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Lay Summary of thesis 
 

Without us noticing it, our bodies regulate themselves through a series of 

homeostatic processes. These processes involve the control mechanisms of body 

temperature, fluid and energy balance, the maintenance of blood pH and the arterial 

pressure. Also, the body tries to maintain adequate blood levels of glucose, iron, 

oxygen, calcium, potassium, copper and sodium, all necessary for the correct 

functioning of the brain. Many of the mechanisms are governed by the 

neuroendocrine system, which includes different organs in the body connecting the 

kidneys, liver, heart and gut, to the brain in bidirectional and intricate pathways. The 

body sends information to the brain through nerves whose terminal receptors detect 

the changes of hormones, ions, pressure or temperature. That information arrives to 

the hypothalamus, which integrates inputs from various parts of the body and the 

brain itself, producing a response in the shape of different hormones. Those 

hormones will be secreted to the blood stream, through which they will reach the 

whole body, being detected by the organs participating in each homeostatic 

process.  

 

Magnocellular oxytocin neurones, found mainly in the supraoptic nucleus and in the 

paraventricular nucleus of the hypothalamus, project their axons to the posterior 

pituitary, from where they secrete oxytocin into the bloodstream. Oxytocin is well 

known for its essential role in breastfeeding and for facilitating labour. However, in 

the last decades oxytocin has also been recognised to have roles in social bonding, 

energy balance and osmotic pressure balance. 

 

These five processes, breastfeeding, labour, social bonding, and energy and 

osmotic pressure balance are associated with different behaviours of the oxytocin 

neurons. During breastfeeding and labour, the spiking activity of oxytocin neurones 

alternates between long periods of slow basal activity and a few seconds of 

bursting, when oxytocin neurones fire synchronously at up to 100 spikes per 

second. Social bonding is associated with dendritic oxytocin secretion, through 

which oxytocin will reach other neurones in the brain. Finally, energy and osmotic 
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pressure balance are associated with small to medium linear alterations of the basal 

spike activity of oxytocin neurons. 

 

Spikes are a sudden positive change of the difference in the voltage potential 

between the inner and the external side of the neuron membrane. Usually in 

equilibrium, each oxytocin neuron is affected by neurotransmitters able to change, 

negatively or positively, that equilibrium. When the resultant contribution of all of 

them is positive and make the voltage difference reach a certain level, a spike is 

produced, reacting the oxytocin neuron membrane immediately after with several 

currents to recover the equilibrium. However, spikes are not the final neuronal 

product. Spikes, transported along the neuron axon, are the mechanism that 

neurones use to trigger release of messenger chemicals at their dendrites and axon 

terminals.  

 

The computational model shown here simulates the spiking activity of oxytocin 

neurones described in the literature. That spiking activity has been simulated during 

basal activity, in response to cholecystokinin (CCK), a gut peptide involved in energy 

balance, and in response to osmotic pressure. However, the final product of 

oxytocin neurones is the secreted oxytocin and its plasma concentration. Thus, it 

was developed a secretion model matched to experimental data in the literature, 

coupled it with the spiking model, and added a model for oxytocin clearance from 

plasma. That allowed simulating the plasma oxytocin response to CCK and to 

changes in the osmotic pressure. In addition, the model offered important insights, 

by helping to understand the importance of particular properties of the neurons for 

generating biologically appropriate signals.  
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Abstract of thesis 
 

Magnocellular oxytocin neurones, found mainly in the supraoptic nucleus and in the 

paraventricular nucleus of the hypothalamus, project their axons to the posterior 

pituitary, from where they secrete oxytocin into the bloodstream. Oxytocin is well 

known for its essential role in breastfeeding and for facilitating labour. However, in 

the last decades oxytocin has also been recognised to have roles in energy balance 

and osmotic pressure balance. 

 

During breastfeeding and labour, the spiking activity of oxytocin neurones alternates 

between long periods of slow basal activity and a few seconds of bursting, when 

oxytocin neurones fire synchronously at up to 100 spikes per second. Energy and 

osmotic pressure balance are associated with small to medium linear alterations of 

the basal activity of oxytocin neurons.  

 

A computational model was developed to simulate the spiking activity of oxytocin 

neurones described in the literature. The simulations mimicked their basal activity, 

their response to cholecystokinin (CCK), a gut peptide involved in energy balance, 

and their spiking response to osmotic pressure. However, the final product of 

oxytocin neurones is the secreted oxytocin and its plasma concentration. Thus, it 

was developed a secretion model matched to experimental data in the literature, 

coupled it with the spiking model, and added a model for oxytocin clearance from 

plasma. That allowed simulating the plasma oxytocin response to CCK and to 

changes in the osmotic pressure. In addition, the model offered important insights. It 

supports the necessity of a depolarization after potential (DAP) in some oxytocin 

neuron membranes, the essential role of inhibitory inputs during the oxytocin 

osmotic response, a new mechanism for partially explaining oxytocin response to 

hypovolemia, and explains the role of the after hyperpolarizing (AHP) current as a 

filter of synaptic inputs to oxytocin neurones.  
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“What a child can do today with assistance, she will be able to do by herself tomorrow”. 

-Lev S. Vygotsky (1980) 

 

2500 years ago, pythagorics and other Greek philosophers believed that nothing but 

a perfect sphere could fit with how they imagined our planet’s shape (Dicks, 1970; 

Burkert, 1972). A hundred years later, their hypothesis had spread all over ancient 

Greece, making other mathematicians, philosophers and astronomers wonder how 

big that ball could be. That led to clever ways of figuring it out, to the point that 

Eratosthenes (276BC-195BC) could give a number just 15% larger than the real 

circumference (Goldstein, 1984; Engels, 1985), 17 centuries before the Earth was 

first circumnavigated by Juan Sebastian Elcano (de Navarrete, 1837; Pigafetta, 

1986). Although Elcano’s journey was not pleasant (it took three years and only 17 

Spaniards and one of the five departing ships returned), it gave the world the final 

proof of its own sphericity. The promise of extraordinary wealth to the ones 

controlling the new territories and the enormous, strange and terrible new oceans 

connecting them, made kings, queens, merchants and popes in the old continent 

devote more and more resources to mathematics and engineering, leading for the 

first time in history to a rapid improvement of those studies across many different 

countries (Arnold, 2013). The same story has been only repeated since, in the 

conquest of the air, space or, more recently, the global economy and human 

wellbeing. In these, mathematics has shown its ability to formulate theories, model 

scenarios and predict outcomes, sometimes quite ahead of their time, saving huge 

amounts of effort, resources and lives. 

Among the applications of mathematics, there is one that, being always present 

nowadays, might not be given all its phenomenal relevance. Not so long ago, 

devices that could make certain calculations or repeat certain movements over and 

over, were usually not more than toys for the wealthy or dreams in visionary minds 

(Koetsier, 2001). Then George Boole, a XIXth century mathematician, developed a 

family of algebraic rules to solve logic operations, where inputs and results could 

only take two values, true or false, 1 or 0 (Boole, 1854). Soon, people realized that 

two values could be used to represent all the elements of much larger families (see 

https://www.azquotes.com/quote/600210
https://www.azquotes.com/author/18302-Lev_S_Vygotsky
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Table 1); this led to Boolean algebra, potentially able to calculate anything 

imaginable.  

Table 1. Binary representation of the 
numbers 0 to 7. 

000 → 0 100 → 4 

001 → 1 101 → 5 

010 → 2 110 → 6 

011 → 3 111 → 7 

 

As with the pythagorics’ idea, it took time for the dream to become true. At the 

beginning of the XXth century, electricity started allowing a continuous source of 

energy to unsupervised automated devices (Bennett, 1993) and the first 

implementations of arithmetic operations with 0’s and 1’s were possible thanks to 

vacuum tubes. For instance, with 28 vacuum tubes, a classic automatic accumulator 

could be implemented (Panda et al., 2009). In 1945, the ENIAC, a supercomputer 

with 17,468 vacuum tubes that weighed 2.5 tons and occupied 167 m2, could 

calculate in 30 s a projectile trajectory that would take 20 h for a human with a desk 

calculator (McCartney, 1999). Conceptually, things have not changed much since. 

Logic gates fed by 1’s and 0’s are still the pillars of our supercomputers. However, 

our supercomputers could not have been possible without extreme miniaturization. 

The Nobel-awarded invention of the transistor (Bardeen & Brattain, 1948), a tiny 

substitute for the vacuum tube, made it possible. Sixty years later, the latest mobile 

phones can integrate several thousand billion of those transistors in their small 

processors. 

Maths and computers are used in more and more tasks every day. Biomedical 

sciences are not an exception, and in this thesis I will try to show how I worked with 

computers to make a mathematical model of the oxytocin neurone; how I 

programmed it in a computer language; how the model can simulate experimental 

data, accurately predicting other results; and how it can help to understand and 

generate hypotheses for further experiments. 

Oxytocin. A historical introduction 
Somehow, this thesis’ story also begins in the humid valleys of Mesopotamia. The 

dawn of agriculture brought, among other things, the spread of the ergot fungi 

among the cultivated fields. When cereals infected with ergot are consumed 
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repeatedly, they can become poisonous.  Several historical epidemics with 

thousands of people suffering from seizures, burning sensation and gangrene, 

taught us that ergot provokes convulsive and vasoconstriction symptoms (Schiff, 

2006). In small doses, though, the convulsive and vasoconstriction effects facilitate 

childbirth, causing uterine contractions and reducing postpartum haemorrhage. 

Thus, for at least three thousand years and particularly during the XIXth century, but 

also in the XXth century, ergot was used as an oxytocic agent (Ringrose, 1962; 

Schiff, 2006). Still, the recording of cases of women and children dying during birth 

after the use of ergot aroused caution among obstetricians (Smith, 1892), propelling 

research on either ergot’s safe component and dosage or an alternative to it. 

Interested in the properties of acetylcholine, Sir Henry Dale made an extensive 

comparative study of ergot and other chemicals or extracts capable of triggering 

excitatory symptoms in different mammals (Dale, 1906). As part of that extensive 

work, he tested the response of the cat’s uterine muscles to an extract of cattle 

pituitary. He found that the extract, apart from its already known vasoconstriction 

effects (Oliver & Schäfer, 1895), provoked uterine contractions when injected, 

marking the start of a revolution in obstetric medicine. Later studies localized the 

active component in the posterior pituitary, and different versions of the extract were 

used for years without knowing exactly what was triggering the uterine contractions 

(Kosmak, 1918). What was discovered was that the posterior pituitary contained two 

main substances, one, responsible for vasopressor effects and another, responsible 

for the oxytocic effects; these were finally dissociated in 1928 (Kamm et al.). 

However, only when the oxytocic component’s formula was discovered and the 

component synthesized (du Vigneaud et al., 1954) did it become possible to study 

its dynamics in plasma. The oxytocic component was given the name oxytocin, from 

the Greek swift or quick birth, and it is still the first line treatment to prevent 

postpartum haemorrhage, the main cause of maternal mortality in the world 

(Anyakora et al., 2018). 

By 1954, the most prominent roles of oxytocin, related to high concentrations of the 

hormone in plasma, were already known. Just four years after Dale published its 

actions on the uterus, the posterior pituitary extract also showed effects in 

breastfeeding (Ott & Scott, 1910). A role of the extract in water balance was 

proposed shortly after as well (Buckley, 1924), but that effect was initially only 



5 
 

associated with vasopressin, the antidiuretic hormone (Ginsburg, 1954; Fong et al., 

1960). 

Once oxytocin and vasopressin were synthesized, many assays were designed to 

measure them, not without some difficulties. The first problem solved was of 

specificity, so that vasopressin and oxytocin could be measured independently. After 

that, sensitivity was improved, producing assays able to measure the low 

concentrations of oxytocin and vasopressin present at basal levels in plasma. After 

some promising first results that elucidated the fate of oxytocin after large i.v. 

injections or infusions  (Ginsburg & Smith, 1959; Fabian et al., 1969b, 1969a), it 

started to be hinted that different assays could be giving different absolute values 

(Forsling, 1986). Something that it is still happening to this day (Leng & Sabatier, 

2016). 

Oxytocin, though, was already being studied from other points of view. Before the 

discovery of its formula, it was known that neurones innervating the posterior 

pituitary were located in the supraoptic nucleus (SON) and the paraventricular 

nucleus (PVN) (Harris, 1951). Thus, after the oxytocin and vasopressin formulae 

were discovered, researchers looked for them in the SON and PVN (Cross & Green, 

1959), discovering that each hormone was produced and secreted by a dedicated 

group of neurones (Sokol & Valtin, 1967). Some years later it was also shown that, 

every neuron in the SON and PVN that projects to the posterior pituitary was 

secreting either vasopressin or oxytocin (Rhodes et al., 1981). 

That answered the questions of where in the brain oxytocin is produced and which 

neurones are responsible for oxytocin secretion into the blood. However, that only 

led to new questions as how oxytocin neurones know how much oxytocin they have 

to secrete and how that secretion is triggered. 

Neuronal electrical activity 
Curiously enough, the study of the mechanisms that neurones use to communicate 

with each other has an important person in common with the discovery of oxytocin. 

After his work with the posterior pituitary extract, Sir Henry Dale resumed his interest 

in acetylcholine, for which work he was co-awarded the Nobel Prize in 1937 

(Tansey, 2006). In those works, he studied the synaptic communication between 

neurones, describing how chemical neurotransmitters alter the electrical balance 

near the membrane of neurones. 
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A neurotransmitter is a molecule released at a synapse that can bind to receptors on 

the surface of a neurone. If that happens, neurotransmitters can alter the electrical 

resting state of that neurone (Levitan & Kaczmarek, 2015). The resting state is a 

negative voltage inside the neurone, maintained by actively pumping more Na+ out 

than letting K+ in. That mechanism creates and maintains an electrochemical 

gradient of around -60 mV across the membrane, a fragile equilibrium that can 

change rapidly in relevant circumstances. 

When a neurotransmitter binds to its receptor, it can trigger the opening of ion 

channels in the postsynaptic neurone, producing either a depolarization of the 

postsynaptic cell or a hyperpolarization. A sufficient depolarization can activate 

voltage-gated Na+ and Ca2+ channels, resulting in the generation of an action 

potential (a spike). 

Neurones react to a spike by activating two voltage-dependent mechanisms which 

restore the resting state. The first mechanism involves closing voltage-gated Na+ 

and Ca2+ channels, which prevents further depolarisation; the second involves 

opening voltage-gated K+ channels, which allows K+ to flow out of the neuron, 

following the voltage gradient. As a result, the action potential created in a certain 

location, usually at the axon initial segment (Bender & Trussell, 2012),  will 

propagate along the axon. The action potential is regenerated every time it 

encounters new membrane channels, and is followed by a refractory period 

(Debanne et al., 2011). When the action potential reaches the axon terminal and 

dendrites, it can potentially trigger exocytosis through opening voltage-dependent 

Ca2+ channels  

This description of how spikes are produced and travel inside the neuron closely 

relates with the movement of electrons, the most elemental negatively charged 

particles, which are responsible for the transmission of electricity in any circuit. 

Hodgkin and Huxley exploited that similarity, adapting the mathematical principles 

that described electricity to study spike propagation in the particularly large giant 

axon of the squid (Hodgkin & Huxley, 1952). They represented the squid’s axon 

membrane as an electrical circuit, modelling the bilayer membrane of the neuron as 

a capacitance, the ion channels as conductances, the gradients that drive passively 

those ions as batteries and the ones that drive them actively as generators. Their 

equations are to this day the most exact representation of the currents and 

dynamics involved in action potential propagation in neurones (Izhikevich, 2004). 
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The spiking activity of oxytocin neurones 
Of the around 200 million neurones of the rat’s brain (Herculano-Houzel & Lent, 

2005), “only” 300 thousand are in the hypothalamus (Hsu & Peng, 1978), a group of 

nuclei that occupy a small space at the bottom of the brain, where signals from the 

brain and the body are integrated, and which send processed information to both 

brain and body. The latter happens, in part, through the pituitary gland, a tiny oval 

protrusion that seems to hang from the bottom of the brain, just below the 

hypothalamus. The pituitary gland is densely vascularised by a network of fine 

capillaries, which convey hormones secreted by hypothalamic neurones to control 

hormone secretion from the anterior pituitary (Leng, 2018a). 

The magnocellular neurones innervate the posterior pituitary gland. They produce 

either oxytocin or vasopressin in their huge somas, from which a long axon is 

projected to the posterior pituitary, where they secrete their products into the blood. 

In total, Rhodes et al. (1981) estimated that there are around ten thousand of these 

neurones in the rat, two thirds of them located either in the PVN or in the SON. 

Bursting activity 

As noted earlier, oxytocin was first known for its participation in parturition and 

breastfeeding. At those times, the plasma concentration of oxytocin reaches its 

highest levels, whilst vasopressin neurones do not change their spiking activity. That 

made the use of lactating rats the traditional way to distinguish oxytocin neurones 

from vasopressin neurones in vivo. During lactation or parturition, oxytocin neurones 

alternate intervals of around 300s of basal spike activity with bursts, during which 

oxytocin neurones can fire up to 100 spikes during 2-3 s, reaching a maximum of 

100 spikes/s over 200-300 ms (Wakerley & Lincoln, 1973; Belin & Moos, 1986). 

Looking at it closely, during the 300 s of non-bursting activity, oxytocin neurones 

produce around 300 spikes too. However, the coupling between spike activity and 

secretion is highly non-linear (Bicknell et al., 1984). 300 spikes over 300 s would 

trigger the secretion of 15 times less oxytocin than 150 spikes occurring during just 

3 s. That sudden increment of oxytocin in plasma, produced by those short bursts, is 

the necessary pulsatile ingredient in both uterine contractions and milk ejection. 

Normal activity 

However, oxytocin neurones also play a role in male rats and in female rats that are 

neither pregnant nor lactating. Oxytocin neurones are involved in two major 
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homeostatic processes in the rat. During those processes, oxytocin neuronal 

behaviours contrast with the lactating or parturition patterns, and are defined by 

firing that typically does not surpasses 13 spikes/s and is often in a range of 0 to 8 

spikes/s (Maícas-Royo et al., 2018). During lactation or parturition, oxytocin 

neurones synchronize and respond abruptly and all together to the same input. 

However, during homeostatic processes, oxytocin neurones respond smoothly and 

without synchronizing with each other. For instance, systemic injection of 

cholecystokinin (CCK) (a peptide produced in the gut after food intake) steadily 

increases the firing rate of oxytocin neurones (Leng et al., 1991). This activity will 

then slowly decrease over 10-15 min until it has returned to the previous state 

(Velmurugan et al., 2010). Another example is the response of oxytocin neurones to 

osmotic pressure. Osmolality is maintained in equilibrium through the whole body, 

including plasma, extravascular fluid and intracellular fluid. Thus, changes in 

osmolality tend to be slow, and oxytocin neurones respond to them linearly (Brimble 

& Dyball, 1977), maintaining the response if the osmotic pressure does not 

decrease (Leng et al., 2001).  

Channels and currents involved in the spiking activity 

In all cases, activity in oxytocin neurones is initiated when they receive synaptic 

inputs. The inputs can be excitatory (EPSPs) and inhibitory (IPSPs), and how their 

membranes react has been extensively studied both in vivo (Richard et al., 1997; 

Leng et al., 1999; Hatton & Wang, 2008; Brown et al., 2013) and in vitro (Hatton & 

Li, 1999; Pittman et al., 1999; Armstrong et al., 2010; Brown et al., 2013). 

Hodgkin & Huxley (1952) were the first to describe voltage-gated Na+ channels, the 

main channels responsible for initiating spikes in neurones. They proposed that 

those channels can be in three different states. Initially, when the membrane is 

ready to produce a spike, the Na+ channels are deactivated. Secondly, if the voltage 

reaches a threshold due to a recent positive balance between EPSPs and IPSPs, 

the channels open, allowing Na+ to enter, producing a fast depolarisation. Finally, 

the Na+ channels inactivates, and will not respond again to voltage until enough Na+ 

is actively transported out of the neurone. Although these three states accurately 

describe the membrane dynamics during the initial steps of an action potential, 

when the voltage reaches intermediate or high levels, it triggers the opening of other 

channels that will let Ca2+ enter the membrane (Katz & Miledi, 1970). Together, the 

entry of Na+ and Ca2+ shape the rising form of the spike. 
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In magnocellular neurones, the membrane reacts 

to an action potential with three different currents. 

The first one, the hyperpolarising after potential 

(HAP), is actually the combination of at least three 

dynamics (Roper et al., 2003). The transient 

outward current, IA, is the first hyperpolarizing 

current to appear when the membrane 

depolarizes. It inactivates quickly, giving the 

membrane voltage a characteristic A shape if the 

depolarization does not produce a spike.  

If the voltage keeps rising, the delayed rectifier 

current, IK appears. Both, IA and IK, have also a role in the spike shape, which 

broadens when they are blocked. Finally, the big potassium (BK) voltage-gated 

channels, allow a big quantity of K+ cross the membrane. They are only activated 

under a strong depolarization, deactivating quickly, with a time constant of just 1 ms 

if the neurone repolarizes. The resultant HAP will be enough to suppress the 

neuron’s ability to fire again for 30 - 50 ms (Figure 1). That hyperpolarization will 

translate into two scenarios. If PSPs only occasionally exceed the threshold for 

triggering a spike, a spike will be produced every time that that happens. Then, the 

neurone will follow its inputs with high temporal accuracy. However, if PSPs often 

exceed that threshold, the HAP will regularise the neuronal activity, allowing spike 

production only at intervals of 30-60 ms. As a 

result, the spike activity will not accurately 

follow the activity of the inputs. Mathematically 

speaking, it could be said that the HAP 

reduces the variability of spike production, 

filtering the input noise.  

In magnocellular neurones, other channels 

produce a long (for up to 5 s) after 

hyperpolarizing potential (AHP) (Roper et al., 

2003) (Figure 2). The AHP has at least two  

components, a medium AHP due to small K+ 

channels (SK) that can be blocked by the toxin apamin, and a slow AHP, with 

intermediate K+ channels (IK), which can be inhibited by muscarine (Table 2). The 

  

 

Figure 1. After a spike is 
produced, the hyperpolarising 
potential (HAP) prevents the 
oxytocin neurone to produce 
another spike for about 30-50 
ms. 

Figure 2. When several spikes 
are produced close together, the 
accumulative effect of the after 
hyperpolarizing potential (AHP) 
can prevent further spiking 
activity for few seconds 

    30-50 ms 

2-5 s 
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fact that channels can be blocked by certain chemicals makes it possible, among 

other things, to isolate the contribution of each channel to the spiking activity of 

oxytocin neurones. 

The AHP channels are activated by an increment of Ca2+ inside the membrane, 

letting K+ cross more slowly than the BK channels. However, they take longer to 

become inactivated. Because of their long-lasting effect, they are more relevant in 

the second scenario that has been introduced for the HAP. When the neurone is 

stimulated strongly, the SK and IK channels are continuously open and as a result, 

the maximum firing rate is lowered, hence the firing rate is less variable, producing a 

smoother response and filtering noisy inputs.  

Finally, a third type of current can slowly 

depolarize the membrane after a spike – the 

depolarising afterpotential (DAP) (Figure 3). As a 

result, the neuron has more chances to produce 

another spike. Those channels, also activated by 

Ca2+, play an important role in the phasic activity 

of vasopressin neurones (Ghamari-Langroudi & 

Bourque, 1998). However, in oxytocin neurones, 

the DAP is usually masked by a larger AHP. The 

AHP and the DAP have similar time courses and 

opposite sign. Because of this, only about 20% 

of oxytocin neurones show DAP activity: in many 

cases, a DAP is only noticeable after blocking the AHP channels (Maícas-Royo et 

al., 2016). 

This summary does not include many other factors that affect the membrane 

dynamics, such as the location of the channels, that can vary from neuron to 

neuron, or that oxytocin neurones dendrites can also trigger action potentials. 

However, as seen in Table 2, even if only the most relevant membrane dynamics 

are used, the way to calculate spike activity can be quite complex. The first models 

trying to mimic the membrane dynamics followed Hodgkin-Huxley equations. That 

required modelling voltage-dependent activation and inactivation. 

 

 

 

Figure 3. When a depolarising 
afterpotential (DAP) is present, 
several spikes firing close 
together can make the oxytocin 
neurone more responsive to 
produce further spikes during two 
or three seconds. 

2-3 s 
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Table 2. Currents, channels and channels’ blockage in magnocellular neurones 
(Ghamari-Langroudi & Bourque, 1998, 2004; Roper et al., 2003). 

Name Components Current Mechanism Effect Blockage 

HAP 

BK 

Ca2+ and 
voltage-

dependent 
K+ 

Large 
conductance 
(BK) channel 

Membrane 
inexcitability for 

30-50ms 
charybodotoxin 

Delayed 
rectifier 

voltage-
sensitive K+ 

currents 

Cubic 
activation and 

non-
inactivating 

Continues 
rectification. 
Shape spike 
broadening 

Tetraethyla-
monium 

Transient 
outward 
current 

Quartic 
activation & 

linear 
inactivation 

A-type Starts 
rectification. 
Shape spike 
broadening 

4-aminopyridine 

AHP 

Medium AHP 

Ca2+ -
activated K+ 

Small 
conductance 
(SK) channel 

Membrane 
inexcitability for 

300-500 ms 
apamin 

Slow AHP 
Intermediate 
conductance 
(IK) channel 

Membrane 
inexcitability for 

2-5 s 
muscarine 

DAP 

Fast DAP 
Ca2+ 

activated 
Non-specific 

cation channel 

Membrane 
excitability for 
300-500 ms 

Caesium (Cs+) 

Slow DAP 

Ca2+ 

activated 
Non-specific 

cation channel Membrane 
excitability for 2-

3 s Ca2+ 

activated 

Switch off of 
hyperpolarisin

g K+ leak 

 

Thus, complex equations were needed for every channel involved in depolarization, 

hyperpolarization and maintenance of the resting potential. Computationally 

speaking, Hodgkin-Huxley equations are very demanding and soon other simplified 

models were used. To some extent, computational resources are not a problem 

anymore. Current computational power makes it possible to simulate small 

populations of neurones with Hodgkin-Huxley equations (Borges et al., 2016; Yao et 

al., 2017; Xu et al., 2018). However, dozens of ion channels per neurone and 

several parameters per current, generate such an amount of data that makes 

difficult to analyse the influence of each individual parameter (Burkitt, 2006). 

The Leaky Integrate and Fire model 
Other solutions, less accurate but much faster to compute that the Hodgkin-Huxley 

model have been proposed. Among these is the Integrate and Fire model, first 

proposed as a very simple circuit that included a capacitor and a resistor in parallel 
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(Lapicque, 1907). Slowly charged by a battery, when the capacitor was full (‘when 

the membrane had reached the spike threshold’), it liberated the voltage stored as 

potential spike. After that, the membrane returned abruptly to the initial state. The 

model lacked three important elements. It did not consider any inputs that could 

mimic EPSPs and IPSPs; it lacked any mechanism through which the membrane 

could become refractory after a spike; finally, it did not have the capacity to recover 

a resting state without passing first through potential spike. Those elements were 

slowly added to the Integrate and Fire model (Burkitt, 2006). Inputs are now 

commonly simulated by a Poisson distribution; hyperpolarization has been added to 

mimic different contributions in different cells; and the ability to permanently recover 

the resting state is commonly modelled by a leak current. With that final contribution, 

the model became known as the Leaky Integrate and Fire (LIF) model. 

The LIF model also reduces the Hodgkin & Huxley model’s complexity by simplifying 

the spike occurrences, which shape is not calculated at all. The LIF model focuses 

on the membrane’s dynamics before a spike is triggered, and on what happens after 

that spike. For these, the LIF model is a good approximation to the Hodgkin-Huxley 

model (Burkitt, 2006), and is also much faster (Izhikevich, 2004). With that in mind, 

my supervisors proposed a LIF model with three sets of equations to model the 

membrane response to every spike: a HAP, an AHP and a DAP (MacGregor et al., 

2009). In that model, the three HAP components present in magnocellular neurones 

are mimicked by a single equation. The two AHP components are also simulated by 

a single equation, with an intermediate time constant. Finally, two DAP components 

are present in the vasopressin spiking model (MacGregor & Leng, 2012), but 

generally it is not necessary to include a DAP in the oxytocin spiking LIF model 

(Maícas-Royo et al., 2016), either because the DAP has a similar time course than 

the AHP and the DAP is masked by the AHP, or because the DAP is not present in 

some oxytocin neurones. 

Despite all that, the LIF model matches the Hodgkin- Huxley model for 

magnocellular neurones remarkably well (Leng et al., 2017), and it will be shown in 

this thesis how robustly this LIF model can mimic the action potential production of 

oxytocin neurones under different circumstances. 
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Oxytocin secretion 
Spike activity allows the neuron to integrate information and filter certain kinds of 

noise. However, spikes are not the final product of oxytocin neurones: oxytocin 

secretion is.  

The spiking activity of oxytocin neurones triggers secretion in two different ways. 

Oxytocin is secreted peripherally, from the axon terminals, but it is secreted centrally 

too, in a semi-independent way from the dendrites (Ludwig, 1998). Both types of 

secretion can be studied independently because oxytocin does not trespass the 

blood-brain barrier (Mens et al., 1983; Lee et al., 2018). Classically, dendrites were 

thought to just receive inputs from other neurones and initiate action potentials. In 

the case of oxytocin neurones, central oxytocin’s origin was thought to be 

exclusively parvocellular. However, magnocellular neurone’s dendrites are active as 

well, and magnocellular neurones have the largest stores of the oxytocin in the brain 

(Ludwig & Leng, 2006). When secreted centrally, oxytocin behaves as a 

neuropeptide (Leng, 2018b), reaching concentrations 100-1000 fold higher than in 

blood. Central oxytocin autoregulates oxytocin neurones, directly promoting oxytocin 

secretion, but it has also two opposite indirect effects. It increases the production of 

endocannabinoids which inhibit glutamatergic afferents to oxytocin neurones. At the 

same time, oxytocin attenuates GABA inputs with the resulting increment of spiking 

activity. All that seems to be related with the role oxytocin has in synchronizing 

oxytocin neurones, increasing their activity during bursting periods (Ludwig et al., 

2002). 

Diffused central oxytocin also plays an important role. During the last years it has 

been shown that central oxytocin is involved in the regulation of maternal bonding 

and social interaction (Donaldson & Young, 2008) or in food choice or food reward 

(Sabatier et al., 2013; Olszewski et al., 2016).  

Although oxytocin and vasopressin can be secreted from dendrites, the focus was 

put here in axonal secretion, through which oxytocin reaches the whole body. For 

both vasopressin and oxytocin neurones, when spikes arrive at the axon terminal, 

they open voltage-gated Ca2+ channels. This produces three main effects. First, the 

entrance of Ca2+ maintains the depolarization provoked by the spike, broadening in 

time the depolarizing effect (Bourque, 1990; Muschol & Salzberg, 2000). Second, 

while the depolarization is maintained, oxytocin vesicles fuse with the axonal 

membrane, releasing the hormone into the blood (Mansvelder & Kits, 2000). Finally, 
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if the [Ca2+] becomes too high, it produces a negative feedback, opening Ca2+-

dependent K+ channels that hyperpolarize the membrane (Jackson et al., 1991). 

The three mechanisms are present in both vasopressin and oxytocin neurones but 

with differences. The negative feedback is more rapid in vasopressin neurones, 

producing fatigue after just 18 s when spikes arrive at rates of 13 Hz or more. 

However, oxytocin neurones do not show symptoms of fatigue at 13 Hz even if the 

stimulation lasts many minutes (Bicknell et al., 1984; Bicknell, 1988). 

Thus, vasopressin and oxytocin secretion have several things in common but other 

things that differentiate them. The similarities made us think that it would be possible 

to adapt a vasopressin mathematical model developed by my supervisors 

(MacGregor & Leng, 2013) to simulate secretion from oxytocin neurones. The 

differences led the adaptation made in the vasopressin model to obtain a secretion 

model for oxytocin neurones.  

Synergy between spiking and secretion activities 

Those differences in secretion closely relate to differences in spiking activity. A large 

DAP in vasopressin neurones makes many of them stay depolarized after a spike, 

making them able to produce bursting activity, which they alternate with periods of 

silence. During bursts, vasopressin neurones fire at between 10 to 14 spikes/s, 

which maximizes the secretion per spike, due to the non-linear coupling between 

spike activity and secretion (Bicknell, 1988). However, if they are active at that rate 

for more than 30 s, vasopressin secretion shows fatigue (Bicknell et al., 1984). That 

makes the phasic activity a perfect complement to their secretory characteristics. 

Alternating periods of activity at 13 spikes/s with silences maximizes the efficiency of 

secretion.  

Unlike vasopressin neurones, oxytocin neurones fire spikes continuously, not 

producing bursts except during lactation or parturition. That bursting activity 

presents itself at a much higher frequency than the bursts in vasopressin neurones, 

reaching frequencies of 30-100 spikes/s. 

However, during normal, regular activity, oxytocin neurones do not present large 

excursions in firing rate, which would lead to even larger excursions in secretion. 

They rarely fire above 13 spikes/s and their average spiking activity changes 

smoothly, even under acute challenges. Thus, preventing large excursions in 
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secretion combines with the ability of oxytocin neurones to maintain spike activity at 

around 13 spikes/s for minutes. (Bicknell et al., 1984; Leng et al., 2001).  

Interestingly, and despite all the differences between each other, the concentrations 

of oxytocin and vasopressin in plasma follow similar patterns under hypovolemic 

and osmotic challenges (Stricker & Verbalis, 1986; Stricker et al., 1987). This is 

because vasopressin neurones do not synchronize their activity. Thus, the phasic 

firing some vasopressin neurones present, do not affect the average response of the 

whole population (MacGregor & Leng, 2013). 

The AHP and its role in secretion.  

The synergy between spiking and secretion dynamics in both vasopressin and 

oxytocin suggests that they evolved together to produce a co-operative response. In 

the case of vasopressin, if an elevated spiking activity is maintained for 18 seconds, 

fatigue will appear in the secretion, smoothing vasopressin secretion down. Even 

more, if vasopressin neurones would fire above 13 spikes/s, their secretion rate per 

spike will be reduced (Bicknell, 1988).  

Oxytocin neurones present a similar mechanism of Ca2+ related fatigue to that in 

vasopressin neurones but at much higher spikes rates. Whilst secretion rate per 

spike peaks in vasopressin neurones at 13 spikes/s, in oxytocin neurones it peaks at 

50 spikes/s. In fact, oxytocin neurones can maintain a firing activity of 13 spikes/s for 

minutes. Above that level, secretion fatigue also appears in oxytocin secretion. 

However, if oxytocin neurones would fire steadily above 13 spikes/s they would also 

deplete their hormone stores (Leng et al., 1994).  

The main candidate to prevent the depletion is the AHP, which produces small, 

cumulative hyperpolarisations. In fact, because of the non-linearity of the coupling 

between spike activity and secretion, the AHP role has even bigger consequences 

for secretion (Figure 34Figure 35Figure 36). 

The oxytocin computational model  
As mentioned earlier, when I began my PhD, my supervisors had already shown 

that a mathematical model with a HAP and an AHP could mimic the basal dynamics 

of a single oxytocin neuron (MacGregor et al., 2009).  

The rest of this introduction is dedicated to summarizing how the model was 

expanded to mimic several dynamics of the spiking activity in response to different 
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challenges associated with energy homeostasis, osmotic pressure and 

hypovolemia, coupling it with an oxytocin secretion model and an oxytocin clearance 

model, all based on published experimental data.  

