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Abstract

The thesis concerns the (class) structure No of Conway's surreal numbers. The main 
concern is the behaviour on No of some of the classical functions of real analysis, and 
a definition of integral for such functions.

In the main texts on No, most definitions and proofs are done by transfinite recur­ 
sion and induction on the complexity of elements. In the thesis I consider a general 
scheme of definition for functions on No, generalising those for sum, product and 
exponential. If a function has such a definition, and can live in a Hardy field, and 
satisfies some auxiliary technical conditions, one can obtain in No a substantial ana­ 
logue of real analysis for that function. One example is the sign-change property, and 
this (applied to polynomials) gives an alternative treatment of the basic fact that No 
is real closed. I discuss the analogue for the exponential.

Using these ideas one can define a generalisation of Riemann integration (the 
indefinite integral falling under the recursion scheme). The new integral is linear, 
monotone, and satisfies integration by parts.

For some classical functions (e.g. polynomials) the integral yields the traditional 
formulae of analysis. There are, however, anomalies for the exponential function. 
But one can show that the logarithm, defined as the inverse of the exponential, is the 
integral of 1/x as usual.
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Introduction

Surreal numbers were discovered by J. Conway and described in the 0th part of his 

book [6]. He showed that from a remarkably simple set of rules is possible to extract 

a rich algebraic structure, the class No of surreal number. It is, among other things, 

an elementary extension of Raw , the structure given by the reals with +, -, < and re­ 

stricted analytic functions. Later, H. Gonshor (see [10]) and M. Kruskal added a full 

exponential function, making No an elementary extension of Ra/7 (exp). Moreover, 

No contains, in a natural way, all ordinal numbers; therefore, it is possible to give 

meaning to expressions such as V&>   U and much more.

Central to both [6] and [10] are the notion of complexity of a surreal number, and 

the idea of defining functions on No by transfmite recursion over the complexity of 

the argument; the value of such a function / at a point x is determined by the value of 

/ at simpler points. Strictly correlated is the notion of uniformity of such a definition.

One of the aims of this thesis is to give a precise meaning to both ideas of re­ 

cursively definable function on No and of uniformity. I will show that, together with 

some "finiteness" condition, they have some striking consequences.

I have sometimes the notion of complexity of a function: loosely speaking, if/ is 

recursive over 21 then/ in general is more complicated than the functions in 21; I can 

then use induction on the complexity of a function to give some important definitions 

and to prove some basic theorems.

My second objective is to define the Riemann integral of a recursive function/, 

as another function

o
Suppose that we have a family of function 21 containing +, and a function / over 

the reals, and let 03 be the family of the primitives of 21. Assume that we succeeded 

in extending every function in 21 and 03 and / to all of No. Call Jz? the first order 

language given by (<,2l,03,/). Suppose the following:

1. (R, Jzf ) is an elementary substructure of (No,=5f );

2. / is recursive over 21.



My aim is to find a function J which extends to all No the primitive on R off, such 
that:

1. 7 is recursive over 21U <B;

2. (R,J?,f) is an elementary substructure of (No,Jzf, J).

At every point a   No, J(a) will have to satisfy a type Ta (x) in the language J*f, over 
the set

S:= {a}U{c, f(c] :c is simpler than a } .

For instance, we know that if f(x] > 0 for every x and c < a, then jF(c) < 7(a). If 

the class Ia of surreal numbers satisfying Ta (x) is convex and nonempty, the natural 

choice is to define 7(a) as the simplest element in Ia . I will give a possible choice of 

formulae for Ta , all of the form x > d or x < d for some d 6 No definable over S.

S. Norton did also give a definition of integral for function on No, which was 

later improved by Kruskal. Their definition is similar to the present one, but I am not 

acquainted enough with their work to give a full account of it.

In the first chapter I will recall some elementary basic definitions and theorems on 

surreal numbers, and give the formal definition of recursive functions, which will be 

used throughout all of the thesis. I will assume that the reader is familiar with the basic 

definitions and properties of No, as described in [6], and that he feels comfortable with 

"one line proofs" employed in it.

In the second I will define the integration, and prove some of its properties. I will 

find it necessary to assume some further properties about / and 21 in order to be able 

to define a meaningful notion of integral. One of the assumptions I could make is 

that the functions in 21 form a Hardy field over No, or even an o-minimal structure; 

nevertheless, I will try to avoid using such a strong hypothesis.

In the third chapter I will prove the integration by part formula. While for content 

it is a direct continuation of the second, the complexity of the necessary algebraic 

manipulations distinguishes it. The result will not be used later in the thesis; even the 

integration of polynomials, which could be obtained directly from it, will instead be 

proved in a different way.

The fourth chapter will deal with definition and integration of polynomials and 

restricted analytic functions. I will show that the integral is exactly what we expect. 

Moreover, I will give a proof of the real closure of No different from the one in [6], 

and show how it can be generalised to recursive functions.

Finally, the last chapter will deal with logarithm and exponential function. In 

their discussion I will assume a certain acquaintance on the part of the reader with
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Gonshor's treatment, even if I will try to quote all the necessary definitions and the 
theorems. I will show that, for x > 0,

fx 1 logx= \ -dt.h tn 

On the other hand, the integral of expx is not what we would expect.



Chapter 1

Definitions and basic properties

In this chapter I will recall the basic properties of the class No. I will also introduce the 

basic notion of a function/ : No   >  No defined recursively over a family of functions 

21. Moreover, I will give some general notions on ordered sets, which will be useful 

in later chapters.

1.1 Basic definitions

Let No be Conway's field of surreal numbers (see [6] and [10]).

No can be identified with the class of all possible maps with domain an ordinal 

and codomain the set {+, }. The identification of a surreal number x with a function 

is called the sign sequence of x, and the domain of this function is i(x), the length of 

x.

On this class we put a linear order in the following way:

Definition 1.1. On is the class of ordinal numbers. Letx,^ e No. Suppose that x j^y, 

and let y 6 On be the smallest ordinal such that x(j) ^y(j). Then, x < y iff

  jc(y) =   and XT) = + or is undefined, or

  x(j) is undefined andjy(y)   + 

Equivalently, No is ordered lexicographically, with   < undefined < +.

For x,y G No, I will write x -< y (x is simpler than y) if the sign sequence of x is 

the restriction of the sign sequence of v to some initial segment of l(y). The relation 

^ is a well-founded partial order on No. I say that x is an ancestor of v, in symbols 

x^y,if£x^<y and x^y.

Given two surreal number x,y, their common length is either i(x) if x = y or the 

smallest ordinal a such that x(a) ^y(a). The restriction of x (or equivalently of v) 

to the common length ofx,y is the common ancestor ofx,y.

9



A subclass S C No is convex iff

Vx,y   S Vz e No (* < z <j^) -> z e 5. 

The following are the fundamental properties connecting < with ^.

Lemma 1.2. Z,e/ S be a non-empty convex subclass o/No. Then, there exists a unique 
s e S which is a minimum for X /'« 5 (the simplest element ofS).

Proof. The relation ^ is well founded. Suppose for contradiction that there are two 
elements s / s' which are minimal for X in S. Without loss of generality, s < s'; 
let a be their common length. If s(a) was undefined then s ^,s', contradicting the 
minimality of s'. Since s'(a) is defined too, we have s(a)   - and s'(a) = +. Let 
c be the restriction of s to a. Then, 5 < c < s'. Therefore, by convexity, c e S, 
contradicting the minimality of s (and of s'). D

Remark 1.3. Let a   No. Then {xGNo:a^x} is a convex subclass of No.

An open (closed) interval is a subclass of No of the form (a, b) (of the form [a, b]) 
for some a < b e No. The common ancestor of x,^ is also the simplest element in the 
interval [x,y\.

The concatenation of two surreal numbers x,y is the surreal number x:y, given 
by the sign sequence of x followed by the sign sequence of y. Every ordinal number 
a can be identified canonically with the surreal number given by a sign sequence of 
only pluses of length a. In particular, 0 is the simplest element of No.

The opposite of a surreal number x is   x; it has the same length as x, and its sign 
sequence is obtained exchanging all pluses in the sign sequence of x with minuses 
and all minuses with pluses.

Let L,R be subsets of No. Then L < R means YX e L, Vy <E R x < y. Moreover, 
(L R) is the cut

(L R) :={x£No:L<x<R}.

Theorem 1. (L R) is non-empty ifL < R.

Proof. (See [10], Theorem 2.1 for a different proof).
Suppose, for contradiction, that (L R) is empty. I will construct a sequence of 

surreal numbers (*a) a On such mat Va < /3 e On xa -< x^. Moreover, I will construct 
two sequences La and Ra of subsets of No such that VjS < a <E On

Ln 2 La and Rn 5 Ra

and Va e No
(La | Ra ) = 0 and Vy £La (jRa xa ^ y

10



(L | R ) is empty. Therefore, for every x 6 No either

By 6 L such that y > x or 

By   /? such that _y < jr.

In the first case, I say that x is excluded by L, in the second by R.
Let xQ = 0, LQ = L, RQ — R. Suppose that we have already defined xr,Lr,Rr for 

every y < a.
There are two possibilities: a is a successor ordinal, or a limit one.
  If a = j8 + 1 and Xp£(L\R) then x* is excluded either by L, or by R.
In the first case, let 8 be the smallest ordinal such that (xo : 8) (the concatenation 

of Xg and <5) is excluded by R (I will prove later that it exists). Let

In the second, let let 8 be the smallest ordinal such that x* : (— <5) is excluded by 
L, and let

I remind that hi the first case I must also prove that 3 A e On such that (xa :  A) is 
excluded by L (and similarly for the second case). Suppose not; then (xa :  A) is 
excluded by R, i.e.

VA   On 3t^ e R (xa : -A) > t^ .
But R is a set, therefore we can find / e R such that

VA eOn (o:0 :-A) > /.

Let c be the common ancestor of xa ,t. Then r < c < xa . Moreover, x^<c< xa 
and Xg ~<xa . Therefore, x» -< c -< xa , so c = x^ : 8 f for some 8' < 8 e On. This 
contradicts the definition of 8 as the smallest ordinal such that XQ : 8 is excluded by 
R. The second case is similar. 

  If a is a limit ordinal, let

a = n */
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Again, I must prove that if xa is excluded by R there exists A e On such that xa : -A 

is excluded by L. Suppose not; then

Let c be the common ancestor oft andxa . Then c -< xa and x« = Ufc< a *s> therefore 

c d *n for some /3 < a.

If *0 < c, then xa < c, a contradiction. Ifx* > c, then Vz ^ x* z > c, while we can 

findxjg+1 <c. Ifxg =cthenxa = Xg : 1 :z for some ze No; in particular, x» +l = Xn\8 
for some 8 e On. But.Xg is excluded by R, therefore XQ +{ < * , a contradiction.

Finally, by hypothesis, LDRisa set, while { xa : a e On } is a proper class, which 

is impossible. D

If L or R are proper classes, the construction of (*«) aeOn *n me previous proof 

may not terminate, or for some /3 e On I may not be able to find 6 e On such that 

(xo : ±5) is excluded by R (or by L). In either case, I construct the sign sequence 

of the cut (L | /?). In the first case it is given by x = U aeonx«' ^n me second by Xo 
followed by infinitely many (i.e. a proper class of) pluses (or minuses).

An example of the second case is L = N and R = {x e On : x > N }. The sign 

sequence of (L R} is given by (a pluses followed by infinitely many minuses.

The simplest element in (L R) is written (L\R}.

Lemma 1.4. Every x   No can be written in a canonical way as (L \R), choosing

L = {ye No :y<x&y-<x}
(1.1) 

R = £No:>

Proof. I have to verify that x is the simplest element in the cut (L \ R}. First, by 

definition ofL,R, x is in this cut. Let c be the simplest surreal number in it. Suppose, 

for contradiction, that c ^ x, for instance that c < x. Therefore, c -< x, so c e L and

ci(i R). a
lfx=(L R),l will say that an element of L (of R) is a left (right) option of x. 

The options of the canonical representation of x are called canonical options. 
I will write x= (x1 l-^} or simply x= (XL \XR ] instead of x= (L R).

Remark 1 .5. Let x,y e No. Let x = (x1 \ X* }, y = (y1 \ yP } be some representation of 

x,y. Then,

  x < y iff 3/ such that x < y1 or Ek* such that x* < v

  x<y iff V/VxL ^<vandx<y? .
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Remark 1.6. Let x,y e No. The following are equivalent:

There exists x = (x1 \ y? ), a representation of jc such that

  If x = (x1 x^ } is the canonical representation of x,

V^^x1 <y<xR .

The last definitions and theorems of this section are taken from [10].

Definition 1.7. LetL,R,L',R' be subsets of No, with I < R andL' < R'. Then (L,R) 
is cofinal in (L',Rf ) iff

(Vr' e R' 3r e R r < r'} & (Ml1 e I' 37 6 I / > /').

Example 1.8. LetL,// be sets of ordinal numbers. (1,0) cofinal in (Z/,0) is equiva­ 
lent to L cofinal in L' as set of ordinals.

Theorem 2 (Cofinality theorem). Suppose thatx = (L R), L' < x < R' and (L',R') 
is cofinal in (L,R ). Then, (L1 \ R' ) = x.

Theorem 3 (Cofinality theorem b). Let (L,R) and (L1 ,R'} be mutually cofinal in 
each other. Then, (L\R) = (L' R'}.

Theorem 4 (Inverse Cofinality theorem). Let x e No, let (L R} be the canonical 
representation ofx, let (L' R'} be another representation. Then, (L1 \R') is cofinal in

1 .2 Further structure on No

In this section, every algebraic structure (Group, Field, etc.), unless otherwise speci­ 
fied, may have a proper class as domain.

No is endowed with further algebraic structure, via definition schemata, which I 
will introduce with an example about the definition of sum of two surreal numbers.

First, \etx= (x1 \XR ] and y = (y1 \yR }be the canonical representations ofx,y. 
Suppose that I have already defined x +y° and x° +y for every x° ,y° canonical options 
of x,y respectively. Then, define

x+y=(x+yL ,xL +y\x+yR ,xR +y). (1.2) 

13



There is something to prove, namely that in the above definition every left option is 
less than every right option (this, and much else, is proved in [6]).

The definition is recursive. The recursion is done on x and y (with the well- 
founded partial order •<). Let x minimal such that there exists z such that x + z is 
undefined. Let y be a minimal such z. Therefore, x+y° and x° +y are defined for 
every option x° and y°, so all the options in (1.2) are defined and, by the already 
mentioned lemma, every left option is less than every right one, sox+y is defined.

But something more is true: suppose that x = (x1 x^ } and y=(yL \yR }are any 
representations (not necessarily canonical) of x,y. The options in (1.2) are defined for 
these representations too. Not only it is true that every left option is less than every 
right option, but the number (x+y1^ +y x+yR ,xR +y) is still .x +7. In this case I 
say that the definition of x +y is uniform.

(No,+,<) is an ordered Abelian group, the neutral element is 0, the simplest 
element of No, and

On No there is also a multiplication, recursively defined as 

xy= (x^y + xyL-xLyL^ xRy + xyR -y*yR \y*'y + xyR

Again, every left option is less than every right option, and the value of xy is indepen­ 
dent from the choices of the representations of x and y.

With these definitions of order, sum and multiplication, No is a real closed field.
There is a canonical embedding from the class On of ordinals into No: an ordinal 

a goes into the constant function with domain a and value +. Forx,y e On, x+y and 
xy are ordinal numbers too. The sum and product of two ordinals as surreal numbers 
are not the usual sum and product on ordinals (which are not commutative), but the 
natural addition and multiplication^. A proof can be found in [10], chapter 4D.

1 .2.1 Valuation and power series in No

Definition 1.9. A valued field is a triple (F, G, v), with F is a field, G a linearly ordered 
Abelian group (written additively), and v a map

v:F-+GU{°°}

such that

1. Vx e F v(x) = - iff x = 0

(1)The natural addition and multiplication of two ordinals a,/3 are denned in terms of their Cantor 
normal forms.

14



2. v is surjective

3. v(x+y) < max{v(.x),v(y)}

4. v(xy)=v(x)+v(y).

The map v is called the valuation, G the value group. The convention is that 
VgeGg + °o = oo and °° < g.

Usually, a valuation satisfying the previous definition is called non- Archimedean, 

but I will consider only such valuations.

In literature, the order of G is often reversed, i.e. instead of 3 they often write

v(x +y) > mm { v(x) , v(y) } ,

but this would result in the anti-intuitive fact that infinitesimal elements have "large" 

value. Moreover, working on No is easier with this convention.

Definition 1.10. Given a valued field (F, G, v),

is a local subring of F, the valuation ring. Its only maximal ideal is

SDT:={jc€F:v(jt) <0}.

The quotient 0/yft is the residue field. An element of ff is called bounded or finite, 
an element of 971 infinitesimal.

Two valuations (F, G, v) and (F, G', v7 ) on the same field F are equivalent iff there 

is an isomorphism of ordered groups </> : G   * G' such that \/x G K* \/(^(x)) = v(x).
Suppose that on the field F there is also an order < such that (F, <) is an ordered 

field. The valuation < is compatible with the order iff 0 is a convex subclass of K.

In the following, I will mostly consider fields of characteristic 0. 

Definition 1.11. Let F be a linearly ordered group, x,y   F.

  x ^>y iff for every natural number n, x > n\y\

• x~y iff neither x <C.y nory -C*

  x ~ y iff x — yorx^>x—y(or equivalently y^>x—y). 

x~yis equivalent to 3n E N ^ < y < n\x\.

15



On an ordered field F we can define the natural valuation. The value group is the 
quotient K*/~ and the valuation the quotient map. The natural valuation is compati­ 
ble with the order. An ordered field is said to be Archimedean iff the natural valuation 
is trivial (i.e. its value group is {0}) iff (in a unique way) it is an ordered subfield of
R.

No is an ordered field and therefore it contains Q. If (Z,, R) is a Dedekind cut of 
rational numbers, it determines an unique element (L \ R) 6 No. The resulting set 
(an element for every Dedekind cut of Q) is a subfield of No that can be identified 
canonically with R.

Definition 1.12. There is a valuation v : No*   > No, which, for x > 0, is defined as

V(X) = ({V(XL ) :0<xL <x} I |v(x*) :x/? >x&x/? >0}). (1.3) 

The map co : No   > No >0 is specified in the following way

COX := { {0} U | go? : 0 < q e Q } | { <?ft/ : 0 < q G Q } ).

The map co is well defined, and x < y iff (Ox -C (a?. Moreover, Vx,_y   No (ox+y = 
. For the proof, see [10], chapter 5B.

Lemma 1.13. The definition ofv is sound, independent of the representation ofx, and 
v is a valuation equivalent to the natural one. Moreover,

VxeNo v(0)(x)) =x.

Proof. By induction: let x,y be positive surreal numbers, and suppose that the result 
is true for every x°,y° which are canonical options ofx,y.

Since x and y are positive, they do not have negative options in their canonical 
representations.

If x1 <C x <C Xs- then by inductive hypothesis v(xl ) < v(x/? ), so the definition of 
v(x) is sound. 

Claim 1. Suppose thatx <Cy. Then, v(x) < v(y).
If x ~<y then v(x) < v(y) by definition of v(y). Similarly fory -< x. Otherwise, let 

z be the common ancestor ofx,y. Then, x < z < y and x <C y, therefore x <C z or z < y.
If x -C z, by inductive hypothesis v(x) < v(z), and similarly v(z) < v(y), therefore 

v(x) < v(y). Similarly forz <jy. 

Claim 2. Suppose that v(x) < v(y). Then, x <>>.

16



Either v(x) < v(y)L or v^)^ < v(y) for some v(y}L or v^)^ options of v(y), v(jc) 
in the definition 1.12. Suppose that the first case happens. Then, v(x) < v(y^} for 

some canonical options y1 such that y1 < y. By inductive hypothesis, either y1 < y 
and x ~ j/1 , or x <^ y1 . Therefore, x -C y. Similarly for the second case.

Now I will prove that the definition of v(jc) is uniform. Let x = (tl tR } be another 
representation of x > 0, and let

First, v(tL ] < v(x) < v(tR ) for every tL ,tR mentioned in the definition of w, therefore 
w ^ v(x).

On the other hand, by the inverse cofinality theorem, for every x1 there exists 

tL such that x1 < tL < x. Therefore, 0 < XL < x implies that x1 <C tl or x1 ~ tL , 
implying V(XL ) < v(tL }. Similarly, for every A^ there exists tR such that V(XR ) > v(^). 

So, v(x] ^ w.
The fact that v(x+y) < max{ v(.x), v(y) } is a direct consequence of what I have 

already proved.

Claim 3. If* > 0, v(of) =x.

By induction on jc. First, v(co(x)) < x^. In fact, by induction, r^ = v(ar ) = 

v(qar ) for every q > 0 G Q, and the latter is a right option of v((Ox ). Similarly, 

v(0)(x)) >XL .
Second, x < v(cox )R . In fact, the right option is equal to v((co*)R ) — v(qor] = 

v(afR ) = x^ > x. Similarly for left options.

It remains to show that v(xy) = v(x} + v(y) for x,y > 0. But this is a consequence 

of the fact that a?+y = (ax co>' D

Definition 1.14. Given a field K and a linearly ordered additive group G, K((G)) is 

the field of formal power series with coefficient in K and exponents in G. Its elements 

are given as formal sums

where ry are elements of K and such that the support ofx

is an anti-well-ordered set. In the previous definition, G might be a proper class. 

The sum of two elements in K((G)) is defined "point- wise":

17



Their product is the Cauchy product:

I */)=!( I
h+k=g

By Neumann's lemma (see for instance [1], 7.20), the previous definition is sound: 
given x,y e K((G)), the support of x+y is anti-well-founded. Moreover, for every 
g   G there are at most finitely many h 6 supp(x) and k e supp(y) such that h + k = g, 
and the support of the resulting xy is well founded.

With these operations, K((G)) is not only a ring, but a field.
Moreover, if K is an algebraically closed field and G is a divisible group, K((G)) 

is an algebraically closed field.

Let x ^ 0   K((G)). If x = "Lg€G rgtg then the leading coefficient of x is rh , where 
h is the maximum of the support of x

If K is an ordered field, K((G)) is an ordered field too: x > 0 iff the leading 
coefficient of x is greater than 0.

If K is a real closed field and G is divisible, then K((G)) is real closed too.
On K((G)) there is a canonical valuation (the Hahn valuation)

with v(jt) the maximum of the support of x. The value group of v is all of G, and the 
residue field is K. If K is an Archimedean ordered field, v coincides with the natural 
valuation.

