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Abstract 

A theory of data abstraction in modular programming is presented that explains 

why this technique leads to correct programs. 

Data abstraction allows users and implementers to take different views of a 

specification: While users may depend on a specification as it is, implementers 

need not provide pràgram entities that satisfy the specification, but merely a 

"representation" of such entities. This means that the users may be supplied 

with program entities that do not satisfy the specification, and so an explanation 

is needed that their code functions correctly nevertheless. 

it is shown that data abstraction leads to correct programs if the modules 

of the programs are "stable", and it is suggested that programming languages 

for data abstraction should guarantee stability of their modules. The stability 

criterion corresponds closely to the intuitive idea of "limited access" to encapsu-

lated data types, and to "representation independence" properties of the typed 

A-calculus. 

The theory is developed in the general framework of an "institution" and 

uses an abstract notion of "representation". Specifically, the institution of par-

tial many-sorted algebras is considered and the representation relations "behav-

ioural inclusion", "behavioural equivalence" and "standard representation" (the 

popular concept based on abstraction functions) are studied. These relations 

are characterized by certain kinds of relations between algebras, called "corre-

spondences", which provide useful practical proof methods for the correctness of 

data representations. 

Behavioural equivalence is found to be superior to standard representation 

in that "representation bias" of a specification no longer restricts its range of 

implementations, and in that it allows more constructs to be included in a data 

abstraction programming language. 
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Chapter 1 

Introduction 

THIS THESIS presents a theoretical explanation for the correctness of programs 

obtained from a modular programming discipline using data abstraction. Data 

abstraction is viewed as a technique that allows users and imp lementers to take 

different views of a specification. While users may depend on a specification as it 

is, implementers are only required to provide program entities that "represent" 

program entities satisfying the specification, but that need not satisfy the speci-

fication themselves. This means that users of a specification may be supplied 

with program entities that do not satisfy the specification on which they base 

their correctness arguments. Thus, an explanation is needed that this kind of 

data abstraction leads to correct programs. 

In the following section, the role of data abstraction in modular programming 

is explained in more detail, motivating the view that data abstraction consists 

in allowing users and implementers to view a specification differently. 

Section 1.2 reviews the explanations given in the literature for the correctness 

of data abstraction. As we shall see, only a few papers have dealt with the 

problem. 

Section 1.3 outlines the approach of this thesis to the problem: A the-

ory of modular program construction is presented in the framework of an 

"institution"—a notion due to Goguen and Burstall [GB 841 and related to the 

ideas of "abstract model theory" [Barwise 74]. Data abstraction is based on an 

abstract "representation" relation between program entities. It is proved that 

correct programs result from modules that are "stable" and that are "simple 

implementations" of their specifications. The "simple implementation" property 
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1.1 Data Abstraction in Modular Programming 

describes the proof obligation of a programmer, while "stability" is a property to 

be guaranteed by the programming notation in which the modules are written. 

As a concrete example of the abstract theory, partial many-sorted algebras 

are considered, which model functional programs. Three representation concepts 

are introduced and compared: "standard representation", the well-known notion 

based on Hoare's paper [Hoare 72],  "behavioural equivalence", a notion which has 

more recently received attention in the literature, and a new notion, "behavioural 

inclusion". New proof methods for the behavioural representation concepts are 

given, and it is shown that these concepts, unlike standard representation, are 

tolerant of "representation bias" in specifications. 

Section 1.4 presents an example of modular program development using data 

abstraction, which will be used in the remainder of the thesis to illustrate the the-

oretical concepts. Also, the example shows an important advantage of "abstract 

model" over "implicit" specifications: Only an abstract model specification of a 

data type allows one to develop and refine access operations independently of 

each other. 

1.1 Data Abstraction in Modular Programming 

Modular programming is a strategy to reduce the difficulty of designing, verify-

ing, or modifying a program by structuring the program into a number of sub-

components, called "modules", with precisely defined interconnections, called 

"interfaces". The idea is that the correctness of the program as a whole should 

follow from the correctness of the individual modules with respect to their in-

terfaces, so that the modules can be considered separately. Accordingly, each 

module has associated interfaces that describe 

• the properties the module must guarantee ("export interfaces"), and 

• the properties the module may depend on ("import interfaces"). 
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1.1 Data Abstraction in Modular Programming 

an interface 	 a module 

"I is export interface of Al" 
	

"I is import interface of Al" 

Figure 1-1: The elements of a design graph 

An interface thus describes some properties of the program or its components; 

it may be the the export interface of one and the import interface of a number 

of other modules. 

The relations between the modules and interfaces of a program can be ex-

pressed as a graph, which will be called a "design graph". Such a graph consists 

of the elements shown in Figure 1-1. For example, Figure 1-2 shows the design 

graph of a program with two modules M and N, where M guarantees the prop-

erties described by I (1. e., exports I) and depends on the properties described 

by L and K (i. e., imports L and K), and the module N exports L and imports 

J and K. This could be the design graph of a complete program, where I de-

scribes the properties required by the program's users, and J and K describe 

properties guaranteed by the programming environment (e.g., the programming 

notation and the libraries available). 

The graphs considered in this thesis will always be "hierarchical", which 

means that no loops are possible when travelling along the arrows, or equally, 
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1.1 Data Abstraction in Modular Programming 

Figure 1-2: An example of a design graph 

that the graph can be arranged in levels so that the arrows lead from "lower" 

to "higher" levels only. Figure 1-2 shows such an arrangement, as all the arrows 

lead upwards on the page. For the future, this will be adopted as the convention, 

so that the arrows can be replaced by simple lines. 

A hierarchical system structure is generally regarded as highly desirable (e.g., 

[Dijkstra 68, p.  343 f.], [Parnas 72b, p.  1057 f•], [Dijkstra 72, p. 48-501), and on 

page 151-154 below it will be argued that modular programming requires a 

hierarchical system structure, since otherwise the correctness of the composed 

system could not be inferred from the correctness of the individual modules. 

So far, the discussion has largely followed Parnas' discussion of system struc-

ture in [Parnas 72a, p.  339 f.]. Note that the issue of modular program structure 
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1.1 Data Abstraction in Modular Programming 

is distinct from the issue of design strategy: the structure represented by a de-

sign graph could be arrived at in different ways—for example, by "top-down" 

or by "bottom-up" design. The theory of this thesis deals only with program 

structure and does not depend on any particular design strategy. 

In this thesis, program modules are viewed as defining ("exporting") "program 

entities", such as data types, data values, data objects, and operations, to be 

used by other modules or by users of the program. Practically, this means that 

a module consists of a group of program entity definitions in some programming 

notation. Many modern programming notations offer constructs to designate 

such modules—the first of these is SIMULA 67 [DN 66],  and the most promi-

nent one is ADA [ANSI 83]. The definitions in a module may be based on pro-

gram entities that are "imported" from other modules or from the programming 

environment. 

The connections between modules thus consist of program entities that are 

exported by one and imported by other modules, together with the properties 

of these program entities that the importing modules may depend on and that 

the exporting module must guarantee. 

Accordingly, interfaces are given as specifications of groups of program enti-

ties; such groups in general will be called "structures". A structure that has the 

properties ascribed to it by an interface is said to "satisfy" the interface or to 

be a "model" of it; an interface can have any number of models. An interface 

with no models is called "inconsistent", an interface with several models is called 

"loose". 

The meaning of a modular program is determined by the modules, which 

must be coded in a programming notation. The interfaces, on the other hand, 

do not contribute to the meaning of the program, so that they need not be coded 

in a formal notation. Nevertheless, many authors feel that specifications should 

be formal, so that they have a well-defined semantics and formal techniques such 

as machine processing become applicable (e. g., [LZ 75, p. 8 f.]). On the other 

hand, some argue that most of the benefits of formal specifications can already 

be achieved by using a "rigorous" method [Jones 80, p. 9-141. In any case, 
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1.1 Data Abstraction in Modular Programming 

the search for appropriate specification notations continues to be of considerable 

importance in Computer Science. 

An important goal in the design of specification notations and in the design of 

modular programs is to obtain simple interface specifications. "Simplicity" here 

means not just short, elegant specifications, but also, as Parnas [Parnas 72a] 

has pointed out, that an interface should contain precisely the right ("designer 

controlled") amount of information: while too little information in an interface 

would impede its use, too much information in an interface would tend to make 

the interface more complex, and would restrict the range of models. 

Data abstraction is a technique to simplify interfaces that describe encapsulated 

data types or data objects. A type or object is said to be "encapsulated", if 

access to the type or object is restricted to a fixed set of basic operations, called 

the "access operations" of the type or object, so that any operation involving 

the type or object must be realized on the basis of these operations. 

Of course, every data type or data object in programming comes equipped 

with a certain set of basic operations, so that it may be said to be encapsulated; 

the novelty in programming notations that support data abstraction is a feature 

that allows the programmer to define the set of access operations to a data type 

or object. Usually this is done by declaring the type or object to be "private" to a 

module: Inside that module, the type or object is defined together with a number 

of operations, which are defined as usual on the basis of the access operations 

provided by the type or object definition; outside of the module, however, only 

those operations of the type or object are available that are explicitly exported 

from the module. In particular, the basic operations provided by the type or 

object definition are not available outside the module unless exported explicitly, 

so that information about the way the type or object is defined is not propagated 

to the remainder of the program. 



1.1 Data Abstraction in Modular Programming 

The central idea of data abstraction is that the behaviour of a program using 

an encapsulated data type or data object depends only on those aspects of the 

encapsulated type or object that constitute its "observable behaviour". 

The behaviour of a program consists in the results produced by its possible 

computations on input values. Specifying or comparing the behaviour of pro-

grams is possible only if input and output values belong to fixed, predefluied data 

types or data objects that may be called the "visible" types and objects of the 

program. The other types and objects of the program affect the program's be-

haviour only indirectly, namely via the visible results produced by computations 

involving them. 

When data types. and data objects are encapsulated by a number of access 

operations, the computations involving the types or objects can generate values 

of the types or objects by means of the access operations and use these values as 

input to further access operations. Some of the access operations may produce 

result values outside the encapsulated types or objects, which can then be further 

processed by operations outside the encapsulation. Only the result values of 

these access operations can ultimately affect the behaviour of a program using 

the encapsulation, because the program's behaviour manifests itself in the visible 

types and objects, and because these access operations provide the only means 

to pass from the inside to the outside of the encapsulation. 

Thus, the "observable behaviour" of encapsulated types and objects, which 

alone affects the behaviour of programs using them, consists of the results that 

the possible combinations of access operations produce in types or objects outside 

of the encapsulation. 

The idea that only the observable behaviour of encapsulated types and ob-

jects affects the behaviour of programs using them can be exploited to simplify 

interfaces describing such types and objects. These interfaces should be "mini-

mal" [LZ 751 or "abstract" [Guttag 771 [Parnas 791 in the sense that they only 

characterize the observable behaviour of the encapsulated types and objects and 

avoid specifying unobservable aspects, which could clutter the interface specifica-

tion, require additional verification effort and even restrict the range of structures 

satisfying the interface. 
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1.1 Data Abstraction in Modular Programming 

Research in data abstraction has to a large extent been concerned with the 

search for specification notations that allow one to describe abstract interfaces. 

The ideal here would be a specification notation whose sentences could express 

only observable properties, so that all specifications in this notation would be 

completely abstract. 

Unfortunately, no such specification notation has been found that would be 

practically useful. 

To appreciate the problems here, consider the classic specification of the stack 

data type (with access operations empty, push, pop, and top) over some element 

data type elem by means of the equations 

for all s E stack, x E elem: 

top (push (x, s)) = 

pop(push(z,$)) =8. 

The second equation relates two values of type stack. This equality of stacks is 

not observable to a user of the stack data type, since an equality operation for 

stacks is not among the access operations given above (this is normal, as the stack 

data type is perfectly useful without it). In particular, there are representations 

of the stack data type that do not preserve this equality, such as the familiar 

representation by an array together with a counter of elements on the stack. In 

this representation, a term of the form pop(push(..., s)) may result in an array in 

which a cell has changed compared to s, namely the cell used to hold the element 

that was pushed on the stack. 

We see here that using equations between stack values may lead to speci-

fications that are not fully abstract. But simply forbidding equations between 

stacks would not be a solution either: In the resulting language, only equations 

between terms of sort elem could be written, which would correspond to observ-

able facts. However, the (behaviour of the) stack data type can then no longer 

be specified in a finite number of axioms, even if full first-order predicate logic is 

used (I have proved this around 1980, but the proof has not been published and 

is too complex and remote from the subject of this thesis to be included here). 



1.1 Data Abstraction in Modular Programming 

It is easy to see intuitively why this is impossible: The permitted atomic 

formulas are equations between terms of sort elem. In each such term, only a 

finite number of pop operations can occur, and hence the value of the term is not 

affected by how the stack deals with values that have been pushed to more than 

a certain maximal depth beyond the top of the stack. A finite set of sentences 

of first-order logic contains only a finite number of terms, and so there exists a 

certain finite depth beyond which the behaviour of the stack does not affect the 

validity of the formulas any more. In other words, given a finite set of first-order 

formulas whose atomic formulas are elern equations only and that hold for the 

"true" stack data type, we can define K to be the maximal number of occurrences 

of pop operations in any term of the formulas, and can then construct a model 

that deals incorrectly with values pushed beyond depth K from the top of the 

stack, but which nevertheless satisfies all the formulas. 

It thus appears that practical interface specifications for encapsulated data 

types and objects cannot be fully abstract in general, but that they often have 

to prescribe unobservable facts, such as equality of values of encapsulated types. 

But such specifications prescribe more than just the observable behaviour of 

their models, so that some structures may fail to satisfy the specification despite 

exhibiting correct observable behaviour. An example for this is the array-and-

counter representation for stacks mentioned above, which does not satisfy the 

equation pop(push(z,$)) = 8. 

An indication that this problem has long been recognized in data type the-

ory can be seen in the large number of papers dealing with "implementation" 

concepts for specifications of encapsulated data types. (Data type theory has 

mainly dealt with encapsulated types rather than with encapsulated objects; the 

following discussion therefore concentrates on encapsulated types. Theories of 

encapsulated types should be easily applicable to abstract objects also, since 

with each object we can associate the type of its values.) The notion of "imple-

mentation" can be seen as a generalization of the usual satisfaction notion for 

interface specifications, whose purpose is to characterize all the acceptable rep-

resentations of an encapsulated data type despite the fact that the specification 

might prescribe unobservable properties. 
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1.1 Data Abstraction in Modular Programming 

An "implementation" of a specification can be defined to be a structure rep-

resenting a type together with its access operations [GHM 781, or a specification 

of such a structure [EKMP 821 [Ehrich 82] [Ganzinger 83]; very often implemen-

tation concepts are based on a relation ("representation") between structures 

[Milner 711 [Hoare 72] [GTW 78] [SW 821 [Lipeck 831—an implementation of a 

specification can then be defined as a structure that "represents" a structure 

(the "abstract model") satisfying the specification, or as a specification whose 

models have this property. This approach has the advantage that the represen-

tation relation can be considered independently of the specification notation and 

its semantics. 

A natural way of obtaining a representation relation for encapsulated data 

types is to formalize the notion of the "observable behaviour" of such structures 

[GGM 761 [Bothe 81] [Reichel 81] [Schoett 81] [GM 82] [SW 83] [Kamin 83]; 

comparisons of the various notions can be found in [HR 831 and [ST 84a, p.  171. 

A representation relation is obtained by requiring the representing structure to 

have the same observable behaviour as the structure represented, i. e., to be 

"behaviourally equivalent" to it. 

A straightforward way of applying these ideas has been presented by Sannella, 

Tarlecki, and Wirsing in their "ASL" approach [SW 831 [ST 84a] [ST 85]. ASL is 

a "kernel specification language" featuring a "behavioural abstraction" operation 

that may be applied to an arbitrary specification and yields a new specification 

whose models are defined to be those structures that are behaviourally equivalent 

to some model of the original specification. Thus, a specification obtained by 

behavioural abstraction is bydefinition fully abstract in that only observational 

aspects of its models are prescribed. 

Accordingly, ASL allows one to take a very simple view of data abstraction: 

to describe an encapsulated data type, one writes a specification P as usual (an 

arbitrary technique may be used for this, since ASL is "institution-independent", 

hence can be used with all specification notations), and then applies the behav-

ioural abstraction operator to it, yielding the specification behaviour(P). The 
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1.1 Data Abstraction in Modular Programming 

correct implementations of the encapsulated type are then exactly the models of 

behaviour(P). 

As illustrated in [ST 84b], one technique to prove an implementation correct 

with respect to a specification of the form behaviour(P) is to exhibit a model 

of P and to show that the implementation is behaviourally equivalent to it; this 

closely corresponds to the usual proofs of data representation correctness. 

The view of program development with data abstraction taken in connection 

with ASL is very simple: A specification is transformed by successive refinement 

steps until an executable specification, i. e., a program, is obtained. The re-

finement relation between specifications is simply the inclusion relation between 

their model classes, so that the program obtained at the end is trivially cor-

rect. Data abstraction consists in using the behavioural abstraction operator on 

specifications, and poses no further methodological problems. 

Elegant and simple as the ASL approach to program development may seem, 

there is a serious problem. While data representation correctness proofs, which 

consist in proving satisfaction of a specification of the form behaviour(P), 

can be performed as usual, the users of an abstract data type cannot rely on 

the original specification F, but must base their correctness arguments on the 

specification behaviour(P). The first problem here is that the specification 

behaviour(P) is weaker than F, in that it characterizes the possible represen-

tations of the models of P. Secondly, the class of models of behaviour(P) is 

defined semantically, and in general no finite set of axioms can fully describe 

behaviour(P), so that using this specification in correctness arguments may 

become difficult. 

Assume, for example, that P is the classic specification of the stack data type 

that was discussed above. In the ASL approach, users of the data type would 

have to use the specification behaviour(F), whose models are all those struc-

tures that have the same observable behaviour as a model of P, where values of 

the element data type elem are considered observable and those of type stack 

unobservable. As was discussed above, there is no finite set of sentences, even 

in full first-order logic, that would characterize the models of behaviour(P). 

11 



Li Data Abstraction in Modular Programming 

The equation pop(push(x, s)) = s of P would not be available to the users, since 

it describes an unobservable property that is not satisfied in all representations 

(e.g., it does not hold in the array-and-counter representation discussed above). 

Hence the elegance and simplicity with which the original specification P de-

scribes stacks would largely be lost to the users. 

As another example, consider a data type of integers that might be provided 

as a basic data type by a programming notation. Since nonstandard representa-

tions of integers are possible (e.g., a sign-and-magnitude representation with two 

values representing zero), the users of the integers could not rely on the familiar 

mathematical laws, but would have to use a different, weaker theory that would 

chracterize the observable behaviour of the integers. 

Thus, the ASL approach causes practical difficulties by not allowing the orig-

inal specification P of an encapsulated type to be used, but only the weaker and 

less familiar specification behaviour(P). 

I feel that to achieve the main goal of data abstraction, namely to simplify in- 

terfaces describing encapsulated data type and objects, users must be allowed to 

use the original, "abstract" specifications, despite the fact that these specifica- 

tions might not be satisfied by the actual representations of the types or objects.. 

Abstract specifications should be written in the form that is most convenient; 

in particular, data types might be specified abstractly by mathematical models 

(e. g., integers, tuples, or sequences), and users should be allowed to use the 

familiar mathematical properties of these models in their correctness arguments. 

This thesis is therefore based on the following view of data abstraction: 

Data abstraction in modular programming allows an interface to be 

viewed in two different ways. While a module importing an interface 

may depend on all its properties, the module exporting an inter-

face need not guarantee all its properties, but only has to provide a 

structure "representing" a structure with these properties. 

Clearly, data abstraction in this sense implies that modules importing an inter- 

face will not always be supplied with a structure having the expected properties. 

12 



1.2 Approaches to the Correctness Problem 

Thus, an explanation is needed for the correctness of programs designed using 

data abstraction. The goal of this thesis is to develop a formal theory of modu-

lar programming with data abstraction, and to formulate the conditions under 

which it yields correct programs. 

1.2 Approaches to the Correctness Problem 

The previous section has discussed the view of program development taken in 

connection with ASL by Sannella and Tarlecki, where the correctness problem 

of data abstraction is solved in a simple way, namely by forcing users to rely 

on a derived specification behaviour(P) that characterizes the possible rep-

resentations of an encapsulated data type specified by P. It was argued that 

this approach conflicts with the goal of data abstraction, which is to simplify 

interfaces by allowing "abstract" descriptions of encapsulated types. 

A possible remedy of this problem in the approach of Sannella and Tarlecki 

would be to exhibit proof techniques that would make it as simple to use the 

specification behaviour(P) as it would be to use P itself. To date, however, 

the proof rules exhibited for the behaviour construct allow one to derive only 

"visible" formulas; that is, formulas whose variables (corresponding to input 

values) are of visible sort only, and that are obtained by logical connectives and 

quantification from equations between terms of visible sort [ST 84a, p.  15 and 171. 

These proof rules in combination with first-order logic seem to be insufficient for 

program development; at least if we consider formal proofs (e. g., because an 

automatical theorem prover is used). The argument showing this is based on 

the theorem mentioned before (page 8 f.) that the behaviour of the stack data 

type cannot be specified by a finite number of "visible" first-order formulas. 

The proof rule given by Sannella and Tarlecki would not allow a finite formal 

correctness proof of a program that depends on the property that values can be 

retrieved from a stack after they have been "buried" to an arbitrary depth under 

other values. A simple example of this problem is that it is not possible to prove 

formally that test(n, x) = x for all n E N and x E elem, where test is defined by 

13 



1.2 Approaches to the Correctness Problem 

I the following recursive code on the basis of the stack data type that was given 

on page 8: 

test(n: N, x: elern): elem = top(rnultipop(n, multipush(n + 1, x, ernptyO))) 

multipush(n: N, x: elem, s: stack): stack = if n = 0 then s 

else multipush(n - 1, x, push(x,$)) 

multipop(n: N, s: stack): stack = if n = 0 then 

else multipop(n - 1, pop(s)), 

The problem here is that to prove this program correct, we need an infinite 

number of formulas about the stack data type, namely for each n e N the 

formula 

top(pop'(push'(emptyQ))) = x, 	 (1) 

where push(s) := push(x,$) and f°(x) = z, fn+l(x) = f(f'(x)). In an 

I informal proof, one might argue that the formulas of type (1) are all consequences 

of the laws of the stack data type, and that since these formulas are "visible" 

(they are equations between elern values), they also hold in the behavioural 

abstraction of the stack specification. This argument cannot be turned into a 

formal proof, however, because the inference that all formulas of type (1) hold 

also in the behavioural abstraction of the stack specification would involve an 

infinite number of applications of the proof rule given by Sannella and Tarlecki. 

Even if the informal proof of (1) just given was considered acceptable, the 

use of infinite sets of formulas would still make this a more cumbersome form 

of reasoning than a proof using the stack specification in its original form: By 

induction on n E N, one easily proves that 

multipush(n, x, push(x,$)) = push(x, multpush(n,x,$)) 

multipop(n, multipush(n,x,$)) = 

and obtains that 

test(n,x) = top(multipopfri, multipush(n + 1, x, ernpty())) 

= top(multipop(ri, if n + 1 = 0 then empty() 

else rnultipush((n + i) - 1, x, push(x, emptyO)))) 

14 



1.2 Approaches to the Correctness Problem 

= top(multipop(n, multipush(m, x, push(z, emptyQ)))) 

= top(push(z, cmpty)) 

We see that the proof that test(n,x) = x for all ri E N and z E elem is quite 

simple when the original stack specification is used, yet would require infinite 

sets of formulas of first-order logic when Sannella's and Tarlecki's methodol-

ogy and their proof rule for the behavioural abstraction operator is used. This 

would make an informal proof quite cumbersome, and a formal proof (e. g., in 

an automatic theorem prover) impossible. 

Sannella [personal communication, 5 July 19861 suggests that a way to solve 

this problem with the ASL approach would be to design an institution with 

sentences powerful enough to express the infinite set (1) of sentences as a single 

sentence (the notation might be akin to the one actually used in (1) above). 

The specification notation of such an institution is likely to be powerful 

enough to allow most encapsulated data types to be specified in a finite number 

of axioms that refer only to observable properties. There is still the question, 

however, of whether this notation will also be useful in practice, or whether the 

necessary enumerations of terms as in (1) above will be too cumbersome. If the 

notation turned out to be practically usable, it would be a major advance, be-

cause the notation would be an ideal specification notation for encapsulated data 

types (capable of expressing only observable properties and practically usable), 

which, as discussed in the previous section, has eluded researchers so far. 

Quite often in the literature dealing with abstract data types and their imple-

mentation, we find that the problem of the correctness of user programs is not 

discussed at all or just mentioned in passing, with statements such as "the repre-

sentation of an encapsulated data type may be changed freely" (e. g., [GTW 78, 

p. 83] [LB 79, p.  283] [BW 84, p.  268]). This is essentially the informal motiva-

tion of data abstraction given in the previous section, which has become part of 

the "folklore" [Hard 80] of Computer Science: 
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Folklore. The behaviour of a program in which values of an encap-

sulated data type are manipulated only by means of the proper access 

functions depends only on the observable behaviour of the type, and 

its correctness is not affected by a change of representation of the 

type. 

Such an informal statement, however, is of little use in a formal theory of program 

development; what such a theory needs is a formal version of the statement that 

can be rigorously proved, and that can then be used in a proof that modular 

programming with data abstraction yields correct programs. 

But the vagueness of the "folklore" causes problems not only in theory, but 

also in practice. Suppose, for example, that one wanted to use data abstraction 

in the design of programs in PASCAL [BS 82] [DS 851. Since PASCAL does 

not have an "encapsulation feature" with appropriate visibility rules, coding 

conventions or a modification of the language are needed to ensure that only 

the permitted access functions to an encapsulated type are used outside the 

encapsulation. 

But restricting the operations by which an encapsulated type may be accessed 

would not suffice to guarantee representation independence of user code; the 

data type constructors array and set of PASCAL create loopholes that must 

be closed too. 

Consider the two functions 

function equall (x, y: T): boolean; 

var a: array[T]  of boolean; 

begin a[x] := false; 

a[y] := true; 

equall := a[x] end; 

function equal2(x, y: T): boolean; 

begin equal2 := x in [y] end; 

• {[y] is the set with single member y, 

in is the membership test}. 
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1.2 Approaches to the Correctness Problem 

These functions allow one to detect the equality of values of a type T, even if 

equality was not among the permitted access functions (PASCAL requires that 

T be an "ordinal type"; this means, that T may be integer, boolean, char, an 

"enumerated type", or a subrange of one of these [BS 82, Section 6.4]). If -T 

represents an abstract type such that several values of T represent the same 

abstract value, then the two functions may yield different results over the repre-

sentation type T than over the abstract type, namely when z and y are different 

values of T that represent the same abstract value. 

Thus, PASCAL code using an encapsulated type must not be allowed to use 

the type in the index position of the array type constructor, nor as the argument 

of the set type constructor. Other uses of encapsulated types as arguments for 

data type constructors, e. g., as the component type of an array, record, or 

file type definition, do not cause such problems. We see that the notion of what 

constitutes "proper use" of an encapsulated data type is not as simple as it might 

have seemed. 

A less severe, but still annoying problem exists in ADA [ANSI 83]. In ADA, 

a data type may be declared either private or limited private to restrict 

the visibility of its operations. For a private type, the equality operator of the 

representation remains visible. To allow the usual freedom in the design of repre-

sentations, the representation equality must not be visible, and the encapsulated 

type must therefore be declared limited private. But this also disallows as-

signment to variables of the type (called "objects" in ADA). To some extent this 

can be remedied by declaring a procedure that performs such an assignment; 

but the use of procedure calls in place of assignment statements is likely to make 

a program less legible. Also, it remains impossible for user code to initialize 

variables in connection with their declaration. 

The problem results from the fact that the predefined equality and assign-

ment are lumped together in ADA, in that they can be made either both available 

or both unavailable. From the viewpoint of preserving the correctness of user 

programs under a change of data representation, it is not necessary to forbid 

assignment when the representation equality is made invisible, since assigning 

values of encapsulated types to variables does not cause any problems (although 
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some care would be necessary if nondeterministic operations were present [Nip-

kow 86]). 

These examples illustrate the dangers of relying on informal ideas only as 

the basis of data abstraction: programming languages might leave loopholes 

or introduce unnecessary restrictions. A formalized notion of what constitutes 

"proper access" to an encapsulated type is not only essential for a theory of data 

abstraction, but can also help in the design of data abstraction programming 

languages. 

Let us now turn to formal approaches to the correctness problem. While the 

early papers of Mimer [Mimer 71] and bare [bare 72] contain proofs that 

their methods lead to correct programs, the problem has then been neglected for 

quite some time. 

Mimer's method allows one to prove certain relations between programs by 

constructing a relation called a "simulation" between their state spaces. This 

method is applicable to programs related by a change in data representation, as 

illustrated in' Milner's Example 2 [Mimer 71, p.  485-4871. However, data repre-

sentations are not proved correct "locally", but only in the context of the whole 

program. On the one hand, this means that there exists no correctness problem. 

On the other hand, the method does not correspond to the goal of modular 

programming to separate the correctness proofs of the data representation and 

of the code using it, because in a proof of correctness of a data representation, 

one is forced to consider the program as a whole. 

bare's method [bare 72] does allow one to separate the correctness argu-

ments for data representation and user code. A data representation is proved 

correct by stating a "representation invariant" and giving an "abstraction func-

tion" that maps the representation values satisfying the invariant to the abstract 

values they represent. bare shows that a correct program remains correct when 

an "abstract variable" (an encapsulated data object) is replaced by its represen-

tation [Hoare 72, p.  278 f.] (this section is labelled "Formalities"). 

bare formulates his correctness criterion for "abstract variables", but it 

can easily be transferred to encapsulated types. This has been done so often 
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that Hoare's concept may be called the "standard" representation concept for 

data types (see Section 4.5). However, bare's proof that user programs remain 

correct when abstract variables are replaced by their representations does not 

immediately generalize to abstract types. The reason is that data types can not 

only be used to declare variables (to which Hoare's proof would then apply), but 

also to define new data types. As the PASCAL examples given above illustrate, 

Hoare's proof idea can only be generalized to data types if one assumes that the 

available data type constructors are in some sense "well-behaved" [Schoett 81, 

Section 5.21. 

The generalization. of bare's idea to data types was carried out by myself 

([Schoett 81]; a short version in English is [Schoett 83]). The paper uses a fairly 

different framework from Hoare's in that it deals with "program modules" that 

allow one' to define new data types and operations on the basis of imported data 

types and operations. Such modules can be specified and implemented indepen-

dently of each other, and a family of modules can be composed into a module 

representing their combined semantics. When a module is implemented, the 

import interface may be taken for granted, while the exported program entities 

need only "represent" a structure satisfying the export interface [Schoett 81, 

p. 104 f.]. Hence the theory allows users and implementers to view a specifica-

tion differently, which means that it deals with data abstraction as viewed in this 

thesis. Accordingly, in the theory of [Schoett 811, the problem of the correctness 

of the composition of a system of independently implemented modules appears. 

To solve the correctness problem, i. e., to show that the composition of sepa-

rately implemented modules behaves correctly, the paper imposes the restriction 

that each of the modules to be composed must have the so-called "homomor-

phism expansion property" ("HEP") to the effect that when a module is supplied 

with two different import structures that are related by a "homomorphism" (i. e., 

a strong partial homomorphism in the terminology of this thesis—Def. 4.4.3), 

then the two results of the module on these import structures must be related 

by an extension of that homomorphism [Schoett 81, p.  1191. 

The paper then argues that program modules written in a concrete program-

ming notation that access their import data types only via the permitted access 
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functions will satisfy the HE?. To justify this, it is shown informally that familiar 

data type constructors, such as those for sum and product types, have the HEP, 

and that functions defined recursively over given base functions have the HE? 

also. 

The weak point of my 1981 paper is the HEP and my attitude that the HEP 

would always be satisfied in concrete programs. 

The first problem with the HE? is that it is sufficient for the composability 

of module implementations, but stronger than necessary. This thesis will derive 

"stability" criteria that are both necessary and sufficient, and it will be seen that 

the HE? is overly restrictive for the behavioural representation concept used in 

[Schoett 811 (see Theorem 5.4.9 below). The HE? is, however, the appropriate 

stability criterion for the "standard representation" notion based on Hoare's 

paper [bare 721 (see Theorem 5.4.4 below). 

The second problem wi1h my 1981 approach is that the conjecture that the 

HE? would always be satisfied in concrete programs that use only "well-behaved" 

type constructors is stated and proved only informally. In particular, the no-

tion of "well-behaved" type constructors should be formalized in order to rule 

out constructors like set and array of ?ASCAL. From the discussion of these 

constructors earlier in this section, it is clear that these constructors must not 

occur in a programming language supporting data abstraction. Hence the HE? 

or an improved "stability" criterion should not be regarded as a "natural law", 

but as a design criterion for data abstraction programming languages. From this 

point of view, it becomes even more important to derive stability criteria that 

are necessary and sufficient for the composability of module implementations 

rather than using ad hoc criteria like the HEP, since by using a too restrictive 

criterion, the design of programming languages could be hampered. 

Very similar to the composition of program modules is the composition of "pa-

rameterized abstract data types" ("PADTs"), which has been treated extensively 

in the literature, beginning with [TWW 82] (an earlier version of which appeared 

in 1978) and [Ehrig et al. 801, and influenced by the "theory procedures" of 

CLEAR [BG 771. . 
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PADTs are based on many-sorted algebras as models of data types and oper-

ations of programs, and the semantics of a PADT usually is a functor mapping 

import algebras to export algebras which are enrichments of the import alge-

bras by new sorts and functions, which model new data types with their access 

operations. Often, this functor is the free functor defined by a pair of Horn 

clause specifications (the idea is due to [TWW 82]; the language of infinitary 

Horn clauses is the most general one that admits the free functor semantics 

[Tarlecki 831 [MM 84]). 

Pairs of specifications describing import and export interfaces of a module 

or a PADT are also often considered in the literature, usually under the name 

"parameterized specification". Often, composition operators are defined directly 

for parameterized specifications (these developments begin with CLEAR [BG 771 

[BG 80] [BG 81]). 

The composition of PADTs or parameterized specifications involves a "signa-

ture morphism" connecting the import interface of one PADT or parameterized 

specification to the export interface of another one, which allows the entities 

exported by the latter PADT or parameterized specification to be "renamed" 

before being imported by the former. Semantically, these signature morphisms 

cause no new problems. 

The correctness problem of data abstraction appears in connection with 

PADTs or parameterized specifications when we consider the composition of 

their implementations. After Goguen and Burstall [GB 80], this kind of compo-

sition is called "horizontal composition", and so the problem appears in the lit-

erature under the name "horizontal composition of implementations" of PADTs 

or parameterized specifications. 

We shall now look at the treatment of the horizontal composition problem in 

the literature. 

One problem we shall encounter is that implementations of PADTs or pa-

rameterized specifications can only be composed when the argument of each 

PADT or parameterized specification, which in general is supplied by another 

implementation, satisfies the import interface of that PADT or parameterized 

specification. This is not automatically guaranteed by the horizontal composition 
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theorems, but usually appears as an explicit condition. But this condition, which 

we shall call the "fitting condition", implies that each implementation must be 

designed so that it satisfies the import interfaces of the PADTs or parameter-

ized specifications using it, so that the freedom is lost to design implementations 

independently of each other. 

In [Schoett 81] this problem did not appear, because the modules that are 

composed do not have any semantic requirement, but are capable of operating on 

all syntactically correct arguments. Modules in concrete programming notations 

have this property to a large extent, in that definitions of new program entities 

have a well-defined semantics for almost every possible semantics of the program 

entities used in them. Exceptions to this may occur when a "standard" type is 

used that may not be redefined by the user, or when type constructors impose 

semantic requirements on their argument types (e.g., the requirement mentioned 

earlier that in PASCAL the index type of the array type constructor and the 

argument type of the set type constructor must be "ordinal types"). 

We shall therefore also consider what the theorems of the literature say in 

the special case that the implementation PADTs or parameterized specifications 

have no semantic requirements, but admit all syntactically correct arguments. 

In that case, the fitting condition will always be satisfied, so that it is possible 

to design the implementations of a system independently of each other. 

In [SW 821,  the fitting condition appears explicitly among the conditions 

of the horizontal composition theorem, because the theorem requires a "theory 

morphism" a': ' -p 4', where ' is the import interface of the implementation 

of a parameterized specification, and 4' is the implementation of the argument 

[SW 82, p.  30]. That a' is a "theory morphism" means that the requirements 

expressed in ,' are consequences of 4' after renaming according to a'. This is 

just the fitting condition. 

The horizontal composition theorem of [SW 82]  remains interesting, how-

ever, if we assume that the implementing parameterized specifications ,  have no 

semantic requirements. In that case the fitting condition is always satisfied, and 

it becomes possible to design the implementations of a system independently of 

each other. In the proof of the theorem, the correctness problem of data ab- 
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straction is solved by exploiting the fact that the parameterized specifications 

are written in a certain variant of the specification language CLEAR, in which 

the "data constraints" have been replaced by "hierarchy constraints" in order to 

give the language the desired composability properties. This language can thus 

be said to support data abstraction. It is not clear, however, how the theorems 

could be transferred to implementations written in other notations such as con-

crete programming languages, except in the case that there exists a translation 

of that language into the CLEAR variant investigated by Sannella and Wirsing. 

In the theory of Goguen and Meseguer [GM 82], an extremely severe restric-

tion is made. The "fitting morphism" in a horizontal composition must be of 

the form F: T -+ TA1, where T is the import interface of a parameterized speci-

fication and of its implementation, and TA1  is the theory whose signature is that 

of the abstract argument, but that contains no axioms [GM 82, p.  2791. This 

means that an implementation importing program entities from another imple-

mentation may not rely on any properties of these program entities except their 

pure syntax. It does not help to assume that the implementing parameterized 

specifications have no semantic requirements, because the theory assumes that 

implementations have the same import interfaces as their specifications, so that 

the specifications of a system could not have any semantic requirements either. 

This would mean that no nontrivial semantic properties of imported program 

entities could be used at all, which seems to be an unrealistic restriction to put 

on program development. 

In a paper by Ehrig and Kreowski [EK 831, the horizontal composition prob-

lem is split into two parts, called "inner actualization" and "outer parameteriza-

tion". The "inner actualization" problem is concerned with comparing a param-

eterized specification and its implementation when they are applied to the same 

argument, and it is shown in the paper that this results in a correct "induced 

implementation". The "outer parameterization" problem is concerned with the 

situation that the results of a parameterized specification and its implementation 

are passed to another parameterized specification. This problem is closely re-

lated to the correctness problem of data abstraction, namely the question of how 

programs are affected by a change of representation of the encapsulated types 

- 
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they use. Ehrig and Kreowski, too, point out that a solution to this problem is 

essential for a theory supporting the horizontal composition of implementations 

[EK 83, p.  282]. The problem is not solved in the paper, however, so that the 

theory of horizontal composition remains incomplete. 

The composition theorem of [Ganzinger 83] is proved using the assumption 

that an implementation always satisfies its specification: "In what follows we 

can always assume that SPEC1 C SPECP" [Ganzinger 83, p.  346]; SPEC1 is 

the specification and SPEC? is the set of "programs" implementing it (both are 

sets of equations). Thus, of course, the correctness problem, which is caused 

by the fact that the program entities supplied by an implementation need not 

satisfy the export interface on which other modules may depend, does not occur 

in Ganzinger's treatment. Ganzinger justifies his assumption by arguing that 

the equations of a specification can be added to the "programs" of an implemen-

tation if necessary. But if we try to relate Ganzinger's equational "programs" to 

programs in a concrete programming notation, we see that the program obtained 

by adding such equations has very little to do with the old one: If, e.g., we have 

programs that implement a list data type, adding a commutativity axiom for list 

concatenation ("1k 012 = 120 Ii") would mean that completely different (and un-

usual) code for the concatenation operation would have to be written that would 

cause the commutativity law to be satisfied. With regard to concrete programs, 

Ganzinger's assumption that SPEC1 C SPEC? cannot be made "without loss 

of generality", but it is a genuine restriction of the implementation notion. 

In Lipeck's thesis [Lipeck 831, a "conservativity" criterion for PADTs is intro-

duced, which serves a similar function to the "homomorphism expansion prop 

erty" of [Schoett 811, but which is a little more restrictive. Lipeck presents two 

composition theorems. The first one [Lipeck 83, p.  73] deals only with "simple" 

PADTs, that is, PADTs whose semantic requirements are trivial (1. e., admit all 

syntactically correct structures). Since the PADTs to be implemented must also 

be simple, this means that they may not depend on any semantic properties of 

their arguments, which is too restrictive for practice (it is similar to the restric-

tion we get in the theory of Goguen and Meseguer [GM 82] if we assume that 

implementations have no semantic requirements). 
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Lipeck's second composition theorem [Lipeck 83, P.  781 allows PADTs with 

nontrivial requirements, but imposes a fitting condition by demanding "top-

down-applicability" of the implementation PADTs to their arguments. As Lipeck 

himself points out, this condition may make it necessary to redesign implemen-

tations in order to make them composable with with the other implementations 

in a system [Lipeck 83, p. 861. 

If, however, we assume that the implementation PADTs are "simple", I. e., 

are "conservative" and have no semantic requirements, we get a composition 

theorem that is similar to the one given by myself [Schoett 81, p.  1191. Lipeck's 

"conservativity" criterion for PADTs [Lipeck 83, p.  571 is a little more restrictive 

than my "homomorphism expansion property" for modules [Schoett 81, p.  1191; 

on the other hand, the composition mechanisms studied by Lipeck allow renam-

ing of program entities via signature morphisms and are therefore more general 

than my composition operation for modules. 

In summary, the contributions to the correctness problem by the papers deal-

ing with the horizontal composition of PADTs are the following. The papers 

that do not circumvent the correctness problem deal with it either by exploit-

ing the properties of the particular nOtation used to define the parameterized 

specifications that are dealt with (modified CLEAR in [SW 82]), or by postu-

lating a semantic condition for the PADTs that constitute the implementation 

("conservativity" in [Lipeck 83]). The papers allow the implementation PADTs 

or parameterized specifications to have nontrivial semantic requirements; the 

way these requirements are dealt with is unsatisfactory, however, because their 

satisfaction is made an explicit "fitting condition" in the horizontal composition 

theorems. To satisfy this condition, implementations must be developed with a 

view to the requirements of the PADTs or parameterized specifications that will 

ultimately depend on them; this means that the implementations in a system 

cannot be designed independently of each other. 

A recent contribution to the correctness problem is a paper, by Nipkow [Nip- 

kow 861, which is more general than most other papers in that it deals with 
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nondetertninistic functions. Nipkow presents an implementation concept for en-

capsulated data type with nondeterministic operations [Nipkow 86, Def. 2.1.41, 

and then formulates a set of conditions on the semantics of a programming lan-

guage that is sufficient to ensure that the observable behaviour of a program is 

not affected by a change of representation of an encapsulated data type [Nip-

kow 86, Theorems 4.1 and 4.21. Nipkow shows the usefulness of these conditions 

by exhibiting a programming notation that satisfies them, and that can therefore 

soundly be used in connection with his implementation notion for encapsulated 

nondeterministic data types. 

I conjecture that Nipkow's conditions are slightly more restrictive than nec-

essary, because they require that every homomorphism between two models of 

an encapsulated data type can be extended to a homomorphism on the semantic 

domains of the language that relates the semantics of all program constructs 

over the two models. In the proof of Theorem 5.4.9 in this thesis, a data type 

constructor is presented that can safely be used in a data abstraction language, 

yet that does not allow to extend a homomorphism between models of its param-

eter type into a homomorphism between the enriched models produced by the 

constructor. I conjecture that this type constructor is admissible in Nipkow's 

framework also, yet that it violates Nipkow's sufficient criteria for a language to 

be sound. 

Another line of research related to the correctness problem of data abstraction 

is the development of "representation independence" theorems for the typed 

A-calculus [Reynolds 83] [Statman 85] and for the second-order typed A-calcu-

lus [Donahue 79] [Haynes 841 [MM 85]. The general form of these theorems is 

(cf. [MM 85, p.  225]): 

Given a "logical relation" R between two models of the (second-

order) typed A-calculus, then for every closed term, its meanings in 

the two models are related by R. 

These theorems have been called "representation independence" theorems, be- 

cause they can be used to compare the semantics of programs over different 
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representations of their basic data types. These representations define A-calcu-

his models, and if two representations can be connected by a "logical relation", 

the theorems guarantee that for any program, its meanings over the two repre-

sentations will be related. 

These theorems do not apply directly to the correctness problem of data ab-

straction, because they deal with the meaning of one program in different models, 

and not with changes in representation of encapsulated types, which would mean 

that different, possibly abstract, programs would have to be compared. 

Mitchell [Mitchell 86] has recently investigated how the "representation inde-

pendence" idea can be applied to the correctness problem. Following [MM 85], 

Mitchell defines "programs" to be closed terms whose type is a member of a 

fixed set of "program types", and considers two A-calculus models to be "obser-

vationally equivalent", if all programs have the same meaning in them (this is 

just the idea of "visible" types in data abstraction, cf. Section 4.2 below). In 

[MM 85], it is shown that observational equivalence of models is characterized 

by the existence of a logical relation that is the identity on the program types. 

Mitchell attempts to transfer this idea to encapsulated data types by calling 

two definitions of an encapsulated type "observationally equivalent with respect 

to £", where R is some given logical relation between models, if whenever the 

definitions are substituted into some program context, the meanings of the two 

resulting programs in the two models are related by R. Mitchell presents a 

sufficient condition for this type of "observational equivalence": Whenever the 

two type definitions are applied in environments that are related by R, it must 

be possible to extend £ to the results produced by the two type definitions 

[Mitchell 86, Theorem 61. 

This is almost, but not quite, general enough to solve the correctness problem 

of data abstraction. For, if we consider encapsulated type definitions that are 

based on other encapsulated type definitions, the relation R relating the envi-

ronments of the "higher level" type definitions will not be fixed, but will be the 

extended relation relating the results of the lower level type definitions, and will 

thus depend on the particular representations chosen for the lower level types. 
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What is needed to solve the correctness problem of data abstraction is that type 

definitions do not just extend some fixed relation, but an arbitrary one 

It will be shown in Chapter 5 of this thesis that this kind of criterion does 

indeed provide a sufficient basis to prove that programs containing separately 

implemented encapsulated data types function correctly (Theorem 5.1.4). The 

relation between the theory of this thesis and the "representation independence" 

theories for the A-calculus will then be further discussed in the Conclusions of 

this thesis. 

1.3 Overview of the Thesis 

The thesis presents a theory of modular programming with data abstraction that 

explains why this discipline leads to correct programs. 

The theory is developed on an abstract level, based on the notion of an "in-

stitution". An institution comprises "signatures", which represent the syntactic 

properties of groups of program entities, and for each signature a set of "models", 

which represent the semantics of the program entities of the signature (note that 

the "models" of an institution correspond to "structures" in the terminology of 

the previous two sections). A "specification" or "interface" in an institution is 

a signature together with a set of models of that signature. The notion is thus 

independent of any particular specification notation. The "institution" notion 

used in this thesis differs somewhat from the one introduced by Goguen and 

Burstall [GB 84] in that "sentences" are omitted and an "inclusion" relation 

between signatures is added. 

To put the theory into a more concrete setting, the institution of "partial 

• many-sorted algebras" will be dealt with in detail. Partial many-sorted algebras 

model the data types and functions of strongly typed functional programs. A 

development of such a program is presented in the following section of the Intro-

duction, and in the later chapters, this development will be analysed by means 

of the theory and provide the examples. 
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Chapter 2 below presents the basic notion of an "institution" and introduces the 

institution of partial many-sorted algebras. 

In Chapter 3, a general theory of modular programming is developed in the con-

text of an institution. The fundamental concept of this theory is that of a "cell", 

which consists of an import and an export interface, and which can represent 

concrete program modules as well as abstract modules or module specifications. 

Modular programming is viewed as the construction of a "structured correct-

ness argument", in which each cell is proved correct with respect to its specifica-

tion, which also is a cell, and where the specification cells form a "decomposition" 

of a "global" cell that consists of the external import and export interfaces of 

the system. The purpose of such a "structured correctness argument" is to show 

that when the cells of the system are "composed" (corresponding to the opera-

tion of a compiler or linking loader), the resulting cell is correct with respect to 

the global cell. 

The correctness notion appropriate for modular programming (without data 

abstraction) is the "refinement" relation between cells. A refinement of a cell M 

is a cell that produces results satisfying the export interface of M whenever it 

is supplied with program entities satisfying the import interface of M. With 

this notion of correctness, all the interfaces of a program will be satisfied by the 

program entities defined in the program. 

Data abstraction enters the picture in Chapter 4. The theory of data abstrac-

tion in an institution is based on a "representation relation" between the models, 

which must satisfy a few simple axioms, but apart from that can be chosen ar-

bitrarily. The idea is that the program entities defined by a program need no 

longer satisfy the interfaces themselves, but that they only need to "represent" 

a model satisfying them. This leads to a. different correctness notion for cells, 

which is called "universal implementation". The central theorem of the thesis 

asserts the "composability of universal implementations"; i. e., that "universal 

implementation" can be used as the correctness notion in a structured correct-

ness argument: Given a family of cells that are universal implementations of 
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their specifications, which in turn form a decomposition of a global cell, the 

composition of the cell family is a universal implementation of the global cell. 

In the later sections of Chapter 4, specific representation relations between 

partial algebras are considered. Section 4.2 argues that to make such repre-

sentation relations useful for practice, the data types of a program in which it 

performs its input and output must be distinguished from the other, "internal" 

types of the program. This leads to a slight modification of the institution of 

partial many-sorted algebras to the effect that the signatures record a distinction 

between "visible" and "hidden" data types. 

The remaining sections of Chapter 4 introduce three representation relations 

between partial many-sorted algebras: "behavioural inclusion", "behavioural 

equivalence", and "standard representation". The first two relations are based 

on the idea of the "observable behaviour" of an algebra. 

Behavioural inclusion reflects the concept of a "partial" or "restricted" rep-

resentation [KA 84], which may abort when its capacity is exceeded, but that 

otherwise must deliver correct observable results. Behavioural inclusion is char-

acterized by the existence of a certain kind of relation between the algebras, 

which is called a "correspondence". To establish a correspondence between two 

algebras is a practically useful method to prove the correctness of a data repre-

sentation with respect to behavioural inclusion. 

Behavioural equivalence is the equivalence relation between partial algebras 

induced by behavioural inclusion. This relation holds between two algebras if all 

computations that start with values of visible types deliver the same observable 

results. it is the recommended representation relation for practical program-

ming. Behavioural equivalence is characterized by the existence of a "strong 

correspondence" between the algebras. This yields a practically useful method 

to prove two algebras behaviourally equivalent. 

Standard representation is the criterion due to Hoare [bare 72] that has 

commonly been proposed for the correctness of data representations; it requires 

the existence of an "abstraction function" from the representation algebra to 

the algebra it represents. Abstraction functions are strong correspondences that 

are also partial functions. The standard representation relation is more restric- 
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tive than behavioural equivalence; this is the reason that specifications with a 

"representation bias" [Jones 80, p.  259-2651 do not allow certain representations 

to be proved correct using the standard representation criterion. The problem 

disappears if behavioural equivalence is used as the correctness criterion for data 

representation. 

While the "universal implementation" relation can be used as the correctness 

notion in a structured correctness argument, and thus provides a theoretical ba-

sis for data abstraction in modular programming, it is too strong to be proved 

in practice for each module of a system. Chapter 5 shows how the "universal 

implementation" concept can be factored into two components called "simple 

implementation" and "stability". This decomposition requires not just a "rep-

resentation relation", but a "representation category" over the models of each 

signature, where a model is a representation of another one, if there exists a 

morphism in the representation category (i. e., a "representation morphism") 

from the representation to the model it represents. 

"Simple implementation" is a relation between cells that reflects the way data 

representation correctness proofs are performed in practice. In particular, in 

proofs of the "simple implementation" property of a cell, the imported program 

entities may be assumed to satisfy the import interface of the cell specification. 

This reflects the postulate that users of an encapsulated type should be allowed 

to use the abstract specification of the type rather than only the properties of 

its representations, which Section 1.1 has explained to be essential for the data 

abstraction programmig method. 

It suffices to prove the "simple implementation" property of a cell with re-

spect to its specification, if the implementation cell is "stable". This criterion 

admits an elegant characterization; in particular, a cell is stable, if each rep-

resentation morphism between arguments can be extended to a representation 

morphism between the results of the cell on these arguments. Stability can 

serve as a design criterion for programming languages intended to support data 

abstraction, because if all the modules that can be written in the language are 

- 
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stable, then programmers need only verify the "simple implementation" property 

of their modules. 

The later sections of Chapter 5 present representation categories for the 

three representation relations between partial algebras introduced in the previous 

chapter. The representation morphisms for behavioural inclusion are correspon-

dences, the morphisms for behavioural equivalence are strong correspondences, 

and the morphisms for standard representation are abstraction functions. 

The stability notions for the three representation concepts have the property 

that a cell is stable, if and only if the respective representation morphisrns can 

be extended from the arguments of the cell to its results. In particular, the 

stability property for behavioural equivalence turns out to be very similar to 

the "representation independence" theorems that have been proved for versions 

of the typed A-calculus (see the previous section). This suggests that stability 

is a reasonable requirement to demand of the modules of a "data abstraction" 

programming language. 

It is shown that under certain natural conditions, the stability notions for be-

havioural inclusion and for behavioural equivalence are equivalent to each other, 

while the stability notion for standard representation is more restrictive than 

these. Thus, not only does standard representation provide a more restrictive 

implementation criterion for the programmer, it also puts more restrictions on 

the programming languages that can safely be used in connection with it. Since 

the correspondence proof methods for the behavioural representation concepts 

are just as simple as the "standard" proof method using abstraction functions, 

the behavioural representation concepts should replace standard representation 

as the correctness criterion for data representations in practical programming. 

32 



1.4 An Example of Modular Programming with Data Abstraction 

1.4 An Example of Modular Programming 

with Data Abstraction 

The program development in this section illustrates the view of modular pro-

gramming and data abstraction that was introduced in Section 1.1. Further-

more, the interfaces and modules that occur here will serve as running examples 

throughout the presentation of the formal theory, so that keeping the present 

example in mind will help the reader relate the theoretical concepts to practical 

program development. 

The development will proceed in a top-down fashion; that is, interfaces will as 

far as possible be designed according to the needs of the modules that use them. 

These needs will usually be determined during the design of these modules, so 

that the design of a module and of some of its import interfaces will often go 

hand in hand. 

In particular, we will avoid introducing an encapsulated type and its access 

functions in a single step; since the type will be used by different modules, each 

of these modules determines an interface specifying those access functions that it 

needs. These access functions are refined independently of each other, and only 

after the refinement has reached a level of access functions that are considered 

"elementary", the complete group of the remaining access functions is considered 

together in order to design an implementation of the encapsulated type. 

This kind of development requires that one can specify and refine the access 

functions to a type independently of each other. The "mathematical" speci-

fication technique that is used here makes this easy, because it allows one to 

explicitly specify a set of values for an encapsulated type (so that one can 

write "abstract model" specifications). One can then specify the operations in 

the traditional manner by referring to their input and output values, although 

other modes of specification that relate the operations to each other remain 

possible. 
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The programming problem to be solved here is the construction of a "dictionary": 

Given a text as input, that is, a sequence of words, an alphabetically ordered 

sequence is to be constructed that contains exactly the words occurring in the 

text, but each word only once. 

More abstractly, we assume as given a data type item (containing words, for 

example), and a function 

leitem: item item -+ bool 

(where bool = {T, F} is the standard type of truth values) that is defined every-

where and is such that the relation < C item x item defined by 

x y :4= leitem(x,y) = T 

is a total ordering' on item (the symbol "item" in mathematical expressions 

denotes the set of values of type item). The relation < C item x item is defined 

in the usual way: 

x < y := x <y A y x 

leitem(x,y) = T A leitem(y,z) = F. 

Figure 1-3 gives the specification of the item data type on which our program 

development is based. The semi-formal notation in which it is written will be 

used throughout the thesis and deserves some explanation. The whole construct 

is called an interface in agreement with the "interface" iiotion of Section 1.1, 

because it characterizes a group of program entities (hod, item, a leitem). 

The signature part gives the syntactic properties of these program entities: 

the symbols labelled sort denote data types (the name "sort" is used in connec-

tion with algebras, see Section 2.2), the symbol leitem denotes a function with 

two arguments of sort item and result of sort bool. 

The properties part specifies semantic properties of the program entities. 

The names of the program entities are used as normal mathematical symbols: a 

1 The definitions of all the mathematical concepts and notations used here can be found 

in Section 2.1. 
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'ITEM = 

interface 

signature 

bool, item: sort 

leitem: item item - bool 

properties 

bool = {T,F} 

domleitem = J](item, item) 

{ (z, y) I ieitem(x, y) = T } is a total ordering on item 

Figure 1-3: The interface IjM 

type name denotes the set of values of the type, and a function name denotes 

a partial function from the product of the value sets of the argument types to 

the value set of the result type. In our example, it is thus a consequence of the 

signature that ieitem: fJ(item, item) + bool; in other words, that leitem is a 

partial function from the set of pairs of item values to bool. Further properties 

are then given using ordinary mathematical notation. In the example, the type 

bool is defined as the "standard" type of truth values, the function leitem yields 

a result for all possible arguments and describes a total ordering on item (namely 

the ordering < g item x item that was defined earlier). 

The desired "dictionary" operation will have finite sequences of item values as 

argument and result. Such sequences will be written in the form I 

(n > 0), and we use the notations 

dom(ii,...,i) = {i,...,n} 
	

(the index set of a sequence) 

ran(ii ,. .. , l,) = {i,. .. ,i,} 
	

(the set of "elements" of a sequence) 

(li,. .. ,I)I = 
	

(the length of a sequence) 

o (k i ,...,k m ) 

= (ia,... ) i,, k 1 ,... , kin) I 	(concatenation of sequences) 
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The set of all finite sequences of item values is written item * .  

We assume a predefined data type Ustitern, whose values are the finite se-

quences of item values. This type together with its access functions is defined 

by the interface 'LISTITEM  shown in Figure 1-4. 

We are now ready to specify our design goal, the "dictionary" operation. One 

requirement is that its result sequence should be strictly ordered according to 

the ordering :5 described by leitem. This property is expressed by the predicate 

"Ascending" for sequences of item values: 

Ascending(l) : 	whenever 1 < i < 	1, then i, <l 

(recall that Ii < Ij means that leitem(l,1 3 ) = T and leitem(l1,l) = F). 

The dictionary function is specified by the interface IDIOT  in Figure 1-5. 

Besides the dictionary operation itself, this interface contains a number of other 

program entities, namely those that are required in the description of this op-

eration. The type listitem is included with the specification of its set of values, 

because it is the argument and result type of dictionary. The specification uses 

the predicate "Ascending", which is defined using the relation <on item, which 

in turn is defined on the basis of leitem and bool. Hence these program enti-

ties are also included in the specification, together with their semantic properties 

that ensure that the specification of the dictionary operation makes sense. Given 

an argument list 1, this operation is required to produce a list containing exactly 

those item values that occur in I (ran(dictionary (I)) = ran I), and that is strictly 

ordered according to < (Ascending(dictionary(l))). In particular, this condition 

ensures that the resulting list contains each item value at most once. 

From a practical point of view, it would be reasonable to classify the symbols 

occurring in an interface such as IDIOT  into two groups: into those that are to 

be defined by the interface (here, dictionary), and those that only provide the 

context for this definition. In particular, a programmer should not be misled 

into producing an implementation of program entities according to an interface 

in which they occur only as context symbols with perhaps just a subset of their 
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'LISTITEM = 

interface 

signature 

bool, item, listitem: sort 

nil: -+ list item 

cons: item listitem -+ list item 

isnil: listitem -, bool 

hd: listitem -+ item 

tI: listitem -+ list item 

properties (x: item, (l i ,... ,1): listitem) 

bool = { T,F} 

listitem = item * 

nil() = () 	(the empty list) 

coris(x, (l i , . . . ,l,,)) = (x,1 i , . . . 

IF,isnil((l i ,. . . l,)) =
T, ifn.=O 

 ifn.>O 

domhd = domtl = listitem \ { Ø} 
I  

for n> 1: 	
hd(l 1 ,...,l) =11 

- I 	= 

Figure 1-4: The interface 'LISTITEM 

properties. For example, it would be nonsense to implement listitem according 

to the interface 'DICT. 

From the point of view of our theory, however, this distinction is not neces-

sary. Each interface gives properties of some program entities, and it is some 

module's responsibility to ensure that the interface is satisfied. These responsi-

bilities are recorded in a design graph. This thesis does not attempt to present 

a complete methodology for the construction of design graphs. 
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'DICT = 

interface 

signature 

bool, item, listitem: sort 

leitem: item item -+ bool 

dictionary: list item -+ list item 

properties 

bool = { T,F} 

domleitem = fJ(item,item) 

{ (z,y) I leitem(x,y) = T} is a total ordering on item 

listitem = item * 

for all 1 E list item: 

ran(dictionary(l)) = ranl 

Ascending(dictionary (1)) 

Figure 1-5: The interface 'DICT 

Some basic rules, however, are that each program entity may be defined only 

once, and that when a module is to define a group of program entities, all those 

interfaces have to be exported and hence guaranteed by the module that mention 

some of these entities and have not already been exported by other modules. 

In the example, it would not be appropriate to define listitem, because we 

assumed it to be defined already in the programming environment. Even if that 

was not the case, listitem could not be implemented with only 'DICT  as the 

export interface; rather, one would have to take both 'DICT  and ILISTITEM  into 

account, since they both mention list item. 

We now begin to develop a modular program for the dictionary operation spec-

ified by 'DICT,  on the basis of the interfaces 'ITEM  and ILISTITEM.  That is to 

say, the program we are designing has to complete the design graph shown in 

Figure 1-6. 
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C D 

Figure 1-6: The initial design graph of the dictionary program development 

The development presented here is artificial in the sense that the design 

decisions are not guided by practical criteria such as efficiency, but are motivated 

mainly by the desire to keep the whole development reasonably small while 

illustrating some principal features of a modular program development. 

The first design decision is to decompose the dictionary function into two func-

tions called input and output. The input function maps the input sequence into 

an internal data structure, and the output function maps this data structure 

into the desired output sequence. The internal data structure is an element of 

an encapsulated data type called store. In other words, we intend to define the 

dictionary function as the composition of the functions input and output, where 

input maps a list item value to a store value, and output maps a store value to a 

list item value. This definition constitutes the first module of the program, which 

is called MDICT  and given in Figure 1-7. 

This figure describes a module that might actually have been written in a 

concrete programming notation; for example, Figure 1-8 shows how MDICT 

might be coded as a package in ADA [ANSI 83]. 
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MDICT = 

module 

environment signature 

list item, store: sort 

input: listitem -+ store 

output: store -' list item 

defined symbols 

dictionary: listitem -+ li.t item 

requirements 

(none) 

result 

dictionary = input ; output 

Figure 1-7: The module MDICT 

The notation used in Figure 1-7 records such a module, including some facts 

that in a programming notation might be determined from the context. 

The section environment signature has the same form as the signature 

section of an interface and lists those program entities that are imported (used, 

but not defined) by the module with their syntactic properties. 

The defined symbols section gives the syntax of the additional symbols 

defined by the module. These symbols are supposed to be directly accessible 

outside the module, which in ADA is expressed by a use clause. 

The requirements section of our notation gives the semantic properties of 

the imported program entities that are required by the code, which in general are 

much weaker than those needed to prove the code correct. In the example, the re-

quirements section is empty, because the definition dictionary = input ; output 

does not impose any semantic requirements; it has a well-defined semantics 

for every interpretation of the environment symbols that matches their syntax. 

The same holds true for the ADA definition of dictionary—this operation is 
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package DICT is 

function dictionary (1: listitem) return list item; 

end; 

package body DICT is 

function dictionary (1: listitern) return listitem is 

begin 

return output(input(l)); 

end; 

end; 

use DICT; 

Figure 1-8: MDICT  coded as an ADA package 

well-defined in every context in which it is syntactically correct. A nonempty 

requirements section could arise from the use of programming language con-

structs that impose semantic requirements, and examples of this will occur below 

(in the modules MINPUT, MOUTPUT and MSTORE  of Figs. 1-16, 1-18 and 1-19). 

Finally, the result section of our notation defines the semantics of the de-

fined symbols of the module. This section and the requirements section 

use the same mathematical notation as the properties section of an interface. 

The intention is that the definitions of the result section model data type and 

function definitions in a concrete programming notation (Clearly, the definition 

of dictionary in Figure 1-7 matches the ADA definition). To make this corre-

spondence explicit, the function definitions of a module will often be given by 

recursive code (see Figures 1-16, 1-18 and 1-19 below). This code has the usual 

meaning of recursive function definitions using a call-by-value semantics. 

The module MDICT  imports the program entities store, input, and output, 

which are to be defined by other modules of the program. We still need to 

record the semantic requirements on these program entities that are necessary 

for the dictionary function defined by MDICT  to be correct. Obviously, the 
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'INOUT = 

interface 

signature 

bool, item, list item, store: sort 

leitem: item item -+ bool 

input: listitem -+ store 

output: store -' list item 

properties 

bool = { T,F} 

domleitem = fJ(item,item) 

{ (x, y) I leitem(x, y) = T } is a total ordering on item 

listitem = (item )* 

for all I E list item:. 

ran(output(input(I))) = ranl 

Ascending (output (input (I))) 

Figure 1-9: The interface 'INOUT 

necessary requirement is precisely that the composed function input ; output has 

the properties required of the dictionary function in 'DICT. This requirement is 

recorded in the interface 'INOUT  in Figure 1-9. The properties required in this 

interface are just the ones of 'DICT  with dictionary replaced by the composition 

of input and output. 

The present stage of the program development can again be shown as a 

design graph. To the initial interfaces 'DICT, 'ITEM and 'LISTITEM,  we add 

the module MDICT  with export interface 'DICT  and import interface 'INOUT, 

obtaining Figure 1-10. 

