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Abstract 
The behaviour of viscoplastic drops during formation and detachment from a 

capillary nozzle, free-fall, impact on a solid substrate and subsequent spreading are 
investigated experimentally by high-speed imaging. Drop dynamic behaviour is an 
integral component of many contemporary industrial processes ranging from fuel-
injection systems in combustion engines to spray coating, agrochemical and 
pharmaceutical delivery, fire extinguishment and ink-jet printing. Yield-stress fluids are 
commonly used nowadays in products ranging from mayonnaise to hair-gel. It is hoped 
that through understanding the dynamics of viscoplastic fluids, additional spray 
applications can be developed that will help to advance and optimise industrial processes. 
Viscoplastic fluids exhibit shear-thinning behaviour when the applied stress exceeds a 
certain threshold value, called the yield-stress. Below this threshold however, the fluid 
behaves like an elastic solid. By comparing the behaviour of viscoplastic drops with both 
Newtonian and shear-thinning fluids, yield-stress is shown to be capable of altering 
detachment behaviour, drop shape during free-fall, impact morphology and the final sessile 
shape of drops after spreading. For drops attached to the end of a capillary tube, growth 
continues until a maximum supportable tensile stress is reached in the drop neck. After 
this critical point, drops become unstable and detach. The critical break-up behaviour of 
low yield-stress drops is found to be similar to those of Newtonian and shear-thinning 
fluids. Above a threshold value however, characterised in terms of the ratio between 
yield-stress magnitude and capillary pressure, yield-stress forces exceed surface tension 
forces and the maximum tensile stress achievable in the drop neck at critical stability is 
governed by the extensional yield-stress, established using the von Mises criterion. This 
threshold value can also be used to characterise equilibrium drop shapes during free-fall. 
Whereas Newtonian, shear-thinning and low yield-stress fluids form near spherical 
equilibrium drop shapes, fluids above a threshold value become increasingly more prolate 
as the yield-stress increases. Upon impact, viscoplastic drops can exhibit central peaks at 
the end of inertial spreading. The influence of yield-stress magnitude on impact 
behaviour is qualitatively established by measuring the size of these peaks. Peaks indicate 
that deformation during impact is localized and within a threshold radius, shear stresses 
will not be large enough to overcome the yield-stress, therefore fluid within this region 
will not deform from the drop shape prior to impact. After impact, spreading will be 
dependent on the surface energy. Again, the ratio of the yield-stress magnitude to the 
capillary pressure can be used to characterise the final sessile drop shape. Whilst the 
equilibrium contact angle of Newtonian, shear-thinning and low yield-stress drops is 
independent of the yield-stress magnitude, above a threshold value, contact angles vary as 
a function of yield-stress magnitude. Whilst the research presented in this thesis 
highlights how fluid yield-stress can influence drop dynamics, some results are only 
qualitative. To establish more quantitative results, computational fluid dynamics methods 
should be used to examine viscoplastic drop dynamics. This research should focus 
primarily on impact behaviour, an aspect that has not received much attention previously. 
Modelling shear-thinning and viscoplastic fluid behaviour can be achieved by 
incorporating the relevant rheological models into the flow equations and examining 
impact morphology using a volume of fluid method. Numerical results can then be 
directly compared with the experimental results. Useful further experimentation could 
examine the relaxation behaviour of diamagnetically levitated viscoplastic drops. The 
results from this work could provide further insight into what rheological model best 
describes viscoplastic behaviour for shear-stresses below the yield-point. 
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Nomenclature 

 

a,n,m,p exponent coefficients  
a capillary length [m] or [mm] 
A0 capillary tube area [m2] 
A Cross sectional area [m2] 
Awet drop wetted area [m2] 
bn damping parameter  
B̂  Bingham-Capillary number  

EB̂  extensional Bingham-Capillary number  
Bo Bond number  
Bm Bingham number  
C parameter accounting for surface tension [Nm-1] 
Ca Capillary number  
C Cross time constant [s] 
C.M.C critical micelle concentration [mg/ml] 
D(t) drop diameter [m] or [mm] 
DE equivalent drop diameter [m] or [mm] 
D strain (symmetric component of the velocity gradient tensor) rate tensors [s-1] 
D0 capillary tube diameter [m] 
DMax maximum inertial expansion diameter [m] or [mm] 
DN drop neck diameter [m] 
DN,crit drop neck diameter at the point of critical breakup [m]  

(drop detachment dynamics) 
DPeak drop peak diameter [m] 
Dsessile sessile state drop diameter [m] or [mm] 
DII second invariant of the strain rate tensor [s-1] 
De Deborah number  
e drop shape eccentricity  (drop free-fall dynamics) 
EERE excess recoil energy [J] 
Eg gravitational potential energy [J] 
Ek kinetic energy [J] 
Eσ surface tension energy [J] 

Max
E βσ ,  surface tension energy at maximum inertial spread [J] 
F force [N] 
Fm surface tension force driving spreading [N] 
Fv viscous braking forces in spreading [N] 
g gravitational acceleration [ms-2] 
G shear modulus [Pa] 
h lamella height [m] (drop impact dynamics) 
h height dimension [m] 
hMax maximum drop height after impact [m] or [mm] 
hmin minimum drop height after impact [m] or [mm] 
hrim drop rim height [m] (drop impact dynamics) 

xviii 
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Hf Fall height [m] or [mm] 
In(kR0) modified Bessell function of the first kind  
I unit tensor  
k longitudinal wave number k = 2π/λ [m-1] (drop detachment dynamics) 
K Sping constant [Nm-1] 
K power law model consistency coefficient [Pasn] 
L drop length [m] (drop detachment dynamics) 
L length parameter associated with rim size of rimmed disk model [m] 

 (drop impact dynamics) 
LCrit drop height at critical breakup [m] or [mm] 
Lneck drop neck length [m] (drop detachment dynamics) 
n Power law index   
Oh Ohnesorge number  
p temporal spreading exponent  (Drop spreading dynamics) 
P pressure [Pa] 
Q volume flow rate [m3s-1] 
rf roughness coefficient  
R(t) drop radius [mm] 
Re Reynolds number  
Rec critical Reynolds number relating to splashing  
R0 capillary radius [m] 
RE equivalent drop radius [m] 
s empirical term for Attané et al.48 drop impact prediction model  
S spreading coefficient [Nm-1] (spreading dynamics) 
S drop shape factor  (free fall dynamics) 
Se equilibrium drop shape factor (free fall dynamics) 
Si initial spreading coefficient [Nm-1] 
ST dimensionless surface tension  (drop impact dynamics) 
t time [s] 
t* dimensionless time  
t0 time of detachment [s] (drop impact dynamics) 
t(DN,crit) time prior to pinch off of the critical breakup point [s]  

(drop detachment dynamics) 
tp observed time scale of an experiment [s] 
tq quarter wavelength timescale of an oscillating inviscid drop [s] 
tr relaxation time scale [s] 
tsi characteristic timescale of crossover from inertial to capillary spreading regime

[s] 
Tv large scale deformation period of a viscous drop [s] 
TI oscillation period of a perturbed inviscid drop [s] 
TII second invariant of the stress tensor [Pa] 
vr(t) radial velocity [ms-1] 
vz(t) vertical velocity [ms-1] 
Videal attached drop volume [m3] 
Vf detached drop volume [m3] 
VIS dimensionless viscosity term  (drop impact dynamics) 

xix 
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Wcrit drop weight at the critical point of instability [g] 
W&  rate of energy loss from viscous dissipation [W] 
We Weber number  
Wec critical Weber number relating to splashing  
X displacement [m] 
X Xanthan gum mass fraction  
Xc length of drop at critical point of instability [m] 
Y hair-gel mass fraction  
Z vertical length along drop [m] (drop detachment dynamics) 
  
Greek symbols  

)(tα  perturbation amplitude [mm]  
β  dimensionless Spread factor  
βm maximum inertial spread factor during inertial spreading  
βPeak measured dimensionless drop peak diameter 
βSessile sessile drop spread factor  
βT predicted dimensionless drop peak threshold diameter  
χ  universal scaling parameter for viscous drop detachment  
χ&  retraction rate [s-1] (drop impact dynamics) 
ρ  fluid density [kgm-3] 
∆ positive parameter introduced by Papageorgiou23 to control the extent  of the 

similarity region  
ε  dimensionless viscosity  (drop free-fall dynamics) 
ε  ratio of viscosity  
ε&  apparent rate of elongation [s-1] (drop detachment dynamics) 
ζ  tensile stress [Pa] (drop detachment dynamics) 
ζcrit critical tensile stress [Pa] (drop detachment dynamics) 
Σ stress tensor [Pa] 
ξ(t) drop height factor: drop height scaled with respect to DE  
ξm minimum drop height factor during inertial spreading  
γ  shear strain  
γ&  shear rate [s-1] 

cγ&  critical shear rate [s-1] 

maxγ&  maximum predicted shear rate [s-1] 
κ  empirical term for modified Mao et al.47 prediction model  

