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Abstract
Names and name-binding are useful concepts in the theory and practice of formal systems. In this thesis

we study them in the context of dependent type theory. We propose a novel dependent type theory with

primitives for the explicit handling of names. As the main application, we consider programming and

reasoning with abstract syntax involving variable binders.

Gabbay and Pitts have shown that Fraenkel Mostowski (FM) set theory models a notion of name

using which informal work with names and binding can be made precise. They have given a number

of useful constructions for working with names and binding, such as a syntax-independent notion of

freshness that formalises when two objects do not share names, and a freshness quantifier that simplifies

working with names and binding. Related to FM set theory, a number of systems for working with names

have been given, among them are the first-order Nominal Logic, the higher-order logic FM-HOL, the

Theory of Contexts as well as the programming language FreshML.

In this thesis we study how dependent type theory can be extended with primitives for working

with names and binding. Our choice of primitives is different from that in FM set theory. In FM

set theory the fundamental primitive for working with names is swapping. All other concepts such as

α-equivalence classes and binding are constructed from it. For dependent type theory, however, this

approach of constructing everything from swapping is not ideal, since it requires us to make strong

assumptions on the type theory. For instance, the construction of α-equivalence classes from swapping

appears to require quotient types. Our approach is to treat constructions such as α-equivalence classes

and name-binding directly, turning them into primitives of the type theory. To do this, it is convenient

to take freshness rather than swapping as the fundamental primitive.

Based on the close correspondence between type theories and categories, we approach the design of

the dependent type theory by studying the categorical structure underlying FM set theory. We start from

a monoidal structure capturing freshness. By analogy with the definition of simple dependent sums Σ

and products Π from the cartesian product, we define monoidal dependent sums Σ∗ and products Π∗

from the monoidal structure. For the type of names N, we have an isomorphism Σ∗N
∼= Π∗

N generalising

the freshness quantifier. We show that this structure includes α-equivalence classes, name binding,

unique choice of fresh names as well as the freshness quantifier. In addition to the set theoretic model

corresponding to FM set theory, we also give a realizability model of this structure.

The semantic structure leads us to a bunched type theory having both a dependent additive con-

text structure and a non-dependent multiplicative context structure. This type theory generalises the

simply-typed αλ -calculus of O’Hearn and Pym in the additive direction. It includes novel monoidal

products Π∗ and sums Σ∗ as well as hidden-name types H for working with names and binding.

We give examples for the use of the type theory for programming and reasoning with abstract syntax

involving binders. We show that abstract syntax can be handled both in the style of FM set theory and

in the style of Weak Higher Order Abstract Syntax. Moreover, these two styles of working with abstract

syntax can be mixed, which has interesting applications such as the derivation of a term for the unique

choice of new names.
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Chapter 1

Introduction

Names are an everyday tool in the theory and practice of formal systems. They appear as variable names

in the abstract syntax of programming languages, the π-calculus models computation by name-passing,

references in ML are names of memory locations, to mention just a few examples. In these examples,

names are used as abstract place-holders and have very little structure of their own. All we know about

them is that they have an identity, i.e. we can compare them for equality, and that there are enough of

them, i.e. we can always find an unused one. Despite, or perhaps because of, the fact that such names

have so little structure, they have been found to be genuinely useful for working informally with formal

systems. On the other hand, the formalisation of informal arguments with names has turned out to be

surprisingly complicated.

Nevertheless, being able to work formally with names is very desirable. Of particular practical

importance is the mechanisation of abstract syntax. For an example, consider the development of pro-

gramming languages. It is dominated by the verification of standard properties, often by straightforward

proofs. For instance, when designing a type system for a functional programming language one usu-

ally wants to verify standard properties such as subject-reduction. The proofs of such properties are

usually routine verifications. However, since programming languages are often quite large, verifying

such simple properties can be tedious and lengthy. Moreover the proofs are, due to their size, often hard

to read and it is hard to be completely convinced of their correctness. This makes the theory of such

formal systems a prime target for formal proof and proof automation. However, for the formalisation

of proofs about programming languages it is necessary to formally represent the abstract syntax of the

programming language. The treatment of names and name-binding in the abstract syntax presents a

major obstacle in the formalisation effort. The problem is not that it is intrinsically difficult to formalise

informal developments, but that formalisations require substantial additional effort. The goal of building

formal systems with names is to bring formal work with names as close as possible to informal work, in

order to make formalisations more convenient.

9



Chapter 1. Introduction 10

The topic of this thesis is the design of one such formal system, a dependent type theory with names.

We propose a novel dependent type theory containing constructs for working with names and binding.

As the semantic basis for this type theory we develop a categorical formulation of name binding. In this

formulation, we characterise concepts such as α-equivalence classes and binding directly by means of

universal constructions. We derive the primitives for working with names and binding in the type theory

from this categorical structure, and we use bunches to build them into dependent type theory. As the

main application of the type theory, we consider programming and reasoning with abstract syntax.

In this thesis we concentrate on the use of names for the formalisation of abstract syntax. Due to

the practical importance of formalising abstract syntax, many other approaches have been proposed. We

review the most important of them at the end of this chapter, but until then we focus entirely on the use of

names. We focus on names because they are ubiquitous in familiar informal work with abstract syntax,

so that it is natural to use them formalisations. Furthermore, Gabbay & Pitts have recently proposed a

convincing set-theoretic approach of formalising abstract syntax that makes essential use of names [38].

This approach serves as the starting point for the design of our type theory.

In the rest of this chapter we review existing work for the formalisation of abstract syntax and give

an overview of the work in this thesis. Because we focus on formal systems with names, much of this

chapter is devoted to working formally with names. After a brief review of the use of names in informal

work, we sketch the kinds of challenges one faces in the formalisation, and give an overview of existing

approaches to working formally with names. This sets the scene for an overview of this thesis, given in

Section 1.4. Finally, in the last section of this chapter we overview other approaches to the formalisation

of abstract syntax that do not directly use names.

1.1 Names for Abstract Syntax

We take the syntax of the untyped λ -calculus as a running example. This is a good minimal example,

since it is not far away from the syntax of real-world programming languages and since it gives rise to

many of the problems that appear for real-world programming languages.

When defining the syntax of the λ -calculus, it is standard to first define a concrete version of the

abstract syntax.

Lam ::= var : N | app : Lam×Lam | lam : N×Lam

In this inductive definition, N is an appropriate type of variable names, such as the type of natural

numbers or the type of character strings. As usual, we write x for var(x), M N for app(M,N) and λx.M

for lam(x,M).

Of course, the variable x in the term λx.M is meant to be bound. The terms are identified under

(certain) renaming of bound variables. This means that the abstract syntax of the untyped λ -calculus

is given by the quotient of Lam under α-congruence, where the α-congruence relation is the smallest

congruence relation generated by (λx.M)∼α (λy.M[y/x]) for y 6∈ FV (M)\{x}.
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In informal work, we usually make the fact that the syntax is given by a quotient under α-congruence

as implicit as possible. Rather than working with equivalence classes, we work with particular repre-

sentatives. This informal practice is captured by Barendregt’s Variable Convention [9].

2.1.12. CONVENTION Terms that are α-congruent are identified. [. . . ]
2.1.13. VARIABLE CONVENTION If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof) then in these terms all bound variables are chosen to be different
from free variables. [. . . ]
2.1.14. MORAL Using conventions 2.1.12 and 2.1.13 one can work with λ -terms in the
naive way.

Barendregt’s Variable Convention is very successful. It is pervasive in the literature and greatly simpli-

fies informal work.

The formalisation of informal work that uses Barendregt’s Variable Convention, however, turns out

to be rather complicated. A large part of the formalisation is usually is spent on dealing with issues

concerning names. Of course, this raises the question why it is that informal work is so much easier than

formal work. Is it because informal work is imprecise and the details making formal work so much more

complicated are swept under the carpet? Evidence that the answer to this question is (for the most part)

no is given by the huge amount of existing informal work. There is little reason to doubt the correctness

of this informal work, at least not for its use of Barendregt’s Variable Convention. It therefore seems

likely that informal reasoning is rigorous, but that the precise mathematical content of the informal

arguments has not yet been fully identified. What is, for example, the concept of name binding? Clearly,

there is more to binding than just the representation of α-equivalence classes. In informal work one also

uses the operation which, given a name n and a term x, produces the α-equivalence class n.x. Another

commonly used operation takes an α-equivalence class y and a sufficiently new name n and produces the

instance y@n of the class y at the name n. For another example, we should ask what the mathematical

content of Barendregt’s Variable Convention is. A direct formalisation would require us to prove that

working with α-equivalence classes is really the same as working with instances chosen according to

the convention.

In this thesis we study the concepts underlying informal arguments with names and design a depen-

dent type theory based on this understanding.

1.2 What are the problems in formalising work with names?

To give an idea what kind of problems we encounter in the formalisation of informal work with names,

let us look at a specific example. The example is the some/any equivalence identified by McKinna &

Pollack [69] and Gabbay & Pitts [38]. It amounts to the observation that in informal work we often use

the following reasoning. Suppose we have proved a property ϕ(n) for some sufficiently fresh name n,

and later we want to prove ϕ(m) for some other fresh name m. We then usually say that in the proof

of ϕ(n) we could have used the name m instead of n, so that ϕ(m) holds as well. This amounts to the
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left to right direction of the equivalence below.

∃fresh name n.ϕ(n) ⇐⇒ ∀fresh name n.ϕ(n) (some/any)

Before giving a concrete example where such informal reasoning is used, let us first see why this rea-

soning should be correct. An informal ‘proof’ of the equivalence might go as follows.

‘Proof’ of (some/any).

(=⇒) All we know about names is that there are infinitely many of them and that they can be compared.

Given this, there is no way ϕ(−) could possibly distinguish between two different fresh names.

This is the case because a fresh name n is different from all the other names in ϕ(n), so that any

equality test with n in ϕ(n) will always return false. Hence, if ϕ(n) holds for some fresh name n,

then so must ϕ(m) for any other fresh name m.

(⇐=) We can always find a fresh name.

Notice that in this ‘proof’ we did not have to look at the formula ϕ at all. Notice also that this ‘proof’

relies essentially on the fact that little can be done with names. If names are encoded as, say, natural

numbers, then the informal proof breaks down, because in this case ϕ(−) could distinguish two new

names. This has an impact in practical applications. In McKinna & Pollack’s development [69], for ex-

ample, the information that little can be done with names is not available and the equivalence (some/any)

has to be re-proven for each property ϕ .

A simple concrete example for the use of (some/any) is given by Vestergaard in a short note entitled

‘Some/Any is Easy, Effective and Necessary’ [115], see also [114]. The example is deciding whether or

not two λ -terms in concrete syntax (not identified up to renaming of bound variables) are α-congruent.

To illustrate the use of (some/any), it suffices to consider just the very special case of terms of the form

λx.M and λy.N where neither M nor N contains an occurrence of λ . To decide whether λx.M and

λy.N are α-equivalent, it obviously suffices to pick a name z not occurring in λx.M or λy.N and to

check the syntactic identity λ z.M[z/x] = λ z.N[z/y]. In short, the algorithm computes the truth of the

predicate ∃z.z 6∈Vars((λx.M),(λy.N))∧λ z.M[z/x] = λ z.N[z/y]. Call this predicate ϕ(λx.M,λy.N).

In order to prove that this algorithm really computes α-equality, we must, among other things, prove

that it is transitive. For this, we have to show ϕ(λx.M,λ z.R), given the assumptions

λu.M[u/x] = λu.N[u/y] λv.N[v/x] = λv.R[v/z]

for some u 6∈ Vars((λx.M),(λy.N)) and some v 6∈ Vars((λy.N),(λ z.R)). It is not obvious how to

show ϕ(λx.M,λ z.R) directly from these assumptions, for example because u and z could be the same

variable. Using the some/any property, on the other hand, we know that ϕ(λx.M,λy.N) is equivalent
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to ∀z.z 6∈ Vars((λx.M),(λy.N))∧λ z.M[z/x] = λ z.N[z/y]. Write ψ(λx.M,λy.N) for this universally

quantified formula. Using the some/any equivalence, we can therefore make the assumptions

λu.M[u/x] = λu.N[u/y] λu.N[u/x] = λu.R[u/z]

for some u 6∈Vars((λx.M),(λy.N),(λ z.R)), thus making transitivity trivial.

Note that there also would have been a problem with showing transitivity if we had used ψ instead

of ϕ in the first place. In order to prove ψ(λx.M,λ z.R) from ψ(λx.M,λy.N) and ψ(λy.N,λ z.R), we

have to show λu.M[u/x] = λu.R[u/z] for all names u 6∈Vars((λx.M),(λ z.R)), and there is a problem

with using the assumption in case u = y holds.

Other examples of some/any equivalences can be found in [69]. It is important to note that, while

the above example concerns α-equivalence of terms, some/any equivalences are not only useful for α-

equivalence classes of terms. Even when terms are identified up to α-equivalence, some/any reasoning

appears, for example in the proof of the weakening property of pure type systems, see [69] and also the

discussion in [86]. In general, some/any equivalences occur whenever we have to deal with object-level

eigenvariables.

Formalising some/any equivalences is not the only challenge in the formalisation of informal work

with names. The representation of names themselves is another one. The example of the some/any

equivalence shows that it is essential for names to have very little structure. Because of this, it is

not at all clear how to represent them. Taking names to be natural numbers, as is often done, is not

ideal. Natural numbers have more internal structure than names, so that (some/any) does not always

hold. More generally, it does not appear possible to define the type of names as an inductive type. It

seems that the elements of any inductively defined type with infinitely elements will have more internal

structure than just their identity.

Another challenge with the formalisation of informal work with abstract syntax is the support of

inductive reasoning and recursive definitions. In informal work we commonly reason by structural

induction on terms, and functions like substitution are (claimed to be) defined by structural recursion. If

the abstract syntax does not contain binders, then these proofs and definitions can be formalised without

problem. With variable binders, however, the syntax is defined as a quotient of an inductive type, and

does not at first appear to be an inductive type. That it is really an inductive type has been shown in

different settings in [30, 38, 49].

Finally, informal work makes extensive use of Barendregt’s Variable Convention. To support it in

formal work, we must identify terms up to α-equivalence, and we must (to some extent at least) be able

to work with the α-equivalence classes as if they were concrete terms.

The above mentioned problems are some of the most important and well-known problems in the

formalisation of names. There are likely to be more complications. For overviews of the problem and

criteria formalisations of names have to meet see [89] and [6].
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1.3 Approaches to the Formalisation of Names

Having outlined some of the challenges with the formalisation of names, we review representative ex-

amples of existing formalisations of abstract syntax with named variables. In this section we consider

only approaches that use names; we refer to Section 1.5 for a discussion of other approaches.

1.3.1 Concrete Approaches

The first group of approaches is distinguished by the fact that the syntax is not identified up to renaming

of bound variables. Two well-known representatives of this group are the approaches of McKinna &

Pollack [69] and of Vestergaard & Brotherston [116]. In these approaches, names are represented by

natural numbers and an abstraction λn.x is represented concretely, typically as a pair 〈n,x〉. Since the

syntax is not identified under renaming of bound variables, α-conversion has to be taken care of explic-

itly. Moreover, the induction principles of the concrete syntax are not quite what would be expected in

informal use. For example, neither McKinna & Pollack nor Vestergaard & Brotherston define capture-

avoiding substitution as a function in the way this is usually done in informal work. Instead, substitution

is possibly name-capturing but it is used only when it is safe to do so.

However, the fact that syntax is not identified up to α-conversion does not appear to be the main

limiting factor in these approaches. Rather, the use of natural numbers for names appears to cause

problems. McKinna & Pollack [69] show by using some/any equivalences that their approach can

formalise informal arguments very well. However, because they encode names as numbers they must

laboriously prove correct each instance of the some/any equivalences they use. As sketched above, in

informal reasoning with names we expect such equivalences to come for free. In fact, McKinna &

Pollack do not use any of the structure that numbers have over names, but they cannot exploit the fact

that names have little structure, as would be necessary in order to get the some/any equivalences for

free. Nevertheless, even with the problem of proving some/any equivalences, which may in the future

be overcome by means of proof automation, McKinna & Pollack’s approach is one of the best currently

available for programming and reasoning with abstract syntax.

A big advantage of the concrete approaches is that everything we want to do with abstract syntax can

indeed be done. This is not the case for all other approaches, an example being Higher Order Abstract

Syntax described below.

There are proposals, similar in spirit to McKinna & Pollack’s work, which address some of the

issues of that work. For instance, to address the problem that terms are not identified up to renaming of

bound variables, it is possible to work with an encoding of syntax that uses names for free variables but

de Bruijn indices for bound variables [67]. This is essentially the approach of Gordon & Melham [41],

being used, for example, by Norrish [78]. Norrish [79] also shows that nice recursive definitions are

available for this encoding.
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1.3.2 FM Theory

Next we discuss the nominal approach of Gabbay & Pitts [38]. Characteristic of this approach is its

treatment of names. In the discussion of some/any equivalences we noted that it is important to model

names well. Gabbay & Pitts address this issue. In order to model names well, they move from standard

set theory to Fraenkel Mostowski (FM) set theory. In FM set theory there exists an infinite set whose

elements can be compared for equality, but nothing else can be done with the elements. This set models

names better than, say, natural numbers in standard set theory. For instance, Gabbay & Pitts show that

some/any equivalences come for free when we use this set to model names.

Gabbay & Pitts’ technical development rests on name-swapping actions. By requiring constructions

to be invariant under name-swapping, they make available the fact that all we can do with names is

to compare them. To develop their ideas, Gabbay & Pitts utilise FM set theory, an existing theory of

sets with name-swapping actions. Gabbay & Pitts give a number of constructions that are useful in the

formalisation of informal arguments with names.

• There is a syntax-independent notion of freshness, that is a binary relation (−)#(−) which for-

malises when two sets do not share names. It is syntax-independent because it is formulated using

name-swapping, without any reference to abstract syntax.

• There is a freshness quantifier Nthat captures some/any equivalences. The formula Nn.ϕ(n)

expresses both ‘for some fresh name n the property ϕ(n) holds’ and ‘for all fresh names n the

property ϕ(n) holds.’ The quantifier Nthus gives for free the equivalence (some/any) for arbitrary

propositions ϕ .

• Abstraction sets [N]B give a representation of α-equivalence classes. Using abstraction sets ab-

stract syntax up to α-conversion can be defined as an inductive type. Just as freshness is syntax-

independent, abstraction sets can be used not only for terms but for arbitrary sets. A useful

operation with abstraction sets is the binding operation taking a name n ∈N and an element x ∈ B

to the α-equivalence class n.x.

As this brief list of construction shows, FM set theory addresses the issues with the formalisation of

names that we have mentioned in the previous sections. We therefore believe that this approach is very

promising—the development in this thesis is based on it.

The FM approach has the disadvantage that it requires us to move from a familiar universe, such

as set theory, to a relatively unfamiliar one, such as FM set theory. As a consequence, it is not readily

supported by existing theorem provers and programming languages. However, work is underway to

build logics and programming languages based on the ideas developed in FM set theory. This thesis,

in which we study how FM concepts can be built into dependent type theory, can be seen as part of

this line of work. The set-theoretic setting in which Gabbay & Pitts develop their ideas is, however,

not an ideal basis for this line of work. While a set-theoretic development may be advantageous for
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accessibility, it does not lend itself to generalisations to other settings. We address this issue in this

thesis by reformulating some of Gabbay & Pitts constructions categorically.

In the rest of this section, we give an overview of existing FM-related work.

Nominal Logic. Nominal Logic is a first order axiomatisation of the FM concepts that have been

found useful for working with names. These concepts are name-swapping, freshness, the freshness

quantifier and abstraction sets. Originally presented by Pitts [86] in a Hilbert-style axiomatisation,

Gabbay and Cheney have also given presentations of Nominal Logic in sequent and natural deduction

style [35, 37, 22]. While in Pitts’ Hilbert-style presentation the main emphasis is on swapping, in the

sequent and natural deduction presentations the emphasis is shifted towards freshness and the freshness

quantifier. It is interesting to note that while the Hilbert-style presentation goes through very smoothly,

the formulation of sequent and natural deductions rules for the freshness quantifier has presented some

problems, as described by Cheney in [22].

By introducing Nominal Logic, Pitts shows that reasoning with names can be formalised in first-

order logic. Restricting attention to first-order has the advantage over higher-order approaches, outlined

at the end of this chapter, that problems are potentially easier to solve. One example for this is unifica-

tion. In higher-order approaches to abstract syntax one often has to deal with higher-order unification,

which is known to be much harder than first-order unification.

Nominal Unification and α-Prolog. Urban, Pitts & Gabbay [112] show that unification up to α-

equivalence can be solved by a first-order unification algorithm. This unification algorithm is used

by Cheney and Urban [23, 20] as the basis of a version of Prolog in which one can work with syntax

up to α-equivalence. This programming languages implements logic programming with a version of

Nominal Logic.

FM-HOL. Just as Nominal Logic axiomatises the structure of FM set theory in first-order logic, FM-

HOL [34] axiomatises the structure of (a generalisation of) FM set theory in higher-order logic. Being

higher order, it suffices to take names and name-swapping as primitives and define everything else from

them, just as is done in FM set theory [38]. Although FM-HOL is not yet implemented, it can be hoped

that it will make possible FM-style reasoning in theorem provers such as Isabelle/HOL.

FreshML 2000 and Fresh O’Caml. The concepts from FM set theory are also being studied in the

context of functional programming. Pitts and Gabbay [87] have developed a ML-like programming

language, FreshML 2000. In this language name-generation is treated in a side-effect free manner. This

means that a new name can only be generated if the compiler can statically guarantee that the particular

choice of name has no side-effect. The compiler guarantees the absence of side-effects by means of a

type system containing freshness assertions. Freshness assertions are invisible to the user and are used

only by the compiler. Practical experiments have shown that relying on the compiler to infer freshness

properties automatically is often quite restrictive [100]. Since freshness assertions are invisible to the

user, there is moreover no possibility for the user to help the compiler by supplying additional type

annotations.
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Shinwell, Pitts and Gabbay [102, 100] found that it is not necessary to have the compiler show

absence of side-effects for name-generation. In [102, 101] it is shown that programming with syntax

up to α-equivalence can be realised when name-generation is implemented as a side-effect. Using side-

effects for name-generation appears sensible, since O’Caml also uses side-effects for other purposes

such as I/O and memory access. The resulting full-scale programming language Fresh O’Caml [100]

thus overcomes the problems of FreshML 2000.

Nominal Reasoning in Isabelle/HOL. All the FM-based systems described so far have the common

aim of making it possible to work inside FM set theory or a similar universe in which Gabbay & Pitts’

ideas can be developed. The development of Urban and Tasson [113] in Isabelle/HOL instead looks

at such a universe from the outside. This work may be seen as the construction of a FM-like universe

inside the higher-order logic of Isabelle/HOL, much in the way FM-Sets is constructed from Sets. This

approach has the advantage that one is not constrained to working inside the FM-like universe. Indeed,

in informal work with FM, such as [2, 101], such an external view on FM is often used. On the other

hand, it remains to be seen how manageable the constructions of [113] in Isabelle/HOL are in practice.

Initial experiments are encouraging.

Spatial Logic, Manipulating Trees with Hidden Labels. Names and FM concepts, such as the freshness

quantifier, have found applications in a number of other areas. They have been studied, for example,

in the context of spatial logics for concurrency theory [15, 17]. Here, we want to single out Cardelli,

Gardner & Ghelli’s work on the manipulation of trees with hidden labels [16], which has influenced the

work in this thesis. We comment on the influence of this work in the description of our own approach

below.

1.3.3 Weak Higher Order Abstract Syntax

Weak Higher Order Abstract Syntax (WHOAS) is another popular approach to formalising syntax with

names in which terms are identified up to α-equivalence. The idea of WHOAS is to represent α-

equivalence classes as functions from names to terms [29, 51]. Using this idea, the syntax of the untyped

λ -calculus can be represented by the inductive type

Lam ::= var : N | app : Lam×Lam | lam : (N→ Lam).

With this encoding too, the problem arises of how the type of names N should be defined. Using

natural numbers for N is again problematic. If we use numbers then the function space (N → Lam)

contains more than just α-equivalence classes. If numbers are used for names then Lam contains exotic

terms that do not represent λ -terms, for example lam(λn. if n = 3 then var(4) else var(5)). One possi-

bility of dealing with this problem is to use validity predicates to single out the functions in (N→ Lam)

that do in fact represent α-equivalence classes. This approach is taken in [29]. It comes at the price that

the abstract syntax corresponds only to a part of the inductive type Lam and that one has to deal with the

validity predicates.
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Another way of dealing with the problem that (N → Lam) contains too many elements is to use a

more restricted definition of N than the natural numbers. The above example of an exotic term shows

that N cannot even have decidable equality. In fact, if (N → Lam) is to contain only α-equivalence

classes then there must not be anything we can do with names when defining a function of this type. Re-

stricting the type of names is the approach taken by Fiore, Plotkin & Turi [30], Hofmann [49] and Hon-

sell, Miculan & Scagnetto [51], among others. We discuss the approaches of Hofmann and Fiore et al.,

which are semantic in nature, in Section 1.5.3. Honsell et al. [51] introduce the Theory of Contexts [51],

a higher-order logic in which nothing at all can be done with names for the definition of functions in

(N → Lam). However, if names were left completely unspecified then the resulting logic would not be

expressive enough for the formalisation of informal arguments. The solution proposed in the Theory of

Contexts is to add logical axioms for names, such as that any two names are either equal or different.

The result is a logic that can formalise logical reasoning in a way similar to Nominal Logic but that is

functionally weak in order to keep (N → Lam) small. Hofmann [49] relates the Theory of Contexts to

Nominal Logic by showing that both logics can be interpreted in the same semantic model. Although

the Theory of Contexts has several disadvantages when compared to Nominal Logic, for example that

the formulation of freshness is not syntax-independent and that the axiom of unique choice cannot be

added, it has the important advantage that it can be used in existing theorem provers such as Coq.

1.4 Names and Binding in Type Theory

Missing from the above list of formal systems with names is a dependent type theory. The topic of this

thesis is the design of such a dependent type theory with names.

A main reason for wanting such an integration is that dependent type theory is one of the most

successful approaches to formal proof. It is used widely in theorem provers such as Coq, LEGO, Agda

and NuPRL. Dependent type theory accommodates both functional programming and logical reasoning.

Such an integration of programming and reasoning is desirable for the formalisation of informal work

with names. When reasoning informally about abstract syntax, we often make use of functions like

capture-avoiding substitution or the function computing the free variables of a term. For the purposes of

this thesis we concentrate on first-order dependent type theory in the style of Martin-Löf [65, 77]. Under

the Curry-Howard isomorphism, first-order dependent type theory corresponds to intuitionistic first-

order logic. It has sum types Σx : A.B and product types Πx : A.B, which correspond to the propositions

∃x : A.B and ∀x : A.B of first-order logic.

To give a dependent type theory with names, we build on FM theory, which we believe best captures

the concepts underlying informal work with names. Our aim is to give a type theory that contains useful

FM constructions, such as abstraction sets and the freshness quantifier. The resulting type theory should

make it possible to extend the Curry-Howard isomorphism from first-order logic to (at least part of)

Nominal Logic. We approach the design of such a dependent type theory semantically, taking FM set
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theory as our starting point.

Giving a type theory with names and FM constructions does, however, not appear to be simply a

matter of replaying the definitions of Nominal Logic or FM-HOL. In type theory, we have to deal with a

new concept, freefrom types, that does not appear in Nominal Logic, since it coincides with weakening

there. Furthermore, existing FM-style logics are based on classical logic with extensional equality.

Dependent type theory, on the other hand, usually corresponds to intuitionistic logic and extensional

equality is known to be problematic [47]. Of the FM-based programming languages, Fresh O’Caml also

does not appear to be a good model for a dependent type theory, since name-generation is modelled

as a side-effect. The only remaining FM approach is FreshML 2000, and the dependent type theory

presented in this thesis has some similarity to the type system of FreshML 2000.

Moreover, for dependent type theory it does not appear to be a good choice to take name-swapping as

the only primitive for names, as is done in FM set theory. For example, to define a type of α-equivalence

classes from swapping alone, it appears to be necessary to have extensional equality and some sort of

quotient type. Because extensional equality causes problems with dependent types, we do not want to

assume it just for the definition of α-equivalence. The alternative that we follow in this thesis is to treat

constructions such as α-equivalence classes directly, turning them into primitives of the type theory. In

addition to avoiding the above mentioned problems, a direct treatment of the FM constructs for names

also contributes to a better understanding of the essential properties of these constructs.

For a direct formulation of FM concepts for names, we reformulate them in terms of freshness

rather than swapping. This is not to be understood as an argument against swapping as such. The use

of swapping by Gabbay, Pitts and others, e.g. in [38, 86, 16], is convincing. We have simply found

freshness to be more convenient for the direct characterisation of FM concepts by universal properties.

1.4.1 Overview of our Approach

To build FM concepts into type theory, we begin by studying the categorical structure of the Schanuel

topos, the categorical version of FM set theory. This is a first step towards giving a type theory, since

there is a close connection between type theory and category theory, see e.g. [56].

We sketch the relevant categorical structure of the Schanuel topos and explain informally what it

means. The central concept of our constructions is the freshness relation (−)#(−) as defined in FM set

theory. Freshness gives rise to a monoidal structure ∗ by the definition

A∗B def= {〈x,y〉 : A×B | x#y}.

Taking this monoidal structure as our starting point, we define all other concepts for working with

names by universal constructions in terms of it. In effect, there are only two constructions: non-standard

sums Σ∗ and dual non-standard products Π∗. Constructs such as abstraction sets, the freshness quantifier

and unique choice of new names are all formulated in terms of Σ∗ and Π∗.

The non-standard sums and products Σ∗ and Π∗ admit the following informal description. Recall that
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the dependent product type Πx : A.B is a type of functions that map each argument M : A to an element

of type B[M/x]. The type Π∗x : A.B is a non-standard product type. It consists of partial functions

mapping each argument M : A that contains just fresh names to an element of B[M/x]. On arguments

that do not contain just fresh names, the partial functions in Π∗x : A.B are undefined. Being a sort of

function type, there are versions of functional abstraction and application for Π∗, denoted by λ∗x : A.M

and N@R. Now recall that the dependent sum type Σx : A.B is a type of pairs 〈M,N〉 where M : A and

N : B[M/x]. The type Σ∗x : A.B is a non-standard sum type. It consists of pairs M.N in which all the

names occurring in M have been hidden. This name-hiding can also be understood as name-binding: all

the names in M are bound in the pair M.N. The type Σ∗x : A.B is a dependent version of the abstraction

set introduced by Gabbay & Pitts. The operations for working with Σ∗-types are similar to that for weak

Σ-types [56, §10]. There are (in effect) a pair formation operation M.N and an elimination operation

(let M be x.y in N). The computational intuition behind these operations is that M.N first forms the

pair 〈M,N〉 and then binds/hides the names of M in the pair, while (let M be x.y in N) takes the pair-

with-hidden-names M of type Σ∗x : A.B, replaces the bound/hidden names with new names and then

binds the components of the pair to the variables x and y in N.

The main use of Σ∗ and Π∗ is to encode α-equivalence classes. As in FM set theory, we have a

type N of names, the elements of which can be tested for equality, but nothing else can be done with

them. The type Π∗n : N.Lam represents α-equivalence classes of terms, much in the spirit of WHOAS.

Notice that the standard function space Πn : N.Lam contains more than just α-equivalence classes since

names can be compared for equality. The non-standard sum type Σ∗n : N.Lam consists of pairs n.t of

a name n and a term t such that n is bound in the pair. In this way, the type Σ∗n : N.Lam also contains

α-equivalence classes of terms. It is nothing but the FM abstraction set. With Π∗ being the dual of Σ∗,

we can therefore say that WHOAS-style syntax is dual to FM-style syntax.

Categorically, Σ∗ and Π∗ may be understood as monoidal versions of Σ and Π. Standard sums

and products Σ and Π are defined as left and right adjoints to weakening ΣA a π∗A a ΠA, subject to a

Beck-Chevalley condition. The non-standard versions Σ∗ and Π∗ arise if in this situation we replace

the weakening functor π∗A by a non-standard ‘weakening’ functor WA. This functor WA is a lifting of

the monoidal structure ∗. In Chapter 2 we review the categorical structure corresponding to dependent

types and define Σ∗, W and Π∗ precisely. Following this, in Chapter 3 we construct concrete models of

this structure, namely the Schanuel topos and a realizability version of the Schanuel topos.

Based on this categorical analysis, we give a dependent type theory containing the normal dependent

sums Σ and products Π as well as the non-standard monoidal sums Σ∗ and products Π∗. This is the topic

of Chapters 4–9. As in the semantics, the basis of our development is the monoidal structure ∗. We

build it into the type theory using bunched contexts [80, 91]. The definition of the basic type theory

appears in Chapters 4 and 5. In addition to the usual additive types, this type theory contains Π∗-types

and ∗-types. In Chapters 6 and 7 we then show it sound and complete for a categorical semantics. Our

use of bunches and Π∗-types was inspired by the work of Cardelli, Gardner & Ghelli [16].
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Having introduced Π∗-types, the introduction of Σ∗-types is the topic of Chapters 8 and 9. First, in

Chapter 8 we introduce syntax for the functor W , as appears to be necessary for giving a syntax for Σ∗.

The syntax for W takes the form of freefrom types. The freefrom type B∗(M:A) intuitively consists of

all elements of B that are free from the names in the value denoted by M : A. In the type system of

FreshML 2000 a similar use of freshness appears. The main difference to our approach is that with

type dependency freefrom types can be made first-class types, whereas in FreshML 2000 the freshness

assertions are visible only to the compiler. In FreshML 2000 the user has to rely on the compiler to infer

freshness automatically—and the compiler is not always able to do this. With first-class freefrom types,

on the other hand, the user has the option of supplying freshness properties explicitly.

The monoidal types Π∗ and Σ∗ are the basis of our approach to working with names and binding

in type theory. In Chapter 10, we explain categorically how the concept of name-binding can be for-

malised in terms of them. In order to do so, we give a categorical formulation of Barendregt’s Variable

Convention. The central idea of this formulation is a categorical equivalence that formalises Baren-

dregt’s requirement that working with α-equivalence classes is essentially the same as working with

freshly named concrete terms. This equivalence amounts to an isomorphism Σ∗n : N.B ∼= Π∗n : N.B,

where N is the type of names. This isomorphism can be understood as a some/any equivalence. Under

the propositions-as-types reading, the type Σ∗n : N.B expresses ‘B holds for some new name n’ and the

type Π∗n : N.B expresses ‘B holds for all new names n.’ The isomorphism then states that these two

propositions are equivalent, thus amounting to a some/any equivalence. This situation generalises the

freshness quantifier Nof Nominal Logic. If we restrict to subobjects then Σ∗n : N.ϕ and Π∗n : N.ϕ

both specialise to Nn.ϕ . Another way of understanding the isomorphism is by means of the fact that

both Σ∗n : N.B and Π∗n : N.B represent α-equivalence classes of elements of B with respect to a single

name n. If both represent α-equivalence classes, then there should of course be an isomorphism be-

tween them. We show in Chapter 10 that this categorical structure includes a good deal of the structure

used for programming and reasoning with names in FM set theory. Our structure may be seen as a

propositions-as-types generalisation of Nominal Logic.

Having identified the conceptual structure of names and name-binding, in Chapter 11 we extend

the type theory with it. We incorporate the isomorphism Σ∗n : N.B ∼= Π∗n : N.B in the type theory by

means of hidden-name types Hn.B. The type Hn.B may be seen as being both Σ∗n : N.B and Π∗n : N.B

at the same time1. Hidden-name types have the term constructors and destructors from both Σ∗ and Π∗.

There are isomorphisms (Σ∗n : N.B)∼= (Hn.B)∼= (Π∗n : N.B). The type Hn.B thus plays the same role

as Nn.ϕ in Nominal Logic.

Finally, in Chapter 12 we give some examples to illustrate how the type theory can be used for

working with names and binding.

A short description of the above approach has been published in a joint paper with Ian Stark [95].

1 The letter H, being half Π and half

Π

, is the ideal symbol for a type that is both a product and a sum. The name is also inspired
by the hidden-name quantifier of Cardelli and Gordon [17]. Due to differences in setting, the precise relation of hidden-name types
to the hidden-name quantifier is however not clear.
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1.5 Other Approaches to the Formalisation of Abstract Syntax

As motivated above, in this thesis we focus on nominal, i.e. FM-based, approaches to the formalisation

of abstract syntax. However, as previous work as well as the work reported in this thesis shows, the

design of nominal logics and type systems is not without problem. We should therefore keep in mind

other approaches to the formalisation of abstract syntax. In the rest of this section we review some of

these non-nominal approaches.

1.5.1 De Bruijn Indices

One of the most commonly used ways of encoding α-equivalence classes of terms is with Bruijn in-

dices [14]. In this approach, bound variables are represented by a natural number counting the distance

to its binder.

Lam ::= var : N | app : Lam×Lam | lam : Lam

Free variables can be treated by viewing them as being implicitly bound at the top level. It is also

possible to treat them separately using variable names, as in e.g. [67].

The advantages of de Bruijn’s approach are that it identifies terms up to α-equivalence, it is available

in virtually all programming languages and logics, and it makes arbitrary operations with syntax possi-

ble. The most important disadvantage of de Bruijn indices is that the formal treatment of syntax does

not correspond directly to the informal treatment. This makes the definition of basic operations such as

substitution complicated and error-prone. This may be no more than a nuisance in programming, since

such operations may have to be defined only once, perhaps even automatically, but it is a problem in

formal reasoning where humans are expected to work with particular terms.

For these reasons, we believe that de Bruijn indices are not the ideal solution for the representation

of abstract syntax. That said, syntax with de Bruijn indices can be very helpful as a technical tool.

For example, internal languages of categories are most naturally formulated with de Bruijn indices, see

e.g. Chapter 6.

1.5.2 Higher Order Abstract Syntax

The idea of Higher Order Abstract Syntax (HOAS), which goes back to Church [24], is to encode

variable binders using function spaces.

Lam ::= var : N | app : Lam×Lam | lam : (Lam→ Lam)

This encoding is extremely successful for the representation of formal systems in logical frameworks.

It is used in Isabelle [82], the LF logical framework [42] and λProlog [75], to mention just a few.

Such HOAS encodings of formal systems are very convenient, since properties such as closure under

weakening and substitution come for free.
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Higher Order Abstract Syntax is less successful if the aim is not just to represent the abstract syntax

but also to reason about it. In order for an HOAS encoding to work, the function space (Lam → Lam)

should contain no more than α-equivalence classes of terms. This means that we cannot allow elements

of (Lam→ Lam) to be defined by primitive recursion. Moreover, because Lam occurs both positively and

negatively in (Lam → Lam), the type Lam cannot be defined directly as an inductive type. Despeyroux

et al. [29] have introduced WHOAS, as discussed in Section 1.3.3, as a way of side-stepping this problem

and defining the syntax as an inductive type. A further important problem of using HOAS for working

formally with syntax is that HOAS has no notion of object-level variable. For example, it is not clear how

to the define the function that computes the free variables of a term. Informal arguments that explicitly

mention variables must therefore be reformulated, and it is not clear if this is always possible. Finally,

one of the advantages of HOAS for the representation of logical systems, that closure under substitution

comes for free, can also become a disadvantage, namely when the logical system to be encoded does not

have this property. For example, many properties of the π-calculus are not closed under arbitrary name-

substitutions but only under injective ones. This problem has lead to the development of substructural

logical frameworks, see e.g. [92, 19].

We describe some of the existing solutions to some of the issues with HOAS.

1.5.2.1 Multi-level Reasoning

The problem that adding induction principles to a logical framework gives rise to exotic HOAS terms

can be avoided by moving to multi-level reasoning. The idea is to represent abstract syntax using HOAS

in a logical framework without induction or recursion and to use a second, separate, logical framework

to reason about the first one. In the second logical framework induction and recursion principles can be

added without problem, as they cannot be used to define elements of (Lam→ Lam) in the first system.

Multi-level reasoning is proposed in the logics FOλ ∆N of McDowell & Miller [68] and FOλ ∆∇

of Miller & Tiu [73]. These closely related approaches use higher order abstract syntax in a simply-

typed λ -calculus and support logical reasoning by means of a sequent calculus on top of the λ -calculus.

Interestingly, FOλ ∆∇ also contains a quantifier ∇ that can be used to deal with eigenvariables. Using this

quantifier Miller & Tiu [73] can formalise reasoning with the π-calculus without the problem of non-

injective name-substitutions. Furthermore, induction and coinduction can be added to this setting [74].

A prototype implementation Linc is being developed by Tiu.

Multi-level reasoning is also available in Twelf [97], a logic programming language with experi-

mental theorem proving facilities.

At present, the existing multi-level approaches are closer to logic programming than to theorem

proving. None of the above approaches is intended for interactive proof. Furthermore, while these

multi-level approaches look very promising for a wide range of applications, they do not apparently

deal with the problem of HOAS that informal arguments making explicit reference to variables names

cannot be formalised directly.
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1.5.2.2 Modal Type Systems

In order to maintain adequacy of syntax encodings, HOAS theories like the above mentioned multi-level

approaches or the Theory of Contexts have a weak functional theory. Therefore, instead of working with

functions one can only work with functional relations.

A proposal to strengthen the functional theory without introducing exotic terms is the modal type

system of Schürmann, Despeyroux & Pfenning [98]. The aim of this type system is to allow structural

recursion, but to manage the definitions so that no exotic terms are introduced. This is achieved by

means of a modality � on types. The function space (Lam → Lam) has the same elements as before,

but ((�Lam)→ Lam) also contains functions defined by structural recursion.

1.5.2.3 HOAS or Names?

Can we conclude by saying that HOAS or the nominal approaches are better than the other? At present,

we do not think this question can be answered conclusively, certainly not for all possible situations.

We do think the concepts underlying informal work with abstract syntax are best explained by nominal

approaches. The development of Fresh O’Caml is an example of the power of nominal approaches. On

the other hand, recent developments like the ∇-quantifier show that reasoning with HOAS can be both

simple and powerful. Furthermore, there appears to be some convergence of HOAS and nominal ap-

proaches, as exemplified by the similar quantifiers ∇ and N. We suggest a possible common framework

for understanding ∇ and Nin Chapter 10. Specifically, we believe that ∇ and Nare both instances of

Proposition 10.1.4, where ∇ arises if we take (linear) species as the underlying category and Narises if

we use the Schanuel topos. The verdict on whether to prefer HOAS or nominal approaches is still out,

although it seems doubtful that one approach will turn out to be superior in all respects.

1.5.3 Semantic Approaches

Since the starting point of this thesis is the semantics of names and binding, we should also mention

other semantic approaches that have influenced the development.

In [49] Hofmann studies the semantics of HOAS, modelling induction principles, modal type sys-

tems for structural recursion as well as the Theory of Contexts. His work clarifies the concepts of these

systems and their interrelation. He shows that these systems can be modelled in different presheaf cat-

egories. By modelling the logic of Theory of Contexts in the Schanuel topos, he also provides a formal

link between WHOAS and FM theory.

Fiore, Plotkin & Turi [30] give an algebraic account of abstract syntax with variable binders, showing

that well-known theory from universal algebra can be generalised to work in the presence of variable

binders. Their solution is a version of WHOAS. The main focus of the work in [30] is on representing

syntax, implementing substitution and describing initial algebra semantics. A similar development for

linear binders is given by Tanaka [107].
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Power and Tanaka [90, 108] have unified the approaches in [30] and [107] and have given a universal

account of abstract syntax with variable binders and substitution.

Although the development in this thesis has greatly benefited from the understanding of these se-

mantic approaches, there is a difference in purpose. In this thesis we consider the semantic concepts

of names and name-binding, while the above mentioned approaches focus on the representation of syn-

tax with binding and the implementation of substitution. We further discuss the relationship to these

approaches in Section 10.4.

The concepts of names and name-binding, as they appear in FM theory, have been studied directly

by Menni [72]. His work has directly influenced the work reported in this thesis, and is discussed in

more detail in Chapter 10.

1.6 Synopsis

The content of this dissertation falls into two parts. In the first part, Chapters 2–9, we introduce and study

a bunched dependent type theory with Π∗-types and Σ∗-types. We study this type theory in general,

leaving open the monoidal structure ∗ from which Π∗ and Σ∗ are derived. In Chapter 2 we start with

the categorical definition of Π∗ and Σ∗; in Chapter 3 we construct particular models for this structure;

in Chapters 4 and 5 we introduce a bunched dependent type theory with Π∗-types; in Chapters 6 and 7

we show soundness and completeness for this type theory; and in Chapters 8 and 9 we extend the type

theory with freefrom-types and Σ∗-types.

The second part of this thesis, Chapters 10–12, is about names and name-binding in dependent type

theory. We show how the type theory from the first part can be used for working with names and binding.

In Chapter 10 we give a categorical description of names and name-binding in terms of Π∗ and Σ∗; in

Chapter 11 we use this categorical description to extend the type theory from the first part with names

and binding; and in Chapter 12 we give examples of how the type theory can be used for working with

abstract syntax.



Chapter 2

Fibrations, Dependent Types and

Monoidal Structure

In the first part of this dissertation, up to Chapter 9, we study how a monoidal structure can be built into

dependent type theory. We look at this problem both from a semantic and a syntactic perspective. In

the present chapter we start by studying the categorical structure of dependent types with a monoidal

structure; in Chapter 3 we construct specific instances of this structure; and in Chapters 4–9 we introduce

and study a syntax for it.

In this chapter we look at the categorical structure underlying dependent types. After giving basic

definitions for categories and fibrations, we consider how a monoidal structure fits into this picture. We

define monoidal sums Σ⊗ and monoidal products Π⊗, which are the basis of the later development.

2.1 Preliminaries on Categories

We assume the reader to be familiar with the basic concepts of category theory [63, 111].

We make the following notational conventions.

• Categories are denoted by B,C,D,E, . . . , objects by capital letters A,B,C, . . . and morphisms by

lower-case letters f ,g,h,u,v, . . . . We write idA or simply id for the identity on A, and write g◦ f

for the composition of f : A→ B and g : B→C. The collection of morphisms from A to B in B is

denoted by B(A,B).

• Sets is the category of sets and functions.

• The arrow category B→ has as objects the maps in B. The morphisms in B→( f : A→B,g : C→D)

are given by pairs (u : A→C,v : B→ D) satisfying v◦ f = g◦u.

26
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• The slice category B/A, where A is an object of B, is the subcategory of B→ in which the objects

are maps with codomain A and the morphisms have the form (u, id).

• We write Sub(B) for the category of subobjects in B. For an object A in B, we write SubB(A) or

just Sub(A) for the poset of subobjects on A.

• The category of functors from B to C is denoted by CB. We often write Id for the identity functor.

• Cartesian products are denoted by A×B. We write π1 : A×B → A and π2 : A×B → B for the

projections. Given maps f : C→ A and g : C→ B, we write 〈 f ,g〉 : C→ A×B for the unique map

satisfying π1 ◦ 〈 f ,g〉= f and π2 ◦ 〈 f ,g〉= g.

• Coproducts are denoted by A+B. We write κ1 : A → A+B and κ2 : B → A+B for the coprojec-

tions. We write [ f ,g] : A+B→C for the copairing of two morphisms f : A→C and g : B→C.

• We use the notation (A ⇒ B) for the cartesian closed structure, writing ev: (A ⇒ B)×A → B

for the counit of A× (−) a (A ⇒−). Given f : C×A → B, we write Λ f : C → (A ⇒ B) for the

abstraction of f .

• We write F a U if F is left adjoint to U . The unit and counit are denoted by η : Id → UF

and ε : FU → Id respectively. Given f : A → UB and g : FC → D, we write f ] : FA → B and

g[ : C →UD for the adjoint transposes.

We follow the terminology of Mac Lane [63].

Definition 2.1.1. A category B has universal coproducts if it has binary coproducts and these are pre-

served by pullback, that is if the two squares in the left diagram below are pullbacks then the top row is

a coproduct diagram. Coproducts are disjoint if the coprojections are mono and the square on the right

below is a pullback.

A //

��

B

��

Coo

��
D

κ1
// D+E E

κ2
oo

0

��

// B

κ2

��
A

κ1
// A+B

We use the following formulation of Beck’s theorem.

Theorem 2.1.2 (Beck). Let U : C → B be a functor. Then U is comonadic if all of the following

conditions are satisfied.

1. U has a right adjoint.

2. U is faithful and reflects isomorphisms.

3. C has equalisers and U preserves them.

Proof. See e.g. [57, Theorem 1.1.2].
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At some points (e.g. in Chapter 10) we will work with the subobject logic of categories. For our pur-

poses, it suffices to use coherent logic, i.e. first-order logic with the connectives >, ⊥, ∧, ∨ and ∃.

Definition 2.1.3. A cover is a map c with the property that, whenever c = m◦ c′ holds for a monomor-

phism m, then m is an isomorphism.

Definition 2.1.4. A category B with finite limits is regular if each map factors into a cover followed by

a monomorphism, and covers are stable under pullback.

In a regular category the covers are just the regular epimorphisms, that is epimorphisms that occur as

coequalisers.

Definition 2.1.5. A category B is coherent if it is regular and the following two conditions hold.

• For each object A, the subobject poset Sub(A) has binary joins ∨ and these are preserved by

pullbacks.

• B has an initial object 0 and each arrow A→ 0 is an isomorphism.

See e.g. [57, 56] for more information on coherent categories.

2.2 Preliminaries on Fibrations

In this section we fix the notation on fibrations. All the information on fibrations needed in this thesis

can be found in Jacobs’ book [56], from where the definitions in this section are taken. We (largely)

follow Jacobs’ notation and terminology.

2.2.1 Fibrations

Definition 2.2.1 (Fibration). Let p : E→ B be a functor.

1. A morphism f : A → B in E is cartesian over u : Γ → ∆ in B if p f = u holds and for every

morphism g : C → B and every morphism v : pC → Γ for which pg = u ◦ v holds, there exists a

unique map h : C → A satisfying g = f ◦h and v = ph.

2. The functor p : E→ B is a fibration if for each object B in E and each morphism u : Γ→ pB in B
there exists a morphism f : A→ B cartesian over u.

We say a map f in E is vertical if p f = id holds. For any object Γ in B we write EΓ for the fibre over Γ,

that is the category of objects over Γ and vertical morphisms between them. For a fibration p : E→ B,

the categories B and E are usually called base category and total category respectively.

Of particular importance for this thesis is the codomain fibration cod : B→ → B for a category B
having all pullbacks. In cod the cartesian maps are given by pullback squares. See [56] for more

examples of fibrations.
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Definition 2.2.2 (Cloven Fibration). A fibration p : E → B is cloven if, for each object B in B and

each map u : Γ → pB in B, we have a chosen map u(B) : u∗(B) → B over u. The choice of lifting is

called cleavage.

The cleavage defines, for each map u : Γ→ ∆ in B, a reindexing functor u∗ : E∆ → EΓ. Following from

the fact that the maps u(B) are cartesian, there are canonical vertical natural isomorphisms Id
∼=−→ id∗

and v∗ ◦u∗
∼=−→ (u◦ v)∗ for all u : Γ→ ∆ and v : ∆→Φ, see [56, §1.4].

Definition 2.2.3 (Split Fibration). A cloven fibration is split if the canonical isomorphisms Id
∼=−→ id∗

and v∗ ◦u∗
∼=−→ (u◦ v)∗ are the identity.

In a split fibration, the choice of cartesian liftings is called splitting.

2.2.2 Change of Base

Given a fibration p : E → B and a functor K : C → B, we can form a fibration K∗p by change-of-base

of p along K. The fibration K∗p is defined by the following pullback of categories.

K∗E L //

K∗p
��

_� E
p

��
C K

// B

If p is a split fibration then so is K∗p. Examples of this situation can be found in [56, §1.5].

In this thesis we are concerned mostly with the special change-of-base situation where p is a

codomain fibration. This situation is known as gluing, see e.g. [110, §7.7]. It is given by the following

diagram.

B/K L //

Gl(K)
��

_� B→

cod
��

C K
// B

The category B/K is a comma category [63]. Its objects are triples (A,B, f : A → KB) in which A is an

object of B, B is an object of C and f is a morphism in B. Its morphisms from (A,B, f : A → KB) to

(C,D,g : C → KD) are pairs (u : A →C,v : D → B) of morphisms in B and C for which g◦u = Kv◦ f

holds. The functor Gl(K) maps an object (A,B, f ) to B and a morphism (u,v) to v. The functor L maps

(A,B, f ) to f and (u,v) to (u,Kv).

2.2.3 Categories of Fibrations

Definition 2.2.4 (Fibred Functor). Let p : E→ B and q : D→ B be fibrations over B. A fibred functor

from p to q is a functor F : E→ D that satisfies q◦F = p and that preserves cartesian maps. If both p
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and q are split fibrations and F preserves the splitting up to equality, i.e. F(u(B)) = u(F(B)) holds for

all u : Γ→ ∆ in B and all B in E∆, then F is called a split fibred functor.

Definition 2.2.5 (Fibred Natural Transformation). A fibred natural transformation τ : F → G between

fibred functors F,G : p → q is a natural transformation from F to G whose components are all vertical.

We sometimes speak of a vertical natural transformation.

These definitions give rise to a 2-category Fib(B) of fibrations on base B. The objects (0-cells) are

fibrations, the morphisms (1-cells) are fibred functors and the 2-cells are fibred natural transformations.

If all this structure is required to be split, then this defines a 2-category Fibsplit(B). More information on

the structure of these categories of fibrations can be found in [45, 56, 44, 54].

2.2.4 Fibred Adjunctions

Definition 2.2.6 (Fibred Adjunction). Let p : E→ B and q : D→ B be fibrations on B. A fibred adjunc-

tion F aU is given by fibred functors U : p→ q and F : q→ p together with vertical natural transforma-

tions η : Id →UF and ε : FU → Id satisfying the triangular identities Uε ◦ηU = id and εF ◦Fη = id.

If in this situation p and q are split fibrations and F and U are split fibred functors then we speak of a

split fibred adjunction.

An example is the fibred terminal object functor 1 : B → E for a fibration p : E → B. A fibration has

fibred terminal objects if each fibre has terminal objects and these are preserved by reindexing. This is

equivalent to saying that the unique fibred functor from p to the identity fibration idB : B→ B, which is

given by the functor p : E→ B, has a fibred right adjoint 1 : p → idB. This terminal object functor 1 is

just the functor 1 : B→ E mapping Γ to the terminal object of EΓ.

Lemma 2.2.7. Let p : E → B and q : D → B be fibrations over B. A fibred functor U : p → q has a

fibred left adjoint if and only if the following two conditions hold.

1. For each Γ, the restriction UΓ : EΓ → DΓ of U to the fibre over Γ has a left adjoint FΓ.

2. For each morphism u : Γ→ ∆ in B, the canonical transformation FΓu∗→ u∗F∆ is an isomorphism.

This condition is known as a Beck-Chevalley condition.

If p and q are split fibrations and U is a split fibred functor then U has a split fibred left adjoint if and

only if the above two conditions hold and the isomorphism in 2 is the identity.

See [56, Lemma 1.8.9] for a proof.

The 2-category Fib(B) provides us with the following notion of equivalence of fibrations.

Definition 2.2.8 (Equivalence of Fibrations). Two fibrations p : E → B and q : D → B are equivalent

if there are fibred functors U : p → q and F : q → p and vertical natural isomorphisms Id ∼= UF and

FU ∼= Id.
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We note that the notion of equivalence obtained from Fibsplit(B) differs from the above insofar that not

only the fibrations p and q must be split but also the functors U and F .

Lemma 2.2.9. Two fibrations p : E→ B and q : D→ B are equivalent if and only if there exists a fibred

functor U : p→ q which, as a functor from E to D, is full, faithful and essentially surjective on objects.

Proof. It p and q are equivalent then the existence of a suitable functor U is immediate.

In the other direction, we have to show that any functor U with the stated properties gives rise to an

equivalence of p and q. Consider the restriction UΓ : EΓ → DΓ of U to the fibre over Γ. It is immediate

that UΓ is full and faithful since U is. Now we show that UΓ is essentially surjective on objects. Let B

be an object in DΓ. Since U is essentially surjective, there exists an object A in E and a (not necessarily

vertical) isomorphism i : B → UA in D. Then, the map qi in B is also an isomorphism, and, since

cartesian maps over isomorphisms are isomorphisms, so is (qi) : (qi)∗UA →UA in D. Hence, by the

universal property of cartesian morphisms, there exists an isomorphism j : B → (qi)∗UA in DΓ. Since

U is a fibred functor, there exists an isomorphism (qi)∗UA →U(qi)∗A in DΓ. Noting that (qi)∗A is an

object of EΓ, we have thus shown that B is isomorphic (in DΓ) to an object in the image of UΓ, i.e. that

UΓ is essentially surjective.

Since, for each Γ, UΓ is full, faithful and essentially surjective, we obtain that UΓ has a left adjoint FΓ

and the (vertical) unit and counit of this adjunction are isomorphisms, see e.g. [63, §Theorem IV.4.1].

The result now follows from Lemma 2.2.7. The Beck-Chevalley condition holds because the canonical

map FΓu∗→ u∗F∆ is, by definition, such that it is an isomorphism if both the unit and counit of FΓ aUΓ

are.

Note that this argument does not work for a split equivalence, since even if we assume p, q and U to be

split, we can only assume the map FΓu∗→ u∗F∆ to be an isomorphism and not the identity.

2.3 Comprehension Categories

In this section we give the definition of comprehension categories, proposed by Jacobs as a general

framework for modelling type dependency, see [54, 55] and [56, §10.4]. Comprehension categories

generalise the structure of locally cartesian closed categories [99], display map categories [110] and

many other approaches to the categorical formulation of dependent types, see [55] for more information.

Although in this thesis we consider, in essence, only the semantics of dependent types in locally cartesian

closed categories, comprehension categories are a convenient way of dealing with technicalities, such

as that substitution should be defined up to equality and not just isomorphism.

Definition 2.3.1 (Comprehension Category). A comprehension category is a functor P : E→B→ such

that cod ◦P : E → B is a fibration and each cartesian map f with respect to that fibration is mapped

by P to a pullback square. The comprehension category P is full if the functor P is full and faithful.

It is called split if the fibration cod ◦P is split.
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For the purposes of this thesis, we consider just the following sub-class of comprehension categories.

Definition 2.3.2 (Comprehension Category with Unit). A comprehension category with unit is given by

a fibration p : E→ B with fibred terminal objects such that the terminal object functor 1 : B→ E has a

right adjoint {−} : E→ B. This data induces a comprehension category P : E→ B→ by the mapping

P : A 7→ p(εA), where εA : 1{A} → A is the counit of 1 a {−}. The comprehension category with unit

is called full if P is full and faithful.

Given an object B in EΓ, we use the notation πB : {B}→ Γ for the map PB in B.

Definition 2.3.3 (Products, Sums). A comprehension category with unit p : E→ B has products (resp.

sums) if, for each object A in E, there is an adjunction π∗A a ΠA (resp. ΣA a π∗A) satisfying the Beck-

Chevalley condition that, for each cartesian morphism f : A → B, the canonical natural transformation

(p f )∗ΠB →ΠA{ f}∗ (resp. ΣA{ f}∗→ (p f )∗ΣB) is an isomorphism.

If in this situation p is a split fibration and the canonical natural transformation is the identity then

we say that p has split products (resp. split sums).

Definition 2.3.4 (Strong Sums). Sums in a comprehension category with unit p : E → B are strong if

all the canonical injections κ in

{B}

πB

��

κ

∼=
// {ΣAB}

πΣAB

��
{A}

πA
// Γ

are isomorphisms.

Definition 2.3.5 (Closed Comprehension Category). A closed comprehension category is a full com-

prehension category with unit that has products and strong sums as well as a terminal object in its base.

Examples of closed comprehension categories can be found in [56]. Most important for us is the fact

that, for a locally cartesian closed category B, the codomain fibration cod : B→ → B is a closed com-

prehension category with unit.

2.4 Dependent Types

We give a coarse outline of how dependent types are modelled by closed comprehension categories. We

refer to the literature, e.g. [56, 110, 105, 48, 53, 84], for more detailed descriptions.

Comprehension categories are a generalisation of display map categories [99, 110], in which de-

pendent types are modelled as follows. Assume a category B. The objects of B correspond to contexts

of the dependent type theory. The morphisms in B correspond to simultaneous substitutions. A mor-

phism Γ → ∆ in B represents a substitution using which one can go from a judgement in context ∆ to a

judgement in context Γ. The types in context Γ ` A Type are modelled as morphisms πA : A → Γ taken
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from a distinguished class of display maps (in Seely’s model in locally cartesian closed categories all

maps are display maps). The idea is that the display map A → Γ represents the weakening substitution

(Γ, x : A)→ Γ. Using this representation of types as display maps, terms can be modelled as sections,

i.e. a term Γ ` M : A corresponds to a map M : Γ → A in B for which πA ◦M = id holds. Intuitively,

this means that the term M corresponds to a substitution Γ → (Γ, x : A) that is the identity on all vari-

ables but x. With this interpretation, substitution is modelled by pullback. The substitution of a type

Γ ` A Type along a map σ is given by the following pullback.

Γ, A[σ ]

πA[σ ]

��

σ //
_� ∆, A

πA

��
Γ

σ
// ∆

For substitution of terms, the universal property of the pullback gives, for any section M of πA, a unique

section M[σ ] of πA[σ ] for which σ ◦M[σ ] = M ◦σ holds. For this implementation of substitution to

work, the category B must have pullbacks of display maps along arbitrary morphisms. Dependent sums

and products are interpreted by left and right adjoints to pullback along a display map: ΣA a π∗A a ΠA.

If all maps are display maps then the existence of these adjoints just amounts to local cartesian closure.

Comprehension categories are a generalisation of display map categories. Instead of identifying

types and display maps, types are modelled as a separate entity that induces the display maps. In this

way closed comprehension categories better formulate the concept that types are indexed over contexts.

The fibration p : E→ B captures how the types are indexed over contexts and how substitution is imple-

mented. The base category B corresponds to contexts and substitutions as before. The total category E
now consists of types and terms. The objects of E correspond to the types in context, i.e. an object A

in EΓ represents a type Γ ` A Type. A morphism A → B in EΓ represents a term Γ, x : A ` M : B. The

comprehension describes how the types in E give rise to display maps. The display map for a type A

in EΓ is given by the map πA : {A} → Γ. The requirement in the definition of a comprehension cate-

gory that cartesian morphisms are mapped to pullback squares means that the notion of substitution that

is part of the fibration p is essentially the same as the pullback implementation of substitution in the

induced display map interpretation.

In a closed comprehension category terms can be described equivalently in several ways. The equiv-

alence of different descriptions is given by the following part of Lemma 10.4.9 of [56].

Lemma 2.4.1. Let p : E→ B be a comprehension category with unit. For all u : Γ → ∆ in B and all B

in E∆ there is an isomorphism B/∆(u,πB)∼= EΓ(1,u∗B) natural in u and B.

By the display map interpretation, the term Γ`M : A amounts to a section of πA, i.e. a map in B/Γ(id,πA).

By the lemma, the term also corresponds to a map 1Γ → A in EΓ. More generally, assume types

Γ ` A Type and Γ ` B Type. Terms of the form Γ, x : A ` M : B correspond to maps 1 → π∗AB in E{A}.

By the lemma, this is the same as a map of type πA → πB in B/Γ. Since the comprehension functor is,

by assumption, full and faithful, this is the same as a map of type A→ B in EΓ.
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Depending on the situation, any of these equivalent descriptions of can be useful. We will use the

most convenient one without further comment.

2.5 Monoidal Structure

In this thesis we study fibrations that have a monoidal base category. For comprehension categories with

a monoidal structure ⊗ on their base we have useful notions of simple monoidal sums Σ⊗ and simple

monoidal products Π⊗, whose definition is the purpose of this section. After recalling the definition

of monoidal structure, we first describe Σ⊗ and Π⊗ in codomain fibrations and then generalise this

definition to comprehension categories.

Definition 2.5.1. A monoidal category consists of a category B, a functor ⊗ : B×B→ B, an object I in

B and natural isomorphisms lA : I⊗A→ A, rA : A⊗ I → A, and aA,B,C : (A⊗B)⊗C → A⊗ (B⊗C) such

that the following diagrams commute

((A⊗B)⊗C)⊗D a //

a⊗D
��

(A⊗B)⊗ (C⊗D)

a
��

(A⊗ (B⊗C))⊗D a
// A⊗ ((B⊗C)⊗D)

A⊗a
// A⊗ (B⊗ (C⊗D))

(A⊗ I)⊗B a //

r⊗B %%LLLLLLLLLL
A⊗ (I⊗B)

A⊗lyyrrrrrrrrrr

A⊗B

Definition 2.5.2. A symmetric monoidal category is a monoidal category with an additional natural

transformation sA,B : A⊗B→ B⊗A making the following diagrams commute.

(A⊗B)⊗C a //

s⊗C
��

A⊗ (B⊗C) s // (B⊗C)⊗A

a
��

(B⊗A)⊗C a
// B⊗ (A⊗C)

B⊗s
// B⊗ (C⊗A)

A⊗ I
s //

r
!!D

DD
DD

DD
D I⊗A

l}}zz
zz

zz
zz

A

A⊗B

s
��

id

$$H
HH

HH
HH

HH

B⊗A s
// A⊗B

Definition 2.5.3. A monoidal closed category is a monoidal category B in which, for each object A, the

functor −⊗A : B→ B has right adjoint A (− : B→ B.

Definition 2.5.4. An affine monoidal category is a monoidal category in which the unit I is terminal.



Chapter 2. Fibrations, Dependent Types and Monoidal Structure 35

In an affine monoidal category there are (natural) maps π̇1 : A⊗B→ A and π̇2 : A⊗B→ B defined by

A⊗B
A⊗!B // A⊗ I ∼= A A⊗B

!A⊗B // I⊗B∼= B,

where !A : A→ I and !B : B→ I are the unique maps to the terminal object I.

Definition 2.5.5. A strict affine monoidal category is an affine monoidal category in which, for any two

objects A and B, the maps π̇1 : A⊗B→ A and π̇2 : A⊗B→ B are jointly monomorphic in the sense that,

for any two maps f ,g : C → A⊗B satisfying π̇1 ◦ f = π̇1 ◦g and π̇2 ◦ f = π̇2 ◦g, we have f = g.

An affine monoidal category with binary products is a strict affine category if and only if, for all objects

A and B, the maps 〈π̇1, π̇2〉 : A⊗B � A×B are monomorphic. We often write ı for 〈π̇1, π̇2〉.

We will typically use the notation (⊗,() for a monoidal closed structure and (∗,−∗) for a strict

affine monoidal closed structure.

2.5.1 Monoidal Structure in a Codomain Fibration

We now consider the codomain fibration cod : B→→ B for a monoidal category B with pullbacks, and

show how multiplicative products Π⊗ and sums Σ⊗ can be defined for this fibration. This definition of

Π⊗ and Σ⊗, which makes sense only in a codomain fibration, will be the basis of the general definition

in the next section.

We first briefly recall simple products Π and simple sums Σ in a codomain fibration; see e.g. [44]

for further details. Simple products and sums correspond to the types Πx : A.B and Σx : A.B in which A

is a simple, or closed, type. For an object A of B one considers the reindexing functor π∗A : B/Γ →
B/(Γ×A) for the first projection πA : Γ×A → Γ. This functor is a fibred functor from the codomain

fibration cod : B→→ B to the fibration Gl(−×A) : B/(−×A)→ B defined by the following pullback

of categories.

B/(−×A) //

Gl(−×A)
��

_� B→

cod
��

B −×A
// B

Since, for each f : B→ Γ, the square

B×A
πA //

f×A
��

_� B

f
��

Γ×A
πA

// Γ

is a pullback, the functor π∗A : B/Γ → B/(Γ×A) may be defined as taking an object f : B → Γ to the

object f ×A : B×A→ Γ×A. Simple sums are defined as a fibred left adjoint ΣA : Gl(−×A)→ cod to

π∗A. Simple products are defined as a fibred right adjoint ΠA : Gl(−×A)→ cod to π∗A. The importance of

having fibred adjunctions is that this includes the Beck-Chevalley conditions that the canonical natural
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transformations

ΣA(u×A)∗ −→ u∗ΣA u∗ΠA −→ΠA(u×A)∗

are isomorphisms. The canonical natural transformations are given by the adjoint transposes of

(u×A)∗
(u∗A)∗η

// (u×A)∗πAΣA ∼=
// π∗Au∗ΣA

π∗Au∗ΠA ∼=
// (u×A)∗πAΠA

(u∗A)∗ε

// (u×A)∗ .

Concretely, the functor ΣA may be defined by post-composition, taking the object f : B → Γ×A to

the object πA ◦ f : B→ Γ. If B is cartesian closed then the functor ΠA may be defined as taking an object

f : B→ Γ×A to the map ΠA f in the following pullback.

ΠAB

ΠA f

��

//
_� A⇒ B

A⇒ f
��

Γ
η
// A⇒ (Γ×A)

This description of simple sums and products can be generalised to simple monoidal sums and

products simply by replacing the cartesian product × with the monoidal product ⊗. Instead of the

reindexing functor π∗A, we now consider the functor WA : B/Γ→B/(Γ⊗A), defined by taking f : B→ Γ

to f ⊗A : B⊗A→ Γ⊗A. We now assume that the functor −⊗A : B→ B preserves pullbacks, which is

equivalent to WA being a fibred functor of type

B→
WA //

cod   A
AA

AA
AA

A B/(−⊗A)

Gl(−⊗A)
zzuuu

uuu
uuu

u

B

.

With this definition, simple monoidal sums Σ⊗ and simple monoidal products Π⊗ can be defined as

fibred left and right adjoints Σ⊗ : Gl(−⊗A)→ cod and Π⊗ : Gl(−⊗A)→ cod to WA.

B→ //

cod   A
AA

AA
AA

A B/(−⊗A)

Gl(−⊗A)
zzuuu

uuu
uuu

u

Π⊗

>tt

Σ⊗
>jj

B

This definition of Σ⊗ and Π⊗ includes the Beck-Chevalley conditions that the following canonical nat-

ural transformations are isomorphisms.

Σ
⊗
A (u⊗A)∗ −→ u∗Σ⊗A u∗Π⊗

A −→Π
⊗
A (u⊗A)∗

The definition of Σ⊗ and Π⊗ generalises that of Σ and Π, since if we let ⊗ be the cartesian product ×
then we have WA ∼= π∗A, which implies Σ× ∼= Σ and Π× ∼= Π by uniqueness of adjoints.
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By analogy with simple products, the functor Π⊗ can be constructed from a monoidal closed struc-

ture by taking an object f : B→ Γ⊗A to the map Π
⊗
A f in the following pullback:

Π
⊗
A B

Π
⊗
A f

��

//
_� A ( B

A( f
��

Γ
η
// A ( (Γ⊗A)

(2.1)

Conversely, a monoidal closed structure can be defined from Π⊗:

Proposition 2.5.6. The functor WA has a fibred right adjoint Π
⊗
A if and only if−⊗A preserves pullbacks

and has a right adjoint A (−.

Proof. The if-direction is defined by the pullback above. It is routine to verify that this defines a fibred

right adjoint. It also follows from [60, Theorem 8].

For the only if-direction suppose that WA has a fibred right adjoint Π
⊗
A . That −⊗ A preserves

pullbacks follows because WA is a fibred functor. For the construction of a right adjoint, we observe that

the functor −⊗A can be written as the composite

B −⊗A
// B = B ∼=

// B/1
WA

// B/(1⊗A)
Σ!

// B/1 ∼=
// B,

where Σ! is the functor that acts on objects by post-composition with the map ! : (1⊗A) → 1. The

functor Σ! is left adjoint to reindexing !∗. Therefore, each functor in the composition has a right adjoint,

which implies that −⊗A must have a right adjoint.

B
∼=
> // B/1

WA

> //

∼=oo
B/(1⊗A)

Σ!

> //

Π
⊗
Aoo

B/1
∼=
> //

!∗oo
B

∼=oo

In contrast to the additive case, multiplicative sums Σ⊗ do not come for free. In Corollary 3.4.33 we

give an example of a codomain fibration that does not have all simple monoidal sums Σ⊗.

2.5.2 Monoidal Structure in a Comprehension Category

The definition of simple monoidal sums and products for the codomain fibration captures the essence

of the structure we are interested in. However, to account for the bureaucracy of the syntax of type

theory, we generalise this structure to full comprehension categories. This allows us to formulate simple

monoidal sums and products for split fibrations, in which the interpretation of the syntax of type theory

is much simpler than in non-split fibrations.

Perhaps the most obvious way of generalising simple monoidal sums and products from a codomain

fibration cod : B→→ B to a full comprehension category P : E→ B→ is by assuming a fibred adjunc-

tion Σ
⊗
A aWA aΠ

⊗
A between (−⊗A)∗p and p. In this adjunction, WA should behave like the correspond-

ing functor on the codomain fibration in the sense that πWAB is isomorphic to πB⊗A in B/(Γ⊗A) and
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this isomorphism is natural in B. Indeed, we make such a definition at the end of this section. However,

the functor WA can be problematic. For example, it is not clear how to extend the term model in Chap-

ter 7 so that it has WA. It turns out that Π
⊗
A , at least, can be formulated without assuming WA. This is

what makes the completeness argument in Chapter 7 possible.

Simple monoidal products Π
⊗
A can be defined without assuming the functor WA. This means Π

⊗
A can

be defined without the assumption that, for all objects B in EΓ, there exists an object WAB in EΓ⊗A such

that πWAB is isomorphic to πB⊗A. If WA exists, then we have EΓ⊗A(WAB,C)∼= B/(Γ⊗A)(πWAB,πC)∼=
B/(Γ⊗A)(πB ⊗A,πC), since the comprehension is full and faithful. Hence, the adjunction WA a Π

⊗
A

can be formulated by requiring a natural isomorphism EΓ(B,Π⊗
A C)∼= B/(Γ⊗A)(πB⊗A,πC), subject to

a Beck-Chevalley condition. This definition, however, makes sense without the functor WA. Of course,

this definition without WA need not be very useful, because there may not be enough morphisms in E
mapped by the comprehension to morphisms in B/(Γ⊗A)(πB ⊗A,πC), so that we could not use the

isomorphism when working with the interpretation of type theory in the fibration. However, in the

present case we have B/(Γ⊗ A)(πB ⊗ A,πC) ∼= E{B}⊗A(1{B}⊗A,(πB ⊗ A)∗C) by Lemma 2.4.1. This

means that the total category has enough structure to represent the whole of B/(Γ⊗A)(πB ⊗A,πC).

Therefore, we can define Π
⊗
A without the need for a functor WA. The adjunction WA a Π

⊗
A amounts to a

natural isomorphism EΓ(B,Π⊗
A C)∼= E{B}⊗A(1{B}⊗A,(πB⊗A)∗C).

For simple monoidal sums, this trick does not seem to work. For Σ
⊗
A we would have a natural iso-

morphism EΓ(Σ⊗A B,C)∼= B/(Γ⊗A)(πB,πC⊗A), subject to a Beck-Chevalley condition. But now there

appears to be no reason why we should be able to work with B/(Γ⊗A)(πB,πC ⊗A) in the comprehen-

sion category.

In the rest of this section we first define simple monoidal products Π⊗ without WA and then make

precise the definition of WA and Σ
⊗
A for full comprehension categories.

2.5.2.1 Simple Monoidal Products

Definition 2.5.7. Let P : E → B→ be a full comprehension category and ⊗ be a monoidal structure

on B. In such a comprehension category, simple monoidal products Π⊗ are given by the following data.

• For any two objects Γ and A in B, a functor Π
⊗
A : EΓ⊗A → EΓ.

• For all objects Γ and A in B, all objects C in EΓ and all objects B in EΓ⊗A, an isomorphism

EΓ(C,Π⊗
A B)∼= B/(Γ⊗A)(πC⊗A,πB) that is natural in C and B.

• The Beck-Chevalley condition, that for all maps u in B the canonical map u∗Π⊗
A → Π

⊗
A (u⊗A)∗

is an isomorphism.

If the comprehension category is split and the canonical map u∗Π⊗
A → Π

⊗
A (u⊗A)∗ is the identity then

we speak of split simple monoidal products Π⊗.
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We spell out the definition of the canonical morphism u∗Π⊗
A → Π

⊗
A (u⊗ A)∗. For B in EΓ⊗A, let

εA,B : π
Π
⊗
A B⊗A→ πB be the unique morphism in B/(Γ⊗A) corresponding to the identity Π

⊗
A B→Π

⊗
A B.

Define the morphism ε ′ : πu∗Π
⊗
A B⊗A→ π(u⊗A)∗B to be the unique morphism making the diagram below

commute.

{u∗Π⊗
A B}⊗A

(πu∗Π
⊗
A B)⊗A

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

ε ′

''O
OOOOO

{u}⊗A // {Π
⊗
A B}⊗A

(π
Π
⊗
A B)⊗A

����
��

��
��

��
��

��
��

�εA,B

yyssssssssss

{(u⊗A)∗B}
_�

{u⊗A} //

π(u⊗A)∗B

��

{B}

πB

��
∆⊗A

u⊗A
// Γ⊗A

The canonical morphism u∗Π⊗
A B → Π

⊗
A (u⊗ A)∗B is the unique map corresponding to ε ′ under the

isomorphism EΓ(C,Π⊗
A B)∼= B/(Γ⊗A)(πC⊗A,πB).

For split simple monoidal products the canonical map u∗Π⊗
A B→Π

⊗
A (u⊗A)∗B is the identity if and

only if both u∗Π⊗
A B = Π

⊗
A (u⊗A)∗B and εA,B ◦ ({u}⊗A) = {u⊗A}◦εA,(u⊗A)∗B hold for all u in B and B

in Ecod(u)⊗A.

For the interpretation of the type theory, we need substitution equations for the term constructors of

split simple monoidal products. We spell out these equations for reference.

Lemma 2.5.8. The following are equivalent.

1. For all objects Γ and A in B, all objects C in EΓ and all objects B in EΓ⊗A, an isomorphism

EΓ(C,Π⊗
A B)∼= B/(Γ⊗A)(πC⊗A,πB) that is natural in C and B.

2. For all objects Γ and A in B and all objects B in EΓ⊗A, a morphism εA,B : π
Π
⊗
A B ⊗ A → πB

in B/(Γ⊗A) such that εA,B is natural in B and, for each morphism m : πC⊗A→ πB in B/(Γ⊗A),

there exists a unique morphism m[ : C →Π
⊗
A B in EΓ satisfying εA,B ◦ ({m[}⊗A) = m.

Proof. For 1⇒ 2 take εA,B as in the definition of the canonical map above. The existence of m[ is imme-

diate from the natural isomorphism EΓ(C,Π⊗
A B)∼= B/(Γ⊗A)(πC⊗A,πB), since both εA,B ◦ ({m[}⊗A)

and m must correspond to the same map.

For 2⇒ 1 define a mapping from EΓ(C,Π⊗
A B) to B/(Γ⊗A)(πC⊗A,πB) by assigning n : C →Π

⊗
A B

to εA,B ◦ ({n}⊗A). The universality of ε makes it evident that this defines an isomorphism. Naturality

follows from that of εA,B.

Lemma 2.5.9. Let P be a split full comprehension category with split simple monoidal products Π⊗.

If, for any morphism M : 1Γ⊗A → B in EΓ⊗A, we write λ⊗M : 1Γ →Π
⊗
A B for the unique morphism in EΓ

satisfying εA,B ◦ ({λ⊗M}⊗A) = {M}, then we have u∗(λ⊗M) = λ⊗(u⊗A)∗M for all u : ∆→ Γ in B.

Proof. We have u∗(λ⊗M) : 1∆ → u∗Π⊗
A B = Π

⊗
A (u⊗A)∗B and λ⊗(u⊗A)∗M : 1∆ → Π

⊗
A (u⊗A)∗B. In

the diagram below, the topmost square commutes because the comprehension category maps the carte-
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sian map u to a pullback and −⊗A is functorial. The middle square commutes because of the Beck-

Chevalley condition. The lowermost square commutes because it is the image of u⊗A under compre-

hension.

∆⊗A
u⊗A //

{u∗λ⊗M}⊗A
��

Γ⊗A

{λ⊗M}⊗A
��

{Π
⊗
A (u⊗A)∗B}⊗A

{u}⊗A //

εA,(u⊗A)∗B

��

{Π
⊗
A B}⊗A

εA,B

��
{(u⊗A)∗B}

_�
{u⊗A} //

π(u⊗A)∗B

��

{B}

πB

��
∆⊗A

u⊗A
// Γ⊗A

(2.2)

Since {u∗λ⊗M} is a section of πu∗Π
⊗
A B = π

Π
⊗
A (u⊗A)∗B and εA,(u⊗A)∗B is a map from π

Π
⊗
A (u⊗A)∗B ⊗A to

π(u⊗A)∗B, it follows that the composite of the left column is the identity. Since {M}= εA,B◦({λ⊗M}⊗A)

holds by definition, and substitution is given by pullback, we can use the pullback property of the

lowermost square to obtain {(u⊗A)∗M} = εA,(u⊗A)∗B ◦ ({u∗λ⊗M}⊗A). But since λ⊗(u⊗A)∗M is

defined as the unique map satisfying {(u⊗A)∗M}= εA,(u⊗A)∗B ◦ ({λ⊗(u⊗A)∗M}⊗A), this implies the

required λ⊗(u⊗A)∗M = u∗λ⊗M.

Lemma 2.5.10. Let P be a split full comprehension category with split simple monoidal products. If,

for any morphism M : 1Γ →Π
⊗
A B in EΓ, we write app⊗B M : 1Γ⊗A → B for the unique morphism in EΓ⊗A

satisfying εA,B ◦ ({M}⊗ A) = {app⊗M}, then we have (u⊗ A)∗(app⊗B M) = app⊗(u⊗A)∗B(u∗M) for all

morphisms u : ∆→ Γ in B.

In this lemma, the morphism app⊗B M is uniquely determined because the functor P is full and faithful.

We will often write just app⊗M for app⊗B M if the subscript is clear from the context.

Proof. Let M : 1Γ → Π
⊗
A B. Because we have {app⊗N M} = εA,B ◦ ({M}⊗A) and {app⊗(u⊗A)∗B(u∗M)} =

εA,(u⊗A)∗B ◦ ({u∗M}⊗A), we can use the pullback square in diagram (2.2) to get {(u⊗A)∗(app⊗B M)}=

{app⊗(u⊗A)∗B(u∗M)}. The required equality follows because P is full and faithful.

In the rest of this chapter, we use the notation λ⊗ and app⊗ from the previous two lemmas.

Lemma 2.5.11. In a split comprehension category with split simple monoidal products, the following

equalities hold for all M : 1Γ⊗A → B in EΓ⊗A and N : 1Γ →Π
⊗
A B.

app⊗(λ⊗M) = M λ
⊗(app⊗N) = N

Proof. Straightforward unfolding of definitions.

To simplify the syntax of the type theory, we will use a stronger Beck-Chevalley condition, as given by

the following definition.
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Definition 2.5.12. Let P : E→B→ be a split full comprehension category and⊗ be an affine monoidal

structure on B. In such a comprehension category, strong split simple monoidal products Π⊗ are split

simple monoidal products that in addition satisfy the following stronger Beck-Chevalley condition.

For all objects B in EΓ⊗A and D in E∆⊗A and all maps M : 1Γ → Π
⊗
A B in EΓ, N : 1∆ → Π

⊗
A D in E∆,

u : Φ→ Γ⊗A in B and v : Φ→ ∆⊗A in B that satisfy u∗B = v∗D, (π̇1 ◦u)∗M = (π̇1 ◦v)∗N and π̇2 ◦u =

π̇2 ◦ v, we have u∗(app⊗M) = v∗(app⊗N).

The above condition includes app⊗(u∗M) = (u⊗A)∗app⊗M as a special case.

In the case where ⊗ is the cartesian product ×, simple products Π× can be shown to be strong if

the functor Π× is injective on objects, meaning that Π
×
A B = Π

×
A D implies B = D1. To see this observe

that, under the assumption of the definition, the maps u and v can be factored as in the diagram below,

in which w = 〈Φ,π2 ◦u〉= 〈Φ,π2 ◦ v〉.

Φ

w
��

u

vvmmmmmmmmmmmmmm
v

((QQQQQQQQQQQQQQ

Γ×A Φ×A
(π1◦u)×A

oo
(π1◦v)×A

// ∆×A

From the assumption (π1 ◦ u)∗M = (π1 ◦ v)∗N it follows that (π1 ◦ u)∗(Π×
A B) = (π1 ◦ v)∗(Π×

A D) holds.

Hence, we obtain ((π1 ◦u)×A)∗B = ((π1 ◦v)×A)∗D using the Beck-Chevalley condition and injectivity

of Π×. With this we have:

u∗(app×B M) = w∗((π1 ◦u)×A)∗(app×B M) by above diagram

= w∗(app×((π1◦u)×A)∗B((π1 ◦u)∗M)) by Beck-Chevalley condition

= w∗(app×((π1◦v)×A)∗D((π1 ◦ v)∗N)) by assumption

= w∗((π1 ◦ v)×A)∗(app×DN) by Beck-Chevalley condition

= v∗(app×DN) by above diagram

In the case where ⊗ is not a cartesian product, this argument does of course not work anymore,

since the above factorisation makes essential use of the diagonal map. Interestingly, however, simple

monoidal sums Σ⊗ can be used to obtain a similar factorisation that does not use the diagonal map.

Lemma 2.5.13. For any two maps u : Φ→ Γ⊗A and v : Φ→ ∆⊗A in B satisfying π̇2 ◦u = π̇2 ◦v, there

exist maps w, u] and v] such that the diagram below commutes.

Φ

w
��

u

vvmmmmmmmmmmmmmm
v

((QQQQQQQQQQQQQQ

Γ⊗A Φ′⊗A
u]⊗A

oo
v]⊗A

// ∆⊗A

1 This injectivity assumption should be inessential. It appears that we could change the definition of strong simple monoidal
products to include the additional assumption ((π̇1 ◦ u)⊗A)∗B = ((π̇1 ◦ v)⊗A)∗D without essentially affecting the results in
this thesis. Although this would make the injectivity assumption here unnecessary, it would also require a technical reworking
throughout all of this thesis. Since we feel anyway that the assumption of strength for Π⊗ is not ideal and should be replaced by
a better definition, we leave it as it is for now.
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Proof. Let f be the object of B→ given by (!Γ⊗A)◦u : Φ → 1⊗A. Now define Φ′ def= dom(Σ⊗A f ) and

w def= η f , where η is the unit of the fibred adjunction Σ
⊗
A aWA. By definition of f , the morphism u defines

a map from f to (!Γ⊗A) in B/(1⊗A). Since (!Γ⊗A) is the same as WA!Γ, this means that u is a map of

type f →WA!Γ in B/(1⊗A). Taking the adjoint transpose of this map, we obtain u] : Σ
⊗
A f →!Γ in B/1.

The left triangle in the above diagram commutes by universality of η f . Since the assumption π̇2 ◦ u =

π̇2 ◦ v implies f = (!Γ⊗A)◦ v, the same construction works for v].

Proposition 2.5.14. Let P : E→B→ be a split full comprehension category with split simple monoidal

products Π⊗. The split simple monoidal products are strong if ⊗ is affine and the following conditions

are satisfied.

• The codomain fibration on B has simple monoidal sums Σ⊗.

• For all objects Γ and A in B, and B and C in EΓ⊗A, if Π
⊗
A B = Π

⊗
A C holds then so does B = C.

• For all objects Γ and A in B and each morphism f : Γ → ∆⊗ A in B, the reindexing functor

(π̇1 ◦ η f )∗ : Edom(Σ⊗A f ) → EΓ is injective on objects and morphisms. Here, the map η f is the

counit of the adjunction Σ
⊗
A aWA on the codomain fibration, as in the diagram below.

Γ

f
((RRRRRRRRRRRRRRRRR

η f // (dom(Σ⊗A f ))⊗A

(Σ⊗A f )⊗A=WAΣ
⊗
A f

��
∆⊗A

Proof. Assume the data given in the definition of strong simple monoidal products. By the above lemma

we have morphisms w, u] and v] such that the following diagram commutes.

Φ

w
��

u

vvmmmmmmmmmmmmmm
v

((QQQQQQQQQQQQQQ

Γ⊗A Φ′⊗A
u]⊗A

oo
v]⊗A

// ∆⊗A

Moreover, w is η f for some f .

By assumption we have (π̇1 ◦ u)∗(Π⊗
A B) = (π̇1 ◦ u)∗(Π⊗

A D) and also that Π
⊗
A is injective. Using

the above factorisation, we get (π̇1 ◦ (u]⊗A) ◦w)∗(Π⊗
A B) = (π̇1 ◦ (v]⊗A) ◦w)∗(Π⊗

A D). By naturality

of π̇1, this implies (u] ◦ π̇1 ◦w)∗(Π⊗
A B) = (v] ◦ π̇1 ◦w)∗(Π⊗

A D). Since p : E→ B is a split fibration, this

is equivalent to (π̇1 ◦w)∗(u])∗(Π⊗
A B) = (π̇1 ◦w)∗(v])∗(Π⊗

A D). Using the injectivity of (π̇1 ◦w)∗, this

implies (u])∗(Π⊗
A B) = (v])∗(Π⊗

A D). By definition of simple monoidal products, we have (u])∗(Π⊗
A B) =

(Π⊗
A (u]⊗A)∗B) and likewise for the other product, so that we obtain (Π⊗

A (u]⊗A)∗B) = (Π⊗
A (v]⊗A)∗D).

By injectivity of Π⊗, this implies (u]⊗A)∗B = (v]⊗A)∗D. Similarly, we obtain (u])∗M = (v])∗N. Using
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this, we can mirror the reasoning above this proposition.

u∗(app⊗B M) = w∗(u]⊗A)∗(app⊗B M) by above diagram

= w∗(app⊗(u]⊗A)∗B((u])∗M)) by Beck-Chevalley condition

= w∗(app⊗(v]⊗A)∗D((v])∗N))

= w∗(v]⊗A)∗(app⊗DN) by Beck-Chevalley condition

= v∗(app⊗DN) by above diagram

2.5.2.2 Monoidal Weakening Structure

We now come to the definition of WA and Σ
⊗
A in a full comprehension category. First we consider

how WA can be formulated in a full comprehension category. Let P : E→ B→ be a full comprehension

category with underlying fibration p : E→ B and let A be an object of B. Consider the fibration defined

by change-of-base as in the diagram below

(−⊗A)∗E K //

(−⊗A)∗p
��

_� E
p

��
B

(−⊗A)
// B

Then, WA should be a fibred functor of type p→ (−⊗A)∗p.

E
WA //

p
��>

>>
>>

>>
> (−⊗A)∗E

(−⊗A)∗p
zzuuu

uuu
uuu

u

B

Furthermore, on the morphisms given by comprehension, WA should behave like it does in the codomain

fibration. This means we should have a natural isomorphism kA : P ◦K ◦WA ∼= W cod
A ◦P : E → B→

satisfying cod(kA) = id, where W cod
A denotes the codomain version of WA. Spelt out, this means that,

for each object B in E, there is an isomorphism kA,B as in

{KWAB}
kA,B

∼=
//

P(KWAB) %%LLLLLLLLLL
{B}⊗A

P(B)⊗Ayyssssssssss

(pB)⊗A

,

and this isomorphism is natural in B. Notice that the codomain of P(KWAB) is indeed (pB)⊗A, since

cod(P(KWAB)) = (p ◦K ◦WA)B = ((−⊗A) ◦ (−⊗A)∗p ◦WA)B = ((−⊗A) ◦ p)B = (pB)⊗A. A

concise way of stating these requirements is by requiring the fibred functor K ◦WA over (−⊗A) to be a

map of comprehension categories [54, Definition 4.1.4] from P to itself.
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Definition 2.5.15. Let P : E → B→ be a full comprehension category and ⊗ be a monoidal structure

on B. A monoidal weakening structure on the comprehension category is given by, for each object A

in B, a fibred functor WA : p → (−⊗ A)∗p together with a natural isomorphism kA : P ◦K ◦WA ∼=
W cod

A ◦P : E → B→ satisfying cod(kA) = id. If P is a split full comprehension category and WA is a

split fibred functor then we speak of a split monoidal weakening structure.

In abuse of notation, we will usually denote the functor K ◦WA : E → E just by WA. The two uses

of WA are disambiguated by the types of the functors, e.g. when writing {WAB} it is clear that we mean

{KWAB}, since {−} is a functor of type E→ B.

Proposition 2.5.16. In a full comprehension category with monoidal weakening structure, the functor

WA : p→ (−⊗A)∗p is determined up to vertical natural isomorphism.

Proof. Assume two fibred functors WA,W ′
A : p→ (−⊗A)∗p and natural isomorphisms kA : P ◦K◦WA ∼=

W cod
A ◦P and k′A : P ◦K ◦W ′

A
∼= W cod

A ◦P satisfying cod(kA) = cod(k′A) = id.

To show that there is a natural vertical isomorphism between WA and W ′
A it suffices to give a natural

vertical isomorphism between K ◦WA and K ◦W ′
A, since the fibration (−⊗A)∗p is defined by the change-

of-base pullback and because (−⊗A)∗p◦WA = (−⊗A)∗p◦W ′
A holds by assumption. From the assump-

tions, we get a natural isomorphism k′A ◦k−1
A : P ◦K ◦W ′

A
∼= P ◦K ◦WA : E→ B→. Since P is full and

faithful, this gives us a natural isomorphism i : K ◦WA ∼= K ◦W ′
A : E → E such that k′A ◦ k−1

A = P(i)

holds. This isomorphism is vertical, since we have p(i) = cod(P(i)) = cod(k′A ◦ k−1
A ) = id.

We observe that, under certain assumptions, WA enjoys a stronger substitution property than the

usual Beck-Chevalley condition (u⊗A)∗WAB = WAu∗B, which holds because WA is a fibred functor.

Proposition 2.5.17. Let P : E→ B→ be a split full comprehension category with split monoidal weak-

ening structure WA with respect to an affine symmetric monoidal structure ⊗. Assume the following

conditions.

• The codomain fibration on B has simple monoidal sums Σ⊗.

• For all objects Γ and A in B and each f : Γ→ ∆⊗A in B, the functor (π̇1 ◦η f )∗ : Edom(Σ∗A f ) → EΓ

is injective on objects and morphisms. Here, η f is as in Proposition 2.5.14.

Then, for all objects A in B, B in EΓ and C in E∆ and all maps u : Φ → Γ⊗A and v : Φ → ∆⊗A in B
such that (π̇1 ◦u)∗B = (π̇1 ◦ v)∗C and π̇2 ◦u = π̇2 ◦ v hold, we have u∗WAB = v∗WAC.

Proof. Lemma 2.5.13 provides a factorisation u = (u]⊗A)◦w and v = (v]⊗A)◦w, where w is η f for

some f in B→. From (π̇1 ◦ u)∗B = (π̇1 ◦ v)∗C, we obtain (π̇1 ◦ (u]⊗A) ◦w)∗B = (π̇1 ◦ (v]⊗A) ◦w)∗B.

Using (π̇1 ◦ (u]⊗A)◦w)∗B = (u] ◦ π̇1 ◦w)∗B = (π̇1 ◦w)∗(u])∗B and a similar equation for C, this gives

(π̇1 ◦w)∗(u])∗B = (π̇1 ◦w)∗(v])∗C. Since w = η f , the injectivity assumption implies (u])∗B = (v])∗C.

Since WA is a split fibred functor, we have (u]⊗A)∗WAB = WA(u])∗B and (v]⊗A)∗WAC = WA(v])∗C.
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With (u])∗B = (v])∗C we obtain (u]⊗A)∗WAB = (v]⊗A)∗WAC. But this implies w∗(u]⊗A)∗WAB =

w∗(v]⊗A)∗WAC and thus the required u∗WAB = v∗WAC.

Finally, we show that WA allows us to lift the monoidal structure ⊗ on B to E1. This generalises the

situation in the codomain fibration, where such a lifting is available by means of B∼= B/1.

Proposition 2.5.18. In any closed comprehension category with monoidal weakening structure, there

exists a monoidal structure ∗ : E1×E1 → E1 and, for any two objects A and B in E1, an isomorphism

lA,B : {A}∗{B}→ {A∗B} that is natural in both A and B.

Proof. For objects A and B in E1, define the object A∗B in E1 to be ΣBi∗W{B}A, where i : {B}→ 1∗{B}
is the canonical isomorphism. Consider the following commuting diagram

{A}∗{B} k−1

∼=
//

!∗{B} %%LLLLLLLLLL
{W{B}A}

πW{B}A

��

{i∗W{B}A}
{i}
∼=

oo κ

∼=
//

πi∗W{B}A

��

{ΣBi∗W{B}A}

πΣBi∗W{B}A

��
1∗{B} {B}

i

∼=oo
!

// 1

in which left triangle comes by definition of WA, the centre square commutes by definition of compre-

hension categories and the right square comes from the definition of strong sums that are part of a closed

comprehension category. The top row in this diagram gives the required isomorphism lA,B.

It remains to define the morphism action of ∗. Note first that the comprehension {−} : E1 → B is

full and faithful, since the comprehension category P : E→ B→ is a full and faithful functor that maps

E1 to B/1. Using the isomorphisms lA,B and the fact that {−} : E1 → B is full and faithful, we can

lift the morphism action of ∗ to ∗. For f : A → A′ and g : B → B′, the morphism f∗g is defined as the

unique morphism satisfying { f∗g}= lA′,B′ ◦ ({ f}∗{g})◦ l−1
A,B. That this defines a strict affine monoidal

structure follows from the fact that ∗ is such a structure.

2.5.2.3 Simple Monoidal Sums

Having defined WA, we can now define Σ⊗ as a fibred left adjoint of WA. Furthermore, in presence the

of WA, our earlier definition of Π
⊗
A can be simplified to a fibred adjunction WA aΠ

⊗
A .

Definition 2.5.19. Let P : E → B→ be a comprehension category with monoidal weakening struc-

ture WA. The comprehension category has simple monoidal sums if WA has a fibred left adjoint Σ
⊗
A . It

has simple monoidal products if WA has a fibred right adjoint Π
⊗
A .

When all the structure in this definition is split we speak of split simple monoidal sums and split

simple monoidal products.

It should be clear from the discussion at the beginning of this section that this definition of simple

monoidal products agrees with the earlier definition without WA.
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There is a natural Σ⊗-analogue to strong Π⊗-types. However, for our present purposes it is not

necessary to make such a definition; see the discussion in Section 9.2. Furthermore, it may be the case

that, due to the presence of WA, the simple monoidal sums Σ
⊗
A automatically satisfy a condition similar

to that for strong monoidal products Π
⊗
A , perhaps along the lines of Proposition 2.5.17.

2.5.3 Discussion and Further Work

In the definition of simple monoidal products Π⊗ and sums Σ⊗ we have assumed a fibration with a

monoidal structure on its base. From a categorical point of view it would be more natural to consider

some kind of fibred monoidal structure. The reason for not considering such a fibred structure here is

that our particular models with names, to be constructed in the next chapter, do not have this structure.

We discuss this further in Section 4.5.

In further work, the definition of strong simple monoidal products Π⊗ should be clarified. At

present, the only justification for this definition is that it simplifies the syntax of the type theory in

Chapter 4. Proposition 2.5.14 gives some evidence that there may be a better way of understanding this

definition.

Another point not spelled out here is how, for a non-split fibration with Π
⊗
A , WA and Σ

⊗
A , we can

obtain an equivalent split fibration with that structure. It is known that the fibred Yoneda Lemma [56,

Lemma 5.2.4] can be used to turn any fibration into an equivalent split fibration. This construction is

spelled out in [46], where it is also shown that sums and products can be turned into split versions.

Using the same construction is should be possible to obtain split versions of Π
⊗
A and Σ

⊗
A . It is, however,

not immediately obvious how to obtain a split version of WA. This can be illustrated using the splitting

of a codomain fibration. In the split fibration arising from a codomain fibration using the construction

in [46], the objects in the total category are maps πB : B → Γ that come equipped with a choice of

pullback f ∗πB : f ∗B → ∆ of πB along any map f : ∆ → Γ. The obvious definition of WA would be to

send f ∗πB : f ∗B → ∆ to ( f ∗πB)⊗A : ( f ∗B)⊗A → ∆⊗A. But this definition only gives us a choice of

pullback of πB⊗A along maps of the form f ⊗A : ∆⊗A → Γ⊗A. For the definition of WA, we need

choices of pullbacks along arbitrary maps g : Φ → Γ⊗A. Is there a canonical way of obtaining such

choices, so that WA becomes a split fibred functor? We believe that Lemma 2.5.13 can be used to obtain

a positive answer. The reason is that by this lemma g can be factored as (g′⊗A) ◦wg. Moreover, if

in this way we factor any other map f : Φ → ∆⊗A as ( f ′⊗A) ◦w f , then wg = w f holds whenever

π̇2 ◦ f = π̇2 ◦ g does. What we do not know at present, however, is if it is possible to obtain strong

monoidal products Π
⊗
A using this splitting. For the purposes of this thesis, we use a different splitting,

see Section 3.5.
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Monoidal Models of Dependent Types

The handles we use to operate names and name-binding are a monoidal structure ∗, simple monoidal

sums Σ∗ and simple monoidal products Π∗. In this chapter we show what mechanism we wish to control

with these handles. We introduce specific categories that will be used throughout the rest of this thesis

as examples of categories with names. The purpose of this chapter is to define these categories and

construct in them a monoidal structure ∗ as well as simple monoidal sums Σ∗ and products Π∗. The

prototypical category with this structure is the Schanuel topos, a categorical version of FM set theory.

It forms the basis of the construction of other categories in this chapter. In particular, we show how the

concepts from the Schanuel topos can be transferred to a realizability category to give a category with

names in which the morphisms are computable functions. We present the Schanuel topos in such a way

that the similarities between the constructions become clear.

3.1 Preliminaries

3.1.1 Group Actions

The categories constructed in this chapter are categories of group actions, which we briefly review here.

Definition 3.1.1. A group object in a category B with finite products is given by an object G and

morphisms u : 1→ G, m : G×G→ G and i : G→ G making the following diagrams commute.

G
〈u,G〉 //

id ""E
EE

EE
EE

EE
G×G

m
��

G
〈G,u〉oo

id||yy
yy

yy
yy

y

G

(G×G)×G

a
��

m×G // G×G
m // G

G× (G×G)
G×m

// G×G m
// G

47
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G×G
i×G //

��

G×G

m
��

G×G

��

G×ioo

1 u
// G 1u
oo

The group object is commutative if in addition the diagram below commutes.

G×G
〈π2,π1〉 //

m
$$I

IIIIIIII G×G

m
��

G×G

Definition 3.1.2. A left action of a group object G on an object A of B is a morphism µ : G×A → G

for which the following diagrams commute.

A
〈u,A〉 //

id
""E

EE
EE

EE
EE G×A

µ

��
A

G× (G×A)

a
��

G×µ // G×A
µ // A

(G×G)×A
m×A
// G×A

µ
// A

Definition 3.1.3. For any group object G in B, the category G-B of left G-actions in B has as objects the

pairs (A,µA) where A is an object of B and µA : G×A → A is a left action of G on A. The morphisms

from (A,µA) to (B,µB) are the maps f : A→ B of B that make the square below commute.

G×A
µA //

G× f
��

A

f
��

G×B
µB
// B

From now on we consider only left actions, and we will usually just say action.

There is an evident forgetful functor U : G-B→ B mapping (A,µA) to the underlying object A.

Proposition 3.1.4. For any group object G in B, the forgetful functor U : G-B→ B has a left adjoint F.

If B is cartesian closed then U also has a right adjoint R.

Proof. The left adjoint F : B→ G-B maps A to the object (G×A,µ) with the free action µ defined by

µ = G× (G×A)
∼= // (G×G)×A

m×A // G×A .

The right adjoint R maps an object A to (G⇒ A,µ), where the action µ : G× (G⇒ A)→ (G⇒ A)

is defined in the internal language of the cartesian closed category B by µ(g, f ) = λg′. f (m(g′,g)). The

verifications are routine.

For any group object G in a category B, the category G-B is by definition the same as the category

of Eilenberg-Moore algebras for the monad arising from the adjunction F aU from Proposition 3.1.4.

Explicitly, this monad is given by the functor G×− : B→ B with unit and multiplication defined by

ηA = A
〈uG,A〉 // G×A , µA = G× (G×A) a // (G×G)×A

m×A // G×A .
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Proposition 3.1.5. For a category B with a group object G, the category G-B is equivalent to the

category of Eilenberg-Moore algebras for the monad arising from the adjunction F aU from Proposi-

tion 3.1.4.

If B is cartesian closed then we get an adjunction U a R from Proposition 3.1.4. The comonad

arising from this adjunction is given by the functor G⇒ (−) : B→ B with counit defined by

εA = G⇒ A
〈id,uG〉 // (G⇒ A)×G ev // A

and comultiplication δA : (G⇒ A)→ (G⇒ (G⇒ A)) defined to be the exponential transpose of

((G⇒ A)×G)×G a−1
// (G⇒ A)× (G×G)

id×mG // (G⇒ A)×G ev // A .

Proposition 3.1.6. For a cartesian closed category B with group object G, the category G-B is equiva-

lent to the category of Eilenberg-Moore coalgebras for the comonad arising from the adjunction U a R

from Proposition 3.1.4.

Proof. This is an immediate consequence of Beck’s theorem (Theorem 2.1.2). It is also straightforward

to verify directly, since G ⇒− is right adjoint to G×−, so that we have a one-to-one correspondence

between maps G×A→ A and A→ (G⇒ A), which gives an equivalence of the two categories.

3.1.2 Quasi-toposes

The categories constructed in this chapter are all quasi-toposes. For their construction, we find it con-

venient to work abstractly with the quasi-topos structure, and to appeal to general constructions with

quasi-toposes. We stress, however, that we use quasi-toposes only for convenience in the construction

of particular categories. We do not use the quasi-topos structure for any other purpose. In this section we

fix the notation for quasi-toposes and state standard results; for more information see e.g. [117, 57, 64].

Definition 3.1.7. A strong monomorphism is a monomorphism m : A � B such that, for each commu-

tative square as below in which e is epimorphic, there exists a unique diagonal d making the whole

diagram commute.

C
e // //

��

D

��d���
�

�
�

A // m
// B

All isomorphisms are strong monomorphisms, strong monomorphisms are closed under composition

and they are closed under pullback along arbitrary maps [117, Proposition 10.3].
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Definition 3.1.8. A weak subobject classifier is a map true : 1→Ω such that for each strong monomor-

phism m : A � B there exists a unique map χ : B→Ω making the following diagram a pullback.

A
! //

��
m
��

_� 1

true
��

B
χ
//___ Ω

Definition 3.1.9. A quasi-topos is a locally cartesian closed category with finite limits, finite colimits

and a weak subobject classifier.

Definition 3.1.10. A regular monomorphism is a monomorphism that occurs as an equaliser.

Proposition 3.1.11. In a quasi-topos, a monomorphism is regular if and only if it is strong.

Proof. See e.g. [117, Proposition 12.5].

Definition 3.1.12. A category has weak partial map classifiers if, for each object A, there exist an ob-

ject A⊥ and a strong monomorphism ηA : A � A⊥ such that, for each strong monomorphism m : B � C

and each map f : B→ A, there exists a unique map χ : C → A⊥ making the diagram below a pullback.

B
f //

��
m
��

_� A
��
ηA

��
C

χ
//___ A⊥

Proposition 3.1.13. Every quasi-topos has weak partial map classifiers.

Proof. See e.g. [117, §19].

Proposition 3.1.14. For any quasi-topos (respectively topos) B and any finite limit preserving comonad

G on B, the category of Eilenberg-Moore coalgebras for G is a quasi-topos (respectively topos).

Proof. See e.g. [57, Theorem A4.2.4].

Corollary 3.1.15. For any quasi-topos (respectively topos) B and any group object G in B, the cate-

gory G-B of G-actions on B is a quasi-topos (respectively topos).