Definition 1.15. Let (F,v, G) be a valued field. A sequence (of elements in F) is a 
function from some limit ordinal into F. A sequence (xa) a<^ is pseudo-convergent 
(or pseudo-Cauchy) iff

x e F is a pseudo-limit of the pseudo-convergent sequence (xa ) a<^ iff

Va < A v(xa -x) = v(xa -xa+l ).

F is pseudo-complete iff every pseudo-convergent sequence has a pseudo- limit.
An extension of F is given by a valued field (F', G', v7 ) and pair of maps i : F   >  F' 

and 0 : G   >  G' such that i is a field embedding, <j) is an embedding of ordered groups, 
and the diagram commutes: Vx e F v/(i(x)) = <K VW)-

Such an extension is immediate iff 0 and the induced map between the residue 
fields are isomorphisms.
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K((G)) with the canonical valuation is pseudo-complete. If F is an ordered valued 
field, and the valuation on F is compatible with the order, then the class of pseudo- 
limits of a given sequence (xa } a^ is a convex subclass of F.

If F is a set, then F is pseudo-complete iff it is maximal(2) (i.e. it does not admit 
non-trivial immediate extensions), iff it is isomorphic to K((<7)) (3) , with G the value 
group and K the residue field of F. See [12] for a proof of this fact.

In No, by theorem 1, every pseudo-convergent sequence (xa } a<x has a pseudo- 
limit, and the simplest pseudo-limit of the sequence is the pseudo-limit of (xa )

Let A be an ordinal, (ra } a<^ be a sequence non zero real numbers, and (a 
be a strictly decreasing sequence of surreal numbers. The formal expression

determines the unique surreal number x = Sa<^ >"a ft)aa - It is defined by induction on
A:

  If A = 7+1, then

a<y

  If A is a limit ordinal, then x is the pseudo-limit of the pseudo-convergent se­ 
quence

(X r 
a<Y

Conversely, every non-zero surreal number x is represented by a unique sum

x =

called the normal form ofx.

Proof. The uniqueness is obvious: if x = £aeN(/a ft)fl and y = Za^0 sa (0a are two 
distinct formal sums, and c is the largest surreal number b such that rb ^ sb , then 
v(x—y] =c.

Given x ^ 0,1 will find its normal form. Let a0 := v(x) and rQ be the unique real 
number such that (x - r0 coao) < x. Given an ordinal A and sequences (aa ) a<^ and

(2)This is no longer true for classes, unless we change the definition of pseudo-complete. For in­ 
stance, No is pseudo-complete, but not maximal.

(3)This is true only if the characteristic of the residue field is 0. Otherwise, additional hypothesis are 
required.
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If x^ = x, we proved the conclusion. Otherwise, define a^ :— v(x — x^) and r^ the 

unique real such that x— (x^ + r^w0*-} <^C x. The sequence (x^)^ €On * s defined for 

every ordinal number A, and the JCA are are all distinct (because VA e On r^ ^ 0). But 

for every limit ordinal A, x is a pseudo-limit of (xa } a<^, therefore xx X x, and this is 
impossible. D

Therefore, No can be identified in a canonical way with R((No)). Since No is a 

field, No = E((No)) is a real closed field. This is essentially Conway's proof of the 

fact that No is real closed, starting from the knowledge that No is an ordered field. I 

will give later a different proof of this fact.

Given a field K and an ordered group G, every power series

defines a function/ : 971"   > K((G)) by formal substitution, which, by Neumann's 

lemma, is well defined.

Let K be an ordered field containing E, and / be a real analytic function converg­ 

ing in a neighbourhood of [ 1, 1]". The Taylor expansion of / determines a power 

series fp with real coefficients around every p G [- 1 , 1]" C E", which induces a func­ 

tion/ : [-1, 1]" -> K((G))

f(p + £ ) =f(P ) +fp (e),p e R",e e mn

called a restricted analytic function ([ 1,1] is the interval in K((G))). The first order 

language given by the ordered field language (0, 1,+,  , <) plus a function symbol 

for every real analytic function / converging in a neighbourhood of [  1 , 1]" is called 

Jzfaw . If K is real closed and G is divisible, the resulting %?an structure on K((G)) is 

elementary equivalent to E (see [19]). In particular, No is elementary equivalent to E 

in &m .
Gonshor defined a total exponential function exp : No   > No>0 (see § 1.5 for more 

details). With this definition, No is an elementary extension of E in the language

1.3 Recursive definitions

The sum of two element x,y e No is defined as:

x+y=(x+yL ,xL +y

where x1 ,jc^ are generic left and right options of x, and similarly fory. The definition 

Of x +y i s recursive. We must know the value of x1 +y and x +/ for any elements
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xf -< x andy -< y in order to compute x -\-y. In the following, I will try to give a precise 
meaning to the notion of recursive definition of a function on No, which is general 
enough to encompass the definition of functions such as x+y,xy, 1/x, expx, but at the 
same time allows me to prove some nontrivial results.

I will write x° for a generic (left or right) option of x. Given two sets of functions 
{fL }fi €A and {fR }fRf.B in the variables X, Yl , Y2 ,Z{ ,Z2 , 1 will write

or simply / = (fL \ fR ) if for any x 6 No, written in the canonical form (x1 ** }, a 
generic left option of f(x) is

and similarly for a right option. This means that Vx e No

&.XR >X

For a shorthand, I will also write

/z (x,jcV(*°)) or/°(;c,*V(* 0 )) o

and say that/ is defined recursively (or simply recursive) over the family of functions 
A (JB. Of course, for/(;c) to be defined, it is necessary that

for anyfL ,fR and for any x1^ canonical options of x.
fL and/R are options of/.
If/ : No"   > No, it is still possible to say what it means to be defined recursively. 

Write each coordinate of x e No" as xt = (xtL X R }. I will say that

x° = (y l ,... ,yn )

is a canonical option of x (and similarly for right options) if for each / = 1 , . . . , n 
yi X jc;. and, for at least one j < n, we have y. -< Xj. Alternatively, I order No" with the 
well-founded and set-like partial order bnd induced by ^ (see definition 1 .56), and x° 
is an element which precedes x in this order. 

Then
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if for each x e No" written in the canonical form, a generic left option of/(f) is

fL (x,x°,f(x»))

where fl is a function of as many variables as needed.

For instance, if /(*, , *2 ) = x { x2 , among the left options of f(x) there is

Note that/(x°) can appear many times as an argument of/ 0 ; once for each possible 
combination

xi > xi ' i l ' = 1)       ) W -

If / = (/L | /^}, the value of /(.x) depends in general on the form I choose to 
write x (that is the reason why I had to specify that I use the canonical form of x).

Definition 1.16. I say that the recursive definition of/ is uniform if f(x) does not 
depend on the form I choose for x, for any x £ No. This means that:

  For every/1 and/^ options of/, for every x,x* \x" e No such that x' < x < x"

Vx e No and for any representation x= (L \R), 

f(x) = (fL (x,xL ,x

In the following I will mostly consider uniform definitions.

1.4 Canonical form on intervals

Suppose that L and R are two subclasses of No, with L < R. If L,R are both proper 
sets (and not classes), I say that (L \R) is a set-bounded convex subclass of No.

Lemma 1.17. Let S — (A B) be a set-bounded convex subclass o/No. Then, as 
an ordered tree, S is isomorphic to No in a unique way. Moreover, this isomorphism 
s : No   > S is recursively definable, and uniformly so.

Proof. I will define the isomorphism 5 : No   » S by induction. Uniqueness will follow 
from the definition itself. Obviously, s(Q) is the simplest element of S. As A and B 
are both proper sets, (A \ s(Q) ) and (s(0) B) are non empty, so there is a simplest 
element in each of them: s(-l) ands(l).
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In general, if x = (x^ \^}XL &LXR^R is me canonical form of x, and I have already 
denned s(x°) for every option of x, then s(x) is the simplest element in S satisfying

S(XL ) < s(x) < S(XR ) 

for every option of x. There are three cases:

1. R is empty: s(x) = (S(XL ) B)

2. L is empty: s(x) = (A S(XR ) }

3. L,R are both non empty: s(x) = (S(XL ) \ S(XR }}.

The general formula for s is s(x) = (A,s(xL ) \ B,s(xR )). It remains to show that s is 
uniformly denned, i.e. that if x = (yL \yR )is any representation of x, then

s(X) = (A,s(yL )\B,s(yR )).

By cofinaliry, for every x1 canonical left option for x there exists y1 such thatx1 < j/ < 
x. Then s(x1 } < s(}^) < s(x) (and similarly for right options), so s(x) — (A.siy1 } \

D

Examples 1.18.   (0, 1) is isomorphic to No: s(0) = 0, 5(1) = 1/2, s(2) = 3/4, 
S(G)} = 1 - 1/co,....

  Let r\ be the cut between infinitesimal and positive finite numbers. Then (   77 , f] ) 
is isomorphic to No.

  Let a be the cut between finite and infinite positive numbers. Then (  °°,a) is 
not isomorphic to No, because s ((o) is not defined.

So, given S = (A B) a set-bounded convex subclass of No, to every x 6 S I can 
associate through s a canonical form: if s~ l (x) =y andy — (i/1 | yfi ) is the canonical 
form of y, then x = (A.s^) \s(yR },B} is the canonical form of x with respect to S, 
and s(y°) are the canonical options of x w.r.t. S.

Until now, I have supposed that all the functions are total. How do the definitions 
change for functions defined only on a subset of No? For instance, power series are 
defined for infinitesimal elements. If S = (L R ) is a set-bounded convex subclass of 
No, and x e S, I use the canonical form of x with respect to S to give a meaning to 
/(x) for a recursively defined function / = (fL fR ) with domain S, i.e. by writing 
f = (fL \fR }l mean that each/°(x,71 ,y-,,z 1 ,z1 ) is defined (at least) on the set

,7 1 ,^2 ,z I ,z2 :x,y^y2 6 5, yl < x <y2 ,z l ,z2   No }
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and for each x e S

where x1 ,x* are canonical options of x w.r.t. S. 
Example 1.19.

o i-(i-4
V JCL

X X

where the denominator simplifies formally with the numerator, is defined on the in­ 
tervals (0,+°°) and (—00,0).

1.5 Exponential function

On No it is possible to define a total exponential function exp : No —»• No>0 (the 
domain of exponential induced by the analytic structure is only &}. For proofs of the 
theorems stated in this section and other properties of the exponential function, see 
[10].

Given n e N, let [z] n be the ^-truncation of the Taylor expansion of expz at 0:

The recursive definition of expx is the following:

P
[X -X\ n [X —

where if z < 0 then [z] n must be positive.
The definition is uniform, and the resulting structure satisfies the following ax­ 

ioms:

• exp is surjective.

• \/x,y G No exp(jc + v) = expxexp_y.

• For every x < 1 expx coincides with the restricted analytic function e(x).

• exp(jt) > x" for all positive infinite x.

• \fx > y expx > expy.
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The previous axioms imply that No is an elementary extension of E in the lan­ 
guage =£fan (exp) (see [19]). Note that of is not CD raised to the power x.

Gonshor gave other properties of the function exp. Let x > 0 e No. Define

where x1 varies among the positive left options of x. The definition of g is also uni­ 
form; moreover, g is a monotone increasing bijection from No>0 onto No.

Theorem 5. Let z = 'Li<a ri a)ai be the normal form of z e No. If ai > 0 for every 
i < a andz > 0, then

expz = a/ where y := 

Proof. It is Theorem 10.13 of [ 10]. D

1.6 Useful formulae

The following formulae are especially useful in dealing with surreal numbers. Proofs 
can be found in [6] or [10].

X +y= ( X Jry^ X +y x+y^+y) (1.4)

xyL -xRyL ,xLy+xyR -xLyR ) 

(xn ) 0 =xn -(x-xL ) i (x-xRy (1.6)

where 0 < / < n e N, i + j = n and (x") ° is a left option if j is even, a right option if 
it is odd.

(1.7)

(1.8)

where a e On is an ordinal number, (ai ) i<a is a strictly decreasing sequence of surreal 
numbers, r- are real numbers, j8 varies among the ordinal numbers strictly less than a 
and £ is any positive real.
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see §1.5. All the previous recursive definitions are uniform. The next one (the con­ 
catenation of x andy) is uniform iny, but not in x;

x:y=(xL ,x:yL \xR ,x:yR } (1.12)

1.7 O-minimality

An ordered field is a commutative field A with a linear order < such that

, . 
(z>Q&x<y]

An interval in A is a subset of A of the form (a,b) or [a,b] or (a,b] or [a, 6), where 
a<beA(j{±°°}.

Let % be a first order language expanding the language «£" := (0,1,+,-, <) of 
ordered rings. Suppose that A is an ^f -structure, such that the restriction of A to £" 
is an ordered field.

A is o-minimal iff every subset of ,4 definable in 3? (with parameters) is a finite 
union of intervals and of points*4^

For a good account on the subject, see [17]. Here, I will only recall some of the 
properties of an o-minimal structure, which will be useful later.

Of course, the restriction of an o-minimal structure to some smaller language is 
also o-minimal. If A is elementary equivalent to B, then A is o-minimal iff B is. Hence, 
I can talk of o-minimal (first order) theories.

Every o-minimal theory admits definable Skolem functions. This means that if 
C C A"+m is a subset definable (with parameters a l ,..., an), and D is the projection of 
C over A", then I can find a function 0 :D-+Am definable (with the same parameters) 
such that Vx € D, (x, </> (.x) ) <E C. For every x e D, the function 0 "chooses" an element 
in the fibre over x.

Every complete o-minimal theory T has a prime model, i.e. P\=T such that for 
every A (= T, P is an elementary substructure of A. In particular, if A \= T and I take 
a subset 5 C ^4, 1 can talk of the model of T generated by 5.

If a e /4 and C ^ ̂ , the type of a over C is determined completely by the cut of a 
over C, i.e. by formulae of the kind x < c, x = c and x > c as c varies in C. The model 
generated by CU {a} is also determined (up to isomorphisms fixing C) by this cut.

An o-minimal structure (A,J£) is Kr-saturated for some cardinal K iff its restriction 
(A, <) is jc-saturated.

(4)O-minimality has been defined also for structures which are simply expansions of linear orders, or 
of linearly ordered groups.
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An ordered field is o-minimal iff it is real closed. The theory of real closed fields 
is complete, and its prime model is given by the field of real algebraic numbers.

As an example of what I said before, suppose that A is a real closed field, and 
S C A is a subfield. Then, the model generated by S is S, the real closure of S. The 
type of a G A over S is determined by the cut of a over S, and if a, a' are in the same 
cut, then S(a] is isomorphic to S(a'), with an unique isomorphism fixing S (and hence 
S) and sending a to a'.

In the following discussion, the main example of o-minimal theory is Taw (exp), 
the theory of R in the language 5?an (e\p), the language of ordered rings plus restricted 
analytic functions and the total exponentiation.

1.8 Other properties

All lemmas in this section are quite elementary. The most interesting result is lemma 
1.41, stating some conditions under which the Cauchy completion of a substructure 
of No is again a substructure of No. 

Given a G No, let

No(a) := {jc e No : ^(jt) < a} (1.13) 
B(a) :={xGNo:£(;t) = a}. (1.14)

Given S C No, I define

t(S) := min{ a 6 On : a > £(x) Vx£S}.

Equivalently, l(S) = min { a € On : S C No(a) }. Note that l({x}) = l(x) + 1, and if 
x=(L J"?),then

with equality holding if (L \ R) is the canonical representation of x.
I recall that, given x,y £ No, the concatenation of x,y, in symbols x:y, is defined 

as the surreal number obtained juxtaposing x with y, considered as functions from 
some ordinal into {+,-}. Then, i(x:y] = t(x)®i(y) (ordinal sum). The operation 
: is associative, 0 is its neutral element, and if a,/3 6 On, then a : /3 = a ©jS. If 
a € No is infinite positive, 1 : ( — a) is an infinitesimal positive surreal number. A 
surreal number is positive infinite iff it is of the form co :y for some y G No. 
Remark 1.20. If x,y G No, x = (x1 jt*) is the canonical representation of x and 
y=(yL \yR )is any representation of y, then

x:y=(xL ,x:yL \x*,x:yR ).
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Note that the previous recursive definition is not uniform. 

Definition 1.21. Let S C No be a subclass of No. I say that S is initial in No iff

YJC e S Vy 6 No y ± x -+ y <E S.

Example 1.22. No(a) is an initial subset of No for every ordinal a. 

Lemma 1.23. Given a family of functions (which is a proper set)

and asetSc No, there exists a set K such that S C K C No andf(K") C Kfor every 
f 6 21. Moreover, I can choose K = No(a)ybr some cardinal number a.

I call such K a fixed set for 21. 

Prao/ For any ordinal number a, let

i.e.

a) := min { j8 e No : j8 > £(/ W) V/ e 21, V* e No s.t. l(x) < a } .

g : On — >• On is a continuous increasing function, therefore it has an arbitrarily large 
fixed point a, which can be taken a cardinal number. No(a) satisfies the conclusion.

D

Lemma 1.24 (Lowenheim-Skolem). Given 21 and S as before, there exists K which 
is a fixed set for 21, and such that (K,2l) -< (No, 21). /c<a« suppose that K = No(a) 
ybr some cardinal number a, or that |K| < X 0 + |2t| + |5|.

The condition on the cardinality of K is the classical Lowenheim-Skolem the­ 
orem. Otherwise, apply lemma 1 .23 to the skolemization of the structure (No, 21) . D

1.8.1 Cauchy sequences

Definition 1.25. Let K C No be a divisible subgroup of No. I say that x e No" is 
K-infinitesimal iff \x\ < £ for every e > 0 e K (with an analogous definition for K- 
bounded).
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Example 1.26. Let/: No" -> No be a continuous function and

(K,/,+,<H(No,/,+,<).

Then Vx e W,y e No" if jc -3; is K-infinitesimal, then/(x) -/(y) is K-infinitesimal. 
In the following lemma, for A C No to be K-dense in B C No means

Vx e £ Ve >0 e K 3y 6 4 |x -j| < e

Lemma 1.27. Let K C No be a subgroup o/No and a proper set. IfK is K-dense in 
the interval (0,1) then K C R.

Proof. Suppose that K is K-dense in (0,1) and that it contains an infinitesimal ele­ 
ment e > 0. Let e ~ a>~c for some c> 0 6 No. Consider the sequence

where a runs through all non zero ordinal numbers. For each a there is a za € IK such 
that \za —xa \ < e. But then the za are all distinct, so IK cannot be a proper set. D

Question 1 .28. Under which conditions I can talk of "IK-standard part" of a IK-bounded 
element? I.e. when can I say that for every y e No which is K-bounded there exists 
x £ IK such that x — y is K-infinitesimal?

Answer 1.28. If and only if K = E. In fact the existence of a standard part implies 
that K is dense in (0, 1).

Question 1.29. Given K C No andx <E No that can be approximated by K, i.e.

Ve>OeK3yeK\x-y\ < e,

when does exists a standard part of x? To be more precise, for which K every element 
of No which can be approximated by K has a standard part?

Definition 1.30 (Cauchy). Let K be a linearly ordered Abelian group, a be an ordi­ 
nal. A sequence (x.) /<a of elements of K is a Cauchy sequence iff

Ve > 0 e K 3n e a ViJ > n \x, -Xj < £. 

K is Cauchy complete iff every Cauchy sequence has a limit (in the order topology).

Cauchy sequences and completeness can be defined in a wider context than or­ 
dered group.
Question 1.31. For which ordinal a is No(a) Cauchy complete?
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If K is a Cauchy complete field and G is an ordered group, then K((r)) is Cauchy 
complete.

Lemma 1.32. If a is an epsilon number, then No(a) is not complete, nor pseudo- 
complete.

Proof. If x 6 No(oc), then ft)* e No(a) too, because a is an epsilon number. Consider 
the surreal number

y := I or1'.
Every partial sum

yp •= I ®~' »-<0
is in No(a) for every /3 < a (see [18]). Moreover, (y^)^ <a is a Cauchy and pseudo- 
Cauchy sequence, but i(y) = a, so it has no limit nor pseudo-limit in No(a). D

Definition 1.33. Let K c No be a divisible subgroup of No and a e On. Let (xt ) i<a 
be a sequence in K and x £ No. Then, (*; ) ;<a has K-limit x (or simply limit if K is 
clear from the context), xf — » x, means that

Ve > 0 e K 3n < a Vz > n \xt - x\ < e.

The limit is not unique. The class of possible limits of xt is a convex subclass of No, 
and I call the simplest element in such class the simplest limit (if it exists).

The Cauchy completion of K is K, the set of simplest limits of all sequences in K.

Note that if x e K, xt —>xis the usual notion of convergence in the order topology 
ofK.

Lemma 1.34. Let K C No be a divisible subgroup o/No. Then K is Cauchy complete 
iff every element o/No which can be approximated by K has a K-standard part.

Proof. Ifx E No can be approximated by K,

Ve > 0 e K Bxe e K \x£ -x <e

Consider the sequence xe . It is Cauchy, therefore it has a limit y in K, which is the 
standard part of x.

For the converse, consider any Cauchy sequence (xt ) i€a in K. Then

Ve > 0 e K 3«(e) < a Vi,j > n \xt -Xj < e. 

Without loss of generality, n(t) is monotone decreasing. Take

I Xn(£) +
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x exists. In fact, if 0 < a < b e K, then n(d) > n(b). Therefore, \xn(a) -xn(b) < b, so 
xn(b) ~ b< xn (a) < xn ( b ) + b - This implies that

Xn(a) ~ a< Xn(b) + b and Xn(b)-b < Xn(a) + a -

Moreover, x is obviously a limit of x,. Therefore, x has a standard part;; e K, which 
is a limit ofx.. n

Remark 1.35. The Cauchy completion of K is Cauchy complete.

Proof Usual diagonalisation proof. Let (xr ) (<a e K, x € No such that x; -> x. Let 
e > 0 e K. Let «(e) < a such that V/ > n xt -x <e.

£ is not K-infinitesimal, therefore we can suppose that £ e K.
For every xi there is a sequence (x;y.) . </3 e K with limit x; . Let /w(/,e) be such 

that Vj > m \xf - x{J \<e. Then

has limit x (I use K as index set instead of an ordinal, but it does not make any 
difference, as long as K is a set). D

Lemma 1.36. Let K C No be an initial divisible subgroup o/No, x e K.