(drop impact dynamics) 
κ  normalised time  
λ  wavelength [m] 

crλ  critical wavelength defining onset of perturbation instability  [m] 
µ  fluid viscosity [Pas] 
µ0 zero shear rate viscosity (Cross129 & Carreau130 models) [Pas] 
µ∞ inifinite shear rate viscosity (Cross & Carreau models) [Pas] 
µwall fluid viscosity evaluated at substrate temperature [Pas] 

xx 
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ν  kinematic viscosity [mm2s-1] or [m2s-1] 
ωd natural damped frequency [Hz] 
ωn drop natural frequency [Hz] 
ων viscous growth rate [s-1] 
φ  dissipation function [kgm-1s-3] 
Ω drop volume [m3] 
ψ  ratio of detached to attached drop volume idealf VV=ψ   

(drop detachment dynamics) 
ψ  empirical term for modified Mao et al.47 prediction model  

(drop impact dynamics) 
Φ  Harkin and Brown27 defined parameter 3/1

0 fVR=Φ  
σ  surface tension (subscripts s, l and v are the solid liquid and vapour phases 

respectively) [Nm-1] 
σdyn(t) dynamic surface tension [Pas] 
τ  shear stress [Pa] 
τc yield-stress magnitude [Pa] 
τmax maximum predicted shear stress [Pa]  
τ1/2 Ellis model shear stress at which µ is exactly half of the µ0 value [Pa] 
θe equilibrium contact angle [deg] 
θa advancing contact angle [deg] 
θr retraction contact angle [deg] 
θav average apparent angle of contact [deg] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xxi 
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1. Introduction  

 

It is interesting to note how all of us have a relatively good understanding of fluid 

dynamics and complex fluid behaviour without having studied it in great deal. When we 

turn on a tap, we expect fluid to flow out in a jet. If we don’t turn it off fully, we expect it 

to drip. When we see raindrops hit the ground, we expect to see them splash or when 

landing in a puddle, ripples to form. We also know that honey or shampoo will flow 

differently from water due to increased viscosity. Moreover, we know quite a lot about 

yield-stress fluids too. Should we knock over a jar of mayonnaise, peanut butter or hair 

gel on the counter top, we know that unless we are very unlucky, it won’t spill because it 

acts like a solid. We also know that when we rub gel through our hair or spread 

mayonnaise on our sandwich with a knife it will spread smoothly, like that of a viscous 

fluid. The really interesting point however is that when we see all these phenomena, 

oftentimes we don’t think about why it is happening. 

 

The research presented in this thesis examines the effects of fluid viscosity, shear-

thinning and yield-stress magnitude on drop dynamic behaviour. More concisely, the 

work examines how changing these rheological properties influences behaviour during 

the lifetime of a drop; from growth at the end of a capillary tube through detachment, 

free-fall, impact on a solid surface and subsequent spreading until it reaches an 

equilibrium state. This work is not only of interest to academia, drop dynamics are 

integral to many industrial processes such as spray cleaning and painting, ink-jet printing, 

crop spraying and fire-extinguishment. With advancements in our understanding of 

complex fluids, many industries have improved and optimized their industrial processes. 

The work presented in this thesis shows that using a yield-stress fluid as the working 

medium allows for further control of drop dynamic behaviour. This may be advantageous 

in further optimizing industrial processes. 

 

This thesis contains 6 chapters, the first of which (§1) is a literature review of 

published research on the behaviour of both Newtonian and complex fluid drops during 

growth, detachment from a thin nozzle, free-fall, impact and subsequent spreading. 
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Included in this section is a description of Newtonian and non-Newtonian fluid rheology. 

Very simply, a shear stress applied to a linearly elastic solid will result in a finite shear 

strain. When the stress is removed, the solid will return to its original position. For fluids, 

the application of a shear stress will result in a shear rate within the liquid. This means 

that when the stress is removed, the fluid will not return to its original position. The ratio 

of the applied shear stress to the resultant shear rate is constant for a Newtonian fluid, and 

called the viscosity. The value of the viscosity for non-Newtonian fluids can vary both as 

a function of time and of the shear rate. Fluids whose viscosities decrease with increasing 

shear rate are called shear-thinning (with the opposite being shear thickening). Fluids 

whose viscosities decrease with time when subject to a constant shear rate are called 

thixotropic (with the opposite being rheopectic). Viscoplastic fluids exhibit both solid 

like and liquid like states. When subject to a low shear-stress, the fluids act like a linearly 

elastic solid. When shear-stresses rise above the ‘yield point’, they typically exhibit 

shear-thinning fluid properties.  

 

The literature review on complex fluids highlights the significant work completed on 

viscoplastic drop behaviour, most of which examines high yield-stress magnitude fluids. 

The work presented in this thesis however explores the territory between the classical 

Newtonian and fully viscoplastic regimes. It is surprising to note that whilst both 

Newtonian and viscoplastic regimes are now relatively well understood, the ‘grey area’ in 

between has, rather remarkably, been overlooked until now.  

 

Rheological characterisation of the Newtonian, shear-thinning and viscoplastic fluids 

is presented in §2, along with descriptions of the experimental apparatus used for each of 

the detachment, free-fall, impact and spreading investigations. This chapter also describes 

specific characteristics of fluid drops such as the average detached drop mass, equivalent 

spherical diameter and evaporation rate in ambient atomospheric conditions and in the 

humidity chamber, designed and utilised for the drop spreading study.    

 

Aspects of drop growth and detachment dynamics are considered in §3. Both the 

onset of breakup and detachment dynamics are examined for Newtonian, shear-thinning 

and viscoplastic fluids. Unlike Newtonian and shear-thinning fluids, where the onset of 
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breakup occurs at a near constant tensile stress in the neck filament (where flow is nearly 

purely extensional) irrespective of changes in the viscous fluid properties, we 

demonstrate that increasing yield-stress magnitude results in a clear increase of tensile 

stress. We find that this behaviour can be characterised in terms of the extensional 

Bingham-Capillary number, describing the ratio of extensional yield-stress magnitude to 

capillary forces. For extensional Bingham-Capillary numbers less than unity (where 

capillary forces exceed extensional yield-stress forces), Newtonian, shear-thinning and 

viscoplastic fluids exhibit a near constant tensile stress at the critical point of breakup 

(although the critical stress will vary with surface tension). For extensional Bingham-

Capillary numbers greater than unity, the critical tensile stress varies linearly with (shear) 

yield-stress magnitude. This relationship closely agrees with the von Mises relationship 

between shear and elongational yield-stress. Moreover, the intersection of these two 

regimes occurs at a Bingham-Capillary number close to unity, where yield-stress forces 

equal surface tension forces. This work may be useful to spray painting and ink-jet 

printing industries. 

 

Following detachment, drops will undergo a period of free-fall. In this regime, the 

only forces acting on the drop are those of gravitation, viscosity, surface tension and 

yield-stress (where present). Directly after detachment, the neck filament remaining 

attached to the drop is quickly absorbed into initially prolate main body. Depending on 

the viscous properties of the fluid, drops can exhibit either periodic oscillations or 

aperiodic relaxation. The dynamic relaxation behaviour of Newtonian drops of varying 

viscosity is compared with well established theory describing drop relaxation behaviour. 

Measurements and theory are shown to agree closely. Shear-thinning drops are also 

compared with the same theory (with the viscosity term in the equations replaced with an 

apparent viscosity, equal to the consistency coefficient; a term that describes the viscosity 

of the shear-thinning fluid at very low shear-rates). This comparison qualitatively 

highlights the shear-thinning nature of the fluids. Fluids exhibiting a measurable yield-

stress were found only to exhibit aperiodic relaxation. 

 

In the absence of inhibiting yield-stress forces, both theory and experiment in §4 

show that drops will tend towards a spherical equilibrium shape. Whilst viscous 
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properties vary the timescale over which equilibrium is obtained, it does not alter the final 

state. Low yield-stress magnitude fluids exhibit a near-spherical shape in equilibrium, 

however as yield-stress magnitude is increased, equilibrium drop shapes increase in 

prolateness (become taller and thinner). We demonstrate that this can be characterised in 

terms of the Bingham-Capillary number. For fluids with a Bingham-Capillary number 

less than unity, where surface tension forces exceed yield-stress forces, the final drop 

shape will be near spherical. For fluids with a Bingham-Capillary number greater than 

unity, viscoplastic effects dominate and inhibit the formation of spherical drops. As the 

Bingham-Capillary number is increased in this regime, drops become increasingly more 

prolate. 

 

Aspects of drop impact on a solid substrate are considered in §5. Research can be 

split into the effects of substrate wettability on impact behaviour and the effects of fluid 

properties on impact behaviour. This section focuses primarily on the inertial expansion 

and retraction phase behaviour of drops impacts. 

 

As highlighted in the literature review, substrate wettability has a measurable 

influence on the impact behaviour of low viscosity Newtonian drops (such as water with 

µ = 0.001 Pa.s). Increasing the wettability of the substrate decreases the advancing 

contact angle and increases the maximum drop diameter at the end of inertial expansion. 

