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Abstract 

 

Schistosomiasis is a water-borne parasitic disease of great public health importance mainly 

in sub-Saharan African countries. The majority of current control programmes use the 

antihelminthic drug praziquantel to reduce disease burden in endemic areas. Praziquantel 

treatment has been reported to accelerate the development of protective immunity against 

re-infection that otherwise takes years to develop. To date, there is no licensed vaccine for 

schistosomiasis in humans but an attenuated schistosome parasite vaccine has been tested in 

animal models. 

 

Employing systematic review and meta-analysis approaches, my PhD research has four main 

objectives relating to attenuated schistosome vaccine and praziquantel treatment: 1) to 

identify predictors that determine protection levels after treatment with attenuated 

Schistosoma mansoni vaccines in the mouse model, 2) to quantify the influence of host and 

schistosome parasite species on attenuated parasite vaccine efficacy, 3) to explore the 

direction of change (increase/decrease) in schistosome parasite-specific antibody isotypes 

after praziquantel treatment in humans, 4) to identify predictors of praziquantel efficacy in 

humans.  

 

My analyses revealed three factors that have an influence on the protection levels provided 

by attenuated schistosome parasite vaccines: increasing numbers of immunizing parasites 

had a positive effect on the levels of protection whereas increasing the radiation dose and the 
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time to challenge infection had negative effects. Analyses showed that the attenuated 

schistosome vaccine has the potential to achieve protection levels as high as 79% after a 

single dose in mice. Alongside this, baboon studies consistently reported protective effects of 

attenuated schistosome vaccines against re-infection. These results show there is a high 

potential for an attenuated schistosome parasite vaccine to be effective in humans. 

 

A meta-analysis of the influence of praziquantel treatment on the direction of change in 

schistosome-specific antibody isotypes was conducted. The analysis revealed considerable 

variability in the antibodies’ direction of change among populations. The results also 

demonstrated an increase of anti-worm IgA and IgE in the majority of studies. These 

antibodies have been reported to have a protective effect against re-infection. The 

combination of age and infection intensity, and the number of days after treatment were 

identified as influential predictors for some antibody isotypes, but there was no single 

predictor that consistently affected all antibody isotypes in the same way.  

 

Praziquantel efficacy levels in humans were investigated and the analyses revealed that cure 

rates for schistosomiasis increase with praziquantel dose, and were affected by the identity of 

the schistosome parasite species (S. mansoni vs. S. haematobium) and the age of the 

participants (children: 0-19 years old vs. adults: ≥ 20 years old). There has been no clear 

efficacy level reduction over the treatment years (1979-2013) suggesting that praziquantel is 

still effective in the treatment of schistosomiasis despite concerns about possible resistance. 
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The development of a schistosome vaccine will benefit from a closer investigation into the 

mechanisms through which protection is acquired in attenuated schistosome parasite vaccine 

studies showing high potential efficacy in animal models. Nevertheless, it will take time to 

develop a schistosome vaccine for human use. The uptake of the vaccine will be made even 

more challenging by the lack of adequate infrastructure in schistosomiasis endemic areas. In 

the meantime, close monitoring of praziquantel efficacy levels is necessary to confirm the 

effectiveness of schistosomiasis control in endemic areas. 
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Lay summary 

 

Schistosomiasis is a water-borne disease caused by a group of flatworm parasites known as 

schistosomes. In areas with schistosomiasis, schistosome parasites initiate infection by 

penetrating the skin of people who come into contact with natural fresh water sources such 

as streams and ponds. We have an effective drug (praziquantel) for the treatment of 

schistosome infection that has been used for decades in schistosomiasis affected areas. 

However, re-infection is common following drug treatment, since streams and ponds are 

often essential water sources for people living in affected areas. Therefore, the development 

of additional methods for disease control is important. A considerable number of studies 

have been conducted to develop an effective vaccine for schistosomiasis. However, to date, 

we do not have a licensed schistosomiasis vaccine for human use. This study aims to answer 

the key questions that relate to drug treatment and vaccine development for schistosomiasis. 

Relevant scientific publications were identified by a systematic literature review, and reports 

from these articles were used for this study.  

 

By analysing 131 scientific articles investigating schistosomiasis vaccines in animals, I 

found that weakened live-schistosome parasite vaccines are protective against schistosome 

infection in mice, baboons, and rat hosts. In addition, I found that an increase in vaccination 

dose could improve protection levels. This protection slowly declines over time but stays 

high for at least 6 months after vaccination in mice. The results of these animal experiments 
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confirm that there is potential for a weakened live-schistosome parasite vaccine to be 

effective against schistosome infection in previously unexposed populations. Further studies 

are required to estimate the influence of previous persistent schistosome infection and/or 

treatment on the protection levels. 

 

I identified 106 scientific articles which reported efficacy levels of praziquantel treatment for 

schistosomiasis. I found that praziquantel treatment is still effective for schistosomiasis 

despite concerns that the parasites might be acquiring resistance against the drug after 

decades of use. In addition, my analyses revealed that efficacy levels of praziquantel 

treatment increased with drug dose, and were affected by the identity of the schistosome 

parasite species (S. mansoni vs. S. haematobium), and the age of the participants (child vs. 

adult).  

 

There were 26 articles that reported whether levels of antibodies against schistosome 

parasites increased or decreased following praziquantel treatment. I found that there were 

more reports of an increase in antibodies which have been reported to be associated with 

protective immunity against re-infection: schistosome worm specific IgA and IgE antibodies. 

However, I also found that the pattern of changes in antibody levels was not consistent 

among different populations. These results suggest that the levels of protective immunity 

which can be stimulated by praziquantel treatment might vary among different populations.  
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The development of a schistosome vaccine will benefit from a closer investigation of the 

weakened live-schistosome parasite vaccine studies which provide significant levels of 

protection in animal models. Nevertheless, it will take time to develop a suitable vaccine for 

human use in developing countries. In the meantime, close monitoring of praziquantel 

efficacy is necessary to confirm the effectiveness of treatment programmes in affected areas.  
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Chapter 1: Introduction 
 

 

1.1. Background 

Schistosomiasis, which is caused by blood fluke parasites in the genus Schistosoma, is a 

water-borne disease of great public health importance. Schistosomiasis transmission has 

been reported from 78 countries, where more than 260 million people are infected (WHO 

2015). With this chronic parasitic disease, more than 4.5 million Disability Adjusted Life 

Years (DALYs) are lost each year worldwide (King et al. 2005; King et al. 2008; Gray et al. 

2010). Schistosomiasis mainly affects the poorest populations of remote areas in African 

countries where people have limited access to safe water supplies and proper sanitary 

facilities (WHO 2015). Current control strategies for schistosomiasis consist mainly of mass 

administration of the antihelminthic drug praziquantel, a drug that has been used for more 

than 30 years in the treatment and control of schistosome infections (Gönnert et al. 1977; 

WHO 2015). Similar to other parasitic diseases, protective immunity against schistosome 

infection takes years to develop, leading to reductions in both infection prevalence and 

intensity in older age groups in endemic areas (Woolhouse et al. 1999; Mitchell et al. 2011). 

Some studies report that praziquantel treatment can accelerate the development of this 

protective immunity by exposing the parasite’s hidden antigens (Harnett et al. 1986; Mutapi 

et al. 2005; Doenhoff et al. 2008). There are multiple schistosome parasite antigens that 

have been considered as vaccine candidates; however, to date there is still no licensed 

vaccine against schistosomiasis.  
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In this thesis, a systematic review and meta-analysis methods are used to identify the 

predictors that influence schistosome parasite vaccine efficacy levels in experimental animal 

models. The influence of praziquantel treatment on the direction of change (increase or 

decrease) in schistosome parasite-specific antibody isotypes are also explored. In addition, 

the predictors that influence the cure rate of praziquantel treatment for schistosome 

infections are identified. In this introductory chapter, the basic biology, epidemiology, and 

control methods of schistosomiasis are reviewed along with an overview of current 

knowledge about protective immunity against schistosomiasis. The methodology upon 

which the thesis is based, i.e. a systematic review and meta-analysis, is also briefly 

introduced. Although the main focus of this thesis is on S. mansoni and S. haematobium 

infections which cause intestinal and urogenital schistosomiasis respectively (Cline et al. 

1977; King et al. 1988), findings from other schistosome species are mentioned where 

relevant.   

 

1.2. Schistosome parasites, their lifecycle (Figure 1.1) 

Schistosome parasites reproduce themselves by asexual reproduction in intermediate snail 

hosts and sexual reproduction in mammalian hosts, including humans. Inside the definitive 

host body, schistosome parasites develop into sexually matured adult worms that start to 

produce eggs, which can be released into the environment through contaminated urine and 

faeces. When eggs are released into environmental fresh water, the eggs hatch and release 

miracidia which infect intermediate snail hosts for asexual reproduction. Miracidia develop 
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into free-swimming mammalian-infective stage parasites (cercariae) in snails which are 

capable of penetrating human skin when humans become exposed to contaminated fresh 

water (Jordan et al. 1969). Cercariae transform into schistosomula by shedding their 

swimming tail. Schistosomulae pass to the hepatic portal system where males and females 

pair up. Paired adult worms migrate to the portal system (intestinal schistosomiasis caused 

by S. mansoni and S. japonicum) or the bladder (urinary schistosomiasis caused by S. 

haematobium). During their reproduction period, schistosome parasites produce large 

numbers of eggs daily. For example, a single S. japonicum worm pair can lay about 

1,000-22,000 eggs per day, and in the case of S. mansoni, it is about 350 eggs per a day 

(Cheever et al. 1994). These eggs are mainly responsible for the pathogenesis of 

schistosome infections. While some eggs move from the veins to the lumen of the intestine 

(S. mansoni and S. japonicum) or the vesical veins surrounding the bladder (S. 

haematobium), over half of the eggs remain trapped in host tissues and cause chronic 

immune stimulation, and subsequent granuloma and fibrosis formation (Christie et al. 1986; 

Smith et al. 1986; Andrade 2009). Eggs excreted in urine and faeces are, in areas with poor 

sanitation, released to fresh water sources where schistosome parasites complete their life 

cycle.  
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Figure 1.1: The life cycle of main schistosome species affecting humans. Adapted from 

the Centre for Disease Control and Prevention (CDC) online resources: 

http://www.cdc.gov/dpdx/schistosomiasis/ (accessed 15/01/2016).  

 

1.3. Epidemiology of schistosomiasis 

Humans are natural hosts for S. mansoni, S. haematobium, S. japonicum, S. intercalatum, S. 

guineensis, and S. mekongi (Ratard et al. 1990; Kato-Hayashi et al. 2010; Mone et al. 2012). 

Nevertheless, the majority of human schistosomiasis is caused by three major schistosoma 

species: S. mansoni, S. haematobium, and S. japonicum (Steinmann et al. 2006). Of the 

estimated 260 million people infected with schistosomiasis globally, more than 90% of cases 

are reported from sub-Saharan Africa where both S. mansoni and S. haematobium infections 
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are endemic (WHO 2015). S. mansoni is found throughout Africa, the Middle East, and a 

part of South America, S. haematobium is distributed throughout Africa and the Middle East, 

and S. japonicum is mainly found in China and Southeast Asia (WHO 2015). While the 

major hosts for S. mansoni and S. haematobium are humans, S. japonicum is capable of 

infecting both humans and other animal hosts including sheep, cattle and water buffalo in 

natural conditions. There are 10 common species associated with animal schistosomiasis, 

and among them, S. mattheei and S. bovis stand out because of their veterinary significance 

(Vercruysse et al. 2005). Several other schistosomiasis species that mainly infect birds have 

also been reported as being capable of causing human infection (Horak et al. 1999; 

Lichtenbergova et al. 2008).  

 

In schistosomiasis endemic areas, the intensity and prevalence of disease infection tends to 

be highest among children, and lower in older individuals within the same populations 

(Fulford et al. 1992; Mutapi et al. 2006; Colley et al. 2014). This trend of infection intensity 

and prevalence has been associated with possible behavioural change by age. There are 

epidemiological reports that water contact peak among young children and then decrease as 

they get older (Chan et al. 2000). Nevertheless, there are some reports of peak of infection 

intensity among children despite higher water contact rate among adults than children 

(Kabatereine et al. 1999). Therefore, the change of water contact rate alone cannot explain 

the relationship between age and infection intensity. In addition, epidemiological studies 

have reported that the age that harbors the highest intensity of infections depends on the 
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disease transmission levels of the areas (Woolhouse 1992; Woolhouse 1998). The peak of 

infection intensity is higher and occurs at a younger age in schistosome-infected populations 

in highly endemic areas (i.e., the peak shift, as in Figure 1.).  

Figure 1.2: Age-infection intensity profiles from different high and low transmission 

areas indicating the peak shift.  The plots show the age-infection intensity profiles of S. 

haematobium infections between populations of high (squares, solid line) and low 

(diamonds, dashed line) transmission areas. Adapted from Woolhouse (1998).  

 

1.4. Protective immunity against schistosome infections 

The age-related changes in infection levels (as in figure 1.3) have been associated with the 

development of naturally acquired protective immunity against schistosome infections 

(Woolhouse et al. 1999; Mitchell et al. 2012). The protective immunity is thought to take 

years to develop, as in endemic areas infants get infected by schistosome parasites as soon as 

they are old enough to come into contact with natural water sources (Ruganuza et al. 2015). 

A recent quantitative study has concluded that the naturally acquired protective immunity is 
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stimulated by the death of adult schistosome worms and consequently reduced fecundity 

(Mitchell et al. 2012). 

 

Schistosome parasite specific antibodies have been reported to be associated with protection 

against schistosome infections. High levels of schistosome specific IgE have been reported 

to be associated with low re-infection rates of S. mansoni (Dunne et al. 1992), S. 

haematobium (Hagan et al. 1991) and S. japonicum (Zhang et al. 1997). Similarly, 

epidemiological studies have reported the association with high levels of IgA with low 

re-infection rates of S. mansoni (Vereecken et al. 2007). On the other hand, high levels of 

schistosome specific IgG4 have been associated with high susceptibility to both S. mansoni 

and S. haematobium infections (Grogan et al. 1997; Oliveira et al. 2012). In particular, 

epidemiological studies have reported that a high IgE ratio to IgG4 is associated with 

resistance to re-infection in both S. mansoni and S. haematobium, suggesting that IgG4 has a 

blocking effect on IgE (Grogan et al. 1997; Pinot de Moira et al. 2010). 

 

1.5. Current control strategies 

1.5.1. Mass Drug Administration (MDA) 

The majority of schistosomiasis control programmes use the anthelminthic drug praziquantel 

for mass administrations. Since its discovery in the 1970s, praziquantel has been used as the 

first drug of choice against schistosomiasis in many endemic areas (Gönnert et al. 1977; 

WHO 2015). Currently, praziquantel is sold at US$ 0.08 per single 600 mg tablet with an 

average cost of US$ 0.14–0.30 per treatment (Evans et al. 2011). This reasonably-priced 
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efficacious drug has achieved a significant reduction in the disease’s prevalence, infectious 

intensity, and morbidity in many endemic areas (Vennervald et al. 2005; Koukounari et al. 

2007). In mass drug administration (MDA) programmes, praziquantel is given at 40mg/kg 

body weight regardless of the age or sex of participants (WHO 2006). The recommended 

frequency of praziquantel treatment in control programmes depends on the prevalence of 

schistosome infection among primary school children who are the main target of the 

treatment (WHO 2006). A yearly treatment of school-age children is recommended in areas 

with more than 50% prevalence of schistosome infection among school-age children 

(High-risk community), and a biannual treatment is recommended in areas with 10-50% 

prevalence of schistosome infection (Moderate-risk community). In areas with lower than 

10% prevalence of schistosome infection among school-age children is recommended to 

occur twice during their primary school years. Recently praziquantel has confirmed to be 

safe and effective for infants and preschool-age children (aged 5 years and below) who were 

previously excluded from the treatment (Mutapi et al. 2011; Coulibaly et al. 2012). In 2010, 

WHO amended praziquantel treatment guidelines by recommending praziquantel treatment 

for infants and preschool-age children through regular health services (WHO 2011). This 

change could make it possible to apply MDA more widely in the future. 

 

1.5.2. Intermediate Snail Host Control 

The geographical distribution of schistosome parasites and schistosomiasis cases is limited 

by the distribution of fresh water intermediate host snails (Loker et al. 2005). Therefore, the 

control of intermediate host snail populations is regarded as another important intervention 
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against schistosomiasis. The snails can shed thousands of cercariae into waters for about a 

month while they are infected by miracidia larvae (Ward et al. 1988). Kariuki et al. have 

reported that molluscicide-based snail control, together with MDA, achieved significantly 

low levels of re-infection compared with drug administration alone (Kariuki et al. 2013). 

Similarly, King et al. have reviewed mollusciciding control studies and have reported that 

mollusciciding interventions can reduce the risk of new infections in targeted areas (King et 

al. 2015). However, Kariuki et al. have also mentioned the difficulty of maintaining control 

of snail populations, as the number of snails tends to recover when the interventions are 

interrupted (Kariuki et al. 2013). In addition, the toxic effect of a commonly used 

molluscicide (niclosamide) on fish and aquatic animals makes it difficult to use the 

molluscicide constantly (Takougang et al. 2006; Takougang et al. 2007; Yang et al. 2010). 

Therefore, more environmentally friendly approaches such as re-formulations of 

niclosamide and alternative types of molluscicide have been investigated to achieve 

sustainable snail control (Dai et al. 2008; Yuan et al. 2011; Xia et al. 2014).  

 

Besides chemical molluscicide usage, a number of biological snail control programmes have 

also reported successful reduction of the snail populations. This includes the introduction of 

snail competitors (Pointier et al. 1989; Pointier et al. 1992) or snail predators (mainly fish) 

(Ben-Ami et al. 2001; Stauffer et al. 2006). The best snail competitors are closely related 

snail species that are not intermediate hosts for schistosome parasites. Although the 

competitor snail species are selected due to their resistance against schistosome infections, 



  

10 

  

there is still a risk of their becoming susceptible to the local schistosome parasites during the 

intervention (Lardans et al. 1998). 

   

1.5.3. The improvement of infrastructure 

Similar to several other neglected tropical diseases, proper sanitation and clean water supply 

systems are also very important factors in the success of control programmes (Asaolu et al. 

2003; Zhou et al. 2013). Without appropriate sanitation systems, even just a single infected 

person can release a large number of schistosoma eggs into the environment (Cheever et al. 

1994). Having a schistosome parasite-free water supply is also important, as in many 

schistosomiasis endemic areas where natural water sources are still essential for daily lives, 

people cannot avoid coming into contact with water in streams and/or ponds that can be 

contaminated with schistosome parasites (WHO 2015). However, the improvement of 

infrastructure is both time and resource consuming, especially because schistosomiasis is 

endemic mainly in the remote rural areas of developing countries. In addition, there are 

some reports that agricultural irrigation development is a risk factor for schistosomiasis 

(Steinmann et al. 2006). For example, a schistosomiasis epidemic occurred in the delta of 

the Senegal River Basin after a dam was constructed in the river, although there was no 

report of schistosome infection prior to dam construction (Talla et al. 1990). This is thought 

to be because the dam has changed the water flow in the local rivers, which made it suitable 

for intermediate host snail to inhabit (Talla et al. 1990; Southgate 1997). 
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1.5.4. Education 

Health education has been shown to improve understanding of schistosomiasis transmission 

among people in the endemic areas (Aryeetey et al. 1999; Asaolu et al. 2003) which could 

lead the reduction of re-infection rates after chemotherapy (Hu et al. 2005). However, there 

are some people who cannot escape from water contact due to their occupation (e.g. 

agricultural and fishing populations) or housekeeping activities (e.g. washing, bathing) (Li et 

al. 2003). Added to this, endemic areas’ ponds and rivers are often essential for inhabitants 

not only as water sources but also as places of socialization for adults and as playgrounds for 

children, making it difficult for them to change their behaviour.  

 

1.5.5. Vaccine development against Schistosomiasis 

In spite of the large research effort expended on the development of an effective vaccine 

against schistosomiasis, no vaccine has yet been approved for human use. Recent 

technological developments have enabled the production of recombinant vaccines that 

contain only those molecules of pathogens or molecules secreted by pathogens that are 

considered to stimulate most effectively host protective immunity (de Veer et al. 2011). In 

the early 1990s the WHO funded evaluations of S. mansoni candidate antigens to select the 

most promising vaccine candidates. Six proteins were tested in their study: the 63 kD 

parasite myosin, the 97 kD paramyosin, the 28 kD triose phosphate isomerase (TPI), a 23 kD 

integral membrane protein (Sm23), and the 26 and 28 kD glutathione-S-transferases (GSTs) 

(Wilson et al. 2006). Unfortunately, none of the above vaccine candidates conferred more 

than partial protection against future infections in experimental mice. The resulting 
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protections varied between 30% and 50% and was therefore too inconsistent to be fully 

satisfactory (Bergquist et al. 1998; Mountford et al. 2005; Wilson et al. 2006).  

 

There are two promising recombinant vaccines against schistosomiasis they are currently 

undergoing clinical trials. The 28 kD S. haematobium GST (Sh28GST, named Bilhvax) for 

schistosomiasis has passed phase one and two clinical trials and now is in phase three 

clinical trials (Mountford et al. 2005; clinicaltrials.gov 2012; Riveau et al. 2012). Alongside 

this, a recombinant 14KDa, fatty acid-binding protein from S. mansoni (rSM14) has 

successfully passed phase one clinical trials has now proceeded into the phase two clinical 

trials (Santini-Oliveira et al. 2016). 

 

As well as subunit vaccine studies, attenuated live schistosome parasite vaccines have been 

studied extensively in animal models (Wilson et al. 1999; Hewitson et al. 2005). 

Immunization with attenuated schistosome cercariae has been reported to be able to achieve 

as high as 79% protection against S. mansoni re-infection in murine studies (Fukushige et al. 

2015). There are multiple attenuated parasite vaccines that have been used for veterinary 

purposes (Meeusen et al. 2007). For example, the attenuated vaccine for Dictyocaulus 

viviparous infection in cattle has been used for over 30 years (Jarrett et al. 1960; McKeand 

2000). Nevertheless, it is not easy to move from animal studies into humans due to ethical 

and safety reasons. In fact, no live parasite vaccine is currently used in humans. 
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1.6. Systematic literature review and meta-analysis 

Recent advances in technology have enabled us to access scientific publications from around 

the world more easily. Reflecting this, the number of articles that have reported results of the 

systematic review and meta-analysis approaches has increased dramatically over the last 25 

years (figure 1.4). Systematic review and meta-analysis approaches have been commonly 

used in the fields of medicine, science, social science, business, and ecology (Borenstein 

2009).  

 

 

Figure 1.3: The increase in number of articles that use systematic review and 

meta-analysis methods over the years between 1990 and 2015. The number of 

publications published each year that contain the terms: “systematic review” AND 

“meta-analysis” in Pubmed. The search was conducted on 17th Jan. 2016. 
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1.6.1. The systematic review 

The results of systematic review and meta-analysis studies have been regarded as the most 

reliable evidence in healthcare science (Sinha et al. 2006). This is because of the broader 

applicability of the results, as well as the high precision of pooled summary effect when  

meta-analysis is performed (Sinha et al. 2006). Therefore, the systematic review is currently 

the standard approach for synthesizing evidence in quantitative and/or qualitative way in 

health sciences (Shamseer et al. 2015). The systematic review approach has methodological 

advantages over traditional narrative reviews (Shamseer et al. 2015). In narrative reviews 

articles selection procedures are subjective and, therefore, the choice of studies that are 

included in the review is usually biased. In addition, in narrative reviews normally the 

methodological approaches used to conduct the review are not reported (Rother 2007). On 

the other hand, systematic reviews report the review procedure in a detailed and 

comprehensive manner, which makes study selection procedure clear. In addition, the same 

review procedure and results can be replicated by any trained reviewer by following a 

review protocol (Uman 2011).  

 

A systematic review follows the following steps: 1) develop a research question, 2) break a 

research question down into concepts (e.g., target population, type of intervention, outcome) 

to develop a set of search terms for the review, 3) define inclusion and exclusion criteria for 

the article selection, 4) search electronic databases using search terms, 5) screen the 

identified articles with titles and abstract to exclude articles which are clearly irrelevant to 

the study, 6) screen the remaining full-text articles following inclusion and exclusion criteria, 
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7) extract data from individual studies, 8) assess study quality, 9) conduct a quantitative (e.g., 

meta-analysis, meta-regression) or qualitative synthesis of results (Mallett et al. 2012; 

Shamseer et al. 2015).  

 

1.6.2. The meta-analysis 

Following a systematic review, the researchers may then conduct a meta-analysis of the 

identified articles to estimate the pooled effect of interventions (Borenstein 2009). A single 

study sometimes fails to detect a statistically significant treatment effect on outcomes even 

when such an effect exist. This can be due to the number of participants/experimental 

animals being too small to detect such an effect. We could conduct a study with a large 

number of participants/experimental animals to overcome the effect of small sample sizes. 

However, a larger study is more expensive and sometimes logically challenging. The 

meta-analysis approach, on the other hand, can serve as an attractive alternative by allowing 

us to synthesize results from a number of studies to draw more conclusive and precise 

conclusion (Altman et al. 2001).  

 

Meta-analysis is the statistical synthesis of the results of the studies identified through the 

systematic review to estimate a pooled effect (Chiappelli 2010). Results from a number of 

comparative studies evaluating the same or similar treatment effects are considered in the 

analysis (Altman et al. 2001). To obtain a pooled effect, analyses employ the fixed-effect or 

the random effect meta-analysis approaches (Borenstein 2009). The fixed-effect 

meta-analysis is based on the assumption that the treatment effect is common for all studies 
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in the analysis. Therefore, the variation among results of studies is considered as sampling 

error. Nevertheless, in many systematic review and meta-analysis studies this assumption 

cannot be justified. This is because, although only comparable studies are included for the 

meta-analysis, we cannot assume that all the studies are identical. The effect size could be 

higher (or lower) as a result of the unique characteristics of studies, for example, 

experimental animal strains, the age of animals, or the room temperature of the day. In 

contrast to the fixed-effect meta-analysis, the random-effects meta-analysis assumes that the 

treatment effect could vary between studies. Therefore, the analysis assumes different true 

treatment effects underlying different studies (Borenstein 2009). The goal of random-effects 

analysis is therefore to estimate the average effect in the studies (Walker et al. 2008). In 

many cases, the random-effects model can be regarded as a more reasonable option than the 

fixed-effect model. 

 

1.6.3. Meta-regression and other analyses 

The traditional approach of meta-analysis is to combine results of studies to yield a single 

pooled effect of the interventions using random-effects or fixed-effects meta-analysis. In 

cases where the size and heterogeneity of the data allow, further statistical analyses such as a 

meta-regression analysis can be conducted to identify influential predictors of the outcome 

variable (Borenstein 2009; Chiappelli 2010). The meta-regression analysis aims to identify 

predictors which have any influence on outcome (e.g., cure rate after praziquantel treatment, 

protection levels of vaccines) (Thompson et al. 2002). In other words, meta-regression is 

performed to investigate whether a particular predictor can explain any part of the 
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heterogeneity of treatment effects between studies. For example, meta-regression allows us 

to quantify the drug dose effect on efficacy levels, such as higher dose yielding a better 

treatment effect. The meta-regression analysis usually requires more than 10 studies to be 

included in the analysis, in contrast to standard meta-analysis which does not have a 

minimum number of studies (Higgins et al. 2011).  

 

Regression analysis (e.g., linear regression analysis) can be used in primary studies to assess 

the relationship between one or more predictors and a dependent variable. The essential idea 

of meta-regression is the same as regression analysis, except that both predictors and 

dependent variable are at the study levels rather than the individual subject levels 

(Borenstein 2009). Similar to traditional meta-analysis, studies are weighted by the precision 

of their results. The inverse variance within each study is commonly used as an indicate of 

study precision (Borenstein 2009). In cases where the variables needed to calculate inverse 

variance within a study (e.g., standard error of the mean, standard deviation, or confidence 

interval of results) are not available, using sample size for weighting has also been suggested 

by Hunter and Schmdt as an alternative approach (Hunter et al. 2004; Brannick et al. 2011). 

In cases where the sample size is used for weighting, studies with larger sample sizes are 

assumed to yield better precision, and therefore have a greater power in the analysis. Using 

the inverse variance of each study does not make this assumption, each study is directly 

weighted according to the precision of the results and, therefore, this approach has been 

regarded as more accurate and sophisticated than the Hunter and Schmidt method (Hunter et 

al. 2004; Brannick et al. 2011). Nevertheless, the Hunter and Schmdt approach is still 
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valuable in realistic scientific research conditions, by allowing researchers to include more 

studies in the analyses (Brannick et al. 2011). 

 

As the number of meta-analysis studies has been increasing dramatically in recent years, 

different statistical methods other than meta-analysis and meta-regression have started to be 

used. For example, there are meta-analysis studies using classification and regression tree 

models (CART models) (Dusseldorp et al. 2014). Using non-parametric test such as CART 

models investigate patterns in the data without making an assumption of normality, allowing 

us to analyse results from a greater variety of studies than meta-regression models.  

