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Abstract

The work in this thesis concerns the estimation of the electromagnetic, elastody-

namic and piezoelectric properties of homogenized composite materials (HCMs).

A composite may be considered homogeneous if wavelengths are sufficiently large

in comparison to the size of the particles of each component material. This thesis

examines HCMs constructed from two component materials and several methods

of estimating the HCMs constitutive properties. Firstly, the Maxwell Garnett es-

timates and Bergman–Milton bounds on the electromagnetic properties of HCMs

are examined. While both are widely used, we re–examine them, for isotropic

dielectric HCMs, in light of recent advancements in material manufacture. Sec-

ondly, we examine the strong–property–fluctuation theory (SPFT). The SPFT

estimate is calculated using iterations upon an initial ansatz, these iterations be-

ing dependent on statistical cumulants of the spatial distribution of the particles

of the component materials. The zeroth–order SPFT estimate is identical to the

first–order and both are taken to be identical to a comparison material. For the

second–order estimate a two–point correlation function along with its associated

correlation length are used to characterize the component materials’ particle dis-

tribution. The general framework for the elastodynamic SPFT was established

in 1999 by Zhuck and Lakhtakia. Here we further develop the elastodynamic

SPFT for orthotropic HCMs, in order to undertake numerical studies. We sim-

plify certain integrals in order to make them amenable to numerical computation.

Also, we establish the piezoelectric SPFT for orthorhombic mm2 materials. The

general theory is developed first in a manner analogous to the elastodynamic

SPFT. We then implement a two–point covariance function, perform similar in-

tegral simplifications to those done in the elastodynamic SPFT and carry out
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numerical experiments. From the numerical studies it is clear that, for both the

elastodynamic and piezoelectric HCMs, the lowest–order SPFT estimate is sim-

ilar to that provided by the corresponding Mori–Tanaka formalism. It is also

apparent that the second–order SPFT estimate provides a significant correction

to the lowest–order estimate, which reflects dissipative losses due to scattering.
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Glossary of terms and notation

Symbol Term

i
√−1

D, Dj electric displacement vector and its components

E, Ej electric field vector and its components

H magnetic field vector

B magnetic induction vector

εlm, ε permittivity tensor and matrix

ε0 permittivity of free-space

ε relative permittivity

µ permeability matrix

MGα, MGβ Maxwell Garnett estimates

HSα, HSβ Hashin–Shtrikman bounds

I 3× 3 identity matrix

0
n×n

n× n null matrix

C
(`)
lmpq, C(`) stiffness tensor, matrix of component material `

ρ(`), ρ(`) density tensor, matrix of component material `

tlm, um, Fm stress, displacement and applied force tensors

ω angular frequency

Spq, S strain tensor, vector

ξlmpq, ξ renormalization tensor, matrix

Wrstu, W renormalization tensor, matrix

〈. . .〉 ensemble average

r spatial variable

Φ(`) characteristic function

Blmrs
tupq , B covariance functions

Γ correlation function
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continued from previous page

Symbol Term

G, Gpm 3× 3 matrix Green function and its entries

N, ∆ Numerator and denominator of G

δmp Kronecker delta

$ij, $ renormalization tensor, vector

U 3× 3 shape matrix

τlmrs, τ identity tensor and its matrix representation

f (`) volume fraction of component material `

λ(`), µ(`) Lamé constants of material `

κ(`), ν(`) bulk modulus and Poisson ratio of material `

S
(esh)
ijkl , S(esh) Eshelby tensor, matrix

εijk Levi-Civita permutation tensor

k wavenumber

k̄ average wavenumber

C̃
(spft)

= C(spft) −C(ocm) SPFT estimate of the stiffness matrix

ρ̃(spft) = ρ(spft) − ρ(ocm) SPFT estimate of the density matrix

ϕ(`), q electric potential and charge

e
(`)
qlm, e piezoelectric tensor and matrix

C̆
(`)
lMPq, ρ̆

(`)
MP extended stiffness and density

σ̆iJ , S̆Ij, σ̆, S̆ extended stress and strain and their matrices

ŭI , F̆J extended displacement and force

C̆
(`)

, ρ̆(`) extended stiffness and density matrices

Ğ, ĞPM piezoelectric 4× 4 matrix Green function

and its entries

N̆, ∆̆ Numerator and denominator of Ğ

ξ̆lMPq, ξ̆ piezoelectric extension of ξlmpq and ξ

W̆RstU , W̆ piezoelectric extension of Wlmpq and W

τ̆lMRs, τ̆ piezoelectric extension of τlmrs, τ

$̆Ij, $̆ piezoelectric extension of $ij, $
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continued from previous page

Symbol Term

M̆ extended compliance matrix

¯̆
k piezoelectric average wavenumber

˜̆C
(spft)

= C̆
(spft) − C̆

(ocm)
SPFT estimate of the extended

stiffness matrix

˜̆ρ
(spft)

= ρ̆(spft) − ρ̆(ocm) SPFT estimate of the extended

density matrix

S̆
(esh)
IjKl , S̆

(esh)
Piezoelectric extension of S

(esh)
ijkl , S(esh)

Within this thesis, matrices are denoted by double underlining and bold font

A, while vectors are in bold font with no underlining a. Tensors are represented in

normal font with their components indicated by subscripts (for nth–order tensors,

with n ≤ 4) or subscripts and superscripts (for eighth–order tensors). All tensor

indexes range from 1 to 3. The pqth component of a matrix A is written as
[
A

]
pq

,

while the pth component of a vector b is written as [b ]p. A repeated index implies

summation. Thus, we have the matrix component
[
A · B ]

pr
=

[
A

]
pq

[
B

]
qr

,

vector component
[
A · b]

p
=

[
A

]
pq

[
b
]
q
, and scalar a · b = [a]p [b]p. The

adjoint, determinant and trace of a matrix A are denoted by adj
(
A

)
, det

(
A

)

and tr
(
A

)
, respectively. The prefixes Re and Im are used to signify real and

imaginary parts, respectively, while i =
√−1.
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Glossary of abbreviations and acronyms

Symbol Description

HCM Homogeneous composite material

OCM Orthotropic/Orthorhombic comparison material

SPFT Strong–property–fluctuation theory

HS Hashin–Shtrikman

MG Maxwell Garnett

BM Bergman–Milton

MT Mori–Tanaka

ECOs Effective constitutive operators

EPOs Effective perturbative operators
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Chapter 1

Introduction

For over 150 years scientists have been trying to predict the constitutive proper-

ties of composite materials [1]. These composites can be considered homogeneous

if the wavelengths are sufficiently large in comparison to the size of the particles of

each component material. The work contained in this thesis describes the estima-

tion of the constitutive properties of homogenized composite materials (HCMs) in

electromagnetics, elastodynamics and piezoelectrics. Many different methods of

estimation have been discussed [1, 2]. Some were derived for composites of a spe-

cific structure, whilst others apply to all composites. This thesis examines HCMs

constructed from two component materials and several methods of estimating

the HCMs’ constitutive properties. Firstly, the Maxwell Garnett estimates and

Bergman–Milton bounds on the electromagnetic properties of HCMs are exam-

ined. Secondly, the strong–property–fluctuation theory (SPFT) is examined for

both elastodynamic and piezoelectric HCMs.

In Chapter 2 we examine the Maxwell Garnett estimates [1, 3] and the Bergman–

Milton bounds [2, 4, 5, 6, 7, 8] on the relative permittivity of electromagnetic

HCMs. Both are well known and depend only on the volume fraction of each

component material and their respective permittivities. Although they have been

widely used, we re-examine them for isotropic dielectric HCMs, in light of recent

advancements in material manufacture. In particular, we consider HCMs arising

from two component materials, with the real parts of their permittivities hav-

ing different signs. Certain HCMs of this type are of interest because they may
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support negative phase velocity, which is closely related to negative refraction [9].

The SPFT estimate has been developed for electromagnetic [10, 11, 12], acous-

tic [13] and elastodynamic [14] HCMs. In this case we consider the HCM to be

a particulate composite with one component material randomly distributed as

identically oriented ellipsoidal particles in a matrix composed of the second com-

ponent material. The SPFT estimate is calculated using iterations upon an initial

ansatz, these iterations being dependent on statistical cumulants of the spatial

distribution of the particles of the component materials. The zeroth–order SPFT

estimate is identical to the first–order and both are taken to be identical to a com-

parison material. For the second–order estimate a two–point correlation function

along with its associated correlation length are used to characterize the compo-

nent materials’ particle distribution. Unlike conventional variational methods of

homogenization [15, 16, 17, 18, 19], the SPFT incorporates a renormalized formu-

lation which allows for relatively strong variations in the constitutive parameters

of the component materials.

The general framework for the elastodynamic SPFT was established in 1999

by Zhuck and Lakhtakia [14]. In Chapter 3, we further develop the elastodynamic

SPFT for orthotropic HCMs, in order to undertake numerical studies. In doing so

we simplify certain integrals in order to make them amenable to numerical com-

putation and implement the two–point covariance function which characterizes

the distributions of the component materials. The results of the elastodynamic

SPFT are compared to those from the mean–field Mori–Tanaka formalism [20]

for two types of orthotropic component materials. Firstly, isotropic component

materials with ellipsoidal inclusion particles and secondly, orthotropic component

materials with spherical inclusion particles.

The piezoelectric SPFT for orthorhombic materials is established in Chapters

4 and 5. In Chapter 4, general theory is developed in a manner analogous to the

elastodynamic SPFT. In Chapter 5, we implement a two–point covariance func-

tion, perform similar integral simplifications to those done in the elastodynamic

SPFT and carry out numerical experiments. The piezoelectric SPFT results are

also compared to the Mori–Tanaka formalism, in this case for orthorhombic mm2

component materials with ellipsoidal inclusion particles.
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Chapter 2

Re-examination of the Maxwell

Garnett estimates and the

Bergman–Milton bounds

2.1 Theory

2.1.1 Introduction

The starting point of the solution to almost any problem in electromagnetic ho-

mogenization are the James Clerk Maxwell equations. In the frequency domain

these equations are given by

iωD(r, ω) +5×H(r, ω) = 0 (2.1)

5× E(r, ω)− iωB(r, ω) = 0 (2.2)

5 ·D(r, ω) = 0 (2.3)

5 ·B(r, ω) = 0, (2.4)

where D(r, ω), E(r, ω), H(r, ω) and B(r, ω) are the electric displacement, electric

field, magnetic field and magnetic induction vectors respectively [21], with ω the

angular frequency and i =
√−1. A further set of vector equations are necessary
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for an explicit solution:

D = ε · E + ξ ·H (2.5)

B = ζ · E + µ ·H, (2.6)

where µ and ε are the permeability and permittivity matrices respectively, with

ξ and ζ the magnetoelectric matrices. These equations are known as the consti-

tutive relations and depend on the form that the component materials take [22].

Those presented above are for the most general linear medium, a bianisotropic

medium. It is these constitutive relations that dictate the solution to Maxwell’s

equations and therefore the way in which any electromagnetic process behaves

[22].

In this chapter we examine the Maxwell Garnett estimates and the Bergman–

Milton bounds on the relative permittivity, ε, of a HCM . Both are well established

[1, 2] but we re-examine them in light of recent advances in material manufacture.

2.1.2 Component materials

The materials presented in this chapter are isotropic dielectrics where ε = ε0εI,

µ = µ0µI and ξ = ζ = 0
3×3

. Herein ε and µ are the relative permittivity and

permeability of the material, ε0 and µ0 the permittivity and permeability of free

space, I the 3× 3 identity matrix and 0
3×3

the 3× 3 null matrix.

We consider the homogenization of two homogeneous isotropic dielectric com-

ponent materials with relative permittivities ε(1) and ε(2), to produce a composite

with relative permittivity ε(e). Both nondissipative ε(1, 2) ∈ R and dissipative

ε(1, 2) ∈ C component materials are considered. For the materials to be homoge-

neous, their constitutive properties must be independent of any spatial coordi-

nate. Furthermore, the HCM is considered to occupy all space and be divisible

into disjoint regions, containing only material ‘1’ or material ‘2’. The volume frac-

tions of each region are given by f (1) and f (2) respectively, with f (1) + f (2) = 1.
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2.1.3 Maxwell Garnett estimates and Bergman–Milton bounds

We examine the Maxwell Garnett estimates and Bergman–Milton bounds whilst

paying attention to the regime in which the parameter

δ =
Re

(
ε(1)

)

Re (ε(2))
, (ε(1), ε(2) ∈ C) , (2.7)

is negative. Herein, we have Re
(
ε(1, 2)

)
and Im

(
ε(1, 2)

)
denoting the real and

imaginary parts of ε(1, 2) respectively. The reason for examining the region δ < 0

is due to recent advancements in material manufacture. Materials are being con-

structed which exhibit properties not traditionally encountered in electromagnet-

ics [23, 24, 25]. The rise of such materials means that homogenization theories

need to be revisited. As an example of such a material, with δ < 0, we can exam-

ine a metal–in–insulator HCM [3, 26]. In this case we only have one of ε(1) and

ε(2) ∈ R and metal–in–insulator HCMs can be constructed to support planewave

propagation with negative phase velocity [9].

We examine the Maxwell Garnett estimates [1, 3] which may be regarded as

bounds that represent the extension of the Hashin–Shtrikman bounds [27] into

the complex–valued permittivity regime:

MGα = ε(2) +
3f (1)ε(2)(ε(1) − ε(2))

ε(1) + 2ε(2) − f (1)(ε(1) − ε(2))
, (ε(1), ε(2) ∈ C) , (2.8)

MGβ = ε(1) +
3f (2)ε(1)(ε(2) − ε(1))

ε(2) + 2ε(1) − f (2)(ε(2) − ε(1))
, (ε(1), ε(2) ∈ C) . (2.9)

Concurrently, we investigate the set of bounds derived independently by Bergman

[4, 5, 6, 7] and Milton [2, 8], for component materials with complex permittivities.

The Bergman–Milton bounds are given by

BMα(γ) = f (1)ε(1) + f (2)ε(2) − f (1)f (2)(ε(2) − ε(1))2

3 [γε(1) + (1− γ) ε(2)]
, (ε(1), ε(2) ∈ C) ,

(2.10)

BMβ(γ) =

{
f (1)

ε(1)
+

f (2)

ε(2)
− 2f (1)f (2)

(
ε(1) − ε(2)

)2

3 ε(1)ε(2) [ε(2)γ + ε(1) (1− γ)]

}−1

, (ε(1), ε(2) ∈ C) .

(2.11)
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For the bound BMα the parameter γ takes the values
(
1− f (1)

)
/3 ≤ γ ≤ 1 −

f (1)/3, whereas for the bound BMβ the parameter γ takes the values 2
(
1− f (1)

)
/3

≤ γ ≤ 1− 2f (1)/3.

The Bergman–Milton bounds are derived to give improved results on the

Maxwell Garnett estimates, but they coincide with them for nondissipative com-

ponent materials when the parameter γ attains its minimum and maximum val-

ues; i.e.,

BMα

(
1− f (1)

3

)
= BMβ

(
2− 2f (1)

3

)
= MGα

BMα

(
1− f (1)

3

)
= BMβ

(
1− 2f (1)

3

)
= MGβ





. (2.12)

In view of our particular interest in homogenization scenarios for which δ < 0,

we note that

∣∣∣∣BMα

(
1− f (1)

3

)∣∣∣∣ =

∣∣∣∣BMβ

(
2− 2f (1)

3

)∣∣∣∣ = |MGα| → ∞ as δ → f (2) − 3

f (2)

(2.13)

and

∣∣∣∣BMα

(
1− f (1)

3

)∣∣∣∣ =

∣∣∣∣BMβ

(
1− 2f (1)

3

)∣∣∣∣ = |MGβ| → ∞ as δ → f (1)

f (1) − 3
(2.14)

for nondissipative materials. Thus, there exist

(i) a volume fraction f (1) ∈ (0, 1) at which MGα is unbounded for all values of

δ < −2, and

(ii) a volume fraction f (1) ∈ (0, 1) at which MGβ is unbounded for all values of

δ ∈ (−1/2, 0).

When plotted for dissipative component materials, the Maxwell Garnett estimates

and Bergman–Milton bounds sketch out an area in the complex plane. Numerical

results describing the comparison of these bounds for δ < 0 are given in the next

section.
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Figure 2.1: The MGα (thick dashed line) and MGβ (thin dashed line) esti-
mates of ε(e) plotted against f (1) for ε(1) = 6, ε(2) = 2. The vertical solid
lines represent the variation of the Bergman–Milton bound BMα with γ for f (1) ∈
{0.1(a), 0.2(b), 0.3(c), 0.4(d), 0.5(e), 0.6(f), 0.7(g), 0.8(h), 0.9(i)}; and these coincide with the
corresponding variation of BMβ with γ.

2.2 Numerical illustrations

Let us now numerically explore the Bergman–Milton bounds, along with the

Maxwell Garnett estimates, for some illustrative examples of nondissipative and

dissipative HCMs. The parameter δ, defined in (2.7), is used to classify the two

component materials of the chosen HCMs. We begin in §2.2.1 by considering

nondissipative HCMs. While these do not represent realistic materials, they

provide valuable insights into the limiting process in which weakly dissipative

materials become nondissipative. Furthermore, they provide a useful yardstick in

the evaluation of dissipative HCMs, which are considered in §2.2.2.

2.2.1 Nondissipative HCMs

We begin with the most straightforward situation: nondissipative, ε(1, 2) ∈ R,

HCMs arising from component materials with δ > 0.

In Figure 2.1, the Maxwell Garnett estimates MGα and MGβ (which in this case

are identical to the Hashin–Shtrikman bounds) are plotted against f (1) ∈ (0, 1)

7



0.2 0.4 0.6 0.8 1

fH1L

-40

-20

0

20

40

B
o
u
n
d
s
o
n
Ε
H
e
L

Ε
H1L
=-6

Ε
H2L
=2

a b c d e f g h i

Figure 2.2: The MGα (thick dashed line) and MGβ (thin dashed line) estimates of ε(e) plotted
against f (1) for ε(1) = −6 and ε(2) = 2. The Bergman–Milton bound BMα is plotted as the
vertical broken lines for f (1) ∈ {0.1(a), 0.2(b), 0.3(c), 0.4(d), 0.5(e), 0.6(f), 0.7(g), 0.8(h), 0.9(i)}.

for ε(1) = 6 and ε(2) = 2. The Bergman–Milton bound BMα is given for f (1)

∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The corresponding plots of BMβ overly

those of BMα. The Bergman–Milton bounds are entirely contained within the

envelope constructed by the Maxwell Garnett estimates.

Let us turn now to the nondissipative scenario wherein δ < 0. In Figure

2.2, the Maxwell Garnett estimates MGα and MGβ are presented as functions

of f (1) for ε(1) = −6 and ε(2) = 2. The Bergman–Milton bound BMα is given

for f (1) ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The corresponding Bergman–

Milton bound BMβ is plotted in Figure 2.3. In consonance with (2.12) and (2.13),

we see that MGα becomes unbounded as f (1) → 0.25. It is clear that MGβ ≤
BMα ≤ MGα for f (1) < 0.25, whereas MGα ≤ BMβ ≤ MGβ for f (1) > 0.25. For

f (1) > 0.25, the Bergman–Milton bound BMα lies outside both Maxwell Garnett

estimates MGα and MGβ, and similarly BMβ lies outside both Maxwell Garnett

estimates MGα and MGβ for f (1) < 0.25, although the relations (2.12) still hold.
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Figure 2.3: As Figure 2 but with BMβ (vertical solid lines) in place of BMα.

2.2.2 Dissipative HCMs

We turn to homogenization scenarios based on dissipative component materials;

i.e., ε(1, 2) ∈ C. Let us begin with the δ > 0 scenario. In Figure 2.4, the homoge-

nization of components characterized by the relative permittivities ε(1) = 6+0.3i

and ε(2) = 2+0.2i is illustrated. In this figure, the Maxwell Garnett estimates on

complex–valued ε(e) are plotted as f (1) varies from 0 to 1. The Bergman–Milton

bounds, which are graphed for f (1) ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, are

fully contained within the Maxwell Garnett envelope. That is, we have MGβ ≤
BMα,β ≤ MGα for all values of f (1).

Now we consider dissipative component materials with δ < 0. In Figure

2.5, the homogenization of component materials given by ε(1) = −6 + 3i and

ε(2) = 2 + 2i is represented. The Bergman–Milton bounds are given for f (1) ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, whereas the Maxwell Garnett estimates are

plotted for f (1) ∈ (0, 1). As is the case in Figure 2.4, BMβ lies entirely within the

envelope constructed by MGα and MGβ. We see that BMα ≥ MGβ for all values

of f (1); but, for mid–range values of f (1), BMα slightly exceeds MGα for certain

values of the parameter γ.

As the degree of dissipation exhibited by the component materials is de-
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to Re ε(e) and Im ε(e) as f (1) varies from 0 to 1, for ε(1) = 6 + 0.3i, ε(2) = 2 + 0.2i. The
Bergman–Milton bounds BMα (thin broken dashed lines) and BMβ (thin solid lines) in the top
diagram are plotted for f (1) ∈ {0.1(a), 0.2(b), 0.3(c), 0.4(d), 0.5(e), 0.6(f), 0.7(g), 0.8(h), 0.9(i)}.
The bottom diagram shows the Bergman–Milton bounds in greater detail but for f (1) = 0.5(e)
and f (1) = 0.6(f).
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Figure 2.5: The MGα (thin dashed line) and MGβ (thick dashed line) estimates in relation to
Re ε(e) and Im ε(e) as f (1) varies from 0 to 1, for ε(1) = −6+3i and ε(2) = 2+2i. The Bergman–
Milton bounds BMα (thin broken dashed lines) and BMβ (thin solid lines) are plotted for
f (1) ∈ {0.1(a), 0.2(b), 0.3(c), 0.4(d), 0.5(e), 0.6(f), 0.7(g), 0.8(h), 0.9(i)}.

creased, the extent to which BMα exceeds MGα is increased. This is illustrated

in Figure 2.6 wherein the homogenization is repeated with ε(1) = −6 + i and

ε(2) = 2 + 2i/3. As in Figure 2.4, the Bergman–Milton bounds are given for

f (1) ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, while the Maxwell Garnett esti-

mates are plotted for f (1) ∈ (0, 1). The Bergman–Milton bound BMβ lies within

the Maxwell Garnett envelope for all values of f (1), but substantial parts of BMα

lie well outside the envelope of the two Maxwell Garnett estimates.

