

✏(A, b
�

, c
�

) is defined in (5.2) and µ
�

in (5.4).
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Proof. The bound (5.10) follows from (ER) in Lemma 5.1, (5.6) and (5.7). ⇤

5.2 Predicting the original optimal active set using per-

turbations

During the iterative process of solving the perturbed problem using an interior point

framework, we try to predict the optimal active set for the original problem. Assume

(x⇤, y⇤, s⇤) is a (PD) solution. We recall that A(x⇤), defined in (2.6a), denotes the

optimal active set at (x⇤, y⇤, s⇤) and A+(s⇤) in (2.6b) stands for the strongly active set.

Let

Ā(x) = {i 2 {1, . . . , n} |x
i

< C} and Ā+(s) = {i 2 {1, . . . , n} | s
i

� C} , (5.12)

where C > 0 is some constant threshold. Ā(x) is considered as the predicted active set

and Ā+(s), the predicted strongly active set at a primal-dual pair (x, y, s) for (PD
�

).

Theorem 5.6. Let C > 0 and fix the perturbation � such that

0 < k�k < min

✓
1,

C

8max(⌧
p

, ⌧
d

)

◆
, (5.13)

where ⌧
p

and ⌧
d

are the problem-dependent constants in (5.10). Let (x, y, s) 2 F0
�

with µ
�

su�ciently small, namely,

µ
�

<
C

2C2max(⌧
p

, ⌧
d

)
, (5.14)

where F0
�

is defined in (4.1), µ
�

in (5.4) and C2 > 0 in (5.11) is a problem-

dependent constant when � is fixed. Then there exists a (PD) solution (x⇤, y⇤, s⇤)

such that

Ā+(s) ✓ A+(s⇤) ✓ A(x⇤) ✓ Ā(x).

Proof. From k�k < 1 and (5.10), we have

kx� x⇤k  ⌧
p

(C2µ
�

+ 4k�k) and ks� s⇤k  ⌧
d

(C2µ
�

+ 4k�k) ,

which imply

x⇤
i

� ⌧
p

(C2µ
�

+ 4k�k)  x
i

 x⇤
i

+ ⌧
p

(C2µ
�

+ 4k�k) (5.15)

and

s⇤
i

� ⌧
d

(C2µ
�

+ 4k�k)  s
i

 s⇤
i

+ ⌧
d

(C2µ
�

+ 4k�k) , (5.16)
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for all i 2 {1, . . . , n}. If i 2 A(x⇤), from (5.13), (5.14) and (5.15), we have x
i

< C,

namely i 2 Ā(x). So A(x⇤) ✓ Ā(x). If i /2 A+(s⇤), s⇤
i

= 0. Then from (5.13), (5.14)

and (5.16), we have s
i

< C, namely, i /2 Ā+(s). Thus Ā+(s) ✓ A+(s⇤). From

x⇤
i

s⇤
i

= 0 for all i 2 {1, . . . , n}, we have A+(s⇤) ✓ A(x⇤). ⇤

Theorem 5.6 shows that Ā(x) and Ā+(s) serve as a pair of approximations that

bound A(x⇤). Next we go a step further and show that Ā(x) is equivalent to A(x⇤)

under certain conditions.

Theorem 5.7. Let

 
p

= inf
x

⇤2⌦P
min

i/2A(x⇤)
(x⇤

i

) (5.17)

where ⌦P is the solution set of the primal problem in (PD) defined in (2.4a) and

A(x⇤) is defined in (2.6a). Assume  
p

> 0. Fix � and C such that

0 < k�k < min

✓
1,

 
p

16max(⌧
p

, ⌧
d

)

◆
and C =

 
p

2
, (5.18)

where ⌧
p

and ⌧
d

are the problem-dependent constants defined in (5.10). Let

(x, y, s) 2 F0
�

with µ
�

su�ciently small, namely,

µ
�

<
 
p

4C2max(⌧
p

, ⌧
d

)
, (5.19)

where F0
�

is defined in (4.1), µ
�

in (5.4) and C2 > 0 in (5.11). Then there exists

a (PD) solution (x⇤, y⇤, s⇤) such that

Ā(x) = A(x⇤),

where Ā(x) is defined in (5.12).

Proof. From Theorem 5.6 we have A(x⇤) ✓ Ā(x). It remains to prove Ā(x) ✓
A(x⇤). If i /2 A(x⇤), from the left inequality in (5.15), (5.18) and (5.19), we have

x
i

> x⇤
i

�  
p

2
· ⌧

p

max(⌧
p

, ⌧
d

)
� inf

x

⇤2⌦P
min

i/2A(x⇤)
(x⇤

i

)�  
p

2
=  

p

�  
p

2
= C.

Thus i /2 Ā(x), which implies Ā(x) ✓ A(x⇤). ⇤

Next, we show that Ā+(s), the predicted strongly active set at a strictly feasible

point (x, y, s) of (PD
�

), is the same as A+(s⇤) at some (PD) solution (x⇤, y⇤, s⇤).
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Theorem 5.8. Let

 
d

= inf
(y⇤,s⇤)2⌦D

min
i2A+(s⇤)

(s⇤
i

), (5.20)

where ⌦D is the solution set of the dual problem in (PD) defined in (2.4b) and

A+(s⇤) is defined in (2.6b). Assume  
d

> 0. Fix � and C such that

0 < k�k < min

✓
1,

 
d

16max(⌧
p

, ⌧
d

)

◆
and C =

 
d

2
, (5.21)

where ⌧
p

and ⌧
d

are the problem-dependent constants in (5.10). Let (x, y, s) 2 F0
�

with µ
�

su�ciently small, namely

µ
�

<
 
d

4C2max(⌧
p

, ⌧
d

)
, (5.22)

where F0
�

is defined in (4.1), µ
�

in (5.4) and C2 > 0 in (5.11). Then there exists

a (PD) solution (x⇤, y⇤, s⇤) such that

Ā+(s) = A+(s⇤),

where Ā+(s) is defined in (5.12).

Proof. From Theorem 5.6, we have Ā+(s) ✓ A+(s⇤). If i 2 A+(s⇤), s⇤
i

> 0.

This, (5.16), (5.21) and (5.22) give us

s
i

> s⇤
i

�  
d

2
· ⌧

d

max(⌧
p

, ⌧
d

)
� inf

(y⇤,s⇤)2⌦D
min

i2A+(s⇤)
(s⇤

i

)�  
d

2
=  

d

�  
d

2
= C,

namely A+(s⇤) ✓ Ā+(s). ⇤

Remarks on Theorems 5.6–5.8.

• We require µ
�

, the mean value of the complementary products, to be su�ciently

small in Theorems 5.6–5.8. This choice is possible since we have µ
�

= 0 at any

optimal solution of (PD
�

) and µ
�

can be decreased to zero (such as in an ipm

framework).

• Theorems 5.7 and 5.8 state that any feasible point for (PD
�

) for small enough µ
�

and � cannot be far away from the original optimal solution (x⇤, y⇤, s⇤) and thus

have the same active set as (x⇤, y⇤, s⇤); since such a point can also be the optimal

solution to (PD
�

), it likewise implies that (PD) and (PD
�

) have the same optimal

active set.

•  
p

in (5.17) is positive if the primal problem in (PD) has a unique (degenerate or

nondegenerate) solution, but we expect that it may often be zero in the case of
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multiple solutions. (Clearly, in our implementations, we do not choose the cut-o↵

value based on the theoretical quantity  
p

.) Similarly to  
p

, if the dual problem

in (PD) has a unique (degenerate or nondegenerate) solution, we have  
d

> 0.

• Fix � su�ciently small and let (xk, yk, sk) be iterates of a primal-dual path-

following ipm applied to (PD
�

). Then assuming these iterates belong to some

good neighbourhood of the central path of (PD
�

) and that the barrier parameter

is decreased appropriately, we have µk

�

! 0 as k ! 1 [135, Theorem 5.11]. So, by

applying Theorem 5.7, for each k su�ciently large, there exists a (PD) solution

(x⇤, y⇤, s⇤) such that Ā(xk) = A(x⇤) (see also Lemma 5.9 below).

5.3 Comparing perturbed and unperturbed active-set pre-

dictions

5.3.1 Comparing with active-set prediction for (PD

�

)

Consider the ‘large’ neighbourhood of the perturbed central path

N�1(�,�) = { (x, y, s) 2 F0
�

| (x
i

+ �
i

)(s
i

+ �
i

) � �µ
�

, i = 1, . . . , n }, (5.23)

where F0
�

is defined in (4.1) and µ
�

is defined in (5.4); see (2.10) for the definition (5.23)

in the case of � ⌘ 0 and also the discussions on di↵erent neighbourhoods for ipms in

the same section.

Next we rephrase Lemma 5.13 in [135] as an active-set prediction result for (PD
�

);

this lemma has been reproduced here for (PD) as Lemmas 2.8 and 2.9.

Lemma 5.9. Let (x, y, s) in N�1(�,�) and µ
�

defined in (5.4). Assume C in (5.12)

is set to C = ✏(A,b�,c�)�
n

, where ✏(A, b
�

, c
�

) is defined in (5.2). Then when µ
�

< µ̄max
�

,

where

µ̄max
�

=
✏2(A, b

�

, c
�

)�

n2
, (5.24)

for any strictly complementary solution (x⇤
�

, y⇤
�

, s⇤
�

) of (PD
�

) we have

Ā(x+ �) = A(x⇤
�

+ �),

where Ā(x+ �) is defined in (5.12) with x replaced by x+ � and A(x⇤
�

+ �) is defined

in (2.6) with x⇤ replaced by x⇤
�

+ �.

Proof. We work with the equivalent form (4.6) of (PD
�

). Given (5.24), ap-

ply [135, Lemma 5.13] to (4.6), or equivalently Lemmas 2.8 and 2.9, recalling that

x = p� � and s = q � �, and then we have

i 2 A
�

: 0 < x
i

+ �
i

 µ�
C1

< C1�  s
i

+ �
i

,

i 2 I
�

: 0 < s
i

+ �
i

 µ�
C1

< C1�  x
i

+ �
i

,
(5.25)
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where A
�

and I
�

are defined in (4.5). For any strictly complementary solution

(x⇤
�

, y⇤
�

, s⇤
�

) of (PD
�

), (x⇤
�

+�, y⇤
�

, s⇤
�

+�) is a strictly complementary solution of (4.6).

This and the definition of A(x⇤
�

+�) give us that A(x⇤
�

+�) = A
�

. From (5.25) and

the definition of Ā(x+ �), we also have Ā(x+ �) = A
�

. ⇤

Substituting (5.11) into (5.19), we obtain the following threshold value

µmax
�

:=
 
p

✏(A, b
�

, c
�

)

4nmax(⌧
p

, ⌧
d

) (
p
n+ ✏(A, b

�

, c
�

))
, (5.26)

where ✏(A, b
�

, c
�

) is defined in (5.2),  
p

in (5.17), and ⌧
p

and ⌧
d

are the positive con-

stants in the bounds (5.10). Theorem 5.7 provides that when  
p

> 0 and � is su�ciently

small and fixed, if µ
�

< µmax
�

, we can predict the optimal active set of (PD). Lemma 5.9

shows that when µ
�

< µ̄max
�

, where µ̄max
�

is defined in (5.24), we can provide the strictly

complementary partition of the solution set of (PD
�

) from any primal-dual pair in the

neighbourhood N�1(�,�) of the perturbed central path. To verify if our approach

can predict the optimal active set of (PD) before the strictly complementary partition

of (PD
�

), we determine conditions under which µmax
�

> µ̄max
�

.

Theorem 5.10. In the conditions of Theorem 5.7, let

 =
 
p

max(⌧
p

, ⌧
d

)
. (5.27)

If

✏(A, b
�

, c
�

)  O �p
nmin

�p
, 1

��
, (5.28)

then

µmax
�

> µ̄max
�

,

where ✏(A, b
�

, c
�

) is defined in (5.2), µmax
�

in (5.26) and µ̄max
�

in (5.24).

Proof. Note that µmax
�

> µ̄max
�

is equivalent to

✏2(A, b
�

, c
�

) +
p
n✏(A, b

�

, c
�

)� 

4�
< 0,

which is satisfied if

0 < ✏(A, b
�

, c
�

) 
p
n

2
p
�
· p

� + +
p
�
. (5.29)

Since � 2 (0, 1) and
p
a+ b  p

a+
p
b for any a and b nonnegative scalars, we have

p
� + +

p
�
� p

+ 2
p
�
� 1

3



max (
p
, 1)

�
p


3
p
�
min

�p
, 1

�
.
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The result follows from (5.29) and the above inequalities. ⇤

Theorem 5.10 implies that when solving the perturbed problems (PD
�

), if ✏(A, b
�

, c
�

)

is su�ciently small, we can predict the optimal active set of (PD) before µ
�

gets so

small that we can even obtain the strictly complementary partition of (PD
�

). To see

an example when (5.28) is satisfied, see our remarks after Theorem 5.13.

Remark. In Theorem 5.10, we do not require the optimal active set of (PD
�

) to

be the same as the optimal active set of (PD). In fact, we will show that, in the

numerical tests for the randomly generate problems (degenerate or nondegenerate),

the optimal active sets of most perturbed problems are di↵erent from those of the

original problems, but we can still predict sooner/better for (PD). In particular, the

numerical experiments show that we are not solving (PD
�

) to high accuracy and there

are iterations where we can predict the active set for (PD) but we are not close to the

solution set of (PD
�

), nor able to predict the active set of (PD
�

); see page 81. ⇤

5.3.2 Comparing with active-set prediction for (PD)

Similarly to Lemma 5.9, when we solve the original (PD) problems we can predict the

optimal (PD) active set when the (PD) duality gap is smaller than some threshold. In

this section, we intend to compare this threshold with the threshold value of µ
�

when

we are able to predict the optimal active set of (PD) by solving (PD
�

) and show that

the latter could be greater than the former under certain conditions (Theorem 5.13).

Lemma 5.13 in [135] — restated in this thesis as Lemmas 2.8 and 2.9 — yields an

active-set prediction result for (PD). In fact this result can also be obtained by setting

� = 0 in Lemma 5.9, but for clarity, we restate it here.

Lemma 5.11. [135, Lemma 5.13] Let (x, y, s) in N�1(�), where N�1(�) is the

neighbourhood defined in (2.10), and let µ as in (2.20). Let the cut-o↵ value C in (5.12)

be set to C = ✏(A,b,c)�
n

, where ✏(A, b, c) is defined in (2.22). When µ < µmax, where

µmax =
✏2(A, b, c)

n2
�, (5.30)

then for any strictly complementary solution (x⇤, y⇤, s⇤) of (PD) we have

Ā(x) = A(x⇤),

where Ā(x) is defined in (5.12) and A(x⇤) in (2.6).

Before we deduce a relationship between µmax
�

in (5.26) and µmax in (5.30), we first

relate two other important quantities, ✏(A, b
�

, c
�

) and ✏(A, b, c).

Lemma 5.12. Assume (2.9) holds and (PD) has a unique and nondegenerate solution

(x⇤, y⇤, s⇤). Then there exists at least one vector of perturbations �̄(A, b, c, x⇤, s⇤) > 0
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such that for all 0  � = ↵�̄ < �̄ where ↵ 2 (0, 1),

✏(A, b
�

, c
�

) > ✏(A, b, c), (5.31)

where ✏(A, b
�

, c
�

) is defined in (5.2) and ✏(A, b, c) in (2.22).

The proof of this lemma is given in the next section, Section 5.4.

Theorem 5.13. In the conditions of Theorem 5.7, assume (2.9) holds and (PD)

has a unique and nondegenerate solution (x⇤, y⇤, s⇤). Provided

✏(A, b, c)  O �p
nmin

�p
, 1

��
, (5.32)

where  is defined in (5.27), there exists at least one vector of perturbations

�̄(A, b, c, x⇤, s⇤) > 0 such that

µmax
�

> µmax,

for all 0 < � = ↵�̄ < �̄, where ↵ 2 (0, 1) and where µmax
�

is defined in (5.26) and

µmax in (5.30).

Proof. Applying Theorem 5.10 with � = 0 and so replacing ✏(A, b
�

, c
�

) with

✏(A, b, c), we deduce

µmax <
✏(A, b, c)

4n (
p
n+ ✏(A, b, c))

.

From Lemma 5.12, we have ✏(A, b
�

, c
�

) > ✏(A, b, c). This and the definition of µmax
�

in (5.26) give
✏(A, b, c)

4n (
p
n+ ✏(A, b, c))

< µmax
�

.

⇤

Theorem 5.13 implies that if ✏(A, b, c) is su�ciently small, we may find the optimal

active set of (PD) ‘sooner’ if we solve (PD
�

) using a primal-dual path-following ipm

than if we solve (PD).

Remark. When (PD) has a unique solution (x⇤, y⇤, s⇤), we have

✏(A, b, c) = min

✓
min
i2I

x⇤
i

, min
i2A

s⇤
i

◆
 min

i2I
x⇤
i

=  
p

.

Note that according to [85] ⌧
p

, ⌧
d

= O(1) numerically. Thus provided  
p

> 1 or n is

su�ciently large, (5.32) is satisfied. We illustrate this in an example next.
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5.3.3 A simple example of predicting the optimal (PD) active set using

perturbations

To illustrate our results, consider the following simple example

min x1 + 2x2 subject to x1 + x2 = 1, x1 � 0, x2 � 0, (5.33)

with the optimal solution

x⇤ = (1, 0), and y⇤ = 1, s⇤ = (0, 1).

Thus (5.33) has a unique and primal-dual nondegenerate solution with optimal active

set A(x⇤) = {2}, and so  
p

= ✏(A, b, c) = 1. Let the vector of perturbations be � =

↵(1, 5) where ↵ = 10�2. The perturbed problems (PD
�

) also have a unique solution

x⇤
�

= (1 + 5↵,�5↵), and y⇤
�

= 1 + ↵, s⇤
�

= (�↵, 1� ↵).

So ✏(A, b
�

, c
�

) = min (1 + 6↵, 1 + 4↵) = 1 + 4↵ = 1.04.

First we verify the conditions in Theorem 5.7, which are needed in both Theo-

rems 5.10 and 5.13. Since it is not clear how to deduce the value of ⌧
p

and ⌧
d

, we

estimate them numerically11 and it turns out that ⌧
p

⇡ ⌧
d

⇡ 0.8. We set the cut-o↵

constant C that separates the active and inactive constraints to be C =  p

2 = 0.5 and

verify that

k�k =
p
26↵ <

 
p

16max(⌧
p

, ⌧
d

)
< 1.

