Predicting the Content of Peer-to-Peer

Interactions

Paolo Besana

Doctor of Philosophy
Centre for Intelligent Systems and their Applications
School of Informatics
University of Edinburgh
2009

Abstract

Software agents interact to solve tasks, the details of hvheed to be described
in a language understandable by all the actors involved.olOgies provide a for-
malism for defining both the domain of the task and the terioigyused to describe
it. However, finding a shared ontology has proved difficulffedent institutions and
developers have different needs and formalise them inrdifteontologies.

In a closed environment it is possible to force all the p#taots to share the
same ontology, while in open and distributed environmentslogy mapping can pro-
vide interoperability between heterogeneous intera@utgrs. However, conventional
mapping systems focus on acquiring static information,@nchapping whole ontolo-
gies, which is infeasible in open systems.

This thesis shows a different approach to the problem ofrbgeneity. It starts
from the intuitive idea that when similar situations arisenilar interactions are per-
formed. If the interactions between actors are specifieaimél scripts, shared by
all the participants, then when the same situation aribessame script is used. The
main hypothesis that this thesis aims to demonstrate ivthabhalysing different runs
of these scripts it is possible to create a statistical mofighe interactions, that re-
flect the frequency of terms in messages and of ontologitalioas between terms
in different messages. The model is then used during a rurkaban interaction to
compute the probability distribution for terms in receivegssages. The probability
distribution provides additional information, contextt@athe interaction, that can be
used by a traditional ontology matcher in order to improverincy, by reducing the
comparisons to the most likely ones given the context, arssipty both recall and
precision, in particular helping disambiguation.

The ability to create a model that reflects real phenomenhignsort of environ-
ment is evaluated by analysing the quality of the predicjon particular verifying
how various features of the interactions, such as theirstationarity, affect the pre-
dictions. The actual improvements to a matcher we develapedlso evaluated. The
overall results are very promising, as using the predicaorlower the overall compu-
tation time for matching by ten times, while maintaining nrsome cases improving
recall and precision.

Acknowledgements

These years have been extremely interesting and livelydithea opportunity to ex-
change ideas and learn from great people.

| would like to thank my supervisors, Dave Robertson for thipthe provided and
for the example he gives as a person, and Micheal Rovatsdlddrelp and for the
good times spent together.

I would also like to thank all the people | shared my time withd helped me in the
earlier stages and kept listening to my political grumblegtee destiny of the world:
thanks to Adam Barker, Thomas French, Li Guo and Jarred Mu&iithe great 4.15,
now spread in UK, in strict alphabetical order).

| want to thank my partner, Luna De Ferrari, for her help andtfe time we
spent together, and my parents who supported me and acdgptdtbusand miles of
separation.

Finally a great thanks to my friends back home in Milano, wkptkme connected
to my old world.

Declaration

| declare that this thesis was composed by myself, that th& wantained herein is
my own except where explicitly stated otherwise in the tart that this work has not
been submitted to any other degree or professional quaidicaxcept as specified.

[Paolo Besanh

Publications
The work in this thesis is based on the following publicasion

e P. Besana, D. Robertsonlow Service Choreography Statistics Reduce the On-
tology Mapping Probleminternational Semantic Web Conference 2007 in Bu-
san (Korea)

e P. Besana, D. RobertsoRrobabilistic Dialogue Models for Dynamic Ontology
Mapping Uncertainty Reasoning for the Semantic Web workshop in C3W
in Athens (GA)

e P. BesanaA Framework for Combining Ontology and Schema Matchers with
Dempster-Shafe©ntology Matching workshop in ISWC’06 workshop in Athens
(GA)

e P. Besana, D. Robertson, M. Rovats&xploiting interaction contexts in P2P
ontology mappingP2PKM’05 workshop in San Diego

e P. Besana, D. Robertso@ontexts in Dynamic Ontology MappinGontext and
Ontology: Theory, Practice and Applications workshop in/ANA5

Related publications are:

e F. McNeill, P. Besana, J. Pane, F. Giunchiglia. Servicegiratton through struc-
ture preserving semantic matchinGases on Semantic Interoperability for In-
formation Systems Integration: Practices and Applicasiokdited by Yannis
Kalfoglou.

e A.Barker, P.Besana, D. Robertson, J. Weissman. The BenoE8exvice Chore-
ography for Data-Intensive Computing, to appear in CLADB ®orkshop,
HPDC’09, Berlin, Germany, 2009

e G. Trecarichi, L. Vaccari, V. Rizzi, M. Marchesi, P. Besar@penKnowledge
at work: exploring centralized and decentralized inforieragathering in emer-
gency contextdSCRAM’09 Goteborg, Sweden

e P.Besana, V. Patkar, D. Glasspool and D. RobertBastributed Workflows: the
OpenKnowledge experienc®:MELS '08, Monterrey

e F. Giunchiglia, F. McNeill, M. Yatskevich, J. Pane, P. BesaR. Shvaiko Ap-
proximate structure preserving semantic matchit@BASE’'08, Monterrey

e F. Giunchiglia, M.Yatskevich, F.McNeill, P. Shvaiko, Jrleaand P.Besan#p-
proximate structure preserving semantic matchstgprt paper, ECAI'08, Patras

e D. Robertson, C. Walton, A. Barker, P. Besana, Y. Chen-BuiigeHassan, D.
Lambert, G. Li, J. McGinnis, N. Osman, A. Bundy, F. McNeillM&an Harmelen,
C. Sierra, F. GiunchigliaModels of Interaction as a Grounding for Peer to Peer
Knowledge Sharingn E. Chang, T. Dillon, R. Meersman and K. Sycara editors,
Advances in Web Semantics, vol 1, LNCS-IFIP

1

Contents

Introduction 11
1.1 Objectives e
1.2 Contributionstoknowledge 5

1.3 Applications
1.4 Thesisstructure

Background 18
2.1 Introduction
2.2 Examplescenario
2.3 AgentsandPeers
2.4 Interactions
2.4.1 Dialogues and Interaction Models
2.4.2 Choreography and Orchestration
2.4.3 Workflow Language Features
2.4.4 Lightweight Coordination Calculus 3
245 Matchmaking
25 Ontologies
2.5.1 Ontology formalisation
2.5.2 Problemsofsharedontology
2.5.3 Sources of ontological heterogeneity 32
2.6 Ontologymatching
2.6.1 Ontology matching definition
2.6.1.1 Evaluating the matching systems
2.7 OpenKnowledge
2.7.1 WhatisapeerinOpenKnowledge
2.7.2 Matchmaking in OpenKnowledge
2.7.3 Ontology matching in OpenKnowledge

CONTENTS 6

2.8 Summary ... e e 40
3 Conceptual Framework 41
3.1 Introduction 41
3.2 Problemdefinition 42
3.3 Predicting the contentofmessages 45
3.4 Modellingtheinteraction 64
3.41 Aimofthemodel, 46
3.4.2 AsSSUMPLIONS 46
3.4.3 Mapping the assumptions to LCC interaction models 50
3.5 Goalsofprediction 51
3.5.1 Predicting forefficiency 51
3.5.2 Predictingforrecall 53
3.5.3 Predicting forprecision. 54
3.5.4 Predicting for extending ontologies 54
3.6 Summary e 55
4 Implementation of the Predictor 56
4.1 Introduction 56
4.2 Architecture 56
4.3 Modelcreationandupdate 57
4.3.1 Modelrepresentation 58
4.3.2 Creating and Updatingthe Model 58
4.3.3 Example of creationandupdate 61
4.4 Predictionofyx 63
4.4.1 Instantiatingthe assertions 5 6
4.4.2 Combiningtheassertions. 66
4.4.3 Example of prediction L. 68
45 Summary e e e 69
5 Evaluation 71
5.1 Introduction 71
5.2 General Testing Methodology 71
5.3 \Verifying functionality L. 57
5.3.1 Specific methodology 76

5.3.2 GeneralResults 77

CONTENTS

5.3.3 Analysingtheresults,

5.3.4 Creatingthemodel
5.3.5 Contributions of the strategies
536 Caseanalysis

5.4 \VerifyingUsefulness oL
5.4.1 Specific methodology
542 Results

5.4.2.1 Comparing performance

55 Summary

6 Related Work

6.1 Introduction

6.2 Agent coordination and communication

6.2.1 Mentalisticapproach

6.2.2 The Normativeapproach
6.3 Web Service composition L L L.
6.3.1 Semanticapproach
6.3.2 Web Service Workflow languages

6.4 Ontology Matchingreview

6.4.1 Ontology mismatches classifications

6.4.2 Matchers’ Classifications

6.4.3 Elementary matching techniques

6.4.4 Projectsreview

6.4.5 Approximate Structure-Preserving Semantic Maghin. . .
6.4.6 Dynamic Ontology Refinement

6.5 Natural Language Processing

6.5.1 Part-of-speechtagging

6.5.2 Dialoguetranslation
6.6 Summary e

7 Conclusion

7.1 Futurework e

Bibliography

11

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2

List of Figures

Predictormodel. 14
Activity diagram forthescenario 19
Examplescenaria 20
LCCsyntax e e 24
Rewrite rules for expansion of an interaction model clause 25
Request refinementinLCC 26
Finite State Machine for the entry rotistomerndsupplier 27
Run of the interaction for refining an accomodation rstjue. 28
Run of the interaction for refining a car rental request..... 28
Customerontology 31
Vendorontology 31
OpenKnowledge lifecycle 7 3
Example of structure matching 39
Applying matching in an interaction 41
Bridges between the environments 43
Translationproblem L L. 44
Example of probability distribution foravariab@, 46
Distribution of Google queries aboutiPhone 48
Distribution of Google queriesaboutB&B 48
Uniform and Zipf's law distributions 52
Predictor feedback 57
Predictingavariable 67
Probability distribution for variableéProposals 69
Interaction model template 72
Gaussian distributions with different standard deviaton 74

LIST OF FIGURES 9

5.3 Different preference distributions of terms from a genedadntology. 74

5.4 XML file describinganexperiment. 75
55 Ageneratedontology Lo 76
5.6 Average size of the suggestedAgtaverage success rate in finding t
initand average rankoffin A L L. 76
5.7 Learningcurve e e 77
5.8 How the model improves with interactions 80
5.9 Contribution of different types of assertions 81
5.10 Effect of different preference distributions 85
5.11 Recursive testinteractionmodel 86
5.12 Predictor behaviour when distribution changes over time 87
5.13 Splitting the probability distributionintosets. 92
5.14 Matching results when predictorisused. 94
5.15 Matching results when predictorisused. 95
5.16 Matching time when predictor is not used, is used with reagteand
withoutreattempt. L 96
5.17 Matching precision when predictor is not used, when useH weiat-
tempt strategy and without reattempt strategy. 97
5.18 Matching recall when predictor is not used, is used with texaipt and
withoutreattempt. Lo 98
6.1 Example of KQML dialogue. 103
6.2 Exampleof FIPAACLmessage. 103
6.3 FIPA semantics of nf or mandrequest 104
7.1 Specificinteractionmodel. 126

7.2 Genericinteractionmodel. 127

4.1
4.2

5.1
5.2

List of Tables

Typesofassertions 59
Statistical model of thecontext 64
Tree creation and alteration 89
Matchers used ipyontomap 91

10

Chapter 1
Introduction

One of the aims of information technology is to automate tiéipe or time-consuming
tasks, such as numerical computations or data storage arevaké When tasks be-
come more complex they often require the interaction betvagerent actors. An in-
teraction involves exchange of information between theragbbtained by exchanging
messages. Messages convey meanings encoded into sigrammnission: in order to
understand a message, a receiver should be able to map tisairsithe messages to
meanings aligned with those intended by the transmitter.

Therefore, actors should agree on the signs, or terms, osgektribe the domain
of the interaction: for example, if an agent wants to buy aipalar product from
a seller, it must be able to specify the properties of the pcodinambiguously. In
computer science, ontologies are used with this goal. Anlogy is intended as the
formal conceptualisation of a domain [27], expressed in alime processable lan-
guage, and it is usually the result of an agreement of expéttse domain. Sharing
the same ontology is assumed in most of the web service catigmafsameworks and
it is enforced in a multi-agent interaction framework sushEdectronic Institutions
[57].

A shared ontology can be a strong assumption in an open @ment, as agents
may come from different backgrounds and have differentlogies, designed for their
specific needs. In this kind of environment, communicatiaplies translation. The
usual approach is to create an alignment between the omgsloging an ontology
matcher [16], creating a sort of bilingual dictionary. Dadeng on the approach,
matchers may compare labels or ontology structures, or rsayedternal dictionar-
ies like WordNet to prove similarity between nodes in hiehaes, or may learn how
instances are classified to find similarities between cas¢cep combine information

11

Chapter 1. Introduction 12

from different sources and so on. In open systems, the takendf the participants in
interactions may be unknown until the interaction is stiréend therefore matching in
advance may be unfeasible. Matching during the interastioay be computationally
difficult, as many interactions with different actors cakeglace simultaneously.

As we will see in Chapter 2 and then in more detail in Chaptenést available
ontology mapping systems focus on acquirgtatic a priori information about ontol-
ogy correspondences, and aim at the widest possible omtalaggpmmitment between
the ontologies. However, open systems need to minimiserttedagical commitment
required by participating actors. This can be obtained caduthe portions of ontolo-
gies that need to be match to those that are required for teeattion. In order to
do so, the work presented in this thesis takes a differentoagh to the problem of
semantic heterogeneity, and focusses on the messagesiggdnaetween the actors
of an interaction, with the aim of predicting their contefihe predictions can then be
used by an ontology matcher to improve the matching process.

This approach moves from the intuitive idea that interaifollow conventions
and patterns, and these patterns are repeated when simiktians arise. For exam-
ple, the brief talk between a customer and a waiter at theteowha cafe will always
be similar: a “one coffee, please” request can be followea Bliglack or white?” or
“espresso?” offer, but unlikely by a “It's 2 o’clock” answdBeing in the cafe provides
the context that bounds the possible set of interactionis i§ta common experience,
and the context in which an interaction takes place helpswalen abroad, allowing
us to guess the likely requests in specific occasions, ewrmgththey are pronounced
in an unknown language.

Extending the example, we can imagine that we possess atiébthat can tell if
words in two languages have the same meaning. The oracle @ésdictionary, where
we can look up the direct translation of a word, but it can ifedl word in a foreign
language corresponds to a specific word in our language. diithny knowledge of
the context, in order to translate the request from the wavte have to list all the
words in our language until we encounter the right one. Iftr@nother hand, we know
the context, we can select a much smaller set of terms thaisarally used in such
conversations, reducing the time it takes to translate.

The first and fundamental hypothesis that this thesis aimetidy is that the his-
tory of similar interactions between actors, together wiité state of a running inter-
action, can be used to predict the content of messages inutrent interaction. One
of the first questions to answer is what is meant by “similaenactions”. If every

Chapter 1. Introduction 13

time a coordinated activity is required actors have to plash @eate their interactions,
as described for example in the BDI model presented in Ch#&pteecognising that
one is in the same interaction becomes a difficult task. Thecpaating actors are
potentially different in every interaction, and their sgiegplans, that is the sequences
of messages that they expect and send, may be different gwexy Therefore, the
requirement that | make is that actors use shared scriptedoridbe the interactions
they are performing. The scripts define the interactionbéirtentirety, so that all par-
ticipants follow the same protocol. Such scripts are cdlidgwreographies”, as their
perspective is global and do not focus on the behaviour afigleiparticipant. When
the same situation arises, the actors choose the same greqby. The choreography
forms the kernel of the interaction context and providestibendaries of what to ex-
pect in the exchanged messages: it is a stable referenceviiai throughout all the
repeated runs.

If the main hypothesis is correct and it is therefore possiblpredict the content of
messages given the history of choreography runs and theedftatcurrent interaction,
then another hypothesis follows, whose verification allesgo tackle the problem
of semantic heterogeneity between agents. The idea isdhag we have reliable
predictions for the content of the exchanged messagesydaécpons can be used to
improve dynamic ontology matching by focussing only on toetipns of ontologies
that are relevant to a specific interaction between act@tead of trying to match
whole ontologies out of context. By excluding unrelatedijoms of ontologies, the use
of predictions should improve efficiency, while maintaigior improving the quality,
expressed in the standard measures of precision and refcdde alignment.

To prove the hypotheses, | have created a framework baseuboeagraphies, and
| have represented the predictions of the content of a mesaa@ probability distri-
butions over all the possible terms in the actor’s ontologye predictions are passed
to an ontology matcher, which uses them to improve its resdlhe model of the in-
teraction content is created and updated by feeding baokliet predictor the result
of the matching process. Figure 1.1 shows the feed-backtlatforms the founda-
tion of the predictor architecture. While the idea of agesitaring choregraphies for
their interactions was initially a leap of faith, the Operdariedgé project provided a
grounded example of such an architecture.

If all actors use the same ontology, it is possible to verifshe main hypothesis
is correct: we can compare directly the content of messaggbspredictions. If the

Lwww.openk.org

Chapter 1. Introduction 14

Peer environment

Ontology

e

Predictor |quggestions| ~ MaPPINg R s
P(T|hist.) Oracle

Msate, term
Pk, WS

T

feedback

Figure 1.1: Predictor model

actors use different ontologies, the predictions are ghissa matcher, and if the corre-
spondences between the ontologies are known in advans@gassible to compare the
results of the matcher, in terms of precision and recall, @araluate the improvement
brought by the predictor against the baseline provided byotitology matcher alone.

1.1 Objectives

As we have seen above, distributed systems can be closethraaall participants to
share the same ontology, or open, and allow the particiggarksep their ontology. In
closed systems the participants are required to maximeedhtological commitment
towards the shared ontology. By contrast, open systems odnamly if they require
the minimal commitment from the participants, reducing¢fere the adaptation that
participants need to do.

To summarise, the two key goals of this thesis are:

1. improve the efficiency of an arbitrary ontology matcher,
2. maintain or improve the quality of the matcher’s results

It does so by focussing on matching only the terms that aede@lto the specific
context of the interaction, possibly improving the qualitythe matching. In other
words, the thesis aims at demonstrating that it is possilese an arbitrary ontol-
ogy matcher to compare only the terms predicted to be moedyli&kccording to the
statistical model of the interaction and maintain or imgdke quality of matching,
expressed in terms of precision and recall, that would bainbt comparing all the
agent’s ontology. By precision we mean the number of coeatespondences, and
by recall we mean the number of found correspondences ot thfeaexisting ones.
Because only a small portion of the ontology is comparedyetiete a message is

Chapter 1. Introduction 15

received, the matching process should be more efficient. olkeall result is tare-
duce the commitmeméquired for interactions between peers, thereby fatitigathe
adoption of really open system.

As we will see in the evaluation (Chapter 5), the predictavites reliable sug-
gestions after a relatively few repeated interactions.s€siggestions, once fed to an
ontology matcher, can reduce the overall time of matchingelmytimes, while main-
taining, and in some cases improving, recall and precision.

1.2 Contributions to knowledge

This thesis shows how the use of choreographies to coodintgractions between
agents, under the reasonable assumption that the sameoghaphy is used when
similar situations arise, can be exploited to create astiedii model of the exchanged
messages in the interactions. In a sense, the statisticdIn®a context for agent
interactions, that is created and updated analysing theriisef repeated runs of the
same choreography.

The agents need to recognise when they are in an interati@mas been previ-
ously encountered. Not all coordinations models for agangsfit for this purpose:
only models that consider interactions as first-class abjattow this. This thesis
shows how choreographies are be particularly suitableusectney define interactions
in their entirety, covering equally all participants.

Within a choreography, the statistical model can be usedddigt the likely con-
tent of the messages, and the predictions can be used toventhre efficiency of an
ontology matcher, maintaining or improving the quality bétcomputed correspon-
dences.

1.3 Applications

The open environment presented in the introduction is thadang assumption of the
OpenKnowledgéproject, that will be described in more detail in Chapter 2e@®-

Knowledge provides the framework for the creation of p@epéer communities, that
is networks of peer nodes, each playing both as server agnt ¢ti every other node in
the network. In OpenKnowledge, peers share choreograptaéed interaction mod-
els, that specify how they have to interact in order to penfgarious distributed tasks.

2http://www.openk.org

Chapter 1. Introduction 16

The peers do not need to share an ontology, and a lot of efféotussed on handling
their heterogeneity. There are two situations in which miaig between semantically
heterogeneous elements are required: first, peers havetth the shared interaction
models to their capabilities, and then, during the inteoacthey have to translate the
content of the received messages to their ontology. The woekented in this the-
sis tackles the second situation, improving the efficienfcgers and their ability to

handle heterogeneity.

1.4 Thesis structure

Chapter 2 - Background In this chapter | present the background concepts relevant
to this work: first | introduce the theory behind agent intti@ns and the formal-
ism used to represent them, then | provide an introducticontologies, and a quick
overview of ontology matching. At the end of the chapter,iéfly present the Open-
Knowledge project, as an example of implementation of mbgteideas described in
Chapter 2.

Chapter 3 - Assumptions and Motivations In this chapter | introduce the theoreti-
cal concepts: | describe and justify the assumptions thaeioin the work, grounding
them in the approach chosen for defining the interaction. dihes of the work (im-
proving efficiency, recall, precision in ontology mappinglaguiding the extension of
ontologies) are also detailed.

Chapter 4 - Modelling context In this chapter, | first describe how the statistical
model is built, interaction after interaction, and then hibw model is used to predict
the content of messages in new interactions. | also provicexample of the process
of model creation and of computing the probability disttibn for a message.

Chapter 5 - Evaluation In this chapter | present the evaluation of the system, dis-
cussing first the approach used for testing and then thetsesthe evaluation at first
focuses on the ability of the predictor in providing a small gf suggestions that con-
tains the correct correspondences with arbitrary proligbénd then on the utility of
the computed distribution in improving the performance ofantology matcher. |
also discuss how the utility of the predictor depends onype bf interactions: some
interactions can benefit more than others.

Chapter 1. Introduction 17

Chapter 6 - Relatedwork contains a more detailed literature overview of the relévan
concepts introduced in Chapter 2. 1 first describe the difiempproaches to agent
communication and service integration, and then | reviewesof the main approaches
used in ontology matching.

Chapter 7 - Conclusion In this chapter | summarise the work, and present possible
further work based on the current results.

Chapter 2

Background

2.1 Introduction

The goal of this work is to ease the communication betweearbgéneous agents
in open systems. The aim of this chapter is to introduce thim mancepts in the
domain and to show their grounding in the OpenKnowledgegatojt is not a detailed
overview: Chapter 6 is already dedicated to the literatavéetv and presents the main
stances of the research community on the topics introduessl h

Communication is about exchanging information, and rexguthe interacting ac-
tors to share a common set of signs and meanings. This woknicecned with the
communication between software agents. What is meant wiherm agent is pre-
sented in Section 2.3. Different approaches have beerestfoli multi-agents interac-
tions: Section 2.4 in this chapter introduces the approalttvied in this work, based
on the concept of distributed workflows, which is at the basithe OpenKnowledge
project. A more in-depth overview of the various approadsgeesented in Chapter
6.

Assuming that all agents share the same set of signs and mgsana basic re-
quirement for communication - has proved hard in open nagents systems. Ontolo-
gies, described in Section 2.5, are the formalisation ofttkanings and signs used by
agents. Heterogeneous agents may not share the same gntofdglogy mapping
systems attempt to bridge different ontologies to allowiattions. Section 2.6 intro-
duces the ideas and the problems related to ontology mapgawion 6.4 in Chapter
6 provides a more detailed analysis of the different apgreaan the literature.

Finally, Section 2.7 introduces the OpenKnowledge progattmplemented frame-
work that deals with the issues presented in this chapter.

18

Chapter 2. Background 19

customer wendor

<< signal sending » >
reguest

<< signal receipts >
reguest

refine

< <signal receipt>

possible refinement - -
<-<signal sending > >
possible refinement

< <zignal sending> >
reject - -
>< <sighal receipt> >

reject

< <signal sending> >
accept - -
>< <signal receipts >

accept

Figure 2.1: Activity diagram for the scenario

2.2 Example scenario

While the interaction framework used for this thesis alladwsepresent and run com-
plex interactions involving any number of peers, a simpladkof interaction is pre-
sented as an example scenario.

The scenario used is a subset of the clasggtomer-vendoscenario. At the start
of such interactions, the customer asks the vendor for ayataot service he would
like to buy. However, as it is often the case, the customer us&ya generic term, that
can be interpreted in different ways. Therefore the vendesgnts to the customer a
selection of alternatives consistent with the request. distomer then chooses the
option he prefers, and the interaction continues, for eXargthe payment, or to the
definition of further details. The activity diagram in Figu2.1 shows the flow of the
messages between the customer and the vendor.

The interaction is generic and can be used in the purchasdfefett sorts of
products or services, as Figures 2.7 and 2.8 show. Howdwerexample followed
throughout this thesis is relative to the booking of an acomdation for a conference,
as shown in Figure 2.2. The participants are the customeraatnadvel agent: the
customer starts by asking for a generic accommodation anttakiel agent proposes
different accommodation options, one of which is then gelbby the customer.

Chapter 2. Background 20

Do you have accommodation
for November?
mmhm, no... ::
Do you have something else?,
In a bed and breakfast?
Yes, that's good

Customer
Vendor

Figure 2.2: Example scenario

2.3 Agents and Peers

There is no shared and universally accepted definition ot ahagent is. Wooldridge
[67] defines an agent as:
a computer system that stuatedin someenvironmentand that is capa-

ble of autonomous actiom this environment in order to meet its design
objectives.

For the perspective used in this thesis, the autonomy ofdkata involved in an in-
teraction is not relevant, as the focus is on communicaiivour example, the agent
in the customer role may be a simple application used by a hursar to contact the
remote server of a travel agency, or a smart agent, instiugte user to search for the
best accommodation and entitled to spend real money. Wegesg as synonym of
actor or participant in an interaction.

In particular, as we have seen in the introduction and as viesyplain more in
detail in the next section, the interactions between agaetspecified by choreogra-
phies that assign to all the participants the same relevdhesefore the termpeerwill
also be used for the participants. In fact, in the OpenKndgaeproject participants
are peers in a peer-to-peer network.

2.4 Interactions

Many activities require interaction between differentaast in the example scenario,
in order to book an accommodation an inquirer needs to coatéi@vel agency (or
more than one) or directly a number of hotels.

In the simplest case, communication between two agents issaage transmitted
from a sender to a receiver. According to speech act theongssage is a performative

Chapter 2. Background 21

act that changes the state of the world [54]. The classiahgke used to explain this
concept is thel'do” utterance pronounced in front of a registrar that causespeaker
to change his or her marital status. For example, a messagi@® agents to agentj

to informaboutg will likely change the beliefs of, adding the belief abouy. A more
in-depth description of this “mentalistic” approach to aoomication can be found in
Section 6.2. In our example, the following message, semt fite customer agent to
the agent representing hotel Y:

inform(booking, 11 Nov 2008, 15 Nov 2008, Mr Smith, single)

should make the hotel agent believe that a single room mustdsved for the cus-
tomer from the 11 to the 13" of November. Belief does not need to be conceived
as the logical model described in the BDI architecture [Taf: belief we mean any
internal representation of the information inside the agémthis specific case of the
example scenario, it can be a record in the database of tleédystem.