Proof. By Proposition 3.1.6 the category G-B is equivalent to the category of Eilenberg-Moore coalge-

bras for the comonad arising from the adjunction U a R, where U : G-B → B is the forgetful functor.

Since both U and R are right adjoints, this comonad preserves limits, so that we can apply Proposi-

tion 3.1.14 to get the required result.
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Corollary 3.1.16. For any quasi-topos (respectively topos) B and any full and faithful functor I : C ↪→B
that preserves finite limits and has a right adjoint, the category C is a quasi-topos (respectively topos).

Proof. Let R : B → C be a right adjoint to I. We use Beck’s theorem (Theorem 2.1.2) to show that C
is comonadic over B with comonad arising from I a R. Since I has a right adjoint and since, being

full and faithful functor, I reflects isomorphisms, it suffices to show that C has finite limits (which are

by assumption preserved by I) to show that this theorem is applicable. Since I is full and faithful, the

unit of the adjunction I a R is an isomorphism Id ∼= RI. For a diagram J : J → C we therefore have

limJ ∼= limRIJ ∼= R lim IJ, since R preserves limits. Hence, C inherits limits from B. The proof is

completed using Proposition 3.1.14.

3.2 Constructing the Monoidal Closed Structure

In this section we give a specific construction of a monoidal exponent −∗ for certain strict affine

monoidal categories. In all the categories we consider in the rest of this chapter, the monoidal closed

structure can be obtained using this construction. The construction generalises that of Menni [72, §4].

Throughout this section, we consider a quasi-topos B with a strict affine symmetric monoidal struc-

ture ∗ : B×B→ B. We assume that A is an object of B for which the following conditions hold.

(C1) For all objects B, the canonical map ıB,A : B∗A � B×A is a strong monomorphism.

(C2) For each map f : B ∗A →C, which uniquely determines map f̃ : B×A →C⊥ as in the pullback

on the left, the square on the right is a pullback.

B∗A
_�

f //
��

ı
��

C
��
ηC

��
B×A

f̃
//___ C⊥

B∗A
_� //

(Λ f̃ )∗A //
��

ı

��

(A⇒C⊥)∗A
��
ı
��

B×A //
(Λ f̃ )×A

// (A⇒C⊥)×A

Here, Λ f̃ denotes the exponential transpose of f̃ .

(C3) The functor (−)∗A preserves exact sequences, that is coequaliser diagrams

B
f //

g
// C

h // // D

in which f and g are a kernel pair of h.

Proposition 3.2.1. For each object A, the functors −×A : B → B and −∗A : B → B preserve strong

monomorphisms.
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Proof. That −×A preserves strong monomorphisms is a straightforward consequence of the fact that

strong monomorphisms are closed under pullback. For−∗A, consider the topmost square in the diagram

below. We have to find a diagonal fill-in d : Y → B∗A satisfying (m∗A)◦d = g and d ◦ e = f .

X
e // //

f
��

Y

g

��
B∗A //

m∗A //
��

ıB,A

��

C ∗A
��
ıC,A

��
B×A //

m×A // C×A

Since strong monomorphisms are closed under composition and are preserved by −×A, we have that

(m×A) ◦ ıB,A is strong. Therefore, there exists a map d : Y → B ∗A satisfying f = d ◦ e and (m×A) ◦
ıB,A ◦ d = ıC,A ◦ g. Since the lower square commutes and ıC,A is a mono, this implies (m ∗A) ◦ d = g.

Hence, d is the required fill-in.

We come to the construction of a right adjoint A−∗ (−) : B→B to (−)∗A : B→B. First, let a and b

be the characteristic maps defined by the weak partial map classifier in the diagrams below. Notice that

the monomorphisms in these diagrams are all strong.

(A⇒ B⊥)∗A
_�

π̇2 //
��

ı
��

A
��
ηA

��
(A⇒ B⊥)×A a

//___ A⊥

B×A
π2 //

_���
ηB×A

��

A
��
ηA

��
B⊥×A

b
//___ A⊥

Now define α and β by exponential transpose:

α
def= Λa : (A⇒ B⊥)→ (A⇒ A⊥)

β
def= Λ(b◦ 〈ev,π2〉) : (A⇒ B⊥)→ (A⇒ A⊥)

Here we write ev : (A⇒ B⊥)×A→ B⊥ for the application map. Define the object E and the monomor-

phism m as the equaliser of α and β .

E //
m
// (A⇒ B⊥)

α //

β

// (A⇒ A⊥) .

Informally, the definitions of α and β read as

α( f ) = λa.

{
a if a is fresh for f

⊥ if a is not fresh for f

β ( f ) = λa.

{
a if f (a) ∈ B

⊥ if f (a) 6∈ B
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Their equaliser therefore consists of all partial functions f in A ⇒ B⊥ for which f (a) ∈ B holds if and

only if a is fresh for f . Indeed, in the internal language, E may be defined as

E = { f : A⇒ B⊥ | ∀a : A. f (a) ∈ B ⇐⇒ f # a},

where we write f # a for the atomic proposition given by ı : (A⇒ B⊥)∗A � (A⇒ B⊥)×A.

We define a morphism ε0 : E ∗A → B by ε0
def= π̇1 ◦ ε ′, where ε ′ is the unique morphism making the

following diagram commute.

E ∗A
��

ı
�� ε ′ ''O

OOOOO π̇2

%%
E×A
��

m×A
��

B×A
π2 //

_���
ηB×A

��

A
��
ηA

��
(A⇒ B⊥)×A

〈ev,π2〉
// B⊥×A

b
// A⊥

We can use the pullback since we have β ◦m = α ◦m, which implies b◦〈ev,π2〉◦ (m×A) = a◦ (m×A)

and further b◦ 〈ev,π2〉 ◦ (m×A)◦ ıE,A = a◦ (m×A)◦ ıE,A = a◦ ı(A⇒B⊥),A ◦ (m∗A) = ηA ◦ π̇2.

Lemma 3.2.2. For each morphism g : C ∗ A → B there exists a (not necessarily unique) morphism

g′ : C → E making the following diagram commute.

C ∗A

g′∗A
��

g

!!D
DD

DD
DD

D

E ∗A
ε0
// B

Proof. Let g̃ : C×A→B⊥ be the classifying map of the partial map (ıC,A,g), and let Λg̃ : C→ (A⇒B⊥)

be its exponential transpose. To show the assertion, it suffices to show the existence of a map g′ : C→ E

satisfying m◦g′ = Λg̃, since we have:

m◦g′ = Λg̃

=⇒ ev◦ ((m◦g′)×A) = g̃ by universality of the exponent

=⇒ ev◦ ((m◦g′)×A)◦ ıC,A = g̃◦ ıC,A by precomposition

=⇒ ev◦ (m×A)◦ ıE,A ◦ (g′ ∗A) = g̃◦ ıC,A by naturality of ı

=⇒ ηB ◦ ε0 ◦ (g′ ∗A) = g̃◦ ıC,A by definition of ε0

=⇒ ηB ◦ ε0 ◦ (g′ ∗A) = ηB ◦g by definition of g̃

=⇒ ε0 ◦ (g′ ∗A) = g since ηB is monomorphic

Since m is the equaliser of α and β , to show existence of g′ satisfying m◦g′ = Λg̃, it is enough to show

that Λg̃ equalises α and β .
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To see that Λg̃ equalises α and β , consider the following two diagrams.

C ∗A

ı

��

Λg̃∗A //
_� (A⇒ B⊥)∗A

π̇2 //
��

ı
��

_� A
��
ηA

��
C×A

Λg̃×A
// (A⇒ B⊥)×A a

// A⊥

(3.1)

C ∗A

ı
��

〈g,π̇2〉 //
_� B×A

π2 //
��

ηB×A
��

_� A
��
ηA

��
C×A

〈g̃,π2〉
// B⊥×A

b
// A⊥

(3.2)

In diagram (3.1), the right-hand square is a pullback by definition of a, and the left-hand square is a

pullback by condition (C2). In diagram (3.2), the right-hand square is a pullback by definition of b, and

the left-hand square is a pullback since in the following diagram the right-hand square is a pullback by

the properties of products and the outermost square is a pullback by definition of g̃.

C ∗A

ı
��

〈g,π̇2〉
//

g

((B×A
π1
//

��
ηB×A

��

_� B
��
ηB

��
C×A

〈g̃,π2〉 //

g̃

55B⊥×A
π1 // B⊥

Notice that the top rows in both diagram (3.1) and diagram (3.2) are equal to π̇2 : C ∗A→ A. Therefore,

we can use the uniqueness property of the weak partial map classifier ηA to get a ◦ ((Λg̃)×A) = b ◦
〈g̃,π2〉. Now, we have 〈g̃,π2〉= 〈ev,π2〉◦ ((Λg̃)×A), using which we get a◦ ((Λg̃)×A) = b◦〈ev,π2〉◦
(Λg̃)×A. Since α and β are the exponential transposes of a and b ◦ 〈ev,π2〉 respectively, this implies

α ◦ (Λg̃) = β ◦ (Λg̃). Therefore, Λg̃ equalises α and β , which completes the proof.

We remark that (C2) is used essentially in the proof of this lemma to show that Λg̃ : C → (A ⇒ B⊥)

factors through m : E → (A ⇒ B⊥). In the internal language, the following sequent holds by definition

of Λg̃.

∀a : A.∀c : C. (Λg̃)(c)(a) ∈ B ⇐⇒ c # a.

Hence, to show that Λg̃ factors through m, we have to show

∀a : A.∀c : C. c # a ⇐⇒ (Λg̃)(c) # a,

which is precisely what condition (C2) amounts to.

To construct a right adjoint to (−)∗A, we would like to strengthen the above lemma to the existence

of a unique map g′. To get uniqueness, it is necessary to take a quotient of E. For the definition of the

equivalence relation by which to take the quotient, we use the following lemma.
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Lemma 3.2.3. There exists an object S such that, for each morphism f : B→C, there exists a morphism

s : B→ S making the following square a pullback.

B∗A
��

ı

��

〈 f ,s〉∗A //
_� (C×S)∗A

��
ı
��

B×A
〈 f ,s〉×A

// (C×S)×A

Proof. Let S be (A ⇒ A⊥). Let ˜̇π2 : B×A → A⊥ be the classifier of the partial map (ıB,A, π̇2), and

let s : B→ S be the exponential transpose of ˜̇π2. By condition (C2), the following square is a pullback.

B∗A
��

ı
��

s∗A //
_� S∗A

��
ı
��

B×A
s×A
// S×A

The assertion follows immediately.

Let S be the object defined in the above lemma. Define e′1 and e′2 to be the classifying maps as in the

following diagram, in which i = 1,2.

(E×E×S)∗A
πi∗A //

��
ı
��

E ∗A
ε0 // B

��
ηB

��
(E×E×S)×A

e′i

//________ B⊥

Let e1
def= Λe′1 and e2

def= Λe′2, and define r0 as their equaliser.

R0 // r0
// (E×E×S)

e1 //

e2
// (A⇒ B⊥)

Now define r as the image of π1 ◦ r0, as in the following diagram.

R0
��

r0

��

re // // R
��
r
��

E×E×S
〈π1,π2〉

// E×E

Writing r1 for π1 ◦ r and r2 for π2 ◦ r, define the object (A−∗ B) by the following coequaliser.

R
r1 //

r2
// E c

// // (A−∗ B)

In the internal language, r : R � E×E defines the following equivalence relation on E.

f Rg ⇐⇒ ∃s : S.∀a : A.(〈 f ,g,s〉 # a) =⇒ (ε0( f )(a) = ε0(g)(a))

In this formula, we write 〈 f ,g,s〉 # a for the atomic proposition given by the strong monomorphism

ı : (E×E×S)∗A � (E×E×S)×A.
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Lemma 3.2.4. The strong monomorphism r : R � E×E is an equivalence relation.

Proof. Reflexivity and symmetry are immediate. We check transitivity. We use the internal logic of

the quasi-topos. We have to show f : E, g : E, h : E | f Rg, gRh ` f Rh. By the left rule for ∃, it suf-

fices to show f : E, g : E, h : E, s : S, s′ : S | ϕ( f ,g,s), ϕ(g,h,s′) ` f Rh, where we write ϕ( f ,g,s) for

∀a : A.(〈 f ,g,s〉 # a) =⇒ (ε0( f )(a) = ε0(g)(a)). By Lemma 3.2.3, there exists a morphism t of type

E×E×E×S×S → S such that the following square is a pullback.

(E×E×E×S×S)∗A
〈π1,π2,π3,t〉∗A //

��
ı
��

_� (E×E×E×S)∗A
��

ı
��

(E×E×E×S×S)×A
〈π1,π2,π3,t〉×A

// (E×E×E×S)×A

In the internal language, this pullback amounts to the sequent

f : E, g : E, h : E, s : S, s′ : S, a : A ` 〈 f ,g,h,s,s′〉 # a ⇐⇒ 〈 f ,g,h, t( f ,g,h,s,s′)〉 # a.

Using 〈 f ,g,h,s,s′〉 # a =⇒ 〈 f ,g,s〉 # a, we get 〈 f ,g,h, t( f ,g,h,s,s′)〉 # a =⇒ 〈 f ,g,s〉 # a. Similarly,

we get 〈 f ,g,h, t( f ,g,h,s,s′)〉 # a =⇒ 〈g,h,s′〉 # a. We continue the above derivation, using the ∃-right

rule with t( f ,g,h,s,s′). Thus, it suffices to show

f : E, g : E, h : E, s : S, s′ : S | ϕ( f ,g,s), ϕ(g,h,s′) ` ϕ( f ,h, t( f ,g,h,s,s′)).

Using the rules for ∀ and =⇒ on the right, it suffices to show

f ,g,h : E, s,s′ : S, a : A | ϕ( f ,g,s), ϕ(g,h,s′), 〈 f ,g,h, t( f ,g,h,s,s′)〉 # a ` (ε0( f )(a) = ε0(h)(a)).

Using the above implications, showing the following sequent is enough.

f ,g,h : E, s,s′ : S, a : A | ϕ( f ,g,s), ϕ(g,h,s′), 〈 f ,g,s〉 # a, 〈g,h,s′〉 # a ` (ε0( f )(a) = ε0(h)(a))

This sequent follows immediately by using ∀-left with a and transitivity of equality.

This lemma shows that

R
r1 //

r2
// E c

// // (A−∗ B)

is an exact sequence, since in a quasi-topos any strong equivalence relation is a kernel pair of some map

[71, Prop. 4.3.3], and any such pair is also a kernel pair of its coequaliser [110, Lemma 5.6.6].

Proposition 3.2.5. The definition of A −∗ B extends to a functor A −∗ − : B → B right adjoint to

−∗A : B→ B.

Proof. The proof generalises that of [72, Proposition 1.3]. By assumption (C3), the functor − ∗ A

preserves exact sequences. Hence, c ∗A is a coequaliser. We use its universal property to define the



Chapter 3. Monoidal Models of Dependent Types 57

counit ε : (A−∗ B)∗A→ B as the unique map making the diagram below commute.

R∗A
r1∗A //

r2∗A
// E ∗A

c∗A // //

ε0
&&LLLLLLLLLLLL (A−∗ B)∗A

ε

���
�
�

B

To show that the universal property of the coequaliser can indeed be used, we have to show ε0◦(r1∗A) =

ε0 ◦ (r2 ∗A). Since r◦ re is an image factorisation, the map re is a regular epi; hence re is the coequaliser

of its kernel pair. Since −∗A preserves exact sequences, re ∗A is also a regular epi. Hence, to show

ε0 ◦(r1 ∗A) = ε0 ◦(r2 ∗A) it suffices to show ε0 ◦((π1 ◦r0)∗A) = ε0 ◦((π2 ◦r0)∗A). Since r0 equalises e1

and e2, we have e1 ◦ r0 = e2 ◦ r0, which implies Λ(e′1 ◦ (r0×A)) = Λ((e′2 ◦ (r0×A)), by definition and

naturality of the exponential adjunction, and further e′1◦(r0×A) = e′2◦(r0×A), by the universal property

of exponentials. This implies e′1 ◦(r0×A)◦ ı = e′2 ◦(r0×A)◦ ı by precomposition. By naturality of ı and

the definition of e′i, we get ηB ◦ ε0 ◦ ((π1 ◦ r0)∗A) = ηB ◦ ε0 ◦ ((π2 ◦ r0)∗A). Since ηB is monomorphic,

this implies the required ε0 ◦ ((π1 ◦ r0)∗A) = ε0 ◦ ((π2 ◦ r0)∗A).

For universality of ε , we have to show that, for each map g : C ∗A → B, there exists a unique map

g[ : C → (A−∗ B) making the triangle on the right commute.

C

g[

���
�
� C ∗A

g[∗A
��

g

$$JJJJJJJJJJJ

(A−∗ B) (A−∗ B)∗A
ε
// B

Existence follows from Lemma 3.2.2. By this lemma there exists g′ : C → E satisfying ε0 ◦ (g′ ∗A) = g.

By definition of ε , this implies ε ◦ ((c◦g′)∗A) = g. Define g[ def= c◦g′.

For uniqueness, suppose there are maps h,k : C → (A −∗ B) satisfying g = ε ◦ (h∗A) = ε ◦ (k ∗A).

Consider the pullback

C′ 〈h′,k′〉 //

c′
����

_� E×E

c×c
����

C
〈h,k〉

// (A−∗ B)× (A−∗ B)

Since this diagram commutes, we have c ◦ h′ = h ◦ c′ and c ◦ k′ = k ◦ c′. By functoriality, this implies

(c∗A)◦ (h′ ∗A) = (h∗A)◦ (c′ ∗A) and (c∗A)◦ (k′ ∗A) = (k∗A)◦ (c′ ∗A). Since ε ◦ (h∗A) = ε ◦ (k∗A),

this implies ε ◦ (c∗A)◦ (h′ ∗A) = ε ◦ (c∗A)◦ (k′ ∗A), i.e. ε0 ◦ (h′ ∗A) = ε0 ◦ (k′ ∗A). By Lemma 3.2.3,

there exists a map s : C′→ S such that the square on the left below is a pullback. The square on the right

below, in which i = 1,2, is a pullback by construction of ei.

C′ ∗A
〈h′,k′,s〉∗A//

��
ı

��

_� (E×E×S)∗A
πi∗A //

��
ı
��

_� E ∗A
ε0 // B

��
ηB

��
C′×A

〈h′,k′,s〉×A
// (E×E×S)×A

e′i

// B⊥
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By ε0 ◦ (h′ ∗A) = ε0 ◦ (k′ ∗A), we have ε0 ◦ (π1 ∗A) ◦ (〈h′,k′,s〉 ∗A) = ε0 ◦ (π2 ∗A) ◦ (〈h′,k′,s〉 ∗A).

Hence the top row in the above diagram is the same for both i = 1 and i = 2. By the universal property

of partial map classifiers, this implies e′1 ◦ (〈h′,k′,s〉×A) = e′2 ◦ (〈h′,k′,s〉×A). By naturality of the

exponential transpose, we obtain (Λe′1)◦〈h′,k′,s〉= (Λe′2)◦〈h′,k′,s〉, i.e. e1 ◦〈h′,k′,s〉= e2 ◦〈h′,k′,s〉.
By the definition of r0 as an equaliser of e1 and e2, the map 〈h′,k′,s〉 therefore factors through r0. This

implies that 〈h′,k′〉 factors through r, i.e. there exists u with 〈h′,k′〉= r ◦u. Hence, we have h′ = r1 ◦u

and k′ = r2 ◦ u. Since c coequalises r1 and r2, this implies c ◦ h′ = c ◦ r1 ◦ u = c ◦ r2 ◦ u = c ◦ k′. Since

h◦ c′ = c◦h′ and k ◦ c′ = c◦ k′ hold and c′ is epimorphic, this implies the required h = k.

3.3 The Schanuel Topos

In this section we introduce the Schanuel topos, which is the prototypical example of a category with

bindable names. The Schanuel topos corresponds to FM set theory in the same way the category of sets

corresponds to ZF set theory. It may be thought of as a category of sets whose elements may somehow

contain names (or atoms). FM set theory formalises the concept of ‘somehow containing names’ by

equipping the sets with a name-permutation action. Following the presentation in [38, 87], we define

the Schanuel topos as a category of group actions in Sets.

There are many equivalent ways of describing the Schanuel topos. It may be described: (i) as a

category of continuous group actions; (ii) as a category of sheaves in SetsI; (iii) as the classifying topos

for an infinite decidable object; (iv) as a category of permutation algebras; and (v) as a category of

named sets. For further information on these descriptions, we refer to [64, §III.9] and [57, A2.1.11(h)]

for (i) and (ii); to [64, Exercise VIII.9] for (iii); and to [39] for (iv) and (v).

Let N be a countably infinite set, i.e. a set N that is isomorphic to the set of natural numbers. The

elements of N will be called names. The group Aut(N) is the group of automorphisms on N, i.e. the

group of bijective functions on N where the unit, multiplication and inverse are given by the identity

function, function composition and inverse function respectively.

Definition 3.3.1. The set N is the underlying set of the object (N, ·N) of the category Aut(N)-Sets where

π ·N n = π(n). We call this object the object of names, writing N for it.

Definition 3.3.2. Let (A, ·A) be an object of Aut(N)-Sets and let a ∈ A. A set X ⊆ N supports a if it

satisfies ∀π ∈ Aut(N). (∀x ∈ X . π(x) = x) =⇒ (π ·A a = a). The element a ∈ A is finitely supported if

there exists a finite set supporting it. The object A has the finite support property if all its elements are

finitely supported.

Proposition 3.3.3. Let (A, ·A) be an object of Aut(N)-Sets. If a∈ A is finitely supported then there exists

a finite set supp(a)⊆ N such that supp(a)⊆ X holds for every set X supporting a.

Proof. See [38, Proposition 3.4].
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Definition 3.3.4. The Schanuel topos S is the full subcategory of Aut(N)-Sets consisting of all objects

that have the finite support property.

In concrete terms, the objects of S are sets A with a left Aut(N)-action ·A : Aut(N)×A → A such that

(A, ·A) has the finite support property. A morphism f : (A, ·A)→ (B, ·B) is a function f : A → B in Sets
that is equivariant, meaning that ∀π ∈ Aut(N). ∀a ∈ A. π ·B ( f (a)) = f (π ·A a) holds.

Proposition 3.3.5. The following are true.

1. For all morphisms f : A→ B in S and all a ∈ A, we have supp( f (a))⊆ supp(a).

2. For all monomorphisms m : A � B in S and all a ∈ A, we have supp(m(a)) = supp(a).

Proof.

1. We need to show that any finite set X ⊆ N supporting an element a ∈ A also supports f (a).

Let a∈ A and let X be a finite set of names supporting a. Let π ∈ Aut(N) such that π(n) = n holds

for all n ∈ X . Then we have π · f (a) = f (π ·a) = f (a), by equivariance and since X supports a.

Hence, X supports f (a).

2. From the first point we already have supp(a)⊇ supp(m(a)) for all a∈ A. For the other inclusion it

suffices to show that, for all a ∈ A, if a finite set of names X supports m(a) then it also supports a.

Let a ∈ A and let X be a finite set of names supporting m(a). Let π ∈ Aut(N) such that π(n) = n

holds for all n ∈ X . Then we have π ·m(a) = m(a) since X supports m(a), and we have π ·m(a) =

m(π · a) by equivariance of m. This gives m(a) = m(π · a), which implies a = π · a, since m is a

monomorphism. This shows that X supports a, thus completing the proof.

Proposition 3.3.6. For all objects A in S and all elements x∈ A and n∈N, the following are equivalent.

1. n ∈ supp(x) holds.

2. There exists m ∈ N\ supp(x) such that (m n) · x 6= x holds.

3. For all m ∈ N\ supp(x), the inequation (m n) · x 6= x holds.

Proof. See [33, § 9.1].

Although we have given S the name Schanuel topos, we have yet to prove that it is indeed a topos. To

this end we give the following proposition.

Proposition 3.3.7. The full and faithful inclusion functor I : S ↪→ Aut(N)-Sets preserves finite limits

and has a right adjoint.

S � �

I
// Aut(N)-Sets>

ρoo
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Proof. The right adjoint ρ maps an object (A,µA) to the object (ρA,µρA), where the underlying set

is defined by ρA = {a ∈ A | a is finitely supported wrt. µA} and the action µρA is the restriction of µA

to ρA. The counit εA : IρA → A of the adjunction I a ρ is the inclusion function for ρA ⊆ A. To see

universality of ε , consider a map g : IB → A. Since B is an object in S, each of its elements is finitely

supported. By equivariance, supp(g(b))⊆ supp(b) holds for all b∈B. Hence, each element in the image

of g is finitely supported. Therefore, g induces a (necessarily unique) map g[ : B→ ρA by g[(b) = g(b),

for which g = εA ◦ Ig[ trivially holds.

For preservation of finite limits, it suffices to show that I preserves finite products and equalisers.

Observe that, since I is full and faithful, the unit of the adjunction is a natural isomorphism Id ∼= ρI.

Since, as a right adjoint, ρ preserves limits, we have an isomorphism I(A× B) ∼= I(ρIA× ρIB) ∼=
Iρ(IA× IB), natural in A and B. To get a natural isomorphism I(A×B)∼= (IA× IB), it therefore suffices

to show that the natural transformation εIA×IB : Iρ(IA× IB) → (IA× IB) is an isomorphism for all A

and B. This follows since IA× IB has the finite support property, so that εIA×IB is in fact the identity.

That the so obtained isomorphism I(A×B) ∼= (IA× IB) is indeed an isomorphism of binary products

can be seen by observing that in the following commuting diagram the top row is, by triangular identity,

the identity.

IA
Iη // IρIA IρIA ε // IA

I(A×B)
I(η×η)

∼= //

Iπ1

OO

I(ρIA×ρIB)
∼= //

Iπ1

OO

Iρ(IA× IB)

Iρπ1

OO

ε

∼= // IA× IB

π1

OO

Similarly, the terminal object is preserved since ε1 : Iρ1 → 1 is the identity. Finally, for preservation of

equalisers, it suffices to show that εE : IρE → E is an isomorphism for any object E that is the domain of

a monomorphism of the form m : E � IA. This follows since it is easily seen from Proposition 3.3.5.2

that if the codomain of a monomorphism has the finite support property then so does the domain.

The above proposition, together with Proposition 3.1.4, shows that we have the following situation.

S � �

I
// Aut(N)-Sets U //>

ρoo
Sets

F
>oo

R

>
oo

(3.3)

By Corollaries 3.1.15 and 3.1.16, we immediately get that S is a topos. Moreover, as can be seen from

the proofs of these two corollaries, the forgetful functor U is both monadic and comonadic and the

inclusion I is comonadic. We can use this information to calculate the structure of S.

We start with limits and colimits in Aut(N)-Sets. Since the forgetful functor U is both monadic

and comonadic, it creates limits and colimits in Aut(N)-Sets. Spelling this out, limits and colimits

in Aut(N)-Sets are calculated as in Sets and equipped with the canonical action on their components.

Before giving the general construction of limits and colimits in Aut(N)-Sets we give some frequently

used special cases.
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Terminal Object. The object (1, ·1), where ·1 : Aut(N)× 1 → 1 is the terminal map, is terminal in

Aut(N)-Sets.

Products. The product (A, ·A)× (B, ·B) in Aut(N)-Sets is (A×B, ·A×B), where A×B is the product in

Sets and π ·A×B 〈a,b〉= 〈π ·A a,π ·B b〉.

Pullbacks. The pullback of two morphisms f : (A, ·A)→ (C, ·C) and g : (B, ·B)→ (C, ·C) is given by

(A×C B, ·A×CB)
_�

π2 //

π1

��

(B, ·B)

g

��
(A, ·A)

f
// (C, ·C)

where A×C B = {〈a,b〉 ∈ A×B | f (a) = g(b)} and π ·A×CB 〈a,b〉= 〈π ·A a,π ·B b〉 and π1 and π2

are the evident projections.

Initial Object. The object (0, ·0), where ·0 : Aut(N)×0 → 0 is the unique map of its type, is initial in

Aut(N)-Sets.

Coproducts. The coproduct (A, ·A)+(B, ·B) in Aut(N)-Sets is (A+B, ·A+B), where A+B is the coprod-

uct in Sets and π ·A+B κ1(a) = κ1(π ·A a) and π ·A+B κ2(b) = κ2(π ·B b).

Coequalisers. The coequaliser of two morphisms f ,g : (A, ·A)→ (B, ·B) is given by

(A, ·A)
f //

g
// (B, ·B) e // // (E, ·E),

in which E and e are defined by E def= B/∼ and e(b) def= [b]∼ for the equivalence relation∼ generated

by b∼ b′ ⇐⇒ ∃a ∈ A. f (a) = b∧g(a) = b′. The action ·E is given by π ·E [b]∼ = [π ·B b].

In general, for a diagram J : J→ Aut(N)-Sets, limits and colimits can be defined as follows.

limJ = {p ∈Π j∈Ob j(J)J( j) | ∀( f : j → k) ∈Mor(J). pk = J( f )(p j))}

π ·limJ p = λ j. π ·J( j) p j

colimJ = (Σ j∈Ob j(J)J( j))/∼

where 〈 j,x〉 ∼ 〈k,y〉 ⇐⇒ ∃( f : j → k) ∈Mor(J). y = J( f )(x)

π ·colimJ [〈 j,x〉]∼ = [〈 j,π ·J( j) x〉]∼

We now consider limits in S. Let J : J→ S be a diagram of shape J in S. Since I is full and faithful,

the unit of the adjunction I ` ρ is a natural isomorphism Id ∼= ρI. Since ρ is right adjoint, it preserves

limits, so that we have a natural isomorphism limJ ∼= limρIJ ∼= ρ(lim IJ). This shows that S has all

limits which exist in Aut(N)-Sets and that limits in S are taken by first taking the limit in Aut(N)-Sets
and then restricting this limit to all the elements with finite support. In the proof of Proposition 3.3.7,
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we have seen that Iρ acts as the identity functor on finite limits, which means that finite limits in S can

be taken exactly as in Aut(N)-Sets.

For colimits in S, we observe that the inclusion I, as a comonadic functor, creates colimits. There-

fore, S has all colimits which exist in Aut(N)-Sets. Moreover, since I is just the inclusion functor,

colimits in S can be defined exactly as in Aut(N)-Sets. For a diagram J : J → S, the colimit colim IJ

in Aut(N)-Sets has the finite support property, i.e. is an object in S, and is colimiting for J.

We come to the cartesian closed structure. In Aut(N)-Sets the exponent (A, ·A) ⇒ (B, ·B) is given

by (A ⇒ B, ·A⇒B), where A ⇒ B is the exponent in Sets and ·A⇒B is the equivariant action π ·A⇒B f =

λa. π ·B ( f (π−1 ·A a)). Note that the underlying set A ⇒ B contains all functions from A to B, not just

equivariant ones. To define the cartesian closed structure in S, observe that, for any map C×A→ B in S,

we have the following natural one-to-one correspondences.

C×A−→ B
I is full and faithful

I(C×A)−→ IB
I preserves finite limits

IC× IA−→ IB exponential transpose
IC −→ (IA⇒ IB)

I is left adjoint to ρ

C −→ ρ(IA⇒ IB)

The functor ρ(IA ⇒ I−) is therefore right adjoint to −×A, so that the exponent (A ⇒ B) in S can be

defined as ρ(IA⇒ IB). It consists of all the functions in IA⇒ IB that have finite support.

A subobject classifier true : 1 → Ω in both Aut(N)-Sets and S is given by the map κ1 : 1 → 1 + 1.

The unique classifying map χm : A→Ω of a monomorphism m : B � A as in

B
��

m
��

_� // 1

true
��

A
χm
//___ Ω

is given by χ(a) = κ1 if (∃b ∈ B.a = m(b)) and χ(a) = κ2 otherwise. The power object P(A) is as

usual defined as (A ⇒ Ω). In Aut(N)-Sets, the power object may be described as having underlying

set {A′ | A′ ⊆ A in Sets} and action π ·P(A) A′ = {π ·A a | a ∈ A′}. In S, the above construction of the

cartesian closed structure implies that the power object P(A) may be described as having underlying

set {A′ | A′ ⊆ A in Sets and supp(A′) is finite} with action defined as in Aut(N)-Sets.

Partial map classifiers can be defined from the topos structure of S. For an object A of S, the

partial map classifier ηA : A→ A⊥ with the property that, for each monomorphism m : B � C and each

map f : B→ A, there exists a unique classifying map χ : C → A⊥ making the diagram

B
��

m
��

_�
f // A

ηA

��
C

χ
//___ A⊥

a pullback, may be defined as A⊥ = A+1 and ηA(a) = κ1(a). We write ⊥ for the element κ2(�) ∈ A⊥.
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Remark 3.3.8. The above construction of S is an instance of a more general situation. Let G be a

topological group, i.e. G is a group object in the category Top of topological spaces. For a set A write

Aδ for the set A equipped with the discrete topology. Let B(G) be the full subcategory of G-Sets
consisting of all the objects (A,µA) for which the action µA : G×Aδ → Aδ in continuous, i.e. µA is a

morphism in Top. The category G-Sets appears as B(Gδ ). With these definitions, we have the situation

B(G) � �

I
// B(Gδ ) U //>

ρoo
Sets,

F
>oo

R

>
oo

where U is the forgetful functor and I is the full, faithful and finite limit preserving inclusion. See [64,

§VII.3] for details on this situation.

The Schanuel topos S arises as B(G) when G is taken to be the group Aut(N) equipped with the

topology inherited from the product topology on N⇒ N. Details appear in [64, §III.9] and [39].

Remark 3.3.9. In the definition of S, we could have used the group Autfk(N) of permutations with finite

support instead of the group Aut(N) of all automorphisms on N. A permutation π ∈ Aut(N) has finite

support if it satisfies

∃X ∈Pfin(N). ∀n ∈ (N\X). π(n) = n.

That finite support permutations are enough is a consequence of the finite support property. For an

object (A, ·A) of S and an element a ∈ A, the action of a permutation π on a is completely determined

by the values of π on the support of a:

∀π,π ′ ∈ Aut(N). (∀n ∈ supp(a). π(n) = π
′(n)) =⇒ (π ·A a = π

′ ·A a)

Since supp(a) is a finite set, the action on a of arbitrary permutations can therefore be reconstructed

from the action on a of finite support permutations. Details of the construction of S using finite support

permutations and a proof of the equivalence to the above presentation appear in [39].

It is a standard result of group theory that the group Autfk(N) is generated by all the swappings (n n′),

where, for n and n′ in N, (n n′) is the permutation defined by

(n n′)(m) =


n′ if m = n

n if m = n′

m otherwise.

Finally, we note that the group Autfk(N) becomes an object of S when it is equipped with the ac-

tion π ·Autfk(N) τ = π ◦ τ ◦π−1, i.e. the action of the exponent N ⇒ N. This does not hold for the full

group Aut(N), as it does not have the finite support property.

3.3.1 Monoidal Closed Structure and Simple Monoidal Products

In this section we consider freshness and show that it gives rise to a strict affine symmetric monoidal

closed structure.
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Definition 3.3.10. Let A and B be objects of S and let a ∈ A and b ∈ B. We say that a is fresh for b,

written as a # b, if supp(a)∩ supp(b) = /0 holds.

Proposition 3.3.11. For all objects A, B and C in S, and all elements a ∈ A, b ∈ B and c ∈ C, the

following are true.

1. a # b implies (π ·a) # (π ·b) for all permutations π .

2. a # �, where � is the unique element of 1.

3. a # b implies b # a.

4. a # b∧〈a,b〉 # c if and only if a # 〈b,c〉∧b # c.

Proof. Immediate from the definition of #.

By this proposition, the definitions

A∗B def= {〈a,b〉 ∈ A×B | a # b} π ·A∗B 〈a,b〉 def= 〈π ·A a,π ·B b〉

define a strict affine symmetric monoidal structure ∗ : S×S→ S.

Proposition 3.3.12. For each object A in S, the functor −∗A : S→ S preserves pullbacks.

Proof. This follows from the fact that 〈a,b〉#c holds if and only if both a#c and b#c hold.

We use the construction from Section 3.2 to show that this monoidal structure is closed.

Lemma 3.3.13. For each object A in S, the functor −∗A : S→ S preserves exact sequences.

Proof. Let

R
r1 //

r2
// B c

// // C

be an exact sequence, i.e. 〈r1,r2〉 is the kernel pair of c, and c is the coequaliser of r1 and r2. As any

kernel pair, 〈r1,r2〉 is an equivalence relation. By the construction of pullbacks, we can assume R ⊆
B×B and r1 = π1 and r2 = π2. We write bRb′ if b and b′ are related by R and [b]R for the equivalence

class of b under R. By the construction of coequalisers, we can assume both C = B/R and c(b) = [b]R.

We have to show that

R∗A
r1∗A //

r2∗A
// B∗A

c∗A
// // C ∗A

is an exact sequence. In this diagram, R∗A ⊆ (B∗A)× (B∗A) is the equivalence relation defined such

that 〈b,a〉(R ∗A)〈b′,a′〉 holds if and only if both a = a′ and bRb′ hold. That (r1 ∗A,r2 ∗A) is a kernel

pair of c ∗A follows directly from pullback-preservation of (−) ∗A. It remains to show that c ∗A is
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a coequaliser of r1 ∗A and r2 ∗A. We have to define an isomorphism i : (B/R) ∗A → (B ∗A)/(R ∗A)

satisfying i(〈[b]R,a〉) = [b,a]R∗A for all b ∈ B and a ∈ A for which b # a holds.

To define i, let 〈[b]R,a〉 be an element of (B/R)∗A. Let π be a permutation that exchanges all names

in the support of a for fresh names and leaves all other names unchanged. Because of [b]R # a, we have

π · [b]R = [b]R. Since the permutation acts pointwise on equivalence classes, [π · b]R = π · [b]R = [b]R
holds. By definition of π , we also have (π ·b) # a. Define i(〈[b]R,a〉) = [π · b,a]R∗A. The definition

of R∗A makes it evident that this definition is independent of the choice of b and π .

It just remains to show that i is an isomorphism. Its inverse i−1 is defined by i−1([b,a]R∗A) = 〈[b]R,a〉.
Note that [b]R # a holds since the pointwise definition of the action on [b]R implies supp([b]R)⊆ supp(b).

Showing that i and i−1 are indeed inverses is straightforward.

Proposition 3.3.14. For any object A of S, the functor−∗A : S→ S has a right adjoint A−∗ − : S→ S.

Proof. We use Proposition 3.2.5, for the application of which we need to verify properties (C1), (C2)

and (C3) for S. Property (C1) holds since in a topos any monomorphism strong. Property (C3) is shown

in Lemma 3.3.13. It remains to show property (C2). For f : B∗A→C, the map f̃ : B×A→C⊥ is given

by

f̃ (b,a) =

{
f (b,a) if b # a holds

⊥ otherwise.

Furthermore, the map (Λ f̃ ) : B → (A ⇒ C⊥) is defined by (Λ f̃ )(b) = λc. f̃ (b,c). For (C2) it suffices

to show that, for all b ∈ B and all a ∈ A, we have b # a if and only if (Λ f̃ )(b) # a. The direction from

left to right follows by equivariance of (Λ f̃ ). In the other direction, suppose for a contradiction that we

have b ∈ B and a ∈ A with (Λ f̃ )(b) # a and ¬(b # a). Since the set of names is infinite and supp(a) is

finite, we can always find a permutation π that swaps all the names in supp(a) with fresh names and

fixes all the names in supp(b)\ supp(a). Then we have b # π ·a. Since (Λ f̃ )(b) # a, by assumption, and

supp((Λ f̃ )(b))⊆ supp(b), by equivariance, we have supp((Λ f̃ )(b))⊆ supp(b)\ supp(a). Since π fixes

all names in supp(b)\ supp(a), this implies π · ((Λ f̃ )(b)) = (Λ f̃ )(b). Then we have

⊥ = f̃ (b,a) by definition, since ¬(b # a)

= (Λ f̃ )(b)(a) by definition

= (π · (Λ f̃ )(b))(a) since (Λ f̃ )(b) = π · ((Λ f̃ )(b))

= (Λ f̃ )(π ·b)(a) by equivariance of Λ f̃

= f̃ (π ·b,a) by definition

= f (π ·b,a) ∈C by definition, since π ·b # a

Since ⊥ ∈C⊥ is, by definition, different from any element c ∈C, we have therefore arrived at a contra-

diction, so that our assumption (Λ f̃ )(b) # a and ¬(b # a) must have been false. Hence, property (C2)

holds.

By Proposition 2.5.6, the monoidal closed structure (∗,−∗) provides us with simple monoidal prod-

ucts Π∗ in the codomain fibration cod : S→→ S.
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Expanding the construction in Proposition 3.2.5, the object A−∗ B is defined as follows.

E def= { f ∈ (A⇒ B⊥) | ∀a ∈ A. a # f ⇐⇒ f (a) 6=⊥}

∼ def= {〈 f ,g〉 ∈ E×E | ∀a ∈ A. a # 〈 f ,g〉 =⇒ f (a) = g(a)}

(A−∗ B) def= E/∼

Here, ∼ is a simplification of the equivalence relation R used in the construction of Proposition 3.2.5.

The equivalence relation there amounts to:

R def= {〈 f ,g〉 ∈ E×E | ∃s ∈ (A⇒ A⊥). ∀a ∈ A. a # 〈 f ,g,s〉 =⇒ f (a) = g(a)}

However, we have∼= R. The inclusion∼⊆R is trivial. For R⊆∼, assume f Rg and a∈A with a # 〈 f ,g〉.
From the assumption f Rg we obtain s∈ (A⇒A⊥) such that ∀a∈A. a # 〈 f ,g,s〉 =⇒ f (a) = g(a) holds.

Let π be a permutation swapping the names in a for fresh names and leaving all other names unchanged.

Then we get π · f = f and π · g = g, which implies π · ( f (a)) = f (π · a) and π · (g(a)) = g(π · a).

Since π ·a is fresh, in particular for 〈 f ,g,s〉, we get f (π ·a) = g(π ·a) from the assumption. Hence, we

have π · ( f (a)) = π · (g(a)), which implies f (a) = g(a), thus showing f ∼ g.

Note that, by construction, R is a subobject of E×E, which implies that both R and∼ are equivariant

equivalence relations.

The elements of (A −∗ B), which are by definition equivalence classes, can also be described as

partial functions from A to B. By this we mean that (A −∗ B) is a subobject of (A ⇒ B⊥), as shown in

the following proposition.

Proposition 3.3.15. For all objects A and B in S, the following assignment defines a monomorphism

m : (A−∗ B) � (A⇒ B⊥) in S.

m(c) def= λx : A.

{
f (x) if f ∈ c and f (x) 6=⊥
⊥ otherwise

Moreover, the diagram below commutes.

(A−∗ B)∗A //
m×A //

ε

��

(A⇒ B⊥)∗A // ı // (A⇒ B⊥)×A

ev
��

B //
ηB

// B⊥

Proof. We start be showing that m is well-defined, i.e. that it is a morphism from (A−∗ B) to (A⇒ B⊥)

in S. To this end we first show that, for all c ∈ (A−∗ B), m(c) is a partial function from A to B. We have

to show that, for all f ,g ∈ c, if f (x) 6=⊥ and g(x) 6=⊥ hold then so does f (x) = g(x). Suppose f ,g ∈ c

and f (x) 6=⊥ and g(x) 6=⊥. Since f ,g∈ E, this implies x # f and x # g, which further implies x # 〈 f ,g〉.
Since f ,g ∈ c, we have f ∼ g, which by definition of ∼ implies the required f (x) = g(x).

Next, it is straightforward to verify that m is equivariant. As a consequence of equivariance, the

support of m(c) is contained in the support of c. Therefore, m(c) is a partial function from A to B with
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finite support, i.e. an element of (A ⇒ B⊥). Putting this together we have shown that m is a morphism

in S from (A−∗ B) to (A⇒ B⊥).

That m is a morphism in S can also be seen because it can be defined in the internal language as

partial function with graph(m(c)) =
⋃

f∈c graph( f ). The above argument that graph(m(c)) is the graph

of a partial function can be carried out internally.

Next we show that m is a monomorphism, i.e. if m(c) = m(d) holds then so does c = d. Sup-

pose m(c) = m(d). Let f and g be arbitrary elements of the equivalence classes c and d respectively. By

definition of m and m(c) = m(d), we obtain that f (x) = g(x) holds for all x∈ A for which both f (x) 6=⊥
and g(x) 6= ⊥ hold. Since both f and g are in E, this implies f (x) = g(x) for all x ∈ A with x # 〈 f ,g〉.
By definition of ∼, this implies f ∼ g. But then the equivalence classes c and d are not disjoint and so

must be equal. This shows that m is a monomorphism.

Finally, it is straightforward to see that the diagram commutes.

Next we show that, for an equivalence class c in (A −∗ B), the partial function m(c) not only repre-

sents the equivalence class c but is in fact a canonical element of it. For this we use three sub-lemmas.

Lemma 3.3.16. For all objects A in S and all elements c ∈P(A), we have
⋂

x∈c supp(x)⊆ supp(c)

Proof. Suppose, for a contradiction, that there exists an n∈N with n∈
⋂

x∈c supp(x) but not n∈ supp(c).

This means that ∀x ∈ c. n ∈ supp(x) and n 6∈ supp(c) hold. Let m be a fresh name. By Proposition 3.3.6,

we have (m n) · c = c. By definition, we have (m n) · c = {(m n) · x | x ∈ c}. Now, if n ∈ supp(x) and

m 6= n then n 6∈ supp((m n) · x). By definition of (m n) · c and because we have assumed n ∈ supp(x) for

all x ∈ c, this implies n 6∈ supp(y) for all y ∈ (m n) · c. But by assumption n ∈ supp(x) holds for all x ∈ c.

Therefore, c and (m n) · c cannot contain the same elements, giving (m n) · c 6= c and thus the required

contradiction.

Lemma 3.3.17. Let A be an object in S and ∼ be an equivariant equivalence relation on A. For all

equivalence classes c ∈ (A/∼), we have supp(c)⊆
⋂

x∈c supp(x).

Proof. Equivariant equivalence relations in S amount to equivalence relations in the topos-theoretic

sense. Since in a topos quotients appear as coequalisers, there exists a map A→ (A/∼) in S mapping x

to [x]∼. By equivariance, this implies supp([x]∼)⊆ supp(x) for all x ∈ A. Therefore we have supp(c)⊆
supp(x) for all x ∈ c. But this implies the required inclusion supp(c)⊆

⋂
x∈c supp(x).

Lemma 3.3.18. Let A and B be objects of S and let m : (A −∗ B) � (A ⇒ B⊥) be the monomorphism

from Proposition 3.3.15. For each equivalence class c in (A−∗ B), we have supp(m(c)) =
⋂

f∈c supp( f ).

Proof. We have supp(c) =
⋂

f∈c supp( f ) by Lemmas 3.3.16 and 3.3.17 and supp(m(c)) = supp(c) by

Proposition 3.3.5.

Lemma 3.3.19. Let A and B be objects in S and let m : (A −∗ B) � (A ⇒ B⊥) be the monomorphism

from Proposition 3.3.15. For each equivalence class c in (A−∗ B), we have m(c) ∈ c.
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Proof. We start by showing m(c)∈ E, i.e. that x # m(c) ⇐⇒ m(c)(x) 6=⊥ holds for all x∈ A. Let x∈ A.

From left to right, assume x # m(c). Let f be an arbitrary element of c. Suppose for a contradiction

that m(c)(x) = ⊥ holds. Let π be a permutation that exchanges all the names in the support of x with

fresh names and that leaves all other names fixed. Since x # m(c), this implies π · (m(c)) = m(c).

Moreover, π · x is fresh for f and c. Since f is in E, this implies f (π · x) 6=⊥. Therefore, we have

⊥ 6= f (π · x) since f ∈ E and π · x # f

= m(c)(π · x) by definition of m(c)

= π · (m(c)(x)) since π · (m(c)) = m(c), which follows from x # m(c) by def. of π

=⊥ by assumption m(c)(x) =⊥,

which gives the required contradiction.

From right to left, assume m(c)(x) 6=⊥. By definition of m(c), there exists f ∈ c such that f (x) 6=⊥.

Since f is in E, this implies x # f . Since supp(m(c)) =
⋂

f∈c supp( f ) holds by the previous lemma, this

implies x # m(c), as required.

Finally, m(c) ∈ c follows since it is easily shown that m(c)∼ f holds for all f ∈ c.

By Proposition 3.3.15 and the previous lemmas we can now characterise the partial functions in the

image of m : (A−∗ B) � (A⇒ B⊥) as the maximally defined functions among all partial functions that

are defined just on fresh arguments. The following proposition makes this precise.

Proposition 3.3.20. For all objects A and B, the set (A−∗ B) has the following characterisation.

(A−∗ B)∼= { f ∈ E | ∀g ∈ E. f ∼ g =⇒ dom( f )⊇ dom(g)}
∼= { f ∈ E | ∀g ∈ E. f ∼ g =⇒ supp( f )⊆ supp(g)}

Proof. First we show (A −∗ B) ∼= { f ∈ E | ∀g ∈ E. f ∼ g =⇒ dom( f ) ⊇ dom(g)}. By Proposi-

tion 3.3.15 and Lemma 3.3.19, each equivalence class c ∈ (A −∗ B) has a canonical element m(c). By

definition of m and the equivalence relation ∼, the element m(c) must be maximally defined, i.e. satisfy

dom(m(c)) ⊇ dom(h) for all h ∈ c. Moreover, the equivalence class c can contain at most one such

maximally defined element. Suppose f and g were two elements of c satisfying dom( f )⊇ dom(h) and

dom(g) ⊇ dom(h) for all h ∈ c. By letting h be f and g, this implies dom( f ) = dom(g). Since both f

and g are in E and because of dom( f ) = dom(g), we get x # f ⇐⇒ f (x) 6=⊥ ⇐⇒ g(x) 6=⊥ ⇐⇒ x # g

for all x ∈ A. By f ∼ g, this implies f (x) = g(x) for all x ∈ dom( f ) = dom(g). But for x 6∈ dom( f ) =

dom(g), we trivially have ⊥= f (x) = g(x), so that we have shown f = g, as required for uniqueness.

To show (A −∗ B)∼= { f ∈ E | ∀g ∈ E. f ∼ g =⇒ supp( f )⊆ supp(g)} it suffices to show that, for

each c ∈ (A −∗ B), m(c) is the element of c with the least support. Lemma 3.3.18 shows that m(c) has

minimal support of all the elements of c. By definition of ∼, there can be only one such element of c,

thus showing the claimed isomorphism.

For name-like objects A, a simpler characterisation of (A−∗ B) is available, see Proposition 10.3.11.
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Remark 3.3.21. The Schanuel topos S is equivalent to the category SetsI
pbp of pullback-preserving

functors in SetsI, where I is the category of finite sets and injections, see e.g. [64, §III.9]. Using this

equivalence, the monoidal closed structure (∗,−∗) on S can (up to isomorphism) be defined by lifting

the disjoint union monoidal structure on I using Day’s construction, see e.g. [4]. Indeed, as a sheaf, the

object (A −∗ B) has the simple description (A −∗ B)(S)∼= SetsI
pbp(A(−),B(S +−)), see [103]. It is not

clear whether or not this presentation can be used to simplify the above construction. The main reason

for preferring the above direct construction of −∗ is that it also works for assemblies in the next section,

for which Day’s construction is not available.

3.3.2 Simple Monoidal Sums

We now come to the construction of simple monoidal sums Σ∗. It is instructive to consider first the

definition of Σ∗N for the object of names N. In Section 2.5.1 we have defined simple monoidal sums Σ∗N

as a fibred functor Σ∗N : Gl(−∗N)→ cod that is a fibred left adjoint to WN : cod → Gl(−∗N).

S/(−∗N)

Gl (−∗N)
##H

HHHHHHHH

Σ∗N // S→

cod
��~~

~~
~~

~~

S

(3.4)

As explained informally in the introduction, Σ∗N generalises the abstraction set of Gabbay & Pitts [38].

Just as the abstraction set, Σ∗N is constructed as a certain quotient. Let f : B → Γ ∗N be an object of

S/(−∗N). Write f1 and f2 as abbreviations for the maps π̇1 ◦ f : B→ Γ and π̇2 ◦ f : B→N respectively.

The equivalence relation ∼ f⊆ B×B with respect to which the quotient is taken is defined by

b∼ f b′ ⇐⇒
(
∃n ∈ N. n # 〈b,b′〉 ∧ (n f2(b)) ·b = (n f2(b′)) ·b′

)
. (3.5)

By the some/any property from [38], we also have

b∼ f b′ ⇐⇒
(
∀n ∈ N. n # 〈b,b′〉 =⇒ (n f2(b)) ·b = (n f2(b′)) ·b′

)
. (3.6)

With this it is straightforward to see that ∼ f an equivariant equivalence relation. We write [b] f for

the equivalence class of b with respect to this equivalence relation. Mirroring Lemma 5.1 of [38], the

equivalence class [b] f can be described as

[b] f = {(n f2(b)) ·b | n ∈ N ∧ (n = f2(b) ∨ n # f2(b))}. (3.7)

We define the functor Σ∗N directly. It maps an object f : B → Γ ∗N to the object Σ∗N f : Σ∗NB → Γ

given by Σ∗NB = {[b] f | b ∈ B} with action π ·Σ∗NB [b] f = [π ·B b] f and (Σ∗N f )([b] f ) = f1(b). A morphism

(u,v) : f → g in S/(−∗N), as given by

B

f
��

u // C

g

��
Γ∗N

v∗N
// ∆∗N

(3.8)
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is mapped by Σ∗N to the morphism

Σ∗NB

Σ∗N f

��

Σ∗Nu
// Σ∗NC

Σ∗Ng

��
Γ v

// ∆

(3.9)

defined by (Σ∗Nu)([b] f ) = [u(b)]g. We need to verify that Σ∗N is well-defined. For the object part, we

have to check that the definition (ΣN f )([b] f ) = f1(b) does not depend on the choice of representative b,

i.e. we have to show f1(b) = f1(b′) for all b and b′ in B that satisfy [b] f = [b′] f . To this end it suffices

to show that b∼ f b′ implies f1(b) = f1(b′). If b∼ f b′ holds then there exists a name n ∈ N, fresh for b

and b′, such that (n f2(b)) ·b = (n f2(b′)) ·b′ holds. This equality and equivariance of f1 imply

(n f2(b)) · ( f1(b)) = f1((n f2(b)) ·b) = f1((n f2(b′)) ·b′) = (n f2(b′)) · ( f1(b′)). (3.10)

Since the codomain of f is Γ ∗N, we have f1(b) # f2(b). Since f1 is equivariant, it follows from

n # b that n # f1(b) holds. Therefore, we have (n f2(b)) · ( f1(b)) = f1(b). By similar reasoning we

obtain (n f2(b′)) · ( f1(b′)) = f1(b′). With the above equation (3.10), this implies the required equation

f1(b) = f1(b′). Well-definedness of the morphism part follows similarly.

We now show that Σ∗N is a fibred right adjoint to WA. First we have to show that Σ∗N is a fibred

functor.

Lemma 3.3.22. The functor Σ∗N as defined above is a fibred functor from Gl(−∗A) to cod.

Proof. It is easy to see from the definition that Σ∗N makes diagram (3.4) commute. It remains to check

that Σ∗N preserves cartesian maps, which in this case requires to show that if (3.8) is a pullback then

so is (3.9). We describe the main proof idea informally; full details can be found in the proof of

Lemma 3.3.31. Assuming (3.8) to be a pullback means that, for all 〈γ,n〉 ∈ Γ ∗N and all c ∈ C with

〈v(γ),n〉= g(c), there exists a unique b ∈ B satisfying u(b) = c and f (b) = 〈γ,n〉. To show that (3.9) is

a pullback, we have to show that, for all γ ∈ Γ and all [c]g ∈ Σ∗NC satisfying v(γ) = (Σ∗Ng)([c]g), there ex-

ists a unique [b] f ∈ Σ∗NB satisfying (Σ∗Nu)([b] f ) = [c]g and (Σ∗N f )([b] f ) = γ . Given γ ∈ Γ and [c]g ∈ Σ∗NC,

we would like to use the pullback (3.8) for 〈γ,g2(c)〉 and c. However, this does not quite work since

〈γ,g2(c)〉 is an element of Γ×N but not necessarily of Γ∗N. To use the pullback (3.8) we must find a

representative c′ of the class [c]g such that 〈γ,g2(c′)〉 ∈ Γ∗N holds. Such an element c′ can be found by

freshening c, that is by letting c′ def= (n g2(c)) ·g(c) for some fresh name n. With this definition, we can

now use the pullback (3.8) to obtain the required element.

In essence, the construction of c′ by freshening c amounts to the usual practice that the bound name

in an α-equivalence is always assumed to be fresh.

Proposition 3.3.23. The functor Σ∗N is a fibred left adjoint to WN.

Proof. We have already checked that both functors are fibred functors. Therefore, it suffices to show an

adjunction Σ∗N aWN with a vertical unit. Let f : B → Γ ∗N be an object of S/(−∗N). We define the
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vertical unit η f of the adjunction

B
η f //

f !!B
BB

BB
BB

BB
WNΣ∗NB

WNΣ∗N fzzuuuuuuuuu
(Σ∗NB)∗N

(Σ∗N f )∗Nxxrrrrrrrrrr

Γ∗N Γ∗N

by η f (b) = 〈[b] f , f2(b)〉. This pair is an element of (Σ∗NB)∗N since we have [b] f # f2(b), which follows

just as in Corollary 5.2 of [38]. It is straightforward to check that this defines a natural transforma-

tion η : Id →WNΣ∗N.

For universality, we have to show that for any morphism (u,v) : f →WNg in S/(−∗N) there exists a

unique morphism (u],v) : Σ∗N f → g in S→ with (u] ∗N,v)◦(η f , id) = (u,v), as in the following diagram.

B
η f //

u

**TTTTTTTTTTTTTTTTTTTT

f

��

Σ∗NB∗N
u]∗N

$$I
IIIIIIII

��

Σ∗NB
u]

  B
B

B
B

Σ∗N f

��

C ∗N

g∗N

��

C

g

��

Γ∗N

v∗N
**UUUUUUUUUUUUUUUUUUU Γ∗N

v∗N

%%JJJJJJJJJ Γ

v
!!C

CCCCCCC

∆∗N ∆

If it exists, the map u] necessarily satisfies u]([b] f ) = π̇1(u(b)) and is therefore unique. To show ex-

istence, it suffices to verify that u]([b] f ) = π̇1(u(b)) defines an equivariant function, i.e. that b ∼ f b′

implies π̇1(u(b)) = π̇2(u(b)). Suppose b ∼ f b′, which means that there exists a fresh name n such

that (n f2(b)) · b = (n f2(b′)) · b′. By equivariance of π̇1 ◦ u, this implies (n f2(b)) · (π̇1(u(b))) =

π̇1(u((n f2(b)) ·b)) = π̇1(u((n f2(b′)) ·b′)) = (n f2(b′)) · (π̇1(u(b′))). Since the left square of the above

diagram commutes, we have π̇2(u(b)) = f2(b). By the codomain of u this implies π̇1(u(b)) # f2(b),

and similarly π̇1(u(b′)) # f2(b′). Since n was chosen freshly, we therefore have π̇1(u(b)) = (n f2(b)) ·
(π̇1(u(b))) = (n f2(b′)) · (π̇1(u(b′))) = π̇1(u(b′)). Showing equivariance of u] is routine.

We spell out the construction of Σ∗NA for a non-dependent type A, in order to show that it specialises to

the abstraction set of Gabbay and Pitts [38]. Let A be an object of S. This object amounts to a closed

type ` A Type. By weakening, we obtain a type � ∗ (n : N) ` A Type. It corresponds to the object

f : (1∗N)×A → (1∗N) of S/(1∗N) given by the first projection. Applying Σ∗N to this object gives us

an object Σ∗N f in S/1. We spell out Σ∗N f to show that it is essentially the same as the abstraction set [N]A

of [38]. First we consider the equivalence classes of ∼ f . The relation ∼ f is an equivalence relation

on (1∗N)×A, so that all its equivalence classes have the form [〈〈�,n〉,a〉] f for some n ∈ N and a ∈ A.
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Unfolding the definitions, and using (34) of [38] in the last step, gives:

[〈〈�,n〉,a〉] f =
{
〈〈�,n′〉,a′〉 | 〈〈�,n〉,a〉 ∼ f 〈〈�,n′〉,a′〉

}
=

{
〈〈�,n′〉,a′〉 | ∃m.(m # 〈n,a,n′,a′〉)∧ (m n) · 〈〈�,n〉,a〉= (m n′) · 〈〈�,n′〉,a′〉

}
=

{
〈〈�,n′〉,a′〉 | ∃m.(m # 〈n,a,n′,a′〉)∧ (m n) ·a = (m n′) ·a′

}
=

{
〈〈�,n′〉,a′〉 | a′ = (n n′) ·a∧ (n = n′∨n′ # a)

}
This means that [〈〈�,n〉,a〉] f is, up to the superfluous component �, the same as the abstraction n.a

defined in (35) of [38]. Next we spell out the domain of Σ∗N f : Σ∗N((1∗N)×A)→ 1. It is defined to be

Σ
∗
N((1∗N)×A) = {[〈〈�,n〉,a〉] f | n ∈ N∧a ∈ A}.

This amounts to the definition of the abstraction set [N]A in [38], again up to an inessential component

of unit type.

The adjunction Σ∗N a WN captures familiar constructions from [38]. The unit η f : f → WNΣ∗N f

in S/(1 ∗N) is defined by η f (〈〈�,n〉,a〉) = 〈[〈〈�,n〉,a〉] f ,n〉 ∈ (Σ∗N((1 ∗N)×A)) ∗N. In this way, the

unit η contains the abstraction operation of [38], which maps n and a to n.a. The unit also contains the

freshness information n # n.a. In Lemma 6.3 of [38], a universal property of the abstraction set is shown.

This property corresponds to the universality of the unit of the adjunction Σ∗N aWN. For simplicity, we

consider just the special case without a parameter context. In this case, Lemma 6.3 of [38] states that for

any map x : N×A → B in S satisfying x(n,a) # n for all n ∈ N and all a ∈ A, there exists a unique map

x] : [N]A → B in S such that x(n,a) = x](n.a) holds for all n ∈ N and all a ∈ A. A map x : N×A → B

in S for which x(n,a) # n holds for all n ∈N and a ∈ A corresponds uniquely to a map x′ in S/(1∗N) as

in the diagram below. This can be seen by letting x′(〈〈�,n〉,a〉) = 〈x(n,a),n〉.

((1∗N)×A) x′ //

f &&LLLLLLLLLL B∗N

πB∗N{{ww
ww

ww
ww

w

1∗N

The codomain of x′ is πB ∗N = WNπB. By the adjunction Σ∗N aWN, the map x′ corresponds uniquely to

a map x′] : Σ∗N f → πB in S/1 satisfying x′]([〈〈�,n〉,a〉] f ) = π̇1(x′(〈〈�,n〉,a〉)). In terms of Lemma 6.3

of [38], this corresponds to the existence of a function x] that satisfies x](n.a) = x(n,a). The more

general case with a parameter context follows similarly by using Γ∗N instead of 1∗N.

We remark that not all the constructions that are used for abstraction sets in [38] are captured by

the adjunction Σ∗N aWN. For example, the concretion operation (n.a)@m of [38] is not given by this

adjunction. In Chapter 10, we show how concretion can nevertheless be captured in terms of Σ∗ and Π∗.

In the rest of this section we define Σ∗A for an arbitrary object A. This definition directly generalises

the definition of Σ∗N.

Definition 3.3.24. Let X and Y be finite sets of names. Define the set (X↔Y ) ⊆ Aut(N) of swappings

of X and Y to consist of all permutations π ∈ Aut(N) that satisfy π(X) = Y , π(Y ) = X , and, for all

z ∈ N\ (X ∪Y ), π(z) = z.
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Lemma 3.3.25. For any two finite sets of names X and Y , the set (X↔Y ) is not empty if and only

if |X |= |Y | holds.

We omit the straightforward proof.

For f : B→ Γ∗A we define the relation ∼ f⊆ B×B by

b∼ f b′ ⇐⇒
∃X ∈Pfin(N). X # 〈b,b′〉 ∧

∃π ∈ (supp( f2(b))↔X). ∃π ′ ∈ (supp( f2(b′))↔X). π ·b = π ′ ·b′.
(3.11)

In the next four lemmas, we generalise the results of [38, §5] on name abstraction.

Lemma 3.3.26. For all b,b′ ∈ B we have

b∼ f b′ ⇐⇒
∀X ∈P|supp( f2(b))|(N). X # 〈b,b′〉 =⇒

∃π ∈ (supp( f2(b))↔X). ∃π ′ ∈ (supp( f2(b′))↔X). π ·b = π ′ ·b′,
(3.12)

where P|supp( f2(b))|(N) is the set of all subsets of N having the same number of elements as supp( f2(b)).

Proof. The implication from right to left holds because by the finite support property we can always

find a set X ∈P|supp( f2(b))|(N) of names that is fresh for both b and b′.

From left to right, suppose we have X ∈Pfin(N), π ∈ (supp( f2(b))↔X) and π ′ ∈ (supp( f2(b′))↔X)

with X # 〈b,b′〉 and π · b = π ′ · b′. Lemma 3.3.25 implies |X | = |supp( f2(b))| = |supp( f2(b′))|. Let

Y ∈P|supp( f2(b))|(N) with Y # 〈b,b′〉. By Lemma 3.3.25, there exists τ ∈ (X↔Y ). By definition of the

set (X↔Y ), we have (τ ◦π)(supp( f2(b))) = Y . Since Y consists of names that are fresh for b and b′, the

definition

κ(n) =


(τ ◦π)(n) if n ∈ supp( f2(b))

(τ ◦π)−1(n) if n ∈ Y

n otherwise

therefore defines an element of (supp( f2(b))↔Y ). Notice that κ(n) = (τ ◦ π)(n) holds for all n ∈
supp(b). This implies κ ·b = (τ ◦π) ·b. Similarly, we define κ ′ ∈ (supp( f2(b′))↔Y ) such that κ ′ ·b′ =
(τ ◦π ′) ·b′ holds. From π ·b = π ′ ·b′ we therefore get κ ·b = τ ·π ·b = τ ·π ′ ·b′ = κ ′ ·b′, as required.

Lemma 3.3.27. For any f : B→ Γ∗A, the relation ∼ f is an equivariant equivalence relation.

Proof. Reflexivity and symmetry are immediate. Transitivity follows using Lemma 3.3.26. Verifying

equivariance is straightforward. For example, it can be seen because ∼ f can be defined in the internal

logic of S as a subobject of B×B, and so equivariance holds automatically.

As before, we write [b] f for the equivalence class of b ∈ B under ∼ f .

Lemma 3.3.28. For all f : B→ Γ∗A and b ∈ B, the following equivalence holds.

b∼ f b′ ⇐⇒ ∃π. (∀n ∈ supp(b)\ supp( f2(b)). π(n) = n) ∧ π ·b = b′
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Proof. The proof is a direct generalisation of the proof of Lemma 5.1 in [38].

From left to right, assume b ∼ f b′. Write X for supp( f2(b)) and X ′ for supp( f2(b′)). By definition

of ∼ f , there exist a finite set of fresh names Y and permutations τ ∈ X↔Y and τ ′ ∈ X ′↔Y such that

τ ·b = τ ′ ·b′ holds.

First we show X ′∩ (supp(b)\X) = /0. Suppose n ∈ X ′. We have

τ
′−1(n) # b′ since τ

′(Y ) = X ′ and all names in Y are fresh for b′

=⇒ τ
′ · τ ′−1 ·n # τ

′ ·b′ by Proposition 3.3.11

=⇒ n # τ ·b since τ ·b = τ
′ ·b′

=⇒ τ
−1 ·n # τ

−1 · τ ·b by Proposition 3.3.11

=⇒ τ
−1(n) # b

Since τ ∈ X↔Y , it follows that τ−1(n) # b implies (n∈ X)∨(n # b). Thus, we have shown that all n∈ X ′

satisfy (n ∈ X)∨ (n # b). In other words, X ′∩ (supp(b)\X) = /0.

Now consider the permutation τ ′−1◦τ . It maps X to X ′. Hence, there exists a permutation π ∈X↔X ′

such that π(n) = (τ ′−1 ◦τ)(n) holds for all n ∈ X . By definition, π is the identity on at least N\ (X ∪X ′)

and τ ′−1 ◦τ is the identity on at least N\ (Y ∪X ∪X ′). Since X ′∩ (supp(b)\X) = /0 and Y is fresh for b,

both permutations are the identity on supp(b)\X . Moreover, since by definition both permutations agree

on X , they therefore agree on the whole of supp(b). Hence, π · b = (τ ′−1 ◦ τ) · b holds. Since we have

(τ ′−1 ◦ τ) · b = τ ′−1 · τ · b = τ ′−1 · τ ′ · b′ = b′, this implies π · b = b′. Therefore, π is a permutation as

required to instantiate the existential quantifier in the left-to-right direction.

It remains to show the right-to-left implication. Let π be a permutation satisfying both π · b = b′

and (∀n ∈ supp(b)\ supp( f2(b)). π(n) = n). We have to show b∼ f b′. Write X for supp( f2(b)) and X ′

for supp( f2(b′)). Observe that π · b = b′ implies |X | = |X ′|. Let Y be a set of |X | fresh names. There

exist permutations τ ∈ X↔Y and τ ′ ∈ X ′↔Y such that π(n) = (τ ′−1 ◦ τ)(n) holds for all n ∈ X . For

b ∼ f b′ it suffices to show τ · b = τ ′ · b′. We now show that π and (τ ′−1 ◦ τ) agree on supp(b). Since

by definition they agree on X , it just remains to show that they agree on supp(b) \X . By assumption,

we have ∀n ∈ supp(b) \X . π(n) = n. Since X ′ = π(X), this implies (supp(b) \X)∩X ′ = /0. Since Y

consists of fresh names, (τ ′−1 ◦ τ) is also the identity on supp(b)\X . Hence π and (τ ′−1 ◦ τ) agree on

supp(b). From this we get π ·b = (τ ′−1 ◦ τ) ·b. But with π ·b = b′, this implies b′ = (τ ′−1 ◦ τ) ·b, and

thus the required τ ′ ·b′ = τ ·b.

Corollary 3.3.29. For all f : B → Γ ∗A and b ∈ B, the equivalence classes of ∼ f have the following

characterisation.

[b] f = {π ·b | ∀n ∈ supp(b)\ supp( f2(b)). π(n) = n}

Corollary 3.3.30. For all f : B→ Γ∗A and b ∈ B, we have supp([b] f ) = supp(b)\ supp( f2(b)).

Proof. By Corollary 3.3.29, any permutation that fixes all names in supp(b)\supp( f2(b)) also fixes [b] f .

Hence, supp([b] f ) ⊆ supp(b) \ supp( f2(b)). On the other hand, supp(π · b) = π(supp(b)) holds for
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all π and b. Therefore, Corollary 3.3.29 implies supp(b) \ supp( f2(b)) ⊆ supp(b′) for all b′ ∈ [b] f .

Lemma 3.3.16 gives the required supp(b)\ supp( f2(b))⊆ supp([b] f ).

For any object A, we now define the fibred functor Σ∗A.

S/(−∗A)

Gl (−∗A)
##H

HHHHHHHH

Σ∗A // S→

cod
��~~

~~
~~

~~

S

(3.13)

It maps an object f : B → Γ ∗A to the object Σ∗A f : Σ∗AB → Γ that is defined by Σ∗AB def= {[b] f | b ∈ B},

π ·Σ∗AB [b] f
def= [π ·B b] f and (Σ∗A f )([b] f )

def= f1(b). A morphism (u,v) : f → g in S/(−∗A) as given by

B

f
��

u // C

g

��
Γ∗A

v∗A
// ∆∗A

(3.14)

is mapped by Σ∗A to the morphism

Σ∗AB

Σ∗A f

��

Σ∗Au
// Σ∗AC

Σ∗Ag

��
Γ v

// ∆

(3.15)

defined by (Σ∗Au)([b] f ) = [u(b)]g. Well-definedness follows as for Σ∗N.

Lemma 3.3.31. The functor Σ∗A is a fibred functor from Gl(−∗A) to cod.

Proof. That Σ∗A makes diagram (3.13) commute follows directly from the definition. It remains to check

that Σ∗A preserves cartesian maps. We have to show that if (3.14) is a pullback then so is (3.15). To this

end, we can assume that, for all 〈γ,a〉 ∈ Γ∗A and all c ∈C with 〈v(γ),a〉 = g(c), there exists a unique

b ∈ B with u(b) = c and f (b) = 〈γ,a〉. We have to show that, for all γ ∈ Γ and all [c]g ∈ Σ∗AC with

v(γ) = (Σ∗Ag)([c]g), there exists a unique [b] f ∈ Σ∗AB with (Σ∗Au)([b] f ) = [c]g and (Σ∗A f )([b] f ) = γ .

Let γ ∈ Γ and [c]g ∈ Σ∗AC with v(γ) = (Σ∗Ag)([c]g). We first show the existence of [b] f with the

required properties. Consider g2(c) and notice that g2(c) need not be fresh for γ . However, we can

always find a set X ∈ P|supp(g2(c))|(N) of fresh names and a permutation π ∈ X↔supp(g2(c)). By

definition of ∼g, we have [π · c]g = [c]g. Since g has codomain ∆ ∗A, we have g1(c) # g2(c). Since π

fixes all names not in X∪supp(g2(c)), and X consists of fresh names only, this implies π ·g1(c) = g1(c).

Hence, we have g(π · c) = π ·g(c) = π · 〈g1(c),g2(c)〉 = 〈g1(c),π ·g2(c)〉 = 〈(Σ∗Ag)([c]g),π ·g2(c)〉 =

〈v(γ),g2(π · c)〉. Since 〈γ,g2(π · c)〉 ∈ Γ∗A, we can apply the assumption to get an element b ∈ B that

satisfies f (b) = 〈γ,g2(π · c)〉 and u(b) = π · c. This gives (Σ∗Au)([b] f ) = [u(b)]g = [π · c]g = [c]g and

(Σ∗A f ) = f1(b) = γ , as required.
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For uniqueness, let γ ∈Γ and [c]g ∈ Σ∗NC with v(γ) = (Σ∗Ng)([c]g), and suppose that there are b,b′ ∈B

such that both (Σ∗Nu)([b] f ) = [c]g = (Σ∗Nu)([b′] f ) and (Σ∗N f )([b] f ) = γ = (Σ∗N f )([b′] f ) hold. We have

to show [b] f = [b′] f . Since, by definition, (Σ∗Nu)([b] f ) = [u(b)]g and (Σ∗Nu)([b′] f ) = [u(b′)]g hold, we

have [u(b)]g = [c]g = [u(b′)]g, and thus u(b) ∼g u(b′). By definition of ∼g this implies |supp(u(b))| =
|supp(u(b′))|. Let X be a set of fresh names of size |supp(g2(u(b)))|= |supp(g2(u(b′)))|. By (3.12) we

have permutations π ∈ supp(g2(u(b)))↔X and π ′ ∈ supp(g2(u(b′)))↔X for which π ·u(b) = π ′ ·u(b′)

holds. Define d def= π · u(b) and a def= g2(π · u(b)) = g2(π · u(b′)). By definition of π and equivariance,

we obtain supp(a) = X , which implies 〈γ,a〉 ∈ Γ ∗ A since all names in X are fresh. We apply the

pullback (3.14) to d ∈C and 〈γ,a〉 ∈ Γ∗A. The following reasoning shows that it is applicable.

g(d) = g(π ·u(b))

= 〈g1(π ·u(b)),g2(π ·u(b))〉

= 〈π ·g1(u(b)),a〉

= 〈g1(u(b)),a〉 since g1(u(b)) # g2(u(b)) = a and π ∈ supp(g2(u(b)))↔X

= 〈(Σ∗Ng)([u(b)]g),a〉 by definition

= 〈(Σ∗Ng)([c]g),a〉 by [u(b)]g = [c]g

= 〈g1(c),a〉 by definition

= 〈v(γ),a〉

Using pullback (3.14), there exists a unique b0 ∈ B satisfying u(b0) = d and f (b0) = 〈γ,a〉. We show

that both π · b and π ′ · b′ have this property. First, we have u(π · b) = π · u(b) = d by equivariance and

definition. To show f (π ·b) = 〈γ,a〉 we first show π · f1(b) = f1(b). To this end, we have f1(b) # f2(b)

by the form of the codomain of f . Since (3.14) commutes, we have f2(b) = g2(u(b)), and this implies

f1(b) # g2(u(b)). By definition, π fixes all names not in X ∪ supp(g2(u(b))). Since X contains only

fresh names, this implies that π fixes all names in supp( f1(b)). Hence, we have π · f1(b) = f1(b). The

equation f (b1) = 〈γ,a〉 can now be shown as follows.

f (π ·b) = π · f (b) = π · 〈 f1(b), f2(b)〉

= π · 〈 f1(b),g2(u(b))〉 since (3.14) commutes

= 〈 f1(b),a〉 using π · f1(b) = f1(b)

= 〈(Σ∗N f )([b] f ),a〉 by definition

= 〈γ,a〉 by assumption γ = (Σ∗N f )([b] f )

The equations u(π ′ ·b′) = d and f (π ′ ·b′) = 〈γ,a〉 follow analogously. By uniqueness of b0, this implies

π ·b = b0 = π ′ ·b′. Using (3.11) we obtain b∼ f b′, and thus the required [b] f = [b′] f .

Proposition 3.3.32. The functor Σ∗A is a fibred left adjoint to WA.

Proof. We have already checked that both functors are fibred functors. Therefore, it suffices to show

an adjunction Σ∗A aWA with a vertical unit. Let f : B → Γ∗A be an object of S/(−∗A). We define the
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vertical unit η f of the adjunction

B
η f //

f !!B
BB

BB
BB

BB
WAΣ∗AB

WAΣ∗A fzzvvvvvvvvv
(Σ∗AB)∗A

(Σ∗A f )∗Ayyrrrrrrrrrr

Γ∗A Γ∗A

by η f (b) = 〈[b] f , f2(b)〉. This pair is an element of (Σ∗AB) ∗ A since [b] f # f2(b) holds by Corol-

lary 3.3.30. It is straightforward to see that this defines a natural transformation η : Id →WAΣ∗A.

For universality, we have to show that for any morphism (u,v) : f →WAg in S/(−∗A) there exists

a unique morphism (u],v) : Σ∗A f → g in S→ satisfying (u] ∗A,v) ◦ (η f , id) = (u,v), as shown in the

following diagram.

B
η f //

u

))TTTTTTTTTTTTTTTTTTTT

f

��

Σ∗AB∗A
u]∗A

$$I
IIIIIIII

��

Σ∗AB
u]

  B
B

B
B

Σ∗A f

��

C ∗A

g∗A

��

C

g

��

Γ∗A

v∗A
**TTTTTTTTTTTTTTTTTT Γ∗A

v∗A

$$JJJJJJJJJ Γ

v
!!C

CC
CC

CC
C

∆∗A ∆

If it exists, the map u] necessarily satisfies u]([b] f ) = π̇1(u(b)) and is therefore unique. To show ex-

istence, it suffices to verify that u]([b] f ) = π̇1(u(b)) defines an equivariant function, i.e. that b ∼ f b′

implies π̇1(u(b)) = π̇1(u(b′)). Suppose b ∼ f b′. Then there exists a set X of fresh names and permu-

tations π : X ↔ supp( f2(b)) and π ′ : X ↔ supp( f2(b′)) such that π · b = π ′ · b′ holds. By equivariance

of π̇1 ◦ u, this implies π · (π̇1(u(b))) = π̇1(u(π · b)) = π̇1(u(π ′ · b′)) = π ′ · (π̇1(u(b′))). Since the left

square in the above diagram commutes, we have π̇2(u(b)) = f2(b). By the form of the codomain of

u this implies π̇1(u(b)) # f2(b), and similarly π̇1(u(b′)) # f2(b′). Since all the names in X are fresh,

we therefore have π̇1(u(b)) = π · (π̇1(u(b))) = π ′ · (π̇1(u(b′))) = π̇1(u(b′)). Equivariance of u] follows

straightforwardly.

3.4 The Realizability Category AssS(P)

In the previous section we have introduced the Schanuel topos and constructed Π∗ and Σ∗ for it. If

we want to use these constructs for programming with names and binding, we must give an effectively

computable version of them. In this section we define the realizability category AssS(P), an effective

version of the Schanuel topos.

To endow a Schanuel sets with computability information, we proceed in a similar way to the con-

struction of assemblies over sets, see e.g. [61]. Assume for the moment that our effective programming
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language has natural numbers as data and that programs are partial computable functions on natural

numbers. To make a Schanuel set into a data type in this programming language, we equip each of

its elements with a non-empty set of natural numbers consisting of the codes representing that ele-

ment. We are then interested in computable morphisms between such sets, by which we mean mor-

phisms f : A → B for which there is a program that maps each code for a ∈ A to a code for f (a) ∈ B.

So far, this is just the well-known description of assemblies on sets. For example, the cartesian closed

structure of assemblies is such that A⇒B can be described as the set of all functions from A⇒B that are

computed by some program. In an effective version of the Schanuel topos, we should expect A ⇒ B to

consist of all computable functions with finite support, equipped with the action π · f = λa.π · f (π−1 ·a).

Notice that the so defined function π · f has to be computable as well. Therefore, it is natural not only to

equip the underlying set of a Schanuel set with codes, but also to require the permutation action on the

Schanuel set to be computable. For this to make sense, we must also equip the group of permutations

with computability information.

This motivates the construction of AssS(P) as a category of internal group actions in the category Ass
of assemblies. An internal group object P in Ass is a group whose underlying set is endowed with

codes and whose group operations are computable. A left P-action in Ass is a pair (A,µA : P×A → A)

satisfying appropriate conditions. Such a pair amounts to a set A equipped with codes and a computable

action µA on A. Since the Schanuel topos is defined similarly using actions in Sets, we may expect this

definition to give a computable version of the Schanuel topos.

Our presentation of AssS(P) is external in the sense that we work directly with assemblies and their

codes rather than using an internal language. This has the advantage that it is immediately clear what the

various constructions amount to in terms of the realizers, thus showing that the definitions correspond to

computational intuitions. One disadvantage is that it only gives us a quasi-topos, not a topos. A potential

route to obtaining a topos is to carry out the construction in the internal language of a realizability topos,

such as the effective topos Eff [52]. A stumbling block on this route is the fact that the internal logic of

the category of P-actions inside Eff is not classical; and the definition of support in the Schanuel topos

makes use of classical logic. It would nevertheless be interesting to see if the construction of an effective

version of the Schanuel topos can be carried out in the internal language of a realizability topos and how

such a construction relates to the category AssS(P) that we are about to define. Since the structure of a

quasi-topos is completely sufficient for our purposes, we settle with the external development, leaving

the internal development for future work.

3.4.1 Assemblies

We introduce the category of assemblies on sets following [61, 62], where a more in-depth study of this

category can be found.

Definition 3.4.1. A partial applicative structure (X , ·) is a set X with a partial operation · from

X ×X to X .
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For working with a partial applicative structure, we use formal expressions. A formal expression

on (X , ·), is either a variable x, an element r ∈X or a formal application e e′ where both e and e′ are

formal expressions on (X , ·). Formal application associates to the left. For each formal expression e, the

set of free variables FV (e) is defined as usual. A formal expression e is closed if the set FV (e) is empty.

We write e[e′/x] for substitution on formal expressions. Closed formal expressions are interpreted in X

by interpreting the formal application by the partial operation · : X ×X →X .

We use the following notation. For a formal expression e with FV (e) = {x1, . . . ,xn}, we write e ↓
if, for all r1, . . . ,rn ∈ X , e[r1/x1] . . . [rn/xn] is defined. For formal expressions e and e′ with FV (e)∪
FV (e′) = {x1, . . . ,xn}, we write e' e′ if, for all r1, . . . ,rn ∈X , e[r1/x1] . . . [rn/xn] is defined if and only

if e′[r1/x1] . . . [rn/xn] is defined and if both are defined then they denote the same element of X .

Definition 3.4.2. A partial combinatory algebra (PCA) is a partial applicative structure (X , ·) with

distinguished elements k,s ∈X satisfying

k x y ↓, k x y' x, s x y ↓, s x y z' (x z) (y z).

Our intended example is the Kleene PCA. Its partial applicative structure is (N, ·) having the natural

numbers N as underlying set and Kleene application as the partial operation ·. The Kleene application

n ·m is defined as the n-th computable partial function in N ⇀ N applied to the number m. Further

examples of partial combinatory algebras can be found in [61].

Proposition 3.4.3 (Combinatory Completeness). For each formal expression e and each variable x,

there exists a formal expression λλx.e with FV (λλx.e) = FV (e)\{x}, (λλx.e) ↓ and (λλx.e) x ' e.

Proof. See [61, Proposition 1.1.6].

Combinatory completeness means that we have (λλx.e) r ' e[r/x] for all r ∈X . We should note that

λλx.e does not satisfy the general β -equation in which r is replaced by an arbitrary formal expression e′.

Also, Kleene equality is not a congruence with respect to the meta-notation λλx.e, i.e. e ' e′ does not

imply λλx.e' λλx.e′. We refer the reader to [61, §1.1.2] for more information about these issues.

The next three propositions are almost exactly as in [62], where proofs can be found.

Proposition 3.4.4. Each PCA X has elements pair, fst and snd satisfying

pair x y ↓, fst (pair x y)' x, snd (pair x y)' y.

Proposition 3.4.5. Each PCA X has, for each n ∈ N, an element n as well as elements succ, pred,

iszero satisfying

succ n' n+1, pred 0' 0, pred n+1' n,

iszero 0' fst, iszero n+1' snd.

Proposition 3.4.6. Each PCA X has an element z satisfying z x ↓ and z y x ' y (z y) x.
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Given the definition of numerals and recursion, it follows that a PCA is Turing complete. Making use of

this fact, we will often describe algorithms informally when it is clear that they are computable, rather

than giving specific codes for them.

Proposition 3.4.7. Each PCA X has, for each finite list of elements r1, . . . ,rk ∈X with 0≤ k ∈ N, an

element [r1, . . . ,rk] as well as elements cons, hd, tl, isempty, map satisfying

cons r [r1, . . . ,rk]' [r,r1, . . . ,rk], hd [r1, . . . ,rk+1]' r1, tl [r1,r2, . . . ,rk]' [r2, . . . ,rk],

map s [r1, . . . ,rk]' [s r1, . . . ,s rk] isempty []' fst, isempty [r1, . . . ,rk+1]' snd.

Proof. Using natural numbers, pairing and Turing completeness.

We now define the category of assemblies on sets with respect to a partial combinatory algebra.

Definition 3.4.8. An assembly A is a pair (|A|,‖ · ‖A), where |A| is a set and ‖ · ‖A is a function of type

|A| →P(X ) assigning a non-empty set to each element x ∈ |A|.

Definition 3.4.9. A function f : A→ B is tracked by a realizer r ∈X if the following holds.

∀x ∈ A. ∀a ∈ ‖x‖A. r ·a ↓ ∧ r ·a ∈ ‖ f (x)‖B

Definition 3.4.10. The category AssX of assemblies on X has as objects the assemblies on X and the

morphisms from A to B are all functions f : |A| → |B| that are tracked by some realizer r ∈X .

When clear from the context, we omit the explicit reference to the PCA X , writing Ass for AssX .

It is well-known that AssX is a quasi-topos. (It is equivalent to a category of separated objects in a

topos, see [56, §6], and any such category is a quasi-topos, see [57, Theorem A4.4.5].) For reference,

we recall the concrete construction of some of the structure of AssX , see [61] for more detail.

Terminal Object. A terminal object 1 may be defined by taking |1|= 1 and ‖�‖1 = X .

Pullbacks. The pullback of two maps f : B→ A and g : C → A as in

B×A C
_�

π2 //

π1

��

C

g

��
B

f
// A

can be constructed by letting |B×A C| = {〈b,c〉 ∈ |B| × |C| | f (b) = g(c)} and ‖〈b,c〉‖B×AC =

{pair r s | r ∈ ‖b‖B ∧ s ∈ ‖c‖C}. The maps π1 and π2 are the evident projections.

Initial Object. An initial object may be defined by taking |0|= 0 and letting the realizability predicate

‖ · ‖0 be the unique function ‖ · ‖0 : 0→P(X ).
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Binary Coproducts. The binary coproduct A+B may be defined by taking |A+B|= |A|+ |B|, realized

by ‖κ1(x)‖A+B = {pair 0 r | r ∈ ‖x‖A} and ‖κ2(y)‖A+B = {pair 1 r | r ∈ ‖y‖B}.

Coequalisers. The coequaliser e as in the diagram below can be constructed by letting |C|= |B|/∼ and

‖c‖C =
⋃

y∈c ‖y‖B, for the equivalence relation ∼ generated by y∼ y′ ⇐⇒ ∃x ∈ |A|. f (x) = g(x).

A
f //

g
// B e

// // C

Cartesian Closure. The exponent (A ⇒ B) may be defined by letting |A ⇒ B| = (|A| ⇒ |B|) and

‖ f‖A⇒B = {r ∈X | r tracks f}.

Weak Partial Map Classifiers. A monomorphism m : A � B is strong if m is isomorphic, as an object

in the slice over B, to an object of the form m0 : B0 � B, where |B0| ⊆ |B| and ‖y0‖B0 = ‖y0‖B

for all y0 ∈ B0.

Weak partial map classifiers exist in Ass by Proposition 3.1.13. For each object A, a weak par-

tial map classifier is given by defining A⊥ by |A⊥| = |A|+ 1, ‖κ1(a)‖A⊥ = ‖λx : 1.a‖(1⇒A) and

‖κ2(�)‖A⊥ = X , and defining ηA : A � A⊥ by ηA(a) = κ1(a). That ηA is strong follows because

we have an isomorphism (1 ⇒ A) ∼= A in Ass. The universal property of ηA is given as follows.

Let m : B0 � B be a strong monomorphism. Without loss of generality, we can assume |B0| ⊆ |B|,
∀b ∈ |B0|.‖b‖B0 = ‖b‖B and that m is the canonical inclusion. Let f : B0 → A. Then the unique

map f̃ making the square

B0
f //

��
m

��

_� A
��
ηA

��
B

f̃
//___ A⊥

a pullback is defined by

f̃ (b) =

{
κ1( f (b)) if b ∈ |B0|
κ2(�) otherwise.

This map is realized by the code r = λλx.λλy.s x where s is a code tracking f . To see this, suppose

b ∈ |B0| and s′ ∈ ‖b‖B. Then r s′ = λλy.s s′ and this code evidently realizes λx : 1. f (b). Thus,

by definition of ‖ · ‖A⊥ , it is a realizer of κ1( f (b)) ∈ |A⊥|. If b ∈ (|B| \ |B0|) and s′ ∈ ‖b‖B then

r s′ = λλy.s s′ and this code, like any code, realizes κ2(�) ∈ |A⊥|. Notice that λλy.s s′ is defined

even when s s′ is not, and this is the reason for using the set of realizers of 1⇒ A instead of A.

With this description of the weak partial map classifier, the exponent (A ⇒ B⊥) is isomorphic to

the object (A ⇀ B) with underlying set |A ⇀ B|= |A⇒ B⊥| and

‖ f‖A⇀B = {r ∈X | ∀a ∈ |A|. ∀s ∈ ‖a‖A. ( f (a) ∈ B) =⇒ (r s ↓ ∧ r s ∈ ‖ f (a)‖B},

i.e. the realizers of f are the codes that track f where it is defined and that may have arbitrary

behaviour where f is undefined.
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Natural Number Object. An object of natural numbers is given by the pair (N,‖ · ‖N) in which N is

the set of natural numbers and the realizers are defined by ‖n‖N = {n}, where n is as defined in

Proposition 3.4.5. With the maps z : 1→ (N,‖ ·‖N) and s : (N,‖ ·‖N)→ (N,‖ ·‖N) given by z = 0

and s(n) = n + 1, this object becomes a natural number objects, since primitive recursion can be

implemented using the fixed-point combinator z.

There is a forgetful functor | · | : Ass → Sets that maps an assembly A to its underlying set and that is

the identity on morphisms. It has a full and faithful right adjoint ∇ : Sets → Ass mapping a set B to the

assembly (|B|,‖ · ‖B) whose realizability predicate is defined by ‖x‖B = X for all x ∈ B.

Ass >
|·|
// Sets_?

∇oo

3.4.2 Permutation Actions on Assemblies

By analogy with the construction of the Schanuel topos as permutation actions in Sets, we construct the

realizability category AssS(P) as a category of permutation actions in Ass.

We define a group object (|P|,‖ · ‖P) of finite support permutations. The underlying set of P is the

set of automorphisms on N with finite support.

|P|= {p ∈ Aut(N) | ∃A ∈Pfin(N). ∀n ∈ (N\A). p(n) = n}

The restriction to permutations with finite support makes it easy to define realizers for the permutations.

As noted in Remark 3.3.9, this is no restriction, since the Schanuel topos may be defined using finite

support permutations alone. For p ∈ |P|, the set ‖p‖P of realizers for p can be taken to be the (finite)

non-constant part of the graph of p.

‖p‖P
def= {[pair n1 m1, . . . ,pair nk mk] | NCGraph(p) = {〈n1,m1〉, . . . ,〈nk,mk〉}}

NCGraph(p) def= {〈n,m〉 ∈ N×N | n 6= m ∧ p(n) = m}

It is evident that, with this representation, the group operations u : 1 → |P|, m : |P| × |P| → |P| and

i : |P| → |P| defined by u = id, m(p,q) = p ◦ q and i(p) = p−1 respectively are all realizable, thus

making P a group object in Ass.

The category P-Ass is a computable version of |P|-Sets. An object of P-Ass is a set |A| with re-

alizability information ‖ · ‖A together with a realizable action µA : |P|× |A| → |A|. The underlying set

functor | · | : Ass→ Sets can be lifted to a functor | · | : P-Ass→|P|-Sets which maps (A,µA : P×A→ A)

to the underlying |P|-set (|A|, |µA| : |P|× |A| → |A|).

Proposition 3.4.11. The underlying set functor | · | : P-Ass → |P|-Sets preserves finite limits and has a

full and faithful right adjoint.

P-Ass >
|·|
// |P|-Sets_?

∇Poo
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Proof. The adjunction is defined using the adjunction

Ass >
|·|
// Sets .
_?

∇oo

The right adjoint ∇P maps an object (A,µA : |P|×A→ A) to the object (∇A,µA : P×∇A→ ∇A). Note

that µA can be viewed as both as a function |P|×A→ A in Sets and as a morphism P×∇A→∇A in Ass.

It is routine to verify that | · | preserves finite limits and that ∇P is full and faithful.

As in the definition of Schanuel topos, we are interested only in objects with the finite support property.

We therefore restrict to those objects in P-Ass whose underlying |P|-set has the finite support property,

i.e. is an object of the Schanuel topos.

Definition 3.4.12. The category Ass(P) is the full subcategory of P-Ass defined by taking all those

objects A for which |A| has the finite support property.

The category Ass(P) relates to the Schanuel topos S in the same way as the category of assemblies Ass
relates to the category of sets. The underlying set functor | · | : P-Ass → |P|-Sets restricts to a functor

| · | : Ass(P)→ S and we have:

Proposition 3.4.13. The underlying set functor | · | : Ass(P) → S preserves finite limits and has a full

and faithful right adjoint.

Ass(P) >
|·|
// S
_?

∇Poo

Proposition 3.4.14. The following square is a pullback of categories.

Ass(P)
|·| //

I

��

_� S

I
��

P-Ass
|·|
// |P|-Sets

The point of this pullback is that it gives us two ways of viewing the objects of Ass(P). First, by

definition of Ass(P), an object is a triple ((|A|,‖ · ‖A),µ) where (|A|,‖ · ‖A) is an object of Ass and

µ is a morphism of type P× (|A|,‖ · ‖A) → (|A|,‖ · ‖A) in Ass, such that (|A|, |µ| : |P| × |A| → |A|)
is an object in S. Because of the above pullback, we can also view the objects of Ass(P) as pairs

(|A|,‖ · ‖UI|A|) where |A| is a Schanuel set (UI|A|,µUI|A|) and (UI|A|,‖ · ‖UI|A|) is an object in Ass
for which µUI|A| is realizable. We can therefore view the objects of Ass(P) as Schanuel sets that are

equipped with realizability information such that the permutation action is realizable. We will often use

this second view and leave implicit applications the forgetful functors, writing just (|A|,‖ · ‖A) for the

object (UI|A|,‖ · ‖UI|A|) of Ass(P).

We have an analogue of Proposition 3.3.7 for Ass(P).
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Proposition 3.4.15. The full and faithful inclusion functor I : Ass(P) → P-Ass preserves finite limits

and has a right adjoint

Ass(P) � � >
I
// P-Ass .

ρoo

Proof. The adjunction is defined as in Proposition 3.3.7. It is straightforward to verify that all maps

involved have realizers.

The situation may be summarised by the following (non-commuting) diagram.

Ass(P) > //
� _

��

S_?
oo

� _

��
P-Ass > //

a

OO

a a
��

|P|-Sets_?
oo

a a
��

a

OO

Ass > //

OO OO

Sets_?
oo

OO OO
(3.16)

The right-hand column is the essentially the situation (3.3) for the Schanuel topos, only with finite-

support permutations, see also [39]. In the left column, P-Ass is both monadic and comonadic over Ass
and Ass(P) is comonadic over P-Ass.

Proposition 3.4.16. The category Ass(P) is a quasi-topos.

Proof. This follows from Proposition 3.1.14 since Ass is a quasi-topos and Ass(P) is comonadic over

P-Ass, which in turn is comonadic over Ass, each with a finite limit preserving comonad.

We may use the left-hand column in the above situation to calculate the structure of Ass(P). We give a

few constructions to illustrate the view of Ass(P) as a computable version of S.

Terminal Object. A terminal object in Ass(P) is given by (1,‖ ·‖1), where 1 is the terminal object in S
and ‖�‖1 = X . With this definition, the action on 1 is trivially computable.

Pullbacks. The pullback of two maps f : B→ A and g : C → A as in

B×A C
_�

π2 //

π1

��

C

g

��
B

f
// A

can be defined by letting the underlying set |B×A C| be {〈b,c〉 ∈ |B| × |C| | f (b) = g(c)} with

action π ·|B×AC| 〈b,c〉= 〈π ·|B| b,π ·|C| c〉 and with realizability predicate ‖〈b,c〉‖B×AC = {pair r s |
r ∈ ‖b‖B ∧ s∈ ‖c‖C}. The action on B×A C is realizable because the actions on B and C are. If r1

and r2 realize the action on B and C, then λλ p.λλx.pair (r1 p (fst x)) (r2 p (snd x)) is a realizer

making the action ·|B×AC| a map of type P× (B×A C)→ (B×A C) in Ass(P). The maps π1 and π2

are the evident projections.
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Cartesian Closed Structure. The exponent (A,‖ · ‖A) ⇒ (B,‖ · ‖B) in Ass(P) can be defined to be

(A⇒ B,‖ · ‖A⇒B) where A⇒ B is the exponent in S and ‖ f‖A⇒B = {r ∈X | r tracks f}. Recall

that the exponent A⇒B in S consists of all functions from A to B having finite support with respect

to the action ·A⇒B defined by π ·A⇒B f = λx.π ·B ( f (π−1 ·A x)). Notice that ·A⇒B is realizable

because all of f , ·A, ·B and i : P→ P are realizable.

Natural Number Object. The natural number object N is defined as (NAss, ·N) where NAss is the nat-

ural number object in Ass, and ·N : P×N→ N is the trivial action given by π ·N n = n.

Object of Names. The object of names N differs from the natural numbers N only in the definition of

its action. The object N is defined as (NAss, ·N) where NAss is the natural number object in Ass and

the action is given by π ·N n = π(n). By definition of the group object P, this action is evidently

realizable.

Weak Partial Map Classifiers. Strong monomorphisms have the same description as in Ass. Weak

partial map classifiers, too, have the same description as in Ass with the evident action. For each

object A, the weak partial map classifier η : A → A⊥ from Ass becomes a classifier in Ass(P)

when A⊥ is equipped with the action π ·A⊥ κ1(a) = κ1(π ·A a) and π ·A⊥ κ2(�) = κ2(�). Recalling

the definitions ‖κ1(a)‖A⊥ = ‖λx : 1.a‖(1⇒A) and ‖κ2(�)‖A⊥ = X , this action ·A⊥ : P×A⊥→ A⊥
is realized by the code λλ p.λλa.λλu.rA p (a u), where rA is a realizer for the action ·A : P×A→ A.

As a special case, a weak subobject classifier is given by the map κ1 : 1→ ∇P2.

Monoidal Structure. We define a strict affine symmetric monoidal structure ∗ : Ass(P)×Ass(P) →
Ass(P) by letting (A,‖ · ‖A)∗ (B,‖ · ‖B) be the object (A∗B,‖ · ‖A∗B) where A∗B is the monoidal

product in S with A∗B = {〈a,b〉 ∈A×B | supp(a)∩supp(b) = /0} and π ·A∗B 〈a,b〉= 〈π ·A a,π ·B b〉
and ‖〈a,b〉‖A∗B = {pair r s | r ∈ ‖a‖A ∧ s ∈ ‖b‖B}.

For this definition of the monoidal structure, it is immediate that the monomorphism A∗B � A×B

is strong for all A and B. Hence property (C1) of Section 3.2 holds. Since the underlying set A∗B

is defined as in S, it is readily seen that property (C2) is inherited from S. However, property (C3),

that−∗A preserves exact sequences, does not appear to transfer directly from the Schanuel topos.

In the proof of this property for the Schanuel topos (Lemma 3.3.13) we have made use of the fact

that we can always ‘freshen’ certain names in all elements without affecting any other names. In

the next section we see that such freshening is not available in Ass(P). This will lead us to the

definition of the subcategory AssS(P) of Ass(P) in which freshening is available.

3.4.3 Support Approximations

The main ingredient missing from the category Ass(P) is the possibility to choose fresh names effec-

tively. We have restricted the objects of Ass(P) so that all elements have finite support, with the intention

that this makes it always possible to find fresh names. While this restriction allows us to always find
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fresh names externally, it is not sufficient to do so internally. Let A be an object of Ass(P) and suppose

we have an element a ∈ |A| for which we want to compute a fresh name. By this we mean that we

want a realizer c ∈X such that, for any realizer r ∈ ‖a‖, the application c r is defined and is a realizer

of some name n such that (pair r (c r)) realizes 〈a,n〉 ∈ A ∗N. Note that this cannot be expressed as

a morphism of Ass(P), since the function that is realized by c is not equivariant and therefore not a

morphism in Ass(P). A code such as c is useful to realize constructions like (new n.M), which amounts

first choosing a fresh name n and then computing M using that fresh name. In general, Ass(P) does not

have such a code c, as the following example shows.

Example 3.4.17. We show that in general no code c with the above property exists. We show this for the

case where the underlying PCA of Ass(P) is the Kleene PCA. Consider the object (N⇒ N) of Ass(P).

A realizer for an element f ∈ |N⇒ N| is a natural number representing a total function N⇒ N in Sets.

We show that if there is a code c generating fresh names for this type then we can solve the special

halting problem, i.e. we can decide whether or not a Turing Machine encoded by a natural number K

halts on input K.

For any code K for a Turing Machine, we define the following total computable function in N⇒ N.

fK(n) =

{
0 if n > 0 and the Turing Machine K stops with input K in ≤ n steps

n otherwise

Note that fK can be obtained effectively, i.e. the function mapping K to a code for fK is computable.

In order for fK to denote an element of N⇒N, it must have finite support with respect to the action

on N ⇒ N. In the case where the Turing Machine K does not stop, fK is the identity and therefore

satisfies supp( fK) = /0. In the case where the Turing Machine K stops after exactly k steps, one can

show supp( fK) = {0,1, . . . ,k}.

Now, suppose we have a code c that, given a realizer for fK , computes a natural number n with the

property n 6∈ supp( fK). Since fK is total and tracked by some code, we can then compute the value fK(n).

We show that fK(n) = n holds if and only if the Turing Machine K does not stop. Suppose fK(n) = n.

If n = 0 then the Turing Machine K does not stop, because otherwise we would have 0 ∈ supp( fK), and

we have assumed 0 6∈ supp( fK). If n 6= 0 then fK(n) = n implies that the Turing Machine K does not

stop after n steps. We use n 6∈ supp( fK) to show that K never stops. Suppose K stops, say after exactly k

steps. Since K has not stopped after n steps we have k > n. Then, by construction of fK , we have

supp( fK) = {0, . . . ,k}. But since n 6∈ supp( fK) this implies n > k, and this leads to the contradiction

k > n > k. Hence, if fK(n) = n then the Turing Machine K does not stop. Now suppose fK(n) 6= n. This

can only be the case if n 6= 0 and fK(n) = 0. But in this case, K stops after no more than n steps.

We have thus shown that c can be used to decide the special halting problem. Since this problem is

undecidable, no such code c can exist.

A consequence of the failure of Ass(P) to have a code for choosing fresh names is that Ass(P) does
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not have interesting Σ∗-types. In fact, in Ass(P) even WN does not have a fibred left adjoint Σ∗N. The

reason for this failure is that Σ∗N-types can be used to implement unique choice of fresh names, as we

shall see in Chapter 11. Another consequence of the failure of Ass(P) to have a code for choosing fresh

names is that we cannot construct Π∗-types. It is not clear how to show that the functor −∗N preserves

exact sequences, as it should if it were to be a pullback-preserving left adjoint. In contrast to Σ∗-types,

however, we do not have a proof for the non-existence of Π∗-types.

We view the non-existence of a code for choosing fresh names as a defect of particular choices of the

sets of realizers ‖ ·‖A. In the above example, the object N⇒N is realized by codes for total computable

function on the natural numbers. Given only such a code, one cannot expect to be able to compute the

support of the function f ∈ |N ⇒ N| it represents. A more reasonable encoding for f would be a pair

(pair s r) where s is a support approximation encoding a finite set that contains the support of f and r

is a realizer of the function f . For such an encoding, choosing a fresh name is trivial: We can simply

return any number not in the finite set encoded by s.

To define support approximations formally, we consider the Schanuel set of finite name-sets and

equip it with realizability information to make it an object of Ass(P). The object Pfin(N) consists of all

finite sets of names. Recall from the discussion after Proposition 3.4.14 that an object of Ass(P) amounts

to an object of S with a realizability predicate ‖ ·‖ on its underlying set such that the permutation action

is tracked by some code. We define the realizability predicate ‖ · ‖Pfin(N) by encoding the finite name-

sets as finite lists

‖A‖Pfin(N) = {[n1, . . . ,nk] | if A is {n1, . . . ,nk}}.

The action on Pfin(N) is tracked by (map r), where r is a code tracking the action ·N : P×N→N. The

object P(Pfin(N)) in S consists of all sets of finite sets of names. We make it an object in Ass(P) by

equipping it with the realizability predicate

‖S‖P(Pfin(N)) =
⋃
A∈S

‖A‖Pfin(N).

Note that the definitions of both the objects Pfin(N) and P(Pfin(N)) in Ass(P) are not what one would

get using the weak subobject classifier. We do not use the weak power object A⇒Ω as it does not have

the right computability information in Ass(P). For example, the code for the identity λλx.x realizes all

elements of A⇒Ω.

Definition 3.4.18. An object A in Ass(P) has support approximations if the function f : A→P(Pfin(N))

defined by f (x) = {S ∈Pfin(N) | S ⊇ supp(x)} is tracked by some realizer.

Definition 3.4.19. An object A in Ass(P) has computable support if the function supp: A → Pfin(N)

is tracked by some realizer.
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3.4.4 The Category AssS(P)

Definition 3.4.20. The category AssS(P) is the full subcategory of Ass(P) consisting of all objects that

have support approximations.

Proposition 3.4.21. The full and faithful inclusion I : AssS(P) ↪→Ass(P) preserves finite limits and has

a right adjoint.

AssS(P) � � >
I
// Ass(P) .