Thus the conditions in (5.18) are satisfied. Based on Theorem 5.7, we can predict the

original optimal active set when µ
�

is less than µmax
�

⇡ 0.0662.

Next we verify Theorems 5.10 and 5.13. From (5.27), we get  ⇡ 1.25, and so

p
nmin

�p
, 1

� ⇡ 1.58.

Thus

0 < ✏(A, b, c) < ✏(A, b
�

, c
�

) <
p
nmin

�p
, 1

�
,

which implies that conditions (5.28) and (5.32) are satisfied. For the constant �, it is

common to choose a small value to have a large neighbourhood of the central path; set

� = 0.01. Then from (5.24) and (5.30), we have

µ̄max
�

⇡ 0.0027 < µmax
�

and µmax = 0.0025 < µmax
�

.

This implies that when use perturbations, we can predict the original optimal active

set sooner than the perturbed active set or the original active set without perturba-

11We estimate ⌧p and ⌧d from their definition in (ER), namely, we solve the following optimisation
problem in matlab, max kx�x

⇤k/(r(x, s)+w(x, s)) subject to (x, y, s) 2 F0
�, where r(x, s) and w(x, s)

are defined in (5.1) and F0
� in (4.1); similarly for ⌧d.
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tions. Furthermore, the threshold values (constant C) needed to separate the active

constraints from the inactive ones for predicting the perturbed active set and the orig-

inal active set without perturbations are 0.0052 and 0.005 respectively, both of which

are much smaller than the cut-o↵ C =  p

2 = 0.5 for predicting the original optimal

active set using perturbations.

5.4 Proof of Lemma 5.12

Theorem 4.7 shows that we are able to preserve the optimal strict complementarity

partition after perturbing the problems if the original (PD) has a unique and nonde-

generate solution. Actually, we can take a step further and show that then (PD
�

) will

also have a unique and nondegenerate solution.

Theorem 5.14. Assume (2.9) holds and the (PD) problems have a unique and

nondegenerate solution (x⇤, y⇤, s⇤). Let A and I denote the corresponding optimal

active and inactive sets. Then there exists �̂ = �̂(A, b, c, x⇤, s⇤) > 0 such that

the perturbed problems (PD
�

) with 0  k�k < �̂ have a unique and nondegenerate

solution and the optimal active set is the same as that of the original (PD) problems.

Proof. We consider the equivalent perturbed problem (4.6). From Theorem 4.7,

we know there exists a �̂(A, b, c, x⇤, s⇤) > 0 such that (4.6) with 0  k�k < �̂ has a

strictly complementary solution (p̂, ŷ, q̂) with the same optimal active and inactive

sets A and I, namely we have

p̂I > 0, p̂A = 0, q̂A > 0, and q̂I = 0,

and also

AI p̂I = b
�

. (5.34)

Next we are about to show that (p̂, ŷ, q̂) is the unique solution of (4.6). Assume there

exists another solution p̄ 6= p̂. Then (p̄, ŷ, q̂) satisfies the optimality conditions (4.7).

From the complementarity equations (the third term) in (4.7) and q̂A > 0 we have

p̄A = 0 = p̂A. Then we have AI p̄I = b
�

. It follows from this and (5.34) that

AI(p̄I � p̂I) = 0. As the (PD) solution is unique and nondegenerate, we must have

|I| = m and rank(AI) = m, namely, AI is nonsingular, which implies p̂I = p̄I .

Then (4.6) has a unique and nondegenerate primal solution, which also implies

unique and nondegenerate dual solution. ⇤

To prove Lemma 5.12, we also need the following series of useful lemmas.

Lemma 5.15 (Farkas’ Lemma [10, Lemma 5.1]). One and only one of the follow-
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ing two systems has a solution:

System 1: Tw � 0 and bTw < 0,

System 2: T T y = b and y � 0,

where T 2 Rm⇥n, b 2 Rm, w 2 Rn and y 2 Rm.

Lemma 5.16. Given i 2 {1, . . . , n}, the following system

8
>><

>>:

y +Ax � 0

x�AT y � 0 and x
i

�AT

i

y > 0

(x, y) � 0

always has a solution, where A 2 Rm⇥n, x 2 Rn, y 2 Rm and A
i

is the ith column of

A.

Proof. Without losing generality, we can choose i = 1. Partition x and A

as x =
⇥
x1 x̄T

⇤
T

and A =
h
A1 Ā

i
, where x̄ = [x2 . . . x

n

]T and Ā =
h
A2 . . . A

n

i
.

We need to prove the following system has a solution

8
>>>>>>>>><

>>>>>>>>>:

y + A1x1 + Āx̄ � 0

�ĀT y + x̄ � 0

y � 0

x1 � 0

x̄ � 0

AT

1 y � x1 < 0

. (5.35)

From Lemma 5.15, we know (5.35) has a solution if and only if

8
>>>>>>>>><

>>>>>>>>>:

2

64
I
m

�Ā I
m

0 0

AT

1 0 0 1 0

ĀT I
n�1 0 0 I

n�1

3

75

2

6666664

u1

u2

u3

u4

u5

3

7777775
=

2

64
A1

�1

0

3

75

(u1, u2, u3, u4, u5) � 0

, (5.36)

has no solution, where u1 2 Rm, u2 2 Rn�1, u3 2 Rm, u4 2 R and u5 2 Rn�1.

Assume (5.36) has a solution (u1, u2, u3, u4, u5) � 0. Then we get

u1 � Āu2 �A1 = �u3  0, (5.37a)

AT

1 u1 = �1� u4 < 0, (5.37b)

ĀTu1 = �u2 � u5  0. (5.37c)
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Multiplying both sides of (5.37a) by uT1 � 0, we have

uT1 u1 � (ĀTu1)
Tu2 �AT

1 u1 = �uT1 u3.

From (5.37b), (5.37c) and the nonnegativity of the variables, we know

uT1 u1 � (ĀTu1)
Tu2 � ĀT

1 u1 > 0 but � uT1 u3  0.

Thus (5.36) has no solution, which implies (5.35) has a solution. ⇤

Lemma 5.17. The system 8
>><

>>:

y +Ax � 0

x�AT y > 0

(x, y) � 0

(5.38)

always has a solution, where A 2 Rm⇥n, x 2 Rn and y 2 Rm.

Proof. From Lemma 5.16, we know for any i 2 {1, . . . , n}, there exists (xi, yi) � 0

where xi 2 Rn and yi 2 Rm, such that

(
yi +Axi � 0,

xi �AT yi � 0 and xi
i

�AT

i

yi > 0.
(5.39)

Set x̂ =
P

n

i=1 x
i � 0 and ŷ =

P
n

i=1 y
i � 0. Then from (5.39), we have

ŷ +Ax̂ =
nX

i=1

yi +A(
nX

i

xi) =
nX

i=1

(yi +Axi) � 0,

and

x̂�AT ŷ =
nX

i=1

(xi�AT yi) =

2

664

(x11 �AT

1 y
1) + (x21 �AT

1 y
2) + · · ·+ (xn1 �AT

1 y
n)

...

(x1
n

�AT

n

y1) + (x2
n

�AT

n

y2) + · · ·+ (xn
n

�AT

n

yn)

3

775 > 0.

⇤

Lemma 5.18. The system 8
>><

>>:

y +Ax > 0

x�AT y � 0

(x, y) � 0

(5.40)

always has a solution, where A 2 Rm⇥n, x 2 Rn and y 2 Rm.

Proof. Replace A in Lemma 5.17 by �AT . ⇤
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Lemma 5.19. The system 8
>><

>>:

y +Ax > 0

x�AT y > 0

(x, y) � 0.

always has a solution, where A 2 Rm⇥n, x 2 Rn and y 2 Rm.

Proof. From Lemmas 5.17 and 5.18, we know there exist (x̂, ŷ) and (x̃, ỹ) such

that (5.38) and (5.40) hold respectively. Set x̄ = x̂+ x̃ and ȳ = ŷ + ỹ and deduce

ȳ +Ax̄ = (ŷ +Ax̂)| {z }
�0

+(ỹ +Ax̃)| {z }
>0

> 0 and x̄�AT ȳ = (x̂�AT ŷ)| {z }
>0

+(x̃�AT ỹ)| {z }
�0

> 0.

⇤

Proof of Lemma 5.12. Assume A and I are the optimal active and inactive sets at

the unique solution (x⇤, y⇤, s⇤) of (PD). Then from (2.22), we have

✏(A, b, c) = min

✓
min
i2I

(x⇤
i

),min
i2A

(s⇤
i

)

◆
. (5.41)

From Theorem 5.14, we know there exists a �̂ = �̂(A, b, c, x⇤, s⇤) such that (PD
�

)

with 0  k�k < �̂ has a unique and nondegenerate solution and A and I are the

optimal active and inactive sets. Since (p̂, ŷ, q̂) defined in (4.14) is a solution of (4.6),

(x⇤
�

, y⇤
�

, s⇤
�

) = (p̂ � �, ŷ, q̂ � �) is a solution of (PD
�

) and also unique, with A and I
being the optimal active and inactive sets. This and (5.2) give

✏(A, b
�

, c
�

) = min

✓
min
i2I

(x̂
i

+ �
i

),min
i2A

(ŝ
i

+ �
i

)

◆
. (5.42)

From (4.14), recalling that p̂ = x̂+ � and q̂ = ŝ+ �, we have

(x̂I + �I)� x⇤I = �I +A�1
I AA�A and (ŝA + �A)� s⇤A = �A � (A�1

I AA)
T�I .

This, (5.41) and (5.42) give us that ✏(A, b
�

, c
�

) > ✏(A, b, c), provided

8
>><

>>:

�I +A�1
I AA�A > 0

�A � (A�1
I AA)

T�I > 0

�I ,�A � 0

. (5.43)

It remains to find a solution of (5.43) whose norm is less than �̂. From Lemma 5.19,

we know (5.43) always has a solution, say �̄. Since (5.43) is homogeneous, �̂

2k�̄k �̄ is also

a solution, and k �̂

2k�̄k �̄k < �̂. Without losing generality, we denote this solution as �̄.

Furthermore, (5.43) holds for all � with 0 < � = ↵�̄ < �̄ where ↵ 2 (0, 1). ⇤
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5.5 Using the identification function as threshold in the

controlled perturbations prediction framework

The purpose of this section is to illustrate that the idea of using controlled perturbations

serves as a general framework for active-set prediction for ipms that has the potential

to work with other prediction strategies, not just cut-o↵. We investigate the use of the

identification function (Section 3.1) in this context.

In Section 3.1 we have introduced the so-called identification function and for-

mulated such a function for lp problems. Recall the identification function ⇢(x, y, s)

defined in (3.1).

Let (x, y, s) 2 F0
�

, where F0
�

is defined in (4.1), namely, (x, y, s) is a strictly feasible

point of (PD
�

), for some � � 0. Then we can deduce the following ‘feasible’ variant of

the identification function,

⇢(x, y, s) =
p
r(x, s) + w(x, s), (5.44)

where r(x, s) and w(x, s) are defined in (5.1).

Lemma 5.20. Let (x, y, s) 2 F0
�

, where F0
�

is defined in (4.1) for some � � 0. Then

⇢2(x, y, s)  C2µ
�

+ 4k�kmax (k�k, 1) , (5.45)

where ⇢(x, y, s) is defined in (5.44), µ
�

in (5.4) and C2 > 0 in (5.11).

Proof. (5.45) follows from (5.44), Lemmas 5.3 and 5.4. ⇤

A threshold test is employed to predict the active and strongly active sets. Recall

that A(x⇤) in (2.6a) and A+(s⇤) in (2.6b) represent the active and strongly active sets

at a (PD) solution (x⇤, y⇤, s⇤). We have also denoted Â(x, y, s) in (3.3) and Â+(x, y, s)

in (3.4) as the predicted active and strongly active sets when using the identification

function, respectively. The following theorem shows that Â(x, y, s) and Â+(x, y, s)

bound well the optimal active and strongly active sets of the original (PD) problems.

Theorem 5.21. Fix the vector of perturbations � such that

0 < k�k < min

 
1,

1

8max(⌧2
p

, ⌧2
d

)

!
, (5.46)

where ⌧
p

and ⌧
d

are the problem-dependent constants in (5.10). Let (x, y, s) 2 F0
�

with µ
�

su�ciently small, namely,

µ
�

<
1

2C2max(⌧2
p

, ⌧2
d

)
, (5.47)
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where F0
�

is defined in (4.1), µ
�

in (5.4) and C2 > 0 in (5.11) is a problem-

dependent constant when � is fixed. Then there exists a (PD) solution (x⇤, y⇤, s⇤)

such that

Â+(x, y, s) ✓ A+(s⇤) ✓ A(x⇤) ✓ Â(x, y, s),

where Â(x, y, s) is defined in (3.3), Â+(x, y, s) in (3.4), A(x⇤) in (2.6a), and

A+(s⇤) in (2.6b).

Proof. From Lemma 3.3 and norm properties, we have

x⇤
i

� ⌧
p

⇢2(x, y, s)  x
i

 x⇤
i

+ ⌧
p

⇢2(x, y, s) (5.48)

and

s⇤
i

� ⌧
d

⇢2(x, y, s)  s
i

 s⇤
i

+ ⌧
d

⇢2(x, y, s). (5.49)

From (5.45), (5.46) and (5.47), we have ⇢2(x, y, s) < 1
max(⌧2p ,⌧2d)

, and so,

⇢(x, y, s) <
1

max (⌧
p

, ⌧
d

)
. (5.50)

If i 2 A(x⇤), x⇤
i

= 0. Then the second inequality in (5.48), together with (5.50) give

us that

x
i

 ⌧
p

⇢2(x, y, s) <
⌧
p

max (⌧
p

, ⌧
d

)
⇢(x, y, s)  ⇢(x, y, s).

Thus i 2 Â(x, y, s), and A(x⇤) ✓ Â(x, y, s). If i /2 A+(s⇤), s⇤
i

= 0. Then from (5.49)

and (5.50), we have

s
i

 ⌧
d

⇢2(x, y, s) < ⇢(x, y, s).

Thus i /2 Â+(x, y, s), namely Â+(x, y, s) ✓ A+(s⇤). From the complementary con-

ditions (2.3c), we have A+(s⇤) ✓ A(x⇤). ⇤

Similarly to Theorems 5.7 and 5.8, we can also prove that under certain condi-

tions the predicted (strongly) active set for (PD) coincides with the actual optimal

(strongly) active set of (PD), when using the identification function for prediction; see

the following Theorems 5.22 and 5.23.

Theorem 5.22. Assume  
p

> 0, where  
p

is defined in (5.17). Fix � such that

0 < k�k < min

 
1,

1

8max(⌧2
p

, ⌧2
d

)
,
 2
p

32

!
(5.51)

where ⌧
p

and ⌧
d

are the problem-dependent constants defined in (5.10). Let
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(x, y, s) 2 F0
�

with µ
�

su�ciently small, namely,

µ
�

< min

 
1

2C2max(⌧2
p

, ⌧2
d

)
,
 2
p

8C2

!
, (5.52)

where F0
�

is defined in (4.1), µ
�

in (5.4) and C2 > 0 in (5.11). Then there exists

a (PD) solution (x⇤, y⇤, s⇤) such that

Â(x, y, s) = A(x⇤),

where Â(x, y, s) is defined in (5.12) and A(x⇤) in (2.6a).

Proof. From Theorem 5.21, we have A(x⇤) ✓ Â(x, y, s). It remains to prove

Â(x, y, s) ✓ A(x⇤). From (5.45), (5.51) and (5.52), we have

⇢(x, y, s) <
 
p

2
. (5.53)

If i /2 A(x⇤), from the first inequality in (5.48), (5.50) and (5.53), we have

x
i

� x⇤
i

� ⌧
p

⇢2(x, y, s) >  
p

� ⇢(x, y, s) > ⇢(x, y, s).

Thus i /2 Â+(x, y, s), namely Â(x, y, s) ✓ A(x⇤). ⇤

Theorem 5.23. Assume  
d

> 0, where  
d

is defined in (5.20). Fix � such that

0 < k�k < min

 
1,

1

8max(⌧2
p

, ⌧2
d

)
,
 2
d

32

!
(5.54)

where ⌧
p

and ⌧
d

are the problem-dependent constants defined in (5.10). Let

(x, y, s) 2 F0
�

with µ
�

su�ciently small, namely,

µ
�

< min

 
1

2C2max(⌧2
p

, ⌧2
d

)
,
 2
d

8C2

!
, (5.55)

where F0
�

is defined in (4.1), µ
�

in (5.4) and C2 > 0 in (5.11). Then there exists

a (PD) solution (x⇤, y⇤, s⇤) such that

Â+(x, y, s) = A+(s⇤),

where Â+(x, y, s) is defined in (5.12) and A+(s⇤) in (2.6b).
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Proof. From Theorem 5.21, we have Â+(x, y, s) ✓ A+(s⇤). It remains to prove

Â+(x, y, s) ✓ A+(s⇤). From (5.45), (5.54) and (5.55), we have

⇢(x, y, s) <
 
d

2
. (5.56)

Similarly to the proof of Theorem 5.22, if i 2 A+(s⇤), from (5.48), (5.50) and (5.56),

we have s
i

> ⇢(x, y, s), which implies Â+(x, y, s) ✓ A+(s⇤). ⇤

Note that the assumptions on  
p

and  
d

are not required in implementations;

see Section 6.4 for numerical experiments combining the identification function and

controlled perturbations.

Comparing perturbed and unperturbed active-set predictions using the

identification function as threshold. Similarly to Theorems 5.21 – 5.23, when

we solve the original (PD) problems we can also predict the optimal (PD) active set

using the identification function when the (PD) duality gap µ is smaller than some

threshold. Letting � = 0 and following the proofs of Lemmas 5.3 and 5.4, we can

derive an upper bound for ⇢(x, y, s) (5.44), namely,

⇢2(x, y, s)  C̄2µ, (5.57)

where µ is defined in (2.20), ✏(A, b, c) in (2.22) and

C̄2 =
n
p
n

✏(A, b, c)
+ n. (5.58)

Using (5.57) instead of (5.45), and following the same procedure of the proofs of Theo-

rems 5.21 – 5.23, we can deduce similar results as in these theorems for (PD) by setting

� = 0. Namely, let (x, y, s) 2 F0 with µ su�ciently small,

µ <
1

C̄2max(⌧2
p

, ⌧2
d

)
.

