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Abstract 

In the past few decades, there has been an increase in the demand for positioning and 

navigation systems in various fields. Location-based service (LBS) usage covers a range of 

different variations from advertising and navigation to social media. Positioning based on a 

global navigation satellite system (GNSS) is the commonly used technology for positioning 

nowadays. However, the GNSS has a limitation of needing the satellites to be in line-of-sight 

(LOS) to provide an accurate position. Given this limitation, several different approaches are 

employed for indoor positioning needs. 

Bluetooth low energy (BLE) is one of the wireless technologies used for indoor positioning. 

However, BLE is well-known for having unstable signals, which will affect an estimated 

distance. Moreover, unlike Wi-Fi, BLE is not commonly and widely used, and BLE beacons 

must thus be placed to enable a venue with BLE positioning. The need to deploy the beacons 

results in a lengthy process to place and record the position of each placed beacon.  

This thesis proposes several solutions to solve these problems. A filter based on a Fourier 

transform is proposed to stabilise a BLE signal to obtain a more reliable reading. This allows 

the BLE signals to be less affected by internal variation than unfiltered signal. An obstruction-

aware algorithm is also proposed using a statistical approach, which allows for the detection 

of non-line-of-sight (NLOS). These proposed solutions allow for a more stable BLE signal, 

which will result in a more reliable estimation of distance using the signal. The proposed 

solutions will enable accurate distance estimation, which will translate into improved 

positioning accuracy. An improvement in 88% of the test points is demonstrated by 

implementing the proposed solutions. 
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Furthermore, to reduce the calibration needed when deploying the BLE beacons, a 

beacon-mapping algorithm is proposed that can be used to determine the position of BLE 

beacons. The proposed algorithm is based on trilateration with added information about 

direction. It uses the received signal strength (RSS) and the estimated distance to determine 

the error range, and a direction line is drawn based on the estimated error range. 

Finally, to further reduce the calibration needed, a crowdsource approach is proposed. 

This approach is proposed alongside a complete system to map the location of unknown 

beacons. The proposed system uses three phases to determine the user location, determine 

the beacons’ position, and recalculate BLE scans that have insufficient number of known BLE 

beacons. Each beacon and user’s position determined is assigned a weight to represent the 

reliability of that position. This is important to ensure that the position generated from a 

more reliable source will be emphasised. The proposed system demonstrates that the 

beacon-mapping system can map beacons with a root mean squared error (RMSE) of 4.64 m 

and a mean of absolute error (MAE) of 4.28 m.
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Lay Summary of Thesis 

 
Lay Summary of Thesis 
 

The lay summary is a brief summary intended to facilitate knowledge transfer and enhance 
accessibility, therefore the language used should be non-technical and suitable for a general 
audience. Guidance on the lay summary in a thesis. (See the Degree Regulations and 
Programmes of Study, General Postgraduate Degree Programme Regulations. These regulations 
are available via: www.drps.ed.ac.uk.) 
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Insert the lay summary text here - the space will expand as you type.  
The main project in this thesis described a system to map the location of unknown beacons using a lesser 
number of known beacons. The aim of this thesis is to reduce the calibration required to map beacons 
location inside a venue.  
The thesis proposes a new filter to reduce the effect of advertisement channels hopping which relates to 
Bluetooth low energy (BLE) signal variations. This filter works by analysing the signal and try to roughly 
differentiate the three channels from the signals. After differentiating the channels, the remaining process can 
be done from only the selected channel to ensure consistency in the RSS readings.  
This thesis also proposes a new implementation that can reduce the calibration process by proposing an 
algorithm to detect a beacon’s location. It works by using the same trilateration principle to locate the beacon 
location using any other positioning technique. The initial positioning can be determined from several initial 
beacons with known location for trilateration, or any other positioning technique with varying accuracy. The 
trilateration will give an area based on distance overlap of where the beacon is possibly located, and the 
thesis proposes an additional parameter to further reduce the estimated area size. The additional parameter 
is direction which is the estimated direction of the beacon from the reference location.  
This thesis also proposes a complete system to map unknown beacons location using crowd sourced 
approach. The proposes system uses three phases to determine the user location, determine beacons’ 
position and recalculating BLE scans that have insufficient known BLE beacons. Each beacon and user’s 
position determined is given a weight to represent the reliability of the position determine. This is important to 
make sure the position generated from a more reliable source will be emphasized.  
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1. Introduction 

1.1. Evolution of localisation and navigation 

Knowing own’s position is important information that humans have been striving to 

determine for centuries. It allows people to locate themselves and landmarks within the 

environment, and it helps them to navigate to another location without getting lost. Previous 

navigation and positioning processes were purely based on the sight of landmarks or land 

characteristics. With the help of primitive compass directions, which are based on the 

observation of celestial objects such as the sun and stars, navigation has become more 

reliable and has allowed humans to navigate even further. Localisation based on celestial 

observation has been further improved with the invention of some tools to accurately 

observe celestial objects such as a tool is the astrolabe, an elaborate inclinometer that was 

historically used by astronomers and navigators to measure the altitude above the horizon 

of a celestial body. As the astrolabe requires the observation of celestial objects, its usage is 

greatly hindered in an overcast sky. This issue was solved with the invention of the compass, 

which enables localisation and navigation without sky visibility. 

Modern positioning marks a significant advancement in positioning technology. Radios 

began to appear on ships at sea in 1891 [1]. They were initially used as wireless 

communication devices to request assistance at sea. In 1906, they were later expanded to be 

used for determining direction [2]. Before the introduction of a global navigation satellite 

system (GNSS), long-range navigation (LORAN) was used; LORAN is a pulsed hyperbolic radio 

aid to navigation that was developed by the US during World War II [3]. It can achieve an 

accuracy of 5 miles in a range of 1,500 miles. A further leap in modern positioning history 

saw the introduction of global positioning systems (GPSs) in 1980 [4]. With superior 
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availability, accuracy, and reliability, the GPS is fast becoming the positioning technique 

adopted worldwide. The advantages of GPS piqued the interest of other countries to adopt 

the same positioning technique, which consequently saw the introduction of other GNSS 

such as GLONASS, Galileo, and BeiDou. The successful commercialisation of GNSS 

demonstrates a mass-market demand for location-based services (LBSs). The technology, 

which was previously only used by surveyors because of cost constraints, is now also 

available for personal civilian use.  

The demand for LBSs is further increasing with the introduction of smartphones, which 

have the performance capabilities of a computer. Smartphones are equipped with several 

sensors and receivers, with a GPS sensor being one of them. This allows for a more complex 

use of positioning, such as location sharing, emergency assistance, and even gaming, to be 

accessible to a wider population. Even with all the advantages of GNSS, there are 

unfortunately still locations that are not accessible by GNSS, such as indoor areas. Similarly 

to navigation using celestial object observation, GNSS requires line-of-sight (LOS) to the 

reference objects – in this case, the satellites [5]. For indoor positioning, most if not all of the 

satellites are blocked by roofs or walls, and their signals are unable to penetrate the 

obstruction, thereby leading to losses in the GNSS signals. Even if the signals are visible, signal 

degradation because of multipath causes misinterpretation of the data, which ultimately 

results in a large error in positioning displacement. Given this challenge, other means of 

positioning are preferred for indoor positioning. 

Several technology classifications have been proposed, as discussed in [6], based on 

different criteria such as the hardware required and the existence of a network, among 

others. The classification that would clearly highlight the different technologies used for 

indoor positioning system (IPS) is based on the main medium used to determine position, as 
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proposed by [7]. The technology categories are as follows: vision-based, radio frequency (RF), 

magnetic, and audible and ultrasound technologies. 

Vision-based positioning previously only appealed to those who worked in robotics. 

However, because of improvements in camera lenses, computing capabilities, and its 

availability in many mobile devices, this type of positioning has begun to gain popularity for 

human positioning and navigation [8].  

Magnetic positioning is an increasingly popular positioning technique that is based on 

magnetic reading. In most cases, magnetic positioning will be based on scene analysis, also 

known as the fingerprint technique. When a user attempts to locate his or her position, the 

magnetic reading will be compared with a reading pre-recorded in the database. The user’s 

position will be returned as the location with a similar pre-recorded reading from the 

database.  

Audible and ultrasound positioning utilises the same principle as echo localisation for 

dolphins, for example as proposed in [9]. This type of positioning is currently not actively 

used for mobile device positioning.  

Radio frequency positioning is a widely accepted positioning technology for indoor 

positioning, and a number of different radio technologies are available. Radio frequency 

positioning ranges from GSM and Wi-Fi to Bluetooth. The introduction of Bluetooth 4.0 with 

the Bluetooth low energy (BLE) standard allows for more opportunities for positioning using 

Bluetooth. Positioning using Bluetooth is usually done using BLE beacons, which can be 

deploy as needed. The advantages of these beacons are low operation power consumption 

and low hardware costs. However, to obtain the best accuracy from BLE positioning, the 

location of the beacons must be accurately recorded, which can be a laborious task.  
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1.2. Problem statement 

Positioning using BLE beacons can be done in two ways: fingerprint or trilateration. The 

fingerprint technique requires a BLE radio map created by pre-recording BLE signals at 

predetermined locations. This step is known as the offline or calibration phase. The more 

pre-recorded data gathered, the more accurate the positioning will be. In this online or 

positioning phase, the user will receive the BLE readings, and the current reading will be 

compared with the radio map database; the most identical result will then be used as the 

user’s location. In the trilateration technique, the user’s location is determined by estimating 

the distance overlap of three or more beacons. With this technique, it is important to know 

the initial location of the beacons.  

Both techniques are laborious in either collecting the data for the radio map or mapping 

the exact locations of the beacons to the systems. However, the mapping of the beacons’ 

locations is less time consuming than preparing the data for the radio map, and further 

reducing the requirement to map the beacons’ locations through a manual process will 

further reduce the calibration tasks.  

Both techniques generally make use of the received signal strength (RSS). Other 

techniques, such as the angle of arrival (AoA) or the time of arrival (ToA), are also available; 

however, these techniques require specific and additional hardware, compared to RSS, which 

can be used with the current receiver in most mobile devices with Bluetooth capability. With 

RSS, the signal’s power decays as the signal travels; therefore, the RSS can be an indicator of 

the distance travelled. However, it can fluctuate because of shadowing and multipath, which 

can be caused by the environment and can be dependent on each environment and location. 

Moreover, with the BLE standard that introduced three separate channels for advertisement, 



 
 

 
5 

 

an additional signal variation can be seen because of channel hopping across the three 

channels.  

1.3. Contribution 

The main project in this thesis describes a system to map the location of unknown beacons 

using a small number of known beacons. The aim of this thesis is to reduce the calibration 

required to map beacon location inside a venue.  

The thesis also proposes a new filter to reduce the effect of advertisement channel 

hopping, which relates to BLE signal variations. This filter works by analysing the signal and 

attempting to roughly differentiate the three channels from the signals. After this 

differentiation, the remaining process can be done using only the selected channel to ensure 

consistency in the RSS readings.  

Furthermore, this thesis proposes a new type of implementation that can reduce the 

calibration process by utilising an algorithm to detect a beacon’s location. It works by 

employing the same trilateration principle to locate a beacon using any other positioning 

technique. The initial positioning can be determined from several initial beacons with known 

locations for trilateration or through any other positioning technique with varying accuracy. 

The trilateration will yield an area where the beacon is possibly located based on a distance 

overlap, and to further reduce the estimated area size, the thesis proposes an additional 

parameter namely direction, which is the estimated direction of the beacon from the 

reference location.  

Finally, this thesis suggests a complete system to map the location of unknown beacons 

using a crowdsourced approach. The proposed system utilises three phases to determine the 

user location, determine beacons’ positions, and recalculate BLE scans that have an 
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insufficient number of known BLE beacons. Each beacon and user’s position determined is 

assigned a weight to represent the reliability of that position. This is important to ensure that 

the position generated from a more reliable source will be emphasised.  

1.4. Thesis Structure 

The rest of the thesis is organised as follows: 

In Chapter 2, the background about indoor positioning is provided, and the techniques 

and technologies used in this thesis are discussed in detail.  

Chapter 3 proposes a novel channel selection filter to reduce the effect of channel 

hopping across the BLE advertisement channel. Then, the implementation of the proposed 

filter is performed, and the result is compared against positioning using a mean value.  

Thereafter, Chapter 4 proposes another novel filter to further reduce the instability in BLE 

signals. This filter tries to detect an isolated beacon; by doing so, the distance estimation can 

be adjusted to accurately predict the correct distance. The proposed filter is implemented 

and compared to another state-of-the-art filter algorithm.  

In Chapter 5, a beacon-mapping algorithm is proposed that adds extra information that 

can be used to determine the location of a beacon. This added information is the estimated 

direction of the beacon.  

Chapter 6 proposes a complete system to map the location of unknown beacons using a 

crowdsourced approach. The proposed system uses three phases to determine the user 

location, determine beacons’ positions, and recalculate BLE scans that have an insufficient 

number of known BLE beacons. 
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Finally, Chapter 7 concludes the work presented in the thesis and suggests further works 

that can be done to improve the current proposed system.  
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2. Indoor positioning 

2.1. Introduction 

The previous chapter provided a brief introduction to indoor positioning. Achieving an 

accurate position is important for indoor positioning, as an indoor area tends to have a small 

boundary. A low accuracy in localisation could point a user to a different room or, in the 

worst case, a different building altogether. 

This chapter discusses indoor positioning techniques. The challenges and solutions for 

these techniques are reviewed to determine the current solution and remaining challenges. 

Then, the technologies used for indoor positioning are reviewed to identify the similarities 

and differences between them. 

