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Abstract

We apply a Bayesian belief network (BN) approach to vowel
duration modelling, whereby vowel segment duration is mod-
elled as a hybrid Bayesian network consisting of discrete an
continuous nodes, with the nodes in the network represgntin
linguistic factors that affect segment duration. Factaeriac-
tion is modelled in a concise way by causal relationshipsragmo
the nodes in a directed acyclic (DAG) graph. New to the priesen
research, we model segment identity as a set of distinatize f
tures. The features chosen were frontness, height, leagth,
roundness. In addition, the BNs were augmented with the word
class feature (content vs. function). We experimented with
different BNs, and contrasted the results of the belief neitw
model with those of Sums-of-Products (SoP) and classificati
and regression trees (CART) models. We trained and tested
all three models on the same data. In terms of the RMS er-
ror and correlation coefficient, our BN model performs hette
than CART and SoP model.

1. Introduction

Segment duration is known to be affected by a number of lin-
guistic factors such as segment identity, stress leveleo$yiia-

ble containing the segment, accent of the word the syllabée i
part of, identity of preceding and following segments, aodip
tion of a target segment within a syllable, word, and utteean
When modelling segment duration for a text-to-speech myste
(TTS), large databases are used to estimate the paramigtezs o
duration model. Databases used for duration modellingllysua
do not cover all the possible combinations of linguistiddas;
data aresparse. In addition, databases amet balanced: differ-

ent factor combinations occur with unequal frequenciesv-Ne
ertheless, the probability of rare factor combinationsuoaoce

is quite large even for a small sample of text [1]. Therefore,
durational model should generalise well to successfulgdijat
durations of these rare feature vectors. Since linguiatitofs
affecting segment duration interact, it should also modese¢
factor interactions well.

Past approaches to segment duration modelling for TTS in-
clude rule-based [2], statistical (classification and esgion
trees [3]), and supervised data-driven methods (the Sdms-o
Products, or SoP duration model [1],[4]). In general, CART
models predict segment duration well, though they perform
badly when data are noisy or the amount of missing data ielarg
In the SoP model the problems of data imbalance, data sparsit
and factor interaction are treated satisfactorily by ugjageral
statistical techniques. However, this requires substhdtita
preprocessing, and consequently a large number of the fmodel
parameters have to be estimated.

As an alternative to the conventional techniques of data
modelling, we model segment duration using probabilistic
Bayesian belief networks (BN) [5]. Our previous work on
Bayesian modelling of segment duration proved to be premiss
ing in overcoming unbalanced data and data sparisty prob-
lems [6], [7]. Factor interaction is modelled in a conciseywa
by causal relationships among the nodes in a directed acycli
(DAG) graph. The BN model makes robust predictions in cases
of missing or incomplete data. Compared to sums-of-preduct
model, BN model also requires fewer parameters to be esti-
mated.

The structure of the paper is as follows. We give a brief
overview of Bayesian belief approach in section 2. We give
the details of applying BN approach to modelling segment du-
ration in section 4. We give the details of the databases used
for segment duration modelling in section 3. We describe the
experiments and discuss the results in section 5. We make the
conclusions and discuss future work in section 6.

2. Bayesian Belief Networks

When using Bayesian networks for modelling segment dura-
tion, we represent linguistic factors that affect segmemation

as nodes in a graph. Throughout the paper we use the terms
node, variable, andfactor interchangebaly. A Bayesian belief
network is defined by a tripléG, Q, P), whereG = (U, E) is

a directed acyclic graph (DAG) with a node &étepresenting
problem domain information is a set of edges that describes
conditional dependency relations among domain variafles;

is a space of possible instantiations of domain variabled; a
P(U) is a joint probability distribution (JPD) for all of the
nodes in the grapliy. Learning the whole JPIP’(U) requires

an exponential number of BN parameters to be calculated. By
using the so-calletlarkov property of BNs (each variable in

a network is independent of its non-descendants given its pa
ents), the joint probabilityP(U) factorises into local condi-
tional probabilities for each variable in the network. TREV)
factorisation is:

PU) = P(X1,Xo,...,X,) = H P(X;|Pa(X;)) (1)

wherePa(X;) is the set of parents of nodg;. We modelled
vowel segment duration ashgbrid Bayesian network; consist-
ing of discrete and continuous nodes. The problem domain set
U of a hybrid BN is divided into a set of discrete variabl&s

and a set of constinuous variablési.e.U = A UT. The vari-
ablesU = (X1, X»,...,X,) in ahybrid BN are said to have
aconditional Gaussian (CG) distribution; given a particular in-
stantiation of discrete noddse A, the continuous variables
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Y ={1,Y,Ys, - ,Y;} € I follow a multivariate Gaussian
distribution, i.e., the probability distribution functiqpdf) over
the continuous nodes has the form:

1
(2m)ddetx(i)
exp{—3(y(i) — ()" SO~ (vy() - AG1) @
whered is the cardinality of the sdt, y (i) = (y1, 92, - , yk)
are the instantiations of the continuous variabies T, ji(i)
andX(i) are the mean vector and covariance matrix of the mul-
tivariate Gaussian distribution given the values of themie

nodesi € A; here the covariance matr(i) is assumed to be
positive definite.

P(yli) =

3. Durational database

The databases used for this research were derived fromiRheto
cal Systems speech data. We used three databases; onesdataba
of General American (GA) English male speaker 'erm’; and two
databases of Received Pronunciation (RP) English speakers
female database 'lja’ and a male database rjs’. Each ds¢aba
was divided into train (90%) and test (10%) sets. 'rjs’ daksbh

of 98, 763 vowels was divided int®8, 997-segment train and

9, 766-segment test sets. ’lja’ database3df 224 vowels was
divided into35, 348-segment train an8l, 876-segment test sets.
‘erm’ database o%3, 188 vowels was divided intd7, 104-
segment train an6l, 084-segment test sets. Each segment in the
data was labeled with segment, syllable, word, and utteranc
level phonetic and phonological information.

4. Bayesian analysis of segment duration
4.1. Defining linguistic factors of durational BN

In the case of durational BN, the deétonsists of just one scalar
node D that corresponds to the duration value of a vowel seg-
ment. The setA varies according to what causal factors are

Factor Wpost S utt Cpost
# Levels 3 2 3 10
Example | initial | stressed| final voiced stop

Factor Front | Height | Length Round WdCl
# Levels 3 3 4 2 2
Example | back high long round content

Table 1: Linguistic factors selected for the Bayesian miougl
of vowel duration.

selected for analyis. For the present analysis we seleclied 9
guistic causal factors that affect vowel duration shownabl&
1. Within word position factof¥ post has 3 possible values
corresponding to initial, medial, and final position of alafgle
with a target vowel in a word. Stress factSrcan take 2 val-
ues; stressed and unstressed. Within utterance positibor fa
Utt describes phrasal position of a word with a target vowel
taking on 3 values; initial, medial, and final. The identifyttee
following segment facto€'post takes on 10 values. When the
following segment is a consonant, the value§’pbst node are
based on voicing and manner of production features for con-
sonant; voiceless stops, voiceless affricates, liquidigeless
fricatives, nasals, voiced stops, voiced affricates, aoided
fricatives. In addition(C'post node takes on values 'vowel’ and
'silence’.

We also introduced a word class factor represented by a bi-
nary discrete nodéV dCl, describing whether a word with a

target vowel is content (open class) or function (closedgjla
Word class factor is meant to implicitly represent word fre-
quency information. From the studies of the effect of word
frequency on duration of content [8] and function [9] words,
it is known that the duration of a more frequent word tends to
be shorter than the one of a less frequent word. Therefore, we
assumed that word frequency should have an effect on word du-
ration and consequently on a word’s segment (vowel) duratio

In the future, we plan to use continuous word frequency facto
directly.