The experimental results presented in this thesis however show that for Newtonian fluids 

with µ≥ 0.056 Pa.s, the effect of substrate wettability on impact behaviour is decreased. 

Inertial spreading on both glass (hydrophilic) and parafilm (hydrophobic) substrates is 

found to be nearly identical with no significant variation in drop diameter at the end of 

the expansion phase. This indicates that the difference between impacts on different 

wettability substrates reduces as fluid viscosity increases. For the shear-thinning and 

viscoplastic fluids, the maximum diameter at the end of inertial expansion is also the 

same irrespective of substrate wettability. The effect of substrate wettability on drop 

impact dynamics can clearly be observed during the retraction phase however; retraction 

on a hydrophobic substrate is more pronounced in comparison with the hydrophilic 

surface.    
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A review of existing drop impact prediction models is also presented within this 

chapter. This review, whilst not exhaustive, provides an in depth assessment of numerous 

models, ranging from simple order of magnitude scaling laws to complex models that 

account for flow physics like flow circulation close to the contact line and lamella rim 

formation during high velocity impacts of low viscosity drops. Moreover, all models are 

compared with a standardised set of experimental results; an analysis which has not been 

done until now. Typically, models predict either the maximum drop diameter or 

minimum drop height at the end of inertial expansion using dimensionless numbers that 

describe the impact conditions and fluid properties, such as the Reynolds number, Weber 

number of Ohnesorge number. These parameters describe the ratios of inertial to viscous 

forces, inertial to capillary forces and viscous to capillary forces respectively. The more 

complex models utilising an energy balance approach are found to provide the most 

accurate predictions, however all models typically show poor predictive capabilities for 

high viscosity drops at low impact velocities. Empirical modifications were therefore 

made to the model exhibiting the overall best predictive capability. These modifications 

were found to significantly improve model predictions of high viscosity, low impact 

velocity drop behaviour. It is hoped this review will aid industries that use drop impact 

dynamics as part of their manufacturing process choose a model that can satisfactorily 

predict drop impact phenomenon without the need for employing complex and time-

consuming numerical analyses. 

 

Drop impact behaviour of viscoplastic fluids is also examined in this chapter. Low 

yield-stress fluids at relatively high impact velocities exhibit qualitatively similar impact 

behaviour as shear-thinning and Newtonian fluids; forming a thin flat lamella during 

inertial expansion. In contrast, some high yield-stress fluid drops do not deform fully 

upon impact and central drop regions (corresponding to the upper prolate drop region 

prior to impact) can exhibit a characteristic peak. This suggests that deformation is 

localized and will only occur in regions where shear-stresses exceed the yield-stress 

magnitude. Based on this hypothesis, an equation is derived that predicts the ratio of peak 

diameter to maximum impact diameter. This equation assumes that there is a stagnation 

point in the drop centre during deformation and the radial velocity varies linearly from 

zero at the drop centre to a maximum at the drop edge. Experimental results agree 
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reasonably well with this theory. It is hoped that this research may be of use in new paint-

spraying, microlens or ink-jet technologies, where more control of impact behaviour can 

be achieved by using a viscoplastic fluid.          

     

Dynamic and static aspects of drop spreading on a solid substrate are finally 

considered in §6. Unlike Newtonian and shear-thinning drops, whose final shape after 

impact varies both with the surface tension and the wettability of the substrate but not 

with the impact velocity (drops of an identical Newtonian or shear-thinning fluid 

impacting at different velocities will exhibit the same shape in sessility), viscoplastic 

drops in sessility change shape with surface tension, substrate wettability, impact velocity 

and yield-stress magnitude. For low yield-stress fluids, final diameters and equilibrium 

contact angles are similar irrespective of impact velocity. For larger yield-stresses, the 

final diameter and equilibrium contact angle vary with impact velocity. This behaviour 

can again be characterised by the Bingham-Capillary number. For fluids with a Bingham-

Capillary number less than unity, yield-stress effects are small and capillarity dominates. 

In this regime, the equilibrium contact angle does not vary significantly with yield-stress 

magnitude or impact velocity. Above unity however, yield-stress forces exceed those 

arising from surface tension. In this regime, we show the equilibrium contact angle 

increasing linearly as a function of yield-stress magnitude. Moreover, we demonstrate 

that fluid yield-stress inhibits retraction and spreading on hydrophobic and hydrophilic 

substrates respectively. Changing the yield-stress magnitude thus alters the amount that 

spreading can be inhibited. It is hoped that this control of final drop shape may be of use 

in paint spraying or ink-jet printing technologies to optimize coating processes.                  
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1.1 Literature Review 

 

 The study of yield-stress fluid drops combines the well established 

research discipline of drop dynamics with complex fluid rheology. The study of drop 

dynamics is not only an interesting free-boundary fluid dynamics problem, it is also an 

integral component of many contemporary industrial processes ranging from carburettors 

and fuel-injection systems in combustion engines to spray cooling1 and coating2 

processes, agrochemical3 and pharmaceutical delivery4, fire suffocation/extinguishment5,6 

and ink-jet printing7,8. Yield-stress fluids are commonly used nowadays. Products range 

from ketchup and mayonnaise to hair-gel and offshore drilling mud. Moreover, they are 

also truly nature-inspired; their use is integral in gastropod locomotion, allowing snails 

and slugs to crawl up walls9
. It is hoped that through understanding the dynamics of 

complex liquids such as yield-stress fluids, additional spray and atomisation applications 

can be developed that will help to advance and optimise industrial processes. 

 

Historically, the implementation of drop dynamics in industry is well established; 

one of the most common examples is lead shot towers used in the manufacture of shot-

gun pellets. The first lead shot tower was built in Bristol in 1782 by William Watts. The 

process involved molten lead being dripped through a copper sieve at the top of a tall 

tower and allowed to form a spherical shape during free-fall through capillary action 

before being caught in a water basin at the base. Figure [1] displays the famous ‘Opening 

of Waterloo Bridge 1832’ by John Constable that now hangs in the Tate gallery. The two 

shot towers, built in 1789 and 1826 can be seen to the right of St Paul’s cathedral in the 

background towards the right of the picture. 

 

 The study of drop dynamics however dates back considerably farther. Leonardo 

da Vinci first recognised in the Codex Leicester10 that the detachment of drops is 

governed by competition between cohesive surface tension forces and gravity. Since then, 

significant research has been performed and a good understanding of drop dynamic 

behaviour has been achieved. There are however numerous areas in which further studies 

are needed in order to advance our current understanding. 
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Figure 1. ‘Opening of Waterloo bridge 1832’by John Constable. The painting shows the two shot towers to 
the right of the picture (to the right of St Paul’s cathedral). The inset image shows a blow-up of the shot-

towers. 
 

   Drop dynamics in a low density environment such as air is both complex and 

varied. Behaviour will vary with the properties of the fluid, the substrate characteristics 

that the drop impacts or spreads on, environmental conditions such as air pressure and 

temperature and experimental properties such as the drop size and fall height. Typically 

however, drop dynamics can be separated into four distinct phases; drop detachment, 

free-fall, impact and subsequent spreading. These phases are displayed in Figure [2] and 

will here be considered separately.  
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Figure 2. Generalised characteristics of drop dynamics from detachment through to sessility. 

 

 

1.1.1 Newtonian drop growth, stability and detachment behaviour. 

 

Whereas daVinci correctly established that the detachment of drops is governed 

by competition between cohesive surface tension forces and gravity, he incorrectly11 

assumed that it is gravity itself that governs the separation process. It was Laplace12 and 

Young13 who first recognized the crucial role of mean curvature; a combination of the 

axial and radial curvature. They found that once a cylindrical shape is reached in a 

hanging drop, it is the radial curvature, not the gravitational force that drives the breakup. 
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This describes a system that is driven towards a state with a smaller surface area once a 

critical point of stability is reached. 

 

The role of surface tension in breakup was recognized experimentally by Savart14, 

who noted that in jets, breakup occurred independently of any external force or the 

direction in which the jet was projected, thus negating the influence of gravity as the 

cause of breakup. Plateau15, in observing the decay of fluid jets traveling through a 

medium of the same density recognized that perturbations would become unstable if their 

wavelength λ was greater than a critical value λcr/R0 = 2π, corresponding to a decrease in 

the surface area. The wavelength corresponding to the fastest breakup was however found 

to be λopt/R0 = 8.76, significantly higher than the critical value, where R0 is the capillary 

tube radius. Upon introducing his method of linear stability, Rayleigh16 recognised that 

the dynamics of the jet had to be taken into account. He determined that for all unstable 

wavelengths with λ > λcr, the one with the fastest growth rate is selected. For inviscid jet 

dynamics, he found λopt/R0 = 9.01, in close agreement with Plateau.         

