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ABSTRACT 

Study of Particle Motion In Flows 

Characteristic To Low-NOr  

Pulverised Fuel Burners 

by 

Enock Masanja, 

Research Supervisors: Dr. Donald H. Glass and 

Prof. Clive A. Greated 

There is no dispute that combustion by-products like sulphur dioxide. SO2  and 
nitrogen oxides, NO, can cause environmental damage. 

New, tougher legislation on gas emission has started to push fundamental 
research work (like this project) on understanding particle/fluid dynamics in 
combustion and related systems on the fore front. The knowledge gained will 
not only offer immediate help in the control and abatement of gas emission. but 
also the data obtained will complement the available empirical (industrial) 
knowledge of roping behaviour which will be valuable in developing new 
numerical models and/or verifying existing ones. 

A test facility delivering up to 40 m/s in a 4 inch glass test section was 
designed, fabricated, assembled and tested. This includes swirl generators for 
generating swirl of 0.2 to 1.35 theoretical swirl numbers. The facility also 
includes a particle feed section, cyclone separator for recovering the particles 
and a dual pulsed Nd:YaG laser, related optics and other equipment for use in 
future Particle Image Velocimetry (PIV) research. 

LDA and Pitot-static measurements verified that the test section was capable of 
delivering the planned/design velocity measurement range of 0-40 m/s. PIV 
experiments were done for particle jet density of 95 kg/m_3  to 198 kg/m-3  and 
the results obtained on particle jet dispersion were in good agreement with 
previous work showing that the center line velocity showed less fluctuation and 
that jets that are less dense disperse more than the more dense ones. 
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Chapter 1 

Introduction 

1.1 Background 

Combustion by-products like sulphur dioxide, SO2  and nitrogen oxides. NO can 

cause environmental damage such as a contribution to the causes of acid rain 

[81]. Although the extent of damage to the environment caused by NO, is still a 

topic of research and debate, the fact that it does cause damage is not in 

dispute. The damage done by Nitrogen oxides is more difficult to asses than 

that caused by SO2  because nitrogen oxides in the atmosphere are a natural 

part of the nitrogen cycle. The term nitrogen oxides is used to describe all 

nitrogen oxide species, but in combustion processes only NO and NO2  are 

usually measured. Normally less than 5% of the NO,, emitted from boilers is in 

the form of NO2  [103], but most of the NO is subsequently converted to NO2  in 

the plume of the chimney. In fact it is conventional to quote the total burden of 

NO in terms of the equivalent NO2. 

Research work on the control and abatement of gas emission, like this project, is 

on the increase because of new, tougher legislation on gas emission. For example 

the European Commission [102, page 301. agreed to reduce sulphur dioxide 
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levels from large combustion plants by 20% relative to their 1980 level by 1993, 

by 40% by 1998 and by 60% by 2003. They also agreed to reduce NO levels 

from the same source: NO has to be reduced by 15% relative to its 1980 level 

by 1993 and by 30% by 1998 . In the UK. in 1980, power stations produced 0.85 

m tonnes of NO, equivalent as NO2, compared with 1.79 m tonnes from all 

sources [103, page 33]. 

There are three recognized methods of controlling NOr: Burner control. 

injection of chemicals in the boiler and Selective Catalytic Reduction, (SCR), 

where the flue gas is passed over a catalyst on which the NO, is selectively 

reduced to molecular nitrogen. The cheapest method by far is burner control, 

which, apart from the initial capital cost, has no additional running costs. 

Injection of chemicals into the boiler and SCR both have running costs as well 

as capital costs. It is reckoned that burner control can give a .50% NO 

reduction in a purpose built plant and 70% might be attainable. Manufacturers 

of boiler injection systems and SCR claim reductions of up to 90% [103. 

page 35]. In any system, NO.., abatemenet would start with burner control. and 

if tighter controls were required, boiler injection or SCR would be added. The 

reduced levels produced by burner control would save on the running costs of 

the other systems. 

The formation of nitrogen oxides is through three basic routes [81], see also 

figure 1.1. 

i) Thermal: from the oxidation of atmospheric nitrogen, this accounts for 

about 20% of NO from coal fired boilers. 



Figure 1.1: Chemical Pathways 
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N2 + 0 NOH  -N 

N+O2 NO+0 

N + OH = NO +H 

Careful control of combustion conditions, particularly flame temperature, 

can limit emission through this route. 

Fuel NOR: from nitrogen in the fuel. This is the major NO production 

route in coal fired boilers. 

Reducing Conditions: N2  

Fuel N< 

Oxidising Conditions: NO 

If reducing conditions are maintained in the flame regions. part of the 

nitrogen in the fuel can be reduced to molecular nitrogen. 

Prompt NO: from reactions between nitrogen and partially oxidized 

hydrocarbon fragments in the flame. Again reducing conditions can help 

reduce part of these species into molecular nitrogen and water vapour. 

These chemical pathways are shown in figure 1.11 . 

It is evident that by maintaining reducing conditions and the right flame 

temperature in the burner, the level of NO emission can be reduced. 
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1.2 Pulverised Coal Burners 

In conventional pulverised coal burners, the primary stream is divided up and its 

direction of flow changed several times before reaching the burner. By the time 

it reaches the burner, the entrained fuel is generally concentrated into 4-6 ropes 

A particle rope is a phenomenon in pneumatic transport pipes whereby a 

uniform dust-air mixture at the inlet of a pipe bend (normally vertical to 

horizontal) segregates into two regimes at the outlet: the first regime, termed a 

rope, is a high density ribbon of particles and the second, is mainly air. 

Depending on their radial position at the point of injection into the secondary 

stream. the ropes either disperse immediately and burn, providing energy for 

the processes in the flame or persist well into the flame region and gasify, 

leading to relatively cool regions in the furnace. To promote efficient fuel 

burn-out, recirculation of the hot gases within the flame (e.g. by a swirling 

secondary air stream) is desirable so as to rapidly mix the oxygen and the fuel 

species. The resulting flame is short and intense and promotes NO production. 

In all burner designs it is required to have as thorough mixing between the air 

and the fuel as possible. There are many designs and makes of Low NO 

burners, All the burners however are basically similar in that they all are all 

dual register burners - with a central fuel injection system with two annular 

registers (rings) injecting secondary and tertiary'äir around the fuel/air system 

(primary air). Figure 1.2 shows the basic arrangement of a Low-NOr  concentric 

firing system. 

The fuel/air mixture has to be swirled to keep it fluid for injecting. Normally, at 

the exit, straighteners are employed to reduce the mixing with the secondary air 



and enhance sub-stoichiometric combustion. For similar reasons, tertiary air 

tends to be directed away from the flame so that it comes into play at the fax 

end of the flame where the char is being consumed. 

Burners can be wall mounted (figure 1.3) or corner mounted (figure 1.4). The 

disadvantages of a wall mounted burner is that the middle part of the burner 

tend to have higher combustion temperatures than the upper and lower part. 

Higher combustion temperatures mean more NO formation. Corner mounted 

burners are normally mounted on the four corners of the boiler and are then 

fired tangentially to a central fuel rich zone. In this arrangement, the central 

flame sees cool walls on all sides keeping the combustion temperatures down. 

The secondary air, is injected at an offset angle to the main firing angle, this 

circulates outside the central fuel-rich zone thus protecting the boiler walls from 

corrosion in a reducing atmosphere. Figure 1.5 show isotherms of both 

conventional and Low-NO:  burners. 

Other variations of Low-NO:  wall mounted burners are shown in figures 1.6, 1.7 

and 1.8. 

In Low-NO:  burners, it is desirable to delay the arrival of oxygen until the 

gaseous nitrogen species derived from the fuel are reduced to molecular 

Nitrogen. Thereafter, rapid mixing of the remaining air with fuel is desirable in 

order to achieve fuel burn-out without having an excessive flame length. The 

overall performance of the Low-NO_ burner is critically dependent on the swirl 

levels and eddy structures of the secondary air stream. 

Current Low-NO:  burner testing within the Central Electricity Generating 

Board. CEGB (now Power Gen and National Power) and elsewhere [81], [59]. 
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Figure 1.5: Isotherms in a Combustion Furnace 
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[24],[66] and [36] have shown that the mixing layer between the fuel rich 

(central) core of the flame and the surrounding secondary air stream is the main 

NO production zone. The mixing in this shear layer ultimately determines the 

amount of NO produced. 

Understanding flow characteristics in the pulverised fuel burner could give 

additional scope for improving the growing number of Low-NOr  burner designs 

which in principle enhance production of molecular nitrogen while maintaining 

sufficient boiler efficiency. 

This fundamental investigation will explore conditions relevant to the design 

and operation of a range of equipment of industrial interest. Ranges of velocity, 

particle sizes, and particle number density will be used to provide an 

understanding of the fluid mechanics of particle "ropes" and the physical 

reasons for their persistence and eventual breakup. The study will help to 

obtain data that will complement available empirical (industrial) knowledge of 

roping behaviour. The data will be valuable in developing new numerical 

models and/or verifying existing ones. 

1.3 Research Objectives 

It is important to state here that combustion is a complex process. As pointed 

out above, the production of NO depend among other things on the flame 

temperature, availability of the fuel species and the mixing of theluel species 

with the air. A simplified approach was adopted to study this process by just 

studying the mixing, stability and dispersion of the particle jet/rope. The 

project objectives thus were to employ the Particle Image Velocimetry (P IV) 
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technique to study the basic physical parameters which affect the stability and 

dispersion characteristics of particle "ropes" by measuring particle velocities and 

trajectories. Laser Doppler Anemometry (LDA) was to be used to augment the 

PIV measurement technique in cases where the Doppler signal might not be 

attenuated (low particle density). LDA was used particularly in making initial 

studies/characterisation of the flow fields in the test section. 

LDA velocity measuring technique relies on the formation of a set of fringes 

caused by the interference of two overlapping coherent beams. In transmission 

mode, a particle crossing these fringes will block off much of the light in the 

bright fringes and only a little light in a dark fringe. The light transmitted by a 

particle crossing a set of fringes will will fluctuate at the rate at which the 

particle crosses the fringes, modulating at a frequency equal to the ratio of 

velocity to particle diameter (U/d). 

PIV is a velocity measuring technique which can "instantaneously" record 

velocity over a whole flow field. The technique relies on photographing small 

particles contained in and faithfully following the flow under investigation. The 

velocity information on the film can be recovered by ascertaining the separation 

of the particle images. This can be done by either observing the film directly 

using a microscope or, more commonly, by interrogating each point on the film 

using a low power laser beam (optical interrogation) or by digitising the whole 

doubly exposed image and storing the digital image in the computer memory for 

subsequent analysis. 

Both LDA and PIV techniques are well documented and are still undergoing 

further development and refinements. They have been used in diverse 

research /experimental work e.g. in particle characterization {4TJ, in breaking 
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waves [14], in acoustic streaming [15], in fluid velocity measurements [109], [65], 

[87] and [46], in measurement of surface displacement and tilt [8] etc. See also 

[16], [30], [87], [35], [125] and [62]. Their success relies on the suitable properties 

of the laser light. Both these techniques depend on the availability of a powerful 

source of coherent light to locate and track the particles. 

Laser, acronym for Light Amplification by Stimulated Emission of Radiation, is 

a light source which works by taking the light from one atom to stimulate the 

emission of more light from other atoms. Amplification is provided by an active 

medium, which can be a fluid, solid, or by semiconductors. Laser is commonly 

thought of as giving a bright, highly coherent, highly monochromatic light. 

Some typical laser light sources are shown in appendix A. see also [113]. 

The advantages of both LDA and PIV include offering very high accuracy 

without the need for system calibration and having fast response and high 

spatial resolution. Their being non-intrusive make them attractive for use in 

corrosive and toxic environments. The need for a transparent medium, optical 

access and use of scattering particles and the fact that signal processing 

equipment is expensive can inhibit their use. 

In the next chapter, Turbulence Theory is revisited. Chapter 3 deals with flow 

simulation using a commercial package called FLUENT. Chapter 4 details the 

design of the experimental rig, while chapter 5 covers the testing of 

experimental rig and LDA experiments. 

Although the original ambition of the project was to make Particle Image 

Velocimetry, (PIV) measurements of the particle rope, it transpired that in this 

initial stage of the project most of the time was spent in designing and 

construction of the rig and the timing could not allow for the PIV studies. To 
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compliment the preliminary LDA experiments and the simulation work done, it 

was decided to carry out some PIV measurement of jet dispersion in a small 

square wind tunnel (simulation work was done using a square section). This 

experimental work is covered in chapter 6. Conclusions, critique and 

recommendations are in the last chapter. chapter 7. 



Chapter 2 

Turbulence Theory Revisited 

2.1 General 

All shear flows become turbulent at a high enough Reynolds number, indeed 

most flows of practical relevance are almost always turbulent. i.e. the fluid 

motion is highly random, unsteady and three dimensional 

Turbulent motion and the heat and mass transfer phenomena associated with it 

are extremely complex and difficult to describe analytically. In only a minority 

of fluid dynamical situations can one determine the flow as an exact solution of 

the equations of motion. The necessary mathematical methods often do not 

exist. Even when an exact solution can be obtained, it may not be unique and 

so may not correspond to what actually occurs. Numerical methods are 

available, but require massive computer time and storage capacity. Hence, much 

of fluid dynamics concerns the development of b6h experimental and theoretical 

procedures for elucidating flows that can not be rigorously calculated [118]. 

Recent literature on the subject is voluminous, unfortunately not all of it is 

useful, or even correct [117]. 

15 
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This is a summary, aimed at discriminating the theory for those approaches that 

have sound qualitative and quantitative refinement but still retain the simplicity 

to be of practical engineering relevance in solving/predicting turbulent flow 

transport quantities. 

2.2 Turbulence: Phenomena and Nature 

When tangential stresses are applied to a fluid having internal friction, various 

kinds of secondary motions can develop: regular ones, usually imposed by the 

shape of the boundaries, can be readily accounted for in terms of pressure 

gradients. Irregular ones (creating eddying and rotational motion), usually 

prevailing at high Reynolds number, can be accounted for by a simple 

explanation. 

Turbulence is "a state of continuous instability", each time a flow changes as a 

result of an instability, one's ability to predict the details of the motion is 

reduced. When successive instabilities have reduced the level of predictability so 

much that it is appropriate to describe a flow statistically, rather than in every 

detail, then one says that the flow is turbulent. Random features of the flow 

then become dominant, but, still, turbulent flow is not completely random. For 

details see also [117],[74], [3], [108], [51], [39], [40], [106] and [118]. 

2.2.1 Diffusiveness of Turbulence 

Turbulent flow features (e.g. frictional effects, mean velocity distributions, rate 

of spreading, etc.) have little similarity with those found in laminar flow 



because the diffusiveness of turbulence far exceeds molecular diffusion and has 

more intimate connection with the mean flow. 

In Turbulence, energy is fed into the turbulence primarily through the larger 

eddies, from there smaller eddies are generated, and then still smaller ones. The 

process continues until the length scale is small enough for viscous action to be 

important and dissipation to occur. The process is called an energy cascade 

The number of these cascade energy exchange stages increases with the 

Reynolds number. Energy dissipation, though a viscous process, is independent 

of the magnitude of the viscosity but is determined by the rate of supply of 

energy to the cascade by the large scale eddies and is independent of the 

dynamics of the small eddies in which the dissipation actually occurs [118]. 