Soo

Proof. The right adjoint S maps an object A to the object ((|B|,‖·‖B),µB) where |B|= |A|, µB = µA and

‖a‖B = {pair s r | X ∈ |Pfin(N)| ∧ X ⊇ supp(a) ∧ s ∈ ‖X‖Pfin(N) ∧ r ∈ ‖a‖A} .

The counit εA : ISA→ A is given by the identity function |ISA|= |A| → |A| and is realized by snd.

We show preservation of finite limits as in the proof of Proposition 3.3.7. As shown there, it suf-

fices to show that, for all objects A and B in AssS(P) and all monomorphisms E � IA in Ass(P), the

morphisms ε1 : IS1→ 1 and εIA×IB : IS(IA× IB)→ (IA× IB) and εE : ISE → E are isomorphisms. It is

easily seen that to find inverses of these morphisms it suffices to show that their codomains have support

approximations. We only consider the case for εE . Since there is a monomorphism m : E � IA, since

IA has support approximations, and since supp(e) = supp(m(e)) holds for all e ∈ |E|, we get a support

approximation for E by first mapping along m and then using the support approximation for IA.

Corollary 3.4.22. The category AssS(P) is a quasi-topos.

Proof. Using Propositions 3.4.21 and 3.1.14 with the fact that Ass(P) is a quasi-topos.

Although in general we can only approximate the support in AssS(P), there are classes of objects on

whose elements the support can be computed exactly.

Definition 3.4.23. An object A in AssS(P) has decidable equality if there is a morphism e : A×A→ 1+1

in AssS(P) such that e(a,a′) = κ1(�) holds if and only if a = a′ holds.

Proposition 3.4.24. Every object A in AssS(P) with decidable equality has computable support.

Proof. Let a ∈ A. Since AssS(P) has support approximations, we can readily compute a finite set

containing the support of a. Moreover, we have n ∈ supp(a) ⇐⇒ (∃n′. n′ # 〈n,a〉 ∧ (n′ n) ·a 6= a) and

n 6∈ supp(a) ⇐⇒ (∃n′. n′ # 〈n,a〉 ∧ (n′ n) · a = a). Since the permutation is computable, equality is

decidable, and since we can generate a fresh name n′ by choosing an arbitrary name not in the support

approximation of 〈n,a〉, we can therefore use this property to test which names in the (finite) support

approximation of a belong to the support of a. Hence, A has computable support.

We spell out some constructions in AssS(P).
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Finite Limits and Colimits. Finite limits and colimits can be constructed exactly as in Ass(P), since

finite limits and colimits always have support approximations. For example, because of the inclu-

sion supp(〈a,b〉)⊆ supp(a)∪ supp(b), a support approximation for 〈a,b〉 ∈ A×B is given by the

union of the support approximations for a and b.

Cartesian Closed Structure. Given Proposition 3.4.21, the exponent A⇒ B of two objects A and B in

AssS(P) can be constructed as S(IA ⇒ IB) using the exponent in Ass(P). This follows from the

coreflection I a S in the same way as the construction of exponents in the Schanuel topos.

Monoidal Structure. The monoidal structure ∗ on AssS(P) is defined exactly as in Ass(P).

Proposition 3.4.25. Binary coproducts in AssS(P) are disjoint and universal.

Proof. This follows in the same way as for Ass, see e.g. [13, Theorem 3.6.23] for a proof.

Example 3.4.26. We reconsider Example 3.4.17, this time in AssS(P). The exponent N⇒N in AssS(P)

is given by S(IN⇒ IN), which means that it has the same underlying set as in Ass(P), but the realizers

of an element f ∈ (N ⇒ N) are now pairs (pair s r) where s ∈ X encodes a finite set containing the

support of f and r ∈X is a code tracking f . To give a code that computes a fresh name for an arbitrary

element of N ⇒ N, it is enough to give a code that returns (a code for) the smallest natural number not

in the finite set encoded by s. This is of course possible, so that in AssS(P) the previous undecidability

result of Example 3.4.17 does not apply. The point where the proof in Example 3.4.17 goes wrong

in AssS(P) is where we need to effectively compute a realizer for fK for a given K encoding a Turing

machine. In order to compute a realizer for fK , we need to compute a support approximation for it and

this amounts to giving an upper bound for the number of computation steps of the Turing machine K if

the Turing machine K stops. This is not possible, as we do not know whether K will stop at all.

Example 3.4.27. In AssS(P) the object N⇒ A has decidable equality whenever A has decidable equal-

ity. The algorithm deciding whether two functions f and g in N ⇒ A are equal rests on the following

simple observation. Let X be a finite set of names satisfying supp( f )∪ supp(g) ⊆ X . Let n be a name

not in X . Then, f = g holds if and only if the following property holds.

(∀m ∈ X . f (m) = g(m))∧ ( f (n) = g(n)) (3.17)

To see this, let n′ be any name. If n′ ∈ X then f (n′) = g(n′) is immediate. Otherwise, if n′ 6∈ X , then

(n n′) · f = f and (n n′) ·g = g hold, as both n and n′ are fresh for f and g. This implies

f (n′) = ((n n′) · f )(n′) = ((n n′) · f )((n n′) ·n) = (n n′) · ( f (n)) = (n n′) · (g(n)) = g(n′).

In AssS(P), we can compute a finite set X as above for arbitrary codes for f and g by computing the

union of the support approximations for f and g. Moreover, we can compute a name n not in X . Since

the objects N and A have decidable equality and since X is finite, the property (3.17) can then be checked

effectively. Thus, N⇒ A has decidable equality.
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This situation in AssS(P) is in contrast to the situation in Ass(P) where the object N⇒ A (note that

this exponent is constructed differently) does not in general have decidable equality. For example, the

object N ⇒ N cannot have decidable equality, since otherwise we could solve the halting problem by

comparing the function fK in Example 3.4.17 to the identity function.

3.4.4.1 Simple Monoidal Products

Lemma 3.4.28. For each object A in AssS(P) having computable support, the functor −∗A : S → S
preserves exact sequences.

Proof. It suffices to show that all the maps in Proposition 3.3.13 have realizers. By the construction

of pullbacks and coequalisers, this is straightforward for all maps except i : (B/R) ∗A → (B ∗A)/(R ∗
A). The morphism i is defined as taking an element 〈[b]R,a〉 ∈ (B/R) ∗A, computing a permutation π

that exchanges all the names in supp(a) with fresh names and leaves all other names unchanged, and

returning [π · b,a]R∗A. By construction of coequalisers, we have ‖c‖(B∗A/R∗A) =
⋃

x∈c ‖x‖B∗A for all

c ∈ (B ∗A/R ∗A). Therefore, to realize i it suffices to find a code r that realizes the mapping 〈b,a〉 7→
〈π · b,a〉. For this, it suffices to find a code s that, given codes for b ∈ B and a ∈ A, returns a code

for a permutation π ∈ P that exchanges all names in a for fresh names and that does not change the

names in b. Since A has computable support, we can compute the support of a. Since B has support

approximations, we can find |supp(a)| names that are fresh for both a and b. Using these two finite sets,

it is straightforward using Turing-completeness to construct a code for a permutation π ∈ P satisfying

the above requirements.

Proposition 3.4.29. For each object A in AssS(P) having computable support, the functor−∗A : S→ S
has a right adjoint.

Proof. We use Proposition 3.2.5. Of the conditions (C1), (C2) and (C3) required for this proposition,

(C1) and (C2) are as in the case for the Schanuel topos, and (C3) is given by Lemma 3.4.28 above.

As observed in Proposition 2.5.6, the monoidal closed structure (∗,−∗) provides us with simple monoidal

products Π∗ in the codomain fibration cod : AssS(P)→→ AssS(P).

3.4.4.2 Simple Monoidal Sums

In this section we construct simple monoidal sums in AssS(P). The functor Σ∗A as in the diagram below

has on the underlying sets the same definition as in the Schanuel topos.

AssS(P)/(−∗A)

Gl (−∗A) ''OOOOOOOOOOO

Σ∗A // AssS(P)→

codyyrrrrrrrrrr

AssS(P)

(3.18)
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An object f : B → Γ ∗ A is mapped to the object Σ∗A f : Σ∗AB → Γ defined by Σ∗AB = {[b] f | b ∈ B},

π · [b] f = [π ·b] f and (Σ∗A f )([b] f ) = π̇1( f (b)). This definition of Σ∗A is equipped with realizers in a way

which matches the usual definition of quotient types in realizability categories.

‖c‖Σ∗AB =
⋃
b∈c

‖b‖B

The action on Σ∗AB is realizable since it is given pointwise and since B, being an object of AssS(P), has

a realizable action. The morphism Σ∗A f in AssS(P) is realizable since π̇1 and f are. Furthermore, Σ∗AB

has support approximations since, because of supp([b] f )⊆ supp(b), we can simply use the support ap-

proximations of B. The morphism part of Σ∗A is defined exactly as in Section 3.3.2. Since the morphism

action of Σ∗A given there is defined pointwise, it is easily seen that the morphisms are realizable.

With this definition we can ask the question when Σ∗A is a fibred functor. The proof of the following

lemma makes essential use of support approximations.

Lemma 3.4.30. If A is an object of AssS(P) and A has computable support, then Σ∗A is a fibred functor

from Gl(−∗A) to cod.

Proof. We need to show that if the square on the left is a pullback then so is the square on the right.

B

f
��

u //
_� C

g

��
Γ∗A

v∗A
// ∆∗A

Σ∗AB

Σ∗A f

��

Σ∗Au
// Σ∗AC

Σ∗Ag

��
Γ v

// ∆

The proof goes essentially as the proof of Lemma 3.3.31. However, the existence statement in that

lemma now involves effectivity. We have to give an isomorphism i : Σ∗AB→ Γ×∆ Σ∗AC satisfying Σ∗A f =

π1 ◦ i and Σ∗Au = π2 ◦ i, where we use the same notation as in the construction of pullbacks for Ass(P).

We define i([b] f ) = 〈π̇1( f (b)), [u(b)]g〉. This map is evidently realizable and satisfies the two required

equations. Now we consider the inverse of i. By examining the proof of Lemma 3.3.31, we can infor-

mally describe i−1 as follows. Given 〈γ, [c]g〉 ∈ Γ×∆ Σ∗AC, find a permutation π such that [c]g = [π · c]g
holds and π̇2(g(π · c)) is fresh for γ , use the left pullback for 〈γ, π̇2(g(π · c))〉 ∈ Γ ∗A and π · c to ob-

tain b ∈ B, and return [b] f as the result. Note that we need to freshen c in the definition in order to

make use of the left pullback, since 〈γ, π̇2(g(c))〉 need not be an element of Γ ∗A. There is only one

step in this description of i−1 for which it is not trivial to find a realizer, namely to find a permuta-

tion π such that [c]g = [π · c]g holds and π̇2(g(π · c)) is fresh for γ . If we can compute the support of

π̇2(g(c))∈ A and we can finitely approximate the support of 〈γ,c〉 then we can effectively compute such

a π as follows. First, compute the support of π̇2(g(c)) and an approximation of the support of 〈γ,c〉.
Compute the first |supp(π̇2(g(c)))| names that are not in supp(γ,c). This always succeeds because ap-

proximations are finite. Hence, we return (the finite graph of) a permutation that swaps supp(π̇2(g(c)))

for these fresh names and leaves all other names unchanged. Under the assumptions of the proposition,

we can therefore realize i−1, making it a morphism of AssS(P). Finally, that the morphisms i and i−1
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define an isomorphism then follows as in Lemma 3.3.31. Notice that in this argument it is necessary to

compute the support of π̇2(g(c)) exactly, since we have [c]g = [π · c]g only if π fixes all the names in

supp(g)\ supp(π̇2(g(c))).

Proposition 3.4.31. If A is an object of AssS(P) and A has computable support, then Σ∗A is a fibred left

adjoint to WA.

Proof. The previous proposition shows that Σ∗A is a fibred functor. It suffices to show that all the mor-

phisms constructed in the proof of Proposition 3.3.32 are tracked by some realizer. First, the unit of the

adjunction is defined by η f (b) = 〈[b] f , f2(b)〉. It is tracked by λλx.pair x (snd (r f x)), where r f is a

realizer for f , which exists since f is a map in AssS(P). The adjoint transpose u] of a map u is defined

by u]([b] f ) = π̇1(u(b)). It is tracked by λλx. fst (ru x), where ru is a realizer for u, which exists since u is

a map in AssS(P).

We note that the assumption in this proposition that A have computable support is indeed necessary.

Proposition 3.4.32. If Σ∗A is a fibred left adjoint to WA : cod → Gl(−∗ A) then A has computable

support.

Proof. Since the proof is a little technical, we first explain the idea intuitively. Let A be an object of

AssS(P) and x ∈ |A|. We want to compute the support of x. Since we can find a finite approximation

of the support, it suffices to show that, for any given name n ∈ |N|, it can be decided whether or not

n ∈ supp(x) holds. Such a decision procedure can be obtained using Σ∗AN. Recall from the Introduction

the terms (M.N) and (let M be x.y in N) for Σ∗ and their informal interpretation. The following term in

this notation decides whether or not n ∈ supp(x) holds.

let x.n be x′.n′ in (if n = n′ then yes else no)

This term can be understood as follows. First we take the pair x.n, which is essentially the pair 〈x,n〉
but with all the names of x hidden. Then, we exchange the hidden names, but only those, in this pair

with fresh names, and match the result against the pair x′.n′. Finally, we return ‘yes’ if n = n′ and

‘no’ otherwise. This function returns ‘yes’ if and only if n is in the support of x. To see this note that

if n ∈ supp(x) holds then the name n is hidden (or bound) in x.n. Since the pair x′.n′ is obtained by

freshening all the hidden names, this implies n 6= n′. On the other hand, if n 6∈ supp(x) then n is not

hidden in x.n. Since we freshen only hidden names, this implies n = n′.

Let A be an object of AssS(P) and assume that Σ∗A is a fibred left adjoint to WA. We show that A has

computable support. Consider the map u in AssS(P)/(N∗A)

(N∗A)×N

π1 %%LLLLLLLLLL
u // (N×N)∗A

π1∗Ayyrrrrrrrrrr

N∗A
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defined by

u(n,a,m) =

{
〈n,0,a〉 if n = m

〈n,1,a〉 if n 6= m.

The codomain of u is, by definition of WA, just WA(π1). We show that the adjoint transpose of u can be

used to compute the support on A.

Let f be the object of AssS(P)/(1∗A) given by the projection (1∗A)×N→ (1∗A) and let g be the

object of AssS(P)/N given by the projection N×N → N. Write !N : N → 1 for the terminal map. We

have the following isomorphisms (the second one is in fact an equality).

(N∗A)×N

π1 %%LLLLLLLLLL

∼= // {(!N ∗A)∗ f}

(!N∗A)∗ fxxrrrrrrrrrr

N∗A

(N×N)∗A

π1∗A %%LLLLLLLLLL

∼= // {WAg}

WAgzzvvv
vv

vv
vv

N∗A

By composing with these isomorphisms, the map u amounts to a map u0 : (!N ∗ A)∗ f → WAg. Let

u]
0 : Σ∗A(!N ∗A)∗ f → g be the adjoint transpose of u0. Since Σ∗A aWA is a fibred adjunction, the following

diagram commutes in AssS(P)→.

WAg // g

(!N ∗A)∗ f

u0

44jjjjjjjjjjjjjjjjjj
η //

(!N∗A)∗η ))TTTTTTTTTTTTTTT
WAΣ∗A((!N ∗A)∗ f )

∼=
��

//

WAu]
0

OO

Σ∗A((!N ∗A)∗ f )

∼=
��

u]
0

OO

(!N ∗A)∗WAΣ∗A f // !∗NΣ∗A f

(3.19)

In this diagram, the unlabelled vertical morphisms are the canonical isomorphisms arising since all

functors in the diagram are fibred functors. The unlabelled horizontal maps are given by the natural

transformation which, for an object h in AssS(P)→, is the map WAh → h given by the following projec-

tion.

{WAh}

WAh
��

{h}∗A

h∗A
��

π̇1 // {h}

h
��

cod(WAh) cod(h)∗A
π̇1

// cod(h)

In the above diagram, the unit η : f →WAΣ∗A f is a map of the form

(1∗A)×N

f %%KKKKKKKKKK
η // {Σ∗A f}∗A

!∗Ayyttttttttt

1∗A

For a ∈ A and n ∈ N, we write a.n for η(〈�,a〉,n).
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For the objects in the diagram (3.19) we have the following isomorphisms.

(N×{Σ∗A f})∗A

π̇1 ''NNNNNNNNNNN

∼= // {(!N ∗A)∗WAΣ∗A f}

(!N∗A)∗WAΣ∗A fwwooooooooooo

N∗A

N×{Σ∗A f}

π1
$$I

III
III

III

∼= // {!∗NΣ∗A f}

!∗NΣ∗A f
{{ww

ww
ww

ww
w

N

(N×N)∗A

π1∗A %%LLLLLLLLLL

∼= // {WAg}

WAgzzvvv
vv

vv
vv

N∗A

Using these isomorphisms the path (!N ∗A)∗ f → (!N ∗A)∗WAΣ∗A f →!∗NΣ∗A f → g in the diagram (3.19)

amounts to a map

(N∗A)×N

π1 ((QQQQQQQQQQQQQ
v // (N×{Σ∗A f})∗A

π1∗A

��

π̇1 // N×{Σ∗A f}

π1

��

w // N×N

π1
yyrrrrrrrrrrr

N∗A
π̇1

// N

with v(m,a,n) = 〈m,(a.n),a〉 and w◦ π̇1 ◦v = π̇1 ◦u. It follows easily from these two equations that, for

all n,m ∈ N and all a ∈ A such that a is fresh for m, it holds that w(m,(a.n)) = 〈m,u(m,a,n)〉. Notice

that w is, up to composition with isomorphism, just u].

Using the map w, we now show

∀a ∈ A. ∀n ∈ N. n ∈ supp(a) ⇐⇒ π1(w(n, a.n)) = 1.

Let a ∈ A and n ∈ N. If n 6∈ supp(a) then n # a and therefore

π2(w(n,(a.n))) = π2(π̇1(u(n,a,n))) = 0.

Suppose n ∈ supp(a). Let τ be a permutation that exchanges each name in supp(a) with a fresh name

and leaves all other names fixed. Then, n # τ ·a and τ ·n 6= n. Since the codomain of v is (N×{Σ∗A f})∗A,

we have a # (a.n), which implies a.n = τ · (a.n). Using this we have

π2(w(n,(a.n))) = π2(w(n,τ · (a.n))) = π2(w(n,(τ ·a.τ ·n))) = π2(π̇1(u(n,τ ·a,τ ·n))) = 1.

It therefore follows that the map λa : A.λn : N.π2(w(n,(a.n)), which is easily seen to be tracked, can

be use to decide whether or not a given name n ∈N is in the support of an element a ∈ A. Since AssS(P)

has finite support approximations, we can therefore compute the support of an element a of A by first

approximating its support and then testing which names in this approximation really belong to the

support of a.

A consequence of this proposition is that not all Σ∗-types need to exist in a codomain fibration. This is

in contrast to Σ-types, which in a codomain fibration always exist.
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Corollary 3.4.33. The category AssS(P) constructed over the Kleene PCA does not have all Σ∗-types.

Proof. First, we show that there exists an object that does not have computable support. We show

that N ⇒ N is such an object. Let K be a code for a Turing machine and let n0,n1 ∈ N be two names

with n0 6= n1. Consider the following function.

fK(m) =

{
n0 if K stops in no more than m steps

n1 otherwise

We have supp( fK) = {n0,n1} if K stops and supp( fK) = {n1} if K never stops. Hence, the code

λλx. [n0,n1] is a support approximation for fK . Therefore, given an (effective) encoding K of a Tur-

ing machine, we can effectively compute a code for fK in AssS(P). However, the object N⇒ N cannot

have computable support, since if we were able to compute the support on N⇒N exactly, then we could

solve the halting problem. Proposition 3.4.32 implies that AssS(P) does not have Σ∗N⇒N-types.

That AssS(P) has Σ∗A-types only when A has computable support should be expected. After all, Σ∗AB

consists of pairs a.b, where a ∈ A and b ∈ B, in which all the names in a have been hidden. It is not

surprising that if we are to hide the names in a, then we must at least be able to compute them. The

restriction that Σ∗A can only be formed for A with computable support also appears in FreshML. There,

the abstraction set [A]B, corresponding to Σ∗AB, can only be formed if A is an equality type, i.e. has

decidable equality. We have seen above that all types with decidable equality have computable support.

We have given the definition of Σ∗A for the non-split codomain fibration, and we have seen in the

proof that Σ∗A is a fibred functor that the isomorphism u∗Σ∗A ∼= Σ∗(u ∗A)∗ requires us to ‘freshen’ the

elements of Σ∗A. We should point out that eventually we will be using a split version of Σ∗, and, since for

split fibred functors there is an equality u∗Σ∗A = Σ∗(u ∗A)∗, this freshening of equivalence classes will

be part of the action of Σ∗A on morphisms. Obtaining a split fibration is the topic of the next section.

3.5 Splitting the Codomain Fibration

Having constructed the relevant categorical structure in the codomain fibrations on S and AssS(P), we

now come to constructing equivalent split fibrations in which the syntax can be interpreted more easily.

As we have discussed in Section 2.5.3, for the commonly used splitting using the fibred Yoneda lemma it

is not obvious how to give a split version of all the structure, in particular strong monoidal products Π∗.

In this section we show that for quasi-toposes we can define a split version of all the structure using

the splitting construction of [56, §10.5.9]. In essence, the interpretation of dependent types in this split

fibration corresponds to the well-known set-theoretic interpretation.
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3.5.1 Split Closed Comprehension Categories for Quasi-toposes

For each quasi-topos B we build a split closed comprehension category that is equivalent to the codomain

fibration B→ → B. For toposes this construction appears in [56, §10.5.9]; we observe here that it

continues to work for quasi-toposes. Furthermore, we give a construction of split versions of WA and Π∗
A

from a (certain) monoidal closed structure.

Let B be a quasi-topos. We define the split family fibration F : F (B) → B. We assume that we

have, for each map ϕ : X →Ω, a choice of strong monomorphism mϕ : {ϕ}� X classified by ϕ . Such a

choice is available in all the categories considered so far, since in all these categories we have a canonical

construction of pullbacks.

The total category F (B) of F is defined as follows.

Objects. An object of F (B) is a triple (Γ,X ,ϕ : Γ×X →Ω). Each such object determines a projection

map πϕ = π1 ◦mϕ : {ϕ} � Γ×X → Γ. We will frequently write just ϕ for the triple (Γ,X ,ϕ)

when Γ and X are clear from the context.

Morphisms. A morphism from (Γ,X ,ϕ) to (∆,Y,ψ) is a map from πϕ to πψ in B→.

The evident projection functor F : F (B) → B mapping the object (Γ,X ,ϕ) to Γ is a fibration. The

cartesian maps for this fibration are those maps of F (B) that are given by pullback squares. The

fibration becomes a split fibration if, for a map u : Γ→ ∆ in B and an object (∆,X ,ϕ) over ∆, we choose

the cartesian lifting to be the unique morphism (u(ϕ),u) making the diagram below commute. This

means that reindexing is given by pre-composition: the object u∗ϕ is just ϕ ◦ (u×X) : Γ×X →Ω.

{ϕ ◦ (u×X)}
u(ϕ) //

_�
��

mϕ◦(u×X)

��

{ϕ}

mϕ

��
Γ×X

_� u×X
//

π1

��

∆×X

π1

��
Γ u

// ∆

Proposition 3.5.1. The fibration F (B)→ B is equivalent to the codomain fibration cod : B→→ B.

Proof. One direction of the equivalence is given by the functor E : F (B)→ B→ mapping (Γ,X ,ϕ) to

the projection πϕ : {ϕ} → Γ. On morphisms E, is the identity since the morphisms ϕ → ψ in F (B)

are, by definition, already morphisms πϕ → πψ in B→. In the reverse direction, an object f : B → Γ

is mapped to the triple (Γ,B,ϕ) where ϕ is the unique morphism of type Γ×B → Ω that classifies

〈 f ,B〉 : B � Γ×B. For this we have to check that 〈 f ,B〉 is a strong monomorphism. This is easily seen,

since, for all u : C→ B, v : D→ Γ×B and e : C � D, the whole diagram below commutes whenever the
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outer square of it commutes.

C
e // //

u
��

D

v
��π2◦v

||zz
zz

zz
zz

z

B //
〈 f ,B〉
// Γ×B

The rest of the proof is as in [56, §10.5.9].

The split fibration F (B) → B generalises the family fibration on sets, as illustrated by the following

examples.

Examples 3.5.2.

1. The fibration F (Sets) → Sets is equivalent to the family fibration Fam(Sets) → Sets on sets.

The total category Fam(Sets) has as objects set-indexed families of sets (Xi)i∈I . The morphisms

from (Xi)i∈I to (Yj) j∈J are pairs (u,( fi)i∈I) where u is a function of type I → J and, for each i ∈ I,

fi is a function of type Xi → Yu(i). The fibration F is given by the projection functor mapping an

object (Xi)i∈I to I and a morphism (u,( fi)i∈I) to u.

2. The fibration F (S) → S may be described as the following family fibration Fam(S) → S. The

total category Fam(S) has as objects pairs (I,(Xi)i∈I) where I is an object of S and (Xi)i∈I is a set-

indexed family which comes equipped with a permutation action on the union X def=
⋃

i∈I Xi, such

that X has the finite support property and that, for each permutation π , the equality π · (Xi) = Xπ·i

holds. The morphisms from (I,(Xi)i∈I) to (J,(Yj) j∈J) are pairs (u,( fi)i∈I), where u is a morphism

of type I → J in S and, for each i ∈ I, fi is a function of type Xi → Yu(i), satisfying π · fi(x) =

fπ·i(π ·x). The fibration is again given by the projection functor mapping an object (I,(Xi)i∈I) to I

and a morphism (u,( fi)i∈I) to u.

3. The fibration F (Ass) → Ass may be described as the fibration UFam(Ass) → Ass of uniform

families of assemblies. The total category UFam(Ass) has as objects pairs (I,(Xi)i∈|I|) where I is

an object in Ass and (Xi)i∈|I| is a set-indexed family of assemblies. A morphism from (I,(Xi)i∈|I|)

to (J,(Yj) j∈|J|) is a pair (u,( fi)i∈|I|) where u is a morphism in Ass and ( fi)i∈|I| is a set-indexed

family of functions fi : Xi → Yu(i) which is uniformly realizable, meaning that there exists a real-

izer r ∈X such that for each i ∈ |I| and each s ∈ ‖i‖I , r s is defined and realizes fi.

More information on the fibrations in 1 and 3 can be found in [56].

We prefer to work with the general description of the fibration F (B)→ B, since we find it simpler than

the specific descriptions above. For example, an explicit description of the fibration F (AssS(P)) →
AssS(P) is a combination of the points 2 and 3 above and comes out rather complicated.

We consider the construction of dependent sums and products from [56, §10.5.9]. The following

definitions of Σϕ ψ and Πϕ ψ are exactly the same as [56, §10.5.9], where they are given for toposes.
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Here we just observe that these constructions still work for quasi-toposes. Let ϕ : Γ× X → Ω and

ψ : {ϕ}×Y →Ω be objects over Γ and {ϕ} respectively. The dependent sum Σϕ ψ over Γ is constructed

as the unique characteristic map in the diagram

{ψ} //
mψ //

!
��

_� {ϕ}×Y
mϕ×Y

// (Γ×X)×Y
∼= // Γ× (X ×Y )

Σϕ ψ

���
�
�

1 // true
// Ω

Notice that the top row of this diagram is a strong monomorphism since strong monomorphisms are

preserved by products and closed under composition and isomorphisms are strong. The verification that

this indeed defines a dependent sum is routine.

For the product Πϕ ψ we use weak partial map classifiers in the quasi-topos. Let ϕ̃ and ψ̃ be defined

as the unique maps making the following squares pullbacks:

{ϕ} //
mϕ //

_� Γ×X

ϕ̃

���
�
�

{ϕ} //
ηϕ

// {ϕ}⊥

{ψ}
_� //

mψ // {ϕ}×Y //
mϕ×ηY // (Γ×X)×Y⊥

ψ̃

���
�
�

{ψ} //
ηψ

// {ψ}⊥

Note that all the monomorphisms in these diagrams are strong, since the weak partial map classifiers η

are all strong. Define maps

α = 〈π1×X ,ev◦ (π2×X)〉 : (Γ× (X ⇒ Y⊥))×X → (Γ×X)×Y⊥
β = Λ(⊥(π2 ◦mϕ)◦ ϕ̃)◦π1 : Γ× (X ⇒ Y⊥)→ (X ⇒ X⊥)

γ = Λ(⊥(π2 ◦mϕ ◦πψ)◦ ψ̃ ◦α) : Γ× (X ⇒ Y⊥)→ (X ⇒ X⊥)

and define the product Πϕ ψ : Γ× (X ⇒ Y⊥)→Ω to be the characteristic map of the equaliser e.

Πϕ ψ // e // Γ× (X ⇒ Y⊥)
β //

γ
// (X ⇒ X⊥)

The proofs that these constructions define split sums and split products are routine. The construction

of Π amounts to the proof in [117, §18] that the local cartesian closed structure of a quasi-topos can be

constructed from weak partial map classifiers.

We come to the monoidal structure. Let B have a strict affine symmetric monoidal closed struc-

ture (∗,−∗) with the property that, for each object A, the functor −∗A : B → B preserves pullbacks

and that, for all objects A and B of B, the canonical inclusion A ∗B � A×B is strong. Notice that the

monoidal structures in both S and AssS(P) have this property.
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First we give a split version of WA. Let ϕ : Γ×B → Ω be an object over Γ. We define the object

WA(ϕ) : (Γ∗A)×B→Ω to be the unique characteristic map making the square below a pullback.

{ϕ}∗A
_� //

mϕ∗A
//

��

(Γ×B)∗A //
〈π1∗A,π2◦π̇1〉 // (Γ∗A)×B

WAϕ

���
�
�

1 // true
// Ω

It is easily seen that the top row in this diagram is a strong monomorphism.

For the definition of the morphism part of WA, we note that the definition of the object WA(ϕ)

gives a canonical isomorphism iϕ : πWA(ϕ)
∼= πϕ ∗A in the slice category B/(Γ∗A). Given a morphism

u : πϕ → πψ in B→, the morphism action WA(u) is then defined by:

πWA(ϕ)
iϕ
∼=
//

WA(u)
��

πϕ ∗A

u∗A
��

πWA(ψ)
iψ

∼= // πψ ∗A

With this definition, WA becomes naturally isomorphic to the non-split version of WA defined in Sec-

tion 2.5.1. In particular, since −∗A preserves pullbacks by assumption, it follows that WA preserves

cartesian maps, i.e. it is a fibred functor from F to (−∗A)∗F .

To show that the thus defined WA is a split functor, it remains to verify that, for any morphism

u : ∆→ Γ in B and any object ϕ : Γ×B→Ω over Γ, the morphisms WA(u(ϕ)) and (u∗A)(WAϕ) are the

same. The morphism WA(u(ϕ)) is, by definition, given by the top row in the diagram below. To show

the required equality, we first show that the outer part of this diagram is a pullback.

{WA(ϕ ◦ (u×B))}
""

m(WA(ϕ◦(u×B)))

""F
FFFFFFFFFFFFFFFFFFF

iϕ◦(u×B)

∼=
// {ϕ ◦ (u×B)}∗A u∗A //

��
mϕ◦(u×B)∗A

��

_� {ϕ}∗A
��
mϕ∗A
��

i−1
ϕ

∼=
// {WA(ϕ)}
��

mWA(ϕ)

����
��

��
��

��
��

��
��

�

(∆×B)∗A
(u×B)∗A //

��

��

_� (Γ×B)∗A
��

��
(∆∗A)×B

(u∗A)×B
// (Γ∗A)×B

(3.20)

That the topmost inner square is a pullback follows immediately since −∗A preserves pullbacks. That

the lower square is a pullback follows because in the diagram below the outermost square is a pullback,

by pullback preservation of −∗A, and the lowermost square is a pullback, by properties of the cartesian
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product, so that the topmost square must also be a pullback.

(∆×B)∗A
(u×B)∗A//

��

��

(Γ×B)∗A
��

��
(∆∗A)×B

(u∗A)×B
//

π1

��

_� (Γ∗A)×B

π1

��
∆∗A u

// Γ∗A

Since both inner squares in diagram (3.20) are pullbacks and since i−1
ϕ and iϕ◦(u×B) are isomorphisms, it

follows that the outer part of diagram (3.20) is a pullback. Hence, because WA(ϕ) : (Γ∗A)×B→Ω and

WA(ϕ ◦(u×B)) : (∆∗A)×B→Ω are the characteristic maps of m(WA(ϕ)) and m(WA(ϕ◦(u×B))) respectively,

we have WA(ϕ ◦ (u×B)) = WA(ϕ)◦ ((u∗A)×B). Since reindexing is defined by precomposition, this

implies the equality of the objects WA(u∗ϕ) = (u ∗A)∗W (ϕ). Furthermore, since mWA(ϕ) is monomor-

phic, any map from {WA(ϕ ◦ (u×B))} to {WA(ϕ)} making the outermost square of (3.20) commute

must be equal to the top row of (3.20). By definition, (u∗A)(W (ϕ)) is such a map, so that, since the top

row of the diagram is just WA(u(ϕ)), we have WA(u(ϕ)) = (u∗A)(W (ϕ)). This shows that WA preserves

the splitting.

Next we come to the construction of a split version of Π∗. Let ϕ : (Γ ∗A)×B → Ω be an object

over Γ ∗A in F . First note that A −∗ −, being a right adjoint, preserves equalisers and therefore by

Proposition 3.1.11 also strong monomorphisms. Note also that strong monomorphisms are closed under

pullback. These two facts imply that all the monomorphisms in the diagram below are strong. Define

the object Π∗
Aϕ : Γ× (A −∗ B) → Ω over Γ to be the classifying map of the strong monomorphism m

given by the following pullback.

C //
��

m
��

_� A−∗ {ϕ}
��
A−∗mϕ

��
Γ× (A−∗ B)

α
//

π1

��

_� A−∗ ((Γ∗A)×B)

A−∗π1
��

Γ
η

// A−∗ (Γ∗A)

(3.21)

In this diagram, α is the exponential transpose of 〈π1 ∗A,ε ◦(π2 ∗A)〉 : (Γ×(A−∗ B))∗A→ (Γ∗A)×B.

The lower square is a pullback: given two maps f : C → Γ and g : C → (A−∗ ((Γ∗A)×B)) that satisfy

η ◦ f = (A −∗ π1)◦g, we take h = 〈 f ,(A −∗ π2)◦g〉 : C → Γ× (A −∗ B) as the pullback mediator. The

verifications are routine.

Hence, diagram (3.21) is a pullback, which immediately shows that Π∗ as defined above is, up to

the equivalence of fibrations Fib and cod, naturally isomorphic to the non-split version of Π∗ defined

by the same pullback (2.1). We use this fact to define the morphism part of Π∗ and to obtain that it

is indeed a fibred functor from (−∗A)∗F to F , just as we have done for WA above. Explicitly, a
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morphism u : ψ → ϕ over v∗A : ∆∗A→ Γ∗A is mapped by Π∗
A to the unique map Π∗

Au over v making

the following diagram commute.

{Π∗
Aψ}

Π∗
Au

//___________________

&&MMMMMMMMMM

π(Π∗Aψ)

��

T�
{Π∗

Aϕ}

π(Π∗Aϕ)

��

xxrrrrrrrrrr
%e

A−∗ {ψ} A−∗u //

A−∗πψ

��

A−∗ {ϕ}

A−∗πϕ

��

∆ v
//

η∆ &&MMMMMMMMMMMM Γ

ηΓxxqqqqqqqqqqqq

A−∗ (∆∗A)
A−∗(v∗A)

// A−∗ (Γ∗A)

To see that Π∗
A is a split fibred functor, it suffices to show that, for each morphism u : ∆ → Γ and

each object ϕ : (Γ∗A)×B→Ω over Γ∗A, the square

{Π∗
A(u∗A)∗ϕ}

Π∗
A(u∗A)

//
��

m(Π∗A(u∗A)∗ϕ)

��

_� {Π∗
A(ϕ)}
��
m(Π∗Aϕ)

��
∆× (A−∗ B)

u×(A−∗B)
// Γ× (A−∗ B)

is a pullback. That this is a pullback can be seen by considering the diagram

{Π∗
A(u∗A)∗ϕ}

Π∗
A(u∗A)

//

((RRRRRRRRRRRRR��

m(Π∗A(u∗A)∗ϕ)

��

T�
{Π∗

Aϕ}
��

m(Π∗(ϕ))

��

vvmmmmmmmmmmmmm %e

A−∗ {(u∗A)∗ϕ}
A−∗(u∗A) //

��
A−∗(m(u∗A)∗ϕ )

��

_� A−∗ {ϕ}
��

A−∗(mϕ )

��

∆× (A−∗ B)
u×(A−∗B)

//

α∆ ((RRRRRRRRRRRRR
Γ× (A−∗ B)

αΓvvmmmmmmmmmmmmm

A−∗ ((∆∗A)×B)
A−∗((u∗A)×B)

// A−∗ ((Γ∗A)×B)

in which α∆ and αΓ are defined in the same way as α above. The diagram commutes by definition.

The three squares in the front are all pullbacks, by definition and since A −∗ −, being a right adjoint,

preserves pullbacks. By the pullback lemma, this implies that the square in the background is a pullback.

Proposition 3.5.3. The functor Π∗ as defined above gives strong split simple monoidal products for the

fibration F (B)→ B.

Proof. We have already shown that Π∗ defines split simple monoidal products. It just remains to show

them strong. Assume objects B in EΓ∗A and D in E∆∗A and maps M : 1Γ → Π∗
AB in EΓ, N : 1∆ → Π∗

AD
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in E∆, u : Φ → Γ ∗ A in B and v : Φ → ∆ ∗ A in B that satisfy u∗B = v∗D, (π̇1 ◦ u)∗M = (π̇1 ◦ v)∗N

and π̇2 ◦u = π̇2 ◦v. We have to show u∗(app∗M) = v∗(app∗N), where app∗ is defined as in Section 2.5.2.

We use the abbreviations ui
def= π̇i ◦u and vi

def= π̇i ◦ v for i = 1,2.

The objects B and D are given by maps β : (Γ ∗A)×B′ → Ω and δ : (∆ ∗A)×D′ → Ω. The ob-

jects u∗B and v∗D are given by β ◦ (u×B′) and δ ◦ (v×D′) respectively. Since u∗B = v∗D holds by

assumption, we have β ◦ (u×B′) = δ ◦ (v×D′), so that B′ = D′ holds. Let E def= B′ = D′. The ob-

jects Π∗
AB and Π∗

AD are defined to be morphisms βp : Γ× (A −∗ E) → Ω and δp : ∆× (A −∗ E) → Ω.

As in any comprehension category, the maps M and N correspond uniquely to sections sM and sN of πβp

and πδp respectively. These sections are uniquely determined by maps M′ and N′ as in the triangles

below.

Γ
sM //

〈Γ,M′〉 $$II
III

III
III

{βp}
��
mβp

��
Γ× (A−∗ E)

∆
sN //

〈Γ,N′〉 $$IIIIIIIIIII {δp}
��
mδp

��
∆× (A−∗ E)

By definition of reindexing, the map u∗1M corresponds uniquely to a section su∗1M of πδp◦(u1×id) for which

the following diagram commutes.

Φ
u1 //

su∗1M

&&L
LLLLL

〈Φ,M′◦u1〉

""

Γ

〈Γ,M′〉

~~

sM

yytttttttttt

{βp ◦ (u1× id)} //
_�
��
mβp◦(u1×id)

��

{βp}
��

mβp

��
Φ× (A−∗ E)

u1×id
// Γ× (A−∗ E)

For v∗1N we have an analogous diagram. From the assumption u∗1M = v∗1N, it follows that su∗1M = sv∗1N

holds. This implies M′ ◦u1 = N′ ◦ v1.

By definition, the morphisms app∗M : 1Γ∗A → B in EΓ∗A and app∗N : 1Γ∗A → D in E∆∗A correspond

uniquely to sections sapp∗M and sapp∗N of πβ and πδ respectively making the following triangles com-

mute.

Γ∗A
sapp∗M //

〈Γ∗A,ε◦(M′∗A)〉 %%KKKKKKKKKK {β}
��
mβ

��
(Γ∗A)×E

∆∗A
sapp∗N //

〈∆∗A,ε◦(N′∗A)〉 %%KKKKKKKKKK {δ}
��
mδ

��
(∆∗A)×E

In these diagrams, we write ε : (A −∗ E) ∗A → E for the evaluation map. By definition of reindexing,
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u∗(app∗M) corresponds uniquely to a section su∗(app∗M) making the following diagram commute.

Φ
u //

su∗(app∗M)

%%K
K

K
K

K

〈Φ,ε◦(M′∗A)◦u〉

!!

Γ

〈Γ,ε◦(M′∗A)〉

~~

sapp∗M

zzuuuuuuuuuu

{β ◦ (u× id)} //
_�
��
mβ◦(u×id)

��

{β}
��

mβ

��
Φ×E

u×id
// (Γ∗A)×E

For v∗(app∗N) we have an analogous diagram.

Φ
v //

sv∗(app∗N)

%%K
K

K
K

K

〈Φ,ε◦(N′∗A)◦v〉

!!

Γ

〈Γ,ε◦(N′∗A)〉

~~

sapp∗N

zzuuuuuuuuuu

{δ ◦ (u× id)} //
_�
��
mδ◦(v×id)

��

{δ}
��

mδ

��
Φ×E

v×id
// (∆∗A)×E

To show the required u∗(app∗M) = v∗(app∗N), it suffices to su∗(app∗M) = sv∗(app∗N). Since β ◦ (u×B′) =

δ ◦ (v×D′) and since mβ◦(u×B′) is monomorphic, it suffices to show ε ◦ (M′ ∗A) ◦ u = ε ◦ (N′ ∗A) ◦ v.

Using the equation M′◦u1 = N′◦v1 established above, we get π̇1◦(M′∗A)◦u = M′◦ π̇1◦u = N′◦ π̇1◦v =

π̇1 ◦ (N′ ∗A) ◦ v. Furthermore, using the assumption π̇2 ◦ u = π̇2 ◦ v we get π̇2 ◦ (M′ ∗A) ◦ u = π̇2 ◦ u =

π̇2 ◦v = π̇2 ◦(N′ ∗A)◦v. We can therefore make use of the fact that ∗ is a strict affine monoidal structure

to obtain (M′ ∗A) ◦ u = (N′ ∗A) ◦ v. This implies the required ε ◦ (M′ ∗A) ◦ u = ε ◦ (N′ ∗A) ◦ v, thus

completing the proof.

3.5.2 A Split Fibration for the Schanuel Topos

The above construction of the family fibration F (S)→ S gives us a split closed comprehension category

equivalent to the codomain fibration on S together with split versions of WA and Π∗
A. It remains to show

that Σ∗A can be turned into a split functor on this split fibration.

First, we spell out the construction of split WA and Π∗
A in terms of the internal logic of S. For an

object ϕ : Γ×B→Ω over Γ, the object WA(ϕ) : (Γ∗A)×B→Ω over Γ∗A is given by the predicate

WA(ϕ)(γ,a,b) def⇐⇒ ϕ(γ,b) ∧ a # b.

For an object ψ : (Γ∗A)×B → Ω over Γ∗A, the object Π∗
A(ψ) : Γ× (A −∗ B)→ Ω over Γ is given by

the predicate

Π
∗
A(ψ)(γ, f ) def⇐⇒ ∀a ∈ A. a # 〈γ, f 〉 =⇒ ψ(γ,a, f (a)) .

Next we come to defining a split version of Σ∗. To distinguish the split version of Σ∗ on the split

fibration F (S)→ S from Σ∗ on the codomain fibration, we write Σ∗s for the split version on F (S)→ S
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and write Σ∗ for the non-split version on the codomain fibration. To define Σ∗s we first fix some notation

for the special case of Σ∗AB where B corresponds to a closed type. Let A and B be objects of S. Consider

the map f def= (unit ◦π1) : A×B → 1 ∗A and the object Σ∗A f of S/1. We write [A]B for the domain of

Σ∗A f , which is defined to be

[A]B = {[a,b] f | a ∈ A ∧ b ∈ B}.

Here, [a,b] f is the equivalence class of 〈a,b〉 under the relation ∼ f defined in (3.11). Since f is deter-

mined by the objects A and B alone, we also write [a,b][A]B for [a,b] f .

For an object ϕ : (Γ∗A)×B → Ω over Γ∗A, the object Σ∗s A(ϕ) : Γ× [A]B → Ω over Γ is given by

the predicate

Σ
∗
s A(ϕ)(γ,c) def⇐⇒ ∀a ∈ A. ∀b ∈ B. (a # 〈γ,c〉 ∧ 〈a,b〉 ∈ c) =⇒ ϕ(γ,a,b) .

For the definition of the action on morphisms, we note:

Proposition 3.5.4. For each object ϕ : (Γ∗A)×B → Ω over Γ∗A, there is an isomorphism iϕ making

the following diagram commute.

Σ∗A{ϕ}

Σ∗Aπϕ ""E
EEEEEEE

iϕ
∼=

// {Σ∗s A(ϕ)}

π(Σ∗s A(ϕ))
{{vvvvvvvvv

Γ

Proof. Spelt out, the set Σ∗A{ϕ} is given by

Σ
∗
A{ϕ}= {[γ,a,b]πϕ

| 〈〈γ,a〉,b〉 ∈ (Γ∗A)×B ∧ ϕ(γ,a,b)}

and the map Σ∗Aπϕ maps [γ,a,b]πϕ
to γ .

The map iϕ is defined as iϕ([γ,a,b]πϕ
) = 〈γ, [a,b][A]B〉. Its inverse i−1

ϕ maps 〈γ,c〉 to [γ,a,b]πϕ
,

where a and b are such that c = [a,b][A]B and a is fresh for γ . To show that this definition of i−1
ϕ defines

a function, first note that for the equivalence class c we can always find a representation [a,b][A]B such

that a is fresh for γ . By definition of Σ∗s A, we then have ϕ(γ,a,b). For well-definedness of i−1
ϕ we first

show that the choice of representative does not matter. Suppose we have 〈a,b〉 ∼[A]B 〈a′,b′〉. By (3.12),

we can assume π · 〈a,b〉 = π ′ · 〈a′,b′〉 for permutations π ∈ (supp(a)↔X) and π ′ ∈ (supp(a′)↔X),

where X is a finite set of fresh names. Since X contains fresh names and because we have γ # a and

γ # a′ by construction, the permutations π and π ′ act as the identity on all names in the support of γ .

Hence, we have π · 〈〈γ,a〉,b〉 = π ′ · 〈〈γ,a′〉,b′〉, which gives [γ,a,b]πϕ
= [γ,a′,b′]πϕ

. This shows that

the choice of representative is not relevant. Since i−1
ϕ is moreover easily seen to be equivariant, i−1

ϕ

therefore defines a morphism in S. Finally, we check that iϕ and i−1
ϕ are indeed inverses. First we have

i−1
ϕ (iϕ([γ,a,b]πϕ

)) = i−1
ϕ (γ, [a,b][A]B) = [γ,a,b]πϕ

. Second, iϕ(i−1
ϕ (γ,c)) = iϕ([γ,a,b]πϕ

), where a and

b are chosen such that c = [a,b][A]B and γ # a hold, and further iϕ([γ,a,b]πϕ
) = 〈γ, [a,b][A]B〉 = 〈γ,c〉.

Hence, iϕ defines an isomorphism.
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Like for the split versions of WA and Π∗
A, we use this proposition to define the morphism part of Σ∗s A. A

morphism u over v in the total category (−∗A)∗F (S), as given by a diagram

{ϕ} u //
��

mϕ

��

{ψ}
��
mψ

��
(Γ∗A)×B

π1

��

(∆∗A)×C

π1

��
Γ∗A

v∗A
// ∆∗A,

is mapped to the unique morphism Σ∗s Au making the following diagram in S→ commute.

Σ∗Aπϕ

iϕ
∼=
//

Σ∗Au
��

π(Σ∗s Aϕ)

Σ∗s Au
��

Σ∗Aπψ iψ

∼= // π(Σ∗s Aψ)

With this definition, Σ∗s A preserves pullbacks because Σ∗ does. Hence, Σ∗s A is a fibred functor. If

we consider {ϕ} and {ψ} as subsets of (Γ ∗A)×B and (∆ ∗A)×C respectively, then the morphism

Σ∗s Au : {Σ∗s A(ϕ)} → {Σ∗s A(ψ)} can be described directly as mapping 〈γ,c〉 to 〈v(γ), [a,π2(u(γ,a,b))]〉,
where a ∈ A and b ∈ B are such that c = [a,b][A]B and a is fresh for γ .

It remains to check that Σ∗s A is a split fibred functor. Let v : Γ → ∆ be a morphism in S and let

ψ : (∆∗A)×C →Ω be an object over ∆∗A. We have to show that the morphisms Σ∗s A((v∗A)(ψ)) and

v(Σ∗s Aψ) are equal. That the objects Σ∗s A((v ∗A)∗ψ) : Γ× [A]B → Ω and v∗(Σ∗s Aψ) : Γ× [A]B → Ω are

equal, follows immediately since both correspond to the predicate χ defined by

χ(γ,c) ⇐⇒ (∀a ∈ A. ∀b ∈ B. (a # 〈γ,c〉 ∧ 〈a,b〉 ∈ c) =⇒ ϕ(v(γ),a,b)) .

To show the morphisms v(Σ∗s Aψ) and Σ∗s A((v∗A)(ψ)) equal, we can always assume that all monomor-

phisms are subset inclusions. The morphism v(Σ∗s Aψ) maps 〈γ,c〉 ∈ Γ× [A]B to 〈v(γ),c〉. Since the

morphism (v∗a)(ψ) maps 〈γ,a,b〉 to 〈v(γ),a,b〉, the above explicit description of the morphism action

of Σ∗s implies that Σ∗s A((v∗A)(ψ)) maps 〈γ,c〉 to 〈v(γ),c〉. Hence, Σ∗s A is a split fibred functor.

3.5.3 A Split Fibration for AssS(P)

Similar to the argument for S, we can construct a split fibration that is equivalent to the codomain

fibration on AssS(P). The construction of the family fibration F (AssS(P)) → F provides us with a

split fibration having split WA and strong split Π∗
A.

For the definition of Σ∗s , recall that AssS(P) has only those Σ∗A-types where A has computable support.

For such an object A with computable support, the definition of Σ∗s A is just as for the Schanuel topos

above. We need to verify that this defines a split version of Σ∗ in AssS(P). In addition to the construction



Chapter 3. Monoidal Models of Dependent Types 106

of Σ∗s for the Schanuel topos, we now have to give realizers for all the maps used in the construction.

The only point that requires attention in the definition of these realizers is where we make choices of

the representatives of elements of [A]B. In the above definition of Σ∗s for S, we frequently need to find

for a given element c ∈ [A]B a pair 〈a,b〉 ∈ c such that a is fresh for some given set of names. Making

use of support approximations and the fact that A has computable support, such choices are realized in

the same way as in Lemma 3.3.31.

3.6 Related and Further Work

There are a number of directions for further work. In one direction, we can ask for generalisations of

the constructions in this chapter. We are, for example, confident that the construction of the Schanuel

topos and Π∗ and Σ∗ goes through if we replace the countably infinite set of names and the finite support

property by an uncountably infinite set of names and a countable support property, as used in [36, 86].

More generally, we believe that our construction continues to work for Cheney’s generalisation of the

Schanuel topos, in which the support is defined not using finite sets of names but by abstract support

ideals [20]. Somewhat more ambitiously, one can ask if the construction of the Schanuel topos in

Section 3.3 still works if we replace Sets by, say, a boolean topos B with a natural number object. It may

also be possible that by means of such a generalisation the constructions of S and AssS(P) can be unified

to become instances of a more general construction. For example, we have arrived at the definition of

support approximation (Definition 3.4.18) directly by pragmatic considerations. However, the definition

looks like it may be equivalent to stating ‘for each element there exists a finite set supporting it’ in

some internal logic. Some evidence that a construction analogous to that of the Schanuel topos can be

generalised from Sets to a boolean topos B is Urban & Tasson’s work on formalising nominal reasoning

in Isabelle/HOL [113]. Urban & Tasson construct an axiomatic type class of objects with permutation

action and the finite support property inside the higher-order logic of Isabelle/HOL, and show that the so

constructed objects behave as expected. This construction takes place in the boolean topos underlying

Isabelle/HOL and appears very similar to the development in Section 3.3.

Rather than looking for other models, there is a lot of structure left to explore in the categories

presented in this chapter. For example, realizability categories are prime examples of models for poly-

morphism, and we believe that AssS(P) models impredicative polymorphism.

We end by pointing out that in the splitting construction we have not used all the structure of a quasi-

topos. The construction is likely to go through for partial cartesian closed categories with equality [96],

which may be described as cartesian closed categories with representable regular partial monomor-

phisms in which regular monos are closed under composition.



Chapter 4

A Bunched Dependent Type Theory

In the previous chapters we were concerned with the categorical structure that forms the basis of our

type theory with names and binding. This structure is built around a fibration modelling a dependent

type theory with at least dependent sums Σ and products Π. The main additional feature is a monoidal

structure ∗ on the base of the fibration, using which we have defined simple monoidal sums Σ∗ and

simple monoidal products Π∗.

In this chapter, we begin to study a syntax for this categorical structure. We begin with a dependent

type theory containing additive Σ and Π-types as well as simple monoidal products Π∗. We choose to

add only Π∗ at first because the resulting type theory remains relatively close to standard dependent type

theory. For instance, the type theory with Π∗ is formulated without the need for commuting conversions.

From the next chapter onwards, when we add types for the monoidal structure ∗, we have to deal with

commuting conversions. Moreover, introducing only Π∗ at first makes it easier to compare the type

theory to other substructural type theories, such as those in [19, 92], which also extend additive type

theory just with multiplicative function spaces.

The purpose of this chapter is to define the type theory BT(1,Σ,Π,Π∗) and to show some of its basic

properties. All the type systems studied in this thesis are extensions of BT(1,Σ,Π,Π∗).

The main difficulty in defining BT(1,Σ,Π,Π∗) is the integration of the two function spaces Π and

Π∗ in a single type theory. For simple types, the problem of integrating two function spaces in a single

type theory has been considered by O’Hearn and Pym [80, 91]. O’Hearn and Pym address the question

of designing a typed λ -calculus corresponding to a category that is both cartesian closed and monoidal

closed. This question is closely related to giving a type theory with both Π and Π∗, since the special

case of Π and Π∗ in a codomain fibration amounts to a category that is both locally cartesian closed and

monoidal closed.

O’Hearn and Pym propose to use bunched contexts, or bunches, to integrate the two closed structures

in a simple type theory. The basic idea is to have more than one way of concatenating contexts. In

normal simple type theory we can take contexts Γ and ∆ and combine them to form a new context Γ, ∆.

107
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This corresponds to the cartesian product of contexts. In bunched contexts the comma is not the only

way of combining contexts. For example, there may be a context combination Γ∗∆ corresponding to a

monoidal structure1. These different ways of combining contexts may be combined in any way, so that

one can form, for example, the bunch (((x : A,y : B)∗ (z : B)), u : D)∗ (v : E, w : F).

To see how bunches can be used to integrate a cartesian closed with a monoidal closed structure,

consider the adjoint one-to-one correspondences for the closed structures.

Γ×A−→ B
Γ−→ (A⇒ B)

Γ∗A−→ B
Γ−→ (A−∗ B)

These correspondences give rise to the following introduction rules.

Γ, x : A ` M : B
Γ ` λx : A.M : A⇒ B

Γ∗ x : A ` M : B
Γ ` λ∗x : A.M : A−∗ B

The premises of these rules differ only in their use of different context combinations. Bunches are the

canonical way of making available in the type theory this difference between these two rules.

Pym and O’Hearn’s analysis of bunches as a means of integrating ⇒ and −∗ in a simple type theory

leads us to use bunches to integrate Π and Π∗ in a dependent type theory. A motivating special case of

our semantics is that of a category B that is both locally cartesian closed and monoidal closed. Recall

from Proposition 2.5.6 that in this case Π∗ is equivalent to monoidal closure. For Π and Π∗ we have the

following adjoint correspondences.

Γ,A

(π∗AidΓ)=idΓ,A ""D
DD

DD
DD

D
M // Γ,A,B

πB{{wwwwwwww

Γ,A

Γ

idΓ ��=
==

==
==

=
λM // Γ,(ΠAB)

πΠAB
{{wwwwwwwww

Γ

Γ∗A

(WAidΓ)=idΓ∗A ##F
FF

FF
FF

FF
M // (Γ∗A),B

πByyttttttttt

Γ∗A

Γ

idΓ ��=
==

==
==

=
λ ∗M // Γ,(Π∗

AB)

π
Π∗AB

{{wwwwwwwww

Γ

These correspondences are special cases of the adjoint correspondences for Π and Π∗ where we con-

sider only maps with domain idΓ. The general correspondences can be recovered from these using

Lemma 10.4.9 of [56]. The correspondences lead us to the following introduction rules.

Γ, x : A ` M : B
Γ ` λx : A.M : Πx : A.B

Γ∗ x : A ` M : B
Γ ` λ∗x : A.M : Π∗x : A.B

Let us examine the structure of the bunches needed for these two rules. First notice that the object

Γ,A is formed using comprehension (the domain functor in this case) on the object πA in B/Γ. Hence,

in the context Γ, x : A, the type A should be allowed to depend on the variables in Γ. The comma in

the context Γ, x : A should therefore have the same meaning as in normal dependent type theory. The
1 Our notation differs from that in [80, 91], where the connectives that we denote by , and ∗ are written as ; and , respectively.

We have chosen our notation so that it fits with the standard use of , in dependent type theory as well as with the categorical
notation.



Chapter 4. A Bunched Dependent Type Theory 109

object Γ ∗A, on the other hand, is formed by multiplying the objects Γ and A of B using the monoidal

structure ∗. Hence, the semantics accounts only for contexts Γ∗x : A in which A does not depend on the

variables in Γ. The bunches needed for the above two introduction rules for Π and Π∗ must therefore at

least have the normal dependent context extension of the form Γ, x : A as well as a context extension of

the form Γ∗x : A, in which A is a closed type. Furthermore, we also want to be able to substitute terms for

all variables in a context. In particular, we would like to be able to substitute a term M for the variable x

in a judgement of the form Γ ∗ x : A ` J . For example, if we have a term Γ ` M : Π∗x : A.B then, by

adjointness, we get a term Γ∗ x : A ` app∗(x:A)B(M,x) : B corresponding to application of the function M

to the variable x. If we want to apply M to arguments other than variables then we must be able to

substitute a term N for x. A term ∆ ` N : A of a closed type A corresponds to a map 〈N/x〉 : ∆→ A in B.

Substituting N for the variable x in a judgement Γ∗x : A ` J then corresponds to substituting along the

map Γ∗ 〈N/x〉 : Γ∗∆→ Γ∗A. To account for such substitutions, we need a syntactic representation for

the domain of this map. We are therefore lead to considering contexts of the form Γ∗∆, where both Γ

and ∆ are contexts. Note that if we require both Γ and ∆ to be contexts then there can be no dependency

across the ∗ in Γ∗∆.

This train of thought takes us to the simplest form of bunches that can be used to work with Π and Π∗

and that allows substitution for all variables. These bunches are built from the empty bunch using the

usual dependent context extension Γ, x : A as well as a non-dependent context multiplication Γ∗∆. We

discuss other possible choices for the structure of bunches at the end of this chapter.

4.1 The System BT(1,Σ,Π,Π∗)

In this section we present the bunched type theory BT(1,Σ,Π,Π∗). It is a first-order dependent type

theory with unit types 1, dependent sums Σ, dependent products Π and simple monoidal products Π∗.

There are many ways of presenting dependent type theories. Definitional equality can be presented

as judgemental equality or by means of an external conversion relation. Terms can be monomorphic,

i.e. terms have enough type annotations so that types can be inferred from terms, or polymorphic, i.e. the

same term may be given different types. Different choices with respect to the presentation lead to differ-

ent systems whose interrelations are non-trivial [94, 105, 40]. The choices made for the presentation of a

dependent type theory have an impact on its suitability for certain purposes. For example, polymorphic

presentations with an external conversion relation are arguably well-suited for implementations but less

well-suited for studying the relation to categorical formulations, while it is the other way around for

monomorphic presentations with judgemental equality. Since in this thesis we are mainly interested in

the relation of the type theory to the categorical formulation, we present BT(1,Σ,Π,Π∗) as a monomor-

phic dependent type theory with judgemental equality. Obtaining other presentations of this type theory

is an important direction for further work.
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4.1.1 Syntax

The syntax of the types and terms is given by the grammar below. We use x,y,z, . . . to range over a

countably infinite set of variables.

Contexts Γ ::= � | Γ∗Γ | Γ, x : A

Types A ::= T (M1, . . . ,Mn) | 1 | Σx : A.A |Πx : A.A |Π
∗x : A.A

Terms M ::= x | f (M1, . . . ,Mn) | unit

| pair(x:A)B(M,M) | fst(x:A)B(M) | snd(x:A)B(M)

| λx : A.M | app(x:A)B(M,M)

| λ
∗x : A.M | app∗(x:A)B(M,M)

We use Γ,∆,Φ, . . . to range over contexts, A,B,C, . . . to range over types and M,N,R, . . . to range over

terms. We make the assumption that in a context Γ no variable is declared more than once. We write v(Γ)

for the ordered list of variables declared in Γ. We do not write the symbol for the empty context when

the empty context is extended with the additive context extension, i.e. we write (x : A) for (�, x : A).

For convenience, we introduce a syntactic category of contexts with exactly one hole.

Γ◦ ::=© | Γ◦ ∗Γ | Γ∗Γ◦ | Γ◦, x : A

Given a context-with-hole Γ◦ and a context ∆, we write Γ(∆) for the context obtained by replacing the

hole in Γ◦ with ∆. The context Γ(∆) is again subject to the assumption that no variable is declared more

than once.

The set of free variables of types and terms is defined inductively as follows.

FV (1) = FV (unit) = /0

FV (T (M1, . . . ,Mn)) = FV ( f (M1, . . . ,Mn)) = FV (M1)∪·· ·∪FV (Mn)

FV (Σx : A.B) = FV (Πx : A.B) = FV (Π∗x : A.B) = FV (A)∪ (FV (B)\{x})

FV (x) = {x}

FV (pair(x:A)B(M,N)) = FV (A)∪ (FV (B)\{x})∪FV (M)∪FV (N)

FV (fst(x:A)B(M)) = FV (A)∪ (FV (B)\{x})∪FV (M)

FV (snd(x:A)B(M)) = FV (A)∪ (FV (B)\{x})∪FV (M)

FV (λx : A.M) = FV (A)∪ (FV (M)\{x})

FV (app(x:A)B(M,N)) = FV (A)∪ (FV (B)\{x})∪FV (M)∪FV (N)

FV (λ∗x : A.M) = FV (A)∪ (FV (M)\{x})

FV (app∗(x:A)B(M,N)) = FV (A)∪ (FV (B)\{x})∪FV (M)∪FV (N)

All variables that are not free are bound variables. We identify types and terms up to renaming of bound

variables. We write Γ[M/x], A[M/x] and N[M/x] for the usual capture-avoiding substitution.
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When the variable x is not free in the type B, we write (A×B) for (Σx : A.B) and (A → B) for

(Πx : A.B) and (A−∗ B) for (Π∗x : A.B).

The type annotations on the terms can sometimes be hard to work with. In order to make terms

more readable, we will frequently omit type annotations on terms. Nevertheless, this is just notational

convenience: we assume the annotations to be there, even though we do not show them. We strip the

type annotations as follows.

strip(pair(x:A)B(M,N)) = 〈M,N〉

strip(fst(x:A)B(M)) = fst(M)

strip(snd(x:A)B(M)) = snd(M)

strip(app(x:A)B(M,N)) = M N

strip(app∗(x:A)B(M,N)) = M@N

4.1.2 Judgements

The type theory has six kinds of judgements.

` Γ Bunch The context Γ is well-formed.

Γ ` A Type The type A is well-formed in context Γ.

Γ ` M : A The term M has type A in context Γ.

` Γ = ∆ Bunch The contexts Γ and ∆ are equal.

Γ ` A = B Type The types A and B in context Γ are equal.

Γ ` M = N : A The terms M and N of type A in context Γ are equal.

We write Γ ` J to range over any of the judgements (Γ ` A Type), (Γ ` M : A), (Γ ` A = B Type) and

(Γ ` M = N : A). We call a type A closed if the judgement ` A Type is derivable and we call a term M

of type A closed if the judgement ` M : A is derivable. The judgements for equality define definitional

equality.

The derivability of judgements is defined by mutual recursion. The inference rules are given be-

low. In order to be able to derive non-trivial judgements, there are rules for introducing type and term

constants as well as equational axioms. These constants and axioms are declared in a theory T .

4.1.3 Dependently Typed Algebraic Theories

The natural theories to consider for a first-order dependent type theory are generalised algebraic theo-

ries [18], also called dependently typed algebraic theories in [85]. These theories generalise many-sorted

equational theories.

The constants and axioms defined in a dependently typed algebraic theory are typed. In the formu-

lation of a theory T we want to allow only well-formed types. Because the inference rules for typing
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judgements (Γ ` A Type) are defined by mutual induction with the rules for all the other statements,

and the theory T itself provides the constants and axioms for the inference rules, we cannot define the

theory T independently of the derivation of judgements. To avoid this circularity, we allow possibly

non-wellformed judgements in a dependently typed algebraic theory, but formulate the rules of inference

so that only well-formed judgements can ever be used. This is the approach taken in [85, 106].

Definition 4.1.1. A dependently typed algebraic theory T is given by the following data.

• For each context Γ a collection T (Γ) of type constants, such that T ∈ T (Γ) and T ∈ T (∆)

implies Γ = ∆.

• For each context Γ and each term A a collection T (Γ;A) of term constants, such that f ∈T (Γ;A)

and f ∈T (∆;B) implies Γ = ∆ and A = B.

• For each context Γ a collection T E (Γ) of type equality axioms Γ ` A = B Type.

• For each context Γ and each term A a collection T E (Γ;A) of term equality axioms Γ ` M = N : A.

This definition is in fact more general than the rules for constants in the next section. The rules are

formulated only for a context with a single variable (x : A). We make this restriction for simplicity. It

allows us to formulate the type theory without having to give a syntax for simultaneous substitution

at the same time. Note, however, that using Σ-types we can encode constants in contexts of the form

(x1 : A1, . . . ,xn : An). With ∗-types, introduced in the next chapter, we can encode constants in arbitrary

bunched contexts, so that the restriction is not essential.

4.1.4 Rules of Inference

In the structural rules we use double lines for rules that can be used both from top to bottom and also

from bottom to top.

We emphasise our convention that no variable may occur more than once in a context Γ. This

convention adds implicit side-conditions to the rules. For example, the rule (WEAK) is subject to the

condition that the variable x is not declared in Γ or ∆.

Rules marked with † will be discussed in more detail in Section 4.3.

4.1.4.1 Bunches†

(BU-EMPTY) ` � Bunch

Γ ` A Type
(BU-ADD) ` Γ, x : A Bunch

` Γ Bunch ` ∆ Bunch
(BU-MULT) ` Γ∗∆ Bunch
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4.1.4.2 Structural rules†

Γ ` A Type
(PROJ)

Γ, x : A ` x : A

Γ(∆) ` J ∆ ` A Type
(WEAK)

Γ(∆, x : A) ` J

Γ(∆) ` J
(UNIT)

Γ(∆∗�) ` J

Γ(∆∗Φ) ` J
(SWAP)

Γ(Φ∗∆) ` J

Γ((∆∗Φ)∗Ψ) ` J
(ASSOC)

Γ(∆∗ (Φ∗Ψ)) ` J

4.1.4.3 Substitution

Γ(∆, x : A) ` J ∆ ` M : A
(SUBST)

Γ(∆) [M/x] ` J [M/x]

Γ(∆, x : A) ` B Type ∆ ` M = N : A
(SUBST-TY-CGR)

Γ(∆) [M/x] ` B [M/x] = B [N/x] Type

Γ(∆, x : A) ` R : B ∆ ` M = N : A
(SUBST-TM-CGR)

Γ(∆) [M/x] ` R [M/x] = R [N/x] : B [M/x]

4.1.4.4 Conversion rules

` ∆ = Γ Bunch Γ ` J
(BU-CONV)

∆ ` J

Γ ` M : A Γ ` A = B Type
(TY-CONV)

Γ ` M : B

Γ ` M = N : A Γ ` A = B Type
(TY-EQ-CONV)

Γ ` M = N : B

4.1.4.5 Equations for bunches

` Γ Bunch
(BU-REFL) ` Γ = Γ Bunch

` Γ = ∆ Bunch
(BU-SYM) ` ∆ = Γ Bunch

` Γ = ∆ Bunch ` ∆ = Φ Bunch
(BU-TRANS) ` Γ = Φ Bunch

` Γ = ∆ Bunch Γ ` A = B Type
(BU-AEQ)

` (Γ, x : A) = (∆, x : B) Bunch

` Γ = ∆ Bunch ` Φ = Ψ Bunch
(BU-MEQ) ` Γ∗Φ = ∆∗Ψ Bunch
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4.1.4.6 General equations for types

Γ ` A Type
(TY-REFL)

Γ ` A = A Type

Γ ` A = B Type
(TY-SYM)

Γ ` B = A Type

Γ ` A = B Type Γ ` B = C Type
(TY-TRANS)

Γ ` A = C Type

4.1.4.7 General equations for terms

Γ ` M : A
(TM-REFL)

Γ ` M = M : A

Γ ` M = N : A
(TM-SYM)

Γ ` N = M : A

Γ ` M = N : A Γ ` N = P : A
(TM-TRANS)

Γ ` M = P : A

4.1.4.8 Rules for constants and axioms

Γ ` M : A ` x : A Bunch
(C-TY) T ∈T (x : A)

Γ ` T (M) Type

Γ ` M : A x : A ` B Type
(C-TM) f ∈T (x : A; B)

Γ ` f (M) : B[M/x]

Congruences

Γ ` M = N : A ` x : A Bunch
(C-TY-CGR) T ∈T (x : A)

Γ ` T (M) = T (N) Type

Γ ` M = N : A x : A ` B Type
(C-TM-CGR) f ∈T (x : A; B)

Γ ` f (M) = f (N) : B[M/x]

Axioms

Γ ` M : A x : A ` B Type x : A ` C Type
(TY-EQ-AX) (x : A ` B = C Type) ∈T E (x : A)

Γ ` B[M/x] = C[M/x] Type

Γ ` M : A x : A ` N : B x : A ` P : B
(TM-EQ-AX) (x : A ` N = P : B) ∈T E (x : A;B)

Γ ` N[M/x] = P[M/x] : B[M/x]
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4.1.4.9 Rules for 1-types

Formation

` Γ Bunch
(1-TY)

Γ ` 1 Type

Introduction

` Γ Bunch
(1-I)

Γ ` unit : 1

Equations

Γ ` M : 1
(1-EQ)

Γ ` M = unit : 1

4.1.4.10 Rules for Π-types

Formation

Γ ` A Type Γ, x : A ` B Type
(Π-TY)

Γ ` Πx : A.B Type

Introduction

Γ, x : A ` M : B
(Π-I)

Γ ` λx : A.M : Πx : A.B

Elimination

Γ, x : A ` B Type Γ ` M : Πx : A.B Γ ` N : A
(Π-E)

Γ ` app(x:A)B(M,N) : B [N/x]

Congruences

Γ ` A1 = A2 Type Γ, x : A1 ` B1 = B2 Type
(Π-TY-CGR)

Γ ` Πx : A1.B1 = Πx : A2.B2 Type

Γ ` A1 = A2 Type Γ, x : A1 ` M1 = M2 : B
(Π-I-CGR)

Γ ` λx : A1.M1 = λx : A2.M2 : Πx : A1.B

Γ ` A1 = A2 Type

Γ, x : A1 ` B1 = B2 Type

Γ ` M1 = M2 : Πx : A1.B1

Γ ` N1 = N2 : A1
(Π-E-CGR)

Γ ` app(x:A1)B1
(M1,N1) = app(x:A2)B2

(M2,N2) : B1[N1/x]

Equations

Γ, x : A ` M : B Γ ` N : A
(Π-β )

Γ ` app(x:A)B((λx : A.M),N) = M [N/x] : B [N/x]

Γ, x : A ` B Type Γ ` M : Πx : A.B
(Π-η )

Γ ` λx : A.(app(x:A)B(M,x)) = M : Πx : A.B
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4.1.4.11 Rules for Σ-types

Formation

Γ ` A Type Γ, x : A ` B Type
(Σ-TY)

Γ ` Σx : A.B Type

Introduction

Γ, x : A ` B Type Γ ` M : A Γ ` N : B[M/x]
(Σ-I)

Γ ` pair(x:A)B(M,N) : Σx : A.B

Elimination

Γ, x : A ` B Type Γ ` M : Σx : A.B
(Σ-E1)

Γ ` fst(x:A)B(M) : A

Γ, x : A ` B Type Γ ` M : Σx : A.B
(Σ-E2)

Γ ` snd(x:A)B(M) : B[fst(x:A)B(M)/x]

Congruences

Γ ` A1 = A2 Type Γ, x : A1 ` B1 = B2 Type
(Σ-TY-CGR)

Γ ` Σx : A1.B1 = Σx : A2.B2 Type

Γ ` A1 = A2 Type

Γ, x : A1 ` B1 = B2 Type

Γ ` M1 = M2 : A1

Γ ` N1 = N2 : B1[M1/x]
(Σ-I-CGR)

Γ ` pair(x:A1)B1
(M1,N1) = pair(x:A2)B2

(M2,N2) : Σx : A1.B1

Γ ` A1 = A2 Type

Γ, x : A1 ` B1 = B2 Type Γ ` M1 = M2 : Σx : A1.B1
(Σ-E1-CGR)

Γ ` fst(x:A1)B1(M1) = fst(x:A2)B2(M2) : A1

Γ ` A1 = A2 Type

Γ, x : A1 ` B1 = B2 Type Γ ` M1 = M2 : Σx : A1.B1
(Σ-E2-CGR)

Γ ` snd(x:A1)B1(M1) = snd(x:A2)B2(M2) : B1[fst(x:A1)B1(M1)/x]

Equations

Γ, x : A ` B Type Γ ` M : A Γ ` N : B[M/x]
(Σ-β 1)

Γ ` fst(x:A)B(pair(x:A)B(M,N)) = M : A

Γ, x : A ` B Type Γ ` M : A Γ ` N : B[M/x]
(Σ-β 2)

Γ ` snd(x:A)B(pair(x:A)B(M,N)) = N : B[M/x]

Γ, x : A ` B Type Γ ` M : Σx : A.B
(Σ-η )

Γ ` M = pair(x:A)B(fst(x:A)B(M),snd(x:A)B(M)) : Σx : A.B
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4.1.4.12 Rules for strong Π∗-types†

Formation

` A Type Γ∗ x : A ` B Type
(Π∗-TY)

Γ ` Π∗x : A.B Type

Introduction

Γ∗ x : A ` M : B
(Π∗-I)

Γ ` λ∗x : A.M : Π∗x : A.B

Elimination

Γ∗ x : A ` B Type Γ ` M : Π∗x : A.B ∆ ` N : A
(Π∗-E)

Γ∗∆ ` app∗(x:A)B(M,N) : B [N/x]

Congruences

` A1 = A2 Type Γ∗ x : A1 ` B1 = B2 Type
(Π∗-TY-CGR)

Γ ` Π∗x : A1.B1 = Π∗x : A2.B2 Type

` A1 = A2 Type Γ∗ x : A1 ` M1 = M2 : B
(Π∗-I-CGR)

Γ ` λ∗x : A1.M1 = λ∗x : A2.M2 : Π∗x : A1.B

Γ ` app∗(x:A1)B1
(M1,N1) : B1[N1/x]

Γ ` app∗(x:A2)B2
(M2,N2) : B2[N2/x]

` A1 = A2 Type

Γ ` Π
∗x : A1.B1 = Π

∗x : A2.B2 Type

Γ ` B1[N1/x] = B2[N2/x] Type

Γ ` M1 = M2 : Π
∗x : A1.B1

Γ ` N1 = N2 : A1
(Π∗-E-CGR)†

Γ ` app∗(x:A1)B1
(M1,N1) = app∗(x:A2)B2

(M2,N2) : B1[N1/x]

Equations

Γ∗ x : A ` M : B ∆ ` N : A
(Π∗-β )

Γ∗∆ ` app∗(x:A)B((λ∗x : A.M),N) = M [N/x] : B [N/x]

Γ∗ x : A ` B Type Γ ` M : Π∗x : A.B
(Π∗-η )

Γ ` λ∗x : A.(app∗(x:A)B(M,x)) = M : Π∗x : A.B
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4.2 Example

We give a simple example to demonstrate the use of the rules for bunches and the structural rules. We

show that, given an element of type Πx : A.B, we can obtain an element of type Π∗x : A.B. If we think

of Π∗ as a type of partial functions then this expresses that any total function can be restricted to a partial

function.

x : A ` B Type
(Π-TY) ` Πx : A.B Type

(PROJ)
f : Πx : A.B ` f : Πx : A.B

(UNIT)
( f : Πx : A.B)∗� ` f : Πx : A.B

(WEAK)
( f : Πx : A.B)∗ x : A ` f : Πx : A.B

` A Type
(PROJ)

x : A ` x : A
(UNIT)

x : A∗� ` x : A
(WEAK)

x : A∗ ( f : Πx : A.B) ` x : A
(SWAP)

( f : Πx : A.B)∗ x : A ` x : A
(Π-E)

( f : Πx : A.B)∗ x : A ` app(x:A)B( f ,x) : B
(Π∗-I)

f : Πx : A.B ` λ∗x : A.app(x:A)B( f ,x) : Π∗x : A.B

This derivation relies on the rule (UNIT) by which the empty context is a unit for ∗. In the left branch of

the derivation, (UNIT) is used in conjunction with (WEAK) to obtain a multiplicative weakening from

the context ( f : Πx : A.B) to the context ( f : Πx : A.B) ∗ x : A. More generally, we have the following

principle of multiplicative weakening.

Lemma 4.2.1. The following rule is admissible.

` Φ Bunch Γ(∆) ` J
(∗-WEAK)

Γ(∆∗Φ) ` J

Proof. By induction on the structure of Φ, using (UNIT) and (WEAK).

As a consequence of this lemma we get arbitrary weakening.

Lemma 4.2.2. The following rule is admissible.

Γ(∆) ` J ` Φ(∆) Bunch
(GWEAK)

Γ(Φ(∆)) ` J

Proof. By induction on Φ◦, using (WEAK) and the previous lemma.

4.3 Discussion

The rules for the additive types such as Π and Σ are completely standard. The rules for Π, for example,

differ from those in [105] only in that in the rule (Π-β ) we omit the assumption Γ, x : A ` B Type, which

can be inferred from Γ, x : A ` M : B.

Other additive type formers such as binary sum types and identity types can be added to the type

theory using their well-known formulation. As an example consider the elimination rule for binary

coproducts. This rule is usually formulated as follows, see e.g. [81], where, for simplicity, we only

show the special case of the rule where z is not substituted for.
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Γ, z : A+B ` C Type

Γ, x : A ` M : C[κ1(x)/z]

Γ, y : B ` N : C[κ2(x)/z]
(+-E1)

Γ, z : A+B ` case z of (κ1(x).M, κ2(y).N) : C

This rule makes the assumption that the variable z occurs at the end of the context, i.e. there can be

no parameter context following z. In practice, however, one would like to use a rule with parameter

contexts, such as the following.

Γ(z : A+B) ` C Type

Γ(x : A)[κ1(x)/z] ` M : C[κ1(x)/z]

Γ(y : B)[κ1(x)/z] ` N : C[κ2(x)/z]
(+-E2)

Γ(z : A+B) ` case z of (κ1(x).M, κ2(y).N) : C

In the usual additive dependent type theory with Π-types, the second rule can be derived from the first

rule. For example, suppose the context Γ(z : A + B) is z : A + B, u : D. If we write C1 for C[κ1(x)/z],

C2 for C[κ2(y)/z], D1 for D[κ1(x)/z] and D2 for D[κ2(y)/z], then the first rule can be applied to the

sequents x : A ` λu : D1.M : Πu : D1.C1 and y : B ` λu : D2.N : Πu : D2.C2 to derive

z : A+B ` case z of (κ1(x).λu : D1.M, κ2(y).λu : D2.N) : Πu : D.C.

Using weakening and application we can therefore get

z : A+B, u : D ` app(u:D)C(case z of (κ1(x).λu : D1.M, κ2(y).λu : D2.N),u) : C,

as required for the second rule. Note, however, that this derivation gives us a more elaborate term than

the second rule.

In BT(1,Σ,Π,Π∗) we cannot always derive the second rule from the first rule. If the context

Γ(z : A + B) has the form Γ′(z : A + B) ∗ u : D, then it is possible to use Π∗-types in a similar way as

Π-types above to get to the context Γ′(z : A + B). But if the context Γ(z : A + B) is (Γ, z : A + B) ∗
((t : D∗u : E), v : F), then there is no way in which we could use Π-types and Π∗-types to eliminate the

parameter context.

We remove this defect in the next chapter by introducing ∗-types, using which we can transform the

context (Γ, z : A+B)∗((t : D∗u : E), v : F) into a context of the form (Γ, z : A+B)∗(p : (Σq : D∗E.F))

for which we can use Π∗-types as described above. Another possibility of removing this defect is to

restrict the bunches such that Γ∗x : A is the only allowed form of bunch multiplication. Then, clearly, Π

and Π∗ suffice to eliminate the parameter contexts. For instance, in his formulation of Nominal Logic,

Cheney [20] only needs such a restricted form of bunched contexts. Here we do not make this restriction

as it would force us to restrict substitution for x in order to maintain this form of restricted context. It

would however be interesting to consider such a restricted system, as it should be simpler than the

present one.

At this point, it is fair to ask why we do not use the rule (+-E2) with parameter contexts in the

first place. The main reason for preferring (+-E1) is that it allows fewer derivations of the same term
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than (+-E2). Without parameter contexts, the position of the variable z in the context is determined

by the rule. In the rule with parameter contexts, however, there may be many positions in the context

where z could occur, which means that there may be many derivations of the same term. That the rule

with parameter contexts allows more derivation makes the semantic interpretation more complicated.

To prove soundness of the interpretation of the syntax, we have to show that two derivations of the same

sequent have the same interpretation, and this is more difficult the more derivations of the sequent there

are. In fact, we are not aware of any such proof of soundness for a rule with parameter contexts. Notice

that in the above derivation of (+-E2) from (+-E1), the terms contain additional information that

allows us to distinguish different derivations that would receive the same term in the rule (+-E2). For

example, if, in the above derivation of (+-E2) from (+-E1), we consider for the context Γ(z : A + B)

the cases (z : A + B, u : D) and (u : D, z : A + B), then we obtain different terms in each case, while the

rule (+-E2) gives us the same term in both cases.

Coming to the rules for bunches in Section 4.1.4.1, we remark that the present rules make bunches

asymmetric. For example, we can form a bunch of the form ((Γ∗∆), x : A) but we cannot form a bunch

of the form (x : A, (Γ∗∆)). Indeed, our semantics does not explain what it would mean to multiply two

contexts in presence of the assumption x : A, i.e. it does not explain x : A ` Γ∗∆, as would be necessary

to form (x : A, (Γ ∗∆)). The asymmetry of context concatenation is also present in normal dependent

type theory. There, contexts are just lists of assumptions, which means that they are generated from the

empty context by the extension that takes Γ to Γ, x : A. The notation (x : A, (Γ, ∆)) is just a short-hand

for the concatenation of lists. To make available sequents of the form (x : A, (Γ∗∆)) in the bunched type

theory, it is possible to add a cartesian product of contexts. Then we could write ((x : A)×(Γ∗∆)). This

is not necessary here, since in the next chapter we introduce ∗-types. Using ∗-types and Σ-types, we can

internalise contexts as types. For example, the contexts (y : B, z : C)∗ (u : D) and w : (Σy : B.C)∗D are

isomorphic. By internalising Γ∗∆ we can therefore get essentially the context ((x : A)× (Γ∗∆)).

The structural rules in Section 4.1.4.2 make ∗ a symmetric monoidal structure. Moreover, by rule

(UNIT) the empty context � is a unit of the monoidal structure ∗. This makes the monoidal structure ∗
affine. Apart from the fact that affineness is desired when ∗ is a monoidal structure capturing freshness,

there is also a technical reason for assuming ∗ to be affine. It has to do with proving soundness of the

categorical semantics of the type theory and is sketched in Section 6.2.

As is the case for O’Hearn and Pym’s αλ -calculus, the structural rules are not admissible. The

following judgement, taken from [80], is derivable, but not without weakening.

(( f : A−∗ B)∗ (x : A)), z : C ` app∗(x:A)B( f ,x) : B

As argued in [80], this example also shows that it is not enough to build the structural rules into the

projection rule, as is usually done in non-bunched type theory. Even if we replace (PROJ) with the

(admissible) rule

` Γ(∆) Bunch ∆ ` A Type ,
Γ(∆, x : A) ` x : A
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the above sequent still requires an application of weakening after (Π∗-E).

The rules for Π∗-types are similar to the rules for −∗ in O’Hearn and Pym’s αλ -calculus. In the

rule (Π∗-TY), the type A must be a closed type, since (` Γ∗ x : A Bunch) is derivable only for a closed

type A. This corresponds to the fact that Π∗-types represent simple monoidal products. Of the other rules

for Π∗, the congruence rule (Π∗-E-Cgr) requires some comment. Perhaps one would have expected the

following rule instead.

` A1 = A2 Type

Γ∗ x : A1 ` B1 = B2 Type

Γ ` M1 = M2 : Π
∗x : A1.B1

∆ ` N1 = N2 : A1
(Π∗-E-CGR′)

Γ∗∆ ` app∗(x:A1)B1
(M1,N1) = app∗(x:A2)B2

(M2,N2) : B1[N1/x]

It is easy to show that (Π∗-E-CGR′) is admissible from the rule (Π∗-E-CGR). From the assumptions

of (Π∗-E-CGR′), we have derivations

Γ∗ x : A1 ` B1 = B2 Type
(Π∗-TY-CGR)

Γ ` Π∗x : A1.B1 = Π∗x : A2.B2 Type
Lemma 4.2.2

Γ∗∆ ` Π∗x : A1.B1 = Π∗x : A2.B2 Type

and

Γ∗ x : A1 ` B1 = B2 Type
Lemma 4.2.2

Γ∗ (∆, x : A1) ` B1 = B2 Type ∆ ` N1 = N2 : A1(SUBST-TY-CGR)
Γ∗∆ ` B1[N1/x] = B2[N2/x] Type

by means of which we get the necessary assumptions for (Π∗-E-CGR). The reason for choosing the

rule (Π∗-E-CGR) over (Π∗-E-CGR′) is that in (Π∗-E-CGR) it suffices to show the equations M1 = M2

and N1 = N2 in the current context and not in some smaller context. This makes (Π∗-E-CGR) easier to

use. Moreover, the rule (Π∗-E-CGR) is the justification for annotating the term app∗(x:A)B(M,N) with the

types A and B but not with information on the contexts in which M and N were originally formed, since

these contexts are not relevant to the identity of app∗(x:A)B(M,N). If we only have the rule (Π∗-E-CGR′),

then to relate app∗(x:A1)B1
(M1,N1) and app∗(x:A2)B2

(M2,N2) we need information about the contexts in

which Mi and Ni were formed. In general, there seems to be no way of relating these contexts without

including them in the annotations for app∗. This problem also appears in the semantic interpretation,

where we need to assume strong Π∗-types if we do not want context annotations on app∗-terms. The

congruence rule (Π∗-E-CGR) corresponds to the assumption that the Π∗-types are strong. We conjecture

that in a type theory with strengthening, such context annotations are not necessary.

4.4 Basic Properties

As a sanity check for the rules of the type theory, we check some of the basic properties that one expects

of a type theory.

Lemma 4.4.1. The following are true.
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1. If Γ ` A Type then FV (A)⊆ FV (Γ).

2. If Γ ` M : A then FV (M)∪FV (A)⊆ FV (Γ).

3. If Γ ` A = B Type then FV (A)∪FV (B)⊆ FV (Γ).

4. If Γ ` M = N : A then FV (M)∪FV (N)∪FV (A)⊆ FV (Γ).

Proof. By straightforward induction on derivations.

Lemma 4.4.2. Let α be an injective variable renaming. Then we have:

1. If ` Γ Bunch then ` Γ[α] Bunch.

2. If Γ ` J then Γ[α] ` J [α].

Proof. By straightforward induction on derivations, since all rules are closed under injective variable

renamings.

Lemma 4.4.3. The following are true.

1. If ` Γ(∆) Bunch then ` ∆ Bunch.

2. If ` Γ(∆) Bunch and ∆ ` A Type then ` Γ(∆, x : A) Bunch.

3. If ` Γ(∆, x : A) Bunch and ∆ ` M : A then ` Γ(∆)[M/x] Bunch.

4. If ` Γ∗∆ Bunch then ` ∆∗Γ Bunch

5. ` (Γ∗∆)∗Φ Bunch if and only if ` Γ∗ (∆∗Φ) Bunch.

Proof. The first three points follow by induction on the size of Γ◦. The last two points follow using

inversion.

Lemma 4.4.4 (Type inversion). The following are true.

1. If Γ ` T (M) Type then there exists A such that Γ ` M : A and ` x : A Bunch and T ∈T (x : A).

2. If Γ ` A∗B Type then ` A Type and ` B Type.

3. If Γ ` Πx : A.B Type then Γ ` A Type and Γ, x : A ` B Type.

4. If Γ ` Σx : A.B Type then Γ ` A Type and Γ, x : A ` B Type.

5. If Γ ` Π∗x : A.B Type then ` A Type and Γ∗ x : A ` B Type.
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Proof. We consider 3, the other cases are similar. A derivation of the judgement Γ ` Πx : A.B Type

must end with an application of the rule (Π-TY) followed by a number of applications of the rules (BU-

CONV), (WEAK), (SUBST), (UNIT), (SWAP) and (ASSOC). We continue by induction on the number

of uses of these rules. If there are no applications of these rules then we are done, since the required

judgements Γ ` A Type and Γ ` Πx : A.B Type are immediate premises of (Π-TY). For the induction

case, we consider just the case where the derivation ends in an application of (BU-CONV) with the

equality ` ∆ = Γ Bunch. By induction hypothesis, we can derive ∆ ` A Type and ∆, x : A ` B Type. By

(BU-AEQ) we have ` (∆, x : A) = (Γ, x : A) Bunch, so that we can use (Bu-Conv) to derive the required

Γ ` A Type and Γ, x : A ` B Type. The other cases follow similarly.

Lemma 4.4.5 (Syntactic Validity). The following are true.

1. If Γ ` J then ` Γ Bunch.

2. If Γ ` A Type then ` Γ Bunch.

3. If Γ ` M : A then ` Γ Bunch and Γ ` A Type.

4. If ` Γ = ∆ Bunch then ` Γ Bunch and ` ∆ Bunch.

5. If Γ ` A = B Type then ` Γ Bunch and Γ ` A Type and Γ ` B Type.

6. If Γ ` M = N : A then ` Γ Bunch and Γ ` A Type and Γ ` M : A and Γ ` N : A.

Proof. By simultaneous induction on derivations. We give some representative examples showing that

all the rules from Section 4.1.4 preserve properties 1–6.

• Case (Π-E).

Γ, x : A ` B Type Γ ` M : Πx : A.B Γ ` N : A
(Π-E)

Γ ` app(x:A)B(M,N) : B [N/x]

We can derive the required Γ ` B[N/x] Type using (SUBST).

• Case (Π-E-CGR).

Γ ` A1 = A2 Type

Γ, x : A1 ` B1 = B2 Type

Γ ` M1 = M2 : Πx : A1.B1

Γ ` N1 = N2 : A1
(Π-E-CGR)

Γ ` app(x:A1)B1
(M1,N1) = app(x:A2)B2

(M2,N2) : B1[N1/x]

By induction hypothesis we have ` Γ Bunch and Γ, x : A1 ` B1 Type and Γ ` N1 : A1 and Γ ` M1 :

Πx : A1.B1. By (SUBST) we get Γ ` B1[N1/x] Type. By (Π-E) we get Γ ` app(x:A1)B1
(M1,N1) :

B1[N1/x]. Using the induction hypothesis we furthermore get Γ, x : A1 ` B2 Type, Γ ` N2 : A1

and Γ ` M2 : Πx : A1.B1. Using (BU-AEQ) and (BU-CONV) we obtain Γ, x : A2 ` B2 Type.

Using (Π-TY-CGR) we get Γ ` Πx : A1.B1 = Πx : A2.B2 Type. Using (TY-CONV) this implies
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Γ ` N2 : A2 and Γ ` M2 : Πx : A2.B2. By (Π-E) we get Γ ` app(x:A2)B2
(M2,N2) : B2[N2/x]. Using

(SUBST-TY-CGR) we get Γ ` B1[N1/x] = B2[N2/x] Type. By symmetry and type conversion we

finally get Γ ` app(x:A2)B2
(M2,N2) : B1[N1/x], thus completing the case.

For the formulation of properties of the type theory, we introduce a notion of subcontext up to structural

congruence. This is given by the binary relation < between bunches defined by the following rules.

` Γ Bunch
Γ < Γ

Φ < ∆ ∆ < Γ

Φ < Γ

∆ < Γ Ψ < Φ

∆∗Ψ < Γ∗Φ

∆ < Γ ∆ ` A Type
(∆, x : A) < (Γ, x : A)

Γ ` A Type
(Γ, x : A) < Γ

` Γ Bunch
Γ∗�< Γ

` Γ Bunch
Γ < Γ∗�

` Γ Bunch ` ∆ Bunch
∆∗Γ < Γ∗∆

` Γ Bunch ` ∆ Bunch ` Φ Bunch
Γ∗ (∆∗Φ) < (Γ∗∆)∗Φ

` Γ Bunch ` ∆ Bunch ` Φ Bunch
(Γ∗∆)∗Φ < Γ∗ (∆∗Φ)

We write Γ≡∆ for the conjunction of Γ < ∆ and ∆ < Γ. Note that Γ≡∆ means that Γ and ∆ are identical

up to structural rearranging, while provable equality ` Γ = ∆ Bunch means that, without structural

rearrangement, Γ can be obtained from ∆ by replacing types with provably equal ones.

Clearly, the following rule is equivalent to all of (UNIT), (SWAP), (WEAK) and (ASSOC).

∆ ` J Γ < ∆
(CONG)

Γ ` J

Lemma 4.4.6. If Γ < ∆(Φ ∗Ψ) then there exist ∆′◦, Φ′ and Ψ′ such that Φ′ < Φ and Ψ′ < Ψ and

Γ≡ ∆′(Φ′ ∗Ψ′).

Proof. By induction on the derivation of Γ < ∆(Φ∗Ψ).

Lemma 4.4.7. If Γ < ∆(Φ, x : A) then there exist ∆′◦ and Φ′ such that Φ′ < Φ and Γ is ∆′(Φ′, x : A).

Proof. By induction on the derivation of Γ < ∆(Φ, x : A).

Lemma 4.4.8. If ` Γ = ∆ Bunch and Γ′ < Γ then there exists ∆′ such that ∆′ < ∆ and ` Γ′ = ∆′ Bunch.
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Proof. By induction on the derivation of Γ′ < Γ.

Lemma 4.4.9 (Term inversion). The following are true.

1. If Γ ` f (M) Type then there exist A and B with Γ ` M : A and x : A ` B Type and f ∈T (x : A;B).

2. If Γ ` λx : A.M : C then there exists B such that Γ ` C = Πx : A.B Type and Γ, x : A ` M : B.

3. If Γ ` app(x:A)B(M,N) : C then Γ ` C = Πx : A.B Type and Γ ` M : Πx : A.B and Γ ` N : A.

4. If Γ ` pair(x:A)B(M,N) : C then Γ ` C = Σx : A.B Type and Γ ` M : A and Γ ` N : B[M/x].

5. If Γ ` fst(x:A)B(M) : C then Γ ` C = A Type and Γ ` M : Σx : A.B.

6. If Γ ` snd(x:A)B(M) : C then Γ ` C = B[fst(x:A)B(M)/x] Type and Γ ` M : Σx : A.B.

7. If Γ ` λ∗x : A.M : C then there exists B such that Γ ` C = Π∗x : A.B Type and Γ∗ x : A ` M : B.

8. If Γ ` app∗(x:A)B(M,N) : C then there exist ∆◦, Φ and Ψ such that Γ ≡ ∆(Φ ∗Ψ) and Φ ∗ x : A `
B Type and Γ ` C = Π∗x : A.B Type and Φ ` M : Π∗x : A.B and Ψ ` N : A.

Proof. The cases for Π-types and Σ-types are standard. We consider the case for app∗. Any derivation

of Γ ` app∗(x:A)B(M,N) : C must end in an application of (Π∗-E) followed by a number of applications

of the rules (BU-CONV), (TY-CONV), (CONG) and (SUBST). We continue by induction on the number

of application of these rules. If the last rule is (Π∗-E) then the assertion is immediate. For the induction

step there are four possible cases for the last rule:

• (BU-CONV), say with equality ` Γ = Γ′ Bunch. By induction hypothesis, we have ∆′◦, Φ′ and

Ψ′ with Γ′ ≡ ∆′(Φ′ ∗Ψ′), Φ′ ∗ x : A ` B Type, Γ′ ` C = Π∗x : A.B Type, Φ′ ` M : Π∗x : A.B

and Ψ′ ` N : A. By Lemma 4.4.8 there exists a context Θ with ` Θ = ∆′(Φ′ ∗Ψ′) Bunch and

Θ ≡ Γ. Since bunch equality does not manipulate the bunching structure, Θ must have the form

∆(Φ ∗Ψ) and ` Φ = Φ′ Bunch and ` Ψ = Ψ′ Bunch. The assertion then follows, since using

bunch conversion we can derive Φ∗ x : A ` B Type, Γ ` C = Π∗x : A.B Type, Φ ` M : Π∗x : A.B

and Ψ ` N : A.

• (TY-CONV). Immediate from the induction hypothesis and transitivity of type equality.

• (CONG), say with Γ < Γ′. By induction hypothesis, we have ∆′◦, Φ′ and Ψ′ with Γ′ ≡ ∆′(Φ′ ∗Ψ′),

Φ′ ∗ x : A ` B Type, Γ′ ` C = Π∗x : A.B Type, Φ′ ` M : Π∗x : A.B and Ψ′ ` N : A. By transitivity

of < we get Γ < ∆′(Φ′ ∗Ψ′). By Lemma 4.4.6, there exist ∆, Φ and Ψ with ` ∆(Φ ∗Ψ) Bunch,

Φ < Φ′, Ψ < Ψ′ and Γ≡ ∆(Φ∗Ψ). Using (CONG) we can derive the required Φ∗x : A ` B Type,

Γ ` C = Π∗x : A.B Type, Φ ` M : Π∗x : A.B and Ψ ` N : A.
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• (SUBST), say where Γ is Γ′(Γ′′, u : D) and the substituted term is Γ′′ ` R : D. By induction

hypothesis, we have ∆′◦, Φ′ and Ψ′ with Γ′(Γ′′, u : D)≡ ∆′(Φ′ ∗Ψ′) as well as Φ′ ∗x : A ` B Type,

Γ′ ` C = Π∗x : A.B Type, Φ′ ` M : Π∗x : A.B and Ψ′ ` N : A. By Lemma 4.4.7, there exist ∆◦ and

Γ′′′ < Γ′′ such that ∆′(Φ′ ∗Ψ′) is ∆(Γ′′′, u : D). By (CONG), we have Γ′′′ ` R : D. The assertion

follows by case distinction on whether u occurs in ∆′◦, Φ′ or Ψ′, and in each case substituting

appropriately.

At several points in later chapters, arguments can be simplified or generalised if the type theory has

the strengthening property. Although we will not rely on strengthening, we give a definition of it here,

so that we can state its consequences precisely.

Definition 4.4.10. A type theory has strengthening if, for all derivable judgements Γ ` J Type and

Γ < Φ with FV (J )⊆ v(Φ), it holds that Φ ` J Type is derivable.

Not all type theories have this property. It can be violated by an appropriate choice of constants and

axioms. For example, with constants ` A Type, ` B Type, ` f : A and axiom x : B ` A = B Type, we

can derive x : B ` f : B by weakening and type-conversion, but ` f : B is not derivable.

4.5 Related and Further Work

There are other possibilities for defining bunched dependent type theories. The motivation for the defi-

nition of bunches in this chapter was to find the simplest kind of bunches that allows us to work with Π

and Π∗ and that allows us to substitute for all variables. It is not strictly necessary to allow substitution

for all variables. Cheney [20], for example, gives a sequent calculus for nominal logic over a simple type

theory which uses only context multiplication of the form Γ∗ x : A. It may be interesting to investigate

how useful a type theory with such restricted bunches would be.

Rather than restricting bunches even further, one may also ask for more expressive bunches. For

example, one may ask for the context multiplication ∗ to be dependent to some degree. In [91, §15.15],

Pym outlines a bunched type theory in which ∗ is dependent. The reason we propose a different system

here is that in Pym’s calculus the context operation ∗ has to be fibred. Although assuming ∗ to be fibred

is natural from the type theoretic perspective, it excludes the models that we are interested in. For ∗ to be

a fibred monoidal structure, it would have to be a monoidal structure on all the slices categories B/Γ, not

just on B. In addition, it would have to be preserved under reindexing, i.e. σ∗(A∗B)∼= (σ∗A)∗ (σ∗B).

In the intended semantics in the Schanuel topos, there is no way to extend the monoidal structure for

freshness to a fibred monoidal structure. Suppose we had a fibred monoidal structure ∗ for the codomain

fibration on S, such that on S/1 ∼= S it coincides (up to isomorphism) with the monoidal structure for

freshness from Section 3.3.1. To see that no such fibred monoidal structure ∗ can exist, consider the



Chapter 4. A Bunched Dependent Type Theory 127

slice category S/N and the following morphism in it.

N
δ //

id ��?
??

??
??

N×N

π1||yyyyyyyy

N

This morphism has the type δ : !∗1→!∗N in S/N, where ! : N→ 1 and where we consider the object N of

S as an object of S/1. Using the monoidal structure ∗ on S/N, we get a morphism δ ∗δ : (!∗1)∗(!∗1)→
(!∗N)∗(!∗N) in S/N. Since a fibred monoidal structure is preserved by reindexing, this amounts to a map

!∗(1∗1)→!∗(N∗N) in S/N. Note that the monoidal structure ∗ used in both the domain and codomain

of this map lives in the slice S/1 ∼= S. By assumption, in the slice S/1, the monoidal structure ∗ is

just the monoidal structure for freshness defined in Chapter 3. As a consequence, we get 1 ∗ 1 ∼= 1.

Hence, the map !∗(1∗1)→!∗(N∗N) amounts to a map !∗1 →!∗(N∗N) in S/N. Spelled out, this gives

a commuting triangle of the following form in S.

N //

id ��>
>>

>>
>>

> N× (N∗N)

π1
zztttttttttt

N

Note that this triangle would give us a map of type N → N ∗N in S. It is an easy consequence of

Proposition 3.3.5 that there exists no map of this type in S. Hence, the monoidal structure for freshness

in the Schanuel topos cannot be extended to a fibred monoidal structure.

This semantic argument shows that calculi relying on the monoidal structure being fibred, such as

the one of Pym [91, §15.15], cannot be used to work with the monoidal structure for freshness in S. The

problem is not that for given objects A and B in S/Γ there are no sensible choices of A∗B in S/Γ. Rather,

the problem is that no such choice can be functorial. Since functoriality is essential for substitution in

bunches, it is likely that some approach other than bunches is needed to make this work.

Ishtiaq & Pym [92] define a dependent type theory containing both a linear and an additive function

space. It is not clear what the precise relation of their type theory to the type theory presented here

is. For example, to handle linearity Ishtiaq and Pym allow variables to be defined more than once in

a context and need a binding strategy to determine by which variable in the context a free variable is

bound. Besides the syntactic differences, the calculus in [92] has context extension rules

Γ ` A Type
Γ, x : A Context

Γ ` A Type
Γ, x!A Context

in which x!A corresponds to a linear variable. The dependencies in these rules suggest that linearity is

interpreted in a fibred way, and we have argued above that there is a problem with interpreting this in

the Schanuel topos.

Another linear dependent type theory is the linear logical framework of Cervesato and Pfenning [19].

This type theory extends the LF logical framework with a linear function space A ( B that is both more
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and less dependent than Π∗. It is less dependent because in A ( B the type B is not allowed to depend

on A, but it is more dependent because in A ( B the type A need not be closed. Again, the dependencies

in the context formation rules suggest that linearity is interpreted in a fibred way.

The dependent type theory in this section may be considered a generalisation of the αλ -calculus of

O’Hearn and Pym. The αλ -calculus is a type theory for a category that is both cartesian closed and

monoidal closed. Since BT(1,Σ,Π,Π∗) is a type theory for a category that is locally cartesian closed

and monoidal closed, it may be considered as extending the αλ -calculus in the additive direction. The

αλ -calculus relates to BT(1,Σ,Π,Π∗) in the same way the simply-typed λ -calculus relates to first-

order dependent type theory. In this relationship, there is a mismatch between the way contexts can be

formed, because, with dependent types, the additive context extension (Γ, x : A) is asymmetric, while

in the αλ -calculus whole contexts can be joined additively (Γ, ∆). For the relation of the simply-

typed λ -calculus to standard dependent type theory, this mismatch can be ignored: The simply-typed

context (x : A, (y : B, z : C)), which is not available in dependent type theory, can simply be transformed

to the context ((x : A, y : B), z : C), which is available. With bunches we have to be more careful. In

BT(1,Σ,Π,Π∗) we do not directly have the context Γ ∗ (y : B, z : C) of the αλ -calculus. As discussed

earlier, this context can nevertheless be encoded as Γ∗ (z : B×C). With ∗-types, that we will introduce

in the next chapter, we can use this idea to encode the αλ -calculus in BT(∗,1,Σ,Π,Π∗). We can also

make BT(∗,1,Σ,Π,Π∗) a direct super-system of the αλ -calculus by adding the following rules for

cartesian products. Although not formally checked, we believe that these rules are sound and form a

conservative extension of BT(∗,1,Σ,Π,Π∗).

` Γ Bunch ` ∆ Bunch
(BU-CART) ` Γ×∆ Bunch

Γ(∆) ` J
(UNIT-CART)

Γ(∆×�) ` J

Γ(∆×Φ) ` J
(SWAP-CART)

Γ(Φ×∆) ` J

Γ((∆×Φ)×Ψ) ` J
(ASSOC-CART)

Γ(∆× (Φ×Ψ)) ` J

Γ(∆×∆′) ` J
(DIAG)

Γ(∆) ` J [v(∆′)/v(∆)]

With this extension, the rules of (a version with type-labelled application of) the αλ -calculus become

derivable. Abstraction and application, for instance, can be derived as follows.

Γ× (x : A) ` M : B
(UNIT), (UNIT-CART), (WEAK)

(Γ, x : A)× (Γ′, y : A) ` M[y/x] : B
(DIAG)

Γ, x : A ` M : B
(Π-I)

Γ ` λx : A.M : A→ B

Γ ` M : A→ B
(UNIT), (WEAK)

Γ×∆ ` M : A→ B
∆ ` N : A

(UNIT), (WEAK)
Γ×∆ ` N : A

(Π-E)
Γ×∆ ` app(x:A)B(M,N) : B

For further work, we believe that it should not be hard to show decidability of type-checking for

BT(1,Σ,Π,Π∗) by adapting well-known type-checking techniques for logical frameworks [43, 25, 3].
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Monoidal Pair Types

In this chapter we extend the type theory BT(1,Σ,Π,Π∗) with ∗-types. We show that ∗-types can

be used to internalise context multiplication Γ ∗∆ in the same way that Σ-types can be used to inter-

nalise additive context concatenation (Γ, x : A). Thus, by adding ∗-types we remove some of the defects

of BT(1,Σ,Π,Π∗) that we have discussed in the last chapter. In this chapter we also introduce a rep-

resentation of simultaneous substitution for the bunched type theory with ∗-types and give substitution

lemmas for it. This representation of substitution is used to make precise the internalisation of contexts.