Then there exists a (PD) solution (x⇤, y⇤, s⇤) such that Â(x, y, s) and Â+(x, y, s) bound

well the optimal active and strongly active sets of (PD) problems, namely,

Â+(x, y, s) ✓ A+(s⇤) ✓ A(x⇤) ✓ Â(x, y, s),

where Â(x, y, s) is defined in (3.3), Â+(x, y, s) in (3.4), A(x⇤) in (2.6a), and A+(s⇤)

in (2.6b). Further, if  
p

> 0 and

µ < min

 
1

C̄2max(⌧2
p

, ⌧2
d

)
,
 2
p

4C̄2

!
, (5.59)
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then there exists a (PD) solution (x⇤, y⇤, s⇤) such that Â(x, y, s) = A(x⇤), where  
p

is

defined in (5.17); if  
d

> 0 and

µ < min

 
1

C̄2max(⌧2
p

, ⌧2
d

)
,
 2
d

4C̄2

!
, (5.60)

then there exists a (PD) solution (x⇤, y⇤, s⇤) such that Â+(x, y, s) = A+(s⇤), where  
d

is defined in (5.20).

Remark. To find the conditions when we can predict the optimal (PD) active set

‘sooner’ if we solve (PD
�

) using a primal-dual path-following ipm with the identification

function than if we solve (PD), we compare the threshold (upper bound) for µ
�

in (5.52)

with that for µ in (5.59), as well as by comparing (5.55) with (5.60). Essentially we

need
1

2C2
>

1

C̄2
,

which is equivalent to

✏(A, b, c)✏(A, b
�

, c
�

) +
p
n (2✏(A, b, c)� ✏(A, b

�

, c
�

)) < 0. (5.61)

If n is large and ✏(A, b
�

, c
�

) is at least twice as large as ✏(A, b, c), (5.61) may hold.

However, in theory, it is not trivial to derive a general condition for this to hold. ⇤

5.6 Conclusions

To tackle the challenging question of early optimal active-set predictions for ipms, we

have proposed the use of controlled perturbations for improving these capabilities of

ipms for lp. The perturbations are chosen so as to slightly enlarge the feasible set

in the hope that the central path of the perturbed problems passes through or close

to the original solution set when the perturbed barrier parameter is not too small.

Our approach solves a (sequence of) perturbed problems using a standard primal-dual

path-following method and predicts using cut-o↵, the optimal active set of the original

problem on the way.

We also illustrated that the idea of controlled perturbations can be used with dif-

ferent active-set prediction strategies, such as the identification function.

Please refer to Chapter 6 for preliminary numerical experiments.
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6
Numerical Experiments for Active-set Prediction Using

Perturbations

In this chapter, we present the implementation details of the perturbed algorithm

(Section 6.1) and our preliminary numerical experiments. We carry out two types

of tests, one comparing the accuracy of the predicted active sets and the other one

exploring the case of crossover to the simplex method. We first conduct the tests

using cut-o↵ in the threshold test to predict the active constraints (Section 6.3). For

verifying the accuracy of our active-set predictions, we apply an infeasible primal-

dual path-following ipm to perturbed and original randomly-generated lp problems,

terminate the algorithm at various iterations and compare the accuracy of predictions

using certain correctness comparison ratios (Section 6.3.1). When crossing over to

the simplex method, we test the e�ciency of our active-set predictions by comparing

the number of simplex iterations needed to solve the original problem to optimality,

after some initial ipm iterations (Section 6.3.2). Then we replace the cut-o↵ procedure

with the identification function and repeat all the tests in Section 6.4. Comparisons

between the perturbed algorithm with cut-o↵ and with the identification function are

also presented at the end of this section.

6.1 The perturbed algorithm and implementation

All numerical experiments in this section employ an infeasible primal-dual path-following

interior point method applied to (PD
�

) or (PD). The perturbed algorithm is sum-

marised in Algorithm 6.1 and it is nothing but Algorithm 3.1 applied to (PD
�

) with

possible shrinkage of the perturbations.
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Algorithm 6.1 The Perturbed Interior Point Algorithm with Active-set Prediction

Step 0: choose perturbations (�0,�0) > 0 and calculate a Mehrotra starting point

(x0, y0, s0) according to Section 2.2.2 on page 22;

for k = 0, 1, 2, . . . do

Step 1: solve the perturbed system (4.8) by the augmented system approach,

namely

"
�D�2

�

AT

A 0

#"
�xk

�yk

#
= �

"
Rk

d

� (Xk + ⇤k)�1Rk

µ�

Rk

p

#
,

�sk = �
⇣
Xk + ⇤k

⌘�1 ⇣
Rk

µ�
+
⇣
Sk + �k

⌘
�xk

⌘
,

where D
�

=
�
Sk + �k

�� 1
2
�
Xk + ⇤k

� 1
2 , Rk

p

= Axk � b, Rk

d

= AT yk + sk � c,

Rk

µ�
=
�
Xk + ⇤k

� �
Sk + �k

�
e � �kµk

�

e, and where �k 2 [0, 1] is defined in (2.15)

and

µk

�

=
(xk + �k)T (sk + �k)

n
; (6.1)

Step 2: choose a fixed, close to 1, fraction of the stepsize to the nearest constraint

boundary in the primal and dual space, respectively. Namely,

↵k

p

= min

 
↵̄ min

i :�x

k
i <0

✓�xk
i

� �k
i

�xk
i

◆
, 1

!
and ↵k

d

= min

 
↵̄ min

i :�s

k
i <0

✓�sk
i

� �k
i

�sk
i

◆
, 1

!
, (6.2)

where ↵̄ = 0.9995;

Step 3: update xk+1 = xk + ↵k

p

�xk and (yk+1, sk+1) = (yk, sk) + ↵k

d

(�yk,�sk);

Step 4: predict the optimal active set of (PD) and denote by Ak;

Step 5: terminate if some termination criterion is satisfied;

Step 6: calculate (�k+1,�k+1) possibly by shrinking (�k,�k) so that

(xk+1 + �k+1, sk+1 + �k+1) > 0;

end for

Algorithm without perturbations. For comparison purposes, we use Algorithm 3.1

as the unperturbed algorithm. (It is the same as Algorithm 6.1 with �k = �k = 0 and

hence no Step 6 that calculates the changes to (�k,�k).)

Preprocessing. We use the same preprocessing code explained in Section 3.4.1. The

main aim of this preprocessor is to check whether matrix A has full row rank; if not,

transform it to a full row rank matrix.

Choice of initial perturbations. In our theory, we have used the same vector of

perturbations for both primal and dual variables. For better numerical e�ciency, we

have di↵erent perturbations � and � for primal and dual variables respectively. We set

the initial perturbations to be �0 = �0 = 10�2e, where e is a vector of ones.
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We have done experiments to explore the sensitivity of our algorithm to the value

of the initial perturbations. For example, choosing �0 = �0 = 10�1e yields a high false-

prediction ratio (proportion of mistakes). Perturbations of order 10�2 and 10�3 yield

quickly a good approximation of the original (PD) active set. For �0 = �0 = 10�4e, the

perturbed algorithm starts to behave similarly to the unperturbed one simply because

the perturbations are too small.

Active-set prediction. Recall the active-set prediction framework, Procedure 3.2,

which moves the indices of the primal variables between three sets, the predicted active

and inactive sets, and the undetermined set, during the run of an ipm algorithm. In

this chapter, we integrate this strategy into Algorithm 6.1 to predict the active set of

the original (PD). We employ Procedure 3.2 with cut-o↵ for tests in Section 6.3. In

Section 6.4, we discuss the e�ciency of predicting the optimal active set of the original

problems using the identification function (3.1) and so we employ the identification

function as the threshold in Procedure 3.2. For implementation details of Procedure 3.2,

cut-o↵ and the identification function, please refer to Section 3.4.1 in Chapter 3.

Note that, the indicators [32] introduced in Chapter 3, however, are not suitable for

our purposes because of their construction, as when employed in Algorithm 6.1, they

can only be used to predict the optimal active set of (PD
�

), not that of (PD). Thus

we will not conduct any tests using indicators.

Termination. There are di↵erent ways to terminate the algorithm.

• The relative residual of the perturbed problem. If it is very small, the algo-

rithm may have solved the problem too far and so su↵er from the ill-conditioning

issue. By relative residual, we consider the following quantity

relResk
�

=
|| �Axk � b, AT yk + sk � c,

�
Xk + ⇤k

� �
Sk + �k

�
e
� ||1

1 + max (||b||1, ||c||1)
, (6.3)

where k · k1 represents the infinity-norm, namely kxk1 = max
i=1,...,n

(|x
i

|) and x =

(x1, x2, . . . , xn). When �k = �k = 0, (6.3) is the same as (2.18).

• The value of µ
�

. We can terminate the algorithm when µ
�

is less than a user-

defined threshold, for instance 10�3. This would not be a wise choice if we intend

to find the optimal solution of (PD
�

); our aim, however, is to predict a satisfying

proportion of the optimal active set of (PD) early on.

• We could perform crossover to the simplex method. An initial basis can

be generated to start the simplex method from the predicted active set of Al-

gorithm 6.1 at low extra computational cost. A good prediction could yield

substantial savings of simplex iterations, which can be seen from our preliminary

numerical results.
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The termination criteria for each test in the following sections can consist of one or

more conditions from the above list, which will be stated clearly at the beginning of

each test.

Shrinking the perturbations. In theory (Theorems 5.7 and 5.8), we state that

under certain conditions on problem degeneracy, when the perturbations are su�ciently

small, we are able to predict the optimal active set of the original problem by solving

the perturbed problem. If we consider a sequence of vectors of perturbations {�k},
where �k+1 < �k for all k = 0, 1, 2, . . ., the theoretical results still hold, namely we can

still predict the optimal active set of the original problem, say at iteration N , provided

�N and µN

�

are su�ciently small. In practice, when the initial perturbations are not

su�ciently e↵ective (e.g. too large) for active-set prediction, we allow them to shrink

after some ipm iterations so that the resulting perturbed feasible set is smaller but still

contains the feasible set of the original problem. This enables the algorithm to adjust

the perturbations accordingly, namely, the perturbed problems are getting ‘closer’ to

the original one. Our numerical experience seems to imply that shrinking perturbations

generally improves the performance of the perturbed algorithm, especially when there

is no satisfactory heuristic algorithm for choosing initial perturbations. Assume tk+1 =

min(xk+1) and vk+1 = min(sk+1). We update the perturbations as follows,

�k+1 =

8
<

:
⌘�k, if tk+1 > 0

(1� ⇣)�k + ⇣(�tk+1)e, if tk+1  0
,

and

�k+1 =

8
<

:
⌘�k, if vk+1 > 0

(1� ⇣)�k + ⇣(�vk+1)e, if vk+1  0
,

where ⌘ 2 (0, 1] and ⇣ 2 (0, 1). It follows that

xk+1 + �k+1 > 0 and sk+1 + �k+1 > 0.

We observed in our numerical experiments that when solving nondegenerate problems,

it is better to shrink faster, roughly keeping the perturbations to be O(µ
�

). When

solving degenerate problems however, it is better to shrink slower, at a rate of O(
p
µ
�

).

It is di�cult and often impossible to distinguish a priori between degenerate and non-

degenerate cases. After several numerical trials, we chose to set ⌘ = 1 and ⇣ = 0.5.

6.2 Test problems

We employ the same test problems introduced in Section 3.4.2, which we tested Al-

gorithm 3.1 on. For clarity, we briefly review them in the following and include some

useful remarks.
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Random problems (TS1 and TS2). We employ two sets of randomly generated

test problems, TS1 and TS2. Recall that the majority of the problems in TS1 are

primal nondegenerate and dual degenerate, while TS2 is a set of randomly generated

primal-dual degenerate lp test problems. There are 100 test problems in each test set.

Whenever we use TS1 or TS2, we start from the same seed to make sure we test on

the same problems throughout the thesis.

We now briefly address the following questions for test problems in both TS1 and

TS2.

1. Is the actual active set of (PD
�

) di↵erent from that of (PD)? And if so, how

di↵erent is it?

2. Do the perturbed problems have a unique solution? And if so, is it nondegenerate?

On the di↵erence between the active sets of (PD
�

) and (PD). To answer

the first set of questions, we first solve the perturbed and unperturbed problems to

optimality using an interior point solver (ipm solver from linprog in matlab) and

consider all variables less than 10�5 to be active. Then we find the optimal solutions

of the above two problems using a simplex solver (simplex solver from linprog) and

set all variables less than 10�5 as active as well. If the active set of (PD
�

) obtained by

ipm is not the same as that of (PD) from ipm, or the active set of (PD
�

) obtained from

the simplex solver is not the same as that of (PD) from the simplex solver, we consider

that (PD
�

) and (PD) have di↵erent active sets. We found that the optimal active set

of the perturbed problem is di↵erent from the original optimal active set for 98% of the

test problems in TS1 and all test problems in TS2. Furthermore, for problems in TS1,

the average di↵erence between the strictly complementary partition of (PD
�

) and that

of (PD) is as high as 33% and the di↵erence between the active set at a vertex solution

of (PD
�

) and that of (PD) is about 15% on average; for TS2, the average di↵erence

between the strictly complementary partitions of (PD
�

) and (PD) is about 29% and

the di↵erence between active sets at vertex solutions is 17% on average.

On the uniqueness and degeneracy of the (PD
�

) solutions. To attempt to

answer the second set of questions, we check if the primal active set of the perturbed

problem (PD
�

) at a strictly complementary solution is the same as that at a vertex

solution. If so, we consider (PD
�

) has a unique primal solution. If this primal solution

has more than m (number of constraints) positive components (components greater

than 10�5), we record that this solution is nondegenerate. From Theorem 2.5 we

know if the primal problem has a unique and nondegenerate solution, so is the dual;

thus (PD
�

) has a unique and primal-dual nondegenerate solution. The interesting

observation is that, for both TS1 and TS2 over 95% of the perturbed problems have a

unique and nondegenerate solution, regardless of the uniqueness or degeneracy of the

original test problems.
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Netlib problems (TS3) We have selected 37 small and medium-sized problems from

the netlib test set, the same ones as in Section 3.4.2.

6.3 Numerical results using cut-o↵ for active-set predic-

tion

6.3.1 On the accuracy of active-set predictions using prediction ratios

In this section, we illustrate and discuss the benefits of using perturbations to predict

the optimal active set.

The main task for this test is to compare the three measures, false-prediction,

missed-prediction and correctness ratios, for Algorithms 6.1 and 3.1. We have intro-

duced the three ratios in Section 3.4.3. Here we briefly restate their meaning. False-

prediction ratio measures the degree of incorrectly identified active constraints, missed-

prediction ratio measures the proportion of incorrectly rejected active constraints and

correctness ratio shows the accuracy of the prediction. All three ratios range from 0 to

1. If the predicted set is the same as the actual optimal active set, then the correct-

ness ratio is 1; for details of calculating these ratios, please refer to the corresponding

paragraphs in Section 3.4.3.

When an lp problem has multiple solutions, the active set of a vertex solution is

di↵erent from that of the strictly complementary solutions (about 17% di↵erence on

average for TS1 and 21% for TS2). To understand which active set do the (perturbed)

Algorithm 6.1 and the (unperturbed) 3.1 predict, we terminate both algorithms at the

same iteration and compare the predicted active sets with the actual optimal active

sets obtained from an interior point solver and a simplex solver12.
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Figure 6.1: Prediction ratios for randomly
generated problems
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Figure 6.2: Prediction ratios for randomly
generated primal-dual degenerate problems

12 We obtain the ‘actual optimal active set’ by solving the problem using matlab’s solver linprog
with the ‘algorithm’ option set to interior point or simplex and considering all variables less than 10�5

as active.
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In Figures 6.1 and 6.2, we present the results for TS1 (left) and TS2 (right). The x-

axis shows the number of interior point iterations at which we terminate the algorithms.

In each figure, the first three plots (from left to right, top to bottom) show the average

value of the three measures mentioned above for the test problems in question. The last

plot at the bottom right corner presents the corresponding log10 scaled relative kkt

residuals, defined in (2.18). There are four lines in each plot, representing the prediction

ratios by comparing the active set from Algorithm 6.1 with that from matlab’s simplex

solver (solid red line with circle) and from matlab’s ipm (dashed blue line with star),

and Algorithm 3.1 with simplex (solid black line with square sign) and with ipm (dashed

green line with diamond sign) respectively.

• Figures 6.1 and 6.2 show that the average correctness ratios for Algorithm 6.1

are at least as good and generally better — namely, more than 4 times higher

at certain iterations — than those for Algorithm 3.1. Thus it seems that using

perturbations can only improve the active-set prediction capabilities of ipms.

• Algorithm 3.1 is in fact an interior point solver applied to (PD) which approaches

a strictly complementary (PD) solution. This is confirmed by having better cor-

rectness ratios when comparing Algorithm 3.1 with the ipm than when comparing

it with the simplex.

• Due to the fact that the active set from the ipm (the strictly complementary

partition) contains less elements than that from the simplex (vertex solution),

the correctness ratio of Algorithm 6.1 compared with the ipm is higher than that

compared with the simplex at the early stage. However the false-prediction ratios

of the former climb up to about 0.16 at the end for both test cases. Thus the cor-

responding correctness ratios go down. The false-prediction ratios of comparing

Algorithm 6.1 with simplex are much less, about 0.05 for both cases. The be-

haviour of the false-prediction ratios seems to imply that Algorithm 6.1 predicts

the active set of a vertex solution (that may not be the same vertex as obtained

by the simplex solver).

• After 18 iterations, the correctness ratios do not reach 1. This is due to ill-

conditioning which prevents us from solving any further. For this 18th iteration,

the perturbations are not zero, they are about O(10�2) for problems in TS1

and O(10�3) for the degenerate problems in TS2, and on average the relative

residual (2.18) is lower than 10�6.

Can Algorithm 6.1 predict the optimal active set of (PD) sooner than it

obtains the strictly complementary partition of (PD
�

)? In Figures 6.3 and 6.4,

besides comparing the predicted active set of (PD) with the actual active set of (PD), we

also compared the predicted active set of (PD
�

)13 with the actual active sets of (PD
�

)

13We apply Algorithm 3.1 to the equivalent form (4.6) of (PD�), which is equivalent to solving the
perturbed problem using an ipm method and predicting the active set of the perturbed problem on the
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obtained from a simplex solver (solid purple line with downward-pointing triangle)

and an ipm solver (dashed brown line with upward-pointing triangle), respectively; see

Footnote 12 on the choice of solvers. We again use the test sets TS1 and TS2.