Usually interactions are more complex than single messagles customer may
first check the availability of offers, or it may want to firsytsingle and then dou-
ble rooms. Moreover, the booking may require a deposit oeditcard number. Or
the hotel may inquire about other issues (breakfast, elajee to the booking. This
increased complexity, consisting in exchanges of mességksvs rules and conven-
tions: as the conversation unfolds, the content of new ngessia bound by the previ-
ously exchanged messages. A message failing to follow tiuésewould surprise the
hearer as being off topic or even incomprehensible.

2.4.1 Dialogues and Interaction Models

Dialogues between software agents are, at least at the mpsim@pler and more re-
stricted than those between humans: they are carried outler to reach a goal (buy-
ing a product, booking a flight, querying a price, etc.) aretéhis no need to care about
digressions, unless relevant to the task. Therefore, ¢gmammars can be simpler than
those required for human interactions.

The rules and conventions that an interaction follows casthted as sequences
of messages hard-coded in the involved agents. They maydxktasexpress pre-
conditions and post-conditions for each each utteranceedpacts are considered
actions and are combined into plans [11]. They can be defim&rkflows that are
followed as a script by the agents.

Chapter 2. Background 22

These approaches offer different trade-offs between filgyiland efficiency: em-
bedding the interactions in the agents is the most inflexabtepossibly very efficient.
Planning offers the maximum flexibility but may require lyefiomputation at every
interaction, and conditions can be difficult to verify. Hoxge interactions are often
repeated, so planning them every time is a waste of resaungagflows represent a
good compromise and are currently the dominant solution.

2.4.2 Choreography and Orchestration

Workflows can either be conceived as centralised or digeihun a centralised work-
flow, expressed through an orchestration language like BREFLor YAWL [62], a
single process executes the activities, and may call ther qgthrtners that are usu-
ally passive. In BPEL, calls are usually grounded to Web i8emvalls. In a distributed
workflow, expressed through a choreography language likeGR% or LCC (see next
section), the activities are executed by the various pestitt communicate via mes-
sages.

In both approaches, a workflow describes an abstract setioti@s and exchanged
messages, not yet instantiated to particular values: titdenes where values come
from, and where they go. For example, the workflow for boolkanmgom starts expect-
ing an input from the customer, who needs to specify dategegl and preferences.
The data are then forwarded to the hotel partner, that uses #s input for its local
processing. The output of the processing, for example theast for further refine-
ment, is sent back to the customer agent, who will use it asinpwt for further
processing.

Workflows normally do not describe how the activities (lilejuesting input, or
processing data) are performed: these are normally deldgaa calls, either to the
local agent or to a remote one via a web service. Agents aimsgvier invocations can
be set at design time, or can be found at execution time, #gxgcome brokering
mechanism. These calls may just verify a condition on sorhefs#ata, or introduce
new data into the workflow: these calls amircesand introduce the problem of shared
semantics of the data.

A source introduces terms according to its local semanthisse terms may then
be used by the other partners in the interaction. This issliésevdealt in Section 2.5.
Before proceeding to the problem of semantics, we first défiegeneral requirements
that a workflows language must satisfy in order to be used byptkdictor and then

Chapter 2. Background 23

we describe the language that has been used in the impleimanta

2.4.3 Workflow Language Features

A protocol can be modelled with a Finite State Machine (FSbt)dach participant
where the transitions consist of received messages or iBtiodean results of con-
straints (success or failure). The FSMs are defined by thg-eoie for the participant
peer and contain all the roles that the peer can take durimgtaraction.

During an interaction, the peer moves in the FSM, and createsce of the inter-
action. The variables in the trace are named and numbereziiniue. As interaction
models can be recursive, the variables are tagged withdppiarance in the run trace
(in the example, the variableroposalis used twice, so there will be two random
variables name®roposal andProposay).

2.4.4 Lightweight Coordination Calculus

The Lightweight Coordination Calculus (LC{p1, 52] is a choreography language
based onr-calculus and can be used as a compact way of representitndputisd
workflows. Most workflow languages can be formalised usiragpss calculi (such as
rr-calculus [48]). It is executable and it is adapted to peegpder workflows. In the
original version, interaction models are declarativessticirculated with messages.
Agents execute the interaction models they receive by ampigwrite rulesto expand
the state and find the next move. Figure 2.3 defines the syfta®®. A full, formal
description of a computation method for LCC is describedbiB][A summary of the
rewrite rules is presented in Figure 2.4.

An interaction model in LCC is a set of clauses, each of whetings how a role
in the interaction must be performed. Roles are describatidiytype and by an iden-
tifier for the individual peer undertaking that role. Paggnts in an interaction take
their entry-roleand follow the unfolding of the clause specified using a corations
of the sequence operatotlferi) or choice operator @r’) to connect messages and
changes of role. Messages are either outgoing=t9)('or incoming from (=’) an-
other participant in a given role. A participant can takeriniy an interaction, more
roles and can recursively take the same role (for examplenvpnecessing a list). A
message input/output or a change of role is controlled bgttaimts defined using the
normal logical operators for conjunction and disjunctidiere is no commitment to
the method used to solve constraints, so different pagidgpmight operate different

Chapter 2. Background 24

Model := {Clause...}
Clause := Role:: Def
Role := a(Typeld)
Def := Role| Message Def thenDef| Def or Def
Message := M =- Role| M = Role~—C | M < Role|C +— M < Role
C := Constang P(Term...)|-C|CAC|CVC
Type = Term

Id := Constant Variable
M = Term
Term := Constant Variable| P(Term...)
Constant := lower case character sequence or number
Variable := upper case character sequence or number

Figure 2.3: LCC syntax

constraint solvers (including human intervention).

Figure 2.5 shows the initial part of an interaction model miefy the interaction
between a customer and a vendor described in Section 2.Bisih€C fragment, the
customer asks for a product and the supplier verifies if tlgei@st must be refined.
If this is the case, the supplier will propose to the custoamather, more specific,
product. The customer, in turn, will analyse the proposal see if it fits its needs.
Interaction models are abstract descriptions of the ioteyas: they are then instanti-
ated in real interactions. For example, the describedactean model can be used to
specify the type of accommodation sought by a customer (Eigwr) or to specify the
type of car a customer needs to rent (Figure 2.8).

A message in an interaction is a tuple, whose elements cdheegontent of a
single communication act:

m = (S1,..,Sn)

As we have seen above, a tesnis introduced by some source: in LCC, constraints
are sources. A terms is introduced by the agent solving thetcaint via unification
with its own knowledge base. In the example shown in Figure“accommodation”
is introduced by the customer, unifying the constravabt(Product) with its local
knowledge to obtaiwant(“accommodation’) .

Chapter 2. Background

25

R:=BRMM,.C A E
T 7,
AjorA; RMiMo,.#0O E
Ao =

AjorA; RMiMo.”OE

AithenA RMiMy.#0 EthenA
AithenA RMjMy.#0 AjthenE

C — M<=ARMM — {mR,M<A)LZDc(M < A)

M= A —CRMM,.{mR,M <=A)} c(M=A)
null <« C RM;Mo.0 c(null)
aR1l) — CRMMy.0a(R,1)::B

if BRMMy,OE
_—
if —closedAy) A
A1 RMiMo.¥O E
_—

f —closedA;) A
ARMiM,.7 OE
_—

if A1RMiM,.”OE
_—
if closedA;) A
Ay RMiMo.0 E
_—
if mR,M<=A)eMA
satisfy(C)
if satisfied.”,C)
if satisfied.”,C)
if clausd.”,a(R1)::B)A
satisfied.”,C)

An interaction model term is decided to be closed as follows:

closedc(X))

closedAthenB «— closedA) A closedB) (2.1)

closedX :: D) « closedD)

satisfied.,C) is true if constrainC is satisfiable given the peer’s current state of

knowledge.

clausé.”, X) is true if clauseX appears in the interaction modef, as defined in

Figure 2.3.

Figure 2.4: Rewrite rules for expansion of an interaction model clause

Chapter 2. Background 26

Roles Constraints

— a(customer(S, Proposal),C):: |

ask(Product) => a(supplier, S) |<-- want(Product)

then
a(customer_refine(S,Product,Proposal),C).

—{a(customer _refine(S, Product, Proposal),C) :: |

ort:fer(ProposaI) <= a(supplier_refine,S)
then

accept(Proposal) => a(supplier_refine,S) <--|(Proposal == Product) or
acceptable(Product, Proposal)) [

or

(rejecth(ProposaI) => a(supplier_refine,S)
then

a(customer_refine(S, Product, Proposal),C)).

ask(Product) <= a(customer,C)
then
a(supplier_refine(ListRefined),S) [<- refine(Product,ListRefined)]

—{ a(supplier refine(ListRefined),S) ::= |
o;fer(Proposal) => a(customer_refine,C) <-- \ListRefined = [Proposal|Tail] 0—
then
accept(Proposal) <= a(customer_refine,C)

or
(rﬁject(ProposaI) <= a(customer_refine,C)
then
a(supplier_refine(Tail),S)).

Figure 2.5: Request refinement in LCC

Previous work on LCC includes the generation at run-timentéraction models
[38], the creation of successful teams for interactiond,[8%e distributed relaxation
of constraints [32] and the formal verification of propestigf the interaction models
[45].

LCC has been used in applications such as business procastsnent [30] and
e-science service integration [3]. In particular, it hasiehosen as the specification
language used for defining interaction models in OpenKndgdeas we will see more
in detail in Section 2.7.

Compared to other languages like BPEL or YAWL, LCC is surelyrencompact,
even though it does not allow the same level of specificati®@wmne of these limita-
tions have been overcome in OpenKnowledge, extending LG amnotations. Any
element in an interaction model can be annotated: it is ptessior example, to an-
notate a variable in a role, specifying its semantic typeweicer, the main difference
with the other orchestration languages is that it is posdiblexpress the behaviour of
all the participants. A YAWL or BPEL workflow defines the beiaw and keeps the
state of only one participant: the other are just passivepmrants that are invoked,
and are unaware of being involved in a run of a workflow. Moreptex interactions,
such as auctions where behaviour of all participants shibeldefined, are thus more
difficult to represent in languages YAWL or BPEL, based onmtredised paradigm.

Chapter 2. Background 27

|

a(customer)

|

a(supplier)

receive: ask(P)

refine(P,LstRef)

success

a(customer_refine) a(supplier_refine)

@eive: offer(Proposa))

receive: accept

Figure 2.6: Finite State Machine for the entry role customer and supplier

2.4.5 Matchmaking

Constraints in LCC, or service invocations in other workflamwguages, are performed
by some agent, that must be identified at some stage of thegsoc

In many orchestration-based languages like BPEL the patits are defined at
design time. In more flexible systems, agents and intenastc@n be composed at
run-time. Flexibility is reached through search: given ateraction, agents can be
found or, given a group of agents, an interaction can be sgle@daptors are often
required in open systems, where agents and interactionstdshare the same repre-
sentation. For example, languages like BPEL or YAWL provadset of operations
(based on XPath and XSLT) for transforming the data beforekimg services which
use different formats.

In simple client/server architectures, a client will séafor an appropriate server
in order to perform a task (like booking a room). The queryl wturn the possi-
ble servers, each with its specific interaction model thatdient will follow. Other
architectures, such as OpenKnowledge, decouple the @titmnanodels from the par-
ticipants: an agent may first look for an interaction fitting meeds, and then search
for other participants willing to take part in it.

Chapter 2. Background

want(Product)

want(accommodation)

acceptable(hostel,
accommodation)

acceptable(bed&breakfast,_‘

accommodation)

customer

—d

—>

—

supplier

ask(accommodation)

b——

offer(hostel)) «—
reject(hostel)

offer(bed&breakfast)

accept(bed&breakfast)

28

refine(accommodation,L)

refine(accommodation,
[hostel,bed&breakfast,...])

Figure 2.7: Run of the interaction model in Figure 2.5 for refining an accom-

modation request

want(Product)
want(car)

acceptable(car,
compact)

acceptable(economy,
car)

customer

—d

—

|

{

supplier

ask(car)

b——

offer(compact) —
reject(compact)

offer(economy)

accept(economy)

refine(car,L)
refine(car,
[compact,economy,...])

Figure 2.8: Runs of the interaction model in Figure 2.5 for refining a car rental

request

2.5 Ontologies

Interactions participants have their knowledge and skiley provide points of ac-

cess to information repositories, they provide serviceg ghrocess information and

so on. Ontologiesare used to name and define the elements in the knowledge bases

The termontology(from the Greek words meanirgeingandscience, study, theory

comes originally from philosophy, where it means the stufyloat exists, and forms

the main subject of metaphysics. In Artificial Intelligenebat exists is what can be

represented. According to Gruber:

An ontology is an explicit specification of a conceptualiaat[27]

Chapter 2. Background 29

This definition was then extended to include the idea thattimeeptualisation should
be shared among different parties:

An ontology is a formal, explicit specification of a sharechceptualiza-
tion. [59]

Ontologies are often compared to database schemas, withwiey share some simi-
larities: they both provide a vocabulary of terms that désca domain of interest and
constrain the meaning of the terms used in the it. Howeveatadse schema does not
provide an explicit semantics for their data, while onteésgare logical systems, that
obey to some formal semantics: we can interpret the ontoébgiefinitions as a set of
logical axioms [43]. Ontologies are often distinguishedsir level of generality:

e Domain ontologies they capture the knowledge of a specific domain. Examples
of domain ontologies are:

— the Engineering Mathematics ontology [28],

— the Enterprise Ontology [61] and the TOVE ontology [29] fepresenting
business models,

— the Software Engineering Body of Knowledge (SWEB®D8],
— the Unified Medical Language System (UM3)360],

— the GeneOntology, providing actntrolled vocabulary to describe gene
and gene product attributes in any organiSin

— the United Nations Standard Products and Services Code P3ES

e Upper ontologies they attempt to describe general concepts valid across all
domains. Examples of upper ontologies are:

— Cyc [36],
— the Suggested Upper Merged Ontology (SUM@1],

— the Descriptive Ontology for Linguistic and Cognitive Engering (DOLCE)
[42],

Lhttp://www.swebok.org/
2http://www.nlm.nih.gov/research/umis/
Shttp://www.geneontology.org/
“http://www.unspsc.org/
Shitp://www.cyc.com/
Shttp://www.ontologyportal.org/
"http://www.loa-cnr.it/DOLCE.html

Chapter 2. Background 30

— the Basic Formal Ontology (BF)[26]

The term of ontology is often used to refer to taxonomies féhierarchies of terms):
for example @OGLE uses the DMOZ ontology, result of a collaborative effort, to
categorise websites, while Amazon and eBay use ontologielassify their products.

2.5.1 Ontology formalisation

According to [65], an ontology is composed by definitions laisses, relations or in-
stances. The definitions of these entities are tuples:

Def = (T,D,C)
whereT is the term that identifies the entity to defirde{iniendummeaning “thing to
be defined” in Latin) and it is an atomic formula in a formaldaiage D is the formal
definition definiensmeaning “defining thing”) and it is a possibly compound faien
in a formal languageC is the concept description, obtained in the conceptuaisat
step, and can be expressed in natural language.

The predictor presented in this thesis can use taxonomtagnoperties: if the on-
tology is a simple taxonomy of classes, the definifidis the hierarchy of the classes
subsuming the entity to define. The concept descrigfican either be explicitly writ-
ten in the ontology (for example using the tafs:.comment in a rdf/owl ontology),
or can be an implicit meaning conventionally associatecheoterm, and normally
recognised in a dictionary.

Figures 2.9 and 2.10 show a portion of the customer and veonimiogies in
the example scenario. According to the definition aboverm tike “restaurant” in
customer’s ontology can be defined as:

T : restaurant
D : restaurant= (has cuisinecuising C eateryL thing
C :“a building where people go to e4t°

Different formal languages have been developed to reptesealogies, at differ-
ent levels of expressivity (and computability): from KIF9[1 developed in the 90s,
based on first order logic and aimed at knowledge sharinghadXWL family [58],
based on different variants of Description Logics[&f ¢ ¢ .7 4 (2) for OWL-DL,

8http://www.ifomis.uni-saarland.de/bfo/
Shttp://www.dmoz.org
0according to WORDNET 2.0

Chapter 2. Background 31

has_maker has_price

economy_car;

Figure 2.9: Customer ontology. Circles are concepts, grayed boxes are prop-

erties

has_cost

has_category lodging
bed&breakfast

Figure 2.10: Vendor ontology. Circles are concepts, grayed boxes are prop-

erties

the less expressive’ 7.7 F () for OWL-lite), and oriented towards the Semantic
Web.

2.5.2 Problems of shared ontology

Ideally, a common, shared ontology should have appeatdewyia complete interop-
erability between the agents. But imposing the same omyalagall agents has proved
difficult and impractical. Firstly some "social" problemss. There is often a choice
of different ontologies for a specific purpose: for example, saw earlier that Cyc,
SUMO, BFO or DOLCE are alternative upper ontologies. Whoasgs which ontol-
ogy should be used? Why should the others accept it? Eversena@e ontology is
finally chosen, many “legacy” ontologies keep being used. [31

It is also difficult to keep track of the evolution of an ontglo some agents may
keep the pace with the updates, while others may remain witbfadate versions. As
described in [31], different versions of the same ontologg sometimes be treated
as different ontologies. In general, differences in theriests and needs can make it
difficult to create a consistent ontology that takes intcoact all the views.

As a clear indication of the number of developed ontologibs, entry page of

Chapter 2. Background 32

SwoocGLE!M [12], a search engine for ontologies, stat&e&rching over 10,000 on-
tologies. Searching on the engine the synonytadging’ yields 12 different ontolo-
gies, the termHotel yields 62, and the terrfcar”’ yields more than 250.

2.5.3 Sources of ontological heterogeneity

Ontologies can differ for various reasons: Section 6.4ekents a classification of the
mismatches categorisations in literature. In brief, thematches can rise because:

¢ the same name or formal definition is given to different cptse
(T1 =To v D1 =Dy) ACy # C,. For example, the terrhankcan mean a slope,
an array of elements, or a financial institution, or a flighthoeuvre

¢ adifferent name or formal definition is given to the same epitic
(T1 # T vV D1 # D2) AC1 =C,. In the two example ontologieaccommodation
andlodgingmean the same concept, even though their name is differdhan
formal definition is different (their superclasses areetint and the properties
have a different name)

2.6 Ontology matching

The emergence of different ontologies, and the problem céeigg on a shared one
have pushed researchers to study methods for bridging thidm. various attempts
to reconcile ontologies can be divided imwerging aligning and integrating [31].
Merging is the act of building a new ontology by unifying seeontologies into a
single one, typically when two big companies merge and neadify their knowledge
bases; matching is used when sources must be made coheadlergrasistent, but must
be kept separated; finally, integrating entails buildingee mntology composing parts
of other ontologies. However, matching ontologies lieshathhasis for both merging
and integration.

Ontology and schema matching are used in many fields. Toaditiapproaches
include catalogue integration for e-business, distribufeery processing, data ware-
housing. These applications are based on design time mgtoperation. Catalogue
integration, for example, requires to identify the corr@spences between entries, in

Uhttp:/www.swoogle.org

Chapter 2. Background 33

order to generate queries that translate data instancé® inatalogues, providing a
unified access point to the data [56].

In recent years, a new emerging set of applications, cheniaet! by dynamicity,
has been added. In these applications, ontology alignreesften performed at run-
time and used to provide interoperability between hetanegas peers in P2P systems,
allow agents to understand speech acts specified in differgnlogies [63], or allow
dynamic web service integration [46].

2.6.1 Ontology matching definition

An ontology matching algorithm is a function that receiwes bntologieD; andOo,
some auxiliary resourcd? (such as a thesaurus) and returns the aligni@erdtween
their entities:

match: O; x O, xR—C (2.2)

where the alignment contains all correspondences between entitie®;irand O..
The correspondence for a temm € O1 is normally found by comparing it with a list
of termsT C Oy:

findCorrespondencew; x T xO1 x O x R— p (2.3)

wherep is the correspondence and it is defined by the best relatiémund (among
the possible ones, such as similarity, equivalence, supsametc), with confidence
c, between the term; € O; and anothet; € T (where normallyT = Oy):

p = (id, re, wi,tj,c)
The problem is how to verify the existence of a particulaatiein ry (Wi,tj) between
the termsw; andt; from two different ontologies. If the ontologies are mutyah-
consistent, as it is often the case, it may be impossible dwepthe relations using
logic reasoning from the definitions in the ontologies ogreworse, wrong relations
may be derived. Therefore, matching algorithms need to thssr smethods to identify
relations between entities in different ontologies. Thesthods usually assume that
ontologies share some identifiable similarities. For exianhe similarities can be in
the label used to identify the entities, in their formal digfam, or in the description
(possibly implicit) of the concepts attached to the erditie

Chapter 2. Background 34

The task is made more difficult by the vagueness or ambigdithe terms (for
instance, the terms may have many different senses, witheof@w overlapping) and
by the lack or the imprecision of the information availalbiighe process (for example
a term or a sense may not be included in a thesaurus).

The valuet; in the result of thefindCorrespondencinction can be modelled as
arandom variable A priori, before applying the matcher, all the relationgvibeen
w; € O1 and alltermgj € T C O, are equally probable:

P(rc(wi,tj)) =P (rn(w,tg)) forw; € O1andvtj,ty€ T C O, (2.4)

The functionfindCorrespondenceses the result ahatcherghat extract information
about the similarities between termsandt;: the various techniques used in the liter-
ature are reviewed in Section 6.4 in Chapter 6. The operafigollecting information
can be qualitatively modelled as gaining evidence in ordeslitain an approximate
posterior probability distribution of the relations be®vey; and the terms in the other
ontology:

P(w; x Rx T|matchersresulis

where the domaimwv; x Rx T is the product between the foreign temn the possible
relationsR and the selected list of ternisto compare andhatcher resultss the list of
all the results of the comparisons betwagrand the terms iff . Assigning these pos-
terior probabilities is difficult, and often arbitrary. Fexample, a matcher using only
string comparison may have obtained an edit dist&hofl betweerw; andty andt;,
and equal or higher than 2 betwegnand the remaining terms. Without any additional
information, the probability that; is mapped by or t; is arbitrary, and could be set
- for example - to 50% each, excluding that terms with highistashces are the cor-
rect correspondence. Some matching algorithms work itelgit using more certain
information collected in previous iterations to increase available information: for
example, if the ternty was already mapped with high probability to another tevm
in O1, then it is possible to add this information in the evidenealable tory(wi, ty);
similarly if the neighbours of the termw; are already mapped to the neighbourt dfut
not to those ofj, then it is possible to increase the information available f(w, ty).

2number of alterations needed to transform one string irgather

Chapter 2. Background 35

2.6.1.1 Evaluating the matching systems

The quality of a matching system is usually measured bygrésisionand itsrecall, or
their aggregation represented ByMeasure Given thatM+,ynq IS the set of correspon-
dences found by the mapping systeéiyorrect IS the set of correct correspondences,
usually defined by human experts:

Precision is the ratio between the number of correct correspondenues@ those

found and the total number of found ones:
| M foundecorrect|

Precision=
ecisio ‘Mfound|

Recall is the ratio between the number of found correspondencethartdtal number

of possible ones:
| Mfoundecorrect|
‘MCOTI'ECI|

Recall=

F-measure is the harmonic mean of recall and precision:

2xPrecxRecall
F —measure= “PrecrRecall

While in toy ontologies most of the systems work well and abtagh precision and
recall, in real world ontologies the recall is fairly low, sisown in [17]. This is because
the matchers often lack the background - or domain specifitowkedge needed to
extract the similarities between two terms, and therefbiy tcannot influence the
probability distribution of the relations, making it impsibkle for the decision process
to select the best correspondence.

2.7 OpenKnowledge

The ideas presented in this chapter find a grounding in the lddd OpenKnowl-
edgé? project, that involves the universities of Edinburgh, Teemsterdam, Barcelona
and the Knowledge Media institute (KMi) in the Open UniversiThe aim of the
project is to create an architecture for an open, coordithiat@wledge sharing system,
which anyone can join at any time: the result of this projecam executable peer-
to-peer framework®, in which peers interact using shared interaction modeisag
involved as software developer for the OpenKnowledge Keamel during the imple-
mentation of the framework we encountered many of the isptmsously discussed:

L3http:/iww.openk.org
http://cordis.europa.eu/ist/kct/fp6_openknowledge.h tm
Lhttp://www.cisa.informatics.ed.ac.uk/OK/download/ok Zip

Chapter 2. Background 36

the engineering decisions taken to solve them represemtaresting comparison and
can help their understanding.

The core concept in OpenKnowledge are the interactions detvparticipants,
defined byinteraction modelswritten in LCC and published by the authors on the
distributed discovery servicgith a keyword-based description. The roles in the in-
teraction models are played by the participants, cgtleers The peers that want to
perform some task, such as booking a room or providing a bapdervice, search for
published interaction models for the task, and then adsesttieir intention of inter-
preting one of its roles to the discovery service for the #etask by subscribing to
it. In the scenario relative to the interaction shown in Fega.7, a travel agendy;
has subscribed to perform the role sipplier for a task“room booking”, while a
peerP, searching a room has subscribeccastomer , for a task described similarly
(for example, justroom”). For the interaction in Figure 2.8, a car rental ageRgy
has subscribed to perform the rolesopplier ~ for a task described dsar rental, car
hire”, and the peel, looking for a car has subscribed astomer , for a task defined
as“car rental”.

When all the roles are filled, the discovery service matchespeers which sub-
scribed for the same or similar tasks (for example, p&e@ndP, with their descrip-
tions “room booking” and“room” or peersP; and P, with their descriptions'car
rental, car hire” and“car rental”), and then chooses randomly a peer in the network
as coordinator for the interaction, and hands over the acteon model together with
the list of involved peers in order to execute it.

The coordinator first asks each peer to select the peers taeyte interact with
(a customer may want to buy from a specific vendor, and not fagnvendor), com-
posing a mutually compatible group of peers out of the repb@d then asks the peers
to commit. If the peers commit, then the coordinator can eteethe interaction, in-
stantiating a local proxy for each peer. The remote peers@méacted only to solve
constraints in the role they have subscribed. In the exampeaction model, the co-
ordinator will ask the peer that has subscribedustomer to solvewant(Product)

Figure 2.11 shows the lifecycle of the OpenKnowledge fraor&wfrom the selec-
tion of an interaction to its execution.

Chapter 2. Background

A) Peer P1 has a task "tag" to perform

compare({im1,...,imn},{OKC1,...}) search(tag)

r1={P2,P3}
i

O isReady(IM;)

(5

B) Bootstrapping - phase 1: peers selection
IF IMi is ready

evaluatePeers(IMi,{P1,P2,P3})

selectRandomCoordinator()

evaluatePeers(IMi,{P1,P2,P3}) - ’ m
<

Discovery Service

q createCompatibleTeam
evaluatePeers(IMi,{P1,P2,P3}) s (P1->{P2},P2->{P1},P3->{P1})

P3

C) Bootstrapping - phase 2: commitment
IF can create mutually compatible team

evaluateCommitment(IMi)
fe)

evaluateCommitment(IMi)

commit ’
Coordinator

D) Interaction Run
IF enough peers have committed

solve(constraint)
[}

Run interaction locally,

solve(constraint)
® - between proxies of P1 and P2

Coordinator

P2

Every time there is

a constraint to solve
in the roles performed
by P1 or P2

Figure 2.11: OpenKnowledge lifecycle

r1={P2,P3}
2=(}

37

Chapter 2. Background 38

2.7.1 What is a peer in OpenKnowledge

A peer is simply a node in a peer-to-peer network. It can be &l6zlded application,
directly used by a human user, or a server application. Tkeefoepeer network is ac-
cessed via thek-kerne] that provides the basic functionalities for sharing, skeng,
subscribing to or taking part in interactions.