 

Rayleigh’s linear stability method (henceforth denoted as LSM) established that 

an initial disturbance in a jet will exhibit an exponential growth with a perturbation 

amplitude, α, of the form: 

 
tiet ωαα −= 0)(      [1] 

 

where the inviscid dispersion relation is given by: 
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and ω(k) is the growth rate. In Equation [2], σ is the surface tension, k is the longitudinal 

wave number, ρ is the fluid density and In(kR0) is a modified Bessel function of the first 

kind. The largest growth rate occurs at kR0 = 0.697, which corresponds to λopt = 9.01R0 (k 

= 2π/λ). This however does not account for viscous effects. The effects of viscosity on 

capillary breakup were first investigated by Plateau15 and Weber170. Plateau found 
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viscosity to play an important role in the growth rate of instabilities. As described by 

Eggers17
, Plateau found that as viscous forces become increasingly dominant with respect 

to inertial forces, the most unstable wavelength increases; corresponding to the greatest 

reduction in surface area. The growth rate is eventually determined by a balance between 

surface tension and viscous forces, most simply characterised by the Reynolds number 

µρ /Re 0Dvz= , where µ is the fluid viscosity, vz is the vertical velocity and D0 is the 

capillary diameter. Chandresekhar18 analysed the problem using the full Navier-Stokes 

equations and found a complicated implicit equation that in the limit of both small kR0 

and Re can be given by: 
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where x = kR0. The viscous dispersion relation for the fastest growing mode is given by: 

 

( )01
6
1 kR−= νωω      [4]  

 

where ων = (σ/R0ρν) is the viscous growth rate17 and ν is the kinematic viscosity. 

Experimental comparisons19,20,21 show a good agreement with Chandrasekhar’s theory 

with the exception21 of low viscosity fluids with ν < 100 mm2s-1, where significantly 

lower growth rates than Equation [4] are observed. Rothbert et al.21 conclude that this is 

due to the omission of gravitational effects in the derivation of Equation [3]. This 

suggests that whilst gravity is not the cause of breakup, it has an influential role in 

detachment dynamics. This influence becomes increasingly more apparent as fluid 

viscosity decreases.   

 

It has been well established11,17.22 that in regions close to drop pinch-off, the 

classical LSM breaks down and the fluid behaviour enters a regime of self-similar flow, 

wherein flow lacks a typical scale and the balance of inertial, surface tension and viscous 

forces become independent of the minimum thickness of the neck filament attaching the 



Yield-stress Drops           Guy German                                                                           33 

falling drop to the capillary. In other words the flow dynamics of viscous fluids in this 

regime can be characterised by universal scaling functions. In the last stages of 

detachment, viscous fluid drops can exhibit long and thin threads. Papageorgiou23 

established that after the breakdown of the LSM, the fluid enters a regime of viscous 

dominated self-similar Stokes flow. Temporal variations in minimum axisymmetric drop 

neck thickness vary as: 

 

        )( 0 ttD
StokesN −=

υρ
σχ     [5] 

 

where χ = 0.0709 is the established universal scaling function determined 

from )1(121 δχ +=  and δ = 0.175 is a positive parameter introduced by Papageorgiou to 

control the extent  of the similarity region. This was found to show a good agreement 

with experimental results21. Whereas the self-similar Stokes flow regime is valid when 

viscous effects dominate over inertial forces, as the detachment process reaches near 

pinch off, inertial effects cannot be ignored due to increasing flow velocity inside the 

filament. Here the Stokes flow regime breaks down. A second regime of inertial-viscous 

flow arises that requires a solution using the full Navier-Stokes equations. This was 

investigated by Eggers22, who established an identical relationship to that given in 

Equation [5] only with a universal scaling function of χ = 0.0304. Subsequent 

experimental measurements21,25 show a good agreement with this value. 

  

Zhang and Basaran33 describe well the influence of fluid surface tension and 

viscosity on growth and detachment characteristics of drops. The major role of surface 

tension is to govern the volume and shape of the drop. Increasing the surface tension 

enforces a growing drop to remain more spherical during the first stages of growth and 

increase the volume of the detaching drop. As the drop grows however, gravitational 

forces will eventually become influential. This can be considered in terms of the Bond 

number Bo = ρD2g/σ, which characterises the ratio of gravitational to surface tension 

forces. As the drop grows in size, the initially small Bond number will increase and 

eventually, gravitational forces will dominate over surface tension forces. As the drop 

volume become sufficiently large, the drop weight causes deformations in the drop neck. 
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These surface deformations become unstable and the drop subsequently detaches due to 

capillarity. 

 

 Fluid viscosity influences the stability of growing drops, making it possible to 

achieve larger drop elongations during detachment by damping oscillations in the liquid 

surface, however it has no influence on detached drop size. This can be considered in 

terms of the Capillary number Ca = µQ/A0σ, where Q is the volume flow rate and A0 is 

the capillary tube area. This dimensionless number characterises the ratio of viscous to 

capillary forces. For vanishingly small Capillary numbers in Newtonian fluids, where the 

growth rate is small or the drop is quiescent, the ratio of viscous to capillary forces is also 

near zero. For larger Capillary numbers, corresponding to increased flow rates or flow in 

the filament of detaching drops, viscous effects will become more dominant. In other 

words, whilst the viscous characteristics of fluids influence the growth and detachment 

dynamics of drops, they do not influence stability characteristics since they are 

proportional to the rates of deformation11. 

 

After pinch-off of a drop, the majority of liquid will be contained in the detached 

portion, however a small percentage will remain attached to the end of the capillary. In 

his formulation of a drop weight method to predict fluid surface tension, Tate26 correctly 

assumed that the drop weight Wcrit at the critical point of instability will equal the 

cohesive surface tension forces, such that: 

 

  σπρ 02 RgVW idealcrit ==      [6] 

 

He incorrectly assumed however that all of the fluid in the hanging drop would 

detach. This approximate force balance is now known as Tate’s law. Harkins and 

Brown27 (henceforth denoted as HB) developed this theory and through careful 

experimentation, established a relationship between maximum attached drop volume and 

the combined volume of the detached primary and satellite drops over a range of R0. The 

method relates the attached drop volume Videal to the detached drop volume Vf (whereVf < 

Videal) via a master curve of ideal volume fraction idealf VV=ψ  plotted against 
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dimensionless tube radius 3/1
0 fVR=Φ . Once Vf and Ф are established, the surface 

tension is readily calculated from determining ψ from the master curve and using 

σπρψ 02/ RgV f= . Wilkinson28 later extended the HB master curve (0.25 ≤ Ф ≤ 1.6) to 

encompass much smaller nozzle radii (0.05 ≤ Ф ≤0.25). Figure [3] displays the HB 

master curve for the combined range from Harkins and Brown and Wilkinson. A 

theoretical understanding of the HB master curve has been proposed and developed by 

both Rayleigh29 and Ferguson30, however only recently have the effects of flow rate and 

viscosity been included31
, based on one dimensional slender jet approximation of the 

Navier-Stokes equations32.    

 

 
Figure 3.Harkins and Brown27 master curve (open square symbol) overlaid with the extended results from 

Wilkinson28 (open triangle) extracted from Yildrim et al.31:  Ideal volume fraction ψ plotted against 
dimensionless capillary tube radius Ф. 

 

 

1.1.2 Newtonian drop dynamics during free-fall 

 

The dynamics of drops in free-fall have been examined in general by Kelvin34, 

Lamb35 and Chandrasekhar18 and specifically for applications such as spray cooling1 and 

nuclear physics36. At pinch-off, drops will typically be non-spherical. This induces an 
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inertial forcing term that can induce small-amplitude oscillatory behaviour about a 

spherical shape (surface tension drives a drop in free-fall towards a spherical shape to 

minimise surface area). A free-falling drop will be subject only to gravitational, capillary 

and viscous forces. When viscous effects cannot be neglected, additional damping effects 

must be considered. Prosperetti37 highlights that through varying the fluid properties, 

drop dynamic behaviour will change.  

 

The motion of drops in free-fall is analogous to a spring-dashpot system, with the 

spring constant k and displacement x from Hooke’s law (F = -kx) related to the surface 

tension and the dashpot damping coefficient related to the viscosity of the fluid. The 

characteristics of liquid drop motion falling through a host liquid were established 

theoretically by Prosperetti in terms of a drop natural frequency ωn and a damping 

parameter bn. For an underdamped system, the equation of motion is: 
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is the natural frequency; consistent with that derived by Lamb35. 
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is the damping parameter. Solving for x with n = 2 (the most common mode of vibration) 

results with: 

 

( ))sin()cos()( 00 tBtAetx dd
tb nn ωωω += −    [10] 

 

where 2
00 1 nnd b−= ωω is the natural damped frequency, A = x(0) and 

( ) dnn xxbB ωω )0()0(00 &+= . For an overdamped system this becomes: 
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 Below a critical damping condition, drop motion will exhibit a damped periodic 

motion; above this limit the motion will be aperiodic. In either case the final equilibrium 

state will be spherical. The size and temporal shape of drops exhibiting oscillations 

during free-fall were characterised by Ford and Furmidge53 in terms of an equivalent 

spherical radius and a drop eccentricity e = H(t)/D(t). Typically for water drops, the 

eccentricity varies in the range 0.8 ≤ e ≤ 1.2.     

