
Simulation of the UKQCD Computer

SadafAlam

Doctor of Philosophy
Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh
2004

Abstract

Software simulations are extensively used in the investigation and exploration of
complex systems and in the verification and advancement of scientific theories. Nowa¬

days, simulation models are an indispensable exploratory tool, considered as vital
as theoretical and observational methodologies in scientific research. Present super-

computing resources are not enough for a number of critical scientific simulations,

collectively known as 'grand challenge' applications. Developing supercomputers
for high-end scientific applications is itself a grand challenge. Increasingly complex
system architectures, the enormous design space of supercomputer systems and com¬

plicated hardware-software interactions pose phenomenal design challenges for system
architects. A flexible, cost-effective and efficient simulation framework is required in
order to get an insight into the performance characteristics of high-end systems.

HASE, the Hierarchical computer Architecture design and Simulation Environ¬
ment, allows for parameterised prototyping of computing systems at multiple ab¬
straction levels encompassing system hardware and application software components.
The UKQCD computer simulation research aims to explore the design space and to

investigate the performance restricting features of a recent, application-specific su¬

percomputer called QCDOC. Quantum Chromodynamics (QCD) is a particle physics
theory and a 'grand challenge' application. The QCDOC (QCD-On-Chip) computer
employs IBM System-On-Chip technology for a Teraflop-scale supercomputer design.

An application-driven simulation approach is introduced for application-specific
supercomputer modelling in HASE. Parameterised hardware-software co-simulation
models of the QCDOC machine have been created. Advantages of the application-
driven co-simulation include a wider design space exploration of hardware compo¬

nents, not restricted by static workload configurations, and simulation metamodelling.
Workload scalability and load balancing experiments have been conducted along with
performance evaluation of QCDOC's custom-designed features. Moreover, together
with HASE features, simulation metamodelling allows efficient generation of alternate
simulation models with maximum component reuse and minimum design overhead.
Experiments with HASE QCDOC and its successor Bluegene/L simulation models
confirm that QCDOC design configurations are optimised for parallel QCD code.

i

Acknowledgements
It is a great pleasure to acknowledge the incredible amount of support and encour¬

agement of many individuals during my PhD research at the University of Edinburgh.
I am truly grateful to my supervisor Professor Roland Ibbett for his help, guidance,

patience and understanding — from project proposal to the final write-up. His

insightful suggestions have been a stimulating challenge to me. If it were not for
his guidance and persistent support, this thesis would not have been completed. My
deepest gratitude to Professor Tony Kennedy, my second supervisor, who introduced
me to the high performance QCD calculations, and whose enthusiasm for the QCD

supercomputers motivated me to determine my research methodology. He used to
answer my naive questions about QCD theory and parallel QCD simulations with

great patience. I hope that in the future I will have the wonderful privilege to seek
my supervisors' advice.

Dr Frederic Mallet, the HASE UKQCD computer simulation project research
fellow, made significant contributions to the HASE platform for my research project.
I shared my office with him for two years and he was always there to provide support
and to share his recent PhD experience. I also wish to thank the UKQCD research
team members at the School of Physics, University of Edinburgh and at Columbia
University. Many thanks to Professor Richard Kenway who provided access to the
QCDOC development resources and documentation. I am indebted to Dr Peter Boyle
and Dr Balint Joo for giving me an access to their benchmark and operating system

code, and for providing incredible insight into the QCDOC system.
I have met many interesting post-graduates and researchers at the School of

Informatics who enriched my research experience. I am also thankful to the School
of Informatics computing support team for their timely help and assistance.

I thank my husband for believing in me — always. My wee son, who grew from a

baby to a young boy during this time, is my inspiration and the greatest source of joy
in my life. I also thank my parents — they have always been there for me.

I acknowledge the EPSRC studentship (UKQCD computer simulation project grant
GR/R27129) and Informatics Teaching Organisation teaching assistantship. Finally, I

acknowledge all copyrights and trademarks.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

Parts of this work have been published as:

• S. Alam and R. Ibbett, "A Methodology for Simulating Scientific Supercomput-

ing Systems", Summer Simulation MultiConference, USA, July 2004.

• S. Alam, R. Ibbett and F. Mallet, "Performance Evaluation of Local Communica¬

tions: A Case-study", Proceedings of 15th International Conference on Parallel
and Distributed Computing and Systems, USA, November 2003.

• S. Alam, R. Ibbett and F. Mallet, "Simulation of a Computer Architecture
for Quantum Chromodynamics Calculations", Crossroads, The ACM Student
Magazine, Interdisciplinary Computer Science, Issue 9.3, Spring 2003, pp. 18-
23.

• F. Mallet, R.N. Ibbett and S. Alam, "An Extensible Clock mechanism for Com¬

puter Architecture Simulations", 13th International Conference on Modelling
and Simulation, USA, May 2002.

• S. Alam, "HASE: A Toolset for Modelling Massively-Parallel Computers:
Parameterised Simulation Model of the QCDOC Machine", Poster presented at

the Informatics Jamboree Workshop, UK, May 2002.

iii

To my family.

iv

Table of Contents

1 Introduction 1

1.1 Performance Studies of Computer Systems 1
1.2 Challenges in Scientific Supercomputing 3

1.2.1 Design Space Exploration 5
1.2.2 Divergence Problem 6

1.3 Motivation and Project Aims 7
1.4 HASE 8

1.5 QCDOC— The UKQCD Computer 9
1.6 Design Methodology 10
1.7 Related Research 13

1.8 Thesis Overview 15

2 Background 17
2.1 Computer Architecture Performance Studies 17

2.1.1 Why Simulate an MPP System 19
2.1.2 Design Trade-offs Exploration 21
2.1.3 Computer Architecture Simulators 24
2.1.4 Effect of System Design on a Simulation Technique 29
2.1.5 Challenges: Trends in Supercomputer Design 31

2.2 HASE 34

2.2.1 HASE Building Blocks 35
2.2.2 Parameterisation 40

2.2.3 Visualisation Capabilities 42

v

2.2.4 Hardware-Software Co-simulation 44

2.2.5 HASE Projects: Past, Present and Future 45
2.3 QCD and Parallel Computers 46

2.3.1 Theoretical Background 48
2.3.2 Lattice QCD 51
2.3.3 QCD Algorithms 58
2.3.4 Computational Characteristics of QCD Calculations 60
2.3.5 Parallel QCD Computers 63

2.4 Summary 67

3 Design and Implementation 68
3.1 QCDOC Architecture 68

3.1.1 Design Philosophy 69
3.1.2 System Overview 70
3.1.3 PowerPC 440 Core Architecture 77

3.1.4 Prefetch EDRAM Controller (PEC) 84
3.1.5 Serial Communication Unit (SCU) 91

3.2 Hierarchical Model Design 94
3.2.1 Level I: PowerPC Processor Core 98

3.2.2 Level II: ASIC and External Memory 101
3.2.3 Level III: A Four-Dimensional QCDOC Machine 104

3.3 HASE Extensions 106

3.3.1 Multi-frequency Clock Library 107
3.3.2 ARRAY Construct in HASE 109

3.3.3 MESHnD Template 112
3.3.4 Static Parameters 114

3.4 Model Debugging, Validation and Experimentation 115
3.4.1 HASE Animator 116

3.4.2 Timing Diagrams 117
3.4.3 Trace file Viewer 119

3.4.4 Off-line Interactive Plots 121

3.5 Summary 122

vi

4 Design Space Exploration and Performance Analysis 123
4.1 Data Paths, Logic and Control 124

4.1.1 Read and Write Logic 124
4.1.2 Off-node Communication Operations 128
4.1.3 Collective Communication Operations 135

4.2 Experimental Setup 138
4.2.1 Characteristics of the QCD Benchmark Software 138
4.2.2 Parameters of the HASE QCDOC Model 147

4.3 Processing Node Performance Search Space 152
4.3.1 Execution-Driven CPU 153

4.3.2 Maximum Achievable Performance 154

4.3.3 Memory Hierarchy Design Space 156
4.3.4 Prefetch Engine Configurations 164

4.4 Custom Interconnection Network Performance 167

4.4.1 On-chip and Off-chip Communication Latencies 168
4.4.2 Local Computation and Communication Load Balance 169

4.5 Large Machine Configuration Modelling 171
4.5.1 Global Sums Schemes 173

4.5.2 Global Sum Performance 179

4.5.3 Communication Protocol Efficiency 181
4.6 Summary 187

5 Simulation Metamodelling 188
5.1 QCDOC—> Bluegene/L Machine 189

5.1.1 Bluegene/L Architecture 190
5.1.2 Bluegene/L ASIC 191
5.1.3 Communication Networks 193

5.2 Comparison of QCDOC and Bluegene/L Hardware Features 198
5.2.1 On-chip Memory Hierarchy 202
5.2.2 Off-chip Communication Data Transfers 204

5.3 Lattice QCD Performance on MPP Systems 206
5.3.1 Parallel QCD Code Configurations 207

vii

5.3.2 Practical Lattice Volumes 212

5.3.3 Communication Workload Mapping 213
5.3.4 Collective Communication Operations 217

5.4 Simulation Metamodelling in HASE 218
5.4.1 Component Reuse 219
5.4.2 HASE Metamodel Design Features 222
5.4.3 Constraints 227

5.5 Performance Comparison Experiments 228
5.5.1 Workload Scaling 229
5.5.2 Efficiency 230

5.6 Summary 234

6 Conclusions 235

6.1 Thesis Summary 235
6.2 Key Contributions 237
6.3 Future Directions 239

A Benchmark Code 243

A.l QCD Kernel 243
A.2 Object File Format 250
A.3 Input Format for the HASE Model 251

B Input Parameters and Output Variables 253
B.l ENTlTYs and their Parameters 253

B.l.l The PowerPC COMPENTITY 253

B.1.2 PDB and PLBDBLK ENTITY 256

B.l.3 The EDRAM ENTITY 257

B.1.4 The SCU ENTITY 257

B.2 Sample Outputs 258

C PowerPC ELF and ABI 261

C.l System V ABI 261
C.2 PowerPC ELF 262

viii

C.2.1 Function Calling Sequence 262
C.3 QCDOC Operating System 265

Bibliography 269

ix

List of Figures

1.1 Performance evaluation methodologies used in a sampling of papers
from the Proceedings of the ISCA 2

1.2 QCDOC simulation model in the HASE design window 11

2.1 Classification of multiprocessor systems 30
2.2 Difference between scalar and vector operations 32
2.3 HASE simulation model — design steps 38
2.4 HASE template generation mechanism — MESH2D 39
2.5 Steps involved in running a HASE simulation model 40
2.6 EDL description of a HASE ENTITY 41
2.7 An ENTITY parameter window 42
2.8 Animator control interface 43

2.9 Example of a bi-clocked HASE ENTITY with a memory (.mem file) . . 45
2.10 Structure within an atom 49

2.11 QCD complexity vs. QED 51
2.12 Quark and gluon mapping onto a lattice 53
2.13 Feynman path integral formulation 54
2.14 Path integral mapping onto a lattice 56
2.15 Lattice QCD mapping— tradeoff between small and large lattice sizes 57

3.1 Official QCDOC processing node design [BJW03] 71
3.2 CPU execution pipeline 78
3.3 LI cache layout 80
3.4 Floating-point execution pipeline 83
3.5 PEC design blocks 85

x

3.6 PEC prefetch read registers [TeaOlb] 88
3.7 Serial Communication Unit (SCU) [BCC+02b] 92
3.8 HASE QCDOC processing node 95
3.9 HASE QCDOC model design hierarchy 97
3.10 HASE CPU ENTITY 99

3.11 HASE FPU ENTITY 99

3.12 HASE MMU ENTITY 100

3.13 HASE Interrupt Controller ENTITY 101
3.14 HASE PDB ENTITY 102

3.15 HASE EDRAM ENTITY 103

3.16 HASE PLB (System Bus) ENTITY 103
3.17 HASE SCU ENTITY 104

3.18 Simulation control — SimMode ENTITY 105

3.19 PLL control 108

3.20 Relative clock speeds 108
3.21 A 4-dimensional mesh template (MESH4D) definition in EDL 112
3.22 4-Dimensional mesh links generated by the HASE 113
3.23 PARAMs Interface 115

3.24 PDB static parameter window 115
3.25 FPU pipeline stages in a timing diagram 118
3.26 FPU parameters in the project EDL file 119
3.27 Entity instances and trace file viewer 120
3.28 Before zoom 121

3.29 After zoom 122

4.1 Read data path on the QCDOC ASIC 126
4.2 Write data path on the QCDOC ASIC 127
4.3 Data transfer between neighbouring nodes without communication

buffers 130

4.4 Data transfers between neighbouring nodes with communication buffers 131
4.5 Bi-directional SCU protocol implementation 132
4.6 Communication data and control paths on the QCDOC ASIC 133

xi

4.7 Global sum operation on a torus network 136
4.8 CPU overheads in a QCDOC SCU pass-through unit 137
4.9 QCD Nearest-neighbour communication on a 2-D mesh 139
4.10 QCDOC_ChDecomp floating-point instructions 143
4.11 QCDOC_ChDecomp_hsu3 floating-point instructions 144
4.12 QCDOC_ChRecon_su3 floating-point instructions 144
4.13 QCDOC_ChRecon_add floating-point instructions 144
4.14 Clock frequencies for on-chip and off-chip data transfers via the

communication send and receive buffers 146

4.15 Execution-driven simulations vs. instruction-driven simulations 153

4.16 Maximum achievable performance of kernel subroutines 155
4.17 Performance variations as a result of LI cache line size and L2 cache

prefetch size 158
4.18 Effect of L1-L2 and L2-L3 cache bus widths 160

4.19 Performance variation due to LI cache configurations 162
4.20 debt — cache touch instructions 163

4.21 L2 prefetch cache configurations 164
4.22 L2 prefetch cache access latency 165
4.23 Prefetch read registers replacement policies (L2 Cache) — with con¬

stant prefetch size 166
4.24 Prefetch read registers replacement policies (L2 Cache) — with fix

number of registers 166
4.25 Effect of on-chip and off-chip communication latencies 168
4.26 Computation and local communication scaling 170
4.27 A binary tree network 173
4.28 Simple and enhanced shift-and-add pass-through global sums 175
4.29 A QCDSP SCU pass-through unit with a serial adder 176
4.30 Steps for computing global sums 177
4.31 Global sum performance 180
4.32 Conjugate Gradient (CG) solver 181
4.33 Communication performance over unreliable channels (24 sites/node) 184

xii

4.34 Percentage channel utilisation over unreliable channels (24 sites/node) 184
4.35 Communication performance over unreliable channels (22x42 sites/node) 185
4.36 Percentage channel utilisation over unreliable channels (22x42 sites/node) 185
4.37 Communication performance over unreliable channels (44 sites/node) 186
4.38 Percentage channel utilisation over unreliable channels (44 sites/node) 186

5.1 Bluegene/L ASIC (adopted from [Tea02]) 192
5.2 Bluegene/L networks [GAB+02] 194
5.3 Torus connections and routing 196
5.4 Tree module with a serial ALU 197

5.5 Simplified Bluegene/L processing node 198
5.6 HASE QCDOC node 199
5.7 Data paths — Bluegene/L and QCDOC on-chip memory hierarchy . . 203
5.8 On-chip data and control paths for point-to-point communication . . . 205
5.9 C++ data structure for lattice QCD calculations 208
5.10 QCD computation requirements scaling with respect to the underlying

physical network 210
5.11 QCD nearest-neighbour communication volume scaling with respect

to the underlying physical network 211
5.12 Communication volume scaling per processing node 215
5.13 Nearest-neighbour communication efficiency with varying lattice vol¬

ume over a 3-D and a 4-D torus network 216

5.14 Application-driven metamodelling for simulating scientific MPP sys¬

tems in HASE 221

5.15 Parallel QCD workload scaling on QCDOC and Bluegene/L machine 230
5.16 Execution time per lattice site 231
5.17 QCDOC and Bluegene/L (BGL) Performance 232

A.l Contents of the .obj file in human-readable format 251
A.2 Contents of the instruction cache in the .mem file 252

xiii

List of Tables

2.1 Performance analysis tools and techniques [PKP03] 18
2.2 Known bound states of quarks and gluons 50

3.1 TLB fields 81

3.2 HASE memory array (. mem files) options 110

4.1 Clock cycles required for 64-bit data transfers [BCC+02b] 129
4.2 QCD assembler kernel subroutines 142
4.3 Simulation modes (SimulationMode) in the HASE QCDOC model . 150
4.4 LI cache parameter values 157
4.5 L2 cache parameter values 157
4.6 Additional parameters in the SCU ENTITY 172
4.7 Global sum mechanisms — for 4D torus and binary tree networks . . 179

5.1 Comparison of QCDOC and Bluegene/L systems 201
5.2 Example: lattice mapping onto a 3-D and 4-D torus networks 209
5.3 QCD lattice volume mapping per processing node 214
5.4 QCd global sum computation mechanism on QCDOC and Bluegene/L

machines 217

5.5 QCDOC and Bluegene/L ASIC components clock frequencies 224
5.6 Practical lattice QCD calculations onto QCDOC and Bluegene/L ma¬

chines 228

B.l CPU parameters 254
B.2 FPU parameters 255
B.3 MMU parameters 256

xiv

B.4 PDB and PLBDBLK parameters 256
B.5 SCU parameters 258

C.l PowerPC Registers 263

xv

Chapter 1

Introduction

1.1 Performance Studies of Computer Systems

The performance evaluation, analysis, prediction and measurement of existing and
novel computer systems have become an increasingly challenging task. The achievable
performance of an application over an underlying system architecture depends on a

number of hardware and software factors including the operating system characteris¬
tics. Performance results from a study are unreliable if these factors are not taken into
account. Detailed software simulations have therefore become essential for evaluating
ideas in the computer architecture field, reported by Skadron et. al. [SMA+03] in a

recent discussion article.

A large fraction of computer architecture research papers presented during the
last decade at the International Symposium of Computer Architecture (ISCA), used
simulation for quantitative evaluation. Comparatively, about 20 years ago, only a small
fraction of papers mentioned simulation as their research method. Figure 1.1 shows
that there has been a shift toward simulation-based computer architecture research.

1

Chapter 1. Introduction 2

1973 1985 1993 1997 2001

Year

□ Other
□ Mathematical

Modelling
[H Measurement
□ Simulation

Figure 1.1: Performance evaluation methodologies used in a sampling of papers from
the Proceedings of the ISCA

Simulation is even more useful in research to evaluate radical new ideas and to

explore the design space of a computing system. In contrast, mathematical or analytical
modelling schemes and direct system measurements have their limitations. Analytical
modelling schemes do not capture the dynamics of a system while a physical machine
for investigating a new design is not always available. Even within existing systems,

profile management tools have constraints and they are not always non-intrusive.
With a wide-scale acceptance of simulation as a performance evaluation technique,

there are a number of challenges and limitations — especially in the multiprocessor
systems arena. Firstly, developing a high-fidelity software simulation is becoming
a more time-consuming and complicated task with the ongoing rapid innovation of
computer systems. Secondly, complete multiprocessor software simulations impose
phenomenal computing and storage requirements on the host system.1 Thirdly, the
wall clock time taken to simulate a system imposes design trade-offs between the level
of design detail of the target system captured by the simulated software and the time it
takes to execute on a host system. Finally, the range of applications is becoming more

'Target system — the one being simulated. Host system — the one that runs the simulated
program/software.

Chapter 1. Introduction 3

diverse; benchmarks and performance metrics for a range of commercial and scientific
applications are simply not available. Skadron et. al. [SMA+03] concluded that no
benchmark suite can be a one-size-fits-all solution.

The scope of the research presented in this thesis involves the creation of parame-
terised HASE simulation models of a recent scientific supercomputer to explore its

design space and to conduct performance studies of a highly-demanding scientific
application. HASE, the simulation platform for the research, is a Hierarchical com¬
puter Architecture design and Simulation Environment that allows for parameterised
software prototyping of computer systems at multiple abstraction levels encompassing
system hardware and application software. The target high-end supercomputer, QC-
DOC, employs an innovative System-On-Chip (SOC) integration technology and has
been custom-built for a class of applications called Quantum Chromodynamics (QCD).
In this thesis, high-end scientific supercomputing systems performance modelling
issues, and the flexibility, scalability and reusability provided by the HASE platform
are identified, discussed and explored.

1.2 Challenges in Scientific Supercomputing

"Supercomputers and desktops are just not the same thing in spite of the
fact that they both perform calculations."

The above statement by Dongarra et. al. [DSSS03] is directed at the ongoing
debate about the future directions of scientific High Performance Computing (HPC).
Scientific HPC applications include simulations in natural and physical sciences, for
example, DNA and black hole simulations, modelling processes, for instance, shuttle
launch and nuclear devices experiments and analysis of very large data sets like data
from observatories and collected from nuclear colliders. These applications require the
largest, fastest, and most expensive type of computers called supercomputers that are
designed for and dedicated to executing complex calculations rapidly. Supercomputers
do not differ from desktop computers in processing power, storage capacity and
memory alone. It is the architectural and algorithmic changes, which define a

supercomputer. The distinction is that supercomputers carry out large amounts of
parallel and vector data processing.

Chapter 1. Introduction 4

Historically, scientific supercomputers were application-specific, i.e., they were

not widespread and were hugely expensive for most research communities. They
were considered as special-purpose computers, in terms of their hardware, software
and operating system designs. In late eighties, with the advances in Very Large
Scale Integration (VLSI) technologies, high-end computing power became available
to larger scientific research communities. Low cost, high performance systems
built with commodity off-the-shelf processors, like Beowulf clusters, and massively-
parallel systems with small numbers of specialised components were considered the
best design option. As processor power kept on increasing with Moore's law, and
memory wall effects and communication latencies started dominating the overall
parallel performance, the sustainable performance for application code was called into

question.
Since the late 1990s, the difference between the theoretical peak performance

and performance sustained by the application code over high-end supercomputers has
been increasing. In other words, the sustained-to-peak performance ratio is declining,
particularly for scientific HPC calculations. Scientific codes typically achieve 10% to
30% of the peak performance over main-stream cluster configurations. Therefore, it
has been argued that the processing, storage and networking technologies optimised
for database and web server applications are not meeting the demands of the high-end
scientific computing. HPC systems require significant advances in critical component
areas to continue to achieve increases in overall system performance, including

memory bandwidth, network bandwidth and latency. The fastest supercomputers for
the past two years, Japan's Earth Simulator, invoked a re-thinking of the way in which
scientific HPC is progressing. Japan's Earth Simulator does not follow the current

supercomputer design trends, i.e. it is not based on commodity design components.

Instead, it is custom designed and optimised for earth simulation scientific applications.
Presently, there are two profound arguments for the direction of future scientific

supercomputer designs and innovation: Bell and Gray [BG02] argue that it will be
driven by market forces while Dongarra et. al. [DSSS03] and Simon et. al. [SMK+03]
are in favour of application-oriented supercomputer design efforts. A new class of
supercomputer system designs will require advances in computer modelling, Simula-

Chapter 1. Introduction 5

tion, debugging and compilation strategies and researches. Simon et. al. [SMK+03]
asserted that commodity off-the-shelf processing are neither cost-effective nor a viable
solution for a large number of scientific applications, and serious considerations should
be given to optimising systems to a particular large-scale scientific application.

1.2.1 Design Space Exploration

Estimating the suitability and sustained performance of a high-end system for a

parallel application is not a straightforward task. With increasing system complexity,
achievable performance for an application code depends on exploiting parallelism that
is available at various levels of a multiprocessor system design. For instance, a parallel
application should take maximum advantage of the Instruction Level Parallelism
(ILP) as well as inter-node parallelism. Hence an analytical, or static performance
calculation may not produce a reliable and guaranteed outcome, since these studies do
not incorporate code execution dynamics.

Simulation is identified as the most comprehensive performance analysis and
exploration mechanism for microarchitecture research [SMA+03]. A large-scale simu¬
lation design itself is a complicated task as it poses challenges to a simulation designer
over its accuracy, flexibility and time to produce simulation results. Skadron et.

al. [SMA+03] comprehends the role of computer architecture simulation frameworks
and challenges in computer architecture performance evaluation:

"Quantitative evaluation of computer architectures relies heavily on sim¬
ulators and simulator infrastructure, yet today's robust and publicly avail¬
able simulation tools are by no means capable of supporting the full range
of studies that the architecture community must pursue."

In particular, multiprocessor systems built with a range of heterogeneous com¬

ponents are increasingly difficult to evaluate and to experiment with. Performance
bottlenecks arise from hardware and its interactions with the application software;
what the relationship should be between the two within a simulation framework, so

that these performance bottlenecks can be comprehensively exposed, is still an open

question. A high-level abstraction of hardware and software characteristics is therefore

necessary to validate, reuse, evaluate and extend multiprocessor simulation models and

Chapter 1. Introduction 6

frameworks with a degree of flexibility and efficiency. Tightly-integrated scientific
supercomputers, which are the focus of the research presented in this thesis, often
have unique design features and are devoted to a few highly-demanding applications.
Thus, highly flexible and extensible simulation frameworks are essential for modelling
these supercomputers.

1.2.2 Divergence Problem

Supercomputing systems have been paramount in the research, innovation, validation
and exploration of theoretical QCD, like many other disciplines in natural and physical
sciences. QCD is considered as one of the most established scientific discipline that
has been studied on high-end parallel computers over the last three decades. During
this time, computation power has rocketed. Even desktop computers of today can offer
more compute power and storage capacity than a supercomputer of twenty years ago.

In this scenario, one can expect that a parallel computer based on current technology
should be able to address the QCD 'Grand Challenge' application status, as suggested

by Bowler [Bow98]. A grand challenge computing problem is one which cannot be
solved in a reasonable amount of time on currently available parallel supercomputers.

Surprisingly, a large number of QCD calculations cannot be simulated within
a reasonable approximation range on many high-end systems today. And QCD is
not alone; a number of 'Grand Challenge' applications have their status unchanged
even after 20 to 30 years. A combination of factors can be considered responsible
for the lack of utilisation of ever-increasing compute, storage and communication
power. Simon et. al. [SMK+03] attributed the poor achievable performance of
several scientific applications to the 'divergence problem'. Divergence means that the
requirements of scientific applications are substantially different when compared to the
mass commercial and industrial compute and communication requirements.

Thus, there ought to be close integration of application and architectural ex¬

ploration for scientific supercomputers. A number of high-end Massively Parallel
Processing (MPP) supercomputers with tens of thousands of processing nodes can

score a large peak floating-point operations per second (Flops) rate, but sustain a

modest fraction of the theoretical peak performance. The 'divergence problem' is again

Chapter 1. Introduction 7

to blame as the supercomputers built with design components that are optimised for
commercial applications do not scale and deliver a high performance for the scientific
application codes. Computer simulations are considered as a tool that can assist not

only in investigating an application code's execution behaviour over an underlying
architecture but also in exploring the design space of a supercomputer architecture for
a scientific application.

1.3 Motivation and Project Aims

Computer architecture simulations and their simulators have been used for perfor¬
mance evaluation and exploration of parallel systems for many years. A large
number of simulators model low- and medium-scale parallel systems with shared and
distributed-sharedmemories, and conduct experiments with standard benchmark suites
that represent commercial workload characteristics. For the design space exploration
and analysis of high-end supercomputers, analytical and static models have been
employed; these models provide very little insight into application code software
interaction and scaling with respect to parallel hardware configurations.

The performance of a parallel system is attributed to a range of its hardware
components as well as the characteristics of the workload. A simulation model
that encapsulates both hardware details with a degree of accuracy and software
characteristics with the workload scaling properties is likely to provide a better

understanding of the performance limiting factors. At the same time, the simulation
model should be flexible enough to allow a user to experiment with a range of
hardware configurations and workload variations. In practice, it is extremely difficult
to develop a simulation model that captures all the above-listed requirements for a

single processing node let alone replicate it for a larger system configurations. Thus,
levels of hierarchical abstraction are necessary such that it is possible to zoom in and
out of the details of the model. Furthermore, the level of detail captured by a simulation
model should not have phenomenally long and impractical execution time that would
ultimately prevent exploration of wide-range design options.

Chapter 1. Introduction 8

The key motivations for the UKQCD computer simulation project are the com¬

ponent reuse facilities and the degree of freedom offered by the HASE platform to a

computer architecture simulation designer. A scalable simulation model design within
an existing computer architecture simulation framework for performance studies of
a recent scientific supercomputer is the design target. The main aim of the research
presented in this thesis is to investigate the performance limiting factors of the
QCDOC computer architecture for the execution of the QCD application code through
parameterised HASE simulation models. A further aim is to explore the design

parameter space of the model to investigate variations in performance against a range
of architectural parameters in order to inform the design of subsequent generations of
application-specific supercomputing systems.

1.4 HASE

HASE [HASa] is a Hierarchical computer Architecture design and Simulation Envi¬
ronment which allows for the rapid development and exploration of computer archi¬
tectures at multiple levels of abstraction, encompassing both hardware and software.
HASE has been considered as the most suitable platform for the UKQCD computer
simulation studies because of its (a) rapid and flexible prototyping facilities and (b)
support mechanisms for multiprocessor simulations. In addition to the parameterised
and flexible prototyping facility for custom-built computer systems, a simulation trace
file containing simulated components information during an experiment is generated
by HASE. Analyses of a HASE simulation trace file enables a user to quantify results
as well as to investigate the overall behaviour of various design components during
a simulation experiment. Information in the simulation trace file can be animated to

validate the individual components and their interactions within a HASE simulation
model.

Performance evaluation and exploration of an application code on an MPP system

require extensive instrumentation and experimentation. An in-depth and precise

understanding of the behaviour of underlying system's components for the execution of
the application code is necessary to identify the performance bottlenecks. For parallel

Chapter 1. Introduction 9

systems, an additional metric called scalability is part and parcel of a performance
evaluation exercise. These system hardware and application software requirements
have been addressed in the parameterised HASE QCDOC model through hardware
configuration parameters and application workload parameters. Application code
execution, in a format specified by a simulation designer, can be incorporated in a

HASE simulation model. Hence, a HASE model simulates execution of software over

the hardware within a single model, thereby capturing the dynamics of control and data
paths of a computer system. This HASE facility is exploited in conducting the scal¬
ability and load balancing experiments for parallel QCD benchmark software. In the
QCDOC model, the workload parameters alter the computation and communication

configurations for a QCDOC processing node or its parallel workload.

1.5 QCDOC — The UKQCD Computer

The UKQCD community is one of the world's leading field theory lattice groups with
an established programme to study QCD, a 'Grand Challenge' computing application.
The group is in the process of procuring a QCDOC [CCC+01] computer, currently
being constructed through a collaboration between IBM and Columbia University.
QCDOC is a massively parallel Multiple Instruction Multiple Data (MIMD) machine
which has been custom-built to perform QCD simulations. A QCDOC processing node
is composed of an Application Specific Integrated Circuit (ASIC) and a Synchronous
DRAM (SDRAM). The processing nodes are connected in a six-dimensional torus
topology.

For the last three decades, a number of commercial and custom-built parallel
machines have been employed to solve QCD calculations and they have success¬

fully produced a number of results. The natural parallelism in QCD applications,
resulting from its lattice formulation (called lattice QCD), made QCD one of the first

applications to be tried out on early parallel computers. Yet QCD calculations still
challenge the power of high-end supercomputers; continuing to push the boundaries of
supercomputer architecture, QCD algorithms and parallel software techniques.

Chapter 1. Introduction 10

The task of developing the UKQCD computer simulation model takes into account
the simulation practices in multiprocessor systems. Presently available multiprocessor
simulators address the issues of mass market systems, i.e., shared memory database
and transaction servers, and their representative workloads. Likewise, simulation
models of the application-specific QCDOC system are benchmarked with parallel
QCD workload.

1.6 Design Methodology

In order to achieve the project aims, an application-driven design approach was

adopted for modelling the UKQCD. This is because tightly-integrated, high-end su¬

percomputers like QCDOC are designed for and dedicated to a few highly-demanding
applications. Thus, for a wide range of performance experiments, not only the QCDOC
design components are parameterised but also the parallel QCD code characteristics
including workload size are also made HASE design parameters. With the precise

knowledge of hardware details of the architecture,2 the initial target was to model, as
precisely as possible, the design details of the system. A further aim was to explore
the design space, in particular, the custom-designed components of the hardware. The
design space exploration was facilitated with a range of hardware parameter options.
As a massively-parallel system with numerous processing nodes, the design focus was

an appropriate level of abstraction for running simulations. A hierarchical design
approach was followed in abstracting out the simulation details as the experiments
were performed at different levels.

Figure 1.2 shows the multiple abstraction levels of a QCDOC processing node.

2Access to the confidential design documents and numerous discussions with the QCDOC design
team members.

Chapter 1. Introduction 11

File Build Simulate Iodic JavaHASE

Design build Simulate Experiment

Project: ASIC
Directory : /group/project/hase/Development/qcdoc/asic2.G/

Main Clock Cycles = 3108

CORE PLL Freq *24 9324

PDB PLL Freq *24 9324

PLB PLL Freq * 3108

EDRAMPLL Freq *12 4662

cpu_params
fpllparams
MMU_PARAMS

pdb_params

edram_paramsHJ
plbdblk_PARAMsH
scu_params

SIMULATION MODE

RmProgram

ISLg o—FPU
CPU —°

A

Figure 1.2: QCDOC simulation model in the HASE design window

A user can zoom-in and out of the design details of the system through the graphical
interface. For instance, on one hand, a processing node can be viewed as a single
design entity, while on the other hand a user can inspect the Central Processing Unit
(CPU) parameters by going down the hierarchical abstraction levels. In addition,
altering the design parameter values for an entity is also done through the Graphical
User Interface (GUI). Before a simulation run, a user can, for example, change the
Level 1 cache configuration in the Memory Management Unit (MMU) entity via

Chapter 1. Introduction 12

its parameter window. Likewise, software parameters of the model can be changed
through a GUI, which is explained in detail in Chapter 3.

A key requirement of an application-driven system analysis is to understand and
incorporate the application code characteristics in the model. Seltzer et. al. [SKSZ99]
argued the case for application-specific benchmarking against standard benchmarking:

"... the results of such benchmarks provide little information to indicate
how well a particular system will handle a particular application. Such
results are, at best, useless and, at worst, misleading."

The model was benchmarked with an optimised QCD application code developed
by the QCDOC design team. The QCD kernel code is an indispensable part of a

QCD application execution; thus it is parameterised and simulated with the QCDOC
hardware model. This parameterised hardware-software co-simulation within the
HASE environment not only enabled identification of performance limiting factors of
QCDOC hardware for the QCD application but it also helped in analysis and scaling
behaviour of the application workload.

Finally, the research presented in this thesis also aimed at informing future-
generation MPP system optimisation for the QCD application code. A recent SOC-
based scientific supercomputing system called BIuegene/L was studied, as part of the
research, by employing an application-driven metamodelling design scheme. Meta-
modelling enables efficient generation of alternate simulation models by employing
maximum component reuse and minimum design overhead. A parameterised HASE
metamodel was constructed, which was capable, by an appropriate selection of
parameters, of simulating the QCDOC and Bluegene/L system characteristics. QCD
experiments have been performed in order to compare and to quantify the impact of
custom-designed components on the QCD code performance.

Chapter 1. Introduction 13

1.7 Related Research

A number ofmultiprocessor simulators allow a user to alter levels ofmemory hierarchy
and network latencies. For instance, RSIM [PRA97] allows two memory hierarchy
levels with a range of protocols for shared memory systems, while Wisconsin Wind
Tunnel II [MRF+00] models shared and distributed-shared memory systems. These
simulators are in general driven by industry-standard benchmarks. On the contrary, the

Teraflops and Petaflops scale systems use analytical models or combine an analytical
model with a detailed single node performance model. Performance prediction
techniques have been employed in PACE [NKP+00] and in exploring large-scale
parallel systems by Kerbyson et. al. [KHW02]. These technique create a simulation
model of the system with pre-defined parameters and application code traces.

Almasi et. al [ACC+02] demonstrated the scalability of molecular dynamics cal¬
culations on a cellular Petaflops computer using an analytical model of the application
and functional modelling techniques for the underlying hardware. They claimed that
it is not possible to simulate a 32K node system, therefore, a single node functional
simulation is extrapolated for overall performance results. Timing information is
extracted from the functional simulator output. Even though such a technique may be
precise and efficient, extending and altering the hardware configuration involve three
levels of changes: the analytical model, the functional simulator and perhaps the timing
simulator, too. Consequently, a functional and timing simulator is necessary to provide
a large degree of freedom to change the hardware configuration without altering the
corresponding analytical model of the application code, as well as a timing simulator
of the memory traces.

Like Almasi et. al.'s system-specific simulation model, the Bluegene/L design team
has created a single-node complete system simulation called BGLSim [MCS+03]. It is
based on SimOS [RBDH97] a complete system simulation approach that incorporates
operating system and peripheral devices in the simulation models. The resulting
simulations are therefore extremely slow and need powerful host platforms. BGLSim
can run unmodified Bluegene/L code for a single processor; it is primarily used for
tuning the application code and communication library development. Due to the
enormous simulation execution requirements, the BGLSim runs on a Linux cluster.

Chapter 1. Introduction 14

Research in progress include a performance simulator called POEMS [ABB+00]
and Extreme-scale simulations [ABB+01]. Performance Oriented End-to-end Mod¬

eling System (POEMS) project promises to assist with the performance study of
large-scale computational systems across all stages of design. It is based on COM¬
PASS [NYHG+98], a COMponent-based Parallel System Simulator, that provides
direct execution-driven, parallel simulation for performance prediction of parallel
computation-, communication-, and I/O-intensive programs written using the Message
Passing Interface (MPI) library. The POEMS project relies on task graphs of an

application, a knowledge base for widely-based algorithms, analytical and simulating
components of the model and a parallel compiler within the model. It is to be driven
by an specification language, details of which are not yet available to examine the
complexity and restrictions of the specification language. Another research project,
the Extreme-scale simulations were introduced by Alexander et. al. [ABB+01] in
2001. Their radical idea is based on a parallel discrete-event simulation engine using
an object-oriented scheme, which would enable modelling of large-scale networks
with thousands of processing nodes, in a manner similar to the Internet modelling.
Its initial prototype was aimed at supporting studies of simulation performance and
scaling rather than the design space of the simulated system. It is however not yet
clear how low-level processing node design details, hardware-software interactions
and single node performance search space will be modelled.

In designing a software simulation model, trade-offs are often made according to
the purpose for which the simulation is built. For instance, BGLSim is a functional
simulator because precise timing details are not significant for building compilers and
other system tools. ASCI Q simulations are aimed at achieving the maximum possible
fraction of peak performance for a predefined system configuration and a target work¬
load. The research presented in this thesis, in contrast, focuses on performance search
space of a grand challenge application on next-generation scientific supercomputing
systems. The main advantage of this application-driven, parameterised metamodelling
scheme over other simulation strategies is that the design parameter space of hardware
components is not limited by static workload configurations and traces. A further
advantage is that it does not require time consuming, off-line code/trace generation.

Chapter 1. Introduction 15

These techniques have allowed us to explore the performance search space of the

parallel QCD code not only on the QCDOC but also on its successor, Bluegene/L,

design configurations.

1.8 Thesis Overview

Chapter 1 has introduced the research presented in this thesis namely the UKQCD

computer simulation project. The remainder of the thesis explains in detail the research

background, the simulation platform, the target architecture together with design and

implementation details of the HASE QCDOC model. In addition, a description of
simulation metamodelling in HASE and simulation-based performance results are

presented along with the discussions and key research contributions.
The thesis outline is as follows:

Chapter 2 details the background to parallel system simulations: techniques, frame¬
works and practices. Moreover, it describes the simulation framework for the
UKQCD computer, HASE. Since the focus of the research is an application-

specific supercomputer, chapter 2 provides background and related work in the
field of parallel QCD computer designs and their software repositories. Finally,
in the context of on-going HPC research in the field of QCD, the UKQCD

computer, QCDOC, is introduced.

Chapter 3 presents the design and implementation details of the HASE QCDOC
computer simulation model. Firstly, the hardware details of the QCDOC
system is outlined, including its communication network design. Secondly, the

modelling strategy of the QCDOC system in HASE is discussed. Identification
of limitations in modelling QCDOC system in HASE and how they were

rectified is presented next. This is followed by a description of the extensions
made to the HASE platform as a result of requirements of QCDOC model.
Lastly, issues in model validation and result gathering are discussed in the MPP-
scale simulation model design space exploration.

Chapter 1. Introduction 16

Chapter 4 describes the experiments and analysis of the experimental results from the
HASE QCDOC simulation model. First, the computation and communication

logic of the QCDOC processing node is described. Next, an outline of the
experimental setup is explained. This follows an analysis of parallel QCD code
characteristics. Performance scalability and design space exploration experi¬
ments and results are discussed in this chapter. In the end, the chapter outlines
the requirements for a higher abstraction-level model, which was designed, as

part of the research, for experiments on a larger (10-Teraflops) scale system

configurations.

Chapter 5 discusses the advantages of metamodelling and hardware-software co-

simulation approach within the HASE framework, particularly in modelling
SOC-based MPP computers like QCDOC and its successor Bluegene/L. The
architecture of Bluegene/L system and its similarities with and differences from
the QCDOC architecture are outlined. Parallel QCD workload distribution and

mapping characteristics are explained next. This chapter explains in detail the
simulation metamodelling of scientific supercomputers in HASE and advantages
and shortcomings of this scheme. Finally, a description of the performance
comparison experiments conducted on the QCDOC and Bluegene/L simulation
models is provided.

Chapter 6 presents a summary of findings and contributions to the field of scien¬
tific supercomputer simulation. Furthermore, this chapter outlines the future
prospects and directions of this research.

Chapter 2

Background

This chapter provides background information. Firstly, parallel supercomputer perfor¬
mance evaluation techniques and tools are briefly discussed along with the benefits of
modelling and simulation of complex computer architectures. Secondly, the simulation
platform for the UKQCD computer simulation project, HASE, is described. Lastly,
an introduction to the history and current status of QCD calculations on parallel
computers is presented. In the context of the on-going research efforts to built
supercomputers for QCD calculations, a brief description of the architecture and design
philosophy of the QCDOC, the UKQCD computer, is presented.

2.1 Computer Architecture Performance Studies

The tremendous complexity of computer systems and increasingly complicated in¬
teractions with application software is making performance evaluation, analysis and
prediction of existing and novel systems a profoundly challenging task. Cost-effective,
flexible, extensible and scalable tools and techniques are required to explore huge
design space and to evaluate radical new ideas, particularly, when high-end mul¬
tiprocessor supercomputer architectures and applications are considered. For in¬
stance, a single performance problem in the world's second fastest supercomputer was
identified and subsequently rectified using an arsenal of performance analysis tools
(table 2.1) [PKP03],

17

Chapter 2. Background 18

Technique Description Purpose

measurement running full applications un¬

der various system configura¬
tions and measuring their perfor¬
mance

determine how well the ap¬

plication actually performs

micro- bench¬

marking

measuring the performance of
primitive components of an ap¬

plication

provide insight into appli¬
cation performance

software simu¬

lation

running an application or bench¬
mark on a software simulation

instead of a physical system

examine a series of 'what

if scenarios, such as clus¬

ter configuration changes

analytical

modelling

devising a parameterised, mathe¬
matical model that represents the

performance of an application in
terms of the performance of pro¬
cessors, nodes, and networks

rapidly predict the

expected performance
of an application on

existing or hypothetical
machines

Table 2.1: Performance analysis tools and techniques [PKP03]

Table 2.1 lists the tools and techniques used in improving the effective per¬

formance of ASCI Q, the world's second-fastest supercomputer. Using an arse¬

nal of performance-analysis techniques including analytical models, custom micro-
benchmarks, full applications, and simulators, Petrini et. al. [PKP03] succeeded
in observing a serious performance problem, thereby identifying the source of the
problem and eliminating it with up to a factor of 2 improvement in application
performance. Petrini et. al. claim that their performance analysis methodology
is immediately applicable to other large-scale supercomputers. However, detailed
knowledge of the application and architecture are a prerequisite for their performance
modelling techniques of the high-end systems.

The research presented in this thesis uses the HASE simulation framework [CHIW98]
for modelling scientific supercomputing systems, thereby reducing the cost of building
simulation models from scratch. HASE is a Hierarchical computer Architecture design

Chapter 2. Background 19

and Simulation Environment which allows for flexible and efficient prototyping of

computing systems at multiple abstraction levels encompassing both hardware and
software design parameters. Further details of the HASE platform are presented in
section 2.2. HASE extends the concept of 'software simulation' presented in table 2.1

by adding parameterisation so that not only existing system configurations (and a wider
performance search space) but also hypothetical or ideal system configurations can be
explored through experimentation.

A 'grand challenge' scientific application called QCD and its performance evalu¬
ation on a recent massively-parallel processing (MPP) supercomputer QCDOC is the
scope of the research presented in this thesis. However, the analysis of performance
studies mechanisms and approaches presented in this thesis can be applied to other
high-end computing applications and architectures.

2.1.1 Why Simulate an MPP System

One of the main aims of the QCD research communities, including the UKQCD,
is procurement of cost-effective, high performance supercomputers specifically de¬
signed for QCD calculations. Establishing the suitability of a supercomputer for a

given application is not a straightforward task; memory bandwidth per flops ratio and
network bandwidth requirements cannot be translated or mapped directly to a super¬

computer design. The design and implementation of high-performance systems is a

highly complex problem requiring knowledge ofmany factors, according to Kerbyson
et. al. [KHW02], The peak performance of a system results from the underlying
hardware architecture including processor design, memory hierarchy, inter-processor
communication system, and their interactions. Moreover, the achievable performance
is dependent upon the workload for the system, and specifically how this workload
utilises the resources within the system. Thus, optimising the peak performance of a

system component is only valuable if it has an associated impact on the achievable
performance of the workload. Culler et, al. [CGS98] comprehensively identify
the hardware and software factors involved in parallel computer architecture design.
To express supercomputer performance, the peak performance (maximum theoretical
operation performance) is often used. Peak performance is an important index for

Chapter 2. Background 20

supercomputers, indicating the maximum possible computer hardware performance.
However, the performance achieved when running a real program varies depending
on the characteristics of the program, and the peak performance is never achieved.
Furthermore, overall performance also depends heavily on various factors such as the

operating system, compiler, and I/O performance.
Performance analysis is therefore required in order to ascertain the impact on

performance resulting from architectural evolution and innovation. Performance
modelling and evaluation are central because they can provide information on the
expected performance of a workload, given a certain architectural configuration. These
studies are useful throughout a system life-cycle: starting at design when no system
is available for measurement, in procurement for the comparison of systems, through
to implementation and installation, and to examine the effects of updating a system
over time. At each point, the performance models should provide an expectation and
insight into the achievable performance with a reasonable fidelity. When considering
Teraflops-scale systems, a large investment is required throughout the life-cycle and
thus performance analysis studies are a requirement. Martin [Mar88] outlined the
significance of supercomputer performance evaluation for a scientific application:

"... applications are the centre of the universe; supercomputer systems
exist for their benefit..."

then he added:

"The ability to assess and measure accurately the performance of new
designs can promote development and avoid the possibility of overlooking
fruitful ideas in architecture and algorithm design."

The performance analysis approach for the research described in this thesis is
application-driven — similar to the design approach of high-end scientific supercom¬

puters. An application-driven approach involves an understanding of the processing
flow in the application, the communication and computation patterns, and how they
use and are mapped onto the available resources. From this, simulation models are

constructed that encapsulate and parameterise key performance characteristics.

Chapter 2. Background 21

The aim of the simulation is to provide an insight. By keeping the models as

flexible as possible whilst not sacrificing accuracy, it may be used to explore the
achievable performance in new situations — in hardware system design and workload
modifications.

2.1.2 Design Trade-offs Exploration

A variety of techniques can be used to explore design trade-offs in a computer
architecture and to evaluate its performance. Evaluating the performance of an existing

system is in principle straightforward, as benchmarks can be run to measure the
execution time. Without extensive instrumentation — involving both hardware and
software — experiments on an existing system with rigid hardware configurations
provide little understanding of the causes of performance limitations. Built-in system

monitors offer a limited opportunity to measure the effects of varying architectural
design configurations.

The complexity and cost of a parallel system are far greater than those of existing
uniprocessor systems. A parallel system needs close scrutiny to establish the design
and performance trade-off factors of the hardware and the application. A complete
existing system in most cases is not available for establishing, for instance, parallel
workload distribution strategies and communication characteristics. These can be
determined by extrapolating single-node performance measures, but without taking
into account parallel system/software interactions, one can have very little confidence
in these performance predictions. Cost and performance analyses of parallel systems
are therefore increasingly conducted using simulation models and analytical models.

2.1.2.1 Analytical Modelling Limitations

Analytical or static modelling is effective for a variety of multiprocessor system

components. Usually, analytical models are driven by workload models rather than
benchmarks or real applications and the results can be unreliable in situations where
attempts are made to model complex systems containing a variety of components.

Chapter 2. Background 22

An example of an analytical model for parallel systems is the Bulk Synchronous

Processing (BSP) model [SHM97]. BSP views a parallel machine as a set of processor
and memory pairs with a global communication network and includes a method for

synchronising the processors. While this model can be used to develop parallel
applications and algorithms, and assess their performance, there are restrictions on

how a parallel program can execute on a BSP, i.e., through pre-defined execution steps.
The performance of the BSP-style program can be characterised by three parameters:

p, L and g, where p stands for the number of processors, L is the cost of global

synchronisation in units of time step, and g corresponds to network throughput (the
ratio of the number of local computational operations performed per second by all
processors to the total number of data words delivered per second by the router). A

parallel algorithm is expressed in the BSP model as a sequence of parallel supersteps.
Each superstep consists of a sequence of local computation steps plus any message

exchanges, followed by a global synchronisation.
Culler et. al. [CKP+93] proposed LogP, which extends BSP by taking into account

the communication cost. It includes four parameters to characterise the system: L, o, g
and P, where P stands for the number of processors involved; o represents the software
overhead associated with the transmission/reception of message; L is the upper bound
on the hardware delay in transmitting a fixed but small size message between two end-

points; and g is the minimal time interval between consecutive messaging events at

a processor, which corresponds to the network throughput available to the processor.

Later, Touyama and Horiguchi [TH99] introduced the LogPQ model which augments

the LogP model on the stalling issue of the network constraint by adding buffer queues
in the communication lines. The LogPQ model focuses on the communication network
and protocol design study but is limited to communication parameters' characteristics.

Large system designs have traditionally used analytical models for performance
predictions and scalability studies as analytical estimates can be performed relatively
quickly. Nonetheless, analytical techniques are considered static — these studies give
no information about the dynamics of a system, particularly when hardware-software
interactions are considered. Thus, the analytical estimates cannot be considered as

absolutely reliable.

Chapter 2. Background 23

One way to address the limit to analytical modelling is to build a small prototype

system. This scheme has its own constraints and drawbacks; firstly, it is expensive
to build prototypes for early stages of the design process. Secondly, the scalability
analysis of parallel code cannot be performed on small versions of systems. Finally,
a hardware prototype, even though accurate, provides limited flexibility in terms of
design space and this stage cannot be started until most of the design considerations
are made final. As a result, the designers are unlikely to explore a wider design space.

In the presence of multiprocessor prototype design constraints, one needs to resort to
some kind of modelling in order to study systems yet to be built and to estimate the
scalability of these systems for a given application. Simulation has therefore become a

popular approach to analyse dynamic behaviour and to predict performance of complex
systems.