The spiking model 

When oxytocin is secreted from the axon terminals in the posterior pituitary, oxytocin 

behaves as a hormone, helping in the energy homeostasis by reducing food intake 

and meal duration, and in osmotic homeostasis by inducing natriuresis (sodium 

excretion in the urine). After food intake, the spiking activity and production of 

plasma oxytocin increases (Hume et al., 2017). This is part of the satiety mechanism 

that limits the size of the meals we eat: oxytocin released in the brain is 

anorexigenic – it inhibits food intake (Sabatier et al., 2013; Morton et al., 2014). One 

excitatory signal that contributes to the activation of oxytocin neurones during food 

intake is the one provoked by CCK, a peptide secreted from the duodenum in 

response to food ingestion. CCK acts at CCK1 receptors on the nerve endings of 

gastric vagal nerves. These vagal neurones project to the nucleus tractus solitarius 

(NTS) in the caudal brainstem, from which noradrenergic neurones of the A2 cell 

group project directly to the SON and the PVN (Sabatier et al., 2013; Morton et al., 

2014). 

Systemic injections of CCK increase the firing rate of oxytocin neurones, whilst they 

supress or do not affect vasopressin neurones (Leng et al., 1991). During the last 

two and a half decades, this has made CCK a great tool for differentiating oxytocin 

neurones from vasopressin neurones, being still used in electrophysiological (Paiva 

et al., 2017) or c-fos experiments (Katoh et al., 2014).  

The first thing to develop the model was to mimic the response to CCK in an LIF 

model with just an AHP and a HAP. The response looks simple when averaged in 

bin widths of several seconds. It basically consists of a linear increase in spiking 

activity during the injection and an exponential decrease after it (Velmurugan et al., 

2010). The model mimicked that response closely (Figure 29) but, more importantly, 

was able to differentiate the contributions of the HAP and the AHP (Figure 26). 

Taking advantage of that, the model was used to further elucidate the role of the 

AHP, as the AHP is a key component modulating excitability in many types of 

neurones (Sah, 1996). First, it was done for the spiking model (Maícas-Royo et al., 

2016). In that paper it is used the index of dispersion, a statistic calculated as the 
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quotient between the variance and the mean of a variable. The index of dispersion 

gives a measure of the variability of a variable. When the variable is the spike rate of 

oxytocin neurones, it was seen that its index of dispersion was smaller than 

expected when calculated for bins longer than 4s (Figure 23). This happened for 

most oxytocin neurones, but not for all of them. So, it could be hypothesised that the 

ones where the index of dispersion was reduced at longer bins had a more 

dominant AHP, while the ones where that was not happening had a more dominant 

DAP. As mentioned, a component of the AHP can be blocked by apamin. Thus, data 

from oxytocin neurones exposed to apamin was compared with the data produced 

by the model when mimicking those spiking behaviours, simulating the effect of 

apamin by making AHP equal to 0 (Figure 27). Those experiments helped to 

elucidate the role of the AHP in the spike activity of oxytocin neurones but also 

helped to confirm the presence of a DAP in some oxytocin neurones, usually 

masked by a stronger AHP. 

The secretion model 

This success motivated me to pursue further horizons in relation to the role of the 

AHP. In particular, the question about how the presence of an AHP affected 

oxytocin secretion and plasma concentrations of oxytocin arose. To do that, it was 

necessary to build a secretion model, and I adapted a model that had been 

developed by my supervisors to simulate vasopressin secretion (MacGregor & Leng, 

2013). There are substantial differences between oxytocin and vasopressin 

secretion, but the vasopressin model should also have many things in common, 

biologically and mathematically, with the oxytocin secretion model that had to be 

implemented. 

When vasopressin neurones fire faster than 13 spikes/s, the incremented [Ca2+] in 

the axon terminal starts to negatively affect the secretion. As a result, vasopressin 

neurones secrete less at 26 spikes/s than at 13 spikes/s. In the model for oxytocin 

secretion, it was necessary to shift that behaviour up to at least 52 spikes/s (Bicknell 

et al., 1984; Bicknell, 1988) (Figure 30). Thus, in the oxytocin secretion model, as in 

the vasopressin one, there is a negative feedback and a fatigue effect, and both are 

still provoked by the Ca2+ accumulated after arrival of spikes at a high rate. 

However, the [Ca2+] starts triggering negative feedback in the oxytocin secretion 

model, leading to fatigue, only when the spiking model fires above 13 spikes/s. 

(Maícas-Royo et al., 2018). 
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From a single oxytocin neuron to oxytocin concentrations in 
plasma 

Having simulated the secretion of the whole population of magnocellular oxytocin 

neurones to mimic the available experimental data, it was necessary to make a 

conceptual jump. The spiking model was a single neuron model. However, there is 

no data in the literature linking the spiking activity of single oxytocin neurones to 

their secretion. What there was in the literature were data linking the total oxytocin 

secretion from the posterior pituitary in response to electrical stimulation at different 

frequencies to (Bicknell et al., 1984; Carolyn A. Bondy, 1987; Bicknell, 1988). That 

electrical stimulation was assumed to trigger secretion by first triggering spikes in 

the axons of the magnocellular neurones from the SON and the PVN. Thus, the goal 

was to develop a secretion model simulating that electrical activity as spikes from 

our spiking model. 

While secretion is the final product of oxytocin neurones, what the body sees is the 

oxytocin concentration in plasma. Accordingly, a secretion model would not be 

complete without also simulating the fate of oxytocin in plasma. Fortunately, there 

are classic experiments (Ginsburg & Smith, 1959; Fabian et al., 1969a) giving the 

necessary data to develop a model of oxytocin clearance from plasma (Figure 

33A,B). 

From that point, with a complete predictive model for oxytocin neurones, it could be 

used, as shown in chapter 3, to predict the data of several papers which had 

connected the spiking activity of oxytocin neurones with the plasma concentration of 

oxytocin (Figure 33C-D). 

Heterogeneity 

Like any other group of neurones, oxytocin neurones are heterogeneous. Each 

oxytocin neurone differs from every other in the precise composition of receptors 

that it expresses and in the precise complement of afferent inputs that it receives. 

Each neurone receives several thousand afferent nerve endings from many 

hundreds of other neurones. Most of these inputs are GABAergic or glutamatergic, 

but oxytocin neurones express many other receptors (Leng et al., 1999). They have, 

for example, noradrenaline receptors, which transduce the excitatory inputs from the 

NTS neurones (Randle et al., 1986; Onaka et al., 1995). They also express 

dopamine receptors, associated with penile erection (Baskerville et al., 2009) and 

acetylcholine receptors (Shioda et al., 1997). Finally, the spiking activity of oxytocin 
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neurones is modulated by a vast diversity of peptides. Among these, oxytocin 

neurones have receptors for oxytocin (Freund-Mercier et al., 1994), CCK (Day et al., 

1989) and opioids (Brown et al., 2000). 

Oxytocin neurones are also heterogeneous in their membrane characteristics. One 

of the clearest examples is that some of them express a DAP (Stern & Armstrong, 

1996), probably related with different densities of high voltage Ca2+ currents 

(Teruyama & Armstrong, 2005). That characteristic affects, for instance, the 

response to histamine, which through the presence of the histamine receptor, can 

enhance, inhibit or let unaffected different oxytocin neurones (Smith & Armstrong, 

1993). Furthermore, channel properties are not fixed (Teruyama & Armstrong, 2005) 

and oxytocin neurones can modify their response over time (Sannino et al., 2017).  

The heterogeneity in the inputs and membrane’s properties make oxytocin spike 

responses heterogeneous as well. If it is added to that the fact that oxytocin neurons 

can fire in two different ways: regular sustained spiking activity or bursting activity 

(Armstrong et al., 2002), it might be expected that oxytocin neurones will produce a 

wide range of spiking responses depending on the situation. 

Heterogeneity also affects oxytocin secretion. Every oxytocin neurone contains 

several hundred thousands of vesicles, each with ~85,000 molecules of oxytocin 

(Nordmann & Morris, 1984). Exocytosis from the axon terminals depends, again, on 

various factors such as the number of Ca2+ channels, that are unique to each 

oxytocin neurone (Fisher & Bourque, 2001). 

Knowing that those levels of heterogeneity exist, the model has tools to simulate it, 

varying different parameter values amongst neurones and looking at the final 

secretory average. Ideally, the model could introduce that heterogeneity in every 

aspect of the spiking model or the secretion model, where the neurones are still 

treated individually before their products accumulate into a global one in the 

diffusion model. Following the literature and our own electrophysiological library of 

oxytocin neurone recordings, the model was tested with two factors where huge 

variability was found (Figure 37). The first factor was the basal spike rate. Analysing 

23 oxytocin neurones that responded to CCK, it was found they had a mean basal 

firing rate of 2.5 spikes/s but with a range of 0.02 to 7.9 spikes/s. Similarly, the mean 

response to injecting 20 µg/kg of CCK was an increment of 1.5 spikes/s. However, 

this varied between 0.57 and 3.6 spikes/s (Maícas-Royo et al., 2018). 
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Finally, it was necessary to balance the level of heterogeneity the model should 

have. In the simulations, it will be seen that sometimes the average response of the 

whole population of oxytocin neurones can be mimicked without heterogeneity, or 

even with a single neuron response. In other occasions, particularly to mimic the in 

vivo variability in the response, in both the spiking and secretory response, it was 

required to simulate a population with a certain level of heterogeneity. 

Oxytocin and osmotic pressure 
Vasopressin, also called the antidiuretic hormone, was placed soon in a privileged 

position, among the hypothalamic hormones, in the control of osmotic pressure. 

However, oxytocin participation in the fluid homeostasis was also suspected after 

hypertonic saline injection was shown to induce milk ejection in goats (Andersson, 

1951) and to affect uterine activity in the dog (Abrahams & Pickford, 1954). Today, it 

is known that oxytocin has a role in electrolyte homeostasis in many species 

(Antunes-Rodrigues et al., 2004; Bourque, 2008; Zimmerman et al., 2017). In 

particular, oxytocin promotes natriuresis (Verbalis et al., 1991; Huang et al., 1996) 

after a hypertonic saline injection in rats (Huang et al., 1995), but not in humans 

(Rasmussen et al., 2003). In the kidneys, Na+ is excreted when cGMP, an 

intracellular second messenger, is produced. Oxytocin promotes its production in 

two different ways. First, when oxytocin binds to NOergic cells in the kidneys, it 

activates nitric oxide synthase, which releases NO. The presence of NO leads to an 

increment in cGMP that closes Na+ channels, preventing the reabsorption of 

sodium.  At high concentration levels, oxytocin also promotes the production of the 

atrial natriuretic peptide (ANP) which also promotes the production of cGMP, 

reducing the Na+ reabsorption and producing natriuresis (Antunes-Rodrigues et al., 

2004).   

Oxytocin released in the brain also participates in the regulation of sodium appetite 

in rats (Blackburn et al., 1995). Conversely, hypoosmolality inhibits oxytocin 

secretion (Brimble & Dyball, 1977), which can lead to a reduction in natriuresis and 

salt appetite. 

Osmoreceptors 

Oxytocin neurones change their activity in response to changes in osmolality in two 

different ways. First, they behave as osmoreceptors (Oliet & Bourque, 1992), which 

it is a term given to the cells that can change their electrical activity depending on 
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their extracellular osmolality. Hyperosmolality activates capsaicin-insensitive cation 

channels in magnocellular neurones. Those channels present receptor which detect 

mechanic changes. Due to a layer of actin filaments and a network of microtubules, 

they can detect if the neurone shrinks (Prager-Khoutorsky & Bourque, 2015). In 

addition, oxytocin neurones receive synaptic inputs from other osmoreceptors in the 

circumventricular organs (Bourque, 2008), areas that do not possess a proper brain 

barrier (McKinley et al., 2003). Among these areas there are two that contain a great 

quantity of osmoreceptors: the subfornical organ (SFO) and the organum 

vasculosum of the Lamina Terminalis (OVLT). Osmoreceptors from those areas can 

detect changes in the osmolality of the ventricles or from the plasma, due to the 

vascular innervation in the walls of the ventricles, close to the SFO and the OVLT. 

The osmoreceptors in those areas detect mainly the change of [Na+], ignoring other 

solutes like urea or glucose. A couple of exceptions are mannitol and sucrose, which 

also make osmoreceptors respond, but those sugars are usually not in plasma 

(Verbalis, 2007; Bourque, 2008). Osmoreceptors from the OVLT and the SFO 

translate any osmotic change into a change in electrical activity, which will modify 

the synaptic release of either glutamate or GABA. Both the SFO and the OVLT 

project to the nucleus medianus (MnPO), which integrates all kinds of information 

related to thirst, fluid volume and osmotic pressure, coming from other centres of the 

brain (Zimmerman et al., 2017). 

Of these three nuclei, the SFO is the most extensively studied. It contains 

populations of both glutamatergic and GABAergic neurones. Both populations of 

neurones communicate bidirectionally with the OVLT and the MnPO. Glutamatergic 

pathways from the SFO also reach the SON, where they activate magnocellular 

neurones. 

The OVLT and the MnPO also contain glutamatergic and GABAergic neurones but it 

has been more difficult to differentiate their functions and projections (Zimmerman et 

al., 2017). Entangled excitatory innervations from the OVLT and the MnPO have 

been traced to the SON. However, although there are GABA neurones in the OVLT 

and the MnPO, there is no literature showing where those neurones, or other GABA 

neurones from the SFO, could project or what the function of those projections is. 

Because neurones receive a mix of inputs, from different locations, produced by 

different neurotransmitters that alter the membrane in different ways, neuroscientists 

use blockers to try to separate the different influences (Table 3). For instance, 
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GABA receptors can be blocked, usually with bicuculline, and see if the response of 

neurones is affected. That strategy was used to show that the OVLT projects 

inhibitory pathways to the SON (Yang et al., 1994). However, Richard & Bourque 

(1995) found that, in a hypothalamic explant preparation, although changes in the 

osmolality in the OVLT changed the activity of oxytocin neurones in the SON, none 

of those changes were produced by inhibitory inputs. Some years later, Leng et al. 

(2001) showed that during an hypertonic saline i.v. infusion, oxytocin neurones 

respond more if bicuculline had been injected previously. That contradictory result 

was attributed by Leng et al. to the fact that the explant preparation used by Richard 

& Bourque did not contain the MnPO. 

Table 3. Neurotransmitter blockers (Yang et al., 1994). 

Blockers Receptor 

Mecamylamine, hexamethonium hydrochloride Nicotinic 
acetylcholine 

Kynurenic acid Excitatory amino 
acids 

APV (Aminophosphonovaleric acid) NMDA receptors 

Bicuculline methiodide GABAA 

2-hydroxysaclofen GABAB 

Losartan Angiotensin-II AT1 

Proglumide CCK 

CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) Non NMDA receptors 

CNQX  Block fast EPSP 

APV  Slow EPSP (partially) 

 

Apart from showing the necessity of IPSPs for the response of oxytocin neurones to 

osmotic challenges, Leng et al. established the oxytocin spiking and secretory 

response to i.v. infusions of hypertonic NaCl. They found a linear relationship 

between the NaCl infused and the increment in firing rate of the neurones in the 

SON.  

The osmotic model 

Those two results, the necessity of IPSPs, and the linear response of oxytocin 

neurones to the NaCl infusion, made us think of a new way of testing the model. 

To do it, a model was made to simulate the distribution of [Na+] in the rat’s body 

after a NaCl i.v. infusion (Figure 38). From this, it was estimated the [Na+] detected 

by the circumventricular organs and created a new input to our oxytocin spiking 
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model as a linear function of that [Na+]. A model was also developed to recreate the 

[Na+] dynamics after an i.p. NaCl injection, testing the model with results obtained in 

experimental data (Brimble & Dyball, 1977). The same data allowed us also to test 

the oxytocin spiking model for stable osmotic pressures. Finally, it was simulated the 

oxytocin response after an i.v. NaCl injection (Higuchi et al., 1985) (Figure 39). 

Our oxytocin model mimicked very well the results obtained experimentally, for both 

the spiking and the plasma oxytocin dynamics (Figure 41). That gave evidence of its 

robustness and also supported the hypothesis that IPSPs from the lamina terminalis 

are necessary for the oxytocin response to osmotic changes in the body (Figure 42). 

To complete the study on oxytocin neurones responding to osmotic challenges, it 

was also explored the interaction of osmolality with hypovolemia. Initially, it was 

expected that the oxytocin model would simply simulate the response to 

hypovolemia. However, the model gave much more.  

Oxytocin and hypovolemia 
In mammals, blood loss leads to a cascade of mechanisms that the body uses to 

maintain or recover blood pressure. During the first stage of blood loss, blood 

pressure is maintained by an increment in heart rate and vasoconstriction (Schadt & 

Ludbrook, 1991). This response is mediated by baroreceptors and the atrial 

natriuretic peptide (ANP). 

Baroreceptors are stretch sensors located in the blood vessels which decrease their 

activity under hypovolemia and increase it under hypervolemia or a rise in heart beat 

(Heesch, 1999). In the brain, the NTS, area postrema and nucleus ambiguous, 

receive information from the baroreceptors situated in the left atrium, aortic arch and 

carotid sinus through the aortic and vagus nerves. An increased activity of the 

baroreceptors inhibits vasopressin secretion, though to different degrees depending 

on the species. In the dog and sheep, vasopressin is released after small 

hypovolemia whilst in the rat, a much higher volume reduction is needed (Share, 

1988). 

Atrial natriuretic peptide (ANP) is a hormone produced firstly in the heart, as a 

mechanism to quickly reduce blood pressure, but also in the hypothalamus (Curry, 

2005). The hypothalamic production of ANP is mediated by the baroreceptors’ 

afferent signals to the brain (Antunes-Rodrigues et al., 1992). Circulating ANP 

increments under blood pressure and decreases under hypovolemia and its 
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changes are detected by atrial receptors, which send the information to the NTS. 

From there, GABAergic projections reach vasopressin neurones in the PVN, 

modulating an excitatory vasopressin projection to spinal renal neurones (Haselton 

& Vari, 1998). In parallel, excitatory projections from the NTS project to oxytocin 

neurones in the PVN, which project to spinal cardiac nerves, incrementing their 

activity (Coote, 2005). 

Lastly, the renin-angiotensin hormonal system is also involved in hypovolemia. 

Under a reduction of renal blood flow, renin is synthesised in the kidneys. 

Circulatory renin transforms angiotensinogen, produced by the liver, into 

angiotensin, which is rapidly converted into angiotensin II. Angiotensin II is a 

vasoconstrictor by itself but it also triggers the secretion of aldosterone, which 

produces the reabsorption of water and sodium from the liver (Carey & Siragy, 

2003). 

If blood loss is maintained and becomes moderately high (~30% in rats), the 

excitatory effect of angiotensin II in vasopressin and oxytocin neurones becomes 

more important. Also, baroreceptors stop firing if the blood pressure decreases 

massively, affecting as well the ANP production. In that scenario, vasopressin and 

oxytocin increment quickly their concentration in plasma. From that point, the arterial 

pressure falls (Schadt & Ludbrook, 1991) and the circulating vasopressin and 

oxytocin become main actors in the regulation of the water retention and cardiac 

activity. 

Experiments have shown that circulating angiotensin II stimulates vasopressin 

secretion whilst ANP reduces it. And even more, that both chemicals modulate each 

other effect (Matsukawa & Miyamoto, 2010). However, angiotensin II affects 

magnocellular neurones following a different pathway.  

Apart from presenting osmoreceptors, some OVLT and SFO neurones also express 

receptors for angiotensin II (McKinley et al., 2004; Zimmerman et al., 2017). 

Vasopressin neurones respond strongly to high levels of angiotensin II, produced by 

large volume or blood pressure changes. Due to it, a vasopressin plasma increment 

would help to the hypovolemia or low blood pressure promoting water retention 

(Phillips, 1987). However, not only vasopressin is secreted in response to volume or 

pressure changes. In the rat, hypovolemia increases the plasma concentration of 

oxytocin in a very similar way (Stricker et al., 1987). 
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Thus, magnocellular neurones in the rat are strongly connected with the body 

response to hypovolemia and blood pressure, and, as has been discussed, they 

also respond to osmotic pressure. Nevertheless, the resultant increment of 

vasopressin or oxytocin is generally difficult to associate exclusively with 

hypovolemia. For instance, if an animal is dehydrated it becomes hypovolemic, but 

its osmolality increases as well.  

A simple way to test hypovolemia without changing osmolality is by using controlled 

haemorrhages. As mentioned before, uterine contractions are produced during 

labour due to the pulsatile secretion of oxytocin.  That secretion also prevents post-

partum haemorrhage in the third stage of labour  (Arrowsmith & Wray, 2014). On the 

other hand, it is also known that haemorrhage enhances the production of oxytocin 

in the rat (Fabian et al., 1969a) and in larger animals (Weitzman et al., 1978) .  

However, experiments including haemorrhage present different problems. The blood 

volume changes restrict the number of samples that can be taken. In addition, taking 

samples from a rat that have already lost a 10-40% of its blood in an haemorrhage 

would presumably alter the physiology in a 300 g animal, which only have around 10 

ml of plasma. Apart from being dangerous for the animal, the extravascular fluid and 

the intracellular fluid will rapidly shift part of their volumes to restore the plasma 

volume. Thus, during haemorrhage and until the body fluids recover balance, the 

body will suffer many quick changes in blood pressure, haematocrit concentration, 

osmolality and fluids volume. 

In particular, and independently of the volume shift, during haemorrhage there will 

be a reduction in blood pressure. Hypotension and hypovolemia are entangled. 

However, they also independently trigger oxytocin secretion, using different 

pathways (Smith & Day, 2003). 

Polyethylene glycol (PEG) has been used to produce a more controlled hypovolemia 

(Dunn et al., 1973). PEG produces an edema in the EVF. The fluid for that edema 

comes from the plasma, producing hypovolemia without altering blood pressure or 

osmolality, but increasing the haematocrit concentration in plasma. In addition, the 

change in the plasma volume last for hours (Stricker & Verbalis, 1986). That helps in 

the experimentation with rats, allowing more samples, usually replaced by the same 

amount of saline, and more time to recover. 
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Using PEG to produce hypovolemia, it was reported that oxytocin neurones were 

responding in the same way as during haemorrhage, i.e. the plasma concentration 

of oxytocin increased. In addition, because PEG does not alter the osmolality in 

plasma, the osmosensitive inputs coming from the circumventricular organs should 

not be altered (Smith & Day, 1995, 2003). That opened the door to experiment if 

osmotic pressure and hypovolemia, that independently increased the oxytocin in 

plasma, would increase it more, summing their contributions or working 

synergistically to obtain an even bigger oxytocin response (Stricker & Verbalis, 

1986; Stricker et al., 1987; Windle et al., 1993). 

The oxytocin model response to hypovolemia 

That kind of complex experiment would imply first, a way for oxytocin to control the 

volume of plasma and extravascular fluid. Second, a way to increment the response 

of oxytocin neurones under hypovolemia. And finally, an independent way of 

modifying the osmotic pressure. Those three sets of changes can be implemented in 

our computational model. The model can simulate the PEG effect of shifting part of 

the plasma into the extravascular volume. It can, independently, raise the osmotic 

pressure. Finally, the model can, independently as well, modify the PSPs arriving 

due to the hypovolemia. For this last point, there are two hypotheses. The first one 

says that hypovolemia triggers an increment of EPSPs arriving to oxytocin neurones 

(Smith & Day, 2003). The second says that that the increment in oxytocin secretion 

might also come from a reduction in IPSPs, as happens for vasopressin (Yamaguchi 

& Hama, 2011). 

The model, however, showed another result. It suggested that part of the increase in 

the plasma oxytocin rise produced by PEG could not be assigned either to an 

increment on EPSPs or to a reduction on IPSPs (Figure 43). In other words, part of 

the rise of oxytocin concentration in plasma was not due to an increment of oxytocin 

secretion of any kind. An answer usually masked by the intricate fluid dynamics, 

arose from the simulations: the increment in plasma oxytocin was partially provoked 

by the shift of already existing oxytocin between the plasma and the EVF. That 

diffusion and the nature of the clearance, which only happens from the plasma 

volume, can explain an increment in the plasma concentration without an increment 

in the oxytocin neurones activity. 
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A thesis of three parts 
This thesis includes three papers. The first paper describes the spiking model of 

oxytocin neurones, the role of the AHP and how the AHP can mask the presence of 

a necessary DAP in some oxytocin neurones. The second paper presents three 

models in one: the spiking, secretion and clearance models. They show the 

importance of the AHP as a noise filter also in secretion; the oxytocin neurones’ 

response to CCK; and the relevance of heterogeneity. The third paper tests the 

three-part model under three new scenarios involving osmotic pressure: osmotic 

pressure generated by i.p. or i.v. injections or infusions, the presence of bicuculline 

and the response to hypovolemia. Apart from the three papers, the thesis contains 

another three chapters. The first one is this introduction. The second, a chapter of 

methods, explains in detail the fundamentals of the mathematical tools used in the 

papers. Finally, there is a short conclusions chapter. 

Funding 
Both homeostatic processes where oxytocin is involved, eating and osmotic 

pressure homeostasis, were relevant to Nudge-it, the European Commission project 

funding my PhD: 

“The project engages internationally leading experts in the neurobiology of 

motivational behaviour, reward and regulation of appetite, experimental 

psychology, functional brain imaging, behavioural economics and 

computational modelling. The overall aim is to better understand decision-

making in food choice and to build predictive models to contribute to 

improving public health policy”. 
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oxytocin neurones 
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As shown in the introduction, computers work with 1’s and 0’s, storing information as 

combinations of them and making mathematical operations following the rules of 

Boolean algebra. In the 1950’s, the first computers were programmed by 

instructions consisting of those two numbers. For years, programmers needed to 

know the architecture of the computer to use the correct inputs in the correct place. 

With time, interfaces were developed to the point that, nowadays, most users do not 

need to know anything about the computer architecture to interact with devices 

millions of times more complex and powerful than those first ones. Programming 

languages, a set of syntactic rules closer to normal languages, allow programmers 

to create complex algorithms that can be understood and modified by other users 

who know the same language. Some of those languages, well known in the 

neuroscience field, are Matlab, Python, R and, in our case, C++. The translation 

between the language that the programmer 

uses and the 1’s and 0’s that computers work 

with is made by compilers and assemblers 

(Figure 4), programs written to do just that, 

with the particularity that the programmers do 

not need to know how compilers or 

assemblers work to use them.  

C++, which has been used to develop most of 

the software in this thesis, is a language that 

allows control of the way the computer works 

in a deeper level than the other ones 

mentioned. That, in general, makes it more 

complex to understand and work with but also 
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between faster and much faster if properly used (Aruoba & Fernández-Villaverde, 

2015; Borag & Fernández-Villaverde, 2018) .  

In addition, the differences in resources and time consumed tend to be 

accumulative. Thus, when the coded tasks grow in complexity, C++ become an 

increasingly more efficient solution.  

To model neurones, it is necessary  to simulate fast behaviours, such as the arrival 

of post synaptic potentials or the opening and closing of Na+, K+ or Ca2+ membrane 

channels in response. The time constants to properly simulate those activities are 

on the order of a millisecond. At the other extreme, on certain occasions,  

simulations need to mimic data that lasts for more than an hour. Thus, the computer 

would need to run all the equations 216,000,000 times, to simulate 60 min of all the 

necessary behaviours happening every millisecond. The complexity increases when 

equations are added to simulate the secretion and clearance activity, and again, 

when the dynamics of the [Na+] in plasma (that ultimately affect the spiking activity) 

are incorporated. However, that would be only to simulate the spiking activity of one 

neuron and its consequences. The resources and time necessary would increase, at 

least, arithmetically, to simulate a population of neurones.  

Computers, in contrast with the brain, have traditionally worked sequentially. They 

could not execute more than one task at a time, in contrast with the highly 

parallelized behaviour of the brain, where every neuron tends to have between 100 

and 100,000 connections with other neurones. However, the last decade has 

brought personal computers with several cores, capable of running tasks in parallel.  

To run a population model, parallelization, also called threading, is a good solution. 

Threads, in computational science, are algorithms that allow a computational 

program to use multiple cores of a single CPU and/or multiple CPUs at the same 

time for different tasks.  

In the studies detailed in this thesis, I set out to mimic neural dynamics of oxytocin 

neurons and groups of oxytocin neurons responding to different challenges. To do it, 

a model was first made of the spiking activity of a single oxytocin neuron based on 

the kind of inputs, channels or currents that these neurones are known to have. 

When the model showed reliability, the spiking model was integrated with a 

secretion model, challenging it again with different inputs, trying to mimic the 

resultant experimental data and using multithreading to simulate populations of 
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neurones The same process was repeated to integrate into the model the ability to 

predict the oxytocin levels in plasma and the response to osmotic pressure.  

The spiking model. Converting mathematical 
equations to code. 
From the first megalithic year calendars to the particle accelerators, mathematics 

has helped to predict or recreate all kinds of natural processes. First applied in 

evolutionary dynamics during the XIXth century, mathematical models have become 

commonplace in biological sciences with the advent of increasingly powerful 

computers, to the point that a new term, in silico, has appeared to describe 

computational models in biology.  

In neuroscience, mathematics took a bit longer to show its capacity. However, when 

it was finally incorporated to the field, it did it in style. In the late 40’s and early 50’s, 

Hodgkin and Huxley developed equations to simulate how action potentials are 

propagated in the squid giant axon (Hodgkin & Huxley, 1952). They considered the 

axon as a circuit with currents, voltages, conductances and capacitances, and 

modelled the neuron dynamics with the same differential equations that describe the 

temporal dynamics of those electrical circuits. 

The results accurately simulated the experimental data, but Hodgkin-Huxley’s 

equations are extremely demanding computationally speaking. Thus, different 

simplified models have been proposed since then. Some of them lose the ability to 

mimic accurately certain behaviours but require fewer calculations and still produce 

statistically similar results. Others give a clearer idea of the different components 

involved, allowing the researcher to manipulate them in an independent fashion. 

Others look for both accuracy and low computational demands, but lack the ability to 

distinguish between the independent contributions of the different components of the 

“circuit” (Izhikevich, 2004).  

To simulate the spiking activity of oxytocin neurones I used the Leaky Integrate and 

Fire model (LIF).  The LIF model simulates the integration of neural inputs that 

changes the membrane’s voltage until it crosses a threshold and fires, producing a 

spike.  The addition of leaks to the integrate and fire simulates the ability of the 

neural membrane to recover a certain resting state, due to the ion flux through 

different channels. The LIF model is one of the computationally most efficient 

models (Izhikevich, 2004). In addition, it can be analysed by changing parameters 
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biologically meaningful to the inputs or the ion channels responsible for the 

membrane changes (Burkitt, 2006; MacGregor et al., 2009).  

To test the mathematical model and the matching with the real neuronal behaviour, 

different methods have been used. A vast platform to rapidly visualize the accuracy 

of the matches was already created by my supervisor Duncan MacGregor. It 

included the possibility to change parameter values and visualize the results in 

graph panels, changing the bin widths for many tools so the analysis could be made, 

for instance in 1, 5 or 10 s bins. Part of the task has then been to adapt my code 

and any new tools to work with his framework, trying to not do again something that 

he already had implemented. Thus, the framework was maintained, using the same 

programming language, C++ running it in the Microsoft Visual Studio 2010 

Professional with the GUI library WxWidgets. I added, however multiple Microsoft 

Excel templates to store and analyse data, programming sometimes small macros 

to handle certain types of more complex or repetitive analysis or to develop small 

parts of the main C++ program, something I have done occasionally with Python as 

well.   

Across my student and professional career, Microsoft Excel has been omnipresent, 

yet only recently did I realise that Excel is a perfect tool to build interdisciplinary 

bridges. As commented before, I programmed different scripts to analyse data with 

it, but I did much more than that. I used it often as intermediate way to explain data 

or even code in meetings. And, with time, I used it to store huge amounts of data 

accompanied by text, graphs, small algorithms and links. I followed a pattern in the 

files and sheet names, tracking the history and the visualization of my research’s 

progress. I do not know what will happen with all those files in the future, but if 

anybody is interested on them, Excel will probably be a bridge between us. 

Working with equations 

One of the tasks for the biomathematician consists of translating biological 

processes into mathematical equations. In the simplest scenario, a single dependent 

variable Y will have a linear relationship with the only independent variable, X.  

If the results are plotted in Excel, or any similar software, it will even tell us that our 

results can be approximated by a linear equation:  

𝑌 = 𝑎 ∙ 𝑋 + 𝑏 (1) 
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Where a will indicate the slope of the relationship and b the offset. 

The linear relationship between two variables is simple, common in biology, easily 

translated into computational code and cheap in computer resources consumed. 

Many times it will be preferred to other solutions equally or even more accurate but 

more complex in one of those characteristics.  

Exponential equations 

With an element in their formulas in the form of ex, exponential equations are very 

useful to model different biological systems.  

 

Figure 5. Typical exponential equations used in biological models. Curves A and B 
are normalised to have maxima of 1 on the domain shown. Notice how B shows the result 
of 1 minus what happens in A. The same happens between the figures D and C.  
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A bacterial growth in a petri dish would follow an exponential curve like the one in 

Figure 5.A, while the space in that petri dish still not colonized by the bacteria could 

be modelled by Figure 5.B. The recovery of resting state is usually modelled by an 

exponential like the one in Figure 5.C and saturation processes can be simulated by 

the shape Figure 5.D shows.  

With linear and exponential equations, it is possible to model many biological 

behaviours. However, relationships between variables can be highly complex and 

there will be situations where it is tempting to try to model them with time dependent 

equations that mimic behaviour without modelling the underlying dynamics. For 

example, the plasma oxytocin levels obtained in a set of experiments after a CCK 

injection follow what could be considered as a sequence of two equations (Figure 6). 

 

Figure 6. Incorrect use of mathematical equations to fit biological measurements. The 
plasma oxytocin levels response to an injection of 20µg/kg of CCK can be fitted in this 
experiment by two equations with the formulas shown in the figure. However, the formulas 
do not give information of the inner mechanisms producing that response and they are highly 
vulnerable to changes in the CCK values. In addition, the exponential decay should start 
when CCK is injected, not after the injection has finished. 

 

The first one would simulate the time until the injection finishes and the second one 

the recovery and that would be a good approximation to the experimental data 

(Velmurugan et al., 2010). However, that mathematical model does not tell us 

anything about what is happening in the secretion, or in the spiking activity of the 

oxytocin neurones. It is not predictive so, if anything changes in the biological 

model, the simulation will fail to follow it.  
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An equation should have biological sense. Equations should give us both 

information and the ability to model changeable dynamics using biological data. 

Each equation used tries to model a dynamic that has been measured in the 

literature. And the complex dynamic related with time will be replicated by 

integrating the simpler relationships between variables.  

Translating the neuronal inputs into code. A not so simple 
example.  

The first step is to know the purpose of the model in detail. I want to model the 

neural inputs, always with the same magnitude. They can be excitatory (EPSPs) or 

inhibitory (IPSPs) post synaptic potentials and I want to make them arrive randomly. 

To do the latter, I will make their arrival follow a Poisson distribution.  

Second, the process has to follow a fixed set of steps, or algorithm: 

1. In every unit of time or step of 1ms, a random arrival time, epspt, it is 

produced with a rate re, for the next EPSP. 