2.2. Classification of indoor positioning techniques 

Several techniques can be adopted for indoor positioning. Even though many solutions 

are available for positioning, most of them relate back to the common techniques, and most 

are an expansion thereof. These techniques are not specifically for indoor positioning; 

nevertheless, those used widely in indoor positioning are highlighted. As the techniques are 

not specifically for indoor positioning, some solutions to the challenges developed for 

outdoor positioning might also work in indoor areas.  
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2.2.1. Proximity 

Proximity techniques determine the position of a receiver based on the range of a 

transmitter. The proximity range can be based on the maximum range of the transmitter or 

signal strength within a pre-set threshold value [10], as illustrated in Figure 2.1. This 

technique is generally only used for a fenced area rather than for absolute distance 

estimation. A well-known implementation of this technique is the iBeacon, a specification for 

the BLE beacon released by Apple [11]. The proximity technique implemented in iBeacon is 

based on predetermined threshold values that allow for the detection of three proximity 

stages: far, near, and immediate. The simplicity if this technique makes it an ideal solution to 

tag an area of interest; however, this same reason became the technique’s drawback, as it is 

not usable to obtain the absolute position of a receiver. Chawathe [12] has proposed a 

positioning algorithm, which is also based on proximity, using the visibility of a set of beacons. 

It relies on the availability of a combination of beacons to know the exact position of the user. 

However, it requires complete information of the area covered by each beacon to determine 

 

Figure 2.1. A schematic diagram of the proximity technique. The area within the proximity range is detected as being in 
proximity 
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the area that is visible only for a certain set of beacons. Bouchard et al. [13] attempted to 

improve proximity-based localisation by adding a set of features to each of the recorded 

beacons, but the drawback of a proximity technique remains. The proposed algorithm 

returns the position of the closest proximity beacon, and the position is thus limited to the 

deployment of that beacon.  

2.2.2. Angulation 

The angulation technique uses direction information, or angles, to estimate the position 

of a receiver. The measured angles are the angles of the receiver to a reference point (RP) 

with a known location [14]. The measured angle is called the AoA, and the location of the 

receiver can be deduced using the AoA from multiple transmitters by applying a trigonometry 

calculation, as illustrated in Figure 2.2. However, this technique has several issues. For 

example, it requires a specific antenna in the transmitter or receiver to allow for the 

detection of the angles. This would require a device that is specifically manufactured for use 

with this technique.  

 

 

Figure 2.2. A schematic diagram of angulation technique. Directional antenna is required in either the transmitter or 
receiver, to detect the direction of the signal 
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2.2.3. Lateration  

Lateration is a technique to determine the position of a transmitter based on the distance 

between the transmitter and the receiver [15]. Using a single transmitter with a known 

 

Figure 2.3. A schematic diagram of the lateration technique with a centroid. In real-world implementation, errors in 
estimated distance will provide an area of a possible position rather than the exact location 

 

Figure 2.4. A schematic diagram of the lateration technique. The ideal situation with accurate distance will point to the 
location of the device 
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location and distance allows for an accurate proximity estimation, as discussed in Section 

2.2.1. With multiple transmitters, the actual position of the receiver can be determined. Each 

of the transmitters creates its own circle with the distance as the radii centred at the 

transmitter’s location. The point at which these circles overlap is the location of the receiver, 

as depicted in Figure 2.4. However, in real-world implementation, instead of overlapping at 

a single point, an overlapping area will be established, as illustrated in Figure 2.3. Therefore, 

a minimum of three beacons is required to properly locate a position using a lateration 

technique. The receiver’s location with the overlapped area can be estimated using a 

centroid.  

To reduce the complexity of the problem into a single problem of determining the 

intersection point of several planes, linearisation is applied [16]. This also simplifies the 

problem when determining the intersection point when the number of transmitters is more 

than three. The basic equation of a sphere with a distance radius of 𝑑 is  

(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + (𝑧 − 𝑧𝑖)
2 = 𝑑𝑖

2         

(𝑖 = 1,2…𝑛, 𝑛 ≥ 4) 

 (2.1) 

 

where 𝑑 denotes the distance between a transmitter and a receiver with a total of 𝑛 

transmitters, and 𝑥, 𝑦, and 𝑧 denote the position of the receiver to be located. To linearise 

(2.1), a reference node or transmitter is needed. The selection of the reference node does 

not matter, because the same reference node is used throughout the calculation. For this, 

the first reference node is used.  

The linearisation process starts by subtracting the reference node with the ith transmitter. 

[(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2] − 

[(𝑥 − 𝑥𝑖)
2 + (𝑦 − 𝑦𝑖)

2 + (𝑧 − 𝑧𝑖)
2] 

 (2.2) 
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= 𝑑1
2 − 𝑑𝑖

2        (𝑖 = 2, 3…𝑛, 𝑛 ≥ 4) 

Expanding the equation in parentheses results in  

[𝑥2 − 2𝑥𝑥1 + 𝑥1
2 + 𝑦2 − 2𝑦𝑦1 + 𝑦1

2 + 𝑧2 − 2𝑧𝑧1 + 𝑧1
2] − 

[𝑥2 − 2𝑥𝑥𝑖 + 𝑥𝑖
2 + 𝑦2 − 2𝑦𝑦𝑖 + 𝑦𝑖

2 + 𝑧2 − 2𝑧𝑧𝑖 + 𝑧𝑖
2] 

= 𝑑1
2 − 𝑑𝑖

2        (𝑖 = 2, 3…𝑛, 𝑛 ≥ 4) 

 (2.3) 

 

Further expanding the equation results in  

𝑥2 − 2𝑥𝑥1 + 𝑥1
2 + 𝑦2 − 2𝑦𝑦1 + 𝑦1

2 + 𝑧2 − 2𝑧𝑧1 + 𝑧1
2 − 

𝑥2 + 2𝑥𝑥𝑖 − 𝑥𝑖
2 − 𝑦2 + 2𝑦𝑦𝑖 − 𝑦𝑖

2 − 𝑧2 + 2𝑧𝑧𝑖 − 𝑧𝑖
2 

= 𝑑1
2 − 𝑑𝑖

2        (𝑖 = 2, 3…𝑛, 𝑛 > 3) 

 (2.4) 

 

 

This can be solved to 

−2𝑥𝑥1 + 𝑥1
2 − 2𝑦𝑦1 + 𝑦1

2 − 2𝑧𝑧1 + 𝑧1
2 + 

2𝑥𝑥𝑖 − 𝑥𝑖
2 + 2𝑦𝑦𝑖 − 𝑦𝑖

2 + 2𝑧𝑧𝑖 − 𝑧𝑖
2 

= 𝑑1
2 − 𝑑𝑖

2        (𝑖 = 2, 3…𝑛, 𝑛 ≥ 4) 

 (2.5) 

Extracting the unknown position of the receiver and rearranging the equation yields 

2𝑥(𝑥𝑖 − 𝑥1) − 2𝑦(𝑦𝑖 − 𝑦1) + 2𝑧(𝑧𝑖 − 𝑧1) 

= 𝑑1
2 − 𝑑𝑖

2 − 𝑥1
2 − 𝑦1

2 − 𝑧1
2 + 𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2       (𝑖 = 2, 3…𝑛, 𝑛 ≥ 4) 

 (2.6) 

given 

𝑘𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2  (2.7) 

Using (2.7), (2.6) can be written in a more concise form: 

2𝑥(𝑥𝑖 − 𝑥1) − 2𝑦(𝑦𝑖 − 𝑦1) + 2𝑧(𝑧𝑖 − 𝑧1) = 𝑑1
2 − 𝑑𝑖

2 − 𝑘1 + 𝑘𝑖       

(𝑖 = 2, 3…𝑛, 𝑛 ≥ 4) 

 (2.8) 

The equation can then be rewritten in matrix form to 
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2(

𝑥𝑖 − 𝑥1 𝑦𝑖 − 𝑦1 𝑧𝑖 − 𝑧1
𝑥𝑖+1 − 𝑥1 𝑦𝑖+1 − 𝑦1 𝑧𝑖+1 − 𝑧1

… … …
𝑥𝑛 − 𝑥1 𝑦𝑛 − 𝑦1 𝑧𝑛 − 𝑧1

)(
𝑥
𝑦
𝑧
) =

(

 

𝑑1
2 − 𝑑𝑖

2 − 𝑘1 + 𝑘𝑖
𝑑1
2 − 𝑑𝑖+1

2 − 𝑘1 + 𝑘𝑖+1
…

𝑑1
2 − 𝑑𝑛

2 − 𝑘1 + 𝑘𝑛 )

  

(𝑖 = 2, 3…𝑛, 𝑛 ≥ 4) 

 (2.9) 

which corresponds to 

𝐴𝑥⃑ = 𝑏⃑⃑  (2.10) 

with 

𝐴 = (

2(𝑥𝑖 − 𝑥1) 2(𝑦𝑖 − 𝑦1) 2(𝑧𝑖 − 𝑧1)

2(𝑥𝑖+1 − 𝑥1) 2(𝑦𝑖+1 − 𝑦1) 2(𝑧𝑖+1 − 𝑧1)
… … …

2(𝑥𝑛 − 𝑥1) 2(𝑦𝑛 − 𝑦1) 2(𝑧𝑛 − 𝑧1)

) , 𝑥⃑ = (
𝑥
𝑦
𝑧
),   

𝑏⃑⃑ =

(

 

𝑑1
2 − 𝑑𝑖

2 − 𝑘1 + 𝑘𝑖
𝑑1
2 − 𝑑𝑖+1

2 − 𝑘1 + 𝑘𝑖+1
…

𝑑1
2 − 𝑑𝑛

2 − 𝑘1 + 𝑘𝑛 )

  

(𝑖 = 2, 3…𝑛, 𝑛 ≥ 4) 

 (2.11) 

The value of 𝑥⃑ can be computed by solving (2.10) using 

𝑥⃑ = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏⃑⃑  (2.12) 

 

It must be noted that the given equation is for solving lateration in a 3D plane. To solve 

lateration in a 2D plane, the equation of 𝐴, 𝑥⃑ and 𝑏⃑⃑ can be changed to the following: 

𝐴 = (

2(𝑥𝑖 − 𝑥1) 2(𝑦𝑖 − 𝑦1)

2(𝑥𝑖+1 − 𝑥1) 2(𝑦𝑖+1 − 𝑦1)
… …

2(𝑥𝑛 − 𝑥1) 2(𝑦𝑛 − 𝑦1)

) , 𝑥⃑ = (
𝑥
𝑦), 

  𝑏⃑⃑ =

(

 

𝑑1
2 − 𝑑𝑖

2 − 𝑘1 + 𝑘𝑖
𝑑1
2 − 𝑑𝑖+1

2 − 𝑘1 + 𝑘𝑖+1
…

𝑑1
2 − 𝑑𝑛

2 − 𝑘1 + 𝑘𝑛 )

  

(𝑖 = 2, 3…𝑛, 𝑛 ≥ 3) 

 (2.13) 
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with 

𝑘𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2  (2.14) 

Furthermore, the minimum number of transmitters, 𝑛, corresponds to the number of 

unknowns to be solved: four for the 3D plane and three for the 2D plane. For 𝑛 with more 

than the minimum number of transmitters needed, a solution based on a least square can be 

used. 

This technique is widely used because of its simplicity and independence from any specific 

technology or hardware. It can be used with any distance estimator technology and 

algorithm. However, the trilateration technique is highly dependent on the accuracy of the 

estimated distance.  

2.2.4. Scene Analysis 

A scene analysis technique is a positioning technique that compares a scanned signal with 

a pre-recorded signal at a previously visited position. This technique, which also called the 

 

Figure 2.5. A schematic diagram of the scene analysis calibration phase. Radio signals are recorded and sent to the 
database along with the position where the signal is recorded. The information from a different device can also be sent 

to the same database; this will allow for a faster and more complete radio map 
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fingerprint technique, is based on the idea that the pre-recorded signal is a digital signature 

for the location, and it requires a database to be built before any positioning can be done. In 

the case of the fingerprint technique using wireless signals, the pre-recorded signal or the 

database is the source of information of the signal to be used. The information can be the 

RSS, the ToA, the AoA, or any other information that changes because of a position or 

distance change. 

As a fingerprint technique requires a built database for positioning, it is usually separated 

into two phases: a calibration phase and a positioning phase. The calibration phase involves 

recording and tagging the signals at a number of predetermined positions. These points are 

known as calibration points. The calibration process is depicted in Figure 2.5. 

The positioning phase is the process to determine a specific position. When a position is 

requested, the scanned signal is sent along with the request. The positioning phase makes 

use of the database generated in the calibration phase by comparing the scanned signal with 

 

Figure 2.6. A schematic diagram of the scene analysis positioning phase. A device records the radio signals, and the 
information is compared against the database created in the calibration process. The position of the matching signals 

is returned as the position of the device 
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the recorded signals in the database. The recorded position of the matched signals will be 

returned as the position of the requested location. 

The scene analysis technique is widely used, including in the indoor positioning industry, 

because of its robustness against attenuation and multipath. Any attenuation and multipath 

are captured alongside the signal when it is recorded in the database. However, a laborious 

calibration phase is required to build the radio map before the positioning can take place.  

2.3. Distance Estimator 

A distance estimator is important for several distance estimation techniques, especially 

for those based on the lateration technique. Since distance is the main information used in 

lateration, any errors in the estimated distance will cause errors in the calculated position.  

2.3.1. Time of Arrival 

A distance estimator based on the ToA is obtained using the time taken for a signal to 

travel from the transmitter to the receiver, as illustrated in Figure 2.7. It is calculated by 

dividing the time travelled by the speed propagation of the medium. The ToA is modelled as 

a Gaussian random variable: 

𝑇 =
𝑑

𝑣𝑝
+ 𝑍𝑇  

 (2.15) 

where 𝑑 is the distance travelled, 𝑣𝑝 represents the propagation speed of the medium, 

and 𝑍𝑇  represents a zero mean Gaussian noise. The main drawback of this solution is that it 

requires specific hardware to obtain a precise time stamp. Furthermore, the time between 

the transmitter and the receiver needs to be synchronised. 
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2.3.2. Time Difference of Arrival (TDoA) 

The time difference of arrival (TDoA) uses the same principle as the ToA; however, it 

measures the time delays between multiple transmitters, and the relative measurements are 

used to estimate the distance. The advantage of this technique is that it does not need to 

maintain a precise synchronisation between the transmitter and the receiver. The main 

drawback of this approach is that it still requires time stamping with the signal, which is not 

supported in a number of wireless protocols.  

