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Abstract 

 

 

Cathelicidins are antimicrobial peptides (AMPs) that were first discovered to have 

microbicidal properties but more recently to be multifunctional immunomodulators and thus 

important in influencing host defence against infectious disease. Whilst roles in various 

organs have been demonstrated, their expression patterns in health and disease in other 

organs are less clear and their key immunomodulatory functions remain undefined, 

particularly with regard to the balance of immunomodulatory properties and microbicidal 

activity in their ability to promote defence against infection.  

I therefore set out to describe LL-37 expression (human cathelicidin) in the female 

reproductive tract (across the menstrual cycle) and in the lung (during specific lung diseases), 

to define the effects on the function of airway epithelial cells during bacterial infection and to 

evaluate the key in vivo roles of endogenous cathelicidin (using a knockout mouse model) as 

well as the effect of therapeutic administration of LL-37 in a pulmonary Pseudomonas 

aeruginosa infection model. 

I demonstrated that cathelicidin protein and transcription shows a cyclical pattern of 

expression in female reproductive tissues which is maintained at high levels in decidua. LL-

37 protein was also detected in hTERT endometrial epithelial cells but despite the suggestion 

that cathelicidin may be regulated by steroid hormones there was no direct effect of 

progesterone on transcription.  LL-37 is barely detected in healthy airways however is well 

known to increase during infection or inflammation. I observed that sputum from patients 

with bronchiectasis showed a correlation between the level of LL-37, TNF, MPO and chronic 

colonisation of Pseudomonas aeruginosa. Patients with lung cancer expressed much less LL-

37 than the bronchiectasis patients but there was a trend towards increased production post-

surgery compared to pre-surgery. 

LL-37 was previously shown by our lab to selectively promote BAX and caspase-dependant 

death of infected epithelial cells. I went on to show that this appears to be a partially caspase-

1 dependent mechanism and that human bronchial epithelial (HBE) cells and A549 cell lines 
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both express several of the components required to form inflammasomes, a caspase-1 

dependant form of inflammatory cell death. 

Finally, I showed using murine models that cathelicidin enhances bacterial clearance during 

pulmonary infection in vivo, a response which is defective in mice lacking endogenous 

cathelicidin and that administration of exogenous, synthetic LL-37 at the time of infection 

can promote an early protective neutrophil influx in the absence of endogenous cathelicidin 

production. 
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1.1 General Introduction 

 

Cationic host defence peptides (CHDP) are evolutionarily conserved, small, positively 

charged peptide components of innate host defences. These peptides, also known as 

antimicrobial peptides, were originally discovered and described on the basis of their direct 

microbicidal properties. However, it has become increasingly clear that CHDP have an 

extensive range of immunomodulatory properties that can be complementary to microbicidal 

activity, or may even represent their major antimicrobial function. As a result of their 

capacity to interact with cells involved in host defence CHDP can modulate both innate 

inflammatory processes and interact with the generation of adaptive immunity. CHDP have 

been implicated in a variety of disease processes at diverse organ sites, and are attracting 

increasing attention as templates for the development of novel immunomodulatory 

antimicrobial therapeutics. One of the most extensively studied immunomodulatory CHDP is 

called LL-37/hCAP18. 

 

1.2 Mammalian cationic host defence peptides 

 

In mammals, CHDPs are represented by two main classes of peptide; the defensins and 

cathelicidins. The multiple different defensins are believed to share a common ancestral gene 

and can be subdivided into α- , - and -defensins, based on the organisation of three 

characteristic cysteine disulphide bonds in the mature peptide fragment of the prepropeptide 

(reviewed in 
[1]

). In contrast, cathelicidins are not grouped as a family on the basis of the 

mature peptide structure, which displays considerable diversity, but rather by the presence of 

an evolutionarily conserved N-terminal cathelin domain in the propeptide (reviewed in 
[2]

). 

Mammals express a plethora of defensins (with humans expressing six α-defensin genes and 

having over forty predicted -defensin gene 
[1]

), and multiple cathelicidins are seen in some 

species. However certain species, including humans and mice, express only a single 

cathelicidin. Although steadily more reports detailing the immunomodulatory properties of 

defensins are emerging, the greater body of such studies relate to cathelicidin peptides. 

 

The defining features of cathelicidins are an N-terminal signal sequence, a conserved cathelin 

domain and a variable C-terminal domain which, upon cleavage, becomes the mature 

functional peptide. The cathelin domain was named on the basis of its capacity as a cathepsin 
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L inhibitor, and the cleaved cathelin protein has been described as a cysteine protease 

inhibitor with some microbicidal properties in its own right 
[3]

. The mature cathelicidin 

peptides range from 12 – 88 amino acids in length and take various forms including linear 

peptides with the capacity to form amphipathic α-helical structures, disulphide bond-

stabilised -hairpin structures, and proline rich structures 
[2]

. The sole human cathelicidin 

Human Cationic Antimicrobial Peptide of 18KDa (hCAP18) generates a 37 amino acid 

peptide called LL-37 as its primary mature product 
[4]

 which adopts an α-helical structure in 

lipid membranes and in physiological ionic environments 
[5]

. 

 

1.3 Human Cathelicidin 

 

1.3.1 Human cathelicidin hCAP18/LL-37 

 

hCAP18 is encoded by the Camp gene on chromosome 3p21.3 (Fig 1.1). After removal of the 

signal peptide, the propeptide may be stored before cleavage by proteinase 3 to form LL-37, 

the 4.5kDa mature peptide fragment 
[6, 7]

. Although LL-37 is the major mature form, smaller 

fragments such as KS-30, KS-22, LL-29, KR-20, RK-31, LL-23, KS-27 may also be formed 

by serine proteases (e.g. kallikreins) in keratinocytes and sweat 
[8, 9]

 and cleavage by gastricin 

in the semen can lead to the formation of the ALL-38 form 
[10]

. These alternatively processed 

forms have variations in the balance of microbicidal and immunomodulatory properties 
[11]

, 

demonstrating a mechanism of in vivo functional control and illustrating the therapeutic 

potential to modulate function through peptide sequence manipulation. 

 

hCAP18/LL-37 is produced in highest concentrations by neutrophils (~ 630 g/ 10
9
 cells 

[12] 
) 

where it is stored in propeptide form in the secondary granules.  However, expression can 

also be induced in epithelial cells, keratinocytes, monocytes, macrophages, mast cells, NK 

cells, γδT cells and B cells (reviewed in 
[13]

). hCAP18/LL37 can be detected in a broad range 

of tissues and bodily fluids including plasma, bone marrow, airway surface fluid, skin, sweat, 

reproductive tract, semen, urine, breast milk and vernix (reviewed in 
[14]

) 
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Figure 1.1 Transcription of the Camp gene results in a prepropeptide composed of an N-

terminal signal domain, a cathelin domain and a C-terminal functional domain. The 

prepropeptide is processed to remove the signal peptide to leave the  propeptide (hCAP18) 

until the mature LL-37 peptide is cleaved from the cathelin domain of hCAP18 by proteinase 

3 
[15] 
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The expression of hCAP18 is subject to complex transcriptional and post-transcriptional 

control, upregulated in response to inflammatory and infectious stimuli (such as 

lipopolysaccharide (LPS), IL-6 and IL-1α 
[16-18]

 and to wounding 
[19]

. The precise 

mechanisms of regulation remain to be fully determined, however recent studies have clearly 

shown the importance of the active vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25 

D3) as an inducer of hCAP18 expression, acting via a vitamin D response element in the 

Camp gene promoter 
[21-24]

. The observation that expression of the hydrolase CYP27B1, 

which converts 25-hydroxyvitamin D3 to the active 1,25 D3, can be up-regulated by TLR2/1 

stimulation 
[24]

, indicates a mechanism for vitamin D-dependent up-regulation of Camp 

expression in response to inflammatory and infectious stimuli. Other mechanisms of control 

include butyrate-enhanced histone acetylation at the Camp promoter, resulting in AP-1-

mediated transcription 
[26]

, recruitment of the PU.1 transcription factor to the Camp promoter 

in response to vitamin D, butyrate or lithocolic acid 
[27]

, and the identification of a nuclear 

factor for interleukin-6 expression site 
[4]

. 

 

The importance of hCAP18/LL-37 in vivo can be seen in patients with the rare condition 

morbus Kostmann, in whom neutrophils are deficient in hCAP-1/LL-37 and who are more 

susceptible to infection 
[27]

, and in the association between hCAP18/LL-37 levels and 

susceptibility to infection in dermatological pathologies (reviewed in 
[28]

). Whereas 

expression is not increased in response to the inflammation in atopic dermatitis and increased 

susceptibility to infection is observed, pathologically high levels of hCAP18/LL-37 
[29]

 that 

may contribute to the pathogenesis of psoriasis 
[30]

 are associated with a relative protection 

from skin infections. Increased levels of hCAP18/LL-37 have also been reported in 

pulmonary infections, cystic fibrosis (CF) lung disease and bronchiolitis obliterans syndrome 

[31-32]
. Although these could represent a protective microbicidal response, the 

immunomodulatory effects of LL-37 might actually contribute to pathology in some cases, 

with the severity of CF lung disease found to correlate with increased LL-37 levels in the 

lung persisting between exacerbations 
[32]

. Indeed altered post-translational processing of 

hCAP18, associated with an increase in stratum corneum tryptic enzyme, contributes to 

disease pathogenesis in acne rosacea 
[34]

, demonstrating a pathological role for the angiogenic 

properties of this CHDP 
[35]

. 
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1.3.2 Microbicidal activity 

 

LL-37 was initially described and characterised as an antimicrobial peptide, reported to be 

microbicidal against a broad range of gram-positive and gram-negative bacteria, including P. 

aeruginosa, S. aureus, and E. coli 
[5, 45-47]

 , the yeast Candida albicans 
[53]

 and some viruses 

[54, 55]
, and to inhibit biofilm formation by P. aeruginosa 

[56]
. However, the microbicidal 

activity of most CHDP is most potent in environments of low ionic strength and care must be 

taken to conduct in vitro MIC studies under physiologically-relevant conditions.  

 

The microbicidal properties of CHDP have been variously attributed to three main 

mechanisms 
[57]

 ; a) a “barrel-stave” pore formation where hydrophobic surfaces interact with 

membrane lipid acyl chains while hydrophilic regions align to form a pore which may enlarge 

as more monomers are added, b) a “carpet model” with transient toroidal pore formation 

induced through CHDP-mediated membrane curvature strain at sites of high local peptide 

concentration, and c) a “carpet model” characterised by detergent-like bilayer disruption 

eventually leading to the formation of micelles at high peptide concentrations. LL-37 appears 

to function by toroidal pore formation, binding to the negatively charged bacterial surfaces 

and adopting a stable -helical conformation at the polar/nonpolar interface, aligned parallel 

to the membrane surface 
[57]

. Studies evaluating the properties of LL-37 analogues and 

truncated peptides have demonstrated that hydrophobicity and the propensity to form -

helices is critical to microbicidal function, but that the helical sense (using enantiomeric 

peptides) is not (reviewed in 
[58]

). In addition, the core microbicidal region has been defined 

as amino acids 17-32 
[47]

, and this truncated peptide has enhanced microbicidal activity in 

comparison to full length LL-37 (MIC ~100 g/ml against E. coli K12, compared to 200 

g/ml for LL-37). The membrane defects induced by CHDP are proposed to allow leakage of 

intracellular contents, although whether this alone induces death, or whether subsequent 

intracellular translocation of the peptide to interact with internal targets 
[59]

 is also critical 

remains to be determined. Although microbes appear less able to develop resistance to CHDP 

than to conventional antibiotics, various resistance strategies have been reported. These 

include the production of proteases capable of cleaving LL-37 (e.g. SpeB of Streptococcus 

pyogenes, metalloproteases of Pseudomonas aeruginosa, gelatinose by Enterococcus faecalis 

and ZapA from Proteus mirabilis 
[60, 61]

, membrane modifications (e.g. Neisseria 

meningitides lipid A modifications 
[62]

, PmrA-PmrB based modification of P. aeruginosa 



27 

 

LPS structure 
[63]

), and the capacity of Shigella spp. to downregulate hCAP18/LL-37 

production by host cells 
[64]

. 

 

In specific protected environments, such as leukocyte phagolysosomes, high concentrations 

of peptide and controlled ionic environment may be well suited for direct effects on 

pathogens 
[22, 65]

. In addition, alterations to in vitro culture conditions, designed to more 

closely mimic those present in mammalian tissues by increasing carbonate concentration, can 

alter the sensitivity of S. aureus and E. coli to LL-37 
[66]

. This suggests that adaptations 

occurring in invading organisms may increase their susceptibility to innate microbicidal 

CHDP defences in vivo. Furthermore, LL-37 can act synergistically with other CHDP 
[67]

 and 

has been shown to synergise with conventional antibiotics 
[68]

. Nevertheless, at mucosal 

surfaces in vivo the capacity of LL-37 to play a fundamentally microbicidal role seems 

unlikely given the expression levels of LL-37, the presence of serum proteins, DNA and f-

actin and the concentrations of cations. It is at these sites that the additional bioactivities of 

LL-37 may prove to be of greatest significance to host defence. 

 

As with many antimicrobial peptides, the minimum inhibitory concentrations (MIC) for LL-

37 against microbes in vitro (in the range of 10 - 250 g/ml 
[5, 45-47]

) is much higher than the 

physiological concentrations that have been described in vivo at uninflammed mucosal sites 

(< 2 g/ml hCAP18/LL-37, of which it is unclear what proportion is mature peptide). In 

addition, LL-37 can be inhibited by the presence of cations 
[48]

, serum apolipoprotein 
[49]

, 

DNA and f-actin 
[50, 51]

  Indeed, in the presence of concentrations of divalent cations (Ca
2+

, 

Mg
2+

) found in the human body, even 100 g/ml LL-37 (exceeding levels observed at 

inflamed mucosa) was not microbicidal for Staphylococcus aureus, Salmonella Typhimurium 

[48]
, or for P. aeruginosa 

[52]
 against which cathelicidin-mediated in vivo protection has been 

observed 
[40, 44]

. The question therefore arises as to how cathelicidins function as 

antimicrobial agents in vivo. While antimicrobial effects might be mediated through direct 

microbicidal properties at sites of localised high peptide concentrations (such as inside 

neutrophils following engulfment of pathogens), or through synergy with other antimicrobial 

agents, perhaps the most important functions are indirect immunomodulatory effects.  
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1.3.3 Modulation of cytokine expression 

 

Mammalian cells respond to a range of different microbial components or pathogen-

associated molecular patterns (PAMPs) via innate pattern recognition receptors (PRR) 

including toll-like receptors (TLR), RIG-I-like receptors (RLR) and nucleotide-binding 

domain leucine-rich repeat containing receptors (NLR) (reviewed in 
[69]

). Lipopolysaccharide 

(LPS) and lipotechoic acid (LTA) from Gram-negative and Gram-positive bacteria 

respectively are powerful, well-studied pro-inflammatory PAMPs that are components of 

bacterial cell walls and membranes and may also be released by dying bacteria. These 

PAMPs can activate leukocytes and epithelial cells to promote an initially protective 

inflammation but can, if the infection is not cleared, induce harmful inflammation and sepsis. 

The properties of LL-37 appear to extend beyond pathogen killing, to include mopping up 

and detoxifying liberated endotoxin upon microbial death to limit the damage to host tissues. 

LL-37 has been shown to bind and neutralise both LPS and LTA and to modulate 

downstream TLR signalling, down-regulating expression of PAMP-induced genes 
[70-73]

, even 

when the peptide was not applied for up 90 minutes after PAMP stimulation 
[71]

. Interestingly 

these effects are observed at peptide concentrations lower than those required for 

microbicidal activity (typically 1 – 5 g/ml) but appear to be PRR-specific, inhibiting TLR4 

and TLR2/1 agonists but not TLR2/6, TLR5, TLR7 and TLR8 agonists in peripheral blood 

mononuclear cells 
[74]

, and the precise points in the signalling pathways at which LL-37 

functions have not yet been defined. These anti-inflammatory activities presumably account 

for the protective effects of LL-37 in animal models of sepsis 
[75, 76]

. The use of analogues and 

truncated peptides has demonstrated that the LPS neutralizing activity of LL-37 resides 

primarily in the C terminal portion of the peptide and resulted in the generation of a 24 amino 

acid peptide derivative with similar efficacy to LL-37 in terms of LPS and LTA 

neutralization, but lower pro-inflammatory activity 
[77]

. These studies highlight the potential 

for development of cathelicidin-based peptides as novel anti-endotoxic therapeutics. 

 

Inflammatory responses induced by PAMPS are driven by classic pro-inflammatory 

cytokines (e.g. TNF-) and by chemokine-dependent recruitment of leukocytes. Interestingly, 

while LL-37 can inhibit PAMP-induced TNF- responses, it can also promote the production 

of chemokines (e.g. IL-8, MCP-1; 
[11, 71, 73, 78, 79]

 ) and has potent chemotactic properties for 

neutrophils, monocytes, memory T cells and mast cells in vitro and in vivo 
[80-84]

 . In addition 

LL-37 can induce degranulation in mast cells, resulting in the release of histamine, 
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prostaglandin D2 and leukotriene B4, increasing vascular permeability and further promoting 

infiltration of leukocytes to the site of inflammation 
[85]

. While optimal induction of 

chemokine production by monocytes, epithelial cells and keratinocytes occurs at ~25–50 

µg/ml, and involves activation of MAPK pathways 
[78, 86]

, the optimal direct chemotactic 

activity is observed in response to 2-25 µg/ml, and functions through FPRL-1, CXCR2, and 

other unidentified G-protein coupled receptors 
[80, 81, 83, 87]

. Importantly, in contrast to the 

microbicidal properties, the chemotactic properties of LL-37 are not inhibited by serum 
[80]

. 

 

LL-37 has also been shown to enhance responses to IL-1 and GM-CSF in peripheral blood 

mononuclear cells, but antagonize the responses to IFN-, IL-4, or IL-12 
[88]

, to promote 

caspase 1-dependent posttranslational processing and release of IL-1 by LPS-primed 

monocytes 
[89]

, and induce a caspase 1-independent processing of IL-18 from keratinocytes 

acting synergistically with -defensins 
[90]

. These functions all suggest that rather than being 

conventionally anti-inflammatory or pro-inflammatory, LL-37 can “re-balance” inflammatory 

responses in a concentration- and stimulus-dependent manner. Such complexity highlights 

the need to examine the effects of potential cathelicidin-based therapeutics in a pathogen-

specific manner. 

 

1.3.4 Leukocyte differentiation and function 

 

The nature and extent of any inflammatory response is dictated by the functional properties of 

the participating innate and adaptive immune effector cells, including neutrophils, 

macrophages, monocytes, dendritic cells and lymphocytes. The appropriate responses of 

these cells, and the resolution of their responses, are critical to the successful outcome of an 

inflammatory response, while avoiding host damage and chronic infection. In addition to 

roles in the chemotaxis and cytokine responses of these effector cells, LL-37 also has the 

capacity to alter their differentiation and function in a number of other important ways. 

 

Neutrophils are the key, innate immune effector cells that are the major cellular constituent of 

the early phase response to inflammatory stimuli. In keeping with observations in other cells 

types, LL-37 can both promote neutrophil IL-8 responses in a MAPK p38 and extracellular 

signal regulated kinase (ERK)-dependent manner 
[91]

, and inhibit cytokine responses to Toll-

like receptor (TLR) agonists and whole bacteria 
[92]

. However in addition, recent studies have 
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shown that exposure to 5 – 20 g/ml of LL-37 can induce dose-dependent increases in 

neutrophil intracellular calcium mobilisation 
[88, 91]

, induce the generation of reactive oxygen 

species (ROS; 
[91]

) and/or amplify ROS production in response to PMA or whole bacteria 
[92]

. 

Significantly decreased ROS production in Camp
-/- 

murine neutrophils underscores the role of 

the endogenous peptide in this process 
[92]

. Given the importance of ROS as effector 

molecules in the direct microbicidal function of neutrophils, and the additional capacity of 

LL-37 to enhance neutrophil phagocytosis 
[92]

, these results suggest that LL-37 can prime and 

enhance neutrophil antimicrobial functions.
 

Furthermore, LL-37 was shown to induce 

expression and release of human -defensins (human neutrophil peptides 1–3) from live and 

apoptotic neutrophils 
[91, 93]

. These -defensins have recently been shown to also have 

effective anti-inflammatory properties in vitro and in vivo 
[94]

, and are likely to act in concert 

with the immunomodulatory effects of LL-37 to modify the responses of macrophages and 

other cells.
 

 

LL-37 has been clearly shown to modulate the inflammatory responses of macrophages and 

monocytes, as described earlier, however LL-37 is also capable of modulating macrophage 

differentiation 
[95]

. While LL-37 exposure during the in vitro generation of human monocyte-

derived macrophages (MDMs) promoted a more pro-inflammatory M1 phenotype, LL-37 

could also redirect fully M2 phenotype differentiated MDMs to produce more IL-12p40 and 

less IL-10. This bioactivity of LL-37 was localized to the C-terminus of the peptide, and LL-

37 internalisation by the cells was necessary to modulate the phenotype. In addition, the 

vitamin D-regulated anti-mycobacterial activity of human monocyte cells, attributed in part to 

the activity of CHDP 
[22]

, has recently been demonstrated to involved LL-37-mediated 

autophagy of the infected cells 
[96]

. Expression of LL-37 was shown to be critical both for the 

infection-induced transcription of autophagy-related genes Beclin-1 and Atg5, and for the 

colocalization of mycobacterial phagosomes with autophagosomes. These studies 

demonstrate that both LL-37 expression by monocyte cells and exposure of these cells to 

external sources of this peptide can modulate the antimicrobial and immunomodulatory 

properties of these cells.  

 

In addition to their multiple roles in innate immunity, it is becoming clear that CHDP can 

modulate the adaptive immune response (reviewed in 
[14]

). Immunization of mice with a 

plasmid fusing LL-37 to a tumour antigen generated enhanced antigen-specific humoral and 
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cytotoxic responses, and prolonged survival in a tumour model in vivo 
[97]

. LL-37 fusion 

plasmids were found to be significantly more effective than the tumour antigen plasmid 

alone, or co-administration of separately encoded plasmids for LL-37 and the tumour antigen, 

but the mechanisms remain unclear. Direct modulation of lymphocyte activity and/or 

proliferation, although demonstrated for defensins 
[98]

, is not a reported property of LL-37. 

Indirect mechanisms, such as alteration of the local cytokine environment should all be 

considered, but a likely explanation may be found in the effects of LL-37 on dendritic cell 

(DC) differentiation and function. LL-37 has been shown to modulate DC differentiation 

from monocyte precursors in vitro, with LL-37-primed DC displaying significantly up-

regulated endocytic capacity, modified phagocytic receptor expression and function, up-

regulated co-stimulatory molecule expression (including CD86 expression in the absence of 

DC maturation), and enhanced Th-1 responses in vitro 
[99]

, as well as enhanced Th-1 

responses in vivo (Davidson, Schwarze, Wang unpublished data). LL-37 therefore has the 

capacity to induce the differentiation of immature DC “primed” to skew the nature of the 

adaptive response. Thus, LL-37/tumour antigen fusion proteins may function by delivering 

both the target for the adaptive immune response and a CHDP to generate a “primed” DC to 

the same cell in a temporally appropriate manner for an enhanced adaptive response. These 

effects of LL-37 involve signalling via an unidentified G-protein coupled receptor 
[99]

, while 

related DC phenotype-modulating properties have been shown to require internalisation of 

LL-37 by the DC 
[100]

. In addition to the effects of LL-37 on DC differentiation, LL-37 has 

been shown to inhibit LPS-induced maturation of differentiated DC 
[101]

 in a manner 

consistent with its anti-endotoxic activities, but to promote DC activation in response to DNA 

and RNA 
[30, 102]

. In the latter studies, LL-37 was demonstrated to bind non-inflammatory 

self-DNA and RNA and promote its uptake into DC in a manner that resulted in retention in 

early endocytic vesicles and activation of both plasmacytoid and myeloid DC, via TLR7, 8 

and 9. These findings suggest a possible mechanism by which the excessively high levels of 

LL-37 found in psoriatic skin plaques might be involved in breaking self-tolerance and 

driving autoimmunity in psoriasis. However, the initiation of LL-37 overexpression in this 

disease remains unclear, as do the mechanisms by which tolerance is maintained in the 

context of inflammatory levels of LL-37 and dead cells in the healthy individual. These 

studies demonstrate the capacity of LL-37 to modulate DC differentiation and function in an 

inflammatory environment, and reiterate the contrasting effects of this cathelicidin on cellular 

responses to diverse stimuli.  
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It is therefore clear that by modifying the influx, functional responses and differentiation of 

inflammatory effector cells, LL-37 can orchestrate and modulate responses to infectious and 

inflammatory signals. However, in addition to these properties, recent studies have 

demonstrated that this peptide can also influence inflammation through effects on cell death. 

 

1.3.5 Modulation of cell death 

 

Although CHDP can rapidly permeabilise prokaryotic membranes, most natural peptides are 

relatively less toxic to eukaryotic cells, an observation proposed to relate to the essentially 

neutral outer surface of eukaryotic membranes and their cholesterol content (reviewed in 

[103]
). This affords host cells a degree of protection from the lytic effects of such peptides. 

However, negatively-charged erythrocytes are more susceptible, presenting a challenge in the 

design of novel therapeutic derivatives (reviewed in 
[58]

), and CHDP can be cytotoxic to 

mammalian cells in a manner specific to cell-type and its concomitant stimuli. 

 

LL-37 has long been known to have cytotoxic effects on peripheral blood leukocytes at 

concentrations above 125 g/ml, even in the presence of 10% foetal bovine serum (FBS; 
[5]

), 

but it was unclear whether this death was due simply to primary necrosis resulting from 

peptide-induced membrane damage or an induction of programmed cell death. LL-37 can 

enter eukaryotic cells by an active process requiring endocytic machinery 
[104]

, and can 

facilitate the cellular entry of nucleic acids 
[105, 106]

 and DNA dyes 
[89, 107]

 without inducing 

cell lysis, suggesting temporary membrane disruption or pore opening mediated by this 

cathelicidin in live cells. Exposure to higher concentrations of LL-37 can induce apoptosis of 

airway epithelial cells in a dose-dependent manner (with substantial cell death at ≥ 50 g/ml) 

in vitro and in murine airway epithelial cells in vivo 
[108, 109]

. The presence of high density 

lipoproteins from human serum blocks entry of LL-37 into epithelial cells, inhibiting this LL-

37-induced cell death and the IL-8 production by these cells 
[108]

. LL-37 has also been shown 

to induce death in Jurkat T leukaemia cells, although requiring exposure to higher 

concentrations of peptide (50 – 200 g/ml). This was demonstrated to be mediated via a 

caspase-independent and calpain- and AIF-dependent apoptosis that involved Bax activation 

and translocation to the mitochondria 
[110]

, but also associated with significant levels of 

necrosis (with propidium iodide entry into the cells) at the higher peptide concentrations  in 

another study 
[111]

. However, no cell death was induced in primary human lymphocytes, or 
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monocytes, at more physiologically relevant levels of LL-37 (up to 50 g/ml) in the presence 

of 10% FBS 
[86, 99]

. Furthermore, LL-37 has been found to protect primary keratinocytes from 

induction of apoptosis by camptothecin, an effect mediated by a cyclooxygenase-2-dependent 

mechanism involving production of inhibitor of apoptosis 2 protein 
[112]

, and to inhibit tumour 

necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in intestinal 

epithelial cells in vitro 
[113]

, demonstrating the cell-type specificity of cathelicidin-mediated 

effects on cell death. 

 

The extent to which direct induction of eukaryotic cell death at high peptide concentrations 

might modulate innate or adaptive immune responses in vivo remains unclear. However, a 

recent study performed by Dr Peter Barlow and myself in the Davidson lab has demonstrated 

that more physiological, inflammatory concentrations of LL-37 (10-30 g/ml) can 

preferentially induce death in airway epithelial cells that have been infected with P. 

aeruginosa 
[52]

 and this will be expanded upon in chapter 5 of this thesis. Thus, LL-37 may 

contribute to innate defence against epithelial cell-invading microbes by inducing the death of 

infected, compromised epithelial cells as part of an inflammatory response, denying microbes 

a safe niche for replication and invasion of the host tissue. 

 

The control of cell death is critical in maintaining homeostasis and in host responses to 

infection and inflammation, but also for the resolution of inflammatory responses. Despite the 

key roles played by neutrophils in innate immunity, uncontrolled or persistent neutrophilia is 

detrimental to the host. Neutrophils undergo spontaneous apoptosis and have a short half-life 

that can be modulated by a broad range of substances, including bacterial products (e.g. LPS), 

and cytokines (e.g. GM-CSF) 
[116]

. Control of neutrophil death and the anti-inflammatory 

effect that apoptotic neutrophils have on phagocytosing macrophages are critical in the 

resolution of inflammatory responses 
[117]

. LL-37 can antagonise the effects of LPS on 

neutrophil survival 
[93]

, and has been shown to modulate neutrophil death directly. Although 

initially proposed to be an inhibitor of neutrophil apoptosis 
[109, 118]

, the principal effect of LL-

37 is the rapid induction of secondary necrosis of apoptotic neutrophils, occurring at 

concentrations of peptides as low as 1 g/ml 
[93, 119, 121]

. This property was retained by C-

terminal partial peptides and was also evident for mCRAMP (the murine orthologue of LL-

37). In contrast to expectation, LL-37-induced secondarily necrotic neutrophils had anti-

inflammatory effects on activated macrophages 
[93]

. The maximal anti-inflammatory effects 



34 

 

were observed in association with LL-37-mediated release of granule contents from the 

apoptotic cells, induced by exposure to higher concentrations of LL-37 (25g/ml). These 

effects were independent of the anti-endotoxic activity of the peptide used to induce 

secondary necrosis, and may result from the release of both LL-37 and -defensins from the 

apoptotic neutrophils 
[94]

. Although other granule contents could have deleterious effects, LL-

37-mediated release of CHDP from apoptotic neutrophils may enhance the apoptosis-driven 

resolution of inflammation. 

 

Thus, the capacity of LL-37 to modulate the induction of cell death and modalities of death 

should be considered as one of the immunomodulatory properties of this cathelicidin. 

Interestingly these properties are complemented by peptide-mediated enhancement of cell 

proliferation, indicating that LL-37 has the potential to generate both protective cell death and 

repair in an inflammatory environment. 

 

1.3.6 Cellular proliferation and angiogenesis 

 

The expression of LL-37 is up-regulated at sites of wounding and has been shown to play 

roles in cell proliferation, wound healing and angiogenesis. hCAP18/LL-37 was found to be 

strongly expressed in healing skin, but absent from chronic skin ulcers, and to promote re-

epithelialisation of wounds in organ-cultured human skin 
[122]

. LL-37 has been shown to 

induce keratinocyte migration in vitro at concentrations as low as 100 ng/ml (in the absence 

of serum; 
[123, 124]

), associated with MAPK and matrix metalloproteinase-dependent epidermal 

growth factor receptor (EGFR) activation, and to enhance re-epithelialisation at skin wound 

sites in vivo 
[123]

. This cathelicidin can also promote fibroblast proliferation 
[108]

, but inhibits 

collagen production by dermal fibroblasts and may have anti-fibrotic properties in wound 

healing; with the degree of fibrosis in dermal keloids found to be inversely correlated with 

the expression of hCAP18/LL-37 
[125]

. Furthermore, in studies using airway epithelial cells, 

LL-37 promoted wound healing in a dose-dependent manner by stimulating epithelial cell 

migration and proliferation at concentrations as low as 1 g/ml, but interestingly only in the 

presence of serum 
[126]

. In addition to these wound healing properties, LL-37 has been shown 

to induce the proliferation of endothelial cells and neovascularisation in vitro and in vivo, 

with decreased vascularisation observed during wound repair in Camp
-/-

 mice 
[36]

. 
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The capacity of LL-37 to modulate cell proliferation has stimulated a number of studies to 

evaluate the effects of this peptide on tumour growth and metastasis (reviewed in 
[127]

).  LL-

37 derivatives have been proposed to have tumouricidal activity, via induction of apoptosis 

[128]
. However, increased expression of hCAP18/LL-37 has been found in breast, ovarian and 

lung carcinomas 
[129-131]

, correlating with vascular density 
[130]

, and proposed to be mitogenic. 

Transfection of epithelial cell lines (HEK293 and HaCaT cells) with hCAP18 enhanced 

cellular proliferation in vitro 
[129]

. Similarly, recombinant LL-37 stimulated proliferation of 

ovarian cell lines 
[130]

, although this occurred exclusively in the presence of serum and the 

enhanced proliferation observed at 1 g/ml LL-37 was lost for two of the three cell lines at 

higher concentrations of peptide. The growth of anchorage-independent lung carcinoma cell 

lines in vitro was shown to be enhanced after the addition of ng/ml concentrations of LL-37, 

but significantly diminished by 20 g/ml of peptide 
[131]

. In addition, LL-37 has been 

proposed to promote ovarian tumor progression by enhancing invasion, matrix 

metalloproteinase expression, and the recruitment of multipotent mesenchymal stromal cells 

[130, 132]
, and tumours derived from transformed cells injected into nude mice showed 

significantly faster growth when engineered to over-express hCAP18 
[129]

. However, in 

contrast, exogenous LL-37 demonstrated anti-proliferative properties for gastric carcinoma 

cells, inducing cell cycle arrest, and had direct anticancer activity in vivo in a gastric cancer 

xenograft model 
[133]

. Thus, although this cathelicidin can clearly impact upon tumour growth 

in model systems, the cell-type specificity and net effect of its properties in vivo remains to 

be determined. 

 

1.3.7 Mechanisms of immunomodulatory activity 

 

The pleiotropic effects of LL-37 in modulation of host defence responses raise questions 

about the mechanisms that could underpin such a broad array of bioactivities. At the simplest 

level, the anti-endotoxic properties of LL-37 are at least partly a consequence of direct, 

charge-based binding of LPS as discussed above, inhibiting interaction between LPS and its 

binding protein and/or receptor. However, even for this property, additional mechanisms are 

required to explain the selective LL-37-mediated inhibition of specific LPS-induced pro-

inflammatory genes, without inhibition of LPS-induced genes that antagonise inflammation 

[73]
, and a variety of receptor-specific and alternative mechanisms for LL-37-mediated 

immunomodulation have been proposed. 
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A classical receptor-ligand mechanism has been proposed for LL-37, functioning through 

formylpeptide receptor-like 1 (FPRL1); a G protein coupled receptor (GPCR). This receptor 

interaction was initially identified as the mechanism for LL-37-mediated chemotaxis of 

leukocytes 
[80]

. FPRL-1 has also been implicated in LL-37-mediated wound healing 
[123]

, 

angiogenesis 
[35]

, inhibition of neutrophil apoptosis (in one study 
[118]

), and in activating 

MAPK and enhancing invasiveness of ovarian carcinoma cells 
[136]

. However additional 

mechanisms occurring concomitantly have been implicated for many of these properties, and 

a recent study has described CXCR2 as an alternative receptor for LL-37-mediated neutrophil 

and monocyte chemotaxis 
[87].

 Unidentified GPCR other than FPRL-1 have also been 

proposed as receptors for LL-37 
(104)

, and implicated in LL-37-mediated modulation of DC 

differentiation 
[99]

 and mast cell chemotaxis 
[81]

, based on inhibition of LL-37-mediated 

effects by pertussis toxin. Furthermore, utilisation of GPCR by cathelicidins has been 

excluded in many studies, implicating alternative mechanisms and receptors, including 

P2X7R, EGFR and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

 

The purinergic receptor P2X7R has important roles in the regulation of inflammatory 

processes 
[135]

. Activation by ATP (described as its principal ligand) reversibly opens large 

non-selective pores involving P2X7R and pannexin 1, which can enable ion flux across the 

cell membrane. The P2X7R has been identified as responsible for LL-37-mediated 

posttranslational modification and release of IL-1 from LPS-primed monocytes 
[89]

, 

experimentally implicating LL-37 as an alternative direct ligand for this receptor. P2X7R 

activation has also been implicated in LL-37-mediated modulation of neutrophil apoptosis 

[109, 118]
, endothelial cell stiffening 

[136]
 and the mitogenic properties of LL-37 on fibroblast 

proliferation 
[107]

. However, the latter study demonstrated that LL-37 could restore pore-

forming activity to a truncated P2X7R, which could not itself generate the classical non-

selective pore 
[107]

. This activity, its independence from pannexin 1 and the equivalent 

mitogenic activity of similarly structured orthologues and the D-enantiomer of LL-37, lead to 

a proposal of functional interaction between P2X7R and amphipathic peptides with 

appropriate helix-forming propensity, mediated by binding of transmembrane segments, and 

opening pores through mechanisms distinct from that of ATP-stimulated P2X7R. LL-37 has 

also been proposed to function through activation of metalloproteinases in the cell membrane, 

by as yet undefined mechanisms, with consequent cleavage of soluble membrane-bound 

EGFR ligands and transactivation of EGFR. This mechanism has been implicated in LL-37-
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mediated induction of IL-8 expression 
[11, 78]

, wound healing, keratinocyte migration, and 

enhanced cellular proliferation 
[123, 124, 126]

. Common to these and other studies is the 

activation of MAPK pathways by LL-37 
[86]

, a downstream signalling event can also be 

observed following FPRL-1 ligation by LL-37 
[134]

, and has been implicated in LL-37-

mediated modulation of TLR responses 
[74]

. The potential for LL-37 to modulate multiple 

signalling processes via interactions with transmembrane domains of diverse membrane-

bound receptors may help to explain its pleiotropy and the apparently key nature of the 

amphipathicity of this peptide, irrespective of helical sense 
[11. 107]

. However, a role for 

promiscuous receptors cannot be excluded and other properties of LL-37 require peptide 

entry into the eukaryotic cell. These include the induction of chemokine expression 
[104]

, 

altered MDM / DC differentiation 
[95, 100]

 and peptide-mediated cell death 
[108]

. The 

identification of GAPDH as a novel intracellular receptor for LL-37 
[137]

 may be significant in 

this regard, but the full extent of intracellular effects mediated by this peptide, and the 

mechanisms involved remain to be determined. Membrane integration of cathelicidin in the 

absence of peptide internalisation by the cell might also be fundamental to the cathelicidin-

mediated induction of secondary necrosis in apoptotic membranes 
[93, 119]

. Clearly the 

mechanisms of immunomodulation employed by LL-37 are complex and may be atypical, 

and elucidation will be important to furthering our understanding of these intriguing peptides. 

 

1.3.8  Expression of Cathelicidin in health and disease 

 

Due to the abundant quantities of hCAP18 found stored in neutrophil granules much work 

has looked at the role of cathelicidin in inflammatory diseases involving acute neutrophilia 

and the activity of LL-37 on neutrophils and inflammatory cells themselves. Epithelial cells 

however are another important source of cathelicidin and a poorly understood area in the field 

of CHDP research is the role of LL-37 at mucosal surfaces, its expression by epithelial cells 

at different body sites and the effect this peptide has on epithelium during infectious or non-

infectious disease. These questions represented an important focus in my PhD work, with 

particular emphasis on the female reproductive tract and the lung. 
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1.4  Antimicrobial Defence and Regulation of Cathelicidin at Mucosal 

Surfaces: the Female Reproductive Tract 

 

The female reproductive tract undergoes cyclical expression of many proteins due to its 

unique nature of continual differentiation, sloughing and renewal 
[120]

. The tissue of the 

endometrium, ovaries and fallopian tubes are continually changing under the influence of 

ovarian and pituitary hormones (Fig 1.2). A great deal of tissue remodelling occurs within the 

reproductive tract with concomitant angiogenesis as well as apoptosis of cells in the 

functional layer of the endometrium. A standard menstrual cycle is 28 days long however this 

can vary by several days between individuals. The first day of the menstrual period (day 1) 

begins with menstruation when the functional layer of the endometrium is shed following the 

degeneration of the corpus luteum and withdrawal of the ovarian hormone progesterone. 

Following menstruation there is a period known as the proliferative (or follicular) phase. At 

this time a new ovarian follicle will grow under the influence of follicle stimulating hormone 

(FSH) and produce oestrogen which causes the endometrium to thicken and spiral arterioles 

to lengthen from the straight arteries of the endometrial basal layer to the functional layer. A 

mid-cycle surge of luteinising hormone (LH) results in ovulation and the formation of a 

progesterone-secreting corpus luteum. The secretory (or luteal) period follows and 

progesterone levels peak in the middle of this period. The increase in progesterone maintains 

the spongy, glandular endometrium and regrowth of spiral arterioles continues. Should 

fertilisation and implantation of the blastocyst not occur, the corpus luteum dies and 

progesterone levels fall which triggers menstruation. The withdrawal of progesterone results 

in degradation and shedding of the uterus lining and retraction and vasoconstriction of the 

spiral arterioles accompanied by leukocyte influx 
[138, 139]

. 
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Figure 1.2 Cyclical changes in the female reproductive tract. Illustration showing the 

changes that occur in the tissue of the ovaries and endometrium on different days of the cycle 

under hormonal regulation from the ovaries and the brain. Reproduced from Sanders S, 

Dawson J, Datta S, et al. (eds) (2005). Oxford Handbook for the Foundation Programme. 

Oxford: OUP. By permission of Oxford University Press 
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The epithelial cells lining the vagina, endo-cervix, uterus and fallopian tubes are major 

sources of antimicrobial peptides and CHDP and the various ways in which these barrier cells 

contribute to innate immunity to infection is reviewed in 
[142]

, however, in addition to 

constitutive or infection-initiated expression, the presence or absence of particular proteins is 

not constant at all times of the menstrual cycle. Previous studies have shown the presence of 

antimicrobial peptides (AMPs) such as α and β defensins, SLPI and Elafin to vary in 

concentration throughout the menstrual cycle with distinct periods of prevalence and waning 

[139, 140, 143]
. The antimicrobial peptide secretory leukocyte protease inhibitor (SLPI) for 

example has been shown to display cyclical expression which is highest at the time of 

blastocyst implantation and during subsequent pregnancy and it is speculated that this is in 

order to protect the mucosal surfaces at these crucial times 
[139]

. Also, the serine protease 

inhibitor elafin, another antimicrobial protein is up-regulated during menstruation 
[140]

. The 

human endometrium has been shown to express hBD1-4 
[143]

 differentially throughout the 

cycle. hBD 1&3 are expressed at highest levels during the secretory stage whilst hBD4 is 

expressed during the proliferative and hBD 2 during menstruation. The purpose of this 

varying milieu of peptides is likely to include antimicrobial defence of the woman or 

trophoblast at times where the risk of infection is greater or during menstruation or 

implantation, but they may also have physiological roles in these latter processes themselves.  

 

One host defence peptide present in the uterus and fallopian tubes for which, at the time of 

this PhD, there was little published description in the upper reproductive tract is Human 

cationic antimicrobial peptide of 18kDa (hCAP18). Due to the documented roles that LL-37 

plays in other body systems, including angiogenesis 
[35]

, wound repair 
[122, 125]

, cell 

proliferation 
[107, 125, 129]

 and modulation of inflammatory cells 
[13, 147]

 it is tempting to 

speculate that LL-37 could be influential in inflammatory settings. Menstruation shares many 

characteristics of an acute inflammatory event with local increases in pro-inflammatory 

prostaglandins, cytokines and chemokines and an increase in leukocyte migration to the 

endometrium 
[261]

 and changes in systemic levels of C-reactive protein may also be seen, 

associated with low grade inflammation 
[262]

. 
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1.5.  Host defence peptides in the lung in health and disease 

  

The respiratory system is essential for extracting oxygen from the surrounding air and 

eliminating carbon dioxide waste from the blood. Inhaled air flows into the airways via the 

nasal cavity, pharynx, larynx, and trachea and then through left and right primary bronchi to 

increasingly smaller bronchi and bronchioles to terminate in alveoli, the functional unit of the 

lungs where the majority of gas exchange occurs. 

 

1.5.1 Cellular composition of the lung  

Human lung epithelium 
 

The trachea and bronchi are lined by respiratory epithelium 
[221]

, a pseudostratified, tall 

columnar, ciliated epithelium containing numerous goblet cells for mucin secretion (Fig 1.3). 