We can see that on average Algorithm 6.1 can predict a better active set for (PD)

than when applying Algorithm 3.1 to predict the active set of (PD
�

). Furthermore, for

test case TS1, before iteration 12, Algorithm 3.1 cannot predict much concerning the

active set of (PD
�

) while Algorithm 6.1 already has an increasingly accurate prediction

for the active set of (PD) (approximately 80% of the active set of (PD) at iterations

12). We can draw similar conclusions for TS2.
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Figure 6.3: Comparing perturbed active-
set predictions for TS1
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Figure 6.4: Comparing perturbed active-
set predictions for TS2

Note that, to yield good performance, we do not need to force the active set of (PD
�

)

to be the same as the (original) active set of (PD). In fact, for most test problems in

both TS1 and TS2, this does not hold. When perturbations are not so small, namely

O(10�2) or O(10�3), which is the case even in the last ipm iterations in Figures 6.3

and 6.4, the perturbed optimal active set is di↵erent from the original optimal active set

for nearly all of the test problems in both TS1 and TS2; see the discussion on page 79.

Furthermore, as mentioned on page 79, almost all of the perturbed problems have

a unique and nondegenerate solution, regardless of the uniqueness or degeneracy of the

original test problems. This is the reason why the predictions of the perturbed active

set when comparing with simplex and ipm are identical in Figures 6.3 and 6.4.

6.3.2 Crossover to simplex

In this section, we test the e�ciency of our active-set predictions using perturba-

tions when crossing over to a simplex solver after some ipm iterations. We choose

lp solve [15] as our simplex solver. Although there are many di↵erent simplex imple-

mentations, many of which are probably more e�cient and powerful than lp solve,

we chose lp solve because its matlab interface has the functionality that allows us

way.

82



Chapter 6. Numerical Experiments for Active-set Prediction Using Perturbations 83

to set the initial basis. To the best of our knowledge, this is the only such open source

simplex solver.

Initial basis for the simplex method (Procedure 6.2). Assume we terminate

the perturbed algorithm Algorithm 6.1 at the kth iteration, with the predicted active

set Ak. To generate an initial basis B from Ak, we first obtain all independent columns

in AIk . If this submatrix is not of rank m, we choose a column from AAk and append

it to the submatrix provided it is independent of existing columns in the submatrix.

The order in which columns are added back in is decided by dual information, namely

we keep trying a series of columns {A
it}, where i

t

2 Ak and sk
i1

 sk
i2

 . . .  sk
i|Ak|

,

until a full rank square matrix is obtained. If A is full row rank14, this procedure is

finite. A similar approach has been used in [126, Section 7] to form a basis of A.

Procedure 6.2 Generating an Initial Basis for the Simplex Method

At the kth iteration:
given predicted active and inactive sets Ak and Ik, the iterate (xk, yk, sk) and a
large constant Const > max (sk), set B = Ik;
if rank(AB) < |Ik| then
find the set of indices of all independent columns of AB, say idx.
set B = idx;

end if
while rank(AB) < m do
find the index j = argmin

j2Ak

(skAk) and set (skAk)j = Const;

if (AAk)
j

is independent with columns of AB then
set B = B [ {j};

end if
end while

To conduct the tests, we first choose a threshold µcap
�

, run Algorithm 6.1, terminate

the algorithm when µk

�

< µcap
�

, record the number of interior point iterations, say K,

generate an initial basis B by the above procedure and finally start the simplex solver

lp solve from the initial basis B. For comparison purposes we perform exactly K

iterations of Algorithm 3.1, and generate a new basis for (PD) by the same procedure,

without constraining the value of µk. All tests in this part are run with µcap
�

= 10�3.

We compare the number of simplex iterations used to get an optimal solution after

crossover from Algorithms 6.1 and 3.1, visualising the results via a relative performance

profile [103]. Namely, we consider the following relative iteration count,

rl
i

= � log2
Iterp

i

Iter0
i

, (6.4)

where i stands for the ith problem, the numerator stands for the number of simplex

iterations performed after Algorithm 6.1 and the denominator measures the same but

14This can be guaranteed by preprocessing, as mentioned on page 40.
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after Algorithm 3.1. If, for problem i, Algorithm 6.1 uses fewer simplex iterations, we

get a positive valued bar with height = rl
i

. If Algorithm 3.1 wins, we obtain a negative

valued bar with height defined as �rl
i

. The value of the bar will be 0 if these two

yield the same simplex iterations or lp solve fails for both algorithms. If lp solve

fails to solve problem i for Algorithm 6.1, we have a negative valued bar with height of

max
i

(|rl
i

|), otherwise a positive valued bar with the same height. It is clear that the

winner outperforms the loser by 2|rli| times and one algorithm outperforms the other

by having more bars (or larger area of bars) in its direction.

Crossover to simplex for randomly generated test problems (TS1 and TS2).

In Figures 6.5 and 6.6, we show the profiles for TS1 (left) and TS2 (right), with bars

sorted from largest to smallest in height. We can see that, counting the number of

simplex iterations after each algorithm, the performance of Algorithm 6.1 dominates

that of Algorithm 3.1 in both cases.
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Figure 6.5: Simplex iteration count for ran-
domly generated problems
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Figure 6.6: Simplex iteration count for
randomly generated primal-dual degenerate
problems

In Table 6.1, we show the average number of simplex iterations, the average ipm

iterations and the average µk

�

and µk when we terminate Algorithms 6.1 and 3.1 for both

test sets (TS1 and TS2). On average, using perturbations saves about 34% simplex

iterations for the test case TS1 and about 37% for TS2. Due to our experimental setup,

the number of ipm iterations are the same for Algorithms 6.1 and 3.1, and the average

final µk

�

and µk before crossover are of order 10�4.15

We also tracked the di↵erence between the initial bases generated from Algo-

rithms 6.1 and 3.1. We use relative di↵erence16 to measure the degree of di↵erence

between two bases. On average the relative di↵erence is over 60%, and over 90% of the

15The definition of µk
� and µ

k in Algorithms 6.1 and 3.1, respectively, as well as the choice of (x0
, s

0)
to be identical for (PD�) and (PD), imply that µ0

� > µ

0, with the di↵erence being essentially dictated
by the level of perturbations (�0

,�

0). Thus we are not making it any easier for Algorithm 6.1 compared
to Algorithm 3.1 in the choice of starting point.

16The number of elements in either basis generated from Algorithms 6.1 or 3.1 but not both divided
by the cardinality of the union of two bases.
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Table 6.1: Crossover to simplex when µk

�

< 10�3 for random problems.
Primal nondegenerate (TS1) PD degenerate (TS2)
Algorithm 6.1 Algorithm 3.1 Algorithm 6.1 Algorithm 3.1

Avg simplex iterations 287 436 292 464
Avg ipm iterations 10 10 10 10

Avg µk

�

and µk when crossover 7.33⇥ 10�4 6.80⇥ 10�4 7.53⇥ 10�4 7.14⇥ 10�4

test problems have greater than 50% relative di↵erence. Thus our preliminary numer-

ical experiments illustrate that using perturbations is likely to improve the e�ciency

when crossing over to simplex.

Netlib test problems (TS3). The good prediction performance of the perturbed

algorithm is not only obtained for randomly generated problems, but also for the subset

of Netlib problems (TS3). Here we add an additional termination criterion, namely we

terminate both algorithms when µk

�

and µk are less than 10�3 or when the relative

residual (2.18) less than 10�6, whichever occurs first17.

Figure 6.7 presents the relative performance profile generated the same way as for

the random tests (see (6.4) and accompanying explanation). From this figure, we can

see that for over half of the test problems, Algorithm 6.1 outperforms Algorithm 3.1

by over 1.5 times. Algorithm 6.1 ‘loses’ for only 7 problems.
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Figure 6.7: Crossover to simplex for 37 Netlib problems

We also summarise the results in Table 6.2. On average, we save about 38% simplex

iterations by applying perturbations. The average numbers in the table exclude the

data for ship08s, since lp solve fails to solve it when we do not apply perturbations.

We do not give the average value of µk

�

in the table as it is more involved than

for random problems. In particular, for the problems with very large component in

b (problems marked by * in Table A.1 ), the value of µk

�

is greater than 10�3 for

17This is because some problems have very large components in the right hand side b with max(b) >
103. For these problems, even when µ

k
� > 10�3, the relative residual may already be less than 10�6

and this causes numerical problems when trying to decrease µ

k
� further. There are five problems of

this kind, agg3, forplan, grow7, israel and share1b, and we have marked those problems by ⇤ in
Table A.1.
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Table 6.2: Crossover to simplex when µk

�

< 10�3 for 37 Netlib problems (TS3).
Algorithm 6.1 Algorithm 3.1

Avg simplex iterations 358 612
Avg ipm iterations 22 22

both Algorithms 6.1 and 3.1. There are 8 additional problems, including 25fv47,

bnl1, brandy, kb2, scfxm2, scrs8, scatp1 and stair, for which the value of µk

�

is less than 10�3 only when we apply perturbations. This seems to imply that using

perturbations can somehow accelerate the interior point method procedure or yield

better conditioning. Except for these particular problems, the average value of µk

�

is of

order 10�4. For detailed data, see Table A.1.

As for randomly generated problems, we also tracked and compared the di↵erences

between initial bases obtained from Algorithms 6.1 and 3.1. We use the same relative

di↵erence measure (see Footnote 16). The average di↵erence is about 40%, but there

are 9 problems18 with relative di↵erence less than 10%. Algorithm 6.1 is no better than

Algorithm 3.1 for these problems. Generally, for small problems with small relative dif-

ferences between bases, the simplex iterations are quite similar; for large problems, even

small relative di↵erence can yield quite di↵erent simplex iterations (such as for seba

and stocfor2). The disappointing small relative di↵erence of initial bases may be the

result of inappropriate initial perturbations, improper shrinking speed of perturbations

or ill-conditioning.

6.4 Numerical results using the identification function for

active-set prediction

In Chapter 3, we have introduced the identification function for lp and proved that it

can predict the optimal active set of (PD) when the iterates are close to the solution

set. A crucial outstanding question when using the identification function is that we

cannot get a satisfyingly good prediction at an early stage of the ipm iterative process,

which is our main motivation for developing the idea of using controlled perturbations.

In Section 5.5, we have proved that the identification function also works with con-

trolled perturbations. Here in the following two sections, we try to illustrate that using

perturbations can also help the identification function predict sooner and better.

Note that apart from using the active-set prediction procedure (Procedure 3.2)

with the identification function, we conduct exactly the same tests as those for cut-o↵

(Section 6.3).

6.4.1 Comparing prediction ratios

In Figures 6.8 and 6.9, we present the results for prediction ratios. There are four lines

in each plot, representing the prediction ratios by comparing the active set from Algo-

18afiro, agg3, grow7, isreal, sc50b, scfxm2, scfxm3, seba and stocfor2.
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rithm 6.1 with that from matlab’s simplex solver (solid red line with circle) and from

matlab’s ipm (dashed blue line with star), and Algorithm 3.1 with simplex (solid black

line with square sign) and with ipm (dashed green line with diamond sign) respectively.
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Figure 6.8: Active-set predictions for TS1
with the identification function and pertur-
bations
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Figure 6.9: Active-set predictions for TS2
with the identification function and pertur-
bations

• Figures 6.8 and 6.9 show that at early stages (average relative residual greater

than 10�5), the average correctness ratios for Algorithm 6.1 are at least as good

and generally better than those for Algorithm 3.1. Furthermore, Algorithm 6.1

with the identification function predicts almost 80% of the optimal active set at a

strictly complementary solution (the strictly complementary partition) of (PD).

It seems that using perturbations can improve the performance of the identifica-

tion function at the early stages of the ipm process.

• The false predictions for all algorithms and test cases are zero at almost all itera-

tions. Thus it reveals some degree of accuracy and reliability of the identification

function, with or without perturbations.

• Note that the average correctness ratios of comparing Algorithm 6.1 with ipm is

higher than that of comparing Algorithm 6.1 with simplex. This seems to imply

that Algorithm 6.1 with the identification function predicts the active set of a

strictly complementary solution. Note that in Figures 6.1 and 6.2, we observed

that Algorithm 6.1 with cut-o↵ seems to predict the active set of a vertex solution,

implied by the lower average false-prediction ratios of comparing Algorithm 6.1

(with cut-o↵) with simplex.

• After the 14th iteration for TS1 and the 15th for TS2 (average relative residuals

less than 10�5), the correctness ratios of comparing Algorithm 3.1 with simplex

and ipm start to catch up with the corresponding ratios for Algorithm 6.1. This
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is due to the perturbations not being zero even at the 18th iteration, but stay-

ing approximately O(10�2) for problems in TS1 and O(10�3) for the degenerate

problems in TS2.19 Thus when we solve the perturbed problems further, the

iterates may not get closer to the original optimal solution.

6.4.2 Crossover to simplex

In this section, we present the numerical results for the crossover test for combining

the identification function with controlled perturbations. At the end of this section,

we briefly compare the performances of using cut-o↵ and the identification function in

Procedure 3.2.

Randomly generated test problems (TS1 and TS2). Figures 6.10 and 6.11

illustrate that Algorithm 6.1 yields less simplex iterations than Algorithm 3.1 for the

majority of the test problems.
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Figure 6.10: Crossover with the identifica-
tion function: simplex iteration count for ran-
domly generated problems (TS1)
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Figure 6.11: Crossover with the identifi-
cation function: simplex iteration count for
randomly generated primal-dual degenerate
problems (TS2)

In Table 6.3, we present the average number of simplex iterations, the average

ipm iterations and the average µk

�

and µk when we terminate Algorithms 6.1 and 3.1

with the identification function for both test sets (TS1 and TS2). On average, using

perturbations saves about 25% simplex iterations for the test case TS1 and about 27%

for TS2. Furthermore, on average the relative di↵erence between the bases generated

from Agorithms 6.1 and 3.1 is about 50% for both test cases. Thus using perturbations

is still likely to improve the e�ciency of the identification function, when crossing over

to simplex.

Netlib test problems (TS3). Similar performances are also obtained for selected

netlib problems; see Figure 6.12 and Table 6.4. Using perturbations saves about

19This phenomenon is caused by the update rules for perturbations, not ill-conditioning.
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Table 6.3: Crossover to simplex for random problems (with the identification function).
Primal nondegenerate (TS1) PD degenerate (TS2)
Algorithm 6.1 Algorithm 3.1 Algorithm 6.1 Algorithm 3.1

Avg simplex iterations 311 416 303 417
Avg ipm iterations 10 10 10 10

Avg µk

�

and µk when crossover 7.33⇥ 10�4 6.80⇥ 10�4 7.53⇥ 10�4 7.14⇥ 10�4

11% of simplex iterations. And the average relative di↵erence of initial bases from

Algorithm 6.1 and 3.1 is about 33%.
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Figure 6.12: Crossover with the identification function: 37 Netlib problems

Table 6.4: Crossover to simplex for 37 Netlib problems (with the identification func-
tion).

Algorithm 6.1 Algorithm 3.1
Avg simplex iterations 423 474

Avg ipm iterations 22 22

6.4.3 Comparisons between cut-o↵ and the identification function

We have tested the use of controlled perturbations with cut-o↵ and the identification

function to predict the optimal active set of the original (PD) problem. In this section,

we compare the performance of using cut-o↵ and the identification function within the

perturbed algorithm framework (Algorithm 6.1).

Correctness ratios. We have observed that Algorithm 6.1 with cut-o↵ predicts the

optimal active set of a vertex solution (Section 6.3.1) and that with the identifica-

tion function predicts the strictly complementary partition (Section 6.4.1), while Algo-

rithm 3.1 always predicts the strictly complementary partition. In order to conduct per-

formance comparison, we plot corresponding correctness ratios together in Figure 6.13

for the random problems in TS1 and Figure 6.14 for the random degenerate problems

in TS2, respectively. Namely we present the correctness ratios by comparing the active
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set from Algorithm 6.1 using cut-o↵ with that from matlab’s simplex solver (solid red

line with circle), Algorithm 3.1 using cut-o↵ with matlab’s ipm solver (dashed blue line

with star), Algorithm 6.1 using the identification function with matlab’s ipm solver

(solid black line with square sign), and Algorithm 3.1 using the identification function

with matlab’s ipm solver (dashed green line with diamond sign).
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Figure 6.13: Comparing active-set prediction capabilities of cut-o↵ and the identifica-
tion function in the framework of Algorithm 6.1, for randomly generated problems in
TS1
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Figure 6.14: Comparing active-set prediction capabilities of cut-o↵ and the identifica-
tion function in the framework of Algorithm 6.1, for randomly generated primal-dual
degenerate problems in TS2

• As we mentioned before, the algorithms with perturbations generally performs

better than the algorithms without perturbations at early stages (average rela-

tive residual greater than 10�5). When the relative residual is less than 10�5,
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Algorithm 3.1 with the identification function starts to outperform the others.

Our aim, however, is to predict a satisfying proportion of the optimal active set

of (PD) as early as possible, and thus we do not intend to solve the perturbed

problems to higher accuracy than 10�5.

• It seems that using the identification function improves the accuracy of predic-

tions for the unperturbed algorithm, Algorithm 3.1. Correctness ratios from

Algorithm 3.1 with the identification function is over two times higher than that

with cut-o↵ at some iterations, for test problems in both TS1 and TS2.

• In the context of the perturbed algorithm (Algorithm 6.1), the identification

function improves the accuracy of predictions as well, but the improvement is

minor. Note that, to yield similar performance, using cut-o↵ is simpler and takes

slightly less computational e↵ort than using the identification function.

Crossover to simplex. By comparing corresponding iteration data in Table 6.1 with

that in Table 6.3 and data in Table 6.2 with Table 6.4, we observe the following.

• The average number of simplex iterations from (the unperturbed) Al-

gorithm 3.1 with the identification function is less than this algorithm

with cut-o↵, 5% less for problems in TS1, 10% for TS2 and 23% for TS3. This

is due to Algorithm 3.1 with cut-o↵ and with the identification function both pre-

dicting the strictly complementary partition of (PD) and the latter yields better

correctness ratios (see the dashed lines in Figures 6.13 and 6.14). The better the

predictions are, the better the initial basis could be, when they predict the same

active set.

• However, the situation is di↵erent when using perturbations. On average Al-

gorithm 6.1 with the identification function causes more simplex iter-

ations than that with cut-o↵, 8% more for problems in TS1, 4% for TS2 and

18% for TS3. A possible explanation is that the former predicts the strictly com-

plementary partition of (PD) while the latter predicts the active set at a vertex

solution of (PD). As the simplex method starts from vertices, the initial basis

generated from the former may be worse and less suitable than that from the

latter, despite the average correctness ratios of the former being better than that

of the latter (see the solid lines in Figures 6.13 and 6.14).