2.3.3. Received Signal Strength (RSS) 

In distance estimated using RSS, a transmitter transmits a signal with a set transmit power, 

and a receiver receives the attenuated signal. The distance is estimated based on the power 

difference of the transmitted signal and the received signal. The relation between the power 

and the distance is described by a radio propagation model used. 

The advantage of a distance estimator based on RSS is the availability of information to 

be used for estimating the distance. Received signal strength is common information 

 

Figure 2.7. A schematic diagram of time of arrival. Distance is estimated by measuring the time taken for a signal 
to travel from a transmitter to a receiver 



 
 

 
19 

 

obtained when receiving a signal. Most applications and devices can thus use this distance 

estimator without any specific hardware required. However, the RSS can be affected by a 

number of factors, and it thus tends to be unstable, depending on the technology and 

frequency used. 

2.4. Propagation Model for RSS-based distance estimator 

The RSS provides information about the power of a received signal. By itself, it is simply a 

measure of the degree to which the signal was attenuated before it reached the receiver. To 

relate the attenuation to the signal distance travelled, a correct propagation model must be 

used. A radio propagation model is a mathematical representation of propagation 

characteristics as a function of the frequency of the radio wave and the distance between 

the transmitter and receiver [17]. Accurately predicting the radio propagation behaviour for 

a wireless communication system is important to estimate the signal coverage. Site 

measurement would provide an accurate representation of a signal characteristic; however, 

doing so is costly. A radio propagation model was designed to allow a representation of radio 

characteristic to be adequately estimated. Using the same model, the relation between a 

signal loss from a transmitter and a receiver can be estimated.  

A radio propagation model can be divided into three types: deterministic, empirical, and 

physical [18] or stochastic [19] models. Deterministic models make use of the laws governing 

electromagnetic wave propagation to determine the received signal power at a particular 

location [19]. An example of a deterministic model is a ray-tracing model [20]. Empirical 

models are based on observations and measurements. The COST 231 Hata model 

implemented in [21] is a well-known example of an empirical model. Physical or stochastic 

models, on the other hand, model the environment as a series of random variables. These 

models are the least accurate of the three types but require the least amount of information 
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about the environment and use much less processing power than the other two models to 

generate predictions. 

Two path-loss models are widely used for Wi-Fi radio signals in indoor environments: the 

log-distance path-loss model and the International Telecommunication Union (ITU) indoor 

path-loss model. 

2.4.1. Log-distance path-loss model 

The log-distance path-loss model is the most commonly used model in an indoor radio 

propagation model, as it require less specific details than other models, as employed in [22]. 

The relation between the power and the distance is described by a log-distance path-loss 

model 

𝑃 = 𝑃0 + 10𝑛𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋𝑔 

 (2.16) 

where 𝑃0 is the RSS measured at a reference distance 𝑑0, with a distance of 1 m chosen 

to simplify the equation. Moreover, 𝑛 is the path-loss exponent, and 𝑋𝑔 is the zero-mean 

Gaussian noise. 

2.4.2. International Telecommunication Union indoor path-loss model 

The ITU indoor path-loss model is derived from the Wall and Floor factor model [23]. The 

mathematical representation of this factor model, with a fixed exponent of 2 (as in free 

space) and additional loss factors relating to the number of floors 𝑛𝑓 and walls 𝑛𝑤, 

intersected by the straight-line distance 𝑟 between terminals, is represented as follows: 

𝐿 = 𝐿1 + 20 log 𝑟 + 𝑛𝑓𝑎𝑓 + 𝑛𝑤𝑎𝑤  (2.17) 

where 𝐿 is the total path loss, 𝐿1 is the path loss at 1 m, 𝑎𝑓 is the floor attenuation factor, 

and 𝑎𝑤 is the wall attenuation factor. 
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The ITU indoor path-loss model uses a similar approach, except that only floor loss is 

explicitly accounted for, and the loss between points on the same floor is included implicitly 

by changing the path-loss exponent [23]. It is given by (2.18): 

𝐿 = 20 log10 𝑓 + 10𝑛 log10 𝑑 + 𝐿𝑓(𝑛𝑓) − 28  (2.18) 

where 

𝐿 is the total path loss in decibel (dB); 

𝑓 is the transmission frequency in megahertz (MHz); 

𝑑 is the distance in metres; 

𝑛 is the distance power loss coefficient; 

𝑛𝑓 is the number of floors between the transmitter and receiver; and 

𝐿𝑓(𝑛) is the floor-loss penetration factor. 

2.5. Indoor positioning technology classification 

Several technologies can be used for indoor positioning, and various technology 

classifications have been proposed, as discussed in [6]. These classifications are based on 

numerous criteria, such as the hardware required and the existence of a network, among 

others. The classification that would clearly demonstrate the different technologies used for 

IPS is based on the main medium utilised to determine position, as proposed by [7]. The 

categories are divided into optical, magnetic, audible and ultrasound, and RF positioning 

technologies. 
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2.5.1. Optical 

Optical-based positioning technology was previously employed predominantly by those 

working in robotics, as this technology requires a database and considerable processing 

power to process images, depending on their resolution. However, current smartphones 

contain high processing power and accurate lenses, which can be used to calculate and 

perform a better analysis using an accurate image.  

The algorithm in [24] attempted to map the unique features in a corridor area, which 

contains many wall edges and intersections to be used to determine its location and 

direction. Meanwhile, [25] and [26] attempted to locate a user’s position by comparing the 

captured image with the floor plan, using the wall edges of corridors and rooms as the unique 

features. The author in [27] has proposed an optical positioning technique by comparing the 

unique features of a captured image to the database rather than the area floor plan. These 

algorithms target small indoor areas, such as corridors, because of the limitation in vision-

based indoor positioning. To overcome this limitation, the author in [28] has proposed a 

solution that makes use of static objects such as doors and windows. The system targeted 

monocular photography by integrating computer vision and a deep learning algorithm. To 

ensure a precise comparison of an image with the images in the database, [29] and [30] have 

proposed a key graph or a specific landmark, which is assigned at a certain location. This 

approach would allow for a more accurate detection but with the cost of a higher calibration 

process.  

More recent optical positioning also demonstrates the interest in the inclusion of a 3D 

map to the algorithm, for example as adopted by [31] and [5]. A mobile device released by 

Google and equipped with RGB-D sensors has further raised interest in this area, such as in 

[32]. The author in [33] has proposed a simultaneous localisation and mapping (SLAM) 
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solution by making use of an RGB-D camera. The proposed algorithm focuses on a dynamic 

environment to overcome the limitation of most state-of-the-art SLAMs, which assume no 

moving object in the environment [33]. 

The author in [34] has proposed a camera-based indoor positioning system that uses 

visible light communication rather than environmental features of a captured or live image. 

The proposed algorithm requires reference LEDs transmitting their unique co-ordinate 

information to be deployed.  

Several researchers have also proposed hybrid techniques that make use of optical 

positioning. A recent system has been proposed in [35] to perform a distance measurement 

using a hybrid system based on optical camera communication and the TDoA. The system 

requires a unit that receives optical and audible signals and sends back another optical signal. 

A system suggested in [36], on the other hand, proposes a hybrid system alongside integrated 

sensors, making use of a pedestrian dead reckoning (PDR) solution. It uses optical camera 

communication alongside digital zoom to calibrate and remove errors caused by PDR. 

However, optical positioning still requires the user to capture the image, and there is 

sometimes a limitation in terms of what image is being captured for the technology to work 

properly.  

2.5.2. Magnetic 

Interest in magnetic positioning has been increasing because of the idea of positioning 

without the need to deploy anything. Earth is known to have its own geomagnetic field, and 

this field can be used to determine a user’s position, as proposed by [37]. However, in an 

indoor area, the ambient magnetic field tends to be affected by surrounding objects, 

including building materials, and this can cause signal irregularities or anomalies in the 
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magnetic field. These magnetic field anomalies can be used as unique references for 

fingerprinting, as proposed by [38] and [39]. However, magnetic positioning demonstrates 

much uncertainty because of the limited number of elements for fingerprinting. Moreover, 

the changes in a magnetic field can be rapid, thereby making the calibration process a 

laborious task [40].  

2.5.3. Audible and ultrasound technologies 

Acoustic positioning is well known because it is a unique positioning technique adopted 

by animals, such as dolphins. It can be used not only with methods such as radar systems but 

also with fingerprint [41][42] and trilateration methods [43]. Nowadays, acoustic positioning 

can also be utilised with a smartphones, such as in [44]. The advantage of acoustic positioning 

is that it can achieve sub-centimetre levels of accuracy without the need for any additional 

infrastructure or devices apart from what is already available nowadays. However, the 

deployment of acoustic positioning might be limited, as this technology poses a significant 

challenge in terms of diverse noise sources, synchronisation, and strong interference of the 

audible band [43]. 

2.5.4. Radio Frequency  

Indoor positioning based on RF is the choice of technology for many, as it is easily 

accessible with modern mobile devices and because of the high accuracy it can achieve. In 

some cases, small or no additional infrastructure is required to employ this positioning 

technology, since the signals are already available throughout the indoor area [45].  

2.5.4.1.  Radio frequency identification 

Radio frequency identification (RFID) systems make use of a network of radio beacons and 

tags. Using this technology would allow for high accuracy and reliability in positioning. The 
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unique identification of different objects in an indoor area makes the technology a promising 

option for accurate positioning with a sub-meter level of accuracy [46]. The author in [47] 

has proposed indoor positioning using active RFID tags with a trilateration approach. 

However, this algorithm requires a large number of RFID tags to be deployed with up to one 

tag per 1 m2 area. Zou et al. [46] attempted to lower the deployment cost of the algorithm in 

[47] by reducing the number of RFID readers and replacing them with RFID sensors instead. 

Furthermore, the author in [48] attempted to combine RFID positioning with a GPS to allow 

for automatic switching between indoor and outdoor positioning. However, the algorithm 

for RFID itself remains the same as the one used in [47]. 

2.5.4.2. Wi-Fi 

Radio frequency signal positioning based on Wi-Fi is increasingly common nowadays. 

Unlike RFID positioning, no additional Wi-Fi access points (APs) are needed apart from what 

is already available in the area. In most buildings, the Wi-Fi signal covers the whole indoor 

area, and this signal can be used to locate a user’s position. As with the previous algorithm, 

Wi-Fi positioning can be used with fingerprint [49][50][51] or trilateration [52][53][54]. The 

Wi-Fi signal is highly affected by attenuation and multipath; therefore, it is challenging to 

apply the appropriate estimation of the path-loss model for the signal. Furthermore, the 

placement of an AP is based on the widest coverage rather than on the optimal dilution of 

position (DOP) for positioning. The AP itself requires high power consumption; it thus needs 

to be deployed in an area with an accessible power supply. These problems can affect the 

Wi-Fi positioning accuracy,, which can be up to 3–5 m [55].  

2.5.4.3. Bluetooth 

Bluetooth has become a widely used technology for indoor positioning in recent years. It 

utilises the same 2.4 GHz signal as Wi-Fi, and most of the positioning algorithms developed 
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for Wi-Fi can thus be adopted with Bluetooth. Moreover, the introduction of Bluetooth 4.0 

with a BLE sub-module has further gained the interest of researchers in terms of the use of 

Bluetooth technology for indoor positioning. Unlike APs, BLE beacons can be powered up 

using a battery, and they can last for years using only a coin-operated battery. For these 

reasons, a BLE beacon can be deployed in the best possible DOP for the best accuracy of 

positioning. Moreover, the low-cost factor of BLE enables an affordable deployment of a 

number of these beacons in the area to be localised.  

With the release of two advertisement protocols for BLE beacons, namely iBeacon [11] 

and Eddystone [56], the demand for Bluetooth positioning has further increased. The new 

advertisement protocol allows for a more unique classification among each beacon and a 

more accurate distance estimation, even among different beacon manufacturers. 

Furthermore, the new protocol also enables additional information to be advertised, such as 

the identification of the following: code that allows for interaction from an application, a 

beacon’s telemetry information, and the URL for beacon use without any specific application 

[57].  

Faragher et al. [58] and King et al. [59] have proposed the use of Bluetooth positioning 

using the fingerprint approach. A Bluetooth fingerprint can also be used alongside a Wi-Fi 

fingerprint to improve the accuracy of Wi-Fi positioning in an area with low Wi-Fi positioning 

accuracy, as was done in [60], [61], and [62]. As with any other fingerprint technique, this 

approach requires a large number of RPs through calibration. A trilateration approach using 

Bluetooth has been proposed in [63], [64], and [65]. In general, only the beacons’ locations 

and their RSS are required to perform the trilateration. Since less calibration is required, 

many researchers have also studied Bluetooth positioning using this approach. 
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2.6. Conclusion 

This chapter described the background of various techniques and technologies used in 

indoor positioning. A summary of the indoor positioning techniques is presented in Table 2.1. 

Lateration and scene analysis techniques are widely used because of their low-complexity 

implementation. These techniques are used in this research because of their low dependency 

on specific hardware and because they can be easily implemented with widely available 

consumer devices. Table 2.2 contains a summary of the distance estimators that are widely 

adopted in conjunction with the lateration technique. The most popular selection of distance 

estimators is based on RSS because of the availability of the device and protocol. Received 

signal strength is chosen as the distance estimator, as it does not require any specific antenna 

for both transmitter and receiver. The summary of indoor positioning technologies is 

presented in Table 2.3. The RF technology is chosen as the technology for this research 

because it requires little to no additional infrastructure while still maintaining high positional 

accuracy. An analysis of RF is consequently performed and summarised in Table 2.4. Wi-Fi 

tends to be the radio technology choice for most because of its widespread availability; 

Table 2.1. Analysis summary of indoor positioning techniques 

Indoor Positioning 
Technique 

Advantages Disadvantages 

Proximity • Easy to implement • Limited or no absolute 
positioning 

Angulation • Accurate • Requires a specific 
antenna 

Lateration • Only requires distance, 
which can be 
estimated using RSS 

• Highly dependent on the 
accuracy of the 
estimated distance 

Scene Analysis 
 (Fingerprint) 

• Robust against 
attenuation and 
multipath 

• Laborious calibration 
phase 
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however, the introduction of BLE as well as the protocols specifically meant for positioning 

brings BLE to the attention of many researchers. This research focuses on BLE because of its 

low cost and low power consumption. This allows accurate positioning to be implemented in 

areas with limited access to other RF technologies. 