 

1.6.4. Limitations of a systematic review and meta-analysis 

There are limitations of systematic review approaches. Although systematic review 

approaches are designed to minimize bias, there are still potential biases which could occur 

at different steps of the review procedure. The most commonly reported risks of bias in 

systematic review studies are: publication bias, language bias, and selection bias. Various 

aids to minimize the bias are mentioned when such approaches have been proposed.  

 

For studies using published articles there is always a risk of publication bias in any 

systematic review and meta-analysis (Sutton et al. 2000; Juni et al. 2002). Publication bias 

occurs when the results of published studies are systematically different from those of 

unpublished studies (Fujian et al. 2015). This systematic difference can occur because 

studies with statistically significant results or positive results are more likely to be published 
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than those with non-significant or negative results (Song et al. 2010; Fujian et al. 2015). 

Furthermore, those studies with significant findings are more likely to be published without 

delay: this type of publication bias is also specifically called as a time lag bias (Altman et al. 

2001). Publication bias can be minimized by identifying and including unpublished studies 

(Fujian et al. 2015). Alongside this, the regular update of systematic review results is also 

important to minimize the time lag bias (Altman et al. 2001).  

 

Systematic reviews also have a risk of language bias (Sutton et al. 2000; Juni et al. 2002). 

Language bias is a systematic bias that can occur when results of studies published in a 

particular language (usually English) are different from those of studies published in other 

languages (Morrison et al. 2012). Language bias can be minimized by including studies that 

are published in multiple different languages. However, non-English articles can be 

identified only if they at least published their titles and/or abstracts in English. Therefore, 

there is still a risk of missing non-English articles if they are published solely in the original 

language. In cases where it is clear that the disease or health problems of interest are more 

commonly found and reported from non-English speaking areas, it is worth considering 

collaborating with native-speakers of targeted languages, or to amend research questions to 

minimize the influence of language bias. For example, conducting a systematic review about 

S. japonicum infection, which is mainly endemic in China and Southeast Asia (WHO 2015), 

is difficult without native Chinese speakers in the review team as studies of this infection are 

frequently reported in Chinese journals.  
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Selection bias can be caused by following strict and detailed articles selection criteria (e.g., 

sample size, follow-up time) without exploring the relevant studies prior to developing such 

criteria. This could cause the risk of excluding relevant studies without consideration. A 

strict articles selection criteria is sometimes used for the initial search because of its 

convenience (Sinha et al. 2006). However, to minimize or avoid selection bias, it is 

preferable to start with a systematic review using more relaxed inclusion and exclusion 

criteria which allow a broad range of studies of varying methodological approaches and 

sample characteristics (e.g., outcome measures, characteristics of study participants, strains 

of experimental animals) to be considered. This initial review can be followed by the 

development of more detailed inclusion and exclusion criteria to identify more 

homogeneous set of similar studies.  

 

All meta-analyses rely on data collected through a systematic review. The limitations of 

systematic reviews as described above are applicable to any statistical analysis performed 

after the review. In addition, scientific articles often report the results at the population or 

group level but not the individual subject level. Although results at the subject level may be 

reported in small studies, they are normally not reported in large-scale epidemiological 

studies. Therefore, meta-analysis studies normally use population or group level results for 

the analysis. Therefore, predictors identified by meta-regression analyses may not keep the 

same degrees of influence on the variability among individual participants within the same 

study (Thompson et al. 2002). In the near future, as data publishing become more 

comprehensive, a new type of meta-analysis may be conducted by synthesizing individual 
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subject or experimental animal data. However, in the meantime, extra care must be taken 

when discussing results from a meta-analysis to translate them into individual level 

phenomena. 
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1.7. Outline of the thesis 

Schistosomiasis is a disease with a long history as a human infection. There is a large of 

scientific studies published which relate to immunization and drug treatment of 

schistosomiasis. Therefore, systematically reviewing these studies and updating reviews are 

important to keep our knowledge about schistosomiasis up to date. Current schistosomiasis 

control programmes rely heavily on the mass administration of the drug praziquantel. 

Widespread use of MDA might be putting selection pressure on the parasites that could 

eventually lead to the evolution of resistance (Norton et al. 2010; Humphries et al. 2012). 

Close monitoring of praziquantel efficacy levels is essential for maintaining sustainable 

schistosomiasis control programmes. In addition, a better understanding of the immune 

reaction against schistosomiasis in human will much contribute to the development of a 

vaccine against schistosomiasis, and the control of the disease.  

 

Recently schistosomiasis control efforts undertaken in affected areas, especially a large 

number of national schistosome control programmes conducting MDA, have been more 

intensive than ever (Tuhebwe et al. 2015). In addition, recently praziquantel has proved to 

be effective for infant and preschool children (Mutapi et al. 2011). These considerations 

make it timely to conduct a systematic review and meta-analysis to identify factors affecting 

the efficacy of praziquantel treatment, and also the influence of praziquantel treatment on 

immunity of people from affected areas.  
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The overall aim of this thesis is to answer key questions which relate to vaccine 

development, praziquantel treatment and host immunity for schistosomiasis: attenuated 

schistosome parasite vaccine efficacy levels in animal models, and praziquantel treatment 

efficacy and its influence on immunity in humans were investigated. My PhD research has 

four main objectives: 1) to identify predictors that determine protection levels after treatment 

with attenuated S. mansoni vaccines in the mouse model, 2) to quantify the influence of host 

and schistosome parasite species on attenuated parasite vaccine efficacy, 3) to explore the 

direction of change (increase/decrease) in schistosome parasite-specific antibody isotypes 

after praziquantel treatment in humans, 4) to identify predictors of praziquantel efficacy in 

humans. In this thesis, the attenuated schistosome parasite vaccines in animal models are 

investigated, with a particular consideration to schistosome parasite-species and host species 

differences. The schistosomiasis cure rate with praziquantel treatment, and the influence of 

praziquantel treatment on host immunity is also explored. For all the analyses, data are 

collected through a systematic review. An overview of the chapters within this thesis 

follows.  

 

In Chapter 2, meta-regression models using scientific article as a random effect are used to 

identify the predictors that have any influence on the levels of protection provided by the 

attenuated S. mansoni vaccine in mouse host models. The direction and magnitude of the 

effects of identified influential predictors on the level of protection are quantified. 

 



  

24 

  

In Chapter 3, random effects meta-analysis (forest plots) are used to quantify the pooled 

effect of the attenuated S. mansoni and/or S. haematobium vaccine on the levels of 

protection in baboon and rat models. The effect of homologous or heterologous schistosome 

parasite species for vaccination and challenge infection on protection levels are explored.  

 

In Chapter 4, Classification and Regression Tree models are used to explore patterns in the 

direction of change in the schistosome parasite (whole worm or soluble egg antigens) 

specific antibody isotypes after praziquantel treatment in humans. 

 

In Chapter 5, meta-regression models using scientific article as a random effect are used to 

identify factors that influence the schistosomiasis (S. mansoni or S. haematobium infection) 

cure rate after praziquantel treatment in humans. The direction and magnitude of the 

influence of identified predictors on cure rate is quantified. 
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Chapter 2: A meta-analysis of 

experimental studies of attenuated 

Schistosoma mansoni vaccines in the 

mouse model. 
 

 

2.1. Introduction 

The majority of control programmes use the antihelminthic drug praziquantel for MDA. This 

low-cost and efficacious drug has achieved a significant reduction in disease prevalence and 

infection intensity in many endemic areas (Midzi et al. 2008; Evans et al. 2011; Liu et al. 

2011; WHO 2015). However, there are multiple reports of re-infection after chemotherapy 

(Leenstra et al. 2006; Tukahebwa et al. 2013; Webster et al. 2013). In addition, praziquantel 

can clear only adult worms and has little or no effect on existing eggs and immature worms 

(Xiao et al. 2009). This means there is need for additional complementary interventions, one 

of which is vaccination.  

 

Slowly developing acquired immunity plays a crucial role in the reduction of infection 

prevalence and intensity in older age groups in endemic areas (Woolhouse et al. 1999; 

Mitchell et al. 2011). This suggests that exposure to schistosome antigens can promote 

protective immunity in humans, however, to date there is no licensed schistosome vaccine 

(McWilliam et al. 2012; Mutapi et al. 2013). Currently there are two leading vaccine 
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candidates, the 28 kDa S. haematobium GST (Sh28GST, Brand name: Bilhvax) which is 

now in phase 3 clinical trials (Mountford et al. 2005; ClinicalTrials.gov 2012; Riveau et al. 

2012), and a recombinant 14KDa, fatty acid-binding protein from S. mansoni (rSM14) has 

successfully passed phase one clinical trials has now proceeded into the phase two clinical 

trials (Santini-Oliveira et al. 2016). Alongside recombinant antigen vaccine studies, the 

attenuated live cercariae vaccine has been studied extensively in mouse models (Wilson et al. 

1999; Hewitson et al. 2005). Properly prepared attenuated cercariae live long enough to 

invade the host skin and stimulate protective acquired immunity against subsequent 

challenge infection but die in the host’s body before they mature into adult worms (Smithers 

1962). Attenuated schistosome cercariae vaccination experiments in animals use cercariae 

which are weakened by ionizing radiation (X-ray or gamma ray), ultraviolet, heat, or 

chemical treatment. Host animals are immunized with attenuated parasites either once or 

several times before challenge infection with non-attenuated pathogenic cercariae. A certain 

number of days after the challenge infection, immunized animals and control animals are 

perfused to quantify the level of protection due to immunization by comparing the number 

of adult worms recovered from both groups.  

 

A large number of mouse experimental studies using attenuated S. mansoni cercariae for 

vaccination have been published since the 1960s (Bickle 2009), however such studies have 

never been systematically analyzed. The aim of this chapter was to conduct a meta-analysis 

to identify measurable experimental conditions (predictors) that affect the level of protection 
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against challenge infection of vaccinated animals. In addition, levels of each predictor 

associated with maximum levels of protection were estimated.   

 

2.1.1. Objective of the study 

The objectives of current study were: 

1) to identify influential factors on efficacy levels of attenuated S. mansoni vaccine in 

mouse model,  

2) to estimate optimal levels of each predictor to maximize the levels of protection. 
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2.2. Material and Methods 

2.2.1. Systematic review 

An electronic literature search was performed using Science Citation Index Expanded, 

Conference Proceedings Citation Index and BIOSIS Citation Index, all of which were 

provided through Web of Knowledge (www.webofknowledge.com). Alongside these, 

EMBASE (www.elsevier.com), OVID MEDICINE (www.ovid.com), and CAB abstracts 

were searched simultaneously through OvidSP (ovidsp.tx.ovid.com). Reference lists of all 

articles identified by the electronic search were searched manually for additional relevant 

reference. In addition, ProQuest Dissertations & Thesis Full Text (www.proquest.com) was 

searched as a source of pre-published and grey literature. The search terms were chosen to 

be as inclusive as possible and were; “cercaria*” AND (“irradiat*” OR “attenuat*”) AND 

(“vaccin*OR schistosom*”). In addition, “Attenuate*” AND “schistosome*” AND “vaccin*” 

were also used for the search. This search was completed in July 2013. After duplicated 

articles were removed a total of 1013 articles were identified. Titles and abstracts were 

screened to exclude those that were not relevant to an attenuated schistosome vaccine animal 

model. Full texts of potentially relevant articles were reviewed for further selection. 

Non-English articles were included, and several Chinese and German articles were identified 

and translated into English by a native Chinese speaker and German speaker respectively for 

the analysis. 

 

A study was considered eligible if it met all of the following inclusion criteria:  

1) vaccination with attenuated cercariae 
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2) use of ionizing radiation for attenuation 

3) use of percutaneous immunization and challenge (i.e. the natural transmission route 

for schistosome infection) 

4) challenge infection using normal (non-attenuated) cercariae 

5) worm burden measured after the challenge infection via perfusion 

6) outcome (fraction of protection) reported or could be calculated.  

 

In this study, a fraction of protection means the proportion of reduction in worm burden in 

vaccinated mice compared to that of control mice group. For articles which reported worm 

count after challenge infection, the following equation was used to calculate the outcome: 

fraction of protection = [(average number of worms per mouse retrieved from control group 

– average number of worms per mouse retrieved from vaccinated group) / average number 

of worms per mouse retrieved from control group]. In the case of articles which failed to 

report worm counts (allowing calculation of this quantity), only those that stated that they 

used the same equation as above were included.  

 

Studies were excluded if they met any of the following exclusion criteria:  

1) immunizing attenuated cercariae developed to adulthood 

2) hosts were transgenic or genetically-engineered 

3) hosts had an in vivo depletion of immune cells 

4) attenuated cercariae were prepared by any means other than ionizing irradiation 

5) a non-cercarial vaccine was used (e.g. adult worm, schistosomula, subunit) 
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6) an artificial infection was conducted prior to vaccination 

7) hosts were treated with anthelminthic drugs.  

 

Some articles reported results from multiple separate experiments such as use of different 

doses of attenuated parasite. In these cases, results from each experiment were recorded as 

an observation. A list of potential predictors (given in Table 2.1) was drawn up and these 

quantities were extracted from each article. These potential predictors have been suggested 

their importance by review articles and also their quantities been reported by many 

experimental studies (Dean 1983). When an article reported a dose range rather than an 

exact dose the mid-value was used for the analysis.  
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Table 2.1: Possible predictors investigated and their units/ codes 

 

  

Variable name Unit/ Code 

Number of immunizing parasites (total and number 

per dose) 
log10 (number of parasites)  

Number of challenge parasites log10 (number of parasites) 

Number of immunizations Count 

Irradiation dose Krad 

Host age Weeks 

Host sex Male/Female/mixed 

Time between the last immunization and challenge  Days 

Time between challenge and perfusion  Days 



  

32 

  

2.2.2. Statistical analysis 

Meta-regression was used to identify the influential predictors and effect of dose on 

protection. Multiple observations (1 to 56) were recorded from single articles and therefore 

article was included as a random effect in the models. The models were built using a 

backwards stepwise procedure with 8 potential predictors (listed in Table 2.1). Model 

selection started with a model with all 8 potential predictors. The least significant predictor, 

which had a largest p-value, was then removed from the model. In subsequent steps, the 

least significant remaining predictor was removed from the model until all the predictors in 

the model were statistically significant (p<0.05). The effect of the number of immunizing 

parasites was explored in two ways in the two separate models: as an average number of 

immunizing parasites per dose or as a total number of immunizing parasites. Correlations 

between variables were examined visually by scatter plot graphs for all possible predictor 

combinations to check for multicollinearity (data not shown). Then, all the possible 

combinations of two-way interactions of potential predictors were examined using a 

meta-regression model with two-way interactions. The outcome variable (fraction of 

protection) was transformed as –ln(1- fraction of protection) to reduce the skewness of 

residuals (Vittinghoff 2012). Logarithmic transformation is commonly used to transform a 

highly skewed distribution into one that is less skewed, therefore transforming the data into 

the one that is closer to a normal distribution, helping meet the model assumption of 

normality. Although using confidence intervals and standard errors is the most common 

weighting method for meta-regression (Borenstein 2009), many studies in this dataset failed 

to report either confidence intervals or standard deviations and there were no comparable 
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studies which enabled us to justify imputing them. Two kinds of information were available 

on the size of the studies: the number of control animals and the number of vaccinated 

animals. The majority of studies used similar numbers of control and vaccinated animals; 

however, there were several articles which used a higher number of vaccinated animals than 

control animals. To account for the impact of these unbalanced studies, the number of 

control animals was used as the more conservative weighting option.  

 

2.2.3. Missing values and outliers 

Several outliers were excluded from the analysis. They were six observations with animals 

kept longer than 300 days or less than seven days after the last immunization and four 

observations that used more than 10,000 cercariae for immunization. After excluding 

outliers 745 observations were kept for further selection.  

 

When the numbers of control animals were not reported in an article and only the numbers 

of vaccinated animals were given, numbers of control animals were then imputed by a linear 

regression imputation method between numbers of vaccinated and control animals for all 

studies (Little et al. 2002). When the observation was missing for both the number of control 

and vaccinated animals (4 observations from 4 articles), the average number of control 

animals of the remaining data set was used for imputation, which was 10 control animals.  
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2.2.4. Statistical software 

Papers identified by systematic review were recorded by Thomson Reuters EndNote and the 

extracted data were entered into a Microsoft Excel 2010 spreadsheet for further analysis. 

IBM SPSS Statistics Version 19.0 and Minitab. Inc. MINITAB 16 were used for statistical 

analysis. GraphPad Software GraphPad Prism version 6.03 was used for graphical 

expression. 
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2.3. Results 

A total of 1,013 potentially relevant articles were identified through systematic review. From 

these, a total of 755 observations from 105 articles (articles are listed in the Appendix A.1) 

met the search criteria and also used the mouse as a host and S. mansoni for vaccination and 

challenge infection. Although the mouse is not a natural host for schistosome infection, it is 

the most commonly used animal for in vivo attenuated schistosome parasite research. 

 

Among eight potential predictors (Table 2.1), three predictors were found to have 

statistically significant effects (p<0.05) on the outcome value -ln(1-fraction of protection) 

following the backwards stepwise selection: the log10 transformed total number of 

immunizing parasites [F(1, 712)=70.74, p<0.001], the irradiation dose [F(1, 721)=26.25, 

p<0.001], and the time between the last immunization and challenge [F(1, 699)=5.56, 

p=0.019] (Table 2.2). The reported ranges of each predictor were: the total number of 

immunizing parasites (50-5,000 cercariae), the irradiation dose (3-160 krad) and the time 

between the last immunization and challenge (7-230 days). All identified predictors were 

significant (p<0.05) in the model no matter with or without outliers in the model. The 

number of immunizing parasites was significant in the model regardless of the version of 

this variable used, i.e. the average number of immunizing parasites per dose or total number 

of immunizing parasites. In both cases the models were initially considered with the number 

of immunizations. When the total number of immunizing parasites was used as a predictor, 

the number of immunizations was not significant. Therefore, for the final model, the total 
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number of immunizing parasite was used as a predictor with number of immunizations 

excluded from the model.  

 

Table 2.2: Results from meta-regression multivariable analyses. Positive coefficients 

indicate the predictor’s positive dose effect on fraction of protection whereas negative 

coefficients indicate predictor’s negative influence on fraction of protection. 

Predictors Coefficient Standard error F-value (df) p-value 

log10 (number of immunizing 

parasites per dose) 
0.50 0.060 

70.74 

(1, 712) 
<0.001 

Irradiation dose -0.0039 0.00077 
26.25 

(1, 721) 
<0.001 

Time between the last 

immunization and challenge 
-0.0016 0.00066 

5.56 

(1, 699) 
0.019 

  

The interaction between log10 transformed total number of immunizing parasites and the 

time between the last immunization and challenge was statistically significant [F(1, 

718)=4.31, p=0.038]. However this interaction was excluded from the final model for the 

following reasons: 1) the model with the interaction showed biologically implausible fitted 

values of fraction of protection for some predictors, 2) the model with/without interaction 

showed similar fitted values for the fraction of protection around the most frequent values of 

predictors.  
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Fitted graphs for each predictor are shown in Figure 2.1 with the outcome variable 

back-transformed to fraction of protection. Fitted graphs for each predictor were generated 

by fixing other predictor values at their modes: 500 immunizing parasites, 28 days for the 

time between the last immunization and challenge, and 20 krad for irradiation dose (solid 

line in Figure 2.1). The fitted graph of total number of immunizing parasites and fraction of 

protection showed the lowest level of predicted protection was 36% with 50 cercariae which 

increased up to 77% with 5,000 cercariae (solid line in Figure 2.1A). The minimum level of 

protection predicted for 3 krad irradiation was 64% which decreased to 33% with 160 krad 

irradiation (solid line in Figure 2.1B). Similarly, the estimated level of protection 7 days 

after the last immunization was 63% which reduced to 47% by 230 days after the last 

immunization (solid line in Figure 1C). Fitted graphs showed that the total number of 

immunizing parasites had a positive impact on the fraction of protection whereas irradiation 

dose and the time between the last immunization and challenge had negative impacts (Figure 

2.1). Besides this, to estimate the highest protection, fitted graphs for each predictor were 

generated with other predictor values at their optimal level: 5,000 immunizing parasites, 7 

days for the time between the last immunization and challenge, and 3 krad for irradiation 

dose (dashed line in Figure 2.1). The results showed that the highest protection estimated by 

the model results was 79% at 7 days after the last immunization, for mice immunized with 

5,000 cercariae attenuated with 3krad (dashed line in Figure 2.1). This 79% protection 

decreased over time but stayed as high as 70% by 230 days after the last immunization 

(dashed line in Figure 2.1C). 
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Figure 2.1: Fitted graphs for identified predictors from a meta-regression model. Identified 

predictors’ effects on fraction of protection in mouse model: (A) the number of immunizing 

cercariae over the range 50-5000 cercariae (B) the irradiation dose over the range 3-160 krad 

(C) the time between the last immunization and challenge over the range 7-230 days. Data 

points indicate reported fraction of protection for each observation. Negative fractions 

indicate that vaccination was associated with increase of schistosome worm burden. Lines 

are fitted graphs generated from meta-regression (see text). Dashed lines in the graphs show 

the highest achievable level of protection which was estimated by analyses over the 

observed range.   
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2.4. Discussion  

Irradiated S. mansoni cercariae vaccines have been tested experimentally against 

schistosome infection for decades, with important insights obtained from the individual 

experiments (Bickle 2009). Although the translation of the irradiated parasites vaccine in 

humans has not been pursued for schistosomiasis, a precedent for this type of approach for 

human vaccination has been set by malaria vaccine which uses live attenuated Plasmodium 

falciparum sporozoites (Sanaria®PfSPZ Vaccine) and has completed its phase 1 clinical 

trials and is now undergoing phase 2 clinical trials (Seder et al. 2013; WHO 2016). This 

study represents a meta-analysis of the experimental irradiated cercariae vaccine studies to 

identify robust variables that affect the levels of protection to inform human vaccine 

research and development.  

  

The meta-regression models identified three predictors of the reduction in worm burden: 

these were the total number of irradiated cercariae per immunization, the time between the 

last immunization and challenge, and the irradiation dose for parasite attenuation. I 

identified a positive correlation between the number of irradiated cercariae per immunization 

and the level of protection within the range of 50-5,000 cercariae used in the original studies. 

The models suggested that the optimally prepared irradiated cercariae vaccine could achieve 

a protection as high as 79% against challenge infection. As fitted graphs have shown, this is 

predicted for a single vaccination with 5,000 cercariae attenuated with 3 krad irradiation. 

This protection declines over time, but remains high for at least 8 months after the last 

immunization. Approximately 70% protection against challenge infection could be achieved 
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after 8 months. This trend was consistent in the mouse experimental hosts with S. mansoni 

vaccination studies. The number of immunizing cercariae represents the antigen dose, my 

results show a positive dose dependency of schistosome attenuated vaccine for higher 

protection. Studies of live attenuated vaccine for malaria infection also reported a similar 

positive correlation between the dose of immunizing parasites and the level of protection 

against future infection. Recently, as part of the phase1 clinical trial of the human malaria 

vaccine using live attenuated sporozoites (Sanaria® PfSPZ Vaccine), a dose-escalation trial 

was conducted using 7,500-135,000 irradiated Plasmodium falciparum sporozoites per 

immunization. The participants group that received the highest dose per immunization 

achieved the highest levels of protection against challenge infection (Epstein et al. 2011; 

Epstein et al. 2013; Seder et al. 2013). The results showed that the number of immunizing 

cercariae is also an important factor for higher protection in mouse model studies.   

   

The result from the meta-regression model showed a decrease in the fraction of protection 

with an increased time between the last immunization and challenge. This period between 

immunization and challenge represents the time to secondary encounter with the same 

antigen. When the initial encounter with the antigen takes place via infection or vaccination, 

the number of B and T cell produced against the antigen increases dramatically (Kaech et al. 

2007; Harty et al. 2008; Sallusto et al. 2010; Farber et al. 2014). Only a small fraction of 

those cells will survive as antigen-specific memory T and B cells or as long-lived plasma 

cells and they will be maintained for a long time (Kaech et al. 2007; Harty et al. 2008; 

Sallusto et al. 2010; Farber et al. 2014). The duration of immune memory in humans after 
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the vaccination is still controversial (Crotty et al. 2004). However, there are several reported 

estimates for the length of immune memory after the last booster vaccination; 15 years for 

combined hepatitis A and B vaccine (Van Damme et al. 2012), 22 years for hepatitis B 

vaccine  (McMahon et al. 2009), over 30 years for poliovirus vaccine (Bottiger et al. 1998; 

Crotty et al. 2004), and over 60 years for smallpox vaccine (Crotty et al. 2003; Crotty et al. 

2004). A longitudinal immuno-epidemiological study of schistosomiasis has been conducted 

by Butterworth et al. which reported that the protection induced by chemotherapy can 

remain for as long as 21 months after the treatment (Butterworth et al. 1985). However, 

other studies reported treated participants’ re-infection within one year (Garba et al. 2013; 

Tukahebwa et al. 2013). One of the difficulties in evaluating the length of protective 

immunity in humans is that, in contrast to experimental animals, humans encounter a variety 

of antigens that could stimulate their immune systems through their daily life. In addition, 

people infected and being treated for schistosomiasis normally live in schistosomiasis 

endemic areas. Their encounters with infectious cercariae may work as “natural booster” to 

stimulate protective immunity. In current study, the times between the last immunization and 

challenge (7-230 days) were relatively short compared with the life span of humans and 

schistosome parasites. This reflects that the average lifespan of a mouse is much shorter than 

that of the schistosome parasite (Kohn 1971; Fulford et al. 1995). The decrease in the 

fraction of protection over time was captured with my models even within this relatively 

short time range. This result would suggest that boosting vaccines may be necessary for long 

lasting protection against schistosomes.  
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There are several different cercariae attenuation methods as I described in the introduction. 

Within these, ionizing radiation (X-ray of gamma ray) is the most commonly used 

attenuation method for attenuated schistosome cercariae preparation. Two relatively high 

irradiation doses around 20 or 50 krad have been reported as the optimal doses for parasite 

attenuation (Minard et al. 1978; Bickle et al. 1979) and, in fact, many past studies have 

applied these irradiation doses. However, my results suggest that a lower irradiation dose 

could improve protection. The lower irradiation doses enable attenuated parasites to live 

longer in the vaccinated host. After vaccination, irradiated cercariae have been reported to be 

present around the skin exposure site for approximately 4 days and then gradually moved to 

the lungs where they transformed from cercariae into lung stage schistosomulae (Mangold et 

al. 1984). It has been reported that the immunizing parasite has to reach the lungs and 

transform to lung stage schistosomula to elicit protective immunity against challenge 

infection (Mangold et al. 1984; Dean et al. 1992), which may not be the case for cercariae 

attenuated with high doses of ionizing radiation. Several studies have reported that 

non-attenuated challenge cercariae in vaccinated mice slowly move to the lungs and then 

gradually disappear (Wilson et al. 1986; Dean et al. 1992). Several studies report that 

cercariae exposed to extremely high irradiation doses will die in the host skin before they 

migrate inside the host body (Hsu et al. 1981; Mangold et al. 1984). Mountford et al. 

reported that hosts needed to be exposed to both highly irradiated cercariae, that die in the 

host skin, and lung-stage schistosome parasites to elicit protective immunity (Mountford et 

al. 1992). One of the possible reasons for the high levels of protection observed when using 

irradiated cercariae vaccine is that hosts are exposed to a wide variety of antigens which are 
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expressed by different parasite life stages. Parasites which were attenuated with lower 

irradiation dose can survive long enough to express a variety of antigens from different life 

stages (Curwen et al. 2004). The results of my meta-analysis suggest that for recombinant 

vaccine development the combination of antigens which are unique to the different 

schistosome life stages may be an important factor in achieving a better protection. 

 

In this study, I identified three predictors for effective immunization against schistosome 

infection using attenuated cercariae: the total number of immunizing parasites, the 

irradiation dose, and the time between the last immunization and challenge. The study 

results suggested that the optimally prepared irradiated cercariae vaccine could achieve a 

protection as high as 79% against challenge infection. Within the reported dose range, the 

model estimated that maximum protection could be achieved with the highest number of 

immunizing cercariae (5,000) and the lowest irradiation dose (3 krad). This protection 

slowly declines but remains high for at least 8 months after the last immunization. This 

achievable protection is much higher than the partial protection reported by the S. mansoni 

purified antigens that failed to achieve consistent protection above 40% in mice (Bergquist 

et al. 1998; Mountford et al. 2005; Wilson et al. 2006). Although none of the radiation 

attenuated cercariae vaccine studies achieved complete protection against challenge 

infection, it is thought that partial protection induced by immunization can significantly 

reduce both schistosome related morbidity and parasite transmission (Burke et al. 2009; 

Mitchell et al. 2012). This meta-analysis shows there is the high potential for an attenuated 
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cercarial vaccine, while also providing insights which are important for schistosome vaccine 

development.  
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Chapter 3: The influence of host and 

schistosome parasite species on the 

attenuated parasite vaccine efficacy: a 

meta-analysis 
 

 

3.1. Introduction  

There are three major schistosome species that cause human infections: S. mansoni, S. 

haematobium, and S. japonicum. Infections by these three species are widely reported from 

different parts of the world. Since S. mansoni and S. haematobium tend to overlap in their 

geographical distributions (WHO 2015), people in endemic areas are at risk of co-infection 

with these parasites. Therefore, it is important to know whether a single vaccine can be 

effective against multiple schistosome parasite species. Homologous and heterologous 

schistosome parasite species for vaccination and challenge infection have been studied in 

mouse hosts. In this chapter, a meta-analysis of these studies was conducted to investigate 

the influence of homologous and heterologous schistosome parasite species for vaccination 

and challenge infection on protection levels.  