/. Let x = (x1 \XR } in some representation ofx. Ifxi is the sequence of left options 
ofx (ordered from the farthest to the nearest), andx £ K then xt — >• x.

2. Conversely, ifxi — > x then Vx° options ofx 3i < a arbitrary large such that

X° — X > X —X .

3. There exists xi —> x such that Vi xt < x. More strongly, there exists xi —> x that 
is cofinal in the canonical representation ofx, i.e. Vx^,^ canonical options of 
x there exist ij such that x1 < x{ < x < x . < x^.

Proof. 1. Suppose not. Then there exists £ > 0 e K such that Vi x-xt > 2s. Let 
z e K s.t. \z — x < £. Then x1 < z — e < x < x^ for all options x1^, therefore 
x ^ z — e. But z — e e K, and K is initial in No: contradiction.

2. Suppose that there exists x° a canonical option of x such that Vi x° —x < 
x • — x\. But then x° is a limit of xt , which is absurd.

3. If jc i K, use 1. Otherwise, (*-e) e>0€K ~* x-
D
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Definition 1.37. Let K C No be a subgroup of No, / : No" -»• No such that/(K") C 
K. I say that / preserves K-limits iff for every sequence (*,),<a e K" converging to 
* € K" we have/(x.) -»/(*).

Remark 1.38. Suppose that/: No" — * No is uniformly continuous on bounded inter­ 
vals, that K C No is a subgroup of No closed under/, and that K ^ No in the language 
(<,+,/). Then/ preserves K-limits.

Question 1.39. Does / point-wise continuous suffice?

Lemma 1.40. IfK C No is an initial subfield o/No, then K is a subfield o/No.

Proof. Let x,y € K, let x( —> x, yt — > y, xi ,yi e K. By lemma 1 .36, 1 can suppose that 
Xf andyi are cofinal in the canonical representation of x and y.

If z is the simplest limit ofxf +yf , I must prove that x +y — z.
Xf Jryi —> x+y, therefore z ^ x+y by definition of z. It is also easy to see that 

xt +yt is cofinal in the canonical form of x +y, therefore x +y -< z.
Proceed similarly for the product, using xy — (x — xf )(y — v; ) instead of xf +yt .
For the inverse 1 /x, note that either ;c is not K-infinitesimal, and in that case 

proceed as for product, or x = 0, and there is no need to invert it. D

In general, we have the following:

Lemma 1.41. Let /: No — > No be recursively definable over a family of functions 
21. Let K C No be an initial divisible subgroup o/No, closed under f. Let K be the 
Cauchy completion ofK. Suppose that IK is closed under 21.

Suppose moreover that Mt £ K, Ve > 0 6 IK there exist fl e 21 a left option of f 
anda,beKsuch that a < t < b andVt' ,t" such that a < t' <t <t" <b \fL (t,t',t") - 
f(f] \ < 8, and the same for right options.

Suppose moreover that f and every g £ 21 preserve K-limits. Then IK is closed 
under f .

The same result holds if f is a function of many variables whose definition is 
uniform.

Proof. Let x £ K\K. By lemma 1.36, if xt are the canonical options of x, xt — > x. 
Moreover /= (fL I/*), so

k in some ordinal 7 (order the zk from the farthest to the nearest to z). Therefore, 
z, e K (because K is closed under 21) and/(x) is a limit of zk (because of hypothesis

ft

of the lemma) and the simplest such.
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In many variables I need uniformity, because if x = (x(1) , . . . ,jc (fl)) € K" \ K", I 
cannot suppose that all coordinates x^ £ K, but only some of them. Therefore, I 
cannot say that x is the EC-limit of its canonical options. D

Remark 1 .42. For a generic ordered field K (which is a set), the Cauchy completion 
K C K. can also be defined by the following universal property:

1 . IK is dense in K.

2. If K is dense in the field F, then F is isomorphic to a subfield of K by a unique 
isomorphism that is the identity on IK.

Therefore, IK is unique up to isomorphisms.

Definition 1.43. The cofmality of a linearly ordered set IK is c/(K), the smallest 
ordinal a such that there exists a sequence (*,•),•<„ with domain a cofinal in IK, i.e.

Vy € IK 3i < a xi > y.

If IK is an ordered field, then cf(K) is always a non-zero limit ordinal. If moreover 
K is dense in the field F, then K and F have the same cofinality.
Lemma 1.44. The set IK can be defined as a quotient of the sets of all Cauchy se­ 
quences in K with domain cc := cf(K). The equivalence relation is given by

(xi) i<a ~ (y,-),-<o i^Ve > 0 e K 3« < a Mi > n \Xj -yt < e. 

The sum and product are given point-wise. The order is given by

& 3« < « Vi >n X <.

The inclusion K C IK is given by the diagonal map. Moreover, IK is Cauchy complete, 
and if¥ is another Cauchy complete ordered field F containing IK and such that IK 
is dense in F, then there exists a unique isomorphism between F and IK that is the 
identity on K.

Sketch of proof. The proof follows the usual one for IK = Q.
Suppose that IK is dense in F. Any map from F to IK assigning to an element x e F 

a Cauchy sequence in IK converging to x induces an isomorphism between F and a 
subfield of K. D

D. Scott in [16] gives (at least) two other constructions of K. In particular, he 
writes:

The element of IK are in one-to-one correspondence with the [Dedekind] 
cuts in K that are never invariant under a nonzero translation by an ele­ 
ment of IK.

For a fuller account on the subject, see for instance [9].
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1.8.2 Properties of No(a)

Remark 1.45. Let a < b 6 No, c = (a \ b). Then either c -< a and c X b, or a -<; b 
or b ~< a.

Ifa-< borc^b, then6:(-l) e (a,b). If 6 -X a or c -< a, then a: 1 e (a, b).

Lemma 1.46. Let a e On. T/zew, No(a) w discrete iff a is finite. Moreover, a is a 
limit ordinal iff"No(a) is densely ordered iff

Proof. Density: The second <£> is easy. I will prove the first <^>.

•<= Suppose that a = j8 + 1 . Obvious if a is finite. If a is infinite, let

= 1 © j8 = j3 < a, where 0 is the ordinal sum. 0, b e No(a), but c = (0

Let a < 6 e No(a), c = (a | 6). Then either c -< a, so c <E No(a), or a -< b, so 
(&:-!) G (a,*), and £(&:-!) = ^(6) ® 1 < a, or similarly if 6 x a.

Discreteness:

•<= Obvious.

=>• Suppose that a infinite. If a is a limit ordinal, then No (a) is dense, so it cannot 
be discrete. Otherwise, a = A + n, A 6 On is an infinite limit ordinal, 0 < n € N. 
Let 6 = 1 : (-A) : (» - 1). Then, l(b) = A + (« - 1) < a. Suppose that c is the 
successor of b in the discrete order of No(a). Then,

Vy< A + (w-l)

Therefore, 6 -< c, so t(c] > t(b], and £(c) > a, a contradiction. D 

Lemma 1.47. Zef a Z?e an ordinal number. B(a) w discrete iff a is finite.

Proof. <^= Obvious.

=> If a is a limit infinite ordinal, then b = l.(-a) has no successor. Otherwise, 
a = h _(_ Wj with A G On an infinite limit, « € N and use example 1 .55 in the next 
section. D

Lemma 1.48. No(A) is a subfield o/No iff"k is an epsilon number. Moreover, in this 
case No(A) is also an elementary substructure o/No in the language Jzfan (exp) and 
for every a e No(a), Q)a e No(a).
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Proof. See [18]. D

Lemma 1.49. Let a,j8 be two infinite cardinal numbers. Then, (No («),<) is /3- 
saturated iff /3 < cf(a), where cf(a) is the cofinality of a.

Proof. LetK=(No(a),<).

4= Let S c K be as set of cardinality less than cf(a), let T = Ts(x] be a 1-type over 
it. The important fact is that l(S) < a. I want to prove that T has a realisation 
in K. Suppose that no s <E S realises T (otherwise the conclusion follows). By 
lemma 1 .46, K is densely ordered without endpoints, so its theory has elimination 
of quantifiers. Therefore, without loss of generality every formula in T is of the 
type either (x > s) or (jc < s) for some 5 e S. Let

It is obvious that L < R, and that a - (L R) realises T. Moreover, 1(L(JR) < 
a =» ta

=> Suppose for contradiction that IK is /3 -saturated and that cf(a] < jS. In that case, 
for some y < j8 there exists a /-sequence of ordinal numbers A,- which is cofinal 
in a. But then, by saturation, there exists c € K that is greater than each of the A; ; 
therefore a, the simplest such c, is in K, which is impossible. D

Corollary 1.50. Let a be an uncountable cardinal. Let K be an o-minimal expansion 
o/(No(«), <). If 2^ = j8 + = a, or if a is inaccessible, then K is saturated. 

Moreover, No itself is a-saturated for every cardinal a.

Lemma 1.51 (Compactness). Let 21 be a set of subintervals o/No, where every 
interval has endpoints in No U {±°°}. If ̂  is a covering o/No, then it has a finite 
sub-covering.

Note that 21 must be a proper set. The lemma can be generalised to other |2l| + - 
sarurated ordered groups K.

Proof. Suppose not. Then, the type in x (in the language (+,<)) given by formulae

x£A { U---UAn ,

for n e N and A -6 21, / = 1 ,-..«, would be consistent, and by saturation there would 
be x e No satisfying it, contradicting the fact that 21 is a covering of No. D
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1.9 Orderings

This section deals with some basic properties of partial orders and of ordered trees. It 
ends with a characterisation of No (remark 1.73).

1 .9.1 Set theoretic background

The discussion in this thesis takes place in the axiomatic system NBG of von Neu­ 
mann, Bernays and Godel, with global choice. Its main features is that it treats classes 
as legitimate objects; sets are classes which are member of some other class. The main 
distinguishing axioms are the following.

Axiom of predicative comprehension for classes. For any condition(5) 0(jc) 
that contains only quantifiers over sets (and not classes), there exists a class A which 
consists exactly of those sets x which satisfy <j>(x).

Axiom of global choice. There exists a function^ F whose domain contains all 
non-void sets, and such that for every non-void set x, F(x) e x.

See [8] for more details.
I will also talk of a collection of classes as an abbreviation device for a condi­ 

tion 0 (x) without quantifiers over classes. Similarly, given two collections C and D 
(determined by a condition §c (x) and <j)D (x)), a function from C into D is given by a 
formula \{f(x,y) (with only x,y as free variables), such that

A relation over a collection C is again given by a formula (j)(x,y) (without quantifiers 
over classes). For instance, I will define No^, the Dedekind completion of No: it is a 
collection and not a class.

Given a well founded partial and set-like order (A,<) (see 1 .9.2 for the definition), 
it is possible to give definitions by transfinite recursion on A, without needing to 
go outside NBG. Moreover, it is possible to prove formulae without bounded class 
variables by induction on A.

1.9.2 Partial Orders

Definition 1.52. A quasi-ordered class (or quasi-order for short) is a pair (A,<), 
where A is a set or a class, and < is a binary relation on A satisfying the following 
axioms:

(5)A condition is a formula $(x) with only x as free variable.
(6)A function is a class whose elements are ordered pairs and satisfying the usual properties.
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Transitivity Vx,y,z £Ax<yandy<z imply x < z. 

Reflexivity Vo e A a < a.

a ~ b means a < b and b < a. ~ is an equivalence relation on A. If (A, <) satisfies 
also

Antisymmetry Va, b e A a ~ 6 iff a = b,

the order is called a. partial order.
If neither a < b nor b < a then a and £ are incomparable, in symbols: a || b. By 

a < b I mean a < b and 6 ^ a.
A quasi-order is total iff no two elements are incomparable, i.e. for every a, b e A 

either a<borb<a.A linear order is a total partial order.
A chain is a subclass of ,4 which is linearly ordered by <.
A quasi-order is well-founded iff there is no infinite sequence (*,) /6N in it such 

that *,-+!<*,,

Given a quasi-order (A,<), < induces a partial order on the quotient A/,^, the 
canonical quotient of(A,<).

In the following, all orders will be partial orders, unless explicitly stated other­ 
wise.

A quasi-ordered class A is set-like iff it is well-founded and for every a e A the 
class of predecessors of a

&(a) :={xeA :x<a}

is a proper set.
Given a well-founded partial order (A, <) and a e A, the length of a is inductively 

defined as
i(a) = min{ a € On : a > l(x) Vx<a}

(or _f_oo if the minimum does not exist). If A is set-like, then l(a) is defined Va 6 A. 
If SC A, let

l(S) := min{ a e On : a > £(x) V* e 5} ,
or +0° if the minimum does not exist. lfa£A,let^>(a):={x£A:x<a}. Then,

Remark 1.53. Let a,/3 e On. The natural sum a + /3 is the smallest ordinal strictly 
greater than a + J8' and a' + /? for every a' < a and /3' < /3 (7) .

< 7)The natural sum of two ordinals can be denned either via their Cantor normal form, or using this 
remark as a definition.
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In particular, the natural sum of two ordinals coincides with their sum as surreal 
numbers.

Given two partial orders (A, <A ) and (B, <B ), how can I induce an order on the 
product AxBl

Definition 1.54 (lex). The lexicographic product (or ordinal product) of A, B is the 
partial order(^ x B, < ) defined by

lex

(a,b) < (a',b') iff a < d V (a = a' & b < b').
lex

If A and B are both linear, C := (A x 5, < ) is linear too. If A and B are both well-
lex 

founded, C is well founded too. But (On x On, lex) is not set-like, even if On is. If A
and B are both well founded, and a£A,beB, then

where © and ® are the ordinal sum and product. 

Example 1.55. For every a, /3 e On

(B(a)xB(j8),lex)~B(a®j8) (1.15) 

with the isomorphism given by concatenation. 

Definition 1.56 (bnd). The cardinal product^ (A x B, < ) is the partial order
bnd

(a,b) < (a',b')iffa<a &b<b'.
bnd

The cardinal product can be easily generalised to the product of more than two 
factors.

If A and B are both well-founded, C is well founded too. If A and B are both set- 
like, so is C. But C is almost never linear, even if A,B are. For A and B well-founded,

Proof. Induction on (a, b). By definition of length and inductive hypothesis,

:y>t(a,b'} Va' < a,bf < b,(J ,b'} ^ (a,b) } 

:r>t(a')+t(b') Va' <a,b'< b,(a' ,b') ^ (a,b) },

and the conclusion follows from remark 1.53. D 

(8) It coincides with the product in the category of partial orders.
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Definition 1.57 (sym). (Ax A, < ) is the symmetric product:
sym

(a, 6) < (c,J) iff (a, 6) < (c,d)V(a,b) < (d,c). sym bnd bnd

This ordering is only a quasi-ordering: (a,b) ~ (b, a). C is almost never total. If 
A is well founded, so is C; if A is set-like, so is C, and again l(a, b) = l(a) + t(b}.

Proof. Induction on (a, b). By definition and inductive hypothesis,

d)s.t (c,d) < (a,b)\l (c,d) < (b,a)\ ,
bnd bnd J

and the conclusion follows from the commutativity of +. D

Definition 1.58 (bsym). If A is a linear order, then bsym and bsym2 are the bounded 
symmetric orderings on A xA:

(a,b) < (c,d) iff max(a,6) <max(c,</)V
bsym

V (max(a,6) = max(c,t/) & min(a, b) < min(c,t/)) 
(a,b) < (c,d] iff min(a,6) <min(c,^)V

bsym,

V (min(a, b) =min(c,^) & 

In the general case, when A is not necessarily linear, bsym is defined as:

(a,b) < (c,ef)iff(a,b) < (c,d)\/ (a < c & b < c)V (a < d & b < d). bsym sym

In general, neither bsym nor bsym2 are partial orders, only quasi-orders. Both are 
well-founded (total) if A is. bsym is set-like, but bsym2 is not. The formula for j*(a, b) 
is quite complicated in both cases. (It would be interesting to define bsym2 for any 
partial order A).

Example 1.59. l(N x N,bsym) = co:

(0,0) < (1,0) < (1,1) < (2,0) < (2, 1) < (2,2) <
<(3,0)<(3,1)<(3,2)<(3,3)<

£(NxN,bsym2 ) = (0 x co:

(0, 0) < (0, 1) < (0,2) <•••< (1, !)<(!, 2) < (1,3) <•••< (2,2) <•••
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A well founded order < on A x B gives the means of doing induction on pairs 
(a,b). The greater is £(a,b), the more powerful is the induction (i.e. the stronger is 
the inductive hypothesis). On the other hand, the smaller is t(a, b), the more efficient 
is a recursive definition of a function/ on A x B (i.e. I need to know /(a7 , b'} for less 
values before being able to compute f(a, b)). In the case of No, if < is not set-like, 
there is a danger that / is not defined for some input: this is the reason why I had to 
use the cardinal product bnd instead of the lexicographic one lex in the definition of a 
function of many variables.

The bounded symmetric order bsym is quite important: when I do induction on 
pairs on functions/,^ : No — > No, I often use bsym. For induction on pairs of elements 
of No I use the cardinal product bnd (what Gonshor calls induction on the natural sum 
of a, b).

Lemma 1.60. Let (A,<) be a quasi-ordered set, F a group of automorphisms of 
(A,<). Suppose that

Vx£A Vye T (pc^xVpc \\x).

Introduce on A the relation R given by xRy iffx ~ Jy for some J 6 F. Then, R is an 
equivalence relation. Let B := A/p be the quotient of A under R. Then < induces a 
partial order on B, which is well-founded if A is.

Proof. The definition of < on B is a < b iff a < yb for some y 6 F.

Equivalence relation: Reflexivity is obvious. For transitivity, let aRb and bRc, 
i.e. a ~ jb, b ~ Ac for some y, A € F. Then, a ~ yAc.

Good definition of<: If a = b and a< c, I have to prove that b < c. The hy­ 
pothesis means that a ~ yb and a < Ac for some 7, A € F. This implies that

Reflexivity: Obvious.

Antisymmetry: lfa< band b< a, then a<yb,b< Aa. Therefore, a<jb< yAa. 
So, by hypothesis on F, a ~ yA<7, therefore a ~ yb, i.e. a = b.

Transitivity: a<b<c. Then a<yb,b< Ac. Therefore, a < yAc.

Foundation: Suppose that V/ e N ai+l < at . Then, a, > JflM for some y e F. 
Therefore,

and A is not well-founded.
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Example 1.61. Let A = (B x B, < ) and let T be the group generated by the swapping
bnd

or coordinates. The induced ordering on the quotient is (the canonical quotient of) 
sym.

Definition 1.62. Let (A f , <) i&s be a family of partially ordered sets. Its direct product 
is the set Tli€SAj, given by the direct product of the A t , endowed with the order

Suppose that every A i has a minimum 0. The support of x := (xt } i€S € YliesA i is me 
set

If (S, <) is a linearly ordered set, the lexicographic product TieSA i is me set of a11 
elements of H/es^, with well-ordered support, with the partial order defined by

where /0 is the smallest /' e S such that x • ^ yt . If all factors are the same A, I call the 
lexicographic power of A (over the base S) the corresponding lexicographic product.

If S is anti well-ordered and each^4 ; is well-founded, then ^i&sA i is well-founded 
too. If all factors are linearly ordered, the lexicographic product is also linear.
Example 1.63. The order on NO[JC] introduced in the proof of lemma 4.2 is the lexico­ 
graphic power of No over the base N with reversed order.
Definition 1.64. Let (A,<) be a quasi-ordered set. Let A <0} be the class of all n- 
tuples of elements A as n 6 N, with the quasi-order defined by (xi } i<n < (yj}j<m iff 
there exists a function

/:{0,l,...,«-l}->{0,l,...,/n-l}

such that Vz <nxf < >y(/) and xt < yf(i) whenever 3j ^ i /(/) = f(j}. In general, this 
quasi-order is not a partial order. The symmetric power of A is A^\ the quotient of 
A <a} under the action of the permutation group of N.
Remark 1.65. Let A,A <CO ,A^ as in the previous definition. The symmetric power 
A^ is a partial order. If A is well-founded (or set-like, or totally ordered), so are A <(0 
sad AW.

Lemma 1.66. Let (A,<) bea set-like partial order. LetxQ ,... ,xn e A. Let a\ , . . . , am 
be the set of lengths ofxQ ,...,xn, ordered by the greatest to the smallest. For i = 
1 , . . . , m, let ki be the number of j such that £(xj) = at . Then,

with equality holding if for each i = 0 . . . , m ^(x-) is a linearly ordered set.
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Sketch of proof. I will treat only the case in which x. are all ordinal numbers. The 
map y : (WN ) -> On defined by

is surjective (where + is the natural sum of ordinals), by well known facts on the 
Cantor normal form of an ordinal. Moreover, x < y implies \i/(x) < y(y), and the 
conclusion follows. Q

The symmetric power is a generalisation of bsym. See also [5] and [4] for other 
results on partial orders.

1 .9.3 Ordered trees

Definition 1.67. Let < be a (partial) order on a class A. Given a subclass SCA,aeA
is an upper bound for S iff Vx e S a > x.
a is the least upper bound of S iff a is an upper bound for S and a < x for every x
upper bound for S.
The greatest lower bound is denned in a similar way.
If < is linear, then a 5" C A is a convex subclass iff

Definition 1.68 (Tree). An ordered class (A, -<) is a tree iff 

Tl. A is well-founded and set-like.

T2. Va e A, £P(a) := {x € A : x -< a} is linearly ordered. 

T3. Every non-empty subclass of A has a g.l.b. 

A tree A is a binary tree iff every a e .4 has at most 2 immediate successors. A
structure (A, -<} is a wea£ tree if the set-like condition is dropped. 

Lemma 1.69. If A is a weak tree, then

1. A has a minimum, the root of the tree.

2. Every chain which has an upper bound has a l.u.b. 

Proof. 1. The g.l.b. of ,4 itself is the root of ,4.

2. Let C C A be a bounded chain. The class of upper bounds of C is non-empty, 
therefore it has a g.l.b. a, which is the l.u.b. of C.

n
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Definition 1.70 (Ordered tree). A structure (A, <, -<) is an ordered tree iff

Oil . (A, <) is a linear order.

OT2. (A, -<) is a tree.

OT3. For every S C A oconvex subclass of A, the x-g.l.b. of 5 is in S.

OT4. For every at A, ^(a) := {x £A : a ±x} is a <-convex subclass of A.