6.5 Conclusions

In this chapter, we have provided preliminary numerical evidence that our approach to

active-set prediction for ipms looks promising in that the perturbed problems are not

being solved to high accuracy before the original optimal active set can be accurately

predicted and that the perturbations help with the accuracy and speed of the activity
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prediction for the original solution set. Notably, the perturbed algorithm managed

to predict on average over 70% of the original optimal active set when the average

relative residuals reach 10�4. Note that as we are applying a standard ipm to a suite

of perturbed problems, our approach maintains polynomial complexity provided the

number of times we shrink the perturbations is (polynomially) finite.

In Section 5.3.2, we have presented the situations when our approach allows an

earlier prediction of the original active set as compared to the case when we solve

and predict the original lp directly (Theorem 5.13 in Section 5.3). However these

results reply on some conditions which are not imposed in our numerical tests. In

order to better understand why the perturbed algorithm is generally better than the

unperturbed one in the numerical tests, we also have the following conjectures.

Cutoff

Original
boundary

Perturbed
boundary

Initial point

Perturbed opt. sol.

Original opt. sol.

Figure 6.15: Illustration for potential
larger Newton steps for the perturbed al-
gorithm. The blue dashed line stands for
the iterates of the unperturbed algorithm
and the red solid line for the perturbed.

Perturbed opt. sol.

Original opt. sol.

Original boundary

Cutoff

Perturbed boundary

Initial point

Figure 6.16: Illustration for possible be-
haviours of the iterates when they are close
to the threshold and the boundaries. Blue
dashed line for the unperturbed algorithm
and red solid line for the perturbed as well.

• By enlarging the feasible set using perturbations, we potentially allow larger

Newton steps during the first few iterations, when the perturbations are not very

small. Therefore the iterates from the perturbed algorithm stand better chance to

move across the threshold sooner, recalling that the perturbed and unperturbed

algorithms are using the same cuto↵. See Figure 6.15 for an illustration.

• From the study of the indicators [32], we know when an ipm iterate, say xk
i

, ap-

proaches its boundary, the corresponding Newton direction �xk
i

may only make

small improvement towards the original optimal solution and then may su↵er

from di�culty in moving below the threshold; when an iterate of the perturbed

algorithm approaches the threshold, the iterate could be still far from the bound-

ary of the perturbed problem and therefore it can pass the threshold without

‘slowing down’. See Figure 6.16 for an illustration.
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7
Active-set Prediction for Quadratic Programming Problems

In this chapter, we extend the idea of using controlled perturbations to convex Quadratic

Programming (qp) problems. qp problems share many properties of lp, based on

which the extension of some results is straightforward. However, qp problems are not

guaranteed to have a strictly complementary solution and the existence of a strictly

complementary solution is crucial to the theory for the lp case. In the proof of Theo-

rem 4.7, the construction of an optimal solution of (PD
�

) relies on the existence of a

strictly complementary (PD) solution, more exactly the strictly complementary parti-

tion for the solution of (PD); without this, Lemma 5.2 will not hold and therefore the

consequent Lemmas 5.3 and 5.5 and the main prediction results, Theorems 5.6 – 5.8,

will not hold.

We start this chapter by presenting the formulations of the perturbed qp problems

(Section 7.1) and their properties (Section 7.2). We then derive theorems on predicting

the optimal active set of a qp problem without the strictly complementary assump-

tion (Section 7.3.1); we also present results on predicting the optimal tripartition of

a qp problem (Section 7.3.2) and prediction results using the identification function

(Section 7.3.3). In Section 7.4, we first present the perturbed algorithm structure in

Section 7.4.1 and introduce the test problems in Section 7.4.2. In Section 7.4.3, sim-

ilarly to the linear case, we conduct numerical tests on the accuracy of the predicted

optimal active set. Then in Section 7.4.4, we predict the optimal active set, build a

sub-problem by removing the active constraints and corresponding rows/columns in

the problem data, A, c, and H, solve the sub-problem using the active-set method

and compare the number of active-set iterations. The relative di↵erence between the

optimal objective value of the sub-problem and that of the original problem is also

measured. In Section 7.4.5, we compare the performance of the perturbed algorithm

using cut-o↵ with that using the identification function.

7.1 Perturbed quadratic programming problems

Because of the similarity to lp, we only briefly describe the perturbed problems and

corresponding terms and properties for qp. We enlarge the feasible set of the (QPD)
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problems (see page 26) by enlarging the nonnegativity constraints in (QPD) and con-

sider the following perturbed problems,

(Primal) (Dual)

min
x

1
2(x+ �)TH(x+ �)

+(c+ (I �H)�)T (x+ �)

s.t. Ax = b,

x � ��,

max(x,y,s) (b+A�)T y

�1
2(x+ �)TH(x+ �)

s.t. AT y + s�Hx = c,

y free, s � ��,

(QPD
�

)

where � 2 Rn and � � 0. Note that if � ⌘ 0, (QPD
�

) is equivalent to (QPD). By

formulating the Lagrangian dual [17] of the primal (dual) problem in (QPD
�

), it is

straightforward to show that the two problems in (QPD
�

) are dual to each other.

We denote the set of strictly feasible points of (QPD
�

)

QF0
�

= {(x, y, s) |Ax = b, AT y + s�Hx = c, x+ � > 0, s+ � > 0}. (7.1)

QF0
�

coincides with the strictly feasible set (2.26) of (QPD) if � ⌘ 0.

According to [105, Theorem 12.1], we derive the kkt conditions for (QPD
�

),

Ax = b, (7.2a)

AT y + s�Hx = c, (7.2b)

(X + ⇤)(S + ⇤)e = 0, (7.2c)

(x+ �, s+ �) � 0, (7.2d)

where ⇤ is a diagonal matrix with the entries of � on the diagonal and e is a vector of

ones. Any primal-dual pair (x, y, s) is an optimal solution of (QPD
�

) if and only if it

satisfies (7.2).

Equivalent formulation of (QPD
�

). Let p = x + � and q = s + �. Then we can

rewrite (QPD
�

) as follows,

(Primal) (Dual)

min
p

1
2p

THp+ ĉT
�

p

s.t. Ap = b̂
�

,

p � 0,

max(p,y,q) b̂T
�

y � 1
2p

THp

s.t. AT y + q �Hp = ĉ
�

,

y free, q � 0,

(7.3)

where

b̂
�

= b+A� and ĉ
�

= c+ (I �H)�. (7.4)

Formulating the kkt conditions of (7.3) and comparing them with (7.2), we have the

following result.

Proposition 7.1. (x⇤
�

, y⇤
�

, s⇤
�

) is an optimal solution of (QPD
�

) with some � � 0 if

and only if (p⇤
�

, y⇤
�

, q⇤
�

), with p⇤
�

= x⇤
�

+ � and q⇤
�

= s⇤
�

+ �, is a solution of (7.3).
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The central path of (QPD
�

). Following [21, Chapter 11], we derive the central

path equations for (QPD
�

), namely

Ax = b,

AT y + s�Hx = c,

(X + ⇤)(S + ⇤)e = µ e,

(x+ �, s+ �) > 0,

(7.5)

where µ > 0 is the barrier parameter for (QPD
�

). In [101], Monteiro and Adler show

that the central path of a qp problem exists if its strictly feasible set is nonempty. From

this statement and considering the equivalent form (7.3) of (QPD
�

), it follows that the

central path of (QPD
�

) exists if its strictly feasible set QF0
�

in (7.1) is nonempty. Thus

we can draw the same conclusion as in the lp case, that given � > 0, the existence

of the perturbed central path requires weaker assumptions compared to those for the

central path of (QPD), becauseQF0
�

is nonempty if (QPD) has a nonempty primal-dual

feasible set.

7.2 Properties of the perturbed quadratic programming

problems

7.2.1 Perfect and relaxed perturbations

For the lp case, we know that the optimal solution of the original problems can lie on

or near the central path of the perturbed problems (Section 4.2.1 or [25, Section 3.1]).

Following exactly the same approach, we can verify that these results also hold for qp.

Theorem 7.2 (Existence of ‘perfect’ perturbations for qp). Assume (2.9)

holds and (x⇤, y⇤, s⇤) is a solution of (QPD). Let µ̂ > 0. Then there exist per-

turbations

�̂ = �̂(x⇤, s⇤, µ̂) > 0,

such that the perturbed central path (7.5) with � = �̂ passes through (x⇤, y⇤, s⇤)

exactly when µ = µ̂.

Theorem 7.3 (Existence of relaxed perturbations for qp). Assume

(x⇤, y⇤, s⇤) is a solution of (QPD). Let µ̂ > 0 and ⇠ 2 (0, 1). Then there

exist constants �̂
L

= �̂
L

(x⇤, s⇤, µ̂, ⇠) > 0, and �̂
U

= �̂
U

(x⇤, s⇤, µ̂, ⇠) > 0, such that
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for �̂
L

 �  �̂
U

, (x⇤, y⇤, s⇤) is strictly feasible for (QPD) and satisfies

⇠µ̂e  (X⇤ + ⇤)(S⇤ + ⇤)e  1

⇠
µ̂e.

Intuitively, these existence theorems imply that when the perturbations are chosen

properly, the perturbed central path may pass or get very close to the original optimal

solution. Thus we have the hope that from the iterates which follow the perturbed

central path, we may be able to get enough information about the original optimal

solution, so as to predict the optimal active set of the original problem.

7.2.2 Preserving the optimal active sets and tripartitions

Preserving the optimal active sets. Recall that in (2.28) we have defined for (QPD)

the primal active set A(x⇤), the primal inactive set ⇥(x⇤), the dual active set I(s⇤) and
the dual inactive set A+(s⇤). Similarly, given a primal-dual pair (x, y, s) for (QPD

�

),

we define the following sets

A
�

(x) = {i 2 {1, . . . , n} |x
i

= ��} , ⇥
�

(x) = {i 2 {1, . . . , n} |x
i

> ��},
I
�

(s) = {i 2 {1, . . . , n} | s
i

= ��} , A+
�

(s) = {i 2 {1, . . . , n} | s
i

> ��}. (7.6)

In the following theorem, we show that there exists a primal-dual pair of points

which is close to the optimal solution of (QPD
�

) and the corresponding active and

inactive sets at this point are the same as the optimal active and inactive sets at an

optimal solution of (QPD).

Theorem 7.4. Assume (x⇤, y⇤, s⇤) is an optimal solution of (QPD). Then there

exist positive constants �̂ = �̂(H,A, b, c, x⇤, s⇤) and C3 = C3(H,A, x⇤, s⇤), depend-

ing on the original problem (QPD), such that for every � where 0 < k�k < �̂, there

exists a primal-dual pair (x, y, s) which satisfies (7.2c, 7.2d) and we have

A
�

(x) = A(x⇤), ⇥
�

(x) = ⇥(x⇤), I
�

(s) = I(s⇤), A+
�

(s) = A+(s⇤), (7.7)

and

max
�kAx� bk, kAT y + s�Hx� ck� < C3k�k. (7.8)

Proof. We work with the equivalent form (7.3) of the problems in (QPD
�

). For

convenience, for the rest of this proof, we neglect the dependency of the index sets

on (x⇤, y⇤, s⇤) and use A, ⇥, I and A+ to denote the partition of a matrix or a

vector in accordance with the corresponding sets. Since (x⇤, y⇤, s⇤) is a solution
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of (QPD) and from (2.28), we have

x⇤A = 0, x⇤⇥ > 0 and s⇤I = 0, s⇤A+ > 0,

A⇥x
⇤
⇥ = b, AT

I y
⇤ �HI⇥x

⇤
⇥ = cI , AT

A+y
⇤ + s⇤A+ �HA+⇥x

⇤
⇥ = cA+ ,

(7.9)

where H
XY

denotes (H
ij

)
i2X,j2Y . We define a point (p̂, ŷ, q̂) to be

p̂A = 0, p̂⇥ = x⇤⇥ + �⇥ + û,

ŷ = y⇤ + v̂, q̂I = 0, q̂A+ = s⇤A+ + �A+ �HA+A�A �AT

A+ v̂ +HA+⇥û,
(7.10)

where (û, v̂) is the minimal least-squares solution of

M

"
u

v

#
= W

"
�A

�I

#
, with M =

"
A⇥ 0

�HI⇥ AT

I

#
and W =

"
AA 0

�HIA II

#
. (7.11)

We are about to find conditions on � under which p̂⇥ > 0 and q̂A+ > 0, and thus

we can have (7.2c), (7.2d) and (7.7) hold. From [23, Theorem 2.2.1], we have

"
û

v̂

#
= M+W

"
�A

�I

#
,

where M+ is the pseudo-inverse of M . This and norm properties give us

k(û, v̂)k  kM+Wk · (k�Ak+ k�Ik)  2kM+Wk · k�k. (7.12)

Let

�̂ = min

 
min

⇥
x⇤⇥ s⇤A+

⇤

2kM+Wk ,
min

⇥
x⇤⇥ s⇤A+

⇤

kHA+Ak+ 2
�kAT

A+k+ kHA+⇥k
� kM+Wk

!
,

where min
⇥
x⇤⇥ s⇤A+

⇤
denotes the smallest elements of the vectors x⇤⇥ and s⇤A+ . This,

(7.10), (7.12), 0 < k�k < �̂ and norm properties give us that

p̂⇥ � x⇤⇥ + û � x⇤⇥ � kûke⇥ > x⇤⇥ � 2�̂kM+Wke⇥ � 0

and

q̂A+ � s⇤A+ �HA+A�A �AT

A+ v̂ +HA+⇥û

� s⇤A+ � (kHA+Ak · k�k+ kAT

A+k · kv̂k+ kHA+⇥k · kûk)
> s⇤A+ � �kHA+Ak+ 2kM+Wk(kAT

A+k+ kHA+⇥k)
�
�̂ � 0.
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It remains to prove (7.8). From (7.4), (7.9), and (7.10), we can verify

Ap̂� b̂
�

= A⇥û�AA�A

=

 
M1

"
û

v̂

#
�W1

"
�A

�I

#!
,

AT

I ŷ + q̂I �HI⇥p̂⇥ � (ĉ
�

)I = �HI⇥û+AT

I v̂ +HIA�A � �I

=

 
M2

"
û

v̂

#
�W2

"
�A

�I

#!
,

AT

A+ ŷ + q̂A+ �HA+⇥p̂⇥ � (ĉ
�

)A+ = 0,

(7.13)

where

M1 =
h
A⇥ 0

i
,M2 =

h
�HI⇥ AT

I

i
,W1 =

h
AA 0

i
and W2 =

h
�HIA II

i
.

Since (û, v̂) is the least-squares solution of (7.11),

M =

"
M1

M2

#
and W =

"
W1

W2

#
,

we have

kAp̂� b̂
�

k 
�����M

"
û

v̂

#
�W

"
�A

�I

#����� 
�����W

"
�A

�I

#�����  2kWkk�k,

kAT

I ŷ + q̂I �HI⇥p̂⇥ � (ĉ
�

)Ik 
�����M

"
û

v̂

#
�W

"
�A

�I

#����� 
�����W

"
�A

�I

#�����  2kWkk�k.

This and (7.13) imply that

max
⇣
kAp̂� b̂

�

k, kAT ŷ + q̂ �Hp̂� ĉ
�

k
⌘
 2kWkk�k. (7.14)

⇤

Remarks on Theorem 7.4.

• The point (x, y, s) satisfies the bound (7.2d) on (x, s) and the complementary

condition (7.2c). Thus the error (7.8) in the equality constraints (7.2a, 7.2b) also

bounds the ‘distance’ between (x, y, s) and the optimal solution set of (QPD
�

).

This feasibility error (7.8) goes to 0 as �! 0, and so primal and dual feasibility

can be approximately achieved. Note that, the feasibility error comes from the

residual of the least problem (7.11), in other words, if (7.11) has a solution,

(x, y, s) will be an optimal solution of (QPD
�

) with � > 0, at which the primal-

dual active sets of (QPD
�

) are the same as the original (QPD).
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• (7.14) gives an upper bound on the feasibility constraints of the equivalent form (7.3)

of (QPD
�

). Setting x̂ = p̂ � � and ŝ = q̂ � �, we can see this bound is also an

upper bound for the feasibility constraints of (QPD).

Preserving the optimal tripartition. In (2.30), we have defined the complement

of the optimal primal and dual inactive sets. Similarly, we denote

T
�

(x, s) = {1, . . . , n} \ �A+
�

(s) [⇥
�

(x)
�
, (7.15)

where A+
�

(s) and ⇥
�

(x) are defined in (7.6). Note that without the complementary

condition, (A+
�

(s),⇥
�

(x), T
�

(x, s)) may not form a tripartition of the full index set.

In the following corollary, we show that under certain conditions on the perturba-

tions, there exists a primal-dual pair which is close to (ultimately in) the solution set

of (QPD
�

), such that (A+
�

(s),⇥
�

(x), T
�

(x, s)) forms a tripartition and it is the same as

the tripartition (A+(s⇤),⇥(x⇤), T (x⇤, s⇤)) at an optimal solution (x⇤, y⇤, s⇤) of (QPD).

Corollary 7.5. Assume (x⇤, y⇤, s⇤) is an optimal solution of (QPD). Then there exist

a positive constant �̂ = �̂(H,A, b, c, x⇤, s⇤), a positive constant C3 = C3(H,A, x⇤, s⇤)

and a primal-dual pair (x, y, s) which satisfies (7.2c, 7.2d) with 0 < k�k < �̂, such

that (A+
�

(s),⇥
�

(x), T
�

(x, s)) forms a tripartition of {1, . . . , n} and is the same as the

partition (A+(s⇤),⇥(x⇤), T (x⇤, s⇤)) for the original (QPD) with (7.8) satisfied, where

A+(s⇤) and ⇥(x⇤) are defined in (2.28), T (x⇤, s⇤) in (2.30), A+
�

(s) and ⇥
�

(x) in (7.6)

and T
�

(x, s) in (7.15).

Proof. Recalling the definitions of T (x⇤, s⇤) and T
�

(x, s), the results follow from

Theorem 7.4. ⇤

Corollary 7.5 shows that under the same conditions for Theorem 7.4, there exists a

point that is close to the solution set of the perturbed problems and preserves the op-

timal tripartition of the original qp. This point may be an optimal solution of (QPD
�

)

as well.

7.3 Active-set prediction for (QPD) using perturbations

We have derived an error bound for qp in Theorem 2.14 and the following lemma

simplifies that result by using feasibility conditions.

Lemma 7.6 (Error bound for (QPD)). Let (x, y, s) 2 QF0
�

, where QF0
�

is defined

in (7.1), and � � 0. Then there exists an optimal solution (x⇤, y⇤, s⇤) of (QPD) such

that

kx� x⇤k  ⌧
p

(r(x, s) + w(x, s)) and ks� s⇤k  ⌧
d

(r(x, s) + w(x, s)), (7.16)

where ⌧
p

and ⌧
q

are problem-dependent constants independent of (x, y, s) and (x⇤, y⇤, s⇤),
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and

r(x, s) = kmin {x, s} k and w(x, s) = k(�x,�s, xT s)+k, (7.17)

and where min {x, s} = (min(x
i

, s
i

) )
i=1,...,n and (x)+ = (max(x

i

, 0) )
i=1,...,n.