    

In Chapter 2, I demonstrated the importance of the number of immunizing parasites, the 

irradiation dose for attenuation, and the time between the immunization and challenge 

infection (Table 2.2) for the protection levels against challenge infection in the mouse host 

model (Fukushige et al. 2015). Beside mouse host studies, there are a number of attenuated 



  

48 

  

schistosome parasite vaccine studies that have been conducted in baboon and rat hosts using 

S. mansoni or S. haematobium parasites. However these studies have not been systematically 

analysed to date. Here, I conduct a meta-analysis on these studies incorporating the three 

predictors that were identified in the previous chapter. In addition to this, I conduct a 

meta-analysis to estimate the pooled effect of the attenuated parasite vaccine across these 

studies.  

 

The objectives of this study were:  

1) to determine the influence of homologous and heterologous parasite species for 

vaccination and challenge infection on the efficacy of the attenuated schistosome 

parasite vaccine in the mouse model;  

2) to investigate the influence of the three previously identified predictors (Table 2.2) 

in baboon and rat model studies; 

3) to estimate the pooled effect of the attenuated S. mansoni and S. haematobium 

vaccines in baboon model studies, and the attenuated S. mansoni vaccine in rat 

model studies. 
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3.2. Materials and Methods 

3.2.1. Systematic review and data extraction 

The procedure for the systematic review is the same as described in Chapter 2 with the 

following exceptions. In this review, studies with baboons that used schistosomula with 

non-percutaneous immunization (injection) were kept in the analysis. A preliminary analysis 

was conducted to investigate the influence of schistosome parasite life cycle stage 

(cercariae/schistosomula) on protection levels, using univariate meta-regression models. The 

analyses confirmed that there was a negligible effect of life cycle stage on protection levels 

(p>0.05) in baboon host studies (results not shown). S. mansoni studies with rat hosts were 

included only if they used percutaneous cercariae immunization and challenge infection like 

in the mouse host with S. mansoni studies in Chapter 2. Articles often reported results from 

multiple separate experiments such as the use of different doses of attenuated parasite. In 

such cases, each experimental result was recorded as an observation. A total of 29 

observations from 11 articles using baboon hosts with S. mansoni or S. haematobium (Group 

3 in Figure 3.1), and 47 observations from 11 articles using rat hosts with S. mansoni (Group 

4 in Figure 3.1) met the search criteria and were included in this study. In addition, I 

included a total of 70 observations from 10 articles using mouse as the host and S. mansoni, 

S. haematobium, S. japonicum, or S. bovis for vaccination and/or immunization but not 

homologous S. mansoni immunization and challenge infection (Group 2 in Figure 3.1).  
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Figure 3.1: Data selection for the meta-analysis. Observations were divided into four 

groups according to host species and parasite species used in the studies: 1) mouse model 

using S. mansoni, 2) mouse model where immunization and/or challenge infection used 

non-S. mansoni schistosome species, 3) baboon model with homologous immunization and 

challenge infection using either S. mansoni or S. haematobium, 4) rat model with 

3) Baboon host with 
S. mansoni or

S. haematobium
29 observations, 

11  articles

Mouse host studies
825 observations,

109 articles

1) S. mansoni immunization 
and challenge (chapter 2)

755 observations, 
105 articles

2) Non-S. mansoni 
immunization and/or 

challenge 
70  observations,

10 articles

4) Rat host with 
S. mansoni

47  observations, 
11 articles

Studies included for the analysis
901 observations, 131 articles
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immunization and challenge infection using S. mansoni. There were six articles included 

both in group 1 and 2, because they reported results using both homologous S. mansoni 

immunization and challenge (Group 1), and immunization and/or challenge infection with 

non-S. mansoni species (Group 2).  

 

3.2.2. Statistical analysis 

3.2.2.1. Meta-regression models  

To test the effect of host species on the efficacy of the attenuated schistosome parasite 

vaccine, I fitted a model with host species, the number of immunizing parasites, the 

irradiation dose for attenuation, and the time between the immunization and challenge 

infection as predictors. The latter three predictors (Table 2.2) were those I identified using 

mouse host and S. mansoni immunization and challenge studies in Chapter 2. For this 

analysis the data for S. mansoni with mouse host studies (Group 1 in Figure 3.1), baboon 

host studies (Group 3 in Figure 3.1) and rat host studies (Group 4 in Figure 3.1) were used. 

As in the analyses in Chapter 2, the outcome variable (fraction of protection) was 

transformed as –ln(1- fraction of protection) to reduce the skewness of residuals (Vittinghoff 

2012). In addition, the number of parasites was also transformed as log10 (number of 

immunizing parasites per dose) for the analysis. 

 

I ran three additional meta-regression models using three previously identified predictors 

(number of immunizing parasites, irradiation dose, and the time between immunization and 

challenge; Table 2.2) to explore their influence on vaccine efficacy in different animal host 
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models. Studies using the following combinations of host and schistosome parasite species 

were used for these three models: baboon with S. mansoni, baboon with S. haematobium 

(Group 3 in Figure 3.1), and rat with S. mansoni (Group 4 in Figure 3.1). To account for the 

fact that some articles reported multiple experimental results (observations), all articles were 

assigned a unique article ID, which was included as a random effect in the model. The 

observations were weighted according to their sample size (the number of control animals). 

One study failed to report the number of control animals (rat host S. mansoni). Therefore this 

observation was weighted using the median number of control animal among rat studies 

(n=6).  

 

Alongside this, to investigate the influence of parasite species on protection levels, I fitted a 

meta-regression model with the three predictors identified from mouse hosts and S. mansoni 

data (Table 2.2) as well as three additional predictors: 1) immunizing parasite species, 2) 

challenge parasite species, and 3) heterologous or homologous schistosome species 

challenge infection using the mouse host data (Group 1 and 2 in Figure 3.1). To explore the 

influence of homologous or heterologous schistosome parasite species used in immunization 

and challenge infection further, a graph was generated showing reported percentage of 

protected values together with schistosome parasite species for vaccination and challenge 

infection. 

 

3.2.2.2. Random effects meta-analysis: forest plots 

Forest plots were generated using Review Manager (RevMan 5) for baboon and rat host 
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studies to estimate the pooled effect of attenuated S. mansoni and S. haematobium vaccine 

effect on the infection intensity (by comparing the number of schistosome worms retrieved 

after challenge infection between vaccinated and control animals). Studies were included in 

this analysis only if they reported the standard deviation (SD), standard error of the mean 

(SE) or confidence interval (CI) of retrieved worm count from both vaccinated and control 

animals. Article IDs of these studies were included as a random effect in the meta-analysis 

models. These models were used to estimate both the standardized mean difference (Hedges’ 

adjusted g) of each study as well as the pooled effect of irradiated S. mansoni vaccination in 

these baboon and rat host studies (Borenstein 2009; Deeks et al. 2010). Study names in the 

forest plot were organized by the name of the author followed by the year of publication. In 

cases where an article reported multiple observations, observations were distinguished by 

adding a letter after the first author’s name and the year of publication. There are multiple 

studies where a single control animal group was used to compare with multiple vaccinated 

animal groups, in such cases the number of control animals was divided by the number of 

vaccinated groups to balance the weight of the observation in the meta-analysis (Higgins et 

al. 2011).  

 

3.2.3. Statistical software 

Articles identified by the systematic review were recorded using Thomson Reuters EndNote 

and the extracted data were entered in a spread sheet using Microsoft Excel 2010. B. 

Tummers, DataThief III. 2006 was used to extract data from published graphs. IBM SPSS 

Statistics Version 19.0 and Minitab. Inc. MINITAB 16 were used for the meta-regression 
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analysis. Review Manager (RevMan) [Windows] version 5.3. was used to generate the forest 

plots and estimate the pooled mean. GraphPad Software GraphPad Prism version 6.03 was 

used to draw graphs. 
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3.3. Results 

3.3.1. The influence of host species on protection levels 

A total of 1,013 potentially relevant articles were identified through a systematic literature 

review. From these, a total of 29 observations from 11 articles using baboon hosts with S. 

mansoni or S. haematobium (Group 3 in Figure 3.1), and 47 observations from 11 articles 

using rat hosts with S. mansoni (Group 4 in Figure 3.1) met the search criteria and included 

in the analyses. There were 5 observations from a single article using baboon hosts with S. 

haematobium that failed to report the number of immunizing parasites. Otherwise, values of 

all three potential predictors were reported by all articles used for the analysis. 

 

The influence of host species (mouse, rat, or baboon) on protection levels of attenuated S. 

mansoni vaccination was statistically significant using meta-regression analysis [F(2, 

246)=17.22, p<0.001] when species added to previously identified predictors (Table 2.2). 

The results suggested significant lower protection levels in baboon hosts than mouse hosts. 

 

The effect of immunizing dose could not be explored for baboon host with S. haematobium 

studies because all of them used the same number of parasites for immunization (Table 3.1). 

The number of immunizing parasites was shown to have a positive influence on the fraction 

protected for rat host studies with S. mansoni [F(1, 43)=7.37, p<0.001, coefficient=1.05] 

(Table 3.2). Time between immunization and challenge both had non-significantly negative 

effects in rat host studies with S. mansoni, baboon hosts with S.mansoni, and baboon hosts 

with S. haematobium studies (Table 3.2). Irradiation dose had non-significantly negative 
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effects in rat host studies with S. mansoni, baboon hosts with S. haematobium studies but 

had non-significant positive effects in baboon hosts with S. mansoni studies (Table 3.2).  

 

Table 3.1: Frequencies of experimental animal host and schistosome parasite species 

reported in attenuated parasite vaccine studies with reported range of each predictor.  

 

Host species/  

schistosome species N* 

Number of 

immunizing 

parasites 

Irradiation 

dose 

(krad) 

Time between the 

last immunization 

and challenge (days) 

Rat/S. mansoni 47 300-3,000 2-80 14-252 

Baboon/S. mansoni 16 8,664-45,000 6-60 7-61 

Baboon/S. haematobium 13 24,000 3-60 56-266 

* Number of observations.
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3.3.2. Meta-analysis results 

3.3.2.1. Rat host 

A total of 47 experimental results from 11 rat host with S. mansoni studies met all inclusion 

criteria and were included in the random effect meta-analysis (Panel A in Figure 3.2). The 

number of experimental results from a single article varied from 1 to 24. All studies included 

in this analysis reported a positive influence of vaccination on the reduction of the number 

of worms retrieved after the challenge infection. The protection levels in the vaccinated 

group against challenge infection ranged from 17% to 88%. The random effect 

meta-analysis results showed the number of worms retrieved in the vaccinated group is 

significantly lower than that of control groups (Z=10.72, p<0.00001, the overall pooled 

standardized mean difference=-2.93). The results also showed high heterogeneity of 

protection levels between studies (I2=71%) (Higgins et al. 2003).  

 

3.3.2.2. Baboon host 

There were 16 experimental results from nine articles included in the random effects 

meta-analysis of baboon hosts and S. mansoni studies (Panel B in Figure 3.2). The number 

of experimental results extracted from a single article varied from one to five observations. 

All of these experimental results reported a smaller number of worms retrieved in vaccinated 

baboons compared to non-vaccinated control baboons, and the random effect meta-analysis 

results showed the number of worms retrieved in the vaccinated baboon group was 

significantly lower than that of control groups (Z=5.10, p<0.00001, the overall pooled 

standardized mean difference=-1.38). The protection levels among vaccinated groups against 
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challenge infection ranged from 23% to 76%. The results also showed moderate 

heterogeneity of standardized mean difference between studies (I2=32%) (Higgins et al. 

2003).  

 

Similarly, all 13 experimental results from two articles that reported results from baboon 

hosts with S. haematobium immunization and challenge infection, reported a positive 

influence of vaccination on protection levels (4% to 91%) (Panel C in Figure 3.2). The 

random effect meta-analysis confirmed that the number of worms retrieved in the vaccinated 

baboon group was significantly lower than that of control groups (Z=2.27, p=0.02, the 

overall pooled standardized mean difference=-1.39). The results also showed low 

heterogeneity of standardized mean difference between studies (I2=25%) (Higgins et al. 

2003). 
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3.3.3. The influence of homologous or heterologous schistosome parasite species 

immunization and challenge infection on the protection levels 

Among six potential predictors, “challenge parasite species”, and “heterologous or 

homologous schistosome species challenge infection” were confirmed to have a significant 

influence on protection levels [F(3, 745)=3.42, p=0.017, and F(1, 745)=21.17, p<0.001 

respectively, see Figure 3.3] in addition to the previously identified predictors (number of 

immunizing parasites, irradiation dose, and the time between immunization and challenge 

infection, Table 2.2) using mouse hosts with a variety of schistosome parasite species studies 

(group 1 and 2 in Figure 3.1). The immunizing parasite species was not statistically 

significant in the model. Homologous schistosome parasite species immunization and 

challenge infection studies showed significantly higher protection levels in S. bovis, S. 

haematobium, and S. mansoni attenuated vaccine studies (Figure 3.4). The S. japonicum 

studies were not included in the graph because only one study reported the protection levels 

with heterologous schistosome parasite species challenge infection using S. japonicum 

parasites for immunization.  
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Figure 3.3: Fraction protected by different immunizing parasite species in mouse 

model.  Schistosome parasite species are shown on x-axis. The upper letters show 

immunizing parasite species and the lower ones show challenge parasite species (SB: S. 

bovis, SH: S. haematobium, SM: S. mansoni, SX: any schistosome parasite species different 

from immunizing parasite species). Data points indicate the reported fraction protected for 

each observation. Each bar represents mean and standard deviation of fraction protected. 

Independent sample t-tests were conducted for each pair that used the same parasite species 

for immunization. NS non-significant, * significant at p<0.05, *** significant at p<0.001. 
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3.4. Discussion 

Whilst the discovery of an efficacious vaccine for schistosomiasis has been a goal for many 

years, presently there is no licensed schistosome vaccine for human use. A series of animal 

studies have reported that high levels of protection can be achieved using attenuated 

schistosome parasites for vaccination (Fukushige et al. 2015). I conducted a meta-analysis 

using these reports to determine the effects of different factors on the efficacy of attenuated 

schistosome parasites as vaccines. In particular, I reviewed studies of baboon hosts with S. 

mansoni or S. haematobium, rat hosts with S. mansoni, and mouse hosts with a variety of 

different schistosome parasite species. The results for baboon hosts indicated that protection 

against schistosome challenge infections can be induced by both attenuated S. mansoni and S. 

haematobium vaccines. Similarly, in rat hosts, the significant impact of attenuated S. 

mansoni vaccination on the reduction of challenge infection intensity was confirmed. My 

results also demonstrated higher protection levels for homologous than for heterologous 

combination of schistosome parasite species used for immunization and challenge infection 

in mouse host. Altogether, these results emphasize the high potential of attenuated 

schistosome parasite vaccine for human use, and the species specificity of attenuated 

schistosome parasite vaccines.  

 

Mouse hosts have been extensively used attenuated parasite vaccine studies. However, it is 

unclear to what extent observations from mouse host models translate into predictions about 

human protective immunity against schistosomiasis (Abdul-Ghani et al. 2010). It has been 

reported that schistosome infections of mice are different to those in humans. For example, 
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Cheever (1969) reported that the infection intensity expressed as worm burden per unit of 

body weight was much higher in mouse host models than in human cases (Cheever 1969). In 

fact, the mouse is not a natural host for schistosome parasites (Cheever et al. 1994). On the 

other hand, natural schistosome infections have been reported in several wild animals 

including wild baboons (Fenwick 1969; Taylor et al. 1972; Muller-Graf et al. 1997). 

Nonhuman primates, especially baboons, have been regarded as the most accurate 

non-human models of human clinical manifestations of schistosomiasis (Siddiqui et al. 

2008). All baboon study articles that have been included in this analysis reported protective 

effects of attenuated schistosome vaccines against challenge infections. Furthermore, the 

meta-analysis results confirmed the significant effect of attenuated schistosome parasite 

vaccination on the protection against challenge infection in both baboon with S. mansoni and 

baboon with S. haematobium studies. These results suggest that an attenuated schistosome 

parasites vaccine has a high potential of having a protective effect in humans.  

 

My previous investigation of mouse host with S. mansoni studies (Chapter 2) identified three 

predictors of protection levels against future infections: the number of immunizing parasites, 

the irradiation dose for attenuation, and the time between the immunization and challenge 

infection (Table 2.2). Whilst the same set of predictors was used to run the meta-regression 

analysis for studies of baboon hosts with either S. mansoni or S. haematobium, I could not 

confirm statistical significance (p<0.05) for any of these previously identified predictors. All 

baboon hosts with S. haematobium studies used the same number of parasites for 

immunization, and therefore immunizing dose could not be explored in this group (Table 
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3.1). Furthermore, all baboon hosts with S. mansoni studies used a large number of 

attenuated schistosome parasites for immunization (>8,000). Nevertheless, analyses showed 

a positive coefficient of immunizing dose for baboon host with S. mansoni studies 

(coefficient=0.26), although this result was not statistically significant. Further studies are 

required to estimate and immunizing parasite dose to achieve high levels of protections.  

 

The influence of irradiation dose on protection levels was not statistically significant in 

either rat host or baboon host studies. The rat hosts with S. mansoni and baboon hosts with S. 

haematobium study results showed a negative coefficient (rat/S. mansoni 

coefficient=-0.0052, baboon/S. haematobium coefficient=-0.014). In contrast, baboon hosts 

with S. mansoni studies showed positive coefficients of irradiation dose on protection levels 

(baboon/S. mansoni coefficient=0.0059), although they were not statistically significant. 

Unlike mouse and rat host studies, baboon studies used two different schistosome parasite 

life cycle stages for immunization (cercariae and schistosomula). However, the univariate 

analysis results showed that there was no significant effect of immunizing parasite life cycle 

stages on protection levels. Furthermore, the negative irradiation dose effect on survival time 

of schistosome parasites have been reported both for cercariae and schistosomula in murine 

model (Bickle et al. 1979; Hsu et al. 1981; Mangold et al. 1984). In addition, studies using 

baboon hosts with S. mansoni and S. haematobium have reported broad irradiation dose 

ranges (baboon/S. mansoni: 6-60 krad, baboon/S. haematobium: 3-60 krad) which could 

affect the survival time of parasites after vaccination. The reason why the analysis could not 

detect a statistically significant effect of irradiation dose could be due to the small sample 
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sizes. It also could possibly be due to variation the time and /or distribution of immunizing 

parasites required inside the host in order to stimulate protective immunity. Together, these 

results suggest that there is a possibility to develop efficacious vaccines using highly 

attenuated S. mansoni parasites.  

 

In the previous chapter, I demonstrated that the protection induced by vaccines gradually 

decreased over time, but remained at high levels for at least eight months after vaccination in 

mouse hosts immunized and infected with S. mansoni cercariae. In the current study, 

although the studies using rat hosts with S. mansoni and baboon hosts with S. haematobium 

reported follow up dates of more than six months, I could not detect a significant influence 

of time between vaccination and challenge infection. Both rat and baboon host studies 

showed a non-significant negative coefficient for time between the vaccination and 

challenge infection (rat/S. mansoni coefficient=-0.0029, baboon/S. mansoni 

coefficient=-0.013, baboon/S. haematobium coefficient=-0.0049). This might suggest there is 

also a slow decline of protection levels after the vaccination in rat and baboon hosts. Using the 

rat host with S. mansoni, Phillips et al. (1980) reported that protection levels reduced by 

about half between two months and eight months after immunization (Phillips et al. 1980). 

Similarly, Harrison et al. (1990) reported that protection among baboon hosts vaccinated with 

attenuated S. haematobium reduced by about one third between two months and seven months 

after immunization (Harrison et al. 1990). Further studies are required to estimate the length 

of protection which can be achieved by a single vaccination. Furthermore, these results 
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together with results from Chapter 2 would suggest that boosting vaccines may be necessary 

for long lasting protection against schistosomiasis.  

 

Studies of the mouse host that used variety of schistosome parasite species for immunization 

and challenge were analysed to explore the influence of heterologous schistosome parasite 

species on levels of protection. The use of different parasite species for immunization and 

challenge was statistically significant when it was included in the meta-regression analysis 

together with the three previously identified predictors (Figure 3.3). This result suggests 

species specificity of the attenuated cercariae vaccine in the mouse model. Supporting this 

result, Bickle et al. (1985) reported higher protection levels of homologous schistosome 

parasite species immunization and challenge infection compared to that of heterologous 

immunization and challenge infection in the mouse hosts model (Bickle et al. 1985). More 

recently, Cesari et al. (2010) reported low levels of cross-reactivity to S. mansoni membrane 

antigens in patients infected with S. haematobium (Cesari et al. 2010). A comparative study 

shown that there are differences in the adult proteome between different schistosome species, 

with some of these differences then translating to differential antigen recognition patterns 

(Higon et al. 2011). These results highlight the importance of considering which 

schistosome species is prevalent in a region when developing an efficacious vaccine in 

human use.  

 

There were studies with multiple vaccinated animals groups were compared with a single 

control animal group. In these cases, the number of control animals was divided by the 



  

71 

  

number of vaccinated groups to balance the weight to the observation in the meta-analysis 

(Higgins et al. 2011). When a single study report data for multiple subgroups, combining 

data across subgroups to make a single pair of comparison (i.e., vaccinated versus control) is 

a commonly used approach in meta-analysis (Borenstein 2009; Higgins et al. 2011). 

However, this approach was not being used in current analysis. For random effects 

meta-analysis in this chapter, subgroups were treated as independent observations. Therefore, 

there is a risk that the analyses overestimated the vaccination effect. Nevertheless, all the 

studies identified and included in the meta-analysis reported a positive protective effect of 

vaccination. Therefore, presenting the variability of protection levels between observations 

would be more informative than combine subgroups into one. These variability of protection 

within a same study were reported to be due to the number of vaccinated parasites per dose, 

the number of vaccination, irradiation dose, and/or the time between the last immunization 

and challenge infection (Ford et al. 1984; Ford et al. 1984; Mclaren et al. 1985; Moloney et 

al. 1987). 

 

The results of this study confirm the potential of attenuated schistosome parasite vaccines, in 

multiple species. There is still a need for more studies to estimate the optimal immunizing 

parasite dose and the potential duration of protection from these vaccines. The findings also 

emphasize the influence of challenge schistosome parasite species on protection levels. The 

attenuated schistosome parasite vaccines could be more efficacious against homologous 

species challenge infection than heterologous species challenge infection. As both S. 

haematobium and S. mansoni are co-endemic in parts of the African continent (Garba et al. 
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2010; Meurs et al. 2012; Gouvras et al. 2013), a multi-species vaccine for these two species 

has been an ambition for many years. In the context of other findings, these results suggest 

the potential importance of antigens that are unique to different schistosome species as a key 

factor in the efficacy of a multi-species vaccine.   
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Chapter 4: Factors influencing the 

direction of change in schistosome 

specific antibodies after praziquantel 

treatment: a systematic review and 

meta-analysis. 
 

 

4.1. Introduction 

It is well documented in the literature that naturally acquired immunity against schistosome 

infections reduces both prevalence and infection intensity in the older age groups in endemic 

areas (Woolhouse et al. 1999; Mitchell et al. 2011). One reason why this immunity takes 

time to develop is thought to be because the schistosome parasite is capable of evading host 

immunity and has an average life span of several years (Harris et al. 1984; Walter et al. 

2006). That is, while antigens from schistosome adult worms have been reported to be 

essential for the development of protective immunity, they only become accessible to the 

host immune system when the worms die (Mitchell et al. 2012). In fact, praziquantel 

treatment for schistosome infection has been reported to enhance host protective immunity 

by exposing to the parasite’s hidden antigens (Harnett et al. 1986; Mutapi et al. 2005; 

Doenhoff et al. 2008).  
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Multiple schistosome parasite-specific antibodies such as IgA and IgE have been reported to 

be associated with resistance to future infections (Rihet et al. 1991; Vereecken et al. 2007). 

There is a considerable number of studies that have been conducted to evaluate the influence 

of praziquantel treatment on schistosome-specific antibody levels among schistosome 

infected populations. In 2001, Mutapi reviewed these studies and reported high levels of 

heterogeneity in the type and magnitude of change in antibody level after chemotherapy 

between different human populations (Mutapi 2001). To date, many potential factors have 

been suggested to explain this variation, such as pre-treatment infection intensity (Rujeni et 

al. 2012), level of schistosome endemicity (Rujeni et al. 2012), age (Abebe et al. 2001; 

Mutapi et al. 2003), sex (Abebe et al. 2001), and co-infection with human 

immunodeficiency virus (HIV) (Joseph et al. 2004). However, more work is needed to 

confirm the roles of these factors. Therefore, the objective of this study is to identify 

predictors that influence the direction of change in antibody isotypes after praziquantel 

treatment by conducting a systematic review and meta-analysis. 

 

The objectives of this study were: 

1) to explore the influence of praziquantel treatment on the levels of schistosome 

specific antibody isotypes; 

2) to identify factors that influence the levels of schistosome specific antibody isotypes 

after praziquantel treatment. 
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4.2. Material and Methods 

4.2.1. A systematic review 

An electronic literature search was conducted using several databases: Web of Science Core 

Collection, BIOSIS Citation Index, and MEDLINE all of which were searched through Web 

of Science (www.webofknowledge.com). In addition, EMBASE, Global Health and Ovid 

Medicine were searched through Ovid (ovidsp.tx.ovid.com). The search terms were: 

“schistosom*” AND (“antibod*” OR “IgA” OR “IgE” OR “IgM” OR “IgG*”) AND 

[“albendazole” OR “metrifonate” OR “artesunate” OR “antihelmint*” OR “chemotherap*” 

OR “praziquantel” OR “oxamniquine” OR (“drug” AND “treatment”)]. This electronic 

literature search was completed in January 2014. After removing duplicates, a total of 1,366 

unique articles were identified for consideration in the present study. Titles and abstracts of 

articles were screened to exclude those that were clearly not relevant. Full texts of 

potentially relevant articles were then reviewed for further selection. Full texts of the 

relevant articles were sourced through the Web of Science, the Ovid, the Google Scholar 

(scholar.google.com), the University of Edinburgh library, and the Inter Library Loan of the 

University of Edinburgh. Non-English articles were included in this study, and several 

Chinese articles were identified and translated into English by a native Chinese speaker for 

the systematic literature review. 

 

An article was included in this study if it met all of the following inclusion criteria:  

1) human study (either sex),  

2) infection with S. mansoni and/or S. haematobium,  
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3) participants treated with praziquantel,  

4) number of participants reported,  

5) schistosome-specific antibody levels reported before and after praziquantel 

treatment,  

6) follow-up studies conducted within 14 to 180 days after praziquantel treatment,  

7) schistosome soluble worm antigen (WWA) and/or soluble egg antigen (SEA) used 

to measure antibody isotype levels,  

8) participants potentially exposed to schistosome infection for longer than 1 year 

before the study,  

9) participants ages could be categorized at child (0-10 years old), adolescent (11-21 

years old) or adult ( ≥21 years old).  

 

Articles were excluded based on the following exclusion criteria:  

1) participants had a previous history of antihelminthic treatment prior to the study 

participation,  

2) participants were treated with any antihelminthic drug other than praziquantel (e.g., 

oxamniquine),  

3) participants were specially selected because of co-infection with HIV,  

4) purified schistosome antigens were used to measure antibody isotype levels,  

5) participants were temporary visitors to endemic areas (i.e., travellers).  
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Although studies using non-praziquantel antihelminthic drugs were initially considered for 

this study, they were excluded based on exclusion criteria (2). This was because: 1) the 

majority of identified studies used praziquantel for the treatment, 2) only small number of 

studies were published using non-praziquantel antihelminthic drugs. There were seven 

studies with oxamniquine (Mendes et al. 1982; Butterworth et al. 1985; Khalife et al. 1986; 

Dunne et al. 1992; Caldas et al. 2000; Vendrame et al. 2001; Gomes et al. 2002), one study 

with levamisole (Snyman et al. 1998), and one study with metrifonate (Feldmeier et al. 

1983). In addition, there was a study that treated participants with either metrifonate or 

oxamniquine (Stevens et al. 1983). 