The module MDICT  is obviously correct with respect to its import and export 

interfaces: Whenever it is suppliedwith program entities satisfying 'INOUT, the 

result of the module, which consists of these entities together with the new 

function dictionary, will satisfy 'DICT  (the correctness notion indicated here is 
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'DICT 

MDICT 

'INOUT 

E ITE  
Figure 1-10: The design graph after addition of MDICT  and 'INOUT 

the basic correctness notion for modular programming without data abstraction 

and is formalized in the "refinement" notion of the theory in Def. 3.1.18). Thus, 

in the remainder of the program development, we need no longer be concerned 

with the interface 'DICT  nor with the module MDjCT; it remains to construct 

program entities so that 'INQUT  is satisfied. 

Our next design step is concerned with the interface 'INOUT.  We could treat 

'INouT as the specification of an encapsulated data type store with access op-

erations input and output, and proceed to implement this type. We shall not 

do so, however, but decide that input and output should be expressed on the 

basis of more elementary access functions to the type store. 
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What should these more elementary access functions be? It seems best not 

to make an ad hoc decision at this point, but to consider the operations input 

and output and to select the elementary functions so as to facilitate the design of 

the code for these functions. This means that we proceed according to the top.. 

down programming strategy, since we intend to define the elementary functions 

on store in the process of designing the code that uses them. 

We thus turn to the design of the code for the functions input and output. 

Here we face the problem that neither function can be considered on its own, 

since the target interface only expresses properties of their composition. 

Our first goal therefore is to design two separate specifications of input and 

output. Together, the two specifications must of course imply the target speci-

fication 'INOUT.  To specify input on its own, we have to specify what result 

values input should produce on any argument. These values, however, are of 

type store. Similarly, to specify output, we have to specify the desired results for 

the possible arguments, and the arguments also are values of type store. In order 

to specify input and output independently of each other, we must therefore be 

able to talk about values of type store, and this requires that we define a set of 

values for the type. At this point, the only purpose of this value set is to enable 

- usjto specify input and output. Hence the value set for store should be chosen so 

as to simplify these specifications. 

A good guide for the decision about the store value set is to consider the 

information that needs to be recorded in the values of the type. In the target 

interface IJNOUT  (as well as from our informal description of the problem), it 

is easy to see that the result output(input(l)) for I E listitem depends only on 

ran I, that is, the set of item values occurring in I. Hence it is sufficient that 

the store values are capable of representing finite sets of item values, and the 

most natural definition of the store value set is store = F(item), i. e., the set of 

finite sets of item values. We can then define input (I) to be ran I, which is the 

set of item values occurring in 1, and define the value of output on such a set to 

be the sorted list of values in the set. These specifications are recorded in the 

interfaces 'INpUT  and 'OUTPUT in Figures 1-11 and 1-12. Note that input can 

44 



1.4 An Example of Modular Programming with Data Abstraction 

'INPUT = 

interface 

signature 

item, list item, store: sort 

input: listitem -' store 

properties 

listitem = (item )* 

store = F(item) 

for all I E list item: input(l) = ranl 

Figure 1-11: The interface 'INPUT 

be specified without reference to the ordering on item, so that leitem and bool 

need not be mentioned in 'INPUT. 

The interfaces 'INPUT  and 'OUTpUT  shall become part of the design graph 

and make further consideration of 'jNOuT  unnecessary. To this end, it must 

be proved that 'INPUT  and 'OUTPUT  together imply 'INOUT.  Since correctness 

proofs are naturally associated with modules in a design graph, it seems best to 

introduce a module MINOUT  that imports 'INPUT  and 'OUTPUT  and exports 

'INOUT (Figure 1-13). Since all the program entities of the export interface 

'INOUT occur among those of the import interfaces 'INPUT  and 'OUTPUT,  the 

module MINOUT  need not define any new program entities. Thus, MINOUT  is 

the empty module (Figure 1-14). 

Although this module is empty, its correctness must be proved: We have to 

show that whenever the module is supplied with program entities that satisfy 

the import interfaces, then these entities (together with the entities contributed 

by the module, of which there are none in this case) satisfy the export interface. 

It is easy to see that this is indeed the case: if we combine the axiom of 'INPUT 

that input(l) = ranl with the axioms of 'OUTPUT,  the axioms of 'INOUT  follow 

immediately. 

45 



1.4 An Example of Modular Programming with Data Abstraction 

'OUTPUT = 

interface 

signature 

bool, item, list item, store: sort 

leitem: item item -+ hod 

output: store -+ listitem 

properties 

bool = {T,F} 

dom leitem = fl(item, item) 

{ (z, y) I leitern(x, y) = T } is a total ordering on item 

listitem = (item )* 

store = F(item) 

for all s E store: 

ran(output(s)) = s 

Ascending (output(s)) 

Figure 1-12: The interface 'OUTPUT 

We now turn to the design of the input operation specified by 'INPUT.  This 

operation has to compute the set of item values occurring in its argument list, 

which is a value of type listitem. The operations that are available to inspect 

list item values are isnil, hd, and U. This suggests the following program structure 

for input: 

input (1) = if isnil(l) then 0 

else {hdl} U input (til) 

(recall that we defined store = F(item)). Thus, we postulate two access functions 

empty and insert for the type store that are defined by 

empty() = 0 

insert (x, s) = {x} U S. 
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Figure 1-13: The module MINOUT  with its import and export interfaces 

MINOUT = 

module 

environment signature 

defined symbols 

requirements 

result 

Figure 1-14: The empty module MINOUT 

These functions are to be imported by the module defining the input operation, 

and we record their specification in the interface 'INSERT  of Figure 1-15. 

The input operation can now be coded as suggested above. This code consti-

tutes the module MINPUT  in Figure 1-16. The code given in the result section 

defines input recursively and corresponds to code in a programming notation. 

This code requires that bool = {T, F}, because the if construct is used, which 

requires its first argument to be of the standard type of truth values. 

It is worth while to note at this point how the choice of access functions to the 

type store was influenced by the design of the input operation. If, for example, 
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'INSERT = 

interface 

signature 

item, store: sort 

- 	 empty: -+ store 

insert: item store - store 

properties 

store = F(item) 

empty() = 0 

for all x E item, s E store: insert(z, s) = {z} U s 

Figure 1-15: The interface 'INSERT 

the argument of input was not a linear list but a binary tree, the function insert 

would be less useful than an access function 

urtion(s,t: store): store = s Ut, 

which would allow one to calculate the union of the two store values correspond-

ing to the subtrees of a tree. 

To conclude the design of the input operation, it remains to prove that 

MINPUT is correct with respect to the import interfaces 'LISTITEM  and 'INSERT 

and the export interface 'INPUT.  For this, assume that program entities are 

given as described by 'LISTITEM  and 'INSERT,  and that input is defined by 

the recursive code given in MINPUT.  The only nontrivial axiom of 'INPUT  is 

then that input (1) = rant for all I E listitem. It is easy to prove by induction 

on the length of lists 1 E listitem that input is total. This allows us to treat 

the definition of input in MINPUT  as an equation between values of type store 

(for a detailed treatment of this interpretation of recursive function definitions, 

see [Cartwright 84]). Using this equation, one proves that input(1) = rant by 

induction on the length of 1: 
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MINPUT = 

module 

environment signature 

bool, item, list item, store: sort 

isnil: listitem - 6001 

hd: listitem -+ item 

tl: listitem -+ listitem 

empty: -' store 

insert: item store -+ store 

defined symbols 

input: listitern -+ store 

requirements 

bool= {T,F} 

result 

input (1) = if isnil(l) then empty() 

else insert(hdl, input (tll)) 

Figure 1-16: The module MINPUT 

• If Ill = 0, then I = 0, hence isnil(1) = T, and input (1) = empty() = 0 = 

ran 1. 

• If Ill > 0, then I # 0, hence isnil(1) = F, and 

input (1) = irisert(hdl, input (til)) 

= insert (11 , input((1 2 ,. .. 

= insert (ii , ran(12,. .. ,1)) 	(Inductive Hypothesis) 

= rant. 
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This concludes the correctness proof of MINPUT. 

Our next task is to design the output operation specified by 'OUTPUT.  Given a 

ètore value as input, i. e., a finite set of item values, the operation must produce 

an ordered list containing exactly these values, which is a value of type list item. 

The operations that may be used to construct listitem values are nil and cons. 

In the case of a nonempty store value s, the output list must be of the form 

cons(x,l), and since this list must be ordered, the item value z must be the 

minimal element of 3, while I must be the ordered list of the other elements of s. 

This suggests the following program structure: 

output(s) = if a = 0 then nil() 

else cons(mins, output(s \ {mins})), 

where mm a is the <-minimal element of a, 1. e., 

minsEs and yminsforallys. 

We therefore postulate three access operations isempty, mm, and removemin to 

the type store that are defined by 

I T, ifs=0 

F, 
isempty(s) 

= 

fors#O: mm(s) 	=mins 

removernin(s) = a \ {mins}. 

The operation removemin is sufficient to code output according to the scheme 

above; we do not need an operation to remove an arbitrary element from a set. It 

might be possible to implement the specialized operation removemin more easily 

and efficiently than a general "remove" operation. The operation rernovemin is 

specially designed according to the needs of output, which shows the advantages 

of determining access operations to a type during the design of the modules that 

use them. 

The three new operations on store are to be imported by the module defining 

output, and they are specified in the interface IMIN  of Figure 1-17. 
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'MIN = 

interface 

signature 

bool, item, store: sort 

leitem: item item -+ hod 

isempty: store -+ bool 

mm: store -+ item 

removemin: store -+ store 

properties 

bool = { T,F} 

domleitem = fJ(item,item) 

{ (z, y) f leitem(z, y) = T } is a total ordering on item 

store = F(item) 

IT, ifs=O 
for all s E store: isempty(s) 

= F, f S 

for all s E store \ {O}: 

mm(s) 	= mins 

removemin(s) = s \ {mins}. 

Figure 1-17: The interface 'MIN 

The output operation can now be coded as suggested above. This code forms 

the module MOUTPUT  in Figure 1-18. 

It remains to prove that MOUTPUT  is correct with respect to the import 

interfaces 'LISTITEM and 'MIN  and the export interface 'OUTPUT. Assume 

that program entities are given as described by 'LISTITEM  and 'MIN,  and that 

output is defined by the recursive code of MOUTPUT.  The only nontrivial axiom 

of 'OUTPUT 15 that 

for all s E store: ran(output(s)) = s 

Ascending(output (s)). 
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MOUTPUT = 
module 

environment signature 

bool, item, list item, store: sort 

leitem: item item -* bool 

nil: - list item 

cons: item listitem -+ listitem 

isempty: store -+ bool 

miri: store -+ item 

removemin: store -+ store 

defined symbols 

output: store -+ list item 

requirements 

bool = {T,F} 

result 

output(s) = if isempty(s) then nil() 

else cons (mm (s), output (removemin (s))) 

Figure 1-18: The module MOUTPUT 

A simple induction on the cardinality of sets a E store = F(item) shows that 

output is total. Hence the definition of output can be regarded as an equation 

between listitem values. The axiom above is now proved by induction on the 

cardinality of sets s E store = F(item). 

The inductive hypothesis is that for sets t E store with card(t) <card(s), we 

have ran(output(t)) = t and Ascending (output (t)). 

If card(s) = 0, then s = 0, hence isempty(s) = T and output(s) = nilQ = 

0. Thus ran(output(s)) = ranØ = 0 = a, and Ascending (output (s)) 

Ascending(Ø), which is vacuously true. 
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If card(s) > 0, then s 0, hence isempty(s) = F, and 

output(s) = cons (mm (s), output (rernovemin (s))) 

= cons(mins, output(s \ {mins})). 

Let s' := s \ {mins}. Since mins E s, we have card(s) < card(s), so by the 

inductive hypothesis, 

ran(output(s')) = s', and 

Ascending(output (s')). 

Thus, 

ran(output(s)) = ran cons(mins, output(s')) 

= {min s} U ran output (s') 

= {mins} Us' 

= S. 

To prove Ascending(output(s)), let 1' = (li,.. . , l',) := output (3'), so that ranl' = 

a', Ascending(1'), and 1 := output(s) = cons(mins,1') = (mins,l,... ,1'). If 

< .i 	111= 	1, then 

• if i = 1, then Ii = Li = rnins < 1,, because Ij 	1_ E ran 1 ,  = a' = 

s \ {mins} 

• if 1> 1, then Ii = 	 = I,, because Ascending(11. 

This concludes the correctness proof of MOUTPUT. 

After the modules 'INPUT  and 'OUTPUT  and the interfaces 'INSERT  and 'MIN 

have been added to the design graph, the interfaces 'INSERT  and 'Mm,  are the 

only ones that still need to be guaranteed (the current design graph can be 

obtained from Figure 1-20 below by omitting MSTORE  and the edges leading 

to it). One could, of course, attempt to express the five access functions to 

the store data type that are specified in these interfaces in terms of yet more 

elementary access functions, as it was done with input and output. But we shall 

not do so and regard the functions empty, insert, msernpty, min and removemin 

as the elementary access functions of the store data type. 
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Our task is now to design an implementation of the 8tore data type. Since 

the two remaining interfaces 
'INSERT and 'MIN  both mention store, they must 

both be export interfaces of the module that defines store. 

For the design of the store implementation, we use the "standard" criterion 

for the correctness of data representations due to bare [bare 72]. Given a "rep-

resentation" data type with access functions that corresponds syntactically to an 

"abstract" type with its access functions, the correctness of the representation 

is established as follows: 

• A "representation invariant" I is defined, which is a predicate on the values 

of the representation type. 

• An "abstraction function" A is defined that maps the values of the rep-

resentation type that satisfy I to values of the abstract type. A value z 

of the representation type is said to "represent" a value y of the abstract 

type in case z satisfies I and A(x) = y. Values of types other than the 

type to be represented (these types are not changed in the representation) 

are said to "represent" themselves. 

• Every access function f is shown to be "compatible" with I and A: When-

ever (x1,. . . , x,) is an argument tuple for the representation of f and 

(yi,... , is an argument tuple for the abstract version of f such that 

each xi represents y-,  then the applications of the representation of f to 

(x1,... , x,) and of the abstract version of f to . . , y) are either both 

defined or both undefined, and if they are defined, the result value in the 

representation represents the result value of the abstract application (in 

particular, the result in the representation must satisfy the representation 

invariant). 

The implementation of the store data type that will now be given uses sequences 

of item values to represent store values. This choice is motivated by the fact 

that such sequences are already available as the type listitem, so that we can 

define 

store := list item (= item*). 
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More efficient implementations could be designed based on trees, but this would 

require the introduction of another data type and thus require another interface 

of similar complexity to 'LISTITEM. 

The implementation will avoid duplicate elements in the lists and will keep 

the lists ordered so that the mn and removernin functions become simple. This 

decision is expressed by the representation invariant 

1(1) := Ascending(1). 

The store value represented by a list i is just the set of item values occurring 

in 1. Hence the abstraction function of the implementation is given by 

A(1) := ranl. 

The main problem in the implementation of the access functions is that the 

insert function must preserve the representation invariant; 1. e., the resulting list 

must be ordered and duplicate-free, provided the argument list is. 

The implementation of the store data type with its five access functions is 

given in Figure 1-19. To prove this module correct with respect to the export in-

terfaces 'INSERT  and 'MIN  and the import interfaces 'ITEM  and 'LISTITEM, one 

has to show that for every family of import program entities satisfying 'ITEM and 

'LISTITEM, the result of MSTORE  is a representation of a data type satisfying 

'INsERT and 'MIN.  The latter, "abstract", data type is almost fully determined 

by 'INSERT  and 'MIN  (assuming fixed import program entities satisfying 'ITEM 

and ILISTITEM),  except for the behaviour of min and removemin when the argu-

ment is the empty set, which is not relevant for the code using these functions. 

Since the implementations of these operations do not yield results on the rep-

resentation of the empty set (the empty set is represented by the empty list, 

min is implemented as hd and removemin is implemented as ti), the min and 

removernin operations of the abstract type must also be undefined on the empty 

set in order for the proof to go through. 

The representation invariant I and the abstraction function A for the correct-

ness proof were given above; to complete the proof, it has to be shown that the 

five access functions are compatible with I and A. This proof is given in Exam- 
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MSTORE = 

module 

environment signature 

bool, item, listitem: sort 

leitem: item item -+ tool 

nil: -+ list item 

cons: item listitem -+ listitem 

isnil: listitem -+ bool 

hd: listitem -+ item 

ti: listitem -+ list item 

defined symbols 

store: sort 

empty: -+ store 

insert: item store -+ store 

isempty: store -+ tool 

mm: store -+ item 

removemin: store -+ store 

requirements 

tool = {T,F} 

result 

store 	= list item 

empty 	= nil 

insert is defined by the recursive code 

insert(x,l) = if isnil(l) then eons(x,nilQ) 

else if 	leitem(x, hd 1) 

then if leitem(hd 1, x) then I 

else cons(x,l) 

else cons(hdl, insert(x, til)) 

isernpty 	= isnil 

min 	=hd 

removemin = tl 

Figure 1-19: The module MSTORE 
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pie 4.5.3 of this thesis, based on a formal definition of the "standard" correctness 

criterion sketched above. 

Since MSTORE  imports only the interfaces 'ITEM  and 'LISTITEM, which we as-

sume to be guaranteed by the programming environment, no further unsatisfied 

interfaces remain, and the design of the dictionary program is complete. The 

complete design graph is shown in Figure 1-20. 

Based on a programming environment as described in 'ITEM  and 'LISTITEM, 

the five modules we have designed constitute a complete program that defines a 

function dictionary: listitem -p listitem. Naturally, we would like to be able 

to conclude from the correctness proofs of the individual modules that the 

dictionary function is correct; i. e., causes 'DICT to be satisfied. 

Here, however, we face the correctness problem of data abstraction. The 

modules using the store data type, e. g., MINPUT and MOUTPUT, have been 

proved correct under the assumption that they were supplied with program en-

tities satisfying their import interfaces, e. g., 'INSERT and ImrN. However, the 

program entities defined by MSTORE  do not satisfy these interfaces, so that the 

correctness proofs of MINPUT  and MOUTPUT do not apply in the final system. 

For example, MINPUT  was proved correct under the assumptions (from 'INsERT) 

that store = F(item), empty() = 0, and insert a function from fl(item,F(item)) 

to F(item), while in the actual program, we have store = item*, empty() = 01 

and insert a function from fJ(item, item*)  to item * .  

Thus, there is no direct way to infer the correctness of the dictionary opera-

tion defined by the final program from the correctness of the individual modules, 

which we proved in the course of this section. Of course, one could consider the 

final program composed of the five modules and prove the correctness of the 

dictionary operation on the basis of this program. But this would mean that the 

correctness proofs of the individual modules became redundant, and that the 

whole program would have to be considered anew. Also, one would then have to 

consider the program code on the basis of the representation of the store data 

type given in MSTORE.  This violates the principle of data abstraction discussed 

in Section 1.1, namely that programs using an encapsulated data type should be 
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Figure 1-20: The design graph of the dictionary program development 
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proved correct on the basis of the abstract specification of the type rather than 

the properties of its representations. 

The theory of this thesis will present a "stability" criterion for modules that 

makes it possible to infer the correctness of the dictionary operation from the 

correctness of the individual modules (however, the stability of the modules of 

this development will not actually be proved). The design graph in Figure 1-20 

and the individual module correctness proofs that we have performed so far 

constitute a "structured correctness argument" as explained in Chapter 3 below 

(Figure 3-5). The data abstraction technique has helped us by allowing us to use 

the abstract specification of the store data type (8tore = F(item)) and the access 

functions specified in 'INPUT, 'OUTPUT, 'INSERT and 'MIN  in the correctness 

proofs of MINOUT, MINPUT and MOUTPUT. 

Before concluding this section, it seems worthwhile to review an interesting as-

pect of the design process, namely the way the elementary access functions to the 

store data type were determined. Rather than defining a set of elementary access 

functions at the time the type store was first introduced, i. e., when MDICT was 

designed, we began with the problem-oriented access functions input and output 

and determined the elementary access functions during the design of the code 

for these functions, i. e., during the design of MINPUT  and MOUTPUT. In this 

way, we arrived at a set of elementary access functions tailored to the needs of 

our program (cf. pages 47 and 50). 

The technique by which we arrived it the set of elementary access functions 

could be called "access function refinement". When the data type store was 

first introduced in the interface 'INOUT,  its access functions were input and 

output, whose specification was derived immediately from the original problem 

statement. Later, programs were written for these access functions in terms 

of simpler access functions that were introduced and specified according to the 

requirements of these programs. During the process, a new function was intro-

duced only if required by some code under design, and its specification was used 

to prove the correctness of the code using it before the implementation of the 
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function was considered. This strict top-down design procedure ensured that all 

operations were designed according to the needs of the code using them. 

Our example thus exhibits a design strategy in which all functions are intro-

duced and specified in connection with the design of the code that uses them, 

rather than as a bunch of elementary access functions to some newly introduced 

data type that may or may not be useful for the programs to be designed. 

Strategy. (Access function refinement) 

When introducing a new data type, give it access functions that are as 

closely oriented to your problem as possible. While you consider the 

functions too complex to be elementary access functions to the type, 

encode them in terms of simpler access functions that you invent for 

this purpose. Finally, implement the data type together with the 

remaining "elementary" access functions as a single module. 

The access function refinement strategy influences the choice of a specification 

technique for encapsulated data types. In order that a function can be refined, 

i. e., code for it can be written in terms of other functions, it is advantageous 

that the function be fully specified on its own, rather than implicitly specified via 

its interaction with other functions. To specify a function on its own, however, 

one has to consider the relation between its input and output values, and this 

requires that the ranges of possible input and output values be known. This 

means that value sets for all the data types accessed by the function must be 

known, whether encapsulated or not. 

In our example, the original specification 'INOUT  of the functions input and 

output only specified them implicitly via their joint effect, and it was not possible 

at that stage to consider the the functions separately. To make the separate 

specifications in 'INPUT  and 'OUTPUT  possible, a set of values for the type store 

had to be defined (we chose store = F(item)). 

Specifications of encapsulated types that define a set of values for the type 

are called "abstract model" specifications, while specifications that do not do so 

are said to be "implicit" data type specifications [LZ 75, p.  121. 
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The strategy of access function refinement seems to work best on the basis of 

abstract model specifications, because with an explicit value set for each type, 

the access functions can be specified and refined independently of each other. 

Choosing a value set for a newly introduced type is an important design 

decision, even if the type is to be implemented later so that the chosen value set 

only occurs in specifications. 

The danger here is not so much to choose a value set that is "too small" and 

thus insufficient to represent the required information, because then the access 

functions could not be expressed in terms of this value set. In our example, 

it would not have been possible to specify input and output separately so that 

together they would satisfy 'INO UT; which means that the problem would have 

been noticed immediately in the correctness proof of MINOUT. 

Rather more serious is the danger of introducing a value set that is overly 

complex and that preserves more information than necessary. As will be dis-

cussed on page 258 f. below, this need not prejudice the choice of an implemen.-

tation if "behavioural" correctness concepts and the appropriate proof techniques 

are used. However, an overly complex value set might misguide the refinement 

of the access functions of a type. 

If, for example, in the dictionary problem we had chosen 'INOUT  as follows: 

store = item * 

input = Id(item*) 	 (*) 

output specified the same way as dictionary, 

we could still express output in terms of functions isempty, min and removemin 

specified analogously to the ones in 'MIN,  but we might then have chosen to refine 

min and removemin further; e. g., using a function isempty and functions first 

and rest specified like hd and ti of 'LISTITEM.  These functions, which cannot be 

introduced in the actual specification store = F(item), preclude the implemen-

tation of store given in MSTORE,  because they require that all the information 

about the input list be represented in the store (since it can be reconstructed by 

isempty, first and rest). Thus, a less storage-efficient implementation of store 

would be necessary. 
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It is possible to verify that the value set of a type does not represent irrelevant 

information by applying the following "bias test": an abstract model specifica-

tion for a data type is "unbiased" and hence free of redundancy, if the access 

functions allow one to generate all values of the encapsulated type, and if they 

allow one to distinguish the values from each other. The first condition is gen-

erally called the "reachability" or "no junk" requirement; the second condition 

is what Jones calls the "bias test" in fJones 80, Ch. 151. 

It is important to apply this bias test as soon as the set of values for the 

type is introduced. In our example, the alternative specification (*) would have 

shown a bias in the test, because the output function could not discriminate lists 

with the same range (i. e., set of item values occurring in it). After the indicated 

refinement steps that introduced the functions isempty, first and rest, the store 

data type would not have shown a bias in the test, since these functions allow 

to discriminate its values. 

In general, abstract model specifications and the access function refinement 

strategy should work best for data types for which one can determine an "unbi-

ased" set of values. On the other hand, implicit data type specifications should 

work best when one can determine the elementary access functions to a type 

at an early stage. Thus, the choice between an abstract model or an implicit 

specification of a data type is likely to depend on the situation. It would seem 

advantageous, therefore, to use a specification notation that does not prejudice 

- this choice by enforcing either abstract model or implicit specifications. The 

"mathematical" specification notation used in this thesis allows one to specify 

arbitrary properties of data types and functions, and thus to write both abstract 

model specifications (e.g., 'INSERT combined with IMrN)  and implicit specifica-

tions (IINOUT) of encapsulated data types with equal ease. 
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Chapter 2 

Signatures, Algebras, and Institutions 

THIS CHAPTER introduces the basic notions of the theory. "Algebraic sig-. 

natures" and "algebras", familiar from the literature on abstract data types, 

serve as models of the program entities in functional programs, such as the ones 

presented in Section 1.4. However, several key notions and theorems will be 

developed on a more abstract level, based on the notion of an "institution". 

2.1 Mathematical Concepts and Notations 

This section presents the basic mathematical concepts and notations from set 

theory and category theory that will be used in this thesis. Its purpose is not 

to give a tutorial introduction, but to serve as a concise reference. That is, 

the reader is supposed to be familiar with the notions of "set", "category" and 

"functor", and is advised to just skim or skip this section. When a concept is 

first used in the remainder of the thesis, a short explanation is usually given; 

the present section may then be consulted for the precise definition. 

The theory of this thesis is based on set theory in its "standard" ZFC axiomati-

zation ("Zermelo-Fraenkel set theory with the Axiom of Choice"). Presentations 

of these axioms can be found in [Kunen 80, p. xv f], [Levy 79, Section 1.51, [Bar-

wise 77, Chapter B.11, and in many other places. The important property of 

ZFC to keep in mind is that there is just one kind of objects, called "sets" (there 

are other axiom systems that use "classes" or both "sets" and "classes" as their 
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basic notions). On page 70 below, an axiom will be added to ZFC that allows it 

to deal with "large sets" or "classes" as well. 

The symbol ":=" is used as a concise way of stating definitions—the left hand 

side contains one or more "new" symbols (usually letters) that become defined 

such that the left hand side equals the right hand side. For example, in the 

phrase "If x E M, then y := 1(x) satsfies ...", the letter "y" becomes defined to 

equal 1(z). Similarly, the symbol ":=>" is used to define predicates. 

Here are some of the notations that will be used. 

N={0,1,2 .... } 	 set of natural numbers 

P(A) = { X I X C A } 	 power set of a set A 

F(A) ={XiX C A andXfinite} set of finite subsets of A 

(x, y) = {{x}, {z, y}} 	 ordered pair (the precise definition 

is not relevant; what matters is that 

(z,y)=(x',y')iffz=x'andy=y') 

AxB={(x,y)izeAandxEB} cartesian product of sets A and B 

A\B = {x E Aix  B} 	 set difference 

if A n B = 0: 

A+B=AuB 

if A is finite: 

card(A) E N 

sum of two disjoint sets (this nota-

tion is used when A and B are dis-

joint in order to help the reader) 

the cardinality of A, i. e., the num-

ber of elements of A. 

A relation is a set consisting entirely of ordered pairs. If R is a relation, then 

x R y : 4= (x,y)ER. 
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The domain and range of a relation R are given by 

domR := {z I 3y: (x,y) E R} 

ranR := {y 3x: (x,y) E R}. 

The converse of a relation R is 

RU:={(y,x)I(z,y)ER}. 

The composition of two relations R and S is 

R;S := {(x,z) y: (x,y) ER and (y,z) E S}. 

The restriction of a relation R to a set M is 

R/M:={(x,y)ERIXEM}. 

The image of a set M under a relation R is 

RM :={y I 3x EM: (x,y) E R} = ran(R/M). 

A function is a relation f that satisfies 

(z,y) El A (x,z) El 	y = 

that is, if for every x there is at most one y such that (x, y) E f. For x E 

dom f, the unique y such that (x, y) E I is called the value of I on z, and is 

written "1(z)" or sometimes just "f x". All of the concepts described above 

for relations also apply to functions. In particular, the notation "I ; 
g" denotes 

the composition of the two functions I and g in diagrammatic order, so that 

(I ; 
g)(z) = g(f(z)). A function I is a total function or mapping from a set A 

to a set B (written"f: A -+ B"), if 

domf=A and ranlcB, 

it is a partial function from A to B (written "1: A + B"), if 

dom f C A and ran! C B. 
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A function f is injective, if its converse f' .' is a function (that is, if (x, z) E f 

and (y, z) E f imply x = y). A (total or) partial function f: A + B is surjective, 

if ran f = B; it is bijective, if it is total, injective, and surjective (note that the 

property "total" depends on the source set A, "surjective" depends on the target 

set B, and "bijective" depends on both the source set A and the target set B). 

If A and B are sets such that A C B, then the unique function 1: A - B 

satisfying 1(x) = z for all z E A is called the inclusion function from A to B; 

the inclusion from a set A to itself is called the identity function on A and is 

written "Id(A)". 

A family is a function. Special terminology and notation are used for families: 

the domain of a family is called its index set, the elements of the domain are 

the indices. A family is called empty, finite, or in finite according to whether 

its index set is empty, finite, or infinite. The range of a family is called its set 

of values or elements (by abuse of language). A family z with index set I is 

written "(z$)$EI";  the notation "xi" stands for z(i), that is, the value of x for 

the index i E I. If the range of a family is a subset of a set M, the family is 

called a family of elements of M. 

Some mathematical notations have families of sets as arguments: if M = 

(Mj)j EI is a family of sets, then 

flM=[JM. := { (Xj)jEI I Vi E I: z 1  E Mi } product of a family of sets 
iEI 

UM=UM :={xIiEI: zEM} 
	

union of a family of sets 
EI 

if the M1 are pairwise disjoint: 

12M=>2 M := UM 
iEI 	iEI 

if I#O: 

fl M=flM :={ZIViEI: xEM} 
iEI 

sum of a family of pairwise 

disjoint sets 

intersection of a nonempty 

family of sets. 

A sequence is a family whose index set is an initial segment (I. e., a <-down-

ward closed subset, see below) of the set N1 := {1,2,3,.. .J. The index set of a 
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finite sequence x is of the form {1,... , n} for n E N; the number n is called the 

length of x, written "lxi". A finite sequence x of length n is also called an n-tu-

pie and is written "(x i ,... ,z)" or sometimes just "x1 .....x,". In particular, 

a pair is a 2-tupie, a triple is a 3-tupie, etc. 

Since it is the traditional notation, the application of a function f to an ,i-tu-

pie (Zi,... ,x), which should be written "f((xi,...  ,x))" or "f(zi,. .. ,x,)", 

will often be written "f(xi,.. . ,x)". In particular, the application of f to the 

0-tuple () will be written "10". 
If x and y are finite sequences, their concatenation, written "x oy", is defined 

by 

xoy := zU { (1+ lxi, ys) JiE domy}; 

this is a finite sequence whose length is the sum of the lenghts of x and y. If 

M is any set, the finite sequences of elements of M are called words over M; the 

notation M*  denotes the set of all words over M, i. e., 

M*={(x l ,..., xfl)i n EN and x,EMforalljE{1 ,...,n}} .  

Let < be a relation. A set M is <-downward closed, if x E M and y < x 

imply y E M. A <-minimal element of a set M is an x E M such that no y E M 

satisfies y < z. The relation < is well-founded, if every nonempty set has a 

<-minimal element. 

A relation < is transitive, if x < y and y < z imply x < z. The transitive 

closure of a relation < is the intersection of all transitive relations that include <, 

that is, 

<<:= {(x,y) I whenever R is a transitive rel. and < C R, then (x,y) ER); 

this is well-defined, because (dom < U ran <) x (dom < U ran <) is a transitive 

relation including <. It is easily seen that << is a transitive relation including <. 

A preordering on a set M is a relation ç M x M that is transitive and 

satisfies z C x for all x E M. The pair (M, ) is called a preorder, if is a 

preordering on M. A preordering on a set M that is symmetric, i. e., for which 

x C y implies y Cl x, is called an equivalence relation on M. A preordering E 
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on a set M for which x y and y x imply z = y is called a partial ordering 

on M; if is a partial ordering on M, then (M, ) is called a partial order. If 

is a partial ordering on M such that for all z, y E M, we have x y or y 

then C is a total ordering on M and (M, ) is a total order. 

Let (M, ) be a preorder, and let N be a subset of M. A minimal (maximal) 

element of N is an z E N such that for all y E N such that y z we have y z 

(z V y) (note that this is slightly different from the definition of "minimal" 

given above for <-type relations. The notation will always make it clear which 

definition is meant). A lower bound (upper bound) of N is an z E M such that 

x E y (y E z) for all y E N. A least (greatest) element of N is an x E N that 

is a lower bound (upper bound) of N. These notions also apply to families of 

elements of M instead of subsets of M—for this, a family is identified with its 

range. 

In a partial order (M, ), the least upper bound (greatest lower bound) of 

a set N C M, written "J N"  ("fl N"), is the least element among the upper 

bounds (greatest element among the lower bounds) of N; if such an element 

exists, it is unique. A partial order in which every pair of elements has a least 

upper bound and a greatest lower bound is called a lattice; one also writes 

"x U y" for U{z, y} and "x fl y" for fl{z, y} and calls U and fl the join and meet 

operation of the lattice. 

A chain in a partial order (M, ) is a set N c M (or a family of elements 

of M, which as before is identified with its range) that is totally ordered by , 

i. e., is such that x C y V y x for all z € N. We will often employ "Zorn's 

Lemma", according to which 

a partial order in which every chain has an upper bound 

has a maximal element; 

it is equivalent to the axiom of choice (see, e.g., [Levy 79, p. 1611, [Barwise 77, 

p. 355]). 

Besides the concepts from set theory just presented, this thesis will use some 

basic concepts from category theory. They can all be found in the first 35 pages 
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of Mac Lane's book [Mac Lane 711. However, notation and terminology will 

be changed slightly in order to avoid confusion in this thesis: a morphism in 

a category will have a "source" and a "target" instead of a "domain" and a 

"codomain", and the composition of two morphisms 1: A - B and g: B - C is 

written "f ; g" U. e., in diagrammatic order) rather than "g o f"or"gf". 

A category consists of a set A of arrows or morphisms, a set 0 of objects, two 

mappings src,trg: A -+ 0 mapping each arrow to its source and target object, 

respectively, a map Id: 0 -+ A mapping each object to its identity arrow, and a 

composition operation;: H(A, A) + A such that 

dom; = { ( 1 g)  I trg  f = src g }, 

and for allx E 0 and I E A: 

src(id(X)) = trg(id(X)) = X 

id(src 1); f = f ; id(trg f) = f, 

and for (f,g)  and (g,h) in dom;: 

src(f ;g) = srcf 

trg(f;g) = trgg 

(f ; g) ; h = f ; (g ; h). 

If C is a category, then I C I is its set of objects, and for z, y E I Cl, the horn-

set C(X, Y) is the set of arrows from X to Y in C, i. e., 

C(X, Y) = { f I  f an arrow of C, src f = X and trg f = Y }. 

We also write "f: X - Y in C" to express that f E C (X, Y). 

A special kind of categories are the categories of sets, where the set 0 of objects 

is a set of sets (in ZFC, this is always true), and the set A of arrows consists 

of all the total functions between these sets (to be precise, A consists of triples 

(S, f, T), where f is a total function from S to T), with composition the usual 

composition of functions. Note that a category of sets is completely determined 

by its set of objects. 
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Before presenting some examples of categories of sets, a foundational problem 

has to be solved. We would like to have at our disposal something like the 

"category of all sets"; unfortunately, this category would have the "set of all 

sets" as its set of objects, which does not exist in ZFC. 

We shall adopt Mac Lane's solution to this problem [Mac Lane 71, p. 21-241, 

which is to postulate the existence of a "universe", that is, a set closed under all 

the usual operations of set theory. Such a universe can be said to contain all the 

sets of interest in "normal" mathematics, and hence it is a useful approximation 

to the idea of the "set of all sets". 

To be precise, a universe is a set U such that 

U U ç U 	(equivalently, X E U = X ç U), 

forallXEU: UXEUandPXEU, 

NEU,and 

whenever f is a function with dom f E U and ran f ç U, then ran f E U. 

Now ZFC set theory is augmented by the axiom 

there exists a universe. 

For- the remainder of the thesis, U is a fixed universe. The elements of U are 

called small sets; similarly, mathematical objects such as functions or categories 

are called small, if they are elements of U. The subsets of U (which may or may 

not be small sets), are called classes. 

This gives us two important categories of sets: 

Set is the category of sets whose objects are the small sets (i. e., I Set I = U), 

Cis is the category of sets whose objects are the classes (i. e., ICisi = P(U)). 

• Another useful kind of categories are the preorder categories, in which every 

horn-set has at most one element. These categories correspond to preorders, for 

if C is a preorder category, then its object set IC! is preordered by the relation 

X E Y := C(X, Y) 0, and if (M, ) is a preorder, a preorder category is 

obtained by taking M as the object set, as the arrow set (recall that E is a set 
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of ordered pairs) and by putting src(x, y) := z, trg(z, y) := y, id(z) := (x, z), 

and (x,y) ; (y,z) := (x,z). 

If in a a preorder category C we have for all objects X, Y that C(X, Y) # 0 

and C(Y, X) 0 imply X = Y (so that the preordering El of the category is a 

partial ordering on CI), then C is called a partial order category. 

One partial order category we shall use is Setlnci, whose objects are the 

small sets, and whose arrows are all the inclusion mappings between small sets. 

With each category C is associated the opposite category C°, which has the 

same object and arrow sets, but in which the notions of "source" and "target" 

are swapped and the order of arguments of composition is reversed: 

If f:X — Y (i. e., src f = X and trg f = Y) and f;g=hinC, 

then!: Y -+ X(i.e., srcf=Y and trgf=X) andg;f= h in C°". 

To avoid confusion, an arrow f of C°" is usually written "fOP",  so that we obtain 

the laws 

f:X—YinC 	f °":Y—XinC°P 

and 

f ; g = h in C 	gP ; fOP = h"P in C°P. 

A functor F from a category C to a category B (notation: "F: C -+ B") 

consists of an object function mapping the C-objects to B-objects and an arrow 

function mapping the C-arrows to B-arrows (both of these mappings are usually 

written "F" also) such that whenever X E ICI and f and g are composable 

arrows of C, we have 

F(id(X)) = id(F(X)) 

F(f ; g) = F(f) ; F(g). 

For example, this thesis will use the functor (4k: Set - Set which maps a 

small set S to H(S*,  S) (1. e., the set of all pairs (s, r) with s E S*  and r E S), 
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and which maps a function f: S -, T to the function f: S -+ T defined by 

r) = ((fsj,... ,fs), fr). 

A category of categories is a category whose objects are categories, and whose 

arrows are all the functors between them. 

For example, we shall use the category of categories LCat, whose objects 

are all the large categories, that is, categories whose object and arrow sets are 

classes. 

An inclusion functor is a functor whose object and arrow functions are inclusion 

functions. A category S is a subcategory of a category C, if there exists an 

inclusion functor from S to C (in other words, if the object and arrow sets 

of S are subsets of those of C, and the source, target, identity and composition 

operations of S are restrictions of those of C). 

For example, the category Setlnci is a subcategory of Set, and Set is a 

subcategory of Cis. 

2.2 Algebraic Signatures and Algebras 

This section presents the notions "algebraic signature", "signature morphism" 

and "algebra", which are familiar in abstract data type theory; and it illus-

trates the way signatures and algebras model the data structures in functional 

programs, such as the ones of Section 1.4. 

The signature notion is ubiquitous in the literature on abstract data types. In 

this thesis, I shall use the name "algebraic signature", because the term "sig-

nature" will be used in a more general sense in the next section. The notation 

I use is adopted from [BR 83, p.  2211 and [Reichel 84, Def. 2.2.1]. 

Recall that if a is a function, then dom a is its domain and ran a is its 

range. If S is a set, S*  is the set of finite sequences over S, that is, of sequences 

.9 = (s i ,... ,$), where ii E N, and s1  E S for all i in {i,. .. ,n}; the set S is 
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defined as S+ 	ff(s*,S). If S and T are disjoint sets, their union is written 

"S+T". 

2.2.1 Definition. An algebraic signature is a pair 

= (S,a), 

where a is a function with ran a c S + , and S fl dom a = 0. 

An algebraic signature will often be written in the form 

E=(S, a:F-3S), 

which defines F := dom a. The elements of S + F (note that S and F are 

disjoint) are the symbols of E; the elements of S are the sort symbols (or sorts), 

those of F the function symbols of E. 

The map a: F -p S maps each function symbol to its type in E, and if 

a(f) = (s . . .s,r) for some! E F, si ,... , s,r E S, write: 

f:s1 ... s—+rinE, 

and call the word s ... s, the source (or arity) and r the target of f in E. 0 

Algebraic signatures have appeared throughout the program development in Sec-

tion 1.4: The "signature" part of every interface given there is just an algebraic 

signature, given in a notation which is not the one suggested by the definition, 

but easy to read, unambiguous, and widely used in the literature. This notation 

will be used throughout this thesis to denote particular signatures. Its transla-

tion into the notation suggested by the definition is illustrated in the following 

example. 

2.2.2 Example (Meaning of the conventional notation for signatures). 

The signature of the interface IDICT  (Figure 1-5), which states the original 

problem of the program development in Section 1.4, is written in the conventional 
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notation: 

signature 

bool, item, listitem: sort 

leitem: item item -+ bool 

dictionary: listitem -+ list item 

This denotes the signature 

EDICT = (S, a: F -+ S+), 

where 

S = { bool, item, list item}, 

F = {leitem, dictionary}, 

a(leitern) = (item item, bool), 

a(dictionary) = (list item, list item). 

The meaning of a line of the form "f: s, ... s, - r" is thus just as defined in 

Definition 2.2.1. 	 0 

The notion of an "algebra" that will now be defined is known in the literature 

under the name "partial many-sorted algebra" ([Burmeister 82, P.  350 f.], [BR 83, 

p. 221] 1 , [Wirsing et a]. 83, p. 41, [Reichel 84, Def. 2.2.10], [KA 84, p.  321]). 

Recall that "1: S+ T" means that f is a partial function from S to T, i.e., 

that f is a function, dom f C S and ran f c T. 

2.2.3 Definition. Let E = (S, a: F - S) be an algebraic signature. An 

algebra of signature E (also called E-algebra) is a function A with domain S+F, 

1 The definition of a "partial algebra" in this paper contains a crucial printing error: 

The requirement for a partial algebra must be "dom o A 81  x •.. x A 8 ", not 

"domo A = A 8 , x ... x A 3 ", as stated in the paper. With the latter condition, a 

"partial algebra" would be the same as a "total algebra". 
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such that whenever 

f:si ... s-+rinE, 

then 

A(f): 
( JJ 	A(s)) -- A(r). 
iE{1,...,n} 

A s-algebra A maps a symbol z of E to its interpretation in A, written "A Z". 

The interpretations of the sort and function symbols of E are the carriers (often 

called sorts, by abuse of language) and functions of A, respectively. 	o 

Algebras, too, have occurred throughout the program development in Section 

1.4: On page 34 f. I mentioned that in the "properties" part of an interface, it 

is implicitly understood that a sort symbol denotes the set of values of a data 

type, and that a function symbol denotes a partial function from the (product 

of the) sets denoted by the input sort symbols to the set denoted by the out-

put sort symbol. This just means that the interpretations of the symbols in 

the "properties" part of an interface are understood to form an algebra; an 

interface therefore describes properties of an algebra. 

In general, an interface may be "satisfied" by any number of algebras. The 

case that an interface describes just one algebra is quite common—for example, 

the interfaces 'LISTITEM (Figure 1-4), 'DICT (Figure 1-5), 'INPUT (Figure 1-11), 

'OUTPUT (Figure 1-12), and 'INSERT (Figure 1-15) all describe a single algebra 

of the signature given in their "signature" part, given a fixed interpretation 

of the symbols "item" and "leitem". On the other hand, the interfaces 'ITEM 

(Figure 1-3), 'INOUT  (Figure 1-9) and 'MIN  (Figure 1-17) are "loose" in that 

they are satisfied by more than one algebra. 

2.2.4 Example. (Recall that if f is a relation (in particular, a function), then 
1U  is the converse of f, and fJS) = { y I 3x E 5: (z, y) e f is the image of S 

under f). 

If the interpretations Ajiem of item and Aiejjem: JJ(Ajtem,Ajtcm) 	{T,F} 

of leitem are given such that { (x, y) I Aj eit em  (z, y) = T ) is a total ordering 
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on Aitem, then the following algebra A is the unique algebra of signature EDICT 

(Example 2.2.2) that satisfies the interface 'DICT  (Figure 1-5): 

Ab001 	= {T,F} 

A item 	: (as given) 

Alistitem  = (A igem )* 

Ateigem 	: (as given) 

Adsctionar y  : (A jgem )* + (Aiem) 

maps I E (Aigem)*  to the unique d E (Ai ggm )* that con-

tains the elements occurring in I in ascending order, i. e., 

the list d such that ran d = ran 1 and Ascending(d). 0 

It can be seen here that the notations used to present an algebra in this thesis 

are the same as those used in the specifications of Section 1.4. That is to say, 

the language of rigorous program specifications is the same as the mathematical 

language used throughout this thesis. This makes the expressive power and flexi-

bility of conventional mathematical notation available for program specification. 

The general role of algebras in this thesis is to model the data types and opera-

tions of concrete programs. The functions of an algebra may be partial, that is, 

they may be undefined for some argument tuples. In such a case, no result value 

is delivered that could be further processed by other operations of the algebra. 

Hence, partiality represents "abortive" situations in which no further processing 

is done within a program (I. e., in which nontermination or an abnormal program 

exit occurs). 

In the theory of abstract data types, it is customary to use total, rather than 

partial, algebras to model data structures. In a total algebra, the functions 

always return result values, and so there is no direct way of indicating abortive 

situations. 
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The main technical advantage of total algebras is that their theory is simpler 

and better developed; while there is just one notion of "homomorphism", "sub-

algebra", and "congruence" for total algebras, there is an embarrassing wealth of 

variants of these notions for partial algebras ([Grãtzer 79, p. 80], [Burmeister 82, 

p. 306]), so that a choice has to be made which variant to use for a certain pur-

pose. This affects, for example, the "initial algebra semantics" of specifications 

(originally proposed in [GTW 78]), which depends on a homomorphism concept 

between algebras. 

In Klaeren's book [Klaeren 83, p.  92-931, we find an argument in favour of 

total algebras from a "software engineering" viewpoint. Partiality of an opera-

tion, Klaeren argues, jeopardizes the "robustness" of a program (i. e., its ability 

to cope with exceptional situations), because the application of a function to 

arguments for which it is undefined results in an abortive situation, in which no 

explicit error handling can take place. 

Read contrapositively, Klaeren's argument is that for the design of robust 

programs, total algebras should be used: Since the functions of a total algebra 

return values in all circumstances, including exceptions, and since these values 

must then be processed further within a program, the programmer is forced to 

provide explicit exception handling, and encouraged to provide sensible error 

messages.. 

However, this argument in favour of total algebras ignores the fact that in a 

partial algebra, the same provisions for error handling are possible as in a total 

algebra—the designer is free to decide whether to provide a return value in 

an exceptional situation, or to treat the situation as abortive by making the 

operation that detects it undefined in this case. Total algebras do not offer this 

choice, and this can cause a number of problems. 

First, the use of total algebras makes programming more complex, as it 

enforces cOnsideration of exceptions that might otherwise have been neglected. 

Consider for example programming in a language where a value retrieved from 

memory might not necessarily be the expected one, but also the exception value 

for "memory failure" ("corrupt data"). This would force the programmer to 
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consider the handling of memory failures throughout the program. Only in 

few applications would the increased security justify the increase in program 

complexity. 

A second problem in trying to make operations produce result values in all 

possible exception situations is that malfunctions may occur within the code 

that detects and handles exceptions itself. Here, the assumption that "every 

malfunction causes the production of a result value" seems to lead to an infinite 

regress. 

A third problem is that many programming languages have basic operations 

that are partial, because they are capable of causing an abnormal program exit 

without giving the programmer a way of preventing this by "trapping" the ex-

ception (e.g., division might cause a program exit when the denominator is zero). 

The most adequate model for such an operation is a partial function that does 

not return a value if an unrecoverable exception occurs. In a total algebra, the 

operation would have to be modelled by a total function. But the value returned 

by this function in a situation where its concrete counterpart aborts is totally 

fictitious. Since this fictitious value nevertheless has to be processed in some 

way by the other functions in the algebra, we obtain an algebraic model that is 

more complicated than necessary, that is no longer in correspondence with the 

concrete operations, and that therefore invites mistakes. 

A similar problem occurs in cases where operations fail to terminate. Again, 

in the total algebra approach, the operation would have to be modelled as re-

turning a fictitious value, "I", say, in this case. This in turn creates fictitious 

terms, such as "1(1)", that do not correspond to the application of a function 

to a value in the concrete program. 

Nontermination is accepted by Klaeren as a reason for considering partial func-

tions [Klaeren 83, p.  143 f.]. He argues, however, that the "basic" operations 

of a data structure are always total, and that nontermination can occur only in 

"derived" operations. 

He thus creates a distinction between "basic" and "derived" operations of a 

program, which seems a high conceptual price to pay. In particular, an abstract 
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data type becomes less "abstract", if its operations are divided into "basic" and 

"derived" ones. Such a distinction is unnecessary from a user's point of view, 

rather, it is an "implementation detail" that should not enter into specifications. 

As we have seen, the attempt to rule out abortive exception situations is prob-

lematic. In particular, abortive exceptions have the advantage of simplicity over 

exceptions that return values, as no special data values and no error handling are 

required. This suggest a useful role for abortive exceptions in program design, 

when used with deliberation. 

In general, a tradeoff is necessary in program design between simplicity and 

robustness. The choice which exceptions to regard as abortive, and which to 

handle within a program, is an essential design decision. The range of exceptions 

that a program is designed to cope with may be called the "exception scope" of 

the program. 

Some examples may illustrate the "exception scope" concept: In a compiler, 

failure of the syntax analysis would certainly have to be in the exception scope 

of the program and thus to be properly recognized and handled. In consequence, 

other exceptions will, also have to be handled properly, for example, a failure in 

looking up a symbol in the symbol table, as this may occur during the compila-

tion of a syntactically incorrect program. 

On the other hand, there are exceptions which one would regard as being 

outside the scope of the compiler, such as, for example, corruption of a symbol 

table entry due to a memory failure. One would usually expect the underlying 

hardware to be designed in such a way that such errors are extremely unlikely to 

penetrate into the compiler's operation (this could, for example; be achieved by 

stopping the processor if a hardware malfunction was detected), and thus allow 

oneself the freedom to omit such errors from consideration in the design of the 

compiler. 

In other programs, one might well make a different choice: Consider for ex-

ample software controlling vital functions of an aircraft. Here, where memory 

failures are both more likely and potentially more disastrous, it would be manda-

tory to provide proper handling of situations where corrupt data are detected. 
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As a conclusion of the preceding discussion, I would suggest the following guide-

line for the use of partiality. 

Strategy. When designing a program, decide about the "exception 

scope" of the program, that is, about the range of exceptions to 

be anticipated and handled within the program. The functions of 

the algebraic model must yield well-defined "exception values" for 

exceptions inside the scope. Exceptions outside the scope should be 

modelled by partiality in order to keep the algebraic model simple. 

The advantage of partial algebras is that they allow one to model abortive 

exception situations in an elegant way. In contrast, total algebras enforce the 

introduction of fictitious result values in such situations, and results of applying 

operations to these values have to be defined, although such applications are 

impossible in a concrete program. 

The final concept to be introduced in this section is that of a "signature mor-

phism", which is ubiquitous in abstract data type theory. A signature morphism 

maps the symbols of one signature onto the symbols of another, such that the 

type information is preserved. The notion of a signature being a "subsignature" 

of another can also be introduced on the basis of signature morphisins. 

Recall that the operation 	is defined for functions as well as for sets: 

if f: S -+ T, then f: S -+ T maps (si ... s,r) to 

(it is usually obvious from the context which version of 	is meant). The 

operation (4 is a functor (_)±: Set - Set, that is, we have (Id(S))± = Id(S±) 

and (f ; g)+ = 	; g for all sets S and composable functions f and g. 

2.2.5 Definition (Signature Morphisms, Subsignatures). 

Let E = (5, a: F -p S+) and 2Y = (S', a': F' -+ (S')) be algebraic signatures. 

A signature morphism from E to E' is a map a: S + F -+ 5' + F', such that 

aaFF', 

and whenever 1: si ... s -+ r in E, then 

(a!): (as') ... (asp) -+ (ar) in 2Y 
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(More concisely: a ; a+ = a; a'). 

If a is a signature morphism from E to E", we write "a: E -+ L"". If a is 

an inclusion map of sets (i. e., a = (S + F C 5' + F')), we call a an inclusion 

morphism from L' to 1', and say that E is included in E', or a subsignature 

of £', and write "L' E'". If E E', we write "(L' E')" for the unique 

inclusion morphism (L' C 1'): £ —), V. 0 

The following proposition expresses some well-known properties of signature 

morphisms. The straightforward proof is omitted. 

2.2.6 Proposition. If a: Z -i F! and a': F! -+ E ll  are two signature 

morphisms, their composition (as functions) is a signature morphism (a ; a'): 

If E = (S, a: F -i St), then the identity map Id(S + F) is an inclusion 

morphism from E to itself. This morphism is a two-sided identity for the com-

position of morphisms. 

A set of algebraic signatures as objects with the signature morphisms (inclu-

sion morphisms) between them as arrows forms a category. 	 0 

2.2.7 Definition. Let "ASig" denote the category of small algebraic signa-

tures with arrows the signature morphisms between them; let "AInci" denote 

the category of small algebraic signatures with arrows the signature inclusions 

between them. 0 

The following properties of the inclusion relation are derived easily from the 

definition. 

Recall that if a is a relation (in particular, a function) and S is a set, then 

a/S = { (z, y) E a I z E S } is the restriction of a to S. 

2.2.8 Proposition. An algebraic signature E = (S, a: F —p S) is included in 

an algebraic signature F! = (5', a': F' -i (S')), if and only if S c 5', F c F', 

and a C a' (or equivalently, cr'/F = a).  

Every set of algebraic signatures is partially ordered by inclusion. 	0 
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If E is a subsignature of E', the sort symbols of E are sort symbols of E', and 

every function symbol f: si . . . s, -+ r in E is a function symbol of the same type 

in V. However, not every subset of the symbols of E' defines a subsignature 

of '—only those that with every function symbol f: s . . . s, - r of E' contain 

the sort symbols si . . . s and r as well (we might call such subsets "closed 

under a'"). These subsets are in 1-1 correspondence with the subsignatures 

of E'. 

An important property of signature morphisrns is that they allow the "transla-

tion" of algebras in the opposite direction, as stated in the following well-known 

proposition. 

2.2.9 Proposition. If a: E - E' is a signature morphism, and A is a  ZI-

algebra, then the functional composition a ; A is a £'-algebra. if A and E are 

small, so is a ; A. 

if both a: E - £' and a': E' -+ E" are signature morphisms, then for any 

E"-algebra A: a; (a' ; A) = (a ; a') ; A. 

if a = Id(1): L' -+ L', then a ; A = A for all E'-algebras A. 	 0 

From this proposition it follows that we obtain a functor by associating with 

each signature morphism a: L' -* E' between small signatures the map U from 

the set of small E'-algebras to the set of small E-algebras defined by: A '- a ; A. 

2.2.10 Definition. Let Aig: ASig°" -+ Cis be the functor whose object 

function maps L' E JASigJ to the class of small E-algebras, and whose arrow 

function maps a: E - E' in ASig to the function : Alg(E') - Alg(E) 

defined by: A '-' a; A. 

If £' E E' in ASIg and A E Alg(E'), we call A/E := Alg((E 

the reduct of A to E. 	 0 

The "translation" of a E'-algebra A' along a signature morphism a: E -p E' can 

be described by saying that in the translated algebra A := (a; A') each symbol z 
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has the interpretation that a(z) has in A': A = A( Z). That A is a E-algebra 

follows from the "type preservation" properties of a, i. e., from the fact that 

a maps sort symbols to sort symbols, function symbols to function symbols, and 

"preserves types" (if 1: s i . . . s, -+ r in E, then (of): (r) ... (os,) -i (or) 

in 1'). 

If a = (E ç E') is an inclusion, the symbols of E form a subset of those 

of E', and the algebra A assigns to each symbol of E the same interpretation 

as A'—this is why A is called a "reduct" of A'. Note that a "reduct" is not 

the same as a "subalgebra" in this thesis: A "subalgebra" of an algebra A will 

later be defined to be an algebra with the same signature as A, in which each 

sort (and the graph of each function) is a subset of the corresponding sort (or 

function graph) of A (see Definition 4.3.5). 

2.3 Institutions 

This section introduces the notion of an "institution", which generalizes the 

setting of the previous section. Many of the definitions and theorems of this 

thesis will not be developed on the "concrete level" of algebraic signatures and 

partial algebras, but on the "abstract level" of institutions. 

There are two reasons for this generalization. First, algebraic signatures and 

algebras are best suited to model a "pure" functional programming language, 

as used in the program development of Section 1.4. In other programming no-

tations, there may be program entities other than just sorts and functions, for 

example variables, labels, exceptions, parameterized types (type constructors) 

etc. In general, a signature would state the syntactical ("type") attributes of 

the names denoting program entities in an environment. Hence, for a richer pro-

gramming notation, a signature would have to comprise more classes of symbols 

than just sort and function symbols, and to provide adequate type information 

for symbols of those classes. Similarly, the semantic models for program entities 

would not just be algebras, but structures characterizing the semantics of the 
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program entities listed in a signature. Such structures in general will be called 

"models" of a signature. 

By developing the theory as far as possible on the basis of signatures and 

models in general, I hope to make the theory applicable or at least easily trans.. 

ferable to modular programming in richer programming notations. However, this 

thesis will deal only with one concrete instance of the general setting, namely 

with algebraic signatures and algebras. 

A second reason for developing the theory as far as possible on the abstract level 

is that this makes the mathematical development more elegant—the basic the-

orems about composition of specifications and implementations can be proved 

without consideration of the details of algebraic signatures and algebras, and this 

induces the same kind of simplification that data abstraction does in program-

xning. An illustration of this simplification is that the proof of Theorem 4.1.7 in 

the present thesis requires 11 pages (page 189-200), while theorems analogous 

to this theorem and its Corollary 4.1.12, but significantly weaker, were proved 

in [Schoett 811 in two separate proofs requiring 5 pages [p. 124-1291 and 7 pages 

[p. 61-68], respectively. 

Developing the theory on an abstract level not only makes it simpler and 

more general, it also emphasizes the properties of signatures and models that are 

fundamental for modular programming, and separates them from the particular 

properties of algebraic signatures and algebras. This is in accordance with the 

"axiomatic method" as characterized by Bourbaki [Bourbaki 66, p. 3]: 

"La méthode axiomatique permet, lorsqu'on a affaire 'a des êtres 

mathématiques complexes, d'en dissocier les propriétés et de les re-

grouper autour d'un petit nombre de notions, c'est-à-dire, ... de les 

classer suivant les structures auxquelles elles appartiennent" •1 

1 Translation, based on p. 9 of the English translation: "The axiomatic method allows us, 

when we are concerned with complex mathematical objects, to separate their properties 
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The basic idea behind the institution concept is to abstract from the details of 

the syntax and the semantic models of a logical or programming notation. This 

idea has inspired the development of "abstract model theory" in mathematics 

[Barwise 741, it has been introduced to computer science by Burstall and Goguen 

([BG 80, p.  307 f.], [GB 84]), and has since been used by others (e.g., [MM 841, 

[ST 85]). 

In particular, the term "institution" for the abstract setting is borrowed from 

Goguen and Burstall [GB 841. Two apologies must be made for this: 

First, the notion used here differs in two important ways from the notion 

used by Goguen and Burstall: 

. there is no notion of "sentences"; following an idea of Lipeck [Lipeck 83, 

p. 15 f.], specifications are treated as sets of models, 

. there is a partial "inclusion" ordering on the set of signatures, so that 

lattice-like operations on signatures can be performed. 

Sentences have been omitted from an institution, because they seem unnecessary 

for the theory; the inclusion ordering is the basis for operations on signatures 

that do not need explicitly stated signature morphisms. Despite these changes, 

however, the purpose of the institution notion in this thesis is the same as the pur-

pose of Goguen and Burstall: to work in an axiomatic framework that abstracts 

from the details of particular semantic models and of particular specification 

notations. This fact has led me to adopt the name "institution" nevertheless. 

Second, the institution notion I present is not a mature mathematical con-

cept. Rather, I have collected in the definition of this notion the properties 

I needed in the development of the abstract layer of the theory (consisting of 

the present section, Chapter 3, and Sections 4.1 and 5.1). This has resulted in a 

somewhat inelegant set of axioms for the "institution" notion, "proof-generated" 

in, the sense of [Lakatos 76, p.  127 f.]. The reader is thus asked not to ponder too 

and regroup them around a small number of concepts, that is to say, ... to classify them 

according to the structure8 to which they belong". 
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deeply the significance of the individual axioms, particularly in Definition 2.3.5, 

but to regard them as documenting the requirements of the theory developed in 

this thesis. It is to be expected that in further developments of the theory, the 

axioms will be replaced by a stronger and perhaps more elegant set of properties. 

In the following, an "institution" will be defined as a triple (Sig, md, Mod) 

satisfying certain axioms. Here Sig is a category of "signatures" and "signature 

morphisms", mci a subcategory of Sig, consisting of "inclusion morphisms" only, 

and Mod a "model functor" from Sig °" to a category of sets. An example of an 

institution is (ASig, AInci, Aig), which the reader is asked to keep in mind as 

an illustration of the concept. 

Recall that a category i is a partial order category, if each horn-set I(S, T) has 

at most one element, and if I(S, T) # 0 and I(T, 5) 0 imply S = T. 

2.3.1 Definition. A partially ordered category is a pair (C, I) of categories, 

such that I is a subcategory of C, III = ICI, and i is a partial order category. 

In a partially ordered category (C, I), call the arrows of I inclusions, and if 

j: S -' T is an inclusion, say that S is included in T and write "S C 1". If 

S T, write "(S C T)" for the unique inclusion from S to T, and if a: T -+ U 

is an arrow of C, let a/S := (S T) ; a be the restriction of a to S. 0 

The pair (ASig, AInci) is a partially ordered category, and the inclusion relation 

agrees with the inclusion relation of Definition 2.2.5. Another example of a 

partially ordered category is the pair (Set, Setlnci)_(Set_is the category of 

small sets and functions, Setlnci is the subcategory of Set that contains only the 

inclusion functions, cf. Section 2.1). Here, the inclusion relation is set inclusion, 

and the restriction of a morphism (i. e., a function) to a set agrees with the 

standard notion of "restriction" (see Section 2.1). 

In an institution, the inclusion relation between signatures is required to have 

some additional properties. One of these, the property of being "compatibly 
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complete", will now be introduced in the general context of partial orders, in 

order to derive some of its consequences first. 

Recall that if (M, ) is a partial order, an element S of M is said to be 

an "upper bound" of a set P C M, if and only if T S for all T E P. The, 

element S is the "least upper bound" of F, if S is the least element among the 

upper bounds of F, that is, if S T whenever T is an upper bound of P. The 

notions of "lower bound" and "greatest lower bound" are defined analogously. 

These notions apply to families of elements of M as well—a bound of (S,) jEJ 

is the same as a bound of { Si i E I I. It does not really matter whether one 

considers bounds of sets or of families, since every set can be represented as a 

family (indexed by itself), and every family by the set of its elements (its range, 

to be precise). We will hence use the "bound" concept for sets and families 

indiscriminately. 

2.3.2 Definition. Let be a partial ordering on a set M. A set or family 

of elements of M is C-compatible ("compatible", for short), if it has an upper 

bound according to r. 

The ordering is compatibly complete, if every compatible set (and hence 

every compatible family) has a least upper bound. Let "J F" denote the least 

upper bound of a compatible set P C M, and let "U1EI  S" denote the least 

upper bound (also called the join) of a compatible family (Si)iEI of elements 

of M (written "S U T" in the binary case). o 

Readers familiar with lattices might note that a compatibly complete partial 

order (M, ) becomes a complete lattice when a new "top" element is added 

that is greater than all the elements of M. Conversely, each complete lattice 

is a compatibly complete partial order, and removing the top element from a 

complete lattice with at least two elements still leaves a compatibly complete 

partial order. The following proposition and its proof have well-known analogues 

in complete lattices. 

2.3.3 Proposition. In a compatibly complete partial order every nonempty 

set (and hence every nonempty family) has a greatest lower bound. 
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Proof. Let (M, ) be a compatibly complete partial order, and let P C M be 

nonempty. Let Q be the set of all lower bounds of P. Every element of P is an 

upper bound of Q. Since P is nonempty, Q is compatible, and thus possesses a 

least upper bound K := U Q. We show that K is the greatest lower bound of P. 