As the airways become smaller the height of the epithelial cells decrease as does the number 

of goblet cells and cilia. Terminal bronchioles are lined by simple non-ciliated columnar or 

cuboidal cells (Fig 1.4) with interspersed clara cells (Non-ciliated, secretory cells). There are 

two lungs, enclosed within pleural sacs both of which have a lung hilum where bronchi and 

pulmonary arteries enter the lung and pulmonary veins leave. Normally the right lung is 

divided into three lobes and the left lung into two, all of which contain millions of alveoli. 

The alveoli are composed of type I and type II pneumocytes. Type I pneumocytes make up 

the simple squamous lining of the alveoli and type II or septal cells reside in the septa 

between alveolar lobes (Fig 1.5) secreting surfactant as well and acting as stem cells to 

replenish the type I pneumocyte population as required. 

 

Mouse lung epithelium 
 

Mouse lung structure varies from humans in that the left lung is undivided and the right lung 

is divided into 4 lobes. Mice have fewer airway generations (few if any respiratory 

bronchioles) and although there are few mucus-producing cells in the murine airways there 

are an abundance of Clara cells which are the predominant cell type 
[264]

. 
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Figure 1.3 The human trachea and larger bronchi are lined with Pseudostratified 

columnar ciliated epithelium (respiratory epithelium) with numerous goblet cells for 

mucin production. With permission from Lippincott Williams and Wilkins 
[221]

. 
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Figure 1.4 The terminal bronchiole is lined with simple cuboidal epithelium. As the 

airways get smaller the number of goblet cells decrease and the epithelial cells are no longer 

ciliated. With permission from Lippincott Williams & Wilkins 
[221]

. 
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Figure 1.5 Alveolar walls and pneumocytes. The alveoli walls are composed of Type I 

pneumocytes and split into lobes by interalveolar septa. Type II pneumocytes are present in 

fewer numbers and produce surfactant. With permission from Lippincott Williams & Wilkins 

[221]
. 
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Inflammatory cells in the lung 
 

Innate immune surveillance of the airways is carried out primarily by alveolar macrophages 

(also known as sentinel or dust cells) which are resident in the connective tissue of alveolar 

walls or in the alveoli themselves. These macrophages phagocytose cellular debris, 

microorganisms and other inhaled particles and also initiate and sustain inflammation 

recruiting other immune cells upon recognition of infection via the release of chemotactic 

mediators and activating chemokines such as IL-12. Dendritic cells found in the lung also 

phagocytose material but in addition to destroying microorganisms (when activated following 

ligation of PRRs) they migrate from the lungs to local lymph nodes to display antigens to 

lymphocytes. Neutrophils and natural killer cells are not normally found in the healthy lung 

but are quickly recruited in the presence of danger signals and chemokines that are released 

by macrophages and epithelial cells.  

 

Epithelial cells, whilst not typically recognised as immune cells, play an important role in 

forming both a physical barrier to infection (through tight junction connections) a chemical 

barrier (as a source of antimicrobial peptides) and also play a part in immune surveillance 

releasing cytokines and chemotactic mediators upon stimulation of pathogen recognition 

receptors to draw other leukocytes into the area. 

 

1.5.2 Non cellular innate host defence of the lung  

 

The majority of inhaled particles are removed from the airways by the mucocilliary escalator. 

Mucin 
[229, 230]

 produced by goblet cells is the main component of mucus which contains 

water, immunoglobulins, defensins and other antimicrobial peptides as well as cytokines and 

destructive enzymes such as lysozyme to inactivate microorganisms. The cilia on respiratory 

epithelium beat in a co-ordinated movement that pushes mucus up towards the oropharynx 

where microorganism-containing mucus can be coughed up or swallowed. Organisms that 

escape removal by the mucocilliary escalator and reach the alveoli may be inactivated or 

opsonised by soluble factors such as IgG and secretory IgA 
[232, 233, 234]

, complement proteins 

[234 236]
, surfactant protein A (SPA) 

[237]
, lysozyme, anti-oxidants, lactoferrin, α1-antitrypsin 

[239]
 and CHDP such as the defensins and cathelicidin 

[3-5, 7]
. 
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Defensins are small, cationic microbicidal peptides 
[13]

, first discovered in 1985 that show 

both direct antimicrobial activity against a broad spectrum of pathogens and are also 

chemotactic for inflammatory leukocytes. They are also involved in opsonisation of microbes 

and modulation of the behaviour of recruited cells. The α defensins, also known as human 

neutrophil peptides (HNPs), are constitutively expressed by neutrophils and stored in 

azurophilic granules for intracellular pathogen killing or for degranulation onto epithelial 

surfaces following recruitment and activation. The β defensins 
[43]

 are produced by epithelial 

cells and may be constitutively expressed as in the case of hBD1 or like hBD 2, 3 and 4, 

inducible during infection or inflammation. 

 

1.5.3 Cathelicidin expression in the lung  

 

HCAP18/LL-37 secreted into the airways of healthy, uninfected individuals is estimated to be 

less than 5μg/ml as measured in bronchoalveolar lavage fluid (BALF) 
[149]

 however when 

infection is present or during the course of specific lung diseases the amount of cathelicidin 

present may be much greater. Comparisons between reported levels of cathelicidin in the lung 

are complicated by the various detection methods used. Some studies use an ELISA approach 

and it must be determined whether the antibodies used detect the propeptide hCAP18/LL-37 

or the cleaved LL-37. Other studies use the less accurate dot blot approach, again with the 

same consideration for antibody specificity.  

 

1.5.3.1  Infection  
 

Cathelicidin concentrations are elevated in response to infection. When hCAP18/LL-37 is 

measured in BALF from neonates with lung infections, concentrations are closer to 30 μg/ml 

[149]
. Levels of LL-37 in human lung disease such as sarcoidosis are also associated with 

increased LL-37 production alongside up-regulation of other CHDPs, and BALF from 

sarcoidosis patients has increased bacterial killing capacity compared to that of healthy 

controls 
[150]

.  
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1.5.3.2  Cystic Fibrosis (CF) 
 

Cystic fibrosis is an inherited condition caused by a mutation in a chloride channel called the 

cystic fibrosis transmembrane regulator (CFTR). Individuals who inherit two mutated alleles 

have non-functional salt channels and produce thick salty mucus in the lung resulting in 

impaired mucocilliary clearance and are thus subject to multiple respiratory infections and 

reduced lung function 
[258]

 . hCAP18/LL-37 is found at higher than normal levels in the lungs 

of cystic fibrosis patients suffering chronic lung infections (around 15μg/ml BALF) and 

although increasing amounts correlate with disease severity rather than protection 
[154]

 this is 

likely as a correlate of neutrophil infiltration to the lungs and the damage caused by chronic 

inflammation. 

 

1.5.3.3  Bronchiolitis Obliterative Syndrome (BOS) 
 

Bronchiolitis obliterative syndrome describes a condition where there is non-reversible 

progressive fibrosis and inflammation of the small airways which result in obstructive lung 

disease. There are multiple causes of BOS but, although normally a rare condition, it is the 

most common cause of death amongst lung transplant recipients who survive >1yr post-

transplant. Anderson and colleagues found that levels of hCAP18/LL-37 was higher in the 

BAL of recipients suffering from BOS as compared to stable recipients (Means of 10ng/ml-1 

compared to 0.4ng/ml-1) even after taking into account a higher neutrophil influx in the BOS 

group 
[152]

. The authors propose that there may be a not as yet understood contribution to the 

pathology of BOS by antimicrobial peptides such as cathelicidin. 

 

1.5.3.4  Asthma 
 

Asthma is a disease characterised by hyper-reactive airways, reversible bronchial restriction 

and airflow obstruction, chronic inflammation which leads to fibrosis and airway wall 

remodelling 
[153]

. Patients may display wheezing, coughing, chest tightness and shortness of 

breath to varying degrees. The disease may be atopic or non-atopic but either type can suffer 

exacerbations or “attacks” 

 

The role of cathelicidin is unclear in asthma. Some studies have reported that sputum 

cathelicidin is the same or reduced in asthmatics compared to non-asthmatic controls 
[151]
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whilst others have demonstrated that allergic airway inflammatory responses suppress the 

expression of cathelicidin in the lung. A study in 2006 
[155]

 showed that LL-37 via interaction 

with FPR is chemotactic for eosinophils and recently others looked at Cysteinyl leukotriene 

release from eosinophils as triggered by LL-37 interacting via the FPR2 
[156]

. These findings 

would indicate that cathelicidin may be detrimental for allergic asthma inflammation. 

However, the use of Budesonide, a glucocorticoid used to treat asthma decreased the 

expression of LL-37 resulting in an increase in experimental lung infections in a mouse 

model 
[157]

. Additionally challenge with an allergen in asthmatics increased the amount of 

vitamin D in the lungs as well as the expression of LL-37 
[158]

 and giving vitamin D 

therapeutically to asthmatics increases the amount of LL-37 correlating with better lung 

function and a reduction in respiratory infections according to another group 
[159]

. The role of 

Vitamin D induced LL-37 expression and whether it is beneficial or detrimental in asthma 

remains poorly understood. 

 

1.5.3.5  Vitamin D regulation of cathelicidin expression in the lung  
 

7-dehydrocholesterol in the skin is converted by UVB light into inactive vitamin D3 which is 

then stored and converted in the liver to the active form 1, 25-dehydroxy-D3 (1, 25-D3 or 

calcitriol) by the enzyme 25-hydroxylase. This enzyme has been found to be expressed in the 

lung 
[23]

 making it possible to also increase the levels of active vitamin D locally. Vitamin D 

deficiency has been linked in several studies to be associated with lung disease, especially of 

an infective nature (reviewed in 
[160]

). Increased expression of the vitamin D receptor (VDR) 

in cells during inflammation and infection coupled with the presence of 1,25D3 results in an 

increase in the production of VDR regulated genes including cathelicidin 
[20-23]

 and so the 

increased susceptibility to infection of those with vitamin D deficiency could in part be due to 

a lack of cathelicidin up-regulation. 

 

1.5.4 Murine Cathelicidin mCRAMP 

 

Additional evidence for the importance of cathelcidin in vivo comes from studies of 

mCRAMP (mouse cathelin-related antimicrobial peptide, encoded by Camp), the murine 

orthologue of hCAP18. Genetically-modified mice deficient in mCRAMP expression (Camp
-

/-
) demonstrate increased susceptibility to infections of the skin, intestinal tract, cornea and 

urinary tract 
[36-39]

. At the time of starting this PhD the lung phenotype was unknown. 
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Interestingly, regulation of murine cathelicidin expression diverges from that observed in 

humans, as mCRAMP is not regulated by vitamin D 
[21]

, but has been shown to be HIF1 

(hypoxia-inducible factor 1 alpha)-responsive 
[41]

. Nevertheless, these studies show 

considerably more severe effects upon host defence than knockout models deficient in single 

-defensins 
[42, 43]

, where there may be considerable redundancy. They also demonstrate 

multi-organ effects of cathelicidin deficiency in vivo. Additional evidence of in vivo 

antimicrobial function was demonstrated using gene-augmentation with hCAP18/LL-37 to 

enhance the clearance of Pseudomonas aeruginosa from the murine lung 
[44]

, a study that also 

demonstrated the therapeutic potential of these peptides. Although this research clearly 

indicates the importance of cathelicidins to host defence, the precise mechanisms responsible 

for these observations remain uncertain.  
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1.6 Opportunistic respiratory infections caused by Pseudomonas 

aeruginosa.  

 

 

Pseudomonas aeruginosa is a ubiquitous, Gram-negative, aerobic bacterium that rarely 

causes disease in healthy individuals, but can adapt quickly to invade respiratory epithelium 

when normal immune barriers are compromised. This is especially true in critically ill 

patients who may develop hospital-acquired pneumonia (HAP) as a result of introducing or 

facilitating the movement and growth of Pseudomonas into the lower airways during 

intubation and mechanical ventilation.  

 

1.6.1 Opportunistic Infections in Humans  

 

Ventilator-associated pneumonia caused by P. aeruginosa is associated with a poor prognosis 

and mortality is high 
[161]

. Other cohorts of patients who are highly susceptible to respiratory 

colonisation and infection with P. aeruginosa are those with cystic fibrosis. The cystic 

fibrosis affected airway has abnormal physiology due to the absence of an ion channel, the 

cystic fibrosis transmembrane conductance regulator (CFTR) on the epithelial cells lining the 

airways. Deregulation of salt concentration in the lumen of the respiratory tract leads to the 

production of thick, sticky mucus and a reduced volume of airway surface liquid. In addition, 

many of the antimicrobial peptides normally produced in this area are rendered non-

functional as a consequence of salt levels or by other salt-independent mechanisms 
[162-164]

. 

Thus, the clearance and killing of bacterial pathogens is hindered and colonisation with 

characteristic opportunists such as P. aeruginosa occurs. 

 

Infection with this bacterium can have variable consequences for airway epithelial cells 

depending on the infecting strain and its associated virulence factors. Invasion, destruction 

and apoptosis of host cells are all potential outcomes. Pier and colleagues have long argued 

that the CFTR acts as a receptor for the internalisation of P. aeruginosa to epithelial cells 
[165, 

166]
 and that following internalisation the epithelium can remove infectious organisms by way 

of apoptosis and shedding of infected cells. Logically if the CFTR is absent and cannot 

perform this function then bacteria remain in the immunocompromised mucociliary lining 

and are able to multiply and cause chronic infection with relative impunity to normal 

clearance mechanisms. 
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Others contest this view of the role of the CFTR in clearance of Pseudomonas and present 

work which indicates more a role for damaged epithelial cells presenting glycolipid receptors 

which P. aeruginosa attach to via pili 
[167]

, facilitating invasion of the mucosal surface via the 

activity of type III toxins.  

 

Strain variability can clearly be seen in both environmental strains and clinical isolates of P. 

aeruginosa that express different combinations of the type III toxins; Exoenzyme S, T, U or 

Y.  ExoS and ExoT have ADP-ribosylating activities to low molecular weight GTP-binding 

proteins of the Ras family 
[241]

. The C-terminal is the site of ADP-ribosylating activity and the 

N-terminal functions as a Rho GAP (GTPase activating protein). When present in the host 

cell cytosol, ExoS and ExoT cause disruption of actin cytoskeleton. ExoU is a phospholipase 

cytotoxin 
[242]

 that interferes with cell membranes via lipase activity and ExoY is an adenylate 

cyclase 
[243]

. Strains which are directly cytotoxic are thought to express both U and T whereas 

cells which are invasive and non-cytotoxic (but may induce apoptosis) express S and T.  This 

is complicated however by observations that the potential for cytotoxicity is dependent on the 

type of cell infected as well as the makeup of different exotoxins 
[244]

. Both cytotoxic and 

invasive bacterial infections are thought to involve protein tyrosine kinase activity (PTK). 

Mutation of csk, which regulates Src family PTKs reduces invasion and increases 

cytotoxicity of P. aeruginosa infections. Only 20% of clinical isolates express exoU. PA01 

expresses exo S, exoT and exoY but not exoU 
[245]

. Infection with non-cytotoxic strains may 

however still cause cell death by the induction of regulated cell death pathways 
[241]

.  

 

1.6.2 Current Treatments 

 

P. aeruginosa is an important opportunistic respiratory pathogen that is associated with high 

levels of mortality in hospitalised patients and amongst growing concerns that there is a 

shortage of antibiotics which are effective against multi-resistant strains alternative 

treatments need to be found. Drug treatment is complicated in patients with other co-

morbidities and regional drug resistance information must also be taken into account. 

Generally for pneumonia caused by P. aeruginosa the recommended treatment is initial dual 

therapy with a beta lactam and aminoglycoside for 5 days de-escalating to monotherapy once 

culture sensitivity information has been returned. For patients with CF, aerosolised 
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aminoglycosides (such as tobramycin) have been shown to have efficacy when treating early 

acute infection 
[168]

. Chronic infection in CF patients has proven impossible to eradicate 

however and critically ill patients with ventilator associated pneumonia must be treated 

promptly before culture isolates can be tested for sensitivity. Combined with a decreasing 

pool of antibiotics that remain efficacious and the frequency of nosocomial infections caused 

by P. aeruginosa there is a need for additional treatment options. 
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1.7 Pathogen Recognition, Inflammasome Formation and Initiation of 

Pyroptosis as an Anti-infective Mechanism of Epithelial Cells. 

 

Airway epithelium is the first point of internal contact with the body for infectious bacterial 

microorganisms that utilise airborne and droplet transmission routes. Although inhalation of 

organisms and particles occurs all the time not all inhaled materials are pathogenic. Many 

species of bacteria may live commensally in the back of the nose and throat 
[227]

, whilst others 

are opportunistic pathogens only causing disease when local immune mechanisms are 

compromised. 

 

Epithelial linings have an armoury of recognition and response mechanisms with which they 

protect the upper and lower respiratory tract (reviewed in 
[228]

). These mechanisms may 

include the release of danger signals to mount an inflammatory response to a particular 

organism, or the induction of immune tolerance towards the presence of non-harmful 

organisms or by removing microbes with minimal alarm. Initially thought to provide merely a 

physical barrier between the outside world and the internal environment, epithelial cells are 

now understood to play a much more varied and important role in innate immunity and 

inflammatory pathways. 

 

Respiratory epithelium is made up of ciliated epithelial cells, mucus-producing goblet cells 

and basal cells 
[221]

. More than one type of epithelial cell exists in the airways and this varies 

with location within the tract. The oropharynx is protected by stratified squamous epithelium 

whilst the upper airway epithelial cells form a ciliated pseudostratified columnar epithelium. 

In addition to providing a physical barrier to the rest of the body an important mechanism for 

removal of organisms is the mucociliary escalator. Mucin-containing mucus, the production 

of which is controlled by MUC genes and goblet cells in the respiratory tract 
[229, 230]

, traps 

organisms which are then moved upwards by the beating of thousands of cilia so that 

microbe-containing mucus may be either ingested and dealt with my stomach acid or spat out 

and removed from the body entirely. 

 

Where this mechanism fails such as in the case of cystic fibrosis (CF) patients whose mucus 

is dehydrated and difficult to remove from the airways 
[162] 

or in patients who have 

malfunctioning cilia 
[263]

, removal of organisms by this method is impaired. A major 

characteristic of the immune system however is redundancy. Aside from physical removal of 
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foreign particles there is also an array of lipid, protein, chemical and peptide mediators that 

either interact directly with the organism to kill or inhibit growth or act indirectly by directing 

other cells and components of the immune system. When pathogens are not removed by the 

mucociliary escalator and are allowed to interact with the epithelial layer then cellular 

recognition and defence mechanisms must be initiated to respond to the threat. 

 

1.7.1  Pathogen Recognition Receptors (PRRs) and Inflammasome formation 

 

Innate immune mechanisms are described as non-specific or, at best, broadly specific, a 

notion easy to comprehend when compared to the precise interaction between lymphocytes 

and their reciprocal antigens during an adaptive response. Nevertheless, alongside a wider 

appreciation of the role that innate mechanisms play in setting the scene for the type of 

adaptive response that follows, there is an increasing amount of evidence that suggests this 

view of non-specificity is perhaps a result of incomplete understanding. The following 

introduction aims to present the literature, which dissects the molecular recognition 

mechanisms that suggest that innate responses aren’t as ”non-specific” as they are classically 

described.. 

 

1.7.2 Pathogen Recognition Receptor Signalling 

 

Whilst cells of the adaptive response recognise specific molecular sequences via a 

combination of endocytosis by antigen presentation cells, MHC-restricted antigen 

presentation and co-stimulation from other cells and cytokines 
[169]

, cells of the innate system 

recognise disturbances in the body using an array of pathogen recognition receptors (PRRs, 

table 1.1) which respond to a diverse array of exogenous pathogen-associated molecular 

patterns (PAMPs) and/or endogenous host cell derived danger-associated molecular patterns 

(DAMPs) 
[170]

. 

 

These diverse molecular patterns independently, or more often in combinations, initiate 

signal transduction pathways, determining the cytokine environment produced initially by the 

cells local to the infection or damaged tissue and later by activation of recruited immune 

cells. PRRs are differentially expressed on different cell types and “sentinel cells” such as 
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resident macrophages and dendritic cells possess a wider variety of receptors than non-

myeloid cells such as epithelial cells. Upon ligation of a particular set of PRRs signalling 

pathways are initiated and, via an array of cytosolic mediators and accessory proteins (e.g. 

MyD88, TRIF, TRAM, MAPK), transcription factors involved in regulating cytokine 

production or cell death pathways  translocate to the nucleus and alter gene expression in that 

cell (e.g. NF-κB) 
[171]

.  
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PRR Location Domains Functions 

TLR 

(Toll-like 

Receptors) 

Cell Membrane 

and endosomes 

 

LRR domain in ectoderm 

(Leucine rich repeats) 

 

Transmembrane domain 

 

Cytoplasmic Toll/IL-1 

receptor (TIR) domain 

TLR 1 Bacterial 

lipoproteins 

 

TLR 2 Bacterial 

Lipoproteins, 

peptidoglycan, host 

HSP70 + HMGB1 

 

TLR 3 ds RNA in 

endosome (Viral) 

 

TLR 4 LPS, HSPs, 

nickel 

 

TLR 5 Bacterial 

Flagellin 

 

TLR 6  Mycoplasma 

 

TLR 7 ss RNA in 

endosome (Viral) 

 

TLR 8 ss RNA in 

endosome 

 

TLR9 Bacterial DNA 

(CpG motifs) in 

endosome 

 

TLR 10 – Unknown 

 

TLR 11 Profilin 

 

TLR 12 Profilin 

 

TLR 13 Pathogen rRNA 

CLR 

(C-lectin type 

receptors) 

Membranes and 

Secreted 

Carbohydrate binding 

domains 

 

Variable other domains 

Large variety of proteins and functions 

RLR 

(Rig-like 

helicases) 

Cytosolic CARD 

(Caspase activation and 

recruitment domain) 

 

RNA Helicase 

 

Repressor Domain 

Recognition of Viral DNA/RNA 

 

Induction of type 1 IFN in response to infection 

AIM 2 
(Absent in 

melanoma 2) 

Cytosolic PYD 

(Pyrin domains) 

HIN200 

Foreign DNA recognition 

NLR 

(Nucleotide 

binding domain, 

leucine rich 

repeat) 

Cytosolic NOD 1 

NOD 2 

PYD 

NACHT (NOD) 

LRR 

BIR 

23 in humans 

34 in mice 

Main role is to regulate production of IL-1 and 

IL-18 and activate caspase-1 

 

Table 1.1: Types of Pathogen Recognition Receptors (PRR). PRRs that may be expressed by 

host cells in order to recognize damage or infection and mount an innate immune response 

accordingly
 [172-176] 
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1.7.2.1  Toll-Like Receptors 
 

Toll-like receptors (TLRs) are membrane-spanning proteins that function as PRRs 
[172]

. A 

flurry of activity followed the discovery of the first TLRs until several were identified along 

with their ligands. We now realize that epithelial, endothelial and immune cells all use these 

receptors to differentiate between threats from viral particles (ds or ss DNA and RNA), 

bacterial cells (Gram positive or negative, flagellated, capsulated etc.) as well as identify 

damaged tissues and host cell debris and respond accordingly. As effectively as these 

recognition receptors function however, they still seem a far cry from the specificity of an 

Escherichia. coli O157 IgG antibody in binding to the surface of that particular organism.  

 

Yet in conjunction with TLR recognition of “type” of threat, these same cells can utilize 

cytosolic and endosomal PRRs such as the C-lectin type receptors 
[173]

, RIG-1 like receptors 

(RLRs) 
[174]

, AIM2 
[175]

 and the nucleotide binding domain, leucine-rich repeat containing 

receptors (NLRs) 
[176]

, to detect changes in their intracellular environment such that the 

distinction between extracellular and intracellular insult can be made.  

 

1.7.2.2  RLRs 
 

Rig-1 like receptors 
[174]

 or retinoic acid inducible gene -1 like receptors are intracellular 

PRRs that bind RNA and initiate intracellular signalling responses via a caspase activation 

and recruitment (CARD) domain. They are important particular in the recognition of viral 

infection. 

 

1.7.2.3  NLRs 
 

Nod-like receptors (NLR) or nucleotide-binding oligomerisation domain-like receptors 
[176]

 

are a group of 23 intracellular PRRs that share a similar structure. That is an N-terminal 

caspase recruitment, pyrin or baculovirus inhibitor repeat domain, a conserved nucleotide-

binding oligomerisation domain and C terminal leucine rich regions that recognise a diverse 

array of intracellular pathogens. 
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1.7.3   Inflammasomes - large cytosolic complexes that form following 

intracellular insult to promote an inflammatory response.  

 

Caspases 
[177]

 are a family of cysteine dependent aspartate-specific proteases that form 

cascades of activation, cleaving other pro-caspases and intracellular substrates. As this 

cleavage can result in activation of other proteins or destruction of cell contents regulation 

exists to avoid ill effects. One of these regulatory strategies is that caspases are produced in a 

zymogen form (table 1.2).  

Inflammasomes are large cytosolic complexes (>700KDa) that recruit and activate certain 

pro-caspases. The oligomerisation of an inflammasome is triggered by a wide variety of 

molecules in a series of events which remain to be fully elucidated however the composition 

of the inflammasome, the surrounding extracellular environment and the type of cell in which 

it forms determines the effect this complex has on the function and fate of that cell.  

The integral components of an inflammasome complex (for which they are named e.g. 

NLRP3 inflammasome) are NLRs, additionally, pro-caspase 1, accessory proteins 

(CARDINAL, BIR, NAIP5 or ASC) and sometimes pro-caspase 5 (Fig. 1.6 and table 1.2). 

Upon recognition of particular ligands inside the cell NLRs dimerise and via their CARD 

(caspase activation and recruitment) domains or via the utilisation of ASC, which contains a 

CARD domain, pro-caspase 1 is recruited to the complex and activated 
[178]

.  

Activation of caspases can occur in many scenarios, with or without inflammasome 

involvement. Caspase activation may result in cytoplasmic and nuclear condensation, DNA 

cleavage and laddering as seen during the process of apoptosis (caspases 3, 8, 9) 
[179]

. 

Alternatively, inflammasome-associated caspase activation may cause the activation and 

release of pro-inflammatory cytokines such as IL-1 beta and IL-18, with or without inducing 

an inflammatory form of programmed cell death called pyroptosis (caspases 1, 4, 5 11) 
[180] 

which appears to be a mechanism for removing infected cells whilst summoning further 

inflammatory cells to deal with microbes that escape intracellular destruction. 
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Caspase Activation Effect 

1 Inflammasomes containing CARD 

domains 

 

Caspase 1 

 Pro-inflammatory 

 Decreases the growth of intracellular 

bacteria 

 Delivers bacteria to lysosomes 

 Maturation and secretion of IL-1, IL-18 and 

IL-33  

 Pyroptosis 

2 Extrinsic pathway  Initiator caspase 

3 Caspase 1, 8, 9, 10 

 
 Effector caspase 

 Apoptosis 

4 Caspase 1, 8, 10  Pro-inflammatory 

5 Inflammasomes containing CARD  Pro-inflammatory 

6 Caspase 8, 10  Effector caspase 

  

7 Caspase 1, 8, 9, 10  Effector caspase 

 Apoptosis 

8 Death receptor mediated (Extrinsic) 

Caspase 10 
 Initiator caspase 

 Apoptosis 

9 Mitochondria mediated pathway (Intrinsic) 

Caspase 8, 9, 10 
 Initiator caspase 

 Apoptosis 

10 Death receptor mediated  

(Extrinsic) 
  

11 Following bacterial evasion of endosome  Pro-inflammatory  

 Pyroptosis 

12 Caspase 7  Pro-inflammatory 

 

Table 1.2: Caspases – cysteine-aspartic proteases. Caspases belong to three groups, 

inflammatory, initiator of cell death and effectors of cell death 
[9]

.
  

Non-death functions of 

caspases have not been included in this table. 
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Figure 1.6: Types of Inflammasomes. The four best studied inflammasome formations. 
[182] 

CARD = Caspase activation and recruitment domain, FIIND = function to find domain, LRR 

= leucine rich repeat, NBD = nucleotide binding domain , PYD = pyrin domain , ASC = 

apoptosis-associated speck-like protein containing a CARD, NLRP1 = nod-like receptor 

protein 1 , NOD2 = nucleotide oligomerisation domain, BIR = baculoviral inhibition of 

apoptosis repeat domain, NAIP5 = NLR family apoptosis inhibitory protein, NLRP3 = nod-

like receptor protein 3, HIN200 = , AIM2 = absent in melanoma 2 
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Inflammaso

me/NLR 

Domains Accessory/adapter molecules Activated in response to 

NLRP3  
 

NACHT 

LRR 

PYD-domain 

containing 

protein 

ASC  

(Apoptosis speck-like protein 

containing a CARD, PYD) 

 

CARDINAL 

 

Cryopyrin (NALP 3) 

 

 

Pore forming toxins 

Extracellular ATP and PAMPS 

Uric acid 

vDNA 

RNA 

Asbestos 

UVB 

Lysosomal disruption 

 

NLRC4  

(IPAF) 

NLR  

CARD-

domain 

containing 

Pseudomonas, Salmonella, 

Legionella, Listeria and Shigella 

NLRP1 NLR B. anthracis toxin 

NAIP NLR 

BIR 

(baculoviral 

inhibition of 

apoptosis 

repeat) 

 

 

AIM2 

(Absent in 

melanoma 2) 

PYD (engages  

 

HIN200 

(binds ds 

DNA) 

 

 Inflammasome component that 

contains no NLRs, binds dsDNA 

 

IFN-inducible protein 

 

Table 1.3: Nod-Like receptors (NLR). NLRs have nucleotide binding domains and leucine 

rich repeats and are intracellular PRRs known to be involved in inflammasome formation. 

Also shown is the NLR-independent AIM2 inflammasome 
[178, 199]
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1.7.3.1  Inflammasomes are crucial for activation of the pro-inflammatory 
cytokines IL-1 and IL-18. 
 

The IL-1 superfamily is a group of cytokines that include IL-1β, IL-18 and IL-33. IL-1β is an 

important cytokine and is known as the endogenous pyrogen for its fever inducing effects via 

the hypothalamus. It is not only involved in healthy inflammatory responses, enhancing 

leukocyte migration, cytokine and chemokine expression and host cell proliferation, 

differentiation and apoptosis but it is also strongly associated with pathology in various 

inflammatory diseases such as gout, rheumatoid arthritis and other autoimmune diseases 
[181]

. 

IL-18 is also pro-inflammatory and can activate T cells and macrophages resulting in 

increased production of IFNγ. Expression of pro-forms of IL-1β and IL-18 are upregulated 

following TLR and NOD 1+2 receptor stimulation. However cleavage of the pro-forms by 

caspase-1 is essential for production of the active forms of both IL-1β and IL-18 
[182-184]

, the 

relative expression of each appear to alter the course of infection in ways which are not yet 

well understood. 

 

This exemplifies just how innate regulatory mechanisms can work in the sense of priming for 

a response and in perpetuating an inflammatory response. Extracellular signals tell the cell to 

prepare and store mediators and if the causative factors are not removed then intracellular 

signals prompt a course of attack using stored forces. IL-1β and IL-18 have no secretion 

signals and further to activation by caspase-1 may also be released from the cell by caspase-1 

induced pores in the cell membrane 
[185]

. Further to mediating cytokine release TIRAP, (Toll-

like receptor domain containing adapter protein) a component of TLR pathways signals better 

in the presence of caspase-1 promoting an increase in TNF and IL-6 and macrophage 

activation in response to TLR2+4 ligands 
[186] 

A sequence of events for inflammasome 

formation and cytokine activation is shown in fig. 1.7  
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TLR 
stimulation 

•Activates NF kB 
•Induces transcription of Pro-IL-1, pro-IL18 and NLRs 

Intracellular 
receptors 
triggered 

•Intracellular presence of a wide variety of structures 

NLRs 
Oligomerises 

•NLRP3 Binds ASC (CARD containing) via Pyrin domain 
•IPAF has a CARD domain 
•Pro-caspases recruited 

caspase 1 
cleaved 

•IL-1 beta and IL-18 processed and released 

Enhanced 
TLR 

signalling 

•Caspase 1 promotion of TIRAP signalling 

Figure 1.7: Coordinated responses of NLR and TLR signalling in response to PAMPS 

and/or DAMPS.  
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17.3.2  Intracellular sensing – The importance of K+ efflux, [ATP] and 
endosome integrity for activation of the NLRP3 inflammasome. 
 

 

Interactions between cellular receptors and ligands rely on the structures of both parties 

fitting in a way similar to the lock and key concept of enzyme activation. NLRC4 

inflammasomes are repeatedly shown to be activated by flagellin 
[210]

 and AIM2 

inflammasomes by dsDNA. How then is it possible that inflammasomes formed by NLRP3 

appear to be initiated by structurally diverse ligands? 

 

Various proposals have been put forward to explain this. One is that it is alterations in 

intracellular K
+
 that may be the trigger for NLRP3 dimerization and that all of the proposed 

ligands results in K
+
 efflux via a variety of mechanisms 

[187-190]
. For example, increases in 

extracellular ATP as well as the pleiotropic cathelicidin LL-37 interact with P2X7, 
[89, 107, 109, 

118, 135]
 an ATP-gated receptor, which causes an efflux of K

+
 and subsequent activation of 

inflammasome proteins and caspase-1 release. Ionic disturbances and inflammasome 

activation have also been shown during multiple viral and bacterial infections of cells 
[191]

. In 

the case of bacterial infection it is commonly due to toxin-mediated damage of plasma 

membranes causing efflux of K
+
. Another model for NLRP3 activation involves Cathepsin B, 

a lysosomal protease. Loss of lysosome membrane integrity causes a release of lysosome 

contents that activates NLRP3 
[192]

.  Finally, events that increase the production of reactive 

oxygen species (ROS) can also induce NLRP3 inflammasome formation 
[193, 194]

. 

 

1.7.3.4  NLRC4 and Pseudomonas 
 

NLRC4 (previously named IPAF) acts as an intracellular PRR for P. aeruginosa infected 

macrophages, recognising flagellin and components of the type III and IV secretion systems 

[201, 211]
 both of which are virulence factors possessed by many Gram negative bacteria. 

Following direct or indirect binding of NLRC4, pro-caspase 1 is recruited and activated 

which in turn processes pro IL-1 and IL-18 to their active pro-inflammatory forms. ExoU 

expressing strains of P. aeruginosa are however, able to inhibit the inflammatory responses 

normally induced by caspase 1 
[210]

. 
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1.7.4  Pyroptosis: Caspase-1 mediated inflammatory cell death as an anti-

infective effector mechanism. 

 

From initial distinctions between necrotic cell death as pathological, inflammatory and lytic 

and apoptosis being a tightly regulated “silent” cell death there are now descriptions of 

multiple forms of cell death. One such form has been coined pyroptosis; a caspase-1 

mediated, inflammatory, anti-infective cell death (Fig 1.8), which is orchestrated by 

inflammasome formation and activated caspase-1 or caspase 11
[195-197, 222]

. Recently caspase-

11 has also been shown to induce pyroptosis in cells following infection and evasion of the 

endo-lysosomal pathway by bacteria in the absence of IL-1 release 
[198]

. 

 

In certain cell types, likely determined by the particular inflammasome components 

expressed by that cell as well as the virulence factors possessed by the invading 

microorganism, infectious stimuli especially associated with phagolysosome evasion, can 

induce an inflammatory lytic cell death following caspase-1 activation. Morphological 

differences are apparent in pyroptosis vs. apoptosis and it can be reasonably assumed that this 

is a defence mechanism for destroying compromised cells when first line phagocytosis has 

failed. 

 

 

  



66 

 

 

 

Figure 1.8 Pyroptosis; a caspase-1 mediated, inflammatory, anti-infective cell death
 [223] 
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1.8 Cell Death  

 

The study of cell death pathways and the molecules that influence the form of death that is 

initiated is an ongoing area of research.  

 

1.8.1 Apoptosis 

 

Apoptosis is a form of “programmed” cell death that is considered a silent method of 

removing damaged or infected cells with no or minimal initiation of immune responses. It 

may be initiated by external death receptors signalling via caspase 8 or internal events such as 

the release of mitochondrial matrix proteins that activate caspase 9. Both methods of 

initiation culminate in the activation of caspase 3 and a common death pathway that results in 

cell shrinkage, DNA laddering, membrane blebbing 
[224-226]

 and the formation of a cell with 

“eat me” signals that may be recognised by macrophages.  

1.8.2 Necrosis, necroptosis and secondary necrosis 

 

Necrosis previously thought of as an uncontrolled process is an inflammatory cell death 

where damaged cells release intracellular contents that act as danger signals and initiate 

inflammatory responses. In contrast to apoptosis necrosis is morphologically characterized by 

rounding of the cell, cytoplasmic swelling with dilated organelles and an absence of 

chromatin condensation. Necroptosis is a form of necrosis dependant on the activity of 

serine–threonine kinase receptor-interacting protein 1 (RIP1) 
[212]

. Secondary necrosis 

describes apoptotic cells that have not been cleared which after some time or following 

interaction with extracellular molecules such as LL-37 
[93]

 lose their membrane integrity. It 

has been proposed by some that these secondary necrotic cells  remain non-inflammatory. 

 

1.8.3 Pyroptosis 

 

Pyroptosis is a caspase-1 or caspase-11 mediated cell death thought to be an anti-infective 

mechanism to activate the cytokines IL-1 and IL-18 initiating an inflammatory response to 

remove compromised cells 
[195, 222]

. 
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1.8.4 NETosis 

 

Netosis is a form of cell death of neutrophils where in the process of dying they spit out 

“nets” (trapping nearby pathogens) composed of nuclear chromatin and cytosolic proteins, 

many of which are antimicrobial, to destroy extracellular bacteria 
[213, 257]

. 

 

1.8.5 Antimicrobial peptides and cell death 

 

Based on the proposed mechanism of action of CHDPs (membrane insertion and disruption) 

it could reasonably be predicted that these peptides may also be cytotoxic though differences 

in membrane composition between microorganism and eukaryotes appear to offer protection 

against these effects. Nevertheless, cytotoxicity as well as initiation of cell death pathways, 

has been documented in response to CHDP and the effect these peptides have on host cell 

death is complex and dependent upon the particular peptide, presence of microbes, affected 

cell type and surrounding chemical milieu. 

 

Early work proposing that cathelicidins from various species may be exploited as direct anti-

microbials documented that these peptides are in fact often haemolytic 
[200]

. In addition, 

according to recent work exposure to high levels of hCAP18/LL-37 causes a calpain and 

BAX-mediated apoptosis of epithelial cells 
[110]

. Yuk 
[96]

 reported that hCAP18/LL-37 

mediates autophagy initiation in mycobacterial-infected cells and has also been shown to 

induce a caspase-3 dependant cell death in epithelial cells 
[108]

 that is inhibited by human but 

not bovine serum. 

 

Shown to have a role in resolution of inflammation a study undertaken in our lab confirms 

observations that hCAP18/LL-37 can convert apoptotic neutrophils into secondary necrotic 

cells with no resultant inflammatory response from resident phagocytes 
[93, 119, 120]

.  

 

Keratinocytes are a large producer of hCAP18/LL-37 and as such are surrounded by high 

concentrations of the peptide. Proposing that there must be a mechanism for keratinocytes 

resistance to cytotoxicity Chamorro 
[112]

 looked at why these cells do not die and found that 

hCAP18/LL-37 induces the production of COX2 and consequently PGE2 in exposed 

keratinocytes with a resultant production of IAP2 and inhibition of cell death. 
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At the time of starting this thesis the role of host cell defence peptides in cell death remained 

unclear, however given that LL-37 induced cell death in both infected and uninfected cells in 

a dose dependant manner 
[108-109]

 yet was clearly protective to the host, this was to be a focus 

for me when studying lung infection with Pseudomonas aeruginosa. 
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Hypothesis 

 

Cathelicidin-mediated immunomodulation, including preferential induction of cell 

death in infected epithelium, is a component of defence against bacterial infection at 

mucosal surfaces. 

 

Project 1: Cathelicidin is differentially expressed in the female reproductive tract at times in 

the menstrual cycle and during pregnancy 

Aims  

 

1. To determine the cellular locations of LL-37 in the female upper reproductive tract by 

histology and take relative measurements of LL-37 mRNA expression in ex vivo 

endometrium and fallopian tube samples from throughout the menstrual cycle by 

quantitative PCR. 

 

2. To assess progesterone regulation of LL-37 expression in endometrial epithelial cells 

in vitro. 

 

 

Project 2: Human cathelicidin selectively induces death in infected epithelial cells and has a 

beneficial role during acute Pseudomonal lung infection. 

Aims  

 

1. To identify intracellular factors responsible for LL-37-mediated killing of P. 

aeruginosa infected airway epithelial cells in vitro.  

 

2. To determine the contribution of common bacterial virulence factors in LL-37 

mediated killing of infected airway epithelial cells in vitro. 

 

3. To evaluate, in vivo, the role of cathelicidin in clearance of P. aeruginosa from the 

murine lung. 
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Chapter 2: Materials and Methods 
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Materials and Methods 

 

Equipment 

ABI Prism 7900      Applied Biosystems 

WPA UV 1101, Biotech Photometer;   Biochrom Ltd., Cambridge, UK 

96 well optical reaction plates    Applied Biosystems 

NucleoCounter YC-100     (ChemoMetec, Allerød, Denmark) 

Nanodrop 

Menzel-Glazer microscope slides 

Shandon cytospin 2 centrifuge 

Sequenza      Shandon 

Shandon casettes     Thermo 

Biometra cycler 

Peltier thermal cycler     Bio rad 

PCR tubes      Axygen Scientific 

Filter tips (DNAse free) 

Culture flasks      Corning Costar 

Stripetttes 

6 well plates      Corning Costar 

 

Reagents 

2x Taqman universal master mix   PE Biosystems, UK 

Taqman reverse transcription reagent kit  Applied Biosystems 

Nuclease free water     Severn Biotech Ltd 

Quick diff fix       Reastain(Recigina) 

Acetone 

Methanol 

Xylene 

Alcohol 
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Antigen retrieval solution    Vector 

PBS  Oxoid 

Avidin and Biotin     Vector 

Protein block      Dako 

R.T.U ABC reagent     Vector 

Diamnobenzidine (DAB)    Vector 

Haematoxalin 

Antibody diluent     Dako 

anti-hCAP18/LL-37 IgG     Hycult Biotech 

Biotinylated horse anti-mouse IgG     Vector, 

Mouse IgG      Vector 

RNAeasy minikit     Qiagen 

β-mercaptoethanol  

Proteinase K solution     Qiagen 

HAMS (+L-Glut)     Cambrex 

F-10 HAM      Sigma 

Insulin, transferrin, Selenium (ITS)   Cambrex 

FCS 

Estradiol (1mM in ethanol) 

Medroxyprogesterone acetate (MPA) 50mM in DMF 

LL-37 synthetic peptide 

RU486 1mM in ethanol 
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Bacterial Strains and Culture 

 

These studies used the following strains of P. aeruginosa: PA01 (Standard lab strain) clinical 

isolate J1386 (a clonal isolate of J1385, originally from an individual with cystic fibrosis), 

ΔmexAB-oprM mutant (a gift from Keith Poole), PAO1exsA∷Ω mutant (a gift from Dara 

Frank), P. aeruginosa pilA mutant (a gift from Eva Lorenz), and the isogenic PAO1 control 

strains for these mutants (Table 2.5). Studies involving genetically modified bacteria were 

performed according to Scientific Advisory Committee on Genetic Modification Health and 

Safety Executive Certificate GM207/07.2.  

 

Table 2.1: Strains of P. aeruginosa used in this study  

 

All P. aeruginosa strains were grown in Luria Bertani (LB) broth at 37°C in an orbital shaker 

(250 rpm) overnight, to achieve a stationary-phase suspension. Before use, bacterial 

suspensions diluted 1:10 in fresh LB broth were incubated at 37°C for 90 minutes to reach 

logarithmic phase. Bacterial suspensions were standardized via dilution with LB broth to an 

optical density of 0.1 at 595 nm, using spectrophotometry (WPA UV 1101, Biotech 

Photometer; Biochrom Ltd., Cambridge, UK), centrifuged at 1,500 × g for 15 minutes 

(keeping supernatant where required for use in place of live bacteria), and resuspended in 

PBS. 