 

Schistosome specific antibody isotype levels before (baseline) and after (follow-up) 

treatment with praziquantel were extracted from the selected articles. For those articles that 

reported results only in graphical format, the software DataThief III (2006) was used to 

extract the raw data, whenever the graph format allowed it. In addition to antibody levels, 

the following information was extracted from each article: the year of publication, article 

title, names of authors, study area (country, region and village) schistosome parasite species, 

co-infection status, co-infecting pathogen species, number of participants, age or age range, 

sex, height, weight, days between the treatment and follow-up, pre- and post- treatment 

infection intensity and prevalence, praziquantel dose, and cure rate. Several articles reported 

results from multiple different groups of participants in the same study area, such as from 

different age groups of participants. In such cases, the result from each group was recorded 

as one observation. For the purpose of analysis, they were treated as independent 
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observations. For articles that reported results from multiple follow-up time points, the first 

follow-up after 14 days was selected and included in this study. A total of 92 observations 

from 26 articles (published 1988-2013) met all the inclusion criteria and were considered for 

the final meta-analysis (Table 4.1).  

  



  

79 

  

Table 4.1: Summary of 26 articles selected after systematic review. S.m=Schistosoma 

mansoni; S.h=Schistosoma haematobium; SEA=schistosome soluble egg antigen; 

WWA=schistosome soluble worm antigen.  

Reference 
Parasite 

species 

Antigen 

type 
Antibody isotype 

Follow up 

(days) 

Abebe et al. 2001 S.m SEA 
IgA, IgE, IgG1, IGG2, 

IgG3, IgG4, IgG, IgM 
35 

Ali et al. 1994 S.m, S.h SEA/WWA IgA 90 

Feldmeier et al. 1988 S.m, S.h WWA IgE, IgG 150 

Fouda et al. 2007 S.m WWA IgE 180 

Grogan et al. 1996 S.h SEA/WWA IgE, IgG4 35 

Hamadto et al. 1990 S.m SEA/WWA IgA, IgE, IgG, IgM 49 

Hussein et al. 1996 S.m SEA/WWA IgG, IgM 60 

Ismail et al. 1992 S.m, S.h SEA/WWA IgG, IgM 90 

Joseph et al. 2004 S.m SEA/WWA 
IgE, IgG1, IgG2, IgG3, 

IgG4 
35 

Mutapi et al. 1998 (a) S.m, S.h SEA IgA, IgG1 84 

Mutapi et al. 1998 (b) S.h SEA 
IgA, IgE, IgG1, IgG2, 

IgG3, IgG4 
126 

Nagaty et al. 1996 S.m, S.h SEA/WWA IgA, IgE, IgG, IgM 180 

Nassr et al. 2002 S.m WWA IgG1, IgG4 90 

Naus et al. 1998 S.h SEA/WWA 
IgE, IgG1, IgG2, IgG3, 

IgG4,IgM 
30 
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Reilly et al. 2008 S.h WWA IgG1, IgG3 42 

Satti et al. 2004 S.m WWA IgE, IgG4 21 

Satti et al. 1996 (a) S.m SEA/WWA 
IgE, IgG1, IgG2, IgG3, 

IgG4, IgM 
90 

Satti et al. 1996 (b) S.m WWA IgA 90 

Snyman et al. 1997 S.h WWA IgE, IgG 21 

Snyman et al. 1998 S.h WWA IgE, IgG 90 

Tweyongyere et al. 2009 S.m SEA/WWA 
IgE, IgG1, IgG2, IgG3, 

IgG4 
42 

van Lieshout et al. 1999 S.m WWA 
IgE, IgG1, IgG3, IgG4, 

IgG, IgM 
63 

Vereecken et al. 2007 S.m SEA/WWA 
IgA, IgE, IgG1, IgG2, 

IgG3, IgG4, IgM 
42 

Walter et al. 2006 S.m SEA/WWA 
IgA, IgE, IgG1, IgG2, 

IgG3, IgG4, IgM 
35 

Wilson et al. 2013 S.m, S.h WWA IgE 63 

Zinyowera et al. 2006 S.h SEA/WWA IgA, IgE, IgG 42 

 

Potential predictors were selected according to their biological importance, as suggested by 

earlier studies (Abebe et al. 2001; Rujeni et al. 2012) and if they were reported by the 

majority of articles included in this study. The following predictors were considered: age 

groups (0-10 years old, 11-21 years old, ≥21 years old), pre-treatment infection intensity 

(light or heavy), schistosome species (S. mansoni, S. haematobium, or co-infection), disease 
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prevalence (low/moderate or high), and days between chemotherapy and follow-up (Table 

4.2).  

Table 4.2: List of potential predictors investigated and their measurement units/ codes 

Potential predictors (units) Codes 

Age (years) 0-10 11-20 ≥21 

Infection intensity Light Heavy  

S. mansoni (eggs/1g faeces) 1-99 ≥100  

S. haematobium (eggs/10ml urine) <50 ≥50  

Prevalence (%) Low/Moderate High  

 <50 ≥50  

Schistosome species S. mansoni S. haematobium Co-infection 

Days after chemotherapy (days) Continuous   

 

4.2.2. Statistical analysis 

The majority of studies included for investigation used the enzyme-linked immunosorbent 

assay (ELISA) method to quantify antibody isotype levels and reported optical density (OD). 

However, OD values cannot be directly compared between studies conducted by different 

research groups (Voller et al. 1978). Therefore, the outcome variable was categorized 

according to the direction of change in antibody levels from pre-treatment baseline to levels 

at follow-up. That is, pre-treatment and post-treatment antibody isotype levels were 

compared within the same population and the outcome was categorized as “increase” if the 

post-treatment level was higher than the pre-treatment level, and “decrease” if it was lower. 
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There were seven observations that reported the exact same value of antibody isotype levels 

for both pre- and post- treatment (Hamadto et al. 1990; Van Lieshout et al. 1999; Walter et al. 

2006). They were categorized into “decrease” group in this study for analyses purposes. All 

the observations were grouped according to schistosome parasite antigens (whole worm 

antigen or whole egg antigen) that were used to measure antibodies and analysed separately.  

 

There were 29 observations from four articles that failed to report pre-treatment infection 

intensity of study participants. In these cases, pre-treatment infection intensity was obtained 

from scientific publications from the larger populations that contain the study populations 

(articles listed in Appendix C.2). Similarly, there were three observations from two articles 

that did not report the schistosome infection prevalence in the study area. In these cases 

prevalence was obtained from using scientific publications or governmental reports from the 

same area or larger area that contain the study area (Appendix C.2).  

 

A preliminary analysis was conducted using mixed effects logistic regression models. In 

these models, article ID was used as a random effect. In addition, each observation was 

weighted according to its sample size (number of participants). The results indicated that 

two predictors, age and infection intensity, have a significant influence on the direction of 

change of the antibody isotypes after praziquantel treatment. Furthermore, the results 

indicated that there is an association between these two predictors. However, the mixed 

effects logistic regression model results were not considered further. This was mainly 
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because the majority of the models had very high information criterion values, indicating 

instability (results are not shown). 

 

In schistosomiasis endemic areas, infection intensity peaks in the young age group,  giving 

an age-dependent convex curve (Woolhouse 1998). To take this non-linear association into 

account, a combination predictor for age and infection intensity was generated, with format 

age/infection intensity as shown in Table 4.3. All the observations were categorized into any 

of these age/infection intensity categories. 

 

Table 4.3: Combined predictor: age/ infection intensity 

Age category 

(years) 

Pre-treatment  

infection intensity Predictor name 

0-10 Light child/light 

0-10 Heavy child/heavy 

11-20 Light adolescent/light 

11-20 Heavy adolescent/heavy 

≥21 Light adult/light 

≥21 Heavy adult/heavy 
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4.2.3. Classification and Regression Tree (CART) models 

Classification and Regression Tree (CART) models were used to identify influential 

predictors of the direction of change of the schistosome specific antibody after praziquantel 

treatment (Breiman 1984; Loh 2011). Confidence intervals or standard errors are the most 

common weighting methods for meta-regression (Borenstein 2009) and for meta-CART 

(Dusseldorp et al. 2014). However, in this analysis the measures of antibody levels are 

ELISA OD values, which cannot be compared directly when coming from different research 

groups (Voller et al. 1978). Therefore, in this analysis, the sample size (the number of 

participants) was used for weighting. The number of participants across studies varied from 

7 to 148. The potential predictors used for the analysis were: age/ infection intensity (as in 

Table 4.3), schistosome species (S. mansoni, S. haematobium, or co-infection), days between 

treatment and follow-up, and disease prevalence (low/moderate or high) (Table 4.2). 

 

The CART analysis was conducted to build a tree using the standard three steps: 1) growing 

a maximum sized tree, 2) pruning the tree to generate sub-trees, and 3) identifying the 

optimal sized tree (Breiman 1984). Initially, the maximum-sized complex trees were grown 

with data from all study variables for each antibody isotypes. All potential predictors were 

compared using the Gini index to identify the optimum split of the dependent variable 

(increase or decrease in my study). Based on the Gini index, the strongest predictor variable 

and its splitting value, that is sub-groupings for categorical variables and cut-off value for 

continuous variables, were used to split the original data (i.e., root node) into two subgroups 

(i.e., daughter nodes). The subgroups were then divided repeatedly into smaller subgroups 



  

85 

  

following the same procedure until they represented the most homogeneous subgroups 

achievable (i.e., terminal node). In this study, terminal nodes of these maximum-sized trees 

were set to be pure or with only a single observation. Then a series of subtrees was 

generated by pruning the initial maximum-sized trees. To estimate the optimal subtree 

among the different sized subtrees, 10-fold cross-validation analysis was conducted for each 

subtree followed by the selection based on the one standard error (SE) rule (Breiman 1984). 

Briefly, the cross-validation analysis is used to estimate the risk of misclassification using a 

randomly selected subset (i.e., test samples) of the original dataset (i.e., learning sample) 

(Breiman 1984). The optimal tree is the one that yields the minimal risk estimate. However, 

the noisy nature of the data and the instability of the cross-validation procedure can lead to 

the selection of unstable and large trees (Lewis 2000). Therefore, following the one SE rule, 

the smallest tree that has a cross-validation risk estimate of less or equal to the minimal risk 

plus one SE of the minimal error, was selected as the optimal tree (Breiman 1984; Lemon et 

al. 2003) (Appendix C.4 and C.5). 

 

4.2.4. Software 

Articles identified by the systematic review were recorded using Thomson Reuters EndNote 

and the extracted data were entered into a spreadsheet using Microsoft Excel 2010. B. 

Tummers, DataThief III. 2006 (http://datathief.org/) was used to extract data from published 

graphs. IBM SPSS Statistics Version 21.0 and IBM SPSS modeller Version 15.0 were used 

for statistical analysis. GraphPad Software GraphPad Prism version 6.03 was used to create 

graphs. 
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4.3. Results 

Following a systematic review, a total of 92 observations from 26 articles (published 

1988-2013) met all inclusion criteria and were considered for the final analysis. There was a 

high degree of heterogeneity in the direction of change of antibodies (increase/decrease) 

after praziquantel treatment depending on antigen type and antibody isotypes (Figure 4.1). 

Two anti-SEA antibody isotypes (IgG, IgM) showed a significant trend of decrease after the 

praziquantel treatment (X2=8.07, p=0.005, X2=4.48, p=0.034 respectively) (Figure 4.1). In 

contrast, five anti-WWA antibody isotypes (IgA, IgE, IgG1, IgG2, IgG4) showed a 

significant trend of increase (X2=12.25, p<0.001, X2=8.26, p=0.004, X2=6.55, p=0.011, 

X2=7.14, p=0.008, X2=10.71, p=0.001) (Figure 4.1).  
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Figure 4.1: The percentage of observations with increasing or decreasing levels of (a) 

anti-SEA, and (b) anti-WWA antibody isotypes after praziquantel treatment for eight 

antibody isotypes.  The graph shows the fraction of observations that reported decrease 

(filled bar) or increase (unfilled bar) of each antibody isotype. Chi-square tests were 

conducted for each pair of anti-SEA or anti-WWA antibody isotype. NS non-significant, * 

significant at p<0.05, ** significant at p<0.01, *** significant at p<0.001. 
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The CART analysis identified optimal trees for anti-SEA (IgA, IgE, IgG1, IgG2, IgM) and 

for anti-WWA (IgG, IgM) (Table 4.4, Figure 4.2, Figure 4.3). The cross-validation analysis 

identified the lowest risk of misclassification at the root node, for a number of anti-SEA 

antibodies (IgG3, IgG4, IgG) and anti-WWA antibodies (IgE, IgG1, IgG2, IgG3, IgG4), 

suggesting that there are no stable trees for these cases. In addition, there was no tree 

generated for anti-WWA IgA, this could be due to high homogeneity of the observations: all 

observations except one observation reported an increase of anti-WWA IgA after 

praziquantel treatment. 

 

Table 4.4: Predictors identified by the classification and regression tree model analyses 

Predictors Anti-SEA antibodies Anti-WWA antibodies 

Days after treatment IgE  

Age/ infection intensity IgA, IgG1, IgG2, IgM IgG, IgM  

No predictor:  

mostly decrease 
IgG3, IgG4, IgG  

No predictor:  

mostly increase 
 

IgA, IgE, IgG1, IgG2, IgG3, 

IgG4 
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Number of 
observations =19 
Increase   10 (53%)
Decrease    9 (47%) 

N = 7 N = 12 

Increase 6 (86%) 

Decrease  1 (14%)  

Increase 4 (33%)

Decrease  8 (67%)  

Age/infection intensity

CL, CH, AL, AH YL, YH 

Anti-SEA IgA

Number of 
observations =23 
Increase    16 (70%)
Decrease     7 (30%) 

N = 6N = 17

Increase 1 (17%) 

Decrease  5 (83%)  

Increase 15 (88%)

Decrease  2 (12%)  

Days after chemotherapy

>46 days ≤46 days 

Anti-SEA IgE

Number of 
observations =27 
Increase      8 (30%)
Decrease  19 (70%) 

N = 16N = 11

Increase 1 (6%) 

Decrease  15 (94%)  

Increase 7 (64%)

Decrease  4 (36%)  

Age/infection intensity

CL, CH, AL, AH YL, YH 

Anti-SEA IgM

A B

E

Age/infection intensity category 
abbreviations

CL: Children/Light

CH: Children/Heavy

YL: Adolescent/Light

YH: Adolescent/Heavy

AL: Adult/Light

AH: Adult/Heavy

Terminal node 1 Terminal node 2 Terminal node 1 Terminal node 2

Terminal node 1 Terminal node 2

Number of 
observations =17 
Increase     9 (53%)
Decrease    8 (47%) 

N = 11 N = 6 

Increase 8 (73%) 

Decrease  3 (27%)  

Increase 1 (17%)

Decrease  5 (83%)  

Age/infection intensity

CL, CH, YL, AL YH, AH 

Anti-SEA IgG1

Number of 
observations =15 
Increase       9 (60%)
Decrease     6 (40%) 

N = 7N = 8

Increase 2 (29%) 

Decrease  5 (71%)  

Increase 7 (88%)

Decrease  1 (13%)  

Age/infection intensity

YL, YH, AHCH, AL 

Anti-SEA IgG2C D

Terminal node 1 Terminal node 2 Terminal node 1 Terminal node 2
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Figure 4.2: Classification and Regression Tree Models identifying profiles of 

observations that had higher (increase) or lower (decrease) anti-SEA antibody isotype 

levels after praziquantel treatment. (A) anti-SEA IgA, (B) anti-SEA IgE, (C) anti-SEA 

IgG1, (D) anti-SEA IgG2, or (E) anti-SEA IgM. The hierarchy of the Classification and 

Regression Tree Model starts from the terminal nodes at the top. Abbreviations for 

age/infection intensity groups are listed in the text box and described in Table 4.3.  
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Figure 4.3: Classification and Regression Tree Models identifying profiles of 

observations that had higher (increase) or lower (decrease) anti-WWA antibody 

isotype levels after praziquantel treatment. (A) anti-WWA IgG or (B) anti-WWA IgM. 

The hierarchy of the Classification and Regression Tree Model starts from the terminal 

nodes at the top. Abbreviations for age/infection intensity groups are as listed in the text box 

in Figure 4.2, also described in Table 4.3.  

 

In the CART analysis, where the direction of change in antibody isotype was a binary 

outcome (increase/decrease), age/infection intensity was identified as the most influential 

variable for direction of change for anti-SEA antibodies (IgA, IgG1, IgG2, IgM) and for 

anti-WWA (IgG, IgM) antibodies (Panel A, C, D, E in Figure 4.2 and Figure 4.3). For 

anti-SEA (IgA, IgM) antibodies, both adolescent/light and adolescent/heavy groups were 

categorized into the nodes dominated by observations of decrease in antibody levels 

(terminal node 2 in panel A, E in Figure 4.2), whereas the remaining age/infection intensity 

groups were grouped into the nodes dominated by observations of increase (terminal node 1 

Number of 
observations =23 
Increase   14 (61%)
Decrease    9 (39%) 

N = 11 N = 12 

Increase 10 (91%) 

Decrease  1 (9%)  

Increase 4 (33%)

Decrease  8 (67%)  

Age/infection intensity

CH, YH, AL CL, YL 

Anti-WWA IgG

Number of 
observations =27 

Increase    15 (56%)
Decrease  12 (44%) 

N = 13N = 14

Increase 2 (15%) 

Decrease  11 (85%)  

Increase 13 (93%)

Decrease  1 (7%)  

YL, YHCL, CH, AL, AH

Anti-WWA IgMA B

Age/infection intensity

Terminal node 1 Terminal node 2 Terminal node 1 Terminal node 2
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in panel A, E in Figure 4.2). For anti-SEA IgG1, adolescent/heavy and adult/heavy groups 

were categorized into the node which dominated by observations of decrease in antibody 

levels (terminal node 2 in panel C in Figure 4.2). For anti-SEA IgG2, adolescent/light, 

adolescent/heavy, and adult/heavy groups were categorized into the node which dominated 

by observations of decrease in antibody levels (terminal node 2 in panel D in Figure 4.2).  

 

For anti-WWA IgG, age/infection intensity groups of children/heavy, adolescent/heavy, and 

adult/light were categorized into the node dominated by observations of increase (terminal 

node 1 in panel A in Figure 4.3) in contrast to the children/light and adolescent/light groups 

which were categorized into the node dominated by observations of decrease in antibody 

level (terminal node 2 in panel A in Figure 4.3). For anti-WWA IgM, children/light, 

children/heavy, adult/light and adult/heavy age/infection intensity groups were categorized 

into the node dominated by observations of increase in levels (93% of observations) 

(terminal node 1 in panel B in Figure 4.3) whereas adolescent/light and adolescent/heavy 

groups were categorized into the node dominated by observations of decrease in levels 

(terminal node 2 in panel B in Figure 4.3). 

 

The first split from the root node of anti-SEA IgE was according to days after praziquantel 

treatment. The percentage of observations that reported increases of anti-SEA IgE less than 

46 days after praziquantel treatment was 88% (terminal node 1 in panel B in Figure 4.2) 

while only 17% of observations reported increases more than 46 days after praziquantel 

treatment (terminal node 2 in panel B in Figure 4.2). 
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4.4. Discussion 

This meta-analysis aimed to identify variables that influence the direction of change in 

schistosome-specific antibody isotype levels after praziquantel treatment in humans. 

Praziquantel is currently the recommended drug for treatment of schistosomiasis (WHO 

2015). Some field studies have reported that praziquantel treatment can enhance the 

development of host protective immunity against future re-infection (Harnett et al. 1986; 

Mutapi et al. 1998; Doenhoff et al. 2008). Furthermore, schistosome parasite-specific 

antibodies are thought to play an important role in this protective immunity (Dunne et al. 

1992; Zhang et al. 1997). The reasons underlying the observed substantial heterogeneity in 

the post-treatment response (Mutapi 2001) remain unclear. The study results are important as 

they increase our understanding of human immunity against schistosomiasis, in particular, 

the influence of the mass drug administration programmes on the protective immunity 

against future re-infection.  

 

A higher number of studies reported an increase of anti-WWA antibodies after praziquantel 

treatment, than a decrease for any antibody isotypes (Table 4.4). In particular, the analyses 

indicated that there was a significantly higher proportion of studies that reported an increase 

than a decrease in anti-WWA (IgA, IgE, IgG1, IgG2, IgG4) antibodies (Figure 4.1). Among 

these antibodies, anti-WWA IgA stood out as it was reported to increase in all studies, except 

one, which reported the exact same anti-WWA IgA levels for both pre- and post- 

praziquantel treatment. Praziquantel treatment has been reported to damage adult worm 

tegument, and therefore allows host immunity to detect schistosome worm antigens that 
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would otherwise not be accessible until those worms die naturally (Harnett et al. 1986; 

Mutapi et al. 2005). Mutapi et al. (Mutapi et al. 2005).have reported that praziquantel 

treatment enhances the host immunological recognition of S. haematobium defined antigens. 

My results show that the praziquantel treatment could enhance the host immune recognition 

of schistosome worm antigens. 

 

In contrast with the anti-WWA antibodies, studies of anti-SEA antibody isotypes did not 

show a significant tendency to increase rather than a decrease of their levels after 

praziquantel treatment (Figure 4.1). There were two anti-SEA antibodies (IgG, IgM), for 

which a significant proportion of studies reported a decrease after praziquantel treatment. 

Besides this, anti-SEA (IgG3, IgG4) antibodies were also dominated by studies that reported 

a decrease after chemotherapy. The reason for this could potentially be that praziquantel 

treatment which reduces the number of mature adult worms would reduce egg output 

(Cheever et al. 1994), inducing a decrease in some anti-SEA antibody levels after the 

treatment. However, there are multiple anti-SEA antibodies (IgA, IgE, IgG1, IgG2) for 

which a majority of observations report a post-treatment increase than a decrease. These 

results suggest that there is a high degree of heterogeneity in the direction of change 

(increase or decrease) among different anti-SEA antibody isotypes and also among different 

populations after praziquantel treatment (Figure 4.1). This result indicates that praziquantel 

treatment had different effects on different antibody isotypes, in particular anti-SEA 

antibodies in different populations.  
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The analysis revealed significant increases in anti-WWA IgA following praziquantel 

treatment. Previously, high anti-schistosome WWA IgA levels have been reported to be 

negatively associated with S. mansoni re-infection after praziquantel treatment (Vereecken et 

al. 2007). A study with purified S. mansoni adult worm antigen rSm28-GST demonstrated 

that rSm28-GST specific IgA levels increased with age (6-66 years old) which in turn was 

associated with a reduction of S. mansoni worm fecundity (Grzych et al. 1993; Liu et al. 

1996). Supporting this report, a mathematical modelling study also suggested that naturally 

acquired protective immunity develops by age is mainly targeting worm fecundity (Mitchell 

et al. 2012). The reduction in worm fecundity can reduce the disease severity dramatically 

even when treated patients are re-infected later on in life. This is because the morbidity of 

schistosomiasis is mainly caused by parasite eggs remaining trapped in host tissues, which 

provokes an inflammatory immune response in the host (Silveira et al. 2002; Gryseels et al. 

2006; Colley et al. 2014). These results in combination with the previous studies reported 

above, suggest that praziquantel treatment can boost the levels of anti-WWA IgA, which 

might contribute to reducing morbidity during future infections. 

 

Schistosome specific IgE is the antibody isotype that is most commonly associated with 

protection against re-infection after praziquantel treatment in humans (Colley et al. 2014). 

High levels of anti-SEA IgE and/or anti-WWA IgE antibodies have been reported to be 

associated with low re-infection rates of S. mansoni (Dunne et al. 1992), S. haematobium 

(Hagan et al. 1991) and S. japonicum (Zhang et al. 1997). My CART analysis demonstrated 

that there is a transient increase in anti-SEA IgE antibody, followed by a decrease below 
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pre-treatment levels 46 days after chemotherapy. On the other hand, anti-WWA IgE levels 

showed a tendency to increase after treatment within the reported follow-up times (21-180 

days, 74% of the observations). Schistosome anti-WWA IgE antibody levels have been 

reported to increase with age in endemic areas, potentially contributing to reducing 

prevalence and infection intensity in the older age groups (Hagan et al. 1991; Webster et al. 

1997). Hence, the tendency for anti-WWA IgE levels to be elevated during the 180 days after 

treatment revealed by my analysis suggests that chemotherapy could enhance protection 

against re-infection for some populations for at least 6 months after the post-treatment. That 

is, the immunological consequences of praziquantel treatment have a potential to reduce 

susceptibility to future re-infection in some populations.  

 

The majority of studies reported a decrease in anti-SEA IgG4 (70% of observations) after 

praziquantel. High levels of anti-SEA IgG4 have been associated with high infection 

intensity, severity of inflammatory granuloma, and fibrosis (Boctor et al. 1990; Grogan et al. 

1996; Silveira et al. 2002). Therefore, in some studies, anti-SEA IgG4 has been considered a 

marker for disease burden (Abd El-Aal et al. 2005). Thus, decrease of anti-SEA IgG4 might 

be reflecting the efficacy of praziquantel treatment at the reducing infection intensity and 

consequently disease. 

 

The analysis revealed a significant proportion of studies showing an increase rather than 

decrease in anti-WWA IgG4 (86% of observations reported increase) after treatment. 

Longitudinal and cross-sectional population studies have demonstrated the association of 
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both anti-SEA IgG4 and anti-WWA IgG4 with human susceptibility to re-infection after 

treatment in schistosomiasis endemic areas (Grogan et al. 1997; Oliveira et al. 2012). In 

particular, IgG4 has been suggested as a possible blocking antibody that inhibits the action 

of protective IgE in both S. haematobium and S. mansoni infections (Hagan et al. 1991; 

Demeure et al. 1993; Colley et al. 2014). Field studies have reported that the ratio of IgE to 

IgG4 has a positive influence on resistance to future S. mansoni re-infection (Pinot de Moira 

et al. 2010). There were multiple studies that reported the direction of change for both IgE 

and IgG4 after praziquantel treatment. However, I found no evidence for any possible 

changes in the ratios of IgE to IgG4 after chemotherapy in this study, as the ratio of IgE to 

IgG4 change depends on the magnitude of change in both antibodies. More epidemiological 

research is required to determine how the ratio of these two antibodies changes after 

chemotherapy. Studies are also required to clarify the association between the IgE to IgG4 

ratio and re-infection rate after chemotherapy.  

 

The CART analysis results showed that for several antibody isotypes, the direction of 

change after chemotherapy can be partially explained by the combination of participants’ 

age and pre-treatment infection intensity. For anti-SEA (IgA, IgM) and anti-WWA IgM, the 

majority of observations reported a decrease in levels among 11-20 years old participants 

with any pre-treatment infection intensity levels (Figure 4.2 and 4.3). Although the reasons 

for this association between adolescent age group and antibody isotypes direction of change 

is still unclear, there are multiple factors unique for adolescents. The adolescents often 

harbour the greatest burden of schistosome infection prevalence in many endemic areas 
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(Fulford et al. 1992; Mutapi et al. 2006; Colley et al. 2014). In endemic areas, people get 

infected by schistosome parasites as early as during their first year of age (Ruganuza et al. 

2015). From then on, infection intensity and prevalence increase as the frequency of contact 

with natural water sources, which may be contaminated with infectious schistosome 

parasites, increases as they age (Sow et al. 2011). The adolescents have been reported to 

have most frequent water contact compared to other age groups in some populations in 

endemic areas (Kloos et al. 1983). Therefore, adolescents are thought to be carrying a high 

schistosome infection burden, while they are still developing acquired protective immunity 

against infection. The role of anti-SEA (IgA, IgM) and anti-WWA IgM in protective 

immunity are also still unclear. More epidemiological studies investigating the dynamics of 

these antibody levels over age within populations in endemic areas would help to clarify the 

association with host age. Furthermore, epidemiological cohort studies also could be 

conducted to investigate the influence of praziquantel treatment on these antibodies and also 

their association with re-infection after treatment.  

 

In this study, none of the identified CART analysis results had pure-terminal nodes with only 

increase or decrease studies. This finding suggests that there could be influential predictors 

on direction of changes in schistosome-specific antibodies which could not be identified by 

current analyses. For example, Mutapi et al. have reported that S. haematobium infected 

children have significantly decreased levels of anti-SEA IgA after praziquantel treatment 

(Mutapi et al. 1998). In contrast, reports from S. mansoni infections show that there is an 

increase or no change in the levels of anti-SEA IgA in children before and after praziquantel 



  

99 

  

treatment (Abebe et al. 2001; Vereecken et al. 2007). These studies suggest although the 

analyses could not detect the influence of schistosome parasite species, praziquantel 

treatment might influence the antibody levels in the different way according to parasite 

species. 

 

There are limitations of CART model. First of all, although multiple observations were 

extracted from a single article, CART analysis does not allow the random effects to be taken 

into account unlike other statistical analysis used in this thesis (e.g., random-effects 

meta-analysis, random-effects meta-regression). In addition, CART analysis was developed 

with the aim to analyze large data sets with a large number of potential predictors. In general, 

even a relatively small data sets normally yield maximum sized trees of 30-40 terminal 

nodes before tree pruning (Breiman 1984). Nevertheless, as the data was small in this study, 

the number of terminal nodes in maximum sized trees was only between 4 to 11. Therefore, 

even for these antibody isotypes with their optimal tree identified at the root node (without 

any subgroupings), there might be undetected predictors that could be identified with a 

bigger data set.  