An increase in Reynolds number to a still higher value can conveniently be 

visualized as a change to a fluid of lower viscosity, if everything else is held 

constant. This only extends the cascade at the small eddy end: still smaller 

eddies must be generated before dissipation can occur. Since the energy 

associated with these small eddies is small, this extension has negligible effect on 

the total energy of the turbulence [74], [48] and [118]. 

The mean flow always has a preferred direction imposed by the large-scale 

turbulent motion. At high Reynolds number, the large scale and small scale 

motions are sufficiently apart in the spectrum (direction of sensitivity lost) and 

small scale dissipative motions, like the large scale ones, also become isotropic 

[74]. The turbulent velocities which contain the bulk of the turbulent energy, 

tend to maintain a constant ratio to the mean local velocity (termed as form 

preservation) and this is an important feature of turbulent flow. 

17 



Large eddies are determined by the boundary conditions of the flow, they have 

low frequency fluctuations and their size is of the same order of magnitude as 

the flow domain. Their size at any position downstream is predetermined by 

their initial size and what happened upstream. The smallest eddies, which are 

associated with the high frequency fluctuations, are determined mainly by the 

viscous forces. The width of the spectrum and thus the difference between the 

largest and the smallest eddies increases with the Reynolds number. The large 

scale turbulent motion is, however, mainly responsible for the transport of 

momentum and heat and contributes to the turbulence correlations (g) and 

ii see equations (2.6) and (2.7). These correlations are the ones that have to 

be simulated in turbulent models [106]. 

2.3 Turbulent Motion Equations 

The basis of the equations is mass, momentum, thermal energy and species 

quantity conservation. A statistical approach is normally used to separate mean 

and fluctuating quantities (i = 1, 2. 3 for x, y, and z direction respectively): 

+ u) = 0 (2.1) 

which, on averaging, for incompressible flow (p constant): 

9x (2.2) 
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subtracting equation 2.2 from 2.1 gives: 

aui 
(2.3) 

azi  

Thus the mean and fluctuating parts of the velocity field individually satisfy the 

usual form of the continuity equation. 

Applying a similar division to the Navier-Stokes equations for an incompressible 

fluid (p = constant) gives for: 

momentum: 

(U, + u) -. ± u) 1 P ± p) 
± (Li + u) 

a( 
= (4) at ax, P axi 

a2(U + 
+11 +9j  

averaging out: 

- 1 ô --±U—+u---=--------- +v +gjp (2.5) at ax ox3 
____ 

 p ox ox; 

with the aid of the continuity equation (2.2), for steady mean flow ( = 0), 

the above equation can be re-written as: 

iaP 52U. a 
= 

± V 
Ox - —(uu) (2.6) 



Temperature/species concentration: 

ao a a 
- + 

x 
(J- = ox - i7) + SIO  

ux 
(2.7) 

a  

where b is a scalar quantity (heat or concentration). So  is a volumetric source 

term, expressing, for example, heat generation due to chemical or biological 

reactions, ) is the molecular diffusivity. Similarly for steady mean flow: 

a o 
Ut 

ax j  - ) + gtp (2.8) 

Thus the difference from the laminar flow is the term 2-(u,t,) in equation (2.6) 

and the term Tj7 in equation (2.7). The first term in equation (2.6) 

represents the actions of the velocity fluctuations on the mean flow arising from 

the non-linearity of the Navier-Stokes equations, and is frequently large 

compared with the viscous term, with the result that, the mean velocity 

distribution is very different from the corresponding laminar flow. 

Some literature [118J reports that, in some experimental work, the term 

i9( u4)/,9x' has experimentally been found not to be so small, and it is not 

uncommon to find such terms being retained in some equations. Note that the 

last two terms of equation (2.6) can be written as: 

i a a 
- 

p;j;5) (2.9) 
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primarily to help show that the velocity fluctuations produce a stress on the 

mean flow. A gradient of this produces a net acceleration of the fluid in the 

same way as a gradient of the viscous stress. The quantity i4 is the shear 
xj  

stress, while (—pUTu) or more generally pi is called the Reynolds' stress. 

The Reynolds' stress arises from the correlation of two components of velocity 

fluctuations at the same point. A non-zero implies the two are not independent 

of one another. e.g. if 11T is negative, then at moments at which ui is positive. 

u2 is more likely to be negative than positive; conversely when u1 is negative. 

This analogy has led to the definition of, in analogy to the shear stress, a 

quantity at,  such that: 

- au 
-UiUj = 

ax,, (2.10) 

iii, the eddy viscosity, is a representation of the action of the turbulence on the 

mean flow and not a property of the fluid. Sometimes, for simplicity, is 

treated as constant rather than as a correlation for UU. 

The division of a turbulent motion into (interacting) motions of various length 

scales is useful because the different scales (so called eddies of different sizes) 

play rather different roles in the dynamics of the motion. 

In isotropic turbulence (homogeneous turbulence in which the statistical 

properties do not vary with position and have no preferred direction, e.g. in 

motion downstream of grids), the energy production term, 
, 

is zero, this 

implies that the motion must decay through viscous dissipation. In theoretical 

work, the turbulence is supposed to be generated at an initial instant and then 
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decay as time proceeds. 

The governing equations of the fluid, e.g. equations (2.3), (2.6) and (2.8) are 

non-linear differential equations. They also do not form a closed set as they 

contain unknown correlations between fluctuating velocities ii727 and between 

velocity and scalar quantities, ii7, introduced by the averaging process. The 

term is the transport of xi  momentum due to turbulent motion in the x3  

direction and pii7 is the transport of x, scalar due to turbulent motion in the 

xi direction (and vice versa). Specification of any problem must thus be 

accompanied with the necessary boundary conditions, e.g. at a rigid wail 

w=0 at y  =0 for all  and z. 

Viscous stresses in the x—, y— and z direction can be extracted in the Cartesian 

coordinates: 

au ôv ow Ov 
+ —)

i9y ax o ; 2i(—)yo; L( + )=o (2.11)
i9y 19Z 

since from the continuity equations: 

ôu Ow 

;= -;- az  

and also, u = v = w = 0 at y = 0 for all x and z,'-this implies that the viscous 

shear stress at the wall is 

8u Ow 
0; I.L(.-

1
;.)=o (2.13) 
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Note that 
ay I and are tangential stresses, 

ex 
a 

- 0 is the normal stress, 

zero normal stress implies that there is no viscous force, but there is pressure 

per unit area in the normal (y) direction. 

Equations (2.6) to (2.7) can be solved if 1127 and 273 can be determined in 

some way. Turbulence models are used to approximate these correlations and 

are covered in section 2.5. 

2.4 Turbulent Motion Near the wall 

The presence of the wall, effectively, forces the fluid "to see" the wall as 

generating drag that slows the fluid. The fact that both the fluctuating and 

mean flows drop to zero at the wail implies that. at the wall, the Reynolds '  

stress - 0. Thus the only stress exerted directly on the wall is the viscous 

one. Away from the wail, on the other hand, the turbulence generates a 

Reynolds' stress, large compared with the viscous stress. The total stress, r, is: 

oU i 
= 

- —pfffl7 (2.14) 

where;, is the shear stress in i direction in a plane normal to the direction j. 

Rapid variation of 7ij  with x (y), would produce very large mean acceleration 

that can not possibly be matched by the mean flow distribution. Near the wall, 

ZTU—i is small and so there is little energy production: far from it, 1L is small 

with the same consequence. The rate of energy production has a large 

peak close to the wall. Mathematically: 
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-Uiuj
aui 1 

= --(r - ,a-
axj 
---)Liôx (2.15) 

If n j  is constant and aj+ = r,5/2. energy dissipation is largest in the vicinity 

of the changeover from predominantly viscous stress, ('wall-region'), to 

predominantly turbulent stress. The conditions in the wall region can be 

specified as U = f(ut, y, v), ut  is a velocity scale defined as ut  
= and 

depends on the whole flow. Applying dimensional analysis, shows that 

U/Ut = f(j, ut, ii). As viscosity is only important very close to the wall, and less 

important with increasing y, then, the mean velocity gradient can be said to be: 

= f(u, x2 ). This however is only true for the velocity gradient. and not for 

velocity, as the velocity, U j  is separated from its origin by a region in which v is 

important. 

This led to the division of the turbulent boundary layer into inner and outer 

regions. Flow in the "wall region" has a characteristic velocity scale provided by 

the value of n,,. 

Viscosity is important only very close to the wall, as you move away from the 

wall (increasing y, i.e.x), viscosity ceases to play a significant role long before 

parameters U1  = f(u,y,) start to have influence. Thus, one can say that the 

mean velocity gradient depends only on Ut and y, i.e. = f(u,y), but not for 

all U, because it is separated from its origin by & region in which ii is important. 

Applying dimensionless analysis to: 
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9U 

-v-- = f(ut,y) (2.16) 

gives: 

oui  
= ut /Ky (2.17) 

ay 

K is a universal constant (Kárrnán constant), experimentally found to be about 

0.41 [118], [106] and [95]. 

Integrating equation 2.17 gives: 

Ui 
+ 

1 
 [ln(—

'U 
) + A]  

A is another constant 5.2 [95] (but is strong function of the roughness 

Reynolds number, 7Ya11/t etc.). Uojz is fluid velocity in the vicinity of the 

wall. 

Equation (2.18) is commonly known as the logarithmic wall law equation. It is 

known to depart from this distribution for yut /f.L > 30. It is valid in the 

"wall-region" which typically can occupy about one-tenth of the boundary layer 

thickness. 
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2.5 Turbulence Models 

The exact equations (2.2) to (2.7) are non linear and do not form a closed set 

and turbulence models have to be used to approximate the unknown 

correlations between fluctuating velocity i1 and between velocity and scalar 

U . Turbulence models are used for this purpose, some of which are are covered 

below. 

2.5.1 Basic Concepts 

Among many approaches used to model the turbulent or Reynolds stress. 

(pu) the most significant ones rely on the eddy-viscosity and the 

eddy-diffusivity concepts. 

2.5.1.1 Eddy-Viscosity (Boussinesq's) Concept 

The turbulent or Reynolds' stress, can be modeled by assuming that the 

turbulent stresses are proportional to the mean-velocity gradients in analogy to 

the viscous stress in the laminar flows. This can generally be put as: 

au au, 2 
= it(- + - •si j (2.19) 

The turbulent or eddy viscosity, p, (not a fluid property) depends strongly on 

the state of turbulence. 8j,, is added to make the expression (2.19) applicable 

also to normal stresses (i = 
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The first part of equation 2.19 involving the velocity U = 

= U = au"  whose sum, is zero, i.e. = 0 (because of 19X2 8=3  

the continuity equation). Since the normal stresses, by definition are positive 

quantities, their sum is twice the kinetic energy of the fluctuating motion 

k = u, the second part, ensures that the sum of the normal stresses is 

equal to 2/c. 

The analogy though not strictly correct, is used mainly because pt  can be 

determined to a good approximation in many flow situations ( -S.'  vi) where 

shear stress is the turbulent stress of prime importance such as in 

two-dimensional thin shear layers (boundary-layer type of flow). 

The Eddy-viscosity concept sometimes fails in wall jets and axisymmetric wall 

shear layers as there exist regions where the stress, r. and the velocity gradient 

may have opposite directions such as flow in an annulus or channels with 

different wall roughness on either side. But since y t  ' mixing length, vi and 

V1 > 0, a negative pt  though a possibility mathematically from equation (2.19) 

has no physical meaning. 

2.5.1.2 Eddy-Diffusivity Concept 

In direct analogy to turbulent momentum transport, turbulent heat or mass 

transport is often assumed to be related to the gradient of the transported 

quantities in which case a turbulent diffusivity can be defined such that: 

8th 
= r-. (2.20) 
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Where r = is the turbulent diffusivity of heat or mass (like the eddy Olt 

viscosity, is not a fluid property but depends on turbulence), at = turbulent 

Prandtl or Schmidt number. (Prandtl for heat transfer, Schmidt for mass 

transfer). 

2.5.2 Classification Of Turbulence Models 

2.5.2.1 Zero-Equation Model 

This is a class of simple models. They all employ the eddy viscosity concept 

(but do not use any transport equations for turbulence quantities). The eddy 

viscosity is specified either directly from experiments, or by trial and error. or 

through empirical formulae or by relating it to the mean-velocity distribution. 

The most common models are the constant eddy viscosity/diffusivity model. the 

Prandtl Mixing-length model and Prandtl Free shear hypothesis. 

In Prandtl Mixing-Length hypothesis, the turbulent viscosity is assumed to be 

proportional to the local mean fluctuating velocity gradient and to a single 

unknown parameter, the mixing-length, im ; i.e. V = im  ILu J. Assuming the 

proportionality constant is unity: pt  = see [3], [108] and [106]. The 

concept is useful for simple flows especially in free shear layer flows where 1 

can be assumed constant across the layer and proportional to the local layer 

width 6 (8 is defined as a distance from the symmetry axis giving .a 1% velocity 

variation). 

FromiiV - — pew, taking ii =
ay and assuming that when ü is large, i is also large, one 

can define, = 3i!. Then,  1 ,

2,3(
.

8u)2 ,andso,,2 = l 28, and if   - 1 —i 
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The model is unsuitable when processes of convective or diffusive transport of 

turbulence are important e.g. in rapidly developing flows, in heat transfer across 

plumes with zero velocity gradients, recirculating flows and generally of little 

use in complex flows because of great difficulties in specifying the mixing length. 

im (see also [69] and [1051). 

The Prandtl Free shear hypothesis is based on the assumption that the 

eddy-viscosity, Ait  is constant over the layer cross section, and that the length 

scale, 1, is proportional to the layer width. 5 and velocity scale v (equal to the 

maximum velocity difference I Umax  - Umin ). Thus pt  = c6 I Um - 

The model works well for predicting the velocity profile in mixing layers, jets 

and wakes, especially when considering its developed state. Transition velocity 

profiles are not however, predicted well. 

2.5.2.2 One-Equation Model 

In this class of models, the turbulent transport quantities are accounted for by 

solving the differential transport equations. Common models include those 

based on the eddy-viscosity concept and those based on the kinetic energy. 