To determine the direct microbicidal activity of LL-37, P. aeruginosa were resuspended in 

Ultroser G serum–substitute supplemented media before the immediate addition of LL-37 at 

the concentrations stated. After incubation for 1 hour at 37°C, serial dilutions were performed 

in PBS, and 100-μl aliquots of these (and the original bacterial suspension) were spread onto 

LB agar plates in triplicate, and incubated overnight at 37°C before counting the number of 

colony-forming units (CFUs).  

 

Strain Origin/Description Gifted by  Reference 

PA01 Standard Laboratory 

strain 

John Govan [205] 

J1386 Clinical isolate from a 

CF patient 

John Govan [206] 

mexAB-oprM Efflux pump mutant Keith Poole [207] 

PA01exsA T3SS mutant Dara Frank [208] 

pilA Pili mutant Eva Lorenz [209] 
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For studies to determine if the function of the ΔmexAB-oprM mutant could be rescued by 

soluble factors released by PA01, PA01 was added to 16HBE14o− cells at a multiplicity of 

infection (MOI) of 10:1 and incubated for 18 hours at 37°C with 5% CO2. After incubation, 

the supernatant was collected and filtered through a 0.22-μm filter unit. The sterility of 

filtered supernatant was confirmed by culturing 50 μl on LB agar plates for 24 hours. Filtered 

supernatant (1:4 dilution in treatment medium) was simultaneously added together with LL-

37 and ΔmexAB-oprM to 16HBE14o− cells, and the cells were incubated for 1 hour and 

analyzed using the mitochondrial depolarization technique. 

 

Cell Culture 

 

hTERT Cell culture. Human telomerase reverse transcriptase immortalised endometrial 

epithelial cells (hTERT EEpC) were used with kind permission of Prof Ian Mason. Cells 

were maintained in Hams F10 (Sigma, etc) with 10% foetal bovine serum (FBS) and Insulin, 

transferrin, selenium (ITS) (Cambrex, 1ml per 500 media) at 37
o
C + 5% CO2.  cDNA 

previously prepared from these cells was obtained from Anne King for the purpose of 

confirming receptor expression. The cells in this case had been treated with increasing 

concentrations of IL-1. 

hTERT EEpC were used to determine the effect of exogenous hormone application on LL-37 

expression in vitro. 6 well plates were seeded with 3x10
5
 cells/well in FBS-containing media. 

After 24 hours, cells (for those experiments without serum) were serum starved using media 

containing ITS but no FBS for a further 24 hours at 37
o
C. Experiments containing serum 

were treated immediately after the first 24 hour incubation. Cells were treated in duplicate 

with Oestradiol (10
-6

, 10
-7

, 10
-8

M), Progesterone (10
-5

, 10
-6

, 10
-7

, 10
-8

M), RU486 (10
-6

M), 

Progesterone + Oestradiol (10
-7

M + 10
-6

M) progesterone + RU486 (10
-7

M + 10
-6

M). To 

determine if there was any feedback loop with LL-37 itself, synthetic LL-37 peptide at 

3μg/ml was also added as a treatment for investigation. .Supernatants from treated cells were 

stored at -20
o
C for later analysis by ELISA to detect secreted LL-37 protein levels and cell 

lysates were harvested using RNA Later buffer (RLT, Qiagen) and immediately used with 

RNA extraction kit (RNeasy, Qiagen) or stored at -20
o
C overnight for RNA extraction the 

following day.  
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Decidualised endometrial stromal cells - (cells maintained and decidualised and RNA 

extracted by Anne King) stromal cells which had been separated from endometrial biopsies 

and then grown in the presence of Medroxyprogesterone acetate (MPA) (10
-6

M), oestradiol 

(10
-7

M) and 8-bromo-cAMP (0.1mg/ml) for 120 hours were used. RNA was collected from 

cells every 24 hours. At around 72 hours the cells started to show morphological changes. 

Decidualisation was confirmed by PCR for the presence of IGFBP1 (a marker of 

decidualisation). 

 

Human uterus microvascular endothelial cells (hUMEC) (Cambrex, Lonza) – RNA from 

these cells was provided by Anne King. 

 

The 16HBE14o− transformed human bronchial epithelial cells - were a kind gift from 

Dieter Gruenert at the University of California, San Francisco. Cells were grown in standard 

submerged cultured and maintained in DMEM supplemented with 1% L-glutamine, 1% 

NEAA , and 10% FBS. Culture flasks were coated with a basement layer of collagen IV (5 

μg/ml), fibronectin (10 μg/ml), and BSA (100 μg/ml) before cell culture at 37°C, 5% CO2. 

Culture media was substituted with serum free Treatment media (phenol red-free DMEM 

supplemented with Ultroser G, L-glutamine and NEAA) for all experiments. 

 

Normal human bronchial epithelial cells from a single donor were purchased from 

Clonetics, Lonza. Cells were grown in standard submerged culture and maintained in 

bronchial epithelial growth media (Lonza), supplemented with bronchial epithelial cell 

SingleQuots growth factors and supplements (Lonza) as a serum substitute, in strict 

accordance with the manufacturer's instructions. All assays were conducted in Ultroser G 

serum–substitute supplemented media, consisting of phenol red–free DMEM supplemented 

with 1% Ultroser G (vol/vol), 1% L-glutamine (vol/vol), and 1% NEAA (vol/vol). Cells were 

maintained at 37oC, 5% CO2 
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Cytospins and counts 

 

BALF from in vivo murine experiments was centrifuged at 200×g for 5 minutes, and 

supernatant was removed for cytokine measurement. Pelleted cells were resuspended and 

counted by NucleoCounter YC-100 (ChemoMetec, Allerød, Denmark) automated cell 

number counting. 100 µl of cell suspension was then loaded onto a glass slide using a 

disposable sample funnel and cytocentrifuged at 10×g for 3 minutes in a Shandon Cytospin 2 

centrifuge. Slides were air dried for 20 minutes, fixed in methanol for 20 minutes, stained 

with Diff Quik (Fisher Scientific, Loughborough, UK), and mounted in DPX Mountant 

(Fluka BioChemika/Sigma Aldrich, UK). Differential counts for neutrophils and monocytes 

were then performed by light microscopy at 20× magnification using an EVOS FL 

microscope (Peqlab, Sarisbury Green, UK). 

 

ELISA 

 

Enzyme Linked Immunosorbent Assay (ELISA) was used to assay cell supernatants for 

quantification of secreted LL-37 in response to treatments in cell assays. hCAP18/LL-37 

sandwich ELISA (Hycult Biotechnology Ltd, Netherlands) was used as per the kit 

instructions.  

Cytochrome c concentrations in each fraction (to confirm that cytochrome C was 

translocating from the mitochondria to the cytoplasm following exposure of 16HBE14o- cells 

to LL-37) was assessed using a Cytochrome c ELISA Kit (Merck Chemicals, Ltd.), according 

to the manufacturer's protocol. 

Murine cytokines in BALF were measured using an ELISA (R&D Systems, UK) according 

to the manufacturer's instructions, for KC, MIP-2 alpha or by using a cytometric bead assay 

mouse inflammation kit (BD Biosciences, UK) for TNF, IL-6, MCP-1, IL-10, IFN-gamma, 

IL-12p70. 
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Gentamicin Exclusion Assay 

 

The capacity of P. aeruginosa isolates and mutants to invade epithelial cells was assessed 

using a gentamicin exclusion assay. Briefly, 16HBE14o− cells were exposed to strains of log-

phase P. aeruginosa (MOI 10:1) for 60 minutes in Ultroser G–serum-substitute supplemented 

media. The media were removed from all wells, and cells were incubated with fresh media 

for 60 minutes with or without gentamicin (50 μg/ml) to kill extracellular bacteria. The media 

was then aspirated from gentamicin-treated cells, and these cells were vigorously washed 

with PBS and lysed with PBS containing 0.1% Triton X-100, and then plated on LB agar to 

determine internalized bacterial numbers. Media and/or epithelial cell lysates from wells 

without gentamicin were also plated on LB agar, to determine the number of associated 

bacteria and total infectious load. The CFUs were quantified by culturing overnight on LB 

agar plates at 37°C. 

 

Immunohistochemistry 

 

A Diaminobenzidine (DAB) based detection system was employed to localise the 

hCAP18/LL-37 protein present in tissue sections. Sections (3μm) were de-waxed in xylene 

and antigen retrieval carried out using antigen unmasking solution (Vector) for 15 minutes at 

high power in the microwave. Sections were blocked with 3% hydrogen peroxide, avidin and 

biotin block (Vector) and with Dako protein block. Primary antibody for anti-hCAP18/LL-37 

was mouse monoclonal IgG (Hycult Biotech, clone 3D11, 100μg/ml) used at 1/200. 

Secondary antibody was biotinylated horse anti-mouse IgG, (BA-2000, Vector, 1.5mg) used 

at 1/300. Synthetic LL-37 peptide (5mg/ml) was used at 10x antibody concentration and 

absorbed to primary antibody for 1 hour prior to use as a negative control. Mouse IgG (i-200, 

Vector) was used as a primary antibody isotype control. Sections were counterstained with 

Haematoxylin and Scott’s tap water and dehydrated through alcohol back to xylene for 

mounting with pertex. 
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Mitochondrial Depolarization Assay (Mitocapture) 

 

The 16HBE14o− cells were seeded at 2.5 × 10
4
 cells per well in a 96-well plate and cultured 

at 37°C, 5% CO2. Cells were exposed to LL-37 (or scrambled LL-37 control peptide) at the 

concentrations described in the presence and absence of (1) log-phase P. aeruginosa at an 

MOI of 10:1; (2) heat-killed or UV-killed bacteria (MOI 10:1), P. aeruginosa PAO1 LPS (1 

μg/ml) or P. aeruginosa supernatant, all prepared as described above; or (3) log-phase P. 

aeruginosa PAO1 (MOI 10:1), separated from the epithelial cells by a Transwell 

semipermeable polyester membrane with 0.4-μm pore size (Corning Life Sciences, 

Amsterdam, Netherlands), and incubated for 1 hour at 37°C, 5% CO2. All treatments were 

conducted in Ultroser G serum–substitute supplemented media. After treatments, cells were 

washed once with PBS prewarmed to 37°C, the supernatant was aspirated, and 50 μl of 

Mitocapture solution (Cambridge Bioscience, Cambridge, UK) at 37°C were added to each 

well, before incubation at 37°C for 30 minutes in the dark. Cells were then washed twice with 

PBS at 37°C, resuspended in 50 μl of Mitocapture buffer at 37°C, and imaged immediately 

using an Axiovert S100 inverted fluorescent microscope (Zeiss UK, Welwyn Garden City, 

UK). For each membrane, at least four random fields of view were counted with a minimum 

of 300 cells in total, and the number of apoptotic cells (displaying diffuse, green 

fluorescence) was expressed as a percentage of the number of healthy cells (displaying 

punctate red mitochondrial fluorescence). Data were corrected for a background level of 

approximately 10% positive cells observed in control untreated samples. For inhibition 

studies, the culture medium in each well was replaced with treatment medium containing 100 

μM BIP-V5 for 1 hour before treatment. 

 

Murine infection model 

 

Mouse experiments were performed in accordance with Home Office UK project licence 

60/4216, under the Animal (Scientific Procedures) Act 1986. Wild type control mice were all 

C57Bl/6 strain, supplied by Charles River Laboratories, UK, and housed at the University of 

Edinburgh for at least two weeks before use, or were animals bred from those mice. Camp 
−/−
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mice 
[16]

 were bred to congenicity on a C57Bl/6 strain background and were the offspring of 

homozygous mutant matings raised in the same facility at the University of Edinburgh. Both 

male and female mice were used, between 8–12 weeks old, housed in individually ventilated 

cages and randomly assigned to treatment groups (no significant difference were found in end 

points between male and female mice). Mice were weighed, given a general anaesthetic 

(isofluorane) in a category 2 biosafety hood, then held vertically by scruffing over the front of 

the thorax and inoculated by an intranasal delivery up to a total of 50 µl volume. Mice were 

inoculated with 3×10
7
 colony forming units (cfu) of PAO1 or the same volume of PBS, and 

10 µg LL-37 peptide in PBS or PBS only control. PBS alone (carrier for both bacteria and 

peptide) was used as a control (rather than scrambled peptide, which previous pulmonary 

infection studies indicated had no effects (
[23] 

and unpublished data), in order that the wild 

type control infected animals were appropriate controls both for the LL-37-treated infected 

wild types and for the infected Camp
−/−

 animals (in which no peptide was delivered). Mice 

were then returned to cages, placed on a heat mat to maintain body temperature, and 

monitored and scored for signs of infection every 2 hours, with peak of illness occurring at 6–

8 hours post infection, followed by recovery with diminishing severity score. Mice were re-

weighed and culled at selected timepoints (0, 6 or 24 hours), culled by pentobarbital injection 

and lungs and trachea exposed by dissection. Lungs were lavaged in 1 ml sterile PBS via 

intramedic polyethylene tubing (Sigma Aldrich, UK) inserted into the trachea, and 

bronchoalveolar lavage fluid (BALF) stored on ice. Following lavage, lungs were either 

homogenised in 2 ml sterile PBS for cfu counts or were perfused by PBS injection into the 

heart, then removed and frozen for RNA preparation. 

For CFU counts, BALF or homogenised lungs were serially diluted in PBS, plated on 

Pseudomonas Isolation agar (Becton Dickinson Difco, Oxford, UK), incubated overnight at 

37°C and bacterial colonies counted using a Stuart SC6 colony counter. Total colonies on the 

lowest dilution plate countable were multiplied by the appropriate dilution factors to 

determine the total CFU count of the lung tissue or BALF sample. 
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Peptide 

 

LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES; MW 4493.33) was either 

synthesised by N-(9-fluorenyl) methoxycarbonyl chemistry at the Nucleic Acid/Protein 

Service unit at the University of British Columbia (UBC; Vancouver, Canada), or custom 

synthesised by Almac (East Lothian, Scotland) using Fmoc solid phase synthesis and 

reversed phase HPLC purification. Peptide identity was confirmed by electrospray mass 

spectrometry, purity (>95% area) by RP-HPLC and net peptide content determined by amino 

acid analysis. Lyophilised peptides were reconstituted in endotoxin free water at 5 mg/ml 

stock concentration and determined to be endotoxin-free using a Limulus Amebocyte Lysate 

Chromogenic Endotoxin Quantitation Kit (Thermo Scientific, UK). Peptide functionality was 

confirmed by assessing anti-endotoxic activity. 

 

Protein extraction 

 

Total protein was extracted from cells by lysing adherent cells with M-PER mammalian 

protein extraction reagent (Thermo scientific) containing anti proteases and phosphatases 

(Halt Protease Inhibitor Cocktail Kit, cat 78410).  

 

Quantitative (Real Time) Polymerase Chain Reaction (qPCR) 

 

qPCR was used to detect transcription of LL-37 in endometrial and fallopian tube tissue as 

well as expression in these tissues of progesterone receptor forms PRA and PRB. mRNA 

levels of LL-37 in both cell lysates and in preserved tissue stored in RNA Later buffer 

(Qiagen) were carried out.  

Briefly RNA was extracted from cells or tissues with the RNEasy extraction kit (Qiagen) 

RNA concentrations were measured using the nanodrop system and all samples prepared to a 

stock concentration of 100ng/μl RNA. Total cDNA was generated in a thermocycler (25
o
c for 

20 mins, 42
o
C for 60 mins, 95

o
C for 5 mins) from each sample using random primers in a 

mix containing RT buffer, MgCl2, dNTPs, RNase inhibitors and multiscribe reverse 
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transcriptase (Applied Biosystems reagent kit). Primers and probes are listed in Table 2.2. All 

samples were prepared in Taqman universal mastermix (Applied Biosystems) with 50nM of 

18s for/rev primers and vic labelled probe, 300nM LL-37 for/rev primers and 200nM FAM 

labelled probe. 3µl cDNA per sample was added to mastermix. 2 negative controls were used 

in each assay one containing template RNA but no reverse transcriptase (RT negative) and 

the other containing reverse transcriptase with water in place of template RNA (RT H2O). 

Ribosomal 18s cDNA was used to correct for interassay variation and liver cDNA was used 

as a positive control.  The 2−ΔΔCt method (∆ ∆ Ct = ∆Ct1 (treated) – ∆Ct2 (control) was used 

to analyse expression of the gene of interest. PCR conditions were as follows, 50
o
C for 2 

mins, 95
o
C for 10 mins then 40 cycles of 95

o
C for 15 secs and 60

o
C for 60 secs.and were run 

on the prism 7900 (Applied Biosystems).   

Primer/probe            Sequence                                                                     Source                         Conc.            

 

LL-37 forward            TCA-CCA-GAG-GAT-TGT-GAC-TTC-AA            Eurogentec                   300nm 

 

LL-37 reverse             TGA-GGG-TCA-CTG-TCC-CCA-TAC                   Eurogentec                    300nm 

 

LL-37 probe              AAG-GAC-GGG-CTG-GTG-AAG-CGG                  Eurogentec                    200nm 

  

PRA+B forward        CAG-TGG-GCG-TTC-CAA-ATG-A                         Eurogentec                    300nm 

 

PRA+B reverse         TGG-TGG-AAT-CAA-CTG-TAT-GTC-TTG-A        Eurogentec                   300nm 

 

PRA+B probe           AGC-CAA-GCC-CTA-AGC-CAG-AGA-TTC-         Eurogentec                    200nm 

                                  ACT-TT 

 

PRB only forward    CGG-ACA-CCT-TGC-CTG-AAT-T                          Eurogentec                    300nm 

 
PRB only reverse     CAG-GGC-CGA-GGG-AAG-AGT-AG                     Eurogentec                   300nm 

 
PRB probe              CGG-CCA-TAC-CTA-TCT-CCC-TGG-ACG-G      Eurogentec                   200nm 

 
Ribosomal 18S Primers                                                                                  Applied Biosystems   All 50nm 

 and probes                                                                 

 

Table 2.2  Primers and probes used in rtPCR experiments on reproductive cells and 

tissues 
 

 

Polymerase Chain Reaction (PCR) 

PCR was  used to detect the presence of transcripts of inflammasome components in extracts 

of cultured cells. Briefly RNA was extracted from cells with the RNEasy extraction kit, RNA 

concentration was measured using the nanodrop system and all samples prepared to a stock 

concentration of 100ng/μl RNA. Total cDNA was generated in a thermocycler from each 

sample using random primers in a mix containing 10 x RT buffer, 25mM MgCl2, dNTPs, 

RNase inhibitors and multiscribe reverse transcriptase. Primers and probes used are listed in 
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table 2.3. All samples were prepared in Taqman universal mastermix (Applied Biosystems) 

and were run on the prism 7900 (Applied Biosystems).   

 

 

Primers Sequence Source Product size 

HPRT GCT-CGA-GAT-GTG-ATG-AAG-GAG Tm59.97 

CCT-GAC-CAA-GGA-AAG-CAA-AG   Tm 59.85 

 306 

CARD8 

(cardinal) 

GGG-ACA-TTC-CCA-GTG-TAT-CAG Tm 59.27 

TGT-GAC-CTC-ATC-CCT-TAC-CAG Tm 59.27 

Eurogentec 281 

PYCARD 

(asc) 

GAG-GAG-CTC-AAG-AAG-TTC-AAG-C Tm 59.78 

GGC-TGG-TGT-GAA-ACT-GAA-GAG Tm 59.9 

Eurogentec 396 

AIM2 AAC-GTC-TTC-AGG-AGG-AGA-AGG Tm 59.86 

TCT-TGG-GTC-TCA-AAC-GTG-GAA-G Tm 60.28 

Eurogentec 277 

NLRP3 AGG-AGT-GGA-TGG-GTT-TAC-TGG Tm 60.23 

TCC-ATC-TTA-ATG-GGA-CTC-ACG Tm 59.94 

Eurogentec 274 

NLRC4 TTT-CAT-TTG-ACC-CAC-TTG-TCT-G Tm 60.01 

GCT-GTT-CTA-GCA-CGT-TCA-TCC  Tm 59.9 

Eurogentec 256 

NLRC2 AGG-AGG-AAA-GAG-CAA-GTG-TCC Tm 59.87 

GCC-CAA-GTA-CCC-TTA-TTC-CAG Tm 59.84 

Eurogentec 262 

NAIP CTG-GAA-ACC-ACA-AGT-GAA-AGC Tm 59.77 

AGA-GGT-TCT-TGC-ACA-GGT-TTG Tm 59.39 

Eurogentec 257 

NLRC1 ACT-CAG-AGC-AAA-GTC-GTG-GTC Tm 59.51 

CTT-TCC-TTG-AAG-CAG-CTG-AAC Tm 59.25 

Eurogentec 392 

 

Table 2.3  Human Primers for PCR reactions on 16HBE/A549 cells 

 

 

Tissue sections 

 

Formalin fixed tissues preserved in paraffin blocks which were previously collected were 

used throughout the study. Written informed consent was obtained from all patients involved 

and ethical approval was granted by the Lothian Research Ethics Committee. Normal across-

cycle endometrium samples were collected either as papelles during routine gynaecological 

procedures or as full wedge tissues during hysterectomy for benign conditions. The cycle 

stage of these tissue samples was determined both by histological examination as well as 

serum levels of ovarian hormones. Decidua was obtained during either elective surgical 

termination of pregnancy (STOP) or from women undergoing treatment due to miscarriage of 

pregnancy. Mirena endometrium biopsies were taken from women complaining of bleeding 

problems whilst using the Mirena intra uterine system (IUS) contraceptive device.  Fallopian 

tubes were obtained either at the time of hysterectomy for benign conditions or during 

management of ectopic pregnancy. 
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In Situ Cell Death Detection by Terminal Deoxynucleotidyl Transferase–Mediated 

Deoxyuridine Triphosphate Nick-End Labeling (TUNEL) Assay 

 

Transwell polyester-permeable supports (pore size, 0.4 μm; diameter, 6.5 mm; Corning Life 

Sciences) were equilibrated for 45 minutes in culture media (DMEM supplemented with 10% 

FBS [vol/vol], 1% L-glutamine [vol/vol], and 1% NEAA [vol/vol]) before the addition of 100 

μl of medium containing 2.5 × 105 16HBE14o− cells/ml into the apical compartment, with 

600 μl culture medium in the basal compartment, and cultured at 37°C, 5% CO2. For primary 

bronchial epithelial cell experiments, Transwell supports were equilibrated with NHBE 

culture media for 45 minutes before the addition of 100 μl of NHBE media containing 2.5 × 

10
5
 NHBE cells/ml into the apical compartment, with 600 μL of NHBE culture medium in 

the basal compartment, and cultured at 37°C, 5% CO2. Before treatments, culture media in 

both the apical and basal compartments were replaced with Ultroser G serum–substitute 

supplemented media. Cells were exposed to LL-37 at the concentrations described in the 

presence and absence of log-phase P. aeruginosa PA01 (MOI 10:1), and incubated for 6 

hours at 37°C, 5% CO2. Cells were fixed in 10% neutral-buffered formalin (3.7% 

formaldehyde) for 10 minutes, washed once in PBS, permeabilized in ice-cold 0.1% Triton 

X-100/0.1% sodium citrate for 3 minutes, and washed twice with PBS. An in situ cell death 

detection kit (Roche Applied Science, West Sussex, UK) was used according to the 

manufacturer's instructions. The membranes with cells were mounted in 50 μL Vectashield 

Hardset (containing DAPI), and at least four random fields of view were counted (each 

containing more than 100 cells), using an Axiovert S100 fluorescent microscope, and 

analyzed using OpenLAB 3.0 software (Improvision/Perkin Elmer, Waltham, MA). The 

number of terminal deoxynucleotide transferase dUTP nick-end labeling (TUNEL)–positive 

cells was expressed as a percentage of the number of DAPI-positive nuclei. The total number 

of DAPI-positive nuclei counted for each condition was determined, to evaluate total cell 

number. For inhibition studies, cells were prepared as described, and culture medium in each 

well was replaced with treatment medium containing either 100 μM Bax inhibiting peptide 

V5 (Merck Chemicals, Ltd.) or 50 μM of the broad-spectrum caspase inhibitor, Z-VAD-FMK 

(Merck Chemicals, Ltd.), or the caspase 1 inhibitor for 1 hour before treatment. 
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Western Immunoblotting 

 

The 16HBE14o− cells were seeded at 1 × 10
6
 cells per well in six-well plates and cultured at 

37°C, 5% CO2. Cells were exposed to LL-37 at the concentrations described, in Ultroser-G 

serum–substitute supplemented media, in the presence and absence of log-phase P. 

aeruginosa PA01 (MOI 10:1) and incubated for 3 hours at 37°C, 5% CO2. Cells were 

washed once with ice-cold PBS and lysed with 300 μL M-PER protein extraction reagent 

(Thermo Scientific) containing a cocktail of protease, phosphatase, and metalloprotease 

inhibitors. Protein concentrations were determined by bicinchoninic acid assay (Thermo 

Scientific). Equivalent total protein concentration lysates (15–40 μg) were resolved on either 

10% or 12% precast Precise Protein polyacrylamide gels (Thermo Scientific), transferred to 

polyvinylidene fluoride membranes (Bio-Rad Laboratories, Ltd., Hemel Hempstead, UK), 

blocked for 1 hour with Tris-buffered saline and 0.1% Tween-20 (TBST) containing 5% 

skimmed milk powder (TBST/milk), and then incubated with antibodies specific for cleaved 

caspase-3 (1 in 5,000 dilution), cleaved caspase-9 (1 in 1,000 dilution), XIAP (1 in 1,000 

dilution), or pan-actin (1 in 2,000 dilution) in TBST/milk overnight at 4°C. Membranes were 

washed for 15 minutes in TBST and then incubated with a 1 in 5,000 dilution of HRP-

conjugated goat anti-rabbit antibody (in TBST/milk) or a 1 in 5,000 dilution of HRP-

conjugated goat anti-mouse antibody (in TBST/milk) for 1 hour at room temperature. 

Membranes were washed for 30 minutes and developed with chemiluminescence peroxidase 

substrate (Sigma-Aldrich) according to the manufacturer's instructions, and imaged on CL-

Xposure film (Thermo Scientific). Equal loading of protein was confirmed by examining the 

expression of actin as a loading control. 

Blots were stripped with RestorePlus Western Blot Stripping Buffer (Thermo Scientific, cat 

46430) and then washed in Tris-buffered saline containing 0.05% Tween-20 prior to re-

blocking and probing. 
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Statistical Analysis 

 

Statistical analyses were performed using Graphpad Prism version 5 for Windows (GraphPad 

Software Inc., La Jolla, CA). Statistical significance was assessed either using one-way 

ANOVA with Tukey's post hoc test, or two-way ANOVA with Bonferroni's post hoc test 

where appropriate. Kruskal-Wallis and Wilcoxon signed rrank 1-tailed test and Pearson 

correlation tests were also used where appropriate. P ≤ 0.05 was considered significant. 

Bacterial counts were normalised by logarithmic transformation before analysis by 2 way 

ANOVA with Bonferroni's post hoc tests where appropriate. Cell counts and cytokine 

concentrations were analysed by Mann Whitney test.  
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Chapter 3:  Expression of hCAP18/LL-37 in the female 

reproductive tract 
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3.1   Introduction  
 

Multiple antimicrobial peptides, including hCAP18/LL-37, are found in abundance in the 

lower urogenital tract, where it is likely they are acting in defence of an area constantly in 

contact with micro-organisms 
[203]

. Infection in the upper reproductive tract is less common 

but has serious sequelae such as infertility, increased risk of ectopic pregnancy and may also 

pose a threat to the developing foetus 
[204]

. There is however, relatively little literature on the 

actions of cathelicidin in the upper reproductive tract. Although it is certainly possible that 

the LL-37 in the upper reproductive tract has a role in destroying invading organisms it is 

also possible that it has immunomodulatory or physiological functions, as has been shown in 

other organs such as the lung. This is likely to be the case in the uterus as this is an area that 

for the most part is considered sterile. In addition, there is a requirement of the endometrium 

to replace a large number of cells after each menstruation and to replenish the rich blood 

supply and LL-37 is known to increase the rate of proliferation of epithelial cells and to have 

a role in promoting angiogenesis 
[35]

.  

 

I aimed to identify the expression pattern of hCAP18/LL-37 in the female upper reproductive 

tract and establish CAMP mRNA expression in endometrium and fallopian tubes from 

different stages of the menstrual cycle. I wanted to investigate whether cathelicidin was 

expressed uniformly throughout the menstrual cycle, or cyclical, which may suggest 

functions over and above any antimicrobial action. In addition to healthy or “normal” tissue, 

tissues from patients who had been treated for ectopic pregnancy, elective surgical 

termination of pregnancy (STOP) and users of the Mirena (levonorgestrel-releasing) 

intrauterine contraceptive devices were also analysed. Finally, potential progesterone 

regulation of LL-37 expression was assessed in vitro. 
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3.2 hCAP18/LL-37 show a cyclical pattern of expression in tissue 

samples from the female reproductive tract. 

 

 

In order to identify the cellular location of cathelicidin in tissues from female reproductive 

tract, immunohistochemistry was performed on a range of tissue sections. Using a DAB 

based detection system and monoclonal antibodies for hCAP-18/LL-37 we demonstrated that 

the pattern of LL-37 expression in the endometrium varied across the menstrual cycle 

(representative sections are shown in Fig 3.1). Tissues taken from endometrium at different 

stages of the menstrual cycle were obtained from women as either papelles during routine 

procedures or as wedges during hysterectomy (Table 3.1). The cycle stage was confirmed 

both morphologically on tissue architecture and also using patient data of last menstrual 

period and measured hormone levels at the time of tissue collection. In the proliferative 

stages (Fig 3.1a), hCAP-18/LL-37 was mainly concentrated in the epithelial cells 

surrounding the glands and intense staining can be seen on the apical surface of these cells 

indicating a protein secretion into the glands. At this stage some stromal staining can be seen 

as well as some endothelial staining (Fig 3.1b). In the secretory stage the pattern is much the 

same with less dark apical staining (Fig 3.1c). In the menstrual stage (Fig 3.1d) heavier 

staining can be seen across the whole tissue with individual cells staining intensely 

throughout the tissue. These cells appear to be leukocytes and most likely neutrophils, which 

are known to be present in large numbers during menstruation; however co-localisation of 

specific markers was not performed so this cannot be confirmed. Following implantation and 

decidualisation of the endometrium in pregnancy the pattern of staining changes and though 

glandular epithelial staining can still be detected (data not shown) there is predominantly a 

large amount of stromal staining (Fig 3.1e). To confirm that the positive staining was due to 

the presence of hCAP-18/LL-37 I included some control slides in each experiment. I used a 

non-specific pooled mouse IgG as an isotype control for the primary antibody as well as 

some slides where synthetic peptide had been incubated with the primary antibody prior to 

addition to the slides in order to inhibit further binding to the hCAP-18/LL-37 in the tissue. 

Both controls resulted in sections with no positive staining (Fig 3.1f). 
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Tissue 

Sample 

Stage of menstrual 

cycle 

Number of 

donors 

Reason for surgery 

Endometrium Menstrual 2 Papelles taken during 

routine procedures or 

wedges taken following 

hysterectomy 

 Proliferative 6 

 Early secretory 2 

 Mid Secretory 2 

 Late secretory 2 

Decidua First Trimester 2 Surgical termination of 

pregnancy with 

misoprostol 

prostaglandin 

Decidua Mirena user 7 Users of Mirena system 

undergoing investigation 

for abnormal bleeding 

 

Table 3.1  Endometrial and decidua samples from patients  
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Fallopian tubes also undergo cyclical changes to the thickness of the mucosa. The LL- 

 

 

Figure 3.1 hCAP18/LL-37 expression in tissues from the human female endometrium. Sections were de-

waxed in xylene and antigen retrieval carried out using antigen unmasking solution for 15 minutes at high 

power in the microwave. Sections were blocked with 3% hydrogen peroxide, avidin and biotin block and with 

protein block. Primary antibody for anti-hCAP18/LL-37 was mouse monoclonal IgG used at 1/200. Secondary 

antibody was biotinylated horse anti-mouse IgG, used at 1/300. Positive signal is shown as brown.   

 a) Proliferative endometrium representative of n=6 b) positive staining in endometrial cells in the proliferative 

endometrium c) mid secretory endometrium representative of n=2 d) menstrual endometrium representative of 

n=2 e) stromal staining predominates in decidua representative of n=2 f) Negative (Murine IgG Isotype) control. 

a) 

e) 

c) d) 

b) 

Proliferative stage (x400) Proliferative stage (x400) 

Mid-Secretory stage (x100) Menstrual stage (x100) 

Decidua (x1000) Menstrual stage (Neg Ctrl x100) 

f) 
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Expression patterns determined for fallopian tube specimens differed from endometrium in 

that the expression pattern of cathelicidin we observed remained constant throughout the 

cycle (Fig 3.2a). Staining was observed to be intense in epithelial cells with very little, if any, 

stromal staining. Clear endothelial staining could be seen in vessels within the vascular 

smooth muscle surrounding the fallopian tubes (data not shown). 

 

Interestingly, the sections taken from women using the Mirena IUS, were full wedge tissues 

and it could be seen that the basal layer of glandular epithelium did not stain for LL-37, 

unlike in the functional layer, however diffuse staining could be seen over the decidualised 

stromal cells (data not shown). Many intensely stained leukocytes could be seen scattered 

throughout the functional layers of these tissues (Fig 3.2b). 

 

Thus, these data show that cathelicidin protein expression varied in amount and cellular 

location at different stages of the menstrual cycle and was not only produced by glandular 

epithelium but also observed in stroma and endothelial cells, which was an unexpected 

finding. In order to confirm these findings of cyclical, inducible expression of cathelicidin, an 

analysis of gene transcription was undertaken. 
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Tissue 

Sample 

Stage of menstrual 

cycle 

Number of donors Reason for surgery 

Fallopian 

tube 

Menstrual 1 Total hysterectomy 

 Proliferative 3 

 Mid secretory 3 

 Late secretory 3 

Fallopian 

tube 

Ectopic 4 Ectopic Pregnancy 

 

Table 3.2  Fallopian tube tissue samples. 
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a) b) 

 

Figure 3.2 hCAP18/LL-37 expression in tissues from human female fallopian tube 

and endometrium. Sections were de-waxed in xylene and antigen retrieval carried out using 

antigen unmasking solution for 15 minutes at high power in the microwave. Sections were 

blocked with 3% hydrogen peroxide, avidin and biotin block and with protein block. Primary 

antibody for anti-hCAP18/LL-37 was mouse monoclonal IgG used at 1/200. Secondary 

antibody was biotinylated horse anti-mouse IgG, used at 1/300. a) fallopian tube from non-

pregnant donor with hCAP18/LL-37 staining in epithelial cells concentrating on apical 

surface representative of n=10 b) endometrium from a Mirena IUS user. Representative of 

n=7 

Fallopian Tube x100 Endometrium (Mirena) x40 
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3.3  CAMP transcription in tissues from the female reproductive tract 

varies throughout the menstrual cycle and is maintained at high level in 

decidua. 

 

In order to confirm whether the level of transcription of cathelicidin in endometria and 

fallopian tubes from women during different stages of the menstrual cycle was cyclical, 

reverse transcription and quantitative (real time) polymerase chain reaction (q-PCR) was 

utilised. CAMP mRNA was detected in normal endometrium from across the cycle. However 

there was a low level of CAMP transcription in the proliferative stage, which was 

significantly less (p=0.044) than at other times in the cycle (Fig 3.3a). Transcription of 

CAMP was otherwise stable over the rest of the menstrual cycle.  Expression of CAMP in 

decidua was found to be higher than at any stage of the menstrual cycle although this trend 

did not reach significance. Levels of CAMP transcription in Mirena decidua, that is 

endometrium that has been artificially decidualised by high local dose progesterone from the 

Mirena intrauterine system (IUS), also remain high but is still approximately half of the fold 

change seen in decidua from pregnant women and comparable to mid-secretory levels. Taken 

together this variance in expression across the cycle and during pregnancy suggested a 

possible regulation by progesterone, the expression of which follows a similar pattern (Fig 

1.1) and is sustained at high level following the implantation of the trophoblast.  

 

Little difference was found between CAMP mRNA levels in the decidua of a terminated 

uterine pregnancy versus ectopic pregnancy (Fig 3.3b), however, interestingly, significantly 

lower levels of CAMP transcription was found in endometrial samples from the miscarriage 

group (p=0.018). The ectopic group was further subdivided into 2 groups. The group 

designated G came from donors with higher serum levels of the hormones hCG and 

progesterone. When divided into these 2 groups differences could be seen between those with 

higher levels and those with lower expression of hCAP18/LL-37, this was not however a 

significant difference. A subtle increase in transcription may be present in the fallopian tubes 

as the cycle progresses but the only striking difference seen is in the considerably higher 

levels in fallopian tubes of ectopic pregnancy (p-0.0023) which is to be expected due to local 

inflammation (Fig 3.3c). 
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Figure 3.3 CAMP mRNA in reproductive tract tissue samples: real time PCR to detect CAMP expression 

was performed on cDNA made from a) normal endometrium across the cycle (n=12), endometrium from users 

of the Mirena coil (n=5), and decidua from patients undergoing surgical termination of pregnancy (STOP) 

(n=4). b) Decidua from patients undergoing STOP (n=8), miscarriage (n=4) or ectopic pregnancy (n=9) c) 

fallopian tubes taken from times across the cycle (n=13) and from individuals surgically treated for an ectopic 

pregnancy (n=4). Data was corrected to 18s housekeeping gene and show fold change in expression compared 

to liver DNA (camp +ve control). Data shown as mean + SEM for each sample. Data was analysed using non 

parametric Kruskal-wallis test * p<0.05 ** p<0.01 

a) 

b) 

c) 

* 

* 
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3.4 hTERT immortalised human endometrial epithelial cells express 

progesterone receptor A (PRA) and hCAP18/LL-37 in vitro but do not 

express progesterone receptor B (PRB) 

 

In order to further investigate the hypothesis that the transcription of CAMP and expression 

of hCAP18/LL-37 can be regulated by steroid hormones in the female reproductive tract, an 

immortalised cell line was used. hTERT human endometrial epithelial cells (EEpCs) are 

primary endometrial cells that have been immortalised by the enzyme human telomerase 

reverse transcriptase (hTERT) 
[249]

. Before addressing the hypothesis, it was first necessary to 

characterise this EEpC cell line for its capability to produce hCAP18/LL-37 and ability to 

respond to the hormone progesterone. 

 

The two forms of progesterone receptor (A and B) are known to activate discrete genes 
[214]

 

and are variably expressed on different cells, with the ligand progesterone capable of exerting 

a negative feedback regulation on the expression of the receptors. The activity of PRA may 

also inhibit the effects of PRB ligation. 

 

To confirm that the cells to be used for investigation into the role of progesterone in 

hCAP18/LL-37 expression were capable of transcribing CAMP and responding to 

progesterone, qPCR using cDNA from endometrial epithelial cells (EEpC) was performed. I 

found that hTERT EEpC were positive for CAMP transcription confirming that these cells do 

have the ability to express hCAP-18/LL-37 (Fig 3.4a).  The receptor for progesterone acts as 

a ligand activated transcription factor. As PRA is a truncated form of PRB (shortened by 164 

N terminal amino acids) there is no primer that is specific for PRA only. Using primers which 

amplify both PRA and PRB, expression was detected in EEpC (Fig 3.4b). However, when 

primers specific for PRB only were used, no transcription was detected, indicating that all of 

the progesterone receptor expression in the hTERT epithelial cells is of the PRA form (Fig 

3.4b). Interestingly, the addition of the cytokine IL-1β to these cells down-regulated the 

expression of progesterone receptor (Fig 3b.) 

 

In order to further examine the immunohistochemical observations that endothelial cells also 

expressed hCAP18/LL-37 we performed the same q-PCR analyses with human endothelial 

cell (HUMEC) cDNA (Fig 3.4).  The HUMEC cell line did not however express CAMP, PRA 

or PRB under cell culture conditions.  
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Figure 3.4  RT PCR on cDNA from hTERT endometrial epithelial cells (EEpC) or human 

endothelial cells (HUMEC) to detect transcription of CAMP, PRA and PRB : a) CAMP transcription was 

detected in EEpC (n=4) and was not affected by treatment of the cells with IL-1 (n=2). No CAMP transcription 

was seen in the cDNA from HUMEC (n=1) b) PRA transcription was seen in EEpC (n=4) and was significantly 

reduced in cells that had been treated with IL-1 (n=2). No PRA transcription was seen in the HUMEC (n=1). 

Data shows fold change in expression of genes compared to liver DNA (+ve control). 

  

a) 

b) 
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3.5 Progesterone has no direct effect on the level of CAMP mRNA 

transcription in endometrial epithelial cells in vitro 

 

In order to determine the capacity of steroid hormones to regulate the transcription of CAMP, 

hTERT immortalized EEpC were cultured in 6 well plates for 24 hrs. Cells were given fresh 

media with or without serum for 12 hours prior to incubation for a further 24 hours with 

either LL-37 peptide, oestradiol (the predominant hormone during the proliferative phase), 

medroxyprogesterone acetate (MPA, the hormone secreted by the corpus luteum post 

ovulation that promotes the changes that occur in the secretory phase endometrium and 

maintains decidua), RU486 (a progesterone receptor antagonist used as an abortifacient) or a 

combination of oestradiol and MPA (as both hormones are present across the cycle at varying 

levels in vivo). 

 

In the presence of serum no significant difference was observed in CAMP expression 

between treatments (Fig 3.5a). Cells temporarily starved of serum, which results in a 

synchronized culture of cells in the same stage of the proliferative cycle, responded to 

oestradiol with an increase in CAMP production (Fig 3.5b) however the experiment would 

need to be repeated to confirm this was not merely an artifact.  

 

In the presence of serum there was a modest increase observed in PRA expression in cells 

treated with oestradiol greater than that of the DMF control alone (Fig 3.5c) In the absence of 

serum there was an increase in PRA transcription following treatment with exogenous LL-37 

and with oestradiol as well as with DMF (a carrier for MPA) alone suggesting that the 

increase in expression observed in cells treated with MPA is due to the carrier (Fig 3.5d) PRB 

was not expressed in any cells analysed.  

 

Although I found that EEpC transcribe the PRA form of progesterone receptor (but not PRB) 

there was no evidence in this pilot study to suggest that progesterone directly regulates 

cathelicidin in these cells. Oestradiol upregulated PRA expression in the presence of serum 

and Oestrodiol and LL-37 upregulated PRA expression in the absence of serum. 
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Figure 3.5  Transcription of CAMP and progesterone receptor following treatment with 

progesterone, oestradiol and RU486 EEpC were cultured in 6 well plates before treatment with LL-37 

(3µg/ml), oestradiol (10
-7

M) progesterone (MPA, 10
-6

M), RU486 (progesterone receptor antagonist, 10
-6

M), or 

progesterone and oestradiol together in the presence or absence of serum. DMF and ethanol were included as 

controls as they are carriers for progesterone and oestradiol respectively. a) CAMP transcription in EEpC in the 

presence of serum. n=2 b) CAMP expression in EEpC in the absence of serum. n=1 c) PRA expression in EEpC 

in the presence of serum. n=1 d) PRA expression in the absence of serum n=1. Error bars in b, c and d represent 

variation in technical replicates (n=3) 
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3.6 Cathelicidin is localised to stromal cells in decidua tissue samples but 

CAMP is not expressed in decidualised stromal cells in vitro 

 

Immunohistochemistry on decidua tissue samples demonstrated hCAP-18/LL-37 colocalising 

with stromal cells (Fig 3.1e). To further investigate whether stromal cells upregulate CAMP 

following decidualisation I used q-PCR to investigate whether CAMP was being transcribed 

in stromal cells decidualised in vitro. Stromal cells were separated from endometrial biopsies 

by Dr Ann King who then cultured the cells in the presence of MPA (10
-6

M), oestradiol (10
-

7
M) and 8-bromo-cAMP (0.1mg/ml) for 120 hours. RNA was collected from the cells every 

24 hours. The cells start to show morphological changes around 72 hours and decidualisation 

was confirmed by IGFBP1 PCR, a marker of decidualisation. Dr King kindly gave me RNA 

from these cells to look for the presence of CAMP transcription. Controls confirmed that the 

q-PCR assay was working correctly but there was no CAMP transcription detected in these 

cells (data not shown). 