 

This meta-analysis has revealed that more studies reported an increase of anti-WWA 

antibodies isotypes than a decrease after praziquantel treatment. However, the analyses have 

also showed a considerable variability among different antigens, antibody isotypes, and 

populations in the direction of schistosome-specific antibody isotype levels change 

following treatment with praziquantel, confirming the work of Mutapi in 2001 (Mutapi 
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2001). Although the combination of age and infection intensity, and the number of days after 

treatment were identified as influential predictors for some antibody isotypes, there is no 

single predictor that consistently affects all antibody isotypes in the same way. These results 

could suggest that praziquantel treatment has diverse effects on protective immunity against 

re-infection. My results also demonstrated that the antibody isotypes that have been reported 

to have protective effect against future re-infection (anti-WWA IgA, IgE) can be stimulated 

by praziquantel treatment in the majority of cases for at least as long as 6 months after the 

treatment. These results therefore reinforce the reported immunizing effect of praziquantel 

treatment, while at the same time, highlighting the need for further studies to explain the 

observed heterogeneity in changes in antibody isotype levels following praziquantel 

treatment.  
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Chapter 5: Identifying factors that 

influence cure rates during 

schistosomiasis treatment with 

praziquantel: a systematic review and 

meta-analysis. 
 

 

5.1. Introduction 

Since its discovery by German pharmaceutical companies Bayer AG, Leverkusen and E. 

Merck, Darmstadt in 1972 (Gönnert et al. 1977), praziquantel has been used as the first drug 

of choice for treating schistosome infection (WHO 2015). This efficacious, low-cost drug 

has achieved a significant reduction in disease prevalence, infection intensity, and morbidity 

in many endemic areas (Midzi et al. 2008; Evans et al. 2011; Liu et al. 2011; WHO 2015). 

To date, there is no convincing evidence of the development of parasite resistance to 

praziquantel, even in China, where praziquantel has been used extensively for schistosome 

control for more than 30 years (Lamberton et al. 2010; Liu et al. 2011; Wang et al. 2012; 

Huyse et al. 2013) or in an Egyptian village where praziquantel treatment has been 

constantly provided for over 10 years (Botros et al. 2005; Othman et al. 2015). Recent 

meta-analysis studies have also concluded that praziquantel is still effective against 

schistosome infections (Liu et al. 2011; Danso-Appiah et al. 2013). The relatively long 

generation time of schistosome parasites is thought to make it difficult for the parasite to 
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develop resistance against praziquantel (Ward et al. 1988; Biolchini Cde et al. 2006; Nour 

2010).  

 

However, there is still a chance that schistosome parasites will develop resistance against 

praziquantel (Bickle 2009). Recent schistosomiasis control efforts, including the large 

number of national schistosome control programmes conducting MDA (Cleland et al. 2014; 

Omedo et al. 2014; Tuhebwe et al. 2015) may be putting an extra selection pressure on 

schistosome parasites (Norton et al. 2010). As such, attempts at eradication using MDA are 

leading to fears that the selection pressures on the parasite may eventually cause the 

evolution of resistance (Norton et al. 2010; Humphries et al. 2012). Close monitoring of 

praziquantel efficacy is important since this is the only drug that is effective against all three 

major human schistosome parasite species: S. mansoni, S. haematobium and S. japonicum.  

 

Nevertheless, there are multiple epidemiological studies that have reported low praziquantel 

efficacy levels from different schistosomiasis endemic areas (Tchuente et al. 2004; Guidi et 

al. 2010; Keiser et al. 2014), in contrast to other studies that have reported high efficacy 

levels (Sousa-Figueiredo et al. 2010; Wilson et al. 2013). There are several factors that have 

been suggested, which could have an influence on the praziquantel efficacy levels. This 

includes schistosome parasite related factors (Garba et al. 2013; Gower et al. 2013), host 

related factors (Stelma et al. 1995; Utzinger et al. 2000), and drug administration strategy 

related factors (Gryseels et al. 1987; Muhumuza et al. 2014) (Table 5.1). However, it is still 

not very clear which factors have a major influence on the cure rate. Therefore, I conducted 
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a meta-analysis of published praziquantel efficacy studies to identify the factors that 

influence the levels of efficacy of praziquantel treatment by taking into consideration 

differences in host characteristics and drug administration strategy.  

 

Table 5.1: Potential factors that have been reported to influence schistosome infection 

cure rate after praziquantel treatment. 

Influential factor Reference 

Schistosome parasite species (Garba et al. 2013) 

Pre-treatment infection intensity (Utzinger et al. 2000) 

Schistosome infection prevalence (Stothard et al. 2013) 

Age of participants (Van Lieshout et al. 1999) 

Praziquantel treatment dose (Gryseels et al. 1987) 

Snack provision with treatment (Muhumuza et al. 2014) 

Number of parasitological samples collected (Utzinger et al. 2001) 

Previous praziquantel treatment in the same area (Norton et al. 2010) 

 

5.1.1. Study objectives 

The objectives of this study were: 

1) to identify factors influencing the cure rate of praziquantel treatment; 

2) to investigate whether the cure rate of praziquantel treatment has been sustained 

over the period of study (treatment years 1979-2013). 
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5.2. Material and Methods 

5.2.1. Systematic review 

A systematic literature review was conducted to identify articles that reported the 

effectiveness of praziquantel in schistosomiasis endemic areas. An electronic literature 

search was conducted using Citation Index Expanded, Conference Proceedings Citation 

Index, BIOSIS Citation Index, and MEDLINE, all of which were provided through Web of 

Knowledge (www.webofknowledge.com). Alongside these, EMBASE (www.elsevier.com), 

OVID MEDICINE (www.ovid.com), and CAB abstract were searched simultaneously 

though OvidSP (ovidsp.tx.ovid.com). The search terms were chosen to be as inclusive as 

possible and were; “schistosom*” AND “praziquantel” AND (“treatment” OR “efficacy” OR 

“cure” OR “egg reduction rate” OR “chemotherapy”). This search was completed in 

November 2014. After duplicated articles were removed, a total of 4,558 potentially relevant 

articles were identified. The titles and abstracts were reviewed to exclude those articles that 

were clearly not related to efficacy levels for S. mansoni or S. haematobium infections in 

humans. Then the remaining 807 potentially relevant articles were reviewed by the full text. 

Non-English articles were included, and several Chinese, French, German, Italian, 

Portuguese, Russian, and Spanish articles were translated into English by native speakers of 

each language to be considered in this study. These translations were double checked using 

google translate (https://translate.google.co.uk/). In addition, Japanese articles were included 

and reviewed without translation. 
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A study was considered eligible if it met all of the following inclusion criteria:  

1) used human participants  

2) was based on  S. mansoni or S. haematobium infections 

3) had all participants treated with praziquantel 

4) reported the cure rate and/or schistosomiasis prevalence both before and after 

praziquantel treatment  

5) had the praziquantel treatment completed within a single day, which includes both 

single and two praziquantel treatments  

6) had the follow up study conducted within 90 days after treatment 

7) provided participants age that could be categorised as either child (0-19 years old) or 

adult (≥20 years old) 

8) reported the number of participants. 

 

Studies were excluded based on the following exclusion criteria:  

1) used non-human animal subjects 

2) were performed in vitro 

3) reported from less than 10 participants (e.g., a clinical case report) 

4) targeted acute schistosomiasis cases 

5) were studies based on  schistosome parasite species other than S. mansoni or S. 

haematobium 

6) were studies based on mixed schistosome parasite species infection 

7) were review article or meeting abstracts 
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8) had participants specially selected based on their being co-infected with other 

diseases such as HIV, malaria, or soil-transmitted helminths 

9) used different antihelminthic drug (e.g., oxamniquine) together with praziquantel 

10) reported cure rates not based on parasitological results (e.g., antibody levels) 

11) had specially selected participants who received any antihelminthic drug treatment 

prior to the praziquantel treatment 

12) had participants that were not originally from endemic areas (e.g., travellers, foreign 

military)  

13) had participants that were originally from endemic areas but had moved to 

non-endemic areas prior to the study (e.g., immigrants). 

 

Only studies that had participants that were currently living in and were originally from 

endemic areas were considered in the analyses. This was to reduce the heterogeneity of 

schistosomiasis infection history among participants. Articles often reported results from 

multiple separate groups of participants such as individuals from different villages, or in 

different age groups. In these cases, results from each group was recorded as an observation. 

A list of potential predictors (given in Table 5.2) was drawn up and information on these 

variables was extracted from each article. The potential predictors were selected based on 

their biological importance as suggested by previous studies (Stothard et al. 2013; Zwang et 

al. 2014). Pre-treatment infection intensity, which is quantified by the number of 

schistosome eggs in urine or stool samples, was initially considered as a potential predictor. 

However, pre-treatment infection intensity could not be used in the statistical analysis for a 
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number of reasons: 1) almost the half of studies included in this analysis failed to report 

pre-treatment infection intensity, 2) studies reported pre-treatment infection intensity using 

different metrics (arithmetic mean, geometric mean, median, range or category), which made 

it difficult to synthesize results, 3) preliminary univariate analysis on a subset of studies 

where pre-treatment infection intensity could be included indicated no statistically 

significant effect on cure rate.  

 

There were two articles (three observations) that did not report praziquantel treatment dose. 

In these cases, as all of them reported there was a single treatment, the WHO 

recommendation treatment dose (40 mg/kg body weight) was imputed based on the 

assumption that the study followed this recommendation (WHO 2002). This 40 mg/kg body 

weight praziquantel dose was also the most commonly used dose among these articles that 

reported the treatment dose. There were 49 articles (94 observations) that did not report 

treatment year. In these cases the average interval between praziquantel treatment provision 

and publication among articles which reported treatment year (i.e., two years) was used to 

estimate treatment year from publication year, and used for the analysis. Remaining potential 

predictors (schistosome parasite species, age of participants, time between treatment year 

and follow up, and country) were reported by all studies included in the analysis. 
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Table 5.2: List of potential predictors investigated and their units/ description. 

Variable name Units/ code 

Treatment dose Praziquantel dose in mg/kg body weight 

Schistosome parasite species 
S. mansoni,  

S. haematobium 

Age 
Child (0-19 years old), 

Adult (≥20 years old) 

Time between treatment and follow up 
Time between the praziquantel 

treatment and follow up in days 

Treatment year 
Year in which the subjects were treated 

with praziquantel 

Country 
Name of the country where study was 

conducted 

 

5.2.2. Statistical analysis (meta-regression models) 

Meta-regression with sequential sums of squares was applied to identify the influential 

predictors of cure rate. The models were built using the forward stepwise selection 

procedure with 6 potential predictors (Table 5.2). Briefly, the stepwise selection procedure is 

a process of building a model by adding or removing potential predictors based on the 

p-values of statistics (in this analysis, p-values of F statistics were used) (Kutner 2005). 

Multiple observations (up to 20) were sometimes reported from a single article and therefore 

article was included as a random effect in the models. Associations between variables were 

examined visually for all possible predictor combinations (data not shown). Although using 

the levels of precision of each study, such as a standard error of cure rate, for weighting is 
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the most common weighting method for meta-regression (Borenstein 2009), many studies in 

my dataset failed to report either confidence intervals, standard errors, or standard deviations 

of cure rate. Instead of imputing these missing values, the size of the studies (the number of 

participants for each observation) was used for weighting. 

 

Subgroup analysis was conducted to investigate the effect of treatment year and country on 

the cure rate. For this analysis, studies that used praziquantel treatment dose 40 mg/kg body 

weight were selected. These studies were grouped according to schistosome parasite species 

(S. mansoni or S. haematobium) and age group (children or adult) into four subgroups: 1) 

children with S. mansoni; 2) children with S. haematobium; 3) adults with S. mansoni; 4) 

adults with S. haematobium. For each subgroup, four independent meta-regression models 

were run using treatment year and country as predictors as follows: 

 

1) Cure rate = f(T) + Re + error 

2) Cure rate = f(C) + Re + error 

3) Cure rate = f(T + C) + Re + error 

4) Cure rate = f(T + C + T*C) + Re + error 

 

T: Treatment year 

C: Country 

Re: Random effect (article) 

 



  

110 

  

5.2.3. Statistical software 

Articles identified by the systematic review were recorded using Thomson Reuters EndNote 

and the extracted data were entered into a spreadsheet using Microsoft Excel 2010. B. 

Tummers, DataThief III. 2006 (http://datathief.org/) was used to extract data from published 

graphs. IBM SPSS Statistics Version 19.0 and Minitab. Inc. MINITAB 16 Statistical 

Software were used for the meta-regression analysis. GraphPad Software GraphPad Prism 

version 6.03 was used for graphical presentation. 
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5.3. Results 

5.3.1. Systematic review results 

A total of 224 observations were extracted from 107 articles published from 1981 to 2014 

that met all inclusion criteria and were included for the meta-analysis (articles are listed in 

Appendix D.1). The number of observations reported by a single article ranged from 1 to 20 

observations. Cure rates reported by these articles ranged from 16.4% to 100%, with overall 

average cure rate weighted by number of participants of each observation of 73.0% (SE of 

mean 11.6%) (Figure 5.1).  

 

 

Figure 5.1: The distribution of reported parasitological cure rates following praziquantel 

treatment.  
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The reported praziquantel dose ranged from 10 to 60 mg/kg body weight (panel A in Figure 

5.2). The majority of the studies (79%, 177 observations from 97 articles) reported the use of 

a treatment dose of 40 mg/kg body weight, that is, the current WHO recommendation 

treatment dose (WHO 2015). Although overall reported praziquantel treatment dose ranged 

10-60 mg/kg body weight, studies with S. mansoni, and studies of adults reported narrower 

treatment dose range (20-60 mg/kg body weight, 20-40 mg/kg body weight respectively). 

Reported cure rate ranged from 23% to 100% for S. haematobium infection, and from 16% 

to 100% S. mansoni infection (panel B in Figure 5.2). More number of studies were 

conducted with children, and their cure rate ranged from 16% to 100% (panel C in Figure 

5.2). Similarly, cure rate reported from adult participants ranged from 26% to 100% (panel C 

in Figure 5.2). The reported time between treatment and follow up ranged from 14 to 90 

days after praziquantel treatment. Forty-two days and 90 days were the most commonly used 

time interval between treatment and follow up (37 observations for each) (panel D in Figure 

5.2). Treatment year ranged from 1979 to 2013, reported cure rates over the years ranged 

from 16% to 100% (panel E in Figure 5.2). Schistosome infection cure rates after 

praziquantel treatment have been reported from 27 countries (panel F in Figure 5.2). There 

were multiple countries (Mozambique, Botswana, Togo and Yemen) where only one study 

published from, in these cases they were grouped into “others” for graphical expression and 

also for statistical analysis.  

 



  

113 

  

  

  

0 2 0 4 0 6 0

0

5 0

1 0 0

T r e a tm e n t  d o s e

m g /k g  b o d y  w e ig h t

C
u

r
e

 r
a

te
 (

%
)

A

S . m a n s o n i S . h a e m a to b iu m

0

5 0

1 0 0

S c h is to s o m e  p a ra s ite  s p e c ie s

C
u

r
e

 r
a

te
 (

%
)

B

C h ild A d u lt

0

5 0

1 0 0

A g e

C
u

r
e

 r
a

te
 (

%
)

C

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

0

5 0

1 0 0

          T im e  b e tw e e n  tre a tm e n t a n d  fo llo w  u p

D a y s

C
u

r
e

 r
a

te
 (

%
)

D



  

114 

  

Figure 5.2: Scatter graph of the reported cure rates by predictors. Data points represent the 

reported cure rate for each observation. A: cure rate by the praziquantel treatment dose over 

the range 10-60 mg/kg body, B: cure rate by schistosome parasite species (S. mansoni, S. 

haematobium), C: cure rate by age category (children: 0-19 years old, adult ≥20 years old), 

D: cure rate by time after treatment (days), E: cure rate by treatment years from 1979 to 

2013, F: cure rate by country. Bars in panel B and C represent the mean and SD. Where only 

a single study result was reported from a country, the study result was categorized into 

“others” group in graph in panel F.  
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The low cure rate (<50%) of schistosome infection after praziquantel treatment have been 

reported from different studies in different countries, both for S. mansoni and S. 

haematobium infections among from both children and adult participants (Table 5.3).  
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Table 5.3: Studies reported low (<50%) cure rates after praziquantel treatment. Child: 

0-19 years old; Adult: ≥20 years old; S.m=S. mansoni; S.h=S. haematobium. Study names in 

the table were organized by the name of the author followed by the year of publication. In 

cases where the same author published multiple articles in the same year, references were 

distinguished by adding a letter after the first author’s name and the year of publication. 

*Total praziquantel dose (mg/kg body weight) used for the treatment. 

Reference Country Age 
Parasite 

Species 

Praziquantel 

dose* 

Cure 

rate (%) 

Oyediran et al. 1981 Nigeria Child S.h 30-40 31 

Schutte et al. 1983 South Africa Child S.h 40 37 

Wilkins et al. 1987 (a) Gambia Child S.h 40 38 

Wilkins et al. 1987 (b) Gambia Child S.h 10-20 26-49 

Polderman et al. 1988 Congo Child S.m 40 47 

Jonge et al. 1990 Sudan Child S.h 40 23 

Abu-Elyazeed et al. 1993 Egypt Adult S.m 40 26-38 

Metwally et al. 1995 Egypt Child S.m 20 25-29 

Guisse et al. 1997 Senegal Child S.m 40-60 36-49 

Abu-Elyazeed et al. 1998 Egypt Adult S.h 40 33 

Olds et al. 1999 Kenya Child S.m 40 48 

Clercq et al. 2000 Senegal Child S.h 40 26 

Clercq et al. 2002 Senegal Child S.h 40 30 

Kabatereine et al. 2003 Uganda 
Child/ 

Adult 
S.m 40 16-42 

Sacko et al. 2009 Mali Child S.h 40 36-49 

Guidi et al. 2010 Tanzania Child S.h 40 46 

Webster et al. 2013 Senegal Child S.h 40 47 

Keiser et al. 2014 
Cote 

D'Ivoire 
Child S.h 40 33 

Wilson et al. 2014 Kenya Child S.h 40 47 
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5.3.2. Meta-regression results 

Of the six potential predictors (Table 5.2), three were found to have a significant effect 

(p<0.05) on the response cure rate using forward stepwise selection: the treatment dose [F(1, 

207) =7.610, p=0.006], the schistosome parasite species [F(1, 132) =4.855, p=0.029], and 

the age category [F(1, 210) =3.982, p=0.047] (Table 5.4).  

 

Table 5.4: Results from meta-regression multivariable analyses. Table shows F-values, 

degrees of freedoms (in parenthesis), and p-values from meta-regression using sequential 

sums of squares. 

Name   Range F-value (df) p-value 

Treatment dose   10-60 mg/kg body weight 7.610 (1, 207) 0.006 

Schistosome parasite 

species 

  S. mansoni vs. 

  S. haematobium 
4.855 (1, 132) 0.029 

Age 
  Child (0-19 years old) vs. 

  Adult (≥ 20 years old) 
3.982 (1, 210) 0.047 

 

The model results indicated a positive relationship between praziquantel treatment dose and 

cure rate [F(1, 207) =7.610, p=0.006, coefficient=0.541, SE of coefficient=0.196]. The 

model results suggested a higher cure rate for S. mansoni infection than S. haematobium 

infection, and a higher cure rate in adults than children. The fitted line demonstrates that the 

cure rate increased from 53% to 80% over the reported praziquantel treatment dose (10-60 

mg/kg body weight) in children with S. haematobium infection (black dashed line in Figure 
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5.3). The fitted lines also show the estimated cure rate with current WHO recommended 

dose (40 mg/kg body weight) ranged from 69% to 83% depend on schistosome parasite 

species and age category (individual lines in Figure 5.3). 

 

 

Figure 5.3: A fitted line graph of the effect of praziquantel treatment dose on cure rate. Data 

points indicate reported cure rate for each observation. Fitted lines for each age and 

schistosome parasite species combinations over the range 10-60 mg/kg body weight: adult 

with S. haematobium (grey dashed line); adult with S. mansoni (grey solid line); child with S. 

haematobium (black dashed line); and child with S. mansoni infection (black solid line). 
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meta-regression model with the three significant predictors: treatment dose, schistosome 
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parasite species, and age category (Table 5.4). The subgroup analysis results also suggested 

negligible effects of treatment year and country on cure rate (Table 5.5). However, when the 

interaction between treatment year and country was included in the model, both country and 

interaction between treatment year and country were significant for children infected with S. 

haematobium (Table 5.5). The treatment years reported from each country have a high 

heterogeneity both in range and frequency (Appendix D.4).  
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5.4. Discussion 

I conducted a meta-analysis of praziquantel efficacy levels using published articles to 

identify predictors that have any influence on cure rate, as well as to detect any decrease in 

praziquantel efficacy levels over the 35 year reporting period. Praziquantel has been used as 

a drug of choice against schistosome infection over the past three decades in many endemic 

areas (WHO 2015). Although, there is no convincing evidence of the development of 

parasite resistance against treatment (Botros et al. 2005; Othman et al. 2015), low cure rates 

have been reported from different countries over the years. The results from this study are 

important to detect the parasites’ possible resistance. In addition, the results also indicate that 

there is potential for an alternative praziquantel treatment dose, which could achieve better 

cure rates in endemic areas where low efficacy levels have been reported using the current 

standard dose (40 mg/kg body weight). The analyses revealed that there was considerable 

variability in schistosome infection cure rates after praziquantel treatment over treatment 

years from 1979 to 2013. Although low cure rates (<50%) have been reported from different 

African countries over the years (Table 5.3), high cure rates (>90%) have also constantly 

been reported from the same countries (panel E in Figure 5.2). Statistical analysis suggests 

that overall there is no significant treatment year effect on cure rates. This result indicates 

that there was no detectable cure rate reduction over the reporting period. Thus, there is no 

evidence that schistosome parasites have acquired resistance against praziquantel treatment, 

suggesting that the praziquantel treatment is still effective against schistosome infection. 
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Furthermore, subgroup analyses using studies within the selected countries (i.e., Egypt, 

Kenya, Nigeria, Uganda or Zimbabwe) also did not detect any significant decrease of cure 

rates over reported treatment years. These results again suggest that praziquantel treatment 

still maintained its effectiveness for schistosome infection. Nevertheless, there is still a risk 

of missing the parasites acquiring resistance against praziquantel treatment within each 

country. This is because, although studies within the same country were selected for 

subgroup analyses, the majority of these studies were conducted in the different study areas 

(e.g., different villages). Schistosomiasis transmission is known to be localized in endemic 

areas as transmission is regulated by the distribution of intermediate fresh water snail hosts. 

Therefore, disease transmission could vary even within a given endemic area depending on 

the natural water sources that people use for their daily lives (Clennon et al. 2006; Rudge et 

al. 2008). A heavy schistosomiasis burden, which can be indicated by high infection 

prevalence, has been reported to reduce praziquantel cure rates (Stothard et al. 2013). 

Nevertheless, in my analyses, it was impossible to distinguish between the influence of 

treatment year and study area on cure rates within each country due to high heterogeneity of 

study areas. Long term cohort studies of areas undergoing mass drug administration 

programmes are therefore important for detecting any reduction of praziquantel efficacy 

levels. 

 

The influence of neither treatment year nor country on cure rates were significant in the 

main analysis. Nevertheless, the subgroup analyses using data of S. haematobium infection 

among children suggest the significant influence of both country and the interaction between 
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treatment year and country on cure rates. These results might suggest that the effect of 

treatment year on cure rates is different depending on the country where a study is conducted 

(Appendix D.5). In addition, the results also might suggest that cure rates of S. haematobium 

infection among children varies among different countries. However, extra care must be 

taken when interpreting these results, because the majority of these studies were conducted 

in different study areas within each country. As discussed above, it is difficult to distinguish 

the effect of treatment year and study area on cure rates. Furthermore, there were only small 

number of studies (1-10 observations) reported from each country, which might affect the 

statistical analyses results (Appendix D.5).  

 

There were a number of studies that reported low schistosome infection cure rates (<50%) 

after praziquantel treatment (Table 5.3). Some of these studies also discussed possible 

biological reasons for the causes of these low cure rates. For example, multiple studies 

mentioned the possible influence of higher pre-treatment infection intensity on lower cure 

rates (Polderman et al. 1988; Guisse et al. 1997; Sacko et al. 2009; Keiser et al. 2014). This 

is partially because of contamination of dead eggs in the post-treatment parasitological 

samples, which reduces recorded cure rates (Polderman et al. 1988; Sacko et al. 2009; Guidi 

et al. 2010; Webster et al. 2013; Keiser et al. 2014), as it is difficult to differentiate live eggs 

from dead ones through parasitological diagnostic procedures (Polderman et al. 1988; Keiser 

et al. 2014). Thus, although Guidi et al. (2010) reported low cure rates after praziquantel 

treatment (46%), they also reported that the almost all eggs (>95%) detected in the 

post-treatment samples were dead (Guidi et al. 2010). Other studies concluded that 
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praziquantel treatment was still effective despite low cure rates, because of their high egg 

reduction rates after the treatment (Schutte et al. 1983; Jonge et al. 1990; Webster et al. 

2013). Since praziquantel treatment is only effective for adult schistosome worms and has 

little or no effect on immature worms (Xiao et al. 2009), there is a possibility of participants 

being categorized as non-cured even after a successful praziquantel treatment, if participants 

were infected with immature worms. In high transmission areas, people could acquire 

schistosome infection just before or after praziquantel treatment, and eggs from these 

infections could be detected during the follow-up study. In these cases, a potential existence 

of live eggs in the post-treatment parasitological samples can happen even if praziquantel 

treatment had cleared all infected adult worms. One possible way to minimize dead eggs 

contaminations to estimate better cure rates is using the optimal interval between 

praziquantel treatment and parasitological follow up. Webster et al. (2013) suggested that the 

optimal interval between treatment and follow up to estimate cure rates among high 

pre-treatment infection intensity groups could be longer than three weeks after the treatment 

to minimize the contamination of dead eggs (Webster et al. 2013). On the other hand, 

Scherrer et al. (2009) reported the highest cure rates were estimated at 15-20 days after 

treatment compared to any shorter or longer (21-44 days) intervals between treatment and 

follow up (Scherrer et al. 2009). Although the main analysis did not demonstrate a 

significant influence of time between praziquantel treatment and follow up on cure rates 

within reported follow up days (14-90 days), longer follow up time could cause inaccurate 

cure rates due to re-infection after treatment. These studies suggest that low cure rates could 

be reported after praziquantel treatment if participants were infected with immature worms 
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and/or follow-up parasitological samples were contaminated with dead eggs. Measuring egg 

reduction rates together with cure rates could be advantageous for the better understanding 

of the impact of praziquantel treatment on schistosomiasis burden, especially in high 

transmission areas. Additionally, there could be a potential benefit in investigating 

schistosome egg viability when estimating the true praziquantel treatment effects, especially 

among high pre-treatment infection intensity participants. 

 

Although multiple epidemiological studies have reported low cure rates (<50%) after 

praziquantel treatment and associated it with high pre-treatment infection intensity 

(Polderman et al. 1988; Guisse et al. 1997; Sacko et al. 2009; Keiser et al. 2014), I could not 

include pre-treatment infection intensity for statistical analysis in the current study. This was 

mainly because only a limited number of studies reported pre-treatment infection intensity. 

Furthermore, the preliminary univariate analysis using pre-treatment infection intensity as 

ordinal categorical variable (heavy/moderate/light) showed that the influence of 

pre-treatment infection intensity on cure rate was not statistically significant. To maximize 

the number of studies to be included in the main analysis pre-treatment infection intensity 

was not considered further.  

 

My results suggest that praziquantel dose has a positive effect on the cure rates within the 

range of the reported treatment doses of 10-60 mg/kg body weight. Supporting this result, 

Taylor et al. previously reported a similar increase of cure rates with an increase in the 

praziquantel doses over 10-40 mg/kg body weight both for both for S. mansoni and S. 
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haematobium infection (Taylor et al. 1988). My results might suggest that a higher 

praziquantel dose than the current recommendation (40 mg/kg body weight) could 

potentially improve the cure rates. However, the absence of studies for adults with elevated 

praziquantel dose (>40 mg/kg body weight) made it difficult to estimate the effect of a 

higher dose in adults. In addition, the risk of having adverse events after praziquantel 

treatment has been reported to be higher in elevated doses (>40 mg/kg body weight) (Olliaro 

et al. 2011). On the other hand, no difference in the risk of adverse events have been 

reported between 40 mg/kg body weight and any lower treatment dose (Zwang et al. 2014). 

Severe adverse events can potentially make it difficult to re-recruit children after the initial 

treatment in high-prevalence areas (≥50% of individuals infected), where yearly treatment of 

school children is recommended (WHO 2002; Utzinger et al. 2009). Nevertheless, it might 

be worth considering using elevated praziquantel dose especially in schistosomiasis endemic 

areas with low praziquantel efficacy levels to achieve better cure rates (Garba et al. 2001; 

Sacko et al. 2009). However, when using a higher than recommended dose, extra care must 

be taken to minimize the occurrence of adverse events, and thus to ensure compliance in 

regular MDA. 