Peers involved in an interaction are contacted by the coatdr in order to solve
constraints: to this end, they use the methods provided diy litcally installed com-
ponents.

2.7.2 Matchmaking in OpenKnowledge

Selecting the interaction

A peer interested in performing a task queries the discoseryice for a published
interaction model matching a provided description. Theal®ry service returns the
list of all the models whose description is similar to theegivone.

The peer compares the list of received interactions withnile¢hods it has in its
local components, ranking the interactions based on italmapes to perform them.
The ranking of the interactions can be influenced also by thaularity (how often
they have been used), a measure given by the discoveryservic

Selecting the peers

The peers proactively search interactions and activelg&ilte to them: peers sub-
scribed to an interaction are peers interested in takingipahem. However, a peer
may not accept all combinations of peers: for example a bangsrwant to buy a prod-
uct only from vendor A, but not from vendor B, even though theg both subscribed
as sellers to the same interaction.

Therefore, before taking part in an interaction, all therpesibscribed to it are
asked by the coordinator to select who they want to interatit. wPeers can have
internal models to represent the reliability of other pedepending on their previous
experience with them, and can share these information witars or use the ratings
already collected by others.

2.7.3 Ontology matching in OpenKnowledge

One of the founding motivation of OpenKnowledge is the ogssrof the system: as
we saw, any peer can join at any time, subscribing to a pdaticoteraction. Because

Chapter 2. Background 39

refine » findRefinement
product ————» produce

refined-list confidence
\ refinement

Figure 2.12: Example of structure matching between the con-
straint refine(product, refined-Iist) and method
fi ndRef i nement (produce, confidence, refinenent)

in an OpenKnowledge component.

of this openness, peers can be widely heterogeneous, amdaitecthe alignment be-
tween different ontologies used by peers plays a fundarhesita

There are two types of matchings that a peer needs to perfoorder to partici-
pate meaningfully to an interaction: one offline (at suljgn time) and one online
(during the interaction).

Offline matching
Matchmaking requires offline matching:

¢ the discovery service needs to expand queries to match tgamst the stored
descriptions of published interaction models

¢ the peers need to compare the constraints in the receiva@dation models with
the methods in their local components

The parameters in the constraints are annotated with theastic types. Similarly,
parameters in the methods of the local components are magkadth terms from an
ontology, possibly different from the one used in the intéen annotations. When a
peer needs to perform a task, asks the discovery servicdiiimd interaction models,
and matches them with its own components using tree mat¢dtd.8]. The result of
the matchings provides a measure of the distance betweenténaction model and
the peer capabilities [22], together with the set of adapb@tween the constraints and
the methods in the peer's components. The peer selectstdragtion model that fits
best, and then uses the computed adaptors. An example dbgdaged to match the
constraintrefine(Product, RefinedList) in the scenario interaction model to a
method in a plug-in component, is shown in Figure 2.12.

Online matching
When a peer subscribes to an interaction often it cannot kmoeh other peers will

Chapter 2. Background 40

subscribe to the interaction: in the example interactibe, gupplier subscribes first,
and then wait for the other peers to subscribe as customeig.vihen the interaction
starts the peers will be given the list of all the peers antiseilect those who they are
willing to interact with.

Even at this point they do not know yet who they will actualyeract with, be-
cause the coordinator use the preferences of all the sblesigoeers in order to make a
mutually compatible group of peers. Therefore it makesaémsthe peer to wait until
it receives the constraints with the foreign terms and mapntiat run-time. The ap-
proach presented in this thesis aims at tackling this probfghapters 3 and 4 discuss
it in detail.

2.8 Summary

This chapter has introduced the main concepts needed agrbaokl knowledge for
understanding the research presented in this thesisitdgiciy the interaction among
heterogeneous agents.

We have seen that, while an agent is usually intended as an@ubus actor, in
this work the term agent simply means participant in an atgon. We have also
seen that while interactions can be planned dynamicaltgnofgents only need to
repeat over and over the same type of interactions: exdeuairkflows can be used
as an efficient and clean compromise, and it has been choserution in this work.
Agent can execute different workflows depending on theiectdye. The interactions
are described in LCC, a declarative, executable languaggedoanrr-calculus: a LCC
script defines the distributed workflow the various agentstreMecute.

Agents have ontologies, which formally define the terms tt@yuse in reasoning
about their domain. The agents involved in the interactioag not share the same on-
tologies, and therefore communication implies creatinddes between the ontologies
using some of the available ontology matching algorithms.

The OpenKnowledge project offers a running framework impating the ideas
presented in this chapter: it is a peer-to-peer system wpeees interacts through
shared interaction models written in LCC.

Chapter 3

Conceptual Framework

3.1 Introduction

We have seen in Chapter 2 that the most basic interaction ilsgéesnessage, that
changes the internal state of the recipient. This assuna¢sllhagents in the interac-
tions are able to understand the messages, because theytrehantology defining the
possible terms. But this may not be the case: we have seesgbiats may have differ-
ent ontologies, and therefore they need to have access totrespondences between
them.

As we have introduced in Section 2.6 and will discuss in $acf.4, many dif-
ferent ontology mapping systems have been developed aed teS he core problem
encountered by the mapping systems is that they aim at artdlagy commitment
between the agents: they try to find an agreement on the ngeahas many terms in
the ontologies as possible. As we have seen, this has prarddrthan expected. In

‘economy_car
~,

CD, . -
customer supplier

want(Product) - .

want(@ccommodation) | ‘ mapping__.......
ask(accommodation) (

r refine(accomodation,L)
offer(hostel)) refinefaccomodation;

@ @ e ——— | [hostel,bed&breakfast,...])

acceptable(hostel,

.. accommodation) .
R reject(hostel)
mapping .
offer(bed&breakfast) e .
4 ! refine(P.L) :- findall(X, subclassOf(P,X), L.
acceptable(bed&breakfast 1 book_room(Hotel,Night,Name) \
i 1 e
ClEESIEE ELow) — accept(bed&breakfast) 1 book flight(...)
\) ; accept_payment(...)
1 verify_room_availability(...)
'

" want(accomodation).
1 acceptable(b&b)
| place(Rome).

Figure 3.1: Applying matching in an interaction

41

Chapter 3. Conceptual Framework 42

an open system like OpenKnowledge it is infeasible to prgudmall the correspon-
dences offline, as itimpossible to know in advance all thé@pants in an interaction:
correspondences must be computed dynamically when ini@nadake place. For ex-
ample, as we have seen in Section 2.7, the supplier peer imtgraction shown in
Figure 3.1 cannot know the customer’s identity until therattion starts.

If the peers perform every time different tasks, using défe interaction models,
there would be little useful information that could be egteal by observing the inter-
action runs. However, when the peers need to perform the taskethey will likely
use the same interaction model, and will probably exchamg#as messages. This
repetition can be exploited to learn and build a model of th&ent of the interaction.
As we make clear in Section 3.4, the assumption is that thereedations between
terms in different messages, and that terms appear witerdiit frequencies. Terms
have relations because dialogues are constrainted byantksonventions, made ex-
plicit by the use of interaction models. Terms in a messagg Inaae different fre-
quencies because of three main reasons: first, some of the taay be unrelated to
the interaction model, and therefore will appear rarelgosel, their frequencies may
reflect the needs and desires of the community that uses td@dtion model in a
certain period of time, third, their use depends on the $igamntext of an interaction
run.

The model obtained analysing the content of various runsahteraction model
can be used to predict the content of future interactions. grldiction is a probability
distribution of the terms in a particular transition of ateraction, such as a received
message, given the current state and the history of thequrevuns of the interaction.
As we will see in Section 3.5, the prediction can be used fa@roving the efficiency of
the ontology mapping oracle, suggesting a subset of madyltkrms to verify. It can
be used as additional evidence to the information collebiethe mapping oracle in
order to improve its precision and recall. It can also be wsed source of suggestions
for extending the ontology.

3.2 Problem definition

The agents execute the interaction model inside a sepdrax&.“The “box” in which
an interaction model is run can be compared to the ideappfextdescribed by Gan-
glia: in [20] he defines a contegtas “partial” and “approximatétheory of the world,
represented by the tripl€O;, A, A). In the tupleO; is the language local to the con-

Chapter 3. Conceptual Framework 43

e

I—kl(A,B,C)
k,(X,Y.2) —k,(A,D)
Kk, (F.X) J—k (C,D,E)
L(C.D,
kc(C,F,I)—_/—

k,(A,B,C) ——

k_(A,D,E) — k (T,G,R)
5 (T.G,
__kf(T,H,J)

Figure 3.2: Bridges between the environments

text, A is the set of axioms of the context, afdis the inference engine local to the
context. Moreover, a reasoner can connect a deduction icamext with a deduction
in another usingpridge rules

For the context of an interaction model ran= (O, Ar,Ar), the languag®; is
composed by all the terms that can be introduced by the agemtived in the inter-
action; the axiomg\, are the role clauses ag is the interaction model expansion
engine (see Section 2.4.4).

Interaction models can be executed if it is possible to lerithg reasoning between
the interaction contexd; and the agent’s local contesd. This is accomplished finding
the bridge rules that connect the constraints in the intenacnodel with the predicates
in the agent’s local knowledge:

Cr: Kp(Wi,...,\Wh)
Ca: Ka(T1, ..., Tm)
wherekp is a formula of an interaction model constraint akylis a formula in the

agent’s local knowledge, that can be satisfied only by ussxgwn languag®,, which
is the peer’s ontology.

In traditional ontology mapping, the bridges should bed/édir any value fromi,
andLg in two contextsc, andcg:

YW WheLr, 3Y1..YnELa. Crikp(WA,... Wh)—Ca : Kq(Tz,....Tm) (3.2)

or alternatively:
YW € O, dTj € Oa. ref(W) ~ ref(Tj) ~ Q
That is, for any value of\y,...,W, in Ky, itis possible to find the values fdg, ..., Ty
so thatca : Kq is equivalent tac; : k. In the example scenario, the correspondences

Chapter 3. Conceptual Framework 44

Entity referred to
by the symbols

Alignment found by
the Mapping Oracle

h;,,a(...,.wz-,)

Role 1
E
VS
S
N
N
<
~~
g
)
N
Role 2

Figure 3.3: Translation problem: a term wj; inserted by peer A needs to be
used in a constraint by peer B. The term w; refers to some unknown entity
Ok: the matching term ty, must refer to the same entity for the communication

to be meaningful.

should cover the possible requests from the customer agehtifing any element in
its ontology even if these interactions never take place.

This is a strong requirement: it assumes that it is possibfetl a corresponding
term in O, for every term inO;, and this may not always be the case. It is possible to
limit the correspondences to those needed to perform thermeg interactions, and
with no need to guarantee complete equivalence betweearttigaages. Therefore an
agent needs to map only the terms that appear ik in order to satisfyc, @ Kq :

EIW]_W c Or,Tl...Tn € Oa. Cr Kp(Wl, ...,Wn) /\Ca Ka(Tl, ,Tm) (33)

that is a much weaker requirement. we need to find the value$;fa., T, so that
Ca . Ka is valid for the given instances ¥y, ...,W,. In the example, it means that only
the correspondences required for booking the room are deede

Let us suppose that a peer, with ontolddy needs to satisfy a constrai(...,w;,...)
when in a specific state of an interaction, and that O, is the foreign term. The task
is to find what entitygy, represented in the agent’s ontology by the tépge O, was
encoded iny;. The termty, is the matching term: it is, in the agent’s ontology, the
closest to the intended entitg. For our work, the matching term is assumed to exist
in Oj.

The matching is performed by afapping oraclg whose specific implementation

Chapter 3. Conceptual Framework 45

is irrelevant for this work: any existing mapping systenglsas S-Match [23], would
fit smoothly in the framework.

In the example scenario of Figure 3.1, in order to satisfydbestraintrefine
(Product, List Refined) , the supplier must map the terfaccommodatiofi to
“lodging” in its ontology.

3.3 Predicting the content of messages

The intended entityy represented by the foreign temm is, from the agent’s per-
spective, areventof a random variabl€), whose domain is the whole ontology. As
said before, an ontology mapping algorithm can be used &opret the sigm; in the
message and finds the corresponding symyol

However, conventional ontology mapping algorithms do aé&etinto account the
context of the interaction , and consider, before applyirggrhatchers, all the terms in
the domain as improbable:

P(Qk=1t) =P(Qx=tj) forvtj,tj € Oa
As introduced earlier, dialogues follow conventions anksumade explicit by the
interaction model, and the content of the messages are mefgieby the local and the
general context: therefore the terms are not improbableteswill be more likely than
others.

Our main claim is that the random varialiizg has a conditional probability dis-
tribution, similar to the one in Figure 3.4, where the evidens the context of the
interaction:

P(Qk=t1|MstateM)
P(Qk“Mstate IM history) = < : > (3-4)
P(Qk=tn|IMstateM)
wheret; ...t, belong to the peer’'s ontology amaQx =t |IMstate M) is the prob-
ability thatt; is the best matching term f&y, given the statistical mode¥l of the
interaction, obtained from previous runs of the interattioodel, and the current state
of the interaction. The current statis;ate Of the interaction is given by the values of
all the variable substitutions up to the message curremtiggssed:

Chapter 3. Conceptual Framework 46

0.1

0.141

0.121

o
s

0.084

0.06

P(Qg|Context)=t;

e o
o o
5 X

!

o
TR

i e L s s s s s e s B H
4 12 16 20 24 28 32 36 40 44 48 52 56 60

Terms

Figure 3.4: Example of probability distribution for a variable Qy

Q1 =t
QZ = tg
IM state— .
| Q1=

3.4 Modelling the interaction

3.4.1 Aim of the model

The predictor should be able to use the statistical modeh@firiteraction, obtained
analysing various runs of the same interaction model, toprdmthe probability dis-
tribution of terms for a variabl€y, given the current state of the interaction.

In the design of the model we should not assume any specifatagies for the
other peer, but rely only on the peer’s own: for example, tieopeer in an interaction
could be a human, without a specific and formal ontology. H@rehe terms in the
received messages are first mapped into terms of the pediogptothese mapped
terms are the ones used to create the model.

3.4.2 Assumptions

The founding assumption, as seen before, is that the sasradtipn model is repeated
when similar situations or tasks occur: in OpenKnowledge,example, a vendor
peer can subscribe to a purchase interaction model and leel &skake part in the
interaction every time a potential buyer subscribes to #mesinteraction model.

Following this assumption, we make four more assumptioasplovide the basis
for creating the model:

e terms in received messages have a prior probability digioh,

Chapter 3. Conceptual Framework 47

e termsinreceived messages may have a posterior probafilgy previous mes-
sages and constraints,

e terms in received messages have ontological relationsteiths in the agents
ontology,

e terms in received messages may have ontological relatidthsterms in other
messages and constraints.

We now Analise more in detail these assumption to verify Wwhethey are reasonable.

Terms in received messages have a prior probability distrib ution
Within a specific type of interaction, some terms appear rfregpiently than others.
The frequency of the terms depends on two factors:

1. the interaction itself. Different interaction modelsarsed for different pur-
poses. For example, peers using an interaction for purshagkelikely use
terms related to this task. Interactions can be more spéhdit others, and this
is reflected in the distribution of terms, being narrowethia more specific ones.

2. how the various peers taking part in the interactionsimsate the variables. The
frequency of terms reflects “community” needs or desire.sEfeequencies may
change over time, as new needs or ideas appear. Using thel&®regd toot,
itis possible to verify how many queries for particular terare made by people
in different parts of the world. For instance, queries ab®dpple phone started
nearly suddenly at the beginning of 2007, as Figure 3.5 shbigsire 3.6 shows
how the amount of queries about B&B fluctuates periodicalhere is a peak
(narrower in Italy than in the world) of requests in summenrl @ decrease in
winter. Moreover, while the amount of world queries remaimsilar in the same
seasons of different years, the Italian graph shows thabtimeber of requests
increases every yeatr.

This hypothesis does not require any further assumptioostaklations between the
terms in the interaction: it relies only on the wider contekthe interaction and of

the community in which it is used. It assumes that the othergyevhen taken as a
community, satisfy constraints according to some distidny and that requests are
not all equally likely. It also does not assume any structwstology on the side of

the peer that creates the model.

Lhttp://www.google.com/trends

Chapter 3. Conceptual Framework

Search volume EJ Gaogle Trends

ﬂ
0 L L L il L o L | L L L

2004 2005 2006
1 i i i l i

1
Naws relerence walume

Figure 3.5: Distribution of GOOGLE queries about iPhone

World Trend

Search valume Googie Trends

0 i i i i i | i i | | |
2004 | 2005 ‘ 2006 | 2007
T 1
MNaws relerenca volumea

MWMMWW

Italian Trend

Search valume Google Trands

2004
1

T
News raleranca valuma

MWWWMW

Figure 3.6: Distribution of GOOGLE queries about B&B

Chapter 3. Conceptual Framework 49

Terms in messages may have posterior probabilities given pr evious sent or re-
ceived messages and constraints

This assumption relies on the belief that the current sth&nonteraction depends
on the value of some previous states. The number of previtatessaken into account
is usually a parameter of the system: the influence of prevgtates decreases with
temporal distance.

It does assume a relation between terms in a dialogue, buethtons are not
made explicit: it is only possible to verify that given onentein a specific point of the
interaction, another term is more or less frequent. If theraction model in Figure 2.5
is used for renting a car, then terms likketelor B&B will not appear in the offers from
the supplier, while terms likgan or compact camwill appear more likely. However,
it is not possible to know if there is some ontological redatbetween the terms: it is
just assumed that high conditional frequency implies dima

Terms in messages have ontological relations with terms in t he agent’s ontology

This assumption relies on the idea that terms in messagésfteih belong to the
same class. For example, the supplier may verify that thegeeceived in all the re-
quests are always subclasses of its own cld$sdging” or “flight” . This information
Is an abstraction of the term frequency discussed abovay# that the term belongs
to a set with a certain probability. The set is the one obtatisfying the relation with
the ontology: if the relation isubclas§Product ”lodging’) thenProductcan be any
of the subclasses éfodging” . It does not specify which subclass: any of them can
be the right one, but it include also terms that have not ajggeget in the performed
interaction, increasing its flexibility.

Terms in messages may have ontological relations with terms in other sent or
received messages and constraints

The ontological relations can also be verified between temasvariable and the
content of variables both in previous messages and contstyanaking the relations
between terms explicit. In the example scenario, the customay verify that the terms
appearing in the proposals sent by the supplier are freyusubclasses of the term
in its own request: the proposhbstelis a subclass of the requestcommodation
This information is an abstraction of the conditional freqay discussed above, as it
makes explicit the relation that is expressed in the comwaidti formula: the relation
assigns the frequency to all the terms that satisfy theioglagiven the value of the

Chapter 3. Conceptual Framework 50

other variable.

However, the peers involved in the interaction may haveedffit ontologies, and
one of the peers may lack in its ontology the relation thattier peer’'s ontology has.
Moreover, one peer may find relations even when there are, raftaining a “over
fitting” of the relations.

3.4.3 Mapping the assumptions to LCC interaction models

We have repeated that the content of messages comes fromderteousources
such as peers in the OpenKnowledge framework or service€in \Borkflows. A
source is responsible for the introduction of terms relatetthe interaction and failure
to do so disrupts the communication. If the travel agency peeut example, after
being asked for an accommodation, satisfies the constedimg(Product, List

Refined) with a choice of possible types of coffee, then the commuiundoses
meaning. Intuitively, sources fall into three main categer

e Purely functional given a set of parameters, they always return the sameszalue
for examplemultiply(X,Y, Z) is supposed to always unify the variables with the
same numbers.

e Purely “preference-based”’they collect requests from users and their possible
values can differ every time. In the example, the constraamt(Product)
is preference-based; each peer will satisfy it accordingstéastes and needs.
Overall, the variables in preference-based sources wik lza(unknown) distri-
bution. These distributions may change with time, depandim general shifts
of “tastes” and “needs” (fashions, trends, fads, ...) orhlib&erogeneity in the
peer group composition. A distribution can be more or legsvad: it can be a
uniform or it may follow a power-law distribution.

e Mixed they can be mainly functional, but the results may changedeing
on external factors (availability, new products appeaonghe market, etc), or
can be mainly preference-based, but constrained by sonee p#nameters. In
the example, the constrairgfine(Product,List Refined) is mainly func-
tional, as it returns the list of possible subclasses of i i€the query can be
refined. The list of terms can however change depending osptbefic peer and
with time.

Chapter 3. Conceptual Framework 51

A purely functional source can be guessed when the funciamtological, that is
when it returns terms that are ontologically related to thpuit term: for instance, they
can be its subclasses, or its siblings, or its instancess @roperties. The hypotheses
can be verified comparing the guesses with the feedback fneneritology matching
process. For the purely preference based, it is possibleuntdhe frequencies of the
terms and learn their prior probability distribution. Fbetmixed, it is possible to use
a mix of hypotheses and counting the frequencies. Sometimeamntology of the peer
does not allow him to formulate the correct ontological tiela (because the ontology
is structured differently from the agent that introducee térm), but it is still possible
to count the conditional frequencies, modelling the relatirom a purely statistical
point of view.

3.5 Goals of prediction

As described in Section 3.3, the predictor provides a pribipalistribution for the
terms that can appear in a particular message during araatien, given the previ-
ously exchanged messages and the history of similar intersc The probability dis-
tribution can be used to select the terms that are more celatie current interaction,
excluding those that are not. The selection can be used tmuagfficiency, reduc-
ing the number of operations required to find the mapping.ait also be exploited
to reduce ambiguities in the mappings: when the matchersiraable to distinguish
between equally likely correspondendesty for a foreign termw;, the terms that are
unrelated to the interaction can be excluded.

This section explains how the objectives of the thesis,ithaproving efficiency
while maintaining or improving recall and precision of antalngy matcher can be
reached by using the results of the predictor. It also shawsihcould be possible to
use the predictions to provide the basis for extending tleatgjontology.

3.5.1 Predicting for efficiency

The knowledge of the probability distribution of a varialg)g can be used to select a
subset\ C O of terms likely to appear in it. This sét, and not the whole ontology,
becomes the sét of terms to compare in Function 2.3 improving both the efficie
and the results of the ontology mapping systems, and makimgpie feasible to be
performed at run-time.

Chapter 3. Conceptual Framework 52

Q, distribution
0.

Uniform Zipf's law
0.5

4
>

=4

Cumulative probability

o
=~

0.4

> 4 >
= =
a a
© ©
8 0.3 803
< [
a a

Cumulative probabilit

=3

~
o
N

0.1+

o
e

T T T T T T T T T T T T T T° 7 ’T’T’T’T7T7T7T7T730
ordered terms - ordered terms

=3
[

Figure 3.7: Uniform and Zipf's law distributions

Assuming the knowledge of the probability distribution defil in Equation 3.4,
and assuming that the matching tetyexists (as we have stated in Section 3.3), the
probability that the correct matching tet belongs to a set is:

P(tneN) = Z P(Qk=1i|IMstate M)
tieN

To select the terms to insert ik it is necessary to set a threshalel 1 for P (ty, € A).
If the list Q contains the terms ordered from the most to the least prebéien this

means solving the equation m

< P(ti) tieQ 3.5
T_,Zl (t) tj€ (3.5)

That simply means taking the finstmost likely terms until their cumulative probability
is equal or greater than Fort = 1, then\ = O, while for 7 < 1 the sizeg/\| depends on
the probability distribution. For a uniform distributionwill be directly proportional to
T, while for a skewed distribution, it can BA| < 1|O|: it becomes useful to trade off
between the size of the s&tand the probability of finding the correct correspondence.
As shown in Figure 3.7, if the probability distribution ofetherms is uniform, then
p(tm € A) will be proportional to/A|. For example, ifO| = 1000, therP (Q =t;) =
0.001 forvtj € O. SettingA| = 800 yieldsP (tm € A) = 0.8, and there is no strategy for
choosing the elements to addAo Instead, if the probability is distributed unevenly,
we can keep the most likely terms discarding the others, taiaimg at the same time a
high probabilityt of finding the correspondentgin smallerA. For example, suppose
thatP (tj) is distributed approximately according to Zipf's law (an@ncal law that

states that the probability of an item is inversely propordl to its rank):

. S
PUGSN) = 5 v

Chapter 3. Conceptual Framework 53

wherek is the rank of the terms is a parameter (which we set to 1 to simplify the
example), andN is the number of terms in the list of items. The probabilityfiatling
tm becomes:

P(tmEN) = %
for |O| = 1000, therP (tm € A) =0.70 for|A| = 110 and more remarkabB/(tm € A) =
0.5 for || = 25, as shown in Figure 3.7.

Therefore, given a probability distribution for the ternitsis possible to trade off
a decrement in the probability of finding the matching tegnn A with an important
reduction of comparisons made by the oracle.

If the oracle cannot find any matching inside the suggested\s& can move
to consider a wider set - in the worst case the whole ontoldgien thatt is the
threshold for the cumulative probability of terms/Anthe average number of evaluated
hypotheses will be:

E[nrevalhg =E][|A|]]+ (1—1) (|O] —E[|A|)
where the operatdt [X] is the expected value of a random variaKlein the example
seen above, where terms are distributed according to Zighisandr is set to 0.7,
then:

E [nrevalhg = 110+ 0.3+ (1000— 110) = 377
instead of 700.

3.5.2 Predicting for recall

Recall, as defined in Section 2.6, is the ratio between thebeuwf found correspon-
dences and the total number of possible ones, and when relal edology mapping
systems are applied to real world scenarios, precisioniily faigh, but recall is of-
ten low (~ 30%) [17]. This usually depends on lack of information abibiet relation
between the term to map and terms in the agent’s ontology. ififoemation about
the relations, as said in Section 2.6, can be found in theasyintstructure of the term
(similar strings), in the ontology structure (similar pon in the two ontologies), or
implicit in the meaning of the terms. In many case finding tieigtion requires too
much background knowledge or too much domain specific kndgdend the existing
bridge between two terms is rejected, lowering the recéd.ra

If we do not have enough information to identify the relatioetween a foreign
term and a local term, then this means that all the terms adynequiprobable. The
proposed system provides, given the current state of tlegaction and the history

Chapter 3. Conceptual Framework 54

of previous runs of the same interaction, a probability ribstion for the value of
Qk. Given the probability distribution, different from the iform distribution we have
seen before, we are less uncertain about the real valQg:aofve have therefore more
information. This additional information comes simply finchaving repeated the in-
teraction, and knowing therefore what to expect.

This is an improvement over the situation described by Hqnat.4, that stated
that in the classical approach an ontology matcher startwark considering all the
terms equally probable.

3.5.3 Predicting for precision.

As defined in Section 2.6, precision is the ratio between thaber of correct corre-
spondences among those found and the total number of foussl &recision is low
when an ontology mapping system maps many foreign tevnte wrong terms in the
agent’s ontology. This is often due to lack of available miation that can disam-
biguate between two (or more) possible correspondences.example, if only the
string similarity is used, then the terfoars” has the same normalised edit distance of
0.25 with the term&car” , “cans”, and“cart” .

The context can provide the information necessary for teardbiguation, suggest-
ing the terms most likely given the state of the interactirihe interaction is about
renting a car, then the most likely term for the matchintcer” , and the rest can be
discarded.