First, K is a lower bound of P, because if T E F, then T is upper bound of Q, 

and hence K = U Q T. Second, if S is any lower bound of P, then S E Q, 

and hence S K. 0 

2.3.4 Definition. If is a compatibly complete partial order on some set, let 

"S fl T" denote the greatest lower bound (also called the meet) of two elements 

S and T of that set. 	 0 

An important property of the join operator is that the result of an arbitrary 

expression using binary and general joins (and no other operators) depends only 

on the set of elements occurring in the expression and is independent of the 

arrangement of the operators. From this, one easily obtains that the familiar laws 

of commutativity, associativity, and idempotence hold whenever the signatures 

involved in an expression are compatible. 

The meet operator possesses analogous properties. It is subject to the re-

striction, however, that the number of elements combined in a meet expression 

must not be zero. 

In the remainder of this thesis, these properties of join and meet will be used 

without mentioning them explicitly. 

After this brief treatment of properties of compatibly complete partial orders, 

we are now ready to state the syntactic properties of an "institution". 

2.3.5 Definition. 	An institution syntax is a partially ordered category 

(Sig , mci) that satisfies the following axioms. 

(a) (Compatible Completeness) 

The partial ordering on J SigJ defined by mci is compatibly complete. 

[:1:] 
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Let "S T" mean that S and T are compatible signatures, use "U" I "U" to 

denote general and binary joins of compatible (families of) signatures, and "fl" 

to denote binary meets. 

(Distributivity) 

If 	 is a compatible family of Sig-objects, then 

so  n (U s) = U(so n se). 
iEI 	iEI 

(Renaming) 

Whenever S, T, and U are Sig-objects such that S T and S U, 

then there exists an object U, such that 

SuT, 

Un(SuT) =UnS, 

together with Sig-isomorphisms 

k:UUS — UuS, 

such that 

(UE UUS);k=j;(U E UUS) 

(SE UUS);k=(SEULJS) 

(UnS E U);j=(UnSE U) 

(in other words, the diagram shown in Figure 2-1 commutes). 

In an institution syntax (Sig, mel), call the objects of Sig signatures and the 

morphisms of Sig signature morphisms, and if S T, say that S is a subsignature 

of T. We regard as the "standard" partial ordering on the set of signatures, and 

hence we shall speak of "compatible" signatures, and of "least upper bounds", 

"joins" and "meets" of signatures, always implicitly referring to C. 0 

The general idea behind this definition is that the signatures of an institution 

syntax represent the "type environments" of a programming language; each 

signature corresponds to a set of program symbols ("identifiers") with associated 
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UUS 
k 

UUS 

S 

2 	'LI 

Uns 

all unlabelled arrows 

are inclusions 

Figure 2-1: Diagram postulated by the renaming axiom 

type information. This type information would allow one to determine whether 

code that uses the symbols of a signature was syntactically well-formed. 

The signature morphisms mentioned in the axioms above are either inclusions 

or isomorphisms or compositions of these. No other kinds of signature morphisms 

will be used in the general theory based on institutions, although an institution 

syntax might contain such morphisms. A subsignature of a signature S may be 

thought of as containing a subset of the symbols of S; a signature isomorphic 

to S may be thought of as a "renaming" of S, which could be obtained from S 

by performing a one-to-one substitution of symbols. 

Note that axiom (b) of the definition requires distributivity only in the case 

that So  is compatible with the Si (i E I), although both sides of the equation 

would be defined even if So was incompatible with UiEI S. In fact, in this 

thesis the meet operator fl will never be applied to incompatible signatures-

compatibility will be regarded as a prerequisite for forming both joins and meets 

of signatures. The only exception to this is Theorem 2.3.6 (c) below, which 

characterizes the meet of algebraic signatures regardless of their compatibility. 

Note also that the inclusion 

son(Us) Usonsi. 
iEI 

is trivially true, because the family (So fl Sj)iEJ is bounded by S0  fl (11 	Se ). 

While the completeness and distributivity axioms will be used frequently in 

this thesis, the renaming axiom is rather specialized: it will only be used once, in 
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the proof of Lemma 4.1.9. This lemma says that the presence of "hidden" internal 

symbols in a system may safely be ignored when looking at that system from 

the outside, a fact which is essential for the composability of implementations 

(Theorem 4.1.7). 

To help understand the renaming axiom, here is a rough illustration of its 

meaning. Think of T and U as two separate name spaces of some program (e.g., 

T might represent the declarations in force at some point in the program, and 

U might represent the declarations visible inside a block declared at that point), 

and of S as the entities that T and U have in common (in the example, S would 

be the set of global symbols visible inside the block, that is, the set of symbols 

that do not receive new definitions). What the axiom says then is that there is 

a "renaming" U of U, such that no clashes occur between U and T (U S UT), 

the symbols of UflS have not been changed (Uris = UnS), and U and T share 

symbols only via S (Un T Un S). In the example, this would be a renaming 

of the local symbols of the block that makes them disjoint from the symbols of 

the global name space T. 

Thus, in general, the renaming axiom expresses the possibility of avoiding 

clashes between local and global declarations by renaming the local declarations 

while preserving the "connections" between the local and the global declarations. 

It is also worthwhile to note that the renaming axiom is symmetric between 

T and U in its assumptions as well as in its conclusions. Defining 1' := T, 

:= Id(T): T, and k' := Id(T U S), we can substitute T for U, t for U, 
j' for j and k' for k in the conclusion of the axiom, and obtain statements that 

are also valid. 

This symmetry indicates that clashes between local and global definitions 

can equally well be avoided by renaming the global declarations instead of the 

local ones; the proof of Lemma 4.1.9 does this, because it is formally simpler. 

We now verify that the pair (ASig, AInci) is an institution syntax. 

2.3.6 Theorem. The pair (ASig, AInci) is an institution syntax. In particu-

lar, 
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A family (E')j of small algebraic signatures E, = (Si , a,: F1 -+ S) is 

compatible, if and only if: 

U (Si + F1) is small, 	(U 5,) n (U F1) = 0, 	U Cii is a function. 
iEI 	 iEI 	iEI 	 iEI 

In particular, if I = {i, 2}, the signatures El and L'2 are compatible, if 

and only if 

S1flF2=S2flF1 =O, and VxEF1flF2:a i (x)=a2 (x). 

If (L'i)IEI is a compatible family of small algebraic signatures, such that 

Zi = (Si, a,: F, _ 5+'t then I I' 

UEi=(,  
iEI 

where 

	

ã=Uaj , 	P=UF, . 

	

iEI 	 iEI 	 iEI 

If (Ej)iEI is a nonempty family of small algebraic signatures, such that 

Ei = (Si, a,: F, - Q+ then _'i I, 

iEI 

where 

=flS, 	a= flaj, 	dom 

	

IEI 	 iEI 

if in addition the family is compatible, then P = niE. F,. 

The proof uses the following lemma. 

2.3.7 Lemma. if k: E -+ E' is an arrow in ASig (i. e., a signature morphism 

between small algebraic signatures) which is a bijection between the symbol sets 

of E and E', then the inverse k' of this bijection is the inverse signature 

morphism to k; in particular, k and k' are ASig-isomorphisrns. 

92 



2.3 Institut ions 

Proof. Let £' = (5, a: F -+ S) and E" = (S', a': F' - (S')). Then k is, 

by assumption, a bijection from S + F to S' + P. We show that k' also is 

a signature morphism. It is then clear that it is the inverse of the signature 

morphism k, and that k and k' are therefore ASig-isomorphisms. 

We have k'(]S'[) 9 S, because otherwise k would map an element of F to an 

element of S'; analogously, we have k — 'tJF' F. Finally, since a ; k+ = k ; a', 

we have 

a'; (k') = 	; k; a'; (k') = k' ; a; k ; (k') = k' ; a. 

Hence k' is a signature morphism from E' to E. 	 U 

Proof of Theorem 2.3.6. 

The pair (ASig, AInci) is a partially ordered category. We shall verify the three 

axioms of the "institution syntax" definition (Def. 2.3.5) and in the process prove 

the formulae given in the theorem. 

We first prove formula (a) of the theorem. Let (L'$ ) 1 j be a family of small 

algebraic signatures, where Ei = (Si, a1 : F1  — p St). Suppose first that (E1)1€i is 

compatible. Then we can choose a small algebraic signature E = (, fi _.+ 

that is an upper bound of the family. But then U$EI(S1 + F1) is small, because 

it is a subset of the small set § + P;  we have U1EISIfl U.EIFI 9 § nP = 0; 
and U$EI a1  is a function, because it is a subset of the function &. 

Conversely, suppose that the three conditions given in (a) are true. We verify 

that 1 := (UIEI S1,  UIEI  a1 ) is a small algebraic signature. Clearly, it is then an 

upper bound of the family (E1) 1 1. 

Define := U1E1 51, a := U.EIaI, and P := doma = UlEIdomal = 

U.EIFI. The set 9 is small, because is is a subset of U11(S + F1), which is 

small by assumption. a is a function mapping the elements of P to small sets. 

Hence the elements of a are small, and a contains exactly one such element per 

element of the small set P. It follows that a and 2 are small. We have 9 n P = 0 

by assumption. Because rana = UIEIranal 9  UEISt , a is a function 

from P to 	. Hence £' is a small algebraic signature. 

The conditions given for the special case I = {i, 21 are easily seen to be 

equivalent to the general ones in this case. 
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Axiom (a) (Compatible Completeness): 

We prove formula (b) of the theorem, which implies the compatible completeness 

property. Let (E,)IEI be a compatible family of small algebraic signatures. Then 

we can choose a small algebraic signature L' = (, &) that is an upper bound of 

the L' (i El). We have Siand a, C & for all I El. Define U EI S 

and a := (J1 a,. As 9 C and a C &, both and a are small. We have 

ran a = IJ,EJ ran a c UEI St +, and (dom a) n C (dom &) fl § = 0. 

Hence (, a) is a small algebraic signature. Clearly, it is the least upper bound 

of the family 

Axiom (b) (Distributivity): 

We first prove formula (c) of the theorem. Let Zi = (Si , a,: F, - St) for I E I, 

and let 2 be defined as in formula (c). We show that £' is a small algebraic 

signature. It then follows trivially that !' is the greatest lower bound of the E, 

(I E I), because the sort set of any lower bound must be a subset of every Si, 

hence of 9 , and the type map of any lower bound must be a subset of every a,, 

hence of a. 

Clearly, L' is small. Further, 

ran a = ran fl a 
IEI 

c flrana, 
iEI 

n
iEI

st  

=(fls) 
iEI 

= 

and a is a function, because it is a subset of some a,, which is a function. Hence 

a: -i . Since 9 fl P C Si fl Fi = 0 for some I, 9 and P are disjoint, and 

hence 2 is a small algebraic signature. 

We have P = doma = domfl,€ja, c flEIdoma1 = fl,EJF,. Suppose 

now that the family (E')1 is compatible. We can then pick an upper bound 

of the family. To show that fl1 F, 	P, consider 
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any f E fliElFi,  and let r := &(f). Then for any i in I: f e F8  = doma8 , 

and a8  9 a, hence a(f) = r. It follows that (f,r) E fllEIa8 = a, hence 

I E dom a = P. This concludes the proof of formula (c) of the theorem. 

The proof of the distributivity axiom (axiom (b) of Def. 2.3.5) is now straight-

forward. Let Ei = (Si, a 8 : F8  — S) for i E I U {O}, and assume that (Ej)EI 

is compatible (compatibility of E0 with UiEI Ei is not required in this proof). 

Then 

ofl(UEi)=Eon(USi, Uai) 
iEI 	 iE! 	iEI 

= (so  n (U si), aon((Ja s)) 
IEI 	 iEI 

= (U(sonsi), U(aoflai)) 
iEI 	iEI 

= [j(So nS, ao fla) 
iEI 

= U(Eon. 
iEI 

Axiom (c) (Renaming): 

Suppose that three small algebraic signatures Eo,  El and E2 are given, where 

Ei = (S8 , a8 : F8 -+ St) for i E {O, 1, 21, and suppose that 

and E0 — £2 

(Eo, El  and £2 correspond to S, T and U in the renaming axiom). 

Construct a small algebraic signature ±2, together with signature isomor-

phisms 

k:±2uEo—'E2 uE0  

as follows: Pick a set R of the same cardinality as ( 52 + F2) \ (So + Fo), such 

that R fl ((So + F0) U (S + F1 )) = 0. 1  Let 1: R -+ (S2 + F2) \ (So + Fo) be a 

1 For example, R could be constructed in the following way: Because D := dom((So  + 

Fo) U (Si + F1 )) is a set, we can pick x 0 D. Define R := {x} x 02  + F2) \ (So + Fo)). 
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bijection. Define 

k : = (i + Id (So + Fo)): R+(S0+F0) —'(52 +F2)u(S0+F0) 

(i and Id(S0+F0) are disjoint, because they are functions with disjoint domains). 

The map k is bijective, with inverse 

k' = (i' +Id(So+Fo)): (S2 +F2)u(S0+F0) -' R+(S +Fo). 

Now let S2 := k' (]S2 D and F2 := k' i] F2 , and define à2:  F2 -+ 	as the 

composition of the diagram 

k/fr2 	______ 	(k 1 )/S 
F2 	)F2 

i.e., let a2 := (k/fr2) ; a2 ; ((k — ')/St). 

The sets S2 and P2  are small and disjoint, because S2 and F2 are. Hence 

:= (2, 1&2: F2 -i 	is a small algebraic signature. 

We have 

fr2n(F0uF1) =kF2jn(F0uF1 ) 

= (k'F2\(So+Fo)+k'OF2n(So+Fo)) n(F0uF1 ) 

= (i1 0F2 \ (So + Fo)O + (F2 fl (So + Fo))) fl (Fo U F1 ) 

= (F2n(So+F0))n(F0uF1 ) 

(as i'jF2\(So+Fo)D 9 R,andRn(FouF 1)=O) 

= (F2nF0)n(F0uF1 ) 

= F2  fl F0. 

Consider x E P2  n (Fo U F1 ). Then x E F2 fl F0, therefore a 2 (x) = ao(x) E 

and hence 

a2(x) = ((k')1S)(a 2 ((k1fr2 )(x))) 

= ((k')/S)(a 2 (x)) 	(because x E Fo) 

= a2(z) 	 (because a 2 z E 

Hence we have shown that 

ifzEfr2n(F0uF1 ) [= F2flFo],then&2(x)=a2 (x)=ao (z). 	(*) 
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We shall now show that £'2 has the properties required of U in the renaming 

axiom. 

First, A .Eo U El according to formula (a) of the theorem, because 

n (F0 u F,) = k'jS2 (F0 u F1 ) 

= (k 1 s2\(so+F0)) +k'US2n(So+Fo)) n(F0uF,) 

= (i'S2 \ (S0 +Fo)) + (S2  n (So + Fo))) n (F0 u F1 ) 

_c(R+S0)n(F0 uF,) 

=Rfl(F0uF1)+S0n(F0 uF,) 

= 0 + 0 

=0, 

because, by a symmetrical argument, 

P2  n (S0 U S,) = 0, 

and because, according to (*), c12(x) = ao(z) for x E F2 n (F0 U F1 ). 

Second, we show that £'2 fl (o U £',) = E2 fl Eo. By formulas (b) and (c), 

we have 

E2fl(EouEi)=(S2fl(S0US 1),â2 fl(ao uai )). 

By an argument analogous to the proof above that P2  n (Fo U F,) = F2 n F0, one 

shows that 

2n(S0uS 1 )=S2 nS0 , 

which is the sort set of £2 fl Lo. Finally, 

a2 n (ao  U a,) = (â2/k 1 F2 ) fl (ao U a,) 

(à2/R+â2/(F2fl(So+Fo))) fl(aoUa,) 

= (â2/(F2  fl Fo)) fl (ao U a,) 

= (a2/(F2  fl Fo)) n (ao U a,) 

= (a2/(F2  n Fo))  n ((aO U a,)/(F2  n Fo)) 

= (c12/(F2  fl F)) fl (ao/(F2  fl Fe)), 

= (cx2 fl ao)/(F2  fl Fo) 

= a2 fl a0 , 

(as Rfl(F0UF1 ) = 0) 

(due to (*)) 

(because £ E) 
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2.3 Institutions 

which is the type map of E2 fl  Zo. Hence  ±2 fl (Eo  U Ei) = E2 rl £o. 

Next, we show that k is an ASig-isomorphism k: E2  u Eo -p E2 U 1. Since 

k is a bijection from (2 + F2) U (So + Fo) to (S2 + F2) U (So + Fo), according 

to Lemma 2.3.7 it is sufficient to show that k is a signature morphism. 

To see that k is a signature morphism, observe first that k (] §2 US0 [) = k ii 52 U 

kcjSo c S2 US0, which is the sort set of E2uZ0, and that analogously kP2 uF0  

is a subset of the set of function symbols of £2 U E. Finally, for 1: s , . . . s, -+ r 

inE2UE0: 

• 1ff E F0, then (&2 U ao)(f) = ao(f) E S( , and thus k((& 2  U ao)(f)) = 

ao(f) = (a2 U ao)(k(f)), 

• if I E F,2, then k+((&2  U ao)(f)) = k+(à 2 (f)) = k((k')(a2(k(f)))) = 

a2 (k(f)) = (a2 U ao)(k(f)). 

Thus, (&2 U ao) ; 	= k; (a2 U ao). Hence k is a signature morphism from 

E2UL'0 toE2UE0. 

Consider now the signature morphism 

k/E2 : E2 £2 U Eo. 

The associated mapping is k1 (2+P2), which is a bijection between S2+F2 and 

S2 + F2. Hence the map k/( 2  + F2) defines a signature morphism 

j: E2 

and because the map is bijective, Lemma 2.3.7 yields that j is an ASig-isomor-

phism between E2 and £2. 

It remains to verify the three equations relating k and j in the renaming 

adom. For this, it is sufficient to show that the respective symbol mappings are 

the same, and since the symbol mappings of inclusion morphisms are inclusion 

mappings, it remains to show that k agrees with j on S2 + F2, that k is the 

identity on S + F0, and that 5 is the identity on (S2  + F2) fl (So + F0). All this 

is trivial. 
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Hence the renaming axiom holds in (ASig, AInci), which is therefore an 

institution syntax. 	 0 

A simpler example of an institution syntax is the pair (Set, Setlnci). 

2.3.8 Theorem. The pair (Set, Setlnci) is an institution syntax. 

Proof. We can employ Theorem 2.3.6, because Set is isomorphic to the full 

subcategory of ASig whose objects are the signatures without function symbols, 

and Setlnci is isomorphic to the analogous full subcategory of AInci. It is 

clear from the formulas (b) and (c) of Theorem 2.3.6, that these subcategories 

are closed under formation of ASig-joins and -meets. From this one easily 

deduces that the three axioms of the "institution syntax" definition (Def. 2.3.5) 

hold for the subcategories of ASig and AInci that contain only the signatures 

without function symbols, and hence hold for the isomorphic categories Set and 

Setlnci. o 

We are now ready to define the notion of an "institution". 

Recall that if C is a category, then C°' is the opposite category, and if 

a: S -+ T is an arrow of C, then a°": T - S is the arrow of COP that corresponds 

toa. 

2.3.9 Definition (Institution). 

A preinstitution is a triple 

(Sig, mci, Mod), 

where (Sig, mci) is an institution syntax, and Mod is a functor from Sig'P to a 

category of sets. 

The terminology of an institution syntax (Def. 2.3.5) carries over to a prein-

stitution, that is, the objects of Sig are called "signatures", the morphisms of Sig 

are called "signature morphisrns", and the partial ordering on signatures defined 

by mci is called "inclusion" and written "". If S is a signature, an element A 

of Mod(S) is a model of signature S (or just an "S-model"). If a: S - T is 
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2.3 Institutions 

a signature morphism, let := Mod(a°P): Mod(T) -+ Mod(S). If S T and 

A E Mod(T), then A/S := (S T)(A) E Mod(S) is the reduct of A to S. If 

S T, A E Mod(S) and BE Mod(T) such that B/S = A (i.e., A is areduct 

of B), then A is included in B (written "A E B"). 

A preinstitution is an institution, if it has the following "completeness" prop-

erty: whenever (S)€'  is a nonempty compatible family of signatures, and 

Ai E Mod(S) for I E I, such that for all i,j E I: 

A/(S 1  n S) = A,/(S1 n S3 ), 

then there exists a unique A E Mod(UIEJ S) satisfying A/S1 = A1 (i. e., A1 A) 

for all I E I. This model A will be denoted "UIEJ A1" and called the join of the 

family (Aj) $EI (The proper notation would be "U1i(S, A 2 )", but the signatures 

Si (I E I) will always be known from the context). 1 o 

Here is the basic relation between reduct (of models) and restriction (of signature 

morphisms). 

2.3.10 Proposition. Let (Sig, mci, Mod) be a preinstitution. If S T and 

a: T - U is a signature morphism, then for every A E Mod(U): 

(A)/S=(a/S)A. 

Proof. (A)/S=(SET)(A)=((SET);a)A=(ci/S)A. 	 o 

As explained before, a signature S can be thought of as representing a "type 

environment" of a programming language, that is, a set of program symbols with 

associated type information. A model of signature S is supposed to represent an 

"environment", in which semantic values are associated with the symbols of 5, 

conforming to the type information in S. A model thus represents the semantics 

of a self-contained set of definitions in the programming language. 

A signature morphism a: S -p T defines a "translation" map U = Mod(a°P) 

from T-models to S-models. If or is thought of as a map from the symbols of S 

to the symbols of T, the translation U A of a T-model A could be obtained by 

assigning to a symbol x of S the semantic value assigned to a(z) in A. 
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The completeness property of an institution allows one to construct a model 

by combining models that represent the contributions of different sections of 

a program (e. g., different modules). Variants of the completeness axiom are 

well known in sheaf theory, where they distinguish "sheaves" from "presheaves" 

[FS 79, p.  346].' 

2.3.11 Theorem. The triple (ASig, AInci, Aig) is an institution. In partic-

ular, 

If E C E', E = (S, a: F - St), and A E Alg(E'), then A/1 is the 

restriction of the mapping A to S + F. 

If (E$ ) $ EI is a nonempty compatible family of small algebraic signatures, 

and A 1  E Alg(E1) for i E I, such that for all i,j E I: A j /(Ej fl 	= 

Aj/(EjflE' 3 ), then A := UEI A 1  is the unique algebra of signature 
UEI Ei 

that satisfies A/E I  = A1  for all i E I (in particular,U iEI  A1 = UEI A fo r 

IO). 

Proof. By Theorem 2.3.6, the pair (ASig,AIncl) is an institution syntax. By 

definition, Aig is a functor from ASig °" to a category of sets. It is clear that 

clause (b) of the theorem implies the completeness property of an institution. 

The two clauses of the theorem will now be proved. 

Clause (a): Suppose that E = (S, a: F - S) and ' = (S', a': F'  

and that A E Alg(E'). Then 

A/E = Alg((1 

= (E 

=(EEE');A 

((S+F) C (S'+F')) ;A 

= A/(S + F). 

close connection between institutions and sheaves was noted and pointed out to 

me by John Gray 
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Clause (b): Let (j)iEI  be a nonempty compatible family of small algebraic 

signatures, where Ei = (Si, a: F - St), and let Ai E Alg(E,) for i E I, such 

that for all i,j E I: Ai / (Ei fl = A/(E 1  fl E1). 

By Theorem 2.3.6 (b), 

UEi=(USi,Uai: UF -'(Us)). 
iEI 	iEI 	iEI 	iEI 	iEI 

Now let A := U€1 A. This is a relation, and 

dom A =U dom A j=U(St+F*)=USIUUFj=USj+UFj. 
iEI 	 iEI 	 iEI 	iEI 	iEI 	IEI 

To see that A is a function, suppose that (z, y) and (z, z) are elements of A. 

We can pick i,j 6 I, such that (x,y) E A 8  and (x,z) 6 A,. Then x 6 domA1 fl 

domA1 = (S8 +F8)n(S1+F,) = (S8 nS,)+(F8 nF,). By Theorem 2.3.6 (c), this 

means that z is a symbol of Zi fl E,. Hence y = A 8 (z) = (A1/(E 8  fl E'))(x) = 

(Aj / (Ei fl = A1(x) = z. Thus, A is a function. 

To see that A is an algebra of signature U€1 Eil consider f: .si . . . s, - r 

in U 1 L', i.e., f 6 U$ EIF$ and (UEIa1)(f) = (s' . ..s,r). Pick i E I such 

that f 6 F8 . Then cr 8 (f) = (s . . . s,r), A(f) = A(f), A 8 (sk) = A(Sk) for 

k 6 {1,... ,n}, and A(r) = A(r). Because Ai is an algebra, 

	

A8(f): ( 	[f 	A(s,)) 4+A 8 (r), 

and this is equivalent to 

II A(sk))+A(r). 

Thus, A is an algebra of signature U•EI 1i. Using clause (a), one immediately 

obtains that A/E I  = Ai for all i 6 I. 

To see that A is the only such algebra, let B e Alg( 81  E8) be such that 

B/E8  = A 8  for all 1 6 I. 

Both A and B are mappings with domain (U€1 S8) + (U€1 F8 ). Consider 

an element z of this set. We can pick i e I such that x 6 Si + F1 . Hence 

A(x) = (((Si + Fi) 9 (U Si + U Fi)) ; A) (x) 
iEI 	IEI 
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= (A/E')(z) 

= A 2 (z) 

= (B/)(x) 

= (((Si  + Fj) 9 (U Si  + U Fj)) ; B) (x) 
iEI 	iEI 

=B(x). 

This means that A = B, hence A is unique. 	 0 

A simpler example of an institution is obtained from the institution syntax 

(Set, Setlnci) by defining the models of a signature (i. e., a set) S to be the 

small functions with domain 5, i. e., the maps from S to the universe U. 

2.3.12 Definition. Let SetMod: Set °  -+ Cis be the functor that maps a 

set S to the class (S -+ U) of mappings from S to U, and 1: S -+ T in Set to 

the map SetMod(f°P): (T -+ U) -+ (S - U) defined by k '-+ f ; k. 	o 

2.3.13 Theorem. The triple (Set, Setlnci, SetMod) is an institution. 

Proof. The proof of the theorem that (Set, Setlnci) is an institution syntax 

(Theorem 2.3.8) was based on the isomorphism between the category of small sets 

and the category of small algebraic signatures without function symbols. This 

isomorphism commutes with the two model functors, that is, the set (S -+ U) 

of small functions on a set S is identical to the set of small algebras of signature 

(S,O), and the model map of a map 1: S - T in Set is the same as the model 

map of the corresponding signature morphism 1: (5,0) -+ (T, 0) in ASig. 

From this observation and the fact that (ASig, AInci, Aig) is an institution, 

it easily follows that (Set, Setlnci, SetMod) also is an institution. 	0 
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Chapter 3 

Modular Systems 

THIS CHAPTER presents a theory of modular programming that is based on the 

concept of a "cell". Both module specifications and program modules are cells 

in the theory, and cells therefore act in the role of specifications as well as in the 

rOle of the objects specified. 

The fundamental relation between cells in modular programming is that of 

"refinement", which generalizes the "satisfaction" relation between a module and 

its specification to cells. 

In Section 3.2 the. "decomposition" of a cell into a system of cells is described; 

this concept expresses how the module specifications of a modular system must 

fit together. 

Section 3.3 defines the "composition" of a system of cells, which reflects the 

way program modules would be composed by a compiler. 

In Section 3.4 it is shown that the concepts presented so far form a sound dis-

cipline for modular programming: decomposing a cell into a cell system, refining 

the cells of that system, and composing the refined cells yields a refinement of the 

original cell. This theorem generalizes previous theorems by myself [Schoett 811 

and by Back and Mannila [BM 841. 

The final section, Section 3.5, analyses the relation between decomposition 

and composition further. In particular, it is shown that, apart from some syn-

tactic restrictions, decomposition is the most general design criterion for the 

specifications of a modular system that makes the final, composed cell a refine-

ment of its specification. 
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The mathematical theory of this chapter is developed exclusively on the abstract 

level of an institution (except, of course, for the examples). Since all definitions 

and theorems refer to a single, but arbitrary, institution, the following convention 

is adopted. 

Convention. Throughout this chapter, the triple (Sig, mci, Mod) is assumed 

to be an institution. The concepts that depend on an institution (such as "signa-

ture", "inclusion", or "model") are implicitly assumed to refer to the institution 

(Sig, Incl, Mod). 0 

3.1 Cells and Refinement 

This section introduces the "cell" concept and the "refinement" relation between 

cells. 

3.1.1 Definition. A cell signature is a pair of compatible signatures. 

In a cell signature (E, D), call E the environment signature, and call D the 

definition signature ("signature of defined entities"). 	 0 

The meaning of a cell signature (E, D) is that a cell of that signature will assume 

the program entities of E to be present, and will contribute entities so that the 

entities of D will be present as well. That is, the cell will define those entities 

of D that do not occur already in E. 

More formally, this is described in the following definition: A "site" for (E, D) 

is a signature onto which a cell of signature (E, D) can be fitted, and the "result 

signature" of (E, D) on a site is that site enriched by the contribution of the cell. 

3.1.2 Definition. Let (E,D) be a cell signature. A site for (E,D) is a 

signature F, compatible with E U D, such that 

Fn(EuD) =E. 

If F is a site for (E, D), the signature F U D is called the result signature of 

(E,D) on F. 	 o 
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The following proposition gives an alternative characterization of the "site" no-

tion. 

3.1.3 Proposition. Let (E, D) be a cell signature, and let F be a signature. 

Then F is a site for (E, D), if and only if 

FE, 	F-D, and FnDçE. 

Proof. IfFisasitefor(E,D),thenF–.(EUD) andFfl(EUD) =E. From 

this the three clauses above follow trivially. 

Conversely, suppose that (E, D) is a cell signature, and F a signature such 

that FE,F-.-D,andFflDCE.ThenEUDEFUD,henceEUD.--'F, 

and 

Fn(EuD)=(FnE)u(FnD)=Eu(FnD)=E. 	0 

In this proposition it can be seen that a site F for a cell signature (E, D) must 

satisfy three conditions: 

. F must contain all the program entities required by a cell of signature 

(E,D) (FEE), 

. F must be syntactically compatible with the entities newly contributed by 

the cell (F D), 

. F must not already contain any of the entities to be contributed by the 

cell (FflDEE). 

By virtue of these conditions, a cell of signature (E, D) can enrich the signature F 

without conflicts—think of F as representing a self-contained set of declarations 

in a programming language, and of (E, D) as representing a set of (not neces-

sarily self-contained) declarations that may follow F on the same level of block 

structure, where the programming language forbids multiple declarations of a 

symbol on the same level of block structure. 
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In the program development of Section 1.4, cell signatures (in the institution 

(ASig, AInci, Aig)) have occurred in connection with modules. Each module 

given there has an environment signature and a set of defined symbols. The 

cell signature that characterizes the module syntactically has the environment 

signature as environment signature, and its definition signature is obtained by 

adding the defined symbols to the environment signature. 

3.1.4 Example. The module MDICT  of Figure 1-7 was described syntactically 

as follows: 

environment signature 

list item, store: sort 

input: listitem -+ store 

output: store -+ list item 

defined symbols 

dictionary: listitem -+ list item. 

This description defines the cell signature (EDICT, DDICT),  where EDICT  is as 

given under environment signature above, and DDICT  is EDICT  enriched by 

dictionary: list item -+ listitem. 	 0 

Another cell signature connected with a module is obtained from the interfaces 

that specify the module. If we define E to be the join of the signatures of the 

interfaces on which the module depends, and D to be the join of the signatures 

of the interfaces to be satisfied by the module, we obtain a cell signature (E, D), 

which may be called the cell signature of the "specification" of the module. 

3.1.5 Example. The module MDICT  depends on the interface 'INOUT  (Fig-

ure 1-9), and its result is specified by the interface 'DICT  (Figure 1-5). The cell 

signature of the "specification" of MDICT  therefore is 

(E'INOUT, EDICT), 
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(EDICT is given in Example 2.2.2, EJNOUT  is the signature of 'INOUT,  shown 

in Figure 1-9), or explicitly: 

environment signature 

bool, item, list item, store: sort 

leitem: item item -+ 6001 

input: listitem -+ store 

output: store -+ list item 

definition signature 

bool, item, listitem: sort 

leitem: item item -+ bool 

dictionary: list item -* listitem. 

In this cell signature, the definition signature does not fully include the environ-

ment signature as in the previous example. The set of "defined entities" of this 

cell signature, that is, the set of entities occurring in the definition signature, 

but not in the environment signature, contains only the symbol dictionary, 

and is the same as in the previous example. o 

We now turn to the semantic aspects of the "cell" concept. A cell will consist of 

two "interfaces", in the sense of the following definition. 

3.1.6 Definition. An interface (also called a "specification") is a pair 

(S,P), 

where S is a signature and P ç Mod(S). 

By abuse of language, we will usually let "F" denote the interface (S, P), 

call P an "interface of signature S" or just "S-interface", and call S the "signa-

ture of F", written "Sig(P)". o 

All the interfaces that occurred in the dictionary program development fit this 

definition (for the institution (ASig, AInci, Aig)). Weused the informal nota- 
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tion scheme 

interface 

signature 

properties 

In this scheme, the signature part gives the signature of the interface, the prop-

erties part gives a predicate that characterizes the model set of the interface. 

The idea of using interfaces as defined here in place of specifications in some 

specification language was adopted from Lipeck [Lipeck 83, p.  15 f.], who calls 

the analogous concept a "class" (Klasse"). Since every possible specification 

language must determine which models satisfy aspecification, every specification 

of models of a certain signature in every language gives rise to an interface 

(Lipeck's "classes" are slightly more restrictive, as they must be closed under 

model isomorphisms). 

Conversely, an interface may be regarded as a "sentence" of a very general 

(in fact, the most general) specification language. For example, one obtains 

an "institution" in the sense of Goguen and Burstall [GB 84, p.  229] (in the 

simplified version, where Mod(S) is a set rather than a category) by defining 

the set of "sentences" of a signature to be the set of interfaces, "satisfaction" 

as the element relation (E), and the "translation" of a sentence (S, F) along 

a signature morphism a: S -' T by means of the "satisfaction condition" of 

Goguen and Burstall [GB 84, p.  2291: 

a(S,P) := (T, {A E Mod(T) I Mod (a°")(A) E F}). 

The following definition treats interfaces as if they were sentences. Note, 

however, that the "projection" operation is not a special case of "translation" as 

described above, but rather analogous to the derive operation of ASL [ST 85, 

- 	p. 15]. 
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3.1.7 Definition (Projection and conjunction of interfaces). 

Let P be an interface of signature S, and let T S. The projection of P onto T, 

written "P/T", is the T-interface defined by the set of T-reducts of the elements 

of F: 

PIT := Mod((T C g) OP)ap = { A/T IA E P}. 

Let (P*)IEI  be a family of interfaces with compatible signature family (S$ ) $EI. 

The conjunction A€1 P of the interfaces P (i E I) is the interface of signature 

UjEI S defined by 

A Pi 	AeMod(USs)IviEI: A/SEP1). 
iEI 	 iEI 

The conjunction of two interfaces P and Q is written "P A Q". 	 0 

Note that in this definition, language is heavily "abused" in the sense of Defini-

tion 3.1.6: projections and conjunctions of interfaces depend on their signatures, 

although the notations "P/T" and "AIEI  F8" do not explicitly mention them 

(the proper notations "(S,P)/T" and "A$EI(S$,F$)"  would be rather clumsy). 

The following propositions state some basic monotonicity properties of the con-

junction operation. 

3.1.8 Proposition ("the more components in a conjunction, the less models"). 

Let (P1)11 be a family of interfaces with compatible signature family (S1)E', 

let J C I, and let T E [JjEJ S. Then 

(A P1)/T D (A P1)/T. 
IEJ 	 iEI 

Proof. Consider A E (A8EI F8 ) IT. By definition, there exists B E AIEI s, 

such that B/T A. But then B/ UIEJ  Si EA iEJ  F8 , because for each i E J: 

(B/ UsEJ  58 )/J = B/J E P3 . Hence 

A = BIT = (B/ U s8)/i' e (A P8 )/T. 	 0 
sEJ 	 IEJ 
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3.1.9 Proposition ("Conjunction is monotonic in its arguments") 

Let (P8 )11 and (P,')jE'  be interface families with signature families (S)1 and 

(S')iEI, such that (S)i €i is compatible and SiSi'for all i E I, and let 

T[J 1 S1 . If Pi'lSi _C P1 for alliEl, then 

(AFt)/T (AP)IT. 
iEI 	 IEI 

Proof. Assume that P11/S1 9 P1  for all i E I. If A E (A1€1 F11) /T, then there 

exists B E A•EI 
p:, such that BIT = A. But B/ UIEI Si E A11 p1 , because for 

each i E I: 

(B/ U S1)/s1 = B/S1 = (B/S,')/S1 e PUSI 
iEI 

and hence 

A = B/T = (B/ U s1)/T E (A P1)/T. 	 0 
IEI 	 iEI 

Note that the "converse" of this proposition is false in general: If 

Yi E I: P1  c p11js1, 

it does not follow that 

(A P1)/T c (A P,')/T. 
IEI 	 lEt 

Here is a counterexample in the institution (Set, Setlnci, SetMod): Let 

I={1,2}, S1=S2=0, P1=P2={0}, 

S = S = {z}, P = {{(z,i)}}, P = {{(x,2)}}, 

so that P1 and P2 both specify the unique 0-model 0, F1' prescribes that the 

interpretation of z (an arbitrary symbol) be 1, and P prescribes that it be 2. 

Then 

(P1  A P2)/O = {0}/0 = {O}, 

but 

(PfAP)/O=0/0=0. 

The specification F1' A P is empty, because P' and P prescribe different in- 

terpretations for x. Yet the projections of Fl and P to the empty signature 
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(that is, P1 and F2) do not exhibit this conflict any more and have a nonempty 

intersection. 

We are now ready to define "cells". 

3.1.10 Definition (Cell). 

A cell is a pair of interfaces whose signatures are compatible. In a cell (Q,R), 

call Q the requirement interface and R the result interface. The cell signature 

(E,D) := (Sig(Q),Sig(R)) is the signature of (Q,R), also written "Sig(Q,R)", 

and (Q,R) is called a "cell of signature (E,D)" or an "(E,D)-cell". 0 

The intended interpretation of a cell (Q, R) is that it can be applied in contexts 

that contain program entities satisfying the requirement interface Q, and that 

it will then contribute program entities such that the result interface R also is 

satisfied. This is captured in the following definition. 

3.1.11 Definition (Base and. result). 

Let (Q, R) be a cell of signature (E, D). A base for (Q, R) is a model A of 

signature F, such that 

F is a site for (E,D), and A/E E Q. 

A result of (Q, R) on the base A is a model B of signature F U D that satisfies 

B/F=A and B/DER 

(more concisely: B E {A} A R). 	 0 

In general, a cell may have any number of results (including zero) on any base. 

The following definition classifies cells according to the number of results they 

have. 
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3.1.12 Definition. A cell is 

consistent, 	if for every base it has at least one result, 

single-valued, if for every base it has at most one result, 

a module, 	if for every base it has exactly one result 

(i. e., if it is both consistent and single-valued). 	0 

This definition employs quantification over all bases of a cell, that is, over models 

of possibly many different signatures. A simpler characterization is given by the 

following proposition, whose criteria involve only models of the environment and 

result signature of a cell. 

3.1.13 Proposition. Let (Q, R) be a cell of signature (E, D), and let _/E: 

Q A R -+ Q be the reduct function. Then 

(Q,R) is consistent 	Q 9 (Mod(E) A R)/E 

_/E is surjective, 

(Q, R) is single-valued 	_/E is injective, 

(Q, R) is a module 	_/E is bijective. 

Proof. 

First Line: Suppose (Q, R) is consistent. Consider A E Q. Since A is a base for 

(Q, R), there exists a result B of (Q, R) on A. Clearly, B E Mod(E) A R. Hence 

A = B/E E (Mod(E) A R)/E. 

It follows that Q C (Mod(E) A R)/E. 

Conversely, suppose that Q 9 (Mod(E) A R)//E. Let A be a base for (Q,R), 

and let F be the signature of A. Since A/E E Q, there exists B E (Mod(E) A 

R), such that B/E = AlE. The intersection of the signatures of B and of A 

is E, because F is a site for (E,D). Hence by the completeness property of an 

institution there exists C E Mod(FUD), such that C/F = A and C/(EuD) = B. 

But then C is a result of (Q, R) on A, because C/F = A and C/D = BID E R. 

As A was an arbitrary base for (Q, R), the cell is consistent. 
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Second Line: Assume again that (Q, R) is consistent. Let A E Q. Since A is a 

base for (Q,R), we can pick a result B of (Q,R) on A. Of course, B E Q AR. 

Since B/E = A, we have A E ran(../E). Since A was an arbitrary member of Q, 

_/E is surjective. 

Conversely, if _/E is surjective, then 

(Mod(E)AR)/E D(QAR)/E=Q. 

By the first line of the proposition, (Q, R) is consistent. 

Third Line: Assume that (Q, R) is single-valued. Let A and B be elements of 

Q A R such that A/E = B/E. Then A and B are results of (Q, R) on the 

base AlE, and the single-valuedness of (Q, R) implies that A = B. Hence 

../E: Q A R - Q is injective. 

Now assume that _/E is injective. Let A and B be two results of (Q, R) on 

a base C of signature F. Because 

A/E = (A/F)/E = C/E = (B/F)/E = B/E, 

and because A/(E U D) and B/(E U D) are elements of Q A R, the injectivity 

of .../E implies that A/(E U D) = B/(E U D); in particular, A/D = B/D. Since 

A and B are of signature F U D, and A/F = C = B/F also, the completeness 

property of an institution (uniqueness of joins) implies that A = B. Since 

A and B were arbitrary, (Q, R) is single-valued. 

Fourth Line: This follows trivially from the previous two lines. 	 0 

We have encountered cells in the institution (ASig, Alncl, Aig) in the dic-

tionary program development. Each module given there (MDJCT: Fig. 1-7, 

MINOUT: Fig. 1-14, MINpUT:  Fig. 1-16, MOUTPUT:  Fig. 1-18, MSTORE: 

Fig. 1-19) was presented using the following scheme: 

module 

environment signature 
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defined symbols 

requirement 

result 

In this scheme, the sections environment signature and defined symbols de-

scribe a cell signature (E, D), as explained in Example 3.1.4. The requirement 

section states properties of an algebra of the environment signature, and 

hence defines an interface Q of signature E; the result section states properties 

of an algebra of signature D (i. e., the combination of environment signature 

and defined symbols), which define an interface R of signature D. The cell 

defined by such a scheme is (Q, R). 

The following example illustrates how a concrete program module, expressed 

in some programming notation, is rendered as a cell in the theory. 

3.1.14 Example. In the dictionary program development of Section 1.4, the 

following definition of the input operation was given: 

input(1) = if isnil(1) then cmpty() 

else insert(hd 1, input(tl 1)) 

Except for minor syntactic details, this is a recursive definition of the function 

input: listitem -+ store 

in a functional programming notation such as, for example, the functional subsets 

of ALGOL 68 [van Wijngaarden et a]. 76], ML [11MM 86] or the "Algorithmic 

Language" (Algorithmische Sprache") of the Munich CIP Project [CIP 851. In 

the development of Section 1.4, this code forms the body of a program module 

(in general, a program module could contain any number of type and operation 

definitions). 

First, we discuss how the cell signature of this module is obtained. The 

environment signature must contain all the program entities that are used in the 
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code. This includes all the source and target sorts of the operations used. The 

operations used are isnil, empty, insert, hd, and U. The type of these operations 

is obtained from the context. The environment signature that results is: 

environment signature 

bool, item, list item, store: sort 

isnil: listitem -+ bool 

hd: listitem -+ item 

ti: listitem -+ list item 

empty: - store 

insert: item store -+ store. 

• This is just the environment signature given in Figure 1-16. 

The result signature is obtained from the environment signature by adding 

the program entities defined by the code, here input. As it is unnecessary to list 

the symbols of the environment signature again, this can simply be recorded as 

follows: 

defined symbols 

input: listitem -+ store. 

We now turn to the semantics of the cell. First, what are its requirements? 

One might think of naming here the assumptions made in the correctness proof 

of the module, that is, the assumptions recorded in the interfaces 'LISTITEM 

(Figure 1-4) and 'INSERT  (Figure 1-15). But these interfaces are not part of the 

code itself, and so the resulting cell would no longer be a direct representation 

of the program code (the proper role of the interfaces 'LISTITEM  and 'INSERT 

with respect to the code is explained in Example 3.1.15 below). 

The requirements of the code itself are the semantic prerequisites that are 

necessary to ensure that the code is correct and has a valid semantics in the 

programming notation used. In the example, there are no such requirements 

concerning the types item, listitem, and store, and the operations isnil, hd, ti, 

empty, and insert, because the code is valid whatever the interpretation of these 

symbols is (assuming these interpretations conform to the type information in 

the signature). 
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However, the type bool cannot have an arbitrary interpretation, because it 

must be compatible with the if construct used in the code. The if construct 

is regarded here as a fixed part of the language rather than as an arbitrary 

function, because a function corresponding to the if construct would have to 

have arguments of "higher order" types ([Schoett 81, p.  50 f.], [BW 83, p.  145-

149]). 

This special status of if also gives a special status to the type bool: Because 

the if construct is a fixed part of the programming notation, the type bool also 

must have a fixed definition, to enable the if construct to interpret values of type 

bool (in practical programming notations this restriction is reflected in the fact 

that even if it is possible to redefine the type bool, the new type of that name 

cannot become acceptable in the first argument position of if). 

Assuming that the predefined type bool has the value set {T, F), we can 

record the restriction on bool as follows. 

requirement 

bool = { T,F}. 

Finally, consider the result interface of the cell. This is to be a predicate that 

characterizes the result defined by the code for all interpretations of the envi-

ronment symbols that satisfy the requirements. 

In the presentation of the module MINPUT  in Figure 1-16, we simply wrote 

down the code for the input operation to characterize the result: 

result 

input (1) = if isnil(1) then empty() 

else isnil(hd 1, input(tl 1)). 

This code can be read as the following predicate: 

"The interpretation of input is the function that the code defines ac-

cording to the semantics of the programming notation on the basis 

of the interpretation of the environment symbols." 

117 



3.1 Cells and Refinement 

With the conventional semantics of recursive definitions, this means that the 

interpretation of input must be the least fixpoint of the functional equation 

input = Al. if isnil(l) then empty() 

else insert(hdl, input (ill)), 

where partial functions are partially ordered by the inclusion relation between 

their graphs. 

We have reviewed the meaning of the four sections environmentsignature, 

definedsymbols, requirements, and result of the description of the cell 

MINPUT given in Figure 1-16. 	 0 

It can be seen in this example that cells which represent concrete program mod-

ules will usually be consistent and single-valued, that is, "modules" in the sense 

of Definition 3.1.12: 

Given a concrete module, as code in some programming notation, the re-

quirement interface of the cell representing it records the conditions necessary 

for the code to be a well-formed definition in the programming notation. Hence, 

the code defines a result for every environment that satisfies the requirement, 

and the associated cell is therefore consistent. 

Also, a definition in a programming notation normally has unique semantics. 

Hence, for every environment satisfying the requirements of the code, the code 

defines a unique result, and hence there is a unique extension of the environment 

that satisfies the result interface of the associated cell. The cell therefore is a 

"module" as defined above. 

In a modular program development, a second cell can be associated with a mod-

ule. This cell, which might be called the "specification" of the module, is formed 

from the interfaces of the modular design to which the module is related. The 

interfaces that specify the module's result form the result interface of the specifi-

cation cell, the interfaces that sp9cify the properties of the module's environment 

on which the module may rely form the requirement interface of the specification 

cell. 
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Figure 3-1: The module MINPUT  and the interfaces specifying it 

3.1.15 Example. In the dictionary program development of Section 1.4, the 

module MINPUT  is specified by the interfaces 'INpUT, 'INSERT, and ILlS TI TEM, 

as shown in Figure 3-1. The "specification" of MINPUT,  obtained by combining 

the three interfaces, is the following cell .MINPUT: 

INPUT = cell 

requirement 

'INSERT A ILlS TI TEM 

result 

'INPUT 

The cell .MINPUT represents the interfaces via which MINPUT  is related to the 

other modules of the system. For the correctness of the modular design, only 

.MINPUT is relevant, not MINpUT;  the only information about MINPUT  that is 

distributed across the system is that contained in )4INPUT. We might say that 

.MINPUT "encapsulates" MINPUT  and presents an abstract view of it to the rest 

of the system, as illustrated in Figure 3-2. 

On the other hand, this "abstract" view of MINPUT  is only relevant in the 

original modular design, it is irrelevant for the semantics of the final program. 

119 



3.1 Cells and Refinement 

result 'INPUT 

I'4 INPUT 
	

MINPUT 

requirement 'INSERT  A ILlS TI TEM 

Figure 3-2: I'4 INPUT viewed as "encapsulating" MINPUT 

MINPUT 	 I'4 INPUT 

module 

environment 

defined symbols 

requirement 

result 

result 'INPUT 

requirement 

'INSERT A 'LISTITEM 

Concrete Cell 
	

Abstract Cell 

Figure 3-3: Concrete and abstract cell side by side 

Only MINPUT,  not .MINPUT contributes to this semantics. In general, therefore, 

we shall show the "concrete" cell MINPUT  and the "abstract" cell .MINPUT side 

by side, as in Figure 3-3. 

The arrow "w-"  in the figure indicates that a certain relation must hold 

between the concrete and the abstract cell—the concrete cell must be "correct" 

with respect to the abstract cell, its specification. The correctness notion for 

modular programming, called "refinement", will be defined later in this section 

(Definition 3.1.18). Data abstraction is based on a different notion of correctness, 

called "implementation". This relation will be studied in chapters 4 and 5 to 

follow. 
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If we form the specification cells for all the five modules of the dictionary sys-

tem (Figure 1-20), we obtain the view of the modular design shown in Fig-

ure 3-4. This figure shows the five cells I4 DICT, )4IN0UT, )VIINPUT, I4 OUTPUT, 

and .M STORE,  with the dependence relation derived from the design graph of 

Figure 1-20, surrounded by yet another cell A. This cell is composed of the 

interfaces via which the system as a whole is related to the outside; this cell may 

be called the "global specification" of the system. Formally, the relation between 

the global specification and the individual module specifications is given by the 

"decomposition" notion (Definition 3.2.10 below). 

A figure analogous to Figure 3-4 could be drawn showing the five concrete mod-

ules MDICT, MINOUT, MINPUT, MOUTPUT, and MSTORE. 

However, while the specifications of Figure 3-4 are related to a global speci-

fication by the "decomposition" relation, the role of the concrete modules is 

different: they are to be composed in a constructive way to yield a cell as re-

sult that represents the combined semantics of the modules. This "composition" 

operation, which is analogous to the. composition of modules performed by a 

compiler, will be defined in Definition 3.3.6 below. 

The relationship between decomposition and composition, between systems 

of specifications and their concretizations, is illustrated in Figure 3-5. All the 

entities displayed in this figure are cells. On the right, a family of specifications 

is shown that decomposes the global specification; on the left, a family of cells 

whose composition is the "composed cell". The wavy arrows at the bottom 

indicate that each "concrete" cell must be correct with respect to its specification. 

The fundamental question in this situation is: assuming the relationships 

hold as shown in the figure, is the composed cell correct with respect to the 

global specification? 

If we let "correctness" mean "refinement", a positive answer to the question 

can be regarded as asserting the correctness of modular programming as a pro-

grarnming discipline. In different theories, positive answers have previously been 

given by Schoett [Schoett 81, Thm. 4.2.61 and by Back and Mannila [BM 84], 

and in the present theory, the affirmative answer will be given by the theorem 
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result 'DICT 

result 'DICT 

.MDICT 

req. 'INOUT 

result 'INOUT 

)'4INOUT 

req. 'INPUT  A 'OUTPUT 

I'4 INPUT 
	

I'4 OUTPUT 

result 'INPUT 
	 result 'OUTPUT 

req. 'INSERT  A ILlS TI TEM 
	 req. 'MIN  A ILlS TI TEM 

result 'INSERT  A 'MIN 

I4 STORE 

req. 'ITEM  A ILlS TI TEM 

req. 'ITEM  A ILlS TI TEM 

Figure 3-4:  The specification cells of the dictionary system 

asserting the "composability of refinements", which is discussed in Section 3.4 

below (and proved afterwards in Section 4.1). 

Section 4.1 presents a composability theorem fora different correctness con-

cept: "universal implementation". Chapters 4 and 5 will show that this asserts 

the correctness of modular programming with data abstraction. 
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Composed Cell 	 Global Specification 

	

Composition 	 Decomposition 

	

(constructive) 	 (nonconstructive) 

Correctness rel. 

Cell 	 Specification 

Cell 	 Specification 

Figure 3-5: The structured correctness argument for a modular system 

It is important to realize that while Figure 3-5 shows the logical relations between 

the elements of a modular progrpmming project, it does not necessarily indicate a 

temporal sequence of design steps starting at the top right and proceeding clock-

wise around the figure (this was the view I advocated in [Schoett 81, p.  138 f.]). 

For example, the global specification is not necessarily complete at the begin-

ning, because the requirement interface might become enlarged by requirements 

of the individual module specifications during the design process. Similarly, each 

individual module specification might contain requirements that were found only 

during the design of the concrete code for that module. Also, during the design 

of the code for some modules, the need for other modules might become appar---

ent. All these points are illustrated by the dictionary program development of 

Section 1.4. 

For practical purposes it might therefore be better to view modular program 

design as the stepwise construction of a design graph like the one in Figure 1-20. 

The theory of this thesis, however, will deal with cells and their relationships as 

shown in Figure 3-5. The present discussion has illustrated how design graphs 

can be mapped into cell systems, and thus shown how to apply the cell-based 

theory to practical program construction. o 
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In the next two definitions, the "refinement" relation between cells will be de-

fined. This is the correctness relation that must hold in modular programming 

between a module and its specification, where both the module and the specifi-

cation are viewed as cells. 

The first definition deals with cell signatures only. 

3.1.16 Definition. Let (E, D) be a cell signature. A syntactic refinement of 

(E, D) is a cell signature (E', D') such that whenever F is a site for (E, D), then 

F is a site for (E', D'), and F U D' = F U D (i. e., the two cell signatures have 

the same result signature on F). 0 

Here are some basic properties of the syntactic refinement relation. 

3.1.17 Proposition. 

The syntactic refinement relation is a preordering on the set of cell signa-

tures. 

If (E', D') is a syntactic refinement of (E, D), then E' U D' E E U D. 

(E', D') is a syntactic refinement of (E, D), if and only if 

E is a site for (E', D') and EUD'=EuD. 

Proof. It follows trivially from the definition that the syntactic refinement 

relation is transitive and reflexive and hence a preordering. 

To prove (b), let (E', D') be a syntactic refinement of (E, D). Since E is a 

site for (E,D), E also is a site for (E',D'), therefore E' = En (E' U D') E, 

and hence E' U D' E E U D' = E U D. 

To prove (c), suppose that (E', D') is a syntactic refinement of (E, D). The 

signature E is a site for (E, D), and hence E is a site for (E', D'), and EU D' 

EuD. 

Conversely, suppose that E is a site for (E', D'), and that E U D' = E U D. 

Let F be any site for (E,D), i.e., F Eu D and F n (Eu D) = E. Since 
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E' U D' Eu D by (b), it follows that F E' U D' and 

Fn (E'uD') = Fn(EUD) n (E'uD') 

= En (E'uD') 

= Ell 

Thus, F is a site for (E',D'). Finally, 

FuD' = FuEuD' 

=FuEuD 

=FUD, 

and hence (E', D') is a syntactic refinement of (E, D). 	 0 

The idea behind the definition of "syntactic refinement" is that if (E', D') is a 

syntactic refinement of (E, D), then a cell of signature (E', D') can be substituted 

for a cell of signature (E, D) without syntactic problems: 

First, the cell of signature (E', D') fits on any site for (E, D). In particular, 

this implies that E' C E, i. e., the environment signature of the syntactic refine-

ment is contained in the environment signature of the cell signature it refines. 

may be smaller than E—this would just mean that a cell of signature (E', D') 

does not use as many program entities as a cell of signature (E, D). 

The second condition of "syntactic refinement", that FuD' = FUD for every 

site F, means that the results of cells of signature (E', D') and of signature (E, D) 

on a base of signature F have the same signature, 1. e., that the contributions of 

cells of the two kinds are syntactically the same. 

At first, it might seem reasonable to require only that F U D' 	F U D, 

i. e., that cells of the refined signature contribute at least as much as cells of the 

original signature. However, additional program entities in F U D' might clash 

with program entities defined elsewhere in the system—for example, FUD' might 

no longer be compatible with signatures that were compatible with F U D. 

3.1.18 Definition. Let (Q, R) be a cell. A refinement of (Q, R) is a cell (Q', R') 

such that Sig(Q', R') is a syntactic refinement of Sig(Q, R), and whenever A is 
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a base for (Q, R), then 

A is a base for (Q',R'), 

there exists a result of (Q', R') on A, and 

every result of (Q', R') on A is a result of (Q, R) on A. 	0 

Here are some basic properties of the refinement relation. 

3.1.19 Proposition. 

The refinement relation is transitive. 

If a cell has a refinement, then it is consistent. 

A cell is a refinement of itself if and only if it is consistent. 

The refinement relation is a preordering on the set of consistent cells. 

A cell (Q', R') of signature (E', D') is a refinement of a cell (Q, R) of 

signature (E,D), if and only if 

(E', D') is a syntactic refinement of (E, D), 

Q/E' C (Q' A R')/E', and 

(QAR')/Dc R. 

Proof. 

Part (a): Consider three cells (Q,R), (Q',R'), and (Q",R") with signatures 

(E, D), (E', D'), and (E", D"), and suppose that (Q", R") is a refinement of 

(Q',R'), and that (Q',R') is a refinement of (Q,R). By Proposition 3.1.17 (a), 

(E", D") is a syntactic refinement of (E, D). 

Let A be a base for (Q, 1?). Then A is a base for (Q', R'), hence A is a base for 

(Q", R") and there exists a result of (Q", R") on A. If B is a result of (Q", R") 

on A, then B is a result of (Q', R') on A, and hence a result of (Q, R) on A. 

Hence (Q", R") is a refinement of (Q, R). 

Part (b): Let (Q', R') be a refinement of (Q, R), and let A be a base for (Q, R). 

Then A is a base for (Q', R'), there exists a result B of (Q', R') on A, and B also 

is a result of (Q, R) on A. Since A was arbitrary, (Q, R) is consistent. 
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Part (c): Putting (Q', R') equal to (Q, R) in the definition of "refinement", the 

definition simplifies to: "whenever A is a base for (Q, R), there exists a result 

of (Q, R) on A" (the other conditions are trivially true). This is just "(Q, R) is 

consistent". 

Part (d): By (c), the refinement relation is reflexive on the set of consistent cells; 

by (a), it is transitive. 

Part (e): Let (Q,R) be a cell of signature (E,D), and (Q',R') be a cell of sigan-

ture (E',D'). 

Suppose first that (Q', R') is a refinement of (Q, R). By definition, (E', D') 

is a syntactic refinement of (E, D). 

To see that Q/E' (Q' A R')/E', consider A E Q. A is a base for (Q,R), 

and hence a base for (Q', R'), and we can pick a result B of (Q?, R') on A. B also 

is a result of (Q,R) on A. Now B/E' = (B/E)/E' = A/E' E Q', because A is a 

base for (Q', R'), and B/D' E R', because B is a result of (Q', R') on A. Hence 

A/E' = (B/E)/E' = B/E' = (B/(E' U D'))/E' E (Q' A R')/E'. 

Since A was an arbitrary element of Q, it follows that Q/E' C (Q' A R')/E'. 

To see that (Q A R')/D C R, consider B E (Q. A R'). Then B/E is a base for 

(Q, R), hence a base for (Q', R'), and B is a result of (Q?, R') on B/E. Hence, 

B is a result of (Q, R) on B/E, and thus B/D E R. 

Conversely, suppose that the three conditions of the proposition are satisfied, 

and let A be a base of signature F for (Q,R). Then F is a site for (E,D) and 

hence for (E', D'). Since 

A/E' = (A/E)/E' E Q/E' C (Q' A R')/E' C Q', 

A is a base for (Q',R'). 

Since A/E' E (Q' A R')/E', we can pick B E (Q' A R') such that B/E' = 

A/E'. We can join A and B, because the intersection of their signatures is 

F n (E' U D') = E', and B/E' = A/E'. Now A U B is a result of (Q', R') on A, 
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because A U B E MOd(F U (E' U D')) = Mod(F U D'), (A U B)/F = A, and 

(A U B)/D' = B/D' E R'. 

Finally, suppose that B is a result of (Q', R') on A. Then B also is a result 

of (Q,R) on A, because B/F = A and (as B/E = (B/F)/E = A/E E Q and 

B/D' E R') 

BID = (B/(E u D))/D = (B/(E u D'))/D 

E(QAR')/DcR. 

Thus, (Q', R') is a refinement of (Q, R). 
	 UI 

The idea behind the "refinement" notion is that a refinement of a cell can be 

substituted for that cell without problems: The refinement will be applicable to 

all bases of the original cell, and every result the refinement can produce could 

also have been produced by the original cell. 

A variant of the definition, which was tried at first, would not require that 

a refinement have a result on every base of the original cell. Then "refinement" 

would be a preordering on all cells, not just the consistent ones. It turns out, 

however, that this refinement notion does not have the desired composition prop-

erties (see Example 3.5.10). 

3.2 Cell Systems and Decomposition 

This section deals with the design of modular systems. Modular systems are 

viewed as families of cells that fit together syntactically, that is, whose signa-

tures form a "signature system". Semantically, the design of modular sytems is 

formalized in the "decomposition" concept: A cell system is a decomposition of 

a cell (the "global" cell, which contains the external interfaces of the system), 

if the external requirement interface guarantees that all cells of the system are 

supplied with proper bases, and if the combined results of the cells guarantee 

that the external result interface is satisfied. 
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First, we deal with the syntactic compatibility conditions for a cell system, that 

is, we deal with cell signatures only. A family of cell signatures determines a 

"syntactic dependence relation", according to which a cell M depends on a cell N 

if M uses program entities defined by N. In the design of modular systems, 

more general "dependence relations" are admitted, which are extensions of the 

syntactic dependence relation, and which allow additional dependencies between 

cells to be specified (with the purpose, e.g., of simplifying proofs). 

Recall that a relation < is well-founded if and only if every nonempty set has 

a <-minimal element, that is, if and only if for all M 56 0 there exists x E M 

such that y x for all y E M. 

3.2.1 Definition. A family T = (Es , Di) iEI  of cell signatures is compatible, if 

(Ei U Di)$EI is compatible. 	 0 

3.2.2 Definition. Let T = (Es , Di)%EI be a compatible family of cell signatures. 

The syntactic dependence relation of T is the relation <T  C I x I defined 

by: 

k<Ti 	kiandDkfl(EUD)Ek. 

Its transitive closure is written "<<T". 

A dependence relation for T is a well-founded relation < C I x I such that 

<7' C  <. The transitive closure of a dependence relation < is written "". 0 

The systems considered in this thesis will always have a dependence relation, and 

by definition, such a dependence relation is well-founded (often, the dependence 

relation agrees with the syntactic dependence relation). This also implies that 

the syntactic dependence relation is well-founded. 

Systems with a well-founded dependence relation are often called "hierarchi-

cal", and this thesis deals with hierarchical systems only. In particular, circular 

("recursive") dependencies between cells are excluded. The reason for this is that 

circular dependencies appear to be incompatible with the basic goal of modular 

programming, which is that the correctness of individual modules should imply 

the correctness of the composed system (the "Structured Correctness Argument 
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for a Modular System", illustrated in Figure 3-5). Why this is so will be ex-

plained in Section 3.4 below (p.  151-154). 

3.2.3 Example. In Examples .3.1.5 and 3.1.15, it was shown how the in-

terfaces of the dictionary program development can be organized into cells (in 

the institution (ASig, AIncl, Alg)). Associated with the five program modules 

MDICT, MINOUT, MINPUT, MOUTPUT, and MSTORE  are the five cells .MDICT, 

)tPIINOUT, I4 INPUT, ..MOUTPUT, and )VtSTORE that specify them (see Figure 3-4). 

The family of cell signatures of the specification cells is 

T = (fi, Ps) sE{DICT, INOUT, INPUT, OUTPUT, STORE), 

where 

eDICT = Sig(IINOUT), VDICT 	= Sig(IDICT), 

eINOUT = Sig(IINPUT) U Sig(IOUTpUT), VINOUT 	= Sig(IINOuT), 

CINPUT = Sig(IINSERT) U Sig(ILJsTITEM), VINPUT 	= Sig(IJNpUT), 

COUTPUT = Sig(IMIN) U Sig(ILISTITEM), VOUTPUT = Sig(IOUTPUT), 

CSTORE = Sig(ILISTi-TEM) U Sig(In'w), VSTORE 	= Sig(IJNSERT) 

U Sig(I,jp,r). 

All these signatures are compatible, as can be verified easily using the criterion 

of Theorem 2.3.6 (a): one checks that no symbol occurs both as sort and as 

function symbol, nor as function symbol with different types. 

The syntactic dependence relation <7 of T is given in Figure 3-6. The 

dependencies in this figure are explained as follows: YDICT  and YINOUT  import 

input from YINPUT,  output from YOUTPUT  and store from TSTORE, IINPUT 

imports store, empty and insert from YSTORE,  and TOUTPUT  imports store, 

min and removcmir& from TSTORE. 

Note that TINOUT has no new symbols, and so no other cell signature of the 

system depends on it. Recall that T is the signature family of the system .M of 

Figure 3-4, which in turn is derived from the design graph of Figure 1-20. This 

graph suggests an additional dependency INOUT < DICT, which is also shown 

in Figure 3-4. Adding this dependency to <T yields a dependence relation for T, 

which is shown in Figure 3-7. o 
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DICT 

INOT 

//\\ 
INPUT OUTPUT 

\ I I / 
STORE 

Figure 3-6: The syntactic depen-

dence relation of T 

DICT 

//\\ 
INPUT OUTPUT 

\ I/ 
STORE 

Figure 3-7: A dependence relation 

for I 

The following definition expresses the syntactical requirements of a modular 

system: the family of its cell signatures must form a "signature system". 

