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Abstract

Software agents interact to solve tasks, the details of which need to be described

in a language understandable by all the actors involved. Ontologies provide a for-

malism for defining both the domain of the task and the terminology used to describe

it. However, finding a shared ontology has proved difficult: different institutions and

developers have different needs and formalise them in different ontologies.

In a closed environment it is possible to force all the participants to share the

same ontology, while in open and distributed environments ontology mapping can pro-

vide interoperability between heterogeneous interactingactors. However, conventional

mapping systems focus on acquiring static information, andon mapping whole ontolo-

gies, which is infeasible in open systems.

This thesis shows a different approach to the problem of heterogeneity. It starts

from the intuitive idea that when similar situations arise,similar interactions are per-

formed. If the interactions between actors are specified in formal scripts, shared by

all the participants, then when the same situation arises, the same script is used. The

main hypothesis that this thesis aims to demonstrate is thatby analysing different runs

of these scripts it is possible to create a statistical modelof the interactions, that re-

flect the frequency of terms in messages and of ontological relations between terms

in different messages. The model is then used during a run of aknown interaction to

compute the probability distribution for terms in receivedmessages. The probability

distribution provides additional information, contextual to the interaction, that can be

used by a traditional ontology matcher in order to improve efficiency, by reducing the

comparisons to the most likely ones given the context, and possibly both recall and

precision, in particular helping disambiguation.

The ability to create a model that reflects real phenomena in this sort of environ-

ment is evaluated by analysing the quality of the predictions, in particular verifying

how various features of the interactions, such as their non-stationarity, affect the pre-

dictions. The actual improvements to a matcher we developedare also evaluated. The

overall results are very promising, as using the predictor can lower the overall compu-

tation time for matching by ten times, while maintaining or in some cases improving

recall and precision.
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Chapter 1

Introduction

One of the aims of information technology is to automate repetitive or time-consuming

tasks, such as numerical computations or data storage and retrieval. When tasks be-

come more complex they often require the interaction between different actors. An in-

teraction involves exchange of information between the actors, obtained by exchanging

messages. Messages convey meanings encoded into signs for transmission: in order to

understand a message, a receiver should be able to map the signs in the messages to

meanings aligned with those intended by the transmitter.

Therefore, actors should agree on the signs, or terms, used to describe the domain

of the interaction: for example, if an agent wants to buy a particular product from

a seller, it must be able to specify the properties of the product unambiguously. In

computer science, ontologies are used with this goal. An ontology is intended as the

formal conceptualisation of a domain [27], expressed in a machine processable lan-

guage, and it is usually the result of an agreement of expertsof the domain. Sharing

the same ontology is assumed in most of the web service composition frameworks and

it is enforced in a multi-agent interaction framework such as Electronic Institutions

[57].

A shared ontology can be a strong assumption in an open environment, as agents

may come from different backgrounds and have different ontologies, designed for their

specific needs. In this kind of environment, communication implies translation. The

usual approach is to create an alignment between the ontologies using an ontology

matcher [16], creating a sort of bilingual dictionary. Depending on the approach,

matchers may compare labels or ontology structures, or may use external dictionar-

ies like WordNet to prove similarity between nodes in hierarchies, or may learn how

instances are classified to find similarities between concepts, or combine information

11



Chapter 1. Introduction 12

from different sources and so on. In open systems, the identities of the participants in

interactions may be unknown until the interaction is started, and therefore matching in

advance may be unfeasible. Matching during the interactions may be computationally

difficult, as many interactions with different actors can take place simultaneously.

As we will see in Chapter 2 and then in more detail in Chapter 6,most available

ontology mapping systems focus on acquiringstatic, a priori information about ontol-

ogy correspondences, and aim at the widest possible ontological commitment between

the ontologies. However, open systems need to minimise the ontological commitment

required by participating actors. This can be obtained reducing the portions of ontolo-

gies that need to be match to those that are required for the interaction. In order to

do so, the work presented in this thesis takes a different approach to the problem of

semantic heterogeneity, and focusses on the messages exchanged between the actors

of an interaction, with the aim of predicting their content.The predictions can then be

used by an ontology matcher to improve the matching process.

This approach moves from the intuitive idea that interactions follow conventions

and patterns, and these patterns are repeated when similar situations arise. For exam-

ple, the brief talk between a customer and a waiter at the counter of a cafe will always

be similar: a “one coffee, please” request can be followed bya “black or white?” or

“espresso?” offer, but unlikely by a “It’s 2 o’clock” answer. Being in the cafe provides

the context that bounds the possible set of interactions. This is a common experience,

and the context in which an interaction takes place helps also when abroad, allowing

us to guess the likely requests in specific occasions, even though they are pronounced

in an unknown language.

Extending the example, we can imagine that we possess an “oracle” that can tell if

words in two languages have the same meaning. The oracle is not a dictionary, where

we can look up the direct translation of a word, but it can tellif a word in a foreign

language corresponds to a specific word in our language. Without any knowledge of

the context, in order to translate the request from the waiter we have to list all the

words in our language until we encounter the right one. If, onthe other hand, we know

the context, we can select a much smaller set of terms that areusually used in such

conversations, reducing the time it takes to translate.

The first and fundamental hypothesis that this thesis aims toverify is that the his-

tory of similar interactions between actors, together withthe state of a running inter-

action, can be used to predict the content of messages in the current interaction. One

of the first questions to answer is what is meant by “similar interactions”. If every
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time a coordinated activity is required actors have to plan and create their interactions,

as described for example in the BDI model presented in Chapter 6, recognising that

one is in the same interaction becomes a difficult task. The participating actors are

potentially different in every interaction, and their specific plans, that is the sequences

of messages that they expect and send, may be different everytime. Therefore, the

requirement that I make is that actors use shared scripts to describe the interactions

they are performing. The scripts define the interactions in their entirety, so that all par-

ticipants follow the same protocol. Such scripts are called“choreographies”, as their

perspective is global and do not focus on the behaviour of a single participant. When

the same situation arises, the actors choose the same choreography. The choreography

forms the kernel of the interaction context and provides theboundaries of what to ex-

pect in the exchanged messages: it is a stable reference framework throughout all the

repeated runs.

If the main hypothesis is correct and it is therefore possible to predict the content of

messages given the history of choreography runs and the state of a current interaction,

then another hypothesis follows, whose verification allowsus to tackle the problem

of semantic heterogeneity between agents. The idea is that,once we have reliable

predictions for the content of the exchanged messages, the predictions can be used to

improve dynamic ontology matching by focussing only on the portions of ontologies

that are relevant to a specific interaction between actors instead of trying to match

whole ontologies out of context. By excluding unrelated portions of ontologies, the use

of predictions should improve efficiency, while maintaining or improving the quality,

expressed in the standard measures of precision and recall,of the alignment.

To prove the hypotheses, I have created a framework based on choreographies, and

I have represented the predictions of the content of a message as a probability distri-

butions over all the possible terms in the actor’s ontology.The predictions are passed

to an ontology matcher, which uses them to improve its results. The model of the in-

teraction content is created and updated by feeding back into the predictor the result

of the matching process. Figure 1.1 shows the feed-back loopthat forms the founda-

tion of the predictor architecture. While the idea of agentssharing choregraphies for

their interactions was initially a leap of faith, the OpenKnowledge1 project provided a

grounded example of such an architecture.

If all actors use the same ontology, it is possible to verify if the main hypothesis

is correct: we can compare directly the content of messages with predictions. If the

1www.openk.org
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Figure 1.1: Predictor model

actors use different ontologies, the predictions are passed to a matcher, and if the corre-

spondences between the ontologies are known in advance, it is possible to compare the

results of the matcher, in terms of precision and recall, andevaluate the improvement

brought by the predictor against the baseline provided by the ontology matcher alone.

1.1 Objectives

As we have seen above, distributed systems can be closed, andforce all participants to

share the same ontology, or open, and allow the participantsto keep their ontology. In

closed systems the participants are required to maximise their ontological commitment

towards the shared ontology. By contrast, open systems can work only if they require

the minimal commitment from the participants, reducing therefore the adaptation that

participants need to do.

To summarise, the two key goals of this thesis are:

1. improve the efficiency of an arbitrary ontology matcher,

2. maintain or improve the quality of the matcher’s results

It does so by focussing on matching only the terms that are related to the specific

context of the interaction, possibly improving the qualityof the matching. In other

words, the thesis aims at demonstrating that it is possible to use an arbitrary ontol-

ogy matcher to compare only the terms predicted to be more likely according to the

statistical model of the interaction and maintain or improve the quality of matching,

expressed in terms of precision and recall, that would be obtained comparing all the

agent’s ontology. By precision we mean the number of correctcorrespondences, and

by recall we mean the number of found correspondences out of all the existing ones.

Because only a small portion of the ontology is compared every time a message is
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received, the matching process should be more efficient. Theoverall result is tore-

duce the commitmentrequired for interactions between peers, thereby facilitating the

adoption of really open system.

As we will see in the evaluation (Chapter 5), the predictor provides reliable sug-

gestions after a relatively few repeated interactions. These suggestions, once fed to an

ontology matcher, can reduce the overall time of matching byten times, while main-

taining, and in some cases improving, recall and precision.

1.2 Contributions to knowledge

This thesis shows how the use of choreographies to coordinate interactions between

agents, under the reasonable assumption that the same choreography is used when

similar situations arise, can be exploited to create a statistical model of the exchanged

messages in the interactions. In a sense, the statistical model is a context for agent

interactions, that is created and updated analysing the history of repeated runs of the

same choreography.

The agents need to recognise when they are in an interaction that has been previ-

ously encountered. Not all coordinations models for agentsare fit for this purpose:

only models that consider interactions as first-class objects allow this. This thesis

shows how choreographies are be particularly suitable because they define interactions

in their entirety, covering equally all participants.

Within a choreography, the statistical model can be used to predict the likely con-

tent of the messages, and the predictions can be used to improve the efficiency of an

ontology matcher, maintaining or improving the quality of the computed correspon-

dences.

1.3 Applications

The open environment presented in the introduction is the founding assumption of the

OpenKnowledge2 project, that will be described in more detail in Chapter 2. Open-

Knowledge provides the framework for the creation of peer-to-peer communities, that

is networks of peer nodes, each playing both as server and client to every other node in

the network. In OpenKnowledge, peers share choreographies, called interaction mod-

els, that specify how they have to interact in order to perform various distributed tasks.

2http://www.openk.org
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The peers do not need to share an ontology, and a lot of effort is focussed on handling

their heterogeneity. There are two situations in which matching between semantically

heterogeneous elements are required: first, peers have to match the shared interaction

models to their capabilities, and then, during the interaction, they have to translate the

content of the received messages to their ontology. The workpresented in this the-

sis tackles the second situation, improving the efficiency of peers and their ability to

handle heterogeneity.

1.4 Thesis structure

Chapter 2 - Background In this chapter I present the background concepts relevant

to this work: first I introduce the theory behind agent interactions and the formal-

ism used to represent them, then I provide an introduction toontologies, and a quick

overview of ontology matching. At the end of the chapter, I briefly present the Open-

Knowledge project, as an example of implementation of most of the ideas described in

Chapter 2.

Chapter 3 - Assumptions and Motivations In this chapter I introduce the theoreti-

cal concepts: I describe and justify the assumptions that underpin the work, grounding

them in the approach chosen for defining the interaction. Theaims of the work (im-

proving efficiency, recall, precision in ontology mapping and guiding the extension of

ontologies) are also detailed.

Chapter 4 - Modelling context In this chapter, I first describe how the statistical

model is built, interaction after interaction, and then howthe model is used to predict

the content of messages in new interactions. I also provide an example of the process

of model creation and of computing the probability distribution for a message.

Chapter 5 - Evaluation In this chapter I present the evaluation of the system, dis-

cussing first the approach used for testing and then the results. The evaluation at first

focuses on the ability of the predictor in providing a small set of suggestions that con-

tains the correct correspondences with arbitrary probability, and then on the utility of

the computed distribution in improving the performance of an ontology matcher. I

also discuss how the utility of the predictor depends on the type of interactions: some

interactions can benefit more than others.
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Chapter 6 - Related work contains a more detailed literature overview of the relevant

concepts introduced in Chapter 2. I first describe the different approaches to agent

communication and service integration, and then I review some of the main approaches

used in ontology matching.

Chapter 7 - Conclusion In this chapter I summarise the work, and present possible

further work based on the current results.



Chapter 2

Background

2.1 Introduction

The goal of this work is to ease the communication between heterogeneous agents

in open systems. The aim of this chapter is to introduce the main concepts in the

domain and to show their grounding in the OpenKnowledge project. It is not a detailed

overview: Chapter 6 is already dedicated to the literature review and presents the main

stances of the research community on the topics introduced here.

Communication is about exchanging information, and requires the interacting ac-

tors to share a common set of signs and meanings. This work is concerned with the

communication between software agents. What is meant with the term agent is pre-

sented in Section 2.3. Different approaches have been studied for multi-agents interac-

tions: Section 2.4 in this chapter introduces the approach followed in this work, based

on the concept of distributed workflows, which is at the basisof the OpenKnowledge

project. A more in-depth overview of the various approachesis presented in Chapter

6.

Assuming that all agents share the same set of signs and meanings - a basic re-

quirement for communication - has proved hard in open multi-agents systems. Ontolo-

gies, described in Section 2.5, are the formalisation of themeanings and signs used by

agents. Heterogeneous agents may not share the same ontology: ontology mapping

systems attempt to bridge different ontologies to allow interactions. Section 2.6 intro-

duces the ideas and the problems related to ontology mapping. Section 6.4 in Chapter

6 provides a more detailed analysis of the different approaches in the literature.

Finally, Section 2.7 introduces the OpenKnowledge project, an implemented frame-

work that deals with the issues presented in this chapter.

18
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Figure 2.1: Activity diagram for the scenario

2.2 Example scenario

While the interaction framework used for this thesis allowsto represent and run com-

plex interactions involving any number of peers, a simpler kind of interaction is pre-

sented as an example scenario.

The scenario used is a subset of the classiccustomer-vendorscenario. At the start

of such interactions, the customer asks the vendor for a product or service he would

like to buy. However, as it is often the case, the customer mayuse a generic term, that

can be interpreted in different ways. Therefore the vendor presents to the customer a

selection of alternatives consistent with the request. Thecustomer then chooses the

option he prefers, and the interaction continues, for example to the payment, or to the

definition of further details. The activity diagram in Figure 2.1 shows the flow of the

messages between the customer and the vendor.

The interaction is generic and can be used in the purchase of different sorts of

products or services, as Figures 2.7 and 2.8 show. However, the example followed

throughout this thesis is relative to the booking of an accommodation for a conference,

as shown in Figure 2.2. The participants are the customer anda travel agent: the

customer starts by asking for a generic accommodation and the travel agent proposes

different accommodation options, one of which is then selected by the customer.
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Figure 2.2: Example scenario

2.3 Agents and Peers

There is no shared and universally accepted definition of what an agent is. Wooldridge

[67] defines an agent as:

a computer system that issituatedin someenvironment, and that is capa-
ble of autonomous actionin this environment in order to meet its design
objectives.

For the perspective used in this thesis, the autonomy of the agents involved in an in-

teraction is not relevant, as the focus is on communication:in our example, the agent

in the customer role may be a simple application used by a human user to contact the

remote server of a travel agency, or a smart agent, instructed by a user to search for the

best accommodation and entitled to spend real money. We use agent as synonym of

actor or participant in an interaction.

In particular, as we have seen in the introduction and as we will explain more in

detail in the next section, the interactions between agentsare specified by choreogra-

phies that assign to all the participants the same relevance: therefore the termpeerwill

also be used for the participants. In fact, in the OpenKnowledge project participants

are peers in a peer-to-peer network.

2.4 Interactions

Many activities require interaction between different actors: in the example scenario,

in order to book an accommodation an inquirer needs to contact a travel agency (or

more than one) or directly a number of hotels.

In the simplest case, communication between two agents is a message transmitted

from a sender to a receiver. According to speech act theory, amessage is a performative
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act that changes the state of the world [54]. The classical example used to explain this

concept is the “I do” utterance pronounced in front of a registrar that causes the speaker

to change his or her marital status. For example, a message sent from agentsi to agentj

to informaboutφ will likely change the beliefs ofj, adding the belief aboutφ . A more

in-depth description of this “mentalistic” approach to communication can be found in

Section 6.2. In our example, the following message, sent from the customer agent to

the agent representing hotel Y:

inform(booking, 11 Nov 2008, 15 Nov 2008, Mr Smith, single)

should make the hotel agent believe that a single room must bereserved for the cus-

tomer from the 11th to the 15th of November. Belief does not need to be conceived

as the logical model described in the BDI architecture [11]:for belief we mean any

internal representation of the information inside the agent. In this specific case of the

example scenario, it can be a record in the database of the hotel system.

Usually interactions are more complex than single messages. The customer may

first check the availability of offers, or it may want to first try single and then dou-

ble rooms. Moreover, the booking may require a deposit or a credit card number. Or

the hotel may inquire about other issues (breakfast, etc) related to the booking. This

increased complexity, consisting in exchanges of messages, follows rules and conven-

tions: as the conversation unfolds, the content of new messages is bound by the previ-

ously exchanged messages. A message failing to follow theserules would surprise the

hearer as being off topic or even incomprehensible.

2.4.1 Dialogues and Interaction Models

Dialogues between software agents are, at least at the moment, simpler and more re-

stricted than those between humans: they are carried out in order to reach a goal (buy-

ing a product, booking a flight, querying a price, etc.) and there is no need to care about

digressions, unless relevant to the task. Therefore, theirgrammars can be simpler than

those required for human interactions.

The rules and conventions that an interaction follows can bestated as sequences

of messages hard-coded in the involved agents. They may be used to express pre-

conditions and post-conditions for each each utterance: speech acts are considered

actions and are combined into plans [11]. They can be defined in workflows that are

followed as a script by the agents.
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These approaches offer different trade-offs between flexibility and efficiency: em-

bedding the interactions in the agents is the most inflexiblebut possibly very efficient.

Planning offers the maximum flexibility but may require hefty computation at every

interaction, and conditions can be difficult to verify. However, interactions are often

repeated, so planning them every time is a waste of resources: workflows represent a

good compromise and are currently the dominant solution.

2.4.2 Choreography and Orchestration

Workflows can either be conceived as centralised or distributed. In a centralised work-

flow, expressed through an orchestration language like BPEL[47] or YAWL [62], a

single process executes the activities, and may call the other partners that are usu-

ally passive. In BPEL, calls are usually grounded to Web Service calls. In a distributed

workflow, expressed through a choreography language like WS-CDL or LCC (see next

section), the activities are executed by the various partners that communicate via mes-

sages.

In both approaches, a workflow describes an abstract set of activities and exchanged

messages, not yet instantiated to particular values: it just defines where values come

from, and where they go. For example, the workflow for bookinga room starts expect-

ing an input from the customer, who needs to specify dates, places, and preferences.

The data are then forwarded to the hotel partner, that uses them as input for its local

processing. The output of the processing, for example the request for further refine-

ment, is sent back to the customer agent, who will use it as newinput for further

processing.

Workflows normally do not describe how the activities (like requesting input, or

processing data) are performed: these are normally delegated via calls, either to the

local agent or to a remote one via a web service. Agents answering to invocations can

be set at design time, or can be found at execution time, exploiting some brokering

mechanism. These calls may just verify a condition on some set of data, or introduce

new data into the workflow: these calls aresourcesand introduce the problem of shared

semantics of the data.

A source introduces terms according to its local semantics:these terms may then

be used by the other partners in the interaction. This issue will be dealt in Section 2.5.

Before proceeding to the problem of semantics, we first definethe general requirements

that a workflows language must satisfy in order to be used by the predictor and then
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we describe the language that has been used in the implementation.

2.4.3 Workflow Language Features

A protocol can be modelled with a Finite State Machine (FSM) for each participant

where the transitions consist of received messages or in theBoolean results of con-

straints (success or failure). The FSMs are defined by the entry-role for the participant

peer and contain all the roles that the peer can take during aninteraction.

During an interaction, the peer moves in the FSM, and createsa trace of the inter-

action. The variables in the trace are named and numbered to be unique. As interaction

models can be recursive, the variables are tagged with theirappearance in the run trace

(in the example, the variableProposal is used twice, so there will be two random

variables namedProposal1 andProposal2).

2.4.4 Lightweight Coordination Calculus

The Lightweight Coordination Calculus (LCC)[51, 52] is a choreography language

based onπ-calculus and can be used as a compact way of representing distributed

workflows. Most workflow languages can be formalised using process calculi (such as

π-calculus [48]). It is executable and it is adapted to peer-to-peer workflows. In the

original version, interaction models are declarative scripts, circulated with messages.

Agents execute the interaction models they receive by applying rewrite rulesto expand

the state and find the next move. Figure 2.3 defines the syntax of LCC. A full, formal

description of a computation method for LCC is described in [53]. A summary of the

rewrite rules is presented in Figure 2.4.

An interaction model in LCC is a set of clauses, each of which defines how a role

in the interaction must be performed. Roles are described bytheir type and by an iden-

tifier for the individual peer undertaking that role. Participants in an interaction take

their entry-roleand follow the unfolding of the clause specified using a combinations

of the sequence operator (‘then’) or choice operator (‘or’) to connect messages and

changes of role. Messages are either outgoing to (‘⇒’) or incoming from (‘⇐’) an-

other participant in a given role. A participant can take, during an interaction, more

roles and can recursively take the same role (for example when processing a list). A

message input/output or a change of role is controlled by constraints defined using the

normal logical operators for conjunction and disjunction.There is no commitment to

the method used to solve constraints, so different participants might operate different
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Model := {Clause, . . .}

Clause := Role:: Def

Role := a(Type, Id)

Def := Role|Message|Def thenDef| Def orDef

Message := M⇒ Role|M⇒ Role←C |M⇐ Role|C←M⇐ Role

C := Constant| P(Term, . . .) | ¬C |C∧C |C∨C

Type := Term

Id := Constant|Variable

M := Term

Term := Constant|Variable| P(Term, . . .)

Constant := lower case character sequence or number

Variable := upper case character sequence or number

Figure 2.3: LCC syntax

constraint solvers (including human intervention).

Figure 2.5 shows the initial part of an interaction model defining the interaction

between a customer and a vendor described in Section 2.2: in this LCC fragment, the

customer asks for a product and the supplier verifies if the request must be refined.