If in the above definition a tree is replaced by a weak tree, we would get a weak 
ordered tree.

In the following, convex will mean convex with respect to <. If a < b e A then 
[a, b] is the convex subclass {x£A:a<x<b}.

Lemma 1.71. Every ordered tree is isomorphic in a unique way to a initial subtree of 
No.

Proof. Let (A, <, -<) be a tree.
Claim 1. Suppose that x,y,z £A,x^.y,z~<x and z < x. Then z < y. Similarly for 
z>x.

^(x) is convex, z ^ ^ (jc) and z < x, therefore z < -5^(x). In particular, z <y.
I will define the isomorphism 0 : ^ — > No by induction. First, if 0 is the root of^, 

then 0(0) = 0. Suppose that I have already defined 0 on ^(a), such that 0 \^>(a] is 
an ordered tree isomorphism. Then define

where L = {</>(*) :* -< a &x < a} and R = {$(x) :x^a&x>a}. By Tl, </>(x) 
exists. I need to check that 0 is an isomorphism, i.e. that if x < y then <j>(x) < <j)(y) 
and if x -< 7 then 0(x) -< 0(y).

If x -<( _y, from the claim, the definition of 0 and the cofinaliry theorem on No it 
follows that 0(x) -<0(y).

If jc <7, then by T3 the class [jt,^] has a x-g.l.b. z and by OT3 z € [x,^]. Without 
loss of generality, I can suppose that x<z <y. Then, by definition of 0(x), 0(;c) < 
(j) (z) , and, by definition of </> (y) , 0 (z) < 0 (y) ; therefore, 0 (x) < 0 (y) . D

Corollary 1.72. For a« ordered tree (A, <,-<), ox/o/n T2 w a consequence of the 
other axioms. Moreover, the following statements are also true:

• (A, x) is a binary tree.
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• Va e On, the class
A(a] :={xeA:l(x) < a}

is a proper set.

Remark 1.73. (No, <, -<) can be defined as the maximal ordered tree, or equivalently 
as the ordered tree such that if L < R are two subsets of No, then the cut (L \ R) is 
non-empty.

An alternative definition of ordered trees, which is surprisingly simple, is the fol­ 
lowing.

Definition 1.74 (Weak ordered tree). An weak ordered tree is a triple (A,<,f) such 
that:

OT1 '. (A, <) is a linearly ordered class.

OT2'. /is a function from <t(A), the collection of non-empty <-convex subclasses of 
A, into ,4.

OT3'. For every Se£(A), f(S) € S.

OT4'. For every S, T 6 £(A) such that S C T and f(T) e S we have f(S) = f(T).

Given a weak ordered tree (in the sense of 1.70) we obtain an weak ordered tree 
(in the sense of 1.74 ) defining f(S] be the g.l.b. of S for S e <t(A). For the converse:

Lemma 1.75. Let (A,<,f) be a weak ordered tree. Define

x -< iff - °r*~ y

Then, (A, <, ;<) is a weak ordered tree.

Proof.
Claim 1. -< is a partial order.

Anti-symmetry and reflexivity are obvious. For transitivity, let* ^ y ^ z. Without 
loss of generality, x < y.

Suppose that x < y < z. By OT3', a := f([x,z]) e [x,y] U [y,z]. If a e [x,y] then by 
OT4', a = x, i.e. x ^ z. If a e [y,z], then a = v. Therefore a e [*,>>] and so a = *.

Suppose that x<z< y. By OT4', f((x,z}} = x.
Suppose that z < x < y. This is impossible, because f([z,y\) =y, therefore, by

Claim 2. For every Se£(A), f(S) is the ^-minimum of 5.
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Let a := f(S), and let x € S. Without loss of generality, a < x. Then, [a,x] C S, 
therefore a = f([a,x}).
Claim 3. For every a 6 A, &(a) is linearly ordered by <

Let x ^ a and y ^ a. Without loss of generality, I can suppose that x < a. If 
x < y < a, then x^y. If y < x < a, then y X x. If x < a < y, let b := /([*,>>]). If 
6 e [x, a], then 6 = jc, therefore jc ^ >>. Otherwise, y X jc. 
Claim 4. ^ is well-founded.

Suppose not. Letx0 >; x, >r x2 . . . be an infinite sequence. Without loss of general­ 
ity, after taking a subsequence, I can suppose that (x,.) /eN is an infinite < -descending 
sequence, i.e. XQ > xl > x2 . . . . Then, /([jc0 ,jc,.]) = xt for every / e N.

Let C := U/ [*(}'*/]• Ce€(A), therefore c := f(C) is defined, and c e C. Therefore, 
c 6 [xQ ,xn] for some n e N and so c = *„. Therefore x;. = xn for every / > n.
Claim 5. For every a € ̂ 4, the class {x : a ^ x } is convex.

Let a ^ xl5 a ^ x2 and Xj < 7 < x2 . Without loss of generality, a < y. Then,
[a,y] C [fl,x2], therefore /( [0,7] ) = a.
Claim 6. Every nonempty subclass S CA has a ^-g.l.b.

Let T be the convex hull of S. I say that a := f(T) is the g.l.b. of S. By claim 2, 
a is a lower bound for T, and a fortiori for S. Let _y be a lower bound for 5. a e T7 , 
therefore there exist jCj,x2 e 51 such that jcj <a<x2 . ^^JCj and ̂  ^x2 , therefore, by 
the previous claim, j> ^ a. So, a is the g.l.b. of S. D

Example 1 .76. Let (^, <) be the lexicographic sum On © On, and let ^ coincide with 
<. Then A is a weak ordered tree, but it is not set-like.

Of course, for proper sets, weak ordered tree and ordered tree are the same con­ 
cept.

For a different account on the subject, see [7]. 
Lemma 1 .75 can be generalised.

Definition 1.77. Let ,4 be a set. Let C be a family of subsets of A such that:

2. 

For x1 , . . - ,xn e A, let [x { , . . . ,*„] be the l.u.b. of {x { , . . . ,xn }, i.e.

€€:Xi £S& ... &xn €S}

A C-tree is given by a function f:£^A such that
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3. VS<E£ f(S)<=S.

4. Vx e A f([x]) = x.

5. VSCTE

Example 1.78. Let (A, <,/) be an ordered tree (and a set). Let £ := £(A) be the set 
of non-empty convex subsets of A. Then, (A,f) is a (t-tree.

Lemma 1.79. £very £-/ree is a tree in a canonical way, with the definition x^y iff

Proof.

Claim 1. ^ is a partial order.
Antisymmetry is obvious, reflexivity follows from axiom 4. For transitivity, let

x^y^z. [x,y] U [y,z] = [*,>>, z] e €; let c := f([x,y,z]). Therefore, c e [*,>>] or c e 
[y,z]. If c e [y,z], c = y, so c <E [x, v]. If c e [*,>>], c = x, therefore x ^ z. 
C/azw 2. For every 5 e C, f(S] is the minimum of S.

Let a := /(5), and let jc e 5. Then, [a,jc] C 5, therefore a = /([a,x]). 
Claim 3. For every a EA, &(a) is linearly ordered by ^.

Let x,jv e &(a), b := f([x,y,a\). If b e [jc,a], then 6 = x, so x ^ >>, otherwise

4. ^ is well-founded.

Let x0 >2 Jc, ^ x2 > • • • • Therefore, /([x0 ,*,]) = xt for every / e N. Let C := 
U/f^O'^/]' C e C, so I can define c := /(C). c e [xQ,xn ] for some « e N, so c = *„, 
therefore x; = xw for every i>n. 
Claim 5. For every a<=A, the set 3* (a) :— {x e ^ : a ^ x } is in C.

In fact, f(d) =\J{[a,x] :a^x}. 
Claim 6. Every non-empty subset RCA has a g.l.b.

Letr:=n{CG<r:/?CC}. Then, a := f(T) is the g.l.b. of/?. In fact, a is a lower 
bound of T, and a fortiori ofR. Moreover, ify is a lower bound for R,Rcy(y) and 

€ C, therefore T C ^(y), so 7 X a. D

Example 1 .80. Let (^, X) be a tree (and a set). Define

Then ^4, is a <£-tree.
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Lemma 1.81. Let (A,<,^.) be an weak ordered tree, (B, <) a linearly ordered class 
such that (A, <) is a dense sub-order of(B, <). Then there is a unique tree structure 
on B such that B is a weak ordered tree and A is an initial subtree ofB.

Proof. I have to define / : £(£) -> B satisfying definition 1 .74, extending / : €(A) -* 
A. Let S be a non-empty convex subclass of B. If S = {s} is a singleton, f(S) := s. 
Otherwise, T := f(S) r\A is a non-empty convex subset of A, and I define f(S) := 
f(T). The conclusion is now obvious. D

Definition 1.82. Let (A, <) be a linearly ordered class. A Dedekind cut is a partition 
of A into two non-empty subclasses Z, R such that L < R and L has no maximum. The 
Dedekind completion A® of (A, <) is the collection of all its Dedekind cuts with order 
defined by

(L,R)<(L',Rr )++LCLr ,

and inclusion i : A — >• ^ given by

A is dense in its Dedekind completion, so lemma 1.81 applies to A®, if it is a class.

1.10 Structure on

Let No® be the Dedekind completion of No. I will define a tree structure on No® 
which extends the structure on No (I cannot use lemma 1.81 directly because No® is 
not a class(9)). Ifx,yeNo®,x^yif£x=yoTx,y£Noandx^ vorx= (^ \XR } €No, 
y = (L,R) 6 No® andx1 6 A x^ € ^? for every jc1 ,^ canonical options of x.

With abuse of notation, given L,R subclasses of No, with L < R, I write (L R) 
for the simplest x e No® such that L < x < R (if it exists). Every x e No® is of the 
form (L R),withL = {x' e No :x' <*} andtf = {*" e No :x" >*}.

Every element of No® has a sign expansion corresponding to it, possibly of length 
On. But not every sign expansion of length at most On corresponds to an element of
No®.

For x,y G No®, define x +y as

(9)The proof that No5* is not a class is a trivial modification of Cantor's diagonal argument showing 
that the set of real numbers is not countable.
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Remark 1.83. x+y is a well-defined element of No®. Moreover, if x,y e No, then 
x +y coincides with the usual sum.

— x is defined as

-x=({-x":x">x]

Every positive element of No® can be also represented in a unique way as x = 
( {x1 e No : 0 < x1 < x} {x" e No : x" > x} ). With this representation, we can de­ 
fine

xy= <{*'/ : 0 <x' <*,0 </ <y] \ {x"y" : x" > x,y" >y}}.

Again, xy is a well-defined element of No®, which for x,y e No coincides with the 
usual product. 

Let

77 : = {{jt<ENo:0<jfC 1} {x 6 No : 0 < x & v(*) >0}} 
= sup {x e No : 0 < x <C 1 } .

Then, rj + f] = T] 2 = 77. Therefore, No® is not a ring. In particular, the sum is not 
associative* 10\

Remark 1.84. Let* > 0 e No. Then

77* = sup {ye No :0 <j<Cx} = inf {y e No :y>0&v(y) >v(x)} 

Proof. Letx = (L\R}, where

L = {xL eNo:0</ <x} andR={xR eNo:xR > 

Then,

j]x = ( {/e : 0 < / < x & 0 < e « 1 } {A: **>*&?> 0 & 

Let 0 < y < x. Then 2y/x = e -C 1, therefore

with x1 = x/2, so sup{^ e No : 0 < y < x} < r\x.
On the other hand, if y > 0 and v(y) > v(x), then y > 2qx for some q > 0 € Q, 

therefore y>q^, with x* = 2x, so y > 77^- D
(10)

(T/ + TJ)-TJ=O. 
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I will introduce the notion of approximation associated to a surreal number. 

Definition 1.85. Let* e No.

AL (x) := sup { e e No : x ^ x - e } 
A*(jt) := sup { e e No : x ^ x + £ }

Note that, in general, A1 , A* and A are not in No, but in No®.

Remark 1.86. Let *, v € No. If \x -y\ < A(x), then x ^ y. 
Moreover,

A£ (x) = inf{e>0:.r- £-<*},

and similarly for A^(x). Likewise,

A(x) =inf{e > 0 :x-e -

In particular, if v -< x and v < x, then x — y > AL (x). 

Example 1.87.

• A(JC) = 0° iff x = 0.

• The ring of omnific integers is the subclass of No

Oz:={jceNo:A(;c)> 1}.

It is a subring of No. Its elements are the surreal numbers with normal form

ra (0a ,
aeNo

with ra = 0 for every a < 0, and r0 € Z. Many properties of this ring are 
explained in [6] and [10].

• If*eK\Q,thenA(jr) = TJ. 

Lemma 1.88. For;t,y e No,
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Proof. It is enough to prove the first inequality.

Therefore

Now apply remark 1 .86 and the inverse cofinality theorem. D 

Corollary 1.89. Ifb(b) < A(a), then A(a + b) = A(Z>). 

Lemma 1.90. Forx,y e No, A(xy) > A(x)A(y).

Proof. Let x = (x1 xR ),y = (y1 y* ) be any representations of x,y. Then, a typical 
option of xy is of the form

therefore | (xy) ° —xy\ = \x — x°\\y—y°\. D 

Example 1.91. In general, it is not true that A(xy) = A(x)A(y). For instance, take

Then, A(x) = 77, A(y) = 1, A(xy) = A(l) = 1 > A(jc)A(y). 
Remark 1.92. Let a e No, ;c > 0 e No. If x - wa , then ft)a ^ x.

lfa=(aL \aR )is any representation of a,

x ~ 6)a , therefore 170) < x < qco , and the conclusion follows. D 

Lemma 1.93. Let r e K, a £ No. 7%e/i,

Without loss of generality, r > 0. Let a = {</ | </} be any representation of 
a. Then a typical option of z := rcoa is of the form

z° := rqcoa ° + (r±£)0)a - (r±s)q(0a ° 

For some £,^>OeQ. lfa°=aL <a,
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otherwise a° = a* > a, and

z° ~ ±£0)a > C0a

Therefore,

D

Lemma 1.94. Let r ^ 0 € R, a e No. TTzerc, 770)° < A(ro>a ) < (Oa . 
Moreover, Vy e No j; ~ ra)a implies r(Oa ^ _y.

Proo/ If ̂  ~ ro)a , then Ve > 0 e Q

(r-e)o)a <7< (r + e)o>a ,

therefore, by lemma 1.93, rcoa ^y. This implies that A(rft>") > rjcoa .
Without loss of generality, r > 0. If r < 1, 0 is a canonical left option of r(oa , 

therefore AL (r(Oa ) < coa .
If r > 1 , let n be the greatest natural number strictly less than r;n<r<n+\. 

Claim 1. n(0a X rffla .

The claim implies that AL (rcoa ) < coa . Let r = (r1 r^} be a representation of r 
such that r1 ,^ € Q are canonical options of r, n < r1 < r and r <rR <r+\. Let 
a = (a^ a^ ) be the canonical representation of a. «={«—! | ), therefore a typical 
left option of na is

(n(Oa) L = (n - 1 ) (Oa + go)"" ~ (n - 1 ) fflfl , 

while a typical right option is

(«w3)^ = (n- l)wfl + ̂  ~ 0)"*,

for some q > 0 € Q. On the other hand, by lemma 1.93, a typical left options of rcoa
is

(ro)a ) L = (r-£}(Oa >(n-l)G)a ,

while a right option is

The conclusion follows easily. D

Lemma 1.95. Z,ef x = I^a''/®''1' ^ ̂ e normal form ofx £ No. ler a e No. For
every 7 < a, define xr := I/<r >'/ c0fl<. T/zen,

7. ^"a,. >aVi< a, then A(x) > (Oa.



2. Ifdj >a\/i< a, then A(x) > r](oa .

3. If a is a limit ordinal, then

0<eeQ 
Moreover, A(JC) > inf { ft)a< :/<«}.

4. If a = j8 + 1 andrpfl = z, then A(JC) = A(z).

5. Vy < a xy -< x

Proof Induction on a.
If a is a limit ordinal, then the first part of 3 is an immediate consequence of the 

definition of 'Li<a ri (0ai. Therefore,

Iv v°\JC —— A ~ e(0ar > > rifa>a
r\G)a

and the first two points and the second part of 3 follow.
Ifa = fi + l,lety = Xp,z = G)aPrp, i.e. x=y + z.
The case a = 1 has already been proved. For a > 1, by inductive hypothesis 

A(y) > CDaP and A(z) < coaP, therefore A(JC) = A(j + z) = A(z) >i](Oaft.
It remains to prove 5. However, v(jc — ;cr) < ar and, by point 1, A(xy) > ft)ar, 

therefore jcy ^ ,r. D

Theorem 6. Let x = X/<a '*/-®a'' ^e r/ze normal form ofx. 
If a = j8 + 1, /Ae/j A(JC) = A(r^ wa/3). 
If a is a limit ordinal, then A(x) = inf { (Oa' : i < a }.

Proof. The case a = /3 + 1 follows from the previous lemma.
If a limit, then by the previous lemma A(x) > inf { a)a- :/'<«}. Let 7 < a and 

= S 6)'7'; 7 -< ^ and ix ~ x \ < v"7 ' therefore A(x) < war. D
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Chapter 2 

Integration

The integral of a recursive function is defined along the lines of Riemann integral on 
real numbers, and some of its properties are proved.

2.1 Definition

Given a recursively defined function f(X] = (fL \ fR ), I will try to define what the 
Riemann integral of/ is, knowing what the integrals of/ 0 are, for any/ 0 (left or 
right) option of/. I will write

t 
/J a

for such an integral, or fa f if the variable of integration is clear. 
I will say what properties the function

b

should have. First, it should be "additive" in (a,b), i.e.

for any a, b,c. This implies that I need only to define what J^(0,a,/) is, and say

Second, it must be increasing in/: if a < b and/(V) <#(t) for all t 6 (a, b), then

These two properties are enough for our purpose: I will show that they define a func­ 
tion <#(a,b,f}, under some assumptions on how/ is defined, and that other natural 
properties of J (as, for instance, linearity in/) follow.
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Simple case: the functions/ 0 do not depend on jc° and/(jc°), but only on x. In 
that case, we know that

/(*)</«</*«• 
So, it must be that

if a < b, and the other way round if b < a. Let's call ?(x) = /Q /(/)&. In particular, 
if a = x1 is a left option of x,

fR (t)dt,
X

and analogous formulae for a = jc^. So, I could write

(2.1)

The previous definition is sound, because we know already the value of faf°(t)dt 
for any a, b, and, by induction on x, we know the value of J(x°). 

As a shorthand, I write

However, this is not good enough: I must also split the interval [jt^jt] (or [x,r^]) into 
finitely many intervals [&• , kj+ { } , / = 0 , . . . , m - 1 , choose a left (or right) option fi ° for 
each /, and define:

ki
In the general case, I should write

, (2.2)

but it is not clear at all what the expression on the right means. 
Let a, b be two elements of No. I say that

= ( 0' ' ' ' ' m >

is an m-partition of (a, b) (and write P[a, b}) if kQ -a,km = b and ki+l > k-, for any 
0 < /' < m. I call m the length of P. Given a partition P[a, b} = (£0 , . . . , km ] and w-tuple 
3p of functions 3i (t,tL ,tR ] , i = 0, . . . ,m - 1, 1 define

i=0 
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if the expression on the right makes sense (i.e. if I have already assigned a value to the 
various integrals). I say that^p associates to every interval (£( ,yt/+1 ) of P a function 
3i-

Now we have a candidate for the left side in (2.2): let m be any natural number, 
let P vary among all the possible w-partitions of (x^x), let^ be an m-tuple of left 
options of/, then the expression

fJxL (2.3)
is a left option of f(x). Similarly, I can use an w-tuple of right options of/, or a 
partition of (*,**), to obtain all the other options of f(x) (4 cases in total). (2.3) is a 
sound definition, because to compute it I only need to compute f(x°) (which I know, 
by induction on x), and

for any option/ 0 of/ and for any a, b,c, d in No: so, I need only to suppose I know 
how to integrate such expressions.

Concluding, the recursive definition of J(jt) := /0v/(V)d/ is

xr //(/r,/(O),7.xL

where P varies among the partitions of (x1 , x) (or of (jc,**), according to the context).

2.2 Problems and examples

There are various difficulties with the previous definitions. Assume that/ is recursive 
over 21.

I. I need to know that ifa<t<b

fL (t,a,b,f(a),f(b))<f(t]

in order to be able to conclude that (2.3) is less than f(x), and so be able to use 
(2.3) as a left option off(x).

II. I want the definition of f(x) to be uniform in x and/, i.e. independent of the 
particular representations of x and of/. Strictly correlated with this, I want that 
if/ < g and a < b, then /a* / < /aV
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III. If I consider the number of options necessary to define f(x), I see that it is a 
proper class (at least one option for any possible partition of (0,jc)): so, a priori 
there is no guarantee on the existence of f(x), even if I know that every right 
option of it is strictly greater than any left option. To solve this, I need some 
amount of saturation of the theory of (No, 21).

IV. What about other properties of the integral? How does it fit with already defined 
functions, such as polynomials, analytic functions, logarithm and exponential?
I will prove that the integral of a polynomial is equal to the formal one, and 
similarly for bounded analytic functions. I will also prove an integration by 
parts formula and the fundamental theorem of calculus. However, the integral 
of exp is not what we expect.

V. Finiteness theorems. Under some assumptions on / (for instance, that it has a 
finite number of zeros), I will prove that ?(x) has a finite number of zeros, that 
between any two zeros of J there is a zero of/, and that if f(a) < 0 < f(b), 
then there is a zero of f in (a, b).

The following two examples illustrate some of the computations one should perform 
and some of the difficulties one may encounter with the definition of the integral of 
an arbitrary function / (recursively defined over some family). 

• The integer part function.

[x] = (x-l x+l)

is a function defined in an "elementary" way, but surely it is not in a Hardy field.
If x is a finite positive number, [x] is the usual integer part. For negative finite 

argument x, the function [x] behaves slightly differently from the usual integer part 
function: instead of returning the greatest integer below x, it will give the smallest in­ 
teger above it For x a generic surreal number, [x] will return the sometimes the greatest 
omnific integer' ]) below it, sometimes the smallest above it (the actual behaviour can 
be easily computed from the normal form of .x). For instance, [co - 1/2] = G).

Let us compute ?(x) := f£[t]dt for some values of x. Suppose that x e N; so, 
x = ( x - 1 I}. Then 7(x) = Ito' = *(* ~ 0/2. In fact,

(''See [6] for the definition.
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i.e.