 

Prosperetti established that the initial and asymptotic frequencies of the drop 

vanish for 5657.05/22 ≈=ε  and 7665.0≈ε  respectively, where: 
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is the dimensionless viscosity. This corresponds to a transition from periodic to aperiodic 

decay, equivalent to going from an underdamped to an overdamped system. The two 

values indicate that it is possible for the motion to start out as an aperiodic decay and to 

evolve into a periodic oscillation by way of the large velocity gradients in the initially 

irrotational flow being transformed to flow circulation within the drop. Ultimately 

however, no periodic oscillations are predicted for fluid drops with ε > 0.7665.     

 

 

1.1.3 Newtonian drop impact dynamics 
 

 Research into drop impact behaviour dates back to Osbourne Reynolds38 (who 

established that vortex rings produced by raindrop impacts on water transport liquid well 
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below the surface and thereby damp wave motion) and pioneering work by 

Worthington39, who observed the phenomenon of rebound during milk drop impacts on a 

smoked glass plate. Whilst Worthington achieved sharp photographic images by 

illuminating the impacting drops with electric sparks; from which he was able to achieve 

exposure times of a few microseconds, it was not until Edgerton40 established a 

stroboscopic photography method and observed milk drop splashes on a solid surface that 

a greater understanding of drop impact dynamics was achieved. Not only did his work 

provide a fascinating insight into high-speed impact events, his photographic method also 

paved the way for more quantitative studies of drop impact behaviour. 

 
Drop impacts are complex and will vary with impact velocity41-62, drop size47,62,63 

the rheological properties and surface tension characteristics of the liquid43,45-49,57-70, the 

inclination65,71 and type of substrate (surface roughness47,72,73 and wettability47,65,74 or 

rheological properties of the liquid substrate), type of thermal effects such as substrate 
6,42,75-79 and liquid80-82 temperature, non-isothermal effects such as evaporation or liquid 

solidification rates79,81,82 and environmental conditions such as air pressure83. 

Furthermore, impacts can occur on liquid surfaces (both thin liquid films14,57,84 and deep 

pools of fluid14,57,85), solid surfaces57 (both unyielding and yielding; flat, curved or 

surfaces of only a finite size86), porous surfaces87 and granular surfaces88. Rioboo et al.89 

classifies 6 types of differing morphologies of drop impact on a solid substrate: 

deposition, prompt splash, corona splash, receding break up, partial rebound and full 

rebound.  

 

Previous research into drop impact dynamics is both extensive and diverse, as 

highlighted by the numerous review papers on the topic; each of which focus on different 

drop impact aspects. Yarin62 and Rein57 review the behaviour of drops impacting on thin 

films of liquid as well as on solid surfaces. Topics that are reviewed include the 

examination of normal and oblique impacts, conditions for the onset of splashing and 

shock wave transmission during the early periods of inertial impact on solid substrates. 

For liquid substrates, Prosperetti and Oguz85 and Rein57 review drops impacting into deep 

liquid pools, where liquid motion is not constrained and the velocities of impacts are 

large enough to cause the pushing apart of significant liquid mass under the location of 
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impact. These reviews also examine liquid drop bouncing, coalescence, floating, 

splashing, jet formation, gas bubble entrainment and vortex ring behaviour. In addition to 

experimental research, extensive theoretical studies into drop impact behaviour have also 

been completed. Rein, Healy et al.74 and Attané et al.48 all review existing models that 

predict the maximum inertial diameter reached from impacting drops on solid substrates 

during the inertial expansion phase. Each of these reviews however is not exhaustive and 

provides only a limited selection of all the published models. Moreover, the reviews by 

Rein and Healy et al. examine only models prior to 1995; significantly more of which 

have been proposed since.    

    

 In order to limit the review to research more relevant to this thesis, we consider 

only drops impacting on dry, flat, horizontal and unyielding surfaces. This reduces the 

experimental variables to those of drop size, impact velocity, substrate wettability, 

substrate roughness, temperature and pressure characteristics and the rheological 

properties of the impacting liquid drop. Each of these variables will subsequently be 

considered separately.  

There are a number of important dimensionless numbers that govern drop impact 

dynamics. These are: 
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where DE and vz are the drop diameter and vertical velocity prior to impact respectively. 

vr corresponds to the horizontal velocity; in terms of drop impacts, this corresponds to the 

axisymmetric radial velocity. We, Re, Ca and Oh are the: 
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 Weber number, characterising the ratio of inertial to capillary forces. 

 Reynolds number, characterising the ratio of inertial to viscous forces.  

 Capillary number, characterising the ratio of viscous to capillary forces and 

redefined here in terms of the radial velocity. 

 Ohnesorge number, characterising the ratio of viscous to capillary forces in terms 

of the drop size. 

 
 A drop impacting on a solid surface will in general have two distinct dynamic 

regimes; an inertial expansion stage and a retraction stage. During the inertial expansion 

stage, a drop will impact on a surface and deform. Most of the inertial energy will be 

converted into capillary energy via the creation of new surface regions. Some energy 

however will remain in the form of flow recirculations44 close to the contact line of the 

drop and some will be lost due to viscous dissipation42,43,46,47. Drops during inertial 

expansion can also splash and form secondary droplets57,84,89. For impacts where this does 

not occur, the inertial expansion phase ends when deformation due to inertial forces 

ceases and a maximum diameter is reached (although this is not necessarily the maximum 

drop diameter when considering subsequent spreading on wettable surfaces). This 

typically occurs very quickly; of the order of 3-8 milliseconds and can be characterised 

by the Weber number (Equation 13).  

 

 

1.1.3.1 Influence of drop size 

 

 Whilst drop size will significantly influence drop impact dynamics, its effect can 

be eliminated from analyses by way of scaling dimensional parameters with respect to the 

drop size prior to impact and plotting these against Re, We or Oh, whose terms are 

directly related to maximum spread and rebound and incorporate the drop diameter 

DE
42,47. Reducing the drop size will therefore reduce both Re and We and increase Oh. 

Drop impact behaviour will not be identical for all drop scales. An upper limit can be 

defined in terms of the capillary length90, a, where: 
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A drop with RE ≤ a can be considered to be a low Bond number surface, where 

gravitational effects will not be dominant. A sessile drop on a solid surface will therefore 

take the shape of spherical cap; the solution to the Young equation with gravity absent 

(Equation 26). Drops with radii RE greater than the capillary length will therefore differ 

increasingly from typical impact behaviour.   

 

 

1.1.3.2 Influence of impact velocity 

 

The variable that most significantly influences drop impact dynamics is the 

impact velocity, based primarily on its square proportionality to We (Equation 13) and 

linear proportionality to Re and Ca (Equations 14 and 15). At low We, drop deformation 

and hence the maximum inertial impact diameter will also be small. Deformation will 

increase with We, eventually taking on a thin flat disk shape called a lamella. Drop shape 

is usually characterised in terms of the dimensionless diameter β = D/DE and apex height 

ξ = H/DE, where DE is the equivalent diameter of a drop during free fall based on drop 

weight measurements (see §2.4) and D and H are the measured drop diameter and height. 

Not only does the maximum spread factor βm= DMax/DE increase42,47 and minimum apex 

height factor ξm= hMin/DE
72 decrease as a function of increasing impact velocity, the 

period of deformation will also decrease72. Loehr93,57 established that the impact 

behaviour of drops of different viscosities over the range 200 ≤ We ≤ 1500 and 4200 ≤ 

Re ≤ 19700 was consistent with β(κ) = 1 – exp(-c κ), where κ = 2tuz /DE is the normalised 

time and c is a non-dimensional parameter that accounts for influential variables such as 

surface tension. Chandra and Avedisian42 confirmed this relationship by comparing their 

results of β with both numerical94 and analytical95 results and established that as long as β 

was small, the spreading process would be independent of viscosity and surface tension 

effects.  
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At sufficiently high impact velocities, radial arms will begin to form at the edge of 

spreading drops. As the velocity increases further, the radial arms become more 

prominent and elongated. Eventually splashing occurs through pinch-off in the arms, 

forming secondary droplets. The splashing threshold is determined as the condition at 

which transition from spreading to splashing takes place; a drop is said to splash 

whenever it forms two or more secondary droplets after impact. Levin and Hobbs96 and 

Stow and Stainer97 recognised the importance of inertial forces on drop impact dynamics 

by observing that drop splash is promoted by increasing impact velocity and drop size. A 

critical Weber number Wec is often used to report where splashing begins57, however this 

parameter is not the sole defining parameter and the threshold will depend on other fluid 

and surface properties. Stow and Hadfield41 established the splashing/deposition limit as: 

 

 Rec
0.31Wec 0.69 = Ξ     [18] 

 

where Ξ is the splash deposition value; a parameter dependent on the surface roughness.  

 

For non-splashing dynamics, the contact angle (Figure 4) that drops make with the 

surface will vary during impact. During inertial spreading, the advancing contact angle θa 

will be large (typically > 90o). Dynamic contact angles are known to increase with the 

velocity of a moving solid–liquid–air contact line. Elliot and Riddiford92 measured the 

dynamic contact angles in liquid flow between two parallel plates, and found that they 

increased linearly with contact line velocity until finally an upper limiting value of θa was 

reached. Contact angles were then independent of further increases in velocity. 