If this is the case, the supplier will propose to the customeranother, more specific,

product. The customer, in turn, will analyse the proposal and see if it fits its needs.

Interaction models are abstract descriptions of the interactions: they are then instanti-

ated in real interactions. For example, the described interaction model can be used to

specify the type of accommodation sought by a customer (Figure 2.7) or to specify the

type of car a customer needs to rent (Figure 2.8).

A message in an interaction is a tuple, whose elements conveythe content of a

single communication act:

mi = 〈s1, ...,sn〉

As we have seen above, a termsi is introduced by some source: in LCC, constraints

are sources. A terms is introduced by the agent solving the constraint via unification

with its own knowledge base. In the example shown in Figure 2.7, “accommodation”

is introduced by the customer, unifying the constraintwant(Product) with its local

knowledge to obtainwant( “accommodation”) .
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R := B RiMiMoS O
−−−−−−−−−→

A :: E i f B RMiMoS O
−−−−−−−−→

E

A1orA2 RiMiMoS O
−−−−−−−−→

E i f ¬closed(A2) ∧

A1 RiMiMoS O
−−−−−−−−→

E

A1orA2 RiMiMoS O
−−−−−−−−→

E i f ¬closed(A1) ∧

A2RiMiMoS O
−−−−−−−−→

E

A1 thenA2 RiMiMoS O
−−−−−−−−→

E thenA2 i f A1 RiMiMoS O
−−−−−−−−→

E

A1 thenA2 RiMiMoS O
−−−−−−−−→

A1 thenE i f closed(A1) ∧

A2 RiMiMoS O
−−−−−−−−→

E

C ← M⇐ A RiMiMi−{m(Ri,M⇐ A)}S /0
−−−−−−−−−−−−−−−−−−−−−−→

c(M⇐ A) i f m(Ri,M⇐ A) ∈Mi ∧

satis f y(C)

M⇒ A ←C RiMiMoS {m(Ri ,M⇐ A)}
−−−−−−−−−−−−−−−−−−−→

c(M⇒ A) i f satis f ied(S ,C)

null ← C RiMiMoS /0
−−−−−−−−→

c(null) i f satis f ied(S ,C)

a(R, I) ← C RiMiMoS /0
−−−−−−−−→

a(R, I) :: B i f clause(S ,a(R, I) :: B) ∧

satis f ied(S ,C)

An interaction model term is decided to be closed as follows:

closed(c(X))

closed(AthenB) ← closed(A) ∧ closed(B)

closed(X :: D) ← closed(D)

(2.1)

satis f ied(S ,C) is true if constraintC is satisfiable given the peer’s current state of

knowledge.

clause(S ,X) is true if clauseX appears in the interaction modelS , as defined in

Figure 2.3.

Figure 2.4: Rewrite rules for expansion of an interaction model clause
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Figure 2.5: Request refinement in LCC

Previous work on LCC includes the generation at run-time of interaction models

[38], the creation of successful teams for interactions [35], the distributed relaxation

of constraints [32] and the formal verification of properties of the interaction models

[45].

LCC has been used in applications such as business process enactment [30] and

e-science service integration [3]. In particular, it has been chosen as the specification

language used for defining interaction models in OpenKnowledge, as we will see more

in detail in Section 2.7.

Compared to other languages like BPEL or YAWL, LCC is surely more compact,

even though it does not allow the same level of specifications. Some of these limita-

tions have been overcome in OpenKnowledge, extending LCC with annotations. Any

element in an interaction model can be annotated: it is possible, for example, to an-

notate a variable in a role, specifying its semantic type. However, the main difference

with the other orchestration languages is that it is possible to express the behaviour of

all the participants. A YAWL or BPEL workflow defines the behaviour and keeps the

state of only one participant: the other are just passive components that are invoked,

and are unaware of being involved in a run of a workflow. More complex interactions,

such as auctions where behaviour of all participants shouldbe defined, are thus more

difficult to represent in languages YAWL or BPEL, based on a centralised paradigm.
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a(customer)

want(P)

send: ask(P)

 success

a(customer_refine)

 change role

acceptable(P,Proposal)

 receive: offer(Proposal)

send: reject

 fail

send: accept

 success

a(supplier)

refine(P,LstRef)

 receive: ask(P)

a(supplier_refine)

 success 

LR=[Proposal|Tail]

send: offer(Proposal)

 success

 receive: reject

 receive: accept

Figure 2.6: Finite State Machine for the entry role customer and supplier

2.4.5 Matchmaking

Constraints in LCC, or service invocations in other workflowlanguages, are performed

by some agent, that must be identified at some stage of the process.

In many orchestration-based languages like BPEL the participants are defined at

design time. In more flexible systems, agents and interactions can be composed at

run-time. Flexibility is reached through search: given an interaction, agents can be

found or, given a group of agents, an interaction can be selected. Adaptors are often

required in open systems, where agents and interactions do not share the same repre-

sentation. For example, languages like BPEL or YAWL providea set of operations

(based on XPath and XSLT) for transforming the data before invoking services which

use different formats.

In simple client/server architectures, a client will search for an appropriate server

in order to perform a task (like booking a room). The query will return the possi-

ble servers, each with its specific interaction model that the client will follow. Other

architectures, such as OpenKnowledge, decouple the interaction models from the par-

ticipants: an agent may first look for an interaction fitting its needs, and then search

for other participants willing to take part in it.
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Figure 2.7: Run of the interaction model in Figure 2.5 for refining an accom-

modation request

Figure 2.8: Runs of the interaction model in Figure 2.5 for refining a car rental

request

2.5 Ontologies

Interactions participants have their knowledge and skills: they provide points of ac-

cess to information repositories, they provide services that process information and

so on. Ontologiesare used to name and define the elements in the knowledge bases.

The termontology(from the Greek words meaningbeingandscience, study, theory)

comes originally from philosophy, where it means the study of what exists, and forms

the main subject of metaphysics. In Artificial Intelligencewhat exists is what can be

represented. According to Gruber:

An ontology is an explicit specification of a conceptualization.[27]
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This definition was then extended to include the idea that theconceptualisation should

be shared among different parties:

An ontology is a formal, explicit specification of a shared conceptualiza-
tion. [59]

Ontologies are often compared to database schemas, with which they share some simi-

larities: they both provide a vocabulary of terms that describe a domain of interest and

constrain the meaning of the terms used in the it. However, a database schema does not

provide an explicit semantics for their data, while ontologies are logical systems, that

obey to some formal semantics: we can interpret the ontological definitions as a set of

logical axioms [43]. Ontologies are often distinguished bytheir level of generality:

• Domain ontologies: they capture the knowledge of a specific domain. Examples

of domain ontologies are:

– the Engineering Mathematics ontology [28],

– the Enterprise Ontology [61] and the TOVE ontology [29] for representing

business models,

– the Software Engineering Body of Knowledge (SWEBOK1) [8],

– the Unified Medical Language System (UMLS2) [60],

– the GeneOntology, providing a “controlled vocabulary to describe gene

and gene product attributes in any organism“3,

– the United Nations Standard Products and Services Code (UNSPSC4)

• Upper ontologies: they attempt to describe general concepts valid across all

domains. Examples of upper ontologies are:

– Cyc5 [36],

– the Suggested Upper Merged Ontology (SUMO6) [41],

– the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE7)

[42],

1http://www.swebok.org/
2http://www.nlm.nih.gov/research/umls/
3http://www.geneontology.org/
4http://www.unspsc.org/
5http://www.cyc.com/
6http://www.ontologyportal.org/
7http://www.loa-cnr.it/DOLCE.html
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– the Basic Formal Ontology (BFO8) [26]

The term of ontology is often used to refer to taxonomies (simple hierarchies of terms):

for example GOOGLE uses the DMOZ9 ontology, result of a collaborative effort, to

categorise websites, while Amazon and eBay use ontologies to classify their products.

2.5.1 Ontology formalisation

According to [65], an ontology is composed by definitions of classes, relations or in-

stances. The definitions of these entities are tuples:

Def = 〈T,D,C〉

whereT is the term that identifies the entity to define (definiendum,meaning “thing to

be defined” in Latin) and it is an atomic formula in a formal language;D is the formal

definition (definiens, meaning “defining thing”) and it is a possibly compound formula

in a formal language;C is the concept description, obtained in the conceptualisation

step, and can be expressed in natural language.

The predictor presented in this thesis can use taxonomies with properties: if the on-

tology is a simple taxonomy of classes, the definitionD is the hierarchy of the classes

subsuming the entity to define. The concept descriptionC can either be explicitly writ-

ten in the ontology (for example using the tagrdfs:comment in a rdf/owl ontology),

or can be an implicit meaning conventionally associated to the term, and normally

recognised in a dictionary.

Figures 2.9 and 2.10 show a portion of the customer and vendorontologies in

the example scenario. According to the definition above, a term like “restaurant” in

customer’s ontology can be defined as:

T : restaurant

D : restaurant≡ (has_cuisine.cuisine)⊑ eatery⊑ thing

C : “a building where people go to eat.”10

Different formal languages have been developed to represent ontologies, at differ-

ent levels of expressivity (and computability): from KIF [19], developed in the 90s,

based on first order logic and aimed at knowledge sharing, to the OWL family [58],

based on different variants of Description Logics[2] (S H OI N (D) for OWL-DL,

8http://www.ifomis.uni-saarland.de/bfo/
9http://www.dmoz.org

10according to WORDNET 2.0
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thing

car

accommodation

eatery cuisine

economy_car van compact_car

hotel camping b&b hostel

pub cafe restaurant italian french thai indian

has_price

has_stars has_cuisine

has_maker

Figure 2.9: Customer ontology. Circles are concepts, grayed boxes are prop-

erties

product

flight lodgingcruise train

low_cost charter standard hotel bed&breakfast residence hostel cottages

has_cost

has_category

Figure 2.10: Vendor ontology. Circles are concepts, grayed boxes are prop-

erties

the less expressiveS H I F (D) for OWL-lite), and oriented towards the Semantic

Web.

2.5.2 Problems of shared ontology

Ideally, a common, shared ontology should have appeared, allowing complete interop-

erability between the agents. But imposing the same ontology on all agents has proved

difficult and impractical. Firstly some "social" problems arise. There is often a choice

of different ontologies for a specific purpose: for example,we saw earlier that Cyc,

SUMO, BFO or DOLCE are alternative upper ontologies. Who imposes which ontol-

ogy should be used? Why should the others accept it? Even in case one ontology is

finally chosen, many “legacy” ontologies keep being used [31].

It is also difficult to keep track of the evolution of an ontology: some agents may

keep the pace with the updates, while others may remain with out of date versions. As

described in [31], different versions of the same ontology can sometimes be treated

as different ontologies. In general, differences in the interests and needs can make it

difficult to create a consistent ontology that takes into account all the views.

As a clear indication of the number of developed ontologies,the entry page of
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SWOOGLE11 [12], a search engine for ontologies, states “Searching over 10,000 on-

tologies”. Searching on the engine the synonym “lodging” yields 12 different ontolo-

gies, the term “hotel” yields 62, and the term“car” yields more than 250.

2.5.3 Sources of ontological heterogeneity

Ontologies can differ for various reasons: Section 6.4.1 presents a classification of the

mismatches categorisations in literature. In brief, the mismatches can rise because:

• the same name or formal definition is given to different concepts:

(T1≡ T2∨D1≡D2) ∧C1 6= C2. For example, the termbankcan mean a slope,

an array of elements, or a financial institution, or a flight manoeuvre

• a different name or formal definition is given to the same concept:

(T1 6= T2 ∨ D1 6= D2) ∧C1≡C2. In the two example ontologies,accommodation

andlodgingmean the same concept, even though their name is different and their

formal definition is different (their superclasses are different and the properties

have a different name)

2.6 Ontology matching

The emergence of different ontologies, and the problem of agreeing on a shared one

have pushed researchers to study methods for bridging them.The various attempts

to reconcile ontologies can be divided intomerging, aligning and integrating [31].

Merging is the act of building a new ontology by unifying several ontologies into a

single one, typically when two big companies merge and need to unify their knowledge

bases; matching is used when sources must be made coherent and consistent, but must

be kept separated; finally, integrating entails building a new ontology composing parts

of other ontologies. However, matching ontologies lies at the basis for both merging

and integration.

Ontology and schema matching are used in many fields. Traditional approaches

include catalogue integration for e-business, distributed query processing, data ware-

housing. These applications are based on design time matching operation. Catalogue

integration, for example, requires to identify the correspondences between entries, in

11http://www.swoogle.org
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order to generate queries that translate data instances in the catalogues, providing a

unified access point to the data [56].

In recent years, a new emerging set of applications, characterised by dynamicity,

has been added. In these applications, ontology alignment is often performed at run-

time and used to provide interoperability between heterogeneous peers in P2P systems,

allow agents to understand speech acts specified in different ontologies [63], or allow

dynamic web service integration [46].

2.6.1 Ontology matching definition

An ontology matching algorithm is a function that receives two ontologiesO1 andO2,

some auxiliary resourcesR (such as a thesaurus) and returns the alignmentC between

their entities:

match: O1×O2×R→C (2.2)

where the alignmentC contains all correspondences between entities inO1 andO2.

The correspondence for a termwi ∈ O1 is normally found by comparing it with a list

of termsT ⊆O2:

f indCorrespondence: wi×T×O1×O2×R→ ρ (2.3)

whereρ is the correspondence and it is defined by the best relationrk found (among

the possible ones, such as similarity, equivalence, subsumption,etc), with confidence

c, between the termwi ∈O1 and anothert j ∈ T (where normallyT ≡O2):

ρ =
〈

id, rk,wi , t j ,c
〉

The problem is how to verify the existence of a particular relation rk
(

wi , t j
)

between

the termswi andt j from two different ontologies. If the ontologies are mutually in-

consistent, as it is often the case, it may be impossible to prove the relations using

logic reasoning from the definitions in the ontologies or, even worse, wrong relations

may be derived. Therefore, matching algorithms need to use other methods to identify

relations between entities in different ontologies. Thesemethods usually assume that

ontologies share some identifiable similarities. For example, the similarities can be in

the label used to identify the entities, in their formal definition, or in the description

(possibly implicit) of the concepts attached to the entities.
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The task is made more difficult by the vagueness or ambiguity of the terms (for

instance, the terms may have many different senses, with only a few overlapping) and

by the lack or the imprecision of the information available in the process (for example

a term or a sense may not be included in a thesaurus).

The valuet j in the result of thefindCorrespondencefunction can be modelled as

a random variable. A priori, before applying the matcher, all the relations between

wi ∈O1 and all termst j ∈ T ⊆O2 are equally probable:

P
(

rk
(

wi , t j
))

= P(rh(wi , tg)) f orwi ∈O1 and∀t j , tg ∈ T ⊆O2 (2.4)

The functionfindCorrespondenceuses the result ofmatchersthat extract information

about the similarities between termswi andt j : the various techniques used in the liter-

ature are reviewed in Section 6.4 in Chapter 6. The operationof collecting information

can be qualitatively modelled as gaining evidence in order to obtain an approximate

posterior probability distribution of the relations betweenwi and the terms in the other

ontology:

P(wi×R×T|matchersresults)

where the domainwi ×R×T is the product between the foreign termwi , the possible

relationsRand the selected list of termsT to compare andmatcher resultsis the list of

all the results of the comparisons betweenwi and the terms inT. Assigning these pos-

terior probabilities is difficult, and often arbitrary. Forexample, a matcher using only

string comparison may have obtained an edit distance12 of 1 betweenwi andtk andt j ,

and equal or higher than 2 betweenwi and the remaining terms. Without any additional

information, the probability thatwi is mapped bytk or t j is arbitrary, and could be set

- for example - to 50% each, excluding that terms with higher distances are the cor-

rect correspondence. Some matching algorithms work iteratively, using more certain

information collected in previous iterations to increase the available information: for

example, if the termtk was already mapped with high probability to another termwp

in O1, then it is possible to add this information in the evidence available torh(wi , tk);

similarly if the neighbours of the termwi are already mapped to the neighbours oftk but

not to those oft j , then it is possible to increase the information available for rh(wi , tk).

12number of alterations needed to transform one string into the other
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2.6.1.1 Evaluating the matching systems

The quality of a matching system is usually measured by itsprecisionand itsrecall, or

their aggregation represented byF-Measure. Given thatM f ound is the set of correspon-

dences found by the mapping system,Mcorrect is the set of correct correspondences,

usually defined by human experts:

Precision is the ratio between the number of correct correspondences among those

found and the total number of found ones:

Precision=
|M f ound∩Mcorrect|
|M f ound|

Recall is the ratio between the number of found correspondences andthe total number

of possible ones:

Recall=
|M f ound∩Mcorrect|
|Mcorrect|

F-measure is the harmonic mean of recall and precision:

F−measure= 2×Prec×Recall
Prec+Recall

While in toy ontologies most of the systems work well and obtain high precision and

recall, in real world ontologies the recall is fairly low, asshown in [17]. This is because

the matchers often lack the background - or domain specific - knowledge needed to

extract the similarities between two terms, and therefore they cannot influence the

probability distribution of the relations, making it impossible for the decision process

to select the best correspondence.

2.7 OpenKnowledge

The ideas presented in this chapter find a grounding in the EU funded OpenKnowl-

edge13 project, that involves the universities of Edinburgh, Trento, Amsterdam, Barcelona

and the Knowledge Media institute (KMi) in the Open University. The aim of the

project is to create an architecture for an open, coordinated knowledge sharing system,

which anyone can join at any time: the result of this project is an executable peer-

to-peer framework14, in which peers interact using shared interaction models. Iwas

involved as software developer for the OpenKnowledge kernel, and during the imple-

mentation of the framework we encountered many of the issuespreviously discussed:

13http://www.openk.org
http://cordis.europa.eu/ist/kct/fp6_openknowledge.h tm
14http://www.cisa.informatics.ed.ac.uk/OK/download/ok .zip
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the engineering decisions taken to solve them represent an interesting comparison and

can help their understanding.

The core concept in OpenKnowledge are the interactions between participants,

defined byinteraction modelswritten in LCC and published by the authors on the

distributed discovery servicewith a keyword-based description. The roles in the in-

teraction models are played by the participants, calledpeers. The peers that want to

perform some task, such as booking a room or providing a booking service, search for

published interaction models for the task, and then advertise their intention of inter-

preting one of its roles to the discovery service for the specific task by subscribing to

it. In the scenario relative to the interaction shown in Figure 2.7, a travel agencyP1

has subscribed to perform the role ofsupplier for a task“room booking”, while a

peerP2 searching a room has subscribed ascustomer , for a task described similarly

(for example, just“room” ). For the interaction in Figure 2.8, a car rental agencyP3

has subscribed to perform the role ofsupplier for a task described as“car rental, car

hire” , and the peerP4 looking for a car has subscribed ascustomer , for a task defined

as“car rental”.

When all the roles are filled, the discovery service matches the peers which sub-

scribed for the same or similar tasks (for example, peersP1 andP2 with their descrip-

tions “room booking” and “room” or peersP3 and P4 with their descriptions“car

rental, car hire” and“car rental” ), and then chooses randomly a peer in the network

as coordinator for the interaction, and hands over the interaction model together with

the list of involved peers in order to execute it.

The coordinator first asks each peer to select the peers they want to interact with

(a customer may want to buy from a specific vendor, and not fromany vendor), com-

posing a mutually compatible group of peers out of the replies, and then asks the peers

to commit. If the peers commit, then the coordinator can execute the interaction, in-

stantiating a local proxy for each peer. The remote peers arecontacted only to solve

constraints in the role they have subscribed. In the exampleinteraction model, the co-

ordinator will ask the peer that has subscribed ascustomer to solvewant(Product) .

Figure 2.11 shows the lifecycle of the OpenKnowledge framework, from the selec-

tion of an interaction to its execution.
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Figure 2.11: OpenKnowledge lifecycle
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2.7.1 What is a peer in OpenKnowledge

A peer is simply a node in a peer-to-peer network. It can be a GUI-based application,

directly used by a human user, or a server application. The peer-to-peer network is ac-

cessed via theok-kernel, that provides the basic functionalities for sharing, searching,

subscribing to or taking part in interactions.

Peers involved in an interaction are contacted by the coordinator in order to solve

constraints: to this end, they use the methods provided by their locally installed com-

ponents.

2.7.2 Matchmaking in OpenKnowledge

Selecting the interaction

A peer interested in performing a task queries the discoveryservice for a published

interaction model matching a provided description. The discovery service returns the

list of all the models whose description is similar to the given one.

The peer compares the list of received interactions with themethods it has in its

local components, ranking the interactions based on its capabilities to perform them.

The ranking of the interactions can be influenced also by their popularity (how often

they have been used), a measure given by the discovery service.

Selecting the peers

The peers proactively search interactions and actively subscribe to them: peers sub-

scribed to an interaction are peers interested in taking part in them. However, a peer

may not accept all combinations of peers: for example a buyermay want to buy a prod-

uct only from vendor A, but not from vendor B, even though theyare both subscribed

as sellers to the same interaction.

Therefore, before taking part in an interaction, all the peers subscribed to it are

asked by the coordinator to select who they want to interact with. Peers can have

internal models to represent the reliability of other peers, depending on their previous

experience with them, and can share these information with others or use the ratings

already collected by others.

2.7.3 Ontology matching in OpenKnowledge

One of the founding motivation of OpenKnowledge is the openness of the system: as

we saw, any peer can join at any time, subscribing to a particular interaction. Because
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Figure 2.12: Example of structure matching between the con-

straint refine(product, refined-list) and method

findRefinement(produce, confidence, refinement)

in an OpenKnowledge component.

of this openness, peers can be widely heterogeneous, and therefore the alignment be-

tween different ontologies used by peers plays a fundamental role.

There are two types of matchings that a peer needs to perform in order to partici-

pate meaningfully to an interaction: one offline (at subscription time) and one online

(during the interaction).

Offline matching

Matchmaking requires offline matching:

• the discovery service needs to expand queries to match them against the stored

descriptions of published interaction models

• the peers need to compare the constraints in the received interaction models with

the methods in their local components

The parameters in the constraints are annotated with their semantic types. Similarly,

parameters in the methods of the local components are markedup with terms from an

ontology, possibly different from the one used in the interaction annotations. When a

peer needs to perform a task, asks the discovery service for alist of interaction models,

and matches them with its own components using tree matching[25, 18]. The result of

the matchings provides a measure of the distance between theinteraction model and

the peer capabilities [22], together with the set of adaptors between the constraints and

the methods in the peer’s components. The peer selects the interaction model that fits

best, and then uses the computed adaptors. An example of adaptor, used to match the

constraintrefine(Product, RefinedList) in the scenario interaction model to a

method in a plug-in component, is shown in Figure 2.12.