 

In this analysis, studies that conducted the praziquantel treatment within a single day, which 

include both single and multiple praziquantel treatments, were selected. This was due to the 

high heterogeneity in the number of treatments and the days between the treatments among 

studies conducted multiple treatments over different days. Among the excluded studies, 

Tchuem et al. (Tchuem et al. 2013) reported high cure rate (>95% for S. mansoni infection, 
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>80% for S. haematobium infection) after praziquantel treatment using a total dose of 80 

mg/kg body weight, which was administrated in two treatments in 3 weeks interval. 

Similarly, N’Goran et al. (N'Goran et al. 2003) reported high S. haematobium infection cure 

rates (>90%) after the two oral doses of praziquantel (each of 40mg/kg body weight) 4 

weeks apart. Furthermore, the same study reported that significantly lower adverse events 

occurred after the 2nd praziquantel treatment in comparison to the 1st treatment (N'Goran et al. 

2003). These reports together with my results suggest that using a higher praziquantel dose 

could improve the schistosome infection cure rates. In addition, should a higher praziquantel 

dose be used, it is worth considering dividing the treatment doses over different days in 

order to minimize the adverse events. Further studies are required to estimate the optimal 

time interval between these proposed treatments. 

 

My results suggest a significantly higher cure rate in adults (≥20 years old) than in children 

(0-19 years old). In a previous meta-analysis, Stothard et al. (Stothard et al. 2013) have 

reported that there was a negligible difference between pre-school children and school aged 

children in their cure rate levels, suggesting that the effect of host age on praziquantel 

efficacy levels takes time to become detectable. The effectiveness of praziquantel has been 

reported to depend on host immune mechanisms that kill adult worms when praziquantel 

damages parasites’ tegument to expose hidden antigens (Sabah et al. 1985). In addition, 

enhanced cure rates have been reported in experimental mice with high levels of 

schistosome parasite specific antibodies (Doenhoff et al. 1987; Fallon et al. 1992). 

Schistosome specific protective immunity is known to slowly develop with age in endemic 
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areas: this immunity reduces the infection intensity among adults, and could thus also 

improve the praziquantel treatment efficacy levels (Woolhouse et al. 1999; Mitchell et al. 

2011). The difference in cure rate between these two age groups could be partially due to the 

immunological differences between adult and children.  

 

Regardless of the immunological differences between adults and children, there is still a 

possibility that the age category is an indicator of pre-treatment infection intensity. Although 

an effect of pre-treatment infection intensity on praziquantel efficacy levels has been 

reported (Utzinger et al. 2000; Stothard et al. 2013), I could not take this into account in my 

analysis due to the high heterogeneity of populations that were represented by the study 

participants. For example, there are some studies that targeted all inhabitants of the study 

area (e.g., village, region) (Kabatereine et al. 2003; Muhumuza et al. 2014), whereas other 

studies targeted participants from high risk populations only (e.g., canal cleaners) (Satti et al. 

1996; Black et al. 2009). Although these populations’ characteristics have a potential to 

influence cure rates, there was not enough information about them. Both schistosome 

infection intensity and prevalence are known to peak among children in schistosomiasis 

endemic areas (Wilkins et al. 1984; Fulford et al. 1992), and age could be a confounder of 

the pre-treatment infection intensity. Further epidemiological and immunological studies are 

required to clarify whether the age effect on the cure rate is an artefact of these potential 

confounding factors, or is representing immunological difference between children and 

adults.  
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A number of epidemiological studies have been conducted in areas where both S. mansoni 

and S. haematobium infections are endemic. However, these studies have not demonstrated a 

consistent trend of different cure rate for schistosome parasite species (S. mansoni or S. 

haematobium). For example, of the two species, a better cure rate was reported for S. 

haematobium infection in Niger (Garba et al. 2013), whereas a better cure rate for S. 

mansoni infection was reported in Cameroon and in Senegal (Tchuente et al. 2013; Knowles 

et al. 2015). My results suggest that praziquantel treatment leads to higher cure rates in S. 

mansoni than in S. haematobium infection. Supporting this result, a meta-analysis conducted 

by Stothard et al. (Stothard et al. 2013) using studies on African children reported higher 

cure rate of S. mansoni infection than S. haematobium. The biological mechanism behind 

this difference between S. mansoni and S. haematobium is still not clear. Although calcium 

ion channels of schistosome parasites have been suggested as the molecular target of 

praziquantel, the mechanism of the action of praziquantel is not yet fully understood 

(Pica-Mattoccia et al. 2008). Therefore, the mechanism that could induce the difference in 

the levels of susceptibility among different schistosome parasite species is unknown. This 

difference might be caused by genetic and/or molecular level difference between S. mansoni 

and S. haematobium (Valentim et al. 2013). Another possibility is the different distributions 

of S. mansoni and S. haematobium in human body, as S. mansoni is mainly found in the 

superior mesenteric veins draining the large intestine whereas S. haematobium is found in 

the venous plexus of bladder (CDC 2016). These differences in the areas of infection in the 

human body might affect the levels of exposure to praziquantel. Understanding differences 

in praziquantel efficacy by species is important to adjust mass praziquantel administrative 
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programmes according to which schistosome parasite species is endemic in the targeting 

areas. There is still a need for more in vitro and animal studies of the mechanisms that cause 

the susceptibility difference between S. mansoni and S. haematobium.   

 

There are multiple studies that have reported a limited sensitivity of current standard 

parasitological diagnostic methods for both S. mansoni and S. haematobium infection (Kat 

Katz, and urine filtration respectively), in particular, for participants with low infection 

intensity (Degarege et al. 2014; Knopp et al. 2015; Olliaro et al. 2015; Siqueira et al. 2015). 

This could influence the estimated cure rate difference found between S. mansoni and S. 

haematobium infection, as parasite eggs could be more easily detected in urine samples than 

faeces samples after praziquantel treatment (panel A and B in Appendix D.3). In addition, as 

a single schistosome egg in parasitological samples makes a difference between cured and 

non-cured participants, low sensitivity of diagnostic methods can easily cause the false 

negative cases that inflate reported cure rates. Therefore, although parasitological cure rates 

have been commonly used to evaluate the praziquantel efficacy levels (Stothard et al. 2013; 

Olliaro et al. 2015), WHO have recently recommended the use of egg reduction rate (the 

comparison of pre- and post- praziquantel treatment infection intensity expressed by the 

parasite egg counts) as a primary outcome measure to assess the praziquantel efficacy levels 

(WHO 2013). Furthermore, the primary aim of MDA programmes has been to reduce 

morbidity due to schistosomiasis in endemic areas (Lelo et al. 2014). Therefore, praziquantel 

may still be highly effective in MDA programmes when it can yield high egg reduction rate 
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even if it is not a complete cure. Further meta-analysis study with egg reduction rate could 

increase our understanding about praziquantel efficacy levels dynamics over reported years.  

 

There are multiple factors that could not be included in the current study regardless of their 

potential influence on schistosome infection cure rate. For example, the source and 

manufacturer of praziquantel could be a confounder of other predictors. This is because 

variation in the praziquantel quality has been reported after the praziquantel patent expired, 

in particular as some fake praziquantel has been identified from different countries 

(Sulaiman et al. 2001). Studies that reported low cure rates might have used low-quality 

praziquantel; however, this could not be confirmed as majority of studies did not report the 

origin of praziquantel. The other example is providing supplemental snack or drink prior to 

praziquantel treatment, as this has been reported to improve the praziquantel efficacy levels 

(Muhumuza et al. 2014). There were multiple studies that reported providing a snack and/or 

juice before the praziquantel treatment (Groning et al. 1985; Simonsen et al. 1990; Berhe et 

al. 1999; Midzi et al. 2008; Sousa-Figueiredo et al. 2010; Mitchell et al. 2011; Olliaro et al. 

2011; Navaratnam et al. 2012; Sousa-Figueiredo et al. 2012; Muhumuza et al. 2014), or 

alternatively, treated participants after their breakfast, lunch or dinner (Burchard et al. 1984; 

Farid et al. 1984; Kern et al. 1984). However, this could not be taken into account in the 

analyses as the majority of the studies did not report supplemental feeding status. It is 

important to develop a definitive guideline about how to report results of epidemiological 

studies about praziquantel efficacy levels, especially about factors which have been reported 

to influence cure rates.  
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There was no significant effect of treatment year on cure rate, which suggests a stable 

schistosome infection cure rate with praziquantel over the reported treatment years from 

1979 to 2013. The results of this study also demonstrated that cure rates could partially 

depend on praziquantel treatment dose, schistosome parasite species (S. mansoni or S. 

haematobium), and age category (child or adult). Results also indicated that current WHO 

recommended treatment dose (40 mg/kg body weight) can achieve a cure rate in the range 

69% to 83 % depending on schistosome parasite species and age group of participants. 

Although there was no clear evidence of schistosome parasites developing resistant and/or 

tolerance against praziquantel treatment, the regular monitoring of cure rate is essential for 

sustainable use of praziquantel, especially in the countries that have been using praziquantel 

for a long time (such as Egypt and Kenya). Similarly, areas which are currently undergoing 

MDA (Tuhebwe et al. 2015) are in need of close monitoring to detect any susceptibility 

levels change of schistosome parasite for praziquantel treatment. Close monitoring and 

possible adjustment of control programmes according to the cure rates would enable us to 

continue sustainable use of praziquantel for schistosomiasis treatment and control.  
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Chapter 6: General discussion 
 

 

6.1. Introduction 

Schistosomiasis remains a major public health problem, especially in sub-Saharan African 

countries (WHO 2015). Current control efforts are mainly focused on mass administration of 

the antihelminthic drug praziquantel, aiming to reduce prevalence, infection intensity and 

morbidity of schistosomiasis in endemic areas (WHO 2015). Closely monitoring 

praziquantel efficacy levels is important as it is the only drug that can treat all three major 

schistosome parasite species infecting humans: S. mansoni, S. haematobium, and S. 

japonicum. In addition, a better understanding of the impact of praziquantel treatment on 

host schistosome specific immunity will be advantageous in further understanding host 

immune mechanisms, as well as helping to estimate the impact of mass drug administrations 

(MDAs) on the development of protective immunity against re-infection. 

 

Although extensive efforts have been made towards developing vaccines against 

schistosomiasis, there are still no vaccines licensed for human use. To date, there are only 

two candidate vaccines which are now in clinical trials: the 28 kDa S. haematobium GST 

(Sh28GST, Brand name: Bilhvax) which is in phase 3 clinical trials (Mountford et al. 2005; 

ClinicalTrials.gov 2012; Riveau et al. 2012), and 14KDa fatty acid-binding protein from S. 

mansoni (rSM14) which is in phase 2 clinical trials (Santini-Oliveira et al. 2016). Alongside 
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these subunit vaccine candidates, attenuated live-schistosome parasite vaccines have been 

studied extensively in animal models.  

 

This thesis has four main objectives as presented in the Introduction: Chapters 2 and 3 relate 

to attenuated schistosome vaccines, Chapters 4 and 5 to praziquantel treatment. In this thesis, 

influential predictors of the efficacy levels of attenuated S. mansoni vaccine in murine 

models were identified (Chapter 2). Furthermore, the analyses using data for different 

animal hosts (rat and baboon) and different parasite species (S. mansoni, S. haematobium, S. 

japonicum, and S. bovis) quantified the effect of host and parasite species on attenuated 

schistosome parasite vaccine efficacy levels (Chapter 3). Using meta-regression models, 

predictors associated with praziquantel treatment efficacy were identified (Chapter 5). 

Classification and Regression Tree models were also applied to explore the predictors which 

have an influence on whether schistosome parasite specific antibody isotype levels increase 

or decrease after praziquantel treatment (Chapter 4).  

 

In this discussion chapter, the key findings from this thesis are summarized and discussed 

alongside some possible implications for schistosomiasis control programmes. The strengths 

and limitations of methods used in this thesis are discussed, and suggestions for further 

research are provided before drawing some final conclusions. 

 

6.2. Key findings and their implications 
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Currently, the majority of schistosomiasis vaccine development studies rely on recombinant 

technology to produce vaccines which contain only those antigens of parasites that are 

considered to stimulate host protective immunity against infection most effectively (de Veer 

et al. 2011). To date, there are two promising recombinant schistosomiasis vaccine 

candidates which are currently undergoing clinical trials (Sh28GST and rSM14). There are 

no ongoing clinical trials using attenuated schistosome parasite vaccine candidates, despite 

their high efficacy levels in animal studies (Chapter 2 and 3). Furthermore, multiple review 

articles have questioned the feasibility of attenuated parasite vaccines for human use (Waine 

et al. 1997; Hewitson et al. 2005; McManus 2005; El Ridi et al. 2015). This is in part 

because attenuated parasite vaccines have a complex composition, some of which may cause 

unwanted side-effects of vaccination (Soler et al. 2007). Thus, the number of articles 

published on attenuated schistosome parasite vaccines has dramatically reduced in recent 

years (Fukushige et al. 2015). In contrast, there is one attenuated malaria vaccine 

undergoing clinical trials. The PfSPZ vaccine, which is an attenuated Plasmodium 

falciparum sporozoite vaccine, reported as having high efficacy levels in animal models, has 

completed its phase 1 clinical trials and is now undergoing phase 2 clinical trials (Seder et al. 

2013; WHO 2016). Alongside the PfSPZ vaccine, a recent study reported that a genetically 

attenuated P. falciparum sporozoite vaccine has high protective effect in the murine model 

(Van Schaijk et al. 2014).  

 

In addition to the above, there are a number of malaria vaccine candidates. One of the most 

promising current malaria vaccine candidate is a recombinant protein vaccine that targets the 
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circumsporozoite protein of P. falciparum (RTS,S/AS01 also known as Mosquirix) which 

has completed its phase 3 clinical trials  (Tinto et al. 2015). Mosquirix has now been 

reviewed by the European Medicines Agency (EMA) and the WHO for use in malaria 

endemic areas (Morrison 2015). This would not only be the first licensed malaria vaccine, 

but also the first licensed vaccine for human use for any parasitic disease. Besides 

RTS,S/AS01, there are a number of recombinant malaria vaccine candidates undergoing 

pre-clinical or clinical trials (WHO 2016). Currently, the majority of schistosomiasis and 

malaria vaccine development studies use recombinant techniques rather than attenuated 

parasite techniques (WHO 2016), as there are multiple advantages of recombinant vaccines. 

For example, once efficient antigens and adjuvants for vaccination are identified, 

recombinant vaccine can be produced in sufficient quantity at a low cost (Canales et al. 

1997; Soler et al. 2007; Reed et al. 2013).  

 

Nevertheless, attenuated schistosome parasite vaccines also have potential advantages over 

recombinant vaccines. The analyses showed that the optimally prepared irradiated S. 

mansoni cercariae vaccine could produce a protection as high as 79% against challenge 

infection in mice (Chapter 2). This result indicates the high potential efficacy of attenuated 

schistosome parasite vaccines, in contrast to recombinant vaccine candidates, which have 

failed to achieve consistent protection above 40% in mice (Bergquist et al. 1998; Mountford 

et al. 2005; Wilson et al. 2006). The analyses also showed the schistosome parasite species 

specificity of attenuated schistosome parasite vaccines (Figure 3.3 in Chapter 3). Thus, these 

vaccines are likely to be more effective against homologous species infection than 



  

137 

  

heterologous species infection. This result suggests that different vaccines might have to be 

developed according to prevalent schistosome species, to achieve better protection. 

Nevertheless, once we develop an effective attenuated schistosome parasite vaccine in a 

single schistosome species, we could potentially apply the same techniques for other 

schistosome parasites species. In addition, one study has reported the strain specificity of 

attenuated cercariae vaccine. Moloney et al. (1985) reported that an attenuated Chinese 

mainland S. japonicum cercariae vaccine was protective against homologous strains 

challenge, but was not protective against challenge infection with different S. japonicum 

strains (Moloney et al. 1985). Unlike recombinant vaccines, attenuated schistosome parasite 

vaccines could be prepared using parasite strains endemic to the target area, which might be 

able to achieve better protection.  

 

Findings from attenuated schistosome parasite vaccine studies would improve our 

understanding of human immunity against schistosomiasis, which could be useful for further 

vaccine development. In Chapter 2, the negative influence of irradiation dose effect on 

protection levels suggests that for high protection, the host might have to be exposed to the 

different antigens from the different parasite life stages. This finding suggests that for 

recombinant schistosomiasis vaccine development, a mixture of antigens that are unique to 

different parasite life stages, might be able to achieve better protection levels than the 

antigens from a single life stage. Supporting this suggestion, schistosome worm antigens 

have been reported to be essential for the development of naturally acquired immunity 

among people in endemic areas, who are thought to be exposed to schistosome 



  

138 

  

eggs/cercariae/schistosomula antigens though natural infections (Mitchell et al. 2012). These 

findings further suggest that the antigen combinations for effective immunization might be 

different among naïve populations that have no previous contact with schistosome parasites, 

and people in the endemic areas who have been exposed to parasite antigens through their 

infection and treatment. 

  

Among the three major human schistosome species, S. japonicum is known for its broad host 

range (Loker 1983; Riley et al. 2008). Domestic livestock such as water buffaloes, pigs, and 

sheep have been considered as major reservoir hosts of S. japonicum transmission (Riley et 

al. 2008; Gray et al. 2009). Therefore, schistosomiasis transmission blocking veterinary 

vaccine development against S. japonicum infection has mainly been studied in China where 

S. japonicum infection is endemic (Taylor et al. 1998; Shi et al. 2002). Among these vaccine 

candidates, an attenuated S. japonicum cercarial vaccine has been reported as offering high 

protection in the major transmission reservoirs, water buffaloes (Shi et al. 1990), and pigs 

(Shi et al. 1993; Bickle et al. 2001; Lin et al. 2011) in field conditions. Vaccinating domestic 

livestock could reduce the S. japonicum transmission burden in endemic areas. Furthermore, 

if successful, a veterinary vaccine could provide a paradigm for attenuated schistosome 

vaccine development for human use.  

 

Considering the fact that there are no licensed schistosomiasis vaccines to date, it would be 

better not to restrict the approaches and techniques of vaccine development. It may be worth 

considering further development of attenuated schistosome parasite vaccines, with the 
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ultimate aim being their use in humans. Using diverse approaches in vaccine development, 

which include both recombinant vaccines and attenuated schistosome parasite vaccines, 

could enable us to identify an effective vaccine against schistosomiasis.  

 

Schistosomiasis is mainly endemic in remote areas of developing countries where 

infrastructure is poor. Therefore, a good vaccine for schistosomiasis must have some 

characteristics that are necessary to provide vaccines for people in such areas. In general, the 

effective vaccine of any disease must be able to induce high protection against infection with 

minimal side effects. In addition, a good schistosomiasis vaccine must be affordably priced, 

be biologically stable at room temperature, and be easy to administrator (Loker et al. 2015). 

Furthermore, a vaccine must be suitable for young children who carry the heaviest disease 

burden in endemic areas (Fulford et al. 1992; Mutapi et al. 2006; Colley et al. 2014). 

Immunogenic antigen identification is fundamental, but there will be many hurdles to 

overcome after that before a schistosomiasis vaccine can be made available to the people 

who need it the most.  

 

Since there are no schistosomiasis vaccines to date, the major control strategy that has been 

used over the past three decades is the mass administration of praziquantel in disease 

endemic areas (Gönnert et al. 1977; WHO 2015). This efficacious, low-cost drug has 

achieved a significant reduction in schistosomiasis burden in many endemic areas (Midzi et 

al. 2008; Evans et al. 2011; Liu et al. 2011; WHO 2015). Since praziquantel is currently the 

drug of choice for treatment and control of schistosomiasis (WHO 2015), the monitoring of 
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its efficacy levels is essential for sustainable disease control. In Chapter 5, results of the 

most comprehensive meta-analysis of praziquantel cure rate levels of S. mansoni and S. 

haematobium treatment to date are presented. Although there have been multiple studies 

reporting low cure rates after praziquantel treatment (Table 5.3 in Chapter 5), there was no 

significant reduction in cure rates over the reported years (praziquantel treatment years 

between 1979 to 2013). These analyses suggest that praziquantel is still effective against 

schistosome infections. The current WHO recommended praziquantel dose (40 mg/kg body 

weight) demonstrates that its estimated cure rate range of 69-83% depends on schistosome 

parasite species (S. mansoni vs. S. haematobium) and age group (children: 0-19 years old vs. 

adults: 20 years old or older) of participants. Despite the concerns about possible 

schistosome resistance to praziquantel, the analyses confirmed that praziquantel remains 

effective in the treatment of schistosomiasis.  

 

Until recently, infants and preschool-age children (aged 5 years and below) have been 

excluded from praziquantel treatment. However, multiple studies have reported that 

praziquantel is safe and efficacious in infants and preschool-age children (Mutapi et al. 

2011; Coulibaly et al. 2012; Stothard et al. 2013). In 2010, the WHO recommended that 

praziquantel be provided to infants and preschool-age children through regular health 

services (WHO 2011). Although infants and preschool-age children are still being excluded 

from schistosomiasis MDA programmes, this change in policy could make it possible to 

extend MDA to this part of the population in the future. In a meta-analysis, Stothard et al. 

(2013) reported that praziquantel cure rate levels among African preschool-age children 
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were comparable to those for school aged children (Stothard et al. 2013). However, further 

investigations are still needed to clarify the age effect on cure rates as the number of articles 

published for infants and preschool-age children is still limited (Stothard et al. 2013). My 

analyses indicated that there is an influence of age on cure rates after praziquantel treatment: 

adults (≥20 years old) showed higher cure rates than children (0-19 years old). More data are 

needed to confirm and quantify this effect. The close monitoring of praziquantel efficacy 

levels is essential for sustainable schistosomiasis control, especially if the targeted 

population is to be expanded to include preschool-age children. 

 

In schistosomiasis endemic areas, it has been reported that infection intensity in older age 

groups is lower, partially due to naturally acquired protective immunity against re-infection 

(Woolhouse et al. 1999; Mitchell et al. 2011). One reason why this immunity takes time to 

develop is thought to be the long life span of the schistosome parasite which is capable of 

evading host immunity (Harris et al. 1984; Walter et al. 2006). While antigens from 

schistosome adult worms have been reported to be essential for the development of naturally 

acquired protective immunity among people in endemic areas, they only become accessible 

to the host immune system when the worms die (Harnett et al. 1986; Mutapi et al. 2005; 

Doenhoff et al. 2008). Consequently, praziquantel treatment for schistosome infection has 

been reported to enhance host protective immunity by exposing them to the parasite’s hidden 

antigens (Harnett et al. 1986; Mutapi et al. 2005; Doenhoff et al. 2008). Supporting these 

reports, my results suggest that praziquantel treatment could increase the levels of 

anti-WWA IgA and IgE, both of which have been reported to be associated with resistance to 



  

142 

  

re-infection (Rihet et al. 1991; Vereecken et al. 2007), in the majority of populations 

(Chapter 4). 

 

However, Chapter 4 also showed that there was a considerable variability in whether 

schistosome specific antibody levels increased or decreased after chemotherapy among 

different human populations. The analyses demonstrated that the combination of 

pre-treatment infection levels and age of participants influence the change of some 

antibodies (Figure 4.2 in Chapter 4). In addition, my analyses also showed the influence of 

days between treatment and follow up on the levels of anti-SEA IgE: an initial increase of 

anti-SEA IgE followed by a decrease below the pre-treatment levels 46 days after 

praziquantel treatment (Figure 4.2 in Chapter 4). Nevertheless, neither of these predictors 

could fully explain the variability of schistosome specific antibody level changes after 

praziquantel treatment among populations. There are multiple schistosome specific 

antibodies which have been reported to have positive or negative association with levels of 

protective immunity against re-infection. For example, high levels of schistosome specific 

IgE have been associated with protection against re-infection, whereas high levels of 

schistosome specific IgG4 have been associated with high levels of susceptibility to 

infection (Rihet et al. 1991; Grogan et al. 1997; Oliveira et al. 2012). Therefore, the 

variability of schistosome parasite specific antibody isotype level changes might suggest that 

the praziquantel treatment will influence protective immunity in a different way among 

different populations. That is, although the analyses suggested that the praziquantel 

treatment will increase the levels of protective immunity against re-infection in the majority 
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of populations, there is still a possibility that the same treatment have variable effects on the 

levels of protection for the other populations. Further studies are required to clarify the 

effects of praziquantel treatment on protective immunity against re-infection, and also to 

identify influential predictors of these effects. These results also highlight the importance of 

developing an effective vaccine for schistosomiasis.   
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6.3. Methodological limitations and suggestions for future works

  

6.3.1. Methodological limitations 

There are limitations of the systematic review and meta-analysis approaches. As such 

analyses are based on published articles there is always a risk of publication bias and 

language bias in any meta-analysis study (Sutton et al. 2000; Juni et al. 2002). In this thesis, 

I took an extra step to minimize language bias by including non-English articles into the 

analysis, which included Chinese, French, German, Italian, Portuguese, Russian, Spanish 

and Japanese articles. I identified non-English articles which published titles and/or abstracts 

in English, so there is still a risk of missing non-English articles if they were published 

solely in the original language. In this thesis, I aimed to make the systematic review 

procedure as comprehensive as possible by using multiple literature databases, and by 

contacting authors when a full-text article could not be accessed easily. Although the funnel 

plot is the most commonly used graphical method to detect publication bias, it was not 

applied beyond preliminary graphical exploration in this thesis. This is mainly because the 

funnel plot procedure makes the assumption that there is a single true outcome value (e.g., 

cure rate, fraction protected) which is common among all studies, which is not the case for 

the data characteristics in this study (Duval et al. 2000; Bax et al. 2011). In addition, Sutton 

et al. (2000) have conducted a meta-analysis of meta-analysis articles to investigate the 

effect of publication bias on the final outcome of studies, and reported that there was only a 

small impact of publication biases on the statistical conclusions of meta-analysis articles 

(Sutton et al. 2000). 
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In this thesis, I aimed to maximize the number of studies available for meta-analysis. As 

reviewed in Chapter 1, using the inversed variance within the study is the most commonly 

and sophisticated approach to weight studies in meta-analysis and meta-regression 

(Borenstein 2009). In this approach, studies with smaller within study variance are regarded 

to be more accurate and have larger power in the analysis. Nevertheless, I found that the 

majority of studies identified in my study did not report the within study variance of their 

results. There were two approaches that could be taken to deal with this issue. The first 

option was to exclude studies that failed to report within study variance from quantitative 

analyses. This approach enables me to use the inversed variance within the study for 

weighting. At the same time, the number of studies included would be reduced by more than 

50%. The second option, which I adopted in this thesis was to use an alternative weighting 

of observations for the statistical analyses. I used sample size (i.e., number of animals or 

participants) as a weighting for all the analyses except the random-effect meta-analysis in 

Chapter 2. Sample size has been recommended as an alternative weighting methods for 

meta-regression analysis (Hunter et al. 2004; Brannick et al. 2011). This weighting approach 

is based on the assumption that results of larger studies are more likely to be accurate than 

that of smaller studies. Nevertheless, the association between sample size and accuracy of 

results could not be confirmed in current study.  

 

Praziquantel has been used for more than 30 years to control the morbidity and prevalence 

of schistosomiasis in endemic areas (Gönnert et al. 1977; WHO 2015). Although the same 

drug has been used, the design of control programmes has been modified over the time to 
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increase their treatment impact. For example, providing a supplemental snack or drink prior 

to treatment has been reported to improve cure rates and also to reduce side effects after 

treatment (Muhumuza et al. 2014). Therefore, a number of recent studies provided a snack 

for children prior to the treatment (Groning et al. 1985; Simonsen et al. 1990; Berhe et al. 

1999; Midzi et al. 2008; Sousa-Figueiredo et al. 2010; Mitchell et al. 2011; Olliaro et al. 

2011; Navaratnam et al. 2012; Sousa-Figueiredo et al. 2012; Muhumuza et al. 2014). On the 

other hand, there also were studies that provided praziquantel for children with an empty 

stomach, believing in that this approach could yield better treatment effect (Kiliku et al. 

1991). Studies with or without a supplemental snack could have different treatment efficacy, 

however, I could not consider this factor in the analysis. Because the majority of studies do 

not reported if they provided any snack before the treatment. Analysing schistosomiasis 

studies published over decades made it difficult to include all the predictors of interest, as 

some of potential predictors were not reported by the older studies. Conducting subgroup 

analysis is possible but risks selection bias. In this thesis, therefore, I focused on predictors 

whose importance has been recognized for a long time. There is still a risk that I have 

missed predictors (such as pre-treatment supplemental snack) whose importance has only 

recently been recognised.  

 

The majority of studies included in the analyses reported the age range of participants, 

which varied between studies (e.g., 10-20 years old, 5-50 years old). In addition, there were 

other studies that reported the average age of participants but did not report age range. In 

this thesis, I used broad age range categories (i.e., child/adolescent/adult or child/adult) to 
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include as many as possible studies in meta-analyses. Initially, more detailed age group 

categorization (i.e., infant/child/adolescent/adult/elderly) was attempted but the variability 

among studies did not allow this approach. There could be differences in disease burden and 

immunity levels between very young pre-school aged children and school children, or 

school children and adolescent but such differences could not be investigated in my study. 
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6.3.2. Recommendations for future studies 

There are a number of ongoing mass praziquantel administration programmes in 

schistosomiasis endemic areas, where people are treated at regular intervals (Cleland et al. 