^

Therefore,
x(^-l) 1 r(x-l) 3 *(*-!)>WM 2 2 i 2 + 2 >- 2 •

But

=f(n) + A/±l)d/
./«

0} TCO2
= q+ — ±CO

2

where n is any natural number and q is some rational number (depending on «): 

, , . co2 .co2 ,. co2f((0) = ( —— -03 + q\ —— + C0 + q ) neN = ——.

Therefore, f°[t}dt = tf tdl.
• Let e be any positive surreal number., y e No. Let^,(?) the piecewise linear 

function that has values 1 in t =y, 0 outside the interval (y- £,y + £)•
Define

Then/(/) = 2 for any r e No (because 1 =#(/))• s°, ! would expect that /Ox/(0 d/ = 
2x. But, "

for some k0 ,...,km and y0 , . . . ,7«. If e is infinitesimal (for instance, e = l/co), the 
former sum is infinitesimal too, and it is then easy to check that f(x) ^ 2x.

It is unclear whether in the last counterexample is essential that, in order to define 
/, I use a class of functions (instead of a set, as it should be); nevertheless, I think that 
I must impose some strong conditions on how / is defined in order to have a useful 
definition of f .

57



2.3 Conditions of integrability

Let/ = (fL \fR } be a recursively defined function. I want to state some conditions 
under which the previous definitions make sense.

First, of course, I need thatf°(x,a,b,c,d) is integrable for every/0 option of/ 
and for every parameters a, b,c,d e No. Moreover, I need some kind of uniformity in 
the definition of/. To be more precise, the following conditions:

Axiom 1.

la. For every t' < t < t", for every fL ,fR options of/, one has

fL (t,t'/',f(t'),f(t")} </(/) <fR (t,f,t" t f(t'),f(t")) 

Ib. For every/1 there exists/1 ' such that for every t( < t'2 < t < t'2 < t"

and analogous conditions for fR (that is, if I take t2 which is a better approxi­ 
mation^ oft than t lt I can obtain a better approximation of /(/))•

Axiom 1 is a (slightly) stronger version of the uniformity of the definition of/. 
In the rest of this thesis, when I will compute the integral of some recursively defined 
function, I will always assume that it satisfies this axiom.

In the second condition, it is often true that /z = fL , but this usually does not 
simplify our task.

Besides, I assume to have a family 21 of functions

/ _« *7_L- I -J^-T

in n + 1 variables (n depends on g\ with x, the first one, distinguished. Moreover, 
g(x,c) G 21 for every g 6 21 and c € No"; 21 contains all the constants, the identity 
function, and +.

I also suppose that 21 is obtained by an inductive process adding recursive func­ 
tions over previous families, starting with only the constants, i.e.

21 =

(2) Given / t-,,t such that t l < t~, < t I say that /.,, as a left approximation of/, is better than t l , and 
similarly for right ones.
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where a is an ordinal, and 2lg . t is made only by functions recursive over 2L, and 21, 
is the union of the previous ones if A is a limit ordinal. In this case, I say that 21 is con­ 
structed inductively. This will allow us to proceed by induction on the "complexity" 
of a function^ (namely, the smallest j8 such that^ e 2L).

A consequence of it is that if g e 21 then every option of g is also in 21. This is 
weaker than being constructed inductively: see for instance the discussion in § 5.2.2 
about the field of rational functions.

Finally, I assume that I have already defined somehow an integral for every func­ 
tion of one variable in 21, satisfying

rb rc rc
/ S+l 3=1 3Ja Jb Ja

for every a, b, c <E No, g e 21, and

rb rb
\ 8<\ b

Ja J a

if a < b 6 No, g, h 6 21 and^(f) < H(t) Vt e (a, b) (and analogous condition if>(f) < 
/i(?)). I call the first property additivity in the interval of integration/3 ^ the second 
monotonicity of the integral.

/ = (fL \ fR } wiH be a recursive over 21 (and satisfying axioms 1). I can then 
define // using formula (2.2). I will then suppose that / has some further properties 
on 21, and prove some other property for //.

For shorthand, I will often write/°(jc,jc°) forf°(x,xL ,xR ,f(xL ),f(xR )).
I wish to emphasise that the value of f(x) depends not only on the function/, but 

also on the following:

1. The value of § g as g varies in 21.

2. The recursive definition of/ in terms of functions in 21.

Different definitions of the same function / might give rise to different values of 7 
(but I do not have actual examples of this phenomenon). Later, I will give some 
conditions under which this does non happen, i.e. the value of f will not depend on 
how/ is defined (but it will still depend on the value of/ on 21).

Therefore, by function we will usually mean application from No (or some set- 
bounded convex subclass of it) to No, together with some recursive definition for it 
(over some family 21). The theory of integration we will build will consider only this 
kind of functions.

< 3 >In order to avoid confusion with the property ff + f0 = f(f+3).
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So, we have to prove that // is well defined, and that / is monotone on 21U {/ } 
(additivity of / in the interval of integration is immediate from the definition). But 
this does not come for free: we will need some further assumptions.

Definition 2.1. Let f,g be recursive over 21, a < b e No.
I say that / < g provably in (a, b) if there exists P[a,b] andf/^j; such that for 

each / either

/ < g provably if

fL (t,a',b'}< 3 and

in (V , b') for each option/1 ,/' and a', b, such that a < a' < b' < b. 
f = g provably if/ < g and g <f provably.

Axiom 2. For every h,g e 21 U {/ } either h = g identically, or for every a < b e No 
there exists a partition P of (a, b} such that on each interval (kt ,ki+l ) either h(t] <g(t] 
or h(f] > g(t], and provably so.

This axiom has two important consequences

1 . If/ < g, then there are witnesses for it (namely, gp orfp).

2. A function either is identically zero, or has only finitely many zeros on any 
interval (a,b).

With this hypothesis, I will prove the monotonicity of /, and that // is independent 
from the definition of/.

It will remain to prove that the integral of/ exists. As I said before, the number of 
options I use to define f(x) := /0*/(0 & is to° m§n (namely, a proper class): I need 
to cut it down if I want to be sure that f(x) exists.

Axiom 3. Let S£ be the first order language

Every subclass of No definable in & (with parameters) has a supremum in No U 
{ ±00 }. / has at least a left and a right option.

If g e 21 and g < / on some interval (a, b), then there exists e > 0 such that 
g < / - e on some subinterval of (a, b).
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Remark 2.2. For the last statement of axiom 3, is it enough that/ and^ are continuous 
at at least one point x € (a, b) and^(x) < /(jc).

I will also need that No is saturated (in the language Jz? ), as will be clear from 
lemma 2.8.

Further properties of the integral will (usually) need additional hypothesis.
I repeat that in all this thesis, I will suppose that axiom 1 is true for every function 

/, and that the integral is monotone an additive on 21. On the other hand, I will try to 
state explicitly which of the other axioms are used to prove each property.

2.4 Properties of the integral

The first, easy problem is to compute the integral of constant functions.

Lemma 2.3. Let a,b,c £ No. Then,

fb
I cdt = c(b-a).

Ja

Proof. Induction on c, a, b. First, I do induction on c, then on the cardinal product 
sym of a, b. Let { a1 | a^ } , { b1 ifi} and { c1 | c^ } be the canonical representations of 
a, b, c. Then, by definition of integral and inductive hypothesis,

fb° fb rb ra° f= / cd/+ / c°d/, / cdi+ / c°dt= ( /
Ja Jb° Ja° Ja Ja

proving that (b — a]c -< fa cdt.
Conversely, let b1 be a canonical left options of b, P :— (k0 , . . . ,kn ) be a partition 

of (b1 , b), CQ, . . . , c^_[ be corresponding canonical left options of c.

Similar inequalities can be proved taking right options of b or of c, or taking options 
of a. This proves that fa c d/ X (b - a]c. D

As usual, if P, Q are partitions of (a, b), I say that P is a refinement of Q if Q is 
a subsequence of P. A basic lemma in the theory of Riemann integral on the reals is 
that I take a refinement of P, I obtain a better approximation of the integral. For this, 
we will need axiom 1 .
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Lemma 2.4. Leta<b£ No, let P, Q be partitions of (a, b), with P a refinement ofQ. 
^ be a tuple of left options off. 

Then there exists $ tuple of left options off such that

Proof. W.l.o.g. I can suppose Q = (k{ , . . . ,km ), P = Q U {c}, kn < c < kn+l , n < m. 
I define #> = f. on (kt ,ki+l ) if/ ^ n. I apply axiom Ib to fnL to obtain /f' and define 
§p =fnL ' on both (kn ,c) and (c,kn+l ).

c

kn

b D

Given a < c < b and P[a, b] such that c 6 P, I define the restriction of P to [a,c] 
in the obvious way: if P = (£0 , ...,&„), its restriction is (kQ ,...,km ], where km = c. 
Given gp tuple of functions, I define the restriction of^p to [a,c] in a similar way.

Lemma 2.5. Let f(x) := ^f(t] d/, a < b e No, P be a partition of [a, b] and f^ be a 
tuple of left options off. Then,

. (2.4)

Similar inequalities hold ifb > a or for right options fp. Moreover, the definition of 
7 is uniform.

Proof. I will first prove (2.4). If a -< b or b ~< a, it follows from the very definition of

Otherwise, let c := (a b}.lt follows that c ~< a and c ~< b. Let Q := PU {c}, let
(let Q2 ) be the restriction of Q to [a,c] (to [c,Z>]).
By lemma 2.4, there exists^ tuple of left options of/ such that

Choose a non-canonical representation x = (/ | yP } for x, and define z° := 
-r0 °. I must prove that z = f(x). For every/- left option of x,

+ Jp<f(yL)+ f =
JyL Jy,
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Lemma 2.4. Leta<be No, letP, Q be partitions of (a, b}, with P a refinement ofQ. 
Let f£ be a tuple of left options off.

Then there exists gp tuple of left options off such that

fbf£(t,tO,f(t°))dt< [b^(t,t°,f(t°))dt 
Ja Ja

Proof. W.l.o.g. I can suppose Q= (kl ,...,km ),P = Q\J {c}, kn < c < kn+l , n < m. 
I define #> = f. on (*,•,*,•+,) if/ ^ n. I apply axiom Ib to fnL to obtain//' and define 
§p =fn on both (kn ,c) and Mw+1 ).

/°,/(/°)d/ D

Given a < c < b and P[a, b] such that c 6 P, I define the restriction of P to [a,c] 
in the obvious way: if P = (kQ ,.. .,&„), its restriction is (kQl .. .,km ), where km = c. 
Given ̂ p tuple of functions, I define the restriction of^, to [a, c] in a similar way.

Lemma 2.5. Let f(x) := /Q/(O d/, a < b e No, P be a partition of [a, b] andfj; be a 
tuple of left options off. Then,

(t,t°,f(t°))dt< [bf(t)dt. (2.4)
Ja

Similar inequalities hold ifb>a or for right options fp. Moreover, the definition of 
f is uniform.

Proof. I will first prove (2.4). If a -< b or b ~< a, it follows from the very definition of
/*/(')<*•

Otherwise, let c := (a b}. It follows that c ~< a and c -< b. Let Q :=P(j{c}, let
Q l (let Q2 ) be the restriction of Q to [a, c} (to [c, b}).

By lemma 2.4, there exists ̂  mPle of left options of/ such that

rb , rb r fc r fc T fc fb f b 
fp< *Q= & + L&< f+ f= fJa Ja Ja ' Jb ~ Ja Jc Ja

Choose anon-canonical representation x = {/ \yR ) forx, and define z° := 
fx»fp. I must prove that z = f(x). For every/ left option of x,

+ /p < *•()+/=
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and similarly for right options off or of x. So, z -< J(x).
It remains to show that 7(x] X z. But, by cofinality, for every x1 canonical left 

option of x there exists / such that x1 < / < x. Therefore, given P[^,x] and ffc, if 
Q := P(J {/}, there exists/^ such that

rJxL

where Q { , £>2 are the restrictions of Q to (x1 ,./) and (/,x). (I assumed for simplicity 
of notation that x has no right options, but the general case is similar). D

The integral is linear in the function argument, provided that it is already linear on 
21, and that 21 is constructed inductively.

Lemma 2.6. Suppose that 21 is also a vector space over No, and that / is linear on 
21. Let f , g be recursive over 21, and a,b,k € No. Then,

f f(t) +g(t] d/ = fbf(t] d/ + / £(t] At (2.5)
Ja Ja Ja

f A/(/)d/ = A //(/)df (2.6)
Ja Ja

Proof. I will give all details of this proof, even if it is quite elementary. Both formulae 
are proved by induction on/, g, a,b,k, i.e. I suppose to have proved the lemma for:

• The same as before with/,^ exchanged.

• /,^, (a, b, A) ° where I have already explained what I mean by the option of a 
tuple.

In both cases, without loss of generality I can suppose a = 0 and b > 0. I call f(x}: = 
/o /(f ) d/, Q(x) := fo#(t) d/. Fix once for all P=(kQ ,... ,kn } a partition of (a, b). 

By definition of +,

I consider only the first kind of options (the others are similar).
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Jo

+

(*°) + f *(/)df + J(*°) + f
Jx° Jx «

where (/+,?) "(//,/") :=/P° ('//',/(' V('")) +<?('), and I have used the defini­ 
tion of / and the additivity of / in the interval of integration for the first two identities, 
the inductive hypothesis for the third, and the definition of / for the last two. There­ 
fore, every option of J + g is an option of #". 

For the converse, let

or (2.7a)

("b)

Suppose, for instance, that (2.7a) is true, and that/ 0 is a left option of/. Then, by 
inductive hypothesis

Lemma 2.5 implies that

therefore

I proceed in the same fashion for scalar multiplication. 
Let tf (*,*):= J6*

V0 )+ r(
Jx°
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where I have used the definition of product for the first identity, the definition of / 
for the second, the inductive hypothesis for the third and again the definition of the 
product for the last one, beside the formula (2.5).

Conversely, for every i = 0,..., m — 1, choose A; an option of A. Then

By inductive hypothesis, the previous is equal to

#(A,*°)+I((A-V) f^f' +i Jkt Jk.
Again, if I suppose that (#(A,x)) ° is a left option of M(A.,x), then, by lemma 2.5

and the conclusion follows. D

Now, the fundamental lemma: the monotonicity of the integral. As I said before, 
for this I need that 21 is constructed inductively, and that axiom 2 is true.

Lemma 2.7. Let a<b£ No, f ,g be recursive over 21. Iff(t] <g(t] provably in (a, b) 
then

I f(t)dt< \ a(i)&.
J a Ja

If moreover the inequality in the hypothesis is strict, then it is strict also in the con­ 
clusion. If instead I have = in the hypothesis, I have = also in the conclusion.

Proof. Again, I proceed by induction oiLf,g,a,b. Let c = (a b} If a j^ b and b •£ a 
then c -< a and c -< b, so the conclusion follows by induction. Otherwise, w.l.o.g. 
a^b.

I will treat the case of < first. Simple case: f(x) =#L (x, a, b,g(a),g(b}} for some 
/- left option of^, or^(;c) =fR (x,a,b,f(a),f(b)). Then the conclusion follows from 
lemma 2.5 and the/ =g case of the inductive hypothesis.

In general, let P\a,b},fp,gp as in the definition 2.1. Then I can use the inductive 
hypothesis, obtaining for each / < mr+i/(° * jkt
and the conclusion follows.
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Now I will treat the case / = g. I must show (tff)L < 
right options and for f, g exchanged). By definitions,

f(t)dl = L
•bf-

bR

r (and similarly for

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d)

Consider the left option (2.8a). There are two cases: either bL < a or bL > a.
Ifa<bL <b, ±enff(t,ki ,ki+l ') <g(t] for t € (kt ,ki+l ) for each /, so I can apply 

the inductive hypothesis, and obtain f^.fp <
lfa>bL , then the conclusion becomes

rb j-bLfp< 3JbL Ja

Let Q = P(J {a}, letfg as in lemma 2.4. Then, ifQl (if Q2 ) is the restriction of Q to

b
bL J

where, again, I have used the inductive hypothesis for the last inequality.
Consider now the left option (2.8b). This is the step where I use the fact that/ = 

(and not merely that/ < g). Then,

by induction on/, and
t*

/= / B
by induction on b, and the conclusion follows.

The case (2.8c) is treated in a similar way to (2.8b), and (2.8d) to (2.8a).
It remains to prove the case / < g. But then, by axion 2, either/ =g, and I have 

just discussed it, or I can find P[a,b] such that/(/) <g(t] in each interval (kt ,ki+l ), 
and the conclusion follows from the < case. D

For the remainder of this thesis, I will need that the integral is monotone and that 
every function in 21U {/ } is either constant, or has only finitely many zeros. As I 
have shown above, these are consequences of axiom 2.
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I will now consider the problem of good definition of integral. 
Consider a simple example: f(x) — x2 . Remember that

(x2 ) 0 =x°-(x-xL ) a (x-xR )^0<a<2, a + p=2,

I claim that I can take ki rational for every i. The reason is the following.
Fix P[0, 1] = (kQ ,...,km ) and o0 ,...,aw _ 1 and call zp the resulting option of

If I refine P by adding a single point that differs from each kt by a non infinitesimal 
amount, I obtain a partition Q such that the corresponding approximation ZQ is better 
than Zp by a non infinitesimal amount p.

For each point /z. e £? I substitute it by a rational number ^: in this way, I obtain 
a partition £X and an approximation ZQ of f ( 1 ) which is slightly worse than ZQ by a 
certain amount e. However, choosing hi suitably, I can make this e smaller than any 
fixed positive real, and in particular smaller than p. So, ZQ, is better than zp , and I can 
discard zp altogether. Therefore, J(l) is well defined.

Of course, I could have proved this using Tarski's theorem^, but, for an arbitrary 
function / I do not have such a theorem.

For the rest of this section, I will suppose that axiom 3 is true.

Lemma 2.8. Let IK C No be an initial elementary substructure^ o/No, let x e IK, 
and suppose that K is a-saturated, where a is a cardinal number greater or equal to
t(x).

Then f(x): = $ f(t) is defined, and is in K.

Proof. Simple case: x = I,/ has only one left option/1 and one right option/^. 
Let P[0, 1] be an m-partition of [0, 1], and let

and similar for y? .
I have to prove that there exists z e IK such that /(P) < z < ^(P'} for every 

P,P'[a,b]. These conditions induce a type T(z) (in this case, without parameters), 
given by formulae

: = V£0 = 0 < *! < • • • < km = 1 (/(*0 , . . .,km ) < z),
(4 'The theory of real closed fields is complete and model complete in the language of ordered rings. 
< 5 )ln the language ^, defined in axion 3.
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and similarly for
First, I will prove that T(z) is consistent. Suppose not. Then, for some m e N,

Let

/ = sup {/(A,,, ...,km ): kt € No } ,

and similarly for 2*. By axiom 3, z1 and z* are in No. By K X No, z1 and z* are in 
K. We know already ^ <zR.By inconsistency, it must be / = z* =gL (P] for some 
P[0, 1] (or z1 = z* = /(P)). Note that if axiom 3 were not true, it could happen that 
z1 =ZR e No® \ No, and in that case J(l) would not be defined.

But //(?,£,., &.+ 1 ) <f(t) on (kt ,ki+l ) for each /, so there is an interval (a',b'} C 
(0, 1) and £ > 0 such that^f < / - e. Again by elementary equivalence, I can take 
eXXeK. Therefore,

for every Q[Q, 1] and z^ —z1 > e(b' - a'), which is a contradiction.
So, r(z) is consistent, and, because K is saturated (over the empty set), it has a 

realisation in K. The simplest such realisation is J(l).
For a generic x e K and arbitrary/, I proceed similarly, using saturation of K over 

the parameters x° and f(x°), as x° varies among the options of x, and induction on 
x. The fact that/ has at least one right option ensures that z1 < +°° (and similarly for 
left options). D

For the proof previous lemma, it is not necessary that every J^-definable S C No 
has a supremum: it suffices that subclasses definable using existential formulae only 
have it.

For other properties of the integral, I will need further assumptions.

Axiom 4 (Intermediate value). Let/: No -» No, a < b 6 No. Suppose/(a) < 0 < 
f(b) or/(a) > 0 >f(b). Then there exists c e (a, b) such that/(c) = 0.

In the rest of this section, I will assume that axioms 1, 2 and 4 (beside axiom 1 
and the consequences of axiom 2 mentioned above). Moreover, I define

/o 
Lemma 2.9 (Rolle). Let a < b e No. Suppose f(a] = T(b). Then there exists c e
(a,b) such thatf(c}=Q.
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Proof. Suppose not. Then either /(f) > 0 or/(f) < 0 in (a,b). But 7(b] - 7(a) = 
la f(i] dt, so, by monotonicity, 7(b) > 7 (a) in the first case, and f(b) < 7 (a] in the 
second. n

Corollary 2.10. Let a<b£ No. 7 has only finitely many zeros in (a, b).

Lemma 2.11. Let a < b e No. ^ am change sign only finitely many times in (a, b).

Proof. As in the proof of lemma (2.9), between two sign changes of 7 there must be 
a zero of/: i.e. if c < d < e and J(c), ̂ (e) < 0 < ^(d) then there exists / e (c,e) 
such that/(/) = 0. But by axiom 2, each/ e 21 can have only finitely many zeros in
(a, b). D

The following theorem needs also axiom 3.

Theorem 7 (Intermediate value). Let 7(x) := /o/(0- Let a,b, d 6 No such that 
a <b and 7 (a) < d < 7(b). Then there exists c e No such that a < c <b and
7(c}=d.

Wrong proof. Let's do the case d = Q.By the lemma 2.1 1, w.l.o.g. I can suppose that 
there exists £ e No^ such that 7(t] < 0 in [a, £) and 7(t] > 0 in (£, b]. I must prove 
that £ G No. I will give an inductive definition of £.

Let us solve the equation (in c) J(c) = 0, a < c < b. It is necessary and sufficient 
that 7(c}L < 0 < 7(c]R , i.e. I have to solve inequalities of the kind:

)d/<0, i.e.

I will give the options of c. First, I must say a < c < b, i.e. a is among the left options, 
and b among the right ones.

Suppose that I have already found some options c1 ',0* such that a < c1 < £ < 
CR < b. FixP^c*], and suppose kn < C < kn+l . Let

where x 6 (Arw ,A-w+1 ).
g(x) < 7(*}, and /W < ° in (a^^ so 9(t) has only finitely many zeros in
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Let c1 be the rightmost zero of g before £, and let c* be the leftmost zero after £ 
(if they exists, otherwise use a or b respectively). Then, by induction on/, g(t) does 
not change sign in (c^'.c*'). So^(f) < 0 in (c^ V).