Online matching

When a peer subscribes to an interaction often it cannot knowwhich other peers will
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subscribe to the interaction: in the example interaction, the supplier subscribes first,

and then wait for the other peers to subscribe as customers. Only when the interaction

starts the peers will be given the list of all the peers and will select those who they are

willing to interact with.

Even at this point they do not know yet who they will actually interact with, be-

cause the coordinator use the preferences of all the subscribed peers in order to make a

mutually compatible group of peers. Therefore it makes sense for the peer to wait until

it receives the constraints with the foreign terms and map them at run-time. The ap-

proach presented in this thesis aims at tackling this problem: Chapters 3 and 4 discuss

it in detail.

2.8 Summary

This chapter has introduced the main concepts needed as background knowledge for

understanding the research presented in this thesis: facilitating the interaction among

heterogeneous agents.

We have seen that, while an agent is usually intended as an autonomous actor, in

this work the term agent simply means participant in an interaction. We have also

seen that while interactions can be planned dynamically, often agents only need to

repeat over and over the same type of interactions: executable workflows can be used

as an efficient and clean compromise, and it has been chosen assolution in this work.

Agent can execute different workflows depending on their objective. The interactions

are described in LCC, a declarative, executable language based onπ-calculus: a LCC

script defines the distributed workflow the various agents must execute.

Agents have ontologies, which formally define the terms theycan use in reasoning

about their domain. The agents involved in the interactionsmay not share the same on-

tologies, and therefore communication implies creating bridges between the ontologies

using some of the available ontology matching algorithms.

The OpenKnowledge project offers a running framework implementing the ideas

presented in this chapter: it is a peer-to-peer system wherepeers interacts through

shared interaction models written in LCC.
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Conceptual Framework

3.1 Introduction

We have seen in Chapter 2 that the most basic interaction is a single message, that

changes the internal state of the recipient. This assumes that all agents in the interac-

tions are able to understand the messages, because they share the ontology defining the

possible terms. But this may not be the case: we have seen thatagents may have differ-

ent ontologies, and therefore they need to have access to thecorrespondences between

them.

As we have introduced in Section 2.6 and will discuss in Section 6.4, many dif-

ferent ontology mapping systems have been developed and tested, . The core problem

encountered by the mapping systems is that they aim at a full ontology commitment

between the agents: they try to find an agreement on the meaning of as many terms in

the ontologies as possible. As we have seen, this has proved harder than expected. In

Figure 3.1: Applying matching in an interaction

41
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an open system like OpenKnowledge it is infeasible to precompute all the correspon-

dences offline, as it impossible to know in advance all the participants in an interaction:

correspondences must be computed dynamically when interactions take place. For ex-

ample, as we have seen in Section 2.7, the supplier peer in theinteraction shown in

Figure 3.1 cannot know the customer’s identity until the interaction starts.

If the peers perform every time different tasks, using different interaction models,

there would be little useful information that could be extracted by observing the inter-

action runs. However, when the peers need to perform the sametask, they will likely

use the same interaction model, and will probably exchange similar messages. This

repetition can be exploited to learn and build a model of the content of the interaction.

As we make clear in Section 3.4, the assumption is that there are relations between

terms in different messages, and that terms appear with different frequencies. Terms

have relations because dialogues are constrainted by rulesand conventions, made ex-

plicit by the use of interaction models. Terms in a message may have different fre-

quencies because of three main reasons: first, some of the terms may be unrelated to

the interaction model, and therefore will appear rarely, second, their frequencies may

reflect the needs and desires of the community that uses the interaction model in a

certain period of time, third, their use depends on the specific context of an interaction

run.

The model obtained analysing the content of various runs of an interaction model

can be used to predict the content of future interactions. The prediction is a probability

distribution of the terms in a particular transition of an interaction, such as a received

message, given the current state and the history of the previous runs of the interaction.

As we will see in Section 3.5, the prediction can be used for improving the efficiency of

the ontology mapping oracle, suggesting a subset of most likely terms to verify. It can

be used as additional evidence to the information collectedby the mapping oracle in

order to improve its precision and recall. It can also be usedas a source of suggestions

for extending the ontology.

3.2 Problem definition

The agents execute the interaction model inside a separate “box”. The “box” in which

an interaction model is run can be compared to the idea ofcontextdescribed by Gan-

glia: in [20] he defines a contextci as “partial” and “approximate” theory of the world,

represented by the triplet〈Oi ,Ai,∆i〉. In the tuple,Oi is the language local to the con-
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Figure 3.2: Bridges between the environments

text, Ai is the set of axioms of the context, and∆i is the inference engine local to the

context. Moreover, a reasoner can connect a deduction in onecontext with a deduction

in another usingbridge rules.

For the context of an interaction model runcr = 〈Or ,Ar ,∆r〉, the languageOr is

composed by all the terms that can be introduced by the agentsinvolved in the inter-

action; the axiomsAr are the role clauses and∆r is the interaction model expansion

engine (see Section 2.4.4).

Interaction models can be executed if it is possible to bridge the reasoning between

the interaction contextcr and the agent’s local contextca. This is accomplished finding

the bridge rules that connect the constraints in the interaction model with the predicates

in the agent’s local knowledge:

cr : κp(W1, ...,Wn)

ca : κa(T1, ...,Tm)
whereWi ∈Or ,Tj ∈Oa (3.1)

whereκp is a formula of an interaction model constraint andκa is a formula in the

agent’s local knowledge, that can be satisfied only by using its own languageOa, which

is the peer’s ontology.

In traditional ontology mapping, the bridges should be valid for any value fromLr

andLa in two contextscr andca:

∀W1...Wn∈Lr , ∃Y1...Yn∈La. cr :κp(W1,...,Wn)→ca : κq(T1,...,Tm) (3.2)

or alternatively:

∀Wi ∈Or ,∃Tj ∈Oa. re f(Wi)≃ re f(Tj)≃Qk

That is, for any value ofW1, ...,Wn in κp, it is possible to find the values forT1, ...,Tn

so thatca : κq is equivalent tocr : κp. In the example scenario, the correspondences
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Figure 3.3: Translation problem: a term wi inserted by peer A needs to be

used in a constraint by peer B. The term wi refers to some unknown entity

qk: the matching term tm must refer to the same entity for the communication

to be meaningful.

should cover the possible requests from the customer agent for buying any element in

its ontology even if these interactions never take place.

This is a strong requirement: it assumes that it is possible to find a corresponding

term inOa for every term inOr , and this may not always be the case. It is possible to

limit the correspondences to those needed to perform the occurring interactions, and

with no need to guarantee complete equivalence between the languages. Therefore an

agent needs to map only the terms that appear incr : κp in order to satisfyca : κq :

∃W1...W ∈Or ,T1...Tn ∈Oa. cr : κp(W1, ...,Wn)∧ca : κa(T1, ...,Tm) (3.3)

that is a much weaker requirement: we need to find the values for T1, ...,Tn so that

ca : κa is valid for the given instances ofW1, ...,Wn. In the example, it means that only

the correspondences required for booking the room are needed.

Let us suppose that a peer, with ontologyOa, needs to satisfy a constraintκr (. . . ,wi , . . .)

when in a specific state of an interaction, and thatwi /∈Oa is the foreign term. The task

is to find what entityqk, represented in the agent’s ontology by the termtm∈Oa, was

encoded inwi . The termtm is the matching term: it is, in the agent’s ontology, the

closest to the intended entityqk. For our work, the matching term is assumed to exist

in Oa.

The matching is performed by a “mapping oracle”, whose specific implementation
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is irrelevant for this work: any existing mapping system, such as S-Match [23], would

fit smoothly in the framework.

In the example scenario of Figure 3.1, in order to satisfy theconstraintrefine

(Product, List Refined) , the supplier must map the term“accommodation” to

“lodging” in its ontology.

3.3 Predicting the content of messages

The intended entityqk represented by the foreign termwi is, from the agent’s per-

spective, aneventof a random variableQk, whose domain is the whole ontology. As

said before, an ontology mapping algorithm can be used to interpret the signwi in the

message and finds the corresponding symboltm.

However, conventional ontology mapping algorithms do not take into account the

context of the interaction , and consider, before applying the matchers, all the terms in

the domain as improbable:

P(Qk = ti) = P(Qk = t j) for∀ti, t j ∈Oa

As introduced earlier, dialogues follow conventions and rules, made explicit by the

interaction model, and the content of the messages are influenced by the local and the

general context: therefore the terms are not improbable - some will be more likely than

others.

Our main claim is that the random variableQk has a conditional probability dis-

tribution, similar to the one in Figure 3.4, where the evidence is the context of the

interaction:

P
(

Qk
∣

∣IMstate, IMhistory
)

=

〈 P(Qk=t1|Mstate,M )

...

P(Qk=tn|IMstate,M )

〉

(3.4)

wheret1 . . .tn belong to the peer’s ontology andp(Qk = ti |IMstate,M ) is the prob-
ability that ti is the best matching term forQk, given the statistical modelM of the

interaction, obtained from previous runs of the interaction model, and the current state

of the interaction. The current stateIMstateof the interaction is given by the values of

all the variable substitutions up to the message currently processed:
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Figure 3.4: Example of probability distribution for a variable Qk

IMstate=



























Q1 = ti

Q2 = tg
...

Qk−1 = t j



























3.4 Modelling the interaction

3.4.1 Aim of the model

The predictor should be able to use the statistical model of the interaction, obtained

analysing various runs of the same interaction model, to compute the probability dis-

tribution of terms for a variableQk, given the current state of the interaction.

In the design of the model we should not assume any specific ontologies for the

other peer, but rely only on the peer’s own: for example, the other peer in an interaction

could be a human, without a specific and formal ontology. However, the terms in the

received messages are first mapped into terms of the peer ontology: these mapped

terms are the ones used to create the model.

3.4.2 Assumptions

The founding assumption, as seen before, is that the same interaction model is repeated

when similar situations or tasks occur: in OpenKnowledge, for example, a vendor

peer can subscribe to a purchase interaction model and be asked to take part in the

interaction every time a potential buyer subscribes to the same interaction model.

Following this assumption, we make four more assumptions that provide the basis

for creating the model:

• terms in received messages have a prior probability distribution,
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• terms in received messages may have a posterior probabilitygiven previous mes-

sages and constraints,

• terms in received messages have ontological relations withterms in the agents

ontology,

• terms in received messages may have ontological relations with terms in other

messages and constraints.

We now Analise more in detail these assumption to verify whether they are reasonable.

Terms in received messages have a prior probability distrib ution

Within a specific type of interaction, some terms appear morefrequently than others.

The frequency of the terms depends on two factors:

1. the interaction itself. Different interaction models are used for different pur-

poses. For example, peers using an interaction for purchases will likely use

terms related to this task. Interactions can be more specificthan others, and this

is reflected in the distribution of terms, being narrower in the more specific ones.

2. how the various peers taking part in the interactions instantiate the variables. The

frequency of terms reflects “community” needs or desire. These frequencies may

change over time, as new needs or ideas appear. Using the Go ogle Trend tool1,

it is possible to verify how many queries for particular terms are made by people

in different parts of the world. For instance, queries aboutApple phone started

nearly suddenly at the beginning of 2007, as Figure 3.5 shows. Figure 3.6 shows

how the amount of queries about B&B fluctuates periodically:there is a peak

(narrower in Italy than in the world) of requests in summer, and a decrease in

winter. Moreover, while the amount of world queries remainssimilar in the same

seasons of different years, the Italian graph shows that thenumber of requests

increases every year.

This hypothesis does not require any further assumptions about relations between the

terms in the interaction: it relies only on the wider contextof the interaction and of

the community in which it is used. It assumes that the other peers, when taken as a

community, satisfy constraints according to some distribution, and that requests are

not all equally likely. It also does not assume any structured ontology on the side of

the peer that creates the model.

1http://www.google.com/trends
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Figure 3.5: Distribution of GOOGLE queries about iPhone

World Trend

Italian Trend

Figure 3.6: Distribution of GOOGLE queries about B&B



Chapter 3. Conceptual Framework 49

Terms in messages may have posterior probabilities given pr evious sent or re-

ceived messages and constraints

This assumption relies on the belief that the current state of an interaction depends

on the value of some previous states. The number of previous states taken into account

is usually a parameter of the system: the influence of previous states decreases with

temporal distance.

It does assume a relation between terms in a dialogue, but therelations are not

made explicit: it is only possible to verify that given one term in a specific point of the

interaction, another term is more or less frequent. If the interaction model in Figure 2.5

is used for renting a car, then terms likehotelor B&B will not appear in the offers from

the supplier, while terms likevan or compact carwill appear more likely. However,

it is not possible to know if there is some ontological relation between the terms: it is

just assumed that high conditional frequency implies a relation.

Terms in messages have ontological relations with terms in t he agent’s ontology

This assumption relies on the idea that terms in messages will often belong to the

same class. For example, the supplier may verify that the terms received in all the re-

quests are always subclasses of its own classes“lodging” or “flight” . This information

is an abstraction of the term frequency discussed above: it says that the term belongs

to a set with a certain probability. The set is the one obtain satisfying the relation with

the ontology: if the relation issubclass(Product, ” lodging”) thenProductcan be any

of the subclasses of“lodging” . It does not specify which subclass: any of them can

be the right one, but it include also terms that have not appeared yet in the performed

interaction, increasing its flexibility.

Terms in messages may have ontological relations with terms in other sent or

received messages and constraints

The ontological relations can also be verified between termsin a variable and the

content of variables both in previous messages and constraints, making the relations

between terms explicit. In the example scenario, the customer may verify that the terms

appearing in the proposals sent by the supplier are frequently subclasses of the term

in its own request: the proposalhostelis a subclass of the requestaccommodation.

This information is an abstraction of the conditional frequency discussed above, as it

makes explicit the relation that is expressed in the conditional formula: the relation

assigns the frequency to all the terms that satisfy the relation, given the value of the
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other variable.

However, the peers involved in the interaction may have different ontologies, and

one of the peers may lack in its ontology the relation that theother peer’s ontology has.

Moreover, one peer may find relations even when there are none, obtaining a “over

fitting” of the relations.

3.4.3 Mapping the assumptions to LCC interaction models

We have repeated that the content of messages comes from heterogeneoussources,

such as peers in the OpenKnowledge framework or services in BEL workflows. A

source is responsible for the introduction of terms relatedto the interaction and failure

to do so disrupts the communication. If the travel agency peer in out example, after

being asked for an accommodation, satisfies the constraintrefine(Product, List

Refined) with a choice of possible types of coffee, then the communication loses

meaning. Intuitively, sources fall into three main categories:

• Purely functional: given a set of parameters, they always return the same values:

for examplemultiply(X,Y,Z) is supposed to always unify the variables with the

same numbers.

• Purely “preference-based”: they collect requests from users and their possible

values can differ every time. In the example, the constraintwant(Product)

is preference-based; each peer will satisfy it according toits tastes and needs.

Overall, the variables in preference-based sources will have a (unknown) distri-

bution. These distributions may change with time, depending on general shifts

of “tastes” and “needs” (fashions, trends, fads, ...) or theheterogeneity in the

peer group composition. A distribution can be more or less skewed: it can be a

uniform or it may follow a power-law distribution.

• Mixed: they can be mainly functional, but the results may change depending

on external factors (availability, new products appearingon the market, etc), or

can be mainly preference-based, but constrained by some other parameters. In

the example, the constraintrefine(Product,List Refined) is mainly func-

tional, as it returns the list of possible subclasses of a term if the query can be

refined. The list of terms can however change depending on thespecific peer and

with time.
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A purely functional source can be guessed when the function is ontological, that is

when it returns terms that are ontologically related to the input term: for instance, they

can be its subclasses, or its siblings, or its instances, or its properties. The hypotheses

can be verified comparing the guesses with the feedback from the ontology matching

process. For the purely preference based, it is possible to count the frequencies of the

terms and learn their prior probability distribution. For the mixed, it is possible to use

a mix of hypotheses and counting the frequencies. Sometimesthe ontology of the peer

does not allow him to formulate the correct ontological relation (because the ontology

is structured differently from the agent that introduced the term), but it is still possible

to count the conditional frequencies, modelling the relation from a purely statistical

point of view.

3.5 Goals of prediction

As described in Section 3.3, the predictor provides a probability distribution for the

terms that can appear in a particular message during an interaction, given the previ-

ously exchanged messages and the history of similar interactions. The probability dis-

tribution can be used to select the terms that are more related to the current interaction,

excluding those that are not. The selection can be used to improve efficiency, reduc-

ing the number of operations required to find the mapping. It can also be exploited

to reduce ambiguities in the mappings: when the matchers areunable to distinguish

between equally likely correspondencest j ...tk for a foreign termwi , the terms that are

unrelated to the interaction can be excluded.

This section explains how the objectives of the thesis, thatis improving efficiency

while maintaining or improving recall and precision of an ontology matcher can be

reached by using the results of the predictor. It also shows how it could be possible to

use the predictions to provide the basis for extending the agent’s ontology.

3.5.1 Predicting for efficiency

The knowledge of the probability distribution of a variableQk can be used to select a

subsetΛ ⊆ O of terms likely to appear in it. This setΛ, and not the whole ontology,

becomes the setT of terms to compare in Function 2.3 improving both the efficiency

and the results of the ontology mapping systems, and making it more feasible to be

performed at run-time.
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Figure 3.7: Uniform and Zipf’s law distributions

Assuming the knowledge of the probability distribution defined in Equation 3.4,

and assuming that the matching termtm exists (as we have stated in Section 3.3), the

probability that the correct matching termtm belongs to a setΛ is:

P(tm∈ Λ) = ∑
ti∈Λ

P(Qk = ti |IMstate,M )

To select the terms to insert inΛ, it is necessary to set a thresholdτ ≤ 1 for P(tm∈ Λ).

If the list Ω contains the terms ordered from the most to the least probable, then this

means solving the equation inn:

τ ≤
n

∑
j=1

P
(

t j
)

t j ∈Ω (3.5)

That simply means taking the firstnmost likely terms until their cumulative probability

is equal or greater thanτ. Forτ = 1, thenΛ≡O, while forτ < 1 the size|Λ| depends on

the probability distribution. For a uniform distribution it will be directly proportional to

τ, while for a skewed distribution, it can be|Λ| ≪ τ |O|: it becomes useful to trade off

between the size of the setΛ and the probability of finding the correct correspondence.

As shown in Figure 3.7, if the probability distribution of the terms is uniform, then

p(tm∈ Λ) will be proportional to|Λ|. For example, if|O|= 1000, thenP
(

Qk = t j
)

=

0.001 for∀t j ∈O. Setting|Λ|= 800 yieldsP(tm∈ Λ) = 0.8, and there is no strategy for

choosing the elements to add toΛ. Instead, if the probability is distributed unevenly,

we can keep the most likely terms discarding the others, maintaining at the same time a

high probabilityτ of finding the correspondencetm in smallerΛ. For example, suppose

thatP
(

t j
)

is distributed approximately according to Zipf’s law (an empirical law that

states that the probability of an item is inversely proportional to its rank):

p(k;s;N) =
1/ks

∑N
n=1 1/ns
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wherek is the rank of the term,s is a parameter (which we set to 1 to simplify the

example), andN is the number of terms in the list of items. The probability offinding

tm becomes:

p(tm∈ Λ) =
∑|Λ|k=1 1/k

∑|O|n=11/n

for |O|= 1000, thenP(tm∈ Λ) = 0.70 for|Λ|= 110 and more remarkablyP(tm∈ Λ)=

0.5 for |Λ|= 25, as shown in Figure 3.7.

Therefore, given a probability distribution for the terms,it is possible to trade off

a decrement in the probability of finding the matching termtm in Λ with an important

reduction of comparisons made by the oracle.

If the oracle cannot find any matching inside the suggested set Λ, it can move

to consider a wider set - in the worst case the whole ontology.Given thatτ is the

threshold for the cumulative probability of terms inΛ, the average number of evaluated

hypotheses will be:

E [nreval hp] = E [|Λ|]+(1− τ)(|O|−E [|Λ|])
where the operatorE [X] is the expected value of a random variableX. In the example

seen above, where terms are distributed according to Zipf’slaw andτ is set to 0.7,

then:

E [nreval hp] = 110+0.3∗ (1000−110) = 377

instead of 700.

3.5.2 Predicting for recall

Recall, as defined in Section 2.6, is the ratio between the number of found correspon-

dences and the total number of possible ones, and when real world ontology mapping

systems are applied to real world scenarios, precision is fairly high, but recall is of-

ten low (∼ 30%) [17]. This usually depends on lack of information aboutthe relation

between the term to map and terms in the agent’s ontology. Theinformation about

the relations, as said in Section 2.6, can be found in the syntactic structure of the term

(similar strings), in the ontology structure (similar position in the two ontologies), or

implicit in the meaning of the terms. In many case finding thisrelation requires too

much background knowledge or too much domain specific knowledge and the existing

bridge between two terms is rejected, lowering the recall rate.

If we do not have enough information to identify the relationbetween a foreign

term and a local term, then this means that all the terms are nearly equiprobable. The

proposed system provides, given the current state of the interaction and the history
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of previous runs of the same interaction, a probability distribution for the value of

Qk. Given the probability distribution, different from the uniform distribution we have

seen before, we are less uncertain about the real value ofQk: we have therefore more

information. This additional information comes simply from having repeated the in-

teraction, and knowing therefore what to expect.

This is an improvement over the situation described by Equation 2.4, that stated

that in the classical approach an ontology matcher starts its work considering all the

terms equally probable.

3.5.3 Predicting for precision.

As defined in Section 2.6, precision is the ratio between the number of correct corre-

spondences among those found and the total number of found ones. Precision is low

when an ontology mapping system maps many foreign termswi to wrong terms in the

agent’s ontology. This is often due to lack of available information that can disam-

biguate between two (or more) possible correspondences. For example, if only the

string similarity is used, then the term“cars” has the same normalised edit distance of

0.25 with the terms“car” , “cans” , and“cart” .

The context can provide the information necessary for the disambiguation, suggest-

ing the terms most likely given the state of the interaction:if the interaction is about

renting a car, then the most likely term for the matching is“car” , and the rest can be

discarded.