It will also be used for showing completeness in Chapter 7.

5.1 The System BT(∗,1,Σ,Π,Π∗)

5.1.1 Syntax

We extend the syntax of BT(1,Σ,Π,Π∗) with the following types and terms.

Types A ::= · · · | A∗A

Terms M ::= · · · | pair∗A,A(M,M) | let M be x:A∗x:A in M

FV (A∗B) = FV (A)∪FV (B)

FV (pair∗A,B(M,N)) = FV (A)∪FV (B)∪FV (M)∪FV (N)

FV (let M be x:A∗y:B in N) = FV (A)∪FV (B)∪FV (M)∪ (FV (N)\{x,y})

We frequently omit type annotations for notational convenience.

strip(pair∗A,B(M,N)) = M∗N

strip(let M be x:A∗y:B in N) = let M be x∗y in N

129
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We use the following notation for the derivable inclusion of A∗B in A×B and the resulting projections.

ı(M) def= let M be x:A∗y:B in 〈x,y〉

π̇1(M) def= let M be x:A∗y:B in x

π̇2(M) def= let M be x:A∗y:B in y

5.1.2 Rules for Monoidal Products

Rules marked with † will be discussed in the next section.

5.1.2.1 Rules for ∗-types

Formation

` A Type ` B Type
(∗-TY)†

` A∗B Type

Introduction

` A Type ` B Type Γ ` M : A ∆ ` N : B
(∗-I)

Γ∗∆ ` pair∗A,B(M,N) : A∗B

Elimination

Γ(z : A∗B) ` C Type

∆ ` M : A∗B

Γ(x : A∗ y : B)[pair∗A,B(x,y)/z] ` N : C [pair∗A,B(x,y)/z]
(∗-E)†

Γ(∆) [M/z] ` let M be x:A∗y:B in N : C [M/z]

Congruences

` A1 = A2 Type ` B1 = B2 Type
(∗-TY-CGR)

Γ ` A1∗B1 = A2∗B2 Type

` A1 = A2 Type

` B1 = B2 Type

Γ ` M1 = M2 : A1

Γ ` N1 = N2 : B2
(∗-I-CGR)

Γ ` pair∗A1,B1
(M1,N1) = pair∗A2,B2

(M2,N2) : A1∗B1

` A1 = A2 Type

` B1 = B2 Type

∆ ` M1 = M2 : A1∗B1

Γ(z : A1∗B1) ` C Type

Γ(x : A1 ∗ y : B1)[pair∗A1,B1
(x,y)/z] ` N1 = N2 : C[pair∗A1,B1

(x,y)/z]
(∗-E-CGR)

Γ(∆)[M1/z] ` let M1 be x:A1∗y:B1 in N1 = let M2 be x:A2∗y:B2 in N2 : C[M1/z]
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Equations

Γ ` M : A ∆ ` N : B

Φ(z : A∗B) ` C Type

Φ(x : A∗ y : B)[pair∗A,B(x,y)/z] ` R : C[pair∗A,B(x,y)/z]
(∗-β )

Φ(Γ∗∆)[pair∗A,B(M,N)/z] ` (let pair∗A,B(M,N) be x:A∗y:B in R) = (R [M/x] [N/y]) : C[pair∗A,B(M,N)/z]

∆ ` M : A∗B Γ(z : A∗B) ` N : C
(∗-η )

Γ(∆)[M/z] ` N [M/z] = let M be x:A∗y:B in (N [pair∗A,B(x,y)/z]) : C[M/z]

Γ ` M : A∗B

Γ ` N : A∗B

Γ ` π̇1(M) = π̇1(N) : A

Γ ` π̇2(M) = π̇2(N) : B
(INJECT)†

Γ ` M = N : A∗B

5.2 Discussion

The rules for ∗-types are such that the type A∗B can be formed only for closed types A and B. Since ∗
corresponds to a monoidal structure, it would be reasonable to expect the following type formation rule.

Γ ` A Type ∆ ` B Type
(∗-TY-WRONG)

Γ∗∆ ` A∗B Type

In the codomain fibration, this rule would take the objects πA : A → Γ and πB : B → ∆ to the object

πA ∗πB : A∗B → Γ ∗∆. The reason for not allowing this more general rule is that substitution on the

type A∗B does not behave well. Consider just the special case of a substitution inside the context Γ.

Clearly, it should not make a difference if we first do this substitution in Γ ` A Type and then apply

rule (∗-TY-WRONG) or if we first apply the rule (∗-TY-WRONG) and then do the substitution. Seman-

tically, this means that, for any map σ : Γ′ → Γ, the objects (σ∗πA) ∗πB and (σ ∗∆)∗(πA ∗πB) in the

slice over Γ′ ∗∆ should be isomorphic. In the Schanuel topos, however, this is not the case.

N

σ∗πA
��

//
_� 1

πA

��
N

σ
// 1

N
πB

��

//
_� N

πB

��
1 // 1

N∗N

(σ∗πA)∗πB
��

// 1∗N
πA∗πB

��
N∗1

σ∗1
// 1∗1

The objects (σ∗πA)∗πB and (σ ∗1)∗(πA∗πB) are not isomorphic, since the left two squares are pullbacks

while the right square is not. In this example, the map σ is in fact just a weakening map.

This shows that substitution on open types of the form (A∗B) cannot be defined in the naive way.

Given the semantics of (∗-TY-WRONG), one could argue that the type (A∗B) should be annotated with

the contexts in which A and B are formed, i.e. we should write AΓ ∗B∆. Then the above problem with

weakening disappears, since permuting weakening and (∗-TY-WRONG) then changes the judgement in

the conclusion. However, such annotations would make the term calculus quite complicated, which is

why we do not consider them further. Nevertheless, we will meet a special case of (∗-TY-WRONG) in
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the shape of freefrom types in Chapter 8. In this special case, ∆ is a context declaring a single variable

and B is the unit type.

It should be pointed out that in the subobject logic of the Schanuel topos the above mentioned

problem with substitution does not exist. If, for monomorphisms ϕ and ψ , the two squares on the left

are pullbacks then so is the one on the right.

A′
��

σ∗ϕ

��

//
_� A

��
ϕ

��
Γ′

σ
// Γ

B′ //
��

τ∗ψ

��

_� B
��
ψ

��
∆′

τ
// ∆

A′ ∗B′
��

(σ∗ϕ)∗(τ∗ψ)
��

_� // A∗B
��
ϕ∗ψ

��
Γ′ ∗∆′

σ∗τ
// Γ∗∆

The rule (∗-E) for ∗-elimination also deserves comment. We choose to formulate (∗-E) with pa-

rameter context as opposed to the following rule without parameter context.

∆ ` M : A∗B

Γ∗ z : A∗B ` C Type

Γ∗ x : A∗ y : B ` N : C [pair∗A,B(x,y)/z]
(∗-E′)

Γ∗∆ ` let M be x:A∗y:B in N : C [M/z]

The main reason for choosing (∗-E) over (∗-E′) is that (∗-E) allows us to derive the display property

that terms Γ(∆) ` M : A are in one-to-one correspondence with terms ∆ ` M′ : A′ for some type A′, see

Section 5.6 below. Because of this property, we can omit the parameter contexts in the rules for all other

type formers. Rules with parameter contexts become admissible. As a consequence, we have to deal

with the problems arising from parameter contexts only once, for ∗-types. This helps, for example, in

simplifying the semantic interpretation, which is easier in the absence of parameter contexts.

One problem caused by parameter contexts is that the rule (∗-E) cannot always be permuted with

substitution. This is a problem because it means that showing substitution is admissible is not straight-

forward, although we show in Section 7.2.3 that substitution can nevertheless be eliminated up to com-

muting conversion. To see why substitution and ∗-elimination can not always be permuted, consider the

following derivation.

z : A∗B ` M : A∗B (x : A∗ y : B), u : C[x∗y/z] ` N : D[x∗y/z]
(∗-E)

z : A∗B, u : C[M/z] ` let M be x∗y in N : D[M/z] z : A∗B ` R : C[M/z]
(SUBST)

z : A∗B ` (let M be x∗y in N)[R/u] : D[M/z][R/u]

It is not always possible to transform this derivation such that (SUBST) is applied before (∗-E). To

apply the substitution before the ∗-elimination, we would have to find a term x : A∗y : B ` R′ : C[x∗y/z]

(satisfying some conditions) which to substitute for u. The existence of a term z : A∗B ` R : C[M/z]

does not imply the existence of an appropriate term R′. For example, let both A and B be the type

(1 + 1) in the Schanuel topos. Let the type C(z) be such that C(κ1(unit) ∗κ1(unit)) is the empty type

and C(κ2(unit)∗κ2(unit)) is the unit type. Then, there can be no term x : A∗ y : B ` R′ : C[x∗y/z], since

substituting κ1(unit) for x and y would give an element of the empty type. Note that we can take M

to be κ2(unit)∗κ2(unit), in which case the term R is just the unique element of the unit type. This
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shows that the rules (SUBST) and (∗-E) in the above derivation cannot be permuted. The rule (∗-E′)

without parameter contexts, on the other hand, does not have this problem. Substitution is easily seen

to commute with it.

The problem that substitution does not commute with ∗-elimination is not unique to dependent types.

In the simply typed αλ -calculus of O’Hearn and Pym it also exists in the form that ∗-elimination does

not commute with contraction. For example, the term (let z be x∗y in 〈x,z〉) is derivable by:

(x : A∗ y : B)× (u : A∗B) ` 〈x,u〉 : A×(A∗B)
(∗-E)

(z : A∗B)× (u : A∗B) ` let z be x∗y in 〈x,u〉 : A×(A∗B)
(CONTR)

z : A∗B ` let z be x∗y in 〈x,z〉 : A×(A∗B)

In this derivation, contraction and (∗-E) cannot be exchanged. Without type dependency, the problem is

nevertheless simpler than the problem with substitution above, since contraction is the only substitution

that does not commute with (∗-E). In other words, the problem appears also for simple types, but it can

be simplified by adding a contraction rule. With type dependency we can still add a contraction rule, but

this simplifies the problem only if we also restrict the rule (∗-E) so that the type C cannot depend on z.

In general, adding a contraction rule does not simplify the problem.

Since the let-terms introduced in (∗-E) are a special kind of explicit substitution, and substitutions

can, in general, not be permuted, it should not be unexpected that not all substitutions can be pushed

through the rule (∗-E). With normal substitutions, however, the fact that they cannot in general be

permuted is not a problem, since for any given term we can always just perform them in order. This

leads one to expect that let-terms can be moved out of the way of the substitutions. Take, for example, the

above term (let z be x∗y in 〈x,z〉). It is not derivable without doing a substitution after a ∗-elimination.

Using commuting conversions derived from the equations for ∗-types, we can prove this term to be

equal to 〈let z be x∗y in x, let z be x∗y in z〉 and further to 〈let z be x∗y in x,z〉. The last term is derivable

without using substitution after ∗-elimination, so that by commuting conversion we have moved the let

out of the way of the substitution. In Section 7.2.3 we will generalise this informal argument and show

that, up to commuting conversion, we can remove substitution after (∗-E).

In Section 7.2.3 we show that it is possible to give a formulation of ∗-types with the elimination

rule (∗-E′) instead of (∗-E) that is essentially equivalent to the formulation in this chapter.

Leaving aside the technical details of the rule (∗-E), it is reasonable to ask why we use let-terms

at all. Since we assume the monoidal structure ∗ to be affine, we have projections π̇1 : A ∗B → A and

π̇2 : A∗B→ B which could be added to the syntax directly.

Γ ` M : A∗B
Γ ` π̇1(M) : A

Γ ` M : A∗B
Γ ` π̇2(M) : B

This formulation is weaker than that with let-terms. For example, the above two elimination rules are

not sufficient to derive a term corresponding to the functoriality of ∗. With let-terms, the functoriality

of ∗ is derivable as follows.
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z : A∗B ` z : A∗B
` C,D Type x : A ` M : C y : B ` N : D

(∗-I)
x : A∗ y : B ` M∗N : C∗D

(∗-E)
z : A∗B ` let z be x∗y in M∗N : C∗D

The corresponding term with affine projections would be

z : A∗B ` (M[π̇1(z)/x])∗(N[π̇2(z)/y]) : C∗D,

but this term is not derivable. This problem could be fixed by using the following alternative elimination

rule for the affine projections. This rule is just a version of (∗-E).

Γ(z : A∗B) ` C Type ∆ ` M : A∗B Γ(x : A∗ y : B)[x∗y/z] ` N : C [x∗y/z]
Γ(∆) [M/z] ` N[π̇1(M)/x][π̇2(M)/y] : C [M/z]

However, this rule is not very natural for the affine projections. First, it is not syntax-directed. The term

in its conclusion may have any term constructor as its outermost connective. For example, there is a

derivation of

z : A∗B ` (M[π̇1(z)/x])∗(N[π̇2(z)/y]) : C∗D

having the above elimination as last rule. Furthermore, even though the term (M[π̇1(z)/x])∗(N[π̇2(z)/y])

has ∗ as its outermost constructor, there is no derivation of it using (∗-I) as the last logical rule. This is

the case since (∗-I) can only derive terms M∗N in which the free variables of M and N occur in separated

parts of the context. In contrast, the formulation with let-terms is syntax-directed and all terms of the

form M∗N are derived with (∗-I) as the last logical rule; see the inversion lemma below.

In the formulation with let-terms it is also easier to understand why a given term is typeable. For

example, with let-terms we can type a term of the form M∗N only if the free variables in M and N occur

in separated parts of the context. The context can be manipulated using let. Therefore, it can be read

off the terms why separation assertions hold. The price to pay for this is that let-terms make the terms

larger. In the formulation with projections, on the other hand, it is harder to understand how a term has

been typed. In the term (M[π̇1(z)/x])∗(N[π̇2(z)/y]), for example, the projections π̇1(z) and π̇2(z) may

occur anywhere and repeatedly in the terms M and N. The term (M[π̇1(z)/x])∗(N[π̇2(z)/y]) itself does

not tell us how M[π̇1(z)/x] and N[π̇2(z)/y] were separated—we have to guess the separation. Another

good example is the term derived in Section 11.3.3.3, for which without let-terms it would not be clear

at all how to derive it.

A final reason for choosing let-terms is that at present we do not know how to state the equations for

the version with projections. It may well be the case that we can just take the usual β and η-equations,

but this remains to be worked out.

Having given reasons for preferring let-terms, we point out that the formulations with projections

also has its uses and should not be discarded altogether. It will be a useful tool for proving soundness

in the next chapter. The reason why it is useful there is that the translation (let M be x∗y in N) 7→
N[π̇1(M)/x][π̇2(M)/y] maps terms that differ only up to commuting conversion to equal terms. In the

next chapter we will use this translation and show soundness both for the system with let-terms and



Chapter 5. Monoidal Pair Types 135

the system with projections. Because the translation identifies terms that differ only up to commuting

conversion, there may be other uses of the formulation with projections. For example, we hope that

it may help in giving an algorithm for deciding equality that does not have to deal with commuting

conversions, see the further work section of this chapter. Finally, it should also be pointed out that a

let-free formulation has been used in the type system of FreshML 2000 [87].

Regarding the equations for ∗-types, we highlight the rule (INJECT). This rule, whose premises

are typeable only with (UNIT), amounts to the information that the canonical maps A ∗B → A×B are

monomorphic. Hence, the rules (UNIT) and (INJECT) make the monoidal structure ∗ strict affine.

5.3 Basic Properties

The basic properties, Lemmas 4.4.1–4.4.5, continue to hold for BT(∗,1,Σ,Π,Π∗).

Lemma 5.3.1 (Term Inversion). In addition to the cases from Lemma 4.4.9 the following are true.

1. If Γ ` pair∗A,B(M,N) : C then there exist ∆◦, Φ, Ψ such that Γ ≡ ∆(Φ ∗Ψ) and ` A Type and

` B Type and Γ ` C = A∗B Type and Φ ` M : A and Ψ ` N : B.

2. If Γ ` let M be x:A∗y:B in N : C then there exist ∆◦, Φ, N′ and D such that the judgements

∆′(z : A∗B) ` D Type, Φ ` M : A∗B and ∆′(x : A ∗ y : B) [pair∗A,B(x,y)/z] ` N′ : D [pair∗A,B(x,y)/z]

are derivable, and Γ ` let M be x:A∗y:B in N : C can be derived from these sequents by first using

(∗-E), followed by a number of uses of type conversion, substitution and the structural rules.

Proof. The case for pair∗A,B(M,N) is like that for app∗(x:A)B(M,N) in Lemma 4.4.9. The case for let

follows because bunch conversion commutes with all other rules.

5.4 Eliminating ∗-types over Types

In this section we define a let on types, i.e. we define (let M be x:A∗y:B in C) where C is a type. We

show that rules analogous to (∗-E), (∗-β ) and (∗-η ) are admissible for this let on types.

We define (let M be x:A∗y:B in C) by induction on the type C.

let M be x:A∗y:B in 1 def= 1

let M be x:A∗y:B in T (N) def= T (let M be x:A∗y:B in N)

let M be x:A∗y:B in C∗D def= C∗D

let M be x:A∗y:B in Πz : C.D def= Πz : (let M be x:A∗y:B in C).(let M be x:A∗y:B in D)

let M be x:A∗y:B in Σz : C.D def= Σz : (let M be x:A∗y:B in C).(let M be x:A∗y:B in D)

let M be x:A∗y:B in Π
∗z : C.D def= Π

∗z : C.(let M be x:A∗y:B in D)
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Having defined let on types, it is natural to extend the definition to contexts as well. Using let on types,

any context Γ(x : A∗ y : B) can be transformed into a context Γ′(z : A∗B) by replacing each type C in Γ◦

that may depend on x and y by the type (let z be x:A∗y:B in C). More precisely, the context-with-hole Γ′◦

is obtained from Γ◦ by means of the following extension of let to contexts-with-hole.

let M be x:A∗y:B in ©=©

let M be x:A∗y:B in (Γ◦ ∗Γ
′) = (let M be x:A∗y:B in Γ◦)∗Γ

′

let M be x:A∗y:B in (Γ∗Γ
′
◦) = Γ∗ (let M be x:A∗y:B in Γ

′
◦)

let M be x:A∗y:B in (Γ◦, u : C) = (let M be x:A∗y:B in Γ◦), u : (let M be x:A∗y:B in C)

In the rest of this section we show that the definition of let on types makes type versions of the rules

(∗-E), (∗-E-CGR), (∗-β ) and (∗-η ) admissible. The rules are summarised at the end of this section.

We give a series of lemmas leading up to these rules.

The first lemma contributes to the rules (∗-E-TY) and (∗-β -TY) at the end of this section.

Lemma 5.4.1. If ` Γ(z : A∗B) Bunch and Γ(x : A ∗ y : B)[pair∗A,B(x,y)/z] ` C Type then the following

judgements are derivable.

Γ(z : A∗B) `let z be x:A∗y:B in C Type

Γ(x : A∗ y : B)[pair∗A,B(x,y)/z] `C = (let pair∗A,B(x,y) be x:A∗y:B in C) Type

Proof. The proof goes by induction on the type C.

• C is 1. This case is trivial, since (let M be x:A∗y:B in 1) is defined to be 1.

• C is C∗D. This case is immediate since (let M be x:A∗y:B in C∗D) is defined to be C∗D.

• C is T (M). By Lemma 4.4.4, we have Γ(x : A∗ y : B)[pair∗A,B(x,y)/z] ` M : D and ` u : D Bunch

and T ∈ T (u : D). Then FV (D) = /0 holds, so that D is D[pair∗A,B(x,y)/z]. We can therefore use

(∗-E) to derive Γ(z : A∗B) ` let z be x:A∗y:B in M : D. Using (C-TY), this gives Γ(z : A∗B) `
T (let z be x:A∗y:B in M) Type. But this type is the same as (let z be x:A∗y:B in T (M)), so that

we have the first of the two required judgements. Since we have Γ(x : A∗ y : B)[pair∗A,B(x,y)/z] `
M = let pair∗A,B(x,y) be x:A∗y:B in M : D by (∗-β ), the second judgement follows using the con-

gruence rule (C-TY-CGR).

• C is Πu : C.D. By Lemma 4.4.4, we have derivations of Γ(x : A∗ y : B)[pair∗A,B(x,y)/z] ` C Type

and Γ(x : A∗ y : B)[pair∗A,B(x,y)/z], u : C ` D Type. From the induction hypothesis we get

Γ(z : A∗B) ` let z be x:A∗y:B in C Type

Γ(x : A∗ y : B)[pair∗A,B(x,y)/z] ` C = let pair∗A,B(x,y) be x:A∗y:B in C Type

We write Γ′ for Γ(x : A ∗ y : B)[pair∗A,B(x,y)/z] and C′ for (let z be x:A∗y:B in C). Using the rule

(BU-AEQ) we get ` (Γ′, u : C) = (Γ′, u : C′[pair∗A,B(x,y)/z]) Bunch. By bunch conversion we
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obtain Γ′,u : C′[pair∗A,B(x,y)/z] ` D Type, to which we can apply the induction hypothesis. It

gives

Γ(z : A∗B), u : C′ ` let z be x:A∗y:B in D Type

Γ
′,u : C′[pair∗A,B(x,y)/z] ` D = let pair∗A,B(x,y) be x:A∗y:B in D Type.

We write D′ for (let z be x:A∗y:B in D). Rule (Π-TY) gives Γ(z : A∗B) ` Πu : C′.D′ Type, which

by the definition of let on Π-types is just the first required judgement. The second judgement fol-

lows, since (Π-TY-CGR) allows us to derive Γ′ ` Πu : C.D = (Πu : C′.D′)[pair∗A,B(x,y)/z] Type.

• C is Σu : C.D. Similar to the previous case.

• C is Π∗u : C.D. Lemma 4.4.4 gives ` C Type and Γ(x : A∗y : B)[pair∗A,B(x,y)/z]∗u : C ` D Type.

We get FV (C) = /0, so that C[pair∗A,B(x,y)/z] is C. We can therefore apply the induction hypothesis

to obtain the following sequents, in which we write Γ′ for Γ(x : A∗ y : B)[pair∗A,B(x,y)/z].

Γ(z : A∗B)∗u : C ` let z be x:A∗y:B in D Type

Γ
′ ∗u : C ` D = let pair∗A,B(x,y) be x:A∗y:B in D Type.

We write D′ for (let z be x:A∗y:B in D). Rule (Π∗-TY) gives Γ(z : A∗B) ` Π∗u : C.D′ Type, which

by the definition of let on Π∗-types is just the first required judgement. For the second judgement,

we use (Π∗-TY-CGR) to derive the required Γ′ ` Π∗u : C.D = (Π∗u : C.D′)[pair∗A,B(x,y)/z] Type.

Next we state a lemma justifying the rule (∗-η -TY) at the end of this section.

Lemma 5.4.2. If Γ(z : A∗B) ` C Type then the following sequent is derivable.

Γ(z : A∗B) ` C = (let z be x:A∗y:B in C[pair∗A,B(x,y)/z]) Type

Proof. The proof goes by induction on C.

• The cases where C is 1 or D∗E are immediate, since in both these cases the type C must be closed

and (let z be x:A∗y:B in C) is defined to be C.

• C is T (M). By Lemma 4.4.4, we have Γ(z : A∗B) ` M : D and ` u : D Bunch and T ∈ T (u : D).

By (∗-η ) we have Γ(z : A∗B) ` M = let z be x:A∗y:B in M[pair∗A,B(x,y)/z] : D. Since, by defini-

tion, (let z be x:A∗y:B in T (M)[pair∗A,B(x,y)/z]) is just T (let z be x:A∗y:B in M[pair∗A,B(x,y)/z]),

the assertion then follows using (C-TY-CGR).

• C is Πu : C.D. By Lemma 4.4.4, we have Γ(z : A∗B) ` C Type and Γ(z : A∗B), u : C ` D Type.

From the induction hypothesis we get

Γ(z : A∗B) ` C = let z be x:A∗y:B in C[pair∗A,B(x,y)/z] Type

Γ(z : A∗B), u : C ` D = let z be x:A∗y:B in D[pair∗A,B(x,y)/z] Type.



Chapter 5. Monoidal Pair Types 138

Since (let z be x:A∗y:B in (Πu : C.D)[pair∗A,B(x,y)/z]) is defined to be

(Πu : (let z be x:A∗y:B in C[pair∗A,B(x,y)/z]).(let z be x:A∗y:B in D[pair∗A,B(x,y)/z])),

the assertion follows using (Π-TY-CGR).

• The cases where C is Σu : C.D or Π∗u : C.D are similar to the previous case.

The previous two lemmas for let on types can be lifted to let on contexts.

Lemma 5.4.3. If ` Γ(x : A∗ y : B) Bunch then the following judgements are derivable.

` (let z be x:A∗y:B in Γ◦)(z : A∗B) Bunch

` (let pair∗A,B(x,y) be x:A∗y:B in Γ◦)(x : A∗ y : B) = Γ(x : A∗ y : B) Bunch

Proof. Each of the judgements follows by induction on the context-with-hole Γ◦, using Lemma 5.4.1.

Lemma 5.4.4. If ` Γ(z : A∗B) Bunch then the following judgement is derivable.

` Γ(z : A∗B) = (let z be x:A∗y:B in Γ◦[pair∗A,B(x,y)/z])(z : A∗B) Bunch

Proof. By induction on the context-with-hole Γ◦, using Lemma 5.4.2.

To complete the rules for let on types, it just remains to show the congruence equation for let on types.

For this we need the following substitution lemma.

Lemma 5.4.5. If Γ(x : A∗ y : B) ` M : C and u : C ` D Type then

(let z be x:A∗y:B in Γ◦)(z : A∗B) ` let z be x:A∗y:B in (D[M/u]) = D[let z be x:A∗y:B in M/u] Type.

Proof. In the proof we write Φ for (let z be x:A∗y:B in ∆(Γ◦))(z : A∗B) and Mz for (let z be x:A∗y:B in M).

We show the stronger result that if the judgements Γ(x : A ∗ y : B) ` M : C and ∆(u : C) ` D Type are

derivable then so is the sequent Φ ` let z be x:A∗y:B in (D[M/u]) = D[Mz/u] Type. Note that ∆(u : C)

is a context only if C is a closed type. The proof goes by induction on D.

• The cases where D is 1 or E∗F follow easily, since D is closed and (let z be x:A∗y:B in D) is

defined to be D.

• D is T (N). By Lemma 4.4.4 we have ∆(u : C) ` N : E and ` v : E Bunch and T ∈T (v : E). Using

Lemma 5.4.3 and the rules (∗-η ), (∗-β ), (∗-E-CGR) and (SUBST-TM-CGR), we get

Φ ` N[Mz/u] = let z be x:A∗y:B in N[M/u] : E.

Since, by definition, (let z be x:A∗y:B in T (N[M/u])) is just T (let z be x:A∗y:B in N[M/u]), the

assertion then follows from this equation and (C-TY-CGR).
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• D is Πv : E.F . By Lemma 4.4.4 we have ∆(u : C) ` E Type and ∆(u : C), v : E ` F Type. From

the induction hypothesis we get

Φ ` let z be x:A∗y:B in E[M/u] = E[Mz/u] Type

Φ, v : (let z be x:A∗y:B in E) ` let z be x:A∗y:B in F [M/u] = F [Mz/u] Type.

Since (let z be x:A∗y:B in (Πv : E.F)) is defined to be

Πv : (let z be x:A∗y:B in E).(let z be x:A∗y:B in F),

the assertion follows using (Π-TY-CGR).

• The cases where D is Σu : E.F or Π∗u : E.F are similar to the case for Πu : E.F .

Using this lemma, we can now show congruence for let on types.

Lemma 5.4.6. If ` A1 = A2 Type, ` B1 = B2 Type and Γ(x : A1 ∗ y : B1) ` C1 = C2 Type then

(let z be x:A1∗y:B1 in Γ◦)(z : A1∗B1) ` let z be x:A1∗y:B1 in C1 = let z be x:A2∗y:B2 in C2 Type.

Proof. We show that, for any derivation of some sequent ∆ ` D1 = D2 Type, from which we can

derive the sequent Γ(x : A1 ∗ y : B1) ` C1 = C2 Type using only the structural rules, substitution and

bunch conversion, the judgement (let z be x:A1∗y:B1 in Γ◦)(z : A1∗B1) ` let z be x:A1∗y:B1 in C1 =

let z be x:A2∗y:B2 in C2 Type is derivable. The assertion follows as a special case. In the rest of this

proof we use Γi
z to abbreviate (let z be x:Ai∗y:Bi in Γ◦)(z : Ai∗Bi), where i ∈ {1,2}. The proof goes by

induction on the size of the derivation of ∆ ` D1 = D2 Type. We continue by case distinction on the last

rule of that derivation.

• In the case where the derivation ends in a structural rule, substitution or bunch conversion, the

induction hypothesis can be applied directly.

• (TY-REFL), (TY-SYM), (TY-TRANS) are straightforward.

• (TY-EQ-AX). The last rule is

∆ ` M : A u : A ` B Type u : A ` C Type
(u : A ` B = C Type) ∈T E (u : A)

∆ ` B[M/u] = C[M/u] Type

where D1 is B[M/u] and D2 is C[M/u]. We apply to the left premise the structural rules, sub-

stitution and bunch conversion that lead from the conclusion to C1 = C2. From this we obtain a

derivation of Γ(x : A1 ∗y : B1) ` M′ : A for some M′ (note that A must be closed). Now note that C1

is B[M′/u] and C2 is C[M′/u]. By (TY-EQ-AX), we have

Γ
1
z ` B[let z be x:A1∗y:B1 in M′/u] = C[let z be x:A1∗y:B1 in M′/u] Type
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Using (∗-E-CGR) and (SUBST-TY-CGR), this implies

Γ
1
z ` B[let z be x:A1∗y:B1 in M′/u] = C[let z be x:A2∗y:B2 in M′/u] Type

By Lemma 5.4.5 we have

Γ
1
z ` let z be x:A1∗y:B1 in (B[M′/u]) = B[let z be x:A1∗y:B1 in M′/u] Type

Γ
2
z ` let z be x:A2∗y:B2 in (C[M′/u]) = C[let z be x:A2∗y:B2 in M′/u] Type.

It is a straightforward induction on Γ◦ to derive ` Γ1
z = Γ2

z Bunch. Hence, transitivity gives the

required equation

Γ
1
z ` let z be x:A1∗y:B1 in (B[M′/u]) = let z be x:A2∗y:B2 in (C[M′/u]) Type.

• (Π-TY-CGR). The last rule is

∆ ` E1 = E2 Type ∆, v : E1 ` F1 = F2 Type
(Π-TY-CGR)

∆ ` Πv : E1.F1 = Πv : E2.F2 Type

where D1 is Πv : E1.F1 and D2 is Πv : E2.F2. Using the induction hypothesis, we can derive

Γ
1
z ` let z be x:A1∗y:B1 in E ′

1 = let z be x:A2∗y:B2 in E ′
2 Type

Γ
1
z , v : (let z be x:A1∗y:B1 in E ′

1) ` let z be x:A1∗y:B1 in F ′
1 = let z be x:A2∗y:B2 in F ′

2 Type,

where E ′
i and F ′

i arise from Ei and Fi by applying the substitutions that are applied after the

rule (Π-TY-CGR) in the given derivation. Hence, C1 is Πv : E ′
1.F

′
1 and C2 is Πv : E ′

2.F
′
2. By

using (Π-TY-CGR) and the definition of let on Π-types, we therefore obtain the required equation

Γ1
z ` let z be x:A1∗y:B1 in C1 = let z be x:A2∗y:B2 in C2 Type.

• The cases for the other congruence rules are similar to the case for (Π-TY-CGR).

By means of the above lemmas, we have shown admissible the following rules.

∆ ` M : A∗B Γ(x : A∗ y : B) ` C Type
(∗-E-TY)

(let M be x:A∗y:B in Γ◦)(∆) ` (let M be x:A∗y:B in C) Type

` A1 = A2 Type

` B1 = B2 Type

∆ ` M1 = M2 : A1∗B1

Γ(x : A1 ∗ y : B1) ` C1 = C2 Type
(∗-E-TY-CGR)

(let M1 be x:A1∗y:B1 in Γ◦)(∆) `
let M1 be x:A1∗y:B1 in C1

= let M2 be x:A2∗y:B2 in C2
Type

Γ ` M : A ∆ ` N : B Φ(x : A∗ y : B) ` C Type
(∗-β -TY)

Φ(Γ∗∆) [M/x] [N/y] ` (let pair∗A,B(M,N) be x:A∗y:B in C) = (C [M/x] [N/y]) Type
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∆ ` M : A∗B Γ(z : A∗B) ` C Type
(∗-η -TY)

Γ(∆) [M/z] ` C [M/z] = let M be x:A∗y:B in (C [pair∗A,B(x,y)/z]) Type

∆ ` M : A∗B Γ(x : A∗ y : B) ` N : C
(∗-E+)

(let M be x:A∗y:B in Γ◦)(∆) ` let M be x:A∗y:B in N : (let M be x:A∗y:B in C)

For example, to derive (∗-E+) from the above lemmas, we first use Lemma 5.4.3 and (BU-CONV) to

obtain the sequent (let pair∗A,B(x,y) be x:A∗y:B in Γ◦)(x : A∗ y : B) ` N : C. By Lemma 5.4.1 and (TY-

CONV), we get (let pair∗A,B(x,y) be x:A∗y:B in Γ◦)(x : A ∗ y : B) ` N : let pair∗A,B(x,y) be x:A∗y:B in C.

We can now apply the rule (∗-E) to derive

(let z be x:A∗y:B in Γ◦)(z : A∗B) ` let z be x:A∗y:B in N : (let z be x:A∗y:B in C).

The conclusion of (∗-E+) then follows using (SUBST).

The importance of the above admissible rules is that, for any judgement Γ(x : A∗y : B) `J and any

term ∆ ` M : A∗B, we can derive the judgement (let M be x:A∗y:B in Γ◦)(∆) ` let M be x:A∗y:B in J ,

no matter what the form of J is. We can therefore view ‘let’ as a special kind of substitution. The

semantical counterpart of this view is that let is interpreted by substitution along the inverse of the map

[pair∗A,B(x,y)/z] : (x : A)∗ (y : B)→ (z : A∗B).

5.5 Representation of Substitution

In this section, we introduce a syntax to represent substitutions in the type theory. Such a syntax for

substitutions is useful, for example to formulate the display property in the next section. It will also be

used in the construction a term model for BT(∗,1,Σ,Π,Π∗) in Chapter 7.

The representation of substitution for the bunched type theory is more complicated than for normal

dependent type theory, where simultaneous substitutions have a simple representation also known as

telescopes [28]; see [110, 48]. One reason for the additional complexity is that not all the structural

rules are admissible in BT, so that composition cannot be eliminated completely. Another reason why

the representation of substitution for BT is more complicated is that we view ‘let’ as a substitution. This

is because, in contrast to the other terms, ‘let’ cannot be described in terms of an ordinary substitution.

Making ‘let’ a substitution is necessary for showing completeness of the syntax.

We define a representation of simultaneous substitution, the additive part of which is similar to the

representations in [110, 109, 32].

Substitutions σ ::= 〈〉 | 〈M/x〉 | 〈M/x : A∗ x : A〉 | σ ◦σ

The substitution 〈M/x〉 represents an ordinary substitution (−)[M/x], while 〈M/x : A∗ y : B〉 represents
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a let-term (let M be x:A∗y:B in (−)). The free variables are defined by

FV (〈〉) = /0

FV (〈M/x〉) = FV (M)∪{x}

FV (〈M/x : A∗ y : B〉) = FV (M)∪{x,y}

FV (σ ◦ τ) = FV (σ)∪FV (τ)

We define the action of the representation of substitution on types and terms by

J [〈〉] = J

J [〈M/x〉] = J [M/x]

J [〈M/x : A∗ y : B〉] = let M be x:A∗y:B in J

J [σ ◦ τ] = J [σ ][τ],

where J may be a type A, a term M, or a context-with-hole Γ◦. Note that in this definition we make use

of the let on types and on contexts-with-hole defined in the previous section. Note also that J [M/x]

denotes ordinary syntactic substitution and not an explicit substitution.

Of course, not all substitutions σ are well-formed. There is no reason why, given a derivable judge-

ment Γ ` J , the judgement ∆ ` J [σ ] should be derivable. It is not even clear what ∆ should be.

Therefore, we next the define a judgement σ : ∆ → Γ whose derivability ensures that ∆ ` J [σ ] is

derivable whenever Γ ` J is.

` Γ Bunch
(SUB-ID)

〈〉 : Γ→ Γ

σ : Γ→ ∆ τ : ∆→Φ(SUB-COMP)
τ ◦σ : Γ→Φ

σ : Γ→ ∆ ` Φ Bunch
(SUB-∗) FV (Γ,σ ,∆)∩FV (Φ) = /0

σ : (Γ∗Φ)→ (∆∗Φ)

σ : Γ→ ∆ ∆ ` A Type
(SUB-LIFT) x 6∈ FV (Γ,σ ,∆)

σ : (Γ, x : A[σ ])→ (∆, x : A)

Γ ` M : A
(SUB-SUB) x 6∈ FV (Γ)

〈M/x〉 : Γ→ (Γ, x : A)

Γ ` M : A∗B
(SUB-LET) x 6= y

〈M/x : A∗ y : B〉 : Γ→ (x : A)∗ (y : B)

Γ′ < Γ σ : Γ→ ∆ ∆ < ∆′
(SUB-STR)

σ : Γ′→ ∆′

` Γ′ = Γ Bunch σ : Γ→ ∆ ` ∆ = ∆′ Bunch
(SUB-BU-CONV)

σ : Γ′→ ∆′
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The side-conditions on the rules (SUB-∗) and (SUB-LIFT) are important. Consider, for example, the

substitution 〈z/y〉 ◦ 〈x/z〉 : x : A → y : A, which makes use of a temporary variable z. We do not want to

allow this substitution to be lifted to a substitution of type (x : A) ∗ (z : B)→ (y : A) ∗ (z : B), since any

such lifted substitution should leave z untouched, and this is not the case for the given substitution.

Lemma 5.5.1. The following rule is admissible.

σ : Γ→ ∆ ∆ ` J
(SUBST+)

Γ ` J [σ ]

Proof. By induction on the derivation of σ .

It should be clear that (SUBST+) subsumes the rules (SUBST), (WEAK), (UNIT), (SWAP), (ASSOC),

(∗-E+) and (BU-CONV).

We define equality of substitutions.

Definition 5.5.2. Two substitutions σ : Γ→ ∆ and τ : Γ→ ∆ are equal, written σ = τ : Γ→ ∆, if for all

contexts-with-hole Φ◦ such that the all variables declared in Φ◦ are fresh for Γ, ∆ and σ , the following

two conditions hold.

1. For all types Φ(∆) ` A Type, we can derive (Φ◦[σ ])(Γ) ` A[σ ] = A[τ] Type.

2. For all terms Φ(∆) ` M : A, we can derive (Φ◦[σ ])(Γ) ` M[σ ] = M[τ] : A[σ ].

By this definition, two substitutions are equal if they give equal results in all situations. The require-

ment that Φ◦ declares only fresh variables is necessary to ensure that both (Φ◦[σ ])(Γ) and Φ(∆) are valid

bunches and that names of temporary variables in σ (i.e. the variables in FV (σ) \ (FV (Γ)∪FV (∆)))

do not collide with the names of variables in Φ◦. The requirement that Φ◦ declares only fresh variables

corresponds to the side-conditions on the rules (SUB-∗) and (SUB-LIFT). An example where the re-

quirement is important is for the ‘garbage collection’ equation 〈x/z〉 = 〈〉 : (x : A) → �. We can show

this equation, but only because Φ◦ can be assumed not to contain z.

Next we show that the representation of substitutions enjoys familiar properties of substitution, as

in e.g. [110].

Lemma 5.5.3. For any σ : Γ→ ∆, the following are true.

• If ∆ ` A = B Type then Γ ` A[σ ] = B[σ ] Type.

• If ∆ ` M = N : A then Γ ` M[σ ] = N[σ ] : A.

Proof. Using the congruences (SUBST-TY-CGR), (∗-E-TY-CGR), (SUBST-TM-CGR) and (∗-E-CGR).

Lemma 5.5.4. Equality of substitution is an equivalence relation with the following properties.
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• If σ = σ ′ : Γ→ ∆ and τ = τ ′ : ∆→Φ then (τ ◦σ) = (τ ′ ◦σ ′) : Γ→Φ.

• σ = σ ◦ 〈〉= 〈〉 ◦σ : Γ→ ∆ for all σ : Γ→ ∆.

• ρ ◦ (τ ◦σ) = (ρ ◦ τ)◦σ : Γ→ ∆ for all σ : Γ→Φ, τ : Φ→Ψ and ρ : Ψ→ ∆.

Proof. By definition of the substitution action (−)[σ ] and using Lemma 5.5.3.

Lemma 5.5.5 (Substitution Lemma). For any substitution σ : Γ→ ∆, any term ∆ ` M : A and any fresh

variable x, we have 〈M/x〉 ◦σ = σ ◦ 〈M[σ ]/x〉 : Γ→ (∆, x : A).

Proof. We show the assertion by induction on the substitution σ .

• σ is 〈〉. The assertion holds trivially since J [〈〉] = J .

• σ is σ ′′ ◦σ ′. Let ∆ ` M : A and let x be a fresh variable. It follows by inversion that there exists Φ

such that σ ′ : Γ → Φ and σ ′′ : Φ → ∆ are derivable. Furthermore, we can assume that x is fresh

not only for σ but also for Φ, because if neither σ ′ nor σ ′′ mention x, then any occurrence of x

in Φ can be replaced with a fresh variable. The assertion then follows at once from the following

diagram, both subsquares of which commute by induction hypothesis.

Γ
σ ′ //

〈M[σ ′′][σ ′]/x〉
��

Φ
σ ′′ //

〈M[σ ′′]/x〉
��

∆

〈M/x〉
��

Γ, x : A[σ ′′][σ ′]
σ ′
// Φ, x : A[σ ′′]

σ ′′
// ∆, x : A

• σ is 〈N/y〉. This case follows from the normal syntactic substitution lemma that J [M/x][N/y] =

J [N/y][M[N/y]/x] holds whenever x 6∈ FV (N), see e.g. [110, Chapter VIII].

• σ is 〈N/u : C∗v : D〉. Let ∆` M : A and let x be a fresh variable. The derivation of σ : Γ→∆ must

end in an application of (SUB-LET) followed by a number of applications of (SUB-∗), (SUB-

LIFT), (SUB-STR) and (SUB-BU-CONV). These rules can be permuted so that the derivation

ends in a number of applications of (SUB-∗) and (SUB-LIFT) followed by a number of applica-

tions of (SUB-STR) and (SUB-BU-CONV). This implies that there exist derivable judgements `
Γ = Γ′′ Bunch, Γ′′ < (Φ◦[〈N/u∗v〉])(Γ′) and Φ(u : C∗v : D) < ∆, and that we have Γ′ ` N : C∗D.

We have to show R[〈M/x〉][〈N/u : C ∗v : D〉] = R[〈N/u : C ∗v : D〉][M[〈N/u : C ∗v : D〉]/x] for all

terms Ψ(∆, x : A) ` R : B, where Ψ◦ declares only fresh variables. From now on we omit the

types C and D for readability. Consider the following derivation.

∆ ` M : A
(CONG)

Φ(u : C ∗ v : D) ` M : A
Lemma 4.2.2

Ψ(Φ(u : C ∗ v : D)) ` M : A
(∗-E+)

(Ψ(Φ◦)[〈z/u∗ v〉])(z : C∗D) ` M[〈z/u∗ v〉] : A[〈z/u∗ v〉]
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We then have the following derivation, in which we use the abbreviations

Ψ1
def= Ψ(Φ◦, x : A)[〈z/u∗ v〉](z : C∗D)

= Ψ◦[〈z/u∗ v〉](Φ◦[〈z/u∗ v〉](z : C∗D), x : A[〈z/u∗ v〉])

Ψ2
def= Ψ(Φ◦)[〈z/u∗ v〉](z : C∗D)[M[〈z/u∗ v〉]/x]

Ψ3
def= Ψ(Φ◦)[〈N/u∗ v〉](Γ′)[M[〈N/u∗ v〉]/x]

= Ψ◦[〈N/u∗ v〉](Φ◦[〈N/u∗ v〉](Γ′))[M[〈N/u∗ v〉]/x]

Ψ4
def= Ψ◦[〈N/u∗ v〉](Γ′′)[M[〈N/u∗ v〉]/x] = Ψ◦[〈N/u∗ v〉 ◦ 〈M[〈N/u∗ v〉]/x〉](Γ′′)

Ψ5
def= Ψ◦[〈N/u∗ v〉 ◦ 〈M[〈N/u∗ v〉]/x〉](Γ)

Ψ(∆, x : A) ` R : B
(CONG)

Ψ(Φ(u : C ∗ v : D), x : A) ` R : B
(∗-E+)

Ψ1 ` R[〈z/u∗ v〉] : B[〈z/u∗ v〉]
(SUBST)

Ψ2 ` (R[〈z/u∗ v〉])[M[〈z/u∗ v〉]/x] : B′
(∗-η )

Ψ3 ` R[〈N/u∗ v〉][M[〈N/u∗ v〉]/x] = R[〈u∗v/u∗ v〉][M[〈u∗v/u∗ v〉]/x][〈N/u∗ v〉] : B′′
(CONG)

Ψ4 ` R[〈N/u∗ v〉][M[〈N/u∗ v〉]/x] = R[〈u∗v/u∗ v〉][M[〈u∗v/u∗ v〉]/x][〈N/u∗ v〉] : B′′
(BU-CONV)

Ψ5 ` R[〈N/u∗ v〉][M[〈N/u∗ v〉]/x] = R[〈u∗v/u∗ v〉][M[〈u∗v/u∗ v〉]/x][〈N/u∗ v〉] : B′′

Using (∗-β ) and the congruence rules, this equation can be simplified to

R[〈N/u∗ v〉][M[〈N/u∗ v〉]/x] = (R[M/x])[〈N/u∗ v〉].

A corresponding equation for the types can be derived similarly. Note that the context Ψ5 is

just as required in the definition of equality for substitutions. By definition of the substitution

action (−)[σ ], this is just the required equation.

Lemma 5.5.6. If σ : Γ→ ∆ and ∆ ` B Type and x is a fresh variable, then Γ, x : B[σ ] ` x = x[σ ] : B[σ ].

Proof. The proof goes by induction on σ . The interesting case is where σ is 〈N/u : C ∗ v : D〉. As

in the previous lemma, it follows by inversion that there exist derivable judgements ` Γ = Γ′′ Bunch,

Γ′′ < (Φ◦[〈N/u∗ v〉])(Γ′) and Φ(u : C∗v : D) < ∆, and that we have Γ′ ` N : C∗D. The required equation

can be derived as follows.

∆ ` B Type
(CONG)

Φ(u : C ∗ v : D) ` B Type
(PROJ)

Φ(u : C ∗ v : D), x : B ` x : B
(∗-E+)

(Φ◦[〈z/u∗ v〉])(z : C∗D), x : B[〈z/u∗ v〉] ` x : B[〈z/u∗ v〉]
(∗-η )

(Φ◦[〈N/u∗ v〉])(Γ′), x : B[〈N/u∗ v〉] ` x = x[〈N/u∗ y〉] : B[〈N/u∗ v〉]
(CONG),(BU-CONV)

Γ, x : B[〈N/u∗ v〉] ` x = x[〈N/u∗ y〉] : B[〈N/u∗ v〉]

Lemma 5.5.7. For all σ : Γ→ ∆ and τ : Φ→Ψ that satisfy FV (Γ,σ ,∆)∩FV (Φ,τ,Ψ), the equality of

substitutions (σ ◦ τ) = (τ ◦σ) : Γ∗Φ→ ∆∗Ψ holds.
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Proof. Although this lemma is trivial for normal substitution, in the presence of let-terms it requires

commuting conversions. The proof goes by induction on τ . In the case where τ is 〈M/x : A∗ y : B〉 we

use (∗-η ) and (∗-β ) as in the previous lemmas to derive (let M be x∗y in (R[σ ]) = (let M be x∗y in R)[σ ],

which gives the required property.

Lemma 5.5.8. If we have σ = τ : Γ → ∆ and ∆ ` A Type and x is a fresh variable, then the equation

σ = τ : (Γ, x : A[σ ])→ (∆, x : A) holds.

Proof. Immediate from the definition of equality for substitution.

Lemma 5.5.9. If τ : Γ → (∆, x : A) and σ : Γ → ∆ are such that σ = τ : Γ → ∆ holds, then we have

τ = 〈z/x〉 ◦σ ◦ 〈x[τ]/z〉 : Γ→ (∆, x : A), where z is some/any fresh variable.

Proof. Let z be fresh. From σ = τ : Γ → ∆ we get σ = τ : (Γ, z : A[σ ]) → (∆, z : A) by the previ-

ous lemma. Since 〈x[τ]/z〉 : Γ → (Γ, z : A[σ ]), this implies σ ◦ 〈x[τ]/z〉 = τ ◦ 〈x[τ]/z〉 : Γ → (∆, z : A).

By Lemma 5.5.5, we have 〈x/z〉 ◦ τ = τ ◦ 〈x[τ]/z〉 : Γ → (∆, x : A, z : A), which implies 〈x/z〉 ◦ τ =

τ ◦ 〈x[τ]/z〉 : Γ → (∆, z : A). Using transitivity, we get σ ◦ 〈x[τ]/z〉 = 〈x/z〉 ◦ τ : Γ → (∆, z : A). By

composition, we have 〈z/x〉 ◦σ ◦ 〈x[τ]/z〉 = 〈z/x〉 ◦ 〈x/z〉 ◦ τ : Γ → (∆, x : A), which gives the required

〈z/x〉 ◦σ ◦ 〈x[τ]/z〉= τ : Γ→ (∆, x : A).

5.6 Internalising Contexts and Display Property

In the presence of ∗-types, Σ-types and 1-types, each context can be represented by a type. The repre-

sentation is induced by the following isomorphisms.

�
〈unit/z〉 //

(z : 1)
〈〉
oo (x : A, y : B)

〈〈x,y〉/z〉//
(z : Σx : A.B)

〈fst(z)/x〉◦〈snd(z)/y〉
oo (x : A)∗ (y : B)

〈x∗y/z〉 //
(z : A∗B)

〈z/x∗y〉
oo

Making repeated use of these isomorphisms, each context Γ can be represented as a context declaring

a single variable. The isomorphisms are used inside-out, so that, for instance, to represent the context

(x : A)∗(∆, y : B) we first obtain an isomorphism σ : (z : b∆c)∼= ∆, which we then lift to an isomorphism

between (x : A) ∗ (∆, y : B) and (x : A) ∗ (z : b∆c, y : B[σ ]). It should be clear how to use the above

isomorphisms to internalise the resulting context.

Formally, we define for each context Γ a type bΓc and a substitution o(z,Γ) : (z : bΓc)→ Γ simulta-

neously by induction on the structure of Γ.

b�c= 1 o(z,�) = 〈〉

bΓ∗∆c= bΓc∗ b∆c o(z,Γ∗∆) = o(u,Γ)◦o(v,∆)◦ 〈z/u : bΓc∗ v : b∆c〉

bΓ, x : Ac= Σz : bΓc.A[o(z,Γ)] o(z,(Γ, x : A)) = o(u,Γ)◦ 〈fst(z)/u〉 ◦ 〈snd(z)/x〉

In these definitions, u, v and z are arbitrary fresh variables. The choice of fresh variables is irrelevant

with respect to equality of substitutions.
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To give an example, we internalise the context in ((x : A∗ y : B), u : C)∗ (v : D) ` E Type:

((x : A∗ y : B), u : C)∗ (v : D) ` E Type
(a : A∗B, u : C[〈a/x∗ y〉])∗ (v : D) ` E[〈a/x∗ y〉] Type

b : (Σa : A∗B.C[〈a/x∗ y〉])∗ (v : D) ` E[〈fst(b)/x∗ y〉] [snd(b)/u] Type
c : ((Σa : A∗B.(C[〈a/x∗ y〉]))∗D) ` E[〈fst(b)/x∗ y〉] [snd(b)/u][〈c/b∗ v〉] Type

To define an inverse of o(z,Γ), we define a term Γ ` i(Γ) : bΓc satisfying

Γ ` A[o(z,Γ)] [i(Γ)/z] = A Type z : bΓc ` B [i(Γ)/z][o(z,Γ)] = B Type

Γ ` M[o(z,Γ)] [i(Γ)/z] = M : A z : bΓc ` N [i(Γ)/z][o(z,Γ)] = N : B

for all types Γ ` A Type and z : bΓc ` B Type, all terms Γ ` M : A and z : bΓc ` N : B, and all fresh

variables z. The definition is given inductively by:

i(�) = unit

i(Γ∗∆) = pair∗bΓc,b∆c(i(Γ), i(∆))

i(Γ, x : A) = pair(z:bΓc)A[o(z,Γ)](i(Γ),x)

Notice that for well-typedness in the last case we need the equality A[o(z,Γ)] [i(Γ)/z] = A, given by the

induction hypothesis. The verifications are routine.

Proposition 5.6.1 (Display Property). For each type Γ(∆) ` A Type there exists a type ∆ ` B Type such

that there is a one-to-one correspondence between terms Γ(∆) ` M : A and ∆ ` N : B. Precisely, this

means that, for each term Γ(∆) ` M : A, there exists a term MΓ such that ∆ ` MΓ : B is derivable, and,

for each term ∆ ` N : B, there exists a term NΓ such that Γ(∆) ` NΓ : A is derivable. Moreover, these

assignments are such that Γ(∆) ` M = (MΓ)Γ : A and ∆ ` N = (NΓ)Γ : B hold for all terms Γ(∆) ` M : A

and ∆ ` N : B.

Proof. By induction on Γ◦, using internalisation together with Π and Π∗-types. The base case where Γ◦

is © follows trivially by letting B be A. If Γ◦ is Γ′◦, x : C then we can derive Γ′(∆) ` Πx : C.A Type. By

the equations for Π-types, the assignment M 7→ λx : C.M gives a one-to-one correspondence between

terms of type Γ(∆)` A Type and terms of type Γ′(∆)`Πx : C.A Type. Its inverse is application N 7→N x.

The assertion follows by using the induction hypothesis for Γ′(∆) ` Πx : C.A Type. If Γ◦ is Γ′◦ ∗Φ then

we can derive Γ′(∆) ∗ z : bΦc ` A[o(z,Φ)] Type and further Γ′(∆) ` Π∗z : bΦc.A[o(z,Φ)] Type. The

assignment M 7→ λ∗z : bΦc.M[o(z,Φ)] is then a one-to-one correspondence between terms of type A

and terms of type Π∗z : bΦc.A[o(z,Φ)]. Its inverse is N 7→ N@i(Φ). The assertion follows by using the

induction hypothesis for Γ′(∆) ` Π∗z : bΦc.A[o(z,Φ)] Type. Since, using this argument and (SWAP),

the case where Γ is Φ∗Γ′◦ follows as well, this completes the proof.

Using the above proposition, we can omit parameter contexts in the formulation of elimination rules, as

discussed in Section 4.3. We are therefore in essentially the same situation as in additive type theory,

where elimination rules are also usually formulated without parameter contexts.
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5.7 Strong Π∗-types

The rules for Π∗-types that we have given so far are sound but may not be complete. The source

of incompleteness is the definition of strong simple monoidal products Π∗ (Definition 2.5.12), which

relates two terms of the form (M1@x)[σ1] and (M2@x)[σ2] for arbitrary substitutions σ1 and σ2. The

congruence rule (Π∗-E-CGR), however, does not account for substitutions of the form 〈N/u ∗ v〉. In

order for BT(∗,1,Σ,Π,Π∗) to be complete, we strengthen the rule (Π∗-E-CGR).

∆1 ` M1 : Π
∗x : A1.B1

∆2 ` M2 : Π
∗x : A2.B2

σ1 : Γ→ (∆1 ∗ x : A1)

σ2 : Γ→ (∆2 ∗ x : A2)

` A1 = A2 Type

Γ ` (Π∗x : A1.B1)[σ1] = (Π∗x : A2.B2)[σ2] Type

Γ ` B1[σ1] = B2[σ2] Type

Γ ` M1[σ1] = M2[σ2] : (Π∗x : A1.B1)[σ1]

Γ ` x[σ1] = x[σ2] : A1
(Π∗-E-CGR+)

Γ ` (app∗(x:A1)B1
(M1,x))[σ1] = (app∗(x:A2)B2

(M2,x))[σ2] : B1[σ1]

That (Π∗-E-CGR) derives from (Π∗-E-CGR+) can be seen by taking σ1 = 〈N1/x〉 and σ2 = 〈N2/x〉.

5.8 Further Work

The most obvious omission from this chapter is an algorithm for type-checking. As usual in dependent

type theories, the main work for giving such an algorithm goes into showing decidability of defini-

tional equality. Deciding equality for BT(∗,1,Σ,Π,Π∗) is complicated by the presence of let-terms

and their commuting conversions. It may, however, be possible to exploit the extra assumption that ∗
is strict affine to avoid commuting conversions in an algorithm. In the next chapter we will show that

it is sound to replace let-terms with the affine projections, that is to translate (let M be x∗y in N) to

N[π̇1(M)/x][π̇2(M)/y]. This translation identifies, in particular, any two terms that are the same up to

commuting conversion. In 7.2.2 we show that any two terms having the same translation are provably

equal. This suggests that it may be easier to decide equality on the translated terms with affine pro-

jections. Perhaps, it is even possible to take as equations simply π̇1(M∗N) = M, π̇2(M∗N) = N and

R = π̇1(R)∗ π̇2(R), where R is of type A∗B. An algorithm based on these equations should be no more

complicated than an algorithm for BT(1,Σ,Π,Π∗). It would evidently be complete, i.e. it would be able

to show all equations. But would it be sound?
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Interpretation and Soundness

In this chapter we define the semantic interpretation of the type theory from the previous chapter and

show soundness. The main difficulty in doing this is how to deal with the multiplicative types ∗ and Π∗.

The additive types, on the other hand, present no more problems than in the interpretation of standard

dependent type theory. We therefore consider only Π-types in detail, leaving out 1-types and Σ-types for

brevity. Hence, in this chapter we define the interpretation for BT(∗,Π,Π∗), for which write just BT.

6.1 Semantic Structure

There are well-known coherence problems with the interpretation of dependent types in, say, compre-

hension categories [46]. The problem is that the substitution laws given by Beck-Chevalley conditions,

such as σ∗(ΠAB)∼= (Πσ∗A{σ}∗B), hold only up to isomorphism and not equality. As a result one has to

solve coherence problems for the interpretation of substitution. Curien shows how to treat ‘substitution

up to isomorphism’ [26]. A simpler solution is to require the isomorphism σ∗(ΠAB)∼= (Πσ∗A{σ}∗B) in

the semantics to be the identity, i.e to work with split fibrations. This is the solution most often adopted

in the literature, see e.g. [105, 48, 85]. By considering split fibrations, the coherence problem is shifted

to the semantics, where we now have to find split fibrations for the models we are interested in. In

Section 3.5.2, we have shown how to do this for our models with names.

We interpret BT(∗,1,Σ,Π,Π∗) in the following structure.

Definition 6.1.1. A (∗,1,Σ,Π,Π∗)-type-category is given by the following data.

1. A split closed comprehension category with unit p : E→ B.

2. A strict affine monoidal structure ∗ on B, together with, for any two objects A and B in E1, an

object A∗B in E1 and an isomorphism lA,B : {A}∗{B}→ {A∗B} in B.

3. Strong split simple monoidal products Π∗ with respect to the monoidal structure ∗.

149



Chapter 6. Interpretation and Soundness 150

6.2 Overview

Although the interpretation and the proof of soundness are essentially straightforward, the technical

development is rather lengthy. This is already the case for normal dependent types. Streicher’s detailed

proof of soundness for the calculus of constructions takes up 50 pages in [105]. Therefore, before we

dive into the details, we give a brief overview of the interpretation.

An obvious first idea to define the interpretation of BT is by induction on the derivations. This,

however, does not readily work with dependent types. To see the problem, consider the application rule.

Γ, x : A ` B Type Γ ` M : Πx : A.B Γ ` N : A
(Π-E)

Γ ` app(x:A)B(M,N) : B [N/x]

The idea would be to use the induction hypothesis to obtain interpretations of the premises and then

interpret the term in the conclusion by the map N∗εA,B ◦M : 1→ΠAB = N∗π∗AΠAB→N∗B in EΓ, where

εA is the counit of π∗A aΠA. There are at least to problems with this idea. First, because the type theory

allows different derivations of the same judgement, there is, a priori, no reason why the A in the type

of M should have received the same interpretation as the type of N. But as the argument types might

not match, we cannot use the semantic application. One possible solution to this problem for normal

dependent type theory is to restrict the rules so that each judgement has effectively only one derivation.

For BT it is not clear how to formulate the rules in such a way, for instance because weakening is

not admissible. The second problem is that we must relate substitution in the syntax to reindexing in

the semantics. In order for N∗εA,B ◦M to be an interpretation for the conclusion of the above rule, its

codomain N∗B must be the interpretation of the type B [N/x], but this information is not available.

A possible solution to these problems is to prove that the interpretations of any two derivations of the

same judgement are in fact the same. This is the approach we take in this chapter. It addresses the second

of the above issues because the substitution rule is interpreted by semantic reindexing. Notice that,

because of the problems illustrated with application above, we cannot easily define the interpretation of

derivations first and then show that two derivations of the same judgement are equal.

As a way of working with the semantics, we first introduce a dependent type theory ES that corre-

sponds directly to the semantics. Since substitution and the structural rules correspond to uses of rein-

dexing functors in the comprehension category, a type theory corresponding to the semantics is naturally

given by an explicit substitution type theory with de Bruijn indices. The treatment of the semantics as an

explicit substitution calculus is folklore. For example, Cartmell’s categories with families [18, 105, 48]

may be viewed as a formulation of type theory with explicit substitutions and de Bruijn indices; other

examples can be found in [26, 93]. We mention here just the treatment of ∗-types in the explicit substi-

tution calculus. For ∗-types we have an isomorphism lA,B : {A}∗{B}→ {A∗B}. In suggestive notation,

this morphism corresponds to the substitution 〈x∗y/z〉 : (x : A)∗ (y : B)→ (z : A∗B). Its inverse, which

we denote by 〈z/x ∗ y〉, corresponds to the let-term for ∗-elimination, see also the previous chapter.

Thus, the let-terms in the ∗-elimination become a special case of substitution. In the next section, we

formulate the type theory ES with explicit substitutions and give a sound semantic interpretation for it.



Chapter 6. Interpretation and Soundness 151

Having defined the explicit substitution type theory ES for working with the semantics, the problem

of defining the semantic interpretation of BT can be reduced to interpreting BT in ES. This means that

we would like to translate derivations in BT to derivations in ES. Of course, this translation should be

reasonable, so that the constructions in BT are mapped to the corresponding constructions in ES, e.g that

Π-types in BT are mapped to Π-types in ES. From any judgement K with explicit substitutions in ES we

can obtain a judgement J in BT, essentially by replacing the explicit substitutions with actual syntactic

substitutions. Let us write K ⇓ J if J is obtained from K in this way. That the translation from BT
to ES is reasonable then means that a derivation of a judgement J in BT is translated to a derivation of a

judgement K in ES satisfying K ⇓ J. In defining such a translation, we encounter the problem outlined

above, that we must show that two derivations of the same judgement J in BT receive provably equal

interpretations in ES. To show this it suffices to prove that K′ ⇓ J and K′′ ⇓ J implies K′ = K′′ in ES.

Showing that K′ ⇓ J and K′′ ⇓ J implies K′ = K′′ in ES takes up most of this chapter. However,

the idea is quite straightforward. The proof goes by induction on the combined size of K′ and K′′. For

example, consider the induction case for Π-types. If K′ ⇓ Πx : A.B and K′′ ⇓ Πx : A.B then K′ and K′′

can be assumed to be of the form (ΠA′.B′)[σ ′′] and (ΠA′′.B′′)[σ ′′] respectively, such that A′[σ ′] ⇓ A

and A′′[σ ′′] ⇓ A and B′[σ ′
•] ⇓ B and B′′[σ ′′

•] ⇓ B, where (−)• denotes lifting of substitutions in a larger

context. All these types are smaller, so that we can use the induction hypothesis to obtain A′[σ ′] =

A′′[σ ′′] and B′[σ ′
•] = B′′[σ ′′

•]. By the congruence rule and the substitution equation for Π-types, we

can conclude K′ = K′′. A second case worth mentioning is that where we have K′ ⇓ pair∗A,B(M,N) and

K′′ ⇓ pair∗A,B(M,N). In this case, K′ and K′′ can be assumed to be of the form (pair∗A′,B′(M
′,N′))[σ ′]

and (pair∗A′′,B′′(M
′′,N′′))[σ ′′] respectively. To prove (pair∗A′,B′(M

′,N′))[σ ′] = (pair∗A′′,B′′(M
′′,N′′))[σ ′′]

we make essential use of a version of the rule (INJECT). By this rule it is enough to prove M′[π̇ ′1][σ
′] =

M′′[π̇ ′′1 ][σ ′′] and N′[π̇ ′2][σ
′] = N′′[π̇ ′′2 ][σ ′′], where π̇ ′1, π̇ ′′1 , π̇ ′2 and π̇ ′′2 are weakenings used to bring the

terms in the right context (Note that M′ and M′′ could occur in different contexts). These equations

can be proved by the induction hypothesis, since the fact that both K′ and K′′ translate to pair∗A,B(M,N)

allows us to assume that M′[π̇ ′1][σ
′] and M′′[π̇ ′′1 ][σ ′′] both translate to M, and analogue facts hold for A, B

and N. We point out that for this argument to work we need the assumption that the monoidal structure ∗
is strict affine. Just like in these two cases, it can be seen that all cases for term constructors amount to

pushing the substitutions σ ′ and σ ′′ inside the terms. Note that we consider let-terms as substitutions,

so that lets are being pushed inside the terms as well. In the end we have to handle the case of variables.

Since substitutions contain lets, we have to consider variables under a number of lets. Consider, for

simplicity, just the special case where K′ and K′′ translate to a term of the form (let M be x:A∗y:B in z).

Because z is a variable, we can assume that M is typeable in the current context and not just in some

not uniquely determined sub-context. Then we can use the induction hypothesis for M to show the

equality K′ = K′′.

For the additive type formers, this argument is implicitly contained in the Streicher’s proof of sound-

ness for the calculus of constructions. In [105], Streicher essentially shows that each derivation of a

type/term in ES can be brought in a normal form having the same interpretation. In the normal forms
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the only kinds of substitutions are weakenings and these weakenings occur only on variables. It follows

from this that K′ ⇓ J and K′′ ⇓ J implies K′ = K′′. Note that in our case such normal forms need not

exist, for example because weakening is not admissible.

Already from the rough proof sketch above, it can be seen that the only kind of let-term we have to

deal with are of the form (let M be x:A∗y:B in z). If z is different from both x and y then this term equals z,

i.e. we can remove the let. The other two cases (let M be x:A∗y:B in x) and (let M be x:A∗y:B in y) are

just the affine projections A ∗B → A and A ∗B → B. Therefore, it is technically convenient to remove

the let-terms altogether from BT and replace them with the two projections.

6.3 Let-free Syntax

The syntax of BT(∗,1,Σ,Π,Π∗) contains let-terms for the elimination of ∗-types. As discussed in the

previous chapter, the choice of let-terms is motivated by syntactic considerations. From a semantic

point of view, however, let-terms contain more information than necessary. For instance, a commuting

conversion should correspond to an equality in the semantics. For the semantic interpretation, it is more

convenient use the two projections A∗B→ A and A∗B→ B as eliminations for ∗-types.

We now introduce the let-free syntax. It differs from the syntax of BT(∗,1,Σ,Π,Π∗) only in that

let-terms for ∗-types are replaced with two projections lA,B(M) and rA,B(M).

Contexts Γ ::= � | Γ∗Γ | Γ, x : A

Types A ::= T (M1, . . . ,Mn) | 1 | A∗A | Σx : A.A |Πx : A.A |Π
∗x : A.A

Terms M ::= x | f (M1, . . . ,Mn) | unit

| pair∗A,A(M,M) | lA,A(M) | rA,A(M)

| pair(x:A)A(M,M) | fst(x:A)A(M) | snd(x:A)A(M)

| λx : A.M | app(x:A)B(M,M)

| λ
∗x : A.M | app∗(x:A)B(M,M)

We identify terms up to renaming of bound variables.

There is an evident translation | − | from the syntax of BT(∗,1,Σ,Π,Π∗) to the let-free syntax, in

which each let is replaced by the two projections.

|T (M1, . . . ,Mn)|= T (|M1|, . . . , |Mn|)

|1|= 1

|A∗B|= |A| ∗ |B|

|Πx : A.B|= Πx : |A|. |B|

|Σx : A.B|= Σx : |A|. |B|

|Π∗x : A.B|= Π
∗x : |A|. |B|
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|x|= x

| f (M1, . . . ,Mn)|= f (|M1|, . . . , |Mn|)

|unit|= unit

|pair∗A,B(M,N)|= pair∗|A|,|B|(|M|, |N|)

|(M ∗N)|= |M| ∗ |N|

|pair(x:A)B(M,N)|= pair(x:|A|)|B|(|M|, |N|)

|fst(x:A)B(M)|= fst(x:|A|)|B|(|M|)

|snd(x:A)B(M)|= snd(x:|A|)|B|(|M|)

|λx : A.N|= λx : |A|. |N|

|app(x:A)B(M,N)|= app(x:|A|)|B|(|M|, |N|)

|λ∗x : A.N|= λ
∗x : |A|. |N|

|app∗(x:A)B(M,N)|= app∗(x:|A|)|B|(|M|, |N|)

|let M be x:A∗y:B in N|= |N| [lA,B(|M|)/x] [rA,B(|M|)/y]

Note in particular that two terms M and N in BT(∗,1,Σ,Π,Π∗) that differ only up to commuting con-

version translate to equal terms under |− |.

To each term M in the explicit substitution calculus, we assign a term in the let-free syntax, es-

sentially by replacing explicit substitutions with actual syntactic substitutions. In order to define this

assignment, we need a representation of simultaneous substitution for the let-free syntax. We follow

Stoughton [104] in our treatment of simultaneous substitution. A substitution χ is a function from vari-

ables to let-free terms. We use χ and ξ to range over simultaneous substitutions. We write id for the

identity substitution.

A special case of substitutions are renamings, which are functions from variables to variables. We

use α and β to range over renamings.

Given a set of variables V and substitutions χ and ξ , we use the notation χ{ξ/V} for the substitution

defined by:

(χ{ξ/V})(x) =

{
ξ (x) if x ∈V ,

χ(x) otherwise.

For a term M, a variable x and a substitution χ , we write χ{M/x} for the substitution defined by:

(χ{M/x})(y) =

{
M if x = y,

χ(y) otherwise.

We abbreviate id{ξ/V} and id{M/x} by {ξ/V} and {M/x} respectively.

Given a set of variables V , we define a binary relation =V on substitutions as follows.

χ =V ξ ⇐⇒ ∀x ∈V.χ(x) = ξ (x) (6.1)
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The action of a substitution χ on types and terms, denoted by A χ and M χ respectively, is defined

inductively by the following equations.

T (M1, . . . ,Mn) χ = T (M1 χ, . . . ,Mn χ)

1 χ = 1

(A∗B) χ = (A χ)∗ (B χ)

(Πx : A.B) χ = Πy : (A χ).(B χ{y/x}) y fresh

(Σx : A.B) χ = Σy : (A χ).(B χ{y/x}) y fresh

(Π∗x : A.B) χ = Π
∗y : (A χ).(B χ{y/x}) y fresh

x χ = χ(x)

f (M1, . . . ,Mn) χ = f (M1 χ, . . . ,Mn χ)

unit χ = unit

pair∗A,B(M,N) χ = pair∗A χ,B χ(M χ,N χ)

lA,B(M) χ = lA χ,B χ(M χ)

rA,B(M) χ = rA χ,B χ(M χ)

pair(x:A)B(M,N) χ = pair(y:(A χ))B χ{y/x}(M χ,N χ) y fresh

fst(x:A)B(M) χ = fst(y:(A χ))(B χ{y/x})(M χ) y fresh

snd(x:A)B(M) χ = snd(y:(A χ))(B χ{y/x})(M χ) y fresh

(λx : A.M) χ = λy : (A χ).(M χ{y/x}) y fresh

app(x:A)B(M,N) χ = app(y:(A χ))(B χ{y/x})(M χ,N χ) y fresh

(λ∗x : A.M) χ = λ
∗y : (A χ).(M χ{y/x}) y fresh

app∗(x:A)B(M,N) χ = app∗(y:(A χ))(B χ{y/x})(M χ,N χ) y fresh

Because types and terms are identified up to renaming of bound variables, the choice of the fresh vari-

able y in the above definition does not affect the result.

Composition of substitution is defined by (χ ◦ ξ )(x) = χ(x) ξ . Note that this composition is the

other way from that in [104]. In particular, for renamings α and β , we have (α ◦ β )(x) = β (α(x)).

We take this definition in order to agree with composition in the semantics and such that we have

J (χ ◦ξ ) = (J χ) ξ . Our definition of composition agrees with that in [49].

Lemma 6.3.1.

1. For all substitutions χ and all name sets V , we have id ◦χ =V χ =V id ◦χ .

2. For all substitutions χ1, χ2, χ3 and all name sets V , we have χ3 ◦ (χ2 ◦χ1) =V (χ3 ◦χ2)◦χ1.

3. For a bijective renaming α , we have (Π∗x : A.B) α = Π∗α(x) : (A α).(B α). An analogous

property holds for all binders.

A proof is straightforward.
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6.4 An Intermediate System with Explicit Substitutions

In this section we introduce ES, the explicit substitution calculus with de Bruijn indices that corresponds

directly to the semantics. Since the purpose of introducing this calculus is as a vehicle for proving

soundness of BT(∗,Π,Π∗), we formulate the rules of inference for ES so that they already contain a

translation to the let-free syntax.

The syntax for ES is given as follows.

Contexts Γ ::= � | Γ∗Γ | Γ, x : A

Types A ::= T (σ) | A∗A |ΠA.A |Π
∗A.A

Terms M ::= 1 | f (σ) | pair∗A,A(M,M) | λA.M | app[A]A(M,M) | λ
∗A.M | app∗[A]A(M,M)

Substitutions σ ::= τ | σ ◦σ | σ ∗σ | σ• | 〈M〉 | 〈M/A∗A〉

Structural maps τ ::= id | τ ◦ τ | τ ∗ τ | τ• | w | unit | unit−1 | swap | assoc | assoc−1

We include variable names in the contexts. This is in order to simplify the translation of the explicit

calculus to the let-free syntax and in order to be able to state concisely a coherence lemma for structural

morphisms (Lemma 6.5.3). We write FV (Γ) for the set of variables in Γ and v(Γ) for the ordered list

of variables in Γ. For brevity, we will often omit FV , e.g. writing just Γ∩∆ for FV (Γ)∩FV (∆). As

for BT, we make the convention that no variable may be declared more than once in a context.

We define dependently typed algebraic theories T in ES just as in Definition 4.1.1, only now using

the above explicit substitution syntax.

The judgements for ES are the kinds judgements of BT(∗,Π,Π∗) as well as judgements for substitu-

tions and structural maps. Moreover, the judgements contain information about the syntactic translation,

where we write J ⇓ K to mean that the statement J in the explicit substitution syntax translates to K in

the let-free syntax. Thus, in the following judgements, Γ, ∆, A, B, M, N, σ and τ are formed in the

explicit substitution syntax, while A′, M′ and χ are formed in the let-free syntax.

` Γ Bunch The context Γ is well-formed.

Γ ` A ⇓ A′ Type The type A is well-formed in context Γ and A translates to A′.

Γ ` M ⇓M′ : A The term M has type A in context Γ and M translates to M′.

` Γ = ∆ Bunch The contexts Γ and ∆ are equal.

Γ ` A = B Type The types A and B in context Γ are equal.

Γ ` M = N : A The terms M and N of type A in context Γ are equal.

σ ⇓ χ : Γ→ ∆ σ is a substitution from Γ to ∆ and σ translates to χ .

τ : Γ⇒ ∆ τ is a structural map from Γ to ∆.

σ = τ : Γ→ ∆ σ and τ are equal substitutions from Γ to ∆

In the rest of this chapter, unless otherwise stated, all judgements are in the explicit substitution sys-

tem ES. When we are not interested in the syntactic translation we will omit it from the judgements,

e.g. writing Γ ` A Type for Γ ` A ⇓ A′ Type.
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We formulate the rules using the following notation: J can be one of (A Type), (A = B Type),

(M : A), and (M = N : A). We write J [σ ] for the obvious application of the explicit substitution σ , for

example (M = N : A)[σ ] means M[σ ] = N[σ ] : A[σ ]. For the explicit substitution calculus we do not

need a notation for contexts with holes.

6.4.1 Rules of Inference

In the rules we frequently make use of substitutions !Γ : Γ → �. In all rules where !Γ is used, the

premise !Γ : Γ → � is implicit. Because of the rule (STR-�EQ), it is clear that, for each context Γ,

there is a unique substitution of that type. Furthermore, for contexts Γ and ∆, use the abbrevia-

tions π̇
Γ,∆
1 = unit−1 ◦ (id∗!∆) and π̇

Γ,∆
2 = unit−1 ◦ (id∗!Γ) ◦ swap, which correspond to the projection

maps Γ ∗∆ → Γ and Γ ∗∆ → ∆. Again we assume that any rule that mentions π̇
Γ,∆
1 or π̇

Γ,∆
2 has an im-

plicit premise π̇
Γ,∆
1 : Γ ∗∆ → Γ or π̇

Γ,∆
2 : Γ ∗∆ → ∆. When clear from the context, we omit the context

annotations, writing just π̇1 and π̇2.

Since we make the convention that no context may declare a variable more than once, we implicitly

assume side-conditions ensuring that all the contexts mentioned in the rules have this property.

6.4.1.1 Bunches

(BU-EMPTY) ` � ⇓ � Bunch

` Γ ⇓ Γ′ Bunch Γ ` A ⇓ A′ Type
(BU-ADD)

` Γ, x : A ⇓ Γ′, x : A′ Bunch

` Γ ⇓ Γ′ Bunch ` ∆ ⇓ ∆′ Bunch
(BU-MULT)

` Γ∗∆ ⇓ Γ′ ∗∆′ Bunch

6.4.1.2 Projection and Substitution

Γ ` A Type
(PROJ)

Γ, x : A ` 1 ⇓ x : A[w]
Γ ` J ⇓ K σ ⇓ χ : ∆→ Γ

(SUBST)
∆ ` J [σ ] ⇓ K χ

6.4.1.3 Structural maps

` Γ Bunch
(STR-ID)

id : Γ⇒ Γ

σ : Γ⇒ ∆ τ : ∆⇒Φ(STR-COMP)
τ ◦σ : Γ⇒Φ

σ : Γ⇒ ∆ τ : Φ⇒Ψ(STR-∗) /0 = (Γ∪∆)∩ (Φ∪Ψ)
σ ∗ τ : Γ∗Φ⇒ ∆∗Ψ

σ : Γ⇒ ∆ ∆ ` A Type
(STR-LIFT)

σ• : (Γ, x : A[σ ])⇒ (∆, x : A)

Γ ` A Type
(STR-WEAK)

w: (Γ, x : A)⇒ Γ
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` Γ Bunch
(STR-UNIT)

unit : Γ⇒ Γ∗�
` Γ Bunch

(STR-UNIT−1)
unit−1 : Γ∗�⇒ Γ

` Γ Bunch ` ∆ Bunch
(STR-SWAP)

swap: Γ∗∆⇒ ∆∗Γ

` Γ Bunch ` ∆ Bunch ` Φ Bunch
(STR-ASSOC)

assoc : (Γ∗∆)∗Φ⇒ Γ∗ (∆∗Φ)

` Γ Bunch ` ∆ Bunch ` Φ Bunch
(STR-ASSOC−1)

assoc−1 : Γ∗ (∆∗Φ)⇒ (Γ∗∆)∗Φ

The reader may want to compare these rules for structural maps to those for Γ < ∆ in Section 4.4.

6.4.1.4 Substitutions

τ : Γ⇒ ∆(SUB-STR)
τ ⇓ () : Γ→ ∆

σ ⇓ χ : Γ→ ∆ τ ⇓ ξ : ∆→Φ
(SUB-COMP)

τ ◦σ ⇓ {(ξ ◦χ)/Φ} : Γ→Φ

σ ⇓ χ : Γ→ ∆ τ ⇓ ξ : Φ→Ψ
(SUB-∗) /0 = (Γ∪∆)∩ (Φ∪Ψ)

σ ∗ τ ⇓ χ{ξ/Ψ} : Γ∗Φ→ ∆∗Ψ

σ ⇓ χ : Γ→ ∆ ∆ ` A Type
(SUB-LIFT)

σ• ⇓ χ : (Γ, x : A[σ ])→ (∆, x : A)

Γ ` M ⇓M′ : A
(SUB-SUB)

〈M〉 ⇓ {M′/x} : Γ→ (Γ,x : A)

6.4.1.5 Types

σ ⇓ χ : Γ→ ∆
(C-TY) T ∈T (∆), v(∆) = (x1, . . . ,xn)

Γ ` T (σ) ⇓ T (x1, . . . ,xn) χ Type

` A ⇓ A′ Type ` B ⇓ B′ Type ` Γ Bunch
(∗-TY)

Γ ` A∗B ⇓ A′∗B′ Type

Γ ` A ⇓ A′ Type Γ, x : A ` B ⇓ B′ Type
(Π-TY)

Γ ` ΠA.B ⇓Πx : A′.B′ Type

` A ⇓ A′ Type Γ∗ x : A ` B ⇓ B′ Type
(Π∗-TY)

Γ ` Π∗A.B ⇓Π∗x : A′.B′ Type

6.4.1.6 Terms

∆ ` A Type σ ⇓ χ : Γ→ ∆
(C-TM) f ∈T (∆; A), v(∆) = (x1, . . . ,xn)

Γ ` f (σ) ⇓ f (x1, . . . ,xn) χ : A[σ ]
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` A ⇓ A′ Type ` B ⇓ B′ Type Γ ` M ⇓M′ : A[!Γ] ∆ ` N ⇓ N′ : B[!∆]
(∗-I)

Γ∗∆ ` pair∗A,B(M,N) ⇓ pair∗A′,B′(M
′,N′) : A∗B

` A ⇓ A′ Type ` B ⇓ B′ Type Γ ` M ⇓M′ : A∗B
(∗-E)

〈M/A∗B〉 ⇓ {rA′,B′(M′)/y}{lA′,B′(M′)/x} : Γ→ (x : A)∗ (y : B)

Γ ` A ⇓ A′ Type Γ, x : A ` M ⇓M′ : B
(Π-I)

Γ ` λA.M ⇓ λx : A′.M′ : ΠA.B

Γ ` A ⇓ A′ Type Γ, x : A ` B ⇓ B′ Type Γ ` M ⇓M′ : ΠA.B Γ ` N ⇓ N′ : A
(Π-E)

Γ ` app[A]B(M,N) ⇓ app(x:A′)B′(M
′,N′) : B[〈N〉]

` A ⇓ A′ Type Γ∗ x : A ` M ⇓M′ : B
(Π∗-I)

Γ ` λ∗A.M ⇓ λ∗x : A′.M′ : Π∗A.B

` A ⇓ A′ Type

Γ∗ x : A ` B ⇓ B′ Type

Γ ` M ⇓M′ : Π
∗A.B

∆ ` N ⇓ N′ : A[!∆]
(Π∗-E)

Γ∗∆ ` app∗[A]B(M,N) ⇓ app∗(x:A′)B′(M
′,N′) : B[id ∗ ((!∆)• ◦ 〈N〉)]

6.4.1.7 Conversions

Γ ` J ` Γ = ∆ Bunch
(BU-CONV)

∆ ` J

Γ ` M : A Γ ` A = B Type
(TY-CONV)

Γ ` M : B

Γ ` M = N : A Γ ` A = B Type
(TY-EQ-CONV)

Γ ` M = N : B

` Φ = Γ Bunch σ : Γ⇒ ∆ ` ∆ = Ψ Bunch
(⇒-BU-CONV)

σ : Φ⇒Ψ

` Φ = Γ Bunch σ ⇓ χ : Γ→ ∆ ` ∆ = Ψ Bunch
(→-BU-CONV)

σ ⇓ χ : Φ→Ψ

` Φ = Γ Bunch σ = τ : Γ→ ∆ ` ∆ = Ψ Bunch
(→-EQ-BU-CONV)

σ = τ : Φ→Ψ

6.4.1.8 General equations

Γ ` J

Γ ` J [id] = J

τ : Γ→ ∆ σ : ∆→Φ Φ ` J

Γ ` J [σ ][τ] = J [σ ◦ τ]
σ = τ : Γ→ ∆ ∆ ` J

Γ ` J [σ ] = J [τ]

6.4.1.9 Equations for Bunches

(reflexivity, symmetry, transitivity)

` Γ = ∆ Bunch Γ ` A = B Type
(BU-AEQ)

` (Γ, x : A) = (∆, x : B) Bunch

` Γ = ∆ Bunch ` Φ = Ψ Bunch
(BU-MEQ) ` Γ∗Φ = ∆∗Ψ Bunch
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6.4.1.10 Equations for Substitutions

(reflexivity, symmetry, transitivity)

σ : Γ→� τ : Γ→�(SUB-�EQ)
σ = τ : Γ→�

σ ,τ : Γ→ (∆, x : A) w◦σ = w◦ τ : Γ→ ∆ Γ ` 1[σ ] = 1[τ] : A[w][σ ] = A[w][τ]
(SUB-AEQ)

σ = τ : Γ→ (∆, x : A)

σ ,τ : Γ→ (∆1 ∗∆2) π̇1 ◦σ = π̇1 ◦ τ : Γ→ ∆1 π̇2 ◦σ = π̇2 ◦ τ : Γ→ ∆2(SUB-MEQ)
σ = τ : Γ→ (∆1 ∗∆2)

σ : Γ→ ∆(CAT-ID)
id ◦σ = σ ◦ id = σ : Γ→ ∆

σ : Γ→ ∆ τ : ∆→Φ ρ : Φ→Ψ
(CAT-CMP)

(ρ ◦ τ)◦σ = ρ ◦ (τ ◦σ) : Γ→Ψ

` Γ Bunch ` ∆ Bunch
(∗-ID)

id ∗ id = id : Γ∗∆→ Γ∗∆

σ : Γ→ ∆ σ ′ : Γ′→ ∆′ τ : ∆→Φ τ ′ : ∆′→Φ′
(∗-CMP) /0 = ∆∩∆′(τ ◦σ)∗ (τ ′ ◦σ ′) = (τ ∗ τ ′)◦ (σ ∗σ ′) : Γ∗Γ′→Φ∗Φ′

Γ ` A Type
((−)•-ID)

id• = id : Γ, x : A→ Γ, x : A

σ : Γ→ ∆ τ : ∆→Φ Φ ` A Type
((−)•-CMP)

(τ ◦σ)• = τ• ◦σ• : Γ, x : A[τ][σ ]→Φ, x : A

We state the rest of the equations for substitutions in diagram form. In addition to the usual definition

of commutation that any two paths with the same start and end are equal, we also presuppose that all

the morphisms in the diagrams are derivable. For example, the next diagram presupposes σ : Γ → ∆,

∆ ` M : A and x 6∈ Γ,∆.

Γ

〈M[σ ]〉

##H
HHHHHHHH

σ //

id

  

∆

〈M〉
��

Γ,x : A[σ ]
σ• //

w

��

∆,x : A

w
��

Γ
σ

// ∆

Γ
σ //

unit
��

∆

unit
��

Γ∗�
σ∗id
// ∆∗�

Γ∗∆

swap
��

σ∗τ // Φ∗Ψ

swap
��

∆∗Γ
τ∗σ
// Ψ∗Φ

(Γ∗∆)∗Φ

assoc
��

(σ∗τ)∗ρ// (Ψ∗Θ)∗Ξ

assoc
��

Γ∗ (∆∗Φ)
σ∗(τ∗ρ)

// Ψ∗ (Θ∗Ξ)
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In addition, we assume the commuting diagrams from Definitions 2.5.1 and 2.5.2 stating that ∗ is a

symmetric monoidal structure. Finally, we also assume equations stating that unit−1 and assoc−1 are

inverses of unit and assoc respectively.

Because of the rule (SUB-STR), we can speak of equality also for structural maps. When referring to

equality involving a structural map Γ⇒ ∆, we mean the equality of type Γ→ ∆ that arises by implicitly

inserting (SUB-STR).

6.4.1.11 Equations for Types

(reflexivity, symmetry, transitivity)

Substitution on types

∆ ` T (σ) Type τ : Γ→ ∆
(C-SUB)

Γ ` T (σ)[τ] = T (σ ◦ τ) Type
∆ ` A∗B Type σ : Γ→ ∆

(∗-SUB)
Γ ` (A∗B)[σ ] = A∗B Type

∆ ` ΠA.B Type σ : Γ→ ∆
(Π-SUB)

Γ ` (ΠA.B)[σ ] = (ΠA[σ ].B[σ•]) Type

∆ ` Π∗A.B Type σ : Γ→ ∆
(Π∗-SUB)

Γ ` (Π∗A.B)[σ ] = (Π∗A.B[σ ∗ id]) Type

Type congruences

σ = τ : Γ→ ∆(C-TY-CGR) T ∈T (∆)
Γ ` T (σ) = T (τ) Type

` A1 = A2 Type ` B1 = B2 Type
(∗-TY-CGR)

Γ ` A1∗B1 = A2∗B2 Type

Γ ` A1 = A2 Type Γ, x : A1 ` B1 = B2 Type
(Π-TY-CGR)

Γ ` ΠA1.B1 = ΠA2.B2 Type

` A1 = A2 Type Γ∗ x : A1 ` B1 = B2 Type
(Π∗-TY-CGR)

Γ ` Π∗A1.B1 = Π∗A2.B2 Type

Type axioms

Γ ` A Type Γ ` B Type
(TY-AXIOM) A = B ∈T E (Γ)

Γ ` A = B Type
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6.4.1.12 Equations for Terms

(reflexivity, symmetry, transitivity)

Substitution on terms

Γ ` M : A
Γ ` 1[〈M〉] = M : A

σ : Γ→ ∆ ∆ ` A Type
Γ, x : A[σ ] ` 1[σ•] = 1 : A[w][σ•] (= A[σ ][w])

∆ ` f (σ) : A τ : Γ→ ∆

Γ ` f (σ)[τ] = f (σ ◦ τ) : A[τ]

` A Type

` B Type

Γ ` M : A[!Γ]

∆ ` N : B[!∆]

σ : Γ
′→ Γ

τ : ∆
′→ ∆

/0 = Γ∩∆
Γ′ ∗∆′ ` (pair∗A,B(M,N))[σ ∗ τ] = pair∗A,B(M[σ ],N[τ]) : A∗B

` A Type ` B Type ∆ ` M : A∗B σ : Γ→ ∆

〈M/A∗B〉 ◦σ = 〈M[σ ]/A∗B〉 : Γ→ (x : A)∗ (y : B)

∆, x : A ` M : B σ : Γ→ ∆

Γ ` (λA.M)[σ ] = λA[σ ].M[σ•] : (ΠA.B)[σ ]

∆, x : A ` B Type ∆ ` M : ΠA.B ∆ ` N : A σ : Γ→ ∆

Γ ` (app[A]B(M,N))[σ ] = app[A[σ ]]B[σ•](M[σ ],N[σ ]) : B[〈N〉][σ ]

∆∗ x : A ` M : B σ : Γ→ ∆

Γ ` (λ∗A.M)[σ ] = λ∗A.M[σ ∗ id] : (Π∗x : A.B)[σ ]

Γ∗ x : A ` B Type Γ ` M : Π∗A.B ∆ ` N : A σ : Φ→ Γ τ : Ψ→ ∆
/0 = Γ∩∆

Φ∗Ψ ` (app∗[A]B(M,N))[σ ∗ τ] = app∗[A]B[σ∗id](M[σ ],N[τ]) : B[σ ∗ ((!Ψ)• ◦ 〈N[τ]〉)]

Term axioms

Γ ` M : A Γ ` N : A
(AXIOM) M = N ∈T E (Γ;A)

Γ ` M = N : A

Equations for ∗-terms

` A = A′ Type

` B = B′ Type

Γ ` M = M′ : A[!Γ]

∆ ` N = N′ : B[!∆]
(∗-I-CGR)

Γ∗∆ ` pair∗A,B(M,N) = pair∗A′,B′(M
′,N′) : A∗B

` A = A′ Type ` B = B′ Type Γ ` M = M′ : A∗B
(∗-E-CGR)

〈M/A∗B〉= 〈M′/A′ ∗B′〉 : Γ→ (x : A)∗ (y : B)
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` A Type ` B Type Γ ` M : A ∆ ` N : B
(∗-β )

〈pair∗A,B(M,N)/A∗B〉= ((!Γ)• ◦ 〈M〉)∗ ((!∆)• ◦ 〈N〉) : Γ∗∆→ (x : A)∗ (y : B)

` A Type ` B Type Γ ` M : A∗B
(∗-η )

Γ ` (1∗1)[〈M/A∗B〉] = M : A∗B

` A Type

` B Type

Γ ` M : A∗B

Γ ` N : A∗B

Γ ` 1[π̇1 ◦ 〈M/A∗B〉] = 1[π̇1 ◦ 〈N/A∗B〉] : A[!Γ]

Γ ` 1[π̇2 ◦ 〈M/A∗B〉] = 1[π̇2 ◦ 〈N/A∗B〉] : B[!Γ]
(INJECT)

Γ ` M = N : A∗B

Equations for Π-terms

Γ ` A1 = A2 Type Γ, x : A1 ` M1 = M2 : B
(Π-I-CGR)

Γ ` λA1.M1 = λA2.M2 : Πx : A1.B

Γ ` A1 = A2 Type

Γ, x : A1 ` B1 = B2 Type

Γ ` M1 = M2 : ΠA1.B1

Γ ` N1 = N2 : A1
(Π-E-CGR)

Γ ` app[A1]B1
(M1,N1) = app[A2]B2

(M2,N2) : B1[〈N1〉]

Γ, x : A ` M : B Γ ` N : A
(Π-β )

Γ ` app[A]B(λA.M,N) = M[〈N〉] : B[〈N〉]

Γ, x : A ` B Type Γ ` M : ΠA.B
(Π-η )

Γ ` λA.(app[A]B(M,1)) = M : ΠA.B

Equations for Π∗-terms

` A1 = A2 Type Γ∗ x : A1 ` M1 = M2 : B
(Π∗-I-CGR)

Γ ` λ∗A1.M1 = λ∗A2.M2 : Π∗A1.B

Γ1 ` M1 : Π
∗A1.B1

Γ2 ` M2 : Π
∗A2.B2

σ : Φ→ Γ1 ∗ x : A1

τ : Φ→ Γ2 ∗ x : A2

` A1 = A2 Type

Φ ` B1[σ ] = B2[τ] Type

Φ ` (Π∗A1.B1)[π̇1 ◦σ ] = (Π∗A2.B2)[π̇1 ◦ τ] Type

Φ ` M1[π̇1 ◦σ ] = M2[π̇1 ◦ τ] : (Π∗A1.B1)[π̇1 ◦σ ]

Φ ` 1[π̇2 ◦σ ] = 1[π̇2 ◦ τ] : A1[!Φ]
(Π∗-E-CGR)

Φ ` (app∗[A1]B1
(M1,1))[σ ] = (app∗[A2]B2

(M2,1))[τ] : B1[σ ]

Γ∗ x : A ` M : B ∆ ` N : A
(Π∗-β )

Γ∗∆ ` app∗[A]B((λ∗A.M),N) = M[id ∗ ((!∆)• ◦ 〈N〉)] : B[id ∗ ((!∆)• ◦ 〈N〉)]

Γ∗ x : A ` B Type Γ ` M : Π∗A.B
(Π∗-η )

Γ ` λ∗A.(app∗[A]B(M,1)) = M : Π∗A.B
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6.4.2 Basic Properties

We state some basic properties of ES, which are proved in the same way as in Chapter 4.

Lemma 6.4.1. If Γ ` ΠA.B ⇓Πx : A′.B′ Type then Γ ` A ⇓ A′ Type and Γ, x : A ` B ⇓ B′ Type.

Lemma 6.4.2. If Γ ` Π∗A.B ⇓Π∗x : A′.B′ Type then ` A ⇓ A′ Type and Γ∗ x : A ` B ⇓ B′ Type.

Lemma 6.4.3 (Validity).

1. If Γ ` J then ` Γ Bunch.

2. If ` Γ = ∆ Bunch then ` Γ Bunch and ` ∆ Bunch.

3. If Γ ` A = B Type then Γ ` A Type and Γ ` B Type.

4. If Γ ` M : A then Γ ` A Type.

5. If Γ ` M = N : A then Γ ` M : A and Γ ` N : A.

6. If σ : Γ→ ∆ then ` Γ Bunch and ` ∆ Bunch.

7. If σ = τ : Γ→ ∆ then σ : Γ→ ∆ and τ : Γ→ ∆.

8. If σ : Γ⇒ ∆ then ` Γ Bunch and ` ∆ Bunch.

Lemma 6.4.4.

1. If id : Γ→ ∆ then ` Γ = ∆ Bunch

2. If τ ◦σ : Γ→ ∆ then there exists a context Φ such that σ : Γ→Φ and τ : Φ→ ∆.

3. If σ• : (Γ, x : B)→ (∆, x : A) then σ : Γ→ ∆ and Γ ` B = A[σ ] Type.

4. If 〈M/A ∗B〉 ⇓ {rA′′,B′′(M′′)/y}{lA′,B′(M′)/x} : Γ → ∆ then A′ = A′′, B′ = B′′ and M′ = M′′, as

well as ` A ⇓ A′ Type and ` B ⇓ B′ Type and Γ ` M ⇓M′ : A∗B and ` ∆ = (x : A)∗ (y : B) Bunch.

Proof. We show the last case. The other cases follow by similar examination of the derivations.

Any derivation of 〈M/A ∗B〉 ⇓ {rA′′,B′′(M′′)/y}{lA′,B′(M′)/x} : Γ → ∆ ends in (∗-E) followed by

zero or more applications of (→-BU-CONV). By reflexivity and transitivity of bunch equality we may

assume that it ends in (∗-E) followed by exactly one application of (→-BU-CONV). By examining these

rules we get A′ = A′′, B′ = B′′ and M′ = M′′, as well as derivations of ` A ⇓ A′ Type and ` B ⇓ B′ Type

and ` Γ = Γ′ Bunch and ` (x : A)∗ (y : B) = ∆ Bunch and Γ′ ` M ⇓M′ : A∗B ⇓ A′∗B′, thus completing

this case.
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6.4.3 Properties of the Syntax-Translation

For the following lemma, we extend substitution with a bijective renaming α in the evident way to

contexts Γ in ES.

Lemma 6.4.5 (Closure under bijective renaming). For any bijective renaming of variables α , the fol-

lowing hold.

• If ` Γ Bunch is derivable then so is ` (Γ α) Bunch.

• If Γ ` J ⇓ K is derivable then so is (Γ α) ` J ⇓ (K α).

• If σ ⇓ χ : Γ→ ∆ is derivable then so is σ ⇓ (α−1 ◦χ ◦α) : Γ α → ∆ α .

Moreover, the resulting derivations have the same shape and size as the original derivations.

Proof. By induction on derivations. We consider representative cases.

• For the rule (Π-TY), the induction hypothesis gives us (Γ α)` A⇓A′ α Type and (Γ α), α(x) : A`
B ⇓ B′ α Type. For a bijective renaming α , we have (Πx : A.B) α = Πα(x) : (A α).(B α) by

Lemma 6.3.1. Using (Π-TY) we can therefore derive the required (Γ α) ` (Πx : A.B) α Type.

• For the rule (SUBST), we have Γ α ` J ⇓K α and σ ⇓ (α−1 ◦χ ◦α) : (∆ α)→ (Γ α) by induction

hypothesis. Using (SUBST) we can therefore derive ∆ α ` J ⇓ K α (α−1 ◦ χ ◦α) which, by the

properties of syntactic substitution, is the same as the required ∆ α ` J ⇓ K χ α .

• For the rule (SUB-COMP), the induction hypothesis gives σ ⇓ (α−1 ◦χ ◦α) : (Γ α)→ (∆ α) and

τ ⇓ (α−1 ◦ ξ ◦α) : (∆ α) → (Φ α). The required sequent follows using the rule (SUB-COMP)

and the (general) equality (α−1 ◦ ({χ/Ψ})◦α) = {(α−1 ◦χ ◦α)/α(Ψ)}.

• For the rule (SUB-∗), we make use of the general equality (α−1 ◦χ ◦α){(α−1 ◦ξ ◦α)/α(Ψ)}=

α−1 ◦ (χ{ξ/Ψ})◦α .

The following two lemmas are shown by straightforward induction on derivations.

Lemma 6.4.6.

1. If Γ ` A ⇓ A′ Type then FV (A′)⊆ FV (Γ).

2. If Γ ` M ⇓M′ : A then FV (M′)⊆ FV (Γ).

3. If σ ⇓ χ : Γ→ ∆ then FV (χ(x))⊆ FV (Γ) holds for all x ∈ FV (∆).

4. If σ ⇓ χ : Γ→ ∆ then χ(x) = x holds for all x 6∈ FV (∆).

5. If σ : Γ⇒ ∆ then FV (∆)⊆ FV (Γ).
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Lemma 6.4.7.

1. If ` Γ Bunch then v(Γ) is a list of pairwise distinct variables.

2. If ` Γ = ∆ Bunch then v(Γ) = v(∆).

3. If σ : Γ⇒ ∆ and σ : Φ⇒Ψ, then v(Γ) = v(Φ) implies v(∆) = v(Ψ).

We now show that the syntactic translation in the rules for ES is unique, so that is makes sense to speak

of the syntactic translation of a substitution/type/term/bunch.

Lemma 6.4.8.

1. If σ ⇓ χ : Γ→ ∆ and σ ⇓ χ ′ : Γ→ ∆ then χ = χ ′.

2. If Γ ` A ⇓ A′ Type and Γ ` A ⇓ A′′ Type then A′ = A′′.

3. If Γ ` M ⇓M′ : A and Γ ` M ⇓M′′ : A then M′ = M′′.

Proof. The proof goes by simultaneous induction on the derivations of the respective statements. In

order to deal with conversion rules and composition of substitution, we strengthen the induction hy-

pothesis to:

1′. If σ ⇓ χ : Γ→ ∆ and σ ⇓ χ ′ : Φ→Ψ with v(Γ) = v(Φ), then there exists a bijective renaming α

satisfying v(Ψ) = v(∆ α−1) and χ ′ =Ψ α ◦χ .

2′. If Γ ` A ⇓ A′ Type and ∆ ` A ⇓ A′′ Type and v(Γ) = v(∆) then A′ = A′′.

3′. If Γ ` M ⇓M′ : A and ∆ ` M ⇓M′′ : B and v(Γ) = v(∆) then M′ = M′′.

We show these points by simultaneous induction on the size of the derivations. The induction is on the

size because we may need to apply the induction hypothesis to renamed derivations.

1′. Suppose we have derivations of σ ⇓ χ : Γ → ∆ and σ ⇓ χ ′ : Φ → Ψ with v(Γ) = v(Φ). If either

derivation ends in (→-BU-CONV), then, by Lemma 6.4.7, we can immediately use the induction

hypothesis. Since the other rules are syntax-directed, we can therefore assume that both derivation

end in an application of the same rule. Case distinction on the last rule.

• (SUB-STR). Both χ and χ ′ are () and, by Lemma 6.4.7.3, v(∆) = v(∆′). The assertion

follows with α = id.

• (SUB-COMP). We have σ2 ◦σ1 ⇓ χ2 ◦χ1 : Γ→Θ→ ∆ and σ2 ◦σ1 ⇓ χ ′2 ◦χ ′1 : Φ→ Ξ→Ψ.

By induction hypothesis, we have α such that v(Ξ) = v(Θ α−1) and α ◦ χ1 =Ξ χ ′1. Using

Lemma 6.4.5, we get a derivation of σ2 ⇓ α−1 ◦ χ ′2 ◦α : (Ξ α) → (Ψ α) to which we can

apply the induction hypothesis to obtain a renaming β such that v(Ψ α) = v(∆ β−1) and

β ◦ χ2 =Ψ α−1 ◦ χ ′2 ◦α . Then we have α ◦β ◦ χ2 ◦ χ1 =Ψ α ◦α−1 ◦ χ ′2 ◦α ◦ χ1 =Ψ χ ′2 ◦α ◦
χ1 =Ψ χ ′2 ◦χ ′1. Hence, we take α ◦β as the required renaming. Notice that v(∆ (α ◦β )−1) =

v(∆ (α−1 ◦β−1)) = v(∆ α−1 β−1) = v(Ψ) holds.
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• (SUB-∗). We have σ1 ⇓ χ1 : Γ1 → ∆1, σ2 ⇓ χ2 : Γ2 → ∆2, σ1 ⇓ χ ′1 : Φ1 → Ψ1 as well

as σ2 ⇓ χ ′2 : Φ2 → Ψ2, where Γ = Γ1 ∗Γ2, ∆ = ∆1 ∗∆2, Φ = Φ1 ∗Φ2, Ψ = Ψ1 ∗Ψ2 and

/0 = (Γ1 ∪∆1)∩ (Γ2 ∪∆2) = (Φ1 ∪Ψ1)∩ (Φ2 ∪Ψ2). Moreover, χ = χ1{χ2/∆2} and χ ′ =

χ ′1{χ ′2/Ψ2} hold. By induction hypothesis, we have α1 and α2 such that, for i = 1,2, both

v(Ψi) = v(∆i α
−1
i ) and χ ′i =Ψi αi ◦ χi hold. Since /0 = Ψ1 ∩Ψ2 = ∆1 ∩∆2, the function α0

defined by

α0(x) =

{
α1(x) if x ∈Ψ1

α2(x) if x ∈Ψ2

maps each element of Ψ1 ∪Ψ2 bijectively to an element of ∆1 ∪∆2. This function α0 can

be extended to a bijection α on all variables. This gives v(Ψ1 ∗Ψ2) = v((∆1 ∗∆2) α−1).

Furthermore, we have (α ◦χi)(x) = (αi ◦χi)(x) for any x∈ ∆i, using which we obtain the re-

quired equation α ◦ χ =Ψ1∗Ψ2 α ◦ (χ1{χ2/∆2}) =Ψ1∗Ψ2 (α ◦χ1){α ◦χ2/α−1(∆2)}=Ψ1∗Ψ2

(α ◦χ1){α ◦χ2/Ψ2}=Ψ1∗Ψ2 (α1 ◦χ1){α2 ◦χ2/Ψ2}=Ψ1∗Ψ2 χ ′1{χ ′2/Ψ2}=Ψ1∗Ψ2 χ ′.

• (SUB-LIFT). In this case we have σ ′ ⇓ χ : Γ′ → ∆′ and σ ′ ⇓ χ ′ : Φ′ → Ψ′ where σ = σ ′
•,

Γ = (Γ′, x : A[σ ′]), ∆ = (∆′, x : A), Φ = (Φ′, y : B[σ ′]) and Ψ = (Ψ′, y : B). The (implicit)

side-condition on (SUB-LIFT) gives x 6∈ Γ′,∆′ and y 6∈Φ′,Ψ′.