 

Table 2.2. Analysis summary of distance estimators 

Distance 
Estimator 

Advantages Disadvantages 

Time of Arrival 
(ToA) 

• Accurate • Requires specific hardware to 
obtain a precise time stamp 

• Transmitter and receiver need to 
be synchronised 

Time Difference 
of Arrival (TDoA) 

• Does not require 
precise 
synchronisation 

• Requires specific hardware to 
obtain a precise time stamp 

Received Signal 
Strength (RSS) 

• Commonly available • Can be unstable depending on 
the RF technology and frequency 
used 

 

Table 2.3. Analysis summary of indoor positioning technologies 

Indoor Positioning 
Technology 

Advantages Disadvantages 

Optical • No additional 
infrastructure 

• Accurate even with 3D 
positioning 

• Requires large database 

• Requires considerable 
processing power 

• Requires a specific lens for 
accurate positioning 

Magnetic • No additional 
infrastructure 

• Can be unreliable because 
of interference 

• Limited indoor positioning 
technique can be apply 

Audio • No additional 
infrastructure 

• Can achieve sub-
centimetre accuracy 

• Limited application as a 
result of diverse noise 
sources 

• Synchronisation 
Radio Frequency • Small or no additional 

infrastructure 

• High accuracy 

• May require additional 
infrastructure 

• Susceptible to multipath 
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Table 2.4. Analysis summary of radio frequency technologies used for indoor positioning 

Radio Frequency 
Technology 

Advantages Disadvantages 

Radio frequency 
identification (RFID) 

• High accuracy 

• High reliability 

• Requires additional 
infrastructure 

• Requires a large number of 
RFID tags to be deployed 

Wi-Fi • Readily available 

• High coverage 

• Susceptible to attenuation 
and multipath 

• Access point (AP) placement 
is usually not optimal for 
positioning 

Bluetooth • Low cost 

• Low power 
consumption 

• Susceptible to attenuation 
and multipath 

• Requires additional 
infrastructure 
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3. Channel Selection Filter 

3.1. Introduction 

The previous chapter discussed positioning techniques and their challenges. One of the 

widely used proximity or distance estimation techniques is based on RSS. As discussed, this 

approach suffers from unreliable signals as a result of the uncertainty of the signals. This 

uncertainty can be caused by multiple sources: external or internal. 

This chapter discusses the challenges of estimating distance using RSS values. Previous 

studies that have attempted to find the best distance estimation based on RSS are reviewed. 

A new filter algorithm is then proposed; it allows for the use of a more stable and thus reliable 

signal. Finally, the proposed filter algorithm is analysed to study the impact when 

implemented for positioning. 

3.2. Bluetooth Low-energy Signal Advertisement Channel 

A BLE signal uses the same 2.4 GHz signal as Wi-Fi and is a subset of Bluetooth 4.0, which 

was adopted on 30 June, 2010. Since it uses the same 2.4 GHz as the previous version of 

Bluetooth, it also has the same signal characteristics, meaning that it is susceptible to signal 

degradation via attenuation and multipath. There is already some research aimed at 

minimising these effects [66][67]. However, the approaches therein only target the variation 

resulting from external causes, which are mainly affected by the environment.  
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The instability in a BLE signal is caused not only by degradation and multipath but also by 

the protocol design, as highlighted in [68]. By design, the advertisement channel consists of 

three channels – 37, 38, and 39 [69]. These three channels are selected to avoid overlapping 

in order to allow the least interference in the signal.  

 

Figure 3.1: Bluetooth low energy 2.4 GHz band channels. Orange represents the three advertisement channels 
located in the middle and at both ends of the spectrum [95] 

 

Figure 3.2: Channel variation RSS. Channels 37 and 38 have similar signals compared to channel 39 [58] 
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Figure 3.3: One-minute signal variation from three different manufacturers.  
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As the BLE uses the same 2.4 GHz signal as used by Wi-Fi, the signal will also be affected 

by Wi-Fi. Therefore, the three BLE advertisement channels are chosen based on the 

frequency that is least affected by the following three common Wi-Fi channels: 1, 6, and 11. 

This also causes the three channels to be located far from one another in the 2.4 GHz channel 

band, as illustrated in Figure 3.1. The figure also depicts the distance between channels 37 

and 39, which are located at the opposite ends of the 2.4 GHz band. The far distance between 

each channel causes the signals of these channels to be significantly different, as seen in 

Figure 3.2 [56, Fig. 2]. Comparing the channel location illustrated in Figure 3.1 against the RSS 

variation in Figure 3.2, channel 37 and channel 38 have similar RSS values and variation within 

the range of a 1–5 dBm difference, compared to channel 39, which differs greatly with up to 

a 25 dBm difference. This is because channels 37 and 38 are much closer to each other 

compared to channel 39. The aggregated result demonstrates the effect of the largely 

different signal variation.  

Figure 3.3 illustrates the signal variation of three different beacon manufacturers. The 

signals were recorded for 1 min, and all the beacons’ settings were set to default. The 

Estimote beacon’s advertisement interval was set at 300 ms, the BlueBar beacon was set at 

750 ms, and the Kontakt beacon was set at 350 ms. The default settings were chosen instead 

of specific intervals because this configuration was expected to be used by the majority of 

BLE beacon users. A similar pattern can be seen from the graph. The signal can be clustered 

into two or three groups, corresponding to the three advertisement channels. Two of the 

clustered groups will resemble each other, and another group will have a significantly 

different value. This aligned with the fact that the positions of channels 37 and 38 are close 

to each other, while channel 39 is at the other end of the 2.4 GHz band. The graph pattern is 

also similar to the pattern in Figure 3.2. This confirms that channel hopping affected the 
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signals read by the mobile device, and the hopping corresponds to the three advertisement 

channels.  

As with any other signals, the BLE signal also contains Gaussian noise, which can be 

differentiated by only a small change in the RSS of around 1–5 dBm, as opposed to large 

changes in the RSS as a result of channel hopping with changes up to 15 dBm. The large 

changes in the RSS might also be affected by the environment, such as obstruction and 

multipath.  

3.3. Channel Selection Filter 

Multiple filters are used to aggregate and find the true value of varied signals. Some 

researcher record the mean signal but records it with variance to keep the signal variation 

information as done by [70]. This approach is mainly to record the important information 

while minimising the size of data that needs to be recorded. Another researcher designed a 

tailor-made smoothing algorithm with a proposed value of window width and stage [71]. The 

smoothing filter ignores the channel hoping and process the data indiscriminately. This 

produce a smooth signal but channel hoping greatly affect the resulting signal.  

Based on the knowledge of the channel hopping condition, a channel selection filter is 

designed to reduce the effect of advertisement channel hopping. Using the same channel to 

analyse the signal for positioning can improve distance estimation. It would also enhance the 

fingerprint algorithm by ensuring that only the same advertisement channel is being 

compared to guarantee that the correct signal is being recorded and compared. For these 

filters, it is important to have a complete signal that contains the values for all three channels. 

From our observation, a minimum of 15 s is needed to ensure the signals from all three 

channels are read.  
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3.3.1. High-pass Fourier transform filter 

The Fourier series is a periodic function in time that can be decomposed into the sum 

of a constant and a series of sinusoids. The sinusoidal signals are defined by the individual 

frequency of sine and cosine. The Fourier series is written as (3.1). 

𝑓(𝑡) =
1

2
𝑎0 + ∑(𝑎𝑘𝑐𝑜𝑠2𝜋𝑘𝑡 + 𝑏𝑘𝑠𝑖𝑛2𝜋𝑘𝑡)

∞

𝑘=1

 
 (3.1) 

 

A Fourier transform is used to analyse the signal in a different domain – in this case, a 

frequency domain. In relation to the Fourier series, it is used to calculate the coefficient 

(𝑎𝑘  and 𝑏𝑘), also known as the correlation of the sinusoids. To do this, the function is 

multiplied by the analysing function, which is written as (3.2): 

𝑋(𝐹) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝐹𝑡𝑑𝑡
∞

−∞

 
 (3.2) 

Since the BLE signals are recorded as a set of discrete points, a solution based on a 

discrete Fourier transform (DFT) is employed instead. To convert the Fourier transform from 

continuous to discrete, the function related to time needs to be modified to make it based 

on sampling rate and sampling number instead.  

𝐹 =̂
𝑘

𝑁
 

 (3.3) 

 

𝑡 =̂  𝑛  (3.4) 

Using (3.3) and (3.4) in (3.2) would result in a DFT equation, which is written as (3.5): 
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𝑋𝑘 = ∑ 𝑥𝑛

𝑁−1

𝑛=0

𝑒−
𝑗2𝜋𝑘𝑛
𝑁  

 (3.5) 

This change allows the evaluation to change from ∞ to −∞ and from 𝑛 = 0 to 𝑁 − 1, 

which correspond to the finite discrete sampling. This change also causes the evaluated 

frequency to be restricted by the sample frequency and the number of samples used.  

Euler’s formula is used to establish a relationship between the trigonometric functions 

and the complex exponential function in complex analysis. This formula is written as (3.6): 

𝑒𝑗𝑥 = cos 𝑥 + 𝑗 sin 𝑥  (3.6) 

Applying (3.6) to (3.5) would result in (3.7): 

𝑋𝑘 = ∑ 𝑥𝑛(cos(−
2𝜋𝑘𝑛

𝑁
) + 𝑗 sin(−

2𝜋𝑘𝑛

𝑁
))

𝑁−1

𝑛=0

 
 (3.7) 

Furthermore, simplifying (3.7) would result in (3.8): 

𝑋𝑘 = 𝐴𝑘 + 𝐵𝑘𝑗  (3.8) 

 

Based on the decomposed signal, it is possible to select only the required signal and 

filter out other signals. A high-pass Fourier transform filter is performed by filtering the signal 

in the frequency domain. Applying a high-pass filter to the signal will smoothen out the signal 

by removing the noise in the signal. This will allow for a cleaner signal, which makes the 

identification of changes in the signal easier. For the proposed implementation, only the 

highest frequency was chosen.  

As a Fourier transform generates a sinusoidal signal, only the positive values are kept, 

and values lower than zero are limited to zero. This will make the filtered signal focus only 

on the stronger signal, which, in most cases, is the more reliable signal. The use of only 
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positive values can also reduce the effect of a large signal drop to the overall or the mean 

values. The mean of the resulting Fourier transformed signal is used as the final value for 

positioning. 

Figure 3.4 illustrates the resulting high-pass Fourier transform filter over the measured 

signal. It maintains the values in the middle advertisement signal, which can be seen from 

the thick blue line. The effects of large variations of low signal value are reduced, as seen 

from the graph. The green line depicts a moving average of 15 s data, and it closely resembles 

the shape of a high-pass Fourier filter but with a lower signal value.  

It is important to take into consideration that these algorithms are not meant to 

determine the variation originating from signal degradation or multipath. However, the 

analysis of signal degradation and multipath can be performed on the selected signal to 

ensure that signal changes are not related to advertisement channel hopping. 

3.3.1.1. Distance Effect 

A further analysis was performed to study the effect of distance on channel hopping 

and the reliability of the high-pass Fourier transform filter. The further the signal is from the 

beacon, the lower the BLE signal variation will be; this is because the signal strength is based 

on a logarithmic model rather than a linear model. The signals for the three advertisement 

channels are consequently still discernible. 
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Figure 3.5 illustrates the result of the BLE beacon’s signal taken at a 1 m distance for 

a period of 8 minutes. The effect of channel hopping is not as clearly visible when looking at 

the large result. However, if the result is seen with a smaller set of data, with sufficient size 

to capture the changes in the signal, then the effect of signal hopping can be clearly seen, as 

demonstrated in Figure 3.6.  

From the figures, the red lines denote the result of the proposed high-pass Fourier 

transform filter, and the green dashed lines represent a moving average filter. Both 

algorithms were calculated using a window size of 15 s, disregarding the number of scans 

contained within. The figures demonstrate that the result using the proposed filter follows 

the middle step of the signal as opposed to a moving average filter, which attempts to obtain 

a balance between the maximum and minimum values.  

A similar finding can be seen in Figure 3.7, which illustrates the result of a BLE 

beacon’s signal taken at a 3 m distance for a period of 8 min. The result of the signal with a 

 

Figure 3.4: Bluetooth low-energy signals and the resulting signals when filters are applied. The high-pass 
Fourier transform filter result is depicted in red, and green indicates the moving average filter 
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smaller set of data is depicted in Figure 3.8. The signal taken at 3 m also demonstrates the 

same three different steps for the signal, which represent the three different advertisement 

channels. This is further confirmed by the result presented in Figure 3.9 and Figure 3.10, 

which display the result of a BLE beacon’s signal taken at a 5 m distance. 

A similar finding can also be seen from the results taken at multiple distances. 