Add c1 to the left options of c and c* to the right ones. It follows that, at the 
end of this process, f(c) = 0. The problem is that I am adding an option for every 
partition P[a,b], and there is a proper class of partitions, therefore I cannot be sure 
that c € No. n

I will give now the correct proof, using axiom 3.

Correct proof. By lemma 2. 1 1, 1 can suppose that there exists £ 6 No®, the Dedekind 
completion of No, such that ?(t] < d in [a, £) and J(/) > J in (£,6].

I recall that ? is not in the language J?f , and that the cut £ in general is not 
definable in £? . I must prove that £ e No. I will prove the lemma by induction on/ 
and of.

I need to give the options of c. First of all, a < c < b, so a is a left option, b a right 
one. Solving the equation f(c}=d is equivalent to solving the inequalities

7(c]L <d f(c}R >d (2.9a) 
7(c}<dR f(c]>dl . (2.9b)

Consider (2.9b), for instance J(c) < dR . ?(c)<d<dR in [a, £), therefore J(c) = af* 
has at most finitely many solutions. Let c1 (let c*) be the rightmost (the leftmost) 
solution smaller (greater) than £, if it exists. By inductive hypothesis, f(x) — dR does 
not change sign in (c1 , c^ ) , therefore J (x) < <s^ in (c1 , c* ) , and I can add them as left 
and right options of c.

Consider now (2.9a), for instance T(c}L < d. Suppose that I have already found 
some options c^c* e K, with a<cL <£<cR <b. Fix m £ N, an w-tuple of left 
options fL and a left option c1 . Let k = (kQ , . . . ,km ) be a partition of [a, 6], and, say, 
kn < c1 < kn+l and k,<x<k,+l . Define

,«, + i ,, +l .
J CL Jkj

I give analogous definitions for right options c* of c or if/* is an m-tuple of right 
options. I want now to add some extra options to c, ensuring that^c,*,^) < d is

true (and similarly with c* or/*).
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Notwithstanding its complicated aspect, ^(x) — d is an equation simpler than 
7(x) — d, therefore the conclusion of the lemma holds for it. It follows that if c*' is 
the leftmost solution after £ of such equation, /-(x) < d in the interval (c^c*'). In 
fact, /(*) < y:(x) in ( CX > ^) and f(x) <dm (c1 , £). c*' depends on the "old" option 
cr, on the w-partition %, beside the w-tuple of options/1 .

Now, apparently, I can add CR to the options of c, and at the end of this process 
obtain 7 (c) =d.

Unfortunately, in this way of defining c I use a whole class of options (instead of 
a proper set), and c may not exist in No. I'll do something better. Let

€ No : c1 < x < b & 3£0 , . . .,km L̂ (x,k,cL ) > 0} .

By axiom 3, ^ exists. Now, I can take HR as new right options of c. hR depends only 
on the "old" option c1 , besides m and the chosen m-tuple of options/ 0 . Therefore, 
once I fix the "old" option c1 , I am adding only a proper set of "new" options (one 
for every m e N and every possible choice off0 ), and now I can say that at the end of 
the process c € On. D

Lemma 2. 12 (O-minimality). Let 21 be a family of functions, constructed inductively. 
Suppose that axiom 1 is true for every f in 21 and that the structure on No induced 
by 21 is o-minimal. Then for every f ,g 6 21 /// < g {on an interval (a, b)) then f < g 
provably.

Proof, hi fact, for every x £ (a, b) there exists f^ right option of/ or ffc left option of 
g and ^^ options of x such that either

Let

Vx = {te(a,b) :3t',t"t'<t<t

and similarly Ux for^ and/. Vx depends only on/*, not on x itself, so the class of 
Frs and Uxs is actually a proper set. By o-minimality, every Vx and Ux is a finite union 
of intervals with extremes in No, therefore, by lemma 1.51, there exist x { ,..., xn such
that

N o = Vx l U • • • U VXa U Ux l U • • • U UXa .

The conclusion easily follows (via axiom 1). D

Axioms 3 and the saturation of No (sufficient for the existence of the integral) 
are also immediate consequences of o-minimality. If/ is continous,(6) axiom 4 is 

< 6)I recall that every function in an o-minimal structure is piece-wise continous.
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also true. Therefore, if I know that the hypothesis of the previous lemma holds, the 
only hypothesis in this section that needs to be checked is the second consequence 
of axiom 2 (i.e. that a function is either constant, or has finitely many zeros). For 
instance, it is true for analytic functions.

2.5 Integral of partial functions

Let A be a set-bounded convex subclass of No,(7) and let / : A — »• No be a function. 
Given/ is recursive (over some family of function 21), I want to define its integral.

Let a be the simplest element of A, and let x <= A. The options of /*/(/) & are of 
the form

where x° varies among the canonical options of x with respect to A.
Letx,j>e A. Then,

/ y rv rx 
/:=/'/-//. 

Ja Ja
Note that if A = No, the definition given here coincides with the one in § 2.1.

Example 2.13. f(x) = 1/x. The domain of/ can be partitioned into two set-bounded 
convex subclasses:

dom/= (-°°,0)U(0,+°°).

This allows us to define /* \/t d/ for x > 0. In § 5. 1 we will see that it is equal to log*.
The propositions, proved in this and the following chapter for total functions, hold, 

with the same proof, for funtions with domain a set-bounded subclass of No.
However, the value of// may depend on the choice of the interval of definition of 

/; namely, if B C A, then the value of// computed with repect to A might be different 
from the one computed w.r.t. B. For instance, one can easily construct example of this 
phenomenon using f(x) = expx (see § 5.2).

2.6 Concluding remarks

S Norton and M. Kruskal have already defined an integration on No that is similar 
to what has been defined here/8) I do not know enough about their work to tell how 
much it differs from the treatment presented in this thesis.

(7) see § 1.4 for the definition.
(8| See the note on pag. 38 of [6]. The story, as I have understood it, is that Norton gave a definition 

of an integral, that produces the desired result for the function '//, but lacks some of the other "good" 
properties of an integral. Kruskal later improved his definition. However, as far as I know, none of this 
has been published.
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Let 21 be a family of functions (containing all the constants, the identity function 
and +), and / be an integral over it. As I said before, if/ is recursively denned 
over 21, I will suppose that axiom 1 holds. Moreover, from what I have proved, it 
is reasonable to suppose that the integral is monotone and additive on the interval of 
integration, and this will always be the case in the following chapters. If 21 is a vector 
space, I will also suppose that / is linear.

On the other hand, I will not make uses of the other axioms, unless explicitly 
specified.

These properties alone are enough to prove the following theorem.

Theorem 8. Suppose that f : No —>• No is continuous at the point a e No. Then,

J J.r^O X

Proof. Without loss of generality, we can suppose a =/(a) = 0. Let f(x) :— ^f(t) d/. 
By definition, for every e > 0 there exists 5 > 0 such that \f(t}\ < e for every t such 
that t < 8. Therefore, by monotonicity, in the interval [0,<5),

fx
:?(x)< / £d/, 

Jo

and similarly in the interval (—8,0]. We use lemma 2.3 to compute the integral of 
constant functions. So, \f(x)\ < £\x\ for x\ < 8, implying that \~- < e for 0 7^ 
x < 8. D

The previous theorem is the analogue of the fundamental theorem of calculus. 
However, in this context it is much less powerful than for the reals, because No, like 
every other non Archimedean ordered field, is totally disconnected, therefore we do 
not have uniqueness of the primitive of a function.
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Chapter 3 

Integration by parts

In this chapter I will prove the integration by parts formula. It is a natural extension 
of the arguments of previous chapter; however, the hypothesis will be simpler and the 
computations more involved.

3.1 Definition of multiple integral

Given a function/ = (fL \ fR }, what is the meaning of ///(?) d/ ?
The reason of this question is that, if/ is in the family 21, // needs not to be 

recursive over 21 according to definition in chapter 1.3, because I used a whole class 
of functions to define it.

Consider J(.x) := /0v/(/)&.

/ x rki+ 1 
f°(t,k! ,kl+l )dl = ?(X°)+Z f9 (t,kit ki 

0 / •'*(

If I define f°(t,t 0 , f(t°}} accordingly to the previous expression, i.e.

t°

what is the meaning of
(3.1)

Given P an w-partition of (x°,x), /*„ 7P (t°] has the usual meaning:

0<i<m

0</<m

Given 7 e (*/,^+ i) and ^° an ^'^P16 of options of/, let
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for every 0 < / < m. h( is the integral of the function ft, which is simpler than /,
therefore I can suppose that fi+ l ^(t) dt has already been defined. Then define'

Analogous definitions work for other kinds of double integrals, such as fg(t)f(t) dt.

3.2 Integration by parts

I will prove the formula of integration by parts. I have to suppose that 21 is a family 
of functions inductively constructed, that f ,g are recursive over it, that / is defined, 
additive, monotone and linear on the No-vector space generated by 21 U {/,^}. I start 
with/= (fL |/*U = </ |/), and define

o Jo
The proof is done by induction over f ,g and over the extremes of integration: in 
particular, I will suppose that the integration by part formula is true for (f°,£] where 
/° is any option of/, and similarly for (/,^°).

Theorem 9. Letf.g: No -»• No, a,b € No. Then (7 Q) ' =/£+ 78- Le-

t (3.3) 

Suppose I have proved (3.3) for a = 0. Then,

o Jo Jo J(>

. (3.4)

So, I have to prove that

X X (3.5)

15



rJ^: 0

- r/°(','°,/(' 0 ))d/ /VC.OC0 ))*, (3.6)7x° 7x°'

where .x: 0 ,* 0' are options of x. Fix x°,z 0/ and partitions F[JC°,X] = (/z0 , . . . ,/zm ) and 
g[x0/ ,.x] = (^Q ,...,A:TO,), fix^p0 and^J tuples of options of/ and^. Ift e [A,-,/? /+1 ) 
and/'e [£z-,&/+1 ), define

(3.7)

(3.8)

£ are defined on [x°,x] and [X O/ ,JT] respectively. Let #~(y) = j 0̂ A(?) d/ and 
£(0 d/. (3.6) becomes

). (3.9)

Now I use induction on f,g and x: I can apply (3.3) to various products in (3.9), 
obtaining

(3.10)

Suppose now that x° and x°' are both left options of*, /° is a left option o
is a left option of^ (there are 16 cases in total). I have to prove that (3.10) is strictly

less than
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W.l.o.g. I can suppose that*0 = x°' = a. Then, I apply again (3.5) to K(x)!tf(x) and 
(3.10) becomes

Ja

- K(t}h(t)} d/ (3.11)

However, J(f) - f(d) - X(t) > 0 and/(f) > h(t] for f e (a,x), and similarly for^, £, 
therefore (3. 1 1) is strictly less than

+

t, (3.12)
0

where I have used once again the inductive hypothesis in the last line.
The same kind computations works in the other cases, as long as x° and x°' are 

on the same side of x (i.e. both left options or both right options). It remains to treat 
the cases when they are on opposite sides. W.l.o.g., I can suppose x° <x < x°'.

It is better to treat in uniformly all cases. I re-start from (3.9), this time without 
assuming that x° = x°f . To increase readability, I write a = x°, b = x°'. Let us call 
A := !F(a)g(x) + T(x)g(b] - 7(d)Q(b
Claim 3.1. A= I* ((G(b)- G(t)}f(t)

Ja

Proof of claim.

- T(a)g(b)-

)d/, (3.13)

where I have used the inductive hypothesis on to compute f(d)g(d). D
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I am interested in the sign of the expression (3.9) minus /Q(%+ £/), which is 
equal to

A+

=
J a

(3.14)

where I have used the inductive hypothesis to compute tt(x)g(x) and yc(x)f(x). Let 
I the smallest interval containing a,b and x. Extend h,k to all / by choosing some 
options of f ,g. Suppose now again that a = x° and b = x°' are both left options of x 
and that h, £ are left options of/,^ respectively. Then, A<f, k.<8, K(t] + 

and tf(t) + 7 (a) < f(t) on /. Therefore, (3.14) is strictly less than

(3.15)

which is is strictly less than

+ = 0 (3.16)

where I have used again induction to compute 
or b > x or h > f or £ > g) are similar.

). The other cases (i.e. a > x
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On the other hand, w.l.o.g.

rx° rx

= ft+lJO Jx°

x

73
O

* (3.17)

By induction on x,

As before, fix a partition P[x°, X] and tuples fj, #£ of options of f,#. Let h(t) = 
_/;°(/,^+i ,/(*/),/(*/+! ) for/ € M.+ ] ), and similarly for ^,. Let 
and similarly for X(y). Then, (3.17) becomes

X-g(x<>))) (3.18)

Suppose now for simplicity that x° < x is a left option of x, and that /z,£ are left 
options of f,g respectively. I have to prove that (3.18) is strictly less than f(x}Q(x}. 

By inductive hypothesis,

and similarly for/^C and h%i. So, (3.18) is equal to

(3.19) 

Call

m (y) : =f(y) - h(y]
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I have to prove that (3.19) is strictly less than f(x)g(x). This is equivalent to

i.e.

/ x 
(M(x)-M(t))n(t}dt>0 (3.20) 0

But m > 0 and re > 0 in the interval (x°,x); therefore, M(x) > M(t) and the conclusion
follows. n

3.2.1 Error checking

There are some methods to easily check whether there is any mistake in the algebraic 
manipulations like the ones in the previous proof; they do not guarantee the correct­ 
ness of the computations, however they can detect many errors.

The first one is dimensional argument: if/ is of dimension [/],/ and re of dimen­ 
sion [/"], g and £ of dimension \g], then fg has dimension [fgt2 ] and can only be 
added to or compared with quantities of the same dimension; moreover the dimen­ 
sion must be preserved by algebraic manipulations. For instance, if I start with fg I 
cannot end with an expression containing fig among its summands.

The second method is more specific to the surreal numbers. Take an option of xy: 
x°y+xy° — x°y°. If I substitute x instead of x° and anything instead of y, I obtain the 
product xy itself. Same thing can be said for the sumx+y. Therefore, if I start from a 
composition of sums and products (i.e. a polynomial) p(x,y), and consider an option 
p(x,y)° = q(x,y,x°,y°), I must have that q(x,y,x,z) = p(x,y) — q(x,y,z,y). And this 
must remain true after any algebraic manipulation of q.

For the integral, something even stronger can be said: if I consider j(x) = /Q/(/) d/ 
and I take an option f(x}° =g(x,x°,f°) then not only^(x,,x,/°) = f(x), but also

But what happens after applying some theorem, like theorem 9, to an option? I 
can still use the previous trick, bearing in mind that I will obtain an identity only 
if theorem 9 is true. For instance, consider the expression (3.10), which has been 
obtained from an option off(x)g(x). If, say, I substitute re =/ (and therefore M = 
f _ f(a}), I obtain the expression

?(a)) + (g - g(a)f)}, (3.21)
J d

80



which, integrating by parts, is equal to ?(x)Q(x): this independently from the value 
of a and of £.

What if I have applied instead some inequality, for instance h < f ? If the ex­ 
pression is an option z = A ° and at the end the new expression z/ satisfies z < z' < A, 
then I can apply the same trick to check the validity of the manipulation. On the other 
hand, if instead I obtain z7 < z < A, often this trick fails: but usually I do not need to 
find a z1 which is a worse approximation of A than z in the first place.

3.3 Concluding remarks

It is now natural to ask about other formulae known for the Riemann integral over the 
reals. For instance, one may wonder whether about the validity on No of the formula 
for composite functions corresponding to

While it is true for / and g both polynomials, we will see that in the general case it 
fails even for the simplest kind of functions; for example,

f(x) =:c + c, c e No.
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Chapter 4

Polynomials and analytic functions

In this chapter I will give recursive definitions for polynomials in NO[JC].
I will also give a recursive definition for germs of analytic functions in R[[JC]], for
infinitesimal values of jc <E No.

Moreover, I will compute their integral, and prove that it is equal to the "formal" 
integral.

Finally, I will give generalisations of some closure theorems from polynomials to 
recursively definable functions.

4.1 Polynomials

Let p(X) € No [AT] be a polynomial, x e No. I want to give an explicit inductive 
formula for p(x). 

If we write

i=0

then, by definition of sum,

0<i<n
//ra

or, more concisely,
P(*)*=( I atf + fam'rr (4-1)

0</<n

It remains to treat the case where p(X) is a monomial, i.e. p(X] = aX". By definition 
of product,
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It follows that for any xl , . . . ,xn 6 No

x l ---xn -(x l -- -xn)° = (*j -xf) • • • (*„ -*°)

In particular,
(ox") ° = ox" - (a - fl °) (x - xf) • • • (x - x°)

where xj*, . • . ,x° are options of x. By cofinality, I can choose among xf, . . . ,x° the 
'best' left option x1 (i.e. the greatest) and the 'best' right option (i.e. the smallest), 
and say that

(axn }« = axn -(a-a°}(x- XL } a (x- XRf (4.2)

where 0 < a < n and a + j3 = n. Clearly, (4.2) is a left option if and only if 0 is even 
and <3° < a, or /3 is odd and a° > a.

Putting 4. 1 and (4.2) together, we obtain:

(4.3) 

where 0<m<n and a + /3 = m. Moreover I can always take a = 0, 1 , n - 1 or n.

4.2 Analytic functions

Let (af ) i€N be a sequence of real numbers. Let x 6 No be an infinitesimal (positive) 
surreal number. Then it is possible to give a meaning to the expression

using the fact that No can be identified canonically with R((No)), the generalised 
power series field with real coefficients and surreal exponents. It is not obvious that 
/ can be defined recursively, and that the corresponding integral coincides with the 
integration term-by-term.

I will give the recursive formula of/(x) (forx > 0). The proof will be postponed.
If/ is a polynomial, we know already how to define it. Otherwise, given x 6 No 

infinitesimal, given x° an option of x which is infinitesimal too, we can consider the 
Taylor expansion of/ at x°, truncated at the «th term for any n e N,

(')(x 0 }-^*-*0 )' (4 -4)
and say that f(x] is more or less pn (x,x°). This means that if e is any positive real
then

Pn (x ,x°) - e(X -x°)n <f(X) < pn (X , X °) + s(X - X°r (4.5)
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if x° is a left option, and similarly for right options. This, because

is infinitesimal if/ and tQ are both infinitesimal (because all the coefficients of/ are 
real numbers). It suffices to define /(x) using the formula (4.5), taking into consid­ 
eration that/W(0) = an/n\, and letting e vary among all possible positive real (or 
rational) numbers. The only difficulty is that I need to define /,/',/", ... all at the 
same time (because to compute pn I need them), but this is not a problem.

Note that to define f(x) I use only the values of/(")(jc 0 ) where x° is an infinites­ 
imal option of x: for instance, the only infinitesimal option of c = ^ is 0, so I can 
compute /(c) directly from the Taylor expansion in 0:

Moreover, the definition of f(x] is uniform. 
Concluding, I have the formula

(f(x))°=pn (x,x 0 )±e(X -x°r. (4.6)

4.2.1 Justification of the definition for analytic functions
Let

f(X) = I a?

be a power series with real coefficients, x > 0 e No be an infinitesimal surreal number, 
x = £ . <a r-ct)cj be its normal form. I will prove that (4.6) defines/(x), using induction 
onx.

If/ is a polynomial, the conclusion is a consequence of formula (4.3).
Otherwise, let z be the surreal number defined by (4.6). (4.5) implies that z ^ f(x).
Conversely,

/(*)=
k<5

for some 8 e On, sif tk G R, dk e No. 
If 8 is a limit ordinal, then

for some j8 < S and £ > 0 e No. Therefore, |/(x) -f(x)° ~ £ft). Moreover,

dn =c i +••• + €,• > ic, p J\ J, ~ /
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for some i e N, /, , . . . j. < a and CA := min | Cji , . . . , cy.. } . Therefore,

for some / e N, 0 < e e R, A < a. 
If 5 =

for some e > 0 e R, i e N, A < a.
Using (4.6), I obtain that for every n € N, e > 0 € IR. there exist ZR and z1 options 

of z such that
|z*-/|<e|;c-jcT.

If a is a limit ordinal, I can suppose x-x° < eo)cA. If a — y + 1, I can suppose 
-x°\ < s(0cr for some s > 0 e E. 

In both cases,

(x)) > inf { ew/cA : / e N, e > 0 6 Q, A < a } . 

So, for our representation (zL \zR }ofz,

Moreover, by equation (4.5), ^ < f(x) < 2^, therefore, by remark 1 .86, z =f(x).

4.3 Integral of polynomials

The integral of a polynomial is what we expect:

Theorem 10. Let p(x) = Z/Lo'V-' be a polynomial in one variable with coefficients 
in No. Then,

Proof. I call the expression on the right the formal integral of p. By linearity of/, it 
is enough to prove the lemma for p(x) = x". I will use induction on n, the degree of 
the polynomial, and on x.

Let f(x) = /or/"d/- I want to Prove ?(x } = x"+l /(n + !)• As usual, for some
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where I have used the formula (4.2) and the induction on x.
We know that No is an ordered domain, so x" satisfies all universal formulae true 

m R (of course, we know more than that: but this is enough for our purpose); in 
particular, 3; :=x"+l /(n+ 1) is in the correct cut in order to be the integral of x". I.e. 
if f(x°) = (x°)H+1 /(n+l), for every x° option of x, then J(jc) ±y.

It remains to show that y -< 7(x). To prove it, I can use the cofinality theorem. 
Thus, it is enough to prove that f(x}° — y is small, i.e. for every y° -< y there exists 
J(*)° such that \y-y°\>\y-!F(x) 0 \ and f(x)° is on the same side of> as/1 .

The integrand is a polynomial in / of degree less than n, so I can apply the induc­ 
tive hypothesis, and say that its integral is equal to the formal integral.

I use the following formula (which can be proved in many different ways: for 
instance, integrating by parts):

where n := a, + /3, and / is the formal integral of polynomials.
In the following, I will suppose x° < x (the other case is similar). Apply (4.7) to 

obtain: c_i 10+1w^+ijL^r'. (4.8,
where <5; :=£/+1 —kt .

Call A := \x — jc°|. Choose the m-partition such that dt — 5 = A/m for every /'. 
Then

AW+l

where q > 0 is a rational number that can be chosen as small as we want, simply 
taking a smaller 5, i.e. refining the partition.