From the assumption v(Γ) = v(Φ) it follows that v(Γ′) = v(Φ′) and x = y hold. By induction

hypothesis, we get an α satisfying v(Ψ′) = v(∆′ α−1) and α ◦χ =Ψ′ χ ′. Since x 6∈∆′∪Ψ′ and

α(FV (Ψ′)) = FV (∆′) hold, there exists a bijective renaming β that agrees with α on ∆′∪Ψ′

and for which β (x) = x holds. Therefore, we have β ◦ χ =Ψ′ χ ′. Using Lemma 6.4.6.4, we

get (β ◦χ)(x) = x and χ ′(x) = x. Hence, we can conclude β ◦χ =Ψ′,x : B χ ′, as required.

• (SUB-SUB). In this case we have Γ ` M ⇓M′ : A, Φ ` M ⇓M′′ : B, ∆ is (Γ, x : A), Ψ is

(Φ, y : B), χ is {M′/x} and χ ′ is {M′′/y}. By assumption v(Γ) = v(Φ) holds, so that we

can use point 3′ to obtain M′ = M′′. The assertion can then be satisfied by taking α to be the

swapping (x y).

• (∗-E). As for (SUB-SUB).

2′. Suppose we have derivations Γ ` A ⇓ A′ Type and ∆ ` A ⇓ A′′ Type with v(Γ) = v(∆). The rules

are syntax-directed, so that we can assume that both derivations end in the same last rule. The

proof continues similarly to 3′.

3′. Suppose we have derivations Γ ` M ⇓M′ : A and ∆ ` M ⇓M′′ : B with v(Γ) = v(∆). If either

derivation ends in (BU-CONV), then, by Lemma 6.4.7, we can immediately use the induction

hypothesis. If either derivation has (TY-CONV) as its last rule then we get the assertion directly

from the induction hypothesis, since we only need to consider the term but not the type. As the

other rules are syntax-directed, we can assume that both derivations end in the same last rule.

Case distinction on this last rule.
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• (SUBST). From the first derivation we get σ ⇓ χ : Γ → Γ1 and Γ1 ` M1 ⇓M′
1 : A1 and

M′ = M′
1 χ . From the other derivation we get σ ⇓ ξ : ∆ → ∆1 and ∆1 ` M1 ⇓M′′

1 : B1 and

M′′ = M′′
1 ξ . By assumption, v(Γ) = v(∆) holds. We need to show M′ = M′′. First, by 1′ we

get a bijective renaming α such that v(Γ1) = v(∆1 α) and α ◦χ =∆1 ξ hold. By Lemma 6.4.5

we get a renamed derivation (Γ1 α−1) ` M1 ⇓M′
1 α−1 : A1 of the same size as the derivation

of Γ1 ` M1 ⇓M′
1 : A1. Since v(Γ1 α−1) = v(∆1), we can apply the induction hypothesis to

obtain M′
1 α−1 = M′′

1 . Since α ◦χ =∆1 ξ and because FV (M′′
1 )⊆ FV (∆1), by Lemma 6.4.6,

this implies M′
1 α−1 (α ◦χ) = M′′

1 ξ , i.e. M′ = M′
1 χ = M′′

1 ξ = M′′, as required.

• (C-TM). From the first derivation we get σ ⇓ χ : Γ → ∆ and M′ = f (x1, . . . ,xn) χ , where

v(∆) is x1 . . .xn. From the other derivation we get σ ⇓ ξ : Γ → Φ and N′ = f (y1, . . . ,ym) ξ ,

where v(Φ) is y1 . . .ym.

By induction hypothesis 1′, we have α such that v(Φ) = v(∆ α−1) and α ◦χ =Φ ξ . We note

that f (y1, . . . ,ym) α = f (x1, . . . ,xn). Therefore, M′ = f (x1, . . . ,xn) χ = f (y1, . . . ,ym) α χ =

f (y1, . . . ,ym) ξ = N′, as required.

• (∗-I), (Π-I), (Π-E), (Π∗-I), (Π∗-E) follow directly from the induction hypothesis.

To get the assertion of the lemma it now suffices to show that 1′ implies 1. To this end, suppose

σ ⇓ χ : Γ→ ∆ and σ ⇓ χ ′ : Γ→ ∆. By 1′ we obtain a bijective renaming α satisfying v(∆) = v(∆ α−1)

and α ◦ χ =∆ χ ′. Because of v(∆) = v(∆ α−1), α must be the identity on v(∆). This implies χ =∆ χ ′,

and from this we get the required χ = χ ′ by Lemma 6.4.6.4.

We define when two explicit substitutions denote the same syntactic substitution.

Definition 6.4.9. Define σ ≡ τ : Γ → ∆ to hold whenever there exist χ and ξ such that σ ⇓ χ : Γ → ∆

and τ ⇓ ξ : Γ→ ∆ are derivable and χ =∆ ξ , as defined in (6.1), holds.

Because of the equality rules, provably equal explicit substitutions may translate to different syntactic

substitutions. The converse, that explicit substitutions that translate to the same syntactic substitution

are provably equal will follow from the Main Lemma 6.5.26.

Lemma 6.4.10. The syntactic translations of substitutions have the following properties.

1. If σ ≡ τ : Γ→ ∆ and σ ⇓ χ : Γ→ ∆ and τ ⇓ ξ : Γ→ ∆ then χ =∆ ξ .

2. (−)≡ (−) : Γ→ ∆ is an equivalence relation.

3. If σ ≡ τ : Γ→ ∆ and ` Γ = Γ′ Bunch and ` ∆ = ∆′ Bunch then σ ≡ τ : Γ′→ ∆′.

4. If σ ≡ τ : Γ→ ∆ and σ ′ ≡ τ ′ : ∆→Φ then σ ′ ◦σ ≡ τ ′ ◦ τ : Γ→Φ.

5. If σ : Γ→ ∆ and σ ′ : ∆→Φ and σ ′′ : Φ→Ψ then (σ ′′ ◦σ ′)◦σ ≡ σ ′′ ◦ (σ ′ ◦σ) : Γ→Ψ.

6. If σ ≡ τ : Γ → ∆ and σ ′ ≡ τ ′ : Γ′ → ∆′ and we have /0 = (Γ∪∆)∩ (Γ′ ∪∆′) then we also have

(σ ∗σ ′)≡ (τ ∗ τ ′) : Γ∗Γ′→ ∆∗∆′.
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7. If σ ≡ τ : Γ→ ∆ and ∆ ` A Type and x 6∈ Γ∪∆ then σ• ≡ τ• : Γ, x : A[σ ]→ ∆, x : A.

8. If σ : Γ → ∆ and τ : Φ → Ψ then we have (σ ∗ τ)≡ (σ ∗ id)◦ (id ∗ τ) : Γ∗Φ → ∆∗Ψ, provided

that /0 = (Γ∪∆)∩ (Φ∪Ψ) holds.

9. If Γ ` M : A then w◦ 〈M〉 ≡ id : Γ→ Γ.

Proof. The first point follows from Lemma 6.4.8. The other points are straightforward properties of

syntactic substitution.

6.4.4 Interpretation and Soundness of ES

The explicit system ES is interpreted in a (∗,1,Σ,Π,Π∗)-type-category. The interpretation of the term

and type constants in this category is given by a (∗,1,Σ,Π,Π∗)-structure, the definition of which is

adapted from [85].

Definition 6.4.11. A (∗,1,Σ,Π,Π∗)-structure for a theory T is given by the following data.

1. A (∗,1,Σ,Π,Π∗)-type-category. We denote the fibration by p : E→ B.

2. For each type constant T in T (Γ), an object ΓT in B and an object AT in EΓT .

3. For each term constant f in T (Γ;A), an object Γ f in B, an object A f in EΓ f and a morphism

M f : 1→ A f in EΓ f .

To define the interpretation of the syntax in this structure, we first define an, a priori partial, interpre-

tation. It then follows by a straightforward induction on the derivations that this defines a total function

and a sound interpretation. Because the type system ES has explicit substitutions and structural rules, we

do not need to establish weakening and substitution lemmas before showing correctness, as is necessary

in [105, 85].

The interpretation is defined by induction on the derivations. Since it is mainly standard, we only

give the cases for ∗-types and Π∗-types and some cases for substitutions here. In the following defini-

tions, we follow the convention that if an expression has an undefined subexpression, or if the types of an

expression do not match the requirements, then the whole expression is undefined. We write !B : B→ 1

for the terminal map. Given an object Γ in B and an object A in E1, we write weakΓ,A : {!∗
Γ
A} → {A}

for the morphism in B given by {!Γ(A)}.

(∗-TY). ‖Γ;A∗B‖=!∗‖Γ‖(‖�;A‖∗‖�;B‖)

(∗-I). ‖Γ1 ∗Γ2;pair∗A,B(M,N)‖= s where s : 1‖Γ1∗Γ2‖→ A′∗B′ is the unique map satisfying

{!‖Γ1∗Γ2‖(A
′∗B′)}◦{s}= lA′,B′ ◦ (({M′}◦weak‖Γ1‖,A′)∗ ({N′}◦weak‖Γ2‖,B′)),

provided that M′ is ‖Γ1;M‖, N′ is ‖Γ2;N‖, A′ is ‖�;A‖ and B′ is ‖�;B‖.
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(Π∗-I). ‖Γ;λ∗A.M‖= λ ∗‖Γ∗ x : A;M‖ where x is some/any fresh variable.

(Π∗-E). ‖Γ1 ∗Γ2; app∗[A]B(M,N)‖=
(
id‖Γ1‖ ∗ ({‖Γ2;N‖}◦weak‖Γ2‖,‖�;A‖)

)∗ (app∗‖Γ1;M‖)

(STR-ID). ‖id : Γ→ ∆‖= id‖∆‖

(STR-WEAK). ‖w: (Γ, x : A)→ ∆‖= π‖Γ;A‖

(STR-∗). ‖σ ∗ τ : Γ1 ∗Γ2 → ∆1 ∗∆2‖= ‖σ : Γ1 → ∆1‖∗‖τ : Γ2 → ∆2‖

(SUB-LIFT). ‖σ• : Γ, x : A→ ∆, x : B‖= {‖σ : Γ→ ∆‖(‖∆;B‖)}

(SUB-SUB). ‖〈M〉 : Γ→ ∆, x : A‖= {‖∆;M‖}

(∗-E). ‖〈M/A∗B〉 : Γ→ (x : C)∗ (y : D)‖= l−1
‖�;A‖,‖�;A‖ ◦{!‖Γ‖(‖�;A‖∗‖�;B‖)◦‖Γ;M‖}

Definition 6.4.12. A (∗,1,Σ,Π,Π∗)-structure is a (∗,1,Σ,Π,Π∗)-model for T if the following hold.

1. For each type constant T in T (Γ) for which `ES Γ Bunch is derivable, the interpretation ‖Γ‖ is

defined and equal to ΓT .

2. For each term constant f in T (Γ;A) for which Γ `ES A Type is derivable, the interpretations ‖Γ‖
and ‖Γ;A‖ are defined and equal to Γ f and A f respectively.

3. For each axiom Γ `ES A = B Type in T E (Γ) for which both Γ `ES A Type and Γ `ES B Type are

derivable, both ‖Γ;A‖ and ‖Γ;B‖ are defined and denote the same object of E‖Γ‖.

4. For each axiom Γ`ES M = N : A in T E (Γ;A) for which Γ`ES M : A and Γ`ES M : A are derivable,

both ‖Γ;M‖ and ‖Γ;N‖ are defined and denote the same morphism of type 1→‖Γ;A‖ in E‖Γ‖.

Proposition 6.4.13 (Soundness). For any (∗,1,Σ,Π,Π∗)-model, the following hold.

• If `ES Γ Bunch then ‖Γ‖ is an object of B.

• If Γ `ES A Type then ‖Γ‖ is an object of B and ‖Γ;A‖ is an object of E‖Γ‖.

• If Γ `ES M : A then ‖Γ‖ is an object of B, ‖Γ;A‖ is an object of E‖Γ‖ and ‖Γ;M‖ is a map of

type 1‖Γ‖→‖Γ;A‖ in E‖Γ‖.

• If σ : Γ → ∆ or σ : Γ ⇒ ∆ then ‖Γ‖ and ‖∆‖ are objects of B and ‖σ : Γ → ∆‖ is a map of type

‖Γ‖→ ‖∆‖ in B.

• If `ES Γ = ∆ Bunch then ‖Γ‖ and ‖∆‖ are the same object of B.

• If Γ `ES A = B Type then ‖Γ‖ is an object of B and ‖Γ;A‖ and ‖Γ;B‖ are the same object of the

fibre category E‖Γ‖.

• If Γ `ES M = N : A then ‖Γ‖ is an object of B, ‖Γ;A‖ is an object of E‖Γ‖ and ‖Γ;M‖ and ‖Γ;N‖
are the same map of type 1‖Γ‖→‖Γ;A‖ in E‖Γ‖.

Proof. By simultaneous induction on the derivations.
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6.5 Interpretation and Soundness of BT(∗,Π,Π∗)

In this section we define the translation from BT to ES. As explained at the beginning of this chapter,

the main effort goes in the proof of a Main Lemma stating that two judgements in ES with the same

translation in the let-free syntax are provably equal. The following lemmas contribute to the proof of

this Main Lemma.

We start by considering the different ways of applying the structural rules after the projection rule,

i.e. we consider derivations of judgements of the form Γ ` 1[δ ] : A[w][δ ] where δ is a structural map.

Such sequents correspond to sequents of the form Γ(∆, x : A) ` x : A in BT(∗,Π,Π∗).

Lemma 6.5.1. If σ : Γ ⇒ ∆, x : A and τ : Γ ⇒ Φ, x : B then both Γ ` A[w][σ ] = B[w][τ] Type and

Γ ` 1[σ ] = 1[τ] : A[w][σ ] are derivable.

For the proof of this lemma we need some auxiliary notions. First, for any ` Γ Bunch with x ∈ Γ, we

define a structural morphism x̂Γ : Γ⇒ Γ(x), x : A(Γ,x) by induction on the derivation of ` Γ Bunch.

• Γ cannot be � since x ∈ Γ.

• Γ is Γ′,y : A. If x = y then x̂Γ = id : Γ⇒ Γ, and if x 6= y then x̂Γ = x̂Γ′ ◦w: Γ→ Γ′(x),x : A(Γ′,x).

• Γ is Γ′ ∗Γ′′. If x ∈ Γ′ then x̂Γ = x̂Γ′ ◦ π̇1, and if x ∈ Γ′′ then x̂Γ = x̂Γ′′ ◦ π̇2.

It is immediate from this definition that if ` Γ Bunch and x ∈ Γ hold then Γ(x) ` A(Γ,x) Type.

Lemma 6.5.2. Let σ : Γ ⇒ ∆ and x ∈ ∆. Then there exists a structural map τ : Γ(x)⇒ ∆(x) such that

the following diagram commutes.

Γ
σ +3

x̂Γ

��

∆

x̂∆

��
Γ(x), x : A(Γ,x)

τ•
+3 ∆(x), x : A(∆,x)

Proof. The proof goes by induction on the derivation of σ : Γ⇒ ∆. We continue by case distinction on

the last rule.

• (⇒-BU-CONV). We know that ` Γ = Γ′ Bunch, σ : Γ′ ⇒ ∆′ and ` ∆′ = ∆ Bunch are deriv-

able. From the bunch equality judgements, it is straightforward to show ` Γ(x), x : A(Γ,x) =

Γ′(x), x : A(Γ′,x) Bunch and ` ∆(x), x : A(∆,x) = ∆′(x), x : A(∆′,x) Bunch. Using the induction

hypothesis, we have

Γ

x̂Γ

��

Γ′
σ +3

x̂
Γ′
��

∆′

x̂
∆′
��

∆

x̂∆

��
Γ(x), x : A(Γ,x) Γ′(x), x : A(Γ′,x)

τ•
+3 ∆′(x), x : A(∆′,x) ∆(x), x : A(∆,x)

.

The outermost vertical maps are typeable using (⇒-BU-CONV). Therefore, we can use the rule

(⇒-BU-CONV) with τ• to get the required result.
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• (STR-ID). We know that σ is id, that ` Γ Bunch is derivable and that Γ and ∆ are identical.

Therefore, we take τ to be id : Γ(x)⇒ Γ(x).

• (STR-COMP). We have that σ is σ ′′ ◦σ ′, where σ ′ : Γ ⇒ Φ and σ ′′ : Φ ⇒ ∆. The induction

hypothesis yields

Γ
σ ′ +3

x̂Γ

��

Φ

x̂Φ

��
Γ(x), x : A(Γ,x)

τ ′•
+3 Φ(x), x : A(Φ,x)

Φ
σ ′′ +3

x̂Φ

��

∆

x̂∆

��
Φ(x), x : A(Φ,x)

τ ′′•
+3 ∆(x), x : A(∆,x)

.

We can paste these diagrams using (τ ′′ ◦ τ ′)• = τ ′′• ◦ τ ′•.

• (STR-∗). In this case, σ is σ ′∗σ ′′ where σ ′ : Γ′⇒∆′ and σ ′′ : Γ′′⇒∆′′. Without loss of generality

assume that x ∈ FV (∆′)⊆ FV (Γ′) holds. Using the induction hypothesis, we have:

Γ
σ ′∗σ ′′ +3

π̇1
��

∆

π̇1
��

Γ′
σ ′ +3

x̂
Γ′
��

∆′

x̂
∆′
��

Γ′(x), x : A(Γ′,x)
τ ′•
+3 ∆′(x), x : A(∆′,x)

The upper square is easily constructed, and the lower square follows from the induction hypothe-

sis. Since the vertical composites are just x̂Γ and x̂∆, we are done.

• (STR-LIFT). We know that σ is σ ′
•. There are two possible cases. First, ∆ is ∆′, x : A. In this

case, both x̂Γ and x̂∆ are the identity, so by taking τ = id we are done. If ∆ is ∆′, y : A for y 6= x,

then we continue using the following diagram, the lower half of which is given by the induction

hypothesis.

Γ,y : B
σ ′• +3

w
��

∆,y : A

w
��

Γ
σ ′ +3

x̂Γ

��

∆

x̂∆

��
Γ(x), x : A(Γ,x)

τ ′•
+3 ∆(x), x : A(∆,x)

Again, note that the vertical maps are just the projections x̂(Γ,y : B) and x̂(∆,y : A). The upper diagram

commutes by definition of the equations for substitution.

• (STR-WEAK). In this case σ is w, and we can take τ to be the identity.
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• (STR-SWAP). The structural map σ is swap and the contexts Γ and ∆ are of the form Φ∗Ψ and

Ψ ∗Φ respectively. Without loss of generality we may assume x ∈ FV (Φ) ⊆ FV (Γ). Then we

have:

Φ∗Ψ
swap +3

π̇1
��

Ψ∗Φ

π̇2
��

Φ
id +3

x̂Φ

��

Φ

x̂Φ

��
Φ(x), x : A(Φ,x)

id•
+3 Φ(x), x : A(Φ,x)

That the upper square commutes follows easily from the coherence assumptions in the defini-

tion of symmetric monoidal categories, see e.g. the proof of coherence theorem for symmetric

monoidal categories [63]. The lower square commutes because of the rule ((−)•-ID). The as-

sertion follows because the vertical composites in the above diagram are just x̂Φ∗Ψ and x̂Ψ∗Φ

respectively.

• The remaining cases for (STR-UNIT), (STR-UNIT−1), (STR-ASSOC) and (STR-ASSOC−1) are

similar to the case for (STR-SWAP).

Proof of Lemma 6.5.1. This proof now follows directly from the previous lemma. First note that x̂(∆,x : A)

and x̂(Φ,x : B) are both the identity. Hence, by the lemma, there exist maps σ ′ and τ ′ making the following

diagram commute.

∆,x : A

Γ

σ
19

τ $,

x̂Γ +3 Γ(x),x : A(Γ,x)

σ ′•

KS

τ ′•
��

Φ,x : B

Then we have Γ(x),x : A(Γ,x) ` A[w][σ ′
•] = A[σ ′][w] = A(Γ,x)[w] = B[τ ′][w] = B[w][τ ′•] Type. In

this step we use the fact that if ρ• : Φ, x : B ⇒ Ψ, x : A is derivable then so is Φ ` B = A[ρ] Type, as

established in Lemma 6.4.4. In the above case, we can thus derive Γ(x) ` A[σ ′] = A(Γ,x) Type. We

furthermore have Γ(x),x : A(Γ,x)` 1[σ ′
•] = 1 : A(Γ,x)[w] and Γ(x),x : A(Γ,x)` 1[τ ′•] = 1 : A(Γ,x)[w].

Substituting these equations along x̂Γ finishes the proof:

Γ ` A[w][σ ] = A[w][σ ′
•][x̂Γ] = B[w][τ ′•][x̂Γ] = B[w][τ] Type

Γ ` 1[σ ] = 1[σ ′
•][x̂Γ] = 1[x̂Γ] = 1[τ ′•][x̂Γ] = 1[τ] : A(Γ,x)[w][x̂Γ] = A[w][σ ]
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We obtain the coherence lemma that any two structural morphism of the same type are equal.

Lemma 6.5.3. The following rule is admissible.

σ : Γ⇒ ∆ τ : Γ⇒ ∆(STR-EQ)
σ = τ : Γ→ ∆

Proof. By induction on the structure of the bunch ∆.

• ∆ is �. Immediate by (SUB-�EQ).

• ∆ is ∆′, x : C. By (SUB-AEQ) it suffices to show w◦σ = w◦τ : Γ⇒∆′ and 1[σ ] = 1[τ] : C[w][σ ] =

C[w][τ]. The first point follows from the induction hypothesis. The second point follows from

Lemma 6.5.1.

• ∆ is ∆1 ∗∆2. By (SUB-MEQ) it suffices to show π̇i ◦σ = π̇i ◦ τ : Γ→ ∆i, where π̇i : ∆1 ∗∆2 ⇒ ∆i,

for all i ∈ {1,2}. Both assertions follow from the induction hypothesis.

We should point out that this lemma is much easier to prove than the coherence theorem for symmetric

monoidal categories [63] because of the assumption that ∗ is strict affine. Note also that this lemma

makes use of the named variables in the contexts. Using the names in the contexts we obtain that

two structural morphisms of the same type automatically have the same graph, in the sense of cate-

gorical coherence [59]. For example, the named variables are essential in order to avoid identifying

swap: (x : A)∗ (y : A)⇒ (y : A)∗ (x : A) and id : (x : A)∗ (y : A)⇒ (x : A)∗ (y : A) in this lemma.

The next lemma establishes a form of extensionality for substitutions.

Lemma 6.5.4. Let σ : Γ→ ∆ and τ : Γ→ ∆. If, for all structural maps δ : ∆⇒Φ, x : A, we can derive

Γ ` 1[δ ][σ ] = 1[δ ][τ] : A[w][δ ][σ ] = A[w][δ ][τ], then σ = τ : Γ→ ∆ is derivable.

Proof. By induction on the structure of the bunch ∆.

• ∆ is �. Immediate by (SUB-�EQ).

• ∆ is ∆′, x : C. By rule (SUB-AEQ), it suffices to show w ◦ σ = w ◦ τ : Γ → ∆′ and 1[σ ] =

1[τ] : C[w][σ ] = C[w][τ]. For the first point we use the induction hypothesis as follows. Assume

an arbitrary structural map δ : ∆′ ⇒ Φ, x : A. For each such δ we have δ ◦w: ∆ ⇒ Φ, x : A. By

assumption we have Γ ` 1[δ ◦w][σ ] = 1[δ ◦w][τ] : A[w][δ ◦w][σ ] = A[w][δ ◦w][τ], which gives

Γ ` 1[δ ][w◦σ ] = 1[δ ][w◦ τ] : A[w][δ ][w◦σ ] = A[w][δ ][w◦ τ]. Since δ was arbitrary, we can use

the induction hypothesis to conclude w◦σ = w◦τ : Γ→∆′, as required. The second point follows

from the assumption by taking δ = id.

• ∆ is ∆1 ∗∆2. By (SUB-MEQ) it suffices to show π̇i ◦σ = π̇i ◦ τ : Γ→ ∆i, where π̇i : ∆1 ∗∆2 ⇒ ∆i,

for all i ∈ {1,2}. Both assertions follow from the induction hypothesis as in the previous case.
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Next we define a measure on types, terms and substitutions. The proof of the Main Lemma goes by

induction on this measure.

Size of types:

m(A[σ ]) = m(A)+m(σ)

m(T (σ)) = 2+m(σ)

m(A∗B) = 1+m(A)+m(B)

m(ΠA.B) = 1+m(A)+m(B)

m(Π∗A.B) = 1+m(A)+m(B)

Size of terms:

m(M[σ ]) = m(M)+m(σ)

m(1) = 1

m( f (σ)) = 2+m(σ)

m(pair∗A,B(M,N)) = 1+m(M)+m(A)+m(N)+m(B)

m(λA.M) = 1+m(A)+m(M)

m(app[A]B(M,N)) = 1+m(A)+m(B)+m(M)+m(N)

m(λ∗A.M) = 1+m(A)+m(M)

m(Π∗A.B) = 1+m(A)+m(B)

m(app∗[A]B(M,N)) = 1+m(A)+m(B)+m(M)+m(N)

Size of substitutions:

m(τ : Γ⇒ ∆) = 0

m(σ ◦ τ) = m(σ)+m(τ)

m(〈M〉) = 1+m(M)

m(σ•) = m(σ)

m(σ ∗ τ) = m(σ)+m(τ)

m(〈M/A∗B〉) = 1+m(M)+m(A)+m(B)

Note that the measure ‘ignores’ all structural maps.

In order to relate explicit substitution to normal syntactic substitution, we must show that the equa-

tions for substitutions σ : Γ → ∆ in the explicit calculus are sufficient to implement syntactic substi-

tution. For example, the equation 1[w][〈M〉] = 1 corresponds to the substitution property x[M/y] = x

where x 6= y, while 1[〈M〉] = M corresponds to x[M/x] = M. In addition to the familiar equations for

substitution, we must manage the structural morphisms. As in the examples just mentioned, depending
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on the form of a structural map δ , the substitution 〈M〉 in the term 1[δ ◦ 〈M〉] may or may not be vacu-

ous. We must be able to transform the substitution δ ◦ 〈M〉 into a form that makes it possible either to

perform the substitution or to remove it if it is vacuous. We characterise such a special form of substitu-

tion by the following judgement σ : Γ
∗→ ∆. In this judgement, no structural map δ is allowed to be ‘in

the way’ of the substitution 〈M〉, as is the case in δ ◦ 〈M〉.

τ : Γ⇒ ∆ ∆ ` A Type Γ ` M : A[τ]
(SUB+-SUB)

〈τ,M〉 : Γ
+→ (∆,x : A)

Γ ` M : A∗B τ : (x : A)∗ (y : B)⇒ ∆
(SUB+-LET)

τ ◦ 〈M/A∗B〉 : Γ
+→ ∆

σ : Γ
+→ ∆ ∆ ` A Type Γ ` A[σ ] = B Type

(SUB+-LIFT)
σ• : (Γ, x : B) +→ (∆, x : A)

σ : Γ
+→ ∆ ` Φ Bunch

(SUB+-∗L) Φ∩ (Γ∪∆) = /0
(id ∗σ) : Φ∗Γ

+→Φ∗∆

σ : Γ
+→ ∆ ` Φ Bunch

(SUB+-∗R) Φ∩ (Γ∪∆) = /0
(σ ∗ id) : Γ∗Φ

+→ ∆∗Φ

τ : Γ⇒ ∆(SUB∗-STR)
τ : Γ

∗→ ∆

σ : Γ
∗→ ∆ τ : ∆

+→Φ(SUB∗-COMP)
τ ◦σ : Γ

∗→Φ

The judgement ∗→ is used to express substitutions in a form in which all of the structural maps have

been ‘moved out of the way’. In general, a morphism ∗→ has the form ⇒ +→ . . .
+→ for zero or more +→.

Each morphism +→ contains either a substitution or a let as its main part.

Definition 6.5.5 (Main part). Let σ : Γ
+→ ∆. It is a lifting via an iteration of (−)∗ id, id ∗ (−) and (−)•

of either σ ′ ◦ 〈M/A∗B〉 or 〈σ ′,M〉, which we call the main part of σ .

Our next goal is to show that each →-substitution σ can be transformed into a ∗→-substitution τ ,

which amounts to moving structural maps out of the way. Moreover, we show that the translation is

such that the measure does not increase, i.e. m(σ)≥m(τ) holds, and both substitutions denote the same

syntactic substitution σ ≡ τ .

Some words are in order on the choice of ∗→ as a ‘semi-canonical form’ of substitutions. In standard

dependent type theory, substitutions can be brought into a simple normal form in which substitutions

can be built without the need for a composition rule, see [85, 48, 110]. In the presence of morphisms of

the form 〈M/A ∗B〉 : Γ → (x : A) ∗ (y : B) as well as the structural maps for ∗, however, such a simple

normal form does not appear to be possible. Indeed, in the proof of coherence for symmetric monoidal

categories [63] composites of the coherent isomorphisms have relatively complicated canonical forms.

Since these coherent isomorphisms are part of our structural maps, true canonical forms are likely to be

complicated.
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Lemma 6.5.6. For each σ : Γ
∗→ ∆ we can derive σ : Γ → ∆, where we consider 〈τ,M〉 as an abbrevi-

ation for τ• ◦ 〈M〉.

Proof. Straightforward induction.

Justified by this lemma, we use the measure m for +→ and ∗→-substitutions. For example, m(〈τ,M〉) =

1+m(τ)+m(M). Also, we will sometimes write σ ⇓ χ : Γ
+→ ∆ or σ ⇓ χ : Γ

∗→ ∆, where χ denotes the

unique syntactic substitution obtained by the translation in the lemma.

Lemma 6.5.7. For all σ : Γ
+→ ∆ we have m(σ)≥ 1.

Lemma 6.5.8 (Closure under bijective renaming). Let α be a bijective renaming.

1. If σ : Γ
+→ ∆ is derivable then so is σ : Γ α

+→ ∆ α .

2. If σ : Γ
∗→ ∆ is derivable then so is σ : Γ α

∗→ ∆ α .

Moreover, the obtained derivations differ from the original ones only in the names of variables, but not

in form or size.

Proof. Immediate, all rules are closed under bijective renaming.

Lemma 6.5.9.

1. If σ : Γ
+→ ∆ and ` Γ′ = Γ Bunch and ` ∆ = ∆′ Bunch then σ : Γ′

+→ ∆′.

2. If σ : Γ
∗→ ∆ and ` Γ′ = Γ Bunch and ` ∆ = ∆′ Bunch then σ : Γ′

∗→ ∆′.

Proof. The first point follows by induction on the derivations of σ : Γ
+→ ∆ and ` Γ′ = Γ Bunch, and

point 2 is a consequence of 1.

Lemma 6.5.10. For all σ : Γ
+→ ∆ and all τ : ∆⇒Φ one of the following is true:

1. There exists δ : Γ⇒Φ such that τ ◦σ = δ and τ ◦σ ≡ δ : Γ→Φ hold; or

2. There exist δ : Γ ⇒ Ψ and ρ : Ψ
+→ Φ, such that τ ◦ σ = ρ ◦ δ : Γ → Φ, m(σ) ≥ m(ρ) and

τ ◦σ ≡ ρ ◦δ : Γ→Φ all hold.

Proof. The proof goes by induction on the derivation of τ .

• The last rule is (⇒-BU-CONV). We know that ` ∆ = ∆′ Bunch, τ : ∆′⇒Φ′ and ` Φ′ = Φ Bunch

are derivable. Let σ : Γ
+→ ∆. Then, by Lemma 6.5.9, σ : Γ

+→ ∆′, so that we can apply the

induction hypothesis to obtain one of two possible situations. First we obtain δ ′ such that the

diagram

Γ
+
σ
//

δ ′ �#
??

??
??

?

??
??

??
? ∆′

τ

��
Φ′
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commutes and τ ◦σ ≡ δ ′ : Γ → Φ′ holds. Using (⇒-BU-CONV), we also have δ : Γ ⇒ Φ, and

using (→-EQ-BU-CONV) also τ ◦ σ = δ : Γ → Φ. By Lemma 6.4.10.3, we also get τ ◦ σ ≡
δ : Γ→Φ, so that 1 is satisfied. Second, we obtain ρ and δ such that the diagram

Γ
+
σ
//

δ ′

��

∆′

τ

��
Θ

+
ρ
//
Φ′

commutes, and m(σ) ≥ m(ρ) and τ ◦σ ≡ ρ ◦ δ : Γ → Φ′ hold. Using Lemma 6.5.9 we also get

ρ : Θ
+→Φ, and 2 follows by conversion as before.

• τ is id. Satisfy 2 with ρ = σ and δ = id.

• τ is τ ′′ ◦ τ ′ : ∆ ⇒ Ψ ⇒ Φ We apply the induction hypothesis to τ ′ and σ . There are two cases to

consider. First, we obtain δ ′ such that the diagram

Γ
+
σ
//

δ ′ �#
??

??
??

?

??
??

??
? ∆

τ ′

��
Ψ

commutes and τ ′◦σ ≡ δ ′ : Γ→Ψ holds. In this case we let δ = τ ′′◦δ ′. We get τ ◦σ ≡ δ : Γ→Ψ

by Lemma 6.4.10.4. Thus 1 holds.

Second, we obtain ρ ′ and δ ′ such that the diagram

Γ
+
σ
//

δ ′

��

∆

τ ′

��
Θ

+

ρ ′
// Ψ

commutes, and m(σ) ≥ m(ρ ′) and τ ′ ◦σ ≡ ρ ′ ◦ δ ′ : Γ → Ψ hold. We can apply the induction

hypothesis to ρ ′ and τ ′′. There are again two cases to consider. First, we obtain δ ′′ such that the

diagram

Θ
+

ρ ′
//

δ ′′ �#
@@

@@
@@

@

@@
@@

@@
@ Ψ

τ ′′

��
Ψ

commutes and τ ′′ ◦ρ ′ ≡ δ ′′ : Θ→Ψ holds. Then we can satisfy 1 by letting δ = δ ′′ ◦δ ′. Second,

we obtain ρ ′′ and δ ′′ such that the diagram

Θ
+

ρ ′
//

δ ′′

��

Ψ

τ ′′

��
Ξ

+

ρ ′′
// Φ



Chapter 6. Interpretation and Soundness 178

commutes, and m(ρ ′) ≥ m(ρ ′′) and τ ′′ ◦ρ ′ ≡ ρ ′′ ◦ δ ′′ : Θ → Φ hold. We can satisfy 2 by letting

ρ = ρ ′′ and δ = δ ′′ ◦δ ′. We have τ ◦σ = τ ′′ ◦ τ ′ ◦σ = τ ′′ ◦ρ ′ ◦δ ′ = ρ ′′ ◦δ ′′ ◦δ ′ = ρ ◦δ , and the

same for ≡. Finally, we have m(σ)≥ m(ρ ′)≥ m(ρ).

• τ is τ ′ ∗ τ ′′ : ∆′ ∗∆′′⇒Φ′ ∗Φ′′. Case distinction on the last rule in the derivation of σ :

– σ is 〈σ ′,M〉 : Γ
+→ ∆, x : A. Impossible because of the form of the codomain.

– σ is σ ′
•. Impossible because of the form of the codomain.

– σ is σ ′ ∗ id : Γ′ ∗∆′′
+→ ∆′ ∗∆′′. We apply the induction hypothesis to τ ′ and σ ′. There are

two cases to consider. First, we obtain δ ′ making the following diagram commute.

Γ′
+

σ ′
//

δ ′ �$
@@

@@
@@

@

@@
@@

@@
@ ∆′

τ ′

��
Φ′

We can satisfy 1 by letting δ = δ ′ ∗ id. Second, we obtain ρ ′ and δ ′ for which

Γ′
+

σ ′
//

δ ′

��

∆′

τ ′

��
Θ′ +

ρ ′
//
Φ′

commutes, and m(σ ′)≥ m(ρ ′) and τ ′ ◦σ ′ ≡ ρ ′ ◦δ ′ : Γ′→Φ′ hold. Hence

Γ′ ∗∆′′
+

σ ′∗id
//

δ ′∗τ ′′

��

∆′ ∗∆′′

τ ′∗τ ′′

��
Θ′ ∗Φ′′ +

ρ ′∗id
//
Φ′ ∗Φ′′

.

The components of this diagram are typeable, since from the derivations for σ and τ we get

(Γ′ ∪∆′)∩∆′′ = (∆′ ∪Φ′)∩ (∆′′ ∪Φ′′) = /0 and because by Lemma 6.4.6 we have Θ′ ⊆ Γ′,

Φ′ ⊆ ∆′ and Φ′′ ⊆ ∆′′.

We take δ = δ ′ ∗ τ ′′ and ρ = ρ ′ ∗ id. We have τ ◦σ = (τ ′ ∗ τ ′′)◦ (σ ′ ∗ id) = ((τ ′ ◦σ ′)∗ id)◦
(id ∗ τ ′′) = ((ρ ′ ◦δ ′)∗ id)◦(id ∗ τ ′′) = (ρ ′ ∗ id)◦(δ ′ ∗τ ′′) = ρ ◦δ . Furthermore, since struc-

tural maps translate to the identity substitution, we get (τ ′ ∗ τ ′′) ◦ (σ ′ ∗ id) ≡ (ρ ′ ◦ id) ◦
(δ ′ ∗ τ ′′) : Γ′ ∗∆′→Φ′ ∗Φ′′. Finally, m(σ) = m(σ ′)≥ m(ρ ′) = m(ρ) holds.

– σ is id ∗σ ′′ : ∆′ ∗Γ′′
+→ ∆′ ∗∆′′. Symmetric case.

– σ is σ ′ ◦〈M/A∗B〉 : Γ
+→ (x : A)∗ (y : B)⇒ ∆. We take ρ = (τ ◦σ ′)◦〈M/A∗B〉 and δ = id.

The assertions then follow by associativity of ◦ for = and ≡.

• τ is τ ′• : (∆′, x : B)⇒ (Φ′, x : A). Case distinction on the last rule of the derivation of σ :
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– σ is 〈σ ′,M〉 : Γ′
+→ ∆′, x : B. We know σ ′ : Γ′⇒ ∆′. We satisfy 2 by taking ρ = 〈τ ′ ◦σ ′,M〉

and δ = id. We have τ ◦σ = τ ′• ◦〈σ ′,M〉= 〈τ ′ ◦σ ′,M〉= ρ ◦δ . Note that each part of this

sequence is derivable. Furthermore, the assertion for ≡ follows by Lemma 6.4.10.1 as both

σ ′ and τ ′ are structural.

– σ is σ ′
• : (Γ′, x : C) → (∆′, x : B). We apply the induction hypothesis to τ ′ and σ ′. There

are two cases to consider. First, we obtain δ ′ making the following diagram commute.

Γ′
+

σ ′
//

δ ′ �$
@@

@@
@@

@

@@
@@

@@
@ ∆′

τ ′

��
Φ′

We can satisfy 1 by letting δ = δ ′•. Second, we obtain ρ ′ and δ ′ such that

Γ′
+

σ ′
//

δ ′

��

∆′

τ ′

��
Θ′ +

ρ ′
//
Φ′

commutes, and m(σ ′) ≥ m(ρ ′) and τ ′ ◦σ ′ ≡ ρ ′ ◦ δ ′ hold. Take ρ = ρ ′• and δ = δ ′•. We

have τ ◦σ = τ ′• ◦σ ′
• = (τ ′ ◦σ ′)• = (ρ ′ ◦δ ′)• = ρ ′• ◦δ ′• = ρ ◦δ . The assertion about ≡ is

trivial as τ ′•◦σ ′
• and (τ ′ ◦σ ′)• have the same translation. Finally, we have m(σ) = m(σ ′)≥

m(ρ ′) = m(ρ).

– σ is σ ′ ∗ id : Γ′ ∗Φ
+→ ∆′ ∗Φ or id ∗σ ′ : Φ∗Γ′

+→Φ∗∆′. Impossible because of the form of

the codomain.

– The case where σ is σ ′ ◦ 〈M/A∗B〉 is as above.

• τ is w. Case distinction on the last rule of the derivation of σ :

– 〈σ ′,M〉 : Γ′
+→ ∆′, x : B. We satisfy 1 by letting δ = σ ′. We have w ◦ 〈σ ′,M〉 ≡ w ◦σ ′

• ◦
〈M〉 ≡ σ ′ ◦w◦ 〈M〉 ≡ σ ′ ◦ id ≡ σ ′.

– σ is σ ′
• : Γ′, x : C → ∆′, x : B. We satisfy 2 by letting ρ = σ ′ and δ = w as in

Γ′, x : C
+

σ ′•
//

w
��

∆′, x : B

w
��

Γ′
+

σ ′
//
∆′

Thus, τ ◦σ = w◦σ ′
• = σ ′ ◦w = ρ ◦δ . Moreover, w◦σ ′

• ≡ σ ′ ◦w as, given σ ′ ⇓ χ ′, both

sides translate to ()◦χ ′ and χ ′ ◦ () respectively. Finally, m(σ) = m(σ ′) = m(ρ).

– σ is σ ′ ∗ id : Γ′ ∗Φ
+→ ∆′ ∗Φ or id ∗σ ′ : Φ∗Γ′

+→Φ∗∆′. Impossible because of the form of

the codomain.
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– The case where σ is σ ′ ◦ 〈M/A∗B〉 is as above.

• τ is unit. We have σ : Γ
∗→ ∆. Satisfy 2 by taking ρ = σ ∗� and δ = unit.

• τ is unit−1. Case distinction on the last rule of the derivation of σ :

– σ is 〈σ ′,M〉 : Γ′
+→ ∆′, x : B. Impossible because of the form of the codomain.

– σ is σ ′
• : (Γ′, x : C)→ (∆′, x : B). Impossible because of the form of the codomain.

– (σ ′ ∗ id) : Γ′ ∗ � → ∆′ ∗ �. We satisfy 2 by letting ρ = σ ′ and δ = unit−1. With this choice

we have τ ◦σ = unit−1 ◦ (σ ′ ∗ id) = σ ′ ◦unit−1 = ρ ◦δ . For ≡, we observe that, for σ ′ ⇓ χ ′,

τ ◦σ and ρ ◦δ translate to ()◦ (χ ′ ◦ ()) and χ ′ ◦ ().

– (id ∗σ ′). We satisfy 1 by letting δ = unit−1 ◦ (id∗!). We have τ ◦σ = unit−1 ◦ (id ∗σ ′) =

unit−1◦(id∗!) = δ . The assertion about≡ follows by observing that for any two σ ,τ : Γ→�
it holds that σ ≡ τ .

• τ is swap. Case distinction on σ :

– 〈σ ′,M〉 : Γ
+→ ∆, x : A. Impossible because of the form of the codomain.

– σ is σ ′
• : Γ′, x : C → ∆′, x : B. Impossible because of the form of the codomain.

– (σ ′ ∗ id). Take ρ = (id ∗σ ′) and δ = swap.

• τ is assoc or assoc−1. Similar to swap.

Lemma 6.5.11. For all σ : Γ
∗→ ∆ and all τ : ∆

∗→ Φ there exists a derivation of some ρ : Γ
∗→ Φ, such

that τ ◦σ = ρ : Γ→Φ, m(σ)≥ m(ρ) and τ ◦σ ≡ ρ : Γ→Φ all hold.

Proof. Straightforward induction on the derivation of σ , using Lemma 6.5.10, as each map ∗→ may be

seen as being of the form ⇒ +→ . . .
+→ for zero or more +→s.

The following three lemmas all follow by straightforward induction on the derivation of σ .

Lemma 6.5.12. For all σ : Γ
∗→ ∆, ∆ ` A Type, Γ ` A[σ ] = B Type and x 6∈ Γ,∆, there exists a

derivation of some ρ : Γ, x : B ∗→ ∆, x : A, such that σ• = ρ : Γ, x : B → ∆, x : A, m(σ•) ≥ m(ρ) and

σ• ≡ ρ : Γ, x : B→ ∆, x : A all hold.

Lemma 6.5.13. For all σ : Γ
∗→∆ and ` Φ Bunch with Φ∩(Γ∪∆) = /0, there exists a derivation of some

ρ : Γ∗Φ
∗→ ∆∗Φ, such that σ ∗ id = ρ : Γ∗Φ→ ∆∗Φ, m(σ ∗ id)≥m(ρ) and σ ∗ id ≡ ρ : Γ∗Φ→ ∆∗Φ

all hold.

Lemma 6.5.14. For all σ : Γ
∗→∆ and ` Φ Bunch with Φ∩(Γ∪∆) = /0, there exists a derivation of some

ρ : Φ∗Γ
∗→Φ∗∆, such that id ∗σ = ρ : Φ∗Γ→Φ∗∆, m(id ∗σ)≥m(ρ) and id ∗σ ≡ ρ : Φ∗Γ→Φ∗∆

all hold.
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Lemma 6.5.15. For all σ : Γ→ ∆ there exists a derivation of some ρ : Γ
∗→ ∆, such that σ = ρ : Γ→Φ,

m(σ)≥ m(ρ) and σ ≡ ρ : Γ→ ∆ all hold.

Proof. By induction on the derivation of σ : Γ→ ∆. Case distinction on the last rule:

• (→-BU-CONV). Apply Lemma 6.5.9.2.

• (SUB-STR). Apply (SUB∗-STR).

• (SUB-COMP). Apply induction hypothesis and Lemma 6.5.11.

• (SUB-∗). The last rule is:

σ ⇓ χ : Γ→ ∆ τ ⇓ ξ : Φ→Ψ
(SUB-∗) /0 = (Γ∪∆)∩ (Φ∪Ψ)

σ ∗ τ ⇓ χ{ξ/Ψ} : Γ∗Φ→ ∆∗Ψ

By induction hypothesis, we have σ ′ : Γ
∗→ ∆ and τ ′ : Φ

∗→Ψ with σ = σ ′, τ = τ ′, σ ≡ σ ′, τ ≡ τ ′,

m(σ)≥ m(σ ′) and m(τ)≥ m(τ ′). By the side-condition of (SUB-∗), we can use Lemmas 6.5.13

and 6.5.14 and combine the results using (SUB∗-COMP). It follows from the definition of the

measure m and Lemma 6.4.10.8 that the combined map enjoys the required properties.

• (SUB-LIFT). Apply induction hypothesis and Lemma 6.5.12.

• (SUB-SUB). Apply (SUB+-SUB) and precompose with id to get a ∗→-map.

• (SUB-LET). Apply (SUB+-LET) and precompose with id to get a ∗→-map.

Having shown that substitutions can be brought into a suitable form, we now give a series of inver-

sion lemmas that will be used in the proof of the Main Lemma. The following series of lemmas provides

inversion principles for types and terms under substitution. In addition to the normal inversion, these

lemmas also show that if two types/terms have the same syntactic translation then so do the subterms

obtained by inversion. For example, if (λA.M)[σ ] and (λB.N)[τ] are derivable terms with the same

translation, then so are M[σ•] and N[τ•].

First we state a lemma that allows us to restrict the number of cases we have to consider.

Lemma 6.5.16.

1. If Γ ` A[σ ] ⇓ A′ Type is derivable and A is not of the form B[τ], then there exists a derivation of

the same judgement that ends with an application of one of the rules (C-TY), (∗-TY), (Π-TY)

and (Π∗-TY) followed by a single application of (SUBST).

2. If Γ ` M[σ ] ⇓M′ : A is derivable and M is not of the form N[τ], then there exists a derivation of

the same judgement that ends with an application of (PROJ) or an introduction rule or elimination

rule, followed by an application of (SUBST) and followed by an application of (TY-CONV).
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Proof.

1. Examining the rules, a derivation of Γ ` A[σ ] ⇓ A′ Type must end in one of the rules (C-TY),

(∗-TY), (Π-TY) and (Π∗-TY), followed by zero or more applications of (BU-CONV), followed

by (SUBST), followed by zero or more applications of (BU-CONV). We consider the case where

(Π-TY) has been used. The other cases are similar. Since bunch conversion is reflexive and tran-

sitive, we can assume that before and after (SUBST) the rule (BU-CONV) is applied exactly once.

The end of the derivation thus has the following form.
...(Π-TY)

Γ ` ΠA.B ⇓Πx : C.D Type ` Γ = ∆ Bunch
(BU-CONV)

∆ ` ΠA.B ⇓Πx : C.D Type σ ⇓ χ : Φ→ ∆
(SUBST)

Φ ` (ΠA.B)[σ ] ⇓ (Πx : C.D) χ Type ` Φ = Ψ Bunch
(BU-CONV)

Ψ ` (ΠA.B)[σ ] ⇓ (Πx : C.D) χ Type

Then the following derivation has the required form.

...(Π-TY)
Γ ` ΠA.B ⇓Πx : C.D Type

` Φ = Ψ Bunch
` Ψ = Φ Bunch σ : Φ→ ∆

` Γ = ∆ Bunch
` ∆ = Γ Bunch

σ ⇓ χ : Ψ→ Γ
(SUBST)

Ψ ` (ΠA.B)[σ ] ⇓ (Πx : C.D) χ Type

2. First, it is easily seen that (BU-CONV) commutes with (TY-CONV). Second, we note that

(SUBST) after (TY-CONV) can be transformed into (TY-CONV) after (SUBST), as σ : Γ → ∆

and ∆ ` A = B Type imply Γ ` A[σ ] = B[σ ] Type. Like in the first point, we can assume that zero

or more applications of (BU-CONV) can be made into exactly one application of (BU-CONV).

We can therefore assume the derivation to end with an introduction or elimination followed by

a single application of (BU-CONV), followed by (SUBST), followed by (BU-CONV) and finally

followed by (TY-CONV). The applications of (BU-CONV) can be absorbed by the substitution,

as in the first case above.

Lemma 6.5.17. If Γ ` (A1∗A2)[σ ] ⇓ C Type and Γ ` (B1∗B2)[τ] ⇓ C Type then there exist derivable

sequents ` A1 ⇓C1 Type, ` B1 ⇓C1 Type, ` A2 ⇓C2 Type and ` B2 ⇓C2 Type.

Proof. By Lemma 6.5.16, each derivation must end in (∗-TY) followed by (SUBST). Examination of

these rule applications gives us derivable judgements:

σ ⇓ χ : Γ→ ∆ τ ⇓ ξ : Γ→Φ

` A1 ⇓ A′1 Type ` B1 ⇓ B′1 Type

` A2 ⇓ A′2 Type ` B2 ⇓ B′2 Type

C = (A′1∗A′2) χ C = (B′1∗B′2) ξ
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Hence, A′1 χ = B′1 ξ and A′2 χ = B′2 ξ hold. By Lemma 6.4.6, the types A′1, A′2, B′1 and B′2 do not contain

free variables, which implies A′1 = B′1 and A′2 = B′2.

Lemma 6.5.18. If Γ ` (ΠA1.A2)[σ ] ⇓C Type and Γ ` (ΠB1.B2)[τ] ⇓C Type then there exist derivable

sequents Γ ` A1[σ ] ⇓C1 Type, Γ ` B1[τ] ⇓C1 Type, Γ, x : A1[σ ] ` A2[σ•] ⇓C2 Type and Γ, x : B1[τ] `
B2[τ•] ⇓C2 Type.

The proof is similar to that of the next lemma.

Lemma 6.5.19. If Γ ` (Π∗A1.A2)[σ ] ⇓C Type and Γ ` (Π∗B1.B2)[τ] ⇓C Type then there exist deriv-

able sequents ` A1 ⇓ C1 Type, ` B1 ⇓ C1 Type, Γ ∗ x : A1 ` A2[σ ∗ id] ⇓ C2 Type and Γ ∗ x : B1 `
B2[τ ∗ id] ⇓C2 Type.

Proof. By Lemma 6.5.16, each derivation must end in (Π∗-TY) followed by (SUBST), so that we have:

σ ⇓ χ : Γ→ ∆ τ ⇓ ξ : Γ→Φ

` A1 ⇓ A′1 Type ` B1 ⇓ B′1 Type

∆∗ x : A1 ` A2 ⇓ A′2 Type Φ∗ x : B1 ` B2 ⇓ B′2 Type

C = (Π∗x : A′1.A
′
2) χ C = (Π∗x : B′1.B

′
2) ξ

From (Π∗x : A′1.A
′
2) χ = (Π∗x : B′1.B

′
2) ξ we obtain A′1 χ = B′1 ξ and A′2 χ{z/x}= B′2 ξ{z/x} for some

fresh z. Let C1 = A′1 and C2 = A′2 χ{z/x}. By Lemma 6.4.5, we have ∆ ∗ z : A1 ` A2 ⇓ A′2 {z/x} Type

and Φ ∗ z : B1 ` B2 ⇓ B′2 {z/x} Type. Therefore, we get Γ ∗ z : A1 ` A2[σ ∗ id] ⇓ A′2 {z/x} χ Type and

Γ ∗ z : B1 ` B2[τ ∗ id] ⇓ B′2 {z/x} ξ Type. Since z is fresh, we have A′2 {z/x} χ = A′2 χ{z/x} and

B′2 {z/x} ξ = B′2 ξ{z/x}. Using A′2 χ{z/x} = B′2 ξ{z/x}, we get that both A2[σ ∗ id] and B2[τ ∗ id]

translate to C2. Furthermore, by Lemma 6.4.6, neither A′1 nor B′1 contain free variables, which implies

A′1 = A′1 χ = B′1 ξ = B′1. Hence, the syntax translation of both A1 and B1 is C1.

Lemma 6.5.20. Let δ : (x : A)∗ (y : B)⇒ (∆, z : C) be a structural map such either that x = z or y = z

holds. If Γ ` 1[δ ][〈M/A∗B〉][σ ] ⇓ R : C and Γ ` 1[δ ][〈N/A∗B〉][τ] ⇓ R : D then there exists Q such that

Γ ` M[σ ] ⇓ Q : A∗B and Γ ` N[τ] ⇓ Q : A∗B.

Proof. We spell out the case where x = z holds. Since, by Lemma 6.5.16, there is a derivation of

Γ ` 1[δ ][〈M/A∗B〉][σ ] ⇓ R : C that ends in (SUBST) followed by (TY-CONV), we have derivations of

σ ⇓ χ : Γ → Γ1 and Γ1 ` 1[δ ][〈M/A∗B〉] ⇓ R1 : C′ and Γ1 ` C = C′[σ ] Type and R = R1 χ . Using

Lemma 6.5.16 again, and doing analogous steps for the other derivation in the proposition, we get:

σ ⇓ χ : Γ→ Γ1 τ ⇓ ξ : Γ→ ∆1

Γ1 ` M ⇓M′ : A∗B ⇓ A′∗B′ ∆1 ` N ⇓ N′ : A∗B ⇓ A′′∗B′′

x : A∗ y : B ` 1[δ ] ⇓ x : C′′ x : A∗ y : B ` 1[δ ] ⇓ x : D′′

Γ ` C = C′′[〈M/A∗B〉][σ ] Type Γ ` D = D′′[〈M/A∗B〉][τ] Type

R = x {rA′,B′(M
′)/y}{lA′,B′(M

′)/x} χ R = x {rA′′,B′′(N
′)/y}{lA′′,B′′(N

′)/x} ξ
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Using (SUBST), we can therefore derive

Γ ` M[σ ] ⇓M′
χ : (A∗B)[σ ] = (A∗B), Γ ` N[τ] ⇓ N′

ξ : (A∗B)[τ] = (A∗B).

It remains to show that M′ χ = N′ ξ holds. This can be seen because we have lA′ χ,B′ χ(M′ χ) =

x {rA′,B′(M′)/y}{lA′,B′(M′)/x} χ = R = x {rA′′,B′′(N′)/y}{lA′′,B′′(N′)/x} ξ = lA′′ ξ ,B′′ ξ (N′ ξ ).

Lemma 6.5.21. If Γ ` (λA.M)[σ ] ⇓ R : C and Γ ` (λB.N)[τ] ⇓ R : D then there exist E, F, S, T

and x such that Γ ` A[σ ] ⇓ S Type and Γ ` B[τ] ⇓ S Type and Γ ` C = ΠA[σ ].E[σ•] Type and Γ `
D = ΠB[τ].F [τ•] Type and Γ, x : A[σ ] ` M[σ•] ⇓ T : E[σ•] and Γ, x : B[τ] ` N[τ•] ⇓ T : F [τ•] are all

derivable.

Proof. Using Lemma 6.5.16 as in the previous lemma, we get derivations of the following judgements.

σ ⇓ χ : Γ→ ∆ τ ⇓ ξ : Γ→Φ

∆ ` A ⇓ As Type Φ ` B ⇓ Bs Type

∆, x : A ` M ⇓Ms : E Φ, x : B ` N ⇓ Ns : F

Γ ` C = (ΠA.E)[σ ] Type Γ ` D = (ΠB.F)[τ] Type

R = (λx : As.Ms) χ R = (λx : Bs.Ns) ξ

By (λx : As.Ms) χ = R = (λx : Bs.Ns) ξ , we have As χ = Bs ξ and Ms χ{z/x} = Ns ξ{z/x} for some

fresh variable z. Using Lemma 6.4.5, we get

∆, z : A ` M ⇓Ms {z/x} : E Φ, z : B ` N ⇓ Ns {z/x} : F

Using (SUBST), we can derive

Γ ` A[σ ] ⇓ As χ Type Γ ` B[τ] ⇓ Bs ξ Type

Γ, z : A[σ ] ` M[σ•] ⇓Ms {z/x} χ : E[σ•] Γ, z : B[τ] ` N[τ•] ⇓ Ns {z/x} ξ : F [τ•]

Since z is fresh and x does not occur in the codomain of σ and τ , we have Ms {z/x} χ = Ms χ{z/x} and

Ns {z/x} ξ = Ns ξ{z/x}. Therefore, letting S = As χ and T = Ms χ{z/x}, this completes the proof.

The following lemmas are proved similarly.

Lemma 6.5.22. If Γ ` (app[A1]A2
(M1,M2))[σ ] ⇓ R : C and Γ ` (app[B1]B2

(N1,N2))[τ] ⇓ R : D then there

exist S, T , U, V and x such that Γ ` A1[σ ] ⇓ S Type and Γ ` B1[τ] ⇓ S Type and Γ, x : A1[σ ] ` A2[σ•] ⇓
T Type and Γ, x : B1[τ] ` B2[τ•] ⇓ T Type and Γ ` M1[σ ] ⇓U : (ΠA1.A2)[σ ] and Γ ` M2[σ ] ⇓V : A1[σ ]

and Γ ` N1[τ] ⇓U : (ΠB1.B2)[τ] and Γ ` N2[τ] ⇓V : B1[τ] are all derivable.

Lemma 6.5.23. If Γ ` (λ∗A.M)[σ ] ⇓ R : C and Γ ` (λ∗B.N)[τ] ⇓ R : D then there exist E, F, S, T

and x such that ` A ⇓ S Type and ` B ⇓ S Type and Γ ` C = Π∗A.E[σ ∗ id] Type and Γ ` D =

Π∗B.F [τ ∗ id] Type and Γ∗ x : A ` M[σ ∗ id] ⇓ T : E[σ ∗ id] and Γ∗ x : B ` N[τ ∗ id] ⇓ T : F [τ ∗ id] are

all derivable.
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Lemma 6.5.24. If Γ ` (app∗[A1]A2
(M1,M2))[σ ] ⇓ R : C and Γ ` (app∗[B1]B2

(N1,N2))[τ] ⇓ R : D then there

exist S, T , U, V and x such that ` A1 ⇓ S Type and ` B1 ⇓ S Type and Γ` A2[id∗〈!,M2〉][σ ]⇓ T Type and

Γ ` B2[id ∗ 〈!,N2〉][τ] ⇓ T Type and Γ ` M1[π̇1 ◦σ ] ⇓U : (Π∗A1.A2)[π̇1 ◦σ ] and Γ ` M2[π̇2 ◦σ ] ⇓V :

A1[!Γ] and Γ ` N1[π̇1 ◦ τ] ⇓U : (Π∗B1.B2)[π̇1 ◦ τ] and Γ ` N2[π̇2 ◦ τ] ⇓V : B1[!Γ] are all derivable.

Lemma 6.5.25. If Γ ` (pair∗A1,A2
(M1,M2))[σ ] ⇓ R : A, and Γ ` (pair∗B1,B2

(N1,N2))[τ] ⇓ R : B then there

exist S, T , A′, B′ and types ` A1 ⇓ A′ Type, ` A2 ⇓ A′ Type, ` B1 ⇓ B′ Type and ` B2 ⇓ B′ Type, such that

Γ ` A1 ∗A2 = A Type and Γ ` B1 ∗B2 = B Type and Γ ` M1[π̇1 ◦σ ] ⇓ S : A1[!Γ] and Γ ` N1[π̇1 ◦ τ] ⇓ S :

B1[!Γ] and Γ ` M2[π̇2 ◦σ ] ⇓ T : A2[!Γ] and Γ ` N2[π̇2 ◦ τ] ⇓ T : B2[!Γ] are all derivable.

Proof. Using Lemma 6.5.16, we have Γ ` A1 ∗A2 = A Type, Γ ` B1 ∗B2 = B Type, σ : Γ → ∆1 ∗∆2

and τ : Γ → Φ1 ∗Φ2, as well as, for all i ∈ {1,2}, ` Ai ⇓ A′i Type, ` Bi ⇓ B′i Type, ∆i ` Mi ⇓ Si : Ai[!∆i ]

and Φi ` Ni ⇓ Ti : Bi[!Φi ]. Moreover, R has the form pair∗A′1,A′2
(S1,S1) and also the form pair∗B′1,B′2

(T1,T2).

Hence, A′i = B′i and Si = Ti hold for all i ∈ {1,2}. The derivation of the required statements now follows

using substitution.

Lemma 6.5.26 (Main Lemma).

1. If Γ ` A ⇓C Type and Γ ` B ⇓C Type then Γ ` A = B Type.

2. If Γ ` M ⇓ R : A and Γ ` N ⇓ R : B then Γ ` A = B Type and Γ ` M = N : A.

Proof. We establish both 1 and 2 simultaneously by induction on m(A)+ m(B) and m(M)+ m(N) re-

spectively.

1. In general, A has the form A′[σ1] . . . [σn] for n ≥ 0. We have Γ ` A = A′[id ◦σ1 ◦ · · · ◦σn] Type,

where the right hand term does not have larger measure. Hence, we can assume that A is A′[σ ]

such that A′ does not have the form A′′[σ ′]. We make the same assumption for B. Case distinction

on the type A′.

• A is T (σ). We can assume A to be of this form since we have T (τ)[σ ] = T (τ ◦σ). We know

that C has the form T (R1, . . . ,Rn). Since both A ⇓C and B ⇓C hold, the type B must have the

form T (τ). Since T ∈ T (∆) for a unique pre-context ∆, we have σ : Γ → ∆ and τ : Γ → ∆.

For each structural map δ : ∆ ⇒ (Φ, x : D), we can derive Γ ` 1[δ ][σ ] ⇓ Ri : D[w][δ ][σ ]

and Γ ` 1[δ ][τ] ⇓ Ri : D[w][δ ][τ] for some i ∈ {1, . . . ,n}. Because we have m(T (σ)) =

2+m(σ) > 1+m(σ) = m(1[δ ][σ ]), we can use the induction hypothesis on terms to get Γ `
1[δ ][σ ] = 1[δ ][τ] : D[w][δ ][σ ] = D[w][δ ][τ]. Since δ was arbitrary, we can use Lemma 6.5.4

to obtain σ = τ : Γ → ∆. The case is completed by using (C-TY-CGR) to derive Γ ` A =

T (σ) = T (τ) = B Type.

• A is (A1∗A2)[σ ]. Then C has ∗ as its outermost constructor, which implies that B must

be (B1∗B2)[τ]. By Lemma 6.5.17, we have derivations ` A1 ⇓ C1 Type, ` B1 ⇓ C1 Type,

` A2 ⇓C2 Type and ` B2 ⇓C2 Type. From the induction hypothesis, we obtain derivations
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of ` A1 = B1 Type and ` A2 = B2 Type. From this we derive ` A1∗A2 = B1∗B2 Type. By

rule (SUBST) we obtain ` (A1∗A2)[!Γ] = (B1∗B2)[!Γ] Type. Using the substitution equation

(∗-SUB), this gives Γ ` (A1∗A2)[!Γ] = (A1∗A2) = (A1∗A2)[σ ] Type. With the corresponding

equation for (B1∗B2), we have thus derived the required Γ ` (A1∗A2)[σ ] = (B1∗B2)[τ] Type.

• A is (ΠA1.A2)[σ ]. Then C has a Π as its outermost constructor, which implies that B must

be (ΠB1.B2)[τ]. By Lemma 6.5.18 we have Γ ` A1[σ ] ⇓ C1 Type, Γ ` B1[τ] ⇓ C1 Type,

Γ, x : A1[σ ] ` A2[σ•] ⇓ C2 Type and Γ, x : B1[τ] ` B2[τ•] ⇓ C2 Type. The induction hy-

pothesis yields Γ ` A1[σ ] = B1[τ] Type. Using this, bunch conversion, and the induction

hypothesis, we obtain Γ, x : A1[σ ] ` A2[σ•] = B2[τ•] Type. By (Π-TY-CGR), we have

Γ ` ΠA1[σ ].A2[σ•] = ΠB1[τ].B2[τ•] Type. Using (Π-SUB), we therefore get the required

Γ ` A = (ΠA1.A2)[σ ] = ΠA1[σ ].A2[σ•] = ΠB1[τ].B2[τ•] = (ΠB1.B2)[τ] = B Type.

• A is (Π∗A1.A2)[σ ]. Then C has a Π∗ as its outermost type constructor, which implies that B

must be (Π∗B1.B2)[τ]. Lemma 6.5.19 yields ` A1 ⇓C1 Type, ` B1 ⇓C1 Type, Γ ∗ x : A1 `
A2[σ ∗ id] ⇓C2 Type and Γ∗x : B1 ` B2[τ ∗ id] ⇓C2 Type. The induction hypothesis provides

` A1 = B1 Type. Using this, bunch conversion, and the induction hypothesis, we obtain

Γ∗x : A1 ` A2[σ ∗ id] = B2[τ ∗ id] Type. By (Π∗-TY-CGR), we have Γ ` Π∗A1.A2[σ ∗ id] =

Π∗B1.B2[τ ∗ id] Type. Using (Π∗-SUB) we get the required

Γ ` A = (Π∗A1.A2)[σ ] = Π
∗A1.A2[σ ∗ id] = Π

∗B1.B2[τ ∗ id] = (Π∗B1.B2)[τ] = B Type.

2. In general, M has the form M′[σ1] . . . [σn] for n≥ 0. We have M = M′[id ◦σ1 ◦ · · · ◦σn], where the

right hand term does not have larger measure. Hence, we can assume M to have the form M′[σ ],

where M′ does not have the form M′′[σ ′]. We make a corresponding assumption for N. Moreover,

if N has the form 1[τ] then we exchange M and N, so that we can assume that N does not have the

form 1[τ] unless M also has the form 1[σ ]. We proceed by case distinction on M.

• M is 1[σ ]. We have Γ ` 1[σ ] ⇓ R : A. Using Lemma 6.5.16, σ : Γ → ∆, x : A0 and Γ `
A = A0[w][σ ] Type are derivable. By Lemma 6.5.15, there exists τ : Γ

∗→ ∆, x : A0 such that

Γ ` 1[τ] ⇓ R : A and Γ ` 1[σ ] = 1[τ] : A are derivable, and that m(1[σ ])≥m(1[τ]) holds. We

continue by case distinction on τ .

– τ is structural. In this case R is a variable, say x. In order for N to translate to a variable,

it must be of the form 1[ρ]. We can assume ρ : Γ
∗→ Φ, y : B0. If ρ is structural then

y must be x, and we can use Lemma 6.5.1 to derive Γ ` M = N : A0 = B0, as required.

If ρ has a substitution or a let as its main part then we can consider the symmetric case

with ρ and τ exchanged, so this case is handled by the following two cases.

– τ is τ ′′ ◦ τ ′ ⇓ χ ′′ ◦ χ ′, where the main part of τ ′′ is a substitution 〈δ ,M′〉, i.e. χ ′′ is

{M′′/y}. By the form of the codomain of τ , the map τ ′′ must be either (i) τ ′′1 •, in which

case y 6= x, or (ii) 〈δ ,M′〉, in which case y = x.
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In case (i), we can assume that the domain of τ ′′ has the form ∆′, x : A0[τ ′′]. Hence,

we have Γ ` 1[τ ′] ⇓ x χ ′ : A as well as Γ ` M = 1[τ] = 1[τ ′′1 •][τ
′] = 1[τ ′] : A. Since

R = x χ = x {M′′/y} χ ′ = x χ ′ and m(M)≥m(1[τ]) = m(1[τ ′′][τ ′]) > m(1[τ ′]), we can

apply the induction hypothesis to get Γ ` 1[τ ′] = N : A = B, which implies Γ ` M = N :

A = B, as required.

In case (ii), we have M[τ] = 1[〈δ ,M′〉 ◦ τ ′] = M′[τ ′]. The right-hand term has a strictly

smaller measure, so that we can apply the induction hypothesis.

– τ is τ ′′ ◦ τ ′ ⇓ χ ′′ ◦ χ ′, where the main part of τ ′′ is a let. In this case, χ ′′ must be

{rD′,E ′(R′)/v}{lD′,E ′(R′)/u} for some R′, u and v, and the let-free term R is of the form

x{rD′,E ′(R′)/v}{lD′,E ′(R′)/u} χ ′ for some variable x. By the form of its codomain, τ ′′

must be either (i) τ ′′1 •, in which case both x 6= u and x 6= v hold; or (ii) δ ◦〈M′/D∗E〉, in

which case we have x = u or x = v. The case (i) is handled as in the above case where

the main part of τ ′′ is a substitution.

It remains to consider case (ii). Since R is either a variable or of the form lD′,E ′(R′)

or rD′,E ′(R′), it follows that N must have the form 1[ρ] where ρ : Γ
∗→ (Φ, y : B0).

We continue by case distinction on ρ . There are three possible cases. If ρ is struc-

tural then R must be the variable y. But by assumption of (ii), we know that R is

either lD′,E ′(R′) or rD′,E ′(R′). Hence, we have a contradiction so that the case where ρ

is structural cannot occur. If ρ is ρ ′′ ◦ ρ ′, where ρ ′′ has a substitution as its main

formula, then we can use the induction hypothesis as above. The remaining case is

where ρ is ρ ′′ ◦ ρ ′ ⇓ ξ ′′ ◦ ξ ′ and ρ ′′ has a let as its main formula. Then ξ ′′ must be

{rD′′,E ′′(R′′)/v′}{lD′′,E ′′(R′′)/u′}. As in the case for τ ′′, there are two possible cases

for ρ ′′, analogous to (i) and (ii). The first case is handled by the induction hypothesis

just as the case for (i) above. In the second case ρ ′′ is δ ′ ◦ 〈N′/F ∗G〉 and either y = u′

or y = v′ holds. Without loss of generality, we may assume y = u′. We can assume

the choice of fresh variables to be such that u′ = u and v′ = v. Since the outermost

term in R is either l or r, this implies x = y. Let δ ′′ : (u : F)∗ (v : G) ⇒ (u : F). It

follows using (STR-EQ) that 1[δ ′′] = 1[δ ′] holds. Now we have ` D ⇓ D′ Type and

` F ⇓ E ′ Type, since Lemma 6.4.4 gives us ` D ⇓ D′′ Type and ` E ⇓ E ′′ Type and

from lD′,E ′(R′′) χ ′ = R = lD′′,E ′′(R′′) ξ ′ we get D′ = D′′ and E ′ = E ′′. By induction

hypothesis, we get ` D = F Type, and similarly ` E = G Type. By conversion, we then

have δ ′′ : (u : D)∗ (v : E)⇒ (u : D). Using (STR-EQ), we obtain 1[δ ′′] = 1[δ ]. Using

(∗-E-CGR) we moreover get 〈N′/F ∗G〉= 〈N′/D∗E〉, so that we have

Γ ` M = 1[δ ′′][〈M′/D∗E〉][τ ′] : A Γ ` N = 1[δ ′′][〈N′/D∗E〉][ρ ′] : B

By Lemma 6.5.20, we obtain an term S such that the sequents Γ ` M′[τ ′] ⇓ S : D∗E and

Γ ` N′[ρ ′] ⇓ S : D∗E are derivable. We can apply the induction hypothesis to obtain

Γ ` M′[τ ′] = N′[ρ ′] : D∗E.
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The case is completed by noting M = 1[δ ′′][〈M′/D∗E〉][τ ′] = 1[δ ′′][〈M′[τ ′]/D∗E〉] =

1[δ ′′][〈N′[ρ ′]/D∗E〉] = 1[δ ′′][〈N′/D∗E〉][ρ ′] = N.

• M is f (σ). We can assume M to be of this form since we have f (τ)[σ ] = f (τ ◦σ). We

know that R has the form f (R1, . . . ,Rn). Since both M and N translate to R, and N can by

assumption not be of the form 1[τ], the term N must have the form f (τ). Since f ∈T (∆;A0)

for a unique context ∆ and type A0, we have σ : Γ → ∆, Γ ` A = A0[σ ] Type, τ : Γ → ∆

and Γ ` B = A0[τ] Type. For each structural map δ : ∆ ⇒ (Φ, x : D), we can derive Γ `
1[δ ][σ ] ⇓ Ri : D[w][δ ][σ ] and Γ ` 1[δ ][τ] ⇓ Ri : D[w][δ ][τ] for some i ∈ {1, . . . ,n}. Since

m( f (σ)) = 2 + m(σ) > 1 + m(σ) = m(1[δ ][σ ]), we can use the induction hypothesis to

get Γ ` 1[δ ][σ ] = 1[δ ][τ] : D[w][δ ][σ ] = D[w][δ ][τ]. Since δ was arbitrary, we can apply

Lemma 6.5.4 to get σ = τ : Γ→ ∆. The case is completed by using (C-TM-CGR) to derive

Γ ` M = f (σ) = f (τ) = N : A = A0[σ ] = A0[τ] = B.

• M is (λA0.M0)[σ ]. Since both M ⇓R and N ⇓R, the term N must have the form (λB0.N0)[τ].

By Lemma 6.5.21, we have derivations of Γ ` A0[σ ] ⇓ S Type and Γ ` B0[τ] ⇓ S Type and

Γ ` A = (ΠA0.C)[σ ] Type and Γ ` B = (ΠB0.D)[τ] Type and Γ, x : A0[σ ] ` M0[σ•] ⇓ T :

C[σ•] and Γ, x : B0[τ] ` N0[τ•] ⇓ T : D[τ•].

Now, we have m((λA0.M0)[σ ]) = 1+m(A0)+m(M0)+m(σ), m(A0[σ ]) = m(A0)+m(σ)

and m(M0[σ•]) = m(M0)+ m(σ). We can therefore apply the induction hypothesis to ob-

tain Γ ` A0[σ ] = B0[τ] Type and, using (BU-CONV) and the induction hypothesis, also

Γ,x : A0[σ ] ` M0[σ•] = N0[τ•] : C[σ•] = D[τ•].

By congruence, substitution equations and transitivity, we get the required

Γ ` A = (ΠA0.C)[σ ] = (ΠA0[σ ].C[σ•]) = (ΠB0[τ].D[τ•]) = (ΠB0.D)[τ] = B Type,

Γ ` M = (λA0.M0)[σ ] = (λA0[σ ].M0[σ•]) = (λB0[τ].N0[τ•]) = (λB0.N0)[τ] = N : A.

• M is (app[A1]A2
(M1,M2))[σ ]. Since both M ⇓ R and N ⇓ R, the outermost term constructor in

R is an application, which implies that the term N must have the form (app[B1]B2
(N1,N2))[τ].

Making use of Lemma 6.5.16, we obtain Γ ` A = A2[〈M2〉][σ ] = A2[σ•][〈M2[σ ]〉] Type and

Γ ` B = B2[〈N2〉][τ] = B2[τ•][〈N2[τ]〉] Type. By Lemma 6.5.22, there exist derivable judge-

ments of the following form.

Γ ` A1[σ ] ⇓ S Type Γ ` B1[τ] ⇓ S Type

Γ, x : A1[σ ] ` A2[σ•] ⇓ T Type Γ, x : B1[τ] ` B2[τ•] ⇓ T Type

Γ ` M1[σ ] ⇓U : (ΠA1.A2)[σ ] Γ ` N1[τ] ⇓U : (ΠB1.B2)[τ]

Γ ` M2[σ ] ⇓V : A1[σ ] Γ ` N2[τ] ⇓V : B1[τ]

Each of these sequents has a type/term with smaller measure. We can therefore apply the
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induction hypothesis in conjunction with (BU-CONV) to obtain:

Γ ` A1[σ ] = B1[τ] Type Γ, x : A1[σ ] ` A2[σ•] = B2[τ•] Type

Γ ` M1[σ ] = N1[τ] : (ΠA1.A2)[σ ] = ΠA1[σ ].A2[σ•] Γ ` M2[σ ] = N2[τ] : A1[σ ]

These are precisely the premises needed for (Π-E-CGR), so that we get

Γ ` app[A1[σ ]]A2[σ•](M1[σ ],M2[σ ]) = app[B1[τ]]B2[τ•](N1[τ],N2[τ]) : A2[σ•][〈M1[σ ]〉].

By the equations for substitution, we get

Γ ` (app[A1]A2
(M1,M2))[σ ] = (app[B1]B2

(N1,N2))[τ] : A2[σ•][〈M1[σ ]〉].

Finally, for the types we use congruence of substitution to get Γ ` A = A2[σ•][〈M2[σ ]〉] =

B2[τ•][〈M2[σ ]〉] = B2[τ•][〈N2[τ]〉] = B Type.

• M is (λ∗A0.M0)[σ ]. Since both M and N translate to R, the term N must have the form

(λ∗B0.N0)[τ]. By Lemma 6.5.23, we have derivations of ` A0 ⇓ S Type, ` B0 ⇓ S Type, Γ `
A = (Π∗A0.C)[σ ] Type, Γ ` B = (Π∗B0.D)[τ] Type, Γ ∗ x : A0 ` M0[σ ∗ id] ⇓ T : C[σ ∗ id]

and Γ∗ x : B0 ` N0[τ ∗ id] ⇓ T : D[τ ∗ id].

Now, we have m((λ∗A0.M0)[σ ]) = 1+m(A0)+m(M0)+m(σ) as well as m(M0[σ ∗ id]) =

m(M0)+m(σ). We can therefore apply the induction hypothesis to get ` A0 = B0 Type and

Γ∗ x : A0 ` M0[σ ∗ id] = N0[τ ∗ id] : C[σ ∗ id] = D[τ ∗ id].

By congruence, substitution equations and transitivity, we get the required

Γ ` A = (Π∗A0.C)[σ ] = (Π∗A0.C[σ ∗ id]) = (Π∗B0.D[τ ∗ id]) = (Π∗B0.D)[τ] = B Type,

Γ ` M = (λ∗A0.M0)[σ ] = (λ∗A0.M0[σ ∗ id]) = (λ∗B0.N0[τ ∗ id]) = (λ∗B0.N0)[τ] = N : A.

• M is (app∗[A1]A2
(M1,M2))[σ ]. Since both M ⇓ R and N ⇓ R hold, the term N must have

the form (app∗[B1]B2
(N1,N2))[τ]. Using Lemmas 6.5.24 and 6.5.16 we obtain the following

derivable judgements, in which we write σ ′ for (id ∗ 〈!,M2〉)◦σ and τ ′ for (id ∗ 〈!,N2〉)◦ τ .

σ : Γ→ Γ1 ∗∆1 τ : Γ→ Γ2 ∗∆2

Γ1 ` M1 : Π
∗A1.A2 Γ2 ` N1 : Π

∗B1.B2

` A1 ⇓ S Type ` B1 ⇓ S Type

Γ ` A2[σ ′] ⇓ T Type Γ ` B2[τ ′] ⇓ T Type

Γ ` M1[π̇1 ◦σ ] ⇓U : (Π∗A1.A2)[π̇1 ◦σ ] Γ ` N1[π̇1 ◦ τ] ⇓U : (Π∗B1.B2)[π̇1 ◦ τ]

Γ ` M2[π̇2 ◦σ ] ⇓V : A1[!Γ] Γ ` N2[π̇2 ◦ τ] ⇓V : B1[!Γ]

Since each of these sequents has a type/term with smaller measure, we can use the in-

duction hypothesis to obtain derivations of ` A1 = B1 Type, Γ ` A2[σ ′] = B2[τ ′] Type,
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Γ ` (Π∗A1.A2)[π̇1 ◦σ ] = (Π∗B1.B2)[π̇1 ◦ τ] Type, Γ ` N2[π̇2 ◦σ ] = N2[π̇2 ◦ τ] : A1[!Γ] and

Γ ` M1[π̇1 ◦σ ] = N1[π̇1 ◦ τ] : (Π∗A1.A2)[π̇1 ◦σ ]. We notice that we have π̇1 ◦σ ′ = π̇1 ◦σ

and π̇2 ◦σ ′ = 〈!,M2〉 ◦σ , and corresponding equations for τ ′. This gives us the equations

(Π∗A1.A2)[π̇1◦σ ′] = (Π∗B1.B2)[π̇1◦τ ′], M1[π̇1◦σ ′] = N1[π̇1◦τ ′] and 1[π̇2◦σ ′] = 1[π̇2◦τ ′],

in which we omit contexts and types for readability. The assertion now follows using the

rule (Π∗-E-CGR) and the substitution equation for app∗.

• M is (pair∗A1,A2
(M1,M2))[σ ]. Because N has the same syntactic translation as M, it must

have the form (pair∗B1,B2
(N1,N2))[τ]. Using Lemma 6.5.25, we obtain types ` A1 ⇓ A′ Type,

` A2 ⇓ A′ Type, ` B1 ⇓ B′ Type and ` B2 ⇓ B′ Type and the following derivable judgements:

Γ ` A = A1∗A2 Type Γ ` B = B1∗B2 Type

Γ ` M1[π̇1 ◦σ ] ⇓ S : A1[!] Γ ` N1[π̇1 ◦ τ] ⇓ S : B1[!]

Γ ` M2[π̇2 ◦σ ] ⇓ T : A2[!] Γ ` N2[π̇2 ◦ τ] ⇓ T : B2[!]

The induction hypothesis yields ` A1 = A2 Type and ` B1 = B2 Type. This implies Γ `
A1∗A2 = B1∗B2 Type. Now note that m(M1[π̇1 ◦σ ])+ m(N1[π̇1 ◦ τ]) < m(M)+ m(N) and

m(M2[π̇2 ◦σ ])+m(N1[π̇2 ◦τ]) < m(M)+m(N) hold. Therefore, we can apply the induction

hypothesis to each of these pairs. Furthermore, we have the following chain of equalities.

1[π̇1 ◦ 〈M[σ ]/A1 ∗A2〉]

= 1[π̇1 ◦ 〈M/A1 ∗A2〉 ◦σ ] substitution equation

= 1[π̇1 ◦ 〈M1 ∗M2/A1 ∗A2〉 ◦σ ] since M is M1 ∗M2

= 1[π̇1 ◦ (〈!,M1〉 ∗ 〈!,M2〉)◦σ ] by (∗-β )

= 1[〈!,M1〉 ◦ π̇1 ◦σ ]

= M1[π̇1 ◦σ ]

= N1[π̇1 ◦ τ] by induction hypothesis

= 1[π̇1 ◦ 〈N[σ ]/A1 ∗A2〉] as for M

By similar reasoning, we obtain an analogous equation for M2 and N2. We can therefore use

(INJECT) to conclude Γ ` M[σ ] = N[τ] : A = B, as required.
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The Main Lemma extends to contexts in the expected way.

Lemma 6.5.27. If ` Γ ⇓Φ Bunch and ` ∆ ⇓Φ Bunch then ` Γ = ∆ Bunch.

Proof. By induction on the derivation of ` Γ ⇓Φ Bunch.

• Γ is �. Then ∆ too must be � and the assertion follows by reflexivity.

• Γ is Γ′, x : A. Then Φ is Φ′, x : B, where ` Γ′ ⇓Φ′ Bunch and Γ′ ` A ⇓ B Type. Then ∆ must also

have the form ∆′, x : C, where ` ∆′ ⇓ Φ′ Bunch and ∆′ ` C ⇓ B Type. By induction hypothesis

we have ` Γ′ = ∆′ Bunch. By (BU-CONV), this implies Γ′ ` C ⇓ B Type. By Lemma 6.5.26, we

furthermore have Γ′ ` A = C Type. By (BU-AEQ) we get ` (Γ′, x : A) = (∆′, x : C) Bunch.

• Γ is Γ′ ∗Γ′′. Then Φ is Φ′ ∗Φ′′, where ` Γ′ ⇓ Φ′ Bunch and ` Γ′′ ⇓ Φ′′ Bunch. Then ∆ must

have the form ∆′ ∗∆′′ for ` ∆′ ⇓ Φ′ Bunch and ` ∆′′ ⇓ Φ′′ Bunch. By induction hypothesis we

get ` Γ′ = ∆′ Bunch and ` Γ′′ = ∆′′ Bunch. By Lemma 6.4.7 we can apply (BU-MEQ) to get the

required ` Γ′ ∗Γ′′ = ∆′ ∗∆′′ Bunch.

Having established the Main Lemma, we can now define the interpretation of BT in ES. Thanks to the

Main Lemma, this is essentially straightforward.

For the definition of the interpretation of BT in ES, we need to account for the contexts with a single

hole Γ◦ in the system BT(∗,Π,Π∗). We now introduce notation for that purpose.

Lemma 6.5.28. Let Γ′◦ be a context with a single hole. For any ` Φ ⇓ Γ′(∆′) Bunch there exists a

unique ∆ such that Φ is Γ(∆) and ` ∆ ⇓ ∆′ Bunch.

Proof. By induction on the size of Γ′◦.

Definition 6.5.29. Given judgements ` ∆ ⇓ ∆′ Bunch, ` Γ(∆) ⇓ Γ′(∆′) Bunch, ` Φ ⇓ Φ′ Bunch and

σ ⇓ χ : Φ→ ∆ satisfying Γ◦∩(∆∪Φ) = /0, we define a substitution Γ(σ) and a context-with-hole Γ[σ ]◦
by mutual induction on the structure of Γ◦ as follows.

Γ(σ) =


σ if Γ◦ is ©
Γ′(σ)∗ id if Γ◦ is Γ′◦ ∗Γ′′

id ∗Γ′′(σ) if Γ◦ is Γ′ ∗Γ′′◦

(Γ′(σ))• if Γ◦ is Γ′◦, x : A

Γ[σ ]◦ =


© if Γ◦ is ©
Γ′[σ ]◦ ∗Γ′′ if Γ◦ is Γ′◦ ∗Γ′′

Γ′ ∗Γ′′[σ ]◦ if Γ◦ is Γ′ ∗Γ′′◦

Γ′[σ ]◦, x : A[Γ′(σ)] if Γ◦ is Γ′◦, x : A

The next two lemmas are proved by straightforward induction.
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Lemma 6.5.30. Given judgements ` ∆ ⇓ ∆′ Bunch, ` Γ(∆) ⇓ Γ′(∆′) Bunch, ` Φ ⇓ Φ′ Bunch and

σ ⇓ χ : Φ → ∆ satisfying Γ◦∩ (∆∪Φ) = /0, we can derive ` Γ[σ ](Φ) ⇓ Γ′(Φ′){χ} Bunch and Γ(σ) ⇓
χ : Γ[σ ](Φ)→ Γ(∆).

Lemma 6.5.31. Given judgements ` ∆⇓∆′ Bunch, ` Γ(∆)⇓Γ′(∆′) Bunch, ` Φ⇓Φ′ Bunch, σ : Ψ→Φ

and τ : Φ → ∆ satisfying Γ◦∩ (Ψ∪Φ∪∆) = /0, we can derive ` Γ[τ ◦σ ](Ψ) = Γ[τ][σ ](Ψ) Bunch and

Γ(τ ◦σ) = Γ(τ)◦Γ[τ](σ) : Γ[τ ◦σ ](Ψ)→ Γ(∆).

We are now ready to give the interpretation of BT in ES. Of course, we need to assume that ES
contains enough constants and axioms to interpret the constants and axioms in BT. This requirement is

captured by the following definition, which states that for each constant in BT there exists a correspond-

ing constant of the same name in ES.

Definition 6.5.32. Let TBT and TES be dependently typed algebraic theories in BT and in ES respec-

tively. We say that TBT and TES are compatible if the following conditions hold.

1. If T ∈ TBT(Γ) and `ES Γ′ ⇓ |Γ| Bunch is derivable, then there exists a derivable judgement `ES

Γ′′ ⇓ |Γ| Bunch with T ∈TES(Γ′′).

2. If C ∈ TBT(Γ;A) and `ES Γ′ ⇓ |Γ| Bunch Γ′ `ES A′ ⇓ |A| Type are derivable, then there exist

derivable judgements `ES Γ′′ ⇓ |Γ| Bunch and Γ′′ `ES A′′ ⇓ |A| Type with C ∈TES(Γ′′;A′′).

3. If Γ ` A = B Type is in T E
BT(Γ) and `ES Γ′ ⇓ |Γ| Bunch is derivable, then there exist derivable

judgements `ES Γ′′ ⇓ |Γ| Bunch and Γ′′ `ES A′′ ⇓ |A| Type and Γ′′ `ES B′′ ⇓ |B| Type such that

Γ′′ ` A′′ = B′′ Type is in T E
ES(Γ

′′).

4. If Γ ` M = N : A is in T E
BT(Γ;A) and `ES Γ′ ⇓ |Γ| Bunch and Γ′ `ES A′ ⇓ |A| Type are derivable,

then there exist derivable judgements `ES Γ′′ ⇓ |Γ| Bunch and Γ′′ `ES A′′ ⇓ |A| Type and Γ′′ `ES

M′′ ⇓ |M| : A′′ and Γ′′ `ES N′′ ⇓ |N| : A′′ such that Γ′′ ` M′′ = N′′ : A′′ is in T E
ES(Γ

′′).

That this definition is slightly more complicated than perhaps expected is due to the fact that the syntax

translation from ES to the let-free syntax is integrated with the typing judgement of ES. Since in the

formulation of a dependently typed algebraic theory we have made no derivability assumptions on the

contexts and types, a theory may contain constants for invalid contexts and types. In order to make it

possible to satisfy the existential statements in the above definition, the definition is such that one only

has to show existence for sufficiently well-formed contexts and types.

The next proposition gives the interpretation of BT in ES. To each judgement in BT we assign

a judgement in ES such that both judgements have the same translation in the let-free syntax. Lem-

mas 6.5.26 and 6.5.27 show that if we assign two different ES-judgements to the same BT-judgement in

this way, then the two ES-judgements are provably equal. We may therefore speak of the interpretation

of each BT-judgement.
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Proposition 6.5.33 (Interpretation). Let TBT and TES be compatible dependently typed algebraic theo-

ries in BT and in ES respectively and assume that the derivations in BT and ES are formed with respect

to these theories. Then the following hold.

1. If `BT Γ Bunch then there exists a derivation of `ES Γ′ ⇓ |Γ| Bunch.

2. If Γ `BT A Type then there exist derivations of `ES Γ′ ⇓ |Γ| Bunch and Γ′ `ES A′ ⇓ |A| Type.

3. If Γ `BT M : A then there exist derivations of `ES Γ′ ⇓ |Γ| Bunch, Γ′ `ES A′ ⇓ |A| Type and

Γ′ `ES M′ ⇓ |M| : A′.

4. If `BT Γ = ∆ Bunch then there exist derivations of `ES Γ′ ⇓ |Γ| Bunch, `ES ∆′ ⇓ |∆| Bunch and

`ES Γ′ = ∆′ Bunch.

5. If Γ `BT A = B Type then there exist derivations of `ES Γ′ ⇓ |Γ| Bunch, Γ′ `ES A′ ⇓ |A| Type,

Γ′ `ES B′ ⇓ |B| Type and Γ′ `ES A′ = B′ Type.

6. If Γ `BT M = N : A then there exist derivations of `ES Γ′ ⇓ |Γ| Bunch, Γ′ `ES A′ ⇓ |A| Type,

Γ′ `ES M′ ⇓ |M| : A′, Γ′ `ES N′ ⇓ |N| : A′ and Γ′ `ES M′ = N′ : A′.

Proof. The proof goes by simultaneous induction on the derivations in BT. We use unannotated se-

quents for judgements in ES. For brevity, we write syntax translations at any place in a judgement

as a short-hand for derivations of the parts with the corresponding translation. For example, we write

Γ′ ⇓ Γ ` (D ⇓ |A|) = (E ⇓ |B|) Type as an abbreviation for the four judgements ` Γ′ ⇓ |Γ| Bunch,

Γ′ ` D ⇓ |A| Type, Γ′ ` E ⇓ |B| Type and Γ′ ` D = E Type.

We proceed by case distinction on the last rule in the BT-derivation, showing representative cases.

1. Terms.

• Type conversion. Suppose the last rule in BT is

Γ `BT M : A Γ `BT A = B Type
(TY-CONV)

Γ `BT M : B
By induction hypothesis we have

Γ
′ ⇓ |Γ| ` M′ ⇓ |M| : C ⇓ |A|, Γ

′′ ⇓ |Γ| ` (D ⇓ |A|) = (E ⇓ |B|) Type.

By Lemma 6.5.27 we have ` Γ′ = Γ′′ Bunch. Using (BU-CONV) we get Γ′ ` D ⇓ |A| Type,

from which Γ′ ` C = D Type follows by Lemma 6.5.26. Since using bunch conversion we

also have Γ′ ` D = E Type, transitivity implies Γ′ ` C = E Type. Using (TY-CONV) we

obtain the required Γ′ ⇓ |Γ| ` M′ ⇓ |M| : E ⇓ |B|.

• Substitution. Suppose the last rule in BT is

Γ(∆, x : A) `BT N : B ∆ `BT M : A
(SUBST)

Γ(∆) [M/x] `BT N [M/x] : B [M/x]
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with (∆∪{x})∩Γ◦ = /0. By induction hypothesis we have Φ ⇓ |Γ(∆, x : A)| ` N′ ⇓ |N| :

B′ ⇓ |B| and ∆′ ⇓ |∆| ` M′ ⇓ |M| : A′ ⇓ |A|. The context Φ must have the form Γ′(∆′′, x : A′′)

where ` ∆′′ ⇓ |∆| Bunch and ∆′′ ` A′′ ⇓ |A| Type. Using Lemmas 6.5.27 and 6.5.26, we

get ` ∆′ = ∆′′ Bunch and ∆′ ` A′ = A′′ Type. We have the substitution 〈M′〉 ⇓ {|M|/x} : ∆′→
∆′, x : A′. By Lemma 6.5.30, this map can be lifted to

Γ
′(〈M′〉) ⇓ {|M|/x} : Γ

′[〈M′〉](∆′)→ Γ
′(∆′, x : A′)

Since the codomain of this map equals Φ, we can substitute N′ along it to get

Γ
′[〈M′〉](∆′) ` N′[Γ′(〈M′〉)] ⇓ |N| {|M|/x} : B′[Γ′(〈M′〉)] ⇓ |B| {|M|/x}

Since, by Lemma 6.5.30, we have ` Γ′[〈M′〉](∆′) ⇓ |Γ(∆)| {|M|/x} Bunch and because

|N| {|M|/x} = |N [M/x]| and |B| {|M|/x} = |B [M/x]| and |Γ(∆)| {|M|/x} = |Γ(∆)[M/x]|
hold, this sequent is just as required.

• Projection. Suppose the last rule in BT is

Γ `BT A Type
(PROJ)

Γ, x : A `BT x : A

By induction hypothesis we have Γ′ ⇓ |Γ| ` A′ ⇓ |A| Type. Applying the projection rule gives

the required Γ′, x : A′ ⇓ |Γ, x : A| ` 1 ⇓ |x| : A′[w] ⇓ |A|.

• Constants. The definition of compatibility of dependently typed algebraic theories is such

that the induction hypothesis implies the existence of appropriate constants in ES.

• Π-Abstraction. Suppose the last rule in BT is

Γ, x : A `BT M : B
(Π-I)

Γ `BT λx : A.M : Πx : A.B

By induction hypothesis we have Γ′′ ⇓ |Γ, x : A| ` M′ ⇓ |M| : C ⇓ |B|. By inversion, the

context Γ′′ must have the form Γ′, x : A′ where ` Γ′ ⇓ |Γ| Bunch and Γ′ ` A′ ⇓ |A| Type.

We use (Π-I) to obtain Γ′ ` λA′.M′ ⇓ λx : |A|. |M| : ΠA′.C ⇓Πx : |A|. |B|. Since we have

λx : |A|. |M|= |λx : A.M| and Πx : |A|. |B|= |Πx : A.B|, this is as required.

• Π-Application. Suppose the last rule in BT is

Γ, x : A `BT B Type Γ `BT M : Πx : A.B Γ `BT N : A
(Π-E)

Γ `BT app(x:A)B(M,N) : B[N/x]

By induction hypothesis we have

Φ ⇓ |Γ, x : A| ` D ⇓ |B| Type,

Γ
′ ⇓ |Γ| ` M′ ⇓ |M| : E ⇓ |Πx : A.B|,

Γ
′′ ⇓ |Γ| ` N′ ⇓ |N| : C ⇓ |A|.

Lemma 6.5.27 gives ` Γ′ = Γ′′ Bunch. By the definition of the syntax translation and in-

version, Φ must have the form Γ′′′, x : C′ with Γ′′′ ⇓ |Γ| ` C′ ⇓ |A| Type. Lemmas 6.5.27
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and 6.5.26 imply ` Γ′ = Γ′′′ Bunch and Γ′ ` C = C′ ⇓ |A| Type. Using bunch conversion,

we can derive Γ′ ` C ⇓ |A| Type and Γ′, x : C ` D ⇓ |B| Type. Using (Π-TY), we obtain

a derivation of the sequent Γ′ ` ΠC.D ⇓ |Πx : A.B| Type. By Lemma 6.5.26, this implies

Γ′ ` E = ΠC.D Type. Using conversion, we can therefore derive

Γ
′ ` M′ ⇓ |M| : ΠC.D ⇓ |Πx : A.B|, Γ

′ ` N′ ⇓ |N| : C ⇓ |A|.

Using the rule (Π-E), we obtain Γ′ ` app[C]D(M′,N′) ⇓ |app(x:A)B(M,N)| : D[〈N′〉]. Since

we can also derive Γ′ ` D[〈N′〉] ⇓ |B[N/x]| Type, this completes the case.

• Π∗-Abstraction. Suppose the last rule in BT is

Γ∗ x : A `BT M : B
(Π∗-I)

Γ `BT λ∗x : A.M : Π∗x : A.B

By induction hypothesis we have Γ′′ ⇓ |Γ ∗ x : A| ` M′ ⇓ |M| : C ⇓ |B|. By inversion, the

context Γ′′ must have the form Γ′ ∗ x : A′ where ` Γ′ ⇓ |Γ| Bunch and ` A′ ⇓ |A| Type. We

use (Π∗-I) to obtain Γ′ ` λ∗A′.M′ ⇓ λ∗x : |A|. |M| : Π∗A′.C ⇓Π∗x : |A|. |B|. Since we have

λ∗x : |A|. |M|= |λ∗x : A.M| and Π∗x : |A|. |B|= |Π∗x : A.B|, this is as required.

• Π∗-Application. Suppose the last rule in BT is

Γ∗ x : A `BT B Type Γ `BT M : Π∗x : A.B ∆ `BT N : A
(Π∗-E)

Γ∗∆ `BT app∗(x:A)B(M,N) : B[N/x]

By induction hypothesis we have

Φ ⇓ |Γ∗ x : A| ` D ⇓ |B| Type,

Γ
′ ⇓ |Γ| ` M′ ⇓ |M| : E ⇓ |Π∗x : A.B|,

∆
′ ⇓ |∆| ` N′ ⇓ |N| : C ⇓ |A|.

By the definition of the syntax translation and inversion, Φ must have the form Γ′′′ ∗ x : C′

with ` Γ′′′ ⇓ |Γ| Bunch and ` C′ ⇓ |A| Type. By Lemma 6.5.27 we obtain ` Γ′′′ = Γ′ Bunch,

so that by conversion we have Γ′ ∗ x : C′ ` D ⇓ |B| Type. By rule (Π∗-TY), we obtain

Γ′ ` Π∗C′.D ⇓ |Π∗x : A.B| Type. Lemma 6.5.26 gives Γ′ ` E = Π∗C′.D Type. Since using

(SUBST) we get ∆′ ` C′[!∆′ ] ⇓ |A| Type, Lemma 6.5.26 implies ∆′ ` C′[!∆′ ] = C Type. Using

conversion, we can derive

Γ
′ ` M′ ⇓ |M| : Π

∗C′.D ⇓ |Π∗x : A.B|, ∆
′ ` N′ ⇓ |N| : C′[!∆′ ].

Using (Π∗-E) we get Γ′ ∗∆′ ` app∗[C′]D(M′,N′) ⇓ |app∗(x:A)B(M,N)| : D[id ∗ 〈!,N′〉]. Since we

have Γ′ ∗∆′ ` D[id ∗ 〈!,N′〉] ⇓ |B[N/x]| Type, this completes the case.

• ∗-Introduction. Suppose the last rule in BT is

`BT A Type `BT A Type Γ `BT M : A ∆ `BT N : B
(∗-I)

Γ∗∆ `BT pair∗A,B(M,N) : A∗B
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By induction hypothesis we have

` C ⇓ |A| Type ` D ⇓ |B| Type

Γ
′ ⇓ |Γ| ` M′ ⇓ |M| : E ⇓ |A| ∆

′ ⇓ |∆| ` N′ ⇓ |N| : F ⇓ |B|

Using Lemma 6.5.26 we obtain Γ′ ` E = C[!] Type and ∆′ ` F = D[!] Type. Using type

conversion and (∗-I), we can therefore derive the required

Γ
′ ∗∆

′ ⇓ |Γ∗∆| ` pair∗C,D(M′,N′) ⇓ |pair∗A,B(M,N)| : C∗D ⇓ |A∗B|.

• ∗-Elimination. Suppose the last rule in BT is

Γ(z : A∗B) `BT C Type

∆ `BT M : A∗B

Γ(x : A∗ y : B)[pair∗A,B(x,y)/z] `BT N : C[pair∗A,B(x,y)/z]
(∗-E)

Γ(∆)[M/z] `BT let M be x:A∗y:B in N : C[M/z]

We can deduce Γ◦ ∩{x,y,z} = /0 from the rule. The induction hypothesis provides us with

derivations of

Φ ⇓ |Γ(z : A∗B)| ` C′ ⇓ |C| Type,

∆
′ ⇓ |∆| ` M′ ⇓ |M| : A′∗B′ ⇓ |A∗B|,

Ψ ⇓ |Γ(x : A∗ y : B)[pair∗A,B(x,y)/z]| ` N′ ⇓ |N| : D ⇓ |C[pair∗A,B(x,y)/z]|.

First, Φ has the form Γ′(z : A′′∗B′′) where ` A′′∗B′′ ⇓ |A∗B| Type. Because of Lemma 6.5.26

and conversion, we can assume that A′′ is A′ and B′′ is B′. Let σ ⇓ χ : (x : A′) ∗ (y : B′) →
z : A′∗B′, in which χ is {pair∗|A|,|B|(x,y)/z}, be the evident substitution. Because we have

Γ◦∩{x,y,z}= /0, it can be lifted to

Γ
′(σ) ⇓ χ : Γ

′[σ ](x : A′ ∗ y : B′)→ Γ
′(z : A′∗B′).

We have 〈M′/A′∗B′〉 ⇓ ξ : ∆′→ (x : A′)∗(y : B′), where ξ is {r|A|,|B|(|M|)/y}{l|A|,|B|(|M|)/x}.

This map can also be lifted:

Γ
′[σ ](〈M′/A′ ∗B′〉) ⇓ ξ : Γ

′[σ ][〈M′/A′ ∗B′〉](∆′)→ Γ
′[σ ](x : A′ ∗ y : B′)

By (∗-η ), we have σ ◦ 〈M′/A′ ∗B′〉= 〈!∆′ ,M′〉, so that using Lemma 6.5.31 and conversion

we get

Γ
′[σ ](〈M′/A′ ∗B′〉) ⇓ ξ : Γ

′[〈!∆′ ,M
′〉](∆′)→ Γ

′[σ ](x : A′ ∗ y : B′).

Now we have ` Γ′[σ ](x : A′ ∗ y : B′) ⇓ |Γ(x : A ∗ y : B)[pair∗A,B(x,y)/z]| Bunch, from which

we obtain ` Γ′[σ ](x : A′ ∗ y : B′) = Ψ Bunch by Lemma 6.5.27. Since Φ is Γ′(z : A′∗B′), we

can substitute C′ along the map Γ′(σ) to get Ψ ` C′[Γ′(σ)] ⇓ |C[pair∗A,B(x,y)/z]| Type. By

Lemma 6.5.26, we get Ψ ` D = C′[Γ′(σ)] Type. By substituting in this equation, we get

Γ
′[〈!∆′ ,M

′〉](∆′) ` D[Γ′[σ ](〈M′/A′ ∗B′〉)] = C′[Γ′(σ)][Γ′[σ ](〈M′/A′ ∗B′〉)] Type.
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Using Γ′(σ)◦Γ′[σ ](〈M′/A′ ∗B′〉) = Γ′(σ ◦ 〈M′/A′ ∗B′〉) and the rule (∗-η ), we get

Γ
′[〈!∆′ ,M

′〉](∆′) ` D[Γ′[σ ](〈M′/A′ ∗B′〉)] = C′[Γ′(〈!∆′ ,M
′〉)] Type.

Therefore, by substituting N′ along Γ′[σ ](〈M′/A′ ∗B′〉), we can derive

Γ
′[〈!∆′ ,M

′〉](∆′) ` N′[Γ′[σ ](〈M′/A′ ∗B′〉)] ⇓ |N| ξ : C′[Γ′(〈!∆′ ,M
′〉)].

Finally, the equations (|N| ξ ) = |let M be x:A∗y:B in N| and Γ′[〈!∆′ ,M′〉](∆′) ⇓ |Γ(∆)[M/z]|
and C′[Γ′(〈!∆′ ,M′〉)] ⇓ |C[M/z]| are straightforward to show. Therefore, the sequent that we

have just derived is as required.

2. Term equations.

• (Π-β ). Suppose the last rule in BT is

Γ, x : A `BT M : B Γ `BT N : A
(Π-β )

Γ `BT app(x:A)B(λx : A.M,N) = M [N/x] : B [N/x]

By induction hypothesis we have Γ′ ⇓ |Γ, x : A| `M′ ⇓ |M| : B′ ⇓ |B| and Γ′′ ⇓ |Γ| ` N′ ⇓ |N| :
A′ ⇓ |A|. The context Γ′ must have the form Γ′′′, x : A′′ where ` Γ′′′ ⇓ |Γ| Bunch and Γ′′′ `
A′′ ⇓ |A| Type. Using Lemma 6.5.26, we can derive ` Γ′′ = Γ′′′ Bunch and Γ′′ ` A′′ =

A′ Type. Hence, using (BU-CONV), we obtain Γ′′, x : A′ ⇓ |Γ, x : A| ` M′ ⇓ |M| : B′ ⇓ |B|.
By substitution and (Π-E), we have

Γ
′ ` M′[〈N′〉] ⇓ |M[N/x]| : B′[〈N′〉] ⇓ |B[N/x]|,

Γ
′ ` app[A′]B′(λA′.M′,N′) ⇓ |app(x:A)B(λx : A.M,N)| : B′[〈N′〉].

The case is completed by using (Π-β ) to get Γ′ ` app[A′]B′(λA′.M′,N′) = M′[〈N′〉] : B′[〈N′〉].

• (∗-η ). Suppose the last rule in BT is

∆ `BT M : A∗B Γ(z : A∗B) `BT N : C
(∗-η )

Γ(∆)[M/z] `BT N [M/z] = let M be x:A∗y:B in (N [pair∗A,B(x,y)/z]) : C[M/z]

Since all contexts in this rule are assumed to declare each variable at most once, we have

∆◦∩{x,y,z}= /0. The induction hypothesis yields:

∆
′ ⇓ |∆| ` M′ ⇓ |M| : D ⇓ |A∗B|,

Φ ⇓ |Γ(z : A∗B)| ` N′ ⇓ |N| : E ⇓ |C|.