Furthermore, the proposed filter algorithm closely matches the middle signal, which would 

be the chosen signal to be used. By using the signal from the same advertisement channel, a 

more consistent signal reading and distance estimation can be expected.  
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Figure 3.5: Bluetooth low-energy signals at a 1 m distance: comparison among original signal, high-pass 
Fourier, and moving average filter results 

 

Figure 3.6: Bluetooth low-energy signals at a 1 m distance: comparison among original signal, high-pass 
Fourier, and moving average filter results (zoomed in) 
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Figure 3.7: Bluetooth low-energy signals at a 3 m distance: comparison among original signal, high-pass 
Fourier, and moving average filter results 

 

Figure 3.8: Bluetooth low-energy signals at a 3 m distance: comparison among original signal, high-pass 
Fourier, and moving average filter results (zoomed in) 
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Figure 3.9: Bluetooth low-energy signals at a 5 m distance: comparison among original signal, high-pass 
Fourier, and moving average filter results 

 

Figure 3.10: Bluetooth low-energy signals at a 5 m distance: comparison among original signal, high-pass 
Fourier, and moving average filter results (zoomed in) 
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3.3.1.2. Obstruction Effect 

An experiment was also performed to check the effect of obstruction on the BLE 

signal. Bluetooth low-energy signals were recorded under LOS and non-line-of-sight (NLOS) 

conditions. For the NLOS signals, two obstructions were used: soft partition and hard 

partition. The soft partition is a wall partition made of hollow interior plasterboard, while the 

hard partition is a brick wall. 

Figure 3.11 illustrates the BLE signal blocked by a soft partition. Despite the large 

variation in RSS values, the signals can still be divided into three categories: minimum, 

maximum, and middle signals, which could also correlate to the three advertisement 

channels. For this case, the moving average filter was able to detect the middle value, and 

the proposed algorithm was able to match the estimation result with a difference less than 

one dBm.  

The result for hard partition obstruction is illustrated in Figure 3.12. Even though the 

signal is less noisy because of its attenuation, the signal variation resulting from the three 

different advertisement channels is still visible. In this case, most of the signal will be in the 

middle signal group, and similarly to the result of soft obstruction, the proposed algorithm 

will be able to match the result with differences less than 0.5 dBm. 

These results confirm that the three advertisement channels are showing even in 

different cases and environments. Furthermore, the proposed filter was able to find the 

middle value in all the given cases. This allows for a more streamlined BLE signal reading, 

which will allow for a more reliable signal reading.  
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Figure 3.11: Bluetooth low-energy beacon's signal blocked by soft partition 

 

Figure 3.12: Bluetooth low-energy beacon's signal blocked by hard partition 



 
 

 
45 

 

3.4. Impact on Positioning 

It was important to verify the impact of the proposed algorithm on positioning accuracy 

improvement. Therefore, the algorithm was tested in a part of the Mary Bruck Building at 

 

Figure 3.13: The Mary Bruck Building. The area used for the testing is circled 

 

Figure 3.14: Test area floor plan and test layout. Red crosses mark the BLE beacons, while blue squares indicate 
the points where the signals are recorded, and the blue line is the path taken to reach the points 
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the University of Edinburgh, as illustrated in Figure 3.13. The floor plan for the test area, with 

a size of 12m x 12m, and the test point locations are seen in Figure 3.14. The red crosses 

denote the position of the beacons, and the blue squares mark the test points. 

Five beacons were utilised and were of the Estimote and Texas Instrument varieties. A 

total of 26 test points were employed in the test, which was conducted with the Samsung 

Galaxy S5 smartphone, and the measurements were recorded for at least 30 seconds. This 

was to make certain that all three variations were recorded while still permitting additional 

data to be processed in the case of signal degradation and multipath affecting the signal 

variation. 

The algorithm used to calculate the position was based on trilateration with distance 

estimation based on a log-distance path-loss model, as in (3.9): 

𝑅𝑆𝑆(𝑑) = 𝑅𝑆𝑆(𝑑0) + 10𝑛𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋𝑔 

 (3.9) 

 

where 𝑅𝑆𝑆(𝑑0) is the RSS measured at distance 𝑑0, 𝑛 is the path-loss exponent, and 

𝑋𝑔 is the zero-mean Gaussian noise. 

The implementation results were compared against distance estimations calculated 

using a smoothing algorithm [71]. 13-point window width and 3-stage smoothing filter is used 

as suggested by the author. Figure 3.15 illustrates the result tracks for both algorithms. Both 

results indicate that the estimated positions are centred in the middle of the test area. This 

is because at most test points, 80% of the utilised beacons are blocked by walls. This would 

require a higher path-loss exponent to be used to mitigate the effect of obstruction. To 

mitigate the NLOS effect, a path-loss exponent of 2.6 was used, as suggested by the author 
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in [72]. However, as demonstrated in Section 3.3.1.2, the proposed filter will work even in 

the NLOS situation, albeit with less efficiency.  

Figure 3.16 portrays the results of each test point against the smoothing algorithm. The 

error for each test point was determined by comparing the resulting positions with the actual 

position of the test points. The smoothing algorithm demonstrates that 68% of the results 

are within a 9.55 m accuracy, and 95% of the results fall within a 12.47 m accuracy. These 

results slightly improved to 9.28 m for 68% of the results and 12.21 m for 95% of the results 

by implementing the proposed filter. Furthermore, 88% of test points indicate 

improvements, with the highest improvement being from test point 22 with an improvement 

of 1.33 m. Overall, the root mean squared error (RMSE) for the smoothing algorithm 

improved from 7.23 m to 6.97 m with the proposed filter, and the RMSE can be further 

improved by deploying it alongside a multipath mitigation technique. It can be seen that the 

highest error peaks occurred at points 1 and 12, and smaller error peaks appeared at 2, 3, 

19, and 26. These error peaks occurred at test points located at the far end of the building, 

close to the outer wall. This caused the beacon on the other side of the building to affect the 

position estimation. The proposed filter was able to improve the result; however, it was 

unable to mitigate the error entirely. 
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a) Resulting track by Hou et al. [72] 

 

b) Track for proposed algorithm 

Figure 3.15: Result tracks. a) Resulting track for Hou et al. [72]. b) Track for proposed algorithm 
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3.5. Conclusion 

In this chapter, first, the BLE signal advertisement channel was introduced. Then, the 

signals of the three advertisement channels were presented, highlighting channel 39 with a 

significantly different signal compared to channels 37 and 38. The effect of the three different 

advertisement channels was demonstrated thereafter by using multiple beacon 

manufacturers, and the results confirm that the signal variation because of the 

advertisement channels is not device-specific. With a 2.4 GHz signal known to be highly 

affected by attenuation and multipath, any additional variation to the signal will have a large 

impact when estimating the actual signal.  

 

Figure 3.16: Implementation result comparison between Hou et al [71] and proposed algorithm 
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Following this, a new channel selection filter was proposed using a high-pass Fourier filter. 

First, the concept of this type of filter was introduced, and analyses were performed to study 

the effect of distance and obstruction. It was demonstrated that the filter works for different 

distances and obstruction states. The implementation of the filter was also demonstrated to 

study the impact of the proposed filter on actual positioning. The filter improves the majority 

of the test points, albeit with low overall RMSE improvement. This confirms the viability of 

the filter to smoothen the signals, thereby improving the distance estimation and positioning.  
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4. Isolated Beacon Identification 

4.1. Introduction 

The previous chapter described the detailed implementation of a proposed filter 

algorithm to minimise the effect of channel hopping. This chapter presents a solution to 

another challenge in estimating distance based on RSS values. Signal variations resulting from 

external disturbance are another cause of BLE signal variation.  

Signal attenuation can be affected by materials obstructing the signals. The more the 

material obstructs the signal, the more it will affect the RSS values. This will affect the 

distance estimated using those RSS values. To counter this problem, an algorithm is proposed 

to differentiate the obstructed and unobstructed signals, so a distance estimation can be 

estimated appropriately.  

4.2. Non-line-of-sight and Multipath 

Bluetooth low-energy signals use a 2.4 GHz spectrum for operation. This spectrum is 

known to be highly attenuated by the NLOS condition. Several studies were performed to 

differentiate and identify NLOS and LOS signals, and multiple different approaches were 

used, ranging from multiple antennae [73], map stitching [74], channel statistic [75], and 

probability distribution analysis [67].  

The author in [76] has proposed a solution using mean, standard deviation, kurtosis, 

skewness, Rician K factor, χ2 goodness of fit, and log-mean. The support vector machine 

(SVM) algorithm is used to process the features for NLOS detection. Another author in [77] 

has proposed a similar approach, with mean, standard deviation, skewness, and kurtosis 

chosen as the features derived from the estimated channel impulse response (CIR). A 
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different machine learning approach, namely the random forest algorithm, was then applied 

to tackle the NLOS identification problem.  

More recent Wi-Fi APs are equipped with a dual band antenna for 2.4 GHz and 5 GHz 

bands. The author in [78] has proposed a solution to make use of this by estimating the path-

loss difference between the two bands. Given the same distance, the path-loss difference 

caused by different signal attenuations depends on the path-loss exponent. The idea is that 

both signals attenuate differently because of the wavelength of the signals.  

A different NLOS identification technique proposed in [79] attempted to use a hybrid 

solution by incorporating PDR data into the algorithm. Pedestrian dead reckoning 

information is used to initially locate a user’s position, and the RSS of the beacon whose NLOS 

state needs to be identify is estimated. The difference between the measured and estimated 

values is then used to determine the NLOS identification.  

The author in [80] has proposed TDOA-based NLOS identification by making use of 

multiple base stations. When all base stations are in LOS, the measured distances are close 

to the true distances. However, if one or more base stations are NLOS, this will cause a large 

positive bias in the measurement.  

The author in [81] has highlighted the relation between an RSS value’s standard deviation 

and the NLOS condition. The author observed a more stable signal in the NLOS condition 

compared to the LOS condition. A table presented in [82] further confirmed the relationship 

between standard deviation and the NLOS condition with a standard deviation value of 14.1 

dBm in the soft partition office and a standard deviation of 7.0 dBm in the hard partition 

office. However, no exact value for the LOS condition was given. The same paper has also 

demonstrated that the standard deviation of the LOS condition in a metalworking factory is 
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5–8 dBm, while the standard deviation for LOS in an obstructed metalworking factory is 6.8 

dBm. This is because metal is a highly conductive material and is thus also an optimal 

reflector. However, this is a unique case when the user is surrounded by metal. 

The resulting difference of BLE signals between NLOS and LOS has been demonstrated by 

[55]. The result is most likely to follow the propagation model in the NLOS condition. From 

an RSS perspective, a mean RSS value of an LOS condition’s signal could relate to distances 

with a range of more than 10 m and up to 20 m, whereas the same mean RSS value of an 

NLOS condition’s signal could relate to distances with a range of only 5 m. For example, a 

graph in [53, Fig. 2] illustrated in Figure 4.1 indicates that the distance for LOS at an RSS of 

approximately -73 to -75 dBm can differ between five metres and 23 m, whereas for NLOS 

with the same RSS, the range difference is less than five metres. 

 

Figure 4.1: Propagation model of wireless signals [55] 
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The difference in range variation is because with the same RSS value, the LOS position is 

much farther than in the NLOS condition. In this situation, the LOS condition will be 

susceptible to more variation of signal interference and multipath, which can include 

destructive and constructive interference, thereby creating a larger variety of RSS values. 

Furthermore, the use of three widely spaced narrow bands causes the three signals to be 

affected by multipath and attenuation differently, thus creating three separate variations of 

RSS readings. These situations are illustrated in Figure 4.3 and Figure 4.3, where (a) is an LOS 

result at 2 m, (b) is a plasterboard NLOS at 2 m, (c) is a two-plasterboard NLOS at 2 m, and 

(d) is a concrete NLOS at 0.5 m. The concrete NLOS was chosen at a smaller distance to 

maintain the average RSS for comparison. 

The graphs suggest that there are two or three distinct level sets of variation across the 

RSS readings. The difference among these variations is clearest in the LOS condition, where 

we can roughly estimate the upper and lower limits for the graph. The further blocked signal 

has less clear variation than the less obstructed ones, and as illustrated in Figure 4.3(d), the 

differences are mixed up and identical to white noise rather than visible change. In addition, 

these results were taken using an isolated beacon with complete obstruction (separate 

room) rather than partial obstruction (different side of a junction). 
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a) The RSS vs time for LOS at a 2 m distance 

 

b) The RSS vs time for plasterboard NLOS at a 2 m distance 

Figure 4.2: The RSS variation across LOS and single plasterboard conditions 
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c) The RSS vs time for double plasterboard NLOS at a 2 m distance 

 

d) The RSS vs time for concrete NLOS at a 0.5 m distance (similar average RSS) 

Figure 4.3: The RSS variation across double plasterboard and concrete conditions 
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4.3. Proposed Algorithm 

We performed an experiment to study the relation between the RSS standard deviation 

and the state of both LOS and NLOS. The experiment was performed using two different 

beacon manufacturers, namely a Texas Instrument beacon (CC2540DK-MINI) and an 

Estimote beacon (proximity beacon model), and the RSS readings were recorded using two 

separate mobile devices: Samsung Galaxy S5 and Samsung K Zoom. 

The experiment was performed under three different conditions: LOS, light NLOS 

obstruction (10 cm plasterboard), and hard NLOS obstruction (26 cm concrete). As this 

experiment was designed to study the relationship in terms of the RSS, it was important to 

ensure that the same range of RSS values could be seen from all three conditions. For LOS, 

the RSS measurements were taken at a distance of 1–7 m. For light NLOS, the distance was 

from 1–4 m, and for hard NLOS obstruction, the distance was taken from 0.5–2 m. 

The RSS measurements were recorded for 10 min, and the readings were divided into 

groups of 10 RSS readings. These 10 RSS values were used to calculate the standard deviation 

of the group. The standard deviation results were then further divided into groups of 10 

standard deviations to study the distribution of the standard deviation results. 

The relation between RSS and the standard deviation for LOS is illustrated in Figure 4.4. 