The behaviour observed in Figures 2.5 and 2.6 is further exaggerated in Figure

2.7, where the homogenization of component materials with ε(1) = −6 + 0.3i and

ε(2) = 2 + 0.2i is represented. The Maxwell Garnett estimates are plotted for

f (1) ∈ (0, 1); for reasons of clarity, the Bergman–Milton bounds are plotted only

for f (1) ∈ {0.1, 0.3, 0.5}. The Maxwell Garnett estimates are exceedingly large

and the Bergman–Milton bounds are larger still.

Finally, let us focus on the scenario referred to earlier, namely the homogeniza-

tion of a conducting component material and a nonconducting component mate-

rial or metal–in–insulator, wherein δ < 0. Suppose we consider components char-

acterized by the relative permittivities ε(1) = −6 + 3i and ε(2) = 2. In Figure 2.8
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Figure 2.6: As Figure 2.4 but for ε(1) = −6 + i, ε(2) = 2 + 2i/3.
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Figure 2.8: As Fig. 2.5 but for ε(1) = −6 + 3i and ε(2) = 2.

the Maxwell Garnett estimates are plotted for f (1) ∈ (0, 1), whereas the Bergman–

Milton bounds are given for f (1) ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. As we

observed in Figure 2.6, the Maxwell Garnett envelope does not contain substantial

parts of the Bergman–Milton bound BMα, whereas the BMβ bound lies entirely

within the envelope constructed from the two Maxwell Garnett estimates.

2.3 Discussion and conclusions

The Bergman–Milton bounds, as well as the Maxwell Garnett estimates, are

valuable for estimating the effective constitutive parameters of HCMs in many

commonly encountered circumstances. However, the advent of exotic new mate-

rials has led to the examination of such bounds within unconventional parameter

regimes. It has been demonstrated in this chapter, that the Bergman–Milton

bounds do not provide tight limits on the value of ε(e) when the relative permit-

tivities of the component materials ε(1) and ε(2) are such that [28]

(i) Re
(
ε(1)

)
and Re

(
ε(2)

)
have opposite signs; and

(ii) |Re
(
ε(1, 2)

) | À |Im (
ε(1, 2)

) |.
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We note that if the real parts of ε(1) and ε(2) have opposite signs, but are of

the same order of magnitude as their imaginary parts, then the Bergman–Milton

bounds are indeed useful, and they then lie within the envelope constructed by

the Maxwell Garnett estimates.
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Chapter 3

Implementation of

Elastodynamic SPFT

3.1 Theory

3.1.1 Introduction

In elastodynamic homogenization we begin with the equation of motion

∂lσ
(`)
lm(r) + ω2ρ(`)u(`)

m (r) = −Fm(r), (3.1)

where σ
(`)
lm(r), u

(`)
m (r) and Fm(r) are the stress, displacement and applied force

tensors of material ‘`’ respectively. Here the constitutive relation is given by

σ
(`)
lm(r) = C

(`)
lmpqS

(`)
pq (r) (3.2)

where the elastic strain tensor is given by

S(`)
pq (r) =

1

2

(
∂pu

(`)
q (r) + ∂qu

(`)
p (r)

)
(3.3)

and C
(`)
lmpq represents the stiffness tensor, which describes the constitutive prop-

erties of material ‘` ’.

In this chapter we apply the elastodynamic SPFT, established by Zhuck and

Lakhtakia [14], to calculate numerically C
(hcm)
lmpq for HCMs constructed as oriented
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ellipsoidal particles of one component material randomly distributed in a matrix

of the second component material. Prior to undertaking the numerical study, we

derive new theoretical results in two particular areas:

(i) in the implementation of a two–point covariance function which character-

izes the distributions of the component materials, and

(ii) in the simplification of certain integrals in order to make them amenable to

numerical computation.

The SPFT estimate is also compared analytically to the self-consistent ap-

proaches provided by the Hill and Budiansky estimates [29, 30, 31], whilst the

numerical examples are compared to the Mori–Tanaka mean–field formalism [20]

and the Hashin–Shtrikman bounds [2, 15].

3.1.2 Preliminaries

In applying the elastodynamic SPFT formalism, it is expedient to adopt both

matrix and tensor representations [32]. The correspondence between the two

representations is described in §3.1.3. Matrices are denoted by double underlining

and bold font, while vectors are in bold font with no underlining. Tensors are

represented in normal font with their components indicated by subscripts (for

nth–order tensors, with n ≤ 4) or subscripts and superscripts (for eighth–order

tensors). All tensor indexes range from 1 to 3. The pqth component of a matrix

A is written as
[
A

]
pq

, while the pth component of a vector b is written as [b ]p.

A repeated index implies summation. Thus, we have the matrix component
[
A ·B ]

pr
=

[
A

]
pq

[
B

]
qr

, vector component
[
A · b]

p
=

[
A

]
pq

[
b
]
q
, and scalar

a · b = [a]p [b]p. The adjoint, determinant and trace of a matrix A are denoted

by adj
(
A

)
, det

(
A

)
and tr

(
A

)
, respectively. The prefixes Re and Im are used

to signify real and imaginary parts, respectively, while i =
√−1.

The SPFT is developed in the frequency domain wherein the stress, strain,

and displacement have an implicit exp (−iωt) dependency on time t, ω being the

angular frequency. Thus, these are generally complex–valued quantities. The

possibility of viscoelastic behaviour is accommodated through complex–valued

16



constitutive parameters. Stiffness tensors are taken to exhibit the usual symme-

tries

Clmpq = Cmlpq = Clmqp = Cpqlm, (3.4)

whilst bearing in mind that the symmetry Im Clmpq = Im Cpqlm has not been

proved generally [33]. On account of the symmetries (3.4), the matrix counterpart

of tensor Clmpq — namely, the 9×9 stiffness matrix C — is symmetric.

3.1.3 Matrix/tensor algebra

A fourth–order tensor Arstu (r, s, t, u ∈ {1, 2, 3}) has 81 components. If it obeys

the symmetries Arstu = Asrtu = Arsut = Aturs, it can be represented by a 9×9

matrix A with components
[
A

]
RS

(R, S ∈ {1, . . . , 9}) . Similarly, the nine

entries of a second–order tensor Brs (r, s ∈ {1, 2, 3}) may be expressed as a

column 9–vector B with components [B ]R (R ∈ {1, . . . , 9}). The scheme for

converting between the tensor subscript pairs rs and tu and the matrix indexes

RS or vector index R is provided in Table 3.1.

R, S rs, tu R, S rs, tu R, S rs, tu

1 11 4 23 or 32 7 23 or 32
2 22 5 13 or 31 8 13 or 31
3 33 6 12 or 21 9 12 or 21

Table 3.1: Conversion between tensor and matrix/vector subscripts.

The most general 9×9 matrix A considered in this chapter has the form

A =




α 0
3×3

0
3×3

0
3×3

β β

0
3×3

β β


 , (3.5)

where α is a general 3×3 matrix, β is a diagonal 3×3 matrix, and 0
3×3

is the
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3×3 null matrix. If we define a 9×9 matrix A† as [32]

A† =




α−1 0
3×3

0
3×3

0
3×3

1
4
β−1 1

4
β−1

0
3×3

1
4
β−1 1

4
β−1




, (3.6)

then A† ·A = A ·A† = τ , where τ is the 9×9 matrix counterpart of the identity

tensor

τrstu =
1

2
(δrtδsu + δruδst) . (3.7)

3.1.4 Component materials

We consider the homogenization of a two–component composite material. Both

component materials are homogeneous and we randomly distribute identically–

oriented, conformal, ellipsoidal particles of one component material in a matrix

of the second component material. For convenience, the principal axes of the

ellipsoidal particles are taken to be aligned with the Cartesian axes. Thus, the

surface of each ellipsoidal particle may be parameterized by the vector

r(e) = ηU · r̂, (3.8)

where η is a linear measure of size, r̂ is the radial unit vector and the diagonal

shape matrix

U =
1

3
√

abc




a 0 0

0 b 0

0 0 c


 , (a, b, c ∈ R+). (3.9)

The composite material is considered to occupy all space, denoted by V . It

is partitioned into parts V (1) and V (2) containing the two component materials

labeled as ‘1’ and ‘2’, respectively. The distributional statistics of the component

material distributed as ellipsoidal particles are described in terms of moments of

18



the characteristic functions

Φ(`)(r) =





1, r ∈ V (`),

(` = 1, 2).

0, r 6∈ V (`),

(3.10)

The volume fraction of component material ‘`’, namely f (`) , is given by the first

statistical moment of Φ(`) ; i.e.,

〈Φ(`)(r) 〉 = f (`), (` = 1, 2) . (3.11)

Notice that f (1) + f (2) = 1. The second statistical moment of Φ(`) constitutes a

two–point covariance function. The physically–motivated form [34]

〈Φ(`)(r) Φ(`)(r′) 〉 =





〈Φ(`)(r) 〉〈Φ(`)(r′) 〉 , |U−1 · (r− r′) | > L ,

〈Φ(`)(r) 〉 , |U−1 · (r− r′) | ≤ L ,

(3.12)

is adopted, where L > 0 is the correlation length which is taken to be much smaller

than the elastodynamic wavelengths. In the context of the electromagnetic SPFT,

the specific form of the covariance function has only a secondary influence on

estimates of HCM constitutive parameters, for a range of physically–plausible

covariance functions [12].

The elastodynamic properties of the component materials ‘1’ and ‘2’ are char-

acterized by their stiffness tensors C
(1)
lmpq and C

(2)
lmpq (or, equivalently, their 9×9

stiffness matrices C(`), ` ∈ {1, 2}), and their densities ρ(1) and ρ(2). The stiffness

tensors exhibit the symmetries represented in (3.4). The component materials are

generally orthotropic [35] in the following developments; i.e., the stiffness matrix

for each component material may be expressed as

C(`) =




M(`) 0
3×3

0
3×3

0
3×3

D(`) D(`)

0
3×3

D(`) D(`)


 , (` = 1, 2), (3.13)
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where M(`) and D(`) are symmetric and diagonal 3×3 matrices, respectively, and

0
3×3

is the 3×3 null matrix. For the degenerate case in which the component

material ‘`’ is isotropic, we have

[
C(`)

]
11

=
[
C(`)

]
22

=
[
C(`)

]
33

= λ(`) + 2µ(`)

[
C(`)

]
12

=
[
C(`)

]
13

=
[
C(`)

]
23

= λ(`)

[
C(`)

]
44

=
[
C(`)

]
55

=
[
C(`)

]
66

= µ(`)





, (` = 1, 2), (3.14)

where λ(`) and µ(`) are the Lamé constants [36].

3.2 Comparison material and the SPFT

3.2.1 Comparison material

A central concept in the SPFT is that of a homogeneous comparison material.

This provides the initial ansatz for the SPFT estimate of the constitutive prop-

erties of the HCM. As such, the comparison material represents the lowest–order

SPFT estimate of the HCM. Since we have taken the component materials to be

generally orthotropic and the inclusion particles to be ellipsoidal, the comparison

material is generally orthotropic1. The orthotropic comparison material (OCM)

is characterized by its stiffness tensor C
(ocm)
lmpq and density ρ(ocm), with C

(ocm)
lmpq ex-

hibiting the symmetries (3.4).

For the OCM the equation of motion is given by

∂lσ
(ocm)
lm (r) + ω2ρ(ocm)u(ocm)

m (r) = −Fm(r), (3.15)

and the constitutive relation

σ
(ocm)
lm (r) = C

(ocm)
lmpq S(ocm)

pq (r). (3.16)

1In fact, the comparison material would also be orthotropic if (i) the components materials
were isotropic but distributed as aligned ellipsoidal particles; or (ii) the components materials
were orthotropic but distributed as spherical particles
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Substituting (3.16) and (3.3) into (3.15) gives us

C
(ocm)
lmpq ∂l∂qup(r) + ω2ρ(ocm)um(r) = −Fm(r). (3.17)

The solution to this equation of motion is given by

u(ocm)
p (r) = G(ocm)

pm (r) ∗ Fm(r), (3.18)

where ∗ represents a convolution integral and G
(ocm)
pm (r) is the Green function of

the OCM, which may be expressed in 3×3 spectral matrix form as [14]

G(ocm)(k) =
[
k2a(k̂)− ω2ρ(ocm)I

]−1

, (3.19)

with I being the 3×3 identity matrix and a(k̂) the 3× 3 matrix with entries

[
a(k̂)

]
mp

=
klC

(ocm)
lmpq kq

k2
. (3.20)

Herein, k = k k̂ ≡ (k1, k2, k3) with k̂ = (sin θ cos φ, sin θ sin φ, cos θ). For use later

on in §3.2.4, we remark that G(ocm)(k) may be conveniently expressed as [14]

G(ocm)(k) =
N(k)

∆(k)
, (3.21)

with the 3×3 matrix function

N(k) = k4adj
[
a(k̂)

]
+ ω2ρ(ocm)k2

{
a(k̂)− tr

[
a(k̂)

]
I
}

+
(
ω2ρ(ocm)

)2
I (3.22)

and the scalar function

∆(k) = k6det
[
a(k̂)

]
− ω2ρ(ocm) k4tr

{
adj

[
a(k̂)

]}
+

(
ω2ρ(ocm)

)2
k2 tr

[
a(k̂)

]
− (

ω2ρ(ocm)
)3

. (3.23)

A key step in the SPFT — one which facilitates the calculation of C
(ocm)
lmpq and
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ρ(ocm) — is the imposition of the conditions [14, eqs. (2.72),(2.73)]

〈Φ(1)(r) ξ
(1)
lmpq + Φ(2)(r) ξ

(2)
lmpq〉 = 0, (3.24)

〈Φ(1)(r)
[
ρ(1) − ρ(ocm)

]
+ Φ(2)(r)

[
ρ(2) − ρ(ocm)

]〉 = 0, (3.25)

in order to remove all secular terms. In (3.24), the quantities

ξ
(`)
lmpq =

(
C

(`)
lmst − C

(ocm)
lmst

)
η

(`)
stpq, (` = 1, 2), (3.26)

where η
(`)
stpq is given implicitly via [14]

S(`)
pq (r) = η

(`)
pqst$

(`)
st (r), (3.27)

$
(`)
ij (r) = S

(`)
ij (r) + Wijlm

(
C

(`)
lmpq − C

(ocm)
lmpq

)
S(`)

pq (r), (3.28)

and the renormalization tensor is given by [14]

Wrstu =
1

8π

∫ 2π

0

dφ

∫ π

0

dθ sin θ × (U−1 · k̂)t

(U−1 · k̂) · (U−1 · k̂)
× (3.29)

{
(U−1 · k̂)s

[
a−1(U−1 · k̂)

]
ru

+ (U−1 · k̂)r

[
a−1(U−1 · k̂)

]
su

}
.

3.2.2 Stiffness matrix of the OCM

To solve for C
(ocm)
lmpq we must convert (3.26)–(3.28) to matrix notation as described

in §3.1.3, giving us

ξ(`) =
(
C(`) −C(ocm)

)
· η(`) (3.30)

S(`)(r) = η(`) ·$(`)(r) (3.31)

$(`)(r) = S(`)(r) + W ·
(
C(`) −C(ocm)

)
· S(`)(r) (3.32)

for ` = 1, 2. We can now utilize the matrix operation †, also defined in §3.1.3, to

rearrange (3.30) as

η(`) =
(
C(`) −C(ocm)

)†
· ξ(`). (3.33)
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We can now substitute (3.31) and (3.33) into (3.32) to give

$(`)(r) =
(
C(`) −C(ocm)

)†
· ξ(`) ·$(`)(r) +

W ·
(
C(`) −C(ocm)

)
·
(
C(`) −C(ocm)

)†
· ξ(`) ·$(`)(r) (3.34)

=

[(
C(`) −C(ocm)

)†
+ W

]
· ξ(`) ·$(`)(r). (3.35)

This produces [(
C(`) −C(ocm)

)†
+ W

]
· ξ(`) = τ (3.36)

where τ is the 9×9 matrix representation of the identity tensor τrstu as described

in §3.1.3. We can now find ξ(`) by multiplying through with

[(
C(`) −C(ocm)

)†
+ W

]†
(3.37)

giving

ξ(`) =

[(
C(`) −C(ocm)

)†
+ W

]†
. (3.38)

Substituting (3.38) into the matrix representation of (3.24) provides an equation

that can be solved for C(ocm)

f (1)ξ(1) = −f (2)ξ(2), (3.39)

f (1)

[(
C(1) −C(ocm)

)†
+ W

]†
= −f (2)

[(
C(2) −C(ocm)

)†
+ W

]†
. (3.40)

Multiplying through, in turn by,
[
(C(1)−C(ocm))†+W

]
,
[
(C(2)−C(ocm))†+W

]
,

(C(1)−C(ocm)) and (C(2)−C(ocm)) in (3.40) leaves us with an equation for C(ocm)

of the form,

C(ocm) = f (1)C(1) + f (2)C(2) + (C(2) −C(ocm)) ·W · (C(1) −C(ocm)). (3.41)

Finally, we can rearrange (3.41) to get

(C(1) −C(ocm)) + f (2)(C(2) −C(1)) + (C(2) −C(ocm)) ·W · (C(1) −C(ocm)) = 0
9×9

(3.42)
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and remove a common factor, giving

[
τ + (C(2) −C(ocm)) ·W] · (C(1) −C(ocm)) = f (2)(C(1) −C(2)). (3.43)

Using the matrix operation † we have

(C(1) −C(ocm)) = f (2)
[
τ + (C(2) −C(ocm)) ·W

]†
· (C(1) −C(2)) (3.44)

and we rearrange to get our new estimate for C(ocm) as

C(ocm) = C(1) + f (2)
[
τ + (C(2) −C(ocm)) ·W

]†
·
(
C(2) −C(1)

)
. (3.45)

By standard numerical procedures, such as the Jacobi method [37], the nonlinear

relation (3.45) is solved for C(ocm). The iteration used in this case is given by

n+1C(ocm) = C(1) + f (2)
[
τ + (C(2) − nC(ocm) ) ·W

]†
·
(
C(2) −C(1)

)

nC(ocm) =
1

2

(
nC(ocm) +(n−1) C(ocm)

)
, (3.46)

0C(ocm) = f (1)C(1) + f (2)C(2),

where nC(ocm) is the nth iteration of C(ocm). The iteration was said to have

converged when the relative error of n+1C(ocm) and n′C(ocm) was less than 1×10−3.

By combining (3.11) with (3.25), it follows immediately that the OCM density

is the volume average of the densities of the component materials ‘1’ and ‘2’; i.e.,

ρ(ocm) = f (1)ρ(1) + f (2)ρ(2). (3.47)

3.2.3 Comparison of OCM with the Hill and Budiansky

estimates

If both component materials are isotropic, with their stiffness matrices given by

(3.14), then we can solve C(ocm) for the Lamé constants λ(ocm) and µ(ocm). The

form of C(ocm) given in (3.41) allows for easy calculation of the Lamé constants

of the composite.
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Lamé constants of the OCM

For an isotropic composite material, Zhuck and Lakhtakia [14] have found W in

tensor form as

Wrstu =
(3λ(ocm) + 8µ(ocm))(δrtδsu + δruδst)− 2(λ(ocm) + µ(ocm))δrsδtu

30µ(ocm)(λ(ocm) + 2µ(ocm))
, (3.48)

wherein δmp is the Kronecker delta function.

We can now create two equations for λ(ocm) and µ(ocm) by finding
[
C(ocm)

]
12

and
[
C(ocm)

]
44

in terms of the Lamé constants. From
[
C(ocm)

]
12

we have

[
1

15µ(ocm)(λ(ocm) + 2µ(ocm))

]
×

{
− 9µ(ocm)λ(ocm)µ(1) − 14[µ(ocm)]2µ(1) +

15f (2)µ(ocm)λ(ocm)µ(1) + 30f (2)[µ(ocm)]2µ(1) − 15f (2)µ(1)µ(2) −
30f (2)[µ(ocm)]2µ(2) − 6λ(ocm)µ(1)µ(2) + 6µ(ocm)λ(ocm)µ(2) − 16µ(ocm)µ(1)µ(2) +

16[µ(ocm)]2µ(2) + 9λ(ocm)[µ(ocm)]2 + 14[µ(ocm)]3
}

= 0, (3.49)

which can be solved for λ(ocm) to give

λ(ocm) =

{
1

3 [−3µ(ocm)µ(1) + 5f (2)µ(ocm)(µ(1) − µ(2))− 2µ(2)(µ(1) − µ(ocm))]

}
×

−2µ(ocm)
{
− 7µ(ocm)µ(1) + 15f (2)µ(ocm)[µ(1) − µ(2)]−

8µ(2)[µ(1) − µ(ocm)] + 7
[
µ(ocm)

]2
}

. (3.50)

Now we also have an equation for µ(ocm) from
[
C(ocm)

]
44

[
1

15µ(ocm)(λ(ocm) + 2µ(ocm))

]
×

{
6µ(ocm)λ(ocm)µ(1) + 4µ(ocm)µ(1)µ(2) +

4λ(ocm)µ(1)µ(2) − 30f
[
µ(ocm)

]2
λ(2) + 4

[
µ(ocm)

]3 − 20
[
µ(ocm)

]2
λ(1) −

4
[
µ(ocm)

]2
µ(1) + 14λ(ocm)

[
µ(ocm)

]2
+ 15λ(ocm)µ(ocm)λ(2) + 6λ(ocm)µ(ocm)µ(2) +

10
[
µ(ocm)

]2
λ(2) − 4

[
µ(ocm)

]2
µ(2) + 15f (2)λ(ocm)µ(ocm)λ(1) −

15f (2)µ(1)λ(2) + 30f (2)
[
µ(ocm)

]2
λ(1) − 15µ(ocm)λ(1)λ(2) − 10µ(ocm)µ(2)λ(1) −

10µ(ocm)µ(1)λ(ocm)
}

= 0 (3.51)
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and when we substitute in (3.50), we get the solution for µ(ocm) as

µ(ocm) =
µ(1)

2
− 5f (2)µ(1)

6
+

5f (2)µ(2)

6
− µ(2)

3
±

1

6

√
9 [µ(1)]

2
+ 12µ(1)µ(2) − 30f (2) [µ(1)]

2 − 20f (2) [µ(2)]
2
+

50f (1)f (2)µ(1)µ(2) + 25 [f (2)]
2
([µ(1)]

2
+ [µ(2)]

2
) + 4 [µ(2)]

2
.