Pasandideh-Fard et al.43 made identical conclusions when measuring the dynamic contact 

angle during drop impacts. 

  
Figure 4. Measurement of dynamic contact angle 
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At the end of the expansion phase, surface tension forces can induce recoil. 

Before this however, non splashing drops will undergo contact angle hysteresis. The drop 

diameter remains constant whilst contact angles decrease to a minimum called the 

receding contact angle θr (where θr< θa). This hysteresis is well established and 

reviewed53,91. Subsequently, a number of processes can occur. Drops can either retract 

whilst adhering to the surface or rebound either partially or fully from the surface57,62 

(Figure 2). Impact velocity will affect retraction phase dynamics; increasing the impact 

velocity will result in increased deformation and thereby, the maximum energy available 

for recoil, however this excess energy will also be reduced from increased viscous 

dissipation attributed to shear-stress at the wall on the (larger) area of solid-liquid 

contact47. It is not only the balance of these factors that controls retraction phase 

behaviour, the wettability of the surface47,57, viscosity47,49,71
 and surface tension of the 

fluid49,61,65  have all been shown to be influential. 

 

When drops do not rebound there can be multiple spread and retraction 

phases47,49, each with diminished height and diameter oscillations due to damping by 

viscous dissipation. Drop height oscillations can continue well after oscillations in 

diameter cease and the drop contact line with the surface becomes fixed. It should be 

noted that contact angle hysteresis will occur in between each subsequent spread-recoil 

phase, although with a diminished variation between θa and θr. Van Dam and Le Clerc8 

established the oscillation period of water drop spread-retraction oscillations to be well 

represented by: 
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where θav is the time averaged contact angle. This prediction was established by fitting 

experimental drop height measurements with a function of the form 

( ) ).cos( 65310
42 ςςςςς ςς +++= −− teeth tt  For complete rebounds, Biance et al.100 

recognised that capillary forces driving the retraction must exceed the drop weight. 

Moreover, they analogise the drop after detachment to that of a system comprised of two 
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equal point masses (of half the mass of the drop each) joined by a spring, whose spring 

constant k is a function of the surface tension. Their expressions for drop dynamic 

behaviour were found to be in good agreement with the experimental findings.    

 

 

1.1.3.3 Influence of fluid viscosity 

 

The influence of fluid viscosity µ on impact behaviour is commonly reported in 

terms of Oh or Re, where increasing µ corresponds to an increase in Oh and a decrease in 

Re respectively. Increases in viscosity decrease the maximum inertial spread factor 

βm
42,47,61 and increase the minimum apex drop height factor ξm

49. During the early period 

of inertial spreading, where inertial forces will be much larger than the viscous forces 

(high Re), spreading rates are independent of fluid viscosity drops. As the drops approach 

their maximum spread however and spreading slows (decreasing Re), viscous effects will 

play a more dominant role47,61 and the spreading rates will reduce as a function of 

increasing viscosity. At higher viscosities, drops at maximum spread will not only have 

less excess surface energy available for retraction, the excess energy must overcome 

higher viscous dissipation during recoil. The tendency for recoil/rebound is therefore 

reduced. 

 

There have been a number of studies into the effects of fluid viscosity on 

retraction dynamics. Bechtel et al.49 established that increasing the viscous dissipation 

arising during spread-recoil oscillations (by increasing Oh) increases the damping of the 

oscillations. This research highlights the well established notion that increased energy 

dissipation results from larger fluid viscosities.  

 

A later experimental investigation of fluid drops with 0.001 ≤ µ ≤ 0.205 Pas by 

Bartolo et al.98 confirmed that the maximum retraction rate after βm is reached is 

independent of the impact velocity for strong enough impacts with We > 10, Re > 10 

(characterising inertial forces at least an order of magnitude larger than both capillary and 

viscous forces). This research also noted the existence of two distinct retraction regimes. 

For Oh ≤ 0.05, characteristic of low viscosity fluids, retraction rates were found to be 
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independent of µ and proportional to the inverse of the capillary oscillation period of a 

perturbed inviscid drop, TI = (4πρRE
3/3σ)1/2. For Oh > 0.05, retraction rates were found to 

decrease significantly with increasing Oh and to be proportional to the inverse of a large 

scale deformation period of a viscous drop, Tv = µRE/σ.  

  

Whereas significant experimental research has been completed on low viscosity 

drop impact behaviour at moderate and high We, research into low We, high Oh drop 

impacts is limited. Typically for high We impacts or for fluid drops with low viscosities, 

deformation is significant and can be approximated by a thin flat cylinder. In some high 

velocity impact cases the lamella may be bounded by a toroidal rim. In contrast however, 

for low We impacts or for fluids with a relatively high viscosity, a cylindrical 

approximation becomes invalid and impacting drops show deformations similar in shape 

to that of a spherical cap49, as shown in Figure [5]. 

 

 
Figure 5. The variable nature of non-splashing drop impacts near the end of the inertial expansion phase. 

Drops can appear like a spherical cap (left), thin cylinder (centre) or toroidal rimmed disk (right). 
 

Research completed into high Oh, low We impacts includes Attané et al.48, who 

established a cylindrical approximation drop impact model capable of adequately 

predicting maximum spread factors to within approximately ± 15% for fluid drops with 

0.6 ≤ We ≤ 2000 and 0.002 ≤ Oh ≤ 0.585 (with significant improvements in predictive 

capability towards high We and low Oh) and Schiaffino and Sonin101, who examined the 

deposition and solidification characteristics of water (µ = 0.0016 Pas), molten wax (µ = 

Impact

 High Oh Low Oh 
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0.018 Pas), glycerol (µ = 0.93 Pas) and an aqueous solution of glycerol with a mass 

fraction of 0.8 (µ = 0.045 Pas) at low and moderate We. 

 

For low and moderate We across a large range of Oh, Schiaffino and Sonin 

proposed separating drop dynamic behaviour into four distinct regimes, characterised by 

similarity parameters Oh, We, Re, θe and the spreading coefficient S (Equation 28). These 

parameters are based on dimensional analysis of the terms in the radial component of the 

Navier-Stokes equation in the appropriate limits and each regime is separated by Oh and 

We limits. These regimes are details in Figure [6] and Table [1]. This characterisation is 

limited to low Bo (DE < a) numbers and moderate contact angles that are not close to 

either θa =  180o or θa = 0o. Moreover, the limits do not to apply at high We; close to 

break-up and splashing of drops and only serves as an order of magnitude argument with 

regard to the similarity parameters.   

 

 
Figure 6. The characterisation of drop impact dynamics101 based on similarity parameters using Oh and We 
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Table 1. Characteristics of drop dynamic behaviour for low and moderate We, as proposed by Schiaffino 
and Sonin101. 

Region 
Characteristic Velocity  in 

expansion phase [ms-1] 

Characteristic 

timescale in 

expansion phase [s] 

Driving Force 
Inhibiting  

force 

I We >> 1 Oh << We1/2 V DE/V Impact pressure Inertia 

II We << 1 Oh << 1 (σ/ρDE)1/2 (ρDE
3/σ)1/2 Capillarity Inertia 

III We << 1 Oh >> 1 σ/µ µDE/σ Capillarity Viscosity 

IV We >> 1 Oh >> We1/2 ρV2DE/µ µ/ρV2 Impact pressure Viscosity 

 

 The four regions in Figure [6] are: 

 

 (I) Inviscid, impact-driven spreading. Spreading during the expansion phase occurs over 

a short time period and flow is driven by inertial forces and resisted by inertia. Impact 

velocity and drop size govern the velocity and time scales and viscous effects are weak. 

Underdamped oscillations arise during retraction and subsequent spreading phases with a 

period longer than the characteristic timescale of the expansion phase detailed in Table 

[1]; an observation in agreement with the oscillation timescales established by Van Dam 

and Le Clerc8 (Equation 19). Viscous effects act to damp subsequent oscillations. The 

limit in Figure [6] between impact driven regimes (I) and (IV) (We = Oh2) corresponds to 

Re = 1 given that OhWe=Re . For Re < 1, inertial forces will dominate over viscous 

forces; the opposite is true for Re > 1. Typically drop splashing will occur in this regime, 

although it is possible for it also to occur in (IV). 

  

 (II) Inviscid, capillarity driven spreading. During the expansion phase, impact velocity 

effects are negligible and most of the initial spreading is driven by capillarity and resisted 

by inertia. The timescale detailed in Table [1] is valid initially and in agreement with Van 

Dam and Le Clerc8 (Equation 19), however towards the end of the stage viscous forces 

take effect and spreading slows. As with regime (I), underdamped oscillations are present 

in the retraction and subsequent spreading phases with a period of the same order as that 

given in Table [1]. In terms of dimensional analysis, this timescale is the same as 

Equation [19]. Viscous effects eventually damp out oscillations. 
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(III) Highly viscous, capillarity driven spreading. Initial spreading during the expansion 

phase is driven by capillarity and retarded by viscosity. The impact velocity in this 

regime has a negligible effect and the high viscosity of the fluid results in an overdamped 

system, so no oscillations are present in subsequent retraction or spreading.  