3.5.4 Predicting for extending ontologies

The three assumptions we made for the system are that the correspondent termtm

exists, the terms in messages have an ontological relation with terms in the peer’s on-

tology and they may have relations with terms in previous messages in an interaction.

These assumptions can also drive the extension of an ontology. If the predicted

content forQk has a consistent relationrel(Qk,Qk−i) with a previous variableQk−i , or a

relationrel(Qk,ej) with a termej in the ontology, but the ontology matcher cannot find

the corresponding termtm in the ontology because the term is missing, then this can be

an indicator that there is an important term, referred to aswi in other ontologies that

should be added to the ontology and should be in relationrel(Qk,Qk−i) or rel(Qk,ej)

with the other term.

For example, whenQk−i is “accommodation”, sometimesQk has the unknown
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value of “residence”: the predictor may suggest that the content ofQk is a subclass

of “accommodation”, but the ontology matcher fails to find the correspondence.Over

time, the repeated failure can be provide an indication for the curator of the customer

ontology that she should add a new term corresponding to“residence” as a subclass

of “accommodation”.

3.6 Summary

Ontology mapping systems usually do not consider the context within which the match-

ing is performed. This means that before applying the matchers, all correspondences

are equiprobable. However, if we use an ontology mapping system to dynamically map

terms in an interaction, we can assume that terms in messagesappears with different

frequencies. These frequencies are influenced by the specific context of the interac-

tion, by the previously exchanged messages and by the community of participants in

the interaction.

By analysing similar interactions it is possible to obtain amodel that can be used

to compute the distribution of probabilities of terms in themessages of an interaction.

These probability distributions can be used to predict the most likely terms in a mes-

sage, focussing computationally expensive ontology matching activities on them and

improving efficiency. They can also be used as additional information provided to the

matcher, increasing recall (usually low because of lack of domain specific knowledge)

and precision (by removing ambiguities).



Chapter 4

Implementation of the Predictor

4.1 Introduction

While the previous chapter describes the assumptions and the goals of the proposed

solution, this chapter presents the architecture and the functioning of the predictor.

In the proposed architecture, the predictor creates the model of an Interaction

Model from the mapped terms fed back by the mapping oracle at every run of the

interaction. The model is composed of a set of assertions foreach variableQk in the

interaction. An assertion states the frequency with which the terms used forQk have

appeared in a specified set of terms that share the same property. The set can either

be defined by an explicit list or by an ontological relation between the variable and

another term. Section 4.3 describes the model and how it is updated.

When the predictor is invoked for a variableQk during a run of an interaction, it

selects and instantiates the assertions for the variable, and then computes the probabil-

ity distribution of all the terms in the peer’s ontology, passing it to the oracle. Section

4.4 describes, together with an example, how assertions areselected and instantiated

and how their frequencies are combined to yield the probability of a term.

4.2 Architecture

As we have stated before, the aim of the system is to exploit the repetitions of similar

interactions in order to predict the content of received messages in future interactions.

The predictor works in two phases, linked by a feedback loop as shown in Figure 4.1:

model creation: the predictor uses the correspondences found and fed back bythe

56
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Figure 4.1: The predictor feeds suggestions to the mapping oracle, that feeds

back the correct correspondences (when possible)

oracle and the peer’s ontology to create and update the model,

prediction: it is performed when there is the need to map the content of a variable; the

result is a probability distribution for all the terms in thepeer’s ontology given

the past repetition of the interaction model and the currentstate of the run.

The oracle receives the probability distribution computedby the predictor, and uses it:

• to prioritise the comparison between the foreign termwi in the message and the

terms in the peer ontology

• as additional information, based on the context of the interaction, about the cor-

respondences

The oracle may use the external ontology that defineswi , depending on the algorithm

it uses, but it is irrelevant for the functioning of the system. The best matching found

by the oracle is then fed back to improve the model for the particular interaction.

4.3 Model creation and update

The predictor receives the current model of the interactionM, the peer’s ontologyO,

the current state of the interactionIMstateand returns an updated version of the model

M′:

update: M×O× IMstate→M′
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4.3.1 Model representation

This solution, that I first suggested but did not evaluate in [5] and then presented more

thoroughly in [6], is a statistical modelM of the interactionIM in which the properties

of entities appearing in the random variableQk in different runs of the same interaction

model are counted and stored in a setA of assertions:

M = 〈IM ,A〉

An assertionA∈ A about a random variableQk appearing in a clause relative to a

role r keeps track of the frequencyf with which, given a conditionζ , the entity has

been part of a setΨ defined by some properties in the encountered dialogues:

A = 〈id, r,Qk,Ψ,ζ , f 〉 (4.1)

The conditionζ can be empty (ε) or can specify the value or a property of another

variable,Q j/tg. The setΨ can be specified as an explicit list of terms{t1, ..., tn}, or

with aset builderformula{x|φ(x,e)}, wheree∈O andO is the peer’s local ontology.

The explicit list means that the terms in it have appeared, intotal, f times inQk. The

formula means that the relationφ(x,e) between the termx in Qk and another entitye

has been verifiedf times: the setΨ includes all the terms whose property is in relation

φ with e. The relation is an ontological relation (subClass, superClass, siblingOf,

domainOf, rangeOf); the entitye can be either a term from the agent ontology, or a

variable in a previous message in the interaction. The possible types of assertions are

listed in Table 4.1.

The available ontological relations depend on the expressivity of the ontology used

by the agent: if it is a simple list of terms, then no relationscan be found, if it is a

taxonomy then it is possible to find subsumption relations, if properties are included

then range and domain relations can also be identified. This can be an incentive to

develop rich ontologies, as they allow for more detailed relations to be found.

4.3.2 Creating and Updating the Model

Assertions are created and updated every time an interaction model is executed. The

predictor works inside the agent’s environment, and therefore works only with terms

from the local ontology. It receives the translated versionof the messages as feedback

from the mapping oracle, and then analyses the local terms ofthe variables in the

messages in order to create and compute the assertions, according to different analysis
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Frequency of terms:
〈

j, role,Qki,
{

tq
}

,ε, f
〉

Assertions can be about the frequency of the entities in an argument, disregarding the

content of other variables in the dialogue.

For example:〈1,customer, Proposal,{b&b} ,ε,6〉 .
Conditional frequency of terms:
〈

j, role,Qk,
{

tq
}

,Qi = th, f
〉

More precise assertions can be about the frequency of an entity given the content of

previously encountered variables.

For example:〈1,customer,Proposal,{b&b} ,Product= ”accomodation” ,4〉 .
Frequency of relations with terms in other variables:

〈 j, role,Qk,{X | rel(X,Qi)} ,ε, f 〉

They can regard the relation with an argument of another variableEk in the interaction

model.

For example:〈1,customer, Proposal,{X : subclass(X,Product)} ,ε,24〉
Frequency of relations with terms in ontology:

〈 j, role,Qk,{X | rel(X, tk)} ,ε, f 〉

They can be about an ontological relation between the entityin the argument and an

entity tk in the agent’s ontology.

For example:〈1,customer, Proposal,{X : subclass(X, ”product”)} ,ε,24〉

Table 4.1: Types of assertions

strategies that follow from the assumptions listed in Section 3.4. The strategies search

for different properties of the terms:

• Terms that appear in a variable are counted. Their property is simply being

identical to a term already encountered or being a newly met term. An assertion

for each term is generated, and every time the same term reappears the frequency

of the assertion is increased.

• Terms that appear in a variable are counted, but assertions are generated with a

conditionζ about the value of a previous variable. In this case the property of the

terms is being identical to a previous term (or being new) andfollowing the same

term as the previous ones (or a new one). Every time the same term reappears,

satisfying the conditionζ by following the same term in a previous variable, the

frequency of the assertion is increased. For example, if thetranslated value of the

variableProposal is “hotel” and the translated value ofProduct in the previous
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message is “accommodation”, then an assertion about this case is created:

〈...,customer,Proposalk,{“hotel”} ,Product = “accommodation” ,1〉

If the same combination of terms appears in future interactions, the frequency of

this assertion will be increased. The maximum distance between the variables is

a parameter of the strategy.

• Different ontological relations between the terms in a variable and terms in the

peer’s ontology are checked. An assertion for each satisfiedrelation is generated,

and its frequency is increased every time the same relation is satisfied. All the

terms in the setΨ of the assertion share the same relation with the term in the

peer’s ontology.

More formally, the system searches the termsx1,x2, ...∈O for which the follow-

ing relations hold:

O⊢ φ1(qk,x1),O⊢ φ2(qk,x1),O⊢ φ3(qk,x1),...

O⊢ φ1(qk,x2),O⊢ φ2(qk,x2),O⊢ φ3(qk,x2),...

The relation between the variableQk and the found termxi , φ j(Qk,xi), is stored

if new or updated otherwise. In practice, the most useful relation to verify and

store is the one about the term that generalises the value ofQk : knowing the a

variable always contains objects of a certain class is similar to finding by induc-

tion the type of the variable and help to predict the possiblecontent of instances

of the same variable in future interactions.

For example, if “hotel” is the translated value for the variableProposal in the

receivedoffer() message (see Figure 2.7), then the system tries to find its su-

perclass in the agent’s ontology. The resulting assertion is about the set of terms

that are subclasses of the found superclass (“accommodation” in this case):

〈...,customer,Proposalk,{X : subClassO f(X,′accommodation′)} ,ε,1〉

In future execution of the same interaction model, if the value of Proposal is

translated into another subclass of“accommodation”, such as“b&b” , then the

frequency of the assertion is increased

• Different ontological relations between the terms in the variable and themapped

value of previous variables are checked. An assertion for each satisfied relation

is generated, and its frequency is increased every time the same relation is sat-

isfied. The terms in the setΨ of the assertion all share the same relation with

another variable in the same interaction model.

More formally, the system tries to prove which of the following relations hold,
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given the agent’s ontology as set of axioms:

O⊢ φ1(qk,qk−1),O⊢ φ2(qk,qk−1),O⊢ φ3(qk,qk−1),...

O⊢ φ1(qk,qk−2),O⊢ φ2(qk,qk−2),O⊢ φ3(qk,qk−2),...

The holding relations are stored, and if already encountered are increased. For

example, if the value ofProposal translates into“hotel” , and that ofProduct

into “accommodation”, the system tries to prove different ontological relations

between the terms: it checks if“hotel” is a superclass, a subclass, a sibling,

a property of“accommodation”. The correct relation between the variables is

stored:

〈...,customer,Proposalk,{X : subClassO f(X,Product)} ,ε,1〉

When the same relation reappears in another run of the interaction, for example

becauseProduct is “car” andProposal is “van” , the frequency of the asser-

tion is increased. The distance up to which search for relations is a parameter of

the strategy.

Table 4.2 shows the possible model for the content of the variableProposalk in the

interaction model in Figure 2.5, that the customer peer may have created after having

executed the interaction a number of times with different types of service providers.

4.3.3 Example of creation and update

In our example the customer peer uses the same interaction model to perform different

tasks, such as booking car rentals and accommodations, dealing with various suppliers.

The first interaction is depicted in Figure 3.1: the customerasks “accommodation”,

and the supplier, possibly a travel agency or an hotel agent,replies with “hostel”,

that is rejected, and then with “bed&breakfast”. As we have seen in the figure, the

term in the second proposal must be mapped to “b&b” in the customer ontology. The

predictor module receives as feedback the satisfied constraints and sent messages with

the translated terms. In this case, the predictor receives:

1) constraint: want(“accommodation”),

2) messagein: offer(“hostel”),

3) constraint: acceptable(“hostel”, “accommodation”),

4) messagein: offer(“b&b”),

5) constraint: acceptable(“b&b”, “accommodation”)

The predictor stores the translated unfolding of the interaction for the length of the

run, in order to find relations between the terms in previously received messages. The
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constraints are only stored, while received messages are processed and the statistical

model is updated.

When the firstmessagein arrives,offer(“hostel”) in this case, the predictor:

1. checks if there is an assertions about the frequency of term “hostel” . This is the

first time the interaction is used, so there are no assertions, and it creates a new

one:

A1 = 〈1,customer,Proposalk,{“hostel”}),ε ,1〉

2. checks if there is an assertion about the conditional frequency of “hostel” given

the value “accommodation” in Product variable. Because there are no assertion

yet, it creates a new one:

A2 = 〈2,customer,Proposalk,{“hostel”} ,Product1/”accomodation” ,1〉

3. searches the superclass of “hostel” in the peer’s ontology, trying to satisfy the re-

lation superclass(X,“hostel”) , finding “accommodation”. It checks if there

is an assertions about the relation, and as this is the first run it creates a new one:

A3 = 〈3,customer,Proposalk,{X : subClassOf(X, “accommodation” )} ,ε ,1〉

4. tries to prove different relations between “hostel” and the terms in variables ap-

pearing in previous messages and constraints. In this case,it tries to satisfy:

subclass(Proposal, Product), superclass(Proposal, Prod uct),

siblingOf(Proposal, Product), propertyOf(Proposal, Pro duct),

propertyOf(Product, Proposal)

Proposal is replaced by “hostel” andProduct is replaced by “accommodation”,

and the only relation that can be proved issubclass(“hostel”, Product) .

Being the first interaction, there are no assertions and a newone is created:

A4 = 〈4,customer,Proposalk,{X :subClassOf(X,Product1)} ,ε ,1〉

When the secondmessagein is fed to the predictor, a similar process takes place. The

last two cases are verified again, as “b&b” is a subclass of the term “accommodation”,

and therefore the assertions 3 and 4 are updated, increasingtheir frequency.

If the same interaction is then used in the interaction shownin Figure 2.8 for rent-

ing a car, the predictor receives as feedback during the run the following translated

interaction events:

1) constraint: want(car)

2) messagein: offer(compact_car)

3) constraint: acceptable(car,compact)

4) messagein: offer(economy_car)
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5) constraint: acceptable(economy_car,car)

When the first messagein event arrives, the predictor:

1. checks if there is an assertions about the frequency of term “compact_car”.

There is no assertion, so it creates a new one:

A5 = 〈5,customer,Proposalk,{“compact_car”}),ε ,1〉

2. checks if there is an assertion about the conditional frequency of “compact_car”

given the value “car” inProduct variable. There is no assertion yet, so it creates

a new one:

A6 = 〈6,customer,Proposalk,{“compact_car”} ,Product1/“car” ,1〉

3. searches the superclass of “compact_car” in the peer’s ontology, trying to satisfy

the relationsuperclass(X,“compact_car”) , finding “car”. It checks if there

is an assertions about the relation, and as there are none it creates a new one:

A7 = 〈7,customer,Proposalk,{X : subClassOf(X, “car”)} ,ε ,1〉

4. tries to prove different relations between “compact_car” and the terms in vari-

ables appearing in previous messages and constraints. In this case, it tries to

satisfy:

subclass(Proposal, Product), superclass(Proposal, Prod uct),

siblingOf(Proposal, Product), propertyOf(Proposal, Pro duct),

propertyOf(Product, Proposal)

Proposal is replaced by “compact_car” and Product is replaced by “car”, and

the only relation that can be proved issubclass(Proposal, Product) . An

assertion about this relation was created the previous round, and therefore it is

only updated:

A4 = 〈4,customer,Proposalk,{X :subClassOf(X,Product1)} ,ε ,3〉

After 12 runs of the interaction, the resulting model is shown in Table 4.2.

4.4 Prediction of Qk

The predictor receives the modelM for the current interaction, the peer’s ontologyO

and the current state of the interactionIMstate and returns the probability distribution

for Qk:

predict : M×O× IMstate→ P(Qk|M, IMstate)
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Term frequency

A1 = 〈1,customer,Proposalk,{“hostel”}),ε ,6〉

A8 = 〈8,customer,Proposalk,{“b&b”}),ε ,4〉

A5 = 〈5,customer,Proposalk,{“compact_car”}),ε ,3〉

A11 = 〈11,customer,Proposalk,{“hotel”} ,ε ,6〉

A12 = 〈12,customer,Proposalk,{“economy_car”}),ε ,5〉

Conditional frequencies

A2 = 〈2,customer,Proposalk,{“hostel”} ,Product1/“accommodation” ,6〉

A6 = 〈6,customer,Proposalk,{“compact_car”} ,Product1/“car” ,3〉

A9 = 〈9,customer,Proposalk,{“hotel”} ,Product1/“accommodation” ,6〉

A10 = 〈10,customer,Proposalk,{“b&b”} ,Product1/“accommodation” ,4〉

A13 = 〈13,customer,Proposalk,{“economy_car”} ,Product1/“car” ,5〉

Ontology-variable frequencies

A3 = 〈3,customer,Proposalk,{X : subClassOf(X, “accommodation” )} ,ε ,16〉

A7 = 〈7,customer,Proposalk,{X : subClassOf(X, “car”)} ,ε ,8〉

Inter-variables relation frequencies

A4 = 〈4,customer,Proposalk,{X :subClassOf(X,Product1)} ,ε ,24〉

A14 = 〈14,customer,Proposalk,{X : siblingOf(X,Proposalk−1)} ,ε ,12〉

Table 4.2: Statistical model of the context for the customer peer
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The predictor first selects the assertions relative the variableQk, then it instanti-

ates the abstract assertions, and finally it combines the frequencies from overlapping

assertions.

4.4.1 Instantiating the assertions

The assertions computed using the feedback from the mappingoracle reflect patterns

found in different runs of the same interaction model: when the content of a variable

Qk in a new run must be predicted, the setAQkof assertions relative to the variable

must be instantiated with the current state of the interaction. The state is given by

the unifications of the variables in the messages and constraints encountered up toQk:

IMstate=
{

Q1/ti . . .Qk−1/t j
}

. The result is the set of instantiated assertionsAI
Qk

.

1. some of the conditional assertions inAQk may have a conditionζ not

consistent with the current state of the interactionIMstate: for example
〈

...,Qk,
{

t j
}

,Qk−1 = th, ...
〉

, whenQk−1 6= th. These inconsistent assertions

are filtered fromAQk:

filter_inconsistent: AQk× IMstate→ AQk

The filter is done applying to each assertion inAQk the function

verify_inconsistent:

verify_inconsistent: A× IMstate→ boolean

The function can be expressed in functional, Haskell-like,form:

verify_inconsistent(〈_,_,_,_,ζ ,_〉 , IMstate)
∣

∣

∣

∣

∣

ζ ∈ IMstate = true

otherwise = false

2. some of the relations in the remaining assertions are about uninstantiated vari-

ables. The variables in the relations must be unified with their translated values.

This is done by applying to each assertion the functionunify:

uni f y : A× IMstate→ A

That we can expressed in functional form:

uni f y
(〈

id, r,Qk,
{

X : rel
(

X,Q j
)}

,ζ , f
〉

, IMstate
)

∣

∣

∣

∣

∣

Q j/th ∈ IMstate = 〈id, r,Qk,{X : rel (X, th)} ,ζ , f 〉

otherwise = Error
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3. some of the assertions, at this point, will be have explicit lists (most of them

composed by a single term), while others will define sets through ontological

relations between the variable and another term in the ontology. The implicit

set must be made explicit computing the relations. This is done applying the

function instantiate−all to AQk:

instantiate−all : AQk×O→ AI
Qk

that appliesinstantiateto each assertion:

instantiate: A× IMstate→ A

This function can be expressed in functional form:

instatiate(〈id, r,Qk,{X : rel (X, th)} ,ζ , f 〉 ,O)

=
〈

id, r,Qk,
{

..., tg, ...
}

,ζ , f
〉

∀tg : O⊢ rel (tg, th)

Terms that have already been mapped in previous messages of the same inter-

action can be removed from the resulting lists: if the foreign term is known, the

prediction and mapping phases are bypassed and the term is fed back directly

to the modeller.

As anticipated in Section 3.4, assertions about ontological relations create two prob-

lems. First, some of the relations can be spurious. Second, some relations may refer to

large sets, bringing little information. To deal with the first issue, only relations found

in a significant proportion of the cases are taken into consideration. To deal with the

second issue, sets larger than a significant portion of the ontology are discarded.

4.4.2 Combining the assertions

The result of the previous steps is a setAI
Qk

of possibly overlapping sets, each with an

assigned frequency. For example:

AI
QK

=



























〈...,Qk,{t1} , ..., f1〉

〈...,Qk,{t2} , ..., f2〉

· · ·

〈...Qk,{t1, t3, t5} , ..., fn〉



























To obtain a probability of each termt1, ..., tn in the agent’s ontology the predictor

needs to combine the sets and their frequencies. The first issue is how to assign weight

to single terms in sets. An initial consideration is that an assertion about ontological

relation makes no assumption about the distribution of frequencies of the terms that

satisfy the relation: therefore, according to theprinciple of indifference, their frequency

can be considered as evenly distributed. From the assertion:
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Figure 4.2: Predicting a variable

Ah = 〈...,Qk{t1, ..., tn} , ..., f 〉

it is possible to obtain a list of assertions about the singleterms:

Ah1 =
〈

...,Qk,{t1} , ...,
f

|{t1,...,tn}|

〉

...

Ahn =
〈

...,Qk,{tn} , ...,
f

|{t1,...,tn}|

〉

The result is that the same termti may appear in different instantiated assertions,

obtained through different strategies (simple frequency,conditional frequency, onto-

logical relations, etc). These frequencies can be summed together and normalised by

the frequencies of all the selected assertionsAI
Qk

to obtain the probability of the term

ti:

p(Qk = ti) = ∑A j (ti ∈Ψ)

∑
Ak∈A

Ak
(4.2)

The three Kolmogorov axioms are satisfied:

• p(Qk = ti)≥ 0 ∀ti ∈O : if a term does not appear in any assertion its probability

will be 0

• ∑ti∈La
p(Qk = ti) = 1: the denominator is given by the sum of all the assertions

that can appear in the numerator

• the probability of disjoint terms is given by the their sum:

p(Qk = ti)∪ p
(

Qk = t j
)

= p
(

Qk = ti ∨ t j
)

= p(Qk = ti)+ p
(

Qk = t j
)
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4.4.3 Example of prediction

The state of the interaction for the customer peer when it needs to predict the content

of Proposal2 in the interaction shown in Figure 4.2 is:

IMstate=

{

Product1 = ”accommodation”

Proposal1 = ”hostel”

}

(4.3)

Given that the modelM of the interaction model is shown in Table 4.2, and thatk = 2

(we have recursed once), in order to compute the probabilitydistribution

P
(

Proposal2|IMhistory, IMstate
)

the customer peer must:

1. drop the conditional assertions whose conditionζ does not correspond to the

current state of the interaction; so assertionsA6 andA13 are dropped because

their conditionProduct1 = ”car” is inconsistent with the state in Equation 4.3,

2. unify the variables in relations with the current state ofthe interaction;Product1

in A4 is replaced with“accommodation”andProposalk−1 in A14 is replaced

with “hotel” , obtaining:

A4 = 〈4,customer,Proposal2,{X:subClassOf(X, “accomodation”)} ,ε ,24〉

A14 = 〈14,customer,Proposal2,{X: siblingOf(X, “hotel”)} ,ε ,12〉

3. compute the relations in the assertions using the peer’s ontology in Figure 4.2,

obtaining sets of terms; assertionsA4, A14, A3, A7 become:

A4)〈4,customer,(Proposal2 ∈ {“hostel” , “hotel” , “b&b” , “camping”} ,ε ,24〉

A14)〈14,customer,Proposalk,{“hotel” , “b&b” , “camping”} ,ε ,12〉

A3)〈3,customer,Proposalk,{“hostel” , “hotel” , “b&b” , “camping”} ,ε ,16〉

A7)〈13,customer,Proposalk,{“economy_car” , “compact_car” , “van”} ,ε ,8〉

4. drop the assertions whose setΨ is larger than a certain proportion of the ontol-

ogy, as they do not carry useful information. In this case, none is dropped.