2.5.2.2.1 Models Using The Eddy-Viscosity Concept 

These characterize velocity fluctuations by one physically meaningful scale, 

v', k = (u + u + u) is the kinetic energy of the turbulent motion per unit 

mass. As k is contained mainly in large scale fluctuations, it becomes a direct 

measure of the intensity of the turbulence fluctuations in the three directions 

and serves as velocity scale for the large scale motion. When this scale is used in 



the eddy-viscosity concept (sit X vi): 

At = cv1 (2.21) 

Where c is an empirical constant. Equation (2.21) is known as the 

Kolmogorov-Prandtl expression. The rate of change of k is balanced by the 

convective transport due to the mean motion, the diffusion transport due to 

velocity and pressure fluctuations, the production of k by the interaction of the 

Reynolds' stresses and the mean-velocity gradients and the dissipation of ic by 

viscous action into heat. In buoyant flows, there is also production or 

destruction of k due to buoyant forces. The production term represents the 

transfer of kinetic energy from the mean to turbulent motion, buoyant term 

represent the exchange between the turbulent kinetic energy and potential 

energy. The distribution of k is determined by solving a transport equation for 

this quantity from the corresponding Navier-Stokes equation. With above 

assumptions, the model equation becomes: 

Tt + = + )] - 7 (2.22) 

rate onueatwe diffusive production 
aE7a 

- - 

(lxi (lxi 
buoyancy '-...----' 

dissipation 

Different transport mechanisms are shown underneath the equations. 
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2.5.2.2.2 k-equation Model 

The exact k-equation, equation (2.22) contains an additional unknown 

correlation in the diffusion and dissipation terms. To obtain a closed set of 

equations, model assumptions are required. In analogy to the diffusion 

expression (pt  cx vi) for the quantity 0, the diffusion flux of k is often assumed 

to be proportional to the gradient of k; i.e. u(- + cx ; thus 

± = The viscous dissipation rate per unit mass. &, is governed 

by large scale eddies (characterized by k and 1) motion even though the 

dissipation takes place through smaller eddies. It is usually modeled by 

= CD  k  I'-  (CD and ak are empirical constants). The model is restricted to high 

Reynolds number and is not applicable in the viscous sub-layer. Empirical 

constants are functions of turbulent Reynolds number. Ret = To date 
Lh 

there are many extensions and revisions of the model. 

2.5.2.3 Two-Equation Models 

In turbulent flows, the eddies' size depends on their initial size and what 

happened upstream. Dissipation destroys the small scale eddies, effectively 

increasing the average eddy sizes. Vortex stretching on the other hand, tends to 

reduce eddy sizes. The balance of these processes can be expressed (modeled) in 

a transport equation for the length scale 1, which can be used to calculate the 

distribution of 1. Most models use the eddy-viscosity concept and the 

Kolmogorov-Prandtl expression or a variation thereof (e.g. Kolmdgorov: 

cx , Spalding: e cx ; etc). The k - and the turbulent stress/flux models 

are the most common and realistic models in this group. The Ic - e model in 

particular is very popular and well tested. 
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Unlike all the other models, the Reynolds' stress/flux-equation model employs 

various velocity scales in the transport equations for the individual stresses 271 

and 11 and not a single velocity scale as related by either the eddy-viscosity, 

Kolmogorov-Prandtl expression or any of their variants. This is more 

appropriate for complex flows. 

2.5.2.3.1 The Generalised Standard k - Model 

At high Reynolds number, where local isotropy prevails, the rate of dissipation. 

, is equal to the product of kinematic (molecular) viscosity and the fluctuating 

vorticity, (i.)2. An exact transport equation can be derived from the 

Navier-Stokes equation for the fluctuating velocity and thus the dissipation. but 

the resulting equation is too complex and of little practical relevance. Often the 

equation is modeled together with the k-equation and the Kolmogorov-Prandtl 

expression to give the so called k - turbulence model. The equations used are: 

7) 

At At = Ca-, r = - (2.23) 

Ok - Ok 0 p 8k OUI 5(1, 5(r  
0i = + pt( 

9xj + axi 
(2.24) 

Rate Convection 

pt  '96 
Production 

, 
+ J9j - 

at Sri  
Buoyancy/ destruction 
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ae 9e a /1ô 

T + = (2.25) t 
rate Convection diffusion 

17 au 
+ 

au, 
+ - 

+ Cie [,at( axi ôx j at  ax i ,  

Generation - Destruction 

where c, and c2 are empirical constants. The different transport 

mechanisms are shown underneath the equations see also [115] and [106]. 

2.5.3 Experimental Model: The Modified k - € Model 

Flow simulation is described in detail in chapter three. The simulation model is 

based on a modified k - model. This uses different constant values from those 

used in the standard model to increase its accuracy in predicting wall turbulent 

shear and the wall limiting behaviour. Although these constants used are valid 

throughout the fully turbulent, the semi-laminar (transition) and laminar flow 

ranges, the model's accuracy is still poor in situations where there are adverse 

pressure gradients [115], [90] and [118]. Flow simulation is covered in detail in 

chapter 3. 

In the experiment, there was scope for varying both the primary and secondary 

air flows and injecting varying particle loading densities in the case of two-phase 

studies. 



2.6 Two-Phase Flows 

The dispersion of particles by turbulent shear flow is an intrinsic part of many 

technological processes e.g. dispersion of liquid droplets in gas combustion and 

the mixing of coal particles by the input jets of coal fired power plants, cyclone 

separators, as well as in rocket exhausts containing ash or unburnt metal 

powders [69] and [1041. In many of these processes, the dispersion of the 

particles is a controlling factor in the efficiency and the stability of the process 

[104]. Despite considerable progress in analytical and experimental studies, the 

design of particle transport systems largely relies on empirical correlations due 

to the complex mechanisms involved in gas-particle, particle-particle and 

particle-pipe wall interactions. 

In practice there are enormous and difficult fundamental problems such as 

selecting feasible theory among a large collection of examples. The traditional 

method for predicting the dispersion of discrete particles in turbulent flow is the 

so-called tracking method which uses statistical simulation where trajectories of 

the particles are computed with the aid of the equations of motion [2], [77] and 

[97]. Equations of motion used are generally oversimplified; in a lot of cases. 

Newton's law is expressed with the Stokes' law drag force alone [71] and [97]. 

Furthermore, this drag force is usually written as a function of the difference 

between the mean fluid and mean particle velocities meaning that the basic 

equations used to describe the phenomena are purely deterministic and not 

stochastic as turbulence is. See also [92], [7], [61], [18], [85] and L86]. 
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2.6.1 Physical Model for Gas-Particle Flows 

Interaction between the particles and the fluid is based on their size, relative 

velocity and the difference in densities. The mean relative velocity between the 

gas and the particles is mainly a function of the size and material density of the 

particles. This interaction can be correlated by a particle Reynolds number, Rep. 

Re 
= (U - U)p1d = Urd — 

(2.26) 
I2 f Af 

and the particle relaxation time r 

- 1SILIP! 
(2.27) 

where af  is the fluid kinematic viscosity. The relaxation time. r, is the time it 

takes a particle to accelerate from rest to within 63% of the fluid velocity and is 

correct only for Stokes' regime, Re < 1 [26], [18], [104], [70] and [72]. 

The modeling of gas-particle interaction is done by regarding the conveying 

gas-phase as two interactive fluids (two-fluid equation equation model) which 

exchange momentum, energy and mass with each other. Depending on the 

physical models about the interactive exchanges of momentum, energy, pressure 

gradient and the constitutive relation between stress and strain in the particle 

phase, there have appeared in literature several different derivations of the 

"two-fluid" equations. 

In all these derivations the main assumptions are that the relative velocity 



between the two-phases is negligible (mixing-length model used). Such 

assumptions are valid only for small Stokes' numbers 2  If Stokes' number is not 

small and if the mean velocity of the conveying fluid is slow, the particles are 

not able to respond quickly to changes in the gas flow. In such cases, the effect 

of the relative velocity becomes significant. 

In addition, it is normally assumed that the turbulent kinetic energy of the 

conveying fluid is generated by both the primary fluid and the fluctuating solid 

particles, but that it is dissipated by the primary fluid only. Recently it was 

shown analytically that the turbulent kinetic energy is dissipated by the relative 

motion between the two phases as well as by the primary fluid itself [69]. 

Most earlier conventional theoretical treatment based on the flow-field 

classification of single-phase flows divides the flow into two fixed transverse 

regions: the turbulent, diffusion controlled core and the fluid controlled 

quasi-laminar region [72]. 

In the turbulent diffusion controlled core region, the particle motion is assumed 

to be controlled entirely by turbulent fluid oscillations and the particles are 

assumed to be transported in the same way as scalar quantities by the turbulent 

diffusion of the fluid. In the mean fluid controlled quasi-laminar region, the 

particle motion is assumed to be controlled entirely by the mean fluid motion 

through the drag interaction. 

Results of calculations using this scheme on particulate wall deposition have 

been found to differ from measurements by as much as four order of magnitude 

2Stokes number is defined as St = mgp(1 - where m = mass of particles, RPf = 

tube diameter, p, pj  density of particle and fluid respectively [124, page F-319] 



[72]. There are several weakness in this approach, the main ones are: 

In the turbulent core, particles are assumed to be transported by 

turbulent diffusion of the fluid, secondly, 

In the quasi-laminar region. particle transport is assumed to be controlled 

entirely by the viscous drag. 

The location of the divide between the two transverse regions is assumed 

to be fixed and is to be determined from the flow field classification of the 

corresponding single phase flow, combining the turbulent core and the 

buffer zone to form the turbulent core for suspension flow and identifying 

the viscous sublayer as the quasi-laminar region for the suspension flow. 

There is a lack of rational explanation of the turbulent particle diffusion 

mechanism which is assumed to exist. 

The unjustified use of known flow properties of corresponding single-phase 

flow in the study of particle transport in turbulent two-phase suspension 

flows. 

In practice, particles being transported in a turbulent flow, in general will not 

be evenly distributed in the transverse direction and thus a local transverse 

particle concentration gradient usually exists. The fluctuating motion of the 

fluid will then be affected by this uneven distribution of particles. The fluid will 

find it more difficult to pass through in the direction of increasinconcentration 

than in the direction of decreasing particle concentration. A larger drag will 

have to be overcome in the direction of increasing concentration [71]. Thus the 

main shortcoming of the theories lies in the assumption of an artificial boundary 
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which separates the two artificial transverse regions; the turbulent core and the 

quasi-laminar sublayer; they deal with these two regions as two separate 

entities- usually two unconnected sets of governing equations, one each for the 

two regions, having no physical or mathematical ties with each other, therefore 

these theories can not produce a smooth transition of flow properties across the 

flow field in the transverse direction [72], which is particularly important when 

studying dispersion characteristics. 

2.6.1.1 One-D Solid-Gas Flow Model. 

The capability of analytically predicting the flow characteristics of a gas-solid 

mixture is important for design and development of many industrial processes 

and components for energy-conversion systems. Several analytical models have 

been developed that involve a one dimensional model of flow behaviour through 

a duct, nozzle or venturi [261. 

The early approaches were to assume dynamic and thermal equilibrium between 

the solid phase and the fluid phase, which corresponds to a single phase, 

homogeneous fluid with modified properties. Particle-particle interaction was 

not modeled. 

The basic assumptions are: see also [18] and [106]: 

• Density of the particles is much greater than that of the fluid pp >> pr, 

• Particle-particle interactions neglected 

• The effect of the particles on the flow is neglected 
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. Virtual mass force, pressure gradient forces and Basset forces' all neglected 

• Other force fields including gravity are not included 

• all particles are rigid spheres of diameter d and density p 

• The two-phase flow is dilute and the effect of particles and 

particle-particle interaction can be neglected. This is true for low particle 

volumetric concentration (volume fraction tending to zero [2]). The 

particle volumetric concentration, a, in the suspension can be computed 

from the particle to air mass flux ratio, m,: 

1 
Ce • (2.29) )8) 

mU1  

where a is the particle volumetric concentration and s 
PV  

particle-to-air density ratio and rn is the particle-to-air mass flux ratio (see 

also [701). The particle size can be made dimensionless by the introduction 

of the Froude number, Fr: 

Fr = U0 
(dg)° 5 

(2.29) 

Uo is the time mean fluid velocity. 

This model is similar to that in [26] developed for variable area, but has been 

modified to be used for non varying areas. The model is thus bon.nd to be 

sensitive to pressure drop and particle size. 

'Basset forces account for the effect of the deviation in the flow pattern from steady state (in-
crease the instantaneous flow resistance), their effect can be substantial in cases where particles 
are accelerated at high rate by a strong external force [51, page 463]. 
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The governing equations are: 

Continuity: solids: 

rhpt = (2.30) 

40 

where i = 1 ... n, represents a group of particles of diameter d, th is mass flow 

rate, 0 is the volume fraction, subscript p refer to particles. 

th =rhp  = pp 6jUpjA (2.31) 

Continuity: gas: 

T2, = pøUaA (2.32) 

Note that = 1— = 1 - 

Gas-Particle Momentum: 

[ P. U.
dUa dU 

- 

dp4r 
— øp ± P;,6;,1.9 (2.33) dx dx dx .Dh  

p is the fluid static pressure, Dh is the hydraulic diameter. Reorganise to 
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eliminate the fluid velocity gradient gives: 

= pU[(1 + + [1 
RT dx A dx Oa i Pi dx 

dUpi 4rA, 
PP E,6iupi 

dx - Dh  - (aPa - thp2)g 

where R is the gas constant and T is temperature. For = 0 (true for most dx 

turbulent jets [117], [2], [69] and [1041) and = 0 (i.e. axisymmetric dx 

Dh = D) then: 

- pthU dU
n, 47 

,j dx - dx D + + (thp + q5ppp)g (2.34) 

The force acting on a particle i due to collision by a cloud of particles j in 

addition to fluid drag is: 

up = Fj(Ua - U) + - U) - g (2.35) 
dx 

where x is the direction of motion and g is the gravitational acceleration and 

where: 

Drag force due to fLuid 
Fi = 

- Upi) 
(236) 

and 
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Drag force due to collision by i particles 

- U 
(2.37) 
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F is interpreted as the time constant for momentum transfer due to drag force, 

for spherical particles: 

F, = CDAa) 
U. - U 

(2.38) 
PP d, 

M. 

Fij
j(d + d4)2  U - th 

(2.39) 
= d[1 + (m,/m,)] 

where ijj is the coefficient of impaction of particle i and j (unity for head on). 

It is important to note that whenever relative motion exists between a particle 

and a surrounding fluid, the fluid will exert a drag upon the particle. The drag 

force on the particle is given by: 

Fd= CApU2g 
(2.40) 

I.-.  

where C is the drag coefficient and A is the particle projected area in the 

direction of motion. Except in turbulence and similar extraneous effects, it 

makes no difference whether the fluid moves past the particle or the particle 

moves through the fluid. 
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The drag force between the solid particles and gas is a. function of Reynolds 

number,R = padp. 

Where CD = 0.44 for R >= 1000; or CD = (l +0.15 J) for R < 100, 

the average density T = Tj  Oppp  + thaP. 

The effect of particle-wall interaction on the skin friction factor is small and 

may be neglected if volume fraction of solids is negligible < 1%. However to be 

more accurate and account for the presence of solids in the gas, the classical 

Fanning factor formula for friction factor for turbulent gas flow is replaced by an 

equivalent friction factor for the solid-gas mixture (see also [26]) as: 

Cf.d /Cf = (1 + x)°3 (2.41) 

where x = solid to gas mass loading (valid for up x = 0.5), C is the fanning 

factor. See [261) 

2.7 Results of Previous Two-Phase Flow Studies 

For two-phase flow of sufficient diluteness and small particle Reynolds numbers. 

the Stokes' drag law, which is based on an unbounded laminar stream passing 

over a single spherical particle, has generally been- ee regarded as an acceptable 

approximation for laminar as well as turbulent two-phase suspension flow [70]. 