Proof. Considering Ax = b and AT y+s�Hx = c, this follows from Theorem 2.14.

⇤

We define a symmetric neighbourhood [54] of the perturbed central path (7.5),

N (�,�) =

⇢
(x, y, s) 2 QF0

�

| �µ
�

 (x
i

+ �
i

)(s
i

+ �
i

)  µ
�

�
, i = 1, . . . , n

�
, (7.18)

where � 2 (0, 1) and µ
�

is defined in (5.4). In the following analysis of predicting the

optimal active set (Section 7.3.1) and tripartition (Section 7.3.2), we always consider

points in this neighbourhood.

Lemma 7.7. Let (x, y, s) 2 N (�,�) (7.18) for some � � 0 and µ
�

defined in (5.4).

Then there exists a solution (x⇤, y⇤, s⇤) of (QPD) and problem-dependent constants ⌧
p

and ⌧
d

that are independent of (x, y, s) and (x⇤, y⇤, s⇤), such that

kx� x⇤k < ⌧
p

(C4
p
µ
�

max(
p
µ
�

, 1) + 4k�kmax (k�k, 1)) ,
ks� s⇤k < ⌧

d

(C4
p
µ
�

max(
p
µ
�

, 1) + 4k�kmax (k�k, 1)) ,
(7.19)

where

C4 =

r
n

�
+ n. (7.20)

Proof. Since w(x, s) in (7.17) has the same form as that in (5.1), then following

the same proof of Lemma 5.4, we have

w(x, s)  nµ
�

+ 2k�k+ k�k2. (7.21)

It remains to find an upper bound for r(x, s) in (7.17). Since (x
i

+�
i

)(s
i

+�
i

)  1
�

µ
�

,

if x
i

+ �
i

 s
i

+ �
i

, we have

0 < x
i

+ �
i

 µ
�

�(s
i

+ �
i

)
 µ

�

�(x
i

+ �
i

)
,

namely 0 < x
i

+�
i


q

µ�
�

. Similarly if x
i

+�
i

> s
i

+�
i

, we also have 0 < s
i

+�
i

<
q

µ�
�

. Thus 0 < min {x+ �, s+ �} 
q

µ�
�

e. So from (7.17) we have

r(x, s) = kmin {x+ �, s+ �}� �k  kmin {x+ �, s+ �} k+ k�k 
q

nµ�
�

+ k�k. (7.22)

The bounds in (7.19) follow from (7.16), (7.21), and (7.22). ⇤
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7.3.1 Predicting the original optimal active set

Recall Ā(x) and Ā+(s) defined in (5.12) for (PD). We employ the same notation

for (QPD
�

) and consider Ā(x) as the predicted active set of the original problem (QPD)

and Ā+(s) as the predicted strongly active set of (QPD) at the primal-dual pair (x, y, s).

We show that prediction results for lp (Theorems 5.6 – 5.8 in Chapter 5) can be

extended to the qp case, namely, under certain conditions, the active sets A(x⇤) and

A+(s⇤) at some solution (x⇤, y⇤, s⇤) of (QPD) are bounded well by Ā+(s) and Ā(x)

below and above (Theorem 7.8), and under stricter conditions, the predicted active set

Ā(x) is equivalent to A(x⇤) (Theorem 7.9) and the predicted strongly active set Ā+(s)

equivalent to A+(s⇤) (Theorem 7.10).

Theorem 7.8. Let C > 0 and fix the vector of perturbations � such that

0 < k�k < min

✓
1,

C

8max(⌧
p

, ⌧
d

)

◆
, (7.23)

where ⌧
p

and ⌧
d

are problem-dependent constants in (7.19). Let (x, y, s) 2 N (�,�)

with µ
�

su�ciently small, namely,

µ
�

< min

 
1,

✓
C

2max(⌧
p

, ⌧
d

)C4

◆2
!
, (7.24)

where N (�,�) is defined in (7.18), µ
�

in (5.4) and C4 > 0, defined in (7.20), is

a problem-dependent constant. Then there exists a solution (x⇤, y⇤, s⇤) of (QPD)

such that

Ā+(s) ✓ A+(s⇤) ✓ A(x⇤) ✓ Ā(x), (7.25)

where Ā+(s) and Ā(x) are defined in (5.12), A+(s⇤) and A(x⇤) in (2.28).

Proof. We mimic the proof of Theorem 5.6. From the complementary condition

in (2.27), it is straightforward to derive A+(s⇤) ✓ A(x⇤). From k�k < 1, µ
�

< 1

and (7.19), we have kx� x⇤k  ⌧
p

C4
p
µ
�

+ 4⌧
p

k�k. This, (7.23), and (7.24) give us

that when i 2 A(x⇤), x⇤
i

= 0 and x
i

 ⌧
p

C4
p
µ
�

+4⌧
p

k�k < C. Thus A(x⇤) ✓ Ā(x).

Similarly, if i /2 A(x⇤), we have s⇤
i

= 0 and then s
i

 ⌧
d

C4
p
µ
�

+4⌧
d

k�k < C, which

implies Ā+(s) ✓ A(x⇤). ⇤

Theorem 7.9. Let

 
p

= inf
x

⇤2Q⌦P
min

i2⇥(x⇤)
x⇤
i

, (7.26)

where Q⌦P is the solution set of the primal problem in (QPD), and ⇥(s⇤) is defined
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in (2.28). Assume  
p

> 0. Fix C and � such that

C =
 
p

2
and 0 < k�k < min

✓
1,

 
p

16max(⌧
p

, ⌧
d

)

◆
. (7.27)

Let (x, y, s) 2 N (�,�) with µ
�

su�ciently small, namely

µ
�

< min

 
1,

✓
 
p

4max(⌧
p

, ⌧
d

)C4

◆2
!
, (7.28)

where ⌧
p

and ⌧
d

are problem-dependent constants in (7.19), N (�,�) is defined

in (7.18), µ
�

in (5.4) and C4 in (7.20). Then there exists an optimal solution

(x⇤, y⇤, s⇤) of (QPD), such that

Ā(x) = A(x⇤),

where Ā(x) is defined in (5.12) and A(x⇤) in (2.28).

Proof. Setting C =  p

2 in Theorem 7.8, we have (7.25). It remains to prove

Ā(x) ✓ A(x⇤). If i /2 A(x⇤), i 2 ⇥(x⇤) and we have x⇤
i

> 0. Then from (7.26), (7.27)

and (7.28), x
i

� x⇤
i

� ⌧
p

C4
p
µ
�

� 4⌧
p

k�k >  
p

�  p

2 = C, namely i /2 Ā(x). Thus

Ā(x) ✓ A(x⇤). ⇤

Theorem 7.10. Let

 
d

= inf
(y⇤,s⇤)2Q⌦D

min
i2A+(s⇤)

s⇤
i

, (7.29)

where Q⌦D is the solution set of the primal problem in (QPD), and A+(s⇤) is

defined in (2.28). Assume  
d

> 0. Fix C and � such that

C =
 
d

2
and 0 < k�k < min

✓
1,

 
d

16max(⌧
p

, ⌧
d

)

◆
. (7.30)

Let (x, y, s) 2 N (�,�) with µ
�

su�ciently small, namely

µ
�

< min

 
1,

✓
 
d

4max(⌧
p

, ⌧
d

)C4

◆2
!
, (7.31)

where ⌧
p

and ⌧
d

are problem-dependent constants in (7.19), N (�,�) is defined

in (7.18), µ
�

in (5.4) and C4 in (7.20). Then there exists an optimal solution

(x⇤, y⇤, s⇤) of (QPD), such that

Ā+(s) = A+(s⇤)
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where Ā+(s) is defined in (5.12) and A+(s⇤) in (2.28).

Proof. Setting C =  d
2 in Theorem 7.8, we have (7.25). It remains to prove

that A+(s⇤) ✓ Ā+(s). If i 2 A+(s⇤), we have s⇤
i

> 0. Then from (7.29), (7.30)

and (7.31), s
i

� s⇤
i

� ⌧
d

C4
p
µ � 4⌧

d

k�k >  
d

�  d
2 = C, namely i 2 Ā+(s). Thus

A+(s⇤) ✓ Ā+(s). ⇤

Remarks on Theorems 7.8–7.10.

• The results for lp (Theorems 5.6 – 5.8) only require the primal-dual pair (x, y, s)

to be in the strictly feasible set of the perturbed problem, but we need to restrict

(x, y, s) to the symmetric neighbourhood defined in (7.18) for the qp case. This

is a more restrictive condition but essential to the proof of Lemma 7.7. The

presence of
p
µ
�

in (7.19) leads to a squared term in the thresholds (7.24), (7.28)

and (7.31) for µ
�

, which implies that, comparing with the results for lp, we may

need to decrease µ
�

further before we can predict the optimal active set of a qp

problem.

• Theorems 7.8 shows that the predicted strongly active set is included in the ac-

tive set and the active set is a subset of the predicted active set. The intersection

of these two predictions can serve as an approximation of the optimal active

set, which is what we do in the implementation. Theorems 7.9 and 7.10 show

that under certain conditions on the perturbations and duality gap, we could

predict exactly the optimal active and strongly active sets at some optimal so-

lution (x⇤, y⇤, s⇤) of (QPD). Similarly to the lp case, the same quantities  
p

and  
d

are present in the theorems. When (QPD) has a unique primal (dual)

solution,  
p

> 0 ( 
d

> 0). But  
p

and  
d

are only theoretical constants and our

implementation does not depend on their values.

7.3.2 Predicting the original optimal tripartition

Let

⇥̄(x) = {i 2 {1, . . . , n} |x
i

� C} and T̄ (x, s) = {1, . . . , n} \ (Ā+(s)[ ⇥̄(x)), (7.32)

where C is some constant threshold and Ā+(s) is defined in (5.12). We consider�Ā+(s), ⇥̄(x), T̄ (x, s)
�
as the prediction of the optimal tripartition of (QPD) at the

primal-dual pair (x, y, s). Note that
�Ā+(s), ⇥̄(x), T̄ (x, s)

�
may not be a tripartition

for an arbitrary point as the complementary condition (7.2d) may not be satisfied and

thus Ā+(s) \ ⇥̄(x) could be nonempty. The following two theorems, Theorems 7.11

and 7.12, show that, under certain conditions on µ
�

and �, we are able to predict part

or the whole of the tripartition.
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Theorem 7.11. Let C > 0 and fix the perturbation � such that k�k satisfies (7.23).

Let (x, y, s) 2 N (�,�) with µ
�

su�ciently small, namely, µ
�

satisfies (7.24). Then

there exists an optimal solution (x⇤, y⇤, s⇤) of (QPD) such that

⇥̄(x) ✓ ⇥(x⇤), Ā+(s) ✓ A+(s⇤), and T (x⇤, s⇤) ✓ T̄ (x, s), (7.33)

where ⇥(x⇤) and A+(s⇤) are defined in (2.28), T (x⇤, s⇤) in (2.30), ⇥̄(x) and T̄ (x, s)

in (7.32), and Ā+(s) in (5.12).

Proof. Theorem 7.8 shows that Ā+(s) ✓ A+(s⇤). From (7.25), we have A(x⇤) ✓
Ā(x). This, ⇥̄(x) = {1, . . . , n} \ Ā(x), and ⇥(x⇤) = {1, . . . , n} \ A(x⇤), give us that

⇥̄(x) ✓ ⇥(x⇤). T (x⇤, s⇤) ✓ T̄ (x, s) follows directly from (2.30) and (7.32). ⇤

Theorem 7.12. Let

 = min

✓
inf

x

⇤2Q⌦P
min

i2⇥(x⇤)
x⇤
i

, inf
(y⇤,s⇤)2Q⌦D

min
i2A+(s⇤)

s⇤
i

◆
, (7.34)

where Q⌦P is the solution set of the primal problem in (QPD), Q⌦D is the solution

set of the dual problem and ⇥(s⇤) and A+(s⇤) are defined in (2.28). Assume  > 0.

Fix C and � such that

C =
 

2
and 0 < k�k < min

✓
1,

 

16max(⌧
p

, ⌧
d

)

◆
. (7.35)

Let (x, y, s) 2 N (�,�) with µ
�

su�ciently small, namely

0 < µ
�

< min

 
1,

✓
 

4max(⌧
p

, ⌧
d

)C4

◆2
!
, (7.36)

where ⌧
p

and ⌧
d

are problem-dependent constants in (7.19), N (�,�) is defined

in (7.18), µ
�

in (5.4) and C4 in (7.20). Then there exists an optimal solution

(x⇤, y⇤, s⇤) of (QPD), such that

Ā+(s) = A+(s⇤), ⇥̄(x) = ⇥(x⇤) and T̄ (x, s) = T (x⇤, s⇤),

where T (x⇤, s⇤) is defined in (2.30), Ā+(s) in (5.12), and ⇥̄(x) and T̄ (x, s) defined

in (7.32).

Proof. Setting C =  

2 in Theorem 7.11, we have (7.33). It remains to prove that

⇥(x⇤) ✓ ⇥̄(x) and A+(s⇤) ✓ Ā+(s). From (7.34), (7.35) and (7.36), if i 2 ⇥(x⇤),
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we have x⇤
i

> 0 and then x
i

� x⇤
i

� ⌧
p

C4
p
µ
�

� 4⌧
p

k�k >  �  

2 = C, namely

i 2 ⇥̄(x). Thus ⇥(x⇤) ✓ ⇥̄(x). Similarly, we can also have A+(s⇤) ✓ Ā+(s).

Therefore T̄ (x, s) = T (x⇤, s⇤). ⇤

7.3.3 Using the identification function as threshold

In Section 5.5, we have derived theoretical results of active-set prediction using the

identification function for lp. In this section, we present similar results for qp. Given

a strictly feasible point (x, y, s) 2 QF0
�

where QF0
�

is defined in (7.1), we also denote

⇢(x, y, s) as the identification function for (QPD), namely

⇢(x, y, s) =
p
r(x, s) + w(x, s), (7.37)

where r(x, s) and w(x, s) are defined in (7.17). We employ the same notations as for lp

for the predicted active sets, namely we denote Â(x, y, s) as the predicted primal active

set and Â+(x, y, s) the primal strongly active (dual inactive) set, where Â(x, y, s) is

defined in (3.3) and Â+(x, y, s) in (3.4).

Lemma 7.13. Let (x, y, s) 2 QF0
�

, where QF0
�

is defined in (7.1) for some � � 0.

Then

⇢2(x, y, s)  C4
p
µ
�

max(
p
µ
�

, 1) + 4k�kmax (k�k, 1) , (7.38)

where C4 is a problem-dependent constant defined in (7.20).

Proof. The bound (7.38) follows from (7.21) and (7.22). ⇤

Similar to Theorems 5.21 – 5.23, we derive the prediction results for qp, employing

the identification function as the threshold. We only give a sketch of the proofs as they

are similar to the proofs of Theorems 5.21 – 5.23.

Theorem 7.14. Fix the vector of perturbations � such that

0 < k�k < min

 
1,

1

8max(⌧2
p

, ⌧2
d

)

!
, (7.39)

where ⌧
p

and ⌧
d

are problem-dependent constants in (7.19). Let (x, y, s) 2 N (�,�)

with µ
�

su�ciently small, namely,

µ
�

< min

0

@1,

 
1

2C4max(⌧2
p

, ⌧2
d

)

!2
1

A , (7.40)

where N (�,�) is defined in (7.18), µ
�

in (5.4) and C4 > 0, defined in (7.20), is

a problem-dependent constant. Then there exists a solution (x⇤, y⇤, s⇤) of (QPD)
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such that

Â+(x, y, s) ✓ A+(s⇤) ✓ A(x⇤) ✓ Â(x, y, s),

where Â(x, y, s) is defined in (3.3), Â+(x, y, s) in (3.4), and A+(s⇤) and A(x⇤)

in (2.28).

Proof. From (7.38), (7.39) and (7.40), we have ⇢(x, y, s) < 1
max(⌧p,⌧d)

. This, (7.37)

and (7.19) give us that, when i 2 A(x⇤), x
i

 ⌧
p

⇢2(x, y, s) < ⇢(x, y, s), namely

A(x⇤) ✓ Â(x, y, s). Similarly we can have Â+(x, y, s) ✓ A+(s⇤). ⇤

Theorem 7.15. Assume  
p

> 0, where  
p

is defined in (7.26). Fix � such that

0 < k�k < min

 
1,

1

8max(⌧2
p

, ⌧2
d

)
,
 2
p

32

!
(7.41)

where ⌧
p

and ⌧
d

are problem-dependent constants in (7.19). Let (x, y, s) 2 N (�,�)

with µ
�

su�ciently small, namely,

µ
�

< min

0

@1,

 
1

2C4max(⌧2
p

, ⌧2
d

)

!2

,

 
 2
p

8C4

!2
1

A , (7.42)

where N (�,�) is defined in (7.18), µ
�

in (5.4) and C4 > 0, defined in (7.20), is

a problem-dependent constant. Then there exists a solution (x⇤, y⇤, s⇤) of (QPD)

such that

Â(x, y, s) = A(x⇤),

where Â(x, y, s) is defined in (3.3), and A(x⇤) in (2.28).

Proof. From Theorem 7.14, we have A(x⇤) ✓ Â(x, y, s) and so it remains to prove

Â(x, y, s) ✓ A(x⇤). (7.38), (7.41) and (7.42) give us that ⇢(x, y, s) <
 p

2 . From

this, (7.37) and (7.19), we can derive, when i /2 A(x⇤), x⇤
i

�  
p

� ⌧
p

⇢2(x, y, s) >

⇢(x, y, s). ⇤

Theorem 7.16. Assume  
d

> 0, where  
d

is defined in (7.29). Fix � such that

0 < k�k < min

 
1,

1

8max(⌧2
p

, ⌧2
d

)
,
 2
d

32

!
(7.43)

where ⌧
p

and ⌧
d

are problem-dependent constants in (7.19). Let (x, y, s) 2 N (�,�)
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with µ
�

su�ciently small, namely,

µ
�

< min

0

@1,

 
1

2C4max(⌧2
p

, ⌧2
d

)

!2

,

✓
 2
d

8C4

◆2
1

A , (7.44)

where N (�,�) is defined in (7.18), µ
�

in (5.4) and C4 > 0, defined in (7.20), is

a problem-dependent constant. Then there exists a solution (x⇤, y⇤, s⇤) of (QPD)

such that

Â+(x, y, s) = A+(s⇤),

where Â+(x, y, s) is defined in (3.4), and A+(s⇤) in (2.28).