4.2. Modelling vowel identity

We modelled vowel segment identity as a combination of four
factors corresponding to the following phonological (itist

tive) features. The frontness of a target vowel is represknt
by the factorFront that can have 3 values; front, medial, and
back. The height of a vowel segment is represented by the fac-
tor Height that can have 3 values; high, medial, and low. The
factor Length can take on 4 values; short, long, diphtong, and
shwa. The factoRound can have 2 values, rounded and un-
rounded.

4.3. Learning durational BN

The process of BN learning consists of BN structure learning
and BN parameter learning. Once the BN structure is known,
the parameters of the BN, i.e. the parameters of the conditio
probability distributions (CPDs) of the nodes are estimaliehe
CPD parameters of the discrete nodes are just the entries in
the Conditional Probability Table (CPT). The parameterthef
continuous nodes are the mean vedi@rand covariance ma-
trix 2) of the Gaussian pdf. First, we performed BN structure
learning. We used the K2 structure learning algorithm (46¢ [

for details). In brief, the K2 algorithm uses a greedy heuris
tic approach whereby, given the fixed ordering of the nodes
(with parents preceding children), a parent node is sueelysi
added to a parent set of each node in such a way that maxi-
mally improves the joint probability of a network structumed
data. Since there are no network structure learning algost
developed for hybrid BNs, we applied the K2 algorithm to the
durational data that were uniformly discretised. We chese s
eral levels of discretisation ranging from 2 to 7 bins. Welegap

the K2 algorithm to 3 discretised data sets; 'erm’, 'rjs'déljg’.

The learning resulted in 7 different network structures; BiNs
differed in the connections between the causal nodes and the
durational nodeD. After removing some linguistically superfi-
cial connections (between the causal nodes) learned by2he K
algorithm, we then estimated the nodes CPDs. An example BN
with Pa(D) = {Cpost, Front, Length, Round} is shown in
Figure 1. The number of BN parameters as well as the linguisti

BN # | Pa(D) # params
BN1 | CpostLength Round 80
BN2 | Cpost Front Length Round 240
BN3 | Cpost Front Height Length Round 720
BN4 | Cpost Front Height Length WdCI 720
BN5 | Wopost S Cpost Round 120
BN6 | Wpost Cpost Length Round WdCI 480
BN7 | Wpost Utt Cpost Front Height Length WddlI 6480

Table 2: Connections to the durational naBdearned by the
K2 algorithm applied to the discretised data.

nodes connected to the node for 7 BNs learned are shown in
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Figure 1: Example durational Bayesian network of size 10;
boxes represent discrete nodes, oval represents a caminuo
node.
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Figure 2: The mean RMS error values of the predicted
vowel durations by model type (Bayesian, CART and SoP) by

Table 2. The connections among the causal nodes themselves database (lja’, rjs’, and 'erm’).

are fixed for all the learned BNs; they are the same as those

shown in Figure 1. The prior CPD parameters of the discrete
linguistic nodes were estimated as Dirichlet priors. Sihres

a scalar node with all the parents being discrete, for each in
stantiation of its discrete parentss Pa(D) the conditional
probability distribution (CPD) is given by an univariate @Ga
sian distribution with meap(i) and standard deviation(i):

®)

The prior parameters of this univariate Gaussian distidbut
N(y; u(i), (1)) were estimated from the training set as sam-
ple means. All calculations were done in the z-score domain.
The learning of the parameters of the BNs was done via the EM
algorithm, with the causal nodes observed and the durdtiona
nodeD hidden. Following the BN parameter learning, the infer-
ence was performed on the test set. The learning and inferenc
were done for 7 different BNs, for each database separately.