(3.52)

The Hill and Budiansky estimates

The Hill estimate is given by [29, 30]

f (1)

κ(hill) − κ(2)
+

f (2)

κ(hill) − κ(1)
=

1

κ(hill) + 4
3
µ(hill)

, (3.53)

f (1)

µ(hill) − µ(2)
+

f (2)

µ(hill) − µ(1)
=

2κ(hill) + 4µ(hill)

5(κ(hill) + 4
3
µ(hill))

(3.54)

and the Budiansky estimate by [31]

1

κ(bud)
=

1

κ(2)
+

(
1− κ(1)

κ(2)

)
f (1)

κ(bud) + α(κ(1) − κ(bud))
, (3.55)

1

µ(bud)
=

1

µ(2)
+

(
1− µ(1)

µ(2)

)
f (1)

µ(bud) + β(µ(1) − µ(bud))
, (3.56)

where α =
1 + ν(bud)

3[1− ν(bud)]
, β =

2[4− 5ν(bud)]

15[1− ν(bud)]
and ν(bud) =

λ(bud)

2[λ(bud) + µ(bud)]
. Both

of these estimates are written in terms of the bulk modulus κ(`) = λ(`) + 2µ(`),

(` = 1, 2, bud, hill) so we can solve for the Lamé constants of the composite.

If we substitute (3.50) and (3.52) into the Hill and Budiansky estimates then

the equations are satisfied and we find that the Hill and Budiansky estimates

are identical to each other and also identical to the OCM estimate for isotropic

composites. It is of interest to note Zhuck and Lakhtakia [14] made reference to

this result but produced no results.
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3.2.4 Second–order SPFT

The expressions for the second–order2 estimates of the HCM stiffness and density

tensors, as derived elsewhere [14, eqs. (2.77),(2.78)], are

C
(spft)
lmpq = C

(ocm)
lmpq − ω2ρ(ocm)

2

∫
d3k

kt

k2
Blmrs

tupq (k)
[
G(ocm)(k)

]
vu
×

{
ks

[
a−1(k̂)

]
rv

+ kr

[
a−1(k̂)

]
sv

}
(3.57)

and

ρ(spft)
mp = ρ(ocm)δmp + ω2

∫
d3k B(k)

[
G(ocm)(k)

]
mp

, (3.58)

respectively. The eighth–order tensor Blmrs
tupq (k) and scalar B(k) represent the

spectral covariance functions given as

Blmrs
tupq (k) =

(
ξ

(2)
lmrs − ξ

(1)
lmrs

) (
ξ

(2)
tupq − ξ

(1)
tupq

)

8π3

∫
d3R Γ(R) exp (−ik ·R)

B(k) =

(
ρ(2) − ρ(1)

)2

8π3

∫
d3R Γ(R) exp (−ik ·R)





,

(3.59)

with

Γ(R) = Γ(r− r′) = 〈Φ(1)(r) Φ(1)(r′) 〉 − 〈Φ(1)(r) 〉 〈Φ(1)(r′) 〉
≡ 〈Φ(2)(r) Φ(2)(r′) 〉 − 〈Φ(2)(r) 〉 〈Φ(2)(r′) 〉. (3.60)

We now proceed to simplify the expressions for C
(spft)
lmpq and ρ

(spft)
mp presented

in (3.57) and (3.58), in order to make them numerically tractable. We begin

with the integral on the right sides of (3.59) which, upon implementing the step

function–shaped covariance function (3.12), may be expressed as

∫
d3R Γ(R) exp (−ik ·R) = f (1)f (2)

∫

|R|≤L

d3R exp
[−i

(
U · k) ·R]

. (3.61)

2The first–order SPFT estimate is identical to the zeroth–order SPFT estimate which is
represented by the comparison material.
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Thus, we find that Blmrs
tupq (k) and B(k) are given by [38]

Blmrs
tupq (k) =

f (1)f (2)
(
ξ

(2)
lmrs − ξ

(1)
lmrs

)(
ξ

(2)
tupq − ξ

(1)
tupq

)

2 (πkσ)2

[
sin (kσL)

kσ
− L cos (kσL)

]

B(k) =
f (1)f (2)

(
ρ(2) − ρ(1)

)2

2 (πkσ)2

[
sin (kσL)

kσ
− L cos (kσL)

]





,

(3.62)

wherein the scalar function

σ ≡ σ(θ, φ) =

√
a2 sin2 θ cos2 φ + b2 sin2 θ sin2 φ + c2 cos2 θ. (3.63)

Upon substituting (3.62) into (3.57) and (3.58), the integrals therein with

respect to k can be evaluated by means of calculus of residues: The roots of

∆(k) = 0 give rise to six poles in the complex–k plane, located at k = ±p1, ±p2

and ±p3, chosen such that Im pi ≥ 0 (i = 1, 2, 3). From (3.23), we find that.

p2
1 = PA − 1

3


 21/3PB

PC det
[
a(k̂)

] − PC

21/3 det
[
a(k̂)

]

 , (3.64)

p2
2 = PA +

1

3


 (1 + i

√
3)PB

22/3PC det
[
a(k̂)

] − (1− i
√

3)PC

24/3 det
[
a(k̂)

]

 , (3.65)

p2
3 = PA +

1

3


 (1− i

√
3)PB

22/3PC det
[
a(k̂)

] − (1 + i
√

3)PC

24/3 det
[
a(k̂)

]

 , (3.66)

wherein

PA =
ω2ρ(ocm)tr

{
adj

[
a(k̂)

]}

3 det
[
a(k̂)

] , (3.67)

PB =
(
ω2ρ(ocm)

)2
(

3 det
[
a(k̂)

]
tr

[
a(k̂)

]
− tr

{
adj

[
a(k̂)

]}2
)

, (3.68)

P 3
C = PD +

√
4P 3

B + P 2
D, (3.69)

PD =
(
ω2ρ(ocm)

)3
(
2 tr

{
adj

[
a(k̂)

]}3

− (3.70)

9 det
[
a(k̂)

]
tr

{
adj

[
a(k̂)

]}
tr

[
a(k̂)

]
+ 27 det

[
a(k̂)

]2 )
.
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These six poles are all simple poles of ∆(k) and we must calculate the residue of

G(ocm) at each of them. The situation is further complicated by the simple pole

introduced by the covariance functions (3.62). The function we wish to find the

residue of is
N(k)

F́(k)

[
eiLσk − e−iLσk

2iσk
− L(eiLσk + e−iLσk)

2

]
, (3.71)

with

F́(k) = (k − p1)(k − p2)(k − p3)(k + p1)(k + p2)(k + p3). (3.72)

We calculate the residue using contour integration. Splitting (3.71) into 4 separate

functions;

F1(k) =
N(k)

F́(k)

eiLσk

2iσk
(3.73)

F2(k) =
N(k)

F́(k)

−LeiLσk

2
(3.74)

F3(k) =
N(k)

F́(k)

−e−iLσk

2iσk
(3.75)

F4(k) =
N(k)

F́(k)

−Le−iLσk

2
. (3.76)

For the functions F1(k) and F2(k) we use the a semi–circle in the upper half

plane as the contour, calculating the residue of F1(k) at p1, p2, p3 and 0 but the

residue of F2(k) only at p1, p2, p3. The residues are given by

Res(F1(p1)) =
−iN(p1U · k̂)eiLσp1

4σp2
1(p

2
1 − p2

2)(p
2
1 − p2

3)
(3.77)

Res(F1(p2)) =
iN(p2U · k̂)eiLσp2

4σp2
2(p

2
1 − p2

2)(p
2
2 − p2

3)
(3.78)

Res(F1(p3)) =
−iN(p3U · k̂)eiLσp3

4σp2
3(p

2
1 − p2

3)(p
2
2 − p2

3)
(3.79)

Res(F1(0)) =
iN(0)

2σp2
1p

2
2p

2
3

(3.80)

Res(F2(p1)) =
−LN(p1U · k̂)eiLσp1

4σp1(p2
1 − p2

2)(p
2
1 − p2

3)
(3.81)
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Res(F2(p2)) =
LN(p2U · k̂)eiLσp2

4σp2(p2
1 − p2

2)(p
2
2 − p2

3)
(3.82)

Res(F2(p3)) =
−LN(p3U · k̂)eiLσp3

4σp3(p2
1 − p2

3)(p
2
2 − p2

3)
. (3.83)

Similarly, for the functions F3(k) and F4(k) we use a semi–circle in the lower half

plane as the contour, calculating the residue of F3(k) at −p1, −p2, −p3 and 0 but

the residue of F4(k) only at −p1, −p2, −p3. These residues are given by

Res(F3(−p1)) =
iN(p1U · k̂)eiLσp1

4σp2
1(p

2
1 − p2

2)(p
2
1 − p2

3)
(3.84)

Res(F3(−p2)) =
−iN(p2U · k̂)eiLσp2

4σp2
2(p

2
1 − p2

2)(p
2
2 − p2

3)
(3.85)

Res(F3(−p3)) =
iN(p3U · k̂)eiLσp3

4σp2
3(p

2
1 − p2

3)(p
2
2 − p2

3)
(3.86)

Res(F3(0)) =
−iN(0)

2σp2
1p

2
2p

2
3

(3.87)

Res(F4(−p1)) =
LN(p1U · k̂)eiLσp1

4σp1(p2
1 − p2

2)(p
2
1 − p2

3)
(3.88)

Res(F4(−p2)) =
−LN(p2U · k̂)eiLσp2

4σp2(p2
1 − p2

2)(p
2
2 − p2

3)
(3.89)

Res(F4(−p3)) =
LN(p3U · k̂)eiLσp3

4σp3(p2
1 − p2

3)(p
2
2 − p2

3)
. (3.90)

The values of the residues provided by the pole at zero, are halved as the pole

lies on both contours. We sum the residues in the following way because each

residue has to be evaluated by moving anti–clockwise around the contour.

Residue = Res(F1(p1)) + Res(F1(p2)) + Res(F1(p3)) +
1

2
Res(F1(0)) +

Res(F2(p1)) + Res(F2(p2)) + Res(F2(p3))−
Res(F3(−p1))− Res(F3(−p2))− Res(F3(−p3))− 1

2
Res(F3(0))−

Res(F4(−p1))− Res(F4(−p2))− Res(F4(−p3)). (3.91)

Thus, by this application of the Cauchy residue theorem [39], the SPFT estimates
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are delivered as

C
(spft)
lmpq = C

(ocm)
lmpq +

ω2ρ(ocm)f (1)f (2)
(
ξ

(2)
lmrs − ξ

(1)
lmrs

)(
ξ

(2)
tupq − ξ

(1)
tupq

)

4πi
×

∫ 2π

φ=0

∫ π

θ=0

dφ dθ
kt sin θ

{
ks

[
a−1(k̂)

]
rv

+ kr

[
a−1(k̂)

]
sv

}

(kσ)2 det
[
a(k̂)

]
[
b(k̂)

]
vu

,

(3.92)

and

ρ(spft)
mp = ρ(ocm)δmp −

ω2f (1)f (2)
(
ρ(2) − ρ(1)

)2

2πi
×

∫ 2π

φ=0

∫ π

θ=0

dφ dθ
sin θ

det
[
a(k̂)

]
[
b(k̂)

]
mp

, (3.93)

where the residue is given by

b(k̂) =
1

2i

[
eiLσp1N(p1U · k̂)

σp2
1(p

2
1 − p2

2)(p
2
1 − p2

3)

(
1− iLσp1

)
−

eiLσp2N(p2U · k̂)

σp2
2(p

2
1 − p2

2)(p
2
2 − p2

3)

(
1− iLσp2

)
+

eiLσp3N(p3U · k̂)

σp2
3(p

2
2 − p2

3)(p
2
1 − p2

3)

(
1− iLσp3

)
− N(0)

σp2
1p

2
2p

2
3

]
. (3.94)

The integrals in (3.92) and (3.93) are readily evaluated by standard numerical

methods [40].

Significantly, the SPFT estimates C
(spft)
lmpq and ρ

(spft)
mp are complex–valued even

when the corresponding quantities for the component materials, i.e., C
(`)
lmpq and

ρ(`) (` = 1, 2), are real–valued. This reflects the fact that the SPFT takes into

account losses due to scattering. We note that for [33]

(i) the time–averaged strain energy density to be positive–valued, we require

ReC(spft)

6×6
to be positive–definite; and

(ii) the time–averaged dissipated energy density to be positive–valued, we re-

quire −ImC(spft)

6×6
to be positive–semi–definite,

where C(spft)

6×6
is the 6×6 matrix with components

[
C(spft)

6×6

]
st

=
[
C(spft)

]
st

(s, t ∈
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{1, 2, . . . , 6}) and C(spft) is the 9×9 matrix equivalent to the SPFT stiffness tensor

C
(spft)
lmpq .

A complex–valued anisotropic density, as delivered by (3.93), is not without

precedent [41]; see Milton [42] for a discussion on this issue.

The regime of validity of (3.92) and (3.93) have also been derived by Zhuck

and Lakhtakia [14]. If we consider the average fluctuations in density and stiffness

tensor values between the component and composite materials to be given by χρ

and χC respectively, then (3.92) and (3.93) hold if

(ωL)2

(
χC

C

)2
ρ

C
¿ 1

(ωL)2

(
χρ

ρ

)2
ρ

C
¿ 1

where C and ρ are the average stiffness tensor entries and average density values

of the two component materials.

3.3 The Mori–Tanaka estimate and Hashin–Shtrikman

bounds

In order to provide a baseline for the SPFT estimate of the HCM stiffness tensor,

the corresponding results provided by the Mori–Tanaka mean–field formalism [20]

were also computed. The Mori–Tanaka estimate of the 9×9 stiffness matrix of

the HCM may be written as [43]

C(MT ) =
[
f (1)C(1) + f (2)C(2) ·BMT

]
· [ f (1)τ + f (2)BMT

]†
, (3.95)

where

BMT =

[
τ + S(esh) ·

(
C(1)

)†
·
(
C(2) −C(1)

) ]†
, (3.96)

and S(esh) is the 9×9 Eshelby matrix [44].
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3.3.1 Eshelby tensor/matrix

If the component materials are orthotropic and the inclusion particles spherical

(i.e., a = b = c), then the tensor counterpart of the 9×9 Eshelby matrix is given

as [45]

S
(esh)
ijkl =

1

8π
C

(1)
mnkl

∫ +1

−1

dζ3

∫ 2π

0

dω
[
F

(esh)
imjn (ϑ) + F

(esh)
jmin (ϑ)

]
, (3.97)

wherein

F
(esh)
ijkl (ϑ) =

ϑkϑlNij

εmnlKm1Kn2Kl3

, Nij(ϑ) =
1

2
εiklεjmnKkmKln, Kik = C

(1)
ijklϑjϑi

ϑ1 =
ζ1

a
, ϑ2 =

ζ2

b
, ϑ3 =

ζ3

c

ζ1 = (1− ζ2
3 )1/2 cos(ω), ζ2 = (1− ζ2

3 )1/2 sin(ω), ζ3 = ζ3





,

(3.98)

with εijk being the Levi–Civita symbol. The integrals in (3.97) can be evaluated

using standard numerical methods [40].

If the component materials are isotropic and the ellipsoidal inclusion parti-

cles described by the shape matrix U, then the Eshelby matrix has the form

represented in (3.5) with distinct components given as [43]

[
S(esh)

]
11

=
3a2Iαα +

(
1− 2ν(1)

)
Iα

8π (1− ν(1))
, (3.99)

[
S(esh)

]
12

=
3b2Iαβ −

(
1− 2ν(1)

)
Iα

8π (1− ν(1))
, (3.100)

[
S(esh)

]
13

=
3c2Iαγ −

(
1− 2ν(1)

)
Iα

8π (1− ν(1))
, (3.101)

[
S(esh)

]
21

=
3a2Iαβ −

(
1− 2ν(1)

)
Iβ

8π (1− ν(1))
, (3.102)
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[
S(esh)

]
22

=
3b2Iββ +

(
1− 2ν(1)

)
Iβ

8π (1− ν(1))
, (3.103)

[
S(esh)

]
23

=
3c2Iβγ +

(
1− 2ν(1)

)
Iβ

8π (1− ν(1))
, (3.104)

[
S(esh)

]
31

=
3a2Iαγ −

(
1− 2ν(1)

)
Iγ

8π (1− ν(1))
, (3.105)

[
S(esh)

]
32

=
3b2Iβγ −

(
1− 2ν(1)

)
Iγ

8π (1− ν(1))
, (3.106)

[
S(esh)

]
33

=
3c2Iγγ +

(
1− 2ν(1)

)
Iγ

8π (1− ν(1))
, (3.107)

[
S(esh)

]
44

=
3(b2 + c2)Iβγ +

(
1− 2ν(1)

)
(Iβ + Iγ)

16π (1− ν(1))
, (3.108)

[
S(esh)

]
55

=
3(a2 + c2)Iαγ +

(
1− 2ν(1)

)
(Iα + Iγ)

16π (1− ν(1))
, (3.109)

[
S(esh)

]
66

=
3(a2 + b2)Iαβ +

(
1− 2ν(1)

)
(Iα + Iβ)

16π (1− ν(1))
, (3.110)

where ν(1) =
λ(1)

2 (λ(1) + µ(1))
is the Poisson ratio of component material ‘1’. For
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the case a > b > c we have

Iα =
4πabc

(a2 − b2)(a2 − c2)1/2
[ F∼(θ∼, k∼)− E∼(θ∼, k∼)]

Iγ =
4πabc

(b2 − c2)(a2 − c2)1/2

[
b

ac
(a2 − c2)1/2 − E∼(θ∼, k∼)

]

Iβ = 4π − (Iα + Iγ), Iαβ =
Iα − Iβ

3(b2 − a2)
,

Iαγ =
Iα − Iγ

3(c2 − a2)
, Iβγ =

Iβ − Iγ

3(c2 − b2)

Iαα =
4π

3a2
− (Iαβ + Iαγ), Iββ =

4π

3b2
− (Iαβ + Iβγ),

Iγγ = 4π
3c2
− (Iαγ + Iβγ)





, (3.111)

with the elliptic integrals given by

E∼(θ∼, k∼) =

∫ θ∼

0

dφ (1− [k∼]2 sin2 φ)1/2

F∼(θ∼, k∼) =

∫ θ∼

0

dφ(1− [k∼]2 sin2 φ)−1/2





, (3.112)

wherein

θ∼ = sin−1 (a2 − c2)1/2

a
, k∼ =

(a2 − b2)1/2

(a2 − c2)1/2
. (3.113)

3.3.2 The Hashin–Shtrikman bounds

The well known Hashin-Shtrikman (HS) bounds [2, 15] are bounds on κ(hcm) and

µ(hcm). The upper HS bounds are given by

µ(HS upper) ≤ f (1)µ(1) + f (2)µ(2) − f (1)f (2)
(
µ(1) − µ(2)

)2

f (1)µ(2) + f (2)µ(1) +
µ(2)(9κ(2)+8µ(2))
[6(κ(2)+2µ(2))]

(3.114)

κ(HS upper) ≤ f (1)κ(1) + f (2)κ(2) − f (1)f (2)
(
κ(1) − κ(2)

)2

f (1)κ(2) + f (2)κ(1) + 4µ(2)/3
(3.115)

with κ(`) = λ(`) + 2µ(`)/3 for ` = (1, 2). With the lower HS bounds given by

µ(HS lower) ≥ f (1)µ(1) + f (2)µ(2) − f (1)f (2)
(
µ(1) − µ(2)

)2

f (1)µ(2) + f (2)µ(1) +
µ(1)(9κ(1)+8µ(1))
[6(κ(1)+2µ(1))]

(3.116)
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and

κ(HS lower) ≥ f (1)κ(1) + f (2)κ(2) − f (1)f (2)
(
κ(1) − κ(2)

)2

f (1)κ(2) + f (2)κ(1) + 4µ(1)/3
. (3.117)

As a further check on the validity of our results, for C(ocm) with C(1,2) isotropic, we

compare µ(HS lower) and µ(HS upper) with
[
C(ocm)

]
44

along with comparing
[
C(ocm)

]
11

to
{
κ(HS lower) + 4

3
µ(HS lower)

}
and

{
κ(HS upper) + 4

3
µ(HS upper)

}
.