In the example, the denominator of the formula is obtained summing the frequencies of

the remaining assertionsAI = {A1−5,A7−12,A14}. In order to compute the probability

that the concept inProposal2 is the term“hotel” , we select the assertions whose set

contains the term“hotel”, obtaining assertionsA3, A4, A9, A11, A14. The assertions

A3, A4, A14 contain more than one element, and therefore the frequency assigned to

“hotel” is computed dividing the frequency assigned to the set by the size of the set to

obtain the following:
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Figure 4.3: Probability distribution for variable Proposal2

P(Proposal2 = ”hotel”) = 16/4+24/4+6+6+12/3
6+6+4+3+5+6+6+4+24+12+16 = 26

92 = 0.282

The complete distribution of variableP(Proposal2|IMhistory, IMstate) is shown in Fig-

ure 4.3.

4.5 Summary

In this chapter we presented the architecture and the functioning of the predictor. The

predictor creates a model for a variableQk in an interaction model from the feedback

obtained by the mapping oracle. The model is composed of assertions about the fre-

quency with which the term corresponding to the entity inQk appeared in a particular

set, defined either by an explicit list or by a set builder formula. An assertion can be

about the frequency with which a term has appeared inQk (possibly given other terms

in previous messages), or about the frequency which an ontological relation between

the content of the variableQk and either a term in the ontology or another variable

Qk− j has been found. The model is used to compute the probability distribution of

terms for the variableQk selecting the assertions that are consistent with the current

interaction run, instantiating those defined by formulas and combining them for each
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term.

The statistical framework presented in this chapter might resemble a Hidden Markov

Model, and in fact it was partially inspired by the intuitiveidea behind it. However, the

use of ontological relations between variables, that, as wewill see in the next chapter,

represents one of the strength of this work, cannot be represented using a Markovian

model. Moreover, it violates the Markovian assumption thatrequires that the current

state depends only on a finite history of previous states. Choreographies can be of

any length, and, because some sections of the choreographies may be repeated, their

runs can be of different duration each time. Therefore a variable in a message can

have an ontological relation with another variable in a previous message at an arbitrary

distance.



Chapter 5

Evaluation

5.1 Introduction

In Chapter 3 we have introduced and explained the idea of using the history of previous

interactions and the state of the current interaction in order to compute the probability

distribution of the terms in a particular message in a definedinteraction between agents.

In Chapter 4 we have provided an implementation for the predictor, based on collecting

statistics on the content of messages.

We now have to verify its functionality and its usefulness, answering two main

questions: 1. Does it work? 2. Is it useful? The first question, answered in Sections

5.3.2 and 5.3.3, requires verifying whether the predictions, i.e. the computed probabil-

ity distributions, are correct. The probability distribution computed by the predictor is

correct when it reflects the real probability distribution of the messages’ content. An-

other element to verify is the robustness of the predictor when the community of users

changes, influencing the real probability distribution of the content.

The second question, mainly answered in Section 5.4, requires ascertaining whether

the use of the predictor improves the performance of an ontology matcher, measured

in computational time complexity, precision and recall.

5.2 General Testing Methodology

One way of testing my system is through real interaction scenarios, using real ontolo-

gies and real workflows for the dialogues, but since these arescarce this would cover

only part of the testing space, without having the possibility to vary parameters in order

to verify the effects.

71
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a(r8a(O),I) ::

m1(X,P)⇒ a(r8b,O)← κ1(P,X)

then









m2(Y)⇐ a(r8b,O)

or

m3(M)⇐ a(r8b,O)









a(r8b,O) ::

m1(X,P)⇐ a(r8a,I)

then









m2(Y)⇒ a(r8a,O)← κ2(P,X,Y)
or

m3(M)⇒ a(r8a,O)← κ3(P,X,M)









Figure 5.1: Interaction model template

What is important, however, is to verify the ability of the predictor to statistically

model the way in which constraints are satisfied given the state of the interaction.

And, as we have seen in Section 3.4, the constraints can befunctional, preference-

based, or mixed. It is thus possible to simulate different real world scenarios using

template interaction models executed by dummy peers that can only satisfy constraints

according to parametrisable rules and ontologies.

In order to test and evaluate the feasibility and the reliability of the model, we

developed a framework that can run different dialogues, analysing the message content

in order to create models for the interactions, and then applying them to predict the

content of messages in similar interactions.

Interaction Framework

The template interaction models must cover the basic patterns present in interactions.

For example, the interaction model in Figure 5.1 can model many different interac-

tions: m1 can be a request for informationX aboutP (for example, the price of aX),

with m2 being the reply andm3 being the apology for not knowing the answer. Alter-

natively,m1 can be an offer (the productX at priceP), with m2 being the acceptance

andm3 the rejection. By viewing interaction models abstractly wecan set up large

scale experiments in which we vary the forms of constraints in a controlled way.

The functional constraints are ontological rules, the preference-based constraints

return terms according to probability distributions that reflect a distribution of “needs”

and “tastes” over a community of peers, and mixed constraints are rules with an ele-
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ment of probability.

Ontologies

The ontologies are generated as graphs, composed by a main tree, that corresponds to

the class taxonomy plus the instances, and links between theclasses that represent the

properties. Because it is possible to specify the features of generated ontologies, it is

possible to cover a wider space of variations than it by usingexisting ontologies.

Constraints

Peers introduce terms in interaction models satisfying constraints. As we have seen in

Section 3.4, constraints can be:

• purely functional: when given the input arguments, the output is always the

same. For example, the constraintmultiply(X,Y,Z)should unifyZ always with

the same value given the sameX andY

• purely preference based: when the output depends only on a probability distribu-

tion. For example, the constraintwant(P)in the example scenario unifies values

that reflect the preference of the community of peers that usethe interaction

• mixed: when the output depends on the input parameters, but it is not determin-

istic, and the possible set of terms in the output follow a probability distribution

The way constraints are solved is simulated in the agents. Inparticular, preference

based constraints are solved returning terms according to aprobability distribution

whose parameters can be modified to verify the behaviour of the predictor in different

situations. A preference function takes an ordered list of termsR⊆O, whereO is the

full ontology, generates a number 0≤ i ≤ |R| according to a probability distribution (in

the experiments, we used the half-normal distribution) andreturns the term at position

i insideR.

The width of a Gaussian distribution is given by its standarddeviationσ : a higher

σ means a more spreaded distribution. Figure 5.2 shows the different probabilities

of terms ranking from 0 to 120 when Gaussian distributions with different standard

deviations used: withσ = 5, the term ranked first is twice more probable than the term

ranked 40th, while with σ = 25 the probability remains nearly constant over all the

terms. Figure 5.3 shows the distributions obtained callingthe preference function over
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Figure 5.2: Gaussian distributions with different standard deviations

Figure 5.3: Different preference distributions of terms from a generated on-

tology

a thousand times with the same set of terms and first with a standard deviationσ = 5,

thenσ = 10 and finallyσ = 25.

Running the experiments

The experiments consist of running repeatedly (between 200and 400 times) a number

of different interaction models, the constraints of which are satisfied using probability

distributions to simulate a large population of agents. Every 10 interactions, a set

of performance measures is logged. The performance measures are averaged over a

sliding window of 30 interactions.

Each batch of experiments is described in an XML file: the involved agents are
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<batch>

<description>use of interaction model 1</description>

<involved_agent id="tagent1"/>

<involved_agent id="tagent2"/>

<experiment id="1">

<description>Learn the distribution of a variable (with si gma=40)</description>

<agent_param agent="tagent1" section="general" param=" feedback_results" value="true"/>

<agent_param agent="tagent1" section="randprefs" param ="totell" value="{’file’:’t1pa’, ’sigma’:40}"/>

<institution name="prot1" repeat="200" dumpevery="10">

<start role="r8a" agent="tagent1">

<param>tagent2</param>

</start>

</institution>

</experiment>

<experiment id="2" derived_from="1">

<description>Learn the distribution of a variable (with si gma=5)</description>

<agent_param agent="tagent1" section="randprefs" param ="totell" value="{’sigma’:5}"/>

</experiment>

</batch>

Figure 5.4: XML file describing an experiment

listed first, then, for each experiment, the values for parameters are defined (to allow

different behaviours in different experiments), and finally it is specified what interac-

tion model must be run with which parameter settings and how many times.

The file shown in Figure 5.4 describes two experiments using the example inter-

action model in Figure 5.1. The only difference between the two experiment, both

involving 200 repetitions of the interaction, is in the variance of the Gaussian distribu-

tion: the curve in the first experiment is narrower than in thesecond.

5.3 Verifying functionality

In this section we evaluate how close the predicted distribution is to the actual distri-

bution of terms. In this experiments I am not concerned with ontology mapping, and

therefore the peers share the same ontology. Their goal is only to predict the content

of variables in messages before checking them: if the computed distributions are cor-

rect, then the peers will often guess the exact term. The suggested setΛ of most likely

terms for a variable, described in Section 3.5, is the core criterion used in evaluating

the functionality. The average size of the set, the likelihood that the correct term is in

the set, and the average rank of the correct term in the set areused as indicator of the

ability of the predictor.
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_a

_aa _ab ...

_aa_aa ... _ab_aa _ab_ab ...

_ab_ab_aa _ab_ab_ab ...

Figure 5.5: A generated ontology

Figure 5.6: Average size of the suggested set Λ, average success rate in

finding tm in it and average rank of tm in Λ

5.3.1 Specific methodology

The functionality experiments are run using three different ontologies, composed of

225, 626 and 1850 elements. These are generated varying the depths and the average

numbers of children per node. Playing with these parametersit is possible to emulate

flat lists without hierarchy, simple ontologies with shallow hierarchy, or more hierar-

chical structures. This allows to verify the performance ofthe predictor when dealing

with different types of ontologies. See Figure 5.5 for an example of a generated taxon-

omy.
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Figure 5.7: Learning curve: average number of interactions needed to reach

a given score, and probability of having a score of 0.6 after an increasing

number of interactions.

5.3.2 General Results

The performance of the predictor is measured by:

the average success rate,that is the average probability thattm is in the suggested set

Λ: avg[PQ(tm∈ Λ)] (whereavg[·] is the average operator),

the average sizeof the suggested setΛ: avg[|Λ|],

the average rank that the corresponding termtm has in the probability distribution:

avg[rank(tm,P(Qk))]

Let us assume we know the exact probability distributionP(Qk |IMstate,M ) of the

terms for a random variableQk given the current context. As shown in Equation 3.5,

given the listΩ of termst j ∈O ordered from the most likely to the least likely one the

correct sizen of Λ in order to obtain the desired success rateτ (i.e. the probability of

finding tm in Λ) is:

avg[p(tm∈ Λ)] = τ = ∑n
1 p
(

t j
)

wheret j ∈O

If the computed distributionP(Qk |IMstate,M ) is a good approximation of the exact

distributionP(Qk |IMstate,M ), then the average ofp(tm∈ Λ) should converge towards

the average computed forP(Qk |IMstate,M ) and therefore towards the thresholdτ:

lim
nr interactions→∞

avg[p(tm∈ Λ)] = avg[p(tm∈ Λ)] = τ (5.1)

If the success rate of the predictor remains lower than the thresholdτ, independently of

the number of interactions, then the computed distributionis different from the exact,

but unknown,P(Qk |IMstate,M ).
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The size of the suggested setΛ will depend on the existence of relations between

variables in the interaction and on the unknown distribution of terms in preference-

based constraints, as we have seen in Section 3.4. These unknown distributions can

change over time - if the phenomena are non-stationary - obviously decreasing the

success rate. The lack of relations or flat distributions will cause large suggestion sets

Λ, decreasing the usefulness of the predictor.

Another key issue to evaluate is the number of repeated interactions needed for the

predictor to reach a stable behaviour. This number will be different for every type of

interaction. What is necessary is to find its probability distribution, i.e. the probability

thatn interactions are enough to have a stable behaviour .

The results shown in Figure 5.6 were obtained averaging overthe results of 12

different batches, generated combining 6 interaction models, 3 ontologies (225, 626

and 1850 elements) and different settings for the preference distributions (narrow and

wide distributions for the preference-based constraints). All the batches were run with

a thresholdτ = 0.8. The figure shows the average value of the size of the suggested set

Λ and the average value ofp(tm∈ Λ), together with a band specifying the standard de-

viation of the measure. The limit in Formula 5.1 is verified, as the average score tends

to stabilise, logarithmically, aroundτ (the standard deviation, showing fluctuations in

success rate, decreases).

The average size remains small, independently of the size ofthe ontology, but its

deviation tends to increase - albeit only logarithmically and remains well below 15%

of the smaller ontology. The relatively large deviation reflects the fact that differ-

ent batches have different relations between variable, andpreference-based constraints

have different distributions: therefore to obtain the samesuccess rate the size ofΛ may

change meaningfully. However, the use of the filters on the assertions (described in

Section 4.3) improved the results substantially: previoustests run on the same batches

before the introduction of the filters returned the same average score, but a much higher

average size (more than 150 elements instead of about 20).

The learning curve is, as stated, logarithmic: on average, most improvement (from

0 to nearly 70%) is obtained in the first 70-80 interactions, which is a small number of

interactions in large peer-to-peer communities as those envisioned in the OpenKnowl-

edge project. In the example scenario, the travel agency peer can be contacted by a

thousand peers, all making similar requests, while the customer may need to contact

several travel agencies before finding an appropriate accommodation.
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Figure 5.7a shows the average number of interactions neededto reach different suc-

cess rates, while Figure 5.7b shows the probability of having a success rate of 0.6 after

an increasing number of interactions: the thresholdτ = 0.8 used in the experiments

is reached on average after after 140 interactions, while 60interactions are normally

enough to reach a success rate of 0.6 on 80% of the experiments. Once in the stable

region, the predictor will go on updating its representation, but the behaviour should

change slowly or remain constant.

5.3.3 Analysing the results

We have discussed the average results shown in Figure 5.6 in the previous section:

in the following subsections we will analyse how the predictor react in different sit-

uations. We first show how the probability distribution computed from the model is

affected by different preference distributions over termsin messages. In subsection

5.3.5 we discuss how the various strategies that analyse theinteractions and update the

model contribute to the predictor performance. We then present how different pref-

erence distribution influences the performance, and how a non-stationary distribution

(one that changes over time) affects the predictor and its analysis strategies.

5.3.4 Creating the model

The fundamental assumption is that if terms appear in messages in different runs of a

interaction model according to an (unknown) probability distribution, then the system

should be able to model this, updating the model interactionafter interaction. Figure

5.8 shows how the predictor creates the probability distribution of a variable whose

content is generated by preference functions with standarddeviationσ = 5 andσ = 25,

after 30, 60 and 120 interactions. It is possible to see that the model gets closer and

closer to the half-normal distribution with which the termsare generated, and that

the model moves more slowly towards the exact distribution when the terms in the

predicted variable are distributed with a wider distribution (σ = 25).

5.3.5 Contributions of the strategies

In Section 3.4 we made four assumptions about the terms in theinteractions, that we

transformed into four types of assertions, two based on the frequency of terms and two

based on their ontological relations, as we showed in Section 4.3. We need to evaluate
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Figure 5.8: How the model improves after 30, 60, and 120 interactions with

σ = 5 and σ = 25
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Term frequency

tagent3 tagent4

Relations between variables

tagent4 tagent3

Ontological relations

tagent3 tagent4

Figure 5.9: Contribution of different types of assertions. Tagent3 predicts a

variable whose content is related to another known variable, while tagent4

predicts a variable whose content depends only on a preference distribution.
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how these assertions contribute to create the model, when they help and when they do

not add useful information.

Figure 5.9 shows the different contributions of the strategies to the performance

of the predictor: each batch of experiments was run using a single strategy for gener-

ating assertions and averaging the results obtained varying distributions and relations

between the terms in messages. In the graphstagent4 needs to predict a purely pref-

erence based variable, whiletagent3 needs to predict a variable that has a relation

with another variable.

The most consistent type of assertions is term frequency when the distribution does

not change over time, as it generates a set that contains the correct term rather quickly.

Assertions about relations between variables are successful when there are relations

to find, and reach a high score very quickly. The size of the suggestions depends

on the peer ontology (large and shallow ontologies behave worse than thin and deep

ones). However, these assertions are not created - or are discarded by the thresholding

mechanism when spurious ones are created - when there is no relation, and therefore

cannot help in these cases, as shown by thetagent4 graphs in Figure 5.9.

The experiments using only the conditional frequency showed no useful results:

the success rate was always 0. One of the problems that arose in analysing these re-

sults was the sparseness of the results: there were too many assertions, each capturing

one case with very low frequency. Conditional frequency only makes sense when the

vocabulary used in messages is small, otherwise it requiresa vast number of interac-

tions to provide useful information. For example, if the content a of a first message

in an interaction is taken with a uniform probability from a set of 20 terms, and the

contentb of the following message is taken from a set of 200 terms, where there are

10 possible different terms for each term ina, then after 200 interaction there might be

200 assertions, each stating one particular case. Another possible issue is the distance

considered between the variables: in the experiments a distance of 1 was used, but

it might be that meaningful relations are between variablesslightly further apart, as

shown by the ontological relations described before. An interesting extension could be

to store assertions about the posterior probabilities of all the variables in an interaction

model, and then use only those that present higher frequencies. Such a strategy should

generate several assertions about unrelated variables, each with very low frequency,

and fewer assertions with higher frequency about related variables.

Assertions about ontological relations between the terms in the messages and the

peer’s ontology tend to provide a rather unstable contribution: the score of the predictor
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fluctuates between 0.2 and 0.6 fortagent3 and between 0.05 and 0.35 fortagent4

when it uses only this kind of assertion. The only relation that is verified and stored is

the subclass relation: when a termti appears in the message fed back from the mapping

oracle, its superclassts⊑ ti is found in the peer’s ontology and the assertion about the

subclasses ofts is stored or updated. However, it may not be the case that all the sibling

terms ofti are equally likely to appear, while the assertion makes thisassumption.

5.3.6 Case analysis

Section 5.3.2 presented the general behaviour of the predictor, and the Figures 5.6 and

5.7 explained in the section are obtained averaging many runs of different types of

experiments. Section 5.3.5 evaluated how the different strategies used to analyse the

runs contribute to the overall results of the predictor. In this section we will evaluate

the performance of the predictor in different scenarios. Inparticular we focus on how

the performance degrades when the distribution of terms, representing the preferences

of the community of users, varies in breadth, and when it varies over time.

Wide vs narrow preference distributions

The content of messages in interactions can exhibit varyinglevel of randomness. The

content of a message may alternate among only a few terms, with one or two terms

more frequent than the others, or it can be any term from a wider range of possible

ones where all are equally likely.

In my tests, this is simulated varying the width, given by thestandard deviationσ ,

of the Gaussian distribution used to generate the content ofthe messages. Figure 5.10

shows the effects on the average size, the score and the rank of the correct term for three

distributions of increasing width, withσ equal to 5, 10, 15, 25. The interaction model

used is a variation of the standard one: a message, whose content is randomly chosen

according to the above distributions, is sent bytagent3 to tagent4 . The recipient

replies with a term ontologically related to the received term (for example it can be a

subclass or a property). Therefore,tagent4 has to predict a term that depends only on

an external distribution, whiletagent3 has to predict a term that depends on a term he

has chosen.

When the content of the message is ontologically related to another known term,

as intagent3 case, the performance is not meaningfully influenced by the changes in
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the distribution of the known term. On the other hand, when the content depends only

on an external, unknown distribution, as intagent4 , the performance is heavily influ-

enced. The average size of the suggestedΛ increases withσ : after 200 interactions,

the average size is around 10 forσ = 5 and reaches nearly 50 forσ = 25. The score

always converges towards 1, but the slope steepness decreases withσ and oscillations

increase with it. The average rank of the correct term increases, although less than the

average size, but variation in rank increases notably.

Non-stationary distributions

As discussed in Section 3.4, results returned by preference-based constraints follow a

distribution that reflects the contingent preferences or needs of the user community.

As we have seen in Section 5.3.5, a variable whose value depends exclusively on com-

munity preferences is modelled mainly by assertions describing the prior frequencies

of terms. If the preference distribution is not stationary and changes over time the

assertions built after a number of interactions may not model the variable distribution

correctly in new interactions. In particular, variables whose values are predicted only

by assertions based on term frequencies will be affected most, while variables depend-

ing on some rules or functions should be more robust when preferences change, as

the assertions model the ontological relation between the term in the variable and the

value of other variables that can be assumed to be independent from the distribution of

terms.

To test the behaviour of the predictor when dealing with non stationary preferences,

we run two batches of experiments, both using the recursive interaction model in Fig-

ure 5.11. In the interaction model, the agent performing role r9a1 sends a message

aboutX, where the value ofX is chosen from a preference distribution. The agent

performing roler9b1 receives the message, finds a list of elements related toX and

starts sending them back to the first agent. The first agent caneither accept the term,

or ask for more.

The first batch is used as a baseline: it is composed of three experiments, each

of 300 interactions and the preference distribution for variable X is stationary. The

second batch is composed of three experiments, each consisting of 300 interactions.