3.2.4 Definition. Let T = (Es , D)$EI be a compatible family of cell signatures, 

and let <c I x I be a dependence relation for T. 

A system site for [T, <1 is a signature E, compatible with UEI  D, such that 

for alliE I: 

Eu J D, is a site for (E,D). 
k.i 

The pair [T, <] is an ordered signature system, if there exists a system site 

for it. 

A signature system is a compatible family T of cell signatures, such that 

[T, <T]  is an ordered signature system. 	 o 

According to this definition, an ordered signature system can be supplied with 

a "system site". Such a system site has the property that each cell signature 

of the system will be supplied with a site when all the cell signatures on which 

it (directly or indirectly) depends have been "installed" on the system site (the 

result of this installation is given by the expression Eu Jk<<j  Dk in the definition 

above). One may imagine the cell signatures of the system being installed in a 
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"bottom-up" fashion, where the set of indices of installed cell signatures is always 

<-downward closed. 

In general, a system site must contain the program entities that are used but 

not defined within a system. It may contain additional entities, but none that 

may clash with entities defined within the system. 

3.2.5 Example. Consider again the cell signature family T of the previous 

example (3.2.3), and let <be the dependence relation given by Figure 3-7, which 

is obviously well-founded. 

A system site for [T, <] is the signature 

:= Sig(Ij-TEM) U Sig(ILJSTJTEM). 

To prove this, one has to show that for each i E {DICT, INOUT, INPUT, 

OUTPUT, STORE}, 

U U V, is a site for 	Di), 
k41 

that is, 

(eu U vk)n(eUv)=e. 
k<<i 

Since all signatures involved are compatible (I contributes nothing new), ac-

cording to the formulas (b) and (c) of Theorem 2.3.6 these checks reduce to the 

analogous equations where the symbol sets of the signatures are combined by 

U and fl. These equations are easily verified. 

The fact that t is a system site for [T, <} implies that [T, <] is an ordered 

signature system. 

As we shall see later, in Theorem 3.5.8, the fact that I is a system site for 

[T, <] implies that it is a system site for any ordered system of the form [T, <'], 

where <' is a dependence relation for T, and hence that [T, <'] is an ordered 

signature system. 0 

The next definition presents the relation that must hold between an ordered 

signature system [T, <] and a "global" cell signature (E, D), which gives the 

syntax of a pair of external interfaces for the system. 
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3.2.6 Definition. Let (E, D) be a cell signature. A syntactic decomposition 

of (E, D) is an ordered signature system [T, <], such that . is a system site for 

[T, <], and (with T = (E1, Dl)$EJ)  J) E U UiEI D. 	 0 

This definition just says that it must be possible to install T on E (the order 

of installation being given by <), and that the entities of the external result 

signature D must be provided by the system. 

3.2.7 Example. The ordered signature system [T,<] of the previous example 

(3.2.5) is a syntactic decomposition of the cell signature (t, ), where 

= Sig(IITEM) U Sig(ILISTITEM) 	(Figs. 1-3 and 1-4) 

= Sig(IDJCT) 	 (Fig. 1-5). 

We saw in Example 3.2.5 that I is a system site for [T, <], and it is clear that 

is contained in the join of I with the definition signatures, because it is equal 

to the definition signature of YDICT. 	 0 

So far, we have dealt with the syntactic aspects of modular system design, and 

for this, we could restrict our attention to cell signatures. Now we begin to 

consider the semantical aspects, and therefore deal with cells. 

3.2.8 Definition. An ordered cell system is a pair [M, <1, where M is a 

family of cells whose family of cell signatures T is such that [T, <] is an ordered 

signature system. 

A cell system is a family of cells whose family of signatures is a signature 

system. 

The signature family of a cell system M is written "Sig(M)". 	 0 

3.2.9 Example. In the examples 3.1.5 and 3.1.15, it was shown how the 

interfaces of the dictionary program development can be organized into cells 

such that for each of the five program modules there is a cell that specifies it. 
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These specification cells form the family 

= (Q, )Z) iE{DJCT, INOUT, INPUT, OUTPUT, STORE}, 

where 

QDICT = IINOUT, RDICT = IDICT, 

QINOUT = IINPUTAIOUTPUT, RINOUT = 'INOUT, 

QINPUT = 'INSERT A 'LISTITEM, RINPUT = 'INPUT, 

Qo UTPUT = IMIN A ILISTITEM, £ OUTPUT = IOUTPUT, 

Q STORE = 'LISTITEM A 'ITEM, £ STORE = 'INSERT A 'MIN. 

The family T of signatures of this cell family was given in Example 3.2.3. With 

<the dependence relation as in Figure 3-7, it was shown in Example 3.2.5 that 

[T, <] is an ordered signature system; hence [M, <] is an ordered cell system. 0 

Note that the concepts "cell system" and "ordered cell system" are still syntac-

tical in nature; whether or not a family of cells is a cell system depends only on 

the signatures of the cells, not on their semantics. 

The semantics of cells enter the picture in the following definition, which 

describes the "decomposition" relation that must hold between an ordered cell 

system [M, <1 and a "global" cell ((, E) that consists of the external interfaces 

of the system. 

3.2.10 Definition. Let (, ) be a cell of signature (, b). A decomposition 

of (, E) is an ordered cell system [M, <] such that, with M = ( Q2, 1?1)1 of 

signature T = (Es , D$) iEI, we have 

(a) [T, <] is a syntactic decomposition of (E, D), 

(Q A Ak1 Rk)/E1 C  Qi 	for all i E I, 

(Q A AEI Rj)//D C R. 

Again, the idea of the definition is that the cells of M are installed "bottom-up" 

on a base as described by Q. Clause (a) says that no syntactic problems arise, 

clause (b) says that the external requirement interface Q together with the result 

interfaces of the cells on which M1  directly or indirectly depends (i. e., Ak1 Rk) 
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guarantees that Mi will be supplied with a base in the installation process (it is 

a consequence of (a) that the signature of AAkci Rk is a site for (E,, Di)). 

Finally, clause (c) guarantees that the result produced by the installation process 

(which is an element of Q A AEI R1 ) matches the external result interface E. 

3.2.11 Example. Consider the ordered cell system [.M, <] of the previous ex-

ample, where M has the signature family I given in Example 3.2.3, and < is the 

dependence relation given in Figure 3-7. This ordered system is a decomposition 

of the cell 

(M 
where 

Q = 'LISTITEM A 'ITEM, 

= IDICT. 

The syntactic decomposition property was verified in Example 3.2.5. Checking 

the clauses (b) and (c) of the "decomposition" definition is trivial, because the 

cell system has been obtained as a translation of the design graph of Fig. 1-20: 

the requirement interface of each cell is entirely composed of interfaces that occur 

below it in the graph, and hence occur in either Q or the result interfaces of the 

cells on which the cell depends; similarly, the external result interface R = IDIOT 

occurs in the graph, and hence occurs in either or the result interfaces of the 

cells. 0 

This simple argument illustrates that design graphs are useful for designing de-

compositions: by keeping track of "atomic" interfaces as the oval nodes of the 

graph (e.g., IDICT, 'INPUT, IMIN etc.), and by recording which modules depend 

on and which modules provide these interfaces, a design graph makes it trivial 

to prove the semantic part of the decomposition property of its translation into 

an ordered cell system. 

It is important for this that a design graph is translated into an ordered 

cell system rather than just a cell system, because the syntactic dependence 

relation might not be sufficient to make the decomposition property trivially 

135 



3.3 Composition of Systems 

true. This point is illustrated by our example: in the design graph (Fig. 1-20), 

)'4DICT depends on 'INOUT,  hence its requirement interface is QDICT = 'INOUT, 

whereas according to the syntactic dependence relation <y (Fig. 3-6), we have 

INOUT '~T  DICT, and so the proof that 

(A A Rk)/tDIcTQDJcT 
k<<'r DICT 

would not be trivial; in the dependence relation <, however, we have INOUT < 

DICT, so 'INoUT = INOUT appears on the left hand side of the analogous 

formula, which is therefore trivially true. 

While design graphs are able to guarantee a semantically sound decomposition, 

they are not as helpful as far as syntax is concerned: in order that the translation 

of a design graph be syntactically correct, the program symbols of the atomic 

interfaces must be chosen in such a way that symbols are equal exactly when 

they are supposed to denote the same program entity; in general, this seems to 

rule out independent choice of symbols for different interfaces. 

It might also be a defect in practice that an individual interface such as 'MIN 

(Figure 1-17) does not express the distinction between the symbols it is intended 

to define (here, isempty, mm, and rernovemin), and those that are merely used 

(here, bool, item, leitem, list item, and store). 

3.3 Composition of Systems 

This section introduces the "composition" operation, which, given a cell system 

and a signature of program entities to be exported from the system, produces 

a single cell as result. This cell describes the "joint effect" of the cells of the 

system. 

In particular, the composition operation describes the joint semantics of a 

family of program modules that import and export program entities from and to 

a common name space, so that modules can import entities exported by other 

modules. 
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Before dealing with the composition operation itself, we prove an important 

syntactical property of cell systems: for each signature system (the "syntax" of 

a cell system), there is a -lea.st system site (which is necessarily unique). This 

signature may be thought of as containing the program entities that the system 

needs to import, because they are used but not defined within the system. 

3.3.1 Proposition. Let ET, <] be an ordered signature system, where T = 

(E1 , D)IEI. The set of system sites for [T, <] has a E-least element E0 , and this 

element satisfies the equation 

= En U E 
iEI 

for every system site E for [T, <]. 

For the proof, we need two lemmas. 

3.3.2 Lemma. If [T, <] is an ordered signature system, T = (Ei, D)1€z,  and 

E a system site for [T, <], then E is compatible with U EI (EI U Di), and 

Eu L]EuD  =Eu UDi. 
IEI 	 iEI 

Proof. All the signatures E, E, D1  for i E I are subsignatures of E U U1EI D, 

because for all i E I: 

	

Ej E' U [j Dk 	(E is system site) 
k <<i 

	

cEUUDi. 	 0 
iEI 

3.3.3 Lemma. Let [T, <} be an ordered signature system, T = (Es , D$)$EJ, 

and let E and E' be system sites for [T, <]. Then for all i E I: 

En(E1 uD) çE'. 
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Proof. Suppose the conclusion was false. Choose 5 E I to be a '.Z-minimal 

value satisfying 

n(E3 uD1) 

Because E and ' are system sites for [T, <], we have 

(E1 u D1) 	U D) n (E1 u D1) 
k.j 

=E, 

=(E'u U Dk)fl(E1UDJ) 
k<<j 

'U J D,, 

k4j 

and hence 

En(E,uD3)cEn(E'u U Dk) 

(nE')u(.n U Dk) 
k4(j 

=(nE')u UnDk) 

ç 2 1  U E' 	 (minimality of 5) 

=E'. 

	

This contradicts the definition of j and concludes the proof. 	 o 

Proof of Proposition 3.3.1. 

Let [T, <] be an ordered signature system, where T = (E1, D$)$EI.  We shall show 

that whenever 2 is a system site for [T, <], then the signature 2o := E'n UiEI E1 

is the least element of the set of system sites for [T, <]. Because the set of 

system sites is nonempty, this implies that it has a least element E0 , and because 

the least element is unique while E can be any system site, it follows that the 

equation & = E n U€1 Ej holds for any system site E. 

Let E be any system site for [T, <}, and define 2o  := E 11 U;EI E (by 

Lemma 3.3.2, E and UEI Ej are compatible). To show that & is a system site, 
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consider any i E I. We have 

(.0u U Dk)fl(ESUD1) 
h<<i 

(. u J D,) n (Ei U D) 
ki 

=E1, 

and conversely, 

E=E1fl(EU U Dk) 
k€i 

= (E1  n ) U (Ei n U Dk) 
k4i 

E0u 
krZi 

so that (& u Uki Dk) n (Ei U D1) = E. Hence Ro is a system site for [T, <1. 
We now wish to show that Bo  is the least of these system sites. Let .' be 

any system site for [T, <1. Then 

Eo=En UE 
iEI 

= UnEi 
iEI 

U(.n(E'u U D)) 
1EI 	 k4Zi 

=U(n'u UnDk)) 
iEI 	 k(<i 

c(nE')uU(EnD) 
iEI 

E 	 (by Lemma 3.3.3). 

Since E' was arbitrary, it follows that E0 is a -lower bound of the set of system 

sites for [T, <]. Since Ro is a system site itself, it is the -least system site for 

[T,<]. 

The following definition describes the composition of a cell system syntactically. 

The signature C expresses which of the entities defined within the system are to 

be exported (it "confines" the list of exported entities). 
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3.3.4 Definition. Let T = (Es , D) 1 1 be a signature system, and let C be a 

signature compatible with UEI D. The composition of T confined by C, written 

"Dc T", is the cell signature 

DT = 
C 

where 

is the c-least system site for [T, <T], 

D=(.u(cnUDj)). 	 o 
iEI 

In this definition, L' is the least system site for [T, <T], that is, the least signature 

onto which the cells described by T can be built. The signature E therefore 

expresses the "minimal syntactic requirements" of a system with signature T, 

and is the natural candidate for the environment signature of 0 C  T. The result 

signature D contains and in addition the symbols defined by the system that 

are "exported" according to the "confinement" signature C. 

3.3.5 Example. The final program in the dictionary example is obtained as 

the composition of the five modules MDICT, MINOUT, MINPUT, MOUTPUT, and 

MSTORE. The family T of signatures of these cells is as follows: 

T = (E1 , D) iE(DICT, INO UT, INPUT, OUTPUT, STORE), 

where 

(EDICT, DDICT) = 

cell signature 

environment signature 

list item, store: sort 

input: listitem -+ store 

output: store -+ list item 

defined symbols 

dictionary: list item -' list item 
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(EINOUT, DINOUT) = 

cell signature 

environment signature 

(empty) 

defined symbols 

(empty) 

(EINPUT, DINPUT) = 

cell signature 

environment signature 

bool, item, listitem, store: sort 

isnil: listitern - bool 

hd: listitem -+ item 

ti: listitem -+ listitem 

empty: - store 

insert: item store -+ store 

defined symbols 

input: listitem - store 

(EOUTPUT, DOUTPUT) = 

cell signature 

environment signature 

bool, item, list item, store: sort 

leitem: item item -' bool 

nil: - list item 

cons: item listitem -+ list item 

isernpty: store -* bool 

mm: store - item 

removernin: store -' store 

defined symbols 

output: store - list item 
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DICT 

INO 

INPUT 	OUTPUT 

STORE 

Figure 3-8: The syntactic dependence relation of T 

(ESTORE, DSTORE) = 

cell signature 

environment signature 

Sig(IJTEM) U Sig(ILJSTJTEM) 

defined symbols 

store: sort 

empty: - store 

insert: item store -+ store 

isernpty: store -+ bool 

mm: store -+ item 

removemin: store -+ store. 

The syntactic dependence relation <T of this signature system is given in 

Figure 3-8. Note that, in contrast to <T (the syntactic dependence relation, 

shown in Figure 3-6, of the specification cell system I of Example 3.2.3), INOUT 

no longer depends on anything, because the environment signature of MINOUT 

is empty. 

It is easily checked that each cell signature of T is a syntactic refinement of 

the corresponding cell signature of I. From Lemma 3.4.3 (d) below it follows 

that T also is a signature system. 

142 



3.3 Composition of Systems 

Since the signature I of Example 3.2.5 is a system site for [T, <], it follows 

from Lemma 3.4.3 (c) below that I also is a system site for [T, <TI.  Using 

Proposition 3.3.1, it follows that I is the least system site for [T, <T],  because I 
is contained in the join of the environment signatures of T (it equals ESTORE). 

Hence the composition of T has environment signature := 1. 

Since the dictionary problem is specified by 'DICT,  only the program entities 

of Sig(IDICT) need to be exported from the system, and this can be expressed by 

using the confinement signature C := Sig(IDICT). This signature is included in 

the join of the result signatures of T (it is already included in DDICT  U ESTORE, 

which in turn is included in DDICT  U DSTORE).  Hence one obtains 

DcT = (.,D), 

where 

= I 	= Sig(IITEM) U Sig(ILISTJTEM) 

= E U C = Sig(IJTEM) U Sig(ILISTITEM) U Sig(Ij,jcj.). 

This cell signature will be the signature of the "composition" of the modules 

of the dictionary example, that is, the signature of the cell describing the final 

program. 	 o 

So far, we have considered the syntactical aspects of the composition operation, 

and therefore dealt with cell signatures only. Here now is the definition of the 

composition operation for cells. 

3.3.6 Definition. Let M = (Q, R$)$EJ be a cell system with signature sys-

tern T = (Ej,D % ) %E I, and let C be a signature compatible with hEIDi.  The 

composition of M confined by C, written "D M", is the cell 0cM  

of signature (, D) := OcT defined by 

:= { A E Mod(E) I ({A} A A Rk)/E1 C Qi  for all I E r} 

0 
iEI 
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The idea behind this definition is that ((, ) describes the "joint effect" of the 

cells (Qt, Ri) (1 E I). The external requirement interface ( consists of those 

E-models for which it is guaranteed that each cell M1  obtains a proper base 

when the cells are "installed" in a bottom-up fashion according to their syntactic 

dependence relation: When cell M1 is installed, at least the cells Mk with k <T i 

will be already in place. Given an E-model A, the cells with k <<T i will produce 

a result B in {A} A AkTi Rk, and the condition 

({A} A A Rk)/Ei 9 Qi 
k4Z 

in the definition of Q implies that B is a base for (Q1, R1 ). 

The result interface R is obtained by combining the individual result inter-

faces with Q. 

A useful alternative characterization of Q is given by the following proposition. 

3.3.7 Propositiono In the previous definition, Q is the c-largest interface of 

signatureR satisfying 

(A A R;;)lEi  9 Qi 	for alliEl. 
k4D1 

Proof. To show that 0  satisfies the inclusion above for all i E I, let i E I and 

X e Q A Ak Rk. Then X E {X/.} A Ak<<Ti Rk also, and X12 E . The 

definition of Q thus implies that X/E I  E Qt. 

To show that Q is largest, let Q' be any interface of signature . such that 

(Q' A Ak <<TiRk)//Ei c Q1 for all i E I, and let A E Q'. Since then {A} c 
we have, by monotonicity of conjunction, 

({A} A A Rk)/E (Q' A A Rk)/E ç Q 

for all i E I, and hence A E Q. Hence Q' ç Q. 
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3.3.8 Example. Consider the cell family M consisting of the modules of the 

dictionary example: 

M = (M$)E{DJcT, INO UT, INPUT, OUTPUT, STORE}, 

where 

MDICT is given in Figure 1-7, 

MINOUT is the empty module (Figure 1-14), 

MINPUT is given in Figure 1-16, 

MOUTPUT is given in Figure 1-18, 

MSTORE is given in Figure 1-19. 

The signatures of these cells form the signature system T of Example 3.3.5; in 

particular, M is a cell system. In the previous example it was shown that with 

C := Sig(IDICT), we have OcT = (,D), where 

= Sig(IITEM) U Sig(ILIsTJTEM), 

D = Sig(IJTEM) U Sig(ILISTITEM) U Sig(Ir,jcr). 

Let A? := (, ) := 0cM be the composition of M. The following para-

graphs aim at giving a more detailed presentation of the cell A?. 

First, what is the requirement interface Q precisely? This interface must 

ensure that all five cells of M obtain proper bases. Syntactically, this is already 

guaranteed by the fact that E', the signature of Q, is a system site for [M, <TI, 

so it remains to look at the properties required by the individual cells. These 

are quite simple: MDICT  and MINOUT  require no properties at all, the other 

three modules require that bool = { T, F}. Thus, every k-model A in which 

Ab001 = {T, F) will guarantee that the requirements of all cells are satisfied. 

On the other hand, this condition is necessary, because the module MSTORE 

does not depend on any other cell (1. e., STORE is <T-minimal),  and so its 

requirement "bool = {T,F}" must be guaranteed by Q. We thus have the 

following interface c: 

interface 

signature 
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Sig(IITEM) U Sig(ILISTITEM) 

(containing item, leitem, list item, nil, cons, isnil, hd, ti) 

properties 

bool = { T,F}. 

Second, what is the result interface k? The signature b of R is that of 

extended by the symbol dictionary. Semantically, however, this interface is quite 

complex, as it is obtained as the conjunction of Q and the result interfaces (1. e., 

the code) of the five cells of the system. To determine ! formally, one would 

have to use the mathematical denotations of the cells, that is, the semantics of 

their code, calculate their composition, and project this onto D to obtain R. 

The interface E thus obtained would describe the semantics of the function 

dictionary for any model of Q, that is, for any interpretation of the symbols of E' 

that satisfies "bool = {T, F}". There are no constraints on the interpretations 

of the other symbols of —a well-defined function dictionary is obtained even 

for interpretations that bear no relation whatsoever to the "intended" ones that 

have the properties stated in Q .  

We shall not delve any further into the calculation of J here, since the pur-

pose of the theory of this thesis is to make consideration of 1 unnecessary—the 

correctness of the composed module is to be derived from the correctness of the 

modules from which it is composed. 

More precisely, the goal of the theory of this thesis is to guarantee that (, ) 

is a refinement of (, ) (Example 3.2.11), and thus that (, J), the final result 

of the dictionary program development, is correct with respect to the external 

interfaces Q and .Q, as shown in Figure 3-9. o 
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}, 

I Q 

Figure 3-9: The composed module (c, E) and the external interfaces and 

3.4 Composability of Refinements 

We have now formalized the components of the "structured correctness argu-

ment" of a modular system as shown in Figure 3-5. The specification cells of a 

modular design must form a decomposition (Def. 3.2.10) of the global cell that 

consists of the external interfaces of the system. The specification cells can then 

be refined (Def. 3.1.18) individually. Composing the refinements (Def. 3.3.6) 

yields a single cell as result; this composition operation is performed in practice 

by a compiler or linking loader. 

The "composability theorem of refinements" now asserts that the final com-

posed cell obtained in this manner is a refinement of the global cell that was 

decomposed originally; since "refinement" reflects the correctness notion of mod-

ular programming, this theorem may be regarded as asserting the soundness of 

the modular programming method. 

Theorem. 4.1.12 (Composability of Refinements). 

Let [M, <] be a decomposition of the (E, £')-cell (, ), and let M' be a corn- 

ponentwise refinement of M. Then M' is a cell system, the signature .b is 
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compatible with the join of the definition signatures of M', and 

o M' is a refinement of (, J). 
D 

This theorem will not be proved here, because it is a corollary of the more gen-

eral theorem asserting the "composability of universal implementations" (Theo-

rem 4.1.7) to be proved in the next chapter (hence it has the number 4.1.12). 

An interesting aspect of the theorem is the role of the dependence relation <. 

This relation appears only once in the theorem, in the phrase "Let [M, <] be 

a decomposition ...". This means that the dependence relation < is only used 

to verify the decomposition property of [M, <], and that it is irrelevant for the 

remaining components of the correctness argument ("componentwise refinement" 

and "composition"). 

Note especially that the composition operation (yielding D M') is indepen-

dent of <; it only depends on the syntactic dependence relation of M'. This 

relation can be different from <, as the dictionary example shows: compare the 

dependence relation < (Figure 3-7) of the ordered specification system with the 

syntactic dependence relation <M (Figure 3-8) of the concrete system. 

Practical considerations make it essential that the composition operation 

use only the syntactic dependence relation: Composition is normally performed 

by compilation or linking, and it is the syntactic dependence relation that is 

naturally available at this stage. If composition were to use the dependence 

relation on which the decomposition was based, it would become necessary to 

specify this ordering to the compiler or linker. 

With the (not-yet-proven) theorem about the composability of refinements, the 

present chapter has presented a theory that is similar in scope to theories devel-

oped previously by myself [Schoett 81] and by Back and Mannila [BM 841. 

The theory I developed in 1981 [Schoett 811 anticipates some of the features of 

the present theory; in particular, the idea of analysing modularization by dealing 

with "modules" and "module specifications" that have specific environment and 

result signatures, and the idea of structuring the correctness argument for a 
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modular program according to Figure 3-5. Thus, concepts of "decomposition" 

and "composition" occur already in the theory of 1981. 

Compared to the present theory, however, the theory of 1981 is limited in 

scope: it deals exclusively with the institution (ASig, AInci, Aig), its "speci-

fication" concept is restricted to one particular specification language, the re-

finements of a specification must be modules with trivial requirement (i. e., 

(E, b)-modules of the form (Mod(), ) rather than arbitrary cells), the com-

position operation is only defined for such modules (this makes it trivial to 

determine the requirement of the composed cell), and cell systems must be fi-

nite. 

In particular, I did not realize in 1981 that a "module" can be treated as a 

special case of a "module specification" (i. e., of a cell), and that it is possible 

to allow arbitrary cells in place of "modules". In Chapter 5 below, we will 

encounter results that could not have been formulated without the unification 

of "modules" and "module specifications" embodied in the cell concept (e. g., 

Theorem 5.1.11). 

It is a bit more difficult to relate the concepts of the theory of Back and Mannila 

[BM 84] (which will be called the "BM theory" from now on) to the concepts of 

this thesis. At first, one encounters the following restrictions in the BM theory: 

The theory is "typeless", that is, every symbol can refer to any semantic 

value. Hence, the BM theory essentially deals with the institution (Set, 

Setlnci, SetMod) only. 

. The modules of the BM theory (called "declarations") define exactly one 

new symbol, and assign a value to it for every possible environment. Hence, 

they are cells with trivial requirement. 

o A "specification" describes the value of exactly one symbol; that is, rela-

tionships between the interpretations of different symbols cannot be spec-

ified. 

Nevertheless, the BM theory covers similar ground to the present theory. In 

particular, the concept of "locality" is analogous to the concept of the "Correct- 
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ness of Modular Programming": "Locality" means that the "local" correctness 

of a system (each module defines an entity satisfying the result specification, 

provided it is supplied with an environment that satisfies the specifications of 

the environment symbols) implies "global" correctness (the composition of the 

modules is correct); and so the "locality" theorem of Back and Mannila that 

"Finite hierarchical modularization mechanisms are local" 

[BM 84, Corollary 7] is analogous to the composability theorem for refinements. 

In particular, the term "hierarchical" in the theorem of Back and Mannila 

means that systems must have a well-founded dependence ordering, as they must 

in the theory of this thesis. It would seem that the well-foundedness requirement 

should enable the BM theory to cope with infinite systems as well; however, the 

"locality" theorem of the BM theory cannot be generalized to infinite systems. 

The reason is that the BM theory employs a semantic notion of "dependence" 

between modules: A module A depends on a module B if varying the result of B 

can have an effect on the result of A. This definition does not work well in 

infinite systems: If, for example, one defines 

Y 	I 1, if infinitely many of the x (i E N) are 1 

O j  otherwise, 

then this definition would not depend on any of the xi according to the BM the.. 

ory. Hence, the following is a (BM-)hierarchical system of declarations: define 

for i E N 

1, if infinitely many of the x (1 E N) are 1 
Xi 	 (1) 

1 0, otherwise. 

If we "specify" the xi by postulating that 

Xi = 0 	for all i E N, 	 (2) 

then each of the declarations above is locally correct, because if all the xi sat-

isfy (2), then (1) defines a correct value for every x 2 . However, the system (1) is 

also locally correct with respect to the specification 

Xi = 1 	for all i E N, 	 (3) 
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and since the solution of (1) cannot possibly satisfy both (2) and (3), locality 

fails for infinite systems in the BM theory. 

A point in which the theory of Back and Mannila is more general than the 

theory of this thesis is that it is not restricted to systems with a well-founded 

dependence relation, but also allows recursive dependencies in systems. 

It was my deliberate choice not to try to deal with recursive systems in this 

thesis, because I regard them as incompatible with the basic goal of modulariza-

tion, which is to separate the correctness argument for a system into separate 

correctness arguments for its individual modules. 

The following example illustrates that such a separation is not possible for 

recursive systems. Consider the result interface 

F = interface 

signature 

nat: sort 

nat -+ nat 

properties 

nat = N 

1(0) = 0 

and assume we are given the following interface as a requirement interface: 

C = interface 

signature 

nat: sort 

nat - nat 

properties 

nat=N 

g(0) = 0. 

It is then trivial to program a module that is a correct refinement of the cell 

(G,F): 

I = module 
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environment signature 

nat: sort 

g: nat -+ nat 

defined symbols 

1: nat -+ nat 

requirements 

(none) 

result 

f=g 

(some programming notations might require one to code this in a more compli-

cated form like "funct f(x: nat): nat = g(z)"). 

If recursive dependencies between modules are allowed, we can define the 

function g by a module that uses the function f: 

9 = module 

environment signature 

nat: sort 

1: nat -+ nat 

defined symbols 

g: nat --~ nat 

requirements 

(none) 

result 

g=f. 

This module 9 is a correct refinement of the cell (F, C). Hence, we have the 

design graph shown in Figure 3-10. Each of the modules I and 9 in this figure 

is correct with respect to its requirement and result interfaces. 

However, composing the cells I and 9 essentially means to compose the two 

definitions 

f=g 

g=f. 
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Figure 3-10: Design graph of two mutually recursive function definitions 

This system of equations, is satisfied by all models in which / = g, and there is 

no guarantee that the interfaces F and G will be satisfied in the solution. 

in a concrete programming language, for example, the composition of the 

modules F and 9 would normally result in both f and g being undefined every-

where, so that neither of the interfaces F and C is satisfied. 

Consider also that the design graph in Figure 3-10 remains correct if the 

interfaces F and C are replaced by 

F' specifying 1(0) = 1, and 

C' specifying g(0) = 1. 

Clearly, the composition of F and 9 cannot both satisfy the interfaces F and C 

and the interfaces F' and C'. 

The problems of recursion also manifest themselves in the BM theory. In order 

to obtain a locality result for non-hierarchical (in particular, recursive) systems, 

the theory imposes the requirement that specifications (i. e., interfaces) must be 

"continuous" with respect to the partial order between semantic values that is 

employed in solving recursive systems of definitions. This continuity require-

ment severely restricts the expressive power of specifications. For example, in 
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the standard case of the recursive definition of partial functions, where the par-

tial ordering is graph inclusion, continuous specifications must always admit the 

function that is undefined everywhere. As a consequence, continuous specifica-

tions are unable to express that a function should yield a result (i. e., terminate). 

This continuity requirement rules out the example presented above, because 

the interfaces F and G are not continuous—if they were continuous, they would 

at least have to admit the totally undefined functions, and the solution produced 

in concrete programming notations (1 and g totally undefined) would then be 

correct. 

I feel, however, that specifications that always admit the totally undefined 

function are too weak to be practically useful. For example, any system specified 

in this way could simply be realized by declaring all functions to be undefined ev-

erywhere. Even the simplest form of termination requirement in a specification, 

however, seems incompatible with recursive dependencies between modules, as 

illustrated by the example above. 

Hence, I hope that the reader does not feel too uncomfortable with the fact 

that the theory of this thesis deals only with systems that have a well-founded• 

dependence relation. It should perhaps be pointed out that this does not preclude 

recursively defined functions in modules, as long as the cycles of the call graph. 

do not cross module boundaries. Functions that call each other (or themselves) 

recursively within a module do not cause problems, as these recursive definitions 

can always be solved locally to determine the semantics of the module in the 

form of a cell (this was discussed in Example 3.1.14). 

In the remainder of this section, the following theorem is proved, which states 

the "syntactical component" of the theorem of the composability of refinements. 

3.4.1 Theorem (Syntactic Correctness of Modular Programming). 

Let [T, <1 be a syntactic decomposition of the cell signature (, D), and let T' 

be a componentwise syntactic refinement of T. Then T' is a signature system, 

the signature D is compatible with the join of the result signatures of T', and 

D.b T' is a syntactic refinement of (', D). 

154 



3.4 Composability of Refinements 

For the proof, two lemmas are required. 

3.4.2 Lemma. Let [T, <1 be an ordered signature system, and let T' be a 

componentwise syntactic refinement of T, where T = (Es , D$ ) ;Eir and T' = 

(E, D)11. Whenever B is a system site for [T, <1 and K C I is <-downward 

closed, then 

u J Dk=U  U D. 

kEK 	 ICEK 

This lemma.states that the "result signature" obtained by installing a <-down-

ward closed subset of the cell signatures of T on a system site . is the same as 

the one obtained by installing the analogous subset of the cell signatures of V. 

The proof of this lemma uses "Zorn's lemma" from set theory (see [Bar-

wise 77, p.  355], [Levy 79, p.  161]): 

A partial order in which every chain has an upper bound has a max-

imal element. 

Recall that a chain in a partial order (M, ) is a subset of M that is totally 

ordered by C, and a maximal element is one for which no strictly larger element 

exists,i.e., zEMis maximal 1ff for allyEM: yz=,y=x. 

Zorn's lemma will be used frequently in the remainder of this thesis; it is 

equivalent to the Axiom of Choice in the presence of the other axioms of ZFC 

(e.g., [Levy 79, p.  162], [Barwise 77, p.  355]). 

Proof of Lemma 3.4.2. 

Let T = (Ei,Di)EI, T' = (E,D) €1, and < be defined as in the lemma; let 

be a system site for [T, <], and let K C I be <-downward closed. 

Note first that for all i E I, 

V U D E E1  U D1  E u U (Ei u D2 ) 

iEI 

by Proposition 3.1.17 (b), and so (E U D)11 is compatible, and the join of this 

family is compatible with E. 
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Consider now the set U which consists of all sets L 	K such that L is 

<-downward closed and E U UkEL Dk = E U UkEL  D. Let U be partially 

ordered by C. 

Every chain in U has an upper bound in U, for if (L m ) mEM is a family of 

elements of U (in particular, a chain), then L UmEM Lm is in U, because L 

is obviously <-downward closed, and 

Eu U Dk =Eu U (Eu  U Dk) 
kEL 	 mEM 	kEL m  

=Eu U (Eu  U D) 
mEM 	kEL, TI  

=Eu 1i D. 

kEL 

According to Zorn's lemma, we can therefore pick a c-maximal element L 

of U. It will now be shown that the assumption that L K leads to a contradic-

tion. Hence L must be equal to K, which implies that K E U, and hence verifies 

the lemma. 

Suppose that L K. Choose a <-minimal element j in L \ K (< is well-

founded). Then L := L + {j} also is in U: It is easy to see that L is <-down- 

ward closed. Since E is a system site for [T, <1, E U U,, Dk is a site for 

(E,, D1). Since (E, D) is a syntactic refinement of (Es, D1), we have 

(Eu U D1)uD1=(Eu  U Dk)UD. 
k4j 	 k4j 

Hence, 

Eu U Dk = (Eu U DkUDJ) u U Dk 
kEL k4j kEL 

=(Eu U DkUD)U  U Dk 
kEL 

= (Eu U Dk)UD 
kEL 

= (E u U D) U 	 (L E U) 
kEL 

=Eu U D. 

kEL 

Hence L+  e U, which contradicts the definition of L as a maximal element 

ofU. 	 o 
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The next lemma describes in more detail the relation between an ordered signa-

ture system [T, <] and a componentwise syntactical refinement T' of T. 

3.4.3 Lemma. Let [T, <] be an ordered signature system, and let T' be a 

component wise syntactic refinement of T. Then 

T' is a compatible family of cell signatures, 

<TI  c <T c 
every system site for [T, <] is a system site for [T', <TI], 

T' is a signature system. 

Proof. Let [T, <] be an ordered signature system where T = (Ei, D$)$Ef, and 

let T' = (Es , D)IEJ be a componentwise syntactic refinement of T. 

Clause (a): By Proposition 3.1.17 (b), we have E' U 	E. U D for all i E I, 

and since the family (E1U D) 2 1 is compatible, so is (E U D)$EJ. % 

Clause (b): Since < is a dependence relation for T, we have <T 

Suppose now that <TI  is not included in <T.  Then we can choose k and i 

in I such that k <TI i and k IT  i From k <TI i it follows that k 1, and hence 

k 1T  i implies that 

Dk n (E 1  U D) Ek. 

Hence, we have 

Dfl(EuD) (EuD)n(EuD)% 

(Ek U Dk) fl (E1  U D1 ) 	 (Prop. 3.1.17 (b)) 

= (Ek n (E1  U Dj) U (Dk n (Ei u D 1 )) 

Cl Ek. 

Therefore, 

Dfl(EUD3=Dfl(EUD3flEk 

LDflEk 
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(EUD)flEk 

E lk  

(Ek is a site for (E,D) by Prop. 3.1.17 (c)). 

This implies that k T'  j, which is a contradiction. 

Clause (c): Let 2 be a system site for [T, <. Because 2 is compatible with 

UiEI(Ei U D) by Lemma 3.3.2, and VC: Ej U Di for all i E I by Proposi-

tion 3.1.17 (b), the signatures E and UiEID  are compatible. 

For every i E I, 	U LJkci Dk is a site for (E8 , D1 ) and hence for (E, D). 

From Lemma 3.4.2 it follows that 

Eu Lj D'  is a site for (E,D). 	 (1) 
k4ZI 

To show that 2 is a system site for [T', <Ti], we have to show that for all 

I E I, 

E U U D'k  is a site for (E, D) 	 (2) 
k4Zrai 

(compare this with (1)! This is one place where the different dependence relations 

of a system and its refinement complicate matters). 

Suppose (2) was false for some I E I. Then we can choose j to be 4Z-minimal 

among the values of i for which (2) fails. 

From (1) it follows that 

(.0 U D)n(EuD) 

E(EuUD)n(EuD) 	(as<TIC<) 

=E, 

and it remains to show the converse of this inclusion. For this, it is sufficient to 

show that 

Ell 
	

I

D. 
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It will be shown below that for every m 

DnEEEu U .  D'. 	 (3) 

From this, it follows that 

E=(.0 U D)nE 
m<<j 

= ( 
n E) U U (D I  n E) 

m<<j 

U D. 

This proves that U UkT,a D is a site for (Es', D) and contradicts the defi-

nition of j. Hence (2) is proved and thus that B is a system site for [T', <TI]. 

It remains to prove (3). Suppose that (3) is false. Then we can choose n to 

be <<Ti-minimal among the values of m that falsify (3). It follows that n .i j, 

because otherwise the right hand side of (3) would include D. Since ti <<j, we 

have ti j, and hence TS j implies that 

(4) 

Also, since n <<j, the minimality of j implies that n satisfies (2) when substi-

tuted for i, i. e., 

( U 	D) is a site for (E, Dj. 
k4 T ,n 

In particular, 

E1çEu U D. 	 (5) 
k<<Tsn 

Hence, 

D' fl E = D'r  fl E fl E 	 [by (4)] 

EnE 

LEfl(EU U D) 	[by(5)] 
k<<Tsn 

(Ejl 	LI (E,'nD) 
k<<Dsn 
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Because each value of k in this expression satisfies (3) when substituted for m (by 

minimality of n), this signature is included in 2  U U kc, ,j  D. Thus, n is a value 

for m that satisfies (3), which contradicts the definition of n. This proves (3) 

and concludes the proof of clause (c) of the lemma. 

Clause (d): This follows trivially from (a), (b) and (c): <T'  is well-founded 

because it is included in the well-founded relation <. Since [T, <J is a signature 

system, there exists a system site for it; by (c), that system site is also a system 

site for [T', <TI]. 0 

Proof of Theorem 3.4.1 (the Syntactic Correctness Theorem). 

Let [T, <] be a syntactic decomposition of the cell signature (E, D), where T = 

(E8 , D2)€j,  and let T' = (E, D)iEI be a componentwise syntactic refinement 

of T. 

By Lemma 3.4.3 (d), T' is a signature system. The signatures .E) and UEI  D 

are compatible, because they are included in E U UEI D: We have D E U 

U1€1 D, because [T, <] is a syntactic decomposition of (E, and for all I € I, 

we have D c E u U$EI D, because D E E u D1  by Proposition 3.1.17 (b), and 

Ei U Di EZ EUUiEIDi  by Lemma 3.3.2. 

It remains to show that OD T' is a syntactic refinement of (E, b). Let 

(E', D') := D. T', so that 

is the smallest system site for [T', <TI],  and 

b'=E'u(.bnUD). 
iEI 

To show that (E', D') is a syntactic refinerrient of (E, D), we shall use Propo-

sition 3.1.17 (c), which requires us to verify that E is a site for (E', .b'), and 

that Eub'=Eub. 

Note that E' E, because E is a system site for [T', <TI]  by Lemma 3.4.3 (c), 

and E' is the smallest such system site. Therefore, 

En (E' u D') = En (E' u (D n U Da) 
iEI 

=(EnE')u(Enbn UD) 
iEI 
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=E'u(En.bn[J(nD)). 
iEI 

This expression equals E', because . fl 	' for all I E I by Lemma 3.3.3. 

Hence, E is a site for  

Finally, 

uD'=EuE'u(Dn UD) 
iEI 

=u(bnUD) 
iEI 

=u(bn.)u(bn UD) 
iEI 

=Eu(.bn(u[jD)) 
iEI 

=.E U (b n (2 U J D1 )) 	 (Lemma 3.4.2), 
iEI 

and this is equal to 2 U b, because [T, <] is a syntactic refinement of (,D), 

and hence 1) 1 E U LJ1 D. 

This verifies the conditions of Proposition 3.1.17 (c), and thus shows that 

D T' = (E', rnb') is a syntactic refinement of (E, D). 	 0 

3.5 The Relation between 

Decomposition and Composition 

The composability theorem for refinements (Theorem 4.1.12, discussed in the 

previous section) asserts that the "structured correctness argument" for a mod-

ular system shown in Figure 3-5 is sound if "refinement" is used as the correctness 

notion: a componentwise refinement of a decomposition of a global cell yields 

a refinement of the global cell when composed. This section proves a converse 

theorem, which asserts that under certain syntactic restrictions, every system 

whose composition is a refinement of some global cell is a decomposition of that 

global cell. 
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Another theorem to be proved here is that composition of cells preserves 

single-valuedness and consistency (and hence the property of being a module). 

Finally, it is shown that for ordered systems whose cells are consistent, the 

decomposition notion is independent of the dependence ordering. 

An example illustrates the effects of inconsistent cells. 

Many of the theorems of this section depend on the Composability Theorem 

for Refinements, which has not yet been proven. This does not lead to logical 

circularity, because the theorems of this section will not be used in Section 4.1, 

where the Composability Theorem is proved. 

The following theorem characterizes the relation between the syntactic decom-

position and composition notions. 

3.5.1 Theorem. An ordered signature system [T, <], where T = 

is a syntactic decomposition of a cell signature (, .b), if and only if 

2 U D is compatible with LJEI D, 

.flDEfora1liEI,and 

D T is a syntactic refinement of (, b). 

The proof is based on the following lemma. 

3.5.2 Lemma. Let T = (E$ ,D$ ) EJ be a signature system, and let 2 be a 

system site for [T, <T].  If K C I is <T-downward  closed, and j is <T-minimal 

in I\K, then 

EU Lj Dk is a site for (E1,D). 
kEK 

Proof. Let K c I be <T-downward closed, and let j be <T-minimal  in 

I \ K. The signatures E U UkEK Dk and E5 U D, are compatible, because 

and U.EI (E$ U D) are compatible according to Lemma 3.3.2. Since K is 
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<T-downward closed, we have K D { k I k cT j }, and hence 

E1=(Eu U Dk)fl(EuDJ) 	 (1) 
k<<j 

(Eu U Dk)fl(EJUD1). 
kEK 

It remains to show the converse inclusion. From the equation (1), it follows that 

(2) 

and hence it is sufficient to show that for all k E K, 

Dkfl(EJuD)cEJ. 	 (3) 

Suppose that (3) is false. Then we can choose m to be a <<T-minimal element 

of K such that 

Dm fl(EjUDj)Ej. 

Due to (1), it cannot be the case that m <<T J, hence in ~ZT j. In particular, 

m 7T 5, and since m E K and hence m 5, this implies that 

Dmfl(EjUD1)EEmE!JU J Djc. 

Hence 

Dm  n(E3  U D,) c (.0 U Dk) n(E1uD1) 

=(n(E5uD3))u U (Dkfl(E,UD1)) 
m 

E E, U U (Dk n (Ej U D,)) 	 [by(2)] 
k<<rm 

since for k <<T m, we have k E K (K is <T-downward  closed) and hence 

Dk n (Ej U D3 ) Ej by minimality of m. This contradicts the definition of m, 

and hence proves (3). It follows that 

E=(Eu[jDk)fl(E,UD3 ). 	 o 
ICEK 

163 



3.5 The Relation between Decomposition and Composition 

Proof of Theorem 3.5.1. 

Let [T, <] be an ordered signature system, where T = (Es , Dj)$Ej,  and let (E, D) 

be a cell signature 

Suppose first that [T, <J is a syntactic decomposition of (E, b). Then E is a 

system site for [T, <1 and hence compatible with UiEI D, and b C Eu UEI D, 

which proves (a). Also, we have for all i E I: 

En D (Eu U Dk) n (Ei U D) = 
ki 

and thus (b) holds. Finally, Theorem 3.4.1 (applied with T' = T) yields (c). 

Conversely, suppose that (a), (b) and (c) hold. Let (E', D') := D T. Then 

E' is the smallest system site for [T, <T],  and 

LY=E'u(Dn UDi), 
iEI 

and, according to (c): 

E is a site for (E', D') 

(in particular, E' C E), and 

Eu DI = Eu D. 

To show that [T, <] is a syntactic decomposition of (E, .b), we have to show that 

E is a system site for [T, <], and that D E U U€1 D1. 

From (a) it follows that E and UiEj  D1  are compatible, and by Lemma 3.3.2, 

we have 

U (E1uD)E'uUD;Eu[JDi, 
iEI 	 IEI 	 iEI 

hence E and 	U D) are compatible. 

For every i E I, we have 

(E u Li Dk) n (Ei U D) = (E u E' u U Dk) n (Ei u D) 
k<<i 

= (E n (Ei U D1 )) u ((E' U U Dk) n (E1 U D1 )) 

= (E fl (E;  U Di)) U E1 	(Lemma 3.5.2) 

=E 
	

(by (b)). 
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Hence E is a system site for [T, <J. 

Finally, 

=Eub' 

= Eu E' u (.b n D2 ) 

iEI 

S 	 =Eu(DnUD) 
iEI 

EU U Di. 
iEI 

Hence, [T, <J is a syntactic decomposition of (E, .b). 	 o 

Theorem 3.5.1 shows that every signature system whose composition is correct 

with respect to a global cell signature (clause (c)) and that satisfies the additional 

conditions (a) and (b) is a syntactic decomposition of the global cell signature. 

The additional condition (a) says that the system's internal symbols (liE!  D) 

must be compatible with the global cell signature, condition (b) says that no 

part of the global environment signature .E may be redefined inside the system. 

These additional conditions are needed, because the decomposition notion is 

formulated using just a single "name space", that is, a single signature which 

contains both the external and the internal symbols of the system. A more 

complex "decomposition" concept, where the external and internal signatures are 

connected by signature morphisms, might remedy the need for such additional 

conditions. - 

As a corollary of Theorem 3.5.1, we obtain that every system is a syntactic 

decomposition of its composition. 

3.5.3 Theorem. Let [T, <] be an ordered signature system, and let C be a 

signature compatible with the join of the definition signatures of T. Then [T, <} 

is a syntactic decomposition of Dc  T. 

Proof. Let (E, D) := O C  T. We verify the three conditions of Theorem 3.5.1. 
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3.5 The Relation between Decomposition and Composition 

EuD=D=U(CflUDi)cu[JDi, 
iEI 	 iEf 

hence 2 U D is compatible with U1 D; 

for i E I, we have 

U D,)n(E1UD1)=E, 
jZr i 

as is a system site for [T, <T]; 

the environment signature of [:If>  T is the smallest system site for [T, <T], 

i. e., ; the result signature of D T is 

(D n U Di) = 	((B U (C n Lj Di)) ri U D) 
iEI 	 iEI 	iEI 

= 	(2 ri U D1 ) u ((C n U Di) ri U D) 
iEI 	 iEI 	iEI 

=.u(cn UD) 
iEI 

D. 

Hence [If, T = (E, D), which is a syntactic refinement of itself by Propo-

sition 3.1.17 (a). 

Thus, Theorem 3.5.1 is applicable and yields that [T, <] is a syntactic decompo- 

sition of D T. 	 0 

The following theorem treats the relation between "decomposition" and "cor-

rect composition" on the semantic level; the syntactic level is "filtered out" by 

considering only systems whose signature is a syntactical decomposition of the 

global cell signature. 

3.5.4 Theorem. Let (Q,) be a cell of signature (E,D), and let [M,<] bean 

ordered cell system whose ordered signature system is a syntactic decomposition 

of (E,D). 

If DM is a refinement of 

then [M, <] is a decomposition of (, ). 

if the cells of M are consistent, the converse implication also holds. 
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3.5 The Relation between Decomposition and Composition 

Proof. Let M = (Qt, Rj)IEI, and let the signature system of M be T = 

(E1 , D1)11. Note that D 	U U€1 D, since [T, <] is a syntactic decom- 

position of (, D) by assumption, and so D and U€1 D1  are compatible. Let 

:= DbM, and let (.',b') be the cell signature of 	that is, 

(E', D') = [1 ,5 T. We then have by definition 

' ={AEM0d(E')I ({A}A A Rk)/E S C Qt for alliEI} 	(1) 
k<<r i 

A A R)//D'. 
iEI 

Now suppose that (c', ') is a refinement of (c, ), so that, according to Propo-

sition 3.1.19 (e), 

(', D') is a syntactic refinement of 

On particular, ' 	 (2) 

Q/E C (' A  ')/.', 	 (3) 

and(A')//DCJ. 	 (4) 

We wish to show that [M, <] is a decomposition of (, 1). By assumption, the 

ordered signature system [T, <J is a decomposition of 

Let i E I, and consider B E (Q A Ak Rk). Then 

= (B/E)/' 	(by (2)) 

E Q/E' 

ç (Q' A R')//E' 	(by (3)) 

(Proposition 3.1.8) 

By (1), this implies that 

({B/.'} A A Rk)/E2 c Q1. 
k4ZrI 

Since B E (Q A Ak Rk) and <r 9 <,hence <<T ç <<,we have BlDi E Ri for 

k <<T 1, and hence 

B1E1=B1('U U Dk)/E 
k<<T $ 
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3.5 The Relation between Decomposition and Composition. 

E ({B/.'} A A R)/E 

cQi. 

Hence (Q A Ak< Rk) /Ei c Q j  for all I E I. 

Finally, consider B E (Q A AEI Rk). As before, B/p' E (', and thus 

B/D' = B/(E' U J D)/D' 	(definition of D') 
IEI 

E ('A AR)i1 
IEI 

=,. 

Hence 

B/.b = BI(B u D')/.b 

E (A.')/.b 

R. 	(by(4)) 

This shows that (AAIEI Rk)//b C R, and hence that [M, <] is a decomposition 

of 

Now_assume that the cells of M are consistent, and that [M, <] is a decomposition 

of (,R). By Lemma 3.1.19 (c), M is a componentwise refinement of itself. 

Hence the composability theorem of refinements can be applied with M' = M, 

and this yields that D.b  M is a refinement of (, ). 0 

For more explanation of the consistency condition in this theorem, see Exam-

ple 3.5.10 below. 

The following theorem characterizes the relation between decomposition and 

composition on both the syntactic and the semantic level. It is a simple combi-

nation of Theorems 3.5.1 and 3.5.4. 
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3.5 The Relation between Decomposition and Composition 

3.5.5 Theorem. Let 	be a cell of signature (,O), let [M,<] be an 

ordered cell system, and let T = (E1, D)i be the signature system of M. 

if 

E U .b is compatible with UEJ D, 

E n D2  Ei for all i E I, and 

DbM  is a refinement of 

then [M, <] is a decomposition of (, 1). 

if all cells of M are consistent, the converse implication also holds. 

Proof. Suppose first that the clauses (a)—(c) hold. Clause (c) implies that D. T 

is a syntactic refinement of (, 1)), hence Theorem 3.5.1 is applicable and yields 

that [T, <] is a syntactic decomposition of (E, f). By the previous theorem 

(Thm. 3.5.4), [M, <] is a decomposition of 

For the converse, suppose that all cells of M are consistent, and that [M, <] 

is a decomposition of (, ). Then by definition, [T, <] is a decomposition of 

(R, .b), and so (a) and (b) follow from Theorem 3.5.1; clause (c) follows from 

Theorem 3.5.4. o 

The semantical analogue to Theorem 3.5.3 is that every cell system is a decom-

position of its composition. 

3.5.6 Theorem. Let [M, <] be an ordered cell system, and let C be a signature 

compatible with the join of the definition signatures of M. Then [M, <] is a 

decomposition of O C  M. 

Proof. Write M in the form M = (Q$,Rj)IEJ, let T = (E,D)1 be the 

signature family of M, let (, ) := Oc  M, and let (E, b) be the signature of 

this cell, i. e., (E, b) := Oc  T. We verify the conditions of the "decomposition" 

definition (Def. 3.2.10). 

(a) By Theorem 3.5.3, [T, <] is a syntactic decomposition of (E, .b). 
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3.5 The Relation between Decomposition and Composition 

For I E I, we have 

( A A Rk)/E1 9 (Q A A Rk)/E1 	(Prop. 3.1.8, and <<T 
ki 	 k4p1 

ç Q. 	 (Prop. 3.3.7) 

(Q A A R)/.b = . by definition. 
- 	- 	-- 	-- 	- 	-iEI 	- 	--.---- 

Hence [M, <] is a decomposition of (, ) = D, M. 	 0 

We can now verify that the composition operation preserves the "type" of the 

cells involved. 

3.5.7 Theorem ("Type" Preservation). 

Let M be a cell system, and let C be a signature compatible with the join of the 

definition signatures of MJ 

if all cells of M are consistent, so is Dc  M. 

if all cells of M are single-valued, so is oc  M. 

if, all cells of M are modules, so is O C  M. 

Proof. Suppose first that all cells of M are consistent; in other words (Propo- 

sition 3.1.19 (c)), that M is a componentwise refinement of itself. 

By Theorem 3.5.6, [M, <J is a decomposition of O C  M. By the Composabil-

ity Theoremof Refinements, it follows that 0cM is a refinement of EI C  M, and 

hence that 0cM is consistent. 

Now suppose that the cells of M are single-valued. Let M be of the form M = 

(Qi, and let T = (Es , D) iEJ  be the signature system of M. Let (Q, -) := 

0cM, and let (E,D) be the signature of (,E), i.e., (,.b) = OcT. 

Let A be a base for O C  M, and let F be the signature of A. Suppose that there 

are two different results B and B' of 0cM on A. Both B and B' are models 

of signature F U D. Since B/F = A = B'/F, it follows that B/D B'/D. 

Since B and B' are results of 0cM  on A, both B/D and B'/D are elements 

of R = (Q A A 1 Ri)iD. Hence there exist C,C' E (Q A AiEIRI) such that 

C/.b = B/D and C'/.b = B'/P); in particular, C C'. 
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3.5 The Relation between Decomposition and Composition 

Both C and C' are of signature E U UEI  D8 . Since 

C/E = (C/.b)/E = (B/.b)E = BIB 

= (B/F)/E = A/E = (B'/F)/E = B'/E 

= (B'/b)/E = (C'/b)/E = 

it fóllówi thatC/([j 1  D) 	C'/(U$EJDj),  which thèaiis that the S 

{i Eli C/D 1  # C'1D1} is nonempty. 

Let j be a <T-minimal member of Z. Then 

X := C/(E U U D) = C'/(E U U D1). 

This model Xis a base for (Q1,R): 

• Eu Uic,j  Di is a site for (E1, D1), because E is a system site for [T, <T], 

. 	 X/E1=C/E1 

€ (A AR) lIE1 
iEI 

( A A R 1)/E1 	(Prop. 3.1.8) 
i<<rj 

Q. 	 (Prop. 3.3.7) 

Now Y := C/(EUUjTj DuD1) andY' C'/(EUUi<<Ta D1 UD1 ) are results 

of (Q1,R1) on the base X: 

• their signature is the result signature of (E1, D3 ) on the site Eu 	D, 

• Y/(EuU <<5  D) = C/(EUUj<<Tj D) = X, and Y'/(EuUjDJ D) = X 

analogously, 

• Y/D J  = C/D1 € 1?5 and Y'1D 3  = C'lDj € R. 

But Y and Y' are different, because by definition of j, we have 

Y/D J  = C/D1 # C'/D1 = Y'1D1. 

This contradicts the single-valuedness of M3 . Hence the assumption that there 

are two different results B and B' of 0cM on A is refuted, which proves that 

0cM is single-valued. 
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3.5 The Relation between Decomposition and Composition 

If all cells of M are modules, i. e., both consistent and single-valued, then by the 

implications just proven, 0cM is consistent and single-valued, I. e., a module. 0 

The following theorems show that the dependence relation of an ordered system 

is nearly irrelevant, because (except for systems with inconsistent cells) the syn-

--tactic -and--semantic-decomposition- notions are- independent-of it--(nevertheless, 

it does not seem advisable to dispense with nonsyntactical dependence relations, 

since these arise naturally from design graphs, as was discussed on p.  135 f.). 

3.5.8 Theorem. Let [T, <] be an ordered signature system, let E be a signa-

ture, and let (E, b) be a cell signature. Then the predicates 

"E is a system site for [T, <]" 

and 

IT, < is a syntactic decomposition of (, .b)" 

do not depend on <. 

Proof. Consider first the predicate "E is a system site for [T, <]". We show 

that this predicate is equivalent to "E is a system site for [T, <T]",  which is 

independent of <. 

If E is a system site for [T, <], then E also is a system site for [T, <T]  by 

Lemma 3.4.3 (c) (put T' := T in the lemma). Conversely, if E is a system site 

for [T, <r], where T = (E1, D%)2E1, then for each i E I, Lemma 3.5.2 implies 

that EUUkDk is a site for (E,D), because <T 9 <,and hence {k I k < i} 

is <T-downward  closed. Hence E is a system site for [T, <]. 

Consider now the predicate "[T, <] is a syntactic decomposition of (FJ, D)". This 

predicate is equivalent to the composition of the clauses (a), (b), and (c) of 

Theorem 3.5.1, and these clauses are independent of <. 	 0 

3.5.9 Theorem. Let [M, <] be an ordered cell system whose cells are consis-

tent, and let (, ) be a cell. Then the relation 

"[M, <] is a decomposition of (, )" 
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35 The Relation between Decomposition and Composition 

is independent of <. 

Proof. The three clauses (a), (b), and (c) of Theorem 3.5.5 are independent 

of<. 	 0 

Itwill now be shown by an example that inconsistent cells have the following - - 

unpleasant properties: 

in Theorem 3.5.4, the consistency requirement cannot be dropped—there 

are decompositions of a global cell which contain inconsistent cells and 

whose composition is not a refinement of the global cell, 

yet the requirement is not mathematically "necessary" either—there are 

decompositions of a global cell which contain inconsistent cells and whose 

composition is a refinement of the global cell, 

in Theorem 3.5.9, the consistency requirement cannot be dropped—for 

ordered systems with inconsistent cells, the "decomposition" property can 

depend on the dependence relation. 

3.5.10 Example. In the institution (ASig, AIncl, Aig), the empty signature 

has exactly one model, the empty algebra 0, which is a mapping whose domain 

is the symbol set of the empty signature, namely 0. There are two interfaces of 

the empty signature: 

TRUE := {O}, 	FALSE := 0 

(the interface TRUE is satisfied by every model, the interface FALSE by none). 

Define the cell system M = (M1, M2) by 

M1 := (TRUE,FALSE), 

M2 := (FALSE, TRUE). 

The signature system T of M is given by T1  = T2 = (0,0). The syntactic 

dependence relation of T is empty, and so < := {(1, 2)} is a dependence relation 

for T. 
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3.5 The Relation between Decomposition and Composition 

TRUE 

TRUE 
M2 

FALSE 

FALSE 
M1 

TRUE 

TRUE 

Figure 3-11: [M, <] is a decomposition of (TRUE, TRUE) 

The ordered cell system [M, <] is a decomposition of the cell (TRUE, TRUE), 

because the requirement of M2 is implied by the result interface of M1 (see 

Figure 3-11). 

However, the ordered cell system [M, <T] = [M, 01 is not a decomposition of 

(TRUE, TRUE), because the requirement of M2 is not implied by the external 

requirement TRUE alone (see Figure 3-12). This illustrates that for ordered 

systems with inconsistent cells, the dependence relation can influence the de-

composition property (point (c) above). 

Figure 3-13 illustrates that the composition of M is (FALSE, FALSE): The 

requirement of the composition must be FALSE in order to imply the require-

ment of M2; the result is FALSE, because the requirement is (the result interface 

of M1 is another reason for the result of the composition to be FALSE). 

We saw above that [M, <1 is a decomposition of the cell (TRUE, TRUE) 

(Figure 3-11). But the composition of M is (FALSE, FALSE), and this is not 

a refinement of (TRUE, TRUE), because the empty algebra 0 is a base for 

(TRUE, TRUE) but not for (FALSE, FALSE). This shows that for systems 
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3.5 The Relation between Decomposition and Composition 

TRUE 

	

• 	FALSE 
	

TRUE 

	

M1 	 M2 
TRUE 
	

FALSE 

TRUE 

Figure 3-12: [M,OJ is not a decomposition of (TRUE, TRUE) 

FALSE 

FALSE 	 • TRUE 

	

M1 	 M2 
TRUE 
	

FALSE 

FALSE 

Figure 3-13: The composition of M is (FALSE, FALSE) 

with inconsistent cells, the decomposition property does not necessarily imply 

that the system's composition is a refinement of the global cell (point (a) above). 

Finally, observe that Figure 3-13 also shows a correct decomposition: [M, 01 
is a decomposition of (FALSE, FALSE). The composition of M is the same cell, 

and this cell is consistent(!), hence a refinement of itself (Proposition 3.1.19 (c)). 

Thus we have a decomposition into a system containing inconsistent cells, whose 

composition is a refinement of the global cell—this illustrates point (b) above. 0 

The general observation in this example is that an inconsistent cell (here, M1 ) 

can help establish the requirements of another cell (here, M2) that is not syn-

tactically dependent on the inconsistent cell (this makes Figure 3-11 a decompo-

sition). This is so because the result interface of an inconsistent cell can make 
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3.5 The Relation between Decomposition and Composition 

stronger statements about the cell's environment than the requirement interface 

(if the requirement of M1 was made FALSE, so that M1  would be consistent, 

Figure 3-11 would no longer be a decomposition, because the new interface was 

not implied by the external requirement interface TRUE). 

These phenomena do not affect the composability of refinements (Theo-

rem4.1.12), because an inconsistent cell cannot be-refined by another cell- (-Propo- -- - - 

sition 3.1.19 (b)), and hence the composability theorem can only be applied to 

decompositions whose cells are consistent. In other words, if a decomposition 

contains inconsistent cells, then the bottom left corner of Figure 3-5 (page 123) 

cannot be completed, and so one will always detect inconsistencies when trying 

to establish the structured correctness argument for a modular system. 
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Chapter 4 

DataAbstract-ion 

THIS CHAPTER introduces data abstraction into the theory. The basic idea 

of data abstraction is that the program entities (in other words, the semantic 

model) defined by a program need not satisfy the specification; rather, it is 

sufficient that they "represent" a model satisfying the specification. Accordingly, 

data abstraction is based on a relation of "representation" between models. 

The first section of the chapter deals with data abstraction in an abstract 

setting, namely in an arbitrary institution. A "representation" relation between 

the models of an institution can be any relation that satisfies a few simple ax-

ioms. For such a representation relation, a "universal implementation" relation 

between cells is defined; in data abstraction, every cell must be a universal imple-

mentation of its specification. The main theorem of Section 4.1 and the central 

theorem of this thesis is the theorem asserting the "composability of universal 

implementations". According to this theorem, "universal implementation" can 

be used as the correctness notion in the structured correctness argument for a 

modular system (Figure 3-5): If a global cell is decomposed into a cell system, 

then a componentwise universal implementation of the system will yield a uni-

versal implementation of the global cell when composed. Since "refinement" is 

just a special case of the "universal implementation" notion, the composability 

theorem of refinements (which has been cited and used in Section 3.4 already) 

is obtained as a corollary of this theorem. 

The remaining sections of the chapter deal with representation relations be.. 

tween partial algebras. Section 4.2 introduces a new institution (TSig, TInci, 

TA1g) for this purpose; it is a slight variant of (ASig, AInci, Aig), in which 
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4.1. Data Abstraction in an Institution 

each signature has a distinguished subset of "visible" sorts. The following sec.. 

tions deal with the three representation relations "behavioural inclusion", "be-

havioural equivalence", and the "standard representation" relation based on ab-

straction functions. 

The reader is warned that the "universal implementation" concept presented 

in this chapter is not meant to be used in practice, as it would be too difficult 	- 

to verify. Chapter 5 to follow will decompose "universal implementation" into 

"simple implementation" and "stability", where the "simple implementation" 

concept formalizes a practical method of proving implementations correct. 

4.1 Data Abstraction in an Institution 

This section deals with data abstraction on an abstract level: we shall consider an 

arbitrary "representation relation" in a arbitrary institution. Hence the following 

convention: 

Convention. Throughout this section, the triple (Sig, mci, Mod) is assumed to 

be an institution. The concepts that depend on an institution (such as "signa-

ture", "inclusion", or "model") are implicitly assumed to refer to the institution 

(Sig,Inci,Mod). o 

Here are the axioms for a "representation relation". 

4.1.1 Definition. A representation relation is a Sig-indexed relation w* = 

('7)SEISigI, such that 

for each S E I Sig, w.- is a preordering on Mod(S) (1. e., -.-* ç 

Mod(S) x Mod(S) is reflexive and transitive), 

If a: S - T in Sig and A' w-  A, then F A' *F A. 
S 

If .-.--+- is a representation relation, S a signature, and A' -* A, say that A' 

is a representation of A according to -+- (or just "A' is a —+--representation 
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4.1 Data Abstraction in an Institution 

of A"). The subscript in "w-"  will be dropped when the signature S is obvious 

from the context. 