 

3.7  Discussion 

 

Antimicrobial peptides and cationic host defence peptides have been shown to be present in 

the female reproductive tract with particular peptides upregulated at different times during the 

menstrual cycle 
[139, 140, 143]

. I wanted to identify if cathelicidin was produced in the upper 

female reproductive tissues and if so, identify the cellular location in endometrium and 

fallopian tissue. I also wanted to investigate whether CAMP expression also varied 

throughout the menstrual cycle and if so was this regulated by steroid hormones. 

 

Immunohistochemistry for hCAP-18/LL-37 indicated expression of cathelicidin in 

endometrium which varied in amount across the menstrual cycle and increased upon 

successful implantation of the trophoblast and at the time of menstruation which is possibly 

due to the influx of neutrophils known to occur at this time 
[250]

. mRNA levels detected by 

qPCR also indicated that expression varies during the cycle with low levels of CAMP 

expression in the proliferative phase and a trend for higher expression in decidua however 
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this was not a statistically significant increase. In contrast immunohistochemistry showed 

little change in hCAP-18/LL-37 staining from fallopian tubes taken at different stages of the 

menstrual cycle and CAMP transcription was low in cDNA from fallopian tubes with the 

exception of fallopian tubes from ectopic pregnancy showed 15-fold higher expression of 

CAMP than at any point in the menstrual cycle. However, in the absence of the relevant 

control fallopian tube samples from uterine pregnancies (ethically impossible to obtain) it is 

impossible to say whether this high level would be normal in pregnancy, or be a consequence 

of, or a causal factor in the ectopic event.  

 

Despite our observations by immunohistochemistry that stromal expression of LL-37 occurs 

following decidualisation we did not see any mRNA production in stromal cells decidualised 

in vitro. This may be an anomaly due to the limitations of in vitro systems or alternatively 

further signals may be needed in addition to a rise in progesterone. For example, particular 

cytokines such as IL-1 or other stimuli such as human chorionic gonadotropin (hCG) in the 

case of decidualisation would be targets to investigate. The fact that tissues from Mirena 

users, which are not exposed to hCG, still show diffuse stromal staining would tend to cast 

doubt on the latter playing a role in vivo. 

 

As Mirena tissues were taken from women undergoing hysterectomy for abnormal bleeding, 

the tissues samples available were all full thickness wedges. In these sections it was apparent 

that there were a large number of leukocytes present throughout the decidualised layer of the 

endometrium that stained positive for hCAP18/LL-37. This may indicate a pathological role 

for cathelicidin or, as they are major sources of stored hCAP-18, for neutrophils in the 

abnormal bleeding in these women. It could also be seen from these sections that the staining 

was restricted to the functional layer and that the basal glands did not stain for LL-37 protein. 

This was also seen in normal endometrium across the cycle wedges. With the Mirena system 

a high local dose of progesterone is delivered to the uterus. The decidua stained diffusely 

across the cells, as was seen in other decidualised stromal cells where progesterone levels 

were high.  

 

A possible explanation for varying CAMP expression through the cycle and in decidua is that 

cathelicidin in the reproductive tract is regulated by steroid hormones. No effect of 

progesterone was seen on the production of CAMP mRNA in hTERT immortalised EEpCs in 

vitro. This may however exemplify the limitations of cell culture systems to reflect the 
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workings of in vivo systems. The hTERT endometrial epithelial cells that were used in these 

assays expressed PRA only. The two forms of progesterone receptor (A and B) are known to 

activate discrete genes 
[214]

. PRA may also inhibit the effects of PRB ligation and as it is not 

known which form would be important in transcription of CAMP the outcome may have been 

different had PRB also been expressed. In addition, as only one time point was analysed for 

mRNA expression it is possible that these data are not representative. It would also be 

important to measure any variation in the levels of hCAP18/LL-37 peptide in the supernatant 

of these cells. Progesterone receptor activation of CAMP gene expression would likely be an 

indirect result of PR ligation. If PRA was having a suppressing effect then downregulation of 

the expression of this receptor by addition of progesterone could possibly account for the 

upregulation of LL-37 later in the cycle. 

 

The passage number of the hTERT cells was high and although the original cell bank would 

be characterised to begin with it is difficult to say if any changes have been selected for since. 

T47d are breast carcinoma cells and are known to express both forms of PR. These cells 

would make an interesting comparison for assays investigating hormone effect. Additionally, 

there is known to be a great deal of crosstalk between the endometrial epithelial cells and the 

stromal cells which are of course absent in this cell culture system. Progesterone cannot be 

ruled out as a regulator as it may have an indirect effect by acting on stromal cells. Further 

studies could look at co-culturing these cells or use supernatant from stromal cells treated 

with progesterone on the EEpC instead, or in addition to progesterone.  

 

The influence of progesterone on angiogenesis and endothelial cell proliferation is 

controversial 
[215, 216]

. Two areas in which angiogenesis and cell proliferation are important 

are pregnancy and menstruation. In our study CAMP mRNA was shown to be particularly up-

regulated in decidua and hCAP18/LL-37 was widespread in menstrual tissue. LL-37 has 

previously been shown to induce angiogenesis 
[35]

 and stimulate expansion of epithelial cells 

[125]
 which is speculated to be the reason for this peptide being over-expressed in ovarian 

tumours
 [129]

. Clear evidence via immunohistochemistry in our study has shown that hCAP-

18/LL-37 co-localises in endothelial cells both in the endometrium and in fallopian tube. The 

female reproductive tract is one of the few places in the body where new vessels are formed 

on a monthly cycle. Tissue remodelling occurs every cycle and with this is a need for new 

blood vessel formation. hCAP-18/LL-37 may have a role in promoting or regulating this 
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angiogenesis. Further studies could compare the hCAP-18/LL-37 protein levels in various 

bleeding disorders such as endometriosis.  

 

Another explanation for the presence of cathelicidin in endothelial cells is that it is 

chemotactic for various leukocytes 
[81-83]

. As the expression in endothelial cells could not be 

correlated to any cycle stage where large numbers of leukocytes are seen it is unlikely that 

this is the role. No mRNA could be detected in the RNA from HUMEC however this may be 

an inducible event and without knowing how first to treat these endothelial cells it is 

conceivable that gene transcription was not at this time in effect. An alternate explanation for 

detecting cathelicidin localising with endothelial cells by immunohistochemistry without 

detectable CAMP transcription is that cathelicidin has been shown to be released from 

neutrophils and transported across endothelium where it acts to promote adhesion of rolling 

leukocytes 
[248]

. The peptide may then be detected with the endothelial cells without these 

cells being the source of the peptide. 

 

A limitation of this study is that no significance could be shown in much of the cell data as 

experiments were only performed once for each set of conditions. To confirm and corroborate 

all findings, assays should be repeated at least three times (n=3).  The biological component 

of the assay where cells are treated and the RNA extracted and used to produce 

complimentary DNA for qPCR measurement can vary and should be repeated on multiple 

occasions to minimise spurious results. Further, observations would benefit from clarification 

as to whether detectable protein is of the hCAP18 form or of the cleaved, functional LL-37 

form as the protocols used for histological staining as well as protein detection by ELISA 

does not distinguish between the two. 

 

This study was observational and aimed to detect the presence and cellular location of 

cathelicidin in the female upper reproductive tract. Although the presence of a protein in a 

tissue does not give information about whether the protein is causal to a particular 

physiological or pathological role, a differential expression in the amount or location of 

protein synthesised identifies targets on which to base further investigation. This study shows 

that CAMP expression in the female reproductive tract may be cyclical and may be relevant 

in menstruation and in reproductive tract pathologies. Investigation of hCAP18/LL-37 

presence and function in the human reproductive tract is both an interesting and potentially 

important area that deserves attention and clarification.  
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Chapter 4:  Expression of hCAP18/LL-37 in the lung in 

health and disease 
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4.1 Introduction  

 

In healthy airways the amount of cathelicidin that can be measured is barely detectable. 

During inflammation or infection however, epithelial cells, alveolar macrophages and 

infiltrating neutrophils, all contribute to the production of local hCAP18/LL-37. The amount 

that can be quantified from bronchoalveolar lavage fluid (BALF), BAL cells or sputum 

(spontaneous or induced) is hugely variable in different lung pathologies despite serum levels 

of LL-37 generally remaining constant 
[32, 33, 153, 217-219]

. 

 

In many inflammatory diseases in the lung, especially those that involve bacterial 

colonisation, hCAP18/LL-37 is raised. Bronchiolitis Obliterans syndrome (BOS) is an 

inflammatory state that occurs in the airways following lung transplantation. Although the 

pathologies necessitating a lung transplant vary, the levels of hCAP18/LL-37 in BALF is 

significantly higher in BOS patients irrespective of their level of neutrophil influx or the 

presence of pathogens when compared to patients who were stable following transplantation 

(10ng/ml vs. 0.4 ng/ml median values in the acellular portion of BALF) 
[33]

. 

 

The concentration of hCAP18/LL-37 is notably increased in patients with cystic fibrosis and 

can be as high as 15 μg/ml BALF in patients where levels are found to correlate with 

neutrophil numbers as well as the extent of deterioration of lung function irrespective of the 

presence of bacteria 
[32]

. Other studies measured induced sputum in CF patients with mild 

disease at closer to 80 ng/ml and 190 ng/ml in BALF 
[153]

 which was comparable to the levels 

they found in Chronic Obstructive Pulmonary Disease (COPD) patients both of which were 

significantly higher than that of healthy volunteers. Some of the discrepancies may lie in the 

methods used to measure the peptide and extent to which values reflect the concentration in 

the BALF itself or are extrapolated back to the estimated concentration in the airway surface 

liquid. 

 

 Further studiescompared induced sputum levels of hCAP18/LL-37 between non-smokers 

and smokers (with and without COPD) finding the same pattern of increased hCAP18/LL-37 

with smoking and significantly greater increases with worsened lung disease. The authors 

report sputum levels in the range of 0.74ng/ml for non-smokers and 7.99ng/ml for severe 

COPD 
[217]

. 
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Other inflammatory conditions in the lung have surprisingly been shown to correlate with 

deficient cathelicidin production. Sarcoidosis is a poorly understood granulomatous 

condition, which affects the lung as well as other organs.  Cathelicidin is decreased in severe 

sarcoidosis patients both at the transcriptional and protein level where it was undetectable in 

BAL 
[218]

, as well as in asthma patients who had a reduction in the level of cathelicidin in 

induced sputum as compared to healthy controls 
[153, 219]

. Allergen exposure does however 

increase hCAP18/LL-37 in the lung of those with allergic asthma and allergic rhinitis. Those 

challenged with allergen increased to as much as 106 ng/ml BAL compared to a matched 

group who were given a saline control who did not produce more than 4.1ng/ml 
[219]

. 

 

Given the variation in expression of the peptide in several documented lung diseases as well 

as the variable methods employed to estimate cathelicidin levels in the airways, I 

investigated, by ELISA, the expression of cathelicidin in patients with bronchiectasis, a 

chronic condition characterised by build-up of mucus in the airways with a propensity to 

infection and also in lung cancer patients before and after surgery.  
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4.2  Expression of hCAP18 / LL-37 in bronchiectasis  

 

 

Sputum samples from Dr James Chalmers (University of Edinburgh) bronchiectasis clinic 

were supplied along with data he had collected on other parameters of clinical disease and 

inflammatory markers as measured according to appropriate ethical approval and consents 

(Table 4.1). hCAP18/LL-37 was quantified in each sample using a commercially available 

ELISA kit (Fig 4.1).  

 

Wide variation in measurements of clinical severity and other inflammatory markers and 

infectious agents was seen in these patients. The amount of measureable cathelicidin also 

showed wide variation which ranged from undetectable levels up to 6045 ng/ml (median 

value 180ng/ml, IQR = 1067ng/ml). 

 

There was no correlation found between concentrations of hCAP18/ LL-37 and the neutrophil 

chemokine IL-8 in the sputum samples (Pearson r = 0.15, p = 0.41), nor was there a 

correlation between LL-37 and bacterial load (Pearson r = 0.09, p = 0.6). There was a weak 

but significant correlation between LL-37 and the pro-inflammatory TNF (Pearson r = 0.50, p 

= 0.04) and between LL-37 and myeloperoxidase (MPO), an enzyme produced by 

neutrophils often measured as a proxy for neutrophil numbers (Pearson r = 0.40, p = 0.001). 

There was also a correlation between LL-37 and chronic colonisation with Pseudomonas 

aeruginosa (Pearson r = 0.34, p = 0.04).  

 

A difficulty in drawing conclusions or correlations between the amounts of cathelicidin in our 

study of lung disease was that at the time of this work the only commercially available 

ELISA did not differentiate between the pro-peptide hCAP18 and the active fragment LL-37. 

Additionally the source of cathelicidin could not be ascertained (epithelial or neutrophilic) 

and concentrations are subject to sample variations in sputum production. In concordance 

with other observations we found that there are greater levels of cathelicidin when other 

markers of inflammatory lung disease or infection are also high. 
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Patient characteristic Proportion % (total n=38) 

  

Age 

 

 

         21-54 18 

         55-69 45 

         >70 37 

  

Female 53 

  

Pseudomonas colonised 42 

  

FEV1/FVC ratio 

 

 

        <40 % (severe) 11 

        40-59 % (Moderate) 21 

        60-80 % (Mild) 52 

        >80 %  16 

  

Number of hospitalisations in 1 yr. 

 

 

         0 61 

         1-3 32 

         >3 7 
 

Table 2.1 Characteristics of patients with bronchiectasis 
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Figure 4.1 Cathelicidin in sputum varies widely in patients with bronchiectasis. 

hCAP18/LL-37 was measured in sputum samples from bronchiectasis patients using a 

commercially available ELISA kit.  X axis shows individual patients (n=38). hCAP18/LL-37 

values ranged from 0-6045ng/ml, median value of 180ng/ml 
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4.3 Expression of hCAP18 / LL-37 in individuals with lung cancer  

 

 

Paired BALF samples taken from patients with lung cancer prior to and following surgery 

were supplied by Mr Richard Jones (University of Edinburgh) as well as serum samples from 

these same patients taken prior to surgery. hCAP18/LL-37 was quantified in each sample 

using a commercially available ELISA kit. 

 

Considerably lower levels of cathelicidin were measured within the airways of lung cancer 

patients than in the bronchiectasis sputum (0-2.4ng with a median of 0.13ng/ml compared to 

0-6045ng/ml with a median of 180ng). Results for a Wilcoxon signed rank 1-tailed test 

indicates that there is a significant difference pre and post-surgery with the amount of LL-37 

being greater after surgery (P = 0.041), however as many of these values are close or below 

the limit of detection of the assay no conclusions can be drawn from this difference (Fig 

4.2a). 

 

Studies investigating cathelicidin expression during lung disease often note no difference in 

the serum levels of hCAP18/LL-37 between patients and healthy controls, even where 

differences are observed in the lung. The data in these samples indicate variation in systemic 

expression of hCAP18/LL-37 that may be detected in the serum of the lung cancer patients 

prior to surgery (Fig 4.2b). Levels ranged from 0 ng/ml - 31.98 ng/ml.  

 

At the time of this work, commercially available ELISA kits did not distinguish between the 

pro-form of cathelicidin and the active, cleaved shorter peptide LL-37. In order to examine 

whether total hCAP18 levels in the serum may be misleading and may not reflect the levels 

of cleaved active LL-37, a selection of 8 of the BALF samples from patients who measured 

higher levels by ELISA were also investigated by western blotting to identify whether the 

samples contained both pro-form and mature peptide (fig 4.2c). Generally the more hCAP18 

there was in a sample then the more LL-37  could be detected however the relationship is not 

this straightforward, cathelicidin is stored as hCAP18 and the proteases required for cleavage 

of mature peptide must also be present in the surrounding milieu for active peptide to be 

released. In this example of non-infectious, non-allergic lung disease the level of local 

cathelicidin is much lower than can be found in other lung disease and do not correlate with 

serum concentrations of cathelicidin. 
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Figure 4.2 Cathelicidin in BALF and Serum from Lung Cancer Patients: hCAP18/LL-37 was measured by 

ELISA in a) BALF samples from lung cancer patients before and after surgery  and b) serum samples from lung 

cancer patients prior to undergoing surgery were evaluated using a) & b) a commercially available ELISA kit.  

hCAP18/LL-37 values in BALF ranged from 0-2.4ng/ml. hCAP18/LL-37 values in serum ranged from 0-

31.98ng/ml and c) by western blot using 8 BALF samples which were indicated to contain higher levels of 

cathelicidin by ELISA measurement. Proteins in BALF were separated by gel electrophoresis and probed with 

an anti-LL-37 antibody to identify the ratio of pro-peptide (hCAP18) and active, cleaved form (LL-37). 
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4.4 Discussion  

    

Several groups have tried to identify the relative levels of cathelicidin expression in particular 

lung diseases 
[32, 33, 153, 217-219]

. I was interested in looking at local production of cathelicidin in 

patients visiting a clinic for bronchiectasis (lung disease where abnormal widening of the 

bronchi and excess mucus production leave those affected prone to infection-related 

exacerbations) and lung cancer patients (a non-infectious, non-allergic condition) before and 

after undergoing surgical treatment. I was kindly permitted to measure, by ELISA and 

western blot, the amount of hCAP-18/ LL-37 in sputum samples from these two groups of 

patients. 

 

Bronchiectasis is a lung disease that may be caused by a variety of factors and thus results in 

a range of severity of clinical symptoms depending on the causative agent 
[251]

. I found that 

the amount of cathelicidin present in sputum from these patients also varied widely but 

correlated with markers of inflammation such as TNF alpha and neutrophil influx. Chronic 

colonisation with Pseudomonas also correlated with higher levels of cathelicidin. Studies of 

other inflammatory disease have reported levels of cathelicidin in the ng range 
[33,153]

 here I 

have found levels in bronchiectasis patients to range from undetectable to approximately 

6µg/ml which is closer to the levels found in CF patients 
[32]

.Although hCAP-18/LL-37 is 

raised in response to infection where it has a beneficial effect in fighting infection, it would 

not be unreasonable to propose that chronic inflammation and dysregulated production of LL-

37 may have a role in the pathogenesis of lung disease as well. 

 

Some malignant cells have been shown to over express cathelicidin. I also measured the 

amount of cathelicidin in serum and sputum from patients undergoing surgery for lung cancer 

and found that the levels of cathelicidin were low, albeit similar to those reported in other 

non-infectious lung disease 
[33]

.  

 

It is extremely difficult to compare studies investigating cathelicidin expression in the 

airways during lung disease, as there are many confounding factors when obtaining peptide 

concentrations in BALF and sputum. Determining the dilution factor that is to be used to 

accurately represent concentrations found in the airways, at cell surfaces and within mucous 

membranes is highly challenging and controversial and no attempt to correct was made in my 

study. In addition, the amount of saline recovered by lavage may be affected by the extent of 
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lung consolidation and fibrosis as well as the skill of the clinician performing the procedure 

and the extent to which charged peptides are effectively sampled from the airways is debated. 

Further, there are considerations when processing and storing samples to inhibit the work of 

proteases from degrading proteins of interest ex vivo. 

That said, it is clear that the amount of cathelicidin expressed in airways is rapidly increased 

following infection such as in the case of CF and bronchiectasis, inflammation or injury to 

the lungs other than in conditions where immune modulation is a component such as allergy, 

asthma and sarcoidosis. What is less clear is what proportions of the amounts found are 

hCAP18 and what is the active LL-37 form, as commercial ELISAs do not distinguish 

between the two. As shown in my western blot data from the lung cancer patients, the 

relationship between the amount of propeptide and mature peptide is not straight forward and 

some patients whose sputum contained large amounts of hCAP18 did not also contain large 

amount of LL-37. 

Interestingly, although many studies show comparable levels of serum cathelicidin between 

healthy volunteers and diseased states the data here suggest that there is a degree of variation 

in the serum from lung cancer patients which may warrant further investigation as LL-37 has 

been proposed to be a growth factor for malignant cells 
[220]

. 

Physiological levels of cathelicidin in the lung are therefore difficult to define, though BAL 

levels are often within the ng range even in diseased states. Minimum inhibitory 

concentrations (MIC) for LL-37 against microbes in vitro are often greatly in excess of 10 

g/ml 
[5, 45, 46]

, which is much higher than the levels detected in in vivo studies. Additionally, 

the activity of cathelicidin is tightly regulated in the body with a host of factors that inhibit 

the activity of the peptide (see chapter 1). The question therefore arises as to how 

cathelicidins function as an antimicrobial agent in vivo. While antimicrobial effects might be 

mediated through direct microbicidal properties at sites of localised high peptide 

concentrations, or through synergy with other antimicrobial agents, perhaps the most 

important functions are indirect immunomodulatory effects.  
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Chapter 5:  LL-37-induced cell death in infected airway 

epithelium  
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5.1  Introduction 

 

Epithelium provides a physical barrier to microorganisms entering the body via the 

respiratory tract and, as previously discussed, in addition to the barrier function there are a 

host of other defence mechanisms employed by the epithelium to remove foreign particles 

and potential pathogens from this part of the body. In individuals in whom these mechanisms 

are impaired or absent, such as those with CF (in whom the mucocilliary escalator does not 

function correctly to remove bacteria), chronic infections may become established. 

Pseudomonas aeruginosa is one such organism that causes opportunistic infections in those 

with immunocompromised airways. With increasing resistance to antibiotics demonstrated by 

this bacterium, and others, it is important to understand alternative means by which the 

epithelia can destroy these pathogens in order to augment these natural mechanisms with new 

therapeutics. 

Work performed by Dr Peter Barlow, with my assistance, in the Davidson lab demonstrated 

that primary and transformed cultured epithelial cells underwent rapid Bax-dependent, but 

caspase-independent cell death, when incubated with high concentrations of synthetic LL-37 

peptide alone (with an associated translocation of cytochrome C), but that at more 

physiologically relevant levels of LL-37 (at which peptide alone did not induce substantial 

cell death), this peptide induced epithelial cell death associated with activation of caspase-3 

and -9 exclusively in cells infected with a lab strain of P. aeruginosa (PA01) (Fig 5.1).  

 
In addition to the initial observation that LL-37 synergistically initiated cell death in the 

presence of PA01, Peter had also determined that this phenomenon was dependent upon 

whole, live bacteria (and could not be replicated using LPS, killed bacteria or bacterially-

conditioned media). As part of these studies, I investigated whether other strains of P. 

aeruginosa would result in the same effect, if the expression of common bacterial virulence 

factors were important for cell death to occur, and examined a possible role for the 

inflammasome.  
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Figure 5.1  LL-37 and P. aeruginosa synergistically induce DNA fragmentation and caspase 

activation in airway epithelial cells. Human bronchial epithelial cell line 16HBE14o− (A, C, D) or primary 

human bronchial epithelial cells (B) were incubated for 6 hours (A, B) or 5 hours (C, D) over a range of LL-37 

concentrations (or scrambled LL-37 [sLL-37] at 50 μg/ml) in the presence and absence of log-phase P. 

aeruginosa PA01 (MOI 10:1) added concurrently. (A, B) Cells were treated as described, with or without 

preincubation for 1 hour with the polycaspase inhibitor Z-VAD-FMK (50 μM), and were then fixed. Apoptosis 

was assessed by TUNEL assay. Data represent mean values ± SEM, for n ≥ 3 independent experiments for each 

condition. Two-way ANOVA with Bonferroni post hoc test was used to compare samples. *P ≤ 0.05, **P ≤ 

0.01. (C, D) Whole-cell protein lysates were prepared and analyzed by SDS-PAGE and Western 

immunoblotting. Immunoblots were performed using antibodies specific for cleaved caspase-3, XIAP, cleaved 

caspase-9, or actin. Images shown are representative of n ≥ 3 independent experiments.  
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5.2 Characterising the bacterial factors that affect synergism between 

LL-37 exposure and infection. 

 

5.2.1 Synergistic induction of epithelial cell death by LL-37 and P. aeruginosa is 

independent of a type III secretion system or pilus expression. 

 

Type IV pili may be found in varying numbers on the outer surface of P. aeruginosa. They 

are hair-like structures composed of pilin proteins and are important adhesins that the 

bacterium uses to interact with host cells. Type III secretion systems (T3SS) are needle like 

structures produced by some bacteria in order to transport bacterial proteins from the 

bacterial cytoplasm directly into host cells. Both pili and T3SS are important virulence 

factors in some Pseudomonal infections. To determine whether the synergistic induction of 

cell death observed was influenced by pili or T3SS, I utilised mutant strains of P. aeruginosa 

(Table 5.1) lacking these particular virulence factors and their isogenic parent strains as 

controls, using the mitocapture dye assay (which measures mitochondrial membrane 

depolarisation; an early event in the initiation of apoptosis) and the TUNEL assay (which 

labels the DNA nicks that occur during DNA fragmentation; a later event in some forms of 

cell death) to further characterise the bacterial factors involved in this phenomenon. 

Using the mitocapture assay it was evident that the absence of either of these virulence 

factors did not prevent rapid LL-37 induced cell death when cells were cultured concurrently 

with LL-37 peptide and either the T3SS mutant (Fig 5.2a) or with the pilin mutant (Fig 5.2b) 

as compared to the isogenic controls.  
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Strain Origin/Description Gifted by  Reference 

PA01 Standard Laboratory strain John Govan [205] 

J1386 Clinical isolate from a CF 

patient 

John Govan [206] 

mexAB-oprM Efflux pump mutant Keith Poole [207] 

PA01exsA T3SS mutant Dara Frank [208] 

PA01pil Pilus mutant Bob Hancock [209] 

 

 

Table 5.1  Strains of P. aeruginosa used to investigate bacterial factors involved in 

LL-37 induced death of infected epithelial cells. Experiments were all conducted using the 

isogenic parent strain as a control. Bacterial cultures were received with thanks and stored at -

20
o
C until required for culture. Working stocks were kept on agar on the bench and 

monitored for conversion to mucoidy.  
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Figure 5.2: Synergistic induction of cell death by LL-37 and P. aeruginosa is isolate-specific and 

independent of type III secretion system and pilus expression. Human bronchial epithelial cells 

(16HBE14o−) were assessed for mitochondrial membrane depolarization using Mitocapture dye after 

incubation for 1 hour with a range of concentrations of LL-37, in the presence and absence of (A) log-

phase P. aeruginosa PA01exsA∷Ω or isogenic PAO1 control strain (MOI 10:1), and (B) log-phase 

pilA P. aeruginosa mutant or isogenic PAO1 control strain (MOI 10:1). Data represent mean values ± 

SEM, for n = 3 independent experiments for each condition. Two-way ANOVAs were performed to 

evaluate significance, with Bonferroni post hoc tests comparing (A) LL-37/P. aeruginosa to LL-37 

alone, and (B) LL-37/P. aeruginosa mutant to LL-37/isogenic controls. *P ≤ 0.05,***P ≤ 0.001. 

Studies conducted together with Peter Barlow. 
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5.2.2 Synergistic Induction of Cell Death by LL-37 and P. aeruginosa requires 

Epithelial Cell Internalization of Bacteria 

 

 

Epithelial cells infected with P. aeruginosa PA01 in the presence of LL-37 results in an 

increase in cell death at concentrations of LL-37 where neither bacteria alone or LL-37 alone 

had any effect. The efflux mutant ΔMexAB-OprM 
[207]

, is reported to display delayed 

invasion into epithelial cells. This was confirmed using a gentamicin exclusion assay to 

measure internalized bacteria (Fig 5.3a).  

 

When airway epithelial cells were infected with this mutant ΔMexAB-OprM and incubated 

with LL-37 there was a significant failure to induce the mitochondrial depolarisation in 

16HBE14o
-
 cells (Fig 5.3b) as compared to the parent strain. A TUNEL assay was used to 

evaluate the impact upon DNA fragmentation and also demonstrated enhanced significant 

difference between the mutant and the parent strain, with a loss of the peptide-induced cell 

death in 16HBE14o
-
 cells under these conditions (Fig 5.4). A previous report 

[207]
 

demonstrated that an unidentified secreted factor released by wild type PAO1 upon 

interaction with epithelial cells was not secreted by ΔMexAB-OprM and that supernatant 

from wild type PAO1 infected epithelial cell cultures could restore the ability of the mutant to 

invade /internalise into epithelial cells. Interestingly, replicating this approach in my studies, 

the addition of filtered supernatant from PA01-infected epithelial cultures with the ΔMexAB-

OprM mutant strain and LL-37 restored the synergistic induction of cell death (Fig 5.3c). 

 

The observation that of all the PA01 mutants investigated only ΔMexAB-OprM failed to 

induce cell death suggests invasion of the epithelial cell by the bacterium is required to 

promote LL-37-induced cell death of PAO1 infected cells.  
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Figure 5.3. Synergistic induction of cell death by LL-37 and P. aeruginosa requires epithelial 

cell internalization of bacteria. Human bronchial epithelial cells (16HBE14o−) were incubated for 

60 minutes in the presence and absence of (MOI 10:1) log-phase P. aeruginosa strains PA01, 

ΔmexAB-oprM mutant (A–C), isogenic PAO1 control strain (B), or ΔmexAB-oprM mutant added 

concurrently with sterile conditioned supernatant collected from 16HBE14o− cells infected with 

PA01 (C). (A) Invasion of epithelial cells by bacteria was determined by gentamicin exclusion, 

quantifying the number of viable CFUs surviving extracellular gentamicin treatment (50μg/ml). Data 

are plotted as mean values ± SEM, for n = 3 independent experiments plated in duplicate for each 

condition. (B, C) Infected epithelial cells were concurrently incubated with a range of concentrations 

of LL-37, and mitochondrial membrane depolarization was determined. Data represent mean values ± 

SEM, for n = 3 independent experiments for each condition. Two-way ANOVAs were performed to 

evaluate significance, with Bonferroni post hoc tests **P ≤ 0.01, ***P ≤ 0.001. Studies conducted 

together with Peter Barlow. 
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Figure 5.4 ΔMexAB-OprM fails to induce cell death in 16HBE14o
-
 cells with or without 

LL-37 after 6 hours as measured by TUNEL.  Human bronchial epithelial cells 

(16HBE14o−) were incubated for 60 minutes in the presence and absence of (MOI 10:1) log-

phase P. aeruginosa strains PA01, ΔmexAB-oprM mutant or the isogenic PAO1 control strain. 

Infected epithelial cells were concurrently incubated with culture media only or 20µg/ml of 

LL-37 in culture media before being assessed for cell death using the TUNEL assay. Results 

are means of n=3 independent experiments. Data is plotted as mean values +/- SEM * 

indicates P value of <0.05 

 

 

 

 

 

 

 

 

 

 

* 
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5.2.3 LL-37 does not kill P. aeruginosa in Physiologically Relevant Media nor is the 

ΔMexAB-OprM Mutant more Susceptible to Direct Killing by this Peptide. 

 
LL-37 has been reported to have direct antimicrobial killing activity 

[67]
 However, many 

studies were in non-physiological ionic environments. In order to study immunomodulation 

by LL-37 it was necessary to examine whether direct microbicidal activity of LL-37 could 

explain the results we were observing. 

 

The strains of P. aeruginosa used to characterise LL-37 induced death of infected epithelial 

cells (Table 5.1) were all incubated with increasing concentrations of synthetic LL-37 peptide 

to determine the sensitivity of each strain to direct killing by the peptide. Strains tested 

include; PA01 (lab strain) ΔMexAB-OprM (Efflux mutant), ExsA (T3SS mutant) and J1386 

(CF clinical isolate). 

 

When incubated with LL-37 in PBS without Ca2+ and Mg2+ there is evidence of some direct 

antimicrobial activity against the clinical strain of P. aeruginosa J1386 (Fig 5.5a). To 

determine the direct microbicidal capability of LL-37 against P. aeruginosa in a media with a 

physiologically relevant ionic composition we tested whether co-incubation with the peptide 

in our treatment media would reduce the number of viable bacteria. When cell culture media 

was used there was no direct killing of bacteria as detected by viable counts (Fig 5.5b). The 

population doubling time for PA01 is more than 60 minutes and when cultures were 

incubated for 2 hours in the presence of peptide there was evidence of a possible 

bacteriostatic effect (data not shown). 

 

These data show that there was no bactericidal effect of LL-37 in the media used for the cell 

death studies. Furthermore, the inability of ΔMexAB-OprM to promote LL-37 mediated cell 

death was not due to an increase in sensitivity of this strain to killing by LL37. 
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Figure 5.5 Susceptibility of P. aeruginosa strains to increasing concentrations of LL-37 

after 1hr. Strains tested include; PA01 (lab strain) ΔMexAB-OprM (Efflux mutant), ExsA 

(T3SS mutant) and J1386 (CF clinical isolate) in either (a) PBS w/o Ca2+ and Mg2+. Figure 

shows means of 2 independent experiments or (b) physiologically relevant culture media 

(DMEM with 1% L-Glut 1% NEAA, ultroser G). Figure shows mean +/- SEM from 3 

independent experiments per condition. 
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5.2.4 The Extent of Internalisation/Invasion of P. aeruginosa into Human Bronchial 

Epithelial Cells is Pseudomonas Strain Dependent. 

 

The results of infection studies with the efflux pump mutant suggested that P. aeruginosa 

need to gain entry to the intracellular environment of the cell in order to make the cell 

susceptible to LL37-mediated cell death 
[52]

. In order to determine the extent of 

internalisation/invasion of different strains of P. aeruginosa, the gentamicin exclusion assay 

was utilised. As this assay relies on the killing of extracellular bacteria for accurate 

quantification of intracellular bacteria it was first necessary to determine at what 

concentrations this would occur for these strains. Following incubation of bacteria with a 

range of concentrations of the antibiotic it was determined that 50 µg/ml gentamicin was 

sufficient to kill all strains of P. aeruginosa tested (data not shown). Controls for this assay 

were performed to exclude the possibility that any residual gentamicin-mediated effects 

occurred following washing and lysis steps (data not shown). PA01 was clearly shown to be 

invasive to the 16HBE14o
-
 cells at one hour (Fig 5.3) and PA01 and J1386 at two hours (Fig 

5.6) after infection. ΔMexAB-OprM was shown to have negligible ability to invade the 

epithelial cells (Fig 5.3 & 5.6).  
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Figure 5.6:  The efflux mutant of P. aeruginosa does not become intracellular 

Gentamicin exclusion assay results quantifying the number of colony forming units inside 

epithelial cells after 2 hours of infection with P. aeruginosa (PA01, efflux mutant ΔMexAB-

OprM or the clinical strain J1386) and 1 hour of gentamicin exposure. 
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5.2.5 P. aeruginosa Clinical isolate (J1386) Induced Cell Death with or without LL37. 

 

 

In order to determine the extent to which the observations made with PAO1 were 

representative of other strains of P. aeruginosa, a number of clinical isolates were examined 

in the same assay. The clinical strain J1386, an extremely motile, early isolate recovered from 

a child with cystic fibrosis showed a high level of cell death irrespective of the presence of 

LL-37 (Fig 5.7 a & b).  

 

Intracellular numbers of J1386 were also investigated using the gentamicin exclusion assay. 

This isolate was shown to have a lower number of CFUs inside cells than the laboratory 

strain PA01 (Fig 5.7c). However, an apparent loss of confluency was observed visually in 

wells infected with J1386 and thus a loss of epithelial cells was presumed in wells containing 

J1386 following wash steps. It is possible that if this strain is directly cytotoxic then internal 

numbers were underestimated due to cell loss prior to counting. The possible loss of cell and 

the extent of the loss would need to be confirmed formally via nucleocounter and/or a 

haemocytometer cell count.  
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Figure 5.7  P. aeruginosa Clinical strain J1386 induces a high proportion of cell 

death with or without the presence of LL-37. 16HBE cells were incubated with P. 

aeruginosa clinical strain J1386 with or without increasing doses of LL-37 peptide. Cell 

death was assessed by a) Mitocapture assay and b) TUNEL staining C) Gentamicin exclusion 

assay results quantifying the number of colony forming units inside epithelial cells after 2 hrs 

of infection with P. aeruginosa (PA01 or J1386) and 1 hr gentamicin exposure. 

 

 

B) 

C) 
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5.3  The role of Caspases and Bcl2 Proteins 

 

5.3.1 Combined use of the pan-caspase inhibitor (Z-VAD-FMK) with BAX peptide 

inhibitor (BipV5) reduces the proportion of TUNEL positive cells 

 
As demonstrated in Fig 5.1, LL-37-induced cell death in P. aeruginosa infected epithelial 

cells is at least partially caspase dependent and may be inhibited by the poly-caspase inhibitor 

Z-VAD-FMK. Additional studies conducted by Peter Barlow also demonstrated that the cell 

death induced by higher concentrations of LL-37 in the absence of infection was mediated by 

the pro-apoptotic Bcl2 family member Bax 
[109]

. Additional studies were conducted in order 

to evaluate the extent to which blockade of both pathways might abrogate LL-37-induced cell 

death. 

 

These studies utilised BipV5 and Z-VAD-FMK (Fig 5.8). BipV5 is a peptide based on the 

Ku70 BAX inhibiting domain which prevents the translocation of Bax from the cytosol to the 

mitochondria, inhibiting mitochondrial induced apoptosis 
[252, 253]

. Z-VAD-FMK is a non-

specific caspase inhibitor that irreversibly binds to the active site of caspase proteases.  

 

Although a striking reduction of TUNEL positivity was observed, this was not a complete 

inhibition relative to control levels. It is possible that these inhibitors may not enable total 

inhibition or that additional pathways may be triggered by LL-37 and P. aeruginosa.  
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Figure 5.8: Synergistic inhibition of cell death by LL-37 is not completely abrogated by 

caspase and BAX inhibition.  Cells were incubated with both BipV5 and Z-VAD-FMK for 

an hour then washed prior to treatment. Data shown are from n= 3 independent experiments. 

* indicates P value of <0.05 
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5.4 Role of Intracellular Pathogen Recognition Receptors and 

Inflammasome Activation by LL37 

 

5.4.1 Synergistic induction of cell death in infected epithelia is caspase-1 dependent. 

 
Based on the hypothesis that internalisation/invasion of epithelial cells is essential for the 

synergistic effect of LL-37 on cell death in infected cells, the role of intracellular pattern 

recognition pattern sensing was considered. Alternative types of cell death to apoptosis were 

considered, including the caspase-1 dependent cell death termed pyroptosis. Pyroptosis is an 

inflammatory form of cell death that is characterized by the activation of caspase-1 and 

processing and release of IL-1β and IL-18 and has been reported to be induced by P. 

aeruginosa in macrophages 
[248]

 following intracellular sensing and activation of the 

inflammasome.  

 

Although our data demonstrated activation of caspase 9 and caspase 3 during LL-37-induced 

death of infected cells, and pyroptosis is not a caspase 3 dependent process, Cookson and 

colleagues also report activation of caspase 3 at later time-points in this form of cell death 

[180]
. In addition, TUNEL positivity is observed in pyroptosis and poly-caspase inhibition 

(with Z-VAD-FMK) would be equally capable of inhibiting caspase-1 as the effector 

caspases of aopotosis. Additionally an unknown nuclease is thought to be responsible for 

death of cells by pyroptosis 
[192]

. To investigate whether caspase 1 is being activated in my 

studies, a cell permeable caspase-1 inhibitor was used prior to treatment and cells analysed by 

TUNEL staining as before (Fig 5.9). These data demonstrate that the significant LL-37 

mediated induction of cell death in PAO1 infected epithelial cells was abrogated in the 

presence of caspase 1 inhibition (Fig 5.9). This suggests that the cell death observed may be 

pyroptosis, induced by LL-37 and previously undescribed in epithelial cells. 
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Figure 5.9   LL-37 induced death of infected epithelial cells is negated by caspase 1 

inhibition. 16HBE cells were incubated with culture media only, media and LL-37 (30 or 

50µ/ml), PA01 only or PA01 and LL-37 (30 or 50µg/ml). b) As for a except cells were pre-

incubated with a cell permeable caspase 1 inhibitor prior to being incubated with the 

conditions above. 
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5.5 Inflammasome Activation and pyroptosis in Epithelial Cells 

 

5.5.1 The Human Bronchial Epithelial Cell Line 16HBE as well as the cell line A549 

Express Components of Multiple Inflammasome Pathways 

 

The majority of published scientific literature describes the pathways and inducers of 

inflammasome formation and pyroptosis in cells of the myeloid lineage. There are however 

recent preliminary descriptions of cell death characteristic of pyroptosis in epithelial cells 
[259-

260]
.  One study report seeing significant increases in caspase-1, caspase-11 and IL-1β 

following renal ischaemia-reperfusion injury with cell death, presumed to be pyroptosis in 

renal tubule epithelial cells 
[259]

 whilst another group have published their study showing 

NLRP3 dependent pyroptosis in HBE cells in response to carbon nanotubes which was 

partially inhibited by silencing NLRPs in the cells or by the use of a caspase 1 or cathepsin B 

inhibitor 
[260]

.  

 

Studying LL-37-induced cell death of infected epithelial cells raised the question of whether 

the cells in our in vitro model were capable of forming inflammasomes. Qualitatively we 

could see from PCR, western and qPCR data that mRNA coding for various inflammasome 

components including ASC, NLRP3, CARD8 and NLR4 were all expressed by epithelial 

cells (Fig 5.10). This was true for 16HBE cells as well as the A549 epithelial cell line and 

also primary NHBE cells. 
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Figure 5.10  Inflammasome components are expressed in airway epithelial cells. A) 

PCR results indicate that airway epithelial cells contain genes for the inflammasome 

components ASC (apoptosis-associated speck like protein containing a CARD), NLRP3 

(Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain 

containing family) and CARD8 (Caspase activation and recruitment domain 8 b) Western 

blot to detect the protein ASC in airway epithelial cells c) Change in expression of the gene 

for NLRC4 shown as fold change in 16HBE cells after 1hr or 6hrs compared to the untreated 

control at time 0. 
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5.5.2 Caspase 1 dependent cytokine IL-1β may be released by infected cells exposed to 

LL-37. 

 

In order to further evaluate whether the LL-37-induced cell death observed in infected 

epithelial cells was caspase-1 dependent pyroptosis, cells were assessed for IL-1β, cleavage 

and release, which is caspase-1 dependent 
[255]

. Initial investigation to quantify IL-1β and its 

precursor molecule pro-IL-1β from treated cell lysates by western immunoblot clearly 

showed that the proform of the cytokine was detected only when cells were infected with P. 

aeruginosa and that the cleaved form was only present if those infected cells were also 

exposed to LL-37 (Fig 5.11). This result proved difficult to replicate in subsequent 

experiments.  
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Figure 5.11 IL-1β expression in PA01-infected 16HBEs. The pro-form of IL-1β can be 

seen by western blot only when cells are infected with PA01. Cleaved IL-1β can be detected 

in increasing quantities in infected cells that were treated with increasing doses of LL-37  
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5.6 Discussion 

 

Cathelicidins have clearly been shown to have protective capacity in vivo in the context of 

infection 
[27, 28]

, and yet are capable of inducing host cell death during infection at epithelial 

surfaces 
[109, 110, 145]

. This may at first seem counter intuitive, unless the death of an infected 

epithelial cell removes a compromised cell and helps to alert the host to danger. CHDPs such 

as cathelicidin have been proposed for use as novel antimicrobial therapeutics due to their 

microbicidal properties at high concentrations. Thus, understanding the capability of 

cathelicidins to induce cell death and the regulation of such properties is relevant to both the 

understanding of host defence against infection as well the development of novel therapeutics 

based on these peptide structures. My studies, and those of Peter Barlow in the Davidson lab 

have demonstrated that low levels of LL-37, which do not cause cell death on their own, are 

capable of inducing a rapid death of Pseudomonas aeruginosa infected epithelial cells
 [52]

. I 

propose this to be a novel component of the normal defence mechanisms of the lung to avoid 

colonisation in the airways early in infection when bacterial numbers are low. 