3.4 Numerical results

In this section, we present the 9×9 stiffness matrix of the HCM, namely C(hcm), as

estimated by the lowest–order SPFT (i.e., hcm = ocm), the second–order SPFT

(i.e., hcm = spft) and the Mori–Tanaka mean–field formalism (i.e., hcm = MT ).

The matrix C(hcm) generally has the orthotropic form represented in (3.13) with

` = hcm. We also present the second–order SPFT density tensor ρ
(spft)
mp ; numerical

results for the lowest–order SPFT density ρ(ocm) need not be presented here as

that quantity is simply the volume average of the densities of the component

materials. For all second–order SPFT computations, we selected ω = 2π × 106

s−1. Throughout the results we construct the composite by randomly distributing

particles of component material ‘2’ in a matrix of component material ‘1’.

3.4.1 Isotropic component materials distributed as ori-

ented ellipsoidal particles

Let us begin by considering the scenario in which the component materials are

both isotropic. The component material ‘1’ is taken to be acetal (i.e., λ(1) = λ(ace),

µ(1) = µ(ace) and ρ(1) = ρ(ace)), and component material ‘2’ to be glass (i.e.,

λ(2) = λ(gla), µ(2) = µ(gla) and ρ(2) = ρ(gla)). The Lamé constants and densities

for these two materials are as follows [46, 47]:

λ(ace) = 2.68 GPa, µ(ace) = 1.15 GPa, ρ(ace) = 1.43× 103 kg m−3

λ(gla) = 21.73 GPa, µ(gla) = 29.2 GPa, ρ(gla) = 2.23× 103 kg m−3



 .

(3.118)
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The eccentricities of the ellipsoidal inclusion particles are specified by the param-

eters {a, b, c}, per (3.8) and (3.9).

In Fig. 3.1 the components of the HCM stiffness matrix C(hcm), as computed

using the lowest–order SPFT and the Mori–Tanaka formalism, are plotted as

functions of volume fraction f (2) for the case a = b = c. Since the HCM is isotropic

in this case, only the components
[
C(hcm)

]
11
≡ λ(hcm) + 2µ(hcm),

[
C(hcm)

]
12
≡

λ(hcm) and
[
C(hcm)

]
44
≡ µ(hcm) are presented, per (3.14) with ` = hcm. Notice

that the following limits necessarily apply for both the SPFT and Mori–Tanaka

estimates:

lim
f (2)→0

C(hcm) = C(1), lim
f (2)→1

C(hcm) = C(2). (3.119)

It is apparent from Fig. 3.1 that, while the lowest–order SPFT and the Mori–

Tanaka estimates are qualitatively similar, the Mori–Tanaka estimates display a

greater deviation from the naive HCM estimate f (1)
[
C(1)

]
pq

+ f (2)
[
C(2)

]
pq

for

mid–range values of f (2). For further comparison in this isotropic scenario, the

familiar variational bounds on
[
C(hcm)

]
11

and
[
C(hcm)

]
44

established by Hashin

and Shtrikman, §3.3.2 [2, 15], are also presented in Fig. 3.1: the lower Hashin–

Shtrikman bound coincides with the Mori–Tanaka estimate and the lowest–order

SPFT estimate lies within the upper and lower Hashin–Shtrikman bounds for all

values of f (2).

The corresponding lowest–order SPFT and Mori–Tanaka estimates for the

orthotropic HCM arising from the distribution of ellipsoidal inclusion particles

described by {a/c = 5, b/c = 1.5} are presented in Fig. 3.2. The degree of

orthotropy exhibited by the HCM can be gauged by relative differences in the

values of
[
C(hcm)

]
pq

for pq ∈ {11, 22, 33}; and similarly by relative differences

in
[
C(hcm)

]
pq

for pq ∈ {44, 55, 66} and by relative differences in
[
C(hcm)

]
pq

for

pq ∈ {12, 13, 23}. These relative differences are greatest for mid–range values of

the volume fraction f (2).

The orthotropic nature of the HCM is accentuated by using more eccentrically–

shaped inclusion particles. This is illustrated by Fig. 3.3, which shows results com-

puted for the same scenario as for Fig. 3.2 but with ellipsoidal particles described

by {a/c = 10, b/c = 2}. A comparison of Figs. 3.1–3.3 reveals that differences be-
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tween the estimates of the lowest–order SPFT and the Mori–Tanaka mean–field

formalism increase as the orthotropic nature of the HCM is accentuated.

Now let us turn to the second–order SPFT estimates of the HCM constitutive

parameters. We considered these quantities as functions of k̄L, where

k̄ =
ω

4




√
ρ(1)

λ(1) + 2µ(1)
+

√
ρ(1)

µ(1)
+

√
ρ(2)

λ(2) + 2µ(2)
+

√
ρ(2)

µ(2)


 (3.120)

is an approximate wavenumber calculated as the average of the shear and longi-

tudinal wavenumbers in the component materials, and L is the correlation length

associated with the two–point covariance function (3.12). Fig. 3.4 shows the

real and imaginary parts of the components of C̃
(spft)

= C(spft) −C(ocm) plotted

against k̄L for f (2) = 0.5. The values of the shape parameters {a, b, c} correspond

to those used in the calculations for Figs. 3.1–3.3. Notice that

lim
L→0

C(spft) = C(ocm) (3.121)

and ∣∣∣
[
C̃

(spft)
]

pq

∣∣∣ ¿
∣∣∣
[
C(ocm)

]
pq

∣∣∣ (3.122)

for all values of the indexes p and q. Furthermore, for the particular example

considered here, the magnitude of
[
C̃

(spft)
]

pq
generally decreases as the inclusion

particles become more eccentric in shape.

A very striking feature of the second–order SPFT estimates presented in

Fig. 3.4 is that

Im
[
C(spft)

]
pq
6= 0, (3.123)

whereas Im
[
C(1,2)

]
pq

= Im
[
C(ocm)

]
pq

= 0. Furthermore, the magnitude

of Im
[
C(spft)

]
pq

grows steadily as the correlation length increases. These ob-

servations may be interpreted in terms of losses due to scattering as follows.

For all reported calculations, ReC(spft)

6×6
is positive–definite and −ImC(spft)

6×6
is

positive–semi–definite, which together imply that the associated time–averaged

strain energy and dissipated energy densities are positive–valued [33], as discussed
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in §3.2.4. Accordingly, the emergence of nonzero imaginary parts of
[
C(spft)

]
pq

indicates that the HCM has acquired a dissipative nature, despite the compo-

nent materials being nondissipative. The dissipation must be a scattering loss,

because the second–order SPFT accommodates interactions between spatially–

distinct scattering centres via the two–point covariance function (3.12). As the

correlation length increases, the number of scattering particles that can mutually

interact also increases, thereby increasing the scattering loss per unit volume.

Lastly in this subsection, the real and imaginary parts of the second–order

SPFT density tensor ρ̃
(spft)
pq = ρ

(spft)
pq − ρ(ocm) are plotted as functions of k̄L in

Fig. 3.5. Only the p = q components are presented, as the p 6= q components are

negligibly small. The density tensor exhibits characteristics similar to those of

the corresponding stiffness tensor insofar as

lim
L→0

ρ(spft)
pq = ρ(ocm) (3.124)

and ∣∣∣ρ̃(spft)
pq

∣∣∣ ¿
∣∣∣ρ(ocm)

∣∣∣ (3.125)

for all values of the indexes p and q. Also, |ρ̃(spft)
pq | generally decreases as the

shape of the inclusion particles deviates further from spherical.

3.4.2 Orthotropic component materials distributed as spheres

Let us now explore the scenario wherein the component materials are orthotropic

perturbations of the isotropic component materials considered in §3.4.1. In the

notation of (3.13), we choose

M(1) =




℘(ace) (1 + ς) λ(ace) (1− ς) λ(ace) (1 + 2ς)

λ(ace) (1− ς) ℘(ace)
(
1− 1

4
ς
)

λ(ace)
(
1 + 1

4
ς
)

λ(ace) (1 + 2ς) λ(ace)
(
1 + 1

4
ς
)

℘(ace) (1− 2ς)




D(1) =




(
µ(ace)

)
(1− ς) 0 0

0 µ(ace)
(
1− 1

2
ς
)

0

0 0 µ(ace)
(
1− 2

3
ς
)








(3.126)
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and

M(2) =




℘(gla) (1 + 2ς) λ(gla) (1− 2ς) λ(gla)
(
1 + 1

2
ς
)

λ(gla) (1− 2ς) ℘(gla)
(
1 + 1

3
ς
)

λ(gla)
(
1− 1

3
ς
)

λ(gla)
(
1 + 1

2
ς
)

λ(gla)
(
1− 1

3
ς
)

℘(gla)
(
1− 1

2
ς
)




D(2) =




(
µ(gla)

) (
1− 3

2
ς
)

0 0

0 µ(gla)
(
1− 4

5
ς
)

0

0 0 µ(gla)
(
1− 2

3
ς
)








, (3.127)

where the real–valued scalar ς controls the degree of orthotropy and ℘(`) = λ(`) +

2µ(`) for ` = gla, ace. As in §3.4.1, the densities of the component materials are

taken to be ρ(1) = ρ(ace) and ρ(2) = ρ(gla). Component material ‘2’ is distributed

as spherical inclusion particles (i.e., a = b = c).

The lowest–order SPFT and Mori–Tanaka estimates for the HCM arising from

orthotropic component materials characterized by ς = 0.05 and ς = 0.1 are

presented in Fig. 3.6 and 3.7, respectively. The plots for ς = 0, for which case the

HCM is isotropic, are the ones displayed in Fig. 3.1. The degree of orthotropy

exhibited by the HCM clearly increases as the value of ς increases, as do differences

between the estimates of the lowest–order SPFT and the Mori–Tanaka mean–field

formalism. In a manner resembling the scenario considered in §3.4.1, the lowest–

order SPFT and the Mori–Tanaka estimates are qualitatively similar, but the

Mori–Tanaka estimates display a greater deviation from the naive HCM estimate

f (1)
[
C(1)

]
pq

+ f (2)
[
C(2)

]
pq

for mid–range values of f (2), at all values of ς.

The degree of orthotropy exhibited by the HCM clearly increases as the value

of ς increases, and differences between the estimates of the lowest–order SPFT

and the Mori–Tanaka mean–field formalism also vary as ς increases. To explore

this matter further, the associated ratios

[
C(hcm)

]
11[

C(hcm)
]
33

,

[
C(hcm)

]
12[

C(hcm)
]
23

and

[
C(hcm)

]
44[

C(hcm)
]
66

are plotted against f (2) for ς = 0.05 and 0.1, in Fig. 3.8. The three different pat-
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terns are portrayed in the three plots: for
[
C(hcm)

]
11

/
[
C(hcm)

]
33

differences be-

tween the lowest–order SPFT and the Mori–Tanaka estimates are larger for when

the HCM is more orthotropic; the reverse is the case for
[
C(hcm)

]
12

/
[
C(hcm)

]
23

,

while for
[
C(hcm)

]
44

/
[
C(hcm)

]
66

there is no noticeable difference between the

lowest–order SPFT and Mori–Tanaka estimates as the degree of HCM orthotropy

is increased.

Next we focus on the second–order SPFT estimate of the HCM stiffness ten-

sor. The real and imaginary parts of the components of C̃
(spft)

= C(spft)−C(ocm)

are graphed against k̄L in Fig. 3.9. The volume fraction is fixed at f (2) = 0.5.

The values of the orthotropy parameter ς are 0, 0.05 and 0.1, in correspondence

with the calculations of Figs. 3.1, 3.6 and 3.7. As we observed in §3.4.1, the

magnitude of the components of C̃
(spft)

generally decrease as the HCM becomes

more orthotropic. Also, the second–order SPFT estimate C(spft) has components

with nonzero imaginary parts, which implies that the HCM is dissipative even

though the component materials are nondissipative. Furthermore, the HCM be-

comes increasingly dissipative as the correlation length increases, this dissipation

being attributable to scattering losses.

Finally, the real and imaginary parts of the second–order SPFT density tensor

ρ̃
(spft)
pq = ρ

(spft)
pq − ρ(ocm) are plotted as functions of k̄L in Fig. 3.10. As previously,

§3.4.1, the components for p 6= q are negligibly small so only the p = q components

are provided here. The density plots resemble those of the corresponding stiffness

tensor; i.e., the components ρ̃
(spft)
pp are much smaller than ρ(ocm) and they increase

rapidly from zero as L increases. The magnitudes of ρ̃
(spft)
pp are smallest when the

orthotropy parameter describing the component materials is greatest. Apparent

contradictions abound in homogenization theory [1], but for the SPFT as with

many other formalisms the ultimate test of their validity is against a battery of

experimental tests which, as far as we are aware, do not exist at present.

3.5 Closing remarks

The elastodynamic SPFT has been further developed, in order to undertake nu-

merical studies based on a specific choice of two–point covariance function. From
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our theoretical considerations in §3.2 and our representative numerical studies in

§3.4, the following conclusions were drawn:

• The lowest–order SPFT estimate of the HCM stiffness tensor is qualitatively

similar to that provided by the Mori–Tanaka mean–field formalism.

• Differences between the estimates of the lowest–order SPFT and the Mori–

Tanaka mean–field formalism are greatest for mid–range values of the vol-

ume fraction.

• Differences between the estimates of the lowest–order SPFT and the Mori–

Tanaka mean–field formalism vary as the HCM becomes more orthotropic.

The degree of orthotropy of the HCM may be increased by increasing either

the degree of orthotropy of component materials or the degree of eccentricity

(nonsphericity) of the inclusion particles.

• The second–order SPFT provides a correction to the quasi–static lowest–

order estimates of the HCM stiffness tensor and density.

• The correction provided by second–order SPFT, though relatively small in

magnitude, is highly significant as it indicates effective dissipation due to

scattering loss.

• Differences between the second–order and lowest–order SPFT estimates of

the HCM constitutive parameters diminish as the HCM becomes more or-

thotropic.
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Figure 3.1: Plots of
[
C(hcm)

]
11

,
[
C(hcm)

]
12

and
[
C(hcm)

]
44

(in GPa) as esti-

mated using the lowest–order SPFT (i.e., hcm = ocm) (red, solid curves) and
the Mori–Tanaka mean–field formalism (i.e., hcm = MT ) (black, dashed curves),
against the volume fraction of component material ‘2’. Also plotted are the upper

and lower Hashin–Shtrikman bounds (blue, long dashed curves) for
[
C(hcm)

]
11

and
[
C(hcm)

]
44

; the lower Hashin–Shtrikman bounds coincide with the Mori–

Tanaka estimates. Component material ‘1’ is acetal and component material
‘2’ is glass, as specified in (3.118). The component materials are distributed as
spheres (i.e., a = b = c).
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Figure 3.2: Plots of
[
C(hcm)

]
rs

, with rs ∈ {11, 12, 13, 22, 23, 33, 44, 55, 66} (in

GPa) as estimated using the lowest–order SPFT (i.e., hcm = ocm) (red, solid
curves) and the Mori–Tanaka mean–field formalism (i.e., hcm = MT ) (black,
dashed curves), against the volume fraction of component material ‘2’. Compo-
nent material ‘1’ is acetal and component material ‘2’ is glass, as specified in
(3.118). The component materials are distributed as ellipsoids with a/c = 5 and
b/c = 1.5.
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Figure 3.3: As Fig. 3.2 but for ellipsoidal component particles specified by a/c =
10 and b/c = 2.
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Figure 3.4: The real and imaginary parts of the components of C̃
(spft)

=

C(spft) −C(ocm) (in GPa), plotted as functions of k̄L, for f (2) = 0.5. Component
material ‘1’ is acetal and component material ‘2’ is glass, as specified in (3.118).
The component materials are distributed as (i) spheres (i.e., a = b = c) (red, solid
curves), or (ii) ellipsoids with shape parameters {a/c = 5, b/c = 1.5} (blue, short–
dashed curves), or (iii) ellipsoids with shape parameters {a/c = 10, b/c = 2}
(black, long–dashed curves).
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Figure 3.4: Continued.
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Figure 3.5: As Fig. 3.4 but the quantities plotted are the real and imaginary
parts of the excess of the second–order SPFT density tensor over the density of
the comparison material, i.e., ρ̃

(spft)
rr = ρ

(spft)
rr − ρ(ocm), (r ∈ {1, 2, 3}), in kg m−3.
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Figure 3.6: Plots of
[
C(hcm)

]
rs

, with rs ∈ {11, 12, 13, 22, 23, 33, 44, 55, 66} (in

GPa) as estimated using the lowest–order SPFT (i.e., hcm = ocm) (red, solid
curves) and the Mori–Tanaka mean–field formalism (i.e., hcm = MT ) (black,
dashed curves), against the volume fraction of component material ‘2’. The
component materials are distributed as spheres. Their constitutive parameters
are specified by (3.126) and (3.127), with the orthotropy parameter ς = 0.05.
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Figure 3.7: As Fig. 3.6 but with orthotropy parameter ς = 0.1.
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Figure 3.8: Plot of
[
C(hcm)

]
11

/
[
C(hcm)

]
33

,
[
C(hcm)

]
12

/
[
C(hcm)

]
23

and[
C(hcm)

]
44

/
[
C(hcm)

]
66

(in GPa) as estimated using the lowest–order SPFT

(i.e., hcm = ocm) (red, solid curves), the Mori–Tanaka mean–field formalism
(i.e., hcm = MT ) (black, dashed curves) against the volume fraction of compo-
nent material ‘2’. Component material ‘1’ is acetal and component material ‘2’ is
glass, as specified in (3.118). The component materials are distributed as spheres
with the orthotropy parameter ς = 0.05 (thin curves) and ς = 0.1 (thick curves).
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Figure 3.9: The real and imaginary parts of the components of C̃
(spft)

= C(spft)−
C(ocm) (in GPa) plotted as functions of k̄L, for f (2) = 0.5. The component
materials are distributed as spheres. Their constitutive parameters are specified
by (3.126) and (3.127), with the orthotropy parameter ς = 0 (red, solid curves),
ς = 0.05 (blue, short-dashed curves) and ς = 0.1 (black, long-dashed curves).
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Figure 3.9: Continued.
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Figure 3.10: As Fig. 3.9 but the quantities plotted are the real and imaginary
parts of the excess of the second–order SPFT density tensor over the density of
the comparison material, i.e., ρ̃

(spft)
rr = ρ

(spft)
rr − ρ(ocm), (r ∈ {1, 2, 3}), in kg m−3.
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Chapter 4

Derivation of Piezoelectric SPFT

4.1 Introduction

In this chapter we derive the piezoelectric SPFT estimate. The process followed

is to extend the elastodynamic SPFT, developed by Zhuck and Lakhtakia [14].

We begin by converting the two constitutive piezoelectric equations to a single

extended constitutive equation [48]. This allows the formulation of an equation

of motion analogous to the elastodynamic equation of motion and enables us to

use the methods of Zhuck and Lakhtakia [14].

We begin with the constitutive relations in piezoelectrics

σ
(`)
lm(r) = C

(`)
lmpqS

(`)
pq (r)− e

(`)
qlmE(`)

q (r), (4.1)

D
(`)
l (r) = e

(`)
lpqS

(`)
pq (r) + ε

(`)
lq E(`)

q (r),

where σ
(`)
lm(r), S

(`)
pq (r), E

(`)
q (r) and D

(`)
l (r) are the stress, strain, electric field and

electric displacement tensors of material ‘`’ respectively. C
(`)
lmpq, e

(`)
qlm and ε

(`)
lq are

the elastic stiffness, piezoelectric and permittivity tensors with symmetries

C
(`)
lmpq = C

(`)
mlpq = C

(`)
lmqp = C

(`)
pqlm

e
(`)
qlm = e

(`)
qml

ε
(`)
lq = ε

(`)
ql





. (4.2)
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We can combine these tensors into the extended stiffness

C̆
(`)
lMPq =





C
(`)
lmpq M = m = 1, 2, 3; P = p = 1, 2, 3

e
(`)
qlm M = m = 1, 2, 3; P = 4

−e
(`)
lpq M = 4; P = p = 1, 2, 3

ε
(`)
lq M,P = 4

, (4.3)

where the lowercase subscripts range from 1 to 3 and the uppercase subscripts

from 1 to 4. Similarly, we define the extended density as

ρ̆
(`)
MP =





ρ(`) M = P = 1, 2, 3

0 otherwise
, (4.4)

where ρ(`) is the density of material ‘`’. The extended stiffness and extended

density are not tensors but they allow us to rewrite the constitutive equations as

a single constitutive equation

σ̆
(`)
lM(r) = C̆

(`)
lMPqS̆

(`)
Pq(r) (4.5)

where

σ̆
(`)
iJ (r) =





σ
(`)
ij (r) J = 1, 2, 3

D
(`)
i (r) J = 4

(4.6)

and

S̆
(`)
Ij (r) =





S
(`)
ij (r) = 1

2
(∂ju

(`)
i (r) + ∂iu

(`)
j (r)) I = 1, 2, 3

E
(`)
j (r) = −∂jϕ(r)(`) I = 4

(4.7)

are the extended stress and strain respectively, with u
(`)
i the displacement tensor

and ϕ(`) the electric potential of material ‘`’.

To establish the piezoelectric SPFT we follow the methods of Zhuck and

Lakhtakia [14] by considering a composite made up of several component ma-

terials and introducing effective constitutive operators (ECOs) which eventually

become the SPFT estimates in the spatially–transformed Fourier domain. The

introduction of an orthorhombic comparison material (OCM) follows and this is

compared with the composite. We then renormalize the solutions to the synthe-
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sized equation of motion, which allows strong fluctuations in component materi-

als to be examined. Effective perturbation operators (EPOs) are then introduced

and we find the ECOs in terms of these EPOs through algebraic equations in the

spatially–transformed Fourier domain. A second–order approximation is then

used to find the EPOs and thus the ECOs. Finally, all secular terms are removed

to ensure convergence when strong fluctuations in the component materials are

present.