A representation relation -'--* is chain-closed, if in addition 

(c) Whenever (S$ ) $EI is a nonempty compatible chain of signatures, and A, A' 

are models of signature Ui€1 Sisatisfying A'/S 8  -'---* A/S 8  for all I E I, 
Si 

thenA'w-A. 
Us 

It is natural to require reflexivity and transitivity of a representation relation: 

every model should at least be representable by itself, and a representation of a 

representation should also be a representation. Clause (b) says that "reducing" 

models along signature morphisrns preserves the representation relation. The 

chain-closedness property of a representation relation will allow us to compose 

infinite systems (see Theorem 4.1.7). 

Three examples of representation relations in the institution (TSig, TInci, 

TA1g) (a slight variant of (ASig, AInci, Aig)) will be studied in later sections 

of this chapter. 

A simple and useful representation relation is equality. 

4.1.2 Proposition. Equality is a chain-closed representation relation. 

Proof. Define '* = 	 by A' --s* A :<= A' = A. Clauses 

(a) and (b) of the "representation relation" definition are then trivial. Chain-

closedness follows from the completeness property of an institution (uniqueness 

of joins). 	 0 

The following two trivial propositions allow the construction of new representa-

tion relations. 

4.1.3 Proposition. The converse of a (chain-closed) representation relation is 

a (chain-closed) representation relation. 

To be precise: if -.+- = (W*_) 5ISjg  is a representation relation, then 

the relation >--'-- = (>%) SEISigI defined by A >w-'  B : B -* A is a 

representation relation. If --+- is chain-closed, so is >-.-.. Cl 
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4.1 Data Abstraction in an Institution 

4.1.4 Proposition. The intersection of a family of (chain-closed) representa-

tion relations is a (chain-closed) representation relation. 

	

To be precise, if 	= ('4')sEIsigI is a representation relation for each 

i E I, then the relation (wSs.)SEISjgI  defined by 

* 	 i 
: 	A'wAforalliEI -- 	- 	 - 	 - 

is a representation relation. If all -4- are chain-closed, so is -'*. 	o 

As a corollary of this proposition, one obtains that the representation relations 

in an institution form a complete lattice under the componentwise inclusion 

ordering (using the well-known theorem that a partial order in which every set 

has a least upper bound is a complete lattice [Birkhoff 67, p.  112] [Cohn 81, 

p. 21]). The "bottom" element of this lattice (the most restrictive representation 

relation) is equality, the "top" element (the most general representation relation) 

is the "total" representation relation obtained as the intersection of the empty 

family of representation relations. 

The next concept, "universal implementation", is the correctness notion for data 

abstraction for which we shall derive a composability theorem. 

4.1.5 Definition. Let ---+- = 	 be a representation relation, and 

let (Q, R) be a cell of signature (E, D). A universal implementation of (Q, R) 

(with respect to '—.+-) is a cell (Q', R') of signature (E', D') such that (E', D') is 

a syntactic refinement of (E, D) and whenever A E Mod(F) is a base for (Q, R) 

and A' w-  A, then 
F 

A' is a base for (Q',R'), 

there exists a result of (Q', R') on A', and 

whenever B' is a result of (Q', R') on A' 

	

then 	there exists a result B of (Q, R) on A 

such that B' '-* B. 	 0 
FUD 
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B'w*- B 
FUD UM 

A' - A 	 .. 	- 

R'i 

4.1 Data Abstraction in an Institution 

Figure 4-1: Universal Implementation 

This definition is illustrated in Figure 4-1. The figure shows on the right hand 

side the cell (Q, R) with a base A and a result B, and on the left hand side 

the cell (Q', R') with a base A' and a result B' (signatures of the interfaces and 

models are given in small type). 

The idea behind the definition of "universal implementation" is that the 

specification cell and the implementation cell can be seen as operating side by 

side; while the specification cell on the right operates on an "abstract" base A, 

the implementation cell on the left operates on an arbitrary representation A' 

of A.  (hence if A is a base for (Q,R) and A' *- A, then A' must be a base for 

(Q', R') and (Q', R') must have a result on As).  To ensure that the representation 

relation between left and right side remains valid, every result B' of (Q', R') on A' 

must represent some result B of (Q, R) on A (the model B may be regarded as 

the "user view" of B'). 

In a sense, the universal implementation relation is "necessary" for modular 

programming with data abstraction: For, if (Q, R) is not a universal implemen-

tation of (Q, R), then there exists a base A of (Q, R) with a representation A', 

such that (Q', R') does not function properly on A'—either by not yielding a 

result at all, or by being able to yield an "incorrect" result, namely a result that 

cannot be interpreted as the representation of a result on the "abstract" side. 

There is one way the "universal implementation" notion could be generalized, 

namely by exploiting the fact that not all the possible representations A' of 

an "abstract" base A might actually be definable by a program. Thus, one 
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4.1 Data Abstraction in an Institution 

might distinguish a subinstitution of "concrete" models and postulate that the 

implementation cell (Q', R') need only function properly on representations A' 

that belong to the "concrete" models. It is not clear, however, whether this 

generalization would yield any additional insights. 

In the remainder of this section, a composability theorem for universal im-

plementations will be proved which shows that the universal irnp1ementatLo - 

concept is not just "necessary", but also "sufficient" for modular programming 

with data abstraction. 

A special case of the "universal implementation" notion is the "refinement" 

notion that was discussed in the previous chapter. It is obtained by using equality 

as the representation relation. 

4.1.6 Proposition. A cell (Q', R') is universal implementation of a cell (Q, R) 

with respect to equality, if and only if (Q', R') is a refinement of (Q, R). 

Proof. With "equality" the representation relation, we can put A' = A and 

B' = B in the definition of "universal implementation". The definition then 

becomes equivalent to the definition of "refinement". 	 0 

it is instructive to compare the universal implementation concept for a "gen-

eral" representation relation -'-+- with the refinement notion, that is, universal 

implementation with respect to equality. 

By definition, '---* includes equality, i. e., it is a more general relation. This 

does not, however, imply any direct relationship between universal implementa-

tion with respect to w-  and refinement: 

Consider two cells (Q', R') and (Q, R) as in the definitions of universal im-

plementation and of refinement. On the one hand, universal implementation 

requires that all representations of bases for (Q, R) are bases for (Q', R'), rather 

than only the bases for (Q, R), hence on this point, universal implementation is 

more restrictive than refinement. On the other hand, the result of (Q', R') need 

only represent a result of (Q, R) rather than equal such a result, hence on this 

point, universal implementation is more general than refinement. 
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4.1 Data Abstraction in an Institution 

Since, intuitively, data abstraction should make the programmer's job easier, 

one might be puzzled by the fact that universal implementation is not more 

general than refinement—after all, universal implementation is supposed to be 

the correctness relation for cells in data abstraction. 

This problem will be resolved in Chapter 5, where a different implementation 

- -- çonçept, called "simple implementation", will be introduced, 	 - 

to practical implementation correctness proofs, and which is more general than 

refinement. This "simple implementation" property implies the "universal imple-

mentation" property in case the implementation cell is "stable", a property that 

can be guaranteed by defining the implementation cell in a suitable programming 

notation (a "data abstraction language"). Hence programmers need not concern 

themselves directly with the "universal implementation" concept, but only with 

"simple implementation"—the "universal implementation" concept only acts as 

a theoretical intermediary. 

From now on until the end of this section, we shall deal with an arbitrary, but 

fixed, representation relation. Hence the following convention. 

Convention. Throughout the remainder of this section, the Sig-indexed 

relation -*- = (w*) 55j9 is  a representation relation in the institution 

(Sig, mci, Mod). The term "universal implementation" is understood to imply 

"with respect to '-+-". 0 

The remainder of this section is devoted to proving the following theorem, which 

is the central theorem of the thesis. 

4.1.7 Theorem (Composability of Universal Implementations). 

Let [M, <] be a decomposition of the (, D)-cell  (, !) such that -* is chain-

closed or M is finite, and let M' be a componentwise universal implementation 

of M. Then M' is a cell system, the signature .b is compatible with the join of 

the definition signatures of M', and 

DM' is a universal implementation of 
D 
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4.1 Data Abstraction in an institution 

For the proof, some auxiliary concepts and lemmas are needed. The first two 

lemmas deal with possible conflicts between internal symbols of a system and 

symbols that might• be present in a site for the system's composition. The 

signature H in these lemmas can be thought of as containing the internal symbols 

of a system whose composition is (Q',R'). Lemma 4.1.9 below says that in 

determining whether (Q',R') is a universal implementation of the (E,D)ce1l 

(Q,R), we can restrict our attention to sites for (E,H), that is, sites for (E,D) 

that avoid clashes with internal symbols of the system. The proof uses the 

"renaming" axiom of an institution syntax (Axiom (c) of Def. 2.3.5) to "rename" 

an arbitrary site F for (E,D) so that it becomes a site for (E,H). 

First, however, a simple preliminary lemma. 

4.1.8 Lemma. Let (E, D) be a cell signature, let H be a signature such that 

H— E and EuH EUD. Then every site for (E,H) is asite for (E,D). 

Proof. Let Fbeasitefor (E,H), i.e.,F— EUH andFfl(EUH) =E. Then 

also F E U D, and because E F, we have 

E=FnE;Fn(EuD)Fn(EuH)=E, 

hence E = F fl (Eu D). Thus, F is a site for (E,D). 	 0 

4.1.9 Lemma (Renaming). 

Let (Q, R) be a cell of signature (E, D), let (Q', R') be a cell of signature (E', D'), 

and let H be asignature such that H—E and EuH EUD. Then (Q',R') 

is a universal implementation of (Q, R), if and only if (E', D') is a syntactic 

refinement of (E,D) and whenever F is a site for (E,H), A e Mod(F) is a 

base for (Q, R) and A' w-  A, then 

A' is.a base for (Q', R'), 

there exists a result of (Q',R') on A', and 

whenever B' is a result of (Q', R') on A' 

then 	there exists a result B of (Q, R) on A 

such that B' w-  B. 
FUD 
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Proof. The only difference between the criterion of this lemma and the definition 

of "universal implementation" (Def. 4.1.5) is that here, F is required to be a site 

for (E, H) rather than only a site for (E, D). 

By the previous lemma, it follows that the criterion of the present lemma is 

necessary for the universal implementation property. 

Ta see that it is sufficient, let (Q, R) beacell of signature (E, D), let (Q',R'.) 

be a cell of signature (E', D'), let H be a signature satisfying 

H'-E and EUHEUD,. 	 (1) 

and assume that the criterion of the present lemma is satisfied. We have to show 

that (Q', R') is a universal implementation of (Q, R). 

Let F be an arbitrary site for (E,D), and define C := F U D. Then the 

"renaming" axiom of an institution syntax (Def. 2.3.5 (c)) is applicable with 

S:=EUD, T:=H,andU:=F,becauseEUDsHasEUDEEUHand 

F - EU D as F is a site for (E, D). By the axiom, we can choose a signature P 
such that 

P-.SEUDUH and Pfl(EUDUH)=Ffl(EuD)=E 	(2) 

and isomorphisms 

k:Pu(EuD) —+Fu(EUD), 

such that, with O := Pu D (i.e., k: O - C): 

(PEO);k=5;(FEG) 

(EUDE Ô);k=(EuDE C) 

(EEP);j=(EEF). 

The signature P is a site for (E, H), since from (2) it follows that P - (E U H) 
and 

Pn(EUH) =Pn(EUDuH)n(EuH) 

=Pn(EuDUH) 	(by(1)) 

=E 	 (by(2)). 
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By the previous lemma, P also is a site for (E, D). 

We now need two simple lemmas relating models of the signatures F and P and 

of the signatures C and Ô. The first lemma is: 

Whenever (Q, R') is a cell whose signature 

(E,D) is a syntactical refinement of (E,D), 

AEM0d(F),andA=IAEM0d(P), 	
(3) 

then 	A is abase for (Q,R') if A is abase for (Q,R). 

We already know that F and P are sites for (E, D) and hence for (E', D). Now 

A/E = (E E E) ; (E E fr) A 

= (E E E) ; (E CZ P)(7A) 

=(E•c:E);(EE.fr);JA 

=(E EE);(EEF)A 

= A/E. 

Hence A/E E Q if A/E' E Q, which proves (3). 

The second lemma is: 

Whenever (Q•, R) is a cell whose signature 

(E, D) is a syntactical refinement of (E, D), 

A E Mod(F) is a base for (Q,R'), 

A=IAEMOI(P), 	 (4) 

BEMod(G)andE=iBEMod(Ô), 

then 	B is a result of (Q,R) on A 

if E is a result of (Q',R') on A. 

Let the assumptions of this lemma be in force. By the previous lemma, the 

algebra A is a base for (Q, R). Since the situation is symmetrical (we can 

swap the roles of F and F, Ô and C, j and j', k and k', A and A, and 

E and B), it suffices to prove one direction of the conclusion. 
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Assume that B is a result of (Q,R') on A. Then 

Ô)(B) 

=(PEÔ);kB 

=j;(FG)B 

= 7(B/F) 

=5A 

=A, 

and 

b/D = (D O)(i'B) 

=(D' E O) ;kB 

=(D EEUD);(EUDI:O);kB 

(D' C E U D by syntactic refinement) 

=(D' EEUD);(EUDEG)B 

= B/D 

ER. 

Thus, b is a result of (Q,R) on A, and (4) is proved. 

Recall that we have to show that (Q', R') is a-universal implementation of (Q, R). 

Let A E Mod(F) be a base for (Q,R), and A' '-* A. Define P-models A := 

and A' := 
By (3), applied to (Q, R), A is a base for (Q, R). By the functorality property 

of -* (Def. 4.1.1 (b)), we have A' w-  A. Thus, the criterion of the lemma 

can be applied to F, A', and A. 

First, this yields that A' is a base for (Q',R'). By (3), applied to (Q',R'), 

this implies that A' is a base for (Q', R'). 

By the criterion of the lemma, there exists a result of (Q', R') on A'. Apply-

ing (4) to (Q', R') yields that there exists a result of (Q', R') on A'. 

Finally, let B' be any result of (Q', R') on A'. We have to show that there 

exists a result B of (Q,R) on A such that B' -- B. Define E' := kB'. By (4), 
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applied to (Q', R'), E' is a result of (Q', R') on A'. Applying the condition of the 

lemma yields that there exists a result B of (Q, R) on A such that B' w-  B. 
G 

Define B := k— ' B. Since then B = kB, we obtain from (4), applied to (Q,R), 

that B is a result of (Q, R) on A. As B' = k— ' fr, we have B' --*- B by 

functorality. 

It has been proved that(Q', R')isa universal implementation of(Q,R). 0 

The following "approximation" concept will be used in the proof of the Corn-

posability Theorem. 

4.1.10 Definition (Approximation). 

Let [M, <J be an ordered cell system, M = (Q, Rj)iEI, let F be a system site 

for [Sig(M), <, and let A E Mod(F). An approximation for [M, <] over A is a 

pair (K, X) such that 

K C I is <-downward closed, and 

XE{A}A A . 
iEK 

If (K, X) and (K', X') are approximations for [M, <] over A, say that (K, X) 

is included in (K', X') (written "(K, X) (K', X')"), if K C K' and X X'. 0 

4.1.11 Lemma (least upper bounds of approximation chains). 

Let [M, <] be an ordered cell system, let F be a system site for [Sig(M), <], let 

A E Mod(F), and let (K5, X1)IEJ be a -chain of approximations for [M, <] 

over A. Then 

(U K5, AU u x5) 
J€J 	JEJ 

is an approximation for [M, <1 over A, and it is the c-least upper bound of the 

approximation chain (K5, X5) 3 j. 

Proof. It will be proved that (USEJ  K5, A U UjEJ X,)  is an approximation 

for [M, <] over A. It is then clear that it is the -1east upper bound of the 

(K5, X5),EJ. 
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Write M as (Q, Rj) $EJ, and let T = (E1 , Dj)$EI be the signature family of M. 

Clearly, R := IJ3EJ K, is a <-downward closed subset of I, because all the K5 

are <-downward closed. 

• The family obtained by adjoining A to (XJ )JEJ is a nonempty -chain of 

models, because (X5),j is a chain, and A X, for all j E J. Hence the 

completeness property of an institution allows to define £ := A U UjEJ X,, 

which is a model of signature 

FuU(Fu UDI)=FUUDI,  
JEJ 	iEK1 	 IEK 

which is the signature of the interface 

{A}A A R,. 

iEK 

It remains to show that £ satisfies this interface. Clearly, X/P = A, because 

A is a component of the join. For i E IC, we can choose j E J such that 

i E K5 and hence D Sig(X,). Since X, E {A} U UEKJ R 1 , we have FCIDi = 

X5/D 1 ER 1 . 0 

Proof of the Composabiity Theorem (Thm. 4.1.7). 

Let [M, <] be a decomposition of the (, b)-cell  (, ), where M = ( Q1, Rj)1j 

is a system of signature T = (E1 , D ) iEJ, and assume that '-+- is chain-closed or 

M is finite. Let M' = (Q, R)$EI be a componentwise universal implementation 

of M, and let T' (Es, D)EJ be the signature family of M'. 

We first verify that M' is a cell system, and that D is compatible with U11 D 

(which implies that D M' is well-defined). 

As [M, <] is a decomposition of (, ), the ordered signature system [T, <] 

is a syntactic decomposition of (,D). For all i E I, the cell signature Ti' is a 

syntactic refinement of Ti, and so Lemma 3.4.3 yields that 

T' is a signature system, 

c <T 

every system site for [T, <] is a system site for [T', <TI], 	 (1) 
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and Theorem 3.4.1 yields that 

D is compatible with [j D, and 
iEI 

DT' is a syntactic refinement of 
D 

Write (c', ') OD M' and (E', D') := D V. 

To show that (a', E') is a universal implementation of (, ), we use the criterion 

of Lemma 4.1.9 with H := U€1 D (the conditions H E and E U H J E U .b 

follow from the fact that T is a syntactic decomposition of 

Thus, let F be any site for (E,H), that is, 

FEUH and Ffl(EUH)=E, 	 (2) 

and let A,A' E Mod(F) be such that A is a base for 	and A' --*- A. 

Note that F is a system site for [T, <], because for every i e I, we have 

Fn(E1uD1)cFn(EuU(EuDi)) 
iEI 

= F n (E U U D) 	(Lemma 3.3.2) 
iEI 

=E 	 (by(2)), 

and therefore 

Ei 	u U D5) n (Ei U D) 	(E is system site for [T, <]) 

(Fu U D1) n(E1uD1) 

=(FuEu Um)ntEuDi 
i<<i 

= (F n (Eu Di)) u ((E u [j D3 ) n (Eu D 1 )) 
i<<i 

= (Fn(EuD)n(EuD1 )) u ((Eu [j D5) n(E1 uD1)) 
i<<i 

(E n (Ei U Di)) U ((E u U D3 ) n (Ei U D)) 	(as just shown) 
i<<i 

=(Eu UD1)n(EiUD1 

=E1 , 
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which means that 

E= (Full D,)n(E8uD1). 
Zi 

By (1), the signature F also is a system site for [T', <T']. 

We now need a definition and two lemmas. 

Definition. 

For K C I <-downward closed, let 

SK:=FU D. 
sEK 

For K C I <r'-downward closed, let 

S:=FU U1Z. 
sEK 

A joint approximation is a quadruple 

(K', X', K, X) 

such that 

(K', X') is an aproximation for [M', <TsJ  on A', 

(K, X) is an approximation for [M, <] on A, 

K'K, and 

X'/SK "* X. 
SK 

If (K', X', K, X) and (L', Y', L, Y) are joint approximations, say that (K', X', 

K,X) is included in (L',Y',L,Y) (written "(K',X',K,X) (L', Y', L, Y)"), if 

(K',X') (L',Y') and (K,X) (L,Y). 

Observe that if (K', X', K, X) is a joint approximation, then X' E Mod(Sk) 

and X E Mod(SK). Since K'D K, we have 

S,=Fu D 
iEK' 

FuUD 
iEK 

= F U U D5 	(Lemma 3.4.2) 
IEK 

=SK, 
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and so the requirement "X'/SK -* X" for a joint approximation is syntacti- 
SK 

cally well-formed. 

Note also that all signatures of the form SK or S are compatible, because 

they are included in F U UEI Di or F U UiEI D, and these signatures are equal 

by Lemma 3.4.2. 

- Lemma 1 (Chain-completeness). 

Let (K', X', K, X) be a joint approximation. Then in the set of all joint approx-

imations that include (K', X', K, X), every -chain has an upper bound. 

Proof. Let (L, YJ, L,, YI)JEJ  be a -chain of joint approximations that include 

(K',X',K,X). Fix • 	J, let J 	J + {.}, and define (L'.,Y.',L.,Y I ) := 
(K',X',K,X). This makes (L,YJ,L,,Y,)J EJ. a nonempty c-chain of joint 

approximations. 

Since (L, YJ!)JEJ. is a c-chain of approximations for [M', <T]  over A', by 

Lemma 4.1.11 we can choose an upper bound (N', Z') for this chain. By the same 

lemma, since (L1, Y,)JEJ•  is a -chain of approximations for [M, <] over A, the 

pair (N, Z) is an upper bound for this chain, where 

N=UL1 and 

Z=AUUL,=UL1 (asJ#O). 
JEJ 	EJ 

We shall now show that (N', Z', N, Z) is a joint approximation. From its 

definition, it is clear that it is then an upper bound of (Li,, 1',', L, Y,)j Ej., hence 

of the original J-indexed family, and that it includes (K', X', K, X). 

By construction, (N', Z') is an approximation for [M', <T']  on A', and (N, Z) 

is an approximation for [M, <] on A. Also, 

N= U L, =KuUL,  
jEJ 	IEJ 

cK'uUL=ULcN'. 
jEJ 	jEJO 

It remains to show that Z'/SN w- Z. Here we use the assumption that -* is 
SN 

chain-closed or M is finite. 
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If M is finite (i. e., I is finite), we can choose k E J such that N = 

because N = U•EJ. L, = U{ Lj  I j e J }, and the set { Lj I i E J' } is a 

nonempty finite -chain (the L, (j E J) form a c-chain, and are subsets of the 

finite set I). Hence 

Z'/SN = Z'/SL k  = (
ZI/Stlj,)/S = Yk 

- 	
- fmYk=Z/SL k =Z/SN=Z. 

SLk =5N 

If 	is chain-closed, consider the signature chain (SL,), EJ.. This chain is 

compatible, because 

SL1=FU U Dc:FuUD. 	foralljEJ'. 
IEL, 	iEI 

The join of the chain is 

U SLJ = U (Fu  U D8) 
jEJO 	jEJ 	iEL1 

=Fu U D 	(asJ#O) 
iEU.EJ. L, 

=Fu U D 
lEN 

=SN. 

Because for all j E J, we have 

(Z'/SN)/SL, = Z'/SL 1  = Y/SL 1  * Yj = Z/SL,, 
L.i 

the chain-completeness of -•---* yields that Z'/SN -+- Z. 
SN 

In either case, Z'/SN -.--* Z, and hence (N', Z', N, Z) is a joint approxi- 
SN 

mation. Thus, Lemma I is proved. 

Lemma 2 (Completion of joint approximations). 

For every joint approximation (K', X', K, X), there exist Y', Y E Mod(Sj) such 

that (I, Y', I, Y) is a joint approximation and 

(K',x',K,X) ç (I,Y',I,Y). 
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Proof. Let (K', X', K, X) be a joint approximation. Consider the set U of 

joint approximations that include (K', X', K, X). By the previous lemma, every 

-chain in U has an upper bound in U. By Zorn's lemma, U has a -maximal 

element. 

Let (L', Y', L, Y) be a -maximal element of U. We shall prove below that 

L = I. Since L' . L, it is then clear that L' = I also,. and that Y!and Y. are 	- 

the models postulated by the Lemma. 

To prove L = I, suppose that L I, i. e., that L is a proper subset of I. Then 

we can choose j so that it is <Z-minimal in I \ L. 

Note first that Y is a base for (Q1,R1): 

Y is a model of signature SL = FUU$EL D. We saw above that F is a system 

site for [T,<]; by Lemma 3.4.3 (c), F also is a system site for [T,<T]; since L 

is <-downward closed and hence <T-downward  closed, Lemma 3.5.2 applies and 

yields that SL is a site for (E1, D.). 

Since (L, Y) is an approximation for [M, <] over A, we have Y E {A} A 

AEL Rj, and hence 

Y/E J  E ({A} A A Rj)/Ej 
jEL 

({A}/E A A R1)/E 
iEL 

= ({A/} A A Rj)/Ej 
jEL 

c ({A/} A A R)/E, 
i<<j 

c(A A R)/E, 
i4ZJ 

cQ'  

(Prop. 3.1.9 and E U [J1EL D 	E,) 

(Prop. 3.1.8 and <<-minimality of j) 

(Prop. 3.1.9 and AIR e 

(by decomposition). 

Thus, Y is a base for (Q1,R5). 

We now distinguish the two cases j L' and j e V. In either case we shall 

construct a joint approximation that strictly includes (L', Y', L, Y). 
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Case I: Suppose that j 0 L'. Since Y is a base for (Q3 ,R,), Y'/SL '.-.-* Y, 
SL 

and (Q, R,') is a universal implementation of (Q,, R,), it follows that Y'/ .SL is 

a base for (Q,R,'), and that we can choose a result Z of. (Q,R) on Y'/SL. 

Note that L = SL by Lemma 3.4.2, because L is <-downward closed. Also, 

the signatures S, and S are sites for (E, D) by Lemma 3.5.2, since L' and L 

are <1'-downward closed andFis a system site for [T', <T']. - 

The signature of Y' is Si,, and the signature of Z is SLUD.  These signatures 

are compatible, because they are included in F UUiEJ  D = P U UjEI D. Their 

intersection is 

S, n (SL U D) = S,n (Si, U D) 

= 
=Su(S,nD) 
	

(LcL') 

SuE 
	

(SL, is a site for (E,D)) 

- 0' 
	

(SL is a site for (E,D)) 

5L. 

By definition of Z, we have Z/SL = Y'/SL, and so we can form the join Y' U Z. 

We now show that 

(L'+{j}, Y'uZ, L, Y) 

is a joint approximation. 

The pair (L' + {j}, Y' U Z) is an approximation for [M', <T']  over A: the 

set L' + {j} is  <r-downward  closed, because L' is <T'-downward  closed, and 

because i <T'  j implies i < j, hence i E L C L'. The signature of Y' U Z is 

S, U = S 1{5} , and (Y' U Z) E {A'} A Ai ELs+{j}R, because 

• (Y' U Z)/F = Y'/F = A', 

• (Y' U 	= Z/D E R, and 

• foriEL': (Y'uZ)/D=Y'/D€R. 

Since (Y' U Z)/SL = Y'/SL w- Y, the quadruple (L' + {j}, Y' U Z, L, Y) 
SL 

is a joint approximation, and, obviously, it strictly includes (L', Y', L, Y). 
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Case II: Suppose that 5 E V. Since Y is a base for (Q,,R1), Y'/SL -'-* Y, 

and (Q, R,') is a universal implementation of (Q,, R1), it follows that Y'/SL is 

a base for (Q,R). Now Y'/SL+{,} is a result of (Q,R) on Y'/SL: since SL 
is a site for (E1, D3 ) and (E, D) is a syntactic refinement of (E1, D1), we have 

SL+{J}=SLUDJ=SLUD, 

which is the result signature of (E,',D) on SL,  and (Y'/S L+ {J})/D = 	E 

because (L', Y') is an approximation and 5 E L'. 

As (Q, R,') is a universal implementation of (Q, R,), we can choose a re-

sult Z of (Q1,R5) on Y such that Y'/SL+{,} --'* Z. 
SL+{,) 

We now show that 

(L', Y', L + {j}, Z) 

is a joint approximation. 

The pair (L + {5}, Z) is an approximation for [M, <] over A: the set L + {j} 

is <-downward closed, since L is <-downward closed and 5 is Z-minimal (hence 

<-minimal) in I \ L. The model Z is of signature SL+{,}, and Z E {A} A 

AEL+{J} Rj, because 

• Z/F = (Z/SL)/F = Y/F = A, 

• Z/D1 € R1 (Z is defined to be a result of (Q1,R,) on Y), and 

• for i E L: Z/D = (ZISL)IDi = YlDi E R. 

Now L+{j} g L', as L C L' and 5 E L', and 	 -'-- Z by definition 
SL+{3 } 

of Z. Hence (L', Y', L+{j}, Z) is a joint approximation, and, obviously, it strictly 

includes (L', Y', L, 1'). 

In either of the cases 5 V L' and 5 E L', we have constructed a joint approxi-

mation that strictly includes (L', Y', L, Y). This contradicts the -maxima1ity 

of (L', Y', L, Y) in U. Hence the assumption that L I must be false, and thus 

we have proved that L = = I, which concludes the proof of Lemma 2. 
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To prove the composability theorem, we now show that (t', I) is a universal 

implementation of ((, ) by verifying the condition of the renaming lemma for 

the models A and A' of signature F that have already been introduced. 

First, we show that A' is a base for ((','). As F is a site for (E,H), it is a 

site for (E, .b) by Lemma 4.1.8, and since (E', .b') is a syntactic refinement of 

(E, D), F is a site for (E', D') also. Recall that Q ' is defined as 

= { B E Mod(E') I ({B} A A R)/E C Q for all i E I }. 
k4Tsi 

To show that A'/E' E Q', consider any i E I and suppose that 

({A'/E'} A A R)/E ts  
k4T1i 

which means that we can choose X E {A'/'} A AkT,i R such that XlE i' 0 Qt. 

The meet of the signatures of A' and of X is F fl (' U Uk,i Di), which is 

included in E' by Lemma 3.3.3 (F is a system site for [T',.<T]). Since X/' E 

{ A/E'}, A' and X have the same reduct on the meet of their signatures, and 

we can form Y A' U X. 

Let K' :={klk<<T'i}. Then 

(K',Y,O,A) 

is a joint approximation, as is easily checked. By Lemma 2, there exist Z' and Z 

in Mod(Sj) such that 

(I, Z', I, Z) 

is a joint approximation which includes (K', Y, 0, A). 

Let K := { k I k <<i I. Then Z/SK is a base for (Q, R), because SK is a 

site for (E1 , D) by Lemma 3.5.2, and because 

(Z/SK)/E s  = Z/E1 

E ({A} A A Rk)/E 
kEl 

c(A A Rk)/E 
k.<i 

cQi 

(Prop. 3.1.8 and 3.1.9) 

([M, <J is a. decomposition of (, fl)). 
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4.1 Data Abstraction in an Institution 

As Z' 'w-  Z, hence Z'/SK '"-* Z/SK, and (Q, R) is a universal irnplemen-

tation of (Qj,Rj), it follows that Z'/SK is a base for (Q,R). But this implies 

that 

X/E = (Y/(i.' U U D))/E = YlEil  
k4Tsi 

= (Z'/S1)/E = Z'/E = (Z'/SK)/E E Q, 

which contradicts the definition of X. Hence A'/I' E (', and thus A' is a base 

for (','). 

Next, we show that there exists a result of ((', &') on A'. The quadruple 

(O,A',O,A) 

is a joint approximation, and by Lemma 2, there exists a joint approximation 

(I, Y', I, Y). 

But then Y'/(F U D') is a result of (a', ') on A': We have 

Y'/(F U D')/F = Y'/F = A', 

and 

Y'/(F u .b')/.b' = VIV 

E ({A'} A A R)//b' 
iEI 

c ('AAR)//.b' 
IEI 

='. 

(Prop. 3.1.9 and {A'}/E' (') 

Finally, let B' be any result of (a', 1') on A'. We show that B' represents a 

result of (Q,R) on A. 

Since B'/D' E 1' = (' A A €1 R)/D', we can choose C' E (Q' A A 1 R) 

such that C'/D' = B'/D'. The meet of the signatures of B' and C' is 

(Fub')n(.'u UD) Fn ( . ' U U D ) Ub' 
iEI 	 iEI 

E 2 1  U D' 	(Lemma 3.3.3) 

= D' 	((E', D') is a syntactic composition), 
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4.1 Data Abstraction in an Institution 

hence the reducts of B' and C' to this signature agree, and we can form X' := 

B' U C', which is a model of signature 

F U b' U PJ' U U D = F U U D 	(as I)' E E' U U1 D and 2 1  E F) 
IEI 	 iEI 

Si.- & 

The pair (I, X') is an approcirriation for [M', <TI]  on A', because 

. X'/F = B'/F = A', and 

. X'/D = C'/D E R for all i E I. 

Since X'/F = A' w-  A, the quadruple 

(I,X',O,A) 

is a joint approximation. By Lemma 2, there exist Y, Y' E Mod(si) such that 

(I, Y', I, Y) 

is a joint approximation that includes (I, X', 0, A). In particular, this means 

that Y' = V. 

Define B := Y/(FUD). We show that B is the desired result of 	on A: 

B/F = Y/F =A, 

B/D = YID 

E ({A} A A R)//.b 
iEI 

(AARj)/D 
iEI 

(Prop. 3.1.9, using {A}//E 

([M, <] is a decomposition of 

Hence B is a result of (Q,R) on A. 

Finally, since Y' -.--* Y, we have 
SI 

B' = X'/(F U D') 

= X'/(F U .b) 	((E', D') is a syntactic refinement of (E, D)) 

=Y'/(Fub) 

----* Y/(F U b) 	(Functorality) 
FUD 

=B. 
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4.1 Data Abstraction in an Institution 

Hence B' represents the result B of (, E) on A. 

We have verified the condition of the renaming lemma (4.1.9), from which it 

follows that (a', ') is a universal implementation of (, ). This concludes the 

proof of the composability theorem for universal implementations. 	0 

As a corollary of the composability theorem, we obtain the "composability of 

refinements", which has already been cited and used in Chapter 3. 

4.1.12 Theorem (Composability of Refinements). 

Let [M, <] be a decomposition of the (E, D)-cell (, .), and let M' be a com-

ponentwise refinement of M. Then M' is a cell system, the signature b is 

compatible with the join of the definition signatures of M', and 

DM' is a refinement of 
D 

Proof. Apply the Composability Theorem to the chain-closed representation 

relation "Equality" (Proposition 4.1.2). By Proposition 4.1.6, the "universal 

implementation" concept for this representation relation is just refinement, and 

so the Composition Theorem turns into the theorem above. 0 

Since the Composability Theorem of Refinements has now been proved, the 

theorems of Section 3.5, in whose proof this theorem was employed occasionally, 

have now become proper theorems and may be used in proofs. 
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4.2 Introducing Visible Sorts 

4.2 Introducing Visible Sorts 

The three sections to follow will deal with representation relations between par-

tial algebras. However, the relations to be studied are not simply relations 

between partial algebras of a signature E, but depend on an additional param-

eter V, a subset of the sorts of E, which contains "visible" sorts that are to 

be "preserved" by the representation. The present section explains the need 

for this parameter and constructs a new institution syntax of "tagged algebraic 

signatures", that is, algebraic signatures with a distinguished subset of visible 

sorts. 

Why is it necessary to distinguish visible sorts? The answer is that the "stan-

dard" representation relation between algebras, which treats all sorts alike, is 

too general to be practically useful, because for every signature L', there exists 

a computable 1'-algebra that represents every total L-algebra with countable 

carriers. Such a "universal representation" is easy to implement, but cannot be 

regarded as useful. But then that would be too much to expect, because it would 

make the implementation task trivial. 

In the following, this point will be made more precise. Only total algebras 

will be considered, because the majority of the literature deals with total algebras 

only, and only for these can a "standard" representation concept be said to exist. 

The following definition presents a rather restrictive representation relation 

between total algebras, the "inverse image" relation. 

4.2.1 Definition. Let E = (S, a: F -+ S) be an algebraic signature. A 

homomorphism h: A - B between total E-algebras A and B is an S-sorted 

total function from A/S to B/S such that whenever f: si . . . s, -+ r in E and 

z 1  E A 8  for i E {1,...,n}, then 

hA1(z1,... ,x) = Bj(h 81 x 1 ,... ,h8 z). 

The homomorphism is called surjective (Notation: "h: A -* B"), if all its corn- 

ponents are surjective functions. If there exists a surjective homomorphism 
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4.2 Introducing Visible Sorts 

h: A -+ B, call B a homomorphic image of A, and A an inverse homomorphic 

image (short "inverse image") of B. 	 0 

The "inverse image" relation is included in almost all the representation relations 

(excepting the relation "isomorphic") that have been proposed in the literature, 

for example in [SW 82, p. 131, [Lipeck 83, p.  521 and [KA 84, p. 322]. Yet it is 

still too general to be practically useful. This can be seen using the well-known 

"term algebra" T1(X) (also called "free E-algebra generated by X"), which 

consists of terms constructed from the operators of the algebraic signature E= 

(5, a: F -+ S) and from values in the S-sorted set X (this "term" notion is 

formally defined in Definition 4.3.1 below; the operations of the term algebra 

are the evident term constructor functions). This algebra, together with the 

embedding : X - (Ti(X))/S, which maps each element z of X to the term 

consisting of just x (to be precise, if z E X8 , then , 8 (z) = (s, z)), has the 

following "universality" property: 

"For every S-sorted function 1: X -+ A/S, where A is a E-algebra, 

there exists a unique homomorphism f: TE(X) -+ A that satisfies 

77; fo  = 1." 

Let {N}5  be the S-sorted set (N) 8€s, all of whose components are equal to N, 

the set of natural numbers. We then have the following theorem. 

4.2.2 Theorem. Let Z = (5, a: F -+ S) be an algebraic signature. Then the 

algebra T({N}s)  is an inverse image of every total E-algebra whose carriers 

are nonempty and finite or, countable. 

Proof. Let A be a total E-algebra with nonempty and finite or countable 

carriers. Then for each sort .s E S there exists an enumeration of A 8 , that 

is, a surjective function from N to A 8 . By the axiom of choice, there exists 

a surjective S-sorted function 1: {N} 5  -.* A/S. The universality property of 

TE({N} S ) yields that there exists a homomorphism f: TE({N}) -+ A. Since 

= f andf is surjective, f 0  also is surjective. Hence T1({N}s)  is an inverse 

image of A. 
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4.2 Introducing Visible Sorts 

According to this theorem, T1({N}s)  is an inverse image, and hence a "rep-

resentation" in the sense of the papers quoted above, of every E-algebra with 

nonempty and finite or countable carriers. Also, if S is finite, Ti({N}5)  is com-

putable [MG 85, Theorem 301 and trivial to realize in programming notations 

such as HOPE [BMS 811 and ML [11MM 86]. But it is clear that this representa-

tion is useless: if we want to determine, say, the result of the expression "1(x)" 
in A, where f is a function of the algebra A and x is a data value, we would 

have to encode x as a natural number, n say, the representation would yield the 

term "1(n)",  and we would then have to decode this term by decoding n and 

applying f to the result (i. e., to z). The "real work" of determining the value 

of f on x is not done by the representation, but by the decoding. 

But the example points to a solution of the problem. What is wrong is that 

the output we get (the term "1(n)") is in a form determined by the representation 

and has to be decoded to arrive at the desired result (the value 1(z)). As we have 

seen, this allows one to design representations in such a way that the decoding, 

rather than the representation, performs the actual computation. 

A solution to the problem is obtained by demanding that the encoding and 

decoding of input and output be trivial to perform. The most extreme inter-

pretation of the term "trivial" here is that the sorts used for input and output 

are represented by themselves and that the homomorphism must be the iden-

tity. It appears that even slightly more general interpretations of "trivial" (e. g., 

bijections between input/output sorts and their representations) admit repre-

sentations like the one above, in which the essential work is performed in the 

encoding and decoding steps. 

If we were to demand trivial representation of all the sorts of an algebra, then 

an algebra could only be represented by itself. However, an algebra represents 

the data types and functions of a program, and typically only a subset of the 

types of a program is used for input and output of data values. Since the purpose 

of requiring trivial representation is to avoid complex encoding and decoding of 

input and output, it is only necessary to require trivial representation of the 

sorts used for input and output, which will be called the "visible" sorts of an 

algebra. Since data values of the other, "hidden" sorts of an algebra are not the 
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4.2 Introducing Visible Sorts 

subject of input and output, no restriction on the representation of hidden sorts 

is necessary. 

A more precise concept of "visible" sorts defines them to be the sorts which 

can be accessed in ways beyond those represented by the functions of the algebra; 

this includes the sorts accessed by input/output operations, but also sorts that 

-  campIethe ypeofhQoleans 

is special with respect to the if construct, the type of integers often plays a 

special role in array data type definitions. 

As we shall see in Sections 4.3 and 4.4 below, the distinction between visible 

and hidden sorts allows to generalize the conventional data type representation 

concepts that are based on homomorphisms: it is no longer necessary to have a 

function from the representation algebra to the algebra it represents, rather, a 

special kind of relation, called a "correspondence", is sufficient. 

It might appear at first that by declaring sorts to be "visible" and hence allowing 

only identical representations for these sorts, the freedom is lost to select a 

representation for input and output data of a program. This freedom can be 

regained as follows. 

Suppose that a E-algebra A is given, and that the sorts in the sets I and 0 

are to be used for input and output. Construct a signature + by duplicating 

the sorts in I and 0, as shown in Figure 4-2. For each input sort s, we have a 

new sort s' and a new function .: s' - s, and for each output sort u, we have a 

new sort u" and a new function symbol : u -+ u". The new sorts are declared 

visible, while the original sorts of E are hidden. 

We construct a E+ a1gebra  A+ from A as shown in Figure 4-3: the interpre-

tations of the new sort symbols are the same as those of their originals, and the 

new functions are identities. 

A representation B+  of  A+  is shown in Figure 4-4. The algebra B+  contains 

arbitrary representations B, B, B, Bt,  and B of the sorts of A. However, 

and this is the crucial difference to the representation by T({N}s)  shown above, 

the algebra B+  also contains explicit conversion functions Bt  and B that allow 

to encode the original input values from A 3  and A, and conversion functions 
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j 00 

Figure 4-2: The signature L'+ 

B and Bt  that allow to decode the output values of Bt  and BU  into values of 

A t  and A. Hence the algebra B+  allows to perform computations with input 

and output values in the original, "abstract" carriers of A. In the representation 

by T({N}), no encoding and decoding operations are provided, and it is in 

the decoding step that the essential computation is performed. 

We have seen that for a representation concept to be useful, it is necessary to 

distinguish a set of "visible" sorts which must be preserved in the representation. 

The "visible sorts" idea is well known in data abstraction: in a large number 

of papers, including early ones, we find that data abstraction is treated in the 

context of "data type extensions", where some fixed, given ("primitive") sorts are 

to be enriched by one or more "types of interest" ([LZ 751, [GH 781, [Wand 79], 

[BW 82],  and papers dealing with behavioural representation concepts, which 

are cited in Sections 4.3 and.4.4 below). 

In order to give representation concepts with visible sorts the "functorality" 

property of a representation relation (Axiom (b) of Def. 4.1.1), it is necessary 

to work in an institution of "tagged algebraic signatures", that is, of algebraic 
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S S 
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PA, 	 A 

Id(A8 ) 	Id(At) Id(At) 	Id(A) 

visible 	( A8  ) 	 (A ) 	( A  ) 	( A,. 

	

Figure 4-3: The 	-algebra A 

signatures with a distinguished subset of visible sorts. The remainder of this 

section is devoted to constructing this institution. 

4.2.3 Definition. A tagged algebraic signature (short "tagged signature") is a 

pair 

where E is an algebraic signature, and V is a subset of the sort set of E. 

A signature morphism a: (E, V) - (E', V') between tagged algebraic sig-

natures (E, V) and (E', V') is a signature morphism from £' to L' such that 

ci1Vt C V'. 

A signature morphism a: (E, V) - (E', V') is an inclusion, if a = (E E E') 

is an inclusion of algebraic signatures, and V = V' fl S, where S is the sort set 

ofE. 0 

4.2.4 Proposition. The signature morphisms and the inclusions between 

tagged signatures form categories when composition and identities are defined 

as for algebraic signature morphisms. 

Proof. It is trivial to check that the signature morphisms between tagged 

signatures form a category. 
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(~D 	@ 

0 

?B+ 	B Ajt\ E + AB+ 
visible 	( A 8  ) 	 ( A ) 	 ( At ) 	 ( 

A 

Figure 4-4: A representation B+  of  A+ 

Concerning the inclusions, we have to show that the composition of two 

inclusions 

a: (E!, V) -+ (E', V') and a': (E', V') -+ (E", V") 

is again an inclusion. The composition a;a' is an inclusion of algebraic signatures, 

and if S is the sort set of E and S' the sort set of E', we have 

V=V'flS=V"flS'flSV"flS. 	 Cl 

4.2.5 Definition. Let TSig be the category whose arrows are the signature 

morphisms between small tagged signatures (with composition and identities as 

for algebraic signature morphisms); let TInci be the subcategory of TSig whose 

arrows are the signature inclusions. 0 

4.2.6 Theorem. The pair (TSig, TInci) is an institution syntax. In particu-

lar, 

(a) if (E, V) and (E', VI) are small tagged signatures, where E = (S, cr), then 

(E, V) 9 (E', V') 	if 	ZE )2' and V = V' fl S. 
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A family ( Ei 	 iEI  of small tagged signatures (Ei  = (Si, a2 )) is compati- 

ble, if and only if 

(E1)IEI is compatible in (ASig,AIncl) and 

foralli,jEI: V1flS 3 çV3  

(equivalently, for all i,j E I: V1 fl S1 = Si fl V1). 

if  (Ei'Vi) iEl  is a compatible family of small tagged signatures, then 

Ui,i's=(Ui, Uv). 

	

iEI 	 iEI 	iEI 

If (, V1) IEI  is a nonempty compatible family of small tagged signatures, 

then 

fl(E,v)=(flE, fly2 ). 

	

iEI 	 iEI 	iEI 

Proof. The category TInci is a partial order category, because there is at 

most one morphism between two objects, and because the existence of inclusion 

morphisms from (E, V) to (L", V') and vice versa implies that E' = E', V ç 

and V' C V, hence that (E,V) = (L,V'). Thus, (TSig, TInci) is a partially 

ordered category. 

Before proving that (TS1g, TInci) is an institution syntax, we verify the four 

formulas (a) to (d) of the theorem. 

Formula (a) is trivial from the definition of an inclusion morphism. 

To verify (b), assume first that the family (E2 , V1) 21  of small tagged sig-

natures (Ei  = (Si, ai)) is compatible, so that we can choose an upper bound 

	

for the family. Then E 	E for all i, hence (E$ ) jEJ is compatible, and 

for i,j E I, we have 

V1nS1=(VflS 2)nS5 =(1nS1)nS=V,nS1cV3 . 

Conversely, suppose that 	is compatible and that V2  fl S5 g V5 for all 

€ I. Let E := UIEIEI and V := U1€1 V. Obviously, V is a subset of the 

sort set of £', hence (, V) is a small tagged signature. This signature is an 
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upper bound of the family (Es, V24EI' because for all i E I, we have L 	£ and 

v1 c VnS= (U)ns1 = Uns1) çi'1 , 

EI 	 jEI 

hence V1=VflS. 

The second formula given in (b) is equivalent to the first, because from 

VflSVj and 

it follows that 

VinSi=Vinvi=vinSi. 

The converse implication is trivial. 

To verify (c), assume that (E s , V) iEI  is a compatible family of small tagged 

signatures, and consider again the small tagged signature (, V) defined as just 

before in the proof of (b). It was shown there that (, V) is an upper bound of 

the family, so it remains to show that (it', V) is least among the upper bounds of 

(Es , V1 ) 1 . If (t, ) is an upper bound of this family, then = UIEI Ei 
and writing 2 = (, a), such that = UIEI Si by Theorem 2.3.6 (b), we have 

	

IEI 	IEI 

= UV=V, 
iEI 

so that (,V) E 

To verify (d), let(Es , V1) jEl  be a nonempty compatible family of small tagged 

signatures where Zi = (S1,a1), and define 2 := niEI Ziand V := flIEJV$. By 

Theorem 2.3.6 (c), = (, a) where 9 =  flEf Si. Now for all I E I, we have 

v= flv c v1 n fls,= fl(v1ns1) 	('#0) 
.IEI 	 JEI 	iEI 

	

C fl Vjj 	(compatibility and (b)) 
jEI 

=:V, 

hence V = V1  fl fl 1 S1 = V1 fl , and thus (',V) 	(E1,V1). Hence, (.',V) is 

a lower bound of the family (E2 , V1) 11 . 
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If (, 1) is any lower bound of the family where f = (, ), then t £ 

for all i E I, hence L' E E', and 

Vnã=(flv1)n=fl(v1 n) 
	

V91  

iEI 	 iEI n
iE1 

	 ((cr) E (L'1,V1) for all i El) 

-. 

hence (L', 1) (2, 17), and thus (L, V) is the greatest lower bound of the family 

(E, Vj) $EI. 

Having proved the formulas (a) to (d) of the theorem, it remains to prove that 

the partially ordered category (TSig, TInci) is an institution syntax. 

From (c), it immediately follows that TInci is compatibly complete. The 

formulas of (c) and (d), together with distributivity in AInci, immediately yield 

distributivity in TInci. 

It remains to verify the "renaming" property of an institution syntax. Let 

small tagged signatures (Es , V) with E. = (Si, cij) be given for i E {O, 1, 21 

such that (E0 ,V0 ) - (Ei,V) and (E0 ,Vo) (E2 ,V2) (they play the roles of 

S, T and U in the renaming axiom). Fix A = (S2, a2) together with signature 

isomorphisms 

k:E2UEo-3.E2 UL'o  

according to the renaming property of (ASig,AIncl), so that 

 

 

and j and k satisfy 

(A E2 U Eo) ; k = j; (E2 E2 U o) 	 (3) 

(L'o E Au o)  ;k =(E'0 E E2 uE0 ) 	 (4) 

( 2 nE0 c E2);j=(E2 nE0 EE2). 	 (5) 

Let V2  := j 1 V2 . Then (A,12) is a small tagged signature, and since 

j: E2 -* E2 is a signature isomorphism, j and  j are inverse tagged signature 

isomorphisms between (±'2, 1'2) and (E2, V2). 

210 



4.2 Introducing Visible Sorts 

We verify that (E2, 1'2) (L'0, V0) U (Er, V1 ) using formula (b) of the present 

theorem. Due to (1), it remains to show that n (So U S1) = n (Vt, U V1 ). 

Recall from Theorem 2.3.6 (b) and (c), that (2) implies the analogous equation 

between the sort sets of the signatures involved. In particular, §2nSO 9S2 nSO  = 
(S2nS0)nS0 g §2flS0, so that 

S2nS0=S2 nS0 	 (6) 

Now if x E j'(]V2 \ S0 fl So, then x E j'tV2j = V2 	S2 and z E So, 

hence x E S2 n So, and (5) implies that j(x) = x E So. This contradicts 

zEj'V 2 \So, and so 

jV2\SonSo=0. 	 (7) 

Thus, 

1'2  fl so = 	V2  fl S0 

= (j'tjV2 fl So) +j'jV2 \ So) fl S0 

= jV2  n S0 fl S0 +j'V2\ Soj fl So 

=j'V2flSoIflSo 	 (by(7)) 

= (V2  fl So) fl  So 	 (j is the identity on S2 fl So) 

=V2 nS0 

=V0nS2 	 ((Eo ,Vo) (E2 ,V2)) 

fl So fl 52 

=V0 flS 0 n 2 	 (by(6)) 

=V0n2. 	 (8) 

Since 

2n(S0 uS1 )=S2 nS0 çS0 , 	 (9) 

it follows that 

12n(SouS1)=12n(S0 uS1 )nS0 	(1 2 9 2  and (9)) 

=i•2 nS0  
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=i2nVo 

= 2 n(V0 u(V1 nS0)) 

= §2n ( V0 u V1 ) n S0 

= §2 n(V0uV 1 ). 

Hence 

(t2 ,V2 )  

(by (8)) 

(V1  n S0 c Vo , because 

(E0 ,V0) (E1 ,V1 )) 

(V0  c So) 

(V0  u V1  c S0 U S1  and (9)) 

(10) 

Next, we verify that (t2,122)fl((E0,V0)U(L'1,V1)) = ( 2 ,V2)fl(E0 ,V0 ) using 

formulas (c) and (d). Due to (2), it remains to show that 1 72 n(V0uV1 ) = V2 nV0. 

From (10), using formula (b), we have 

fr2n (so U S1) = n ( V0  U V1 ) 

= V2  n (So U S1 ) n §2 n (ITo  U V1 ) (intersection of previous 

two expressions) 

= V2  n (V0  u V1 ), 

and hence 

I 2 n(V0uV1 ) = I2n(SouS1) 

=122fl(S0uS1)flSo 	(by(9)) 

=I 2 fl50  

= V2 fl So 
	

(see (8)) 

= V0 n S2 
	

(see (8)) 

= V2  n S0 n V0  fl S2 	(intersect previous lines) 

= V2 n V0. 

We know that k and k' are inverse isomorphisms between the algebraic 

signatures 12 U Eo and E2 U 1o. They are also inverse isomorphisms between the 

taggedsignatures (E21 V2)U(E0 ,V0) = (AUEo,I2UVo) and ( 2 ,V2)U(L'0,V0) = 

(E2 U E, V2  U Vo), because 

U V = kcJTT2 D u kt1Vo 
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=ka12UV0 	(by(4)) 

=j2tiUVo 	(by(3)) 

= V2  U Vo , 

hence also k 1 (]V2 U Vo = V2  U V0, and thus k and k' are tagged signature 

morphisrns. 

Finally, since the algebraic signature morphisms j and k satisfy the three 

equations (3), (4), and (5), so do the tagged signature morphisms j and k. 

This concludes the proof of the renaming axiom and hence the proof that 

(TSig, TInci) is an institution syntax. 	 o 

An important conse4uence of formula (a) of the theorem just proved is that 

visibility of sorts is a global attribute for every compatible family of tagged 

signatures. For, each signature of the family is included in the join of the family 

(call it "(', p)"), and by formula (a), a sort of a tagged signature in the family 

is visible in that signature if it is visible in (',V) (1. e., a member of V). In 

particular, since all the signatures involved in a structured correctness argument 

are compatible (see Theorem 3.4.1 and Lemma 3.4.2), each sort is either visible 

in all signatures or invisible in all signatures involved. 

As we shall see in Chapter 5, the situation is simpler still: From a practical 

point of view, it is unnecessary to distinguish visible sorts at all in most modular 

program developments. 

To obtain an institution, the models of a tagged signature (E, V) are defined to 

be just the small E-algebras. 

4.2.' Definition. Let TA1g: TSig°  -+ Cis be the functor whose object 

function maps (E,V) E JTSigJ to Alg(Z), and whose arrow function maps 

a: (,V) -+ (E',V') in TS1g to a := Alg(a°P): TA1g(E',V') - TA1g(E,V) 

(note that the tagged signature morphism a also is an algebraic signature mor-

phism a: Z - E'). In other words, TAJg = U ; Aig, where U is the evident 

forgetful functor from TSig°" to ASig °. 0 
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4.2.8 Theorem. The triple (TSig, TInci, TA1g) is an institution. In partic-

ular, 

If (L',V) 

	

	Y,V') and A E TA1g(E',V'), then A E Alg(E') and 

= A/E. 

If (1 1  V1 )11  isa nonempty compatible family of small tagged signatures, 

and AE TA1g(E,V1)such that for all i,j E I: A1/((E,V) n(E,V,))= 

A'1((E 1 , V1 )n(E,, TI,)), then there exists a unique A E TAlg(U, 1  (E,, V1)) 

that satisfies A/(E,,V,) = Ai for all i E I.. The algebra A equalshjii 

of the A, in the institution (ASig, AInci, Aig). 

Proof. By Theorem 4.2.6, (TSig, TInci) is an institution syntax, and by defi-

nition, TA1g is a functor from TS!g*P to Cis, which is a category of sets. Hence 

(TSig, TInci, TA1g) is a preinstitution. 

We shall now verify the clauses (a) and (b) of the theorem. Clause (b) 

implies the completeness property, and hence that (TSig, TInci, TA1g) is an 

institution. 

Clause (a): If (E',V) 	(E",V') and A 6 TA1g(L?',V'), then A E Alg(E'), 

and because the inclusion morphism ((E, V) 	(E', V')) in TInci equals the 

inclusion morphism (Z E') in AInci, we have 

A/(E,V) = TA1g(((E,V) 9 (E',V')) °")A = Alg((E E") °P)A = A/E. 

Clause (b): If (E,, Vj),EJ  and (Ai)i EI are as described in clause (b), then (E,),Ej 

and (Aj),EI satisfy the assumptions of the completeness axiom for (AS1g, AInci, 

Aig). Let A E A1g(U, 1  E,) be the join of the A 1  in (ASig, AInci, Aig). Now 

TA1g( (E,,V,)) = TA1g(([J Ei, U V,)) 
iEI 	 iEI 	iEI 

= Alg(Lj\Es) A, 
iEI 

and, due to (a), we have A/(E 1 ,V) = A/E, = A, for all i 6 I. 

The algebra A is unique with this property, because whenever an algebra 

B 6 TAlg(LI, J  (E,,V1)) satisfies B/(E,,V1) = A, for all i 6 I, then B/Ei = A 
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4.2 Introducing Visible Sorts 

for all i E I, and the uniqueness of joins in (ASig, AInci, Aig) implies that 

B=A. 	 o 

The institution (TSig, TInci, TA1g) is not very different from (ASig, AInci, 

Aig): The only difference is that the sorts of signatures are now "tagged" as 

being either isible" (the sorts in V) or "hidden" (the sorts not in V), and 

this may affect the compatibility of signatures (see Theorem 4.2.6 (b)). The 

operations on the models are the same (Theorem 4.2.8). 

In practical programming, the visible sorts of a signature would generally be 

those that can be accessed in ways not covered by the algebraic model. Hence, 

data types whose values can be input or output of a program would be modelled 

as visible sorts; the type of truth values ("bool") would have to be modelled as 

a visible sort also, because the if construct is not part of the algebraic model 

(unless higher order types are considered, cf. page 116 f.). 

Note also that normally modules cannot define new visible sorts, because it 

is characteristic for a module that its new sorts can only be accessed by means 

of the operations defined in it, which do appear in the algebraic model. 

Since the example institution we shall deal with in the remainder of the thesis 

is (TSig, TInci, TA1g) rather than (ASig, AInci, Aig), it is necessary to ex-

plain how the interfaces and modules of the dictionary program development are 

rendered in (TSig, TInci, TA1g). Strictly speaking, a set of visible sorts would 

have to be distinguished in each of the signatures occurring there. As remarked 

earlier (after the proof of Theorem 4.2.6), each of the sorts bool, listitem and store 

is either visible in all signatures in which it occurs or invisible in all of them. 

Since store is defined by a module in the development, it cannot be visible, and 

since the program code that was designed uses the if construct, the sort bool 

must be visible. This leaves only the status of listit era to be decided. As we 

shall see in Chapter 5, the correctness proofs of the development are unaffected 

by whether listitem is visible or not (the same holds true for bool, incidentally), 

and so we shall leave this decision open. 
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4.3 Behavioural Inclusion 

4.3 Behavioural Inclusion 

The present and the next two sections discuss three representation relations 

in the institution (TSig, TInci, TAJg): "behavioural inclusion", "behavioural 

equivalence", and "standard representation". It would be ideal to present these 

concepts starting with abstraction function representation and ending with be-

havioural inclusion: the abstraction function representation concept, based on 

[Hoare 721, has become very well known in Computer Science and in program-

ming practice; behavioural representation concepts, although implied by the 

proof method of [Mimer 71], have only more recently received attention in ab-

stract data type theory, beginning with [GGM 76]; behavioural inclusion, related 

to the "covering" relation between automata [Ginzburg 68, p.  97] is new—it com-

bines the behaviour idea with the "partial implementation" idea of Kamin and 

Archer [KA 841. 

For technical reasons, however, it is better to begin with behavioural inclu-

sion, then treat behavioural equivalence, and finally abstraction function repre-

sentations. In this order, each concept is more restrictive than its predecessors, 

and it is possible to apply previous theorems instead of having to prove successive 

generalizations. 

Hence, the present section treats the most general of the three representation 

relations: behavioural inclusion.' 

To speak about the "behaviour" of a program, it must be clarified how observa-

tions about a program can be made. In this thesis, programs are modelled by 

partial algebras, and the most general form of observation here is to apply an 

operation to some data values and to observe whether a result value is produced, 

and if so, which one. 

The idea underlying behavioural representation concepts is that not all of 

the observations just described are practically meaningful: in concrete programs, 

not all data can be generated and observed directly, rather we have a distinction 

between "hidden" and "visible" sorts, as explained in the previous section. The 

- 
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4.3 Behavioural Inclusion 

characteristic property of hidden sorts is that values in these sorts cannot be 

directly generated or inspected; rather, the only way to access these values is 

by means of the operations of the algebra. The visible data types, on the other 

hand, are accessible in other ways than those described in the algebra, so that 

these values must preserved in a representation in order to preserve program 

behaviour. - - 

In the algebraic model, this suggests the following concept of "observation": 

Rather than considering single operations with arbitrary input values, one con-

siders terms constructed from function symbols and values of the visible sorts. 

An algebra defines an "evaluation" of such terms, and it can be observed whether 

the evaluation succeeds or fails, and, if the result value is of a visible sort, this 

value can be observed as well. 

This concept of "observation" will now be formalised. The set V in the definitions 

below is to be understood as the set of visible sorts. Recall that if S is a set, 

an S-sorted set is an S-indexed family of sets; analogously, an S-sorted relation 

(S-sorted partial function, S-sorted mapping) between S-sorted sets X and Y 

is a family (Ra) 8E S such that each R8  is a relation (partial function, mapping) 

from, X. to Y3 . The notations "1: X -+ Y" and "f: X + Y" are used to express 

that f is an S-sorted mapping or partial function from X to Y. 

4.3.1 Definition (Terms). 

Let E = (5, a: F - S) be an algebraic signature and let X be a V-sorted set 

such that V C S. The S-sorted set TE(X)  is the componentwise smallest family 

of subsets of 

((s+F)u U x 
vEV 

that satisfies 

v E V, 3; E X = (v, z) E TE(X), 

1: s1 ...s -+ r in E, tj E TE(X) 8, for i E {i,.. .,n} 

=3 (1) 0 ti  0 ... 0 t fl  E TE(X) r . 

For s E S, the elements of T(X) 3  are called the E-terms over X of sort s. 0 
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4.3 Behavioural Inclusion 

The essential property of this definition is that every term is obtained in a unique 

way by a finite number of the construction steps indicated under (a) and (b). 

This allows to apply the familiar techniques of "structural induction" to prove 

properties of terms and of "structural recursion" to define functions on terms. 

4.3.2 Definition (Evaluation of Terms). 

Let E = (S, a: F -+ S) be an algebraic signature, let A be a E-algebra, and let 

V C S. Then "A/V" denotes the V-sorted set (A V ) V EV. The evaluation function 

from TE(A/V)  to A/S is the minimal (w. r. t. componentwise graph inclusion) 

S-sorted partial function q$ that satisfies 

t = (v,z) with v E V and z E A,, 	,,(t) = 

t = (f) ° u1 o ... 0 Un with 1: 81 ... s - r in E, u1  E dom 8  for 

i E {1,. . . ,n} and (091 u1,... ,qS 8 , 1 u) E domA1 

= q,.(t) = A1( 81 ui,. .. 	 0 

In this definition of "evaluation", a term can only be evaluated (i. e., is in 

the domain of the evaluation function), if all its subterms can. This is the 

standard mathematical definition of evaluation of terms over partial algebras 

(cf. [Grätzer 79, p. 841, [Burmeister 82, p. 3131). 

The interpretation of a partial E-algebra A as a model of data types and op-

erations in a functional program was explained in Chapter 2. Terms in Ti(A/V) 

may be regarded as "symbolic computations" with input data from A/V, that 

is, as descriptions of computations to be performed using the functions listed 

in E, beginning with data values from A/V. This corresponds to the view that 

the "visible sorts" in V play the role of external data types whose elements may 

be used freely as input to computations. The evaluation of terms corresponds 

to the evaluation of expressions in a programming notation with call-by-value 

semantics. 

A second aspect of the "observation" idea still has to be considered, namely that 

only values of visible sort can be directly inspected. This is done in the following 

definition of the "behavioural inclusion" relation between partial algebras. 
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4.3.3 Definition (Behavioural Inclusion). 

Let E =.(S, a: F -p S+) be an algebraic signature, and let V C S. Let A and B 

be E-algebras with evaluation functions 

: TE(A/V) + A/S, 	ti': T(B/V) + B/S. 

The a1gebra A is Y-behaviourally inc1uded in B(written "A 	B'!J, iff 

Vv E V: A 0  g B0 , 

Vs E S: dom4 8  g dom&8 , and 

Vv E V: Ov 9 ib0. 
	 a 

Clause (a) of this definition requires that the visible values of A are also visible 

values of B. This implies that every E-term over A/V also is a E-term over B/V, 

i.e., that T,(A/V) is componentwise included in T(B/V). Clause (b) says that 

every computation that "succeeds" in A (i. e., has a value under evaluation), 

succeeds in B also. Clause (c), which in the presence of (b) may also be written 

Vv E V, t E domqS0 : 00 (t) = 

says that succeeding computations of visible sort yield the same result in B that 

they yield in A. 

It follows trivially from the definition that for fixed E and V, V-behavioural 

inclusion is a preordering between E-algebras. 

The behavioural inclusion relation formalizes the idea of a "partial" or "re-

stricted" representation of a data type, where computations may fail more often 

in the representation than in the algebra represented, yet computations that 

succeed in the representation yield the same observable results as in the alge-

bra represented. Such representations occur frequently in practice, when size 

constraints are imposed on the representation of an abstract type [KA 841. For 

example, integers are often implemented as words of fixed size; representations 

of lists and sets often impose bounds on their length or cardinality. One might 

even argue that, because all real machines and storage units are finite, every 

concrete representation of a type with infinitely many values must be partial. 
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The partial representation idea is similar to the "partial correctness" concept 

for programs (cf. [Hoare 69]) and to the "covering" relation between automata 

[Ginzburg 68, p. 971. It has been introduced to data type theory by Kamin and 

Archer [KA 841. 

However, the concept of Kamin and Archer is based on "abstraction func- 

tions", and the concept presented here is strictly more general, as will be shown - 	- 

in Theorem 4.3.11 below. 