The context Φ must have the form Γ′(z : A′∗B′) where ` A′ ⇓ |A| Type and ` B′ ⇓ |B| Type.

Using Lemma 6.5.26, we can show ∆′ ` D = A′∗B′ Type. Let

σ ⇓ {|pair∗A,B(x,y)|/z} : (x : A′)∗ (y : B′)→ z : A′∗B′

be the evident map. Since we have ∆◦∩{x,y,z}, this map can be lifted to

Γ
′(σ) ⇓ {|pair∗A,B(x,y)|/z} : Γ

′[σ ](x : A′ ∗ y : B′)→ Γ
′(z : A′∗B′).
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Furthermore, we have

Γ
′[σ ](〈M′/A′ ∗B′〉) ⇓ χ : Γ

′[σ ][〈M′/A′ ∗B′〉](∆′)→ Γ
′[σ ](x : A′ ∗ y : B′),

where χ is {r|A|,|B|(|M|)/y}{l|A|,|B|(|M|)/x}. We have the equations Γ′[σ ][〈M′/A′ ∗B′〉](∆′)=

Γ′[σ ◦ 〈M′/A′ ∗B′〉](∆′) and Γ′(σ)◦Γ′[σ ](〈M′/A′ ∗B′〉) = Γ′(σ ◦ 〈M′/A′ ∗B′〉). Write τ as

an abbreviation for σ ◦ 〈M′/A′ ∗B′〉. Using (SUBST) we can derive

Γ
′[τ](∆′) ` E[Γ′(τ)]] ⇓ |let M be x:A∗y:B in (C[pair∗A,B(x,y)/z])| Type, (6.2)

Γ
′[τ](∆′) ` N′[Γ′(τ)] ⇓ |let M be x:A∗y:B in (N[pair∗A,B(x,y)/z])| : E[Γ′(τ)], (6.3)

Γ
′[〈!,M′〉](∆′) ` N′[Γ′(〈!,M′〉)] ⇓ |N[M/z]| : E[Γ′(〈!,M′〉)] ⇓ |C[M/z]|. (6.4)

The terms in (6.3) and (6.4) correspond to the two terms in the equation (∗-η ) above. It

therefore suffices to show that they are equal.

We have the following commuting diagram, in which we use the suggestive notation x ∗ y

for the evident term. Notice that σ = !• ◦ 〈x∗ y〉 holds by definition.

u : A′∗B′
〈1/A′∗B′〉 //

〈x∗y[〈1/A′∗B′〉]
��

x : A′ ∗ y : B′

〈x∗y〉
��

u : A′∗B′, z : A′∗B′
〈1/A′∗B′〉•

//

!•
��

(x : A′ ∗ y : B′),z : A′∗B′

!•
��

z : A′∗B′ z : A′∗B′

Therefore, we have σ ◦ 〈1/A′ ∗B′〉 = !• ◦ 〈(x ∗ y)[〈1/A′ ∗B′〉]〉, from which using (∗-η ) we

get σ ◦ 〈1/A′ ∗B′〉= !• ◦ 〈1〉. Hence,

τ = σ ◦ 〈M′/A′ ∗B′〉

= σ ◦ 〈1/A′ ∗B′〉 ◦ 〈!,M′〉

= !• ◦ 〈1〉 ◦ 〈!,M′〉

= !• ◦ 〈1〉 ◦ 〈!,M′〉

= !• ◦ 〈!,M′〉• ◦ 〈1[〈!,M′〉]〉

= !• ◦ 〈M′〉

= 〈!,M′〉

Using this equality, we can derive that the two above statements are equal:

Γ[τ](∆′) ` N′[Γ′(σ ◦ 〈M′/A′ ∗B′〉)] = N′[Γ′(〈!,M′〉)] : E[Γ′(〈!,M′〉)]

If we look at the syntactic translations of these terms and types we see that they correspond

to the terms in (∗-η ) above, so that the derived equation is as required.
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6.6 Discussion and Further Work

In the proof that different derivations of the same sequent have equal interpretations (Lemma 6.5.26),

we have made essential use of the assumption that ∗ is a strict affine symmetric monoidal structure.

However, it is reasonable to expect that, perhaps subject to some modifications, BT is also a sound theory

for an (affine) symmetric monoidal structure⊗. The main obstacle in proving soundness in this case is to

show that different derivations of pair⊗A,B(M,N) and (let M be x : A⊗ y : B in N) respectively have equal

interpretations. This should be straightforward in the case where the type theory has strengthening.

Indeed, it appears that strengthening is needed to show soundness for the interpretation of the αλ -

calculus of O’Hearn and Pym, in particular for showing that two derivations of the same judgement have

the same interpretation. For example, suppose we can derive x : A∗y : B ` M : C and x : A∗u : D ` M : C

and u : D∗v : E ` N : F and y : B∗v : E ` N : F but not x : A ` M : C or v : E ` N : F . Then we can derive

both (x : A∗ y : B)∗ (u : D∗ v : E) ` M ∗N : C ∗F and (x : A∗u : D)∗ (y : B∗ v : E) ` M ∗N : C ∗F , and

using the structural rules we can transform the second sequent into the first one. There appears to be no

reason why the interpretations of these two derivations should be equal. With strengthening, on the other

hand, this is straightforward, since both sequents ‘come from’ (x : A)∗ (v : E) ` M ∗N : C ∗F . This, of

course, is not a problem for the αλ -calculus, since strengthening is easy to prove. For dependent types,

however, proving strengthening is quite complicated. Moreover, the strengthening property need not

even hold for all dependently typed algebraic theories, as we have observed in Chapter 4. We therefore

prefer to develop the interpretation for strict affine symmetric monoidal structures only, rather than

pre-conditioning the interpretation on the strengthening property.

Since the problems with showing soundness without the assumption that ∗ is strict affine arise only

because of ∗-types, we believe that it is straightforward to show soundness of BT(1,Σ,Π,Π∗) without

the assumption of strict affineness.

Regarding the technical development in this chapter, one may be dissatisfied with the presence of

the translation | − | to the let-free syntax. We have used it to define a translation from BT to ES. In

the next chapter we show that ES can be translated to BT by constructing a term model from BT. This

gives us the situation

BT⇐⇒ ES.

The presence of | − | in the translation from BT to ES suggests that it may be possible to refine this

picture to

BT⇐⇒ BT−⇐⇒ ES,

where BT− is a type theory with affine projections A ∗B → A and A ∗B → B instead of let-terms. Not

only would such a refinement clarify the use of | − |, it could also be helpful in giving an algorithm

for deciding equality of BT−. As discussed at the end of Chapter 5, deciding equality in BT− should

be simpler than in BT, since there are no commuting conversions in BT−. Showing an equivalence

between BT and BT− would therefore help to simplify the treatment of equations in BT. We leave it as

future work to find out if it is possible to give a type theory BT− such that the above situation holds.



Chapter 7

Completeness

In this chapter we show completeness of BT(∗,1,Σ,Π,Π∗) for the structure from Section 6.1 by con-

struction of a term model. We give some direct consequences of completeness, such as unicity of typing

and that all commuting conversions are derivable. Suggested by these consequences, we observe further

properties of BT(∗,1,Σ,Π,Π∗), such as admissibility of substitution up to commuting conversion.

Unless otherwise stated, all the judgements in this chapter are made in system BT(∗,1,Σ,Π,Π∗).

7.1 A Term Model

We use the syntax of BT(∗,1,Σ,Π,Π∗) to construct a (∗,1,Σ,Π,Π∗)-type category (Definition 6.1.1).

The main part of a (∗,1,Σ,Π,Π∗)-type category is a fibration p : E→B. We start this section by building

such a fibration from the syntax. To do so, we first define categories B0 and E0 of syntactic contexts

and types-in-context. Then we define categories B and E by identifying the objects in B0 and E0 up to

bijective renaming of variables in the contexts. With these ingredients we define a fibration p : E→ B.

The rest of this section is then devoted to showing that p has the structure of a (∗,1,Σ,Π,Π∗)-type

category.

Define a category B0 as follows.

Objects. The objects of B0 are derivable bunches ` Γ Bunch, identified up to provable equality, i.e. if

` Γ = ∆ Bunch then Γ and ∆ are the same object.

Morphisms. The morphisms of B0 from Γ to ∆ are the substitutions σ : Γ → ∆. Two substitutions σ

and τ denote the same morphism if σ = τ : Γ→ ∆ holds.

The identity morphism is the substitution 〈〉 and composition is given by composition of substitutions.

Lemma 5.5.4 shows that B0 is a category.

Next define a category E0 as follows.

200
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Objects. The objects are derivable types Γ ` A Type, identified up to provable equality, that is if we can

derive ` Γ = ∆ Bunch and Γ ` A = B Type then Γ ` A Type and ∆ ` B Type are the same object.

Morphisms. The morphisms from Γ` A Type to ∆` B Type are pairs (σ ,M) of a substitution σ : Γ→∆

and a term Γ, x : A ` M : B[σ ], where x is a fresh variable. We identify morphisms up to provable

equality, i.e. (σ ,M) = (τ,N) if σ = τ : Γ → ∆ and Γ, x : A ` M = N : B[σ ], and we identify

morphisms if they differ only in the name of the variable x, i.e. (σ ,M) = (σ ,M[y/x]) for any

fresh variable y.

The identity morphism on Γ ` A Type is given by the pair (〈〉,x) where Γ, x : A ` x : A. The composition

of maps (σ ,M) : (Γ ` A Type)→ (∆ ` B Type), where Γ, x : A ` M : B[σ ], and (τ,N) : (∆ ` B Type)→
(Φ ` C Type), where ∆, y : B ` N : C[τ], is defined to be the pair (τ ◦σ ,N[σ ][M/y]), where Γ, x : A `
N[σ ][M/y] : C[τ][σ ].

Lemma 7.1.1. E0 is a category.

Proof. It is straightforward to show that (〈〉,x) is a unit for composition. For associativity, suppose that

we have three morphisms (σ ,M) : (Γ ` A Type) → (∆ ` B Type), where Γ, x : A ` M : B[σ ], (τ,N) :

(∆ ` B Type)→ (Φ ` C Type), where ∆, y : B ` N : C[τ], and (ρ,R) : (Φ ` C Type)→ (Ψ ` D Type),

where Φ, z : C ` R : D[ρ]. We can assume that x, y and z are fresh variables. By definition, we have

(ρ,R)◦ ((τ,N)◦ (σ ,M)) = (ρ ◦ (τ ◦σ),R[τ ◦σ ][N[σ ][M/y]/z]),

where Γ, x : A ` R[τ ◦σ ][N[σ ][M/y]/z] : D[ρ][τ ◦σ ]. On the other hand,

((ρ,R)◦ (τ,N))◦ (σ ,M) = ((ρ ◦ τ)◦σ ,R[τ][N/z][σ ][M/y]),

where Γ, x : A ` R[τ][N/z][σ ][M/y] : D[ρ ◦ τ][σ ]. It remains to show that the two terms in these two

compositions are provably equal. By Lemma 5.5.5 and the definition of equality for substitutions,

we have R[τ][N/z][σ ][M/y] = R[τ][σ ][N[σ ]/z][M/y]. Moreover, since y can be assumed to be fresh

for R, τ and σ , we can use the normal syntactic substitution lemma to obtain R[τ][σ ][N[σ ]/z][M/y] =

R[τ][σ ][N[σ ][M/y]/z]. But this shows that the two terms are equal, thus completing the proof.

In the definition of the categories B0 and E0 we have not identified bunches up to variable renaming.

While this simplifies the definitions and makes it easier to show that B0 and E0 are categories, it makes

the definition of the categorical structure of B0 and E0 harder. For example, we would like to define a

monoidal structure ∗ on B0 mapping two objects Γ and ∆ to the object Γ∗∆. However, the context Γ∗∆

is not always defined, since v(Γ) and v(∆) need not be disjoint. Another problem is that the definition of

the comprehension functor taking (Γ ` A Type) to (Γ, x : A) depends on the choice of a fresh variable x.

To address these problems, we now take the quotient of B0 and E0 with respect to bijective variable

renaming. Another possible solution would be to assume a choice function that, for each object Γ,

returns a name that is fresh for Γ. Then we could define ∗ such that Γ and ∆ are mapped to Γ′ ∗∆,

where Γ′ is given by replacing the variables in Γ with freshly chosen ones.
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We define the categories B and E by taking quotients of B0 and E0. In the formulation of the

equivalence relation with respect to which the quotient is taken, we use bijective variable renamings α

and β . We write Γ[α] for the action of the renaming α on Γ. Each renaming α can be made into a

substitution α : Γ[α]→ Γ in the evident way.

Objects. The objects of B are equivalence classes of objects of B0 under the equivalence relation ∼
generated by Γ∼ Γ[α], where α is a bijective renaming of variables.

Morphisms. The morphisms of B from [Γ]∼ to [∆]∼ are equivalence classes of morphisms of B0 under

the equivalence relation ∼ generated by (σ : Γ → ∆) ∼ (α ◦σ ◦ β : Γ[β ] → ∆[α−1]), where α

and β are bijective renamings of variables.

The category E is defined similarly to B:

Objects. The objects of E are equivalence classes of objects of E0 under the equivalence relation ∼
generated by (Γ ` A Type)∼ (Γ[α] ` A[α] Type), where α is a bijective renaming of variables.

Morphisms. The morphisms of E from [Γ ` A Type]∼ to [∆ ` B Type]∼ are equivalence classes of mor-

phisms of E0 under the equivalence relation ∼ generated by ((σ ,M) : (Γ ` A Type) →
(∆ ` B Type))∼ ((α ◦σ ◦β ,M[β ]) : (Γ[β ] ` A[β ] Type)→ (∆[α−1] ` B[α−1] Type)).

In short, the above definitions amount to the usual identification of contexts, types and terms up to

renaming of variables in contexts, as in e.g. [56, 48]. As in loc. cit. we make the equivalence classes

in B and E implicit, i.e. we denote the equivalence classes by representatives only. Furthermore, it is

straightforward to show that we can always assume variable names in the representative to be fresh.

Lemma 7.1.2. B is a category and is equivalent to B0.

Proof. By construction, B is just the quotient category B0/R, where R is the category having the same

objects as B0 but as morphisms only bijective renamings. It is straightforward to show that R contains

at most one morphism between any two objects and that all its morphisms are bijections. Using this, it

is a standard result, see e.g. [70], that B0/R is a category and that the evident functor B0 → B0/R is an

equivalence.

A similar argument applies to E.

Lemma 7.1.3. E is a category and is equivalent to E0.

Lemma 7.1.4. The category B has an affine monoidal structure given by the functor mapping two

objects Γ and ∆ with FV (Γ)∩FV (∆) = /0 (which can always be assumed by the identification up to

bijective renamings) to Γ∗∆ and mapping two morphisms σ : Γ→ ∆ and τ : Φ→Ψ with FV (Γ,∆,σ)∩
FV (Φ,Ψ,τ) = /0 (which can always be assumed by the identification up to bijective renamings) to the

map σ ◦ τ : Γ∗Φ→ ∆∗Ψ.
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Proof. Because of the rule (SUB-STR), we can define the coherent isomorphisms as 〈〉 : (Γ ∗ �)→ Γ,

〈〉 : (Γ∗∆)→ (∆∗Γ) and 〈〉 : (Γ∗∆)∗Φ→ Γ∗(∆∗Φ). Naturality of these isomorphisms, the coherence

equations and functoriality of ∗ follow using Lemma 5.5.7.

Next we define a functor p : E → B. It maps an object (Γ ` A Type) in E to the object Γ in B and a

morphism (σ ,M) in E to the morphism σ in B.

Lemma 7.1.5. The functor p defines a fibration.

Proof. We have to show that, for each object (∆ ` B Type) in E and each map σ : Γ → ∆ in B there

exists in E a cartesian morphism (Γ ` A Type)→ (∆ ` B Type) over σ .

We show that the morphism (σ ,x) : (Γ ` B[σ ] Type)→ (∆ ` B Type), where Γ, x : B[σ ] ` x : B[σ ],

is cartesian over σ . To this end assume maps τ : Φ → ∆ and ρ : Φ → Γ satisfying σ ◦ ρ = τ , and

a map (τ,M) : (Φ ` C Type) → (∆ ` B Type) over τ , where Φ, y : C ` M : B[τ]. We have to show

that there exists a unique map (ρ,N) over ρ , where Φ, z : C ` N : B[σ ][ρ], satisfying (σ ,x) ◦ (ρ,N) =

(τ,M). If such a map exists then, by definition of composition, we must have Φ, z : C ` x[ρ][N/x] = M :

B[σ ][ρ] = B[τ]. Since x can be assumed to be fresh, we have Φ, x : B[σ ][ρ] ` x[ρ] = x : B[σ ][ρ] by

Lemma 5.5.6. Hence, Φ, z : C ` N = x[N/x] = x[ρ][N/x] = M : B[σ ][ρ] holds. This shows uniqueness

of (ρ,N). On the other hand, using Φ, z : C `M : B[τ] = B[σ ][ρ], we also have that (ρ,M) is a morphism

from Φ ` C Type to Γ ` B[σ ] Type, which shows existence.

Lemma 7.1.6. The fibration p becomes a split fibration if, for σ : Γ → ∆ in B and (∆ ` B Type) in E∆,

we choose the cartesian lifting σ(∆ ` B Type) to be the morphism (σ ,x) from (Γ ` B[σ ] Type) to

(∆ ` B Type).

Proof. It is immediate that the lifting of the identity is the identity. The lifting of a composition σ ◦ τ is

defined to be (σ ◦ τ,x). The composition of the lifted maps (σ ,x)◦ (τ,x), on the other hand, is defined

to be (σ ◦ τ,x[σ ]). That this equals (σ ◦ τ,x) follows by Lemma 5.5.6. Note that we can assume x to be

sufficiently fresh.

Lemma 7.1.7. The split fibration p has split fibred terminal objects.

Proof. We have to show that the split fibred functor p from the identity fibration id : B→B to p : E→B
has a fibred right adjoint 1 : B → E. Define 1(Γ) = (Γ ` 1 Type) and 1(σ : Γ → ∆) = σ(1(∆)). It is

evident that this defines a split fibred functor from id to p, i.e. that id = p◦1 holds and that 1 preserves

the splitting. The adjunction pa 1 with vertical unit and counit follows easily from the fact that Γ` M : 1

implies Γ ` M = unit : 1.

Lemma 7.1.8. The split fibration p has comprehension, i.e. the terminal object functor 1: B→ E has a

right adjoint {−} : E→ B.



Chapter 7. Completeness 204

Proof. Define the functor {−} to map an object (Γ ` A Type) in E to the object (Γ, x : A) in B and

a morphism (σ ,M) : (Γ ` A Type) → (∆ ` B Type) in E, where Γ, y : A ` M : B[σ ], to the morphism

σ ◦ 〈M/x〉 : (Γ, y : A)→ (∆, x : B) in B, where in both cases x and y are some/any fresh variables. This

is well-defined because the objects and morphisms are identified under bijective renaming. Note also

that we can derive σ : (Γ, y : A, x : B[σ ])→ (∆, x : B) using (SUB-LIFT) and (SUB-STR).

To show 1 a {−}, we define the unit of the adjunction ηΓ

def= 〈unit/y〉 : Γ → (Γ, y : 1) for some/any

fresh y. It is routine to show that η is natural. For universality of η we have to show that, for all

σ : Γ → (∆, x : A) in B, there exists a unique σ ] : (Γ ` 1 Type) → (∆ ` A Type) in E, given by, say,

τ : Γ→∆ and Γ, y : 1` M : A[τ], such that σ = τ ◦〈M/x〉◦ηΓ : Γ→ (∆, x : A) holds for some/any fresh x

and y. Suppose we have such a morphism σ ] given by τ and M. First, we show σ = τ : Γ → ∆. To

this end, we have to show that, for all contexts-with-hole Φ◦ that declare only fresh names and all terms

Φ(∆) ` R : C, we have (Φ◦[σ ])(Γ) ` R[σ ] = R[τ] : C[σ ] = C[τ]. Since τ : Γ→ ∆, it is straightforward to

show that neither C[τ] nor R[τ] contain x or y as a free variable. We can use the equality σ = τ ◦〈M/x〉◦
ηΓ : Γ → (∆, x : A) for the term Φ(∆, x : A) ` R : C to give us (Φ◦[σ ])(Γ) ` R[σ ] = R[τ][M/x][unit/y] :

C[σ ] = C[τ][M/x][unit/y]. Since x and y are not free in R[τ] and C[τ], this is just as required to give

us (Φ◦[σ ])(Γ) ` R[σ ] = R[τ] : C[σ ] = C[τ]. Second, we show Γ, y : 1 ` x[σ ] = M : A[σ ]. Note that the

first point implies A[τ] = A[σ ]. By assumption, we have Γ ` x[σ ] = x[τ][M/x][unit/y] : A[σ ]. Lemma

5.5.6 gives Γ, y : 1, x : A ` x[τ] = x : A, so that, by (SUBST-TM-CGR) and transitivity, we can derive

Γ ` x[σ ] = M[unit/y] : A[σ ]. Using (1-EQ) and (SUBST-TM-CGR), we get Γ, y : 1 ` M[unit/y] = M :

A[σ ], which allows us to conclude Γ, y : 1 ` x[σ ] = M : A[σ ], as required. Hence, we have shown that

σ ] = (σ ,x[σ ]) is the unique map of the required form.

The above Lemma shows that the fibration p : E→ B admits comprehension. In [56, 10.4] it is shown

that a fibration with comprehension induces a comprehension category, i.e. a functor P : E→ B→ that

satisfies p = cod ◦P and that maps cartesian morphisms to pullback squares. This functor is defined

by mapping an object B in EΓ to the map p(εB) : p1({B}) = {B} → Γ, where εB is the counit of the

adjunction 1 a {−}. In the present case, P(B) can be described as the weakening 〈〉 : (Γ, x : B)→ Γ.

Lemma 7.1.9. The split comprehension category with unit p a 1 a {−} has split products.

Proof. For an object (Γ ` A Type) in EΓ, define the functor ΠA : E{A} → EΓ as follows. An object

Γ, x : A ` B Type in E{A} is mapped to Γ ` Πx : A.B Type and a morphism (id,(Γ, x : A, y : C ` M : B))

is mapped to the morphism (id,(Γ, z : Πx : A.C ` λx : A.M[app(x:A)C(z,x)/y] : Πx : A.B)). Functoriality

follows using the β and η-equations.

For each object (Γ ` A Type) in EΓ, an adjunction π∗A a ΠA follows by a standard argument. It

remains to show the Beck-Chevalley condition. It suffices to show that, for all σ : Γ → ∆ in B, all

objects (∆ ` A Type) in E∆ and all objects (∆, x : A ` B Type) in E{A}, we have σ∗ΠAB = Πσ∗A{σ}∗B
and σ∗εA,B = εσ∗A,{σ}∗B, where εA is the counit of the adjunction π∗A aΠA.
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For σ∗ΠAB = Πσ∗A{σ}∗B, we have to show

Γ ` (Πx : A.B)[σ ] = (Πy : A[σ ].B[σ ][y/x]) Type,

where y is fresh. Notice that σ may contain let-terms, so that the equation involves commuting conver-

sions. However, we do not need to derive the commuting conversion, since (let M be x∗y in Πx : A.B) is

defined to be Πx : (let M be x∗y in A).(let M be x∗y in B), using which the equation becomes immediate.

For showing σ∗εA,B = εσ∗A,{σ}∗B, we note that the vertical counit εA,B : (Γ, x : A` Πx : A.B Type)→
(Γ, x : A ` B Type) is given by ∆, x : A, y : Πx : A.B ` app(x:A)B(y,x) : B, where we can assume x and y

to be fresh for σ . Hence, we need to show

Γ, x : A[σ ], y : (Πx : A.B)[σ ] ` (app(x:A)B(y,x))[σ ] = app(x:A[σ ])B[σ ](y,x) : B[σ ]

As an aside, we remark that the normal way of stating the Beck-Chevalley condition does, of course,

follow from that equation:

app(x:A)B(M,N)[σ ] = app(x:A)B(y,x)[〈M/y〉 ◦ 〈N/x〉 ◦σ ]

= app(x:A)B(y,x)[〈M/y〉 ◦σ ◦ 〈N[σ ]/x〉]

= app(x:A)B(y,x)[σ ◦ 〈M[σ ]/y〉 ◦ 〈N[σ ]/x〉]

= app(x:A[σ ])B[σ ](y,x)[〈M[σ ]/y〉 ◦ 〈N[σ ]/x〉]

= app(x:A[σ ])B[σ ](M[σ ],N[σ ])

The proof goes by induction on the substitution σ . The cases for composition and normal substitu-

tion 〈M/x〉 are straightforward. The interesting case is where σ has the form 〈M/u : C ∗ v : D〉. As we

observed in the proof of Lemma 5.5.5, in this case there exist derivable judgements ` Γ = Γ′′ Bunch,

Γ′′ < (Φ◦[〈N/u ∗ v〉])(Γ′) and Φ(u : C ∗ v : D) < ∆, and that we have Γ′ ` N : C∗D. We can therefore

derive

∆, x : A ` B Type
(CONG)

Φ(u : C ∗ v : D), x : A ` B Type
(∗-E)

(Φ◦[〈z/u : C ∗ v : D〉])(z : C∗D), x : (let z be u∗v in A) ` let z be u∗v in B Type

Writing Φ′
◦ for (Φ◦[〈z/u : C∗v : D〉]) and A′ for (let z be u∗v in A) and B′ for (let z be u∗v in B), we can

use this to derive

Φ
′(z : C∗D), x : A′, y : Πx : A′.B′ ` app(x:A′)B′(y,x) : B′.

Using the rules (∗-η ) and (∗-β ), and by noticing A′[M/z] = A[σ ] and B′[M/z] = B[σ ], we obtain

Φ
′[M/z](Γ′), x : A[σ ], y : Πx : A[σ ].B[σ ] ` app(x:A[σ ])B[σ ](y,x) = let M be u∗v in app(x:A)B(y,x) : B[σ ]

Because of Γ′′ < (Φ◦[〈M/u : C ∗ v : D〉])(Γ′), we can use (CONG) to replace Φ′[M/z](Γ′) by Γ′′ in this

sequent. Because of ` Γ = Γ′′ Bunch, we can further replace Γ′′ by Γ. Since the right-hand side of the

equation is just app(x:A)B(y,x)[σ ], the case is completed by using symmetry of equality.
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Lemma 7.1.10. The split comprehension category with unit p a 1 a {−} has split strong sums.

Proof. For an object (Γ` A Type) in EΓ, define a functor ΣA : E{A}→EΓ as follows. An object Γ, x : A`
B Type of E{A} is mapped to Γ ` Σx : A.B Type and a morphism (id,(Γ, x : A, y : C ` M : B)) is mapped

to (id,(Γ, z : Σx : A.C ` pair(x:A)B(fst(x:A)C(z),M[fst(x:A)C(z)/x][snd(x:A)C(z)/y]) : Σx : A.B)). Functorial-

ity follows using the β and η-equations.

For each object (Γ ` A Type) in EΓ, an adjunction ΣA a π∗A is easily verified, and the Beck-Chevalley

condition follows as in the previous lemma. Finally, the sums are strong because the β and η-equations

for Σ-types make the following two maps mutually inverse.

〈pair(x:A)B(x,y)/z〉 : (Γ, x : A, y : B)→ (Γ, z : Σx : A.B)

〈fst(x:A)B(z)/x〉 ◦ 〈snd(x:A)B(z)/x〉 : (Γ, z : Σx : A.B)→ (Γ, x : A, y : B)

Lemma 7.1.11. The split comprehension category with unit pa 1a {−} is a split closed comprehension

category.

Proof. It has products and strong sums by the previous two lemmas. The base category B has a terminal

object, namely the empty context. It remains to show that the comprehension functor P : E→ B→, as

defined above, is full and faithful. To show that P is full, consider a morphism in B→ between objects

that are in the image of P , as given by the following commuting square.

(Γ, x : A)

〈〉
��

τ // (∆, y : B)

〈〉
��

Γ
σ

// ∆

We have to show that this morphism is in the image of the comprehension functor {−}. By the iden-

tification of morphisms up to bijective renaming, we can assume both x and y to be fresh for Γ, ∆

and σ . By definition of {−}, it suffices to show τ = σ ◦ 〈M/y〉 : (Γ, x : A)→ (∆, y : B) for some term

Γ, x : A ` M : B[σ ]. Because the square commutes, we have Γ, x : A ` B[σ ] = B[τ] Type. Hence, we

get Γ, x : A ` y[τ] : B[σ ]. Take M def= y[τ]. Lemma 5.5.9 gives τ = 〈z/y〉 ◦σ ◦ 〈y[τ]/z〉 : (Γ,x : A) →
(∆, y : B) for some/any fresh variable z. It is straightforward to show by induction on σ that σ =

〈z/y〉 ◦ σ ◦ 〈y/z〉 : (Γ, y : B[σ ]) → (∆, y : B) holds, since both y and z are fresh for σ . This gives

σ ◦ 〈y[τ]/y〉 = 〈z/y〉 ◦ σ ◦ 〈y/z〉 ◦ 〈y[τ]/y〉 : (Γ,x : A) → (∆, y : B) and thus σ ◦ 〈y[τ]/y〉 = 〈z/y〉 ◦ σ ◦
〈y[τ]/z〉 : (Γ,x : A) → (∆, y : B). Therefore, we have τ = σ ◦ 〈y[τ]/y〉 : (Γ,x : A) → (∆, y : A), as re-

quired.

For faithfulness of P , suppose that (σ ,(Γ, x : A ` M : B[σ ])) : (Γ ` A Type) → (∆ ` B Type) and

(τ,(Γ, x : A ` N : B[τ])) : (Γ ` A Type)→ (∆ ` B Type) are mapped by P to the same morphism, which

means that we have σ = τ : Γ → ∆ and σ ◦ 〈M/y〉 = τ ◦ 〈N/y〉 : (Γ, x : A) → (∆, y : B) for some/any
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fresh variable y. To show (σ ,M) = (τ,N), it suffices to show Γ, x : A ` M = N : B[σ ] = B[τ]. But

from σ ◦ 〈M/y〉 = τ ◦ 〈N/y〉 : (Γ, x : A) → (∆, y : B) we obtain Γ, x : A ` y[σ ◦ 〈M/y〉] = y[τ ◦ 〈N/y〉] :

B[σ ] = B[τ], making use of the fact that y is not free in B[σ ] or B[τ]. The equality M = N then follows

using Lemma 5.5.6.

Lemma 7.1.12. The split comprehension category with unit p a 1 a {−} has strong Π∗-types.

Proof. For objects Γ and A of B, define the functor Π∗
A : EΓ∗(x : A) →EΓ as follows. An object Γ∗x : A `

B Type in EΓ∗(x : A) is mapped to Γ ` Π∗x : A.B Type and a morphism (id,((Γ∗ x : A), y : C ` M : B)) is

mapped to the morphism (id,(Γ, z : Π∗x : A.C ` λ∗x : A.M[app∗(x:A)C(z,x)/y] : Π∗x : A.B)). This term is

derivable by the following derivation

(Γ∗ x : A), y : C ` M : B
(WEAK)

((Γ, z : Π∗x : A.C)∗ x : A), y : C ` M : B
(SUBST)

(Γ, z : Π∗x : A.C)∗ x : A ` M[app∗(x:A)C(z,x)/y] : B
(Π∗-I)

Γ, z : Π∗x : A.C ` λ∗x : A.M[app∗(x:A)C(z,x)/y] : Π∗x : A.B

In the inference step for substitution, we use that y 6∈ FV (B) holds and that the following is derivable.

Γ, z : Π∗x : A.C ` z : Π∗x : A.C x : A ` x : A
(Γ, z : Π∗x : A.C)∗ x : A ` app∗(x:A)C(z,x) : B

Functoriality follows using the β and η-equations.

To show that this defines strong Π∗-types, we have to give a natural isomorphism between EΓ(B,Π∗
AC)

and B/(Γ ∗ A)(πB ∗ A,πC) and prove the stronger Beck-Chevalley condition from Definition 2.5.12.

To give the natural isomorphism, it suffices by Lemma 2.5.8 to give, for all Γ and A in B and all B

in EΓ∗(x : A), a morphism εA,B : πΠ∗
AB ∗ (x : A)→ πB in B/(Γ∗x : A), such that εA,B is natural in B and, for

each morphism m : πC ∗ (x : A)→ πB in B/(Γ∗ x : A), there exists a unique morphism λ ∗m : C → Π∗
AB

in EΓ satisfying εA,B ◦ ({λ ∗m}∗ (x : A)) = m. Define

εA,B
def= 〈app∗(x:A)B(y,x)/z〉 : (Γ, y : Π

∗x : A.B)∗ x : A→ (Γ∗ x : A), z : B.

Note that πΠ∗
AB : (Γ, y : Π∗x : A.B) → Γ and πB : (Γ ∗ x : A), z : B → Γ ∗ x : A are both given by 〈〉, so

that εA,B becomes a morphism in B/(Γ∗ x : A).

We verify naturality of εA,B. Let σ : (Γ ` C Type) → (Γ ` B Type) be a morphism in EΓ. By

definition of E, this morphism is uniquely determined by a term Γ, u : C ` M : B. For naturality of εA,B, it

then suffices to show 〈M/z〉 ◦ 〈app∗(x:A)C(v,x)/u〉= 〈app∗(x:A)B(y,x)/z〉 ◦ 〈λ∗x : A.M[app∗(x:A)C(v,x)/u]/y〉
of type (Γ, v : Π∗x : A.C)∗x : A→ (Γ∗x : A), z : B. Since u and y are fresh for the codomain of these two

morphisms, it follows immediately that the first morphisms equals 〈M[app∗(x:A)C(v,x)/u]/z〉 and second

morphism equals 〈app∗(x:A)B((λ∗x : A.M[app∗(x:A)C(v,x)/u]),x)/z〉, both of the same type. It follows using

β -equality that both substitutions are equal.

Finally, the strong Beck-Chevalley condition is given exactly by the rule (Π∗-E-CGR+).
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Lemma 7.1.13. For any two objects (` A Type) and (` B Type) in E over the empty context, the

map 〈pair∗A,B(x,y)/z〉 : {` A Type}∗{` B Type}= ((x : A)∗ (y : B))→ (z : A∗B) = {` A∗B Type} is an

isomorphism.

Proof. Its inverse is given by 〈z/x : A∗ y : B〉 : (z : A∗B)→ (x : A)∗ (y : B).

Lemma 7.1.14. The affine symmetric monoidal structure ∗ on B is a strict affine monoidal structure.

Proof. Let Γ and ∆ be an objects of B. The canonical projections out of Γ∗∆ are given by weakenings

〈〉 : Γ ∗∆ → Γ and 〈〉 : Γ ∗∆ → ∆. We have to show that these two maps are jointly monic. Because

of the isomorphisms (x : A, y : B)∼= (z : Σ∗x : A.B) and (x : A)∗ (y : B)∼= (z : A∗B), we can assume that

both Γ and ∆ consist of one declaration only, say Γ is (u : C) and ∆ is (v : D).

Because P is full and faithful, as shown in Lemma 7.1.11, any morphism σ : Φ → (x : A) corre-

sponds uniquely to the term Φ ` x[σ ] : A. With the isomorphism 〈pair∗C,D(u,v)/z〉 : (u : C) ∗ (v : D)→
(z : C∗D), this implies that a morphism σ : Φ → (u : C) ∗ (v : D) corresponds uniquely to the term

Φ ` (pair∗C,D(u,v))[σ ] : C∗D. Likewise, π̇1 ◦σ and π̇2 ◦σ correspond to the terms Φ ` u[σ ] : C and

Φ ` v[σ ] : D respectively. Therefore, to show that the projections are jointly monic, it suffices to show

that Φ ` (pair∗C,D(u,v))[σ ] = (pair∗C,D(u,v))[τ] : C∗D holds for any two substitutions σ and τ of type

Φ → (u : C)∗ (v : D) that satisfy Φ ` u[σ ] = u[τ] : C and Φ ` v[σ ] = v[τ] : D. By the rule (INJECT), it

suffices to show the two equations

Φ ` let (pair∗C,D(u,v))[σ ] be u:C∗v:D in u = let (pair∗C,D(u,v))[τ] be u:C∗v:D in u : C

Φ ` let (pair∗C,D(u,v))[σ ] be u:C∗v:D in v = let (pair∗C,D(u,v))[τ] be u:C∗v:D in v : D.

By straightforward induction on σ , we can derive the following equation.

Φ ` let (pair∗C,D(u,v))[σ ] be u:C∗v:D in u = (let pair∗C,D(u,v) be u:C∗v:D in u)[σ ] = u[σ ] : C

Corresponding equations hold for the other let-terms. Hence, the assumptions Φ ` u[σ ] = u[τ] : C and

Φ ` v[σ ] = v[τ] : D suffice to prove the required Φ ` (pair∗C,D(u,v))[σ ] = (pair∗C,D(u,v))[τ] : C∗D.

Putting all the above lemmas together, we obtain:

Proposition 7.1.15. The syntax of BT(∗,1,Σ,Π,Π∗) defines a (∗,1,Σ,Π,Π∗)-type category.

Finally, we obtain the following completeness result.

Proposition 7.1.16 (Completeness). For any dependently typed algebraic theory T in BT(∗,1,Σ,Π,Π∗),

the following two statements hold.

• If both Γ ` A Type and Γ ` B Type are derivable in BT(∗,1,Σ,Π,Π∗) and have the same inter-

pretation in all (∗,1,Σ,Π,Π∗)-models for T , then Γ ` A = B Type is derivable.

• If both Γ ` M : A and Γ ` N : A are derivable in BT(∗,1,Σ,Π,Π∗) and have the same interpreta-

tion in all (∗,1,Σ,Π,Π∗)-models for T , then Γ ` M = N : A is derivable.
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We are being slightly imprecise in the statement of this proposition, since the notion of a (∗,1,Σ,Π,Π∗)-

model has, strictly speaking, been defined only for theories in ES. It should be clear, however, how to

use the interpretation from the previous chapter to extend the definition of a model to theories in BT.

Proof. Using Proposition 7.1.15 we obtain that the syntax of BT(∗,1,Σ,Π,Π∗) forms a (∗,1,Σ,Π,Π∗)-

model for T . Now, if two terms (respectively types) receive the same interpretation in all models for T ,

they must in particular have the same interpretation in the term model. The derivability of the asserted

equations follows from this by the definition of the interpretation in the term-model.

We remark that a stronger form of completeness is likely to be true, namely that there is an equivalence

between categories of BT-theories and categories of (∗,1,Σ,Π,Π∗)-models, as in e.g. [99]. However,

due to type-dependency, verifying all the details becomes rather involved. Since, at present, we do not

have an application for such a stronger completeness result, we confine ourselves to the weaker above.

7.2 Consequences of Completeness

In this section we consider some consequences of completeness. We observe that the type of each term is

unique up to provable equality. Moreover, we show that any two terms differing only up to commuting

conversion of ∗-lets are provably equal. These direct consequences of completeness suggest ways of

dealing with some of the problems described earlier. In particular, in Section 7.2.3, we will see how

substitution can be shown to be admissible up to commuting conversion.

7.2.1 Interpretation in the Term Model

We start by spelling out the interpretation of BT(∗,1,Σ,Π,Π∗) in the term model. This interpretation is

essentially the identity, as formulated in the following lemma. It should be clear how, from a dependently

typed algebraic theory TBT in BT(∗,1,Σ,Π,Π∗), we can define a compatible algebraic theory TES

in ES, when ES is intended to be modelled in the term model constructed above.

Lemma 7.2.1.

• If `BT Γ Bunch then there exists a derivation of `ES Γ′ ⇓ |Γ| Bunch, such that the interpretation

of `ES Γ′ Bunch in the term model is the object of B given by `BT Γ Bunch.

• If Γ `BT A Type then there exist derivations of `ES Γ′ ⇓ |Γ| Bunch and Γ′ `ES A′ ⇓ |A| Type,

such that the interpretation of Γ′ `ES A′ Type in the term model is the object of EΓ given by

Γ `BT A Type.

• If Γ `BT M : A then there exist derivations of `ES Γ′ ⇓ |Γ| Bunch and Γ′ `ES A′ ⇓ |A| Type

and Γ′ `ES M′ ⇓ |M| : A′, such that the interpretation of Γ′ `ES M′ : A′ in the term model is the

morphism of EΓ given by the pair (id,(Γ, u : 1 `BT M : A)), where u is a fresh variable.



Chapter 7. Completeness 210

Proof. The existence of derivations in ES follows just as in the proof of Proposition 6.5.33. By examin-

ing that proof, it follows that the judgements in ES constructed there have an interpretations in the term

model that differs from the original judgement only up to bijective renaming of variables. The assertion

then follows, since the objects and morphisms in B and E are identified up to bijective renaming.

Corollary 7.2.2.

• The interpretation of `BT Γ Bunch in the term model is the object of B given by `BT Γ Bunch.

• The interpretation of Γ `BT A Type in the term model is the object of EΓ given by Γ `BT A Type.

• The interpretation of Γ `BT M : A in the term model is the morphism of EΓ given by the pair

(id,(Γ, u : 1 `BT M : A)), where u is a fresh variable.

7.2.2 Commuting Conversion

Having observed the interpretation in the term model to be essentially the identity, we can now show

that any two terms (respectively types) differing only up to commuting conversion are provably equal.

By commuting conversion, we mean equations such as

(let R be x∗y in app(M,N)) = app(let R be x∗y in M, let R be x∗y in N).

Such equations are most economically expressed using the translation to the let-free syntax |− | from

Chapter 6. We say that two terms (respectively types) M and N are equal up to commuting conversion

if |M| and |N| are syntactically equal.

Proposition 7.2.3. The following hold in BT(∗,1,Σ,Π,Π∗).

1. If Γ ` A Type and Γ ` B Type and |A|= |B| then Γ ` A = B Type.

2. If Γ ` M : A and Γ ` N : B and |M|= |N| then Γ ` A = B Type and Γ ` M = N : A.

Proof. We consider the second point, the first point follows similarly. From Lemma 7.2.1, we obtain

judgements Γ′ ⇓ |Γ| `ES M′ ⇓ |M| : A′ ⇓ |A| and Γ′′ ⇓ |Γ| `ES N′ ⇓ |N| : B′ ⇓ |B| whose interpretations

in the term model are given by (id,(Γ, u : 1 `BT M : A)) and (id,(Γ, u : 1 `BT N : B)) respectively,

where u is a fresh variable. Using Lemma 6.5.27 we get `ES Γ′ = Γ′′ Bunch, which by (BU-CONV)

implies Γ′ `ES N′ : B′. Since, by assumption, we have |M| = |N|, we can use Lemma 6.5.26 to obtain

Γ′ `ES A′ = B′ Type and Γ′ `ES M′ = N′ : A′. By soundness of the interpretation (Proposition 6.4.13) in

the term model, this implies that A′ and B′ as well as M′ and N′ have the same interpretation. Hence, we

have Γ `BT A = B Type and Γ, u : 1 `BT M = N : A. Since u is fresh, substituting (unit : 1) for u gives

the required Γ `BT M = N : A.

Corollary 7.2.4. If Γ ` M : A and Γ ` M : B then Γ ` A = B Type.
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7.2.3 Admissibility of Substitution

In the discussion of the bunched type theory with ∗-types in Chapter 5, we have noted that the pres-

ence of parameter contexts in rule (∗-E) makes the substitution rule (SUBST) non-admissible. In this

section we show how (SUBST) can be made admissible up to commuting conversion. We do this by

showing BT(∗,1,Σ,Π,Π∗) to be equivalent to a type theory BT− in which the rule (∗-E) is replaced

by a rule (∗-E′) without parameter contexts, and for which substitution is admissible. Although this

is not strictly speaking a consequence of completeness, the definition of BT− is suggested by Proposi-

tion 7.2.3.

The type theory BT− is defined as BT(∗,1,Σ,Π,Π∗) without the rules (SUBST), (∗-E), (∗-E-CGR),

(∗-β ) and (∗-η ), but with the following rules instead.

∆ ` M : A∗B Γ∗ x : A∗ y : B ` J
(∗-E′)

Γ∗∆ ` let M be x:A∗y:B in J

` A1 = A2 Type

` B1 = B2 Type

∆ ` M1 = M2 : A1∗B1

Γ∗ x : A1 ∗ y : B1 ` J
(∗-E′-CGR)

Γ∗∆ ` let M1 be x:A1∗y:B1 in J = let M2 be x:A2∗y:B2 in J

Γ ` M : A ∆ ` N : B Φ∗ x : A∗ y : B ` K
(∗-β ′)

Φ∗Γ∗∆ ` (let pair∗A,B(M,N) be x:A∗y:B in K ) = (K [M/x] [N/y])

∆ ` M : A∗B Γ∗ z : A∗B ` K
(∗-η ′)

Γ∗∆ ` K [M/z] = let M be x:A∗y:B in (K [pair∗A,B(x,y)/z])

` Γ Bunch ` ∆ Bunch |Γ|= |∆|
(BU-CC) ` Γ = ∆ Bunch

Γ ` A Type Γ ` B Type |A|= |B|
(TY-CC)

Γ ` A = B Type

Γ ` M : A Γ ` N : A |M|= |N|
(TM-CC)

Γ ` M = N : A

In these rules, J ranges over arbitrary judgements, as defined in Chapter 4, and K ranges over

(A Type) and (M : A). The above rules for ∗-types differ from the rules in Chapter 5 mainly in that

they do not contain parameter contexts. Because K ranges over both types and terms, the above rules

include both let on terms and types. Thus, the let on types is now a primitive notion and not defined as

in BT. The basic properties established in Chapter 4 continue to hold for BT−.

We have already shown in Section 5.4 and Proposition 7.2.3 that all the rules of BT− are admis-

sible in BT. It may be the case that the rules (TY-CC) and (TM-CC) are also admissible in BT−.

However, Proposition 7.2.3 does not imply this, since its proof takes place in BT and may therefore
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make use of rules such as (SUBST) and (∗-E), which are not available in BT−. Likewise, the argument

of Section 5.4, showing that let on types is admissible in BT, does not apply to BT−. For instance,

the assumptions on the contexts in (∗-E′) prevent us from transforming (let z be x∗y in Πu : A.B) into

Πu : (let z be x∗y in A).(let z be x∗y in B), as the latter would not be a valid type.

Clearly, any derivation in BT− can be transformed into a derivation in BT. In the rest of this

section we show that show any derivation in BT can, up to commuting conversion, be transformed into

a derivation in BT−.

Lemma 7.2.5. The rule (SUBST) is admissible for BT−.

Proof. By induction on derivations. The case for (∗-E′) is straightforward, since any substitution in Γ∗∆

must be either completely inside Γ or inside ∆. In either case, we can use the induction hypothesis.

Having shown admissibility of substitution, it just remains to show admissibility of the rules of BT for

∗-types. These rules are admissible in the following sense.

Definition 7.2.6. A rule

Γ1 ` J1 . . . Γn ` Jn

Γ ` J

is admissible up to commuting conversion if, whenever the premises are derivable, then there exists a

derivable sequent Γ′ ` J ′ with |Γ′|= |Γ| and |J |= |J ′|. Here, we extend |− | to judgements J by

|A Type|= (|A| Type) and |M : A|= (|M| : |A|) and |A = B Type|= (|A|= |B| Type) and |M = N : A|=
(|M|= |N| : |A|).

We start by showing that (∗-E) is admissible up to commuting conversion. Informally, the idea is

simple. We treat the let-terms in (∗-E) as explicit substitutions and push them inside the structure

of the terms until we reach a situation where they can be introduced using just (∗-E′). For exam-

ple, the term (let z be x∗y in 〈x,z〉), which is not derivable using just (∗-E′), is transformed into

〈let z be x∗y in x,z〉, which is derivable using just (∗-E′). Note, however, that this pushing inside of

let-terms is not determined by the term alone and may depend on the derivation. For example, if we

have (let z be x∗y in M∗N) where neither x not y occur in M or N, then it depends on the derivations

of M and N whether we continue with (let z be x∗y in M)∗N, with M∗(let z be x∗y in N), or if we leave

the term as it is. If we have the strengthening property, then this non-determinacy disappears. Without

strengthening, we need the rules (BU-CC), (TY-CC) and (TM-CC) to obtain that the non-determinacy

makes no difference.

Lemma 7.2.7. In BT− the following rule is admissible up to commuting conversion.

∆ ` M : A∗B Γ(x : A∗ y : B) ` J

(let M be x∗y in Γ◦)(∆) ` let M be x∗y in J

In this rule J ranges over C or N : C or C = D or N = R : C.
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Proof. We show that the following rules are admissible up to commuting conversion.

x : A∗ y : B < ∆ Γ(∆)≡Φ ` Φ Bunch
x,y 6∈ v(Γ◦)

` (let z be x∗y in Γ◦)(z : A∗B) Bunch

x : A∗ y : B < ∆ Γ(∆)≡Φ Φ ` J
x,y 6∈ v(Γ◦)

(let z be x∗y in Γ◦)(z : A∗B) ` let z be x∗y in J

The assertion of the lemma follows by substitution of M for z.

The proof goes by simultaneous induction on the derivations of ` Φ Bunch and Φ ` J . For ei-

ther rule, the case where the context ∆ is congruent to the empty context is trivial, since weakening

with z : A∗B gives a sequent as required. Using this, we can assume that ∆ is either (x : A) or (y : B)

or (x : A)∗ (y : B). We continue by case distinction on the last rule in a derivation.

• (BU-EMPTY), (BU-ADD), (BU-MULT) are straightforward uses of the induction hypothesis. We

do the rule (BU-MULT).

` Φ Bunch ` Ψ Bunch
(BU-MULT) ` Φ∗Ψ Bunch

Assume Γ(∆) ≡ (Φ ∗Ψ) with x : A ∗ y : B < ∆ and x,y 6∈ Γ◦. We distinguish two cases. First, all

variables of ∆ occur in either Φ or Ψ. Without loss of generality, we may assume that the variables

of ∆ occur in Φ. Then there exists Γ′◦ with x,y 6∈ Γ′◦ such that Γ′(∆) ≡ Φ holds. We can there-

fore apply the induction hypothesis to the left premise to obtain a sequent ` Γ′′(z : A∗B) Bunch

with |(let z be x∗y in Γ′◦)(z : A∗B)| = |Γ′′(z : A∗B)|. Using rule (BU-MULT), we can derive

` Γ′′(z : A∗B)∗Ψ Bunch. Since Γ(∆)≡Φ∗Ψ≡ Γ′(∆)∗Ψ, this context is congruent to a context

of the required form. This shows the assertion.

The second case is where both v(Φ)∩ v(∆) 6= /0 and v(Ψ)∩ v(∆) 6= /0 hold. Without loss of

generality we may assume that ∆ is (x : A) ∗ (y : B), that x occurs in Φ and that y occurs in Ψ.

Because we have Γ(x : A ∗ y : B) ≡ Φ ∗Ψ, this implies the existence of Γ′ satisfying Γ(x : A ∗
y : B) ≡ Γ′ ∗ (x : A)∗ (y : B). Since (let z be x∗y in (Γ′ ∗©))(z : A∗B) = Γ′ ∗ z : A∗B, this implies

(let z be x∗y in Γ◦)(z : A∗B) = Γ(z : A∗B). Since we have ` Γ′ ∗ z : A∗B Bunch, we also have

` Γ(z : A∗B) Bunch, which implies the assertion.

• (WEAK).

Φ′(Φ′′) ` J Φ′′ ` C Type
(WEAK)

Φ′(Φ′′, u : C) ` J

Assume Γ(∆)≡ Φ′(Φ′′, u : C) with x : A∗ y : B < ∆ and x,y 6∈ Γ◦. There are three possible cases.

First, all the variables of ∆ are declared in Φ′′. In this case, we have Φ′′ ≡ Ψ′′(∆) for some Ψ′′
◦

with x,y 6∈ Ψ′′
◦ . We can apply the induction hypothesis to get derivations of Γ′(z : A∗B) ` J ′

and Γ′′(z : A∗B) ` C′ Type such that we have |(let z be x∗y in Φ′(Ψ′′
◦))(z : A∗B)| = |Γ′(z : A∗B)|,
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|let z be x∗y in J |= |J ′|, |(let z be x∗y in Ψ′′
◦)(z : A∗B)|= |Γ′′(z : A∗B)| and |let z be x∗y in C|=

|C′|. Since |− | preserves the structure of contexts, and by making use of rule (BU-CC), we can

show that there exists a context-with-hole Γ′′′◦ such that ` Γ′(z : A∗B) = Γ′′′(Γ′′(z : A∗B)) Bunch

holds. Hence, we can use (WEAK) to make the judgement Γ′′′(Γ′′(z : A∗B), u : C′) ` J ′, which

is as required.

The second case is where all the variables of ∆ are declared in Φ′. In this case, we only apply the

induction hypothesis to the left premise. We can then use (WEAK) to weaken with u : C, which

yields a sequent with the required property.

The final possible case is where u is either x or y. In this case, the context Φ′′ must be structurally

congruent to the empty context, so that the sequent we obtain by using the induction hypothesis

for the left premise is as required.

• The other structural rules are immediate, since the hypothesis Γ(∆) ≡ Φ in the rules includes all

structural rules except weakening.

• (SUBST-TY-CGR), (SUBST-TM-CGR). These rules follow from the induction hypothesis by a

similar case-distinction as in (WEAK).

• (BU-CONV). This rule follows using the induction hypothesis and (∗-E′-CGR).

• (PROJ).

Φ ` C Type
(PROJ)

Φ, u : C ` u : C

Assume Γ(∆) ≡ (Φ, u : C) with x : A ∗ y : B < ∆ and x,y 6∈ Γ◦. If u is neither x nor y, then Γ(∆)

is (Γ′(∆), u : C) with Γ′(∆) ≡ Φ. We can use the induction hypothesis to obtain Γ′′(z : A∗B) `
C′ Type with |(let z be x∗y in Γ′◦)(z : A∗B)| = |Γ′′(z : A∗B)| and |let z be x∗y in C| = |C′|. Then

Γ′′(z : A∗B), u : C′ ` u : C′ is derivable and satisfies the assertion. If u is either x or y, without loss

of generality u = x, then we must have Φ≡�, since Γ(x : A∗y : B) can be obtained from (Φ, x : A)

by weakening and the structural rules, which is possible only if Φ is congruent to the empty

context. Since x,y 6∈ Γ◦ and Γ(∆) ≡ (Φ, x : A), we furthermore have ∆ ≡ (x : A) and Γ◦ = ©.

Therefore, the sequent z : A∗B ` let z be x:A∗y:B in x : A, which is derivable using (∗-E′), satisfies

the assertion.

• (TY-CONV), (TY-EQ-CONV). We consider (TY-CONV).

Φ ` M : D Φ ` D = C Type
(TY-CONV)

Φ ` M : C

Assume Γ(∆)≡Φ with x : A∗y : B < ∆ and x,y 6∈Γ◦. The induction hypothesis for the left premise

gives Γ′(z : A∗B)` M′ : D′ with |(let z be x∗y in Γ◦)(z : A∗B)|= |Γ′(z : A∗B)|, |let z be x∗y in M|=
|M′| and |let z be x∗y in D| = |D′|. The other premise yields Γ′′(z : A∗B) ` D′′ = C′′ Type with
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|(let z be x∗y in Γ◦)(z : A∗B)|= |Γ′′(z : A∗B)|, |let z be x∗y in D|= |D′′| and |let z be x∗y in C|=
|C′′|. Using rules (BU-CC) and (TY-CC), we get Γ′(z : A∗B) ` D′ = D′′ = C′′ Type, so that we

can apply (TY-CONV) to derive Γ′(z : A∗B) ` M′ : C′′, which is as required.

• (TY-REFL), (TY-SYM), (TY-TRANS), (TM-REFL), (TM-SYM), (TM-TRANS) follow from the

induction hypothesis and the commuting conversion rules (BU-CC), (TY-CC) and (TM-CC).

We consider (TM-TRANS).

Φ ` M = N : C Φ ` N = P : C
(TM-TRANS)

Φ ` M = P : C

Assume Γ(∆)≡Φ with x : A∗y : B < ∆ and x,y 6∈Γ◦. The induction hypothesis gives Γ′(z : A∗B)`
M′ = N′ : C′ and Γ′′(z : A∗B) ` N′′ = P′ : C′′ with |(let z be x∗y in Γ◦)(z : A∗B)|= |Γ′(z : A∗B)|=
|Γ′′(z : A∗B)|, |let z be x∗y in M|= |M′|, |let z be x∗y in N|= |N′|= |N′′|, |let z be x∗y in P|= |P′|
and |let z be x∗y in C|= |C′|= |C′′|. We obtain Γ′(z : A∗B) ` N′′ = P′ : C′ using (BU-CC), (TY-

CC) and the conversion rules. By validity, we have Γ′(z : A∗B) ` N′ : C′ and Γ′(z : A∗B) ` N′′ : C′,

from which we obtain Γ′(z : A∗B) ` N′ = N′′ : C′ by (TM-CC). Using (TM-TRANS), we get

Γ′(z : A∗B) ` M′ = P′ : C′, which is as required.

• (C-TY), (C-TM), (C-TY-CGR), (C-TM-CGR), (TY-EQ-AX), (TM-EQ-AX). These rules fol-

low from the induction hypothesis, using the fact that, for a closed type ` C Type, the equation

Γ(z : A∗B) ` let z be x∗y in C = C Type is derivable in BT−. We consider (C-TM).

Φ ` M : C x : C ` D Type
(C-TM) f ∈T (x : C; D)

Φ ` f (M) : D[M/x]

Assume Γ(∆)≡ Φ with x : A∗ y : B < ∆ and x,y 6∈ Γ◦. From the induction hypothesis, we obtain

Γ′(z : A∗B) ` M′ : C′ with |(let z be x∗y in Γ◦)(z : A∗B)|= |Γ′(z : A∗B)| and |let z be x∗y in M|=
|M′| and |let z be x∗y in C| = |C′|. Since x : C ` D Type is derivable, validity implies that

so is ` C Type, and by weakening also Γ′(z : A∗B) ` C Type. Since C is closed, we have

|let z be x∗y in C| = |C|. Hence, we can use (TY-CC) to get Γ′(z : A∗B) ` M′ : C. Finally,

with rule (C-TM) we can derive Γ′(z : A∗B) ` f (M′) : D[M′/x], which is as required.

• (1-TY), (1-I), (1-EQ) are immediate consequences of the induction hypothesis.

• (Π-TY), (Π-I), (Π-E), (Π-TY-CGR), (Π-I-CGR), (Π-E-CGR) (Π-β ), (Π-η ). These rules fol-

low from the induction hypothesis, making essential use of the commuting conversion rules (BU-

CC), (TY-CC) and (TM-CC). We do the case for (Π-E).

Φ, u : C ` D Type Φ ` M : Πu : C.D Φ ` N : C
(Π-E)

Φ ` app(u:C)D(M,N) : D [N/u]
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Assume Γ(∆)≡Φ with x : A∗y : B < ∆ and x,y 6∈Γ◦. The induction hypothesis gives Γ′(z : A∗B)`
M′ : E, Γ′′(z : A∗B)` N′ :C′ and Γ′′′(z : A∗B), u : C′′ ` D′′ Type with |(let z be x∗y in Γ◦)(z : A∗B)|=
|Γ′(z : A∗B)|= |Γ′′(z : A∗B)|= |Γ′′′(z : A∗B)|, |let z be x∗y in M|= |M′|, |let z be x∗y in N|= |N′|,
|let z be x∗y in (Πu : C.D)|= |E|, |let z be x∗y in C|= |C′|= |C′′| and |let z be x∗y in D|= |D′′|.
Using (BU-CC), we obtain ` Γ′(z : A∗B) = Γ′′(z : A∗B) = Γ′′′(z : A∗B) Bunch. By definition

of | − |, we have |E| = |Πu : C′′.D′′|. Using (TY-CC), we obtain from this Γ′(z : A∗B) ` E =

Πu : C′′.D′′ Type. By conversion, this gives Γ′(z : A∗B) ` M′ : Πu : C′′.D′′. Using (TY-CC), we

obtain Γ′(z : A∗B) ` C′′ = C′ Type, which by conversion yields Γ′(z : A∗B) ` N′ : C′′. Hence,

we can use the rule (Π-E) to derive Γ′(z : A∗B) ` app(u:C′′)D′′(M′,N′) : D′′ [N′/u]. By definition

of |− |, this sequent is as required.

• The cases for Σ-types are similar to that for Π-types.

• (Π∗-TY), (Π∗-I), (Π∗-E), (Π∗-E-CGR). We spell out the case for (Π∗-E).

Φ∗u : C ` D Type Φ ` M : Π∗u : C.D Ψ ` N : C
(Π∗-E)

Φ∗Ψ ` app∗(u:C)D(M,N) : D [N/u]

Assume Γ(∆) ≡ (Φ ∗Ψ) with x : A ∗ y : B < ∆ and x,y 6∈ Γ◦. We distinguish two cases. First, all

variables in ∆ occur in either Φ or Ψ. We do the case where the variables of ∆ occur in Φ.

Then there exists Γ′◦ with Γ′(∆) ≡ Φ and x,y 6∈ Γ′◦. We can apply the induction hypothesis

to the two left premises to get Γ′′(z : A∗B) ∗ u : C′ ` D′ Type and Γ′′′(z : A∗B) ` M′ : E with

|(let z be x∗y in Γ′◦)(z : A∗B)| = |Γ′′(z : A∗B)| = |Γ′′′(z : A∗B)|, |C| = |C′|, |let z be x∗y in D| =
|D′|, |let z be x∗y in M| = |M′| and |let z be x∗y in Π∗u : C.D| = |E|. By (BU-CC) we have

` Γ′′(z : A∗B) = Γ′′′(z : A∗B) Bunch. We have |E| = |Π∗u : C′.D′|, by definition of |− | and be-

cause both C and C′ are closed types. Hence, by (TY-CC) and conversion we can derive the

sequent Γ′′(z : A∗B) ` M′ : Π∗u : C′.D′. By similar reasoning we obtain Ψ ` N : C′. We can

therefore use (Π∗-E) to derive Γ′′(z : A∗B) ∗Ψ ` app∗(u:C′)D′(M′,N) : D′ [N/u]. Up to structural

congruence≡, the context in this sequent is as required, so that we can apply (CONG) to complete

the case.

The second case is where v(Φ)∩v(∆) 6= /0 and v(Ψ)∩v(∆) 6= /0 hold. Without loss of generality we

may assume that ∆ is (x : A)∗ (y : B), that x occurs in Φ and that y occurs in Ψ. By the structural

congruence Γ(x : A ∗ y : B) ≡ Φ ∗Ψ this implies that there exists Γ′ satisfying Γ(x : A ∗ y : B) ≡
Γ′ ∗ (x : A)∗ (y : B). Therefore, we can apply the rule (∗-E′) followed by structural rules to obtain

a sequent of the required form.

• (∗-E′), (∗-E′-CGR), (∗-β ′), (∗-η ′) all follow similarly to (Π∗-E).

• (TY-CC), (TM-CC) follow from the induction hypothesis.
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Note that the rules (BU-CC), (TY-CC) and (TM-CC) are used essentially in the above proof, for

example in the case for (Π-E).

Lemma 7.2.8. In BT− the following rule, in which K stands for either (A Type) or (M : A), is admis-

sible up to commuting conversion.

∆ ` M : A Φ ` N : B Γ(x : A∗ y : B) ` K

Γ(∆∗Φ) ` let M∗N be x∗y in K = K [M/x][N/y]

Proof. By induction on derivations, similar to the previous lemma. We sketch the case where the last

rule in the derivation of Γ(x : A∗ y : B) ` K is

Γ∗ x : A ` B Type Φ ` M : Π∗x : C.D Ψ ` N : C
(Π∗-E)

Φ∗Ψ ` app∗(x:C)D(M,N) : D [N/x]

As in the above proof, we consider two cases. The first case is where both x and y are in Φ or both

are in Ψ. In this case, we can apply the induction hypothesis, and the assertion follows by congruence.

The remaining case is where one of x and y is in Φ and the other is in Ψ. As above, then we have

Φ∗Ψ≡ Γ′ ∗ (x : A)∗ (y : B). In this case, we can apply rule (∗-β ′).

Lemma 7.2.9. In BT− the following rule, in which K stands for either (A Type) or (M : A), is admis-

sible up to commuting conversion.

∆ ` M : A∗B Γ(z : A∗B) ` K

Γ(∆) ` K [M/z] = let M be x∗y in K [x∗y/z]

Proof. By induction on derivations, similar to the previous lemma.

The above lemmas show that the rules of BT are all admissible up to commuting conversion in BT−.

Since in both BT and BT− commuting conversions are provable equalities, by Proposition 7.2.3 and

rules (TY-CC) and (TM-CC), this implies that BT and BT− are essentially equivalent. Since BT−

does not have the rule (SUBST), translation of derivations in BT to BT− amounts to elimination of

substitution.
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Freefrom Types

Having defined and studied a bunched type theory with Π∗-types, our next goal is to extend it with

Σ∗-types. Recall that Π∗ and Σ∗-types are essentially given by a fibred adjunction Σ∗A aWA a Π∗
A for

each A. When we introduced Π∗-types in Chapter 4, we did not need to give a syntax for WA, since

the adjunction WA a Π∗
A can be captured completely by a one-to-one correspondence between maps

in EΓ(1,Π∗
AB) and EΓ∗A(1 ∼= WA1,B), as is explained in Section 2.5.2. For the adjunction Σ∗A a WA,

however, such a characterisation is not available. To give a syntax for Σ∗, we need a syntax for WA.

In this chapter we introduce syntax for working with WA. The type corresponding to WAB is writ-

ten B∗(N:A). In the intended model with names, it consists of all the elements of B that are free from the

names in the value denoted by N : A. We call the type B∗(N:A) a freefrom type.

Although the semantics justifies freefrom types B∗(N:A) for open types B, at present we only have

a good syntax for closed freefrom types, by which we mean types B∗(N:A) in which both B and A are

closed. Since the formulation of Σ∗-types rests on freefrom types, this is a significant restriction on the

type theory. In particular, we do not expect that the completeness result from the previous chapter can

be generalised to the extensions of the type theory that we consider from now on. In the second half of

this chapter we discuss some possibilities for lifting the restrictions on freefrom types.

8.1 The System BT(∗,1,Σ,Π,Π∗,B∗(M:A))

8.1.1 Syntax

We extend the syntax of BT(∗,1,Σ,Π,Π∗) as follows.

Types A ::= · · · | A∗(M:A)

Terms ::= · · · |M∗M | let M be x∗x : A∗(M:A) in M | joinA,A,A(M,M)

218
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FV (B∗(N:A)) = FV (B)∪FV (N)∪FV (A)

FV (M∗N) = FV (M)∪FV (N)

FV (let M be x∗y : B∗(N:A) in R) = FV (M)∪FV (B∗(N:A))∪ (FV (R)\{x,y})

FV (joinA,B,C(M,N)) = FV (A)∪FV (B)∪FV (C)∪FV (M)∪FV (N)

8.1.2 Rules for Closed Freefrom Types

The rules marked with † are discussed in more detail in the next section.

Formation

` A Type ` B Type ∆ ` N : A
(FF-TY)

∆ ` B∗(N:A) Type

Introduction

` A Type ` B Type Γ ` M : B ∆ ` N : A
(FF-I)

Γ∗∆ ` M∗N : B∗(N:A)

Elimination

∆ ` M : B∗(N:A)

Γ(x : A, z : B∗(x:A)) ` C Type

Γ(y : B∗ x : A)[y∗x/z] ` R : C[y∗x/z]
(FF-E)

Γ(∆)[N/x][M/z] ` let M be y∗x : B∗(N:A) in R : C[N/x][M/z]

Congruences

` A1 = A2 Type ` B1 = B2 Type ∆ ` N1 = N2 : A1(FF-TY-CGR)
∆ ` B1

∗(N1:A1) = B2
∗(N2:A2) Type

` A1 = A2 Type ` B1 = B2 Type Γ ` M1 = M2 : B1 ∆ ` N1 = N2 : A1(FF-I-CGR)
Γ∗∆ ` M1

∗N1 = M2
∗N2 : B1

∗(N1:A1)

` A1 = A2 Type

` B1 = B2 Type

∆ ` N1 = N2 : A1

∆ ` M1 = M2 : B1
∗(N1:A1)

Γ(x : A1, z : B1
∗(x:A1)) ` C Type

Γ(y : B1 ∗ x : A1)[y∗x/z] ` R1 = R2 : C[y∗x/z]
(FF-E-CGR)

Γ(∆)[N1/x][M1/z] `
let M1 be y∗x : B1

∗(N1:A1) in R1

= let M2 be y∗x : B2
∗(N2:A2) in R2

: C[N1/x][M1/z]
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Equations

Γ ` M : B

∆ ` N : A

Φ(x : A, z : B∗(x:A)) ` C Type

Φ(y : B∗ x : A)[y∗x/z] ` R : C[y∗x/z]
(FF-β )

Φ(Γ∗∆)[N/x][M∗N/z] ` let M∗N be y∗x : B∗(N:A) in R = R[N/x][M/y] : C[N/x][M∗N/z]

∆ ` M : B∗(N:A) Γ(x : A, z : B∗(x:A)) ` R : C
(FF-η )

Γ(∆)[N/x][M/z] ` R[N/x][M/z] = let M be y∗x : B∗(N:A) in R[y∗x/z] : C[N/x][M/z]

Γ ` M : B∗(N:A) Γ ` R : B∗(N:A)

Γ ` (let M be y∗x : B∗(N:A) in y) = (let R be y∗x : B∗(N:A) in y) : B
(FF-INJECT)

Γ ` M = R : B∗(N:A)

Join rules

Γ ` M : B∗(R:A) Γ ` N : C∗(R:A)
(FF-JOIN)†

Γ ` joinA,B,C(M,N) : (B×C)∗(R:A)

Γ ` M : B∗(R:A) Γ ` N : C∗(R:A)
(FF-JOIN-EQ1)†

Γ ` (let joinA,B,C(M,N) be y∗x : (B×C)∗(R:A) in fst(y)∗x) = M : B∗(R:A)

Γ ` M : B∗(R:A) Γ ` N : C∗(R:A)
(FF-JOIN-EQ2)†

Γ ` (let joinA,B,C(M,N) be y∗x : (B×C)∗(R:A) in snd(y)∗x) = N : C∗(R:A)

8.1.3 Discussion

We have chosen not to annotate the introduction terms M∗N with types, as this makes the presentation

more readable. The price to pay for this simplification is a slight loss of generality. For the soundness

argument we have to extend the proof of Lemma 6.5.26 with freefrom types. In the case for M∗N , we

must, in essence, show Γ `ES M∗N = M′∗N′
: B∗(N:A) = B′∗(N

′:A′) from the induction hypotheses Γ `ES

M = M′ : B = B′ and Γ `ES N = N′ : A = A′. If all we have is a rule corresponding to (FF-TY-CGR),

then we cannot derive the B∗(N:A) = B′∗(N
′:A′) from the type equations B = B′ and A = A′ in context Γ.

If we annotate the terms M∗N with the types B and A then we can get the additional hypotheses `ES

B = B′ Type and `ES A = A′ Type, just as in the case for pair∗A,B(M,N) in Lemma 6.5.26. With these

additional assumptions, the required equation follows easily. Without type annotations, we can still

get the additional assumptions if the semantics has the additional property that, for all closed types

(`ES A Type) and (`ES B Type), it holds that (Γ `ES A = B Type) implies (`ES A = B Type). Since this

property holds in the split fibrations constructed in Chapter 3, we prefer to omit the annotations on the

introduction terms, thus trading generality for readability. We remark that the same argument can be

used for omitting the type annotations on the terms pair∗A,B(M,N).
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The rules for closed freefrom types look quite similar to those for ∗-types. Indeed, the following

proposition shows that the rules for ∗-types are derivable from the rules for closed freefrom types. This

proposition is a syntactic version of Proposition 2.5.18.

Proposition 8.1.1. The rules for ∗-types are derivable from the rules for closed freefrom types.

Proof idea. We can implement ∗-types using freefrom types by means of the following definitions.

A∗B def= Σx : A.B∗(x:A)

pair∗A,B(M,N) def= M∗N

let M be x:A∗y:B in N def= let snd(M) be y∗x : B∗(fst(M):A) in N

If we assume extensional identity types, then we can also show the converse. When referring to ex-

tensional identity types, we assume standard rules such as the ones shown below (plus appropriate

congruence rules). See [47] for more information on identity types.

Γ ` M : A Γ ` N : A
(ID-TY)

Γ ` M 'A N Type
Γ ` M : A

(ID-I)
Γ ` refl(M) : M 'A M

Γ ` M 'A N Type
(ID-DEFEQ)

Γ ` M = N : A
Γ ` p : M 'A N

(ID-UNI)
Γ ` p = refl(M) : M 'A N

Proposition 8.1.2. The rules for closed freefrom types can be derived from the rules for ∗-types if we

assume extensional identity types and the following constants and equations.

x : B∗A, y : C∗A, p : π̇2(x)'A π̇2(y) ` jA,B,C(p,x,y) : (B×C)∗A

x : B∗A, y : C∗A, p : π̇2(x)'A π̇2(y) ` π̇1(jA,B,C(p,x,y)) = 〈π̇1(x), π̇1(y)〉 : B×C

x : B∗A, y : C∗A, p : π̇2(x)'A π̇2(y) ` π̇2(jA,B,C(p,x,y)) = π̇2(x) : A

Proof idea. Define freefrom types as follows.

B∗(N:A) def= Σp : B∗A.(N ' π̇2(p))

M∗N def= 〈pair∗B,A(M,N), refl(N)〉

let M be y∗x : B∗(N:A) in R def= let fst(M) be y:B∗x:A in R

In the definition of M∗N above, A and B are the unique types (` A Type) and (` B Type) such that M : B

and N : A. Such unique types exist because of Corollary 7.2.4 and the assumption that (Γ ` A = B Type)

implies (` A = B Type) for all (` A Type) and (` B Type).

As a representative example, we show that (FF-η ) is derivable. With the above translations, the

assumptions of this rule are ∆ ` M : (Σp : B∗A.N ' π̇2(p)) and Γ(x : A, z : (Σp : B∗A.x ' π̇2(p))) `
R : C. From this we get ∆ ` fst(M) : B∗A and Γ(u : B∗A, z : (Σp : B∗A. π̇2(u) ' π̇2(p))) [π̇2(u)/x] `
R [π̇2(u)/x] : C [π̇2(u)/x]. It follows by substitution that the term R [π̇2(u)/x] [〈u, refl(π̇2(u))〉/z] has type
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C [π̇2(u)/x] [〈u, refl(π̇2(u))〉/z] in context Γ(u : B∗A) [π̇2(u)/x] [〈u, refl(π̇2(u))〉/z]. We can apply (∗-η )

to get the equation

R [π̇2(fst(M))/x] [〈fst(M), refl(π̇2(fst(M)))〉/z]

=let fst(M) be y:B∗x:A in R [π̇2(pair∗B,A(y,x))/x] [〈pair∗B,A(y,x), refl(π̇2(pair∗B,A(y,x)))〉/z].

From now on we omit the context and type for brevity. By π̇2(pair∗B,A(y,x)) = x, the right-hand side

can be simplified to (let fst(M) be y∗x in R [〈pair∗B,A(y,x), refl(x)〉/z]). Notice that this term is just

the encoding of (let M be y∗x : B∗(N:A) in R [y∗x/z]). For the left-hand side, we have (π̇2(fst(M)) = N)

and refl(π̇2(fst(M))) = snd(M), by (ID-DEFEQ) and (ID-UNI). The term on the left-hand side therefore

equals R [N/x] [〈fst(M),snd(M)〉/z], which using (Σ-η ) is equal to R [N/x] [M/z]. Hence, we have shown

the required equation R [N/x] [M/z] = let M be y∗x : B∗(N:A) in R [y∗x/z].

The rules for join are derivable using the constants assumed in the statement of the proposition.

Extensional equality appears to be necessary in the above proposition. For example, for closed freefrom

types we can derive the equality (let M be y∗x : B∗(N:A) in x) = N by (FF-η ), but from the encoding of

freefrom types using ∗-types in the above proof, the most we seem to be able to get is an inhabitant of

the propositional equality type (let M be y∗x : B∗(N:A) in x)' N.

The rules for join deserve comment. Their existence is due to the restriction to closed freefrom

types. Because of this restriction, the other rules are not a complete syntax for the functor WA. One

important property of WA not available without the join rules is that WA is a fibred functor. We outline

what this means by considering the non-split version of WA in the non-split codomain fibration. Given

two closed types B→ 1 and C → 1, the square below is a pullback.

B×C
_�

π1

��

π2 // C

!
��

B
!
// 1

The map (B×C)→ 1 corresponds to the closed type (B×C). By definition, WA takes this square to the

square below. Moreover, since WA is a fibred functor this square is again a pullback.

(B×C)∗A
_�

π1∗A

��

π2∗A // C ∗A

!∗A
��

B∗A
!∗A

// 1∗A

(8.1)

Now, as explained in more detail in Section 8.3 below, the maps B ∗ A → 1 ∗ A, C ∗ A → 1 ∗ A and

(B×C) ∗A → 1 ∗A in this diagram correspond (up to A ∼= 1 ∗A) to the types (x : A ` B∗(x:A) Type),

(x : A ` C∗(x:A) Type) and (x : A ` (B×C)∗(x:A) Type) respectively. That the square is a pullback then

amounts to the type-theoretic property that, for any two terms Γ ` M : B∗(R:A) and Γ ` N : C∗(R:A), there

exists a unique term Γ ` J : (B×C)∗(R:A) whose components consist of the parts of M and N. Note
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that the superscript in the types of M and N must be the same, since in order to apply the pullback to

morphisms m : Γ → B ∗A and n : Γ → C ∗A corresponding to the terms M and N, they must satisfy

(!∗A)◦m = (!∗A)◦n. In the Schanuel topos, the existence of the term J amounts to the important fact

that a pair 〈x,y〉 : B×C is fresh for some z : A if both x is fresh for z and y is fresh for z. The converse

follows by functoriality of ∗.

The rules for join make available the information that the square (8.1) is a pullback. The term

joinA,B,C(M,N) in (FF-JOIN) corresponds the term J described just above. The reason we have to

assume the constants ‘join’ is the restriction to closed freefrom types. With a formulation of open

freefrom types, the rules for join become derivable, see Section 8.4.2.2 below.

8.2 Examples

To give some example derivations with closed freefrom types, we show that rules which use freshness

in the style of FreshML 2000 [87] are derivable. These derivations demonstrate why the constant ‘join’

is needed in practice. They also show the restrictions on closed freefrom types, since the derived rules

are less general than those of FreshML 2000.

We consider typing rules in the style of Figure 2 of [87]. We use the following abbreviation.

Γ, x : B∗(N:A) ` (↓ x) def= let x be u∗v : B∗(N:A) in u∗v : B∗A

Abstraction We derive the following rule, similar to the abstraction rule of [87].

Γ ` c : C x1 : A1, . . . , xn : An, x : A ` M : B {Γ ` xi : Ai
∗(c:C)}1≤i≤n

Γ ` R : (A→ B)∗(c:C)

The term R, that we are about to derive, essentially amounts to λx : A.M.

This rule is less expressive than the corresponding FreshML 2000 rule, because if Ai
∗(c:C) is a type

then Ai must be a closed type. To express freshness assumptions as in FreshML 2000, we would, for

example, also need to allow A2 to be of the form A′2
∗(x1:A1).

To derive this rule we start with the following derivation, in which we abbreviate the substitution

〈π1(z)/x1〉 ◦ · · · ◦ 〈πn(z)/xn〉 by σ .

x1 : A1, . . . , xn : An, x : A ` M : B
x1 : A1, . . . , xn : An ` λx : A.M : A→ B

(x1 : A1, . . . , xn : An)∗ (c : C) ` (λx : A.M)∗c : (A→ B)∗(c:C)

(z : A1×·· ·×An)∗ (c : C) ` (λx : A.M[σ ])∗c : (A→ B)∗(c:C)

c : C, u : (A1×·· ·×An)
∗(c:C) ` let u be z∗c in (λx : A.M[σ ])∗c : (A→ B)∗(c:C)

From the assumptions Γ ` xi : Ai
∗(c:C) for 1≤ i≤ n we can derive

Γ ` join(x1, . . . ,xn) : (A1×·· ·×An)
∗(c:C),
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where we use a suggestive notation for iterated join. The derivation is completed by weakening with Γ

and substituting with c and the join-term.

Application

Γ ` M : (A→ B)∗(c:C)
Γ ` N : A∗(c:C)

Γ ` R : B∗(c:C)

We derive a term R corresponding to the application of M to N as follows:

Γ ` M : (A→ B)∗(c:C)
Γ ` N : A∗(c:C)

Γ ` join(M,N) : ((A→ B)×A)∗(c:C)

x : A→ B, y : A ` x y : B

(x : A→ B, y : A)∗ (c : C) ` (x y)∗c : B∗(c:C)

(p : (A→ B)×A)∗ (c : C) ` (π1(p) π2(p))∗c : B∗(c:C)

Γ ` let join(M,N) be p∗c in (π1(p) π2(p))∗c : B∗(c:C)

The such derived term R is, up to the presence of freefrom-terms, just the application of M to N.

Abstraction for −∗-functions

(x1 : A1, . . . , xn : An)∗ x : A ` M : B {Γ ` xi : Ai
∗(c:C)}1≤i≤n

Γ ` R : (A−∗ B)∗(c:C)

This rule can be derived by using Π∗-introduction and join as for Π-abstraction above.

Application for −∗-functions

Γ ` M : (A−∗ B)∗(↓N:A∗C)
Γ ` N : A∗(c:C)

Γ ` R : B∗(c:C)

We start the derivation of the term R as follows.

x : A−∗ B∗ y : A ` x@y : B

(x : A−∗ B∗ y : A)∗ (c : C) ` (x@y)∗c : B∗(c:C)

(x : A−∗ B)∗ (y : A∗ c : C) ` (x@y)∗c : B∗(c:C)

(x : A−∗ B)∗ (z : A∗C) ` let z be y∗c in (x@y)∗c : B∗(π̇2(z):C)

z : A∗C, u : (A−∗ B)∗(z:A∗C) ` let u be x∗z in let z be y∗c in (x@y)∗c : B∗(π̇2(z):C)

Γ, u : (A−∗ B)∗(↓N:A∗C) ` let u be x∗z in let z be y∗c in (x@y)∗c : B∗(π̇2(↓N):C)

Γ ` let M be x∗z in let z be y∗c in (x@y)∗c : B∗(π̇2(↓N):C)

To complete the derivation, we show Γ ` c = π̇2(↓ N) : C. To this end we note the following equations

of terms of type C in context c : C, z : A∗(c:C).

c = let z be y∗c : A∗(c:C) in c by (FF-η )

= let z be y∗c : A∗(c:C) in (let y∗c be u:A∗v:C in v) by (∗-β )

= let z be y∗c : A∗(c:C) in (let (let y∗c be y∗c : A∗(c:C) in y∗c) be u:A∗v:C in v) by (FF-β )

= let (let z be y∗c : A∗(c:C) in y∗c) be u:A∗v:C in v by (FF-η )

By substitution we obtain Γ ` c = π̇2(↓ N) : C. This gives B∗(π̇2(↓N):C) = B∗(c:C), so that we can use type

conversion to complete the above derivation.
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8.3 Interpretation

In this section we give the interpretation for closed freefrom types. For the particular models constructed

in Chapter 3 this is in fact not necessary, since these models are equivalent to codomain fibrations

and therefore have extensional equality, so that soundness follows at once from Proposition 8.1.2. We

nevertheless spell out the interpretation here, both with an eye to generalisations to open freefrom types

and to include the possibility of non-extensional models. Since the rules are incomplete and likely to

change, we will be less formal than in Chapter 6.

Assume a (∗,1,Σ,Π,Π∗)-type-category. We write p : E→ B for the underlying fibration and denote

the associated comprehension functor by {−} : E→ B. We write ∗ for the strict affine monoidal struc-

ture on B. In addition, we assume a monoidal weakening structure WA (Definition 2.5.15) on this given

structure. For the interpretation of closed freefrom types, we only need to make use of the monoidal

weakening functors W{A} : E1 → E1∗{A} for objects A of E1.

Formation The interpretation of the premises of the type formation rule

` A Type ` B Type ∆ ` N : A
(FF-TY)

∆ ` B∗(N:A) Type

amounts to an object ∆ in B, objects A and B in E1 and a morphism N : ∆→{A} in B. The type B∗(N:A)

is interpreted as the object N∗u∗W{A}B of E∆, where u : {A}→ 1∗{A} is the canonical isomorphism.

By definition of W{A} we have an isomorphism k{A},B such that the following diagram commutes.

{u∗W{A}B}
{u} //

πu∗W{A}B &&MMMMMMMMMMM
{W{A}B}

k{A},B //

πW{A}B %%JJJJJJJJJ
{B}∗{A}

!∗Ayyssssssssss

{A} u
// 1∗{A}

Since u is an isomorphism, so is {u}, and it follows that fA,B
def= k{A},B ◦{u} is also an isomorphism. To

simplify the notation, we write FA for the functor u∗W{A}. Notice that FAB is just the interpretation of

Γ∗ x : A ` B∗(x:A) Type. With the notation FAB, the isomorphism fA,B fits in the following diagram.

{FAB}
fA,B

∼=
//

πFAB ##F
FFFFFFF

{B}∗{A}

π̇2zzuuuuuuuuu

{A}

The isomorphism fA,B will be the interpretation of the introduction and elimination terms for freefrom

types. Informally, f−1
A,B represents the substitution 〈y∗x/z〉 : (y : B ∗ x : A) → (x : A, z : B∗(x:A)) and fA,B

represents the let-term (let z be y∗x in −) : (x : A, z : B∗(x:A))→ (y : B∗ x : A).

Introduction The introduction terms are interpreted using f−1
A,B and substitution. The assumptions in

` A Type ` B Type Γ ` M : B ∆ ` N : A
(FF-I)

Γ∗∆ ` M∗N : B∗(N:A)
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amount to objects A and B in E1 as well as maps M : Γ → {B} and N : ∆ → {A} in B. The term in the

conclusion of the rule is interpreted as the unique map M∗N making the following diagram commute.

Γ∗∆

id

))

M∗N //

M∗N

''P
PPPPP {B}∗{A}

y∗x

((Q
QQQQQQ

f−1
A,B

%%
{(π̇2 ◦ (M ∗N))∗FAB}

_� {M∗N}
//

π(π̇2◦(M∗N))∗FAB

��

{π̇∗2 FAB}
_� {π̇2}

//

π
π̇∗2 FAB

��

{FAB}

πFAB

��
Γ∗∆ M∗N

// {B}∗{A}
π̇2

// {A}

(8.2)

Note that π̇2 ◦ (M ∗N) = N ◦ π̇2 holds. This implies that (π̇2 ◦ (M ∗N))∗FAB is equal to (N ◦ π̇2)∗FAB,

which is just the interpretation of Γ∗∆ ` B∗(N:A) Type.

A succinct way of describing the interpretation of M∗N is by reindexing x : A, z : B∗(x:A) ` z : B∗(x:A)

along f−1
A,B, the result of which corresponds to the term y : B ∗ x : A ` y∗x : B∗(x:A), and then reindexing

this term along M ∗N, which amounts to substituting M for y and N for x. The above diagram is nothing

but an explication of this description.

Elimination The elimination terms are interpreted using fA,B and substitution. We consider the special

case without parameter context:

∆ ` M : B∗(N:A)

x : A, z : B∗(x:A) ` C Type

y : B∗ x : A ` R : C[y∗x/z]
(FF-E)

∆ ` let M be y∗x : B∗(N:A) in R : C[N/x][M/z]

The type (x : A, z : B∗(x:A) ` C Type) is interpreted as an object C of E{FAB}. Since the definition of y∗x

is such that {π̇2} ◦ y∗x = f−1
A,B holds (see Diagram 8.2), we know that (y : B ∗ x : A ` C[y∗x/z] Type) is

interpreted as ( f−1
A,B)∗C in E{B}∗{A}. The term R is therefore given by a map of type 1{B}∗{A}→ ( f−1

A,B)∗C

in E{B}∗{A}.

The term M uniquely corresponds to a section, as given by the left triangle in the diagram below.

The rest of this diagram commutes by definition.

∆

id
##F

FF
FF

FF
FF

FF
M // {N∗FAB}

_�
{N} //

πN∗FAB

��

{FAB}

πFAB

��

fA,B // {B}∗{A}

π̇2yyssssssssss

∆ N
// {A}

(8.3)

We interpret the term (let M be y∗x : B∗(N:A) in R) as the morphism ( fA,B ◦ {N} ◦M)∗R of type 1∆ →
( fA,B ◦{N}◦M)∗( f−1

A,B)∗C = ( f−1
A,B ◦ fA,B ◦{N}◦M)∗C = ({N}◦M)∗C in E∆. Note that the codomain of

this map is the interpretation of the type C[N/x][M/y], as required by the above rule.

In short, the interpretation of (let M be y∗x : B∗(N:A) in R) is given by reindexing R along fA,B to get

x : A, z : B∗(x:A) ` f ∗A,BR : C and then substituting N for x and M for z.
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The general case of (FF-E) with a parameter context Γ◦ follows by lifting the map fA,B ◦ {N} ◦M

in the context-with-hole Γ◦ and substituting along the lifted map.

Equations The equations follow because fA,B and f−1
A,B are mutually inverse. We start with the β -

equation.

Γ ` M : B

∆ ` N : A

Φ(x : A, z : B∗(x:A)) ` C Type

Φ(y : B∗ x : A)[y∗x/z] ` R : C[y∗x/z]
(FF-β )

Φ(Γ∗∆)[N/x][M∗N/z] ` let M∗N be y∗x : B∗(N:A) in R = R[N/x][M/y] : C[N/x][M∗N/z]

We consider first the case where Φ◦ is©. Since A and B are both closed types (otherwise there would be

no valid context containing B∗(x:A) as on the right), they correspond to objects of E1. The terms M and N

therefore amount to maps M : Γ→{B} and N : ∆→{A}. The interpretation of Γ∗∆ ` M∗N : B∗(N:A) is

given by a section M∗N : Γ∗∆→{(N ◦ π̇2)∗FAB} of π(N◦π̇2)∗FAB. The term (let M∗N be y∗x : B∗(N:A) in R)

is interpreted as ( fA,B ◦{N ◦ π̇2}◦M∗N)∗R. Now we have:

fA,B ◦{N ◦ π̇2}◦M∗N = fA,B ◦{π̇2 ◦ (M ∗N)}◦M∗N since N ◦ π̇2 = π̇2 ◦ (M ∗N)

= fA,B ◦{π̇2}◦{M ∗N}◦M∗N p is a split fibration, {−} a functor

= fA,B ◦ f−1
A,B ◦ (M ∗N) by diagram (8.2)

= M ∗N

Therefore, the interpretation of (let M∗N be y∗x : B∗(N:A) in R) is (M ∗N)∗R. But since (M ∗N)∗R is also

the interpretation of R[N/x][M/y], this shows the β -equation. The case where Φ◦ is not © follows by

lifting this special case in the context-with-hole Φ◦.

We come to the η-equation.

∆ ` M : B∗(N:A) Γ(x : A, z : B∗(x:A)) ` R : C
(FF-η )

Γ(∆)[N/x][M/z] ` R[N/x][M/z] = let M be y∗x : B∗(N:A) in R[y∗x/z] : C[N/x][M/z]

Again, we assume that Γ◦ is ©. In this case, R corresponds to a map 1 →C in E{FAB}. Then, the term

y : B∗ x : A ` R[y∗x/z] : C[y∗x/z] is interpreted as ( f−1
A,B)∗R. The term (let M be y∗x : B∗(N:A) in R[y∗x/z])

is therefore interpreted as ( fA,B ◦ {N} ◦M)∗( f−1
A,B)∗R = ( f−1

A,B ◦ fA,B ◦ {N} ◦M)∗R = ({N} ◦M)∗R. But

the term ({N}◦M)∗R is just the interpretation of R[N/x][M/z], thus showing the η-equation.

It remains to show the equation (FF-INJECT).

Γ ` M : B∗(N:A) Γ ` R : B∗(N:A)

Γ ` (let M be y∗x : B∗(N:A) in y) = (let R be y∗x : B∗(N:A) in y) : B
(FF-INJECT)

Γ ` M = R : B∗(N:A)

The interpretations of the terms M and R are uniquely determined by sections M : Γ → {N∗FAB} and

R : Γ → {N∗FAB} of πN∗FAB. The equation (let M be y∗x : B∗(N:A) in y) = (let R be y∗x : B∗(N:A) in y) in
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this rule is interpreted as the equation ( fA,B ◦{N}◦M)∗y = ( fA,B ◦{N}◦R)∗y, in which y is the unique

morphism making the following diagram commute.

{B}∗{A}
y

&&MMMMMMMMMM π̇1

%%

id

$$

{!∗B}
_� {!}

//

π!∗B

��

{B}

πB

��
{B}∗{A}

!
// 1

(8.4)

Note that by definition of reindexing ( fA,B ◦ {N} ◦M)∗y = ( fA,B ◦ {N} ◦R)∗y implies y ◦ ( fA,B ◦ {N} ◦
M) = y◦ ( fA,B ◦{N}◦R).

We have to show M = R. Since the diagram

{N∗FAB}
_�

πN∗FAB

��

fA,B◦{N}
// {B}∗{A}

π̇2
��

Γ
N

// {A}

(8.5)

is a pullback, and since both M and R are sections of πN∗FAB, it suffices to show fA,B ◦ {N} ◦M =

fA,B ◦{N}◦R. Since ∗ is a strict affine monoidal structure, the map 〈π̇1, π̇2〉 : {B}∗{A}→ {B}×{A} is

a monomorphism. Therefore, it suffices to show π̇i ◦ fA,B ◦{N}◦M = π̇i ◦ fA,B ◦{N}◦R for both i = 1

and i = 2. For i = 1, we use the equation y ◦ ( fA,B ◦ {N} ◦M) = y ◦ ( fA,B ◦ {N} ◦R) established above.

Since we know from diagram (8.4) that π̇1 = {!}◦y holds, post-composing this equation with {!} yields

the required π̇1 ◦ fA,B ◦{N}◦M = π̇1 ◦ fA,B ◦{N}◦R. For i = 2, we calculate as follows:

π̇2 ◦ fA,B ◦{N}◦M = N ◦πN∗FAB ◦M by diagram (8.5)

= N since M is a section of πN∗FAB

= N ◦πN∗FAB ◦R since R is a section of πN∗FAB

= π̇2 ◦ fA,B ◦{N}◦R by diagram (8.5)

Hence, we have shown M = R, as required.

We omit the details for the interpretation of ‘join’, which we have already sketched in the previous

section.
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8.4 Towards Open Freefrom Types

Let us now examine how the syntax for closed freefrom types can be generalised to open types, and

let us discuss the difficulties associated with it. We know precisely the semantic structure we want to

capture with open freefrom types, namely the fibred functor WA. For the purpose of this discussion, we

consider just the special case of the codomain fibration on the Schanuel topos S. In this special case,

the functor WA : S→ → S→ maps πB : B → Γ to πB ∗A : B ∗A → Γ ∗A. Open freefrom types should be

a syntax for this functor. The main difficulty in giving such a syntax for WA is how to account for the

substitution behaviour of WA, i.e. how to integrate in the syntax that WA is a fibred functor.

To begin with let us consider possible choices for type formation. Since WA maps πB : B → Γ to

πB ∗A : B∗A→ Γ∗A, a natural choice for an (unsubstituted) type formation rule would be

` A Type Γ ` B Type
(FFO-TY)

Γ∗ x : A ` B∗(x:A) Type

The type A must be closed since it corresponds to an object of S. Annotating the type B∗(x:A) with the

variable x is necessary to keep track of substitutions in x. Some evidence that annotating B∗(x:A) with x

is also sufficient to give a sound syntax is that, by pullback-preservation of WA, there is an isomorphism

(σ ∗ A)∗WAπB ∼= WAσ∗πB. This isomorphism states that substitution in the B-part of B∗(x:A) can be

defined as usual. Without strengthening, however, it does not appear to be quite enough for showing

soundness, in particular that different derivations of the same sequent have the same interpretation.

Nevertheless, we can rely on the following special property of WA in (the split fibration equivalent to)

the codomain fibration of Schanuel topos to show soundness:

σ : Γ→ ∆∗ x : A

τ : Γ→Φ∗ x : A

∆ ` B Type

Φ ` C Type

Γ ` B[σ ] = C[τ] Type

Γ ` x[σ ] = x[τ] : A

Γ ` (B∗(x:A))[σ ] = (C∗(x:A))[τ] Type

This property is similar to the additional property that strong Π∗-types have over normal Π∗-types. It

makes it straightforward to show by induction on the size of the type that two derivations have the

same interpretation, as in Lemma 6.5.26. In the split fibration for the Schanuel topos, constructed in

Chapter 3, this property follows from Proposition 2.5.17. With this special property, we can also show

soundness of the following type formation rule

` A Type Γ ` B Type
(FFO-TY′)

Γ, x : A ` B∗(x:A) Type

Semantically, the type in the conclusion amounts to ı◦ (πB ∗A) : B∗A→ Γ∗A � Γ×A.

It makes a difference whether we choose (FFO-TY) or (FFO-TY′). If we choose (FFO-TY) then ∗-

elimination on types can no longer be shown to be admissible as in Section 5.4. For example, for a type

of the form z : A∗B ` let z be x∗y in B(x)∗(y:A) Type, we cannot push the let further in the subterms. With

(FFO-TY′), on the other hand, then we can derive z : A∗B ` B(let z be x∗y in x)∗(let z be x∗y in y:A) Type,
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so that we can expect the admissibility argument from Section 5.4 to go through. Another difference

between (FFO-TY) and (FFO-TY′) that plays a role in the formulation of the other rules is that the rule

(FFO-TY) enforces stronger constraints on the contexts. With (FFO-TY) we can derive Γ` B∗(N:A) Type

only if the variables in B and N are separated in the context Γ. By this we mean that Γ is, up to structural

congruence, of the form ∆(Φ ∗Ψ) and both Φ ` B Type and Ψ ` N : A are derivable. We will exploit

this separation information in the next section below. With the rule (FFO-TY′), however, we do not get

any separation information.

To give terms for open freefrom types, it is reasonable to use the isomorphism

{WAB}
kA,B

∼=
//

πWAB $$H
HH

HH
HH

HH
{B}∗A

πB∗Azzuuuuuuuuu

Γ∗A

.

This isomorphism is part of the definition of a monoidal weakening structure in Section 2.5.2.2. In the

codomain fibration it is in fact the identity. In terms of the syntax, kA,B is an isomorphism between the

contexts (Γ∗ x : A), z : B∗(x:A) and (Γ, y : B)∗ x : A for all types ` A Type and Γ ` B Type. Introduction

terms correspond to the inverse of this isomorphism. This inverse may be understood as the substitution

〈y∗x/z〉 : (Γ, y : B)∗ x : A→ (Γ∗ x : A), z : B∗(x:A).

It gives rise to the (unsubstituted) introduction rule

` A Type Γ ` B Type
(FF-I)

(Γ, y : B)∗ x : A ` y∗x : B∗(x:A)

It is straightforward to close this rule under substitution, and we expect that soundness of this rule can

be shown by adding a further rule in the spirit of (INJECT).

The main problem with open freefrom types lies in the formulation of an elimination rule. Given

the above isomorphism, we would like to add an (unsubstituted) rule of the following form.

. . . (Γ, y : B)∗ x : A ` R : C[y∗x/z]
(FFO-E)

(Γ∗ x : A), z : B∗(x:A) ` let z be y∗x : B∗(x:A) in R : C

Although this rule is very appealing, it is problematic because it is not straightforward to close it under

substitution. An instance of this rule that is closed under substitution should have the form

. . . ∆ ` M : B∗(N:A) (Γ, y : B)∗ x : A ` R : C[y∗x/z]
(FFO-E-SUBS)

∆ ` let M be y∗x : B∗(N:A) in R : C[M/z]

But what should the context Γ be? Clearly it cannot be ∆ itself. Suppose Γ were ∆. The above rule would

bind N to x, thereby separating ∆ from N. But since N is a term in context ∆, we could therefore sepa-

rate N from itself and this is not possible for all terms N. But perhaps we can somehow obtain Γ from ∆?

To some extent, this is possible if we choose (FFO-TY) as the type formation rule; see below for more
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detail. In general, however, for example when we choose the rule (FFO-TY′), it is not straightforward to

obtain a context Γ from ∆. For example, with (FFO-TY′) we can derive z : A∗B`C(π̇2(z))
∗(π̇1(z):A) Type

for any type x : B ` C(x) Type, and it is not obvious from the context z : A∗B which context Γ we should

choose.

A trivial solution to giving an elimination rule that is closed under substitution is by using explicit

substitutions.

. . .

∆ ` M : B∗(N:A)

σ : ∆→ Γ∗ x : A

Γ ` B′ Type

∆ ` B = B′[σ ] Type

∆ ` N = x[σ ] Type

(Γ, y : B′)∗ x : A ` R : C[y∗x/z]

∆ ` let M with σ be (Γ,y : B′)∗x:A in R : C

There are several possible variants of this formulation with explicit substitutions. Instead of making

the substitution σ a premise of this rule, the type formation rule for freefrom types could be changed

so that σ becomes part of the type B∗(N:A). In another direction, it is not necessary to record the full

substitution σ in the term of the conclusion. Since ∗ is strict affine, it should be enough just to record the

list of terms x1[σ ], . . . ,xn[σ ],x[σ ], where x1, . . . ,xn are the variables declared in Γ. We also note that σ ,

as used in the above rule, is similar to the slices of Gabbay & Cheney [37].

At present we do not think that any of the formulations with explicit substitutions leads to a good

formulation of freefrom types, since working with the terms and the associated equations is extremely

complicated. The examples in [83] illustrate this point for a simply typed modal λ -calculus. Further-

more, the theory of dependent types with named variables and explicit substitutions, as worked out

in [109, 32], still appears to have some issues [88]. At present we do not know how to deal with explicit

substitutions in the bunched dependent type theory in such a way that the theory remains manageable.

Coming back to the attempt of formulating a rule (FFO-E-SUBS) that is closed under substitution,

we note that if we choose (FFO-TY) as the type formation rule for open freefrom types, then it is

possible to obtain a context Γ in (FFO-E-SUBS) from ∆. With the rule (FFO-TY), the judgement ∆ `
B∗(N:A) Type can only be made if ∆ has, up to structural congruence, the form Φ(Γ∗Ψ) and Γ ` B Type

and Ψ ` N : A are derivable. Note, however, that this decomposition of ∆ need not be unique. We can

use the decomposition of ∆ into Γ and Φ in the rule (FFO-E-SUBS) as follows.

. . . Φ(Γ∗Ψ) ` M : B∗(N:A) Γ ` B Type Ψ ` N : A (Γ, y : B)∗ x : A ` R : C[y∗x/z]

Φ(Γ∗Ψ) ` let M be y∗x : B∗(N:A) in R : C[M/z]

This elimination rule appears weaker than some of the other possible rules. For example, we cannot use

it to eliminate elements of (let M be x∗y in B∗(N:A)); recall from the above discussion that ∗-elimination

on types is not admissible with (FFO-TY). In a formulation with (FFO-TY′), on the other hand, the type

(let M be x∗y in B∗(N:A)) would be provably equal to (let M be x∗y in B)∗(let M be x∗y in N:A). Therefore,

a freefrom elimination rule for such a formulation would effectively allow us to eliminate elements of

(let M be x∗y in B∗(N:A)). With (FFO-TY), no such argument appears to be possible. It remains to be

seen whether or not the above rule is nevertheless complete, or at least sufficient for practical purposes.
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8.4.1 A Formulation of Open Freefrom Types

In this section we give a possible formulation of open freefrom types for the Schanuel topos.

Formation

` A Type Γ ` B Type ∆ ` N : A
(FFO-TY)

Γ∗∆ ` B∗(N:A) Type

Introduction

` A Type Γ ` M : B ∆ ` N : A
(FFO-I)

Γ∗∆ ` M∗N : B∗(N:A)

Elimination

Γ ` B Type

∆ ` N : A Φ(Γ∗∆) ` M : B∗(N:A)

(Γ∗ x : A), z : B∗(x:A) ` C Type

(Γ, y : B)∗ x : A ` R : C[y∗x/z]
(FFO-E)

Φ(Γ∗∆) ` let M be y∗x : B∗(N:A) in R : C[N/x][M/z]

Congruences

` A1 = A2 Type Γ ` N1 = N2 : A1 Γ ` B1 = B2 Type
(FFO-TY-CGR)

Γ ` B1
∗(N1:A1) = B2

∗(N2:A2) Type

` A Type Γ ` M1 = M2 : B ∆ ` N1 = N2 : A
(FFO-I-CGR)

Γ∗∆ ` M1
∗N1 = M2

∗N2 : B∗(N1:A)

` A1 = A2 Type

Γ ` B1 = B2 Type

(Γ∗ x : A1), z : B1
∗(x:A1) ` C Type

∆ ` N1 = N2 : A1

Φ(Γ∗∆) ` M1 = M2 : B1
∗(N1:A1)

(Γ, y : B1)∗ x : A1 ` R1 = R2 : C[y∗x/z]
(FFO-E-CGR)

Φ(Γ∗∆) ` let M1 be y∗x : B1
∗(N1:A1) in R1 = let M2 be y∗x : B2

∗(N2:A2) in R2 : C[N/x][M/z]

Equations

Γ ` M : B ∆ ` N : A

(Γ∗ x : A), z : B∗(x:A) ` C Type

(Γ, y : B)∗ x : A ` R : C[y∗x/z]
(FFO-β )

Γ∗∆ ` let M∗N be y∗x : B∗(N:A) in R = R[N/x][M/y] : C[M∗N/z]

Γ ` B Type ∆ ` N : A Φ(Γ∗∆) ` M : B∗(N:A) (Γ∗ x : A), z : B∗(x:A) ` R : C
(FFO-η )

Φ(Γ∗∆) ` R[N/x][M/z] = let M be y∗x : B∗(N:A) in (R[y∗x/z]) : C[N/x][M/z]
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Γ ` B Type Φ(Γ∗∆) ` M : B∗(N:A)

∆ ` N : A Φ(Γ∗∆) ` R : B∗(N:A)

Φ(Γ∗∆) ` (let M be y∗x : B∗(N:A) in y) = (let R be y∗x : B∗(N:A) in y) : B
(FFO-INJECT)

Φ(Γ∗∆) ` M = R : B∗(N:A)

As we have noted in the previous section, the formulation of the rule (FF-TY) is such that ∗-elimination

on types is no longer admissible. Therefore, we now make the admissible rules (∗-E-TY), (∗-E-TY-

CGR), (∗-β -TY), (∗-η -TY), (∗-E+) from Chapter 5 primitive rules. Note that the soundness argument

for BT(∗,1,Σ,Π,Π∗) from Chapter 6 goes through without complication with these rules made primi-

tive. In fact, it would also be sensible to formulate a version of (FFO-E) on types, but for the present

purposes this is not necessary.

8.4.1.1 Discussion

For brevity, the elimination rules are formulated without parameter contexts. Using ∗, Π and Π∗-types,

it can be shown that rules with parameter contexts are admissible; see Sections 4.3 and 5.6 for more

information.

The main weak point of the above formulation of open freefrom types is the elimination rule. The

problem is that in (FFO-E) there may, up to structural congruence, be many choices of the contexts Γ

and ∆. The choice of contexts is not reflected in the term. This makes the term (let M be y∗x : B∗(N:A) in R)

hard to understand, since it does not tell us which variables x is fresh for. Furthermore, given a derivable

term it is not immediately clear how to construct a derivation for it. In Section 8.4.2.2 below we give an

example illustrating this problem of having many choices in the rule (FFO-E).