2.1.2.2 Simulation

A simulation is the execution of a model, represented by a computer program that
gives information about the system being investigated. The simulation approach of
analysing a model is experimental and dynamic compared to the analytical approach,
where the method of analysing the system is purely theoretical and static. Software
simulations are not only considered more accurate and reliable, but they also provide
an inexpensive and flexible way to explore a wide range of design options [SMA+03],

Industry uses cycle-accurate and functional simulation extensively during proces¬

sor and system design because it is the easiest and least expensive way to explore
design options [SMA+03]. Simulation is even more important in research to evaluate
radical new ideas and characterise the nature of the design space. It is increasingly
considered as the de facto performance modelling method in the evaluation of shared
and distributed-shared memory architectures. There are several reasons for this.
The accuracy of analytical models in the past has been insufficient for the type of
design decisions computer architects wish to make (for instance, what kind of caches
coherence or branch prediction schemes are needed).

Chapter 2. Background 24

Analytical modelling schemes have been extensively used in multiprocessor perfor¬
mance studies, since performance results can be generated far more quickly compared
to a multiprocessor software simulation. Researchers are however now resorting
to alternative performance exploration techniques as the achievable performance of
scientific codes over off-the-shelf clusters is steadily declining; parallel scientific codes
typically achieve 10-30% of peak performance on main-stream cluster configurations.
Software simulations are identified as the only tool that can provide an insight into
the dynamic behaviour of an application over an underlying architecture [SMK+03]
thereby facilitating investigations of future system designs. Many research projects,
most notably Alexander et. al. [ABB+01] project at the Los Alamos National
Laboratory, are addressing issues of extreme-scale simulations. The extreme-scale
simulations approach for simulating computing architectures is applicable to high-
end computing systems (with thousands of processing nodes) and to advanced, novel
architectural configurations.

2.1.3 Computer Architecture Simulators

Simulators model existing or future machines or microprocessors. They are essentially
a model of the system being simulated, written in a high level computer language,
such as C or Java, and run on some existing machine. The machine on which
the simulator runs is called the host machine and the machine being modelled is
called the target machine. Computer architecture simulators provide an environment
to study complex systems by simulating (in some cases by visually displaying) the
organisation and underlying simultaneous events during a program execution. These
simulators proved to be an effective tool to study and to simulate complex trade¬
offs of efficiency and performance inherent in parallel architectures. Furthermore, a

computer architecture simulator enables computer architects to design and experiment
with different forms of parallelism such as multiple pipelines, multiple processors,

clustered computer systems, and distributed computing systems cost-effectively and
efficiently. Researchers and students benefit with parallel architecture simulation tools
and frameworks — not only do simulators facilitate flexible performance evaluation
studies but they also provide insight into the working of a parallel system.

Chapter 2. Background 25

Computer architecture simulators vary widely in their applications. They are used
by processor architects to evaluate uniprocessor design trade-offs, by operating system
authors to debug their code and to evaluate operating system performance, by parallel
system architects to assess the performance of large systems, and by end users to
execute programs written for one system on a different host system. Simulators also
vary in their performance and the level of detail they can model.

A significant metric in parallel computer simulations is the slow-down, or the
average number of simulator host instructions executed per simulated instruction. In
general, the more detail a simulator captures, the greater its slow-down. Slow but
accurate simulators have the advantage of capturing subtleties of the target system.

However, their slow speed limits the size of the system they can model and the number
of simulated instructions they can execute. The simulator designer must choose a level
of simulation detail that is fine enough to capture important performance artifacts and,
at the same time, fast enough to model large systems and long running applications in
an acceptable time frame.

Simulators can be functional simulators or timing simulators. There also exists
trace-driven or execution-driven simulators. There can be simulators of components

or of the complete system. Functional simulators simulate functionality of the target

processor, and in essence provide a component similar to the one being modelled —
without precise timing information. The register values of the simulated machine
are available in the equivalent registers of the simulator. In addition to the values,
the simulators also provide performance information in cycles count, cache hit ratios,
branch prediction rates, etc. Thus the simulator is a virtual component representing the
microprocessor or subsystem being modelled plus a variety of performance informa¬
tion. If performance evaluation is the only design objective, not the insight, one does
not need to model the functionality. For instance, a cache performance simulator does
not need to actually store values in the cache; it only needs to store information related
to the address of the value being cached. Partially stored information is sufficient to
determine a future hit or miss. While it is useful to have the values as well, a simulator

with complete functionality together with performance is bound to be slower than a

pure performance simulator.

Chapter 2. Background 26

2.1.3.1 Multiprocessor Simulators— The Benefits

There are several benefits of using a simulator for evaluating multiprocessor architec¬
tures considering the exponential cost and time requirements associated to build them.

• It is in principle more straightforward to augment a simulator with measurement
and debugging features than its hardware counterpart.

• In a system design process, it can take several months/years from a 2-4 node
prototype design to a full machine with thousands of processors. In a simulator,

providedmemory and system requirements of the host permit, this transition can

be possible in days if not hours to estimate the scalability and operating system

requirements of a system.

• On a simulator, it is possible to reflect the ideal and hypothetical states of a

system by approximating the physical constraints, which is impossible in a real
system.

• A multiprocessor system simulator is portable; this is a useful property if designs
have to be exchanged among physically separate researchers.

• Prototype failures are less expensive in simulators in terms of cost and time.

• Depending on the memory and speed requirements of a simulator, it is possible
to run multiple experiments on a single host concurrently.

• Additional benefits of simulators include the ability to generate address traces
of user and system code non-intrusively, and to stress-test operating system
software by causing the most serious and complex interrupt and exception
conditions.

High-fidelity and an appropriate level of detail and efficiency of a simulation model
are the key considerations for a model designer. Beside these, the model should
be flexible enough to explore and investigate the design space of the target system.

Multiprocessor simulation models are considerably challenging to model for two main
reasons; firstly, their memory requirements, dimensions, and interconnection network

Chapter 2. Background 27

topology, secondly, complex interactions between parallel software and parallel hard¬
ware. Scalability of a system is one of the most sought-after characteristics of a

parallel system. Experiments to measure the scalability of a parallel system can only
be performed by providing a flexible way to increase the size of the machine and
its workload. Altering dimensions and size of a parallel machine can have serious

implications; it may depend on the host memory capacity and can be limited by the
host processing power. This is because an increase in the size of the simulating system
not only multiplies its hardware requirements but also affects the interaction of parallel
software with the hardware.

2.1.3.2 Types of Multiprocessor Simulators

Different representations of the parallel workload can be used to categorise computer

system simulations. Ferrari [Fer78] listed four categories of computer system simula¬
tions:

1. Distribution-driven simulation — The workload is modelled by a stochastic
model of the distribution of memory references. These models are extremely
efficient but limited to overall performance measures and are unable to provide
an insight into the system. Also, it is immensely difficult to identify stochas¬
tic models that can represent the dynamic behaviour of a parallel machine.
Distribution-driven multiprocessor simulation has been largely used in intercon¬
nection network research.

2. Trace-driven simulation — Central to this mode is a trace file. A trace of

memory references is generated once by means of executing the workload on a

machine similar to the target system or by using a functional simulator. Results
from simulations can be effective and accurate as long as the properties of the
modelled machine and the machine from which the traces are obtained remain

similar. In other words, these types of simulation are not suitable to explore
a wider design space. Uhlig and Mudge [UM97] presented a comprehensive
survey of trace-driven simulation techniques and tools.

Chapter 2. Background 28

3. Program-driven simulation— Generally considered as a complete simulation
scheme because both processors and the memory system of the target system are

simulated. The workload is executed on the simulated processors where each
machine instruction of the target processor can take many machine cycles of
the host computer. An instruction or program-driven simulation is an extremely
accurate technique but is considered impractical for large multiprocessor simu¬
lators due to the speed and memory constraints inherent in parallel systems.

4. Execution-driven simulation — This multiprocessor simulation scheme was

proposed by Covington et. al. [CDJ+91] to address the inefficiencies of program-
driven simulations. The workload in an execution-driven model is executed on

a host computer rather than on the simulated processor. At events of interest,
for example, shared memory references, control is transferred to the simulation
software, which simulates the memory system. Although this scheme is fast,
it provides little opportunity to comprehend microprocessor-level parameters
like Instruction Level Parallelism (ILP). These issues have been addresses by
Veenstra and Fowler's [VF94] program-driven shared memory simulator called
MIPS INTerpreter (MINT). Rice University later built a new version of RSIM,
the execution-driven simulator with ILP support [PRA97], for shared memory

and uniprocessors simulation.

Coe [CoeOO] in his PhD thesis provided a detailed account of the above four
categories of multiprocessor simulators along with a detailed analysis of representative
simulators of each of the above category.

Some simulators are hybrid, i.e. they provide a choice or mix-match between any

of the above-mentioned two categories or combine functional simulator with timing
simulator. Limes [IMMM99] is a hybrid trace and execution driven simulator. Tango
Lite [Her93] is a functional and timing simulator. The SPASM [Siv97] simulator,
which was used to study scalability of shared memory multiprocessors, combines
analytical and execution-driven simulation techniques.

Most multiprocessor simulators report performance as a function of either memory
hierarchy or interconnection networks of the system. Since the complexity of a

processing node is increasing rapidly, and the effect of the sub-system cannot be

Chapter 2. Background 29

completely ignored, a few full system simulations have recently modelled all system

components including operating systems, device drivers and web servers. These
include Rosenblum et. al. SimOS [RBDH97], a complete system simulator built at
Stanford University. The SimOS, however, provides the user with no control over the
underlying memory hierarchy configuration. Simics by Magnusson et. al. [MCE+02]
is a useful tool to study computer systems with up to a few nodes, but is not public and
hence users have no control over the underlying system. The University of Wisconsin-
Madison SimpleScalar [ALE02] is an execution-driven simulator, therefore, it com¬

promises simulator's performance over accuracy.

2.1.4 Effect of System Design on a Simulation Technique

Selection of the most appropriate simulation techniques from those listed in the
previous section depends on the hardware features of interest. For example, for shared-
memory multiprocessors coherency protocols, memory references are the critical
values and what happens in the execution pipelines is not as significant. On the
other hand, when studying execution pipeline utilisation, each pipeline stage has to
be modelled accurately. For the former example, an execution-driven simulation is a

suitable candidate, for the latter, a program-driven simulation model is necessary. In
addition to architecture-specific characteristics, simulation models can be compared
on their accuracy, flexibility and efficiency (wall clock time to run a simulation).

In practice, a simulation technique may equally depend on the physical properties
of a system, i.e. whether it is a physically distributed system or a shared-memory sys¬

tem. According to the famous Flynn classification, multiprocessors can be classified
as Single-Instruction-Multiple-Data (SIMD) and Multiple-Instruction-Multiple-Data
(MIMD) systems as shown in figure 2.1.

Chapter 2. Background 30

SIMD

IM IM IM

F P • • • F

DM DM DM

(Interconnection Network]
DM-MIMD

SM-MIMD

IM = Instruction Memory

DM = Data Memory

P = Processing Node

Figure 2.1: Classification of multiprocessor systems

In a shared-memory (SM-MIMD) system, for instance, Symmetric Multi-Processors
(SMP) or distributed shared-memory multiprocessors (DSM-MIMD) like Cray T3E
(physically distributed with a shared address space), most commercial database and
transaction processing servers fall in this classification. There are simulators that use
commercial workloads, for example, COMPASS [NYHG+98], which is an execution-
driven simulator for the study of commercial applications on shared memory multi¬
processors. Mauer et. al. [MHW02] studied a full system including the operating
system for database applications. Like shared memory and distributed-shared memory
multiprocessors, their simulators normally scale to up to few tens of nodes.

Chapter 2. Background 31

Tightly-integrated scientific MPP systems with thousands of processing nodes are

generally distributed memory — processing nodes are not connected to a single shared
memory via a network. Moreover, these systems generally run a Single-Program-

Multiple-Data (SPMD) programming models with explicit message passing commu¬

nications, notably scientific applications as identified by Cypher et. al. [CHKM93],
Research in this area has been focused on the single processor optimisation tech¬
niques and analytical models of interconnection networks performance. Dally [Dal90]
conducted the analytical study of k-ary n-cube networks. Simulator of Massive
ARchitecture and Topologies (SMART) [PV97] considered a static or analytical rep¬
resentation of processing nodes. MIT's execution-driven parallel-computer simulator
Proteus [BDCW92] models shared memory and MIMD computers employing direct
execution and a static cache-memory representation.

Parallel computer architecture simulation is a growing research area; it is beyond
the scope of this thesis to provide a complete account of efforts and contribution in this
field. Nevertheless, the main research directions and significant research efforts have
been identified that are likely to impact scientific supercomputer performance studies.
Present researches suggest that simulation has proved a popular technique for exploring
large number of alternate options available when designing a multiprocessor system.
Simulations enable designers to evaluate the design alternatives without the expense

and long design times associated with hardware construction, and simulation models
offer a degree of flexibility that is not available with hardware. A flexible simulation
model permits changes to be made to the architecture quickly and with a minimum
of effort; for example, adding more processors, changing the cache configuration and

altering the dimensions and topology of the interconnection network.

2.1.5 Challenges: Trends in Supercomputer Design

A wide range of parallel supercomputer architectures has evolved over the last decades.
These supercomputers can roughly be divided into four major classes of parallel
machines: vector machines, shared memory multiprocessors (SMMPs), distributed
memory multiprocessors (DMMPs), and hybrid systems or clusters. Currently the
most powerful machines are in the range of tens of Teraflops but major advances

Chapter 2. Background 32

are expected in the near future. Japan's Earth Simulator project, the world's fastest
supercomputer for the past two years, is a vector processor based parallel computer.
It has an aggregate power of 40 Teraflops and achieves well above 50% of sustained
performance for a range of scientific applications and performance benchmarks. The
Earth Simulator supercomputer cannot be considered as cost-effective and is well
beyond the reach of many research communities. From the system design view-point,
the Earth Simulator is based on clusters of vector SMPs.

From late 1980s to the successful installation of the Earth Simulator, commodity
off-the-shelf processor based MPPs were considered a more viable solution for su¬

percomputer design and evolution. MPPs implement a memory architecture that is
radically different from vector processors memory system. MPPs can deliver peak
performance an order ofmagnitude faster than vector systems but often sustain perfor¬
mance lower than vector machines. A major challenge in MPP design is to enable a

wide range of applications to sustain performance levels higher than on vector systems.
MPPs typically use hundreds to tens of thousands of fast commercial microprocessors
with the processors and memories paired into distributed processing elements (PEs).
Scientific calculations are densely marked with loops; vector processors are optimised
for loop iterations, hence, they tend to perform better as compared to scalar or

superscalar processors as shown in figure 2.2.

G
.2
d
VH
<D

vector length

(a) scalar operation (b) vector operation

Figure 2.2: Difference between scalar and vector operations

Chapter 2. Background 33

MPP memory interconnects have tended to be slower than high-end vector memory
interconnects. MPP interconnects have non-uniform memory access, i.e., the access

speed (latency and bandwidth) from a processor to its local memory tends to be faster
than the access speed to remote memories. Therefore, a goal for MPP design is to raise
the efficiency of hundreds of microprocessors working in parallel to a point where
they perform more useful work than can be performed on traditional parallel vector
machines. Improving the microprocessor interconnection network will broaden the
spectrum ofMPP applications that have faster times-to-solution than on parallel vector
systems.

In the presence of MPP design challenges, the Hybrid Technology Multi-threaded
(HTMT) project in the US envisages building the first Petaflops machine by 2007.
The architecture designed for this machine no longer belongs to any of the classes
discussed above but comprises advanced new technologies such as Sterling and Zima's
Gilgamesh [SZ02], a multithreaded Processor-in-Memory (PiM) architecture with
smart memory and optical storage. PiM exploits recent advances in semiconductor
fabrication processes that enable the integration of DRAM cell blocks and CMOS
logic on the same chip. The benefit of PiM structures is that processing logic can

have direct access to the memory blocks at an internal memory bandwidth. Because
of the efficiencies derived from staying on-chip, power consumption can be an order
of magnitude lower than comparable performance with conventional microprocessor
based systems.

A number of Petaflop efforts are currently being undertaken at IBM. IBM's
Petaflops machines, named Blue Gene [TeaOla], will be comprised of cellular com¬
puters and tightly integrated multithreaded chips [ACC+02] (32 processor per memory
chip). Cellular computing concept is similar to the PiM design concepts of integrating
a large number of processor and memory components on-chip. However, the former
offers both instruction-level and thread-level parallelism. Cascaval et. al. provide a

comprehensive list and analysis of current and novel efforts in the processor designs
directed for minimising memory latencies in their paper [CCC+02].

Chapter 2. Background 34

It is evident from the latest design efforts that high performance on new gener¬

ation supercomputers will be available at the cost of increased system complexity.
Simon et. al. [SMK+03] have doubts about achieving high fractions of sustained

performance on MPPs based on commodity off-the-shelf components, especially for
scientific applications. They argue that the computation requirements of scientific
and commercial applications are diverging, and within the scientific high performance

computing paradigm, applications are unique. It has been identified by a number of
US High End Computing Revitalisation Task Force (HECRTF) white papers1 that a

better interfacing and instrumentation of scientific application software and hardware is
needed. Software simulations have been identified as the only mechanism that provides
a better understanding of software behaviour and execution on a hardware. In order
to obtain a better fraction of sustained-to-peak performance, tools should be detailed
enough to capture the design details with high fidelity, at the same time being driven
by actual workloads. Moreover, the models should allow scalability studies for parallel
workloads to be performed in the simulator without re-designing a whole new system.
The HASE platform is considered capable of addressing these challenges and is the
simulation framework for the application-specific QCDOC architecture exploration—
the UKQCD computer simulation project.

2.2 HASE

A computer architecture and its implementation can be represented in a number of
ways and at different levels of abstraction. At the highest level these could be

multiprocessor systems, while at the lowest an architecture may consist of an ensemble
of transistors on a VLSI chip (or set of chips). A variety of simulators has been

designed for each different level of abstraction, and some design tools can generate

implementations automatically at lower levels. The HASE enables computer architects
to create architectural designs at different levels of abstraction and to explore designs
through a graphical interface. It provides freedom to the simulation designer to choose
an appropriate level of abstraction. The output of a simulation run can be used to

'Available at: <http://www.nersc.gov/news/hecrtf.html>

Chapter 2. Background 35

animate the graphical display of the design, allowing the user to visualise the behaviour
and interactions between hardware components as programs (software) are run on it.
Working at the processor architecture level, for example, a designer could investigate
bottlenecks in the instruction pipelines and try alternative design strategies to eliminate
them. In order to inspect the effect of alternate design configurations, HASE allows
designers to incorporate parameterisation of hardware components. In addition to the
parameter space, HASE provides infrastructure for the simulation of systems via a

design hierarchy, permitting models to be designed, simulated and experimented at an

appropriate level of abstraction.
Coe et. al. [CHIW98] described the HASE as an environment that permits rapid

development and exploration of computer architectures at multiple levels of abstrac¬
tion, encompassing both hardware and software. In a technical report [CIRW98], it was
anticipated that HASE can be considered as a platform capable of supporting hardware
software co-design. A recent extension to HASE is JavaHASE [MI03]. JavaHASE
converts existing HASE simulation models into fully interactive simulation applets
accessible via the WWW.

2.2.1 HASE Building Blocks

The design of the HASE environment centres around the concept of component-
oriented programming, which is very close to the object-oriented programming paradigm
HASE has therefore been implemented in an object-oriented language C++. In
HASE, design components of a computer system can be represented at different levels:
primitive gate level, register transfer level and complex processing node level.

Furthermore, many complex systems of concurrently interacting components can

be more easily understood in a graphical description rather than a textual description.
Likewise, a static and textual description cannot precisely capture the dynamic be¬
haviour of hardware and software interactions in complex uni- and multi-processor

computer architectures. Thus, the user interface to HASE is via a graphical design
window and users view the results of simulation runs through animation in the HASE
design window.

Chapter 2. Background 36

The main features of the HASE environment include an Entity Description Lan¬

guage (EDL), an Entity Layout (EL) file, a discrete-event simulation engine Hase++,
a visualisation mechanism and results gathering tools. The EDL definitions of
the architectural components provide information about architecture parameter def¬
initions, component parameters and ports, hierarchical on-screen structure, global
system parameters and component interconnect. Predefined multiprocessor topology
templates are also included in EDL to aid in the rapid development and exploration
of multiprocessor networks. The EDL description, when combined with the Entity
Layout file containing display information, completely describes the architecture to be
simulated.

Once the architecture is loaded into the HASE system from an EDL file, the
simulation executable can be generated by combining the architecture information and
user defined parameters with the individual component behavioural descriptions. The
behaviour of entities is described in Hase++. Hase++ is a process-oriented, multi¬
threaded, discrete-event simulation engine. According to the discrete-event simulation
approach, the components of a simulation model consist of events. These events are

activated at certain points in time, thereby affecting the overall state of the system.
Events are discrete so between the execution of two events nothing happens. Design
and implementation details of various discrete-event simulation engines can be found
in [SB01],

The library Hase++ is implemented in C++; it provides an event-based approach
of defining an entity behaviour. Using Hase++ library functions, a user can create

process-oriented, discrete-event simulation models. Within the process-oriented ap¬

proach, the components of the program consist of entities, which combine several
related events. Hase++ includes a set of library routines to provide for not only process-
oriented, discrete-event simulation but also a run-time system for multithreading many
objects in parallel and keeping track of simulation time.

2.2.1.1 HASE Operation Modes

Presently, there are four modes of operation in the HASE that facilitate in the design,
implementation, testing and experimentation of a simulation model:

Chapter 2. Background 37

1. Design Mode— The operations available to the designer in Design mode allow
a designer to furnish the graphical layout of a simulation model. A simulation
designer can adjust the on-screen design components (HASE entities) and save

the layout information.

2. Build Simulation Mode— Build mode creates an executable simulation of the

architecture. The options available include the type of simulation to be created,
for example, trace file generation or building in the debug mode. Moreover, a

simulation designer can specify a trace level, which determines how the events

generated during a simulation run are filtered for the simulation trace file.

3. Simulate Mode — In simulate mode, the trace file is generated as a result of
a simulation run. From the trace file the graphical display of the design can be
animated. Simulation mode allows system parameters to be changed and timing
diagrams for system components to be viewed.

4. Experiment Mode — Multiple automatic executions of the simulation are

performed in the experiment mode, with different parameter settings used in
each execution.

Each mode provides the designer with a different set of menu options and de¬
pending on the option selected, different operations can be performed. The currently
active mode determines the functionality of the menus attached to the components, for
example, when in 'Simulate System' mode, memory components have an option to
load new memory contents.

A HASE project includes project.edl and project.elf files for the project
design and layout, HASE entities' behaviour files (entity.hase), and additional
C/C++ files and libraries that may be specified by a simulation designer. During build
project mode, HASE generates C++ files from the behavioural Hase++ files along
with a Makefile, project's header and C++ files. 'Generate and make' option in the
project build mode creates a simulation executable. Input parameters information and
values are stored in the . params file. Figure 2.3 shows the steps of generating a HASE
executable from various files.

Chapter 2. Background 38

ELF

EDL

Parameters file

I
I

External
libraries

h £
y o
e
o
04
Cu

H
U
£
o
04
cu

oo
Ui
Q

CQ

£
D

£
O
t—(

H
<

oo

Figure 2.3: HASE simulation model — design steps

When the simulation executable is run, it uses user-supplied information as input
for the user-defined parameters. If the experiment mode is being used, the range and
increment values set up for selected parameters using the experiment control dialogue.
The code generation options available in build mode allow the simulation to be run

in different ways. If generate (trace) was selected, then during a simulation run, the
HASE writes an event sequence into an event trace file and this trace can subsequently
be played back to provide the user with a visual display of activity in the system. The
trace is produced automatically from the simulation model without the need for the
user to write explicit animation code.

2.2.1.2 HASE Design Templates

Software simulation are specifically useful for the study and exploration of parallel
computers. Design replication is a key feature of tightly-integrated parallel systems,

Chapter 2. Background 39

for instance, in an MPP system, processing nodes generally have identical physical
properties (hardware design). The concept of replication has been exploited in the
HASE by introducing templates for the common structures. The user can slot any

component into the template (including hierarchical components), and the HASE does
the rest. Current templates include general ^-dimensional meshes and tori MESHnD and
for shared and distributed-shared memory cluster computer design, HASE provides
BUSENTITY and NETWORKENTITY templates. Templates allow the automatic creation of
models by the designer, insertion of a user-defined entity into a predefined topology,
and the provision of dimension parameters; this is a useful mechanism when modelling
scalable systems.

The HASE MESHnD template can be used to connect any number of entities in a n-

dimensional mesh format; figure 2.4 shows an application of aHASE MESH2D template.

Figure 2.4: HASE template generation mechanism — MESH2D

Chapter 2. Background 40

In the EDL file, all a user has to do is to insert a basic HASE ENTITY or a high-
level compound entity COMPENTITY, which is composed of pre-defined HASE entities,
in a template definition. The number of nodes in each dimension is a parameter, which
can be specified in the EDL file description. HASE then generates new instances of the
Node entity along with ports and links (as required). Once a template has been created,
a higher hierarchical level can be formed by linking the entity's instances; again

templates could be used for this to link many sub-templates together. Furthermore,
the HASE allows different hierarchical levels to be displayed simultaneously, enabling
the level of on-screen simulation complexity to be controlled easily.

2.2.2 Parameterisation

In HASE, a large design space for a modelled system can be explored through the
use of parameterised components and component libraries. These parameterised
components enable changes to the architecture design configurations to be made
quickly and easily. The ability to change and experiment with these parameters, and to
monitor the effects whilst the simulation is running, provides the designer with instant
feedback on these adjustments without the need to run the entire system simulation.
Figure 2.5 represents a typical simulation cycle in HASE.

Figure 2.5: Steps involved in running a HASE simulation model

Chapter 2. Background 41

First, a user decides the configuration of the system or combination of parameter
values through entities' parameter windows. Second, a trace file is generated as a

result of a simulation run. Finally, the simulated system can be animated to observe
the affect of parameter values on the simulated system entities during a simulation run.

The results gathering capability in the experiment mode is facilitated with an ability
to execute repeated simulation runs automatically. With an updated input parameter
value in each simulation run, the overall results can be plotted as graphs of the output

parameters as functions of the varying inputs.
A HASE entity EDL definition is shown in figure 2.6, and figure 2.7 shows the

corresponding parameter window. These parameters can be changed via a graphical
interface and after a parameter change, the simulation will run with a new value. For
instance, changing InstrFetchPerCycle from 2 to 4, means that four instructions
would be fetched by the entity instead of two in the following simulation run. Similarly,
selecting an alternate QCD kernel function would instruct the entity to execute a new

kernel.

ENTITY CentralProcessingUnit(

EXTENDS(Biclocked)

DESCRIPTION ("CPU")

PARAMS (

static RENUM(t_qcdoc_kernel,qcdoc_kernel,0)

static RRANGE(PrefetchValues, 0,3,0)

static RENUM(t_ComrnType,CommType, 0)

static RRANGE(InstrFetchPerCycle,1,4,2)

Figure 2.6: EDL description of a HASE ENTITY

Chapter 2. Background 42

Hase2 <2>

Entity

Type Name CentralProcessingUnit
Instance Name ICentralProcessingUnitlnstance

X

Parameters

Names —

qcdoc_kernel

PrefetchValues

CommType

InstrFetchPerCycle

entbutton

Values

QCDOC CHDECOM M 1
-i

NO COMM

NO COMM

SEND FORWARD
SEND BACKWARD

Display Mode
None

None

None

None

Value

1
1
3
1
1

OK Close I IflltHlH All

Figure 2.7: An ENTITY parameter window

The ability of HASE to control the complexity of the on-screen simulation,
combined with animation features, aids in the understanding of the operation of
the simulation as well as verification of its correctness. The graphical features

range from simple colouring schemes to animating certain packet types for node
synchronisation. Combining the multiple levels of on-screen complexity with the
simulation visualisation tools enables the designer to perform an interactive visual
verification of a model's behaviour.

2.2.3 Visualisation Capabilities

The visualisation mechanism allows the graphical display of an architectural model to
be animated by reading in trace files generated by the simulation execution, thereby
enabling the designer to inspect the model for correct operation. The hierarchical
nature of HASE controls the displayed complexity of the simulation, according to the
areas of the model being concentrated on.

Chapter 2. Background

The HASE animator control is shown in figure 2.8.

43

- Trace File

R e s u Its/trac e .trac efl I e Change

Time

J 48998

Sneed

y
II III III llll Ill III III III llll lil III III III Mil III III III III llll Ill llllll III llll Ill III llllll llll Ill III II

50

Kl :> dD C DD IM

Figure 2.8: Animator control interface

The animator allows a user to observe and to validate the interactions between the

components executing concurrently. There are six control buttons, from left to right:
rewind, play, single step, stop, pause and fast forward. Activity in the simulation model
can be visualised in a variety of ways; through moving icons showing data packets
passing between components in the design window, by changing a component's icon
to reflect its current state or by displaying the contents of registers and memories. A
simulation user can establish the correctness of the model by tracing the animation

steps back and forth.
The HASE also provides the facility to generate timing diagrams, allowing the

states of the individual components and component parameters to be monitored for
a given simulation run. A timing diagram viewer tool reads a HASE trace file and
produces a timing diagram against the simulation time of:

• values of the entities' parameter; and

• communications amongst entities (send and receive events).

Chapter 2. Background 44

The animation facility, together with the timing diagrams, allows verification of

system design at the earlier design stages and helps in understanding the details of
dynamic behaviour of test software on the underlying hardware.

2.2.4 Hardware-Software Co-simulation

Hardware/software co-design techniques have been successfully employed and ex¬

plored in computer architecture design for several decades. Co-design is a concurrent

approach to systems design and there are several key issues to be addressed, these are

specification, partitioning, synthesis, simulation and design-space exploration. Most
systems are designed by applying these issues separately to the design of the hardware
and the software. Co-design methodologies and environments attempt to merge these

design paths so that expensive mistakes are not made when assigning components to
hardware and software. Similarly, when modelling a computer system the hardware-
software interactions have to studied to better inform and understand the system for a

given workload. A detailed analysis of hardware-software behaviour is essential when

understanding and establishing load-balancing and scalability of a parallel system.
The co-design and co-simulation concepts are slightly different. Co-design is

normally associated with the system synthesis or gate level simulation designs. At
a higher abstraction level, for instance, register transfer or block diagram level, co-
simulation is the appropriate approach. Co-simulation, the ability to include hardware
and software components of a system design in a simulation, is an important feature
of HASE. The software components are usually included by loading the required
code into a memory component, and then executing the code through a processor

component. The level of detail at which the processor and memory components are

simulated affects the balance between the accuracy and speed of the simulation, as well
as the complexity of the code. The ability of the HASE to deal with these different
levels of component abstraction is another useful feature of the environment. Like
hardware abstraction levels, various software interpretation levels can be employed in
a HASE model.

There are several features of the HASE that make it a suitable system to be used for
the exploration of a variety of different trade-offs within a co-simulation methodology.

Chapter 2. Background 45

For example, before a simulation run, a user can select a separate memory file or update
memory contents because test software components, in most cases, are not hard-coded
in the entity's behaviour. Similarly, the workload of a system can be controlled via the
HASE parameter control interface provided the designer specifies and implements the

facility in the EDL and behaviour files. Figure 2.9 shows a clocked HASE entity with
a memory file.

Receives

A Hase Entity

State at

PhaseO

State at

Phasel
/

Sends

Entity's
Memory File

Clock

Signals PhaseO Phasel

Figure 2.9: Example of a bi-clocked HASE ENTITY with a memory (.memfile)

At run-time the user can associate separate memory files with the entity, or select
a memory file depending on the user input parameter.

2.2.5 HASE Projects: Past, Present and Future

There are a wide range of applications, from individual components design to multi¬

processor architecture research, for which the HASE has been proved to be a suitable
design framework. The Stanford DASH architecture was designed to be a scalable
high performance machine with multiple coherent caches and a single address space.

The HASE simulation model of the DASH architecture by William and Ibbett [WI96]
concentrated on implementing and illustrating the cache coherency protocols.

The Hierarchical PRAM model of parallel computation was simulated on a 2D
mesh. The goals of the HPRAM project were to investigate the scalability and

efficiency with which this model of computation might be implemented on realistic

parallel architectures.

Chapter 2. Background 46

The HASE DLX simulation project [IbbOO] employed the HASE to simulate
instruction-level parallelism concepts using the DLX architecture. Undergraduate
students use the DLX simulation model to learn about the complicated control and
data paths using the DLX scoreboarding and to investigate the performance of the
architecture for several combination of pipeline latencies and input test code in the
instruction memory.

The template generation mechanism of the HASE has been extended by Coe [CoeOO]
in a PhD project that investigated a large number of cache coherency protocols on a

wide range of distributed-shared memory multiprocessor architectures.
The HASE is being used in a collaborative industry-academia research project

called Storlite.2 One of the aims of the Storlite project is to explore, through the
HASE simulation, the design space of storage network architectures, to estimate
the performance of different architectural configurations and thus to highlight areas
where there is potential to improve performance by judicious use of new or emerging

technologies and to explore the possibilities for new design ideas.
The UKQCD computer simulation project [HASb] uses the HASE to conduct

performance studies of a parallel computer called QCDOC, which is specifically

designed and optimised for QCD applications.

2.3 QCD and Parallel Computers

Gupta [Gup99] stated that simulations of lattice QCD are 'tailor made' for parallel

computing, while Bowler and Hey [BH99] considered QCD calculations as 'ice¬
breaker' applications for research and advancement of the future generation parallel
computers and their programming paradigms. Over the last two decades, one of the

driving forces behind the development of the massively parallel computers has been
the determination of theoretical physicists to solve the QCD equations. The 'Cosmic
cube' supercomputer at the Caltech (1982), the Columbia University special purpose
machine since 1982, the APE computers at Rome and Pisa (since 1986), the GF11

supercomputer at IBM (1986-1997), and the Japanese projects (QCDPAX and CP-

2For details visit <http://www.icsa.informatics.ed.ac.uk/research/groups/hase/projects/storlite/>

Chapter 2. Background 47

PACS) are examples of such projects that have successfully produced QCD results
and were considered to be among the fastest supercomputers of their time. A number
of these application-specific research initiatives, including the Cosmic cube and IBM
GF-11 supercomputers, later spawned commercial parallel computer designs.

QCD experiments have not been limited to custom-built parallel computers. The
lattice QCD community has also been amongst the first and most efficient users of
commercial supercomputers of all kinds; vector supercomputers (CRAYs, ETA10) and
massively parallel computers (Connection Machines, Intel Hypercube and Paragon,
IBM SP2 and Silicon Graphics Origin 2000). Consecutively, computational lattice
QCD researchers have contributed to the overall development of high performance

computing by educating a generation of skilled computational scientists, by interacting
with computer vendors to help to optimise and test new hardware and software, and by

providing an environment and a successfully implemented application that motivated
other communities to use novel parallel architectures. It is because of achievements
made by the lattice QCD simulation on parallel architectures, Cabibbo et. al. [CIS99]
asserted in the guest editorial, an issue of the Parallel Computing journal was devoted
to convey an overview of the spectrum of activities in lattice QCD to non-specialists.

Beside the success stories of the parallel QCD calculations, the fundamental
structure of matter, defined by the particle physics theories, poses great challenges
to the high performance community. Bowler and Hey [BH99] wrote that the QCD
study is a grand challenge computational problem, i.e., several QCD calculations need
computational power not available from today's most powerful supercomputers. Bai¬
ley and Simon [BS92] defined a grand challenge as a fundamental problem in science
and engineering, with broad applications, whose solution would be enabled by the
application of high performance computing resources, which could become available
in the near future. According to Bowler [Bow98], the enormous computational cost
can only be addressed by improvements in computer power, better QCD algorithms
and parallel software practices.

In order to understand the key characteristics of QCD calculations, which are

considered as one of the highly parallelisable but compute-intensive applications, an
overview of the following is presented:

Chapter 2. Background 48

• the underlying theory, which translates into a natural parallelism in the applica¬
tion;

• parallel QCD algorithms, software and hardware designs that realise the theory;
and

• challenges, approaches and solutions to solve the grand challenge QCD calcula¬
tions.

2.3.1 Theoretical Background

Presently, there are two major classes of physics: classical physics and quantum

physics. In classical physics, gravity and electromagnetism are the two forces of
nature and a force is conceptualised as ripples in the field or waves. A field or wave

stretches out from an object and conveys a force. On the contrary, in quantum physics,
particles are the carriers of force and force is exchanged between quantum entities.
Quantum physics defines four forces of nature: gravity, electromagnetism, strong and
weak nuclear force. The last two forces cannot be observed in everyday life because

they operate at the nuclear level. These are called strong and weak nuclear forces.
Electromagnetism and the strong force are treated in the theories of Quantum Electro-
Dynamics (QED) and Quantum Chromo-Dynamics (QCD) respectively.

Gusken [Gus99] stated that at the current level of comprehension of the fundamen¬
tal principles of nature, physical processes on an atomic or sub-atomic scale can be
successfully described by the Quantum Field Theory (QFT). In QFT, particles, as well
as their interactions, are represented by quantum fields, defined at each space-time
point. QCD and QED are QFT theories.

Out of the four fundamental forces of nature, only three are included in the
Standard Model of particle physics; the fourth, gravitation, has so far not been
quantitised on the basis of standard gauge theories. Although gravitational force is
important in the everyday world, it is weaker than all the other forces in the microscopic
world and can be neglected in the calculations.

Chapter 2. Background 49

2.3.1.1 Standard Model

The Standard Model of particle physics describes the world in terms of fundamental
particles and their interactions. Matter is made up of fundamental particles, quarks
and leptons, and the force of interaction is provided by gauge bosons (the gluons). The

complexity of these interactions comes from the fact that particles can take on different
properties called quantum numbers, but more importantly they can be combined into
larger units according to the rules set by their interactions. Three quarks combine to
form a baryon while a meson is a pair of a quark and an anti-quark. Mesons and
baryons are members of a larger class of particles called hadrons. The combination of
quarks into more complex particles is not arbitrary, since they are intimately controlled
by their interactions. Everyday particles, at the atomic level, are not hadrons or leptons,
but atoms. An atom consists of protons, neutrons (baryons) and electrons (leptons) as
shown in figure 2.10, and molecules that are made up by several atoms.

Quarks and gluons exist in several unified states: baryons, mesons and glueballs.
The proton is the only baryon stable in isolation. In contrast, neutrons are not stable in
isolation, though they can be stable inside certain nuclei. Mesons are particles with a

basic structure of one quark and one anti-quark. There are no stable mesons. Only a

few types of mesons live long enough to be seen directly by their tracks in a detector.
Theoretically, there are additional types of hadrons called glueballs; made purely from
gluons. Some observed particles are thought to be glueball-like. The classification of
these combined states are represented in table 2.2.

■ quark
gluon

Figure 2.10: Structure within an atom

Chapter 2. Background 50

Hadron Description Example

Baryon Made of three quarks (q,q,q) Proton

anti-Baryon Made of three anti-quarks (q-,q-,q-) anti-Proton

Meson Made of a quark and anti-qurak (q, q-) Pion

Glueballs Made from gluons only not known

Table 2.2: Known bound states of quarks and gluons

2.3.1.2 QCD: A Complicated Theory

The fundamental particles in QCD, quarks and gluons, have a property called colour.
Like electric charge, colour charge is always conserved. But unlike electric charge, the
colour charge (the chromo in chromodynamics) comes in six varieties, three colours
and three anti-colours. The colours are usually called red, green, and blue. Protons and
neutrons, collectively called hadrons are made up of quarks and have no colour charge,
i.e., they are colourless or colour-neutral. The colour charge is used to describe the fact
that, even though each quark in a hadron has a different colour, red+green+blue=white,
the result is a colour neutral object. Another class of particles, called mesons, have a

quark and an anti-quark (colour+anti-colour=white). Gluons carry colour/anti-colour
pairs (not necessarily the same colour). There are 8 gluons since there are eight
possible colour/anti-colour combinations. In total, there are four properties: "charge",
"spin", "colour" and "mass". Spin is the name for the angular momentum carried by a

particle. That data structure, in a typical parallel QCD calculation, for representing a

quark is quite complex because of the four properties associated with each quark.
QCD is considered to be a complicated theory, so complicated in fact that ex¬

tracting predictions from it is impossible by using pen and paper methods. In fact,
extracting predictions from any QFT is a difficult thing to do. Before QCD came along
people studying elementary particles typically resorted to an approximation method
known as perturbation theory. For many applications, including QED, perturbation
theory has proved to be a successful approach.

The perturbation theory is only partially useful for QCD calculations. At the
high energies found in high-energy particle accelerators, the QCD perturbation theory

Chapter 2. Background 51

experimental results match with the simulation results. However, at low energies,
the perturbation approximation fails. It is extremely difficult to do a number of
QCD calculations using the perturbation approximation, for example, prediction of
proton mass. QCD physicists have therefore been rigorously exploring numerical
and experimental methods. Figure 2.11 compares complexity of QCD against QED.
Representation of QCD data structures and interactions in a parallel code are therefore
far more complex and non-linear than QED.

Figure 2.11: QCD complexity vs. QED

2.3.2 Lattice QCD

The experimental approach to QCD is hugely expensive; it involves building huge
particle colliders to study, for example, what happens when protons and anti-protons
collide at high energies. One innovation in the field is the realisation that modern
computer power can be used to analyse interactions at low energies and reduce the
need for such accelerators (or complement experimental studies).

Chapter 2. Background 52

In 1974 Nobel prize-winner Ken Wilson introduced a new technique to solve QCD,
called lattice QCD. His idea was to break space-time up into discrete units. Instead of
considering a continuum of positions and times, each space-time point can represent

specific values. For instance, in the real world the position of an object could be

anything from 1 metre away from another object to 10000 metres away, and anything
in between. In Wilson's scheme there would only be a finite number of positions these
two objects could have (e.g. some integer multiple of 1 metre).

Wilson's idea did not make QCD solvable by hand (using pencil and paper). To this

day, nobody really knows how to get exact solutions out of QCD. However, Wilson's
lattice idea made QCD amenable to computer solution. With the space time continuum
replaced by a discrete lattice of points, powerful computer techniques could be brought
to bear on the problem. Initial results in the late seventies and early eighties were

considered promising. Of profound interest was the strong numerical evidence which
predicted that quarks would be permanently confined, a result that could never be
observed experimentally (Ukawa [Uka99]). Before that there was indirect evidence
for their existence because they exist in confinement with other quarks, called hadrons,
which can be detected by real experiments.

Such properties of quarks defined by QCD theory which are experimentally
impossible to observe and verify are studied in computer experiments. Theoretical

predictions can be deduced from the real experiments with hadrons, as the strong
interaction can be unfolded by mapping the basic equations of QCD on a computer
and matching the computed numbers to experimental data. These hadron experiments
are central to QCD research [Gus99], since most of what one meets in everyday life
is made of protons and neutrons (hadrons). Even with the lattice formulation of QCD,

computer experiments without perturbative approximations are hugely expensive. It
was realised that for non-perturbative QCD simulations, enormous computer power
would be required. The simplest QCD calculations, in most cases, demand huge
computing resources, and consequently much of lattice theorists' efforts in the first
20 years of lattice QCD were spent in accumulating computing time on the world's
largest supercomputers, or in designing and building special purpose computers far
larger than the largest commercially available computers.

Chapter 2. Background 53

2.3.2.1 Fundamental Particles on a Lattice

In a widely used lattice QCD textbook 'Quarks, Lattices and Gluons' [Cre83], Creutz

explains lattice QCD as an approximation to QCD; the key simplification is the
replacement of continuous space-time by a discrete grid — a standard methodology
in numerical analysis. The nodes or "sites", of the grid are separated by lattice spacing
a, and the length of a side of the grid is L. The QCD fields are specified only on the
sites of the grid, or on the "links" joining adjacent sites; interpolation is used to find
fields between the sites.

Figure 2.12 shows the mapping of a quark and gluon onto a three-dimensional
lattice.

Figure 2.12: Quark and gluon mapping onto a lattice

In the lattice approximation, the path integral, from which all quantum mechanical
properties of the theory can be extracted, becomes an ordinary multidimensional
integral. The numerical integration is over a large number of variables and Monte Carlo
methods are generally used in its evaluation. The Monte Carlo method is a method
of approximately solving mathematical and physical problems by the simulation of
random quantities.

Chapter 2. Background 54

2.3.2.2 Path Integral

In order to appreciate the complexity of QCD calculations it is essential to introduce
the famous Feynman path integrals and QCD actions. The essence of the path integral
approach is quite simple; to calculate the probability of a particle going from A to B.
One should take account of every possible path from A to B, not just the most direct
route, or the trajectory described by classical mechanics (figure 2.13(a)).

Each path has a certain probability, which is related to the action associated with
the path. Gribbon [Gri98] defined an action as a mathematical quantity. An action
depends on the mass, velocity and distance travelled by a particle or the way energy

is carried from one place to another by a wave. These actions are governed by
laws like QCD. The overall probability is calculated by integrating the contributions
from all paths (figure 2.13(b)). Although this means adding an infinite number of
probabilities, most are negligible and cancel out, and the classical trajectory emerges

as a consequence of the quantum probabilities (figure 2.13). Feynman, one of the most
notable physicist of the last century, introduced the structure of the diagram, which
is shown in figure 2.13(c). A Feynman diagram follows specific rules where at each
vertex (point where two or more lines meet). A vertex is often represented as a series
of complicated equations.

2.3.2.3 Lattice QCD Computation

The first step in a lattice QCD calculation is to prepare a vacuum or ground state, since
the relevant physics information is enciphered in the QCD vacuum or ground state

(a) classical action (b) path integral (c) Feynman diagram

Figure 2.13: Feynman path integral formulation

Chapter 2. Background 55

field configuration. To create an ensemble of vacuum configurations, 'Hybrid Monte-
Carlo (HMC) algorithms' (Kennedy [Ken99] QCD algorithm for parallel computers)
are generally applied. HMC is a Markov process3 with global updating, based both on

deterministic evolution through phase space and stochastic changes.
Gusken et. al. [GLS99], in explaining the goal of accumulating integrated perfor¬

mance of hundreds of sustained Teraflop-hours, identified the importance of the two
distinct phases inherent in a QCD simulation:

1. the stochastic generation of field configurations and

2. the computation of the physics observables of interest to extract hadronic
properties, in the form of stochastic averages over these configurations.

The two phases generate their own characteristic load requirements on the com¬

puter system and these phases can be organised into separate computing tasks. Phase
(1), on the one hand, is compute intensive with little I/O, on the other hand, it is regular
and therefore well suited for cost-effective and restricted compute engines, whereas

phase (2) is much more data intensive but involves a much lower computational load,
therefore lending itself to implementation on general purpose MIMD systems with
adequate storage facilities.

2.3.2.4 Cost of QCD Simulation

Lepage [Lep99] deduced the cost of QCD simulation, which is governed by a formula
of the form

The first factor is the number of lattice sites in the space-time grid, and the
remaining factors account for the "critical slowing down" of the relaxation algorithm
used in the numerical integration. The Lepage formula shows that the single most

important determinant of cost is the lattice gauge spacing. The cost varies as the sixth
power of i, implying that one ought to keep the lattice spacing as large as possible. L

3A process with a sequence of events where the probability of an event occurring depends upon the
fact that a preceding event occurred.

Chapter 2. Background 56

is the length of the lattice site and mn is called the meson trajectory. All quantities are

expressed in consistent units, for example, in fermi (1 fermi is equal to 10~15 meter).
Figure 2.14 shows a path integral in two three-dimensional lattices; one with a large

spacing a containing a small number of lattice points (called lattice sites) per volume,
and the second, a fine lattice with small spacing and a considerably larger number of
lattice points.

Spacing
/ / / / / / / / /
///// // // /
/ //// //////
/// // , / // // /
/ // ///u // // / /
///// //////// /
// /// // / / // /
/ // // / // // / /
// // -

' // //////
/ //7/// //////
// // //// // //
/// /// • // //
// //// // //
/////////

Figure 2.14: Path integral mapping onto a lattice

Finer lattices tend to approximate the path integral with minimum discretisation
errors at an expense of increasing computation cost. Increases in computation cost are
associated with the memory and execution overhead of a large number of lattice sites
per compute node.

Using computers, it has proved extremely difficult to extract precise information
from a lattice simulation. Computer generated results in most cases are less than
10% accurate when compared with experimental results. Lattice QCD is found to be
enormously expensive computationally when attempts are made to improve accuracy

of the lattice calculations. According to the current understanding and estimates
of the field, a full solution will require a computer with a performance of at least
hundreds of Teraflops. Research directions include development of advanced computer
architectures and algorithms, software optimisation, low energy physics calculations to
certify hardware and software systems, and application of the methodology in particle
physics research areas such as the identification of new types of matter.

Chapter 2. Background 57

2.3.2.5 Limitations of Lattice Formulation

Monte Carlo algorithms are stochastic and there is an associated statistical error
in estimates of expectation values. Lattice QCD calculations are also subject to

systematic errors. Bowler [BH99] described two obvious sources: first, the finite box
size per force used for simulations, L = Na, and second, the non-zero lattice spacing
a. Making the physical lattice volume large for a given number of lattice points in
each dimension may require too coarse computational grid and the results suffer from
discretisation errors. Conversely, reducing the lattice spacing in the physical units
means that the simulated system will be 'squashed', thereby introducing finite-size
effects.

Ideally, the calculations should be repeated for a range of lattice spacing and
volumes to confirm whether the answers are independent of spacing a and volume in
a direction L. Due to the huge computation cost associated with a single lattice QCD
calculation, the task of repeatedly performing a QCD calculation with varying input
variables could have exponential cost. Keeping the physical box size fixed and halving
the lattice spacing requires doubling the number of grid pints N in each dimension.
This tradeoff is shown in figure 2.15.

Confined Quarks
G m

Small Lattice (Less Freedom,
Improved discretisation)

Large Lattice (More freedom, less dicretisation)

Figure 2.15: Lattice QCD mapping — tradeoff between small and large lattice sizes

Unfortunately, the scaling properties ofmany QCD algorithms are not ideal. In full
QCD, with least approximation, the most popular method for generating configurations

Chapter 2. Background 58

incorporates the effects of virtual quark-antiquark pairs is the HMC algorithm. In HMC

computations, the number of arithmetic operations scales roughly as A10.

2.3.3 QCD Algorithms

In lattice QCD, large systems of linear equations have to be solved to compute physical
quantities. An exact analytical treatment of the path integral function is not possible
in most cases. The space-time continuum is approximated by a lattice with N3 x

Nt space-time points. The calculation of physical quantities is done in two steps.

First, one generates a representative sample of quantum field configurations, where
each configuration is represented according to its specific weight, by a Monte Carlo

procedure. Secondly, one determines the "would be" value of the physical quantity in

question on each of the quantum field configurations and takes the average.

The most time consuming part of the calculation, Sroczynski [Sro02] described,
involves inverting a matrix for the quark field. QCD simulations are largely based on

variants of the Monte Carlo algorithm. The numerical bottleneck

M\\f = (1 -K£>)\|/

is solved by various algorithms including the minimal residual or the Conjugate
Gradient (CG) method. M is called fermion (quark) matrix of dimension r - 3 x 4 x V.
Where V is the volume of the underlying four-dimensional space-time lattice, and D
contains non-diagonal elements only. The size of the solution vector is of order O(107)
to O(108) elements, K is a scalar quantity, and \|/ is a vector field.

Naively, the calculation of disconnected contributions requires the inversion of a
complex matrix of size (A3 x Ar x 12)2 on each single quantum field configuration. For
currently available lattice sizes, such a calculation would be prohibitively expensive.
To circumvent this problem, stochastic estimator methods are applied. These methods

converge to the true result in the stochastic limit. It turns out that even with such

techniques, one still needs a parallel supercomputer to handle this problem.
Further improvement of the inversion algorithm can be obtained by using precon¬

ditioning techniques and novel discretisation techniques. A preconditioning algorithm
should reduce the number of iterations and the computing time necessary to achieve

Chapter 2. Background 59

a given accuracy. Lippert [Lip99] describes a widely used parallelisable precondi¬

tioning procedure in lattice gauge computation, which is based upon an odd-even

decomposition of the matrix M. Other decomposition and precondition techniques
used incomplete LU factorisation and a preconditioning scheme. Several discretisation

techniques of QCD have been employed to solve a wide range of problems in lattice
QCD on ordinary desktop workstations, while at the same time, substantially extending
the physics reach of the supercomputers available to the field.