2. The number of EPSPs in that unit of time, nepsp, is incremented by 1.  

3. If the sum of that arrival time plus the time the previous EPSP arrived is 

smaller than 1 ms, then (1) is repeated.  

4. If not, do the (1), (2) and (3) steps for the IPSPs. 

5. If both (3) and (4) have finished, go to (6). 

6. Once the number of EPSPs and IPSPs that occurred in a unit of time are 

obtained, their influence, input, is calculated by summing both, applying a 

negative sign to the IPSPs.  

7. I incorporate the input into the membrane voltage, making the membrane 

voltage recover a certain voltage, Vrest = -56 mV, with a time constant, 

gamma. I assume that the membrane tries to recover to Vrest all the time. If 

the afferent signals are positive, the recovery will have a negative sign, and 

vice versa. 
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Finally, the algorithm has to be translated into C++ code (Figure 7), assigning initial 

values to the variables. Different codes and variables’ values will end in different 

results, the goal being getting a good match to the process being simulated. 

 

Differential equations 

The different mathematical models, heirs of the Hodgkin Huxley model, including the 

LIF used here, are based on differential equations in the time domain, which means 

that the value of a function in a certain infinitesimal time is related to the values of 

the same function in past infinitesimal time(s).  

In the way they are used here, differential equations help to see the relationship 

between a function and its own changes. These equations are called differential 

because the evaluation of those changes is made in tiny fractions of the function. 

The sequence of all those changes, in all the fractions, is called the derivative of the 

function.   

For instance, the differential change of the membrane voltage of a single neuron, 

dV/dt, can be expressed as a function of the same membrane voltage during the 

previous moment, V, affected by two constants, a, and b.  

// hstep = unit of time; epspt = time used for the arriving epsps 
 
// Excitatory signals. 
while(epspt < hstep) { // Will do the same while there is remaining space in the unit of time 

nepsp = nepsp + 1;  //the number of epsps in an unit of time is incremented by 1. 

epspt = -log(1 - mrand01())/re + epspt; // calculates when the next epsp will arrive. 

} 
// when epspt is bigger than hstep, we will start the next iteration from the remaining epspt  
epspt = epspt - hstep;   
   
// Same process for inhibitory signals. 
while(ipspt < hstep) { 
 nipsp = nipsp + 1; 
 ipspt = -log(1 - mrand01()) /ri + ipspt; 
} 
ipspt = ipspt - hstep; 
 
// The total amount is the sum of excitatory minus inhibitory pulses 
input = epsph * nepsp - ipsph * nipsp; 
 
// Input voltage follows an equation decaying exponentially with "gamma" half-life 
vsyn = vsyn - (vsyn - vrest) * gamma * hstep + input; 

Figure 7. C++ code that simulates a neuron’s random inputs. Comments and 
explanations, not processed by the computer, are in green and preceded by //. 
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𝑑𝑉

𝑑𝑡
= 𝑉 ∙ 𝑎 + 𝑏 

(2) 

 

The solution function V of Eq. (2) is, in fact, an exponential function similar to the 

one in Figure 5.C. In this particular case, it can be said that V is a solution of Eq. (2).  

However, there are several reasons to do not use either the differential equation, 

Eq. (2), or the solution function, V. To see them, let’s rewrite the differential equation 

as an Euler approximation: 

 

𝑉𝑡1 − 𝑉𝑡0

(𝑡1 − 𝑡0)
= 𝑉𝑡0 ∙ 𝑎 + 𝑏 

(3) 

 

Where Vt1 is the membrane voltage in the instant t1 and Vt0 the voltage one unit of 

time before. (t1– t0) gives the interval size, or unit of time, where the changes are 

measured, being set to 1 millisecond in our simulations.  

From Eq.(3), Vt1 can be calculated in a way easily translated to most programming 

languages (Eq (4)). 

 

𝑉𝑡1 = (𝑉𝑡0 ∙ 𝑎 + 𝑏)(𝑡1 − 𝑡0) + 𝑉𝑡0 (4) 

 

Written as a combination of sums, subtractions and multiplications, the Euler 

approximation offer some advantages: 

• Computationally, it requires much less resources to calculate the sums and 

multiplications of Eq. (4) than to calculate an exponential function. 

• Working with the approximation, the new value of a function can be related 

with the previous one, having the possibility of adding other terms at 

particular times.  

• When a term has been added, it is incorporated to the value of the function 

for the next unit of time.  
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Once it is known how to codify an approximation to the differential equation, the next 

step is to decide which behaviours are going to be modelled. A good example can 

be found in the last line of the piece of code given in Figure 7. 

Figure 8. Code of a differential equation written in C++. 

 

Due to this codification as an Euler approximation (Figure 8), an equation that would 

calculate an exponential function over time can be modified to incorporate, every 

unit of time, the value called input, calculated in the previous lines (Figure 7).  

The LIF model mimics changes in excitability 
but not the spike. 
Once the inputs that alter the membrane voltage are known, it is necessary to define 

when a spike is going to happen, and which dynamics will be triggered because of it. 

In a typical neuron, when the sum of the excitatory and inhibitory inputs surpasses a 

certain voltage, Vthresh, the membrane dynamics change abruptly, rapidly 

depolarizing the membrane potential, then making it hyperpolarise quickly , even 

preventing the membrane to produce another spike for a while (refractory period). 

However, the LIF model used here simulates the spike times but not in its shape. To 

shape the equations needed to do that, depolarization and repolarization are 

reduced to the task of storing the moment when the spike occurred (Figure 9).  

The spike times and their statistics are what the model really mimics when 

comparing its results with the real data. Thus, the model, based on a previous one 

developed by my supervisors (MacGregor et al., 2009), does simulate the refractory 

period, because it is necessary to know when the membrane can produce a spike 

again.  

Membrane response to a spike and time constants.  

The main things responsible for the membrane dynamics that react to a spike are 

two currents, a hyperpolarising afterpotential (HAP) and an after-hyperpolarisation 

potential (AHP). They will help us to explain the use of time constants in the 

differential equations used through different parts of the thesis. 

 

// Input voltage follows a equation decaying exponentially with "gamma" half-life 
vsyn = vsyn - (vsyn - vrest) * gamma * hstep + input; 
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 When a spike is produced in an oxytocin neuron the membrane depolarizes, and 

immediately after this, the HAP makes the membrane unable to fire again for around 

30-50 ms (Figure 9.Upper). The AHP prevents the membrane from producing a 

spike as well, but its influence is slower and more noticeable when a sequence of 

spikes arrives in rapid sequence. In that case, the AHP can prevent firing for longer 

periods, up to half a second or more (Figure 9.bottom).  

 

Figure 9 Upper. In black, modelled membrane potential without a Vthreshold, AHP or HAP – 
i.e. this shows the response to randomly arriving PSPs. In red, the same membrane 
potential repolarising following a HAP when it reaches a Vthreshold = -50mV (in green). 
Bottom. In this case, the reactive membrane -in red- has a Vth and HAP but also 
accumulates hyperpolarization due to an AHP. Notice how, with the same synaptic input, 
a spike (black circles) is not produced at 120 ms when the AHP is present and the time 
when spikes are triggered is changed as well. Also, notice how the LIF model does not 
simulate the depolarization, just the repolarization after potential.  Notice how the model 
does not simulate the depolarization above the Vthreshold. 
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The behaviour of the voltage at the membrane is defined as: 

 

𝑉 = 𝑉𝑟𝑒𝑠𝑡 + 𝑉𝑠𝑦𝑛 − 𝐻𝐴𝑃 − 𝐴𝐻𝑃 (5) 

 

Where Vsyn is the voltage due to the PSPs, as it was shown in Figure 7, and γ the 

membrane time constant to recover the resting state, which has half-life of 3.5 ms: 

 
𝑑𝑉𝑠𝑦𝑛

𝑑𝑡
= −(𝑉𝑠𝑦𝑛 − 𝑉𝑟𝑒𝑠𝑡) ∗ 𝛾 + 𝑖𝑛𝑝𝑢𝑡 

(6) 

 

In Eq.(5), the voltage of the membrane is initially at a resting potential, Vrest. When 

Vsyn, the resultant contribution of EPSPs and IPSPs, becomes different from 0, Vsyn 

is added to Vrest. Both HAP and AHP can be modelled by exponential equations with 

time constants for recovery τHAP and τAHP. However, HAP and AHP can be modified if 

(Vrest + Vsyn) gets greater than the threshold potential, Vthresh. At that moment, the 

model will produce a spike, changing δ from 0 to 1 during just that millisecond. 

During that small amount of time two hyperpolarising voltages, kHAP and kAHP, will be 

added to the HAP and AHP currents.  

 

𝑑𝐻𝐴𝑃

𝑑𝑡
= −

𝐻𝐴𝑃

𝜏𝐻𝐴𝑃
+ 𝑘𝐻𝐴𝑃 ∙ 𝛿 (7) 

 

𝑑𝐴𝐻𝑃

𝑑𝑡
= −

𝐴𝐻𝑃

𝜏𝐴𝐻𝑃
+ 𝑘𝐴𝐻𝑃 ∙ 𝛿 (8) 

 

Several things about equations (7) and (8) should be noticed: 
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a) They are differential equations. When 𝛿 = 0, which is most of the time, 

equations (6)(7) have the shape of Figure 5C, meaning that the AHP and the 

HAP contributions exponentially decrease with time constants 𝜏𝐴𝐻𝑃 and 𝜏𝐻𝐴𝑃. 

Every new infinitesimal change of the HAP or the AHP depends on the 

previous value of HAP or AHP. Both equations can be translated into code 

as seen in Eq. (4). 

b) The model simulates the spike contribution by making 𝛿 = 1 during 1 ms. 

That suddenly changes the value of AHP and HAP by kAHP or kHAP, 

incrementing in those factors their contribution to the hyperpolarisation of the 

voltage membrane.  

c) The presence of the time constants τ, which are an inverse function of the 

so-called half-life, λ,  

𝜏 =
𝑙𝑛2

𝜆
 

 

(9) 

The time constant, or the half-life, represents how quickly the influence of the 

HAP or AHP triggered by previous spikes vanishes (Figure 10). The larger 

the half-life, or the smaller the time constant, the longer the influence. The 

HAP’s half-life, λHAP, is short. That makes the membrane not usually affected 

by previous spikes. However, the AHP half-life is much larger and that would 

increase the influence of the past on this kind of current. The AHP has a 

strong, accumulative effect when several spikes are produced consecutively 

making the membrane much less likely to produce another spike for a while 

(Figure 9). 

d) Working with differential equations makes it possible to modify those 

equations at any time increment. That is done with the amplitudes of the 

currents, kAHP or kHAP, which are added only when a spike occurs (δ = 1). 

During that small space of time, 1 ms in our model, the membrane potential 

depolarizes and repolarises in no time in our simulations, producing a 

hyperpolarization which will probably make the modelled membrane enter a 

refractory period.  

Together, equations (6) and (7) show that the membrane needs time to be able to 

produce a spike again. Moreover, that time will depend on the amplitude of those 
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currents, on the past occurrence of spikes and on the half-life of the current, the time 

the membrane needs to recover the Vrest. Without new spikes, both the AHP and the 

HAP will tend to 0 at some point but the AHP will take longer to get to that resting 

state.  

 

Figure 10. Parameters of a membrane current and how they affect the membrane 
voltage. The half-life is the time the voltage takes to recover half of the voltage until Vrest is 
reached. 

 

 

Using similar equations for other models.  
To this point, I explained different mathematical options I used to simulate the 

spiking activity. Linear, exponential and differential equations are among the 

simplest options to describe biology dynamics. It will be shown that, although the 

biology of the oxytocin neurons spiking, secretion, clearance from plasma and [Na+] 

in the body have not much in common, their dynamics have. Thus, what has been 

explained here about the spiking mathematical modelling, will serve as a common 

background for the rest of the models in this thesis. 
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Statistical measurements. 
I have to say it. I find exciting using statistics. The fact that, what looks like a random 

set of data, can suddenly appear in front of my eyes as something meaningful 

makes it really rewarding. And it happens with all the statistical tools I used during 

the PhD. From the average and the standard deviation to the more complex tools, 

and specific to my research, as I will explain below.  

Firing Rate 

Regarding the spiking model, as noted earlier, I only want our LIF model to mimic 

different statistical measurements of the recorded spike times.  

The firing rate is defined as the ratio between the number of spikes and the unit of 

time chosen. Usually I use it as “number of spikes per second” dividing the total 

number of spikes of an interval by the total amount of seconds in that interval 

(Figure 11). Other typical ratios could be “spikes per minute” or, in general, “spikes 

per X seconds”. This is a very simple measurement but, at the same time, it is 

essential. I need to always mimic the firing rate as a first step of our matching tests. 

 

 

Figure 11. Calculating the spike rate. The model has produced 14 spikes in 1s 
(distinguishable by their abrupt hyperpolarization of ~30 mV). Thus, the firing rate in that 
interval (a second) is 14 spikes/s.  

 

Once I know how to calculate the spike rate in an interval, it is often useful to know 

how it changes over time (Figure 12).  
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Figure 12. Spike rate calculated over a 130-min recording of an oxytocin neurone 
exposed to a systemic CCK injection and two different doses of 30 min infusions of 
apamin (Bull et al., 2011).When calculating changes in the firing rate, I compare the 
response to different chemicals with the firing rate before applying any, in the baseline (in 
green). 

 

 

Figure 13. Screenshot of an Excel file created with Visual Basic Advance. Firing rates 
of six recorded oxytocin cells, out of a total of 57, exposed to CCK. The algorithm detects 
when CCK was injected and with preassigned times, colours in green the baseline (150 s), in 
red the response (500s) and in blue the rest of the time for each cell. It also automatically 
labels the charts with the cell number and name and the injection time. 
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Interspike interval distribution 

The interspike interval (ISI) distribution is a measurement of the incidence of the 

different intervals between spikes that occur in a recording or in a modelled test.  

In Figure 14 it can be seen a typical oxytocin neuron ISI distribution. From that figure 

it can be obtained relevant information: 

• Spikes do not occur until at least 15-20 ms have passed since the previous 

one. 

• Spikes occur more often with a interval to the previous one of ~50 ms 

(largest incidence). 

• After that peak, the incidence is reduced following an exponential decay.  

 

 

Figure 14. Interspike interval distribution of a model of a typical oxytocin neurone 
simulated during 8000s with a kHAP = 0.15 mV, no DAP and firing rate of 5.5 spikes/s. Notice 
how there are not spikes separated for less than 15 ms.  

 

Once familiarized with it, the ISI distribution also shows which kind of currents had 

more importance during the recording of a neuron. That is very important to change 

the model’s parameters values in the correct direction and achieve a good match.  

For example, there are several things that will “shift” the ISI distribution to the left, 

making more probable smaller intervals between spikes (Figure 15): 
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Figure 15. Shifting the interspike interval distribution to the left. A) Shows the original 
histogram in Figure 14. B) The ISI distribution is shifted to the left by reducing kHAP from 
30mV to 10mV. C) Shifted by increasing the membrane half life to recover Vrest from 3.5 
ms to 7.5 ms. Notice how the number of occurrences is much higher. D) Shifted by 
increasing the rate of input afferences from 350PSP/s to 600 PSP/s.  

 

• Larger or more frequent EPSPs , or smaller or less frequent IPSPs 

• Longer half lives of the EPSPs or shorter half lives of the IPSPs 

• Smaller HAP or AHP amplitudes or half lives. 

Accordingly, changing those parameter values in the opposite direction I will have 

an ISI distribution “shifted” to the right, having less probability to find shorter 

intervals between spikes (Figure 16): 

• Shorter EPSPs  

• Shorter half-lives of the input afferences 

• Bigger HAP or AHP amplitudes or half-lives. 
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Figure 16. Shifting the interspike interval (ISI) distribution to the right. Left. Original ISI 
distribution from Figure 15.A. Right. Shifted when I increase the AHP amplitude from kAHP = 
0.15 mV to kAHP = 1mV.The increment in the AHP also flattens the ISI distribution. 

 

Hazard 

Once the ISI distribution is calculated, the Hazard allows us to go a step further. The 

hazard gives us the probability of occurrence of a spike taking place versus the time 

elapsed since the previous one.  

 

Figure 17. Hazard distribution.  When the ISI distributions of the spikes rates of two 
different neurones do not show clear differences, the hazard distribution may give additional 
information. A) The ISI distribution in Figure 15.D, obtained from Figure 15.A by increasing 
the input rate, is similar to the ISI distribution in B) where the change in the ISI distribution 
was obtained by adding a new current. C) The hazard calculated from A) shows the 
probability that a spike has to happen after some time has passed from the previous spike. 
D) The hazard calculated from the ISI distribution in B) shows how the new current (a DAP) 
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makes more probable having a spike after a small amount of time and less probable to have 
spikes after intervals larger than 350 ms. (A-D) are calculated with 5ms bins.  

 

As the hazard is calculated from the ISI distribution data, they share tendencies and 

the kind of information that can be obtained from them. However, the hazard is 

sometimes a better tool to detect masked influences of a membrane current (Figure 

17). 

Index of dispersion 

The index of dispersion (ID) is the quotient of the two most common statistical 

measurements, the variance and the mean:  

𝐼𝐷 =
𝜎2

𝜇
 

As the average and the variance, the ID can be calculated in different bin widths 

(Figure 18). If the average and the variance of a signal in bin of 4s is calculated, the 

resultant quotient between that variance and that average will be the ID in 4 s bins.  

 

Figure 18. Index of dispersion of the firing rate in different bin widths. A) (left) An 
erratic spiking activity (in red) produces a high variability and a low average in the firing 
rate when looking at it in bin widths from 1s to 4s. The result is a considerable index of 
dispersion for every bin width (right). B) A regular spiking activity (left) reduces the 
variability of the firing rate for every bin width. On the other hand, the average firing rate 
is higher than in A for every bin width. Therefore, the index of dispersion for every bin 
width is small. 
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The ID gives us a tool to find the variability in our data with independence to its 

mean, being particularly relevant when a series of numbers generated following a 

Poisson distribution is analysed. In that case, the ID is equal to 1 for every interval 

taken (bin width), indicating purely random. That is precisely the case of the PSPs 

our oxytocin model generates. In addition, combining the ID of the spike activity and 

the ISI distribution, it is possible to spot details that could be more difficult to detect 

using them alone. If a membrane that recovers immediately from PSPs and that 

does not react to spikes (no HAP, AHP, DAP) is simulated, the index of dispersion 

of the spikes generated will be around 1 (Figure 19.A). Because the membrane do 

not react in any way to PSPs or spikes, the ISI distribution has the particularity that a 

spike can follow the previous one without any waiting time (or refractory period) 

(Figure 19.A).  

However, the membrane needs time to recover after every PSP (it does it in our 

model with a half-life of 3.5ms). In that case, still without any HAP, AHP or DAP, the 

ISI distribution shows that the neuron would be producing spikes continuously. In 

those circumstances, the index of dispersion is increased for all the bin widths, 

which gives a hint that the model has lost a bit of regularity (Figure 19.B). When a 

HAP is added, the regularity is recovered, an even improved from the one given by 

a Poisson distribution. It happens for every bin width because the time constant of 

the HAP (λHAP = 30ms) is much smaller than the smallest bin width used when a 

HAP is added. In addition, the HAP also prevents spikes being triggered with less 

than 30 ms between them (Figure 19.C).  

When an AHP is added, it will also reduce the ID of dispersion for every one of our 

bin widths, but it will do it more to larger bin width, as its time constant is larger (λAHP 

= 350ms), and it can accumulate the hyperpolarising effects of several spikes for a 

couple of seconds (Figure 19.D). 

When a DAP is added, but not an AHP, the effect on the ID is the opposite to the 

one founded when an AHP is present (Figure 19.E). If both, an AHP and DAP, are 

added, the ID is governed by the effect of the AHP, masking the DAP. The ISI 

distribution gives, on the other hand, a hint that something different from having just 

an AHP might be happening (Figure 19.F). 
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Figure 19. The index of dispersion. Single neuron simulations of 8000 s at 3 spikes/s. 
Indexes of dispersion (ID) and interspike interval (ISI) distributions are calculated from the 
8000s activity. ISI distributions are normalized to 1 and only 100s of the firing rate is shown 
in each case.  A) The simulated membrane does not have HAP, AHP or DAP and it recovers 
its resting state immediately after every PSP arrival. As the PSP arrival times follow a 
Poisson distribution, in this case the ISI distribution is right skewed, and the ID follows also 
the theoretical value of 1 for random numbers following a Poisson distribution. B) If I add to 
the model the physiological time the membrane needs to recover from PSPs, the neuron will 
produce consecutive spikes much more often, the ISI distribution will be much more 
positively skewed, –notice that the time axis only shows 100ms- and the ID will raise for 
every bin width, as a result of the increment of variability in the spike production. C) If a HAP 
is added, the variability is reduced below 1, being the spike production less variable than the 
arrival of PSPs. Also, the ISI distribution shows that the membrane has acquired a refractory 
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period. D) If I add an AHP, the ISI distribution is skewed to the left. The refractory period 
increases and, more importantly, the ID decreases, more for bins widths of 4s or more. E) 
With a HAP and a DAP but without an AHP, the effect is the opposite than in D. Now 
consecutive spikes are more probable, and the variability increases for longer bin widths. F) 
In a typical oxytocin neurone, with a HAP, AHP and DAP, I obtain a similar ISI to that in C, 
but the variability is dominated by the presence of the AHP and the DAP effect is difficult to 
spot. 

 

Secretion and clearance analysis.  
The goal of the secretion model was to connect the spiking activity of an oxytocin 

neuron, which is measured with a timescale of milliseconds, with the oxytocin 

concentration in plasma, which is often measured experimentally in intervals of 5 

min or more.  

Because of that, the secretion model needed firstly to work in a timescale of 

milliseconds, receiving as an input the spike activity of one or more neurons. And 

second, it needed to simulate the total amount of oxytocin secreted into the blood 

stream as a result of the spike activity. To do that, I matched experimental data of 

the secretion measured after the pulsatile stimulation of the posterior pituitary gland, 

responsible for the whole oxytocin secretion to plasma.   

Thus, the secretion model will always simulate the populational secretion of the 

~9000 oxytocin neurones in the SON and PVN. However, the secretion model can 

be connected either to a spiking model of a single neuron, in which case it will be 

assumed that that spiking activity is the average of the whole population, or to the 

spiking activity of several neurons, summing their different secreting responses to 

obtain the global one.  

On many occasions, I will modify the PSP rate to match the experimental basal 

levels of the oxytocin neurone. However, the secretion model behaviour will only 

depend on the arrival times of the spikes generated by the spiking model. Also, 

when the model simulates a heterogeneous population of neurones, the variability 

between each neuron secretion depends on its spiking activity, generating from 

identical sequences of spikes the same secretion.  

Mathematically speaking, the secretion model is more intricate than the spiking one. 

The secretion model simulates different feedback pathways, recreating biological 

processes affected by the arrival of a spike to the axon terminal and the axon 

terminal Ca2+ dynamics. However, most of the equations used are linear or 
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exponential equations written as differential equations. The only exception are two 

inverted Hill equations that emulate the inhibition produced in the submembrane and 

cytosolic Ca2+ currents due to the presence of Ca2+. 

Hill equations 

Hill equations are used because of their sigmoid behaviour, which is very useful to 

represent the change of state, from open to closed, in the Ca+ channels of the axon 

terminal. However, I use them in a simpler way, to modulate the amount of spike 

triggered Ca2+ entry due to reduced spike propagation, i.e. producing fewer or 

smaller amplitude spikes at the axon terminal (Figure 20). When the [Ca2+] in the 

cytosol, c, and in the submembrane, e, is low enough, the Ca2+ channels are open, 

being cinhib = einhib = 1. The channels start closing when the [Ca2+] is near a 

threshold, cθ = 0.14, eθ = 12. The quickness of those changes is defined by the 

gradients cn = en = 5: 

 

𝑐𝑖𝑛ℎ𝑖𝑏 = 1 −
𝑐𝑐𝑛

𝑐𝑐𝑛 + 𝑐𝜃
𝑐𝑛

 (10) 

 

𝑒𝑖𝑛ℎ𝑖𝑏 = 1 −
𝑒𝑒𝑛

𝑒𝑒𝑛 + 𝑒𝜃
𝑒𝑛

 (11) 

 

 

  

Figure 20. Hill functions. Left: In the model, the Ca2+ channels openness in the cytosolic 
area depends on the [Ca2+] in the same area. The bigger the [Ca2+] the larger is the inhibition 
(it tends to 0). The threshold is set at cθ = 0.14.  Right: The same happens for the 
submembrane of the axon terminal but for the submembrane the threshold is eθ = 12. Thus, 
the inhibition needs a much bigger [Ca2+] to start being significant.  
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Statistical tools and other tools 

As noted earlier, the time scale of experimental data of plasma oxytocin is in 

seconds, many times in minutes, being the sets of data relatively small, due to the 

difficulty that taking blood samples has in the rat. 

Because of that, the way of matching the experiments is frequently limited to the 

comparison of average and the standard deviation of the mean and error, which are 

the typical measures given in the literature. Nevertheless, that does not limit the way 

the modelling data can be analysed or makes the secretion and clearance models 

less valid. Both models are built combining mathematical equations that simulate the 

most relevant biological processes associated with their dynamics. In addition, the 

computational analysis allows to simulate the secretion and plasma oxytocin 

dynamics in much more detail than the experiments can give. That allows us to infer 

what is happening between the measurements taken in the experiments, once those 

experimental values are mimicked.  

Another strength of the model is its modularity. The spiking, secretion and clearance 

models can work independently and together. One interesting way of taking 

advantage of the modularity of the model is to run it substituting the spiking model 

with real spike recordings or both the spiking and secretion model for real secretion 

data, calculating the resultant oxytocin in plasma. Replacing the model by real data 

can be done in the spiking model in two different ways. The first one is by using 

recorded spike times. In that case (Figure 21), the model will calculate the firing rate 

and simulate the secretion and oxytocin in plasma. It is also possible to introduce 

the firing rate itself, using the model to simulate spike times at an experimental 

measured rate This can be useful in the occasions where I do not have the spiking 

times, but I have the firing rate, either of a single cell or the average of several ones.  

Another way is to infer the spiking activity of the oxytocin neurones once I know the 

plasma oxytocin.  

Lastly, as will be shown in Chapter 4, the clearance model helped us to infer a 

hidden role of the volume exchange in hypovolemic rats.  

Issues about mimicking oxytocin secretion and plasma 
oxytocin 

The way of measuring oxytocin secretion and plasma oxytocin is different but 

coincidental in the final step. The secretion tends to be obtained by measuring the 
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oxytocin in the animal glands after stimulating the neural lobe with electrical pulses 

(Bicknell et al., 1984) or with injection of different solutions (Leng et al., 1994). The 

glands are then surgically separated killing the animal immediately after the 

procedure.  

  

Firing rate calculated 

from in vivo recorded 

spike activity 

 

Secretion simulated by 

the model when it is run 

with the real spike times 

 

Modelled oxytocin in 

plasma 

 

Figure 21. After in vivo recording how an oxytocin neurone responds electrophysiologically 
to a systemic CCK injection, I can calculate its firing rate (top) and feed the computational 
model with the spiking times from the real recording. The model simulates the predicted 
secretion (centre) and plasma oxytocin (bottom).  

 

On the other hand, the level of plasma oxytocin does not require to kill the animal. 

However, it usually requires collecting samples, which is problematic in small 

animals due to the small quantity of plasma they have. Thus, experiments with many 
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samples are not possible and long intervals between samples or samples taken 

from different animals tend to be usually seen in experiments. However, the 

secretion and the plasma oxytocin need an assay to obtain the oxytocin.  

There are multiple issues relative to the assessment of oxytocin levels in secretion 

or in plasma (Leng & Sabatier, 2016). To develop a mathematical model to simulate 

those levels of oxytocin I needed to choose to which immunoassay I wanted to get 

tied to. However, the fact that different experiments give values of plasma oxytocin 

hugely different in magnitude does not mean that the temporal pattern in the 

response was also different. Absolute values vary hugely when different 

immunoassays use different antibodies but, if the calibration is good, response times 

to different challenges should be similar. Thus, I have considered the measured 

times through the literature as a consistent data to mimic, whereas I have only used 

the data measured with the Higuchi immunoassay (Higuchi et al., 1985) when trying 

to match absolute values.  
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Chapter 3 (paper): 

Oxytocin neurones: intrinsic mechanisms 

governing the regularity of spiking activity  
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Introduction to the First Paper 
 

Maícas-Royo J, Brown CH, Leng G & MacGregor DJ (2016). Oxytocin Neurones: 

Intrinsic Mechanisms Governing the Regularity of Spiking Activity. J 

Neuroendocrinol 28. 

 
The first part of my PhD consisted of reading a lot and learning how to use the 

computational framework my supervisor Duncan MacGregor had developed. The 

software consisted of many thousand lines of code with a high level of 

interconnectivity and abstraction. When I had barely managed to deal with it and I 

had also started to understand the basics of neuroendocrinology, Gareth Leng 

asked me if I could use the model to check an idea that had occurred to him.  

The spike rate in oxytocin neurones looks quite noisy if it is seen in bin widths of 1 s 

or less. However, when the bin width is increased, let’s say to 16 s, the spike rate 

looks quite regular. Most people would say that is normal. That is what happens 

when you average a set of data in a timeline. However, that smoothing effect was 

stronger than expected. In the transitions of making averages with bin widths from 2 

s to 8 s, the firing rates seemed to get smoother than in the transitions from 

averages with smaller bin widths (from 0.5s to 2s) or larger ones (from 8s to 32s). 

To check that his intuition was correct, he used the index of dispersion and found 

that his intuition was accurate. However, when Gareth applied the index of 

dispersion to the firing rate of more oxytocin recordings, he found that not all of them 

behaved in the same way. Sometimes, the index of dispersion did not change for 

longer bin widths. Other times, the index of dispersion increased with the bin width. 

He did all those tests working in an excel file full of the spike times of different 

oxytocin neurones, with columns for the different statistics.  

Then he asked me if I could develop a model with a HAP, and AHP to check how 

the index of dispersion, and the rest of statistics, were changing depending on the 

presence of the different currents.  

The model with a HAP and an AHP could mimic the firing rate and the interspike 

interval distribution of the different neurones. However, when I tried to match as well 

the index of dispersion, I realized that for some neuron recordings, it was impossible 

to match at the same time the three statistics.  Knowing that some oxytocin 

neurones also present a DAP and that the DAP could potentially increase the 
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variability of the firing rate in bin widths of 4s or more, I added one to the model and 

started working with it.   

Abstract  
Oxytocin neurones of the rat supraoptic nucleus are osmoresponsive, and, other 

things being equal, they fire at a mean rate that is proportional to the plasma sodium 

concentration. However, individual spike times are governed by highly stochastic 

events – the random occurrences of excitatory synaptic inputs, the probability of 

which are increased by increasing extracellular osmotic pressure, and, accordingly, 

interspike intervals (ISIs) are very irregular. However, we show here by statistical 

analyses of firing patterns in oxytocin neurones that the mean firing rate as 

measured in bins of a few seconds is more regular than expected from the variability 

of ISIs. This is consistent with an intrinsic activity-dependent negative feedback 

mechanism. To test this, we compared observed neuronal firing patterns with firing 

patterns generated by a leaky integrate-and-fire model neurone, modified to exhibit 

activity-dependent mechanisms known to be present in oxytocin neurones. The 

presence of a prolonged afterhyperpolarisation (AHP) was critical for the ability to 

mimic the observed regularisation of mean firing rate, but we also had to add a 

depolarising afterpotential (DAP; sometimes called an afterdepolarisation) to the 

model to also match the observed ISI distributions. We tested this model by 

comparing its behaviour to the behaviour of oxytocin neurones exposed to apamin, 

a blocker of the medium AHP. Good fits indicate that the medium AHP actively 

contributes to the firing patterns of oxytocin neurones at rest, and that oxytocin 

neurones generally express a DAP, even though it is usually masked by 

superposition of a larger AHP. 

Introduction 
Neurones code information as patterns of action potential (spike) activity, patterns 

that reflect an interaction between the afferent input activity and their intrinsic 

membrane properties. Spike activity influences these intrinsic membrane properties, 

and hence can alter how a neuron responds to its inputs. In addition, the inputs may 

be modulated by the neurone’s activity, both as a result of retrograde modulation of 

afferent activity, and as a consequence of recurrent neuronal circuits. Such changes 

occur over different time scales and by different mechanisms, and, as a result, 

different neuronal types process information differently (Leng & MacGregor, 2008).  



59 
 

The rat supraoptic nucleus contains only magnocellular neurosecretory neurones; all 

of these neurones project to the posterior pituitary gland where they secrete the 

hormones vasopressin and oxytocin, into the systemic circulation. The homogeneity 

of this nucleus, and the ability to relate neuronal behaviour to physiological function 

has made this an important “model system” in neuroscience, and these neurones 

have been studied very extensively by electrophysiological approaches in vivo and 

in vitro (Bourque, 2008; Armstrong et al., 2010; Brown et al., 2013; Leng et al., 

2015).  

Oxytocin neurones in the rat supraoptic nucleus discharge under the influence of 

randomly arriving excitatory and inhibitory post-synaptic potentials (EPSPs and 

IPSPs) (Armstrong, 1995; Li et al., 2007; Armstrong et al., 2010). Each spike is 

followed by a hyperpolarising afterpotential (HAP; sometimes called a fast 

afterhyperpolarisation). It appears that the major contributor to the HAP is activation 

of IC (Roper et al., 2003), a Ca2+- and voltage-dependent K+ current carried by a 

large conductance (BK) channel that can be blocked by charybodotoxin. The HAP 

makes the neurone relatively inexcitable for 30-50 ms after a spike, and its effects 

on spike timing can be mimicked in a modified leaky integrate-and-fire model of a 

neurone by assuming that a spike instantaneously raises the spike threshold, and 

that this change decays exponentially (Leng et al., 2001). This simple model can 

match, very accurately, the distribution of interspike intervals (ISIs) observed in 

magnocellular oxytocin neurones in vivo.  

However, the ISI distribution holds no information about spike patterning that results 

from serial interdependence of ISIs. For oxytocin neurones, any given ISI is virtually 

independent of the length of the preceding ISI, but this is not true for longer trains: 

there is an inverse relationship between the length of a train of 6-10 ISIs and the 

length of the next ISI, and this relationship cannot be explained by the HAP, which 

only lasts for ~50 ms (MacGregor et al., 2009). However, the HAP is not the only 

activity-dependent conductance change that affects neurone excitability. When 

strongly activated to fire repeated spikes, oxytocin neurones display a deep and 

prolonged hyperpolarisation called the afterhyperpolarisation (AHP). This is the 

result of the summation of small, prolonged hyperpolarisations that accompany each 

spike (Bourque et al., 1985; Bourque & Brown, 1987; Greffrath et al., 1998, 2004; 

Teruyama & Armstrong, 2005) that result from activation of Ca2+-activated K+ 

currents. The AHP has at least two components that differ in their duration: a 
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“medium AHP” carried by small conductance (SK) channels which can be blocked 

by apamin, and a “slow AHP”, carried by intermediate conductance (IK) channels 

which can be blocked by muscarine (Ghamari-Langroudi & Bourque, 2004). 