Open freefrom types can help to simplify the rules for Π∗-types. When we introduced ∗-types in

Chapter 5, we had to strengthen the congruence rule for Π∗-types to (Π∗-E-CGR+), in order to be able

to show completeness of the theory. With open freefrom types it should not be necessary to strengthen

this rule. In essence, (Π∗-E-CGR+) allows us to conclude app∗(x:A)B(M,x)[σ ] = app∗(x:A)B′(N,x)[τ] from

M[σ ] = N[τ] and x[σ ] = x[τ]. We sketch how it should be possible to do this with open freefrom types:

app∗(x:A)B(M,x)[σ ]

= (let M∗x be u∗v : (Π∗x : A.B)∗(x:A) in u@v)[σ ] by (FFO-β )

= let (M∗x)[σ ] be u∗v : (Π∗x : A.B)[σ ]∗(x[σ ]:A) in u@v by commuting conversion

= let (N∗x)[τ] be u∗v : (Π∗x : A.B)[σ ]∗(x[σ ]:A) in u@v see below

= let (N∗x)[τ] be u∗v : (Π∗x : A.B′)[τ]∗(x[τ]:A) in u@v premises of (Π∗-E-CGR+), injectivity of Π
∗

= (let N∗x be u∗v : (Π∗x : A.B′)∗(x:A) in u@v)[τ] by commuting conversion

= app∗(x:A)B′(N,x)[τ] by (FFO-β )

Before we show the third step in this chain of equations, we point out that a formulation of open freefrom

types with (FFO-TY) does not appear to be quite sufficient for these equations. In the above equations,



Chapter 8. Freefrom Types 234

there appears the type (Π∗x : A.B)[σ ]∗(x[σ ]:A), which to form we need (FFO-TY′). The third step follows

because we can show (M∗x)[σ ] = (N∗x)[τ] using the rule (FFO-INJECT). By this rule, it suffices to show

(let (M∗x)[σ ] be u∗v in u) = (let (N∗x)[τ] be u∗v in u). Note that, because of the assumption x[σ ] = x[τ],

the types of (M∗x)[σ ] and (N∗x)[τ] have the same superscript, as required by (FFO-INJECT). The

required equation can be shown as follows.

let (M∗x)[σ ] be u∗v in u = (let M∗x be u∗v in u)[σ ] by CC

= M[σ ] by (FFO-β )

= N[τ] by assumption

= let (N∗x)[τ] be u∗v in u as for (M∗x)[σ ]

We do not spell out the interpretation of the above rules for open freefrom types in the Schanuel

topos, but remark that the problem that (FFO-E) admits many different derivations of the same sequent

can be dealt with by using Lemma 2.5.13. The rest of the interpretation is a straightforward generalisa-

tion of that for closed freefrom types.

8.4.2 Examples for Open Freefrom Types

We give some examples of what can be done with the rules for open freefrom types from Section 8.4.1.

8.4.2.1 Nested freefrom types

We derive an isomorphism C∗(z:A∗B) ∼= let z be x∗y in
(
C∗(x:A))∗(y:B)

for closed types A, B and C. From

left to right, we derive:

u : C ` u : C x : A ` x : A

u : C ∗ x : A ` u∗x : C∗(x:A)

u : C ∗ x : A∗ y : B `
(
u∗x

)∗y :
(
C∗(x:A))∗(y:B)

u : C ∗ z : A∗B ` let z be x∗y in
(
u∗x

)∗y : let z be x∗y in
(
C∗(x:A))∗(y:B)

z : A∗B, v : C∗(z:A∗B) ` let v be u∗z : C∗(z:A∗B) in
(
let z be x∗y in

(
u∗x

)∗y) : let z be x∗y in
(
C∗(x:A))∗(y:B)

In the other direction, the derivation goes as follows.

u : C ` u : C x : A∗ y : B ` x∗y : A∗B

u : C ∗ x : A∗ y : B ` u∗x∗y : C∗(x∗y:A∗B)

(x : A, v : C∗(x:A))∗ y : B ` M1 : C∗(x∗y:A∗B)

(x : A∗ y : B), w :
(
C∗(x:A))∗(y:B) ` M2 : C∗(x∗y:A∗B)

z : A∗B, w : let z be x∗y in
(
C∗(x:A))∗(y:B) ` M3 : let z be x∗y in C∗(x∗y:A∗B)

z : A∗B, w : let z be x∗y in
(
C∗(x:A))∗(y:B) ` M3 : C∗(z:A∗B)
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The terms in this derivation are:

M1 = let v be u∗x : C∗(x:A) in u∗x∗y

M2 = let w be v∗y :
(
C∗(x:A))∗(y:B)

in M1

M3 = let z be x∗y in M2

The last step in the derivation follows by type conversion, since, for a closed type C, we have the

equation (let z be x∗y in C∗(x∗y:A∗B)) = C∗(z:A∗B).

8.4.2.2 Deriving the rules for join

For closed types A, B and C, we derive a term

x : A, y : B∗(x:A), z : C∗(x:A) ` J : (B×C)∗(x:A)

that satisfies the equations for join. The derivation goes as follows.

u : B, v : C ` 〈u,v〉 : B×C x2 : A ` x2 : A

(u : B, v : C)∗ x2 : A ` 〈u,v〉∗x2 : (B×C)∗(x2:A)

(u : B∗ x1 : A), z : C∗(x1:A) ` let z be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2 : (B×C)∗(x1:A)

x : A, y : B∗(x:A), z : C∗(x:A) ` let y be u∗x1 : B∗(x:A) in let z be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2 : (B×C)∗(x:A)

In this derivation we have made implicit use of the derivable equation (let R be y∗x : E∗(Q:F) in x) = Q.

For example, to use the rule (FFO-E) in the second step of the derivation, we must bring the type

(B×C)∗(x2:A) in the form D[v∗x2/z] for some type D. We can take D to be (B×C)∗(let z be a∗b : C∗(x2:A) in b:A).

With the equation (let R be y∗x : E∗(Q:F) in x) = Q, it follows that D[v∗x2/z] is derivably equal to

(B×C)∗(x2:A), as required for the conclusion of the second step in the derivation.

The above derivation is an example in which we have to guess the contexts Γ and ∆ in (FFO-E).

The second step in this derivation is an instance of the rule (FFO-E) in which Γ and ∆ are chosen

appropriately. A bad choice of Γ and ∆ at this point could give, for example, the following instance

of (FFO-E).

v : C ∗ x2 : A ` 〈u,v〉∗x2 : (B×C)∗(x2:A)

(u : B∗ x1 : A), z : C∗(x1:A) ` let z be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2 : (B×C)∗(x1:A)

The premise of this rule instance is clearly not derivable.

We check that the equation (FF-JOIN-EQ1) is derivable with this definition. Since we have the

substitution rule (SUBST), it suffices to derive the equation

let ( let y be u∗x1 : B∗(x:A) in let z be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2 ) be p∗q : (B×C)∗(x:A) in fst(p)∗q = y

(8.6)

in context x : A, y : B∗(x:A), z : C∗(x:A).
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We start by showing the following commuting conversion

let (let z be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2) be p∗q : (B×C)∗(x1:A) in fst(p)∗q

= let z be v∗x2 : C∗(x1:A) in (let 〈u,v〉∗x2 be p∗q : (B×C)∗(x2:A) in fst(p)∗q)
(8.7)

in context (u : B∗ x1 : A), z : C∗(x1:A). This equation can be derived in the following two steps.

let (let z be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2) be p∗q : (B×C)∗(x1:A) in fst(p)∗q

= let z be v∗x2 : C∗(x1:A) in (let (let v∗x2 be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2) be p∗q : (B×C)∗(x2:A) in fst(p)∗q)

by (FFO-η )

= let z be v∗x2 : C∗(x1:A) in (let 〈u,v〉∗x2 be p∗q : (B×C)∗(x2:A) in fst(p)∗q)

by (FFO-β ) and (FFO-E-CGR)

Using commuting conversions such as (8.7), we can derive the required equation (8.6) as follows.

let (let y be u∗x1 : B∗(x:A) in let z be v∗x2 : C∗(x1:A) in 〈u,v〉∗x2) be p∗q : (B×C)∗(x:A) in fst(p)∗q

= let y be u∗x1 : B∗(x:A) in let z be v∗x2 : C∗(x1:A) in let 〈u,v〉∗x2 be p∗q : (B×C)∗(x:A) in fst(p)∗q

by commuting conversion such as (8.7)

= let y be u∗x1 : B∗(x:A) in let z be v∗x2 : C∗(x1:A) in fst(〈u,v〉)∗x2

by (FFO-β ) and (FFO-E-CGR)

= let y be u∗x1 : B∗(x:A) in let z be v∗x2 : C∗(x1:A) in u∗x2

by (Σ-β 1), (FFO-I-CGR) and (FFO-E-CGR)

= let y be u∗x1 : B∗(x:A) in u∗x1

see below

= y

by (FFO-η )

The step before the last one can be seen from the following derivation.

u : B ` u : B x2 : A ` x2 : A

u : B∗ x2 : A ` u∗x2 : B∗(x2:A)

(u : B∗ x2 : A), z : C∗(x2:A) ` u∗x2 : B∗(x2:A)
(FFO-η )

(u : B∗ x1 : A), z : C∗(x1:A) ` u∗x1 = let z be v∗x2 : C∗(x1:A) in u∗x2 : B∗(x1:A)

We believe this example illustrates well the point that it can be hard to understand the let-terms for

the above formulation open freefrom types, especially when looked at without a typing derivation.
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8.5 Further and Related Work

The most obvious point for further work is the restriction to closed freefrom types. That this is a real

restriction can be seen on the examples in this chapter. For example, FreshML 2000 is simply-typed, so

that one might expect to get away with closed freefrom types. However, without nested freefrom types(
A∗(n:N))∗(m:N)

we cannot derive the full rules. We could address this by using A∗(n∗m:N∗N) instead of

the nested freefrom type, but for this to work we then also have to extend the rules for closed freefrom

types along the lines of the rule below. Such a reformulation appears to be rather awkward.

` C Type Γ ` M : B∗(N:A) ∆ ` R : C
(FF-I)

Γ∗∆ ` M∗N : B∗(N∗R:A∗C)

Another example of a situation where closed freefrom types are not enough is Atkey’s λ -calculus for

resource separation [5]. This calculus uses contexts with specific freshness assertions. Although closed

freefrom types can be used to represent such contexts, they are most likely not enough to make the rules

of [5] admissible.

Giving a λ -calculus for resource separation, such as those in [87, 5, 80], is not an easy task. Perhaps

the fact that a good formulation of open freefrom types type systems would subsume such calculi means

that finding such a good formulation really is a hard problem.

On the other hand, the categorical formulation of freefrom types could hardly be simpler. In the

codomain fibration on the Schanuel topos it is just the functor mapping f : B→ Γ to f ∗A : B∗A→ Γ∗A.

It is possible that the problem with open freefrom types appears just in our particular formulation

of the type theory with bunches. Perhaps a different kind of context structure should be investigated,

possibly in the spirit of modal and linear type systems [10, 83, 7]. For example, Pfenning and Wong [83]

give a simple term calculus for the modal logic S4 that works without explicit substitutions by making

use of special context stacks. In contrast, earlier systems, such as [11], were quite complicated because

they contain explicit substitutions.

Another possibility is that the formulation of freefrom types with explicit substitutions is not as

unmanageable as it appears. The main difficulty of the formulation of freefrom types with explicit sub-

stitutions is that working with the equational theory becomes very complicated. However, we conjecture

that in the Schanuel topos it is not even necessary to look at the term constructors for freefrom types

when checking equality. It appears reasonable that for equality checking all terms for freefrom types

can be removed and the equality be checked on the resulting simple terms. But working this out remains

for future work.



Chapter 9

Simple Monoidal Sums

Having introduced freefrom types as a (somewhat restricted) syntax for the functor WA, we can now

formulate rules for simple monoidal sums Σ∗A.

In this chapter we introduce Σ∗-types based on our formulation of closed freefrom types. We re-

call from the introduction that Σ∗-types are non-standard sum types, just as Π∗-types are non-standard

product types. In the Schanuel topos, the elements of Σ∗x : A.B are pairs M.N of elements M : A and

N : B[M/x] such that the names in M are hidden in the pair M.N. This name-hiding may also be un-

derstood as name-binding, in the sense that the identity of the bound name in an α-equivalence class is

hidden. Indeed, the elements of type Σ∗n : N.B, where N is the type of names, represent α-equivalence

classes of elements of B with respect to a single name. We will study the special case of Σ∗-types of the

form Σ∗n : N.B in the shape of H-types the next chapters. Therefore, we do not give examples of the

use of Σ∗-types in this chapter, referring instead to the examples for H-types in the following chapters.

9.1 The System BT(∗,1,Σ,Π,Π∗,B∗(M:A),Σ∗)

9.1.1 Syntax

We extend the syntax of BT(∗,1,Σ,Π,Π∗,B∗(M:A)) with the following types and terms.

Types A ::= · · · | Σ
∗x : A.A

Terms ::= · · · | bind(x:A)A(M,M) | let M be x.x : Σ
∗x : A.A in M

FV (Σ∗x : A.B) = FV (A)∪ (FV (B)\{x})

FV (bind(x:A)B(M,N)) = FV (A)∪ (FV (B)\{x})∪FV (M)∪FV (N)

FV (let M be x.y : Σ
∗x : A.B in N) = FV (M)∪FV (Σ∗x : A.B)∪ (FV (N)\{x,y})

238
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9.1.2 Rules for Simple Monoidal Sums

The rules marked with † are discussed in more detail in the next section.

Formation

Γ∗ x : A ` B Type
(Σ∗-TY)

Γ ` Σ∗x : A.B Type

Introduction

x : A ` B Type Γ ` M : A Γ ` N : B [M/x]
(Σ∗-I)†

Γ ` bind(x:A)B(M,N) : (Σ∗x : A.B)∗(M:A)

Abbreviation: M.N def= let bind(x:A)B(M,N) be y∗x in y.

Elimination

Γ ` M : Σ∗x : A.B (Γ∗ x : A), y : B ` N : C∗(x:A)

(Σ∗-E)†
Γ ` let M be x.y : Σ∗x : A.B in N : C

Congruences

` A1 = A2 Type Γ∗ x : A1 ` B1 = B2 Type
(Σ∗-TY-CGR)

Γ ` Σ∗x : A1.B1 = Σ∗x : A2.B2 Type

` A1 = A2 Type

x : A1 ` B1 = B2 Type

Γ ` M1 = M2 : A1

Γ ` N1 = N2 : B1[M1/x]
(Σ∗-I-CGR)†

Γ ` bind(x:A1)B1(M1,N1) = bind(x:A2)B2(M2,N2) : (Σ∗x : A1.B1)
∗(M1:A1)

` A1 = A2 Type

Γ∗ x : A1 ` B1 = B2 Type

Γ ` M1 = M2 : Σ
∗x : A1.B1

(Γ∗ x : A1), y : B1 ` N1 = N2 : C∗(x:A1)

(Σ∗-E-CGR)
Γ ` let M1 be x.y : Σ∗x : A1.B1 in N1 = let M2 be x.y : Σ∗x : A2.B2 in N2 : C

Equations

x : A ` B Type Γ ` M : A Γ ` N : B[M/x] x : A, y : B ` R : C∗(x:A)

(Σ∗-β )†

Γ ` let bind(x:A)B(M,N) be u∗v : (Σ∗x : A.B)∗(M:A) in (let u be x.y in R)∗v = R[M/x][N/y] : C∗(M:A)

` C Type x : A ` B Type Γ ` M : Σ∗x : A.B z : Σ∗x : A.B ` N : C
(Σ∗-η )†

Γ ` N[M/z] = let M be x.y in (let bind(x,y) be z∗x : (Σ∗x : A.B)∗(x:A) in N∗x) : C
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9.2 Discussion

The rules for Σ∗-types are similar to the standard rules for weak Σ-types, as in e.g. [56, §10.1]. The

only real difference is that freefrom types appear in the rules for Σ∗. The use of freefrom types can

be explained with the informal view of the elements of Σ∗-types as pairs with hidden names. The

introduction rule (Σ∗-I) lets us form an element of Σ∗x : A.B from a pair of terms M : A and N : B[M/x].

The so formed element of Σ∗x : A.B, however, is not just the pair 〈M,N〉, but it is the pair 〈M,N〉 with

all the names of M hidden. This name-hiding information is made available by the freefrom type in the

introduction rule (Σ∗-I). The term bind(x:A)B(M,N) amounts to an element M.N of Σ∗x : A.B together

with a proof that this element is free from the names in M.

The freefrom type in the elimination rule (Σ∗-E) can also be explained with this view of the Σ∗x : A.B

as a type of pairs with hidden/bound names. An element M of the type Σ∗x : A.B represents a pair with

hidden/bound names. In order to access the components of this pair, we must deal with the hidden/bound

names. As is common practice according to Barendregt’s Variable Convention, we choose them freshly.

This is formalised by the rule (Σ∗-E), which allows us to match M against the pair x.y in the term

(Γ ∗ x : A), y : B ` N : C∗(x:A). The context of this term contains the information that x is fresh for Γ,

i.e. that all the hidden names are chosen freshly. Of course, we must make sure that the choice of fresh

names has no side effect. This is the purpose of the freefrom type C∗(x:A), which guarantees that N

denotes an element of C that is free from the newly chosen names in x. Therefore, none of the hidden

names can be revealed by the Σ∗-elimination.

The presence of freefrom types in the Σ∗-rules is also explained by the categorical structure of

simple monoidal sums. There is a freefrom type in (Σ∗-I) because the term x : A, y : B ` bind(x:A)B(x,y) :

(Σ∗x : A.B)∗(x:A) corresponds to the unit ηB : B→WAΣ∗AB of the adjunction Σ∗A aWA. There is a freefrom

type in (Σ∗-E) because this rule derives from the adjoint correspondence of Σ∗A aWA, as shown below.

(Γ∗ x : A), y : B ` N : C∗(x:A)
(Σ∗-E)

Γ, z : Σ∗x : A.B ` let z be x.y : Σ∗x : A.B in N : C
B→WAC in EΓ∗A

Σ∗AB→C in EΓ

The equations for Σ∗-types are complicated by the presence of freefrom types. However, the

freefrom terms in the equations (Σ∗-β ) and (Σ∗-η ) are there only to use the functoriality of WA. For nor-

mal weak Σ-types, such terms for WA are not necessary, since in this case WA agrees with the weakening

functor. Indeed, if we replace the freefrom terms in (Σ∗-β ) and (Σ∗-η ) by weakening, i.e. remove all the

freefrom terms, then we obtain instances of the standard β -η-equations for weak Σ-types. Semantically,

the equations for Σ∗ derive from the triangular identities for the adjunction Σ∗A aWA.

It is important to note that the restriction to closed freefrom types has an impact on the expressivity

of Σ∗-types. The freefrom type in the conclusion of (Σ∗-I), for instance, can be formed only if Σ∗x : A.B

is closed. We must therefore make the assumption x : A ` B Type in this rule. Another point where the

restriction to closed freefrom types has an effect is in the equations (Σ∗-β ) and (Σ∗-η ). For the terms

on both sides of the equation in the conclusion of (Σ∗-β ) to be typeable, we must restrict the context

of R to (x : A, y : B). We expect this to be a severe restriction with regards to provability of equations.
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The above informal explanation of the elimination rule (Σ∗-E) may help to understand why in

Chapter 3 the type Σ∗x : A.B is constructed as a certain quotient of Σx : A.B. Defining a function

f : (X/∼) → Y out of a quotient type is equivalent to defining a function g : X → Y on the repre-

sentatives such that the choice of representative does not matter, i.e. that x∼ x′ =⇒ g(x) = g(x′) holds.

The elimination rule (Σ∗-E) allows us to define a function out of the quotient Σ∗x : A.B by defining it on

representatives. Given an equivalence class M in Σx : A.B, we can assume a representative x.y of M and

use it in the definition of a function to C. The freefrom type ensures that the choice of representative

does not matter. We also remark that in [56, §11] Jacobs constructs quotient types using a certain left

adjoint. The definition of Σ∗ as a left adjoint may well fit into that framework.

Some words are in order on why there are strong Π∗-types but no corresponding strong Σ∗-types.

Why do we not need a rule like (Π∗-E-CGR+) for the terms bind(x:A)B(M,N)? The reason is the restric-

tion to closed freefrom types. The above Σ∗-rules with closed freefrom types are such that we can form

bind(x:A)B(M,N) only if Σ∗x : A.B is a closed type. This makes it unnecessary to assume a rule similar

to (Π∗-E-CGR+). Indeed, if we restrict app∗(x:A)B(M,N) so that Π∗x : A.B must be a closed type, then

(Π∗-E-CGR+) becomes admissible. This can be shown by using (INJECT) together with the equality

app∗(x:A)B(M,N) = (let M∗N be f∗x in app∗(x:A)B( f ,x)), which can be derived only if Π∗x : A.B is closed.

A similar argument applies to bind(x:A)B(M,N). This explains why the restriction to closed freefrom

types makes strong Σ∗-types unnecessary. Moreover, if we have open freefrom types then we do not

need to assume Σ∗-types to be strong either, since open freefrom types make rules like (Π∗-E-CGR+)

derivable, as discussed in Section 8.1.3.

A general point that should be noted is that for closed types A and B, the types Σ∗x : A.B and A∗B

are not in general isomorphic. This is in contrast to Σ-types for which there always is an isomorphism

Σx : A.B ∼= A×B. An example showing that Σ∗x : A.B and A∗B are not always isomorphic is given by

Σ∗NN and N∗N in the Schanuel topos. Informally, the object Σ∗NN contains the α-equivalence classes of

a name with respect to one name, i.e. an element of Σ∗NN is either a bound name or an unbound name. It

can therefore be seen that Σ∗NN is isomorphic to 1 + N, see [72] for a proof. Hence, there cannot be an

isomorphism between Σ∗NN and N∗N.

9.3 Interpretation

The interpretation of Σ∗-types is based on the adjunction Σ∗A aWA in the same way the interpretation of

weak Σ-types is based on the adjunction ΣA a π∗A.

Formation The type formation rule

Γ∗ x : A ` B Type
(Σ∗-TY)

Γ ` Σ∗x : A.B Type

is interpreted by an application of the functor Σ∗. The interpretation of the premise of this rule amounts
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to an object B of EΓ∗{A}, where A is an object of E1. The type Σ∗x : A.B is then interpreted as the object

Σ∗{A}B of EΓ.

Introduction

x : A ` B Type Γ ` M : A Γ ` N : B [M/x]
(Σ∗-I)

Γ ` bind(x:A)B(M,N) : (Σ∗x : A.B)∗(M:A)

The interpretation of the premise x : A ` B Type gives us an object A in B and an object B in E{A}. We

interpret the term (Γ∗x : A), y : B ` bind(x:A)B(x,y) : (Σ∗x : A.B)∗(x:A) by the unit η{A} : B→W{A}Σ
∗
{A}B

of the adjunction Σ∗{A} aW{A}. The general interpretation of bind(x:A)B(M,N) follows from this by sub-

stitution. The restriction to closed freefrom types makes soundness straightforward to show. To show

soundness as in Chapter 6, we need to show that (bind(x:A)B(M,N))[σ ] = (bind(x:A)B(M′,N′))[τ] follows

(essentially) from M[σ ] = M′[τ] and N[σ ] = N′[τ]. With the restriction to closed freefrom types, this fol-

lows from (INJECT) together with the equation bind(x:A)B(M,N) = (let M∗N be u∗v in bind(x:A)B(u,v)),

which holds because we can form bind(x:A)B(M,N) only when the type Σ∗x : A.B is closed.

Elimination The premises of the elimination rule

Γ ` M : Σ∗x : A.B (Γ∗ x : A), y : B ` N : C∗(x:A)
(Σ∗-E)

Γ ` let M be x.y : Σ∗x : A.B in N : C

amount to objects A and C of E1, an object B of EΓ∗{A}, a morphism M : 1Γ → Σ∗{A}B in EΓ and a

morphism N : B→W{A}!∗ΓC in EΓ∗{A}. Here, we write !Γ for the unique map of type Γ→ 1. By adjoint

transposition for the adjunction Σ∗{A} aW{A} we obtain a morphism N] : Σ∗{A}B →!∗
Γ
C in EΓ. We take

this morphism to be the interpretation of the term Γ, z : Σ∗x : A.B ` let z be x.y : Σ∗x : A.B in N : C. The

interpretation of (let M be x.y : Σ∗x : A.B in N) follows by substitution of M for z, i.e. is given by

N] ◦M : 1Γ →!∗
Γ
C. For reference in the interpretation of the equations below, we recall that the adjoint

transpose N] is defined to be ε(!∗
Γ

C) ◦Σ∗{A}N, where ε is the counit of the adjunction Σ∗{A} aW{A}.

Equations The β and η-equations derive from the triangular identities for the adjunction Σ∗{A} aW{A}.

We first consider the following special case of (Σ∗-β ).

x : A ` B Type x : A, y : B ` R : C∗(x:A)
(Σ∗-β )

x : A, y : B ` let bind(x:A)B(x,y) be u∗v : (Σ∗x : A.B)∗(x:A) in (let u be x.y in R)∗v = R : C∗(x:A)

The general case of the rule (Σ∗-β ) follows from this special case by substituting M for x and N for y.

The premises of the above rule amount to objects A and C of E1, an object B of E{A} and a morphism

R : B→W{A}C in E1∗{A}. We write short Σ∗ for Σ∗{A} and W for W{A}. The equation in the conclusion of

the rule holds because the following diagram in EΓ∗A commutes for all objects Γ in B. In fact, we only

need the case where Γ is the terminal object 1, but we state the general case in order to make it easier to
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see how to generalise it to open freefrom types.

B
ηB //

R
��

WΣ∗B

WΣ∗R
��

WC
ηWC //

id $$I
IIIIIIII WΣ∗WC

WεC

��
WC

The square commutes by naturality of η , and the triangle is one of the triangular identities for Σ∗ aW .

The map WεC ◦WΣ∗R ◦ ηB in this diagram corresponds to the left term in the above equation.

This can be seen by observing that ηB corresponds to bind(x:A)B(x,y) and εC ◦ Σ∗R corresponds to

(let u be x.y in R). The use of freefrom types in the whole term amounts to the functoriality of W .

For the η-equation we also consider the unsubstituted case only. The general case follows by sub-

stitution.

` C Type x : A ` B Type z : Σ∗x : A.B ` N : C
(Σ∗-η )

z : Σ∗x : A.B ` N = let z be x.y in (let bind(x,y) be z∗x : (Σ∗x : A.B)∗(x:A) in N∗x) : C

The premises of this rule amount to objects A and C of E1, an object B of E{A} and a morphism

N : Σ∗{A}B → C in E1. We write short Σ∗ for Σ∗{A} and W for W{A}. The equation holds because the

following diagram in EΓ commutes for all objects Γ of B.

Σ∗B
id

$$J
JJJJJJJJ

Σ∗η

��
Σ∗WΣ∗B

Σ∗WN
��

εΣ∗B
// Σ∗B

N
��

Σ∗WC
εC

// C

The square in this diagram commutes by naturality of ε , and the triangle is one of the triangular identities

for the adjunction Σ∗ aW .

9.4 Simple Monoidal Sums with Open Freefrom Types

In the above rules for Σ∗-types, we have had to make restrictions to ensure that all freefrom types are

closed. If open freefrom types are available then these restrictions can be relaxed easily, and Σ∗-types

can be formulated by the following rules. We omit the straightforward congruence rules, recalling from

the discussion on Section 8.1.3 that with a good formulation of open freefrom types it is not necessary

to assume non-standard congruence rules as those for strong Π∗-types.
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Formation

Γ∗ x : A ` B Type
(Σ∗O-TY)

Γ ` Σ∗x : A.B Type

Introduction

Γ∗ x : A ` B Type ∆ ` M : A Γ∗∆ ` N : B [M/x]
(Σ∗O-I)

Γ∗∆ ` bind(x:A)B(M,N) : (Σ∗x : A.B)∗(M:A)

Elimination

Γ ` C Type Γ ` M : Σ∗x : A.B (Γ∗ x : A), y : B ` N : C∗(x:A)
(Σ∗O-E)

Γ ` let M be x.y : Σ∗x : A.B in N : C

Equations

Γ ` C Type

Γ∗ x : A ` B Type

∆ ` M : A

Γ∗∆ ` N : B[M/x] (Γ∗ x : A), y : B ` R : C∗(x:A)

(Σ∗O-β )

Γ∗∆ `
let bind(x:A)B(M,N) be u∗v : (Σ∗x : A.B)∗(M:A) in (let u be x.y in R)∗v

= R[M/x][N/y]
: C∗(M:A)

Γ ` C Type Γ ` M : Σ∗x : A.B Γ, z : Σ∗x : A.B ` N : C
(Σ∗O-η )

Γ∗∆ ` N[M/z] = let M be x.y in (let bind(x,y) be z∗x : (Σ∗x : A.B)∗(x:A) in N∗x) : C

9.5 Related and Further Work

As for related work, we are aware of only one type system containing a multiplicative version of Σ-types,

namely FreshML 2000 with its abstraction types. In other work on multiplicative typing, as discussed in

Section 4.5, only multiplicative function spaces and types similar to our ∗-types are studied. This does

not cover Σ∗-types, since ∗-types are not a special case of Σ∗-types, as discussed in Section 9.2 above.

For future work, we believe that finding simpler formulations for Σ∗-types is most important. Due

to the dependency of Σ∗-types on freefrom types, this also requires finding a simpler formulation for

freefrom types. But perhaps it is also possible to find a formulation of Σ∗-types without freefrom types,

possibly by using some external logic to establish freshness assertions rather than building these into the

types via freefrom types. It would also be an interesting to find out is what the simplest possible type

system containing usable Σ∗-types should be. Given our fibred formulation of Σ∗ and the rules in this

chapter, it appears likely that such a type-system should have dependent types of some form.

A more modest goal would be to find out whether Σ∗-types, which are a monoidal version of weak

Σ-types, can be generalised to a monoidal version of strong Σ-types. For this we would have to find a

certain isomorphism (Γ∗x : A), y : B→ Γ, z : Σ∗x : A.B, and this would require to relax the rule (Σ∗O-E)

so that C is allowed to depend on at least the term bind(x,y).



Chapter 10

Categories with Bindable Names

In this chapter we now come to studying names and name-binding. The aim of this chapter is to give

definitions that capture the concepts of names and name-binding. The main focus lies on capturing the

concept of binding. The importance of binding is often emphasised in the literature. Miller & Tiu [73],

for example, view binding as the central concept of their theory. Pitts [86] also emphasises the role

of names as ‘Names of entities that may be subject to binding by some of the syntactical constructions

under consideration.’ In this chapter we propose a general categorical definition of the notion of binding,

as well as a more specialised notion of bindable names.

Our definition of binding is best explained by looking at the informal practice of working with α-

equivalence classes of syntax terms. As explained in the introduction, abstract syntax involving variable

binders is usually defined by first defining the raw syntax in which bound variables are concretely named

and then taking the quotient of the raw syntax with respect to α-conversion, i.e. with respect to renaming

of bound variables. However, when working with the abstract syntax, one does not normally use the

α-equivalence classes. Instead, one works with concrete representatives of the α-equivalence classes.

It is well-known that some care is required with the choice of the representatives, namely that the names

chosen for the bound variables must be sufficiently fresh. This practice of working with freshly named

instances of α-equivalence classes rather than with the equivalence classes themselves is known as the

Barendregt Variable Convention (BVC), defined as follows in [9].

2.1.12. CONVENTION Terms that are α-congruent are identified. [. . . ]
2.1.13. VARIABLE CONVENTION If M1, . . . ,Mn occur in a certain mathematical context
(e.g. definition, proof) then in these terms all bound variables are chosen to be different
from free variables. [. . . ]
2.1.14. MORAL Using conventions 2.1.12 and 2.1.13 one can work with λ -terms in the
naive way.

The success of informal work using the Barendregt Variable Convention suggests that it really does

not matter whether we work with an α-equivalence classes or whether we work with freshly named in-

stances. Some formal justification for this is provided by the work of Vestergaard and Brotherston [116].

245
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The basis of our categorical definition of binding is that there is no essential difference between

working with α-equivalence classes and working with freshly named instances. We want to formalise

that working with a statement containing a bound variable is essentially the same as working with an

instance of the statement at a fresh variable. First we need to define what we mean by variables and

freshness. For the moment, we take a rather minimal approach to variables and freshness. We assume

a category with an object V , which is thought of as the object of variables, and a monoidal structure ⊗,

where Γ⊗V is thought of as a context Γ with an additional fresh variable. Next we need to define what

we mean by statements containing a bound variable and the instantiation of such a bound variable. To

this end, consider the internal type theory of a category with V and ⊗ as above. A binding operation

should allow us to go from a statement in a context with an additional fresh variable Γ⊗V to a statement

in context Γ by binding of the additional variable. In other words, we should be able to go from B/Γ⊗V

to B/Γ. On the other hand, if in context Γ we have a statement with a bound variable then we should be

able to instantiate it with a fresh variable. Since we can view a statement without a bound variable as

one with a trivial binding, we should also be able to go from B/Γ to B/Γ⊗V . The intuition of binding

and instantiation dictates that these two transitions should be inverses of each other. Furthermore, if,

by analogy with the BVC, we want constructions with a bound variable to be essentially the same as

constructions with the specific instances, we should require the two transitions to form an equivalence of

categories. We make such an equivalence the definition of binding: We require an object V , a monoidal

structure ⊗ and a certain equivalence of the slices B/Γ and B/Γ⊗V for all Γ. In this chapter, we

investigate some consequences of this definition and construct concrete instances of it.

10.1 Binding Structure

Our definition of binding is this:

Definition 10.1.1. A category with binding structure is a triple (B,⊗,V ) of a category B with pullbacks,

a monoidal structure ⊗ on B and an object V of B, for which the functor WV defined by

B→
WV //

cod   A
AA

AA
AA

A B/(−⊗V )

Gl(−⊗V )
zzuuu

uuu
uuu

u

B

WV :

B

f
��

Γ

7−→

B⊗V

f⊗V
��

Γ⊗V

is an equivalence of fibrations.

The requirement that B has pullbacks is necessary for the codomain fibration to exist. Note that in order

for WV to be an equivalence of fibrations it must necessarily be a fibred functor.

The content of this chapter revolves around the definition of a category with binding structure, which

is why we have given this definition up front. However, even though the discussion in the previous sec-

tion should give a first idea of how this definition can be understood, we still have to give a formal
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justification as to why it captures binding. In the rest of this chapter we work towards this aim by

investigating the abstract properties of categories with binding structure and by constructing concrete

instances of these categories. We start by reformulating the definition of categories with binding struc-

ture in terms of more familiar constructs.

Proposition 10.1.2. The following are equivalent.

1. The functor WV is an equivalence of the fibrations.

2. The functor WV has both a fibred left adjoint Σ
⊗
V and a fibred right adjoint Π

⊗
V and there exists a

vertical (with respect to the codomain fibration) natural isomorphism i : Σ
⊗
V → Π

⊗
V such that the

triangles

WV Σ
⊗
V

WV i // WV Π
⊗
V

ε ′||yy
yy

yy
yy

Id

η

bbDDDDDDDD

Σ
⊗
V WV

ε
""D

DD
DD

DD
D

Π
⊗
V WV

i−1
WVoo

Id
η ′

<<yyyyyyyy

commute (note that this amounts to the four equations id = η ◦ ε ′ ◦WV i, id = ε ′ ◦WV i ◦η , id =

ε ◦ i−1
WV
◦η ′ and id = i−1

WV
◦η ′ ◦ε). Here, η and ε are the unit and counit of the adjunction Σ

⊗
V aWV ,

and η ′ and ε ′ are the unit and counit of the adjunction WV aΠ
⊗
V .

3. There exists a functor H: Gl(−⊗V )→ cod that is both fibred left adjoint and fibred right adjoint

to WV . Moreover, the equations η−1 = ε ′ and ε−1 = η ′ hold, where η and ε are the unit and

counit of the adjunction H aWV , and η ′ and ε ′ are the unit and counit of the adjunction WV a H.

Proof.

1. ⇒ 2. All the fibrations on base B and the fibred functors between them form a 2-category Fib(B).

It is a general 2-categorical fact that if WV is an equivalence then it has both a fibred left adjoint

Σ
⊗
V : Gl(−⊗V ) → cod and a fibred right adjoint Π

⊗
V : Gl(−⊗V ) → cod such that the unit and

counit of both adjunctions are isomorphisms. Since both unit η ′ and counit ε ′ of the fibred

adjunction WV a Π
⊗
V are isomorphisms, it follows that ε ′−1 and η ′−1 are the unit and counit of

a fibred adjunction Π
⊗
V a WV . The result now follows by uniqueness of adjoints. Define i def=

ε
Π
⊗
V
◦Σ

⊗
V (ε ′−1) : Σ

⊗
V → Σ

⊗
V WV Π

⊗
V → Π

⊗
V . It follows from naturality and the triangular identities

for the two adjunctions that the triangles in the proposition commute. For example, we have

ε
′ ◦WV i◦η = ε

′ ◦WV ε
Π
⊗
V
◦WV Σ

⊗
V (ε ′−1)◦η by definition

= ε
′ ◦WV ε

Π
⊗
V
◦ηWV Π

⊗
V
◦ ε

′−1 by naturality of η

= ε
′ ◦ ε

′−1 by triangular identity

= id.
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2. ⇒ 3. Let H def= Σ
⊗
V (just as well H def= Π

⊗
V is possible). With this definition we get a fibred adjunc-

tion H aWV with unit η and counit ε , as well as a fibred adjunction WV aH with unit i−1
WV
◦η ′ and

counit ε ′ ◦WV i. The required equations are now exactly given by the commuting triangles.

3. ⇒ 1. By assumption, both η and ε vertical isomorphisms, which implies that WV is part of a fibred

adjoint equivalence.

The proposition connects a binding structure with the simple monoidal sums Σ⊗ and simple monoidal

products Π⊗ studied in previous chapters. It shows that binding is just a special property of Σ
⊗
V and Π

⊗
V .

We will use the description of binding in terms of simple monoidal sums and products to add binding to

type theory. An intuitive description of the meaning of the triangles in the proposition is given for the

Schanuel topos in Section 10.3.1 below.

It should be clear that the above proposition allows us to generalise the concept of binding structure

to fibrations other than the codomain fibration. Once we have explained WV , Σ⊗ and Π⊗ for a fibration,

the proposition gives us a notion of binding structure for that fibration. Furthermore, while in the

definition of binding structure we have taken the codomain fibration, which corresponds to the internal

language of the category, it should be possible to take other fibrations, such as subobject fibrations. If,

for example, we take the subobject fibration over the Schanuel topos and take V def= N and ⊗ def= ∗, then

the resulting binding structure amounts to the freshness quantifier of Gabbay & Pitts.

We consider some consequences of the definition of binding structure.

Proposition 10.1.3. In any category with binding structure (B,⊗,V ), the functor −⊗V has a right

adjoint V (−. Furthermore, if B is cartesian closed then the monoidal exponent V (− has a further

right adjoint.

Proof. The existence of the right adjoint V (− follows in the same way as monoidal closure follows

in the proof of Proposition 2.5.6, since the functor −⊗V can be written as the lower composite in the

chain below.

B
∼=
> // B/1

WV

> //

∼=oo
B/(1⊗V )

Σ!

> //

Π
⊗
Voo

B/1
∼=
> //

!∗oo
B

∼=oo

The functor V (− is then taken as the upper composite in this diagram. If B is cartesian closed then the

codomain fibration has simple products, which implies that we have an adjunction !∗ aΠ!. Furthermore,

we have Π
⊗
V
∼= Σ

⊗
V aWV . From these two facts, if follows that the functor V ( − has a further right

adjoint, given by upper row in the diagram below.

B
∼=
>
//
B/1

WV

>
//

∼=
oo B/(1⊗V )

Π!

>
//

Π
⊗
V

oo B/1
∼=
>
//

!∗
oo B

∼=
oo
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Any category with binding structure (B,⊗,V ) has a quantifier similar to the freshness quantifier of Gab-

bay & Pitts. To see this, consider the subobject logic of B, i.e. the subobject fibration sub : Sub(B)→B.

Since WV is a fibred functor it preserves pullbacks, which implies that WV preserves monomorphisms.

Therefore, WV restricts to a fibred functor

Sub(B)
WV //

sub
""E

EE
EE

EE
EE

(−⊗V )∗ Sub(B)

(−⊗V )∗ sub
xxqqqqqqqqqqq

B

Proposition 10.1.4. For any category with binding structure (B,⊗,V ) there exists a fibred functor Nof

type (−⊗V )∗ sub→ sub that is both fibred left and fibred right adjoint to WV : sub→ (−⊗V )∗ sub.

Proof. Since Π
⊗
V is a right adjoint it preserves the terminal object and monomorphisms. In particular,

for a monomorphism m : A � Γ⊗V , the action of Π
⊗
V on the morphism in B/(Γ⊗V ) in the diagram on

the left below gives a morphism in B/Γ as in the diagram on the right below.

A //
m //

""

m
""D

DD
DD

DD
D Γ⊗V

uuuuuuuuu

uuuuuuuuu

Γ⊗V

Π
⊗
V A //

Π
⊗
V m

//

Π
⊗
V m   B

BB
BB

BB
B

·

����
��

��
��

∼= // Γ

qqqqqqqqqqqqqq

qqqqqqqqqqqqqq

Γ

Therefore, Π
⊗
V maps any object m in B/(Γ⊗V ) that is given by a monomorphism to an object in B/Γ

that is also given by a monomorphism. By Σ
⊗
V
∼= Π

⊗
V , this also holds for Σ

⊗
V . Hence, both Σ⊗ and Π⊗

restrict to endofunctors on Sub(B). We write ∃⊗ and ∀⊗ for the restrictions.

Since the morphisms between two subobjects in Sub(B) are in one-to-one correspondence with mor-

phisms in B→ between monomorphisms representing the subobjects, it follows that the fibred adjunc-

tions Σ
⊗
V `WV ` Π

⊗
V between cod and Gl(−⊗V ) restrict to fibred adjunctions ∃⊗V `WV ` ∀⊗V between

sub and (−⊗V )∗ sub.

From the natural vertical isomorphism Σ⊗ ∼= Π⊗ it follows that we have a natural vertical isomor-

phism ∃⊗ ∼= ∀⊗. Since the fibres of sub are partial orders, this implies ∃⊗ = ∀⊗, and we write Nfor this

functor.

Spelling out the proposition in non-fibred terms, we get that, for each object Γ in B, there is a functor

N: Sub(Γ⊗V ) → Sub(Γ) that is both left and right adjoint to WV : Sub(Γ) → Sub(Γ⊗V ) and that

satisfies the Beck-Chevalley condition N(u⊗V )∗ = u∗ Nfor all morphisms u in B.

The monoidal exponent V (− and the quantifier Nare very well-behaved.

Proposition 10.1.5. Let (B,⊗,V ) be a category with binding structure that has finite products, finite
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coproducts and that is cartesian closed. Then, for all objects A and B in B, there are isomorphisms

V ( 1 ∼= 1

V ( (A×B) ∼= (V ( A)× (V ( B)

V ( 0 ∼= 0

V ( (A+B) ∼= (V ( A)+(V ( B)

V ( (A⇒ B) ∼= (V ( A)⇒ (V ( B),

in which V (− is the monoidal exponent from Proposition 10.1.3. Moreover, these isomorphisms are

natural in A and B.

Proof. The first four cases follow immediately from Proposition 10.1.3, because the functor V ( −
has both left and right adjoint and therefore preserves limits and colimits. For the last case, note

that Π
⊗
V : B/(1⊗V )→ B/1 must preserve all exponents that exist in B/(1⊗V ), since Π

⊗
V is an equiv-

alence of categories. By the definition of V ( − in the proof of Proposition 10.1.3, the object V (

(A⇒ B) is defined to be Π
⊗
V !∗(A⇒ B), where ! : 1⊗V → 1 is the terminal map and where we have left

implicit the isomorphism B/1 ∼= B. It is a standard result, see e.g. [57, Lemma 1.5.2], that !∗ preserves

exponents, i.e. the exponent (!∗A) ⇒ (!∗B) exists in B/(1⊗V ) and is isomorphic to !∗(A ⇒ B). This

gives us natural isomorphisms

V ( (A⇒ B)∼= Π
⊗
V !∗(A⇒ B)

∼= Π
⊗
V ((!∗A)⇒ (!∗B))

∼= (Π⊗
V !∗A))⇒ (Π⊗

V !∗B)

∼= (V ( A)⇒ (V ( B),

thus completing the proof.

Proposition 10.1.6. In any coherent category with binding structure (B,⊗,V ) the following equalities

of subobjects hold.

N> = >

N(ϕ ∧ψ) = ( Nϕ)∧ ( Nψ)

N⊥ = ⊥

N(ϕ ∨ψ) = ( Nϕ)∨ ( Nψ)

N(ϕ ⊃ ψ) = ( Nϕ)⊃ ( Nψ)

Proof. By NaWV a Nand because Sub(Γ) is a partial order, the unit ϕ ≤ NWV ϕ of the right adjunction

and the counit NWV ϕ ≤ ϕ of the left adjunction imply ϕ = NWV ϕ for all ϕ in Sub(Γ). Dually, we get

ψ = WV Nψ for all ψ in Sub(Γ⊗V ). Therefore, the units and counits of both adjunctions are isomor-

phisms, which means that WV and Nconstitute an equivalence of the categories Sub(Γ) and Sub(Γ⊗V ).

The assertion follows since an equivalence always preserves limits, colimits and exponents.
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Proposition 10.1.7. Let (B,⊗,V ) be a category with binding structure, where B has finite products. For

each object A there exists a map η ′ making the following diagram commute.

(1⊗V )×A
π1

xxrrrrrrrrrr
η ′

��

π2

$$JJJJJJJJJJJ

1⊗V (V ( A)⊗V
!⊗V
oo

ε
// A

Proof. In essence, the map η ′ is the unit of the fibred adjunction Σ
⊗
V aWV , the left triangle commutes

because the unit of a fibred adjunction is vertical, and the right triangle commutes because the left

triangle in Proposition 10.1.2 commutes. Given this, the rest of the proof is little more than unwinding

of definitions.

Without loss of generality we assume Σ
⊗
V = Π

⊗
V and that the isomorphism i : Σ

⊗
V →Π

⊗
V from Propo-

sition 10.1.2 is the identity. Write η ′ and ε ′ for the unit and counit of Σ
⊗
V aWV , write η ′′ and ε ′′ for the

unit and counit of WV aΠ
⊗
V and write η ′′′ and ε ′′′ for the unit of the adjunction Σ! a !∗ in which ! is the

terminal map ! : 1⊗V → 1. In the rest of the proof we make the isomorphism between the categories B
and B/1 implicit.

By construction of V ( − in Proposition 10.1.3, we have (−⊗V ) = Σ!WV and (V ( −) = Π
⊗
V !∗

and the counit ε of the adjunction −⊗V a V ( − is ε ′′′ ◦Σ!ε
′′
!∗ . Therefore, the right-hand triangle in

following diagram in B/1 commutes by definition. The left-hand triangle commutes because the left

triangle in Proposition 10.1.2 commutes.

Σ!!∗A
ε ′′′ // A

Σ!!∗A
Σ!η

′
//

id
33

Σ!WV Π
⊗
V !∗A

Σ!ε
′′
(!∗A)

OO

ε

FF (10.1)

Now let A be an object of B/1. We unfold the type of the unit η ′ : !∗A→WV Σ
⊗
V !∗A in B/(1⊗V ). Notice

that its codomain is WV (V ( A). The map η ′ therefore fits in the following commuting diagram.

(1⊗V )×A
η ′ //

π1 %%LLLLLLLLLL
(V ( A)⊗V

!⊗Vxxqqqqqqqqqq

1⊗V

This gives the left triangle in the diagram of the proposition.

It remains to show that the right triangle in the triangle of the proposition commutes as well. Since Σ!

acts by post-composition on objects and as the identity on morphisms, the map ε ◦ η ′ in B can be

identified with the map ε ◦Σ!η
′ in B/1. By the diagram (10.1), this equals ε ′′′. Finally, the counit ε ′′′

is easily be seen to be the second projection (1⊗V )×A → A. We have therefore shown the equality

ε ◦η ′ = π1 : V ×A → A, which is just what is required to make the right triangle of the diagram in the

proposition commute.
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Given the above propositions, it might be interesting to ask for an axiomatisation of a category with

binding structure (B,⊗,V ) in terms of only the monoidal structure⊗ and the monoidal exponent V (−.

At present, we do not know of such a restatement of binding structure in terms of the monoidal structure.

Perhaps the closest to such a restatement is Menni’s axiomatisation of binding [72] that we discuss in

the next section. On the other hand, we prefer the definition of binding structure in terms of fibrations

as it is both concise and has a natural intuitive explanation.

10.2 Categories with Bindable Names

In the definition of a category with binding structure (B,⊗,V ) we have made very few assumptions

on V and ⊗, allowing V to be an arbitrary object and ⊗ to be an arbitrary monoidal structure. As a

consequence, V and ⊗ need not correspond to the intuition of an object of variables and a freshness

relation. For instance, the triple (B,×,1) is a trivial binding structure for any cartesian category B.

In this section we define categories with bindable names as those categories with binding struc-

ture (B,∗,N) in which the object N is like an object of names and the monoidal structure ∗ is like a

freshness relation for those names. The axioms for names and freshness are derived from the properties

of the Schanuel topos S, as it has been argued convincingly by Gabbay & Pitts [38] that the object N and

the monoidal structure ∗ in S capture a good notion of names and freshness. In essence, we require the

object of names to be a decidable object and ∗ to be a binary relation extending the inequality relation

on N in a reasonable way.

Definition 10.2.1 (Category with Bindable Names). A category with bindable names is a category with

binding structure (B,∗,N) satisfying the following additional properties.

1. B is a coherent category.

2. The monoidal structure ∗ is a strict affine symmetric monoidal structure and, for each monomor-

phism m : B � Γ, the following square is a pullback

B∗N
π̇1 //

��
m∗N
��

_� B
��
m
��

Γ∗N
π̇1

// Γ

3. For the object N, the canonical inclusion ı : N ∗N � N×N is the complement of the diagonal

δ : N � N×N.

We emphasise that the purpose of this definition is to axiomatise names and freshness, not just to ex-

clude trivial instance of categories with binding structure. There are interesting categories with binding

structure, such as (SetsP,⊗,X) discussed in Section 10.3.3, which could not be reasonably called a

category with bindable names. Furthermore, the definition is by no means forced. It can be varied to
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include more or less information about the properties of names. For example, in the Schanuel topos it

should be possible to use swapping to add more information about names.

In the rest of this section we explain the axioms in the definition of bindable names and consider

some of its consequences. The requirement for B to be a coherent category is there to give us a rea-

sonable internal logic in which we can state and work with the properties of names. The assumptions

on ∗ form a useful set of properties of freshness. That the monoidal structure is strict affine, i.e. that

all canonical maps A ∗B � A×B are monomorphic, makes available that the monoidal structure is a

binary relation in the subobject logic. The additional pullback corresponds to the intuition that an ele-

ment b of B is fresh for some name n in N if and only if n is fresh for m(b) ∈ Γ. This corresponds to

Proposition 3.3.5.2 in Chapter 3. Finally, the third point of the definition relates the object of names and

the freshness relation by declaring that two names are different exactly when they are fresh.

We state some properties of the object of names.

Proposition 10.2.2. The following are true in any category with bindable names (B,∗,N).

1. The following square is both a pullback and a pushout

0
_� //

��

N

δ

��
N∗N ı

// N×N
_�

2. The morphism [δ , ı] : N+(N∗N)→ (N×N), where δ is the diagonal map and ı is the canonical

inclusion for ∗, is an isomorphism.

Proof.

1. By assumption, the subobjects ı and δ complement each other. By definition, this means that their

intersection is 0 and their union is N×N. The assertion then follows as in [57, Prop. 1.4.3].

2. By the first point, using the fact that the pushout under 0 is a coproduct.

Proposition 10.2.3. In any category with bindable names (B,∗,N), the object N is an infinite object in

the following sense: For any number of generalised elements x1, . . . ,xn : Γ → N there exists an epimor-

phism p : ∆ � Γ and a generalised element y : ∆ → N such that, for any i with 1 ≤ i ≤ n, the equaliser

of y and xi ◦ p is 0.

Proof. First we show that, for each object Γ, the projection π̇1 : Γ∗N→ Γ is an epimorphism. Since B is

a coherent category it has images, i.e. each morphism f factors into a cover c followed by a monomor-

phism i. The subobject classified by i is called the image of f . A cover is a map with the property
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that, whenever c = m ◦ c′ holds for a monomorphism m, then m must be an isomorphism. In a regu-

lar category each cover is an epimorphism. The image of f : A → B can be constructed by applying

the existential quantifier ∃ f : Sub(A) → Sub(B) to the true proposition >A, i.e. the terminal object

in Sub(A). To show that π̇1 : Γ ∗N → Γ is an epimorphism, it suffices to show that its image is the

true proposition, since then π̇1 factors into an epi followed by an isomorphism. Therefore, it suffices to

show >Γ ≤ ∃π̇1(>Γ∗N). To show this we observe that, by the diagram in Definition 10.2.1.2, we have an

equality of functors π̇∗1 =WN : Sub(Γ)→ Sub(Γ∗N). By uniqueness of adjoints and Proposition 10.1.4,

this implies N= ∃π̇1 = ∀π̇1 . Using this and adjoint transposition, we get

π̇∗1>Γ =>Γ∗N ≤>Γ∗N in Sub(Γ∗N)
>Γ ≤ ∀π̇1(>Γ∗N) in Sub(Γ)
>Γ ≤ ∃π̇1(>Γ∗N) in Sub(Γ)

which completes the proof that π̇1 : Γ∗N→ Γ is an epimorphism.

To show that N is an infinite object, suppose we are given elements x1, . . . ,xn : Γ → N. Define p

to be the map π̇1 : Γ ∗N � Γ, which we have just shown to be epimorphic, and let y be the second

projection π̇2 : Γ∗N→ N. To show that, for 1≤ i≤ n, the equaliser of y and xi ◦ p is an initial object, it

suffices to show that

0 // N∗N
π̇1 //

π̇2

// N

is an equaliser diagram. This is the case because if we have any map u : X → Γ∗N equalising y and xi ◦ p

then (xi ∗N)◦u equalises π̇1, π̇2 : N∗N → N, so that using the above equaliser we get a map from X to

0, and in a coherent category this implies that X is also initial, see [57, Lemma 1.4.1]. That the above

is an equaliser follows from the pullback in Proposition 10.2.2.1, since, for any map u : X →N∗N with

π̇1 ◦u = π̇2 ◦u, we have ı◦u = δ ◦ (π̇1 ◦u), so that the pullback gives the required map X → 0.

The previous proposition can also be formulated in the coherent logic of B. That N is an infinite object

then means that the following sequent, in which we write x#y for the proposition represented by the

canonical monomorphism A∗B � A×B, holds for all n≥ 0.

x1 : N, . . . , xn : N | > ` ∃y : N.(x1#y)∧·· ·∧ (xn#y)

Proposition 10.2.4. A topos with binding structure (B,∗,N) is a category with bindable names if and

only if the following two conditions hold.

2′. The monoidal structure ∗ is a strict affine symmetric monoidal structure such that the functor

(−)∗N preserves pullbacks.

3. The morphism [δ , ı] : N+(N∗N)→ (N×N), where δ is the diagonal map and ı is the canonical

inclusion for ∗, is an isomorphism.
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Proof. Condition 1 in the definition of bindable names is satisfied since any topos is a coherent category.

For condition 2, we have to show that, for any monomorphism m : B � Γ, the diagram in point 2 of the

definition of bindable names is a pullback. Since B is a topos, for any monomorphism m : B � Γ there

exists a characteristic map χ such that the following square is a pullback.

B
��

m
��

!B //
_� 1

��
true
��

Γ
χ
// Ω

Since the functor −∗N preserves pullbacks, the left square in the diagram below is a pullback as well.

B∗N
��

m∗N
��

!B∗N //
_� 1∗N

��
true∗N
��

!1∗N //
_� 1

��
true
��

Γ∗N
χ∗N
// Ω∗N

π̇1

// Ω

We show directly that the square on the right in this diagram is also a pullback. To see this, as-

sume f : Γ → Ω ∗N and g : Γ → 1 with π̇1 ◦ f = true ◦ g. As the pullback mediator h : Γ → 1 ∗N,

we can take h = (!Ω ∗N)◦ f . Since g =!Γ, by the universal property of the terminal object, it suffices to

show (true∗N)◦h = f . This follows from the equations

π̇1 ◦ (true∗N)◦h = π̇1 ◦ (true∗N)◦ (!Ω ∗N)◦ f = true◦!Ω ◦ π̇1 ◦ f = true◦!Γ = π̇1 ◦ f

π̇2 ◦ (true∗N)◦h = π̇2 ◦ (true∗N)◦ (!∗N)◦ f = π̇2 ◦ f

by using the fact that 〈π̇1, π̇2〉 : Ω∗N � Ω×N is monomorphic. Showing uniqueness is straightforward.

To show that the diagram in point 2 of the definition of bindable names is a pullback, we have to

show that the left square in

B∗N
π̇1 //

��
m∗N
��

B
��
m
��

!B //
_� 1

true
��

Γ∗N
π̇1

// Γ
χ
// Ω

is a pullback. By the pullback lemma, it suffices to show that the outer square in this diagram is a

pullback. But since both χ ◦ π̇1 = π̇1 ◦ (χ ∗N) and !B ◦ π̇1 =!1∗N ◦ (!B ∗N) hold, we have already shown

this above. This shows the diagram in point 2 of the definition of bindable names to be a pullback.

Finally, the third condition in the definition of categories with bindable names holds because in a

topos coproducts are disjoint.

In any category with bindable names (B,∗,N), the functor (−) ∗N has, by Proposition 10.1.3, a right

adjoint which we denote by N −∗ (−). The quantifier Nfrom Proposition 10.1.4 can in a category with

bindable names be expressed in terms of ordinary quantification.
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Proposition 10.2.5. For a category with bindable names (B,∗,N) there is a fibred functor Nof type

(−∗N)∗ subB → subB that is both fibred left and fibred right adjoint to the fibred functor π̇∗1 of type

subB → (−∗N)∗ subB given by reindexing along the projection π̇1 : (−)∗N→ (−).

Proof. By Proposition 10.1.4 and the equality WN = π̇∗1 , which follows from the diagram in Defini-

tion 10.2.1.2.

We end this section by relating categories with bindable names to Menni’s axiomatisation of bind-

ing [72]. First, it is easily seen that the functor −∗N and the natural transformation π̇1 : (−)∗N→ (−)

form a N-relation in the sense of [72], meaning that (−)∗N preserves pullbacks, that, for all objects Γ,

the map π̇∗1 : Sub(Γ)→ Sub(Γ∗N) is an isomorphism and that the map 〈!∗N, π̇1〉 : Γ∗N→ (1∗N)×Γ

is a monomorphism. The following proposition therefore shows that Menni’s binders, corresponding to

the map λ in the proposition, are implied by our definition.

Proposition 10.2.6. Let (B,∗,N) be a category with bindable names. For each object A there exists a

map λ : N×A→ (N−∗ A) such that there exists a map η ′ : N×A→ (N−∗ A)∗N making the following

diagram commute.

N×A
〈λ ,π1〉

vvnnnnnnnnnnnn
η ′

��

π2

$$JJJJJJJJJJJ

(N−∗ A)×N (N−∗ A)∗Nı
oo

ε
// A

Proof. This follows directly from Proposition 10.1.7 using the fact that ∗ is a strict affine monoidal

structure. We use Proposition 10.1.7 to obtain η ′ and define λ = π̇1 ◦η ′.

Menni observes that there is a relation between so-called pre-binders and a right adjoint to N −∗ (−).

The precise role of this right adjoint nevertheless remains ‘slightly mysterious’. With our definition of

binding structure, the right adjoint arises naturally from the isomorphism Σ∗N
∼= Π∗

N. We have seen in

the proof of Proposition 10.1.3, that the monoidal exponent N −∗ (−) can be regarded as a special case

of Π∗
N, and that it therefore follows from Π∗

N
∼= Σ∗N aWN that N −∗ (−) has a right adjoint. Moreover,

it can be seen from the construction of the right adjoint to N −∗ (−) in Proposition 10.1.3, that the

right adjoint can be expressed in the syntax of the type theory. It maps a type (` B Type) to the type

(` Πn : N.B∗(n:N) Type).

Having shown that any category with bindable names implies Menni’s binders, it is natural to ask if

the converse is also true. In a boolean topos, this is indeed the case. Let B be a boolean topos with an

object N and a strict affine monoidal structure ∗. In terms of this data, Menni’s definitions of N-relation

and binders amount to the properties stated in Propositions 10.2.5 and 10.2.6 in addition to (−) ∗N
preserving pullbacks. In the rest of this section, we show that this structure is enough to make (B,∗,N)

a category with bindable names. We remark that Menni only makes use of a special case of the monoidal

structure ∗, namely the functor (−)∗N.
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Lemma 10.2.7. Let B be a boolean topos, let N be an object of B and let ∗ be a strict affine sym-

metric monoidal structure such that −∗N preserves pullbacks. If (B,∗,N) satisfies the properties in

Propositions 10.2.5 and 10.2.6, then (B,∗,N) is a category with binding structure.

For the proof of this lemma, we use two sub-lemmas.

Lemma 10.2.8. Under the assumptions of Lemma 10.2.7, the morphism η ′ : N×B → (N −∗ B)∗N is

an isomorphism with inverse 〈π̇2,ε〉 : (N−∗ B)∗N→ N×B.

Proof. The equation 〈π̇2,ε〉◦η ′ = id holds because the diagram in Proposition 10.2.6 commutes. Menni

shows that 〈π̇2,ε〉 is a monomorphism [72, Lemma 4.1]. Because of 〈π̇2,ε〉 ◦η ′ = id, we have 〈π̇2,ε〉 ◦
η ′ ◦ 〈π̇2,ε〉= 〈π̇2,ε〉. Since 〈π̇2,ε〉 is mono, this implies η ′ ◦ 〈π̇2,ε〉= id, and thus the assertion.

Lemma 10.2.9. Under the assumptions of Lemma 10.2.7, for each morphism f : B→ Γ∗N, there exists

a morphism g : C → Γ such that f and g∗N are isomorphic as objects of B/(Γ∗N).

Proof. Let f : B→ Γ∗N and write fi as an abbreviation for π̇i ◦ f for i = 1,2.

Menni shows in [72, Lemma 5.6] that, for each map h : N×B → Γ for which in the internal logic

of B the sequent n : N, b : B | > ` n # h(n,b) holds, there exists a unique map k : (N −∗ B)→ Γ satisfying

h = k ◦λ . Here, λ : N×B→ (N−∗ B) is the map from Proposition 10.2.6.

Let h be the partial map classifier of (〈 f2,B〉, f1) as in the square in the diagram below. We show

that n : N, b : B | > ` n # h(n,b) holds. In a boolean topos we can assume Γ⊥ to be Γ + 1, see e.g. [57,

Lemma 2.4.6]. Hence we can assume (∃γ.h(n,b) = κ1(γ))∨ (h(n,b) = κ2(unit)). We continue by case

distinction. In case h(n,b) = κ1(γ), we know γ = f1(b) and n = f2(b) since the square in the diagram

below commutes. Since the codomain of f is Γ ∗N, we get γ = f1(b) # f2(b) = n, which implies the

required n # κ1(γ) = h(n,b). In the case where h(n,b) = κ2(unit) holds, n # h(n,b) is trivial since 1 is

the unit of (−)∗N, so that (n # unit) holds for arbitrary names n.

Having shown the property n : N, b : B | > ` n # h(n,b), [72, Lemma 5.6] provides us with a unique

map k making the diagram below commute.

B
_�

f1 //
��
〈 f2,B〉
��

e

{{{{vvvvvvvvvv Γ
��
ηΓ

��
C ##

m ##G
GG

GG
GG

GG
N×B

λ

��

h
//____ Γ⊥

(N−∗ B)
k

;;v
v

v
v

v

Let the maps e and m shown in the above diagram be the epi-mono factorisation of λ ◦〈 f2,B〉. It follows

straightforwardly that k ◦m : C → Γ⊥ factors through ηΓ : Γ→ Γ⊥, say via a map g : C → Γ.
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We show that f and g∗N are isomorphic as maps of B/Γ∗N. We start by showing the existence of

(necessarily unique) maps u and v as in the two diagrams below.

B
��

〈 f2,B〉
��

u //_____ C ∗N
��
m∗N
��

N×B
η ′
// (N−∗ B)∗N

C ∗N
��

m∗N
��

v //_____ B
��
〈 f2,B〉
��

(N−∗ B)∗N
〈π̇2,ε〉

// N×B

(10.2)

Note that we assume (−)∗N to preserve pullbacks, so that it must preserve monos. The existence of u

follows because we can use an argument as in the proof of Proposition 10.2.4 to show that the following

square is a pullback.

C ∗N
��

m∗N
��

π̇1 //
_� C

��
m
��

(N−∗ B)∗N
π̇1

// (N−∗ B)

Since m ◦ e = λ ◦ 〈 f2,B〉 = π̇1 ◦η ′ ◦ 〈 f2,B〉 we can use the pullback to show that η ′ ◦ 〈 f2,B〉 factors

through m∗N. This implies the existence of the map u.

For the existence of v, we define v def= π2 ◦ 〈π̇2,ε〉 ◦ (m ∗N). We have to show that the so defined v

makes the square commute. By definition π2 ◦ 〈 f2,B〉 ◦ v = π2 ◦ 〈π̇2,ε〉 ◦ (m ∗N) holds. It therefore

suffices to show π1 ◦ 〈 f2,B〉 ◦ v = π1 ◦ 〈π̇2,ε〉 ◦ (m∗N). For this it suffices to show f2 ◦ ε ◦ (m∗N) = π̇2.

Expressed in the internal language, this amounts to

c : (N−∗ B), n : N | c # n, ∃b : B.c = ( f2(b).b) ` f2(c@n) = n. (10.3)

In this sequent we write (−).(−) for the term λ (−,−). In order to prove this sequent, we first show the

following sequent.

c : (N−∗ B) | ∃b : B.c = f2(b).b ` Nn. f2(c@n) = n (10.4)

By using the existential rule on the left and the replacement rule for equality, it suffices to show the

equation Nn. f2(( f2(b).b)@n) = n. Since f2(b) is fresh for ( f2(b).b), we can use the existential view

of Nwith f2(b), and it suffices to show f2(( f2(b).b)@ f2(b)) = f2(b). This follows directly from the

equation (n.x)@n = x, which is available since the diagram in Proposition 10.2.6 commutes by assump-

tion. With (10.4), showing (10.3) is straightforward. In (10.3), we can now assume Nn. f2(c@n) = n.

Because we have c # n, we can use the universal view of Nand instantiate it with n. We have therefore

shown the existence of a map v making the right-hand square in 10.2 commute.

By Lemma 10.2.8, η ′ and 〈π̇2,ε〉 are mutually inverse, which implies that u and v are mutually

inverse. To show that u and v constitute an isomorphism between the objects f and g∗N of B/(Γ∗N),

it just remains to show f = (g∗N)◦u. Since ∗ is strict affine, it suffices to show π̇i ◦ f = π̇i ◦ (g∗N)◦u

for i = 1,2. This follows straightforwardly from the definitions of u and g.

Proof of Lemma 10.2.7. We have to show that WN : B→→ B/(−∗N), defined by mapping f : A→ Γ to

f ∗N : A∗N→Γ∗N is an equivalence of the fibrations cod : B→→B and (−∗N)∗ cod : B/(−∗N)→B.
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By Lemma 2.2.9, it suffices to show that WN is a fibred functor between these fibration, that WN is full

and faithful, and that it is essentially surjective. That WN is a fibred functor follows directly from the

assumption that (−)∗N preserves pullbacks.

Next we show that WN is faithful. For this, it is enough to show that (−)∗N is faithful. Since we have

assumed the property stated in Proposition 10.2.5, we can show as in the proof of Proposition 10.2.3,

that the affine projection π̇1 : A∗N→ A is an epimorphism for all objects A. Suppose now that we have

u,v : A→B with u∗N = v∗N. By naturality of π̇1, this implies u◦ π̇1 = π̇1◦(u∗N) = π̇1◦(v∗N) = v◦ π̇1.

Since π̇1 is epi, we get u = v. Hence, (−)∗N is faithful and therefore so is WN.

To show that WN is full, let (u,v) be a map in B/(−∗N) between objects that are in the image of WN,

that is a commuting square of the following form.

A∗N

f∗N
��

u // B∗N

g∗N
��

Γ∗N
v∗N
// ∆∗N

(10.5)

We have to find a map u′ : A→ B such that both u = u′ ∗N and g◦u′ = v◦ f hold. We use unique choice,

available in any topos [56, §4.9], to construct u′. Unique choice allows us to construct a morphism from

a functional relation. The functional relation we use to construct u′ is given by the proposition

∀x : A.∃!y : B. Nn. π̇1(u(x,n)) = y, (10.6)

which we now show holds. We have to establish the sequent

x : A | > ` ∃!y : B. Nn. π̇1(u(x,n)) = y.

We make use of Proposition 10.2.5, which gives us that Nis both an existential and a universal quantifier.

By using the universal nature of N, it is trivial to prove Nn.>. Using the existential elimination on this

formula, we obtain a fresh name, i.e. we reduce the goal to

x : A, m : N | x # m ` ∃!y : B. Nn. π̇1(u(x,n)) = y.

We instantiate y with π̇1(u(x,m)). Hence, it remains to show

x : A, m : N | x # m ` Nn. π̇1(u(x,n)) = π̇1(u(x,m)) (10.7)

and

x : A, m : N | x # m ` ∀y : B.( Nn. π̇1(u(x,n)) = y) =⇒ π̇1(u(x,m)) = y. (10.8)

For the first sequent, we observe that we have the following derivation in the internal logic.

(AXIOM)
x : A, z : B, m : N | x # m, z # m, π̇1(u(x,m)) = z ` π̇1(u(x,m)) = z

( N-∃-R)
x : A, z : B, m : N | x # m, z # m, π̇1(u(x,m)) = z ` Nn. π̇1(u(x,n)) = z

(SUBST)
x : A, m : N | x # m, π̇1(u(x,m)) # m, π̇1(u(x,m)) = π̇1(u(x,m)) ` Nn. π̇1(u(x,n)) = π̇1(u(x,m))
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But π̇1(u(x,m)) = π̇1(u(x,m)) is trivial and π̇1(u(x,m)) # m holds because so does π̇2(u(x,m)) = m,

since the above diagram commutes, and because the codomain of u is B∗N. Hence, the sequent (10.7)

follows from the conclusion of the derivation. For the sequent (10.8), it suffices to show

x : A | > ` Nm. Nn. π̇1(u(x,n)) = π̇1(u(x,m)).

By the universal nature of N, it suffices to show

x : A, m : N | x # m ` Nn. π̇1(u(x,n)) = π̇1(u(x,m)).

But this is just sequent (10.7), which we have already shown above. Therefore, we have shown se-

quent (10.6), which allows us to use unique choice to define a map u′ : A → B. Finally, that u = u′ ∗N
holds now follows from the definition of u′ and because diagram (10.5) commutes. Since (−) ∗N is

faithful and diagram (10.5) commutes, we also obtain g◦u′ = v◦ f . This shows that WN is full.

It remains to show that WN is essentially surjective. But this we have already shown in Lemma 10.2.9.

Lemma 10.2.10. Let B be a topos, N be an object of B and ∗ be a strict affine symmetric monoidal

structure such that −∗N preserves pullbacks. If (B,∗,N) satisfies the properties in Propositions 10.2.5

and 10.2.6, then [δ , ı] : N+(N∗N)→ N×N is an isomorphism.

Proof. By Lemma 4.3 of [72].

In a boolean topos Menni’s binders therefore give rise to a category with bindable names.

Proposition 10.2.11. Let B be a boolean topos, let N be an object of B and let ∗ be a strict affine

symmetric monoidal structure such that −∗N preserves pullbacks. If (B,∗,N) satisfies the properties

in Propositions 10.2.5 and 10.2.6, then (B,∗,N) is a category with bindable names.

Proof. By Proposition 10.2.4, using Lemmas 10.2.7 and 10.2.10

10.3 Instances

In this section we give particular examples of categories with binding structure and categories with

bindable names. Most importantly, we show that the categories constructed in Chapter 3 are categories

with bindable names.

10.3.1 The Schanuel Topos

The Schanuel topos S becomes a category with bindable names when we use the monoidal structure

for freshness ∗ and the object of names N as defined in Chapter 3. Although this is already implied by

Proposition 10.2.11, we show it directly in terms of the structure defined in Chapter 3. The direct proof
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can be generalised to AssS(P). First we describe informally what the binding structure means in the

Schanuel topos and how it relates to the work of Gabbay & Pitts. By Proposition 10.1.2, the binding

structure (S,∗,N) amounts to a vertical natural isomorphism i : Σ∗N → Π∗
N making the triangles below

commute.

WNΣ∗N
WNi // WNΠ∗

N

ε ′||yyyyyyyy

Id

η

bbEEEEEEEE

Σ∗NWN

ε
""E

EE
EE

EE
E

Π∗
NWN

i−1
WNoo

Id
η ′

<<yyyyyyyy

One way of understanding this situation is as a propositions as types generalisation of the freshness

quantifier. Under the propositions as types reading, Σ∗N reads as ‘there exists a fresh name’ and Π∗
N reads

as ‘for all fresh names’. The freshness quantifier arises because these two propositions are equivalent,

so that the isomorphism Σ∗N
∼= Π∗

N can be understood as a propositions-as-types version of it. Indeed, we

have seen in Proposition 10.2.5 that the restriction of Σ∗N and Π∗
N to subobjects yields just the freshness

quantifier. However, this description does not explain the commuting triangles. Since the subobject

fibration is a fibred preorder, commutativity of the triangles is trivial for the freshness quantifier.

A second way of understanding the above situation, which does explain why we want the triangles

to commute, is by viewing both Σ∗N and Π∗
N as representations of α-equivalence classes. Recall that the

elements of type Σ∗n : N.A are pairs n.x in which the name n is hidden. The elements of type Π∗n : N.A

are partial functions defined just on fresh names. As observed in [38], both pairs with hidden names

and partial functions defined just on fresh names represent α-equivalence classes. The types Σ∗n : N.A

and Π∗n : N.A should therefore be isomorphic. But this is only part of the story. We also have the intro-

duction and elimination terms for both types, and it is natural to ask what happens if, for example, we

first introduce an element of Σ∗N, use the isomorphism, and then use the elimination of Π∗
N. Explaining

this is the purpose of the two commuting triangles above. Using a somewhat sloppy notation in which

we omit the terms for freefrom types wherever possible, and in which we assume i to be the identity

(which we can always do), we explain the triangles informally. The equations ε ′ ◦WNi ◦η = id and

WNi◦η ◦ε ′ = id of the left triangle can be read as n.(x@n) = x and (m.y)@m = y, where x is a function

in Π∗n : N.A, m is an arbitrary name, n is some/any name fresh for x, and y is an element of A. The

left triangle thus corresponds to forms of β and η-conversion for the mixed use of (Σ∗-I) and (Π∗-E).

These equations appear in [38]. Notice that the equation n.(x@n) = x implies that each function in

Π∗n : N.A is uniquely determined by its value at a single fresh name. The right-hand triangle expresses

that binding a name n in some x for which n is already fresh results in a constant function in Π∗
N. The

syntactic equivalent of Σ∗NWNA in the left corner of the right-hand triangle is Σ∗n : N.
(
A∗(n:N)). Its ele-

ments correspond to pairs-with-hiding n.x in which the name n is fresh for x. The counit ε maps n.x to x,

which makes sense only because n is fresh for x. The unit η ′ maps x to the constant function λ∗n : N.x.

The triangle thus states that, whenever n is fresh for x, the pair n.x is effectively the same as the constant

function λ∗n : N.x.

Proposition 10.3.1. The Schanuel topos (S,∗,N) is a category with bindable names.



Chapter 10. Categories with Bindable Names 262

Proof. We use Proposition 10.2.4. The properties 2′ and 3 have already been shown in Chapter 3. It

remains to show that (S,∗,N) is a category with binding structure. In Chapter 3 we have constructed

simple monoidal sums Σ∗N and simple monoidal products Π∗
N. By Proposition 10.1.2, it therefore suffices

to exhibit a vertical isomorphism that makes the two triangles there commute. We will show this for the

split fibration from Section 3.5.2, which is equivalent to the codomain fibration. We use the notation

from Section 3.5.2 of Chapter 3.

First we define a natural isomorphism j : [N](−) → (N −∗ −). Using the internal language of S,

we define jB([n,x]) to be λ∗m : N.(m n) · x. That this definition is independent of the choice of rep-

resentative follows from Gabbay & Pitts’ characterisation of the elements of [N]B, reproduced here

in equation (3.7). The inverse of jB maps f ∈ (N −∗ B) to [n, f @n] where n is some fresh name. It is

straightforward to show that this defines an isomorphism, by using the fact that the functions in (N−∗ B)

are uniquely determined by their value at a single fresh name, and by using the characterisation of [N]B

from Lemma 3.3.28. For naturality, let g : B → C be a map in S. Then jC ◦ ([N]g) maps [n,x][N]B to

λ∗m : N.(m n) · g(x), while (N −∗ g) ◦ jB maps [n,x][N]B to λ∗m : N.g((m n) · x). By equivariance of g

both maps are equal.

Next, we recall the definitions of the objects Σ∗N(ϕ) : Γ× [N]B→Ω and Π∗
N(ϕ) : Γ× (N−∗ B)→Ω

for an object ϕ : (Γ∗N)×B→Ω over Γ∗N.

Σ
∗
N(ϕ)(γ,c) def⇐⇒ ∀n ∈ N. ∀b ∈ B. (n # 〈γ,c〉 ∧ 〈n,b〉 ∈ c) =⇒ ϕ(γ,n,b)

Π
∗
N(ϕ)(γ, f ) def⇐⇒ ∀n ∈ N. n # 〈γ, f 〉 =⇒ ϕ(γ,n, f @n)

Using the definition of the isomorphism j, we obtain an equivalence

Σ
∗
A(ϕ)(γ,c) ⇐⇒ Π

∗
A(ϕ)(γ, jB(c)).

Hence, we get a vertical isomorphism iϕ of the objects Σ∗N(ϕ) and Π∗
N(ϕ) as in the following diagram.

{Σ∗N(ϕ)}
iϕ //____

��
m

Σ∗N(ϕ)

��

{Π∗
N(ϕ)}
��
m

Π∗N(ϕ)

��
Γ× [N]B

π1

��

Γ× jB
// Γ× (N−∗ B)

π1

��
Γ

id
// Γ

That this defines a natural isomorphism i : Σ∗N →Π∗
N follows analogously to the naturality of j.

We come to verifying that the two triangles from Proposition 10.1.2 commute. First we show that

the following triangle in S/(Γ∗N) commutes.

WNΣ∗N
WNi // WNΠ∗

N

ε ′||yyyyyyyy

Id

η

bbEEEEEEEE
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It suffices to check WNi ◦ η ◦ ε ′ = id and ε ′ ◦WNi ◦ η = id. After expanding the definitions, these

equations amount to the equations n.( f @n) = f and (n.x)@n = x, known from [38]. We spell out

the details. For the first equation, let 〈γ,n, f 〉 ∈ {WNΠ∗
N(ϕ)}. We have ε ′(〈γ,n, f 〉) = 〈γ,n, f @n〉,

η(〈γ,n, f @n〉) = 〈γ,n, [n, f @n][N]B〉 and WNiϕ(〈γ,n, [n, f @n][N]B〉) = 〈γ,n,λ∗m : N.(m n) · ( f @n)〉.
Since 〈γ,n, f 〉 ∈ {WNΠ∗

N(ϕ)}, the definition of WN implies that n is fresh for f . Hence, (m n) · f = f

holds for any fresh name m. Therefore, we can use equivariance and η-equality for the monoidal expo-

nent to get the following equations:

λ
∗m : N.(m n) · ( f @n) = λ

∗m : N.((m n) · f )@((m n) ·n)

= λ
∗m : N. f @m

= f

This shows the first equation. For the second equation, let 〈γ,n,x〉 ∈ {ϕ}. Then we have η(〈γ,n,x〉) =

〈γ,n, [n,x][N]B〉 and WNiϕ(〈γ,n, [n,x][N]B〉) = 〈γ,n,λ∗m : N.(m n) · x〉 and ε ′(〈γ,n,λ∗m : N.(m n) · x〉) =

〈γ,n,(λ∗m : N.(m n) · x)@n〉. But we have (λ∗m : N.(m n) · x)@n = (n n) · x = x, which shows the

second equation.

To show that the triangle in S/Γ

Σ∗NWN

ε
""E

EE
EE

EE
E

Π∗
NWN

i−1
WNoo

Id
η ′

<<yyyyyyyy

commutes, it suffices to check iWN = η ′ ◦ ε and ε ◦ i−1
WN
◦η ′ = id. For the first equation, let 〈γ,c〉 ∈

{Σ∗NWNψ}. Then we have ε(〈γ,c〉) = 〈γ,b〉 where c = [n,b][N]B such that n is fresh for γ . Notice

that n must also be fresh for b since 〈γ,c〉 is in {Σ∗NWNψ}. Furthermore, η ′(〈γ,b〉) = 〈γ,λ∗m : N.b〉 and

iWN(〈γ,c〉) = 〈γ,λ∗m : N.(m n) ·b〉. Since n is fresh for b, we have λ∗m : N.(m n) ·b = λ∗m : N.b, which

implies the first equation. For the second equation, let 〈γ,x〉 ∈ {ψ}. Then, η ′(〈γ,x〉) = 〈γ,λ∗n : N.x〉 and

i−1
WN

(〈γ,λ∗n : N.x〉) = 〈γ, [m,(λ∗n : N.x)@m][N]B〉 where m is an arbitrary fresh name. By β -reduction,

we obtain i−1
WN

(〈γ,λ∗n : N.x〉) = 〈γ, [m,x][N]B〉. Finally, we have ε(〈γ, [m,x][N]B〉) = 〈γ,x〉, as required.

It is worth summarising the structure we get from this proposition in relation to the structure constructed

in [38]. The functor N−∗ (−) corresponds to the abstraction set of [38]. To work with N−∗ (−) we can

use the units and counits of both Σ∗N and Π∗
N, which corresponds to the dual view of abstractions sets

in [38] as pairs with name-hiding and as partial functions. How these two views interact is explained

by the two commuting triangles, which make available equations similar to those in [38]. Furthermore,

we have also seen that the binding structure of the Schanuel topos implies the existence of the freshness

quantifier N. Finally, Propositions 10.1.5 and 10.1.6 show that our axiomatisation implies the remark-

able properties of Nand N−∗ (−) that have been shown in [38].
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The binding structure (S,∗,N) is not the only binding structure in the Schanuel topos. We can

generalise the above proposition from names N to name-like objects. In the rest of this section, we

define name-like objects as the objects with essentially simple transitive action and we show that for

such objects A the triple (S,∗,A) is a binding structure.

Definition 10.3.2. An object A of S has transitive action if, for any two elements x and y of A, there

exists a permutation π such that π · x = y holds.

Lemma 10.3.3. Let A be an object of S with transitive action. For any two elements x and y of A, there

exists a permutation π that satisfies π · x = y and π(n) = n for all n 6∈ supp(x)∪ supp(y).

For the rest of this section, we choose, for any two elements x and y of A, a permutation πx,y that satisfies

πx,y · x = y and πx,y(n) = n for all n 6∈ supp(x)∪ supp(y). We make this choice for convenience: It

simplifies the presentation, as we do not have to introduce the permutations πx,y explicitly. We remark,

however, that we make the choice for convenience only, and that the development in the rest of this

section can be carried out without it.

Definition 10.3.4. An object A of S has an essentially simple action if, for all x ∈ A, any two permuta-

tions π and τ that satisfy π · x = τ · x also satisfy ∀n ∈ supp(x).π(n) = τ(n).

The objects with essentially simple transitive action have a simple characterisation. Define induc-

tively N∗0 = 1 and N∗k = N∗N∗(k−1) for any k ≥ 1.

Lemma 10.3.5. For each k ≥ 0, the object N∗k has essentially simple transitive action.

Lemma 10.3.6. Any non-empty set A with essentially simple transitive action is isomorphic to N∗k for

some k ≥ 0.

Proof. Let A be a non-empty set with essentially simple transitive action. Because the action on A is

transitive, the support of all its elements must contain the same (finite) number of names. Let k be this

number, i.e. k ≥ 0 is such that ∀x ∈ A.k = |supp(x)| holds.

We define a map i : A → N∗k. Let x be an arbitrary element of A. Let n1, . . . ,nk be the names in

supp(x) in some arbitrary order. Define i(π · x) def= 〈π(n1), . . . ,π(nk)〉, where π is an arbitrary permuta-

tion. This assignment is functional, since from the assumption that the action on A is essentially simple,

we obtain that π · x = τ · x implies that π(n) = τ(n) holds for all n ∈ supp(x), and thus i(π · x) = i(τ · x).
Furthermore, i(y) is defined for all y ∈ A, since the assumption that the action on A is transitive yields

that, for all y ∈ A, there exists a permutation π satisfying π ·x = y. Finally, the assignment is equivariant

by definition. Hence, the assignment defines a morphism i : A→ N∗k in S.

An inverse to i can be defined by mapping 〈m1, . . . ,mk〉 ∈ N∗k to π · x ∈ A, where π is an arbitrary

permutation satisfying π(ni) = mi for all i ∈ {1, . . . ,k}. This assignment is functional since π is com-

pletely determined on supp(x). Since equivariance is straightforward to show, we have thus defined a

morphism i−1 : N∗k → A in S. Checking that i−1 is inverse to i is routine.



Chapter 10. Categories with Bindable Names 265

We remark that in the functor category presentation of S, the objects of the form N∗k are precisely the

representable sheaves.

Proposition 10.3.7. The triple (S,∗,A) is a category with binding structure whenever A is a non-empty

set with essentially simple transitive action.

In the proof we use the following three lemmas.

Lemma 10.3.8. Let A be an object of S with essentially simple transitive action. For all f ,g∈ (A−∗ B),

if there exists x ∈ A such that both 〈 f ,g〉 # x and f @x = g@x hold, then f = g holds.

Proof. Let x∈ A with 〈 f ,g〉 # x and suppose f @x = g@x. For any y∈ A with 〈 f ,g〉 # y, we have f @y =

f @πx,y · x = πx,y · ( f @x). The last step holds because both x and y are fresh for f , and so πx,y · f = f

holds. Likewise, we get g@y = πx,y · (g@x). Since using f @x = g@x, this implies f @y = g@y, we

have therefore shown that f and g agree on all arguments y that are fresh for them both. By definition

of (A−∗ B) as E/∼ in Section 3.3.1, f and g therefore denote the same element of (A−∗ B).

Next we consider the structure of the set [A]B, as defined in Section 3.5.2. Recall that [A]B is defined

as a quotient of A×B with respect to an equivalence relation ∼[A]B. The following lemmas are special

cases of the results in Section 3.3.2 for objects with essentially simple transitive action.

Lemma 10.3.9. If A has essentially simple transitive action then the following equivalence holds for

all x,y ∈ A and all b,b′ ∈ B.

〈x,b〉 ∼[A]B 〈y,b′〉 ⇐⇒ supp(y)∩ (supp(b)\ supp(x)) = /0 ∧ πx,y ·b = b′

Proof. By Lemma 3.3.28, we have

〈x,b〉 ∼[A]B 〈y,b′〉 ⇐⇒ ∃π. (∀n ∈ supp(〈x,b〉)\ supp(x). π(n) = n) ∧ π · 〈x,b〉= 〈y,b′〉.

It therefore suffices to show that the right-hand sides of the two equivalences imply each other. That

supp(y)∩ (supp(b) \ supp(x)) = /0 ∧ πx,y · b = b′ implies ∃π. (∀n ∈ supp(〈x,b〉) \ supp(x). π(n) =

n) ∧ π · 〈x,b〉= 〈y,b′〉 is straightforward, since we can use πx,y for π . In the other direction, we observe

that supp(y)∩ (supp(b)\ supp(x)) = /0 holds, since π · x = y implies supp(y) = π(supp(x)) and π is the

identity on supp(〈x,b〉)\supp(x). It follows from the fact that the action on A is essentially simple that π

and πx,y agree on supp(〈x,b〉). This gives πx,y ·b = b′, thus completing the proof.

Lemma 10.3.10. Let A be an object of S with simple transitive action, and let B be an arbitrary object

of S. Then any element c ∈ [A]B is the graph of a partial function f ∈ (A ⇒ B⊥) with the property

∀x ∈ A. f # x ⇐⇒ f (x) 6=⊥. Moreover, for all 〈x,b〉 ∈ c and y ∈ A, f # y implies f (y) = πx,y ·b.

Proof. Let c∈ [A]B. To see that c is a functional relation, suppose 〈x,b〉 ∈ c and 〈x,b′〉 ∈ c. Since c is an

equivalence class of ∼[A]B, this implies 〈x,b〉 ∼[A]B 〈x,b′〉. By Lemma 10.3.9, this implies πx,x ·b = b′.

Since πx,x must be the identity, this gives b = b′, thus showing that c is the graph of a partial function.
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Let f ∈ (A ⇒ B⊥) be the partial function whose graph is c. To show the equivalence asserted in

the lemma let x ∈ A. From left to right, assume f # x. We have to show that there exists b ∈ B such

that 〈x,b〉 ∈ c. By definition of [A]B, we know that c is not empty, say c = [y,b′]∼[A]B . Since supp(c) =

supp(b′)\supp(y) by Corollary 3.3.30 and since supp( f ) = supp(c), we know that both x and y are fresh

for c. Hence, πy,x · c = c. However, the permutation action is defined pointwise on equivalence classes,

so that we have c = πy,x · [y,b′]∼[A]B = [πy,x · y,πy,x · b′]∼[A]B = [x,πy,x · b′]∼[A]B . Hence, 〈x,πy,x · b′〉 ∈ c,

showing the required f (x) 6=⊥. For the direction from right to left, assume f (x) 6=⊥, i.e. there exists a

unique b ∈ B such that 〈x,b〉 ∈ c. We have to show f # x. But this follows from supp( f ) = supp(c) =

supp(b)\ supp(x).

Proof of Proposition 10.3.7. The proof goes analogously to that of Proposition 10.3.1. This time, we

have to find an isomorphism j : [A](−)→ (A −∗ −). Like in Proposition 10.3.1, it is possible to define

it using internal language of S. To complement the use of the internal language there, we spell out the

isomorphism explicitly here. Recall the definition of A−∗ B:

E def= { f ∈ (A⇒ B⊥) | ∀a ∈ A. a # f ⇐⇒ f (a) 6=⊥}

∼ def= {〈 f ,g〉 ∈ E×E | ∀a ∈ A. a # 〈 f ,g〉 =⇒ f (a) = g(a)}

(A−∗ B) def= E/∼

By Lemma 10.3.10, any element c ∈ [A]B is the graph of a partial function in E.

We define jB : [A]B→ (A−∗ B) to be the function mapping c∈ [A]B to the equivalence class under∼
of the partial function in E whose graph is c. We have shown in Lemma 10.3.10 that each c ∈ [A]B is

indeed the graph of a partial function. We show that jB is an isomorphism. Its inverse j−1
B is given by

mapping [ f ]∼ ∈ (A−∗ B) to [x, f (x)][A]B, where x ∈ A is an arbitrary fresh value. Note that such an x ∈ A

exists since A is non-empty. Moreover, f (x) 6= ⊥ holds because of f ∈ E. Independence of the choice

of representative can be seen as follows. Suppose [ f ]∼ = [g]∼ and let x ∈ A be fresh for f and y ∈ A be

fresh for g. We have to show [x, f (x)][A]B = [y,g(y)][A]B. Let z ∈ A be fresh for f and g.

[x, f (x)][A]B = [z,πx,z · ( f (x))][A]B by Lemma 10.3.9

= [z, f (πx,z · x)][A]B since both x and z are fresh for f

= [z, f (z)][A]B by definition of πx,z

= [z,g(z)][A]B since f (z) = g(z) by f ∼ g

= [y,g(y)][A]B as for f

This shows that j−1
B is well-defined.

Given [x,b] ∈ [A]B, applying first jB and then j−1
B gives [y,πx,y · b] for some y with supp(y) ∩

(supp(b)\supp(x)) = /0. This is the case because supp([x,b]∼[A]B) = (supp(b)\supp(x)) holds by Corol-

lary 3.3.30, and jB([x,b]∼[A]B)(y) = πx,y · b holds by Lemma 10.3.10. Since both x and y are fresh

for [x,b]∼[A]B , we have πx,y · [x,b]∼[A]B = [x,b]∼[A]B . By definition of the action this gives πx,y · [x,b]∼[A]B =
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[πx,y · x,πx,y · b]∼[A]B = [y,πx,y · b]∼[A]B . Hence, we have j−1
B ◦ jB = id. Given [ f ]∼ ∈ (A −∗ B), applying

first j−1
B and then jB gives [g]∼ ∈ (A −∗ B) satisfying g(y) = πx,y · f (x), where x and y are some fresh

elements of A. Since the elements of (A −∗ B) are uniquely determined by their value at a single fresh

argument (Lemma 10.3.8), for jB ◦ j−1
B = id it suffices to show f (y) = πx,y · f (x). But this is immediate

since we have πx,y · f = f using freshness.

The rest of the verifications are just as in Proposition 10.3.1.

For the empty set 0, which trivially has essentially simple transitive action, the proposition is not true.

This can be seen by observing that [0]1 is empty while (0−∗ 1) contains one element.

Whilst any non-empty object A with essentially simple transitive action makes (S,∗,A) a category

with binding structure, the triple (S,∗,A) is a category with bindable names only if A is isomorphic

to N. If A ∼= 1, we have A ∗A ∼= A×A, so that ı : A ∗A � A×A cannot be the complement of the

diagonal. If A∼= N∗k for k > 1, then ı : A∗A � A×A is also not the complement of the diagonal, since,

for m 6= n, the two elements 〈m,n1, . . . ,nk〉 and 〈r,n1, . . . ,nk〉 of N∗k are different but not fresh for each

other, i.e. not in N∗k ∗N∗k.

It may be possible to lift the assumption that the action on A be essentially simple. However, if we

just assume that A has transitive action, then the elements of [A]B are not always functional relations.

For example the action on the object P2(N), consisting of sets of exactly two names, is transitive

but not essentially simple. The equivalence class [{m,n},n] in [P2(N)]N contains both 〈{m,n},n〉
and 〈{m,n},m〉, and so is not a functional relation. By making choices (of names), it may be possible

to generalise the above propositions to objects like P2(N). We leave the details for further work.

It may be the case that the binding structures (S,∗,N∗k) follow from the binding structure (S,∗,N)

by use of isomorphisms such as Π∗m : N.Π∗n : N.B(m,n) ∼= Π∗p : N ∗N.B(π̇1(p), π̇2(p)). It may be

simpler to obtain the binding structures (S,∗,N∗k) in this way, but the details remain to be worked out.

We end this section by observing that, as a consequence of Proposition 10.3.7, the characterisation

of the monoidal closed structure (A −∗ B) from Section 3.3.1 can be simplified if A is an object with

essentially simple transitive action.

Proposition 10.3.11. If A is an object of S with essentially simple transitive action and B is an arbitrary

object of S, then we have the following isomorphism.

(A−∗ B)∼= { f ∈ (A⇒ B⊥) | ∀x ∈ A. ( f # x ⇐⇒ f (x) 6=⊥)

∧( f # x =⇒ supp( f ) = supp( f (x))\ supp(x))}

Proof. The case where A is the empty set is trivial. Assume A non-empty. Consider the monomorphism

m : (A−∗ B)→ (A⇒ B⊥) from Proposition 3.3.15. First we show that if f = m(c) then

∀x ∈ A. ( f # x ⇐⇒ f (x) 6=⊥)

∧( f # x =⇒ supp( f ) = supp( f (x))\ supp(x)).
(10.9)

Let x ∈ A. That (m(c) # x ⇐⇒ m(c)(x) 6= ⊥) holds follows from Lemma 3.3.19. For the implication

(m(c) # x =⇒ supp(m(c)) = supp(m(c)(x))\supp(x)) suppose m(c) # x. Hence, we have m(c)(x) 6=⊥.
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By definition of m in Proposition 3.3.15, there exists g ∈ c such that g(x) = m(c)(x). By definition of

the equivalence class c, this also implies g # x. By construction of the isomorphism j in the proof of

Proposition 10.3.7 above, we have 〈x,g(x)〉 ∈ j−1(c). By Corollary 3.3.30, we get supp( j−1(c)) =

supp(〈x,g(x)〉) \ supp(x). Since monomorphisms leave the support of all elements unchanged, we

have supp(m(c)) = supp(c) = supp( j−1(c)). Thus, we have supp(m(c)) = supp(g(x))\ supp(x). Since

m(c)(x) = g(x), this implies supp(m(c)) = supp(m(c)(x))\supp(x), thus showing that m(c) satisfies the

required formula.

On the other hand, suppose f ∈ (A⇒B⊥) satisfies (10.9). We show that f = m([ f ]∼) holds, where∼
is the equivalence class used in the definition of (A −∗ B). By Lemma 3.3.18, m([ f ]∼) has minimal

support among all the elements of [ f ]∼. Moreover, as shown in Proposition 3.3.20, there can be at most

one element of [ f ]∼ with minimal support. Therefore, to show f = m([ f ]∼) it suffices to show supp( f ) =

supp(m([ f ]∼)). Since both f and m([ f ]∼) satisfy (10.9), we have supp( f ) = supp( f (x))\ supp(x) and

supp(m([ f ]∼)) = supp(m([ f ]∼)(x))\ supp(x) for all x ∈ A that are fresh for both f and [ f ]∼. Since A is

non-empty, such an x exists. By definition of m, m([ f ]∼)(x) = f (x) holds for such x. Using this we can

conclude supp( f ) = supp(m([ f ]∼)), and thus f = m([ f ]∼).

In conclusion, we have shown that the set of partial functions satisfying (10.9) is isomorphic to the

image of m : (A−∗ B) � (A⇒ B⊥), and this shows the claimed isomorphism.

10.3.2 The Realizability Category AssS(P)

Proposition 10.3.12. The realizability category (AssS(P),∗,N) is a category with bindable names.

Proof. To show that (AssS(P),∗,N) is a category with binding structure, we check that the isomorphism

jB : [N]B→ (N−∗ B) in the proof of Proposition 10.3.1 is an isomorphism in AssS(P), i.e. that j and its

inverse are realizable.

For realizability of j, recall that j([n,x]) is defined to be λ∗m : N.(m n) · x. Since the realizers of

an equivalence class are defined by ||[n,x]|| =
⋃
〈m,y〉∈[n,x] ||〈m,y〉||, it suffices to realize the mapping

〈n,x〉 7→ λ∗m : N.(m n) · x. But given 〈n,x〉, there exists a realizer r of λm : N.(m n) · x, since the per-

mutation action is realizable. It then follows that r realizes λ∗m : N.(m n) · x too.

For realizability of j−1, recall that j−1([ f ]∼) is defined to be [n, f (n)] where n is a name fresh for f

(and therefore for [ f ]∼). Again by the pointwise definition of the realizers of equivalence classes, it

suffices to realize the mapping f 7→ 〈n, f (n)〉. But this is straightforward, since using support approxi-

mations we can always generate a fresh name n.

For the binding structure it just remains to check that the two triangles from Proposition 10.1.2

commute. Since this is a property of the underlying sets, it follows just as in 10.3.1.

Since AssS(P), as any quasi-topos, is a coherent category, it just remains to verify points 2 and 3 in

Definition 10.2.1. For point 2, we have to show that, for each monomorphism m : B � Γ, the following
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square is a pullback.

B∗N
π̇1 //

��
m∗N
��

_� B
��
m
��

Γ∗N
π̇1

// Γ

We know this to be true in S. Therefore, for any two maps f : C → Γ ∗N and g : C → B in AssS(P)

with π̇1 ◦ f = m ◦ g, there exists a unique map of the underlying sets u : |C| → |B ∗N| = |B| ∗ |N| such

that | f | = |m ∗N| ◦ |u| and |g| = |π̇1| ◦ |u|. Since the identity of morphisms in AssS(P) is completely

determined by the identity of their behaviour on the underlying sets, it suffices to show that u is realized.

But if r and s are realizers of f and g respectively, then λλx.pair (fst (s x)) (snd (r x)) is a realizer of u.

Finally, for point 3, that ı : N∗N � N×N is the complement of the diagonal follows by construction of

pullbacks and pushouts in AssS(P).

10.3.3 Species of Structures

We give an example of a non-trivial category with binding structure that is not a category with bindable

names. This example comes from the combinatorial theory of species of structures [12]. The theory of

species of structures, introduced by Joyal [58], uses functor categories to study the kinds, or species,

of structure that can be put on a set of labels. Since terms with free variables are a special kind of

labelled structure, it should not be too surprising that there is a connection between species of structure

and functor category models of abstract syntax with binding such as those in [30] and [49]. Indeed,

Tanaka [107] uses the category of species to model linear binding.

The underlying category is the presheaf topos SetsP where P is the category of all finite sets with

bijective functions between them. The objects of P are thought of as sets of labels, and a presheaf A is

a species of structure in the sense that it assigns to each set of labels S in P a set of structures A(S) over

these labels. The category SetsP carries a monoidal structure ⊗ defined as follows.

(A⊗B)(S) = {〈S1,a,S2,b〉 | a ∈ A(S1), b ∈ B(S2), S1∩S2 = /0, S1∪S2 = S}

(u⊗ v)(S1∪S2)(〈S1,a,S2,b〉) = 〈S1,uS1(a),S2,vS2(b)〉

An object X of a single abstract variable is defined by

X(S) =

{
S if S is a singleton,

/0 otherwise.

We note that, for an element 〈S1,a,S2,n〉 ∈ (A⊗X)(S), the sets S1 and S2 are uniquely determined

as S2 = {n} and S1 = S \ {n}. We will therefore omit the sets S1 and S2, writing just 〈a,n〉 for the

elements of sets of the form (A⊗X)(S). The object (A⊗X) may be thought of as consisting of the

elements of A together with a fresh variable.

The monodial structure ⊗ is an instance of Day’s tensor and X is the representable presheaf on a

singleton. We refer to [107, 108] and [12] for detailed discussions of the motivation of these definitions.
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Proposition 10.3.13. The triple (SetsP,⊗,X) is a category with binding structure.

Proof. By Lemma 2.2.9, a fibred functor is an equivalence if and only if it is full and faithful and

essentially surjective on objects.

First we show that WX is a fibred functor from the codomain fibration on SetsP to Gl(−⊗X). This

means that if the square on the left is a pullback then so is the square on the right.

A

f
��

u // B

g

��
C v

// D

A⊗X

f⊗X
��

u⊗X // B⊗X

g⊗X
��

C⊗X
v⊗X
// D⊗X

(10.10)

Since pullbacks in presheaf categories are taken pointwise, it suffices to show that, at every stage S, the

right square is a pullback in Sets. By the definitions of the tensor ⊗ and the object X , the elements

of (B⊗X)(S) are pairs 〈b,n〉 where n ∈ S and b ∈ B(S \ {n}). Such a pair is mapped by (g⊗X)S to

〈gS\{n}(b),n〉. It therefore follows that any two elements b′ ∈ (B⊗X)(S) and c′ ∈ (C⊗X)(S) satisfying

(g⊗X)S(b′) = (v⊗X)S(c′) must be of the form b′ = 〈b,n〉 and c′ = 〈c,n〉 for some name n ∈ S and

some elements b ∈ B(S \ {n}) and c ∈ C(S \ {n}) satisfying vS\{n}(c) = gS\{n}(b). Since the square

on the left is a pullback, there exists a unique element a ∈ A(S \ {n}) satisfying uS\{n}(a) = b and

fS\{n}(a) = c. Therefore, the element a′ def= 〈a,n〉 ∈ (A⊗X)(S) is the unique element of (A⊗X)(S) such

that (u⊗X)S(a′) = b′ and ( f ⊗X)S(a′) = c′. This shows that the right square is a pullback.

To show that WX is faithful, it suffices to show that−⊗X is faithful. To this end consider u,v : A→B

and suppose u⊗X = v⊗X . By definition of the morphism action of −⊗X , this implies uS\{n} = vS\{n}

for all stages S and all n ∈ S. Since each stage can be written as S \ {n} for some n, this implies the

required u = v.

For fullness of WX let (u,v) be a map in SetsP/(−⊗X) between objects that are in the image of WX .

Such a map amounts to a commuting square of the following form.

A⊗X

f⊗X
��

u // B⊗X

g⊗X
��

C⊗X
v⊗X
// D⊗X

To show that WX is full, we have to find a map w : A → B such that u = w⊗X and g ◦w = v ◦ f hold.

By definition, an element of (A⊗X)(S) is a pair 〈a,n〉 where n ∈ S and a ∈ A(S \ {n}). Because the

above square commutes, this pair is mapped by uS to an element of (B⊗X)(S) of the form 〈b,n〉 where

b ∈ B(S \{n}). Using this, we define the natural transformation w by wS(a) = b where b is the unique

element of B(S) such that uS∪{n} maps 〈a,n〉 to 〈b,n〉 for some name n 6∈ S. We verify that this is well-

defined, i.e. does not depend on the choice of name. Let m and n be two names not in S. We have to

show uS∪{n}(〈a,n〉) = uS∪{m}(〈a,m〉). We know that uS∪{n}(〈a,n〉) must have the form 〈b,n〉 for some b.

It suffices to show uS∪{m}(〈a,m〉) = 〈b,m〉. This equation can be shown by the following calculation, in
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which we write [m/n] : (S∪{m})→ (S∪{n}) for the bijection that maps m to n and all other names to

themselves.

uS∪{m}(〈a,m〉) = uS∪{m}([m/n] · 〈a,n〉) by definition of the action on ⊗

= [m/n] ·uS∪{n}(〈a,n〉) by naturality of u

= [m/n] · 〈b,n〉 by assumption

= 〈b,m〉 by definition of the action on ⊗

This shows that u is well-defined. Naturality of w follows from the naturality of u. That u = w⊗X holds

follows directly from the definition of w. The equality g◦w = v◦ f follows because−⊗X being faithful

implies that the diagram on the left in (10.10) commutes whenever the diagram on the right does.

It remains to show that WX is essentially surjective, i.e. that each object in SetsP/(−⊗X) is isomor-

phic to an object in the image of WX . Let f : A→ Γ⊗X be an object in SetsP/(Γ⊗X). We have to find

an object g of SetsP/Γ and an isomorphism i such that the following triangle commutes.

A
i
∼=

//

f ""D
DD

DD
DD

DD B⊗X

g⊗Xzzuuuuuuuuu

Γ⊗X

Let δA be the presheaf defined by δA = SetsP(y{m},A), where m is an arbitrary name. By the Yoneda

lemma, for any stage S and any name n not in S, we have an isomorphism δA(S)∼= A(S∪{n}). For n 6∈ S

and a ∈ A(S∪{n}), we write n.a for the element of δA(S) given by this isomorphism. Let B be the

subobject of δA defined by B(S) = {n.a | n 6∈ S ∧ a ∈ A(S∪{n}) ∧ fS∪{n}(a) = 〈γ,n〉}. Define a map

g′ : B⊗X → Γ⊗X by g′S(〈n.a,m〉) = fS([m/n] · a), where [m/n] : (S \ {n})∪{m} → S is the bijection

mapping m to n and all other names to themselves. By naturality of f , this definition of g′S is such that

any pair 〈n.a,m〉 is mapped to a pair of the form 〈γ,m〉. As in the above argument showing that WX

is full, we can define a map g : B → Γ satisfying g′ = g⊗X by letting gS(n.a) = γ . Finally, we define

i : A → B⊗X by iS(a) = 〈n.a,n〉, where n is given by fS(a) = 〈γ,n〉. With these definitions, the above

triangle commutes. Furthermore, i is an isomorphism with inverse i−1(〈n.a,m〉) = [m/n] ·a.