2014; Omedo et al. 2014; Tuhebwe et al. 2015). Unlike experimental naïve animals, people 

in these endemic areas have been chronically exposed to schistosome parasite antigens. Yole 

et al. (1996) reported high efficacy levels of attenuated S. mansoni vaccine in schistosome 

infection naïve baboons (Yole et al. 1996; Kariuki et al. 2004). Furthermore, the same 

research group investigated the influence of previous schistosome infection and/or 

praziquantel treatment on vaccine efficacy levels, and reported the comparable high 

protections among all vaccinated baboons (Kariuki et al. 2006). This might suggest that 

attenuated schistosome parasite vaccines have a potential to be an effective vaccine for both 

schistosome infection naïve human populations (e.g., travellers) and people in endemic areas. 

However, there are also limitations of animal studies. For example, the time between initial 

schistosome infection and vaccination in these baboon studies ranged from 12 to 18 weeks 

(Kariuki et al. 2006), which in contrast with the prolonged infection in endemic areas that 

can last few years even to decades. In addition, people in schistosomiasis endemic areas are 

often co-infected with other pathogens such as soil transmitted helminths and malaria 

(Mutapi et al. 2000; Alemu et al. 2011), which could also influence vaccine efficacy levels. 

Moreover, a previous study reported that adult worm antigens are essential to develop a 

protective immunity among people in endemic areas (Mitchell et al. 2012), not cercarial 

antigens. These reports together with my analyses might suggest that although attenuated 

cercarial vaccines have potential to be an effective vaccine, the vaccine efficacy levels 
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among schistosome infection naïve populations and people in endemic areas could be 

different. Further studies are required to estimate the influence of chronic schistosome 

infection and previous praziquantel treatment on human immunity against schistosomiasis, 

which might affect the levels of vaccine efficacy.  

 

Schistosomiasis infection intensity and related morbidity have been reported to vary among 

individuals, even in populations within the same geographical areas (e.g., villages, 

neighbours sharing the same water sources). This could be due to the variation of 

water-contact frequencies (Chandiwana et al. 1991), age (Mutapi et al. 1997), or the levels 

of acquired immunity (Butterworth et al. 1987; Mutapi et al. 1997). However, as there was 

no available data for individual cases in the majority of studies, the average values of the 

participants were used both for response variables (e.g., cure rate, antibody direction of 

change) and predictors. A group of participants often consisted of individuals of different 

age, co-infection status with other pathogens, and with different levels of schistosomiasis 

burden. Extra care must be taken when translating the results from meta-analysis into real 

epidemiological situations. When publishing the raw study data becomes more common in 

the field of epidemiology, more detailed meta-analyses could be undertaken by synthesizing 

individual-level raw data from multiple studies. This would enable an increase in the number 

of potential predictors, and could also enhance the general applicability of the findings from 

the analyses. 

 

Currently MDA programmes with praziquantel, is the leading approach to schistosomiasis 
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control in endemic areas. A lot of effort has been made to maximize MDA coverage and also 

to improve praziquantel treatment efficacy. Praziquantel usage in endemic countries has 

increased from 100 million tablets per year in 2005 to over 250 million tablets per year in 

2016 enough to treat approximately 140 million individuals (Fenwick 2015). This increase 

was achieved by praziquantel donation by pharmaceutical companies, especially Merck 

KGaA (Fenwick 2015; WHO 2016). Furthermore, in July 2012, a non-profit paediatric 

praziquantel consortium was launched involving Merck KGaA, Darmstadt, Astellas, Swiss 

TPH and Lygature (Pediatric Praziquantel Consortium 2016). This Pediatric Praziquantel 

Consortium focused on the development of paediatric praziquantel formulation to treat 

schistosomiasis in children aged 3 months to 6 years old (Fenwick 2015; Pediatric 

Praziquantel Consortium 2016).  

 

These results of MDA programmes as well as the increasing number of studies on the safety 

and efficacy of praziquantel in preschool children, have been published as a number of 

scientific papers. These studies present a good opportunity to conduct a systematic review 

and meta-analysis to investigate the efficacy of praziquantel treatments and their influence 

on host schistosome specific immunity. Regular updates of systematic review and 

meta-analysis study results will be important to keep our knowledge about schistosomiasis 

control up to date. 

 

  



  

151 

  

6.4. Conclusions 

In this thesis, systematic reviews and meta-analyses were conducted to answer a series of 

immunological and epidemiological questions concerning schistosomiasis. The findings of 

this thesis are expected to contribute towards vaccine development, the planning of 

sustainable control programmes, and improve the understanding of human protective 

immunity against schistosomiasis. My analyses showed a high protective effect of attenuated 

schistosome parasite vaccine in animal models. Schistosome vaccine development will 

benefit from close examination of the mechanisms through which protection is acquired in 

attenuated schistosome parasite vaccine studies that show high efficacy in animal models. 

Nevertheless, it will take time to develop a suitable vaccine for human use in 

schistosomiasis endemic areas.  

 

My analyses showed a large heterogeneity of praziquantel treatment effects on whether 

schistosome specific antibody levels increased or decreased among different human 

populations. The results also showed a trend of increase of some schistosome specific 

antibodies after praziquantel treatment. Some of these antibodies, namely anti-WWA IgA, 

IgE and anti-SEA IgE, have been reported their protective effect for re-infection. These 

results might indicate the positive influence of praziquantel treatment on protective 

immunity against future infection. Furthermore, despite concerns about parasites acquiring 

resistance to praziquantel treatment, the analyses showed there has been no reduction in 

praziquantel cure rate in recent years. This result confirm that praziquantel sustains its 

effectiveness for schistosomiasis treatment even after decades of usage. The close 
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monitoring of praziquantel efficacy is an important component of sustaining effective 

schistosomiasis control programmes in endemic areas.  
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Appendix A: Supplementary materials for Chapter 2.  

 

A.1: The list of articles used for the meta-analysis 

List of articles included for the analysis (1-105)  
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A.2: Potential predictors with reported ranges and codes. N=number of observations 

which reported the value of predictor.  

 

 

 

 

 

 

 

 

 

Variable name Range/Units N 

Number of immunizing parasites (total 

and number per dose) 
50-5000 cercariae 736 

Number of challenge parasites 10-1,000 cercariae 621 

Number of immunizations 1-5 times 744 

Irradiation dose 3-160 krad 745 

Host age 6-13 weeks 413 

Host sex Male/Female/mixed 629 

Time between the last immunization 

and challenge  
7-230 days 734 

Time between challenge and 

perfusion  
14-103 days 728 
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A.3: The distribution of reported fraction of protection for challenge infection after 

attenuated schistosome cercariae vaccination.  
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A.4: Graphs of the reported fraction of protection by potential predictors. Data points 

in scatter plot graphs represent single observations of reported fraction of protection. Bars 

represent mean and standard error of mean of reported fraction of protection.  
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Appendix B: Supplementary materials for Chapter 3.  

 

B.1: The list of mouse host studies where immunization and/or challenge infection used 

non-S. mansoni schistosome species (Group 2 in Figure 3.1). 

 

1. Agnew, A.M., Murare, H.M. and Doenhoff, M.J. (1989). Specific cross-protection 

between Schistosoma bovis and S.haematobium induced by highly irradiated infections 

in mice. Parasite Immunol 11(4): 341-349. 

2. Agnew, A.M., Murare, H.M. and Doenhoff, M.J. (1993). Immune attrition of adult 

schistosomes. Parasite Immunol 15(5): 261-271. 

3. Bickle, Q.D. and Doenhoff, M.J. (1987). Comparison of the live vaccine potential of 

different geographic isolates of Schistosoma mansoni. J Helminthol 61(3): 191-195. 

4. Cheever, A.W., Hieny, S., Duvall, R.H. and Sher, A. (1983). Lack of resistance to 

Schistosoma japonicum in mice immunized with irradiated S. mansoni cercariae. Trans 

R Soc Trop Med Hyg 77(6): 812-814. 

5. Hsue, S.Y., Hsue, H.F. and Osborne, J.W. (1965). Immunizing effect of X-irradiated 

cercariae of Schistosoma japonicum in albino mice. Z Tropenmed Parasitol 16: 83-89. 

6. Laxer, M.J. and Tuazon, C.U. (1992). Migration of 75Se-methionine-labeled 

Schistosoma japonicum in normal and immunized mice. J Infect Dis 166(5): 1133-1138. 

7. Mitchell, G.F., Davern, K.M., Wood, S.M., Wright, M.D., Argyropoulos, V.P., McLeod, 

K.S., Tiu, W.U. and Garcia, E.G. (1990). Attempts to induce resistance in mice to 

Schistosoma japonicum and Schistosoma mansoni by exposure to crude schistosome 

antigens plus cloned glutathione-S-transferases. Immunol Cell Biol 68 ( Pt 6): 377-385. 

8. Moloney, N.A., Bickle, Q.D. and Webbe, G. (1985). The induction of specific immunity 

against Schistosoma japonicum by exposure of mice to ultraviolet attenuated cercariae. 

Parasitology 90 ( Pt 2): 313-323. 

9. Navarrete, S., Rollinson, D. and Agnew, A.M. (1994). Sross-protection between species 

of the Schistosoma haematobium group induced by vaccination with irradiated parasites. 

Parasite Immunol 16(1): 19-25. 
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10. Zhang, Y., Taylor, M.G., Bickle, Q.D., Wang, H. and Ge, J. (1999). Vaccination of mice 

with gamma-irradiated Schistosoma japonicum cercariae. Parasite Immunol 21(2): 

111-117. 
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B.2: The list of S. mansoni or S. haematobium with baboon host articles used for the 

analysis (Group 3 in Figure 3.1). 

 

1. Damian, R.T., Powell, M.R., Roberts, M.L., Clark, J.D., Stirewalt, M.A. and Lewis, F.A. 

(1985). Schistosoma mansoni: parasitology and immunology of baboons vaccinated with 

irradiated cryopreserved schistosomula. Int J Parasitol 15(3): 333-344. 

2. Farah, I.O. and Nyindo, M. (1996). Schistosoma mansoni induces in the Kenyan baboon 

a novel intestinal pathology that is manifestly modulated by an irradiated cercarial 

vaccine. J Parasitol 82(4): 601-607. 

3. Harrison, R.A., Bickle, Q.D., Kiare, S., James, E.R., Andrews, B.J., Sturrock, R.F., 

Taylor, M.G. and Webbe, G. (1990). Immunization of Baboons with Attenuated 

Schistosomula of Schistosoma haematobium - Levels of Protection Induced by 

Immunization with Larvae Irradiated with 20 Krad and 60 Krad. Trans R Soc Trop Med 

Hyg 84(1): 89-99. 

4. James, E.R., Otieno, M., Harrison, R., Dobinson, A.R., Monorei, J. and Else, J.G. (1986). 

Partial Protection of Baboons against Schistosoma mansoni Using Radiation-Attenuated 

Cryopreserved Schistosomula. Trans R Soc Trop Med Hyg 80(3): 378-384. 

5. Kariuki, T.M., Van Dam, G.J., Deelder, A.M., Farah, I.O., Yole, D.S., Wilson, R.A. and 

Coulson, P.S. (2006). Previous or ongoing schistosome infections do not compromise 

the efficacy of the attenuated cercaria vaccine. Infect Immun 74(7): 3979-3986. 

6. Nyindo, M., Borus, P.K., Farah, I.O., Oguya, F.O. and Makawiti, D.W. (1995). 

Schistosoma mansoni in the baboon: modulation of pathology after vaccination with 

polyclonal anti-idiotypic antibodies. Scand J Immunol 42(6): 637-643. 

7. Soisson, L.A., Reid, G.D.F., Farah, I.O., Nyindo, M. and Strand, M. (1993). Protective 

immunity in baboons vaccinated with a recombinant antigen or radiation-attenuated 

cercariae of Schistosoma mnsoni is antibody-dependent. J Immunol 151(9): 4782-4789. 

8. Stek, M., Minard, P., Dean, D.A. and Hall, J.E. (1981). Immunization of baboons with 

Schistosoma mansoni cercariae attenuated by gamma-irradiation. Science 212(4502): 

1518-1520. 

9. Taylor, M.G., James, E.R., Nelson, G.S., Bickle, Q., Andrews, B.J., Dobinson, A.R. and 

Webbe, G. (1976). Immunization of baboons against Schistosoma mansoni using 

irradiated S. mansoni cercariae and schistosomula and non-irradiated S. rodhaini 

cercariae. J Helminthol 50(3): 215-221. 
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10. Webbe, G., Sturrock, R.F., James, E.R. and James, C. (1982). Schistosoma 

haematobium in the Baboon (Papio anubis) - effect of vaccination with irradiated larvae 

on the subsequent infection with percutaneously applied cercariae. Trans R Soc Trop 

Med Hyg 76(3): 354-361. 

11. Yole, D.S., Pemberton, R., Reid, G.D.F. and Wilson, R.A. (1996). Protective immunity 

to Schistosoma mansoni induced in the olive baboon Papio anubis by the irradiated 

cercaria vaccine. Parasitology 112: 37-46. 
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B.3: The list of S. mansoni with rat host articles used for the analysis (Group 4 in 

Figure 3.1). 

 

1. Erickson, D.G. and Caldwell, W.L. (1965). Acquired resistance in mice and rats after 

Exposure to gamma-irradiated cercariae. Am J Trop Med Hyg 14(4): 566-573. 

2. Ford, M.J., Bickle, Q.D. and Taylor, M.G. (1984). Immunization of rats against 

Schistosoma mansoni using irradiated cercariae, lung schistosomula and liver-stage 

worms. Parasitology 89(Oct): 327-344. 

3. Ford, M.J., Bickle, Q.D. and Taylor, M.G. (1987). Immunity to Schistosoma mansoni in 

congenitally athymic, irradiated and mast cell-depleted rats. Parasitology 94: 313-326. 

4. Ford, M.J., Bickle, Q.D., Taylor, M.G. and Andrews, B.J. (1984). Passive transfer of 

resistance and the site of immune-dependent elimination of the challenge infection in 

rats vaccinated with highly irradiated cercariae of Schistosoma mansoni. Parasitology 

89(Dec): 461-482. 

5. Ford, M.J., Taylor, M.G., Mchugh, S.M., Wilson, R.A. and Hughes, D.L. (1987). Studies 

on heterologous resistance between Schistosoma mansoni and Fasciola hepatica in 

inbred rats. Parasitology 94: 55-67. 

6. Mclaren, D.J., Pearce, E.J. and Smithers, S.R. (1985). Site potential for challenge 

attrition in mice, rats and guinea-pigs vaccinated with irradiated cercariae of 

Schistosoma mansoni. Parasite Immunol 7(1): 29-44. 

7. Mclaren, D.J. and Smithers, S.R. (1985). Schistosoma mansoni - challenge attrition 

during the lung phase of migration in vaccinated and serum-protected rats. Exp Parasitol 

60(1): 1-9. 

8. Moloney, N.A., Webbe, G. and Hinchcliffe, P. (1987). The induction of species-specific 

immunity against Schistosoma japonicum by exposure of rats to ultra-violet attenuated 

cercariae. Parasitology 94: 49-54. 

9. Phillips, S.M. and Reid, W.A. (1980). Schistosoma mansoni - immune-response to 

normal and irradiated cercariae or soluble stage-specific surface immunogens. Int J Nucl 

Med Biol 7(2): 173-186. 

10. Smithers, S.R. and Terry, R.J. (1965). Acquired resistance to experimental infections of 

Schisntosoma mansoni in the albino rat. Parasitology 55(4): 711-717. 
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11. Vignali, D.A., Bickle, Q.D., Taylor, M.G., Tennent, G. and Pepys, M.B. (1988). 

Comparison of the role of complement in immunity to Schistosoma mansoni in rats and 

mice. Immunology 63(1): 55-61. 
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B.4: The distribution of reported fraction of protection for challenge infection after 

attenuated schistosome cercariae vaccination. (A) rat host with S. mansoni studies, (B) 

baboon host with S. mansoni studies, (C) baboon host with S. haematobium studies.  
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B.5: Graphs of the reported fraction of protection by potential predictors for rat host 

with S. mansoni studies. Data points represent the reported fraction of protection for each 

observation.  
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B.6: Graphs of the reported fraction of protection by potential predictors for baboon 

host with S. mansoni studies. Data points represent the reported fraction of protection for 

each observation.  
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B.7: Graphs of the reported fraction of protection by potential predictors for baboon 

host with S. haematobium studies. Data points represent the reported fraction of protection 

for each observation.  
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Appendix C: Supplementary materials for Chapter 4. 

 

C.1: The list of articles used for the analysis. 

 

1. Abebe, F., Gaarder, P.I., Petros, B. and Gundersen, S.G. (2001). Age and sex related 

differences in antibody responses against Schistosoma mansoni soluble egg antigen in a 

cohort of school children in Ethiopia. APMIS 109(12): 816-824. 

2. Ali, A.E. and Shaheen, H.I. (1994). Human resistance to reinfection with schistosomes. 

II. Specific IgA titres before & 3 months after praziquantel treatment. J Egypt Soc 

Parasitol 24(3): 505-512. 

3. Feldmeier, H., Gastl, G.A., Poggensee, U., Daffalla, A.A., Nogueira-Queiroz, J.A., 

Capron, A. and Peter, H.H. (1988). Immune response in chronic Schistosomiasis 

haematobium and mansoni. Reversibility of alterations after anti-parasitic treatment with 

praziquantel. Scand J Immunol 28(2): 147-155. 

4. Fouda, E.E., Ali, A.I., Emam, M. and Khalek, A.S.A. (2007). IgE and skin test reactivity 

in relation to anti-parasitic treatment. J Allergy Clin Immun 119(1): S23-S23. 

5. Grogan, J.L., Kremsner, P.G., vanDam, G.J., Metzger, W., Mordmuller, B., Deelder, 

A.M. and Yazdanbakhsh, M. (1996). Antischistosome IgG4 and IgE responses are 

affected differentially by chemotherapy in children versus adults. J Infect Dis 173(5): 

1242-1247. 

6. Hamadto, H.H., Rashed, S.M., el Said, A. and Elhayawan, I.A. (1990). Humoral and 

cellular immune response in schistosomiasis pre and post praziquantel therapy. J Egypt 

Soc Parasitol 20(2): 667-672. 

7. Hussein, H.M., Kaddah, M.A., el-Borai, Y.A., el Batanony, G.A., Abdel Ghafar, F.A. 

and Zakaria, S. (1996). Host and parasite determinants of morbidity in Egyptian children 

with schistosomiasis. J Egypt Soc Parasitol 26(3): 755-772. 

8. Ismail, M.M., Bruce, J.I., Attia, M.M., Farghaly, A.M., Ali, A.E. and El Laithi, S. 

(1992). Different immunoglobulin classes and eosinophils as a monitor of cure in 

schistosomal cases using praziquantel. J Trop Med 2(2): 99-108. 

9. Joseph, S., Jones, F.M., Laidlaw, M.E., Mohamed, G., Mawa, P.A., Namujju, P.B., 

Kizza, M., Watera, C., Whitworth, J.A., Dunne, D.W. and Elliott, A.M. (2004). 

Impairment of the Schistosoma mansoni-specific immune responses elicited by 
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treatment with praziquantel in Ugandans with HIV-1 coinfection. J Infect Dis 190(3): 

613-618. 

10. Mutapi, F., Ndhlovu, P.D., Hagan, P., Spicer, J.T., Mduluza, T., Turner, C.M., 

Chandiwana, S.K. and Woolhouse, M.E. (1998). Chemotherapy accelerates the 

development of acquired immune responses to Schistosoma haematobium infection. J 

Infect Dis 178(1): 289-293. 

11. Mutapi, F., Ndhlovu, P.D., Hagan, P. and Woolhouse, M.E. (1998). Changes in specific 

anti-egg antibody levels following treatment with praziquantel for Schistosoma 

haematobium infection in children. Parasite Immunol 20(12): 595-600. 

12. Nagaty, I.M., el Hayawan, I.A., Nasr, M.E. and el Hamshery, A.H. (1996). Observations 

on possible immunity to reinfection among school children after schistosomiasis 

treatment. J Egypt Soc Parasitol 26(2): 443-452. 

13. Nassr, A., Hassan, M.M., Abdel Salam, F.M., Lashin, A.H., Shahin, W.A. and Amin, H. 

(2002). IgG isotypes in schistosomiasis patients before and after praziquantel. J Egypt 

Soc Parasitol 32(3): 931-952. 

14. Naus, C.W.A., van Dam, G.J., Kremsner, P.G., Krijger, F.W. and Deelder, A.M. (1998). 

Human IgE, IgG subclass, and IgM Responses to worm and egg antigens in 

schistosomiasis haematobium: A 12-month study of reinfection in Cameroonian children. 

Clin Infect Dis 26(5): 1142-1147. 

15. Reilly, L., Magkrioti, C., Mduluza, T., Cavanagh, D.R. and Mutapi, F. (2008). Effect of 

treating Schistosoma haematobium infection on Plasmodium falciparum-specific 

antibody responses. Bmc Infect Dis 8(158). 

16. Satti, M.Z., Cahen, P., Skov, P.S., Joseph, S., Jones, F.M., Fitzsimmons, C., Hoffmann, 

K.F., Reimert, C., Kariuki, H.C., Kazibwe, F., Mwatha, J.K., Kimani, G., Vennervald, 

B.J., Ouma, J.H., Kabatereine, N.B. and Dunne, D.W. (2004). Changes in IgE- and 

antigen-dependent histamine-release in peripheral blood of Schistosoma 

mansoni-infected Ugandan fishermen after treatment with praziquantel. BMC Immunol 

5(6). 

17. Satti, M.Z., Lind, P., Vennervald, B.J., Sulaiman, S.M., Daffalla, A.A. and Ghalib, H.W. 

(1996). Specific immunoglobulin measurements related to exposure and resistance to 

Schistosoma mansoni infection in Sudanese canal cleaners. Clin Exp Immunol 106(1): 

45-54. 
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18. Satti, M.Z., Sulaiman, S.M., Homeida, M.M.A., Younis, S.A. and Ghalib, H.W. (1996). 

Clinical, parasitological and immunological features of canal cleaners hyper-exposed-to 

Schistosoma mansoni in the Sudan. Clin Exp Immunol 104(3): 426-431. 

19. Snyman, J.R., de Sommers, K., Steinmann, M.A. and Lizamore, D.J. (1997). Effects of 

calcitriol on eosinophil activity and antibody responses in patients with schistosomiasis. 

Eur J Clin Pharmacol 52(4): 277-280. 

20. Snyman, J.R. and Sommers de, K. (1998). Effect of levamisole on the immune response 

of patients with schistosomiasis after treatment with praziquantel. Clin Drug Investig 

15(6): 483-489. 

21. Tweyongyere, R., Mawa, P.A., Emojong, N.O., Mpairwe, H., Jones, F.M., Duong, T., 

Dunne, D.W., Vennervald, B.J., Katunguka-Rwakishaya, E. and Elliott, A.M. (2009). 

Effect of praziquantel treatment of Schistosoma mansoni during pregnancy on intensity 

of infection and antibody responses to schistosome antigens: results of a randomised, 
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22. van Lieshout, L., Stelma, F.F., Guisse, F., Falcao Ferreira, S.T., Polman, K., van Dam, 

G.J., Diakhate, M., Sow, S., Deelder, A. and Gryseels, B. (1999). The contribution of 

host-related factors to low cure rates of praziquantel for the treatment of Schistosoma 
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23. Vereecken, K., Naus, C.W.A., Polman, K., Scott, J.T., Diop, M., Gryseels, B. and 
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24. Walter, K., Fulford, A.J.C., McBeath, R., Joseph, S., Jones, F.M., Kariuki, H.C., 

Mwatha, J.K., Kimani, G., Kabatereine, N.B., Vennervald, B.J., Ouma, J.H. and Dunne, 

D.W. (2006). Increased human IgE induced by killing Schistosoma mansoni in vivo is 

associated with pretreatment Th2 cytokine responsiveness to worm antigens. J Immunol 
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single and co-infected individuals with Schisosoma haematobium and Plasmodium 

falciparum. Cent Afr J Med 52(9-12): 104-111. 
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C.2: Scientific articles or governmental reports which used to obtain schistosome 

infection intensity or infection prevalence of the target areas. 

 

1) Studies failed to report pre-treatment infection intensity 

 

2) Studies failed to report infection prevalence of the study area 

   

Reference Reference used to obtain infection intensity 

Ali et al. 1994 El-Khoby, T., et al. 2000."The epidemiology of schistosomiasis 

in Egypt: summary findings in nine governorates." Am J Trop 

Med Hyg 62(2 Suppl): 88-99. 

Fouda et al. 2007 

Ismail et al. 1992 

Nagaty et al. 1996 

Reference Reference used to obtain prevalence 

Nassr et al. 2002 Barakat, R. M. 2013."Epidemiology of Schistosomiasis in 

Egypt: Travel through Time: Review." J Adv Res 4(5): 425-432. 

Zinyowera et al. 

2006 

Chimbari, M. J. 2012."Enhancing schistosomiasis control 

strategy for zimbabwe: building on past experiences." J Parasitol 

Res 2012: 353768. 
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C.3: Frequencies of antibody isotypes with range of days after chemotherapy. *Number 

of observations. 

anti-SEA N* 
days after 

chemotherapy 
anti-WWA N* 

days after 

chemotherapy 

IgA 19 35-180 IgA 16 35-180 

IgE 23 21-180 IgE 35 21-180 

IgG1 17 30-126 IgG1 22 30-90 

IgG2 15 30-126 IgG2 14 30-42 

IgG3 15 30-126 IgG3 20 30-63 

IgG4 20 21-126 IgG4 21 21-90 

IgG 15 35-180 IgG 23 21-180 

IgM 27 30-180 IgM 27 30-180 
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C.4: Tables of data distribution of anti-SEA antibodies: A) IgA, B) IgE, C)IgG1, D) 

IgG2, E)IgG3, F)IgG4, G)IgG, H)IgM. The number in the cell shows the number of 

observations being used for the analyses after data imputations.  

A) IgA 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 1 0 

child/heavy 1 0 

adolescent/light 3 4 

adolescent/heavy 1 4 

adult/light 3 1 

adult/heavy 1 0 

Prevalence Increase Decrease 

Low/Moderate 4 5 

High 6 4 

Schistosome species Increase Decrease 

S. mansoni 6 6 

S. haematobium 0 2 

co-infection of S. mansoni 

and S. haematobium 
4 1 
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B) IgE 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 0 1 

child/heavy 3 0 

adolescent/light 1 3 

adolescent/heavy 4 1 

adult/light 6 1 

adult/heavy 2 1 

Prevalence Increase Decrease 

Low/Moderate 5 5 

High 11 2 

Schistosome species Increase Decrease 

S. mansoni 12 5 

S. haematobium 4 0 

co-infection of S. mansoni 

and S. haematobium 
0 2 
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C) IgG1 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 1 0 

child/heavy 2 0 

adolescent/light 2 0 

adolescent/heavy 1 3 

adult/light 3 3 

adult/heavy 0 2 

Prevalence Increase Decrease 

Low/Moderate 4 1 

High 5 7 

Schistosome species Increase Decrease 

S. mansoni 6 8 

S. haematobium 2 0 

co-infection of S. mansoni 

and S. haematobium 
1 0 
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D) IgG2 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 0 0 

child/heavy 2 0 

adolescent/light 0 1 

adolescent/heavy 2 2 

adult/light 5 1 

adult/heavy 0 2 

Prevalence Increase Decrease 

Low/Moderate 2 2 

High 7 4 

Schistosome species Increase Decrease 

S. mansoni 8 5 

S. haematobium 1 1 

co-infection of S. mansoni 

and S. haematobium 
9 6 
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E) IgG3 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 0 0 

child/heavy 0 2 

adolescent/light 1 0 

adolescent/heavy 1 3 

adult/light 3 3 

adult/heavy 1 1 

Prevalence Increase Decrease 

Low/Moderate 2 2 

High 4 7 

Schistosome species Increase Decrease 

S. mansoni 5 8 

S. haematobium 1 1 

co-infection of S. mansoni 

and S. haematobium 

0 0 
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F) IgG4 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 0 2 

child/heavy 1 2 

adolescent/light 1 0 

adolescent/heavy 1 3 

adult/light 1 6 

adult/heavy 2 1 

Prevalence Increase Decrease 

Low/Moderate 1 4 

High 5 10 

Schistosome species Increase Decrease 

S. mansoni 4 13 

S. haematobium 2 1 

co-infection of S. mansoni 

and S. haematobium 

0 0 
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G) IgG 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 0 1 

child/heavy 0 2 

adolescent/light 1 10 

adolescent/heavy 1 0 

adult/light 0 0 

adult/heavy 0 0 

Prevalence Increase Decrease 

Low/Moderate 1 11 

High 1 2 

Schistosome species Increase Decrease 

S. mansoni 1 4 

S. haematobium 0 0 

co-infection of S. mansoni 

and S. haematobium 

1 9 
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H) IgM 

  Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 1 1 

child/heavy 2 2 

adolescent/light 1 11 

adolescent/heavy 0 4 

adult/light 3 0 

adult/heavy 1 1 

Prevalence Increase Decrease 

Low/Moderate 1 12 

High 7 7 

Schistosome species Increase Decrease 

S. mansoni 6 9 

S. haematobium 1 1 

co-infection of S. mansoni 

and S. haematobium 

1 9 
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C.5: Tables of data distribution of anti-WWA antibodies: A) IgA, B) IgE, C)IgG1, D) 

IgG2, E)IgG3, F)IgG4, G)IgG, H)IgM. The number in the cell shows the number of 

observations being used for the analyses after data imputations. 