3.5.4 Predicting for extending ontologies

The three assumptions we made for the system are that thespondent ternty,
exists, the terms in messages have an ontological relatisbntevyms in the peer’s on-
tology and they may have relations with terms in previoussagss in an interaction.

These assumptions can also drive the extension of an ogtoldghe predicted
content forQy has a consistent relatioal (Qy, Qx_i) with a previous variabl€y_;, or a
relationrel (Qy, €j) with a terme; in the ontology, but the ontology matcher cannot find
the corresponding termyg, in the ontology because the term is missing, then this can be
an indicator that there is an important term, referred tovas other ontologies that
should be added to the ontology and should be in relagti@Qy, Qx_i) or rel(Qy, €;)
with the other term.

For example, whey_; is “accommodation’; sometimeLx has the unknown

Chapter 3. Conceptual Framework 55

value of ‘residence’ the predictor may suggest that the contenQfis a subclass
of “accommodatioh but the ontology matcher fails to find the corresponderi@eer
time, the repeated failure can be provide an indicationHerdurator of the customer
ontology that she should add a new term correspondirigegidence” as a subclass
of “accommodation”.

3.6 Summary

Ontology mapping systems usually do not consider the contigixin which the match-
ing is performed. This means that before applying the mas;tadl correspondences
are equiprobable. However, if we use an ontology mappintgay$o dynamically map
terms in an interaction, we can assume that terms in messpgesirs with different
frequencies. These frequencies are influenced by the speoiitext of the interac-
tion, by the previously exchanged messages and by the coityhafrparticipants in
the interaction.

By analysing similar interactions it is possible to obtaimadel that can be used
to compute the distribution of probabilities of terms in thessages of an interaction.
These probability distributions can be used to predict tlstiikely terms in a mes-
sage, focussing computationally expensive ontology niadchctivities on them and
improving efficiency. They can also be used as additionarimétion provided to the
matcher, increasing recall (usually low because of lackophdin specific knowledge)
and precision (by removing ambiguities).

Chapter 4

Implementation of the Predictor

4.1 Introduction

While the previous chapter describes the assumptions anddals of the proposed
solution, this chapter presents the architecture and thetituning of the predictor.

In the proposed architecture, the predictor creates theemoidan Interaction
Model from the mapped terms fed back by the mapping oraclevetyeun of the
interaction. The model is composed of a set of assertionsdoh variable€y in the
interaction. An assertion states the frequency with whiehterms used foQy have
appeared in a specified set of terms that share the same fytopbe set can either
be defined by an explicit list or by an ontological relatiortivibeen the variable and
another term. Section 4.3 describes the model and how itdatep.

When the predictor is invoked for a variab@ during a run of an interaction, it
selects and instantiates the assertions for the variafdetheen computes the probabil-
ity distribution of all the terms in the peer’s ontology, pagy it to the oracle. Section
4.4 describes, together with an example, how assertionsedeeted and instantiated
and how their frequencies are combined to yield the proliglmf a term.

4.2 Architecture

As we have stated before, the aim of the system is to expleitepetitions of similar
interactions in order to predict the content of received sagss in future interactions.
The predictor works in two phases, linked by a feedback l@ghewn in Figure 4.1:

model creation: the predictor uses the correspondences found and fed batkeby

56

Chapter 4. Implementation of the Predictor 57

Remote Peer environment

/s

Peer environment

Interaction Ontology
models —
o Predict Mappin
Mstote No reaictor suggestions pping T
term already P(T|hist.) Oracle

?
mapped? T

feedback

Figure 4.1: The predictor feeds suggestions to the mapping oracle, that feeds
back the correct correspondences (when possible)
oracle and the peer’s ontology to create and update the model

prediction: itis performed when there is the need to map the content ofiable; the
result is a probability distribution for all the terms in tpeer’s ontology given
the past repetition of the interaction model and the curséate of the run.

The oracle receives the probability distribution computgdhe predictor, and uses it:

e to prioritise the comparison between the foreign tewnin the message and the
terms in the peer ontology

e as additional information, based on the context of the augon, about the cor-
respondences

The oracle may use the external ontology that defimeslepending on the algorithm
it uses, but it is irrelevant for the functioning of the syateThe best matching found
by the oracle is then fed back to improve the model for thei@algr interaction.

4.3 Model creation and update

The predictor receives the current model of the interackirthe peer's ontologp,
the current state of the interactidM sia:e and returns an updated version of the model
M’:

update M X O X IM state— M/

Chapter 4. Implementation of the Predictor 58

4.3.1 Model representation

This solution, that | first suggested but did not evaluatéirahd then presented more
thoroughly in [6], is a statistical mod®l of the interactioriM in which the properties
of entities appearing in the random variallein different runs of the same interaction
model are counted and stored in a Aatf assertions

M= (IM,A)

An assertiorA € A about a random variabl@y appearing in a clause relative to a
role r keeps track of the frequendywith which, given a conditiorf, the entity has
been part of a sé¥ defined by some properties in the encountered dialogues:

A=(id,r,Q,¥,{, f) (4.1)

The condition{ can be emptyd) or can specify the value or a property of another
variable,Qj/tg. The set¥ can be specified as an explicit list of terts, ...,t,}, or
with a set builderformula{x|@(x,e)}, wheree € O andO is the peer’s local ontology.
The explicit list means that the terms in it have appearethtal, f times inQx. The
formula means that the relatigp(x, €) between the terntin Qyx and another entity
has been verified times: the seW includes all the terms whose property is in relation
@ with e. The relation is an ontological relatiosubClass superClasssiblingOf,
domainOf rangeOf); the entitye can be either a term from the agent ontology, or a
variable in a previous message in the interaction. The plesgipes of assertions are
listed in Table 4.1.

The available ontological relations depend on the exprigsif the ontology used
by the agent: if it is a simple list of terms, then no relatimas be found, if it is a
taxonomy then it is possible to find subsumption relatiohpraperties are included
then range and domain relations can also be identified. Trnsbe an incentive to
develop rich ontologies, as they allow for more detailedtiehs to be found.

4.3.2 Creating and Updating the Model

Assertions are created and updated every time an intenactaxlel is executed. The
predictor works inside the agent’s environment, and tlegeefvorks only with terms
from the local ontology. It receives the translated versibthe messages as feedback
from the mapping oracle, and then analyses the local ternteeo¥ariables in the
messages in order to create and compute the assertionsgjiagcto different analysis

Chapter 4. Implementation of the Predictor 59

Frequency of terms

<j7r0|e7Qki7 {tQ} 787 f>
Assertions can be about the frequency of the entities in gunaent, disregarding the
content of other variables in the dialogue.

For exampley1, customerProposal {b&b} , €,6) .
Conditional frequency of terms

<j7 r0|e7 Qk7 {tQ} 7Qi = th7 f>
More precise assertions can be about the frequency of aty gnten the content of
previously encountered variables.

For examplei1, customerProposal{b&b} , Product="accomodatiof, 4) .
Frequency of relations with terms in other variables

(J,role, Qi {X[rel(X,Qi)} ¢, f)
They can regard the relation with an argument of anotheatsaEy in the interaction
model.

For examplei1, customerProposal {X : subclas$X, Produc}}, ,24)
Frequency of relations with terms in ontolagy

(j,role,Qx, {X|rel (X,tx)},¢€, f)
They can be about an ontological relation between the eimtitie argument and an
entity tx in the agent’s ontology.
For examplei1, customerProposal { X : subclas$X,”product)}, €,24)

Table 4.1: Types of assertions

strategies that follow from the assumptions listed in S#c8.4. The strategies search
for different properties of the terms:

e Terms that appear in a variable are counted. Their propsersimply being
identical to a term already encountered or being a newly araet.tAn assertion
for each term is generated, and every time the same termeagephe frequency
of the assertion is increased.

e Terms that appear in a variable are counted, but assertiergeaerated with a
condition{ about the value of a previous variable. In this case the ptppéthe
terms is being identical to a previous term (or being new)fatidwing the same
term as the previous ones (or a new one). Every time the sameréappears,
satisfying the conditiod by following the same term in a previous variable, the
frequency of the assertion is increased. For example, tf#mslated value of the
variableProposal is “hotel’ and the translated value 8foduct in the previous

Chapter 4. Implementation of the Predictor 60

message isdccommodatioh then an assertion about this case is created:
(...,customefProposaly, {“hotel' } ,Product = “accommodatioh 1)

If the same combination of terms appears in future intesastithe frequency of
this assertion will be increased. The maximum distance éetvthe variables is
a parameter of the strategy.

¢ Different ontological relations between the terms in aafale and terms in the
peer’s ontology are checked. An assertion for each satisdlation is generated,
and its frequency is increased every time the same relaticatisfied. All the
terms in the seW of the assertion share the same relation with the term in the
peer’s ontology.
More formally, the system searches the tesnso, ... € O for which the follow-
ing relations hold:
OF @1 (O, X1),0F @(0k, %1),O F @3(0k, Xa)s---
OF @1 (G, %2),0F @(0k; %2),0 F @3(0k; X2)---
The relation between the variall@ and the found ternx;, ¢;(Qx, Xi), is stored
if new or updated otherwise. In practice, the most usef@tieh to verify and
store is the one about the term that generalises the val@g oknowing the a
variable always contains objects of a certain class is aml finding by induc-
tion the type of the variable and help to predict the possiblgent of instances
of the same variable in future interactions.
For example, if hotel is the translated value for the varialfeoposal in the
receivedoffer() = message (see Figure 2.7), then the system tries to find its su-
perclass in the agent’s ontology. The resulting asseri@iout the set of terms
that are subclasses of the found superclascOmmodatioiiin this case):
(...,customefProposaly, {X : subClassO {X,’accommodation}, €, 1)
In future execution of the same interaction model, if theueabf Proposal is
translated into another subclass‘atcommodation’, such asb&b” , then the
frequency of the assertion is increased

¢ Different ontological relations between the terms in thealade and thenapped
value of previous variables are checked. An assertion foh eatisfied relation
is generated, and its frequency is increased every timeame selation is sat-
isfied. The terms in the s&#¥ of the assertion all share the same relation with
another variable in the same interaction model.
More formally, the system tries to prove which of the follogirelations hold,

Chapter 4. Implementation of the Predictor 61

given the agent’s ontology as set of axioms:

OF @u(0k, dk—1),0F @ (k. Ok—1),O F @3k, Ok—1),---

OF @1(Gk, Uk—2),0F @(0k, Gk—2),0 - @3(Ck, Gk—2),---
The holding relations are stored, and if already encoudtare increased. For

example, if the value oProposal translates intdhotel” , and that ofProduct

into “accommodation’; the system tries to prove different ontological relations
between the terms: it checks‘ifiotel” is a superclass, a subclass, a sibling,
a property of‘accommodation”. The correct relation between the variables is
stored:

(...,customefProposaly, {X : subClassO {X,Product)},¢,1)

When the same relation reappears in another run of the ctiena for example
becauséroduct is “car” andProposal is “van”, the frequency of the asser-
tion is increased. The distance up to which search for mratis a parameter of
the strategy.

Table 4.2 shows the possible model for the content of thealkbgProposaj in the
interaction model in Figure 2.5, that the customer peer neagftreated after having
executed the interaction a number of times with differepetyof service providers.

4.3.3 Example of creation and update

In our example the customer peer uses the same interactidaltooperform different
tasks, such as booking car rentals and accommodationg)gleadh various suppliers.
The first interaction is depicted in Figure 3.1: the custormks ‘accommodatioh
and the supplier, possibly a travel agency or an hotel agepties with ‘hostet,
that is rejected, and then wittbéd&breakfast As we have seen in the figure, the
term in the second proposal must be mapped®b” in the customer ontology. The
predictor module receives as feedback the satisfied camistend sent messages with
the translated terms. In this case, the predictor receives:

1) constraint: want(*accommodation”),

2) messagein: offer(“hostel”),

3) constraint: acceptable(“hostel”, “accommodation”),

4) messagein: offer(*b&b”),

5) constraint: acceptable(“b&b”, “accommodation”)

The predictor stores the translated unfolding of the irdtoa for the length of the

run, in order to find relations between the terms in previpusteived messages. The

Chapter 4. Implementation of the Predictor 62

constraints are only stored, while received messages ategsed and the statistical
model is updated.
When the firsinessagein arrives,offer(“hostel”) in this case, the predictor:

1. checks if there is an assertions about the frequency of teostel”. This is the
first time the interaction is used, so there are no assertanbit creates a new
one:

A1 = (1,customeProposaly, {“hostel' }), g,1)

2. checks if there is an assertion about the conditionaligaqgy of ‘hostet given
the value ‘accommodatiohin Product variable. Because there are no assertion
yet, it creates a new one:
Az = (2,customeProposaly, {“hostel' } ,Product,/”accomodatioh, 1)

3. searches the superclass bbstet in the peer’s ontology, trying to satisfy the re-
lation superclass(X,“hostel”) , finding “accommodatioh It checks if there
is an assertions about the relation, and as this is the finst ameates a new one:
Az = (3,customefProposaly, {X : subClass0f(X,"“accommodatioh)},e,1)

4. tries to prove different relations betwedmostet and the terms in variables ap-
pearing in previous messages and constraints. In this it&ses to satisfy:
subclass(Proposal, Product), superclass(Proposal, Prod uct),
siblingOf(Proposal, Product), propertyOf(Proposal, Pro duct),
propertyOf(Product, Proposal)

Proposal is replaced byhostet andProduct is replaced by &ccommodatioh
and the only relation that can be provedsidbclass(‘hostel”’, Product)

Being the first interaction, there are no assertions and aomews created:

A4 = (4,customefProposaly, {X : subClass0f (X,Product,)},€,1)

When the seconaiessagein is fed to the predictor, a similar process takes place. The
last two cases are verified again, #&b” is a subclass of the termratcommodatioh
and therefore the assertions 3 and 4 are updated, increagindrequency.

If the same interaction is then used in the interaction shiowhgure 2.8 for rent-
ing a car, the predictor receives as feedback during the rarfdllowing translated
interaction events:

1) constraint: want(car)

2) messagein: offer(compact_car)

3) constraint: acceptable(car,compact)

4) messagein: offer(economy_car)

Chapter 4. Implementation of the Predictor 63

5) constraint: acceptable(economy_car,car)
When the first messagein event arrives, the predictor:

1. checks if there is an assertions about the frequency of teompact_car”.
There is no assertion, so it creates a new one:
As = (5,customefProposaly,{“compactcar’}),&,1)

2. checks if there is an assertion about the conditionaliaqy of ‘tompact_car
given the value “car” irProduct variable. There is no assertion yet, so it creates
anew one:

As = (6,customeProposaly, {“compact car’ } ,Product; /“car’, 1)

3. searches the superclass cbthpact_carin the peer’s ontology, trying to satisfy
the relationsuperclass(X,“‘compact_car”) , finding “car”. It checks if there
is an assertions about the relation, and as there are noreaies a new one:

A7 = (7,customefProposaly,{X : subClass0f(X,“car’)},¢,1)

4. tries to prove different relations betweerompact_cat and the terms in vari-
ables appearing in previous messages and constraints.isloabe, it tries to

satisfy:
subclass(Proposal, Product), superclass(Proposal, Prod uct),
siblingOf(Proposal, Product), propertyOf(Proposal, Pro duct),

propertyOf(Product, Proposal)
Proposal is replaced by Compact_cdrandProduct is replaced by €ar”, and

the only relation that can be proveddsbclass(Proposal, Product) . An
assertion about this relation was created the previousdioamd therefore it is
only updated:

A4 = (4,customefProposaly, {X : subClass0f (X,Product,)},€,3)

After 12 runs of the interaction, the resulting model is showTable 4.2.

4.4 Prediction of Q

The predictor receives the moddl for the current interaction, the peer’s ontoloQy
and the current state of the interactisate and returns the probability distribution

for Qx:

pl'edICt M X O X IM state— P(Qk“\/l, IM state)

Chapter 4. Implementation of the Predictor 64

Term frequency

A1 = (1,customefProposaly, {“hostel }), €, 6)

Ag = (8,customeProposaly, {“b&b"}), €, 4)

As = (5,customeProposaly, {“compactcar’}), €, 3)

A11 = (11 customelProposaly, {“hotel'} , &, 6)

A2 = (12 customelProposaly, {“economycar”’ }), €,5)

Conditional frequencies

Az = (2,customeProposaly, {“hostel } ,Product;/“accommodatich 6)

As = (6,customefProposaly, {“compactcar’} ,Product;/“car”’,3)

Ag = (9,customefProposaly, {“hotel'} ,Product;/“accommodatich 6)
Agp = (10, customeProposaly,{“b&b"} ,Product, /“accommodatioh 4)
Aq3 = (13 customeProposaly, {“economycar’ } ,Product,/“car’,5)

Ontology-variable frequencies

Az = (3,customefProposaly, {X : subClass0f(X,“accommodatioh},,16)
A7 = (7,customefProposaly, {X : subClass0f(X,“car’)},€,8)

Inter-variables relation frequencies
A4 = (4,customeProposaly, {X : subClass0f (X,Product;)}, £,24)

A4 = (14, customeProposaly,{X : sibling0f(X,Proposalx_i)},&,12)

Table 4.2: Statistical model of the context for the customer peer

Chapter 4. Implementation of the Predictor 65

The predictor first selects the assertions relative theatsgiQy, then it instanti-
ates the abstract assertions, and finally it combines tlogidmecies from overlapping
assertions.

4.4.1 Instantiating the assertions

The assertions computed using the feedback from the majppauie reflect patterns
found in different runs of the same interaction model: whas dontent of a variable
Qx in a new run must be predicted, the e}, of assertions relative to the variable
must be instantiated with the current state of the intevactiThe state is given by
the unifications of the variables in the messages and camstencountered up Qy:
IMstate= {Q1/ti...Qu_1/tj }. The result is the set of instantiated assertiég?.

1. some of the conditional assertions Ay, may have a condition{ not
consistent with the current state of the interactibhgie for example
(... Qo {tj}, Qs =th, ...), whenQy_1 # th. These inconsistent assertions
are filtered fromAg, :
filter_inconsistent Ag, X IMstate— Aq,

The filter is done applying to each assertion Mg, the function
verify inconsistent

verify inconsistent A x IMgtate — boolean

The function can be expressed in functional, Haskell-ligen:

verify_inconsistent(_, , , .,),IMgtate)
Z € IMstate - true

otherwise = false

2. some of the relations in the remaining assertions aretabonstantiated vari-
ables. The variables in the relations must be unified withr trenslated values.
This is done by applying to each assertion the functioify
unify: Ax IMgtaie— A
That we can expressed in functional form:
unify ((id,r,Q, {X : rel (X,Qj) },Z,), IMstate)

Qj/th € IMstate = <id7r7Qk7 {X : rel (X,th)},Z, f>
otherwise = Error

Chapter 4. Implementation of the Predictor 66

3. some of the assertions, at this point, will be have exgligtis (most of them
composed by a single term), while others will define setsughoontological
relations between the variable and another term in the ogyolThe implicit
set must be made explicit computing the relations. This isedapplying the
functioninstantiate—all to Ag,:
instantiate-all : Ag, x O — Ag,
that appliesnstantiateto each assertion:
instantiate A x IMgtate— A
This function can be expressed in functional form:
instatiate((id,r, Qx, {X : rel (X,ty)},{, f),0)

= (id,r,Q, { .- tg, ..}, {, f) Wtg: O Frel (tg, th)
Terms that have already been mapped in previous messades sdrne inter-
action can be removed from the resulting lists: if the fongigrm is known, the
prediction and mapping phases are bypassed and the terohlisé& directly
to the modeller.

As anticipated in Section 3.4, assertions about ontolbgetations create two prob-
lems. First, some of the relations can be spurious. Seconak selations may refer to
large sets, bringing little information. To deal with thesfitssue, only relations found
in a significant proportion of the cases are taken into caratibn. To deal with the
second issue, sets larger than a significant portion of tt@ayy are discarded.

4.4.2 Combining the assertions

The result of the previous steps is aA@k of possibly overlapping sets, each with an
assigned frequency. For example:

((o Qu{ta), . 1)

Ab, = ?:-::Qk;{tz},...,fg

(...Qk, {t1,t3,t5}, ...,))

To obtain a probability of each terty,t, in the agent’s ontology the predictor
needs to combine the sets and their frequencies. The fits ishow to assign weight
to single terms in sets. An initial consideration is that asemtion about ontological
relation makes no assumption about the distribution ofuesgies of the terms that
satisfy the relation: therefore, according to ghenciple of indifferencetheir frequency
can be considered as evenly distributed. From the assertion

Chapter 4. Implementation of the Predictor 67

G
customer supplier
< - standard
—d
Product;
I d
7 ask(accommodation) o>
By
Proposal, | reHnelmccomoa
offer) g : bed&breakfast
le—— | hostel
—d
- reject(hostel)
Proposal ,
offerl(C7)
| o)
—3
—
>

Figure 4.2: Predicting a variable

An= (.., Q{t, .., tn}, ...,)

it is possible to obtain a list of assertions about the sitgims:

Ahl:<...,Qk,{t1} > Tt tn}|>

Ann= < ,Qka{tn} am>
The result is that the same tenmay appear in different instantiated assertions,
obtained through different strategies (simple frequecopditional frequency, onto-
logical relations, etc). These frequencies can be sumngther and normalised by
the frequencies of all the selected assertiég; to obtain the probability of the term

i

Aj(tieW)
> A

AEA

The three Kolmogorov axioms are satisfied:

p(Qx=t) = (4.2)

e p(Qx=tj) >0 Vvt €O: ifaterm does not appear in any assertion its probability
will be O

® SicL, P(Qk=ti) = 1. the denominator is given by the sum of all the assertions

that can appear in the numerator

¢ the probability of disjoint terms is given by the their sum:

P(Qk=t)Up(Q=1t)) =p(Q=1tVt) =p(Q=t)+p(x=t))

Chapter 4. Implementation of the Predictor 68

4.4.3 Example of prediction

The state of the interaction for the customer peer when itlsée predict the content
of Proposal, in the interaction shown in Figure 4.2 is:

Products; = "accommodatioh
IM state = (4-3)

Proposal; = "hostef

Given that the modeVl of the interaction model is shown in Table 4.2, and that2
(we have recursed once), in order to compute the probabistyibution

P (Pr0posa12 ‘ M historys IM state)

the customer peer must:

1. drop the conditional assertions whose conditifodoes not correspond to the
current state of the interaction; so assertidgsand A;3 are dropped because
their conditionProduct; = "car” is inconsistent with the state in Equation 4.3,

2. unify the variables in relations with the current statéhafinteractionProduct,
in A4 is replaced witH'accommodation”andProposaly_; in A4 is replaced
with “hotel” , obtaining:

A4 = (4,customefProposalsy, { X: subClass0f (X, “accomodatioh) } , €,24)
A4 = (14, customeProposal,, {X: sibling0f(X,“hotel’)},&,12)

3. compute the relations in the assertions using the pept&aygy in Figure 4.2,
obtaining sets of terms; assertiofg A14, Az, A7 become:
As)(4,customerProposal, € {“hostel,“hotel’,“b&b",“camping } , €,24)

A14) (14 customelProposaly, {“hotel’,“b&b",“camping } ,&,12)
Ag)(3,customeProposaly, {“hostel,“hotel’,“b&b”,“camping } , €, 16)

LT3

A7)(13 customerProposaly, {“economycar”’,“compact car’,“vart' } , €, 8)

4. drop the assertions whose 8eéis larger than a certain proportion of the ontol-
ogy, as they do not carry useful information. In this cas&enis dropped.

In the example, the denominator of the formula is obtainedraing the frequencies of
the remaining assertions = {A1_5,A7-12,A14}. In order to compute the probability
that the concept iRroposal, is the term‘hotel” , we select the assertions whose set
contains the ternihotel”, obtaining assertion8gz, A4, Ag, A11, A14. The assertions
Az, A4, A14 contain more than one element, and therefore the frequessigreed to
“hotel” is computed dividing the frequency assigned to the set bysthe of the set to
obtain the following:

Chapter 4. Implementation of the Predictor 69

F(Propesal,="hotel"')= —=—=0.282
- 92 92
P(Pr'aposafq='hosa‘ef')=w=£=0 229
- 92 92
P(Proposal,="bib ']=Lﬁ+3+4=£=0.228
' - ' 92 9
6+34+4_ 13
P(Proposal,="camping '|= ———=—=0.141
\ P 2 pmng o 9

cumulative probability
1

0.8

0.6

0.4 +

0.2 4

0

hotel hostel camping compact economy

suggested terms /

Figure 4.3: Probability distribution for variable Proposals

P(Proposals = "hotel') = g5z 35761614724 12716 — 02 — 0-282

The complete distribution of variabR{Proposaj|IMhpistory, IMstate) iS shown in Fig-
ure 4.3.

4.5 Summary

In this chapter we presented the architecture and the fumoty of the predictor. The
predictor creates a model for a varialdg in an interaction model from the feedback
obtained by the mapping oracle. The model is composed oftamseabout the fre-
guency with which the term corresponding to the entit@ipappeared in a particular
set, defined either by an explicit list or by a set builder fakax An assertion can be
about the frequency with which a term has appearegi(possibly given other terms
In previous messages), or about the frequency which anagitall relation between
the content of the variabl®, and either a term in the ontology or another variable
Q«k—j has been found. The model is used to compute the probabiditsitalition of
terms for the variabl€), selecting the assertions that are consistent with the murre
interaction run, instantiating those defined by formulad emmbining them for each

Chapter 4. Implementation of the Predictor 70

term.

The statistical framework presented in this chapter migb¢mble a Hidden Markov
Model, and in fact it was partially inspired by the intuitidEa behind it. However, the
use of ontological relations between variables, that, asilNeee in the next chapter,
represents one of the strength of this work, cannot be repted using a Markovian
model. Moreover, it violates the Markovian assumption tiegjuires that the current
state depends only on a finite history of previous states. ré&igraphies can be of
any length, and, because some sections of the choreogsaplaig be repeated, their
runs can be of different duration each time. Therefore aalédei in a message can

have an ontological relation with another variable in a ppes message at an arbitrary
distance.

Chapter 5

Evaluation

5.1 Introduction

In Chapter 3 we have introduced and explained the idea ofjuahistory of previous
interactions and the state of the current interaction ireotd compute the probability
distribution of the terms in a particular message in a definemtaction between agents.
In Chapter 4 we have provided an implementation for the ptedibased on collecting
statistics on the content of messages.

We now have to verify its functionality and its usefulnessswaering two main
questions: 1. Does it work? 2. Is it useful? The first questamswered in Sections
5.3.2 and 5.3.3, requires verifying whether the predidjor. the computed probabil-
ity distributions, are correct. The probability distribut computed by the predictor is
correct when it reflects the real probability distributicitlee messages’ content. An-
other element to verify is the robustness of the predictoemtine community of users
changes, influencing the real probability distributioniué tontent.

The second question, mainly answered in Section 5.4, resjagcertaining whether
the use of the predictor improves the performance of an ogfoatcher, measured
in computational time complexity, precision and recall.

5.2 General Testing Methodology

One way of testing my system is through real interaction agdes, using real ontolo-
gies and real workflows for the dialogues, but since thesseaece this would cover

only part of the testing space, without having the posskiti vary parameters in order
to verify the effects.