4.1.1 Notation

In this chapter matrices are denoted by double underlining and bold font, whereas

vectors are in bold font with no underlining. The extended symbols are repre-

sented in normal font with their components indicated by subscripts and/or su-

perscripts. All lowercase indexes range from 1 to 3 and the uppercase indexes

from 1 to 4. For use later on, we note that the pqth entry of a matrix A is written

as
[
A

]
pq

, while the pth entry of a vector b is written as [b ]p. Accordingly, the

matrix entry
[
A ·B ]

pr
=

[
A

]
pq

[
B

]
qr

, the vector entry
[
A · b]

p
=

[
A

]
pq

[
b
]
q
,

and the scalar a · b = [a]p [b]p. The adjoint, determinant, inverse, trace and

transpose of a matrix A are denoted by adj
(
A

)
, det

(
A

)
, A−1, tr

(
A

)
and

AT , respectively. The n× n null matrix is written as 0
n×n

.

4.2 Effective constitutive relations

Now we have the constitutive equation, (4.5), we can begin our analysis. We

follow the same method as Zhuck and Lakhtakia by considering a composite oc-

cupying all space with extended stiffness C̆lMPq(r) and extended density ρ̆MP (r).

This composite is considered to be a random mixture of more than one compo-

nent material and its extended stiffness symbol can, for example, be expressed

as

C̆lMPq(r) =
n∑

`=1

C̆
(`)
lMPqΦ

(`)(r) (4.8)

for composite consisting of n component materials with Φ(`)(r) the characteristic

function of material ‘`’. We consider the piezoelectric equation of motion, which
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is an extended version of the elastic equation of motion (3.1) [49]. Assuming an

e−iωt time dependence we have

∂lσ̆lM(r) + ω2ρ̆MP (r)ŭP (r) = −F̆M(r). (4.9)

Herein, ŭP (r) and F̆M(r) are the extended displacement and extended force of

the composite respectively, given by

ŭI(r) =





ui(r) I = 1, 2, 3

ϕ(r) I = 4
(4.10)

and

F̆J(r) =





Fj(r) J = 1, 2, 3

−q J = 4
, (4.11)

with ui(r), ϕ(r), Fj(r) and q the elastic displacement tensor, electric potential,

body force tensor and the charge respectively.

Following Zhuck and Lakhtakia we define effective constitutive relations by

〈C̆lMPq(r)S̆Pq(r)〉 ≡ C̆
(eco)
lMPq(r) ∗ 〈S̆Pq(r)〉+ β

(eco)
lMP (r) ∗ 〈ŭP (r)〉, (4.12)

〈ρ̆MP (r)ŭP (r)〉 ≡ ε
(eco)
MPq(r) ∗ 〈S̆Pq(r)〉+ ρ̆

(eco)
MP (r) ∗ 〈ŭP (r)〉 (4.13)

where C̆
(eco)
lMPq(r), β

(eco)
lMP (r), ε

(eco)
MPq(r) and ρ̆

(eco)
MP (r) are the effective constitutive oper-

ators (ECOs) and 〈. . .〉 defines the ensemble average, the average over all possible

particle positions within the composite. Now the mean field equations are pro-

duced by taking the ensemble average of (4.7) and (4.9), whilst using (4.2), (4.12)

and (4.13) gives

(∂lC̆
(eco)
lMPq(r)+ω2ε

(eco)
MPq)(r)∗〈S̆Pq(r)〉+(ω2ρ̆

(eco)
MP (r)+∂lβ

(eco)
lMP (r))∗〈ŭP (r)〉 = −F̆M(r)

(4.14)

and

〈S̆Pq(r)〉 =





1
2
(∂q〈up(r)〉+ ∂p〈uq(r)〉) P = 1, 2, 3

−∂q〈ϕ(r)〉 P = 4
. (4.15)

Now we consider the composite to be a HCM and so C̆lMPq and ρ̆MP are statis-
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tically homogeneous and homogeneously interrelated, that is their ensemble av-

erages are independent of spatial coordinates and their two–point second–order

statistical moments depend on the difference of the two spatial coordinates [14].

As with Zhuck and Lakhtakia the ECOs are non-local due to the operations in

(4.12) and (4.13), this gives us

z(r) ∗ k(r) ≡
∫

d3r′z(r, r′)k(r′) ≡
∫

d3r′z(r− r′)k(r′), (4.16)

where z(r) represents any of the ECOs and k(r) is some test function. As the

ECOs are shift–invariant [14], we can write

z(r− r′) = (2π)−3

∫
d3kz(k)eik·(r−r′) (4.17)

and so

z(r) ∗ eik·r ≡ z(k)eik·r (4.18)

where k = (k1, k2, k3) is an unspecified wave vector. Equation (4.18) gives us the

spectral counterpart z(k) of z(r), where z is shift–invariant [14].

From Zhuck and Lakhtakia, we have that if the extended force has the spectral

form

F̆M(r) = F̆M(k)eik·r (4.19)

then from the mean field equations we also have

〈ŭM(r)〉 = ŭM(k)eik·r, (4.20)

〈S̆Pq(r)〉 = S̆Pq(k)eik·r. (4.21)

Now ECOs simplify such that for some function k(r) = k(k)eik·r we have

z(r) ∗ k(r) = z(k)k(k)eik·r for z = C̆
(eco)
lMPq, β

(eco)
lMP , ε

(eco)
MPq, ρ̆

(eco)
MP (4.22)

with

lim
k→0

C̆
(eco)
lMPq(k) = C̆

(spft)
lMPq , lim

k→0
β

(eco)
lMPq(k) = β

(spft)
lMPq

lim
k→0

ε
(eco)
MPq(k) = ε

(spft)
MPq , lim

k→0
ρ̆

(eco)
MP (k) = ρ̆

(spft)
MP

(4.23)
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as the long–wavelength limits.

4.3 Comparison material

As with the elastodynamic SPFT we introduce a homogeneous comparison ma-

terial. This homogeneous comparison material provides the initial ansatz for an

iterative procedure that delivers a succession of SPFT estimates of the HCM

constitutive parameters [14]. Accordingly, the comparison material represents

the lowest–order SPFT estimate of the HCM. We take our comparison material

to be orthorhombic with extended stiffness C̆
(ocm)
lMPq and extended density ρ̆

(ocm)
MP .

The comparison material has equation of motion

C̆
(ocm)
lMPq∂l∂qŭ

(ocm)
P (r) + ω2ρ̆

(ocm)
MP ŭP (r) = −F̆

(ocm)
M (r). (4.24)

and its solution is given by

ŭ
(ocm)
P (r) = Ğ

(ocm)
PM (r) ∗ F̆

(ocm)
M (r). (4.25)

In k–space we convert the Greens Function GPM into the 4× 4 matrix form as

Ğ
(ocm)

(k) =
[
k2ă(k̂)− ω2ρ̆(ocm)

]−1

. (4.26)

with ρ̆(ocm) being the 4× 4 matrix representation of ρ̆
(ocm)
MP and ă(k̂) is the 4× 4

matrix with entries [
ă(k̂)

]
MP

=
klC̆

(ocm)
lMPqkq

k2
. (4.27)

with k =
√

k · k and k̂ =
k

k
. As with the elastodynamic case we can rewrite Ğ

as

Ğ
(ocm)

(k) =
N̆(k)

∆̆(k)
, (4.28)

where the 4×4 matrix function

N̆(k) = adj
[
k2 ă(k̂)− ω2ρ̆(ocm)

]
(4.29)
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and the scalar function

∆̆(k) = k8det
[
ă(k̂)

]
− tr

{
adj

[
k2ă(k̂)

]
· ω2ρ̆(ocm)

}
−

k2 tr
[
adj(ω2ρ̆(ocm)) · ă(k̂)

]
+ k4

(
tr

{[
ă(k̂)

]
44

[
ă](k̂) · adj(ω2ρ̆])

]}
−

[
ă(k̂)

]
41

[
ă(k̂)

]
14

[
adj(ω2ρ̆])

]
11
−

[
ă(k̂)

]
42

[
ă(k̂)

]
24

[
adj(ω2ρ̆])

]
22
−

[
ă(k̂)

]
43

[
ă(k̂)

]
34

[
adj(ω2ρ̆])

]
33

)
, (4.30)

with the 3×3 matrices ă] and ρ̆] having entries

ă](k) =




[
ă(k̂)

]
11

[
ă(k̂)

]
12

[
ă(k̂)

]
13[

ă(k̂)
]

21

[
ă(k̂)

]
22

[
ă(k̂)

]
23[

ă(k̂)
]

31

[
ă(k̂)

]
32

[
ă(k̂)

]
33




,

(4.31)

ρ̆] =




[
ρ̆(ocm)

]
11

[
ρ̆(ocm)

]
12

[
ρ̆(ocm)

]
13[

ρ̆(ocm)
]

21

[
ρ̆(ocm)

]
22

[
ρ̆(ocm)

]
23[

ρ̆(ocm)
]

31

[
ρ̆(ocm)

]
32

[
ρ̆(ocm)

]
33




.

We now have the details for the OCM and for the composite considered in

§4.2 described by extended stiffness C̆lMPq(r) and extended density ρ̆MP (r). The

next step is to compare the two. As Zhuck and Lakhtakia do, we synthesize the

two equations of motion

C̆
(ocm)
lMPq∂l∂qŭP (r) + ω2ρ̆

(ocm)
MP ŭP (r) = −F̆

(ocm)
M (r)− δF̆M(r), (4.32)

where

δF̆M(r) = ∂lδC̆lMPq(r)S̆Pq(r) + ω2δρ̆MP (r)ŭP (r), (4.33)

δC̆lMPq(r) = C̆lMPq(r)− C̆
(ocm)
lMPq , (4.34)

δρ̆MP (r) = ρ̆MP (r)− ρ̆
(ocm)
MP . (4.35)
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This synthesized equation of motion can be solved exactly as with (4.24) to give

ŭJ(r) = ŭ
(ocm)
J (r) + ω2Ğ

(ocm)
JM (r) ∗ [δρ̆MP (r)ŭP (r)] +

H
(ocm)
JlM (r) ∗

[
δC̆lMPq(r)S̆Pq(r)

]
. (4.36)

Substituting into our equation for the extended strain (4.7) we get

S̆Ij(r) = S̆
(ocm)
Ij (r) + ω2G

(ocm)
IjM (r) ∗ [δρ̆MP (r)ŭP (r)] +

H(ocm)
IjlM (r) ∗

[
δC̆lMPq(r)S̆Pq(r)

]
. (4.37)

Herein we have

H
(ocm)
JlM (r) = ∂lĞ

(ocm)
JM (r) (4.38)

G
(ocm)
IjM (r) =





1
2

[
∂jĞ

(ocm)
iM (r) + ∂iĞ

(ocm)
jM (r)

]
I = 1, 2, 3

−∂jĞ
(ocm)
4M (r) I = 4

(4.39)

H(ocm)
IjlM (r) = ∂lG

(ocm)
IjM (r). (4.40)

Now we can recast Ğ
(ocm)

(k) as

Ğ
(ocm)

(k) =

[
ă(k̂)

]−1

k2
+

ω2

k2∆̆(k)

[
ă(k̂)

]−1

· ρ̆(ocm) · N̆(k). (4.41)

Substituting this into (4.38–4.40) allows us to find the spectral counterpart of
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H(ocm)
IjlM (r) as

H(ocm)
IjlM (k) =





−(k)l

2k2

[
(k)j

[
ă(k̂)

]−1

iM
+ (k)i

[
ă(k̂)

]−1

jM

]
−

ω2

2k2∆̆(k)

[
(k)j

[
ă(k̂)

]−1

iS
+ (k)i

[
ă(k̂)

]−1

jS

]
× , I = 1, 2, 3

(k)l

[
ρ̆(ocm)

]
SP

[
N̆(k)

]
PM

,

−
(k)j(k)l

[
ă(k̂)

]−1

4M

k2
−

ω2

k2∆̆(k)

[
(k)j(k)l

[
ă(k̂)

]−1

4S

[
ρ̆(ocm)

]
SP

[
N̆(k)

]
PM

]
, I = 4.

(4.42)

Once again we follow Zhuck and Lakhtakia [14] to observe that for 1 ≤ I ≤ 4 the

first term of H(ocm)
IjlM doesn’t vanish as k →∞. Thus, we can write

H(ocm)
IjlM (r) = H′(ocm)

IjlM (r)− W̆IjlM (4.43)

where H′(ocm)
IjlM (r) is a singular integral operator associated with an infinitely small

exclusion region and W̆IjlM is a constant tensor. Both these terms are dependent

on an exclusion region but their difference H(ocm)
IjlM (r) is not [14]. However, the

spectral form of H′(ocm)
IjlM (r) can be written as [14]

H′(ocm)
IjlM (k) = H(ocm)

IjlM (k) + W̆IjlM (4.44)

where W̆IjlM is an extended version of the elastodynamic renormalization tensor

Wrstu independent of k. We make this rearrangement because it removes any

importance of an exclusion region and the exact form ofH′(ocm)
IjlM (r) plays no further

role in the analysis [14].

Finally in this section we seek to renormalize (4.36) and (4.37). We introduce

$̆Ij(r) = S̆Ij(r) + W̆IjlMδC̆lMPq(r)S̆Pq(r) (4.45)

and η̆PqSt such that

S̆Pq(r) = η̆PqSt$̆St(r). (4.46)
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This allows (4.37) to be rewritten as

$̆Ij(r) = S̆
(ocm)
Ij (r)+ω2G

(ocm)
IjM (r)∗ [δρ̆MP (r)ŭP (r)]+H′(ocm)

IjlM (r)∗
[
ξ̆lMPq(r)$̆Pq(r)

]

(4.47)

where

ξ̆lMPq(r) = δC̆lMSt(r)η̆StPq (4.48)

is considered to be an extension of a random perturbation tensor associated with

fluctuations of the component materials within the disordered composite [14].

Similarly we have

ŭJ(r) = ŭ
(ocm)
J (r) + ω2Ğ

(ocm)
JM (r) ∗ [δρ̆MP (r)ŭP (r)] + H

(ocm)
JlM (r) ∗

[
ξ̆lMPq(r)$̆Pq(r)

]
.

(4.49)

These renormalized equations contain the extended stiffness and extended density

of both the disordered composite and the OCM. We now seek the optimal choice

of W̆IjlM .

4.4 Effective perturbation operators

We can rewrite (4.47) and (4.49) as

ψ(r) = ψ(ocm)(r) + Υ(ocm)(r)Π(r) ∗ ψ(r). (4.50)

where

ψ(r) =


 $̆Ij(r)

ŭJ(r)


 , ψ(ocm)(r) =


 S̆

(ocm)
Ij (r)

ŭ
(ocm)
J (r)


 , (4.51)

Υ(ocm)(r) =


 H′(ocm)

IjlM (r) ω2G
(ocm)
IjM (r)

H
(ocm)
JlM (r) ω2Ğ

(ocm)
JM (r)


 , Π(r) =


 ξ̆lMPq(r) 0

0 δρ̆MP (r)


 .

(4.52)

Now the solution to (4.50) is given by

ψ(r) =
(
1−Υ(ocm)(r)Π(r)

)−1 ∗ ψ(ocm)(r) (4.53)
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and we recreate equations (2.47)–(2.50) from Zhuck and Lakhtakia [14] to show

that from

〈ψ(r)〉 = 〈(1−Υ(ocm)(r)Π(r)
)−1〉 ∗ ψ(ocm)(r) (4.54)

〈Π(r)ψ(r)〉 = 〈Π(r)
(
1−Υ(ocm)(r)Π(r)

)−1〉 ∗ ψ(ocm)(r) (4.55)

we have the deterministic operator

Π(e)(r) = 〈Π(r)
(
1−Υ(ocm)(r)Π(r)

)−1〉〈(1−Υ(ocm)(r)Π(r)
)−1〉−1 (4.56)

satisfying

〈Π(r)ψ(r)〉 = Π(e)(r) ∗ 〈ψ(r)〉. (4.57)

Equivalently we have

〈ξ̆lMPq(r)$̆Pq(r)〉 = a
(epo)
lMPq(r) ∗ 〈$̆Pq(r)〉+ b

(epo)
lMP (r) ∗ 〈ŭP (r)〉 (4.58)

〈δρ̆MP (r)ŭP (r)〉 = v
(epo)
MPq(r) ∗ 〈$̆Pq(r)〉+ w

(epo)
MP (r) ∗ 〈ŭP (r)〉. (4.59)

where a
(epo)
lMPq(r), b

(epo)
lMP (r), v

(epo)
MPq(r) and w

(epo)
MP (r) are the effective perturbation

operators (EPOs).

Our aim is to find the ECOs, to do this we suppose we have found the solution

to (4.56) and we know what the EPOs are. Combining (4.12), (4.13), (4.45),

(4.46) and (4.48) gives us equations we can compare with (4.58) and (4.59):

〈$̆Ij(r)〉 = 〈S̆Ij(r)〉+ W̆IjlM

[
C̆

(eco)
lMPq(r)− C̆

(ocm)
lMPq

]
∗ 〈S̆Pq(r)〉+

W̆IjlMβ
(eco)
lMP (r) ∗ 〈ŭP (r)〉, (4.60)

〈ξ̆lMPq(r)$̆Pq(r)〉 =
[
C̆

(eco)
lMPq(r)− C̆

(ocm)
lMPq

]
∗ 〈S̆Pq(r)〉+ β

(eco)
lMP (r) ∗ 〈ŭP (r)〉,

(4.61)

〈δρ̆MP (r)ŭP (r)〉 = ε
(eco)
MPq(r) ∗ 〈S̆Pq(r)〉+

[
ρ̆

(eco)
MP (r)− ρ̆

(ocm)
MP

]
∗ 〈ŭP (r)〉.

(4.62)
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Following this we substitute (4.60) into (4.58) and (4.59) to produce

〈ξ̆lMPq(r)$̆Pq(r)〉 = a
(epo)
lMPq(r) ∗

[
W̆PqrS(C̆

(eco)
rSTu(r)− C̆

(ocm)
rSTu ) ∗ 〈S̆Tu(r)〉+

〈S̆Pq(r)〉+ W̆PqrSβ
(eco)
rST (r) ∗ 〈ŭT (r)〉

]
+

b
(epo)
lMP (r) ∗ 〈ŭP (r)〉 (4.63)

〈δρ̆MP (r)ŭP (r)〉 = v
(epo)
MPq(r) ∗

[
W̆PqrS(C̆

(eco)
rSTu(r)− C̆

(ocm)
rSTu ) ∗ 〈S̆Tu(r)〉+

〈S̆Pq(r)〉+ W̆PqrSβ
(eco)
rST (r) ∗ 〈ŭT (r)〉

]
+

w
(epo)
MP (r) ∗ 〈ŭP (r)〉. (4.64)

Rearranging gives us

〈ξ̆lMPq(r)$̆Pq(r)〉 =
[
a

(epo)
lMPq(r) + a

(epo)
lMRs(r) ∗ W̆RstU(C̆

(eco)
tUPq(r)− C̆

(ocm)
tUPq )

]
∗

〈S̆Pq(r)〉+
[
b
(epo)
lMP (r) + a

(epo)
lMRs(r) ∗

W̆RstUβ
(eco)
tUP (r)

]
∗ 〈ŭP (r)〉 (4.65)

〈δρ̆MP (r)ŭP (r)〉 =
[
v

(epo)
MPq(r) + v

(epo)
MRs(r) ∗ W̆RstU(C̆

(eco)
tUPq(r)− C̆

(ocm)
tUPq )

]
∗

〈S̆Pq(r)〉+
[
w

(epo)
MP (r) + v

(epo)
MRs(r) ∗

W̆RstUβ
(eco)
tUP (r)

]
∗ 〈ŭP (r)〉. (4.66)

Comparing these with (4.61) and (4.62) gives us

C̆
(eco)
lMPq(r)− C̆

(ocm)
lMPq = a

(epo)
lMPq(r) + a

(epo)
lMRs(r) ∗ W̆RstU

(
C̆

(eco)
tUPq(r)− C̆

(ocm)
tUPq

)

(4.67)

β
(eco)
lMP (r) = b

(epo)
lMP (r) + a

(epo)
lMRs(r) ∗ W̆RstUβ

(eco)
tUP (r) (4.68)

ε
(eco)
MPq(r) = v

(epo)
MPq(r) + v

(epo)
MRs(r) ∗ W̆RstU

(
C̆

(eco)
tUPq(r)− C̆

(ocm)
tUPq

)

(4.69)

ρ̆
(eco)
MP (r)− ρ̆

(ocm)
MP = w

(epo)
MP (r) + v

(epo)
MRs(r) ∗ W̆RstUβ

(eco)
tUP (r) (4.70)
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which reduce to algebraic relations in the k-domain

C̆
(eco)
lMPq(k)− C̆

(ocm)
lMPq = a

(epo)
lMPq(k) + a

(epo)
lMRs(k)W̆RstU

(
C̆

(eco)
tUPq(k)− C̆

(ocm)
tUPq

)

(4.71)

β
(eco)
lMP (k) = b

(epo)
lMP (k) + a

(epo)
lMRs(k)W̆RstUβ

(eco)
tUP (k) (4.72)

ε
(eco)
MPq(k) = v

(epo)
MPq(k) + v

(epo)
MRs(k)W̆RstU

(
C̆

(eco)
tUPq(k)− C̆

(ocm)
tUPq

)

(4.73)

ρ̆
(eco)
MP (k)− ρ̆

(ocm)
MP = w

(epo)
MP (k) + v

(epo)
MRs(k)W̆RstUβ

(eco)
tUP (k). (4.74)

We now have the ECOs expressed in terms of the EPOs and the final step is to

find Π(e)(r), giving us the EPOs explicitly.