In these three experiments the preference distribution forvariableX is non-stationary,

changing every 100 interactions. The performance measuresin the two batches are

averaged.

The results are shown in Figure 5.12. The prediction for variableY that depends
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tagent3 tagent4

σ = 5

σ = 10

σ = 15

σ = 25

Figure 5.10: Effect of different preference distributions.tagent3 predicts

a variable whose content depends on a variable with different preference

distributions, while tagent4 predicts a variable whose content depends

only on the different preference distributions.
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a(r9a1(ID2),ID1) ::

m1(X)⇒ a(r9b1,ID2)← kp9_1(X) then

a(r9a2(X),ID1)

a(r9a2(X),ID1) ::


















m2(Y)⇐ a(r9b2,ID2) then

m3⇒ a(r9b2,ID2)← kp9_2(X,Y)

or
(

m4⇒ a(r9b2,ID2) then

a(r9a2(X),ID1)

)



















or

m5⇐ a(r9b2,ID2)

a(r9b1,ID2) ::

m1(X)⇐ a(r0a1,ID1) then

a(r9b2(ID1,Lst),ID2)← kp9_3(X,Lst)

a(r9b2,(ID1,Lst),ID2) ::

m2(Y)⇒ a(r9a2,ID1)← Lst = [T|Tail] then














m3⇐ a(r9a2,ID1)

or
(

m4⇐ a(r9a2,ID1) then

a(r9b2,(ID1,Tail),ID2)

)















or

m5⇒ a(r9a2,ID1)

Figure 5.11: Recursive test interaction model. The peer taking role r9a1

starts the interaction solving constraint k9_1 in order to find a value for X.

It first sends the value to the peer in role r9b1 and then takes the recursive

role r9a2. The peer in role r9b1 obtains a list of options, stored in Lst,

from the received value X by solving the constraint k9_3. Then it takes the

recursive role r9b2 and sends the first option in Lst with message m2(Y).

If there are no options, it sends message m5. The initiator peer, now in role

r9a2, receives the message containing the option, evaluate it solving con-

straint k9_2 and either accepts it, sending message m3 or rejects it, sending

message m4. If there were no options, it would have received message m5,

and it would have terminated the interaction. The peer in role r9b2 waits for

one of the two messages m3or m4: if the acceptance arrives, it terminates the

interaction, otherwise recurses passing the remaining options.
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Figure 5.12: Predictor behaviour when distribution changes over time

on the value of the first variableX, quickly stabilises in both cases, and is not affected

by changes in the distribution ofX: the ontological rule found by the predictor is inde-

pendent of the distribution of the first variable. Performance regarding the prediction

of variableX, on the other hand, depends on whether theX is stationary or not. If

variableX is stationary, average size and score grow logarithmically, and the position

of the correct termtm increases during the first 50 interactions and remains more or less

constant in the remaining ones. If variableY is non-stationary, then the score grows

as in the stationary case up to 85% until the distribution is changed, where it suddenly

decreases to 70%. The average size grows more rapidly after the change. The score

returns to its previous value after 100 interactions. The second change of distribution,

after 200 interactions, has a much lower impact, as it is onlyan increase of the spread

of the distribution. For variableX, when the distribution changes, the sizeΛ after 300

interactions is much bigger.
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5.4 Verifying Usefulness

The main goal of the predictor is to provide a set of likely terms to an Ontology

Matcher, so that it can focus on them and find the correct correspondence for a for-

eign term using fewer computational resources. To evaluatethe contribution of the

predictor, we tested the results of the predictions on a realontology matcher, using

peers with different ontologies.

5.4.1 Specific methodology

Two different ontologies are used. The first ontology is a generated tree: labels in nodes

are composed of a random number of words, selected from 9000 words extracted from

part of the Brown Corpus, and the number of children for each node follows a Gaussian

distribution, with average 4, deviation 4. The maximum depth is 4 and the overall size

is 986 nodes. The second ontology is obtained from the first, applying the changes

described in Table 5.1. Its overall size is 1000 nodes.

As stated in Section 5.2, one of the reason for using generated ontology instead of

existing ones is that they allow a wider coverage of variations in their structure. In this

specific case, the matching between ontology is evaluated: the use of existing ontolo-

gies is possible only if correspondences between them existas well, further reducing

the possible variations that can be explored.

The matcher used is described in the next section: applying it on the entire ontolo-

gies, without the involvement of the predictor, yields a recall rate of 0.7 and a precision

of 0.85.

The Ontology Matcher

The aim of the experiment is to verify how the predictor can improve the performance

of a generic ontology matcher, and therefore a relatively simple matcher was selected.

The matcherpyontomap [4] used in the experiments is composite matcher: it em-

ploys a set of standard elementary matchers (syntactic, structural and semantic) and

combines their results using a Dempster-Shafer [68] based algorithm. While in the

Bayesian approach probabilities are assigned to single entities, in Dempster-Shafer the

mass is distributed onsetsof propositions. The mass distribution is a functionm(·) that

distributes a mass in the interval [0,1] to each element of the power set 2Θ of the set

of propositionsΘ = {θ1,θ2, . . . ,θn} called theframe of discernment. The total mass



Chapter 5. Evaluation 89

Tree alteration:

For each node apply:

• label replacement, with probability 0.01

• syntactic label alteration, with probability 0.2 (lettersdropped, added, changed)

• word addition or removal in labels, with probability 0.15

• word replacement in labels, with probability 0.4, choosingfrom:

– synonyms, hyponyms, hypernyms (extracted from WordNet 3.0, using all

the possible parts of the speech of the word)

– related words (extracted from the Moby thesaurus)

• node deletion (the number of nodes to remove is computed using a Gaussian

distribution with average 0 and standard deviation 0.9)

• new child addition, with probability 0.25

• children shuffling, with probability 0.4

Table 5.1: Tree creation and alteration process. The probabilities of the al-

teration operations have been chosen by trial and error in order to obtain

reasonably altered trees, without having completely unrelated trees.

distributed is 1 and theclosed world assumptionis generally made: the frameΘ con-

tains the true hypothesis. This is expressed assigning mass0 to the empty set /0, called

contradiction. The massm(Θ) assigned to the frame represents the mass that cannot be

assigned to any particular subset ofΘ. Different mass distributions can be combined

usingDempster’s rule of combinationthat computes the probability mass assigned to

C⊆Θ givenA⊆Θ andB⊆Θ, whereA is supported bym1 andB is supported bym2:

m(C) =
∑A∩B=C m1(A)m2(B)

1−∑A∩B6= /0m1(A)m2(B)
(5.2)

Once the masses have been distributed and combined, it is necessary to extract the most

likely entity from the mass distribution. Dempster-Shafermakes it possible to compute
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the belief about a setA⊆ Θ of propositions, as the sum of all the basic masses that

support its constituents:

Bel(A) = ∑
B∩A

m(B)

It also provides the formula for computingplausibilityof the setA, that is the measure

of the extent to whichA might be true:

Pl(A) = 1−Bel(A) = ∑
B∩A6= /0

m(B)

In the matching process, a term from ontologyO1 is compared, using all the match-

ers, with all the terms from ontology listed in setT ⊆ O2. The setT represents the

frame of discernment. The results of the comparisons performed by an elementary

matcher are split into sets: each set contains terms that areequally likely to be the

exact alignment, and it is given a mass representing the likelihood that the exact match

is contained. The sets generated by the different matchers are combined using Demp-

ster’s formula, and then belief is computed for each term.

For example, given the termbed in O1 and the elementary matcher Edit-Distance,

the termsbid andbad from O2 are equally likely to be the correct correspondence

(they both have a distance of 0.33), and are put in the same set. Sets containing terms

with distance between 0 and 0.2 are given weight 0.5, those with terms having distance

between 0.2 and 0.3 are given 0.3, and finally those with termshaving distance between

0.3 and 0.5 are given 0.2. Terms with greater distance are discarded, giving them mass

0. The mass that cannot be given to any term is assigned to the set T ⊆O2 (that forms

the frame of discernmentΘ), and represents the “ignorance” of the matcher: a matcher

unable to find any similarity between a foreign term and all the terms in peer ontology

will give all of its mass to the frame of discernment. Continuing with the previous

example, if two matchers return:

• m1({bad,bid}) = 0.33,m1({bed}) = 0.5, m1(Θ) = 0.17

• m2({but,bid,bar}) = 0.1, m2({bed}) = 0.6, m2(Θ) = 0.3

wherem1(Θ) andm2(Θ) are the masses given by the matchers to the setT ⊆ O, and

represent the masses that cannot be assigned to any particular set. The combined mass

distribution will be:
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infix(t1, t2) checks ift1 is contained int2 or t2 in t1

postfix(t1, t2) checks ift1 ends witht2 or the otherway around

prefix(t1, t2) checks ift1 starts witht2 or the otherway around

soundex(t1, t2) checks for soundex similarity betweent1 andt2

editdistance(t1, t2) checks for the edit distance (number of string changes - addition, deletion and

modification of characters - needed to reach one string from another) betweent1 andt2

initsmatch(t1, t2) checks if the initials oft1 correspond tot2 or the other way around

parents(t1, t2,O1,O2) checks the edit distance of the parents oft1 andt2

children(t1, t2,O1,O2) checks the edit distance of the children oft1 andt2

siblings(t1, t2,O1,O2) checks the edit distance of the siblings oft1 andt2

Table 5.2: Matchers used in pyontomap

m1⊗m2 m1
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bid
















= 0.33 m1({bed}) = 0.5 m1 (Θ) = 0.17

m2
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= 0.1 m1⊗2({bid}) = 0.033 m1⊗2( /0) = 0.05 m2
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= 0.017

m2({bed}) = 0.6 m1⊗2( /0) = 0.2 m1⊗2({bed}) = 0.3 m1⊗2({bed}) = 0.102

m2 (Θ) = 0.3 m1⊗2({bid}) = 0.099 m1⊗2

















bad

bed
















= 0.15 m1⊗2 (Θ) = 0.051

The beliefs about the alignments are:

Bel({bed}) = 0.15+0.3+0.102= 0.552

Bel({bid}) = 0.033+0.099= 0.132
...

The matcher was configured to use the matchers in Table 5.2.

Using the predictor

As we have seen in Section 3.5, the probability distributionP(Qk |IMstate,M ) com-

puted by the predictor can be used:

1. to extract a subsetΛ of terms from the peer’s ontology to be compared with
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Figure 5.13: Splitting the probability distribution into sets

the term in the message, reducing the resources required formatching (setting

T = Λ), and

2. as results of an additional matcher, able to exploit the additional information

available in the context of the interaction.

In the first case, if nothing is found by the matcher in the suggestion setΛ (that is, there

is no term with belief higher than a given threshold), it is possible either to consider

that no possible match exists (no reattemptpolicy), or to extend the comparisons to the

rest of the ontology, posing the setT = O2\Λ (reattemptpolicy).

If P(Qk |IMstate,M ) is used as the result of an additional matcher, the distribution

is split into sets of terms equally likely to be the exact match and a mass is assigned to

each set, as shown in Figure 5.13. The thresholds for splitting the probability distribu-

tion into sets and the masses assigned to the sets were obtained empirically.

Running the experiments

Each performed experiment consists of running 400 interactions: first 200 interactions

are run between two agents with the same ontology with the aimof creating a first

approximation of the statistical model, then 200 further interactions are run replacing

one agent with another that uses a different ontology. The predictor is not aware that

the ontology is shared in the first set of runs, and works as if it had to predict and match

different ontologies. As described above, one ontology is generated, while the second

is a variation of the first ontology, obtained applying the changes described in Table

5.1.

Three different types of experiments were executed: one without the use of the

predictor, as a baseline, and two using the predictor, the first using theno reattempt
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policy (no match exists if nothing is found inΛ), and the second using thereattempt

policy (extending the comparisons to the remaining ontology if nothing is found inΛ).

Each type of experiments was run 3 times to average the results.

The experiments were run on a dual core laptop with two 1.83 T5600 CPUs and

1Gb of RAM.

5.4.2 Results

We have seen in Section 3.2 that the performance of an ontology matcher is usually

measured by itsprecisionandrecall. Given thatMfound is the set of correspondences

found by the mapping system andMcorrect is the set of correct correspondences:

precision is the ratio between the number of correct correspondences among those

found and the total number of correspondences found:

Precision=
|Mfound∩Mcorrect|
|Mfound|

recall is the ratio between the number of correspondences found andthe total number

of possible ones:

Recall=
|Mfound∩Mcorrect|
|Mcorrect|

The average size and the average success rate of the predictor influence the perfor-

mance of the matcher when the probability distribution is used only to generate the

suggested setΛ. If the no reattemptpolicy is used, then a low success rate will surely

lower the recall, and possibly the precision. A low success rate means that the corre-

sponding termtm is often not in the suggested setΛ: many possible correspondences

will be missed by the matcher that uses only the terms inΛ for comparison withw j ,

reducing the setM f ound. Precision is lowered as well, but by a different mechanism.A

setΛ not containingtm may contain another termtwm that is considered to correspond

to w j “well enough” by the matcher: the belief in its correspondence is lower than what

would be computed fortm if it was in Λ, but it might still be higher than the threshold,

and because there are no competitors, it is chosen as the bestcorrespondence, lowering

precision.

If the reattemptpolicy is used, then a low success rate will lower the precision for

the same reason as above, but recall will be affected less: ifnothing is found inΛ, then

the remaining terms in the ontology are compared withw j , increasing the likelihood

of finding the correspondence.
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Figure 5.14: Matching results when predictor is used. Finding no corre-

spondences in the suggestions set Λ is considered equivalent as finding no

correspondence at all (no reattempt policy)

If the probability distribution is used as a matcher, then itinfluences directly the

belief computed for the terms. If the probability assigned to tm in P(Qk |IMstate,M )

is consistently low, then a low mass will be assigned to the term: this influences the

belief in tm, as we have seen in Section 2.6.

Figure 5.14 shows the results of running the experiment withthe predictor, with

theno reattemptpolicy. What the graph shows is that the time required for matching

drops immediately, keeps decreasing for a while and then slowly increases. This trend

reflects the fact (mentioned in Section 5.3.2) that the average size ofΛ is low initially

and increases with every interaction: the number of comparisons increases proportion-

ally with the size ofΛ. Precision and recall are small initially, and increase following

the success rate of the predictor.

Figure 5.15 shows the results of running the experiment withthe predictor, using

thereattemptpolicy. Time decreases while the predictor improves its success rate, and

stabilises when the predictor success stabilises. Recall and precision decrease initially

and then increase converging towards respectively 1 and 0.9.

If, as described in the second use of the predictor, the probability distribution

P(Qk |IMstate,M ) is used as an additional matcher, assigning a low probability to the

correct term and high probability to the wrong ones sways themass distribution com-

puted combining the mass distributions provided by the other ontology matchers. The

probability distributionP(Qk |IMstate,M ) is split into sets containing terms with sim-

ilar likelihood. If the probability distribution is not correct, the wrong terms will re-

ceive more mass than the correct one, and the combination of masses computed using

Dempster’s rule will tend to sway mass towards the wrong terms. This is particularly
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Figure 5.15: Matching results when predictor is used. When no correspon-

dence is found in the suggestions set Λ, the matcher is used to compare the

remaining terms in the whole ontology (reattempt policy).

problematic when the ontology matchers can assign only little mass, and are forced

to assign most of their masses to the frame of discernment because of lack of infor-

mation about the relations between the terms to match. The mass assigned using the

probability distribution will override the mass assigned by the other matchers.

Initially, the predictor is bound to have the wrong distribution, as the results pro-

vided earlier show: it takes at least 80-90 runs to obtain a consistent success rate of

60%. To compensate for this, the mass that can be assigned by the predictor is initially

low, and increases over time, following a logarithmic curvesimilar to the learning

curve obtained empirically and shown in Figure 5.7. During the first runs of an inter-

action, the predictor splits a small amount of mass between the sets of equally likely

terms, and assigns the remaining mass to the frame of discernment. As the interaction

is repeated, the statistical model gets better (on average)and the mass that the predictor

can split between the sets increases.

5.4.2.1 Comparing performance

Time

Figure 5.16 compares directly the computation times for thethree cases (no predic-

tor used, predictor used withreattemptpolicy and predictor used withno reattempt

policy). When no predictor is used, the number of comparisons remains constant over

400 interactions, and therefore time remains constant around 10000ms: as we said ear-

lier, matching is always performed and comparing terms fromthe same ontology is no

quicker than comparing from two different ones. Fluctuations are due to different CPU

loads over time.
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Figure 5.16: Matching time when predictor is not used, is used with reattempt

and without reattempt.

The use of the predictor reduces time complexity remarkably. When theno reat-

temptpolicy is used, matching time starts at a low value of 1200ms (it compares al-

ways only the terms inΛ), decreases further to 350ms and remains low, increasing

only slightly to 600ms with the increasing size ofΛ, as we have seen before. When

the reattemptpolicy is used, the matching time starts at 6400ms because the initial

success rate is only 0.4 and therefore in 60% of the cases the comparisons are done

with the whole ontology. As the success rate increases, timedecreases and stabilises at

around 1000-1200ms, a level twice the one obtained using theno reattemptpolicy but

nearly 10 times lower than that needed by the baseline solution. The average success

rate of the predictor, as we have seen before, is around 0.8: this means that in up to

20% of the cases nothing is found, and comparisons have to be performed with the

remaining terms in the ontology. As pointed out in the introduction of this section, if

the exact correspondencetm is not in the suggested setΛ the wrong correspondence

can be found in it, reducing precision but also computation time as a side effect (no

further comparisons with the remaining terms in the ontology are required).

Precision

Figure 5.17 compares precision across the three experiments. In the baseline so-

lution, where no predictor is used, precision fluctuates around 0.9 after the first 200

interactions in which the same ontology is used by both peers.

In the experiments with the predictor, precision starts remarkably lower than the

baseline and then linearly converges towards the baseline.There is no evident dif-

ference between the two policies (no reattemptandreattempt) when the predictor is

used.

We have seen in Section 5.3.2 that the success rate starts at alow value, and there-
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Figure 5.17: Matching precision when predictor is not used, when used with

reattempt strategy and without reattempt strategy.

fore initially the suggested setΛ often does not contain the correct correspondence:

we have explained above that the matcher may find a termtwm in Λ whose belief is

higher than the threshold, and it is wrongly chosen as the correct alignment, lowering

the precision.

We have also illustrated in Subsection 5.4.2 that if the probability distribution

P(Qk |IMstate,M ) is used as an additional matcher, it may sway the combined mass

when it ranks as unlikely the correct term, especially when the other matchers can

distribute little or no mass.

Recall

Figure 5.18 compares the recall trend in the three experiments. In the baseline,

where no predictor is used, recall stabilises around 0.95, after the first 200 interactions

in which the same ontology is used. When the predictor is used, recall starts lower,

decreases and then converges towards the same value as the baseline. Using thereat-

temptpolicy, recall overtakes the baseline, remaining constantly higher. Using theno

reattemptpolicy, recall starts lower than with thereattemptpolicy and remains lower

(15-20%) than the baseline for most of the experiment, getting closer only towards the

end of the experiment.

Compared to the baseline, precision is sometimes improved by the additional in-

formation, but, as we have seen above, the failure to includethe exact correspondence

in the suggestion setΛ can sway the matcher towards selecting the wrong term. Recall,

on the other hand, is improved by the additional informationprovided by the predictor.

The fluctuations in both precision and recall depend also on the termsw j randomly

chosen for the messages: within the 10 interaction intervalthere might be different

numbers of terms that the matchers cannot map correctly.
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Figure 5.18: Matching recall when predictor is not used, is used with reat-

tempt and without reattempt.

5.5 Summary

In this chapter we have first evaluated the performance of thecontent predictor pre-

sented in Chapter 4 independently of its use and then to assess the benefits of using it

with an Ontology Matching system.

The evaluation was performed by simulation: the tested interactions represent pat-

terns of common interactions, and the peers respond to constraints either using a prob-

ability distribution over the possible values (to reflect the preferences of a community)

or according to some specific function. The peers were given generated ontologies.

This allows the evaluation of the predictor when used with ontologies varying along

different dimensions, specified during generation.

As said in Chapter 4, the predictor computes a probability distribution for a partic-

ular variable in a received message, using the context information available from the

current and the past interaction runs. The probability distribution can be used to select

the most likely terms (those whose cumulative probability is higher than a given thresh-

old), and as a synthetised contextual information that can be exploited by a matching

algorithm.

When evaluating the ability of the predictor in guessing thecorrect content of the

exchanged messages, no matching was involved: the peers interact sharing the same

ontology. The aim of this set of experiments was to evaluate how different interaction

scenarios could be handled by the predictor. The scenarios were simulated varying the

preference distributions used to select the terms to introduce in variables: narrow, wide

and time-varying distributions were used. The measures of performance considered are

the size of the suggested setΛ of likely terms (see Section 3.5), the probability that the

set contains the exact term in the message, and the rank of theterm in the set.
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The usefulness of the predictor has been evaluated feeding the results into a matcher

that must map the foreign terms in the messages to local terms. The performance is

compared with a baseline case in which the predictor is not used. The computational

time required by the matcher to find the correspondence, keeping the precision and

recall constant, is reduced by a factor of 8 to 10. On the otherhand, when a new

interaction is used recall and in particular precision start low, and increase at the same

rate of the success rate of the predictor. However after enough interactions, precision

reaches the same level of the baseline and recall reaches a slightly higher level.



Chapter 6

Related Work

6.1 Introduction

The work presented in this thesis pulls together different technologies: it does so not

with the aim of improving any of them, but with the aim of showing how they can be

brought together in a novel way in order to improve their overall performance. In par-

ticular, it exploits a model of agent coordination for analysing the interactions between

agents and it feeds the results of the analyses to an ontologymatcher. The results fed to

the matcher are predictions of the likely content of the exchanged messages between

the agents. The predictions, extracted from analysing dialogues, are obtained using

statistical methods partially inspired by Natural Language Processing techniques.

Different agent coordination approaches are available, but not all of them can be

successfully used with the framework described in the thesis: the predictor needs a co-

ordination model that considers interactions as first-class objects that can be identified.

Sections 6.2 and 6.3 describe the alternatives to agent coordination, and highlight the

reasons supporting the choice of LCC as the formalism for specifying interactions. In

particular, Section 6.2 describes coordination approaches centred on autonomous, ra-

tional agents. The first approach described involves modelling the mental states of the

other agents and considering the exchanged speech acts as actions that changes these

states. The other approach uses norms to specify the allowed, expected and forbid-

den behaviours of the agents. Section 6.3 describes servicecomposition approaches,

where the services are passive computational elements pulled together into workflows

by some entities.