In two-phase flows, it has been found that, in the core region, the gas leads the 

particles while it lags behind the particles near the wall. This is due to the fact 
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that the fluid does not slip at the wail where particles do. Consequently, the air 

mean velocity profile is flatter in the core of the pipe and steeper near the wail. 

This effect is augmented by increasing the mass loading ratio or decreasing the 

particle size [105]. The mean relative velocity between the gas and the particles 

is mainly a function of the size and material density of the particles, and the 

location of vanishing relative velocity moves away from the wall by decreasing 

the mass loading ratio. 

Significant reduction of the fluid turbulent shear stress occurs due to the 

dissipating effects of the particles. This is accompanied by a decrease in the 

turbulent kinetic energy. Particulate matter suspended in the boundary layer 

interacts with the dominant structures, and this interaction may be quite 

complex. For the same mean-flow Reynolds number, a more powerful blower is 

needed for pumping a gas-solid suspension in a vertical pipe than is required for 

gas alone. Treating the suspension as a fluid alone is thus inaccurate [105]. It is 

normally assumed that the turbulent kinetic energy is dissipated by the 

fluctuations of the particle phase as well as by the primary conveying fluid. 

Particles with a low Re tend to suppress turbulence of the carrier fluid; for 

example. particles with Re < 100 would suppress the turbulence and have 

similar effects to an increase in viscosity. Large particles (1000m) can cause an 

increase in the measured values of turbulent intensities and Reynolds' stress. 

Small particles (120gm) bring about a. decrease in the measured intensities and 

Reynolds' stress. The above effects are enhanced as the particle loading is 

increased. Smaller (88gm) glass particles do not bring about anignificant 

modulation of turbulence, which might be interpreted as signifying negligible 

gravitational effects [3]. 
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Particle dispersion depends strongly on Aerodynamic response time, to 
= 180 

(the time required for a spherical particle to be accelerated to 63% of the fluid 

velocity from rest) and is valid in Stokes' drag law range only. For larger t 

(higher Stokes number), there is less particle dispersion. At intermediate t 

values, particles might be dispersed faster than the fluid and actually fly outside 

the fluid mixing region of the jet. 

The predicted modification of the law-of-the wail by the particles suggest that 

the use of single phase law-of-the-wail for two phase flow is an inaccurate 

representation of the real situation for volumetric loading ratios > 0.0005. 

In event of swirl, there is a strong separation of particles from swirling flows, 

while in non-swirling flows, the jet spread is only slight [261, 179] and [97]. 

2.8 Comments On Model Selection and Literature 

The "Two-fluid" model see [69] offer a more realistic approach, this model has 

been left out only because it is not possible, with the current experimental 

set-up to measure the particle and gas velocity simultaneously. This limitation 

might apply to the testing of the 'One-D Solid-Gas' flow model as well. 

The literature on Turbulence Theory and Turbulence Models, as pointed out 

earlier is large and still expanding. Of the literaUre cited, [102], [103], [11] and 

[29] coverage on Turbulence theory are recommended while [5], [42], [11] and 

[29] are recommended for their coverage of Turbulence models. 



Chapter 3 

Fluid Flow Simulation Using FLUENT 

FL UENT, version 3.02, a proprietary commercial computational dynamics 

package from Creare Incorporated of Hanover, New Hampshire, USA was used. 

FLUENT, like most fluid dynamics computations packages solves the 

Navier-Stokes equations on "grid-based" geometry. The accuracy of any 

FL UENT simulation will thus, depend upon the choice of this computational 

grid. It is important to note that flow features on the scale of the grid spacing 

or finer, can not be predicted. 

Finer grid spacing (short distance between nodes and large number of cells) 

demands more computational time and storage memory, they however offer 

better accuracy (e.g. of shear stress and that of heat transfer predictions) at the 

wall; course grids, on the other hand, can give rise to numerical errors. The high 

accuracy of finer grids, though desired, must always be compromised to match 

the computational resources available. The simulation work done was in 2D 

setup and the package was run on SUN 3 workstation, a,50 x 30"grid was the 

maximum grid size possible. 
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3.1 Turbulence Modeling 

FL UENT flow modelling is based on the solutions of the Navier-Stokes 

equations: the differential mass and momentum conservation equations and the 

differential transport equation for the kinetic energy of the fluctuating motion Ic, 

and its dissipation rate, r. These written in tensor notation (see chapter 2) are: 

Mass conservation: 

(9 (9 
(p) ± —(pU) = 0 (3.1) ax, 

Momentum conservation: 

tntaion a a a .au au ap 
= —(-- ± I) — + pgj + F, (3.2) 

body forces 
convection diffusion pressure 

The mass and momentum equations given above describe the mean or 

time-averaged flow when applied to a finite number of discrete control volumes 

(grid cells). Turbulence effects can be included either by decomposing the 

velocities into separate terms for the mean and fluctuating components 

(Reynolds' decomposition) and adopting a sensible model for the resulting 

Reynolds' stresses or by substituting an "effective" viscosity in the existing 

equations consisting of the molecular viscosity augmented with its turbulent 

counterpart, p (effective viscosity hypothesis). 

The effective viscosity hypothesis is employed by FLUENT because of its 

simplicity compared to the Reynolds' stress modelling. The distribution of the 

turbulent viscosity is provided by the parameters of the turbulence model used. 

In the k- model used, the kinetic energy of the fluctuating motion, k and its 
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dissipation rate S. 

Kinetic energy, k: 

-(Pk) + ---(pUJc) 
8 8k au ôü 

= k8 + 
+ (33) 

ô 8 

and Dissipation rate, e: 

8 a 8 a,  8(1. au 
(pUs) 

= 
(PC)  + [p 8  } + C1 —( + - C2 p(3.4) 

axi k ôx, @ 

where 

Pt = pc— (3.5) 

The k-s model parameters used in FL UENT are: 

C1  = 1.44. C2  = 1.92, C = 0.09, 0 k = 1.0 and = 1.3 

These constants were used as recommended in literature and FLUENT package 

suppliers as being valid for the k - model. 

The differential equations above are non linear and elliptic [107] in nature 1.

Boundary conditions must be specified at all boundaries of the domain being 

considered [118] and [93]. See also chapter 2. In figure 3.1 boundary conditions 

'A partial differential equation au + 2bu + cu 
- f(z, y, u, p. q) = (l(p = u; q = u.) 

where a, b, c are given functions of the independent variables x and y; and f is a given function 
of the five indicated variables. The magnitude of the discriminant 62 

- cc at any point or 
throughout the given domain determines the classification of the differential equation and is: 

hyperbolic if b 2  - cc > 0 
parabolic if b 2  - cc = 0 
elliptic if b2  - cc < 0 
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for two dimensional axisymmetric flow are shown. 

,
Waff 

Core /jet u 0 - ____ - ____ - ____ - ____ - ____ -- 

U 1 

NJ Cells 

t.---,- 
I NTCeIIs 

Inlet Waa OuUet 
(ulG..1),vO.O,w=0.0 ) (u=O.O.v=O.O.w=O.0) (u.v.w) 

Figure 3.1: Sketch of Simulation Flow Section 

Since for highly swirling flows the effective viscosity may be strongly directional, 

the k- model may be inadequate, in such cases the Algebraic Stress Model. 

ASM could be initiated, this solves algebraic approximations of the differential 

transport equations for the Reynolds* Stress, this is thus more general and 

fundamental. For all flows where the swirl number was less than 1.0, the k-

model was used as recommended. Although FL UENT recommends use of the 

ASM, comparative study of turbulence models [80J in predicting turbulent pipe 

flow suggest that ASM does not predict the mean fluctuating velocity, and 

the turbulent kinetic energy, k very well, especially near the wall region. It has 

been suggested that this is because the wall effect term is not adequately 

represented because there is no modification of the k diffusion term to account 

for the effect of the wall proximity as in the casein the k - models. 

FL UENT deals with the near the wall region by matching the features with 

finite-difference equations and cutting the link between the boundary and near 

wall nodes by setting appropriate coefficients to zero. 



The set of simultaneous algebraic equations 3.1 - 3.4 are solved by a 

semi-implicit iterative scheme [93] and [68] which starts from arbitrary initial 

conditions (except at the boundaries) and converge to the correct solution 

(satisfying the governing equations) after performing a number of iterations. 

The iteration steps are: 

The u, v ( and w where applicable) and momentum equations are each 

solved in turn using guessed pressure. 

Where velocities do not satisfy the mass continuity equation locally, a 

"Poisson-type" 2  equation [37] is derived from the continuity equation and 

the linearised momentum equation. This gives a pressure correlation 

equation which is then solved to obtain the necessary corrections to the 

pressure field. This in turn is used to make adjustments to the 

corresponding velocity components. 

The k-c equations are solved using the updated velocity field to obtain the 

distribution of the effective viscosity. 

Any auxiliary equations (e.g. enthalpy, species, radiation, turbulence 

properties. etc.) are solved using previously updated values of the other 

variables. 

Where inter-phase coupling is to be included, the source terms of the 

appropriate gas flow equations are augmented. 

The above iteration steps are carried out until the error mentioned in (2) above 

has decreases to the specified convergence level. 

2 f(x + y)  + f(r 
- y) = 
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3.2 Convergence, Residual and Numerical Stability 

At each iteration, FL UENT reports a residual for each equation that has been 

solved, this provides a measure of the degree to which each equation is satisfied 

throughout the flow field. The residuals reported are a summation of the 

imbalances in the equation for all cells in the domain for each conservation 

equation. A well converged solution gives normalized residual of the order of 

10 (10-6  for enthalpy). If the residuals have decreased to this level and are 

monotonically decreasing, and the flow field looks unchanged from the solution 

50 iterations earlier, then the solution is considered to have converged. 

All simulation runs were done according to FL UENT recommendations [55] 

these are: 

Inlet and outlet cells should be defined by a minimum of two or three cells. 

Where large gradients are expected as in shear layer or mixing zones. the 

grid should be fine enough to minimize the change in the flow variables 

from node to node. Separated regions should include at least 5 or 6 cells 

across the separation. In general any flow passage should not be 

represented by fewer than 3 or 4 cells. 

Spacing between wall and the adjacent grid line can impact the accuracy 

of the computed shear stress and heat transfer coefficients particularly in 

laminar flow. The recommended grid spaci1ng y/ 2. For turbulent 

flows, the log-law is used in the turbulent boundary layer ad the distance 

recommended is 50 < y < 100 where y+ = py-, Ut is a friction 

velocity defined as Ut = 
- VP 

Avoid aspect ratio greater than 5:1 except where gradients in one direction 
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are very small relative to those in the second direction (e.g. in fully 

developed pipe flow). Excessive aspect ratio can lead to convergence 

difficulties and/or the propagation of numerical errors 

Uniform grids were used for two reasons: they are easy to generate and secondly 

to avoid possible undesired grid distribution. The use of uniformly distributed 

grids however results in having some cell boundary not located precisely at a 

desired location. The use of non uniform grids on the other hand allows 

reducing the grid spacing in regions where high gradients are expected and 

increasing the spacing where the flow is relatively uniform. The correct rate of 

change of grid spacing should be minimised to between 20% and 3017o. 

Furthermore, all simulations were done using rectangular coordinates for two 

reasons: Firstly previous users of FL UE.VT in the department reported less than 

satisfactory results where simulations were done in polar coordinates, and 

secondly because most of the PIV experiments were planned to be done in a 

square glass section. 

3.3 Simulation Results 

All simulations were done in a 2D format. Many simulation runs were made but 

only two sets are reported here. The first set is asimulation of a 10 mm jet 

diameter into stagnant air region. The velocity of this jet was varied between 5 

and 40 m/s. The thickness/width of the stagnant air region was also varied 

from 30 mm to 100 mm. See figures 3.3 to 3.9. 

In the second set, mixing of two jets of different velocities was simulated. 
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Simulation runs for velocity ratios (annular/core) of between 0.67 and 1.5 were 

done. See figures 3.11 to 3.14. To help inspect the velocity vectors in the whole 

flow section, a zoom plot of the region outside the core is also included. This 

was obtained by increasing the vector scaling three fold. In all vector plots, the 

same relative vector scaling is used, i.e. the maximum vector length is based on 

the value of u0. 

3.3.1 Air Jet into Stagnant Air 

In the first group of this set, a 10 mm diameter jet issuing at 20 m/s into a 

stagnant air region whose width was varied between 150 mm to 50 mm (figures 

3.3 to 3.5). In the second group of the set, the effect of changing the velocity of 

the issuing jet was investigated (figures 3.6 to 3.9). A sketch of the inlet 

conditions is shown in figure 3.2. 

I = 1000mm 
p -I 

U0 

d=lOmm 

1

30mm < 
width 

5rn/s < u0  540m/s; u1  = 0 

Figure 3.2: Inlet Conditions For Jet Into Stagnant Air region 
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3.3.2 Mixing 

In simulating mixing of to co-axial jets, a 10 mm diameter core jet issuing at 

20 m/s was mixed with annular flow of between 13 rn/s and 30 m/s giving the 

velocity ratio (core/annular) of 0.67 to 1.5. The geometry/inlet condition for 

this simulation is shown in figure 3.10. 

1 = 1000mm 

II 

U1 d=10mm I 
u0 -130mm <width < 100mm 

U'  
uO  = 20m/s; 13.3 < u1  < 30rn/s 

Figure 3.10: Inlet Conditions For Two Jet \Iixing 
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Figure 3.14: Velocity ratio, 3iL = 1.5 (uo  = 20m/s; u1  = 30m/s) UO 



3.4 Simulation of Particle Injection 

FL UENT provide features for simulating particle injection/ tracking under the 

following assumptions: 

. The gas phase is not influenced by the particle phase. 

. Particle trajectories calculated based on the initial gas phase solution (in 

accordance with the above assumption). 

. Particle volume not taken into account in the solution of the continuous 

phase equations. i.e. the volume of the computational cell is not adjusted 

for the presence of particles. 

No particle-particle interaction forces. i.e. each particle is independent 

(except which may influence the continuous phase e.g. in high particle 

volume loading), and that particles do not collide. 

. Particles injection volumes restricted to less than 10% 

Although this particle injection/ tracking simulating features were tried, only 

few simulation runs are presented here because the features seemed to be too 

limited in scope. 

Indeed some of the assumptions above, [67] and 41} report experimental results 

on the reduction or increase of the turbulence intensity caused bythe presence 

of a dispersed phase in a fluid [119], [67] and [41]. A good analytical 

consideration can be found in [51]. All conclude that small particles reduce the 

turbulence intensity of the flow, while larger particles increase it. 
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There are several possible mechanisms, which are not independent of each other, 

that can contribute to the turbulence modification in dispersed two-phase 

systems: 

Dissipation of turbulent kinetic energy by the particles. 

Increase of the apparent viscosity due to the presence of particles. 

Shedding of vortices or the presence of wakes behind the particles. 

Fluid moving with the particle as added fluid mass to the particle. 

Enhancement of the velocity gradients between two rigid particles. 

Deformation of the dispersed phase. 

Of these mechanisms. (6) is not applicable to particulate flows and the 

contributions of (5) and (2) are negligible in dilute particle dispersions. But 

predominant mechanisms for the enhancement and production of turbulence are: 

the dissipation of power from an eddy for an acceleration of a particle 

(turbulence reduction) 

the flow velocity disturbance due to the wake of the particle or the 

vortices shed, which is taken as predominant mechanism for turbulence 

enhancement. 