4.5 Second–order approximation

Following Zhuck and Lakhtakia [14] we expand Π(e) as

Π(e)(r) =
∞∑

n=1

Πn(r) (4.75)

where

Π1(r) = 〈Π(r)〉, (4.76)

Πn(r) = 〈Π(r)
(
Υ(ocm)(r)Π(r)

)n−1〉 −
n−1∑
m=1

Πm(r)〈(Υ(ocm)(r)Π(r)
)n−m〉, n = 2, 3, 4, . . . (4.77)

Now the second–order approximation is given by [14, 50]

Π(e)(r) ≈ Π1(r) + Π2(r) (4.78)

≈ 〈Π(r)〉+ 〈Π(r) Υ(ocm)(r) Π(r)〉+ 〈Π(r)〉Υ(ocm)(r)〈Π(r)〉
(4.79)
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which can be expanded to give the EPOs as

a
(epo)
lMPq(r) = 〈ξ̆lMPq(r)〉+H′(ocm)

RstU (r)BlMRs
tUPq (r− r′) (4.80)

β
(epo)
lMP (r) = ω2G

(ocm)
RsU (r)BlMRs

UP (r− r′) (4.81)

v
(epo)
MPq(r) = BsTPq

MR (r′ − r)H
(ocm)
RsT (r) (4.82)

w
(epo)
MP (r) = ω2BMSUP (r− r′)Ğ(ocm)

SU (r) (4.83)

where

BlMRs
tUPq (r− r′) = 〈ξ̆lMRs(r)ξ̆tUPq(r

′)〉 − 〈ξ̆lMRs(r)〉〈ξ̆tUPq(r
′)〉 (4.84)

BlMRs
UP (r− r′) = 〈ξ̆lMRs(r)δρ̆UP (r′)〉 − 〈ξ̆lMRs(r)〉〈δρ̆UP (r′)〉 (4.85)

BRSUP (r− r′) = 〈δρ̆RS(r)δρ̆UP (r′)〉 − 〈δρ̆RS(r)〉〈δρ̆UP (r′)〉 (4.86)

are the correlation functions. Now let us solve for C̆
(spft)
lMPq . An approximate

solution to (4.67) can be found by replacing the term in parenthesis by the entire

right–hand side, in the manner of a Born series, as per

C̆
(eco)
lMPq(r)− C̆

(ocm)
lMPq = a

(epo)
lMPq(r) + a

(epo)
lMRs(r) ∗ W̆RstU

[
a

(epo)
tUPq(r) +

a
(epo)
tUAb(r) ∗ W̆AblM

(
C̆

(eco)
lMPq(r)− C̆

(ocm)
lMPq

) ]

≈ a
(epo)
lMPq(r) + a

(epo)
lMRs(r) ∗ W̆RstUa

(epo)
tUPq(r) (4.87)

where only the leading order term in W̆RstU in the series has been retained. Now

H′(ocm)
RstU (r) = H(ocm)

RstU (r) + W̆RstU = ∂sG(ocm)
RtU (r) + W̆RstU . (4.88)
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This allows us to write (4.87) as

C̆
(eco)
lMPq(r)− C̆

(ocm)
lMPq = 〈ξ̆lMPq(r)〉+H′(ocm)

RstU (r)BlMRs
tUPq (r− r′) +

[
〈ξ̆lMRs(r)〉+H′(ocm)

PqaB (r)BlMPq
aBRs (r− r′)

]
∗ (4.89)

W̆RstU

[
〈ξ̆tUPq(r)〉+H′(ocm)

CdaB (r)BtUCd
aBPq(r− r′)

]

≈ 〈ξ̆lMPq(r)〉+H′(ocm)
RstU (r)BlMRs

tUPq (r− r′) +
[
〈ξ̆lMRs(r)〉+H(ocm)

PqaB(r)BlMPq
aBRs (r− r′)

]
∗ (4.90)

W̆RstU

[
〈ξ̆tUPq(r)〉+H(ocm)

CdaB(r)BtUCd
abPq (r− r′)

]
,

again retaining only the leading order term in WRstU . Now using (4.88) we have

C̆
(eco)
lMPq(r)− C̆

(ocm)
lMPq = 〈ξ̆lMPq(r)〉+H′(ocm)

RstU (r)BlMRs
tUPq (r− r′) +

(
〈ξ̆lMRs(r)〉+ ∂qG

(ocm)
PaB (r)BlMPq

aBRs (r− r′)
)
∗ (4.91)

W̆RstU

(
〈ξ̆tUPq(r)〉+ ∂dG

(ocm)
CaB (r)BtUCd

aBPq(r− r′)
)

= 〈ξ̆lMPq(r)〉+H′(ocm)
RstU (r)BlMRs

tUPq (r− r′) +
(
〈ξ̆lMRs(r)〉 ∗ W̆RstU〈ξ̆tUPq(r)〉

)
+ (4.92)

2
(
∂qG

(ocm)
PaB (r) ∗ 〈ξ̆lMRs(r)〉W̆RstUBlMPq

aBRs (r− r′)
)

+
(
∂qG

(ocm)
PaB (r) ∗ BlMPq

aBRs (r− r′)W̆RstU∂dG
(ocm)
CaB (r)×

BtUCd
aBpq (r− r′)

)
.

Taking the spatial Fourier transform of (4.91) gives

C̆
(eco)
lMPq(k)− C̆

(ocm)
lMPq δ(k) = 〈ξ̆lMPq(r)〉δ(k) +H′(ocm)

RstU (k) ∗ B̆lMRs
tUPq (k) +

(
〈ξ̆lMRs(r)〉W̆RstU〈ξ̆tUPq(r)〉

)
δ(k) +

i [k]q G
(ocm)
PaB (k)×[

F.T.
{

2〈ξ̆lMRs(r)〉W̆RstUBlMPq
aBRs (r− r′)

}
+

F.T.
{
BlMPq

aBRs (r− r′)W̆RstU∂dG
(ocm)
CaB (r)×

BtUCd
aBPq(r− r′)

}]
, (4.93)
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where F.T. denotes the spatial Fourier transform. This yields

C̆
(spft)
lMPq ≈ C̆

(ocm)
lMPq + 〈ξ̆lMPq(r)〉+ 〈ξ̆lMRs(r)〉W̆RstU〈ξ̆tUPq(r)〉+∫
d3k′H′(ocm)

RstU (k′)B̆lMRs
tUPq (k′) (4.94)

in the limit k → 0. Performing the same process with (4.68), (4.69) and (4.70)

gives

β
(spft)
lMP ≈ ω2

∫
d3k′B̆lMRs

UP (k′)G̃(ocm)
RsU (k′), (4.95)

ε
(spft)
MPq ≈

∫
d3k′B̆tUPq

MR (−k′)H̃(ocm)
RtU (k′), (4.96)

ρ̆
(spft)
MP ≈ ρ̆

(ocm)
MP + 〈δρ̆MP (r)〉+ ω2

∫
d3k′B̆MSUP (k′)G̃(ocm)

SU (k′). (4.97)

In the above we have B̆lMRs
tUPq (k), B̆lMRs

UP (k) and B̆MSUP (k) as the Fourier trans-

forms of BlMRs
tUPq (r− r′), BlMRs

UP (r− r′) and BMSUP (r− r′) given by, for example,

B̆lMRs
tUPq =

1

2π3

∫
d3rBlMRs

tUPq (r− r′)e(−ik·(r−r′)). (4.98)

Finally, we assume that BlMRs
UP (r− r′) is even giving B̆lMRs

UP (k) as an odd function

and so we follow Zhuck and Lakhtakia [14] and observe that, as Ğ
(ocm)

is an

even function of k, the integrands of (4.95) and (4.96) are odd. This gives us

β
(spft)
lMP = 0 and ε

(spft)
MPq = 0 in the second–order approximation.

4.6 Strong–property–fluctuations

The expressions for C̆
(spft)
lMPq and ρ̆

(spft)
MP , (4.94) and (4.97), can be further simplified

if all secular terms are removed. This requires us to have [14, 51]

〈ξ̆lMPq(r)〉 = 〈δρ̆MP (r)〉 = 0 (4.99)

which in turn means we must have

〈ρ̆MP (r)〉 = ρ̆
(ocm)
MP (4.100)
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and we define W̆RstU to be the solution of

W̆rstU

∫
d3kB̆lMrs

tUPq(k) =

∫
d3kB̆lMrs

tUPq(k)
(k)t

2k2

[
(k)s

[
ă(k̂)

]−1

rU
+ (k)r

[
ă(k̂)

]−1

sU

]

R = r = 1, 2, 3 (4.101)

W̆4stU

∫
d3kB̆lM4s

tUPq(k) =

∫
d3kB̆lM4s

tUPq(k)
(k)t(k)s

[
ă(k̂)

]−1

4U

k2
, R = 4. (4.102)

This gives us our final equations for C̆
(spft)
lMPq and ρ̆

(spft)
MP as

C̆
(spft)
lMPq ≈ C̆

(ocm)
lMPq −

ω2

2

∫
d3kB̆lMrs

tUPq(k)
(k)t

k2

[
(k)s

[
ă(k̂)

]−1

rX
+ (k)r

[
ă(k̂)

]−1

sX

]
×

[
ρ̆(ocm)

]
XY

·
[
Ğ(k)

]
Y U
− (4.103)

ω2

2

∫
d3kB̆lM4s

tUPq(k)
(k)t

k2
(k)s

[
ă(k̂)

]−1

4X
·
[
ρ̆(ocm)

]
XY

·
[
Ğ(k)

]
Y U

,

ρ̆
(spft)
MP ≈ ρ̆

(ocm)
MP + ω2

∫
d3kBMSUP (k)

[
Ğ(k)

]
SU

. (4.104)

These results allow strong fluctuations, provided the size of the particles are

sufficiently small [14]. It is of interest to note that the conditions (4.99) and

(4.100) also set 〈Π(r)〉 = 0 and therefore makes the first–order approximation

equal to the zeroth–order approximation, or OCM estimate.

4.7 Closing remarks

The theory for the piezoelectric SPFT has been developed following the same

methods as used by Zhuck and Lakhtakia [14] the elastodynamic SPFT. The

next step is to produce numerical results. This will be done in the next chapter

by simplifying (4.103) and (4.104) such that they can be evaluated numerically.
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Chapter 5

Implementation of the

Piezoelectric SPFT

5.1 Theory

5.1.1 Introduction

In this chapter we take the theory derived in Chapter 4 and establish the linear,

second–order SPFT appropriate to orthorhombic mm2 piezoelectric HCMs, aris-

ing from two homogenous component materials with randomly distributed but

identically oriented ellipsoidal particles of one in a matrix of the second. As with

the elastodynamic SPFT we also derive the implementation of a two–point covari-

ance function which characterizes the distributions of the component materials

and simplify equations (4.103) and (4.104) in order to evaluate them numerically.

A representative numerical example is used to illustrate the developments and

results are compared to the well–established Mori–Tanaka mean–field formalism

[20, 48, 52].

5.1.2 Preliminaries

The constitutive relations for piezoelectric materials have been outlined in §4.1.

We develop the SPFT in the frequency domain. Accordingly the complex–valued

representations of the stress, strain and electromagnetic fields have an implicit
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exp (−iωt) dependency on time t, with ω being the angular frequency and i =
√−1. The possibility of dissipative behaviour is thereby accommodated via the

imaginary parts of complex–valued constitutive parameters.

In developing the piezoelectric SPFT, it is expedient to express the constitu-

tive relations (4.5) in matrix–vector form as

σ̆(`) = C̆
(`) · S̆(`), (5.1)

wherein σ̆ and S̆ are column 12–vectors representing the extended stress and

extended strain symbols, respectively, and C̆ is a 12×12 matrix which represents

the extended stiffness symbol. The conversion from extended symbol notation

to matrix or vector notation is given in §5.1.3. Here, and hereafter, matrices

are denoted by double underlining and bold font, whereas vectors are in bold

font with no underlining. For use later on, we note that the pqth entry of a

matrix A is written as
[
A

]
pq

, while the pth entry of a vector b is written as

[b ]p. Accordingly, the matrix entry
[
A ·B ]

pr
=

[
A

]
pq

[
B

]
qr

, the vector entry
[
A ·b]

p
=

[
A

]
pq

[
b
]
q
, and the scalar a ·b = [a]p [b]p. The adjoint, determinant,

inverse, trace and transpose of a matrix A are denoted by adj
(
A

)
, det

(
A

)
,

A−1, tr
(
A

)
and AT , respectively. The n× n null matrix is written as 0

n×n
.

Our concern in this chapter is with orthorhombic mm2 piezoelectric materials

[53, 54]. For this symmetry class, the extended stiffness matrix for material ‘` ’

has the block matrix form

C̆
(`)

=




C(`) −e(`)T

e(`) ε(`)


 , (5.2)

where the 9×9 stiffness matrix C(`) may be expressed as

C(`) =




M(`) 0
3×3

0
3×3

0
3×3

D(`) D(`)

0
3×3

D(`) D(`)


 , (5.3)
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with the 3×3 symmetric matrix components

M(`) =




C
(`)
11 C

(`)
12 C

(`)
13

C
(`)
12 C

(`)
22 C

(`)
23

C
(`)
13 C

(`)
23 C

(`)
33


 , D(`) =




C
(`)
44 0 0

0 C
(`)
55 0

0 0 C
(`)
66


 ; (5.4)

while the 9×3 piezoelectric matrix e(`) may be expressed as

e(`) =




0 0 0 0 e
(`)
15 0 0 e

(`)
15 0

0 0 0 e
(`)
24 0 0 e

(`)
24 0 0

e
(`)
31 e

(`)
32 e

(`)
33 0 0 0 0 0 0


 (5.5)

and the 3×3 dielectric matrix ε(`) as

ε(`) =




ε
(`)
11 0 0

0 ε
(`)
22 0

0 0 ε
(`)
33


 . (5.6)

5.1.3 Tensor/extended symbol to matrix correspondence

The extended symbol ĂaMPq (a, q ∈ {1, 2, 3}, M,P ∈ {1, 2, 3, 4}) may be conve-

niently represented by the 12×12 matrix with entries
[
Ă

]
γo

(γ, o ∈ [1, 12]), upon

replacing the index pair aM with γ and the index pair Pq with o. For the most
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general 12×12 matrix encountered in this thesis, which has the form

Ă =




A1,1 A1,2 A1,3 0 0 0 0 0 0 0 0 A1,12

A2,1 A2,2 A2,3 0 0 0 0 0 0 0 0 A2,12

A3,1 A3,2 A3,3 0 0 0 0 0 0 0 0 A3,12

0 0 0 A4,4 0 0 A4,4 0 0 0 A4,11 0

0 0 0 0 A5,5 0 0 A5,5 0 A5,10 0 0

0 0 0 0 0 A6,6 0 0 A6,6 0 0 0

0 0 0 A4,4 0 0 A4,4 0 0 0 A4,11 0

0 0 0 0 A5,5 0 0 A5,5 0 A5,10 0 0

0 0 0 0 0 A6,6 0 0 A6,6 0 0 0

0 0 0 0 A10,5 0 0 A10,5 0 A10,10 0 0

0 0 0 A11,4 0 0 A11,4 0 0 0 A11,11 0

A12,1 A12,2 A12,3 0 0 0 0 0 0 0 0 A12,12




,

(5.7)

the correspondence between the extended symbol indexes and the matrix indexes

is provided in Table 5.1. The scheme presented in Table 5.1 also relates the

extended symbol t̆aM to the corresponding column 12–vector entries
[
t̆
]
γ
.

aM or Pq γ or o aM or Pq γ or o

11 1 23 or 32 7
22 2 13 or 31 8
33 3 12 or 21 9

23 or 32 4 14 or 41 10
13 or 31 5 24 or 42 11
12 or 21 6 34 or 43 12

Table 5.1: Conversion between extended symbol and matrix notation.

We introduce the matrix Ă
‡

which plays a role similar to the matrix inverse

insofar as

Ă
‡ · Ă = Ă · Ă‡

= τ̆ . (5.8)
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Herein,

τ̆ =




I 0
3×3

0
3×3

0
3×3

0
3×3

1
2
I 1

2
I 0

3×3

0
3×3

1
2
I 1

2
I 0

3×3

0
3×3

0
3×3

0
3×3

I




(5.9)

is the 12×12 matrix representation of the extended identity symbol, with I being

the 3×3 identity matrix, and we have

Ă · τ̆ = τ̆ · Ă = Ă. (5.10)

The matrix Ă
‡

has the form

Ă
‡
=




‡1,1 ‡1,2 ‡1,3 0 0 0 0 0 0 0 0 ‡1,12

‡2,1 ‡2,2 ‡2,3 0 0 0 0 0 0 0 0 ‡2,12

‡3,1 ‡3,2 ‡3,3 0 0 0 0 0 0 0 0 ‡3,12

0 0 0 ‡4,4

2
0 0 ‡4,4

2
0 0 0 ‡4,11 0

0 0 0 0 ‡5,5

2
0 0 ‡5,5

2
0 ‡5,10 0 0

0 0 0 0 0 ‡6,6

2
0 0 ‡6,6

2
0 0 0

0 0 0 ‡4,4

2
0 0 ‡4,4

2
0 0 0 ‡4,11 0

0 0 0 0 ‡5,5

2
0 0 ‡5,5

2
0 ‡5,10 0 0

0 0 0 0 0 ‡6,6

2
0 0 ‡6,6

2
0 0 0

0 0 0 0 ‡10,5 0 0 ‡10,5 0 ‡10,10 0 0

0 0 0 ‡11,4 0 0 ‡11,4 0 0 0 ‡11,11 0

‡12,1 ‡12,2 ‡12,3 0 0 0 0 0 0 0 0 ‡12,12




,

(5.11)
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with entries

‡1,1 = (−A12,3A2,2A3,12 + A12,2A2,3A3,12 + A12,3A2,12A3,2 − A12,12A2,3A3,2 −
A12,2A2,12A3,3 + A12,12A2,2A3,3)/Λ, (5.12)

‡1,2 = (A1,2A12,3A3,12 − A12,2A1,3A3,12 − A1,12A12,3A3,2 + A12,12A1,3A3,2 −
A1,2A12,12A3,3 + A1,12A12,2A3,3)/Λ, (5.13)

‡1,3 = (−A1,2A12,3A2,12 + A12,2A1,3A2,12 + A1,12A12,3A2,2 − A12,12A1,3A2,2 +

A1,2A12,12A2,3 − A1,12A12,2A2,3)/Λ, (5.14)

‡2,1 = (−A12,3A2,12A3,1 + A12,12A2,3A3,1 + A12,3A2,1A3,12 − A12,1A2,3A3,12 −
A12,12A2,1A3,3 + A12,1A2,12A3,3)/Λ, (5.15)

‡2,2 = (A1,12A12,3A3,1 − A12,12A1,3A3,1 − A1,1A12,3A3,12 + A12,1A1,3A3,12 −
A1,12A12,1A3,3 + A1,1A12,12A3,3)/Λ, (5.16)

‡2,3 = (−A1,12A12,3A2,1 + A12,12A1,3A2,1 + A1,1A12,3A2,12 − A12,1A1,3A2,12 +

A1,12A12,1A2,3 − A1,1A12,12A2,3)/Λ, (5.17)

‡3,1 = (A12,2A2,12A3,1 − A12,12A2,2A3,1 − A12,2A2,1A3,12 + A12,1A2,2A3,12 +

A12,12A2,1A3,2 − A12,1A2,12A3,2)/Λ, (5.18)

‡3,2 = (A1,2A12,12A3,1 − A1,12A12,2A3,1 − A1,2A12,1A3,12 + A1,1A12,2A3,12 +

A1,12A12,1A3,2 − A1,1A12,12A3,2)/Λ, (5.19)

‡3,3 = (−A1,2A12,12A2,1 + A1,12A12,2A2,1 + A1,2A12,1A2,12 − A1,1A12,2A2,12 −
A1,12A12,1A2,2 + A1,1A12,12A2,2)/Λ, (5.20)

‡4,4 =
A11,11

2(A11,11A4,4 − A4,11A11,4)
, (5.21)

‡5,5 =
A10,10

2(A10,10A5,5 − A5,10A10,5)
, (5.22)

‡6,6 =
1

2A6,6

, (5.23)

‡10,10 =
A5,5

(A10,10A5,5 − A10,5A5,10)
, (5.24)

‡11,11 =
A4,4

(A11,11A4,4 − A11,4A4,11)
, (5.25)

‡12,12 = (−A1,3A2,2A3,1 + A1,2A2,3A3,1 + A1,3A2,1A3,2 − A1,1A2,3A3,2 −
A1,2A2,1A3,3 + A1,1A2,2A3,3)/Λ, (5.26)
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‡1,12 = (A1,3A2,2A3,12 − A1,2A2,3A3,12 − A1,3A2,12A3,2 + A1,12A2,3A3,2 +

A1,2A2,12A3,3 − A1,12A2,2A3,3)/Λ, (5.27)

‡2,12 = (A1,3A2,12A3,1 − A1,12A2,3A3,1 − A1,3A2,1A3,12 + A1,1A2,3A3,12 +

A1,12A2,1A3,3 − A1,1A2,12A3,3)/Λ, (5.28)

‡3,12 = (−A1,2A2,12A3,1 + A1,12A2,2A3,1 + A1,2A2,1A3,12 − A1,1A2,2A3,12 −
A1,12A2,1A3,2 + A1,1A2,12A3,2)/Λ, (5.29)

‡4,11 =
A4,11

2(A11,4A4,11 − A11,11A4,4)
, (5.30)

‡5,10 =
A5,10

2(A5,10A10,5 − A10,10A5,5)
, (5.31)

‡12,1 = (A12,3A2,2A3,1 − A12,2A2,3A3,1 − A12,3A2,1A3,2 + A12,1A2,3A3,2 +

A12,2A2,1A3,3 − A12,1A2,2A3,3)/Λ, (5.32)

‡12,2 = (−A1,2A12,3A3,1 + A12,2A1,3A3,1 + A1,1A12,3A3,2 − A12,1A1,3A3,2 +

A1,2A12,1A3,3 − A1,1A12,2A3,3)/Λ, (5.33)

‡12,3 = (A1,2A12,3A2,1 − A12,2A1,3A2,1 − A1,1A12,3A2,2 + A12,1A1,3A2,2 −
A1,2A12,1A2,3 + A1,1A12,2A2,3)/Λ, (5.34)

‡11,4 =
A11,4

2(A11,4A4,11 − A11,11A4,4)
, (5.35)

‡10,5 =
A10,5

2(A10,5A5,10 − A10,10A5,5)
, (5.36)

(5.37)

where the scalar

Λ = A1,12A12,3A2,2A3,1 − A12,12A1,3A2,2A3,1 − A1,1A12,3A2,2A3,12 +

A12,1A1,3A2,2A3,12 − A1,12A12,3A2,1A3,2 + A12,12A1,3A2,1A3,2 + (5.38)

A1,1A12,3A2,12A3,2 − A12,1A1,3A2,12A3,2 + A1,12A12,1A2,3A3,2 −
A1,1A12,12A2,3A3,2 − A1,12A12,1A2,2A3,3 + A1,1A12,12A2,2A3,3 +

A12,2

(
A1,3A2,12A3,1 − A1,12A2,3A3,1 − A1,3A2,1A3,12 + A1,1A2,3A3,12 +

A1,12A2,1A3,3 − A1,1A2,12A3,3

)
+ A1,2

(
− A12,3A2,12A3,1 + A12,12A2,3A3,1 +

A12,3A2,1A3,12 − A12,1A2,3A3,12 − A12,12A2,1A3,3 + A12,1A2,12A3,3

)
.
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5.1.4 Component materials

We consider the homogenization of a composite comprising two component mate-

rials, labeled as component material ‘1’ and component material ‘2’. In general,

both components are homogeneous, orthorhombic mm2 piezoelectric materials,

characterized by the stiffness tensors C
(`)
abmn, piezoelectric tensors e

(`)
nab, dielectric

tensors ε
(`)
an and densities ρ(`) (` = 1, 2). In conformity with the notational prac-

tices introduced in §4.1 and §5.1.2, the component materials are also described by

the extended stiffness symbols C̆
(`)
aBMn (and their 12×12 matrix equivalents C̆

(`)
)

and extended density symbols ρ̆
(`)
BM (and their 4×4 matrix equivalents ρ̆(`)).