There is also an activity-dependent depolarising afterpotential (DAP) that has at 

least two components: a “fast DAP” carried by Ca2+ activated non-specific cation 

channels (Teruyama & Armstrong, 2007), and a “slow DAP”.  Two different Ca2+ 

activated mechanisms have been proposed for the slow DAP: an additional non-

specific cation channel (Ghamari-Langroudi & Bourque, 2002), and the switching off 

of a hyperpolarising K+ leak current (Li & Hatton, 1997). The DAP, by raising post-

spike excitability, encourages bursting, and is mostly associated with vasopressin 

neurones, but is also found in at least some oxytocin neurones (Stern & Armstrong, 

1996; Teruyama & Armstrong, 2007). The fast DAP and the medium AHP have 

similar time courses and tend to mask one another in recorded membrane potential. 

They can be more easily detected when the other is blocked pharmacologically 

(Teruyama & Armstrong, 2007). 

With spike interval analysis and model fitting, we infer the presence of 

afterpotentials from activity-dependent changes in excitability. We use “generalised” 

AHPs or DAPs with parameters determined by the detected excitability effects, 

rather than being derived from a specific ionic current. The detected and fitted AHP 

or DAP may correspond to a specific current, or may represent the compound action 

of multiple ionic currents. For example, every spike is followed by a relative 

refractory period that lasts about 50 ms; this we call the HAP, but the HAP has been 

proposed to have at least two components - a BK channel, and an A-type K+ 

channel (Roper et al., 2003). 

The AHP is thought to be important for “shaping” the intense bursts of spike activity 

that oxytocin neurones display during the milk-ejection reflex. The milk-ejection 

reflex is a dramatic and exceptional event. An oxytocin neurone firing typically at just 

a few spikes/s will suddenly discharge up to more than 100 spikes in 2-3 s, with a 

peak discharge rate of up to 100 spikes/s achieved within about 100 ms of the burst 

onset (Rossoni et al., 2008). These bursts are followed by a longer period of relative 

quiescence. This post-burst quiescence is too long to be accounted for by the AHP 

alone, and we have proposed that it reflects a suppression of afferent input induced 

by burst-evoked release of endocannabinoids (Rossoni et al., 2008). The AHP itself 

seems likely to be responsible for the ‘shape’ of the milk-ejection burst – the manner 
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in which it slows down after the peak of excitation (Rossoni et al., 2008). An AHP 

also plays a role in shaping the prolonged bursts in phasic firing vasopressin 

neurones (MacGregor & Leng, 2012). In the bursts an initial peak of rapid spiking 

drops to a sustained plateau, determined by the competing actions of a slow DAP 

which sustains the burst and the AHP.  

However, here we focus on the more subtle effect of the AHP during the more 

common non-bursting activity observed in oxytocin neurones. We have previously 

shown that by adding an AHP to the model we can account fully for the serial 

dependence of ISIs in spontaneous activity (MacGregor et al., 2009). From this we 

can infer that the AHP restrains the firing rate of oxytocin neurones even at low firing 

rates, but what other consequences there are for the information processing 

properties of oxytocin neurones is unexplored. In addition, at least some oxytocin 

neurones (~20%) display a fast DAP with a time course intermediate between the 

HAP and the AHP (Teruyama & Armstrong, 2007), and the physiological 

significance of this is also largely unexplored. Here, we show that, when averaged 

over intervals of 5 s or longer, the spontaneous firing activity of oxytocin neurones in 

the rat is surprisingly stable - the spike counts are much more regular than expected 

from the irregularity of firing observed in short intervals, suggesting that the intrinsic 

membrane properties of oxytocin neurones preserve a memory of past activity by 

which activity is “smoothed out”. Here we explored whether the AHP accounts for 

this behaviour, using statistical analyses and computational modelling, and with the 

aid of data from experimental studies in which the medium AHP was blocked 

pharmacologically using apamin (Bull et al., 2011). We go on to discuss the possible 

physiological significance of a mechanism that stabilises the firing rate on a 

timescale of 5 s and longer.  
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Methods 
We analysed extracellular recordings of the spike activity of single neurones in the 

supraoptic nucleus of adult virgin female rats, using a large library of recordings 

made over many years. The selected recordings were from adult rats anaesthetised 

with urethane (ethyl carbamate, 1.3 g/kg body weight i.p.) in which the supraoptic 

nucleus and neural stalk were exposed by ventral surgery, and a femoral vein was 

cannulated for i.v injection of cholecystokinin (CCK) (Brunton et al., 2006; 

Velmurugan et al., 2010, 2013; Leng & Sabatier, 2014). All of the selected neurones 

had been antidromically identified as projecting to the neural stalk to identify them as 

magnocellular neurosecretory neurones, and had been further identified as oxytocin 

neurones by their excitatory response to i.v. injections of CCK.  Full details of 

experimental procedures have been published previously (Leng & Sabatier, 2014).  

Further data on the effects of apamin on the firing patterns of supraoptic neurones 

were from published studies in female rats under urethane anesthesia, in which 

apamin was delivered by retrodialysis to the supraoptic nucleus during recordings 

from single, identified oxytocin neurones (Bull et al., 2011).  

If spikes were generated independently of the previous incidence of spikes, then the 

spike trains would constitute “Poisson” processes and exhibit certain well-

established statistical features. Spikes are not independent of past activity for any 

neurone – most obviously, oxytocin neurones possess a prominent HAP that 

imposes a long relative refractory period after spikes. Nevertheless, we state here 

what is expected of a Poisson process, in order to judge how far and in what way, 

the statistics of spike trains deviate from randomness. 

1. Inter-event distributions. For a Poisson process, the probability of an event 

occurring at any particular time is independent of the time of the preceding 

event. This implies that the inter-event histogram (the ISI distribution) can be 

described by a single negative exponential, and that the calculated hazard 

function (described below) is constant over time since the last spike. 

2. Data that arise as a random process should show invariant statistical 

characteristics when these data are shuffled randomly. 

3. Index of dispersion. The variance of the event frequency (2) is equal to the 

mean of the event frequency (). If spike timings are purely random, the 

“index of dispersion”, 2/, should therefore equal 1, should be independent 
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of  in a sample of data where  varies, and should be independent of bin-

width.  

4. Coefficient of variation (CV). The mean of the inter-event interval () is equal 

to the standard deviation (), so the “coefficient of variation”, / , should 

equal 1 if spike timings are random. 

After excluding neurones from our library with a spontaneous firing rate too low to 

meaningfully calculate measures of variability, and neurones without at least 400 s 

of stationary activity, we selected stationary periods of activity recorded from 76 

oxytocin neurones. By ‘stationary activity’ we mean not wholly regular activity, 

because fluctuations in activity such as periodic bursting are features of activity that 

are often themselves generated in an activity-dependent way.  Instead, we mean 

activity that, in the period concerned, shows no clear progressive trend (in the first 

few minutes of a recording, neurones may either speed up or slow down before 

reaching a steady firing rate) and no singular abrupt changes (as sometimes occur, 

for example, in conjunction with a change in spike amplitude that indicates a 

movement of the neurone relative to the electrode). We imported event data (spike 

timings resolved to 0.1 ms) from Spike2 (Anon, n.d. p.2) files into Excel worksheets, 

and from these calculated firing rate in different bin widths (from 0.5 s to 20 s) and 

calculated the mean index of dispersion as the variance/mean rate for a given bin 

width. We converted the sequences of spike times into sequences of ISIs, randomly 

shuffled these using Excel, and converted them to a new sequence of event timings, 

from which we calculated the values for index of dispersion for shuffled data.  We 

constructed ISI distributions (in 5-ms bins), and calculated the coefficient of variation 

of ISIs as the standard deviation/mean. We constructed hazard functions from the 

ISI data in 5-ms bins as previously described (Sabatier et al., 2004) according to the 

formula (hazard in bin [t, t+ 5]) = (number of ISIs in bin [t, t+ 5]) / (number of ISIs of 

length > t).  A hazard function plots how the excitability of a neurone evolves after a 

spike has fired and it reflects the superimposed effects of Ca2+- and voltage-

dependent currents that are triggered by a spike, and the perturbations of afferent 

input that result from that spike. To measure log interval entropy, we used the 

Interlab software generated by Bhumbra and Dyball (Bhumbra & Dyball, 2004; 

Bhumbra et al., 2004, 2005).   
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Model neurones 

To model the behaviour of the oxytocin neurones we used an integrate-and-fire 

based spiking model described in (MacGregor et al., 2009) and further refined in 

(MacGregor & Leng, 2012) to model vasopressin neurones. The model uses a 1-ms 

step size and is implemented using modelling software developed in C++ with the 

open source wxWidgets graphical interface library (Anon, n.d.). Simulations were 

run for 1000–100,000 s of simulated activity. Briefly, the model simulates the firing 

response to Poisson randomly timed, exponentially decaying, inputs, representing 

excitatory and inhibitory post-synaptic potentials (EPSPs and IPSPs) at mean rates 

Ire and Iri. Iri is defined as a proportion of Ire given by Iratio and all of the results here 

use Iratio = 1 so that input rate is controlled using just Ire. We assumed that EPSPs 

and IPSPs have equal and opposite magnitude (fixed at 2 mV) and a half-life (λsyn) 

fixed at 3.5 ms. The model variable Vsyn represents the summed EPSPs and IPSPs.  

The other model variables represent a set of spike triggered influences on 

membrane excitability, here the HAP, the DAP, and the AHP. Following a spike the 

HAP, DAP, and AHP variables are incremented by fixed values kHAP, kDAP and kAHP, 

and decay exponentially with half-lives λHAP, λDAP, and λAHP. In contrast to the classic 

integrate-and-fire model, there is no post-spike reset of the variables, allowing the 

DAP and AHP in particular, with their longer half-lives, to accumulate across multiple 

spike intervals.  

All the model variables are summed with the resting potential (Vrest, fixed at -56mV) 

to generate the membrane potential V:  

 

rest synV V V HAP AHP DAP= + − − +  

 

When V exceeds the spike threshold (Vthresh, fixed at -50mV), the neurone fires a 

spike and the ISI is recorded. The large magnitude fast decaying HAP simulates the 

post-spike refractory period. The DAP and AHP have more subtle but longer lasting 

effects which are more activity dependent. The DAP is new to the oxytocin model, 

but follows the form of the fast DAP used in the vasopressin spiking model 

(MacGregor & Leng, 2012). 
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Parameter Fitting 

The model was fitted to recorded data by generating a matching number of spike 

intervals and adjusting parameters to match the firing rate, ISI distribution, and index 

of dispersion. Initially spikes were generated using the default parameters in Table 

4, and parameters Ire and λHAP were adjusted by trial and error to match the firing 

rate and ISI distribution. The AHP parameters were then adjusted to match the 

index of dispersion range while maintaining the match to the ISI distribution and 

firing rate. A similar process was used when adding the DAP. The parameter 

sensitivity of the AHP and DAP half-

lives was tested by attempting to fit 

with smaller and larger values (λAHP 

= 50, 1000 and λDAP = 50, 600), 

compensated by adjusting the 

respective AHP and DAP magnitude 

parameters. These tests confirmed 

that values in the range presented in 

the Table 5 and Table 6 are 

necessary to produce good fits to 

the data. 

Results 
In initial exploratory analyses we 

analysed three long recordings 

(Figure 22.A) made in urethane-

anaesthetised male rats in which 

activity had been slowly increased 

by i.v. infusions of hypertonic saline 

(1 or 2M NaCl at 26–52 μl/min for 30–80 min) (Leng et al., 2001). As previously 

described for oxytocin neurones from male rats (Sabatier et al., 2004), these 

neurones displayed ISI distributions that were skewed with very few ISIs shorter 

than the mode, a long tail that was well fit by a single negative exponential (Figure 

22.B), and a hazard function that rose monotonically over 30-80 ms to a plateau 

level of excitability (Figure 22.C). We have previously shown that these ISI 

distributions matched closely those produced by a leaky integrate-and-fire neurone 

model that incorporates an exponentially decaying post-spike refractoriness, 

Table 4. Default parameters used for 
oxytocin neurone model. Adapted from 
MacGregor & Leng (2013). 

 

Name Description Value Units 

Ire excitatory input rate 300 Hz 

Iratio inhibitory input ratio 1 - 

eh EPSP amplitude 2 mV 

ih IPSP amplitude -2 mV 

λsyn PSP half-life 3.5 ms 

kHAP HAP amplitude per 
spike  

30 mV 

λHAP HAP half life 7.5 ms 

kDAP DAP amplitude per 
spike 

0 mV 

λDAP DAP half life 150 ms 

kAHP AHP amplitude per 
spike 

0.2 mV 

λAHP AHP half life 350 ms 

Vrest resting potential -56 mV 

Vthresh spike threshold 
potential 

-50 mV 
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corresponding to a HAP (Leng et al., 2001). Successive ISIs were relatively 

independent, although relatively long ISIs (>150 ms) tended to be followed by ISIs 

that were shorter than average (Figure 22.D). However, there was a strong inverse 

linear relationship between the length of an ISI and the sum of the preceding 10 ISIs 

(Figure 22.E). These are typical features of oxytocin neurones that we have 

previously attributed to the effects of the AHP (MacGregor et al., 2009).  

We examined the regularity of spike activity by looking at the spike rate distribution 

during periods of stationary activity. For each of the three neurones, the distribution 

of spike counts in 10-s bins was symmetrical around the mean, and narrower than 

the distribution of spike counts for the same set of ISIs after random shuffling to 

eliminate any order effects (Figure 22.F): this discrepancy indicates that that the 

counts in 10-s bins are more regular than would be expected from the variability of 

ISIs. We explored this further by calculating the index of dispersion in 0.5-s bins and 

in 10-s bins every 50-s during the infusion of hypertonic saline that increased the 

firing rate linearly (Figure 23.A): at all firing rates, the index of dispersion in 10-s bins 

was much lower than in 0.5-s bins indicating timescale dependent regularity. By 

contrast, after randomly shuffling ISIs, the index of dispersion of reconstructed spike 

counts was higher than in the original data, and was independent of bin width 

(Figure 23.B). 

We studied the relationship between index of dispersion and two other measures of 

ISI variability: the coefficient of variation, and the log interval entropy. For the 

neurone shown in Figure 23, the log interval entropy was strongly linearly correlated 

with firing rate (Figure 23.C), and with the CV (Figure 23.D). The CV was also 

strongly correlated with the index of dispersion as measured in 0.5-s bins (Figure 

23.E), but relatively weakly correlated with the index of dispersion measured in 

larger bins (not shown). 

These relationships held for oxytocin neurones generally; in a sample of 26 oxytocin 

neurones, log interval entropy was inversely correlated with mean firing rate 

(r2=0.46; best fit y = -0.06x + 7.6), and positively correlated with the CV (r2=0.84; 

best fit y = 1.8x + 5.9). From this we concluded that, for oxytocin neurones, the CV 

and log interval entropy are equivalent measures of interval variability. 
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Figure 22. A) shows the mean firing rate of an oxytocin neurone (in 100-s bins) recorded 
from the supraoptic nucleus of a urethane-anesthetised rat (see (Leng & Sabatier, 2014)). 
The neurone was antidromically identified as projecting to the posterior pituitary and 
identified as an oxytocin neurone by the transient excitation in response to i.v. injection of 
CCK (red arrow).  The neurone was then recorded throughout an i.v infusion of hypertonic 
saline (blue bar) which increased its firing rate linearly from an initial rate of 2.9 spikes/s to 
12.9 spikes/s in this period. B) shows the ISI distribution of this neurone for the 3000-s 
period of stable high frequency activity (38,798 ISIs) indicated by the blue shaded area in 
A). The distribution is typical of oxytocin neurones, displaying a mode at ~ 30 ms and 
relatively few ISIs shorter than this mode, reflecting a strong post spike relative 
refractoriness characteristic of a prolonged HAP. The ISI distribution after the mode (blue 
symbols) is well fit by a negative exponential (black dotted line, equation of best fit given). 
This suggests that after the HAP, spikes arrive apparently randomly. C) shows the 
corresponding hazard function, confirming that the hazard of a spike occurring is 
independent of the time since the last spike after the end of the period of relative 
refractoriness. D) shows the relationship between each ISI and the preceding ISI, 
calculated from the same data. Each point plotted is the average of 2000 ISIs, sorted by 
the length of the preceding ISI.  This shows that the length of an ISI is essentially 
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independent of the length of the previous ISI unless the preceding ISI is relatively long 
(>150 ms), when there is a weak inverse relationship. By contrast, E) shows the strong 
linear relationship between each ISI and the sum of the preceding 10 ISIs. Bars are SEM 
(n=2000). F) Shows the distribution of spike counts in 10-s intervals for original data 
(green symbols) and for randomly shuffled data (orange symbols). The distribution is 
narrower for the raw data than for the shuffled data. 

 

 

 

Figure 23. Data are from 3000 s of recording of an oxytocin neurone as its firing rate was 
increasing linearly in response to an i.v. infusion of 2M NaCl (orange shaded area shown 
in Figure 22. A) The green symbols are the index of dispersion in 0.5-s bins measured 
every 50-s plotted against the firing rate in that period, and the blue symbols show the 
index of dispersion in 10-s bins measured every 250 s.  The index is consistently higher 
for data in 0.5-s bins. B) shows data from 3000 s of recording of the same neurone firing 
at a steady rate of 12.9 spikes/s after the end of infusion (blue shaded area in Figure 22). 
The index of dispersion was measured every 250s at different bin widths (0.5,1,2,4,6,8,10 
s), and the blue bars show the mean (SE) index of dispersion at each bin width (n=12). 
The orange bars show the index of dispersion for shuffled data from this neurone: the ISIs 
recorded over each 3000 period were randomly shuffled, and the index calculated for the 
shuffled data. The shuffled data still shows an index of dispersion smaller than 1 due to 
the effect of the HAP (which largely prevents very short ISIs), but at all bin widths, the 
index of dispersion for the raw data is lower than that for the shuffled data, and it declines 
with increasing bin width. C) shows the relationship, in this neurone, between log entropy 
of ISIs (a measure of variability) and firing rate over this period, and D) shows the 
relationship between the coefficient of variation (CV, an alternative measure of variability) 
and log entropy. The two measures show a strong linear correlation with each other and 
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with firing rate, implying that they are essentially equivalent measures and that neither is 
independent of firing rate. E) shows the relationship between CV and the index of 
dispersion (ID) measured in 0.5-s bins, also showing a linear relationship. 

 

 

 

Figure 24 A) Consensus ISI distribution for 76 oxytocin neurones from virgin female rats. 
Histograms were normalised to the total number of ISIs in the period analysed, and the 
graph plots the mean (SE) incidence in 5-ms bins. The black dotted line shows a negative 
exponential fitted to the data from 50 ms onwards (blue symbols). B) shows the mean 
(SE) hazard functions for 9 of the 76 neurones that showed a clear post-spike 
hyperexcitability (blue symbols and for the other 67 neurones (orange symbols). 

 

To test the generality of the inferences drawn from this initial exploratory analysis, 

we analysed 76 oxytocin neurones from virgin female rats (Brunton et al., 2006; 

Velmurugan et al., 2010, 2013). These had firing rates between 1.3 and 8.9 spikes/s 

(mean (SD) 3.9 (1.8) spikes/s), and the ISI distributions were skewed with modes 

between 17.5ms and 112.5 ms (mean (SD) 61 (17) ms).  
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To obtain an ‘average’ distribution, histograms were normalised to the total number 

of events and averaged. The resulting ‘consensus’ distribution (Figure 24.A) has a 

mode at 50 ms and a tail that is also well fitted by a single exponential with a time 

constant of 250 ms (r2= 0.995 for the fit to ISIs from 50 to 500 ms). The mean 

hazard function (Figure 24.B) shows a constant hazard after a post-spike interval of 

about 50 ms. Thus, for most neurones, the ISI distributions and hazard functions 

conformed closely to the description we published for a sample of 23 oxytocin 

neurones from male rats (Sabatier et al., 2004).  

However, within this larger sample of 76 neurones, heterogeneity was apparent, and 

nine of the neurones had hazard functions with a conspicuous peak of post spike 

excitability that was very like that previously described as typical of magnocellular 

vasopressin neurones (Sabatier et al., 2004), and which apparently reflects a 

pronounced depolarising afterpotential (DAP). These nine neurones had all shown a 

clear excitation in the 5 min after intravenous injection of CCK (mean change 1.3 ± 

0.4 spikes/s) that was similar to the responses of the remainder of the sample 

(mean change 1.1 ± 0.2 spikes/s). 

To calculate the index of dispersion values for the 76 neurones, we analysed 10-min 

periods of apparently stationary activity recorded before testing with CCK (Figure 

25), and calculated the values of the index for 0.5-s and 10-s bin sizes (Figure 25.A) 

At a bin width of 0.5 s, the index of dispersion was strongly correlated with the 

coefficient of variation of ISIs (Figure 25.D). Values of the index of dispersion in 10-s 

bins were generally lower than in 0.5-s bins (Figure 25.B), consistent with a greater 

regularity in 10-s bins than expected from the regularity observed in 0.5-s bins. 

There was only a weak correlation between the index of dispersion in 0.5-s bins and 

that in 10-s bins (Figure 25.C), suggesting heterogeneity between neurones in the 

mechanisms underlying this increased regularity. 

 



71 
 

 

Figure 25. Data from the sample of 76 oxytocin neurones from virgin female rats. A) 
shows the mean firing rate plotted against the index of dispersion (ID) measured in 0.5s 
bins (blue symbols) and in 10s bins (green symbols). B) plots the difference between the 
index in 0.5s bins (ID(0.5s) and that in 10-s bins (ID(10s). C) shows a weak linear 
correlation between ID(0.5s) and ID(10s). D) shows a strong linear correlation between 
ID(0.5s) and CV. 

 

Model simulations 

We then tested whether model-generated spike data would show the same 

characteristics of reduced variability with increasing bin width. The integrate-and-fire 

based model includes mixed random excitatory and inhibitory synaptic inputs and an 

HAP, and can be extended by adding an AHP and a DAP; the standard parameters 
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that we used are given in Table 4. For each neurone modelled, we attempted to 

match the mean firing rate, the ISI distribution, and the index of dispersion for 

different bin widths. For “typical” oxytocin neurones (i.e. those with hazard functions 

like the average function shown in Figure 24.B), parameters could be found for 

model neurones with no AHP, that gave very close fits to the ISI distributions (Figure 

26.C1). For neurones where the index of dispersion was independent of bin width, it 

was possible to match both the index of dispersion and the ISI distribution with just a 

HAP (Figure 26.B1-B2). When the index of dispersion followed the “typical” 

decreasing pattern, adding an AHP to the model could result in good fits to the index 

of dispersion data for all neurones. However, only for some neurones was it possible 

to simultaneously obtain good fits to the ISI distribution (Figure 26.A1, A2). 

Specifically, good fits to both could generally be achieved when the index of 

dispersion was less than 0.6 at a bin width of 0.5 s, but for neurones with an initially 

high index of dispersion that fell steeply with increasing bin width we could not get 

good fits to both. For example, for the neurone shown in Figure 26.C, the ISI 

distribution could be closely matched by a model with a HAP alone (Figure 26.C1), 

but when we added an AHP to match the index of dispersion data (Figure 26.C4), 

we could no longer match the ISI distribution (Figure 26.C3). 

For these neurones, the difficulty in simultaneously fitting the index of dispersion 

data and the ISI distribution arose because an AHP that can account for a low index 

of dispersion at large bin widths also reduces the index of dispersion at short bin 

widths. To increase the index of dispersion for low bin widths only, the HAP can be 

reduced, but this results in an excess of short ISIs in the ISI distribution. 

This suggested that we were neglecting another factor that increased variability at 

short bin widths, and an obvious candidate was the DAP, which tends to amplify 

high frequency firing. In these neurones, we could fit both the ISI distribution and the 

index of dispersion data with a model that incorporates a DAP as well as a HAP and 

an AHP (Figure 26.C5-C6). 
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Figure 26. Matching three different neurone baseline intervals. A) shows fits for the 
neurone shown in Figure 22, for the period of spiking activity indicated by the blue shaded 
area in that figure. A good match was obtained to both the ISI distribution A1) and the 
index of dispersion data A2) with a model that had a HAP and an AHP but no DAP 
(parameters given in Table 5). Notice that the index of dispersion is less than 0.5 for every 
bin width. B shows an oxytocin neurone (one of the five subsequently exposed to apamin) 
where the index of dispersion is similar for every bin width. In this case, is possible to 
match both the ISI distribution B1) and the index of dispersion data B2) with a model that 
has just a HAP. C) shows another of the neurones that was tested with apamin. In this 
case, the index of dispersion decreases as bin width increases (from more than 0.6 for 
0.5-s bins to less than 0.3 for 10-s bins). To get a match of both index of dispersion and 
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ISI distributions all three currents -HAP, AHP and DAP- are needed. The model 
parameters are given in Table 5.  

 

Blocking the medium AHP 

The model data thus indicated that the index of dispersion data could be explained 

by the effects of an AHP.  However, an AHP large enough to explain the index of 

dispersion data has, for some neurones, effects apparently inconsistent with the 

shape of the ISI distribution. The modelling suggested that in addition to the HAP 

and the AHP, at least some oxytocin neurones may also have a DAP, the overt 

effects of which may be occluded by the superimposed HAP and AHP. 

 To test these inferences, we analysed five identified oxytocin neurones which had 

been exposed to apamin to block one component of the AHP. In these published 

experiments (Bull et al., 2011), neurones had been successively exposed over 

prolonged periods to two concentrations of apamin administered directly to the 

supraoptic nucleus by retrodialysis. In each of these neurones, exposure to apamin 

unmasked a period of post-spike hyperexcitability consistent with a DAP. 

Accordingly, we added a DAP to the model, and looked for a fit to the observed 

distributions before and after each exposure to apamin, and also a fit to the index of 

dispersion data.  

Table 5. Model parameters to match to the three different neurones shown in Figure 26. 
Parameters not given here were fixed for all neurones as in Table 4. 

 A1, A2 B1,B2            C1,C2                 C3,C4                C5,C6 

Mean rate (spikes/s)      

Model neurone 12.90 3.79 7.40 7.30 7.37 

Real neurone  12.93 3.73 7.38 7.38 7.38 

 

Parameters 
     

Ire 752 255 352 540 470 

λHAP 5.4 9.3 4.9 2 4.7 

kAHP 0.17 0 0 0.46 0.62 

λAHP 350 - - 350 350 

kDAP 0 0 0 0 0.6 

λDAP - - - - 215 
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Figure 27. Model fits to five oxytocin neurones that were recorded in basal conditions and 
during exposure to two concentrations of apamin, given by retrodialysis to the supraoptic 
nucleus. For each of the five neurones, spike data was fitted by model that included a 
HAP, AHP and DAP; the parameters varied between neurones, but for each of the 
neurones, we varied only the amplitude of the AHP and the synaptic input frequency to fit 
the data after apamin. The model parameters are given in Table 6. A-F) shows the fits (in 
blue) to data (red) from one of these five neurones (neurone 1 in Table 6); the ISI 
distributions (A, C and E) are normalised to the total number of events in the period 
analysed. G) shows the mean index of dispersion at different bin widths for the five 
neurones in basal conditions (light red bars) and after the higher dose of apamin (dark red 
bars), and the corresponding data from the model neurones (light blue for matches to 
basal data, dark blue for matches to apamin data). 
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We matched the model to each neurones by finding parameters for the HAP, AHP, 

DAP and synaptic input rate (Ire) that closely matched the ISI distribution and the 

index of dispersion data at baseline (before any exposure to apamin). For the HAP, 

changing the amplitude has similar effects to changing the half-life, so we fixed the 

amplitude at 30 and varied the half-life. We thus sought to find a good match to the 

three ISI distributions and sets of index of dispersion data for each of the five 

neurones with fixed values for the half-life of the HAP, the half-life of the AHP and 

the amplitude and half-life of the DAP but different values for the amplitude of the 

AHP and Ire.  

We found parameter sets that produced good fits for each of the five neurones 

(Figure 27; Table 6). In each case, good fits were obtained to the data after 

exposure to apamin by reducing both the amplitude of the AHP and the synaptic 

input rate. The parameter sets that produced good fits are not unique, as different 

combinations of parameters often give equivalent effects, but in every case, 

including a DAP was essential to fitting the ISI distributions after apamin, and, in all 

but one of the five neurones, including an AHP was essential to fitting the index of 

dispersion data at baseline. Figure 27.A-F shows all the fitted data for one of the five 

neurones under baseline and apamin conditions, and Figure 27.G shows the mean 

index of dispersion data for the five neurones and for the five corresponding model 

neurones. 

Table 6 Parameters of models matched to data from neurones exposed to apamin. 
Three periods of data were matched: baseline (Bsl), apamin 1 (Ap1) and apamin 2 (Ap2). FR 
- recorded firing rate FR M - modelled firing rate. Parameters not given here were fixed as in 
Table 4. 

 Neuron 1  Neuron 2  Neuron 3  Neuron 4  Neuron 5 

Interval Bsl Ap1 Ap2  Bsl Ap1 Ap2  Bsl Ap1 Ap2  Bsl Ap1 Ap2  Bsl Ap1 Ap2 

                    

FR M 7.37 7.40 8.00  3.75 4.24 3.68  2.86 2.73 2.17  6.55 8.01 10.24  6.12 5.24 4.57 

FR 7.38 7.46 7.91  3.73 4.28 3.61  2.80 2.46 1.87  6.50 8.01 10.20  6.10 5.25 4.89 

                    

Ire 470 365 350  255 295 245  245 210 190  470 454 414  610 430 315 

λHAP 4.7    7.5    6.0    6.0    11.3   

kAHP 0.62 0.40 0.30  0.42 0.54 0.36  0.94 0.78 0.73  1.39 1.15 0.93  1.13 0.95 0.77 

λAHP 350    350    500    300    495   

kDAP 0.6    0.37    1.1    1.53    1.22   

λDAP 215    350    350    200    295   
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Discussion 
In these experiments we have shown that the spiking activity in oxytocin neurones, 

when measured in bins of 5-10s, is much more regular than we would expect from 

the variability of ISIs. This is consistent with a slow activity-dependent negative 

feedback and seems likely to reflect the actions of the AHP that arises by activation 

of Ca2+-dependent K+ channels. The best fits with the model, with λAHP in the range 

350 to 500 ms, correspond most closely to the time course of the apamin sensitive 

SK channel based medium AHP. The half-life of the AHP determines how quickly it 

changes, and because it is relatively slow, taking several seconds to accumulate, its 

effect on reducing spike interval variability is only detectable in the larger bin-sizes. 

However, a value for λAHP of 1000ms or greater, which would more closely 

correspond to the slow AHP is unable to fit the index of dispersion at the medium bin 

widths of 2, 4, and 6 s. 

However, adding to the model an AHP which is large enough to account for the 

values of index of dispersion significantly impacts upon the ISI distribution, delaying 

the mode and impinging on the ability of the model neurones to display high 

frequency firing, especially as seen during the milk-ejection reflex. It appears 

therefore that oxytocin neurones also have an activity-dependent depolarisation 

superimposed upon the HAP and AHP, with an intermediate timescale. Together, 

these three features allow the neurones to maintain a relatively regular firing rate in 

basal conditions while retaining the ability to generate bursts of activity. 

In fitting models to the data from oxytocin neurones exposed to apamin, we sought 

parameters that fitted the behaviour of each of five neurones in three conditions (at 

baseline and after exposure to two concentrations of apamin). Hazard function 

based spike interval analysis shows that apamin removes any hazard detectable 

AHP, and unmasks a distinct DAP, that is enhanced further with an increased dose 

of apamin (Bull et al., 2011). For each neurone, we found a parameter set that 

would fit all three conditions well with changes in just two parameters – the synaptic 

input rate and the amplitude of the AHP. In each case, the fits involved reducing the 

AHP amplitude progressively with increasing apamin concentration, consistent with 

the established actions of apamin to block one component of the AHP, but the fits 

also required a progressive reduction in synaptic input. This suggests that, in the 

experimental conditions, apamin also had presynaptic actions, either reducing 

excitatory input or increasing inhibitory input. The latter seems more likely, as 
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apamin’s actions would be generally expected to increase neuronal excitability, 

increasing spike rate as is observed in vitro (Kirkpatrick & Bourque, 1996), and 

supraoptic neurones receive an extensive inhibitory input from GABA neurones in 

the perinuclear zone immediately adjacent to the supraoptic nucleus (Herbison, 

1994; Wang et al., 2015). 

Importantly, to obtain these good fits in all conditions, it was necessary in all 

neurones to include a DAP in the model. The DAP has the opposite effect to the 

AHP on the index of dispersion; by acting as a positive feedback it increases spike 

interval variability at short bin widths. Whereas vasopressin neurones in the 

supraoptic nucleus typically display a conspicuous DAP, oxytocin neurones 

generally do not. However the presence of a fast DAP has been reported in about 

20% of oxytocin neurones (Teruyama & Armstrong, 2007), which seems consistent 

with the observation here of a conspicuous post-spike hyperexcitability in nine of 76 

neurones (12%). In supraoptic neurones generally, DAPs are triggered by Ca2+ 

influx during spikes (Andrew & Dudek, 1984; Smith & Armstrong, 1993; Li & Hatton, 

1997; Greffrath et al., 1998), but their ionic basis is poorly understood. One study 

suggested that they may result from the Ca2+-dependent reduction of a resting K+ 

conductance (Li & Hatton, 1997), but subsequent work suggested that a Ca2+-

activated nonselective cation channel is involved (Ghamari-Langroudi & Bourque, 

2002; Teruyama & Armstrong, 2007). The effect of a DAP on oxytocin neurone 

activity is to increase irregularity of firing, especially when measured in short bin 

widths; it thus appears that the combination of a DAP and an AHP has the effect of 

increasing the regularity of firing in long bin widths while protecting the ability to fire 

at high frequencies during milk-ejection bursts.  

The parameters that we found for the DAP correspond approximately to those 

reported for the fast DAP (Teruyama & Armstrong, 2007). A larger subset of 

oxytocin neurones in vitro have been reported to express a slow DAP, with a much 

longer duration (~2 s) than the fast DAP (Stern & Armstrong, 1996; Armstrong et al., 

2010). Because the duration of the slow DAP is similar to that of the slow AHP, it 

seems possible that their effects upon spike excitability largely cancel out in the 

circumstances that we are exploring them (stable spontaneous activity). 

How important it is for an oxytocin neurone to maintain a regular firing rate in 

constant conditions is hard to judge. For oxytocin neurones generally, slow activity-

dependent mechanisms reduce the index of dispersion in 10-s bins from about 1 to 
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about 0.4 at a firing rates of 4 spikes/s. This is equivalent to reducing the standard 

deviation from 6.3 to 2.8 – a substantial reduction, but the plasma oxytocin 

concentration reflects the averaged secretion of several thousand oxytocin 

neurones, so is this reduction physiologically meaningful? It may be, because for 

any one oxytocin neurone, the relationship between firing rate and secretion is 

complex and non-linear: for short bursts of spikes, secretion increases 

disproportionately with spike frequency (MacGregor & Leng, 2013), so that, in a 1-s 

burst at 50 Hz, triggers secretion of, on average about 100 times as much oxytocin 

as is released by the same number of spikes at 1 Hz (Bicknell, 1988). Moreover, 

subsets of magnocellular neurones project to sites within the brain, and these sites 

receive relatively few oxytocin fibres (Knobloch & Grinevich, 2014). Accordingly, 

mechanisms that reduce the “burstiness” of firing that arises from random variation 

in synaptic input may be very important in ensuring that the secretion rate at these 

sites accurately reflects the mean firing rate.  