While the predictor depends on the coordination model used by the agents for their

interactions, the predictions can be theoretically fed to any ontology matcher. Section

100
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6.4 reviews the literature in ontology matching, presenting first the different categori-

sations of the mismatches between ontologies and of the matchers, then describing

the basic matching techniques used by the available matching systems, and finally

overviewing some of the most interesting projects.

Finally, Section 6.5 presents some of the ideas and techniques used in Natural

Language Processing that inspired the working of the predictor.

6.2 Agent coordination and communication

In Chapter 2, we described inter-agent interactions via LCC, which constrain the agents

to follow a predefined, stringent script. The literature also presents different approaches

that give the agent varying levels of freedom and require different computational work-

loads. Thementalisticapproach relies on agents modelling the internal state of the

other agents, and planning interactions as sequences of actions, the exchanged mes-

sages, that change these internal states. Thesocialapproach is more oriented towards

giving normative rules on what agents should do, without taking into account their

internal state.

Applying the predictor presented in this thesis to the systems based on the men-

talistic approach is difficult, because, in contrast with the use of choreographies, there

is no defined context for an interaction. An interaction is the result of the involved

agents planning their part of the dialogue. An agent, in order to recognise that it is

in the same context, needs to match the current exchange of messages with previous

exchanges: if the agent has participated in many different types of interactions, with

some starting with the same subsequence, it cannot be sure which dialogue it is in until

enough messages have been exchanged. Moreover, as different agents plan their part

of the dialogue, each interaction can be different. With choreographies, on the other

hand, agents agree to interact according to the shared interaction model, and this pro-

vide the stable context from the start of the interaction. The mentalistic approach also

suppose a rational agent, able to reason over the received messages and decide the next

steps, while our model does not make assumptions about the reasoning capabilities of

the agents.
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6.2.1 Mentalistic approach

In the mentalistic approach, speech actions are like actions: they change the state of the

world, similar to physical actions [54]. Initial attempts such as [10] used formalisms

like STRIPS: a speech acts could be defined by its preconditions and postconditions,

expressed in multimodal logic, that were used to create plans. These early attempts

were then refined into a more general theory by Cohen and Levesque [11]: speech

acts are actions performed by rational agents that are trying to fulfill their intentions,

according to their desires and current beliefs. The model isalso called the Belief-

Desire-Intention (BDI) model.

The speech act theory has influenced the development of various agent communi-

cation languages (ACL): we will overview KQML and the standardisation effort at-

tempted by FIPA.

KQML

TheKnowledge Query and Manipulation Languagewas initially developed in the early

90s as part of DARPA knowledge Sharing Effort to enhance the knowledge sharing and

not specifically for agents.

KQML ACL aimed at creating a set of performatives to capture various proposi-

tional attitudes an agent wants to express. It has been developed to be independent of

low level transport layer, as well as of the content languageand ontology used.

A KQML message is composed by the locution and the content parts. The core of

KQML is the speech act that wraps the content. The semantic ofa message is expressed

in terms of preconditions, postconditions and completion conditions. Conditions are

expressed for both speakers and hearer of the utterance. Figure 6.1, taken and adapted

from [67], shows a simple dialogue between an agent A, askingfor the value of the

attribute price (defined in an ontology called “travels”) ofthe flight BA786, and an

agent B replying with the requested value.

FIPA ACL

The Foundation for Intelligent Physical Agent1 is a standardisation body concerned

with issues of interoperability. One of its committee is in charge of the development of

ACL. FIPA ACL is similar to KQML: it is based on speech acts andit is BDI-centric.

Also the syntax of the individual locutions resembles KQML.

1http://www.fipa.org
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(evaluate

:sender A :receiver B

:language KIF :ontology travels

:reply-with q1 :content (val(price BA786)))

(reply

:sender B :receiver A

:language KIF :ontology travels

:in-reply-to q1 :content (= (price BA786) (scalar 225 pound )))

Figure 6.1: Example of KQML dialogue

(inform

:sender agent1

:receiver agent2

:content (price BA786 225)

:language sl

:ontology travels

)

Figure 6.2: Example of FIPA ACL message

The specifications of messages provide an English description and a formal seman-

tics, expressed in a form of Modal Logic called Semantic Language. The Semantic

Language is a Multimodal logic able to represent certain anduncertain beliefs, desires

and intentions.

Each communication act is is defined by its feasible preconditions and its rational

effects. The feasible preconditions describe the appropriate mental state that the agent

must have before sending the message, if it wants to comply with the standard. The

rational effects specifies the expected mental state, giventhat the agent has performed

the communication. The rational effects are usually definedfor the recipient, but they

do not need to hold in order to be compliant.

Figure 6.2, shows a simple message, sent fromagent1 to agent2 to inform about

the price of the flightBA786. Figure 6.3, shows the semantics for the messagesinform

andrequest . Both figures are taken from [67].
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〈i, in f orm( j,ϕ)〉

feasibility precondition:Biϕ ∧¬Bi
(

Bi f jϕ ∨Ui f jϕ
)

rational effect:B jϕ
where Biϕ means ’agent i believesϕ ’, Bi f jϕ means that ’agent j has a definite opinion one

way or another about the truth of falsity ofϕ ’, and Ui f jϕ means ’agent j is uncertain about

ϕ ; An agent i sending aninform message with contentϕ respects the FIPA semantics if it

believesϕ , and it is not the case that it believes either that j believeswhetherϕ is false or true,

or that j is uncertain of the truth or falsity ofϕ .

〈i, request( j,α)〉

feasibility precondition:BiAgent(α, j)∧¬Bi I jDone(α)

rational effect:Done(α)

where Agent(α , j) means that ’the agent of actionα is j’, and Done(α) means that ’the action

α has been done. The agent i requesting agent j to perform action αmeans that agent i believes

that the agent able to performα is j and that agent j does not currently intend thatα is done.

Figure 6.3: FIPA semantics of inform and request

6.2.2 The Normative approach

Electronic Institutions

With Electronic Institutions the authors have tried to reproduce the way humans have

developed social institutions, ranging from the state to private companies, to structure

their social interactions within social institutions.

In eInstitution the interactions between agents are divided into scenes. In each

scene an agent can take only one role. The scene is described as a Finite State Machine.

The messages between agents causes the state of the interaction to change state. The

interactions between agents are constrained by normative rules, that prescribe obliga-

tions and prohibitions for the agents in a particular situation. The scenes are connected

together to compose a workflow, and the specification of the workflow describes how

agents can legally move from one scene to another.

In eInstitutions agents and roles can be institutionals or externals. The institutional

roles, and the agents that embody them, work to guarantee that the institutional rules

are respected, while the external roles and agents are requested to conform to the insti-

tutional rules.

The institution prescribes a common language and a common ontology to use, but

it makes no assumption about the internal structure of the agents.
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An Electronic Institution can be regarded as social middleware that sits
between the external, participating agents and the chosen communication
layer validating or rejecting their actions. [57]

There exists a tool, developed inside the OpenKnowledge project, for converting e-

institutions into LCC.

6.3 Web Service composition

The mentalistic approach to agent coordination introducedbefore rely on autonomous,

smart agents able to take decisions and to plan interactionsinvolving other similar

agents. The normative approach poses a lighter workload on the agents, as it reduces

the search space for the actions forcing some behaviours andbanning others. In a

framework like OpenKnowledge, the norms are specified by interaction models, and

the autonomy of the agents is reduced to the possibility of chosing what interaction to

run.

However, in many applications the simpler integration and composition of dis-

tributedservicesmay be enough, leaving the services unaware of their involvement in

interactions.

While a service can be anything, the term is often used to indicate aweb service,

that is, according to W3C:

“A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.”[7]

The services’ preconditions and effects may be described with a rich ontology such as

OWL-S, and a centralised planner composes them, either automatically or assisted by

a human, creating a plan of execution. Alternatively, and more commonly, the plan

may be designed a priori, as a centralised or distributed workflow of activities and the

services are grounded, normally at design time, into those activities. We first introduce

OWL-S in Subsection 6.3.1, and then overview two centralised and one distributed

workflow languages in Subsection 6.3.2.
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6.3.1 Semantic approach

OWL-S2 is an ontology built on top of Web Ontology Language (OWL) by the DARPA

DAML program as a replacement of the former DAML-S ontology.It is an ontology,

written in OWL, for describing Semantic Web Services, with the aim of enabling users

and software agents to automatically discover, invoke, compose, and monitor Web

resources offering services, under specified constraints:

• Automatic Web service discovery: OWL-S aims at helping software agents to

discover the Web Services that fulfill a specific need within some quality con-

straints, without the need for human intervention.

• Automatic Web service invocation: generally, it is necessary to write a specific

program to invoke a Web Service, using its WSDL description.Using OWL-S a

software agent should be able to automatically read the description of the Web

Service’s inputs and outputs and invoke the service.

• Automatic Web service composition and interoperation: in a Web where many

services are available, it should be possible to perform a complex task, involving

the coordinated invocation of various Web Services, based solely on the high-

level description of the objective. OWL-S aims at helping inthe composition

and interoperation of the Services in order to enable the automatic execution of

this task.

The OWL-S ontology is composed by the parts:

• the service profiledescribes what the service does. This information is primary

meant for human reading, and includes the service name and description, limita-

tions on applicability and quality of service, publisher and contact information.

• the process modeldescribes how a client can interact with the service. This

description includes the sets of inputs, outputs, pre-conditions and results of the

service execution.

• the service groundingspecifies the details that a client needs to interact with the

service, as communication interaction models, message formats, port numbers,

etc.
2http://www.daml.org/services/owl-s/
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6.3.2 Web Service Workflow languages

A workflow is a:

“reliably repeatable pattern of activity enabled by a systematic organi-
zation of resources, defined roles and mass, energy and information flows,
into a work process that can be documented and learnt. “

Web services composition follows two alternative approaches:orchestrationor chore-

ography. Their primary difference is their scope. An orchestrationmodel provides a

scope specifically focussing on the view of one participant.Instead, a choreography

model covers all parties and their associated interactionsgiving a global view of the

system. The orchestration and the choreography distinctions are based on analogies:

orchestration describes central control of behaviour as a conductor in an orchestra,

while choreography is about distributed control of behaviour where individual partici-

pants perform processing based on outside events, as in a choreographed dance where

dancers react to behaviours of their peers:

“Dancers dance following a global scenario without a singlepoint of
control"[9]

In orchestration, a central process takes control and coordinates the execution of differ-

ent operations on the involved web services. The web services do not know that they

are involved in a composition process: only the central process is aware.

Choreography does not rely on a centralised coordinator: each web service knows

when to execute its operation and with whom to interact. It isa collaborative effort

focussing on the exchange of messages. All participants need to be aware.

In the following subsections first I overview two orchestration languages, one

business-oriented (BPEL), and one more academic (YAWL), and then a choreography

language (WS-CDL).

Choreographies are the approach used in this thesis. As we have seen in Section

2.4.4, LCC was used to specify the interactions. While another choreography language

such as WS-CDL could have been used, LCC is more compact and directly executable.

These advantages lead to its choice.

Orchestrations define the behaviour of a single agent: the predictor can be used

only for that agent. The other agents are not aware of being part of the interaction:

their services are invoked from the orchestrating agent without any reference to an in-

teraction context. If they wanted to use the predictor, theywould need to recognise,



Chapter 6. Related Work 108

from the sequence of invocations, to be in a specific type of interaction. The problem

is similar to the one encountered by agents using a mentalistic approach: each invo-

cation can increase the probability of being in a certain type of interaction, but it may

requires several messages to reach a certain level of confidence. Moreover, different

orchestration agents may use different workflows for the same goal, possibly changing

the invocations that an agent providing a set of services canexpect.

BPEL (Business Process Execution Language)

BPEL (Business Process Execution Language) for Web services is an orchestration lan-

guage. It is an XML-based language designed to enable task-sharing for a distributed

computing or grid computing environment - even across multiple organisations - using

a combination of Web services. Written by developers from BEA Systems, IBM, and

Microsoft, BPEL combines and replaces IBM’s Web Services Flow Language (WSFL)

and Microsoft’s XLANG specification.

A BPEL process receives a request and to fulfill it it invokes the involved web ser-

vices and then responds to the caller. Defining a BPEL processis essentially defining a

new web service that is the composition of existing services. A BPEL process consists

of steps: each step is calledactivity, that can be primitive or structure. A primitive

activity can be an invocation of a web service, waiting a reply from an asynchronous

call, generating responses for synchronous operations, manipulating variables, indicat-

ing faults, waiting specified intervals, terminating the process. A structure activity is

a composition of primitive ones. Primitive activities can be composed in sequence, in

parallel, in loops, or as branches with conditions.

YAWL (Yet Another Workflow Language)

In recent years many different workflow products have appeared, each with its own

semantics and constructs. The task of comparing them has induced researchers, in

particular those in Van der Aalst group in the Eindhoven University, to identify the

most frequently used patterns applied in the development ofworkflows [64]. The

workflow patterns are pragmatically used to compare the expressivity of the different

workflow languages. A more formal foundation to represent and compare workflow

is provided by Petri nets, even though some patterns are difficult to represent even

with extended Petri nets. To overcome these difficulties, the Van der Aalst groups has

developed another workflow language, YAWL [62], based on patterns, and defined in
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terms of a transition system. A workflow specification in YAWLis a set of process

definitions which form a hierarchy. Tasks are either atomic tasks or composite tasks.

Each task refers to a process definition at a lower level in thehierarchy. Atomic tasks

are leaves of the graph-like structure.

WS-CDL (WS-Choreography Description Language)

The Web Service-Choreography Description Language [34] isa specification by the

W3C defining a XML-based business process modeling languagethat describes com-

mon and collaborative observable behaviour of multiple services that need to interact

in order to achieve some goal. WS-CDL describes this behaviour from a global or

neutral perspective rather than from the perspective of anyone party. WS-CDL is a

description and not an executable language.

Peer-to-peer protocols described in WS-CDL do not have a centralised point of

control: each party remains autonomous and no party is master over any other. There

are no global variables, conditions or workunits, as it would require centralised stor-

age and orchestration. WS-CDL permits a shorthand notationto enable variables and

conditions to exist in multiple places, but this is syntactic sugar to avoid repetitive

definitions. There is also an ability for variables residingin one service to be aligned

(synchronised) with the variables residing in another service, giving the illusion of

global or shared state.

In WS-CDL all messages are described as information types and there is no dis-

tinction between application and infrastructure messages. All that WS-CDL describes

is the ordering rules for the messages which dictate the order in which they should be

observed. When these ordering rules are broken WS-CDL considers them to be out-of-

sequence messages and this can be viewed as an error in conformance of the services

that gave rise to them against the WS-CDL description.

Services are any form of computational process with which one may interact, ex-

amples are a buying process and a selling process that are implemented as computa-

tional services in a Service Oriented Architecture (SOA) oras a Web Services imple-

mentation of an SOA: WS-CDL is not explicitly bound to WSDL and therefore it can

play the same global model role for both SOA services and Web Services. It is possible

to use WS-CDL to describe a global model for services with no WSDL descriptions

(they can have Java interfaces) as easily as it is to describeservices that do have or will

have WSDL descriptions.
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6.4 Ontology Matching review

We have seen in Section 3.2 how the success of the ontologies has brought a wealth

of ontologies, not their standardisation. We have presented how this heterogeneity is

tackled using Ontology Matching algorithms. In this section we will first introduce dif-

ferent classifications for the sources of mismatches between ontologies in Subsection

6.4.1 and for the matching algorithms in Subsection 6.4.2, then overview the elemen-

tary matching techniques in Subsection 6.4.3 and finally review a group of interesting

projects in Subsection 6.4.4.

6.4.1 Ontology mismatches classifications

Hameed, Preece and Sleeman [31] distinguish three perspective in the classification of

mismatches.

Knowledge Representation Perspective

According to [65], ontologies can differ because of two maincategories of mis-

matches:conceptualisationandexplicationmismatches. The first category of mis-

matches originates from the initial phase of conceptualisation of the domain. Concep-

tualisation mismatches include class and relation mismatches: for example, classes can

be divided into different subclasses (for example, the class animalcan be subclassed

into mammals, birds, reptiles, fishesin one ontology and intoherbivores, carnivores

andomnivoresin another), or attributes can be assigned to different classes (for exam-

ple, two ontologies can have the same classescameraanddigital_camera, the second

subclass of the first, and the attributelensmay be attached tocamerain one ontology

and todigital_camerain the other). Explication mismatches are caused by differences

in the way the conceptualisation is specified in a formal language: for example, there

might be ambiguities derived from using the same term to identify different entities (for

example,bankmeaningfinancial institutionin one ontology andridge in another), or

from using different terms to identify the same entity (for example,car andautomo-

bile).

Database perspective

Wiederhold [66] proposes a different set of mismatches, more oriented to data sources:

key difference: different naming for the same concept



Chapter 6. Related Work 111

scope difference:distinct domains, or distinct coverage of domain members

abstraction grain: varied granularity of detail among the definitions

temporal basis: mismatches concerning time, periods, intervals

domain semantics: distinct domains, and the way they are modelled.

value semantics:differences in the encoding of values (date format, currencies,...)

Knowledge Elicitation Perspective

Shaw and Gaines [55] described four dimensions to map knowledge elicitation situ-

ations likely to be encountered when experts are involved inthe process of developing

a knowledge-based system:

Conflict: when experts use the same term for different concepts

Correspondence: when the experts use different terms for the same concept

Constrast: when the experts use different terms and have different concepts

Consensus:when all the experts use the same term for the same concept

6.4.2 Matchers’ Classifications

Different ontology mapping surveys have been compiled through the recent years [56,

49, 33]. They offer a classification of the ontology matchingsystems and a review of

the techniques at the state of the art.

Shvaiko and Euzenat, in their [56], distinguish three dimensions for the classifica-

tion:

input dimensions: these dimensions are about the kind of input on which an algo-

rithm operate:

• the data/conceptual model in which the ontologies are expressed (E-R schemas,

OO structures, XML, RDF or OWL ontologies)

• the type of data that the algorithm exploits for finding correspondences:

schema data (the conceptual model of the ontology), instance data, or both

process dimensions:the type of computation involved, that can be either exact or

approximate
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output dimensions: what result is returned to the user: one-to-one correspondences

between the entries in the ontologies, graded or all-or-nothing answers, and the

kind of relations that between the entries (similarity, equivalence, subsumption,

...)

6.4.3 Elementary matching techniques

Most ontology matchers combine the results produced by elementary matchers. The

elementary matchers can be classified in many different way.Shvaiko and Euzenat

propose two classifications, based on:

granularity and input interpretation that divides the matchers inelement-levelones,

that analyse the entities in isolation ignoring their relations with other entities, or

structure-levelmatchers, that analyse how entities appear together in a structure

kind of input that divides the matchers based on the type input (syntactic, external or

semantic)

Element-level techniques

String-based techniques They consider names, labels and comments as sequence

of characters. Often the strings are normalised before being compared: they are con-

verted to lowercase, characters with diatric symbols (suchas accents or cedillas) are

replaced with their more common versions (é to e, n̋ to n, etc), spaces are trimmed, and

finally hyphens, apostrophes, punctuation symbols or digits are removed.

• substring: verifies if one string is a substring of another (can be a prefix, as in in

integerandint, a postfix, as intelephoneandphone)

• Hamming distance: counts the number of positions in which the two strings

differ. For example,synchroniseandsynchronizehave an Hamming distance of

1.

• edit distance: takes two strings and counts the minimum number of insertions,

deletions, substitutions of characters required to transform one string into an-

other (usually normalised by the length of the longest string). For example,ar-

ticle andaricle have a distance of 0.14, whilearticle andpaperhave a distance

of 1.
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• n-gram: takes two strings and counts the number of commonn-grams (sequences

of n characters). For example,article andaricle have a similarity of 0.5,article

andpapera similarity of 0 whilearticle andparticlehave a similarity of 0.83.

Comparing only the labels of the entities in two ontologies cannot handle synonyms

(different words that name the same entity) and homonyms (same word used to name

different entities).

Language-based techniques In order to deal with the problems caused by syn-

onyms and homonyms, more sophisticated matchers consider words in label to have a

structure and a meaning, derived by their use in some naturallanguage. Euzenat and

Shvaiko distinguish betweenintrinsic andextrinsictechniques.

In intrinsic techniques, the text is normalised to reduce the form to a standard form

that is more easily recognised:

• tokenisation: is the process of demarcating and possibly classifying sections of

a string of input characters. For example, the sentence “advances in imaging

technology” becomes the list of strings<“advances”, “in”, “imaging”, “tech-

nology”>.

• lemmatisation: strings of tokens are morphologically analysed to reduce them

to a normalised, standard form. In many languages, words appear in several in-

flected forms: for example, in English, the verb‘to walk’ may appear as‘walk’ ,

‘walked’, ‘walks’, ‘walking’. The base form,‘walk’ , that one might look up

in a dictionary, is called the lemma for the word. The list<“advances”, “in”,

“imaging”, “technology”> would become<“advance”, “in”, “image”, “tech-

nology”> .

• elimination: words that carry little meaning (like articles or prepositions) are

dropped. For example, in the list above the token“in” would be dropped yield-

ing <“advance” , “image”, “technology”>.

• term extraction: morphologically similar phrases are recognised, using patterns

learnt from large corpora. This is normally obtained identifying the role of the

words (whether they are noun, verb, ...) and then comparing the resulting struc-

tures. For example,Noun1 Noun2 andNoun2 ofNoun1 are considered equivalent,

and therefore“newspaper article”would be considered equivalent to“article of

newspaper”.
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In extrinsic techniques, use external common knowledge or domain specific thesauri

to match the entities:

• lexicons: or dictionaries, are set of words with a definition in natural language.

• multi-language lexicons: are dictionaries where the definition is replaced by a

word in another language

• thesauri: are lexicons where the relations between words are made explicit. One

of the most commonly used thesaurus is WordNet [40].

Extrinsic techniques help in dealing with synonyms. However, words are often used

with different meanings, and a resource such as a theaurus can show incorrect relations,

increasing the false positives and consequently decreasing precision. To deal with

this problem the words used in labels need to be disambiguated, restricting the senses

to those consistent with the context. The probability distribution computed by the

predictor can help here, providing additional contextual information.