Proof. From Theorem 7.14, we have Â+(x, y, s) ✓ A+(s⇤) and so it remains

to prove A+(s⇤) ✓ Â+(x, y, s). We first get ⇢(x, y, s) <  d
2 from (7.38), (7.43)

and (7.44). From this, (7.37) and (7.19), we can then show for any i 2 A+(s⇤),

s
i

�  
d

� ⌧
d

⇢2(x, y, s) > ⇢(x, y, s). ⇤

7.4 Numerical experiments for quadratic programming

using perturbations

7.4.1 The perturbed algorithm and its implementation

We have given that the perturbed algorithm framework for lp in Algorithm 6.1. As we

have mentioned earlier in Section 2.3, the main di↵erence between ipms for lp and qp is

the Newton system that we need to solve in order to get the search directions; the latter

has an extra matrix H. For clarity, we state the algorithm for qp in Algorithm 7.1.

Algorithm without perturbations for qp. For comparison in the numerical tests,

we refer to the algorithm with no perturbations (Algorithm 7.1 with � = � = 0) as

Algorithm 7.2. We also use the same notation µk defined in (2.13) for the duality

gap for Algorithm 7.2.

Most of the implementation details follow similarly to the lp case unless spec-

ified. We shrink perturbations according to the value of the smallest elements

of the current iterate, for instance, at iteration k, we choose a fixed fraction of �k

when min(xk) > 0, otherwise we find a point on the line segment connecting �k and

�min(xk)e; similarly for �k. The initial perturbations are set to �0 = �0 = 10�3e

for all numerical tests. We utilise the same active-set prediction procedure proposed

in Procedure 3.2, namely, we move the indices between the predicted active, predicted

inactive, and undetermined sets, depending on whether the criteria xk
i

< C and sk
i

> C

are satisfied. Termination criteria will be defined for each set of tests. Relative resid-

ual is also employed in the following tests to measure the distance from the iterates to
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Algorithm 7.1 The Perturbed Algorithm with Active-set Prediction for qp

Step 0: choose perturbations (�0,�0) > 0 and calculate a Mehrotra starting point
(x0, y0, s0);20

for k = 0, 1, 2, . . . do
Step 1: solve the perturbed Newton system (7.5) using the augmented system
approach, namely

�H �D�2
�

AT

A 0

� 
�xk

�yk

�
= �


Rk

d

� (Xk + ⇤k)�1Rk

µ�

Rk

p

�
,

�sk = �
⇣
Xk + ⇤k

⌘�1 ⇣
Rk

µ�
+
⇣
Sk + �k

⌘
�xk

⌘
,

where D
�

=
�
Sk + �k

�� 1
2
�
Xk + ⇤k

� 1
2 , Rk

p

= Axk � b, Rk

d

= AT yk + sk �Hxk � c,

Rk

µ�
=
�
Xk + ⇤k

� �
Sk + �k

�
e � �kµk

�

e, and where �k 2 [0, 1] is defined in (2.15)

and µk

�

in (6.1);
Step 2: compute possibly distinct stepsizes ↵k

p

for the primal iterates �xk and

↵k

d

for the dual ones (�yk,�sk) following (6.2);
Step 3: update xk+1 = xk +↵k

p

�xk and (yk+1, sk+1) = (yk, sk) +↵k

d

(�yk,�sk);

Step 4: predict the optimal active set of (QPD) and denote as Ak;
Step 5: terminate if some termination criterion is satisfied;
Step 6: calculate (�k+1,�k+1) possibly by shrinking (�k,�k) so that
(xk+1 + �k+1, sk+1 + �k+1) > 0;

end for

the optimal solution set of (QPD
�

), namely

QrelResk
�

=
|| �Axk � b, AT yk + sk �Hxk � c,

�
Xk + ⇤k

� �
Sk + �k

�
e
� ||1

1 + max (||b||1, ||c||1)
. (7.45)

7.4.2 Test problems

Randomly generated problems (QTS1). We first randomly generate the number

of constraints m 2 (10, 200), the number of variables n 2 (20, 500) and the matrix A

following the same procedure described in Section 3.4.2 for generating random lp test

problems (TS1). Then randomly generate a full rank square matrix B 2 Rn⇥n and set

the quadratic term H = B0B. Next we generate a triple (x, y, s) 2 Rn ⇥Rm ⇥Rn with

(x, s) � 0 and density about 0.5. Finally we obtain b = Ax and c = AT y + s � Hx.

Thus (x, y, s) is used as a feasible point for this problem. 50 problems are generated

for this test set.

Randomly generated degenerate problems (QTS2). First generate m, n, A

and H as for QTS1. Apart from generating a feasible point as we do for QTS1, we

generate a primal-dual degenerate optimal solution here. Namely we generate a triple

20We use the Mehrotra’s starting point (see Section 2.2.2 on page 22) for (QPD) as the starting point
for both Algorithms 7.1 and 7.2.
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(x, y, s) with (x, s) � 0, x
i

s
i

= 0 for all i 2 {1, . . . , n} and the number of positive

components of x strictly less than m and that of s strictly less than n �m. Then we

get b and c as for QTS1. 50 problems are also generated for this test set.

Convex qp test problems from Netlib [44] and Maros and Meszaros’ test

sets [87] (QTS3). We choose 7 small problems from the Netlib lp test set and add

the identity matrix as the quadratic term. We also choose 13 small problems from

Maros and Meszaros’ convex qp collection21. All test problems have been transformed

to the form with only equality constraints and nonnegative bounds on x by adding slack

variables. The dimensions of the problems are small, namely m < 200 and n < 250

including slack variables. For the full list of the problems, see Table 7.1. Note that the

problems whose names start with ‘QP ’ are obtained from netlib.

Table 7.1: Convex qp test problems from Netlib and Maros and Meszaros’ test set
Name m n Name m n

QP ADLITTLE 55 137 QP AFIRO 27 51
QP BLEND 74 114 QP SC50A 49 77
QP SC50B 48 76 QP SCAGR7 129 185
QP SHARE2B 96 162 CVXQP1 S 150 200
CVXQP2 S 125 200 CVXQP3 S 175 200
DUAL1 86 170 DUAL2 97 192
DUAL3 112 222 DUAL4 76 150
HS118 44 59 HS21 3 5
HS51 3 10 HS53 8 10
HS76 3 7 ZECEVIC2 4 6

7.4.3 On the accuracy of optimal active-set predictions

The main task for this test is to compare the three prediction ratios proposed in Sec-

tion 3.4.3 for Algorithms 7.1 and 7.2. To measure and compare the accuracy of the

predicted active sets, we terminate Algorithms 7.1 and 7.2 at the same iteration, and

compare the predicted active sets with the original optimal active set at a solution

obtained from the active-set method and that at a maximal complementary solution

(the analytic center of the solution set) from an interior point method.22 These two

original optimal active sets can be di↵erent.23 Through this test, we also try to answer

which active sets (at a solution from the active-set solver or a maximal complementary

solution) Algorithm 7.1 predicts. We test on two test cases, random problems (QTS1)

and random degenerate problems (QTS2).

21
www.doc.ic.ac.uk/

~

im/#DATA or download .mat format from my collection https://github.com/

YimingYAN/QP-Test-Problems.
22We solve the problem using Matlab’s qp solver quadprog with the ‘Algorithm’ option set to interior

point or active set and consider all variables of the optimal solution x

⇤ less than 10�5 as active.
23The di↵erence is about 5% on average for problems in QTS1 and 30% for problems in QTS2.
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Figure 7.1: Prediction ratios for randomly
generated qp problems
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Figure 7.2: Prediction ratios for randomly
generated primal-dual degenerate qp prob-
lems

In Figures 7.1 and 7.2, the x-axis gives the number of interior point iterations at

which we terminate Algorithms 7.1 and 7.2 and the y-aixs shows the average value

of corresponding measures. The first three plots (from top to bottom, left to right)

present the corresponding prediction ratios. In each plot, we compare the predicted

active set from Algorithm 7.1 with that from the active-set solver (the red solid line

with circle), Algorithm 7.1 with the interior point solver (the blue dashed line with

star sign), Algorithm 7.2 with the active-set solver (the black solid with square sign)

and Algorithm 7.2 with the interior point solver (green dashed line with diamond sign).

The last figure shows the log10-scaled average relative residuals (7.45) of Algorithms 7.1

or 7.2.

• Generally speaking, using perturbations yields earlier and better prediction of the

original optimal active set for both test cases, in terms of the correctness ratios.

Similar to the linear case, the correctness ratios from the perturbed algorithms

are over two times higher than that from the unperturbed ones at some iterations,

for test problems in both QTS1 and QTS2.

• It seems that the perturbed algorithm predicts the active set for an optimal

solution of the original problem obtained from an active-set solver. Although it

is not obvious for test problems in QTS1, the di↵erence is much clearer for the

degenerate case QTS2. In Figure 7.2, the false-prediction ratio for Algorithm 7.1

and the interior point solver is about 17% at the 20th iteration but that for

Algorithm 7.1 and the active-set solver stays close to 0.

• In Figure 7.2, we can also observe that after the 18th iteration, the average cor-

rectness ratios comparing Algorithm 7.2 with the ipm solver are better than that

comparing Algorithm 7.1 with active-set solver. This is because at the last few

iterations the perturbations are not zero (on average about O(10�3)) and can-
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not shrink further; so the iterates of Algorithm 7.1 cannot keep moving closer to

the original optimal solution, which prevents Algorithm 7.1 from improving the

correctness ratios.

• Ultimately, the correctness ratio comparing Algorithm 7.2 with the interior point

solver should go to 1 but then it would need to solve the problems to high accuracy

(10�8). As our implementation is for proof of concept, it can experience numerical

issues when solving too far.

• Another interesting phenomenon is that the relative residual of Algorithm 7.1

seems to decrease faster than that of Algorithm 7.2. It suggests that using per-

turbations may help stabilise the Newton system and thus generate better search

directions, especially for the degenerate problems in QTS2.

7.4.4 Solving the sub-problems

In this test, we first run Algorithm 7.1 and terminate it when µk

�

< 10�3, record the

number of interior point iterations, remove zero variables and corresponding columns

and/or rows of H, A and c from the original problem (QPD), and then solve the

newly-formulated smaller-sized problem (sub-problem) using the active-set method.

For comparison purposes we perform the same number of interior point iterations of

Algorithm 7.2, predict the active set, formulate the sub-problem and solve it. We

compare the number of active-set iterations used to solve the sub-problems from Algo-

rithms 7.1 and 7.2.

It is also essential to make sure the sub-problems that we generate are equivalent

to their original problems. Assume Ak is the predicted active set when terminating

the interior point process at iteration k, x⇤sub the optimal solution of the subproblems

from the active-set solver and x⇤ an optimal solution of the original problem. Let

Ak

c

= {1, . . . , n} \ Ak be the complement of Ak. We consider the feasibility errors in

the context of the original problem and the relative di↵erence between the optimal

objective values of the sub-problems and that of the original problems, namely,

• Feasibility error =
kAAk

c
x⇤sub � bk1

1 + kbk1 ,

• Objective error =
|cTAk

c
x⇤sub +

1
2(x

⇤
sub)

THAk
c
x⇤sub � cTx⇤ � 1

2(x
⇤)THx⇤ |

1 + | cTx⇤ + 1
2(x

⇤)THx⇤| ,

where HAk
c
= (H

ij

)
i,j2Ak

c
.

If the feasibility error is small, x̄⇤ with x̄⇤Ak = 0 and x̄⇤Ak
c
= x⇤sub is a feasible point for

the original qp, and also optimal if the objective error is small as well.

Randomly generated problems (QTS1 and QTS2). Table 7.2 shows the average

number of active-set iterations for the test problems in QTS1 and QTS2. It is clear

that using perturbations saves a lot of active-set iterations, about 63% for problems
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in QTS1 and 36% for QTS2. Though unfortunately degeneracy seems to disadvantage

the improvement, it cannot cover the fact that using perturbations would enhance the

capabilities of predicting a better active set of the original problem, in the context of

primal-dual path-following interior point method structure, and potentially reduce the

computational e↵ort for solving a problem.

Table 7.2: Comparing the number of active-set iterations for Algorithms 7.1 and 7.2
Random problems Random degenerate problems

Algorithm 7.1 Algorithm 7.2 Algorithm 7.1 Algorithm 7.2
Avg # of active-set iters 46 143 190 300

Average µk

�

and µk when terminate ipm 5.8⇥ 10�04 8.0⇥ 10�04 6.3⇥ 10�04 7.8⇥ 10�04

We check the objective and feasibility errors in Table 7.3. All optimal solutions

of the sub-problems generated from Algorithms 7.1 and 7.2 are primal feasible for the

original (QPD). For problems in QTS1, Algorithm 7.1 yields small average objective

error, in the order of 10�7. For QTS2, the average error from Algorithm 7.2 is slightly

higher, which is in the order of 10�6, but still acceptable, especially 90% of the test

problems in QTS2 have small relative errors, in the order of 10�16 (can be considered

as zero in matlab). This is, to some extend, even better than the result for the test

case QTS1.

Table 7.3: Comparing the relative errors for Algorithms 7.1 and 7.2
Random problems Random degenerate problems

Algorithm 7.1 Algorithm 7.2 Algorithm 7.1 Algorithm 7.2
Average objective errors 2.0⇥ 10�07 9.2⇥ 10�17 6.4⇥ 10�06 8.9⇥ 10�17

90th percentile of relative errors 4.9⇥ 10�07 3.3⇥ 10�16 6.2⇥ 10�16 3.5⇥ 10�16

Average feasibility errors 5.4⇥ 10�14 5.9⇥ 10�14 6.4⇥ 10�14 8.2⇥ 10�14

QP problems from the Netlib and Maros and Meszaros’ test sets (QTS3).

We also observe good numerical results for a small set of qp problems from Netlib

and Maros and Meszaros’ convex qp test set (QTS3). We summarise the results in

Table 7.4. For these problems, we save almost 50% of active-set iterations and all

optimal solutions of the sub-problems from Algorithm 7.1 are feasible and optimal for

the original problems. For details, see Section A.2.

Table 7.4: Numerical results for solving sub-problems for test case QTS3
Algorithm 7.1 Algorithm 7.2

Avg # of active-set iters 6 13
Average µk

�

and µk when terminate ipm 4.6⇥ 10�04 6.4⇥ 10�04

Average relative errors 1.1⇥ 10�15 1.8⇥ 10�15

90th percentile of relative errors 9.2⇥ 10�16 9.9⇥ 10�16

Average feasibility errors 9.6⇥ 10�13 8.8⇥ 10�13
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7.4.5 Comparisons between cut-o↵ and the identification function

In this section, we illustrate the numerical performance of the identification function

for qp, by comparing with the cuto↵.

Note that at the first few iterations, the value of the identification function is too

large (larger than 1) and so the predictions at these iterations could be inaccurate. Thus

if we start the active-set prediction procedure (Procedure 3.2) from the beginning of

the ipm iterative process, we could encounter high false-prediction ratios. Therefore,

we choose to start the prediction when the identification function is less than 0.1.24
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Figure 7.3: Comparing active-set prediction capabilities of cut-o↵ and the identification
function in the framework of Algorithm 7.1, for randomly generated problems in QTS1
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Figure 7.4: Comparing active-set prediction capabilities of cut-o↵ and the identifica-
tion function in the framework of Algorithm 7.1, for randomly generated primal-dual
degenerate problems in QTS2

24This phenomenon is not observed for the lp test cases. And also when testing with cuto↵, we start
the prediction procedure from the beginning of the ipm iterative process, because we employ small
value (10�5) for cuto↵.
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Similarly to Algorithm 6.1 with the identification function, Algorithm 7.1 with the

identification function predicts the optimal active set at an original maximal comple-

mentary solution obtained from the ipm solver, while Algorithm 7.1 with cut-o↵ predicts

the active set at an original optimal solution generated by the active-set solver. Thus

in Figures 7.3 (for the random problems in QTS1) and 7.4 (for the random degenerate

problems in QTS2), we present the correctness ratios by comparing the active set from

Algorithm 7.1 using cut-o↵ with that from matlab’s active-set solver (solid red line

with circle), Algorithm 7.2 using cut-o↵ with matlab’s ipm solver (dashed blue line

with star), Algorithm 7.1 using the identification function with matlab’s ipm solver

(solid black line with square sign), and Algorithm 7.2 using the identification function

with matlab’s ipm solver (dashed green line with diamond sign).

• At early stages (average relative residuals less than 10�5), the average correct-

ness ratios from the perturbed algorithm, Algorithm 7.1 with the identification

function, is at least the same or slightly better than the unperturbed algorithm,

Algorithm 7.2 with the identification function. However the gap is not so large

as that for the lp case.

• Contrary to the lp case (Section 6.4.3), Algorithm 7.1 with cut-o↵ performs

slightly better than that with the identification function, for both test problems

in QTS1 and QTS2.

• When using the unperturbed algorithm (Algorithm 7.2), it seems that employing

the identification function can help improve the accuracy of active-set predictions

for the random problems in QTS1, while this is not true for degenerate problems

in QTS2.

7.5 Conclusions

Theoretically, we have extended the idea of active-set prediction using controlled per-

turbations from lp to qp. Numerically, we have obtained satisfactory preliminary

results. Based on our observations, it seems that for the purpose of optimal active-

set prediction for interior point methods for qp problems, the idea of using controlled

perturbations is promising.

Note that our implementation of Algorithm 7.1 is preliminary. We have not em-

ployed techniques such as the predictor-corrector [93] or multiple centrality correc-

tors [52]. Thus the algorithm may not be e�cient enough and needs further refinement.
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8
Conclusions and Future Directions

In this chapter, we summarise the main contributions of this thesis and present potential

future directions of our research.

8.1 Summary and concluding remarks

In this thesis, we have studied existing techniques of optimal active-set predictions

for interior point methods and proposed the idea of using controlled perturbations to

enhance the capabilities of optimal active-set prediction for interior point methods for

both lp and qp.

In Chapter 2, we have described the linear and quadratic programming problems,

the structure of their solution set and the definition of the active set. We also presented

the algorithm structure of an infeasible primal-dual path-following algorithm. Deriving

the error bounds for linear and quadratic programming problems is the main contri-

bution in this chapter. By formulating lp & qp as monotone lcp problems, we apply

an existing lcp error bound. The error bounds derived in Section 2.4 can be used to

bound the distance between an iterate and an optimal solution even if we do not know

this solution, which serves as the foundation of our prediction results.