We can also look more generally at the possible utility of these mechanisms, 

remembering that subpopulations of magnocellular oxytocin neurones project to 

many different brain sites, and that at these central projections they appear to use 

glutamate as a conventional synaptic neurotransmitter. The mean firing rate of any 

particular oxytocin neurone is proportional to the plasma sodium concentration, and 

increases by an average of about 0.7 spikes/s for every 1mM increase. We can 

therefore ask, if the plasma Na+ concentration is raised by 1mM, for how long do we 

need to measure the firing rate of an oxytocin neurone to know with 95% confidence 

that plasma sodium has increased (given no change in any of the other stimuli that 

influence oxytocin neurones)? Suppose that the starting firing rate a is 3 spikes/s, 

that we know this with certainty, and that the true rate b after osmotic stimulation is 

3.7 spikes/s. If the index of dispersion is 1, it will be necessary to measure the 

neurone’s firing rate for at least 30 s to have 95% confidence that the firing rate is 

actually higher than a. By contrast, if the index of dispersion is 0.2, then just 8 s is 

enough. In practice, neurones do not have good mechanisms for averaging synaptic 

inputs over prolonged periods. Thus, if it is important for neuronal networks to 

respond to small but sustained changes in external signals swiftly and reliably, then 

cellular mechanisms for reducing the variability of discharge patterning may be very 

important.  
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Conclusions to the first paper 
This first paper (Maícas-Royo et al., 2016) supported the robustness of the LIF 

model to simulate the spiking activity of oxytocin neurones. Besides, it showed the 

model’s ability to differentiate the contribution of the different currents involved in the 

membrane response to the action potential.  In particular, it showed the importance 

of the AHP in the reduction of the variability in the spiking activity and also the 

necessity of a DAP in some neurones.  The model also showed how the DAP could 

be unmasked in more neurones, once the AHP contribution was made zero.  

Moreover, by seeing how the index of dispersion could be matched by modifying the 

different currents, it also supported the choice of simulating the PSP as randomly 

arriving inputs that follow a Poisson distribution.  

Summing up, the model showed it was working well to mimic the spiking activity of 

any single oxytocin neurone and, at the same time, reveal the membrane 

characteristics that were making a neurone behave in a particular way. Being certain 

that the spiking model was a stable pillar to build on, we started wondering what 

would be next. Following the findings we got about the role of the AHP, we had two 

natural options. To see how the AHP could affect in a more complex context we 

could choose between developing a model that would simulate a population of 

neurones or, before doing that, try to simulate first the secretion dynamics of 

oxytocin neurones.  
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Chapter 4 (paper): 

A predictive, quantitative model of spiking activity 

and stimulus-secretion coupling in oxytocin 

neurons. 
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Introduction to the second paper. 
 

Maícas-Royo J, Leng G & MacGregor DJ (2018). A Predictive, Quantitative Model 

of Spiking Activity and Stimulus-Secretion Coupling in Oxytocin Neurons. 

Endocrinology 159, 1433–1452. 
 

Taking advantage of the work of my supervisors (MacGregor & Leng, 2013), we 

decided that the best way to build upon the spiking model for single oxytocin 

neurones would be to use the secretion model of vasopressin neurones, developing 

a secretion model for oxytocin neurones.  

Thus, our main assumption was that we could model the spiking activity of the whole 

population of magnocellular oxytocin neurones as the average of all of them that 

would be simulated by our model for single neurones.  

The secretion model would be fed by the single oxytocin neuron model and, at the 

end, the resultant secretion would be the input of the plasma oxytocin. As the 

plasma oxytocin is cleared and it can diffuse as well to the extravascular fluid, we 

also made a model to simulate that dynamics.  

After developing the three models separately, I fitted them individually by trial and 

error to experimental data that evaluated the physiology of each of them. Once that 

was done, I integrated in a single model the spiking, secretion and plasma model, 

testing the resultant model by comparing its dynamics with the well described 

response of oxytocin neurones to CCK.  

I soon obtained good results and we decided to publish them. However, writing took 

me one year. Partly because my writing abilities are not the best and partly because, 

in the process, we incorporated other experiments we found in the literature. And 

every time I incorporated new experiments, I adjusted the new fitting to all the 

previous experiments.   

When I was finally certain of the robustness of the model, I used it to elucidate what 

the role of the AHP was in secretion and plasma oxytocin.  

Finally, I introduced a bit of heterogeneity in our model, running simulations with 

small populations of 20 neurones to check the effect that the variability of 

postsynaptic inputs could have on the final response.  
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Abstract 
Oxytocin neurons of the rat hypothalamus project to the posterior pituitary where 

they secrete their products into the bloodstream. The pattern and quantity of that 

release depends on the afferent inputs to the neurons, on their intrinsic membrane 

properties, and on non-linear interactions between spiking activity and exocytosis: a 

given number of spikes will trigger more secretion when they arrive close together. 

Here we present a quantitative computational model of oxytocin neurons that can 

replicate the results of a wide variety of published experiments. The spiking model 

mimics electrophysiological data of oxytocin cells responding to cholecystokinin 

(CCK), a peptide produced in the gut after food intake. The secretion model 

matches results from in vitro experiments on stimulus-secretion coupling in the 

posterior pituitary. We mimic the plasma clearance of oxytocin with a two-

compartment model, replicating the dynamics observed experimentally after infusion 

and injection of oxytocin. Combining these models, allows us to infer, from 

measurements of oxytocin in plasma, the spiking activity of the oxytocin neurons 

that produced that secretion. These inferences we have tested with experimental 

data on oxytocin secretion and spiking activity in response to intravenous injections 

of CCK. We show how intrinsic mechanisms of the oxytocin neurons determine this 

relationship: in particular, we show that the presence of an after-hyperpolarization 

(AHP) in oxytocin neurons dramatically reduces the variability of their spiking 

activity, and even more markedly reduces the variability of oxytocin secretion. The 

AHP thus acts as a filter, protecting the final product of oxytocin cells from noisy 

fluctuations. 

Introduction 
Magnocellular oxytocin neurons in the supraoptic nucleus (SON) and paraventricular 

nucleus of the hypothalamus project their axons to the posterior pituitary where they 

secrete their hormones into the bloodstream. Oxytocin has an indispensable role in 

breastfeeding and an important one in parturition (Leng et al., 2015), but the 

secretion of oxytocin is also regulated by a variety of metabolic signals arising from 

the gastrointestinal tract, and, in the rat, oxytocin secretion also regulates sodium 

excretion and gut motility (Leng & Sabatier, 2017). 

The membrane properties of these neurons have been studied extensively by 

electrophysiological studies in vitro (Hatton & Li, 1999; Pittman et al., 1999; 
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Armstrong et al., 2010; Brown et al., 2013). In these neurons, spikes are typically 

triggered by the arrival of excitatory inputs (excitatory postsynaptic potentials; 

EPSPs) from diverse brain areas. Whenever a spike is produced, Ca2+ enters the 

cell through voltage-activated channels and subsequently activates K+ channels that 

mediate post-spike hyperpolarisations. Large conductance (BK) channels open and 

close rapidly, producing a short hyperpolarizing afterpotential (HAP) which makes 

the neurons relatively inexcitable for 30-50ms (Leng et al., 2017). Small 

conductance (SK) channels produce a medium afterhyperpolarization (AHP). This is 

much smaller than the HAP, but the half-life is much longer (about 350ms), so the 

AHP accumulates over successive spikes, and the resulting level of activity-

dependent hyperpolarization will reflect the average level of spike activity over the 

preceding few seconds (Leng et al., 2017). Some oxytocin neurons also generate an 

activity-dependent depolarising afterpotential (DAP) (Teruyama & Armstrong, 2007), 

but this is usually quite small and masked by the larger activity-dependent 

hyperpolarisations. 

The patterning of spikes generated by these neurons has also been studied 

extensively in vivo (Richard et al., 1997; Leng et al., 1999; Hatton & Wang, 2008; 

Brown et al., 2013). In lactating rats, suckling induces brief intense bursts of spikes 

in oxytocin cells, but other stimuli produce graded increases in spike activity. For 

example, intravenous (i.v.) injections of cholecystokinin (CCK) produce a dose-

dependent increase in spike activity that lasts for 10-15 min (Renaud et al., 1987; 

Leng et al., 1992; Brown et al., 1996; Velmurugan et al., 2010, 2013), producing a 

transient increase in plasma oxytocin. CCK is secreted from the duodenum in 

response to a meal and acts at CCK1 receptors on gastric vagal afferents; these 

project to neurons in the nucleus tractus solitarii, which in turn project directly to 

magnocellular oxytocin neurons (Rinaman et al., 1995; Leng et al., 2008). The 

subsequent secretion of oxytocin is thought to regulate gut motility and sodium 

excretion at the kidneys (McCann et al., 1989; Verbalis et al., 1991). 

The spontaneous spiking activity of oxytocin neurons can be matched by a modified 

leaky integrate-fire model, which incorporates a HAP and an AHP (Maícas-Royo et 

al., 2016; Leng et al., 2017). This model can closely match the statistical features of 

spike patterning in oxytocin neurons, as reflected by the interspike interval 

distribution and the index of dispersion of spike rate. Given this, it should be 

possible to use the model to infer the synaptic input that oxytocin cells receive when 
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responding, for example, to CCK, if we assume that the CCK-evoked input consists 

solely of a change in excitatory input rate. 

Our previous work indicates that the AHP in oxytocin neurons, by acting as an 

activity-dependent negative feedback, reduces the second-by-second variability 

(index of dispersion) in the firing rate of oxytocin cells (Maícas-Royo et al., 2016). 

Because of particular features of stimulus-secretion coupling in these neurons, this 

“regularisation” of firing rate is likely to be most important during dynamic challenges 

to oxytocin cell activity. In oxytocin neurons, secretion is a non-linear function of 

spike activity: a given number of spikes secrete more oxytocin when they are close 

together than when sparsely distributed. This nonlinearity is marked: during a reflex 

milk ejection, oxytocin cells fire about 100 spikes in just 2 s (Wakerley & Lincoln, 

1973), and during this burst, each spike releases, on average, about 100 times as 

much oxytocin as spikes that occur at the typical basal firing rate of 2 spikes/s (Leng 

& Brown, 1997). Because of this non-linearity, the oxytocin secretion from a single 

cell depends not only on its mean firing rate but also on the variability of its firing 

rate, due to the disproportionate influence of high firing rate fluctuations. 

The mechanisms of stimulus-secretion coupling are complex, but we recently 

published a model of stimulus-secretion coupling in magnocellular vasopressin cells 

fitted to data on stimulus-evoked vasopressin secretion (MacGregor & Leng, 2013). 

The properties of vasopressin terminals differ quantitatively from those of oxytocin 

terminals, and here we modified the vasopressin secretion model to fit the properties 

of oxytocin terminals (Bicknell et al., 1984; Carolyn A. Bondy, 1987; Bicknell, 1988). 

Combining the spiking model of oxytocin neurons with this secretion model allows 

us to model the activity-dependent output of oxytocin cells. To predict the 

consequences for plasma concentrations, we also introduced a model of the 

clearance of oxytocin from plasma. For this there is good historical data (Ginsburg & 

Smith, 1959; Fabian et al., 1969a; Leng & Sabatier, 2016). Applying this allows us to 

predict, from the model, the plasma oxytocin concentration that will result from a 

given stimulus to the oxytocin cells. In the case of CCK, again there is published 

data to compare with the model. This allows us to assess the importance of the AHP 

not only for spike activity but also for the important biological signal – the resulting 

change in plasma oxytocin concentration. 
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Methods 
We used a previously described model for the spiking activity of oxytocin neurons 

((Maícas-Royo et al., 2016); parameters given in Table 7) and adapted a published 

model of stimulus-secretion coupling in vasopressin neurons to model oxytocin 

secretion (MacGregor & Leng, 2013).  We also added a two-compartment model to 

mimic the dynamics of oxytocin concentration in plasma ( 

Figure 28). The models were developed using software written in C++ and a 

graphical interface based in the open source wxWidgets library.  Simulations were 

run for up to 10,000 s using a 1-ms step.  

 

 

Figure 28 The combined spiking, secretion, and diffusion model. The integrate-and-fire 
based spiking model responds to randomly arriving PSPs. The i.v. injection of CCK is 
simulated as an exponentially decaying increment in the mean arrival rate of EPSPs. The 
resulting spikes become the input of the secretion model. In that model, spike-induced Ca2+ 
entry at secretory terminals is positively modulated by activity-dependent spike broadening 
(b), and negatively modulated by fast (e) and slow (c) Ca2+ variables that inhibit spike-
induced opening of Ca2+ channels (MacGregor & Leng, 2013). The secretion rate (s) is the 
product of the releasable pool (p) and e. When depleted, pool p is refilled from a reserve 
pool (r) at a rate dependent on the pool content. Oxytocin in plasma (x) is cleared with an 
exponential decay, and diffuses between the plasma and extravascular fluid (xEVF) according 
to the concentration gradient. 
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Spiking model 

The integrate-and-fire based spiking model (Maícas-Royo et al., 2016) simulates the 

firing activity of oxytocin cells in response to EPSPs and inhibitory postsynaptic 

potentials (IPSPs). We model PSPs as arriving randomly at mean rates Ire and Iri, 

and in this study, we fixed Iri to be equal to Ire. Thus, the time an EPSP arrives, 

epsptime is defined by: 

 

 

The IPSP arrival times follow the same formula. 

Table 7 Spiking Model Parameter Values Top) Parameters of the integrate-
and-fire spiking model, with values chosen from (Maícas-Royo et al., 2016) 
and CCK parameters, as used for the simulations in Figure 29.B. Bottom). 
Parameter changed from Top) to match a single oxytocin neuron recording as 
seen in Figure 29.C. In subsequent simulations, Ire and Iri were kept equal to 
each other but were varied to produce different basal firing rates as 
appropriate; the other parameters were unchanged from the upper table. 

Name Description Value Units 

Ire excitatory input rate 292 Hz 

Iri inhibitory input rate 292 Hz 

epsph  EPSP amplitude 2 mV 

ipsph IPSP amplitude -2 mV 

λsyn PSP half-life 3.5 ms 

kHAP HAP amplitude per spike 30 mV 

λHAP HAP half-life 7.5 ms 

kAHP AHP amplitude per spike 1 mV 

λAHP AHP half-life 350 ms 

Vrest resting potential -56 mV 

Vthresh spike threshold potential -50 mV 

λCCK CCK half-life in plasma 230 s 

CCKdur CCK injection duration 20 s 

kCCK CCK i.v. injection 20 µg/kg 
 

Ire excitatory input rate 210 Hz 
 

 

𝑒𝑝𝑠𝑝𝑡𝑖𝑚𝑒 =
− log(1 − 𝑟𝑎𝑛𝑑)

𝐼𝑟𝑒

, where 𝑟𝑎𝑛𝑑 is a random number between 0 and 1 ( 12 ) 
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Responses to CCK 

We mimicked the effect of i.v. injection of CCK by adding an additional random 

EPSP contribution, with mean rate IrCCK. The total EPSP rate is the sum of Ire and 

IrCCK. 

The increase in EPSP rate during simulated CCK injection follows a linear function 

kCCK/CCKdur defined by the quantity of CCK injected, kCCK, and the duration of the 

injection, CCKdur.  

We assume that CCK is cleared from plasma following an exponential decay with 

time constant τCCK. 

 

𝑑𝐼𝑟𝐶𝐶𝐾

𝑑𝑡
=

(
𝑘𝐶𝐶𝐾

𝐶𝐶𝐾𝑑𝑢𝑟
⁄ ) − 𝐼𝑟𝐶𝐶𝐾

𝜏𝐶𝐶𝐾
  when 𝐶𝐶𝐾start ≤ 𝑡 ≤ 𝐶𝐶𝐾start + 𝐶𝐶𝐾dur 

(13) 

  

𝑑𝐼𝑟𝐶𝐶𝐾

𝑑𝑡
=

−𝐼𝑟𝐶𝐶𝐾

𝜏𝐶𝐶𝐾
  when 𝑡 >  𝐶𝐶𝐾start + 𝐶𝐶𝐾dur (14) 

 

where CCKstart is the injection’s start time. 

Time constants are calculated from half-life parameters by: 

𝜏𝑥 =
𝜆𝑥

𝑙𝑛(2)
 (15) 

 

We fixed the magnitude of EPSPs and IPSPs, epsph and ipsph, at 2 mV, having an 

opposite sign for EPSPs and IPSPs. The final input depends on the number of 

inputs, epspn and ipspn, per unit of time (fixed at 1ms in our simulations). epspn is 

the number of EPSPs obtained in a given time unit from a random process with 

mean rate Ire. 

𝐼 = 𝑒𝑝𝑠𝑝ℎ. 𝑒𝑝𝑠𝑝𝑛 + 𝑖𝑝𝑠𝑝ℎ . 𝑖𝑝𝑠𝑝𝑛 (16) 

  

Vsyn represents the contribution of synaptic input to the membrane potential V, and 

decays to 0 with time constant τsyn corresponding to a half-life λsyn of 3.5 ms. 
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𝑑𝑉𝑠𝑦𝑛

𝑑𝑡
= −

𝑉𝑠𝑦𝑛

𝜏𝑠𝑦𝑛
+ 𝐼 (17) 

 

Initially, the model neuron is at a resting potential, Vrest = -56mV. If inputs summate 

to increase the membrane potential V above a threshold Vth = -50mV, the neuron 

produces a spike. Then, the model triggers a HAP and an AHP, and V evolves 

according to 

𝑉 = 𝑉𝑟𝑒𝑠𝑡 + 𝑉𝑠𝑦𝑛 − 𝐻𝐴𝑃 − 𝐴𝐻𝑃 (18) 

 

HAP has a fixed amplitude (kHAP = 30mV) and a time constant,  τHAP , that 

corresponds to a half-life of 7.5 ms, following values from previous work (Maícas-

Royo et al., 2016). AHP also has a fixed amplitude (kAHP = 1) and τAHP was set to 

correspond to a half-life λAHP of 350 ms as used previously (Maícas-Royo et al., 

2016); we explored different values of  kAHP in the range of values (0.2-1.4) found 

previously from fits to individual oxytocin neurons (Maícas-Royo et al., 2016); the 

results were qualitatively similar for other values of kAHP. 

 

𝑑𝐻𝐴𝑃

𝑑𝑡
= −

𝐻𝐴𝑃

𝜏𝐻𝐴𝑃
+ 𝑘𝐻𝐴𝑃 ∙ 𝛿 (19) 

  

𝑑𝐴𝐻𝑃

𝑑𝑡
= −

𝐴𝐻𝑃

𝜏𝐴𝐻𝑃
+ 𝑘𝐴𝐻𝑃 ∙ 𝛿 

(20) 

 

where 𝛿 = 1 if a spike is fired at time t, and 𝛿 = 0 otherwise.   

Secretion model 

The secretion model is an adaptation of the model of MacGregor and Leng 

(MacGregor & Leng, 2013), developed to mimic stimulus-secretion coupling in 

vasopressin neurons. When spikes invade the secretory terminals, exocytosis 

occurs at sites close to clusters of voltage-gated Ca2+ channels. These sites 

experience transiently high Ca2+ concentrations in response to spikes, but the Ca2+ 

swiftly diffuses into the cytosol (Nowycky et al., 1998). This is represented by 

making secretion proportional to a ‘fast’ Ca2+ variable e. At increased frequencies, 
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the spikes broaden (Bourque, 1990; Muschol & Salzberg, 2000), producing a larger 

rise in e. 

The resulting facilitation of 

secretion is limited by activity-

dependent attenuation of 

secretion, modelled as arising 

from Ca2+-dependent 

inactivation of Ca2+ channels in 

the submembrane 

compartment, and by activation 

of Ca2+-dependent K+ channels. 

The model consists of 

differential equations which 

take as input the spike events 

generated by the spiking 

model. Variables representing 

spike broadening (b), cytosolic 

Ca2+ concentration (c) and 

submembrane Ca2+ 

concentration (e) are all 

incremented with each spike. 

The Ca2+ variables model Ca2+ 

mediated signals at specific 

action sites: we did not attempt 

to represent the full dynamics 

of intracellular calcium changes. 

We model spike broadening b by increasing it by kb = 0.021 when a spike arrives, 

and with an exponentially decay with half-life λb = 2 s: 

 

𝑑𝑏

𝑑𝑡
= −

𝑏

𝜏𝑏
+ 𝑘𝑏 ∙ 𝛿 (21) 

  

where 𝛿  = 1 if a spike is fired at time t, and 𝛿  = 0 otherwise. 

Table 8. Secretion model parameter values, 
modified from the parameters used for a model of 
vasopressin secretion (MacGregor & Leng, 2013) as 
described in the Results. 

Name Description Value Units 

kb broadening per spike 0.021 - 

λb broadening half-life 2000 ms 

bbase  basal spike broadening 0.5 - 

kc max cytosolic Ca2+ per spike 0.0003 - 

λc cytosolic Ca2+ half-life 20000 ms 

ke 
max submembrane Ca2+ per 
spike 

1.5 - 

λe submembrane  Ca2+ half-life 100 ms 

cθ 
threshold, terminal inhibition 
by c 

0.14  

cn 
gradient, terminal inhibition 
by c 

5  

eθ 
threshold, terminal inhibition 
by e 

12  

en 
gradient, terminal inhibition 
by e 

5  

β pool refill rate scaling factor 120  

rmax reserve store maximum 1000 ng 

pmax reserve pool maximum 5 ng 

α Secretion scaling factor 3  

φ 
cooperativeness of the Ca2+ 
activation of exocytosis 

2  
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The Ca2+ entry, Caent, provoked by spikes has two other effects. c and e measure 

how the concentration of Ca2+ changes at the cytosol and in the submembrane 

compartment. They are incremented by kc = 0.0003 and ke = 1.5 with every spike 

and decay with half-lives λc = 20 s and λe = 100 ms: 

𝑑𝑐

𝑑𝑡
= −

𝑐

𝜏𝑐
+ 𝑘𝑐 ∙ 𝐶𝑎𝑒𝑛𝑡 ∙ 𝛿 (22) 

  

𝑑𝑒

𝑑𝑡
= −

𝑒

𝜏𝑒
+ 𝑘𝑒 ∙ 𝐶𝑎𝑒𝑛𝑡 ∙ 𝛿 

(23) 

  

where 𝛿  = 1 if a spike is fired at time t, and 𝛿= 0 otherwise. 

Ca2+ entry depends on spike broadening (b), and is subject to Ca2+-dependent 

inhibition: 

𝐶𝑎𝑒𝑛𝑡 = 𝑒𝑖𝑛ℎ𝑖𝑏 ∙ 𝑐𝑖𝑛ℎ𝑖𝑏 ∙ (𝑏 + 𝑏𝑏𝑎𝑠𝑒) (24) 

  

The basal level of spike broadening is given by bbase = 0.5. Ca2+ entry is inhibited by 

c and e using two inverted Hill equations with threshold and coefficient parameters, 

cθ = 0.14, eθ = 12, cn = 5 and en = 5: 

𝑐𝑖𝑛ℎ𝑖𝑏 = 1 −
𝑐𝑐𝑛

𝑐𝑐𝑛 + 𝑐𝜃
𝑐𝑛

 (25) 

  

𝑒𝑖𝑛ℎ𝑖𝑏 = 1 −
𝑒𝑒𝑛

𝑒𝑒𝑛 + 𝑒𝜃
𝑒𝑛

 

(26) 

 

The releasable vesicle pool (p) is depleted with secretion, s, and refilled when not 

full (pmax = 5 ng) at a rate proportional to the remaining reserve pool (r) divided by its 

maximum capacity (rmax = 1 µg). The refill rate is scaled by β = 120: 

𝑑𝑝

𝑑𝑡
= −𝑠 + 𝛽 ∙

𝑟

𝑟𝑚𝑎𝑥
   when 𝑝 < 𝑝𝑚𝑎𝑥, −𝑠 otherwise (27) 

 

The reserve pool is depleted exponentially as it refills p, with its maximum (initial) 

value defined by rmax: 
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𝑑𝑟

𝑑𝑡
= −𝛽 ∙

𝑟

𝑟𝑚𝑎𝑥
   when 𝑝 < 𝑝𝑚𝑎𝑥, 0 otherwise (28) 

 

The rate of secretion (s) is the product of e raised to the power 𝜑 (because of the 

cooperativeness of the Ca2+ activation of exocytosis) (Neher, 2012), the releasable 

pool (p) and a scaling factor α 

𝑠 = 𝑒𝜑 ∙ 𝛼 ∙ 𝑝 (29) 

  

The parameters of the vasopressin model were fitted to data obtained for secretion 

from the whole neural lobe – containing the axons of up to 9000 neurons 

(Bandaranayake, 1971; Rhodes et al., 1981). Thus, parameters relevant to 

quantities of secretion (p, pmax , r and rmax) from the whole population are about nine 

thousand times higher than would be appropriate for single cells. The same 

approach was taken here, and the same ‘correction factor’ applies. 

To adapt this model to match oxytocin secretion, we made six changes from the 

parameters of the vasopressin model (MacGregor & Leng, 2013); the new 

parameters are given in Table 8. 

1) We decreased kb from 0.05 to 0.021, reducing the spike broadening.  

2) We reduced the sensitivity to Ca2+ entry in the submembrane compartment, 

by increasing eθ from 2.8 to 12.  

3) We increased cθ from 0.07 to 0.14.  

4) We reduced the cooperativeness of the Ca2+ activation of exocytosis from 𝜑 

= 3 to 𝜑 = 2.  

5) We increased α, a scaling factor, to 3 to match the levels of oxytocin 

measured in plasma.  

6) We increased β, the refill rate of the pools from the reserve, from 50 to 120.  

The results mimic the secretion of the entire population by considering that the 

average response of the population can be mimicked by the response of a single 

oxytocin cell multiplied by a scaling factor. 
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Two-compartment diffusion model  

To simulate how the oxytocin that enters the plasma (x) is cleared, we developed a 

two-compartment model. Secreted oxytocin enters the plasma volume (Cplasma) and 

is cleared from it mainly through the kidneys and liver. The second compartment 

represents the extravascular fluid compartment (CEVF), and oxytocin diffuses 

between these two compartments according to the concentration gradient. The 

clearance from plasma and the diffusion between compartments follow exponential 

differential equations with a clearance half-life λcl, of 68s and a diffusion half-life λdiff 

of 61s (Table 9), values derived from reference data described below: 

 

𝑑𝑥

𝑑𝑡
= 𝑠 −

𝑥

𝜏𝑐𝑙𝑟
−  

𝐷𝑖𝑓𝑓𝑅𝑎𝑡𝑒

𝜏𝑑𝑖𝑓𝑓
 (30) 

 

The oxytocin content in plasma (x) and extravascular fluid (xEVF) change due to 

diffusion between the compartments following the oxytocin concentration gradient 

(DiffRate):  

𝐷𝑖𝑓𝑓𝑅𝑎𝑡𝑒 =  (𝑥
𝐶𝑝𝑙𝑎𝑠𝑚𝑎

⁄ − 
𝑥𝐸𝑉𝐹

𝐶𝐸𝑉𝐹
⁄ ) ∙

𝐶𝑝𝑙𝑎𝑠𝑚𝑎 + 𝐶𝐸𝑉𝐹

2
 (31) 

 

 
𝑑𝑥𝐸𝑉𝐹

𝑑𝑡
=

𝐷𝑖𝑓𝑓𝑅𝑎𝑡𝑒

𝜏𝑑𝑖𝑓𝑓
  (32) 

Reference data. 

To fit the spiking model, we used a library of recordings of oxytocin neurons in 

urethane-anesthetised rats. Full details of these experiments have been published 

previously (Sabatier et al., 2004; Velmurugan et al., 2010, 2013). In brief, neurons 

were recorded from the supraoptic nucleus using a transpharyngeal surgical 

approach, and were antidromically identified as projecting to the posterior pituitary. 

Oxytocin neurons were identified by their excitatory responses to i.v. injection of 

CCK, and spike times were collected using Spike2 software (Cambridge Electronic 

Design Ltd.). Model data was compared to recorded spike activity by comparing the 

interspike interval distributions (in 5-ms bins) and by comparing the index of 

dispersion of firing rate, calculated as the ratio of variance to mean rate for binwidths 

of 0.5, 1, 2, 4 and 8 s. 
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To fit the secretion model, we used data from three independent data sets: 

In Bicknell et al. (Bicknell et al., 1984) and Bicknell (Bicknell, 1988), oxytocin release 

from isolated rat posterior pituitaries was measured by radioimmunoassay after:  

• 20-min periods of 13 Hz stimulation  

• 18, 36, 54 and 72-s periods at 13 Hz  

• 156 pulses at 6.5, 13, 26 and 52 Hz 

In Bondy et al. (Carolyn A. Bondy, 1987), rat posterior pituitaries were stimulated 

with 600 pulses at 1, 4, 8, 12, 20 and 30 Hz. The released oxytocin was measured 

by radioimmunoassay and normalized to release evoked by 600 pulses at 12 Hz. 

Table 9. Diffusion model parameter values. The upper section gives values 
measured experimentally. The middle section gives parameter values used in the 
diffusion model. The bottom line shows model measurements from simulations of the 
experiments. 

Parameter Description 
Normal 

rat 

Kidneys or 
splanchnic 

clamped 

Both 
clamped 

Normal rat 

 
Experiments (Fabian et al., 1969a) 

 Ginsburg & 
Smith 
(1959) 

 Plasma oxytocin half-life 
(s) 

126 380 480 99 

 Total fluid volume (ml) 18.25 37.5 35.75 No data 

 Duration of oxytocin 
infusion (s) 

1800 - - 2 

λclr clearance half-life (s) 68 135 188 68 

λdiff diffusion half-life (s) 61 - - - 

Cplasma plasma volume (ml) 8.5 - - - 

CEVF 
Extravascular fluid volume 
(ml) 

9.75 - - - 

 
Plasma oxytocin half-life 
(s) 

126 379 479 91 

 

 

To fit the diffusion model, we matched data from experiments in rats described by 

Fabian et al. (Fabian et al., 1969a) and Ginsburg and Smith (Ginsburg & Smith, 

1959), who measured plasma oxytocin by bioassays. Ginsburg and Smith reported 

that in male rats, a 440 ng/100 g bolus injection of oxytocin disappears from plasma 

with an apparent half-life of 1.65 ± 0.13 min (1.73 ± 0.1 min in female rats). Fabian 

et al. found that, after a constant 30 min infusion of oxytocin at rates between 550 
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and 13200 pg/min/100 g body weight, plasma oxytocin concentrations fell to 50% of 

the initial value in a median time of 126 s, and continuously infused oxytocin was 

distributed in an apparent volume of 7.3 ml/100 g body weight. Assuming a plasma 

volume of 3.4 ml/100g body weight, we calculate a plasma compartment, Cplasma = 

8.5 ml for a 250 g rat, and an extravascular fluid compartment CEVF = 9.75 ml. 

Fabian et al. measured the peak concentrations just before they stopped their 

infusions (Table 9). Ginsburg and Smith measured the peak value 1 min after the 

injection of 440 ng/100 g oxytocin in male rats (average 46 ng/ml). Finally, we mimic 

the clearance found in rats with the kidneys or the splanchnic area clamped and with 

both areas clamped (Table 9 and Table 10). 

To fit the combined model, which includes the spiking, secretion and diffusion, we 

used four sets of plasma measurements of oxytocin from independent experiments 

in which rats were given an i.v. injection of CCK.  

• conscious virgin female rats, in which blood samples were taken before and 

after i.v. injection of 20 µg/kg CCK (Leng et al., 1997).  

• conscious male rats in which blood samples taken before and after i.v. 

injection of 10 µg/kg CCK (McCann et al., 1989). 

• two groups of anaesthetized female rats, in which blood samples were taken 

before and after  i.v. injection of 20 µg/kg CCK (Luckman et al., 1993).  

 

Table 10. Peak concentration for the two-compartment diffusion model. 

Fabian et al. (1969a) 

30 min infusion 

Oxytocin Infusion  

ng/100g/ml 

Peak concentrations (ng/ml) 

 

(Fabian et al., 1969a) Model 

0.550 0.220 0.270 

3 - 1.447 

13.2 6.160 6.347 

 

 

Ginsburg & Smith 

(1959)  Injection 

Oxytocin injection 

ng/100g 

Peak concentration after 60 s (ng/ml) 

 

Ginsburg & Smith 

(1959) 

Model 

440 45.32 (+/- 6.27) 43.48 
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Results 

Reference data 

We selected 23 recordings from oxytocin neurons that showed a fast and clear 

response to CCK and in which the firing rate subsequently returned to the initial 

level.  The 23 cells had a mean (SD) spontaneous firing rate of 2.5 (0.39) spikes/s 

(range 0.02-7.9 spikes/s), measured as the average over 4-min before injection. The 

cells responded to i.v. injections of 20 µg/kg CCK with a mean increase of 1.46 

(0.74) spikes/s (range 0.57-3.6 spikes/s), measured as the difference between the 

basal firing rate and the average over the 5-min after the injection (Figure 29.A). The 

decay of the mean response from 50 s after injection was well fitted by a single 

exponential equation with a half-life of 230 s (R2 =0.88) (Figure 29.A).  

Spiking model 

For the spiking model we chose a basal mean PSP rate of 292/s (basal EPSP rate 

is equal to basal IPSP rate) to match the spontaneous firing rate of 2.5 spikes/s. 

After 5 min of basal activity, we simulated an injection of CCK as a linear increase in 

mean EPSP frequency over 20 s that declined exponentially to the basal EPSP rate 

with a half-life of 230 s. These values gave a close match to the average response 

profile of the reference set of oxytocin neurons to CCK (Figure 29.B). Figure 29.B 

shows the average of 23 runs of the spiking model. The variability of this average is 

less than the variability of the average of the reference data: the 23 model neurons 

are all identical and firing at the same mean rate, while the neurons in the reference 

data differed in intrinsic properties and mean firing rates. 

The spiking model reproduces various statistical characteristics of single oxytocin 

cells (Figure 29.C). Thus, for the neuron shown in Figure 29, by modifying only the 

basal PSP rate (Table 7b), the model matches mean spike rate over the whole 

recording (Figure 29.C1), simulating the firing rate increment response as an 

increase in EPSP rate that modifies the oxytocin neuron spiking activity (Figure 

29.C2). The model also matches well the interspike interval distribution (Figure 

29.C3), and mimics the index of dispersion of the firing rate during the complete 

recording, which measures the variability of spike rate at different bin widths (Figure 

29.C4).  
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Figure 29.  Responses of oxytocin neurons to CCK, and simulation in model cells. 
A) The average response (in 1-s bins) of 23 oxytocin neurons to i.v. injection of 20 µg/kg 
CCK. The response decays exponentially with a best-fit half-life of 230 s (dotted line). B) 
Response of a model oxytocin cell to a simulated challenge with CCK, simulated as an 
increase in PSP rate that decays exponentially with a half-life of 230 s, matching the 
measured half-life of CCK in plasma. The simulation was run 23 times with different 
random seeds, and the figure shows the average (see Tables 1&2 for model parameters). 
C1) A typical response to CCK from a single oxytocin cell (white dots). With a model cell 
(black dots) that has a HAP and an AHP it is possible to match this response closely. 
Parameter values for the model are in Table 1. C2) In this simulation, CCK increases the 
EPSP rate: the increase decays exponentially with a half-life of 230 ms. C3) The ISI 
distribution, constructed from the complete activity shown in C1, shows how often two 
consecutive spikes have a particular interval between them; the distribution from the 
model cell (black dots) closely matches that of the recorded cell (white dots). C4) The 
index of dispersion measures longer timescale spike patterning, showing how spike rate 
variability changes using different bin widths, again from the entire activity shown in C1). 
The model (black bars) closely matches the values measured in the recorded oxytocin 
neuron (white bars). 
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Secretion model 

To model stimulus-secretion coupling, we modified the previously published 

vasopressin secretion model (MacGregor & Leng, 2013) to match data from three 

experiments where oxytocin secreted from isolated posterior pituitaries was 

measured. We mimicked these protocols in the spiking model, progressively 

adapting the secretion model to fit the oxytocin data by changing six parameter 

values (kb, cθ, eθ, β, α and 𝜑). 