Before presenting examples of behavioural inclusion, we shall develop a charac-

terization that provides a proof method for behavioural inclusion. This charac-

terizat ion and proof method are based on the concept of a "correspondence". 

4.3.4 Definition (Correspondence). 

Let L' = (S, a: F —+ S) be an algebraic signature, and let A and B be 

-a1gebras. A correspondence from A to B is an S-sorted relation C = (C3) 8ES, 

where C 3  C A. x B. for all s E 5, such that all f E F are compatible with C, 

i.e., if f:si ...s, -+r in E, then 

whenever (Xs,yj) E C81  for I E {1,.. . ,n} 

and (x 1 ,... ,z) EdomAj 

then 	(Yi,... , y,) E dom Bf 

and (A1(xi,... ,x,), Bj(yi,... ,yn)) E C. 

The fact that C is a correspondence from A to B is written "C: A —x B". If 

all components of C are partial functions, then C is a partial homomorphism 

("C: A +- B"); if they are total functions, then C is a homomorphism from A 

to B ("C: A — i B"). 

For V C S, a correspondence C (partial homomorphism, homomorphism) 

from A to B is a V-correspondence (partial V-homomorphism, V-homomor-

phism), if for all v E V 

A,, C B,, and C,, is the inclusion function; 

this fact is denoted by writing C: A —x B (C: A +- B, C: A —— B). 	o 
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4.3 Behavioural Inclusion 

In other words, a relation is a correspondence from an algebra A to an algebra B, 

if every function f that yields a result for some arguments in A yields a related 

result when applied to related arguments in B. 

The correspondence concept has been developed independently at about 

the same time by Nipkow [personal communication, April 1985] and by my-

self [Schoett 85], in both cases as & generalization, of the "correspondences" of 

[Schoett 831 (which are strong correspondences in the sense of this thesis). The 

concept is similar in spirit to the "weak homomorphisms" used by Ginzburg 

[Ginzburg 68] to characterize coverings of automata. The homomorphism con-

cept agrees with the "homomorphisms" of [Grãtzer 79, p.  811 and [Burmeister 82, 

p. 3101, and with the "partial homomorphisms" of [KA 84, p.  321 f.]. A family 

of partial functions whose converse is a correspondence is called a "conformism" 

in [Burmeister 82, p..  3471. Using notational ideas from that paper, the require-

ment for a relation C between the carriers of the E-algebras A and B to be a 

correspondence can be written as follows: 

foreveryf:s-+rinI: (Gu) (B); A f Bf; C. 

Here Gu  is the componentwise converse of G, and G( 3) for s = s . . . s, is the 

relation between fl(A 81 ,. .. ,A 8,) and fl(B81 ,. . . , B8,) defined by 

((x 1
, ... 

,x),  (yi,...,yn)) E G(8) : 	(z1 ,y) E C8, for iE {i,... ,n}. 

The "weak subalgebra" relation of [Grätzer 79, p.  81] is also characterized 

by correspondences, as follows. 

4.3.5 Definition. Let L' = (S, a: F -+ S+) be an algebraic signature, and 

let A and B be -aIgebras. The algebra A is a weak subalgebra of B (notation: 

"A -) B"), if there exists a homomorphism from A to B consisting entirely 

of inclusions (this homomorphism is unique, and it is called the inclusion homo-

morphism from A to B). 0 

It is easily checked that the correspondences between s-algebras form a category: 
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4.3.6 Proposition. Let E = (5, a: F - S) be an algebraic signature, and 

let V C S. The following components form a category: 

• objects: a set of E-algebras, 

arrows: the V-correspondences (partial V-homomorphisms, V-homomor-

phisms) between the algebras, 

• identity arrow for an object A: the S-sorted identity map from A/S to 

itself, 

• composition of arrows: componentwise relational composition. 

Note that since every correspondence is a 0-correspondence, the proposition 

remains true when the prefix "V-" is deleted. 

Proof. It is easy to see that for every L-a1gebra A, the S-sorted identity map 

from A/S to A/S is a V-homomorphism from A to itself. Clearly, it is the 

identity under componentwise relational composition. 

Next, we prove that the componentwise relational composition of V-corre-

spondences is again a V-correspondence. Let G: A -< B and H: B —x C 

be V-correspondences. Let 1: si ... s -+ r in E, and let (ri, z) E (C ; H) 8  for 

I E {1,... , n} be such that (x1,.. . , x,) E dom A1. By the definition of relational 

composition, we can pick Yl,... , y, such that (x1 , y) E C 81  and (y,, z) E H9  

for i E {1,.. . , n}. Since G is a correspondence, we have ,y) e domB1, 

and (A1(x i ,. . . , z,), B1(yi,. . . , y,)) E C,.. Since H is a correspondence, we 

have (zi ,.. ., z,1 ) E domC1 and (B1(yi,.. .,y,), C1(z i ,. . . , z,)) E Hr . But this 

means that (A1(xi,...,x), Cf(z l ,... , z)) e (C;H),., and hence f is compat-

ible with C ; H. It follows that C; H is acorresiondencef'rom. A to C, - andit. 

is trivial that C ; H is again a V-correspondence. Thus, the V-correspondences 

form a category. 

That the partial V-homomorphisms and the V-homomorphisms also form 

categories now follows trivially from the fact that the relational composition of 

partial or total functions is again a partial or total function. 0 
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The following theorem characterizes behavioural inclusion by means of corre-

spondences. 

4.3.7 Theorem. Let E = (S, a: F -+ S+) be an algebraic signature, let 

V ç S, and let A and B be E-algebras. Then A is V-behaviourally included 

in B, if and only if there exists a V-correspondence from A to B. 

The proof requires two lemmas. 

4.3.8 Lemma. Let E = (S, a: F S) be an algebraic signature, let V ç s, 
let A and B be E'-algebras, let G: A —x B, and let 

çb: T(A/V) + A/S and &: T1j(B/V) + B/S 

be the evaluation functions. If s E S. and t E dom 8 , then t E dom 8  and 

( 8 (t), 3 (t)) E C 8 . 

Proof. We prove that t E domj 8  implies t E domt/ 8  and ( 8 (t), 8 (t)) € C 8  by 

structural induction on t. 

t = (s,x) with sE V and xE A 8 : 

As C is a V-correspondence, we have z e B. and (qS 8 (t), 8 (t)) = (z,z) E 

Ga . 

t = (f) ou 1 	with f: r 1  ... r - sin 1, Ui E TE(A/V)r, for 

If t E dom 4, then by definition of : 

U1  E domçS for i E {1,. . . , n}, 

(4'ri(ui),... ,q5r (u)) E domA1, and 

4 8 (t) = A1(i'r i  (ui),... , 4i,.,  (us )). 

By the inductive hypothesis, u1  E dom& 1  and (q5r (ui),br1 (ui)) E Cr1  

for i E {i,. . . , n}. As C is a correspondence, it follows that (&r1  (u1),..., 

tpbr (un )) E domB1, and 

(08 (t), 08 (t)) = (Ai(4' ri  (ui),.. . , r( n)), B1(i,l' ra  (u i ),.. . , 1r,. (un))) 

EG8 . 

	 U 
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4.3.9 Lemma. Let A and B be algebras of signature E = (S, : F - St), let 

V C S, and let : TE(A/V) + A/S and : T(B/V) + B/S be the evaluation 

functions. If A 	B, then the S-sorted relation C defined by C 8  = 

is the least V-correspondence from A to B with respect to the corn ponentwise 

subset ordering. 

Proof. First, we show that C is a correspondence from A to B. For s E S, 

we have G. C A. x B 8 , because dom = ran4 8  c A. and ran 8  LZ B8 . 

Now let f: s1 .. . s, —+ r in L', and let (z8, y) E G8  for i E {i,. . . ,n} be 

such that (z1,.. . , z,) E domA1. Then for i E {1,... , n} we can choose u 8  E 

dom48 1  n dom181  C T1(A/V) 8  such that O.i  (u1) = xi and t/i (ui) = y. Let 

t := (1) o u 1  o • ••o u. This is a term in T(A/V) r , and because (x i ,... ,z) E 

domA1, it follows that t E domq5r. Since A , B, we have t E domtt'r ; in 

particular, (y',... , y,) E dom B1. It follows that 

(A1( 81  (u i ),. .. 08(un)), B1('81 (Ui),... , e,b (u n))) = ( r (t), t/'(t)) 

= Cr. 

This shows that C is a correspondence from A to B. 

To see that C is a V-correspondence, note first that for v E V, we have 

A 0  g B 0 , because A v  B. Furthermore, for z E A 0 , we have x = ,v,z)) = 

1 0 ((v,z)), hence (z,x) E C 0 . Hence { (z,x) I x E A,,} c C,,. 

Conversely, if v E V and (x,y) E C,, = q5 ; &,,, there exists t E dom,, fl 

dom&,, such that 0 ,, (t) = z and t&,,(t) = y. By clause (c) of Definition 4.3.3, this 

implies that z = y. Hence C,, { (x, x) I x E A,, }. Together with the converse 

inclusion just proved, this shows that C,, is the inclusion map from A,, to B,,, 

and hence that C is a V-correspondence. 

Finally, to see that C is the least V-correspondence from A to B, suppose 

that H: A - B, and let s e S and (x,y) E C8 . Then we can choose t E 

domq58  n dom 8  such that 4 8 (t) = x and &8 (t) = y. By the previous lemma, 

applied to the correspondence H, we have (x,y) = ( 8 (t), 8 (t)) e H8 . Thus, 

C8 CH8 forallsES. 
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Proof of Theorem 4.3.7. 

Let E = (S, c: F -+ S+) be an algebraic signature, let V C S, and let A and B 

be s-algebras. 

If A v  B, there exists a V-correspondence from A to B by Lemma 4.3.9. 

Conversely, suppose that there exists a V-correspondence from A to B, i. e., 

- 	that we can choose G: A 	B. By definition, A 	B forv E V. Let 

: T(A/V) - A/S and 0: TE(B/V) -f' B/S be the evaluation functions. From 

Lemma 4.3.8 it follows that dom 8  g dom&8  for all S E 5, and that if v E V 

and t E dom, then (&,(t),tb(t))  E G = { (z,x) I z E A }, and hence 

= &(t). This means that i',, . 	for v E V, and hence that A is 

V-behaviourally included in B. 	 0 

In the following example, the theorem just proved is used to show that an al-

gebra is behaviourally included in another one. As we shall see later (in Exam-

pie 4.3.12), this example can not be handled using the "partial implementation" 

notion of Kamin and Archer [KA 841. 

4.3.10 Example. Recall that if s = (.s,. .. ,$) is a sequence, then rans = 

{si,... ,s} is the set of elements occurring in it. 

Consider the following signature E. 

signature 

bool, char, string: sort 

single: char -+ string 

occurs: char string -' bool 

join: string string -+ string 

Let C be a set, which will serve as the set of values of type char, and let K > 1 

be a natural number, which will be a size constraint on the string values handled 

by the algebra B. Consider the E-algebras A and B defined by 

- 	Ab001 	= Bb001 	= {T,F} 

A char 	 B char 	= C 

Astring 	 B 3  ring 	= 
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Asingle (x) 	= Bain gte (z) 	= (x) 

IT, ifzErans 
A occura(X,3) = Boccura(x,$) 

F, if x 0 rans 

A, 0 (s,t) = s o t 

B4O (s, t) is defined by the recursive code 

join(s,t) if 	length(s)= 0 then t 	 - - 

else if occurs(hd s, t) then join(tl s, t) 

else if length(t) ~! K then Error (3 
else 	 join(tl s, cons(hd s,t)). 

In the code for B4O1 , the following familiar operations on sequences are used: 

nil() = () 
cons(z,(yi, ... ,yn)) = (x,y1,... ,yn) 

length((xi,...,x)) =n 

I hd((x1,...,z))=z1 
for n > 1: < 

I tl((zi,. . . ,z,)) = (x2,. . . ,r,). 

The algebra A can be seen as a specification of a "string" data type. The 

algebra B may be regarded as a partial representation of the type, written in 

a functional programming notation. The functions Baingle  and B occurs  could be 

coded as follows: 

single(z) 	= cons(z,nil(3) 

occurs(x,$) = if 	length(s) = 0 then F 

else if z = hd s 	then T 

else 	 oecurs(z,tls). 

The code for B301 , which was given above, is based on the assumption that the 

three functions single, join and occurs are the only means of manipulating values 

of type string; in other words, that string is encapsulated by these three access 

functions. Under this assumption, information about a value of type string 

can only be gained by means of the occurs operation. Since the output of this 
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operation is completely determined by the range of its second argument, that 

is, the set of char values occurring in the strzng, it is unnecessary to preserve 

sequence information or store elements repeatedly in a string. The code for 

exploits this observation by ignoring elements of the first argument s that 

already occur in the second argument t, so that memory is saved because the 

result sequence is shorter. Also, the sequence information is not preserved (if 

z, y and z are different, then join((z, y), (z)) = (y, x, z)). Finally, the operators 

of B do not allow to generate a sequence of length more than K, due to the fact 

that B 01  aborts (by calling the nullary function Error that does not yield a 

result value) if necessary. This means that computations may fail in B, although 

no computation can fail in A. 

We now show that B is V-behaviourally included in A, where V := {bool, char}. 

For this purpose, we construct a V-correspondence C: B - A. Let 

Gb001 be the identity relation on {T, :F}, 

C char  be the identity relation on C, 

Gagring:= { (d,$) trans' = rans} C C x C. 

To show that C is a correspondence, we have to show that each of the operations 

is compatible with C. it is then clear that C is a V-correspondence also. 

single: Let (z', z) E Ccha, such that x' E domB aingie  (which is always true). It 

follows that x' = x, and hence 

(B8918 (x'), Asing:c(x)) = ((z'), (x)) 

= ((x),(z)) 

E C 3  rsng. 

occurs: Let (x', x) E C char  and (el,  s) E C airing  such that (x', s') E dam Boccura  

(which is always true). Then z = z' and ran s = ran s1 , and hence 

T, ifz ' Erans '  
Boccura (',') = 

l F, ifz'rans' 
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IF,
T, ifzErans 

, 
ifzrans 

= A occura  (x, s). 

join: We shall prove below that 

- for all (s,t) E domB301  : ranB101 (s,t) = rans U rant 	(*) 

From this it easily follows that join is compatible with C: if (s', s) and (t', t) 

are elements of C airing  (i. e., ran s = ran s and rant' = rant) such that (el,  t') E 

domB1O , then (s,t) E domA, 0  (since this is always true), and 

Bj ~.j. 	= rans'U rant' 	(by (*)) 
= ran s U ran t 

= ran Ai,j, (s, t), 

and hence (B4O (s', t'), A, 0 (s, t)) E C31 ring. 

To prove (*), we show by induction on n E N, that 

if 	(s,t) E domBj,,in  and length(s) = n 

then ranB1o1 (s,t) = ransUrant. 

Note that for (s, t) E domB4O , the code of Bi,,in  yields the equation 

t, 	 if length(s) = 0 

Bjo in  t) 	
B4O1 (tls,t), if length(s) #0 and Bocc ur,(hds,t) = T 

= 
Bjo in  s, eons(hd s, t)), 

if length(s) O  and Boc cura(hds,t) = F, 

because in the third case we must have length(t) <K, since otherwise B501 (s, t) 

would be undefined. 

As the base of the induction, let n = 0, and suppose that (s,t) E domB10 1 

and length(s) = n =0. Then 

ran Bjo in 	= rant 

= 0 U ran t 

= rans U rant. 
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For the inductive step, let n > 0, and suppose that (s,t) E domBi,,i. and 

length(s) = n. 

. In case Boccura (hds,t) = T (i.e., hds E rant), we have 

ran Bj.i. t) = ran Bio in  s, t) 

= ran(tls) U rant 	- 	(induction hypothesis) 

ran(tls) U{hds}Urant 

= rans U rant. 

. In case Boccurs(hd s,t) = F, we have 

ran Bj o in  t) = ran Bj o in  s, cons(hd s, t)) 

= ran(tls) U ran cons (hd s, t) 

= ran(tl s) U {hd s} U rant 

= rans U rant. 

This concludes the proof of (*). 

Thus, join is compatible with C, and it has been proved that C: B —x A is 

a correspondence. 

Theorem 4.3.7 yields that B , A. In practice, this means that the code 

defining B provides a correct partial representation of the abstract data type 

string specified by A. o 

The example illustrates the use of correspondences to prove practical data rep.. 

resentations correct. In general, correspondences seem to be more convenient for 

this purpose than a direct structural induction over computations as suggested 

by the definition of behavioural inclusion. In particular, a straightforward struc-

tural induction to prove qSv  (t) = (t) for terms t of visible sort v will not 

normally succeed, because no suitable induction hypothesis is available for the 

subterrns of t of hidden sort. A correspondence can be regarded in this context 

as providing the induction hypothesis 

t E domqS 8 	(08 (t), 1,1)8 (t)) E C 8  

for terms t of arbitrary sort s (cf. Lemma 4.3.8). 
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4.3 Behavioural Inclusion 

So far, the present section has presented a representation relation "behavioural 

inclusion" between partial algebras that captures the idea of "partial" or "re- 

stricted" representations of data types, where the representation may abort when 

its capacity is exceeded, but otherwise must exhibit observable behaviour that 

agrees with that of the model. Furthermore, it has been shown that behavioural 

inclusion between algebras is characterized by the existence of a correspondence 

between them, and the preceding example has illustrated that correspondences 

provide a practical method for proving data representations correct. 

The idea of partial data representation is not new, but was introduced by 

Kamin and Archer [KA 841.' However, the definition of Kamin and Archer is 

different from mine. They define an algebra A to "implement" an algebra B, 

1 0n page 322 f. of their paper, Kamin and Archer ascribe the partial representation 

idea to Hoare's 1972 paper [Hoare 72], because "... Hoare's paper allowed for 

pre-conditions on implementations of operations" [KA 84, p. 3221. However, this in-

terpretation of Hoare's paper appears to be incorrect. Hoare does indeed consider 

preconditions on the operations in his example representation of sets by arrays: 

"For example, the correctness of the insert procedure depends on the fact 

that the size of the resulting set is not greater than 100 ... . This pre-

condition ... must accordingly be proved to hold before every call of the 

procedure." [Hoare 72, p.  2761 

But the quotation shows that the precondition is stated in the abstract terminology 

(sets rather than arrays), and is to be proved when the procedure insert is called; 

that is, in the proof of the abstract program. Hence the condition that sets can not 

have more than 100 elements is not just introduced by the representation; it is to be 

regarded as part of the abstract model to be represented. Hoare does not consider a 

partial representation of "sets of integers", but a full representation of "sets of integers 

with no more than 100 elements": 

"... consider an abstract program which operates on several small sets of 

integers. It is known that none of these sets ever has more than a hundred 

members." [Hoare 72, p.  2721 
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4.3 Behavioural Inclusion 

if there exists a homomorphism h: [A -+JBI,where JAI and JBI are certain 

subalgebras of A and B, called their "reachable parts" [KA 84, P.  3221. 

Of course, h may be regarded as a partial homomorphism h: A ---- B. But 

there remain two differences to the concept of this thesis. 

The first difference is that Kamin and Archer do not consider visible sorts 

in theft definition. This could be matchedrny definition empty  

set of visible sorts (I. e., by considering the relation so). This would admit 

more representations than a nonempty set of visible sorts. However, Section 4.2 

has shown that this generality is harmful in practice, because "representations" 

become possible in which the output values are delivered in a useless form, e. g., 

simply as a formal term that is independent of the operations to be implemented. 

The second difference is that Kamin and Archer require ii to be a homomor-

phism, that is, a functional correspondence, whereas our notion of behavioural 

inclusion allows the representing and the represented algebra to be connected by 

an arbitrary correspondence. The following theorem shows that this makes the 

representation relation of Kamin and Archer more restrictive. 

4.3.11 Theorem. There exist an algebraic signature E and E'-algebras A 

and B such that A B and B A, but no partial homomorphism from A 

to B nor from B to A exists. 

Proof. Let L' have sort set S := {s} and three operations a, b, C: 	a, and 

define the 1-algebras A and B by 

A. ={o,i} = B. ={o,i} 
A a () 	 0 	= Ba () 	 0 

Ab() =0 	Bb() =1 

A() =1 	= B() =1. 

Both A/O and B/O are 0-sorted sets and thus identical; we have 

TE(A/0) a  = T(B/0) 8  = {( a), (b), (c)}. 

The evaluation functions 

4: TE(A/0) -f-p A/S and &: T(B10) + B/S 

231 



4.3 Behavioural Inclusion 

are given by 

	

8((a)) = 0, 	 = 0, 

= 0, 

= 1, 

- 	The propositions "A 	B" and "B 	by definition reduce to "dom 	- 

dom(i8 " and "dom&8  g domq58", and these are obviously true. 

From Lemma 4.3.9, it follows that every correspondence H: A —x B must 

satisfy 

= {(0,O),(0,1),(1,1)} 9 H8 , 

therefore H. cannot be a partial function and H cannot be a partial homomor-

phism. Symmetrically, if H: B —x A, the lemma yields that 

q5 = {(O,0),(1,O),(1,1)} ç H3 , 

and hence that H cannot be a partial homomorphism. 	 0 

The theorem shows that 0-behavioural inclusion is strictly more general than the 

"partial implementation" notion of Kamin and Archer. Of course, the example 

used in the proof is of purely theoretical interest. A more significant example is 

obtained from Example 4.3.10. 

4.3.12 Example. Let L' = (5, &: F -+ 5+) be the signature 

signature 

bool, char, string: sort 

a, b, c: —p char 

single: char -+ string 

occurs: char string -+ bool 

join: string string —p string 

(this is just the signature E' of the previous example (4.3.10) with the operators 

a, b, and c added), and let V := {bool, char} as in the previous example. Assume 

that C, the set of char values, contains at least three different elements p, q, and r, 
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4.3 Behavioural Inclusion 

and assume that the capacity K of the representation is at least 3 (1. e., K > 3). 

Let the algebras B and A be obtained from the algebras B and A of the previous 

example by adding the interpretations 

BaO = AO = p,Bb() = Ab() = q, and B() = A() = r. 

For the S-sorted relation C of the previous example it was shown there that 

the operations single, join and occurs are compatible with it, and obviously the 

three operations a, b and c are compatible with it also. Hence C: B —x A is a 

V-correspondence from B to A, and thus B v  A, that is, B is V-behaviourally 

included in A. Obviously, this implies that B A. 

However, no partial homomorphism can exist from B to A (we need not even 

consider any visible sorts, which would restrict the homomorphism even further). 

To see this, let 

'b:Tn(A/O) + A/S and : T(B/O) -{- B/S 

be the evaluation functions, and suppose that H: B —x A is a correspondence. 

By Lemma 4.3.9, applied with V = 0, it follows that t,bring; &tring 9 Hatting. 

Consider now the following two terms in Ti(A/O)atrjng  and their evaluations in 

B and A: 

term t 

(join, single, a, join, single, b, single, c) 

(i. e., join((p), join((q), (r)))) 

(join, join, 8ingle, b, single, a, single, c) 

(i. e., join (join ((q), (p)),  (r))). 

Ostring (t) 	'bat ring (t) 

(p,q,r) 	(p,q,r) 

(p,q,r) 	(q,p,r) 

Since 'Pring ; 'batting 	Hatting, the two pairs of the form (tIatring(t), 'batring(t)) 

must be elements of Hatting,  so that Hatting  contains two pairs with the same 

left component (p, q, r) but two different right components (p, q, r) and (q, p, r). 

Hence Hatting  cannot be a partial function. Since H was an arbitrary correspon-

dence, no partial homomorphism from B to A exists. 0 

We here have a more practical example of a representation that is correct ac- 

cording to the behavioural inclusion criterion, but not correct according to the 
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4.3 Behavioural Inclusion 

"partial implementation" concept of Kamin and Archer. The example shows that 

the representation concept of Kamin and Archer is affected by "representation 

bias" in a specification, whereas behavioral inclusion is not. This phenomenon 

and its significance is discussed in detail on page 258 f. below, where "behav-

ioral equivalence" is compared with "standard representation". The relation 

between these two representation concepts is precisely analogous to the rela- - - 

tion between behavioural inclusion and the "partial implementation" concept 

of Kamin and Archer: "standard representation" and "partial implementation" 

insist on a function from representation values to the represented values, while 

the behavioural concepts allow a relation instead. 

The following theorem states that behavioural inclusion is a representation re-

lation in the institution (TS1g, TInci, TA1g). As a consequence, the general 

theory of Section 4.1 applies to behavioural inclusion. 

4.3.13 Theorem. Behavioural inclusion is a chain-closed representation rela-

tion in the institution (TSIg, TInci, TA1g). 

To be precise, one obtains a chain-closed representation relation w- = 

by defining 

A * B : 	A v  B 	for A,B E Alg(E) = TA1g(E,V). 
(IJ,V) 

In the proof of this theorem, the following proposition about correspondences 

will be used. 

4.3.14 Proposition, If a: (E, V) - (E', V') is a tagged signature morphism 

where E = (S,a), and C: A —x B is a V'-corre.spondence between E'-alge-

bras A and B, then the S-sorted relation UG defined by (G) 8  = C 8  is a 

V-correspondence C: UA —x UB. 

Proof. Consider f: s 1  . . . s, -+ r in E, and 

(x1 ,y) E (G) 31  = C,.31 	for i E {1,. . . ,n} 
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4.3 Behavioural Inclusion 

such that (z1,. . . ,zn ) E dom(A)1 = domA1. Then of: us1 ... os, 	or 

in E'. Since C is a correspondence, it follows that 

(yi,. . . ,y,) E domB1 = dom(B)1 

and 

(B)1(yi,. .. ,y,)) = (A 71(xi,... ,x), B1(y i ,. .. 

EGg,. 

= (G),.. 

Hence (G): (WA) - (WB). 

To see that U G is V-constant, observe that for v E V: ov E V' (as or is a 

tagged signature morphism) and hence, as C is a V1correspondence: 

(F A) v  = A av  9 Be ,, = ( B), 

and 

(U C),, = .G,,, is the inclusion function from A 4,,, to Be,,,,, 

i. e., (G),, is the inclusion function from (WA),, to (B),,. Hence U G: U A —x 

B is a V-correspondence. 	 0 

Furthermore, two lemmas about terms and evaluation functions are required. 

4.3.15 Lemma. Let (L', V) (1', V') be tagged signatures where E = (S, a) 

and E' = (S',a'), let A E A1g('), and let 

4/: Ts(A/V') + A/S' be the evaluation function defined by A, 

0: Ti(A/V) + A/S be the evaluation function defined by A/E. 

Then for all s E S: 

TE(A/V)8 ç  TE'(A/V')a and 

= 
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Proof. We prove the conclusion by structural induction on terms in TE(A/V). 

(a) t = (v,z) with v E V, z E A,,. 

Then v E V' by Theorem 4.2.6 (a), hence (v,z) E Ti'(A/V'), and 

= x = 0((v,x)). 

(b)- t = (f) o u1 o •ou, with I: si . . .s, --r in-E, ui E TE(A/V -) 8  for- -

iE{1,...,n}. 

By the induction hypothesis, 

u• E TE'(A/ V') 81 	for i E {i,. . . ,n}. 

Since 1: 8 1 ... .s,, -+ r in L" also, it follows that t E Ts(A/V') 8 . Now 

t E dom4,. 	ui E domq58  for i E {i,... , n} 

and (g51u 1 ,... 9 q5,u) E domA1 

Ui E domq5, for i E {i,... , n} 

and Wi  u i,... , ,u,,) E dom A1 

(by the inductive hypothesis) 

tEdom. 

If t E dom4'r, we have 

4r(t) = A1(çi i u i,. .. 

=A1(q5'1 u i ,...,q5,u) 

(by the inductive hypothesis) 

=q5.(t). 

Hence 0 and 0' agree on t. 

4.3.16 Lemma. Let (, Vj) IEI be a compatible chain of small tagged sig-

natures, and A E Alg(U J E). Defining (,V) := U€1 (E,V1), and writing 

Ei = (Si, a) for i E I and (L', V) = (, a), we have for all s E S: 

T(A/V)8= U T(A/V1)8. 
{iI8ES1 

 } 
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Proof. By the previous lemma, T(A/V) 8  is included in T(A/V) 8  whenever 

sES. 

For the converse inclusion, we prove by structural induction over terms t in 

T(A/V), that if t E T(A/V) 8 , then there exists i E I such that s E Si and 

t E T(A/V) 8 . 

-(a) t=-(v,z)withvEandxE - A,. 	 - 

Pick i such that v E V1 . Then z E A = (A/V 1), and so 

t = (v,x) E T(A/V). 

(b) t = (1) o u 1  o ... u, with 1: s . . . s, -+ r in E, u1  E T,(A/V) 3  for 

iE{1,...,n}. 

By the inductive hypothesis, for each i E {i,. . . , n} we can pick ki E I 

such that u1  E 	k .(A/Vk $ ) B . Let k0 be such that 1: s.. .s, - r in 

L'k0. The set of tagged signatures { Vk0),. .. , Vk ft ) } is finite and 

totally ordered by , hence has a greatest element. Define j to be such 

that (L',V) is this greatest element. We then have 1: s 1 .. s, -+ r in E1, 

and by the previous lemma, u1  E TE1 (A/V)a for i E {1,. .. ,n}. Hence 

(f)ouio ... oun ET 1 (A/Vj) r. 0 

Proof of Theorem 4.3.13. 

We verify the three axioms of Definition 4.1.1. 

Axiom (a): For every (E,V) E jTS1gj, the relation -* is a preordering on 

TA1g(E, V) = Alg(E), because V-behavioural inclusion is a preordering on 

Alg(E). - 

Axiom (b): If a: (E,V) - (E',V') is morphism in TSig and A --* B, then 

by Theorem 4.3.7 there exists a V'-correspondence C: A -x B. By Propo- 

sition 4.3.14, 	G: U A —x UB. Applying Theorem 4.3.7 again yields that 

A ----  B. 
(1,V) 

Axiom (c): Let (E 1 , V) iEI be a compatible chain of small tagged signatures, 

where L',, = (Si, ) for i E I, and define £' = (, a) := UIEI v := UEI v, 
such that (',V) =Uj€1(E,V). 
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Let A and B be at-algebras such that A/(E1, V) -* B1(E1, V) (i. e., 
(E,V) 

A/Es v1  B/E1) for all i E I, and let 

q5: T(A/V1) -- A/S I  be the evaluation function of A/E' 1  for i € I, 

1i1: Ti(B/Vj) -i-p B/SI be the evaluation function of B/E1  for i E I, 

: T(A/V) + AIS be the evaluation function of A, and 

T(B/V)+B/ 

We show that A , B. 

To verify Clause (a) of the definition of behavioural inclusion (Def. 4.3.3), 

consider v E V. Choose i E I such that v E V2 . Since A/E, v  B/E2 , we have 

A. = (A/L1),, 9 (B/E1),, = B,,. 

To verify Clause (b) of the definition, consider s E S and t E dom 

T(A/V) 8 . By Lemma 4.3.16, we can pick i E I such that s E Si and 

t E TE(A/Vs)8. Since A/E I v1  B/E1, the V2-sorted set A/V1 = (A/E1)/V1 

is componentwise included in (B/L'1)/V1 = B/V 2 , hence TE1  (A/V 1 ) is componen-

twise included in Ti(B/Vi),  and so t € TE1 (B/V1) 5  also. Lemma 4.3.15 yields 

that t E domçS1, 8 , and because A/E1 	B/E'2 , it follows that t E dom1,8 . By 

Lemma 4.3.15 again, it follows that t € dom 8 . 

To very Clause (c) of the definition, assume that in addition, we have a € V. 

Since (E1 ,V2 ) EZ (,V), we have a E V2  = V n Sialso, and hence 

8 (t) = 41, 8 (t) 	(by Lemma 4.3.15) 

= tki,. (t) 	(as a € V1 and (AlE1) v,  (B/E1)) 

= 8 (0 	(by Lemma 4.3.15). 

This concludes the proof that A 	B, and hence that behavioural inclusion is 

a chain-closed representation relation. 	 0 

With the theorem that behavioural inclusion is a representation relation, we now 

have available a universal implementation concept for cells in (TSig, TInci, 

TA1g) that could be used in program development. The concept will be fur-

ther analysed in Section 5.2, where a simplified way of proving the universal 

implementation property is developed and an example is given. 
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4.4 Behavioural Equivalence 

We now turn to the representation relation between partial algebras that is 

perhaps the most important for practical programming: behavioural equivalence. 

4.4.1 Definition. Let E be an algebraic signature, and let V be a subset 

of the sorts of E. Two E-algebras A and B are V-behaviourally equivalent 

("A —v B"), if A is V-behaviourally included in B and vice versa, i. e., 

A —v B : 	A v  B A B v  A. 	 0 

This means that V-behavioural equivalence is just the equivalence relation in-

duced by V-behavioural inclusion. From the definition of V-behavioural inclusion, 

we immediately obtain a characterization of behavioural equivalence in terms of 

the evaluation functions. 

4.4.2 Proposition. Let L' = (S, a) be an algebraic signature, and let V C S. 

Let A and B be 2-algebras with evaluation functions 

0: T(A/V) + A/S, 	: T1(B/V) + B/S. 

Then A is V-behaviourally equivalent to B, if and only if 

Vt, E V: A = B,,, 

Vs e S: dom4 8  = dom 8 , and 

VvEV: 

Viewing terms in T,(A/V) as computations starting with the visible values 

in A/V, clause (a) says that the visible carriers of A and B must be equal, 

clause (b) says that the same computations succeed in A and in B, and clause (c) 

says that for succeeding computations of visible sort, the result values are the 

same. 

Together, these clauses mean that A and B have the same observable behav-

iour under the constraint that values in "hidden" sorts can only be generated 
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and inspected by means of the operations, and it seems natural to use "behav-

ioural equivalence" as the formal criterion for a data structure to be a "correct 

representation" of another one. 

The idea of regarding "behaviour" as the relevant aspect of a data structure 

is implicit in the "simulation" method proposed by Mimer [Milner 711 to prove a 

- program correct with respect to another one, whichallows for different internal 

data representations (cf. Example 2, p.  486 f. and 485 of [Mimer 71]). An 

explicit behaviour concept for algebras first appears in [GGM 76, p.  580] (called 

"semantics" of an algebra). 

The exact behavioural equivalence relation defined here has been studied 

before by Bothe [Bothe 81], myself [Schoett 81, Section 5.11, and by Meseguer 

and Goguen [GM 82, p.  2691 1 . Comparisons of this notion with other behavioural 

equivalence notions can be found in [HR 831 and [ST 84a, p.  171. 

Just as behavioural inclusion is characterized by the existence of a correspon-

dence, behavioural equivalence is characterized by the existence of a "strong 

correspondence". 

4.4.3 Definition. Let E = (S, a) be an algebraic signature, and let A and B be 

-.algebras. A strong correspondence C from A to B (Notation: "G: A .: B") 

is a correspondence from A to B whose converse is a correspondence from B 

to A, i. e., 

G:A=xB : 	G:A —xB A GU:B_xA. 

A strong partial homomorphism C: A 	B is a strong correspondence that 

is a partial homomorphism; a strong homomorphism C: A = B is a strong 

correspondence that is a homomorphism. 

1 Note that only "having the same behaviour" in the sense of [GM 82, p. 2691 matches 

behavioural equivalence; the "behavioural equivalence" concept of the same paper 

[GM 82, Section 4.21 does not. 

240 



4.4 Behavioural Equivalence 

For V C S, a strong correspondence (strong partial homomorphism, strong 

homomorphism) C from A to B is a strong V-correspondence (strong partial 

V-homomorphism, strong V-homomorphism), if for all v E V: 

A, = B,, and C,, is the identity map on this set 

(i. e., if both Gand CL  are V-correspóndeñces); this fact is writtén"G: A =x B" 	- - - 

("C:A*=B","G:AB"). 
V 	 V 

The following proposition gives a direct characterization of strong correspon-

dences as relations with which the functions of A and B are "strongly compati-

ble". 

4.4.4 Proposition. Let E = (S, a: F - S) be an algebraic signature, and 

let A and B be L'-algebras. An S-sorted relation G = (C8) 8ES from A/S to B/S 

is a strong correspondence, if and only if all f E F are "strongly compatible" 

with C, i.e., if 1: Si ...s -+ rin E, then 

whenever (Xj ,yj) E C 8  for i E {1,... 

then 	(zi,...,z)EdomA1 	(yi,...,y)EdomB1, 

and if both sides of this equivalence are true, then 

(Aj(zi,... ,xn ), B1(yi,... ,y,))  E C r . 

Proof. The condition given here is symmetric under exchange of A and B 

plus substitution of Cu  for C. Since it clearly implies C: A —x B, it also 

implies Cu:  B —x A. Conversely, if C: A =x B, then from Cu:  B —x A, it 

follows that if 1: si... s - r in £' and (x1 ,y) E C 8  (i. e., (yj ,Xj) E C') for 

iE{1,...,n},wehave 

(yi,...,y)EdomBf 	(zi,...,xn)€domA1. 

Combining this with the definition of "C: A —x B", we get the condition of the 

proposition. 	 -01 
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We have seen that a correspondence is a strong correspondence, if for related 

argument tuples (x1,... , x,) and (yi,... , y,), we have 

(x1,.. . 	E domA1 	(yi,. .. ,y,) E domB1, 

rather than just the implication from left to right, as in the definition of a 

correspondence (Def. 4.3A). This means that A1 and B1 either both succeed 

or both fail on related arguments, and, as for correspondences, their results are 

related if they succeed. 

Strong homomorphisms are well known in the literature on partial algebras; 

e. g., they appear in [Grãtzer 79, p.  811 and [BW 82, P.  511, and under the 

name "closed homomorphism" in [Burmeister 82, p.  311] and [Reichel 84, p. 76]. 

The strong partial homomorphism concept seems to appear first in [Schoett 81, 

p. 109] under the name "homomorphism" . It can be seen as combining the 

"representation invariant" (as the domain of the homomorphism) and the "ab-

straction function" of [bare 72] into a single concept—this connection will be 

exploited in the next section. 

The strong correspondence concept seems to have been first presented in 

[Schoett 83, p.  221, later in [Schoett 85, p.  8] under the name "correspondence". 

It has recently been generalized by Nipkow to a "simulation" concept between 

"structures" that may contain nondeterministic operations [Nipkow 86, p.  6331. 

Partial many-sorted algebras are special "structures", and the "simulations" 

between partial many-sorted algebras are just the strong correspondences. 

Just like correspondences, the strong V-correspondences between E-algebras 

form a category. 

'The "homomorphism" definition on p. 109 in this report contains a crucial printing 

error: The defining relation must hold 

for all (x i ,... , X) E lIiE[nJ domh8, 

this line is missing from the definition, as can be seen in later proofs on the pages 

111, 121, and 132. 
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4.4.5 Proposition. Let £ = (S, a: F - S) be an algebraic signature, and 

let V C S. The following components form a category: 

• objects: a set of E-algebras, 

• arrows: the strong V-correspondences (strong partial V-homomorphisms, 

strong V-homomorphisms) between- the- algebras, 	 - -- 

• identity arrow for an object A: the S-sorted identity map from A/S to 

itself, 

• composition of arrows: componentwise relational composition. 

Proof. Every strong V-correspondence is a V-correspondence, and these form 

a category with the same identities and composition as in the definition above 

(Proposition 4.3.6). 

We show that the composition of strong V-correspondences is again a strong 

V-correspondence. Let C: A B and H: B < C be strong V-correspon-

dences. Since C: A —x B and H: B —x C, it follows that G;H: A —x C as the 

V-correspondences form a category, and since Cu:  B —x A and Hu:  C —x B, 

it follows that (C ; H)u = (HU ; Cu):  C —x A for the same reason. Hence 

(C ; H): A ==X B is a strong V-correspondence, and it follows that the strong 

V-correspondences form a subcategory of the V-correspondences. 

Since the property of being a partial or total function is preserved under 

composition, it follows that the strong partial V-homomorphisms and the strong 

V-homomorphisms also form categories. 0 

Just as behavioural inclusion is characterized by correspondences, behavioural 

equivalence is characterized by strong correspondences. 

4.4.6 Theorem. Let E be an algebraic signature, let V be a subset of its sorts, 

and let A and B be E-algebras. Then A is V-behaviourally equivalent to B, if 

and only if there exists a strong V-correspondence from A to B. 
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Proof. Suppose first that there exists a strong V-correspondence C: A ==X B. 

Then C: A —< B and Cu:  B —< A, and Theorem 4.3.7 yields that A v  B 

and B v  A, hence A —v  B. 

Conversely, suppose that A —v  B, i. e., that A Z v  B and B , A. Write 

= (S,a), and let 

dT(B/V)-fB/S 

be the evaluation functions of A and B. Lemma 4.3.9 yields that (4,U ; 
A —x B, and, applying the lemma with A and B, 4, and t& interchanged, we 

get that (&U ; 4,): B —x A. Since Ou ; 4, is the converse of 4, ; 0, it follows that 

(4,u;1,):A<B 

The following example illustrates how strong correspondences can be used to 

prove two algebras behaviourally equivalent. 

4.4.7 Example. Let the signature E and the L-a1gebra A specifying "strings" 

be given as in Example 4.3.10. Define the "representation" algebra B to be 

like A, except that this time, Bji,, is defined by the code 

join(s,t) = if 	length(s) = 0 then t 

else if occur8(hds,t) then join (tls,t) 

	

else 	 join(tl s, cons(hd 3, t)). 

	

This is just the code for 	of Example 4.3.10, except that join no longer 

imposes a restriction on the length of the list it produces. 

To show that B is behaviorally equivalent to A over V := {bool, char}, we 

construct a strong V-correspondence C: B < A. Define C as in Example 4.3.10 

(recall that C = A char = Bchar): 

Gbooi is the identity relation on {T, F}, 

C char  is the identity relation on C, 

C8gring = {(l,) rans' = rans} C C x C*. 

By a proof precisely along the lines of the proof in Example 4.3.10, one proves 

that C is a correspondence. Since B and A are total, Proposition 4.4.4 (in which 
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the two statements of the form "( ... ) € dom..." are uniformly true) yields that 

C is a strong correspondence. Since Bb00, = Ab00,, Bcha,. = Achar, and Gbool 

and C char  are the identities, C is a strong V-correspondence from B to A. By 

Theorem 4.4.6, it follows that A —v  B. 0 

As a corollary of the theorem that behavioural inclusion is a representation 

relation in the institution (TSig, TInci, TA1g) (Theorem 4.3.13), we obtain 

the same result for behavioural equivalence. 

4.4.8 Theorem. Behavioural equivalence is a chain-closed representation rela-

tion in the institution (TSig, TInci, TA1g). 

To be precise, one obtains a chain-closed representation relation '--+- = 

by defining 

A '* B : 	A —v  B for A,B E Alg(1) = TA1g(E,V). 

Proof. For every (E, V) E ITSigl, the relation _v is the intersection of the 

relation , with its converse. Hence the JTSig-indexed behavioural equiva-

lence relation is the componentwise intersection of the TSig-indexed behav-

ioural inclusion relation with its componentwise converse. Since behavioural 

inclusion is a chain-closed representation relation (Theorem 4.3.13), Proposi-

tions 4.1.3 and 4.1.4 yield that behavioural equivalence also is a chain-closed 

representation relation. 0 

This theorem makes the theory of Section 4.1 applicable to behavioural equiv-

alence; we obtain a universal implementation concept and a composability the-

orem. In principle, this provides a program development method. Section 5.3 

will present a more practical version of this method. 
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4.5 Standard Representation 

4.5 Standard Representation 

This section discusses the "standard" notion of representation of an algebra by 

another, which is due to bare [Hoare 72]. This representation concept requires 

that there be a-mapping from the carriers of the representation algebra-to the 

algebra represented, usually called the "abstraction function" (written "A" in 

[bare 72, p.  275]). The operations of the algebras must be compatible with 

the abstraction function (to be precise, "strongly compatible" in the sense of 

Prop. 4.4.4). The abstraction function need only be defined on a subset of the 

values of the representation; this subset is characterized by a predicate usually 

called the "representation invariant" (written "I" in [Hoare 72, p.  275]). This 

proof method has already been sketched informally in Section 1.4, on page 54-57. 

Numerous formal representation relations, stated in varying terminology, are 

based on bare's concept; for example, the ones in [GHM 78] (note that an ab-

straction function is considered part of the representation: "SYMT" in Fig. 5), 

[Jones 80, Ch. 11], [Ehrich 82, p.  216] (note that here we have an abstraction 

function f followed by a restriction step, rather than vice versa), [SW 82, p.  131, 

[Lipeck 83, p.  521, and [BW 84, p.  2691. bare's concept also appears disguised 

as a pair "representation invariant" plus "congruence" (every abstraction func-

tion gives rise to a congruence, while the canonical projection associated with a 

congruence is an abstraction function); for example, in [GTW 78, p.  1381 and 

[EKMP 82, p.  2281. 

In the terminology of this thesis, the pair "representation invariant" plus 

"abstraction function" is just a strong partial homomorphism; the domain of the 

homomorphism is the representation invariant, and the homomorphism itself is 

the abstraction function on this set. 

In most of the papers mentioned so far, the strong partial homomorphism 

from the representation to the algebra represented is also required to be sur-

jective; that is, every value in the algebra represented must have at least one 

"representation" (a value that is mapped to it by the abstraction function). 

However, surjectivity was not required in bare's original paper [bare 72]. 
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Sometimes surjectivity results automatically from the fact that only "reach-

able" algebras are considered; that is, algebras in which all elements can be 

generated by a finite number of operation applications, for example in [BW 84, 

p. 2691. Surjectivity is also implicit in representation relations based on congru-

ences or quotients ([GTW 78, p.  1381, [EKMP 82, p.  228]). 

Since allihe paperscited—except Hoare's—:do require surjectivity ofthe 

abstraction function, this property will be regarded part of the standard repre-

sentation concept. 

A set of visible sorts will also be used in our version of the standard rep-

resentation concept, although this is rarely done in the literature. The reason 

for this was explained in Section 4.2: Without visible sorts, the relation would 

admit trivial representations by term algebras. 

We arrive at the following definition of the standard representation concept. 

4.5.1 Definition. Let A and B be E-algebras, and let V be a subset of 

the sorts of E. An abstraction function from A to B is a surjective strong 

partial homomorphism from A to B (Notation: "h: A 1=* B"); a V-abstraction 

function from A to B is a surjective strong partial V-homomorphism from A 

to B (Notation: "h: A $=* B"). 
V 

The algebra A is a standard V-representation of B (written "A =4v B"), if 

there exists a V-abstraction function from A to B. 	 0 

To illustrate the meaning of this definition, here is an explicit description of what 

an abstraction function is. 

4.5.2 Proposition. Let A and B be E-algebras. An S-sorted partial function 

h: A/S -- B/S is an abstraction function from A to B, 1ff all the h 8  (s E S) 

are surjective, and whenever 1: 81 ... s - r in E and xi E domh 9  for i E 

{1, ... ,n}, then 

(x1,... ,x) E domA1 	(h81 z 1 ,. . . , h8 , 1 x,) E domB1, 
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and if both sides of this equivalence are true, then 

hrAi(xi,... ,z) = B1(h 81 x i ,... ,h8 z). 

For V a subset of the sorts of £', h is a V-abstraction function, if in addition for 

allvEV 

h, is the identity function on this set. 	- 	- - 

Proof. This proposition is easily derived from the previous definition and Propo-

sition 4.4.4, noting that for i E {i, . .. , 

(z,,y) E h 0 	xi E domh8  and yi = h8 z. 	 0 

4.5.3 Example. We prove the correctness of the module MSTORE  of Fig-

ure 1-19, which is the proof that was omitted from Section 1.4. The method of 

proof we are using was already sketched informally in that section (page 54-57), 

and we can now perform the proof formally, using the standard representation 

notion just defined. In Section 5.4 below, it will be shown that this proof is 

the correctness proof of MSTORE  in the dictionary program development that is 

required by the theory. 

Precisely, we prove that whenever C is a model of the interface 'ITEM  A 

ILISTITEM, then the algebra B defined on C by the module MSTORE  is a 

standard {bool, item, listitem}-representation of a result A of the specification 

cell .MSTORE on C. Recall from Figure 3-4 that )tSTORE consists of the inter-

faces 

QSTORE = 'ITEM A ILlS TITEM 

£ STORE = 'INSERT A 'MIN. 

The desired "abstract" algebra A therefore must satisfy 'INSERT-  A Irn. This 

almost fully defines A, except for the behaviour of min and removemin on an 

empty store, which this interface does not prescribe. Since in the representa-

tion B, these functions abort on the representation of the empty store (i. e., the 

empty list), we must choose A so that these functions abort on the empty store 

as well. 
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Let C be a model of the interface 'ITEM  A ILLS TITEM• We shall not attempt 

to write down the result B of MSTORE  on C directly, but rather proceed as in 

Examples 4.3.10 and 4.4.7 and verify the desired properties of B from the code 

for the operation We shall make use of the fact that Batore = Bijegigem. 

The "abstract model" A that was just described is the following algebra. 

A agori 	F(Aitii)=F(Cigim ) 

Aempty() 	= 0 
Ajn, erg (z, 3) = {x} U s 

IF,

T, ifs=0 
Aiaempgy(3) 

	ifs#O 

domAmsn  = domA removem in  = A8g0 \ {O} 

for all s E A80 \ {0} 

Amin(S) 	= mm s 

Aremovemin() = a \ {mins} 

The interpretations in A of the other symbols (bool, item, 

leitem, list item, leitem, nil, con.s, isnil, hd, and to are the 

same as in the given algebra C. 

Note that all sorts and operations of the given algebra C are the same in the 

algebras A, B and C. To simplify the notation, we shall therefore write just 

"item" instead of "Ait em ", "Big am" or "Cit,ml  and analogously for the other 

components of C. As in Section 1.4, we let < and < be the total ordering and 

strict total ordering on item that are defined by the operation leitem. Also from 

Section 1.4, recall the predicate "Ascending" for lists in. item*,  which asserts 

that a list is strictly monotonic according to <: 

Ascending(l) 	whenever 1 < i <j :!~ 	then 1i <Ii. 

Trivial consequences of Ascending(l) are that the elements of I are different from 

each other, and that 11 = min(ranl). 

We now present a V-abstraction function h: B 4=* A, where V = {bool, item, 

list item}: 

hg, 00g, higem,  and hgi8titem  are the identity maps, 
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hatore: Batore -f+ Astore (1. e., hatore: item* f+ F(item)), 

domh8t0  = { l E Bat ore  I Ascending(1)  }, 

for all I E domh atore: h80 (l) = ran!. 

We show that h is a strong partial homomorphism using Proposition 4.5.2. For 

this, the operations will be considered in turn. 

leitem, nil, cons, 18m1, hd, ti: These operations trivially satisfy the criterion of 

Proposition 4.5.2, since they are the same in A, B and C, and since h is the 

identity on the sorts of C. 

empty: We have () E domBempty  and () E domA empty , and hatore(B empty ) = 

hstore(0) = 0 = Aempg y () = Aempty(hatore(0)). 

insert: We shall prove below that for all x E item and I E item* such that 

Ascending(I), we have 

(z,I) E domB1 8 t, 

Ascending(Bj ert(x,I)), and 	 (*) 

ranB&t(z,I) = {z} Uranl. 

From this it easily follows that insert is strongly compatible with h: If z e 

domhstem  and 1 E domhatore , that is, if x E item and I E item*  such that 

Ascending(1), then (x,l) E domBj, grg by (*), and since Ain,,rt  is total, we have 

(hitem (z), h store  € Finally, using (*) we have 

hatore(Binsert (x, I)) = ran Bir,,ert(z,  1) 

= {x} U ranl 

= A insert (x, ran!) 

= Ainaert(hitem(x) , hsore (l)). 

It remains to prove (*). This we do by induction on the length of 1. To be 

precise, we prove by induction on n € N that 

if 	x € item, 1 E item * such that Ascending(l) and Ill = 
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then (z,1) E 

Ascending(B,. j (x, 1)), and 

ran 	 = {x} U ran 1. 

For the base of the induction, assume that n = 0, and suppose that z E item, 

I E item s  such that Ascending(l) and Ill = n. Then I = 0, B 3 i(I) = T, and 

--hence- - 	 -- ---- - - ------ --:-- --- ----- 

Bin8ert(X,I) = cons(z, nilO) 

= cons(x,Ø) 

=(z). 

Ascending((z)) is vacuously true, and 

ran((x)) = {z} = {z} U 0 = {z} U ranl. 

For the inductive step, assume that n > 0, and suppose that z E item, I E item* 

such that Ascending(I) and Ill = n. Then isnil(I) = F. There remain three cases 

in the code of which we now investigate in turn. 

First, assume that z = hd I. This means that leitem(z, hd I) = T and 

leitern(hdl,z) = T, so that Bj,,., erg(,I) = I. We have Ascending(B sn.,ert (x,I)), 

because Ascending(I) is true by assumption. Since x = hd I = 11. E ran I, we have 

ran 	I) = ranl = {z} U ranl. 

Second, assume that z < hd I. This means that Ieitem(z, hd 1) = T and 

leitem(hdl,z) = F, so that Bjnaeyt(z,I) = cons(z,l). Write I' := cons(z,l) = 

(x,I i ,. . . ,I,). We have Ascending(I'), because whenever 1 < I, then 

. if i = 1, then l 	l' = z < hdl = I ~ Is_i = 
% 

• if i > 1, then l = 1i-i < li_i - I' 
- 3' 

so that in each case I <1. Furthermore, 

ranB,,.8 t(z,l) = ran(x,li,. . . ,I) 

= {x} U ranl. 
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Third, assume that z> hd 1. This means that leitem(x, hd 1) = F, so that 

B insert (x, 1) is defined by the expression "cons (hd 1, insert (x, ti 1))". By the in-

ductive hypothesis, (z, ti 1) E dom and so 

Bingeyg (x, 1) = cons(hd 1, Binaert(,  tI 1)). 

Write 1' = (l,... ,l) : Bjn. erg(x,t11)., so that,by the inductive hypothesis, 

Ascending(1') and ranl' = {z}Uran(tll). Let 1" := Bjn..crt(,1) = cons(hdl,1') = 

To show Ascending(1"), consider 1 	i < j 	1". Note that 

if E ran 1' = {x} U ran(ti 1), so that the following three cases are exhaustive. 

• If i> 1, then i' = i_ <i 	= 

• ifi=landi7=x,theni"—i"=i =hdl<x=i" 

	

i1 	1 

• if i = 1 and i' E ran(tli) = {12,... ,i}, then ii" = III  = ii < ii', because 

Ascending(i) by assumption. 

Furthermore, 

ran B insert  (z, 1) = ran III 

= {ii}Urani' 

= {i} U {z} U ran(tl 1) 

= {x} U rani. 

(Inductive Hypothesis) 

This concludes the induction step, hence (*) is proved, and thus insert is strongly 

compatible with h. 

isempty: Let I E domh sgore . Then I E domBi.empty  and hstore (I) E domAi.empty , 

since both Biaempty  and Aiaempty  are total. Furthermore, 

hbool(Biaempty(I)) = Biaempty(l) 	- 

JT, ifl=Ø 

1S F, ifi#O 

JT, ifranl=O 

1.. F, ifranl#O 
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- JT, if h. 0 (l) =0 

- F, if h ag ore (1) # 0 

= Aiaempty (hatore  (1)). 

mm: Let 1 E domhatore , i.e., I E item* and Ascending(I). Then 

	

I E domBmsn 	I () 
•. ranlO 

• 	hagor(I) # 0 

hatore E domAmsn , 

and if £ E domBmjn , i. e., I 0, then Bmin(I) = hd(I) = I. Since Ascending(l) 

by assumption, we have 

Bmin(l) = Li 

=min{li,...,I n} 

= min(ranl) 

= rriin(hg 0 (I)) 

= A msn (hag ore (l)). 

removernin: Let I E domhatore , 1. e., 1 E itemS and Ascending(I). As before 

for mm, one shows 

	

I E domB removem in 	haorg(I) E domA removem in . 

Now suppose I E domBremovemjn , i. e., I 0. Then 

hatore (B removemin(I)) = hatore(tI I) 

hat ore (12, ... ,ln ) 

=ran(l2,...,I) 

={12,...,Ifl } 

(Ascending(I)) 
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= ranl \ {min(ranl)} 	(Ascending(1)) 

= A yemovemsn (ranl) 

= A re m o v em in  (h80 (l)). 

H - 	- We have shown that all the operations are strongly compatible with ii, and 

hence that h is a strong partial homomorphism. It is obvious that for v E V, 

= B, = C, and h is the identity map from B to A. Hence h: B l= A. 
V 

To show that h is surjective, it remains to show that h30 is surjective. For 

this, we show by induction on n E N, that 

if 	S E Aetore = P(item) is such that card(s) = n, 	 - 

then there exists I E domh ag ore  such that h30 (l) = S. 

If vi = 0, then s = 0, and we can choose 1 = (). If vi> 0, let x := mins and 5? := 

s \ min s. By the inductive hypothesis, we can choose j1  E dom h,tor,  such that 

hstore(I') = a'. In particular, Ascending(1 1). Write 1' = (I',... ,1), and define 

1 := (x,1,... ,l). We have Ascending(l), because whenever 1 < i < Ill, 
then 

. if i = 1, then Ir = 1_ E rant' = h3 0 (1 1) = a', and by the definition of 

z and a', this implies that 1i = 11 = x < I, 

.. if 1> 1, then 1 = 1' <1_i = I,, because Ascending(1'). $ 	i-i 

Hence Ascending(1) and so I E domh 8 t 0 . Since 

he tore (l) = rant = ran(z,I,.. . ,l) 

= {x} U ranl' = {x} Us' = 

the inductive step is complete. 
11 

It has thus been shown that h is surjective, and thus that h: B 	A is a 
V 

strong surjective partial homomorphism, i. e., an abstraction function. It follows 

that B is a standard V-representation of A. 
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The reader will recognize that the proof performed in this example is a data 

representation correctness proof in the traditional manner based on bare's pa-

per [bare 721: The "representation invariant" is the predicate "Ascending(1)", 

since it defines the domain of and hatore  itself is the "abstraction func-

tion". Thus, the example supplies the correctness proof of the module MSTORE 

that was only described informally in Section 1.4. 

Note that this proof is not sufficient to prove that MSTORE  is a universal 

implementation of its specification .MSTORE with respect to standard represen-

tation. In such a proof, one could not assume, for example, that the basic 

types and operations of the algebra C have the properties ascribed to them in 

'ITEM A ILIsTITEM;  rather, one would have to deal with an arbitrary represen-

tation of such an algebra. 

Nevertheless, Chapter 5 will explain that the proof just performed may be 

regarded as "the correctness proof of MSTORE" , because if MSTORE is coded in 

a suitable "data abstraction" programming language, the proof will allow one 

to infer that MSTORE is a universal implementation of .MSTORE with respect 

to behavioural inclusion, behavioural equivalence, and standard representation 

(cf. Example 5.4.3). 

The following theorem shows that standard representation is a more restrictive 

representation relation than behavioural equivalence. 

4.5.4 Theorem. There exist an algebraic signature E and E-algebras A and B 

such that A B, but no partial homomorphism from A to B nor from B to A 

exists. In particular, neither of the two algebras is a standard representation of 

- 	the other. - 

Proof. Choose 1, A, and B according to Theorem 4.3.11. Since A 	B and 

B A, we have A =0 B, but no partial homomorphism from A to B nor from B 

to A exists. Since standard representation requires the existence of a surjective 

strong partial homomorphism between the algebras, neither of the algebras is a 

standard representation of the other. a 
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A practical example illustrating the difference between behavioural equivalence 

and standard representation is obtained from Example 4.4.7. 

4.5.5 Example. Let L' be the signature of Example 4.3.12: 

signature 

bool, char, string: sort 
-- 	

a, b, C: - char 

szngle: char -' string 

occurs: char string 	bool 

join: string string -' strzng J 
This is just the signature of Example 4.4.7, with a, b, C: -+ char added. Let 

S := {bool, char, strsng} be the sort set of this signature. Let C, which will be 

the set of char values, be a set containing at least three different elements p, q, 

and r. Let the algebras A and B be defined by: 

Ab001 = Bb001 = {T,F} 

A char = B char = C 

A airing = Batting = C* 

A() = Ba () 

Ab() = Bb() = q 

A() =B() =r 

Aajn gte (z) 	= Baingie (z) 	= (x) 

[T, ifzErans 
A occura (, s) = Boccura(, s) = 

IF, ifxrans 

A,oir&(s,t) = s o t 

Bjoin t) is defined by the recursive program 

join(s, t) = if 	length(s) = 0. then t 

else if occurs(hds,t) then join(tls,t) 

else 	 join (tl s, cons (hd s, t)). 

These are just the algebras A and B of Example 4.4.7 (letting C be the same 

set there as here), with interpretations of the symbols a, b, and c added. Recall 

that the algebra A can be seen as the ("abstract model") specification of the 
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data type string with the access operations single, occurs and join, and that the 

algebra B can be seen as a representation of the data type, written in a concrete 

programming notation that provides a "sequence" data type constructor (code 

for Baingle and Boccura was given in Example 4.3.10). 

The algebra B is behaviourally equivalent to A over V := {bool, char}. To 

prove this, let C be the S-sorted relation defined by 

Gbooi is the identity relation on {T, F}, 

C char  is the identity relation on C, 

G3,.j 9  := {(s',$) e C*  x  C* I rand = rans}. 

This is just the relation C of Example 4.4.7. In that example, C was proved 

to be a strong V-correspondence: it was proved that the operations single, join, 

and occurs are compatible with both C and Cu.  Obviously, the new operations 

a, b, and c also are compatible with C and Cu.  Thus, G: B ==x A is a strong 

V-correspondence, and hence B _v  A. 

To see that no partial homomorphism exists from B to A nor vice versa 

(even without considering visible sorts, which would only restrict the class of 

homomorphisms),. let 

0: TE(A/O) + A/S and : TE(B/O) + B/S 

be the evaluation functions, and consider the following three terms and their 

evaluations in B and A: 

term t Ikstring (t) 4'atring (t) 

(join, 8ingle, a, join, single, b, single, c) q, r) (p, q, r) 

(i. e., join((p), join((q), (r)))) 

(join, join, single, b, single, a, single, c) (p,q,r) (q,p,r) 

(i. e., join (join ((q), (p)), (r))) 

(join, join, single, a, single, b, single, c) p, r) (p, q, r) 

(1. e., join (join ((p), (q)), (r))). 

If we write u := (p,q,r) and v := (q,p,r), we thus have 

{ (u,u), (u,v), (v,u)} C q5string. atrsng .  
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4.5 Standard Representation 

Now if H: B —x A is a correspondence, by Lemma 4.3.9, applied with V = 0, 

it follows that 

Hotring Q tIatrirs g  4'.,tri, 	{(u,u), (u,v), (v,u)}, 

and thus Hting cannot be a partial function, hence H cannot be a partial 

homomorphism. 
- 	Covsely, if H A - B is acorrespowdence, Le 	43.9 yields that 

Hatring 2 brin g  ; 00i9 

(08utring 
 •i 

'Pat ring) 

{(u,u), (u,v), ( v , u)}u 

= {(u,u), (v,u), (u,v)}, 

and thus H.tring cannot be a partial function, hence H cannot be a partial 

homomorphism. 	 o 

The example shows an "abstract model" data type specification A and a. rep-

resentation B of it that is correct with respect to behavioural equivalence, but 

that is not correct according to standard representation. 

The problem that a specification may have behaviourally correct representa-

tions that cannot be proved correct using the standard representation criterion 

has been ascribed to "extraneous detail" [LZ 75, p.  111 [Guttag 77, p. 3981 or an 

"implementation bias" [Jones 80, Ch. 15] in the specification. An abstract model 

specification of an encapsulated type is biased, if some values of the encapsulated 

type cannot occur in computations, or if there are distinct values that produce 

the same visible results in all computations. Conversely, a specification is un-

biased, if all values of the encapsulated type can be generated by means of the 

access operations, and if—the "bias test" of [Jones 80, Ch. 151—the operations 

allow one to distinguish the values of the encapsulated type. 

In the example, the algebra A is a biased specification of the string data 

type, because the only means of distinguishing string values is by means of the 

occurs operation, which produces identical results for sequences containing the 

same set of char values. Thus, a string in the algebra A essentially represents a 
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set of char values, and it is possible to give an unbiased specification of the data 

type as follows: 

8tring 	= F(C) 

single(x) = {x} 

occur8(xs)={ 

join(s,t) 	=sUt 

ifrES 

ifzS 	- 	- 

Jones suggests that specifications might be subjected to his bias test and rewrit-

ten if bias is found [Jones 80, p.  2641; for example, he would suggest to replace A 

by the specification just given. This may be costly, however, if the specification 

has already been used in proofs, e. g., the correctness proofs of modules using 

the encapsulated type. For other authors, the problem of "extraneous detail" or 

"bias" in specifications is an important argument against abstract model speci-

fication techniques [Guttag 77, p  3981 [Parnas 79, p.  3671 [Denert 79, p.  2061. 

However, biased specifications restrict the class of possible representations 

of an encapsulated data type only when the standard representation concept is 

used. With behavioural equivalence as the correctness concept and the proof 

method based on strong correspondences, biased specifications do not cause this 

problem, because only the observable behaviour of the specification and the 

representation are relevant. 

While thus the "classical" problem associated with biased specifications is 

eliminated by the behavioural representation concept, this does not mean that 

biased specifications are completely harmless. In Section 1.4, it was shown that 

the process of access operation refinement may be guided towards an inefficient 

program if based on a biased specification. Thus, the criteria to detect bias and 

the methods to avoid it remain useful. 

In order to apply the theory of Section 4.1 to standard representation, we verify 

that standard representation is a representation relation in the institution (TSig, 

TInci, TA1g). 
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4.5 Standard Representation 

4.5.6 Theorem. Standard representation is a representation relation in the 

institution (TSig, TInci, TA1g). 

To be precise, we obtain a representation relation --+- = 	(,V)EITS1gI 

by defining 

A w-  B : 	A v  B for A,B E Alg(E) = TA1g(L,V). 
(,v) 

Standard representation is not chain-closed. 