The same result for the NLOS counterpart is depicted in Figure 4.5. The standard deviation is 

plotted against RSS because, as demonstrated by Figure 4.1, Figure 4.2 and Figure 4.3, the 

LOS-NLOS state relates not only to the standard deviation but also to the corresponding RSS 

values. The results reveal that for NLOS, the majority of the results have a low standard 

deviation value that gradually increases when the RSS decreases, as illustrated in Figure 4.5 

and Figure 4.6 and is evident in Figure 4.7. The pattern is clearly visible in the hard NLOS 

condition because this condition obstructs the most signal, thereby causing the most power 
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loss. On the other hand, the standard deviations of the LOS results are more randomly 

distributed across the graph. In addition, the chart is drawn relative to the mean RSS, and 

disregarding the actual distance as in the actual positioning, only the information of the RSS 

 

Figure 4.4: Standard deviation of LOS signals 

 

Figure 4.5: Standard deviation of NLOS signals 
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is available. Distance derived from the RSS might be erroneous, and using this information 

will only amplify the error. 

  

 

Figure 4.6: Standard deviation graph for light NLOS 

 

Figure 4.7: Standard deviation graph for hard NLOS 

 



 
 

 
60 

 

The results of light NLOS obstruction and hard NLOS obstruction are illustrated in Figure 

4.6 and Figure 4.7 respectively. The figures suggest that the hard NLOS obstruction displays 

a less random standard deviation value and follows an inverse linear line. In contrast, for light 

NLOS obstruction, the results are somewhat more random although with less randomness 

than LOS. The result’s variation is because of the thickness and conductivity of the material, 

which are the main properties affecting attenuation through an obstruction. The differences 

are related to the degree to which the material affected the attenuation. 

Based on the resulting linear regression line of the hard NLOS obstruction, the slope of a 

linear threshold line can be drawn to differentiate between NLOS and LOS. Hard NLOS was 

chosen because it exhibited the most significant difference in differentiating NLOS and LOS. 

As a regression line is meant to balance the value across the graph, the linear threshold line 

is instead based on the RSS calibration value at 1 m. The linear equation is shown in (4.1): 

𝑦 = −0.1216𝑥 − 𝐶  (4.1) 

 

where C is the y-axis intersect value required to have the linear line intersect the x-axis at 

the RSS measured at a 1 m distance minus the window size used to calculate the standard 

deviation, as indicated in (4.2): 

Table 4.1: Estimation result based on linear threshold line 

Condition Estimote Estimation Texas Instrument 

Estimation 

LOS 81% 70% 

Light NLOS 32% 70% 

Hard NLOS 65% 76% 
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𝐶 = −0.1216(𝐴 + 𝑁),   𝑁 < 40  (4.2) 

 

A is the value of RSS measured at a 1 m distance, and N is the sample number used to 

calculate the standard deviation. The y-axis intersect, C, is based on (4.2) because the 

standard deviation probability relates to the distance, as previously mentioned. The signals 

of users who are further away from the beacon are more susceptible to variations of signal 

interference and multipath than users who are close to the beacon. As the RSS value varies 

randomly because of the use of three widely spaced narrow bands, the standard deviation 

value is largely affected by the higher number of RSS samples. 

By using the proposed linear threshold line, the NLOS identification has a 68% probability 

of estimating the correct condition, with a 67% probability of estimating the right soft NLOS 

and a 78% probability of predicting the correct hard NLOS. 

Separating the results based on the beacons used, we can see the percentage of detection 

as listed in Table 4.1. An Estimote beacon has a high detection rate to differentiate LOS from 

hard NLOS obstruction; however, the soft NLOS obstruction resembles the LOS result rather 

than the hard NLOS obstruction. Compared to the Texas Instrument beacon, all three 

conditions have a high detection rate based on the proposed linear threshold line. These 

detection rates demonstrate that this algorithm can be used to differentiate between LOS 

and hard NLOS obstructions, but it has a mixed result if used against soft NLOS obstruction.  

By using 25 of the standard deviation values, a further estimation to identify the NLOS can 

be performed by using a normal probability distribution function. From the empirical 

analysis, we found that the resulting standard deviation values form a normal probability 

distribution with an LOS that resembles the distribution function better than the hard NLOS 
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obstruction. This similarity is measured based on a Kolmogorov-Smirnov (KS) test. The 

relation of similarity between both LOS and NLOS and the normal probability distribution is 

illustrated in Figure 4.8 against the standard deviation, σ, which was used to derive the 

normal probability distribution function. The blue X marks LOS, and the red star marks hard 

NLOS. 

As the hard NLOS tends to have a lower standard deviation, the overall standard deviation 

of the group tends to be lower and is because of less variation in RSS. However, in general, 

most of the results are in the range of 0–2 dBm, where the two conditions are mixed. In this 

range, LOS has a lower KS statistic. A linear line can consequently be drawn to differentiate 

LOS and hard NLOS conditions. The linear line is drawn based on the empirical data by 

connecting the values that comprise the border for the hard NLOS. These results are in (4.3): 

𝑦 = 0.067𝑥 − 0.126  (4.3) 

 

 

Figure 4.8: Kolmogorov-Smirnov test against normal probability function 
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Based on this equation, there is a 69% detection rate to identify the hard NLOS. The soft 

NLOS is not included, as it generally follows the result of the LOS condition. As the soft NLOS 

does not heavily affect the distance estimation, the same distance estimation algorithm as in 

LOS can be used.  

Based on the NLOS identification result, the log-distance path-loss model can be used to 

estimate the distance. Depending on the result from the NLOS identification, the path-loss 

exponent can be modified accordingly. As the standard deviation can differentiate the soft 

NLOS with varying accuracy, and since the KS test can differentiate the hard NLOS, using both 

techniques allows us to distinguish between the soft NLOS and hard NLOS. However, the 

detection of the soft NLOS has a limited accuracy, as it depends on the NLOS detection using 

the standard deviation. 

4.4. Impact on Positioning 

As NLOS identification is mainly used for positioning, it is important to determine the 

performance in terms of positioning accuracy. The positioning is performed by using 

trilateration with the log-distance path-loss model as the distance estimation. The equation 

for the log-distance path-loss model is shown in (4.4): 

𝑅𝑆𝑆(𝑑) = 𝑅𝑆𝑆(𝑑0) + 10𝑛 𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝑋𝜎 

 (4.4) 

 

where 𝑅𝑆𝑆(𝑑0) is the RSS measure at distance 𝑑0, 𝑛 is the path-loss exponent depending 

on the environment where the positioning is performed, and 𝑋𝜎 is the zero-mean Gaussian 

noise with a variance of 𝜎2. Using 1 m as the reference distance, the equation can be 

simplified to the following: 
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𝑅𝑆𝑆(𝑑) = 𝐴 − 10𝑛 𝑙𝑜𝑔(𝑑)  (4.5) 

 

Since a 1 m range is used as the reference distance 𝑑0, 𝐴 is the RSS measured at a distance 

of 1 m. The value of the path-loss exponent 𝑛 depends on the NLOS condition. For LOS, a 

value of 2.2 was used, while a value of 2.6 was used for NLOS, as suggested by the author in 

[72]. 

The positioning test was performed in the Mary Bruck Building at the University of 

Edinburgh, as illustrated in Figure 3.13. The circle indicates the area used for the experiment. 

The area has a dimension of 12 m × 12 m divided into several rooms, as depicted in Figure 

4.9. The red crosses denote the locations of the beacons, and the blue squares represent the 

test points’ locations. In total, five beacons and 26 test points were used for this test. 

The positioning was compared against the algorithm in [77]. The positioning that 

implemented obstruction detection demonstrated an improvement in the RMSE from 3.77 

m to 3.30 m using the proposed NLOS identification algorithm. Figure 4.10 depicts the path 

 

Figure 4.9: Test area floor plan and test layout 
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trajectory of the ground truth, while Figure 4.13 displays the resulting trajectory from [77]. 

Figure 4.14 and Figure 4.15 present the results for proposed algorithm on two different 

devices: K Zoom and Galaxy S5. 

The result reveals varied test point accuracy with a maximum error of 7 m and a minimum 

error of 1 m. The maximum and minimum errors are similar for the proposed algorithm. This 

is assumed to be because of the advertisement channel hopping discussed in Section 3.2. 

This can be seen in Figure 4.11, where the signal from one of the beacons is illustrated. The 

signal contains three groups of signals; the first group is at time 10–40, the second group is 

at time 40–80, and the third group is at time 80–120. The probability density function (PDF) 

generated by this signal is depicted in Figure 4.12. It can be seen that advertisement channel 

hopping affects the generated PDF, and any information derived from the PDF will also be 

affected. The proposed algorithm incorporates this issue into the algorithm by having a larger 

threshold as the RSS lowers. However, the algorithm proposed in [77] assumes a constant 

signal and only an external source of signal degradation such as attenuation or multipath. 

 

Figure 4.10: Path trajectory of the ground truth 
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Figure 4.16 illustrates the accuracy of the base and proposed algorithms on both, K Zoom 

and Galaxy S5 devices. In most of the cases, the proposed algorithm improves the accuracy 

of the positioning – on average, by 48%. 

 

Figure 4.11: Bluetooth low-energy signal from a single beacon with three distinguishable groups 

 

Figure 4.12: Probability density function of the beacon 
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Figure 4.14: Positioning results for proposed algorithm on a K Zoom device (3.51 m) 

 

Figure 4.13: Positioning results for Ramadan [76] (3.77 m) 
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4.5. Conclusion 

This chapter describes another challenge in estimating distance using RSS values caused 

by external sources. Any obstruction to the signal will cause an attenuation that will change 

the signal variation. An analysis was shown to highlight the NLOS effect on the selected 

feature. It was demonstrated that the relation between the selected feature and the NLOS 

would also consider the information regarding the distance or the RSS. An NLOS identification 

algorithm was proposed using a dynamic linear threshold that makes use of a beacon’s 

reference signal, which is broadcasted alongside the advertisement signal. The proposed 

algorithm was tested alongside another state-of-the-art algorithm, and it demonstrates 

comparable performance. The proposed algorithm yielded a better result in several test 

points. This occurred because the algorithm in [77] did not anticipate the advertisement 

channel hopping, and this affected the feature used. 

 

Figure 4.15: Positioning results for proposed algorithm on a Galaxy S5 device (3.30 m) 
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Figure 4.16: Positioning error for both algorithms 
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5. Directional positioning algorithm for automatic Bluetooth 

Low-energy beacon mapping 

5.1. Introduction 

The previous chapter explained the challenges in estimating distance based on RSS 

because of external signal disturbance, and an algorithm was proposed to detect the effect 

of obstruction on the RSS values. The detected signal condition allows for more accurate 

distance estimation, which in turn allows for a better manipulation of the estimated distance.  

As one of the challenges in BLE beacon implementation is related to the beacon’s 

deployment, this chapter proposes an algorithm to reduce the calibration for that 

deployment. This will increase the viability of the BLE beacon’s positioning, as compared to 

Wi-Fi-based positioning.  

5.2. Beacon Mapping  

Several beacon placement strategies have been proposed, such as in [83], [84], [85], [86], 

and [87]. These proposed algorithms demonstrate the importance of a beacon’s placement. 

It is even more necessary to know the exact location of each beacon if a triangulation or 

trilateration algorithm is to be used. This need to know the specific beacon location also 

translates into a demanding calibration process.  

The placement of the beacons was traditionally done by determining the position of the 

beacons and placing them exactly at the determined position. Any discrepancy in the 

determined position and the placement would result in an inaccurate estimation for any 

algorithm that requires the position of those beacons. The other solution is based on placing 
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each beacon and then recording its exact position. These solutions require a high calibration, 

which could be costly.  

A self-beacon-mapping algorithm would be able to reduce the calibration, so that only the 

calibration of the first few beacons would be required to establish the initial positioning, 

while the rest of the beacons would be calibrated automatically, such as in [88] and [89]. The 

algorithm in [88] focuses on the placement of beacons with the initial locations known, 

effectively proposing a beacon placement strategy. An initially known location is called a 

reference node, whereas unknown location beacons are called blindfolded nodes. 

Q. Shi et al. [89] have proposed a technique to locate blindfolded nodes. The method 

proposed in [89] suggests obtaining the probable region from a pair of referral nodes. Based 

on the proximities between the blindfolded node and reference nodes 1 and 2, and the 

proximity between these two reference nodes, the probable region is determined. Several 

iterations of these steps are performed, and the position of the blindfolded node is 

determined by the mid-location of the overlap of all the probable regions. 

The use of a trilateration algorithm is a simple, common solution for locating a beacon. A 

standard trilateration process to detect a mobile device’s position would require the 

information of several beacons’ locations and their RSSs. Meanwhile, a trilateration to detect 

each beacon’s position would require the information of several users’ positions and the 

beacons’ RSSs at those locations. 

Figure 5.1 displays the circles for a trilateration algorithm. For this algorithm to detect a 

mobile device’s position, points A, B, and C will be the positions of the beacons used or the 

reference nodes. The circles radiating from these points are the estimated distances from 

the beacons, and the mobile device’s position is located at the intersection of the three 
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circles. If the same trilateration algorithm is applied to detect a beacon’s position, then points 

A, B, and C will be the positions of the mobile device when reading the signal from the 

beacon. The circles radiating from these points are the estimated distances from the 

beacons. As previously mentioned, the beacon’s position is located at the intersection of the 

three circles. 

This demonstrates that trilateration can be used to detect not only a mobile device’s 

position, but also a beacon’s position if the roles are reversed. However, as RSS is known to 

be unstable, it tends to be affected by errors. Furthermore, the erroneous result could also 

cause the overlapping size to be large, which can be deemed an uncertain result, as 

illustrated in Figure 5.2. In a standard trilateration implementation, almost the entire area of 

circle A is deemed to be the possible location of the beacon. However, that would make the 

RSS readings from B and C redundant, as none of the RSS values from B and C are taken into 

consideration to determine the position. 
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5.3. Automatic BLE Beacon Mapping 

Automatic BLE beacon mapping consists of two parts. The first part, named non-reliable 

RSS detection, is used to determine the signal reliability and set an expected error based on 

the distance from the RSS values. The second part, called the directional detection algorithm, 

will use the expected error from the first part to create a directional area where the beacon 

is possibly located. 