In the first of these experiments (Bicknell, 1988), 156 pulses at 6.5, 13, 26 and 52 

Hz were applied to the posterior pituitaries (Figure 30.A1).  

 

 

Figure 30. Oxytocin secretion model dynamics. Oxytocin secretion follows a non-linear 
function of the spiking activity. We adapted a previous model of vasopressin secretion (white 
squares) (MacGregor & Leng, 2013), modifying six parameter values to obtain our oxytocin 
model (white triangles). With those changes, we matched the oxytocin secretion from 
experiments (white circles). A1) In Bicknell’s experiments (Bicknell, 1988), when posterior 
pituitaries were electrically stimulated with 156 pulses at 6.5, 13, 26 and 52 Hz, vasopressin 
secretion (white squares) was maximal at 13 Hz. By contrast, oxytocin secretion (white 
circles) continued to increase up to 52 Hz. A2) Matching the data from Bicknell (Bicknell, 
1988) with the oxytocin model. A3) Using the same parameters, we also obtained a good 
match to data from Bondy et al. (Carolyn A. Bondy, 1987). In those experiments, glands 
were stimulated with 600 pulses at 1, 4, 8, 12, 20 and 30 Hz, and evoked secretion (S2) was 
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expressed as a ratio of S1, a reference secretion produced by a preceding stimulus at 12 Hz. 
B1) In Bicknell et al. (Bicknell et al., 1984), glands were stimulated at 13 Hz for 18-72 s: 
vasopressin secretion peaked during the first 18 s and showed subsequent fatigue (white 
squares), whereas oxytocin showed a consistent response (white circles). B2) We matched 
that response with the model using the same parameters as in A2) and A3). C) The six 
parameters changed from the model of vasopressin secretion (MacGregor & Leng, 2013). 

 

The second source of experimental data (Carolyn A. Bondy, 1987) followed a similar 

protocol, this time stimulating with 600 pulses at 1, 4, 8, 12, 20 and 30 Hz (Figure 

30.A3). 

In the third set of data (Bicknell et al., 1984), isolated rat posterior pituitaries were 

stimulated in vitro at 13 Hz for 18, 36, 54 and 72 s in a randomised order (Figure 

30.3B1). This third set of data are critical for estimating the temporal profile of 

secretion, and they showed that, unlike vasopressin secretion, which shows fatigue, 

oxytocin secretion is relatively stable over time in response to a constant frequency 

of stimulation. The modified model fits all three sets of data well (Figure 30.A2, A3, 

B2). 

How the changes in model parameters were arrived at is illustrated in Figure 31. In 

the vasopressin model, the submembrane Ca2+ concentration (e), which has a direct 

role in exocytosis (equation (30), displays fatigue at a firing rate of 13 spikes/s, and 

the rate of secretion declines during constant stimulation (Figure 31.A). 

This is inconsistent with the experimental oxytocin data. In addition, vasopressin 

secretion per pulse declines at frequencies above 13 Hz, whereas oxytocin 

secretion is facilitated. Reducing the broadening of spikes kb (Figure 31.B1) reduces 

secretion at low frequencies and increases secretion at high frequencies by 

reducing Ca2+-induced inhibition of Ca2+ entry, and reduces but does not eliminate 

the fatigue. Increasing eθ to weaken the Ca2+-induced inhibition of Ca2+ entry 

enhances secretion, particularly at high frequencies (Figure 31.B2), but fatigue is 

much more prominent after this change. Raising cθ, to reduce the sensitivity to 

cytosolic Ca2+, reduces Ca2+-induced inhibition of Ca2+ entry and so eliminates 

fatigue. Combining these three changes matched the frequency response (Figure 

31.C). To match the slope of the temporal response to a constant frequency of 13 

Hz, we also needed to change the exponent in the secretion equation, 𝜑, from 3 in 

the vasopressin model to 2, indicating a smaller cooperative activation of exocytosis 

(Neher, 2012). 
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The constant factor α scales the output of the model quantitatively to measured 

oxytocin levels. In rats, milk-ejection bursts typically contain about 100 spikes over 

about 2 s and release about 1 mU (2.2 ng) of oxytocin (Wakerley & Lincoln, 1973). 

Setting α = 3, the model simulates a release of ~2.27 ng in response to 2 s of 

stimulation at 50 spikes/s.  

 

Figure 31. Transition from a vasopressin secretion model to an oxytocin secretion 
model. In both models, secretion is proportional to the submembrane Ca2+ concentration 
e. We show here how e changes during 24-s of stimulation at constant rates of 6.5, 13, 26 
and 52 spikes/s. A) In the vasopressin model, for stimulations at 13, 26 and 52 spikes/s, e 
reaches a peak during the first 2 s of stimulation, followed by fatigue. Neither the fatigue, 
nor the early peak is present at 6.5 spikes/s. To obtain the frequency facilitation seen in 
Figure 30, we need to eliminate the fatigue at 13 spikes/s and increase the response at 
higher frequencies. B1) Decreasing kb produces less saturation at high frequencies, 
increasing the difference between responses. B2) Increasing eθ increases the peak 
response, especially at higher spike rates, but does not reduce the fatigue. B3) Increasing 
cθ eliminates the fatigue but does not separate the responses to different stimulation 
frequencies. C) Combining these three changes reproduces the frequency-facilitation of 
secretion while eliminating fatigue at 13 spikes/s. 
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This increase necessitated an increase in the scaling factor for the pool refill rate, β, 

from 50 to 120. 

Spiking plus secretion model 

We used the combined model to explore how the spiking response to CCK varies 

with the dose of CCK and with the basal firing rate, and how that response affects 

secretion. We chose basal firing rates 1, 3 and 5 spikes/s, spanning the range in the 

reference data, and simulated CCK injections of 5, 10 and 20 µg/kg. Each 

combination was run 20 times (differing by the random differences in PSP arrival 

times) and the results were averaged. Each response was calculated as the 

difference between the average firing rate in the 25 s after the peak response and 

the basal firing rate (determined after allowing enough time for the model simulation 

to reach equilibrium of secretion). Comparing responses for the same CCK dose 

and different basal firing rates (Figure 32.A1), the response to CCK is largely 

independent of the basal firing rate in the range 1-7 spikes/s. At 20 µg/kg, where 

there is the biggest difference, the response from a basal firing rate of 1 spike/s (3.5 

spikes/s) is 30% greater than that from a basal rate of 7 spikes/s (2.7 spikes/s). 

This consistency in firing rate responses to a given dose of CCK is not present in the 

secretory response, similarly calculated as the difference between basal levels and 

evoked levels. At higher basal firing rates, the secretory response is much greater 

than from a basal firing rate of 1 spike/s for all doses of CCK (5, 10, 20 µg/kg; Figure 

32.A2). The relationship between EPSP rate and firing rate in the oxytocin cell 

model is approximately linear over the range modelled here (7) so the firing rate 

increment in response to CCK is relatively independent of basal firing rate. However, 

the frequency dependence of stimulus-secretion coupling makes the secretory 

response to CCK non-linearly dependent on the absolute firing rate achieved in 

response to CCK. Hence the secretory response to CCK depends on both the basal 

firing rate and the dose of CCK. 

The influence of the AHP was examined by comparing the response of the model 

with and without an AHP (i.e. setting kAHP = 0) for a CCK injection of 20 µg/kg. With 

an AHP, the spiking response to CCK (about 4 spikes/s at peak; Figure 32.B1) is 

much less than without an AHP (about 11 spikes/s; Figure 32.B2). In the presence 

of an AHP, the profile of secretion follows that of spike activity smoothly (Figure 

32.B3).  
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Figure 32. Oxytocin spiking and secretion response to CCK. A1) Model oxytocin 
neurons respond to CCK by increasing their spike activity independently of the basal firing 
rate. The graph shows the increments in spike activity of a model cell responding to 
simulated challenges with different amounts of CCK (5, 10 and 20 µg/kg), from different 
basal firing rates (1, 3, 5 and 7 spikes/s). The same model neuron was tested 20 times, 
receiving random PSPs with the same average rate of 165, 348 583 and 895 PSPs/s. A2) 
In the same simulations as in A1, the secretion response depends on the basal firing rate. 
B1) Large differences in basal firing rate (1 spike/s in black, 7 spikes/s in grey) do not 
drastically change the firing rate response to CCK. B2) The same simulations as in B1 but 
in a model cell without an AHP. The presence of an AHP greatly reduces the response to 
CCK. B3,4) Secretion corresponding to the simulations in B1,2. The evoked secretion is 
strongly affected by the basal firing rate due to the non-linearity of the secretion response. 
In B4, the secretory response to CCK in a model cell with a basal firing rate of 7 spikes/s 
and no AHP shows a marked initial peak. C1) When a model cell firing at 1 spike/s is 
challenged with a large CCK injection (40 µg/kg), the firing rate response closely follows 
the change in the model variable e. C2) The secretory response to the challenge 
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illustrated in c1. C3) In response to a still larger challenge (100 µg/kg CCK), the firing rate 
response has a similar shape as in C1). However, e follows an acute initial increment that 
is not maintained, due to the negative feedback provoked by [Ca2+]. C4) Due to those 
changes in e, amplified because secretion is proportional to e2, oxytocin secretion follows 
the biphasic pattern observed in B4. 

 

By contrast, without an AHP, when the basal firing rate is 7 spikes/s, the initial high 

level of secretion evoked by CCK rises sharply from 40 pg/s to 235 pg/s in response 

to CCK, but decreases abruptly to 110 pg/s within 20 s before declining more 

smoothly (Figure 32.B4). To understand this behaviour, we simulated a similarly 

large spike response in the presence of an AHP. From a basal firing rate of 1 

spike/s, a simulated CCK injection of 40 µg/kg evoked a response of 8 spikes/s 

(Figure 32.C1), and was accompanied by a smooth secretory response (Figure 

32.C2). 

A larger CCK injection (100 µg/kg) evoked a response of 18 spikes/s (Figure 32.C3), 

and the accompanying secretory response rose sharply and decreased abruptly 

(Figure 32.C4), as observed in the model without an AHP (Figure 32.B4). This 

feature is because of the fatigue associated with Ca2+-induced inhibition of Ca2+ 

entry (Figure 32.C1, C3), which becomes noticeable only above firing rates of 13 

spikes/s. Thus, in the model, an abrupt pulse of oxytocin secretion can arise at the 

onset of a sustained increase in activity to a level exceeding 10 spikes/s. 

The diffusion model  

To model the oxytocin concentration in plasma, we simulated experiments that 

measured the half-life of oxytocin in plasma and its apparent volume of distribution 

following i.v. infusions of oxytocin in normal rats and in rats where the blood supply 

to the kidneys and/or the splanchnic was clamped (Figure 33.A). We created a two-

compartment model where oxytocin secretion first enters a plasma compartment 

with volume Cplasma = 8.5 ml from which it is cleared, and from which it diffuses to an 

extravascular compartment of volume CEVF = 9.75 ml ( 

Figure 28); these volumes are as estimated by Fabian et al. (1969a). We chose a 

diffusion half-life (λdiff = 61s) compatible with the diffusion of NaCl between plasma 

and extravascular fluid (Leng et al., 2001). With those parameters, we matched the 

experimental data from continuous infusion studies (Fabian et al., 1969a) with a 

clearance half-life λclr = 68 s (Table 9). Using the same parameter values, we can 
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also match the observed oxytocin clearance after a bolus injection of oxytocin 

(Ginsburg & Smith, 1959) (Figure 33.B). 

Spiking, secretion and diffusion models combined 

Combining the spiking, the secretion and the diffusion models, we tried to match the 

plasma oxytocin concentration measured in experiments where CCK was injected in 

rats. In the first experiment (Leng et al., 1997), 23 rats were injected with 20 µg/kg 

CCK. In the second, seven rats were injected with 10 µg/kg CCK (McCann et al., 

1989). Lastly, two groups of 39 and 25 rats were injected with 20 µg/kg CCK 

(Luckman et al., 1993). In all cases, oxytocin was measured by radioimmunoassay, 

but in the first, third and fourth cases, the assay used was that of Higuchi et al. 

(Higuchi et al., 1985) and oxytocin was measured in unextracted plasma. The 

second set of data measured oxytocin after plasma extraction using a different 

antibody. 

We matched the first set of data (Figure 33.C1) by simulating a basal firing rate of 

2.4 spikes/s, increasing the EPSP rate after 5 min with a simulated injection of 20 

µg/kg CCK (i.e. by the amount determined by the fits of the spiking model to 

neuronal responses to CCK; Figure 29). In the second set of data, the oxytocin 

concentration did not return to the original baseline level after the CCK injection, and 

we simulated a basal firing rate of 0.8 spikes/s that fit the final oxytocin 

concentration, not the initial concentration (Figure 33.C2). In the third set of data, we 

simulated a basal firing rate of 1.7 spikes/s to match the average of initial and final 

oxytocin concentrations (Figure 33.C3) and in the final set, we matched initial and 

final oxytocin concentrations with a basal firing rate of 0.9 spikes/s (Figure 33.C4). 

For each set of data, there is a close match to the oxytocin concentrations 

measured in the 15 min after CCK injection. 
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Figure 33. Two-compartment diffusion model and plasma oxytocin response to 
CCK. We calibrated our two-compartment diffusion model with data from two i.v. oxytocin 
protocols: after a long infusion and after a bolus injection. We then simulated the plasma 
oxytocin response to CCK to compare with four experimental datasets. A) Oxytocin 
clearance after 30-min infusion of 3 ng/100g body weight/min oxytocin. Black dots, white 
triangles and light grey diamonds show the plasma oxytocin measured (Fabian et al., 
1969a) in normal rats (black circles), rats with the kidneys or the splanchnic area clamped 
(grey triangles) and rats with both set of organs clamped (grey squares). Thick, normal, 
and thin black lines are the model results following simulations of the same protocol. The 
parameter values are given in Table 3. B) Mean (SE) plasma oxytocin after bolus (2-s) 
injection of 440 µg/100g of oxytocin (Ginsburg & Smith, 1959), white dots), matched 
(black line) by a model with the same parameter values as used in a). C) Adding the 
diffusion model to the spiking and secretion models (solid lines), we can match the CCK 
experimental response in plasma (open circles with SE shown) from four data sets by 
changing the basal PSP rate to match the first experimental point, and emulating the 

0

10

20

30

40

0 1200 2400

O
x
y
to

c
in

 (
n
g
)

time (min)

Plasma oxytocin after 30min 
infusion

A

30

70

110

0 1200 2400 3600 4800

O
x
y
to

c
in

 (
p
g
/m

l)

Plasma oxytocin 
response to CCK i.v.

Series1

Plasma
esc

CCK 20µg/kg

C1

Experimental data

Model

0

20

40

60

0 300 600 900

O
x
y
to

c
in

 (
n
g
 /

 m
l)
 

time (min)

Plasma oxytocin after a large 
injection of oxytocin

Experimental data

ClHL 68s 2s injection
[OXT] pg/ml

B

2

12

22

0 1200 2400 3600

CCK 10µg/kg

C2

0

40

80

120

0 1200 2400

O
x
y
to

c
in

 (
p
g
/m

l)

time (min)

CCK
20µg/kg

C3

0

30

60

0 1200 2400

time (min)

C4

CCK
20µg/kg

Experimental data 

Model 

model 

model 

model 

Double clamp 

Single clamp 

Normal rats 



106 
 

amount of CCK injected. C1) Data from 23 conscious female rats injected with 20 µg/kg 
CCK (Leng et al., 1997). C2) Data from 5-10 conscious male rats given 10 µg/kg CCK 
(McCann et al., 1989). C3) and C4) Anesthetized female rats injected with 20 µg/kg CCK 
from (Luckman et al., 1993). Modelled data are shifted by 60 s in C1 to C4, assuming that 
the CCK injections were given slowly. The other model parameters are as obtained to 
match the spiking response to CCK (Table 1). 

 

The role of the AHP 

As shown previously (Maícas-Royo et al., 2016), the AHP “smooths” the firing rate 

of oxytocin cells reducing its variability, and it reduces the amplitude of the response 

to CCK (Figure 34.A). As we predicted, the AHP has an even bigger effect in 

reducing the variability (SD) of basal oxytocin secretion (Figure 34.B) and basal 

oxytocin concentrations (Figure 34.C). 

We went on to study why this reduction in variability might be important. We used 

the model to mimic the same firing rate response to a simulated challenge with and 

without an AHP. We ran the model with an AHP 20 times (randomising the PSP 

arrival times) to produce an average basal firing rate of 1.5 spikes/s, and simulated 

the response to 10 µg/kg CCK. Then, we ran the model without an AHP, adjusting 

the mean PSP rate to produce the same average basal firing rate, and challenged it 

with a simulated injection of 5 µg/kg CCK to evoke a similar firing rate response. 

Although the firing rate responses to CCK are similar in magnitude, they differ in 

variability.  

To illustrate how this reduction in variability helps to distinguish between different 

levels of mean activity, we ran the model with and without an AHP for 20 min at 

mean firing rates of 1, 4, and 7 spikes/s. The modelled secretion varies according to 

the history of activity and secretion, so we plotted the actual firing rate in each 6-s 

bin against the secretion in that bin (Figure 35.E-F). In the model with an AHP, the 

rates of secretion are consistently separated (Figure 35.E), but in the model without 

an AHP they overlap substantially (Figure 35.F). 

Finally, we considered how the AHP affects the reliability of the signal from a single 

oxytocin neuron. We ran the model with and without an AHP, as a single neuron 

firing on average at 1, 3 and 7 spikes/s. We calculated what increase in EPSP rate 

in each condition would raise the mean firing rate by 1 spike/s on average.  
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Figure 34. The effect of the 
AHP. The AHP affects the 
baseline behaviour and the 
response to CCK (20 µg/kg i.v.) 
in the spike rate (A), secretion 
(B) and plasma concentration 
(C). SD: standard deviation 
during the 1200-s period before 
CCK injection. A) The model 
was set to produce a basal 
mean firing rate of 1 spike/s, 
which increased to 4.9 spikes/s 
after CCK (black). Removing the 
AHP (grey), but keeping the 
same initial PSP rate, produces 
a slightly higher basal firing rate 
and a much greater response to 
CCK. The basal firing rate, 
measured between 800 and 
2000 s, is less variable with an 
AHP than without it as apparent 
from the SD (bars). B) Secretion 
is a non-linear function of the 
firing rate. When there is a fast 
change in firing rate, the non-
linearity provokes a very much 
larger secretory response in a 
model without an AHP. The 
basal secretion rate is much less 
variable with an AHP than 
without it. C) Without an AHP, 
the plasma oxytocin 
concentration increases hugely 
in response to CCK injection. 
Before CCK, the basal oxytocin 
concentration in plasma is much 
less variable with an AHP than 
without it. 

 

 

We then tested the model with a pattern of EPSPs that alternated between the 

higher (challenge) and lower (basal) level, for different durations (1-50 s), and for a 

total run of 100 min (Figure 36), and compared the modelled total secretion during 

each challenge episode with that in the preceding basal episode. If the secretion 

during the challenge episode did not exceed that during the corresponding basal 

episode, we registered this as a “detection error”, and counted the number of such 

errors in each trial. 
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Figure 35. The role of the AHP in signal response. (A-B) Average firing rate of 20 runs 
of the same model cell. We compare average spiking and secretion responses to CCK 
when there is an AHP in the model (A and C) and when there is not (B and D). Means are 
in black and SD in grey. A) Modelling a basal firing rate of 1.5 spikes/s with a PSP rate of 
210/s and an AHP. In response to a simulated injection of 10 µg/kg, the model cell 
responds with an increment of ~ 2 spikes/s. b) To obtain a similar average response 
without an AHP, we reduced the PSP rate to 165/s and the CCK injection to 5 µg/kg. 
Although the mean responses are similar, the SD (grey) is much larger without an AHP. 
C) and D). Secretion rates accompanying the firing rate simulations in A) and B). 
Secretion shows an even bigger difference in variability without an AHP due to the non-
linearity between secretion and firing rate. E) Another way to see the role of the AHP is to 
look at oxytocin secretion in 4-s intervals in response to PSPs at a constant mean rate. In 
models with and without an AHP, PSP rates were chosen to produce mean firing rates of 
1, 4 and 7 spikes/s (large diamonds). Because of the randomness of PSP arrival times, 
the firing rate varies from interval to interval around these means, and this variability is 
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greater without an AHP. This variability is amplified by the non-linearity of stimulus-
secretion coupling. The dot clouds represent the firing rates in 6-s intervals and the 
concurrent secretion during 1200s when the modelled neuron produces average firing 
rates of 1 (dark grey crosses), 4 (grey circles) and 7 spikes/s (black pluses). In a model 
with an AHP, the firing rates and secretion measured in every interval both consistently 
distinguish the three levels of PSP rate. F) In a model without an AHP, there is extensive 
overlap. 

 

The error rate is consistently much higher without an AHP: for example, at 3 

spikes/s, 1-s challenge episodes are not detected in 37% of trials of a neuron 

without an AHP, but in only 20% of trials of a neuron with an AHP (Figure 36.C-D). 

With an AHP, the mean (SD) second-by second coefficient of variation of firing rate 

(SD/mean) in the 20 runs for the 50 s before CCK plus the 300 s after is 0.43 (0.11) 

(Figure 35.A), compared to 0.60 (0.13) for the model without an AHP (Figure 35.B). 

For secretion: the corresponding coefficient of variation is 0.54 (0.12) in the model 

with an AHP (Figure 35.C), compared to 0.81 (0.17) in the model without an AHP 

(Figure 35.D). 

Heterogeneity in basal firing rate and response to CCK 

In the reference data, the basal firing rate and the response to CCK are both 

heterogeneous: the mean SD of the basal firing rate (in 1-s bins) was 2.34, close to 

the SD = 2 reported previously for oxytocin neuron firing rates (Sabatier et al., 

2004). This increased to 2.84 over the 5 min after injection of CCK, also consistent 

with previous data (Velmurugan et al., 2010). To evaluate how that heterogeneity 

affects secretion, we ran the model with the recorded spike times of those 23 

neurons, obtaining the predicted secretion and its mean SD (Figure 37.A). 

In Figure 29, we simulated the average response of those 23 neurons using 23 runs 

of a single model neuron with randomised input arrival times at the same mean rate. 

This gives a much lower SD of firing rate (Figure 37.B1). Moreover, although the 

averaged modelled secretion was close to the predicted in vivo secretion (Figure 

37.B1), the mean basal secretion (3.34) is much lower than the predicted mean 

basal secretion (7.11). That leads to an overestimate of the predicted basal firing 

rate when fitting the model to plasma oxytocin measurements, as we did in Fig 6c. 

The SD of the secretion rate was also much lower. 
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Figure 36. The role of the AHP in the detection of a transient signal. A) We ran the 
model as a single neuron with a mean basal firing rate (FR) of 1, 3 and 7 spikes/s. By 
modifying the EPSP rate, we raised the firing rate by an average of 1 spike/s for a 10-s 
challenge episode every 20 s for 100 min. The graphs plot the model outputs (firing rate, 
secretion per second and secretion per 10-s) for a model neuron firing at 3 spikes/s for the 
first 100 s of the simulation. B) as in A) but for a model with no AHP. Note that in A), 
episodes of greater EPSP rate are consistently associated with greater secretion (as 
measured in 10-s bins), but this is not true of a model with no AHP. C)-D) Similar 
experiments to those in A) and B) were performed to assess challenge episodes of different 
duration (1, 3, 5, 10, 15, 30 and 50 s). C) Shows the percentage of errors for a neuron firing 
at a basal firing rate of 1, 3 and 7 spikes/s when there is an AHP. D) Same but without an 
AHP. In all cases, there is a much smaller error rate when there is an AHP. 
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Therefore, we introduced heterogeneity in our model by simulating a population of 

23 neurons with independently generated values for PSP rate (Ire and Iri sampled 

from a lognormal distribution with mean (SD) = 292 (292), see Table 11) to closely 

match both the average firing rate of the reference neurons and the SD of their 

basal firing rate (Figure 37.B2). However, the SD of the firing rate of the 

heterogeneous model cells did not change after CCK (2.23 at basal level and 2.24 

after CCK). Consequently, the secretion rate is similar to the predicted secretion 

from the reference neurons at the baseline, but does not reach the predicted levels 

of CCK response. 

We therefore also introduced heterogeneity to the CCK response by simulating a 

lognormally distributed kCCK of mean (SD) = 20 (20). With that change, the match to 

the firing rate was still good and the SD of the basal firing rate (2.21) and the SD 

during the 5 min after CCK (2.93) were close to the reference data (Figure 37.B3). In 

addition, the model mimicked the predicted in vivo secretion closely in both average 

and SD (see Table 11 for the parameter values of the 23 neurons). 

To study the impact of the AHP, we made the AHP = 0 and, in the model without 

heterogeneity we reduced the basal PSP rate from 292 to 203.5 and kCCK from 20 to 

7 to match the mean firing rate of the reference data (Figure 37.C1). The resulting 

SD of the firing rate was 1.33 at the basal level and 1.71 after CCK (Figure 37.C1). 

The secretion still matched the predicted in vivo reference data but not the SD. We 

then introduced heterogeneity by varying the PSP rate (lognormal distribution with 

mean (SD) = 203.5 (203.5)) and kCCK (lognormal distribution with mean (SD) = 7 

(7)). This gave a raised mean basal firing rate of 3.06 spikes/s, and a mean 

response magnitude of 1.2 spikes/s over the 5 min after CCK (Figure 37.C2). The 

firing rate SD was 4.27 at basal and 4.9 after CCK, much higher than in the 

reference data. The close match to predicted secretion was lost (see Table 5 for the 

parameter values of the 23 neurons without an AHP). Thus a close match to both 

the mean and the variability of the reference data (Figure 37.A) was obtained by 

modelling a population of neurons matching the heterogeneity of those data using a 

model with an AHP, but not by using a model without an AHP. 
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Table 11. Spiking parameter values to simulate heterogeneity in an oxytocin neuron 
population as shown in Figure 37. 

 With an AHP Without an AHP 

Neuron 
Model 

Random basal 
firing rate 

Random basal 
FR and  CCK 

response 
Model 

Random basal 
FR and  CCK 

response 

Ire & Iri kCCK Ire & Iri kCCK Ire & Iri kCCK Ire & Iri kCCK Ire & Iri kCCK 

1 

292 20 

112 

20 

112 13.9 

203,5 7 

71 16.1 

2 63 63 7.5 322 3.7 

3 68 68 5.6 101 2.5 

4 92 92 55.3 490 1.7 

5 180 180 18.0 71 5.2 

6 74 74 12.0 292 6.1 

7 278 278 8.2 208 5.1 

8 488 488 5.5 85 8.0 

9 203 203 8.0 43 6.5 

10 69 69 8.7 335 5.4 

11 237 237 10.5 587 12.3 

12 279 279 16.8 104 3.8 

13 411 411 41.0 622 1.1 

14 156 156 14.0 114 13.2 

15 494 494 23.4 83 25.5 

16 383 383 41.7 63 3.9 

17 218 218 35.1 240 4.0 

18 699 699 2.3 36 3.5 

19 204 204 27.3 410 12.7 

20 1026 1026 20.6 104 3.2 

21 67 67 15.8 127 5.0 

22 335 335 38.9 129 10.8 

23 574 574 37.2 45 2.0 

Average 291.7 291.7 20.3 203.7 7.0 
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Figure 37. Heterogeneity in oxytocin spiking activity and response to CCK. From left to 
right, each set of panels shows the average firing rate of the 23 neurons (in 1-s bins), the SD 
of the firing rate, the predicted in vivo secretion (in 1-s bins), and the SD of the predicted 
secretion A) shows data from the 23 reference neurones. B1) Averages of 23 runs of the 
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model with random PSP arrival times at a fixed PSP rate. The SD of the basal firing rate is 
much smaller than in a, and does not increase after CCK. The basal secretion is lower than 
in a but the increment after CCK (~20 pg/s) is similar. The SD in the model is also much 
lower than in a. B2) To simulate heterogeneity in oxytocin neurons, we varied the basal PSP 
rate using a lognormal distribution. The heterogeneity elevates the SD to the level in a, but 
the SD still does not increase after CCK. The secretion is close to that in a. B3) Adding 
heterogeneity to the response to CCK gives a very close match to all panels in a. C1) In 23 
homogeneous model cells without an AHP, a match to the mean firing rates of the reference 
neurons is obtained by reducing the basal PSP rate and kCCK. The SD of the firing rate is 
lower than in a but higher than in B1. The basal secretion and the SD of secretion are lower 
than in a. C2) Adding heterogeneity to the model without an AHP produced a higher basal 
firing rate and smaller response to CCK, but greatly increased the SD of the firing rate and 
the secretion rate to levels much higher than in a. Thus, a close match to both the mean and 
the variability of the reference data (A) was obtained by modelling a population of neurons 
matching the heterogeneity of those data using a model with an AHP, but not by using a 
model without an AHP. The parameter changes used for the simulations shown are given in 
Table 11. 

 

Discussion 
In the present study, we used a previously published integrate-and-fire based model 

of oxytocin neuron activity. We have shown elsewhere that this model is closely 

consistent with a Hodgkin-Huxley type model that represents the AHP and HAP in a 

biophysically meaningful way consistent with experimental data from in vitro 

experiments (Leng et al., 2017). Real oxytocin neurons vary in their intrinsic 

properties, in their basal firing rates, and in their responsiveness to CCK. In the 

present study, we began by considering the population of oxytocin neurons as 

identical, differing in their behaviour only as a result of differences in the random 

arrival times of PSPs. The model neurons are however ‘typical’ of real oxytocin 

neurons, and we simulated a response to CCK that matches the average response 

of real neurons to CCK. We did so by the minimalist assumption that the mean rate 

at which EPSPs arrive is proportional to the CCK concentration in plasma, which 

decays exponentially to zero after bolus injection. The decay of plasma CCK 

estimated in the present study from the recordings of oxytocin cells (230 s) is close 

to the half-life of CCK measured in human plasma (about 4 min) (Jebbink et al., 

1990). 

To this spiking model, we added a model of stimulus-secretion coupling adapted 

from a model used previously to model stimulus-secretion coupling in vasopressin 

neurons. We adapted that model to match four sets of published data on oxytocin 

secretion from isolated posterior pituitaries. 
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The model expresses the rate of oxytocin secretion from a single neuron as a 

continuous variable. This understates the variability of secretion from a single cell. 

Oxytocin is secreted in discrete packets – vesicles that each contain about 85,000 

molecules of oxytocin - and the rate at which these vesicles are secreted from a 

single cell at baseline is low – about 1-4/s (Leng & Ludwig, 2008). A more accurate 

model would represent secretion as a stochastic process, not as a continuous 

deterministic process. In the context of the present model, we can better understand 

the variable (s), described here as representing the rate of secretion, as rather 

reflecting the instantaneous probability of vesicle exocytosis. However, as we are 

using this model to simulate the total secretion from the population, it seemed 

reasonable to accept a continuous representation of secretion as approximating the 

average of many stochastic processes. 

The secretion model is a highly simplified representation of mechanisms in the 

nerve terminals. The terminals express a variety of Ca2+ channels (Lemos et al., 

2012) and there is evidence that Ca2+ release from intracellular stores also has a 

role (McNally et al., 2014). Exocytosis is also modulated by activity-dependent 

secretion of several modulators, including ATP (Knott et al., 2008), adenosine (Knott 

et al., 2007) and endogenous opioids (Brown et al., 2000; Velázquez-Marrero et al., 

2010). The terminals do not contain clearly separate pools of readily-releasable and 

reserve vesicles, but rather a heterogeneous population differing in releasability 

(Seward et al., 1995). Other mechanisms also affect stimulus-secretion coupling, 

including changes in axonal excitability that result from activity-dependent changes 

in extracellular potassium concentration (Dyball et al., 1988; Dyball & McKenzie1, 

2000). In this study our purpose was not to construct a detailed model of all of the 

mechanisms that contribute to stimulus-secretion coupling, but rather to produce a 

minimalist model that by matching available data on stimulus-secretion coupling 

would enable us to predict secretion from spiking activity (Gainer et al., 1986; 

Nowycky et al., 1998; Dyball & McKenzie1, 2000; Marrero & Lemos, 2003). 

Combining the spiking model with this secretion model allowed us to model the 

activity-dependent output of oxytocin cells. To relate this to measurements of 

secretion in vivo, we needed to scale the output of the model by choosing an 

appropriate value for the scaling factor α. The in vitro measurements used to fit the 

model report variable absolute levels of oxytocin secretion; in these experiments 

glands are impaled on stimulating electrodes, and exactly where the glands are 
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impaled will determine what proportion of the axons are stimulated, and there will be 

variable damage to axons. Stripping neural lobes from the adjacent intermediate 

lobe reduces the volume of tissue impaled and makes it more likely that the tissue is 

effectively stimulated, but entails greater tissue damage. In such experiments 

(Bicknell et al., 1983), 6 min of stimulation at 13 Hz released up to 9 ng oxytocin. 

Matching this with the secretion model suggests a value of α = 1.5 as a lower bound 

of plausible values. Wakerley and Lincoln (Wakerley & Lincoln, 1973) estimated 

stimulus-evoked release in lactating rats by stimulating the neural stalk and 

comparing the resultant increase in intramammary pressure with that evoked by i.v. 

injections of oxytocin: they estimated that about 1 mU was released by 4 s of 

stimulation at 50 Hz, consistent with α = 2. However, the response to stimulation in 

vivo varies with the precise placement of the electrode and with the stimulus current 

used. There is one circumstance, which does not involve that uncertainty. In the 

anesthetised lactating rat, suckling evokes intermittent milk-ejection bursts in 

oxytocin neurons which typically contain between 50 and 100 spikes and which last 

for about 2 s. These bursts produce an abrupt rise in intramammary pressure that 

can be mimicked by i.v. injection of 0.5 - I mU oxytocin (1.1 - 2.2 ng). The release of 

2.2 ng oxytocin by 2 s of stimulation at 50 Hz in the model is closely approximated 

by a value of α = 3, which was chosen for subsequent tests of the model. 

To predict the consequences of oxytocin secretion for plasma concentrations, we 

also needed to model the clearance of oxytocin. Early studies in the rat studied 

clearance in two ways: by infusing oxytocin continuously and measuring the 

achieved concentration at equilibrium and the decline after stopping infusion (Fabian 

et al., 1969a), and by injecting large amounts as a bolus and measuring the decline 

(Ginsburg & Smith, 1959). In the former case, experiments studied the mechanisms 

of clearance by clamping vessels to the kidneys and splanchnic area. These two 

sets of data could mostly be well matched by a two-compartment model, except 

that, in data from rats with venous clamps, oxytocin concentrations remained 

elevated above predicted levels in a way that (Fabian et al., 1969a) proposed arose 

from a time and surgery-dependent increase in the apparent distribution volume. 

This, we did not attempt to mimic in the model. 