 

 (IV) Highly viscous, impact-driven spreading. Initial spreading is driven by inertial 

forces and retarded by viscous effects. The effect of surface tension during this phase is 

negligible. As with regime (III), the system is overdamped and no oscillations arise 

during the retraction and subsequent spreading phases.  

 

As highlighted by van Dam and Le Clerc8, this description of drop impact 

behaviour based on dimensionless numbers acts as a good summary and is useful when 

first trying to establish the expected dynamic characteristics.    

   

Research into predicting the maximum inertial drop diameter and minimum apex 

heights of impacting drops at the end of the inertial expansion stage is extensive. 

Theoretical, empirical and semi-empirical prediction models range from simple order of 

magnitude studies to more technical energy conservation models, which account for more 

complex flow physics including deformed drop shape and additional dissipative effects 

arising from the rolling motion of liquid near the contact line. Kurabayashi102, Bechtel et 

al.49 and Chandra and Avedisian42 were amongst the first to utilise the energy balance 

method to estimate βm and ξm. In general, the energy balance can be expressed as: 

 

0)( =+++ WEEE
dt
d

gk
&

σ     [20] 

 
where Ek is the kinetic energy, Eg is the gravitational potential energy, Eσ is the surface 

energy and W&  is the rate of energy loss from viscous dissipation, considered the most 

difficult quantity to estimate accurately because flow velocity profiles and the degree of 

flow recirculation can only be approximated.  
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One of the difficulties in developing a model is the estimation of the surface 

tension term at the end of the inertial expansion phase. Models can approximate the shape 

of the drop at maximum spread to be a cylinder, resulting in the equation53: 
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Equation [21] can be re-written in terms of the equilibrium contact angle θe

47: 
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Alternatively, the drop shape can be approximated by a spherical cap49,57, whereupon the 

applicable equation is: 
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The diverse range of drop shapes arising during inertial expansion has already 

been highlighted; the application of these approximations typically limits the models to 

ranges of Weber numbers where deformation is consistent with the approximation used. 

A cylindrical approximation is most commonly used, however this can become an 

increasingly poor approximation towards impacts with smaller We and higher Oh. In 

order to improve model predictive capability for high viscosity low energy impacts, 

existing models need to be assessed over larger ranges of We and Oh than previously 

established48. Moreover a review of both old and new models needs to be completed that 

includes contemporary models not covered in previous reviews51,74. Models exhibiting 

the best predictive capability can then optimised for low inertial energy, high Oh impacts. 

To aid clarity, this work is presented separately in §5.3.2 as part of a research project 

objective.         
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1.1.3.4 Thermal influences 

 

Research into the effects of temperature on drop impacts is extensive and includes 

investigations into the solidification of molten drops upon impact51,79,81 and ambient 

isothermal drops on heated surfaces42,100,108,109. The current research examines liquid drop 

impacts on solid isothermal surfaces, therefore previous thermodynamic research is not 

directly relevant and therefore will only be considered in passing.  

Substrate temperature effects on drop impact behaviour were first observed by 

Johann Leidenfrost75. Drops impacting on a heated surface were found to boil nearly 

instantaneously, causing secondary atomisation. Heating the surface further however can 

cause drops to rebound from a thin, cushioning vapour layer formed between the drop 

and the surface, preventing direct contact. This is known as the dynamic Leidenfrost 

phenomenon and was originally investigated in detail by Wachters and Westerling108. 

Subsequent studies include: Wang et al.110, who reclassified the Leidenfrost temperature 

as the wall temperature at which the total drop evaporation time on a heated surface was 

longest and the critical temperature of dry impact as the minimum temperature above 

which the drop has no direct contact with the solid surface due to the formation of a 

vapour layer, Yao and Cai111 who established that the Leidenfrost temperature varied 

with We and Sawyer et al.112, who determined the effect of drop size, impact frequency 

and impact velocity on the critical heat flux1 of impacting water drops on a solid surface. 

 
 

1.1.3.5 Influence of static and dynamic surface tension  

 

Whereas the effect of surface tension on drop impacts has already been described 

in terms of dimensionless We, Ca and Oh numbers, dynamic surface tension effects can 

result in a non-uniform surface tension on the fluid/gas interface, which can vary 

throughout the impact process. Extensive research has been completed into the effect of 

                                                 
1 Critical heat flux occurs just prior to the onset of the Leidenfrost regime, where a maximum heat transfer 
from a heated surface to a liquid drop is reached. 
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surfactants on drop impact dynamics43,67-70, primarily because different surfactants have 

different adsorption kinetics.  

 

Dynamic surface tension effects are dependent on the migration rate of surfactant 

molecules to newly formed interface regions. Different surfactant molecules exhibit 

considerably different migration timescales, ranging from the order of milliseconds to 

minutes. The molecules are comprised of a water-loving (hydrophilic) head and a water-

hating (hydrophobic) tail; they find it energetically favourable to position themselves at 

the fluid/gas interface and act to lower the surface tension. Dynamic surface tension 

effects arise when surfactant concentrations are not in equilibrium, giving rise to 

Marangoni113 forces. Surface tension effects only occur at fluid interfaces, therefore 

cannot be described as rheological characteristics because by definition; rheological fluid 

properties are homogenous within the fluid.  

 

 For slow surfactant migration periods or high flow rates, newly formed surface 

regions are created faster than surfactant molecules can be transported to them; the local 

surface tension in newly formed regions is therefore greater than the equilibrium surface 

tension.  Faster migration rates or slower flow rates improve the efficiency of adsorption 

kinetics, allowing surfactants to more easily maintain the equilibrium surface tension. 

 

Since a liquid with a high surface tension pulls more strongly on the surrounding 

liquid than one with a lower surface tension, the presence of a gradient will naturally 

cause liquid to flow away from low surface tension regions. Zhang and Basaran33 

investigated the influence of Triton X-100 and SDS surfactants on drop impact dynamics 

and established that dynamic changes in the surface tension from accumulation of 

surfactant molecules at the gas-liquid interface enhanced the spreading of drops on a solid 

substrate and reduced the likelihood of rebound. In addition to providing evidence 

supporting the notion that surfactants increase damping of spread-recoil oscillations by 

stabilizing interfacial waves (due to the redistribution of surfactant molecules by 

convection and diffusion), they also highlight the complicated relationship between 

dynamic surface tension and impact velocity. The maximum inertial spread diameter at 

low impact velocities can be increased by increasing the surfactant concentration, 
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however the opposite tendency is observed at high impact velocities. This complicated 

relationship is due to the existence of three competing mechanisms during impact 

dynamics; (a) the dilution of surfactants due to new surface creation, (b) the convection 

of surfactants toward the contact line whose intensity increases with impact and (c) the 

repopulation of the interface by surfactant molecules from the bulk of the drop. For low 

velocity impacts, surface creation rates are low and surfactants have time to repopulate 

new regions. In contrast, the large surface creation rate in high velocity impacts leads to 

dilution of surfactants and an inequality of the surface tension. At the same time, the 

radial spreading of the drop in the expansion phase gives rise to interfacial flows from the 

axis of symmetry at the centre of the drop towards the expanding contact line. The flow 

sweeps the surfactant molecules on the surface towards the contact line and causes it to 

accumulate there. The rate at which this occurs increases with interfacial velocity and 

hence, impact velocity.  

 

Crooks et al.69 examined the effects of differing adsorption kinetics on drop 

impact dynamics for surfactants in glycerol/water solutions. Their results indicate that the 

recoil height after the inertial expansion phase decreases as surfactant concentration 

increases even when βm remains constant. Whereas their findings agreed with those of 

Zhang and Basaran68 for fluids with surfactant additives below the critical micelle 

concentration (C.M.C, where this denotes a surfactant concentration above which 

micelles are spontaneously formed due to the interfacial surface becoming crowded with 

surfactant molecules), additional experiments performed for fluids with surfactant 

concentrations above the C.M.C showed significantly different drop impact behaviour.  

 

Below the C.M.C, the radial flow during inertial expansion convects surfactants 

already present at the interface to the leading edge. Above the C.M.C, in response to the 

non-equilibrium conditions (from surfactants being diluted at newly formed surfaces), 

micelles disintegrate and supply molecules to the surface. The characteristic time of 

demicellisation for the surfactants studied is significantly shorter than the transport rate of 

free molecules to the surface114,115. This implies that demicellisation will respond nearly 

immediately to drop deformation and will swamp any hydrodynamic convection of free 

molecules to the contact line. The overall result is the dramatic decrease in dynamic 
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surface tension by way of increasing the rate at which surfactants reach newly formed 

surface regions. Demicellisation kinetics govern the surface excess of surfactant 

molecules and the subsequent surface relaxation characteristics of impacted drops with 

surfactant additives above the C.M.C. Below the C.M.C, hydrodynamic effects are 

controlling. 