 

The airway epithelial cell line 16HBE14o
-
, infected with P. aeruginosa (PA01) and treated 

with LL-37, underwent rapid cell death in response to concentrations of peptide that did not 

induce death in healthy cells 
[52]

. This suggests a synergistic induction of cell death pathways 

between the peptide and the bacterium. The intrinsic pathway of apoptoss is characterised by 

permeabilistion of mitochondria with subsequent release of cytochrome C and caspase 

activation. The synergistic cell death I observed with LL-37 and P. aeruginosa was 

characterised by mitochondrial depolarisation, release of cytochrome C from the 

mitochondria to the cytoplasm and an increase in terminal deoxynucleotidyl transferase 

mediated deoxyuridine triphosphate nick-end labelling (TUNEL) positive cells. Cleaved 

caspase-3 and -9 was observed in these cells by western blotting, only in conditions where 

cells are treated with bacteria and LL-37 and not with either treatment alone. Further 

investigation revealed that this synergy was dependent on direct contact between the cell and 

intact, live bacteria and, although independent of a functional type 3 secretion system (T3SS) 

or flagella production, and did not occur using the mexAB-oprM mutant of P. aeruginosa, 

proposed to be defective in epithelial cell internalisation 
[231]

. The internalisation of P. 

aeruginosa by epithelial cells, and the induction of apoptosis in infected pulmonary cells in 

vivo have been proposed to be important in innate host defence against this organism 
[114, 115]

. 
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Cell death pathways are complex and sometimes interlinked. We had shown that LL-37 

induced host cell death at high concentrations was characteristic of apoptosis with the 

involvement of mitochondrial factors BAX and caspase -9 and -3 activation but that the 

inhibition of these factors did not fully negate the LL-37 induced death of infected epithelial 

cells. I produced further work following the publication of our initial data that showed that 

the cathelicidin-mediated death of Pseudomonas aeruginosa infected airway epithelium 

could be significantly abrogated when caspase-1 was inhibited.  

 

Inflammasomes are large cytosolic complexes (>700KDa) containing NLRs that recruit and 

activate pro-caspases. Caspase-1 is one such inflammasome-activated caspase and is required 

for cleavage and activation of the pro-inflammatory cytokines IL-1β and IL-18. Pyroptosis is 

a caspase-1 dependent form of inflammatory cell death that has been best studied in infected 

macrophages and is characterised by the presence of caspase-1 and pro-inflammatory 

cytokine release. Investigation of airway epithelial cells did in fact show a capability to 

express  inflammasome components and in conjunction with the results I had produced 

showing abrogation of cell death when caspase-1 was inhibited I hypothesised that during 

intracellular infections cathelicidins act as danger signals to instruct inflammasome formation 

and destruction of compromised airway epithelial cells as an anti-infective mechanism. This 

hypothesis was supported by the detection of pro-IL-1β from infected cells and pro and active 

IL-1β from infected cells treated with LL-37 by western blotting however it proved to be a 

difficult result to replicate. Although IL-1β has been reported to be expressed following 

contact with P. aeruginosa other groups have found little detectable levels of this pro-

inflammatory cytokine being produced by epithelial cells therefore this is not a conclusive 

finding as to whether the death is occurring by pyroptosis or not. ELISA could however be 

used to investigate whether epithelial cells infected with PA01 in the presence of LL-37 

produce IL-1β.  

 

Regulation of cell death pathways may be used by the host as a means of resolving infection 

and removing destructive cells that are no longer needed such as neutrophils from sites of 

inflammation 
[201]

.  A common theme in removal of pathogens from the epithelial lining is 

prompt desquamation of affected or infected epithelial cells. This has been described in 

bladder epithelial cells following bacterial attachment of uropathogenic Eschericia coli 
[202]

 

within 2 hours in a murine model of urinary tract infection as indicated by TUNEL positive 

cells. In bladders where areas of cell death were evident there was a reduction in bacterial 
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numbers that was not seen when exfoliation of host cells was inhibited with a pan-caspase 

inhibitor. A comparable clearance mechanism is demonstrated in airway epithelial cells 

during P. aeruginosa pneumonia whereby efficient epithelial cell apoptosis is needed in order 

to clear Pseudomonal lung infections. Thisprocess is reliant on the Fas/FasL stimulated 

induction of cell death, the inhibition of which abrogates any protective effects of clearance 

by this mechanism 
[115]

. 

 

Several possible explanations could be proposed to explain the induction of infected 

epithelial cell death with low concentrations of LL-37.  Antigens inducing cell death may 

only be exposed following endosomal processing. Alternatively the organism may exit the 

endosome and trigger cytosolic signaling following membrane disruption by LL-37 

interacting with the endosomal membrane. Future work could use confocal microscopy to 

visualise what happens to both TAMRA labeled LL-37 and fluorescent bacteria once inside 

the cells. There are multiple fluorescent stains and molecules that may be used to analyse the 

location, acidity and integrity of endo-lysosomes in live cells. DQ albumin and acridine 

orange may be used to determine the location of endosomes and whether there is any leakage 

of contents and/or exit of P. aeruginosa into the cytosol following LL-37 exposure. A 

lysosomal protease, Cathepsin B has been shown to activate Nalp3-containing inflammasome 

formation following release of endosomal contents 
[192]

. Multiple nod-like receptors (NLRs) 

can sense intracellular pathogens and be involved in inflammasome formation and caspase 1 

activation leading to cell death and further work is warranted to investigate whether there is 

any role for the NLRs/inflammasome in LL-37-mediated induction of cell death of infected 

cells. 

 

In acute infections, P. aeruginosa at the time of colonisation usually express T3SS toxins; 

however, later in chronic infections these genes are switched off. We have already seen that 

infection with a T3SS mutant unable to express the translocon proteins still promoted LL-37-

induced cell death (data not shown). However we have not looked at the effect of growing the 

bacteria in conditions that will promote T3SS expression (e.g. calcium depleted medium) or 

characterised the effector protein expression within each of our working isolates. Strains 

producing the T3SS proteins ExoS and ExoT have a more invasive phenotype whereas ExoU 

is rapidly cytotoxic to many cells which may account for the difference seen between the lab 

strain and the clinical isolate. 20-28% of P. aeruginosa strains are known to be invasive but 

also directly cytotoxic to cells due to the production of the protein ExoU. Although PA01 is 



141 

 

known to express Exo S, ExoT and ExoY it does not express ExoU. It is possible that the 

results we saw using the clinical strain J1386 is due to the expression by this strain of ExoU 

which would make it directly cytotoxic however  this would need to be formally validated by 

determining the exoU status of this strain. Analysis of P. aeruginosa mutants which do or do 

not cause cell death could lead to the purification of bacterial components to use as tools to 

investigate the host factors involved. These data suggest that the effects of LL-37 on the 

death of infected cells may only be relevant in non-cytotoxic bacterial strains, or isolates at 

certain stages in infection/colonisation of the host but a larger panel of strains would need to 

be tested to determine this.  

Further investigation to understand the mechanisms behind LL-37 induction of cell death 

could utilise FLICA® assays (fluorescent caspase probe based assays) to look at caspase 

activation in cells using real-time cell imaging, western blots to look at caspase activation, 

P2x7 receptor inhibition (to prevent certain types of inflammasome formation) and the use of 

siRNA to silence components of inflammasomes such as ASC (apoptosis-associated speck 

like protein containing a CARD domain) and NALP3 (a nod-like receptor) in cells prior to 

incubation with PA01 and peptide. BipV5 may inhibit the pathway initiated by LL-37 alone, 

however in an infected cell there may also be other initiators and effectors of cell death 

activated. Future investigations could determine the involvement in this system, if any, of 

apoptosis inducing factor (AIF), Inhibitors of apoptosis (IAP) and the inhibitor of these IAP’s 

Smac/Diablo. In addition the effect of overexpression of the protective anti-apoptotic protein 

Bcl2 could be examined. 
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Chapter 6 : Cathelicidin mediated modulation of 

pulmonary infection in vivo 
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6.1 Developing a mouse model of acute lung infection: Does intranasal 

infection of C57/Bl6J mice with PA01 result in observable pneumonia? 

 

To study the capacity of cathelicidin to modulate pulmonary inflammatory responses to P. 

aeruginosa infection in vivo it was necessary to establish a non-lethal model of acute lung 

infection that would induce a measurable inflammatory response to this bacterium in the 

airways. Results from studies in the literature vary widely when C57/Bl6J mice are infected 

with P. aeruginosa depending on the strain of bacteria used 
[40, 246,  247]

,  The doses used in 

other labs when intra-nasally administering P. aeruginosa to C57/Bl6J was between 10
4
-10

9 

colony forming units (cfu). As mentioned previously, PA01 is a lab strain lacking 

cytotoxicity and other virulence factors and thus a higher dose was predicted to be necessary 

to establish a clear inflammatory response to infection.  

 

In order to establish a suitable model, dose finding pilot studies were performed. I lightly 

anaesthetised male and female C57/Bl6J (wild type) mice between the ages of 6-10 weeks 

with isofluorane and oxygen before innoculating intranasally with doses of 3x10
5
, 3x10

6
 or 

3x10
7
 cfu P. aeruginosa PA01 or with saline only controls and monitored the progress of 

infection every 2 hours until the mice were culled at 6 or 24hrs p.i. I determined that all three 

concentrations of P. aeruginosa PA01 given to mice intra-nasally resulted in a self-limiting 

pneumonia whereby (when assisted by the use of heat mats to prevent a drop in body 

temperature of convalescing mice), all infected mice recovered spontaneously within 48 

hours of infection resuming normal activities (frequency of movement and grooming/feeding) 

with cfu numbers returning to or approaching zero (data not shown). 3x10
7
 cfu was chosen as 

an appropriate dose to use in further studies as the dose which produced a measurable 

pneumonia and cellular response in the mice airways but was also not cleared too rapidly 

without intervention. This was important as mice clear PA01 very effectively without major 

inflammatory responses and so in order to establish a model where conditions can be adjusted 

to study the capacity of LL-37 to enhance the clearance we must first have a response to 

measure and be able to enhance. 3x10
7
 cfu was the lowest dose at which there was a strong 

inflammatory response and delayed clearance in wild type animals that resolved without 

unnecessary suffering to the animal.  
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Having established this model it was then used to test three main questions: 

 

1. Does endogenous murine cathelicidin (mCRAMP) play a role in murine pulmonary 

clearance of P. aeruginosa , and, if so, by what mechanisms. 

2. Can therapeutically delivered synthetic human cathelicidin (LL-37) enhance murine 

pulmonary clearance of P. aeruginosa , and, if so, by what mechanisms. 

3. In the absence of endogenous murine cathelicidin (mCRAMP) can therapeutically 

delivered synthetic human cathelicidin (LL-37) enhance murine pulmonary clearance 

of P. aeruginosa, and, if so, by what mechanisms.  

 

 

The importance of maintaining body temperature in infected animals was highlighted during 

an early pilot experiment in which a socket that was used to power a heat mat was turned off 

by a member of technical staff in error prior to leaving for the evening. The absence of 

temperature regulation resulted in the death of 2 out of 3 wild type mice and 3 out of 3 Camp-

/- mice treated with PBS as a control and infected with P. aeruginosa, but all the of the LL-

37-treated wild type and Camp-/- mice infected with P. aeruginosa survived (Fig 6.1).  These 

compelling data helped to inform the future studies. 
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Figure 6.1 Survival of wild type and camp 
-/-

 mice at 24 hours. C57Bl/6J or camp 
-/- 

mice were intranasaly infected with 3x10
7
 PA01 n=3 per group 
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6.2 Does the absence of endogenous cathelicidin alter the course of 

infection?  

 

In order to study whether the absence of endogenous mCRAMP (the murine homologue of 

LL-37) alters the course of infection, a series of experiments were performed comparing wild 

type mice and knock-out mice lacking the Camp gene. C57Bl/6J and Camp
-/-

 mice (congenic 

on a C57Bl/6J strain background) were infected via the intranasal route, as before, with 3x10
7
 

cfu PA01 and culled 6 or 24 hours later. The parameters of % weight loss (Fig 6.2), 

recoverable viable bacteria from BAL and lung homogenates (Fig 6.3) and differential 

inflammatory cell counts from lung lavages (Fig 6.4), were used to begin to study the course 

of disease and cellular response in each strain of mouse.  

 

Infected animals lost no weight for 6 hrs after infection (Fig 6.2a) however a significant 

(P<0.0001) amount of weight (approx. 10% loss of initial weight) was lost by 24 hours 

following infection compared to animals having received PBS only (Fig 6.2b). This is most 

likely due to a reduced intake of food and fluid and an increase in shivering. Genotype had no 

significant effect on the amount of weight lost in each group (P>0.05). 

 

In order to assess whether there was any difference in clearance of PA01 from the airways of 

mice deficient in mCRAMP compared to wild type control mice, animals from both strains 

were intranasally infected with 3x10
7
 cfu PA01 and culled 6 or 24 hours later. Immediately 

following being culled the airways were lavaged with PBS and the lungs homogenised. 

Viable bacteria were cultured from BALF and lung homogenate overnight. At 6 hours (Fig 

6.3a) a significant (P<0.05) clearance defect was observed in BALF from Camp
-\-

 mice, but 

not in lung homogenate although there was a trend for higher bacterial loads in lungs of 

Camp
-\-

 compared to wild type.  By 24 hours both genotypes had successfully cleared the 

majority of bacteria compared to the bacterial loads seen 6 hours post infection.  My lab work 

demonstrated that there is a clear trend for delayed clearance in both the airways and the lung 

tissue in mice deficient in mCRAMP compared to wild type animals (Fig 6.3b, c, d). Further 

work performed by others in the Davidson laboratory after the completion of my PhD lab 

work to increase the numbers of mice in the study demonstrated that this trend is statistically 

significant at 24 hours p. i.  
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In order to evaluate the cellular inflammatory response to infection, mice were culled at 6 and 

24 hours following inoculation and the airways lavaged once with 1 ml of ice cold PBS. The 

total number of cells retrieved in the BALF was determined by the use of a nucleocounter and 

the proportion of these cells which were monocytes or PMN was determined by counting the 

percentage of 100 cells in a 100 µl sample on a cytospin slide that were morphologically 

monocytes or PMN under a light microscope. This proportion was multiplied by the total cell 

numbers to calculate monocyte cell or PMN cell numbers retrieved from the airways at these 

times following infection (Fig 6.4).  

 

There was no difference in monocyte response to infection at 6hrs (Fig 6.4a) and only a trend 

towards an increased number of monocytes by 24hrs (Fig 6.4b) in the BALF of infected 

animals compared to those inoculated with PBS only. No significant difference was seen in 

the monocyte response to PBS or any difference in monocyte number in response to PA01 

between genotypes.  

 

There was an initial low level PMN response to infection at 6 hrs. which was not significantly 

different between genotypes (Fig 6.4c), this PMN influx was much greater by 24 hrs in 

wildtype mice but had not further increased in Camp
-\-

 mice (Fig 6.4d) compared to the 

response at 6 hrs. This difference observed between the two genotypes was significant 

(p<0.05). These data demonstrate a CRAMP-dependency of the later increased influx of 

PMNs but not the initial PMN response to PA01 in the airways. No PMNs were present in the 

BALF from PBS controls. 

 

To establish whether the induction of local cytokines was altered in mice deficient in 

cathelicidin in response to infection I measured the concentration of several cytokines in 

BALF from mice of both genotypes which were culled 6 or 24 hours after intranasal delivery 

of PA01 or PBS. BALF was centrifuged to remove cellular content prior to measuring the 

cytokines with a commercially available kit. There was no difference in the cytokine profile 

at 6 or 24hrs between the genotypes (Fig 6.5 & 6.6). The cytokines IL-6 and TNF alpha as 

well as the chemokines KC and MIP-1α were induced in animals infected with PA01 by 6 hrs 

after intranasal delivery of PA01 (Fig 6.5) and had mainly returned to base levels by 24 hrs 

(Fig 6.6) as compared with PBS treated controls (p<0.01). The chemokine MCP-1 however, 

was induced later in the infection and was significantly increased in mice of both genotype by 

24 hrs but not at 6 hrs post infection. (P<0.01).  
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No substantial production of IL-10, IFN gamma or IL-12 was detected in any mice and the 

similar pattern of cytokines studied offers no explanation as to why there is delayed clearance 

of PA01 or impaired later neutrophil influx in Camp 
-/-

 mice. 
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6.2.1 Mice infected with P. aeruginosa lose approximately 10% of their bodyweight in 

the first 24 hours following intranasal inoculation. 

  

 

 

 

Figure 6.2 Wild type and Camp
-/-

 mice intra-nasally infected with 3x10
7
 P. aeruginosa lose an equivalent 

proportion of body weight by 24hrs post infection. Wild type C57Bl/6J mice and Camp
-\-

 mice were 

weighed, then inoculated with 3x10
7
 cfu of P. aeruginosa PAO1 or PBS by intranasal 

delivery. a) 6 hours after inoculation of all mice, a subset were re-weighed prior to being 

culled (C57Bl/6J n=10, Camp
-\-

 n=8) or b) 24 hours after inoculation mice were re-weighed 

and culled (C57Bl/6J n=13, Camp
-\-

 n=6). Data shows mean percentage weight loss +/- SEM. 

Statistical analyses were conducted using 2 way ANOVA with Bonferroni’s post tests; * p < 

0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 

 

6.2.2 Mice deficient in endogenous cathelicidin demonstrate delayed clearance of 

PAO1 from the airways. 

 

 
 
 

Figure 6.3 Mice deficient in mCRAMP show delayed clearance of PA01 from the airways compared to 

wild type animals. C57Bl/6J wild type controls and Camp
-/-

 mice were inoculated with 3x10
7
 

cfu of P. aeruginosa PAO1 or PBS by intranasal delivery. At 6 or 24 hours after inoculation 

mice were culled and their lungs were lavaged before homogenisation. BALF and lung 

homogenates were serially diluted, plated and incubated overnight at 37˚C before bacterial 

colonies were counted and corrected for volume. Mean PAO1 cfu +/- SEM in the BALF (a & 

b) or lung homogenate (c & d) from infected animals (n≥6 per condition) are displayed. No 

bacteria were detected in samples from uninfected mice (ND). For statistical analyses 

bacterial counts were normalised by logarithmic transformation. Analyses were conducted 

using 2 way ANOVA with Bonferroni’s post tests for BALF data and two-tailed t-tests for 

Lung data; * p < 0.05. 
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6.2.3 Infection with PA01 induces an acute influx of neutrophils to the lungs which is 

increased and sustained in the later phase of infection by mice expressing endogenous 

cathelicidin. 

 

 

 

 

 
 

Figure 6.4 Infection of C57Bl/J6 wild type mice results in significantly higher PMN influx to the airways 

than during infection of Camp
 -/-

 mice by 24hrs p.i. Camp
-/-

 mice and C57Bl/J6 wild type controls 

were inoculated with PBS or 3x10
7
 cfu of P. aeruginosa PAO1 by intranasal delivery (n≥8 

for each condition).  At 6 hours (a & c) or 24 hours (b & d) after inoculation mice were culled 

and their lungs were lavaged. BALF was cytocentrifuged and differential counts were 

conducted for monocytes (a & b) and neutrophils (c & d). Data shows mean cell counts +/- 

SEM. Statistical analyses were conducted using 2 way ANOVA with Bonferroni’s post tests; 

* p < 0.05. 
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6.2.4 Delayed clearance of PA01 in Camp 
-/-

 mice is not explained by differences in 

local cytokine profiles.  

 

 
 

Figure 6.5 Delayed clearance of PA01 by mice deficient in mCRAMP is not explained by differences in 

local cytokines recovered from BALF at 6hrs post infection. Wild type C57Bl/6 mice and Camp
-/-

 mice  were 

inoculated with 3x10
7
 cfu of P. aeruginosa PAO1 or PBS by intranasal delivery. At 6 hours after inoculation, 

mice were culled and their lungs were lavaged. BALF was centrifuged to remove cells and levels of IL-6 (a), 

MCP-1 (b), KC (c), TNF (d) and MIP-1α (e) were determined using cytometric bead arrays (a, b, d) or ELISA (c 

& e). Data show bars for n ≥ 9 animals per condition. Analyses were conducted using 2 way ANOVA with 

Bonferroni’s post tests. *p<0.05, **p<0.01 

e) a) 

d) c) 

b) 
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Figure 6.6 Delayed clearance of PA01 by mice deficient in mCRAMP is not explained by differences in 

local cytokines recovered in BALF at 24hrs post infection. Wild type C57Bl/6 mice and Camp-/- 

mice were inoculated with 3x10
7
 cfu of P. aeruginosa PAO1 or PBS by intranasal delivery. 

At 24 hours (a - e) after inoculation, mice were culled and their lungs were lavaged. BALF 

was centrifuged to remove cells and levels of IL-6 (a), MCP-1 (b), KC (c), TNF (d) and MIP-

-1α (e) were determined using cytometric bead arrays (a, b, d) or ELISA (c & e). Data show 

bars for ≥ 5 animals per condition. Analyses were conducted using 2 way ANOVA with 

Bonferroni’s post tests. *p<0.01 

 

a) 

c) 

b) 

d) 
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6.3 Does exogenous cathelicidin enhance clearance of pulmonary 

bacteria in wild type mice?  

 

Having shown a clear role for endogenous cathelicidin in the clearance of bacteria from the 

airways and considering that host defence peptides pose likely candidates for therapeutic use 

I next wanted to know what effect early exogenous peptide would have on infection in wild 

type mice. As therapeutic cathelicidin in humans would be based on exogenous LL-37 to 

complement the role of endogenous peptide, synthetic LL-37 was used for these sets of 

experiments. 

 

To determine whether early delivery of exogenous LL-37 in an acute P. aeruginosa challenge 

could alter clearance of infection from the murine airways, wild type mice were inoculated as 

before with PBS or PA01 concomitantly with either 10 µg of synthetic LL-37 (a 

concentration that I had previously shown was not bactericidal for PA01 in a physiological 

relevant milieu) or the same volume of PBS as a control (Fig 6.7). Mice were culled 

immediately (0 hrs.), 6 hrs. or 24 hrs. following intranasal inoculation and the airways 

lavaged and lungs homogenised as described previously.  

 

Results from culturing samples from the airways of mice designated the 0 hr. time point 

demonstrated no significant difference in the bacterial load of mice with or without LL-37. 

This was despite the fact that the LL-37 and PAO1 delivered to the lung had ~ 60 minutes 

after infection before lung homogenisation (given time for completion of delivery, dissection, 

transfer back to laboratory for processing). These data indicate that the addition of LL-37 did 

not have a directly bactericidal effect (data not shown).  

 

After 6 hrs. (Fig 6.7), there was a significantly enhanced (p<0.05) clearance of bacteria from 

BALF, but not lung homogenate, in animals that were inoculated with PA01 and LL-37 

compared to PA01 and PBS controls (a & c). After 24 hrs. this enhancement was significant 

for both BALF and lung tissue (b & d). (p<0.05 & p<0.01). These data clearly show that 

early therapeutic administration of exogenous LL-37 augments clearance of pulmonary 

infection with P. aeruginosa, even in the absence of any early direct microbicidal properties. 

 

To investigate the cellular response to inoculating mice with LL-37 +/- PA01 the total cells in 

the BALF from the experiment above were, as before, counted by nucleocounter and then 
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differential counts made using cytospins and a light microscope (Fig 6.8). Inoculating wild 

type animals with LL-37 in the absence of infection did not induce a greater number of 

monocytes at 6 or 24 hours than PBS alone (a & b). In the absence of infection LL-37 did not 

induce any influx of neutrophils by 6 hrs. and only a low number of PMNs by 24 hours 

following intranasal delivery (c & d). Infected animals showed no significant increase in 

monocytes to the lungs at either timepoint, however displayed an increase in the number or 

neutrophils in the lungs at 6 hrs. which was sustained and increased by 24 hrs. In animals 

concomitantly infected with PA01 and LL-37 there was a significant early increase in the 

number of neutrophils in the lungs at 6 hrs. compared to animals receiving PA01 with PBS as 

control (Fig 6.8 c; p<0.05). These data suggest that LL-37 did not act as a chemoattractant in 

the absence of infection, however in the presence of PA01, LL-37 enhanced early neutrophil 

influx to the lungs. 

 

To determine whether there were any differences in the cytokines in the lungs in response to 

LL-37 treatment the BALF was spun as before to remove cells before using a flow cytometry 

based assay to measure the level of several mouse cytokines (Fig 6.9 & 6.10). As shown 

previously, inflammatory cytokines and chemokines rise in response to infection and decline 

by 24 hours post infection. Administration of LL-37 did not alter the expression of local 

cytokines compared to PBS controls in infected or uninfected animals. 
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6.3.1 The administration of exogenous LL-37 at the time of infection enhances 

clearance of pulmonary P. aeruginosa in wild type mice. 

 

 
 

 

Figure 6.7 Exogenous LL-37 enhances pulmonary clearance of Pseudomonas from wild 

type mice. Wild type C57Bl/6J mice were inoculated with 10 μg LL-37 peptide alongside 

either 3x107
 cfu of P.aeruginosa PAO1 or PBS by intranasal delivery. 6 or 24 hours after 

inoculation mice were culled, and their lungs were lavaged once with 1ml PBS before 

homogenisation. BALF and lung homogenates were serially diluted, plated and incubated 

overnight at 37˚C before bacterial colonies were counted and corrected for volume. Mean 

PAO1 cfu +/- SEM in the BALF (a & b) or lung homogenate (c & d) for infected animals 

(n≥6 per condition) are displayed. No bacteria were detected in samples from uninfected 

mice. For statistical analyses bacterial counts were normalised by logarithmic transformation. 

Analyses were conducted using 2 way ANOVA with Bonferroni’s post tests; * p < 0.05, ** p 

< 0.01. 
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6.3.2 In the presence of pulmonary infection with P. aeruginosa, administration of 

exogenous LL-37 results in an enhanced, early influx of neutrophils. 

 

 
 

 

Figure 6.8 Administration of LL-37 at the time of infection results in an enhanced influx 

of neutrophils early in infection. Wild type C57Bl/6J mice were inoculated with 10 μg LL-

37 peptide alongside either 3x107
 cfu of P.aeruginosa PAO1 or PBS by intranasal delivery. 

At 6 hours (a & c) or 24 hours (b & d) after inoculation mice were culled and their lungs were 

lavaged. BALF was cytocentrifuged and differential counts were conducted for monocytes (a 

& b) and neutrophils (c & d). Bars show data from mice n ≥5 per condition. Analyses were 

conducted using 2 way ANOVA with  Bonferroni’s post tests * p < 0.05.  
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6.3.3 Intranasal adminstration of exogenous LL-37 does not alter the cytokine 

response to pulmonary infection. 

 

 

 

Figure 6.9 Administration of exogenous LL-37 does not alter the cytokine profile in infected or uninfected 

wild type animals at 6hrs. Wild type C57Bl/6 mice were inoculated with 3x10
7
 cfu of P. 

aeruginosa PAO1 and LL-37 or PBS by intranasal delivery. At 6 hours after inoculation, 

mice were culled and their lungs were lavaged. BALF was centrifuged to remove cells and 

levels of IL-6 (a), MCP-1 (b), KC (c), TNF (d) and MIP-1α (e) were determined using 

cytometric bead arrays (a, b, d) or ELISA (c & e). Data show bars for n ≥ 9 animals per 

condition. Analyses were conducted using 2 way ANOVA with Bonferroni’s post tests.  

e) 
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Figure 6.10 Administration of exogenous LL-37 does not alter the cytokine profile in 

infected or uninfected wild type animals at 24hrs. Wild type C57Bl/6 mice were 

inoculated with 3x10
7
 cfu of P. aeruginosa PAO1 and LL-37 or PBS by intranasal delivery. 

24 hours after inoculation, mice were culled and their lungs were lavaged. BALF was 

centrifuged to remove cells and levels of IL-6 (a), MCP-1 (b), KC (c), TNF (d) and MIP-1α 

(e) were determined using cytometric bead arrays (a, b, d) or ELISA (c & e). Data show bars 

for n ≥ 9 animals per condition. Analyses were conducted using 2 way ANOVA with 

Bonferroni’s post tests. 
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6.4 Does exogenous cathelicidin rescue the defect in clearance of bacteria 

in CRAMP deficient mice?  
 

Having shown that LL-37 is not only tolerated in wild type mice but enhances clearance of 

bacteria from the airways with an increase in the early influx of neutrophils to the lungs 

observed, the pertinent question was whether LL-37 could correct the defect in clearance seen 

in animals lacking endogenous cathelicidin. 

 

Camp
-/-

 mice given LL-37 at the time of infection showed a significantly enhanced clearance 

of bacteria (Fig 6.11) compared to animals given PA01 and PBS, p<0.05. There was also a 

trend to suggest early enhanced neutrophil response but this did not reach significance (Fig 

6.12). 

 

The augmented clearance of bacteria in Camp
-/-

 mice given LL-37 and the corresponding 

cellular responses reflect the results seen in wild type animals demonstrating that it is 

possible to compensate to some extent for the lack of mCRAMP production using the human 

cathelicidin. It also demonstrates that endogenous mCRAMP production is not required for 

the protective effects of exogenous LL37. 
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6.4.1 Administration of exogenous cathelicidin at the time of infection restores the 

ability of mice deficient in mCRAMP to clear PA01. 

 

 

 

Figure 6.11 Exogenous LL-37 enhances pulmonary clearance of Pseudomonas from 

camp
-\-

 mice        Camp
-/-

 mice deficient in endogenous cathelicidin were inoculated with 10 

μg LL-37 peptide alongside either 3x107
 cfu of P.aeruginosa PAO1 or PBS by intranasal 

delivery. 6 or 24 hours after inoculation mice were culled, and their lungs were lavaged once 

with 1ml PBS before homogenisation. BALF and lung homogenates were serially diluted, 

plated and incubated overnight at 37˚C before bacterial colonies were counted and corrected 

for volume. Mean PAO1 cfu +/- SEM in the BALF (a & b) or lung homogenate (c & d) for 

infected animals (n≥6 per condition) are displayed. No bacteria were detected in samples 

from uninfected mice. For statistical analyses bacterial counts were normalised by 

logarithmic transformation. Analyses were conducted using 2 way ANOVA with 

Bonferroni’s post tests; * p < 0.05 
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6.4.2 Administration of exogenous cathelicidin at the time of infection induces an 

early, increased influx of neutrophils in mice deficient in mCRAMP. 

 
 

 

Figure 6.12 Administration of LL-37 at the time of infection results in an enhanced 

influx of neutrophils early in infection. Camp
-/-

 mice were inoculated with 10 μg LL-37 

peptide alongside either 3x107
 cfu of P.aeruginosa PAO1 or PBS by intranasal delivery. At 6 

hours (a & c) or 24 hours (b & d) after inoculation mice were culled and their lungs were 

lavaged. BALF was cytocentrifuged and differential counts were conducted for monocytes (a 

& b) and neutrophils (c & d). Bars show data from mice n ≥5 per condition. Analyses were 

conducted using 2 way ANOVA with Bonferroni’s post tests  
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6.5 Discussion 

 

Cathelicidins have been shown to possess an enormous array of microbicidal and innate 

immunomodulatory properties in vitro.  This has unsurprisingly generated interest in these 

peptides with a view to adapt the peptide structure itself or manipulate the endogenous 

expression thereof for therapeutic benefit. Although studies existed that had started to address 

the function of this peptide in various body systems there was, at the time of this PhD, little 

description in vivo of LL-37 having a protective role during infection of the lung. I therefore 

set out to develop a cohesive murine infection model to assess the role of this peptide in 

response to lung pathogens in vivo.  

 

Camp 
-/-

 knock out animals (from a C57Bl/6J background) deficient in endogenous 

mCRAMP production (the murine orthologue of LL-37) were compared to wild type 

C57Bl/6J mice that express functional mCRAMP to assess any differences in clearance and 

response to acute bacterial lung infection. As LL-37 is not species specific and maintains 

function in murine systems as in human we were also able to investigate the effect of 

exogenous LL-37 peptide on infection with intranasal P. aeruginosa. 

 

Following intranasal inoculation of P. aeruginosa there were two phases of neutrophil influx 

to the murine lungs in response to infection. Results after 6 hours of infection indicated that 

the first phase of neutrophil influx was of a similar low level in animals independent of 

endogenous cathelicidin production. However a second phase of continued neutrophil influx 

was observed only in animals expressing endogenous mCRAMP. In addition to differences in 

the cellular influx between wildtype and mCRAMP deficient mice there was a delayed 

clearance of P. aeruginosa from the airways of mice deficient in endogenous cathelicidin at 

24hrs post infection. LL-37 has been shown to be chemotactic for neutrophils but there was 

no difference in cytokines (IL-1, MCP-1, KC, TNF, and MIP-1α) measured in the lungs of 

wild type or Camp 
-/-

 mice.   

 

Intranasal administration of exogenous LL-37 peptide was not directly microbicidal to P. 

aeruginosa however after 6hrs resulted in enhanced clearance of bacteria accessible by BAL 

(though not in whole lung) and after 24hrs resulted in increased clearance from the airways of 

mice independent of endogenous cathelicidin production which was accompanied by an early 

increase in neutrophil influx that did not occur in the absence of infection.  
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Cathelicidin in the lung is elevated in response to infection. LL-37 secreted in the airways of 

healthy, uninfected individuals is estimated to be less than 5μg/ml of bronchoalveolar lavage 

fluid (BALF) however when this peptide is measured in BALF from children with lung 

infections concentrations are closer to 30 μg/ml 
[256]

. Levels of LL-37 in human lung disease 

such as sarcoidosis are also associated with increased LL-37 production alongside 

upregulation of other CHDPs, which is thought to explain why these patients do not succumb 

to respiratory infections 
[31]

. LL-37 is also however found at higher than normal levels in the 

lungs of cystic fibrosis patients suffering chronic lung infections (around 15μg/ml BALF) and 

increasing amounts correlate with disease severity rather than protection 
[32]

 this is likely as a 

correlate of neutrophil infiltration to the lungs and the damage caused by chronic 

inflammation in the absence of successful clearance of the pathogen. Cathelicidin may be 

immunopathological at high concentrations, especially in chronic infections where the stimuli 

for upregulation of hCAP18 is not being effectively removed, however I saw no evidence of 

ill effects when treating mice with LL-37 during infection at the doses of peptide used.  

 

As evidence to the important role that the cathelicidin LL-37 plays in the defence against 

bacterial infections it is worth noting that those with Morbus Kostmann, a disease which 

results in neutropenia and absence of cathelicidin do not have normal saliva concentrations of 

LL-37 and consequently they present with chronic periodontal infections 
[27]

. Additionally, 

the murine orthologue of hCAP18, cathelicidin related antimicrobial peptide (mCRAMP) has 

been shown in a knockout model to be important in the clearance of gastrointestinal, skin, 

corneal and urinary tract infections 
[36-39]

.The susceptibility to lung infection in this model 

had not yet been characterised, but overexpression of LL-37 in wild type mouse lung had 

been shown to increase the clearance of Pseudomonas aeruginosa via an undefined 

mechanism 
[44]

. 

 

At the beginning of my work on the in vivo role of cathelicidin during infections in the lung 

little was known in the literature about opportunistic infections in Camp 
-/-

 mice respiratory 

tracts. An interesting study performed recently to demonstrate the protective role that prior 

immunisation with flagellin can have on subsequent lung infections with P. aeruginosa 
[40]

 

also found that when infecting mice that are unable to express mCRAMP (camp
-/-

) the 

protective effects of flagellin immunisation were significantly lost with only a third of mice 

deficient in mCRAMP surviving as compared to 100% survival in WT animals. Further, 

despite the fact that neutrophils provide the most abundant source of cathelicidin, depleting 
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PMNs did not decrease the partially mCRAMP-dependant protection following 

immunisation. Perhaps indicating a role for the epithelial sources of cathelicidin produced in 

response to the infection by respiratory epithelial cells and in fact this is what the 

investigators discovered in airway epithelial cells within 8hrs of flagellin exposure.  

 

Receptor specific actions of LL-37 may be investigated independently by selective use of 

knockout mice e.g. fprl-1
-/-

 mice to remove the neutrophils chemotactic property attributed to 

this peptide. The expertise exists in our department to allow us to look at live animal imaging 

to track the movement of both labelled peptide and bacteria. 

 

The sole human cathelicidin hCAP18/LL-37 is a multifunctional CHDP with direct 

microbicidal potential and the capacity to modulate inflammation and immune responses 

through a broad range of mechanisms. It has been implicated in host defence and disease 

pathogenesis in multiple systems and conditions, and represents both a fascinating target for 

clinical intervention and promising template for the development of novel antimicrobial, 

immunomodulatory therapeutics. Early clinical trials using synthetic analogues of CHDP 

were designed to maximise microbicidal activity, but achieved only moderate efficacy, 

perhaps due to failure to recognise the importance of their immunomodulatory functions. A 

recent approach, using non-microbicidal analogues that retained other bioactive functions, 

has demonstrated effective host defence augmentation in mice. These studies suggest that 

realising the full therapeutic potential requires further research to more clearly understand the 

precise mechanisms of action underpinning the inflammomodulatory and immunomodulatory 

properties and the in vivo effects of these peptides’ pleiotropic functions in specific clinical 

conditions. 
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Abstract

Cathelicidins are multifunctional cationic host-defence peptides (CHDP; also known as antimicrobial peptides) and an
important component of innate host defence against infection. In addition to microbicidal potential, these peptides have
properties with the capacity to modulate inflammation and immunity. However, the extent to which such properties play a
significant role during infection in vivo has remained unclear. A murine model of acute P. aeruginosa lung infection was
utilised, demonstrating cathelicidin-mediated enhancement of bacterial clearance in vivo. The delivery of exogenous
synthetic human cathelicidin LL-37 was found to enhance a protective pro-inflammatory response to infection, effectively
promoting bacterial clearance from the lung in the absence of direct microbicidal activity, with an enhanced early
neutrophil response that required both infection and peptide exposure and was independent of native cathelicidin
production. Furthermore, although cathelicidin-deficient mice had an intact early cellular inflammatory response, later
phase neutrophil response to infection was absent in these animals, with significantly impaired clearance of P. aeruginosa.
These findings demonstrate the importance of the modulatory properties of cathelicidins in pulmonary infection in vivo and
highlight a key role for cathelicidins in the induction of protective pulmonary neutrophil responses, specific to the infectious
milieu. In additional to their physiological roles, CHDP have been proposed as future antimicrobial therapeutics. Elucidating
and utilising the modulatory properties of cathelicidins has the potential to inform the development of synthetic peptide
analogues and novel therapeutic approaches based on enhancing innate host defence against infection with or without
direct microbicidal targeting of pathogens.

Citation: Beaumont PE, McHugh B, Gwyer Findlay E, Mackellar A, Mackenzie KJ, et al. (2014) Cathelicidin Host Defence Peptide Augments Clearance of Pulmonary
Pseudomonas aeruginosa Infection by Its Influence on Neutrophil Function In Vivo. PLoS ONE 9(6): e99029. doi:10.1371/journal.pone.0099029

Editor: Samithamby Jeyaseelan, Louisiana State University, United States of America

Received February 5, 2014; Accepted May 9, 2014; Published June 2, 2014

Copyright: � 2014 Beaumont et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: PEB was supported by an Asthma UK/MRC Joint PhD Studentship (S08/001). KJM was supported by a MRC Clinical Research Training Fellowship
(G0701350). RLG was supported by NIH grants R01-AR052728, R01-AI052453 and R01 AI0833358. DJD was supported by a MRC Senior Non-clinical Fellowship
(G1002046). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: donald.davidson@ed.ac.uk

Introduction

Cationic host-defence peptides (CHDP; also known as antimi-

crobial peptides or AMPs) are important components of early

innate host defences. In addition to their physiological roles, these

peptides and their derivatives have been proposed as future

antimicrobial therapeutics, relatively unaffected by the develop-

ment of sustained microbial resistance [1]. Although initially

characterised as directly microbicidal agents, it is now clear that

many CHDP also have multiple functions as modulators of

inflammation and immunity [2,3,4], with emerging roles in

diseases affecting multiple organs including the lung, skin and

gastrointestinal tract. Human clinical trials using analogues of

CHDP modified to maximise direct microbicidal function have

achieved only moderate efficacy [5], perhaps due to failure to

recognise the importance of the immunomodulatory functions of

the native peptides. Interestingly, studies using non-microbicidal

analogues of naturally-occurring CHDP that retained other

bioactive functions, have demonstrated effective host defence

augmentation in mice [6,7]. These studies raise questions about

the relative roles of microbicidal and immunomodulatory prop-

erties of naturally-occurring CHDP in infections.

Cathelicidins are multipotent immunomodulatory CHDP [8].

The sole human cathelicidin Human Cationic Antimicrobial

Peptide of 18 kDa (hCAP-18; encoded by CAMP) is expressed by

multiple cell types including neutrophils, where it is stored in

specific granules and proteolytically cleaved following release, to

produce a 37 amino acid mature peptide fragment named LL-37

[9,10]. hCAP-18/LL-37 is upregulated in pulmonary infections

[11] and, in children with RSV bronchiolitis, low serum

cathelicidin is correlated with more severe disease [12]. Mice, like

humans, express only a single cathelicidin gene; Camp (encoding

the mCRAMP peptide) [13], with similar patterns of expression,

which is cleaved to produce an active 34 amino acid peptide [14].

Mice deficient in mCRAMP (Camp2/2) have increased suscep-
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tibility to bacterial infections of the skin [15], intestinal tract [16],

cornea [17] and urinary tract [18]. These Camp2/2 mice also

have impaired host defence against lung infection [19,20], while

therapeutic use of LL-37 and/or mCRAMP in wild type mice is

protective in models of pulmonary infection with P. aeruginosa [21]

or influenza virus [22]. These studies demonstrate a critical, non-

redundant role for endogenous cathelicidin in host defence against

lung infection and the therapeutic potential of the unmodified

peptides, but the mechanisms by which pulmonary host defence is

enhanced in vivo remains unclear. Although generally presented as

being primarily a consequence of direct microbicidal activity, this

is not fully consistent with in vivo concentrations and microbicidal

properties in a physiological environment. However, the extent to

which any of the plethora of immunomodulatory properties

ascribed to cathelicidins play a significant role during infection has

never been demonstrated in vivo. Understanding the critical

modulatory roles of native CHDP and how these contribute to

innate host defence against infection, may prove to be vital in

development of specific pathogen-targeted analogues of these

peptides for therapeutic use.

Respiratory diseases are among the most common causes of

morbidity and account for 1 in 5 deaths in the UK [23]. A third of

mortalities are due to acute respiratory infections, influenza or

pneumonia and pathogens resistant to conventional therapeutics

represent an increasing clinical challenge. Pseudomonas aeruginosa is

the primary cause of nosocomial pulmonary infections and

pulmonary colonisation with this pathogen is considered to be

responsible for the fatal deterioration of lung function in patients

with cystic fibrosis (CF) (reviewed in [24]). This opportunistic

pathogen is difficult to treat because of its widespread resistance to

multiple antibiotics [25], with the limited number of effective

antimicrobial treatments reduced further by the emergence of

carbapenem-and polymyxin-B resistant isolates [26]. A greater

understanding of the natural host defence mechanisms involved in

pulmonary defence against this organism is required in order to

develop novel therapeutic approaches. Cathelicidins can alter

susceptibility to pulmonary infection with P. aeruginosa in murine

models [19,20,21], despite this pathogen being resistant to the

directly microbicidal effects of these peptides in the presence of

physiologically relevant levels of cations in vitro [27,28,29]. Thus,

the in vivo roles of endogenous cathelicidin in host defence against

P. aeruginosa, the relative effects of microbicidal and modulatory

properties, and the consequences of therapeutic targeting of

cathelicidin expression or exogenous delivery of peptide remain

unknown.