Having selected a value for α, and with a validated model for plasma clearance of 

oxytocin, we could use the model to predict the changes in plasma concentration 

that result from the response of oxytocin neurons to CCK. For this, we had four sets 
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of data in which oxytocin was measured in different conditions (conscious and 

anaesthetised rats, male and female rats) at two different doses of CCK and using 

two different radioimmunoassays. 

Matching the initial basal level of secretion in these data implied differences in the 

basal firing rates of oxytocin neurons in the four conditions. The mean basal firing 

rates inferred from the model were 2.4 spikes/s for conscious female rats (Figure 

33.C1), 0.8 spikes/s for conscious male rats (Figure 33.C2), and 1.7 spikes/s and 

0.9 spikes/s for urethane-anaesthetised female rats (Figure 33.C3-4). These are 

lower than the basal firing rates recorded from the supraoptic nucleus of urethane-

anaesthetised virgin female rats which are generally about 2.5 spikes/s (Bhumbra & 

Dyball, 2004; Sabatier et al., 2004), but this difference is as expected, given that the 

electrophysiological recordings are from rats in which the hypothalamus has been 

exposed by transpharyngeal surgery. The trauma and blood loss entailed in this 

surgery increases the basal activity of both oxytocin and vasopressin neurons. 

Across these four sets of data there is good agreement between model predictions 

of the response to CCK and experimentally measured levels. 

We went on to use the model to investigate the role of the AHP. This activity-

dependent potential, which is pronounced after high frequency spiking, is important 

in shaping the profile of milk-ejection bursts (Rossoni et al., 2008). However, the 

AHP is also active at low basal firing rates, and it both restrains basal activity and 

reduces the variability of firing rate (Maícas-Royo et al., 2016). Secretion is coupled 

non-linearly to firing rate, and as a result, variability of firing rate produces an 

amplified variability of secretion. 

The extent of this variability is illustrated in Figure 35, which shows that for an 

oxytocin neuron firing at 7 spikes/s, the secretion in 6-s bins is very variable, but is 

always distinct from the secretion resulting from a firing rate of 4 spikes/s. However, 

for a neuron without an AHP there is considerable overlap: the mean spike rate 

cannot be reliably estimated from the secretion measured in a given 6-s bin. This 

variability is of little consequence to plasma levels in the rat: oxytocin in plasma has 

a half-life of about a minute, and levels reflect the activity of about 9000 neurons. 

However, for smaller animals, such variability may be more problematic. In zebrafish 

for example, the ortholog of oxytocin, isotocin, is expressed in only a few tens of 

neurons (Herget et al., 2017). 
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In mammals, small subsets of magnocellular neurons project to diverse sites in the 

brain, and at these sites, stability of oxytocin secretion rates might also be important. 

We have shown (Figure 36) that even changes in spike activity that have large 

functional consequences (1 spike/s) cannot be consistently detected as changes in 

secretion from a single neuron unless secretion is averaged over many seconds. 

Without an AHP, only the average secretion over 30 s will consistently reveal a rise 

in mean firing rate. Thus, the output of a single oxytocin neuron is a very noisy 

reflection of the signal that determines the mean level of its afferent inputs, but the 

presence of an AHP markedly enhances its signal detection ability. This may be 

important for a small population of neurons, including for the small subsets of 

oxytocin neurons that project to various forebrain sites, but is much less important 

for the large population that projects to the pituitary. 

An important consideration in inferring physiological significance to the behaviour of 

a single neuron is how population heterogeneity may temper those inferences. 

Oxytocin neurons are certainly heterogeneous – in their basal firing rates, in their 

responsiveness to physiological stimuli, and in their intrinsic membrane properties 

including those that determine the HAP and the AHP. Here we simulated some of 

this heterogeneity by running our single neuron model with varied synaptic input 

rates, and by introducing variability into the simulated CCK challenge. The activity 

dependence of the AHP means that it has a stronger inhibitory effect on more active 

neurons, pulling them closer to the mean firing rate. Thus, as well as reducing signal 

variability within single neurons, the AHP reduces the variability of firing rate of a 

heterogeneous population (Figure 37), with an even larger effect on the variability of 

secretion rate because of the non-linear coupling of firing rate to secretion. 

A full appreciation of the effects of heterogeneity is beyond the scope of the present 

paper. It remains to be determined how variability in intrinsic properties interacts 

with variability in input rates, and how variability in the population signal affects 

secretion might depend on assumptions about the independence of input signals. 

Each oxytocin neuron receives many synaptic inputs, and it is likely that these are 

from overlapping subsets of a larger pre-synaptic population, resulting in many 

neurons receiving the same input noise. There is extensive data already in the 

literature on both the electrophysiological responses of oxytocin neurons to different 

stimuli and on associated plasma oxytocin responses, giving a potentially rich 

source of material to test and refine the present model. 
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Conclusions to the second paper 
This paper took time. At least two years of work before we were happy with it. It 

involves three models, connected but also independent: spiking, secretion and 

plasma dynamics. Thus, the test results on one of them were always affecting the 

others. If one parameter value was changed in the spiking activity, every test for 

every model had to be run again. Due to the amount of experimental data we were 

trying to mimic, that happened many times.  

In the end, it was worth the effort. The computational model mimicked remarkably 

well the experimental data. Sometimes the results were so good that it looked like 

we were fitting the model for every experiment to get a perfect match. However, the 

only thing we were changing was the basal firing rate and the amount of CCK 

injected, according to the experimental data.  

That robustness and accuracy matching different experiment results, legitimates the 

second part of the work, where we showed the role of the AHP and heterogeneity in 

secretion and plasma oxytocin.  

In addition, it gave us a powerful tool to explore the role of magnocellular oxytocin 

neurones in other physiological processes: osmotic pressure and hypovolemia.  
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Chapter 5 (paper): 

Lamina terminalis, oxytocin neurons and the rat 

osmotic homeostasis. A computational model. 
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Introduction to the third paper 

 
Maícas Royo J, Leng G & MacGregor DJ (2019). The spiking and secretory activity 
of oxytocin neurones in response to osmotic stimulation: a computational model. 
The Journal of Physiology;  

 

This chapter is presented in a paper format because it has been accepted and 

published. I am first author, with my supervisors Gareth Leng and Duncan 

MacGregor as the other two co-authors. As we submitted the manuscript to the 

Journal of Physiology, there is a different notation than in the rest of the thesis. 

When expressing units in formulas or in the text, units in the quotient are expressed 

as -1. For instance, spikes s-1 is written instead of spikes/s. 

In this chapter/paper it is shown how the oxytocin model described in the previous 

chapter is used to mimic experimental data related with the role of oxytocin in the 

regulation of osmotic pressure and hypovolemia.  

We focused on those topics because the response of oxytocin neurones to them 

has been described extensively in the literature, while, at the same time, it is not 

clear what is the exact origin and nature of the inputs that oxytocin neurones 

respond to in those circumstances. 

The model was used as described in the previous papers, only changing the basal 

firing rate and the ratio between excitatory and inhibitory postsynaptic potentials, 

which are key to interpret the inputs that oxytocin neurones receive from 

osmoreceptors in the circumventricular organs. As I was mimicking experiments 

where the rats had different weights, I introduced that variable in our model.  

I also present a new model that is an attempt to mimic the Na+ dynamics in the rat, 

as the oxytocin neurones seem to respond linearly to that concentration.   

The model simulates populations of up to 100 neurones, programmed by parallel 

computing. Importantly, heterogeneity is also present in this last version of the 

model. The models allow us to introduce heterogeneity in multiple parameters but I 

have been focusing on the inputs that every neuron has, reflecting their individual 

firing rate.  
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As in the previous papers, I developed the models, ran all the tests, fitted the 

parameters manually by trial and error and wrote the manuscript. As in the previous 

papers, my supervisors helped me with the writing by patiently correcting my drafts 

to improve the English.  

Introduction 
Oxytocin neurones are large, multifunctional, multisensory neurones in the 

hypothalamus that subserve a variety of important physiological functions. The great 

majority of these neurones project an axon to the posterior lobe of the pituitary and 

some of these have axon collaterals that sparsely innervate diverse forebrain 

regions. At the pituitary, they secrete oxytocin into the systemic circulation, 

regulated by action potentials (spikes) propagated in their axons, but they can also 

release large amounts of oxytocin into the hypothalamus from their dendrites. 

Dendritic release is semi-independent of spike activity: it can be triggered by 

peptides that induce intracellular calcium release as well as by voltage-gated 

calcium entry triggered by spikes (Ludwig, 1998). The coupling of spike activity to 

dendritic release is plastic: it depends on the availability of dendritic vesicles for 

spike-dependent release, and this is regulated by peptide actions at the dendrites. 

Accordingly, central (dendritic) and peripheral (axonal) release of oxytocin are 

regulated differentially and differently in different physiological states (Ludwig & 

Leng, 2006). 

Oxytocin secretion is essential for milk let-down in lactation and is an important 

though not essential regulator of the progress of parturition in mammals (Higuchi et 

al., 1985; Russell & Leng, 1998).  At term pregnancy, in response to signals from 

the contracting uterus; and in lactation, in response to the suckling of young, 

oxytocin neurones discharge in quasi-synchronous intermittent bursts that lead to 

pulsatile secretion of oxytocin. The approximate synchrony arises from dendro-

dendritic interactions involving oxytocin release (Perlmutter et al., 1984), and it 

occurs in conditions when dendritic stores of oxytocin have been primed to be 

available for spike-dependent release (Rossoni et al., 2008). However, at other 

times, and in the absence of these specific stimuli, oxytocin neurones fire 

independently and do not show bursting activity. At these times, spike activity 

primarily governs axonal release, mainly secretion from the pituitary (Ludwig & 

Leng, 2006).  
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In rodents and in some but not all other mammals (Rasmussen et al., 2003, 2004), 

oxytocin is regulated by plasma osmotic pressure and blood volume to control 

sodium excretion at the kidneys (Zimmerman et al., 2017), and by a wide range of 

signals that regulate appetite and energy expenditure (Leng & Sabatier, 2017). In 

response to these stimuli, oxytocin cells fire continuously and proportionately to the 

challenge, leading to sustained increases in plasma oxytocin concentration. 

We now have a good understanding of the intrinsic properties of oxytocin neurones 

that underlie their spiking activity from electrophysiological studies in vitro (e.g. 

Hatton & Li, 1999; Pittman et al., 1999; Armstrong et al., 2010; Brown et al., 2013). 

Spikes in these neurones arise from perturbations in membrane potential evoked by 

synaptic inputs that produce excitatory and inhibitory post-synaptic potentials 

(EPSPs and IPSPs). When a spike is triggered, a hyperpolarising afterpotential 

(HAP) is evoked that imposes a relative refractory period of typically about 30 ms. 

Spikes also evoke a small but long lasting afterhyperpolarisation (AHP) that is the 

result of Ca2+-activated K+ conductances. These two spike-dependent changes in 

excitability account for the spontaneous spiking activity of most oxytocin neurones in 

vivo (Richard et al., 1997; Leng et al., 1999; Hatton & Wang, 2008; Brown et al., 

2013), as indicated by the excellent fit to recorded patterns of spike activity that can 

be achieved with a Hodgkin-Huxley type model of the oxytocin neurone stimulated 

by a randomly arriving mixture of simulated EPSPs and IPSPs (Leng et al., 2017). 

This model in turn can be well approximated by a leaky integrate-and-fire single 

neurone model adapted to include a simulated HAP and AHP (Maícas-Royo et al., 

2016). The stimulus-secretion properties of the neurosecretory terminals have also 

been well characterised (Bicknell et al., 1984; Bicknell, 1988). Stimulus-secretion 

coupling is highly non-linear, but the features of this can also be modelled in a way 

that matches experimental data closely (MacGregor & Leng, 2013). Finally, the 

clearance of oxytocin from the blood has been extensively characterised (Ginsburg 

& Smith, 1959; Fabian et al., 1969a; Leng & Sabatier, 2016) .  

We have recently described a model linking oxytocin neurone properties to spike 

activity, spike activity to secretion, and secretion to the dynamics of oxytocin in 

plasma (Maícas-Royo et al., 2018). This model gives a close quantitative match to 

the behaviour of oxytocin neurones in response to an appetite-related challenge 

(systemic injection of the gut hormone cholecystokinin) and to the ensuing changes 

in plasma oxytocin concentration. In that work, we used experimental data to fit the 
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model. Here we have tested this combined model. To do so we needed independent 

data comprising measurements of oxytocin neurone spiking activity and 

measurements of plasma oxytocin concentration. 

The greatest abundance of such data in the published literature comes from studies 

of the osmotic responsiveness of oxytocin neurones. These neurones respond to 

increases in plasma osmotic pressure partly as a result of intrinsic osmosensitivity, 

but also as a result of increased afferent input arising directly and indirectly from 

osmoreceptors in other forebrain regions (Bourque, 2008; Zimmerman et al., 2017). 

Specifically, osmosensitive neurones in the subfornical organ and organum 

vasculosum of the lamina terminalis (OVLT) project directly to the oxytocin (and 

vasopressin) neurones of the supraoptic and paraventricular nuclei, and also 

indirectly via the nucleus medianus (Prager-Khoutorsky & Bourque, 2015; Choe et 

al., 2016). It appears that the osmotically regulated input involves a direct excitatory 

glutamatergic component, but also an inhibitory component, as osmotic stimuli result 

in increases in both GABA and glutamate release in the supraoptic nucleus as 

measured by microdialysis in vivo. In earlier modelling work, we showed that the 

combined presence of EPSPs and IPSPs in the osmotically regulated input 

linearises the response of the oxytocin neurones and extends their dynamic range 

(Leng et al., 2001). 

Using these data to test the combined model presented a fresh challenge. The 

published experiments used a variety of experimental protocols: some measured 

activity and secretion in conditions of chronic challenge (Wakerley et al., 1978; 

Verbalis et al., 1986; Stricker et al., 1987; Verbalis & Dohanics, 1991), others used 

an acute (Higuchi et al., 1988) or a slow intravenous sodium load (Leng et al., 

2001), others again an acute i.p. injection of hypertonic saline (Brimble & Dyball, 

1977). To make full use of the data we had to first model the experimental 

challenges themselves. We did so by assuming that oxytocin cells increase their 

activity as a consequence of changes in [Na+] in the extracellular environment of 

osmoreceptive neurones, and that this results in an increase in EPSP and IPSP rate 

that is linearly proportional to [Na+]. We therefore had to infer the dynamic profile of 

changes in local [Na+] arising in the different experimental circumstances from 

available data on plasma [Na+] and osmotic pressure. We neglected the intrinsic 

osmosensitivity of oxytocin neurones (Prager-Khoutorsky & Bourque, 2015), but this 

simplification has no substantial consequence as in the model the effects of a small 
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direct depolarisation that is linearly proportional to osmotic pressure is very similar to 

that of an increase in mean EPSP rate. 

Given this model of the experimental challenges, we show here that the previously 

published model of the oxytocin system appears to be fully quantitatively predictive. 

From spike activity, the changes in plasma oxytocin concentration can be reliably 

inferred and vice versa. We also show how the model can give predictive insight into 

features of physiological behaviour, in particular by revealing a likely mechanism by 

which hypovolemia alters the gain of osmoresponsiveness. 

Methods 
We used our previous models for the spiking (Maícas-Royo et al., 2016), secretion, 

and plasma oxytocin dynamics (Maícas-Royo et al., 2018), adding a new model to 

mimic how osmotic pressure changes due to either intra ventricular (i.v.) or intra 

peritoneal (i.p.) NaCl injection or infusion, and how that osmotic pressure is encoded 

as an input signal to the spiking model. The models were developed using software 

written in C++ with a graphical interface based in the open-source wxWidgets 

library. The software is able to simulate a population of oxytocin neurons by running 

multiple threads in parallel, summing individual neurons’ secretion output to drive a 

single thread running the plasma oxytocin model. Population simulations were run 

with 100 neurones for up to 10,000 s, using a 1-ms step size. A single run simulating 

10,000s of activity of 100 neurones responding to a hyperosmotic infusion takes 60 

s, running on a quad core Intel i7-2600K at 3.40 GHz processor.  

Post synaptic potentials  

The integrate-and-fire based spiking model (Maícas-Royo et al., 2016) simulates the 

firing activity of oxytocin cells in response to excitatory and inhibitory postsynaptic 

potentials (EPSPs and IPSPs). We model PSPs as exponentially decaying 

perturbations to the membrane voltage V, arriving at Poisson random intervals at 

mean rates Ire and Iri. Thus, the time elapsed since the previous EPSP, etime, is 

defined: 

 

 

𝑒𝑡𝑖𝑚𝑒 =
− log(1 − 𝑁𝑟𝑎𝑛𝑑)

𝐼𝑟𝑒
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where Nrand is a uniform random between 0 and 1. IPSP arrival times, itime, follow the 

same formula. 

The osmotic model alters the PSPs 

In our new model, both Ire and Iri can be modified by changes in osmotic pressure. 

We simulated the effect of an injection or infusion of NaCl, either i.v. or i.p., by a 

multi-compartment model, representing the amount of Na+ in plasma (Nap), in the 

extravascular fluid (NaEVF), the EVF volume (VolEVF(Na)) and the ICF volume (VolICF). 

Na+ has a larger EVF volume of distribution than oxytocin (VolEVF(oxy)), but the 

plasma volume (Volp) is the same for both oxytocin and Na+. The EVF volume of 

distribution for oxytocin is as calculated in our previous work (Maícas-Royo et al., 

2018). Depending on differences in [Na+], Na+ diffuses between plasma and the 

EVF compartment. At the same time, water diffuses between the EVF and the ICF 

to maintain osmotic equilibrium, shifting the EVF and ICF volumes (Figure 38). 

Plasma volume is given a fixed value, dependent only on body weight. 

 

Table 12. Top) Parameters of the integrate-and-fire spiking 
model, with parameter values chosen from (Maícas-Royo et al., 
2018) Bottom). Parameters to fit the osmotic model. In subsequent 
simulations, Ire varied to produce different basal firing rates as 
appropriate; Iratio was varied to simulate the experiments where 
IPSPs were reduced; the other parameters were unchanged from 
the upper table. 

Name Description Value Units 

IreBasal Basal excitatory input rate 292 Hz 

Iratio Ratio between IPSP and EPSP 0.75  

eh  EPSP amplitude 2 mV 

ih IPSP amplitude -2 mV 

λsyn PSP half-life 3.5 ms 

kHAP HAP amplitude per spike 30 mV 

λHAP HAP half-life 7.5 ms 

kAHP AHP amplitude per spike 1 mV 

λAHP AHP half-life 350 ms 

Vrest resting potential -56 mV 

Vthresh spike threshold potential -50 mV 

λi.p. Na+ half-life after i.p. injection 1150 s 

λi.v. Na+ half-life after i.v. injection 190 s 

λw membrane crossing half-life of  water 0.43 s 
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Figure 38. Schematic model. The spiking, secretion and clearance models for oxytocin 
neurons (Maícas Royo et al., 2016; Maícas-Royo et al., 2018), incorporate here the ability to 
respond to osmotic or volumetric pressure. Modelled changes in osmotic pressure are 
mimicked by simulating the injection or infusion of intravenous (i.v.) or intra peritoneal (i.p.) 
hypertonic solutions of NaCl. A [Na+] rise close to the circumventricular areas provokes an 
increment in the PSPs the oxytocin neurones receive from the circumventricular organs. 
When NaCl is injected i.p. to the extra vascular fluid (EVF), Na+ diffuses to plasma and water 
moves by osmosis from the intra cellular fluid (ICF) to the EVF, to maintain the same 
osmolality in every compartment. When NaCL is injected i.v. or once Na+ has diffused from 
the body’s EVF, Na+ diffuses to a small EVF compartment in contact with the brain’s 
circumventricular organs. The model does not simulate what happens in the 
circumventricular organs. It considers them as a black box which produces a combination of 
excitatory and inhibitory post synaptic potentials (EPSPs and IPSPs) in response to changes 
in osmolality or volume pressure. Volume pressure is simulated by changing the amount of 
IPSPs coming from the circumventricular organs and by reducing the plasma volume and 
increasing the EVF volume associated with the [oxytocin].  
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An injection or infusion of NaCl is modelled first by setting its duration (TNaCl) and its 

quantity (kNaCl) in mM. The quotient gives the rate of the injection (Ri.v. = kNaCl /TNaCl
-). 

Second, the model distinguishes between i.v. and i.p. by assigning different 

entrance compartments. The compartment receiving the NaCl is the plasma in the 

case of i.v. infusions and the EVF in the case of i.p. injection, having different 

diffusion half-lives, λi.v. of 190 s and λi.p. of 1150 s, to take into account how long it 

takes for Na+ to diffuse to the final EVF compartment (not explicitly modelled) where 

the circumventricular organs’ neurons sense changes in extracellular [Na+]. Thus, in 

the case of an i.v. injection: 

 

𝑑𝑁𝑎𝑝

𝑑𝑡
= 𝑅𝑖.𝑣. ∙ 𝛿𝑖.𝑣. −

𝐺𝑑

𝜏𝑖.𝑣.
 

 

Where δi.v. = 1 if Tiv ≤ t ≤ Tiv + TNaCl, otherwise δi.v. = 0.  

 

Time constants are calculated from half-life parameters using: 

 

𝜏𝑥 =
ln(2)

𝜆𝑥
  

 

The Na+ diffusion gradient, Gd, is defined as: 

 

𝐺𝑑 = [𝑁𝑎]𝑝 − [𝑁𝑎]𝐸𝑉𝐹 

 

Where [Na+] in plasma, [Na]p, is calculated as: 

 

[𝑁𝑎]𝑝 =
𝑁𝑎𝑝

(𝑉𝑜𝑙𝑃 ∙ 𝑀𝑊𝑁𝑎)⁄   

 

MWNa is the molar weight of Na+, 22.9898 g mol-1. The [Na]EVF follows a similar 

relationship: 

 

[𝑁𝑎]𝐸𝑉𝐹 =
𝑁𝑎𝐸𝑉𝐹

(𝑉𝑜𝑙𝐸𝑉𝐹(𝑁𝑎) ∙ 𝑀𝑊𝑁𝑎)⁄  

 

Where NaEVF varies as: 
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𝑑𝑁𝑎𝐸𝑉𝐹

𝑑𝑡
=

𝐺𝑑

𝜏𝑖.𝑣.
   

 

 

In the case of i.p. infusion or injection: 

 

𝑑𝑁𝑎𝐸𝑉𝐹

𝑑𝑡
= 𝑅𝑖.𝑝. ∙ 𝛿𝑖.𝑝. −

𝐺𝑑

𝜏𝑖.𝑝.
 

 

Where δi.p. = 1 if Tip ≤ t ≤ Tip + TNaCl, otherwise δi.p. = 0 and: 

 

 

𝑑𝑁𝑎𝑝

𝑑𝑡
=

𝐺𝑑

𝜏𝑖.𝑣.
   

 

The initial volumes for the different compartments, plasma, EVF and ICF, depend on 

the body weight of the rat, B, but not on its sex (Sheng & Huggins, 1979). Following 

Sheng & Huggins, we fixed the total amount of water as 60% of body weight. Of that 

60%, two thirds is in the ICF and the rest in the EVF and plasma. In our previous 

work, we used a plasma volume, Volp, of 8.5ml in rats of 250g. (Maícas-Royo et al., 

2018). We maintain that proportion in this work. Thus, initially:  

 

𝑉𝑜𝑙𝐼𝐶𝐹 = 0.6 ∙ 𝐵 ∙ 0.67 

 

𝑉𝑜𝑙𝑝 = 8.5 ∙
𝐵

250
 

 

𝑉𝑜𝑙𝐸𝑉𝐹(𝑁𝑎) = (0.6 ∙ 𝐵 ∙ 0.33) − 𝑉𝑜𝑙𝑝 
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When the model 

simulates injection or 

infusion of NaCl, the 

plasma volume remains 

invariant, but the EVF and 

ICF volumes change as 

[Na+] in the EVF changes. 

The model simulates the 

fast osmotic movement of water through cell membranes between the EVF and the 

ICF (Sidel & Solomon, 1957), with a half-life λosmo = 0.43 s. The water movement 

follows the gradient, Gw, between the current [Na+] in the EVF and the averaged 

[Na+] in the EVF during the previous 2 s,   [Na]EVF-2s. That averaged value allows the 

model to buffer water osmotic passage between the ICF and the EVF, avoiding 

instability in the model: 

 

𝐺𝑤 = ([𝑁𝑎]𝐸𝑉𝐹 − [𝑁𝑎]𝐸𝑉𝐹−2𝑠) 

 

𝑑𝑉𝑜𝑙𝐸𝑉𝐹(𝑁𝑎)

𝑑𝑡
= 𝑉𝑜𝑙𝐸𝑉𝐹(𝑁𝑎) +

𝐺𝑤

𝜏𝑜𝑠𝑚
   

 

𝑑𝑉𝑜𝑙𝐼𝐶𝐹

𝑑𝑡
= 𝑉𝑜𝑙𝐼𝐶𝐹 −

𝐺𝑤

𝜏𝑜𝑠𝑚
   

 

Osmotic signal to the spiking model 

An increased extracellular [Na+] generates an increase in osmotic pressure, which is 

sensed by osmosensitive neurons of the circumventricular organs. These send 

excitatory and inhibitory synaptic signals to the oxytocin neurones.  To simulate this 

input signal we added a new input component to the spiking model, using a linear 

relationship between PSP rate due to the osmotic pressure, Iosmo, and the osmotic 

pressure (OP):  

𝐼𝑜𝑠𝑚𝑜 = 44 ∙ (𝑂𝑃 − 310)   

 

The gradient (44) and the baseline (310) were fitted based on experimental data 

showing a linear increase in spike rate in response to increasing osmotic pressure, 

Table 13. Volume distributions depending of the rat’s 
weight for the different experiments simulated. 

Name % Rat #1 Rat #2 Rat #3 Rat #4 

Body Weight (g) 100 % 190 250 300 350 

Total Body Fluid (ml) 60 % 114 150 180 210 

Plasma (ml) 3.4 % 6.46 8.5 10.2 11.9 

EVF(oxy) (ml) 3.9 % 7.41 9.75 11.7 13.65 

EVF(Na+) (ml) 16.4 % 31.16 41 49.2 57.4 

ICF (ml) 40.2% 76.38 105 120.6 140.7 
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described in detail below. Osmoreceptors in the circumventricular organs sense 

both the ventricular EVF and the plasma that vascularizes some walls of the 

ventricles. We calculate OP as (2 ∙ [𝑁𝑎]
𝑝
), if the NaCl injection is i.p. or (2 ∙

[𝑁𝑎]
𝐸𝑉𝐹

), if the injection is i.v., assuming that diffusion from the entrance 

compartment to the second Na+ compartment implicitly includes diffusion to the 

cerebroventricular EVF compartment.  

 

The rates of EPSPs and IPSPs arriving at the oxytocin cells are defined by a 

combination of osmotically dependent and non-osmotically dependant PSPs. In the 

case of EPSPs: 

 

𝐼𝑟𝑒 = 𝐼𝑟𝑒𝐵𝑎𝑠𝑎𝑙 + 𝐼𝑜𝑠𝑚𝑜   

      

Where IreBasal is the PSP rate of non-osmosensitive inputs. The IPSP rate is a 

function of the EPSP rate: 

 

𝐼𝑟𝑖 = 𝐼𝑟𝑎𝑡𝑖𝑜𝐵𝑎𝑠𝑎𝑙 ∙ 𝐼𝑟𝑒𝐵𝑎𝑠𝑎𝑙 + 𝐼𝑟𝑎𝑡𝑖𝑜𝑂𝑠𝑚𝑜 ∙ 𝐼𝑜𝑠𝑚𝑜   

 

where IratioBasal and IratioOsmo can be modified independently to separately affect 

osmotically or not osmotically IPSPs, taking by default the same value, Iratio = 0.75. 

Spiking model  

The rest of the model is exactly as described in our previous work (Maícas-Royo et 

al., 2018). We fix the PSP magnitudes, eh and ih, at 2 mV, having opposite sign for 

EPSPs and IPSPs. At each time step (fixed at 1 ms in our simulations) the number 

of PSPs, en and in, arriving at random intervals etime and itime is counted and summed 

to give the final input I:  

 

𝐼 = 𝑒ℎ . 𝑒𝑛 + 𝑖ℎ . 𝑖𝑛  

 

Variable Vsyn represents the contribution of synaptic input to the oxytocin cell 

membrane’s voltage (V), and decays to 0 with time constant τsyn corresponding to a 

half-life λsyn of 3.5 ms: 
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𝑑𝑉𝑠𝑦𝑛

𝑑𝑡
= −

𝑉𝑠𝑦𝑛

𝜏𝑠𝑦𝑛
+ 𝐼  

 

Initially, the model neurone is at resting potential Vrest = -50mV. If inputs raise the 

membrane potential V above a threshold Vth = -56mV, the neurone produces a 

spike. The model then triggers an HAP and an AHP, and V evolves according to: 

 

𝑉 = 𝑉𝑟𝑒𝑠𝑡 + 𝑉𝑠𝑦𝑛 − 𝐻𝐴𝑃 − 𝐴𝐻𝑃  

HAP has a fixed step amplitude (kHAP = 30mV) and time constant (τHAP) that 

corresponds to a half-life of 7.5 ms, following previous work (Maícas-Royo et al., 

2016, 2018). AHP also has a fixed step amplitude (kAHP = 1mV) and τAHP set to 

correspond to a half-life λAHP of 350 ms, as used previously (Maícas-Royo et al., 

2018):  

 

𝑑𝐻𝐴𝑃

𝑑𝑡
= −

𝐻𝐴𝑃

𝜏𝐻𝐴𝑃
+ 𝑘𝐻𝐴𝑃 ∙ 𝛿  

  

𝑑𝐴𝐻𝑃

𝑑𝑡
= −

𝐴𝐻𝑃

𝜏𝐴𝐻𝑃
+ 𝑘𝐴𝐻𝑃 ∙ 𝛿 

 

 

where 𝛿 = 1 if a spike is fired at time t, and 𝛿 = 0 otherwise. Unlike the conventional 

integrate-and-fire model, there is no reset to Vrest following a spike. The HAP and 

AHP are thus able to accumulate across spikes and modulate activity dependent 

excitability.   

Secretion and plasma models 

In our previous paper (Maícas-Royo et al., 2018) we modelled 250-g rats, and set a 

fixed plasma volume for oxytocin, Volp = 8.5 ml, and for the EVF volume of 

distribution for oxytocin, VolEVF(oxy) = 9.75 ml. Here we defined these values as a 

function of the rat body weight (B) which varies from 190 to 400 g in the 

experimental data we used. 
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𝑉𝑜𝑙𝑝 = 8.5 ∙
𝐵

250
 

 

𝑉𝑜𝑙𝐸𝑉𝐹(𝑜𝑥𝑦) = 9.75 ∙
𝐵

250
 

 

The rest of the equations and parameter values are as in the previous work, for both 

the oxytocin secretion and clearance models. 

Reference data 

Both spiking activity and plasma oxytocin have been measured in studies of 

osmotically regulated secretion. Some of these experiments used i.p. injections of 

hypertonic NaCl as a challenge, others used i.v. infusion, and some reported 

correlations between plasma osmotic pressure and oxytocin cell activity from 

conditions of chronic osmotic challenge. To use as much of these data as possible, 

we needed to model the experimental challenges themselves.  

To fit the osmotic model we used data from experiments described by Leng et al. 

(2001) and Brimble & Dyball (1977). To connect the osmotic model with the oxytocin 

spiking model we used data from Leng et al. (2001) and Brimble & Dyball (1977). 

We also tested the coupling of the osmotic model, plus the oxytocin spiking model, 

with the oxytocin secretion and plasma oxytocin models. To do it we simulated 

experiments from (Leng et al., 2001) and Higuchi et al. (1988). Finally, we simulated 

the effect of bicuculline and hypovolemia in oxytocin neurones under osmotic 

challenges, mimicking data from (Leng et al., 2001) and Stricker & Verbalis (1986).  

Results 
In our previous work (Maícas-Royo et al., 2018), we developed a model of the 

spiking activity of oxytocin cells. We linked this to a model of the stimulus-secretion 

properties of the terminals in the posterior pituitary, and to a model of clearance of 

oxytocin from the plasma, to relate spiking activity to plasma oxytocin 

concentrations. The integrated model was fit to data associating spiking activity to 

plasma oxytocin levels in response to systemic injections of cholecystokinin, and to 

data on stimulus-secretion coupling in the posterior pituitary. Here we tested this 

model by assessing how well predictions of the model match experimental 

measurements of spike activity and plasma oxytocin. 
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In the experimental conditions mimicked here, we varied the PSP rate as a linear 

function of extracellular [Na+]. The plasma [Na+] is not directly the stimulus, because 

when hypertonic NaCl is infused slowly i.v., there is a rapid increment in plasma 

[Na+] that is not accompanied by a corresponding increment in spike activity, but 

there is a slow linear and parallel increase in spike activity and plasma [Na+] during 

continued infusion (Leng et al., 2001). The change in plasma [Na+] during infusion 

implies a rapid transfer of Na+ from plasma to EVF, so it appears to be changes in 

an extravascular compartment that are seen by the oxytocin cells and their inputs –

presumably changes in the surrounding extracellular fluid (Figure 38). 

Multi-compartment model for Na+ diffusion 

We first simulated a 30-min i.v. infusion of 2M NaCl at 0.26 µl min-1. As reported in 

Leng et al. (2001), such infusions produced a rise in plasma [Na+] from 134.5 to 146 

mM during the first 5 min of infusion, followed by a linear rise of 8.5 mM in the next 

25 min, consistent with rapid diffusion from plasma into EVF. To model this, we 

needed to estimate the volumes of the EVF, plasma and ICF, and we assumed that 

equilibration of osmotic pressure between intracellular and extracellular 

compartments involves the passage of water from the intracellular to the 

extracellular space. 

These experiments were on urethane-anaesthetized rats; urethane is a sodium salt, 

and the basal plasma [Na+] was 134.5 mM and assumed to be the same in the EVF. 

The mean body weight of the rats was 350 g. The model EVF volume, estimated as 

16.4 % of body weight, was set at 57.4 ml, the plasma volume, (3.4 % of body 

weight) at 11.9 ml and the ICF volume (40.2% of body weight) at 140.7 ml (see 

Methods). Assuming that plasma volume is constant throughout the infusion, the 

data are closely matched (Figure 39.A) by assuming that plasma [Na+] equilibriates 

with EVF [Na+] with a half-life λi.v. of 190 s. When the infusion stops, plasma [Na+] 

decreases to 144.7 mM over 10 min as it equilibriates with the EVF [Na+] (Figure 

39.A). EVF [Na+] rises linearly throughout the infusion as a consequence of diffusion 

of Na+ from plasma, accompanied by the transfer of 16.2 ml water from ICF (Figure 

39.B). The amount of water transfer was calculated to be that required for 

equilibriation of osmotic pressure in all compartments. 
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Figure 39. The diffusion model of Na+. A) [Na+] dynamics in plasma and extra vascular 
fluid (EVF) during a 30 minutes i.v. infusion of 26µl min-1 2M NaCl. White dots show in vivo 
plasma [Na+] as seen in Leng et. al (2001). The red line represents the plasma [Na+] 
simulated by the model. The purple line shows the modelled [Na+] in the EVF. The 
parameter values to match the in vivo data are the same for the rest of the figures. B) 
Modelled volume dynamics in the EVF and intra cellular fluid (ICF) during the i.v. infusion. C) 
Using the same parameter values as in A and B, the model can simulate the [Na+] dynamics 
after an i.p. NaCl injection, as described in Brimble & Dyball (1977). D) The resultant in vivo 
osmolality (white dots) can be mimicked (black line) as a linear function of the simulated 
[Na+] in plasma from C. E) shows the volume dynamics near the injection time. 