71

Chapter 5. Evaluation 72

a(r8a(0),I) :
m; (X,P) = a(r8b,0) «— Ky (P,X)
my(Y) <= a(r8b,0)
then| or

m3(M) <= a(r8b,0)

a(r8b,0) ::
m; (X,P) <= a(r8a,I)
my(Y) = a(r8a,0) < Ko(P,X,Y)
then| or

mz(M) = a(r8a,0) < K3(P,X,M)

Figure 5.1: Interaction model template

What is important, however, is to verify the ability of theegictor to statistically
model the way in which constraints are satisfied given thee sté the interaction.
And, as we have seen in Section 3.4, the constraints cdnrimtional preference-
based or mixed It is thus possible to simulate different real world scérsuusing
template interaction models executed by dummy peers tinatiig satisfy constraints
according to parametrisable rules and ontologies.

In order to test and evaluate the feasibility and the rdliigbof the model, we
developed a framework that can run different dialoguedyaireg the message content
in order to create models for the interactions, and thenyapglthem to predict the
content of messages in similar interactions.

Interaction Framework

The template interaction models must cover the basic pat{@esent in interactions.
For example, the interaction model in Figure 5.1 can modetyndifferent interac-
tions: M can be a request for informatiotaboutP (for example, the price of X),
with mp being the reply andns being the apology for not knowing the answer. Alter-
natively,my can be an offer (the produgt at priceP), with m; being the acceptance
and mg the rejection. By viewing interaction models abstractly @@ set up large
scale experiments in which we vary the forms of constrammts controlled way.

The functional constraints are ontological rules, the gm@rfice-based constraints
return terms according to probability distributions theflect a distribution of “needs”
and “tastes” over a community of peers, and mixed conssairg rules with an ele-

Chapter 5. Evaluation 73
ment of probability.

Ontologies

The ontologies are generated as graphs, composed by a meaithat corresponds to

the class taxonomy plus the instances, and links betweetsiabges that represent the
properties. Because it is possible to specify the featuirgeerated ontologies, it is

possible to cover a wider space of variations than it by uskgting ontologies.

Constraints

Peers introduce terms in interaction models satisfyingtramts. As we have seen in
Section 3.4, constraints can be:

e purely functional when given the input arguments, the output is always the
same. For example, the constramtltiply(X,Y,Z)should unifyZ always with
the same value given the sadieandY

e purely preference basewhen the output depends only on a probability distribu-
tion. For example, the constraimiant(P)in the example scenario unifies values
that reflect the preference of the community of peers thatheseteraction

e mixed when the output depends on the input parameters, but itidetermin-
istic, and the possible set of terms in the output follow ebpiulity distribution

The way constraints are solved is simulated in the agentgaiticular, preference
based constraints are solved returning terms according@mlaability distribution
whose parameters can be modified to verify the behavioureoptadictor in different
situations. A preference function takes an ordered liseohsR C O, whereO is the
full ontology, generates a numberO < |R| according to a probability distribution (in
the experiments, we used the half-normal distribution) @bdrns the term at position
I insideR.

The width of a Gaussian distribution is given by its standdediationo: a higher
o means a more spreaded distribution. Figure 5.2 shows tiferetit probabilities
of terms ranking from 0 to 120 when Gaussian distributionthwlifferent standard
deviations used: witly = 5, the term ranked first is twice more probable than the term
ranked 48", while with o = 25 the probability remains nearly constant over all the
terms. Figure 5.3 shows the distributions obtained callivegpreference function over

Chapter 5. Evaluation 74

0.16
0.14 3

0.12 e
0.1 M

0.08 ~
0.06 <
0.04 e
0.02 = e —

probability

0 20 40 60 80 100 120 140

term rank
______ sigma=5 sigma=10
........... sigma=15 — ---— sigma=25

Figure 5.2: Gaussian distributions with different standard deviations

! H M AT s rerr

Figure 5.3: Different preference distributions of terms from a generated on-

tology

a thousand times with the same set of terms and first with aatdrdeviationo = 5,
theno = 10 and finallyo = 25.

Running the experiments

The experiments consist of running repeatedly (betweera2d0400 times) a number
of different interaction models, the constraints of whicé satisfied using probability
distributions to simulate a large population of agents. rif\vi© interactions, a set
of performance measures is logged. The performance meaatgeaveraged over a
sliding window of 30 interactions.

Each batch of experiments is described in an XML file: the imed agents are

Chapter 5. Evaluation 75

<batch>

<description>use of interaction model 1</description>
<involved_agent id="tagent1"/>

<involved_agent id="tagent2"/>

<experiment id="1">

<description>Learn the distribution of a variable (with si gma=40)</description>
<agent_param agent="tagentl" section="general" param=" feedback_results" value="true"/>
<agent_param agent="tagentl" section="randprefs" param ="totell" value="{ffile"’'tlpa’, 'sigma’.40}"/>

<institution name="prot1" repeat="200" dumpevery="10">
<start role="r8a" agent="tagent1">
<param>tagent2</param>
<[start>
<finstitution>
</experiment>

<description>Learn the distribution of a variable (with si gma=5)</description>
<agent_param agent="tagentl" section="randprefs" param ="totell" value="{'sigma’:5}"/>
</experiment>
</batch>

Figure 5.4: XML file describing an experiment

listed first, then, for each experiment, the values for patans are defined (to allow
different behaviours in different experiments), and fipdllis specified what interac-
tion model must be run with which parameter settings and hamyntimes.

The file shown in Figure 5.4 describes two experiments udiegeikample inter-
action model in Figure 5.1. The only difference between the €xperiment, both
involving 200 repetitions of the interaction, is in the \@arce of the Gaussian distribu-
tion: the curve in the first experiment is narrower than ingkeond.

5.3 Verifying functionality

In this section we evaluate how close the predicted diginbus to the actual distri-
bution of terms. In this experiments | am not concerned wittolbgy mapping, and
therefore the peers share the same ontology. Their goalyst@predict the content
of variables in messages before checking them: if the coetbdistributions are cor-
rect, then the peers will often guess the exact term. Theesigd sef\ of most likely
terms for a variable, described in Section 3.5, is the caterawn used in evaluating
the functionality. The average size of the set, the likadiththat the correct term is in
the set, and the average rank of the correct term in the setsae as indicator of the
ability of the predictor.

Chapter 5. Evaluation 76

Figure 5.5: A generated ontology

Average success rate Average size of the suggestion set
1 35
L " 30
0.8 e P /
o« * / 25 [
M-{
o 06 o o 20 P =
o N
3 04 /-/ @15 /,«”/_/
10
0.2 v
5
0 0
0 50 100 150 200 50 100 150 200
nr interactions nr interactions

Average rank

14
12
I
—
< 10
I
o 8
o
c 6 * *>—o—
g
© 4 ./0’
2 —
— [—
0
0 50 100 150 200
nr interactions

Figure 5.6: Average size of the suggested set /\, average success rate in

finding ty, in it and average rank of ty, in A

5.3.1 Specific methodology

The functionality experiments are run using three différemtologies, composed of
225, 626 and 1850 elements. These are generated varyingptiescand the average
numbers of children per node. Playing with these paraméterpossible to emulate

flat lists without hierarchy, simple ontologies with shallbierarchy, or more hierar-

chical structures. This allows to verify the performancehef predictor when dealing
with different types of ontologies. See Figure 5.5 for anmegke of a generated taxon-
omy.

Chapter 5. Evaluation 77

Number of interactions for reaching given score % reaching a score of 0.6 after N interactions
140 1.0
120 >
Fa d 0.8 >
ks) 100
S
O 80 0.6
© X //
L 60 0.4
£
4
c ¥ 0.2
20 p -—
0 0.0
0 01 02 03 04 05 06 07 0.8 09 0 20 40 60 80 100 120
score nr interaction

Figure 5.7: Learning curve: average number of interactions needed to reach
a given score, and probability of having a score of 0.6 after an increasing

number of interactions.

5.3.2 General Results

The performance of the predictor is measured by:

the average success ratethat is the average probability thatis in the suggested set
A: avg[Po(tm €)] (whereavg|:] is the average operator),

the average sizeof the suggested sét avg[|A|],

the average rank that the corresponding terty, has in the probability distribution:
avgrank (tm, P (Q«))]

Let us assume we know the exact probability distribuf{®y [IM state M) of the
terms for a random variabl®y given the current context. As shown in Equation 3.5,
given the listQ of termst; € O ordered from the most likely to the least likely one the
correct sizen of A in order to obtain the desired success ratee. the probability of
findingtm in A) is:

avg[p(tme A\)] =1=31P(tj) wheretj €O
If the computed distributio® (Qk |IMstate M) is @ good approximation of the exact
distributionP (Qx|IM state M), then the average @f(tm € A) should converge towards
the average computed f&(Qx|IM state M) and therefore towards the threshatd

lim avg[p(tme N)] =avg[p(tmeN)] =1 (5.1)

nrinteractions—oo

If the success rate of the predictor remains lower than tlestioldr, independently of
the number of interactions, then the computed distribusatifferent from the exact,
but unknownP (Qx [IM state M).

Chapter 5. Evaluation 78

The size of the suggested gewill depend on the existence of relations between
variables in the interaction and on the unknown distributod terms in preference-
based constraints, as we have seen in Section 3.4. Thesewmkiistributions can
change over time - if the phenomena are non-stationary -oois\y decreasing the
success rate. The lack of relations or flat distribution$ e@alise large suggestion sets
N\, decreasing the usefulness of the predictor.

Another key issue to evaluate is the number of repeatedactiens needed for the
predictor to reach a stable behaviour. This number will biedint for every type of
interaction. What is necessary is to find its probabilitytalisition, i.e. the probability
thatn interactions are enough to have a stable behaviour .

The results shown in Figure 5.6 were obtained averaging thesresults of 12
different batches, generated combining 6 interaction rspdeontologies (225, 626
and 1850 elements) and different settings for the prefereistributions (narrow and
wide distributions for the preference-based constraiit)he batches were run with
a thresholdr = 0.8. The figure shows the average value of the size of the sugpjsst
A and the average value pft,, € \), together with a band specifying the standard de-
viation of the measure. The limitin Formula 5.1 is verified the average score tends
to stabilise, logarithmically, around(the standard deviation, showing fluctuations in
success rate, decreases).

The average size remains small, independently of the sigeeodntology, but its
deviation tends to increase - albeit only logarithmicaligdaemains well below 15%
of the smaller ontology. The relatively large deviation eefs the fact that differ-
ent batches have different relations between variablepeagférence-based constraints
have different distributions: therefore to obtain the samecess rate the size Afmay
change meaningfully. However, the use of the filters on tiseri®ns (described in
Section 4.3) improved the results substantially: previesss run on the same batches
before the introduction of the filters returned the sameayescore, but a much higher
average size (more than 150 elements instead of about 20).

The learning curve is, as stated, logarithmic: on averagestimprovement (from
0 to nearly 70%) is obtained in the first 70-80 interactioniial is a small number of
interactions in large peer-to-peer communities as thogisiemed in the OpenKnowl-
edge project. In the example scenario, the travel agenayqagebe contacted by a
thousand peers, all making similar requests, while theornst may need to contact
several travel agencies before finding an appropriate acemation.

Chapter 5. Evaluation 79

Figure 5.7a shows the average number of interactions neededch different suc-
cess rates, while Figure 5.7b shows the probability of hpaisuccess rate of 0.6 after
an increasing number of interactions: the threshotd 0.8 used in the experiments
is reached on average after after 140 interactions, whilen&dactions are normally
enough to reach a success rate @& 6n 80% of the experiments. Once in the stable
region, the predictor will go on updating its representatibut the behaviour should
change slowly or remain constant.

5.3.3 Analysing the results

We have discussed the average results shown in Figure 5i@&iprevious section:
in the following subsections we will analyse how the predliceact in different sit-
uations. We first show how the probability distribution cangd from the model is
affected by different preference distributions over teimsnessages. In subsection
5.3.5 we discuss how the various strategies that analysett#ractions and update the
model contribute to the predictor performance. We thengairtebow different pref-
erence distribution influences the performance, and hownastationary distribution
(one that changes over time) affects the predictor and dfyais strategies.

5.3.4 Creating the model

The fundamental assumption is that if terms appear in messaglifferent runs of a
interaction model according to an (unknown) probabilitgtdbution, then the system
should be able to model this, updating the model interadfter interaction. Figure
5.8 shows how the predictor creates the probability distidn of a variable whose
contentis generated by preference functions with standiardtiono =5 ando = 25,
after 30, 60 and 120 interactions. It is possible to see tiatiodel gets closer and
closer to the half-normal distribution with which the terrage generated, and that
the model moves more slowly towards the exact distributidrenvthe terms in the
predicted variable are distributed with a wider distrilboatio = 25).

5.3.5 Contributions of the strategies

In Section 3.4 we made four assumptions about the terms imtleactions, that we
transformed into four types of assertions, two based onrdgiency of terms and two
based on their ontological relations, as we showed in Sedti®. We need to evaluate

80

Chapter 5. Evaluation

L @ L @ L
» = <}
= © B
S [® [o [
S o ©
= = =
5} o] @
® =] L 5] L
o = c
9 o =
c L 3N L ¥e) b
0 2 N eeqe qe ee qe ee
N gl o aeaearee
5l T b & seeE e ee qeee
2, 5o
qeTee"ee qe e ee”
Je ee qeee”
[[| qeqeqeee™
qe’ee qe qe qe ee”
eeqeee qe qe ee” qe"qe ee qe qe ee”
eeTeTqeTqeee” ee ee e qe qe e
[| qe"ee > ee g ee™ | se™qe e ee g ee™
pr— ee ee qe e
[qe qe ee qe e ee” — eeeeee qe qe ee I ee"qe’ee qeee”
qe"ee de ee qe e — B TO€TOE CR (R RR qeTqe de ee qeee”
s> e qe qe e pr— ee e qe qe qe ee
ee e ee ge ee pre— et ee e qe e qe e
I Je qeTqe ee”] ee"ee qe qeee” I JeTqeTqe qe ee”
ee ee ee e e ee” eee ee qe e Je"qe qe qe qeee”
qe"qe qe qe qeee” Je7qe"qe qe qe ee” eeqe ee qe qe ee”
qe qede qe qe ee” Je ee de ee qe e qeee ge qe ee”
I” qe"qe ee qeee™ Jede qe ee qeee” eeqeee”
ee qe ee qe qe ee” qeee qeTee” qe e e ee qe ee”
eeTee e ee ge ee” JeTqe"qe qeTee” qeTqeTee qeee”
qeee eeqe e ee” ee"qe qe qe qe ee” se75e"qe ee qe e
T T T T T T T T T T T T T T T
o~ — © o < o (=] o~ — © o < o =] o~ — © -3 < o =]
8 3 & o & g9 5 3 & © & 9§ 5 3 & © & 9§
(=} =] < =] o (=} o © = o (=} o © o o
- %) = w -
) c =
5 n o L 2 L
E= kS]]
9] - eeee qe ee qe e © B ® E
© fe
@ e ae ee” 9 - ee qe e qe qe ee” m - ee e qe qe ee”
=4 = -
= - ee e qe eeqeee” = | qe e qe eeqe e B o eeeeqeqe oo
L A [——— Sw e ceqeerarer T A B
Qo | eeqeqeqeqeee © | ee e qe e qe e Nis | eeeeqe oo qeee
m 1 | ceqeqeeeqeee g h | ccee e eeqe e w 1 | eeseqeeeqeee”
5 o - >eqeeeeeqeee © | >eeeqeee 5 b | eeeeeeeqe e
- oo ee qeee” |- eeeeqeee | qeqeee
(F T My I > >0 g ee qeee” |- e qe ee ee qe e
- o0 q¢ >¢ qe geee” I > q¢ e e g ee - aeeeqe e
- >° oo de ee qeTee” I qe"qe e qe qe ee” [- e qe de e qe el
I > > qe ee qe ee” [e qe e eeTqe el |- >e e qe e qeee”
|- qe"qe e "qe qeee” - qe e e e e ee” |- qe>e > ee qe e
qe e e ee geee” 2"ee qe ee” 2"qe qe ee qe ee”
T T T T T T T T T T T T T T
om0 o L) L)
s 8 s - < s 9 S5 =2 s 2 s 94 S5 =2 s 2
(=] = © (=} =3 =] o (=} o

How the model improves after 30, 60, and 120 interactions with

Figure 5.8

5and o0 =25

o =

Chapter 5.

Evaluation

Term frequency

Figure 5.9: Contribution of different types of assertions. Tagent3 predicts a

variable whose content is related to another known variable, while tagent4

predicts a variable whose content depends only on a preference distribution.

60 1.2 60 12
50 ey L1 50
oW A rt
< 40 X 40 Y minin i e
5 Fo.8 S k2 o8
g 30 @ S 30 L o
€ [Fo6 g 2 A L 600-0-3-0-0-0-00-0000 Los S
& 20 7 s 20 e &
[/ [
N 77 0.4 /I? 0.4
ERCR o~ Ginmmmny Ilﬁ‘LTI I w10 g}_i_ eI I IITI TH{JW
o | EaPTITITIITIL o o oo o iy L o2 o &RT TITTTTI LA LITTITT blg Lo2
-10 0 -10 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
nr interactions nrinteractions
‘—o— Avg size —— Rank —a— Score —o— Avg size —@— Rank —a&— Score
tagent3 tagent4
60 12 60 1.2
50 1 50 1
~ e ~
S 40 0.8 S 40 0.8
5 o - g
2 30 06 S 2 30 06 ©
o @ © &
& 20 0.4 8 20 0.4
o @
10 0.2 10 0.2
&
PRL LT 0 0 0
50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nr interactions nr interactions
—— Avg size —@— Rank ——a&—— Score —— Avg size —@— Position —#&—— Score
tagent4 tagent3
60 0.6 60 0.4
50 A 50
0.5
. TN AN L
B I TN 4, A/ B I - VG o
2 L _\/'"‘ s Los o 2 \ /"‘ Loz g
& 20 b c 20 A b3
[[
N0 d=133 0.2 N o333l \T /‘"
@ 555 @ T 1 Fo.1
0 0.1 oL TrrrrEe x.
-10 T T T T T T 0 -10 T T T T 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
nrinteractions nr interactions
—— Avgsize —@— Rank —A— Score —— Avgsize —@— Rank —a— Score
tagent3 tagent4

81

Chapter 5. Evaluation 82

how these assertions contribute to create the model, wiggrhiglp and when they do
not add useful information.

Figure 5.9 shows the different contributions of the stregedo the performance
of the predictor: each batch of experiments was run usingg@lesistrategy for gener-
ating assertions and averaging the results obtained \qadistributions and relations
between the terms in messages. In the gragent4 needs to predict a purely pref-
erence based variable, whilegent3 needs to predict a variable that has a relation
with another variable.

The most consistent type of assertions is term frequencywhieedistribution does
not change over time, as it generates a set that containstteetterm rather quickly.

Assertions about relations between variables are suadedsén there are relations
to find, and reach a high score very quickly. The size of thegeatjons depends
on the peer ontology (large and shallow ontologies behavsevihhan thin and deep
ones). However, these assertions are not created - or i@ diésl by the thresholding
mechanism when spurious ones are created - when there isatiomeand therefore
cannot help in these cases, as shown byatent4d graphs in Figure 5.9.

The experiments using only the conditional frequency slibn@ useful results:
the success rate was always 0. One of the problems that areselysing these re-
sults was the sparseness of the results: there were too rsestians, each capturing
one case with very low frequency. Conditional frequencyanbkes sense when the
vocabulary used in messages is small, otherwise it reqaikesst number of interac-
tions to provide useful information. For example, if the tamta of a first message
in an interaction is taken with a uniform probability from et ©f 20 terms, and the
contentb of the following message is taken from a set of 200 terms, whieere are
10 possible different terms for each termairthen after 200 interaction there might be
200 assertions, each stating one particular case. Anotssilge issue is the distance
considered between the variables: in the experiments andistof 1 was used, but
it might be that meaningful relations are between variablegtly further apart, as
shown by the ontological relations described before. Aargdgting extension could be
to store assertions about the posterior probabilitiesldhalvariables in an interaction
model, and then use only those that present higher fregeen8uch a strategy should
generate several assertions about unrelated variablels,vath very low frequency,
and fewer assertions with higher frequency about relatedivies.

Assertions about ontological relations between the temthe messages and the
peer’s ontology tend to provide a rather unstable contidiouthe score of the predictor

Chapter 5. Evaluation 83

fluctuates between 0.2 and 0.6 tagent3 and between 0.05 and 0.35 fiagent4

when it uses only this kind of assertion. The only relatiocst ik verified and stored is
the subclass relation: when a tetrappears in the message fed back from the mapping
oracle, its superclagsLC tj is found in the peer’s ontology and the assertion about the
subclasses df is stored or updated. However, it may not be the case thdteadlibling
terms oft; are equally likely to appear, while the assertion makesassumption.

5.3.6 Case analysis

Section 5.3.2 presented the general behaviour of the poedind the Figures 5.6 and
5.7 explained in the section are obtained averaging many ofirdifferent types of
experiments. Section 5.3.5 evaluated how the differeatesgies used to analyse the
runs contribute to the overall results of the predictor. His tsection we will evaluate
the performance of the predictor in different scenariospdrticular we focus on how
the performance degrades when the distribution of ternpsesenting the preferences
of the community of users, varies in breadth, and when itegaover time.

Wide vs narrow preference distributions

The content of messages in interactions can exhibit vatgwng of randomness. The
content of a message may alternate among only a few ternmis,omé or two terms
more frequent than the others, or it can be any term from amwiglege of possible
ones where all are equally likely.

In my tests, this is simulated varying the width, given by skendard deviatiow,
of the Gaussian distribution used to generate the conteheahessages. Figure 5.10
shows the effects on the average size, the score and thefrdrgkamrrect term for three
distributions of increasing width, witlr equal to 5, 10, 15, 25. The interaction model
used is a variation of the standard one: a message, whosentatandomly chosen
according to the above distributions, is senttbyent3 to tagent4 . The recipient
replies with a term ontologically related to the receiveadiéfor example it can be a
subclass or a property). Therefotagent4 has to predict a term that depends only on
an external distribution, whileagent3 has to predict a term that depends on a term he
has chosen.

When the content of the message is ontologically relatech¢dheer known term,
as intagent3 case, the performance is not meaningfully influenced by tiamges in

Chapter 5. Evaluation 84

the distribution of the known term. On the other hand, whendabntent depends only
on an external, unknown distribution, astagent4 , the performance is heavily influ-
enced. The average size of the sugge#tedcreases witto: after 200 interactions,
the average size is around 10 f@r= 5 and reaches nearly 50 for= 25. The score
always converges towards 1, but the slope steepness desmgdlso and oscillations
increase with it. The average rank of the correct term ire@saalthough less than the
average size, but variation in rank increases notably.

Non-stationary distributions

As discussed in Section 3.4, results returned by preferbased constraints follow a
distribution that reflects the contingent preferences @dseof the user community.
As we have seen in Section 5.3.5, a variable whose value degelusively on com-
munity preferences is modelled mainly by assertions desgyithe prior frequencies
of terms. If the preference distribution is not stationandahanges over time the
assertions built after a number of interactions may not rhtsgevariable distribution
correctly in new interactions. In particular, variablesogk values are predicted only
by assertions based on term frequencies will be affected, wbde variables depend-
ing on some rules or functions should be more robust wherepretes change, as
the assertions model the ontological relation betweendim tn the variable and the
value of other variables that can be assumed to be indepeindenthe distribution of
terms.

To test the behaviour of the predictor when dealing with rtatienary preferences,
we run two batches of experiments, both using the recursiezaction model in Fig-
ure 5.11. In the interaction model, the agent performing rédl sends a message
aboutX, where the value oK is chosen from a preference distribution. The agent
performing roler9bl receives the message, finds a list of elements relateédand
starts sending them back to the first agent. The first agengéiter accept the term,
or ask for more.

The first batch is used as a baseline: it is composed of thrneeriexents, each
of 300 interactions and the preference distribution foralale X is stationary. The
second batch is composed of three experiments, each d¢ogsi$t300 interactions.
In these three experiments the preference distributiondaableX is non-stationary
changing every 100 interactions. The performance measurdgee two batches are
averaged.

The results are shown in Figure 5.12. The prediction foraldaY that depends

Chapter 5. Evaluation

tagent3

Q
I
o

tagent4

60 12
60 1.2
50 F1
50 1 =
X~
~ e c 40 0.8
S 40 0.8 I [’
c : 30 <
° = 2 Lo6 S
s 30 0.6 § & 20 e
g oLk
8 20 104 0.4 TR s caatdMhaas = 04
w fﬁl T - -
104 TLITTTLLIT TIII IT 02 0 |t o o i 0.2
AT 11T : =
0 0 -10 0
50 100 150 200 250 300 350 50 100 150 200 250 300 350
nr interactions nr interactions
‘—0— Avg size —@— Rank —#— Score ‘ ‘—0— Avg size —— Rank —#&— Score
60 1.2 60 1.2
50 R 1 50 JM L,
< ol < a0 Phac
g 40 0.8 S }(Losg
- o 5 30 4]
2 30 06 S o f Lo06 O
° e & © 20 Lo a
=2 o g
N 207 04 N e eE=n I RE Sy LT - 0-4
0 il hgRRcSS) 02 N T T Lo
1L T 0 Tm¥
0+ 0 -10 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nr interactions nr interactions
‘—0— Avg size —— Rank —&— Score ‘ ‘—0— Avg size —@— Rank —a&—— Score
60 1.2 60 1.2
50 L1 50 L1
< a0 .'{ 08 2 a0 /‘-‘ﬁw [t 08
© s © e s
5 30 @ S 3 4 o
kel fu - ";0- e
o Los © e / e Los O
20 & o 20 . —- 4+ @
2 e 1L T 04 & o LTIl 1] 04
(7]
1LL A w 11
. hny L | o’ , LTI |,
-
-10 0 -10 0
0 50 100 150 200 250 300 350 50 100 150 200 250 300 350
nr interactions nr interactions
—— Avg size —— Rank —&— Score ‘ ‘—0— Avg size —@— Rank —#&—— Score
60 1.2 60 5 1
50 i 1 50 A Ax ¥ 2 0 0d
0.8
x ‘lh ¥ 40 T;&!!
G 40 0.8 s L |
o 2 - 30 T 06 o
c 30 06 O c T 7T o
© [v) © B e o
i b 20 %= 3 T 04 Vv
g 20 04 8 T L gt
o 9 LT &
10 I I T 02 . LTI o
TLETTTTTLLIITTY, 1T IR
0 0 -10 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
nr interactions nr interactions
‘—0— Avg size —— Rank —#&—— Score ‘ ‘—0— Avg size —@— Rank —#&—— Score ‘

Figure 5.10: Effect of different preference distributions.t agent 3 predicts

a variable whose content depends on a variable with different preference

distributions, while t agent 4 predicts a variable whose content depends

only on the different preference distributions.