These facts, make the particle injection/ tracking simulating feature weak. 

Two sets of Particle injection simulation reported here. In the first set, the inlet 

fluid velocity and that of the particle jet was fixed at 20 rn/s, and particle 



loading varied from 0.05 to 0.2 (figures 3.15 to 3.17). In the second set, the 

particle loading was fixed at 0.1, and the injection velocity varied from 3m/s to 

30m/s (figures 3.18 to 3.20). Particle loading is the mass ratio of particles to air. 

1 
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3.5 Comments on Simulation Results 

3.5.1 Comments on Air Jet into Stagnant Air 

Simulation Results 

The single phase simulation results, are considered to be in good agreement 

with theory. In cases of jets issuing into a stagnant air region, there is evidence, 

as expected, of development of rverse flow. This can be explained by the fact 

that the turbulent mixing layer seems to be thickened simply because 

non-turbulent fluid particles are forced by clusters of discrete vortices or large 

eddies to have their normal (towards the wall) velocity. 

The presence of the containing outer annulus (wall) ensured that any enhanced 

mixing would reflect also in substantial pressure variations. It is evident that, 

enhanced radial mixing is created as a result of the instability, which itself is 

present because of the outwardly decreasing momentum of the fluid. Thus, the 

development of reverse flow is more pronounced in narrow flow section than is in 

wider one see figures 3.3 to 3.5. It is important to note that this whole process 

is strongly interactive. 

3.5.2 Comments on Mixing Simulation Results 

In the mixing cases, it seems the faster of the two streams seems to transfer 

momentum to the slower via turbulent mixing. Any diffusion of the faster 

stream, however, introduces an adverse pressure gradient that tends to separate 

the slower stream. This competition between turbulent momentum transfer. It is 
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believed that this imposes pressure gradients, which in turn would contribute to 

the momentum reduction. The whole feature of momentum reduction is further 

complicated by the addition/ development of reverse flow. 

The transfer of momentum to the slower stream via turbulent mixing, and the 

diffusion of the faster stream, is thus more apparent in the case of a jet flowing 

into a stagnant region than in the mixing case. Thus, a faster jet would start to 

spread, develop swirling or reverse flow further down stream than slower jets. It 

is probably for this fact, that there are seems to be no apparent development of 

any reverse flow in the mixing case, figures 3.6 to 3.9, also figures 3.11 to 3.14. 

3.5.3 Comments on Particle Injection Simulation 

Results 

In all the particle injection simulation runs, one general trend is observed, of 

particles escaping, i.e.. go though the pipe exit. This is what would be 

expected. The particle dispersion, shown by plotting tracks of 20 particles, 

however, does not give a consistent picture. For a given jet velocity, the higher 

the air-particle loading, of the jet, the less the jet disperses, see also [84], 

comparison of figures 3.15, 3.16 and 3.17, shows that the jet at 0.1 (figure 3.16) 

loading spreads more than that of 0.05 loading (figure 3.15), although that of 

0.2 loading (figure 3.17) does not spread more than that of 0.1 loading, it still 

shows significant more spread than that of 0.05 loading. 

The second set of results do not give a consistent picture either. For a given 

relative velocity ratio between the jet and the background airflow, the higher 

the background airflow velocity, the more the jet disperses, see also [84]. One 



would have expected the 3 m/s jet with 20 m/s background velocity 

(figure 3.16) to spread significantly more than jet of 10 m/s, 20 m/s and 30 m/s 

with same background air velocity figures 3.18, 3.19 and 3.20 respectively. The 

axial velocity surface plots still appear to be similar in all six plots. Results of 

all particle injection simulation runs. figures 3.15 to 3.20 thus do not seem to 

give any good general pattern. 

There are other general explanations as to why FLUENT simulation results 

differ from reported in literature, these include: 

- Square flow geometry was used in all the simulation runs, results based on 

this square geometry would definitely differ from those based on circular 

geometry. 

- The inlet velocity distribution was set to be of equal magnitude. In reality, 

the velocity distribution form can be approximated to that of a parabola 

with a maximum velocity at the center of the pipe and zero velocity at the 

boundaries (pipe wall). This unrealistic velocity distribution might have 

considerable effect on the simulation results as it sets up a non realistic 

flow pattern at the inlet. Although it is possible in FLUENT to define a 

parabolic developed flow distribution at the inlet, this definition however 

demands a large number of grid cells. To account for the limits of number 

of cells described on page 3.2 and to maintain the same aspect ratio would 

have required a use of number of cells that required a large computer 

memory that the workstation in use at the time could not provide. Thus 

the uniform velocity distribution at inlet was used as a consequence of 

computer memory limitations only. 

The fluid, for simplicity reasons only, was considered to be incompressible, 
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and as such, the increase of velocity as a result of pressure loss along the 

flow section was not accounted for in this simulation, and must thus also 

be contributing to the divergence of this simulation results from those 

reported in the literature. 

1 



Chapter 4 

Experimental Rig Design 

The experimental rig employs a positive displacement fan driven by a 30 kW 

motor to deliver both primary and secondary air to a 4 inch glass 

test/measuring section. In this rig design. the same fan is used to provide the 

primary air (whose velocity is being measured), and also to pick-up the particles 

from the particle feed hopper and deliver them in the test section. Other pieces 

of equipment used on the rig included a gas cyclone for recovering particles, the 

laser equipment and the related optics, the seeding system and particle injection 

system. Figure 4.4 shows the rig layout. Most parts of this equipment were 

designed and fabricated in the departmental workshop, while others had to be 

specified and ordered from outside suppliers. This chapter discusses the design 

of the swirl generator, the flow straightener, general ducting and the gas 

cyclone. The design of the gas cyclone which is based on standard design 

procedures is reported in appendix B. 

1 
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4.1 Swirl Generator 

Guide vanes will be used to generate the wide range of swirl levels required. For 

an axial guide vane, if the vanes are thin and of constant chord angle, and if the 

axial velocity distribution in the pipe is uniform, then, the theoretical swirl 

numbers can be approximated by the following procedures [82], see also [1] and 

[12]: 

Figure 4.1: Sketch Of Swirl Vane 

The linear momentum. G: 

R R 

= IRh 

upw'rrdr ± P2rprdr ur(R2  - R) (4.1) 
JRh  

The angular momentum, Ga,: 

R 2 
Ge., = 

JRh 

(ur)upirrdr + JRh  
P2wprdr 

 3 
 7rputan(R3 -R) (4.2) 

Note that in both cases, the static pressure, fj P27prdr, has been neglected. 
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The swirl number, S is: 

2 2 putana(R3  - R) 2 1 - r3  

- GR - u(R2  - R2)J 
= tana 

1 - 
(4.3) 

where r is the ratio of hub radius to nozzle outlet radius 

To achieve reasonable blade overlap, S vanes made of S flat blades could be be 

used. These would be held on a hub which must be big enough to both 

accommodate the rope injecting tube ( 5 mm diameter) and provide a range 

for varying the radial position of the injected rope. A hub diameter of 

Dh  = 50.8mm was used, with a test section size D = 101mm gives a radius 

ratio. r = 
0.0254  = 0.5. 0.0508  

For ease of manufacturing, these vanes were approximated by helical blades cut 

along the hub (giving a tangent vector of constant angle a) [1131. By varying 

this angle a (determines the pitch of the resulting screw) blades capable of 

producing the different swirl levels required could be made. Four of these were 

made at angles 15°, 30°, 45° and 60°. See figure 4.2. 

Table 4.1: Theoretical Swirl Numbers 

Vane Angle 15 30 45 60 
Swirl No. 0.21 1 0.45 10.78 1 1.35 
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Figure 4.2: Sketch Of Helix Vane 

4.1.1 Swirl Generator Pressure Drop 

The friction loss for flow through a swirl generator with axial vanes. i.e. 00  vane 

angle, may be given by: 

h11  = k [ 
 PtL
-5---- (4.4) 

For vanes at an angle a, an additional pressure head is required to increase the 

velocity from u0  to u0/cosc, this additional pressure head is: 

1 

hf2 k2°( 
2 pua 

- 

U0 
 - - 

tan  
________ 

- cora u) k2 2g 
(4.5) 

k and k2  depends on surface roughness, wetted area, and the obstruction due to 



the thickness of the vanes. 

Thus the total friction loss (in mbar) is: 

= + k2tan2cx) (4.6) 

k1  is negligible for a < 45°, and k2  is approximately unity. Empirical values for 

k1  and k2  quoted are larger than theoretical ones, therefore empirical pressure 

drops will be higher than theoretical ones. Empirical pressure drop data is 

tabulated in table 4.2. 

Table 4.2: Swirl Generator Pressure Drop 

Vane 
Angle 

ki  
Ref [82] 

k2  
Ref [82] Eqn{4.6} 

mbar 
15 0.83 1.3 8.9 
30 0.83 2.9 17.2 
45 0.83 3.4 40.6 
60 0.83 3.9 120.3 

4.2 Flow Straighteners 
1 

Flow straighteners and the wind tunnel section were installed upstream of the 

swirl generator in order to reduce inlet turbulence levels. They also ensured that 

any swirl levels induced by the swirl generator would be generated from the 

same background turbulence level. 

83 
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Two flow straighteners, one before the wind tunnel type expansion and the 

other before the wind tunnel type contraction sections were used. The wind 

tunnel expansion and contraction sections profiles (see figure 4.3) were designed 

according to the following formula [42}: 

r0  
r = (4.7) 

),I 
1(1_3 2 /a2)2  
(1 + 3x2 /a )3  

Where x is the position along the wind tunnel axial axis, a is the radius varying 

from 0 to r, r0  = 0.5d0  and r1  = 0.5d1  (see figure 4.3). Usually parameter a is 

taken to be 4r0. Also when x = a/ v'3-, r = r0 . The length L1  is recommended 

to be 1.5 to 2.5 times the inlet diameter of the contraction section (d1 ). The 

section designed was of the following dimensions (ro  = 50.8mm: r L  = 76.20mm: 

= 530mm: L2 = 245mm). 

IL 

X 

-r 
• d0  

Flow Straighteners (Screens) 

Figure 4.3: Flow Straighteners' Positions 



4.3 Fan 

This is for providing primary and secondary air to the test/measuring section. 

The fan must be capable of overcoming the pressure drop in the cyclone and 

duct work (screens, valves, bends etc.). 

The pressure drop along the duct is mainly due to the friction loss along the 

duct length and velocity head loss at bends. These losses can be estimated from 

(see [19, pages 201 - 202] for friction loss guidelines), see also figure 4.4: 

. Four 900  bend, total resistance coefficient 0.9 x 4 = 3.6 

. One standard tee piece: total resistance coefficient 1.8 

. One enlargement. diameter ratio = 0.667. total resistance coefficient 0.3 

• Contraction, diameter ratio = 0.667, total resistance coefficient 0.22 

• Sharp exit, projecting pipe, total resistance coefficient 1.0 

• Sharp edge entrance, total resistance coefficient 0.5 

• Sharp exit, projecting pipe, total resistance coefficient 1.0 

Sharp edge entrance, total resistance coefficient 0.5 

Total resistance coefficients. k = 8.92. Thus pip bends pressure drop. Lh d3  

is: 

- 

- 

- 92 
 = 727.4 m of air (Pbend, =85.6 mbar). 

- 2g 2x9.8I 

The pipe pressure drop due to friction can be calculated from (see [21. page 

44-50] 



4.3 Fan 

This is for providing primary and secondary air to the test/measuring section. 

The fan must be capable of overcoming the pressure drop in the cyclone and 

duct work (screens, valves, bends etc.). 

The pressure drop along the duct is mainly due to the friction loss along the 

duct length and velocity head loss at bends. These losses can be estimated from 

(see [19, pages 201 - 2021 for friction loss guidelines), see also figure 4.4: 

. Four 90° bend, total resistance coefficient 0.9 x 4 = 3.6 

. One standard tee piece: total resistance coefficient 1.8 

• One enlargement, diameter ratio = 0.667, total resistance coefficient 0.3 

• Contraction, diameter ratio = 0.667. total resistance coefficient 0.22 

Sharp exit, projecting pipe, total resistance coefficient 1.0 

• Sharp edge entrance, total resistance coefficient 0.5 

• Sharp exit, projecting pipe, total resistance coefficient 1.0 

Sharp edge entrance, total resistance coefficient 0.5 

Total resistance coefficients. k = 8.92. Thus pip bends pressure drop. Lhb,d, 

is: 

- - 
402X8.92 

 = 727.4 m of air (Pbends  =85.6 mbar). 
- 2g 2x9.81 JL  

The pipe pressure drop due to friction can be calculated from (see [21. page 

44-50j 

We 
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R.  - 4.-. 

R 1pU2  
ih1  = -____ = 8(-)()(--) 

pg 
(4.10) 

Where R is the resistance to flow per unit area of pipe surface. Taking, the pipe 

roughness, e = 0.046 mm (as that of commercial steel [21, page 441, then with: 

The pipe diameter,D = 101.6 mm (4") 
Pipe length, I = Sm 
Air density, p = 1.2 kg/m' 
Air viscosity, i = 0.018cP 

The Reynolds' number, Re = 

= 0.1016 x 40 x 1.2 - 0.018.10 2.71 x 10; with the relative Pipe 

roughness, CID = 0.046/101.6 = 0.00045; figure 4.5 gives r 0.002 
IOU 

Figure 4.5: Pipe Friction Chart ê Versus Re (Reproduced from [21. page 41] 

Therefore: 



—t.P1/pg = 8 x 0.002 x (8/0.1016) x (402  x 1.2) 
= 102.7 m of air(12.1rnbar) 

Thus total pressure drop ILPItal  is: 

Ptota1 = APcycionc + /.Pswiri + Apstraightner 
+ APb d, + AP1  

i.e. 7P0 1 = 11.4 + 120.3 + 38.0 ± 85.6 + 12.1 = 267.4 

Thus the required fan duty is: 

Volumetric flow rate. Q 1520 m3/h. 

Maximum pressure drop 267 mbar. 

Required fan differential pressure :300 mbar. 

4.4 General Ducting 

Linlab metal ducting, was used, purely for ease of assembly. They are however 

more liable to leak along seems and joints. In order to minimize the risk of 

electrostatic electricity, metal ducting had to be used. These were additionally 

earthed. The glass test section was enclosed in plastic wire mesh and only the 

region under investigation was left uncovered. Two 8 inch butterfly valves were 

installed for varying the core and annular flow. The air intake into the fan was 

via a silencer to minimise noise. The fan itself was enclosed in wooded box filled 

with sound absorbing composite material. 



4.5 Cyclone Performance 

The performance of the designed cyclone was then calculated using the scaling 

factor, 3, in relation to the Stairmand's standard cyclone, see in figure 10.46a of 

[38, page 356]. The scaling factor is given by: 

=[( )x x x-i 
D23 Qi zpi /22  0.5 1 

Q2 'P2 i1J 

=  [
( 0.480 )3  223 2000 0.01810 1.257 
0.203 1517.7 2458.8 0.018] 

The calculated performance is tabulated in table 4.3. 