On the other hand, by (4.2), putting a =l/(n+ 1)

\y -y°\> a -a°\\x-xon (4.9)

where x° (where a°) is a canonical option of x (of a)(1) . But e = \a - a°\ is positive 
real (because a is real), so we can find a partition of (x°,x) such that 0 < q < a, and 
the theorem follows.

I should also prove that y° can be found to lie on the same side of y as J(x) °, but 
this follows from the fact that we need only to change the parity of j3 to switch side 
ofy, as is obvious from (4.8). D 

< ' >This means that for every y° -< y we can find a° ~< a and x ° -< x such that (4.9) holds.



4.3.1 Example

As an example, let us compute directly
/-co

c:= I x+ldx. Jo

I will assume that I have already computed fa xdx for arbitrary a, b, and f£x + 1 dx 
for n € N.

I have to prove that c = ^p + o>. No is a real closed field, therefore c ^ + <w.
Conversely, a right option of c is

rn r®
C* : = \ x+ldx + / ;

JO Jn
n2

0</<m

with n e N and (£0 , . . . ,km ) a partition of («, oo). Define A := co - n, and 8 := A/m . 
Choose &/+1 - A:r = 5, i.e. kt = n + id. Then,

2
- + n + 8
2 0<i<m

n2

^(l + - 
2 /M

2. m 
where y = O(z) means that v(y) < v(z). Therefore, by cofinality, we can choose
cR = ^(^ + ^-

A left option of c is

0<i<m"
-I'+1
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where IU J = { 0, 1 , . . . , m }. Choose *, as above. Then,

The best left options are obtained by setting |/| = 0 (this is what we expected, because 
for / 6 / we chose x1 + 1 as a left option ofx+l , while for / e J we chose jc, and the 
latter should be a better approximation of x + 1). Therefore, <± - ̂ - + n2 .

In conclusion,
.co2 9 , co2 . 1 . ( _W| T(l + -))Xc

and one can check that the expression on the left is equal to ^- + CD.

4.4 Integral of analytic functions
Let

f(X) =

ai e R, be an analytic function (denned for Jf infinitesimal). The formal integral of/ 
is

Theorem 11. For f, Q as before, the integral f is equal to Q, i.e. for x infinitesimal,

0

Proof. The proof is by induction on x. 
Iff is a polynomial, the conclusion follows from theorem 10. 

Otherwise, call f(x) := fof(t)dt.

By (4-6), /° = pn (t,t°) ±e(t — t°)", where pn is the Taylor series expansion of/ 
at* 0 . By definition, g(i+l} =f(i) , therefore

where

g'"(.v')(.x-^)-_ .~

is the Taylor series expansion of Q at x



By inductive hypothesis,

(I have supposed, for simplicity, that the partition of (,v°,;c) has length 1). But the 
integrand is a polynomial in t, therefore I can apply theorem 10, and obtain that the 
previous is equal to

so j(*) = (£(*)) . In particular, g(x) ± f(x).
If the partition of (x°,x) has length greater than 1, I can apply the elementary 

equivalence of No with R in the language &an to obtain the every option off(x] is 
also an option of £(*), obtaining f(x) X Q(x). D

4.5 Real closure

I will give a proof of the fact that No is a real closed field, starting from the knowledge 
that it is an ordered domain. First, I recall the definition of real closed field.

Definition 4.1. An ordered field K is real closed iff

1 . Every positive element has a square root.

2. Every polynomial of odd degree has a root. 

Theorem 12. Let IK be an ordered domain. The following are equivalent:

• Kis a real closed field.

• K is elementarily equivalent to R in the language of ordered rings (0, !,+,-,<).

• K is afield and every polynomial p(x) e K[x] satisfies the intermediate value 
property:

Va < b e K p(a) < 0 < p(b) -^3ceKa<c<b& p(c) = 0.

• K is maximal, i.e. every ordered domain containing K and algebraic over it 
coincides with K itself.

• K[/] is an algebraically closed field, where i =
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The real closure of No is a proper class definable by a certain formula. The next 
lemma shows that it coincides with No itself.

Lemma 4.2. Let K be a real closed field containing No. Let p(x) e NO[JC] be a poly­ 
nomial with a root £ e K. Then £ e No.

Proof. Order the polynomials in NO[JC] using the lexicographic order induced by X, 
with monomials of higher degree more important than monomials of lower degree. 
This gives a well-founded partial order on No[x]. I will prove the lemma using induc­ 
tion on p.

First, I can suppose there are / < r 6 No U {±°°} such that £ is the only root of 
p(x) in K in the interval (/,r). In fact, between two roots of p there is always a root 
(in K) of its derivative p', and p' is simpler than p, therefore its roots are in No.

I will define c = (c1 c* } such that p(c) = 0 and c € (/, r). I will give the options 
of c. First of all, I want / < c < r, so / is a left option, r a right one.

In order to have p(c) = 0 it is necessary and sufficient to have

p (c}L < 0 < p(cf 

for every left and right option of p(c). Let

;=0

By formula (4.3),

Fix a£ -< am . Suppose I have already found some options c1 and c^ of c: I want to 
give some other options ensuring that (4.10) is true. Let

q(x) e NO[JC] is strictly simpler than p(x), because the coefficients of degree greater 
than m are unchanged, while the ^-coefficient is a^, which is strictly simpler than 
a Therefore, I can apply induction, and say that all its roots are in No. Suppose, for 
instance, that p° = p1 is a left option of p. Let c^ be the leftmost greater than £, or 
CR if there is none. Then q(x) < p(x) in (c1 ,^), p(x) < 0 in (c1 , £) and q(x) does not 
change sign in (£,c*') (because K is real closed), so q(x) < 0 in (c1 ,^ ).

Consequently, if I add c^' to the right options of c, I ensure that q(c) < 0, namely 

p(c)L < 0.
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A minor problem: the lexicographic order on No[;c] induced by ^ is not set-like: 
therefore, it seems that I might be giving a proper class of options for c. But when 
I do the inductive step I do not take an arbitrary polynomial simpler than p, but one 
which is an option of p , and this ensures that I never add more than a set of options 
for c. fj

Example 4.3. Conway's proof that No is a field follows from applying the previous 
proof to the polynomial ax - 1 .

Proof. Let p(x) =ax—\. Then, q(x) in the previous proof is in one of the following 
forms:

(ax-l)-(a-a°)(x-c 0 )= a 0x+(a- a °)c 0 -\ (4.11) 
ax. (4.12) 

(4.12) yields the left option 0 for c. (4.1 1) produces the option

=
a

if a° ^ 0. If a° = 0, (4.11) becomes the constant function ac° - 1, which gives no 
options for c. D

Example 4.4. Clive Bach's algorithm for finding yfa in [6] is the application of the 
proof to x2 — a.

Proof. Let p(x] =x2 — a. Then,

IV -a* (4.13) 
202 0 -(c°)2 -a (4.14)

and
(x2 -^ (4.15) 

q(X} (x2 -a-(x-cL )(x-cR ) = (cL + c*)x-cLc*- a . (4.16) 
(4.13) and (4.15) yield the options ^ and Vo1 respectively. (4.14) and (4.16) give 
respectively

and i j>rt a + c^c" .. 10 . , (4-18)
where none of the denominators can be 0. Instead of (4. 1 7), Bach uses

* a* °r

where CL ,CL " are "old" left options (and CR ,CR " "old" right options) of c, but I can 
always take the best among c1 , f instead. D
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Example 4.5. Other polynomials do not yield to such simple algorithms. For instance, 
to solve the polynomial x3 — a, I need to solve first polynomials of the kind

-a,

where a + /3 = 3, beside of course polynomials of type

Remark 4.6. Let S be an initial subset of No. Let L < R be subsets of S, and let 
x = (L R). Then, every ancestor of x is in S.

Proof. Let z^x. Without loss of generality, z < x. By the inverse cofinality theorem, 
there exists y 6 L such that z < y < x. Therefore z ^ 7, but y e 5 and 5 is initial, so

Lemma 4.7. ler S,/? 6e initial subsets o/No. 77ze« //ze

-5 := {-x : x e

are initial subsets o/No.
IfS,R are also additive subgroups o/No, then (SR), the additive subgroup gener­ 

ated by SR := {xy : x e S,y e R }, is an initial subset o/No.
The additive subgroup and the subring o/No generated by S are initial subsets of 

No.

Proof. The fact that —S is initial is obvious.
Suppose for contradiction that S+R is not initial. Let (x,y) the simplest element of 

in the cardinal product S x R such that 3z^.x+yz£ S+R. Without loss of generality, 
z < x jf.y_ Let x= (x1 \XR } and j; = ( y1 y^} be their canonical representations. Then 
x +y = (x1 +y,x + V1 x1* +y,x +yR ). By the inverse cofinality theorem, there exist 
x1 (or _/) such that/ :=xL +y(ort -.-x+y1 ) satisfies z <t <x+y. Therefore, z ^ t. 
But, by minimality of (x,y), every ancestor oft is in S+R, and in particular zeS+R, 
a contradiction.

Suppose that S,R are subgroups of No, and that, for contradiction, (SR} is not 
initial. An element of w 6 (SR) is of the form w = Wj + • • • + wn for some n e N,

Wf e SR i = 1 , • • - , n.
Consider again the order -< on the cardinal product S x R. Let

G:=(SxR)
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be the symmetric power ofSxR with the induced order, denned in 1.64. There is a 
surjective map ip : G —> (SR)

¥((*i..KI )>•••> (xn,yn)) •= *\y\ + ••• +xnyn .
Let S '•= ((xl ,yl ),(x2 ,y2),...) £G minimal such that w := y/-(g) has an ancestor 

not in (57?). Let « 6 N be the cardinality of the support of (x^y^x^y^...). Without 
loss of generality, I can suppose xiyi ^Oifi<n, while xf =y{ = 0 if/ > n.

lfn> I,leta:=x ly l ,b: = x2y2 + ---+xnyn . w = a + b. Let A := {/ € No : t X a}, 
#:={*€ No :?X6}. By definition, ^,5 are initial subsets of No, therefore y4 +5 
is an initial subset of No. Moreover, the minimality of g implies that A,B C (SR), so 
A+BC (SR) .weA+BandA+Bis initial, so all ancestors of w are in A + B C (SR), 
a contradiction.

If n = I, g= ((*,;>;)), i.e. w = xy; let a: = {.r1 |x*) and 7= {/ |/} be their 
canonical representations. Without loss of generality, z < xy. A left option of xy is 
f : = xy1 +xLy-xLyL or / := xy* +x^jv - j^y^. By the inverse cofinality theorem there 
exists / such that z < t < xy, so z ^ /. But ((x°,_y), (x,^°), (x 0 ,^0 )) is strictly simpler 
than (x,y), therefore all the ancestors oft are in (57?), a contradiction.

Finally, the additive subgroup generated by S is the union of initial subsets of No, 
so it is an initial subset of No, and similarly for the subring. D

It is not true in general that if S,R are initial subgroups of No, then 57? is an initial 
subclass of No. For instance, take S = R to be the subgroup generated by Z and (o. 
Then, co2 + (o = co(co+l) e SR, but w2 + 1 £ SR.

Corollary 4.8. Let K be an initial subring o/No. Let L < R be subsets ofK, and let 
c := (L R). Then, K[c] is also an initial subring o/No.

Proof. K U {c} is an initial subset of No, therefore the ring generated by it is initial 
too. D

Given K C No a subring of No, its real closure is the class of all surreal numbers 
that are algebraic over K.

Lemma 4.9. Let K be an initial subring o/No. Let K C No be its real closure. Then, 
K is an initial subfield o/No.

Proof. Let F be the union of all initial subsets of K; it is obviously initial, and by 
lemma 4.7 it is a subring of K. I want to prove that K = F.

Following the proof of 4.2, I introduce on F[x] the lexicographic order induced 
by X. Let p 6 F[x], let c e K be a root ofp(x). I have to prove that c e F. Suppose
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that I have already proved it for every polynomial simpler than p(x). I want to find 
L < R e F such that c = (L \ R}; then, by remark 4.6, c € F. Let us compute L,R 
using the procedure of lemma 4.2. First, I put in them the roots of the derivative p'(x), 
which is simpler than p(x): therefore, all these roots are in F. Then, given c1 ̂  "old" 
options of c (which I can suppose are in F), I construct "new" options d as roots of 
the polynomial

where am is the mth coefficient of p(x) and a^ -< am . Therefore, q(x) is simpler than 
p(x). Moreover, its coefficients are in F, because am 6 F, a£ is simpler than am , and 
therefore in F, c1 and c* are in F. Therefore, d is a root of a polynomial in F[x] 
simpler than p(x), so d£ F. D

Corollary 4.10. If S is an initial subset o/No, then the smallest real closed field 
containing it is an initial subfield o/No.

Proof. Q is an initial subset of No, therefore SUQ is initial too, so, by lemma 4.7, 
the ring generated by it is also initial, and its real closure is initial by the previous 
lemma. D

The statements and the proofs of the previous lemmas work also for initial classes 
instead of sets.

If instead of considering all polynomials with coefficients in K, I consider only 
the polynomial up to a fixed degree n e N, the lemma and the corollary are still true 
(with the same proof). For instance, if I take n — 1, I can say that the smallest field 
containing an initial subset of No is initial.

The following theorem was proved with different methods in [7]

Theorem 13. Let K be a real closed field and a proper set. Then, K is isomorphic to 
an initial subfield o/No.

Proof. If K = Q, it is true.
If F real closed and an initial subfield of No and K is (isomorphic to) the real 

closure of ¥(a) for some a transcendental over F, let (L,R) be the cut over F of a. If 
ce(L\R), then F(c) is isomorphic to F(a), and the real closure of F(c) is isomorphic 
to K If I take c= (L \R), then FU {c} is an initial subset of No, and the conclusion 
follows by corollary 4. 10.

In general, let (cs ) B<a be a transcendence basis of IK over Q, let KQ be the real 
closure of Q, and for 0 < jS < a let

the real closure of Kr(cr) if j8 = y+ 1
(j Kr if j3 is a limit ordinal.
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By the previous case and induction on j3, for every j3 < a Ko is isomorphic to an 
initial subfield of No, and the conclusion follows. Q

It is not true that every ordered field (which is also a set) is isomorphic to an 
initial subfield of No. For instance, take K := Q( v/2 + V®) C No. Suppose, for 
contradiction, that there exists an isomorphism of ordered fields \jf between K and an 
initial subfield of No. Let z = y(\/2 + i/o»). Then, \/2 -< z, but \/2 <£ yf(K).

Conjecture 4. 1 1. Let G be an initial ordered subgroup of No, and let K be an ordered 
field. Assume that K, with the natural valuation, is an Henselian and with value group 
G. Then, K is isomorphic to an initial ordered subfield of No.

Note that the value group of every initial subfield of No is also initial.
The main problem with the proof of lemma 4.2 is that I have to know in advance 

the existence of a real closed field IK embedding No: it is used twice, once to assure 
the existence of a root £ of p 'somewhere', and second to assure that a polynomial q 
does not change sign between two consecutive roots. Of course, this is not a problem 
for polynomials, but becomes an issue for other kinds of functions.

Let me rephrase the lemma using the following

Definition 4.12. I say that a function/: No —> No satisfies the intermediate value 
property at d e No iff for all a < b e No such that /(a) < d < f(b) there exists 
c E (a,b) such that/(c) = d.

f satisfies the I.V.R iff it satisfies the I.V.P. at every d e No.

I will now prove that every polynomial satisfies the I.V.P: while this is not very 
interesting for polynomials, it is for other kind of recursively defined function.

Proof. It suffices to prove the case d = 0. Let

Again, I do induction on p.
I can suppose that £ e No^, the Dedekind completion of No, is such that p(x) < 0 

in [a, C) and p(x) > 0 in (£,£]. I will give options for £.
First, a, b are left and right options. Then, if q(x) and CR/ as in the proof of lemma 

4.9, 1 can apply the inductive hypothesis, and conclude that q(x) does not change sign 
in the interval (£, c*'). The fact that p(c) = 0 follows trivially. D

The following is a weak form of axiom 2
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Axiom 5. Let^ : No — > No. Either^ is constant or Vc e No Va' < a" € No 3m € N 
3a0 , . . . ,am e No^ such that a' = aQ < a\ < • • • < am = a" and for z = 0, . . . ,/n - 1

Now I can adapt this proof to recursive functions.

Lemma 4.13. Suppose that 21 is a family of functions satisfying axiom 5, and such 
that every function in it satisfies the I. V.P. at 0. Suppose that f is uniformly recursive 
over 21. Then, f satisfies the I. V.P. at 0.

Proof. Proceed as in the previous proof. Let c1 , c* be "old" options of c. Let

for some /° option of/. By axiom 5, g has only finitely many zeros in (c 
therefore I can take c1 the rightmost before £ and c**' the leftmost after £, and by 
hypothesis g does not change sign in the interval / = (c1 ', c^').

Say that/ 0 =fL . Then, by uniformity, c 6 (c1^} ^ g(c] <f(c}. Moreover, 
/(c) < 0 if c < £, therefore ^(jc) < 0 in /. The rest of the proof is the same as 
before. D

Example 4.14. Consider the integer part function [x] — 1/2. Why cannot I apply the 
previous proof to it? I.e. take the equation [x] = 1/2. We know that [—!] = —!< 1/2 
and [2] = 2 > 1/2. So, if [x] did satisfy the I.V.P. at 1/2, 1 would find* e (-1,2) such
that [jc] = 1/2.

Fake proof. This is equivalent to solving:

(4.19a) 
(4.19b)

(4. 1 9c) plus (4. 1 9a) produce
T <;c< 5

Let us solve (4. 19b) using the method in the previous proof: I have to find the maxi­
mum of the set

{xeNo:-l<*<2&[jc] =0}.

However this set has no maximum: [x] = 0 on (- 1 , 1 ), but [1] = 1 . D

I can say something more.
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Definition 4.15. Let n > 0 e N. A function^ : No"+1 -» No satisfies the sup property 
iff for every b € No", a1 < a" e No U {±<~}, c e No the infimum and the supremum 
of the class

<x<a" &x,b <c

are in No U {±°°}, and the same with > instead of <.

Theorem 14. Let 21 be a family of functions, such that every g e 21 satisfies the sup 
property. Let f be a function uniformly recursive over 21 and satisfying axiom 5. 

Then, / satisfies the sup property.

Proof. Let a',a",c e No. Let

C := sup (x e No : a < x < a" &f(x) < c } U (a"} e No^.

By axiom 5 w.l.o.g. I can suppose that/(x) < c in the interval [a1 , £), and/0) > c in 
the interval (£,a"].

I will prove that £ G No by induction on c.
I will construct a c/ 6 No "as near as possible" to £; I will give the options of such 

a d. First, a1 < £ < a", therefore a' is a left option, a" a right one.
Given a representation c = (c1 CR ~] and given x = (x1 | x^ } e No, f(x) < c is 

equivalent to

/(x) < c* and (4.20) 

fL (x,x*,f(x0 ))<c (4.21)

for every* 0 option of x, c1 , C* options of c and/1 ,/^ options of/. 
Let dR' be the infimum of the class

{ x e No : /(*) >c*&o/ <x<o"}U {a'}.

By inductive hypothesis dR' e No. Moreover, Vx < £/(x) <C<CR , therefore dR' > £. 
If ̂ ' = £, I have proved the conclusion; otherwise, add dR< to the right options ofd. 

Let d1' be the supremum of the class

{ x e No : /(jc) < c1 & a7 < x < a" } U (a"}.

Again, dL' e No. Moreover, Vx > C /(*) > c> c1 , therefore JL/ < C- If dL' + (,, add 

^L/ to the left options of d.
Fix dL ,dR "old" options ofd. Let ^" be the infimum of the class

{x e No :fL (x,dL ,dR ,f(dL ),f(dR }) >c&dL <x<dR }(J {dR }.
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By hypothesis dR" e No. Moreover, by uniformity

and Vx < £ f(x) < c, therefore dR" > £. Again, if dR" = £ I have proved that £ e No, 
otherwise dR" is a "new" right option ofd. 

Proceed similarly for

dL" = sup [x e No :fR (x,dL ,dR ,f(dL ),f(dR )) <c&dL <x<dR }u {dL }.

If the construction was not broken by £ being equal to some of the "new" options 
of d, I obtain in this way a d € No such that d X £ (with the simplicity relation on 
No^ induced by the one on No). Moreover, f(d) — c and a' < d < a", therefore 
</=£. D

Let/ : No — > No be as in the previous theorem.

Corollary 4.16. / can be extended in a unique way to f : No® — >• No^ such that f 
continuous at every £ e No \ No;

/(£):= Km sup/(*)=lim/(*)

Corollary 4.17. If moreover f is continuous, then f satisfies the intermediate value 
property.

Example 4. 1 8. Let/(x) = of. It is not continuous at any x € No. Nevertheless, / can 
be extended to No^. For instance,

co 77 = sup { (»x : v(jc) <l} = inf { cox : v(x) > 1 } = inf [ o, w 1/2 , w 1/4 , . . . j .

The sign expansion of ft) 77 is given by the sign expansion of (o l/(a followed by infinitely 
many pluses; (D 71 = co^m : +°°.
Example 4. 19. Let/(x) = x - [x]. On the interval (1/2, 3/2), / satisfies the hypothesis 
of theorem 14. Let us see how the proof works for c = 1/2. Let

£ = sup j * G No :/(*) >2 & 2 <X< 2|'

However, /(x) = 1 in the interval (1/2,3/2) iff x = 1 and £ = 1.
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I can also generalise lemma 4.7.

Definition 4.20. Given S C No and a function g : No" -> No, I say that S is closed 
under g iff #(5") C S. Given a family of functions 21, 1 say that 5 is closed under 21 iff 
it is closed under every g e 21. The closure of S under 21 is S®, the intersection of all 
subclasses of No closed under 21 and containing S.

Note that if both S and 21 are sets, then S® is also a set. 

Theorem 15. Suppose that 21 is a family of functions and that f : No" — »• No is recwr-
over #.

Suppose that for every S C No initial subset o/No, S21 is a/so iw'/z'a/. Then for 
every R C No /mY/'a/ .sHfose/1 o/No, #au{/} is a/so m/ria/.