We demonstrate that therapeutically administered synthetic LL-

37 peptide can enhance the clearance of P. aeruginosa from the

murine lung, in the absence of demonstrable direct microbicidal

effects, and can induce an upregulation of the early neutrophil

response to pathogen in the lungs that is dependent both upon the

presence of the peptide and the pathogen. We show that despite a

normal early neutrophil response, second phase pulmonary

neutrophil influx was deficient in Camp2/2 mice, with impaired

clearance of pulmonary P. aeruginosa. Delivery of LL-37 to these

cathelicidin-deficient mice enhanced the neutrophil response and

restore bacterial clearance, demonstrating proof of principle for

therapeutic use of LL-37 in cathelicidin deficiency. These studies

indicate that the protective effects of cathelicidins in P. aeruginosa

infection in vivo can result from modulatory effects in innate

immune responses, synergising with infectious stimuli to enhance a

protective neutrophil response.

Materials and Methods

Peptide
LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVP-

RTES; MW 4493.33) was either synthesised by N-(9-fluorenyl)

methoxycarbonyl chemistry at the Nucleic Acid/Protein Service

unit at the University of British Columbia (UBC; Vancouver,

Canada), or custom synthesised by Almac (East Lothian, Scotland)

using Fmoc solid phase synthesis and reversed phase HPLC

purification. Peptide identity was confirmed by electrospray mass

spectrometry, purity (.95% area) by RP-HPLC and net peptide

content determined by amino acid analysis. Lyophilised peptides

were reconstituted in endotoxin free water at 5 mg/ml stock

concentration and determined to be endotoxin-free using a

Limulus Amebocyte Lysate Chromogenic Endotoxin Quantitation

Kit (Thermo Scientific, UK). Peptide functionality was confirmed

by assessing anti-endotoxic activity [30].

Bacteria
Pseudomonas aeruginosa strain PAO1 was grown in Luria Bertani

(LB) broth at 37uC in an orbital shaker (250 rpm) overnight to

achieve a stationary-phase suspension. Bacterial cultures were then

diluted 1:10 in fresh LB broth and incubated at 37uC for 90 min

to reach logarithmic phase. Standardisation was performed by

dilution with LB broth to an optical density of 0.1 at 595 nm using

spectrophotometry (WPA UV 1101, Biotech Photometer), then

bacteria were centrifuged at 1,5006g for 15 min and resuspended

in PBS for use.

Murine infection model
Mouse experiments were performed in accordance with Home

Office UK project licence 60/4216, under the Animal (Scientific

Procedures) Act 1986. Wild type control mice were all C57Bl/6

strain, supplied by Charles River Laboratories, UK, and housed at

the University of Edinburgh for at least two weeks before use, or

were animals bred from those mice. Camp 2/2 mice [15] were

bred to congenicity on a C57Bl/6 strain background and were the

offspring of homozygous mutant matings raised in the same facility

at the University of Edinburgh. Both male and female mice were

used, between 8–12 weeks old, housed in individually ventilated

cages and randomly assigned to treatment groups (no significant

difference were found in end points between male and female

mice). Mice were weighed, given a general anaesthetic (isofluor-

ane) in a category 2 biosafety hood, then held vertically by

scruffing over the front of the thorax and inoculated by an

intranasal delivery up to a total of 50 ml volume. Mice were

inoculated with 36107 colony forming units (cfu) of PAO1 or the

same volume of PBS, and 10 mg LL-37 peptide in PBS or PBS

only control. PBS alone (carrier for both bacteria and peptide) was

used as a control (rather than scrambled peptide, which previous

pulmonary infection studies indicated had no effects ([22] and

unpublished data), in order that the wild type control infected

animals were appropriate controls both for the LL-37-treated

infected wild types and for the infected Camp2/2 animals (in

which no peptide was delivered). Mice were then returned to

cages, placed on a heat mat to maintain body temperature, and

monitored and scored for signs of infection every 2 hours, with

peak of illness occurring at 6–8 hours post infection, followed by

recovery with diminishing severity score. Mice were re-weighed

and culled at selected timepoints (0, 6 or 24 hours), culled by

pentobarbital injection and lungs and trachea exposed by

dissection. Lungs were lavaged in 1 ml sterile PBS via intramedic

polyethylene tubing (Sigma Aldrich, UK) inserted into the trachea,

and bronchoalveolar lavage fluid (BALF) stored on ice. Following
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lavage, lungs were either homogenised in 2 ml sterile PBS for cfu

counts or were perfused by PBS injection into the heart, then

removed and frozen for RNA preparation.

CFU counts
BALF or homogenised lungs were serially diluted in PBS, plated

on Pseudomonas Isolation agar (Becton Dickinson Difco, Oxford,

UK), incubated overnight at 37uC and bacterial colonies counted

using a Stuart SC6 colony counter. Total colonies on the lowest

dilution plate countable were multiplied by the appropriate

dilution factors to determine the total CFU count of the lung

tissue or BALF sample.

Cytospins and counts
BALF was centrifuged at 2006g for 5 minutes, and supernatant

was removed for cytokine measurement. Pelleted cells were

resuspended and counted by NucleoCounter YC-100 (Chemo-

Metec, Allerød, Denmark) automated cell number counting.

100 ml of cell suspension was then loaded onto a glass slide using

a disposable sample funnel and cytocentrifuged at 106g for 3

minutes in a Shandon Cytospin 2 centrifuge. Slides were air dried

for 20 minutes, fixed in methanol for 20 minutes, stained with Diff

Quik (Fisher Scientific, Loughborough, UK), and mounted in

DPX Mountant (Fluka BioChemika/Sigma Aldrich, UK). Differ-

ential counts for neutrophils and monocytes were then performed

by light microscopy at 206 magnification using an EVOS FL

microscope (Peqlab, Sarisbury Green, UK).

ELISAs
BALF was used to measure cytokine levels by ELISA according

to manufacturer’s instructions, for KC, MIP-2 alpha (R&D

Systems, UK) or using a cytometric bead assay mouse inflamma-

tion kit (BD Biosciences, UK) for TNF, IL-6, MCP-1, IL-10, IFN-

gamma, IL-12p70.

qRT-PCR
Mouse lung tissue was homogenized in Qiagen RLT buffer

(Qiagen, Manchester, UK) using a Precellys 24 homogeniser with

Precellys-Keramik-kit ceramic beads (PeqLab). RNA was then

prepared from homogenised mouse lung tissue using RNeasy mini

kits (Qiagen), according to the manufacturer’s instructions. After

DNase treatment with RQ1 DNase (Promega, Southampton,

UK), cDNA was prepared from RNA using TaqMan reverse

transcriptase reagents and random hexamer primers (Life Tech-

nologies Ltd, Paisley, UK), according to the manufacturer’s

instructions. Quantitative Real Time PCR was performed on a

StepOne Real Time PCR machine (Life Technologies), using

Gene Expression Mastermix and TaqMan gene expression assays

for Camp (assay I.D. Mm00438285_m1) and 18S (assay I.D.

Mm03928990_g1). Relative quantitation of Camp was calculated

using the DCT method.

Analysis of mCRAMP protein expression
Harvested lung tissue was placed in 600 ml M-PER Mammalian

Protein Extraction Reagent with Complete Protease Inhibitor

Cocktail (Roche Applied Science, Burgess Hill, UK) added, and

homogenised using a Precellys 24 homogeniser with Precellys-

Keramik-kit ceramic beads (PeqLab). Homogenised tissue was

shaken on an IKA-Vibramax-VXR (Sigma Aldrich, UK)) for 20

minutes at 4uC and lysates were subsequently centrifuged at

15,0006g for 10 minutes at 4uC to pellet insoluble material.

Protein concentration in lysates was measured by Pierce BCA

assay (Thermo Scientific), according to manufacturer’s instruc-

tions. Lysate concentrations were equalised with lysis buffer, and

subsequently boiled at 96uC for 5 minutes in the presence of

loading buffer and reducing agent (Life Technologies), then run on

Novex NuPAGE 4–12% Bis-Tris pre-cast gels, in MOPS buffer

(Life Technologies), and subsequently transferred to Novex 0.2 mm

pore Nitrocellulose Membrane. mCRAMP was detected with

rabbit anti-mouse mCRAMP antibody (R-170, Santa Cruz

Biotechnology, Heidelberg, Germany), followed by staining with

IRDye 800CW anti-rabbit secondary antibody, with subsequent

detection using a LI-COR Odyssey Infrared Imaging System.

Rabbit pan-actin antibody (Cell Signalling Technology, Danvers,

MA, USA) staining was used as a loading control, detected with

anti-rabbit secondary antibody and infrared imaging as above.

Mouse CRAMP staining was then quantitated using LI-COR

Odyssey software.

Statistics
Statistical analyses were performed using Graphpad Prism

version 5.04 for Windows. Bacterial counts were normalised by

logarithmic transformation before analysis by 2 way ANOVA with

Bonferroni’s post tests where appropriate. Cell counts and cytokine

concentrations were analysed by Mann Whitney test. Differences

were considered statistically significant at P,0.05.

Results

LL-37-mediated microbicidal activity against
P. aeruginosa PAO1 is not observed in vivo

LL-37 and other CHDP were initially described as having rapid

direct microbicidal properties based on in vitro studies conducted

under favourable ionic environments (reviewed in [27]). However,

the activity of LL-37 can be inhibited by physiological levels of

divalent cations [27,28], serum apolipoprotein, f-actin and DNA

[31,32,33]. Thus, the relative contributions of microbicidal versus

modulatory properties in conferring the protective effects of this

peptide in vivo remain uncertain. We and others have shown that

LL-37 has negligible microbicidal activity against P. aeruginosa in

vitro [27,28,29]. In order to evaluate the contribution of any early

direct microbicidal properties of exogenously delivered LL-37

peptide in a murine pulmonary P. aeruginosa infection model, mice

were culled immediately after the intranasal delivery of bacteria

with peptide or carrier-only control to the cohort. Lungs were

removed, homogenised and plated to evaluate the number of

viable bacteria in the lungs. These samples are referred to as t = 0,

however homogenisation did not occur until 60 minutes after

inoculation, during which time interaction between peptide and

bacteria could occur. No significant difference was observed

between infected mice receiving LL-37 and control infected

animals (Fig 1a) demonstrating that LL-37, under these conditions,

had no discernable early microbicidal affects.

Therapeutic delivery of LL-37 is protective against
P. aeruginosa infection in vivo

In order to evaluate the protective antimicrobial properties of

LL-37 against P. aeruginosa PAO1 in vivo, mice were infected with or

without concomitant delivery of LL-37. All mice lost ,4% body

weight in the first 6 hours post procedure (data not shown), with

infected animals continuing to lose weight over 24 hours, but no

significant effect of LL-37 treatment was observed (Fig 1b). Mice

were culled 6 and 24 hours post-infection and the total number of

viable bacteria in the BALF (bronchoalveolar lavage fluid) and

lung homogenate was assessed (Fig 1 c–f). At 6 hours post-

infection, treatment with LL-37 showed no statistically significant

effect on the total number of bacteria in the lung homogenates, but
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did result in significantly lower levels of bacteria in the BALF

(Fig 1c/d). By 24 hours post-infection, LL-37 treatment had

significantly enhanced pathogen clearance from the lungs,

compared to controls, leaving only a residual infection,

inaccessible to BAL (Fig 1e/f). These data demonstrate the

capacity of LL-37 to enhance pulmonary bacterial clearance in the

absence of early microbicidal properties.

Figure 1. Exogenous LL-37 enhances pulmonary clearance of P. aeruginosa. Wild type C57Bl/6 mice were weighed, then inoculated with
36107 cfu of P. aeruginosa PAO1 or PBS and 10 mg LL-37 peptide or PBS by intranasal delivery. a) Immediately after inoculation of all mice, a subset
(called 0 hr; n = 3 per group) were culled and their lungs homogenised (60 minutes after initial inoculation), or b–f) 6 or 24 hours after inoculation
mice were re-weighed and culled, and their lungs were lavaged before homogenisation. BALF and lung homogenates were serially diluted, plated
and incubated overnight at 37uC before bacterial colonies were counted and corrected for volume. Mean PAO1 cfu +/2 SEM in the lung homogenate
(a, c & e) or BALF (d & f) for infected animals (n$9 per condition) are displayed. No bacteria were detected in samples from uninfected mice. b) Data
show mean percentage weight loss +/2 SEM. For statistical analyses bacterial counts were normalised by logarithmic transformation. Analyses were
conducted using 2 way ANOVA with Bonferroni’s post tests; * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0099029.g001
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Therapeutic delivery of LL-37 enhances neutrophil
responses in infected animals

Cathelicidins have been proposed to have multiple inflammo-

modulatory properties that could modulate the clearance of

infection in vivo [2], including direct chemotactic activity of LL-37

for neutrophils and monocytes [34,35,36,37,38]. Differential

cytospin cell counts were performed on the BALF from LL-37-

treated and control-treated infected and uninfected mice at 6 and

24 hours after infection. LL-37 treatment resulted in a significantly

upregulated neutrophil response to infection (over 2 fold increase

in median cell number) compared to control infected animals at

6 hours post-infection (Fig 2a). No neutrophils were detected in

the BALF from uninfected mice, regardless of LL-37 treatment, at

this timepoint (Fig 2b). Whereas a larger second phase neutrophil

response was observed by 24 hours in control-treated infected

mice, the mean neutrophil number in the LL-37-treated infected

animals was actually significantly lower than the controls at this

timepoint, in line with the enhanced earlier clearance of the

infection (Fig 2c). A degree of neutrophil influx was observed in

response to LL-37 alone at 24 hours in uninfected mice (Fig 2d).

In contrast, no significant LL-37-mediated effects on pulmonary

monocyte numbers were observed at 6 or 24 hours in infected

(Fig 2 e/f) or uninfected (data not shown) mice.

Therapeutic delivery of LL-37 does not affect pulmonary
cytokine responses in infected animals

In order to determine whether LL-37-mediated enhanced

neutrophil responses were secondary to modulation of pulmonary

cytokine and chemokine responses, CBA (Cytometric Bead Array)

and ELISA assays were performed on the BALF from LL-37-

treated and control-treated infected mice at 6 and 24 hours after

infection, to determine the concentrations of TNF, IL-6, MIP-2,

KC, MCP-1, IL-10, IFNc and IL-12. Although TNF, IL-6, MIP-

2, KC and MCP-1 were all highly expressed in response to

infection at 6 hours (Fig 3a–e) compared to baseline levels in

uninfected mice (data not shown), and resolving by 24 hours

(Fig 3f–j), treatment with LL-37 had no significant effect on any of

the cytokines measured. In contrast, IL-10, IFNc and IL-12 were

not detected in significant quantities.

Pulmonary infection with P. aeruginosa induces Camp
expression in the murine lung

In this model, therapeutic administration of LL-37 was in

addition to any effects of endogenous murine cathelicidin

mCRAMP produced in the murine lungs in response to infection.

mCRAMP has also been shown to have neutrophil chemotactic

properties in vivo, in an air pouch model [36]. Thus, in order to

establish the temporal expression pattern of Camp in P. aeruginosa

infected mice, qRT-PCR and western immunoblot analyses were

performed on lung homogenates at 0, 2, 6 and 24 hours post-

infection. Camp transcription was not detected at 0 hour, but was

detectable at very low levels by 2 hours after infection. Transcrip-

tion was dramatically increased at 6 and 24 hours after infection

(upregulated 1886-fold, +/2137, and 1124-fold, +/266 respec-

tively, relative to the 2 hour timepoint), with mCRAMP protein

clearly detectable at these timepoints (data not shown) in keeping

with previously published data [20]. Thus, the inflammatory

responses were potentially modified by cathelicidin from around

6 hours post-infection in all mice, but additionally modified by

cathelicidin within the first few hours in mice receiving an

intranasal bolus of LL-37.

Endogenous mCRAMP is protective against P. aeruginosa
infection in vivo

In order to evaluate the protective antimicrobial properties of

induced endogenous mCRAMP against P. aeruginosa PAO1 in this

model, Camp 2/2 mice were infected and compared to wild type

control animals. The profile of weight loss in infected Camp 2/2

mice was not significantly different from the wild type control (data

not shown). Mice were culled 6 and 24 hours post-infection and

the total number of viable bacteria in the BALF and lung

homogenate was assessed (Fig 4 a–d). At 6 hours post-infection

Camp 2/2 mice showed no statistically significant difference in

the total number of bacteria in the lung homogenates or BALF

when compared to infected wild type controls (Fig 4 a/b).

However, by 24 hours post-infection, wild type mice had more

effectively cleared the bacteria, with significantly higher pathogen

loads found in both the lung homogenates and BALF from the

Camp 2/2 mice (Fig 4c/d). These data demonstrate the capacity

of endogenous mCRAMP to enhance pulmonary bacterial

clearance, occurring after inducible Camp expression is detectable

in the lungs of wild-type mice.

Endogenous mCRAMP enhances neutrophil responses in
infected animals

The extent to which endogenous mCRAMP might play a role

in the pulmonary neutrophil response to P. aeruginosa infection was

examined by comparing BALF cytospin differential cell counts

from infected Camp 2/2 mice and wild type mice at 6 and

24 hours after infection. No significant differences were observed

in neutrophil or monocyte counts at 6 hours (Fig 5a/b), with an

initial neutrophil influx occurring similarly in both genotypes

(Fig 5a). However, Camp 2/2 mice failed to further upregulate

this response, demonstrating a significantly less elevated neutrophil

count than wild type controls at 24 hours (Fig 5c). A trend towards

fewer monocytes was also observed, but did not reach significance

(Fig 5d). These data indicate that endogenous mCRAMP is not

involved in the first phase of neutrophil influx, but is required,

following induction, for the second phase neutrophil response to P.

aeruginosa infection. TNF, IL-6, MIP-2, KC and MCP-1 were all

highly expressed in response to infection in Camp 2/2 mice at

6 hours (Fig 6a–e), and resolving by 24 hours (Fig 6f–j), but were

not significantly different from the responses quantified in infected

wild type mice.

Therapeutic delivery of LL-37 can restore protection
against P. aeruginosa infection in cathelicidin deficient
mice

Cathelicidin insufficiency has been associated with increased

susceptibility to infection in humans [12,39,40]. Thus, in order to

determine whether therapeutic use of synthetic human LL-37

could restore cathelicidin-mediated protective antimicrobial func-

tion in cathelicidin deficiency, Camp 2/2 mice were infected with

P. aeruginosa PAO1 in vivo, with or without concomitant delivery of

LL-37. The profile of weight loss in infected Camp 2/2 mice was

not significantly altered by delivery of LL-37 (data not shown).

Mice were culled 6 and 24 hours post-infection and the total

number of viable bacteria in the BALF (bronchoalveolar lavage

fluid) and lung homogenate was assessed (Fig 7 a–d). At 6 hours

post-infection, treatment with LL-37 showed no significant effect

on the total number of bacteria in the lung homogenates (despite a

trend towards enhanced clearance), but led to significantly lower

levels of bacteria in the BALF (Fig 7a/b). By 24 hours post-

infection, LL-37 treatment had very significantly enhanced

pathogen clearance from the lungs, compared to control-treated
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Camp 2/2 (Fig 7c/d). These data demonstrate that delivery of

exogenous synthetic LL-37 can enhance host defence against

infection by mechanisms that do not require endogenous host

cathelicidin production, and show cross-species functionality of

these peptides.

Therapeutic delivery of LL-37 promotes an early
neutrophil response to P. aeruginosa infection,
associated with enhanced clearance

Cathelicidin-mediated enhancement of bacterial clearance was

associated with upregulated neutrophil influx in LL-37-treated

infected wild type mice (compared to untreated infected controls).

However, in addition, endogenous cathelicidin clearly also had a

critical role in the induction of a maximal neutrophil responses to

infection. Thus, in order to determine whether LL-37-mediated

enhanced neutrophil responses were independent of endogenous

cathelicidin production, BALF cytospin differential cell counts

were also evaluated from LL-37-treated and control infected Camp

2/2 mice at 6 and 24 hours after infection. As also observed in

LL-37-treated wild type mice (Fig 2a), early, infection-induced

neutrophil influx (at 6 hours) was significantly greater in LL-37-

treated mice (Fig 8a), but this early effect of the therapeutic bolus

was lost by 24 hours (Fig. 8b). However, whereas wild type mice

showed a robust later neutrophil response to infection regardless of

peptide treatment (Fig 2c), this second phase neutrophil response

failed to occur in infected Camp 2/2 mice, irrespective of peptide

treatment (Fig 8b), demonstrating the dependence of this later

response upon pathogen-induced Camp expression. No significant

Figure 2. Exogenous LL-37 promotes an early neutrophil response to P. aeruginosa. Wild type C57Bl/6 mice were inoculated with
36107 cfu of P. aeruginosa PAO1 or PBS and 10 mg LL-37 peptide or PBS by intranasal delivery. At 6 hours (a, b & e) or 24 hours (c, d & f) after
inoculation mice were culled and their lungs were lavaged. BALF was cytocentrifuged and differential counts were conducted for neutrophils (a–d)
and monocytes (e & f). Data show Tukey box and whiskers plots for infected (a, c, e & f) (n$9 per condition) and uninfected (b & d) animals (n$5 per
condition). Analyses were conducted using the Mann Whitney test; * p,0.05. ND denotes ‘‘not detected’’.
doi:10.1371/journal.pone.0099029.g002
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Figure 3. P. aeruginosa, but not exogenous LL-37, induces pulmonary cytokine responses. Wild type C57Bl/6 mice were inoculated with
36107 cfu of P. aeruginosa PAO1 and 10 mg LL-37 peptide or PBS by intranasal delivery. At 6 hours (a–e) or 24 hours (b–j) after inoculation, mice were
culled and their lungs were lavaged. BALF was centrifuged to remove cells and levels of TNF (a, f), IL-6 (b, g), MIP-2 (c, h), KC (d, i) and MCP-1 (e, j) were
determined. Data show Tukey box and whiskers plots for n$9 animals per condition. Analyses were conducted using the Mann Whitney test.
doi:10.1371/journal.pone.0099029.g003

Figure 4. Cathelicidin-deficient mice display impaired pulmonary clearance of P. aeruginosa. Camp2/2 mice and wild type controls were
inoculated with 36107 cfu of P. aeruginosa PAO1 or PBS by intranasal delivery. At 6 or 24 hours after inoculation mice were culled and their lungs
were lavaged before homogenisation. BALF and lung homogenates were serially diluted, plated and incubated overnight at 37uC before bacterial
colonies were counted and corrected for volume. Mean PAO1 cfu +/2 SEM in the lung homogenate (a & c) or BALF (b & d) for infected animals (n$10
per condition) are displayed. No bacteria were detected in samples from uninfected mice. For statistical analyses bacterial counts were normalised by
logarithmic transformation. Analyses were conducted using 2 way ANOVA with Bonferroni’s post tests; * p,0.05.
doi:10.1371/journal.pone.0099029.g004
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effects upon monocyte counts were observed (data not shown).

These data demonstrate that the early infection-mediated neutro-

phil response, enhanced by the bolus of LL-37, was independent of

endogenous cathelicidin expression and associated with enhanced

clearance of pulmonary P. aeruginosa.

Figure 5. Cathelicidin-deficient mice display impaired late neutrophil responses to P. aeruginosa. Camp2/2 mice and wild type controls
were inoculated with 36107 cfu of P. aeruginosa PAO1 by intranasal delivery. At 6 hours (a & b) or 24 hours (c & d) after inoculation mice were culled
and their lungs were lavaged. BALF was cytocentrifuged and differential counts were conducted for neutrophils (a & c) and monocytes (b & d). Data
show Tukey box and whiskers plots for n$8 animals per condition. Analyses were conducted using the Mann Whitney test; * p,0.05.
doi:10.1371/journal.pone.0099029.g005

Figure 6. P. aeruginosa, but not cathelicidin sufficiency, induces pulmonary cytokine responses. Camp2/2 mice and wild type controls
were inoculated with 36107 cfu of P. aeruginosa PAO1 by intranasal delivery. At 6 hours (a–e) or 24 hours (b–j) after inoculation, mice were culled
and their lungs were lavaged. BALF was centrifuged to remove cells and levels of TNF (a, f), IL-6 (b, g), MIP-2 (c, h), KC (d, i) and MCP-1 (e, j) were
determined. Data show Tukey box and whiskers plots for n$8 animals per condition. Analyses were conducted using the Mann Whitney test.
doi:10.1371/journal.pone.0099029.g006
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Discussion

Cathelicidins are recognised as key multifunctional modulators

of innate immunity and host defence against infection, and offer

possible novel therapeutic templates. In addition to directly

microbicidal potential, these peptides have been described as

having a broad range of inflammomodulatory and immunomod-

ulatory properties [2]. However, no clear evidence exists for these

functions being involved in cathelicidin-mediated enhanced host

defence against pulmonary infection in vivo, with the relative

significance of microbicidal potential and modulatory functions

remaining unclear. Using a murine model of acute P. aeruginosa

lung infection, we demonstrate cathelicidin-mediated enhance-

ment of bacterial clearance in vivo in the absence of direct early

Figure 7. Exogenous LL-37 enhances pulmonary clearance of P. aeruginosa in cathelicidin-deficient mice. Camp2/2 mice were
inoculated with 36107 cfu of P. aeruginosa PAO1 or PBS and 10 mg LL-37 peptide or PBS by intranasal delivery. At 6 or 24 hours after inoculation mice
were re-weighed and culled, and their lungs were lavaged before homogenisation. BALF and lung homogenates were serially diluted, plated and
incubated overnight at 37uC before bacterial colonies were counted and corrected for volume. Mean PAO1 cfu +/2 SEM in the lung homogenate (a &
c) or BALF (b & d) for infected animals (n$6 per condition at 6 hours and n$10 per condition at 24 hours) are displayed. No bacteria were detected in
samples from uninfected mice. For statistical analyses bacterial counts were normalised by logarithmic transformation. Analyses were conducted
using 2 way ANOVA with Bonferroni’s post tests; ** p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0099029.g007

Figure 8. Exogenous LL-37 promotes an early neutrophil response to P. aeruginosa in cathelicidin-deficient mice. Camp2/2 mice were
inoculated with 36107 cfu of P. aeruginosa PAO1 and 10 mg LL-37 peptide or PBS by intranasal delivery. At 6 hours (a) or 24 hours (b) after
inoculation mice were culled and their lungs were lavaged. BALF was cytocentrifuged and differential counts were conducted for neutrophils. Data
show Tukey box and whiskers plots for n$8 animals per condition. Analyses were conducted using the Mann Whitney test; * p,0.05.
doi:10.1371/journal.pone.0099029.g008
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microbicidal activity. Administration of synthetic LL-37 promoted

an upregulation of the early neutrophil response that was

dependent upon both infection and peptide, but was independent

of native cathelicidin production, and enhanced bacterial clear-

ance from the lung. Mice deficient in endogenous mCRAMP had

a normal initial neutrophil response to infection, during a period in

which Camp was not initially expressed in the wild type lung.

However, these Camp2/2 mice were deficient in the larger

second phase neutrophil response observed in Camp-expressing

infected wild type mice and had an impaired capacity to clear the

infection. To our knowledge, this is the first demonstration of

cathelicidins enhancing host defence against infection through

primarily modulatory mechanisms in vivo and suggests induction of

a cathelicidin-mediated protective proinflammatory response.

The associations between hCAP-18/LL-37 expression and

susceptibility to infection in humans [39][40][11][12] suggest an

important, but as yet undefined role for hCAP-18/LL-37 in innate

host defence against infection in humans. Although this peptide

has microbicidal potential, its activity is poor against many

microorganisms in physiologically relevant environments at the

low concentrations found in vivo in most systems [27,28,29].

However, cathelicidins have additionally been shown to have

multiple modulatory activities, including chemotactic function

[34,35,36,37,38], the ability to modulate chemokine, cytokine and

cellular responses [30,41,42,43], the capacity to alter leukocyte

differentiation and function [44,45,46] and cell death modulating

properties [28,47,48]. Critical to understanding these peptides and

utilising their properties therapeutically is the need to clarify their

modes of action in vivo in infectious contexts.

In this study, an acute murine pulmonary infection model with

P. aeruginosa was utilised in order to evaluate the capacity of

cathelicidins to enhance host defence against infection with a

microbe which is largely resistant to these peptides under

physiological conditions in vitro [27,28,29]. Under favourable in

vitro conditions in which microbicidal properties are evident for

LL-37, this peptide has been shown to permeabilise bacterial

membranes within minutes [49]. However, we found no evidence

for direct microbicidal activity against P. aeruginosa after co-

incubation with LL-37 in vivo, yet exogenously delivered LL-37 was

found to significantly enhance pathogen clearance over 24 hours.

Although we cannot exclude some alternative form of late direct

microbicidal activity of LL-37, even by 6 hours after infection no

significant impact on bacterial load of the whole lung could be

demonstrated in response to LL-37 treatment, although interest-

ingly a therapeutic bolus of peptide was found to diminish the

number of live bacteria accessible to bronchoalveolar lavage at this

time point. The reason for this is unclear, but may relate to early

removal of the most accessible bacteria by the enhanced

neutrophil influx observed. A previous study using adenoviral

vectors carrying the cDNA for hCAP18/LL-37, to overexpress the

human cathelicidin in the murine lung over the 5 days prior to

infection, resulted in the promotion of a small, but significant

enhancement of P. aeruginosa clearance from the murine lung over

a 24 hour period [21]. This was observed to be accompanied by

decreased pulmonary TNF levels, but the mechanism underpin-

ning this therapeutic effect was not evaluated and was assumed to

be microbicidal. In contrast, we found no evidence to support a

microbicidal effect, but demonstrate a peptide-mediated enhanced

early neutrophil influx in vivo.

Prior research has demonstrated the capacity for cathelicidins to

have direct chemotactic activity for human neutrophils and

monocytes and murine leukocytes in vitro [34,36] and for murine

leukocytes in an experimentally-formed murine air pouch model

[36]. In that in vivo model, injection of 2 mM LL-37 or mCRAMP

into the air pouch significantly enhanced the influx of neutrophils

and monocytes within a 4 hour period. This is in contrast to the

complete absence of neutrophils observed in our studies in the

murine lung 6 hours after instillation of LL-37 alone (Figure 2b).

In addition, LL-37 was not found to mediate any significant effects

on the number of monocytes in the BALF, in contrast to the

previously published findings in other systems [35,36]. A small, but

significant neutrophil response was observed in the lungs of LL-37-

treated uninfected mice at 24 hours after instillation (Figure 2d),

demonstrating some LL-37-mediated neutrophil influx. However,

indirect effects cannot be excluded and LL-37 has also been shown

to enhance the production of neutrophil chemokines by other cells

[30,50]. Nevertheless, despite this absence of any substantial

response to LL-37 alone, a significantly enhanced pulmonary

neutrophilia was observed in response to LL-37 upon concomitant

infection (Figure 2a). With regard to this apparent contradiction to

previous findings, it is worth noting that even the control air

pouches in the previous report yielded a substantial number of

neutrophils [36], indicating that this was already an inflamed

environment and may in fact be analogous to infected lungs in our

study. The requirement for concomitant infection in order to

establish the early enhanced LL-37-mediated neutrophil response

suggests a synergy with inflammatory mediators that remain to be

identified, with no peptide-mediated modulation having been

observed in the levels of the chemokines studied (including KC,

MIP2, MCP-1, TNF and IL-6). Nevertheless, these data provide

clear evidence for the in vivo capacity of exogenous LL-37 to

modulate the innate cellular immune response in the context of

pulmonary infection, enhancing pathogen clearance in the

absence of microbicidal activity and having potential therapeutic

implications.

In addition to the potential therapeutic roles of exogenous

cathelicidins, the primary roles of endogenous peptides in

pulmonary infection remain unclear. Studies using Camp2/2

mice have demonstrated a deficiency in the clearance of both

pulmonary Klebsiella pneumoniae and P. aeruginosa infections [19,20].

K. pneumoniae promoted a later induction of pulmonary Camp

expression than P. aeruginosa and mCRAMP appeared to have a

more potent effect on K. pneumoniae, with Camp2/2 mice having a

significant and severe clearance defect at 24 hours, resulting in

more florid inflammation by 48 hours in the absence of

endogenous cathelicidin and increased mortality [20]. Given that,

in the case of K. pneumoniae, mCRAMP was reported to have

microbicidal effects at a relatively modest 1 mM, it is possible that

the phenotype in this particular infection was influenced by loss of

a relevant microbicidal agent in the face of a lethal infectious dose.

Indeed, the late induction of Camp in wild type mice infected with

K. pneumoniae may suggest less relevance for the peptide in the

inflammatory response to this particular infection. In contrast, we

demonstrate that P. aeruginosa infection can ultimately be

controlled and cleared even in the absence of mCRAMP, and

the earlier expression in wild type mice may indicate a more

important role in the inflammatory response. The previous study

reported that Camp2/2 mice infected with P. aeruginosa (at a lower

infectious dose than in our study) has a significantly impaired

bacterial clearance at 48 hours, with a decreased neutrophil

response at 24 hrs [20]. These observations are compatible with

our study, but were attributed to a loss of a direct chemotactic

response to endogenous cathelicidin. Our new data, examining

earlier timepoints, indicate that the initial murine pulmonary

neutrophil response to P. aeruginosa infection precedes induction of

and is independent of mCRAMP, and thus proceeded normally in

Camp2/2 mice. However, second phase neutrophil influx was

dependent upon mCRAMP expression, which may synergise with
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infection-induced factors as yet unidentified, and was therefore

defective in Camp2/2 mice, in whom impaired pathogen

clearance then occurred. These data suggest that in individuals

with impaired endogenous cathelicidin production, an effective,

protective pulmonary inflammatory response will be suboptimal.

hCAP-18/LL-37 in humans is pre-formed in neutrophil

granules, but can also be induced in a vitamin-D dependent

manner in epithelial cells and macrophages [51,52,53,54]. In

addition, strategies to induce LL-37 expression are under

development, including the use of compounds such as 4-

phenylbutyrate (reviewed in [55]), which can effectively upregulate

hCAP-18/LL-37 expression in vitro, including in airway epithelial

cells [56], and in vivo in a model of Shigella infection [57]. Such

approaches may be of value in enhancing protective cathelicidin

expression in humans, particularly in vitamin-D insufficient

seasonal conditions. However, it was also important to consider

whether therapeutic application of cathelicidin could provide

rapid short term improvement of host defence in the absence of

effective endogenous cathelicidin expression. In this regard, our

studies demonstrate that the delivery of LL-37 to P. aeruginosa

infected mice could promote an early neutrophil response and

enhanced pathogen clearance in Camp2/2 mice as effectively as

in wild type mice. These data indicate that this protective effect

was in response to the exogenous LL-37 delivered, independent of

endogenous mCRAMP expression and of native cathelicidin

release from incoming PMN and supports the potential for the use

of exogenous peptides in infection.

Thus, using a murine model of acute P. aeruginosa lung infection,

we demonstrate cathelicidin-mediated enhancement of bacterial

clearance in vivo in the absence of direct microbicidal activity. The

delivery of exogenous cathelicidin functioned to enhance a

protective pro-inflammatory response to infection, promoting

bacterial clearance from the lung, with an infection- and peptide-

dependent early neutrophil response that was independent of

native cathelicidin production. Furthermore, although Camp2/2

mice had an intact early cellular inflammatory response (which

was comparable to cathelicidin-sufficient animals in the period

preceding the induction of mCRAMP expression), they had

significantly impaired bacterial clearance and absence of a second

phase neutrophil response to infection. These finding demonstrate

the importance of the inflammomodulatory properties of cathe-

licidins in pulmonary infection in vivo and highlight the significance

of understanding and utilising these properties in the development

of novel therapeutic approaches.
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Cationic host defense peptides are key, evolutionarily conserved
components of the innate immune system. The human cathelicidin
LL-37 is an important cationic host defense peptide up-regulated in
infection and inflammation, specifically in the human lung, and was
shown to enhance the pulmonary clearance of the opportunistic
pathogen Pseudomonas aeruginosa in vivo by as yet undefined
mechanisms. In addition to its direct microbicidal potential, LL-37
can modulate inflammation and immune mechanisms in host de-
fenseagainst infection, includingthecapacity to modulate celldeath
pathways. We demonstrate that at physiologically relevant concen-
trations of LL-37, this peptide preferentially promoted the apoptosis
of infected airway epithelium, via enhanced LL-37–induced mito-
chondrial membrane depolarization and release of cytochrome c,
with activation of caspase-9 and caspase-3 and induction of apopto-
sis,whichonlyoccurred in thepresenceofbothpeptideandbacteria,
but not with either stimulus alone. This synergistic induction of
apoptosis in infected cells was caspase-dependent, contrasting with
the caspase-independent cell death induced by supraphysiologic
levels of peptide alone. We demonstrate that the synergistic in-
duction of apoptosis by LL-37 and Pseudomonas aeruginosa required
specificbacteria–epithelial cell interactions with whole, live bacteria,
and bacterial invasion of the epithelial cell. We propose that the LL-
37–mediated apoptosis of infected, compromised airway epithelial
cells may represent a novel inflammomodulatory role for this
peptide in innate host defense, promoting the clearance of re-
spiratory pathogens.

Keywords: cationic host defense peptide; antimicrobial peptide; innate
immunity; Pseudomonas; apoptosis

Cationic host defense peptides (CHDPs; also known as antimi-
crobial peptides) are key, conserved components of innate host
defenses. The broad-spectrum, direct microbicidal potential of
CHDPs has made these peptides attractive therapeutic agents.
However, many CHDPs were further demonstrated to exert
multiple potential immunomodulatory functions, including the
modulation of cell death, raising questions about the nature of
their primary physiologic roles and the possibility of developing
novel therapeutics with both microbicidal and immunomodula-

tory activities.

One of the CHDPs demonstrating the most significant
immunomodulatory potential to date is LL-37. This cationic,
amphipathic peptide is the predominant cleavage product of
human cationic antimicrobial peptide (hCAP)-18, the sole
human cathelicidin (reviewed by Zanetti) (1). LL-37 is stored
at high concentrations in the specific granules of neutrophils,
and is produced by epithelial cells and some leukocytes. It can
be detected in airway surface liquid, plasma, sweat, and other
body fluids, and is upregulated in response to infection and
inflammation (1, 2). In addition to direct microbicidal capabil-
ity, the modulatory potential of LL-37 is considerable, with
in vitro and in vivo studies suggesting a broad range of activities
that could modify innate inflammatory processes and adaptive
immune responses (2). The physiological significance of LL-37
to human disease is demonstrated by the increased susceptibil-
ity to infection of individuals with morbus Kostmann (in which
defective neutrophils are cathelicidin-deficient) (3), and is also
suggested by the association between hCAP-18 expression and
susceptibility to skin infections in psoriasis and atopic dermatitis
(4). In addition, studies using a mouse model deficient in
cathelin-related antimicrobial peptide (mCRAMP), the murine
ortholog of LL-37, demonstrated increased susceptibility to
infections of the skin, gastrointestinal system, urinary tract,
and cornea (5–8). Despite this clear evidence of a critical role
for cathelicidin expression in innate defense against infection,
the relative roles of the microbicidal and immunomodulatory
activities of this peptide remain unclear.

Gene therapy augmentation demonstrated that the expres-
sion of LL-37 in the murine lung can enhance the clearance of
pulmonary Pseudomonas aeruginosa (9), an important oppor-
tunistic pulmonary pathogen of immunocompromised indi-
viduals and those with cystic fibrosis (10). However, the
mechanisms underlying enhanced defense against infection in
this model remain unclear, with the concentrations of LL-37
detected unlikely to be directly microbicidal under physiolo-
gical conditions (9, 11). Multiple mechanisms are likely involved
in the host defense against lung infection with P. aeruginosa,
ranging from simple mucociliary clearance and innate micro-
bicidal components of airway surface liquid, to the activity of
professional phagocytes. In addition, the apoptosis and sub-
sequent removal of infected epithelial cells were described as
innate defense mechanisms at diverse epithelial surfaces (12–
14), required for the clearance of invasive P. aeruginosa from
the murine lung (12). Such a mechanism may be an important
component of host defenses, removing bacteria that have
evaded other defenses and invaded epithelial cells.

LL-37 was previously demonstrated to modulate cell death
pathways (15–21). We previously demonstrated that high con-
centrations of LL-37 can induce apoptosis in airway epithelial
cell lines and primary cells in vitro, and in murine airways
in vivo (15, 17). Moreover, LL-37 was shown to induce
mitochondrial depolarization in alveolar epithelial cells (18).
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However, the roles of the Bcl2-family proteins, which can
regulate mitochondrial membrane potential, and of the key
apoptosis-inducing caspase proteins in LL-37, which can induce
apoptosis of airway epithelial cells, remain uncertain. Further, it
is unclear whether LL-37–induced apoptosis might be primarily
detrimental, with overexpression of LL-37 damaging normal
epithelial integrity, or whether at much lower, more physiolog-
ical concentrations, LL-37 expression could enhance innate
defenses by promoting targeted apoptosis to facilitate the
clearance of pathogens. To address these issues, we studied
the ability of LL-37 to induce apoptosis in airway epithelial cells
infected with the invasive lung pathogen P. aeruginosa.

We demonstrate that LL-37 can induce Bax-dependent
mitochondrial membrane depolarization in airway epithelial
cells in a dose-dependent manner, with the release of cyto-
chrome c, and that this is synergistically enhanced by infection
with P. aeruginosa. However, at physiologically relevant con-
centrations of LL-37, the activation of caspase-9 and caspase-3,
and DNA fragmentation, only occurred in the presence of both
peptide and bacteria, but not with either stimulus alone. This
synergistic induction of apoptosis was caspase-dependent and
partly Bax-dependent, and required specific bacteria–epithelial
cell interaction with whole, live bacteria capable of epithelial-
cell invasion.

MATERIALS AND METHODS

Reagents

Dulbecco’s modified Eagle’s medium (DMEM), L-glutamine, non-
essential amino acids (NEAAs), PBS, trypsin/EDTA, and FBS were all
purchased from PAA Laboratories (Somerset, UK). Primary normal
human bronchial epithelial (NHBE) media and growth supplements
were purchased from Lonza (Wokingham, UK). Fibronectin, BSA,
Tween-20, Luria Bertani broth, formalin, chemiluminescence peroxi-
dase substrate, and 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate hydrate were all supplied by Sigma-Aldrich (Dorset,
UK). Mouse collagen type IV (Cultrex) was purchased from Stratech
Scientific, Ltd. (Suffolk, UK). Ultroser G was obtained from Pall
Pharmaceuticals (Hampshire, UK). Precise protein polyacrylamide
gels, M-PER protein extraction reagent, and protease/phosphatase
inhibitor cocktails were supplied by Thermo Scientific (Loughborough,
UK). Vectashield Hardset mounting medium with 49,6-diamidino-
2-phenylindole (DAPI) was supplied by Vector Laboratories
(Peterborough, UK). The Bax-inhibiting peptide V5 (BIP-V5) and
Z-VAD-FMK were supplied by Merck Chemicals, Ltd. (Nottingham,
UK). Rabbit anti-human cleaved caspase-3, caspase-8, and caspase-9
antibodies (catalogue numbers 9661, 9496, and 9505, respectively),
anti-human X-linked inhibitor of apoptosis protein (XIAP) (catalogue
number 2045), anti-human pan actin (catalogue number 4968), and
horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG anti-
bodies were purchased from Cell Signaling Technologies (Danvers,
MA). We extracted Pseudomonas aeruginosa PAO1 lipopolysaccha-
ride (LPS) using a 90% aqueous phenol solution at 658C and
ultracentrifugation, followed by quantification using a limulus amebo-
cyte lysate assay (Cambrex, Wokingham, UK). LL-37 (sequence
LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES; molecu-
lar weight 4,493.33) was synthesized by N-(9-fluorenyl) methoxycar-
bonyl chemistry at the Nucleic Acid/Protein Service Unit at the
University of British Columbia (Vancouver, Canada), as described
previously (22). Scrambled LL-37 control peptide (sequence
RSLEGTDRFPFVRLKNSRKLEFKDIKGIKREQFVKIL) was pur-
chased from CSS-Albachem, Ltd. (East Lothian, UK). Peptides were
purified by reverse-phase high-performance liquid chromatography,
and were at least 98% pure. LL-37, and scrambled LL-37 control
peptide, were dissolved in endotoxin-free water (Sigma-Aldrich) and
stored at 2208C until further use. The concentration of peptides in
solution was determined by amino-acid analysis, and tested to ensure
that they were free of endotoxin.