 

Figure 5.1. Circles for trilateration 

 

Figure 5.2. Trilateration with erroneous RSS 
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5.3.1. Non-reliable RSS detection 

Based on the distance calculated from the RSS value, a probability weight can be assigned 

to the RSS signal. This probability weight is assigned based on the distance because the 

greater the distance from the beacon, the less reliable the RSS becomes. Further than a 

certain distance, the RSS is highly susceptible to interference, multipath, and obstruction, all 

of which would affect the RSS’s reliability.  

Table 5.1 lists the probability weight and its fulfilment condition, where the symbol d is 

the distance of the probability weight fulfilment. The probability weight was derived from 

the RSS of the measured distance. Thereafter, Table 5.2 presents the results for RSS readings 

at multiple distances from a beacon. The readings were taken in a large hallway in the 

Sanderson Building, King’s Buildings, University of Edinburgh. 

Table 5.1. Non-reliable RSS detection 

Probability Weight Condition 

High d > 2.2 m 

Medium 2.2 m < d < 6 m 

Low 6 m < d < 15 m 

Unreliable 15 m < d < 20 m 

Error d > 20 m 
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Table 5.3 presents the same test done in a large open space in Overgate Shopping Mall, 

Dundee. The estimated distances in these tests were calculated using a log-distance path-

loss equation, with a path-loss exponent 𝑛 of 1.8 and the RSS at a 1 m distance A of -56 dBm. 

Based on Table 5.2 and Table 5.3, the high probability weight is given up to 2.2 m because 

at a close distance to the beacon, the RSS signal will be strong and less susceptible to anything 

affecting it. Even if an error exists with the RSS signal, it will tend to be small and will still be 

Table 5.2. Beacon's RSS reading in a large hallway 

Distance (m) Mean RSS (dBm) Est Distance 

(m) 

Error (m) 

1 -57.5333 0.828931 0.171069 

2 -70.1333 4.154498 2.154498 

3 -73.8333 6.669205 3.669205 

4 -71.1333 4.721436 0.721436 

5 -71.0667 4.681342 0.318658 

6 -77.9 11.22018 5.220185 

7 -78 11.36464 4.364637 

8 -73 5.994843 2.005157 

9 -76.9667 9.95745 0.95745 

10 -78.6 12.27125 2.271252 

 

Table 5.3. Beacon's RSS reading in a shopping mall 

Distance (m) Mean RSS (dBm) Est Distance (m) Error (m) 

1 -59.8 1.625965 0.625965 

2 -65.2667 2.229195 0.229195 

3 -71.6333 5.033289 2.033289 

4 -70.8 4.524343 0.524343 

5 -74.2 6.989473 1.989473 

6 -78.7333 12.48235 6.482348 

7 -81.0667 16.82387 9.823871 

8 -79.8667 14.42977 6.429765 

9 -79.3333 13.47813 4.47813 

10 -79.3333 13.47813 3.47813 

 



 
 

 
76 

 

within an acceptable range. Within this distance, the error would usually be less than one 

metre.  

The medium probability weight is given at a distance of 2.2–6 m because within this 

distance, the error occurs inconsistently, and some accurate readings can still be made. This 

is demonstrated in Table 5.2 and Table 5.3. In both tables, for distances between 2 m and 6 

m, the errors are generally small, with several cases having errors of less than one metre. 

Furthermore, based on Table 5.2 and Table 5.3, for distances larger than six metres, the 

probability weight is set low because at this distance, the errors occur consistently with 

significant error values. Nevertheless, RSS readings at this distance are still useful for 

estimating distance because, in most cases, the error is within the usable range. The upper 

limit is set at 15 m, as this distance is generally the reliable distance and range limit for some 

manufacturers [90]. 

Distances between 15 m and 20 m are deemed unreliable. However, they remain in the 

possibility weight, as some erroneous RSSs from the upper bound of a low priority weight 

could reside in this distance range and still have a usable estimation. 

A distance longer than 20 m is deemed to be an error because it is highly susceptible to 

many external factors given the large span. Furthermore, at this distance, the RSS-to-distance 

ratio is high, where a 1 dBm RSS would displace the distance for up to three metres. This 

would cause even a small RSS inconsistency to result in a large error in the distance 

estimation calculation. 

5.3.2. Directional Positioning Algorithm 

The directional positioning algorithm is designed based on the idea that the RSS is 

unstable, and the estimated error thus needs to be considered. This algorithm focuses on 
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generating possible regions instead of pinpointing them, as this will lessen the effect of 

erroneous RSS readings. This algorithm assumes that an initial positioning algorithm is 

available, using other reference nodes or other techniques and technologies altogether.  

Directional beacon positioning has been done previously, such as in [91] and [92]. 

However, the solution provided in these papers would a require an antenna-specific beacon, 

which is a directional antenna. In the proposed algorithm, the focus is on making use of the 

RSS and its reliability to create a cone shape of a possible position in the direction of the 

actual point, instead of the usual circle. 

In this algorithm, RSS readings of the beacon to be located are taken at two different 

points, known as RPs, and labelled as RP A and RP B, as in the example illustrated in Figure 

5.3. Depending on the estimated distance, based on the RSS value read at RP A and RP B, a 

probability weight is assigned to each point according to non-reliable RSS detection. The 

point with the lower RSS, which is RP B, will be used as the base and directed towards RP A. 

Thereafter, three additional region circles are drawn, with two additional circles for RP B 

called the B inner circle and the B outer circle and one additional circle for RP A called the A 

outer circle, as depicted in Figure 5.3. The distance gap between the main circle and the inner 

or outer circle is determined by the priority weight assigned earlier. The gap distance is ±0.5 

m for a high priority weight, approximately one metre for a medium priority weight, and 

approximately two metres for a low and unreliable priority weight. If the RP priority weight 

is an error (d > 20 m), then it should not be used in this algorithm. 

Two pairs of lines are then drawn from the base, which is RP B, towards the intersection 

of the B inner circle with the A circle and the intersection of the B outer circle with the A 

circle. One pair will face in one direction, and another will face the opposite direction. Figure 
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5.3 presents the line example of a single pair. If the angle between the paired lines is smaller 

than 5°, then the A outer circle will be used instead of the A circle. This is to allow for an 

adequately sized region to be generated. If either the B outer or the B inner circle does not 

touch the A circle, then the line will pass through RP A instead, as illustrated in Figure 5.4. 

The region within the lines pairs is considered the possible area for the beacon, as indicated 

by the dark region in Figure 5.3. 

This algorithm can be performed iteratively with several different RSS reading points. The 

possible regions are then laid on top of one another, and the midpoint of the region, where 

all or most of the regions overlap, is considered to be the beacon’s position. This algorithm 

can also be combined with other algorithms to further reduce the possible region size. 

 

Figure 5.3. Directional positioning 
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5.4. Implementation Results 

The directional positioning algorithm was implemented and tested using the Texas 

Instrument BLE beacon (CC2540DK-MINI) and a Samsung Galaxy S5. The beacon was placed 

at one location, and several RSS readings were taken in the area surrounding the beacon. 

Figure 5.5 depicts the implementation of the directional positioning algorithm with six 

RPs: A and B1 to B5. The latter five were set so that they were at different angles to the 

beacon’s position with A as the RP. On the one hand, B1 and B3 cast a wide direction angle 

that is as large as half of the circle A. On the other hand, B2, B4, and B5 cast a smaller direction 

angles. The result indicates that the beacon is within the possible location of all five regions. 

If all five regions are used to determine the beacon’s position, then the error is only 0.03 m. 

This algorithm can also be used in conjunction with other algorithms. Figure 5.6 presents 

the directional positioning algorithm used together with a trilateration algorithm. If 

trilateration is used on its own, then the error would be 0.55 m, whereas if it used together 

 

Figure 5.4. Non-overlapping B outer circle 
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with the directional positioning algorithm, then the error is only 0.26 m. This demonstrates 

that this algorithm can further improve the results of other algorithms. 

Another implementation test was also conducted with six random RPs. These RPs were 

recorded, and RP A was reused from the previous implementation. One region did not 

manage to estimate the correct beacon’s position, with another RP failing to provide a 

possible region owing to the distance estimation error being too large, with an approximate 

seven-metre error. 

 

Figure 5.5. Implementation with six points 

 

Figure 5.6. Directional positioning with trilateration 
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This algorithm works by encompassing the beacon’s position in the possible region. It is 

important for this algorithm to ensure that the beacon’s position is always within the possible 

region. In the overall result, 90% of the regions encompass the beacon’s position. This further 

proves the algorithm’s usability for the estimation of a beacon’s position. 

5.5. Conclusion 

This chapter described the challenge of high calibration required for BLE beacon 

positioning. Each BLE beacon’s placement needs to be precisely recorded to obtain the best 

result and estimation for positioning. A common solution to map the beacons and several 

solutions to reduce the calibration required for beacon deployment were discussed. An 

algorithm called non-reliable RSS detection was proposed to estimate the reliability of a 

signal and to subsequently use that signal to estimate the error. This has the advantage of 

expecting a certain error to adjust for the signal’s error. An algorithm for directional 

positioning was propose by using the reliability of a signal. The proposed algorithm will lessen 

the probability area size, which will cause a lower average error. The implementation 

demonstrates that the proposed algorithm is able to improve the probability area of an actual 

position.  
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6. Crowdsourced BLE Beacon Mapping 

6.1. Introduction 

The previous chapter discussed the challenges that BLE positioning faces; they are mainly 

related to the laborious calibration needed. The previous chapter also proposed a mapping 

solution to detect the location of a beacon. 

As the process of mapping an unknown beacon is a laborious task, this chapter proposes 

a crowdsourced BLE beacon-mapping system, which allows for the mapping of unknown 

beacons in an area with partially known beacons. Crowdsourcing is a low-cost and efficient 

way in which to collect large data through crowd participants [93]. For a number of 

crowdsourced indoor positioning approaches, the users are also the database constructors 

[70]. 

6.2. System Architecture 

The system has three main phases: the online positioning phase, the beacon-mapping 

phase, and the offline positioning phase. The online positioning phase involves the 

attainment of an instant or real-time position, which can be returned to the user as the 

position. The user’s position will be recorded alongside its BLE scans, and with that, a 

fingerprint can also be performed using this record if needed. This position will thus be 

named the ‘fingerprint point’ (FP). In this phase, the intention is to collect the fingerprint 

position with BLE scans to map unknown BLE in a range. In the next phase, which is the 

beacon-mapping phase, the beacon location is mapped using the detected positions as the 

RPs. In this phase, unknown beacons are mapped, and non-calibrated known beacon details 

are updated. The final phase, namely the offline positioning phase, involves processing the 
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remaining BLE scans that cannot be used in the online positioning phase, because of the lack 

of known BLE beacons in the range to be used as RPs.  

6.2.1. Online Positioning Phase 

The online positioning phase is utilised to obtain a user’s location by making use of any 

available information. In this implementation, the available information is the location of 

several known location beacons among a combination of known and unknown beacons.  

For the online positioning phase, the user’s position, which will be recorded as the FP 

position, is calculated using the information of the known beacons. Each of the known BLE 

beacons will have a position weight associated with it. This weight helps to determine the 

maturity and reliability of the beacon’s position, and manually calibrated beacons will have 

a high weight value. It is also important to record the calibration value of each beacon 

because this value is needed to estimate the distance. The calibration value is the beacon 

signal recorded at a reference distance, generally at 1 m. This value is provided in the 

transmitted signal from BLE beacons using the iBeacons protocol. The BLE beacons using the 

Eddystone protocol have calibration values recorded at 0 m and need to calculate the 

estimated calibration value at 1 m. This can be done by subtracting 41 dBm from the 

calibration values recorded at 0 m, as defined by Eddystone-UID in the Eddystone Protocol 

 

Figure 6.1. Structure of BLE beacon database 
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Specification section [57]. The structure of the BLE beacon database is illustrated in Figure 

6.1. 

The scanned BLE signals are the data recorded from a user’s mobile device. These signals 

are used to calculate the FP position using a lateration algorithm based on the list of known 

beacon information. To allow for reliable positioning, the scanned BLE signals needs to be 

filtered to minimise any error from unreliable scans. The BLE scans are first filtered using the 

filter proposed in Section 3.3; The filter is based on the RSS value or distance. Only beacons 

with RSS values higher than a predetermined threshold value will be used for positioning. 

The filter classifier can also be changed to use the estimated distance from the beacon given 

that the distance is smaller than a predetermined threshold.  

It is also important to filter the known BLE to ensure that only the BLE beacon with a 

reliable position will be used. This is fine for the first iteration of the FP positioning when all 

data inside the BLE beacon database only include the calibrated beacon position; however, 

after a number of iterations, a number of beacons will have positions generated from the 

estimated FP position. The calibrated beacon is named a Level 1 beacon, and the FP position 

– called a Level 1 FP – is calculated using the Level 1 beacon. Based on this naming, beacons 

 

Figure 6.2. Relationship between Beacon level and FP level 
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generated from Level 1 FPs will be called Level 2 beacons. Furthermore, several other beacon 

positions will be generated from the level 2 position with less reliability, and they will be 

termed Level 3 beacons. This naming process is depicted in Figure 6.2. The more a beacon is 

generated using a higher-level FP, the less reliable the beacon position will be. This is 

captured in the weight information from the database, and with this information, the BLE 

beacons to be used for FP positioning can be filtered to include only beacons with a reliable 

position. This is done by filtering the list of known BLE beacon positions to be used for FP 

positioning to display only beacons that have an adequate weight value for implementation. 

The above-mentioned filters only filter the beacons to be used but do not remove them from 

the database. This is to allow for a lower-weight beacon to be improved when more data are 

available.  