 

We then modelled the i.p. injection of 1 ml 1.5M NaCl described in Brimble & Dyball 

(1977) who used urethane-anaesthetized rats of 300 g body weight. [Na+] was not 

measured in these experiments, but plasma osmotic pressure was. We ran our 

model assuming the same initial plasma [Na+] as above (134.5 mM). Sodium moves 
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rapidly from plasma to EVF because plasma is under positive orthostatic pressure, 

but movement from EVF into plasma is much slower. The model was fit to measures 

of plasma osmotic pressure reported by Brimble & Dyball (1977) by multiplying the 

plasma [Na+] by two to convert to osmolality, and adding a constant of 38.5 mOsmol 

(Figure 39.D) to reflect other osmolytes in plasma. The data were fit by an inferred 

half-life time of diffusion from EVF to plasma, λi.p of 1150 s. In the model, the EVF 

[Na+] rises rapidly from 134.5 mM to 143 mM after the injection. It then quickly falls, 

equilibriating with plasma [Na+] at 139.75 mM at 30 min (Figure 39.C), because of a 

fast water flux from ICF to the EVF (8.8 ml in 3 s; Figure 39.E). 

There is an important difference between the i.v. and i.p. routes. While NaCl is 

infused i.v. the plasma [Na+], will always exceed the EVF [Na+], and we use EVF 

[Na+] as the input to the spiking model to model responses to i.v. injections. 

However, when NaCl is injected i.p., the EVF [Na+] in the peritoneum will initially 

greatly exceed the plasma [Na+], but [Na+] in the brain will change more slowly, as 

Na+ enters the brain from both the blood and EVF. For i.p. injections, we assume 

that plasma [Na+] approximates the changes in brain extracellular [Na+] – i.e., we 

assume that the brain extracellular [Na+] equilibriates with the EVF [Na+] at the same 

rate as plasma [Na+] does. 

Integration with the spiking and secretion model 

The next step was to fit the relationship between brain extracellular [Na+] and the 

spiking activity of oxytocin cells. The firing rate of oxytocin cells increases linearly 

during i.v. infusion of hypertonic NaCl, and we assumed that this arises from a linear 

relationship between extracellular [Na+] and synaptic input rate (PSP rate). In our 

model, this relationship depends on both intrinsic neuronal properties and on the 

nature of the input. Neurones without an AHP show a non-linear increase in spike 

activity in response to a linearly increasing PSP rate, but this nonlinearity is abated 

by the presence of an AHP, or if the stimulated input comprises a mixture of EPSPs 

and IPSPs. Here we used an oxytocin cell model with the same intrinsic properties 

as defined previously (Maícas-Royo et al., 2018), including the same AHP 

parameters, and we set the basal PSP rate to match the observed basal firing rate. 

We also assumed that osmotic stimuli increase the rate of both EPSPs and IPSPs, 

as inferred previously (Leng et al., 2001). This left two free parameters to fit: the 

slope of the relationship between PSP rate and extracellular [Na+], and the ratio 

(Iratio) of EPSPs and IPSPs in that signal. As detailed below, the response of 
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oxytocin cells to i.v. NaCl could be well fit with Iratio = 0.75 and we set the slope with 

a value of 44. We kept these values for the rest of the simulations. 

We first compared the response of the model to the response of a typical oxytocin 

cell exposed to i.v. injection of 20 µg kg-1 CCK followed by an i.v. infusion of 26 µl 

2M NaCl (Figure 40.A). We adjusted the basal PSP rate, to match the basal firing 

rate of 2.9 spikes s-1. We simulated the CCK injection, as in Maícas-Royo et al. 

(2018), and the NaCl infusion, adjusting the model for a body weight of 350 g. The 

model response is very similar to the observed responses to CCK and NaCl. 

Importantly, we made no attempt to fit the oxytocin cell model to the experimentally 

observed response; the comparison shown is the prediction from the generic 

oxytocin cell model described in (Leng et al., 2017). In the simulation, the firing rate 

responds to the 60 minutes infusion by raising from 2.3 spikes s-1 (Figure 40.B left) 

to 10.5 spikes s-1 (Figure 40.B right). At its basal firing rate, the model simulates a 

single neuron average secretion of 0.13 fg s-1, fluctuating between secretion rates of 

0 and 1 fg s-1 (Figure 40.C left). Because of the non linear coupling between spiking 

activity and secretion, after the infusion, the modelled secretion for the single neuron 

has a mean of 9.75 fg s-1, 77 times more than during basal activity, whereas 

secretion excursions vary from 5.5 to 16.7 fg s-1 (Figure 40.C right). 

Oxytocin cells are heterogeneous in their basal firing rates. We simulated 

populations to mimic the numbers of cells recorded in experiments and their 

variation in basal firing rate, and to fit the measured basal plasma oxytocin 

concentration. We made the populations heterogeneous by varying the basal PSP 

rate using a lognormal distribution to match the mean and SD of experimental data. 

We started by mimicking the response of 12 oxytocin cells to a 60-min i.v. infusion of 

2M NaCl at 26 µl min-1 as reported by (Leng et al., 2001). We simulated a 350-g rat, 

setting a mean (SD) PSP rate of 305(150) s-1 to obtain a basal firing rate of 3.1 

spikes s-1, matching exactly the reported basal rate. Our model showed a linear 

increase in the mean firing rate, matching the experimental data very closely (Figure 

41.A).  

Leng et al also reported measurements of plasma oxytocin during similar infusions, 

but in different experimental conditions: these rats were also anaesthetized with 

urethane, but the transpharyngeal surgery involved in recording was not performed. 

In these conditions, basal oxytocin concentrations are lower, apparently because the 

stress of surgery and associated blood loss elevates basal neuronal activity. 
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Accordingly, it was necessary to estimate the basal firing rate from the plasma 

concentration at rest. 

 

 

Figure 40. The single neuron model. A) By adjusting the rat weight, the initial firing rate 
(2,29 spikes s-1), the cholecystokinin (CCK) as in Maícas-Royo et al., (2018) and NaCl 
infused as in Leng et al. (2001), the oxytocin neuron model (red line) can mimic in vivo 
spiking data (black circles) from a oxytocin neuron responding both to an injection of CCK, 
and to an i.v. infusion of NaCl. B) The basal firing rate of the neuron (left), is 2.29 spikes s-1. 
After the NaCl infusion finishes, the model predicts an average increment of 8 spikes s-1 
(right). C) Exocytosis is triggered by the spikes’ arrival to the axon terminal. Because of the 
non-linear coupling between spike rate and secretion (Maícas-Royo et al., 2018), the model 
predicts a much larger exocytosis at higher firing rates. 
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Figure 41. Oxytocin spiking and plasma responses to changes in osmolality. We run 
the model using the same parameter’s values as in Figure 40, adjusting just the basal firing 
rate, the rat’s weight and the amount and origin of NaCl injected. A) White dots show the 
averaged in vivo firing rate increment of 12 oxytocin neurones during a 60 min i.v. infusion of 
2M NaCl at 26 µl min-1 (Leng et al., 2001). In orange, the response of a modelled population 
of 30 oxytocin neurones with lognormally randomised PSP arrival rates matches it closely. 
B) Here, the simulated plasma oxytocin (orange line) of a 100 neurones population matches 
perfectly the in vivo data of plasma oxytocin (white dots) when the same infusion than in A is 
simulated. C) The simulated response of 30 oxytocin neurons (blue line) matches the 
averaged in vivo firing rate response of 11 oxytocin neurones after an i.p. injection of 1.5 ml 
1M NaCl (black dots) (Brimble & Dyball, 1977). D) The in vivo plasma oxytocin response 
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after an i.v. injection (black dots) (Higuchi et al., 1985). is also mimicked by a population of 
100 neurones with the same parameter values as in A,B and C. E) Green triangles show in 
vivo firing rates of 53 oxytocin neurones in rats with different osmolality (Brimble & Dyball, 
1977). In this case, 50 modelled neurones responding to increasing levels of NaCl in plasma 
(black circles) draws a very similar osmolality-firing rate curve. 

We used plasma oxytocin data from experiments reported in Leng et al. (2001), 

including a set of serial measurements from rats. To match the basal concentration 

of oxytocin, we set the mean PSP rate at 190 s-1, randomizing lognormally the PSP 

rate from neuron to neuron with a SD of 95 s-1.That  gave a mean firing rate of 1.38 

spikes s-1 and a plasma concentration oxytocin of 15.7 pg ml-1 (Figure 41.B). With 

the predicted osmotically induced increment of 20.2 mOsm, the model simulates 

oxytocin concentrations remarkably close to observed levels. 

Brimble & Dyball (1977) recorded from 11 oxytocin cells in rats of 300 g body 

weight, and gave  an i.p. injection of 1 ml 1.5M NaCl. The mean spike activity 

increased from 1.8 to 6.6 spikes s-1 in the 12 min after the injection (Figure 41.C). 

We simulated this experiment for a 300-g rat and 30 model neurones with a mean 

basal firing rate of 1.79 spikes s-1, obtained by a lognormally randomized PSP mean 

(SD) rate for the population of 215 (100) s-1 (Figure 41.C). The predicted change in 

firing rate is remarkably close to the experimentally reported data. 

We also matched the plasma oxytocin response after i.v. injection of 0.38 ml 1.5M 

NaCl in 190-g rats reported by Higuchi et al. (1988) who used the same oxytocin 

immunoassay as (Leng et al., 2001). In these experiments, the basal oxytocin 

concentration was lower, mimicked with a PSP rate of 132 (65) s-1, producing a 

mean basal firing rate of 0.75 spikes s-1, associated with a basal plasma oxytocin of 

10.6 pg ml-1. We simulated the i.v. injection, obtaining a close match (Figure 41.D). 

To this point, we mimicked the time response of experimental data after a hypertonic 

injection or during a hyperosmotic infusion. However, we also simulated stationary 

experiments. Brimble & Dyball (1977) showed the recorded firing rates of 50 

oxytocin cells from rats with different osmotic pressures. We ran the model with 50 

neurones to construct the relationship of mean firing rate to osmotic pressures 

between 305 and 345 mOsm kg-1. We obtain the values by averaging the firing rate 

of the cells over an hour, during which the cells produce a regular spike activity. The 

model prediction matches the experimental data closely (Figure 41.E). 
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The role of IPSPs in the osmotic response 

We used the combined model to simulate the effect of bicuculline, delivered to the 

dendritic zone of the supraoptic nucleus, as described in Leng et al. (2001). In that 

work, five oxytocin cells were challenged with two 10-min infusions of 2M NaCl i.v. 

at 26 µl min-1, before and after a 25-min application of bicuculline by retrodialysis. 

Bicuculline blocks GABA receptors in neurons. Leng et al. found that the response 

to osmotic pressure after bicuculline was greater than before, implying that the 

IPSPs are involved in the oxytocin response to osmotic pressure (Figure 42.A). We 

simulated that experiment by running our model with two populations of 20 neurones 

with a PSP rate of 210 (100) s-1, and mimicked the effect of bicuculline by making 

the IPSPs equal to 0 in one of the populations. After 10-min infusion, the difference 

in firing rate increment between the populations was ~1.5 spikes s-1, very close to 

that observed experimentally (Figure 42.B). 

 

 

Figure 42. Response to bicuculline.  Bicuculline blocks the effects of GABA. A) Blue 
triangles with white centre show the firing rate increment response of 5 oxytocin neurones to 
in vivo infusion of 2M NaCl at 26 µl min-1 Red squares with white centre show the increment 
in firing rate under the same circumstances after bicuculline had been injected (Leng et al., 
2001). B) We can simulate the effect of bicuculline by making the IPSPs equal to 0 in the 
model, while keeping the same amount of EPSPs. The blue line shows the firing rate 
increment to the simulated hypertonic saline infusion in oxytocin neurones with IPSPs. The 
red line shows the simulation when the IPSPs are 0. 
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Simulating the osmotic response in hypovolemic rats 

Using polyethylene glycol (PEG) to reduce the plasma volume by 35-40%, Stricker 

& Verbalis (1986) and Stricker et al. (1987) found a steeper slope in the relationship 

between plasma oxytocin concentration and osmotic pressure (Figure 43.A). Our 

model is fitted to plasma oxytocin concentrations measured with the Higuchi 

radioimmunoassay (Higuchi et al., 1985), but the studies above used a 

radioimmunoassay with the antibody Pitt Ab-2, which consistently reported lower 

plasma oxytocin concentrations (Amico et al., 1985). Therefore, here we matched 

trends more than absolute values, which in the model are ~20 times bigger than in 

the experimental data. To simulate hypovolemia, we first obtained a good 

approximation by running the model for different osmotic pressures, whilst making 

IPSPs = 0 (Figure 43.B). However, we found a closer fit by both using the reduction 

in IPSPs and reducing a 35% the plasma volume, increasing the EVF volume by the 

same amount lost by the plasma, as it happens with PEG (Figure 43.C).  

That latter result means that, when using PEG, the reduction in plasma volume, and 

increment in EVF is responsible for at least, part of the higher plasma oxytocin 

concentrations in hypovolemic animals. Moreover, that happens independently of 

the IPSP inputs that oxytocin neurones receive. The model helps to elucidate how 

that happens by showing that the oxytocin concentration is the same in plasma and 

in the EVF under any level of hypovolemia (Figure 43.D) and that, counterintuitively, 

the oxytocin in plasma would eventually reach the same level under different 

hypovolemic conditions too (Figure 43.E), even if hypovolemic animals will reach 

that level later. In our previous model,  oxytocin clearance is exclusively produced 

from the plasma compartment (Maícas-Royo et al., 2018). That, in conjunction with 

the larger values of oxytocin moving to the EVF in hypovolemic conditions (Figure 

43.F) is responsible for the higher oxytocin concentrations observed experimentally.  

 



143 
 

 

Figure 43. Hypovolemia is often achieved in experiments by injecting animals with 
polyethylene glycol (PEG). As a result, some plasma volume moves into the EVF producing 
and edema A) After injecting them with PEG, hypovolemic rats (black triangles) show higher 
plasma oxytocin levels than normal rats (red squares), and the difference increases with 
osmotic pressure (Stricker & Verbalis, 1986). B) We can partially simulate that effect by 
making IPSPs = 0 in the modelled oxytocin neurones (blue dots and line), seeing that the 
response is higher than with a normal IPSP rate (red dots and line). C) The effect is better 
achieved when, in addition to make IPSP = 0, we both reduce the plasma volume and 
increase the extra vascular volume (EVF) in the model (black dots and line), mimicking the 
conditions in A. This result suggests that, independently of the IPSPs, a reduction of plasma 
volume will trigger a response to osmotic pressure. Note: our model (B and C) gives values 
of plasma oxytocin ~20 times bigger than A because it simulates the plasma oxytocin levels 
assessed by the Higuchi immunoassay (Higuchi et al., 1985) that gives larger values than 
the radioimmunoassay with the antibody Pitt-Ab-2 used in A. D) This phenomenon is 
produced because the plasma oxytocin (blue squares) maintains the equilibrium with the 
[oxytocin] in the EVF (red squares). E) Our model shows that, simulations with volume 
reductions, 2 ml (green line) and 3.5 ml (black line), take more time to reach the equilibrium 
than normal volume (red line). However, under the same constant secretion rate, a shift of 
volume and a punctual increment of [oxytocin] plasma does not affect the final amount of 
oxytocin in plasma. F) To maintain the same [oxytocin] than in plasma, when the EVF 
increases its volume by the same amounts (as indicated) the plasma volume is reduced, the 
equilibrium points for the total amount of oxytocin in the EVF are different. 
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Discussion 
In this work, we used our oxytocin spiking, secretion and plasma clearance model to 

simulate the response of oxytocin cells, and their secretion in plasma, to hypertonic 

saline challenges.  

To simulate the dynamics of Na+ in the rat body until equilibrium is reached in the 

EVF of the LT, we adapted the two-compartment model for oxytocin clearance that 

we had implemented in our previous work by adding a third compartment, the ICF, 

which maintains osmotic equilibrium with the EVF by exchange of water. To find a 

biologically valid value for the time it takes water to cross from the ICF to the EVF 

we used the classical work from Sidel & Solomon (1957). We also compared our fit 

with the results from Mazzoni et al. (1988). From experiments in healthy humans we 

know that large hypertonic infusions produce an important water transfer from the 

ICF to both plasma and EVF, up to a 20% of plasma volume with a 7.5% saline 

infusion (Järvelä et al., 2003). For simplicity, we implemented that osmotic transfer 

occurs only between the ICF and the EVF, making the plasma volume stable, 

obtaining an increment of a 28% in the EVF volume after a 30 min infusion of 

26µl.min-1 2M NaCl.  

Once the Na+ model was developed, we coupled it with our previous model for 

oxytocin cells. As this study was conceived as a test of the published model, we 

changed only parameters necessary to simulate the experimental conditions. We 

have only modified the ratio between the EPSPs and the IPSPs (Iratio), decreasing it 

from the value of 1 that it had in our previous work to a value of 0.75. With a smaller 

Iratio the firing rate follows a more linear function of the arriving PSPs, making the 

relationship increasingly quadratic with a larger Iratio. However, a smaller Iratio would 

reduce the difference between the simulations of the responses to hyperosmotic 

infusions with and without bicuculline, making a larger ratio produce the opposite 

effect (Figure 42.B). An alternative way to increase the linearity between PSP and 

firing rate would be to have either a smaller AHP or the presence of a depolarisation 

afterpotential (DAP), that we have shown is necessary to model at least some 

oxytocin neurones (Maícas-Royo et al., 2016). However, in those cases, the firing 

rate response, apart from being more linear, also has a larger slope, making other 

firing rate matches not suitable (Figure 41A, C, E). To make those fits possible with 

a reduced AHP or with a DAP we should increment the Iratio but in that case we 
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would lose the match between the differences in response when bicuculline was 

injected (Figure 42.B).  

Partly because oxytocin may not be involved in the fluid balance in humans 

(Rasmussen et al., 2003, 2004), the role of oxytocin in that homeostatic process has 

not been studied as extensively as that of vasopressin. However, oxytocin cells are 

involved in fluid balance in the rat and have many similarities with vasopressin cells 

in their firing rate responses to osmotic challenges (Brimble & Dyball, 1977), and 

oxytocin and vasopressin are almost identical in their plasma response in the rat 

(Stricker & Verbalis, 1986; Verbalis et al., 1986; Stricker et al., 1987; Verbalis & 

Dohanics, 1991).  

When fitting the model we have found that many of the experimental data show 

substantial differences. For instance, the data we show in Figure 42.E, from Brimble 

& Dyball (1977), follows the same linear relationship between osmotic pressure and 

spike rate as the findings from Wakerley et al. (1978). However, the latter suggests 

a much smaller slope and a different osmotic pressure set point. Something similar 

happens with the plasma oxytocin concentration. The absolute measurements of 

oxytocin differ with different assays (Leng & Sabatier, 2016). In this work, we have 

matched experimental data (Higuchi et al., 1988; Leng et al., 2001) to data obtained 

with the Higuchi immunoassay (Higuchi et al., 1985), as in our previous work 

(Maícas-Royo et al., 2018) and we used other experimental results as indicators for 

the response slope but not for the exact values we should obtain with our model.  

Finally, to model systemic changes in osmolality we developed a new model that 

calculates the [Na+] dynamics in the plasma, EVF and IVF. The model needs to be 

improved to be physiologically accurate. Possible alternatives to achieve a better 

match in the [Na+] model would include a combined effect of both hypovolemia and 

osmotic pressure. The structures adjacent to the lamina terminalis have receptors 

for both, however, when there is a rapid decrease in plasma volume, angiotensin II 

receptors in these structures activate quickly, which corresponds better with an i.p. 

infusion or injection, where water will be shifted from plasma to equilibrate 

osmolality. Whereas, an i.v. infusion or injection would hypothetically increase the 

plasma volume by a shift of water from the plasma ICF and also from the ECF, 

producing a smoothed response that we have attributed totally to the shift in Na+ to 

the EVF which includes the cerebral ventricles in our model.   
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“It’s the questions we can’t answer that teach us the most. They teach us how to think. 
If you give a man an answer, all he gains is a little fact. But give him a question and 
he’ll look for his own answers”. 

Patrick Rothfuss. TWMF 

 

Magnocellular oxytocin neurones have particular characteristics that make them an 

excellent study target (Leng et al., 1999). They are big in comparison with many 

other neurones, as their own name indicates, and that makes it easier to identify 

them and also to study their electrophysiological characteristics.  Another advantage 

they have is that they are mainly in two nuclei, the SON and the PVN of the 

hypothalamus. In fact, in the SON there are only either oxytocin or vasopressin 

magnocellular neurones. The fact that the hypothalamus is at the bottom of the brain 

makes more feasible to do in vivo recordings of the neurones, as far as the SON or 

the PVN are accessed ventrally. Finally, oxytocin neurones secrete their product to 

the bloodstream, where plasma oxytocin and its fluctuations can be accurately 

measured. Thus, the result of the oxytocin neuronal activity can be measured with a 

blood test whilst their spiking activity, if not as easy to measure, is much more 

accessible than neurones located deeper in the brain. All that makes them better 

candidates to be studied than other neurones, which are more difficult to localize, 

whose projections are only central and often quite diffuse and difficult to trace.  

All those characteristics have made the behaviour of oxytocin neurones 

comparatively well described.  

Plasma oxytocin levels raise spectacularly during parturition and breastfeeding. That 

made those two scenarios the first ones to be studied, offering the first lights over 

oxytocin neurones dynamics.   

In a lesser, because plasma oxytocin levels change more smoothly in those 

circumstances, but not minor extent, we also know that oxytocin neurones also 

respond to changes in osmotic pressure, hypovolemia and food intake.  

Those five physiological functions have been broadly studied. The pathways and the 

different cells involved in receiving information from the body, sending that 

information to the brain, integrate that information and finally send it to the oxytocin 

neurones, are some of the best documented fields in physiology. However, there are 

still many gaps in the understanding of the pathways and the neurones themselves. 
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Classic electrophysiology can record one neurone activity each time, with multi-unit 

techniques making possible to record more than one (Buzsáki, 2004; Takekawa et 

al., 2010). Alternatively, optogenetics can look into the dynamics of neural networks 

not as fast as electrophysiology, but still with a precision of milliseconds  (Fenno et 

al., 2011) and techniques such as two photon calcium imaging provide the capacity 

to selectively choose the neurons whose activity we want to measure (Kim et al., 

2017; Stamatakis et al., 2018). Although these techniques can be used more easily 

to study the cortex of freely moving animals because in those cases the laser beams 

and the microscope can be attached to the skull, they have also shown their 

potential in oxytocin and vasopressin neurones (Yoshimura & Ueta, 2018). All these 

techniques also have their issues, not least because while they obtain more data, 

new tools need to be developed to analyse it (Takekawa et al., 2010).  

However, once we get deeper in the brain, in vivo recordings of neural activity 

become increasingly difficult. For instance, the exact origin of the oxytocin inputs 

responding to osmotic pressure or hypovolemia is still unclear. It is known that the 

osmotic inputs come from the lamina terminalis (Zimmerman et al., 2017). The 

presence of excitatory inputs has been established, and other experiments have 

indicated inhibitory inputs too (Leng et al., 2001). However, the exact origin of them 

is still obscure, mainly because the lamina terminalis is less easy to access than the 

SON, their nuclei’s boundaries are not well defined, and their cells are smaller and 

much heavily interconnected with different parts of the brain. In addition, the 

techniques to measure plasma oxytocin are far from perfect. That means that the 

resultant plasma oxytocin after the same hypertonic saline injection, can give a 15 

fold difference depending on the assay. 

The work described in this thesis has attempted to simulate, to some extent, what is 

known about oxytocin neurones when they react to food intake, osmotic pressure 

and hypovolemia. Because a lot is known about oxytocin neurones, but maybe not 

so much about the neurones that innervate the oxytocin neurones, the focus was set 

in what it is better known. That way of doing things has shown some advantages. 

Once the model has been able to simulate the experimental data, it has offered the 

possibility to advance the scientific knowledge of oxytocin neurones in two different 

ways.  

First, our model has offered a wider perspective of the functionality of the different 

components of oxytocin neurones.  
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Experimental data has extensively shown the membrane properties of oxytocin 

neurones in different circumstances, both in the spiking and the secretion activity. 

The mathematical models we used describe first simple membrane dynamics, and 

then they integrate to produce more global spiking, secretion and clearance 

responses. The fact that the model can describe the different currents and the 

oxytocin neurone membrane channels, offered the possibility to closely examine the 

behaviour of each of those currents under a wide variety of physiologically relevant 

circumstances, but also under other circumstances that would be impossible to 

replicate in the lab. Moreover, the mathematical model allows to do it very fast: 

simulating an hour of a single neuron spiking activity takes less than a second and 

an hour simulation of the spiking and secretion activity of 100 neurones would finish 

in less than two minutes. In addition, the model allows to do that at any time, and 

changing any parameter value from experiment to experiment.  

However, that speed and versatility has a potential drawback: the immense amount 

of data that those experiments generate. Because of it, a great part of the work 

during the PhD has consisted of developing tools to analyse that data.  

Combining the robustness of the model, its speed and the automatized statistical 

tools, I have been able to initially match the model in different ways to the 

experimental data. And, secondly, I have been able to do certain experiments that 

would be really difficult in the laboratory.  

For instance, the starting point for the first paper I included in this thesis, was to use 

the index of dispersion on the experimental recording of some oxytocin neurones. 

My supervisor Gareth Leng wondered why that index of dispersion was smaller for 

longer bin widths in those oxytocin recordings. At that time, he was probably thinking 

already that the AHP could be responsible, but to prove it in the lab, he would have 

needed many excellent recordings, alternately blocking the AHP and not blocking it. 

Using the computational model allowed us to do those experiments again and again, 

finding that the AHP was the responsible for the reduction in variability in long bin 

widths. Moreover, the model supported as well the necessity of a DAP in, at least, 

some oxytocin neurones  (Maícas-Royo et al., 2016).  

In addition, we found that the index of dispersion supported another part of our 

model. It is known that if a sequence of numbers follows a Poisson distribution, its 

index of dispersion is 1 in every bin width. Our model simulates the arrival of the 

inputs to the oxytocin neuron following a Poisson distribution. Thus, the fact that the 
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index of dispersion of the recordings in vivo looks similar to the one we obtain in the 

test, supports the idea that we are producing the inputs in a correct way by using a 

Poisson distribution.   

However, the final product of oxytocin neurones is not the spike. After publishing 

that first paper, we wanted to know if the AHP role in the spiking activity extended its 

ability in secretion. Using the vasopressin secretion model that my supervisors had 

developed before (MacGregor & Leng, 2013) helped us to focus on fitting the model 

with as many experimental data as we could find. At the end, because I had several 

sources and not all of them could be matched simultaneously, I obtained a balanced 

model, which was close enough to every experiment.  

The secretion, though, was not the final step of the model. Or at least, not the typical 

data scientists refer to, when they want to show if an experiment has influenced 

oxytocin secretion. Thus, I created another model to simulate the clearance of 

oxytocin from plasma, basing our equations on the fate of oxytocin in the rat 

described by Ginsburg & Smith (1959) and (Fabian et al., 1969a). 

Overall, the design of the mathematical equations and the writing of the software 

that simulate them at a huge speed, did not take much. The biggest task was to fit 

the parameter values of the mathematical equations to match previous experimental 

results and the designing and polishing of different statistical and graphic tools that 

allowed comparative data analysis. All that was done for the spiking model, for the 

secretion and the clearance models, for the model simulating the Na+ distribution in 

the rat’s fluids, and finally for the integration of all of them.  

Once I had a model to simulate the whole activity of oxytocin neurones, I wanted to 

do three things. The first one, to know what the role of the AHP in secretion and 

plasma oxytocin was. Secondly, I wanted to test the model with a physiologically 

meaningful input. That input ended being CCK, because the response of oxytocin 

neurones to it is very well described in the literature, and because it is a signal 

related to food intake. Finally, I wanted to know how heterogeneity in the spiking 

activity would affect the secretion response.  

To achieve all that, several tools were developed to visualize better the noise 

filtering effect of the AHP in the spiking, secretion and plasma oxytocin dynamics. 

Several other tools were created to produce responses to different levels of CCK, in 

different neurones. And other tools to analyse all that data, producing figures 
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automatically. Finally, heterogeneity was introduced and to compare it with real 

data, I allowed our model to be fed by experimental recordings, producing a 

simulated secretion from them.  

A predictive model 
Probably one of the main strengths of the oxytocin model I have developed is that it 

can simulate the resultant plasma oxytocin when the oxytocin spiking activity is 

known, and it can also simulate the spiking activity if what is known is the plasma 

oxytocin.  

Moreover, it does it for different scenarios. In the model both the weight of the rat 

and the initial osmolality and hypovolemia can be regulated. The model also 

responds to changes in osmotic pressure and can simulate this as for injections of 

CCK. Finally, it is straightforward to simulate the (partial) blockage of different 

currents, as the HAP, the AHP or the DAP or the blockage of excitatory or inhibitory 

inputs.  

In relation to the response to CCK, the model supported something really difficult to 

notice just analysing electrophysiological data: the response of oxytocin neurones to 

CCK is quite independent of the basal firing rate. Unlike vasopressin neurones, 

oxytocin neurones always respond to CCK by increasing their spike activity. Even 

so, their spiking response to CCK is extremely variable (Maícas-Royo et al., 2018), 

and it would require a massive amount of good recordings to get to a similar 

conclusion to the one the model can give in some minutes 

Predictions beyond the oxytocin activity 

The model allows to predict the behaviour of oxytocin neurones at any point of their 

dynamics. However, it can do even more. It allows us to infer what should be the 

necessary inputs, coming from other neurones, and their nature, when certain 

results are obtained.  In other words, once I had an oxytocin model that could 

replicate the whole process of oxytocin neurones, from the spiking to the clearance 

in plasma, I had a model also able to predict which kind of input I must have to 

obtain a certain output. That was particularly useful in different circumstances.  

The model suggests several things in relation to the inputs that oxytocin neurones 

receive. For instance, mimicking the response of oxytocin neurones to a systemic 

injection of CCK only requires excitatory inputs in the model.  
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The model also supported the theory that inhibitory inputs coming from the 

circumventricular organs are necessary for the response of oxytocin neurones under 

osmotic pressure, giving an idea of the relationship between the excitatory and the 

inhibitory inputs that oxytocin neurones receive in those circumstances. 

Nevertheless, probably the most surprising result of the thesis was to find that the 

model predicted something, to our knowledge, not proposed before. Previous works 

found that hypovolemia increases oxytocin secretion. Because the mechanisms 

related to that are often entangled with osmotic pressure and blood pressure, 

experimentalists started simulating hypovolemia by injecting PEG. PEG reduces the 

plasma volume without changing the osmolality or the haematocrit. The resultant 

hypovolemia increases the concentration of oxytocin in plasma. However, the model 

is capable of simulating closely the PEG effect and it suggests that, at least, some of 

that increment in oxytocin concentration is not due to an increment of oxytocin 

secretion.  

Next steps 
There are different things that could be the natural steps to take after this work. 

Some of them would require months and some would probably require years of 

work, combining it with experiments in the laboratory.  

A relatively easy step would include matching the current model with the 

experimental data that accounts for the oxytocin depletion (Leng et al., 1994). Much 

bigger challenges would be to include oxytocin dendritic secretion and the 

synchronization between neurones that is patent during lactation and parturition. 

Currently, the model is limited to axonal secretion. That means that all the central 

oxytocin secretion is not contemplated in our model. It is known that oxytocin 

neurones are involved in processes of bonding and social behaviour in some 

mammals. They also modulate different processes related with food choice and food 

reward. That involvement comes from the oxytocin produced and secreted in the 

brain. Dendritic secretion shares some mechanisms with axonal secretion and it 

would be a natural next step to complete the model with the dendritic exocytosis.  

The secretion and clearance models I have used should work to simulate bursting 

synchronized activity with some additions. Thus, a model capable of pulsatile 

secretion should be possible in not so much time considering that Rossoni et al. 

(2008) did that part before. The Rossoni’s work also models the dendritic activity 
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necessary to produce the bursting activity present during breastfeeding or 

parturition. A more complete model, including dendritic activity associated with 

central processes, would take a bit longer. However, the effort should be lessened 

thanks to the work of my supervisor Duncan MacGregor, who has been working on 

a model for dendritic secretion in vasopressin neurones.  

Another field where the model could be improved is the role of heterogeneity in 

oxytocin neurones. Generalising the behaviour of an average oxytocin cell gives 

good results in average when I want to simulate a whole population. The good 

results are robust if I look at the spiking activity. Introducing heterogeneity in the 

PSP rates does not change the results massively but we know the variability is 

necessary because it is impossible to mimic the experimental variability without 

introducing heterogeneity in our model.  

Another source of variability could come from the fact that oxytocin neuron inputs 

are not independent, as I have been assuming in our model. Their inputs do not 

necessarily have a huge correlation either, but the global processes I have been 

trying to simulate, as the food intake, osmotic pressure or hypovolemia responses, 

are supposed to send similar signals to a widespread amount of the oxytocin 

neurones. 

Something that I have not explored either in this work is the heterogeneity in the 

secretion. Once I fit the model to the experimental data, I kept the same parameter 

values for the rest of the experiments. Those parameter values made the secretion 

model for oxytocin neurones show no fatigue at spike rates up to 13 Hz, allowing a 

maintained secretion over time and a non-linear coupling to the spiking activity. The 

fact that I obtained very good results with that fitting values for the secretion model 

supports its robustness when I look at the average dynamics. However, it is 

probable that oxytocin neurones present heterogeneity in the secretion and that 

those differences play a role. On the other hand, there is not so much data of 

secretion from individual oxytocin neurones as there is for the spiking activity. The 

reason has to do with differences in measuring both dynamics. Spiking activity is 

measured in a simple way, as changes of voltage in the neurone’s membrane. 

However, the secretion of each oxytocin neurone is related with hundreds of 

thousands of little signals. Each axon terminal contains about 2000 nerve terminals 

and swellings, where vesicles each containing ~85000 oxytocin molecules get 

attached, opening with a higher probability when the spikes arriving to the axon 
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terminal trigger the entrance of Ca2+
 and the Ca2+ facilitates the exocytosis (Leng & 

Ludwig, 2008). As result, I decided to work with the average of the final secretion 

produced by the whole population of oxytocin neurones. However, new techniques 

such as two photon Ca2+ imaging can provide the data necessary to distinguish the 

secretory dynamics of single cells (Lang et al., 1997) and this model could 

incorporate that knowledge.   

A more complete model would give an interesting stepping stone to explore other 

populations of neurones which relate with the central activity of oxytocin. In the 

same way that a complete model for axonal oxytocin secretion led us to discover a 

hidden mechanism of hypovolemia or to support the necessity for the IPSPs in the 

osmotic response, a complete model for dendritic oxytocin secretion could help us to 

understand populations of neurones that are difficult to reach in the brain, but are 

known to receive or send their signals to oxytocin neurones. In particular, the 

interconnection between oxytocin and dopamine neurones and the reward system, 

involved both in eating behaviour and social interactions could be a reasonable 

medium-term goal.  
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