Primary and Transformed Epithelial-Cell Culture

The 16HBE14o2 transformed human bronchial epithelial cells were
a kind gift from Dieter Gruenert at the University of California, San
Francisco. Cells were grown in standard submerged cultured and
maintained in DMEM supplemented with 1% L-glutamine (vol/vol),
1% NEAA (vol/vol), and 10% FBS (vol/vol). Culture flasks were coated
with a basement layer of collagen IV (5 mg/ml), fibronectin (10 mg/ml),
and BSA (100 mg/ml) before cell culture at 378C, 5% CO2. Normal
human bronchial epithelial cells from a single donor were purchased
from Lonza. Cells were grown in standard submerged culture and
maintained in bronchial epithelial growth media (Lonza), supplemented
with bronchial epithelial cell SingleQuots growth factors and supple-
ments (Lonza) as a serum substitute, in strict accordance with the
manufacturer’s instructions.

All assays were conducted in Ultroser G serum–substitute supple-
mented media, consisting of phenol red–free DMEM supplemented
with 1% Ultroser G (vol/vol), 1% L-glutamine (vol/vol), and 1%
NEAA (vol/vol).

Bacterial Strains and Culture

In addition to P. aeruginosa PAO1, these studies used the following
strains of P. aeruginosa: clinical isolate J1386 (a clonal isolate of J1385,
originally from an individual with cystic fibrosis) (23), DmexAB-oprM
mutant (a gift from Keith Poole) (24), PAO1exsATV mutant (a gift
from Dara Frank) (25), P. aeruginosa pilA mutant (a gift from Eva
Lorenz) (26), and the isogenic PAO1 control strains for these mutants.
Studies involving genetically modified bacteria were performed accord-
ing to Scientific Advisory Committee on Genetic Modification Health
and Safety Executive Certificate GM207/07.2.

All P. aeruginosa strains were grown in Luria Bertani (LB)
broth at 378C in an orbital shaker (250 rpm) overnight, to achieve
a stationary-phase suspension. Before use, bacterial suspensions
diluted 1:20 in fresh LB broth were incubated at 378C for 90 minutes
to reach log phase. Bacterial suspensions were standardized via
dilution to an optical density of 0.1 at 595 nm, using spectropho-
tometry (WPA UV 1101, Biotech Photometer; Biochrom Ltd.,
Cambridge, UK), centrifuged at 1,500 3 g for 15 minutes (keeping
supernatant where required for use in place of live bacteria), and
resuspended in PBS before immediate addition to epithelial cells.
Where required, bacteria were heat-killed (608C for 60 minutes in an
orbital shaker) or ultraviolet light (UV)-killed (exposed to a constant
UV source for 2 hours in a sealed glass Petri dish), with killing
confirmed by overnight culture. To determine the direct microbicidal
activity of LL-37, P. aeruginosa were resuspended in Ultroser G
serum–substitute supplemented media before the immediate addition
of LL-37 at the concentrations stated. After incubation for 1 hour at
378C, serial dilutions were performed, and 100-ml aliquots of these
(and the original bacterial suspension) were spread onto LB agar
plates in triplicate, and incubated overnight at 378C before counting
the number of colony-forming units (CFUs). For studies to determine
if the function of the DmexAB-oprM mutant could be rescued by
soluble factors released by PA01, PA01 was added to 16HBE14o2

cells at a multiplicity of infection (MOI) of 10:1 and incubated for 18
hours at 378C with 5% CO2. After incubation, the supernatant was
collected and filtered through a 0.22-mm filter unit. The sterility of
filtered supernatant was confirmed by culturing 50 ml on LB agar
plates for 24 hours. Filtered supernatant (1:4 dilution in treatment
medium) was simultaneously added together with LL-37 and
DmexAB-oprM to 16HBE14o2 cells, and the cells were incubated
for 1 hour and analyzed using the mitochondrial depolarization
technique.

Mitochondrial Depolarization Assay

The 16HBE14o2 cells were seeded at 2.5 3 104 cells per well in a 96-
well plate and cultured at 378C, 5% CO2. Cells were exposed to LL-37
(or scrambled LL-37 control peptide) at the concentrations described
in the presence and absence of (1) log-phase P. aeruginosa at an MOI
of 10:1; (2) heat-killed or UV-killed bacteria (MOI 10:1), P. aeruginosa
PAO1 LPS (1 mg/ml) or P. aeruginosa supernatant, all prepared as
described above; or (3) log-phase P. aeruginosa PAO1 (MOI 10:1),
separated from the epithelial cells by a Transwell semipermeable
polyester membrane with 0.4-mm pore size (Corning Life Sciences,
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Amsterdam, Netherlands), and incubated for 1 hour at 378C, 5% CO2.
All treatments were conducted in Ultroser G serum–substitute supple-
mented media. After treatments, cells were washed once with PBS
prewarmed to 378C, the supernatant was aspirated, and 50 ml of
Mitocapture solution (Cambridge Bioscience, Cambridge, UK) at
378C were added to each well, before incubation at 378C for 30 minutes
in the dark. Cells were then washed twice with PBS at 378C,
resuspended in 50 ml of Mitocapture buffer at 378C, and imaged
immediately using an Axiovert S100 inverted fluorescent microscope
(Zeiss UK, Welwyn Garden City, UK). For each membrane, at least
four random fields of view were counted with a minimum of 300 cells in
total, and the number of apoptotic cells (displaying diffuse, green
fluorescence) was expressed as a percentage of the number of healthy
cells (displaying punctate red mitochondrial fluorescence). Data were
corrected for a background level of approximately 10% positive cells
observed in control untreated samples. For inhibition studies, the
culture medium in each well was replaced with treatment medium
containing 100 mM BIP-V5 for 1 hour before treatment.

Cytochrome c Assay

The 16HBE14o2 cells were seeded at 1 3 106 cells per well in a six-well
plate and cultured at 378C, 5% CO2. Cells were exposed to LL-37 at
the concentrations described in the presence and absence of log-phase
P. aeruginosa PA01 (MOI 10:1), and incubated for 90 minutes at 378C,
5% CO2. Cells were washed once with PBS, and 0.5 ml of trypsin/
EDTA was added to each well to detach cells. Ultroser G serum–
substitute supplemented media (0.5 ml) was added to each well and
suspensions were centrifuged in microtubes at 850 3 g for 2 minutes.
Mitochondrial and cytosolic fractions were then prepared using a
Mitochondrial Isolation Kit (Thermo Scientific, Loughborough, UK)
according to the manufacturer’s instructions. Cytochrome c concentra-
tions in each fraction were assessed using a Cytochrome c ELISA Kit
(Merck Chemicals, Ltd.), according to the manufacturer’s protocol.

Western Immunoblotting

The 16HBE14o2 cells were seeded at 1 3 106 cells per well in six-well
plates and cultured at 378C, 5% CO2. Cells were exposed to LL-37 at
the concentrations described, in Ultroser-G serum–substitute supple-
mented media, in the presence and absence of log-phase P. aeruginosa
PA01 (MOI 10:1) and incubated for 3 hours at 378C, 5% CO2. Cells
were washed once with ice-cold PBS and lysed with 300 mL M-PER
protein extraction reagent (Thermo Scientific) containing a cocktail of
protease, phosphatase, and metalloprotease inhibitors. Protein concen-
trations were determined by bicinchoninic acid assay (Thermo Scien-
tific). Equivalent total protein concentration lysates (15–40 mg) were
resolved on either 10% or 12% precast Precise Protein polyacrylamide
gels (Thermo Scientific), transferred to polyvinylidene fluoride mem-
branes (Bio-Rad Laboratories, Ltd., Hemel Hempstead, UK), blocked
for 1 hour with Tris-buffered saline and 0.1% Tween-20 (TBST)
containing 5% skimmed milk powder (TBST/milk), and then incubated
with antibodies specific for cleaved caspase-3 (1 in 5,000 dilution),
cleaved caspase-9 (1 in 1,000 dilution), XIAP (1 in 1,000 dilution), or
pan-actin (1 in 2,000 dilution) in TBST/milk overnight at 48C.
Membranes were washed for 15 minutes in TBST and then incubated
with a 1 in 5,000 dilution of HRP-conjugated goat anti-rabbit antibody
(in TBST/milk) or a 1 in 5,000 dilution of HRP-conjugated goat anti-
mouse antibody (in TBST/milk) for 1 hour at room temperature.
Membranes were washed for 30 minutes and developed with chem-
iluminescence peroxidase substrate (Sigma-Aldrich) according to the
manufacturer’s instructions, and imaged on CL-Xposure film (Thermo
Scientific). Equal loading of protein was confirmed by examining the
expression of actin as a loading control.

In Situ Cell Death Detection by Terminal Deoxynucleotidyl

Transferase–Mediated Deoxyuridine Triphosphate Nick-End

Labeling Assay

Transwell polyester-permeable supports (pore size, 0.4 mm; diameter,
6.5 mm; Corning Life Sciences) were equilibrated for 45 minutes in
culture media (DMEM supplemented with 10% FBS [vol/vol], 1%
L-glutamine [vol/vol], and 1% NEAA [vol/vol]) before the addition of
100 ml of medium containing 2.5 3 105 16HBE14o2 cells/ml into the

apical compartment, with 600 ml culture medium in the basal compart-
ment, and cultured at 378C, 5% CO2. For primary bronchial epithelial
cell experiments, Transwell supports were equilibrated with NHBE
culture media for 45 minutes before the addition of 100 ml of NHBE
media containing 2.5 3 105 NHBE cells/ml into the apical compart-
ment, with 600 mL of NHBE culture medium in the basal compart-
ment, and cultured at 378C, 5% CO2. Before treatments, culture media
in both the apical and basal compartments were replaced with Ultroser
G serum–substitute supplemented media. Cells were exposed to LL-37
at the concentrations described in the presence and absence of log-
phase P. aeruginosa PA01 (MOI 10:1), and incubated for 6 hours at
378C, 5% CO2. Cells were fixed in 10% neutral-buffered formalin
(3.7% formaldehyde) for 10 minutes, washed once in PBS, permeabi-
lized in ice-cold 0.1% Triton X-100/0.1% sodium citrate for 3 minutes,
and washed twice with PBS. An in situ cell death detection kit (Roche
Applied Science, West Sussex, UK) was used according to the
manufacturer’s instructions. The membranes with cells were mounted
in 50 mL Vectashield Hardset (containing DAPI), and at least four
random fields of view were counted (each containing more than 100
cells), using an Axiovert S100 fluorescent microscope, and analyzed
using OpenLAB 3.0 software (Improvision/Perkin Elmer, Waltham,
MA). The number of terminal deoxynucleotide transferase dUTP nick-
end labeling (TUNEL)–positive cells was expressed as a percentage of
the number of DAPI-positive nuclei. The total number of DAPI-
positive nuclei counted for each condition was determined, to evaluate
total cell number. For inhibition studies, cells were prepared as
described, and culture medium in each well was replaced with
treatment medium containing either 100 mM Bax inhibiting peptide
V5 (Merck Chemicals, Ltd.) or 50 mM of the broad-spectrum caspase
inhibitor, Z-VAD-FMK (Merck Chemicals, Ltd.), for 1 hour before
treatment.

Gentamicin Exclusion Assay

The capacity of P. aeruginosa isolates and mutants to invade epithelial
cells was assessed using a gentamicin exclusion assay. Briefly,
16HBE14o2 cells were exposed to strains of log-phase P. aeruginosa
(MOI 10:1) for 60 minutes in Ultroser G–serum-substitute supple-
mented media. The media were removed from all wells, and cells were
incubated with fresh media for 60 minutes with or without gentamicin
(50 mg/ml) to kill extracellular bacteria. The media were then aspirated
from gentamicin-treated cells, and these cells were vigorously washed
with PBS and lysed with PBS containing 0.1% Triton X-100, and then
plated on LB agar to determine internalized bacterial numbers. Media
and/or epithelial cell lysates from wells without gentamicin were also
plated on LB agar, to determine the number of associated bacteria and
total infectious load. The CFUs were quantified by culturing overnight
on LB agar plates at 378C.

Statistical Analysis

Statistical analyses were performed using Graphpad Prism version 5 for
Windows (GraphPad Software Inc., La Jolla, CA). Statistical signifi-
cance was assessed either using one-way ANOVA with Tukey’s post
hoc test, or two-way ANOVA with Bonferroni’s post hoc test where
appropriate. P < 0.05 was considered significant.

RESULTS

LL-37 and P. aeruginosa Synergistically Induce Epithelial

Cell Death

To determine the capacity of LL-37 to induce cell death in
infected airway epithelial cells, the human bronchial epithelial
cell line 16HBE14o2 was infected with P. aeruginosa PAO1,
with or without concurrent exposure to LL-37. These cells
were examined for nuclear DNA fragmentation by TUNEL
assay at 6 hours (Figure 1A). Pseudomonas aeruginosa alone
did not induce cell death, and LL-37 alone induced cell death
only at higher concentrations. However, concurrent exposure
to both stimuli synergistically induced significant levels of cell
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death at greater than or equal to 20 mg/ml of LL-37 (P < 0.01),
and even at an LL-37 concentration of 20 mg/ml that had no
effect alone. A control scrambled LL-37 peptide had no effect.
Total cell counts demonstrated no loss of cells during analysis
(data not shown). To confirm these observation in nontrans-
formed cells, primary human airway epithelial cells were used,
and demonstrated the same response, with significant cell
death induced in the presence of physiologically inflammatory
levels of LL-37 only when infected with P. aeruginosa PAO1
(Figure 1B).

To determine whether the cell death observed was apopto-
sis, cleavage of the key executioner caspase, caspase-3, was
determined by Western immunoblot in 16HBE14o2 cells at 3
to 6 hours after infection with P. aeruginosa PAO1, with or
without concurrent exposure to LL-37. No activation was
detected in response to LL-37 alone, or P. aeruginosa alone.
However, concurrent exposure to both stimuli resulted in
caspase-3 activation at 4 hours and thereafter (Figure 1C
and data not shown). These data indicate that the cell death

induced synergistically by LL-37 and P. aeruginosa, but not by
high concentrations of LL-37 alone, is caspase-dependent
apoptosis. This finding is supported by the observation that
preincubation with the polycaspase inhibitor Z-VAD-FMK
significantly (P < 0.001) inhibited the synergistic induction of
cell death by P. aeruginosa and LL-37 (Figure 1A), reducing it
to approximately the level induced by LL-37 alone at that
concentration.

In addition, cleavage of caspase-9 (a key cytochrome
c–activated initiator caspase) was also observed in response to
infection with P. aeruginosa PAO1, only in the presence of LL-
37 (Figure 1D). Caspase-9 activation was not detected in
response to LL-37 alone, or P. aeruginosa alone. In contrast,
the activation of caspase-8 (a key death receptor–activated
initiator caspase) was not evident (data not shown). These data
demonstrate a synergistic induction of intrinsic apoptosis-
inducing pathways.

Given the absence of caspase-3 activation in response to
concentrations of LL-37 at which peptide alone induced cell

Figure 1. LL-37 and P. aeruginosa

synergistically induce DNA fragmen-
tation and caspase activation in air-

way epithelial cells. Human bronchial

epithelial cell line 16HBE14o2 (A, C,
D) or primary human bronchial epi-

thelial cells (B) were incubated for 6

hours (A, B) or 5 hours (C, D) over

a range of LL-37 concentrations (or
scrambled LL-37 [sLL-37] at 50

mg/ml) in Ultroser G serum–substi-

tute supplemented media, in the

presence and absence of log-phase
P. aeruginosa PA01 (MOI 10:1)

added concurrently. (A, B) Cells were

treated as described, with or without
preincubation for 1 hour with the

polycaspase inhibitor Z-VAD-FMK

(50 mM), and were then fixed. Apo-

ptosis was assessed by TUNEL assay.
Four random fields of view, each

containing more than 100 cells, were

counted for each sample. and the

number of TUNEL-positive cells was
expressed as a percentage of the

number of DAPI-positive nuclei. Data

represent mean values 6 SEM, for
n > 3 independent experiments for

each condition. Two-way ANOVA

with Bonferroni post hoc test was

used to compare LL-37/P. aerugi-
nosa–treated samples with LL-37

only–treated samples at correspond-

ing concentrations, or LL-37/P. aeru-

ginosa/Z-VAD-FMK–treated samples
with LL-37/P. aeruginosa–treated sam-

ples at corresponding concentrations.

*P < 0.05, **P < 0.01. (C, D) Whole-

cell protein lysates were prepared
and analyzed by SDS-PAGE and

Western immunoblotting. Immuno-

blots were performed using anti-
bodies specific for cleaved caspase-

3, XIAP, cleaved caspase-9, or actin.

Images shown are representative of

n > 3 independent experiments.
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death, the expression levels of XIAP (a potent caspase in-
hibitor) were examined, but no effect on expression levels was
evident (Figure 1C).

Pseudomonas aeruginosa Infection of Airway Epithelial Cells

Synergistically Enhances LL-37–Mediated Mitochondrial

Depolarization and Cytochrome c Release

To determine the role of mitochondria in LL-37–induced cell
death, 16HBE14o2 cells were infected with P. aeruginosa
PAO1, with or without concurrent exposure to LL-37. After
1 hour, the mitochondrial membrane potential was determined
as an early indicator of apoptosis (Figure 2A). The LL-37 alone
induced a dose-dependent increase in mitochondrial depolar-
ization at greater than or equal to 20 mg/ml. Pseudomonas
aeruginosa alone had no effect, but synergized with LL-37 to
induce significantly greater mitochondrial depolarization than
LL-37 alone, even inducing increased depolarization at low
(10 mg/ml) LL-37 concentrations that had no effect alone (P <

0.05). Scrambled LL-37 peptide had no effect (Figure 2A). To
determine whether this synergistic effect required an initial
interaction between LL-37 and either the epithelial cell or the
bacteria, which could subsequently alter bacteria–epithelial cell
interactions, 16HBE14o2 cells were infected with P. aeruginosa
PAO1 for 1 hour, and washed before incubation with LL-37 for
1 hour. Under these conditions, the synergistic induction of
mitochondrial depolarization was still evident, and even ampli-
fied at lower LL-37 concentrations (Figure 2B). This result
indicates that infection with P. aeruginosa promotes airway
epithelial cell susceptibility to LL-37-induced apoptosis.

To evaluate the consequences of mitochondrial depolariza-
tion, the intracellular localization of cytochrome c was exam-
ined 90 minutes after 16HBE14o2 cells were infected with
P. aeruginosa PAO1, with or without concurrent exposure to
LL-37 (Figure 2C). The LL-37 alone induced a dose-dependent
relocalization of cytochrome c from the mitochondria to the
cytoplasm, reflecting the mitochondrial depolarization and
TUNEL positivity observed, and reaching significance at 50 mg/ml
LL-37 (P < 0.01). Pseudomonas aeruginosa alone had no effect,
but synergized with LL-37 to induce a highly significant trans-
location of cytochrome c at all concentrations of LL-37 tested
(P < 0.001). This latter effect was surprisingly pronounced, with
very significant translocation observed even at 10 mg/ml of LL-
37, a concentration at which significant cell death was not
evident. Effects as yet unexplained on the mitochondria under
these conditions (but not in response to peptide alone or
bacteria alone) may have led to further translocation of
cytochrome c from the mitochondria during sample prepara-
tion, with a resultant amplification of the effect observed.
Cytoplasmic cytochrome c was detected by Western immuno-
blot in response to 10–30 mg/ml LL-37 only in infected cells
(data not shown). Thus, the cytoplasmic translocation of
cytochrome c was clearly evident under these conditions.

To determine whether the LL-37–mediated induction of
apoptosis was dependent on the key proapoptotic Bcl-2 family
protein Bax, the effects of exposure to LL-37 and P. aeruginosa
on mitochondrial depolarization (Figure 3A) and DNA frag-
mentation (Figure 3B) were evaluated after preincubation with
the Bax-inhibiting peptide V5 (BIP-V5). At high concentrations
of LL-37, at which LL-37 alone induced substantial mitochon-
drial depolarization and apoptosis, the inhibition of Bax signif-
icantly (P < 0.01) and almost completely blocked these effects.
In contrast, Bax inhibition only partly inhibited the combined
effect of LL-37 and P. aeruginosa. These data demonstrate that
caspase-independent induction of cell death by LL-37 alone is
Bax-dependent. However, additional, and as yet unidentified,
components are required for the synergistic enhancement of

mitochondrial depolarization and induction of caspase-dependent
apoptosis by LL-37 in P. aeruginosa–infected cells.

Synergistic Induction of Apoptosis by LL-37 and P. aeruginosa

Requires Specific Bacteria–Epithelial Cell Interactions

with Live Bacteria

To exclude the possibility that LL-37 exerted directly micro-
bicidal effects on P. aeruginosa PAO1, bacterial viability was
determined after exposure to LL-37 over the range of concen-
trations and in the culture media used for these studies (Figure
4A). No significant, direct microbicidal activity was evident.

To examine whether the synergistic induction of apoptosis
by LL-37 and P. aeruginosa required infection with live bacteria,
and/or could result from secreted products, 16HBE14o2 cells
were exposed to a range of bacterial stimuli in the presence or
absence of concurrent exposure to 30 mg/ml LL-37, and assessed
for mitochondrial depolarization (Figure 4B). The highly sig-
nificant (P < 0.001), synergistic induction of mitochondrial
depolarization observed after exposure to live P. aeruginosa
and LL-37 was completely lost if the bacteria used were dead
(heat-killed or UV-killed), or substituted with bacterial culture
supernatant, or LPS prepared from PAO1 (1 mg/ml). Further-
more, physical separation of the epithelial cells from the
bacteria by a semipermeable membrane also completely pre-
vented this effect. These data indicate that the synergistic
induction of apoptosis by LL-37 and P. aeruginosa requires
a physical interaction between the epithelial cells and viable
bacteria, and is not simply the result of pathogen-sensing by
extracellular pattern recognition receptors.

Synergistic Induction of Apoptosis by LL-37 and P. aeruginosa

Is Isolate-Specific, and Independent of Type III Secretion

System and Pilus Expression

To exclude the possibility that the synergistic induction of
apoptosis by LL-37 and P. aeruginosa was specific to PAO1,
a clinical P. aeruginosa isolate J1386 was examined (Figure 5A).
A synergistic induction of mitochondrial depolarization was
also observed in response to this clinical isolate in the presence
of LL-37. This finding was substantially enhanced in compari-
son to that observed using the laboratory strain PAO1, with
significant effects observed in infected cells after incubation
with concentrations of LL-37 greater than or equal to 1 mg/ml
(P < 0.01). No direct microbicidal effect of LL-37 was observed
on P. aeruginosa isolate J1386 (data not shown).

To examine whether common virulence factors differentially
expressed by divergent P. aeruginosa isolates were necessary for
this effect, mutant strains of P. aeruginosa PAO1 were used
(Figures 5B and 5C). No substantial difference was evident
when comparing an ExsA mutant with a defective type III
secretion system (PAO1exsATV; Figure 5B) or a pilus mutant
(pilA mutant; Figure 5C) with their corresponding isogenic
strains. No direct microbicidal effect of LL-37 was evident in
either mutant strain (data not shown). These data demonstrate
that common determinants of virulence associated with epithe-
lial-cell interactions (pilus) and bacterially induced epithelial
cell death (type III secretion system) are not required for the
synergistic induction of apoptosis in LL-37–treated infected
epithelial cells.

Synergistic Induction of Apoptosis by LL-37 and P. aeruginosa

Requires Epithelial-Cell Internalization of Bacteria

The internalization of P. aeruginosa by airway epithelial cells
was proposed as a key component of the innate pulmonary host
defense that is defective in cystic fibrosis (27). To determine the
significance of bacterial internalization, a MexAB-OprM de-
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letion mutant (DmexAB-oprM), described as containing a defect
in its ability to invade epithelial cells (28), was used. The
16HBE14o2 cells were infected with PAO1DmexAB-oprM, or
the isogenic control, and a gentamicin-exclusion assay was
performed to determine the extent of internalization into the
epithelial cells (Figure 6A). Whereas internalization of the
isogenic strain could be clearly demonstrated, negligible in-
ternalization of the PAO1DmexAB-oprM bacteria occurred.
Furthermore, the LL-37–mediated synergistic enhancement of
apoptosis was significantly (P < 0.001) and completely lost
when using PAO1DmexAB-oprM (Figure 6B). The invasion
defect of PAO1DmexAB-oprM was previously shown to result
from the absence of a bacterial secreted factor, and can be
restored by the addition of supernatants from isogenic control
bacteria exposed to epithelial cells (28). The LL-37–mediated
synergistic enhancement of apoptosis was significantly restored
(P < 0.01) when 16HBE14o2 cells were infected with
PAO1DmexAB-oprM in the presence of both LL-37 and
supernatants from isogenic control bacteria exposed to epithe-

lial cells (Figure 6C). These data demonstrate that the epithe-
lial-cell internalization of P. aeruginosa is required to facilitate
the LL-37–mediated induction of apoptosis at physiologically
inflammatory concentrations of peptide.

DISCUSSION

Cationic host-defense peptides, including LL-37, have been
demonstrated to have multiple properties capable of modulat-
ing inflammation and immunity. The full extent of these
properties remains to be determined, but understanding the
physiological roles of CHDPs in health and disease, and their
development as antimicrobial therapeutics, is clearly significant.
Our results suggest a novel innate inflammomodulatory role for
LL-37, preferentially inducing apoptosis in infected epithelial
cells, with the potential to exert protective or detrimental
effects.

The most critical mechanisms by which cathelicidins contrib-
ute to host defense against infections remain uncertain. In various
models, LL-37 and mCRAMP exert antimicrobial effects in vivo
(5–9), despite high minimum inhibitory concentration values that
often exceed detectable physiologic levels. Recent studies impli-
cated the vitamin D–dependent up-regulation of LL-37 in the
intracellular killing of mycobacteria in mononuclear leukocytes
(29, 30), perhaps in synergy with b-defensin 4 (31), and
mCRAMP impairs the intracellular replication of Salmonella
(32). Therefore, these peptides likely have direct antimicrobial
roles where peptides are concentrated in favorable, controlled
ionic conditions, and perhaps function synergistically with other
agents. However, the function of LL-37 at epithelial surfaces, at
the peptide concentrations reported, is less clear. In lungs, hCAP-
18 was detected in bronchoalveolar lavage fluid from healthy
infants at approximately 5 mg/ml, and was found at up to
approximately 25 mg/ml and at approximately 15 mg/ml in infants
with pulmonary infections and individuals with cystic fibrosis lung

Figure 2. Pseudomonas aeruginosa infection of airway epithelial cells

synergistically enhances LL-37–mediated mitochondrial depolarization
and cytochrome c release. Human bronchial epithelial cells

(16HBE14o2) were incubated with a range of LL-37 concentrations

(or scrambled LL-37 [sLL-37] at 50 mg/ml) in Ultroser G serum–

substitute supplemented media, in the presence and absence of log-
phase P. aeruginosa PA01 (MOI 10:1). Bacteria and LL-37 were added

concurrently and incubated for 60 minutes (A) or 90 minutes (C), or

epithelial cells were preinfected with bacteria for 60 minutes, washed,

and exposed to LL-37 for 60 minutes (B). (A, B) Mitochondrial
membrane depolarization was determined using Mitocapture dye,

quantifying the percentage of apoptotic cells displaying diffuse green

fluorescence (cells with depolarized mitochondria), compared with
healthy cells displaying punctuate red fluorescence (cells with polarized

mitochondrial membranes). Four random fields of view were counted

for each sample (minimum of 300 cells per sample), and number of

apoptotic cells was expressed as a percentage of the total number of
cells. Data were corrected for a background level of approximately 10%

positive cells in control untreated samples, and plotted as mean values 6

SEM, for n 5 6 (A) or n 5 3 (B) independent experiments for each

condition. Two-way ANOVA with Bonferroni post hoc test was per-
formed to determine significance. *P < 0.05, **P < 0.01, ***P < 0.001.

(C ) Cellular localization of cytochrome c was assessed by ELISA analysis

of mitochondrial fractions after subcellular fractionation. Data represent

the mean percentage of cytochrome c present in this fraction as
a proportion of total cytochrome c detected in each sample 6 SEM

for n 5 3 independent experiments, measured in duplicate for each

condition. Two-way ANOVA was performed with Bonferroni post hoc
test to compare each treatment to appropriate LL-37–free negative

control sample. **P < 0.01, ***P < 0.001.
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disease (in steady state), respectively (33, 34). At these sites,
immunomodulatory roles may be of primary significance. Indeed,
the potential significance of such activities was recently demon-
strated in terms of the in vivo protection against infection in
animal models using a synthetic CHDP derivative with no direct
antimicrobial activity in vitro (35).

A variety of CHDPs, including bovine cathelicidins and
human a-defensins, were shown to affect eukaryotic cell death
(18, 36). We previously showed that high (potentially supra-
physiologic) concentrations of LL-37 induced apoptosis in
pulmonary epithelial cells in vitro and in vivo (15, 17). However,
the mechanisms involved remain undetermined. We demon-
strate here that at these higher concentrations, LL-37 can
induce mitochondrial depolarization and cytochrome c release

Figure 3. LL-37–induced mitochondrial depolarization and DNA frag-
mentation involve Bax-dependent mechanisms. Human bronchial

epithelial cells (16HBE14o2) were incubated for 1 hour (A) or 6 hours

(B) over a range of LL-37 concentrations in Ultroser G serum–substitute

supplemented media, in the presence and absence of log-phase
P. aeruginosa PA01 (MOI 10:1) added concurrently, with or without

preincubation for 1 hour with Bax-inhibiting peptide V5 (BIP-V5;

100 mM). (A) Mitochondrial membrane depolarization was determined

using Mitocapture dye, quantifying the percentage of apoptotic cells
displaying diffuse green fluorescence (cells with depolarized mitochon-

dria), compared with healthy cells displaying punctuate red fluores-

cence (cells with polarized mitochondrial membranes). Four random
fields of view were counted for each sample (minimum of 300 cells per

sample), and the number of apoptotic cells was expressed as a per-

centage of total number of cells. Data were corrected for a background

level of approximately 10% positive cells in control untreated samples,
and plotted as mean values 6 SEM, for n 5 3 independent experiments

for each condition. A two-way ANOVA with Bonferroni post hoc test

was used to compare LL-37–only treated samples with LL-37/BIP-V5–

treated samples, or LL-37/P. aeruginosa–treated samples with LL-37/P.
aeruginosa/BIP-V5–treated samples at corresponding concentrations.

*P < 0.05, **P < 0.01, ***P < 0.001. (B) Cells were fixed and apoptosis

was assessed by TUNEL assay. Four random fields of view, each

containing more than 100 cells, were counted for each sample, and
the number of TUNEL-positive cells was expressed as a percentage of

the number of DAPI-positive nuclei. Data represent mean values 6

SEM, for n 5 3 independent experiments for each condition. Two-
way ANOVA with Bonferroni post hoc test was used to compare LL-37

only–treated samples with LL-37/BIP-V5–treated samples, or LL-37/P.

aeruginosa–treated samples with LL-37/P. aeruginosa/BIP-V5–treated

samples at corresponding concentrations **P < 0.01, ***P < 0.001.

Figure 4. Synergistic induction of apoptosis by LL-37 and P. aeruginosa

requires specific bacteria–epithelial cell interactions with whole, live

bacteria. (A) P. aeruginosa PA01 was cultured to log-phase, then
exposed to LL-37 over a range of concentrations for 1 hour at 378C

in Ultroser G serum–substitute supplemented media. Serial dilutions

were performed, incubated on LB agar plates in triplicate, and cultured

for 16 hours before colony-forming units were counted. Data represent
mean values 6 SEM, for n 5 3 independent experiments for each

condition. (B) Human bronchial epithelial cells (16HBE14o2) were

assessed for mitochondrial membrane depolarization using Mitocap-
ture dye, as described in MATERIALS AND METHODS, after incubation for

1 hour with a range of concentrations of LL-37, in serum-substitute

supplemented media, in the presence and absence of live log-phase

P. aeruginosa PA01 (MOI 10:1), heat-killed or UV-killed PA01 (MOI
10:1), P. aeruginosa PA01 LPS (1 mg/ml), P. aeruginosa PA01 condi-

tioned medium, or live P. aeruginosa PA01 (MOI 10:1) separated from

the cells via a semipermeable polyester membrane with 0.4-mm pore

size. Data represent mean values 6 SEM, for n 5 3 independent
experiments for each condition. Two-way ANOVAs were performed to

evaluate significance, with Bonferroni post hoc tests comparing LL-37

alone to LL-37/stimuli. ***P < 0.001.
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in airway epithelial cells, confirming previous findings in
alveolar epithelial cells (18). In addition, the LL-37–mediated
induction of mitochondrial depolarization and the subsequent
apoptosis of these cells can be completely blocked using the
BIP-V5 peptide inhibitor of the proapoptotic Bcl-2 family

protein Bax. The BIP-V5 peptide mimics the Bax-binding
domain of Ku70, preventing Bax translocation from cytosol to
the mitochondria (37). This translocation is a central event in
mitochondria-dependent apoptosis, with the subsequent activa-
tion and oligomerization of Bax and Bak resulting in either the
nonspecific rupture of, or the formation of specific channels in,
the outer mitochondrial membrane and release of cytochrome c
(38). Interestingly, we demonstrate that the Bax-dependent LL-
37–mediated release of cytochrome c did not cause an activa-
tion of caspase-3 or caspase-9 after exposure to LL-37 alone, yet
resulted in a Bax-dependent DNA fragmentation. In addition,
polycaspase inhibition resulted in only a partial inhibition of the
apoptosis induced by high levels of LL-37 (15). These data
suggest that the induction of apoptosis by high concentrations of
LL-37 alone appears to be a Bax-dependent and predominantly
caspase-independent process, and may implicate the liberation
and activation of mitochondrial apoptosis–inducing factor
(AIF) and/or endonuclease G. The mechanism by which LL-
37 can interact with or activate Bax in airway epithelial cells is
unclear. LL-37 could induce an opening of the mitochondrial
permeability transition pore, as proposed for bovine myeloid
antimicrobial peptide-28 (BMAP-28) (36). However, a study
published during preparation of our manuscript described
a calpain-dependent mechanism of LL-37–mediated Bax trans-
location to the mitochondria, responsible for the AIF-mediated
apoptosis induced by very high concentrations (50–200 mg/ml)
of LL-37 in Jurkat T leukemia cells. These findings are
compatible with our data (21). Irrespective of this, we demon-
strate that concentrations of LL-37 considered to be physiolog-
ically relevant during lung inflammation (10–30 mg/ml)
induce minimal apoptosis in human airway epithelial cell lines
and primary cells, in the absence of infection. This result
suggests that under normal physiological conditions, LL-37 on
epithelial surfaces would not be damaging.

In contrast to the effects of LL-37 alone, cells infected with
P. aeruginosa demonstrated an enhanced susceptibility to the
induction of apoptosis upon exposure to concentrations of LL-
37 that had no effect alone, but not to control scrambled LL-37
peptide. This effect comprised a pronounced synergistic in-
crease in mitochondrial depolarization, cytochrome c release,
and DNA fragmentation, and was at least partly Bax-independent.
In addition, the LL-37–mediated activation of caspase-3 and
caspase-9 was evident only in infected cells, demonstrating
activation of the intrinsic pathway of apoptosis. Although
P. aeruginosa infection alone has been shown to induce
extrinsic pathways of apoptosis via CD95/CD95L (12), we saw
no activation of capase-8 and no significant cell death in
response to bacteria alone in our system. This finding may
relate to the fairly low MOI used, and the timeframe examined
in our studies, suggesting that the LL-37–mediated induction of
apoptosis in infected epithelial cells is a much earlier (and
mechanistically distinct) form of cell death compared with pre-
viously described, bacterially induced death receptor–mediated
apoptosis. The intrinsic pathway of apoptosis is a mitochondrial-
dependent mechanism of caspase activation involving cyto-
chrome c–induced oligomerization of the cytosolic apoptotic
protease activating factor-1 (Apaf-1), which recruits and acti-
vates procaspase-9, an upstream activator of effector caspases,
such as caspase-3 (39). In addition, the mitochondrial release of
Smac/DIABLO (second mitochondrial activator of capases/
direct IAP binding protein with low PI) (40) and Omi (also
known as high temperature requirement factor A2 [HtrA2])
(41) leads to an inactivation of the inhibitor-of-apoptosis pro-
teins (IAPs) that normally inhibit caspase activity. The in-
creased apoptosis observed via TUNEL assay in infected cells
exposed to LL-37 could be inhibited by the polycaspase in-

Figure 5. Synergistic induction of apoptosis by LL-37 and P. aeruginosa
is isolate-specific and independent of type III secretion system and pilus

expression. Human bronchial epithelial cells (16HBE14o2) were

assessed for mitochondrial membrane depolarization using Mitocap-

ture dye, as described in MATERIALS AND METHODS, after incubation for
1 hour with a range of concentrations of LL-37, in Ultroser G serum–

substitute supplemented media, in the presence and absence of (A)

log-phase clinical P. aeruginosa isolate J1386 (MOI 10:1), (B) log-phase

P. aeruginosa PA01exsATV or isogenic PAO1 control strain (MOI 10:1),
and (C) log-phase pilA P. aeruginosa mutant or isogenic PAO1 control

strain (MOI 10:1). Data represent mean values 6 SEM, for n 5 3

independent experiments for each condition. Two-way ANOVAs were
performed to evaluate significance, with Bonferroni post hoc tests

comparing (A) LL-37/P. aeruginosa to LL-37 alone, and (B) LL-37/P.

aeruginosa mutant to LL-37/isogenic controls. *P < 0.05,***P < 0.001.
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hibitor Z-VAD-FMK, reducing it to levels similar to those
induced by LL-37 alone. Thus the synergistic effects are caspase-
dependent, and occur in addition to predominantly caspase-
independent pathways induced by higher concentrations of LL-
37 alone. The caspase inhibition by IAPs may be reduced in
infected cells, and although XIAP levels were unaffected, the
roles of Smac/DIABLO and Omi HtrA2 in this system remain
unknown. Therefore, a caspase-dependent pathway downstream
of mitochondrial depolarization, induced by an alternate mech-
anism from that used by LL-37 alone, is responsible for the
capacity of LL-37 to promote the apoptosis of cells infected
with P. aeruginosa.

The nature of the interaction between epithelial cells and
bacteria required to make these cells susceptible to the
apoptosis-inducing effects of LL-37 was investigated under a
number of conditions and using mutants of P. aeruginosa. Neither
dead bacteria nor soluble products produced by untreated or
LL-37–treated bacteria could promote these synergistic effects.
In the absence of physical contact between the epithelial cells
and live bacteria, no effects were observed. In contrast, the
effect of LL-37 was even more profound when a clinical strain
of P. aeruginosa J1386 (isolated from an individual with cystic
fibrosis) (23) was used, suggesting that this effect might be
modified by isolate variation in virulence factors. PAO1 is
classified as an ‘‘invasive’’ rather than ‘‘cytotoxic’’ strain of
P. aeruginosa (although both can invade eukaryotic cells), and
this invasiveness is proposed to require contact between bacte-
ria and epithelial cells to stimulate the efflux of bacterial
‘‘invasive factors’’ (28). The DmexAB-oprM deletion mutant
of P. aeruginosa PAO1 (24) is defective in terms of epithelial-
cell invasion (despite normal adherence), and has diminished
virulence in vivo as a consequence of the loss of the MexAB-
OprM efflux system, proposed to be responsible for the efflux of
these putative ‘‘invasive factors’’ (28). A synergistic induction of
apoptosis was not evident in LL-37–treated epithelial cells
infected with this mutant strain, but could be replicated by
the addition of these unknown ‘‘invasive factors’’ from the
isogenic wild-type PAO1 strain, demonstrating a requirement
for invasiveness. In contrast, the PAO1exsATV mutant (25), in
which the ExsA mutation impairs the ExsA-regulated type III
secretion system, behaved identically to its isogenic wild-type
PAO1 strain. Although a functional ExsA allele is required for
P. aeruginosa–induced cytotoxicity, epithelial-cell invasiveness
is independent of ExsA expression (42). Similarly, a P. aerugi-
nosa pilA mutant (26) was largely able to synergize with LL-37
to induce apoptosis as effectively as its isogenic PAO1 wild-type
strain. In this strain, pilA mutation results in an absence of pilus,
proposed to be an important adhesin involved early in epithe-
lial-cell interactions with P. aeruginosa (43). Interestingly,
differences were observed in the sensitivity to the LL-37–
induced mitochondrial depolarization of cells infected with
our original PAO1 isolate, compared with isogenic controls
for some of the mutants used. Additional investigations using
these isolates may help in further defining the key events
involved in this interaction. Nevertheless, the data suggest that
the bacterial invasion of airway epithelial cells, but not ExsA-
regulated type III secretion or pili expression, is critical in
inducing enhanced susceptibility to LL-37–mediated apoptosis.

Our results describe a novel innate inflammomodulatory role
for LL-37, preferentially inducing the apoptosis of infected
epithelial cells. However, the extent to which this might
contribute to innate epithelial defenses, or be manifest in
pathologic damage to epithelial-barrier integrity, is unknown,
and a fine balance could exist. Although LL-37 clearly has
important roles in innate host defense against infection, chron-
ically increased hCAP-18/LL-37 concentrations in cystic fibrosis

Figure 6. Synergistic induction of apoptosis by LL-37 and P. aeruginosa
requires epithelial-cell internalization of bacteria. Human bronchial

epithelial cells (16HBE14o2) were incubated for 60 minutes in Ultroser

G serum–substitute supplemented media, in the presence and absence

of (MOI 10:1) log-phase P. aeruginosa strains PA01, DmexAB-oprM
mutant (A–C ), isogenic PAO1 control strain (B), or DmexAB-oprM

mutant added concurrently with sterile conditioned supernatant col-

lected from 16HBE14o2 cells infected with PA01 (C ). (A) Invasion of
epithelial cells by bacteria was determined by gentamicin exclusion,

quantifying the number of viable CFUs surviving extracellular genta-

micin treatment (50 mg/ml). Data are plotted as mean values 6 SEM,

for n 5 3 independent experiments plated in duplicate for each
condition. (B, C ) Infected epithelial cells were concurrently incubated

with a range of concentrations of LL-37, and mitochondrial membrane

depolarization was determined using Mitocapture dye, as described in

MATERIALS AND METHODS. Data represent mean values 6 SEM, for n 5 3
independent experiments for each condition. Two-way ANOVAs were

performed to evaluate significance, with Bonferroni post hoc tests

comparing (B) LL-37/DmexAB-oprM mutant to LL-37/isogenic controls,
and (C ) LL-37/DmexAB-oprM mutant to LL-37/DmexAB-oprM mutant in

PAO1-conditioned supernatant. **P < 0.01,***P < 0.001.
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lung disease are correlated with increased lung damage (34),
and elevated hCAP-18/LL-37 concentrations are associated
with bronchiolitis obliterans syndrome (44) and the pathogen-
esis of psoriasis (45). Pulmonary epithelial-cell apoptosis plays
a significant role in P. aeruginosa clearance from the murine
lung (12). In addition, bladder epithelial-cell exfoliation after
bacterial attachment plays a role in innate defense against
invasive Escherichia coli (14), preventing the establishment of
a safe niche and intracellular biofilm-like growth (46). Further-
more, the susceptibility of individuals with cystic fibrosis to
pulmonary P. aeruginosa infection is proposed to relate, in part,
to the failure of airway epithelial cells to internalize this
bacterium, and thus an inability to clear P. aeruginosa by
desquamation of infected cells (27). Thus, we propose that in
the healthy host, LL-37, up-regulated during infection and
inflammation, may promote the apoptosis and consequent
clearance of P. aeruginosa–infected airway epithelial cells, as
a component of the innate host defense against this pathogen.
However, under pathologic conditions of excessive, chronic LL-
37 exposure, or a failure of epithelial-cell internalization of P.
aeruginosa (such as in cystic fibrosis), the epithelial-cell death
induced by high concentrations of LL-37 alone may be detri-
mental to the host and contribute to chronic lung damage. The
extent to which this effect might be common to other invasive
bacteria, or else specific to P. aeruginosa, remains to be
determined, but has clear significance for the possible use of
LL-37 and related CHDPs as antimicrobial therapeutics.
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Abstract
Neutrophils are recruited to sites of injury but their timely removal is thought to be vital to prevent
exacerbating inflammation. In addition, the recognition of apoptotic cells by cells of the innate
immune system provides potent anti-inflammatory and anti-immunogenic signals. In this paper we
describe how human neutrophils dying by apoptosis or necrosis release anti-inflammatory
peptides, the alpha defensins. This family of small cationic peptides, effectively inhibits the
secretion of multiple pro-inflammatory cytokines and nitric oxide from macrophages, the main
innate immune cell found at sites of chronic inflammation. In addition, the systemic administration
of necrotic neutrophil supernatants and alpha defensins protects mice from a murine model of
peritonitis. Hence their effects may be far reaching and serve to kill microbes whilst regulating a
potentially tissue destructive inflammatory response.