Using the filtered beacons from the database and the filtered scans, the position of the 

FP is then calculated if a sufficient number of remaining BLE scans are available for 

positioning. In the case of inadequately known BLE scans to perform the positioning, the BLE 

scans will be kept in a separate database referred to as the unprocessed scans database. The 

unprocessed scans will be used in a later phase after a sufficient number of BLE beacons are 

built in the databases. In this implementation, the position is calculated using the lateration 

technique with RSS as the distance estimator. The lateration is calculated using linear least 

square, as discussed in Section 2.2.3. The output FP position’s weight is the adjusted mean 

of the BLE beacon’s weight used in determining the position:  

𝑊𝑝 =
∑ 𝑤𝑖
𝑛
𝑖=1

𝑛
∗ 𝐶𝐹𝑃 

 (6.1) 
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𝑊𝑝 is the output FP position’s weight, and 𝑤𝑖 is the beacon’s weight. Furthermore, 𝑛 is 

the number of beacons used in determining the position. Finally, 𝐶𝐹𝑃 is the FP position weight 

coefficient, which is meant to define the degree to which the beacon’s weight will affect the 

positioning weight. The value for 𝐶𝐹𝑃 is set to 0.6 to get the lowest RMSE value based on 

Figure 6.3. The equation demonstrates that even using less reliable BLE beacons, given a 

sufficient number of beacons, the returned FP position can still be used. For an FP position 

that is determined using only unreliable BLE beacons, a large number of beacons would be 

required to make the FP position usable, and based on the deployment density of the 

beacons, the unreliable FP position can even be filtered out. This step is important to ensure 

that any error amplified by the increasing number of beacons used will be limited to a certain 

predetermined value.  

 

Figure 6.3. Fingerprint weight coefficient against RMSE. The best coefficient is the one with the lowest 
RMSE. 
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The calculated user’s position will be recorded in the FP database. The built FB database 

will then be used in the next phase to estimate the position of the BLE beacons. The complete 

online positioning phase is illustrated in Figure 6.4. 

6.2.2. Beacon-Mapping Phase 

The beacon-mapping phase involves determining or updating the position of an unknown 

or low-weighted beacon. For this phase, the non-calibrated beacon’s position will be 

estimated using a Level 1 FP or higher. The position of a Level 1 or higher FP is an estimated 

position, and it thus contains some errors because of the estimation process. Estimating a 

beacon’s location using a position with some errors will cause the error to be amplified if not 

dealt with properly. Therefore, it is important to filter which FP position should be used for 

the mapping. By default, the position generated by a Level 1 FP should always pass the filter. 

Similarly to the online positioning phase, the filter is based on the FP position’s weight and 

the RSS or distance of the beacon to be located. 

 

Figure 6.4. Online positioning phase 
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Any FP that passes the filter will be used to estimate a beacon’s position. In this phase, 

the mapping algorithm used will be based on the algorithm proposed in Section 5.3. In this 

phase, the equation to calculate the position’s weight is the same as (6.1); however, it uses 

its own coefficient 𝐶𝑏, which is the beacon position weight coefficient. The beacon position’s 

weight requires a different coefficient to further reduce the weight to avoid amplifying the 

estimation error. The current value of 𝐶𝑏 is set to 0.1 to further reduce the weight, which can 

be introduced by the lower reliability of the beacons. Furthermore, 𝐶𝑏of 0.1 yield the lowest 

RMSE as shown in Figure 6.5. 

 

Figure 6.5. Beacon weight coefficient vs RMSE. The best coefficient value is the one with the lowest RMSE 
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If the beacon position is already in the BLE beacon database, then the position’s value and 

weight will be updated. The position is updated based on the ratio of its weight in the 

database and the newly estimated position. This is demonstrated in (6.2): 

𝑃𝑏 =
(𝑝𝑑𝑏 ∗ 𝑤𝑑𝑏) + (𝑝𝑐 ∗ 𝑤𝑐)

𝑤𝑑𝑏 +𝑤𝑐
 

 (6.2) 

where 𝑃𝑏 is the updated beacon’s position, 𝑝𝑑𝑏 is the beacon’s position recorded in the 

database, 𝑝𝑐 is the calculated position, 𝑤𝑑𝑏 is the beacon position’s weight, and 𝑤𝑐 is the 

calculated position’s weight. The beacon position’s weight is then updated using the sum of 

both weights. Furthermore, the position assigned is based on a ratio to allow the beacons in 

the database to be updated using an additional position and to emphasise the position to be 

used using the one with better reliability. The beacon-mapping phase steps are presented in 

Figure 6.6. 

6.2.3. Offline Positioning Phase 

The offline positioning phase is a phase to calculate the position of unprocessed scans. 

The process in this phase resembles the one in Section 6.2.1; however, it uses the BLE scans 

from unprocessed scans as the input. This phase is an offline phase and is thus used only for 

 

Figure 6.6. Beacon-mapping phase 
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building the BLE beacon database. This phase also uses the same parameter setting as set in 

Section 6.2.1. The complete steps for the offline positioning phase are depicted in Figure 6.7.  

6.3. Implementation 

To determine the effect of the proposed system, the complete system was implemented. 

The BLE scans were recorded using an Android application written for this purpose. The 

application records the BLE at low latency or at the fastest scan mode; however, it is not 

necessary for the system’s implementation. Moreover, the application records the 

timestamp, mac address, RSS, and calibrated RSS at 1 m. For the calibrated RSS at a 1 m 

distance, the application will utilise the measured RSS value from beacons using the iBeacon 

protocol, and it will convert the value of the measured RSS at a 0 m distance for beacons 

using the Eddystone protocol. The device used in this implementation is a Samsung Galaxy 

S5 smartphone running Android Marshmallow version 6.0.1.  

 

Figure 6.7. Offline positioning phase 
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The system was implemented in an office space on Princess Street in Edinburgh. The floor 

plan of the office space with a total of 20 pre-deployed beacons is illustrated in Figure 6.8. 

The deployment of the beacons is not specific to this system. The 20 beacons used in this 

implementation are of the Estimote brand with a mix of proximity and location beacons [94], 

and seven of them were recorded as the initial known BLE beacons to be used to build the 

Level 1 FP.  

 

Figure 6.8. Test area floor plan and BLE beacons’ placements 
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6.4. Results  

The results are compared against iterative BLE mapping based on lateration using linear 

least square. The linear least square algorithm displayed an RMSE of 11 m with a mean of 

absolute error (MAE) of 9.47 m with estimated beacon positions, as illustrated in Figure 6.9. 

The large difference in RMSE and MAE values indicates that there is a large difference in 

average error and largest error.  

The proposed algorithm demonstrated more accurate performance with an RMSE of 4.64 

m and an MAE of 4.28 m with estimated beacon placement, as depicted in Figure 6.10. The 

red triangles denote the ground truth positions of the beacons, while the black triangles mark 

 

Figure 6.9. Bluetooth low-energy mapping result with base algorithm 
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the positions of initially known BLE beacons, and the green triangles indicate the estimated 

positions of the beacons. The blue circles in Figure 6.10 show the FP positions in the database 

that was used to estimate the BLE beacon positions.  

Iterating through the results demonstrates that the estimated BLE beacon positions 

improved by each iteration, as illustrated in Figure 6.13 - Figure 6.18. The initial iteration 

revealed BLE beacon positions with an RMSE of 8.40 m. The RMSE then improved to 6.46 m 

 

Figure 6.10. Bluetooth low-energy mapping result using proposed system 
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at the fifth iteration, and further to 5.11 m at the 10th iteration. Thereafter, the RMSE 

improvement can be seen at a slower rate, with the RMSE at the 15th iteration being 4.75 m 

and 4.66 m at the 20th iteration. Finally, the RMSE improvement became saturated at 4.65 m 

from the 23rd iteration onwards, as illustrated in Figure 6.11. Meanwhile, for the MAE, the 

 

Figure 6.11. Changes in RMSE per iteration. The RMSE changes become saturated close to the 23rd 
iteration 

 

Figure 6.12. Changes in MAE per iteration. The MAE changes become saturated close to the 30th iteration 
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saturation occurred slightly later at around the 30th iteration with an MAE of 4.25 m, as 

depicted in Figure 6.12. This demonstrates that the proposed system is able to iteratively 

improve the estimated BLE beacon locations. The more scans provided to the system, the 

more accurately the BLE beacon positions can be estimated.  

6.5. Conclusion 

This chapter proposed a crowdsourced BLE beacon-mapping system that allows for the 

estimation of a BLE beacon based on the limited information of a few BLE beacons as the 

initial positioning. First, the architecture of the proposed system was introduced. The 

proposed system consists of three phases: online, mapping, and offline. The first phase, the 

online positioning phase, focuses on generating the position for the user and recording the 

signals to be stored in the database for mapping. The structure of the database was also 

presented to understand the stored data. Then, the second phase, namely the beacon-

mapping phase, is triggered to map any scanned beacon, but not in the database. The 

beacons that are manually placed and the beacons’ positions derived in the online phase will 

have different weights to emphasise the confidence of the position. Finally, the last phase, 

the offline positioning phase, is used to process the data of any unprocessed scans. This 

phase scans the database to ensure that all scans are and will be used. Unprocessed scans 

can arise because of limited information at the time of the scan. 
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Figure 6.13. Bluetooth low-energy beacon mapping at iterations 0 and 5 
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Figure 6.14. Bluetooth low-energy beacon mapping at iterations  5 
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Figure 6.15. Bluetooth low-energy beacon mapping at iterations 10 
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Figure 6.16. Bluetooth low-energy beacon mapping at iterations 15 
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Figure 6.17. Bluetooth low-energy beacon mapping at iterations 20 
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Figure 6.18. Bluetooth low-energy beacon mapping at iterations 25 
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7. Conclusion 

7.1. Achievement 

The main objective of this work is to develop a mapping system to determine the location 

of BLE beacons whose position is unknown. A positioning system using BLE beacons tends to 

have a laborious calibration process, which would require a precise fingerprint calibration or 

details of each BLE beacon recorded manually. A self-mapping algorithm would allow this 

laborious task to be reduced by integrating an iterated approach. The objective is achieved 

by developing a beacon-mapping system to detect the location of unknown beacons.  

It starts with the development of an algorithm to filter the BLE signal to be less affected 

by advertisement channel hopping. This allows a more stable and reliable RSS value to be 

captured from a BLE beacon, which in turn would enable more consistent fingerprint map 

and a more stable distance estimation. This is important because distance estimation is the 

data required for a lateration process, and errors in data provided will translate to errors in 

estimated position. Several researchers have proposed a solution by using only a certain 

channel; however, this solution is not applicable to all devices. This research consequently 

proposes a solution that can be applied to all devices. The filter is proposed based on a 

Fourier transform high pass filter. The proposed filter demonstrates an improvement in 88% 

of the test points when implemented, with a maximum improvement of 1.33 m. 

As the previous proposal targeted a signal instability caused by an internal effect, another 

algorithm is proposed to detect the cause that originated from the environment. To achieve 

this, an isolated beacon detection algorithm is proposed. The isolated beacon is proposed 

using a detection threshold based on the regression line of the BLE signal’s standard 
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deviation. This deviation is then further analysed using a KS test to detect whether the 

beacon is isolated. A positioning performed with the proposed filter demonstrates a 

comparable result to a state-of-the-art algorithm used for comparison. The advantage of the 

proposed solution is that it is not affected by advertisement channel hopping, which changes 

the statistical values of a sequence of BLE scans. It also able to differentiate various levels of 

NLOS with limited accuracy. 

The previously proposed algorithm aims at improving the signal to allow for a more 

accurate distance detection. Another algorithm is proposed to detect a beacon location using 

several positions with the beacon signal scanned. The proposed algorithm adds a direction 

term, which allows for a possible deviation resulting from the distance estimation error to be 

reduced. Unlike other directional positioning solutions, the proposed algorithm attempts to 

make use of the reliability of the signal to estimate the direction. 

The crowdsourced beacon-mapping system is proposed using the suggested algorithm 

used to tackle different problems. The crowdsourced beacon-mapping system enables one 

to use a limited set of beacons to obtain the position of other beacons within the surrounding 

area. This heavily reduces the need to calibrate all beacons in the system. Using a 

crowdsourced approach, it enables the database to be built overtime, and it allows for wider 

coverage. The proposed beacon-mapping system consists of three phases: online positioning, 

beacon mapping, and offline positioning. Each of the phases is used to determine the FP, map 

a beacon using the determined FP, and determine the positions of BLE scans that were unable 

to be located because of inadequate information. The proposed system yields a beacon-

mapping RMSE of 4.65 m.  
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7.2. Future Work 

The current work described and implemented crowdsourced beacon mapping with 

isolated signal-aware BLE positioning. The proposed system has the advantage of being able 

to locate the position of unknown beacons; however, it also has several drawbacks that can 

be improved to further enhance the usability and scalability of the system.  

The proposed system can be further improved by implementing a hybrid approach in the 

online positioning phase to allow for more accurate detection of FPs and to improve the 

iteration required to locate unknown beacons. The hybrid positioning approach can utilise a 

Wi-Fi position, GNSS, PDR, other positioning techniques, or a different positioning system 

altogether. The position obtained by another positioning technique would need to be 

weighted based on reliability for it to be usable in the proposed system.  

Furthermore, as the system records three different databases, it is best to implement an 

algorithm that can reduce the size of the database to improve the scalability of the system. 

The improvement can be in terms of database management or a reduction in recorded data. 

One suggestion is to cluster the FPs; this would allow any similar FP to be combined. 

However, it is important to ensure that the clustering of the FPs will not lead to any changes 

or missing information. 

Another phase could also be added to process the FP database using its own data. One of 

the processes that can be performed here is the previously suggested clustering of the FP 

database. In addition, a filter could be implemented here to remove any FPs that are 

conflicting with one another. This will be beneficial in terms of a smaller database size and a 

more reliable radio map when the FP database is to be used with the fingerprint algorithm.  
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Running all three phases in all iterations could be an exhaustive process that would 

increase the load of the system and could further reduce the scalability. This can be improved 

by implementing a system check that can flag the mapping phase to run rather than running 

all three phases in all iterations. However, it also important to note that the longer the delays 

in running the mapping phase, the more the database will be built up, which would cause a 

traffic issue. 
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