2.3.3.1 The Conjugate Gradient (CG) Algorithm

QCD computations are normally carried out with iterative solvers like CG and its
variants. Ruede [Rue97] provided a comprehensive account of some iterative solvers
including CG on parallel high performance architectures. CG is an approximate
method, i.e. it results in an answer closer to the approximation limit required by a

QCD simulation. Fox [FJL+88] explained this procedure as follows:

Considering a task of solvingM simultaneous QCD equations would be equivalent
to finding the M-dimensional vector which minimises some residual error quantity
defined on the M-dimensional QCD space. A gradient method makes use of trial values
for the variable at step i to generate new values at step i+1 corresponding to a reduced
value of the error function. By successively moving towards the error minimum, the
method converges toward the desired solution (with desired approximation). Different
gradient methods differ in their techniques for choosing the direction of the minimal
trial vector. The CG method employs descent direction vectors, which are mutually
orthogonal relative to an inner product weighted by the properties of the matrix.

For a given definite sparse matrix A and the vector b, a CG algorithm introduces
three M-dimensional vectors and two scalars whose contents change in each iteration.
The iteration number to which a given M-dimensional vector applies is expressed in
the subscript in the CG description below, xo denotes the starting trial solution (which
could be zero). The other two vectors required are r^, the residual vector, and pk, the
CG search direction.

xo = 0 (initial_guess)

r0 = b- Axo

Chapter 2. Background 60

Po = A)

Then the following iterative loop labelled by k is performed

For k = 1 to MAX (until converged)

= fa-ik
(Pk-*Apk-\)

Xk = Xk-l + CLkPk-\

n = rk-1 - akApk-\

Stop when

rk = 0 or(converged)

else

Q (n * n)
P£ = 7 -T(r*_i *rk-i)

Pk = rk + $kPk-1 (Loop)

The iterations are terminated when xk has converged to within some desired
accuracy, as determined by the magnitude of the vector of residual r.

The CG algorithm does not depend upon any particular row or column structure,
it only requires matrix A to be symmetric. Matrix A is used in the algorithm to
form its product with M-dimensional vectors. It is possible to compute the products
separately and sum them afterwards. Hence, matrix A can be distributed among

parallel processors and a given processor may need access to parts of A residing in

neighbouring processors.

2.3.4 Computational Characteristics of QCD Calculations

According to the Caltech Concurrent Computation Group classification of parallel
applications [FWM94], QCD simulations are considered as synchronous applications.

Synchronous applications have a regular structure, and in general, are the simplest to

Chapter 2. Background 61

code and, in particular, the simplest to parallelise. These applications are characterised
by a basic algorithm. A parallel algorithm, in most cases, consists of a set of operations
that are applied identically at every point in a data set. The structure of the problem
is typically very clear in such applications, and they can be considered as parallel in
nature.

Trippiccoine [Tri99] identified certain characteristics of the lattice QCD calcula¬
tions:

• The lattice QCD simulations are based on compute intensive kernels. Typically
the ratio of operations to required operand is large (between 4-8). A limited
memory bandwidth could sustain a huge floating-point performance.

• Physical lattices could be easily mapped onto several independent processors. A
measurable performance loss due to parallelisation overheads is expected only
for a number of processors well beyond any reasonable upper limit.

• All processors are only required to execute exactly the same program, on

independent copies of the same data structure. Theoretically, one program flow
has to be controlled.

2.3.4.1 Coding Lattice QCD on Parallel Computers

The basic dynamical variables of QCD are the gluon field and the quark field. On a

four dimensional lattice of size Nx x Ny x Nz x Nt, the gluon field is represented by a
set of complex 3x3 matrices U(n,fi), where n = (nx,ny,nz,nt) denotes lattice sites with
1 < nx,y,z,t < Nx,y,z,t and fi = x,y,z,t the four dimensions. The quark field in the Wilson
formulation is represented by a 12-component complex vector. The objective of lattice
QCD simulations is to numerically evaluate, by a Monte Carlo method, the Feynman
path integral. The action of lattice QCD describes the interaction of quarks and gluons.
Typically the main simulation steps are:

1. update of the gluon configuration to generate distribution.

2. gauge fixing to reduce statistical noise in the measurement of the observables.

Chapter 2. Background 62

3. solver to compute the quark propagator for a number of given quark sources,

where the quark matrix is a sparse 12V x 12V complex matrix depending on the
gluon configuration and V = Nx x Ny x Nz x Nt.

4. measurement of hadron observables by combining quark propagators.

The whole cycle is repeated several hundred or several thousand times. The
algorithm for the update parts differ if full QCD simulations or quenched (an approx¬

imation) QCD simulations are performed. In both cases the computer time is mostly
spent in the update and the solver part, with the update part weighted dominantly for
full QCD simulations.

From a computational view point, numerical algorithms used to simulate lattice
QCD have certain simplifying features. The calculations are homogeneous and the
interactions are local. The first feature implies that exactly the same operations need
to be done at each space-time point. It is therefore trivial to make synchronisation
between points. The second feature implies that only a few neighbouring points are

connected at best, thereby resulting in data dependence between small blocks (24 - 44),
or none at all in the most time consuming part of the calculation (the matrix inversion).
A point in each of these blocks can be processed simultaneously. In short, the problem
is 'tailor made' for distributed-memory parallel computing.

The four dimensional space-time grid is divided into smaller hypercubes, and the
data and calculations needed to process all the sites within each smaller hypercube
is allocated to a separate processor. For example, a 644 lattice can be distributed as

164 sub-lattices on 256 processors setup as a 44 computational grid to maintain the
spatial proximity of data. Points internal to this 164 volume do not need information
from the neighbouring processors and can get the maximum throughput of the single
processor's speed. On CRAY T3D QCD calculations, Berry et. al. [BGK94] explained
the communication of lattice points on the boundary. These communications are said to
be homogeneous on a three-dimensional torus topology. For example, each processor

needs information from the processor on the right and simultaneously needs to send
information to the processor on the left. Furthermore, the use of periodic boundary
conditions makes the pattern of these communications cyclic on the four-dimensional
grid of processors. Lastly, it is possible to overlap computation and communications.

Chapter 2. Background 63

The communication of the boundary points can be initiated while the points internal to
the 164 volume are being processed. The only constraint is the amount of per processor
memory to store this extra data. With the amounts of memory available per compute

chip on todays computers, the extra storage requirement is not a major hurdle.

2.3.4.2 Communication Requirements

According to Gupta [Gup99] the Achilles heel of large distributed computers is inter-
node communication speed and memory bandwidth if commodity processors are to be
used. In this regard too, lattice QCD calculations are ideally suited for implementation
on parallel computers. One can examine the worst scenario of the penalty imposed
by communications in cases where overlap of computation and communication is not
permitted by either the hardware or the software. The basic arithmetic unit in the
lattice QCD calculations is the multiplication of a complex 3x3 matrix to a 3 x 1

complex vector, where the vector needs to be communicated to the neighbouring nodes.
Analytically, three floating point operations are performed for every single byte of data
communicated. In practice, the situation is even better as data for only the points on

the boundary of the hypercube in each node is communicated. Lastly, global sums
and global broadcasts, which are potentially slow, are not done often enough to be a

significant overhead.

2.3.5 Parallel QCD Computers

After more than two decades of research, QCD still has not been solved using a non-

perturbative analytical approach. A controlled numerical treatment of the theory on

the lattice on extremely fast parallel supercomputers is widely considered to be the
only viable scheme to extract quantitative physical results. The results from lattice
gauge theory simulations are urgently needed as theoretical input for current and future
accelerator experiments to facilitate the attempts to observe new physics beyond the
Standard Model of elementary particle physics.

Christ [Chr99] identified that the QCD problem offers different possibilities for
the design of optimised computer hardware. First, the floating-point operations
that dominate QCD Monte Carlo computation can be performed with considerable

Chapter 2. Background 64

speed and great cost-effectiveness by a class of specialised chips which have been
manufactured with rapidly improving characteristics. Second, the Monte Carlo updates
and sparse matrix inversions, the most expensive part of QCD calculations, are easily
done in parallel. Consequently, machines combining many of these floating point chips
can operate with great efficiency.

The enormous floating-point operation requirements of the stochastic simulation,
in order to achieve statistically significant physical results, has led to a concentration
of activities in this field of research. The construction of specialised QCD computers

has now developed into a major activity in high-energy physics with a number of
large and resourceful groups spending large sums of money to build a variety of
machines each rivalling, or exceeding the capabilities of commercial supercomputers.
Several collaborations in Japan (CP-PACS) [ABK+99], the U.S. (MILC), Columbia,
Caltech, IBM [KBD93], Fermilab, United Kingdom (UKQCD), and Italy APEs
(APEmille [Tri99] and APE100 [ABDS95]) are investigating QCD systematically
either on special-purpose or commercial high-end parallel supercomputer hardware
performing with several hundreds of Gigaflops. In addition to special-purpose ma¬

chine construction, QCD theory has been explored on commercial, general purpose
computers including IBM SP2 [BDG+95], cluster computers [BPE+99], Connection
Machine [BBJ91] and CRAYs (T3D [BGK94] andT3E [McNOO]).

Parallel with the QCD hardware development, several software initiatives have
been developing the software infrastructure for the QCD parallel application software.
The Columbia Physics System4 (CPS) of the Columbia University is a high perfor¬
mance QCDSP-specific software repository. The UKQCD collaboration currently
possesses optimised Fortran kernels. In addition to the CPS and UKQCD code, a

number of open-source repositories are available: MPI-base, multi-platform MILC
code [MIL], macro-based data-parallel programming system SZIN [SZI] and C++
classes, functions and parallel algorithms for lattice QCD, based on Matrix Distributed
Processing FermiQCD [PieOO].

4Information available at <http://phys.columbia.edu/~cqft>

Chapter 2. Background 65

2.3.5.1 Current Application-Specific QCD Computer Projects

Currently two major projects are under way to build the fastest, cost-effective, parallel
computer for QCD calculations: QCDOC and apeNext. QCDOC is a 10-Teraflop
MIMD supercomputer being developed through a collaboration between the IBM
and Columbia University. A 5 Teraflop prototype is expected to be constructed by
2004. A second QCDOC system will be installed in the UK (UKQCD collaboration).

apeNext is the next generation of APE computers, built by a collaboration of leading
European QCD research institutes including DESY and INFN. It is a three dimensional
grid of processing nodes and the whole system is a SPMD processor. apeNext is

expected to achieve a substantial fraction of peak performance (50%) on a 15 Teraflops
machine. It is expected to be operational after 2003. Earlier generations of APE
machines are based on SIMD architecture. In addition to these application specific
supercomputer developments, several cluster computers around the world have been
exploited for QCD calculations. An up-to-date list of QCD clusters was presented by
Lippert [Lip03] at the Lattice 2003 annual conference.

2.3.5.2 QCDOC

The QCDOC architecture has been designed to provide a highly cost-effective, mas¬
sively parallel computer capable of focusing significant computing resources on

relatively small but extremely demanding QCD calculations. It is not the first
architecture of this type; in late 1990s two large QCD on Digital Signal Processors
(QCDSP) machines provided an aggregate 1 Teraflops for the lattice QCD calculations.
Mawhinney [Maw99] presented a detailed account of how the design and construction
of cost-effective MPP QCDSP machines, which cost just a fraction of a commercially
available supercomputer were realised. QCDSP machines have been providing super¬

computer power to the QCD research community for the last five years.

Many in the QCDOC design team [CCC+01] consider QCDOC as a natural
evolution of the QCDSP. The expected increase in the performance of QCDOC is
mainly attributed to the technological advances in processor and in communication
network technology. The individual processing nodes in the QCDOC system are 500
MHz PowerPC-based processors interconnected in a six-dimensional, 12 Gigabit/sec

Chapter 2. Background 66

mesh with the topology of a torus. A QCDSP processing node is 50 MHz DSP-based,
connected in a four-dimensional, 0.64 Gigabit/sec torus. Out of the six dimensions,
QCD calculations on the QCDOC system are expected to utilise a four-dimensional
torus for the QCD calculations; the other two dimensions have been included for
software partitioning of the machine to avoid re-cabling. A second Ethernet-based
network provides booting and diagnostic capability as well as more general I/O. Over
ten thousand compute nodes are expected to be packaged in a style that provides a

small footprint.
An essential element of the QCDOC project is the collaboration with IBM, thus

enabling the use of IBM's system-on-a-chip (SOC) technology. Nowadays it is
possible to integrate most of a processing node's components on a single chip, creating
an application-specific integrated circuit, or ASIC. Gara et. al. [GAB+02] described
QCDOC as the first SOC MPP supercomputer in an article on the IBM Bluegene/L
supercomputer. Commodity components based SOC MPPs are presently considered
the best design option for cost-effective scientific supercomputers.

2.3.5.3 Physics Goals of the UKQCD Computer

The lattice QCD research goal is to study experimentally accessible but theoretically
difficult to calculate properties of nuclear matter. Kenway [KenOO] said the central
aim of the UKQCD's physics programme is to quantify the effects of realistic light
dynamical flavour quarks on phenomenologically important quantities. In addition to
these demanding calculations of light quarks, a number of physics goals of the QCDOC
computer were identified by Isgur and Negele [IN00] in a proposal submitted to the
U.S. department of energy. The UKQCD and the US lattice community proposals
suggested that progress in understanding QCD, verifying QCD, calculating strong

corrections to weak matrix elements, and elucidating the behaviour of QCD at finite
temperature requires a combination of four things:

1. Better theoretical understanding and formulation of quantities to calculate.

2. More efficient numerical algorithms for the generation of background configu¬
rations and quark propagators.

Chapter 2. Background 67

3. Improved ways of discretising QCD to reduce errors and computing require¬
ments.

4. Specifically designed higher performance computers and their exploitation.

The success of the current UKQCD computer, QCDOC, will not only enable in
achieving (1), (2) and (3) but it will set a milestone for (4).

2.4 Summary

High performance parallel computers are fundamental to the progress in the QCD
research. QCD theories are generally defined as a set of equations, which in turn
are solved by algorithms for solving complex set of equations. High performance su¬

percomputers are essential for solving data- and compute-intensive QCD calculations.
The UKQCD collaboration, together with leading QCD physics research groups and
IBM, are in process of constructing the fastest computer for the QCD calculations.
The success of a parallel computer lies in delivering a sustained performance for the
application code. In order to establish the performance of the application code and
to investigate the design of future generation parallel computers, extensive instrumen¬
tation is needed. Computer architecture simulation is an efficient, flexible and cost-
effective way to explore performance and scalability of an application over underlying
parallel hardware systems.

The current release version of HASE includes facilities for designing and creating
parameterised hardware-software co-simulation models. Key HASE design features
include the provision of simulation templates and component reuse, which provide
an efficient and flexible mechanism for the rapid prototyping and exploration of
scalable architectures incorporating system hardware and application software char¬
acteristics [IHH95], The UKQCD computer simulation research, exploits the HASE
framework to get an insight into the performance phenomenon of the latest UKQCD
computer, QCDOC, for parallel QCD application. The next chapter details the
internals of the QCDOC architecture and implementation of parameterised HASE
QCDOC simulation model.

Chapter 3

Design and Implementation

This chapter presents the design and implementation of the QCDOC computer simula¬
tion model in the HASE. Firstly, a brief overview of the QCDOC machine architecture
and the design details of the processor core and custom components are provided.
Secondly, key considerations in modelling the complete system in the HASE and an

account of the HASE design entities are presented. Thirdly, the notable extensions
made to the HASE for the QCDOC architecture modelling are outlined. Lastly, the
HASE tools constructed for the debugging, validation and experimentation of the
QCDOC model are described.

3.1 QCDOC Architecture

QCDOC is defined as a custom-built, massively parallel computer optimised for lattice
QCD calculations using system-on-a-chip (SOC) technology. A SOC processing node
in the QCDOC system primarily contains commodity design components (known as

IP blocks) including IBM standard macros. In addition to the commodity components,
a number of hardware features are unique to the QCDOC design; these are mainly to
assist scaling and to improve performance of the lattice QCD applications on parallel
computing systems.

68

Chapter 3. Design and Implementation 69

3.1.1 Design Philosophy

Presently, high-end parallel computing efforts for lattice QCD calculations include:
commodity off-the-shelf-clusters and custom-built systems like QCDOC. It has long
been debated which computing platforms are most suitable for the simulation of lattice
QCD. Ltischer [Lus02] argued that recent off-the-shelf commodity PC processors by
Intel or AMD are capable of delivering impressive floating-point performance on the
order of 1 Gigaflops if vector processing units1 are employed and cache management is
optimised. Unfortunately, for parallel QCD applications, this single-node performance
cannot be fully utilised in a PC cluster if the local lattice volume (problem size
per processing node) becomes small. In this case, the surface-to-volume ratio (i.e.,
lattice sites per processing node) is large, and the communications latency inherent
in standard network solutions such as Ethernet or Myrinet slows down the individual
processors. Boyle et. ol. [BCC+01] concluded that in order to achieve reasonable
efficiencies with a PC cluster, the local lattice volume must not be too small. This

implies that for a given total lattice volume, the number of nodes working on a single
problem is limited. To run many important QCD calculations on a moderately large
lattice in a reasonable amount of time, it is essential to distribute the total volume

onto as many nodes as possible, which implies very small local lattice volumes, as

small as 24 (two lattice sites in each space-time direction). A small local volume
requires communications between neighbouring nodes with extremely low latencies
that cannot be achieved using off-the-shelf networking components. Massively parallel
machines with custom-designed communications hardware, with considerably lower
latencies than a commodity interconnect, appear to be the only viable alternative. In the
field of lattice QCD calculations, with its very regular communications requirements,
custom (low-latency, switchless) interconnects are especially feasible. The design
of the QCDOC architecture revolves around supporting a small local volume design
philosophy.

'Vector processing unit (VPU) handles vector-based, single-instruction multiple data (SIMD) in¬
structions that accelerate graphics operations. Such vector-based instructions include Intel's multimedia
extensions and Streaming SIMD Extensions (SSE). In some cases, there is no discrete VPU section;
Intel and AMD incorporate those functions into the the FPU of their Pentium 4 and Athlon CPUs.

Chapter 3. Design and Implementation 70

The rapid advances in silicon feature size, single-chip functional integration and
communications technology offer tremendous opportunities to exploit the QCDOC

design philosophy to build high-end, powerful and cost-effective machines. The
QCDOC design is based on a high-performance, highly integrated Application Specific
Integrated Circuit (ASIC) that combines all computation and communication logic on

a single chip. By embedding computation logic on a single chip, considerably smaller
communication latencies in terms of processor clock cycles are achieved for the off-
node communication operations. The process of integrating all functions on a single
chip is often referred to as SOC design technique, thereby introducing the architecture
name QCDOC for "QCD-On-Chip".

The design blocks in the official QCDOC ASIC (figure 3.1) contribute to the start¬

up, loading, execution and file I/O operations of parallel QCD application code.

3.1.2 System Overview

A QCDOC node comprises a single ASIC chip and an industry standard Dual Inline

Memory Module (DIMM) memory. The prominent features of the ASIC are IBM's
embedded PowerPC 440 core, the double-precision Floating Point Unit (FPU) core,
a 4 MByte on-chip memory called "Embedded DRAM" (EDRAM) and QCD specific
design blocks. To a large extent, the ASIC is created from already existing IBM macros

that are simply interconnected in the specified way to create the larger unit. Special
to the QCDOC design is the Serial Communications Unit (SCU), the Prefetching
EDRAM Controller (PEC) and the DMA controller permitting direct transfers between
external and embedded DRAM. The QCDOC design report [BCC+02b] details the

design components shown in figure 3.1. A brief overview of the design blocks of the
QCDOC processing node along with their key responsibilities in the system is outlined
next.

QCDOCASICDESIGN
|4MBytesof IEmbeddedDRAM

8Gbyte/sec Memory/Processor Bandwidth

tGflops
DoublePrecision RISCProcessor

2.6GByte/seeInterface toExternalMemory

2.6GByte/sec
EDRAM/SDRAM DMA

24LinkDMA Communication Control
124Off-NodeLinks 12Gbit/sec

iBandwidth

CompleteProcessorNode
forQCDSupercomputerona SingleChipFabricatedbyIBM

44K6><k*fife

Bootable Ethernet Interface 100Mbit/sec FastEthernet

9

"O

CD

pi

0

CDCO

s

0}

3 Q.

1

CD

3

CD
03ST

o'

03

Misson-critical,customlogic(hatched)forhigh-performancememory accessandfast,low-latencyoff-nodecommunicationsiscombinedwith standards-based,highlyintegratedcommerciallibrarycomponents. Figure3.1:OfficialQCDOCprocessingnodedesign[BJW03]
-v!

Chapter 3. Design and Implementation 72

PowerPC 440 Core

As an embedded processor core, PowerPC 440 is designed and optimised for low

power, high performance and custom embedded system designs, and therefore is
an ideal candidate for the processor in amassively parallel system. The PowerPC
440 is considered as the first embedded system core to reach the one Gigaflops
boundary. It has an efficient Memory Management Unit (MMU) with separate
instruction and data cache, and an efficient memory control mechanism via a

Translation Lookaside Buffer (TLB). The PowerPC provides standard interfaces
to support on-chip and off-chip data transfers. A detailed description of the core

is presented in section 3.1.3.

Floating Point Unit

PowerPC 440 is a 32-bit integer core. It does not contain floating-point execution
units. Nevertheless, PowerPC 440 supports a seamless interface to external
co-processors via its Auxiliary Processing Unit (APU). The one Gigaflop,
superscalar, 64-bit IEEE Floating Point Unit (FPU) was especially designed by
IBM as a co-processor to the PowerPC 440 core.

Embedded DRAM

EDRAM is a low-latency, high-bandwidth on-chip memory and is central to the
QCDOC ASIC performance. This embedded 4 Mbyte DRAM provides code
and data storage on-chip. In the most demanding parts of the code, this memory
is large enough to hold the entire QCD kernel code and data.

Prefetch Edram Controller

The QCDOC status report [BCC+02a] highlights the significance of the Prefetch
Edram Controller (PEC). PEC is a memory controller that provides an indepen¬
dent, buffered interface for the EDRAM to the PLB, the DMA controller and the

PowerPC core. The latter connection is provided through a dedicated 500 MHZ,
128-bit PLB bus. Prefetching and buffering are included in the PEC, allowing
two independent streams of sequential data to be efficiently read from EDRAM

Chapter 3. Design and Implementation 73

from each of these three ports. In particular, this unit provides an 8 Gbyte/sec
bandwidth between EDRAM and the PowerPC's data cache.

High Speed Serial Links

The High Speed Serial Links (HSSL) are the physical units responsible for
managing the high-speed serial communication in the six-dimensional torus
network (the physics network). Incoming data to the HSSL units are byte aligned
and forwarded to the SCU. Similarly, outgoing 8-bit data are serialised and
clocked out at eight times the processor frequency. HSSL is an IBM macro that
provides high performance serialisation and deserialisation for the serial data
transfers. An HSSL controls four independent serial inputs and outputs.

Phase Locked Loop

IBM HSSL units need a Phase Locked Loop (PLL) for serial data transfers
clocking requirements.

Serial Communication Unit

Boyle et. al. [BCC+02a] provide a detailed account of perhaps the most unique
hardware component of the QCDOC ASIC, the SCU. Beside the PEC, the SCU
is considered as a QCD-only design component on the ASIC. It is responsible
for off-node data movements to and from the on-chip memory. Communication

requirements specific to the QCD are supported by additional storage and control
units within the SCU (details in section 3.1.5). SCU communications are

governed by a custom protocol, which requires bad data to be re-transmitted.
Furthermore, the SCU provides the store-and-forward function that supports
low-latency global sums and broadcasts.

Direct Memory Access Controller

The Direct Memory Access (DMA) controller has a generic DMA functionality,
i.e., once initialised by the processor, it takes responsibility for a large number of
memory transfers. In the QCDOC ASIC, the DMA controller allows automatic
transfers over the processor bus between external SDRAM and EDRAM. It is

Chapter 3. Design and Implementation 74

expected to use full 128-bit width of the PLB and exploit caching capability of
the DDR SDRAM controller.

Processor Local Bus and Arbiter

The Processor Local Bus (PLB) is the main on-chip bus. It is 128 bits wide, runs
at one-third of the processor clock speed and contains three independent sub-
buses: address, read and write. The PLB supports eight bus masters in total. The
PLB arbiter is a standard macro that manages the control and arbitration signals
on the PLB.

On-chip Peripheral Bus and Arbiter

On-chip Peripheral Bus (OPB) is a part of the IBM SOC bus technology. It
is included to remove nonnessential loads from the more time-critical PLB and

to provide the standard interface required by the Ethernet controller. The OPB
arbiter is a standard IBM macro; it manages the control and arbitration signals
on the OPB.

OPB-PLB Bridge

Communication between the two buses, PLB and OPB, takes place via the OPB-
PLB bridge. It is a standard IBM macro. In QCDOC, it appears as a slave on the
PLB and a master on the OPB.

Bootable Ethernet Interface

The Ethernet connection permits hard-wired Ethernet control of the JTAG2
interface to the PowerPC. The JTAG interface provides complete control of the
processor to the host computer through the Ethernet interface allowing processor
reset and boot code loading directly to the PowerPC instruction cache. This unit
has been specifically built to provide an additional debugging support for the
chip.

2JTAG or Joint Test Action Group is a protocol designed to do in-circuit testing and debugging of
memory and CPU resources. Many CPUs provide JTAG port/connection to connect a serial or parallel
port on the host to the target CPU board.

Chapter 3. Design and Implementation 75

Boot/Clock Support

SOC components operate at a range of clock frequencies. At start-up or system

boot, the boot support mechanism creates the 500MHz clock and sequences the
power-up of the chip as the voltages appear.

Ethernet Media Access Controller

The Ethernet media access controller interfaces to the OPB and the DMA

Ethernet controller.

DMA Ethernet Controller

Like any other DMA, the DMA Ethernet controller can be configured to load
and unload packets to and from Ethernet network.

DDR SDRAM Controller

The SDRAM controller provides a standard interface to a larger off-chip or

external memory. It supports PowerPC page mode transfers and can buffer read
and write operations for efficient data handling over PLB.

Interrupt Controller

Interrupts generated by the components of the QCDOC ASIC and additional
external interrupts generated elsewhere in the machine are processed by the
interrupt controller.

Location Number Slave

QCDOC machines (at UKQCD, Columbia and RIKEN-BNL Research Centre)
are expected to exceed 10K nodes. For this size of machine, it is essential to
have a system in place to identify individual nodes, for example, at boot-up. The
location number slave unit uniquely determines the location of the ASIC within
the larger machine. This includes location on the motherboard, location of the
motherboard within the crate and of the crate within the larger machine.

Chapter 3. Design and Implementation 76

3.1.2.1 Inter-node Communications

In Massively Parallel Processing (MPP) systems, inter-node communication laten¬
cies are far higher than any other memory or compute latency. Direct networks,
where one processing node is directly connected to another processing node, are

preferred because of the low overhead of inter-node communications in these networks.
Dally [Dal90] and Agarwal [Aga91] produced analytical models that proved a k-ary
rc-cube network topology optimal for inter-node communications in high-end MPP

systems. Meshes and tori are considered as examples of k-ary n-cube networks;
QCDOC processing nodes are connected in the topology of a six-dimensional torus.

A QCDOC processing node has the capability of sending and receiving data from
each of its twelve nearest neighbours in six dimensions at a rate of 500 Mbits/sec.
The aggregate off-node bandwidth is 1.5 GByte/sec. Each communication link
has a phase locked receiver and single-bit error detection with automatic re-send.
Associated with each of these twenty-four communication channels, aDMA capability
allows autonomous read/write operations from either EDRAM or external SDRAM.
Instructions controlling the DMA transfers are stored as 32 sequences of block-
strided-moves3 located in 24 separate, on-chip register blocks. Since two of these six
dimensions are used to partition the machine, only two-thirds of this communications
bandwidth or 1 Gbytes/sec is available for a typical QCD calculation. Low-latency,
global functionality in the form of an automatic "store and forward" capability is
provided for efficient collective communication operations, mainly global sums and
broadcasts.

3.1.2.2 Booting, Diagnostics and I/O

In systems of the size and dimension of QCDOC, start-up and diagnostic checks, and
file input-output (I/O) are important design issues, perhaps as important as achieving
a high performance for the application code. The Ethernet network takes the non-

application code communication burden off the physics (6-dimensional serial torus)
network. The Ethernet connections of four processors are joined together with a

Fast Ethernet switch, the output from which is fed to a higher level switch that

3memory blocks separated by a fixed stride (| blocksize | stridesize | numberblocks |).

Chapter 3. Design and Implementation 77

includes a Gbit Ethernet link. This Ethernet tree can be used in broadcast mode to

provide boot code to the processors, to allow individual processors to be interrogated
for diagnostic purposes and to permit easy connection to industry standard RAID
disks, providing a large aggregate I/O bandwidth. A fully-functional debugger is also
provided, allowing a multi-node, window-per-processor, source-code-based graphical

debugging interface.

3.1.2.3 Mechanical design

In addition to the performance, debugging and I/O considerations, other electrical and
mechanical factors are critical to the design and smooth working of an MPP system.

QCDOC exploits the homogeneity of MPP machines to achieve a high degree of
mechanical modularity. Two individual processors are mounted per daughter card, 32
daughter cards on a mother board and then 8 mother boards in a rather large crate with
a single backplane. Cable connections are provided on the backplane for the off-node
communications of each motherboard.

3.1.3 PowerPC 440 Core Architecture

The PowerPC 440 embedded processor core is an IBM standard product designed
for high performance, design flexibility and low power requirements — targeted to
custom embedded system designs. It is based on the PowerPC BookE Architecture,4 an

enhanced PowerPC architecture conforming to the specification for a PowerPC family
of RISC Processors [May94]. A PowerPC 440 core contains three integer execution
pipelines, thirty-two 32-bit integer registers, an MMU and a branch unit with branch
and control registers. In addition to these components, the PowerPC provides standard
interfaces such as read and write bus masters, an Auxiliary Processing Unit (APU) for
co-processors, an interrupt control mechanism and other necessary SOC interfaces.

The PowerPC 440 superscalar core incorporates a seven-stage execution pipeline
with three execution units, as shown in figure 3.2.

4BookE specifies a standard version for the PowerPC architectures, such that several generations and
versions (by IBM and Motorola) of PowerPC processors are consistent and compatible.

Chapter 3. Design and Implementation 78

1 1
<N ,

1
co ,

1 1
in .

1
SO | r- |

i V i u i <o . <D . <D . <D I

W) too toO toO toO toO
1 1 1 03 I 03 I 03 ' o3 1
1 CO 1
1 1

CO 1
1

CO 1
I

CO 1
1

Co 1
1

Co |

Figure 3.2: CPU execution pipeline

Up to two instructions can be issued per clock cycle. The three execution pipelines
are:

1. Load-Store Pipe — This pipeline support all 32-bit BookE compatible integer
and floating-point load/store instructions. For efficient execution, load requests
can overtake store requests and there can be three outstanding loads in the load
queue.

2. Simple-Integer Pipe — Arithmetic instructions that do not update one of the
control registers are issued to the simple integer execution pipe. The control
registers include the link register, the counter register and the condition register.

3. Complex-Integer Pipe — Branch instructions and instructions utilising one of
the condition registers are issued to the complex integer pipeline. It has a single-
cycle throughput but some versions of multiply and divide instruction can take
multiple clock cycles.

Instructions in a clock cycle can be issued as a pair using (1) and (3), or (2) and (3).
For added system performance, the PowerPC 440 includes dynamic branch prediction
and 24 Digital Signal Processing (DSP) instructions. The PowerPC processor has a

Chapter 3. Design and Implementation 79

Multiply and Accumulate (MAC) unit that supports single-cycle, DSP-style, multiply-
and-add instructions. The PowerPC 440 core is combined with the floating point unit
core via the APU for the custom-designed QCDOC ASIC.

Conditional and unconditional branches are handled by the Branch Unit (BU). It
contains a 16-entry Branch Target Address Cache (BTAC) and a 4K-entry Branch
History Table (BHT). The PowerPC 440 uses the BHT to maintain dynamic branch
prediction of conditional branches. To perform dynamic branch prediction, a 2-bit
counter in the BHT is used. Four valid states exist: "Strongly agree", "Agree",

"Disagree", and "Strongly disagree". The BTAC is used to predict branches and
deliver their target addresses before the instruction cache can deliver the same data.
It is accessed during the instruction fetch stage, whereas normal branch prediction
would not occur until the pre-decode stage, and therefore avoids a one cycle penalty
for unconditional branches and one-step decrement branch bdnz.

Another important feature of the processor is its interrupt control mechanism. The
processor internally recognises interrupts such as TLB miss, arithmetic overflow and
QCDOC specific communication interrupts. All interrupts are mapped into interrupt
handling routines using 16 vector registers to improve response time.

3.1.3.1 Memory Management

The PowerPC MMU has three separate caches: data cache, instruction cache and TLB.
The data cache is connected to the PLB with 128-bit read and write bus masters while

the instruction cache is connected with the instruction read master.

The 32 KByte instruction and data caches in PowerPC 440 are 64-ways set

associative. The cache line size is fixed at 32 bytes (8 words). The PowerPC MMU

supports non-blocking load operations and can have up to three outstanding load
requests. For efficient load handling, the PowerPC MMU can serve load operations
in advance of store operations.

A PowerPC cache memory array can be viewed as a two-dimensional array of sets
and ways as shown in figure 3.3.

Chapter 3. Design and Implementation 80

way 0 way 1 way w-1
set 0 line 0 line s line s(w—1]

set 1 line 1 line s+1 line(s-l)(w+l)

set s-1 line s-1 line 2s-1 line sw-1

Normal

Lines

Transient

Lines

Locked

Lines

wayw
waynormal_floor

waytransient_ceiling waytransient_floor waytransient_floor-l way0

Figure 3.3: L1 cache layout

The PowerPC cache architecture has been extended to define three areas in the

instruction and data caches: normal, transient, and locked. A cache line in the locked

area is one that will not be replaced during normal read and write operations.
The definition of normal and transient areas is an innovative concept that provides

the opportunity for significant performance improvements. The TLB (table 3.1)
specifies memory pages as normal, which is the default, and transient (or locked).

1. Locked regions can be used for low-latency code or interrupt service routines.

2. Transient regions handle use-once data without disturbing the whole cache.

3. Normal regions are used for the rest of the cacheable data.

Data or instructions from normal pages only replace cache lines in the normal area
of the cache. Likewise, data or instructions from transient pages only replace cache
lines in the transient area. Specifying a transient cache area permits the PowerPC to

Chapter 3. Design and Implementation 81

perform repetitive operations on data arrays that stream through the cache, such as in
packet processing, without overwriting data or instructions in normal areas that have
long-term utility.

Normal and transient lines are replaced using a round-robin replacement policy.
The store latencies of non-cacheable data can be compensated by a "store gathering"
attribute, where instead of writing back each data block, the MMU gathers 128-bit
data before sending it to a lower level. Store gathering is particularly useful for non¬
cacheable writes, where the cost of writing individual data packets to the lower level
memories is high.

The TLB is used to control memory translation and protection. Each one of its 64
entries specifies a page translation. It is fully associative and can simultaneously hold
translations for any combination of page sizes. To prevent TLB contention between
data and instruction accesses, a 4-entry instruction and an 8-entry data shadow TLB
are maintained by the processor transparently to the software. Software manages the
initialisation and replacement of TLB entries.

A TLB entry specifies memory attributes on a per page basis. Table 3.1 shows the
page size and memory attributes fields of a TLB entry.

TLB field Description

Page number Used in address translation

Valid bit Indicates that the TLB entry is valid

Page size 4size jn MBytes

Cacheability Whether the page is cacheable or not
Write policy Write through or copy back

Region Normal or transient memory/cache regions
Allocate policy Whether to allocate a line on a write miss

Table 3.1: TLB fields

In addition to cache access control fields, there is provision for including custom-

defined memory attributes. The MMU provides address translation, flexible memory

protection, and storage-attribute control. It supports multiple page sizes and a variety
of storage-protection attributes and access-control options. Multiple page sizes in the

Chapter 3. Design and Implementation 82

TLB can improve memory efficiency and minimise the number of misses. A TLB
that supports fixed-size pages has disadvantages; small pages result in more entries in
the TLB and can contribute to frequent TLB misses while large pages do not utilise

memory effectively.
The PowerPC 440 includes instructions for managing TLB entries by running

software in privileged mode. This capability gives significant control to system
software over the implementation of a page replacement strategy. Storage attributes are

provided to control access to memory regions. When memory translation is enabled,

storage attributes are maintained on a page basis and read from the TLB when a

memory access occurs. When memory translation is disabled, storage attributes are

maintained in storage attribute control registers. A detailed account of the PowerPC
MMU can be found in the PowerPC 440 user manual [SA102]; it devotes two chapters
to its innovative MMU and cache operations. QCDOC operating system and the

optimised QCD kernels for the QCDOC machine — benchmark software for the
HASE QCDOC simulation models— exploit the PowerPC cache and TLB features by
distributing critical computation and communication data in separate memory regions.

3.1.3.2 Floating Point Unit (FPU)

Dockser [DocOl] describes the seamless integration of a 64-bit high performance FPU
to the PowerPC embedded core. The PPC440 FPU is a superscalar core with two five-
stage execution pipelines. It has separate load-store and arithmetic execution pipelines
and is super-pipelined giving single cycle throughput for most instructions. The FPU

pipelines use out-of-order issue and completion.
The FPU receives instructions from the PowerPC CPU via the APU. It can issue

two instructions in one clock cycle, one load-store and one arithmetic. It has thirty-
two 64-bit floating-point registers. APU load and store instructions directly access the
PowerPC core data cache, with operands of up to 128 bits (quad-word). Figure 3.4
shows the PPC440 FPU pipeline.

Chapter 3. Design and Implementation 83

1
<N | co . 1

CD , <D ,toO1 toO 1 toO1 toO1
od 1 eg i 3 1 eg i
cn 1

i
GO 1

1
CO 1

1
c/51

u i
M
ol I

on 1

Figure 3.4: Floating-point execution pipeline

3.1.3.3 CoreConnect Bus Architecture

IBM CoreConnect is an open standard bus architecture designed to ease the integration
and reuse of processor, system and peripheral cores within standard and custom SOC
designs. This bus architecture is necessary for the on-chip data transfers required as

part of the QCD code execution. It is composed of three buses: Processor Local
Bus (PLB), On-chip Peripheral Bus (OPB) and the Device Control Register (DCR)
bus. PLB is the high-performance system bus; it has separate read and write data
buses and it connects the performance intensive devices on the chip. In the QCDOC
ASIC, the processor has two read and one write master connections to the PLB and
accesses memory-mapped devices via the PLB. For example, the processor write
master transfers QCD communication instructions to the SCU DMA registers via the
PLB. The PLB sequential burst protocol allows byte, half-word, word and double-word
burst transfers; in burst mode it can transmit up to 128-bit data. Moreover, the PLB
is block-transfer oriented in the sense that a single command and address can result in
multiple data transfers. The PLB is designed to operate at one-third of the processor

clock speed for a 500 MHz processor.

The second data-transfer bus, the on-chip peripheral bus (OPB), is used for devices
that have lower data-rate demands. The OPB is also a block-transfer bus with separate

Chapter 3. Design and Implementation 84

control, address (36 bits) and data (32 bits) sub-buses. It is clocked at half the rate of
the PLB, resulting in a bandwidth of around 266 MBps.

A third on-chip bus that connects the cores is the device control register (DCR) bus.
Having the DCR bus means PLB and OPB cycles are not used to transfer control and
status information. Physically, the DCR bus is a ring that loops through the various
cores with the processor acting as master.

3.1.3.4 DDR SDRAM Controller Core

An important feature of the QCDOC ASIC is that a processor can interface with
a relatively large off-chip memory via the system bus, PLB. In QCDOC, the off-
chip memory is 256 MByte DDR SDRAM. The DDR SDRAM controller acts as

an interface for large off-chip memories; a maximum of 2 GB can be attached. It
provides efficient access to a standard off-chip memory. The memory side of the core

can transfer either 32- or 64-bit data packets with an optional 8-bit Error Correction
Code (ECC). Page-mode access and PowerPC variable size paging is supported.

The controller contains 256 bytes of read buffer, 512 bytes of write buffer, and
a six-deep request queue. These facilities smooth out irregularities in the memory

request patterns and facilitate the high data rates. It makes use of the PLB and data
can be transferred on both clock edges (double data rate — DDR). Thus, the memory

controller can stream data onto the PLB as fast as the memory can deliver it.

3.1.4 Prefetch EDRAM Controller (PEC)

Even though the PowerPC core is central to the execution of the QCD code, it is
not a QCD-specific piece of hardware. The presence of an on-chip memory, the
EDRAM, opens up a range of significant performance improvement possibilities as

reported by Panda et. al. [PCD+01]. For on-chip data movement, the PowerPC
core features are enhanced by a custom-designed block called the Prefetch EDRAM
Controller (PEC) [TeaOlb], The idea central to the PEC design is quite simple: high-
bandwidth, low-latency data transfers between performance critical on-chip devices
and the EDRAM. PEC is composed of three design blocks that serve three main
sources of data transfers:

Chapter 3. Design and Implementation 85

1. Data for the execution pipelines — The processor core interface to the EDRAM
is provided via the Processor Direct Bus (PDB).

2. Communication data transfers — Communication data movements take place
between the SCU and EDRAM, the processor accesses communication data
from EDRAM. The second PEC design block, the PLB slave interface called
PLBDBLK, assists data movement between SCU and EDRAM via the PLB.

3. File I/O— EDRAM to DDR SDRAM transfers via the DDR SDRAM controller

and PEC DMA. Data moving between EDRAM and DDR SDRAM is commu¬

nicated through the PEC DMA controller, which is initialised by the PowerPC

processor.

The above three PEC design blocks, the PDB, the PLBDBLK and the DMA
controller, are shown in figure 3.5.

Figure 3.5: PEC design blocks

Chapter 3. Design and Implementation 86

The three PEC design blocks have 512-bit read and write connections to the
EDRAM. Data coherency between these design blocks is maintained via a snoop-style
protocol.

Processor Direct Bus (PDB)

The PDB module interfaces to the processor read and write PLB buses. The
normal processor to Processor Local Bus (PLB) clock speed ratio is 1:3, i.e.
PLB operates at one-third of the processor clock speed. The custom-designed
PEC bus, the PDB, however operates at 1:1 clock ratio. In other words, it is

capable of handling processor read and write data at the processor clock speed.
Moreover, it supports the PowerPC load and store data transfer modes. Memory-
mapped requests from the processor are decoded by the PDB and handled via the
PLB at one-third of the processor clock speed.

PLB Slave (PLBDBLK)

The PEC interface also has a PLB slave interface that allows for read and write

operations from any PLB master on the 3:1 (one-third of the processor clock
frequency) interface. In the QCDOC ASIC, the PLB masters are expected to
utilise the PLB slave interface to the EDRAM, which includes the SCU. On the
PLB side of the interface, full 128-bit PLB burst mode transfers are supported at

133MHz.

DMA for PLB

The PEC also has a DMA engine which is a PLB master interface that operates
at 3:1. This is intended to interface to the 3:1 PLB and allows the user to transfer

data utilising DMA between the external DDR memory, which resides on the
PLB bus, and the EDRAM. This is the third port to the EDRAM.

3.1.4.1 Embedded DRAM (EDRAM)

Recent advances in SOC and memory technology have permitted the integration of
large on-chip memories with controlled size and power requirements. The QCDOC on-

chip memory, the EDRAM, provides an opportunity to enhance data movement speed

Chapter 3. Design and Implementation 87

for the compute-intensive part of the QCD calculations. The EDRAM is considerably
faster than the external SDRAM. The EDRAM can deliver data at up to half of the
processor clock speed via a 512-bit link. In contrast, external memory access can

only take place via the PLB, which operates at one-third of the processor clock speed.
Furthermore, in burst mode, the PLB can only support up to 128-bit data transfers.

3.1.4.2 Data Prefetching

QCD calculations, like many other scientific calculations, operate on a large number
of arrays, and spatial locality of array data can be exploited by using a prefetching
scheme. The PowerPC instruction set offers a data cache line prefetch instruction
called data cache touch that brings in a cache line in the first level cache. PEC employs
a similar scheme for prefetching data from EDRAM and contains a set of registers,
called the prefetch read registers, to store the incoming prefetched data.

According to the PEC prefetching scheme, data is always fetched in 1024-bit lines
named flines. If the data from any fline is accessed by the PDB, the rest of its fline
is fetched in sequence and put into a prefetch register. Each of the PLB data read
and PDB data read interfaces has two sets of prefetch read registers. These registers
can prefetch four different 1024-bit regions of the memory without invalidating the
already fetched data. Read requests to sequential addresses benefit most from this
scheme. Data transfers between the EDRAM and the PEC modules implement logic
in hardware for read and write operations and data coherency.

3.1.4.3 Prefetch Read Register Logic

There are four 1024-bit data registers, paired as two sets, associated with the two read
ports: the PLB data read port and the PDB data read port. These ports are independent
but arbitrate for a common EDRAM. Figure 3.6 shows the arrangement of the prefetch
read registers of PEC modules.

Chapter 3. Design and Implementation 88

Figure 3.6: PEC prefetch read registers [TeaOlb]

There is a status register (e.g. Stat A) and an address register (e.g. Addr A)
associated with each prefetch data register set. Registers are loaded from the EDRAM

according to logic that maintains a full 1024 bits beyond the furthest PLB or PDB

request corresponding to each register set. When a PLB or PDB read is requested that
does not reside in the prefetch buffer (and is not currently being prefetched), one set of

registers is invalidated using a Least Recently Used (LRU) replacement protocol and a

fetch from EDRAM is initiated to obtain the data. If the address space of a read from
EDRAM overlaps address space with any write data that is pending in the write buffer
registers, the write data is flushed to EDRAM before the read is executed.

The status bits associated with the read registers are:

1. Valid— Indicates that current data is valid.

2. Pending— Indicates that a read request to update the register has been accepted
but that valid data has not returned.

3. Invalid — Indicates that the current contents are not valid and are not being

prefetched.

Chapter 3. Design and Implementation 89

3.1.4.4 Write Buffer Register Logic

In addition to prefetch read registers, the PEC modules maintain two 1024-bit write
buffer registers. These write buffer registers are used in a circular fashion to avoid
delays associated with writing to EDRAM while bus writes are in progress. Each
write buffer register has a corresponding address and status register.

All write requests remain in the write buffer registers until one of the following
conditions occurs:

• The register contains a full 1024 bits of valid data.

• There is a write flush initiated by an EDRAM read request to data in an

overlapping address.

• There are no available registers to accept random write data.

3.1.4.5 Acknowledge Logic

Together with the read and write register logic, logic for efficient acknowledgements
of data transfers is incorporated in the design. The PEC module allows for different
acknowledge sources.

1. Write bus requests are single cycle acknowledgements which occur when there
is a register available in the corresponding port write buffers.

2. Read bus requests are single cycle acknowledgements which occur when there
is a hit with one of the two sets of registers in the corresponding port read buffer
registers. This requires an address comparison with each set of address registers
as well as additional condition flag checking for validity of data.

3.1.4.6 Coherency Logic

Data coherency is maintained within the PEC hardware interface in a very simple
manner. All accesses to the PEC module are assumed to have a time association equal
to when the access was initiated such that the responses are generated in an orderly
manner. Coherency is strictly enforced on the PDB bus for processor read and write

Chapter 3. Design and Implementation 90

requests while coherency between the PDB and PLB is weakly enforced. Therefore,
data coherency cannot be guaranteed between PLB and PDB accesses for requests
issued within 1-2 processor clocks. Practically, the software is responsible for ensuring
coherency when dealing with back-to-back data transfer requests.

Coherency of the system is maintained through the following conditions:

• All writes to write buffer registers invalidate read buffer data that has been

prefetched. This is done across all ports.

• All writes that overlap with presently valid buffered data (any port) result in the
earlier data being invalidated. Therefore, all writes result in the write address
being broadcast (aligned on a 256-bit boundary).

• The loading of any read prefetch register which overlaps in address space with
any write buffer register results in the write buffer register being flushed to the
EDRAM. The read data is not accepted by the requesting port thereby resulting
in a subsequent read, which reads in the newly written data. The flush write
command has higher priority with respect to the EDRAM.

Coherency is maintained independently by the read and write sides of the port. The
architecture naturally partitions in this way due to the independent PLB read and write
bus structure. The read and write sides obey certain rules:

Read Side

The new write addresses (256-bit lines) broadcast from the 3 ports (PDB,
PLBDBLK and DMA) are all simultaneously monitored for conflict. If a conflict
is detected, the entire 1024 bit read register is invalidated. The read data accepted

by a PEC module is conditional on there not being any conflict signals issued by
PDB, PLBDBLK and DMA. If any of these are true at the time of the reception
of the read data, the data is ignored and another read request is issued.

Write Side

The read address for all data being read from the EDRAM must be monitored.
If there is an overlap with the 1024 bit write buffer, a conflict signal is generated

Chapter 3. Design and Implementation 91

(from PDB, PLBDBLK and DMA) depending on the conflicting port. If a

conflict is generated, the write buffer that conflicts is immediately written to

EDRAM with high priority. All new write addresses from the other two ports
are monitored for overlap with local write buffered data. For example, the
PDB monitors writes from the PLBDBLK and the DMA. If there is an address

overlap, all bytes in the local data which overlap are invalidated.

To maintain coherency for read-after-write and write-after-read within a single port,
all address acknowledgements are delayed until the data is either accepted (for writes),
or the read data has been fetched and is in the pipeline (for reads).

3.1.4.7 Arbitration

In the presence of a number of read and write ports from the PDB, PLBDBLK and
DMA, an arbitration policy is in place for EDRAM. Typically, a write flush has top

priority if it is generated as a result of a read request overlap. The EDRAM arbitrates

according to the following priorities:

1. Writes from PDB (flush priority) - the highest

2. Writes from PLBDBLK (flush priority)

3. Reads to PDB

4. Writes from PDB (non-flush)

5. Reads to PLBDBLK

6. Writes from PLBDBLK (non-flush)

3.1.5 Serial Communication Unit (SCU)

The Serial Communication Unit (SCU) is specifically designed for the QCD commu¬

nication paradigm. Figure 3.7 provides an overview of the functions and organisation
of the SCU.

CQ

C
—*

CD

to
C|

to

CD

e!

o

o 3 3 c 2 o'

CD
fI

o' D

c

3

to o to o o
+

o m

cr

SENDUNIT
HSSL

-V

X

Encode

SEND BUFFER Control Pass-throughUnit

Control RECEIVE REGISTER Control SEND REGISTER

RECEIVE DMA RECEIVE DMA Instruction SRAM DMA Control SEND DMA SEND DMA Instruction SRAM DMA Control

X >

H.St

CD

r w

p

CD

P O

CD

o

0)

"c

CD CO IV)

Chapter 3. Design and Implementation 93

Topologically, the QCDOC architecture is a six-dimensional torus, i.e., each

processing node has pairs of twelve incoming and out-going links with twelve nearest

neighbours. Figure 3.7 shows only one of the twelve SEND-RECEIVE units. The
stubs required by the other eleven units are shown on the pass-through module,
arbiter and the PLB interface. The RECEIVE unit buffers the bytes provided by
the HSSL and assembles them into full 64-bit words after interpreting and stripping

away various control and parity bits. It can store up to three 64-bit words so that
initially the sending unit can transmit 3 words before an acknowledgement is received.
Simultaneous sending to and receiving from a particular neighbour is possible because
of the decoupled send and receive capabilities to each individual neighbour.