That SetsP is not a category with bindable names follows immediately because ⊗ is not affine. A unit I

for ⊗ is defined by I( /0) = { /0} and I(S) = /0 for all S 6= /0, while a terminal object 1 of SetsP is defined

by 1(S) = { /0} for all S. Moreover, the object X could not reasonably be called an object of names, as,

for example, the diagonal X → X ×X is an isomorphism.

The binding structure in the above proposition identifies the structure that Tanaka [107] uses to

represent syntax with linear binders. The functor X ( (−) that is obtained from the binding structure

by means of Proposition 10.1.3 is just the shift functor δ satisfying (δA)(S) ∼= A(S ∪ {n}) for any

name n not in S. We describe the binding operation η ′ : (1⊗X)×A → (X ( A)⊗X that we get from

Proposition 10.1.7. By unfolding definitions, it follows that there is an isomorphism 1⊗X ∼= EX , where
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EX is defined by EX(S) = S. The map η ′ thus amounts to a map of type EX ×A → (X ( A)⊗X .

It maps a pair 〈n,x〉 ∈ (EX ×A)(S), where n ∈ S and x ∈ A(S), to a pair 〈n.x,n〉 ∈ ((X ( A)⊗X)(S),

where n.x ∈ (X ( A)(S \ {n}) is the element which under the isomorphism (X ( A)(S \ {n}) ∼= A(S)

corresponds to x. For example, if A is the presheaf of (linear) λ -terms as in [107], then 〈n,x〉 is a pair

of a term x and a variable n, and n.x is the α-equivalence class of x with respect to n. The map η ′ is

therefore just like the familiar binding operation in the Schanuel topos. In [107, 90], the emphasis is on

viewing X ( (−) as a right adjoint to −⊗X , corresponding to the Π⊗-part of the binding structure.

The Σ⊗-part of the binding structure, however, does not appear explicitly in [107]. Still, Tanaka uses

the fact that X ( (−) has a right adjoint to obtain that X ( (−) preserves colimits. The existence of

this right adjoint is a consequence of the above binding structure, as we observed in Proposition 10.1.3.

The substitution monoidal structure studied in [107, 90, 108] and also in [30] does not, however, appear

to be immediately related to our binding structure. This is most likely due to a conceptual difference,

since we study the properties of binding and names, while in loc. cit. the properties of substitution for

syntax with variable binders are studied.

10.4 Non-instances

We conclude this chapter with a discussion of categories that are frequently being used to model abstract

syntax with binders but that are not instances of our definition of binding structure.

Fiore, Plotkin & Turi [30] and Hofmann [49] model abstract syntax with variable binders in the

category SetsF, where F is the category of finite sets and all functions between them. The monoidal

structure used there is the cartesian product × and the type of variables V is the presheaf V (S) = S. The

triple (SetsF,×,V ), however, is not a category with binding structure. This emphasises the point that

a category with binding structure contains more structure than just a representation of α-equivalence

classes. The category SetsF is very well-suited for representing α-equivalence classes and working

with substitution. It therefore supports the convention 2.1.12 of the BVC, given at the beginning of this

chapter. For many applications, supporting just this convention is sufficient, and SetsF can be used as

a simple semantics for such applications. The conventions 2.1.13 and 2.1.14, however, are not satisfied

by SetsF. In the internal language of this category, working with α-equivalence classes is not the same

as working with specific instances of these classes. The reason for this is that subobjects must be

closed under arbitrary renamings, and so in particular under non-injective ones. This problem has led

Hofmann [49] to give a model of the Theory of Contexts [51] in which the terms are interpreted in SetsF

but the logic is interpreted in SetsI, where the category I is the restriction of F to injective functions.

To see that (SetsF,×,V ) is not a category with binding structure, note first that, for the cartesian

product, the simple monoidal sums and products are isomorphic to the normal sums and products,

that is we have Σ
×
V
∼= ΣV and Π

×
V
∼= ΠV . It can then be seen that there is no isomorphism ΣV ∼= ΠV

because we have (ΣVV ) ∼= (V ×V ) and (ΠVV ) ∼= (V ⇒ V ) ∼= (1 +V ), see [30], and, at stage {x},
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this gives (V ×V )({x}) = {〈x,x〉} 6∼= {κ1(�),κ2(x)} ∼= (1 +V )({x}). Intuitively, the reason why SetsF

fails to have binding structure is that is does not have a good binding operation v.x, that is a morphism

(−).(−) : V ×A → (V ⇒ A) satisfying reasonable conditions for binding. Suppose we had such an

operation in SetsF. For different variables v and w we would expect v.v to be different from v.w. The

isomorphism (V ⇒ V ) ∼= (1 +V ) is such that the term v.v should correspond to the left summand in

1 +V and the term v.w should correspond to the right summand. However, in SetsF all maps must be

natural with respect to all functions in F, in particular those functions that identify v and w, and this

would imply v.v = v.w.

Another category used frequently to model variable binders is the functor category SetsI, where I
is the category of finite sets with injections, see e.g. [49, 31]. The presheaf of variables V is defined

by V (S) = S. The monoidal exponent V −∗ (−) used to model variable binders arises by considering

the monoidal structure ∗ on SetsI that is given by lifting of the disjoint sum monoidal structure on I by

means of Day’s construction [27].

(A∗B)(S) =
∫ S1,S2

I(S1 +S2,S)×A(S1)×B(S2)

The following two lemmas show that this monoidal structure ∗ is not well-behaved enough to make

(SetsI,∗,V ) a category with bindable names.

Lemma 10.4.1. There exists an object A in SetsI for which the canonical map A ∗V → A×V is not

monomorphic.

Proof. Let A be the presheaf defined by

A(S) =

{
{1,2} if S = /0,

{1} otherwise,

with morphism action defined by A( f )(1) = 1, A( /0 � /0)(2) = 2 and A( /0 � S)(2) = 1, where S 6= /0 and

f is an arbitrary injection. For any variable x, the set (A∗V )({x}) defined by the above coend contains at

least two different elements, namely those given by the equivalence classes [id : /0+{x}� {x},1,x] and

[id : /0+{x}� {x},2,x]. That these equivalence classes do not coincide can be seen by observing that

V ( /0) = /0 implies that the set I(S1 +S2,{x})×A(S1)×V (S2) is non-empty if and only if S1 is empty. The

set (A×V )({x}), on the other hand, contains just one element, namely 〈1,x〉. Hence, there can be no

monomorphism from the set (A∗V )({x}) to (A×V )({x}). Since monomorphic natural transformations

are pointwise monomorphisms, the map A∗V → A×V cannot be monomorphic.

The next lemma shows that Proposition 10.2.5 does not hold in SetsI.

Lemma 10.4.2. In SetsI the quantifiers ∃π̇1 and ∀π̇1 along π̇1 : (−)∗V → (−) do not agree.

Proof. The equality of quantifiers ∃π̇1 = ∀π̇1 holds if and only if the functor π̇∗1 : Sub(A)→ Sub(A∗V )

is an isomorphism of posets for all objects A, see [72, Lemmas 2.1 and 2.2]. To see that π̇∗1 is not always
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an isomorphism in SetsI, consider the object A defined by

A(S) =

{
/0 if S = /0,

{1} otherwise,

with morphism action defined by A( f )(1) = 1 for all injections f . We show that π̇∗1 cannot be monomor-

phic. Since pullbacks are taken pointwise, we have, for any subobject m of A and any stage S, the

following pullback.

π̇∗1 B(S)
_� //
��

π̇∗1 mS

��

B(S)
��
mS

��
(A∗V )(S)

(π̇1)S

// A(S)

The set (A∗V )({x}) is empty, since, because of A( /0) =V ( /0) = /0, the set I(S1 +S2,{x})×A(S1)×V (S2)

in the coend definition of ∗ is empty. By the above pullback, this implies π̇∗1 B({x}) = /0. Now consider

the two subobjects id : A � A and m : B � A, where

B(S) =

{
/0 if |S| ≤ 1,

{1} otherwise,

and m is the evident inclusion. These two subobjects of A are mapped by π̇∗1 to the same subobject

of A ∗V . This is so because the subobjects differ only in their value at stages S with |S| = 1, and we

have seen above that, at such stages, π̇∗1 takes both subobjects to the empty set. This shows that π̇∗1 is

not monomorphic and thus implies the assertion.

The counterexamples in the above lemmas arguably show that the presheaves in SetsI do not quite model

the intuition that the elements of a presheaf A at stage S consists of all the elements whose free names

are contained in S. The counterexamples violate the following two reasonable requirements. First, if we

take two different elements whose free names are contained in S and consider them as elements with

more names S + T then they should still be different. Second, suppose we have an element M whose

free names are contained in S+{x} and which has the property that, for all sets T of new names and all

elements y ∈ T , we have M = [y/x] ·M at stage S +{x}+T . Since this means that in M we can replace

the name x with an arbitrary new name without changing M, it is reasonable to require that the free

names of M are contained in S alone. The two reasonable requirements that we have just sketched can

be enforced by restricting to the subcategory of SetsI consisting of sheaves with respect to the atomic

topology on Iop. The resulting category is equivalent to the Schanuel topos.

Although the above two lemmas show that (SetsI,∗,V ) is not a category with bindable names, it

could still be a category with binding structure. However, the only description of the monoidal struc-

ture ∗ we have is the above coend. This description is hard to work with, which makes proving or

disproving that (SetsI,∗,V ) is a category with binding structure quite complicated. This is another

reason for preferring the Schanuel topos to SetsI: the monoidal structure ∗ is much easier to work with.
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As in the case for SetsF, that SetsI is not a category with bindable names is not a problem for

applications that need only part of structure of a category with bindable names. In SetsI, α-equivalence

classes can be represented using Π∗ and subobjects need only be closed under injective renaming. This

is sufficient for many applications, e.g. as in [49].

10.5 Further Work

One obvious direction for further work is to look for more instances of categories with binding structure

and with bindable names. One likely candidate is a version of the Schanuel topos in which the countably

infinite object of names is replaced by an uncountable one and in which elements are allowed to have

countable support. This category has an object of infinite streams of pairwise distinct names, as studied

in [36]. Since this object has essentially simple transitive action, it is reasonable to expect it to form

part of a binding structure. There are many other categories that may also be categories with binding

structure or with bindable names, such as the categories of containers of Abbott et al. [1] or the domain

theoretic categories of Shinwell & Pitts [101].

Beyond looking for more instances, we think that the general theory of categories with binding

structure deserves further study. An interesting question is whether it is possible to freely add binding

structure or bindable names to a given category. For example, it may be the case that the Schanuel topos

can be constructed by freely adding bindable names to the topos of sets. Perhaps the construction of the

models in Chapter 3 can serve as a starting point for such a free construction. Apart from theoretical

interest, such a construction would have interesting applications. For instance, if we could add bindable

names to the term model of a dependent type theory, then the interpretation of our type theory in this

model would amount to a translation of the bunched type theory with names into normal type theory.

Another interesting direction for further work is to study how categories with bindable names relate

to FM-style approaches that are based on swapping. In the next chapter we give some evidence that

categories with bindable names contain a swapping operation. However, we are not yet able to prove all

the equations such a swapping operation should satisfy. For further work, we ask the question whether

or not any category with bindable names contains a natural transformation σ : (N×N)× (−) → (−)

that satisfies the following equations for all generalised elements m,n : N, x : A and y : B.

σA〈〈m,m〉,x〉= x

σA〈〈m,n〉,x〉= σA〈〈n,m〉,x〉

σA〈〈m,n〉,σA〈〈m,n〉,x〉〉= x

σN〈〈m,n〉,m〉= n

σA×B〈〈m,n〉,〈x,y〉〉= 〈σA〈〈m,n〉,x〉,σB〈〈m,n〉,y〉

σA ◦ ı(N×N),A = π̇2 : (N×N)∗A→ A

In the Schanuel topos and in AssS(P), σ can be defined by the swapping action σA〈〈m,n〉,x〉= (m n) · x.
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Type Theory with Names and Binding

In the chapter on categories with bindable names we have shown how name binding can be expressed

in terms of simple monoidal sums Σ∗ and products Π∗. On the basis of this definition, we now extend

the syntax of the type theory with constructs for names and name-binding. We add a type of names and

also hidden-name types, which make available the structure of categories with bindable names.

11.1 Names

First, we extend the type theory with a type of names N having decidable equality. We write short BTN
for the resulting type theory BT(∗,1,Σ,Π,Π∗,B∗(M:A),Σ∗,N).

(N-TY) ` N Type

Γ ` P : N×N
Γ, p : N×N ` A Type

Γ, n : N ` M : A[〈n,n〉/p]

Γ, q : N∗N ` N : A[ı(q)/p]
(ifeq-I)

Γ ` ifeq P then n.M else q.N : A[P/p]

Γ ` R : N
Γ, p : N×N ` A Type

Γ, n : N ` M : A[〈n,n〉/p]

Γ, q : N∗N ` N : A[ı(q)/p]
(ifeq-THEN)

Γ ` ifeq 〈R,R〉 then n.M else q.N = (M[R/n]) : A[〈R,R〉/p]

Γ ` Q : N∗N
Γ, p : N×N ` A Type

Γ, n : N ` M : A[〈n,n〉/p]

Γ, q : N∗N ` N : A[ı(q)/p]
(ifeq-ELSE)

Γ ` ifeq ı(Q) then n.M else q.N = (N[Q/q]) : A[ı(Q)/p]

We write short (ifeq P then M else N) for (ifeq P then n.M else q.N) if n 6∈ FV (M) and q 6∈ FV (N)

hold. We omit the evident congruence rules.

276
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11.1.1 Example

To give an example for the use of comparable names, we define a function that removes a name from a

list of names. It type is

` remove : Πn : N.LN→
(
LN∗(n:N)),

where (` LN Type) is an inductively defined type of lists of names. The freshness information in the

type of remove already contains the information that the name n does not appear in the result list. In

Section 12.1 we make essential use of the freshness information in the type of remove when we define

a function that computes the free variables of a term. There the freshness information will be needed in

order to apply rule (Σ∗-E).

The type LN is defined inductively with two constructors

` nil : LN, ` cons : N→ LN→ LN,

and the standard recursion principle

Γ, x : LN ` A Type

Γ ` M : A[nil/x]

Γ ` N : Πn : N.Πy : LN.A[y/x]→ A[cons n y/x]
(LN-REC)

Γ ` recA(M,N) : Πx : LN.A

with the standard equations.

The term remove is defined by induction on its second argument. In the recursion principle for LN

we take the type A to be (n : N ` LN∗(n:N) Type), omitting the unused variable x. Given the empty list

as argument, (remove n) should return the empty list. Therefore, we define the base case by the term in

the conclusion of the following derivation.

` nil : LN
` N Type

n : N ` n : N
�∗n : N ` nil∗n : LN∗(n:N)

n : N ` nil∗n : LN∗(n:N)

Given the argument (cons m y), the function (remove n) should return (cons m (remove n y)) if m 6= n

holds and (remove n y) if m = n holds. Of course, the terms in this informal explanation are not typeable,

because the type of remove contains a freefrom type. We start the precise derivation of the recursion

step from the root as follows.

n : N, m : N, y : LN, r : N ` M : LN∗(fst(〈r,r〉):N) → LN∗(snd(〈r,r〉):N)

n : N, m : N, y : LN, q : N∗N ` N : LN∗(π̇1(q):N) → LN∗(π̇1(q):N)

n : N, m : N, y : LN ` ifeq 〈n,m〉 then r.M else q.N : LN∗(fst(〈n,m〉):N) → LN∗(snd(〈n,m〉):N)

n : N, m : N, y : LN ` ifeq 〈n,m〉 then r.M else q.N : LN∗(n:N) → LN∗(n:N)

n : N, m : N ` λy : LN. ifeq 〈n,m〉 then r.M else q.N : LN→ LN∗(n:N) → LN∗(n:N)

n : N ` λm : N.λy : LN. ifeq 〈n,m〉 then r.M else q.N : N→ LN→ LN∗(n:N) → LN∗(n:N)
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The term M corresponds to the case where n = m and N corresponds to the case where n 6= m. As

described informally above, M should be the identity.

M def= λh : LN∗(fst(〈r,r〉):N).h.

We come to the definition of N. Because there are derivations

m : N ` m : N n : N ` n : N
m : N∗n : N ` m∗n : N∗(n:N)

(m : N∗n : N), h : LN∗(n:N) ` m∗n : N∗(n:N) (m : N∗n : N), h : LN∗(n:N) ` h : LN∗(n:N)

(m : N∗n : N), h : LN∗(n:N) ` join(m∗n,h) : (N×LN)∗(n:N)

and

m : N, x : LN ` cons m x : LN n : N ` n : N
(m : N, x : LN)∗n : N ` (cons m x)∗n : LN∗(n:N)

we can use (FF-E) to derive

(n : N∗m : N), h : LN∗(n:N) ` let join(m∗n,h) be 〈m,x〉∗n in (cons m x)∗n : LN∗(n:N)

n : N∗m : N ` λh : LN∗(n:N). let join(m∗n,h) be 〈m,x〉∗n in (cons m x)∗n : LN∗(n:N) → LN∗(n:N)

(for convenience we use the pattern 〈m,x〉 rather than projections in this term). We write N′ as an

abbreviation for the term in the conclusion of this derivation. The term N′ is essentially the definition

of N, we just have to put it in the right context. This can be done as follows.

n : N∗m : N ` N′ : LN∗(n:N) → LN∗(n:N)

n : N∗m : N ` N′ : LN∗(π̇1(n∗m):N) → LN∗(π̇1(n∗m):N)

q : N∗N ` let q be n∗m in N′ : LN∗(π̇1(q):N) → LN∗(π̇1(q):N)

n : N, m : N, y : LN, q : N∗N ` let q be n∗m in N′ : LN∗(π̇1(q):N) → LN∗(π̇1(q):N)

We define N to be the term in the conclusion of this derivation.

With these definitions of the base and recursion cases for the definition of remove, we have

n : N ` rec(LN∗(n:N))(nil∗n,λm : N.λy : LN. ifeq 〈n,m〉 then r.M else q.N) : LN→ LN∗(n:N)

` λn : N. rec(LN∗(n:N))(nil∗n,λm : N.λy : LN. ifeq 〈n,m〉 then r.M else q.N) : Πn : N.LN→ LN∗(n:N)

and we define remove to be the term in the conclusion.

To give an example of an evaluation of remove, we show the simple equation

m : N∗n : N ` (remove n (cons m (cons n nil)) = (cons m nil)∗n : LN∗(n:N).
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In context m : N∗n : N, we have the following chain of equations.

remove n (cons m (cons n nil))

= (ifeq 〈n,m〉 then r.M else q.N) (remove n (cons n nil)) by defn. and rec-eqn.

= (ifeq 〈n,m〉 then r.M else q.N) (nil∗n) see below

= (ifeq ı(n∗m) then r.M else q.N) (nil∗n) by (∗-β )

= (N[n∗m/q]) (nil∗n) by (ifeq-ELSE)

= (let n∗m be n∗m in N′) (nil∗n) by defn.

= N′ (nil∗n) by (∗-β )

= (λh : LN∗(n:N). let join(m∗n,h) be 〈m,x〉∗n in (cons m x)∗n) (nil∗n) by defn.

= let join(m∗n,nil∗n) be 〈m,x〉∗n in (cons m x)∗n by (Π-β )

Now we show that, also in context m : N∗n : N, the equality join(m∗n,nil∗n) = 〈m,nil〉∗n holds. Note that

both sides are typeable. We show this equality using the rule (FF-INJECT), whose applicability can be

seen as follows.

let join(m∗n,nil∗n) be z∗n : (N×LN)∗(n:N) in z

= let join(m∗n,nil∗n) be z∗n : (N×LN)∗(n:N) in 〈fst(z),snd(z)〉 by (Σ-η )

= 〈let join(m∗n,nil∗n) be z∗n in fst(z), let join(m∗n,nil∗n) be z∗n in snd(z)〉 by CC

= 〈m,nil〉 by (FF-JOIN-EQ1/2)

= let 〈m,nil〉∗n be z∗n : (N×LN)∗(n:N) in z by (FF-β )

Since using (FF-INJECT) we obtain join(m∗n,nil∗n) = 〈m,nil〉∗n, we can continue the calculation of

(remove n (cons m (cons n nil))) = (cons m nil)∗n as follows.

let join(m∗n,nil∗n) be 〈m,x〉∗n in (cons m x)∗n

= let 〈m,nil〉∗n be 〈m,x〉∗n in (cons m x)∗n by congruence

= (cons m nil)∗n (FF-β )

As this is the required value, it just remains to show the equation (remove n (cons m nil)) = nil∗n that

we have used above. We calculate as follows.

remove n (cons n nil)

= (ifeq 〈n,n〉 then r.M else q.N) (remove n nil) by defn.

We use the equation (remove n nil) = nil∗n, which is immediate by definition.

= (ifeq 〈n,n〉 then r.M else q.N) (nil∗n)

= (M[n/r]) (nil∗n) by (ifeq-THEN)

= nil∗n by defn. and (Π-β )
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We have thus shown the asserted equation.

The definition of remove demonstrates a number of features of the type theory. First, the derivation

of n : N ` nil∗n : LN∗(n:N) shows that a closed constant is provably fresh for any name. Second, the

constant join is used essentially in the derivation. As a consequence, we have to deal with the equations

for join in order to establish equations of remove. In the above example, we have made essential use

of (FF-INJECT) in order to obtain join(m∗n,nil∗n) = 〈m,nil〉∗n. Since semantically the rule (FF-INJECT)

amounts to the monoidal structure ∗ being strict affine, this further motivates our focus on strict affine

monoidal structures in the definition of the type theory. Lastly, the definition of remove shows how

freefrom types can be used to establish a freshness property inductively. We could not have defined the

term remove of that type without using freefrom types to establish a freshness assertion inductively.

11.2 Interpretation

For the interpretation of names we assume the structure of a category with bindable names. Furthermore,

in order to be able to work with the isomorphism [δ , ı] : N+(N∗N)→ N×N from Proposition 10.2.2,

we assume that the semantics models strong binary coproducts [56, §10.5]. Strong binary coproducts

can, in a fibration equivalent to a codomain fibration, be constructed from universal coproducts + on the

base category [56, §10.5]. We have shown in Chapter 3 that both the Schanuel topos and AssS(P) have

this structure.

The type N is interpreted by the object of names in the category with bindable names. For the

interpretation of the term ifeq, we make use of the isomorphism [δ , ı] : N+(N∗N)→ N×N. This map

corresponds to the substitution

〈unpack z as (κ1(n) in 〈n,n〉,κ2(q) in ı(q))/p〉 : (z : N+(N∗N))→ (p : N×N),

in which we use the notation of [56, §10.5] for binary coproducts. Write now R(z) for the term

(unpack z as (κ1(n) in 〈n,n〉,κ2(q) in ı(q))) in this substitution. The equations for binary coprod-

ucts give us R(κ1(n)) = 〈n,n〉 and R(κ2(q)) = ı(q). The interpretation of the rule (ifeq-I) is then given

by the following derivation.

Γ, p : N×N ` A Type
Γ, n : N ` M : A[〈n,n〉/p]

Γ, n : N ` M : A[R(κ1(n))/p]
Γ, q : N∗N ` N : A[ı(q)/p]

Γ, q : N∗N ` N : A[R(κ2(q))/p]
Γ, z : N+(N∗N) ` unpack z as (κ1(n) in M,κ2(q) in N) : A[R(z)/p]

Γ, p : N×N ` ifeq P then n.M else q.N : A

The last step in this derivation is given by reindexing along the inverse of [δ , ı]. This means, that the

term (ifeq P then n.M else q.N) is defined as the term (unpack z as (κ1(n) in M,κ2(q) in N)) reindexed

along [δ , ı]−1. With this definition it is straightforward to establish the equations for ifeq.
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11.3 Hidden-name Types

The main feature of a category with bindable names is the definition of name-binding in terms of an

equivalence of fibrations. In Chapter 10, we have seen that this equivalence amounts to a certain iso-

morphism i : Σ∗N →Π∗
N. In this section, we present hidden-name types as a syntax for this isomorphism

and thus for name-binding.

Because of the isomorphism, the elements of Σ∗n : N.A (respectively Π∗n : N.A) can be viewed both

as pairs with hidden names, i.e. elements of Σ∗n : N.A, and as partial functions defined just on fresh

names, i.e. elements of Π∗n : N.A. Hidden-name types make available this dual view. The elements of

the hidden-name type Hn.A may be viewed both as elements of Σ∗n : N.A and Π∗n : N.A. This duality

of H-types is implemented by giving them the rules from both Σ∗N and Π∗
N.

We write BTN(H) for the type theory BTN with hidden-name types, as defined by the following

rules and equations.

11.3.1 Rules for Hidden-name Types

Formation

Γ∗n : N ` A Type
(H-TY)

Γ ` Hn.A Type

Introduction

Γ∗ n : N ` M : A
(H-I-Π∗)

Γ ` λHn.M : Hn.A

n : N ` A Type Γ ` M : N Γ ` N : A [M/n]
(H-I-Σ∗)

Γ ` bindH
(n)A(M,N) : (Hn.A)∗(M:N)

Elimination

Γ ` M : Hn.A ∆ ` N : N
(H-E-Π∗)

Γ∗∆ ` appH
(n)A(M,N) : A [N/n]

Γ ` M : Hn.A (Γ∗n : N), x : A ` N : B∗(n:N)
(H-E-Σ∗)

Γ ` let M be n.x : Hn.A in N : B

The isomorphism i : Σ∗N → Π∗
N is built into the terms of these rules. For example, we can interpret

Hn.A as Σ∗n : N.A. Then, the terms bindH
(n)A(M,N) and (let M be n.x : Hn.A in N) are interpreted

as the corresponding terms for Σ∗-types, while the terms λHn.M and appH
(n)A(M,N) are interpreted as

i−1(λ∗n : N.M) and app∗(n:N)A(i(M),N) respectively. Just as well, we can interpret Hn.A as Π∗n : N.A,

but then the isomorphism is built into the terms for Σ∗.

In categorical terms, this definition of hidden-name types corresponds to the definition of a functor H

with fibred adjunctions H aWN a H in Proposition 10.1.2.
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11.3.1.1 Equations for Hidden-name Types

The equations for hidden-name types must explain the behaviour of the introduction and elimination

terms. When looked at in isolation, the terms coming from Π∗ (respectively Σ∗) should behave as they

do for Π∗-types (respectively Σ∗-types). Therefore, we add the equations from both Π∗ and Σ∗ to the

equations for H-types. We refer to them as (H-β -Π∗), (H-η -Π∗), (H-β -Σ∗) and (H-η -Σ∗) but do

not repeat them here. Furthermore, hidden-name types allow the introduction and elimination terms

from Π∗ and Σ∗ to be mixed. Therefore, we have to add equations explaining such mixed use of Π∗

and Σ∗. These interaction equations are precisely what the commuting triangles in Proposition 10.1.2

amount to.

Interaction Equations

Equations from the left triangle in 10.1.2

n : N ` A Type Γ ` N : N Γ ` M : A[N/n]
(H-β -Σ∗Π∗)

Γ ` let bindH(N,M) be x∗n in x@Hn = M : A[N/n]

n : N ` A Type Γ ` N : N Γ ` M : (Hn.A)∗(N:N)

(H-η -Σ∗Π∗)
Γ ` M = bindH(N, let M be x∗n in x@Hn) : (Hn.A)∗(N:N)

Equations from the right triangle in 10.1.2

` A Type Γ ` M : A
(H-β -Π∗Σ∗)

Γ ` let λHn.M∗n be n.x in x = M : A

` A Type Γ ` M : Hn.A∗(n:N)
(H-η -Π∗Σ∗)

Γ ` M = λHn.(let M be n.x in x)∗n : Hn.A∗(n:N)

We remark that if we forget about freefrom types, (H-β -Σ∗Π∗) and (H-η -Σ∗Π∗) amount to the equa-

tions (n.x)@n = x and n.(x@n) = x, which appear as (43) and (47) in [38].

Equations from the naturality of i : Σ∗N →Π∗
N

Finally, we add the following equation deriving from the naturality of the isomorphism i.

Γ ` M : Hn.A (Γ∗n : N), x : A ` N : B (Γ∗n : N), y : B ` R : C∗(n:N)
(H-NAT)

Γ ` let (λHn.N [M@Hn/x]) be n.y in R = let M be n.x in R[N/y] : C

Adding an equation for the naturality of i appears to be necessary, as functoriality of H is available in

the syntax in two seemingly unrelated ways, namely both with the Π∗-view and the Σ∗-view of H-types.

We remark that (H-NAT) is not the most natural way of stating the naturality of the isomorphism. A

more natural choice would be the following equation.

Γ ` M : Hn.A n : N ` B Type (Γ∗n : N), x : A ` N : B
(H-NAT′)

Γ ` λHn.N[M@Hn/x] = (let M be n.x in bindH(n,N)) : Hn.B



Chapter 11. Type Theory with Names and Binding 283

Even though this rule is more natural, the rule (H-NAT) is more useful in applications. It is likely that,

due to the restriction to closed freefrom types, the rule (H-NAT) is not derivable from (H-NAT′). Note,

for example, the assumption n : N ` B Type in (H-NAT′). Ideally, we would like to replace it with the

more general Γ ∗ n : N ` B Type, but then the right-hand side of the equation would not be typeable.

With open freefrom types, however, rule (H-NAT) would be derivable as follows.

let (λHn.N[M@Hn/x]) be n.y in R

= let (let M be n.x in bindH(n,N)) be n.y in R by (H-NAT′)

= let M be n.x in (let bindH(n,N) be z∗n in (let z be n.y in R)∗n) by CC

= let M be n.x in (R[N/y]) by (H-β -Σ∗)

It is interesting to note that a freefrom type appears in the commuting conversion step.

11.3.2 Interpretation

The only rule whose interpretation is not yet given in the above discussion is the rule (H-NAT). We

sketch its interpretation here. We consider the special case of the rule where M is a variable z. The

general case follows by substitution. The interpretation of the premises of (H-NAT) yields morphisms

N : A→ B and R : B→WNC in EΓ∗N. Consider the following diagram in EΓ.

Σ∗NA
Σ∗NN

//

i
��

Σ∗NB
Σ∗NR
//

i
��

Σ∗NWNC
εC // C

Π∗
NA

Π∗
NN
// Π∗

NB

The composite of the top row is the adjoint transpose of R ◦N : A →WNC, and so corresponds to the

term (let z be n.x in R[N/y]). Consider the composite εC ◦Σ∗NR◦ i−1 ◦Π∗
NN ◦ i. The map εC ◦Σ∗NR corre-

sponds to the term (let u be n.y in R). Since the map Π∗
NN corresponds to the term λ∗n : N.N[z@n/x],

and by the definition of the terms for H-types, precomposing εC ◦Σ∗NR with i−1 ◦Π∗
NN ◦ i amounts to

substituting λHn.N[z@Hn/x] for u in (let u be n.y in R). Hence, the composite corresponds to the term

(let (λHn.N[z@Hn/x]) be n.y in R). Since the diagram commutes by naturality of i, this shows the

equation (H-NAT).

11.3.3 Examples

We give examples to illustrate the use of hidden-name types.

11.3.3.1 Unique choice of fresh names

In the first example, we derive a term for the unique choice of fresh names. By the choice of fresh names

we mean that given a term M that makes use of a fresh name n, we can form a term new n.M, whose
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denotation is obtained by first choosing an arbitrary fresh name for n and then taking the value of M.

Since we want our type theory to be free of side-effects, we must make sure that the choice of the fresh

name n has no effect, i.e. we consider unique choice of fresh names only. This absence of side-effect can

be ensured using freefrom types. An introduction rule for unique choice of names can be formulated as:

Γ ` A Type Γ∗n : N ` M : A∗(n:N)

Γ ` new n.M : A

Essentially, this rule appears in the type system of FreshML 2000. It can be derived by the following

derivation, in which we make essential use of the fact that H can be viewed both as Σ∗ and as Π∗.

...
Γ∗n : N ` unit : 1

(H-I-Π∗)
Γ ` λHn.unit : Hn.1

Γ∗n : N ` M : A∗(n:N)
(WEAK)

(Γ∗n : N), u : 1 ` M : A∗(n:N)
(H-E-Σ∗)

Γ ` let (λHn.unit) be n.u in M : A

We take (new n.M) as an abbreviation for the term in the conclusion of this derivation.

Semantically, the unique choice of new names is essentially given by the counit εA : HWNA → A of

the adjunction H aWN, which corresponds to the term z : Hn.
(
A∗(n:N)) ` let z be n.x in x : A. We shall

see below that (new n.M) is provably equal to (let (λHn.M) be n.x in x).

We derive some useful equations for new. The first equation states that the term (let M be n.x in N)

can be implemented using new.

Γ ` M : Hn.A (Γ∗n : N), x : A ` N : B∗(n:N)

Γ ` let M be n.x in N = new n.N[M@Hn/x] : B

This rule corresponds the computational intuition, as realised by AssS(P), that (let M be n.x in N)

first instantiates the α-equivalence class M at a fresh name n, then binds the result to x and finally

computes N. The rule follows directly from (H-NAT):

Γ∗n : N ` unit : 1
Γ ` λHn.unit : Hn.1

Γ ` M : Hn.A
Γ∗n : N ` M@Hn : A

(Γ∗n : N), u : 1 ` M@Hn : A (Γ∗n : N), x : A ` N : B∗(n:N)

Γ ` let (λHn.(M@Hn)[(λHn.unit)@Hn/u]) be n.x in N = let (λHn.unit) be n.u in N[M@Hn/x] : B

Γ ` let M be n.x in N = let (λHn.unit) be n.u in N[M@Hn/x] : B
Γ ` let M be n.x in N = new n.N[M@Hn/x] : B

As a special case of this equation, we obtain the equality (new n.M) = (let (λHn.M) be n.x in x).

Next, we derive an equation that states that new behaves like a choice of fresh name. This means

that, given M of type A∗(n:N), the term (new n.M) of type A denotes the A-part of M.

Γ∗n : N ` M : A∗(n:N)

Γ∗n : N ` M = (new n.M)∗n : A∗(n:N)
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First, using (H-η -Σ∗Π∗), we derive:

n : N ` A∗(n:N) Type Γ∗n : N ` n : N

Γ∗n : N ` M : A∗(n:N)

Γ ` λHn.M : Hn.A∗(n:N)

Γ∗n : N ` (λHn.M)∗n :
(
Hn.A∗(n:N))∗(n:N)

Γ∗n : N ` (λHn.M)∗n = bindH(n, let (λHn.M)∗n be x∗n in x@Hn) :
(
Hn.A∗(n:N))∗(n:N)

By (FF-β ), (H-β -Π∗) and congruence, the right-hand side of this equation equals bindH(n,M). Using

this, the required equation can be shown as follows.

(new n.M)∗n = (let (λHn.M) be n.x in x)∗n
special case above

= let (λHn.M)∗n
be y∗n in (let y be n.x in x)∗n by (FF-β )

= let bindH(n,M) be y∗n in (let y be n.x in x)∗n above equation

= M by (H-β -Σ∗)

It should be said that the derivation of this equation has a very simple semantic correspondence. It

follows from the commuting triangle

WNΣ∗NWN
WNε //

WNiWN
��

WNA

WNΠ∗
NWN

ε ′WN

::uuuuuuuuu

in which i, ε and ε ′ are defined as in Section 10.1. Similar triangles commute for the other units and

counits. It can be shown that if either of the two triangles in Proposition 10.1.2 commutes then so does

the triangle above. In the syntax, this is reflected by the fact that the equation M = (new n.M)∗n can be

derived using the rule (H-η -Σ∗Π∗), as shown above, but it also follows easily using (H-β -Π∗Σ∗).

Another equation for new states that vacuous choice of a fresh name has no effect.

` A Type Γ ` M : A
Γ ` new n.(M∗n) = M : A

This equation follows immediately from (new n.(M∗n) = let (λHn.M∗n) be n.x in x), which we have

shown above, together with equation (H-β -Π∗Σ∗).

As a final equation for new, we show that the abstraction λHn.M can be implemented using new and

the Σ∗-view of hidden-name types. Given Γ∗n : A ` M : B, where B is a closed type, the equation

λ
Hn.M = new n.bindH(n,M)

is derivable. Such an implementation of λHn.M has been used by Gabbay, who in [36] frequently

uses (new n.bindH(n,M)) to the effect of a lambda-abstraction. But note that λHn.M is simpler than
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(new n.bindH(n,M)), since it does not require a proof that the choice of the fresh name has no effect.

The equation can be shown as follows:

λ
Hn.M = let (λHn.M) be n.x in (let bindH(n,x) be z∗n in z∗n) by (H-η -Σ∗)

= let (λHn.M) be n.x in bindH(n,x) by (FF-η )

= new n.bindH(n,M) see above

11.3.3.2 Extensionality of hidden-name types

Because of the isomorphism Σ∗N → Π∗
N, on which hidden-name types are based, the functions of type

Π∗n : N.A are completely determined by their value at a single fresh name. Making essential use of

the interaction equations for hidden-name types, we show functional extensionality of Hn.A, and thus

also of Π∗n : N.A. We construct an equality proof p as in the following sequent, in which 'B denotes a

standard intensional identity type, see e.g. [47].

( f : Hn.A, g : Hn.A)∗m : N, e : ( f @Hm)'A[m/n] (g@Hm) ` p : f 'Hn.A g

The proof p is constructed by the following calculation.

f '(Hn.A) let f ∗m be x∗m in x by (FF-β )

'(Hn.A) let bindH(m, let f ∗m be y∗m in y@Hm) be x∗m in x by (H-η -Σ∗Π∗)

'(Hn.A) let bindH(m, f @Hm) be x∗m in x by (FF-β )

'(Hn.A) let bindH(m,g@Hm) be x∗m in x using assumption e

'(Hn.A) g as for f

Except for the step in which assumption e is used, these equations are in fact definitional equations.

A direct consequence of the above sequent is the following principle of functional extensionality.

( f : Hn.A, g : Hn.A, h : Hn.( f @Hn)'A (g@Hn))∗m : N ` q : f '(Hn.A) g

Even though the name m is not mentioned in the types of this sequent, it is used essentially in the term q.

The obvious way of getting a sequent that does not mention the name m is to use the unique choice of

fresh names to choose m freshly. But to do so we would have to show that q has type ( f '(Hn.A) g)∗(m:N),

and this is an open freefrom type.

11.3.3.3 Name-replacement and swapping

Another example of what we can do by mixing the two views of H as Σ∗ and Π∗ is a generic name

replacement. Suppose we have a term M of closed type A and a name n and we want to replace the

name n by a fresh name m in the value denoted by M. This name replacement can be implemented by

the term (n.M)@m. In words, we first bind the name n in M and then instantiate the result at the fresh
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name m. The intuition for binding and instantiation suggest that (n.M)@m denotes the term M with n

replaced by m. Formally, however, hidden-name types are just syntax for the structure of a category

with bindable names. So, is it justified to think of (n.M)@m as M with n replaced by m? In this

section we argue that this is the case, by giving examples that indicate that (n.M)@m behaves like such

a replacement.

We start by looking at the case where M is a name n, and derive the equation (n.n)@m = m. Let Γ

be a context and assume a name Γ ` n : N. In context Γ we can derive the following equations of terms

of type (Hn.N)∗(n:N).

bind(n,n) = bind(n,(λHm.m)@Hn) by (H-β -Π∗)

= bind(n, let (λHm.m)∗n
be x∗n in x@Hn) by (FF-β )

= (λHm.m)∗n
by (H-η -Σ∗Π∗)

Since (n.n) = (λHm.m) follows by definition of the abbreviation M.N, we have just shown the rule

Γ ` n : N
Γ ` n.n = λHm.m : Hn.N

The required equality (n.n)@Hm = m is now a direct consequence of this rule. Another consequence is

that we can show (n.n) = (m.m) for any two names Γ ` n : N and Γ ` m : N.

By almost exactly the same argument, we can also derive the equation

n : N∗m : N ` n.m = λ
Hn.m : Hn.N.

This shows that, for different names n and m, we have (n.m)@r = m.

Having shown that, on names, (n.M)@m behaves like a replacement operation, we give an exam-

ple to show that if M is non-primitive then it is possible to move the renaming operation inside the

subterms. We consider the case where M is a pair 〈x,y〉, and we show the equation (n.〈x,y〉)@m =

〈(n.x)@m,(n.y)@m〉, which would be expected of a name-replacement. We begin by deriving the fol-

lowing rule.

` A Type ` B Type Γ ` n : N Γ ` x : A Γ ` y : B

Γ ` n.〈x,y〉= λHm.〈(n.x)@Hm,(n.y)@Hm〉 : Hn.(A×B)

To this end, we first show that, under the assumptions of the rule, the following equation is derivable.

Γ ` bind(n,〈x,y〉) = let J be 〈u,v〉∗n in (λHm.〈u@Hm,v@Hm〉)∗n
: (Hn.A×B)∗(n:N)

The term J used in this sequent is defined below.

J def= join(bind(n,x),bind(n,y))
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We show this equation by the following calculation in context Γ.

bind(n,〈x,y〉)

= bind(n,〈let bind(n,x) be u∗n in u@Hn, let bind(n,y) be v∗n in v@Hn〉) by (H-β -Σ∗Π∗)

= bind(n,〈let J be 〈u,v〉∗n in u@Hn, let J be 〈u,v〉∗n in v@Hn〉) see below

= bind(n, let J be 〈u,v〉∗n in 〈u@Hn,v@Hn〉) by CC

= bind(let J be 〈u,v〉∗n in n, let J be 〈u,v〉∗n in 〈u@Hn,v@Hn〉) by (FF-η )

= let J be 〈u,v〉∗n in bind(n,〈u@Hn,v@Hn〉) by CC

= let J be 〈u,v〉∗n in bind(n,(λHm.〈u@Hm,v@Hm〉)@Hn) by (H-β -Π∗)

= let J be 〈u,v〉∗n in bind(n, let (λHm.〈u@Hm,v@Hm〉)∗n
be z∗n in z@Hn) by (FF-β )

= let J be 〈u,v〉∗n in (λHm.〈u@Hm,v@Hm〉)∗n
by (H-η -Σ∗Π∗)

The second step in this chain is valid because (FF-JOIN-EQ1) gives us the equation

Γ ` (let J be 〈u,v〉∗n in u∗n) = bind(n,x) : (Hn.A)∗(n:N),

using which the we have

let bind(n,x) be u∗n in u@Hn

= let (let J be 〈u,v〉∗n in u∗n) be u∗n in u@Hn by above eqn.

= let J be 〈u,v〉∗n in (let u∗n be u∗n in u@Hn) by CC

= let J be 〈u,v〉∗n in u@Hn by (FF-β )

We have thus shown the equation

Γ ` bind(n,〈x,y〉) = let J be 〈u,v〉∗n in (λHm.〈u@Hm,v@Hm〉)∗n
: (Hn.A×B)∗(n:N).

The rule that we set out to show is a consequence of this equation:

n.〈x,y〉= let bind(n,〈x,y〉) be z∗n in z by defn.

= let
(
let J be 〈u,v〉∗n in (λHm.〈u@Hm,v@Hm〉)∗n)

be z∗n in z by above eqn.

= let J be 〈u,v〉∗n in (let (λHm.〈u@Hm,v@Hm〉)∗n
be z∗n in z) by CC

= let J be 〈u,v〉∗n in (λHm.〈u@Hm,v@Hm〉) by (FF-β )

= λ
Hm.〈(let J be 〈u,v〉∗n in u)@Hm,(let J be 〈u,v〉∗n in v)@Hm〉 by CC

= λ
Hm.〈(let bind(n,x) be u∗n in u)@Hm,(let bind(n,y) be v∗n in v)@Hm〉 as above

= λ
Hm.〈(n.x)@Hm,(n.y)@Hm〉 by defn.

The above examples make it reasonable to expect that the operation taking M to (n.M)@m gives rise

to a kind of name-replacement operation in any category with bindable names. Due to the restriction to



Chapter 11. Type Theory with Names and Binding 289

closed freefrom types, however, it is likely that not all equations that we expect to hold for (n.M)@m

are derivable. Furthermore, the above examples show that even derivations of simple equations can be

quite tedious.

Gabbay and Pitts have argued [38, 86] that name-swapping enjoys better properties than name-

replacement. They argue that it is better to consider name-swapping (m n) ·M, which can be formed

regardless of whether or not m and n are fresh for M, as opposed to (n.M)@m, which can be formed

only if m is fresh for n.M. As should be expected, such a swapping (m n) ·M can be derived using

name-replacements (Shinwell’s FreshML 2000 used to contain such a definition as an example). In the

rest of this section, we define such a swapping function for closed types A.

n : N, m : N, x : A ` swap(n,m,x) : A

We start by comparing the names n and m. If they are equal then swapping should have no effect, so we

let swap(n,m,x) be x. If they are different, then it suffices to define a term S as in the following sequent.

(n : N∗m : N), x : A ` S : A

Informally, the term S can be described as “new r.(r.(n.((m.x)@r)@m))@n”. Notice that from this

informal description it is not immediately obvious that all the uses of @ are valid, i.e. that the names

that are applied are provably fresh for the respective bodies. A proof of this freshness information will

be contained in the term S, whose derivation we start as follows:

(n : N∗m : N∗ r : N), x : A∗(r:N) ` S′ : A∗(r:N)

((n : N∗m : N), x : A)∗ r : N ` S′[x∗r/x] : A∗(r:N)

(n : N∗m : N), x : A ` S def= new r.S′[x∗r/x] : A

For the definition of S′ we define two terms:

(n : N∗m : N∗ r : N), x : (Hr.A)∗(m∗r:N∗N) ` “x@r” : A∗(m:N)

(n : N∗m : N∗ r : N), x : A∗(r:N) ` “m.x” : (Hm.A)∗(m∗r:N∗N)

These terms intuitively amount to application (x@r) and binding (m.x) but in order for them to have

the types shown in the above sequents, they need to contain book-keeping constructs that rearrange the

freshness information appropriately. The term “x@r” is defined by the judgement

(n : N∗m : N∗ r : N), x : (Hr.A)∗(m∗r:N∗N) ` let x be z∗p in (let p be u∗v in (z@Hv)∗u) : A∗(m:N),

which is easily seen to be derivable. The term “m.x” is defined as the term in the conclusion of the

following derivation.

(n : N∗m : N), x : A ` bind(m,x) : (Hm.A)∗(m:N) (m : N∗ z : Hm.A)∗ r : N ` z∗m∗r : (Hm.A)∗(m∗r:N∗N)

((n : N∗m : N), x : A)∗ r : N ` let bind(m,x) be z∗m in z∗m∗r : (Hm.A)∗(m∗r:N∗N)

(n : N∗m : N∗ r : N), x : A∗(r:N) ` let x be x∗r in (let bind(m,x) be z∗m in z∗m∗r) : (Hm.A)∗(m∗r:N∗N)
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We are slightly imprecise in the last step of this derivation. In this step we use the elimination of

open freefrom types for notational convenience. Making use of the internalisation of contexts and join,

this step can be simulated by (a more complicated) derivation using only closed freefrom types.

Using the defined terms “x@r” and “m.x” we can define S′. Write Γ as an abbreviation for the

context (n : N ∗m : N ∗ r : N), x : A∗(r:N). The term that amounts to (r.(n.((m.x)@r)@m))@n is now

defined by successive substitution.

Γ ` “m.x” : (Hm.A)∗(m∗r:N∗N)

Γ ` “x@r”[“m.x”/x] : A∗(m:N)

Γ ` “n.x”[“x@r”[“m.x”/x]/x] : (Hn.A)∗(n∗m:N∗N)

Γ ` “x@m”[“n.x”[“x@r”[“m.x”/x]/x]/x] : A∗(n:N)

Γ ` “r.x”[“x@m”[“n.x”[“x@r”[“m.x”/x]/x]/x]/x] : (Hr.A)∗(r∗n:N∗N)

Γ ` “x@n”[“r.x”[“x@m”[“n.x”[“x@r”[“m.x”/x]/x]/x]/x]/x] : A∗(r:N)

We let S′ be the term in the last sequent.

It is straightforward to show that in the Schanuel topos and in the realizability category AssS(P)

the interpretation of swap is indeed the swapping function. We conjecture that, in any category with

bindable names, swap satisfies equations that make it a swapping action, cf. Section 10.5.

11.3.3.4 Freshness for hidden-name types

We end the section on hidden-name types with an example that we can only derive using open freefrom

types. We define a term M of the following type

n : N, x : Hm.
(
A∗(n:N)) ` M :

(
Hm.A

)∗(n:N)
,

where A is a closed type. Informally, the term expresses that in order for n to be fresh for y of type

Hm.A, it suffices for n to be fresh for all the values y@m. For abstract syntax, this corresponds to the

fact that a name is fresh for an α-equivalence class if it is fresh for all freshly named instances of that α-

equivalence class. Having such a term M is useful for defining elements of freefrom types by structural

recursion, see Section 12.1.3 for an example.

Recall from Section 8.2 that open freefrom types can be used to derive a term NB(z) that fits in the

rule below.

` B Type

m : N, n : N, z :
(
B∗(m:N))∗(n:N) ` NB(z) :

(
B∗(n:N))∗(m:N)

We use this term in the following derivation, in which we write R for N(Hm.A)(bindH(m,x)∗n).
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(m : N, x : A)∗n : N ` bindH(m,x)∗n :
(
(Hm.A)∗(m:N))∗(n:N)

(m : N, x : A)∗n : N ` R :
(
(Hm.A)∗(n:N))∗(m:N)

(m : N∗n : N), y : A∗(n:N) ` let y be x∗n in R :
(
(Hm.A)∗(n:N))∗(m:N)

(n : N∗m : N), y : A∗(n:N) ` let y be x∗n in R :
(
(Hm.A)∗(n:N))∗(m:N)

n : N, z : Hm.
(
A∗(n:N)) ` let z be m.y in let y be x∗n in R : (Hm.A)∗(n:N)

Informally, the above derivation amounts to the following reasoning. An element of Hm.
(
A∗(n:N)) can

be viewed as a pair m.y, where m is a fresh name and y is an element of A∗(n:N). From y we get an

element x of type A that is fresh for n. Now consider m.x. Since both m and x are fresh for n, it must be

that case that m.x is also fresh for n, i.e. m.x is an element of type (Hm.A)∗(n:N). Moreover, m is fresh

for m.x, so that the choice of the original fresh name m does not matter.

In the above derivation, we have used only the Σ∗-view of hidden-name types. Open freefrom types

are needed to use the Σ∗-elimination rule and to derive NHm.A(z). We do not know if it is possible to

give a corresponding derivation using only the Π∗-view of hidden-name types.

Going from (Hm.A)∗(n:N) to Hm.
(
A∗(n:N)), on the other hand, is possible using only the Π∗-view

of hidden-name types. This direction is given by the following term, which furthermore can be derived

using only closed freefrom types.

n : N, x : (Hm.A)∗(n:N) ` let x be y∗n in λ
Hm.(y@Hm)∗n : Hm.

(
A∗(n:N))

11.4 Swapping

Categories with bindable names, from which the all our type constructs for names and binding are

derived, are based on freshness, i.e. the monoidal structure ∗. In contrast, in FM set theory and related

work the central primitive is name-swapping. In this section we discuss informally how swapping fits

into the type theory.

Even though in Section 11.3.3.3 we have given some evidence that categories with bindable names

contain a name-swapping operation, at present we do not know whether the general swapping oper-

ation (m n) ·M is modelled by any category with bindable names (although we conjecture that it is).

Nevertheless, the intended models from Chapter 3 are all constructed using permutation actions and so

contain a swapping operation.

Swapping can be added to the type theory as a special restricted kind of explicit substitution, as is

done in [112] and [16].

Γ ` m : N Γ ` n : N Γ ` A Type
(SWAP-TY)

Γ ` (m n) ·A Type

Γ ` m : N Γ ` n : N Γ ` R : A
(SWAP-TM)

Γ ` (m n) ·R : (m n) ·A
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Bunches are useful for the formulation of the equations for swapping. For instance, bunches are used in

the following two equations, which state that swapping two fresh names has no effect.

Γ ` A Type ∆ ` m : N ∆ ` n : N
(SW-TY-FRESH)

Γ∗∆ ` (m n) ·A = A Type

Γ ` M : A ∆ ` m : N ∆ ` n : N
(SW-TM-FRESH)

Γ∗∆ ` (m n) ·M = M : A

On the other hand, bunches also complicate the formulation of the other equations for swapping. In

addition to equations for swapping on names, the reader may expect equations such as (m n) · 〈M,N〉=

〈(m n) ·M,(m n) ·N〉 that amount to pushing swapping inside the term structure. Such equations work

well for the additive types, but they do not work for the multiplicative types. For example, for ∗-types

one may expect the equation (m n) · (M∗N) = ((m n) ·M)∗((m n) ·N). We cannot take this equation,

however, because the term on the right-hand side is not typeable. This can be seen by noting that M∗N

is typeable only if M and N do not share free variables. Nevertheless, it is possible to give equations for

swapping for the multiplicative types. For example, one equation for ∗-types could be:

` A,B Type Γ ` M : A ∆ ` N : B Γ ` m,n : N
Γ∗∆ ` (m n) · (M∗N) = ((m n) ·M)∗N : A∗B

Although such equations are not very easy to work with, a formulation of them is at least possible.

Other issues with the formulation of swapping include the interaction of swapping and freshness.

For instance, we would expect the equation λ∗r : N.λ∗m : N.(r n) · (m n) · x = λ∗r : N.λ∗m : N.(m n) · x
to be derivable. Intuitively, this equation should hold because swapping the name n with a fresh name m

in some term x gives a term (m n) · x that is fresh for n, and so swapping n with the fresh name r

in (m n) · x should not have any effect. However, we cannot immediately use the rule (SW-TM-FRESH)

to derive this equation, since we cannot satisfy its freshness assumptions. One possibility of nevertheless

obtaining the equation is to relate swapping to hidden-name types. For all M : Hn.A, we can add the

equation (n.M)@m = (m n) ·M. Since, by the formulation of hidden-name types, we do know that n is

fresh for (n.M), we can use this equation to obtain that n is fresh for (m n) ·M whenever m is fresh. This

allows us to derive the desired equation.

Swapping nevertheless has some interesting applications. For instance, we can derive the equation

(x : A, n : N)∗m : N ` n.x = m.((m n) · x) : Hn.A, which further justifies the use of Hn.A as a representa-

tion of α-equivalence classes. The derivation makes essential use of the equation (n.M)@m = (m n) ·M.

Another example of what can be done with swapping is that swapping can be used to define certain

open freefrom types. The definition of freefrom types from swapping is based on the idea from FM set

theory that a name n is fresh for a term x if and only if (m n) · x = x holds for all fresh names m. This

can be captured by the following definition.

Γ ` n : N Γ∗m : N ` (m n) ·A = A Type

Γ ` A∗(n:N) def= (Σx : A.Π∗m : N.(m n) · x 'A x) Type
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The assumption Γ∗m : N ` (m n) ·A = A Type is needed to ensure that both x and (m n) · x have type A,

as is required for (m n) · x 'A x to be a type. This assumption could be lifted if we were to use, for

instance, John Major (JM) equality [66] instead of standard identity types, since with JM equality it is

possible to state equations between terms of different type.

With the definition of freefrom types from swapping, interesting terms can be defined. For instance,

it is possible to derive the rules (FF-JOIN), (FF-JOIN-EQ1) and (FF-JOIN-EQ2) that we had to assume

for closed freefrom types. If we further assume the following principle of uniqueness of identity proofs

Γ ` p : a'A b Γ ` q : a'A b
(UIP) ,

Γ ` UIP(p,q) : p'(a'Ab) q

which is discussed in depth in [50], then more interesting examples can be derived. For instance, we

can strengthen the functional extensionality for H-types from Section 11.3.3.2 and derive a term

f : Hn.A, g : Hn.A, h : Hn.( f @Hn)'A (g@Hn) ` M : f '(Hn.A) g.

Using this term, it is then possible to obtain a term

n : N, x : Hm.(A∗(n:N)) ` N : (Hm.A)∗(n:N),

see also Section 11.3.3.4.

However, the definition of freefrom types from swapping also has limitations. For instance, to define

an isomorphism

n : N, m : N `
(
A∗(n:N))∗(m:N) ∼=

(
A∗(m:N))∗(n:N)

Type,

it appears to be necessary to assume the identity types ' to be extensional. To see this note that an

element x of type (A∗(n:N))
∗(m:N)

consists of an element x′ : A together with proofs

e1 : Π
∗r : N.(r n) · x′ 'A x′,

e2 : Π
∗r : N.(r m) · x′ 'A x′,

e3 : Π
∗r : N.(r m) · e1 '(Π∗r : N.(r n)·x′'Ax′) e1.

We want to give an element of (A∗(m:N))
∗(n:N)

whose A-part is x′. For this, we have to give proofs

f1 : Π
∗r : N.(r m) · x′ 'A x′,

f2 : Π
∗r : N.(r n) · x′ 'A x′,

f3 : Π
∗r : N.(r n) · f1 '(Π∗r : N.(r m)·x′'Ax′) f1.

The first two inhabitants f1 and f2 follow immediately from the assumptions. In order to give an ele-

ment f3, however, the two subterms (r n) · f1 and f1 must have definitionally equal types, since proposi-

tional equality (and also JM equality) can only be introduced for elements of the same type. We therefore

have to show that the types ((r n) ·Π∗r : N.(r m) · x′ 'A x′) and Π∗r : N.(r m) · x′ 'A x′ are equal defini-

tionally. The first type is provably equal to Π∗r : N.(r n) · (r m) · x′ 'A (r n) · x′. The assumptions e1, e2
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and e3 are enough to show that the terms (r m) · x′, (r n) · (r m) · x′ and (r n) · x′ are all propositionally

equal to x′. But we do not get definitional equality, and there appears to be no reason why the types of

(r n) · f1 and f1 should be equal. If, on the other hand, we assume the identity types to be extensional,

i.e. if we assume that propositional equality implies definitional equality, then the equality of the types

of (r n) · f1 and f1 follows at once, and we can define the term f3 easily.

In conclusion, while rules for swapping can be added to the type theory, the presence of multiplica-

tive types makes their formulation a good deal more complicated than perhaps expected. The examples

for swapping, while interesting, also demonstrate that one is quickly lead to making strong assumptions

on the type theory, such as extensional identity types.

11.5 Related Work

Type systems with names and binding have been proposed by Pitts & Gabbay [87] and Cardelli, Gard-

ner & Ghelli [16]. Pitts & Gabbay [87] introduce FreshML 2000 with a type system that contains names

and abstraction sets. This type system is related to our type system with hidden-name types, since ab-

straction sets and the operations on it are, semantically, a special case of hidden-name types. However,

the type systems are not directly comparable, due to the different handling of freshness assumptions.

Also, since Pitts & Gabbay’s aim is to define a type system for a ML-like programming language, they

consider the evaluation of programs but not the equational theory of the type system.

In [16] Cardelli et al. propose a language for the manipulation of trees with hidden names and give a

type system for it. They introduce types of the form Hn.A with rules that correspond roughly to our rules

for Π∗-types. They also use a form of bunched contexts and integrate swapping in their type system.

The work of Cardelli et al. has directly influenced our work, in particular regarding the use of bunches.

However, we do not know if there is a precise formal relation between the two systems. For example,

Cardelli et al. represent names as constants while we work with names as variables. Furthermore, the

type system of Cardelli et al. is formulated in a different setting, closer in spirit to type systems for the

π-calculus, e.g. [118], than to our system.



Chapter 12

Examples

Having added hidden-name types to the type theory, in this chapter we give some simple examples of

their use for abstract syntax with variable binders. Using the untyped λ -calculus as a running example,

we first define functions such as substitution and the function returning the free variables of a term.

We then encode a typing judgement for the simply-typed λ -calculus and implement the evaluation of

well-typed terms.

Throughout this chapter we will make extensive use of inductive types. Since we have not justified

the use of inductive types in general, we shall justify their use in this chapter on a case-by-case basis.

12.1 Untyped λ -calculus

We define the syntax of the untyped λ -calculus inductively. The inductive type Lam of λ -terms and its

constructors are given by the following constants. The inductive type Lam of λ -terms and its construc-

tors are given by the following constants.

` Lam Type

` var : N→ Lam

` app : Lam→ Lam→ Lam

` lam : (Hn.Lam)→ Lam

The associated recursion principle is:

Γ, x : Lam ` A Type

Γ ` M : Πn : N.A[var n/x]

Γ ` N : Πs : Lam.Πt : Lam.A[s/x]→ A[t/x]→ A[app s t/x]

Γ ` R : Πs : (Hn.Lam).(Hn.A[s@n/x])→ A[lam s/x]
(Lam-REC)

Γ ` recA(M,N,R) : Πx : Lam.A

295
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The behaviour of the recursion constants introduced by this rule is specified by the equations below. In

the rules for these equations, we abbreviate recA(M,N,R) by rec and write ‘. . . ’ for the premises of the

above rule (Lam-REC).

Γ ` n : N . . .

Γ ` rec (var n) = M n : A[var n/x]

Γ ` s : Lam Γ ` t : Lam . . .

Γ ` rec (app s t) = N s t (rec s) (rec t) : A[app s t/x]

Γ ` s : Hn.Lam . . .

Γ ` rec (lam s) = R s (λHn. rec (s@Hn)) : A[lam s/x]

The recursion principle and its equations are what one would expect when viewing the H-types in the

inductive definition of Lam as the function space Π∗. We justify the recursion principle semantically in

Section 12.1.4 below.

We use H-types to represent α-equivalence classes. This gives us two ways of working with them:

as partial functions Π∗ and as pairs-with-hiding Σ∗. For example, there are two ways to represent the

untyped λ -term (λn.m n). Using the Π∗-view, it can be represented by

m : N ` lam (λHn.app (var m) (var n)) : Lam.

This representation is in the style of Weak Higher Order Abstract Syntax. Using the Σ∗-view, the same

term can also be represented by

m : N∗n : N ` lam (n.(app (var m) (var n))) : Lam.

Note that we need an additional fresh name n in order to form this term. The Σ∗-representation is like

the representation of syntax in FM-theory. Using H-types, we can thus encode syntax both in WHOAS

and in FM-style—at the same time.

Of course, both representations of the term should be equal, since they represent the same object-

level term. This is indeed available in the theory, since, along the lines of the argument in 11.3.3.3, we

can show the equality

m : N∗n : N ` (n.(app (var m) (var n))) = λ
Hn.app (var m) (var n) : Hn.Lam.

The point that syntax can be represented in the styles of WHOAS and FM, and that these styles can

be mixed, is further illustrated in the next two sections in which we give examples for functions that can

be defined for Lam.

12.1.1 Substitution

As a first example of a recursively defined function, we define capture-avoiding substitution.

` subst : Lam→ N→ Lam→ Lam



Chapter 12. Examples 297

The application (subst s n t) is intended to denote the result of substituting the term s for the name n in

the term t. The recursion steps are given by the following definitions.

x : Lam, n : N `
M def= (λm : N. ifeq 〈m,n〉 then x else (var m))

: Πm : N.Lam

x : Lam, n : N `
N def= (λ s : Lam.λ t : Lam.λhs : Lam.λht : Lam.app hs ht)

: Lam→ Lam→ Lam→ Lam→ Lam

x : Lam, n : N `
R def= (λ s : (Hn.Lam).λhs : (Hn.Lam). lam hs)

: (Hn.Lam)→ (Hn.Lam)→ Lam

Given these definitions, we can use the recursion principle to define substitution.

` subst
def= λx : Lam.λn : N. recLam(M,N,R) : Lam→ N→ Lam→ Lam

The so defined term satisfies the following equations.

subst u n (var m) = ifeq 〈m,n〉 then u else (var m)

subst u n (app s t) = app (subst u n s) (subst u n t)

subst u n (lam s) = lam (λHm.subst u n (s@Hm))

This definition of substitution uses only the view of H as the function type Π∗. It is close to definitions

in Weak Higher Order Abstract Syntax.

In their work on FM set theory, Gabbay & Pitts [38] emphasise the view of binding in terms of the

abstraction set, corresponding to the Σ∗-view of H in our terminology. In particular, in [38] substitution

is defined using only the operations of the abstraction set. By viewing H as Σ∗, we can also give a

definition of substitution in this style. The recursion cases for variables and application are given as

before by the terms M and N above. For the λ -binder, we now take the following recursion step.

x : Lam, n : N `
R′ def=

(
λ s : (Hn.Lam).λhs : (Hn.Lam).

new m. let bind(m,hs@Hm) be y∗m in (lam y)∗m)
: (Hn.Lam)→ (Hn.Lam)→ Lam

If we define subst by λx : Lam.λn : N. recLam(M,N,R′) then it satisfies the following equations.

subst u n (var m) = ifeq 〈m,n〉 then u else (var m)

subst u n (app s t) = app (subst u n s) (subst u n t)

subst u n (lam s) = new m. let bind(m,subst u n (s@Hm)) be y∗m in (lam y)∗m

By the equations for new from Section 11.3.3.1, we further have:

subst u n (lam s) = let s be m.x in (let bind(m,subst u n x) be y∗m in (lam y)∗m)
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This uses only the Σ∗-view of H and corresponds to a definition in the style of FM.

Having given two definitions of substitution, it is natural to ask if they define the same function.

It is not hard see by unwinding the semantic interpretation that both define the intended substitution

function. Furthermore, the two definitions are provably equal, which can be seen by the following chain

of equations.

new m. let bind(m,subst u n (s@Hm)) be y∗m in (lam y)∗m

= let (λHm.unit) be m.v in let bind(m,subst u n (s@Hm)) be y∗m in (lam y)∗m by defn.

= let (λHm.subst u n (s@Hm)) be m.x in let bind(m,x) be y∗m in (lam y)∗m by (H-NAT)

= lam (λHm.subst u n (s@Hm)) by (H-η -Σ∗)

Generalising the FM-style definition of substitution, we show that the following FM-style recursion

principle is derivable.

` A Type

Γ ` M : N→ A

Γ ` N : Lam→ Lam→ A→ A→ A

Γ ` R : Hn.Lam→ A→
(
A∗(n:N))

Γ ` rec′A(M,N,R) : Πx : Lam.A

The restriction to closed types A is necessary for the type (A∗(n:N)) to be well-formed.

When one compares this recursion principle to the corresponding one in FM set theory [38, Corol-

lary 6.7], one finds that instead of a term R of type Hn.Lam → A → (A∗(n:N)), the FM recursion

principle requires one to give a function f : N → Lam → A → A that satisfies the freshness property

Nn.∀t : Lam.∀x : A. f (n, t,x) # n. In the above recursion principle, the type of R includes the freshness

property that f must satisfy. Semantically, if we have in FM set theory a function f satisfying the

freshness property, then we can construct a term R of type Hn.Lam→ A→
(
A∗(n:N)) from it.

The rec′-equations for the var-case and the app-case are the same as for rec. The equation for the

lam-case, in which we abbreviate rec′A(M,N,R) by rec′, appears below.

Γ ` s : Hn.Lam . . .

Γ ` rec′ (lam s) = let s be n.x in (R@Hn) x (rec′ x) : A

This equation formalises that in the recursion case for a binder we use a form of pattern-matching.

The α-equivalence class s is matched against a pair n.x of a fresh name n and the instance x of the

α-equivalence class s at the name n.

The recursion principle rec′ can be defined from rec as follows. Suppose we have terms

Γ ` M : N→ A

Γ ` N : Lam→ Lam→ A→ A→ A

Γ ` R : Hn.Lam→ A→
(
A∗(n:N)).
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We need to define a term

Γ ` rec′A(M,N,R) : Πx : Lam.A.

To this end, define the following term.

Γ ` R′ def= λ s : (Hn.Lam).λ t : (Hn.A).new n.(R@Hn) (s@Hn) (t@Hn) : (Hn.Lam)→ (Hn.A)→ A

Note that the freefrom type in the codomain of R is essential for R′ to be typeable; see the rules for new

in Section 11.3.3.1. Define rec′A(M,N,R) to be recA(M,N,R′). From the equations for rec, it follows

immediately that the required equations for the var and app-cases hold with this definition. For the lam-

case, the corresponding equation for rec gives:

rec′ (lam s) = new n.(R@Hn) (s@Hn) (rec′ (s@Hn))

We have the following series of equations:

rec′ (lam s) = new n.(R@Hn) (s@Hn) (rec′ (s@Hn)) by defn.

= let (λHn.unit) be n.u in (R@Hn) (s@Hn) (rec′ (s@Hn)) by defn.

= let (λHn.s@Hn) be n.x in (R@Hn) x (rec′ x) by (H-NAT)

= let s be n.x in (R@Hn) x (rec′ x) by (Π∗-η )

Hence, the term rec′ satisfies the required equations.

12.1.2 Free Variables

As a second example of a recursively defined function, we define a function that computes the free

variables of a term. To represent the set of free names, we use an inductively defined type (` LN Type)

of lists of names, as defined in Section 11.1.1. We assume appropriately defined terms

` singleton : N→ LN

` union : LN→ LN→ LN

` remove : Πn : N.LN→
(
LN∗(n:N))

with the expected meaning. By defining

` M def= (λm : N.singleton m) : Πm : N.LN

` N def= (λ s : Lam.λ t : Lam.λhs : LN.λht : LN.union hs ht) : Lam→ Lam→ LN→ LN→ LN

` R def= (λ s : (Hn.Lam).λhs : (Hn.LN).new n. remove n (hs@n)) : (Hn.Lam)→ (Hn.LN)→ LN,

and by letting ` fv
def= recLN(M,N,R) : Lam→ LN, we obtain a function fv that satisfies

fv (var n) = singleton n

fv (app s t) = union (fv s) (fv t)

fv (lam s) = new n. remove n (fv (s@n)).
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The recursion case for the lam-binder is another example where a freefrom type is essential for typeabil-

ity. The term (new n. remove n (fv (s@n))) is typeable only because of the freefrom type in the type

of remove. The intuition is that, when given the argument (lam s), the function fv picks a fresh name,

computes (s@n) and then removes the fresh name from the result. Since our language does not have

side effects, the definition of fv must contain the information that the choice of the name n does not

affect the outcome of the computation. This information is contained in the freefrom type.

Again, there are other possibilities for defining the function fv. For example, we can define fv so that

it satisfies the following equations.

fv (var n) = singleton n

fv (app s t) = union (fv s) (fv t)

fv (lam s) = let (λHn.(fv (s@n)) be n.x in (remove n x)

The last equation is another example where it is useful to mix the two views of H as Σ∗ and Π∗. In effect,

in this equation we take a function and pattern-match it against a pair. That the two ways of defining fv

result in provably equal functions can be shown in the same way as for substitution.

To give an example of an evaluation of fv, we show the following simple equation.

n : N ` (fv (lam (λHm.app (var n) (var m)))) = cons n nil : LN

To see that this equation holds, first note that we have

n : N∗m : N ` (fv (app (var n) (var m))) = cons n (cons m nil) : LN,

as is not hard to show. In Section 11.1.1, we have shown the equation

n : N∗m : N ` remove m (cons n (cons m nil)) = (cons n nil)∗m : LN∗(m:N).

The required equation can therefore be calculated as follows.

fv (lam (λHm.app (var n) (var m)))

= new m. remove m (fv (app (var n) (var m))) by defn.

= new m. remove m (cons n (cons m nil)) using above eqn.

= new m.(cons n nil)∗m using above eqn.

= cons n nil see Section 11.3.3.1

12.1.3 Recursion over Term Contexts

The Theory of Contexts [51] features recursion not only for terms but also for term contexts, i.e. terms

with holes. In our setting, this corresponds to induction principles over Hn.Lam and Hn.Hm.Lam etc.

We consider the recursion principle over Hn.Lam, looking at a simplified form with closed types.
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` A Type

Γ ` M : A

Γ ` N : N→ A

Γ ` R : A→ A→ A

Γ ` S : (Hn.A)→ A

Γ ` rec1A(M,N,R,S) : (Hn.Lam)→ A

The equations for this principle, in which we write rec1 for rec1A(M,N,R,S) and in which we omit the

typing assumptions, are as follows.

rec1 (λHn.var n) = M

rec1 (λHn.var m) = N m n 6= m

rec1 (λHn.app (s@Hn) (t@Hn)) = R (rec1 s) (rec1 t)

rec1 (λHn. lam (s@Hn)) = S (λHm. rec1 (λHn.s@Hn@Hm))

For the derivation of such a recursion principle, we need a term

n : N, x : Hm.
(
Lam∗(n:N))` O : (Hm.Lam)∗(n:N)

satisfying the equation

n : N, x : Hm.
(
Lam∗(n:N)) ` (let O be y∗n in y) = (λHm. let (x@Hm) be y∗n in y) : Hm.Lam.

In Section 11.3.3.4, we have shown how open freefrom types can be used to derive such a term. We now

assume that we have such a term.

We start the derivation of rec1 from the bottom, i.e. we define rec1 as the term in the conclusion of

the following derivation.

(Γ∗n : N), x : Lam ` Q : A∗(n:N)

Γ, z : Hn.Lam ` let z be n.x in Q : A
Γ ` λ z : Hn.Lam. let z be n.x in Q : (Hn.Lam)→ A

We note that the assumption that A be a closed type is needed for being able to form the type A∗(n:N).

We define Q by normal recursion over x : Lam.

In the base case, in which x represents a variable (var m), the term Q should be given essentially

by (if m = n then M else N). But note that the type of Q is A∗(n:N), so that we also have to establish a

freshness property. We define a suitable term using ifeq. In order to deal with the dependencies of the

freefrom types, we first define a term of the following form.

(Γ∗n : N), m : N ` ifeq 〈n,m〉 then r.Qe else q.Qd : A∗(n:N) → (N→ A)∗(n:N) → A∗(n:N)

This term is then applied to M∗n : A∗(n:N) and N∗n : (N→ A)∗(n:N) to obtain the required term. We write

Γ′ for (Γ∗n : N), m : N and A′(n) for A∗(n:N) → (N→ A)∗(n:N) → A∗(n:N).

The branch of the equality test in which the names are equal is given by the following term.

n : N ` Qe
def= λy : A∗(n:N).λx : (N→ A)∗(n:N).y : A∗(n:N) → (N→ A)∗(n:N) → A∗(n:N)

The term for the branch where the names differ is given by the following derivation.
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(n : N∗m : N), x : (N→ A)∗(n:N) ` join(x,m∗n) : ((N→ A)×N)∗(n:N)

(y : (N→ A), m : N)∗n : N ` (y m)∗n : A∗(n:N)

(n : N∗m : N), x : (N→ A)∗(n:N) ` let join(x,m∗n) be 〈y,m〉∗n in (y m)∗n : A∗(n:N)

(n : N∗m : N) ` λx : (N→ A)∗(n:N). let join(x,m∗n) be 〈y,m〉∗n in (y m)∗n : A∗(n:N)

(n : N∗m : N), y : A∗(n:N) ` λx : (N→ A)∗(n:N). let join(x,m∗n) be 〈y,m〉∗n in (y m)∗n : (N→ A)∗(n:N) → A∗(n:N)

n : N∗m : N ` λy : A∗(n:N).λx : (N→ A)∗(n:N). let join(x,m∗n) be 〈y,m〉∗n in (y m)∗n : A′(n)

Let Qd be the term in the conclusion of this derivation. With these definitions of Qe and Qd , we have:

n : N ` Qe : A′(n)
Γ′, n : N ` Qe : A′(n)

n : N∗m : N ` Qd : A′(n)
q : N∗N ` let q be n∗m in Qd : A′(π̇1(q))

Γ′, q : N∗N ` let q be n∗m in Qd : A′(π̇1(q))
Γ′ ` ifeq 〈n,m〉 then r.Qe else q.Qd : A′(n)

Since we can make the judgements

(Γ∗n : N), m : N ` M∗n : A∗(n:N)

(Γ∗n : N), m : N ` N∗n : (N→ A)∗(n:N),

we can therefore derive

Γ∗n : N ` λm : N.(ifeq 〈n,m〉 then r.Qe else q.Qd) M∗n N∗n : Πm : N.A∗(n:N).

We write M′ for this term. It is the case for a variable in the recursive definition.

For the recursion case of an application (app s t), we simply use the induction hypothesis. Using a

suggestive notation for (defined) ternary join, we have

(Γ∗n : N), hs : A∗(n:N), ht : A∗(n:N) ` let join(R∗n,hs,ht) be 〈u,v,w〉∗n in (u v w)∗n : A∗(n:N).

Writing Qa for this term, we have

Γ∗n : N ` λ s, t : Lam.λhs,ht : A∗(n:N).Qa : Lam→ Lam→ A∗(n:N) → A∗(n:N) → A∗(n:N).

This term is the application case of the recursive definition. We write N′ for it.

It remains to do the case for a lambda abstraction (lam s). For this case we need the term O that

we have assumed. The reason for this is that the recursion hypothesis gives us an element of type

Hm.
(
A∗(n:N)), and using the term S : (Hn.A) → A we would like to obtain an element of type A∗(n:N)

from it. We can do this using the term O, since it allows us to go from Hm.
(
A∗(n:N)) to (Hm.A)∗(n:N).

(Γ∗n : N), x : Hm.
(
A∗(n:N)) ` let join(S∗n,O) be 〈u,v〉∗n in (u v)∗n : A∗(n:N)

Writing Ql for the term in this sequent, we have

Γ∗n : N ` λ s : (Hn.Lam).λx :
(
Hm.

(
A∗(n:N))).Ql : (Hn.Lam)→

(
Hm.

(
A∗(n:N)))→ A∗(n:N).
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This term is the case for the lambda-binder in the recursive definition. We write R′ for it.

Having defined the three cases for the recursive definition, we can define Q to be the following term.

(Γ∗n : N), x : Lam ` rec(A∗(n:N))(M
′,N′,R′)) x : A∗(n:N)

This completes the definition of the recursion principle.

12.1.4 Soundness of the Recursion Principle

In this section we justify the recursion principle for Lam semantically. We start with the special case of

the recursion principle in which Γ is the empty context.

Consider the endo-functor F on the Schanuel topos defined by

F(X) def= N+(X ×X)+(N−∗ X).

It is well-known, see e.g. [49, 38, 30], that F has an initial algebra [var,app, lam] : F(Lam)→ Lam. As

suggested by the notation, the type Lam and its constructors are interpreted by this initial algebra.

It remains to interpret the recursion principle (Lam-REC). In the premises of (Lam-REC), we have

a type x : Lam ` A Type, and we write A(s) as a short-hand for A[s/x]. Furthermore, we have (up to

unique correspondence) terms of the following types.

n : N ` M : A(var n)

s : Lam, t : Lam ` N : A(s)→ A(t)→ A(app s t)

s : (Hn.Lam), h : (Hn.A(s@n)) ` R : A(lam s)

It is straightforward to see that these terms correspond uniquely to a morphism u making the following

diagram in S commute. Note that we are now viewing the H-type as a Π∗
N-type.

N+(Σp : Lam×Lam.A(fst(p))×A(snd(p)))

+(Σs : N−∗ Lam.Π∗n : N.A(s@n))

u //

N+π1+π1

��

Σs : Lam.A(s)

π1

��
F(Lam)

[var,app,lam]
// Lam

We now show that the object in the upper left corner of this diagram is isomorphic to F(Σs : Lam.A(s)).

To this end, we first have an evident isomorphism

Σp : Lam×Lam.A(fst(p))×A(snd(p)) ∼= (Σs : Lam.A(s))× (Σt : Lam.A(t)).

Furthermore, there is an isomorphism

Σs : N−∗ Lam.Π∗n : N.A(s@n) ∼= N−∗ (Σt : Lam.A(t))
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corresponding to a version of the type-theoretic ‘axiom of choice’. From left to right, this isomorphism

is given by the term

s : N−∗ Lam, f : Π
∗n : N.A(s@n) ` λ

∗n : N.〈s@n, f @n〉 : N−∗ (Σs : Lam.A(s)),

and from right to left by the term

f : N−∗ (Σt : Lam.A(t)) ` 〈λ∗n : N. fst( f @n),λ∗n : N.snd( f @n)〉 : Σs : N−∗ Lam.Π∗n : N.A(s@n).

From these two isomorphisms, it follows immediately that the top left corner in the above diagram

is isomorphic to F(Σs : Lam.A(s)). The morphism u making the above diagram commute therefore

corresponds uniquely to a morphism u′ making the following diagram commute.

F(Σs : Lam.A(s)) u′ //

F(π1)
��

Σs : Lam.A(s)

π1

��
F(Lam)

[var,app,lam]
// Lam

The initial algebra [var,app, lam] now gives us a morphism R making the diagram below commute.

F(Lam)
[var,app,lam] //

F(R)
��

Lam

R
���
�
�

F(Σs : Lam.A(s)) u′ //

F(π1)
��

Σs : Lam.A(s)

π1

��
F(Lam)

[var,app,lam]
// Lam

The uniqueness part of initiality gives us π1 ◦R = id, so that R corresponds to a term s : Lam ` rec : A(s).

That rec satisfies the recursion equations follows because the upper square in the diagram commutes.

The general case of the recursion principle, in which Γ is not necessarily empty, can be reduced to

the above special case. Given Γ, x : Lam ` A Type and Γ ` M : Πn : N.A(var n) etc., we apply the above

special case to x : Lam ` Πγ : bΓc.A Type and ` λn : N.λγ : bΓc.M n : Πn : N.Πγ : bΓc.A(var n) etc.

12.2 Simply-typed λ -calculus

Having defined the syntax of the untyped λ -calculus, we now consider a typing judgement for it. As an

example, we consider Curry-style typing [8], for which we can use the syntax of the untyped λ -calculus

as it is. We then represent the evaluation of well-typed terms.

12.2.1 Typing Judgement

Object level types are encoded using an inductive type with two constructors:

` Ty Type ` ι : Ty ` ⇒ : Ty→ Ty→ Ty
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For convenience we use infix notation, writing (ι ⇒ ι) for ((⇒ ι) ι). We omit the standard induction

principle and its equations.

Object-level contexts are represented by an inductive type with the following constructors.

` Ctx Type ` empty : Ctx ` snoc : Ctx→ N−∗ Ty→ Ctx

We write c[n : a] as an abbreviation for (((snoc c)@n) a). The recursion principle is:

Γ, c : Ctx ` A Type

Γ ` M : A[empty/c]

Γ ` N : Πc : Ctx.Πh : A.Π∗n : N.Πb : Ty.A(c[n : b])
(Ctx-REC)

Γ ` recA(M,N) : Πc : Ctx.A(c)

Notice the use of −∗ in the constructor snoc. It formalises the common convention that each variable

may be declared at most once in each context, i.e. that we can write c[n : a] only if n is fresh for c. It

appears as though such an inductive definition of Ctx is not directly available in Fresh O’Caml.

To show that the use of −∗ is valid, we justify the inductive definition of Ctx semantically in the

Schanuel topos. The constructor snoc corresponds uniquely to a map of type snoc : (Ctx∗N)×Ty→Ctx.

Consequently, we define the inductive type Ctx as the initial algebra of the functor

FX def= 1+((X ∗N)×Ty).

This functor has an initial algebra because, being built from 1 +(−) and the left adjoints (−)×Ty and

(−) ∗N, it preserves colimits, so that its initial coalgebra can be constructed in the usual way as the

colimit of the finite iterations of F on 0. To justify the recursion principle, we observe that, for any

map u making the lower square in the diagram below commute, there exists a unique map R making the

whole diagram commute.

F(Ctx)
[empty,snoc] //

F(R)
��

Ctx

R
���
�
�

F(Σs : Ctx.A(s)) u //

F(πA)
��

Σs : Ctx.A(s)

πA

��
F(Ctx)

[empty,snoc]
// Ctx

Hence, to justify the special case of the recursion principle (Ctx-REC) where Γ is the empty context, it

suffices to show that the terms M and N correspond uniquely to a map u as in the diagram. By definition

of F , it can be seen that u corresponds to two maps in S→, namely M0 : 1 → πA over empty : 1 → Ctx

and N0 : π∗TyWNπA → πA over snoc : (Ctx ∗N)×Ty → Ctx. These two morphisms correspond to maps

M : 1 → empty∗πA in S/1 and N1 : π∗TyWNπA → snoc∗πA in S/(Ctx∗N)×Ty. By adjoint transpose, the

latter corresponds to N : πA →Π∗
NΠTysnoc∗πA in S/Ctx. A standard argument then shows that these two

maps M and N amount to the terms of the same name in (Ctx-REC). The general case of (Ctx-REC)

where Γ is not the empty context can be reduced to the present case, as in Section 12.1.4.
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Using the recursion principle we can define an append function ◦ on contexts.

` ◦ : Ctx→ Ctx−∗ Ctx

c : Ctx ` c◦empty = c : Ctx

c : Ctx∗ ((d : Ctx∗n : N), a : Ty) ` c◦ (d[n : a]) = (c◦d)[n : a] : Ctx

With the definitions of object-level terms, types and contexts, we can formalise the Curry-style

typing judgement for simply-typed λ -calculus. Informally, this typing judgement is given by the three

rules below, which are subject to the usual side-condition on variable names.

Γ, n : a, ∆ ` n : a
Γ ` s : a⇒ b Γ ` t : a

Γ ` app s t : b
Γ, n : a ` t@Hn : b
Γ ` lam t : a⇒ b

These rules for the typing judgement for simply-typed λ -calculus are captured by the following induc-

tive type (HT stands for ‘Has Type’).

c : Ctx, x : Lam, t : Ty ` HT(c,x, t) Type

There is one constructor for each typing rule:

` htproj : Πc : Ctx.Hn.Πa : Ty.Π∗d : Ctx.HT(c[n : a]◦d,var n,a)

` htapp : Πc : Ctx.Πs, t : Lam.Πa,b : Ty.HT(c,s,a⇒ b)→ HT(c, t,a)→ HT(c,app s t,b)

` htlam : Πc : Ctx.Πt : (Hn.Lam).Πa,b : Ty.Hn.HT(c[n : a], t@n,b)→ HT(c, lam t,a⇒ b)

The resulting induction principle is:

Γ, c : Ctx, t : Lam, a : Ty ` A(c, t,a) Type

Γ ` M : Πc : Ctx.Hn.Πa : Ty.Π∗d : Ctx. A(c[n : a]◦d,var n,a)

Γ ` N : Πc : Ctx.Πs, t : Lam.Πa,b : Ty. A(c,s,a⇒ b)→ A(c, t,a)→ A(c,app s t,b)

Γ ` R : Πc : Ctx.Πt : (Hn.Lam).Πa,b : Ty.Hn. A(c[n : a], t@n,b)→ A(c, lam t,a⇒ b)

Γ ` recA(M,N,R) : Πc : Ctx.Πt : Lam.Πa : Ty.HT(c, t,a)→ A(c, t,a)

This induction principle is slightly less general than possible, because we have omitted possible HT-

assumptions for brevity.

12.2.2 Evaluation

To give an example of how this induction principle can be used, we define the evaluation function for

well-typed terms. To this end, we first define a decoding of object-level types, i.e. elements of the

inductive type Ty, to actual meta-level types.

a : Ty ` El(a) Type

a : Ty, b : Ty ` El(a⇒ b) = El(a)→ El(b) Type
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For our purposes, we do not need an equation for El(ι), the decoding of the type of individuals, since

our object-level λ -calculus has no operations specific to individuals. The universe El(x) has the evident

interpretation in the Schanuel topos. We extend the definition of El to contexts. In a slight abuse of

notation, we use the constant El both for types and contexts.

c : Ctx ` El(c) Type

` El(empty) = 1 Type

(c : Ctx∗n : N), a : Ty ` El(c[n : a]) = El(c)×El(a) Type

We define an evaluation function for well-typed terms

` eval : Πc : Ctx.Πt : Lam.Πa : Ty.Πx : HT(c, t,a). El(c)→ El(a)

by induction on the typing statement HT(c, t,a).

The most complicated case is the base case. We need to define an appropriate projection function

El(c[n : a] ◦ d) → El(a). Note that the domain of this type is (up to associativity) definitionally equal

to El(c)×El(a)×El(d). We define the following projection term by induction on d.

` P : Πd : Ctx.Π∗n : N.Π∗c : Ctx.Πa : Ty.El(c[n : a]◦d)→ El(a)

The base case of this inner induction on d is a term of the following type.

` Pempty : Π
∗n : N.Π∗c : Ctx.Πa : Ty.El(c[n : a]◦empty)→ El(a)

Since we have the definitional equalities c[n : a]◦empty = c[n : a] and El(c[n : a]) = El(c)×El(a), type

conversion allows us to make the following definition.

Pempty
def= λ

∗n : N.λ∗c : Ctx.λa : Ty.λ p : El(c)×El(a).snd(p)

For the recursion step of the inner induction we must define a term Psnoc of the following type

` Psnoc : Πd : Ctx.Πh : A(d).Π∗m : N.Πb : Ty.A(d[m : b]),

where we use the abbreviation

A(d) def= Π
∗n : N.Π∗c : Ctx.Πa : Ty.El(c[n : a]◦d)→ El(a).

Now, we have the definitional equality

El(c[n : a]◦ (d[m : b])) = El((c[n : a]◦d)[m : b]) = El(c[n : a]◦d)×El(b).

Therefore, Psnoc must return an element of type El(c[n : a] ◦ d)×El(b)→ El(a). The induction hypoth-

esis h provides a function El(c[n : a]◦d) → El(a). Hence, we define Psnoc so that it precomposes the

function from the induction hypothesis with the first projection. The term is:

Psnoc = λd : Ctx.λh : A(d).λ∗m : N.λb : Ty.λ∗n : N.λ∗c : Ctx.λa : Ty.λx : El(c[n : a]◦d)×El(b).

(((h@n)@c) a) (fst(x))
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With the definitions of Pempty and Psnoc, the term P is defined by applying the recursion principle for Ctx

to Pempty and Psnoc.

` P def= rec(Pempty,Psnoc) : Πd : Ctx.Π∗n : N.Π∗c : Ctx.Πa : Ty.El(c[n : a]◦d)→ El(a)

To complete the definition of the term defining the base case for eval, we have

((d : Ctx∗n : N)∗ c : Ctx), b : Ty ` (((P d)@n)@c) b : El(c[n : b]◦d)→ El(b)
((c : Ctx∗n : N)∗d : Ctx), b : Ty ` (((P d)@n)@c) b : El(c[n : b]◦d)→ El(b)

(((c : Ctx∗n : N), a : Ty)∗d : Ctx), b : Ty ` (((P d)@n)@c) b : El(c[n : b]◦d)→ El(b)
((c : Ctx∗n : N), a : Ty)∗d : Ctx ` (((P d)@n)@c) a : El(c[n : a]◦d)→ El(a)

Therefore, if we define

M def= λc : Ctx.λHn.λa : Ty.λ∗d : Ctx.(((P d)@n)@c) a

then we have

` M : Πc : Ctx.Hn.Πa : Ty.Π∗d : Ctx.El(c[n : a]◦d)→ El(a).

We take this term as the base case of the definition of eval.

In the case for application, the induction hypothesis lets us assume terms of type (El(c)→El(a⇒ b))

and (El(c)→ El(a)), and we have to define a term of type (El(c)→ El(b)). Because of the definitional

equality El(a ⇒ b)) = (El(a) → El(b)), we can use meta-level application to define the required term.

Hence, we define the term

Γ ` N : Πc : Ctx.Πs, t : Lam.Πa,b : Ty. (El(c)→ El(a⇒ b))→ (El(c)→ El(a))→ (El(c)→ El(b))

for the application case by

N def= λc : Ctx.λ s, t : Lam.λa,b : Ty.λ f : (El(c)→El(a⇒ b)).λg : (El(c)→El(a)).λx : El(c).( f c) (g c).

In the case for λ -abstraction, the induction hypothesis lets us assume (El(c[n : a]) → El(b)) and

we have to define a term of type (El(c) → El(a ⇒ b)). Using the definitional equalities El(c[n : a]) =

(El(c)×El(a)) and El(a⇒ b)) = (El(a)→El(b)), we can use meta-level λ -abstraction for this definition.

Hence, we define the term

Γ ` R : Πc : Ctx.Πt : (Hn.Lam).Πa,b : Ty.Hn. (El(c)×El(a)→ El(b))→ (El(c)→ (El(a⇒ b)))

for the λ -binder case by

R def= λc : Ctx.λ t : (Hn.Lam).λa,b : Ty.λHn.λ f : (El(c)×El(a)→ El(b)).λx : El(c).λy : El(a). f 〈x,y〉.

Having defined the terms M, N and R, we define the evaluation function using recursion.

` eval
def= rec(M,N,R) : Πc : Ctx.Πt : Lam.Πa : Ty.HT(c, t,a)→ (El(c)→ El(a))

It can be seen that, semantically, this implements the intended evaluation function.
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12.2.3 Limitations

We have shown that simple properties of simply typed λ -calculus, such as the typing judgement and

evaluation, can be encoded as types in the type theory. It is natural to ask how much of the standard

reasoning about the λ -calculus can be encoded in a propositions-as-types fashion? Unfortunately, the

current restriction to closed freefrom types severely restricts such propositions-as-types reasoning.

There is a simple reason that makes propositions-as-types reasoning harder than, say, reasoning in

Nominal Logic or the Theory of Contexts. In Nominal Logic or the Theory of Contexts, one can always

choose an arbitrary fresh name. Since in both logics any proposition that is true for some fresh name

is also true for any other fresh name, a fresh name can be chosen arbitrarily without affecting the truth

of the current proposition. In contrast, in type theory the particular choice of a fresh name may well

have an effect, for example in (new n.n : N). Hence, in type theory we must prove that the choice of

a fresh name does not matter. Since we use freefrom types for this purpose, the restriction to closed

freefrom types limits our ability to pick fresh names in propositions-as-types reasoning. In effect, we

can generate fresh names only for closed propositions, since if A is a type representing a proposition

then (new n.M : A) can only be formed if M is of type A∗(n:N), and this freefrom type is only available

if A is closed.

Furthermore, the restriction to closed freefrom types limits the use of Σ∗ as a propositions-as-types

existential quantifier expressing ‘for some fresh x : A’. This is the case because the introduction rule for

Σ∗-types allows us to form elements of Σ∗x : A.B only if Σ∗x : A.B is closed.

To give a concrete example of the restrictions, let us consider the type HT(c, t,a). In the inductive

definition of this type we have formalised the following introduction rule for functions.

Γ, n : a ` t@Hn : b
Γ ` lam t : a⇒ b

This rule assumes the judgement Γ, n : a ` t@Hn : b for some fresh name n. As shown by McKinna &

Pollack [69], it should be equivalent to formalise the following rule, which makes the same assumption

for all fresh names.

∀∗n : N.(Γ, n : a ` t@Hn : b)
Γ ` lam t : a⇒ b

This rule can be formalised by replacing the constructor htlam with the following constructor htlam′.

` htlam′ : Πc : Ctx.Πt : (Hn.Lam).Πa,b : Ty.(Hn.HT(c[n : a], t@n,b))→ HT(c, lam t,a⇒ b)

We would expect both definitions to be provably equivalent, but a derivation of their equivalence requires

open freefrom types. Suppose we have an element x of type

Hn.HT(c[n : a], t@n,b)→ HT(c, lam t,a⇒ b),

and we want to define an element y of type

(Hn.HT(c[n : a], t@n,b))→ HT(c, lam t,a⇒ b).
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Intuitively, this element y should be given by (λ z : HT(c[n : a], t@n,b).new n.(x@n) z). This term,

however, is not typeable since we must show that the choice of n does not matter, i.e. that the subterm

((x@n) z) is of type HT(c, lam t,a⇒ b)∗(n:N). Even to form this type we need open freefrom types.

The other direction also requires open freefrom types, this time because we need to use binding on

terms of open type. With an open version of the rule (H-I-Σ∗), we can define x from y by letting x be

λHn.λ z : HT(c[n : a], t@n,b).y (n.z).

It is possible to side-step some of the issues that we have just sketched. The problem that with

closed freefrom types we cannot obtain sufficient freshness information for the effect-free choice of

fresh names can be addressed even without a good formulation of open freefrom types. The main

problem in giving a formulation of open freefrom types is to find a good elimination rule. Even if we

cannot find a good elimination rule, it is still possible to assume suitable constants that provide sufficient

freshness information for practical purposes. In the definition of y from x above, we must be able to

find an element of HT(c, t,a)∗(n:N) for any fresh name n and any element of HT(c, t,a). This amounts to

finding a term

pure : Hn.HT(c, t,a)→ HT(c, t,a)∗(n:N).

The term pure has an interpretation in the Schanuel topos. It expresses that the elements of HT(c, t,a)

contain no more names than the terms c, t and a together. We call a type for which the Schanuel topos

models such a term a pure type. The pure types include all propositions, that is types interpreted by

a monomorphism in the codomain fibration on S. The fact that all propositions are pure is the rea-

son why names can be chosen without restriction in Nominal Logic. We believe that it is possible to

add to the type theory a set of pure-constants that identifies a useful range of pure types. Although

not all inductive types are pure—the type Lam, for example, is not—it should nevertheless be possible

to give sufficient syntactic criteria on the constructors of an inductive type to infer purity. For exam-

ple, the constructor htlam′ defines a pure type because is takes arguments c : Ctx, t : Hn.Lam, a,b : Ty

and x : (Hn.HT(c[n : a], t@Hn,b)) and the support of these arguments is contained in the support of c, t, a

and b, which are just the free variables of the result type HT(c, t,a ⇒ b). Note that the hidden-name

quantifier in the type of x removes n from the support. Similar simple arguments work for the other

constructors of HT. Hence, just by looking at the inductive definition of HT we can see that it is sound to

assume the term pure, by means of which we can side-step some problems with closed freefrom types.

Of course, much better than giving criteria for the semantic existence of the term pure would be to

derive it. The natural way of defining pure is by induction on its second argument. A problem with

doing this is the fact that the variable n in the type of pure is quantified by a hidden-name type H.

Because of this, we cannot directly use the induction principle, which would have a conclusion of

type Πc : Ctx.Πt : Lam.Πa : Ty.Hn.HT(c, t,a) → HT(c, t,a)∗(n:N). If n were quantified by a normal

dependent product, then we could just exchange it with c, t and a and use the induction principle.

Since n is quantified by H and thus assumed to be fresh for c, t and a, this commonly used exchange

trick is not available. Instead, the only way of deriving the term pure by induction appears to be to
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transform pure into a function of type (in informal notation) Πc : Ctx.Πt : Lam.Πa : Ty.HT(c, t,a) →
Πn : N∗(〈c,t,a〉:Ctx×Lam×Ty).HT(c, t,a)∗(n:N) for which the induction principle can be used. However, such

an inductive definition clearly requires non-trivial manipulation of open freefrom types.

The issue that there are different induction principles whose equivalence would be very desirable but

which we cannot show also appears for the type Lam. In Section 12.1.1 we have shown that for closed

types we can derive a FM-style induction principle from the normal induction principle. If we want to

generalise this to open types, the some/any nature of H-types makes us expect three induction principles

with the following respective λ -binder cases:

Γ ` R1 : Πx : (Hn.Lam).Πh : (Hn.A(x@n)).A(lam x)

Γ ` R2 : Πx : (Hn.Lam).Hn.A(x@n)→
(
A(lam x)∗(n:N))

Γ ` R3 : Hn.Πx : Lam.A(x)→
(
A(lam (n.x))∗(n:N))

The equivalence of the first and the second term can be seen just as for HT above. The second and the

third term should be equivalent since H is part of an equivalence and therefore distributes over products.

To show the equivalence of R2 and R3, it suffices to show an isomorphism

Γ `
(
Hn.(Πx : A.B)

)∼= (
Πx : (Hn.A).(Hn.B[x@Hn/x])

)
Type, (12.1)

because we have n.(x@Hn) = x. We can derive the direction from left to right without the need for open

freefrom types. It is given by the term

λy : (Hn.(Πx : A.B)).λx : (Hn.A).λHn.(y@Hn) (x@Hn).

In the other direction however, we need the elimination for open freefrom types. This direction is given

by the following term, in which we abbreviate the type Πx : (Hn.A).(Hn.B[x@Hn/x]) by C.

λy : C.λHn.λx : A. let bindH(n,x) be z∗n : (Hn.A)∗(n:N) in (y z)@Hn

Showing that these two terms do indeed define an isomorphism again requires non-trivial manipulation

of open freefrom types. Nevertheless, we should point out that for sufficiently closed types A and B the

isomorphism (12.1) is derivable.

It is already evident from the work of McKinna and Pollack [69], that being able to show the equiv-

alence of these different induction principles is important for applications. The practical difference

between the different induction principles can be seen by observing that if we had used the definition

of HT with htlam′ instead of htlam, then we could not have defined the evaluation function in the pre-

vious section. The reason for this is that in the induction case for the λ -binder, we would have had to

define a term of type (
Hn.HT(c[n : a], t@Hn,b)

)
→ (El(c)→ El(a))

and the only way of doing so would have been to define an element of

HT(c[n : a], t@Hn,b)→
(
(El(c)→ El(a))∗(n:N))
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and choose the name n freshly. For this we would need open freefrom types; and we cannot assume

a purity constant either, since the type El(c) → El(a) is not pure. Indeed, the freshness of n from

the element of (El(c) → El(a)) is not trivial. It would have to be established as part of the inductive

definition. In contrast, with the inductive definition of HT using htlam, we do not have choose fresh

names. However, the problem of finding fresh does of course not just disappear. It is simply shifted

into the definition of HT. Whereas with htlam′ we can construct an element of HT without supplying

any name, we do need to supply a name to construct an element of HT using htlam. In other words,

the names required for the definition of eval are already contained in the element of HT. This illustrates

again that showing the equivalence of the two induction principles comes down to being able to generate

fresh names.

Another way of dealing with the problem of fresh name generation is by encoding in the type theory

a name-allocation monad, as used in [103], [100] and [21]. Such a monad can be implemented as the

type T (A) def= Σk : Nat.N∗k −∗ A, where N∗0 = 1 and N∗k+1 = N ∗N∗k. The operations on T can be

defined as described in [103]. However, having to carry around such a monad is likely to be awkward.

12.3 Conclusion

The examples in this and the previous chapter show that even with closed freefrom types interesting

examples with names can be defined in the type theory. The examples are comparable to those defined

in the modal type theory [98]. However, the examples also show that for serious applications, a gener-

alisation to open freefrom types is necessary. Since, effectively, all the restrictions we have encountered

were due to the absence of open freefrom types, there is reason to hope that lifting this restriction will

be enough to enable full-scale applications.
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Conclusions and Further Work

13.1 Conclusions

In this thesis we have developed a dependent type theory with names and name-binding. Its main new

features for programming and reasoning with names and binding are simple monoidal sums Σ∗, simple

monoidal products Π∗ and their common special case of hidden-name types H. As a semantic basis

for this type theory we have developed a categorical formulation of name-binding. In this categorical

formulation, Σ∗, Π∗ and H arise naturally from an equivalence of fibrations that may be understood as a

formalisation of Barendregt’s variable convention. The categorical structure captures directly a number

of important FM constructions for working with names and binding. Based on the categorical structure,

we have defined a type theory that is in propositions-as-types correspondence to Nominal Logic. We

have seen that its definition is not just a matter of appealing to the Curry-Howard isomorphism. The

new concept of freefrom types, to which Σ∗ and Π∗ are intimately related, appears

The syntactic formulation of freefrom types is one of the main limitations of the type theory pre-

sented in this thesis. In the examples we have frequently encountered the limitations of our current

formulation of closed freefrom types. But we have also seen that in each of these cases the limitation is

due only to the syntactic restriction that freefrom types be closed. With open freefrom types, which we

have explained categorically, each of these problems can be addressed. On the other hand, even with the

restriction to closed freefrom types, our type theory is similar in expressivity to the modal type theory

of [98]. Indeed, the complications in generalising closed to open freefrom types appear comparable

to the complications in generalising modal type theory to dependent types [76]. We see our precise

categorical formulation of freefrom types as a first step towards the solution of the problems with them.

Nevertheless, we do believe the development in this thesis makes a case that Σ∗, Π∗ and H are good

concepts for integrating names in type theory. Their categorical definition can be seen as a formalisation

of Barendregt’s variable convention, they are the essence of a number of important constructions in FM

theory, and their use for syntax integrates both WHOAS-style and FM-style work.

313
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The categorical definition of H by an equivalence of fibrations not only formalises naturally the

informal practice of using interchangeably α-equivalence classes and their freshly named instances, it

also characterises directly a number of important constructions for working with names and binding.

The direct characterisation allows us to focus on the essential properties of the constructions for names

when designing a type theory. This is desirable since constructing the structure for names and binding

concretely can be a laborious task, as the length of Chapter 3 illustrates. The categorical definition of this

structure allows us to abstract away these details and concentrate on its intrinsic properties. Furthermore,

due to the increased generality, we can transfer our work with names and binding to other contexts, such

as the context of realizability.

To summarise, the main contributions of this thesis are:

• The definition of bunched dependent type theory with novel multiplicative products Π∗, freefrom

types and multiplicative sums Σ∗.

• A categorical semantics for the type theory, including soundness for the interpretation in a class

of fibrations and completeness for the fragment of the type theory with Π∗ and ∗-types.

• A categorical formulation of FM-style constructions for names and name-binding in terms of an

equivalence of fibrations. The construction of concrete models of this structure: the Schanuel

topos, a realizability version of the Schanuel topos and the species of structures.

• A type theory with names and hidden-name types using which one can work with syntax both in

WHOAS-style and FM-style at the same time.

We believe the work reported in this thesis can serve as a firm foundation for further work on type

theory with names and binding.

13.2 Further Work

The work reported here represents the first steps towards a dependent type theory with names and

binding—much remains to be done. In addition to the many specific directions for further work dis-

cussed in the respective chapters, we mention some directions for this work as a whole.

We have left open many meta-theoretical questions about the type theory, the most important being

whether type-checking and definitional equality are decidable. This is an interesting question, especially

with the interaction equations of H-types. While we believe it to be essentially straightforward to show

decidability of type-checking for the fragment with Π∗, ∗ and freefrom-types, going beyond that appears

to be harder. To get a better view of the problem, we should look for simplifications of the type theory.

The restriction to closed freefrom types is the main factor restricting the use of the type theory. An

important goal for further work is therefore to find a good formulation of open freefrom types. Finding

a simple formulation of (an equivalent of) freefrom types is also the key to simplifying the type theory,
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since the let-terms associated to freefrom types are one of main factors contributing to the complexity

of the type theory.

Even without a good solution to the formulation of open freefrom types, it is possible to side-step

the problems with them by using a dependently sorted predicate logic. By this we mean using a separate

first- or higher-order logic on top of the type theory, as described in [56]. Such a logic would contain

a freshness quantifier N, which is available by Proposition 10.2.5. It would be a variant of Nominal

Logic, and its formulation would be similar to the sequent calculus of Cheney [20, 22]. The problem

with freefrom types disappears in such a logic. The pullback in Definition 10.2.1.2 implies that for all

propositions Γ ` ϕ : Prop there is an equivalence Γ∗ x : A ` ϕ ⊃⊂ ϕ∗(x:A), so that freefrom propositions

can simply be dropped.

When looking for a real solution to the problems with freefrom types, we should keep in mind that

the problems with them may be just an artifact of our formulation using bunches. While bunches were

very important for identifying the semantic structure in Chapter 10, it is possible that other formulations

lead to a simpler type theory. For instance, bunches are more general than they need to be for their

application to names, being based just on a monoidal structure with some properties. Perhaps we should

look for a formulation that uses more of the structure available in categories with bindable names. One

possibility for such a formulation would be to assume a universe of propositions Γ ` Prop, modelled

by the subobject logic in the Schanuel topos, and to work with freshness propositions Γ ` M#N : Prop

instead of bunches. This would render freefrom type superfluous, thus solving the problem and greatly

simplifying the type theory. On the other hand, there are likely to be new problems. For instance, in the

formulation of the rule (Σ∗-I) one would encounter a version of the slices in [37], which are likely to be

problematic. The details remain to be worked out.

Last but not least, to assess the practicality of the type theory, we should try it. To make it feasible

to assess how practical the approach is, there needs to be a prototype implementation.

I wish to God these calculations had been executed by steam.

— CHARLES BABBAGE, 1821
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open freefrom, 229

strong Π∗, 148

Uniform families of assemblies, 97

Validity, 123

Vertical

morphism, 28

Vertical natural transformation, 30

Weak subobject classifier, 49
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