The inclusion particles are parameterized by (3.8) and (3.9) and the distribu-

tional statistics are described in §3.1.4. The composite has an extended stiffness

symbol of the form (4.8) with n = 2.

5.1.5 Comparison material

We now introduce a comparison material, which in consonance with the compo-

nent materials, is taken to be an orthorhombic mm2 piezoelectric material, in

general. The piezoelectric constitutive properties of this orthorhombic compari-

son material (OCM) are encapsulated by its extended stiffness symbol C̆
(ocm)
lMPq (and

its 12×12 matrix equivalent C̆
(ocm)

) and extended density symbol ρ̆
(ocm)
MP (and its

4×4 matrix equivalent ρ̆(ocm)), as described in §4.3.

In this section we derive the equations for C̆
(ocm)

and ρ̆(ocm). We begin with

equations (4.99) and (4.100) which explicitly are

〈ξ̆lMPq(r)〉 = 〈Φ(1)(r) ξ̆
(1)
lMPq + Φ(2)(r) ξ̆

(2)
lMPq〉 = 0, (5.39)

〈δρ̆MP (r)〉 = 〈Φ(1)(r)
[
ρ̆(1) − ρ̆(ocm)

]
MP

+ Φ(2)(r)
[
ρ̆(2) − ρ̆(ocm)

]
MP
〉 = 0

(5.40)

and are necessary to remove all secular terms. In equation (5.39), the quantities

ξ̆
(`)
lMPq =

(
C̆

(`)
lMSt − C̆

(ocm)
lMSt

)
η̆

(`)
StPq, (` = 1, 2), (5.41)
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where η̆
(`)
StPq is given implicitly through

S̆
(`)
Pq(r) = η̆

(`)
PqSt$̆

(`)
St (r), (5.42)

$̆
(`)
Tj(r) = S̆

(`)
Tj (r) + W̆TjlM

(
C̆

(`)
lMPq − C̆

(ocm)
lMPq

)
S̆

(`)
Pq(r), (5.43)

which have been reproduced from (4.45), (4.46) and (4.48). The extended renor-

malization symbol is given by

W̆PstU =





1

8π

∫ 2π

0

dφ

∫ π

0

dθ
sin θ

(U−1 · k̂) · (U−1 · k̂)
×

(U−1 · k̂)t

{
(U−1 · k̂)s

[
ă−1(U−1 · k̂)

]
pU

+

(U−1 · k̂)p

[
ă−1(U−1 · k̂)

]
sU

}
, P = p = 1, 2, 3

1

8π

∫ 2π

0

dφ

∫ π

0

dθ sin θ×
(U−1 · k̂)t(U

−1 · k̂)s

[
ă−1(U−1 · k̂)

]
pU

(U−1 · k̂) · (U−1 · k̂)
, P = 4

,

(5.44)

which is an extended version of the elastodynamic case, (3.29), as indeed is all

the piezoelectric theory.

Upon substituting equations (5.41)–(5.43) into equation (5.39), exploiting

〈Φ(`)(r)〉 = f (`), and after algebraic manipulations identical to those in the elas-

todynamic SPFT, §3.2.2, we obtain

f (1)

[(
C̆

(1) − C̆
(ocm)

)‡
+ W̆

]‡
+f (2)

[(
C̆

(2) − C̆
(ocm)

)‡
+ W̆

]‡
= 0

12×12
, (5.45)

wherein the 12×12 matrix equivalent of W̆PstU (namely, W̆) has been introduced.

The OCM stiffness extended matrix may be extracted, in exactly the same manner

as the elastodynamic case, §3.2.2, from (5.45) as

C̆
(ocm)

= C̆
(1)

+ f (2)
[
τ̆ + (C̆

(2) − C̆
(ocm)

) · W̆
]‡
·
(
C̆

(1) − C̆
(2)

)
, (5.46)

where τ̆ is the 12 × 12 matrix representation of the extended identity τ̆rSTu =

τ̆RstU . By standard numerical procedures, such as the Jacobi method [37], the
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nonlinear relation (5.46) is solved for C̆
(ocm)

. The iteration method used in the

piezoelectric SPFT is the equivalent of (3.46), with the elastic matrices replaced

by the appropriate piezoelectric extension.

Exactly as in the elastodynamic case, §3.2.2, and from (5.40) we have the

extended density of the OCM as the volume average of the extended densities of

the component materials ‘1’ and ‘2’; i.e.,

ρ̆(ocm) = f (1)ρ̆(1) + f (2)ρ̆(2). (5.47)

5.1.6 Second-order SPFT

The second–order1 estimates of the HCM extended stiffness and density symbols,

(4.103) and (4.104), may be expressed in terms of three–dimensional integrals as

C̆
(spft)
lMPq = C̆

(ocm)
lMPq −

ω2

2

∫
d3k

kt

k2
B̆lMrs

tUPq(k)
[
ρ̆(ocm)

]
XY

[
Ğ

(ocm)
(k)

]
Y U
×

{
ks

[
ă−1(k̂)

]
rX

+ kr

[
ă−1(k̂)

]
sX

}
−

ω2

2

∫
d3k

kt

k2
B̆lM4s

tUPq(k)
[
ρ̆(ocm)

]
XY

[
Ğ

(ocm)
(k)

]
Y U

{
ks

[
ă−1(k̂)

]
4X

}

(5.48)

and

ρ̆
(spft)
MP = ρ̆

(ocm)
MP + ω2

∫
d3k B̆MSUP (k)

[
Ğ

(ocm)
(k)

]
SU

. (5.49)

The symbols B̆lMRs
tUPq (k) and B̆MSUP (k) represent the spectral covariance functions,

which from (4.84), (4.86), (4.98) and utilizing (4.99), (4.100), are given by

B̆lMNs
tUPq (k) =

(
ξ̆

(2)
lMNs − ξ̆

(1)
lMNs

)(
ξ̆

(2)
tUPq − ξ̆

(1)
tUPq

)

8π3

∫
d3R Γ(R) exp (−ik ·R)

B̆MSUP (k) =

(
ρ̆

(2)
MS − ρ̆

(1)
MS

)(
ρ̆

(2)
UP − ρ̆

(1)
UP

)

8π3

∫
d3R Γ(R) exp (−ik ·R)





,

(5.50)

1The first–order SPFT estimate is identical to the zeroth–order SPFT estimate which is
represented by the comparison material, as shown in §4.6.
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with

Γ(R) = Γ(r− r′) = 〈Φ(1)(r) Φ(1)(r′) 〉 − 〈Φ(1)(r) 〉 〈Φ(1)(r′) 〉
≡ 〈Φ(2)(r) Φ(2)(r′) 〉 − 〈Φ(2)(r) 〉 〈Φ(2)(r′) 〉. (5.51)

In order to make the integrals in the expressions for C̆
(spft)
lMPq and ρ̆

(spft)
MP pre-

sented in equations (5.48) and (5.49) numerically tractable, we simplify them as

follows. Let us begin with the integral on the right sides of equations (5.50). Upon

implementing the step function–shaped covariance function (3.12) and utilizing

(3.11), we find

∫
d3R Γ(R) exp (−ik ·R) = f (1)f (2)

∫

|R|≤L

d3R exp
[−i

(
U · k) ·R]

. (5.52)

Thereby, the expressions for B̆lMRs
tUPq (k) and B̆MSUP (k) reduce to [38]

B̆lMRs
tUPq (k) =

f (1)f (2)
(
ξ̆

(2)
lMRs − ξ̆

(1)
lMRs

)(
ξ̆

(2)
tUPq − ξ̆

(1)
tUPq

)

2 (πkσ)2 ×
[
sin (kσL)

kσ
− L cos (kσL)

]

B̆MSUP (k) =
f (1)f (2)

(
ρ̆

(2)
MS − ρ̆

(1)
MS

)(
ρ̆

(2)
UP − ρ̆

(1)
UP

)

2 (πkσ)2 ×
[
sin (kσL)

kσ
− L cos (kσL)

]





, (5.53)

wherein the scalar function

σ ≡ σ(θ, φ) =

√
a2 sin2 θ cos2 φ + b2 sin2 θ sin2 φ + c2 cos2 θ (5.54)

is introduced.

Now we turn to the integrals in (5.48) and (5.49). In analogy with the cor-

responding expression for the elastodynamic SPFT, the spectral Green function

Ğ
(ocm)

(k) may be conveniently expressed as, §4.3,

Ğ
(ocm)

(k) =
N̆(k)

∆̆(k)
, (5.55)
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where the 4×4 matrix function

N̆(k) = adj
[
k2 ă(k̂)− ω2ρ̆(ocm)

]
(5.56)

and the scalar function

∆̆(k) = k8det
[
ă(k̂)

]
− tr

{
adj

[
k2ă(k̂)

]
· ω2ρ̆(ocm)

}
−

k2 tr
[
adj(ω2ρ̆(ocm)) · ă(k̂)

]
+ k4

(
tr

{[
ă(k̂)

]
44

[
ă](k̂) · adj(ω2ρ̆])

]}
−

[
ă(k̂)

]
41

[
ă(k̂)

]
14

[
adj(ω2ρ̆])

]
11
−

[
ă(k̂)

]
42

[
ă(k̂)

]
24

[
adj(ω2ρ̆])

]
22
−

[
ă(k̂)

]
31

[
ă(k̂)

]
13

[
adj(ω2ρ̆])

]
33

)
, (5.57)

with the 3×3 matrices ă] and ρ̆] having entries

ă](k) =




[
ă(k̂)

]
11

[
ă(k̂)

]
12

[
ă(k̂)

]
13[

ă(k̂)
]

21

[
ă(k̂)

]
22

[
ă(k̂)

]
23[

ă(k̂)
]

31

[
ă(k̂)

]
32

[
ă(k̂)

]
33




,

(5.58)

ρ̆] =




[
ρ̆(ocm)

]
11

[
ρ̆(ocm)

]
12

[
ρ̆(ocm)

]
13[

ρ̆(ocm)
]

21

[
ρ̆(ocm)

]
22

[
ρ̆(ocm)

]
23[

ρ̆(ocm)
]

31

[
ρ̆(ocm)

]
32

[
ρ̆(ocm)

]
33




.

Through exploiting equations (5.53) and (5.55), the integrals in equations

(5.48) and (5.49) with respect to k can be evaluated by means of calculus of

residues: The roots of ∆̆(k) = 0 give rise to seven poles in the complex–k plane,

located at k = 0,±p̆1, ±p̆2, ±p̆3, which are chosen such that p̆n (n = 1, 2, 3) lie

in the upper half of the complex plane. From equation (5.57), we find that the
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nonzero poles satisfy

p̆2
1 = PA − 1

3

(
21/3PB

PC

− PC

21/3

)
, (5.59)

p̆2
2 = PA +

1

3

(
(1 + i

√
3)PB

22/3PC

− (1− i
√

3)PC

24/3

)
, (5.60)

p̆2
3 = PA +

1

3

(
(1− i

√
3)PB

22/3PC

− (1 + i
√

3)PC

24/3

)
, (5.61)

wherein

PA =
ω2tr

{
adj

[
ă(k̂)

]
· ρ̆(ocm)

}

3 det
[
ă(k̂)

] , (5.62)

PB = −C2
A + 3 CB, (5.63)

PC =
[
PD +

(
4P3

B + P2
D

)1/2
]1/3

, (5.64)

PD = −2 C3
A + 9 CA CB − 27 CC , (5.65)

with

CA =
−ω2 tr

{
adj

[
ă(k̂)

]
· ρ̆(ocm)

}

det
[
ă(k̂)

] , (5.66)

CB =
ω4

det
[
ă(k̂)

]
{ [

ă(k̂)
]
44

tr
[
ă](k̂) · adj

(
ρ̆]

) ]
+

[
ă(k̂)

]
41

[
ă(k̂)

]
14

[
adj

(
ρ̆(ocm)

)]
11

+
[
ă(k̂)

]
42

[
ă(k̂)

]
24

[
adj

(
ρ̆(ocm)

)]
22

+

[
ă(k̂)

]
43

[
ă(k̂)

]
34

[
adj

(
ρ̆(ocm)

)]
33

}
, (5.67)

CC =
−ω6 tr

{
adj

[
ρ̆(ocm)

]
· ă(k̂)

}

det
[
ă(k̂)

] . (5.68)

We must calculate the residue of Ğ
(ocm)

at each of the poles of ∆̆(k) = 0. Fur-

thermore, a simple pole is introduced by the covariance function (5.53). The
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function we wish to find the residue of is

N̆(k)

´̆F(k)

[
eiLσk − e−iLσk

2iσk
− L(eiLσk + e−iLσk)

2

]
(5.69)

with

´̆F(k) = k2(k − p̆1)(k − p̆2)(k − p̆3)(k + p̆1)(k + p̆2)(k + p̆3). (5.70)

We calculate the residue using contour integration, exactly as in the elastody-

namic SPFT, §3.2.4. Splitting (5.69) into 4 separate functions;

F̆1(k) =
N̆(k)

´̆F(k)

eiLσk

2iσk
(5.71)

F̆2(k) =
N̆(k)

´̆F(k)

−LeiLσk

2
(5.72)

F̆3(k) =
N̆(k)

´̆F(k)

−e−iLσk

2iσk
(5.73)

F̆4(k) =
N̆(k)

´̆F(k)

−Le−iLσk

2
. (5.74)

For the functions F̆1(k) and F̆2(k) we use a semi–circle in the upper half plane

as the contour, calculating the residue at p̆1, p̆2, p̆3 and 0. The residues are given

by

Res(F̆1(p̆1)) =
−iN̆(p̆1U · k̂)eiLσp̆1

4σp̆4
1(p̆

2
1 − p̆2

2)(p̆
2
1 − p̆2

3)
(5.75)

Res(F̆1(p̆2)) =
iN̆(p̆2U · k̂)eiLσp̆2

4σp̆4
2(p̆

2
1 − p̆2

2)(p̆
2
2 − p̆2

3)
(5.76)

Res(F̆1(p̆3)) =
−iN̆(p̆3U · k̂)eiLσp̆3

4σp̆4
3(p̆

2
1 − p̆2

3)(p̆
2
2 − p̆2

3)
(5.77)

Res(F̆1(0)) =
1

4iσp̆4
1p̆

4
2p̆

4
3

×
{

p̆2
1p̆

2
2p̆

2
3

(
N̆(0)σ2L2 − 2i

∂

∂k
N̆(0)σL−

∂2

∂k2
N̆(0)

)
− 2N̆(0)

(
p̆2

1p̆
2
2 + p̆2

1p̆
2
3 + p̆2

2p̆
2
3

)
}

(5.78)
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Res(F̆2(p̆1)) =
−LN̆(p̆1U · k̂)eiLσp̆1

4σp̆3
1(p̆

2
1 − p̆2

2)(p̆
2
1 − p̆2

3)
(5.79)

Res(F̆2(p̆2)) =
LN̆(p̆2U · k̂)eiLσp̆2

4σp̆3
2(p̆

2
1 − p̆2

2)(p̆
2
2 − p̆2

3)
(5.80)

Res(F̆2(p̆3)) =
−LN̆(p̆3U · k̂)eiLσp̆3

4σp̆3
3(p̆

2
1 − p̆2

3)(p̆
2
2 − p̆2

3)
(5.81)

Res(F̆2(0)) =
iL

(
N̆(0)σL− i ∂

∂k
N̆(0)

)

2p̆2
1p̆

2
2p̆

2
3

, (5.82)

Similarly, for the functions F̆3(k) and F̆4(k) we use a semi–circle in the lower

half plane as the contour, calculating the residue at −p̆1, −p̆2, −p̆3 and 0. These

residues are given by

Res(F̆3(−p̆1)) =
iN̆(p̆1U · k̂)eiLσp̆1

4σp̆4
1(p̆

2
1 − p̆2

2)(p̆
2
1 − p̆2

3)
(5.83)

Res(F̆3(−p̆2)) =
−iN̆(p̆2U · k̂)eiLσp̆2

4σp̆4
2(p̆

2
1 − p̆2

2)(p̆
2
2 − p̆2

3)
(5.84)

Res(F̆3(−p̆3)) =
iN̆(p̆3U · k̂)eiLσp̆3

4σp̆4
3(p̆

2
1 − p̆2

3)(p̆
2
2 − p̆2

3)
(5.85)

Res(F̆3(0)) =
−1

4iσp̆4
1p̆

4
2p̆

4
3

×
{

p̆2
1p̆

2
2p̆

2
3

(
N̆(0)σ2L2 + 2i

∂

∂k
N̆(0)σL−

∂2

∂k2
N̆(0)

)
− 2N̆(0)

(
p̆2

1p̆
2
2 + p̆2

1p̆
2
3 + p̆2

2p̆
2
3

)
}

(5.86)

Res(F̆4(−p̆1)) =
LN̆(p̆1U · k̂)eiLσp̆1

4σp̆3
1(p̆

2
1 − p̆2

2)(p̆
2
1 − p̆2

3)
(5.87)

Res(F̆4(−p̆2)) =
−LN̆(p̆2U · k̂)eiLσp̆2

4σp̆3
2(p̆

2
1 − p̆2

2)(p̆
2
2 − p̆2

3)
(5.88)

Res(F4(−p̆3)) =
LN̆(p̆3U · k̂)eiLσp̆3

4σp̆3
3(p̆

2
1 − p̆2

3)(p̆
2
2 − p̆2

3)
(5.89)

Res(F̆4(0)) =
iL

(
N̆(0)σL + i ∂

∂k
N̆(0)

)

2p̆2
1p̆

2
2p̆

2
3

. (5.90)
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The values of the residues provided by the pole at zero are halved as the pole lies

on both contours. We sum the residues in the following way because each residue

has to be evaluated by moving anti-clockwise around the contour.