The three incoming words are stored in the RECEIVE BUFFER. Although in¬
coming received words are destined for the memory, they are first transferred to the
RECEIVE REGISTER where 32 received words can be accumulated. The presence

of the RECEIVE REGISTERS allows efficient transfer to the page-oriented on-chip
EDRAM or external DDR SDRAM. In the SCU, received word transfers may come

from up to eight incoming receive ports; the final burst transfers are sequenced by the
arbiter. A word that has been stored in a RECEIVE BUFFER is acknowledged (by an

acknowledgement packet sent to the sender) after it has been copied into a RECEIVE
REGISTER location.

The pattern of data writing or reading is controlled by a separate DMA engine for
each of the twelve incoming and twelve outgoing directions. The instructions for each
DMA engine are stored in a dedicated on-chip SRAM. They are specified by a chain
of block-strided-move commands with enough space in each of these 24 SRAMs to

permit chains of up to 16 such moves. The SRAM is addressed by the communication
start-up instruction allowing frequently used patterns to be kept resident in SRAM
and reused. This same DMA control stores the incoming data and extracts the data
to be sent out, placing it in the corresponding SEND REGISTERS. Extracted data is
then moved to the SEND BUFFER from which it is parsed into bytes, the appropriate
control and parity bits added and the resulting bytes sent out to the HSSL. Up to
three double-words can be stored in the SEND BUFFER before they are successfully
acknowledged by the receiver node.

Chapter 3. Design and Implementation 94

3.1.5.1 Pass-through Unit

Although the dominant communication pattern in QCD calculations is nearest-neighbour
communication, infrequent but regular collective communication operations are also
required. For a machine with over 10K processing nodes, a system is necessary to
facilitate efficient implementation of these collective communication operations. In the
QCD kernel, the regular collective communication is the floating-point global sum of
64-bit variables. A pass-through unit is introduced that accelerates these global sums
and minimises processor intervention. The pass-through unit provides low-latency

global operations. A sequence of words coming in on one of the twelve input wires
can be stored locally and re-routed out to any combination of the output wires with
minimal latency. When instructed by the processor to perform global sums, the SCU
is said to be in "store-and-forward" mode. In this mode, the pass-through unit not

only stores the incoming data packets but also forwards it to the send unit where it can
be forwarded to the designated neighbouring node. Figure 3.7 shows 8-bit data links
between the pass-through unit and the send and receive buffers.

3.2 Hierarchical Model Design

One of the key characteristics of the HASE framework is that it permits simulation
designers to model systems at various levels of abstraction. Having the concept of
modelling a system at different levels of detail, a classical bottom-up design approach
has been exploited in creating the HASE QCDOC simulation models, similar to the
physical QCDOC ASIC design approach. Central to this bottom-up design approach
was the main aim of this research, which is to gain an understanding of the factors
which influence the performance of QCD computers.

Thus, the components of the QCD system that contribute to the execution of
the QCD application code and that can directly affect the achievable and sustained
performance have been modelled and parameterised. Figure 3.8 shows the components
of the HASE QCDOC node.

Chapter 3. Design and Implementation 95

128
: / » CPU

QCDOC Node

512
/

/
/

128

FPU

CORE + FPU
— — j

'
128

1)28
^ pdb

128
External

Memory
Interface

<
oi
Q
W

512

512

5—7^

plb

Slave

DMA

PEC

128
I

I

I

1)28

PQ

cd
128

128
- 7 ■

c
D
C
O

CS

c
3

s
a
o
U
"3
'C
<u
00

3
PQ

O 4J'
<u Pu

c

«*^
£ W)
C/3 P
'5b g

C

00

"O Jo
G £* £

},Q
Q
Q
Q
Q
^7Q
Q
Q

Q *

7

M
G

'J
G

.2
"S
.2
'g
G

O
U
15
G
.2*■4—<
O

2
'■3

s

Figure 3.8: HASE QCDOC processing node

The Ethernet network and associated components do not participate in processing
the computation and communication routines of parallel QCD code; therefore these
are omitted from the simulation design. The Ethernet network is required only at

system start-up and later for diagnostic purposes. Similarly, the file I/O and the external

memory are only required after several executions of the QCD application code — to
move the simulation data to disk storage. The file I/O does not influence the kernel
code performance and has also been omitted. The external memory is implemented to
furnish the functionality of the PEC DMA.

Chapter 3. Design and Implementation 96

Having identified the HASE design components and the design strategy, the
modelling of the QCDOC architecture in HASE posed several challenges. The
HASE QCDOC simulation model is based on an existing system (albeit one under

construction), hence the model accuracy is the primary design target. A simulation
model that captures low-level details of the hardware is likely to produce high fidelity
results. However, larger configurations of a precise model would take perhaps too

long to run; due to the host processing power and operating system as well as the
simulation environment's limitations and restrictions. Hence, in building such a large

complex model it is essential to use more abstract models of some of the components.

This allows meaningful results to be obtained provided that the more abstract models
have been individually checked against the corresponding detailed models. A two-

phase implementation strategy was therefore adopted: simulating the sub-systems first,
and then building abstract models that can be verified against the detailed sub-system
models.

For the two-phase implementation strategy, a three-level design scheme was

adopted. The overall structure of the hierarchical simulation model design of the
QCDOC system in HASE is shown in figure 3.9.

LEVELIII LEVELII LEVELI

4DimensionalMeshofNodes Node(0,0,0,0)-
Node(xn,yn,zn,tn)

Node ASIC EXTMEM

ASIC COREEDRAM PLBPDBDMA SCUPLBBLK

External Memory (EXTMEM) Memory

HASEConstructs
CD

MESHENTITY
□

COMPENTITY
□

ENTITY
B

ARRAY

5

to

■o

to
00

0

to to

<5'
to to to Q.

1

to 3 to to 3" O' to

On-Chip Memory EDRAM Memory Memory Management Unit(MMU)
PPCCore(CORE) CPU FPU MMU INTR

Central Processing Unit(CPU) Registers

Processor Direct Bus(PDB) Registers Floating Point Unit(FPU) Registers

Interrupt Handler (INTR)
Direct Memory Access (DMA)

Processor LocalBus (PLB)

PLB Slavefor EDRAM (PLBBLK) Registers

Serial Communication Unit(SCU) Registers

Figure3.9:HASEQCDOCmodeldesignhierarchy

CO -vj

Chapter 3. Design and Implementation 98

First, the processor core design entities were developed, simulated and their
functional and timing vaildation was conducted. After the successful implementation
and testing of this level, the next level was to simulate the on-chip data movements;

these are essential to capture the QCD computation code behaviour. Level II entities
are included in the design while Level I entities are aggregated and included as a single

high-level entity in the model using the HASE COMPENTITY mechanism. Finally,
larger machine configuration in which off-chip QCD communication patterns have
been simulated and benchmarked is created by abstracting Level II entities' detail,
where a processing node is represented as a single HASE COMPENTITY. At each

design level, there were limitations imposed not only by the HASE platform but
also by the host operating system. A number of extensions have been made to the
HASE platform as a result of these requirements (explained in section 3.3). Larger

system configurations, i.e., simulation models with thousands of processing nodes are

constructed by designing a version of the model with reduced memory and processing
capabilities of a full HASE QCDOC node.

3.2.1 Level I: PowerPC Processor Core

The PowerPC core components together with the FPU form the lowest-level entities in
the model. These entities are: Central Processing Unit (CPU) ENTITY, MMU ENTITY,
FPU ENTITY and interrupt controller (INTR) ENTITY. All entities at this level are built
using the ENTITY construct in HASE. Memories (data cache, instruction cache and
TLB) and registers (CPU and FPU) are declared as ARRAY constructs and all Level I
entities operate at processor clock speed.

3.2.1.1 Central Processing Unit (CPU) ENTITY

The CPU ENTITY communicates with the MMU, the FPU and the interrupt controller
ENTITYs. Figure 3.10 shows CPU ENTITY'S communication interfaces.

The CPU has 32 integer registers, a branch and control unit and three execution
pipelines in which instructions can operate in out-of-order issue, execution and com¬

pletion. Floating-point load-store instructions are issued in parallel to the FPU and
to the CPU load-store pipe for the effective address generation. The CPU ENTITY is

Chapter 3. Design and Implementation 99

MMU :

Instruction
Fetch

MMU :

Data Xfers

Central Processing Unit

General
Purpose

[Registers^
-Load Store

-Simple Inte
-Complex Ii

- Branch Unit

-Control, Condition
and Link Registers
Pipe
iger Pipe
iteger Pipe + MAC r

FPU APU

Link

Interrupt
Control

Figure 3.10: HASE CPU ENTITY

responsible for handling interrupts generated by all other entities in a processing node.
It has two communication links with the MMU: one for instruction fetches and another

for data read and write operations.
The CPU hardware and software control parameters in the HASE QCDOC model

include QCD subroutines, nearest-neighbour communication operations, prefetching
values of function registers, enabling and disabling of cache touch instructions and the
number of instructions issued per processor clock cycle.

3.2.1.2 Floating Point Unit (FPU) ENTITY

FPU ENTITY communication interfaces are shown in figure 3.11.

Data Xfer

via APU

from MMU

Floating Point Unit

-Load Store Pipe
-Arithmetic Pipe

Instruction issue
via APU from

CPU

Figure 3.11: HASE FPU ENTITY

The FPU waits for instructions from the CPU. It has two out-of-order execution

and completion pipelines. Data reads and writes to the data cache in the MMU ENTITY
are supported by the APU interface. Two double-words can be read and written per

processor clock cycle. The FPU operates on double-precision floating-point values
(double-word) and has 32 double-precision registers.

Chapter 3. Design and Implementation 100

Performance studies of the floating-point computation intensive QCD code require
a detailed analysis of the FPU ENTITY behaviour. The parameters of the FPU ENTITY

include the instruction issue rate and an ideal mode selection to establish the upper

bound on the performance. The intermediate values generated during the simulation
are recorded in text files for off-line detailed inspections. The number of floating-point
instructions issued and completed per clock cycle, wait cycles for load instructions and
trace of all FPU instructions are recorded in separate files.

3.2.1.3 Memory Management Unit (MMU) ENTITY

The MMU has three memory arrays: data cache, instruction cache and TLB. The
data cache is set-associative. The instruction cache contains instructions in PowerPC

assembly code format. TLB translations are performed in parallel with cache searches.
The MMU serves load and store data to the CPU and the FPU. The processor read
and write bus masters are interfaced via the MMU data cache. A cache miss issues

addresses and data (for writes) on these buses which communicate with the PDB. The
read and write buses can transfer 128-bit data, half the size of a cache line. Figure 3.12
shows the MMU ENTITY interfaces.

Memory Management Unit

PDB Data Xfers

FPU Data Xfers

Instruction
Cache

Data

Cache TLB

- Load queues
- Store buffers
- TLB translation and management

CPU Data Xfers

CPU Instrunctions

Figure 3.12: HASE MMU ENTITY

The PowerPC is a load-store processor; hence, performance of the execution
pipelines relies on the first level cache configuration management in theMMU ENTITY.
The MMU ENTITY parameters allow for experiments to be run with a combination of
parameters including the data cache size, set-associativity, bandwidth to lower level
memory, write policy and line allocate policy.

Chapter 3. Design and Implementation 101

3.2.1.4 Interrupt Controller ENTITY

Signal __

to/from —I
CPU

Interrupt
Controller

enabled/

disabled states

From all
entities

Figure 3.13: HASE Interrupt Controller ENTITY

Figure 3.13 shows the interrupt controller ENTITY'S interfaces. This ENTITY has
only one physical connection or HASE port link, however, all entities can raise
interrupts via the Hase++ sim_schedule function, which does not require a physical
link in the model.

3.2.2 Level II : ASIC and External Memory

After implementing and testing the PowerPC core and the FPU ENTITY in HASE,
the next task was to focus on the ASIC components and on-chip control and data

paths. The MMU ENTITY data transfer ports from Level I interface with the Level
II PDB ENTITY. As part of the Level II design, the PDB, together with the PEC
design blocks, the EDRAM, the system bus, the external memory controller and
the communication unit are modelled in HASE. Details of the Level I entities were

abstracted by combining the Level I entities into a COMPENTITY such that only the
MMU-PDB interface is visible to the Level II design components.

3.2.2.1 Processor Direct Bus (PDB) ENTITY

The MMU read and write buses are linked with the PDB ENTITY. The PDB is

responsible for address translation, i.e., which memory-mapped device it needs to
access. Hence, the PDB can communicate with the system bus PLB, on-chip memory

EDRAM and the other two PDB devices, DMA and PLBDBLK, to implement the
custom data coherency protocol. It has two memory ARRAYS: prefetch read registers
and write buffer registers. Figure 3.14 shows the HASE PDB entity.

Chapter 3. Design and Implementation 102

Processor Direct Bus

PLB Read

Master

PLB Write.
Master

Prefetch

Read

Registers

Write

Buffer

Registers

- Address decode
- Replacement policy

MMU Data Xfers

EDRAM Data Xfers

Snoop Protocol
(DMA and PLBDBLK Links)

Figure 3.14: HASE PDB ENTITY

In order to analyse the dynamics of the PDB ENTITY, which is a custom-designed
component in the model, alternate PDB design configurations are studied through the
PDB ENTITY parameters. These parameters include the size of the PDB registers,
number of prefetch read registers, number of write buffer registers and the read buffer
register replacement policy.

3.2.2.2 Processor Local Bus (PLB) Slave (PLBDBLK) ENTITY

The two PEC interfaces, PDB and DMA, are bus masters. The PLB slave provides a

slave interface to the EDRAM for other PLB master devices. It is therefore named as

PLB Data Block (PLBDLBK) ENTITY. It has one PLB slave interface, one EDRAM
data interface and one PEC protocol interface. The PLBDBLK ENTITY has an identical
set of parameters to the PDB ENTITY.

3.2.2.3 Direct Memory Access (DMA) ENTITY

The PEC DMA is similar to the PLBDBLK except that it has a PLB master interface
to the PLB. Once initialised, it can transfer a page between EDRAM and the external
memory without CPU intervention.

3.2.2.4 Embedded DRAM (EDRAM) ENTITY

The on-chip memory (EDRAM) can be accessed by the three PEC devices: the PDB,
the PLBDBLK and the DMA. It has 512-bit wide data connections for data read and

Chapter 3. Design and Implementation 103

write to the PEC components. It has a 4 MByte memory array. The EDRAM interfaces
are shown in figure 3.15. The EDRAM ENTITY has one parameter; data bandwidth to
the PEC devices.

3.2.2.5 Processor Local Bus (PLB) ENTITY

The PLB ENTITY supports multiple bus masters and has separate address, read and
write buses. It operates in split transfer mode, i.e., the PLB split bus transaction
capability allows the address and data buses to have different masters at the same

time. Additionally, a second master may request ownership of the PLB, via address

pipelining, in parallel with the data cycle of another master's bus transfer. Overlapped
read and write data transfers and split-bus transactions allow the PLB to operate at a

very high bandwidth by fully utilising the read and write data buses. The PLB master
and slave interfaces in the HASE processing node are shown in figure 3.16.

Embedded DRAM
write data links

from PDB,
PLBDBLK and

DMA

read broadcast

links to PDB,
DMA and PLBDBLK

Figure 3.15: HASE EDRAM ENTITY

Processor Local Bus

PLB
Masters'
Ports

-Address Bus
-Read Bus
-Write Bus

PLB

Slaves'

Ports

Figure 3.16: HASE PLB (System Bus) ENTITY

3.2.2.6 DDR SDRAM ENTITY

The DDR SDRAM (external memory) ENTITY is a bus slave to the PLB ENTITY. It has
only one parameter: the external memory size.

Chapter 3. Design and Implementation 104

3.2.2.7 Serial Communication Unit (SCU) ENTITY

Figure 3.17 shows the SCU ENTITY, which has bi-directional off-node links to com¬

municate with the neighbouring nodes and has two on-chip PLB interfaces: one PLB
master and another PLB slave.

Serial Communications Unit

PLB Master

PLB Slave

Send

Registers
V J

Send

Buffers
v y

Recv

Registers
'Recv
Buffers

N y

(DMA Instruction?)
- Bus arbitration
- Pass-through unit

z Off-node
zz Communication links
zz in 4-dimensional
zz Torus

zz 8 send and 8 recv
— links

Figure 3.17: HASE SCU ENTITY

The QCD communication performance studies have been conducted through the
HASE SCU ENTITY parameters. The effect of the communication buffer and register
sizes on nearest-neighbour performance are studied through the send and receive
buffer register and buffer size and number parameters. Moreover, the alternate
communication channel properties can be simulated by using the send, receive and
data acknowledge latencies, which are parameters of the SCU ENTITY.

3.2.3 Level III : A Four-Dimensional QCDOC Machine

In a similar manner to the abstraction of Level I entities to Level II in the form of a

COMPENTITY, Level II entities are abstracted to a higher level as a processing node, the
Node COMPENTITY. At this abstraction level, the HASE QCDOC processing nodes
communicate with each other through the SCU off-node interfaces; their on-node
program executions are not visible to each other. A simulation user, however, can
zoom into and out of a processing node's details as required. The HASE MESH4D
construct has been used to generate a four-dimensional QCDOC machine based on the
Node COMPENTITY.

Chapter 3. Design and Implementation 105

3.2.3.1 SimMode ENTITY

A HASE QCDOC machine Node COMPENTITY, as explained earlier, is composed of a
number of HASE ENTITYs. When replicated using the HASE MESH4D template facility,
multiple Node COMPENTITYs, and subsequently low-level ENTITYs, are generated by
HASE. In a physical, tightly-integrated multiprocessor machine, managing individual
entities within a system of processing nodes requires a front-end host server. Likewise,
a HASE ENTITY is developed, which behaves as a front-end server for the HASE
QCDOC model entities, similar to the front-end host machines in MPP systems. This
ENTITY is called the SimMode ENTITY. Along with other features (explained in the
next chapter) it controls the mode in which a simulation is running. Figure 3.18 shows
the SimMode ENTITY parameter window in which the SimulationMode is currently
set to InitialiseMemoryFiles.

Entity

Type Name [simMode
Instance Name | SIMMODE

- Parameters
- Names

SimulationMode

TestEntity

t_sites

x_sites

y_sites

z_sites

SimTime

cur_state

ErrMsg

OK Close Update All

Figure 3.18: Simulation control — SimMode ENTITY

The currently active mode instructs all entities in the HASE QCDOC model that
they should not execute their normal behaviour, instead they are in a special mode in
which only the memory files initialisation processes should take place.

Chapter 3. Design and Implementation 106

A detailed description of the HASE QCDOC design entites is presented in Ap¬
pendix B. It contains the input parameter list for each ENTITY as well as the values that
are recorded during and reported after a simulation run. Furthermore, this Appendix
presents the contents of text files that contain cycle-by-cycle simulation information.

3.3 HASE Extensions

During the construction phases of the HASE QCDOC model, a number of limitations
of the HASE platform were identified and subsequently addressed by extending the
existing capabilities and by introducing new ones within the HASE platform. First, at
the QCDOC ASIC modelling stage, the HASE multi-frequency clock mechanism was

implemented. Second, at the four-dimensional torus simulation stage, new memory

array representations and multi-dimensional meshes were incorporated in the HASE

platform. Third, static control provision was included to facilitate the debugging and
testing of the multi-node QCDOC model.

An insight into the following notable modifications is presented in the next

sections, which were made as a direct result of the HASE QCDOC modelling require¬
ments:

• Multi-frequency clock mechanism;

• Memory ARRAY options;

• MESHnD template facility; and

• Static parameters.

Chapter 3. Design and Implementation 107

3.3.1 Multi-frequency Clock Library

An ASIC's components operate on a range of clock frequencies. Processing compo¬

nents tend to run faster while memory module and communication units are slower.
Likewise, QCDOC ASIC blocks have four different frequencies, relative to the

processor clock frequency. For instance, the PowerPC core is the fastest while the
PLB operates at one-third of the processor clock speed.

It was recognised that the ratio of clock frequencies should be a parameter for
the performance experiments, i.e., it can be altered before a simulation run. Previous
HASE simulations employed a barrier synchronisation mechanism using a clock
ENTITY which had to be re-defined in the proj ect. edl and its behaviour re-coded
in the clock.hase file. Moreover, all clocked HASE entities were linked to the clock

by hand-coding the clock. hase file. The clock. hase file had to be updated whenever
a new instance of a clocked ENTITY was added to the project.

The old clock mechanism was not practical for the QCDOC simulation for the
following reasons:

• The clock ENTITY description clock.hase needed to be modified as the size
and dimension of the QCDOC model was changed.

• For a range of frequencies, multiple frequency clocks, or entities were required.

• Experiments were error-prone using a variable clock frequency ratio as it would
have required several steps of manual intervention.

Mallet et. al. [MIA02] introduced a flexible and extensible clock mechanism in
the HASE. A clock library was created, which results in code re-use, and a clocked
ENTITY was implemented using the object-oriented inheritance mechanism. This
inheritance mechanism is called registration, where an entity registers with a Clock
or a Pll ENTITY. Bi-phased clocks are also supported. Another library entity called Pll
multiplies the frequency of a master clock by an integer to give a faster clock frequency.
The HASE entities that need a faster clock are registered to a Pll. In a project there
can be several instances of a Pll ENTITY, where each instance has a separate ratio. A
Pll's ratio can be altered, using the standard HASE parameter box, for simulation runs

Chapter 3. Design and Implementation 108

(e.g., figure 3.19). Asim [EAB+01] is the only other simulation framework that allows
insertion of a clock method in microarchitecture designs. The HASE and Asim clock
mechanisms share a notion of logical activity of an entity, like sending and receiving
information from other entities through ports, within a clock cycle. A further extension
in HASE is the bi-phased clock mechanism where logical activities can be associated
with the rising or falling clock edges.

3.3.1.1 Clock Frequency Control

CORE PLLFreq*24 2832J
PDB PLL Freq 2 14161

PLB PLL Freq *8 944 ||
EDRAM PLL Freq*3 354 |

PLL8 = Main Clock / 8

PLL3 = Main Clock / 3

Figure 3.19: PLL control Figure 3.20: Relative clock speeds

The HASE multi-clock mechanism was employed to provide a range of clock
frequencies for the QCDOC processing node. A PLL's ratio determines the speed
of entities driven by it; a large ratio results in a high clock frequency as illustrated in
figure 3.20. Clock frequency control (the ratio) is a PLL parameter for a slower or
faster clock speed. Alternatively, an entity can change its PLL instance. In both cases

however, the process of altering individual clock frequencies can be error prone and
tedious, therefore, a control window has been provided (figure 3.19) for Pll frequency
alterations.

Chapter 3. Design and Implementation 109

3.3.2 ARRAY Construct in HASE

The ARRAY construct provides a mechanism for defining lists of objects of the same

type, similar to the array construct in C and C++. In HASE, the ARRAY construct
is mainly used to represent the contents of memory systems, like caches and main
memory.5 The contents of a memory file are typically resident in a physical file in the
project directory with an extension . mem.

3.3.2.1 Memory Requirements for the QCDOC Machine

In order to explain the limitations of the HASE memory ARRAY construct, a brief
account of the HASE QCDOC memory array requirements is first presented. QCDOC
is a distributed-memory system and a processing node in the model has the following
memory modules:

• Instruction Cache and Data Cache

• On-chip Memory

• External Memory

• Set of prefetch registers

• Set of communication registers

A four-dimensional 2x4x4x2 QCDOC machine needs a multiple of 2x4x4x2

physical memory .mem files in the project directory. A slight increase in the number of
nodes would result in a large increase in the number of .mem files. The host operating
system, Linux, imposes a restriction on the number of files a directory can contain.6
To allow for large number of nodes, all having their own . mem file contents, the HASE
memory array mechanism was modified and array initialisation scheme options were

introduced.

5Refer <http://www.icsa.inf.ed.ac.uk/research/groups/hase/manuals/edl/arrays.htmI> for details.
6The kernel code (namely /usr/include/linux/ext2_fs.h) defines EXT2_LINK_MAX as 32000.

Chapter 3. Design and Implementation 110

3.3.2.2 Memory Array Initialisation Process

The initialisation process depends on the context of the array (entity type name, entity
instance name, parent type and parent instance name) and the name of the RARRAY
instance. Typically, each array instance has a .mem file associated with it. The
large number of memory modules required by the QCDOC model were handled by
implementing the following memory initialisation schemes:

1. A shared . mem file.

2. A sectioned .mem file (contains //$next_section tags to identify separation).

3. Separate .mem files.

Selecting any of the above options has no effect on the display, read or write
mechanism of a memory file during a simulation. In other words, users of the
simulation will not experience any effect from the choice of the mechanism with which
a .mem file is defined.

Table 3.2 lists the alternative ways of defining HASE memory .mem files.

Mechanism Number of .mem Files Initialisation

Shared One Single .mem file initialisation.
Sectioned One Single .mem file contains Sections

separated by $next_section tags.
A Section maps to an ARRAY instance.

Separate Equal to the number
of ARRAY instances

.mem files in project directory.
Have to initialise as many files
as there are ARRAY instances

Table 3.2: HASE memory array (.memfiles) options

Chapter 3. Design and Implementation 111

The HASE memory ARRAY options are discussed below for the HASE QCDOC
model:

• Shared Memory

QCDOC is a Single Program Multiple Data (SPMD) architecture. Therefore,
a shared .mem file is a straightforward choice for the instruction memory

(instruction cache). Each entity loads its own copy of the simulation file from a

single, physical .mem file which contains the QCD simulation benchmark code.

• Sectioned Memories

The data memories in the QCDOC model are physically distributed memories.
Unlike the instruction memories, the data memories contain non-identical data.

Thus, the above-defined shared memory approach was not appropriate for the
data memories. Furthermore, due to a restriction on the number of files a

directory can have (mentioned in section 3.3.2.1) it was decided to contain sep¬

arate memory modules in relatively fewer files. A new scheme was introduced
called sectioned memories. In sectioned memory files, which are relatively large
as compared to shared and separate memory files, each section (separated by
$//next_section tag) corresponds to an instance of a memory array. This
scheme poses a challenge to the simulation designer, as it is the responsibility of
the simulation designer to ensure that the sections are correctly mapped to the
memory instances (according to order in which they are generated by the HASE

system).

• Separate Memories

This is the conventional way to define memories in HASE, i.e., one .mem file
per instance of a memory module. For the QCDOC machine, it is not a practical
choice because this method requires a large number of .mem files in the project
directory. Existing HASE models do not require a large number ofmemory files.
Hence, their memory files are separate and are kept in the project directory.

Chapter 3. Design and Implementation 112

3.3.3 MESHrcD Template

HASE templates provide an ideal mechanism for the rapid prototyping and exploration
of scalable architectures. These templates allow the automatic creation of models by
inserting a user-defined HASE entity into a predefined topology and the provision of
dimension parameters. For instance, mesh networks are architectures consisting of the
aggregation of several basic components communicating through a specific scheme;
the mesh topology. Earlier versions of the HASE mesh templates supported one-, two-
and three-dimensional meshes and tori. This HASE mesh generation mechanism was

extended to an n-dimensional scheme to allow for the four-dimensional QCDOC torus

interconnection network topology. In the HASE QCDOC model, the entity that is
replicated using the MESH4D template is the Node COMPENTITY.

Figure 3.21 shows a 4-dimensional mesh description in the ENTITYLIB section of
a project Entity Description Language (EDL) file.

MESH4D QCDMachine (-- 4-dimensional Mesh QCDMachine

ENTITY_TYPE (Node) -- Node is a COMPENTITY defined in ENTITYLIB

SIZEl (2) --2 Nodes in first dimension

SIZE2 (4) -- 4 Nodes in second dimension

SIZE3 (4) --4 Nodes in third dimension

SIZE4 (2) --2 Nodes in fourth dimension

N0_LINKS(2) -- Bi-directional Links (send/recv)

WRAP(1) -- Wrap-around links at edges

DESCRIPTION("4D QCD Machine") -- Textual description

PARAMS() -- Additional Parameters if required

)

Figure 3.21: A 4-dimensional mesh template (MESH4D) definition in EDL

The ENTITYJTYPE attribute identifies the type of the entity to be replicated in the
mesh. The SIZEn attributes specify the size of the mesh for each dimension. The
NO_LINKS attribute specifies communications either as unidirectional or bidirectional,
and the WRAP attribute specifies whether the mesh has to be wrapped at the border.

Chapter 3. Design and Implementation 113

Figure 3.22 show the contents of the HASE QCDOC project EDL file where
off-node communication links are generated for Node _0_0_0_0_ using the MESH4D

template. The SCU ENTITY contains all off-chip communication ports.

sim.link_ports(" QCD. 0 0 0 0 .SCU" "to_first",
" QCD. 1 0 0 0 .SCU" "from_first") ;

sim.link_ports("QCD. 0 0 0 0 .SCU" "back_to_first",

"QCD. 1 0 0 0 .SCU" "back_from_first") ;

sim.link_ports "QCD. 0 0 0 0 .SCU" "to_second",

"QCD. 0 1 0 0 .SCU" "from_second");

sim.link_ports(" QCD. 0 0 0 0 .SCU" "back_to_second",

"QCD. 0 3 0 0 .SCU" "back_from_second");

sim.link_ports("QCD. 0 0 0 0 .SCU" "to_third",

"QCD. 0 0 1 0 .SCU" "from_third");

sim.link_ports("QCD. 0 0 0 0 .SCU" "back_to_third",

"QCD. 0 0 3 0 .SCU" "back_from_third");

sim.link_ports("QCD. 0 0 0 0 .SCU" "to_fourth",

"QCD. 0 0 0 1 .SCU" "from_fourth");

sim.linkjports("QCD. 0 0 0 0 .SCU" "back_to_fourth",
" QCD. 0 0 0 1 .SCU" "back_from_fourth");

Figure 3.22: 4-Dimensional mesh links generated by the HASE

From the MESH4D description (figure 3.21), the HASE instantiates enough com¬

ponents (2x4x4x2 = 64) and creates communication links among these components in
all four dimensions. When the HASE project containing the above mesh description
is built, the HASE automatically generates 64 entity instances such that the first Node
is recognised with _0_0_0_0_ prefix and the 64th Node has a _1_3_3_1_ prefix. Node
_0_0_0_0_ is connected to Node _1_0_(L0_ in the first dimension, to Node _0_1_0_0_ in

the second dimension, to Node _0_0_1_0_ in the third and to Node _0_0_0_1_ in the

fourth. Wrap around connections are generated likewise.

Chapter 3. Design and Implementation 114

3.3.4 Static Parameters

In addition to the hardware prototyping, the HASE allows parameterised entities to be
created, i.e., a simulation designer can introduce hardware parameters within an entity
that can be altered for simulation runs. For instance, the data cache line size can be

a parameter and a user can change this parameter for successive experiments. The
HASE parameterisation mechanism provides a flexible and convenient mechanism to
run experiments to explore the hardware design space of a system.

Considering the previous MESH4D example, a HASE QCDOC model with 64
processing nodes, it is not practical for a simulation user to alter a parameter in
64 individual instances of an entity through 64 separate parameter windows. For
simulation experiments, it is often necessary to alter parameters within entities several
times. It was considered that another property would be necessary for a HASE
parameter such that one value of that parameter is visible to all instances of an entity.
The C++ static identifier serves this purpose, as a result, static parameters were

introduced in the HASE.

After introducing a static parameter, a second problem arose because parameters
are visible in a HASE parameter window. The on-screen position of a parameter in the
HASE design window is controlled via project's Entity Layout File (ELF) description.
According to the ELF description, a parameter position is relative to the position of
an entity, static parameters have one single value, hence, it was desired that there
should be one on-screen appearance of these variables. A modification in the HASE
allowed the ELF description of a parameter declared as static in the HASE EDL file
to be placed at an absolute position on the HASE design window. The modifications
in the EDL and the ELF description for the static parameters were particularly helpful
for the debugging, testing and experimenting of the template-based HASE model.

3.3.4.1 Central Control in the HASE QCDOC Model

In a multi-level abstraction and template-based HASE QCDOC model, the flexible
parameter alteration facility via a graphical window imposed some overheads. For
the HASE QCDOC simulation experiments, altering a parameter in all instances of
an entity through parameter window GUI is likely to be error prone as the simulation

Chapter 3. Design and Implementation 115

user repeatedly opens, closes and edits parameter boxes in multiple entities for a single
simulation run. Moreover, it is not useful in the QCDOC simulation model since all

processing elements have identical configurations. In order to simplify the MESH-based
entities parameter alterations, a central control interface to the parameterised entities is
provided as shown in figure 3.23. By double-clicking one of the ENTITY_PARAMS, a
corresponding static parameter window would pop-up. For example, by double-
clicking PDB_PARAMS in figure 3.23, the PDB static parameter window, fig¬
ure 3.24 appears. A parameter selection via figure 3.24 is applicable to all instances of
the PDB ENTITY.

CPU_PARAMS
. -

FPU_PARAMS
MMU_PARAMS|
PDB_PARAMS

EDRAM_PARAMS|
PLBDBLK_PARAMS||
SCU_PARAMS

Hase2 <2>
- Entity

Type Name |ProcessorDirectBus
Instance Name |ProcessorDirectBuslnstance
Parameters

Names

PrefetchSize_WJog2

ReadReglsters

WriteRegisters

replacement_policy

entbutton

Values -

T
-J-
-J-
LRU

PDB PARAMS 3

- Display Mode -

None

None

None

Value

OK Close

X

3

Update All

Figure 3.23: PARAMs Interface Figure 3.24: PDB static parameter window

3.4 Model Debugging, Validation and Experimentation

A model design will not be significant and meaningful if the behaviour of the model
does not correspond to what was originally required, or it does not work correctly. In
multiprocessor simulations, the debugging requirements are compounded by the fact
that a considerably large number of entities have to be inspected not only for their
own behaviour but also for their concurrent interactions. The HASE animations are

normally used as a mechanism to debug and to test the design and implementation
of a small-scale, simulation model. Large-scale multiprocessor simulation models, in

Chapter 3. Design and Implementation 116

contrast, are generally validated by inspecting the end results of a benchmark code in
the memory arrays [CoeOO],

In the QCDOC simulation model, the validation requirements were slightly differ¬
ent. Firstly, complete pipeline stages were modelled within an entity, therefore HASE
animation which has been used in DLX pipeline modelling could not be employed
for validating the PowerPC pipelines execution. Secondly, a tool was needed so that
the results gathered by individual instances of an entity within the four-dimensional
mesh could be viewed after the simulation. Finally, for a comprehensive understanding
of the behaviour of application code on the QCDOC system, overall code execution
information was considered together with the simulation end results. In view of these
requirements, the following mechanisms and tools are explained:

1. Animation of simulation trace file;

2. Timing diagrams;

3. EDL tracing tool; and

4. Interactive plots.

Except for (4), the others use a trace file generated by the FIASE system as a

result of a simulation run. This trace file contains updated parameter values of an all
instances of an entity, send events and memory read and write events with respect to
the simulation execution time. HASE template-based simulation models, particularly

large scale models with a number of entities like QCDOC, tend to have enormous

amount of information within a single project trace file (order of MBytes).

3.4.1 HASE Animator

HASE animations are useful for

• showing packet movements between entities along with packet content values or
icons;

• highlighting current memory read and write contents in a memory array;

Chapter 3. Design and Implementation 117

• changing an entity's icon colour, showing its current state; and

• displaying useful parameter values as they are updated by the simulation.

In the initial design verification, for instance, interactions between two entities to

identify an unusual or race condition, HASE animations were quite useful. Moreover,
in the communication protocol implementation, animations can show the order in
which data and acknowledge packets are exchanged. Finally, memory read and
write operations are validated as the simulation proceeds by opening a memory array

window. Nonetheless, the HASE animation mechanism has its limitations. For

example, a memory file contents can only be viewed if it contains a few tens of lines
of entries. Extremely large memory files cannot be viewed during animation, and are

almost impossible to read through by a simulation user. The entity icon changes, on the
other hand, make a simulation run slower as it involves writing additional information
to a trace file. In multiprocessor simulations, it is not preferred as the trace files can

be enormous in size. However, implementation, debugging and validation of the PDB
coherency protocol and the nearest-neighbour off-chip transfer protocol exploited the
HASE animation facilities.

3.4.2 Timing Diagrams

The first QCDOC CPU prototype was based on the HASE DLX [IbbOO] simulation
model. In this model, execution pipelines and pipeline stages are represented as

separate HASE entities. Thus the first QCDOC CPU prototype contained about 19
entities; three (seven-stage) execution pipelines where each stage was represented as a

HASE ENTITY. When considering the implementation of the FPU and the additional
components of the ASIC, it was calculated that about 25-30 entities would be required
for one processing node. This would have incurred a big overhead in execution
time and memory on the host if these entities were replicated using the HASE mesh
templates.

Chapter 3. Design and Implementation 118

At the same time, it was decided that the cycle-by-cycle dynamics of instruction
level parallelism (ILP) of the PowerPC processor and the FPU should be not be
abstracted by a single trace value or by employing execution-driven or distribution-
driven simulation techniques. QCD is a floating-point computation intensive code;
by employing techniques like execution-driven simulation and distribution-driven
simulation, accuracy of the performance result is affected (the affect is quantified in
the next chapter).

The solution to the two conflicting requirements, i.e., reducing number of entities
while not sacrificing essential details, were met by making each pipeline stage a

parameter within a single CPU ENTITY. Validating the three CPU pipelines could not
be performed via the HASE animation so timing diagrams (as in figure 3.25) were used
to verify the out-of-order issue, execution and completion pipelines.

^Qasic I< □ X
I—I—i—i—r——i—|—i—11

6567 0 s 13124.0 s 19686.0 s 26248.0 : 32 81

pO -(- XX
•A.

QCD._0_0_0_0_.COREFPU 1 *

, Y ■■MM

P7 "(^ LFD_F15,88(R14) £
p6 XX x-
p5 (LFD_F14,80(R14) X XX

P4 :{ LFD.F13,72(R14) x LFD_F14,80(R14) x-X
P3 ~{— XX x-
P2 { FADD_F25,F25,F17 X XX

Pi { XX X FADD_F25,F25,F17 X:
PO (FADD_F24,F24,F16 X XX £
QCD._1_0_0_0_.CORECPU
Clock / \ X \

Figure 3.25: FPU pipeline stages in a timing diagram

The parameters pO to p7 represent the parameters defined for a HASE ENTITY in an

EDL file. Figure 3.26 represents the code listing for the FPU ENTITY in the EDL file
and its timing diagram output is shown in figure 3.25. This timing diagram shows the
movement of PowerPC floating-point instructions from one pipeline stage to the next
for two clock cycles. XX indicates that the pipeline stage is currently not being used.

Chapter 3. Design and Implementation 119

ENTITY FloatingPointUnit(

EXTENDS(Biclocked)

DESCRIPTION ("FPU")

PARAMS (

RINSTR(t_CoreISA,fexe_WBACK)

RINSTR(t_CoreISA,fexe_2)

RINSTR(t_CoreISA,fexe_l)

RINSTR(t_CoreISA,fexe_RACC)

RINSTR(t_CoreISA,ls_WBACK)

RINSTR(t_CorelSA,ls_CRD)

RINSTR(t_CoreISA,ls_AGEN)

RINSTR(t_CoreISA,ls_RACC)

-- pO (exe pipe write back)
-- pi (exe pipe 2)
-- p2 (exe pipe 1)
-- p3 (exe pipe register access)
-- p4 (load/store write back)
-- p5 (load/store cache access)
-- p6 (load/store normalise)
-- p7 (load/store register access)

Figure 3.26: FPU parameters in the project EDL file

3.4.3 Trace file Viewer

The HASE animation and timing diagram tools are effective to inspect a simulation
trace file as long as the project trace file is not very large and the graphical represen¬
tation of the model allows all entities to be viewed on-screen. For detailed test runs

on the QCDOC model, neither of the conditions is valid; the trace file is huge and an

on-screen view of simulation entities is not possible.7 An alternate mechanism was

introduced whereby simulation end results can be viewed by selecting instances of an
entity.

A tool was created that reads the EDL description (from project.edl file) and
the simulation trace file to generate a summary of what happened to an entity in a

simulation run. Figure 3.27 shows an example; the left window shows all instances
of a HASE entity, the top right window prints the description of the selected entity
provided by the simulation designer in the EDL file and the bottom right window
report event changes that belong to a particular instance of an entity.

7Even in the smallest configuration, a 2x2x2x2 HASE QCDOC model, all entities cannot be viewed
on-screen.

Chapter 3. Design and Implementation 120

W

File Action

ProjectTree □ X

B PLL12
B PLL8
BPLL3

<•> B QCD
<? B -0_0_0.0.

<f> B Core
B FloatingPointU
B CentralProces
B InterruptContr
B MemoryManai

B ProcessorDirectBi
B PLBDataBlock
B DirectMernoryAcc
B OnChipMemory
B ProcessorLocalBu
B SerialCommunicai
B ExternalMernory

B _1_0_0_0_
©- BE Core
B ProcessorDirectBi
B PLBDataBlock

ENTITY FloatingPointUnit(
EXTENDS (clocked)
DESCRIPTION ("FPU")
PARAMS (
RINSTR (t _CoreI SA, fexe _WBACK)
RINSTR (t _CoreI SA, fexe _2)
RINSTR(t_CoreI SA, fexe_ 1)

Report
Main Clock Cycles = 1690.0

Total send events = 273

Total paramters update events =435

Total Immediate update events = 34S

Total memory reads = 102

Figure 3.27: Entity instances and trace file viewer

For large simulation runs, for example, it is sometimes necessary to compare

estimated sends and receives or memory reads and writes. The EDL viewer provides a

quick way to read these estimates.

Chapter 3. Design and Implementation 121

3.4.4 Off-line Interactive Plots

A HASE simulation trace file contains send, memory and parameter update events of
all instances of entities in the model. In template-based multiprocessor systems, these
trace files can be tens of MBytes, from which filtering useful information efficiently
is not possible. Consequently, multiprocessor simulations often use C++ standard file
input/output within a HASE entity behaviour description to store selective information.
These text files can later be inspected off-line.

In the QCDOC model, simulations run for several thousand clock cycles. Tracing
back and locating an error to an entity, and regenerating the sequence of events that
led to the error was often a tedious and time consuming process. Graphs or plots

showing unexplained spikes or curves plotted against the simulation time can reveal
errors or anomalies. Moreover, they helps in identifying and understanding the overall
behaviour of system variables during a simulation run.

An interactive plotting tools was employed to zoom into and out of the graphs of
interesting values plotted over time. It also gives an opportunity to validate the overall
behaviour of an entity. Figure 3.28 shows FPU performance (MFlops/s) with respect
to clock cycles while figure 3.29 shows the diagram after zooming in to the selected
area in figure 3.28.

Interactive Plots -OX

Results vs. Clock Cycles

2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000
X

!■ FPU Performance I

Figure 3.28: Before zoom

Chapter 3. Design and Implementation 122

Interactive Plots

1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

X

I FPU Performance i

Figure 3.29: After zoom

Results vs. Clock Cycles
BIX

By identifying the precise clock cycle value or set of values, it is possible to
establish what happened during those cycles from the result files. For instance, in
the FPU ENTITY, latencies for load instructions are stored in a text file with a clock

cycle value. A load wait of 13 clock cycles was observed from the plot. The precise
clock cycle values is then inspected in the instruction issue and commit files and traced
back to the MMU ENTITY, the PDB ENITY and the EDRAM ENTITY to investigate the
cause of this load wait. A prefetch load request that was subsequently invalidated as a

result of an incoming write in the PDB ENITY was found to be the cause of this load
wait.

3.5 Summary

The aim of this chapter was to introduce the background to the HASE QCDOC
simulation model. An overview of QCDOC ASIC was presented. This was followed
by the design and implementation and implementation details of the HASE QCDOC
simulation model. Extensions and limitations to the HASE platform were identified
and notable simulation model validation issues were addressed. The dynamics of
the HASE simulation model, benchmark software, experimental setup and simulation
results are presented in the next chapter.

Chapter 4

Design Space Exploration and
Performance Analysis

The design details of the QCDOC architecture and implementation of its simulation
model in the HASE were described in the previous chapter. This chapter is concerned
with exploring the design space of the QCDOC architecture through its parameterised
HASE simulation model. First, the computation and communication data paths, logic
and control are explained. Second, the benchmark QCD code and the simulation

parameters are introduced as part of the experimental setup. The performance studies
on the HASE QCDOC model were undertaken with an optimised version of the
QCDOC kernel routines. An understanding of the benchmark software structure and
dynamics of the underlying system enabled identification of hardware parameters that
are most likely to influence performance of the QCD code on the QCDOC system.

Third, results of experiments conducted with various combination of HASE model
parameters to explore design space of the QCDOC processing node are presented.
Fourth, the interconnection network performance experiments and results are provided.
Lastly, requirements for a larger (10K node) HASE QCDOC model are evaluated and
collective communication schemes and their performance results are presented.

123

Chapter 4. Design Space Exploration and Performance Analysis 124

4.1 Data Paths, Logic and Control

The previous chapter introduced the custom components of the QCDOC design: the
Prefetch EDRAM Controller (PEC) and the Serial Communication Unit (SCU). The
PEC was introduced primarily to reduce the memory latency and to enhance memory

bandwidth to the on-chip memory. The PowerPC read and write buses are of quad-
word (128-bit) width and a 512-bit wide data bus between lower on-chip cache levels

provides for efficient handling of read and write requests coming in and going out from
the processor read and write master ports. The Processor Data Bus (PDB) interface of
the PEC can be represented as a Level 2 (L2) cache because of its read data prefetching
and write data buffering capabilities for LI or primary data cache.

The L2 prefetching and buffering cache, together with another PEC interface called
PLBDBLK, the Processor Local Bus (PLB) slave interface, create unique System-On-
a-Chip (SOC) data paths for compute and communication data. Similarly, the QCD-
specific communication component, the SCU, results in controls and logic for local as
well as collective communication operations that are considered special to the QCD
communication routines. In order to learn the behaviour of the QCD code execution
on the underlying QCDOC system for performance studies on the simulation model,
it was essential to establish the precise details of the computation and communication
data movements over a QCDOC processing node.

4.1.1 Read and Write Logic

The advantages of a PEC with L2 prefetching and buffering cache are:

• L2 cache offers higher spatial locality (1024-bit lines) as compared to LI (256-
bit lines).

• It is a small memory and it can operate at the processor clock speed. Read data
can be returned with only an additional 1-2 clock cycles latency to the CPU and
FPU load pipes.

• A high bandwidth (512 data bit transfers at half of the processor clock frequency)
offers low latency access to a large amount of on-chip data.

Chapter 4. Design Space Exploration and Performance Analysis 125

• Write buffering accepts LI store data and reduces latencies associated with
writes to the on-chip memory.

The on-chip memory, EDRAM, has three data ports connected to three PEC
components: the L2 cache, the PLBDBLK and the DMA (for on-chip and off-chip
memory transfers). A custom coherency protocol governs read and write operations
across the three PEC ports to EDRAM, which snoops read and write addresses
generated from the three ports. This snoop-style protocol, together with a small (4
KByte) prefetching and buffering L2 cache, can have potential short-comings:

• Thrashing may occur as the pattern of read and write requests from LI causes

repeated write flushes and read invalidates.

• As the write policy for most pages in the TLB is set to write back, to avoid
latencies associated with stores in a load-store intensive code, it is the respon¬

sibility of the software to flush communication data from the LI cache to avoid
the problem of stale data.

• Load-intensive applications with reads from scattered memory locations, or with
a sequence of reads beyond the L2 prefetch read register line boundary, may
cause earlier read data to be replaced by incoming read data frequently; L2
prefetch read registers use a Least Recently Used (LRU) replacement policy.

The above mentioned scenarios can have an adverse effect on the performance of
the overall code as read and write data transfers from EDRAM can take multiple clock

cycles, in particular, the write flushes.

4.1.1.1 Read Data Path

Figure 4.1 shows the read data path of the QCDOC SOC. When a load request is at the
cache read pipeline stage, the CPU initiates a request for a read to the MMU specifying
the type of data and whether it is a CPU or an FPU read. If the address is found in the
data cache, it can be made available without any blocking in the CPU load store pipe.
In the case of a read miss, the TLB entries determine the storage attributes of the page

to which the address belongs:

Chapter 4. Design Space Exploration and Performance Analysis 126

Read Data

CPU/FPU

Read Requests

Data Cache + TLB Access

Data Cache

Block/Word

Read Miss (Cacheability,
Normal/Transient)

Prefetch Read +
Write Buffer Registers

Read Block
Write Overlap/ Read Miss
Write flush/ Read invalidate

(LRU)

Figure 4.1: Read data path on the QCDOC ASIC

1. A cacheable page; a memory region can be either 'Transient', 'Normal' or
'Locked'.

2. A non-cacheable page.

If a line is cacheable, a normal or a transient line is allocated depending on the
TLB entry, and if required, a line is replaced according to the round robin replacement
policy. A cache line in the locked area will not be replaced during normal read and
write operations. The critical word is delivered first to the operand register before the
line fill. If a page is non-cacheable, no line will be allocated. For a read miss, and for
a non-cacheable page, a read request is then made to the next memory level, the PDB.

A miss address request to the PDB first causes read addresses to be snooped by
the write buffer registers. If a read-write overlap is found, the write buffer must be
flushed before a read register is allocated according to the LRU policy and a prefetch

Chapter 4. Design Space Exploration and Performance Analysis 127

read request is initiated. On the other hand, if the read address is found in a prefetch
register with a "Valid" status, then the data is returned to the MMU. However, if the
read address is found with "Pending" status, no new request will be made and data will
be returned when that data arrives from EDRAM. When the address is not found in the

read registers, a register will be allocated according to the LRU replacement policy,
and a prefetch read request will be made to EDRAM to fill the 1024-bit read register.

4.1.1.2 Write Data Path

128 /

CPU/FPU

/
Write Data

128

Write Miss (Cacheability,
Normal/Transient,
Store Gathering,
Allocate Policy)

Prefetch Read +

Write Buffer Registers

512 /
/ Read Overlap/Write Full

Read Invalidate/Write Flush

Figure 4.2: Write data path on the QCDOC ASIC

The write data path for the QCDOC SOC is shown in figure 4.2. When a store
instruction is at the cache access stage of the pipeline, the data cache and TLB accesses

are made. The data cache is accessed to determine whether there is a write hit or a write

miss. At the same time, TLB storage attributes of the page are checked for:

Chapter 4. Design Space Exploration and Performance Analysis 128

1. A cacheable page that could:

• be a copy-back or a write-through page.

• have a write allocate policy or have no allocation for a write miss.

2. A non-cacheable page: this can have its store gathering attribute set or unset.

If an address is not found in the cache, and the page is cacheable, then the allocate

policy is checked to determine whether a line needs to be allocated. Then the data

packet is sent to the PDB. On the other hand, if the page is non-cacheable, the store-

gathering attribute is checked. Non-cacheable data is forwarded to the PDB if store

gathering is set to false or 128-bit gathering is complete.
Once a data packet (a word or quad words) arrives at the PDB, the read registers

are checked to find an overlap of addresses. The status bit of a prefetch read register is
set as "Invalid" if an overlap is detected. The write data is then written to a write buffer
register and broadcast to other entities connected to the EDRAM read/write ports. If
there is no space available for incoming writes or the write buffers are full, then a write

register must be flushed.

4.1.2 Off-node Communication Operations

QCD communications requirements are regular and deterministic. Likewise, the QCD-
specific communication unit, SCU, permits simple and straightforward communication
data initialisation and off-node data transfer mechanisms. Off-node communication

is handled via a custom protocol while on-chip communication instructions and data
movement are controlled via memory-mapped device addresses.