In Chapter 3, based on the error bound for lp obtained in Section 2.4, we have found

an identification function for lp. We have also studied the best-known optimal active-

set prediction techniques developed for ipms, the indicators, and the simplest strategy,

the cut-o↵. In the numerical tests, when we use the above mentioned three techniques

to predict the optimal active set under a conservative procedure (Procedure 3.2), it

seems that the identification function yields the best accuracy of prediction, followed

by indicators and then cut-o↵. One common problem we have observed is that none of

them seem able to predict a satisfyingly good proportion of the active constraints early

enough in the ipm iterative process, which is an important challenge we would like to

tackle in this thesis.

In Chapter 4, we have described the lp problems with controlled perturbations. We

have also presented that under certain conditions, the optimal solution of the original

problems lies on or in a neighbourhood of the central path of the perturbed problems.
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Intuitively, when we solve the perturbed problems, we expect that the iterates may

come close to the original optimal solution on the way to the perturbed optimal so-

lution, which enables us to predict the original optimal active set before we solve the

perturbed problems to optimality. Furthermore, we have discussed that under certain

non-degeneracy assumptions, the perturbed problem has the same active set as the

original one.

In Chapter 5, we have shown that our predicted active sets bound well the optimal

active set of the original (unperturbed) lp. This result suggests a practical way to

predict the optimal active set of the original problem, which is used in our implementa-

tions. Then we have also shown that our predicted set can exactly predict the original

optimal active set under a certain nondegeneracy assumption. All these results make

use of the error bound we derived for lp. At the end of this chapter, we have also

presented conditions on problem conditioning that ensure our prediction of the optimal

active set of the original lp can happen sooner than that of the optimal active set of

the perturbed problems. This gives us hope that our approach may not need to solve

the perturbed problems to high accuracy.

In Chapter 6, we have compared the accuracy of the optimal active-set predictions

from the perturbed algorithm with that from the unperturbed one. We have observed

that the perturbed algorithm with cut-o↵ seems to predict the optimal active set at a

vertex solution, while the perturbed algorithm with the identification function predicts

the optimal active set at a strictly complementary solution. Nevertheless, the perturbed

algorithm framework is at least as good and generally better, when compared with

the unperturbed algorithm, in the context of optimal active-set prediction. We then

conducted the crossover test, namely predict the optimal active set after some ipm

iterations, generate an initial basis from that active set and run the simplex method

from that initial basis. The perturbed algorithm also saves more simplex iterations.

The numerical experiments have shown that our idea of using controlled perturbations

to help predict the optimal active set is promising.

In Chapter 7, we have extended the idea from lp to convex qp, without assuming

the existence of the strictly complementary solution. All major prediction results have

been reproduced for qp, except the theorem that shows we could predict the original

optimal active set sooner than we predict that of the perturbed problems. Additionally,

we have proved that we can also predict the optimal tripartition of the original problems

by solving the perturbed ones. Although our prototyped algorithm in matlab is not

optimized or e�cient enough and so we could not test large scale problems, the tests

on random test problems and the small sized qp problems from Neltib and Maros and

Meszaros’ convex qp test set did show some promising performance.

8.2 Future directions

There are several issues remaining for full validation of the proposed approach.
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• The choice of the initial perturbations. We currently set the initial per-

turbations to a fixed small value that we then adjust, but they could be more

suitably set to some problem-dependent value. In Theorem 5.7, the perturbations

needed for an accurate prediction of the original optimal active set are bounded

by some function of the problem conditioning. So we could attempt to relate the

initial perturbations to the conditioning of the problem data [A b].

• Predictor-corrector and multiple centrality corrections. Our current im-

plementation simply follows the basic structure of path-following ipms. Other

variants of ipms should be implemented and tested in the framework of con-

trolled perturbations, with the aim of improving algorithm e�ciency. For example

Mehrotra’s predictor-corrector method [93] can improve the numerical e�ciency

of ipms often taking less iterations [83]; this variant of ipms has been widely

used in both academic and industrial softwares. Multiply centrality technique

proposed by Gondzio [52] may also be a promising direction.

• Other termination techniques. Although our main aim here is to propose a

method that can be used to predict the optimal active set as early as possible,

it is equally important for us to make use of the predictions to terminate the

algorithms. Currently we have tried crossover to the simplex method for lp

and removing zero variables and corresponding columns/rows in problem data to

reduce the problem dimension for qp. Other potential techniques are also worth

being explored, for instance, the constraints reduction method [125], which uses

the predicted active set to form a reduced version of normal equations so as to

reduce the computational cost when calculating the Newton directions.

• A large-scale implementation and testing of the perturbed algorithm ap-

proach are needed to complete our numerical experiments for both lp and qp.

Currently we prototyped our algorithms in matlab. A faster and more reliable

version written in C++ is desirable. One of the core issues that a↵ects the per-

formance of the interior point method is the numeral linear algebra package that

is used, especially in the factorisation routine. Fast and stable packages, such as

MA57, may help improve the e�ciency of the implementations. Eventually we

expect to have an object-oriented package in C++ that handles large problems,

for both lp and qp.

• Extension to general nonlinear programming. Interior point methods are

also powerful tools for solving nlp problems and optimal active-set prediction

techniques are equally, if not more, important to the algorithms for nlp. Thus

it makes sense to explore how to use controlled perturbations to improve the

active-set prediction capabilities for ipms for nlp. An easier start may be to have

a working code and run several tests on random or small nlp test problems, in

order to understand the behaviours of the algorithms with perturbations, rather

than to work directly on the theory.

117



Chapter 8. Conclusions and Future Directions 118

• Potential applications. Active-set prediction techniques can be helpful in many

di↵erent scenarios, such as solving mixed integer programming, finding active con-

straints in support vector machine, etc. All these may lead to potential applica-

tions of our perturbed approach. And it would be beneficial if we can demonstrate

the use of our perturbed algorithms by solving some real world problems.
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[87] I. Maros and C. Mészáros. A repository of convex quadratic programming prob-
lems. Optimization Methods and Software, 11(1-4):671–681, 1999.

[88] B. A. McCarl, H. Moskowitz, and H. Furtan. Quadratic programming applica-
tions. Omega, 5(1):43–55, 1977.

[89] K. A. McShane, C. L. Monma, and D. Shanno. An implementation of a primal-
dual interior point method for linear programming. ORSA Journal on Computing,
1(2):70–83, 1989.

[90] N. Megiddo. Pathways to the optimal set in linear programming. Springer, 1989.

[91] N. Megiddo. On finding primal- and dual-optimal bases. ORSA Journal on
Computing, 3:63–65, 1991.

[92] S. Mehrotra. Finite termination and superlinear convergence in primal-dual meth-
odsinite termination and superlinear convergence in primal-dual methods. Tech-
nical Report 91-13, Northwestern University, Evanston U.S.A., July 1991.

124

http://www.lindo.com


Bibliography 125

[93] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on Optimization, 2(4):575–601, 1992.

[94] S. Mehrotra and Y. Ye. Finding an interior point in the optimal face of linear
programs. Mathematical Programming, 62(1-3):497–515, 1993.

[95] J. E. Mitchell. Karmarkar’s algorithm and combinatorial optimization problems.
PhD thesis, Ithaca, NY, USA, 1988. AAI8900903.

[96] J. E. Mitchell. An interior point column generation method for linear program-
ming using shifted barriers. SIAM Journal on Optimization, 4(2):423–440, 1994.

[97] J. E. Mitchell, K. Farwell, and D. Ramsden. Interior point methods for large-scale
linear programming. In Handbook of Optimization in Telecommunications, pages
3–25. Springer, 2006.

[98] J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems using
karmarkar’s algorithm. Mathematical Programming, 56(1-3):245–284, 1992.

[99] S. Mizuno, M. J. Todd, and Y. Ye. On adaptive-step primal-dual interior-point al-
gorithms for linear programming. Mathematics of Operations Research, 18(4):pp.
964–981, 1993.

[100] R. D. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part
I: Linear programming. Math. Program., 44(1):27–41, June 1989.

[101] R. D. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part
II: Convex quadratic programming. Mathematical Programming, 44(1-3):43–66,
1989.

[102] R. D. C. Monteiro and S. J. Wright. Local convergence of interior-point algo-
rithms for degenerate monotone lcp. Computational Optimization and Applica-
tions, 3(2):131–155, 1994.

[103] J. Morales. A numerical study of limited memory BFGS methods. Applied Math-
ematics Letters, 15(4):481 – 487, 2002.

[104] J. Nanda, D. P. Kothari, and S. C. Srivastava. New optimal power-dispatch
algorithm using Fletcher’s quadratic programming method. IEE Proceedings C
(Generation, Transmission and Distribution), 136(3):153–161, 1989.

[105] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2006.

[106] C. Oberlin and S. Wright. Active set identification in nonlinear programming.
SIAM Journal on Optimization, 17(2):577–605, 2006.

[107] K. A. Palaniswamy, J. K. Sharma, and K. B. Misra. Minimization of load curtail-
ment in power system using quadratic programming. Journal of the Institution
of Engineers (India) Electrical Engineering Division, 65:213–218, 1985.

[108] J.-S. Pang. Error bounds in mathematical programming. Mathematical Program-
ming, 79(1):299–332, 1997.

[109] P. M. Pardalos and S. A. Vavasis. Quadratic programming with one negative
eigenvalue is np-hard. Journal of Global Optimization, 1(1):15–22, 1991.

125



Bibliography 126

[110] R. Polyak. Modified barrier functions (theory and methods). Mathematical Pro-
gramming, 54(1-3):177–222, 1992.

[111] F. A. Potra and S. J. Wright. Interior-point methods. Journal of Computational
and Applied Mathematics, 124(1–2):281 – 302, 2000. Numerical Analysis 2000.
Vol. IV: Optimization and Nonlinear Equations.

[112] J. Renegar. A polynomial-time algorithm, based on newton’s method, for linear
programming. Mathematical Programming, 40(1-3):59–93, 1988.

[113] J. Renegar. A mathematical view of interior-point methods in convex optimiza-
tion, volume 3. SIAM, 2001.

[114] C. Roos, T. Terlaky, and J. Vial. Interior Point Methods for Linear Optimization.
Springer, 2006.

[115] SAS Institute Inc. SAS - Business Analytics and Business Intelligence Software.
http://www.sas.com/.

[116] M. A. Saunders et al. Cholesky-based methods for sparse least squares: The bene-
fits of regularization. Linear and Nonlinear Conjugate Gradient-Related Methods,
pages 92–100, 1996.

[117] M. A. Saunders and J. A. Tomlin. Solving regularized linear programs using bar-
rier methods and KKT systems, volume 10064. IBM Thomas J. Watson Research
Center, 1996.

[118] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester, 1986.

[119] G. Sierksma. Linear and Integer Programming: Theory and Practice. Chapman
& Hall/CRC Pure and Applied Mathematics. Taylor & Francis, second edition,
2001.

[120] A. Skajaa, E. Andersen, and Y. Ye. Warmstarting the homogeneous and self-
dual interior point method for linear and conic quadratic problems. Mathematical
Programming Computation, 5:1–25, 2013.

[121] L. Sun, G. He, Y. Wang, and C. Zhou. An accurate active set newton algorithm
for large scale bound constrained optimization. Applications of Mathematics,
56(3):297–314, 2011.

[122] R. Tapia and Y. Zhang. An optimal-basis identification technique for interior-
point linear programming algorithms. Linear Algebra and its Applications,
152(0):343 – 363, 1991.

[123] R. Tapia, Y. Zhang, M. Saltzman, and A. Weiser. The mehrotra predictor-
corrector interior-point method as a perturbed composite newton method. SIAM
Journal on Optimization, 6(1):47–56, 1996.

[124] R. A. Tapia. Role of slack variables in quasi-newton methods for constrained
optimization. Technical report, Rice Univ., Houston, TX (USA). Dept. of Math-
ematical Sciences, 1979.

126

http://www.sas.com/


Bibliography 127

[125] A. L. Tits, P.-A. Absil, and W. P. Woessner. Constraint reduction for linear
programs with many inequality constraints. SIAM J. Optim., 17(1):119–146,
2006.

[126] K. Tone. An active-set strategy in an interior point method for linear program-
ming. Mathematical Programming, 59(1-3):345–360, 1993.

[127] R. J. Vanderbei. LOQO: an interior point code for quadratic programming.
Optimization Methods and Software, 11(1-4):451–484, 1999.

[128] Z. Wang and Y.-x. Yuan. Componentwise error bounds for linear complementarity
problems. IMA Journal of Numerical Analysis, 2009.

[129] P. J. Williams. E↵ective finite termination procedures in interior-point methods
for linear programming. PhD thesis, Department of Computational and Applied
Mathematics, Rice University, 1998.

[130] L. Winternitz, S. Nicholls, A. Tits, and D. O’Leary. A constraint-reduced variant
of mehrotra’s predictor-corrector algorithm. Computational Optimization and
Applications, 51(3):1001–1036, 2012.

[131] M. Wright. Ill-conditioning and computational error in interior methods for non-
linear programming. SIAM Journal on Optimization, 9(1):84–111, 1998.

[132] S. Wright. Stability of augmented system factorizations in interior-point methods.
SIAM Journal on Matrix Analysis and Applications, 18(1):191–222, 1997.

[133] S. Wright. Modified cholesky factorizations in interior-point algorithms for linear
programming. SIAM Journal on Optimization, 9(4):1159–1191, 1999.

[134] S. J. Wright. Identifiable surfaces in constrained optimization. SIAM J. Control
Optim., 31(4):1063–1079, July 1993.

[135] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997.

[136] N. Yamashita, H. Dan, and M. Fukushima. On the identification of degener-
ate indices in the nonlinear complementarity problem with the proximal point
algorithm. Mathematical Programming, 99(2):377–397, 2004.

[137] Y. Ye. On the finite convergence of interior-point algorithms for linear program-
ming. Mathematical Programming, 57(1):325–335, 1992.

[138] Y. Ye. Interior point algorithms: theory and analysis, volume 44. John Wiley &
Sons, 2011.

[139] A. Yildirim and S. Wright. Warm-start strategies in interior-point methods for
linear programming. SIAM Journal on Optimization, 12:782–810, 2000.

[140] Y. Zhang. Solving large-scale linear programs by interior-point methods under
the matlab environment. Optimization Methods and Software, 10(1):1–31, 1998.

127



A
Appendix

A.1 Results for crossover to simplex on selected Netlib
problems

From the left to the right, we give the name of the test problems, number of equal-
ity constraints, number of variables, the value of duality gap µK

�

when we terminate
the (perturbed) Algorithm 6.1, the value of duality gap µK when we terminate the
(unperturbed) Algorithm 3.1, number of ipm iterations, the relative di↵erence (see
Footnote 16 on Page 84) between two bases generated from Algorithms 6.1 and 3.1,
simplex iterations for Algorithm 6.1 and the simplex iterations for Algorithm 3.1. Since
the algorithm without perturbations is terminated at the same ipm iteration as Algo-
rithm 6.1, we show only the number of ipm iterations for the latter. Problems on which
Algorithm 6.1 loses are marked in bold font. ‘—’ means the simplex solver fails for a
particular test problem.

Table A.1: Crossover to simplex test on a selection of Netlib problems.

Probs m n µ

K
� µ

K IPM Itr Basis Di↵ splxItr Per splxItr Unp
25FV47 798 1854 9.38e-04 1.34e-03 35 0.15 4193 6951
ADLITTLE 55 137 3.79e-04 2.23e-04 16 0.45 18 119
AFIRO 27 51 3.68e-04 6.84e-06 11 0.07 9 9
AGG3* 516 758 9.05e-02 6.39e-02 25 0.07 112 123
BLEND 74 114 6.55e-04 7.21e-04 10 0.37 35 59
BNL1 632 1576 5.41e-04 1.96e-02 28 0.31 1583 1632
BRANDY 149 259 4.83e-04 1.09e-03 18 0.38 76 278
CZPROB 737 3141 4.00e-04 1.67e-04 56 0.77 106 1822
E226 220 469 6.13e-04 6.98e-04 18 0.54 428 319
FIT1D 1050 2075 4.81e-04 2.00e-04 22 0.39 53 787
FIT1P 1026 2076 5.55e-04 4.04e-04 20 0.36 259 760
FORPLAN* 157 485 4.67e-03 1.33e-02 29 0.45 119 341
GROW7* 420 581 4.56e-02 5.56e-02 15 0.06 226 190
ISRAEL* 174 316 5.39e-02 1.87e-02 32 0.01 164 143
KB2 52 77 3.83e-04 1.15e-02 21 0.24 44 27
SC50A 49 77 1.64e-04 6.42e-05 10 0.12 22 27
SC50B 48 76 5.37e-04 1.59e-04 8 0.00 37 37
SCAGR7 129 185 2.11e-04 2.80e-04 18 0.43 21 65
SCFXM1 322 592 6.19e-04 4.35e-04 24 0.38 188 413
SCFXM2 644 1184 5.48e-04 1.04e-03 27 0.02 690 672
SCFXM3 966 1776 8.73e-04 8.77e-04 28 0.01 1062 1074
SCRS8 485 1270 7.65e-04 1.42e-03 29 0.39 320 315
SCSD1 77 760 5.54e-04 5.54e-04 7 0.95 125 214
SCSD6 147 1350 5.86e-04 5.91e-04 8 0.94 346 411
SCSD8 397 2750 4.88e-04 5.10e-04 11 0.90 366 965

Continued on next page
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Table A.1 – continued from previous page

Probs m n µ

K
� µ

K IPM Itr Basis Di↵ splxItr Per splxItr Unp
SCTAP1 300 660 5.31e-04 3.64e-03 19 0.31 114 179
SCTAP2 1090 2500 6.81e-04 2.30e-07 21 0.43 145 344
SCTAP3 1480 3340 7.81e-04 1.11e-07 22 0.48 54 451
SEBA 1029 1550 5.92e-04 3.09e-04 23 0.04 43 70
SHARE1B* 112 248 2.87e-03 8.18e-02 27 0.24 176 204
SHARE2B 96 162 3.19e-04 3.90e-04 14 0.41 57 126
SHIP04L 356 2162 6.55e-04 2.92e-04 27 0.61 13 215
SHIP08L 688 4339 6.55e-04 5.41e-04 29 0.81 441 1056
SHIP08S 416 2171 6.34e-04 3.56e-04 26 0.76 70 —
SHIP12S 466 2293 2.12e-04 2.74e-05 33 0.71 18 541
STAIR 362 544 6.56e-04 1.11e-02 16 0.29 292 294
STOCFOR2 2157 3045 5.63e-04 4.74e-05 39 0.08 1213 796
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