In the proof of the theorem, the following proposition about strong correspon-

dences will be used. 

4.5.7 Proposition. If c: (E,V) -+ (1',V') is a tagged signature morphism 

where L' = (5, a), and G: A ==X B is a strong V'-correspondence (strong partial 
V I 

V'-homomorphism, strong V '-homomorphism, V'-abstraction function) between 

E'-algebras A and B, then the, correspondence F G: U A —x U B defined by 

(G) 8  = G 8  for s E S (see Proposition 4.3.14) is a strong V-correspondence 

(strong partial V-homomorphism, strong V-homomorphism, V-abstraction func-

tion) between s-algebras. 

Proof. If C: A =x B, then by Proposition 4.3.14, we have G: A —x B 

and Gu:  UB --x U A. Since ((Cu)) 8  = (CU)a = (G8)" = ((G)4", the 

correspondence (CL)  is the componentwise converse of U G, and hence C: 

A 
V 

F B. It is easy to see that if in addition, C consists of partial functions, 

total functions, or surjective partial functions, then 5 7 G does so too; hence 

maps strong partial homomorphisms, strong homomorphisms and abstraction 

	

functions to strong correspondences of the same type. 	 0 

Proof of Theorem 4.5.6. 

We verify the axioms (a) and (b) of Definition 4.1.1. 

Axiom (a): 	For (E, V) E TSig, the relation 	is a preordering on 

TA1g(L, V), because the V-abstraction functions between E-algebras form a 

category (Proposition 4.4.5 together with the fact that the composition of sur-

jective functions is again surjective). 
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4.5 Standard Representation 

Axiom (b): If a: (1', V) - (E", V') is a tagged signature morphism and 

A 	B, choose an abstraction function h: A 4=* B. By Proposition 4.5.7, 
V' 

V 

Thus, standard representation is a representation relation in the institution 

(TSIg, TInci, TA1g). 

To see that standard representation is not chain-closed, consider the nonempty 

compatible chain of tagged signatures (Es, O)nEN,  where 

= signature 

8: sort 

,C,_i : -' 8. 

We then have 

:= UflEN 
Efl = signature 

s: sort 

co,ci,c2,... : -* 8, 

so that UEN(1n'O) = (, O). 

Consider the £'-algebras A' and A given by 

A'8  =N 	A 8  ={o,1} 

A.() = I 	A 1 () = 0 	for I E N. 

Now for every ii e N, there exists an abstraction function h from A'/En  to 

A/E n , defined by 

(0, ifi<n 
h8 (I)= 	 foriEN. 

1, ifz>n 

However, there does not exist a surjective partial homomorphism (whether strong 

or not) from A' to A, for if h is a partial homomorphism from A' to A, then for 

every i EN, we have (A (),AO) = (1,0) E h8  by the correspondence property 

of h, hence h8 (1) = 0 for all i E N, and so h8  cannot be surjective. o 
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Theorem 4.5.6 now makes the theory of Section 4.1 applicable to standard rep-

resentation; we obtain a universal implementation concept and a composability 

theorem. In contrast to the representation relations equality, behavioural inclu-

sion, and behavioural equivalence, standard representation is not chain-closed, 

and so the composability theorem applies only to finite systems. 

I conjecture that the composability, theorem still holds for infinite systems, 

for the following reason: Since abstraction functions are unique in suitably ex-

tended algebras (Lemma 5.2.5), a universal implementation must "extend" them 

in a way similar to Definition 5.1.14. Since nonempty "chains" of abstraction 

functions (defined in a manner to become clear in the next chapter) do have 

least upper bounds, it should be possible to modify the proof of the compos-

ability theorem by replacing joint approximations (K', X', K, X) by quintuples 

(K', X', K, X, h), where h is an abstraction function from X'/ Sig(X) to X. 
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Chapter 5 

Stability 

THE PREVIOUS CHAPTER has introduced the "universal implementation" con-

cept and shown that it forms the basis of a sound modular programming method. 

The present chapter aims at making this method practical. To this end, the uni-

versal implementation concept is decomposed into two parts: "simple iinplemen-

tation" and "stability". The "simple implementation" concept corresponds to 

practical data representation correctness proofs. It implies universal implemen-

tation if the implementing cell is "stable". If a programming language ensures 

that all its modules are stable, proofs of the simple implementation property 

suffice as correctness proofs in a structured correctness argument, and hence 

a sound, practical method for modular programming with data abstraction is 

established. 

In the first section below, the "simple implementation" and "stability" con-

cepts are developed in the context of an arbitrary institution. The three remain-

ing sections investigate the stability concepts associated with the three represen-

tation relations for partial algebras that have been introduced in the previous 

chapter. 

263 



5.1 Simple Implementation and Stability in an Institution 

5.1 Simple Implementation and Stability in an 

Institution 

Section 4.1 has presented a sound modular programming method based on the 

"universal implementation" relation between cells as the correctness concept. 

This method, however, cannot be said to be practical, or to reflect practical 

data abstraction. 

The problem is that universal implementation is a very restrictive relation 

that is difficult to establish. Recall that universal implementation is the correct-

ness relation that must hold between a cell (Q', R') and its specification (Q, R) 

in a structured correctness argument. The interfaces of (Q, R) can be thought 

of as the import and export interfaces of (Q', R') in a design graph, as shown in 

Figure 5-1. Naturally, we would like to be able to use the properties given in Q 

in the correctness proof of (Q', R'). However, this is not possible if we let "cor-

rectness" mean "universal implementation": in order to prove that (Q', R') is a 

universal implementation of (Q, R), one has to consider the behaviour of (Q', R') 

on any base A' that represents a base of (Q, R). The space of such models A' is 

large: 

IN 

result R' 

req. Q' 

hi 

Figure 5-1: A section from a design graph 
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. the signature of A' is a site for Sig (Q, R), and thus an almost arbitrary 

extension of Sig(Q), 

. A' need only represent a model A such that A/ Sig(Q) E Q; we need not 

have A'/ Sig(Q) E Q, which means that the properties given in Q can not 

in general be assumed to hold in A'. 

The goal of the present section is to establish a "correctness" concept in which 

only models of Q need to be considered as bases for (Q', R'), so that the prop-

erties given in Q may be assumed to be valid, and no program entities beyond 

those in Q and R need to be considered. This concept is called "simple imple-

mentation". 

Of course, we do not get something for nothing, and "simple implementation" 

does not imply "universal implementation". However, we will call those cells 

"stable" that are universal implementations of a specification whenever they are 

simple implementations of it. As we shall see in the course of this chapter, the 

stability property is not unduly strong, rather it is a natural condition to impose 

on program modules. 

As in Chapter 3 and Section 4.1, we shall work in an arbitrary, but fixed, insti-

tution. 

Convention. Throughout this section, the triple (Sig, mci, Mod) is assumed to 

be an institution. The concepts that depend on an institution (such as "signa-

ture", "inclusion", or "model") are implicitly assumed to refer to the institution 

(Sig,Inci,Mod). 0 

In order to be able to formulate the "simple implementation" concept, we need 

to modify the "representation" notion. Rather that just regarding it as a relation 

between models, we now consider a "representation category", whose objects are 

the models of a certain signature, and whose morphisms establish the represen-

tation relation between the models they connect. 
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5.1.1 Definition. A representation functor is a functor Rep from Sig°' to a 

category of categories that satisfies the following axioms. 

for each S E J Si9J, the category Rep(S) has object set Mod(s). 

Rep(S) is called the representation category of signature S of Rep. If J is 

a morphism from A to B in Rep(S), we write "J: A -* B" and call J a 

representation morphism from A to B. 

for each a: S -+ T in Sig, the object function of the functor := Rep(a°P): 

Rep(T) -+ Rep(S) agrees with the function Mod (a°P): Mod(T) - Mod (s). 

If S T, and J: A w-  B is a representation morphism, let the reduct of J 

to S be the representation morphism J/S := (S C T)°P(J): A/S .'+•- B/s. 

(Pair-Completeness) 

whenever S and T are compatible signatures and J: A w-  B and K: 

C > D are representation morphisms such that 

J/(SflT) =K/(SflT), 

then there exists a representation morphism L: A U C 	B U D such 
SUT 

that 

L/S=J and L/T=K. 

The representation relation of a representation functor Rep is the Sig-indexed 

relation -'*- = (' 7)sEIsigI defined by 

AB:=J:A*-B. 	 0 
S 	 S 

The axioms (a) and (b) of this definition obviously imply that the "representation 

relation" of a representation functor is indeed a representation relation according 

to Definition 4.1.1. A more concise way of stating these two axioms is to say that 

Rep ; Obj = Mod, where Obj is the "forgetful" functor mapping categories to 

their object sets and functors to their object functions (this is somewhat loose, 

because Obj is not a proper mathematical object—it should be qualified to go 

from a certain category of categories to a certain category of sets). 
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Every representation relation gives rise to a functor satisfying (a) and (b) if 

one expresses the representation relation for each signature as a preorder cat-

egory. However, this functor is not necessarily a representation functor, as it 

need not satisfy the pair-completeness axiom (c). This axiom is the distinguish-

ing feature of a representation functor; as will be seen in the proofs of this 

section, it enables us to restrict our attention to the signatures of the cells under 

consideration instead of having to take arbitrary sites into account. 

The representation relations between partial algebras we studied in the previ-

ous chapter all have associated representation functors—the representation mor-

phisms are correspondences for behavioural inclusion, strong correspondences for 

behavioural equivalence, and abstraction functions for standard representation. 

These representation functors will be presented and analysed in the three sec-

tions to follow. 

For the present, it will just be shown that for the two extreme representation 

relations, namely eqality and the total relation, the functor that maps each 

signature to the associated preorder category is a representation functor. 

5.1.2 Proposition, If --+-= 	 is equality or the total relation, 

then the functor which maps S E I Sig I to the preorder category defined by .—+- 

and which maps a signature morphism a0P to the unique functor with object 

function Mod (a°P) is a representation functor whose representation relation 

is '-'-4-. 

Proof. Axioms (a) and (b) of the definition above follow immediately from 

the properties of a representation relation, so it remains only to show pair-

completeness. 

If –.--* is equality, the axiom reduces to: 

"if A e Mod(S) andC E Mod(T) aresuch that A/(SflT) = C/(SflT), 

then (AUC)/S=A and (A11C)/T= C", 

which is true, by definition of U. 

If -.--+- is the total relation, the axiom reduces to 
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"if A,B E Mod(S) and C,D E Mod(T) are such that A/(S n T) = 

C/(S fl T) and B/(S fl T) = D/(S fl T), then (A U C)/S = A, 

(AuC)/T=C, (BUD)/S=B and (BUD)/T=B", 

which also is true by definition of U. 	 o 

- Thus,we can define "REqual" to be the repsenation functor whose represen-

tation categories are the preorder categories associated with equality (commonly 

called "discrete categories"). 

5.1.3 Definition. Let REqual be the functor on Sig°" which maps S E Isigi  

to the discrete category with object set Mod(s), and (where a: S - T 

in Sig) to the functor from REqual(T) to REqual(S) whose object function is 

Mod (a°"). 

Convention. For the remainder of this section, it will be assumed that Rep is 

a representation functor in (Sig, mci, Mod), and that w-  is its representation 

relation. Concepts that depend on a representation functor or representation 

relation, such as "universal implementation" or "simple implementation" (to be 

defined later), implicitly refer to Rep and -'--. 0 

The pair-completeness property of a representation functor allows us to derive 

a sufficient condition for "universal implementation" in which one need not con-

sider models whose signature is an arbitrary site for the specification cell sig-

nature (E, D), but only models of signature E. In other words, the possible 

presence of arbitrary additiànal program entities beyond those of E need no 

longer be taken into account explicitly. 

5.1.4 Theorem. Let (Q, R) be a cell of signature (E, D). A cell (Q', R') 

of signature (E', D') is a universal implementation of (Q, R), if (E', D') is a 

syntactic refinement of (E, D) and whenever J: A' '-* A is a representation 

morphism such that A E Q, then 

A' is a base for (Q', R'), 
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there exists a result of (Q', R') on A', and 

whenever B' is a result of (Q', R') on A', 

then 	there exists a representation morphism 

K:B'w -B 
EuD 

such that B is a result of(Q,R) on A 

and K/E=J. 

Proof. Let (Q, R) be a cell of signature (E, D) and (Q', R') be a cell of signa-

ture (E', D') such that the criterion of the theorem is satisfied. We prove that 

(Q', R') is a universal implementation of (Q, R). 

Let F be a site for (E,D), let A E Mod(F) be a base for (Q,R), and let 

A' -* A. We can pick a representation morphism J: A' 	A. Since 

AlE E Q and J/E: A'/E 	AlE, the criterion of the theorem applies to J/E. 

The model A' E Mod(F) is a base for (Q', R'), because F is a site for (E', D') 

((E',D') is a syntactic refinement of (E,D)), and because A'/E is a base for 

(Q', R') by the criterion of the theorem and hence 

A'/E' = (A'/E)/E' e Q'. 

Also by the criterion, there exists a result C of (Q', R') on A'/E. The models 

A' and C can be joined, because the meet of their signatures is 

Fn(EuD')=Ffl(EuD) =E, 

and C/E = A'/E. The model A' U C of signature F U D' = F U D is a result 

of (Q', R') on A', because (A' U C)/F = A' and (A' U C)/D = C/D E R'. Thus, 

there exists a result of (Q', R') on A'. 

Finally, let B' be a result of (Q', R') on A'. Then B'/(E U D') is a result 

of (Q',R') on A'/E, because (B'/(E U D'))/E = B'/E = (B'/F)/E = 

and (B'/(E U D'))/D' = B'/D' E R'. By the criterion of the theorem, there 

exists a representation morphism L: B'/(E U D') -'-* C such that C is a result 
EUD 

of (Q, R) on A/E, and LIE = J/E. The intersection of the signatures of L and J 

is (E U D') n F = (E U D) n F = E, and hence the pair-completeness axiom can 

be applied to J and L. By the axiom, we can pick a representation morphism 

K: A' U (B'/(E U D')) w-  A U C. 
FuD' 
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The model on the left is B', which follows from the uniqueness of joins and the 

facts that B' is of signature F U D' and B'/F = A'. The model Au C is a result 

of (Q,R) on A, because (Au C)/F = A and (Au C)/D = C/D E R. Thus, 

B represents a result of (Q, R) on A, which completes the proof that (Q', R') is 

a universal implementation of (Q, R). 0 

The sufficient condition for "universal implementation" provided by this theorem 

is quite similar to a theorem by Mitchell dealing with "observational equivalence" 

of data type representations in the second-order typed A-calculus [Mitchell 86, 

Theorem 61 (in fact, I only wrote down the present theorem explicitly after 

seeing Mitchell's theorem). Mitchell deals with "logical relations" that play a role 

similar to representation morphisms. Mitchell's theorem states that when a given 

logical relation . relating the environments of two data type representations can 

be extended to a relation £+ relating the results of the two representations as 

well, then any term of the second-order language SOL [MP 84] will produce 

£-related results over the two representations. If, for example, 2 is the identity 

relation on "program types" that are considered observable, this means that 

every program will have the same observable results over the two representations. 

It appears, however, that Mitchell's theorem is not strong enough to deal 

with several data type representation in a program, because the criterion only 

deals with a fixed logical relation R. When a data type representation imports 

entities from another, "lower level", representation, it must be capable of ex-

tending the logical relation that is the result of the extension process of the 

lower level representation, and this relation will in general be different for dif-

ferent representations of the lower level data type. Hence it appears that to 

make Mitchell's theorem applicable to multiple data type representation within 

a program, a universal quantification over logical relations is necessary rather 

like in Theorem 5.1.4 above. 

A second criticism, which applies to Mitchell's theorem as well as to Theo-

rem 5.1.4 above, is that the criterion is still too strong to require programmers 

to prove it, because they would have to consider the behaviour of the implemen-

tation cell (Q', R') on bases that only represent members of the abstract require- 
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Q'jE'] olil, 
J: B' wB 

EUD 

id(A):Aw*A 

R[D] 

Q(E) 

....- 

Figure 5-2: Simple Implementation 

ment interface Q without satisfying this interface themselves. I criticized that 

already in the development method of Sannella and Tarlecki (cf. page 10-15), 

because it means that the designer of a module can not take the abstract import 

interface Q for granted when designing and verifying the implementation, and 

thus an essential aspect of data abstraction is missing. 

In order to solve this problem, a correctness criterion called "simple imple-

mentation" will now be introduced. This criterion is to be proved by the designer 

of an implementation; it reflects the way data type representations are proved 

correct in practice, and it allows the designer to use the abstract import inter-

face in the proof, in accordance with the view of data abstraction explained in 

Section 1.1. 

5.1.5 Definition (Simple Implementation). 

Let (Q, R) be a cell of signature (E, D). A simple implementation of (Q, R) 

(with respect to Rep) is a cell (Q', R') of signature (E', D') such that (E', D') is 

a syntactic refinement of (E, D) and whenever A E Q, then 

A is a base for (Q',R'), and 

whenever B' is a result of (Q', R') on A 

then 	there exists a representation morphism 

J:B'w- B 
EuD 

such that B is a result of (Q,R) on A 

andJ/E=id(A):Aw.-A 	 0 

This definition is illustrated in Figure 5-2. 
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Comparing this figure with the one illustrating "universal implementation" 

(Figure 4-1), we find that the simple implementation concept is simpler in three 

ways. 

. the bases under consideration are of signature E rather than an arbitrary 

site F for (E,D); 

. thebéháviôñr öf (Q',R') is hivetigtdon A itself rather thanonan - - 

arbitrary representation A' of A. This means that the properties stated 

in Q may be taken for granted when (Q', R') is designed or verified; 

. there is no need to verify explicitly that (Q', R') has a result on A; it is 

sufficient to verify that A is a base for (Q', R') and then to establish a 

representation morphism for an arbitrary result V. 

However, "simple implementation" also imposes an additional requirement corn-

pared to "universal implementation": 

• given a result B' of (Q', R') on A, a representation morphism to some 

result B of (Q, R) must be constructed that reduces to the identity, whereas 

"universal implementation" required only that B' was a representation of B 

(i. e., any representation morphism from B' to B would suffice). 

5.1.6 Proposition. The simple implementation relation is a preordering on 

the set of cells. 

Proof. To show transitivity, suppose that (Q, R) is an (E, D)-cell, (Q', R') is 

an (E', D')-cell, and (Q", R") is an (E", D")-cell such that (Q", R") is a simple 

implementation of (Q',R') and (Q',R') is a simple implementation of (Q,R). 

By Proposition 3.1.17 (a), (E", D") is a syntactic refinement of (E, D). Now 

suppose that A E Q. The signature of A is E, and this is a site for (E, D), hence 

for (E',D') and (E",D"). By simple implementation, A is a base for (Q',R'), 

hence A/E' E Q'. By simple implementation, AlE' is a base for (Q", R"), 

hence AlE" = (A/E')/E" E Q". Thus, A is a base for (Q",R"). 

Now let B" be a result of (Q", R") on A. Then B"/(E' U D") is a result 

of (Q", R") on A/Es,  and by simple implementation, there exists a representation 
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morphism J: B"/(E' U D") -.+- B', where B' is a result of (Q', R') on A/E' 
E'LJD" 

and J/E' = id(A/E'). 

The representation morphisms id(A) and J satisfy the assumptions of the 

pair-completeness axiom, because the intersection of their signatures is 

E fl (E' U D") = E fl (E' U D') 	(Proposition 3.1.17 (c)) 

(Eisasitefor(E';D')); - 

and because id(A)/E' = id(A/E') = J/E'. 

Hence we can pick K: A U B"/(E' U D") w-  A U B' such that K/E = 
EUD" 

id(A). Note that A U B"/(E' U D") = B" by the uniqueness of joins, hence 

K: B" -'* A U B'. Now A U B' is a result of (Q', R') on A, and by simple 
EUD" 

implementation, there exists L: AUB' w*-  B, where B is a result of (Q, R) on A 
EUDI 

and L/E = id(A). The composition of K and L is the desired representation 

morphism (K ; L): B" ---+- B, because (K ; L)/E = (K/E) ; (L/E) = id(A) 

id(A) = id(A).  

To show reflexivity, let (Q, R) be an (E, D)-cell. The cell signature (E, D) is 

a syntactic refinement of itself (Prop. 3.1.17 (a)), and if A E Q, then A is a 

base for (Q, R), and if B' is a result of (Q, R) on A, then id(B') is the desired 

representation morphism, because id(B')/E = id(A) by functorality. 0 

Another interesting property of "simple implementation" is its "monotonicity" 

in the sense that a larger representation category makes it more general. 

5.1i Proposition. Let Rep and Rep' be two representation functors such that 

for all S E J Sigl, Rep(S) is a subcategory of Rep'(S) and if a: S -+ T in JSigl, 

then the functor Rep' (a°P) agrees with Rep(a°P) on Rep(T).' If a cell (Q',R') 

1j  more advanced categorial language, the ISigJ-indexed family of inclusion functors 

from Rep(S) to Rep'(S) is a natural transformation from Rep to Rep'; the proposi-

tion easily generalizes to an arbitrary natural transformation from Rep to Rep' whose 

component functors have identities as object functions. 
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is a simple implementation of a cell (Q, R) with respect to Rep, then (Q', R') is 

a simple implementation of (Q, R) with respect to Rep'. 

Proof. Let (Q', R') be a simple implementation of (Q, R) with respect to Rep. 

Then the signature of (Q', R') is syntactic refinement of the signature of (Q, R). 

If A E Q, then A is a base for (Q',R'), and if B' is a result of (Q',R') on A, 

then there exists a representation morphism J:B' --+ B in Rep - such that-B is - - 
BUD 

a result of (Q, R) on A and J/E = id(A). But then J is also a representation 

morphism in Rep', and 

J/E = Rep'((E C Eu D)° )(J) = Rep((E E U D) ° )(J) = id(A), 

as the identity morphisms are the same in Rep(E) and Rep'(E). Hence (Q',R') 

is a simple implementation of (Q, R) with respect to Rep'. 	 0 

This proposition indicates that it is generally better to work with richer repre-

sentation categories, since this simplifies the task of proving the "simple imple-

mentation" relation between cells. 

As an example, let us determine the simple implementation relation associated 

with REqual. 

5.1.8 Proposition. A cell (Q', R') is a simple implementation of a cell (Q, R) 

with respect to REqual if and only if the signature of (Q', R') is a syntactic 

refinement of the signature of (Q, R), and whenever A E Q, then 

A isa base for (Q',R'), and 

every result of (Q',R') on A is a result of (Q,R) on A. 

Proof. Rewrite Definition 5.1.5 using the fact that "J: B' --.+- B" is equivalent 

to "B = B' and J = id(B)". 	 0 

This relation is weaker than "universal implementation with respect to equality", 

that is, weaker than refinement (Prop. 4.1.6), in that the cell (Q', R') is not 

required to have a result on A. This is just the simplified refinement notion that 

was discussed briefly at the end of Section 3.1. 
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We now begin to investigate the relationship between universal implementation 

and simple implementation. The crucial observation (in fact, the main idea 

underlying the "simple implementation" notion) is the following. 

5.1.9 Proposition. A universal implementation of a simple implementation of 

a cell is a universal implementation of that cell. - - 

Proof. Let (Q, R) be an (E, D)-cell, let (Q', R') be an (E', D')-cell, and let 

(Q", R") be an (E", D")-cell, and suppose that (Q", R") is a universal imple-

mentation of (Q',R') and (Q',R') is a simple implementation of (Q,R). 

Since (E", D") is a syntactic refinement of (Es,  D') by universal implementa-

tion and (E', D') is a syntactic refinement of (E, D) by simple implementation, 

it follows that (E", D") is a syntactic refinement of (E, D). 

Now let A E Mod(F) be a base for (Q, R) and A' w-  A. By syntactic 

refinement, F is a site for (E',D') and (E",D"), and G := F U D = F U D' = 

F U D". Now AlE E Q, hence by simple implementation, AlE is a base for 

(Q',R'), hence A/E' = (A/E)/E' E Q', and so A is a base for (Q',R'). By 

universal implementation, A' is a base for (Q", R"), and there exists a result 

of (Q", R") on A'. 

Now let B" be a result of (Q", R") on A'. By universal implementation, 

there exists a result B' of (Q', R') on A such that B" -- B'. This means that 

we can pick a representation morphism J: B" --4- B'. 

Recall that A/E E Q. Now C' := B'/(E U D') is a result of (Q', R') on A/E, 

as C'/E = B'/E = (B'/F)/E = AlE, and C'/D' = B'/D' E R'. By simple 

implementation, there exists a representation morphism L: C' -.--* C such that 
EuD' 

C is a result of (Q,R) on A/E and L/E = id(A/E). 

Now L and id(A) satisfy the assumptions of the pair-completeness axiom 

for representation morphisms (Axiom (c) of Def. 5.1.1), since the intersection of 

their signatures is 

(E U D') fl F = (E U D) fl F 	(syntactic refinement, cf. Prop. 3.1.17 (c)) 

= E 	 (F is a site for (E, D)), 
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and L/E = id(A/E) = id(A)/E. Hence we can pick a representation morphism 

K: AUC' w-  AUC. Now AUC' = B' by uniqueness of joins (since B'/F = A 

and B'/(E U D') = C'). Hence K: B' w-  A U C, and (J ; K): B" 'w-  A U C, 

which means that B" -*- A U C. 
G 

Finally, AUG is a result of (Q,R) on A, because (AUC)/F = A/F = A and 

(AuC)/D=C/DER. 

Hence (Q", R") is a universal implementation of (Q, R). 	 0 

A first consequence of this proposition is that if a universal implementation 

(Q',R') of a cell (Q, R) is developed in several steps: 

(Q',R') = (Q',R) impi. of... 

impl. of (Q ( ') ,R') impl. of (Q (°) ,R (° ) = (Q,R) 	(n > 1), 

the universal implementation property must be verified only at the last step 

((Q(t),R(?t)) universal implementation of (Q(' -1),R(' 1 ))), while in all the 

other steps, only the simple implementation property needs to be verified. 

We shall go further, however, and make it unnecessary for a programmer to 

verify the universal implementation property even at the last step. 

Note that while generally, cells may be defined by arbitrary mathematical 

predicates, the final cell of a chain of implementations will have to be coded in 

a progrpmming notation to be useful, and a programming notation is a rather 

restrictive formal language. This restriction may actually be beneficial, for by ap-

propriately designing the programming notation one may ensure useful semantic 

properties of the final cell. 

It is well known that programming languages intended to support data ab-

straction should be designed such that access to encapsulated data type is pos-

sible only by means of the access functions explicitly provided by the encapsu-

lation. It is difficult to see, however, what the semantic propertis are that this 

"limited access" to encapsulated data type entails. 

Rather than trying to determine these properties from existing languages, 

we shall postulate a property of cells, called "stability", on the basis of the 

theoretical notions "universal implementation" and "simple implementation". 
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5.1.10 Definition. A cell is stable, if it is a universal implementation of every 

cell of which it is a simple implementation. 	 0 

It is clear that if the final cell of a sequence of implementation steps is stable, 

then at each step only the simple implementation property needs to be proved-

since the final cell is stable, it is then a universal implementation of the cell it 

simply implements, and hence (by Própositi5n 5.1.9) a universal imleméiitatiôñ 

of the cell with which the development began. 

From the definition, however, stability appears to be a very strong require-

ment on cells. We shall now develop some simpler characterizations of stability, 

and in the sections to follow investigate the stability notions for representation 

functors in (TSig, TInci, TA1g). As we shall see, stability is a property we 

may reasonably expect the modules of a data abstraction programming language 

to have. 

From Proposition 5.1.9, one easily obtains the following elegant characterization 

of stability. 

5.1.11 Theorem. A cell is stable, if and only if it is a universal implementation 

of itself. 

Proof. Let (Q, R) be a cell. 

Suppose first that (Q, R) is stable. By Proposition 5.1.6, (Q, R) is a simple 

implementation of itself. By stability, (Q, R) is a universal implementation of 

itself. 

Conversely, suppose that (Q, R) is a universal implementation of itself. If 

(Q', R') is a cell of which (Q, R) is a simple implementation, then (Q, R) is a 

universal implementation of the simple implementation (Q, R) of (Q', R'), hence 

a universal implementation of (Q', R') by Proposition 5.1.9. Thus, (Q, R) is sta-

ble. 0 

This characterization is simpler than the definition of stability, because no quan-

tification over cells is involved any more. 
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An interesting observation is that the right hand side of this characterization, 

"universal implementation of itself", depends only on the representation relation 

of Rep and is independent of the way this representation relation is characterized 

by representation morphisms. This is remarkable because "stability" is defined 

using "simple implementation", which does depend on the representation mor-

phisxns. In particular, this observation allows us to associate the stability notion 

with a representation relation rather than with a representation functor. So do, 

for example, the headings of the remaining three sections of this chapter. 

As an example of the application of Theorem 5.1.11, we now determine the 

stability notion associated with the representation relation "equality". 

5.1.12 Proposition. A cell is stable for equality, if and only if it is consistent. 

Proof. By Theorem 5.1.11, a cell is stable for equality, if and only if it is a univer-

sal implementation of itself with respect to equality. By Proposition 4.1.6, this is 

equivalent to the cell's being a refinement of itself, and by Proposition 3.1.19 (c), 

this is equivalent to the cell's being consistent. 0 

In particular, this means that the simplified refinement notion in which one does 

not check whether the refinement has a result (i. e., simple implementation with 

respect to equality as just characterized in Prop. 5.1.12), can be used in modular 

programming, provided that the cells developed are guaranteed to be consistent. 

This will of course be the case for well-defined programming notations, as already 

remarked after Example 3.1.14. Thus, we have encountered the first (simple) 

instance of a stability notion that is both reasonable to assume of the modules 

of a programming notation and useful to simplify the programmer's correctness 

arguments. 

As another application of Theorem 5.1.11, we can prove that the composition of 

cells preserves stability. 
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5.1.13 Theorem. Let Mbe a system of stable cells, and let C be a signature 

compatible with the join of the definition signatures of M. Then 0cM is stable. 

Proof. Let <be the syntactic dependence ordering of the signature of M. By 

Theorem 3.5.6, [M, <] is a decomposition of 0 C  M. Since the cells of M are 

universal implementation of themselves, the composability theorem yields that 

DM is a universal implementation of 0C  M. Hence 0cM is stable. 0 

This theorem implies that if all cells that can be defined in a programming no-

tation are stable, then all the cells composed from such cells are also stable. 

As a consequence, modular programming with data abstraction can be used 

recursively: each of the implementation cells in a structured correctness argu-

ment may be designed as the composition of another modular system. If the 

implementation cells at the bottom of such a hierarchy of modular systems are 

stable, then all the composed cells arising at higher levels will also be stable, 

and only the simple implementation property needs to be verified throughout 

the development. 

Modular programming with data abstraction has now been formalized as con-

sisting of development steps of two types: 

. "decomposition" of a cell into a cell system (Def. 3.2.10), which can be 

performed by means of a design graph (cf. the discussion at the end of 

Section 3.2), 

• "simple implementation" of a cell by another cell (Def. 5.1.5). 

The theorems of this thesis show that if the final implementation cells (i. e., those 

that are not themselves realized by a modular system) are stable, then the cell 

obtained by composing these cells is a universal implementation of the global cell 

with which the development began. In particular, the model produced by the 

implementation on any (representation of a) model of the external requirement 

interface is guaranteed to be a representation of a model of the external result 

interface. 
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The following definition presents a useful sufficient criterion for the stability of 

a cell. 

5.1.14 Definition. A cell (Q, R) of signature (E, D) extends representation 

morphisms, if whenever A E Q and J: A' -* A is a representation morphism, 

then 

A'EQ, 

there exists a result of (Q, R) on A', and 

whenever B' is a result of (Q, R) on A', 

then 	there exists a representation morphism 

K:B'*-B 
BUD 

such that B is a result of (Q, R) on A and 

K/E=J. 	 0 

5.1.15 Theorem. A cell that extends representation morphisms is stable. 

Proof. Let (Q, R) be a cell that extends representation morphisms. By The-

orem 5.1.4, applied with (Q',R') = (Q,R), it follows that (Q,R) is a universal 

implementation of itself, and hence is stable by Theorem 5.1.11). 0 

It was remarked earlier that in a programming language intended to support 

data abstraction, all modules should be stable. Theorem 5.1.15 indicates that 

this requirement is a reasonable one, since criteria very similar to "extension 

of representation morphisms" have already been proved for some programming 

notations. 

In the research on "representation independence" properties of the typed A-cal-

culus, "logical relations" play a role similar to representation morphisrns in this 

thesis, because observational equivalence of models is characterized by the exis-

tence of a logical relation between them [Mitchell 86, Section 6.21. The "Funda-

mental Theorem of Logical Relations" [Plotkin 80, p.  365] [Statman 85, p.  921 

[MM 85, p.  230] states that the denotations of a term of the typed A-calculus 
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(or second-order typed A-calculus) over models related by a logical relation are 

again related. This means that program modules consisting of definitions in the 

(second-order) typed A-calculus extend logical relations. 

Unfortunately, however, logical relations do not fit into the theory of this the-

sis, because the composition of logical relations is not always a logical relation, 

and hence the logical relations between models of a certain signature need not 

form a category. This makes it impossible to decompose the "universal imple-

mentation" concept into simple implementation and stability according to the 

present theory, because the proof of the important Proposition 5.1.9 depends on 

the composability of representation morphisms. It is thus an interesting problem 

to find a variant of the "logical relation" concept that is closed under compo-

sition and that still allows one to prove the "Fundamental Theorem of Logical 

Relations" to the effect that all expressions of the typed A-calculus have related 

denotations in related models. 

I conjecture that for combinatory extensional type structures (for terminol-

ogy, see [Barendregt 84, Appendix A.1]), a relation R ç fuEl A() need only be 

required to satisfy 

=* V(x) E R: (fz) E R,. 	 (*) 

rather than the usual definition (which has "==." in this formula), provided it 

relates the combinators K r  and S of the respective models, i. e., 

Varp: (K0c?) E 

(S?) E arp 

This should work because in combinatory extensional type structures, all A-ex-

pressions can be translated into expressions with the same semantic value that 

are built fromthe combinators using application only [Barendregt 84, Ch. 7]. 

The implication (*) above ensures that the results of applying related functions 

to related arguments are again related. 

A theory that perfectly fits the framework of this thesis has recently been de- 

signed by Nipkow [Nipkow 861. Nipkow deals with so-called "structures", which 
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are many-sorted algebras with possibly nondeterministic operations. The sig-

natures of these algebras are a slight variant of tagged algebraic signatures and 

can be equipped with signature morphisms and inclusions in the same manner. 

These signatures, together with the (small) structures as models, form an insti-

tution. Nipkow does not explicitly introduce a representation relation, but deals 

with "simulations" between structures, which are the representation morphisms 

of a representation functor. In particular, a simulation between stuctures with 

deterministic operations is just a strong correspondence. 

Nipkow considers a programming language containing function application, 

local binding (let), lists, the conditional (if), recursion, and an "angelic choice" 

operator, and proves that for every program in this language that produces 

results of "visible" types, the meanings of the program over two structures related 

by a simulation satisfy a certain "implementation relation". This relation has no 

direct counterpart in the present theory. However, exploiting the internal details 

and constructions of Nipkow's proof, it is possible to conclude that every function 

definable in Nipkow's language is compatible with a given simulation between 

two structures A and C. To this end, one introduces constants !ac for every a E A 

and c E C satisfying a c, with the interpretations A!a0  = a and CL 0  = c. Then 

one considers programs consisting of the expression f(Lc) in an arbitrary context 

of declarations (by let and letrec) containing a definition of f. Nipkow's proof 

then allows one to conclude that when such a program may diverge (I. e., fail to 

deliver a result value) in C, it also may diverge in A, and every possible result 

value in C is related by the simulation to a possible result value in A. Since 

this holds for every constant of the form 9ac", it follows that the function f 

is compatible with the simulation C. Thus, the functions definable in Nipkow's 

language over the models A and C may be added to A and C without destroying 

the simulation property of C. We may therefore conclude that modules consisting 

of function definitions in Nipkow's language extend simulations. 

Thus, Nipkow's paper exhibits a reasonably rich programming language that 

by adding a suitable module definition facility can be turned into a language in 

which all modules are stable for simulation (more precisely, the representation 

relation associated with simulations), and which therefore supports data abstrac- 
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tion in the sense of this thesis. During the development of modular programs in 

this language, it suffices to prove that each cell is a simple implementation of its 

specification. 

However, Nipkow's language does not provide new data type definition facili-

ties. These are an essential ingredient of a useful data abstraction prograTriming 

language. It is not too difficult to add such facilities to the language while pre-

serving stability of its modules—it suffices to prove that the type constructors 

(whose instantiations may be regarded as modules) extend simulations. A mod-

ule can then be regarded as a composition of type definitions and operation 

definitions, and since each of these extends simulations, the whole module does. 

it is easily proved that standard type constructors such as product, union or 

"list" extend simulations. 

5.2 Stability for Behavioural Inclusion 

This section analyses the stability notion associated with the representation re-

lation "behavioural inclusion" between partial algebras. 

First, we present a representation functor whose representation relation is 

behavioural inclusion. 

5.2.1 Definition. Let Corr: TSig °  - LCat be the functor mapping 

(1, V) E ITSigl to the category of V-correspondences between small E-alge-

bras (cf. Proposition 4.3.6), and a tagged signature morphism a: (1, V) -* 

(E',V') (with S and 5' the sort sets of E and E') to the functor Corr(a°P): 

Corr(E',V') - Corr(E,V) which maps a correspondence G = (G 8 ) 8eg': 

A —x B in Corr(L',V') to the correspondence Corr(a°P)(G) := UG = 

(Gor a ) a€s: U A —x U B in Corr(,V) (cf. Proposition 4.3.14). 0 

5.2.2 Proposition. Corr is a representation functor in (TSig, TInci, TA1g), 

and its representation relation is behavioural inclusion. 
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Proof. First, we check that for each a: (E,V) -+ (E',V') in TSig, Corr(a°P) 

is a functor from Corr(E',V') to Corr(IJ,V). By Proposition 4.3.14, the 

functor Corr(o°P) maps a correspondence G: A B in Corr(E', V') to 

a correspondence UG = Corr(o-°P)(G): U A —x UB in Corr(,V). For 

A E TA1g(1',V') = Alg(E'), we have 

Corr(a°")(id(A)) = ((id(A))) BES = Id(Ao.8))8Es 	 - 

= (Id((A) B )) 8Es = id(A), 

and if G: A —< B and H: B —x C in Corr(E',V'), then 
vs 	 Vs 

Corr(a°")(G;H) = ((G;H) B ) BE s 

= (C c, a  ; HcTB)8ES 

= ((Corr(c ° )G) 8  ; (Corr(o-°")H) 8 ) 8Eg 

= (Corr(a°')G) ; (Corr(a ° ) H). 

Hence Corr(a°P) is a functor from Corr(E', V') to Corr(E, V). 

Next, we check that Corr is a functor. First, Corr maps identity signature 

morphisms to identity functors, because if (2;', V) € TSig, (S the sort set 

of E), then Corr((id(E,V))°') maps an arrow G: A —x B in TSig(E,V) to 

Corr((id(E,V)) ° )G = Corr((Id(S + F))° )G 

= (GId(s+F)(8)) 1ES 

= (G8 ) 8ES 

=G. 

Second, Corr preserves composition, because if a: (2;', V) -p (2;', V') and 

r: (E',V') -. (E",V") in TSig (S and 5' the sort sets of E and )Y), then 

Corr(rOP ; aP) maps a morphism G of Corr(E", V") to 

Corr(r°" ; a° )G = Corr((a ; r)°P)G 

= (G(;r) a) aES 

= (Gr (c8)) aES 
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= Corr(a°")(G 9)8€s' 

= Corr(a°P)(Corr(r°I')G) 

= (Corr(r°") ; Corr(a° ))G. 

Finally, we check the three axioms of Definition 5.1.1. 

Axiom (a): By definition, Corr(E, V) has object set TA1g(E, V) for (E, V) E 

I TSig  I. 

Axiom (b): For c: (E, V) -+ (1', V') in TSig, the object function of Corr(or°P) 

rnapsAE TA1g(E',V') to U A = TA1g(aOIA and thus agrees with TA1g(a0P) 

Axiom (c): Let (L'0, Vo) and (E1, V1 ) be compatible tagged algebraic signatures, 

where £,, = (Se , a: F1 -+ st) for i E {O, 11, and let 

J:A—xB and K:C—D 
V0 	 V1 

be morphisms in Corr(Eo, V0) and Corr(E'i, V1 ) such that 

J/((L'o ,Vo) n (E,V)) = K/((Eo,.Vo) n (E,V)), 

i.e., A/((E'o,Vo)fl(L'1,V1)) = C/((L'0,V0)fl(E1,V1)), B/((E0,V0)fl(E'1,V 1 )) = 

D/((L'o, V0) fl (L'1, V1 )), and J. = K3  for s E So fl S1 (which is the sort set of 

E'o fl E'). 

Define L := J U K (where J and K are regarded as families with domain 

So and Si, respectively), so that L 8  = 19  for s E So and L. = K. for s E S1. 

We now show that L: AUG —x B U D in Corr((L'o,Vo) U (Ei,Vi)). 
(V0 uV1 ) 

Recall from Theorem 4.2.6 (c) that (Eo, V0) U (E1, V 1 ) = (E0 U E, Vo  U V1 ). 

The index set of L is S0 U Si, and for sE So  U Si: 

• ifsESo,thenL 8 =J3 A 8 xB 8 =(AUC) 8 x(BUD) 8 , 

• ifsES1,thenL 8 =K3 9C8 xD 8 =(AUC) 8 x(BUD) 3 . 

Hence L is an (So U Si )-sorted relation between the carriers of A U C and B U D. 

To check that the operations are compatible with L, consider 1: Si . . . s, -+ r 

inE0UE1. 
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• 1ff E F0, then 1: s l . . .s, -+ r in Eo; in particular, {s,... ,s,r} ç S0. 

Hence if 

(z,y 1 ) E L 8  for i E {1,. . . , n} and (xi,... ,x) E dom(A U C) jr, 

then 

(x,!/) E J81  for i E {1,...,n} and (xi,... ,z) E domA1. 

Since J is a correspondence, it follows that (yi,... , y) E dom B1 = 

dom(BUD)1,and 

((AuC)j(xi,...,x), (BUD)1(y1,...,y)) 

= (Aj(zi,... ,z), B1(yi, ... ,yn)) E Jr = Lr. 

. the case f E F1 is symmetric. 

Hence L is a correspondence. 

To see that L is a (V0 U Vi)-correspondence, consider v E Vo U V 1 . 

• if v E Vo, then (A U C) 0  = A0  C B0  = (B U D) 0  and L 0  = J, is the 

inclusion function, since J is a Vo-correspondence. 

•ifvEVi, then (AUC) 0 =C0 çD0 =(BUD)0  and L0 =K0  is the 

inclusion function, since K is a Vi-correspondence. 

Hence L is a (V0 U Vi )-correspondence, and so L: A U C —x B U D in 
(V0 UV1 ) 

Corr((E'o,Vo) U (Ei,Vi)). Clearly, 

L/(Lo,Vo)=J and L/(E i ,Vi)= K. 

Hence Corr has the pair-completeness property. 

We have proved that Corr is a representation functor in (TSig, TInci, TAIg). 

By Theorem 4.3.7, the representation relation of Corr is behavioural inclusion. 0 

The theorem just proved makes the theory of the preceding section applicable, 

and we obtain a "simple implementation" concept for correspondences, and a 

"stability" concept for behavioural inclusion. 
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It is important to note that the "simple implementation" notion for behav-

ioural inclusion is independent of the visibility of sorts in the environment sig-

natures of the cells involved. The reason is that the correspondence required by 

the simple implementation criterion must be the identity correspondence when 

reduced to the environment signatures anyway, and so it automatically satisfies 

- the restrictions that might be imposed on it by visibility of environment sorts. 

In other words, the simple implementation criterion requires one to treat the en-

vironment sorts as if they were all visible, by insisting that the correspondence 

to be constructed be the identity on the environment. 

What is more, modules in programming do not normally define new visible 

sorts, as explained at the end of Section 4.2. Under this condition, visibility 

of sorts becomes completely redundant in the simple implementation notion 

for behavioural inclusion: The correspondence to be constructed must be the 

identity on the environment sorts, and is unconstrained on the new sorts defined 

by the cells under consideration. 

Since simple implementation is the correctness criterion to be verified in the 

design of modular programs, this activity is unaffected by visibility of sorts. The 

visibility of sorts only affects the stability property of modules, which should be 

the concern of progr.mming language design. 

5.2.3 Example. The proof given in Example 4.3.10 that an algebra B is 

behaviourally included in an algebra A can be re-interpreted as a proof that a 

program module implementing the string data type is a simple implementation 

of its specification with respect to correspondences. 

The abstract import interface Q and the abstract export interface R are given 

in Figure 5-3. Q describes the sorts to which the string data type relates, and R 

abstractly specifies the desired encapsulated type. The signature E of R is the 

same as in Example 4.3.10, and for a fixed model K of Q, in which Kboo I = {T, F} 

and Kchar  is an arbitrary set C, there is a unique result of (Q, R) on K. This 

result is just the algebra A considered in Example 4.3.10 (identifying C there 

with C here). 
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interface 

signature 

bool, char: sort 

properties 

bf={T,F} 

interface 

signature 

bool, char, string: sort 

s:ngle: char -' string 

occurs: char string -+ bool 

join: string string -+ string 

properties 

bool = {T,F} 

string = char* 

single(x) = (x) 

IF,occurs(x,$) = 
T, ifzErans 

 ifzrans 

join(s,t) =sot 

Figure 5-3: The abstract import and export interfaces Q and R 

The implementation cell we shall consider has requirement interface Q' := 

Q. The result interface R' depends on a parameter K > 1 characterizing the 

"capacity" of the implementation. R' is given in Figure 5-4. 

As explained in Example 4.3.10, the cell (Q', R') could be coded in any pro-

gramming notation that features a "sequence of char" data type with the usual 

access operations nil, cons etc. We are treating this data type a little differently 

here than the type list item of the dictionary program development in Section 1.4. 

a 

288 



5.2 Stability for Behavioural Inclusion 

R'= 

interface 

signature 

L' (the signature of R) 

properties 

bool = {T,F} 

string = char* 

single(x) = (x) 

IT, ifxErans 
occurs(x,$) = 

F, ifxrans 

join(s,t) = if 	length(s) = 0 then t 

else if occurs(hd s,t) then join(tl s, t) 

else if length(t) ~: K then Error() 

else 	 join(tl s, cons (hds, t)). 

Figure 5-4: The result interface R' of the string implementation 

There, the type listitern and its access functions were listed in the requirement 

interfaces of modules using them. Here, however, we have omitted the type "se-

quence of char" and its access functions from the interfaces Q and  Q' and thus 

from the algebras we shall consider in order to keep them simple. This is not 

incorrect, for it means that here we treat the "sequence" type constructor and 

the functions nil, cons etc. as a fixed part of the programming notation (this 

could perhaps be made clear by writing them "nil", "cons" etc.) rather than 

as entities to be exported and imported by modules. The reader may wish to 

convince himself that they could be added to Q and R (and the algebras and 

the correspondence to be discussed) without problems. 

The unique result of (Q', R') on K is the algebra B of Example 4.3.10. In that 

example, a {bool, char}-correspondence C: B —x A was constructed from 
{boot,char} 

the result B of (Q', R') on K to to the result A of (Q, R) on K. In particular, we 
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have G/ Sig(Q) = id(K), and hence G is the representation morphism required 

in the proof that (Q', R') is a simple implementation of (Q, R). 

Since K was an arbitrary element of Q, since the cells (Q, R) and (Q', R') 

have the same signature and since Q = Q', it follows that (Q', R') is a simple 

implementation of (Q, R). 0 

The remainder of this section analyses the stability notion for behavioural inclu- 	- 

sion. 

5.2.4 Theorem. A cell in the institution (TSig, TInci, TAJg) is stable for 

behavioural inclusion, if and only if it extends correspondences. 

The proof rests on the following Lemma. 

5.2.5 Lemma. Let A and B be E-algebras, let C: A —x B be a correspon-

dence, and let H E be an algebraic signature. Then there exists an algebraic 

signature £' with the same sorts as E and ±-algebras A and E such that E; 

± H, ±nH = E, A/E = A and E/E = B, and such that G is the only 

correspondence from A to E. if E, A, and B are small, so are ±, A, 	and B. 

in addition, C is a strong partial homomorphism (an abstraction function) 

from A to B, then C also is a strong partial homomorphism (an abstraction 

function) from A to b. 

Proof. WriteE = (S, a:F -+ S+). Ifforalls E S,wehaveA 8  =0vB8  =0, 

then all components of a correspondence from A to B must be empty relations, 

hence C is unique and we can put ± := E, A := A and E := B. 

In the following, we may therefore suppose that there exists an 3 E S such 

that A. 0 and B. # 0. This means that we can choose 9 E 5, 1 E Ââ and 

E Bj such that 

s E 5: C 8  # 0 	(,9) E G. 

Construct E = (S, & : P -+ S) by adding to E' the following function symbols, 

distinct from each other and distinct from the symbols of H: 

290 



5.2 Stability for Behavioural Inclusion 

. for each sE S,(z,y) E G. a function symbol !8X: - 8, 

. for each s E S, z E B. a function symbol ?BZ: S - S. 

Clearly, 1' has the same sorts as E and is small if E, A and B are. Using 

formulas 2.3.6 (a) and 2.3.6 (c), we see that E H and E n H =E. 

Define A and E as follows. 

•forsES: 	 A 8 =A 3 	 E=B8  

• forfEF: 	 A1 =A1  

• for s E 5, (x,y) E G8 : 	A1. 9 () = x 	 E,() = y 

• for s E 5, z E B 8: z E domA? 	(x, z) 0 G. y E domE?, ' # z 

=. Ai(x) = 	 = E,,(y) = 

Clearly, A/L' = A and E/L = B. Also, A and b are small if E, A and B are. 

The S-sorted relation G is a correspondence from A to E, because every 

I E F is compatible with C: 

• if f E F, then f is compatible with C, because C: A -< B, 

• if f = 	-+ 3 for sE 5, (x,y) E C 3 , then (A 1.O, E.,,O) = (x,y) E 

C 8 , 

• iff = ?8Z: s -* Sfors ES, z e B 3 , and (x,y) EC8  issuchthatz E 

domA?,, then (x,z) 0 C 8 , hence y 	z, and thus y E domE?, and 

(A ?.(x), E?,,(y)) = 	E G (as C8  # 0). 

Next, we show that C is unique. Suppose G' is a correspondence from A to B. 

Then for any s E 5, we have 

(x,y) E C 8  = 	f3i #zv 	= (x,y) E Gal  

and hence G. C C'8 . Conversely, 

(x,y)EC = xdomA?, 	(as y 0 domE;,, and C' is a corr.) 

(x,y)EC 8 , 

and hence C'8  C C 8 . It follows that C' = C. 
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Now suppose that in addition, G: A $= B. We know already that C: A -< 

and obviously, this implies that G: A +– E. To show that G is a strong partial 

homomorphism, we show that Gu:  E —x A by showing that all f E F are 

compatible with Gu :  

• if f E F, then f is compatible with Cu,  because C: A =x B and hence 

GU:B(A 

• if f = !8Z: - s for s E S, (x,y) E C8 , then (b,.O, Alex , 	(y,x) E 

'-'U 
8 

•iff=?8 :s+.forsES,zEB8 ,and(y,x)EGissuchthatyE 

dom E?., then y z, and since (z, y) E G. and G. is a partial function, we 

have (z, z) 0 C8, hence x E dom A? and (E9,(y), A9,,(x)) = (, 1) E G;51  

(asC8#O). 

Hence G is a strong partial homomorphism from A to B. 

If G is an abstraction function from A to B even, then C consists of surjective 

partial functions only, and so C also is an abstraction function from A to ti. o 

Proofof Theorem 5.2.4. 

Let (Q, R) be a cell. 

If (Q, R) extends correspondences, then (Q, R) is stable for behavioural in-

clusion by Theorem 5.1.15. 

Conversely, suppose that (Q, R) is stable for behavioural inclusion, i. e., a 

universal implementation of itself with respect to behavioural inclusion (Theo-

rem 5.1.11). Let the signature of (Q,R) be ((E,V),(E',V)) where E = (S,a) 

and = (S, f). Let A € Q and let J: A' —x A be a representation mor-

phism in Corr(E,V). 

Since A is a base for (Q, R), A' , A and (Q, R) is a universal implemen-

tation of itself, it follows that A' is a base for (Q,R), i.e., A' = A'/E € Q, and 

that there exists a result of (Q, R) on A'. 

Now let B' be any result of (Q,R) on A'. By Lemma 5.2.5, applied to the 

correspondence J: A'- - A with H :=E U E, we can choose an algebraic 
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signature ± = (, a) and E-algebras. A' and A such that 

EC: z '  E.-iui, ±n(Eu)=E, 	=S, 	(1) 

A'/E=A', A/L=A, 

and such that J is the only correspondence from A' to A. 
- 	.. Now (±,V)isatagged.a1gebraicsignature,.and it is a site for (Q,R), because - 

(±,V) is compatible with (1,V) U (F,V) by Theorem 4.2.6 (b): 

(V u V) = Sn (Vu V) 

= V n (S U S) 	(as (L,V) (E,V) U (E,V)), 

and because, using Theorem 4.2.6 (c) and (d): 

(±,V) n ((E,V) U (r,V)) = (En (z U E), V n (V U vi) 

= (L7,V) 
	

(using (1)). 

Further, A is a base for (Q, R), because A/(E, V) = A/L' = A E Q. Now 

J: A' -k A and, since J: A' —x A, it trivially follows that J: A' —x A; in 
V 	 V 

particular (by Theorem 4.3.7), that A' 	A. 

Define B' := A'uB'. This is possible, because the meet of the signatures of A' 

and B' is (±,V)n((E,V)u(E,V)) = (E,V), and A'/(E,V) = A' = B'/(1,V). 

Now E' is a result of (Q, R) on A', as is easily seen. Since (Q, R) is a universal 

implementation of itself with respect to behavioural inclusion, it follows that 

there exists a result k of (Q, R) on A such that E' 	-.------* 	so by 

Theorem 4.3.7, there exists k: E' —x E. 
vuv. 

Since k/(±, V): A' —x A and J is the unique such correspondence, it follows 

that k/(±,v) = J. 

Defining K := k/((L',V) U (E',V')) and B := E/((E,V) U (E,V)), we 

have K: B' —x B.. 
VuV. 

It is easily seen that B is a result of (Q, R) on A. Now 

(k/((E,v) u 

= k/(E,V) 
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= (k/(t,V))/(E,V) 

= J/(E,V) 

EPA 

Hence K is the desired extension of J, and it has been proved that (Q, R) extends 

correspondences. 	 o 

5.3 Stability for Behavioural Equivalence 

This section analyses the stability notion for the representation relation "behav-

loural equivalence" between partial algebras and compares it with the stability 

notion for behavioural inclusion. 

First, we present a representation functor for behavioural equivalence. The 

definition follows the pattern of Definition 4.3.4 

5.3.1 Definition. Let SCorr: TSig°" -+ LCat be the functor mapping 

(E, V) E ITSIgI to the category of strong V-correspondences between small 

E-algebras (cf. Proposition 4.4.5), and a tagged signature morphism a: (, V) - 

(E', V') to the functor SCorr(a°P): SCorr(E", V') -+ SCorr(E, V) which is the 

restriction of Corr(o°P) to strong correspondences. 

5.3.2 Proposition. SCorr is a representation functor in (TSig, TInci, 

TA1g), and its representation relation is behavioural equivalence. 

In the proof, the following lemma will be used. 

5.3.3 Lemma. Let E be an algebraic signature, let V be a subset of its sorts, 

let A and B be E-algebras, and let 

G:A-4<B and H:B—xA 
V 	 V 

be V-correspondences. Then C fl Hu, the component wise intersection of C with 

the converse of H, is a strong V-correspondence from A to B. 
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Proof. To show that C fl Hu is a strong correspondence from A to B, consider 

f: si  ... s, -f r in E and (x,y 1 ) E (C fl H° ) 31  for i E {1,. ..,r&}, i.e., (x8 ,y) E 

C8  and (ye , x) E H8 . 

If (xi,. . . , z,) E domA1, then (yi,. . . , y,) E domB1 because C is a corre-

spondence, and if (yi,.. . , y,) E dom B1, then (zj,... , x,) E dom A1 because 

H is a correspondence. Thus, 

(x j , .... x)EdomA1 	(y1 ,...,y)EdomB1. 

Assume now that both sides of this equivalence are true. Since G is a correspon-

dence, (A1 (x1,... , x,), B1 (yi,. .. , y)) E Cr, and since H is a correspondence, 

(B1(yi, .... y,), A1(xi,. . . ,x,)) E Hr. It follows that 

(A1(x1,...,x), B1(y,...,y)) E (Gr flH) = (GflH°) r , 

and hence that C fl Hu is a strong correspondence from A to B. 

This strong correspondence is a strong V-correspondence, because for v E V, 

we have A U CB U  as G:A —x B, and B0çA0  as H:B - A, and thus 

A 0  = B0 . Since C,, is the inclusion from A,, to B,, and H, is the inclusion 

function from B,, to A,,, they are both identity functions, and so are H,,u  and 

G,, fl H,,u,  which equals (C fl Hu),,.  Thus, G fl H°  is a strong V-correspondence 

fromAtoB. 0 

Proof of Proposition 5.3.2. 

For each (E,V) E JTS1gJ, SCorr(E,V) is a subcategory of Corr(Z',V) with 

the same objects. 

For every a: (E, V) -+ (E', V') in TSig, SCorr(a°P) is a functor from 

SCorr(E, V') to SCorr(E, V), because it is a restriction of Corr(a°P), and be.-

cause that functor maps strong V'-correspondences to strong V-correspondences 

by Proposition 4.5.7. 

It is trivial to check the axioms (a) and (b) of Definition 5.1.1. 

Axiom (c), pair-completeness, is obtained from the analogous property of Corr. 
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If (Eo, V0) and (L', V1) are compatible small tagged signatures, and 

J:A=xB and K:C=xD 
V0 	 V1 

are morphisms in SCorr(Eo,Vo) and SCorr( i ,Vi ) respectively and satisfy 

J/((Eo,Vo) n (E,V)) = K/((Eo,Vo) n (E 1 ,V 1)), 

then 

J:A—xB and K:C—xD 
V0 	 V1  

are correspondences satisfying the same law, hence by the pair-completeness 

of Corr, there exists a morphism 

L:AUC —x BUD 
V0  uV1  

in Corr((Eo,Vo) U (Ei,Vi)) such that 

L/(Eo,Vo)=J and L/(E 1 ,V1)=K. 

Analogously, since 

Ju:B_)<A and KU : D x C 
V0 	 V1  

are correspondences satisfying 

n (E1,V1)) = Ku/((E o ,Vo) n (E 1 ,V1 )) 9  

there exists a morphism 

L':BUD —x AUC 
V0  uV1  

in Corr((Eo,Vo) U (E 1 ,V 1 )) such that 

Lh/(Eo ,Vo) = Ju and L'/(E1,V1)=K'* 

By Lemma 5.3.3, the componentwise intersection L fl (L)u is a morphism 

Lfl(L:AUC ==X BUD 
V0uV1  
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in SCorr((1o,Vo)U (L'j,Vi)), and we have 

(Ln (LI)u)/(IJ0,Vo) = (L/(Eo,Vo)) n ((L)u/(Eo,Vo)) 

= (L/(Eo,vo)) n (L/(Eo,Vo))u 

= j fl (jU)U 

=J'  

and analogously, 

(Ln (L") u)/(L'1,V1) = K. 

	

Hence (L n (Lv) is the desired morphism in SCorr((L'o,Vo) U (E'i,Vi)). 	0 

The theorem just proved makes the concepts of Section 5.1 applicable, and we 

obtain a "simple implementation" concept for strong correspondences and a 

"stability" concept for behavioural equivalence. 

The same argument as for behavioural inclusion (given just before Exam-

ple 5.2.3) shows that the simple implementation notion for modules that do not 

define new visible sorts is not affected by visible sorts at all, so that the visible 

sorts notion is irrelevant in the development of modular programs. 

5.3.4 Example. The proof given in Example 4.4.7, where a "representation" 

algebra B was proved behaviourally equivalent to an "abstract" algebra A, can 

be re-interpreted as a proof of the simple implementation relation between cells. 

Let (Q, R) be the specification cell of Example 5.2.3 (Figure 5-3), and let the 

implementation cell (Q', R') be obtained from the cell (Q', R') of that example 1 

(Q! = Q4. R' given in Figure 5-4). by. removing .the capacity constraint from the 

join operation, i. e., by changing the definition of join to 

join(s,t) = if 	length(s) = 0 then t 

else if occurs (hd s, t) then join(tls,t) 

else 	 join(tls,cons(hds,t)). 

In Example 4.4.7, a strong {bool, char}-correspondence G: B 	< 	A 
{bool,char} 

was constructed from the result B of (Q', R') to the result A of (Q, R) on an 
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arbitrary algebra K E Q (recall that Q has a signature consisting of just the two 

sorts bool and char, and that Q specifies "bool = {T, F}", but puts no constaints 

on char). The components C6 001 and C char  of the strong correspondence C are 

identities, and thus C, Sig(Q) = id(K), and hence G is the desired representation 

morphism in the proof that (Q', R') is a simple implementation of (Q, R). 

In the remainder of this section, the "stability" notion for behavioural equiva-

lence is characterized and compared with the one for behavioural inclusion. 

The following criterion will be used in the characterization. 

5.3.5 Definition. A cell (Q,R) of signature ((2,V), (I',V)) in the institu- 

tion (TSig, TInci, TA1g) weakly extends abstraction functions (weakly extends 

converse abstraction functions), if whenever A E Q and J: A' 4:*. A is a V-ab- 
V 

straction function (J: A' ==x A is such that Ju:  A 4=* A' is a V-abstraction 
V 	 V 

function), then 

A'EQ, 

there exists a result of (Q, R) on A', and 

whenever B' is a result of (Q, R) on A', 

then 	there exists a strong (V U V')-correspondence 

K:B' ==x B 
vuv* 

such that B is a result of (Q,R) on A and 

K/(E,V) = J. 	 U 

5.3.6 Theorem. A cell in the institution (TSig, TInci, TA1g) is stable for 

behavioural equivalence, if and only if it weakly extends abstraction functions 

and converse abstraction functions. 

The proof uses the following lemma. 

5.3.7 Lemma. Let (E, V) be a tagged algebraic signature, and let C: B —x A 

be a V-correspondence between E-algebras. Then there exists a diagram 

H 	J 	K 
B C 	A, 

V 	 V 
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where H and K are V-abstraction functions, C is a weak subalgebra of D with 

the same hidden carriers as D, J is the inclusion homomorphism from C to D, 

andc=HU ; J ; K. 

If, moreover, C is a strong V-correspondence, the diagram can be chosen 

such that C = D (and thus J is the identity), so that it has the form 

H K 

V 	V 	 -- 

and C=HU ; K. 

Proof. Let (E, V) be a tagged algebraic signature, E = (5, a), and let C: 

B —x A be a V-correspondence between E-algebras. 

The carriers of the algebras C and D are defined as follows. 

. for s E V: C. := B8 , D. := A 8 , 

o for 3 E S \ V: C. := D. := fl({O}, C8 ) + J.TI({ 1}, B8) + fJ({2}, A 8 ) 

(i. e., each hidden carrier of sort a E S \ V is composed of disjoint "copies" of 

the relation C 8  and the carriers B. and A 8 ). Obviously, C and D have the same 

hidden carriers. 

For a. set M C {O,1,2} and 3 E 5, let the sets C 	C8  and D 	D8  be 

defined as follows. 

• ifsE.V: C:=C8 , D:=D8 . 

• ifsES\V: C':=D'1 :={(d,x)EC8 IdEM}. 

Note that CM C Di" for all a and M. Define J to be the S-sorted inclusion 

function from C to D. 

The abstraction functions H and K will be defined by the following S-sorted 

functions. 

• for a E V: H. := Id(B4, K. := Id(C8 ), 

• for a E S \ V: 

domH8  := c°", H8 ((O,(x,y))) := x, H8 ((1,z)) := 

domK8  := D ° ' 2 , K8 ((O,(x,y))) := y, K8 ((2,y)) := y. 
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Viewing C, H, J, and K as S-sorted functions, we then have Hu ; J ; K = 

Hu ; K=G. 

The functions of C are defined as follows. For f: si ... s, - r in 1, let domCj 

be the set 

{(pi,...,pn)EH(Ca1,...,C8)I 

(pi,...,pn) E 

A (H81 p1,...,H811 p) E domB1 

V (Pi,...,Pn) E H(C'2 ,...,C8,?'2 ) 

A (K81 p1,... ,K8 p) E domA1 

A (r E V 	A1(K 81 p1,... ,K8 p) E B) }, 

and if (p',. 
.. , 

p,) is a member of this set, then 

• ifrEV, 

C1(pi,. . . ,p,) := B1(H81 p1,... ,H8 ,1 p) 

• if f 6 V, (p',... ,Pr&) 6 fl(C'2,. 	) \ fl(C° 8i I ... 

C1(pi,... ,pn) := A1(K81 p1 .... ,K8,p) 

• if r 6 S\V, (pi,...,p,) 6 fl(C81{o} 
 , ... , i., Sn 

C1(pi,... ,p) := (0, (B1(H31 p1,... ,H8 p), A1(K 81 p1 .... ,K8,p))) 

• if r 6 S \ V, (p',.. . ,pn) E fl(C °' 	 \ fl(C° 8 	,.. 	/ 	Si 	.  

Cj(pi,.. . ,p,) := (1, B1(H81 p1,.. . 

• if r 6 S \ V, (p',. . . ,pn) 6 fl(C°'2 	 \ fl(C °  81 	,. .. '-8 	1 	8i ,... 

C1(pi,... ,p,) := (2, A1(K51p1 .. . . ,K8 ,1 p)). 