85

Chapter 5. Evaluation

a(r9a1(ID2),ID1) ::
m; (X) = a(r9b1,ID2) « kp9_1(X) then
a(r9a2(X),ID1)

a(r9a2(X),ID1) ::
mp(Y) <= a(r9b2,ID2) then
mz = a(r9b2,ID2) « kp9_2(X,Y)
or
mg = a(r9b2,ID2) then
(a(r9a2(X),ID1))

or
ms <= a(r9b2,ID2)

a(r9p1,1ID2) ::

m; (X) < a(rOal,ID1) then
a(r9p2(ID1,Lst),ID2) < kp9_3(X,Lst)

a(r9p2, (ID1,Lst),ID2) ::
my(Y) = a(r9a2,ID1) « Lst = [T|Tail] then
m3 <= a(r9a2,ID1)
or
mg <= a(r9a2,ID1) then
(a(r9b2, (ID1,Tail), ID2))
or

ms = a(r9a2,ID1)

Figure 5.11: Recursive test interaction model. The peer taking role r9al
starts the interaction solving constraint k9 1 in order to find a value for X.
It first sends the value to the peer in role r9b1 and then takes the recursive
role r9a2. The peer in role r9b1 obtains a list of options, stored in Lst,
from the received value X by solving the constraint k9 3. Then it takes the
recursive role r9b2 and sends the first option in Lst with message ma(Y).
If there are no options, it sends message ms. The initiator peer, now in role
r9a2, receives the message containing the option, evaluate it solving con-
straint k9_2 and either accepts it, sending message m3 or rejects it, sending
message my. If there were no options, it would have received message ms,
and it would have terminated the interaction. The peer in role r9b2 waits for
one of the two messages mzor my: if the acceptance arrives, it terminates the

interaction, otherwise recurses passing the remaining options.

86

Chapter 5. Evaluation 87
Stationary distribution
30 1.2 & 1
40
25+ LN rl 0.8
30
20 0.8
20 oe
154 0.6
0.4
10 Loa 109
54 0.2 0+ 0.2
0 T T T T T T 0 -10 T T T T T T 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
—&— Avg size —l— Position —aA— Score —o— Avg size —— Position —a— Score
VarY Var X
Non-stationary distribution
30 1.2 1
60 boaca y oA RaA
e 50 o8
0.8 404
0.6
0.6 301 (77
20 | L Lo.4
0.4
10
| Lil11y 0.2
0.2 04 i
0 T T T T 0 -10 T T T T 0
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
‘—O—Avg size —— Position —#&— Score ‘ ‘—O—Avg size —#— Position —&—Score ‘
VarY Var X

Figure 5.12: Predictor behaviour when distribution changes over time

on the value of the first variablé, quickly stabilises in both cases, and is not affected
by changes in the distribution of: the ontological rule found by the predictor is inde-
pendent of the distribution of the first variable. Perform@megarding the prediction
of variable X, on the other hand, depends on whetherXhis stationary or not. If
variableX is stationary, average size and score grow logarithmicafig the position
of the correct ternty, increases during the first 50 interactions and remains mdese
constant in the remaining ones. If variaBddas non-stationary, then the score grows
as in the stationary case up to 85% until the distributiorhenged, where it suddenly
decreases to 70%. The average size grows more rapidly béeshtange. The score
returns to its previous value after 100 interactions. Tteed change of distribution,
after 200 interactions, has a much lower impact, as it is anlyncrease of the spread
of the distribution. For variabl&, when the distribution changes, the sixafter 300
interactions is much bigger.

Chapter 5. Evaluation 88

5.4 Verifying Usefulness

The main goal of the predictor is to provide a set of likelynterto an Ontology
Matcher, so that it can focus on them and find the correct spaedence for a for-
eign term using fewer computational resources. To evaltr@econtribution of the
predictor, we tested the results of the predictions on aaa&logy matcher, using
peers with different ontologies.

5.4.1 Specific methodology

Two different ontologies are used. The first ontology is aggated tree: labels in nodes
are composed of a random number of words, selected from 90@dsvextracted from
part of the Brown Corpus, and the number of children for eamterfollows a Gaussian
distribution, with average 4, deviation 4. The maximum tiept4 and the overall size
is 986 nodes. The second ontology is obtained from the fipgilyang the changes
described in Table 5.1. Its overall size is 1000 nodes.

As stated in Section 5.2, one of the reason for using gerceaatmlogy instead of
existing ones is that they allow a wider coverage of variaim their structure. In this
specific case, the matching between ontology is evaluateduse of existing ontolo-
gies is possible only if correspondences between them aigtell, further reducing
the possible variations that can be explored.

The matcher used is described in the next section: applymgthe entire ontolo-
gies, without the involvement of the predictor, yields aalerate of 0.7 and a precision
of 0.85.

The Ontology Matcher

The aim of the experiment is to verify how the predictor capiave the performance
of a generic ontology matcher, and therefore a relativetypée matcher was selected.
The matchepyontomap [4] used in the experiments is composite matcher: it em-
ploys a set of standard elementary matchers (syntactigctatal and semantic) and
combines their results using a Dempster-Shafer [68] bakgadidom. While in the
Bayesian approach probabilities are assigned to singigesnin Dempster-Shafer the
mass is distributed osetsof propositions. The mass distribution is a functia) that
distributes a mass in the interval [0,1] to each element efpbwer set € of the set

of propositionsd = {61, 6,,...,6,} called theframe of discernmentThe total mass

Chapter 5. Evaluation 89

Tree alteration:
For each node apply:

¢ label replacement, with probability 0.01
e syntactic label alteration, with probability 0.2 (letteh®pped, added, changed)
e word addition or removal in labels, with probability 0.15

e word replacement in labels, with probability 0.4, choosiiragn:

— synonyms, hyponyms, hypernyms (extracted from WordNet sthg all
the possible parts of the speech of the word)

— related words (extracted from the Moby thesaurus)

e node deletion (the number of nodes to remove is computed)si@aussian
distribution with average 0 and standard deviation 0.9)

e new child addition, with probability 0.25
e children shuffling, with probability 0.4
Table 5.1: Tree creation and alteration process. The probabilities of the al-

teration operations have been chosen by trial and error in order to obtain

reasonably altered trees, without having completely unrelated trees.

distributed is 1 and thelosed world assumptials generally made: the frant® con-

tains the true hypothesis. This is expressed assigning dniasthe empty set 0, called
contradiction. The masy(©) assigned to the frame represents the mass that cannot be
assigned to any particular subset@f Different mass distributions can be combined
usingDempster’s rule of combinatiatihat computes the probability mass assigned to
C C ©givenAC © andB C ©, whereA is supported byny andB is supported byr:

¥ AnB=c M1 (A)Mp(B)
1-3 ango M (A)Mp(B)
Once the masses have been distributed and combined, ilessay to extract the most

m(C) =

(5.2)

likely entity from the mass distribution. Dempster-Shafeakes it possible to compute

Chapter 5. Evaluation 90

the belief about a seA C O of propositions, as the sum of all the basic masses that
support its constituents:

Bel(A) = BZ m(B)
AA

It also provides the formula for computiqdausibility of the setA, that is the measure
of the extent to whiclA might be true:

PI(A) = 1—Bel(A) = B
(A) el(A) B%é@m()

In the matching process, a term from ontold@yis compared, using all the match-
ers, with all the terms from ontology listed in SBtC O,. The setT represents the
frame of discernment. The results of the comparisons pesdrby an elementary
matcher are split into sets: each set contains terms thatcarally likely to be the
exact alignment, and it is given a mass representing thiHded that the exact match
is contained. The sets generated by the different matchersoabined using Demp-
ster’s formula, and then belief is computed for each term.

For example, given the terimedin O; and the elementary matcher Edit-Distance,
the termsbid and bad from O, are equally likely to be the correct correspondence
(they both have a distance of 0.33), and are put in the sam&stt containing terms
with distance between 0 and 0.2 are given weight 0.5, thogetenms having distance
between 0.2 and 0.3 are given 0.3, and finally those with teaxsg distance between
0.3 and 0.5 are given 0.2. Terms with greater distance acardisd, giving them mass
0. The mass that cannot be given to any term is assigned tethesS O, (that forms
the frame of discernmei@), and represents the “ignorance” of the matcher: a matcher
unable to find any similarity between a foreign term and altérms in peer ontology
will give all of its mass to the frame of discernment. Contimguwith the previous
example, if two matchers return:

e my ({bad bid}) = 0.33,m ({bed}) = 0.5, (©) = 0.17
e my ({but bid,bar}) = 0.1, m ({bed}) = 0.6,z (©) = 0.3

wheremy (©) andmp (©) are the masses given by the matchers to th& setO, and
represent the masses that cannot be assigned to any arsetl The combined mass
distribution will be:

Chapter 5. Evaluation 91

infix (t1,t2) checksift; is contained irt; ort, in t;

postfixty,t2) checks ift; ends witht, or the otherway around
prefix(t1,t2) checksift; starts witht, or the otherway around
soundexty,t2) checks for soundex similarity betwegrandt,

editdistancets,tp) checks for the edit distance (number of string changes -tiaddideletion and
modification of characters - needed to reach one string frootleer) betweety andt,

initsmatch(ty,t2) checks if the initials of; correspond td, or the other way around
parentgty,to, O1,02) checks the edit distance of the parentgaindt,
children(ty,t2,01,02) checks the edit distance of the childrertpandt,

siblings(t1,t2,01,02) checks the edit distance of the siblinggpéndt,

Table 5.2: Matchers used in pyont onap

mem ™ ({ E'a:jd }) =0.33 My ({bed}) = 0.5 m (©) =0.17
|
but but
o bid =01 Myg2({bid}) = 0.033 M2 (0) = 0.05 mp bid =0.017
bar bar
My ({bed}) = 0.6 M2 (0) = 0.2 My 2({bed}) = 0.3 My 2({bed;) = 0.102
M (©) = 0.3 Myea((bid) = 0.099 | Mo ({ Eaj }) —015 | M (©)=0.051
e
The beliefs about the alignments are:

Bel({bed}) = 0.15+ 0.3+ 0.102= 0.552
Bel({bid}) = 0.033+0.099= 0.132

The matcher was configured to use the matchers in Table 5.2.

Using the predictor

As we have seen in Section 3.5, the probability distribuftiQy [IM state M) com-
puted by the predictor can be used:

1. to extract a subset of terms from the peer’s ontology to be compared with

Chapter 5. Evaluation 92

o
IS

o
w
!

probability
o
T

mobile
camera

o
o [
!
notebook
-

camcorder 7
computer |
ipod |

mp3 player |
hard disk T
flat screen]

g

I terms I I

ma'ss 0.5 mass 0.3 mass' 0.15

Figure 5.13: Splitting the probability distribution into sets

the term in the message, reducing the resources requiraddtrhing (setting
T=A),and

2. as results of an additional matcher, able to exploit thditehal information
available in the context of the interaction.

In the first case, if nothing is found by the matcher in the sjign sef\ (that is, there
is no term with belief higher than a given threshold), it isgible either to consider
that no possible match existsq reattemppolicy), or to extend the comparisons to the
rest of the ontology, posing the set= O2\A (reattemptpolicy).

If P(Qk|IMstate M) is used as the result of an additional matcher, the distdbut
is split into sets of terms equally likely to be the exact rhaiod a mass is assigned to
each set, as shown in Figure 5.13. The thresholds for sigjittie probability distribu-
tion into sets and the masses assigned to the sets wereaxb&irically.

Running the experiments

Each performed experiment consists of running 400 interast first 200 interactions
are run between two agents with the same ontology with theadinreating a first
approximation of the statistical model, then 200 furtheeiactions are run replacing
one agent with another that uses a different ontology. Thdiptor is not aware that
the ontology is shared in the first set of runs, and works asdad to predict and match
different ontologies. As described above, one ontologyeisagated, while the second
is a variation of the first ontology, obtained applying theuehes described in Table
5.1.

Three different types of experiments were executed: onbawitthe use of the
predictor, as a baseline, and two using the predictor, tise dsing theno reattempt

Chapter 5. Evaluation 93

policy (no match exists if nothing is found M), and the second using theattempt
policy (extending the comparisons to the remaining ontpibgothing is found in\).
Each type of experiments was run 3 times to average the sesult

The experiments were run on a dual core laptop with two 1.83005CPUs and
1Gb of RAM.

5.4.2 Results

We have seen in Section 3.2 that the performance of an ontolagcher is usually
measured by itprecisionandrecall. Given thatMsng is the set of correspondences
found by the mapping system aMirect IS the set of correct correspondences:

precision is the ratio between the number of correct correspondentes@ those

found and the total number of correspondences found:
‘Mfoundecorrect|

Precision=
|Mfound|

recall is the ratio between the number of correspondences founthartdtal number

of possible ones:
‘ Mtound) Mcorrect|
|Mcorrect|

Recall=

The average size and the average success rate of the pradftience the perfor-
mance of the matcher when the probability distribution iedusnly to generate the
suggested se\. If the no reattemppolicy is used, then a low success rate will surely
lower the recall, and possibly the precision. A low succeds means that the corre-
sponding ternty, is often not in the suggested &t many possible correspondences
will be missed by the matcher that uses only the term& for comparison withw;j,
reducing the seMqng. Precision is lowered as well, but by a different mechaniam.
setA not containingy, may contain another terty, that is considered to correspond
tow; “well enough” by the matcher: the belief in its corresponceis lower than what
would be computed fai, if it was in A, but it might still be higher than the threshold,
and because there are no competitors, it is chosen as thedoestpondence, lowering
precision.

If the reattemptpolicy is used, then a low success rate will lower the precisor
the same reason as above, but recall will be affected lessthing is found im\, then
the remaining terms in the ontology are compared withincreasing the likelihood
of finding the correspondence.

Chapter 5. Evaluation 94

1 1200
091 P il ,A—A—A—biL

. T N B e
0.8 M\ N aeow - 1000

- 1 = == g M e G
0.7 ‘ = a e 800

\ Vo -

06 1) f 7

) S

y iy

05 A= — - 600
0.4)%C e T e
03 A Tmg auuuua® I 400

. * N = F -
02 i\.ll" ==

. 200
0.1

0 0

0 100 200 300 400
‘+ prediction score —®— time —a&— recall —/—— precision

Figure 5.14: Matching results when predictor is used. Finding no corre-
spondences in the suggestions set A is considered equivalent as finding no

correspondence at all (no reattempt policy)

If the probability distribution is used as a matcher, themiluences directly the
belief computed for the terms. If the probability assigned,fin P (Qk|IMstate M)
is consistently low, then a low mass will be assigned to tihetehis influences the
belief inty,, as we have seen in Section 2.6.

Figure 5.14 shows the results of running the experiment Wighpredictor, with
theno reattemppolicy. What the graph shows is that the time required foraiiaig
drops immediately, keeps decreasing for a while and themgiocreases. This trend
reflects the fact (mentioned in Section 5.3.2) that the @eesize ofA is low initially
and increases with every interaction: the number of corspas increases proportion-
ally with the size ofA\. Precision and recall are small initially, and increaséofwing
the success rate of the predictor.

Figure 5.15 shows the results of running the experiment thiéhpredictor, using
thereattemptpolicy. Time decreases while the predictor improves itxess rate, and
stabilises when the predictor success stabilises. Rewalpeecision decrease initially
and then increase converging towards respectively 1 and 0.9

If, as described in the second use of the predictor, the pibtyadistribution
P(Qk|IMstate M) is used as an additional matcher, assigning a low probghidlithe
correct term and high probability to the wrong ones swayslass distribution com-
puted combining the mass distributions provided by therathélogy matchers. The
probability distributionP (Qy [IMstate M) is split into sets containing terms with sim-
ilar likelihood. If the probability distribution is not coect, the wrong terms will re-
ceive more mass than the correct one, and the combinatioms$@s computed using
Dempster’s rule will tend to sway mass towards the wrong $erirhis is particularly

Chapter 5. Evaluation 95

1.2 7000
[}I\.\.\
1 A - 6000
L 5000
0.8 —
S s L oo sts oot
l\\ M,—o—o—o—o—o—&w I 4000
0.6 & +— v
‘Yo
— o o L
\—\7\—/*_;;/ ”‘j{ 3000
0.4
/ \-\l 2000
0.2 mgn g BwEN
: / L B R S e = == el I 1000
0

0 100 200 300 400

‘+ prediction score —#— time —a&— recall —/— precision ‘

Figure 5.15: Matching results when predictor is used. When no correspon-
dence is found in the suggestions set /\, the matcher is used to compare the

remaining terms in the whole ontology (reattempt policy).

problematic when the ontology matchers can assign onlg littass, and are forced
to assign most of their masses to the frame of discernmeriuisecof lack of infor-
mation about the relations between the terms to match. Thss mssigned using the
probability distribution will override the mass assignedtbe other matchers.

Initially, the predictor is bound to have the wrong disttilom, as the results pro-
vided earlier show: it takes at least 80-90 runs to obtainrssistent success rate of
60%. To compensate for this, the mass that can be assigneae pyadictor is initially
low, and increases over time, following a logarithmic cusimilar to the learning
curve obtained empirically and shown in Figure 5.7. During first runs of an inter-
action, the predictor splits a small amount of mass betweerséts of equally likely
terms, and assigns the remaining mass to the frame of disesin As the interaction
is repeated, the statistical model gets better (on aveesgkdhe mass that the predictor
can split between the sets increases.

5.4.2.1 Comparing performance

Time

Figure 5.16 compares directly the computation times fotthinee cases (no predic-
tor used, predictor used witleattemptpolicy and predictor used witho reattempt
policy). When no predictor is used, the number of compassemains constant over
400 interactions, and therefore time remains constantard0000ms: as we said ear-
lier, matching is always performed and comparing terms ftbexsame ontology is no
quicker than comparing from two different ones. Fluctuasiare due to different CPU
loads over time.

Chapter 5. Evaluation 96

12000

10000 WmA' —e—e_o e
8000
£ 6000 ""11\.\1
4000 = .
2000 o =
‘\.\‘_i_*_H_‘_‘__ Lol B B R -—ua T **i’H*H:

0 100 200 300 400
number of interactions

—— Time without predictor —#— Time with predictor with reattempt
—a—— Time with predictor without reattempt

Figure 5.16: Matching time when predictor is not used, is used with reattempt

and without reattempt.

The use of the predictor reduces time complexity remarka¥ifypen theno reat-
temptpolicy is used, matching time starts at a low value of 1200insofnpares al-
ways only the terms i\), decreases further to 350ms and remains low, increasing
only slightly to 600ms with the increasing size Af as we have seen before. When
the reattemptpolicy is used, the matching time starts at 6400ms becauseitial
success rate is only 0.4 and therefore in 60% of the casesothparisons are done
with the whole ontology. As the success rate increases,deueeases and stabilises at
around 1000-1200ms, a level twice the one obtained usingdhieattemppolicy but
nearly 10 times lower than that needed by the baseline solulihe average success
rate of the predictor, as we have seen before, is around Bi8nteans that in up to
20% of the cases nothing is found, and comparisons have tetiermed with the
remaining terms in the ontology. As pointed out in the introiibn of this section, if
the exact correspondentg is not in the suggested sAtthe wrong correspondence
can be found in it, reducing precision but also computatioretas a side effect (no
further comparisons with the remaining terms in the ontglage required).

Precision

Figure 5.17 compares precision across the three expersméntthe baseline so-
lution, where no predictor is used, precision fluctuatesiado0.9 after the first 200
interactions in which the same ontology is used by both peers

In the experiments with the predictor, precision startsaedbly lower than the
baseline and then linearly converges towards the baseliinere is no evident dif-
ference between the two policiesd reattempiandreattemp} when the predictor is
used.

We have seen in Section 5.3.2 that the success rate stadsmatvalue, and there-

Chapter 5. Evaluation 97

09 P ST e
: A =
0.8 — -
0.7 e

S 061A - f{ﬁ/‘p‘

% 0.5 '\-,; A{/—f’f*

2 04 N

a K
0.3
0.2
0.1

0 100 200 300 400
number of interactions

——— Precision without predictor —— Precision with predictor with reattempt
—a—— Precision with predictor without reattempt

Figure 5.17: Matching precision when predictor is not used, when used with

reattempt strategy and without reattempt strategy.

fore initially the suggested sét often does not contain the correct correspondence:
we have explained above that the matcher may find a tggmn A whose belief is
higher than the threshold, and it is wrongly chosen as theecbalignment, lowering
the precision.

We have also illustrated in Subsection 5.4.2 that if the @baily distribution
P(Qk|IMstate M) is used as an additional matcher, it may sway the combined mas
when it ranks as unlikely the correct term, especially whes dther matchers can
distribute little or no mass.

Recall

Figure 5.18 compares the recall trend in the three expetsnem the baseline,
where no predictor is used, recall stabilises around 0 &, tie first 200 interactions
in which the same ontology is used. When the predictor is ,ussxll starts lower,
decreases and then converges towards the same value asd¢tiadalsing theeat-
temptpolicy, recall overtakes the baseline, remaining congtdmgher. Using theno
reattemptpolicy, recall starts lower than with theattemptpolicy and remains lower
(15-20%) than the baseline for most of the experiment, mgettioser only towards the
end of the experiment.

Compared to the baseline, precision is sometimes improydtd additional in-
formation, but, as we have seen above, the failure to indloe@xact correspondence
in the suggestion sét can sway the matcher towards selecting the wrong term. Recal
on the other hand, is improved by the additional informapoovided by the predictor.

The fluctuations in both precision and recall depend alsdertérmsy; randomly
chosen for the messages: within the 10 interaction inteherde might be different
numbers of terms that the matchers cannot map correctly.

Chapter 5. Evaluation 98

o MPEL i B =]
0.8 S
07 | B T oo h kA A aA A AT
= o -
S o5 _aat
PO N
03
0.2
0.1
0

0 100 200 300 400
number of interactions

——&—— Recall without predictor —— Recall with predictor with reattempt
—a—— Recall with predictor without reattempt

Figure 5.18: Matching recall when predictor is not used, is used with reat-

tempt and without reattempt.

5.5 Summary

In this chapter we have first evaluated the performance ottment predictor pre-
sented in Chapter 4 independently of its use and then tosasebenefits of using it
with an Ontology Matching system.

The evaluation was performed by simulation: the testedatens represent pat-
terns of common interactions, and the peers respond toreamisteither using a prob-
ability distribution over the possible values (to reflea fireferences of a community)
or according to some specific function. The peers were giwregted ontologies.
This allows the evaluation of the predictor when used wittotmgies varying along
different dimensions, specified during generation.

As said in Chapter 4, the predictor computes a probabiliyritiution for a partic-
ular variable in a received message, using the contextrimdtion available from the
current and the past interaction runs. The probabilityriigtion can be used to select
the most likely terms (those whose cumulative probabisityigher than a given thresh-
old), and as a synthetised contextual information that @axploited by a matching
algorithm.

When evaluating the ability of the predictor in guessingdheect content of the
exchanged messages, no matching was involved: the peeradnsharing the same
ontology. The aim of this set of experiments was to evaluate different interaction
scenarios could be handled by the predictor. The scenagos simulated varying the
preference distributions used to select the terms to inredn variables: narrow, wide
and time-varying distributions were used. The measuresidbpmance considered are
the size of the suggested gebf likely terms (see Section 3.5), the probability that the
set contains the exact term in the message, and the rank trtheén the set.

Chapter 5. Evaluation 99

The usefulness of the predictor has been evaluated fedwrigsults into a matcher
that must map the foreign terms in the messages to local tefims performance is
compared with a baseline case in which the predictor is ned. u$he computational
time required by the matcher to find the correspondence,ikgdpe precision and
recall constant, is reduced by a factor of 8 to 10. On the offaexd, when a new
interaction is used recall and in particular precisiontdtaw, and increase at the same
rate of the success rate of the predictor. However after gmanteractions, precision
reaches the same level of the baseline and recall reachightlyshigher level.

Chapter 6

Related Work

6.1 Introduction

The work presented in this thesis pulls together differeohhologies: it does so not
with the aim of improving any of them, but with the aim of shagihow they can be
brought together in a novel way in order to improve their @igverformance. In par-
ticular, it exploits a model of agent coordination for arsahg the interactions between
agents and it feeds the results of the analyses to an ontolatgher. The results fed to
the matcher are predictions of the likely content of the exged messages between
the agents. The predictions, extracted from analysingdiggs, are obtained using
statistical methods partially inspired by Natural Langai&yocessing techniques.

Different agent coordination approaches are availablenbtiall of them can be
successfully used with the framework described in the theke predictor needs a co-
ordination model that considers interactions as firstsctdgects that can be identified.
Sections 6.2 and 6.3 describe the alternatives to agentlicabion, and highlight the
reasons supporting the choice of LCC as the formalism foci§perg interactions. In
particular, Section 6.2 describes coordination approacleatred on autonomous, ra-
tional agents. The first approach described involves mingethe mental states of the
other agents and considering the exchanged speech actsass dlsat changes these
states. The other approach uses norms to specify the allaxpeécted and forbid-
den behaviours of the agents. Section 6.3 describes sermposition approaches,
where the services are passive computational elemenextoifjether into workflows
by some entities.

While the predictor depends on the coordination model ugdatidagents for their
interactions, the predictions can be theoretically fedrp @ntology matcher. Section

100

Chapter 6. Related Work 101

6.4 reviews the literature in ontology matching, presemfirst the different categori-
sations of the mismatches between ontologies and of theheraicthen describing
the basic matching techniques used by the available magdystems, and finally
overviewing some of the most interesting projects.

Finally, Section 6.5 presents some of the ideas and tecésigaed in Natural
Language Processing that inspired the working of the ptedic

6.2 Agent coordination and communication

In Chapter 2, we described inter-agent interactions via [Mli@ch constrain the agents
to follow a predefined, stringent script. The literatureogdsesents different approaches
that give the agent varying levels of freedom and requiredsht computational work-
loads. Thementalisticapproach relies on agents modelling the internal state ef th
other agents, and planning interactions as sequencesiofgsicthe exchanged mes-
sages, that change these internal states.sbb&lapproach is more oriented towards
giving normative rules on what agents should do, withoutngknto account their
internal state.

Applying the predictor presented in this thesis to the systbased on the men-
talistic approach is difficult, because, in contrast wite tise of choreographies, there
is no defined context for an interaction. An interaction is thsult of the involved
agents planning their part of the dialogue. An agent, in otdgecognise that it is
in the same context, needs to match the current exchange ssfages with previous
exchanges: if the agent has participated in many diffengrgg of interactions, with
some starting with the same subsequence, it cannot be sigke gihlogue it is in until
enough messages have been exchanged. Moreover, as diégestis plan their part
of the dialogue, each interaction can be different. Withrebgraphies, on the other
hand, agents agree to interact according to the share@ati@n model, and this pro-
vide the stable context from the start of the interactione Wentalistic approach also
suppose a rational agent, able to reason over the receiveshiges and decide the next
steps, while our model does not make assumptions aboutdakenig capabilities of
the agents.

Chapter 6. Related Work 102

6.2.1 Mentalistic approach

In the mentalistic approach, speech actions are like axtitvey change the state of the
world, similar to physical actions [54]. Initial attemptsch as [10] used formalisms
like STRIPS: a speech acts could be defined by its precondiaod postconditions,
expressed in multimodal logic, that were used to createspldinese early attempts
were then refined into a more general theory by Cohen and Qeeefl1]: speech
acts are actions performed by rational agents that aregtyirfulfill their intentions,
according to their desires and current beliefs. The modelss called the Belief-
Desire-Intention (BDI) model.

The speech act theory has influenced the development ofugaaigent communi-
cation languages (ACL): we will overview KQML and the stardisation effort at-
tempted by FIPA.

KQML

TheKnowledge Query and Manipulation Languagas initially developed in the early
90s as part of DARPA knowledge Sharing Effort to enhance tioewedge sharing and
not specifically for agents.

KQML ACL aimed at creating a set of performatives to captuseious proposi-
tional attitudes an agent wants to express. It has beenajmetto be independent of
low level transport layer, as well as of the content languaaggk ontology used.