Table 4.3: Cyclone Performance at Design Conditions 

1 2 3 4 5 6 7 
Particle 

Size 
% in 

Range 
Mean 
Size 

Scaled 
Size 

Scaled Size 
Efficiency 

,am 

Collected 
At Exit 

% at 
Exit 

2xMen1) Mean(l) x ,3 Ref [111] (2)x(5)  

75 .0-7 1.50 94.2 100.0 2.0 0.0 
53-75 I 9.0 5.76 80.4 100.0 9.0 0.0 
38-53 33.3 15.15 .57.2 100.0 33.3 0.0 
27-38 1 33.4 10.86 40.8 100.0 33.4 0.0 
19-27 1 15.0 3.45 28.9 97.7 14.7 49.3 
13-19 3.6 0.58 20.1 96.0 3.5 20.5 
9.4-13 2.0 0.22 14.1 94.4 1.9 16.1 
0-9.4 0.7 0.03 5.9 .. 85.9 0.6 14.1 

E37.55 
 I_____________  

96.3 100 

Thus, the expected cyclone collection efficiency at design condition is 96.2% and 

is acceptable. 
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The general performance of the cyclone under different experimental flow 

conditions (velocity and particle density) was checked and is tabulated in 

table 4.4. 

Table 4.4: Calculated Cyclone Performance at Different Experimental Conditions 

Test 
Section 
Velocity 

Cyclone 
Velocity 

Cyclone 
L.P 

p = 1300 kg/m3  p = 2460 kg/m' 
Scale 

 .8 
Collected 
At Exit 

Scale 
,8 

Collected 
At Exit Inlet Exit 

rn/s m/s m/s mbar - % - % 
5 1.3 0.9 0.1 5.57 99.0 4.05 99.0 

10 3.5 1.8 0.4 3.94 1 99.0 2.87 98.9 
15 5.3 2.7 0.9 13.22 99.0 2.34 98.9 
20 7.0 3.6 I 1.7 2.79 98.9 2.03 98.8 
25 -8-.81 4.5 2.6 2.49 L 98.9 1.32 98.7 
30 10.6 1 5.4 3.8 2.28 98.9 1.65 98.6 
35 12.3  7 6.3-1 5.1 2.11 98.9 1.53 98.5 
40 14.1I 7.2 1 6.7 I 1.97 98.8 1.43 98.4 

Thus overall, general performance of the cyclone and pressure drop under 

different experimental flows is acceptable. 

Experiments were also done to check the performance of the designed cyclone. 

The port for collecting particles was carefully cleaned using a vacuum machine 

and weighed. Similarly the feed hopper and feed was cleaned and charged with 

a known weight (12 kg) of 75gm particles which were the injected into the air 

delivery system. The collected particles were then weighed. A collection 

efficiency of 96% was obtained. 



Chapter 5 

Experimental Rig Testing & LDA Experiments 

After the experimental rig assembly was ready, the rig had to be tested: 

- Checks for air leaks, particularly in duct sections carrying particles that 

are in areas where the laser light is in use, this is for safety reasons, it is 

undesirable to have laser light randomly scattered in the laboratory. 

- Verify the installed fan throughput and establish the velocity range in the 

core and annular pipe sections using Pitot-static tubes. 

This was then followed by carrying out the actual velocity measurement 

experiments using both laser Doppler velocimetry, LDA and Particle Image 

Velocimetry, PIV. LDA experiments are reported later in this chapter. while 

PIV experiments are covered in chapter six. 

'r- 

5.1  Experimental Rig Testing 

Linlab ducting (galvanised tubes with male and female ends), though easy to 

install, were found to be more prone to leaks, and constant leak monitoring had 



to be adopted. 

5.2 Pitot-Static Velocity Measurements 

Pitot-static tubes, of 2mm diameter aperture were used to measure the velocity 

in the core and annular sections of the air feed sections. These were located at 

the centre of the respective pipe cross-sections. The relationship between the 

recorded pressure drop, in height of air (flowing fluid) and velocity, for a simple 

Pitot-static tube is given by equation 5.1 see also [59, page 5-8]): 

U = C/2gLh?L 
P2  

(5.1) 

where Pi  is the density of the manometer liquid and p3  is that of the gas flowing 

gas. 

The value of the coefficient of discharge, C for simple Pitot-static tubes is 

between 0.98 and 1.0 [59, page 5-81, a value of 1.0 was used. 

In order to be able to get reasonably accurate velocity measurements using a 

Pitot-static tube, a straight calming (away from bend or obstruction) section of 

length equal to about 50 pipe diameters upstream and downstream of the 

measurement point is required [22, page 104], [5 page 5-8]. Due to space 

constraints, see figure 5.1, the Pitot-static tubes were installed jist after the 

butterfly valves and in the vicinity of bends, with maximum straight lengths of 

7 pipe diameters (360mm) only. Therefore the pressure drop readings, especially 

at low valve openings are likely to have appreciable errors, which will also be 
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reflected in the calculated velocity. As the levels of disturbance caused by the 

valves were so high, it was not possible to measure the velocity at valve 

openings lower than the third valve slot (approximately 30% open). 

Annulus Side Flow 
Pito-StaocTube 

160

~ ) 360 

 

Co R $ Side 310 L PitocQc Tube 

2t 

1 

1-1 
First Floor 

Figure 5.1: Pitot-Static Tubes' Locations 

Results of the Pitot-static measurements are shown in figures 5.2 to 5.6. In the 

2 inch pipe (core), 11.2 m/s velocity was measured when both valves (core and 

annular) were only 30% open, and 28.3 m/s., when both valves are fully open. In 

the annular, 4 inch pipe, the measured velocity was 6.1 m/s when both the core 

and annular valves were 30% open. and 70.3% when both valves fully open. 

Thus in order to get a wide range of velocity ratio in future experimental work, 

better measurement and refined flow control would be required. 

The maximum total volumetric flow rate, at maximum pressure drop (60° swirl 

generator installed), calculated from the measured velocity, both core and 

annular valves fully open) was 1100.5 m3/h which compares well with the design 

specification of 1517.7 m3/h see page 89 

Velocity measurements were also made with different swirl generators installed 
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and the results are summarised in table .5.1 

Table 5.1: Summary of Velocity Measured by Pitot-Static Tubes 

Core Pipe Section Velocity [rn/s] 
Valve 

%Open 
Installed Swirl Generator 

None 150 300 45 600  
30 30 11.19 21.23 22.10 22.93 22.93 
30 100 16.97 13.71 18.39 23.21 22.38 
100 30 29.18 47.08 46.82 47.74 48.65- 
100 100 28.31 32.43 40.19 45.46 49.67 

Annular Pipe Section Velocity [m/s] 
Valve 

%Open 
Installed Swirl Generator 

None 1 15° 30° 451  600  
30 30 6.13 1 8.67 10.01 10.01 7.08 
30 100 73.39 I 57.61 56.84 40.81 23.74 
100 30 5.0 1 10.01 10.62 10.01 5.0 
100 100 70.25 I 54.25 55.84 41.55 25.27 
Core 
Valve 

Annular 
Valve  

After establishing the fan throughput and the maximum velocity ranges 

expected both in the core and annulus regions, Laser Doppler Anemometry. 

LDA, measurements were carried out in the test section. 

95 

I. 



rnano0c.dat' - 

U (rn/si 

70.0- 
60.0- 

50.0- 
40.0- 

30.0 - 

20.0 - 
10.0 

40 
50 60 

eoOp9i 80 
 90 100 

90 100 

60 70 

40 
50 Annular ve%Opea 

(a) Core Velocity 

'rnanoO_a.daz' - 

TU 

U (rn/si 

70.0- 
60.0- 
50.0- 
40.0- 
30.0- 

20.0- 

10.0 

40 
50 

 

60 10  
Core Valve %Op 80 

 90 100 

too 

80 

60 

40 
50 Annular Valve 016 Open 

(b) Annular Velocity 

'rn*nc0t.da& - 
U (rn/si 

70.0 
60.0 
50.0 z 
40.0 

30.0 
20.0 

10.0 

40 50 

Core VaIve%Op 80 
° 100 

M 60 
 70 So 90  

v:oOPen 

(c) Total Velocity 
Figure 5.2: Pitot-tube Measurements (Without Swirl Generator) 



manol5_c.daz' - 

U (rn/si 

70.0 

10.0 

IUD 
50 

 core iveZop 80 90 100 

80 90 100 

<ve%Open 

(a) Core Velocity 

mano15_&da&" - 

97 

U tm/si 

70.0 1 

30.01 
20.0- 
10.0 

40 Th—:  
Core Valve %Open 80 90  100  

100 

dve%Open 

(b) Annular Velocity 

"manol5_t.dax" - 
U (in/si 

10.0 

40 
50 60 

Core Valve %Opn 80 ° 100 
iZ

100  

ve%Opea 

(c) Total Velocity 
Figure 3.3: Pitot-tube Measurements With 150  Swirl Generator 



U (ixils) 

70.0 

30.0- '600Wtl 
10.0 

40 
50 

Core Valve %O 80 

'rnano30_c4at - 

) 100 

- iive% Or,  en 40 90 1  

(a) Core Velocity 

'rnsno30tdar - 

U (rn/si 

50.0 
40.0 - / 

30.0- 
20.0.  

10.0 too 
- 90 

40 50 60 70 80 

 
60 

Core Valve % 80 90 
too 

40 Annular Valve % Ooen 

(b) Annular Velocity 
I. mano3O-Ldar'• - 

U (rn/si 

70.0 

10.0 

40 
50 36  ~60 0  70 Core Valve % Ope-a80 

100 

60 70 go 90 

90 100 
40 50  Annular Valve % Open 

(c) Total Velocity 

Figure 5.4: Pitot-tube Measurements With 30° Swirl Generator 



70.0 
60.0 - 
50.0.  

30.0 
20.0 
10.0 

40 

Core Valve % Open so -'---- 

90 ioo 

So  '0 100 
ulat Valve % Open 

80 90 100 
 

10.0 

40 

Core Valve % 

::::z:- 7;• too 
80 

30 Annuiar Valve % Open 

70.0- 
60.0 - 
50 '0 

10.0 

40 
50 60 

Core Valve % Open 80 -------- 90 100 
 40 

100 

.flnular70 80  Valve?* Open 

no45c4aC - 

U(mlsl 

(a) Core Velocity 

nan045_3.dax' - 

i:j (/sI 

(b) Annular Velocity 

ano45_.daz' - 

tJ(tnlaj 

(c) Total Velocity 
Figure 5.5: Pitot-tube Measurements With 452  Swirl Generator 



70.0 - 

60.0 - 

50.0 .  

10.0 

40 
50 60 7 

1 

Core Valve% Op 80 --- 

90 i 

100 

- 70 

40

50 6 
Annular Valve % Open 

"mano60c.da - 

100 

U (mis] 

60.0 

500 

30.0 
20.0 
10.0 

4050 
 60 

Core Valve %  Op;g 80 90 100  

90 100 

70  60 
ic0 Valve Open 

(a) Core Velocity 

"msno60_&daz - 

U [mis] 

Annular Velocity 

maco60_t.ai - 
U [m/s) 

70.0 

10.0- 90 100 

40
50  60 60 70  

80 

Core Valve % Op(sa 80 90 10) 40 
50 Annular Valve % Open 

Total Velocity 
Figure 5.6: Pitot-tube Measurements With 600 Swirl Generator 



101 

5.3 Discusion of Rig Testing Results 

The experiments confirmed that the facility was capable of delivering a flow rate 

of 100 m3/h at maximum pressure drop (600  swirl generator installed and both 

the core and annular valves fully open). The maximum design flow rate was 

1518 m3/h. 

The results however show poor variation of velocity with the core valve opening 

(for any given annular valve opening) see figures 5.2 to 5.6. Thus better flow 

regulation methodologies would have to be adopted in future experiments. Some 

of the possibilities include installing better control valves, a by-pass line or some 

form of flow restrictor in the core line. 

The dip in figure 5(a) at 80% core valve opening can not be explained. It sort of 

suggests some form of air stagnation which could be induced by among other 

things high back pressure from the annular line. The annular velocity however, 

at this valve setting is not significantly higher. The probability of experimental 

errors can not be ruled out. 

All Pitot-static tube velocity measurements have errors due to reading of the 

liquid column approximated to be ± 0.5 mm which translates from equation 5.1: 

760 
U 

= ±V/2 x 9.81 x 0.5.10-3  x 
 1.2 

= ±2.5m/s. 

In general the rig's functionality was sound. Particularly the glass test section 

assembly. This unit could be easily deassembled. cleaned and reassembled. 

There is still room for improving the rig functionality especially in the following 



areas: 

• The Lindep metal ducting used for ease of assembly proved to be more 

susceptible to leaks especially along the weld seams. Leaks pose serious 

safety hazards in light scattering and dust.Drawn out metal pipes should 

be seriously considered. 

• The valve system for regulating both the primary and secondary air 

streams was not working adequately firstly because of their proximity to 

bends, .nd secondly, because of their make - (buttery valves). See 

figure 3.1 on their arrangements. One possibility would be to move the 

secondary air branching further upstream on the lower floor and also 

installing better control valves, installing bypass line/stream or adopting 

both measures on both the primary and secondary lines. 

------ 

AWua.Sid.Fow \ \ 160 
Pltot-Sunc 

- 
310 I 

360 

\ Cars Side Flow 
Phot4ta ttc Tube 

ubooio 500 

CnI 
PInt Floor 

3racV'sv. POiot 

Figure 3.7: New/Proposed Branching/Valve Locations 

• The rig would also require, at a later stage, a mechanism for seeding the 
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primary air phase so that the real two phase experiments could be done 

(be able to measure both the particle and air velocity). A smoke or mist 

generating system is one of the possibility. 

• It could be feasible to replace the pitot-static tube with an orifice plate, 

this could be connected to a pressure transducer so that the flow 

measurement could be logged in directly by computer during the 

experiment offering improved accuracy of the reference velocity. 

5.4 Laser Doppler Anemometry, LDA Measurements 

The Laser Doppler anemometry technique is a well documented and proved one 

and is still undergoing further refinements to make it suitable for even more 

applications, e.g. particle dispersion measurements [58] and [17]. By virtue of 

its being a point measuring technique. LDA is more suitable for steady rather 

than fluctuating flows. 

LDA velocity measuring technique relies on the formation of a set of fringes 

caused by the interference of two overlapping coherent beams. In transmission 

mode, a particle crossing these fringes will block off much of the light in the 

bright fringes and only a little light in a dark fringe. The fringe visibility varies 

from 0 to 1.0 (dark fringes are completely black) for the case of equal light 

intensity in both the interfering beams. The particles can be seeding particles or 

actual dispersed particles making up the second phase. Seeding rticles are 

usually small enough faithfully to follow the fluid flow fluctuations. 

High fringe visibilities can be achieved by ensuring that correct particle size to 



105 

The ratio of the amplitude of the Doppler signal to the amplitude of the 

pedestal, i.e. the ratio of high to low frequency components is referred to as the 

visibility and depends on the laser power, ratio of particle size to fringe spacing, 

relative intensities of the two light beams and alignment of the optics and the 

light collecting system. High visibilities (Large signal-to-noise ratios) generally 

allow signal processing equipment which is less complicated and less expensive. 