Alignment reuse They store alignment used in previous matching, assuming that

many ontologies or schemas can be similar to previously matched ones.

Structure-level techniques

Internal structure techniques Deal with internal constraints applied to definitions

of the entities: data types, cardinality of attributes,...

Graph-based techniques They consider the input ontologies as labelled graphs, and

are based on the intuition that if two nodes in two ontologiesare similar, then their

neighbours will be likely similar.

• graph matching: searches the maximally common directed subgraphs

• children matching: the similarity between two inner nodes is computed based on

the similarity of their children nodes

• leaves: the similarity between two inner nodes is computed based onthe simi-

larity of their leaves nodes

• relations: the similarity between two nodes is computed based on theirrelations

with other nodes (properties)
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Semantic based techniques

In a semantic method the model-theoretic semantics is used to justify the results [16]:

deductive methods are used on preprocessed ontologies.

Upper level Ontology The lack of common ground between the ontologies to map is

covered by upper level formal ontologies like SUMO [41] or DOLCE [42] to provide

a logical based system that the matcher can use to reason about the correspondences.

Deductive techinques They give a semantic interpretation to the ontologies, and use

well grounded deductive methods:

• SAT based: decompose the tree to a set of node matching problems, translating

each node matching into a propositional formula

axioms→ rel(context1,context2)

and check the validity of the formula. The axioms encode the background knowl-

edge

• Description-Based techniques: overcome some of the limitation of the SAT based

approach

6.4.4 Projects review

Following the classification used in [16], we divide the overview of the projects into

thoseschema basedand thoseinstance based. A project is schema based when it ex-

ploits mainly the conceptual definitions of the ontologies to find the correspondences,

while it is instance based when it uses the instances of the ontology for the compar-

isons.

Schema based

Mafra Developed by Maedche, Silva and Rocha [44], MAFRA is oriented to help

human users to map ontologies from different institutions.

The conceptual framework divides the process of matching two ontologies into

five steps, and four transversal tasks. The process starts bytrying to render uniform

the language in the source and the target ontologies. Once the syntactic and lexical

heterogeneity have been reduced, it proceeds to discover the similarity between the en-

tities in the ontologies using a multi-strategy and multi-algorithm process that analyses
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both the lexical and the property similarity of terms. Once the similarities have been

computed, they are used to create semantic bridges between the entities in the source

and target ontologies. Then the process continues, evaluating the semantic bridges and

transforming the instances from the source ontology to the target ontology. Finally,

post-processing is executed to improve the alignment.

Similarity Flooding It uses an hybrid matching algorithm based on similarity prop-

agation. Consider the schemas as directed labeled graphs. The technique starts from

a string-based comparison between nodes in order to find an initial alignment. It then

iterates, spreading the similarity from similar nodes to adjacent neighbours through

propagation coefficients. The similarity increases until the fix point is reached.

It consider the alignment as a solution to a clearly stated optimisation problem.

S-Match The S-Match project [23] has been developed by Giunchiglia and Shvaiko

at the University of Trento. It takes two trees, and computesthe strongest semantic

relation between each pair of nodes.

The process is organised into four macrosteps:

1. Compute concepts of labels, for all labels in the two trees. A concept of a label

is obtained by first tokenising labels, then lemmatising theresulting tokens and

finally using an oracle (WordNet in this case) to obtain the senses of lemmatised

tokens. Different senses are combined in a disjunction to form a propositional

formula for each label. Tokens from expression like “wines and cheeses” form a

disjunction (wine∨ cheese), while terms from expression like “Italian cheeses”

form a conjunction (italian∧cheese)

2. Compute concepts at nodes as the conjunction of the concept of label formulae

in the concept path to root

3. Compute semantic relations between pairs of labels from the two trees

4. Compute semantic relations between pairs of nodes from the two trees

The semantic relations between pairs of labels are used as input for computing the

relations between nodes. The system tries to verify the formula:

axioms→ rel (contextA,contextB)
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Theaxiomsare the computed relations between labels, whilecontextA andcontextB are

the concepts at the nodes. As the propositional solvers are satisfiability checkers, the

formula is then converted to:

axioms∧¬rel (contextA,contextB)

In [24] the developer of S-Match present an improved versionof their work, that

exploits the structure of the formulae above to increase thespeed of satisfiability com-

putation. The optimised version of S-Match is particularlyefficient on large classi-

fication, where it perform much better than COMA and than the original version of

S-Match, and it requires much less memory than Similarity Flooding.

COMA/COMA++ The COMA project [13] is a schema matching system, and can be

applied to XML or databases schemas. The schemas are translated to directed acyclic

graphs that are then compared to find correspondences. The central idea in COMA is to

combine different matching algorithms to find better results. Matching is an interactive

and iterative process, composed by three main steps:

• Optional user feedback:the user can manually provide match correspondences,

confirm or reject proposed matches

• Execution of matchers: multiple matchers are used independently to obtain

several similarity measures. Matchers can be simple, hybrid or reuse-oriented.

• Combination of individual match results: the results are aggregated into a

combined value for each pair, using some strategy (like the average or the maxi-

mum of the results), and then the candidates with the best similarity values above

a threshold are chosen.

COMA introduces also the reuse of past alignments, in the form of whole schemas or

fragments of them.

COMA++ [1] extends COMA improving the graphical interface for a better user

interactivity, improving the reuse of past alignments and replacing the internal repre-

sentation language to support schemas and ontologies written in different languages.

Instance based

Glue Glue [14] combines different machine learning techniques to find correspon-

dences. The matching is based on a representation of similarity between concepts
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formally defined as their joint distribution. The similarity between two conceptsA and

B is given by their joint distributionA∩B. Computing the joint distribution means

finding instances that belongs to both conceptsA andB. Usually instances of the two

concepts are separated: to solve this problem they use machine learning to develop two

classifiers for the instances.

The instances ofA are used to create a classifier forA, that is then used to classify

the instances ofB, and vice versa. Deciding which learning algorithm to use and which

information to exploit is difficult, and therefore a multi learning strategy is used. The

predictions supplied by the algorithms are then combined bya meta-learner.

Available domain constraints and general heuristics is also used to improve accu-

racy.

Mixed approach

QOM The QOM project [15] addresses the problem of efficiency in ontology map-

ping and considers the trade off between efficiency and quality. This is done introduc-

ing the idea of filtering correspondence candidates that areunlikely to be verified.

The matching process is iterative, and the main steps are:

• Selection of candidate pairswhose similarity should be checked: candidates

are selected using different strategies to classify them into more promising and

less promising ones. The strategies can use the labels of thepairs (only similar

ones are kept), the hierarchy of the ontology (the ontologies are mapped from the

top down), the result of previous iterations (only terms close to terms mapped in

the previous iteration are mapped) or a combination of these.

• Similarity computation: the similarity is computed using a range of similarity

functions. These can measure the string similarity of the labels, can check if the

concepts share the same properties, the same descendants, the same siblings...

• Similarity aggregation: the measures given by these functions are then com-

bined. The candidates with low aggregate measures are discarded, then bijective

candidates (candidates for which the relation can work in both directions) are

kept and finally the candidates with the strongest aggregatemeasure are kept.

These steps are repeated until no new correspondence can be found.
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6.4.5 Approximate Structure-Preserving Semantic Matchin g

Most of the projects described above aim at finding correspondences between terms

in ontologies. In open systems, such as OpenKnowledge, theycan be used to map

the contentof messages, or the content of invocations to web services. However, it

is often necessary to adapt structures: for example, in OpenKnowledge, peers need

to map their methods to the constraints in the interaction models: parameters can be

called with different names, might be in different positions, or their structure might be

different. Similarly, it might be necessary to dynamicallymap the invocation of a web

service, as defined in a workflow, to the WSDL interface of the web service.

Often it is not possible to map exactly every element in the two structure: however,

it can be enough to be able to invoke the service, possibly with some parameters set

to a default value. The work presented in [21] deals with the problem of approximate

matching of structures. Web services are considered first order predicates, and are

transformed into trees. Two trees are matched, extracting the correspondences between

the nodes and evaluating whether they are similar enough.

The matching is performed in two steps: first the nodes are matched, and then the

trees. Node matching considers only the labels at the nodes,and the context provided

by the tree. It uses S-Match, described above, to find the relations between the nodes

of the two trees: the concept at each node is expressed as a logical formula, and the

relation is verified using a SAT algorithm.

The correspondences found by node matching are then filteredusing abstraction

theory. Abstraction theory categorises the type of abstraction operations. Among the

them, some operations provide the only ways to alter two first-order terms changing

their signature but maintaining completeness. Some of the correspondences found in

the first step do not represent these operation: therefore itmay happen that functions

are wrongly mapped to variables, or variables to functions.These correspondences are

dropped, leaving only those that maintain completeness.

Tree edit distance is used on the allowed correspondences tocompute the similarity

between the trees. In its formulation, tree edit distance consider the basic operations

that can be applied to a tree to change it into another tree: addition, removal and

replacement of a node. The abstraction operations seen above are mapped to these

basic operations, and a cost is assigned to them. The algorithm computes the minimal

cost of transforming one tree into another.

At the end of the whole procedure, we have a set of correspondences between
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nodes (which can be interpreted as correspondences betweenparameters), and a value

that summarises the similarity between the trees. If the similarity is above a certain

threshold, the matching is considered valid, and the correspondences can be used.

In OpenKnowledge, as we have seen in Section 2.7, this procedure is used to eval-

uate the capability of a peer to perform an interaction modelby comparing the con-

straints in it with the peer’s services, and to create the adaptors used during the run of

the interaction to call the services provided by the peer when constraints are met.

6.4.6 Dynamic Ontology Refinement

This approach, developed by Fiona McNeill, Alan Bundy and Marco Schorlemmer

at the University of Edinburgh [39], tries to tackle the failures in plan execution due

to mismatch of ontologies between the involved agents. The aim is to improve the

robustness of planning, adapting the theory behind the decisions after failures. It is not

exactly an ontology mapping system, but it deals with interaction among agents that

do not share the same ontology.

In this model the plan is accompanied by a justification of every step. The justi-

fication is produced by a “plan deconstructor” that analysesthe plan produced by the

planner and explains the theory that motivate each step. Thetheory is the knowledge

of the world that the agent has, represented by its ontology.

If the execution of the plan fails, the agent tries to find the exact point in the plan

where the failure has occurred, and then tries to understandhow the justification for

the step caused the failure. For example the ontology might have oversimplified the

domain, and thus it might have justified a wrong decision.

Then, if possible, the agent tries to refine the ontology, possibly interacting with

the other agent, to adapt it better to the domain, and repeat the communication process.

In the current version, the changes yielded by the refinements are permanent.

6.5 Natural Language Processing

Some of the ideas at the basis of the work presented in this thesis were inspired from

the field of Natural Language processing. Dialogue norms andconventions appear at

syntactic level: a request is normally followed by an answer, an offer by an acceptance

or a rejection. The intuitions about syntactic norms has prompted researchers in NLP

to study the possibility ofdialogue grammars, which have often been represented as
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finite state machines, where the speech acts are the transition states between admissible

states of the dialogue.

Another source of inspiration has been the use of Markov models to predict infor-

mation about portions of text given the information collected up to the portion. The

information can be the part-of-speech of a word as describedin the next Subsection, or

the type of speech act in dialogues, as discussed in Subsection 6.5.2. Even though the

predictor presented in this thesis does not use a Markov model, as discussed in Chapter

4, it represents a useful comparison.

6.5.1 Part-of-speech tagging

One of the tasks required for parsing and understanding natural language is to tag each

word in a sentence with its appropriate part of speech, that is whether a word is a verb,

a noun, an adjective and so on. One of the techniques used for tagging [37] is based

on Markov model. The sequence of tags in a text is considered as a Markov chain, and

assumes that a word’s tag only depends on the current word andon the previous tag. It

also assumes that the dependency does not change over time.

6.5.2 Dialogue translation

For example, in automatic dialogue translation in face-to-face situations, the ability to

predict the dialogue speech acts can improve the results: in[50], a corpus of manually

tagged dialogues is analysed in order to extract the posterior probability of a speech

actd j given the history of the previous actsd1... j−1 . Since it is impossible to deter-

mine the probability of arbitrarily long sequences, they use n-grams: only N previous

speech acts are used:d j−N+1...d j−1. In the paper they analyse the possibility of us-

ing a dialogue grammar, in the form of a Finite State Machine that encodes the state

of a dialogue (starting phase, end, proposal or reaction). First, they tried to exploit

the knowledge provided by the grammar by training directly the grammar attributing

probabilities to the states and to the transitions, but thisapproach yielded results con-

sistently worse than the simple statistical one. Then, theyincluded the knowledge in

the interpolation formula, and then they replaced old dialogue acts with states: since

the number of states is less than the number of speech acts, they were able to cluster

more results with the same dataset.

Finally, they exploited the knowledge of the speaker: they tagged each speech act

with the contributing speaker, making explicit the direction of the acts: if speaker A



Chapter 6. Related Work 122

poses a question, and then A makes a further utterance, it is likely to be an explanation

or a correction; if the second utterance is produced by speaker B, then it is likely to be

a reply.

6.6 Summary

In Chapter 2 we introduced the concepts relevant to the work presented in the thesis,

in particular those related to the communication between agents and to the problem

of tackling heterogeneity in the communication. In this Chapter we overviewed the

various approaches available in literature.

We have first described the mentalistic and the social approaches to communication

between autonomous agents; we have then moved towards the composition of passive

services, either by planning using rich services’ descriptions, or by designing a work-

flow of activities grounded to the services. The OpenKnowledge project described

in Section 2.7 lays between the two models: the peers are proactive in the choice of

pre-defined interactions.

We then analysed the problem of Ontology Matching. First, wepresented the clas-

sifications available in literature for the source of mismatches between ontologies, and

the classifications used in the main reviews for the ontologymatching algorithms. Sec-

ond, we described the basic techniques used in the matching algorithms, and finally we

overviewed a set of interesting and relevant projects.
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Conclusion

We increasingly require software applications to interactone with another: they are

becoming access points for services distributed in the network, working as providers

or brokers for these services. However, applications are written by different develop-

ers with different goals in mind, and they also evolve over time: their main common

feature is their diversity.

The idea behind the semantic web is to define these services and the data they

process using a machine-readable language, defined in an ontology, in order to find

and combine them automatically. However, while there has been a slow but steady

adoption of a small set of common syntaxes (such as RDF or OWL), there has been no

agreement over the semantics used: many different ontologies, most of them written

in RDF or OWL, are used to describe the services and their data.

To overcome this heterogeneity, a variety of ontology matching algorithms have

been developed. They aim at statically matching two or more ontologies, finding all

the possible correspondences between them. However, when the aim of the matching

is to allow communication between agents, they do not exploit the additional informa-

tion provided by the context of the interaction itself. Thisadditional information can

improve efficiency, by removing the need to compare terms likely to be unrelated to the

interaction, and can improve both completeness (recall), often low because of a lack of

domain-specific information, and correctness (precision), by reducing ambiguities that

a lack of context normally bring.

The work presented in this thesis is a system that first analyses the history of similar

interactions in order to create a statistical model of one type of interaction and then

uses this model to compute a probability distribution for the content of the exchanged

messages in new interaction runs. The probability distributions can be forwarded to

123
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an ontology matching algorithm that focuses its computational effort on verifying the

suggested hypotheses, without wasting time on evaluating correspondences not related

to the interaction. The model is updated feeding back to the predictor the results of the

matching process.

The model is based on two main assumptions about the content of the messages:

the terms in the messages appear with a frequency reflecting aprobability distribution

in the community of users and the context of the interaction model itself; the terms in

messages may have relations with other terms in previous messages. The relations can

be simple correlations, can be implicit or explicit ontological relations that the system

is able to understand.

In the introduction (Section 1.1), I stated that this thesishad two key goals:

1. improve the efficiency of an arbitrary ontology matcher,

2. maintain or improve the quality of the matcher’s results

Both goals have been reached: the evaluation of the proposedmethod shows that a

relatively small number of interaction is often enough to obtain a remarkable improve-

ment of the efficiency of the matcher (about 10 times quicker), while keeping precision

and recall close to the same values of the baseline model thatdoes not use the predic-

tor. A problem discovered during the evaluation process is that a wrong probability

distribution can sway the matcher, decreasing both precision and recall. This happens

during the initial period, when the model is still unstable and imprecise: after this pe-

riod, the computed distribution tends to reflect the actual distribution. The tests have

shown that, if even if we trade off precision for efficiency, recall remains higher than

the baseline.

The main requirement is to use a framework that allows the description of the

interaction sequence: workflow based systems provide the functionality, but are often

centralised. With the OpenKnowledge project we have shown that these results can be

obtained in a purely peer-to-peer environment.

7.1 Future work

During the work presented in this thesis I had to decide whichareas to cover more in

detail, and which areas to leave out for lack of time and space. During the development,

limitations were identified and I often had to opt for simplifications, as the solutions,

although intellectually interesting, had implications too vast to be tackled in a single
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thesis. This section tries to present some of the ideas for future work that could extend

and improve the current state of the system.

Drop assertions that are not consistent.

When the predictor needs to instantiate the statistical model to the current interaction

in order to compute the probability distribution of terms for a variable, it only drops

assertions whose conditionζ is not consistent with the current state of the interaction.

For example, as we have seen in Section 4.4, assertions aboutthe posterior probability

of the offer being about a compact car, given that we asked foran accommodation, are

removed. However, assertions about the prior probability of the offer being a compact

car are not removed. Introducing a basic reasoner that removes, or discounts, asser-

tions about terms considered to be inconsistent might improve the performance of the

predictor.

Matching different interactions

One of the limitation of the work presented here is that the model of an interaction is

strictly bound to one interaction model. Over time, the peerwill create many of these

models for the different interactions it is involved in. However, if the interaction model

used for a particular task changes, the knowledge collectedon the previous version of

the interaction becomes useless: the peer has to start creating a new model.

Therefore, recognising similar interactions would be an interesting development.

When a peer starts an interaction it has never seen before, itcould match it against all

those previously encountered, possibly finding one or more similar. Then, it could use

the information contained in the corresponding models, weighted by some measure of

confidence in the similarity, to predict the content of the new interaction.

Extending ontologies

It was suggested as one of the applications of the predictor in Section 3.5, but it was

not analysed in detailed. The assertions about ontologicalrelations can be used to

drive the extension of the ontology when failures to find mappings occur. When a

message arrives with a foreign termw j that does not correspond to any known termti

in the peer’s ontology, it can be possible to verify what werethe ontological relations

in the model that the term should have most likely satisfied. If the same event takes
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a(customer,C) ::














null← wantSLR()

then

slr_model(Brand,Model)⇒ a(camera_vendor,V)

← brand(Brand) and model(Model)















or
(

compact(Brand,Model,Lens⇒ a(camera_vendor,V)

← brand(Brand) and model(Model) and lens(Lens)

)

Figure 7.1: Specific interaction model

place with a certain frequency, the system could suggest that a new term, satisfying the

ontological relations in the model, should be added to the ontology.

Expressivity of ontological relations

At the moment only basic ontological relations are used by the ontological strategies:

subclassOf , superclassOf , siblingOf , propertyOf , domainOf andrangeOf . An

interesting development could be to increase the expressivity of the relations in the

assertions. However, the search strategy should be revised: at the moment, all the pos-

sible alternative relations are verified, but it would be unfeasible if the set of relations

grows due to the increased expressivity. Some heuristics inthe choice of the alternative

relations to evaluate should be found.

Types of dialogues and predictor usefulness

The predictor helpsrun-time(also calledon-line) matching: it helps matching terms

that arrive in messages during the execution of an interaction. Not all interactions

benefit from using the predictor: interactions where the content of messages is strictly

defined before the run do not gain from the predictor. In theseinteractions most of the

matching is off-line (for example, between constraints andthe methods in the plug in

components used in OpenKnowledge).

A specific interaction about buying a digital camera like theone shown in Figure

7.1 is strictly defined. This interaction has constraints for obtaining resolution, type

of lens, brand, and so on. In a model like OpenKnowledge, it means to match at

subscription time these constraints with the methods in theplug-in components locally
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a(customer,C) ::

ask(Product)⇒ a(vendor,V)← want(Product)

then

a(c_refine,C)

a(c_refine,C) ::
























inquire(PProperty)⇐ a(v_refine,V)

then

definition(PProperty,Value)⇒ a(v_refine,V)

← define(PProperty,Value)

then

a(c_refine,C)

























or

offer(Offer)⇐ a(v_refine,V)
...

Figure 7.2: Generic interaction model

installed in a peer, as described in Section 2.7. These constraints will be satisfied

by providing very specific information, possibly only numerical values (resolution) or

elements from a list known a priori (available brands for a camera). Matching is mainly

offline, performed both for finding the proper interaction torun (I need to buy a digital

camera, not an analogue camera), and then to bridge the constraints with the peers’

capabilities (methods in the OpenKnowledge, as we have justseen).

A more generic interaction about buying a product, like the one shown in Figure

7.2, requires more run-time matching: constraints have to be more generic, and some

of the requests are defined at run-time. For example, what attributes should be asked to

a customer depends on what is asked by the customer, and cannot be defined a priori.

The offline matching is rather minimal, while most of the workhas to be performed at

run-time.

In the first case, the interaction model designer enforces a strict semantics, in the

second case the community of users will define the semantics by using it.

It would be interesting to study how different interaction specifications can influ-

ence the usefulness and the efficacy of the predictor.



Appendix A - Formalisms and

Conventions

Font use

• LCC code, LCC variable names and LCC constraints are writtenin typewriter

font: Product, refine(Product,Refinement), ...

• The content of LCC variables, usually terms from one of the peers’ ontologies,

are written in italics and surrounded by quotes:“accommodation”, “hotel” ,...

Ontology mapping

• An ontology is represented byOi where the indexi refers to the origin of the

ontology:

– In the examples,Oa is the agent’s ontology, whileOr is the ontology of

interaction run, formed by the union of the terms used by the different

agents.

• wi is the term to be mapped from a foreign ontology to a termt j in the local

ontology

Probability

• P(xi) is the probability of the eventxi

• P(X) is the probability distribution of a random variableX, and corresponds to

the vector:

P(X) = 〈P(X = x1), ...,P(X = xn)〉

128
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Sets

• A set is written with a Greek or Latin capitalised letter:Ψ, M.

• The symbol|Ψ| is used to indicate the cardinality ofΨ: if Ψ = {a,b,c}, then

|Ψ| is 3
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