The SCU supports simultaneous bi-directional communication in four space-time
(t, x, y and z) directions.1 QCD-specific communication ports include:

• A pair of four [send,receive] ports for plus direction communication ([TP,TM],
[XP,XM], [YP,YM] and [ZP,ZM]).

'in fact, the QCDOC machine supports six-dimensional communications; however, at any given
time, QCD calculations exploits four-dimensional communication support.

Chapter 4. Design Space Exploration and Performance Analysis 129

• A pair of four [send,receive] ports forminus direction communication ([TM,TP],
[XM,XP], [YM,YP] and [ZM,ZP]).

Associated with each of the above 16 ports, there are buffers and registers. A
send buffer stores double-word send data until a successful delivery to the receiver is

acknowledged, while the receive buffers store the incoming receive data to perform
error detection. Upon a successful receipt, an acknowledge message is sent to the
sender. These send and receive buffers primarily deal with the communication data
until it is successfully sent and received. Send and receive registers in the SCU, in
contrast, serve as intermediate sources and sinks for the communication data in the
send and receive buffers respectively. On the QCDOC ASIC, the source of the send
buffer data is the EDRAM and receive buffer data must be written back to EDRAM

for CPU processing. The processor clock cycles required to send and receive a 64-bit
data packet are listed in table 4.1.

Communication Step Clock Cycles

Send Overhead 14

Receive Latency 36

64 (data) + 8 (information) bits packet transfer 72

8-bit ACK packet + overhead 16

Table 4.1: Clock cycles required for 64-bit data transfers [BCC+02b]

The QCDOC SCU synchronises communication packets in double-word (64 bits)
sizes. Data integrity checking and the custom communication protocol only support
double-word data transfers between twelve nearest neighbouring nodes. A high speed
serial link, HSSL, provides the point-to-point communication channel between the
QCDOC processing nodes.

4.1.2.1 Bi-directional Communication Protocol

For reliable communications over a point-to-point link, each successful message

transfer is expected to be followed by an acknowledgement message. A packet
must be re-sent if the receiver sends a retry message or if there is a time-out. It is

Chapter 4. Design Space Exploration and Performance Analysis 130

straightforward to devise a buffering scheme and a communication protocol if it is
assumed that there are no packet losses over the communication channel. In practice,
this is not the case. There can be communication errors: information loss, sender

failure to deliver messages and loss of acknowledgement packets. Therefore, the
communication sender is responsible for keeping a data packet in its send buffers
until it is successfully acknowledged. On the other hand, the receiver should keep the

message in a receive buffer to perform error checking before sending an acknowledge

packet to the sender and flushing it to memory.

A conservative approach would be to send one packet at a time and wait for an

acknowledgement. A time-out causes the sender to re-send the data packet. Although
this scheme guarantees data integrity and is simple to implement in hardware, it
results in poor utilisation of the communication channel due to idle time (as shown
in figure 4.3).

send

recv

send pktl j^jg send pkt2
rack pktl

SEND NODE

ack pktl
recv pktl

RECV NODE
V J

TIME

Figure 4.3: Data transfer between neighbouring nodes without communication buffers

With the availability of send and receive buffers in the QCDOC's SCU, it is
possible to send more than one double-word before an acknowledgement is received.
A custom communication protocol and a single-bit Error Correcting Code (ECC)
are implemented in the SCU ensure successful data transfers. The custom SCU
communication protocol allows up to three double-words to be transferred before an

acknowledgement of the first is received. A send port keeps a record of acknowledged
data packets sent and re-sends a data packet if it either fails to receive an acknowledge

message or it receives an error/retry message. The send buffers are updated in a round
robin fashion and the receive buffer flushes successful packets to the corresponding

Chapter 4. Design Space Exploration and Performance Analysis 131

receive register. Figure 4.4 shows that using the communication send and receive
buffers, a second packet can be sent without first being acknowledged.

send

recv

TIME

Figure 4.4: Data transfers between neighbouring nodes with communication buffers

As a result, the channel utilisation improves; figure 4.4 shows no idle clock cycles.
In order to send more than one message without an acknowledgement, the sender must
be able to identify messages in its communication buffer. This is necessary because an

error message from receiver or a time-out should result in a re-send of the erroneous

message (not all messages in the communication buffer). Similarly, the receiver should
be able to inform the sender which packet has an error. The cost of implementing this
protocol increases, both at sender and receiver, with an increase in the communication
buffer sizes.

For QCD communication requirements, the SCU supports bi-directional commu¬
nication such that it is possible to send and receive data in both positive and negative
directions simultaneously. The bi-directional communication with custom protocol is
shown in figure 4.5.

sendl send2 send3
N

ackl
..

SEND NODE
V

ack2
■ •

J

ackl ack2

recv 1 recv2 recv3
► ►

RECV NODE

Chapter 4. Design Space Exploration and Performance Analysis 132

r

sendO send2 ackl send4 ack3

recvl recv3 ackO recv5 ack2
- -> > > >- - ->

send NODEO
V J

recv r

sendl
"N

send3 ackO send5 ack2

recvO recv2 ackl recv4 ack3
-3»- 5— 5=- - -3»- -

vNODEl y

TIME

Figure 4.5: Bi-directional SCU protocol implementation

The send and receive communication buffers, and the communication data integrity

checking mechanism in the form of a custom communication protocol are essential for
bi-directional simultaneous communication between neighbouring nodes. Associated
with each send port is a send buffer and with each receive port is a receive buffer. Up
to 24 (12 simultaneous send and receive) operations between QCDOC neighbouring
nodes in a six-dimensional torus are permissible in the QCDOC machine using the
custom communication protocol.

4.1.2.2 On-chip Communication Control and Data Paths

The two nearest-neighbour communication steps in a QCD kernel routine follow
similar sequences of operations in opposite directions. A "Send forward" call performs
a data send in the positive direction and a data receive in the negative direction.
Similarly, the "send backward" process involves sending data in the negative direction
and receiving from the positive direction. Figure 4.6 shows four of the 12 send registers
and four of the 12 receive registers performing nearest-neighbour communication. The
step-by-step process of a QCD nearest-neighbour communication is as follows:

1. The CPU sends block-strided send instructions to TP, XP, YP and ZP DMA

registers and block-strided receive instructions to TM, XM, YM and ZM DMA

registers. A block-strided instruction contains the start address in the EDRAM,

Chapter 4. Design Space Exploration and Performance Analysis 133

Figure 4.6: Communication data and control paths on the QCDOC ASIC

Chapter 4. Design Space Exploration and Performance Analysis 134

number of blocks, size of blocks and stride.2 An instruction from the CPU uses

a PLB master interface via PDB to write to the SCU SRAM through the SCU
slave port.

2. Once the DMA instructions are set up, the send DMAs initiate reads from
EDRAM via the PLB master port of the SCU. Since more than one register
is ready to read at one time, a First In First Out (FIFO) arbitration policy is
employed for the PLB accesses. A read request via PLB goes to a PLB slave
called PLBDBLK. PLBDBLK contains a set of 1KByte prefetch read registers
and can read 512 bits from EDRAM at half of the processor clock frequency. The

required data, once ready in a PLBDBLK read register, is transmitted to SCU via
PLB. The read data received is copied into the corresponding send register and
then transferred to the send buffer for off-node communication.

3. Data received at the neighbouring node is acknowledged and the successfully
transmitted data can be removed from the send buffers. Receive buffers flush

data to receive registers. The frequency at which the read registers are filled is
much higher than the frequency of off-node transmission. Hence at times, no
read via PLB is performed because the read registers are full. The number of
send and receive registers and buffers have been made parameters in the HASE
QCDOC model to investigate their effect on communication performance and
channel utilisation. At the receiving node, the data received is stored in the
receive register and, according to the DMA sequence, transferred to the EDRAM
via PLB. The PLBDBLK writes data in its write buffer registers and flushes to
the EDRAM if the buffer is full or in response to a CPU request (read-write

overlap).

The above steps are repeated until all reads and writes, according to the send and
receive DMA specifications, are complete.

2A DMA instruction represents a specified number of blocks of contiguous double-words, with each
block separated from the preceding by a fixed stride.

Chapter 4. Design Space Exploration and Performance Analysis 135

4.1.3 Collective Communication Operations

Two double-precision floating-point global reduction operations are required per QCD
kernel execution. Although only a few global communication steps are required
per kernel iteration, as compared to the nearest-neighbour communication steps,
efficient collective communication implementation on a QCD machine is critical to the
overall performance. This is because the global sum communication times cannot be
compensated by the parallel execution of local computation steps. The QCDOC SCU
contains a "pass through" unit for automating the global communication processes,

thereby maximising the efficiency of the global sum operations.
In the QCDOC machine, potentially, there are three mechanisms to perform global

sums over a torus network [BCC+02b]: hardware shift-and-add, enhanced hardware
shift-and-add and QCDSP-style. The HASE QCDOC model contains a binary tree
network in addition to the torus network, which opens up the possibility of three more

global sum modes. Details of the HASE QCDOC global sum options over a four-
dimensional torus and a binary tree network are presented in section 4.5.

4.1.3.1 Global Sum on the QCDOC Network

One way to compute a sum over a four-dimensional torus requires adding data
simultaneously along each axis. For example, to find a global sum over a (Nt * Nx
* Ny * Nz) machine, the first step is to collect data in the t direction from Nt-1
nodes and then from Nx-1, Ny-1 and Nz-1 nodes for x, y and z directions respectively.
The number of steps required will be (Nt-l)+(Nx-l)+(Ny-l)+(Nz-l). Since the SCU
supports bi-directional communication, these steps can be halved. Figure 4.7 shows
the detail of this communication pattern for a 2D torus.

Chapter 4. Design Space Exploration and Performance Analysis 136

-o—o-
1. cpu overhead in forwarding

(k5—O—O—

<<> -o—o- <>>
All nodes exchange data in
the first dimension

cd
X3
T3
<D
-w

O
JD
0
O
C/3

1
03

G
a,
o

G

.2 e
o

CJ-_S

5.2
G

oo G
<D 2
bOG
C G
o3 £

CN CO

TIME

O

O

o

o

o

o

0
1
o

I? \9 \S> \9
All nodes exchange data in
the second dimension

Figure 4.7: Global sum operation on a torus network

CPU/FPU overheads include:

1. CPU intervention may be required to forward data from an incoming node to an

outgoing node.

2. At the end of (N-l) steps in each direction, data is sent to the FPU for floating¬
point addition.

3. The sum is received from the FPU and the direction for both sends and receives

changes.

Without the pass-through unit, shown in figure 4.8, each packet received will be
copied into memory, then read again and copied to a send register to be transferred to
the neighbouring direction.

Chapter 4. Design Space Exploration and Performance Analysis 137

G
.2
t!
2
5
V,
a

£

od

CPU

Intervention

\

\

3*-
—

automatic

—

Pass

Through
Unit

^
—

5^

^
—

Receive

Buffers SCU

Send

Buffers

c

.2*•*—»
o
©
H

5
T3

£
O
Hh

Figure 4.8: CPU overheads in a QCDOC SCU pass-through unit

Once (N-l) transfers are complete along an axis (direction), the N data packets (in
an identical order on each node, ensured by assigning a pointer to values collected with

respect to node identifiers) are sent to the CPU to compute the sum of N floating-point
numbers. Then the data transfers along the next direction start.

It is also important to identify the role of the CPU i.e., to determine how automatic
(or otherwise) the pass-through mechanism can be. The CPU's contribution in
calculating floating-point sums after communication in each direction is essential.
It cannot be avoided without a bit manipulation component in the SCU. However,
individual receives followed by sends can be automated; this is classified as hardware
enhancement. One more enhancement is possible by allowing the incoming bits to be
re-directed to the send port, rather than waiting for a successful transfer to complete.
Although such a scheme was successfully adopted in the QCDSP machine, the HSSL
protocol in the QCDOC machine restrict the bit-serial re-direction.

Chapter 4. Design Space Exploration and Performance Analysis 138

4.2 Experimental Setup

Potentially, a large number of factors can influence the performance achieved by
a parallel code over a high-end parallel system including the application workload
software characteristics, underlying hardware configurations and the influence of
operating system interactions. Thus a full-scale system analysis, theoretically, needs
very large number of experiments, each with a certain combination of above-mentioned
factors. In order to identify parameters that are likely to have a significant impact
on an application code performance, a thorough knowledge of the three factors
is necessary: the parallel workload characteristics, data and control paths of the

underlying hardware, and the operating system behaviour.

• Operating system interactions and interventions do not occur during the execu¬

tion of the QCD kernel over the QCDOC machine. QCDOC operating system is
a custom-designed operating system described as a subset of the unix operating
system. In addition, the QCDOC operating system contain highly optimised,

QCD-specific communication libraries. During the QCD kernel code execution
on the QCDOC processing node, the user program runs in a single thread,3 or

has uninterrupted access to a QCDOC processing node's resources.

• On-chip computation and communication data movement, their logic and control
have been described earlier in section 4.1.

• The application workload for benchmarking comprises a parallel QCD kernel

developed and optimised for the QCDOC system. The computation and com¬

munication characteristics of this kernel are explained in the following sections.

4.2.1 Characteristics of the QCD Benchmark Software

The QCD sparse matrix kernel shares characteristics with many other scientific ap¬

plication codes. Vetter and Mueller [VM02] examined the communication char¬
acteristics of a number of scientific codes and found that sparse matrix computa¬
tions are ubiquitous in computational science since they arise whenever differential

3B. Joo (2002) QCDOC operating system design team, private communication.

Chapter 4. Design Space Exploration and Performance Analysis 139

equations are solved using numerical techniques such as finite element and finite
difference methods. A large number of data-parallel matrix-vector multiplication
iterative solvers, Ruede [Rue97] reported, need to share intermediate results frequently
with neighbouring processing nodes. In distributed memory systems, according to

Cypher et. al. [CHKM93], these message passing communication calls are explicit,
unlike shared memory communication. Conjugate Gradient (CG) is an example of one
of the most popular iterative algorithms for solving sparse matrix-vector equations.
Since the research presented here has been based on the QCDOC architecture, the
variant of CG for QCD calculations is presented. At each step of a CG iteration, the
neighbouring processing nodes exchange data. Figure 4.9 shows this communication
in a periodic two-dimensional torus.

(0,1) | f -x (1,1) \ f -X (2,1) j f

Odd Site O Even Site
Forward Communication

Backward Communication

Figure 4.9: QCD Nearest-neighbour communication on a 2-D mesh

Several QCD software repositories: MILC [MIL], FermiQCD [PieOO] and Columbia
Physics Systems (CPS) offer a range of application codes developed according to the
particular interests of those research communities. These repositories are in high level
languages like C and C++, but contain optimised sparse vector matrix multiplication
routines. MILC and FermiQCD have routines optimised for Pentium SSE4 instruction.

4A vector type instruction. The SSE data type specifies that four single precision floating-point
numbers can be stored in each register and that the instructions that operate on these registers can do
four floating-point operations in parallel as they operate on the whole register as a single register.

Chapter 4. Design Space Exploration and Performance Analysis 140

CPS contains QCDSP optimised kernels for the QCDSP platform, the predecessor of
the QCDOC. These optimised routines are selected because they form a large fraction
of code execution times, namely solving a system of linear equations. The parallel CG

algorithm and its variants govern implementations of parallel QCD calculations.
Bernard et. al. [BDG+95] described the sparse matrix computations as the "rate-

limiting" step in the QCD code. The high-dimensional quark matrix to link vector

multiplication requires gathers from widely separated locations in memory.5 In the
formulation

Mx = b

x and b are complex vectors containing three colour indices and four dimensional
lattice coordinates. The matrix M is given as

M = 2mal + D

where I is the identity matrix, 2ma is a constant, and matrix D is called "Dslash". The
computation requires summation over four lattice directions where each site has eight
nearest neighbours. The linear system using CG method involves solving

M'M = (2ma)21+D^D

where D1D represents the kernel test code; M1" represents the conjugate transpose

of matrix M. Lattice computations are simplified using "even odd preconditioning"
techniques, thereby applying inversion of the matrix at even sites only. The sum of the
coordinates of a lattice site determines whether it is an even site or an odd site. Using
the preconditioning scheme, the problem size can be reduced by half.

5Mapping of QCD particles onto a lattice is explained in detail in section 2.3.

Chapter 4. Design Space Exploration and Performance Analysis 141

4.2.1.1 Parallel CG Multiplication

The CG inversion requires repeated multiplications by the "Dslash" matrix D. During
these solutions, the solution vector evolves from the trial vector. Link matrices are

stored with sites at the processing nodes (section 2.3). A typical application involves:

1. Sending intermediate vectors in forward (positive) directions.

2. Multiplying intermediate vectors by link matrices in positive directions.

3. Sending matrix vector products in backward (negative) directions.

4. Multiplying intermediate vectors from neighbouring sites by the link matrices of
the receiver.

5. Subtracting matrix vector products from neighbouring matrix vector products.

A number of the above computation and communication steps have no data and
control dependencies, hence they can be overlapped. For instance, the multiplication
of intermediate vectors and their communication in the forward direction can be

performed in parallel.
The above steps written for the QCDOC assembler kernels by Boyle [BoyOl] are

performed in a parallel manner using the subroutines listed in table 4.2.

Chapter 4. Design Space Exploration and Performance Analysis 142

Subroutine Description

QCDOC-ChDecomp This routine decomposes and shifts information in

separate lattice directions.
Communicate Backward Previously decomposed values are sent to the

backward and negative direction neighbours.

QCDOC_ChDecomp_hsu3 Decomposition and multiplication of the Wilson
matrix. This computation step can be performed
in parallel with the previously initiated communi¬
cation operation.

Communicate Forward Communicate the result of the above multiplica¬
tion to the four neighbours in the forward direc¬
tions.

Backward Complete Wait or gather result from the first local com¬

munication step, the nearest-neighbour backward
communication.

QCDOC_ChRecon_su3 Reconstruct the matrices and multiply by the in¬

coming values from the four neighbours collected
earlier. In parallel with this computation step,
the nearest neighbour forward communication is
performed.

Forward Complete Wait or gather result from the first local com¬

munication step, the nearest-neighbour forward
communication.

QCDOCChReconadd Final vector reconstruction.

Table 4.2: QCD assembler kernel subroutines

The kernel subroutines (in PowerPC assembly) are developed by the QCDOC
design team, which are optimised for the QCDOC machine. Appendix A contains the
code listing of the smallest subroutine QCDOC_ChDecomp, and describes the input
code format for the HASE QCDOC model. In addition to the Dslash multiplication
routine, nearest neighbour communications and double-precision floating-point global

Chapter 4. Design Space Exploration and Performance Analysis 143

sum (collective communication) operations are computed. The results of these global
sums determine whether a CG iterations has converged or not within the approximation
limits specified at the beginning of a QCD calculation.

For the above subroutines execution, the data layout is defined in the TLB us¬

ing PowerPC memory management instructions such that send data resides in non¬

cacheable pages, receive data in transient pages and other compute data in normal
cacheable pages. Receive data is kept in the transient pages to avoid unnecessary

flushing of useful data. A flush routine can selectively flush the transient pages.

4.2.1.2 Computational Requirements

Lattice QCD kernel code execution is deterministic; its computation and commu¬

nication requirements do not rely on dynamically computed or run time values.
The number of kernel iterations however depends on the residual vector, which is

computed after each kernel iteration. Yet, QCD is classified as a grand challenge
problem primarily due to the enormous floating-point data- and computation-intensive

requirments.
Hence, first the floating-point instructions mix of the computation subroutines at

run-time is quantified for the smallest lattice volume 2x2x2x2. This is shown as

a fraction of 64-bit floating-point load, store and arithmetic (ALU) instructions for
the optimised QCD routines, QCDOC_ChDecomp, QCDOC_ChDecomp_hsu3, QC-
DOC_ChRecon_su3 and QCDOC_ChRecon_add in figure 4.10, figure 4.11, figure 4.12
and figure 4.13 respectively.

□ FP Load 0.22

Figure 4.10: QCDOC-ChDecomp floating-point instructions

Chapter 4. Design Space Exploration and Performance Analysis 144

Figure 4.11: QCDOC_ChDecomp_hsu3 floating-point instructions

Figure 4.12: QCDOC_ChRecon_su3 floating-point instructions

Figure 4.13: QCDOC_ChRecon_add floating-point instructions

These figures not only show the fraction of load-store instructions in the test kernels
but also the large fraction of arithmetic instructions, except for the decomposition
subroutine in figure 4.10. Typically, a number of load operations are followed by
an even larger series of arithmetic operations. The PEC prefetching scheme addresses
this load requirement of the QCD calculations to hide the data cache fill latencies by

bringing in four data cache lines in the prefetch read buffers.

Chapter 4. Design Space Exploration and Performance Analysis 145

4.2.1.3 Communication Requirements

The SCU is designed to support QCD communication subroutines. The QCD CG
computation steps require:

• nearest neighbour communications in four space-time directions: communicate
backward and communicate forward operations; and

• 64-bit floating-point global sums to compute the norms of two intermediate
vectors.

Thus, during each iteration of a Dslash routine (four in a CG step) two nearest-

neighbour communication steps are performed. In a CG step, two global double-
precision floating-point sums are needed. Hence, neighbouring communications are

frequent as compared to the collective communication operations.
In order to optimise the QCD-specific communications, the SCU has custom-

designed components:

• For nearest-neighbour communication

- DMA registers to store block-strided instructions;
- Send and receive registers to store incoming and outgoing data to and from
on-chip EDRAM memory;

- Buffers associated with send and receive ports.

• A design block called the Pass-through unit that allows simultaneous storing
and forwarding of neighbouring data to enhance the efficiency of collective
communications.

The nearest-neighbour communications are governed by the custom protocol
described in section 4.1.2.1. This protocol allows up to three double-words to be
transmitted before an acknowledgement is received. A three double-word buffer is
therefore associated with each send and receive port; a packet must be re-transmitted
in case of an error or absence of an acknowledge packet.

Chapter 4. Design Space Exploration and Performance Analysis 146

Dally [Dal90] proved analytically that the six-dimensional torus network (the
"physics" network) is a k-ary n-cube topology which outperforms high-dimensional
networks of the same bisection width and is considered best suited for high perfor¬
mance MPP interconnection networks. &-ary «-cube interconnection networks contain
n as the dimensions of the cube and k as the radix. The dimension n, radix k and

number of nodes N are related by the equations:

N = k11, k= </N, and n = \ogkN

The full size QCDOC machine will have k = 10, n = 4 and N = 10K, the number
of processing nodes. Bi-directional communication in the QCDOC interconnection
network can take place between neighbouring nodes along n axes simultaneously.

Since off-node communication latencies are considerably larger than on-node
latencies, a communication buffering scheme in the communication unit is essential.
The SOC design permits communication data transfers from on-chip memory to the
communication unit at a high clock rate. Likewise data received in the communication
buffers from neighbouring nodes can be forwarded to the on-chip memory as shown in

figure 4.14.

Send Data From

On-chip Memory

(on-Chip Transfers)

T7T

3
-Ct-

Receive Data To

On-chip Memory

-90-
a>
-rr-
a>

-90-
e

To

Neighbour

JUU
^Off-Chip Transfers)

From

Neighbour

Figure 4.14: Clock frequencies for on-chip and off-chip data transfers via the communi¬
cation send and receive buffers

Chapter 4. Design Space Exploration and Performance Analysis 147

High connectivity (24 send and receive links per processing node) was realised
with the high performance serial link technologies. Traditionally, parallel links have
provided high performance for multiprocessor interconnection networks. Presently
however, these parallel data buses are being replaced by serial links, especially in high-
end parallel networks [Kon99], Parallel links, at a high clock speed, suffer from clock
skews. Serial links operating at up to 1 Gigabit per second are available and Galloway
et. al. [GNA02] demonstrated that they are now an ideal choice for inter-cabinet links
in large systems.

4.2.2 Parameters of the HASE QCDOC Model

An in-depth knowledge of the communication and computation requirements of the
QCD kernel, together with an understanding of the computation and communication
data paths, logic and control, enabled identification of the components of the QCDOC
model that may have a significant contribution to performance improvement. The
custom-designed components, the PEC and the SCU, are the key candidates for
performance exploration studies. Also, the memory hierarchy and the interconnection
network parameters can also affect the overall code execution times. Performance
studies of a complex system do not depend on a single parameter: a combination
of parameters and different parts of systems can contribute to the performance re¬

sults. Therefore, the custom-designed entities in the HASE QCDOC model are

parameterised along with the entities that are involved in the on-chip and off-chip
communication data movements. A range of experiments on the parameterised HASE
model was conducted in order to explore the memory hierarchy design space and to

investigate the off-node QCD communication performance. Modelling the QCDOC
machine in the HASE allows simulation experiments by varying:

Machine size and dimensions: The HASE MESHnD templates provide a flexible
and efficient mechanism for altering the number of processing nodes in a mesh
in a chosen dimension. Also, using n, the number of dimensions, i.e. a three- or
a four-dimensional mesh can be specified.

Chapter 4. Design Space Exploration and Performance Analysis 148

On-chip operation frequencies: An advantage of modelling the QCDOC node
in the HASE was a cycle-accurate simulation of the custom components: the

memory hierarchy and the communication interface. A further advantage of
cycle-accurate simulation came from the HASE library clock mechanism such
that it allows the clock frequencies of individual HASE entities to be parameters.
Before a simulation run, the clock frequency of an entity can be altered with
respect to the processor clock frequency through a parameter window. This was

found to be extremely useful in experiments when the processing rate or data
bandwidth of an entity has to be altered.

Memory configurations: The HASE memory ARRAY parameter mechanism, which
allows the size of a memory to be altered at run time, was exploited whenever a
change in array configuration would result in an increase in the physical memory
size for the host machine. Altering the memory module configurations, even
though highly desirable in a system experiments, posed great challenges in the
simulation design. An increase in the size and number of memory registers can

exhibit enormous memory and execution constraints on the host machine. The
HASE ARRAY options that were introduced in HASE for light-weight physical
memory requirements were quite useful in template-based HASE QCDOC
model with a custom-built memory hierarchy. Most multiprocessor simulators,
for example, SimOS [RBDH97] and RSIM [PRA97] are restricted to a conven¬

tional memory subsystem. Network simulator SMART [PV97], on the other
hand, represents a static configuration of a processing node.

In addition to the above features, the HASE permits simulation models to incor¬

porate different bus widths between entities and a range of data transfer protocols
including coherency and communication protocols. A combination of parameters
results in a different machine configuration and the performance results allow the
simulation user to compare and contrast various design features of a parameterised
system.

Chapter 4. Design Space Exploration and Performance Analysis 149

Appendix B presents the details of parameters of HASE QCDOC model design
entities. Along with the parameter description, values filtered by an entity during a

simulation run are listed. These time stamped values (against execution clock cycles)
helped in validation, performance exploration and analysis of the simulation runs.

For a range of simulation experiments, the parameterised HASE entities are

essential to allowing alternative configurations of the QCDOC processing node design

components to be analysed and investigated. Central to the execution of the HASE
QCDOC model is the host interface entity, the SimMode ENTITY. The SimMode
ENTITY controls and directs a simulation run for the HASE QCDOC processing node
entities.

4.2.2.1 The SimMode ENTITY

This entity provides a central control mechanism over the HASE QCDOC model
between successive simulation runs. SimMode parameters include SimulationMode,

TestEntity, t_sites, x_sites, y_sites, z_sites and SimTime.

SimulationMode

The HASE QCDOC simulation behaves differently in each of the five simulation
modes, as stated in table 4.3. These modes are included in order to facilitate

design, debugging and experimentation with the HASE QCDOC simulation
models. For instance, in the HASE QCDOC model, often when a memory

parameter value is altered, it results in writing to a physical memory file. The
file write option is extremely slow, especially if multiple entities and files are

involved, thereby making it extremely difficult to synchronise in a clocked
system. Moreover, during the development of the HASE QCDOC model, testing
and debugging of different design entities require switching on/off selective
entities. Thus, a SimulationMode parameter is introduced in the SimMode
ENTITY such that all HASE QCDOC model entities read a notice informing
them of the current simulation mode. In test mode, only the selected entity is
considered active.

Chapter 4. Design Space Exploration and Performance Analysis 150

Mode Description

WarmUp Start up check. A failure in this mode means that no
other mode will work. It indicates a problem in the
HASE platform or an erroneous system configuration.

InitialiseMemoryFiles When the configuration of a HASE memory file
changes, the physical memory contents must be up¬

dated. For instance, if the number of sets in the set-

associative data cache is altered through the MMU

parameter window, the data cache .mem file must be
re-written. The InitialiseMemoryFiles mode al¬
lows these contents to be updated selectively (through
the TestEntity selection box), such that only the

memory contents of the TestEntity are updated. No
other .mem file in the system is written, since only the
TestEntity is active in the simulation.

SetupCommunicationNetwork HASE permits updating of the machine
dimensions via the project EDL file. The
SetupCommunicationNetwork mode prints the

unique identity of each processing node in the
complete machine and its neighbours' identities in x,

y, z and t directions.
RunProgram The RunProgram mode causes the QCD code in the

instruction cache to be executed.

TestMode During the project development phase, it was nec¬

essary to design and test individual properties of

complex entities. The TestMode mode was included
in the SimMode ENTITY so that individual entities can

be tested and debugged while remaining entities do not
participate in the simulation. The individual compo¬
nents are selected via the TestEntity parameter.

Table 4.3: Simulation modes (SimulationMode) in the HASE QCDOC model

Chapter 4. Design Space Exploration and Performance Analysis 151

TestEntity

This parameter box shows all entities in a QCDOC processing node. The
TestEntity parameter selects an entity for the InilitialiseMemoryFiles and
TestMode simulation modes.

t_sites, x_sites, y_sites and z_sites

The computation and communication requirements of a QCD code depend on

the number of lattice sites per node. The values of the t_sites, x.sites,
y_sites and z_sites parameters are included to allow the scalability of the
QCD hardware to be studied as the computation and communication demands
of the system workload vary.

Varying the workload properties as well as the architectural parameters allows
hardware and software co-simulation in the HASE system. This hardware
software co-simulation approach, along with the flexible parameter change
mechanism in HASE, resulted in a wide range of experiments, which are

otherwise impractical to conduct within a unified framework.

SimTime

SimTime represents the maximum number of clock cycles for a simulation.
There are two reasons for this parameter: firstly, for the debugging and analysis
of the simulation, it is sometimes necessary to allow a simulation to stop after
a couple of cycles. Secondly, in case of a deadlock situation, to prevent a

simulation from running indefinitely.

Chapter 4. Design Space Exploration and Performance Analysis 152

4.3 Processing Node Performance Search Space

Exploration of the design space of the QCDOC architecture is one of the main aims of
the research presented in this thesis. The task begins with the processing node design
space. Experiments with a combination of HASE QCDOC entities' parameters have
been conducted to investigate the performance bottlenecks in the QCDOC processing
node design. Furthermore, ideal or upper limits to the achievable performance are

quantified. In a simulation model, unlike real systems, it is possible to emulate an

ideal case scenario, for instance, 100% cache hit or a zero latency.
Firstly, experiments were performed to quantify the difference in the simulation

execution times with and without taking advantage of the complete Instruction Level
Parallelism (ILP) in the CPU and FPU. HASE QCDOC processing node simulations

interpret each PowerPC instruction in an execution pipeline, as in a real system. The
drawback of this approach is that one target machine clock cycle requires many host
processing clock cycles for its execution, thus resulting in long simulation times. A
number of execution-driven multiprocessor simulators, for efficient simulation runs,

do not completely interpret ALU instructions. Instead, these are executed on a host
machine and replaced by a fixed cycle count. Experiments are conducted on the
model to identify whether complete interpretation of a large number of floating-point
ALU instructions is necessary for high fidelity execution times for the QCD code
experiments.

Secondly, the benchmark code for these experiments is the hand-coded QCD
kernels in the PowerPC assembly produced by the QCDOC design team. The
maximum achievable performance of the instruction mix was not documented. Even
though the QCD kernel is floating-point ALU intensive, on a RISC or load-store
processor, performance loss is mainly attributed to the unavailability of data in registers
or LI data cache. In order to determine how much improvement is possible with
a given instruction mix in a QCD routine, a set of experiments was performed so

that the overheads of the load store misses could be quantified. Thus, experiments
were conducted in an "Ideal Mode" to determine performance loss due to the given
instruction mix and to determine the ideal performance that could be achieved with the
given code, rather than a setting a target of 1 Gigaflops.

Chapter 4. Design Space Exploration and Performance Analysis 153

4.3.1 Execution-Driven CPU

Execution-driven simulations have been a popular choice because of their relatively
small simulation run times compared to instruction-driven simulations. Sivasubrama-
niam [Siv97] described an execution-driven simulator as one which tries to execute

the bulk of instructions at the native machine speed. In a multiprocessor simulation
model, an execution-driven model only simulates events like load/store and off-node
communication operations. In doing so, i.e., by not completely executing an instruction
and data path, the end results may not be accurate. Different host and target machine
characteristics can result in misleading performance results. For example, the target

system for QCDOC model is an embedded PowerPC processor with no operating
system overhead for the application code execution, while the host machine is an Intel
Xeon processor with Linux operating system.

The effects of not executing bulk register-to-register instructions are shown in
figure 4.15, in which execution-driven simulation times (without ALU instructions
interpretation) in clock cycles are compared with instruction-driven simulation times
(with ALU instruction interpretation).

110000

100000

90000

80000

70000

£ 60000

>• 50000

-g 40000
n 30000

40000

20000

10000

0

0 4000 8000 16000 29000 54000 81000 102000

Number of Floating-point Instructions

Figure 4.15: Execution-driven simulations vs. instruction-driven simulations

Chapter 4. Design Space Exploration and Performance Analysis 154

A parameter was introduced in the CPU ENTITY which selectively interpreted the
load, store and branch instructions. From figure 4.15, it was identified that there is
no correlation between the total number of instructions executed and the number of

load and store instructions clock cycles. Hence, it is not possible to replace execution
of an ALU instruction by a fixed cycle count. In ILP processors, instruction execution
depends on a range of factors, including dynamic data and control dependencies within
the execution pipelines. It was therefore deemed necessary to interpret and to execute

complete instruction and data paths on the model.

4.3.2 Maximum Achievable Performance

Since the QCD test software was used on as as is basis, the maximum peak perfor¬
mance the code could achieve in an ideal situation (with two floating-point and three

integer execution pipelines) was explored. As the code is floating-point operation
intensive, a parameter called Ideal mode was introduced in the FPU ENTITY. If the
Ideal mode is selected, all floating-point load and store instructions assume an LI
cache hit. As a result, no performance loss is incurred from load and store misses in
the code execution.

Figure 4.16 shows percentage of theoretical peak performance achieved by QCD
test routines on the model with the smallest local volume (2x2x2x2 sites per node)
and with the default QCDOC machine configurations. Peak performance of a QCDOC

processing node is 1 GFlops; with two floating-point execution units operating at a

frequency of 500 MHz.

Chapter 4. Design Space Exploration and Performance Analysis 155

80% -i

75% -

□ Normal Execu¬
tion

H With 100%
Cache Hits

0%

u

o

Kernel Functions

Figure 4.16: Maximum achievable performance of kernel subroutines

With 100% Level 1 cache hits, the performance loss is solely due to the instruction
mix of the test code. In other words, it can be assumed to be the upper bound on

performance. The FPU ENTITY has two execution units; the percentage of peak
performance is therefore calculated by dividing the number of instructions executed
by twice the total execution time.

The four subroutines shown in figure 4.16 are executed once during each iteration;
there are four such iterations per QCD kernel. Thus, potentially, on average, a

14% performance gain is possible in computation subroutines provided the execution

pipelines processor configuration remain the same. This gain can be achieved by
minimising LI cache misses or maxmising cache hits.

Floating-Point Instructions Executed

%performance =
* 100

2 * Execution Cycles

Chapter 4. Design Space Exploration and Performance Analysis 156

4.3.3 Memory Hierarchy Design Space

The custom SOC memory hierarchy was explored by varying the on-chip memory

latencies and bandwidths. These values were controlled via the parameters in the
MMU ENTITY, the PDB ENTITY and the EDRAM ENTITY. The default configuration
of memory modules is as follows:

• LI Data Cache: 32 KBytes, 64-way set associative, 32 bytes (8 words) cache
lines. Out of 64 ways, 2 ways are configured as 'transient' for communication
data and the rest are set as 'normal'. A TLB storage attribute specifies whether
a cacheable page belongs to a transient way or to a normal way.

• L2 Prefetch/Buffer Cache: 4 x 1024-bit read registers, 2 x 1024-bit write regis¬
ters. Able to return 128-bit data in case of an L2 read hit at the processor clock

speed.

• L3 On-chip Memory: 4 MByte EDRAM, multiport, with a separate address
space. Data path width to L2 is 512 bytes; it operates at half of the processor

clock speed.

Although the size of each level of memory is a parameter, i.e. it can be altered, the
results presented in the following sections do not change LI cache and on-chip memory
sizes for experiments. This is because in practice, changing the size of memory
modules on an SOC has many implications, including power and chip physical size
requirements. The run time for each experiment is measured in clock cycles, where
the PowerPC clock cycle rate is 500 MHz.

Table 4.4 and table 4.5 list the LI and L2 cache parameter values in the HASE
QCDOC model that are altered for simulation experiments.

Chapter 4. Design Space Exploration and Performance Analysis 157

LI Line Size 128 bits 256 bits 512 bits 1024 bits

Number of sets 64 32 16 8

LI Data Bus Width 128 bits 256 bits 512 bits 1024 bits

Table 4.4: L1 cache parameter values

L2 Line Size 256 bits 512 bits 1024 bits 2048 bits

Prefetch Registers 2 4 8 16

Buffer Registers 1 2 4 8

L2 Bus Width 128 bits 256 bits 512 bits 1024 bits

Replacement Policy LRU Random Round Robin

Table 4.5: L2 cache parameter values

Combinations of the LI and L2 caches' parameters in table 4.4 and table 4.5 are

explored in the simulation experiments. Operations that access these caches as well
as the EDRAM are the load and store operations and the "data cache block touch"
(debt) instruction and prefetch operations initiated in the L2 cache. All floating-point
operations including load-store are performed on 64-bit values for double precision
QCD calculations, while integer load/store are 32 bits.

4.3.3.1 L1 and L2 Cache Line Sizes

The LI cache line size can be altered by changing the number of sets or the number
of cache lines per set (keeping the overall cache size constant). Prefetch read register
sizes, the L2 cache line size, can be altered by increasing or decreasing the number and
size of prefetch read registers and write buffer registers, such that the L2 read register
size remains constant at 4-Kbit. In exploring the effect of LI and L2 line sizes, the
bandwidth and latency of the three levels of on-chip memories were kept constant.

Figure 4.17 shows the floating-point unit performance for the optimised QCD
routines with varying LI and L2 line sizes.

Chapter 4. Design Space Exploration and Performance Analysis 158

L2 Prefetch Size

Figure 4.17: Performance variations as a result of L1 cache line size and L2 cache

prefetch size

With a small prefetch size, 256-bit and 512-bit, the effect of increasing LI line size
is small. A large prefetch size, 1024-bit and 2048-bit, means fewer prefetch registers
in the L2 cache. These results demonstrate that the QCD kernel code does exploit the

spatial locality offered by a large LI and L2 cache lines, but needs frequent memory
accesses beyond the prefetch boundary lines. The best performance is achieved with
the default L2 configuration and a 512-bit LI cache line (default is 256-bit). This
confirms that a large L2 line is essential for the QCD computation and the a relatively

large LI line size can enhance the achievable performance.
The results in figure 4.17 show that floating-point performance depends on the LI

line size. For a small LI line size, for instance, 128-bit line and 256-bit line, the

execution times are high. At the same time, a very large LI line does not always give
a better performance. There are two reasons for this behaviour: firstly, with a large LI
line size, the load latencies are high as the processor has 128-bit read lines. The second
reason is linked to the write latencies. A large LI line takes longer to be written back
to L2 and it needs more memory for write flush buffers. Performance is best when LI
and L2 sizes differ by a factor of 1 or 2. A small L2 line compared to large LI line

Chapter 4. Design Space Exploration and Performance Analysis 159

is not useful because for each LI line fill, a large number of L2 lines (prefetch read
registers) have to be invalidated and prefetched. Moreover, a small L2 compared to
the L3 bus width will not utilise the available bandwidth to L3 and possibly result in a

large number of small prefetch read registers. Due to the LRU replacement policy and
the coherency protocol requirements, a large number of prefetch registers would add
to the complexity of the L2 cache design, which must run at the processor speed.

The performance results also show the affect of L2 line sizes. The size of prefetch
register increases at the cost of the number of available associative prefetch read

registers. For example, for the default L2 configuration of four 1024-bit read registers,
a read request from the LI cache brings a whole 1024-bit line from the L3 cache
into L2. With four available registers, there can be 4 memory sections present in the
L2 cache. If the configuration changes to 2 x 2048 registers, an L2 miss brings a

whole 2048-bit line into the L2 cache. However, in this instance, it can only access

two memory regions and with an LRU replacement policy, this configuration does not
perform well for scattered data and data beyond the 2048-bit boundaries.

Finally, comparing the effect of LI line size and L2 prefetch line size, it was found
that the former has the greater impact on performance. Similar results were obtained

by Bernard et. al. [BDG+95]; they explored QCD code performance on POWER

processor based IBM SP2 supercomputers. They suggested that the performance of
QCD application code depends on the width of the primary cache line. From the
simulation experiments on the QCDOC model, it was found that a large LI cache line
does not (always) help in performance improvement on the QCDOC SOC design. This
is because a large LI cache line will result in transfers of a large numbers of read data
blocks from L2 cache and L3 cache, which may cause a number of write flushes across

L3 write ports at a slower clock rate. Particularly, for the store intensive code, a large
LI line may not bring extra benefits as stores have to be flushed immediately to the L3
cache due to the incoming read requests.

Chapter 4. Design Space Exploration and Performance Analysis 160

4.3.3.2 Bus Widths

In a pipelined load-store processor, maximum processing power can be achieved only
with zero latency and an infinite bandwidth between levels in the memory hierarchy.
A wide 512-bit on-chip data bus, operating at half of the processor clock speed cannot
achieve the optimal target, but it can assist in lowering access latencies and keeping

up the bandwidth. Wide on-chip memory buses that can move sequential words
between memory levels can increase the memory bandwidth and, by being closer to
the processor clock rate, can reduce the latencies associated with a cache line fill.
There is a cost associated with wide on-chip buses however, in terms of on-chip area

and power consumption. In order to establish the effect of data bus widths (128-bit
between MMU and FPU/CPU and 512-bit between PDB and EDRAM in the QCDOC

ASIC), experiments were performed with different bus widths in the model. For these
experiments, the LI and L2 line sizes were fixed at their default values: 256-bit and
1024-bit respectively.

The effect on the floating-point execution unit performance with respect to changes
in the L1-L2 and L2-L3 access bus widths, and consequently bandwidths, is shown in

figure 4.18.

600 -i

128-bit 256-bit 512-bit 1024-bit

L2 Bus Width

Figure 4.18: Effect of L1-L2 and L2-L3 cache bus widths

Chapter 4. Design Space Exploration and Performance Analysis 161

For the first two levels of memory hierarchy on the QCDOC ASIC, the clock rate is
the same as that of the processor clock. Therefore, potential increases in the bandwidth
were effected by changes to the bus width parameters. An increase in L2 bus width
has a steady effect on the performance, while an increase in LI bus width only has a

marginal effect. A quick L2 line fill, with a wide data bus between L2 and L3 caches,
results in a quick response to successive LI line fill requests. Moreover, the latency
of L2 cache accesses to L3 is higher as compared to LI cache to L2 cache accesses,

and reducing the former latency has a greater impact on the performance than the latter
does.

4.3.3.3 Data Cache Configurations

Although the QCDOC operating system assigns most memory regions as cacheable,
the data received from the neighbouring nodes are kept in the non-cacheable pages.

Communication data to be sent to the neighbouring processors are kept in the transient

pages; PowerPC offers special instructions to flush these pages. Information about the
classification of memory pages as normal, cache-inhibited and transient pages is stored
in the TLB, which in turn relies on the distribution of cache lines into normal, transient
and locked regions. The data cache configuration is critical to processor performance,
particularly the data cache line sizes and their access latencies. As identified earlier,
in the QCD kernel code, a series of load instructions is followed by an even larger

sequence of floating-point arithmetic operations, which in turn is followed by store

operations. Floating-point data is double-precision, 64-bit data, and a default cache
line can store up to two floating-point values.

Theoretically, QCD data structures with a high degree of spatial locality, should
benefit from large cache line sizes. However, the disadvantage of a large LI line size
can restrict the overall performance gains. The potential disadvantages include loading
of large segments of unused data and reduced set associativity for constant cache size.
Using data cache prefetch instructions, this problem can be increased many-fold. The
overall effects of varying the cache line and data read and write bus widths are shown
in figure 4.19.

Chapter 4. Design Space Exploration and Performance Analysis 162

128-bit 256-bit 512-bit

L1 Bus Width

1024-bit

L1 Line Size

□ 128-bit
11 256-bit
□ 512-bit
□ 1024-bit

Figure 4.19: Performance variation due to L1 cache configurations

The results demonstrate that a wide LI cache line, 512 bits (8 floating-point words),
is best suited for the QCD application code. Large cache lines increase spatial locality
at the cost of reduced associativity, reducing the cache read hit rate and causing

frequent line replacements. Moreover, a large cache line with a relatively small read
and write bus width, results in an increase in bus traffic. At the same time, the effect

on the outstanding load and store buffers of a very large cache line is to reduce the
effectiveness of the spatial locality they offer. Another observation is that the bus
width has very little effect on performance. A more efficient line fill can only make
a difference if load requests to very large memory blocks (a few tens to hundreds
of cache lines) are initiated within a short interval, which is not the case with the

QCD calculations. Adjacent memory words are needed at regular intervals in the
calculations.

4.3.3.4 Cache Prefetch Instructions

The cache touch (prefetch) instruction in the PowerPC ISA plays a significant role
in improving the performance of load-store operations. For the results presented in
section 4.3.3.1 and section 4.3.3.3 with varying LI line sizes, the cache touch (debt)

Chapter 4. Design Space Exploration and Performance Analysis 163

instructions were not executed as part of the hand-coded assembler kernels. These

optimised assembler kernels were written for 32-byte cache lines. Figure 4.20 shows
the benefits of using cache prefetch instructions for the default QCDOC machine
configuration.

□ With
prefetch

^ Without
prefetch

u al
9 E,

U 1

QCD Subroutines

Figure 4.20: debt — cache touch instructions

A significant performance gain can be achieved by using the prefetch instructions:
the QCD memory access pattern does not benefit from standard cache optimisation
techniques that rely on the locality of data. The optimised QCD assembler kernels
therefore make frequent use of cache touch instructions.

For portability of these assembler kernels across systems with different cache line
size, the Motorola AltiVec [Alt] technology Data Stream Touch instructions (dst)
would be quite useful, in particular, when a series of prefetches needs to be performed
with fixed block strides. The AltiVec dst permits a program to indicate that a sequence
of units of memory (described by an effective address, size of words, number of units
and a fixed stride) are likely to be accessed soon by memory access instructions.
Although the dst instruction has a benefit over the debt instruction, dst instructions
must be used carefully to avoid poor utilisation of the available memory bandwidth
due to increased memory traffic.

Chapter 4. Design Space Exploration and Performance Analysis 164

4.3.4 Prefetch Engine Configurations

A set of experiments was performed by varying the prefetch size with three L2 sizes:
4K-bit, 8K-bit and 16-Kbit. For a fixed L2 cache size, increasing the prefetch size
reduces the total number of prefetch registers, thereby limiting access to discrete

regions of memory. A small prefetch size allows more registers in the L2 cache,

potentially permitting access to discrete memory regions. Figure 4.21 shows results
of experiments performed using the QCD test code with varying prefetch sizes.

in

"5r 400 -
Q.
O S50 -

4-Kbit 8-Kbit 16-Kbit

Prefetch Cache Size

Prefetch Size

□ 256-bit
11 512-bit
□ 1024-bit
ED 2048-bit

Figure 4.21: L2 prefetch cache configurations

With no prefetch, i.e., the L2 fetch size is equal to the LI line size, an LI read
miss has a minimum latency of 6 clock cycles compared to a 1-2 clock cycle latency
when the data is available in L2. It was found through HASE QCDOC simulation

experiments that a very large prefetch size does not improve performance because of
frequent invalidations of a small number of L2 prefetch registers. Similarly, overall L2
size has very little impact on code performance. The main advantage of a large L2 is
infrequent prefetch register invalidations; incoming data invalidates the existing data
less frequently because of the availability of a larger pool of registers.

Chapter 4. Design Space Exploration and Performance Analysis 165

A second set of experiments was performed by varying the relative clock frequency
of L2 with respect to the processor clock frequency. In QCDOC, the small, on-chip L2
cache operates at the processor clock frequency. In practice, if larger L2 sizes were to

be used, a lower frequency would be inevitable. For instance, the Bluegene/L has a 32¬
KByte L2 which operates at half the processor clock frequency [Tea02]. Figure 4.22
shows the importance of having a low latency L2 cache when running QCD code. As
in the prefetch size experiments, a bigger L2 size has very little impact on QCD code
performance.

L2/Processor
Clock Frequency

4xl-Kbit 8xl-Kbit 16xl-Kbit

Prefetch Cache Size

Figure 4.22: L2 prefetch cache access latency

Finally, the replacement policy for the prefetch read registers was evaluated. The
default replacement policy is LRU for 4xl024-bit prefetch read registers. This LRU
policy is compared with round robin and random replacement policies.

In figure 4.23, the number of prefetch registers is increased while the prefetch
size is kept constant (1024-bit). The results shows that the QCD load request pattern,

especially when a large number of prefetch registers are involved, does not significantly
benefit from the LRU policy. Particularly, the round robin policy has an effect similar
to the LRU in all performance experiments. Likewise, increasing the prefetch size
with four prefetch read registers has very little effect across the different replacement
policies, as shown in figure 4.24.

Chapter 4. Design Space Exploration and Performance Analysis 166

600-1

2x1 Kbit 4x1 Kbit 8x1 Kbit 16x1 Kbit

Prefetch Read Registers

Figure 4.23: Prefetch read registers replacement policies (L2 Cache) — with constant

prefetch size

600 n

32Byte 64Byte 128Byte 256Byte

Prefetch Register Size

Figure 4.24: Prefetch read registers replacement policies (L2 Cache) — with fix number
of registers

Chapter 4. Design Space Exploration and Performance Analysis 167

In the case of a very large sequential line, 128 Bytes, the random replacement
policy replaces lines that may still be used, while the LRU and the round robin policy
keep a line which is sequentially transferred to the LI cache. Overall, QCD code

performance is not improved by employing an LRU policy with the default L2 cache

configuration. A round robin policy, which is far simpler to implement in hardware,
can have similar effect on the QCD code performance.

In summary, the prefetch engine configuration experiments demonstrate that the
QCD kernel, like a number of other compute- and data-intensive scientific kernels,
gains little from conventional data cache locality enhancements. Therefore, a prefetch
engine assisting low latency and high bandwidth LI line fills improves code perfor¬
mance. The spatial locality of the QCD code takes advantage of the prefetch engine
which is capable of returning data within 1-2 clock cycles. Increasing the size of L2
cache does not compensate for increased L2 to LI data fetch latency. Typically, a QCD
subroutine begins with a series of 64-bit floating-point data fetch (load) instructions.
By prefetching a number of cache lines in advance, subsequent cache requests can

be served relatively quickly. Similarly, for a small prefetch size, back-to-back LI read
misses follow L2 read misses. For a very large L2 prefetch, the data coherency protocol
and a small number of available registers induce frequent invalidations of the prefetch
read registers.