A) IgA 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 2 0 

child/heavy 1 0 

adolescent/light 3 1 

adolescent/heavy 3 0 

adult/light 4 0 

adult/heavy 2 0 

Prevalence Increase Decrease 

Low/Moderate 6 1 

High 9 0 

Schistosome species Increase Decrease 

S. mansoni 11 1 

S. haematobium 0 0 

co-infection of S. mansoni 

and S. haematobium 
4 0 
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B) IgE 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 4 2 

child/heavy 3 3 

adolescent/light 3 0 

adolescent/heavy 5 2 

adult/light 9 1 

adult/heavy 2 1 

Prevalence Increase Decrease 

Low/Moderate 7 4 

High 19 5 

Schistosome species Increase Decrease 

S. mansoni 15 5 

S. haematobium 5 1 

co-infection of S. mansoni 

and S. haematobium 
6 3 
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C) IgG1 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 2 0 

child/heavy 2 2 

adolescent/light 1 0 

adolescent/heavy 3 0 

adult/light 8 2 

adult/heavy 1 1 

Prevalence Increase Decrease 

Low/Moderate 3 2 

High 14 3 

Schistosome species Increase Decrease 

S. mansoni 15 5 

S. haematobium 2 0 

co-infection of S. mansoni 

and S. haematobium 
0 0 
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D) IgG2 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 1 0 

child/heavy 2 0 

adolescent/light 0 0 

adolescent/heavy 3 0 

adult/light 5 2 

adult/heavy 1 0 

Prevalence Increase Decrease 

Low/Moderate 2 1 

High 10 1 

Schistosome species Increase Decrease 

S. mansoni 11 2 

S. haematobium 1 0 

co-infection of S. mansoni 

and S. haematobium 
0 0 
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E) IgG3 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 1 1 

child/heavy 2 2 

adolescent/light 1 0 

adolescent/heavy 1 2 

adult/light 6 3 

adult/heavy 1 0 

Prevalence Increase Decrease 

Low/Moderate 3 1 

High 9 7 

Schistosome species Increase Decrease 

S. mansoni 10 8 

S. haematobium 2 0 

co-infection of S. mansoni 

and S. haematobium 

0 0 
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F) IgG4 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 2 0 

child/heavy 4 1 

adolescent/light 0 0 

adolescent/heavy 3 0 

adult/light 7 1 

adult/heavy 2 1 

Prevalence Increase Decrease 

Low/Moderate 2 1 

High 16 2 

Schistosome species Increase Decrease 

S. mansoni 16 3 

S. haematobium 2 0 

co-infection of S. mansoni 

and S. haematobium 

0 0 
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G) IgG 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 1 1 

child/heavy 4 1 

adolescent/light 3 7 

adolescent/heavy 4 0 

adult/light 2 0 

adult/heavy 0 0 

Prevalence Increase Decrease 

Low/Moderate 8 8 

High 6 1 

Schistosome species Increase Decrease 

S. mansoni 6 2 

S. haematobium 4 0 

co-infection of S. mansoni 

and S. haematobium 

4 7 
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H) IgM 

Predictor name Antibody levels change 

Age/infection intensity Increase Decrease 

child/light 2 1 

child/heavy 6 0 

adolescent/light 1 9 

adolescent/heavy 1 2 

adult/light 4 0 

adult/heavy 1 0 

Prevalence Increase Decrease 

Low/Moderate 2 10 

High 13 2 

Schistosome species Increase Decrease 

S. mansoni 12 4 

S. haematobium 1 0 

co-infection of S. mansoni 

and S. haematobium 

2 8 
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C.6: Cross-validation analysis results of anti-SEA (A) IgA, (B) IgE, (C) IgG1, (D) IgG2, 

(E) IgG3, (F) IgG4, (D) IgG, and (H) IgM. Each plot represents the mean risk estimate and 

standard error. Asterisks indicate the optimum tree sizes that is identified by the cross 

validation analysis. 
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C.7: Cross-validation analysis results of anti-WWA (A) IgE, (B) IgG1, (C) IgG2, (D) 

IgG3, (E) IgG4, (F) IgG, and (G) IgM. Each plot represents the mean risk estimate and 

standard error. Asterisks indicate the optimum tree sizes which were identified by the cross 

validation analyses. 
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D.2: Table of a treatment year range reported by each country.  

 

Country Treatment years 

No. of 

observations 

Brazil 1989-2006 3 

Burundi 1984-1985 14 

Cameroon 2002-2007 5 

Congo 1986-1987 5 

Cote D'Ivoire 1997-2011 8 

Egypt 1982-2009 35 

Ethiopia 1983-2011 10 

Gabon 1982 4 

Gambia 1983-1985 6 

Kenya 1985-2012 41 

Mali 1992-2007 7 

Mauritania 2005-2006 6 

Niger 1995-1999 2 

Nigeria 1979-2009 11 

Senegal 1993-2007 9 

South Africa 1981-1998 6 

Sudan 1987-2008 7 

Tanzania 1979-2007 10 

Uganda 1996-2013 14 

Zambia 1979 3 

Zimbabwe 1994-2009 11 

Others 1983-2007 6 
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D.3: The distribution of reported parasitological cure rates following praziquantel 

treatment.(A) S. mansoni infection, (B) S. haematobium infection, (C) schistosome 

infection among adults, and (D) schistosome infection among children.  
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D.4: Figure illustrating the reported cure rates by treatment years from 1979 to 2013 

for Egypt, Kenya, Nigeria, Uganda, and Zimbabwe. Countries with 11 or more 

observations were selected for these subgroups analyses. The results of random-effects 

meta-regressions using article ID as a random effect, weighting with number of participants 

treatment year effect on cure rate were not significant [Egypt: F(1, 12) =1.048,p=0.326, 

Kenya: F(1, 15) =1.931, p=0.185, Nigeria: F(1, 3) =1.045, p=0.382, Uganda: F(1, 12) 

=3.921, p=0.071, Zimbabwe: F(1, 9) =0.046, p=0.835]. 
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D. 5: Figure illustrating the reported cure rates among S. haematobium infected 

children after 40 mg/kg body weight praziquantel treatment by treatment year for 

Cameroon, Kenya, Mali, Nigeria, Senegal and Zimbabwe. Countries with five or more 

observations were selected.
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Schistosomiasis is a water-borne, parasitic disease of major public health importance.There
has been considerable effort for several decades toward the development of a vaccine
against the disease. Numerous mouse experimental studies using attenuated Schisto-
soma mansoni parasites for vaccination have been published since 1960s. However, to
date, there has been no systematic review or meta-analysis of these data. The aim of this
study is to identify measurable experimental conditions that affect the level of protection
against re-infection with S. mansoni in mice vaccinated with radiation attenuated cercariae.
Following a systematic review, a total of 755 observations were extracted from 105 articles
(published 1963–2007) meeting the searching criteria. Random effects meta-regression
models were used to identify the influential predictors. Three predictors were found to
have statistically significant effects on the level of protection from vaccination: increasing
numbers of immunizing parasites had a positive effect on fraction of protection whereas
increasing radiation dose and time to challenge infection had negative effects. Models
showed that the irradiated cercariae vaccine has the potential to achieve protection as high
as 78% with a single dose vaccination. This declines slowly over time but remains high
for at least 8 months after the last immunization. These findings provide insights into the
optimal delivery of attenuated parasite vaccination and into the nature and development of
protective vaccine induced immunity against schistosomiasis, which may inform the for-
mulation of human vaccines and the predicted duration of protection and thus frequency
of booster vaccines.

Keywords: schistosomiasis, attenuated cercariae, protective immunity, random effects meta-regression, animal
model, systematic review

INTRODUCTION
Schistosomiasis is a water-borne parasitic disease of major pub-
lic health importance. More than 4.5 million disability adjusted
life years (DALYs) are lost each year worldwide due to schisto-
some infection (1–4). Human schistosomiasis is mainly caused by
three species: Schistosoma mansoni, Schistosoma haematobium, and
Schistosoma japonicum (5). More than 90% of reported cases are
from sub-Saharan Africa where both S. mansoni and S. haema-
tobium infections are endemic (6). The vast majority of control
programs use the antihelminthic drug praziquantel for mass drug
administration. This low-cost and efficacious drug has achieved
a significant reduction in disease prevalence and infection inten-
sity in many endemic areas (7–10). However, there are multiple
reports of re-infection after chemotherapy (11–13). In addition,
praziquantel can clear only adult worms and has little or no effect
on existing eggs and immature worms (14). This means that there
is need for additional complementary interventions, one of which
is vaccination.

Slowly developing acquired immunity plays a crucial role in
the reduction of infection prevalence and intensity in older age
groups in endemic areas (15, 16). This suggests that exposure

to schistosome antigens can promote protective immunity in
humans; however, to date, there is no licensed schistosome
vaccine (17, 18). Currently, the leading vaccine candidate is
the 28 kDa S. haematobium GST (Sh28GST, Brand name: Bil-
hvax), which is now in phase 3 clinical trials (19–21). Along-
side recombinant antigen vaccine studies, the attenuated live
cercariae vaccine has been studied extensively in mouse mod-
els (22, 23). Properly prepared attenuated cercariae live long
enough to invade the host skin and stimulate protective acquired
immunity against subsequent challenge infection but die in the
host’s body before they mature into adult worms (24). Atten-
uated schistosome cercariae vaccination experiments in animals
use cercariae, which are weakened by ionizing radiation (X-ray
or gamma ray), ultraviolet, heat, or chemical treatment. Host
animals are immunized with attenuated parasites either once
or several times before challenge infection with non-attenuated
pathogenic cercariae. A certain number of days after the chal-
lenge infection, immunized animals and control animals are per-
fused to quantify the level of protection due to immunization
by comparing the number of adult worms recovered from both
groups.
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A large number of mouse experimental studies using attenu-
ated S. mansoni cercariae for vaccination have been published since
1960s (25); however, such studies have never been systematically
analyzed. The aim of this study was to conduct a meta-analysis
to identify measurable experimental conditions (predictors) that
affect the level of protection against challenge infection of vacci-
nated animals. In addition, levels of each predictor associated with
maximum levels of protection were estimated.

MATERIALS AND METHODS
SYSTEMATIC REVIEW
An electronic literature search was performed using Science Cita-
tion Index Expanded, Conference Proceedings Citation Index
and BIOSIS Citation Index, all of which were provided through
Web of Knowledge1. Alongside these, EMBASE2, OVID MEDI-
CINE3, and CAB abstracts, were searched simultaneously though
OvidSP4. Reference lists of all articles identified by the elec-
tronic search were searched manually for additional relevant
reference. In addition, ProQuest Dissertations and Thesis Full
Text5 was searched as a source of pre-published and gray lit-
erature. The search terms were chosen to be as inclusive as
possible and were “cercaria*” AND (“irradiat*” OR “attenuat*”)
AND (“vaccin*OR schistosom*”). Also, we searched by “Atten-
uate*” AND “schistosome*” AND “vaccin*.” This search was
completed in July 2013. After duplicated articles were removed
a total of 1,013 articles were identified. Titles and abstracts
were screened by at least two independent reviewers to exclude
those that were not relevant to an attenuated schistosome vac-
cine animal model. Full texts of potentially relevant articles were
reviewed by two independent reviewers for further selection.
Non-English articles were included, and several Chinese and Ger-
man articles were identified and translated into English by a
native Chinese speaker and German speaker, respectively, for the
analysis.

A study was considered eligible if it met all of the follow-
ing inclusion criteria: (1) vaccination with attenuated cercariae;
(2) use of ionizing radiation for attenuation; (3) use of percuta-
neous immunization and challenge (i.e., the natural transmission
route for schistosome infection); (4) challenge infection using nor-
mal (non-attenuated) cercariae; (5) worm burden measured after
the challenge infection via perfusion; (6) outcome (fraction of
protection) reported or could be calculated. In this study, frac-
tion of protection means the proportion of reduction in worm
burden in vaccinated mice compared to that of control mice
group. For articles, which reported worm count after challenge
infection, the following equation was used to calculate the out-
come: fraction of protection= [(average number of worms per
mouse retrieved from control group− average number of worms
per mouse retrieved from vaccinated group)/average number of
worms per mouse retrieved from control group]. In the case of
articles, which failed to report worm counts (allowing calculation

1http://www.webofknowledge.com
2http://www.elsevier.com
3http://www.ovid.com
4http://ovidsp.tx.ovid.com
5http://www.proquest.com

of this quantity), only those that stated that they used the same
equation as above were included.

Studies were excluded if they met any of the following exclu-
sion criteria: (1) immunizing attenuated cercariae developed to
adulthood; (2) hosts were transgenic or genetically engineered; (3)
hosts had an in vivo depletion of immune cells; (4) attenuated cer-
cariae were prepared by any means other than ionizing irradiation;
(5) a non-cercarial vaccine was used (e.g., adult worm, schistoso-
mula, subunit); (6) an artificial infection was conducted prior to
vaccination; or (7) hosts were treated with anthelmintic drugs.

Articles often reported results from multiple separate experi-
ments such as use of different doses of attenuated parasite. In these
cases, results from each experiment were recorded as an observa-
tion. A total of 755 observations from 105 articles (articles are
listed in Supplementary Material) meeting searching criteria and
also using mouse as a host and S. mansoni for vaccination and
challenge infection. Although the mouse is not a natural host for
schistosome infection, it is the most commonly used animal for
attenuated schistosome parasite vaccine animal model. A list of
potential predictors (given in Table 1) was drawn up and these
quantities were extracted from each article. These potential pre-
dictors have been suggested their importance by review articles and
also their quantities been reported by many experimental studies
(26). When an article reported a dose range rather than an exact
dose the mid-value was used for the analysis.

STATISTICAL ANALYSIS
Random effects meta-regression
Random effects meta-regression was used to identify the influen-
tial predictors and effect of dose on protection. Multiple obser-
vations (1–56) were recorded from single articles and therefore
article was included as a random effect in the models. The mod-
els were built using a backwards stepwise procedure with eight
potential predictors (listed in Table 1). The effect of the number
of immunizing parasites was explored in two ways in the two sep-
arate models: as an average number of immunizing parasites per
dose or as a total number of immunizing parasites. Correlations
between variables were examined visually by scatter plot graphs
for all possible predictor combinations (data not shown). Then,

Table 1 | Possible predictors investigated and their units/codes.

Variable name Units/code

Number of immunizing parasites (total and number

per dose)

Number of parasites

log10 transformed

Number of challenge parasites Number of parasites

log10 transformed

Number of immunizations Count

Irradiation dose Krad

Host age Weeks

Host sex Male, female, mixed

Time between the last immunization and challenge Days

Time between challenge and perfusion Days
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all the possible combinations of two-way interactions of potential
predictors were examined using a random effects meta-regression
model with two-way interactions. The outcome variable (fraction
of protection) was transformed as−ln(1− fraction of protection)
to reduce the skewness of residuals (27). Although using confi-
dence intervals and SE is the most common weighting method for
meta-regression (28), many studies in our dataset failed to report
either confidence intervals or SD and there were no comparable
studies, which enabled us to justify imputing them. Two kinds of
information were available on the size of the studies: the num-
ber of control animals and the number of vaccinated animals. The
majority of studies used similar numbers of control and vaccinated
animals; however, there were several articles, which used a higher
number of vaccinated animals than control animals. To account
for the impact of these unbalanced studies, the number of control
animals was used as the more conservative weighting option.

Missing values and outliers
Several outliers were excluded from the analysis. They were six
observations with animals kept longer than 300 days or <7 days
after the last immunization and four observations that used more
than 10,000 cercariae for immunization. After excluding outliers
745 observations were kept for further selection.

When the numbers of control animals were not reported in an
article and only the numbers of vaccinated animals were given,
numbers of control animals were then imputed by a linear regres-
sion imputation method between numbers of vaccinated and
control animals for all studies (29). When the observation was
missing for both the number of control animals and vaccinated
animals (4 observations from 4 articles), the average number of
control animals of the remaining data set was used for imputation,
which was 10 control animals. Out of 745 observations, 725 obser-
vations from 100 articles reported all predictors and were used for
the analysis.

Statistical software
Papers identified by systematic review were recorded by Thom-
son Reuters EndNote and the extracted data were entered on
a Microsoft Excel 2010 spread sheet for further analysis. IBM
SPSS Statistics Version 19.0 and Minitab. Inc., MINITAB 16 were
used for statistical analysis. GraphPad Software GraphPad Prism
version 6.03 was used for graphical expression.

RESULTS
Among eight potential predictors (Table 1), three predictors
were found to have statistically significant effects (P < 0.05) on
the outcome value −ln(1− fraction of protection) following the
backwards stepwise selection: the log10 transformed total num-
ber of immunizing parasites (P < 0.001), the irradiation dose
(P < 0.001), and the time between the last immunization and chal-
lenge (P = 0.04) (Table 2). The reported ranges of each predictor
were the total number of immunizing parasites (50–5,000 cer-
cariae), the irradiation dose (3–160 krad), and the time between
the last immunization and challenge (7–230 days). All identified
predictors were significant (P < 0.05) in the model no matter with
or without outliers in the model. The number of immunizing par-
asites was significant in the model regardless of the version of this

Table 2 | Results from random effects meta-regression models.

Predictors Coefficient SE P -value

Number of immunizing parasites

per dose (log10 transformed)

0.4338 0.0661 <0.001

Irradiation dose −0.0047 0.0008 0.04

Time between the last

immunization and challenge

−0.0015 0.0007 <0.001

Positive coefficients indicate the predictor’s positive dose effect on fraction of

protection whereas negative coefficients indicate predictor’s negative influence

on fraction of protection.

variable used, i.e., the average number of immunizing parasites per
dose or total number of immunizing parasites. In both cases, the
models were initially considered with the number of immuniza-
tions. When the total number of immunizing parasites was used
as a predictor, the number of immunizations was not significant.
Therefore, for the final model, the total number of immunizing
parasite was used as a predictor with number of immunizations
excluded from the model.

The interaction between log10 transformed total number of
immunizing parasites and the time between the last immunization
and challenge was statistically significant (P = 0.04). However, this
interaction was excluded from the final model for the following
reasons: (1) the model with the interaction showed biologically
implausible fitted values of fraction of protection for some predic-
tors, (2) the model with/without interaction showed similar fitted
values for the fraction of protection around the most frequent
values of predictors.

Fitted graphs for each predictor are shown in Figure 1 with
the outcome variable back-transformed to fraction of protection.
Fitted graphs for each predictor were generated by fixing other pre-
dictor values at their modes: 500 immunizing parasites, 28 days
for the time between the last immunization and challenge, and
20 krad for irradiation dose (solid line in Figure 1). The fitted
graph of total number of immunizing parasites and fraction of
protection showed the lowest level of predicted protection was
41% with 50 cercariae, which increased up to 75% with 5,000
cercariae (solid line in Figure 1A). Similarly, the minimum level
of protection predicted for 160 krad irradiation was 26% protec-
tion, which increased to 65% with 3 krad irradiation (solid line in
Figure 1B). The estimated level of protection 7 days after the last
immunization was 63%, which reduced to 49% by 230 days after
the last immunization (solid line in Figure 1C). Fitted graphs
showed that the total number of immunizing parasites had a posi-
tive impact on the fraction of protection whereas irradiation dose
and the time between the last immunization and challenge had
negative impacts (Figure 1). Besides this, to estimate the highest
protection, fitted graphs for each predictor were generated with
other predictor values at their optimal level: 5,000 immunizing
parasites, 7 days for the time between the last immunization and
challenge, and 3 krad for irradiation dose (dashed line in Figure 1).
The models suggested that highest achievable protection was 78%
at 7 days after the last immunization, with the mouse immunized
with 5,000 cercariae, which were attenuated with 3 krad (dashed
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FIGURE 1 | Fitted graphs for identified predictors from a random
effects meta-regression model. Identified predictors effects on fraction of
protection in mouse model: (A) the number of immunizing cercariae over
the range 50–5,000 cercariae, (B) the irradiation dose over the range
3–160 krad, (C) the time between the last immunization and challenge over
the range 7–230 days. Data points indicate reported fraction of protection
for each observation. Negative fractions indicate that vaccination was
associated with increase of schistosome worm burden. Lines are fitted
graphs generated from random effects meta-regression model (see text).
Dashed lines in the graphs show the highest level of protection over range
that could be achieved.

line in Figure 1). This 78% protection will decrease over time but
would stay as high as 70% by 230 days after the last immunization
(dashed line in Figure 1C).

DISCUSSION
Irradiated S. mansoni cercariae vaccines have been tested exper-
imentally against schistosome infection for decades, with impor-
tant insights obtained from the individual experiments (25).
Although the translation of the irradiated parasites vaccine in

humans has not been pursued for schistosomiasis, a precedent
for this type of approach for human vaccination has been set by
malaria vaccine, which uses live attenuated sporozoites (Sanaria®
PfSPZ Vaccine) and has now completed phase 1/2a clinical trial
(30). This study represents a meta-analysis of the experimental
irradiated cercariae vaccine studies to identify robust variables that
affect the levels of protection to inform human vaccine research
and development.

The random effect meta-regression models identified three pre-
dictors of a reduction in worm burden: these were the total number
of irradiated cercariae per immunization, the time between the
last immunization and challenge, and the irradiation dose for par-
asite attenuation. We identified a positive correlation between the
number of irradiated cercariae per immunization and the level
of protection within the range of 50–5,000 cercariae used in the
original studies. The models suggested that the optimally prepared
irradiated cercariae vaccine could achieve a protection as high as
78% against challenge infection. As fitted graphs have shown, this
is predicted for a single vaccination with 5,000 cercariae attenu-
ated with 3 krad irradiation. This protection declines over time,
but remains high for at least 8 months after the last immunization.
Approximately 70% protection against challenge infection could
be achieved after 8 months.

The number of immunizing cercariae represents the antigen
dose, our results show a positive dose dependency of schistosome
attenuated vaccine for higher protection. Studies of live attenuated
vaccine for malaria infection also reported a similar positive cor-
relation between the dose of immunizing parasites and the level of
protection against future infection. Recently, as part of the phase
1 clinical trial of the human malaria vaccine using live attenu-
ated sporozoites (Sanaria® PfSPZ Vaccine), a dose-escalation trial
was conducted using 7,500–135,000 irradiated Plasmodium fal-
ciparum sporozoites per immunization. The participants group
that received the highest dose per immunization achieved the
highest levels of protection against challenge infection (31–33).
Although the adequate number of immunizing schistosome par-
asites are needed to protect baboon hosts has not been well
quantified yet, experimental studies have been conducted with up
to 45,000 schistosome parasites and reported positive protections
(34–36). These reports suggest that a large number of attenu-
ated cercariae would be required for vaccination in humans. The
intermediate host snails have been reported to shed a large num-
ber of cercariae that is approximately 3,600–6,000 cercariae per
snail over the first 50 days of shedding (37). Schistosome infected
snails and cercariae are commercially available from organiza-
tions such as the NIH-NIAID Schistosomiasis Resource Center
(38) and Schistosomiasis Collection at the Museum at National
History Museum, London for laboratory use (39). Clearly pro-
ducing an adequate number of cercariae of a satisfactory quality
to use in vaccinations is still highly challenging (18). Although we
cannot directly translate animal vaccine study results into human
use, their value is in highlighting the nature and development
of vaccine induced protective immunity against schistosomia-
sis. For example, the dynamic relationships between vaccination
dose and level of protection are informative for human stud-
ies, as has been alluded to by drug induced resistance against
re-infection (40, 41). It is also worth mentioning that human
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vaccination trials using infection or irradiated parasite vaccina-
tion have recently been conducted in human P. falciparum studies
(42–44).

The result from the random effects meta-regression model
showed a decrease in the fraction of protection with an increased
time between the last immunization and challenge. This period
between immunization and challenge represents the time to
secondary encounter with the same antigen. When the initial
encounter with the antigen takes place via infection or vaccina-
tion, the number of B and T cell produced against the antigen
increases dramatically (45–48). Only a small fraction of those cells
will survive as antigen-specific memory T and B cells or as long-
lived plasma cells and they will be maintained for a long time
(45–48). The duration of immune memory in humans after the
vaccination is still controversial (49). However, there are several
reports estimates for the length of immune memory after the last
booster vaccination; 15 years for combined hepatitis A and B vac-
cine (50), 22 years for hepatitis B vaccine (51), over 30 years for
poliovirus vaccine (49, 52), and over 60 years for small pox vac-
cine (49, 53). A longitudinal immuno-epidemiological study of
schistosomiasis has been conducted by Butterworth et al., which
reported that the protection induced by chemotherapy can remain
for as long as 21 months after the treatment (54). However, other
studies reported treated participants’ re-infection within 1 year
(12, 55). One of the difficulties in evaluating the length of pro-
tective immunity in humans is that, in contrast to experimental
animals, humans encounter a variety of antigens that could stim-
ulate their immune systems through their daily life. In addition,
people infected and being treated for schistosomiasis normally
live in schistosomiasis endemic areas. Regarding the influence of
schistosome infection on vaccine efficacy, Kariuki et al. have shown
that the protection levels induced by attenuated cercariae vaccina-
tion were high in baboon hosts in a group chronically infected
and then treated after vaccination, as well as in a group that was
infected and previously treated before vaccination (36). In addi-
tion, encounters with infectious cercariae by people in endemic
areas may work as a “natural booster” to stimulate protective
immunity. In our study, the times between the last immunization
and challenge (7–230 days) were relatively short compared with
the life span of humans and schistosome parasites. This reflects
that the average lifespan of a mouse is much shorter than that
of the schistosome parasite (56, 57). The decrease in the frac-
tion of protection over time was captured with our models even
within this relatively short time range. This result would suggest
that boosting vaccines may be necessary for long lasting protection
against schistosomes.

There are several different cercariae attenuation methods as we
described in the introduction. Within these, ionizing radiation
(X-ray and gamma ray) is the most commonly used attenua-
tion method for attenuated schistosome cercariae preparation.
Two relatively high irradiation doses around 20 or 50 krad have
been reported as the optimal doses for parasite attenuation (58,
59) and, in fact, many past studies have applied these irradia-
tion doses. However, our results suggest that a lower irradiation
dose could improve protection. The lower irradiation doses enable
attenuated parasites to live longer in the vaccinated host. After
vaccination, irradiated cercariae have been reported to be present

around the skin exposure site for approximately 4 days and then
gradually moved to the lungs where they transformed from cer-
cariae into lung-stage schistosomula (60). It has been reported
that the immunizing parasite has to reach the lungs and transform
to lung-stage schistosomula to elicit protective immunity against
challenge infection (60, 61), which may not be the case for cer-
cariae attenuated with high doses of ionizing radiation. Several
studies have reported that non-attenuated challenge cercariae in
vaccinated mice slowly move to the lungs and then gradually dis-
appear (61, 62). Several studies report that cercariae exposed to
extremely high irradiation doses will die in the host skin before
they start to migrate inside the host body (60, 63). Mountford et al.
reported that hosts needed to be exposed to both highly irradiated
cercariae, which die in the host skin, and lung-stage schistosome
parasites to elicit protective immunity (64). One of the possible
reasons for the high levels of protection observed when using irra-
diated cercariae vaccine is that hosts are exposed to a wide variety
of antigens, which are expressed by different parasite life stages.
Parasites, which were attenuated with lower irradiation dose, can
survive long enough to express a variety of antigens from differ-
ent life stages (65). However, in practice, allowing parasites to live
longer inside vaccinated people may not be well accepted or ethi-
cally approved. The results of our meta-analysis suggests that for
recombinant vaccine development the combination of antigens,
which are unique to the different schistosome life stages may be
an important factor in achieving a better protection.

CONCLUSION
In this study, we identified three predictors for effective immu-
nization against schistosome infection using attenuated cercariae:
the total number of immunizing parasites, the irradiation dose,
and the time between the last immunization and challenge. The
study results suggested that the optimally prepared irradiated cer-
cariae vaccine could achieve a protection as high as 78% against
challenge infection. Within the reported dose range, the maxi-
mum protection could be achieved with the highest number of
immunizing cercariae (5,000 cercariae) and the lowest irradiation
dose (3 krad). This protection slowly declines but remains high
for at least 8 months after the last immunization. This achievable
protection is much higher than the partial protection reported by
the S. mansoni purified antigens that failed to achieve consistent
protection above 40% in mice (21, 66, 67). Although none of the
radiation attenuated cercariae vaccine studies achieved complete
protection against challenge infection, it is thought that partial
protection induced by immunization can significantly reduce both
schistosome related morbidity and parasite transmission (68, 69).
This meta-analysis shows there is the high potential for an atten-
uated cercarial vaccine, while also providing insights helpful for
schistosome vaccine development more generally.
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