A KQML message is composed by the locution and the contetd.pBine core of
KQML is the speech act that wraps the content. The semardgio@ssage is expressed
in terms of preconditions, postconditions and completionditions. Conditions are
expressed for both speakers and hearer of the utteranagreFadL, taken and adapted
from [67], shows a simple dialogue between an agent A, askinthe value of the
attribute price (defined in an ontology called “travels”)tbk flight BA786, and an
agent B replying with the requested value.

FIPA ACL

The Foundation for Intelligent Physical Agéris a standardisation body concerned
with issues of interoperability. One of its committee is racge of the development of
ACL. FIPA ACL is similar to KQML.: it is based on speech acts ahid BDI-centric.
Also the syntax of the individual locutions resembles KQML.

Lhttp://www.fipa.org

Chapter 6. Related Work 103

(evaluate
'sender A :receiver B
‘language KIF :ontology travels
:reply-with g1 :content (val(price BA786)))
(reply
:sender B :receiver A
‘language KIF :ontology travels
iin-reply-to gl :content (= (price BA786) (scalar 225 pound)

Figure 6.1: Example of KQML dialogue

(inform
:sender agentl
‘receiver agent2
:content (price BA786 225)
‘language sl
:ontology travels

Figure 6.2: Example of FIPA ACL message

The specifications of messages provide an English desamiptid a formal seman-
tics, expressed in a form of Modal Logic called Semantic Leage. The Semantic
Language is a Multimodal logic able to represent certainamzertain beliefs, desires
and intentions.

Each communication act is is defined by its feasible pred¢mmdi and its rational
effects. The feasible preconditions describe the appaitgpmental state that the agent
must have before sending the message, if it wants to complytive standard. The
rational effects specifies the expected mental state, ghadrthe agent has performed
the communication. The rational effects are usually defioethe recipient, but they
do not need to hold in order to be compliant.

Figure 6.2, shows a simple message, sent fagentl to agent2 to inform about
the price of the flighBA786. Figure 6.3, shows the semantics for the messafes
andrequest . Both figures are taken from [67].

Chapter 6. Related Work 104

(i,inform(j,¢))
feasibility preconditionB;¢ A —B; (Bifj¢ VUif;¢)
rational effect:B;¢
where B¢ means 'agent i believeg’, Bif;¢ means that 'agent j has a definite opinion one

way or another about the truth of falsity ¢f, and Uif;¢ means 'agent j is uncertain about
¢; An agent i sending annf or mmessage with contet respects the FIPA semantics if it
believesp, and it is not the case that it believes either that j believagstherg is false or true,
or that j is uncertain of the truth or falsity af.

(i,requestj,a))
feasibility preconditionBjAgent(a, j) A —Bjl;Done(a)
rational effect:Dong a)
where Agerta, j) means that 'the agent of actianis j’, and Donéa) means that 'the action

o has been done. The agent i requesting agent j to performragtioeans that agent i believes
that the agent able to perforimis j and that agent j does not currently intend tteais done.

Figure 6.3: FIPA semantics of i nf or mand r equest

6.2.2 The Normative approach
Electronic Institutions

With Electronic Institutions the authors have tried to mhrce the way humans have
developed social institutions, ranging from the state tegbe companies, to structure
their social interactions within social institutions.

In elnstitution the interactions between agents are ddvico scenes. In each
scene an agent can take only one role. The scene is descsibddrdte State Machine.
The messages between agents causes the state of the iotetachange state. The
interactions between agents are constrained by normatiges,rthat prescribe obliga-
tions and prohibitions for the agents in a particular sitwratThe scenes are connected
together to compose a workflow, and the specification of thekfleav describes how
agents can legally move from one scene to another.

In elnstitutions agents and roles can be institutionalst@raals. The institutional
roles, and the agents that embody them, work to guarantééhihanstitutional rules
are respected, while the external roles and agents aresegli® conform to the insti-
tutional rules.

The institution prescribes a common language and a commimtogyy to use, but
it makes no assumption about the internal structure of teatsg

Chapter 6. Related Work 105

An Electronic Institution can be regarded as social middieathat sits
between the external, participating agents and the chas@manication
layer validating or rejecting their actions. [57]

There exists a tool, developed inside the OpenKnowledgggirdor converting e-

institutions into LCC.

6.3 Web Service composition

The mentalistic approach to agent coordination introddmeddre rely on autonomous,
smart agents able to take decisions and to plan interactnmo$ving other similar
agents. The normative approach poses a lighter workloatl®agdents, as it reduces
the search space for the actions forcing some behaviourdvanaing others. In a
framework like OpenKnowledge, the norms are specified bgradtion models, and
the autonomy of the agents is reduced to the possibility osicty what interaction to
run.

However, in many applications the simpler integration anchposition of dis-
tributedservicesmay be enough, leaving the services unaware of their invobre in
interactions.

While a service can be anything, the term is often used tacatdiaweb service

that is, according to W3C:

“A Web service is a software system designed to supportoptrable
machine-to-machine interaction over a network. It has aerface de-
scribed in a machine-processable format (specifically WSBDIither sys-
tems interact with the Web service in a manner prescribedsbgtascrip-
tion using SOAP messages, typically conveyed using HTTR antXML

serialization in conjunction with other Web-related starus.”[7]

The services’ preconditions and effects may be describédauich ontology such as
OWL-S, and a centralised planner composes them, eithematically or assisted by
a human, creating a plan of execution. Alternatively, andem@mmonly, the plan
may be designed a priori, as a centralised or distributedkflmw of activities and the
services are grounded, normally at design time, into thoBeities. We first introduce
OWL-S in Subsection 6.3.1, and then overview two centrdliged one distributed
workflow languages in Subsection 6.3.2.

Chapter 6. Related Work 106

6.3.1 Semantic approach

OWL-S? is an ontology built on top of Web Ontology Language (OWL) by DARPA
DAML program as a replacement of the former DAML-S ontolofyis an ontology,
written in OWL, for describing Semantic Web Services, wiike aim of enabling users
and software agents to automatically discover, invoke, pmsa, and monitor Web
resources offering services, under specified constraints:

e Automatic Web service discover@WL-S aims at helping software agents to
discover the Web Services that fulfill a specific need witloms quality con-
straints, without the need for human intervention.

e Automatic Web service invocatiogenerally, it is necessary to write a specific
program to invoke a Web Service, using its WSDL descriptldsing OWL-S a
software agent should be able to automatically read therigéisn of the Web
Service’s inputs and outputs and invoke the service.

e Automatic Web service composition and interoperationa Web where many
services are available, it should be possible to perforrmaptex task, involving
the coordinated invocation of various Web Services, baséyson the high-
level description of the objective. OWL-S aims at helpinghie composition
and interoperation of the Services in order to enable theraatic execution of
this task.

The OWL-S ontology is composed by the parts:

¢ the service profilelescribes what the service does. This information is piymar
meant for human reading, and includes the service name awutjokon, limita-
tions on applicability and quality of service, publishedamontact information.

e the process modealescribes how a client can interact with the service. This
description includes the sets of inputs, outputs, pre-itimms and results of the
service execution.

¢ the service groundingpecifies the details that a client needs to interact with the
service, as communication interaction models, messageafist port numbers,
etc.

2http://www.daml.org/services/owl-s/

Chapter 6. Related Work 107

6.3.2 Web Service Workflow languages
A workflow is a:

“reliably repeatable pattern of activity enabled by a sy&igc organi-
zation of resources, defined roles and mass, energy andnatmm flows,
into a work process that can be documented and learnt. “

Web services composition follows two alternative appreschrchestrationor chore-
ography Their primary difference is their scope. An orchestratinadel provides a
scope specifically focussing on the view of one participanstead, a choreography
model covers all parties and their associated interactyiviag a global view of the
system. The orchestration and the choreography distime@oe based on analogies:
orchestration describes central control of behaviour asradactor in an orchestra,
while choreography is about distributed control of behavihere individual partici-
pants perform processing based on outside events, as ineogjtaphed dance where
dancers react to behaviours of their peers:

“Dancers dance following a global scenario without a sirggent of
control"[9]

In orchestration, a central process takes control and coates the execution of differ-
ent operations on the involved web services. The web serdoenot know that they
are involved in a composition process: only the central @ssds aware.

Choreography does not rely on a centralised coordinatah ®eb service knows
when to execute its operation and with whom to interact. H ollaborative effort
focussing on the exchange of messages. All participants toelee aware.

In the following subsections first | overview two orchestat languages, one
business-oriented (BPEL), and one more academic (YAWLd than a choreography
language (WS-CDL).

Choreographies are the approach used in this thesis. As veedagn in Section
2.4.4, LCC was used to specify the interactions. While asrathoreography language
such as WS-CDL could have been used, LCC is more compact eetdlgiexecutable.
These advantages lead to its choice.

Orchestrations define the behaviour of a single agent: thdigtor can be used
only for that agent. The other agents are not aware of beinggbdhe interaction:
their services are invoked from the orchestrating agerttout any reference to an in-
teraction context. If they wanted to use the predictor, tweyld need to recognise,

Chapter 6. Related Work 108

from the sequence of invocations, to be in a specific typetefaction. The problem
is similar to the one encountered by agents using a memtadigproach: each invo-
cation can increase the probability of being in a certairetgpinteraction, but it may
requires several messages to reach a certain level of canédeMoreover, different
orchestration agents may use different workflows for theesgoal, possibly changing
the invocations that an agent providing a set of serviceegpact.

BPEL (Business Process Execution Language)

BPEL (Business Process Execution Language) for Web senge@m orchestration lan-
guage. Itis an XML-based language designed to enable temkag for a distributed
computing or grid computing environment - even across mil@trganisations - using
a combination of Web services. Written by developers fronABEystems, IBM, and
Microsoft, BPEL combines and replaces IBM’s Web Services\Hlanguage (WSFL)
and Microsoft's XLANG specification.

A BPEL process receives a request and to fulfill it it invokes involved web ser-
vices and then responds to the caller. Defining a BPEL prasessentially defining a
new web service that is the composition of existing serviéeBPEL process consists
of steps: each step is calledtivity, that can be primitive or structure. A primitive
activity can be an invocation of a web service, waiting aydmm an asynchronous
call, generating responses for synchronous operationsipmiating variables, indicat-
ing faults, waiting specified intervals, terminating thegess. A structure activity is
a composition of primitive ones. Primitive activities ca@ @tomposed in sequence, in
parallel, in loops, or as branches with conditions.

YAWL (Yet Another Workflow Language)

In recent years many different workflow products have apgaeach with its own
semantics and constructs. The task of comparing them haseaddresearchers, in
particular those in Van der Aalst group in the Eindhoven @nsity, to identify the
most frequently used patterns applied in the developmentaskflows [64]. The
workflow patterns are pragmatically used to compare theesgivity of the different
workflow languages. A more formal foundation to represemt emmpare workflow
is provided by Petri nets, even though some patterns areutiffio represent even
with extended Petri nets. To overcome these difficulties Man der Aalst groups has
developed another workflow language, YAWL [62], based ongpas, and defined in

Chapter 6. Related Work 109

terms of a transition system. A workflow specification in YAViA_a set of process
definitions which form a hierarchy. Tasks are either atoragks or composite tasks.
Each task refers to a process definition at a lower level irhteerchy. Atomic tasks

are leaves of the graph-like structure.

WS-CDL (WS-Choreography Description Language)

The Web Service-Choreography Description Language [34] specification by the
W3C defining a XML-based business process modeling langtegelescribes com-
mon and collaborative observable behaviour of multipleises that need to interact
in order to achieve some goal. WS-CDL describes this bebafiom a global or
neutral perspective rather than from the perspective ofarg/party. WS-CDL is a
description and not an executable language.

Peer-to-peer protocols described in WS-CDL do not have #&alesed point of
control: each party remains autonomous and no party is magée any other. There
are no global variables, conditions or workunits, as it wdotdquire centralised stor-
age and orchestration. WS-CDL permits a shorthand notati@mable variables and
conditions to exist in multiple places, but this is syntadugar to avoid repetitive
definitions. There is also an ability for variables residingne service to be aligned
(synchronised) with the variables residing in another iservgiving the illusion of
global or shared state.

In WS-CDL all messages are described as information typdgtaare is no dis-
tinction between application and infrastructure messagishat WS-CDL describes
is the ordering rules for the messages which dictate therandehich they should be
observed. When these ordering rules are broken WS-CDL derssthem to be out-of-
sequence messages and this can be viewed as an error inmanf& of the services
that gave rise to them against the WS-CDL description.

Services are any form of computational process with whioh iy interact, ex-
amples are a buying process and a selling process that alenmapted as computa-
tional services in a Service Oriented Architecture (SOAasa Web Services imple-
mentation of an SOA: WS-CDL is not explicitly bound to WSDLdaherefore it can
play the same global model role for both SOA services and Véebi&es. It is possible
to use WS-CDL to describe a global model for services with n®DA descriptions
(they can have Java interfaces) as easily as it is to deszitveces that do have or will
have WSDL descriptions.

Chapter 6. Related Work 110

6.4 Ontology Matching review

We have seen in Section 3.2 how the success of the ontologgebrbught a wealth
of ontologies, not their standardisation. We have presehtsv this heterogeneity is
tackled using Ontology Matching algorithms. In this sectiee will first introduce dif-
ferent classifications for the sources of mismatches betwea#ologies in Subsection
6.4.1 and for the matching algorithms in Subsection 6.4&n toverview the elemen-
tary matching techniques in Subsection 6.4.3 and finallierea group of interesting
projects in Subsection 6.4.4.

6.4.1 Ontology mismatches classifications

Hameed, Preece and Sleeman [31] distinguish three perspatthe classification of
mismatches.

Knowledge Representation Perspective

According to [65], ontologies can differ because of two meategories of mis-
matches:conceptualisatiorand explicationmismatches. The first category of mis-
matches originates from the initial phase of conceptutidinaf the domain. Concep-
tualisation mismatches include class and relation mishestcfor example, classes can
be divided into different subclasses (for example, thescasmal can be subclassed
into mammalsbirds, reptiles fishesin one ontology and intdierbivores carnivores
andomnivoresn another), or attributes can be assigned to differenselagfor exam-
ple, two ontologies can have the same classeseraanddigital_camerathe second
subclass of the first, and the attriblé@smay be attached tcamerain one ontology
and todigital_cameran the other). Explication mismatches are caused by difiezs
in the way the conceptualisation is specified in a formal lege: for example, there
might be ambiguities derived from using the same term totifledifferent entities (for
example bankmeaningfinancial institutionin one ontology andidge in another), or
from using different terms to identify the same entity (faaenple,car andautomo-
bile).

Database perspective

Wiederhold [66] proposes a different set of mismatchesguoaented to data sources:

key difference: different naming for the same concept

Chapter 6. Related Work 111

scope difference: distinct domains, or distinct coverage of domain members
abstraction grain: varied granularity of detail among the definitions
temporal basis: mismatches concerning time, periods, intervals

domain semantics: distinct domains, and the way they are modelled.

value semantics: differences in the encoding of values (date format, cuiies)c.)

Knowledge Elicitation Perspective

Shaw and Gaines [55] described four dimensions to map krugelelicitation situ-
ations likely to be encountered when experts are involvederprocess of developing
a knowledge-based system:

Conflict: when experts use the same term for different concepts
Correspondence: when the experts use different terms for the same concept
Constrast: when the experts use different terms and have differenteatsc

Consensus:when all the experts use the same term for the same concept

6.4.2 Matchers’ Classifications

Different ontology mapping surveys have been compiledughothe recent years [56,
49, 33]. They offer a classification of the ontology matchaygtems and a review of
the techniques at the state of the art.

Shvaiko and Euzenat, in their [56], distinguish three dimens for the classifica-
tion:

input dimensions: these dimensions are about the kind of input on which an algo-
rithm operate:

¢ the data/conceptual model in which the ontologies are sgget(E-R schemas,
OO structures, XML, RDF or OWL ontologies)
¢ the type of data that the algorithm exploits for finding cependences:

schema data (the conceptual model of the ontology), inetdata, or both

process dimensions:the type of computation involved, that can be either exact or
approximate

Chapter 6. Related Work 112

output dimensions: what result is returned to the user: one-to-one corresporete
between the entries in the ontologies, graded or all-ohingtanswers, and the
kind of relations that between the entries (similarity, igglence, subsumption,

)

6.4.3 Elementary matching techniques

Most ontology matchers combine the results produced by e¢any matchers. The
elementary matchers can be classified in many different viéiwaiko and Euzenat
propose two classifications, based on:

granularity and input interpretation that divides the matchers @alement-levebnes,
that analyse the entities in isolation ignoring their nelas with other entities, or
structure-levematchers, that analyse how entities appear together inietste

kind of input that divides the matchers based on the type input (syntastiernal or
semantic)

Element-level techniques

String-based techniques They consider names, labels and comments as sequence
of characters. Often the strings are normalised beforegosampared: they are con-
verted to lowercase, characters with diatric symbols (aaghccents or cedillas) are
replaced with their more common versiogdd e, fito n, etc), spaces are trimmed, and
finally hyphens, apostrophes, punctuation symbols orslag# removed.

e substring verifies if one string is a substring of another (can be ayres in in
integerandint, a postfix, as inelephoneandphong

¢ Hamming distance counts the number of positions in which the two strings

differ. For examplesynchroniseandsynchronizénave an Hamming distance of
1.

e edit distance takes two strings and counts the minimum number of insestio
deletions, substitutions of characters required to t@mnsfone string into an-
other (usually normalised by the length of the longest gjtifror examplear-
ticle andaricle have a distance of 0.14, whigeticle andpaperhave a distance
of 1.

Chapter 6. Related Work 113

e n-gram takes two strings and counts the number of commgnams (sequences
of n characters). For examplarticle andaricle have a similarity of 0.5article
andpapera similarity of 0 whilearticle andparticle have a similarity of 0.83.

Comparing only the labels of the entities in two ontologiaamot handle synonyms
(different words that name the same entity) and homonynmégsaord used to name
different entities).

Language-based techniques In order to deal with the problems caused by syn-
onyms and homonyms, more sophisticated matchers consatdswn label to have a
structure and a meaning, derived by their use in some ndamglage. Euzenat and
Shvaiko distinguish betweeantrinsic andextrinsictechniques.

In intrinsic techniques, the text is normalised to redueeftiim to a standard form
that is more easily recognised:

e tokenisationis the process of demarcating and possibly classifying@es of
a string of input characters. For example, the senteadednces in imaging
technology becomes the list of strings“advances”, “in”, “imaging”, “tech-
nology”>.

e lemmatisation strings of tokens are morphologically analysed to redinesrt
to a normalised, standard form. In many languages, wordsapp several in-
flected forms: for example, in English, the vétb walk’ may appear asvalk’,
‘walked’, ‘walks’, ‘walking’. The base form;walk’, that one might look up

in a dictionary, is called the lemma for the word. The kSadvances”, “in”,

“imaging”, “technology”> would become<*advance”, “in”, “image”, “tech-

nology”>.

e elimination words that carry little meaning (like articles or prepasils) are
dropped. For example, in the list above the tokieh would be dropped yield-
ing <"advancé, “image”, “technology”>.

e term extraction morphologically similar phrases are recognised, usirttepas

learnt from large corpora. This is normally obtained idgmtig the role of the
words (whether they are noun, verb, ...) and then compahegesulting struc-
tures. For exampl@oun; Noun, andNoun, of Noun; are considered equivalent,
and thereforénewspaper article”would be considered equivalent‘@rticle of
newspaper’

Chapter 6. Related Work 114

In extrinsic techniques, use external common knowledgeoanain specific thesauri
to match the entities:

e |exicons or dictionaries, are set of words with a definition in natlaaguage.

e multi-language lexiconsare dictionaries where the definition is replaced by a

word in another language

e thesauri are lexicons where the relations between words are madegx@ne
of the most commonly used thesaurus is WordNet [40].

Extrinsic techniques help in dealing with synonyms. Howewerds are often used
with different meanings, and a resource such as a theaunushoav incorrect relations,
increasing the false positives and consequently decrgasiecision. To deal with

this problem the words used in labels need to be disambiduedstricting the senses
to those consistent with the context. The probability distion computed by the

predictor can help here, providing additional contexta&imation.

Alignment reuse They store alignment used in previous matching, assumiag th
many ontologies or schemas can be similar to previously meatones.

Structure-level techniques
Internal structure techniques Deal with internal constraints applied to definitions

of the entities: data types, cardinality of attributes,...

Graph-based techniques ~ They consider the input ontologies as labelled graphs, and
are based on the intuition that if two nodes in two ontologies similar, then their
neighbours will be likely similar.

e graph matchingsearches the maximally common directed subgraphs

e children matchingthe similarity between two inner nodes is computed based on

the similarity of their children nodes

e |eaves the similarity between two inner nodes is computed basethersimi-
larity of their leaves nodes

e relations the similarity between two nodes is computed based on tbkitions
with other nodes (properties)

Chapter 6. Related Work 115

Semantic based techniques

In a semantic method the model-theoretic semantics is wsgdtify the results [16]:
deductive methods are used on preprocessed ontologies.

Upper level Ontology ~ The lack of common ground between the ontologies to map is
covered by upper level formal ontologies like SUMO [41] or DCE [42] to provide
a logical based system that the matcher can use to reasohtab@orrespondences.

Deductive techinques ~ They give a semantic interpretation to the ontologies, a&d u
well grounded deductive methods:

e SAT baseddecompose the tree to a set of node matching problems|atizgs
each node matching into a propositional formula
axioms— rel(context, contexp)
and check the validity of the formula. The axioms encode #ukground knowl-
edge

e Description-Based techniguessercome some of the limitation of the SAT based

approach

6.4.4 Projects review

Following the classification used in [16], we divide the oxrew of the projects into
thoseschema basednd thosenstance basedA project is schema based when it ex-
ploits mainly the conceptual definitions of the ontologie$ind the correspondences,
while it is instance based when it uses the instances of tt@agy for the compar-
isons.

Schema based

Mafra Developed by Maedche, Silva and Rocha [44], MAFRA is oridritehelp
human users to map ontologies from different institutions.

The conceptual framework divides the process of matching dwtologies into
five steps, and four transversal tasks. The process stattyibhg to render uniform
the language in the source and the target ontologies. Owrcsythtactic and lexical
heterogeneity have been reduced, it proceeds to discawsirttilarity between the en-
tities in the ontologies using a multi-strategy and mulgjesithm process that analyses

Chapter 6. Related Work 116

both the lexical and the property similarity of terms. Onle similarities have been
computed, they are used to create semantic bridges betleeamtities in the source
and target ontologies. Then the process continues, euajuthe semantic bridges and
transforming the instances from the source ontology to énget ontology. Finally,
post-processing is executed to improve the alignment.

Similarity Flooding It uses an hybrid matching algorithm based on similarityppro
agation. Consider the schemas as directed labeled graplestethnique starts from
a string-based comparison between nodes in order to finditzad adignment. It then
iterates, spreading the similarity from similar nodes tgaadnt neighbours through
propagation coefficients. The similarity increases uh# tix point is reached.

It consider the alignment as a solution to a clearly stateurogation problem.

S-Match The S-Match project [23] has been developed by GiunchigithShvaiko
at the University of Trento. It takes two trees, and comptitesstrongest semantic
relation between each pair of nodes.

The process is organised into four macrosteps:

1. Compute concepts of labels, for all labels in the two tréesoncept of a label
is obtained by first tokenising labels, then lemmatisingrdsailting tokens and
finally using an oracle (WordNet in this case) to obtain thesss of lemmatised
tokens. Different senses are combined in a disjunction im fa propositional
formula for each label. Tokens from expression like “winad aheeses” form a
disjunction (vineV cheesg while terms from expression like “Italian cheeses”
form a conjunctionitalian A cheesg

2. Compute concepts at nodes as the conjunction of the cobatigbel formulae
in the concept path to root

3. Compute semantic relations between pairs of labels framwo trees

4. Compute semantic relations between pairs of nodes frerwth trees

The semantic relations between pairs of labels are usedpas for computing the
relations between nodes. The system tries to verify the ditam

axioms— rel (contex, contexg)

Chapter 6. Related Work 117

Theaxiomsare the computed relations between labels, wtolet ext andcontexg are
the concepts at the nodes. As the propositional solversagisdiability checkers, the
formula is then converted to:

axiomsA —rel (contexk, contexg)

In [24] the developer of S-Match present an improved versibtiheir work, that
exploits the structure of the formulae above to increasepieed of satisfiability com-
putation. The optimised version of S-Match is particulafficient on large classi-
fication, where it perform much better than COMA and than thgiwmal version of
S-Match, and it requires much less memory than SimilariooBIng.

COMA/COMA++ The COMA project [13] is a schema matching system, and can be
applied to XML or databases schemas. The schemas are teahglalirected acyclic
graphs that are then compared to find correspondences. Mtralédea in COMA is to
combine different matching algorithms to find better resuMatching is an interactive
and iterative process, composed by three main steps:

e Optional user feedback:the user can manually provide match correspondences,
confirm or reject proposed matches

e Execution of matchers: multiple matchers are used independently to obtain
several similarity measures. Matchers can be simple, Qydsrreuse-oriented.

e Combination of individual match results: the results are aggregated into a
combined value for each pair, using some strategy (like Wieeae or the maxi-
mum of the results), and then the candidates with the bedasityvalues above
a threshold are chosen.

COMA introduces also the reuse of past alignments, in tha fofrwhole schemas or
fragments of them.

COMA++ [1] extends COMA improving the graphical interface fa better user
interactivity, improving the reuse of past alignments agplacing the internal repre-
sentation language to support schemas and ontologiegmnitdifferent languages.

Instance based

Glue Glue [14] combines different machine learning techniquesnd correspon-
dences. The matching is based on a representation of siyitetween concepts

Chapter 6. Related Work 118

formally defined as their joint distribution. The similaribetween two concepsand

B is given by their joint distributio’AN B. Computing the joint distribution means
finding instances that belongs to both conceptdB. Usually instances of the two
concepts are separated: to solve this problem they use nelelairning to develop two
classifiers for the instances.

The instances oA are used to create a classifier farthat is then used to classify
the instances d8, and vice versa. Deciding which learning algorithm to usg\&hich
information to exploit is difficult, and therefore a multidming strategy is used. The
predictions supplied by the algorithms are then combined beta-learner.

Available domain constraints and general heuristics is ated to improve accu-
racy.

Mixed approach

QOM The QOM project [15] addresses the problem of efficiency itolmgy map-

ping and considers the trade off between efficiency and tyudlhis is done introduc-

ing the idea of filtering correspondence candidates thatialikely to be verified.
The matching process is iterative, and the main steps are:

e Selection of candidate pairswhose similarity should be checked: candidates
are selected using different strategies to classify thamnmore promising and
less promising ones. The strategies can use the labels pathse(only similar
ones are kept), the hierarchy of the ontology (the ontokbogre mapped from the
top down), the result of previous iterations (only termsseléo terms mapped in
the previous iteration are mapped) or a combination of these

e Similarity computation: the similarity is computed using a range of similarity
functions. These can measure the string similarity of tbellg can check if the
concepts share the same properties, the same descenkassnte siblings...

e Similarity aggregation: the measures given by these functions are then com-
bined. The candidates with low aggregate measures aredéstdahen bijective
candidates (candidates for which the relation can work ith lairections) are
kept and finally the candidates with the strongest aggregatesure are kept.