4.4 Custom Interconnection Network Performance

The custom-designed communication unit SCU in the QCDOC ASIC supports the

QCD-specific communication patterns. The SCU ensures, with minimum CPU in¬
tervention, concurrent bi-directional communication of data packets in the four-
dimensional torus network. The communication unit contains buffers and registers
associated with each send and receive port. Communication data integrity and efficient
performance are governed by a custom-defined network protocol [BCC+02a], Param¬
eters of the SCU ENTITY and the computation-communication overlap characteristics
of the parallel QCD code have been explored in the simulation experiments.

Chapter 4. Design Space Exploration and Performance Analysis 168

4.4.1 On-chip and Off-chip Communication Latencies

Table 4.1 lists off-node communication time for a 64-bit data transfer over the three-

dimensional torus network between nearest neighbours in a given dimension. 138

processor clock cycles in total are required for sending 64 bits over a serial link
including the acknowledgement receipt time. By comparison, transferring on-chip
128-bit communication data between the EDRAM and the communication unit (SCU)
takes about 10 clock cycles over the system bus, PLB (operating in burst transfer
mode). The PLB is not dedicated to the EDRAM and SCU data transfers; it is
shared by a number of devices, including the off-chip memory SDRAM controller.
Likewise, in a non-ideal situation, off-node communications suffer from network
errors: communication packet loss and/or corruption. In order to establish the effect
on performance of on-chip and off-chip communication latencies, experiments were

performed by varying the on-chip and off-chip data transfer latencies. These latencies
are increased by 10 clock cycles for each set of experiments. Figure 4.25 shows the
results of these experiments.

□ PLB Latency
3 Off-node

Communicati
on Latency

Default +10 +20 +30 +40

Figure 4.25: Effect of on-chip and off-chip communication latencies

Chapter 4. Design Space Exploration and Performance Analysis 169

PLB (on-chip) transfer latencies do not affect performance at all. This is because
in 10 clock cycles two 64-bit packets are delivered to the SCU send buffers, which
in turn takes more than 200 clock cycles to be delivered to the neighbouring nodes'
receive buffers. An increase in the off-node communication latency on the other
hand has a major impact on performance, as shown in figure 4.25. Most main-stream
interconnection networks have a sophisticated switching and routing scheme. These
benefit large packet transfers but have initial startup latencies. QCD communication

packets, on a fine-grain system like QCDOC, are much smaller in size and their
communication performance significantly suffer from large startup latencies. That
is why QCDOC has a switchless, direct communication network and a special, low
overhead communication protocol.

4.4.2 Local Computation and Communication Load Balance

In parallel QCD code execution, performance is enhanced by overlapping the local
floating-point code execution with the nearest-neighbour communication along the
four dimensions. QCD code is considered as compute-intensive, i.e., more time is

spent in execution pipelines than off-node communications. In order to observe this

phenomenon, experiments were conducted with varying problem size on a QCD node.
These experiments do not take into account any kind of communication errors: lost or

corrupted packets. In the presence of network errors, communication times may exceed
computation times, as the off-chip transmit latencies are far bigger than the on-chip
latencies. The effects of unreliable links on the communication times are presented in
section 4.5.

Figure 4.26 shows the scaling behaviour of computation and nearest-neighbour
communication functions of parallel QCD workload.

Chapter 4. Design Space Exploration and Performance Analysis 170

60000

55000

-£• 50000
Sj 45000
~

40000

1 35000

c 30000
o

25000

oj 20000
W 15000

10000

5000

0

2*4 2*3x3 2*3x4 2*3x5 2*3x6 2*2x 2*3x8 2*2x 2x3*2 2x3x
3x4 4*4 x4 4*4

Lattice Sites per Processing Node

Figure 4.26: Computation and local communication scaling

Although these results confirm that the QCD kernel code execution is dominated

by the computation routine execution, an interesting observation was made. When the
numbers of sites per node are evenly distributed per lattice site per lattice dimension,
for example, 2x2x2x2 lattice sites per node, the computation time far exceeds the
nearest-neighbour communication time. On the other hand, if the number of sites
mapped onto a processing node varies in the number of sites in a dimension the
communication volume becomes unbalanced. This results in an unbalanced and

significantly high communication requirement along the neighbouring nodes, for

example, with 2x2x2x8 sites per node, where the communication volume along three
dimensions is larger than the fourth one. Thus, a mapping of 2x2x4x4=64 sites

per node is more efficient in the nearest-neighbour communication times than a

2x2x2x8=64 sites per node. The QCD code, once the overlapping computation part
is finished, keeps on polling for the nearest-neighbouring data to arrive before the next
computation and communication step. If, for some reasons, the nearest-neighbour
communication in a single direction out of the possible four space-time directions does
not complete, it can have an adverse effect on the overall performance of the code.

Chapter 4. Design Space Exploration and Performance Analysis 171

4.5 Large Machine Configuration Modelling

Characteristics features of parallel QCD kernel calculations include the intensive,

double-precision floating-point computation, nearest-neighbour communications and
global sums. The distinguishing feature of global communications, also known as

collective communications, is that all the processors make the call to synchronise the
communication routines, whereas in the case of a point-to-point communication, the
sending and the receiving neighbouring pairs communicate independently of other
inter-node communication operations. Precisely for this reason, a small machine
cannot establish the global sum performance; a full-size HASE model is necessary

to run these simulation experiments. Single node performance experiments and
local communication protocol tests have been run on a 16-node HASE QCDOC
model. A 16-node model allows execution of SPMD style programs and four-
dimensional nearest neighbour communications. QCDOC will achieve the 10-Teraflop
peak performance with over 10K processing nodes operating at a 400-500 MHz clock.
The HASE QCDOC model was expected to scale to up to 10K processing nodes. This
target proved to be infeasible with the current Linux operating system limits.

The Hase++ library employs multithreading to exhibit parallel execution of HASE
entities and among several instances of an entity. The maximum thread limit of the
host operating system Linux at the time of designing and implementing the simulation
models was 7168 (/proc/sys/kernel/thread-max).6 Additionally, the simulation engine,
Hase++, enforces mutual exclusion zones for the execution of entities' threads. Hence,
in the presence of very large number of threads, the simulation run-time in terms of
wall clock time is extremely slow on a uniprocessor host machine. A single HASE
QCDOC processing node requires several threads to be in execution concurrently.
Furthermore, the required memory overhead per processing node for a 10K processing
node on the host machine was considered impractical. Hence, the first design decision
was the removal of all memory ARRAYS from the HASE QCDOC entities. This did not
solve the other crucial problem — the thread limitation of the host.7 It was therefore

6Linux kernel versions 2.4 and above allows the maximum thread limit to be altered at run time.
7A minimum of 10K threads are required if the HASE MESH4D template generates a full scale

QCDOC simulation.

Chapter 4. Design Space Exploration and Performance Analysis 172

decided that the behaviour of multiple processing nodes should be simulated within
a single HASE entity, or a high level abstraction of the HASE QCDOC processing
node. Furthermore, the QCDOC four-dimensional torus topology is mapped onto

a conventional four-dimensional array construct to simulate a 10K processing node
system. This process involved extending the current SCU ENTITY (no other entities
were effected because their behaviour was represented as a trace). The SCU ENTITY is
the only entity in the model that has off-node links. The parameters added to the SCU
ENTITY are presented in table 4.6.

Parameter Description

size_4dim Number of nodes in each dimension of a four dimen¬

sional physics network

glbsum.policy This parameter determines the scheme used to add the
double-precision floating point value over the inter-node
communication network (section 4.5.1)

error_mode If set to 1, a random probability is applied over the com¬

munication channel to test performance of the nearest-

neighbour communications

Table 4.6: Additional parameters in the SCU ENTITY

By creating a high-level abstraction model and incorporating the parameters shown
in table 4.6 additional sets of experiments are possible with a HASE QCDOC simula¬
tion model containing a large number of processing nodes. The extended SCU scheme
allowed two experiments in particular to be conducted on the model: one was the
custom-protocol evaluation in presence of unreliable links and the other the global
sum performance over a large machine. The global sum (collective communication)
operations are implemented in the QCDOC and other high ends systems using a variety
of techniques.

Chapter 4. Design Space Exploration and Performance Analysis 173

4.5.1 Global Sums Schemes

In order to avoid rounding errors of floating-point operations carried out on 10K

processing nodes, the global floating-point addition has to be performed in an identical
order across all nodes. The QCDOC SCU contains a pass-through unit that not only
ensures that these sums are performed in an identical order but also maximises the
efficiency of these collective communication operations. The HASE QCDOC model
simulates complete functionality of the pass-through unit over the torus network. In
addition, it simulates a binary tree network, thereby allowing a user to investigate the

impact of several global sum schemes over the two networks on the QCD collective
communication operations.

Figure 4.27: A binary tree network

In a binary tree network (figure 4.27), a global sum can be performed in one round-
trip to the tree:

1. Reduction: Each leaf node sends its double-word value to the parent node. The

parent node collects the double-word values from the left and right nodes and
the FPU adds the values with the local data. The result is loaded into the send

register of its parent node. This process is repeated until the root node contains
the sum of its left and right nodes' values and its own value.

Chapter 4. Design Space Exploration and Performance Analysis 174

2. Broadcast: The second step is the broadcast of the floating-point sum value to
all nodes. This step may involve CPU intervention if re-direction is not made
automatic. Each node sends the value it receives from its parent to its left and

right nodes (except the leaf nodes).

Three latencies are involved in a tree network sum: communication latency,

computation of floating-point sum and CPU overhead in re-direction. The overall
complexity of a global operation on a tree network is a function of the height of the
tree network (log2(N)).

QCDOC global sum communications do not follow the same bi-directional custom
protocol as local communications: a sent packet is not acknowledged. It is reported8
that unreliable links are more likely to be identified in the frequent nearest-neighbour
communications. Moreover, the authenticity of the global sum results, indeed the
whole QCD calculation, is established by rotating lattice points on processing nodes.
In practice, a QCD calculation with a given lattice configuration is performed several
times to validate and verify simulation results.

On the simulation model, it was considered useful to quantify the overheads with
and without the nearest-neighbour protocol latencies. The following sections provide
details of the four global sum options in the HASE QCDOC model.

4.5.1.1 Shift and Add

This mechanism follows the default global four-dimensional torus communication
pattern,9 i.e., it sums along one direction at a time in (N-l)/2 steps, then sums the
nodes and communicates data in the next direction. This process is repeated for the
four directions. The simple shift and add mechanism assumes that two CPU overheads
exist: the pass-through overhead and direction change overhead.

8A. D. Kennedy (2003) UKQCD collaboration, private communication.
'Explained in section 4.1.3.1

Chapter 4. Design Space Exploration and Performance Analysis 175

4.5.1.2 Enhanced Shift and Add

This mechanism is quite similar to the shift and add in terms of the pattern of
communication. The main differences are in the CPU overhead and communication

latencies. It assumes that the pass-through process is automatic and only a direction

change overhead is involved. For the communication, incoming data can be redirected
before a successful double-word transfer is complete. Enhanced shift and add performs
far better than simple shift and add because of low CPU overheads, but with added
hardware complexity.

By making the pass-through mechanism automatic and allowing the incoming
bits to be re-directed without waiting for the whole double-word packet, the message

transfers and redirection times are significantly reduced, as shown in figure 4.28.
r

i i
i Simple pass-thru j | msg send

| msg recv

CPU intervenes
in pass through

I msg send
I msg ree^

Time

r I

j Enhanced pass-thru i
msg send

msg recv

automatic
pass-thru

msg send
I —

I msg recv ^ . a
Time

Figure 4.28: Simple and enhanced shift-and-add pass-through global sums

Chapter 4. Design Space Exploration and Performance Analysis 176

In the simple pass-through mode, since CPU intervention is needed for data for¬
warding to the sender, the double-word must be received first. When data forwarding
is made automatic, as in the Enhanced pass-thru mode, the incoming data can be
forwarded to the sender port without waiting for the whole word. This significantly
reduces the message transfer times by overlapping incoming and outgoing message

transfers.

4.5.1.3 QCDSP-style Global Sums

The communication unit in the QCDSP (predecessor of QCDOC) machine contains a

bit adder in addition to a pass-through unit and allows hardware-controlled commu¬

nication and bit manipulation between a subset of incoming and outgoing ports. This
flexibility permits a tree network to be formed from a periodic four-dimensional mesh
where an assigned node can behave as a tree node, sending and receiving from a subset
of connected nodes as shown in figure 4.29.

PQ
oo
a

0
U

1
c

automatic,
PQ
oo
c
'o
O

-

â
O

Bit-Serial Adder

QCDSP Communication Unit

Figure 4.29: A QCDSP SCU pass-through unit with a serial adder

A root node can be designated as a source of broadcasts and a destination for
reduction operations. The QCDOC binary tree exchanges double-word values and
requires double-precision floating-point addition. In other words, CPU intervention
occurs at each step of the reduction operation. It can however be replaced by arbitrary-
sized packet transfers (exponent and mantissa) which involve two round-trips of the
tree network:

Chapter 4. Design Space Exploration and Performance Analysis 177

1. Trip 1:

(a) Reduction: Find maximum of 11-bit exponents. Result in root node.

(b) Broadcast: Broadcast maximum exponent to leaf nodes.

2. Trip 2: Each node normalises its 52-bit mantissa according to max exponent.

(a) Reduction: Integer sum of 52-bit mantissae. Result in root node.

(b) Broadcast: Root broadcasts the sum of the mantissae.

Since this option assumes no data manipulation in an SCU, a CPU overhead is
included in each step of the reduction operations. Another component of the CPU
overhead will be added if re-direction is not automatic in broadcast operations.

4.5.1.4 Binary Tree QCDSP-style with a Serial Adder

The previous option (tree plus QCDSP-style) identifies the importance of a QCDSP
serial adder in a tree network. A serial adder with a capability of operating on incoming
bits as well as locally stored data eliminates the CPU overhead in reduction operations.
Assuming the redirection overhead can be eliminated or controlled in hardware, the
resulting global sum is extremely efficient. This option involves two round-trips of the
tree but with considerably less CPU overhead compared to the above two tree network
options.

Figure 4.30 shows the pass-through mechanism operating between three processing
nodes.

1
send

2
pass-through

3 Re-direction
i cr-u wrjte mem

d mem

Sender Receiver

1. recv latency
2. recv pkt
3. pass-through

1. cpu instr
2. scu fetch

3. start send

-a
I
<D

4. cp write mem
5. cp issue scu instr

Figure 4.30: Steps for computing global sums

Chapter 4. Design Space Exploration and Performance Analysis 178

Firstly, a sender, node 1, sends a data packet to its nearest neighbour, node 2. This
involves:

1. CPU writes instructions to SCU SRAM (DMA) to initiate a send.

2. SCU fetches data element from the on-chip memory via PLB.

3. SCU starts sending; this incurs a send overhead plus message transfer costs.

When the CPU instructs the sender node to send a data packet, it simultaneously
instructs the receiver (a sender itself is also a receiver for some other node) that the
receiver is expecting a packet. At the receiver side this involves:

1. Startup time: latency associated with a packet receive.

2. Transfer time: time to receive a complete packet.

3. Pass-through time: time to forward receive data to the designated sender port.

Once (N/2) sends and receives complete in one direction, the communication has
to be re-directed along a new axis. This involves first sending the collected data to the
on-chip memory. The collected data must be tagged i.e., each packet has a pointer so
that the sum will be performed in an identical order across all processing nodes on an

axis. This mechanism ensure no rounding errors. In the re-direction process:

1. SCU writes collected data to the memory.

2. CPU reads data to LI cache.

3. FPU adds the collected double values.

4. CPU writes sum to the memory.

5. CPU gets ready to send next pair of instructions.

Chapter 4. Design Space Exploration and Performance Analysis 179

Analytically, the total communication cost, ignoring on-chip data transfers and
manipulation overheads, for a four-dimensional torus network is:

Tcomm — 2 *(NX+ Ny + Nz +Nt)

and for a tree network is

Tcomm = 2 * log2 (Nx *Ny*Nz*Nt)

where Nx, Ny, Nz and N, are the number of nodes in x, y, z and t directions respectively.
Communication costs place an upper bound on overall global sum costs. In particular,
when CPU overheads are low, the scheme with a small number of sends and receives

performs better. With simultaneous, bi-directional communication of the QCDOC
network, the task is to minimise the CPU and on-chip bit transfer and manipulation
overheads.

4.5.2 Global Sum Performance

Table 4.7 lists the configurations used for the CG global sum experiments.

Option Mechanism

1 Simple Shift and Add
2 Hardware Enhanced Shift and Add

3 Hardware Enhanced Shift and Add with Nearest-Neighbour Proto¬
col

4 QCDSP-style global sum (MAX-BCAST-ADD-BCAST) with bit-
serial adder in SCU

Table 4.7: Global sum mechanisms — for 4D torus and binary tree networks

Each global sum mechanism is implemented in both the torus network and the
binary tree network topology. Machine dimensions vary from 24 processing nodes to
124 processing nodes. Figure 4.31 shows the results of the global sum simulations.

Chapter 4. Design Space Exploration and Performance Analysis 180

65

60

55

50

•- 25

20

15

10

5

0

16 256 1296 4096 10000 20736

Number of Processing Nodes

Figure 4.31: Global sum performance

When the system is configured as a hardware enhanced torus, the most efficient
results are obtained. The results are worst when the system is configured as a QCDSP-

style four-dimensional torus. In all other modes, except for the QCDSP-style mode,
the torus network has fewer communications than the binary tree networks. That
is why, when the CPU overheads are low, the torus network outperforms the binary
tree network. On the other hand, the tree network outperforms the torus network for
QCDSP-style global sum mechanisms.

Chapter 4. Design Space Exploration and Performance Analysis 181

4.5.3 Communication Protocol Efficiency

Figure 4.32 shows key steps of a QCD CG solver.

Initialisation

S
3
00

13
X
o

O
3"3
cx

E
o
U

a
.2
•4—>

rd

.2
'S

E
E
o
U
<D
>

o
U

Local Computation

Solved

Nearest

Neighbour
Communication

Barrier

More local computation
and nearest-neighbour
communication steps

Figure 4.32: Conjugate Gradient (CG) solver

The QCD CG algorithm permits local computations to be overlapped with nearest-

neighbour (NN) communications. Although these NN communications involve only
the adjacent nodes in each of the four directions, in some cases these communication
steps are explicitly synchronised by a barrier synchronisation mechanism, as imple¬
mented on the Cray T3E by Berry et. al. [BGK94],

Chapter 4. Design Space Exploration and Performance Analysis 182

In the absence of an explicit synchronisation step immediately after each NN
communication, a global reduction (a collective communication) operation that de¬
termines the iteration condition variable implicitly requires local computation and
communication steps to synchronise before the global reduction operation proceeds,
as shown in figure 4.32. Thus poor performance by a single node can potentially affect
the overall performance of a CG application.

Generally, the performance metrics reported for interconnection networks are the
peak throughput and average latency, according to Chien and Konstantinidou [CK94],
For deterministic and realistic estimates of off-node communication performance of
an application code, not only is the throughput at saturation important, but also the
other throughput measures, for example, throughput in the presence of network errors,
should be considered. Hence this research has focussed on investigating the effects
of the communication buffer size with varying channel reliability and communication
volumes. The overall reliability of communication channels is determined by taking a

ratio of the number of packets transferred to the number of erroneous messages. Since
the error distribution is random, the channel reliability across communication channels
varies; some nodes have no packet loss while other may have a higher than average

error rate.

Experiments were performed with three different combinations of local volumes.
For the lattice QCD calculations, the number of lattice points (sites) determines the
local volume. The communication and computation requirements of a QCD code
are directly proportional to the local volume (number of sites per node). Three local
volumes were used for the experiments: 24 sites per node, 22 x 42 sites per node and
44 sites per node. The results are measured in processor clock cycles (assuming a

500MHz clock).

Chapter 4. Design Space Exploration and Performance Analysis 183

4.5.3.1 Communication Workload Properties

Chien and Konstantinidou [CK94] identified that the space of workloads for parallel
interconnects has three dimensions: traffic pattern, message size distribution and
temporal distribution. For QCD simulations, the traffic pattern is quite regular, i.e., a

node communicates with its nearest neighbours along four (T, X, Y and Z) directions.
The number of messages varies with local volume, and local communication takes
place in a burst mode: the exchange of a large amount of data at regular intervals.

Agarwal [Aga91] found that the k-ary n-cube topology favours small message
sizes. In the QCDOC network, a double-word (8 bytes) was considered as a basic unit
of communication. Small packets sizes are thus stored in double-word receive registers
and buffered in double-word send registers. In addition to message size, two key
characteristics of a parallel QCD application code are the scaling of communication
data with respect to local volume and load balancing. In the case of 24 (2x2x2x2 sites
per node) and 44 (4x4x4x4 sites per node) there is no problem of load balancing as

each NN communication involves exchanging the same amount of data. However, with
the other distribution, 22x42 (4x2x2x4 sites per node), there is an imbalance in the NN
communications; two communication ports transfer more messages than the other two.
Moreover, the communication requirements (size of data transfers) increases four-fold
as the local volume increases from 24 to 22x42. For a 44 local configuration, nearly

eight times more data transfers are required as compared to a 24 configuration.

4.5.3.2 Impact of Communication Buffer Sizes

Figure 4.33 shows the average throughput and figure 4.34 shows the percent utilisation
of the communication channels for an NN communication for the smallest local

volume, figure 4.35 and figure 4.36 show the performance and channel utilisation re¬

spectively for the unbalanced workloads. The average throughput and communication
link usage are shown in figure 4.37 and figure 4.38 respectively for communication
message transfers with 4x4x4x4 sites per processing node. For the experimental results
represented in figures 4.33, 4.35, 4.37 and figures 4.34, 4.36, 4.38, channel error rates
vary from an ideal case with no packet loss to a situation where on average 20% of
packets are lost. Furthermore, the size of the communication buffers varies from a

Chapter 4. Design Space Exploration and Performance Analysis 184

400

350

a;
%£ 250
2
w 200
a>

c 150
aJ
£ 100

£
a>
^

0

5
T

-

❖
~>r

0
b— V V

•— •!
—♦ S-

T
\ <
V- —♦ »

: % ^
—♦— n

□ m
■— —m—

° ® H —■-— a

□ 8 Bytes 16 Bytes v 24 Bytes a 32 Bytes ► 40 Bytes
< 48 Bytes

100 95 94
~r

91 90 84 83

Channel Reliability
80 79 78

Figure 4.33: Communication performance over unreliable channels (24 sites/node)

90

80

— 70
£5 60

50

40

U 30

20

10

0

C
o

fti
in

CD
C
c
03

<D
CJ)
03
■*—'

c
CD
u
1—

CD
CL

0 4 y y

\ *
11 > B B

< ^ ^

T

♦ $

0

■- *— □ B B

□ 8 Bytes ♦ 16 Bytes v 24 Bytes A 32 Bytes ► 40 Bytes
~"

< 48 Bytes
i i r

100 95 94 91 90 84 83 80 79 78

Channel Reliability

Figure 4.34: Percentage channel utilisation over unreliable channels (24 sites/node)

single double-word buffer to up to six double-word buffers. Without an extra buffering

capability, i.e., sending a single double-word at a time with a 8 Bytes buffer, both
the performance and the channel utilisation is poor. Although an increase in buffer
sizes adds extra information processing time for message communications, the overall
NN communication performance improves with an increase in communication buffer
sizes except for the ideal case (no packet loss). This performance gain is a result of

Chapter 4. Design Space Exploration and Performance Analysis 185

□ 8 Bytes » 16 Bytes v 24 Bytes a 32 Bytes ► 40 Bytes
< 48 Bytes

i i i I i i I i i

100 96 95 91 90 87 86 85 80 78

Channel Reliability

Figure 4.35: Communication performance over unreliable channels (22x42 sites/node)

E
O

70

60

8— *-

■S 50

40

30

20

OJ
e
e
m
_e
U
<v
oi

§ 10 4H
o>
u
1—

a»
Q.

fcis*—i

o 8 Bytes ♦ 16 Bytes v 24 Bytes a 32 Bytes ► 40 Bytes
< 48 Bytes

1 1 1 i 1 1 1 1 1

100 96 95 91 90 87 86 85 80 78

Channel Reliability

Figure 4.36: Percentage channel utilisation over unreliable channels (22x42 sites/node)

an increase in the communication channel utilisation. The difference in throughput
from a single double-word buffer to the bigger buffer sizes is quite significant. At the
same time, however, there is no, or only a marginal difference in the communication
throughput as buffer sizes increase from a 2-double-word buffers to 6-double-word
buffers, particularly for the smallest local volume. For a large local volume this
difference becomes greater as the channel reliability decreases. Due to the message

Chapter 4. Design Space Exploration and Performance Analysis 186

in
CD

CO

CD
u
c
nJ
E

a>
D.

□ 8 Bytes ♦ 16 Bytes v 24 Bytes a 32 Bytes
► 40 Bytes < 48 Bytes

100 96 95

r

90 89 88 86

Channel Reliability

i

80
i

79
~i

78

Figure 4.37: Communication performance over unreliable channels (44 sites/node)

3

"oJ
c
c
m
-E
u
<v
en
ra
c
Ol
u
k_

<u
CL

100

90

80

70

60

50

40

30

20

10

0

4 $-

~EB IB ~

m m m -
^

— □ 8 Bytes
► 40 Bytes

♦ 16 Bytes v 24 Bytes a 32 Bytes
< 48 Bytes

1 1 i i i i i i i

100 96 95 90 89 88 86 80

Channel Reliability
79 78

Figure 4.38: Percentage channel utilisation over unreliable channels (44 sites/node)

processing and time-out interval requirements, buffer sizes over 3 double-words offer
a diminishing return on the throughput improvement.

Furthermore, an imbalance of communication data results in poor utilisation (fig¬
ure 4.36) of communication channels and lowers the average throughput (figure 4.35).
The local volume configuration 22x42 is an example of this behaviour. The size of
communication data in one direction is determined by the number of lattice sites

Chapter 4. Design Space Exploration and Performance Analysis 187

mapped per processing node in the other three dimensions. Hence, an increase in
the local lattice volume due to an uneven increase in the number of lattice sites in one

space-time direction results in an unbalanced communication volume for individual
space-time directions.

4.6 Summary

This chapter has shown the HASE QCDOC model at work. Computation and
communication characteristics of the QCDOC machine have been explored and the
key software characteristics of the QCD test kernel have been identified. Performance
evaluation experiments have been performed by altering the configuration of various
design parameters. Results have been analysed and discussed. Furthermore, the high
level abstraction model has been introduced and the performance results over the large
scale model with thousands of processing nodes have been presented.

The parameterised hardware and software co-simulation scheme employed in
designing the HASE QCDOC simulation models allows a range of experiments to
be conducted: (a) with alternate QCDOC design configurations and (b) with several
QCD workload distribution and mapping schemes. The next chapter outlines how the
application-driven QCDOC simulation design approach facilitate in predicting and
comparing parallel QCD performance on a future-generation supercomputer, Blue-
gene/L.

Chapter 5

Simulation Metamodelling

The previous chapter explained how the flexibility and ease with which parameters can
be included and altered within the HASE framework have been exploited in creating

parameterised simulation models encompassing QCDOC hardware characteristics and
parallel QCD software properties. The design space of the QCDOC architecture has
been explored and performance characteristics of the QCD kernel investigated through
experiments with alternative system configurations, which is the central research aim.
A related aim of the UKQCD computer simulation research is to predict achievable
performance of parallel QCD code on a next-generation supercomputer architecture
using parameterised HASE simulation models. The future-generation massively-
parallel processing (MPP) machine that has been considered is the Bluegene/L super¬

computer. This chapter explains the design and implementation issues for generating
HASE Bluegene/L model design configurations. Furthermore, the application-driven
simulation metamodelling concept is introduced; metamodelling enables efficient
generation of alternate simulation models by employing maximum component reuse
and minimum design overhead.

The layout of the chapter is as follows: firstly, an overview of the Bluegene/L
supercomputer is presented. Secondly, the similarities and differences between QC¬
DOC and Bluegene/L systems are identified. Thirdly, an analytical description of
the QCD application workload mapping and scaling behaviour is provided. Fourthly,
an introduction to the application-driven metamodelling of scientific supercomputers

using hardware-software co-simulation in the HASE is given. Finally, the results

188

Chapter 5. Simulation Metamodelling 189

of experiments comparing parallel QCD code performance on the HASE models

simulating QCDOC and Bluegene/L design configurations are presented.

5.1 QCDOC —> Bluegene/L Machine

Like a number of previous QCD-specific computing research efforts that influenced
main-stream parallel architectures, the 10 Teraflops QCDOC machine design has been
extended for a 180/360 Teraflops supercomputer called Bluegene/L. In 2001, IBM an¬

nounced construction of the Bluegene/L supercomputer for protein research [TeaOla].
"Blue Gene" is an IBM supercomputing project — it aims to build a new family of
supercomputers optimised for bandwidth, scalability and the ability to handle large
amounts of data. Among the first applications IBM is exploring to exploit Blue
Gene's massive computing power is modelling of the folding of human proteins.

Learning more about how proteins fold is expected to give medical researchers a better
understanding of diseases, as well as potential cures.

Unlike QCDOC, Bluegene/L is a general-purpose scientific supercomputer tar¬

geted towards a number of scientific workloads, according to IBM [GAB+02]. The
Bluegene/L architecture is said to be optimised for a range of matrix-vector multi¬
plication based scientific applications, most notably large-scale molecular dynamics
calculations. The processing node and internode communication architecture are

believed to be readily adaptable to a range of high-end scientific applications. An¬
other design merit is cost-effectiveness; by exploiting off-the-shelf, high performance
embedded System-On-Chip (SOC) and interconnect design technology, Bluegene/L
and QCDOC machines are more cost-effective than current supercomputing resources

due to: smaller physical sizes, low power and cost per processing node and power

efficiency. QCD calculations are considered among the scientific applications that are
expected to benefit from the Bluegene/L system architecture; hence, QCD simulations
are planned to be executed on the Bluegene/L machine.

Chapter 5. Simulation Metamodelling 190

5.1.1 Bluegene/L Architecture

Bhanot et. al. [BCGV02] stated that the Bluegene/L is the first step by IBM towards
their Petaflops initiative. The Petaflops computer design initiatives for protein research
are collectively named "Blue Gene" [TeaOla], Bluegene/L is one version in the "Blue
Gene" series. Bluegene/L generalises QCDOC, wrote Gara et. al. [GAB+02]; they
declared QCDOC as the first SOC supercomputer. It is believed that the current SOC

design integration techniques and the ongoing advancements can result in high-end,
cost-effective supercomputers. The conventional approach of building tightly-coupled
clusters of large symmetric multiprocessing (SMP) nodes suffers lower application
efficiencies due to the increasing difference between processing power and memory

access latencies. Many scientific applications gain little with cache locality schemes
and access gaps between the processor and the memory levels degrades the achievable

performance. In contrast to this, the SOC approach offers low latencies to all levels of
memories, thereby compensating the cache misses and flushes overheads.

Supercomputer designs based on the SOC approach are likely to have tens of
thousands of processing nodes, because a SOC processing node's performance is
significantly lower as compared to, for instance, an SMP node. Thus a theoretical peak
performance in tens or hundreds of Teraflops requires a significantly large number of
1-2 Gigaflops-scale processing nodes. A direct result of a huge number of processing
nodes in a system is an enormous degree of hardware parallelism: instruction level
parallelism and fine-grain internode parallelism. This will pose a great challenge on

software practices to utilise the available parallelism to achieve a better fraction of
peak-to sustainable performance for the application code. Simon et. al. [SMK+03]
cast doubt over performance sustainability of this trend of supercomputer design for
the very same reasons. Parallel QCD application code however is capable of taking
maximum advantage from fine-grain parallel systems. The likely performance of
QCD code on the Bluegene/L machine is therefore worth investigating. The research
presented in this thesis addresses and investigates the characteristics of the Bluegene/L
system that can influence the execution of QCD code and subsequently its performance
on the Bluegene/L supercomputer.

Chapter 5. Simulation Metamodelling 191

Exploiting fine-grain parallelism is the central idea of the Bluegene/L supercom¬

puter design. The system is built out of a very large number of processing nodes (64K).
A Bluegene/L processing node operates at a relatively modest clock rate (700 MHz)

compared to an SMP processing node (a couple of GHz) resulting in 1.4 Gigaflops
peak node performance — two processors per processing node. A direct benefit of
the scheme is low power consumption and low cost per processing node. The Blue¬
gene/L design utilises IBM's commodity design components including: IBM PowerPC
embedded processor cores, embedded DRAM (EDRAM), and SOC techniques that
allow for the integration of all system functions onto a single Application Specific

Integrated Circuit (ASIC). Because of the relatively low speed processing clock, the

memory latencies in terms of processor cycles are not high. The on-chip memory

modules are therefore close to the processing speed and the penalties of accessing on-

chip memory level are not as high as those in parallel Non-Uniform Memory Access
(NUMA) architectures.

5.1.2 Bluegene/L ASIC

The Bluegene/L ASIC includes two standard PowerPC 440 embedded processing
cores; one is referred as a compute processor and another as a communication

processor. Both processors can perform computation in parallel; however, the main
purpose of the communication processor is to off-load communication overhead and

bookkeeping from the compute processor. A PowerPC 440 core contains 32-bit integer

processor, so a 64-bit floating-point processors is interfaced with each PowerPC core

via the Auxiliary Processor Unit (APU) for the floating-point computations. The
PowerPC cores have separate data and instruction caches. In addition to the LI data
cache, each has a 2-KByte Level 2 (L2) prefetching cache. The prefetching caches are

connected to the 4 MByte EDRAM (on-chip memory called Level 3 (L3) cache) with
a high bandwidth data bus. Access latencies to the on-chip cache levels are limited
to a few tens of processor clock cycles in the case of an L2 miss. The EDRAM
interface provides a connection to external off-chip memory, which is expected to be
256 MBytes. A Bluegene/L ASIC is shown in figure 5.1.

Chapter 5. Simulation Metamodelling 192

Figure 5.1: Bluegene/L ASIC (adopted from [Tea02])

Most computational instructions in the Floating-Point Unit (FPU) execute with a

five cycle latency and single cycle throughput. The PowerPC 440 Central Processing
Unit (CPU) and PPC440 FPU are superscalar with a quad-word (128-bit) access to
lines in the Level 1 (LI) data caches. Up to three outstanding loads are permitted at
a time. The Bluegene/L memory system is being designed for high bandwidth, low

Chapter 5. Simulation Metamodelling 193

latency cache and memory accesses. An L2 cache hit returns in 6 to 10 processor

cycles, an L3 hit is about 25 cycles, and an L3 miss is about 75 cycles. L3 misses are

served by external memory.
The three on-chip memory levels require a coherency mechanism. LI data cache

coherency is provided in form of a lockbox. The lockbox allows processor-to-

processor communications. L2 and L3 are coherent between the two cores. L2 caches
are controlled by data prefetch engines and a fast on-chip SRAM array is used for
communication between the two cores. Register files in the two cores can access

data on either side, preventing swapping of data between registers. A special set of
instructions is included in the existing PowerPC instruction set architecture that operate
on data elements residing in both register sets.

Off-node communication data (data destined for and coming from neighbouring
nodes) is stored temporarily before send and after receive operations in the link buffers
within the network interface unit. The link buffers are connected to the L2 caches

to facilitate efficient data transfers between the PowerPC processor and the network
interface unit. Thus data from neighbouring nodes can be made available to the

processor as soon as it arrives in the network unit. The presence of a dedicated
communication processor and the availability of the communication data in L2 cache
rather than a low level slow memory facilitate efficient off-node communication

handling.

5.1.3 Communication Networks

Bluegene/L nodes are interconnected through five independents networks (c.f. fig¬
ure 5.2):

1. Three-dimensional Torus Network: A three-dimensional torus interconnect

between compute nodes for intemode, point-to-point communication.

2. Global Tree Network: The tree interconnection network is organised as a tree
of nodes. It is intended mainly for global reduction (for instance, QCD global
sums) operations.

Chapter 5. Simulation Metamodelling 194

Ethernet network

Figure 5.2: Bluegene/L networks [GAB+02]

Compute
Node

Ethernet

Switch

I/O Node

3. Global Barriers and Interrupt Network: Also organised as a tree network,
the global barrier and interrupt network provides global AND/OR operations. A
low latency global interrupt mechanism is often necessary in MPP systems, for
system synchronisations.

4. Control Network: It is an Ethernet network that supports machine booting,
monitoring and diagnostic operations. It provides communication between
the control system and individual nodes. The kinds of message this network

Chapter 5. Simulation Metamodelling 195

transports are low-level control messages. For example, accessing the PowerPC
instruction cache of a particular node (each processing node has a unique
identifier).

5. System Support Network: All I/O nodes1 are interconnected with a Gigabit
Ethernet network, for connection to other systems, such as hosts and file systems.
Tera- or Peta-bytes of results generated from MPP simulations need an efficient
file I/O facility in conjunction with a fast processing power.

Networks (1) and (2) are essential for the parallel QCD code execution: the point-
to-point three-dimensional torus (1) for the frequent nearest-neighbour communica¬
tions and the tree network (2) for collective communications, which are the conjugate

gradient global sums. System support, diagnostics and file input/output are supported
by the (3), (4) and (5) networks. These last three networks do not directly contribute
to the parallel QCD code execution on the Bluegene/L machine.

5.1.3.1 Three-Dimensional Torus Network

The three-dimensional torus interconnection network topology supports the regular
communication pattern of a number of parallel scientific applications that are governed
by molecular dynamics algorithms. This three-dimensional torus provides a direct
network for the frequent nearest-neighbour QCD communications. Unlike the QC-
DOC's dedicated nearest-neighbour torus network, the Bluegene/L machine's three-
dimensional torus network is intended to be used for general-purpose, point-to-point
message passing and multicast operations to a selected subset or class of processing
nodes. The topology is constructed with point-to-point serial links between routers
embedded within the Bluegene/L ASICs. Hence, a Bluegene/L ASIC has six nearest-

neighbour bi-directional serial links, or twelve send and receive ports with a target
bandwidth of 175 MBytes per second.

Figure 5.3 shows the structure of the torus connections within a processing node.

'in a 64K processing (compute) nodes system, there is 1 I/O node per 64 compute nodes. I/O nodes'
architecture is identical to the compute nodes but these have a full Linux operating system to perform
file I/O operations (compute nodes have a light-weight Linux kernel).

Chapter 5. Simulation Metamodelling 196

To L2 Cache

a

J

0
Cu

1
o

o
ec

"3
C

.2
u
q5
H
-5
.JL
S

td
T'
&
CD
O

o*
3
P

2.
3'

0
1

o
5"

3

From L2 Cache

Figure 5.3: Torus connections and routing

Packets are injected into the network at one of the local injection First In First
Out (FIFO), and are deposited into the local reception FIFO upon reaching their
destinations. The messaging co-processor is responsible for injecting and removing

packets from these FIFOs. A co-processor can be conceptualised as the simplified
Serial Communication Unit (SCU) of the QCDOC machine, which also supports
the routing and buffering schemes. Throughput and hardware latency are optimised

through the use of virtual cut-through routing. Packets can be from 32 bytes to 256

bytes.

Chapter 5. Simulation Metamodelling 197

5.1.3.2 The Global Tree Network

A global combining tree is designed for collective communication operations. The tree
module is equipped with an integer Arithmetic and Logic Unit (ALU) for combining
incoming packets and forwarding the resulting packet. This is shown in figure 5.4.

From/To Root Node

A

<U '
O /

73 '
<U I

I

I

1 A

/ / /
/ / /

V

\ &

PowerPC Core 0 Interface \ %
&

\ *
PowerPC Core 1 Interface

To/From Node Children

Figure 5.4: Tree module with a serial ALU

Packets can be combined using bit-wise operations such as XOR or integer

operations like ADD or MAX for a variety of data widths. All packets coming down
the tree are broadcast further down the tree according to the control registers and
received upon reaching their destination. For collective operations packets are received
at each node.

To perform a floating-point sum reduction (the QCD global sum) on the tree

requires potentially two round-trips to the tree. In the first trip each processor submits
the exponent for a Max reduction. In the second trip, the matissae are appropriately
shifted to correspond to the common exponent as computed on the first trip and fed
into the tree for an integer sum reduction.

Chapter 5. Simulation Metamodelling 198

5.2 Comparison of QCDOC and Bluegene/L Hardware

Features

From a QCD application code execution view point, a block diagram of a Bluegene/L

processing node is as shown in figure 5.5.

CORE+FPU

CPU

| 128

- 25P

FPU

/

^

0) X)
■5 £
v
m
J

P3
i—)
cu

256

128

128
—7^

CPU

FPU

256

SRAM

Buffer

_2£6

128

CORE+FPU

G
U
(N
i—l

o
G
u
<N
-J

&

128

Bluegene/L Node

<u
Q

<D

G

S
5 O
G
U

c
G

B
B
o
U

-o
G
G
<D
<D

2
o
H

==7

1
7^

.<U
<4-1
<4-4
G
CQ
c

.2*-4—»
G

.2
'2
G
E
E
o
U

M
c

23
<D

2
H

o
H
Q
co

G

C

bO
.G*C
G
O
X)
-C

£P
'S

Figure 5.5: Simplified Bluegene/L processing node

Chapter 5. Simulation Metamodelling 199

Comparing figure 5.5 to the block diagram of the HASE QCDOC processing node
(in figure 5.6), a number of similarities can easily be identified, including the processor
core, system bus and memory levels. The most obvious differences are the presence of
two PowerPC processing cores in Bluegene/L instead of one in the QCDOC and the
communication unit designs of the two systems.

128

CPU

QCDOC Node

vc

128

^ FPU

CORE + FPU
_ _ j

'
128

512

-7^=
1)28

PDB -5 g*

128
External

Memory
Interface

<
Pi
Q
W
PQ
S

512
—s~
—5-

PLB

Slave

512
=$: DMA

PEC

1j28 128

128

1)28

/

'a
P
a
.2
cd
.2
a

i
6
o
U
*cd
'C
<D
00

C/3

I £
<D
4—>
C/5

G
PQ
>

1

33
'5b Puu u,
0) £

5 Pi Ypi X3 M
•S c "2
c £<D ^
00

Q
Q
Q
Q
Q
/
'/Q
Q

Q

G

c

.2*-4—»
cd
.2
G
3

o
U
*c3
G

.2
o
<D
H
'-3
JL
S

Figure 5.6: HASE QCDOC node

The HASE QCDOC simulation models were benchmarked with an optimised
version of parallel QCD code written in PowerPC assembly. The Bluegene/L ASIC
contains an advanced version of the PowerPC 440 core with the same Instruction

Set Architecture (ISA). In addition, the memory hierarchy and the on-chip control
and data paths of two systems have similar design features, because the parallel

Chapter 5. Simulation Metamodelling 200

QCD calculations share a number of characteristics with other scientific, message

passing kernels. Thus, to facilitate low-latency and high-bandwidth data access to
the processor, the Bluegene/L on-chip memory hierarchy levels are analogous to the
QCDOC on-chip memory hierarchy levels.

Hence, as an immediate successor to the QCDOC machine, the Bluegene/L ma¬

chine has a number of hardware features similar to the QCDOC machine. Nevertheless,
there are some subtle differences. Table 5.1 summarises the differences between

Bluegene/L and QCDOC machines that will affect execution of parallel QCD code
on these systems.

The fundamentally distinct features of the Bluegene/L machine are the interconnec¬
tion network and associated components. In QCDOC, since the QCD communication
routines are well understood through the QCDSP design, the custom-built SCU
design and the network topology are precisely targeted towards the communication
requirements of the QCD code. Other parallel applications are unlikely to get benefit
from the QCDOC communication network topology and SCU design. Even QCD
software repositories other than Columbia Physics Systems (CPS) require extensive
code tuning. Bluegene/L, in contrast, can execute a range of message-passing parallel
applications including QCD; but, its communication network is not optimised for the
QCD communication patterns.

Chapter 5. Simulation Metamodelling 201

QCDOC Bluegene/L

Target applica¬
tions

Optimised for QCD calcula¬
tions.

Can serve a broad range of
scientific applications.

Peak

performance

10 Teraflops scale. A 400-
500 MHz floating-point execu¬
tion unit with two execution

pipelines per processing node.

180/360 Teraflops scale. 180
Teraflops if the processing

power of compute node is con¬

sidered only. 360 Teraflops for
combined compute and com¬

munication node performance.

Processing node One PowerPC 440 core plus
one 64-bit FPU per node.

Two PowerPC 440 cores plus
64-bit FPUs per node.

Per node perfor¬
mance

1 GF/s per ASIC, 1 GF/s per

node.

2.8 GF/s per ASIC, 5.6 GF/s

per node.
Prefetch L2

Cache

One 4K-bit per node. Two 2-KByte per node.

Communication

networks

A reconfigurable 6-D torus and
an Ethernet network.

A 3D torus, a combining tree,

Ethernet networks.

Communication

protocol

Point-to-point communication

using a custom protocol.

Point-to-point and multicast
communication employing vir¬
tual cut-through routing.

Communication

overheads

Small communication packet
size with no routing informa¬
tion overhead.

There may be routing informa¬
tion and overhead.

Off-chip mem¬

ory

256 MB DDR per daughter
board, two processing nodes
per daughter board

512 MB DDR per compute

card (two nodes).

Collective com¬

munications

Pass-through unit for global
operations.

Tree network with an ALU for

collective communication op¬

erations.

Table 5.1: Comparison of QCDOC and Bluegene/L systems

Chapter 5. Simulation Metamodelling 202

5.2.1 On-chip Memory Hierarchy

Theoretically the two on-chip processors can participate in computation simultane¬
ously in a Bluegene/L processing node. Presently, however, it is envisaged that
the complexity of code generation is likely to restrict one processor, the compute

processor, to be solely responsible for handling computation [MCS+03]. Another dis¬
advantage of using the two on-chip processors would be the data coherency overheads
and operating system complexity. By considering the compute processor only and its
relationship to the three levels of on-chip caches, the Bluegene/L on-chip data paths
are similar to the QCDOC on-chip data paths (shown in figure 5.7). The difference in

processing speed and ratio ofmemory module clock frequencies to the processor clock
result in slightly different on-chip memory latencies and bandwidths.

Figure 5.7 compares the data movement between levels of memories on a Blue¬
gene/L node and a QCDOC node. The L2 caches on the Bluegene/L operate at
half of the processor clock frequency while an L2 cache in QCDOC operates at the
processor clock frequency resulting in a single clock cycle latency in case of an L2
cache hit. Bluegene/L has faster processors than the QCDOC, hence the bandwidth
to L2 caches is not exactly half of the QCDOC L2 bandwidth. Another difference
is the relationship between on-chip memory EDRAM and the external memory. In
QCDOC, these memories have separate physical addresses and the Processor Direct
Bus (PDB) is able to identify which addresses are destined for the EDRAM, and
which are destined for the external SDRAM. In contrast, the L3 cache controller in

Bluegene/L will identify a L3 cache miss, which is expected to take more than 75
processor clock cycles. The data bus width between the L2 and L3 caches is different
in the two systems, i.e., QCDOC has twice the bus width to the L3 cache as compared
to the Bluegene/L L2 cache.

The Bluegene/L processing node enforces coherency between its two L2 caches in
hardware through a snoop protocol. This mechanism is similar to the Prefetch EDRAM
Controller (PEC) of the QCDOC processing node; PEC maintains coherency between
its design blocks including the L2 cache. A write address from the other processor
causes invalidation of earlier read data in the L2 prefetch read registers. Data coherency
between Bluegene/L's LI caches is maintained through the fast on-chip SRAM. It is

Chapter 5. Simulation Metamodelling 203

QCDOC
L3

<
oi
Q
W
03
S

EDRAM

^Address

Prefetch
Miss

L2

Prefetching
Cache

Memory-mapped
addressing

LI

(1:2)
- ^ ^

t-

"o
H

(1:2) XJ (1:1)
- / ^

32KB— / —

1024
a
o
U
<n
►J

512
CN — /

128

500MHz

CPU/FPU

Miss SDRAM

Addresses

Miss

L3

SDRAM Access

128

£
<
«
Q (1:4)
W — /
03 1024
§

X

"o
H-4—»

a
o
U
m
-I

L2

(1:4)

256
CN

(1:2)

128

LI

Bluegene/L

32KB

700MHz

COMP

CPU/FPU /

Prefetching
Cache

Miss Prefetch
Miss Miss

Figure 5.7: Data paths — Bluegene/L and QCDOC on-chip memory hierarchy

Chapter 5. Simulation Metamodelling 204

not clear from the Bluegene/L design documents whether it is strictly enforced via
hardware or whether it would be the responsibility of the software. QCDOC does not
have this LI cache coherency overhead because it contains a single processor core.

Apart from on-chip data movements, accesses to and from the off-chip or external

memory follow different patterns in the two ASICs. In QCDOC, external memory
accesses are memory-mapped and movement between on-chip and off-chip memory

is invoked explicitly by the processor. It sets up a Direct Memory Access (DMA)
controller which takes care of transferring data between on-chip memory and the
external memory. Off-chip memory transfer latencies depend on the page sizes.

Bluegene/L off-node transfers are invoked as a result of L3 cache misses.

5.2.2 Off-chip Communication Data Transfers

The on-chip communication logic and control in Bluegene/L are substantially different
from communication data handling in the QCDOC ASIC. In QCDOC, the processor

initialises the communication unit like a DMA device. The SCU DMAs in turn initiate

and control transfers of a given number of data packets to and from the on-chip

memory. A set of DMA instructions then make use of the system bus, the Processor
Local Bus (PLB), and a PLB slave to the on-chip memory, the EDRAM, to read and
write incoming and outgoing data.

QCDOC and Bluegene/L's off-chip communication control and data transfers are

compared in figure 5.8. The Bluegene/L design is not restricted to a fixed subset of off-
node communication patterns, thus it does not have a QCDOC-style, customised and
dedicated, serial communication unit. Instead, the L2 caches are connected to the three

communication interfaces: the three-dimensional torus, the global tree and the global
interrupt. Instructions and data are transmitted via the L2 caches directly to these
network interfaces without the intervention of the PLB. The PowerPC communication

core is expected to oversee the Bluegene/L communications. The associated L2 cache
is likely to be the source and destination of the torus and tree communication interfaces.

Chapter 5. Simulation Metamodelling 205

■' QCDOC '
\ /

r

i Bluegene/L]
/

Figure 5.8: On-chip data and control paths for point-to-point communication

Chapter 5. Simulation Metamodelling 206

In Bluegene/L, quad-word data packets from the processor can be decoded and
transferred to the memory-mapped devices through the L2 caches, which operates
at half the processor clock frequency. These memory-mapped devices include the
torus and tree network interfaces; their initialisation and control are managed by the
communication core. Off-chip communication initialisation and control overheads
and contention between two L2 caches can be minimised by assigning one processor

core to take responsibility for the communication related events, thereby avoiding
unnecessary flushes of caches.

5.3 Lattice QCD Performance on MPP Systems

Performance exploration and analysis of a future generation MPP systems for parallel
QCD application requires, as precisely as possible, understanding of the interactions
and dynamics of system hardware and application software. Ideally, the simulation
studies should be conducted using accurate models of the MPP hardware and complete
executions of the parallel QCD application code software. In practice:

1. detailed, cycle-accurate MPP hardware simulations are not possible. Emulating
physical properties including the processor power and memory capacity of a

high-end system need enormous computing resources. An appropriate level
of abstraction is needed, such that it should not compromise on the details of
parallel hardware and software interactions, which is the essence of software
simulations;

2. the application code execution is in most cases represented by a kernel code.
Benchmarking using the complete execution code in cycle-accurate simulations
is not feasible because of prohibitively long simulation times associated with
executing them with a cycle-accurate simulator. In scientific applications, many
calculations share some frequently executing code patterns and the optimisation
of these core methods guarantees the overall optimisation.