The functions of D are defined as follows. For f: s 1 . . . s, —+ r in E, let domD1 

be the set 

{ (Pi,...,Pn) E fl(D 51 ,... ,D811 ) 

(p',... ,p,) 6 fl(D' 2 , •.,.L/8 

A (K81 p 1 ,... ,K8 p) 6 domA1 
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{o} 
v (pi,. . . , p) E 	

-{o,i} \ fl(D8, ,. . . LJ ,L/a,1 	/On 

A (H81 p1,...,H8,p) E domBj}, 

and if (pi,...  ,p,) is a member of this set, then 

• if rEV, (pi,...,p)  E fl(D8i0'2 	
T%{O2}): 

,. . 

- 	 D1(pi  ...... p):=A1(K81 pi ,..,-K8,1 p)-- 

(0) 	{0} • ifrEV, (pi,...,p)E(D(0) 81 	,• ,-'a,; 	\ JJ(D8, ,. .. ,D8  ): 

D1(pi,... ,p,) := B1(H81 p1,. . ., H8 ,1 p,) 

(0 
if r e S\V, (pi,...,pn)  E fl(D81

{0}  ,...,D8
) 
 ), (H81 pi,...,H8,p) E 

D1(pi,... ,p,) := (0, (B1(H81 p1,... ,H8 p), A1(K 81 p1,... 

• if r E S\V, (pi,...,pn)  E 8j 	,•••, 4-'8 	/ 

—'((pi,... ,p,) E  On A (H81 p1,... ,H8 p) E domB1): 

,p,) := (2, A1(K81 p1,.. . , K8,p,)) 

• if r E S\V, (Pi,...,Pn)  E 	
-{o,i} \fl(D° 	{o} 

ai 	,. . . 	1 	81 ,• . , D8 , ): 

,p 1 ) := (1, B1(H81 p1,.. .,H8 p)). 

It is easily checked that these definitions correctly define algebras—mainly one 

has to check that for all argument tuples in the explicitly given domains of 

C1 and D1 the value of C1 and D1 is well-defined; i. e., that exactly one of the 

five cases is applicable, and that the functions A1 and Bf are applied only to 

arguments in their domains. 

It remains to be checked that H and K are indeed V-abstraction functions, and 

that C is a weak subalgebra of D. 

First, we check that H: C ** B, using Proposition 4.5.2. Obviously, H consists 
V 

of surjective partial functions, the visible sorts of C and B are the same, and 
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H is the identity on these sorts. If f: si . . . s, -+ r in E' and pi E dom H9  for 

i E {1,. .. ,n}, then (p',... ,p,1 ) E fl(I_#9j tfl ,. . . t_!{O1}) and hence 

(pi,...,p)EdomC1 	(H81 pi, ... ,H8 p)EdomB1, 

and if both sides of this equivalence are true, then 

.ifrEV 	 - 	--- 	-- -.-.-- - 

H.(C1(p i ,... ,p)) = H(B1(H81 pi,... ,H8 p)) 

= B1(H8 pi,... ,H8 p) 

. if r E S\V, (Pi,...,Pn)  E fl(C 81{o} 
 ,...,L'9 	: 

Hr (C1(pi,... ,pn)) 

Hr (O, (B1(H81 p1,.. . , H8,.p,), A1(K 31 p1,... ,KBft p fl ))) 

= B1(H81 p1,.. . , H8 ,1 p,) 

• if r E S \ V, (p',... ,p) E fl(C°" 	{o,1} \ fl(c °  i 	,. . ,'-'8, 	1 	i ,... 	-'8, ,: 

Hr(C1(pi,...,p n))=Hr(1,B1(H81 p1,...,Ha,pn)) 

= B1(H81 p1,... ,H8,p). 

Thus, H is a V-abstraction function from C to B. 

Second, we check that K: D 	A, again using Proposition 4.4.4. Obviously, 
V 

K consists of surjective partial functions, the visible sorts of D and A are the 

same, and K is the identity on these sorts. If f: S 1 ... s, - r in E and pi E 

domK81  for i E {1,... ,n}, then (p1,...  ,p) E fl(D' 2 ,. .. ,D'2 ), and hence 

(p',... ,p) E domD1 	(K81 p1,. .. ,K9 p) E domA1, 

and if both sides of this equivalence are true, then 

• ifrEV: 

Kr(Df(p l ,. . . , pyI)) = Kr(A1(K 81 p1,. . . , K8 p)) 

= A1(K81 p1,. 
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{O) . if r E S\V, (pi,...,Pn)  E [T(D81
{o} 

 ,...,D8 ), (H81 p i ,..., H8 p) E 

dom Bf: 

K,.(D1(pi,. . . , pn)) 

= K,.(O, (B1(H 81 p1,. . . , H8 ,p,), A1(K 81 p 1 ,... ,Kaft pfl))) 

- 	
= A1(K81 p1,... ,K81 p) 

• if r E s\v, 	((pi,...,pn) E In  A (H81 p1,... ,H8 p) 6 

dom B1): 

K,.(D1(pi,. ..,pn)) = Kr(2, A1(K 81 p1,.. . , K8,p,)) 

= A1(K81 p1,. . . , K8,p,). 

Thus, K is a V-abstraction function from D to A. 

To show that C is a weak subalgebra of D, we have to show that J, which was 

defined as the S-sorted inclusion from C/S to D/S, is a correspondence (and 

thus a homomorphism) from C to D. 1ff:  sj ... s, —+ r in E and ,p) e 
dom C1, then 

• if r 6 V, (pi,...,p,) E fl(c", 	c8 	,°"' then 

	

... 	,  

— if (p' ...... pn ) 6 fJ( 	,. . . ,c), which is a subset of 

81 ,... 
, D8 ,

{0}  ), then (H81 p1 , K8 p) 6 G8  for i E {i,. . . , n}, 

hence 

(C1(p1, ... ,p), D1(pi,... ,pn)) 

	

= (B1(H81 p1.... 	 A1(K 81 pi,. . . 

6C r , 

and since r 6 V, C r  is the inclusion from B,. to A,., and thus 

C1(pj,...,p) =D1(pi,...,p), 

{o} 
8n 

1}) \ fl(C81  ,. . . 	), which is — if (p',... ,p,) 6 [T(c8 °" 

	

a subset of fl'D8°" ,.. ., D") \ [T(D1°,.. 	then 1%   

Cj(p 1 ,...,p)=B1(H81 p1 ,...,H8 p) 

=D1(pi ,..., p); 
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• if rEV, 	(pi,...  ,p,) E H(C8i° '2 ,.. I. , 
 {O} 
1 \ fl(C8, 	... '-'8, 	, which 

is a subset of H(D'2 , 	, J•'a , then 

C1(pi,... ,p,) = A1(K 81 pi,... ,K8ft pfl ) = D1(p1,... ,p), 

• if r e S \ V,. (p',. . . ,p,) € fl(C,... , Ce),  which is a subset of 

- 	. .;,D), then (H81p1,.. Han 	andhence 	- - 

C1(p 1 ,......) = (0, (Bf(H$1 p1,...,H8ft p fl ), Af(K 81 p1,...,Kaft p fl))) 

. if r E S \ V, 	 E 
{o} fl(C °",...,C8 °") \ fl(c8 ,...,I..# a ,  

which is a subset of H(D "  jj \ fl(D° 	{o) 
1 	, . . . ,D3 , ), then 

C1(pi,. ..,p) = (i, B1(H81 p1,. ..,H8 p)) 

=D1(pi,...,p), 

{o} . if r E S \ V, (pi,...,Pr&) E 	 2  ,c') \ f[(C8, ,... 	/, 

which is a subset of fl(D'2 	0,2} \ fl(D° 	{o} 
a. 	 L8ft 	1 	,. . . ,D8, ), then 

C1(pi,. .. ,p,) = (2, A1(K 81 p1,. ..,K0 p)) 

=D1(pi,...,p). 

Thus, C is a weak subalgebra of D, and so the first part of the lemma has been 

proved. 

Now assume that in addition, C is a strong correspondence. We show that 

C = D. We know already that C is a weak subalgebra of D, and obviously, 

C and D have the same carriers. It therefore suffices to show that definedness 

of a function in D for some arguments implies its definedness in C for the same 

arguments; in other words, that dom D1 c dom C1. 

Let f:s 1  ... s—rin1',andlet(p1,...,p)EdomD1. 

8 	,. . . ,D 	) and (K81 pi,... K3  p '2 	 ,) E domA1, • if (p',... ,p 	fl ) e (D ° ' 2  

then 
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- if (pi,...  ,pn ) E 	 , 	then (H8,p1 , K8 p) E G for 

i E {1,.. . , n}, hence (H81 p1,... , H8 ,1 p,) E domB1, and hence 

(P1,.. .,pI) E domC1, 

{ O} 
- if (pi, .... Pn) E 	 , D'2 ) \ fl(D 8  ,.. • , D8 ,

{o}  ), then 

r E V implies A1(K 81 p1,.. . , K8 ,p,) EA r  = Br, and hence 

• if (pi,. . . , p,) E fJ(D °" 	D °"' \ fl(D° 	{o} 
81 	' On / 	 81 ,. .. ,D8, ) and 

(H81 p1,... ,H8 p) E domB1, then (pi,.. .,p) E domC1. 

Hence D is equal to C, and the lemma has been proved. 	 0 

Proof of Theorem 5.3.6. Let (Q,R) be a cell of signature ((L',V),(E,V')) 

in the institution (TSig, TInci, TA1g). 

Suppose first that (Q, R) is stable for behavioural equivalence, i. e., that (Q, R) 

is a universal implementation of itself with respect to behavioural equivalence. 

To see that (Q, R) weakly extends abstraction functions and converse ab-

straction functions, let A E Q and J: A' ==x A be such that J: A' 	A or 
V 	 V 

Ju :  A 4=* A'. Since A is a base for (Q, R), since A' v  A and since (Q, R) is 

a universal implementation of itself, it follows that A' is a base for (Q, R), i. e., 

A' = A'/E E Q, and that there exists a result of (Q, R) on A'. 

Now let B' be any result of (Q, R) on A'. As in the proof of Theorem 5.2.4, 

one shows that there exists a strong correspondence K: B' ==X B satisfying 
VuV. 

K/(E, V) = J (Lemma 5.2.5 applies if either J: A' 4=* A or Ju:  A ** A'). It 

follows that (Q, R) weakly extendbstracti fiiiitions and converse abitrac-

tion functions. 

Conversely, suppose that (Q, R) weakly extends abstraction functions and con-

verse abstraction functions. We show that (Q, R) extends strong correspon-

dences. 

Let A E Q, and let C: A' p.':  A be a strong V-correspondence. By Lem-

ma 5.3.7, we can form a diagram 

H K 
A'*C*A 

V 	V 
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such that H and K are V-abstraction functions and G = flU ; K. 

Since A E Q and  (Q, R) weakly extends abstraction functions, C E Q 

also. Since (Q, R) weakly extends converse abstraction functions, it follows that 

E Q and that there exists a result of (Q, R) on A'. 

Now let B' be any result of (Q, R) on A. Since (Q, R) weakly extends converse 

	

abstraction functions and flU  is one, we can pick a strong correspondence H': 	- - - 

=x D such that D is a result of (Q,R) on C and H'/(E,V) = H0 . 
VUVO 

Since (Q, R) weakly extends abstraction functions, we can pick a strong 

correspondence K': D * B such that B is a result of (Q, R) on A and 
VuV• 

= K. 

This gives us a strong correspondence (H' ; K'): B' 	.: 
VuV' 

B from B' to a 

result B of (Q, R) on A. It satisfies 

(H' ; K)/(E,V) = (H/(L',V)) ; (K'/(IJ,V)) 

=H0 ;K 

=G. 

Thus, (Q, R) extends strong correspondences. Theorem 5.1.15 yields that (Q, R) 

is stable for behavioural equivalence. 	 0 

As a simple application of Lemma 5.3.3, we obtain the following theorem. 

5.3.8 Theorem. A single-valued cell that is stable for behavioural inclusion is 

stable for behavioural equivalence. 

- 	- Proof. Let (Q,R) bea singie-valuedcellof signature ((E,V),(E',V')) that is 	- 

stable for behavioural inclusion and hence (Theorem 5.2.4) extends correspon-

dences. We shall show that (Q, B) extends strong correspondences, which by 

Theorem 5.1.15 implies that (Q, B) is stable for behavioural equivalence. 

Let A E Q, and let J: A' A be a strong correspondence. Then J: A' —x 

A and J0 : A —x A' are correspondences. Since (Q, R) extends correspondences 

and J is one, it follows that A' € Q and that there exists a result of (Q, R) on A'. 

Let B' be a result of (Q, R) on A'. Since (Q, R) extends correspondences and 

J is one, we can pick a correspondence K: B' —x B such that B is a result 
vUv. 
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of (Q, R) on A and K/(E, V) = J. Since (Q, R) extends correspondences and 

JU  is one, there exists a correspondence K': B —x B" such that B" is a result 
V Li V 

of (Q, R) on A' and K'/(E, V) = JU• Because (Q, R) is single-valued, B" = B', 

and so K': B —x B'. 
VUV• 

By Lemma 5.3.3, the componentwise intersection K n (K is a strong (V U 

V1-correspondence from B'to B,and we have 

(Kn (K") -')/(L',V) = (K/(L,,V)) n ((K') °/(E,V)) 

= (K/(L',V)) n (Kh/(E,V))u 

= j(jU)U 

=J. 

Thus, (Q, R) extends strong correspondences. 	 0 

We shall now prove a converse theorem: cells that are stable for behavioural 

equivalence are stable for behavioural inclusion, provided that they are "mono-

tonic". 

5.3.9 Definition. A cell (Q,R) of signature ((L',V), (E,V)) in the institu-

tion (TSig, TInci, TA1g) is rnonotonic, if whenever A E Q and A' is a weak 

subalgebra of A with the same hidden carriers as A, then 

A'EQ, 

there exists a result of (Q, R) on A', and 

whenever B' is a result of (Q, R) on A', 

then 	there exists a (V U V)-correspondence 

K:B' —x B 
VLJV 

such that B is a result of (Q, R) on A and 

K/(E,V) is the inclusion from A' to A. 	0 

This definition is similar in structure to Definition 5.3.5: this time, the mor-

phisms to be extended are inclusions between algebras with the same hidden 

carriers, and the morphisms they may be extended into are correspondences. 

Monotonicity is a consequence of stability for behavioural inclusion. 
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5.3.10 Proposition. A cell in the institution (TSig, TInci, TA1g) that is 

stable for behavioural inclusion is monotonic. 

Proof. A cell that is stable for behavioural inclusion extends correspondences by 

Theorem 5.2.4. Monotonicity is just this property applied to inclusions between 

algebras with the same hidden carriers. 0 

5.3.11 Theorem. A cell in the institution (TS1g, TInci, TA1g) that is mono-

tonic and stable for behavioural equivalence is stable for behavioural inclusion. 

Proof. Let (Q,R) be a cell of signature ((E,V),(E,V)) in the institution 

(TS1g, TInci, TA1g), and assume that (Q, R) is monotonic and stable for be-

havioural equivalence. By Theorem 5.3.6, (Q, R) weakly extends abstraction 

functions and converse abstraction functions. 

We show that (Q, R) extends correspondences. Let A E Q, and let C: A' —x 

A be a V-correspondence (i. e., a representation morphism in Corr(E, V)). 

By Lemma 5.3.7, we can form a diagram 

H 	J 	K 

V 	 V 

such that H and K are strong partial V-homomorphisms, C is a weak subalgebra 

of D with the same hidden carriers, j is the inclusion homomorphism, and 

C = Hu ; J ; K. In particular, Hu  and K are strong correspondences, i. e., 

representation morphisms in SCorr(E, V). 

- - ShiceAEQ axid(Q, -R) extendsstrong correspondences, -  1? E-Q  -also. - By - - 

monotonicity, C E Q. Since  (Q, R) extends strong correspondences, it follows 

that A' E Q and that there exists a result of (Q, R) on A'. 

If B' is a result of (Q, R) on A', then (since (Q, R) extends strong corre-

spondences) there exists a strong (V U V)-correspondence H : B' =x VuV.  E 
such 

that E is a result of (Q, R) on C and H/(E, V) = Hu. By monotonicity, there 

exists a (V uV)-correspondence J: E —x F such that F is a result of (Q,R) 
VuV• 

on D and J/(E, V) = J. Finally, since (Q, R) extends strong correspondences, 

there exists a strong (V U V)-correspondence K: F 	B such that B is a 
VuV. 
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result of (Q, R) on A and K/(E, V) = K. These three correspondences form 

the diagram 
H' 	J' 	K' 

B'=xE—xF=xB. 
VUV' VUVO VUV 

The composition G := H ; J ;K of this diagram is a (V UV)-correspondence 

from B' to a result B of (Q,R) on A, and 

= (H/(E,V)) ; (J/(E,V)) ; (K'/(E,V)) 

=H" ;J;K 

=G. 

Hence (Q, R) extends correspondences, and, by Theorem 5.1.15, is stable for 

behavioural inclusion. 	 0 

Combining Theorem 5.3.8 and Theorem 5.3.11, we obtain the following corollary. 

5.3.12 Theorem. For cells in the institution (TSig, TIncl, TA1g) that are 

single-valued and monotonic, the stability notions for behavioural equivalence 

and behavioural inclusion are equivalent. 	 0 

Since program modules in concrete programming notations may reasonably be 

expected to be single-valued and monotonic, the two stability notions are equiv-

alent for most practical purposes. 

An example of a programming notation that would allow only modules to be 

defined that are stable for behavioural equivalence can be derived from the lan-

guage L investigated by Nipkow in connection with nondeterministic data types 

[Nipkow 861. It was remarked earlier that modules consisting of function defini-

tions in this language extend simulations, and that the simulations between par-

tial many-sorted algebras are just the strong correspondences (cf. page 281-283). 

By removing the nondeterministic "angelic choice" operator from L, we obtain a 

deterministic language L' featuring application, local binding (let), lists, condi-

tional, and recursive function definitions. Function definitions in L' over partial 

many-sorted algebras define partial functions, and thus a module consisting of 
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function definitions in L' is a module in (TSig, TInci, TA1g), because its result 

on a partial algebra is again a partial algebra. Since modules written in L ex-

tend simulations, so do modules written in L', and since the simulations between 

partial algebras are just the strong correspondences, modules consisting of func-

tion definitions written in L' extend strong correspondences and are therefore 

The language L' does not contain any data 

type constructors, but we may add to it constructors whose instances (which are 

modules) extend correspondences. It is an easy exercise to prove that standard 

type constructors, such as product, union, or "list" extend correspondences. 

5.4 Stability for Standard Representation 

This section analyses the stability notion of the standard representation rela-

tion between partial algebras and compares it with the stability notions of the 

behavioural representation concepts. 

As we shall see, stability for standard representation implies stability for 

behavioural equivalence and behavioural inclusion under some not unduly strong 

conditions. However, a cell will be shown that is stable for behavioural inclusion 

and equivalence, but not stable for standard representation. Thus, not only 

is the simple implementation concept for abstraction functions more restrictive 

than those for correspondences and strong correspondences (Prop. 5.1.7 and 

Example 4.5.5), but standard representation also excludes more cells on the 

grounds that they are not stable. 

First, we define a representation functor for standard representation. 

5.4.1 Definition. Let APun: TSig°" - LCat be the functor mapping 

(E, V) E ITSigl to the category of V-abstraction functions between small E-alge-

bras (cf. Prop. 4.4.5), and a tagged signature morphism a: (E, V) - (E', V') to 

the functor AFun(a°P): AFun(E',V') -+ APun(E,V) which is the restriction 

of SCorr(o°") (or Corr(a°P)) to abstraction functions. o 
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5.4.2 Proposition. The functor APun is a representation functor in (TSig, 

TInci, TA1g), and its representation relation is standard representation. 

Proof. For each (L', V) E ITSigI, the category AFun(E, V) is a subcategory 

of SCorr(E, V) (and of Corr(E, V)) with the same objects. 

For every a: (E, V) -* (Z', V') in TSig, AFun(a °P) is a functor from 

AFun(1', V') to AFun(E, V), because it is a restriction of SCorr(o°P), and 

that functor maps V'-abstraction functions to V-abstraction functions, as is easily 

It is now trivial to verify the axioms (a) and (b) of Definition 5.1.1. 

Axiom (c), pair-completeness, will now be derived from the analogous prop-

erty of SCorr. 

If (Eo, Vo) and (E1, Vi) are compatible small tagged signatures, and 

J:AB and K:C*D 
V0 	 V1  

are morphisms in APun(Eo ,Vo) and AFun(E1,V 1) respectively such that 

J/((L'o,Vo) n (E1,V1)) = K/((Eo,Vo) n (L',V)), 

then by pair-completeness of SCorr, there exists a strong correspondence 

L:AUC =x BUD 
V0  uV1  

such that L/(Eo,Vo) = J and L/(E1,V1) = K. 

The strong correspondence L is an abstraction function, because with So and 

S1_thesortsetsof E andE 1 ,we. haveiorevery_& ES0 uS1 : 	 - - 	 - 	 - 

• ifsESo, then 

L e  = J8  is a partial surjective function from A 8  to B8 , 

hence from (A U C) 8  to (B U D) 8 . 

• ifsESj, then 

L 8  = K. is a partial surjective function from C8  to D8 , 

hence from (A U C) 8  to (B U D) 8 . 
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In either case, L. is a partial surjective function from (A U C) 8  to (B U D) 8 , 

and thus L: A U C ** B U D, which means that L is the desired morphism in 
V0  LW1 

AFun((Eo,Vo) U (E,V)). 

We have shown that AFun is a representation functor in (TS1g, TInci, 

TAlg). By Definition 4.5.1, the representation relation of AFun is standard 

- 	representation. 	 - 

Due to this theorem, the concepts of Section 5.1 become applicable, and we 

obtain a "simple implementation" concept for abstraction functions and a "sta-

bility" concept for standard representation. 

5.4.3 Example. In Example 4.5.3, a correctness proof of the module MSTORE 

from the dictionary program development was given using the standard tech-

nique for data representation correctness proofs. It will now be shown that this 

proof can be viewed as a proof that the module MSTORE  is a simple implemen-

tation of its specification cell .MSTORE with respect to abstraction functions. 

The specification cell I4 STORE consists of the interfaces 

Q STORE = 'ITEM A ILlS TI TEM 

STORE = 'INSERT A 'MIN. 

In Example 4.5.3, a { bool , item, list item}-abstraction function h was constructed 

from the result B of MSTORE  on an arbitrary model C of Q STORE to a result A 

of .MSTORE on the same model C. Since {bool, item, listitem} is just the sort 

set of the environment signature Sig(QSTORE), the reduct of h to this signature 

is the identity. Hence h is the representation morphism required by the simple 

implementation criterion (with respect to abstraction functions). Together with 

the simple check that each algebra in the abstract import interface Q STORE 

is a base for MSTORE,  this proves that MSTORE  is a simple implementation 

of .MSTORE with respect to abstraction functions. 0 

We shall now analyse the stability notion for standard representation and corn-

pare it with the ones for behavioural inclusion and behavioural equivalence. 
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5.4.4 Theorem. A cell in the institution (TSig, TInci, TA1g) is stable for 

standard representation, if and only if it extends abstraction functions. 

Proof. The proof is precisely analogous to the proof of Theorem 5.2.4; just 

replace "behavioural inclusion" by "standard representation", and "correspon- 

dence" by "abstraction function" (Lemma 5.2.5 still applies). 	 o 

It will now be shown that stability for standard representation implies stability 

for behavioural equivalence, provided that the cell in question is single-valued 

and that its requirement interface Q is "closed under abstraction functions". 

5.4.5 Definition. An interface Q of signature (L', V) is closed under abstraction 

functions, if B E Q and h: B 4= A imply A E Q. 	 0 

5.4.6 Theorem. A cell in the institution (TSig, TInci, TA1g) that is single-

valued, whose requirement interface is closed under abstraction functions, and 

that is stable for standard representation is stable for behavioural equivalence. 

The theorem will be obtained immediately from the following lemma. 

5.4.7 Lemma. A cell in (TSig, TInci, TAJg) that is single-valued, whose 

requirement interface is closed under abstraction functions, and that weakly 

extends abstraction functions weakly extends converse abstraction functions. 

Proof. Let (Q,R) be a cell of signature ((E,V), (E,V)) that satisfies the 

assumptions of the lemma. 

Let A E Q, and let J: A' ;: A be such that Ju:  A 	A'. Since Q is 
V 	 V 

closed under abstraction functions, it follows that A' E Q. Since  (Q, R) weakly 

extends abstraction functions and jU  is one, there exists a result B of (Q, R) 

on A and we can pick K: B  
VLJV

B'  such that B' is a result of (Q, R) on A' and 

K/(E,V) = Ju .  

There exists a result of (Q, R) on A' (namely B'). If B' is a result of (Q, R) 

on A', then B = B' by single-valuedness, and Ku:  B 	.': B is the desired 
VuV. 

extension of J, because K/(E,V) = JU and so Ku/(E,V) = J. 	 0 
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Proof of Theorem 5.4.6. 

Let (Q, R) be a cell satisfying the assumptions of the theorem. Since (Q, R) 

extends abstraction functions, it weakly extends abstraction functions. By the 

previous lemma, (Q, R) weakly extends converse abstraction functions, and so 

by Theorem 5.3.6, (Q, R) is stable for behavioural equivalence. o 

As a corollary, we obtain 

5.4.8 Theorem. For cells in the institution (TSig, TInci, TA1g) that are 

single-valued, monotonic, and whose requirement interface is closed under ab-

straction functions, the following implications hold: 

Stability for standard representation 

Jv  

Stability for behavioural equivalence 

Stability for behavioural inclusion. 

Proof. Combine Theorem 5.312 and Theorem 5.4.6. 	 0 

It will now be shown that the top arrow in the previous theorem is a strict 

implication, because there exist cells that satisfy the three conditions of the 

theorem, are stable for the behavioural representation concepts, yet are not 

stable for standard representation._Since the counterexample presented in the 

proof is conceivable as a module of a programming notation, we may conclude 

that stability for standard representation is more restrictive than the behavioural 

stability notions for practical purposes. 

5.4.9 Theorem. The top implication of Theorem 5.4.8 is strict; that is, there 

exists a cell in the institution (TSig, TInci, TA1g) that is single-valued and 

monotonic, whose requirement interface is closed under abstraction functions, 

and that is stable for the behavioural representation notions, yet that is not 

stable for standard representation. 
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Proof. The cell to be presented as an example provides an encryption facility 

for data types in a machine based on B-ary words of length N (B > 2, N > 1). 

The possible words are identified with the numbers in W := 10,..., B" - 11, 

and we assume as given an "encryption" and a "decryption" function 

E,D: rJ (W,W)—W  

with the property that for all "keys" k E Wand "dawords" x EW, 

D(E(x,k),k) = 

that is, a word x that has been encrypted with the key k can be decrypted with 

the same key. 

Let (Q, R) be the module shown in Figure 5-5. The signature of this cell 

will be named ((',O),(',O)); in particular, there are no visible sorts to be 

considered. 

The type crypt generated by the cell (Q, R) is an encrypted version of the 

argument type item, provided that the argument types satisfy word = W (i. e., 

word is the type of machine words) and item C W (1. e., all item values are ma-

chine words). This assumption is reasonable in a low-level systems programming 

situation, where all data are represented by machine words. 

However, the cell (Q, R) provides a result also for interpretations of item 

and word that do not satisfy the requirement above; this is to make them fit 

into the institution (TSig, TInci, TA1g), where arbitrary algebras may appear 

as arguments. (One could prevent this from happening by using another insti-

tution, in which all carriers of all algebras have to be subsets of the set W of 

machine words, and in which all signatures contain a visible sort word whose 

interpretation in all algebras is W.) 

The second parameter of enc plays a special role; it may be called the "salt" 

(after [MT 79]). In the case that encryption is performed and the number K 

of B-ary digits needed to represent the values of type item is less than the 

word length N, an item value x is "padded" before encryption to the full word 

length N by prefixing it with N - K digits taken from the "salt" parameter s 

(so that the value actually encrypted is x + B"(s mod BN_K)).  After decryp-

tion, the extra digits are removed again (by the operation - mod BK),  so that 
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cell 

environment signature 

item, word: sort 

key: -+ word 

defined symbols 

crypt: sort 

enc: item word -+ crypt 

dcc: crypt -+ item 

requirements 

[no requirements 

result 

if word=W,itemçW 

then let K := rlogB( 1  + max(item U {O}))] be the number 

of B-ary digits needed for item (0 < K < N), 

crypt = W, 

if Ø Odomkey then dom enc = dom dec = 0 

else enc(z,$) = E(x + BK(s mod BNIo), keyO), 

dec(y) = D(y,keyO) mod B' 

else crypt = item, 

if Ø 0 dom key then dom enc = dom dec = 0 

else enc(x,$) = 

dec(y) = y. 

Figure 5-5: The "encryption" module (Q, R) 
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the value retrieved is the value that was encrypted (i. e., the first argument of 

the encryption function). The "salt" value is thus irrelevant to the observable 

results; however, in case that K < N, it allows one to create several possi-

ble encryptions for each item value without further cost, as the encryption and 

decryption functions deal with entire words anyway. This provides increased 

security against key search techniques that might be applied when values and 

their encryptions are available: While without the salt, each key produces a sin-

gle encryption of each value, the number of possible encryptions of a value by a 

key is increased to BN_K  with the salt technique. This technique has been used 

to increase password security in the UNIX operating system [MT 79, p.  5971. 

Obviously, the cell (Q, R) is single-valued and consistent (hence a module), and 

its requirement interface is closed under abstraction functions, because it corn-

prises all E-algebras. 

It will now be shown that (Q, R) is stable for behavioural inclusion. By The-

orem 5.3.8, it then follows that (Q, R) is stable for behavioural equivalence also; 

and by Proposition 5.3.10, it follows that the cell is monotonic. For the proof, 

Theorem 5.1.15 will be used; that is, we show that (Q, R) extends correspon-

dences. Thus, let C: A' —x A be a correspondence between E-algebras, i. e., an 

{ item, word }-sorted relation such that if () E dom A'key  then () E dorn Ak and 

(A ey O, Ake y O) E Gw o rd. 

Let B' be the result of (Q, R) on A', and let B be the result of (Q, R) on A. 

The desired correspondence H from B' to B is given by 

Flitem  Gitem, 

Hwo rd = Gwor , 

.UCTYPt = { (B ene 	Benc(X,S)) I 
(x',x) E Hitem, 

(I) e 

(x',s') E domB, (x,$) E domB }. 

To verify that H is a correspondence from B' to B, we have to show that the 

three operations key, eric, and dec are compatible with it. 
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key: The compatiblity follows trivially from the fact that H word = C word  and 

that C is a correspondence. 

ene: Let (x',z) E Hit e ,, and (s',$) E H 0 d be such that (z',s') E domB. 

Then we must have 0 E domA ey  (for otherwise, domB  would be empty), 

hence () E dom Akey  and thus (x, a) E dom 	(since () E dom Akey  implies 

tha.t B encis 	a!). Frànit1Iè dfiuiii6n 	rypt, it iththédialy TólloI tIiat - 

(B'(z', a'), 	a)) E "crypt. 

dee: We first check that if 0 E domAk, then for all x E Aitem and a E W: 

Bdcc(Bcnc(x,$)) = X. 
	 (1) 

For, if word = W and item C W, then (with K the number of B-ary digits 

needed for item as in the definition of (Q,R)) 

Bdec(BeC(x,a)) = D(E(z + B"(s mod BN_K), keyO), keyQ) mod B" 

= (z + B"(s mod BN_K))  mod B" 

=x 	(xEitem,henceO<x<B"), 

and otherwise, 

Bdec(Benc(X,$)) = Bdec(x) = X. 

Of course, the same argument shows that if () E domA, then for all xE At em  

and sEW: 

B jc (B nc (X,S)) = x. (1') 

Now let (y',y) E Hc ,ypt  be such that y' E domB. Since then Hcrypt # 0, 

we must have () E dom A' (otherwise would be undefined everywhere), 

and hence () E dom Akey.  Furthermore, by definition of Hc rypt, we can choose 

x',s',x,s such that (x',x) E "item, 
(l,) E Hword, y' = B'C flC  (x',s'), and 

y = a). By (1) and (1'), we have 

(B 1 (Y'),  Bj  (y)) = 	(B'enc (', a')), Bdec(Benc  (x, a))) 

= (x' ) x) 

E Hitem. 
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It has thus been shown that H is a correspondence. Clearly, the reduct of H 

to 17 is the original correspondence C. Thus, (Q, R) extends correspondences. 

It remains to be shown that (Q, R) is not stable for standard representation. 

Using Theorem 5.4.4, it suffices to show that (Q, R) does not extend abstraction 

functions. 

Let A' and A be the 17-algebras defined by 

A ord = A 0 d = 14', 

At em  = W = {O,...,BN - 	Aitem = {O, ... ,BN_l - 11, 

A() = Aicey() = k where k E W is chosen arbitrarily, 

and let H: A' 	A be the abstraction function defined by 

H0a(w) = w 	 for w E A0d = W, 

Hitem(x) = z mod B" 	for x E A' = W. item 

Clearly, H is a surjective strong partial homomorphism from A' to A. 

The result algebras B' and B of (Q, R) on A' and A have the additional 

components defined by 

ID? 	_ID 	-- 
cryp 	.Dcrypt  

B'(x,$) = E(x+ BN(s  mod 1), k) = E(x,k) 

B enc (x , $)= E(z +BN_l (3 mod B), k) 

B'dec (y) = D(y) mod BN = D(y) 

Bdec(y) = D(y) mod BN_l. 

Now suppose that C is a correspondence from B' to B that extends H, so that 

Cword = Hword and Citem = Hitem. Since (0,0) E Citem and (0,0) E Gwo rd, it 

follows that 

(B(O,O), B e nc (0,O)) = (E(O,k), E(0,k)) E C crypt, 

and since (0,0) E Citem and (1,1) E Gw ord, that 

(B(0,1), B enc (0,1)) = (E(0,k), E(BN_l,k))  E Gcrypg. 
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We have E(O, k) 	E(B, k), because D(E(O, k), k) = 0, which is different 

from D(E(BN_,k),k) = B 1 . Thus, G cryp g contains two pairs with the same 

first components, but different second components. Therefore G,0 cannot be 

a partial function, and thus no partial homomorphism from B' to B can exist 

that extends H. It follows that (Q, R) does not extend abstraction functions 

and thus is not stable for standard representation. 0 

Note that in the counterexample presented in this proof, the fact that encryption 

is performed is actually irrelevant (we could use the trivial encryption functions 

defined by E(x, k) = D(x, k) = z). The encryption only serves to motivate the 

introduction of the "salt" parameter that does not contribute anything to the 

observable results. It is the fact that fewer B-ary digits of the salt are preserved 

when the item parameter requires more digits that causes the cell not to extend 

abstraction functions. 

Figure 5-6 summarizes the relations between the stability notions that have been 

established in this chapter. The labels next to the arrows indicate the conditions 

under which the implications hold. 

At the end of the previous section, it has been illustrated how to use a stability 

criterion in a "positive" way, namely to prove that a programming notation sup-

ports data abstraction in the sense of this thesis. In the proof of Theorem 5.4.9, 

it has been shown how to use the stability notion in a "negative" way, namely to 

prove that a certain type constructor cannot safely be used in connection with 

standard representation. This kind of proof is practically useful too, because it 

shows which constructs must not be included in a data abstraction language. 

5.4.10 Example. The array and set data type constructors of PASCAL must 

not occur in a programming language intended to support data abstraction when 

the representation relation is behavioural inclusion, behavioural equivalence or 

standard representation. 
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Stability for 	 single-valued 	 Stability for 
Behavioural 	 Behavioural 

Inclusion 	 monotonic 	 Equivalence 

:rexample: f/single-valued, 

yption 	)( / requirement 
/ / abstr.-fn.-closed 

Stability for 
Standard 

Representation 

Figure 5-6: Implications between stability notions in (TSig, TInci, TA1g) 

The reason is that the two constructs allow one to write the function defi-

nitions equall and equa12 that were discussed in Section 1.2 and that translate 

into the modules M1 and M2 shown in Figures 5-7 and 5-8. These modules 

do not extend correspondences nor weakly extend abstraction functions nor ex-

tend abstraction functions, and hence (by Theorems 5.2.4 5.3.6 and 5.4.4) are 

not stable for behavioural inclusion nor behavioural equivalence nor standard 

representation. 

Consider M1 first. The following two algebras A and A' are members of the 

requirement interface of M1: 

Aboolean = A'boolean = {T,F} 

A true = A rue  = T 

Ajaiee = Afa1ae = F 

AT={O} A.={O,1}. 
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M1 = module 

environment signature 

boolean, T: sort 

true, false: - boolean 

defined symbols 
- 	- 	

equal 	bóoleà 

requirements 

"T is an ordinal type" 

result 

function equall (x, y: T): boolean; 

var a: array[T] of boolean; 

begin a[x] := false; 

a[y] := true; 

equall := a[x] end; 

Figure 5-7: The PASCAL module M1 

The following relation C is a {boolean}-abstraction function C: A' 4=* A 
{ 

boolean } 
(and hence a {boolean}-correspondence as well): 

Gboolean = Id({T,F}) 

CT = {(0,0), (1,0)}. 

The results B' and B of M1 on the bases A' and A have the same sorts as 

A' and A, hence if a correspondence from B' to B extending C did exist, it 

would have to be equal to C. However, C is not a correspondence from B' to B, 

because equall is not compatible with it: We have (0,0) E CT and (1,0) E Cr, 

but 

(B quaii (0,1), Bequaii(0,0)) = ( F,T) Gboolean. 

Thus, there exists no correspondence (let alone a strong correspondence or ab- 

straction function) from B' to B that extends C, hence M1 does not extend 
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M2 = module 

environment signature 

boolean, T: sort 

defined symbols 

equal2: T T -+ boolean 

requirements 

boolean={T,F} 

"T is an ordinal type" 

result 

function equal2 (x, y: T): boolean; 

begin equal2 := z in [] end; 

{L&'l is the set with single member y, 

in is the membership test}. 

Figure 5-8: The PASCAL module M2 

correspondences nor weakly extend abstraction functions nor extend abstraction 

functions. 

For M2 the argument is precisely the same, except that from the algebras 

A and A' the operations true and false should be removed so that they become 

elements of the requirement interface of M2. The correspondence G and the 

remainder of the argument are as for M1. 
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Chapter 6 

Conclusions 

Modular Programming and Data Abstraction 

A theory of modular programming and data abstraction has been presented that 

explains why these design methods lead to correct programs. 

Modular programming is viewed as the construction of a "structured correct-

ness argument" (sketched in Figure 3-5), in which the correctness of a program 

composed of a number of modules is established by separate correctness proofs 

of the individual modules. 

The basic entities of the theory are "cells" (Def. 3.1.10), which consists of 

an import (or "requirement") and an export (or "result") interface, and which 

represent program modules as well as program or module specifications. 

The external export and import interfaces of a program under design form a 

cell called the "global cell" of the program development. In the structured cor-

rectness argument for a modular program, each program module is specified by a 

"module specification", and both modules and module specifications are cells in 

the theory. The module specifications must form a "decomposition" (Def. 3.2.10) 

of the global cell. They may be derived from a design graph recording the im-

port and export interfaces of each module, and this automatically establishes 

the semantic part of the "decomposition" notion (cf. Example 3.2.11 and the 

discussion following it). 

Every module of the program must be "correct" with respect to its specifica-

tion. The correctness notion appropriate for modular programming is called "re-

finement" (Def. 3.1.18), and. the "composability theorem of refinements" (The.. 

orem 4.1.12) asserts that if each module of a program is a refinement of its 
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specification, then the result of composing the modules is a refinement of the 

global cell, which means that the resulting program is correct with respect to the 

global import and export interfaces. This theorem generalizes previous theorems 

by myself [Schoett 81] and by Back and Mannila [BM 841. 

Data abstraction is viewed as an extension to modular programming. The 

requirement that the entities defined in a program satisfy the interfaces is re-

axd, and it is only required that these program entities "represent" entities 

satisfying the interfaces. Nevertheless, the users of an interface may depend on 

the interface as it is and need not be concerned with the fact that they will be 

supplied with program entities that need not satisfy the interface. 

The correctness notion appropriate for modular programming with data ab-

straction is called "universal implementation" (Def. 4.1.5), and it is shown that 

this notion can be used as the correctness notion in a structured correctness argu-

ment: the "composability theorem for universal implementations" (Thin. 4.1.7) 

asserts that if each module of a program is a universal implementation of its 

specification, then the result of composing the modules is a universal implemen-

tation of the global cell. 

The universal implementation property of a cell is cumbersome to prove di-

rectly; hence universal implementation can not be proposed as a correctness 

criterion for practical programming. Appropriate for practice is the "simple im-

plementation" criterion (Def. 5.1.5), which corresponds to established methods of 

proving the correctness of data type representations (Example 5.4.3). It requires, 

however, that the representation relation can be characterized by "representa-

tion morphism? (Def. 5.1.1). The simple implementation relation is transitive 

and thus allows the "vertical composition" of implementation steps. 

"Stable" cells are those for which the simple implementation property implies 

the universal implementation property (Def. 5.1.10). Hence proving the simple 

implementation property of stable cells is sufficient to guarantee that they are 

universal implementations of their specifications, which is what is needed for a 

valid structured correctness argument. 

I suggest that stability should be regarded an essential design criterion for a 

programming language that is to support data abstraction: the language should 
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allow only stable modules to be defined. With such a language as the target 

language of a modular program development, programmers need only verify the 

simple implementation property of their modules, which means that they may 

use established practical proof methods. 

- Gi rálitythi'ouh Iiiitltütions - 

The theory of this thesis is based on a varIant of the "institution" notion of 

Goguen and Burstall [GB 841. The "signatures" and "models" of an institu-

tion can represent the "type environments" (sets of identifiers with associated 

type information) and the "environments" (identifiers with associated semantic 

values) of a programming language. By choosing appropriate institutions, the 

theory can be applied to modular programming in various frameworks. In par-

ticular, there is no limit to the kinds of program entities that may occur in a 

programming language and may be imported and exported by its modules: data 

types, functions, procedures, data values, data objects, labels, processes, or even 

modules themselves. 

The "institution" notion of this thesis (Def. 2.3.5 and 2.3.9) differs from the 

one introduced by Goguen and Burstall in two respects. There is no notion of 

"sentences" in this thesis, because there is no need to consider specifications on 

the syntactical level—only the semantics of a specification, i. e., the set of models 

it describes, enters the theory (as a "specification" or "interface" in Def. 3.1.6), 

and the language in which specifications are written is irrelevant to the theory. 

Second, the institutions of this thesis are equipped with a partial ordering be-

tween signatures, which allows us to combine signatures and models without 

linking them by explicit signature morphisms. If a. signature S is included in 

a signature T according to the partial ordering, it means that all the program 

entities described by S occur in T also. There is thus an automatic identifica-

tion of program entities between different signatures, which reflects the idea that 

the signatures reside in a common "name space", so that a name occurring in 

different signatures must refer to the same program entity. 
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The particular institution considered on the "concrete level" of this thesis, 

the institution of partial many-sorted algebras (Thm. 2.3.6 and 2.3.11), deals 

with programs in strongly typed functional programmming languages such as 

the typed A-calculus [Barendregt 84, App. A], the language ML [HMM 861 with-

out assignment, polymorphism and exceptions, or the deterministic applicative 

algorithmic sublanguage of CIP-L [CIP 851. The example program development 

in Section 1.4 is carried out in such a language. 

Generality is further achieved by considering abstract "representation relations" 

(Def. 4.1.1) and "representation categories" (Def. 5.1.1) in this thesis. The pur-

pose of a representation relation is to express when one model is to be considered 

a correct "representation" of another one. The representation model will usu-

ally consist of program entities defined in some programming notation, while the 

model it represents may be an "abstract model" that satisfies the specifications 

of these program entities. A natural way of defining a representation relation 

is to require that two models in the relation must have the same "observable 

behaviour", which means that every program produces the same output when 

based on the one model as when based on the other model. 

The "simple implementation" notion, which is proposed as the correctness cri-

tenon to be verified by module designers, requires that a representation relation 

has an associated "representation category", in which there is a "representation 

morphism" from each representation to the model it represents. In the institu-

tion of partial algebras (with distinguished "visible sorts"), three representation 

concepts were considered: 

representation relation 	representation morphisms 

behavioural inclusion 	correspondences 

behavioural equivalence 	strong correspondences 

standard representation 	abstraction functions 

The association of representation relations with representation categories ap- 

pears to be natural and useful. In particular, it becomes possible to formulate 
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the "simple implementation" concept, which reflects established practical meth-

ods for proving the correctness of data representations (Example 5.4.3). 

The theory of data abstraction for nondeterministic data types recently pub-

lished by Nipkow [Nipkow 86] has not influenced the design of the present theory, 

yet it fits perfectly into the framework of "representation relation" and "repre-

sentation category" (page 281-283). 

Representation Relations between Partial Algebras 

It has been argued in Section 4.2 that representation relations between (total 

and hence between) partial algebras must be based on a set of "visible sorts" 

(or analogous concepts of "visible values") that must be represented identically, 

since otherwise they would allow useless representations such as, for example, 

the term algebra as a representation of every total algebra of that signature with 

nonempty and finite or countable carriers. 

- Three representation relations between partial algebras have been introduced 

and compared. 

"Standard representation" (Section 4.5) is the representation relation as-

sociated with the "abstraction function" proof method introduced by Hoare 

[Hoare 72], which has formed the basis of most approaches to data represen-

tation. 

"Behavioural equivalence" (Section 4.4) is based on the notion of the "ob-

servable behaviour" of an algebra, where values of the visible sorts may be input 

to computations, and result values of visible sort can be discriminated. The 

behavioural equivalence relation is characterized by the existence of a "strong 

correspondence" between two algebras (Def. 4.4.3 and Thm. 4.4.6), and this 

yields a useful practical proof method in which the usual "abstraction function" 

is generalized to a relation (Example 4.4.7). 

An important advantage of behavioural equivalence and the proof method 

based on strong correspondences over the standard representation concept is 

that they are strictly more general (Thm. 4.5.4 and Example 4.5.5), thus allow-

ing more representations, and that "representation bias" [Jones 80, Ch. 151 in a 
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specification no longer restricts the range of correct representations. This elirni-

nates one of the main criticisms of the "abstract model" specification technique 

for encapsulated data types. 

A second advantage of behavioural equivalence over the standard represen-

tation relation is that the stability notion for behavioural equivalence is strictly 

more general (for cells that are single-valued and whose requirement interface is 

closed under abstraction functions) than the stability notion for standard repre-

sentation (Thm. 5.4.9). This means that in a programming language designed 

to support data abstraction (i. e., a language with stable modules), more con-

structs are allowed when the representation relation is behavioural equivalence 

than when the representation relation is standard representation. Thus, behav-

ioural equivalence is superior to standard representation in every respect except 

familiarity, and should be used in programming practice instead of standard 

representation. 

"Behavioural inclusion" (Section 4.3) is a new representation relation that 

combines the "partial implementation" idea of Kainin and Archer [KA 84] with 

the behaviour idea. It is strictly more general than the "implementation" notion 

of Kamin and Archer (Thin. 4.3.11 and Example 4.3.12), and admits correctness 

proofs by means of "correspondences". 

For cells that are single-valued and monotonic, the stability notions for be-

havioural inclusion and behavioural equivalence are equivalent to each other 

(Thm. 5.3.12). It will often be most useful to prove that the modules of a pro-

gramming language are stable for behavioural inclusion, because this implies 

that they are stable for behavioural equivalence also under the natural condition 

that they are single-valued (Thin. 5.3.8). 

Design of Programming Languages for Data Abstraction 

The theory of this thesis shows that "simple implementation" can be used as the. 

correctness notion in a modular program development, provided that the nota-

tion in which the modules are finally coded allows to define only stable modules. 
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I suggest that stability of modules should be regarded as an essential design 

criterion for a programming language intended to support data abstraction. 

To verify that a programming language has stable modules and hence sup-

ports data abstraction, the following steps are necessary. 

• Designing an institution whose signatures correspond to the type environ-

- ments and whose models correspond to the semantic environments of the 

language. 

• Defining a representation category. This defines an associated representa-

tion relation (which may or may not be chain-closed and hence allow to 

compose infinite systems). The representation relation should depend only 

on the "observable behaviour" of the models. 

• Proving that the modules of the language are stable, e. g., by showing that 

they extend representation morphisms. 

After these steps have been performed, this thesis provides a sound and practical 

methodology for modular program development with data abstraction in this 

language. 

The claim that stability is the appropriate design criterion for a data abstraction 

language is supported by two further aguments. 

First, the stability notion is defined as the condition under which the simple 

implementation property implies the universal implementation property. Thus, 

there is no way of introducing another, perhaps more general, notion instead of 

stability without changing the methodology or one of the two implementation no-

tions. The simple implementation notion, however, corresponds closely to prac-

tical data representation correctness proofs, while the universal implementation 

notion is both necessary and sufficient for the composability of implementations 

(except perhaps for a slight generalization using a notion of "concrete model", 

cf. page 181). 

Second, examples show that stability is a reasonable requirement of pro-

gramming languages. Nipkow's nondeterministic language L [Nipkow 861, which 
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features application, local binding (let), lists, conditional, recursion, and an-

gelic choice, is stable for the representation relation associated with his "simu-

lation" concept (cf. page 281-283), and the deterministic sublanguage obtained 

by removing the angelic choice operator is stable for behavioural equivalence, 

as discussed at the end of Section 5.3. Also the sufficient condition for stability 

that modules "extend representation morphisms" (Def. 5.1.14 and Thm. 5.1.15), 

is very similar to the "representation independence" theorems that have been 

proved for variants of the typed A-calculus (cf. page 280 f.). Finally, the type 

constructors array and set of PASCAL, which are not compatible with data 

abstraction (cf. page 16 f.), are ruled out by the stability criterion for any of the 

three representation relations between partial algebras that have been considered 

(Example 5.4.10). 

Practical Program Design 

The development of the dictionary program in Section 1.4 is an example of 

modular programming with data abstraction as supported by the theory of this 

thesis. The modules and interfaces of that development fit the corresponding for-

mal notions (in the institution of tagged algebraic signatures and partial many-

sorted algebras), the final design graph yields a decomposition of the global cell 

('ITEM A ILIsTITEM, IDICT), the correctness notion employed for the modules 

IDICT, 'INOUT, 'INPUT and 'OUTPUT  is the refinement notion of the theory, 

and the conventional data representation correctness proof of MSTORE  sketched 

on page 54-57 and performed formally in Example 4.5.3 proves that MSTORE 

is a simple implementation (with respect to any of the three representation cat-

egories introduced) of its specification. What is missing, however, is a proof 

that the modules of this development are stable. The proper way to prove this 

would be to formalize the notation used to define these modules, and to show 

that this language allows to define only stable modules. To include such a proof 

in this thesis, however, would require a lot of additional formalism, yet not be 

interesting, because the notation is so primitive. 
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In the dictionary example, modular programming was viewed as the con-

struction of a design graph. From a design graph, module specifications as 

required by the structured correctness argument and by the composability the-

orems are derived immediately (Example 3.2.11). If (the signatures of) these 

module specifications form a syntactical decomposition of (the signature of) the 

global cell, then the semantic decomposition property follows from the fact that 

the specifications were derived from a design graph. Hence design thàkè 

it unnecessary to prove the semantic component of the "decomposition" notion. 

Design graphs do not help, however, to establish the syntactical decomposi-

tion property of the (signatures of the) specifications derived from them. I have 

translated the requirements of the syntactic decomposition notion back to design 

graphs, but the resulting criteria showed clearly that they were derived in this 

way and did not seem to be of any practical use. It appears that to ensure the 

syntactical decomposition property, there must be a global coordinator for a de-

sign graph who ensures that all signatures remain compatible, and that each sym-

bol is "defined" in at most one place. This seems to be a consequence of the idea 

that one single "name space" (1. e., signature) should underlie a decomposition. 

The dictionary program development of Section 1.4 has illustrated the strategy 

of "access function refinement", which allows one to determine the elementary 

access functions to an encapsulated type in the course of refining more problem-

oriented operations referring to the type. The basis for the refinement process is 

an abstract model (i. e., a set of values) for the encapsulated type, which allows 

the operations to be specified and refined independently of each other. There 

is a danger of devising an abstract model that is "too big", i. e., a value set 

with more values than necessary. Such a "biased" specification may guide the 

refinement process of the access operations in an inefficient direction. 

Thus, different specification techniques are appropriate in different situations: 

Abstract model specifications work best when an "unbiased" value set for an 

encapsulated data type can be determined, while the implicit definition technique 

is appropriate when it is easier to determine a set of useful elementary access 

functions to the type. 
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It is advantageous, therefore, to use a specification notation that allows one 

to write both abstract model and implicit specifications of encapsulated data 

types, so that the most appropriate technique can be chosen in every situation. 

The mathematical notation used for specifications in this thesis has this property, 

since one may, but need not, specify value sets for data types. This language is 

"rigorous" in the sense of [Jones 80, p.  13 f.], but not fully formal (which would 

be necessary for machine processing). 

In this context it is noteworthy that the theory of this thesis is completely 

independent of a specification notation. Specifications enter the picture only via 

their semantics, namely the set of models satisfying them, and it is irrelevant 

how this set is described. Since any set of models is admissible as a specification 

in the theory, there are no restrictions on the expressive power of the notation 

that may be used. It is not even necessary to fix a specification language at all; 

new language elements may be introduced whenever desired as long as it is clear 

what they mean, i. e., it is clear which models satisfy a specification and which 

do not. 

Contributions of the Thesis 

The theory of this thesis consists of two levels. The "abstract" level of the 

theory, consisting of Section 2.3, Chapter 3, and Sections 4.1 and 5.1, deals with 

modular programming and data abstraction in the general setting of institutions, 

representation relations and representation categories. The "concrete" level of 

the theory, consisting of Sections 2.2, 4.2 to 4.5, and 5.2 to 5.4, deals with specific 

representation relations in the institution of (tagged) algebraic signatures and 

partial many-sorted algebras. 

The abstract level of the theory is more general than most previous approaches 

to data abstraction, because it applies to an arbitrary institution. In parallel 

with this thesis, Sannella and Tarlecki developed an approach to data abstrac-

tion that is also based on institutions [ST 84a]  [ST 851. In this approach, data 

abstraction is based on a notion of "observational equivalence" between mod- 
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els, which depends on whether certain "sentences" are "satisfied" by the models. 

The approach of this thesis is more abstract and more general than the approach 

of Sannella and Tarlecki, because it is based on an abstract representation rela-

tion that need not even be symmetric. For example, behavioural inclusion and 

standard representation are not symmetric and can be treated in the theory of 

this thesis, but not (yet) in the theory of Sannella and Tarlecki. 

The specific "institution" notion used in this thesis differs from the one intro-

duced by Goguen and Burstall [GB 84] in that "sentences" and the "satisfaction 

relation" are omitted and an additional "inclusion" relation between signatures 

is introduced. This relation occurs naturally in practice, and it allows one to 

relate and combine signatures, models, and specifications without providing ex-

plicit signature morphisms (as is necessary, e. g., in the specification-building 

operations of ASL [ST 85]). 

Specifications in the abstract theory are sets of models. This means that 

specification languages and their semantics need not be considered explicitly. 

Furthermore, there is no need to use a fixed specification language at all when 

applying the theory—the only requirement on specifications is that it must be 

clear which models satsfy them and which do not. The idea of treating specifi-

cations as model sets is due to Lipeck [Lipeck 83, p.  15 f.]. However, Lipeck is 

a little more restrictive in that he considers only sets of algebras that are closed 

under isomorphism. This restricts the semantics of the specification notations 

that can be used in connection with Lipeck's approach. 

Cells with requirements can be composed with each other and are correctly 

dealt with in structured correctness arguments: the correctness notion "univer-

sal implementation" (of which "refinement" is a special case) can be verified 

independently for each cell in a system and guarantees that the composition 

of the cells is correct. In particular, when the system is installed on a base 

that represents a model satisfying the global import specification, then all cells 

are guaranteed to be supplied with bases satisfying their requirements. This is 

in contrast to Lipeck's theory [Lipeck 831, which deals with cells with require-

ments, but in which the composability of independently designed cells is not 

always guaranteed, so that "re-implementation" of modules may become neces- 
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sary [Lipeck 83, P.  78-891. In other theories [SW 821 [GM 821, the problem has 

led to the introduction of "fitting conditions" on the cells to be composed, so 

that they cannot be designed independently of each other (cf. page 22 f.). 

The theory allows for infinite systems in case the representation relation is 

chain-closed. This is not directly relevant for practice, but it would allow, for 

example, to model parameterized modules (e. g., the parameterized type con-

structors of a programming language) by introducing all their possible instan-

tiations as cells into a system (of which only a finite subset would be used in 

a program). That the theory of [Schoett 811 might be extendable to infinite 

systems was suggested to me by Gordon Plotkin [personal communication, 19831 

after he had read an early version of [Schoett 831. 

The "stability" criterion for cells is derived from the "universal" and "simple 

implementation" notions, so that it is the most general condition under which 

the "simple implementation" criterion implies "universal implementation". This 

supports the claim that stability should be a design criterion for "data abstrac-

tion" programming languages, because the "simple implementation" notion re-

flects practical data representation correctness proofs (Example 5.4.3) and the 

"universal implementation" notion expresses the requirements for composability. 

Thus, the only way the stability notion could be generalized would be to gen-

eralize "universal implementation" by distinguishing "concrete models" as sug-

gested on page 181. In contrast, previous approaches to the correctness problem 

of data abstraction have introduced ad hoc criteria for the modules of a system 

and proved that they are sufficient to guarantee composability (the "homomor-

phism expansion property" in [Schoett 811, "conservativity" in [Lipeck 83], the 

"soundness conditions" of [Nipkow 86]), and there was no search for the most 

general such criterion. 

The concrete level of the theory of this thesis deals with the representation re-

lations "behavioural inclusion", "behavioural equivalence", and "standard rep-

resentation" between partial many-sorted algebras, and with their associated 

representation categories and stability notions. 

- 
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It is shown that even the very restrictive representation relation "there exists 

a surjective homomorphism" between total algebras admits useless representa-

tions in which the computations produce just formal terms (Thm. 4.2.2). This 

is an argument in favour of representation relations that are based on a set of 

"visible sorts". Values of visible sorts must be represented by themselves, and 

this means that result values of visible sorts that are produced by a correct rep-

resentation are the same as in the algebra represented, so that it is no problem 

to interpret these results. 

A new representation relation "behavioural inclusion" has been introduced, 

which combines the "partial implementation" idea of Kamin and Archer [KA 841 

with the behaviour idea. it is strictly more general than the concept of Kainin 

and Archer (Thm. 4.3.11 and Example 4.3.12). 

The "behavioural equivalence" representation relation is shown to be strictly 

more general than the "standard representation" relation that is based on ab-

straction functions (Thm. 4.5.4 and Example 4.3.12), and it is shown that be-

havioural equivalence eliminates the "representation bias" problem that occurs 

in connection with standard representation (page 258 f.). 

Two new types of many-sorted relations between partial many-sorted alge-

bras are introduced, "correspondences" and "strong correspondences". These 

concepts lead to characterizations of "behavioural inclusion" and "behavioural 

equivalence" (Theorem 4.3.7 and 4.4.6), thus yielding "simple implementation" 

and "stability" notions for these representation relations (Sections 5.2 and 5.3), 

and they provide practical methods for proving data representations correct 

(Examples 4.3.10 and 4.4.7). The idea that data representations can be proved 

correct using relations instead of functions is not new—it occurs, for example, in 

[Ginzburg 681, [Milner 71], [Jones 80, p.  264], and [Reynolds 81, p.  3111. How-

ever, these ideas seem not to have been transferred to algebraic data type theory 

and linked with its "behaviour" notions before. The "strong correspondence" 

concept has influenced recent work by Nipkow [Nipkow 861, who generalized it 

to algebras with nondeterministic operations. 

Characterizations of the stability notions for behavioural inclusion, behav-

ioural equivalence, and standard representation are given: A cell is stable for be- 

336 



6. Conclusions 

havioural inclusion if it "extends" correspondences (Def. 5.1.14 and Thm. 5.2.4); 

it is stable for behavioural equivalence if it "weakly extends" both abstrac-

tion functions and converse abstraction functions (Def. 5.3.5 and Thm. 5.3.6); 

and it is stable for standard representation if it extends abstraction functions 

(Thm. 5.4.4). For a large class of cells, the stability notions for behavioural 

inclusion and behavioural equivalence are equivalent, while the stability notion 

for standard representation is more restrictive (Theorems 5.4.8 and 5.4.9). 

The program development example of Section 1.4 introduces the "access func-

tion refinement" strategy, which allows one to determine the elementary access 

functions to an encapsulated data type in the process of designing code for more 

complex, problem-oriented operations. This strategy works best on the basis 

of an abstract model specification of the encapsulated type, which leads to the 

conclusion that implicit specification techniques for encapsulated data types are 

not always the best ones, and that practical specification notations should allow 

one to write both "abstract model" and "implicit" specifications of encapsulated 

data types. 

Improvements to the Theory 

There are various ways in which the theory of this thesis could be further devel-

oped and improved. 

From a practical point of view, an important problemis to ensure that the 

specification cell system derived from a design graph (cf. Examples 3.1.5, 3.1.14, 

3.2.9 and 3.2.11) is syntactically correct (i. e., that the cell signatures form a 

syntactic decomposition of the global cell signature). At present, it appears 

to be necessary that the choice of names for the program entities occurring in 

a design graph is managed centrally. To some extent, this interferes with the 

freedom to design modules independently of each other, because module design 

may involve the design of new import interfaces, and the names occurring in these 

interfaces may only be chosen in consultation with the central "name manager". 
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A way to solve this problem might be to introduce composition operations 

for cells that do not use the idea of a uniform name space, but in which the cells 

are connected by explicit signature morphisms. Such operations are familiar 

from theories of parameterized specifications and parameterized data types such 

as [BG 771, [BG 80], [TWW 821, [Ehrig et al. 801, [SW 821 and [Lipeck 831, 

and from programming notations involving parameterized or "generic" modules, 

such as CLU [Liskov et al. 811, ADA [ANSI 83] and CIP-L [CIP 851. 

In connection with the introduction of such operations, it would be worth 

while to check whether the renaming axiom of an institution syntax (axiom (c) 

of Def. 2.3.5) can be replaced by a more elegant axiom. At present, the renaming 

axiom is by far the most complex of the axioms characterizing an institution, 

and it takes a considerable amount of formal labour to verify (see the proofs of 

Thm. 2.3.6 and 4.2.6); yet it is only used in a single place, namely the proof of 

the "renaming" lemma (Lemma 4.1.9). 

On the semantic level, the new operations do not seem capable of creating 

any new problems, because it appears that each composition of modules using 

the new operations can be represented in the present theory by a system in which 

each module instantiation occurs as a separate cell, and in which the symbols are 

renamed so that precisely those symbols are equal that are identified with each 

other via signature morphisms in the more complex composition operations. 

It would also be important for practice to have programming languages avail-

able that have been proved sound for data abstraction in the sense of this thesis, 

that is, whose modules are guaranteed to be stable. So far, stability has been 

established only for "toy languages" consisting mainly of recursive function defi-

nitions (informally in [bare 72] and [Schoett 81], formally in [Nipkow 86], where 

functions may even be nondeterministic), and it would be interesting to see how 

such proofs "scale up" to realistic programming notations. A formal semantics 

for the programming language under consideration is, of course, a prerequisite 

for a stability proof. 
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The presentation of the theory of modular programming in Chapter 3 could be 

improved slightly by changing some of the basic definitions so that they more 

closely match their informal motivation. 

The definition of a "system site" (Def. 3.2.4) could be improved by sharpening 

the condition that for i E I 

- 

k4i 

to whenever K C I is <-downward closed and i is <-nimai in I \ K 
then 	U U Dk is a site for (E,D), 

kEK 

since that definition makes it clear that the cells of a system can be composed 

in any order compatible with the dependence relation <. Fortunately, this does 

not change the mathematical content of the theory, sice the two definitions are 

equivalent according to Lemmas 3.4.3 (c) and 3.5.2. 

In a similar way, the definitions of "decomposition" (Def. 3.2.10) and "compo-

sition" (Def. 3.3.6) could be changed by quantifying over downward closed index 

sets K in the statement that each cell must be supplied with a proper base 

(Clause 3.210 (b) and the definition of Q in Def. 3.3.6). This would not change 

anything either,. due to the monotonicity of interface conjunction (Prop. 3.1.8). 

From a theoretical point of view, it seems interesting to explore the link between 

institutions and sheaves that was observed by John Gray. One presentation of 

sheaf theory in which this link is clearly visible is [FS 791. 

It would also be interesting to study further the interplay betwen represen-

tation relations and representation categories. The concept of a "representation 

relation" between models arises naturally in connection with data abstraction, 

and it suffices for the "universal implementation" concept and the composability 

theorem. The "representation categories" are needed only for the more practical 

"simple implementation" concept. It is an interesting open problem to charac-

terize those representation relations for which representation categories exist. 

The proof of the composability theorem for universal implementations does 

not make use of the preordering property of a representation relation,, so that 
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this condition could be removed frithe  definition of a "representation relation" 

(Def. 4.1.1). It was mentioned on page 181 that apparently the only way to gen-

eralize the "universal implementation" èoncept would be to exploit the fact that 

not all the models of an institution might actually be definable in a programming 

notation. With representation relations that need not be preorderings, this idea 

could be expressed elegantly by making A' w-  A hold only if A' is definable (a 

"concrete model"). 

While removing the condition that representation relations be preorderings 

would not affect the composability theorem, it creates a problem in connec-

tion with representation categories. At present, the fact that the representa-

tion morphisins form a category and characterize the representation relation via 

A' -* A 2J: A' '* A implies that the representation relation must 

be a preordering anyway. Thus, a way would have to be found to weaken these 

axioms while preserving the essential theorems of Section 5.1, particularly the 

decomposition of "universal implementation" into "simple implementation" and 

"stability", and the convenient "representation morphism extension" criterion 

for stability. 
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