Proof. Let T be the maximal initial subset of No contained in £au{/}. By hypothesis, 
T is closed under 21. I have to prove that T is also closed under/. Given a e T", an 
option of /(a) is of the form

j(3,3V(20 )), 

where g e 21 and a° is a vector of options of a, i.e.

a° =

with a° a standard option of ai for every / = 0 . . . , n. Hence, 3° -< a in the order of 
No" induced by ^ via bnd. Therefore, by induction I can suppose to have already 
proved/(a°) e T. It follows that ̂ (3,2° ,/(2°)) e I". Then, every options of /(a) is 
in T, so, by remark 4.6, /(2) eT. D

Definition 4.21. Let 5 C No, and ^ : No"+1 — >• No. I say that 5 is closed under solu­ 
tions of^ iff for every 2 e 51" and every c e 5, every isolated zero of ft(x) '. = g(x, a) — c 
(in No) is in S. The closure of 5 under solutions of g is the smallest subclass of No 
closed under g and under solutions

Lemma 4.22. Let 21 be a family of functions satisfying axion 5 and the I. V.P. Let 
y . NO __> No be non-constant and uniformly recursive over 21, satisfying axiom 5 
and the I. V.P.. Suppose that for every S initial subset o/No, the closure ofS under 
solutions o/2t and under f is also initial. Then R, the closure ofS under solutions of 

21 U {/}, is initial. 

< 2>not necessarily uniformly
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Proof. Usual procedure. Let T be the maximal initial subset of R. By hypothesis, T 
is closed under/ and under solutions of 21. I have to prove that T is also closed under 
solutions of/. Let c e T, a be a zero of f(x) - c. By axiom 5, there are only finitely 
many zeros of f(x) —c. I will prove the lemma by induction on c.

I will give L<RCT such that a = (L R), implying that a e T. Let/ =(fL \fR }. 
Then, f(d) =c iff

/V*°,/(«0 )) < c </*(a,a°,/(a°)) (1) 
<*-<f(d) <(*. (2)

Let a^tf* e r be "old" options of a.

1 . Let </' e No be the the rightmost zero before a of

0(x):=fL (x,a*,f(a«V-c,

and let a*' the leftmost one after it. By the I.V.P. on 21, j(x) does not change 
sign in (</' ',</'), and ^(a) < /(a) - c = 0, therefore ^(x) < 0 in (a1 ', a*'). 
Moreover, by hypothesis on T, a1 ', a1*' e 7. Add a1 ', a1*' to the options of a. 
Do the same for fR .

2. Let a^ be the rightmost zero before a of

and let o^ be the leftmost after it. By the I.V.P. on /, g(x) does not change
sign in the interval (c^ ,<f- ), and, by induction on a, c^ , a^ 67. Again, add 
a1 , a^ to the options of a.

At the end of the process, we obtain ct € T such that f(ct] = c. But we cannot be 
sure that d = a. However, if for instance a' > a, we can restart the whole algorithm 
adding a' to the right options of a. Because f(x) = c has only finitely many solutions, 
the process must terminate at a. D
Question 4.23. Let/ : No"+1 — » No be uniformly recursive over a family of functions 
21. Suppose that for every a € No" 3!c e No /(c,a) = 0. Call h : No" -> No the 
function such that /(/t (£),;?) = 0. Under which hypothesis (on/ and on 21) can we 
prove that h is uniformly recursive over 21 U {/}? A related question: is it possible to 
generalise lemma 4.22 to functions of many variables?

Using techniques similar to those employed here, one can prove that the concate­ 
nation function x:yis not uniformly recursive over any family 21 satisfying axiom 5 
and the I.V.P. In particular, it is not uniformly recursive over the family of polynomial
functions/^ ____________

'3 >See also [13] and remark 1.20.
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Chapter 5 

Other functions

I will prove that the integral of \jx is log*. On the other hand, I will show that in 
general /Oa exp t dt ^ exp a - 1 .

5.1 Logarithm

A variation of the following lemma is attributed to M. Kruskal in [6]. 

Lemma 5.1. Letx > 0 e No. Then,

(!)•= '-"-*;('-»''.

where x1 andy^ are positive options ofx, and (i/*) ° is a left option iff a is even.

Note that, after cancellation of the denominator with the numerator, (5.1) is a 
polynomial in x.

Proof. I already know that No is an ordered field (lemma 4.2). Call y the number 
defined by (5.1).

First, I prove that y is a number: it is sufficient to prove that xy1 < 1 < xy11 , i.e.

iff a is even (and greater iff a is odd), namely

iff a is even (odd), which is obvious.
Then, I want to prove that xy = 1. First, I prove that 1 ^ xy, i.e. that 0 < xy. But 

if I take a = ft = 0, 1 obtain y > 0, which implies xy > 0.
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Then, I prove thatjty ^ 1, i.e. that (xy)L < 1 < (xy)R .

— n — x \ a (\ —
^ ~ ' ^I \° o , / o\ o o i / o\(xy) =x°y+(x-x °)y °=x °y+(x-x °)

Suppose for instance that a is even and x° <x. Then, I have to prove that the previous 
expression is < 1, i.e.

x°y < ———————————————— - ————— - —— i.e.

The lemma is a consequence of the following 
Claim 2. If x", . . . ,jr° is a tuple of options of x, then

n,-(i -u-£))
v > ——————— ̂ — (5.2) 

x
iff a, the number of left options, is even, and less otherwise.

In fact, letx^ and*1 be the best left and right approximations of* among xj*, . . . ,;c°. 
It is then easy to see that if a is even, then (5.1) is greater or equal than (5.2) (and less 
or equal if a is odd). D

I will now consider the integral of i/x. In [10], Gonshor defines the logarithm, and 
proves that it is the compositional inverse of exp.

Definition 5.2 (Logarithm). Letz > 0 e No. The definition of logz is the following. 
Suppose that z = (Oa , a = ( </ </ } 6 No. Then,

logZ = <log(6/) +/J,log(fi/) - W^2 log(0/) -«,log(o/) + <0V- } M€N .

(5.3)
If z e R, logz coincides with the logarithm for real numbers. 
If z _ i _)_ £ 5 where e e No is infinitesimal, logz is defined by the power series

expansion of log at 1 .
Every z > 0 6 No can be written in a unique way as z = xry, where x = ft>a , 

r > 0 <G E and y = 1 + e, with £ e No infinitesimal.

logz := logx + log r + logy.

Gonshor proves various properties of logz, in particular the following: 

Lemma 5.3. • log satisfies the functional equation log(.ry) = log* + logy.

• log : No+ -» No is surjective.

102



• log* < x l '"for every n e N and for every x infinite.

• For x = ry, where r > 0 € R andy = 1+ e, e e No infinitesimal, log* coincides 
with the corresponding analytic function.

• x > y implies logx > logy.

BY [19] (see also [18]), the previous lemma is enough to prove the following. 

Corollary 5.4. R is an elementary substructure o/No in the language Jz?an (log).

I will prove that log* coincides with the integral of i//. Before I need the following 
technical tool.

Lemma 5.5. Let 0 < a < b e No, c> 0 e No, P = (kQ , . . . ,km ) be a partition of (a, b), 
(a, . . . , am ), (j3j , . . . , jSm ) tuples of natural numbers. 

Define cP := (ckQ , ...,ckm ) partition of(ca, cb), and

and similarly for $£ ( l/t)"p dt. Then,p
cb

Proof. It is enough to prove the lemma for m = 1. Then, fa (i//)pd/ is the integral

fb\-(\-'-} a (\-!-b ]
-dt.

But the integrand is a polynomial in /, and for polynomials the integral is equal to the 
formal integral. Therefore I can apply the change of variable 5 = ct, obtaining

rcb i
f-)°D d5. D

Theorem 16. Letx>0e No. Then,

logx

Proof Call f(x) := /f V/(^- ^ w'^ Prove tnat /(x) = 1°8 X ^Y induction on x. Note 
that taking a = j3 = 0 in (5.1), I obtain 0 as a left option of i/*, taking a = 0, j8 = 1, 
I obtain i/x* as a left option, and a = 1 , j8 = 0 yields i/.v1 as a right option. 

By inductive hypothesis,

103



(and similarly with ** or (I/')*)- The integrand is a polynomial in t, therefore previ­ 
ous expression, by corollary 5.4, is less than logjc, so I have proved that/(jc) X log(jc).

The other direction log* ^ f(x) is more difficult.
First, suppose that x = coa , a e No. Then, x° = r(oa° , where r > 0 e R. Consider

Take «. = 0, j8;. = 1 for every / to obtain the left option of f(x)

"-/+!

Now take 

i.e.

yielding the left option
l

If x = (oa andx1 = rO)^, it follows that (^} is infinitesimal, therefore for every

-•V

On the other hand, taking a = 1, /3 = 0, kt as before, I obtain the right option

which implies

x*-

The other two kind of options in 5.3 are obtained taking z^ instead ofx*1 .
Now suppose that x is log-bounded, i.e. that x = r + e, where r > 0 e E, and 

e G No is infinitesimal. It is easy to see that logr=f(r). Moreover, - is analytic 
in a neighbourhood of r, therefore its integral coincides with the formal integral as a 
power series, which is equal to log*.

Suppose that z = xry, where x,r,y are as in the definition 5.2. To conclude the 
lemma it remains to prove that

f(z)=f(x)+f(r)+f(y) =
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I will prove it by induction on x,r,y. First, suppose that>> = 1. If r — 1 I have already 
proved it. Otherwise,

and similarly for right options, where s > 0 € R and r1 e R is some positive option 
of r (positive because we are working in the domain No>0). Note that

r1 «i_ 
\ r )

where/ - 1 is infinitesimal, so I can apply the inductive hypothesis to z1 . Therefore, 
by lemma 5.5

f(z)L =f(zL )+ f (i)z d/ = log(*rV) + f (|)"d/
./. ' Jy.rLy '

= log(^) + log(^y) + |^(i)L ck. (5.4)

Note that w := —)/ < 1 is log-bounded, therefore logw =f(w), and 

f(z)L = log(.xr) + /' ( 1-} L - (I) d/ < log(*r).
7w ' '

Similar reasoning for other options. 
Ify ^ I, then

where y° — 1 + e°. Again, I can apply the inductive hypothesis to z° and lemma 5.5, 
obtaining

rxry J /"' 1/ I

Jyo/y

x 

r

But -— — 1 is infinitesimal, therefore log(y°/y) = f(y°/y), and I can conclude as 
before. D

5.2 Exponential

5.2.1 Translation invariance

Lemma 5.6. Suppose that K is afield, /: (K,+) -> (K, •) w a homomorphism of 
groups with f (I) ^ 1, and f*j(t)dt (defined on some family of functions containing 
f) is a functional satisfying
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. Foreverya,b,ceK

3 +
a

a+c

[0= ^ 3-
Jo Ja

2. For every A G K,
rb rb
/ ^3 - *> / 3-

Ja Ja

3. For every c G K
rb fb 
/ g(t + c)dt= /

•Ja Ja

4. f l f(t)dt =/(!)-!. 
*/ u

Call f(x) := /£/(/) d/. Then, 7(x) = /(*) - 1 /or every x e K.

Note that K is not assumed to be an ordered field. I call property 3 translation 
invariance of/.

Proof. Call e :=/(!).

r/('+l)d/= fXf(l)f(t)dt = ef(x). 
Jo Jo

On the other hand, by translation invariance of /,

Therefore,

so

If we apply the previous result to K — No, / = exp and / the integral on No, we 
see that if/ is translation invariant, then f(x) := /Ox exp/d/ = expx- 1. But this is 
not true: we shall see that f((o] = exp(co). Therefore, / is not translation invariant.
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5.2.2 Integral of exp

The exponential function exp has been defined in [10]. It is the inverse of the loga­ 
rithm log. I recalled its recursive definition in section 1.5.

Let 21 be the field of rational functions on No.
By lemma 5.1, l/x is recursive over polynomials functions. However, the definition 

of rational functions is not recursive. For instance, one can check that the options of 
y.t2 are at least as much complicated as the function i/*2 itself/ ̂  This means that 
the partial order on the field of rational functions induced by the relationship "/ is 
an option of/' is not well-founded, implying that this field is not an inductively 
constructed family. However, even in this case, the definition of / makes sense, not 
as a definition, but as a requirement: we are imposing that /Q / is the simplest element 
in a certain convex set.

The integral on 21 given by the formal integral(2) satisfies the previous require­ 
ment.

The exponential function exp is (uniformly) recursive over 21, therefore I can de­ 
fine f(x) := J^exptdt, and see if ^(x) = expx — 1. It is easy to see that if x <E M, 
f(x] = exp* — 1. The function exp* is analytic, therefore the answer is affirmative 
for x bounded.

On the other hand, we will prove^ that ?((&) = expo).

Proof. I recall that exp CO = co w , the simplest surreal number greater than CD" for every 
natural n.

For n 6 N, let
n i

r 1 V
(An •= £ 7F

/=0 Z "

be the Taylor expansion of expx [x] n is a polynomial, therefore we know how to 
compute its integral: rw»d/=M B+1 -i.

Jo
Moreover, [x] n is a left option of exp*, therefore y(x) > [x] n+l -l, in particular 
?((o] > 03" for all n e N, so (O m -< ?((d). To obtain the conclusion, it is enough to 
check that every right option of T(G>) is greater than <o ffl .

does not mean that someone else might not find a true recursive definition for rational func­ 
tions. Only that the definition we can extract from lemma 5.1 is not recursive.

(2)The formal integral of a rational function is a combination of rational functions, log and arctan. 
Moreover, arctan is definable in _%„. Therefore, it is defined on No.

< 3 >Thanks to prof. O. Costin for having pointed this out.
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Claim 1. Let n E N, a < b <= No such that a is finite and b is infinite. Then,

fb expb ./ f . ,1 d/-(exp6-expa)
./a [0-fJn

is positive infinite.

It is enough to prove that
rb i
\ f , , d/-l+exp(a-6)

J a [O — tj«

is positive non infinitesimal. By hypothesis, the integral is a function in a, b definable 
in J*faw (exp). Therefore, I can make the change of variable t' = b-t. Call c:=b-a; 
c is infinite, so exp(-c) is infinitesimal, and the claim becomes

Moreover, E is an elementary J*?a«(exp)-substructure of No, therefore it is enough to 
prove in E that

/o l/J» 
But for/ > 0, !/[/]„ > exp(-/), so

f-j-OOy+oo J /• + =

/ Trr d/> / exp(-r)d/ = l.
70 [t\n JO

The only right options of f((o] are of the form

/ CO „ 
(exp/)Jd/, 

.

for some <? e N and P = (k0 , . . . , km ) partition of (q, ft)). Let i < m be such that k- is 
finite, while Arr+1 is infinite. Call a = k-, b = kT+{ . The right option (expt)R of expr 
in the interval (a, b) are of the form either expb/[b-t] n or expa/[a-t]2n+l , with 
[a — t] 2n+ i positive. But the second case cannot happen, because [o — t] 2n+l < 0 for 
any infinite / € (a, b), therefore we have only right options of the first kind. Let

b expb . . 7: —— i —— dt-(expb-expa).
[b-t\ n+l

By the claim, A is positive infinite. Therefore, for every r e E, 

ZR > (expq-l) + (r + expb-expa) + ̂  I '+ '
Jk

This proves that every right option z* is greater than (a®. D
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A similar phenomenon happens at every infinite power of (O.
If a > 0 G No, then !F(a)a ) = exp(tt)a ). Loosely speaking, 1 is too small w.r.t. (oa , and 
the approximation with which exp has been defined is not good enough to detect it. 
More precisely, A(^(o)a)) is infinite.

5.2.3 Recursive definition of exp

Let 21 be the family of functions definable over No (with parameters) in the language 
•$?an- Obviously, exp is recursive over 21, and /(x) := 1 + expx is recursive over 
21 U {exp}. But/(x) is not recursive over 21. I will sketch the proof of this fact.

Instead of 21, consider 21', the family of functions definable in Jz?aw without using 
any parameter. It is easy enough to define recursively over 21' a function g(x) which 
coincides with/(x) for x bounded. Take any such recursive^. Suppose, for contradic­ 
tion, that/ =£ and consider a :=g((o). Let T be the type of /(CD) = a)0) + l over E in 
the language &an . If x € E, g(x] — 1 + expjc e E. Therefore, a would be equal to the 
simplest surreal number in T. But the simplest element in T is co 03 , so^(co) ^f(co).

For the general case, in the recursive definition of/ only a set 21" of elements from 
21 can be involved, i.e. only a set S of parameters from No can be involved. Let K be 
an initial elementary „%„ -substructure of No containing S and which is set. Let^ be 
any function recursive over 21", such that^(.r) —f(x) for every x 6 K. Let c := (K | } 
the simplest surreal number greater than K. As before, ^(c) ^f(c).

5.2.4 Other exponential functions

Let c = Zz-< a rt a)ai. Then, c is purely infinite iff a, > 0 for all i. Theorem 5 gives the 
value of exp c for c purely infinite. For c finite, we can use e(x) the power series expan­ 
sion of expjc to compute expc. In general, every c e No can be expressed uniquely as a 
sum c = c' + c", with c' purely infinite and c" finite. Therefore, expc = (expc')e(c"). 

Consider now the function 2X := exp(xlog2). If x = x' +x" is the decomposition 
of x into purely infinite and finite part, define £(x) := (e\px')2x" . Finally, define

/(*):= fc(x/log2).
It is easy to see that/ satisfies the following properties:

y(x) = e (x) for x finite.

/ : No -)• No >0 is surjective.

f(x) > x" for x large enough.
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Therefore, Noaw (/) is elementary equivalent to Noa«(exp), where Noa/, is the canon­ 
ical =Sfaw -structure on No. However, / ̂  exp.

Of course, all the previous construction can be done taking any real number in­ 
stead of 2 to define/, obtaining a whole family of different "exponential functions".

5.2.5 An alternative definition of integral

Define

With this definition, the integral is linear, monotone, invariant under translations and 
satisfies the integration by part formula. However, it is not additive, i.e. it does not 
satisfy

Note that every option of f is an option also of /, therefore this integral is worse than 
the one I have used until now.
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Conclusion

The central themes of this thesis are the functions on the Surreal Numbers uniformly 
recursive (over some family of functions) and their integral.

In chapter 4, we saw that being recursive has some non-trivial consequences, such 
as the sup property. ̂

The guiding idea is to define the integral for functions definable in Taw (exp), in 
such a way that the resulting structure on No is an elementary extension of the corre­ 
sponding structure on the reals.

The definition given here of integral for such functions, mimicking the Riemann 
integral for real functions, is satisfactory for polynomials and restricted analytic func­ 
tions. Moreover, it has many of the properties we expect, as shown in chapters 2-^. 
I recall the ones I deem the most important: monotonicity, additivity, linearity and 
integration by parts.

However, one of the fundamental properties of the integral, namely the translation 
invariance, is missing in general, and this gives problems when we try to integrate the 
exponential.

Finally, here are some of the open problems and unsolved questions.

• A "natural" definition of integral that gives the right answer for the exponential 
function; it is the main open problem of this thesis.

• The "implicit function theorem" for recursive functions, already mentioned in 
question 4.23. Given a recursive function f(x,y) such that V.x 3y f(x,y) = 0, 
is it possible to find a function h(x), recursive over a suitable family, such that 
f(x,h(x}} = 0 for all x? For instance, the function ^/x is recursive over the 
rational functions;^ I would like a general theorem ensuring that functions 
obtained as solution of certain equations are recursive.

• A simpler form of the axioms in the second chapter. While axiom 1 seems a 
natural choice, the other axioms are less convincing.

( 4 >See definition 4.15. 
< 5) See example 4.4
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• Given a family of functions 21, which kind of functions / can be recursively 
defined over it? The results in chapter 4 give some properties for /, while 
§5.2.3 and the concatenation function produce some counterexamples. Can we 
give some more conditions on recursive functions?
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Symbols
P[a, b] ............. see partition, 54
B(a) .......................... 27
No^ ...see Dedekind completion, 47
•1 ................

A(.x) .............

A*(x)
No ...............

.............. 49

.............. 49

.............. 49
............... 9

No(a) ...................... 27, 34
....................... 37, 42
.......................... 43

(L R} ......................... 12
(L\R) ......................... 10
exp ............. see exponential, 24
log .............. see logarithm, 102
£(S) ............................ 27
l(x) .................. see length, 9
of ............................. 16
v(x) ............... see valuation, 16
x:y ........... see concatenation, 10
x ~<v ................ see ancestor, 9

............... see simpler, 9

additivity ....................... 59
ancestor ......................... 9
- common ....................... 9
Archimedean ................... 16

B
bounded 15

canonical quotient ............... 37
Cauchy complete ................ 29
chain .......................... 37
cofinal ......................... 13
collection ...................... 36
concatenation ........... 10, 26, 100
convex ...................... 10, 42
- set-bounded................ 22, 72

D
Dedekind completion ............ 47

E
exponential ........ 24-25, 105-110

finite element ................... 15

G
greatest lower bound ............ 42

I
incomparable ................... 37
inductively constructed family .... 59
infinitesimal .................... 15
interval ..................... 10, 26

L
leading coefficient ............... 18
least upper bound ............... 42
length ....................... 9,37
- common ....................... 9
logarithm ..................... 101
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ttionotonicity ................... 59

N
normal form .................... 19

O

o-minimal ...................... 26
option .......................... 12
- canonical ..................... 12
ordered tree .................... 43

P
partial order .................... 37

- linear ........................ 37

partition ........................ 54

product
- bounded symmetric ........... 39

- cardinal ...................... 38

- lexicographic .............. 38, 41

- ordinal ....................... 38

- symmetric .................... 39
pseudo-complete ................ 18

pseudo-limit .................... 18

purely infinite .................. 109

Q
quasi-order ..................... 36

- set-like ....................... 37

- total ......................... 37

- well-founded ................. 37

R
recursive definition .............. 21
- uniform ...................... 22

restricted analytic function ....... 20

S
sequence ....................... 18
- Cauchy ....................... 29

- pseudo-Cauchy ............... 18
- pseudo-convergent ............ 18
sign sequence .................... 9
simpler .......................... 9
simplest element ............. 10, 12
support ..................... 17,41
symmetric power ................ 41

T
tree ......................... 42-47

- binary ........................ 42
- root .......................... 42

- weak ......................... 42

U
upper bound 42

valuation ....................... 15
- compatible ................... 15
- equivalent .................... 15
-Hahn ......................... 18
- natural ....................... 16

- residue field .................. 15
- ring .......................... 15

- value group ................... 15
valued field ..................... 14
- extension ..................... 18
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