Chapter 5. Simulation Metamodelling 207

A high-level abstraction approach is therefore necessary, both for the application
code software and the underlying parallel system. Because the UKQCD computer
simulation design has followed a hardware-software co-simulation approach in which
the underlying hardware components and the application workload properties have
been parameterised, it is possible to alter the QCDOC and its application code
characteristics to explore the Bluegene/L supercomputer. The parameterised software

modelling provides a seamless transition for experiments from a QCDOC model
to a Bluegene/L model by allowing parallel QCD computation and communication
workload to be mapped onto the Bluegene/L design configurations. Performance

prediction and comparison experiments with the HASE QCDOC and Bluegene/L
models require a detailed understanding of the mapping of the QCD code onto different
parallel machines along with their hardware features.

5.3.1 Parallel QCD Code Configurations

As described in Chapter 2, the computation and communication cost of a parallel QCD
application code directly depends on the number of lattice sites mapped onto a node.
The number of sites mapped onto a node, in turn, depend on the lattice volumes. It
is necessary to identify the difference between the two: the lattice volume and the
number of lattice sites per processing node. Lattice volume is the four-dimensional
lattice configuration, which a physicist decides to simulate on a parallel hardware. The
number of sites on the node depends on the hardware properties of the system as well as
the mapping strategy adopted by the user. In most cases however, a uniform mapping
is preferred for lattice QCD calculations.

An (incomplete) data structure declaration of a variable central to the lattice QCD
calculations calledWilson, a C/C++ struct, is given in figure 5.9.

Chapter 5. Simulation Metamodelling 208

#define ND 4 /* Space time dimension*/

/* The Wilson structure typedef */

typedef struct{

/*pointer to an array with addressing offsets */

unsigned long *face_table[2][2][ND];

/* Sites Mapped per node */

int local_latt[ND];

/* Local lattice Volume */

int vol[2];

/* Send and Receive Arrays in Forward and Backward Directions */
double *send_f[ND];

double *recv_f[ND];

double *send_b[ND];

double *recv_b[ND];

/* Boundary Values */

int nbound[4];

/* Local Communication requirements */

int local_comm[4];

} Wilson;

Figure 5.9: C++ data structure for lattice QCD calculations

Chapter 5. Simulation Metamodelling 209

Wilson struct fields are initialised right at the beginning of the calculations, and
most values and assignments depend on the numbers of lattice sites mapped per node.
The communication layout in the four space-time directions depends on the number of
sites in the individual directions. In summary, lattice QCD calculations are driven by
the knowledge of the total number of lattice sites on a processing node, together with
the number of sites along the separate space-time directions.

An increase in the number of lattice sites mapped onto a processing node results in
an increase in the memory, execution and off-node requirements of that node. Ideally,
a very small local configuration, 2x2x2x2 should be used. A small local configuration
can only be supported either by a very large number of processing nodes or small
QCD lattice volumes. The drawback of the former approach would be the collective
communications bottleneck, while the latter would not yield results in the range of
approximations required by the physicists.

Table 5.2 compares the computation cost of an example lattice size on the QCDOC
(4D torus) and Bluegene/L (3D torus) machines.

4-D torus 3-D torus

Lattice Volume 8x8x8x8 8x8x8x8

Machine dimensions 4x4x4x4 4x4x4

Sites per node 2x2x2x2 2x2x2x8

Table 5.2: Example: lattice mapping onto a 3-D and 4-D torus networks

For a small lattice volume, 8x8x8x8, a large number of Bluegene/L nodes are

not an advantage. Instead, the extra dimension offered by the QCDOC reduces
the computation requirements, by removing the need for local computation in that

particular direction. An upper bound on the local computation cost is estimated as the
minimum amount of extra work per lattice site simulation. Figure 5.10 illustrates this
effect on computation cost over a two-dimensional mesh and a one-dimensional mesh
system.

Chapter 5. Simulation Metamodelling 210

(^Two-Dimensional Torus j
Machine dimensions = 2x2

Lattice Volume = 4x4

Sites per node = 2x2
(local_volume)

0(compute_cost) =

0(local_volume)

o o

PI

o o

o o

P2

o o

o o

P3

o o

(one-Dimensional Torus)
Machine dimensions = 2x1

Lattice Volume = 4x4

Sites per node = 2x4
(local_volume)

0(compute_cost) = 4

0(local_volume)

o o o o

PI

o o o o

o o 1 1
1 1 o o o o

P4
1 1
1 1
1 1

P2

o o 1 1
1 1 o o o o

P n Processing Node O Lattice Site

Figure 5.10: QCD computation requirements scaling with respect to the underlying

physical network

A characteristic feature of the parallel QCD application code is frequent and
regular communications in the four space-time directions. QCDOC supports the four-
dimensional communication requirements by providing a four-dimensional periodical
torus network. Bluegene/L has a three-dimensional torus network. Figure 5.11 shows
the effect of one less dimension in the network topology on QCD communication

requirements.

Chapter 5. Simulation Metamodelling 211

Figure 5.11: QCD nearest-neighbour communication volume scaling with respect to the

underlying physical network

An upper bound on the communication data requirements is estimated, which
depends on the number of sites that need off-node communications as well as the size
of the communication data. Two concurrent nearest-neighbour communication costs

in two separate directions are comparatively smaller than the four nearest-neighbour
communication cost in any one neighbouring dimension.

Chapter 5. Simulation Metamodelling 212

In an evenly-distributed lattice scheme, one less dimension means that all lattice
sites in one dimension have to be mapped onto each processing node; this increases
the memory requirement. A consequence of assigning all sites in a dimension to a

processing node would be increased local interactions and on-node communications.
Local communications result in increased processing time as well as temporary

memory requirements of the local interaction computations. In summary, ignoring
the overheads of infrequent collective operations, a system with a very large number
of processing nodes with fast floating-point units and capable of supporting concurrent
off-node communications with very little or no overhead between four neighbouring
nodes, can be considered as an ideal system for parallel QCD calculations.

5.3.2 Practical Lattice Volumes

So far a bottom-up approach has been adopted in explaining the lattice QCD workload
mapping onto a processing node, i.e., number of sites/node rather than the size for a

QCD calculation. While this approach is nearly always employed for prototyping and

benchmarking, practical QCD calculations take a rather different point of view. End
results with a range of precisions are the target for the QCD calculations. Generally,
physicists estimate what lattice size would yield a result within a given range or

provide better approximation for the continuum space-time over a discrete lattice.
Bowler [Bow98] summarised the cost of discretising the continuum QCD calculations
on a lattice: either the lattice spacing should be close to zero or the continuum limit for
the best precision QCD calculations and lattice volume should be as large as possible.
As the lattice spacing becomes small, or alternatively, when large lattice volumes are

considered, the computation and communication requirements per processing node
increase. These effects are not always linear and depend on the memory capacity and
floating-point execution capability of the underlying hardware system. For QCDOC
and Bluegene/L comparison experiments, a top-down approach has been taken, i.e.,
practical lattice volumes have been mapped onto the known configuration of the
QCDOC and Bluegene/L systems.

Chapter 5. Simulation Metamodelling 213

The choice of lattice size depends on a number of factors: available parallel
system characteristics and calculation requirements. Presently, the lattice volumes
(number of lattice sites) considered for various QCD calculations on high-end parallel
supercomputers include:

• 8x8x8x8 (Low precision, minimum accuracy and low computing requirements)

• 16x16x16x16

• 32x32x32x23

• 48x32x32x32

• 96x32x32x32

• 96x48x48x48

• 32x64x64x64 (High precision, high accuracy and enormous computing require¬

ments)

5.3.3 Communication Workload Mapping

A regular three-dimensional mesh has been a popular choice in many MPP archi¬
tectures including Cray T3D, T3E, Blue Mountain and IBM's Bluegene/L. QCDOC

implements a reconfigurable, bi-directional, four-dimensional torus topology in order
to evenly map the four-dimensional lattice calculation evenly on the underlying
communication network. If the underlying physical system does not have a four-
dimensional torus topology, lattice sites along the smallest dimensions are stored
locally at all processing nodes. This not only increases the storage and processing
requirements but, most importantly, multiplies the communication volume.

When executing QCD code on a parallel machine, the first step is to decide the
volume of the lattice simulation. The bigger the volume, the better approximation to
the continuum lattice. However, large lattice volumes impose enormous computation
and communication requirements on the parallel system. As mentioned earlier, an

even mapping is the most common lattice distribution scheme over a parallel machine

Chapter 5. Simulation Metamodelling 214

with a regular torus topology. Table 5.3 shows practical lattice volumes used presently
by QCD physicists on high-end parallel machines, and the lattice volume per node
distributions on a 3-D and 4-D torus.

Lattice Volume Volume per Node
3-D Torus 4-D Torus

8x8x8x8 64 (2x2x2x8) 16 (2x2x2x2)
16x16x16x16 128 (2x2x2x16) 16 (2x2x2x2)
32x32x32x32 256 (2x2x2x32) 128 (4x4x4x2)
48x32x32x32 256 (2x2x2x32) 192 (3x4x4x4)
96x32x32x32 384 (3x2x2x32) 384 (6x4x4x4)
96x48x48x48 864 (3x3x2x48) 1024 (8x8x4x4)

64x64x64x32 1024 (2x4x4x32) 1024 (8x8x4x4)

Table 5.3: QCD lattice volume mapping per processing node

For example, for a 48x32x32x32 QCD lattice, 2x2x2x32 sites would be mapped
on to a 24x16x16, three-dimensional torus machine. A four-dimensional 16x8x8x8

system, on the other hand, would be capable of distributing the same lattice as 3x4x4x4
lattice sites per node. The first two volumes in the table are normally considered too
small for high precision calculations.

5.3.3.1 Experiments

Experiments have been carried out, using the lattice volumes shown in table 5.3, to
explore communication traffic scaling on 3-D and 4-D torus topology networks with
identical numbers of processing nodes. Figure 5.12 shows the communication traffic
per processing node for a 3-D and a 4-D torus topology machines.

Chapter 5. Simulation Metamodelling 215

3 65"i
% 60
m
^ 55

^ 50
o 45

? 40 -j
a. 35
a>
E

o
>
c
o
4—'

U

'c
zz

E
E
o
u

30

25

20

15

10

5

0 Ek.

□ 3D-Torus
□ A F X "T""4D-Torus

ill
QCD Lattice Volume

Figure 5.12: Communication volume scaling per processing node

The total number of processors is fixed, but because the underlying networks are

different, the local volumes are different on the two machines (table 5.3). Figure 5.12
shows that the volume of communication traffic does not scale linearly with the number
of sites mapped per processing node. Instead, the number of data packets transferred
in each direction depends on the number of sites in the remaining three space-time
directions.

Also, the implications of large communication traffic for nearest-neighbour com¬
munication times have been quantified in experiments. Figure 5.13 shows the ratio
of a single iteration of nearest-neighbour communication time in a QCD calculation
against the lattice QCD volume.

Chapter 5. Simulation Metamodelling 216

ff
fN 1000-1 rf^
i 900 - ! ! :

^ 800 - i
a; I j

I 7oo-1 :
> 600

| 500- I
400- 1 :

a?
£ BOO -

I 20°- !
'ra 100- |
i o H m
I s

▲

l.rb.lli.n-.r^.rb
m m m m

<<<<<<
ic rvj r-j rsi oo ^
r-H m ro m

□ 3D-Torus
■ 4D-Torus

o
u

QCD Lattice Volume

Figure 5.13: Nearest-neighbour communication efficiency with varying lattice volume
over a 3-D and a 4-D torus network

For small lattice volumes, time to perform off-node communication for an individ¬
ual lattice site is significantly greater than the communication times of larger lattice
volumes. Moreover, a 3-D torus with bigger communication traffic (as shown in

figure 5.13) is more affected by the communication times per QCD lattice site than
a 4-D torus.

Although the overall QCD code performance is dominated by the intensive floating¬
point computation performance, a reduction in nearest-neighbour communication
performance can affect the overall performance. In the QCD Conjugate Gradient
kernel code, nearest-neighbour communication is overlapped with local computation.
However, a number of local computation subroutines depend on the availability of the
communicated data from all neighbouring directions. A substantial performance gain
for the four-dimensional torus topology, as shown in figures 5.12 and 5.13, confirms
the association of QCD code performance with the underlying network topology.

Chapter 5. Simulation Metamodelling 217

5.3.4 Collective Communication Operations

Analytically, Bluegene/L will have an advantage over QCDOC because it has a sepa¬

rate tree network. However, since collective communications are few and far between,

and the QCD software does not overlap them with on-going local communications and

on-chip computations, the overall difference is likely to be small. In section 4.5.1, it
was shown that for up to 10K+ processing node systems, the performance of hardware-
enhanced "pass-through" global sums compares well with binary tree-based floating¬

point reduction. Considering the cost-effectiveness of the system, a separate network
for global communications is not feasible for a 10 K processing node QCDOC system.
The Bluegene/L system is a 64K node supercomputer and a global tree is included
for enhancing potentially overlapping point-to-point and collective communications.
Table 5.4 compares the characteristics of the two systems for a floating-point global
reduction operation.

Features QCDOC Bluegene/L
Network 6D Torus Binary tree

Bit manipulation In CPU Bit-serial adder

Mechanism 4D Ring 2 Round-trip to Root
CPU Overhead Must involve in FP addition Potentially completely automatic
Communications 4 (Nx+Ny+Nz+Nz) / 2 4 * log2(Nx*Ny*Nz*Nz)

Table 5.4: QCd global sum computation mechanism on QCDOC and Bluegene/L
machines

In short, the Bluegene/L and QCDOC processing node architectures and the
overall design logic have a number of similar features. However, there are a number
of differences, mainly the design component configurations, their operating clock
frequencies and the interconnection network topologies. One of the design targets
for the research presented in this thesis was to emulate these two machines using
parameterised HASE simulation models. HASE QCDOC model's parameterised
entities are capable of running the Bluegene/L configurations. But, for parallel code,
running performance experiment also involve modifying the way in which a parallel

Chapter 5. Simulation Metamodelling 218

software is distributed and mapped onto a hardware. Software mapping and scaling
is not straightforward when the two architectures have different network topologies,
especially for an explicit message passing software like QCD. The parameterised
hardware-software co-simulation scheme used for this research provided a means to

design and implement a simulation metamodel for HASE QCDOC and Bluegene/L
machines for parallel QCD code performance experiments.

5.4 Simulation Metamodel ling in HASE

Metamodelling concepts in computer simulations revolve around reproducing computer-
generated simulation models by reusing their common characteristics and domains. A
metamodel is the one that provides a basis for creating, describing or instantiating
other simulation models. The complexity of the simulation studies increases with
the complexity of the real systems, and there is an increasing need for tools and
methods that facilitate flexible and efficient generation of simulation models. Like
complex real and embedded system designs, component reuse is the key to this process.
Syntactically and semantically correct models can be created by the metamodelling
approach, by utilising and creating generic metamodels for existing and new systems.
Within the HASE framework, a number of component reuse practices exist. HASE
design templates and the multi-frequency extensible clock mechanism [MIA02] are

examples. The metamodelling method employed in the HASE for creating the
QCDOC and Bluegene/L simulation models is largely influenced by the simulation
and modelling practices in SOC based designs. Techniques used in the embedded and
SOC design communities are driven primarily by the fast time to market pressure and
ever-increasing complexities of SOC design architectures.

Mathur and Prasanna [MP01] introduced SOC metamodelling by claiming that
current state-of-the-art design tools and methodologies are not adequate to manage the
design complexity of SOCs. Current design processes are based on an independent
design flow for each architecture component and have not co-evolved with changing
system designs and requirements. Programming models and design tools for each
component are independently utilised to map an application, and system integration

Chapter 5. Simulation Metamodelling 219

is performed later. System-wide performance analysis is typically a manual process.
It involves the use of component specific simulators in isolation, and is tedious since
each simulator has a different input/output interface. This approach results in sub-
optimal design because multi-objective optimisation requires exhaustive traversal of a
large design space. A hierarchical simulation framework for SOC architectures, similar
to the hierarchical abstraction levels concept in HASE, was proposed by Mathur and
Prasanna [MP01]. They argued that a unified simulation environment that provides

performance estimates for a given application-to-architecture mapping is necessary. In
the QCDOC simulation models, application workload configurations are made HASE
parameters for in-depth and extensive performance evaluation studies within unified
co-simulation models. During the simulation design stages, the hardware and software
parameter space co-evolved to facilitate application-to-architecture mapping of parallel
QCD code over alternate hardware design configurations.

The metamodelling approach has been employed in order to compare QCD appli¬
cation code performance over two different HASE supercomputer simulation models:
QCDOC and Bluegene/L. In order to provide a unified framework for the efficient
models generation and experimentation a HASE metamodel is created that generates a

HASE QCDOC model as well as a HASE Bluegene/L model for the QCD application
code simulations.

5.4.1 Component Reuse

Central to the SOC metamodelling concept is the notion of component reuse. By
reusing an existing HASE model, it is possible to avoid re-modelling and re-designing
overheads of new simulation models for the performance studies of the QCD code.
Design provisions in the form of HASE parameters are essential in the existing models
so that alternate system configurations can be simulated. This includes both the
hardware parameters and the application software parameters.

Parallel QCD workload parameters are included in the HASE QCDOC models
for load balancing and scalability experiments together with the hardware param¬

eters for a wider design exploration. A combination of hardware and software
parameters result in alternative QCDOC machine designs as well as QCD workload

Chapter 5. Simulation Metamodelling 220

configurations. Likewise, generation of the Bluegene/L design configurations is
attributed to these parameters, without which performance experiments would require
tedious, off-line simulation test code generation. Another important factor in the
performance evaluation experiments involving the QCDOC and Bluegene/L models
is an understanding of the QCDOC workload mapping onto different interconnection
network topologies. Bluegene/L has a distinct interconnection network topology,

thereby requiring a different mapping technique for parallel QCD workload. The

application-to-architecture mapping concept is exploited in creating a metamodel for
the QCDOC simulation models and the Bluegene/L simulation models. Figure 5.14
illustrates the metamodel design approach for the SOC-based MPP architectures

executing parallel QCD code.
HASE QCDOC and Bluegene/L simulation models are instances of the metamodel;

further instances representing alternate design configurations of each machine can in
turn be generated by altering the design parameters. The HASE QCDOC models
were originally designed as simulation models that allow a wider design space to
be explored. It was envisaged that new HASE simulation models would have to

be developed by reusing the existing components to experiment with future gener¬

ation MPP architecture. But the design flexibility of the HASE platform and its
hierarchical abstraction levels allow the simulation designer to generate a QCDOC
and a Bluegene/L simulation model by inputting and configuring a set of parameters
in the HASE metamodel without redesigning a new HASE Bluegene/L simulation
model. One of the most useful feature is the common instruction set architecture:

the PowerPC BookE enhanced architecture specifications [May94], Thus, the contents
of instruction memory, the optimised parallel QCD benchmark kernel (in PowerPC
assembly code), is used in original form in comparison experiments without any off¬
line code modification.

Chapter 5. Simulation Metamodelling 221

IBM PowerPC 440

based system-on-a-chip
massively-parallel system
with a multi-dimensional

torus topology executing
parallel QCD kernels.

SOC MPP System
Metamodel
Level

¥
/
/
/

«instanceOf»
\
\
\

/
/
/

/

\
\

\
\

QCDOC Bluegene/L
prototype prototype

Instantiates four-
dimensional mesh
network and HASE

QCDOC processing
nodes.

Instantiates three-

dimensional mesh

network and HASE

Bluegene/L
processing nodes.

Model

Level

A
| «instanceOf»

A
| «instanceOf»

I
I

1
1

InstanceX: InstanceY: Instance

QCDOC Bluegene/L Level

Using HASE Parameter
facility, simulations can be
run with different

class attributes values.

Figure 5.14: Application-driven metamodelling for simulating scientific MPP systems in
HASE

Chapter 5. Simulation Metamodelling 222

5.4.2 HASE Metamodel Design Features

In addition to a common PowerPC instruction set architecture, the on-chip memory

hierarchies of the QCDOC and Bluegene/L processing nodes are quite similar. Yet,
there are a number of differences in the two machines' architectures, most notably, the
network topologies, control and data paths, relative on-chip clock frequencies, memory
sizes and the prefetch logic. The flexible design entity parameterisation facility, the
clock library and the template generation mechanism of the HASE platform eliminate
the need to incorporate customised design solutions. Model-specific design solutions
compromise component reuse and inevitably introduce overheads for incorporating
them in other HASE simulation models. Together with the HASE facilities, a

hardware-software co-simulation approach that permits alteration of QCD workload
characteristics are important contributing factors for the QCDOC and Bluegene/L
HASE simulation metamodel.

Figure 5.14 shows that the parameterised HASE simulation metamodel not only
allows simulating two SOC MPP systems, but it also enables a user to run a range

of simulation experiments with varying hardware configurations of the two simulated
systems with the optimised parallel QCD test code.

5.4.2.1 The Host ENTITY Interface

The parallel QCD software or system workload parameters can be altered in the HASE
model via the model's host entity, a design entity in the metamodel that serves as

a front-end host interface of an MPP machine. This central control entity in the
HASE metamodel, the SimMode ENTITY, provides an interface to change the number
of sites mapped per processing node. A user can configure t_sites, x_sites,
y.sites and z.sites, which represent the number of sites on a processing node in
the t, x, y and z directions respectively. The QCD kernel in PowerPC assembly is
stored in the instruction cache of the MMU ENTITY. This code has not been fixed

for a single lattice configuration. According to the number of sites mapped per

node, the code initialises and inputs several QCD subroutines depending on the local
lattice configuration. Moreover, the PowerPC Entity Link Format (PPC ELF) [ppcb]
and Application Binary Interface (ABI) [ppca] specifications have been exploited in

Chapter 5. Simulation Metamodelling 223

conjunction with an understanding of the QCD code to simulate the behaviour of a

range of lattice configurations per processing node. PPC ELF and ABI details are

presented in Appendix C.
The application software initialisation process is emulated by the CPU ENTITY and

the EDRAM ENTITY; it is equivalent to the initialisation process that takes place at
the beginning of the lattice QCD code execution. By making lattice configurations as

a generic HASE parameter, a single simulation model can be used not only to vary

the hardware configuration of the system but also to change the workload properties.
In the comparison experiments on the QCDOC and Bluegene/L simulation models,
this easy-to-use and flexible mechanism removed the need for off-line tweaking and
instrumentation of the application code, thereby constituting a significant feature of
the HASE metamodel design.

5.4.2.2 PowerPC Core and Relative Clock Frequencies

A flexible and efficient mechanism for altering the clock frequencies as HASE param¬

eters via a GUI interface is an important factor in designing of the metamodel. This is
because a number of relative on-chip clock frequencies in the QCDOC and Bluegene/L
ASICs are different. The HASE library clock mechanism explained in section 3.3.1
enables the generation of multiple clock frequency ratios such that no redesign effort
for individual entities is required.

Considering the most straightforward scenario, i.e., generating the HASE QCDOC
and Bluegene/L processing node default parameters' configuration, this requires (a)
fastest clock frequencies for the PowerPC COMPENTITY components: the CPU, the
Memory Management Unit (MMU) and the FPU and (b) a change in all on-chip
memory modules clock frequency ratios with respect to the fastest clock. These on-

chip clock frequency ratios are listed in table 5.5.

Chapter 5. Simulation Metamodelling 224

Design ENTITY QCDOC Bluegene/L
PowerPC Core 1:1 1:1

L2 Cache 1:1 1:2

L3 Cache 1:2 1:4

PLB (system bus) 1:3 1:4

Table 5.5: QCDOC and Bluegene/L ASIC components clock frequencies

The HASE library clock mechanism provides a mechanism to alter an ENTITY
clock frequency through its reference PLL ENTITY parameter called ratio. For instance,
before a simulation run, the L2 cache's reference PLL name has to be altered through
its parameter window from 1:1 for the QCDOC ASIC to 1:2 for the Bluegene/L ASIC.

Similarly, the PLB to processor clock frequency rate was changed from one-third to

one-fourth.

5.4.2.3 On-chip Cache Configurations

In QCDOC, the L2 prefetching cache is 4xl-Kbit with two sets of two 1-Kbit
prefetching registers. Bluegene/L has bigger prefetching caches, 2 K Bytes and 16
prefetching registers, each prefetching four times the size of a LI cache line. Another
difference is the bus width between L2 cache and the EDRAM. The bus width in the

HASE model is a parameter which can be set to 256 bits for the Bluegene/L and 512
bits for the QCDOC experiments. Similarly, L2 memory size and configuration are

also HASE parameters.
The QCDOC processor operates at a frequency of 500MHz. With this frequency

and a relatively small L2 cache with a limited associativity, hits in L2 result in the
availability of the data to the LI cache in the next clock cycle. This low latency is
a result of the L2 prefetching cache operating at the processor clock. This situation
is slightly different in Bluegene/L. L2 caches have a large number of registers as

compared to the QCDOC L2 cache, but the L2 latency is considerably higher in terms
of processor clock cycles. It is estimated that data will take up to 7 processor clock
cycles before it is available in the LI data cache. The processor clock frequency is
higher, 700MHz as compared to 500MHz in QCDOC.

Chapter 5. Simulation Metamodelling 225

Finally, the QCDOC L3 cache (EDRAM) has a high bandwidth as compared
to the Bluegene/L on-chip EDRAM. There are two contributing factors to a small
bandwidth: first, the bus width to the Bluegene/L EDRAM from L2 is 256-bit while
it is 512-bit in the QCDOC ASIC. The second factor is the ratio with respect to the
processor clock frequency; the EDRAM operates at one-fourth of the processor clock

frequency in a Bluegene/L ASIC and at one-half of the processor clock frequency
in the QCDOC ASIC. Together with the memory size and bus width parameters, the
metamodel generates the QCDOC and Bluegene/L on-chip default and experimental
cache configurations.

5.4.2.4 Communication Interface

Perhaps the most distinctive feature of the Bluegene/L processing node is the presence

of an extra communication processor. The simplicity and regularity in the QCD
communication processor does not need a sophisticated processor like a PowerPC core.

In fact, something as simple as the SCU-type communication processor containing
DMA registers serves as a special purpose communication processor. Hence, without
modelling a communication PowerPC processor, the SCU to EDRAM interface is used
for on-chip communication handling. In this case, the PLB slave can serve as the
second L2 cache as it contains the prefetch logic and the prefetch registers. QCD
communication data handling logic involves processor intervention at two stages: one
for flushing send data packets to EDRAM and second to read data received from
neighbouring nodes from EDRAM. Therefore, a separate communication L2 cache
is not required to read data from the communication processor's LI cache. Send data
will be read from the EDRAM in exactly the same way as it is read on a QCDOC chip.
All that remains is the PLB overhead, since Bluegene/L nodes are directly connected
to the network unit. It was found through the HASE QCDOC simulation experiments
that apart from the initial start-up latencies, the overall communication latencies are

largely dominated by the off-chip data communication times.
A detailed analysis of the HASE metamodel communication interface is not

presented here. This is because the internal details of the Bluegene/L torus and tree
network are not available so precise comparisons with the QCDOC communication

Chapter 5. Simulation Metamodelling 226

characteristics cannot be made. Since the communication latencies and buffer sizes

are model design parameters, it is possible that additional changes may not need to
be incorporated in the metamodel. The existing model, in that instance, would be
sufficient to simulate the network interface behaviour of the two systems.

5.4.2.5 Network Topology

In addition to the communication processor, another difference between the QCDOC
and Bluegene/L machines is the point-to-point communication network topology.
QCDOC machine has a six-dimensional torus topology: for the HASE experiments
a four-dimensional physical network or HASE MESH4D template was exploited. In the

project Entity Description Language (EDL) file, the communication network topology
can be altered by altering MESH4D to MESH3D. When the HASE project is built, the
three-dimensional bi-directional torus is automatically generated by HASE.

Altering the network topology is presently different from altering all other param¬
eters mentioned earlier. A parameter change in HASE does not require project re¬
building. A modification in the EDL file, on the other hand, needs recompilation as

the entities instances generated by HASE take different forms. A four dimensional
entity is identified by MESH4DInstanceName. _diml. _dim2 . _dim3 . _dim4 while enti¬
ties instances generated by MESH3D are MESH3DInstanceName. _diml. _dim2 . _dim3.
These instances are generated statically in the project.c file. Thus, the metamodel
generates parallel machines with different sizes and dimensions (mesh and torus

topologies) using the HASE template facility with no redesign overhead.
Finally, global sum performance can be compared with existing HASE QCDOC

models design parameters. Chapter 4 identified the limits of simulating a large number
of entities within the HASE template generation mechanism. A high-level abstraction
HASE QCDOC model, without detailed on-chip memory arrays, is used for the global
sum performance estimates of the system. As explained in section 4.5, a high-level
abstraction model extends the SCU ENTITY to emulate the 4-D torus network as well

as a binary tree network. This extended model facilitates the collective communication
performance analysis on the QCDOC's four-dimensional torus network with "pass-
through" capability and on the tree network of the Bluegene/L system.

Chapter 5. Simulation Metamodelling 227

5.4.3 Constraints

The HASE parameterised metamodelling design approach provides an efficient and
effective mechanism to perform a range of performance evaluation experiments for the
parallel QCD application on the QCDOC and Bluegene/L simulation models. At the
same time, it is recognised that implementing and extending the HASE metamodelling
scheme to other parallel applications or application-driven simulations will require a

number of other features to be considered and incorporated in the simulation design.
In particular, the features that contribute to the application execution scaling and
load balancing characteristics of an application code over the underlying parallel
hardware configurations. For instance, the QCD application code runs in a single
thread so there are no context switching in the QCD kernel code execution on the
QCDOC and Bluegene/L simulation models. In many other systems, this may not
be as straightforward. The metamodelling approach in these situations must take
into account the operating system characteristics in generating the alternate simulation
models.

In addition to the hardware and operating system characteristics of the modelled
systems, the application load balancing and scaling properties may require additional
factors/parameters to be incorporated in a metamodel. The communication pattern
and volume are the key considerations for designing a metamodel. A parallel QCD
application has a regular and homogeneous communication pattern; only the data
structures of the boundary elements need to be communicated. Thus, when the
underlying physical network topology of a system changes (different dimensional
meshes and tori), it is straightforward to adapt it into the metamodel. For a number of
other parallel scientific applications, this is not the case. Depending on the workload
mapping per processing node and the underlying network topology, the metamodel
may need to incorporate a significantly large number of features.

In the view of the above, a decision to adopt a parameterised metamodelling
approach depends on getting the balance right between the:

Chapter 5. Simulation Metamodelling 228

1. cost of re-designing and re-modelling separate machines and their application
code generation; and

2. the complexity of incorporating processing node and inter-node communication

design parameters as well as the application code load balancing and scaling
properties within a metamodel. This was found to be a cost-effective approach in
studying the parallel QCD code performance on the QCDOC and the Bluegene/L
machine simulation models.

5.5 Performance Comparison Experiments

Performance comaprison experiments on the simulation models of the QCDOC and

Bluegene/L machines are conducted using workload configurations that represents the
large practical lattice volumes. Table 5.6 how these lattice volumes would be mapped
onto the available QCDOC and Bluegene/L machines.

Lattice Volume QCDOC QCDOC Bluegene/L Bluegene/L

Configuration Sites per node Configuration Sites per node

32x32x32x32 16x8x8x8 2x4x4x4 16x16x16 2x2x2x32

48x32x32x32 16x8x8x8 3x4x4x4 24x16x16 2x2x2x32

96x32x32x32 16x8x8x8 6x4x4x4 48x16x16 2x2x2x32

96x48x48x48 24x12x6x6 4x4x8x8 48x24x24 2x2x2x48

32x64x64x64 4x8x16x16 8x8x4x4 32x32x32 2x2x2x32

Table 5.6: Practical lattice QCD calculations onto QCDOC and Bluegene/L machines

A 10-Teraflops QCDOC is expected to have 10K+ processing nodes and it can be
reconfigured and partitioned in any combination of a four-dimensional torus network.
Bluegene/L will be configured as three-dimensional, 64x32x32 processing nodes
system. For the two largest practical lattice volumes, 96x48x48x48 and 32x64x64x64
sites per node, a QCDOC processing node will handle more sites per node than a

Bluegene/L processing node. Nevertheless, the three-dimensional Bluegene/L ma¬

chine has one less dimension for a four-dimensional calculation, therefore the smallest

Chapter 5. Simulation Metamodelling 229

dimension of the calculation is stored over all Bluegene/L processing nodes.
Two sets of performance comparison experiments have been performed with the

HASE QCDOC and Bluegene/L simulation models. The first set of experiments

investigated the computation requirements of the QCD kernel for a range of workloads.
These experiments were conducted with identical sets of workloads on the two

modelled systems. The second set of experiments provided an insight into the QCD
code execution for practical lattice configurations. The machine topology and lattice

mapping in the second set of experiments are taken from table 5.6.
For both sets of experiments, the hardware parameters of the QCDOC and Blue¬

gene/L are set according to their default configuration as specified in [BCC+01]
and [Tea02] respectively. This default configuration applies to the relative on-chip
processing node clock frequencies, memory sizes, latencies and bandwidths, and the
machine inter-connection network topologies.

5.5.1 Workload Scaling

QCD code is a floating-point computation intensive code. Every effort has been taken
to maximise the on-chip memory bandwidth and to minimise the memory latencies.
The Bluegene/L system targets the memory bandwidth and latency problems but not
in a QCD specific way. In QCD, the ratio of memory access operations to the floating¬
point arithmetic operation is small as compared to many other scientific applications.

Experiments were performed to observe the relative advantage of the QCD memory

hierarchy over the Bluegene/L memory hierarchy. With varying system workloads,
it was established how the computation scales change with changes in workload.
One would expect Bluegene/L to out-perform the QCDOC because it has been based
on a relatively advanced processor, SOC components and operates at a faster clock
frequency.

Figure 5.15 shows the workload scaling on the two systems.

Chapter 5. Simulation Metamodelling 230

550

500

450

400

350-

300 -

250 -

200-

150-

100-

50-

0 i i i i i i i i r

16 24 32 40 48 56 64 72 80 88 96

Number of Sites per Processing Node

□ QCDOC
HI Bluegene/L

Figure 5.15: Parallel QCD workload scaling on QCDOC and Bluegene/L machine

For the same workload, a QCDOC node was able to finish the job more quickly
as compared to a Bluegene/L node. However, the scaling behaviours of both systems
are identical. These results highlight that a higher processor clock frequency (700
MHz compared to 500 MHz) and larger on-chip memory arrays do not necessarily
result in a higher performance and efficiency of code execution. In fact, for the
QCD application code, the relative on-chip memory latencies and on-chip memory

bandwidths contribute more to fast execution times.

5.5.2 Efficiency

Performance comparison experiment presented in the previous section do not take into
account the lattice volume for a QCD calculation; workload or the computation load
(number of sites per processing node) was the focus. The practical lattice volumes of
table 5.6 are compared on the two machines for estimating the achievable performance

efficiency.

Chapter 5. Simulation Metamodelling 231

For the larger QCD lattice volumes, 96x48x48x48 and 32x64x64x64 lattice sites

per processing node, the 64K node Bluegene/L executes less workload per processing
than a 10K QCDOC, thereby finishing the calculations more quickly. The results

presented in this section therefore compare the relative performance, by taking a ratio
of the number of nodes available and number of sites mapped per processing node.
The central aim of the performance comparison experiments is to establish parallel
load balancing, efficiency and scalability of the parallel QCD code with respect to the
processing node design configurations of the two systems — independent of the total
number of processing nodes of two machines.

Figure 5.16 shows the execution times for a single iteration of the QCD kernel
against the number of lattice sites mapped per node.

U
<V
I/)

<v
E
h-
c
o
4-»
13
u
CD

5.00E-002

4.50E-002

4.00E-002

3.50E-002

3.00E-002 -|

2.50E-002

2.00E-002 -

1.50E-002 -

1.00E-002 -

5.00E-003 -

0.00E+000

32x32x32x32 32x32x32x48 32x32x32x96 48x48x48x96 64x64x64x32

QCD Lattice Volume

Figure 5.16: Execution time per lattice site

Figure 5.17 shows the ratios of workload distribution per node and total execution
time between QCDOC and Bluegene/L for increasing lattice volumes.

Chapter 5. Simulation Metamodelling 232

3.5 -
□ SitesPerNode

(QCDOC/BGL)

3- 1J ExecutionTime
(QCDOC/BGL)

0.5 -

2.5 -

1.5 -

0

2 -

1-

I I
32x32x32x32 32x32x32x48 32x32x32x96 48x48x48x96 64x64x64x32

QCD Lattice Volume

Figure 5.17: QCDOC and Bluegene/L (BGL) Performance

The main observation (from figure 5.16 and figure 5.17) is the difference in overall

efficiency of the two systems: QCDOC machine handles parallel QCD code more

efficiently than the Bluegene/L machine. Particularly, for 64x64x64x32 lattice, local
lattice volume for a QCDOC processing node is four times greater than the local lattice
volume of a Bluegene/L processing node, but the execution time on the former is only
twice as long as the latter.

The results represented in figure 5.16 and figure 5.17 do not include the commu¬

nication costs of the QCD application: the local communication cost and the global-
sums communication costs. Global sums, like any other collective communication
on a large dimension system, would suffer from the comparatively large number of
nodes in the Bluegene/L system. In section 5.3.1, nearest-neighbour communication

performance results were compared over three-dimensional and four-dimensional torus
configurations with identical communication latencies. It would be useful however, to
observe the scaling of communication cost with respect to communication volume in
the nearest-neighbour communication operations on the two different machines.

Chapter 5. Simulation Metamodelling 233

Bluegene/L's communication processor is expected to reduce the nearest-neighbour
communication startup times by off-loading the computation CPU — this however
would require some modification of the existing QCD kernel. Moreover, on-chip
communication data transfers on the Bluegene/L will be more efficient since the
communication node's L2 cache is directly connected to the network unit— QCDOC
connects them via the system bus with multiple masters. Nevertheless, simulation
experiments with variable on-chip and off-chip communication data transfer latencies
(section 4.4.1) demonstrated that the nearest-neighbour communication times predom¬

inantly depend on off-node data transfer latencies.
The effects of frequent nearest-neighbour communication operations are not ex¬

plored on the Bluegene/L and the QCDOC simulation models. In case of the QCDOC
machine modelling, access to the confidential design documents [BCC+02b] provided
precise timing information over the off-node links and the custom communication
protocol. A comprehensive description of Bluegene/L off-node point-to-point com¬
munications is not available at the time of writing. In the absence of precise timing
information, and information about the storage and buffering characteristics of the
communication unit, the comparison experiments were not possible. The HASE
model communication unit allows a range of buffer and storage options to be specified
together with a provision to specify send and receive latencies. It is therefore possible,
when the Bluegene/L communication details are known, to compare the nearest-

neighbour communication performance on the two systems.

Similarly, the metamodelling approach allows for the Bluegene/L collective com¬

munication network to be simulated as a HASE model. The SCU ENTITY contains

parameters that specify six options for global sum. One global sum option is the one

implemented for the Bluegene/L architecture: the two-round trip to tree global sum
using a serial adder in the communication unit implementation. Hence, it is possible
to estimate global sum times on the two machines. But, in addition to global sum
options, another requirement critical in global sum estimates is the send and receive
communication latencies over the Bluegene/L network.

Chapter 5. Simulation Metamodelling 234

The Bluegene/L tree network architecture and functioning of its ALU are known
at the time of writing this thesis, but the communication latencies are not available.

Therefore, for the lattice configuration outlined in table 5.6, the double-precision
floating-point reduction times cannot be compared between the QCDOC machine
model and the Bluegene/L machine model. Like nearest-neighbour experiments, once
these timings are available it would be a matter of altering the input parameters to the
model. It would not require re-designing or re-coding the simulation model in HASE.

5.6 Summary

Application-driven metamodelling and the Bluegene/L architecture have been in¬
troduced along with an overview of Bluegene/L architecture's similarities to and
differences from the QCDOC machine. The advantages of hardware and software

parameters of the HASE model have been described with an introduction to the
metamodelling concept and its importance in SOC design exploration. The benefits
of the metamodelling approach include component reuse, flexibility and efficiency in
generating complex simulation models. This scheme allowed parallel QCD perfor¬
mance comparison experiments on the HASE simulation models simulating QCDOC
and Bluegene/L design configurations. Furthermore, HASE simulation results have
confirmed that a cost-effective, custom-built system achieves a better fraction of peak
performance compared to a general-purpose supercomputer, even though the two

systems are based on similar technologies.

Chapter 6

Conclusions

The purpose of this chapter is to summarise the contents of the thesis and to identify the
notable contributions. Suggestions are outlined for future directions of this research.

6.1 Thesis Summary

Theoretical peak performance of a parallel computer is quite straightforward to deter¬
mine; one can obtain it by multiplying the number of processing nodes in a parallel
system by the theoretical peak performance of its processing nodes. However, the
achievable performance depends on the characteristics of computation and commu¬

nication components of a parallel system, most notably, the memory hierarchy and
interconnection network latencies. Furthermore, the achievable performance of an

application is attributed to its workload characteristics and the sustainable performance
depends on the application software load balancing and scaling on a parallel system
with varying problem sizes.

Thus, in order to investigate the performance limiting factors and to explore the
design and performance search space of a parallel machine, it is essential to incorporate
a number of system hardware and application software properties in performance
studies. UKQCD computer simulation research is based on an application-driven sim¬
ulation approach to study performance of a recent, application-specific supercomputer.
In order to conduct performance experiments, the HASE UKQCD computer (QCDOC)

235

Chapter 6. Conclusions 236

parameterised simulated models are created. The application software is parameterised
and simulated along with the parameterised hardware model of the system. Thus,
along with the behaviour modelling of the hardware components, system software, the
optimised QCD application code's problem size is made a model parameter. Hardware
parameters of the QCDOC model enabled a wider design exploration of the system

architecture, while the ability to alter problem size during a simulation allowed for the

scalability studies of the application workload.
The hardware-software co-simulation approach paved the way for not only QC¬

DOC performance characteristics exploration but also Bluegene/L's design space

exploration, QCDOC successor supercomputer, through simulation metamodelling.
The metamodel scheme permits efficient generation of HASE simulation models for
parallel QCD performance studies with different design configurations by reusing
the existing design components. Bluegene/L is a System-On-a-Chip (SOC) based
supercomputer like QCDOC. Although, unlike the QCDOC system, it has not been

optimised for the QCD calculations, it shares many of its design features, particularly
the on-chip memory hierarchy and the instruction set architecture with the QCDOC
system. The optimised QCD application kernel written in PowerPC assembly language
is the benchmark software for comparing the two systems performance. Moreover, it
is argued that the rapid and flexible prototyping facilities of HASE for parameterised
model development and the extensions made to the HASE during the course of this
research are essential for the metamodel creation. As a result, SOC-based massively-

parallel processor (MPP) HASE models are generated efficiently for parallel QCD
code performance comparison experiments.

It is believed that the application-driven simulation metamodelling approach is
useful in scientific supercomputing research since these supercomputers are mostly
optimised for and dedicated to a few highly-demanding applications. The main
drawback of the cycle-accurate, instruction-level simulation scheme proposed in this
thesis is the wall clock run time of the simulation and the integration of workload
simulation within the architectural simulation. Additional design efforts are required
for simulating other workloads.

Chapter 6. Conclusions 237

6.2 Key Contributions

Computer architecture simulation frameworks have been employed in research and
innovation of small- and medium-scale parallel systems hardware, which are de¬
signed and optimised for commercial applications. Software simulation techniques
provide trade-offs between accuracy, efficiency and flexibility. At the time of writing
this thesis, dedicated software simulations are created from scratch for scientific,

high-end supercomputer architecture performance studies: ASCI Q [PKP03] and
BGLSim [MCS+03], The UKQCD computer simulation research, in contrast, employs
the HASE platform to conduct performance studies of a recent scientific supercom¬

puter. During the research, useful new mechanisms as well as limitations of the HASE

platform for the high-end supercomputer simulations have been identified. Extensions
have been made to the HASE to facilitate the design and use of the QCDOC system
simulation model.

The primary design target was accuracy of the simulation models, since the
precise design details of the architecture were made available. Prototypes of the
QCDOC, SOC-based processing node MPP system, have been designed in the HASE
that emulate the correct functional and timing behaviour of the existing system. In
addition to prototyping the system, the simulation model is parameterised, such that
the performance limiting factors are exposed as a result of experiments with varying
hardware configurations.

The QCDOC system has been specifically built for QCD applications, especially
for application domains which are important for Columbia and UKQCD collabora¬
tion researches. A customised but highly optimised QCD kernel is the basis for
real system prototype performance testing as well as the HASE simulation model
performance exploration. Because of the long simulation times associated with the
VHDL simulations,1 the highly optimised QCD kernel was primarily used to model a
small problem size. At the same time, this optimised kernel is intended to provide
library routines for QCD application code calculations as it represents the most

frequently-used and time-consuming component of a QCD application. Hence, this

'QCDOC design team prototypes.

Chapter 6. Conclusions 238

optimised QCD kernel is not restricted to a single problem size; it is parameterised
for a number of problem and machine sizes. In order to perform computation and
communication load balancing and scalability experiments, the application kernel was

parameterised in HASE QCDOC model. The workload parameters of the model have
allowed the workload size to vary for the simulation experiments — removing the
need for time-consuming off-line code generation. Addition of application workload

parameters in HASE model required a thorough understanding of the application code
distribution and mapping onto a parallel architecture and the QCDOC operating system
characteristics.

Parameterised hardware and software simulation in HASE allowed a range of

experiments to be performed on the QCDOC simulation models including: memory

hierarchy characteristics and QCD frequent nearest-neighbour communication and

global sum performance exploration. Results from these experiments confirm that the
QCD-specific design optimisations, the Prefetch EDRAM Controller (PEC) and the
four-dimensional communication topology along with the Serial Communication Unit
(SCU), contributes to the QCD performance efficiency. Yet, alternate combinations of
parameters can further enhance the achievable performance. The level 1 data cache
line size and an unbalanced QCD workload distribution are found to be the main

performance bottlenecks.

A parameterised HASE simulation model allows for experiments by altering
the system configuration parameters. Simulation with multiple global sum options
provided scaling behaviour of floating-point global sums of QCD calculations. Also,
it was found that the large communication latencies inherent in commercial networks
and routing schemes can have a significant impact on small-sized QCD communication
packets. In addition to the performance evaluation experiments, simulation runs with
ideal and hypothetical system configurations are executed. Without these experiments,
it would be impractical to predict the precise behaviour of the QCD application and to
quantify the hardware limitations of the system. Experiments with varying workload
sizes enabled understanding of behaviour of the hardware components, computation to
communication ratios and parallel code scalability.

Chapter 6. Conclusions 239

Finally, the Bluegene/L and QCDOC HASE models for the QCD applications
were generated by employing an application-driven simulation metamodelling scheme.

Metamodelling methodology enables an efficient and seamless creation of HASE
simulation models for parallel QCD code performance experiments based on dif¬
ferent hardware characteristics and interconnection network topologies. The HASE
hardware-software co-simulation and component reuse mechanisms have been ex¬

ploited for the HASE simulation metamodel design. Performance comparison ex¬

periments have been conducted on the HASE QCDOC and Bluegene/L simulation
models. These comparison experiments provided an insight into the performance
characteristics of the QCD code on a special purpose QCDOC machine and a non-

QCD-specific system, the Bluegene/L. It was confirmed that the balance between
processor speed and on-chip memory latencies and bandwidth, offered by the QCDOC
processing node, favour QCD application code execution.

6.3 Future Directions

Simon et. al. [SMK+03] suggested that current and future state-of-art scientific
High Performance Computing (HPC) research relies on a sound understanding of
the behaviour of the underlying system for an application code execution. Com¬
puter simulations are believed to be the only cost-effective, flexible and yet precise
mechanism that can enable achievement of these targets. Nonetheless, as Dongarra
et. al. [DSSS03] concluded, the current techniques of system simulations are not

appropriate for a simulation designer to explore and to benchmark a current, or a future
system with certain degree of speed, flexibility and accuracy. The research presented
in this thesis demonstrated an approach to hardware-software integration in modelling
and parameterisation of system design. The experience of this research provided an

insight into limitations and short-comings for future research projects within the HASE
framework and for a wider scientific multiprocessor simulation.

Chapter 6. Conclusions 240

First, analysis of enormous simulation trace files require additional capabilities
in the HASE platform. Multiprocessor simulations generate huge trace files, and
filtering information from these traces is currently a manual task. This is currently
a responsibility of the user at coding time, to selectively store useful information in

separate files. A selection mechanism in the HASE trace generation mechanism would
allow useful information to be captured and filtered at the user's request at simulation
run time. The overall behaviour of selective input and output parameters can then
be compared and contrasted for successive simulation runs. However, the filtering
mechanism should not compromise the design flexibility and freedom offered by the
HASE, by imposing restrictions on the way in which parameters are included and
altered.

Second, existing design validation capabilities within HASE need to be extended.
Presently, the HASE system validates the LINK consistency and memory ARRAY inputs
in .mem files. Two HASE entities connected via a LINK can only declare a PORT
connected via the same LINK definition. Similarly, at the simulation run time, when
the physical memory file is read, HASE identifies and prints warning messages if an
invalid data structure is found. Apart from the LINK and memory ARRAY validation,
design validation is a simulation designer's responsibility. Typically, run-time errors

are identified during a simulation run, during animation and via timing diagram
inspections.

Third, as Coe [CoeOO] suggested in his PhD thesis on distributed shared-memory
multiprocessor which are smaller in size and dimensions than the QCDOC systems,

Hase++, the discrete event simulation library of the HASE platform, should be ported
and run on a parallel machine. Bagrodia et. a/.[BDP01] suggested several parallel
discrete-event simulation approaches for parallel applications. Alexander et. al.
[ABB+01] exploit extreme-scale simulation techniques, which presently focuses on

simulating large interconnection networks. It does not however, capture and explore
node-level processing and memory design optimisations.

Chapter 6. Conclusions 241

Fourth, the HASE platform needs scalable and customisable visualisation capa¬

bilities for multiprocessor simulation models. Currently, C++ QT APIs provide the
GUI and animation facility in the HASE. The on-screen complexity of the MPP
QCDOC model, at the processing node level and for a larger system, require a scalable
visualisation mechanism for the HASE template-based entities. A zoom-in and zoom-
out facility should exist in conjunction with the current hierarchical user interface,
such that entities can be hidden and expanded by a user through the HASE GUI.

Currently, developments are under way to separate the graphical view of a HASE
model from its behavioural contents. This would allow additional graphical features to
be incorporated in a HASE model without the restrictions imposed by the behavioural
code and the simulation libraries.

Fifth, the scope and advantages of the metamodelling techniques for other scientific
applications and architectures can be explored. Metamodelling is widely used in
embedded system architecture exploration. However, application of these techniques
requires a thorough understanding of a parallel application code mapping and its
computation and communication characteristics. Furthermore, a detailed knowledge
of the architectural configurations of alternate simulation models would be necessary

to conduct high fidelity performance studies. Extensive multi-disciplinary research
efforts are required to establish whether, for a given application and architecture, re¬

design overheads are greater than the parameterised model design overheads.
Finally, analysis of enormous trace files generated as a result of multiprocessor

simulations require statistical methods to identify and to report statistically significant
parameters. Currently, the timing simulators report execution time and functional
simulators focus on representing hit/miss cache ratio or busy/idle network time.
But they fail to capture global variations in program behaviour and performance.
The end result may be a function of a number of system variables and application
of statistical algorithm would enable a comprehensive analysis and understanding
of simulation results. At the microprocessor design level for instance, the Sam¬
pling Microarchitecture Simulation (SMARTS) [WWFH03] addressed the need for
improved simulation accuracy and performance by applying statistical sampling to
microarchitecture simulations.