These steps are repeated until no new correspondence caarize f

Chapter 6. Related Work 119

6.4.5 Approximate Structure-Preserving Semantic Matchin g

Most of the projects described above aim at finding corredpooes between terms
in ontologies. In open systems, such as OpenKnowledge,dée\be used to map
the contentof messages, or the content of invocations to web servicesveker, it
is often necessary to adapt structures: for example, in Rpewledge, peers need
to map their methods to the constraints in the interactiodel® parameters can be
called with different names, might be in different posigoor their structure might be
different. Similarly, it might be necessary to dynamicatiap the invocation of a web
service, as defined in a workflow, to the WSDL interface of tiebwervice.

Often it is not possible to map exactly every element in the$twucture: however,
it can be enough to be able to invoke the service, possibly sotme parameters set
to a default value. The work presented in [21] deals with tablem of approximate
matching of structures. Web services are considered fid#rgoredicates, and are
transformed into trees. Two trees are matched, extradtmgaorrespondences between
the nodes and evaluating whether they are similar enough.

The matching is performed in two steps: first the nodes aremeat and then the
trees. Node matching considers only the labels at the nadeisthe context provided
by the tree. It uses S-Match, described above, to find thdoekabetween the nodes
of the two trees: the concept at each node is expressed agal ltlgmula, and the
relation is verified using a SAT algorithm.

The correspondences found by node matching are then filtesied) abstraction
theory. Abstraction theory categorises the type of abStra®perations. Among the
them, some operations provide the only ways to alter two-éirder terms changing
their signature but maintaining completeness. Some of dnespondences found in
the first step do not represent these operation: therefon@yt happen that functions
are wrongly mapped to variables, or variables to functidriese correspondences are
dropped, leaving only those that maintain completeness.

Tree edit distance is used on the allowed correspondencesitpute the similarity
between the trees. In its formulation, tree edit distanagesicter the basic operations
that can be applied to a tree to change it into another treditiad, removal and
replacement of a node. The abstraction operations seere avevmapped to these
basic operations, and a cost is assigned to them. The d&gocbmputes the minimal
cost of transforming one tree into another.

At the end of the whole procedure, we have a set of correspmedebetween

Chapter 6. Related Work 120

nodes (which can be interpreted as correspondences bepaemmeters), and a value
that summarises the similarity between the trees. If thelaiity is above a certain
threshold, the matching is considered valid, and the cparedences can be used.

In OpenKnowledge, as we have seen in Section 2.7, this puogésiused to eval-
uate the capability of a peer to perform an interaction mdyetomparing the con-
straints in it with the peer’s services, and to create thetmta used during the run of
the interaction to call the services provided by the peemuanstraints are met.

6.4.6 Dynamic Ontology Refinement

This approach, developed by Fiona McNeill, Alan Bundy andddaSchorlemmer
at the University of Edinburgh [39], tries to tackle the a#@s in plan execution due
to mismatch of ontologies between the involved agents. Timei@to improve the
robustness of planning, adapting the theory behind thesibe after failures. It is not
exactly an ontology mapping system, but it deals with irteos among agents that
do not share the same ontology.

In this model the plan is accompanied by a justification ofrngwtep. The justi-
fication is produced by a “plan deconstructor” that analybesplan produced by the
planner and explains the theory that motivate each stepthduy is the knowledge
of the world that the agent has, represented by its ontology.

If the execution of the plan fails, the agent tries to find tkaat point in the plan
where the failure has occurred, and then tries to underdtandthe justification for
the step caused the failure. For example the ontology migia loversimplified the
domain, and thus it might have justified a wrong decision.

Then, if possible, the agent tries to refine the ontologysiidg interacting with
the other agent, to adapt it better to the domain, and repeattmmunication process.
In the current version, the changes yielded by the refinesremet permanent.

6.5 Natural Language Processing

Some of the ideas at the basis of the work presented in thésstiagere inspired from
the field of Natural Language processing. Dialogue normscamstentions appear at
syntactic level: a request is normally followed by an answaeroffer by an acceptance
or a rejection. The intuitions about syntactic norms hasnpigd researchers in NLP
to study the possibility oflialogue grammarswhich have often been represented as

Chapter 6. Related Work 121

finite state machines, where the speech acts are the toansiiites between admissible
states of the dialogue.

Another source of inspiration has been the use of Markov nsadepredict infor-
mation about portions of text given the information colextup to the portion. The
information can be the part-of-speech of a word as describd#te next Subsection, or
the type of speech act in dialogues, as discussed in Sutas@&ch.2. Even though the
predictor presented in this thesis does not use a Markov hagldiscussed in Chapter
4, it represents a useful comparison.

6.5.1 Part-of-speech tagging

One of the tasks required for parsing and understandingadd&unguage is to tag each
word in a sentence with its appropriate part of speech, thathiether a word is a verb,
a noun, an adjective and so on. One of the techniques useddging [37] is based

on Markov model. The sequence of tags in a text is considered\darkov chain, and

assumes that a word’s tag only depends on the current wordratite previous tag. It

also assumes that the dependency does not change over time.

6.5.2 Dialogue translation

For example, in automatic dialogue translation in facéatme situations, the ability to
predict the dialogue speech acts can improve the resulfS0Ojna corpus of manually
tagged dialogues is analysed in order to extract the posterobability of a speech
actd; given the history of the previous aats...;_; . Since it is impossible to deter-
mine the probability of arbitrarily long sequences, theg nggrams only N previous
speech acts are used;_n-1...dj—1. In the paper they analyse the possibility of us-
ing a dialogue grammar, in the form of a Finite State Machirad €ncodes the state
of a dialogue (starting phase, end, proposal or reactiomnkst, Rhey tried to exploit
the knowledge provided by the grammar by training diredtly grammar attributing
probabilities to the states and to the transitions, butdbjsroach yielded results con-
sistently worse than the simple statistical one. Then, thelpded the knowledge in
the interpolation formula, and then they replaced old dja®acts with states: since
the number of states is less than the number of speech aeyswtre able to cluster
more results with the same dataset.

Finally, they exploited the knowledge of the speaker: ttagged each speech act
with the contributing speaker, making explicit the directiof the acts: if speaker A

Chapter 6. Related Work 122

poses a question, and then A makes a further utteranceiliélg to be an explanation
or a correction; if the second utterance is produced by sgddkthen it is likely to be
areply.

6.6 Summary

In Chapter 2 we introduced the concepts relevant to the workemted in the thesis,
in particular those related to the communication betweesntsyand to the problem
of tackling heterogeneity in the communication. In this Qiea we overviewed the
various approaches available in literature.

We have first described the mentalistic and the social apgpessto communication
between autonomous agents; we have then moved towardsrtiposiion of passive
services, either by planning using rich services’ desis, or by designing a work-
flow of activities grounded to the services. The OpenKnogtegdroject described
in Section 2.7 lays between the two models: the peers arefprean the choice of
pre-defined interactions.

We then analysed the problem of Ontology Matching. Firstpvesented the clas-
sifications available in literature for the source of misohais between ontologies, and
the classifications used in the main reviews for the ontologyching algorithms. Sec-
ond, we described the basic techniques used in the matdgogtams, and finally we
overviewed a set of interesting and relevant projects.

Chapter 7
Conclusion

We increasingly require software applications to inte@ae with another: they are
becoming access points for services distributed in the axtvwwvorking as providers
or brokers for these services. However, applications artenrby different develop-
ers with different goals in mind, and they also evolve overeti their main common
feature is their diversity.

The idea behind the semantic web is to define these servickshandata they
process using a machine-readable language, defined in alogytin order to find
and combine them automatically. However, while there hasnkeeslow but steady
adoption of a small set of common syntaxes (such as RDF or QiN&de has been no
agreement over the semantics used: many different onegpgiost of them written
in RDF or OWL, are used to describe the services and their data

To overcome this heterogeneity, a variety of ontology miaiglalgorithms have
been developed. They aim at statically matching two or matelogies, finding all
the possible correspondences between them. However, Wwhexim of the matching
is to allow communication between agents, they do not ekgileiadditional informa-
tion provided by the context of the interaction itself. Thditional information can
improve efficiency, by removing the need to compare termedyiko be unrelated to the
interaction, and can improve both completeness (recdatgndow because of a lack of
domain-specific information, and correctness (precisibynyeducing ambiguities that
a lack of context normally bring.

The work presented in this thesis is a system that first aaalyse history of similar
interactions in order to create a statistical model of ometgf interaction and then
uses this model to compute a probability distribution far tontent of the exchanged
messages in new interaction runs. The probability distidims can be forwarded to

123

Chapter 7. Conclusion 124

an ontology matching algorithm that focuses its computei@ffort on verifying the
suggested hypotheses, without wasting time on evaluatirggpondences not related
to the interaction. The model is updated feeding back to tediptor the results of the
matching process.

The model is based on two main assumptions about the corftémt snessages:
the terms in the messages appear with a frequency reflecpngpability distribution
in the community of users and the context of the interactiadehitself; the terms in
messages may have relations with other terms in previousages. The relations can
be simple correlations, can be implicit or explicit ontaleay relations that the system
is able to understand.

In the introduction (Section 1.1), | stated that this thésid two key goals:

1. improve the efficiency of an arbitrary ontology matcher,
2. maintain or improve the quality of the matcher’s results

Both goals have been reached: the evaluation of the propoe#dtbd shows that a
relatively small number of interaction is often enough téadta remarkable improve-
ment of the efficiency of the matcher (about 10 times quickejle keeping precision
and recall close to the same values of the baseline modeddestnot use the predic-
tor. A problem discovered during the evaluation proces$iag & wrong probability
distribution can sway the matcher, decreasing both pratiand recall. This happens
during the initial period, when the model is still unstablelamprecise: after this pe-
riod, the computed distribution tends to reflect the actustrithution. The tests have
shown that, if even if we trade off precision for efficiencgcall remains higher than
the baseline.

The main requirement is to use a framework that allows thergesn of the
interaction sequence: workflow based systems provide thaifinality, but are often
centralised. With the OpenKnowledge project we have shtwvatthese results can be
obtained in a purely peer-to-peer environment.

7.1 Future work

During the work presented in this thesis | had to decide whigas to cover more in
detail, and which areas to leave out for lack of time and sp@oceng the development,
limitations were identified and | often had to opt for simi#tions, as the solutions,
although intellectually interesting, had implication® teast to be tackled in a single

Chapter 7. Conclusion 125

thesis. This section tries to present some of the ideas fordwork that could extend
and improve the current state of the system.

Drop assertions that are not consistent.

When the predictor needs to instantiate the statisticalehtadthe current interaction

in order to compute the probability distribution of terms #ovariable, it only drops
assertions whose conditi@gnhis not consistent with the current state of the interaction.
For example, as we have seen in Section 4.4, assertions thiequisterior probability

of the offer being about a compact car, given that we askedrf@ccommodation, are
removed. However, assertions about the prior probabifithe offer being a compact
car are not removed. Introducing a basic reasoner that remyar discounts, asser-
tions about terms considered to be inconsistent might irgotioe performance of the
predictor.

Matching different interactions

One of the limitation of the work presented here is that thelehof an interaction is
strictly bound to one interaction model. Over time, the pg#rcreate many of these
models for the different interactions it is involved in. Hever, if the interaction model
used for a particular task changes, the knowledge collemetie previous version of
the interaction becomes useless: the peer has to staiingeatew model.

Therefore, recognising similar interactions would be aenesting development.
When a peer starts an interaction it has never seen befa@,ld match it against all
those previously encountered, possibly finding one or mionéay. Then, it could use
the information contained in the corresponding modelsgiveid by some measure of
confidence in the similarity, to predict the content of thevimeteraction.

Extending ontologies

It was suggested as one of the applications of the predict8ection 3.5, but it was
not analysed in detailed. The assertions about ontologatations can be used to
drive the extension of the ontology when failures to find magp occur. When a
message arrives with a foreign tesn that does not correspond to any known téym
in the peer’s ontology, it can be possible to verify what wise ontological relations
in the model that the term should have most likely satisfiédhd same event takes

Chapter 7. Conclusion 126

a(customer,C) ::
null < wantSLR()
then
slr_model(Brand,Model) = a(camera_vendor,V)
«— brand(Brand) and model(Model)
or
compact(Brand,Model,Lens = a(camera_vendor,V)
< «— brand(Brand) and model(Model) and lens(Lens) >

Figure 7.1: Specific interaction model

place with a certain frequency, the system could suggesathew term, satisfying the
ontological relations in the model, should be added to thelogy.

Expressivity of ontological relations

At the moment only basic ontological relations are used leyathtological strategies:
subclassOf , superclassOf |, siblingOf , propertyOf , domainOf andrangeOf . An
interesting development could be to increase the expiigssif’the relations in the
assertions. However, the search strategy should be re\aséte moment, all the pos-
sible alternative relations are verified, but it would beaadtible if the set of relations
grows due to the increased expressivity. Some heuristiteinhoice of the alternative
relations to evaluate should be found.

Types of dialogues and predictor usefulness

The predictor helpsun-time (also calledon-line) matching: it helps matching terms
that arrive in messages during the execution of an intemactiNot all interactions
benefit from using the predictor: interactions where thetennof messages is strictly
defined before the run do not gain from the predictor. In thetaactions most of the
matching is off-line (for example, between constraints #re@lmethods in the plug in
components used in OpenKnowledge).

A specific interaction about buying a digital camera like ¢me shown in Figure
7.1 is strictly defined. This interaction has constraintsdbtaining resolution, type
of lens, brand, and so on. In a model like OpenKnowledge, @mado match at
subscription time these constraints with the methods ipbhg-in components locally

Chapter 7. Conclusion 127

a(customer,C) ::
ask(Product) = a(vendor,V) < want(Product)
then

a(c_refine,C)

a(c_refine,C)

inquire(PProperty) < a(v_refine,V)

then

definition(PProperty,Value) = a(v_refine,V)
«— define(PProperty,Value)

then

a(c_refine,C)
or

offer(0Offer) < a(v_refine,V)

Figure 7.2: Generic interaction model

installed in a peer, as described in Section 2.7. These reomist will be satisfied
by providing very specific information, possibly only nunoad values (resolution) or
elements from a list known a priori (available brands formega). Matching is mainly
offline, performed both for finding the proper interactiorrtm (I need to buy a digital
camera, not an analogue camera), and then to bridge theraiotstwith the peers’
capabilities (methods in the OpenKnowledge, as we have@est).

A more generic interaction about buying a product, like the shown in Figure
7.2, requires more run-time matching: constraints haveetmbre generic, and some
of the requests are defined at run-time. For example, whéiatts should be asked to
a customer depends on what is asked by the customer, andtdandefined a priori.
The offline matching is rather minimal, while most of the wéiks to be performed at
run-time.

In the first case, the interaction model designer enforcdgc semantics, in the
second case the community of users will define the semantiasihg it.

It would be interesting to study how different interactigresifications can influ-
ence the usefulness and the efficacy of the predictor.

Appendix A - Formalisms and

Conventions

Font use

e LCC code, LCC variable names and LCC constraints are writtegpewriter

font: Product, refine(Product,Refinement), ...

e The content of LCC variables, usually terms from one of thergeontologies,
are written in italics and surrounded by quotésccommaodation’, “hotel” ,...

Ontology mapping

e An ontology is represented bY; where the index refers to the origin of the
ontology:

— In the examplesQ;, is the agent’s ontology, whil®; is the ontology of
interaction run, formed by the union of the terms used by tiiferdnt
agents.

e W is the term to be mapped from a foreign ontology to a téyrm the local
ontology

Probability
e P(x) is the probability of the eveng

e P(X) is the probability distribution of a random variab¥e and corresponds to
the vector:
P(X) = (P(X=xX1),...,P(X=Xn))

128

Chapter 7. Conclusion 129

Sets

e A setis written with a Greek or Latin capitalised lett&t; M.

e The symbol|W| is used to indicate the cardinality &f: if W = {a b,c}, then
|W|is 3

Bibliography

[1] D. Aumueller, Hong-Hai Do, S. Massmann, and E. Rahm. 8ehand ontology
matching with coma++. II8IGMOD ’'05: Proceedings of the 2005 ACM SIG-
MOD international conference on Management of dgiages 906—908, New
York, NY, USA, 2005. ACM Press.

[2] F. Baader, D.L. McGuiness, D Nardi, and Patel-Schneifdezditors Description
Logic Handbook: Theory, implementation and applicatioBambridge Univer-
sity Press, 2002.

[3] A. Barker and B. Mann. Agent-based scientific workflow qmsition. InAstro-
nomical Data Analysis Software and Systems Yolume 351, pages 485-488,
2006.

[4] P. Besana. A framework for combining ontology and schematchers with
dempster-shafer. IRroceedings of the 1st International Workshop on Ontology
Matching (OM-2006)volume 225. CEUR-WS.org, 2006.

[5] P. Besana and D. Robertson. Probabilistic dialogue hsddedynamic ontology
mapping. InProceedings of the Second ISWC Workshop on UncertaintyoReas
ing for the Semantic Welolume 2. CEUR-WS.org, 2006.

[6] P. Besana and D. Robertson. How service choreographigtita reduce the
ontology mapping problem. Il 8WC20072007.

[7] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. ChampionF@rris, and
D. Orchard. Web services architecture. http://www.w3/6Ry2004/NOTE-ws-
arch-20040211/, February 2004. W3C web site.

[8] P. Bourque, R. Dupuis, A. Abran, J. W. Moore, and L. Tripphe guide to the
software engineering body of knowledgéEEE Software 16(6):35-44, 11-12
1999.

130

Bibliography 131

[9] M. Carbone, K. Honda, and N. Yoshida. Structured gloagpamming for com-
munication behaviour. http://www.pidtech.com/xwikitbriew/research/papers,
2006.

[10] P. R. Cohen and C. R. Perrault. Elements of a plan basatiof speech acts.
Cognitive Scienge3:177-212, 1979.

[11] P.R. Cohen and H.J. Levesque. Rational interactioh@gasis for communica-
tion. Intentions in Communicatigmpages 221-256, 1990.

[12] Li Ding, T. Finin, A. Joshi, R. Pan, R. Scott Cost, Y. Pey Reddivari, V.C.
Doshi, and J. Sachs. Proceedings of the thirteenth acmreoie on information
and knowledge management. Pnoceedings of the Thirteenth ACM Conference
on Information and Knowledge Managemezi04.

[13] Hong Hai Do and E. Rahm. Coma - a system for flexible cortiddm of schema
matching approaches. VLDB, pages 610-621, 2002.

[14] A. Doan, J. Madhavan, R. Dhamankarse, P. Domingos, arttbfevy. Learning
to match ontologies on the semantic wekhe VLDB Journal12(4):303-319,
2003.

[15] M. Ehrig and S. Staab. Qom - quick ontology mappingniternational Semantic
Web Conferenggpages 683—697, 2004.

[16] J. Euzenat and P. Shvaikontology matchingSpringer, Heidelberg (DE), 2007.

[17] J. Euzenat, H. Stuckenschmidt, and M. Yatskevitchrobhition to the ontology
alignment evaluation 2005. IAroceeding of Intergrating Ontologies workshop
at K-CAPO 20052005.

[18] F.McNeill-P. Shvaiko J.Pane F. Giunchiglia, M.Yatgisdh and P.Besana. Ap-
proximate structure preserving semantic matching=eGAI 2008 2008.

[19] M. R. Genesereth and R. E. Fikes. Knowledge interchdoigeat, version 3.0
reference manual. Technical report, Computer Science frapat, Stanford
University, 1992.

[20] F. Giunchiglia. Contextual reasoning. Technical neptRST, Istituto per la
Ricerca Scientifica e Tecnologica, 1992.

Bibliography 132

[21] F. Giunchiglia, F. McNeill, M. Yatskevich, J. Pane, Reddina, and P. Shvaiko.
Approximate structure preserving semantic matchingOimthe Move to Mean-
ingful Internet Systems: OTM 2008ages 1217-1234, 2008.

[22] F. Giunchiglia, F. McNeill, M. Yatskevich, C. Sierrana J. Sabater. Evaluating
good answers in open knowledge. Technical report, Openkauye, 2007.

[23] F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-mateim algorithm and an
implementation of semantic match. Rroceeding of the European Semantic
Web Symposiunpages 61-75, 2004.

[24] F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efént semantic matching.
In ESWC’05 pages 272-289, 2005.

[25] F. Giunchiglia, M. Yatskevich, and F. McNeill. Structupreserving semantic
matching. InProceedings of the ISWC+ASWC International workshop on On-
tology Matching (OM)Busan (KR), 2007.

[26] P. Grenon and B. Smith. Snap and span: Towards dynanaitasmntology.
Spatial cognition and computatipd(1):69-104, 2004.

[27] T. R. Gruber. A translation approach to portable ongygispecificationsKnowl-
edge Acquisition5(2):199-220, 1993.

[28] T. R. Gruber and G. R. Olsen. An ontology for engineenmathematics. IKR,
pages 258—-269, 1994.

[29] M. Gruninger and M. Fox. The logic of enterprise modwejli 1995.

[30] Li Guo, D. Robertson, and J. Chen-Burger. A novel apphofor enacting the
distributed business workflows using bpel4ws on the mgérd platform. In
IEEE Conference on E-Business Engineerpages 657-664, 2005.

[31] A. Hameed, A. Preece, and D. Sleemddntology Reconciliationpages 231—
250. Springer Verlag, Germany, 02 2003.

[32] M.F. Hassan, D. Robertson, and C. Walton. Addressimgtaint failure in agent
interaction protocol. IProceedings of the 8th Pacific-Rim International Work-
shop on Multi-Agents (PRIMA '052005.

Bibliography 133

[33] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: gtate of the artThe
Knowledge Engineering Reviet8(1):1-31, 2003.

[34] N. Kavantzas, D. Burdett, G. Ritzinge, T. Fletcher, Yaftn, and
C. Barreto. Web services choreography description languagysion 1.0.
http://www.w3.0rg/TR/2005/CR-ws-cdl-10-20051109/ Wémber 2005.

[35] D. Lambert and D. Robertson. Matchmaking multi-partieractions using his-
torical performance data. IRroceedings of the Fourth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (8AMA pages
611-617, 2005.

[36] D. Lenat and R. Guha.Building Large Knowledge-Based SystemAddison
Wesley, 1990.

[37] C. D. Manning and H. Schutz&oundations of statistical natural language pro-
cessing MIT Press, 1999.

[38] J. McGinnis and D. Robertson. Realizing agent dialeguigh distributed proto-
cols. 2004.

[39] F. McNeill, A. Bundy, and M. Schorlemmer. Dynamic ordagy refinement. The
University of Edinburgh, 2003.

[40] G. A. Miller. Wordnet: a lexical database for engli€fommun. ACM38(11):39—
41, 1995.

[41] I. Niles and A. Pease. Towards a standard upper ontolodyOIS '01: Proceed-
ings of the international conference on Formal Ontologyrformation Systems
pages 2-9, New York, NY, USA, 2001. ACM Press.

[42] I. Niles and A. Pease. Towards a standard upper ontoloages 2—9, 2001.

[43] N. Noy and M. Klein. Ontology evolution: Not the same afiema evolution.
Knowledge and Information Systerns428—440, 2004.

[44] S. Nuno and J. Rocha. Mafra - an ontology mapping framkviar the semantic
web. InProc. of the 13th European Conf. on Knowled#/899.

[45] N. Osman, D. Robertson, and C. Walton. Run-time modekkimg of inter-
action and deontic models for multi-agent systemsPinceedings of the Third

Bibliography 134

European Workshop on Multi-Agent Systepages 248-259, Brussels, Belgium,
December 2005.

[46] M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Seinanatching of web
services capabilities. IBemantic Web - ISWC2002002.

[47] J. Pasley. How bpel and soa are changing web servicedajauent. Internet
Computing, IEEE9, issue 3:60— 67, May-June 2005.

[48] F. Puhlmann and M. Weske. Using the pi-calculus for falimng workflow
patterns. Ir8rd International Conference, BPM 200%0lume 3649/2005, pages
153-168. Springer, 2005.

[49] E. Rahmand P. A. Bernstein. A survey of approaches tomaatic schema match-
ing. VLDB Journal: Very Large Data Basg$0(4):334—-350, 2001.

[50] N. Reithinger, R. Engel, M. Kipp, and M. Klesen. Prettigtdialogue acts for a
speech-to-speech translation systemPiac. ICSLP '96 volume 2, pages 654—
657, 1996.

[51] D. Robertson. A lightweight coordination calculus fagent systems. IDeclar-
ative Agent Languages and Technologsges 183-197, 2004.

[52] D. Robertson. Multi-agent coordination as distriltitegic programming. In
International Conference on Logic Programmiji@ant-Malo, France, 2004.

[53] D Robertson, C Walton, A Barker, P Besana, Y Chen-Byrgétassan, D Lam-
bert, G Li, J McGinnis, N Osman, A Bundy, F McNeill, F van Halemg
C Sierra, and Giunchiglia F. Models of interaction as a gcbng for peer to
peer knowledge sharing\dvances in Web Semantics I: Ontologies, Web Services
and Applied Semantic We#891/2009:81-129, 2009.

[54] J.R. Searle.Speech acts: an essay in the philosophy of langudg@mbridge
University Press, 1969.

[55] M. Shaw and B. Gaines. Comparing conceptual structiesisensus, conflict,
correspondence and contrast, 1989.

[56] P. Shvaiko and J. Euzenat. A survey of schema-basedcmgtapproacheslour-
nal on Data Semanti¢gl:146-171, 2005.

Bibliography 135

[57] C. Sierra, R.J. Aguilar, P. Noriega, J. Arcos, and M.dvat Engineering multi-
agent systems as electronic institutiortsuropean Journal for the Informatics
Professional4, 2004.

[58] M. Smith, C. Welty, and D. McGuinness. Owl web ontologydg, raccomanda-
tion. web, February 2004.

[59] R. Studer, V. Benjamins, and D Fensel. Knowledge ereging: Principles and
methods Data and Knowledge Engineering5:161-197, 1998.

[60] Willis J. Tilley CB. Unified medical language system lass National Library of
Medicine, 2004. course presentation.

[61] M. Uschold, M. King, S. Moralee, and Y. Zorgios. The eptése ontology.
Knowledge Engineering Reviet3, 1998.

[62] W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: Yetather workflow
languageInformation System80(4):245-275, 2005.

[63] R. van Eijk, F. de Boer, W. van de Hoek, and J.J. Meyer. @madically gener-
ated ontology translators in agent communicatitrternation Journal of Intel-
lignet Systemsl6:587—607, 2001.

[64] W.M.P. var der Aalst, A.H.M. ter Hofstede, B. Kiepuszkiy and A.P. Barros.
Workflow patterns. Technical report, http://www.workfloatperns.com/, 2001.

[65] P.R. S. Visser, D. M. Jones, T. J. M. Bench-Capon, and.R. $have. An anal-
ysis of ontological mismatches: Heterogeneity versugapeerability. InAAAI
1997 Spring Symposium on Ontological EngineerBiginford, USA, 1997.

[66] G. Wiederhold. Mediators in the architecture of futiméormation systems. In
Michael N. Huhns and Munindar P. Singh, editdReadings in Agenigages
185-196. Morgan Kaufmann, San Francisco, CA, USA, 1997.

[67] M. Wooldridge. An Introduction to Multiagent Systemdohn Wiley and Sons,
2002.

[68] R. Yager. Advances in the Dempster-Shafer Theory of Eviderkmhn Wiley,
New York, 1994.