In principle, the mean velocity components. the Reynolds stress, the velocity 

fluctuations and other correlations quantities can be evaluated from their 

relationship with the measured mean signal frequency, 1. Frequency analysis 

(frequency tracking) or counting procedures can be used in this evaluation. 

Instantaneous velocity or energy spectra can only be obtained with devices 

which follow the signal in real time (e.g. frequency tracking demodulators). If 

the frequency oscillation information is recorded in real time, counting 

procedures can also be used to evaluate instantaneous velocity components, the 

Reynolds stress and other velocity fluctuations correlations quantities. 

When spherical particles are used, particle size information can also be obtained 

from the intensity of the scattered light, as this is dependent on the viewing 

angle and the particle diameter. This effect is employed in the phase-Doppler 

LDA configuration where three detectors observe the scattered light at different 

angles. Commercial LDA systems are available and one was used in this 

experiment. 

To enable correct interpretation of the intensity distribution anjiscrimination 

of the 180 degree velocity direction ambiguity, frequency shift is normally 

required. Frequency shift, (normally applied to one of the light beams) increases 

or decreases the measured frequency, a frequency shift of double the magnitude 
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of the measured frequency will leave the magnitude of the frequency being 

measured unchanged. 

There are different ways of effecting frequency shifting, e.g. by the use of 

rotating gratings, Bragg cells, solid state, electric-optic cells effects in crystals 

and water-filled acoustic-cells, etc. Rotating grating offer the cheapest and 

simplest way of inducing frequency shifts in excess of 1 MHz but, for reasons of 

efficiency and stability, are normally used for shifts of less than .3 MHz. 

Acoustic-optic cells when operated in the Bragg mode (yield one beam with a 

frequency and direction different from the incident beam), These so called Bragg 

cells, generally generate much higher frequency shifts than those of rotating 

grating (largest 40 MHz. lowest 3.5 MHz). Small frequency differences can be 

obtained at higher efficiency by using two cells of slightly different frequency 

either operating in series (shifting in opposite direction) or in parallel (shifting 

in the same direction). A frequency shift of around 9 MHz with appropriate 

filters and electronic arrangements to process the resulting high-frequency 

signals is normally considered adequate for flow measurement in turbulent and 

recirculation zones. 

In this experiment, a commercial 10mW He-Ne laser supplied by 

Spectra-Physics was used. This produced a single laser beam which was firstly 

split into two beams. The first beam is circularly polarized. The second beam 

was first passed through a Brag cell (frequency shifting, helps to discriminate 

direction) and then split into two beams whose polarisation is normal to each 

other. Then all three beams are converged by a lens onto a point in the flow 

region to produce horizontal and vertical fringes oriented at 900  to each other of 

3mm by 1mm diameter. 
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An aerosol generator (bubble air in oil container with a nozzle outlet) 

generating 1A corn oil droplets was used to seed the flow. The same tube for 

injecting particles was used. The scattered light was detected by the 

photo-multiplier which was focused onto the point of convergence of the three 

beams. This detected the intensity and frequency of the light scattered. The 

front optics of the photo-multiplier separated the vertical and horizontal 

velocity components of the flow by a means of a polarisation filter. 

Each velocity component was detected and amplified by the photomultiplier 

before being processed by a DISA 55L90a commercial counter processor unit. 

This analyses individual Doppler bursts to validate genuine bursts (ignore 

noise). The DISA (now DANTEC) counter processor was interfaced to a 

IBM 386 compatible PC that was used to make the statistical analysis of the 

reported frequency and calculate the velocity. As only one counter processor 

was available, only one velocity component was measured. 

The optics were mounted on a traversing mechanism to allow probing of the 

flow region along the length, across the diameter of the tube and vertically, see 

figure 5.8 

5.4.1 LDA Experiments Results 

LDA velocity measurements were carried out at several positions in the axial 

and radial directions and the results are shown in figure 5.10 to 21. These 

LDA results, although were within the expected velocity range (basing on the 

initial Pitot-static measurements), but they are far from being equal to it for 
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Figure 5.8: Sketch of LDA Experiment Layout 

two reasons: 

• The point of measurement of the LDA and Pitot-tube were different 

(location and cross section area). 

• The LDA measurement position would be accounting for more or less total 

flow (although the two stream might not yet be completely mixed) while 

the Pitot-tube measurement only measures a single section (see figure 5.9 

and compare with figure 5.8) 

• The LDA measurement volume was about 1mm diameter, the injection 

tube diameter was 10 mm while the flow/test section diameter was 100mm 

in diameter 

In the graphs, the pitot-tube readings are given purely for reference purposes 

(core and annular valve setting). 
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Figure 5.9: LDA Seeding Position 

At radial distances beyond 21mm from the center of the test section tube, the 

LDA signal became intolerably weak, and no measurements beyond this radial 

position were made. 

This poor quality of the signal is likely to have been caused by two reasons, first 

and foremost the fact that spread /dispersion of the jet did not go beyond this 

radial position in the axial range of 450mm in which the measurements were 

being carried and, secondly, the glass test section was about 3mm thick, and 

might significantly affect the laser beam path by refraction. 

5.4.2 Discussion of LDA Measurements 

In all experimental results, the center line velocity (position y=0;z=0) can be 

found to be fairly uniform (less fluctuations) figires 5.10 to 5.21. Also the 

mixing of the two air stream (core and annular) is evedent in the sense the two 

curves do converge downstream. 

It can be seen that although the velocity measured was within the core region, 

in experiments done where the annular velocity is higher than the core velocity. 
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Figure 5.10: LDA Velocity Measurement: Velocity Ratio 0.5 
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Axial distance (mini 

0 50 100  
40 40 

111 

35 

.' 30- 

35 

30 

25 1 
- r-OM =04D 

X 
•-... 

0.31) 
A -- 

1 0 —=oi 
.0 ..0 

0.0 0.5 1.0 13 2.0 2.5 3.0 33 4.0 4.5 5.0 

Axial Distance (pipe diameters] 

(Pitot-tube: Core 32 m/s; A.i.uut.lar 32 m/s) 

Figure 5.13: LDA Velocity Measurement: Velocity Ratio 1 



112 

Adai distawe [mm] 
0 50 1150225033504 450 

40 • 40 

35 

10  

E 

30 

35 

ZZ 
30 

25 Pos 25 
- 

8 -- -MILD. I 
0 - y1 ID. O.3D 

20 20 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 40 4.5 5.0 

Axial Distance (pipe diamet1 

(Pitot-tube: Core 29.61 m/s; Annular 32.05 m/s) 

Figure 5.14: LDA Velocity Measurement: Velocity Ratio 1.1 

Axial distance (trim I 
0 50 100  

40:....!. 40 

35 35 

30 30 

25 23 
NGUNNUUMI PMOM  

- y3. 
X •-.... rAam  O.3I 
A -- 

20 20 
0.0 0.5 1.0 1.3 2.0 23 3.0 33 4.0 43 5.0 

Axial Distance [pipe diameter5] 

(Pitot-tube: Core 25 m/s; Annular 33 m/s) 

Figure 5.15: LDA Velocity Measurement: Velocity Ratio 1.3 



0 
40— 

"

25 

 

Axial distance (mml 
50 100 150 203 250 303 350 403 450 

Mui.0 Po.b 

x •-... ,*).. )iD 
4 -- 
o - 

40 

35 

.4 

30 

25 

113 

20 -20 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Axial Distance (pipe diameter5l 

(Pitot-cube: Care 23.97 nls; Annular 37.12 m/s) 
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the core velocity measured seem to be higher than the set core velocity. This 

suggests that the core air mass (small in flow volume) is accelerated by the mass 

of the air in the annular region figure 5.16 to 5.21. 

The high peaks upstream in some figures e.g. figure 5.20 where the velocity 

seems to suddenly increase might have been caused by the occassional uneven 

delivery of the seeding (e.g. when there is a sudden increase in the compressed 

air supply). 

5.5 Use of LDA in Particle Dispersion Measurements 

In this experiment, when the injected particles travel axially downstream, they 

are radially displaced by the jet turbulence. It is possible to use LDA methods 

to measure this migration from the jet axis. It is important to note that the 

extent to which the particles are displaced (along the centre line) depends 

mainly on the ratio of the time scale (Stokes number) of particle-inertia to that 

of the turbulence (settling down due to gravity). 

As mentioned above, see page 107, the DISA counter processor validates each 

Doppler bursts. In a conventional LDA experiment, a number of frequency 

readings of such validated bursts are recorded and used to make any statistical 

analysis such as calculation of the mean velocity. If say n such readings are 

required, then the time it takes to record these n validated bursts is inversely 

proportional to the number density (concentration) of particles crossing this 

measurement point. If the particle number density (concentration) is high, then 

it will take only a short time to record the required number of validated Doppler 

burst signals. Thus, by recording both the frequency and time it takes to record 
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such n frequency readings, both the velocity and the corresponding particle 

number density at the measurement point can be established, see also [58] and 

[17] where this principle was used to actually count droplets. 

5.5.1 Particle Dispersion Experiment Results 

The results of the dispersion experiments (at particle feed rate 0.8g/s) are 

shown in figure 5.23 to 5.28. 

As the time required to record n (1000, in the experiments) validated Doppler 

bursts is inversely proportional to the number of particles crossing the 

measurement point, for this uncalibrated system, this time has been normalised 

by the value of the time at initial axial measurement point. (at 60mm axial 

position for all radial positions). 

Within the core, the initial number of particles crossing any of the measurement 

points is reasonably high, and as the particles move axially, more particles 

disperse, and the required time to record the same number of Doppler signal 

bursts increases, and thus the normalised particle number density decreases. see 

figures 5.22(b) to 5.28(b). 

Although no dispersion measurements were made outside the core, for similar 

reasons as those mentioned above in section 5.4., it is possible to comment 

that, outside the core, the number of the particles crossing the initial axial 

measurement point would be low, but is likely to become higher downstream as 

more particles disperse. Thus, the normalised particle number density. for this 

region, would be expected to increase axially. 
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The particle velocity, seems to increase axially, figures 5.22(a) to 5.28(a), It is 

however believed that the particles were not accelerating but that, as the 

annular velocity, in almost all cases, was higher than the core velocity, and the 

two streams were mixing, the core stream velocity would be expected to increase 

(and the annular one decreases) until the whole stream velocity becomes uniform 

at some point down stream. The particles would also be expected to assume the 

velocity of the surrounding core fluid, which would initially be increasing. 

It is also possible, that before the particle velocity settles down to the main 

stream velocity from the injecting velocity, they would seem to be accelerating. 

It is thus difficult, to apportion the accelerating phenomena to only one cause. 

In the experiments, measurements were done only in one half of the pipe 

diameter on the assumption that the flow was symmetrical. It would. probably 

have been better to confirm this experimentally. 
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Chapter 6 

Particle Image Velocimetry 

PIV is a velocity measuring technique which can "instantaneously" record 

velocity over a whole flow field. The technique relies on photographing small 

particles contained in and faithfully following the flow under investigation. 

Light from a laser source is normally expanded into a two-dimensional sheet and 

projected into the flow field. The laser beam is then pulsed (either by Q-switch 

or by a spinning mirror) so that successive images can be recorded on the film 

plane of a camera placed at right angles to the expanded sheet of laser light [52], 

[28], [116], [11], [29], [8] and [25]. Figure 6.1 shows the configuration for PIV 

recording. 

There is a large volume of literature on PIV and this is still growing. Particular 

reference is made to [29], [8], [25], [31], [112], [91], [73]. [23]. [9], [101] and [89] 

which cover the basic principles, early developments and application of the PIV 

technique and [116] and [11] which discuss the equipment. The influence of 

recording media (film) and comparison with holographic methods is discussed in 

[110], [6] and [4]. [114] discusses the scattering power of seeding particles. 

Methods of analysis of multi-exposed PIV negatives have been covered well in 

[110], [6] and [4]. The image shifting technique to resolve velocity direction 

ambiguity is discussed in [78], [33], [47] [127] and [34] while [62], [27], [56], [98]. 
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Figure 6.1: PIV Recording 

[88], [64], [63], [46], [121], [122], [120] and [34] comment on data reduction and 

PIV data confidence criteria. 

The PIV technique has been employed in diverse research fields such as 

measurement of strain and planar velocity in engines [82], in particle rope 

studies [83], measurement of velocity distributions [44], [32], [96], [128], [94], [60] 

and [123], measurement under water waves [75],[38] and [10], the measurement 

of surface displacement and tilt in metereology [45] etc. There also has been 

extensive numerical work and computer simulation related to PIV; some of this 

work is dealt with in [13], [126], [35], [99]. [57], [100], [53], [20] and [125]. 

6.1 Retrieval of Flow Field Data 

The velocity information on the film can be recovered by ascertaining the 

separation of the particle images. This can be done by either observing the film 
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directly using a microscope or, more commonly, by interrogating each point on 

the film using a low powered laser beam (optical interrogation) or by digitising 

the whole doubly exposed image and storing the digital image in the computer 

memory for subsequent analysis. 

Within a small local region of the negative, over which the fluid velocity is 

approximately constant, the recorded flow will consist of two similar but 

displaced random patterns of resolved particle images. The spacing and 

orientation of successive particle images in the area of the interrogation are 

directly determined from the two-dimensional position of the signal peaks in the 

autocorrelation plane, The position of the centroid of the signal peak is directly 

correlated to the inter-particle image spacing on the negative: normally a micro 

computer is employed to find the location of these peaks. There are three 

techniques of producing the correlation function: 

Fully Optical method: An optical processor is used to generate a 

two-dimensional squared autocorrelation function, which is later analyzed 

by computer. 

Optical-Digital method: Digitalisation applied after an optical generation 

of the power spectrum, again numerical analysis completes the analysis. 

Fully digital method: Digitalization of the photograph. followed by 

numerical analysis based on an autocorrelation technique. 
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6.1.1 Optical Method 

Some of the processors used in optical processing include: non linear optical 

media, Electrically Addressed Spatial Light Modulators (EASLM) and Optically 

addressed Spatial Light Modulators (OASLM) [43], these perform at the speed 

of light, and thus provide inherently fast, parallel processing. As the amount of 

data associated with PIV images is always large, this method has a fundamental 

advantage over the the other two. For example generating a squared 

autocorrelation function takes only lOms (plus 20-40ms for exposing the video) 

compared to around is by the digital method [76]. The system however still 

needs to digitise the autocorrelation to perform the peak finding. Another 

disadvantage is that it requires a monochromatic and coherent light source to 

power the processor. It also has limited resolution see Figure 6.2. 
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Figure 6.2: PIV Interrogation: Optical Method 



6.1.2 Optical-Digital Interrogation (Young's Fringe 

Method) 

This is the traditional method. A doubly exposed photograph is optically 

Fourier transformed by a lens to form Young's fringes on the CCD camera 

located in the focal plane of the lens. 

The resulting Young's fringes power spectrum is captured by CCD camera, and 

the information is sent to a microcomputer via a frame store. In the processing, 

the digitised signal from the CCD is Fourier transformed again by a 

microcomputer to form the autocorrelation plane (see figure 6.3). 