Chapter 6. Conclusions 242

It is envisaged that the design optimisation and exploration of supercomputers
would rely on effective and efficient computer generated simulations as is the case

in researches in other disciplines. No doubt, supercomputers would be needed for
these simulation studies and the current issue, as concluded in 2003 Conference on

High-Speed Computing:

"Computational scientists have become quite expert in using high-end
computers to model everything except the systems they run on."

By conducting an in-depth performance analysis of the QCDOC machine through
its HASE simulation model and by predicting parallel QCD code performance scaling
on a future-generation supercomputer using a flexible and efficient metamodelling
scheme, the UKQCD computer simulation project demonstrates that scientific su-

percomputing modelling issues and challenges can be addressed within a simulation
framework by aggregating and by exploiting existing simulation strategies and tech¬
niques.

Appendix A

Benchmark Code

An optimised QCD kernel and a custom operating system were developed by the
QCDOC design team at the Columbia University to benchmark and to test the initial
QCDOC prototypes as well as the physical machines. The QCDOC operating system
features are incorporated and simulated along with the behaviour modelling of HASE
hardware design entities. The benchmark kernel executable image is included as an

input to the HASE models (in form of HASE memory ARRAY).

A.1 QCD Kernel

The kernel comprises the most time consuming part of a QCD application code called
the "Dslash". The "Dslash" computation in turn consists of four computation functions
and two nearest-neighbour communication operations. The function signatures are

below:

void QCDOC_ChDecom (void *psi,void *len,void *tab_bwd)

void QCD0C_ChDecom_hsu3 (void *psi,void *Ucb ,void *len,void *tab_fwd)

void QCD0C_ChRecon_su3 (void *chi,void *Un ,void *chib,void *len)

void QCDOC_ChRecon_add (void *chi,void * chif,void *len)

The addresses the above functions' parameter pointer points to remain the same

if the underlying workload of the system changes. However, the values they point

243

Appendix A. Benchmark Code 244

to depends on the local lattice volume (or workload), i.e., lattice volume mapped per

processing node. For instance, the len variable is calculated by taking the half of the
product of the number of sites in the four space-time directions.

In order to take the maximum advantage of the custom designed features of the
QCDOC hardware, the above-listed kernels have been hand-coded. Code listing of
QCDOC_ChDecom (the smallest method) in PowerPC assembly language is provided
below:

QCDOC_ChDecom:

or %r9 , %r3 , %r3

la %rl, -!928 (%r:

or %rl6 , %r4 , %r4

li %r26,0

addi %rl4 , %rl , 864

li %r27,32

or %rl9 , %r5 , %r5

li %r28,64

debt %r26,%rl9

lwz %rl6, 0 (%r16)

or. %rl6 , %rl6 , %rl6

bf gt, labO

addi %r24 , %r9 , 96

lwz %rl3, 0 (%rl9)

addi %rl4 , %rl , 864

debt %r26,%r9

debt %r27,%r9

debt %r28,%r9

debt %r26,%r24

debt %r27,%r24

debt %r28,%r24

lfd 0, 0(%r9)

lfd 1, 8 (%r9)

Appendix A. Benchmark Code 245

lfd 2, 16(%r9)

lfd 3, 24(%r9)

lfd 4, 32(%r9)

lfd 5, 40(%r9)

lfd 6, 48(%r9)

lfd 7, 56(%r9)

lfd 8, 64(%r9)

lfd 9, 72(%r9)

lfd 10, 80(%r9)

lfd 11, 88(%r9)

lfd 12, 96(%r9)

lfd 13, 104(%r9)

lfd 14, 112(%r9)

lfd 15, 120(%r9)

lfd 16, 128(%r9)

lfd 17, 136(%r9)

lfd 18, 144(%r9)

lfd 19, 152(%r9)

lfd 20, 160(%r9)

lfd 21, 168(%r9)

lfd 22, 176(%r9)

lfd 23, 184(%r9)

mtctr %rl6

b labl

addi %r20 , %rl3 , 0

la %rl9, 4(%rl9)

fsub 24 , 12 , 7

addi %r9 , %r9 , 192

fadd 25 , 13 , 6

lwz %rl3, 0(%rl9)

Appendix A. Benchmark Code

fsub 26 , 18 , 1

debt %r27,%rl9

fadd 27 , 19 , 0

stw %r9, 16(%rl4)

fsub 28 , 14 , 9

addi %r21 , %rl3 , 0

fadd 29 , 15 , 8

stfd 24, 0 (%r20)

fsub 30 , 20 , 3

la %rl9, 4(%rl9)

fadd 31 , 21 , 2

stfd 25, 8(%r20)

fsub 24 , 16 , 11

lwz %rl3, 0(%rl9)

fadd 25 , 17 , 10

stfd 26, 16(%r20)

addi %r22 , %rl3 , 0

la %rl9, 4(%rl9)

fsub 26 , 22 , 5

stfd 27, 24(%r20)

addi %r24 , %r9 , 192

lwz %rl3, 0(%rl9)

fadd 27 , 23 , 4

stfd 28, 32(%r20)

addi %r23 , %rl3 , 0

la %rl9, 4(%rl9)

fsub 28 , 12 , 6

stfd 29, 40(%r20)

lwz %rl3, 0(%rl9)

fsub 29 , 13 , 7

stfd 30, 48(%r20)

Appendix A. Benchmark Code 247

debt %r26,%r24

fadd 30 , 18 , 0

stfd 31, 56(%r20)

la %rl6, -1(%rl6)

fadd 31 , 19 , 1

stfd 24, 64(%r20)

fsub 24 , 14 , 8

stfd 25, 72(%r20)

fsub 25 , 15 , 9

stfd 26, 80(%r20)

debt %r27,%r24

fadd 26 , 20 , 2

stfd 27, 88(%r20)

fadd 27 , 21 , 3

stfd 28, 0(%r21)

fsub 28 , 16 , 10

stfd 29, 8(%r21)

fsub 29 , 17 , 11

stfd 30, 16(%r21)

debt %r28,%r24

fadd 30 , 22 , 4

stfd 31, 24(%r21)

addi %r24 , %r24 , 96

fadd 31 , 23 , 5

stfd 24, 32(%r21)

fsub 24 , 12 , 1

stfd 25, 40(%r21)

fadd 25 , 13 , 0

stfd 26, 48(%r21)

debt %r26,%r24

fadd 26 , 18 , 7

Appendix A. Benchmark Code 248

stfd 27, 56(%r21)

fsub 27 , 19 , 6

stfd 28, 64(%r21)

fsub 28 , 14 , 3

stfd 29, 72(%r21)

fadd 29 , 15 , 2

stfd 30, 80 (%r21)

debt %r271,%r24

fadd 30 , 20 , 9

stfd 31, 88(%r21)

fsub 31 , 21 , 8

stfd 24, 0(%r22)

fsub 24 , 16 , 5

stfd 25, 8(%r22)

fadd 25 , 17 , 4

stfd 26, 16(%r22)

debt %r2£!, %r24

fadd 26 , 22 , 11

stfd 27, 24(%r22)

fsub 27 , 23 , io

stfd 28, 32(%r22)

fsub 28 , 12 , o

stfd 29, 40(%r22)

fsub 29 , 13 , 1

stfd 30, 48(%r22)

lfd 0, 0(%r9)

fsub 30 , 18 , 6

stfd 31, 56(%r22)

lfd 1, 8(%r9)

fsub 31 , 19 , 7

stfd 24, 64(%r22)

Appendix A. Benchmark Code 249

lfd 6, 48(%r9)

fsub 24 , 14 , 2

stfd 25, 72(%r22)

lfd 7, 56(%r9)

fsub 25 , 15 , 3

stfd 26, 80(%r22)

lfd 2, 16(%r9)

fsub 26 , 20 , 8

stfd 27, 88(%r22)

lfd 3, 24(%r9)

fsub 27 , 21 , 9

stfd 28, 0(%r23)

lfd 8, 64(%r9)

fsub 28 , 16 , 4

stfd 29, 8(%r23)

lfd 9, 72(%r9)

fsub 29 , 17 , 5

stfd 30, 16(%r23)

lfd 4, 32(%r9)

fsub 30 , 22 , 10

stfd 31, 24(%r23)

lfd 5, 40(%r9)

fsub 31 , 23 , 11

stfd 24, 32(%r23)

lfd 10, 80(%r9)

stfd 25, 40(%r23)

lfd 11, 88(%r9)

stfd 26, 48(%r23)

lfd 12, 96(%r9)

stfd 27, 56(%r23)

lfd 13, 104(%r9)

Appendix A. Benchmark Code 250

stfd 28, 64(%r23)

lfd 14, 112(%r9)

stfd 29, 72(%r23)

Ifd 15, 120(%r9)

stfd 30, 80(%r23)

lfd 16, 128(%r9)

stfd 31, 88(%r23)

lfd 17, 136(%r9)

lfd 18, 144(%r9)

lfd 19, 152(%r9)

lfd 20, 160(%r9)

lfd 21, 168(%r9)

Ifd 22, 176(%r9)

lfd 23, 184(%r9)

bdnz labl

la %rl, 928(%rl)

blr

Like QCDOC-ChDecom, other methods branch and jump to several other labels within
a signal call. The number of iterations is determined statically. In other words, the
number of iterations do not depend on a value computed dynamically, instead, it is

computed at the lattice initialisation stage.

A.2 Object File Format

Labels in the QCDOC kernels have been named as labn, where n can be a number from

0, 1, The duplication of the labels was avoided by using the complete executable
image of the kernel rather than individual files for each subroutine. An executable

image format in the instruction memory for the QCDOCLChDecom is shown in figure A.2.

Appendix A. Benchmark Code 251

0000ca20 <QCDOC_ChDecom>:

ca20: 7c 69 lb 78 mr r9, r3

ca24: 38 21 fc 60 addi rl,rl,-928

ca28: 7c 90 23 78 mr rl6,r4

ca2c: 3b 40 00 00 li r26,0

cad4: 7e 09 03 a6 mtctr rl6

cad8: 48 00 00 08 b caeO clabl

caeO <labl>

caeO: 3a 8d 00 00 addi r20,rl3,0

cae4: 3a 73 00 04 addi rl9,rl9,4

Figure A.1: Contents of the . obj file in human-readable format

A.3 Input Format for the HASE Model

A HASE EDL construct INSTR has been employed for defining the instruction set
for the model. A subset of the PowerPC instruction set has been implemented.
Several instruction mnemonics in PowerPC instruction set are keywords in C/C++

programming language and are not allowed to be used in a program. Therefore, the
lowercase letters of PowerPC instruction mnemonics and labels are converted to upper

case. Furthermore, an "Ox" is appended to the addresses and offsets to represent them
in C/C++ compliant hexadecimal values. This process is automated by developing
a Java utility that converts input in the PowerPC object code format to the HASE
QCDOC model conformant. The final format of the instruction which is loaded to

instruction cache is shown in figure A.3.

Appendix A. Benchmark Code 252

0x0000ca20 LABEL QCDOC_CHDECOM:

0xca20 MR R9,R3

0xca24 ADDI Rl,Rl,-928

0xca28 MR R16,R4

0xca2c LI R26,0

Oxcad4 MTCTR R16

0xcad8 B CAEO<LABl>

OxOOOOcaeO LABEL LABI:

OxcaeO ADDI R20,R13,0

0xcae4 ADDI R19,R19,4

Figure A.2: Contents of the instruction cache in the .mem file

Appendix B

Input Parameters and Output Variables

The design space of the QCDOC architecture was explored by altering and experiment¬

ing with a range of parameters included in the HASE models (i.e. by parameterising
the HASE design entities). HASE provides an efficient and flexible mechanism to alter
and to include entities and their parameters in a model. For conducting experiments,
the HASE parameter window interface allows a user to alter a value or set of values
for successive simulation runs.

B.1 ENTlTYs and their Parameters

Theoretically, a number of parameters can be included in a parameterised model. How¬
ever, in the QCDOC simulation model design, parameterisation and result gathering in
the model are focused on (a) custom-built QCDOC components, (b) entities that are
involved in code execution and on-chip data movements and (c) factors that influence
code scalability and load balancing.

B.1.1 The PowerPC COMPENTITY

This compound entity (COMPENTITY) has three sub-entities: Central Processing
Unit (CPU), Memory Management Unit (MMU) and an auxiliary Floating Point Unit
(FPU).

253

Appendix B. Input Parameters and Output Variables

B.1.1.1 The CPU ENTITY

254

Parameter Description Possible Values

InstrFetchPerCycle the number of instructions fetched

from the MMU in each clock cycle

1-4

qcdoc_kernel test routine name QCD Kernel rou¬

tines

CommType Direction of the Nearest Neighbour
Communications

None, Forward or

Backward

PrefetchValues Whether prefetch values in the param¬

eter registers

1-4

Table B.1: CPU parameters

Table B.l lists the parameters a user can alter for a simulation run. The results
filtered by a CPU entities are:

1. PowerPC instructions issued per clock cycle.

2. Instruction movement from a pipeline stage to other with source register values
and effective address (load store instructions).

3. Instructions committed along with value of destination register.

4. Number of instructions in load-store, simple integer and complex integer pipelines.

5. Status of execution pipelines: blocked or not.

After a simulation run, the $report section of all entities in a HASE model are
executed. The $report section of the CPU ENTITY prints the execution time and
number of instruction issued and committed along with the unique_identity of a
CPU. In a four dimensional mesh, each instance of an entity has a unique identifier.

Appendix B. Input Parameters and Output Variables 255

Parameter Description Possible Values

InstrFetchPerCycle Number of instructions from CPU ev¬

ery clock cycle.

1-4

IdealMode Assume load and store hits in Level 1

cache

boolean

Table B.2: FPU parameters

B.1.1.2 The FPU ENTITY

FPU ENTITY parameters are listed in Table B.2. For extensive instrumentation of
floating-point intensive QCD code, values below are recorded at each time step of
the code execution:

1. PowerPC floating-point instructions from CPU each clock cycle.

2. Instructions committed by load-store and arithmetic pipelines with destination
register values.

3. Load wait - latency of load data arrival for each load instruction.

4. Instruction movement from a pipeline stage to other with source register values.

In the $report section, an FPU entity prints the total execution time from first
instruction issue to last instruction committed and the total number of load-store and

arithmetic instructions.

B.1.1.3 The MMU ENTITY

Detailed knowledge of the MMU operations and its behaviour during a simulation is of
pivotal importance in investigating and scrutinising the performance of the QCD code.

The allocate and write policy attributes of Table B.3 can also be controlled via a

TLB entry. An MMUENTITY records the following values at each clock cycle:

1. read address requests together with the data cache touch debt or line fill requests.

2. Read replies with effective addresses and value to FPU and CPU.

Appendix B. Input Parameters and Output Variables 256

Parameter Description Possible Values

d_cache_sizeX32K Size of the data cache 32K and 64K

d_cache_ways_log2 Number of cache ways 4 to 64

d_cache_sets_log2 Number of cache sets 4 to 64

burst_size_log2 Data read and write bus size 4 to 32 words

write_policy Whether write through or write back write through, copy
back

allocate_policy What should happen on a write miss allocate, no allo¬

cate

Table B.3: MMU parameters

3. Write data plus addresses from CPU and FPU.

The MMU $report section reports number of hits, misses, total requests for read
and write operations to the CPU.

B.1.2 PDB and PLBDBLK ENTITY

The PDB provides a high bandwidth access to EDRAM, serves as a prefetch engine,
buffers write from core's data bus and interfaces core masters to Processor Local Bus.

PLBDBLK is similar to the PDB except for the MMU's processor read and write bus
master interfaces. Table B.4 lists the PDB and PLBDBLK ENTITY parameters.

Parameter Description Possible Values

PrefetchSize_W_log2 Size of prefetch and buffer registers 8-64 words

ReadRegisters Number of prefecth read registers 2-32

WriteRegisters Number of write buffer registers 1-16

ReplacementPolicy Read registers replacement policy LRU, Round Robin

and Random

Table B.4: PDB and PLBDBLK parameters

A PDB ENTITY stores in text files during a simulation run:

Appendix B. Input Parameters and Output Variables 257

1. Read requests from MMU;

2. Write requests from MMU;

3. Read data replies to the MMU;

4. Write flushes to the EDRAM; and

5. Prefetch read requests to the EDRAM.

The $report section prints total number of requests, hits and misses for read and
write requests from MMU.

B.1.3 The EDRAM ENTITY

EDRAM stores on-chip instructions/data and supports high bandwidth read and write
accesses to PDB, PLB slave and DMA. One parameter edram_burst_log2 indicates
the data transfer bus width to the PEC interfaces. The EDRAM ENTITY filter the read

and write requests from the PEC interfaces as well as prefetch read broadcasts.

B.1.4 The SCU ENTITY

The communication unit, SCU, a custom designed component's parameters are listed
in Table B.5.

The effect of the above parameter changes are recorded in form of the values below:

1. Packets send/received from/to 16 send and receive ports.

2. Read requests to PLB with send buffer identifier.

3. Read data from PLB with send buffer identifier.

4. Write data to PLB with receive buffer identity.

5. Write acknowledge from PLB with receive buffer identity.

In addition to the above values stored filtered in separate files, an SCU entity prints
simulation results in form of number of double-word transfers from each port and
simulation execution time in clock cycles.

Appendix B. Input Parameters and Output Variables 258

Parameter Description Possible Values

register_size Size of send and receive registers 1-11 double words

buffer_size Size of send and receive buffers 1-4 double words

send_latency Latency of a double word send up to 200 clock cy¬

cles

ack_latency Latency of a double word acknowl¬
edgement

up to 100 clock cy¬

cles

plbxfer_latency Time to load 2 double-words to and

from registers

up to 20 clock cy¬

cles

Table B.5: SCU parameters

B.2 Sample Outputs

As mentioned in the last section, several entities filter information, which are not

recorded by the simulation tracefile, and write them into a text file. These files can

later be used for simulation validation and analysis of an entity's behaviour during a

simulation.

For example, the output from the CPU ENTITY commit unit is as follows. It
identifies not only the execution pipeline and clock cycle value but also the values
in registers and the effective address (EA) for load and store instructions.

7 J-Pipe MR R9,R3 dest=R9(B000C400,-1342127104)

srcl=R3(BOOOC40O,-1342127104) src2=R0(0,0) EA=(0,0) data=(0,0)

8 J-Pipe ADDI Rl,Rl,-1408 dest=Rl(B00FF718,-1341130984)

srcl=Rl(B00FFC98,-1341129576) src2=R0(FFFFFA80,-1408) EA=(0,0)

data=(0,0)

9 J-Pipe MR Rll,R4 dest=Rll(B00FFD04,-1341129468)

srcl=R4(B00FFD04,-1341129468) src2=R0(0,0) EA=(0,0) data=(0,0)

Appendix B. Input Parameters and Output Variables 259

10 J-Pipe MR R23,R5 dest=R23(B002BC00,-1341998080)

srcl=R5(B002BC00,-1341998080) src2=R0(0,0) EA=(0,0) data=(0,0)

11 J-Pipe ADDI R22,Rl,864 dest=R22(B00FFA78,-1341130120)

srcl=Rl(B00FF718,-1341130984) src2=R0(360,864) EA=(0,0) data=(0,0)

12 J-Pipe MR R24,R6 dest=R24(B00FFCF4,-1341129484)

srcl=R6(B00FFCF4,-1341129484) src2=R0(0,0) EA=(0,0) data=(0,0)

13 J-Pipe ADDI R13,R22,64 dest=Rl3(B00FFAB8,-1341130056)

srcl=R22(B00FFA78,-1341130120) src2=R0(40,64) EA=(0,0) data=(0,0)

20 LS-Pipe LWZ R24,0(R24) dest=R24(8,8) srcl=R24(B00FFCF4,-1341129484)

src2=R0(0,0) EA=(B00FFCF4,-1341129484) data=(8,8)

23 I-Pipe MRCR R24,R24 dest=R24(0, 0) srcl=R24(8, 8) src2=R0(0,0)

EA=(0,0) data=(0,0)

24 I-Pipe BLE EA3C<LAB0EA3C> dest=R0(0,0) srcl=R0(0,0) src2=R0(0,0)

EA=(0,0) data=(E304,58116)

28 J-Pipe ADDI R20,Rll,96 dest=R20(B00FFD64,-1341129372)

srcl=Rll(B00FFD04,-1341129468) src2=R0(60,96) EA=(0,0) data=(0,0)

29 J-Pipe LI R25,0 dest=R25(0,0) srcl=Rl(0,0) src2=R0(0,0) EA=(0,0) data=(0,0

30 J-Pipe ADDI R15,R22,160 dest=Rl5(B00FFB18,-1341129960)

srcl=R22(B00FFA78,-1341130120) src2=R0(AO,160) EA=(0,0) data=(0,0)

31 J-Pipe LI R26,32 dest=R26(20,32) srcl=R0(20,32) src2=R0(0,0)

Appendix B. Input Parameters and Output Variables

EA=(0,0) data=(0,0)

260

32 J-Pipe ADDI R16,R22,256 dest=Rl6(B00FFB78,-1341129864)

srcl=R22(B00FFA78,-1341130120) src2=R0(100,256) EA=(0,0) data=(0f0)

33 LS-Pipe DCBT R25,R13 dest=R0(0,0) srcl=R25(0,0)

src2=Rl3(B00FFAB8,-1341130056) EA=(B00FFAB8,-1341130056) data=(0,0)

The main source of the pipeline blocking is the unavailability of the load data. A
file stores the number of wait cycles for a load instruction with respect to the clock
cycle value.

13591 1

13594 2

13597 6

13599 1

13606 2

13608 2

13609 1

13610 1

13611 1

13612 1

13614 2

13616 2

13619 2

13622 2

13623 1

13625 2

13635 4

Appendix C

PowerPC ELF and ABI

In order to be able to parameterise the QCD software, the QCD operating system and
PowerPC process handling features are explored and incorporated in the HASE model

design. The QCD operating system is a custom operating system that follows the
Unix binary specification known as System V Application Binary Interface (ABI).
Another important issue was the object file implementation conforming System V
ABI specification, called Executable and Linking Format (ELF). This appendix briefly
introduces PowerPC ABI and ELF concepts1 and explains these are exploited in
shaping the software parameters for the HASE QCDOC model.

C.1 System V ABI

An ABI describes binary-level conventions for applications running on a particular
system, and establishes conventions for operations such as register usage, parameter

passing, and layout of data. Typically, these conventions are embodied in development
tools, particularly compilers. Assembly-level programmers must be aware explicitly
of these conventions, especially if they wish to interface their assembly code with code
produced by a compiler.

The primary goals of an ABI are:
'Extracted from PowerPC compiler writer guide, available at <http://www-

3.ibm.com/chips/techlib/techlib.nsf/techdocs/>, and Macintosh C/C++ ABI overview document,
available at <http://developer.apple.com/tools/mpw-tools/compilers/docs/abi.html>

261

Appendix C. PowerPC ELF and ABI 262

1. To establish machine-level run time conventions for a processor family;

2. To ensure object code compatibility between compilers for a platform.

While it is possible for programs to depart from the conventions of an ABI,

particularly within isolated sections of a program (such as sections of hand-crafted

assembly code), conformance to the ABI is often required to make use of system-level
code and code produced by other compilers. To the extent that a program is monolithic
and is built with the same set of tools conformance to the ABI is only an issue when
the program interfaces with the system. To the extent that a program is made up of
(or accesses) components which may have been built with other tools conformance to
the ABI is more critical. QCD benchmark kernel not only interfaces with code written
in a high-level language (C++) but also calls communication routines embedded in its
operating system.

C.2 PowerPC ELF

ELF defines a linking interface for compiled application programs. ELF is described
in two parts. The first part is the generic System V ABI. The second part is a processor

specific supplement.
To be ABI-conforming, the processor must implement the instructions of the

architecture, perform the specified operations, and produce the expected results.

C.2.1 Function Calling Sequence

This section discusses the standard function calling sequence, including stack frame

layout, register usage, and parameter passing.

C.2.1.1 Registers

The 32-bit PowerPC Architecture provides 32 general purpose registers, each 32 bits
wide and several special purpose registers. In addition, the auxiliary processor provides
32 floating-point registers, each 64 bits wide.

Appendix C. PowerPC ELF and ABI 263

All integer, special purpose, and floating-point registers are global to all functions
in a running program. Table C.l shows how the registers are used.

rO Volatile register used in function prologs
rl Stack frame pointer
r2 TOC pointer
r3 Volatile parameter and return value register
r4-rl0 Volatile registers used for function parameters

rl 1 Volatile register used in calls by pointer and as an environment

pointer for languages which require one

rl2 Volatile register used for exception handling
rl3 Reserved for use as system thread ID
rl4-r31 Non-volatile registers used for local variables
fO Volatile scratch register
fl-f4 Volatile floating point parameter and return value registers
f5-fl3 Volatile floating point parameter registers
f14-f31 Nonvolatile registers
LR Link register (volatile)
CTR Loop counter register (volatile)
XER Fixed point exception register (volatile)
FPSCR Floating point status and control register (volatile)
CR0-CR1 Volatile condition code register fields
CR2-CR4 Non-volatile condition code register fields
CR5-CR7 Volatile condition code register fields

Table C.1: PowerPC Registers

Registers rl, rl4 through r31, and f14 through f31 are non-volatile, which means

that they preserve their values across function calls. Functions which use those

registers must save the value before changing it, restoring it before the function returns.

Register r2 is technically non-volatile, but it is handled specially during function calls.
In some cases the calling function must restore its value after a function call.

Registers rO, r3 through r!2, fO through f!3, and the special purpose registers LR,

Appendix C. PowerPC ELF and ABI 264

CTR, XER, and FPSCR are volatile, which means that they are not preserved across

function calls. Furthermore, registers rO, r2, rll, and rl2 may be modified by cross-

module calls, so a function can not assume that the values of one of these registers is
that placed there by the calling function.

The condition code register fields CRO, CR1, CR5, CR6, and CR7 are volatile. The
condition code register fields CR2, CR3, and CR4 are non-volatile; a function which
modifies them must save and restore at least those fields of the CR.

C.2.1.2 The Stack Frame

In addition to the registers, each function may have a stack frame on the run time stack.
This stack grows downward from high addresses. The stack pointer (general purpose

register rl) of the called function after it has executed code establishing its stack frame.

C.2.1.3 Parameter Passing

For a RISC machine such as PowerPC, it is generally more efficient to pass arguments

to called functions in registers (both general and floating-point registers) than to
construct an argument list in storage or to push them onto a stack. Since all
computations must be performed in registers anyway, memory traffic can be eliminated
if the caller can compute arguments into registers and pass them in the same registers
to the called function, where the called function can then use them for further

computation in the same registers. The number of registers implemented in a processor

architecture naturally limits the number of arguments that can be passed in this manner.

C.2.1.4 Function Prologue and Epilogue

This section describes functions' prologue and epilogue code. A function's prologue
establishes a stack frame, if necessary, and may save any non-volatile registers it uses.
A function's epilogue generally restores registers that were saved in the prologue code,
restores the previous stack frame, and returns to the caller. Except for the rules below,
this ABI does not mandate predetermined code sequences for function prologues and
epilogues. However, the following rules permit reliable call chain back-tracing:

Appendix C. PowerPC ELF and ABI 265

1. If the function uses any non-volatile general registers, it shall save them in the
general register save area. If the function does not require a stack frame, this

may be done using negative stack offsets from the caller's stack pointer.

2. If the function uses any non-volatile floating point registers, it shall save them in
the floating point register save area. If the function does not require a stack
frame, this may be done using negative stack offsets from the caller's stack

pointer.

3. Before a function calls any other function, it shall establish its own stack frame,
whose size shall be a multiple of 16 bytes, and shall save the link register at the
time of entry in the LR save area of its caller's stack frame.

4. If the function uses any non-volatile fields in the CR, it shall save the CR in the
CR save area of the caller's stack frame.

5. If a function establishes a stack frame, it shall update the back chain word of the
stack frame atomically with the stack pointer (rl) using one of the "Store Double
Word with Update" instructions.

6. When a function deallocates its stack frame, it must do so atomically, either

by loading the stack pointer (rl) with the value in the back chain field or

by incrementing the stack pointer by the same amount by which it has been
decremented.

C.3 QCDOC Operating System

QCDOC operating system is a light weight UNIX kernel that is installed on each
processing node. One of the key purpose of the kernel is the QCDOC-specific
communication calls interfaces and memory allocation for the processing and handling
of QCD compute and communication data. Communication call outs include initial¬
isation of the communication routines, monitoring and polling and their successful
completion. Since the QCDOC address space has two sets of physical addresses, one

Appendix C. PowerPC ELF and ABI 266

for the EDRAM addresses and another for the external memory addresses, special
functions are installed for allocating and transferring data explicitly to these addresses.

The QCD kernel initialisation process relies on the operating system, therefore,
an understanding of the relationship between the kernel code memory allocation and
operating system calls to the underlying operating system was essential. It was also
necessary to have a knowledge of memory partition into normal cacheable memory,

stack and heap sections and transient and non-cacheable memory allocations for the
send and receive addresses. The basic data structure of the calculation, the Wilson

fermion matrix, the initialisation process relies on the information of the number of
sites per processing node. Number of sites per processing node in turn depends on the
lattice volume and the size of the available machine.

/* */

#define ND 4 /* Space time dimension */

/* The Wilson structure typedef */

typedef struct!

unsigned long *ptr;

unsigned long *shift_table[2][2];

/*pointer to an array with addressing offsets */

unsigned long *face_table[2][2][ND];

/*pointer to an array with addressing offsets */

int vol[2] ;

IFloat *spinor_tmp; /* temp spinor needed by mdagm */
IFloat *af;

/* point, array to 4 interleaved fwd proj half spinors */
IFloat *ab;

/* point, array to 4 interleaved bwd proj half spinors */
IFloat *send_f[ND];

Appendix C. PowerPC ELF and ABI 267

IFloat *recv_f[ND];

IFloat *send_b[ND];

IFloat *recv_b[ND];

int local_latt[ND];

int nbound[4] ;

int allbound;

int local_comm[4];

SCUDirArgMulti *comm_f;

SCUDirArgMulti *comm_b;

} Wilson;

In the HASE QCDOC model, when the number of sites per processing node are

known, this initialisation process has been performed in the EDRAM ENTITY. Part of
the process is re-writing the volume of the lattice, the send and receive pointers and
other calculation pointers. When the CPU ENTITY starts executing a function with a

different problem size, it will still execute the same function but the pointers would
read different values.

void QCDOC_ChDecom (void *psi,void *len,void *tab_bwd)

void QCD0C_ChDecom_hsu3 (void *psi,void *Ucb ,void *len,void *tab_fwd)

void QCD0C_ChRecon_su3 (void *chi,void *Un ,void *chib,void *len)

void QCDOC_ChRecon_add (void *chi,void * chif,void *len)

In the above functions, all the values are passed by pointers. These are in fact
pointers to the values within the Wilson struct which in turn point to memory locations
where the actual values are stored. The number of iterations depend on the vol, the
volume of the lattice and local_latt and nbound array values which are initialised
with the number of sites in each direction. For example;

nbound[0] = lx * ly * lz /2

lx = number of sites in x direction

ly = number of sites in y direction

lz = number of sites in z direction

Appendix C. PowerPC ELF and ABI 268

These values are computed as part of the behaviour code in the .hase file and the
successive simulation runs input the new problem size or lattice configuration.

Bibliography

[ABB+00] V. S. Adve, R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. N.
Houstis, J. R. Rice, R. Sakellariou, D. J. Sundaram-Stukel, P. J. Teller,

and M. K. Vernon. POEMS: End-to-End Performance Design of
Large Parallel Adaptive Computational Systems. IEEE Transactions on

Software Engineering, 26(11), 2000.

[ABB+01] F. J. Alexander, K. Berkbigler, G. Booker, B. Bush, K. Davis, and
A. Hoisie. An Approach to Extreme-Scale Simulation of Novel
Architectures. Fourth Biennial Tri-Laboratory Engineering Conference
on Modelling and Simulation, 2001.

[ABDS95] S. Antonelli, M. Bellacci, A. Donini, and R. Sarno. Full QCD on

APE100 Machines. International Journal ofModern Physics C6, 25,
1995.

[ABK+99] S. Aoki, R. Burkhalter, K. Kanaya, T. Yoshi, T. Boku, H. Nakamura,
and Y. Yamashita. Performance of Lattice QCD Programs on CP-PACS.
Parallel Computing, 25(10-11), 1999.

[ACC+02] G. S. Almasi, C. Cascaval, J. G. Castanos, M. Denneau, W. Do-

nath, M. Eleftheriou, M. Giampapa, H. Ho, D. Lieber, J.E. Moreira,
D. Newns, M. Snir, and Jr. H. S. Warren. Demonstrating the Scalability
of a Molecular Dynamics Application on a Petaflops Computer. Inter¬
national Journal ofParallel Programming, 30(4), 2002.

[Aga91] A. Agarwal. Limits on Interconnection Network Performance. IEEE
Transactions on Parallel and Distributed Systems, 2(4), 1991.

269

Bibliography 270

[ALE02] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An Infrastructure for

Computer System Modeling. IEEE Computer, 35(2), 2002.

[Alt] AltiVec Technology Programming Environments Manual.

[BBJ91] R. G. Brickner, C. F. Baillie, and L. Johnsson. QCD on the Connection
Machine: Beyond *Lisp. IMACS First International Conference on

Computational Physics, 1991.

[BCC+01] R Boyle, D. Chen, N. Christ, C. Cristian, Z. Dong, A. Gara, B. Joo,
C. Kim, L. Levkova, X. Liao, G. Liu, R.D. Mawhinney, S. Ohta,
T. Wettig, and A. Yamaguchi. Status of the QCDOC Project. Nuclear

Physics Proceedings Supplement, 106, 2001.

[BCC+02a] P. Boyle, D. Chen, N. Christ, C. Cristian, Z. Dong, A. Gara, B. Joo,
C. Jung, C. Kim, L. Levkova, X. Liao, G. Liu, R. D. Mawhinney,
S. Ohta, K. Petrov, T. Wettig, and A. Yamaguchi. Status of and
Performance Estimates for QCDOC. Lattice2002 (Machines), 2002.

[BCC+02b] P. Boyle, D. Chen, C. Cristian, N. Christ, Z. Dong, A. Gara, B. Joo,
C. Kim, L. Levkova, X. Liao, G. Liu, R. Mawhinney, S. Ohta, T. Wettig,
and A. Yamaguchi. QCDOC Design. Technical report, Columbia
University, 2002.

[BCGV02] G. Bhanot, D. Chen, A. Gara, and P. Vranas. The BlueGene/L

Supercomputer. Lattice2002 (Plenary) proceedings, 2002.

[BDCW92] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl.
PROTEUS : A High-Performance Parallel-Architecture Simulator. In¬
ternational Conference on Measurement and Modelling of Computer
Systems, 1992.

[BDG+95] C. Bernard, C. DeTar, S. Gottlieb, U. M. Heller, J. Hetrick, N. Ishizuka,
L. Karkkainen, S. R. Lantz, K. Rummukainen, R. Sugar, D. Toussaint,
and M. Wingate. Lattice QCD on the IBM Scalable POWER Parallel
Systems SP2. Supercomputing, 1995.

Bibliography 271

[BDP01] R. Bagrodia, E. Deelman, and T. Phan. Parallel Simulation of Large
Scale Parallel Applications. International Journal ofHigh-Performance
Computing Application, 15(1), 2001.

[BG02] G. Bell and J. Gray. What's Next in High-Performance Computing?
Communications of the ACM, 2002.

[BGK94] M. W. Berry, C. Grassl, and V. K. Krishna. Blocked Data Distribution for
the Conjugate Gradient Algorithm on the CRAY T3D. Cray Research,
1994.

[BH99] K. C. Bowler and A. J. G. Hey. Parallel Computing and Quantum

Chromodynamics. Parallel Computing, 25(13-14), 1999.

[BJW03] P. A. Boyle, C. Jung, and T. Wettig. The QCDOC Supercomputer:
Hardware, Software, and Performance. Conference for Computing in

High Energy and Nuclear Physics, 2003.

[Bow98] K. C. Bowler. Why QCD needs High Performance Computing.
Conference on Computational Physics, 1998.

[BoyOl] P. Boyle. QCDOC Assembler Kernels - Proposal for Wilson Fermion
Matrix. Draft Document, 2001.

[BPE+99] C. Best, M. Peardon, N. Eicker, P. Uberholz, T. Lippert, and K. Schilling.
Lattice Field Theory on Cluster Computers: Vector- vs. Cache-Centric
Programming. 1st IEEE Computer Society International Workshop on

Cluster Computing, 1999.

[BS92] F. R. Bailey and H. D. Simon. Future Directions in Computing and CFD.
Proceedings ofAIAA 10th AppliedAerodynamics Conference, 1992.

[CCC+01] D. Chen, N. H. Christ, C. Cristian, Z. Dong, A. Gara, K. Garg, B. Joo,
C. Kim, L. Levkova, X. Liao, R. D. Mawhinney, S. Ohta, and T. Wettig.
QCDOC: A 10-teraflops Scale Computer for Lattice QCD. Nuclear
Physics Proceedings Supplement, 94, 2001.

Bibliography 272

[CCC+02] C. Cascaval, J. G. Castanos, L. Ceze, M. Denneau, M. Gupta, D. Lieber,
J. E. Moreira, K. Strauss, and H. S. Warren Jr. Evaluation of a Mul¬

tithreaded Architecture for Cellular Computing. Eighth International

Symposium on High-Performance Computer Architecture, 2002.

[CDJ+91] R. G. Covington, S. Dwarkadas, J. R. Jump, J. B. Sinclair, and
S. Madala. The Efficient Simulation of Parallel Computer Systems.
International Journal in Computer Simulation, 1, 1991.

[CGS98] D. Culler, A. Gupta, and J. P. Singh. Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann, 1998.

[CHIW98] P. S. Coe, F. W. Howell, R. N. Ibbett, and L. M. Williams. A Hierarchical

Computer Architecture Design and Simulation Environment. ACM
Transactions on Modelling and Computer Simulation, 8(4), 1998.

[CHKM93] R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural
Requirements of Parallel Scientific Applications with Explicit Commu¬
nication. Proceedings of the International Symposium on Computer
Architecture, 1993.

[Chr99] N. H. Christ. Computers for Lattice QCD. Nuclear Physics Proceedings
Supplement, 83, 1999.

[CIRW98] P. Coe, R. Ibbett, N. Rafferty, and L. Williams. HASE: An Environ¬
ment for Hardware/Software Codesign. Technical Report CSG-41-98,

University of Edinburgh, 1998.

[CIS99] N. Cabibbo, Y. Iwasaki, and K. Schilling. High Performance Computing
in Lattice QCD. Parallel Computing, 25(10-11), 1999.

[CK94] A. A. Chien and M. Konstantinidou. Workloads and Performance
Metrics for Evaluating Parallel Interconnects. IEEE TCCA Newsletter,
1994.

Bibliography 273

[CKP+93] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser,
E. Santos, R. Subramonian, and T. von Eicken. LogP : Towards
a Realistic Model of Parallel Computation. 4th ACM SIGPLAN

Symposium on Principles and Practice ofParallel Programming, 1993.

[CoeOO] P. Coe. Simulation Models ofShared-Memory Multiprocessor Systems.
PhD thesis, Unversity of Edinburgh, 2000.

[Cre83] M. Creutz. Quarks, Lattices and Gluons. Cambridge University Press,
1983.

[Dal90] W. J. Dally. Performance Analysis of k-ary n-cube Interconnection
Networks. IEEE Transactions on Computers, 39(6), 1990.

[DocOl] K. Dockser. "Honey, I Shrunk the Supercomputer!" - The PowerPC
440 FPU Brings Supercomputing to IBM's Blue Logic Library. IBM
Micronews, 2001.

[DSSS03] J. Dongarra, T. Sterling, H. Simon, and E. Strohmaier. High Perfor¬
mance Computing. Clusters, Constellations, MPPs, and Future Direc¬
tions. Communications of the ACM, 2003.

[EAB+01] J. Emer, P. Ahuja, E. Borch, A. Klauser, C. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan.
Asim: A Performance Model Framework. IEEE Computer, 2001.

[Fer78] D. Ferrari. Computer Systems Performance Evaluation. Prentice Hall,
1978.

[FJL+88] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and
D. W. Walker. Solving Problems on Concurrent Computers. Prentice
Hall, 1988.

[FWM94] G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Computing
Works. Morgan Kaufmann, 1994.

Bibliography 274

[GAB+02] A. Gara, G. S. Almasi, D. K. Beece, R. E. Bellofatto, G. V. Bhanot,

H. R. Bickford, M. A. Blumrich, A. A. Bright, J. R. Brunheroto, G. C.
Cascaval, J. G. Castanos, L. H. Ceze, R W. Coteus, S. Chatterjee,
D. Chen, and R. K. Sahoo. Cellular Supercomputing with System-On-

a-Chip. IEEE International Solid-State Circuits Conference, 2002.

[GLS99] S. Gusken, T. Lippert, and K. Schilling. Lattice QCD with Two

Dynamical Wilson Fermions on APE100 Parallel Systems. Parallel

Computing, 25(10-11), 1999.

[GNA02] P. Galloway, W. Ng, and M. Annand. Copper Cabling for Multiple-
Gigabit Serials Links for Inter-Cabinet Connections. High-Performance
System Design Conference, 2002.

[Gri98] J. Gribbon. Q is for Quantum. Weidenfeld and Nicolson, London, 1998.

[Gup99] R. Gupta. General Physics Motivations for Numerical Simulations of
Quantum Field Theory. Parallel Computing, 25(10-11), 1999.

[Gus99] S. Gusken. Stochastic Estimator Techniques and their Implementation
on Distributed Parallel Computers. Parallel Computing, 25(10-11),
1999.

[HASa] HASE Home Page, Available at:

<http://www. icsa. informatics, ed. ac. uk/research/groups/hase/>.

[HASb] The QCD Computer Simulation Project, Available at:

<http://www. icsa. informatics,ed. ac. uk/research/groups/hase/projects/qcd/qcd.html:

[Her93] S. Herrod. Tango Lite: A Multiprocessor Simulation Environment.
Technical report, Computer Systems Laboratory, Stanford University,
1993.

[IbbOO] R. N. Ibbett. HASE DLX Simulation Model. IEEEMicro, 20(3), 2000.

[IHH95] R. N. Ibbett, P. E. Heywood, and F. W. Howell. HASE : A Flexible
Toolset for Computer Architects. The Computer Journal, 38(8), 1995.

Bibliography 275

[IMMM99] I. Ikodinovic, D. Magdic, A. Milenkovic, and V. Milutinovic. Limes: A

Multiprocessor Simulation Environment for PC Platforms. Proceedings
of the 3rd International Conference on Parallel Processing and Applied
Mathematics, 1999.

[INOO] N. Isgur and J. W. Negele. Nuclear Theory with Lattice QCD. A

proposal submitted to the U.S. Department of Energy, 2000.

[KBD93] M. Kumar, Y. Baransky, and M. Denneau. The GF11 Parallel Computer.
Parallel Computing, 19(12), 1993.

[Ken99] A. D. Kennedy. The Hybrid Monte Carlo Algorithm on Parallel

Computers. Parallel Computing, 25(10-11), 1999.

[KenOO] R. Kenway. Lattice QCD in Europe and the UKQCD-QCDOC Collabo¬
ration. Workshop on a New Computing Venue for Lattice Gauge Theory
Calculations, 2000.

[KHW02] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. Exploring Advanced
Architectures using Performance Prediction. InnovativeArchitecture for
Future Generation High-Performance Processors and Systems, 2002.

[Kon99] J. Konstas. Converting Wide, Parallel Data Buses to High Speed Serial
Links. International IC '99 Conference Proceedings, 1999.

[Lep99] G. P. Lepage. Improved Discretisations for Lattice QCD. Parallel
Computing, 25(10-11), 1999.

[Lip99] T. Lippert. Parallel SSOR Preconditioning for Lattice QCD. Parallel
Computing, 25(10-11), 1999.

[Lip03] T. Lippert. Recent Development of Machines for Lattice QCD. The XXI
International Symposium on Lattice Field Theory, 2003.

[Lus02] M. Luscher. Lattice QCD on PCs? Nuclear Physics Proceedings

Supplement, 2002.

Bibliography 276

[Mar88] J. L. Martin, editor. Performance Evaluation ofSupercomputers. North
Holland, 1988.

[Maw99] R. D. Mawhinney. The 1 Teraflops QCDSP Computer. Parallel
Computing, 25(10-11), 1999.

[May94] C. May. The PowerPC Architecture: A Specification for a New Family
ofRISC Processors. Morgan Kaufmann, 2nd edition, 1994.

[MCE+02] R S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A Full

System Simulation Platform. IEEE Computer, 35(2), 2002.

[McNOO] C. McNeile. Progress in Lattice QCD Calculations on the T3E.
Proceedings of the Sixth European SGI/Cray MPP Workshop, 2000.

[MCS+03] J. Moreira, L. Ceze, K. Strauss, G. Almasi, P. J. Bohrer, J. R. Brunheroto,
C. Cascaval, J. G. Gastranos, and D. Lieber. Full Circle: Simulating
Linux Clusters on Linux Cluster. The Fourth Linux Clusters: the HPC

Revolution 2003 Conference, 2003.

[MHW02] C. J Mauer, M. D. Hill, and D. A. Wood. Full System Timing-First
Simulation. ACM SIGMETRICS, 2002.

[MI03] F. Mallet and R. N. Ibbett. JavaHASE: Automatic Generation of
Applets from HASE Simulation Models. Summer Computer Simulation
Conference, 2003.

[MIA02] F. Mallet, R. N. Ibbett, and S. R. Alam. An Extensible Clock Mechanism
for Computer Architecture Simulations. 13th IASTED International
Conference Modelling and Simulation, 2002.

[MIL] The MIMD Lattice Computation (MILC) Collaboration, Available at:

<http://www.physics.utah.edu/~detar/milc/>.

Bibliography 277

[MPO1] V. Mathur and V. K. Prasanna. A Hierarchical Simulation Framework for

Application Development on System-on-Chip Architectures. 4th IEEE
International ASIC-SOC Conference, 2001.

[MRF+00] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow, M. D. Hill,
D. A. Wood, S. Huss-Lederman, and J. R. Larus. Wisconsin Wind

Tunnel II : A Fast, Portable Parallel Architecture Simulator. IEEE

Concurrency, 8(4), 2000.

[NKP+00] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, J. S. Harper, S. C. Perry,
and D. V. Wilcox. PACE: A Toolset for the Performance Prediction

of Parallel and Distributed Systems. Journal of High Performance
Application, 14(3):228—251, 2000.

[NYHG+98] A. K. Nanda, M. Ohara Y. Hu, M. Giampapa, C. Benveniste, and
M. Michael. The Design of COMPASS : An Execution Driven Simulator
for Commercial Applications Running on Shared Memory Multipro¬
cessors. Proceedings of International Parallel Processing Symposium,
1998.

[PCD+01] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg. Data and Memory
Optimization Techniques for Embedded Systems. ACM Transactions on
Design Automation ofElectronic Systems (TODAES), 2001.

[PieOO] M. Di Pierro. Matrix Distributed Processing and FermiQCD. Proceed¬
ings of the Workshop on Advanced Computing andAnalysis Techniques,
2000.

[PKP03] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing
Supercomputer Performance: Achieving Optimal Performance on the
8,192 Processors of ASCI Q. Annual Supercomputing Conference, 2003.

Bibliography 278

[ppca] Macintosh C/C++ ABI overview document, Available at:
<http://developer, apple, com/tools/mpw-

tools/compilers/docs/abi.html>.

[ppcb] PowerPC compiler writer guide, Available at:

<http://www-3. ibm. com/chips/techlib/techlib.nsf/techdocs/>.

[PRA97] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM : An Execution-
Driven Simulator for ILP-Based Shared Memory Multiprocessors and

Uniprocessors. IEEE TCCA Newsletter, 1997.

[PV97] F. Petrini and M. Vanneschi. SMART : a Simulator of Massive

ARchitectures and Topologies. International Conference on Parallel
and Distributed Systems, Euro-PDS'97, 1997.

[RBDH97] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the
SimOS Machine Simulator to Study Complex Computer Systems. ACM
Transactions in Modelling and Computer Simulation, 7(1), 1997.

[Rue97] U. Ruede. Iterative Algorithms on High Performance Architectures.
Lecture Notes in Computer Science, 1300, 1997.

[SA102] IBM. PowerPC 440 Embedded Processor Core, 2002.

[SB01] T. J. Schriber and D. T. Brunner. Inside Simulation Software: Inside
Discrete-Event Simulation Software: How itWorks andWhy it Matters.
Winter Simulation Conference, 2001.

[SHM97] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers
about BSP. Journal ofScientific Programming, 1997.

[Siv97] A. Sivasubramaniam. Execution-Driven Simulators for Parallel Systems

Design. Proceedings of 1997 Winter Simulation Conference, 1997.

[SKSZ99] M. Seltzer, D. Krinsky, K. Smith, and X. Zhang. The Case for
Application-Specific Benchmarking. The Seventh Workshop on Hot
Topics in Operating Systems, 1999.

Bibliography 279

[SMA+03] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S.
Pai. Challenges in Computer Architecture Evaluation. IEEE Computer,
2003.

[SMK+03] H. D. Simon, C. W. McCurdy, W. T. C. Kramer, R. Stevens, M. McCoy,
M. Seager, T. Zachariaa, J. Nichols, R. Bair, S. Studham, W. Camp,
R. Leland, J. Morrison, and B. Feiereisen. Creating Science-Driven

Computer Architecture: A New Path to Scientific Leadership. NERSC
Document, 2003.

[Sro02] Z. Sroczynski. Improved Performance of QCD Code on ALiCE.
Contribution to Lattice2002 (Machines), 2002.

[SZ02]

[SZI]

[TeaOla]

[TeaOlb]

[Tea02]

[TH99]

[Tri99]

[Uka99]

T. L. Sterling and H. P. Zima. Gilgamesh: A Multithreaded Processor-In-
Memory Architecture for Petaflops Computing. Supercomputing, 2002.

The SZIN Software System,

<http://www.jlab. org/~edwards/szin/>.

Available at:

IBM Bluegene Team. Blue Gene: A Vision for Protein Science using a

Petaflop Supercomputer. IBM Systems Journal, 40(2), 2001.

QCDOC Design Team. PEC Design Document. Confidential, 2001.

IBM Bluegene/L Team. An Overview of the BlueGene/L Supercom¬
puter. Supercomputing, 2002.

T. Touyama and S. Horiguchi. Performance Evaluation of Practical
Parallel Computation Model LogPQ. International Symposium on

ParallelArchitectures, Algorithms and Networks, 1999.

R. Tripiccione. APEmille. Parallel Computing, 25(10-11), 1999.

A. Ukawa. Lattice QCD Results from the CP-PACS Computer. Parallel
Computing, 25(10-11), 1999.

Bibliography 280

[UM97] R. A. Uhlig and T. N. Mudge. Trace-Driven Memory Simulations: A

Survey. ACM Computing Surveys, 29(2), 1997.

[VF94] J. E. Veenstra and R. J. Fowler. MINT : A Front End for Efficient Simu¬

lation of Shared-memory Multiprocessors. Modelling and Simulation of
Computers and Telecommunications Systems, 1994.

[VM02] J. S. Vetter and F. Mueller. Communication Characteristics of Large-
Scale Scientific Applications for Contemporary Cluster Architectures.
International Parallel and Distributed Processing Symposium, 2002.

[WI96] L. M. Williams and R. N. Ibbett. Simulating the DASH Architecture in
HASE. 29th Annual Simulation Symposium, 1996.

[WWFH03] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS:

Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling. The 30th Annual International Symposium on Computer
Architecture, 2003.