Keywords
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Introduction
Polymorphonuclear cells (PMNs) are the most abundant type of leukocyte, rapidly recruited
to sites of inflammation by pathogen-derived stimuli or host derived danger signals (1).
Subsequent activation of PMN triggers the release of reactive oxygen species and an arsenal
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of non-specific cytotoxic compounds. This has led researchers to consider that the safe
disposal of neutrophils as early as possible is essential to the maintenance of immunological
homeostasis and the resolution of inflammation (2). However the data that exposes the
pathogenic role of late apoptotic and necrotic neutrophils is conflicting. Elastase, which is
released by necrotic neutrophils, has been reported to induce resting macrophages to secrete
pro-inflammatory cytokines (3). In contrast, other studies indicate that necrotic neutrophils
are phagocytosed by macrophages in a non-phlogistic manner and even down regulate
CD80, CD86 and CD40 on immature DC, rendering them unable to induce T cell
proliferation in an MLR (4, 5). In addition whilst necrotic cell lines are able to induce DC
maturation, necrotic primary cells are not (6-8), suggesting that necrotic cells cannot by
themselves be considered dangerous, without reference to the cell type and the way in which
they are exposed to the immune system.

Defensins are widely distributed in nature, being expressed by leukocytes and epithelial cells
lining the environmental interface. They are divided into alpha and beta defensins based on
their tertiary structure, which has a characteristic six cysteine motif; pairing to form three
intramolecular disulphide bonds. α-Defensins are small cationic and amphipathic peptides
with a molecular weight of 3–5 kDa (9). Of the six α-defensins, four (HNP1-4) are major
constituents of human neutrophils, where they are found stored in the azurophilic (primary)
granules. The other two (HD5-6) are expressed in the Paneth cells, which are secretory
epithelial cells located in the small intestinal crypts (10). Whilst rats and rabbits express
neutrophil α-defensins, mice do not; but they do express homologues of human HD5-6 in
the Paneth cells, known as cryptidins (11). The secretion of α-defensins by epithelial cells is
an important component of innate immunity. This is highlighted by mice that lack
matrilysin-7 and cannot secrete active cryptidins, due to an inability to process Paneth cell
α-defensin precursors. Despite the fact that they secrete a number of other antimicrobial
molecules they are more susceptible to an oral challenge with a virulent strain of S.
typhimurium and mount a more severe inflammatory response (11). In contrast mice
transgenic for the human crypt α-defensin, HD-5, are protected from a normally lethal dose
of Salmonella (12). Recently α-defensins have been reported to block the release of IL-1β
from monocytes whilst having no effect on the release of TNF-α (13). Monocytes, which
are found circulating in the blood, mature into macrophages upon egress from the circulation
and entry into tissues. Here they interact with activated neutrophils in the absence of serum
proteins that are known to inhibit α-defensin function (14, 15). In this paper we describe
how α-defensins, released by dying and necrotic neutrophils exert a powerful anti-
inflammatory effect on human macrophages whilst still maintaining significant anti-
microbial activity.

Materials and Methods
Reagents

Purified HNP1-3 was supplied by Hycult biotechnology. Synthetic HNP1, linearized HNP1
and the D enantiomer of HNP was kindly provided by Prof Wuyuan Lu. Linear (or
linearized) HNP1 is an unstructured form of the α-defensin, in which the six Cys residues
have been replaced by Ala. LL-37
(LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES; MW 4493.33) was synthesized
by N-(9-fluorenyl) methoxycarbonyl chemistry at the Nucleic Acid/Protein Service unit at
the University of British Columbia (UBC; Vancouver, Canada), as described previously
(Barlow et al, J. Leuk. Biol, 1996, 80:509-520). R-roscovitine, (R)-2-[[9-(1-methylethyl)-6-
[(phenylmethyl)amino]-9H-purin-2-yl]amino]-1-butanol (A.G. Scientific) was kindly
provided by Prof A. Rossi and used at 20uM. HMDMs were stimulated with CD40 ligand
(Peprotech, UK) at 3ug/ml and IFN-γ (Peprotech, UK) at 5ng/ml. LPS (Sigma) was used at
1ng/ml.
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Mice
6-8 week old female C57BL/6, mice (Harlan-UK), were used at 8-9 weeks of age and were
sex and age-matched within experiments. All experiments were covered by a Project
License granted by the Home Office under the Animal (Scientific Procedures) Act 1986.
Locally, this license was approved by the University of Edinburgh Ethical Review
Committee.

Generation of apoptotic cells
Human neutrophils were extracted from peripheral blood of healthy volunteers, as described
previously (16). Blood was separated using dextran sedimentation and a Percoll gradient.
This yielded highly pure human neutrophils (>95%). Neutrophils were cultured in serum
free IMDM supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 ug/ml
streptomycin for various periods of time and the cell free medium collected and
ultracentrifuged at 100,000g for 1 hour prior to using immediately or storing at −70°C.
Necrotic neutrophils were generated from freshly isolated neutrophils by freeze thawing
them 5 times after which no complete cells remained. Membranes were removed by
ultracentrifuging them at 100,000g for 1 hour. In all in vitro experiments the number of
neutrophils used was 12 × 106/ml. An equivalent number of necrotic neutrophils were
generated by freeze thawing per ml of culture medium and the membrane free supernatant
was used at this concentration. Necrotic thymocytes were generated from thymi removed
from 6 week old syngeneic mice, teased into single cell suspensions and freeze thawed 5
times as described for necrotic neutrophils. Murine neutrophils were isolated from the bone
marrow of syngeneic mice by percoll gradient and then treated in the same way as human
neutrophils to obtain necrotic membrane free cell fractions at the same concentration.

Macrophage culture
Human monocytes were extracted from peripheral blood of healthy volunteers according to
Lothian Research Ethics Committee approval (LREC/2001/4/56), using dextran
sedimentation and a Percoll gradient as previously described (16). They were cultured in
IMDM supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 ug/ml streptomycin,
and 10% autologous platelet-rich plasma-derived serum. Mature macrophages were used on
day 7. Murine bone marrow derived macrophages were cultured, as described previously (4)
and used between day 7 and 10 of culture. All assays were done in serum free medium.

Depletion of α-defensins using R2 or dynabeads beads
R2 beads (Applied Biosystems), which bind hydrophobic proteins, were incubated with
membrane free necrotic neutrophil supernatants for 2 hours. Beads were then removed
following centrifugation and proteins in the supernatant or on the beads was analysed by
NuPage 10% Bis-Tris gel with MES running buffer, Invitrogen. Proteins were visualized by
silver stain. The band of peptides at 3-5 kd was cut out, reduced, alkylated and digested with
trypsin. Chromatographic separation of tryptic digests was conducted by an Ultimate 3000
nanoLC system (Dionex, Mountain View, CA) and peptides were analyzed by an HCT Ultra
PTM ion trap instrument (Bruker Daltonics) equipped with a nano-ESI source. Acquired
spectra were analyzed using the MASCOT search engine (Matrix Science) (D. Compopiano
and D. Clarke-University of Edinburgh). To specifically deplete NN of α-defensin,
Dynabeads M280 coated with sheep anti mouse IgG (Invitrogen) were bound to mouse anti-
human HNP 1-3 (Hycult) as per the manufacturers instructions. These anti-HNP 1-3 coated
beads were then used to deplete NN of α-defensin and beads with bound α-defensin were
removed with a magnet (BD Pharmingen). Complete and specific depletion of α-defensin
was checked both by HNP 1-3 ELISA (Hycult) and by protein gel.
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Tests of cell viability
LDH released from the cytoplasm of dying macrophages into the assay medium was used as
a measure of membrane integrity and viability. A cell cytotoxicity colorimetric kit was used
according to the manufacturers instructions (Sigma Aldrich) The assay utilizes NAD,
reduced by the released lactate, which induces a colour change in a tetrazolium dye that can
be detected using a spectrophotometric method. As a positive control the protein synthesis
inhibitor cyclohexamide (10ug/ml) was used to reduce cell viability after 24 hours. The
Alamar Blue assay is a sensitive non-radioactive means of measuring cell viability based on
the addition of a fluorogenic redox indicator to cells in culture. When taken into cells,
Alamar Blue becomes reduced and turns red. This reduced form of Alamar Blue is highly
fluorescent. The extent of this conversion, which is a reflection of cell viability, was
quantified by its optical density. Alamar Blue was used at a 1:10 dilution and added to the
assay medium for the duration of the culture.

Eating assay
Cells were pretreated with α-defensin or a positive control puromycin known to reduce cell
viability (Sigma /Aldrich at 50ug/ml). After 24 hours the HMDMs were washed and fresh
medium containing 1.25×106 flourscent beads (Fluoresbrite Plain YG 3.0 micron
microspheres; PolySciences, Inc. warrington, PA) was added per 0.5×106 HMDMs. After 1h
unbound cells were removed and cells washed ×3 with PBS containing magnesium and
calcium. Cells were removed from the wells using Trypsin/EDTA, washed again and
resuspended in FACs buffer (PBS + 2% FCS) prior to analysis on a FACs machine.

Sterile Peritonitis
Peritonitis was induced by i.p. injection of 0.5 ml of 10% thioglychollate. Mice underwent
peritoneal lavage at various time points following thioglychollate injection.

Bacterial in vitro and in vivo infections of macrophages
Murine BMDM were cultured as described above. Salmonella enterica serovar
Typhimurium strain SL3261 (17), which was live or had been heat killed was added to
murine BMDM at an MOI (multiple of infection) of 10:1 bacteria to macrophages. After 1
hour excess bacteria were washed away and Gentamicin at 100ug/ml was added for 1 hour
to kill any residual extracellular bacteria. Cells were washed again and HNP1 or medium
alone was added for various time-points after which supernatants were collected for
cytokine estimation prior to lysing the macrophages with 1% Triton X for 15 minutes. Lysed
cells containing live bacteria were collected and plated onto agar and incubated for 18 hours
after which colonies were counted. In a similar way Pseudomonas Aeruginosa PA01 was
added to HMDM at an MOI of 10. After 4 hours supernatants were collected prior to lysing
the cells with 0.1% Triton X and the number of live colonies counted after a further 18 hours
of culture.

ELISA
Supernatants collected after specified culture periods were analyzed for production of
cytokines by a sandwich ELISA according to the manufacturers instruction (R&D systems,
UK). HNP 1-3 was measured using an HNP1-3 ELISA according to the manufacturers
instructions (Hycult Biotechnology). All experiments were performed in triplicate.

Statistics
Data are expressed, when appropriate, as mean and SEM. Significance was assessed using
unpaired t tests, and p-values <0.05 were considered significant.
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Results
Apoptotic neutrophils do not require contact to inhibit inflammatory macrophages

Our interest in a soluble factor released by dying human neutrophils was initiated by the
observation that co-culture of apoptotic neutrophils separated from activated human
monocyte derived macrophages (HMDMs) by transwells led to the inhibition of pro-
inflammatory cytokine secretion (Fig 1 a/b). TGF-β is thought to play a pivotal role in the
inhibition of HMDM TNF-α secretion by apoptotic neutrophils (18). However the addition
of blocking anti-TGF-β to apoptotic neutrophils, in contact with LPS-stimulated HMDM
had only a moderate inhibitory effect but no effect on CD40L/IFN-γ stimulated HMDM.
Apoptotic cells generate apoptotic bodies (19), which may be able to pass through the pores
of a transwell. To control for this we ultra-centrifuged supernatants derived from neutrophil
cultures to remove apoptotic bodies and all membrane constituents. The active inhibitory
factor contained within this neutrophil-conditioned medium (NCM) was released by dying
neutrophils in a time-dependent manner. It was able significantly to inhibit the secretion of
TNF-α from macrophages stimulated by both LPS and CD40L/IFN-γ by 4 hours after
culture, when neutrophils are beginning to undergo apoptosis (Fig 1c/d). TGF-β measured in
supernatants from CD40L/IFN-γ- and LPS-stimulated HMDM was not significantly raised
whilst levels of IL-1β, IL-6, IL-8 and IL-10 and nitric oxide were all decreased (data not
shown).

To ask if neutrophil apoptosis augmented the release of the soluble factor we cultured
neutrophils in the presence of R-roscovitine, which is known to induce neutrophil apoptosis
(20). Following 6 hours of culture the percentage of neutrophils positive for annexin-V
increased from 14% to 56.4% (Fig 2a). R-roscovitine did not itself inhibit TNF-α secretion
from LPS-stimulated HMDMs (Fig 2b). However culture supernatants from R-roscovitine-
treated neutrophils inhibited pro-inflammatory cytokine secretion significantly more than
untreated NCM (Fig 2b-c). In contrast, if apoptosis was inhibited, (by culturing neutrophils
at 4°C overnight) (Fig 2d) the ability of the NCM was lacking in anti-inflammatory activity.
If the same neutrophils were then allowed to undergo apoptosis for 6 hours by culturing at
room temperature the inhibitory factor was released into the NCM (Fig 2e).

Necrotic neutrophils are also anti-inflammatory
We wondered whether primary or secondary necrotic neutrophils would also release the
active immunosuppressive factor. To generate necrotic neutrophils we freeze thawed fresh
neutrophils 5 times after which more than 90% of the neutrophils had lysed (data not
shown). These lysed cells were then ultracentrifuged to remove membranous material and
the remaining necrotic neutrophil conditioned medium (NN) added to LPS stimulated
macrophages. Titration of the NN revealed a dose dependent inhibition of TNF-α secretion
by the activated macrophages, which was even more effective than using NCM at the same
dilution (Fig 3a). The TNF-α ELISA was able to detect both mature and precursor TNF-α.
In addition, TNF–α converting enzyme (TACE) levels were measured and found to be
unchanged (data not shown). Multicytokine analysis confirmed that NN was also able to
inhibit the production of cytokines including IL-6, IL-1β, IL-8, and IL-1 (Fig 3b). In
addition NN also inhibited the generation of nitric oxide (Fig 4c). The concentration of
TGF-β was either decreased or similar to stimulated cells (data not shown). Identical results
were obtained using NN prepared from secondarily necrotic neutrophils that had previously
undergone 24 hours of culture (data not shown).

Necrotic neutrophils but not other necrotic cells are anti-inflammatory
Necrotic cells are generally considered to pose a danger to the immune system resulting in
auto-antibody generation and a breakdown in tolerance to self with subsequent
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autoimmunity (21-23). We were interested to know if necrotic neutrophils were unique in
their ability to release a soluble anti-inflammatory factor or if this could be generalised to
other primary cells or tumour cell lines. The anti-inflammatory activity of necrotic
neutrophils was compared to supernatants from necrotic murine thymocytes (NT) and from
the necrotic human tumour cell line, Mutu (NM). While necrotic thymocyte supernatants
had a limited ability to suppress TNF-α secretion from LPS-stimulated HMDM, necrotic
tumor cells had none (Fig 4a) and both necrotic thymocytes and tumour cells were pro-
inflammatory to CD40L/IFN-γ-stimulated HMDMs (Fig 4b). In contrast NN was markedly
anti-inflammatory inhibiting both TNF-α and nitric oxide (NO) generation (Fig 4c/d). This
indicates that compared to the cells tested, the release of a soluble anti-inflammatory factor
is specific to neutrophils.

Alpha defensins are the active anti-inflammatory factor released by apoptotic/necrotic
neutrophils

To delineate further the active immunosuppressive factor we tested the NN that had been
depleted of hydrophobic proteins using R2 beads and found that depleted NN now lacked
the ability to inhibit LPS (Fig 5a) or CD40L/IFN-γ (Fig 5b) stimulated HMDM release of
TNF-α. The R2 beads had partially removed a range of proteins from the NN, but
completely removed a band of proteins between 3-5kDa in size (Fig 5c). This band was
digested and sequenced by MS/MS and found to be the anti-microbial peptide α-defensins
(data not shown). When purified alpha defensins (AD) were added back to the R2 depleted
NN the immunosuppressive activity of the NN was restored, indicating that one of the active
inhibitory factors released by and contained within the neutrophils was α-defensins.
However R2 beads removed a range of proteins from the NN and to ensure specificity, α-
defensins were depleted from NN using anti-human HNP 1-3 bound to dynabeads. The
complete removal of α-defensins was confirmed with an HNP1-3 ELISA whilst the
specificity of the antibody bound beads was confirmed by protein gel analysis (data not
shown). When α-defensins were specifically depleted from the NN the ability of NN to
inhibit TNF-α production by CD40L/IFN-γ stimulated HMDMs was completely lost (Fig
5di), but was regained upon addition of HNP-1. However NN was still able to significantly
inhibit TNF-α production by HMDMs stimulated with LPS (Fig 5dii) because the NN
retained LL37, which is known to bind to LPS and inhibit its pro-inflammatory potential
(24). When HNP-1 was added back though the full inhibitory capacity of the NN was
restored.

α-Defensins exist as 4 types in human neutrophils; human neutrophil peptides 1-4
(HNP1-4). HNP1-3 constitute more than 5% of the total cellular protein in human
neutrophils and 99% of the total defensin content of neutrophils with traces of HNP4. We
measured HNP1-3 released by neutrophils undergoing apoptosis in culture and found that
the concentration of HNP1-3 increased progressively with time reaching a peak by 9 hours
suggesting that the release of α-defensins is associated with ongoing neutrophil apoptosis
(Fig 5e). The level of the α-defensins in necrotic neutrophil supernatants was consistently
higher at between 8-15 +/− 0.45 ug/ml, depending on the human donor. We also assessed
the concentration of HNP 1-3 in the synovial fluid of 12 patients suffering with a flare of
rheumatoid arthritis undergoing arthrocentesis for an acutely swollen knee, which was found
to range between 3-25ug/ml with an average of 12.4ug/ml indicating that the concentration
reached in tissues is not dissimilar to that tested in our assays.

α-Defensins do not kill macrophages
A number of reports have described how α-defensins are able to kill eukaryotic cells
reviewed in (25). In contrast, L929 cells a murine fibroblast cell line, is resistant to killing
by α-defensins (26). We asked if α-defensins decreased the cytokine production of
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macrophages through a delayed effect on cell viability. We found that α-defensin (25ug/ml)
pre-treatment for 1 hour prior to stimulating HMDMs with LPS inhibited the ability of
macrophages to generate TNF-α, but 20 hours following the removal of α-defensins they
were able to secrete equivalent amounts of TNF-α when compared to untreated control
macrophages (Fig 6ai). In addition HMDMs cultured in the presence of α-defensin for 24
hours were more refractory to stimulation with LPS and only fully recovered their ability to
secrete TNF-α after 72 hours (Fig 6aii). However the fact that they do completely recover
indicates that α-defensin treated macrophages, (which do not proliferate in culture) are still
viable and able to respond to LPS as well as control cells after a period of time. In addition
we performed LDH assays to assess the viability of macrophages after α-defensin treatment.
Lactate dehydrogenase (LDH), which is released as cells die, was not significantly elevated
when compared to both resting and CD40L/IFN-γ stimulated HMDMs (Fig 6b) after 24
hours of culture with α-defensins. We utilised an additional test of cell viability, the Alamar
Blue assay, which relies on detecting the reduced form of Alamar Blue generated by
reductase enzymes present in viable cells. When cells were cultured in the presence of the
cytotoxic agent, puromycin for 24 hours and then stimulated with LPS a definite decrease in
the reduction of Alamar blue is seen secondary to a reduction in cell viability. In contrast no
change in reductive capacity is seen in HMDMs pretreated with α-defensin (25ug/ml) for
the same length of time indicating that viability was maintained (Fig 6c). Finally we
assessed the other main function of HMDMs, their ability to phagocytose (beads) following
pre-treatment for 24 hours with either α-defensin or puromycin (Fig 6d). In comparison to
control untreated HMDMs (6ci) puromycin treated HMDMs showed a reduction in the
ability to phagocytose fluorescent beads (6cii); but HMDMs pre-treated with α-defensins
had a significantly augmented phagocytic capacity when compared to untreated
macrophages (6ciii), suggesting that α-defensins had functionally altered the macrophage to
a pro-resolution, pro phagocytic phenotype.

Alpha defensins inhibit the pro-inflammatory cytokine production by macrophages in the
presence of both live and dead whole bacteria

We went on to ask if α-defensins were able to inhibit macrophage pro-inflammatory
function and still inhibit the growth of bacteria. We first looked at the response of HMDMs
to infection with the human opportunistic pathogen Pseudomonas Aeruginosa PA01.
HMDMs infected with live bacteria (Fig 7ai) at a MOI of 10 and treated with α-defensins or
with an equivalent number of dead whole bacteria (Fig 7aii) also showed an inhibited
secretion of TNF-α, IL-8, IL-6 and IL-1β. In spite of the reduced pro-inflammatory cytokine
secretion bacterial counts were not increased when compared to control infected HMDMs
(Fig 7b). Hence α-defensin treatment inhibits an excessive pro-inflammatory cytokine
response from the HMDM despite the presence of both live and dead Pseudomonas
Aeruginosa PA01, but this does not subsequently allow for excessive pathogen replication.
We went on to ask if α-defensins could affect a murine model of infection. We used the
murine pathogenic Salmonella enterica serovar Typhimurium strain SL3261 to infect mice
and sacrificed them on day 7 at the height of infection (Fig 7c). We found that the
administration of NN had a significant effect on reducing bacterial counts in the spleen (7ci)
and also reduced TNF-α in the serum (7cii).

Alpha defensins but not LL37 inhibits both T cell mediated and LPS mediated activation of
macrophages

Neutrophils contain within the secondary granules cathelicidin, an anti microbial peptide of
comparable electrophorectic mobility to α-defensins. LL37, the active fragment of the only
human cathelicidin hCAP-18 is known to bind LPS and inhibit LPS mediated activation of
macrophages (24, 27). To test the possibility that one of the inhibitory factors contained
within the NN was LL37 we titrated LL37 into both LPS (Fig 8a) and CD40L/IFN-γ (Fig
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8b) stimulated HMDMs and compared this with the ability of apoptotic neutrophils (N) or
NN to inhibit TNF-α secretion. Whereas LL37 was able to inhibit TNF-α secretion from
LPS activated HMDMs, it behaved as a pro-inflammatory peptide to CD40L/IFN-γ
stimulated HMDMs. This indicates that LL37 is not the active factor that inhibits both
CD40L/IFN-γ and LPS stimulated macrophages. We titrated purified HNP 1-3 into LPS
(Fig 8c) or CD40L/IFN-γ (Fig 8d) stimulated HMDMs and found that this peptide
preparation was able to significantly inhibit pro-inflammatory cytokine secretion by
activated HMDMs. As HNP1 constitutes the major alpha defensin in the primary granules of
neutrophils (25) we used synthetically-derived HNP-1, finding similar levels of
immunosuppressive activity (Fig 8e). HNP2 and HNP3 were also able to significantly
inhibit TNF-α secretion by LPS or CD40L/IFN-γ stimulated HMDMs (data not shown).
The requirement for structural integrity of HNP1 was examined by comparing the ability of
linearized α-defensin, to inhibit TNF-α secretion from CD40L/IFN-γ. HMDMs; this
confirmed that the three dimensional structure of HNP-1 was essential for anti-inflammatory
activity, which was completely lost when the peptide was linearized (Fig 8f).

Alpha defensins do not affect the release of pro-inflammatory cytokines from
macrophages

We asked if α-defensins elicited their anti-inflammatory properties via a direct effect on cell
membranes preventing the release of cytokines contained within secretory vesicles of
HMDMs. To address this we stimulated mature HMDMs with CD40L/IFN-γ plus or minus
HNP1-3. At specified time-points culture supernatants were collected and analysed for TNF-
α protein by ELISA. TNF–α levels climbed steadily after stimulation in control wells
reaching a peak after 8 hours. However in stimulated and HNP1-3 treated wells TNF-α
appeared to plateau soon after 3 hours and remained low for the duration of the experiment
(Fig 9a). To ask if the TNF-α may be prevented from leaving the cells, macrophages were
lysed at 4 hours after stimulation. The concentration of cytokines contained within the
macrophage (Fig 9bi) and secreted into the culture medium was then compared by ELISA
(Fig 9bii). No significant differences were seen in the ratio of secreted to retained TNF-α in
either LPS or CD40L/IFN-γ stimulated HMDMs treated with α-defensins suggesting that
TNF-α was not being sequestered within the macrophage. The low levels of NO found after
α-defensin treatment would also be in keeping with our data as this is not stored in secretory
vesicles (Fig 4c/d).

Necrotic neutrophils and HNP-1 protect mice from experimental inflammation
To assess the local effect of α-defensins on an established inflammatory response in vivo we
used the thioglychollate model of peritonitis and found HNP1 and NN reduced the cellular
infiltrate of neutrophils and macrophages (Fig 10a). We did not find a significant reduction
in the inflammatory cell influx using necrotic mouse neutrophils (prepared in an identical
way to human NN and at the same concentration), which lack α-defensins nor did the
injection of whole AC or LL37 at 5 ug/ml affect the accumulation of inflammatory cells. In
separate experiments to test the possibility that the reduced influx of inflammatory cells was
secondary to the inhibition of resident peritoneal macrophages, these cells were isolated
from the peritoneum of untreated mice, adhered to plastic overnight and stimulated with
CD40L/IFN-γ along with added α-defensins (Fig 10b). Resident peritoneal macrophages
treated with α-defensin were completely unable to respond to the stimulus and secrete TNF-
α. Identical results were obtained following LPS stimulation (data not shown).

Discussion
It is currently widely believed that macrophages must engulf apoptotic neutrophils before
they become necrotic to prevent the release into the tissues of potentially toxic and
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immunogenic intracellular substances (28). We have now discovered that both apoptotic and
necrotic neutrophils elicit a profound anti-inflammatory response in macrophages that does
not require cell contact. We have identified the anti-inflammatory mediator they release as
α-defensins. The α-defensins inhibit macrophage pro-inflammatory function driven both by
the microbial cell wall constituent LPS and a T cell surrogate stimulus CD40L/IFN-γ. When
HMDMs are infected with Pseudomonas α-defensins effectively prevented the macrophages
from inducing an exaggerated pro-inflammatory cytokine response, whilst not
compromising the ability of macrophages to keep bacterial viability in check. This was
mirrored in an in vivo model of infection with the pathogenic Salmonella Typhimurium
using NN where both bacterial cell counts and serum TNF-α measured at the height of the
infection were reduced.

Alpha-defensins are released by neutrophils as early as 4 hours after in vitro culture and
continue to be released reaching a peak when neutrophil apoptosis is established.
Importantly, the α-defensins are also released from necrotic cells when they disintegrate,
explaining the protective effect of necrotic neutrophils when injected in vivo in a murine
model of inflammation and infection. The finding that human NN, (which contains α-
defensins) were able to reduce the influx of neutrophils and inflammatory macrophages in a
murine model of peritonitis was surprising given that they have been shown to be
chemotactic for immature dendritic cells and lymphocytes, though interestingly do not
activate them (29). In addition necrotic human neutrophil supernatants were devoid of
membranous products (following ultracentrifugation) but were otherwise replete with
preformed enzymes that would be expected to be pro-inflammatory in their own right (1, 3).
In contrast murine necrotic neutrophils, which do not contain α-defensins but are otherwise
similar to human neutrophils did not affect the influx of inflammatory cells into the
peritoneum suggesting that this effect was specific for the presence of the peptide (30). The
effect of α-defensins on macrophages may be specific as α-defensin treatment did not
inhibit the activation of human neutrophils by TNF-α, as measured by the loss of surface
CD62L (L-selectin) and CD11b upregulation. Myeloperoxidase release from these activated
neutrophils and the degranulation of murine peritoneal mast cells was also unaffected (data
not shown). One may speculate that the reduced influx of inflammatory cells in the
peritoneum may relate to an initial dampening of the inflammatory response of resident
macrophages normally seen when the irritant and innate immune stimulus, thioglychollate is
administered. This in turn would lead to a reduction in cellular influx of neutrophils and
inflammatory macrophages. In support of this, in vitro experiments on resting resident
peritoneal macrophages that have been stimulated with α-defensins show that they are
completely inhibited from responding to concomitant stimulation with CD40/IFN-γ and this
inhibition may override any chemotactic effect of α-defensin alone. α-Defensins have
recently been shown to inhibit specifically the secretion of IL-1β by monocytes attesting to
their anti-inflammatory role (13). Interestingly recent reports have linked the absence of
intestinal Paneth cell α-defensins to chronic colitis seen both in animal models and in
humans with Crohn’s disease (11, 31). As Crohn’s disease is likely due to an aberrant
response to commensal bacteria which normally pose no risk to healthy adults (32-34), one
could speculate that the lack of these α-defensins may deprive these patients not only of an
antimicrobial peptide but also of an important anti-inflammatory and immuno-regulatory
signal in the distal small intestine (13). Indeed the effect of α-defensins on macrophages,
reducing the secretion of multiple pro-inflammatory cytokines whilst checking the growth of
bacteria attests to its ability to prevent an excessively pro-inflammatory macrophage
response whilst not sacrificing its ability to function as an antimicrobial peptide. The
mechanism by which α-defensins inhibit such a broad swathe of pro-inflammatory
cytokines and NO is unknown. As an anti-microbial peptide, they induce pores in bacterial
membranes but the exact means by which they kill microbes remains a mystery (35).
Analysis of treated macrophages used in our assays showed no evidence of macrophage
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apoptosis following culture with α-defensins. Prolonged treatment for up to 24 hours with
α-defensins did not result in a delayed decrease in viability as measured by Alamar blue and
LDH assays. In addition macrophages regained the ability to respond to pro-inflammatory
stimuli producing equivalent amounts of TNF-α, compared to control untreated
macrophages following a delay that was proportional to the time that they had been initially
exposed to α-defensins. Pre-treatment with α-defensins led to an increase in phagocytic
capacity, which suggests that they do not simply inhibit macrophage function but alter it to a
pro-phagocytic pro-resolution phenotype. Time-course studies of secreted TNF-α indicate
that released cytokine fails to ever reach control levels following α-defensin treatment but
lysates of cells did not contain TNF-α, suggesting that it was not prevented from leaving the
cells as Shi et al have found specifically for IL-1β in monocytes. We would speculate that
α-defensins may affect the translation of pro-inflammatory cytokines through an effect on
mRNA stability or alternatively through the inhibition of the pro-inflammatory transcription
factor, nuclear factor-kB. Future work clearly needs to elucidate the molecular mechanism
by which they inhibit the inflammatory phenotype of macrophages and to ask if this could
be useful as a therapeutic option in autoimmune diseases such as rheumatoid arthritis in
which the inflammatory macrophage mediates the final assault on normal healthy tissue.

Currently, the prevailing view is that necrotic cells present danger signals to the immune
system; for instance necrotic fibroblasts are found to be immunostimulatory to DC (36, 37).
Thus, it is generally accepted that the presence of necrotic cells, especially neutrophils, is
pro-inflammatory (3, 28). This is despite reports of the inhibitory effect of necrotic
neutrophils on dendritic cell (DC) maturation and the ability of macrophages to respond to
necrotic neutrophils in a non-phlogistic way, (4, 38). It seems likely that not all necrotic
cells pose a danger. Our data clearly shows that necrotic human neutrophils are, in fact, anti-
inflammatory and if a macrophage encounters such a cell its ability to secrete pro-
inflammatory cytokines and NO is inhibited, whilst its ability to phagocytose material is
increased. Thus, neutrophil necrosis at sites of inflammation far from driving the process,
initiates its resolution.

Tissue resident macrophages are among the first cells to detect microorganisms that have
crossed an epithelial barrier. They then recruit large numbers of neutrophils, followed by
blood monocytes that differentiate into macrophages upon entry into the affected tissue.
Both cell types become activated, phagocytose microorganisms and in the case of
neutrophils then undergo apoptosis. The presence of these apoptotic cells then alters the
macrophage response, switching it from an inflammatory to a pro-resolution phenotype (39).
If necrotic neutrophils were pro-inflammatory and if the ability of macrophages to
phagocytose them was overwhelmed even temporarily; then the inevitable result would be
further inflammation. In this scenario the immune system would be permanently poised on a
knife-edge, dependent entirely upon the rate at which apoptotic neutrophils were removed.
In our model, the finding that necrotic human neutrophils are uniquely anti-inflammatory
attests to the importance of avoiding this catastrophic possibility. In fact during an
inflammatory response the apoptosis of neutrophils (and subsequent interaction with
macrophages), is correlated temporally with the resolution of inflammation (40, 41).
Physiologically, α-defensins released by dying neutrophils may then exert potent anti-
inflammatory effects on macrophages, providing the perfect counterbalance to the arsenal of
cytotoxic compounds contained within them. The release of alpha defensins means that the
pro-resolution effect of apoptotic/necrotic neutrophils on inflammatory macrophages is not
limited to those cells the neutrophil specifically contacts. In conclusion, neutrophils secrete
both an antimicrobial and an anti-inflammatory peptide as they die and undergo necrosis, so
that even in death they continue to exert an immunomodulatory and anti-microbial
phenotype fighting pathogens whilst preventing an excessive inflammatory response that
would place healthy tissue at risk of further damage.
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Figure 1. Neutrophils secrete a soluble anti-inflammatory factor
(a+b) HMDM were stimulated with either LPS or CD40L/IFN-γ (CI) along with added
apoptotic neutrophils (LPSN or CIN) for 18 hours, prior to harvesting culture supernatants
for assay of TNF-α by ELISA. In triplicate wells anti-TGFβ was added to assess the role of
TGFβ in mediating the immunosuppressive effect of apoptotic neutrophils [LPSN(anti-
TGFβ) or CIN(anti-TGFβ)]. In addition apoptotic neutrophils were separated from activated
HMDM by a transwell [LPS(N) or CI(N)] for the duration of the culture period.
Macrophages alone (M) or unstimulated macrophages cultured with apoptotic neutrophils
(MN) did not secrete TNF-α.
(c+d) Neutrophils were cultured for up to 24 hours, harvested at set timepoints and
ultracentrifuged to remove cell membranes and apoptotic bodies. This neutrophil
conditioned medium (NCM) was added (as 25% final vol) to LPS or CD40L/IFN-γ (CI)
stimulated macrophages. After 18 hours of culture HMDM culture supernatants were
harvested and assayed for TNF-α by ELISA.
Representative of 10 experiments performed with different human donors. Error bars
represent SEM and significance of *** p ≤0.0002, ** p ≤0.002, * p ≤0.02.
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Figure 2. Neutrophils release an active anti-inflammatory factor as they become apoptotic
(a-i-ii) Facs analysis of neutrophils cultured in 20uM Roscovitine (Rosco) for 6 hours and
stained with Annexin V/PI to detect apoptotic and necrotic cells respectively. NCM from
neutrophils cultured with or without Roscovitine for 6 hours was co-cultured with either CI
(b) or LPS (c) stimulated macrophages for 18 hours after which macrophage culture
supernatants were collected and tested for TNF-α content by ELISA. (d) FACS analysis of
neutrophils stained with Annexin V/PI in which apoptosis was inhibited by culturing them at
4°C overnight (NCM 4°C) and then allowed to undergo apoptosis for 6 hrs by culturing at
37°C (NCM 4°C+6hr). Analysis of the ability of NCM from these 3 neutrophil populations
to inhibit LPS activated HMDM cytokine secretion was assessed by ELISA following an 18
hour incubation with LPs stimulated macrophages (e). Data representative of 3 separate
experiments with different donors. Error bars=SEM and **=p<0.02.
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Figure 3. Necrotic neutrophils are anti-inflammatory
(a) Fresh neutrophils were freeze thawed and then ultracentrifuged to generate membrane-
free necrotic neutrophil supernatants (NN). NN was titrated into cultures containing LPS
activated HMDMs. This was compared with the ability of NCM at a final vol:vol of 25%
released from apoptotic neutrophils to inhibit TNF-α secretion. TNF-α in the supernatants
collected from these stimulated macrophages (after 18 hrs of culture) was quantified by
ELISA.
(b) Multicytokine analysis of these supernatants to show that NN inhibited the secretion of a
wide range of pro-inflammatory cytokines as well as IL-10 by activated macrophages
stimulated with LPS or CD40L/IFN-γ (CI). *** p ≤0.0002, ** p ≤0.003, * p ≤0.03.error
bars =SEM. Experiments representative of 1 from 5 using separate donors.
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Figure 4. Necrotic neutrophils but not other necrotic cells are anti-inflammatory
Apoptotic neutrophils (N), necrotic neutrophil supernatants (NN), necrotic thymocyte
supernatants (NT) and necrotic supernatants from the tumour cell line Mutu (NM) were
added to either LPS (a) or CD40L/IFN-γ (CI) (b) stimulated macrophages and culture
supernatants collected 18 hours later were analysed by ELISA for TNF-α. Murine bone
marrow derived macrophages were also stimulated with either LPS (c) or CD40L/IFN-γ
[CI] (d) with added NN or NT and culture supernatants tested for NO by the Griess reaction.
*** p ≤0.0001, ** p ≤0.002, * p ≤0.02.error bars =SEM.
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Figure 5. Alpha defensins are one of the the active anti-inflammatory factors released by
apoptotic/necrotic neutrophils
LPS (a) or CI (b) stimulated HMDM were cultured with NN, NN depleted of hydrophobic
molecules by R2 beads (NN-R2) and NN-R2 where α-defensins were added back at 25ug/
ml [(NN-R2)+AD]. Culture supernatants were collected after 18 hours of culture and tested
for TNF-α secretion by ELISA. (c) A protein gel of NN indicated the large number of
proteins released by necrotic neutrophils (NN). NN were depleted of hydrophobic proteins
by R2 beads (NN-R2) and the proteins bound to the R2 beads (R2) were identified. R2 beads
completely depleted a large band of small proteins between 3-5kD. This band was digested
and sequenced by HPLC and identified as the anti-microbial peptides, α-defensins. (d) The
actual release of α-defensins over 24 hours by cultured neutrophils undergoing apoptosis
was quantified by HNP 1-3 ELISA. (e) To ensure that the R2 beads had not depleted other
anti-inflammatory factors, α-defensins in NN were specifically depleted using anti-HNP
antibodies bound to dynabeads. HMDMs were then stimulated with CI or LPS along with
added NN depleted of α-defensins (NN-α def) or depleted NN where HNP 1-3 has been
added back at 25ug/ml (NN-α def)+HNP. As an additional control HMDMs were stimulated
with CI or LPS in the presence of the D-enantiomer of HNP1-3, which lacks anti-
inflammatiory activity and is protease resistant.. *** p ≤0.0001, ** p ≤0.04. error bars
=SEM.
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Fig 6. Alpha defensins do not kill macrophages and actually enhance their phagocytic capacity
(a) HMDMs were pre-treated with HNP1-3 for 1 hour (i) and then allowed to rest for 1 (+/
1hr), 5 (+/5hr) or 20 hours (+/20hr) prior to stimulating them with LPS for a further 18
hours, after which supernatants were collected and tested for TNF-α by ELISA. (ii) The
same as (i) but HMDMs were pre-treated with HNP 1-3 for 24 hours and then rested for 24
(+/24hr), 48 (+/48hr) or 72 hours (+/72hr) prior to stimulating with LPS. Control HMDMs
were pre treated with vehicle alone for the same time period. (b)LDH levels were measured
from supernatants taken from HMDMs stimulated with CD40/IFN-γ (CI), HNP1-3 (HNP)
or cyclohexamide for 18 hours. (c) HMDMs were pre treated with HNP 1-3 or Puromycin
for 24 hours prior to stimulating with LPS for a further 18 hours. Alamar blue was used to
determine the the presence of reductive enzymes seen in viable cells. (d) Histograms of
HMDMs that were treated with vehicle (i), puromycin (ii) or HNP1-3 (iii) for 24 hours, prior
to adding fluorescent beads for 1 hour. Cells were washed, lifted from the cell culture plates
and the degree of eating quantified by FACs (black line). Dashed line represents control
HMDMs without added fluorescent beads. * p ≤0.01. error bars =SEM.
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Fig 7. Alpha defensins can still inhibit pro-inflammatory cytokine secretion by HMDMs despite
infection with whole bacteria
(a) HMDMs were co-cultured with dead Pseudomonas Aeruginosa PA01 for 24 hours (i) or
live bacteria (at an MOI of 10) for 4 hours (ii) after which culture supernatants were
collected and cytokine secretion quantitated by ELISA. (b) For the live bacterial experiment
HMDMs were lysed after 4 hours and bacteria cultured for a further 18 hours on agar prior
to counting the number of live colonies. (c) Mice were injected with 10×6 of live Salmonella
enterica serovar Typhimurium and PBS or NN was administered on days 0,1,2,4 and 6.
Mice were sacrificed on day 7 and TNF-α was measured in the serum (i). In addition the
number of live bacteria retrieved from lysed splenocytes after an overnight culture was
calculated following a further 18 hours of culture on agar (ii). *** p ≤0.0004, ** p ≤0.003, *
p ≤0.02. error bars =SEM
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Fig 8. Alpha defensins but not cathelicidins inhibit both T cell mediated and LPS mediated
activation of macrophages
HMDM were stimulated with either LPS (a) or CD40L/IFN-γ (CI) [b] and apoptotic
neutrophils (N), necrotic neutrophil supernatants (NN) or LL37 at the indicated doses. In
separate experiments HNP1-3 (c-d) or purified HNP-1 was titrated into CI or LPS activated
HMDMs. The anti-inflammatory potential of synthetically derived HNP-1 that had been
linearized was compared to α-defensins using CD40L/IFN-γ (CI) stimulated HMDMs.
Culture supernatants were harvested after 18 hours and tested for TNF-α secretion by
ELISA. *** p ≤0.0001, ** p ≤0.001, * p ≤0.01.error bars =SEM when compared to
HMDMs treated with stimulus alone .
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Figure 9. Alpha defensins do not inhibit the exocytosis of TNF-α
(a) HMDM were stimulated with CD40L/IFNγ (CI) either alone or in the presence of
HNP1-3 (25ug/ml) for the indicated times. TNF-α protein released by HMDMs was
measured by ELISA. (b) HMDMs were stimulated with LPS or CD40L/IFN-γ (CI) and
treated with HNP1-3 (25ug/ml) or vehicle alone. At 4 hours post stimulation culture
supernatants (i) were harvested prior to lysis of the HMDMs to reveal TNF-α retained
within the cells (ii). *** p ≤0.001, error bars =SEM.
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Figure 10. Necrotic neutrophils and α-defensins protect mice from experimental inflammation
Sterile peritonitis was induced by injecting thioglychollate, along with either PBS, apoptotic
cells (AC), necrotic human neutrophils (NN), LL37, HNP1-3 or mouse necrotic neutrophils
(mNN). After 4 hours peritoneal lavages were used to isolate inflammatory GR1+F480+
macrophages (a) and neutrophils (b), which were characterised by FACS and compared to
cell numbers in control mice with peritonitis given PBS. Experiment is representative of 2
separate expts with 5 mice per group. (c) In separate experiments resting murine peritoneal
macrophages were isolated and stimulated in vitro with CD40/IFN-γ along with α-defensins
and supernatants were collected at various timepoints and tested for TNF-α. *** p ≤0.001, *
p ≤0.01, error bars =SEM.
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