PIV aeganve 

130 

L 

Computer 

Figure 6.3: PIV Interrogation: Young's fringes Method 

The Young's fringe method is particularly suitable for high density seeding. 
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6.1.3 Digital Interrogation 

In this alternative method, the whole, doubly exposed image is digitised making 

it available in the memory of the computer. 

The advantage of the digital method is that it allows for adaptive variation of 

the interrogation area to optimize spatial resolution and to achieve a wide 

dynamic range. It can also potentially select particle images from a given 

intensity range within the whole digitised image so as to analyze certain ranges 

of particles without interference between signals (suitable in two-phase flows) 

[50]. 

Other advantages of full digital processing include: 

- Does not require the use of a coherent light source. 

- Flexibility and capability of carrying out extra processing such as: 

- corrections for lens distortion or other perspective distortion. 

- Particle counting, 

- Detection of flow boundaries. 

- Subtraction of background images, 

- Aligning of successive frames etc. 

Digital processing however is fundamentally many orders of magnitude slower 

than optical processing. 



6.2 PlY Measurement of Dispersion of a Particle Jet 

Based on the simplified approach which led to a decision to study the mixing, 

stability and dispersion of the particle jet/rope using the PIV technique, it was 

hoped was that some of the basic physical parameters which affect the stability 

and dispersion characteristics of particle "ropes" could be established. 

— 4 
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Gas to Cyclone 3ep*tor 

Figure 6.4: Small Wind Tunnel Arrangement 

The experiments were done by varying the velocity of the primary air from the 

blower (stream 1 in figure 6.4) and the velocity of the air picking up the 

particles. The particle loading (particles to air ratio) was also varied by varying 

the speed of the hopper feed screw and the velocity of the air transporting the 

particles. The feed hopper motor was a variable speed one. The main limitation 

of the rig set up was that the velocity range that gave a stable jet was very 

narrow and it was thus not possible to explore a wider range of both velocity 

and particle loadings. In this study, particle loadings of 95 kg/M3  to 198 kg/M3 

were used compared to 4 kg/M3 to 40 kg/M3  used in previous work [83]. 

The jet was the exposed to a 15W Argon-Iron laser beam. The beam was 
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expanded to 1 mm thick sheet using an 18 facet spinning mirror whose 

frequency of spin could be varied from 0 to 450Hz. 

The choice up of the frequency of the spinning mirror was based on getting a 

particle image separation being between 1 mm and 2 mm, so that the negatives 

could be reliably analysed to get the velocity vectors. The camera exposure time 

(the time the shutter remained open), was set such that the physical 

length of the track of particle images on the negative, MVmOXT Zp, was within 

the minimum separation range i.e. 1 mm < IVi VmazT 2 mm, where M is the 

magnification factor which was established experimentaly by photographing a 

graph paper and measuring the length of the scale on the resulting film 

negative. The time between successive light flashes or time between exposures. 

was set up so that it was possible to have four exposure during the the 

camera exposure time. Thus using the IS facet spinning mirror and for n film 

exposures, then the spinning mirror frequency is (see also figure 6.5): 

1  

-1'
18f

ZXP  
- 

- n — i 
 

Thus for four exposures n is equal to four in the above equation. 

Results of some of the experiments done are shown in figures 6.6 to 6.16. 



1st exposure 2nd exposure 3rd exposure 4th exposure 

Ts  = Time between exposures 

Texp = Exposure time 

Figure 6.5: Schematic Representation of Time Between Exposures and Exposure 
Time 
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6.3 Discussion of PIV Results, Conclusions and 

Recommendations 

The velocity vector plots are that of the particle velocity with the mean axial 

velocity having been subtracted. The vectors are principally uni-directional 

confirming the absence of any significant reverse flow or swirling flow except for 

figure 6.15(a). The vectors can actually be considered as representing 

instantaneous velocities. 

The velocity vector plots 6.6(a) to 6.16(a) do not show any significant difference, 

this might be due to the fact the velocity range achieved was very narrow. It 

would be expected that the jet would disperse more quickly when velocity (both 

the jet and the primary air) was higher or indeed when one of the two streams 

was at higher velocity. Velocity differentials in this work are in fact all fairly low. 

The velocity vectors shows that the jet spreads (particles therefore dispersing). 

It would be seen that the less dense jet disperses more than the dense jet. This 

can be judged from the downstream jet width in figures 6.6(a), 6.7(a), 6.3(a) 

and 6.16(a). 

There is however no noticeable inference that can be drawn on the effect of the 

velocity ratio, again this might be due to the narrow velocity range achieved. 

Like in LDA experiments (see page 5.4.2, the velocity fluctuation at the central 

axis is minimum, figures 6.6(b) to 6.16(b), these plots show the axial velocity at 

different position across the width of the flow volume. The velocity magnitudes 

in the caption refer to values calculated from the Pitot-static measurement at 

the inlet of the respective streams on the basis of inlet pipe area. When the two 

.1 
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streams are of about equal magnitude, the fluctuations are minimum. 

figures 6.13(b). The dip towards the end of the plot corresponds to positions 

where a significant deposit of particles occur, visually particles could be seen 

sitting on the base of the duct, and had the effect of reducing the air flow, see 

figure 6.17. 

Pimcl d.postta 

fonTung ,du 

Airin 

Figure 6.17: Particle Deposition and Dune Formation 

The main problem of the experimental set up was that of the particle delivery 

system. This system had a tendency to deliver an uneven supply of particles 

which produced an unstable jet of uneven density. Also the velocity range 

achievable that gave a stable jet was also very narrow. This was due to the fact 

that the blower delivering air for picking up the particles was not powerful 

enough. 

Additional modification of the particle delivery mechanism might improve the 

delivery. In the experimental setup, the length of the pipe from the end of the 

feed screw to the particle pickup point was both too short and had a sharp 900 

bend, it was at this point that the pipe tended to get blocked when too much of 

the particles fell into the pickup column (see figure 6.18). A better mechanism 

employing an inclined and curved bend of reasonable length might offer smooth 

flow of the pumped particles (figure 6.19). The curved bend would allow the air 

to flow more or less straight around the bend picking up the particles. A 



/ / / / / L-1 

powerful blower would still be required. 

Area prone to blocking 

Lenth too short 

 

Figure 6.18: Old Particle Feed Mechanism 

Air for picking up particles 

Figure 6.19: Proposed New Particle Feed Mechanism 

In conclusion it can be said that the PIV measurement results are consistent 

with earlier work by McCluskey [83] in which she found that leaner particle'  ets 
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dispersed more than the denser ones. Also in agreement is the fact that at high 

relative velocity with the a high background velocity, there was less dispersion of 

the particle jet. McCluskey work was based on a much higher differential 

velocity up 6 times (6 m/s to 40 m/s) but with a low particle jet density of 4 

kg/M3 to 40 kg/M3. Furthermore, the velocity fluctuations revealed are in 

agreement with the initial LDA experimental results and simulation results. 

The narrow velocity range achieved make it difficult to establish concrete jet 

dispersion characteristics and more work would need to be done where a wider 

velocity range will be explored. The rig's particle delivery system will need 

significant redesign to make sure that a steady stream of particles was delivered 

to the point where the particles are picked up by the air. This might entail 

acquiring a new powerful blower. 



Chapter 7 

Conclusions, Critique & Recommendations 

The main objective of the project was to make a fundamental investigation of 

the basic physical parameters which affect the stability and dispersion 

characteristics of particle "ropes" and particularly to explore conditions relevant 

to the design and operation of Low NO burners and other similar equipment of 

industrial interest. The project, though far from being complete. has made 

reasonable advances in meeting the desired objectives. particularly in: 

1.. Design and fabrication of the main experimental rig (test facility). This 

has been completed and is operational. And although there were often 

conflicting interests regarding the access to the completed facility. I still 

believe this unit will be an invaluable asset in future research work into 

two-phase flows. In fact, it has not been sitting idle, but has been in 

constant use by numerous research workers (from both inside and outside 

this university). 

2. As most flows of practical relevance are always turbulent. the voluminous 

literature on the subject of turbulence was consulted. The k - model in 

its many varied forms is the most commonly used and well tested model in 

modelling single phase fluid flow. This model. when used with proper 

1.50 
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boundary conditions to model single-phase flows, normally produces 

reasonable results. Modelling two-phase flow is more difficult, mainly due 

to difficulties in selecting a suitable theory. Traditionally, the simulation is 

done statistically by computing the particle trajectories with the aid of the 

equations of motion (tracking method). The major draw back of this 

method is the oversimplification of the equations of motion used. 

A commercial computational fluids dynamics package called FL UE'VT was 

used in flow simulation. Single phase flow simulation results were 

reasonable. However, for two phase simulation (particle injection), the 

simulation results were not consistent. This might be due to the fact that 

it is practically difficult to address all the interaction between the complex 

mechanisms that modify turbulence due to the presence of particles. This 

includes the reduction of turt)ulence due to particle acceleration and 

enhancement of turbulence due to vejoctv disturbance. There are also, 

due to some simplifications like neglecting the added mass and volume of 

particles. FL UENT is none the less a useful tool for exploring the flow 

patterns but sufficient care and experience might be required to interpret 

the results. The package could be more useful if it could handle polar 

coordinates as well as it does rectangular ones. 

Experimental work covered included: 

- Testing/commissioning the experimental rig. Experiments confirmed 

that the facility was capable of delivering a flow rate of 1100.5 rn3/h 

at maximum pressure drop (600  swirl generator installed, and both 

core and annular valves fully open) which is in the same range as the 

required design flow of 1517.7 M3  1h (see page 89) 
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- Results from Laser Doppler Anemometer, LDA measurements carried 

out at several positions across the test section showed that the 

magnitude of the measured velocity was within the expected velocity 

range (based on the initial Pitot-static measurements). 

- Exploratory measurements of the particle dispersion using the LDA 

method were made. This method could potentially be improved and 

can offer a means of making point concentration measurements. The 

systems needs proper calibration, and a refined timing method, for 

most personal compters the number of ticks/second offered by the 

system clock is not normally high enough to offer the high resolution 

timing required. 

- Lastly, the Particle Image Velocimetry (PIV) measurement technique 

was used to study the dispersion of particle jets of varying density. 

The results obtained on particle jet dispersion were in good 

agreement with previous work by McCluskey [83]. Also in agreement 

was the finding that the center line velocity showed less fluctuation 

and that jets that are less dense disperse more than the more dense 

ones. Although he velocity range explored was too narrow to be able 

to draw more conclusions, the particle jet density explored has been 

expanded from that of 4 kg/m_3  to 40 kg/m-3  covered by McCluskey 

[83] to 95 kg/m_3  to 198 kg/M- 

3- This preliminary works gives sound background to the basic configuration of 

Low-NOr  burners, turbulence (both theory and modeling/simulation asppects). 

The LDA and PIV work are preliminary investigation towards understanding 

the fluid mechanics of particle "ropes" and the physical reasons for their 

persistence and eventual breakup. 
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Table A. 1 : Some Commonly Available Continuous Wave Lasers 

Type Pumping Medium Principal Typical Light 
System Wavelength Output Power 

nrn mw 
Argon Ion Electrical Oa.s 351.1 50-300 

discharge 528.7 100-1000 
488.0 500-5000 

IIelium-Neon Electrical Cas mixture 632.8 1-50 
discharge 1152.3 1-10 

3391.2 I-tO 
lleliumn-Cadiiiiiun Electrical (as-Vapoiir 325.0 1-10 

discharge mixture 441.6 5-4() 
Ti,iiable Dye Argon or Solution of 530-500 1000 

1K ry 1) Lon fluorescemi I. (lye 
bit laser and 

U llo(laiilinedyes 570-650 1000 
Neodyittiti in- \'AG Optical with Crystal of 106.1 1000-10000 

Tungsten Yltritini Altuitiniujit 
halogen or garnet (loped 
arc lamps with Neod ymuinni 

b-. 
0' 



Appendix B 

Gas Cyclone Design 

This -mit was required for recovering the solid particles. The cyclone was 

designed according to Stairma.nd's method [24, pages 354 - 360] - see also 

figure B.1. The performance of the designed cyclone at different flow velocities, 

recovering particles of different particle sizes and density (was checked and) is 

summarized in table 4.4. Experiments were also carried out to establish the 

actiial cyclone collection efficiency and are reported under section 4.5 

The designed cyclone is shown in figure B.2. 

B.1 Cyclone Physical Size and Pressure Drop 

The design was based on the cyclone being capable of recovering particles whose 

mean size is 37.9 urn, density of 2460 kg/m' and size distribution given in 

table B.1, see [10] and [38]. Note that larger particles will settle more quickly 

than smaller ones. 

Stairmand's basic cyclone design data other design data is tabulated table B.2: 
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The maximum velocity required in a test  ,:measurement  section of 101.6 :nrn 

diameter was 40 m/s, thus, the design volumetric flow rate, QD, scaled up by 

say 30%. is: 

QD = 4() x 0. 10 162  x x 1.3 x 3600 = 1517.rn/h 

Table B.1: Feed Particle Size Distribution (Source Ballotini Ltd. (1990 and 
Gillispie (1990) 

Particle 

Size.Lm 106 75 53 38 27 19 13 9.4 6.6 4.7 3.3 
% 

Passing 100 98 89 .55.7 21.3 6.:3 2 t7 0.1 0.01 OM 
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Figure B.2: Designed/ Manufactured Cyclone 
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Table B.2: Basic Cyclone Design Data 

Stairrnand's 
Cyclone 

Cyclone Under 
Design 

Cyclone diameter [m] 0.203 D 
I Volumetric flow rate [m3/h] 223.0 1517.7 

Air viscosity [cP] 0.018 0.018 
Density Difference p 

- p 'kg/m'] 2000.0 2458.8 

In the Stairmand design method, the recommended gas inlet velocity is between 

9 and 27 m/s. Taking the mean (18 m/s) as the design gas inlet velocity into 

the cyclone, then for the volumetric flow rate of 1517.7 m3/s, the cyclone inlet 

area A is: 

= 0.5D. < ).D. .600' 

Thus. the the cVciOfle diameter. D = 0.023/0.I = 0.48 m. 

The cyclone edt duct area. A is: 

7,-(D)2 (0.48'\ 2  
12 

= = T 
0.045m 

The cyclone surface area, A. is: 

As  = irD(1.5D + 2.5D) = w x 0.4802  x 4 2.895rn2  

The cyclone pressure drop factor, V,, is given by: 



= 
1. 

Taking the friction factor, f  for air, to be 0.005, gives a cyclone pressure drop 

factor of: 

= = 0.005 x 
2.89.5 

0.629 
'41 0.023 

D 0.2xD 

and the radius ratio, 
= 

= 1.8. 

From figure B.i, for = 1.3 and a cyclone pressure factor. w = 0.629 gives 

factor. thin figure B.3 0.9. With the cyclone inlet velocity = (1517.7/3600) ± 

0.023 = 18.3 m/s and the cyclone exit velocity = (1517.7/3600) -- 0.045 = 9.4 

rn/s. then the cyclone pressure drop. is: 

ZI P, = 

3

[u (1±2o2(2_1);)±2u ] 
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i.e. AP, = [18.32(1 ± 2 x 0.92(2  x 1.8 - 1)) ± 2 x 942J 11.4 
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