Residue = Res(F̆1(p̆1)) + Res(F̆1(p̆2)) + Res(F̆1(p̆3)) +
1

2
Res(F̆1(0)) +

Res(F̆2(p̆1)) + Res(F̆2(p̆2)) + Res(F̆2(p̆3)) +
1

2
Res(F̆2(0))−

Res(F̆3(−p̆1))− Res(F̆3(−p̆2))− Res(F̆3(−p̆3))− 1

2
Res(F̆3(0))−

Res(F̆4(−p̆1))− Res(F̆4(−p̆2))− Res(F̆4(−p̆3))− 1

2
Res(F̆4(0)).

(5.91)

Thus, by this application of the Cauchy residue theorem [39], the SPFT estimates

are delivered in terms of two–dimensional integrals as

C̆
(spft)
lMPq = C̆

(ocm)
lMPq +

ω2f (1)f (2)

4πi

∫ 2π

φ=0

∫ π

θ=0

dφ dθ
kt sin θ

(kσ)2 det
[
ă(k̂)

]
[
ρ̆(ocm)

]
XY

×

[
b̆(k̂)

]
Y U

( {
ξ̆

(2)
lMrs − ξ̆

(1)
lMrs

} {
ks

[
ă−1(k̂)

]
rX

+ kr

[
ă−1(k̂)

]
sX

}
+

{
ξ̆

(2)
lm4s − ξ̆

(1)
lm4s

}{
ks

[
ă−1(k̂)

]
4X

} ) (
ξ̆

(2)
tUPq − ξ̆

(1)
tUPq

)
(5.92)

and

ρ̆
(spft)
MP = ρ̆

(ocm)
MP −

ω2f (1)f (2)
(
ρ̆

(2)
MS − ρ̆

(1)
MS

)(
ρ̆

(2)
UP − ρ̆

(1)
UP

)

2πi
×

∫ 2π

φ=0

∫ π

θ=0

dφ dθ
sin θ

det
[
ă(k̂)

]
[
b̆(k̂)

]
SU

, (5.93)
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where the residue is given by the 4×4 matrix

b̆(k̂) =
1

2i

{
eiLσp̆1N̆(p̆1U · k̂)

σp̆4
1(p̆

2
1 − p̆2

2)(p̆
2
1 − p̆2

3)

(
1− iLσp̆1

)
−

eiLσp̆2N̆(p̆2U · k̂)

σp̆4
2(p̆

2
1 − p̆2

2)(p̆
2
2 − p̆2

3)

(
1− iLσp̆2

)
+ (5.94)

eiLσp̆3N̆(p̆3U · k̂)

σp̆4
3(p̆

2
2 − p̆2

3)(p̆
2
1 − p̆2

3)

(
1− iLσp̆3

)
−

1

σp̆2
1p̆

2
2p̆

2
3

[
N̆(0)

( 1

p̆2
1

+
1

p̆2
2

+
1

p̆2
3

+
σ2L2

2

)
+

1

2

∂2

∂k2
N̆(0)

]}
.

The expressions for the second–order SPFT estimates C̆
(spft)
lMPq and ρ̆

(spft)
MP in equa-

tions (5.92) and (5.93) may be evaluated by standard numerical methods [40].

It is particularly noteworthy that C̆
(spft)
lMPq and ρ̆

(spft)
MP are complex–valued for

L > 0, even when the corresponding quantities for the component materials, i.e.,

C̆
(`)
lMPq and ρ̆

(`)
MP (` = 1, 2), are real–valued. This reflects the fact that the SPFT

accommodates losses due to scattering [10].

5.1.7 Energy considerations

Due to energy considerations, the imaginary part of the extended compliance

matrix, M̆
(spft)

[54], is required to be positive definite for passive materials [55].

We begin with the constitutive equation for the extended stiffness matrix

σ̆ = C̆ · S̆ (5.95)

where

C̆ =


 C −eT

e ε


 , σ̆ =


 σ

D


 and S̆ =


 S

E


 . (5.96)

Herein, σ, D, S and E are the vector forms of the stress, electric displacement,

strain and electric field respectively. Therefore, we can rewrite (5.95) as

σ = C · S− eT · E (5.97)
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and

D = e · S + ε · E. (5.98)

Now, multiplying (5.97) by C† [54] gives us

C† · σ = C† ·C · S−C† · eT · E = S−C† · eT · E (5.99)

or rather

S = C† · σ + C† · eT · E. (5.100)

Substituting this into (5.98) produces

D = e · (C† · σ + C† · eT · E) + ε · E (5.101)

= e ·C† · σ + (e ·C† · eT + ε) · E, (5.102)

which gives the extended compliance matrix as

M̆ =


 C† C† · eT

e ·C† e ·C† · eT + ε


 . (5.103)

Explicitly, for our SPFT results, we have

M̆
(spft)

=




(
C(spft)

)† (
C(spft)

)†
· (e(spft)

)T

e(spft) ·
(
C(spft)

)†
ε(spft) + e(spft) ·

(
C(spft)

)†
· (e(spft)

)T




(5.104)

where † is the elastodynamic 9× 9 dagger operation (3.6).

5.2 Numerical results

5.2.1 Mori–Tanaka estimate

In order to illustrate the theory presented in §5.1, let us now consider a repre-

sentative numerical example. A comparison for the SPFT estimate of the HCM

constitutive parameters is provided by the corresponding results computed using

the Mori–Tanaka formalism [20, 32, 43, 56]. In the case of orthorhombic mm2
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piezoelectric component materials, the Mori-Tanaka estimate of the extended

stiffness matrix for the HCM is given by [57]

C̆
(MT )

= C̆
(1)

+ f (2)
(
C̆

(2) − C̆
(1)

)
· B̆(MT ) ·

[
f (1)τ̆ + f (2)B̆

(MT )
]‡

, (5.105)

where the 12×12 matrix

B̆
(MT )

=

[
τ̆ + S̆

(esh) ·
(
C̆

(1)
)‡
·
(
C̆

(2) − C̆
(1)

)]‡
, (5.106)

with S̆
(esh)

being the 12× 12 matrix representation of the piezoelectric extension

of the Eshelby tensor [44, 45, 48].

The piezoelectric extension of the Eshelby tensor, for orthorhombic component

materials distributed with either spherical or ellipsoidal inclusion particles, is

given by [48]

S̆
(esh)
MnAb =





1

8π
C̆

(1)
iJAb

∫ +1

−1

dζ3

∫ 2π

0

dω
[
F̆

(esh)
mJin(ϑ) + F̆

(esh)
nJim(ϑ)

]
M = 1, 2, 3

1

4π
C̆

(1)
iJAb

∫ +1

−1

dζ3

∫ 2π

0

dω F̆
(esh)
4Jin (ϑ) M = 4

(5.107)

wherein

F̆
(esh)
MJin(ϑ) = ϑiϑnK̆−1

MJ , K̆JR = ϑiC̆
(1)
iJRnϑn,

ϑ1 =
ζ1

a
, ϑ2 =

ζ2

b
, ϑ3 =

ζ3

c

ζ1 = (1− ζ2
3 )1/2 cos(ω), ζ2 = (1− ζ2

3 )1/2 sin(ω), ζ3 = ζ3





, (5.108)

The integrals in (5.107) can be evaluated using standard numerical methods [40].

The piezoelectric extension of the Eshelby tensor is converted to a 12×12 matrix

as described in §5.1.3.

5.2.2 Preliminaries

In the following, we present the numerical evaluation of the 12×12 extended

stiffness matrix of the HCM, namely C̆
(hcm)

, as estimated by the lowest–order
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SPFT (i.e., hcm = ocm), the second–order SPFT (i.e., hcm = spft) and the

Mori–Tanaka formalism (i.e., hcm = MT ). The matrix C̆
(hcm)

has the form

represented in equation (5.2). The second–order SPFT estimate of the extended

density tensor ρ̆
(spft)
MP is also evaluated; the numerical evaluation of the lowest–

order SPFT density ρ̆
(ocm)
MP need not be presented here as this quantity is simply the

volume average of the densities of the component materials. An angular frequency

of ω = 2π × 106 s−1 was selected for all second–order SPFT computations. As

before we consider the HCM to be constructed of particles of component material

‘2’ distributed in a matrix of component material ‘1’.

The eccentricities of the ellipsoidal inclusion particles are specified by the

shape parameters {a, b, c}, per equations (3.8) and (3.9). To allow direct com-

parison with results from previous studies [57], component material ‘1’ was taken

to be the piezoelectric material polyvinylidene fluoride (PVDF) while compo-

nent material ‘2’ was taken to be the thermoplastic polyimide LaRC-SI, which

has no piezoelectric properties. The stiffness constitutive parameters of the com-

ponent materials are tabulated in Table 5.2. The nonzero piezoelectric consti-

tutive parameters of PVDF are: e113 ≡ e31 = 0.024, e223 ≡ e32 = 0.001 and

e333 ≡ e33 = −0.027 in units of C m−2. The dielectric constitutive parameters

of PVDF are: ε11 = 7.4, ε22 = 9.6 and ε33 = 7.6, whereas those of LaRC-SI are:

ε11 = ε22 = ε33 = 2.8, all in units of ε0 = 8.854 × 10−12 F m−1 (the permittivity

of free space). Lastly, the densities of PVDF and LaRC-SI are 1750 and 1376,

respectively, in units of kg m−3.

Stiffness parameter PVDF (GPa) LaRC-SI (GPa)
C1111 ≡ C11 3.8 8.1
C1122 ≡ C12 1.9 5.4
C1133 ≡ C13 1.0 5.4
C2222 ≡ C22 3.2 8.1
C2233 ≡ C23 0.9 5.4
C3333 ≡ C33 1.2 8.1
C2323 ≡ C44 0.7 1.4
C1313 ≡ C55 0.9 1.4
C1212 ≡ C66 0.9 1.4

Table 5.2: The stiffness constitutive parameters of the component materials in
units of GPa (after [57]).
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5.2.3 Lowest–order SPFT

We begin by considering the lowest–order SPFT estimates of the HCM consti-

tutive parameters. In Figs. 5.1–5.3, components of the HCM extended stiffness

matrix C̆
(hcm)

, as computed using the lowest–order SPFT and the Mori–Tanaka

formalism, are plotted as functions of volume fraction f (2) for the case where the

inclusion particles are spherical (i.e., a = b = c). Only relatively minor differ-

ences between the lowest–order SPFT estimates and the Mori–Tanaka estimates

are observed, with the differences between the two being greatest for mid–range

values of f (2). Plots for both the SPFT and Mori–Tanaka estimates are necessar-

ily constrained by the limits

lim
f (2)→0

C̆
(hcm)

= C̆
(1)

, lim
f (2)→1

C̆
(hcm)

= C̆
(2)

. (5.109)

The corresponding graphs for the cases where the inclusion particles are de-

scribed by the shape parameters {a/c = 5, b/c = 1.5} and {a/c = 10, b/c = 2}
are provided in Figs. 5.4–5.6 and 5.7–5.9, respectively. A comparison of Figs. 5.1–

5.9 reveals that the differences between the lowest–order SPFT and Mori–Tanaka

estimates are accentuated as the inclusion particles become more eccentric in

shape, especially at mid–range values of f (2) for the piezoelectric parameters and

the dielectric parameters.

5.2.4 Second–order SPFT estimate

Now let us turn to the second–order SPFT estimates of the HCM constitutive

parameters. We considered these quantities as functions of
¯̆
kL, where

¯̆
k is an

approximate upper bound on the wavenumbers supported by the HCM, similar

to that used in the elastodynamic SPFT §3.4, as estimated by

¯̆
k =

ω

2

(√
ρ̄

λ̄ + 2µ̄
+

√
ρ̄

µ̄

)
, (5.110)
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wherein

λ̄ =
1

6

2∑

`=1

( ∣∣∣
[
C(`)

]
12

∣∣∣ +
∣∣∣
[
C(`)

]
13

∣∣∣ +
∣∣∣
[
C(`)

]
23

∣∣∣
)

µ̄ =
1

6

2∑

`=1

( ∣∣∣
[
C(`)

]
44

∣∣∣ +
∣∣∣
[
C(`)

]
55

∣∣∣ +
∣∣∣
[
C(`)

]
66

∣∣∣
)

ρ̄ =
1

2

2∑

`=1

ρ(`)





; (5.111)

and L is the correlation length associated with the two–point covariance function

(3.12). The real and imaginary parts of the components of ˜̆C
(spft)

= C̆
(spft) −

C̆
(ocm)

are plotted against
¯̆
kL for f (2) = 0.5 in Figs. 5.10–5.12 and Figs. 5.13–5.15

respectively. The values of the shape parameters {a, b, c} correspond to those

used in the calculations for Figs. 5.1–5.9.

The second–order corrections to the lowest–order SPFT estimates are ob-

served in Fig. 5.10–5.15 to grow exponentially in magnitude as the correlation

length increases. Furthermore, the magnitudes of both the real and imaginary

parts of C̆
(spft)

generally grow faster with increasing correlation length when the

inclusion particles are more eccentric in shape. At L = 0, the second–order and

lowest–order SPFT estimates coincide. While the second–order corrections are

relatively small compared to the lowest–order SPFT estimates, a highly signif-

icant feature of the second–order corrections is that these are complex–valued

with nonzero imaginary parts, even though C̆
(1,2)

and C̆
(ocm)

are purely real–

valued. We note that for all computations the imaginary part of the extended

compliance matrix M̆
(spft)

was found to be positive definite, which corresponds

to positive loss [55]. Thus, the emergence of nonzero imaginary parts of C̆
(spft)

indicates that the HCM has acquired a dissipative nature, despite the component

materials being nondissipative. The dissipation is attributed to scattering losses,

since the second–order SPFT takes into account interactions between spatially–

distinct scattering particles via the two–point covariance function (5.53). As the

correlation length increases, the number of scattering particles that can mutually

interact also increases, thereby increasing the scattering loss per unit volume.

Finally, we turn to the second–order SPFT estimate of the HCM density. The
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real and imaginary parts of the matrix entry
[
˜̆ρ

(spft)
]

jj
, j = 1, 2 and 3 wherein

˜̆ρ
(spft)

= ρ̆(spft)− ρ̆(ocm), are plotted as functions of
¯̆
kL in Fig. 5.16. The second–

order SPFT estimates of the HCM density exhibit characteristics similar to those

of the corresponding HCM stiffness, piezoelectric and dielectric constitutive pa-

rameters. That is, lim
L→0

ρ̆
(spft)
jj = ρ̆

(ocm)
jj and

∣∣∣ ˜̆ρ(spft)
jj

∣∣∣ ¿
∣∣∣ρ̆(ocm)

jj

∣∣∣ for j = 1, 2 and 3.

Also, the differences between ρ̆(spft) and ρ̆(ocm) increase exponentially as the cor-

relation length increases, and this effect is most accentuated when the component

particles are most eccentric in shape.

We remark that the second–order elastodynamic SPFT for orthotropic HCMs

also produced a complex–valued, anisotropic density, §3.4, as well as in other

homogenization scenarios [41, 42].

5.3 Closing remarks

We have now fully developed the piezoelectric SPFT for the case of orthorhombic

mm2 piezoelectric HCMs. In doing this we have produced simplified versions of

(4.103) and (4.104) that can be evaluated numerically evaluated. From the theo-

retical results and the numerical examples we can draw the following conclusions:

• The lowest–order SPFT estimate of the stiffness, piezoelectric and dielectric

properties of the HCM are qualitatively similar to those estimates provided

by the Mori–Tanaka formalism.

• Differences between the estimates of the lowest–order SPFT and the Mori–

Tanaka formalism are greatest at mid–range values of the volume fraction,

and accentuated when the inclusion particles are eccentric in shape.

• The second–order SPFT provides a correction to the lowest–order estimate

of the HCM constitutive properties. The magnitude of this correction is

generally larger when the inclusion particles are more eccentric in shape.

• While the correction provided by the second–order SPFT is relatively small

in magnitude, it is highly significant as it indicates dissipation due to scat-

tering loss.
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Figure 5.1: Plots of
[
C̆

(hcm)
]

r,s
, with r, s ∈ {1, 1; 1, 2; 1, 3; 2, 2; 2, 3; 3, 3; 4, 4; 5, 5; 6, 6} (in

GPa) as estimated using the lowest–order SPFT (i.e., hcm = ocm) (red, solid curves) and
the Mori–Tanaka mean–field formalism (i.e., hcm = MT ) (black, dashed curves), against the
volume fraction of component material ‘2’. Component material ‘1’ is PVDF and component
material ‘2’ is LaRC-SI. The component materials are distributed as spheres (i.e., a = b = c).
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Figure 5.2: Plots of
[
C̆

(hcm)
]

r,s
, with r, s ∈ {1, 12; 2, 12; 3, 12} (in C/m2), as estimated using

the lowest–order SPFT (i.e., hcm = ocm) (red, solid curves) and the Mori–Tanaka mean–field
formalism (i.e., hcm = MT ) (black, dashed curves), against the volume fraction of component
material ‘2’. Component material ‘1’ is PVDF and component material ‘2’ is LaRC-SI. The
component materials are distributed as spheres (i.e., a = b = c).
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Figure 5.3: Plots of
[
C̆

(hcm)
/ε0

]
r,s

, with r, s ∈ {10, 10; 11, 11; 12, 12} as estimated using

the lowest–order SPFT (i.e., hcm = ocm) (red, solid curves) and the Mori–Tanaka mean–field
formalism (i.e., hcm = MT ) (black, dashed curves), against the volume fraction of component
material ‘2’. Component material ‘1’ is PVDF and component material ‘2’ is LaRC-SI. The
component materials are distributed as spheres (i.e., a = b = c).
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Figure 5.4: As Fig 5.1 but with the component materials distributed as ellipsoids with (a/c =
5 and b/c = 1.5).
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Figure 5.5: As Fig 5.2 but with the component materials distributed as ellipsoids with (a/c =
5 and b/c = 1.5).
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Figure 5.6: As Fig 5.3 but with the component materials distributed as ellipsoids with (a/c =
5 and b/c = 1.5).
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Figure 5.7: As Fig 5.1 but with the component materials distributed as ellipsoids with (a/c =
10 and b/c = 2).
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Figure 5.8: As Fig 5.2 but with the component materials distributed as ellipsoids with (a/c =
10 and b/c = 2).
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Figure 5.9: As Fig 5.3 but with the component materials distributed as ellipsoids with (a/c =
10 and b/c = 2).
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Figure 5.10: Plots of the real parts of
[

˜̆C
(spft)

]

r,s

, with r, s ∈

{1, 1; 1, 2; 1, 3; 2, 2; 2, 3; 3, 3; 4, 4; 5, 5; 6, 6} (in GPa) plotted as functions of ¯̆
kL, with

f (2) = 0.5. The results from the spherical inclusion case (red, solid line) are plotted alongside
the cases with elliptical inclusions a = 5, b = 1.5, c = 1 (blue, short-dashed line) and a = 10,
b = 2, c = 1 (black, long-dashed line). Component material ‘1’ is PVDF and component
material ‘2’ is LaRC-SI.
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Figure 5.11: Plots of the real parts of
[

˜̆C
(spft)

]

r,s

, with r, s ∈ {1, 12; 2, 12; 3, 12}, the

piezoelectric parts. The results from the spherical inclusion case (red, solid line) are plotted
alongside the cases with elliptical inclusions a = 5, b = 1.5, c = 1 (blue, short-dashed line)
and a = 10, b = 2, c = 1 (black, long-dashed line). Component material ‘1’ is PVDF and
component material ‘2’ is LaRC-SI.

0.1 0.2 0.3 0.4 0.5 0.6

k
ñ�
L

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

R
e
@
Cñ� � � �

H
s
p
f
t
L

D
1
0
,
1
0

0.1 0.2 0.3 0.4 0.5 0.6

k
ñ�
L

0

0.05

0.1

0.15

0.2

R
e
@
Cñ� � � �

H
s
p
f
t
L

D
1
1
,
1
1

0.1 0.2 0.3 0.4 0.5 0.6

k
ñ�
L

0

0.5

1

1.5

2

R
e
@
Cñ� � � �

H
s
p
f
t
L

D
1
2
,
1
2

Figure 5.12: Plots of the real parts of
[

˜̆C
(spft)

]

r,s

, with r, s ∈ {10, 10; 11, 11; 12, 12}, the

dielectric parts. The results from the spherical inclusion case (red, solid line) are plotted
alongside the cases with elliptical inclusions a = 5, b = 1.5, c = 1 (blue, short-dashed line)
and a = 10, b = 2, c = 1 (black, long-dashed line). Component material ‘1’ is PVDF and
component material ‘2’ is LaRC-SI.
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Figure 5.13: As figure 5.10 but for the imaginary parts.
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Figure 5.14: As figure 5.11 but for the imaginary parts.
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Figure 5.15: As figure 5.12 but for the imaginary parts.
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Figure 5.16: Plots of the real and imaginary parts of ˜̆ρ
(spft)

11
, ˜̆ρ

(spft)

22
and ˜̆ρ

(spft)

33
plotted as

functions of ¯̆
kL, with f (2) = 0.5. The results from the spherical inclusion case (red, solid line)

are plotted alongside the cases with elliptical inclusions a = 5, b = 1.5, c = 1 (blue, short-dashed
line) and a = 10, b = 2, c = 1 (black, long-dashed line).
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Chapter 6

Conclusions and further work

Within this thesis we have explored the estimation of the electromagnetic, elas-

todynamic and piezoelectric properties of homogenized composite materials.

For electromagnetic HCMs we re–examined the Bergman–Milton bounds and

Maxwell Garnett estimates on ε, in light of recent advances in material manu-

facture. It was shown that the Bergman–Milton bounds do not provide tight

limits on the relative permittivity of the HCM if the real parts of the composite

materials’ relative permittivities are of opposite sign and the magnitude of the

real parts are much larger than the magnitude of the imaginary parts.

In elastodynamics the SPFT was further developed for orthotropic HCMs

and numerical studies undertaken. The piezoelectric SPFT was developed for

orthorhombic HCMs as an extension of the elastodynamic SPFT and numerical

examples were produced. For both SPFT estimates, elastodynamic and piezoelec-

tric, it has been shown that the lowest–order estimates are qualitatively similar

to those produced by the respective estimates from the Mori–Tanaka formalism.

Furthermore, the second–order SPFT estimate provides a relatively small, but

highly significant, correction to the lowest–order estimate which indicates dissi-

pation due to scattering loss.

The work described in this thesis leads to several possibilities for further work.

Firstly, the path has how been cleared towards the development of the SPFT for

piezoelectric/piezomagnetic HCMs [58], with bianisotropic electromagnetic prop-

erties [10]. Secondly, as with the electromagnetic SPFT [59] it may be of interest
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to investigate the 3rd–order approximation of both the elastodynamic and the

piezoelectric SPFT. Thirdly, a wavenumber study would allow comparison with

a greater number of multi-scattering homogenization theories [60]. Finally, it

would be interesting to use the piezoelectric SPFT to investigate the possibility

of negative phase velocity through the application of certain stress or strain [9].
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