5. Experimental Results and Discussion

Given 7 different BNs learned by the K2 algorithm, we set out
to find the model that would be optimal in terms of RMS er-
ror (minimal) and correlation coefficient (maximal). We Ical
this Maximum Correlation — Minimum RMS Error (MAXC-
MINEF) criterion. In Figure 5 the results of the mean (across
the database) RMS error values of the predicted vowel dunsti
by model type are shown. In Figure 5 the results of the mean
(across the database) correlation coefficient values optée
dicted vowel durations by model type are shown. In genemal, i
terms of RMS error all the BNs selected for the analysis per-
form better that both SoP and CART models. For 'rjs’ database
BN4 model produces the mean RMS errorlof msec com-
pared to8 msec and2.5 msec for SoP and CART models re-
spectively. In terms of the correlation values, there ameso
BNs (e.g. BN3 and BN4) that perform better than CART
model, and no worse than SoP model. For 'lja’ databh@$él
model produces the mean correlation valué.@6 compared to
0.69 and0.94 for CART and SoP models respectively. Based
on MINC-MINEr optimisation criterion, we selected 3 optilma
BNs: BN1, BN3, andBN4.

Since our optimal BN model selection criterion is based on
the RMS error and correlation values averaged across & paric
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Figure 3: The mean correlation coefficient values of the pre-
dicted vowel durations by model type (Bayesian, CART, and
SoP) by database (lja’, 'rjs’, and 'erm’).

ular database, we also looked at the performance of the opti-
mal BNs for each vowel class separately. We assumed that for
each vowel class there may exist a different optimal network
The analysis of the RMS error values B1N4 model for 'lja’
database revealed that the model makes robust predictfons o
the vowel segment durations, with the RMS error values rang-
ing 1 — 2 msec. The results of the correlation values of the
predicted vowel durations by vowel class BV4 model for

‘lia’ database are shown in Figure 5. As can be seen from the
figure, for the majority of the vowel classes the correlatiah

ues rangd).47 — 0.85. The obvious outlier was vowgh@Q/;

with the RMS error beind8 msec and the correlation being
0.07. Comparing the correlation values for the segmari@/
across all the BNs had shown tHaiV4 being on average an op-
timal choice, is not an optimal BN for this vowel. In fad&? N6

is a better choice with the correlation value(o$1. Likewise,

for the vowel/@/ it is the networkBN1 that is optimal with

the RMS error and the correlation values betngsec and).89
respectively. In Figure 5 the correlation values by vowaksl

by model type are shown for 'lja’ database’. The search for an
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Figure 4: The correlation values of the predicted vowel dura
tions by vowel class by model type (Bayesian, SoP, and CART);
'lia’ database; BN4 Bayesian model. Black - 'lja’, white js,
gray - 'erm’.
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Figure 5: The correlation values of the predicted vowel dura
tions by vowel class by BN model type for ’'lja’ database.

optimal BN model for each vowel class can be thought of as a
search for the maximum peaks on this correlation surface. Fo
each vowel class for 'lja’ database the optimal model sebkct
produces the correlation values rangingé — 0.99; these val-
ues are better than the results for CART8 — 0.86 and no
worse than those for SoB.87 — 0.97) models.

6. Conclusions and Future Work

First, we implemented the BN structure learning procedare f
discretised durational data using the K2 structure legrain
gorithm. Second, we analysed 7 BNs learned by the K2 al-
gorithm and chose the maximum correlation — minimum RMS
error optimal candidate network for each database. Thind, f
each vowel class we selected the optimal BN separately. For

each vowel class the optimal BN model produces promissing
results in terms of RMS error values; our BN model signifi-
cantly outperforms both CART and SoP models. In terms of
the correlation coeffcient, the BN model results are bettan
CART model and comparable to the SoP model results. There-
fore, Bayesian belief network model can be sucessfully used
for vowel duration modelling for text-to-speech systenmsthie
future, we will consider other linguistic factors such asravo
frequency and boundary type for our BN analysis. We will also
implement the BN durational model in the Festival [11] sjeec
synthesis system.
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