 

 In their investigation into drop impact dynamics for surfactant solutions well 

(10X) above the C.M.C, Mourougou-Candoni et al.70,116 highlight that the characteristic 

timescale of adsorption kinetics for different surfactants in water will influence both the 

inertial spreading and retraction phases. When the maximum inertial spread diameter is 

reached, the dynamic surface tension is found to be almost constant on the whole drop 

free surface, however this value is not necessarily the equilibrium surface tension value 

after complete adsorption of the surfactants. This indicates that the rate at which 

surfactants migrate to the surface will influence the maximum spread diameter. 

Moreover, adsorption kinetics also affects the retraction phase dynamics. Studies of the 

dynamic behaviour of drops were performed for surfactant additives whose equilibrium 

surface tensions ranged between 0.025 ≤ σ ≤ 0.0372 N/m and dynamic surface tensions 

σdyn at maximum inertial spread βm ranging between 0.0397 ≤ σdyn ≤ 0.0722 N/m. Each of 

the surfactants also had differing adsorption kinetics. βm was observed to vary by up to ± 

14% due to the variation in dynamic surface tension. Retraction dynamics also differed 

significantly, varying with both excess surface tension recoil energy and surfactant 

adsorption kinetics.  

 

The influence of dynamic surface tension effects on impact dynamics is complex 

due to the many variables including surfactant concentration and adsorption kinetics. 

Studies currently appear to be limited to the analysis of specific types of surfactants and 

no generalised theories exist at present that can predict drop dynamic behaviour 

irrespective of surfactant type. Existing research does however highlight the significant 

influence of adsorption kinetics and surfactant concentration on impact behaviour and 

their increasingly influential role for higher impact velocities.      
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1.1.3.6    Influence of surface roughness 

 

The effect of surface roughness on splashing was first recognised by Engel103, 

who observed that splashing was reduced when highly polished surfaces were used. 

Subsequent research after Stow and Hadfield’s41 proposed correlation between the 

splashing/deposition limit, Wec, Rec and the surface roughness has concentrated 

predominantly on the effects of the surface. Wu104 determined that the influence of fluid 

viscosity on splashing for small values of Oh was small and could be neglected; reducing 

Equation [18] to: 
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aWe log      [24] 

 

 

where a = 6.47, b = 1.87, RE is the drop radius and Ra is the roughness coefficient2. 

Values for a and b were established by fitting Equation [24] to the experimental data of 

Stow and Hadfield41 using a least square method. Range and Fuillebois73 experimentally 

confirmed the hypothesis of Wu with regard to the influence of viscosity at low Oh and 

the splashing limit proposed by Stow and Hadfield for water drop impacts on rough 

aluminium surfaces. Moreover, their results also confirm that the splashing limit depends 

on the substrate roughness in a way that can be described by Equation [24] (the 

parameters a and b having to be adapted for each liquid-substrate combination). 

Furthermore, perturbations appearing on the rim during the expansion phase prior to 

splashing were found to vary with surface roughness. The number of perturbations 

decreased with increasing surface roughness, however each perturbation increased in 

size. 

 

                                                 
2 Surface roughness can be either random or periodic (typically man made) variations in the surface 
topography. Measurements can be made using contact (involving dragging a measurement stylus across the 
surface) or non-contact methods (such as interferometry, confocal or electron microscopy and 
photogrametry). The roughness coefficient Ra is the most common term employed to describe roughness. It 
is the arithmetic average of the absolute roughness values. Absolute roughness values are calculated as the 
vertical distance from the calculated mean profile line.   
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An underlying mechanism by which surface roughness influences splashing was 

proposed by Levin and Hobbs96. The resultant of the surface tension forces in the convex 

region between the undeformed drop and the outspreading liquid film is directed at an 

angle to the flat substrate surface. If these forces are of a sufficient magnitude relative to 

the inertial spreading forces of the liquid film then it could introduce a vertical flow 

component, lifting the spreading film from the surface. The lifted sheet could then form a 

crown shape and subsequently breakup. Whilst increased surface roughness may enhance 

this mechanism, Range and Fuillebois73 highlight that there is not yet enough data to 

ascertain this effect. 

 

 Mundo et al.105 investigated the splashing/deposition limit of impacting drops (RE 

= 60-150µm) on rotating surfaces (a smooth surface with Ra = 2.8µm and a rough surface 

with Ra = 78µm; of the order of the drop size) for liquids with a variety of fluid properties 

as a function of Oh and Re. They established an expression of the form OhRe1.25 = 57.7, 

however this correlation was only obtained if the normal velocity component of the 

impacting drop was used. Walzel106 derived a correlation between the critical Weber 

number and the Ohnesorge number, given by Wec = 7.9 x 1010 Oh2.8. Whereas Mundo et 

al. established no difference between two surfaces with different roughness 

characteristics, Cossali et al.107 highlight that those surfaces used had roughness 

characteristics falling within an asymptotic region, such that Ξ in Equation [18] achieves 

a near constant value. Vander Wal et al.84 investigated the splashing/deposition limit for 

water drops (RE = 2 mm) with 300 ≤ Re ≤ 15000 and 0.0019 ≤ Oh ≤ 0.021 on an 

aluminium substrate with a roughness less than 10 nm. Whilst this study did not examine 

the effects of either surface roughness or surface wettability, an empirical splashing limit 

of the form OhRe0.609 = 0.85 was established; clearly different from that of Mundo et al. 

This indicates a clear variation in the splash/deposition limit due to surface roughness, in 

agreement with initial observations by Engel103. 

 

A generalized theory of drop splashing that incorporates the influence of surface 

roughness for all surface types has yet to be established. This is due primarily to the 

complexity of splashing events and the significant influence of numerous parameters (Oh, 

Re, Ra). Moreover, surface roughness characteristics are typically non-uniform and drops 
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can splash in a variety of ways (ranging from prompt splash upon impact to crown 

splashing towards the end of inertial spreading). Both aspects contribute significantly to 

the complexity of the system.  

 

 

1.1.3.7 Influence of spreading and the dynamic contact 

angle. 

 

 Research into the effects of surface wettability on impact dynamics is extensive, 

however investigations have primarily focussed on low viscosity fluids close to that of 

water (µ = 0.001 Pas). The equilibrium contact angle θe of sessile water drops is often 

used to characterise the wettability of substrates. As governed by the Young equation 

(Equation 35), hydrophilic surfaces such as clean glass will have small values of θe and 

can be completely wetting (θe = 0o); hydrophobic surfaces like parafilm-M will have 

significantly larger values. Ford and Furmidge53 were amongst the first to investigate the 

influence of surface wetting effects on impact dynamics and discovered that the 

maximum spread of water drops increased as θe decreased; later confirmed by numerous 

experimental investigations including Mao et al.47, Pasandideh-Fard et al.43 (who 

obtained a similar conclusion in terms of the advancing contact angle θa) and Sikalo et 

al.61. The influence of surface wettability was found to be negligible45,47,61 during the 

early stages of water drop impact, where spreading is dominated by inertial and viscous 

effects, and grows only towards the end of inertial spreading.  

 

Both Pasandideh-Fard et al.43 and Mao et al.47 quantified the influence of 

substrate wettability on βm for varying impact velocities of water drops on wax and glass 

surfaces; Pasandideh-Fard et al. over the ranges 59 ≤ We ≤ 271 and 2084 ≤ Re ≤5833 and 

Mao et al. over the ranges 11.3 ≤ We ≤ 518 and 1482 ≤ Re ≤ 10024. Whereas both 

investigations conclude that the influence of wettability on maximum inertial spread 

decreases as the impact velocity increases; a characteristic later confirmed by Sikalo et 

al.61, the maximum variation in βm over 27≤ θe ≤ 111o measured by Pasandideh-Fard et al. 

(up to ∆βm = 23.6% for We = 59 and Re = 2084) was significantly larger than that 
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measured by Mao et al. over 37≤ θe ≤ 97o (up to ∆βm = 10.4% for We = 37 and Re = 

2694).    

 

By comparing impacts on glass and wax surfaces, both Sikalo et al.61 and Mao et 

al.47 established that recoil is significantly larger on less wettable substrates; whereas 

partial and complete drop rebounds were observed on wax surfaces, equivalent impacts 

on glass surfaces produced only spread-recoil oscillations. Both investigations conclude 

that retraction dynamics will vary as a function of θr and the excess surface tension 

energy at the end of the inertial spreading phase; where excess energy is defined as the 

difference in surface tension energy between a sessile drop shape and a drop at maximum 

inertial spreading. Drops therefore will reach an equilibrium state when the excess energy 

reduces to zero. Furthermore, both studies highlight that the time to reach an equilibrium 

state on the wax surface is longer than for a glass surface. Mao et al. attribute this to a 

slower energy dissipation rate for decreasingly wettable surfaces. Furthermore, Mao et al. 

established a theoretical expression describing the excess recoil energy EERE in terms of 

the dimensionless maximum inertial spread diameter βm and θe, given by: 

  

1
3
2)cos1(12.0)cos1(

4
1 63.03.22 −+−−−= mememEREE βθβθβ   [25] 

 

For positive values of EERE, the drop will rebound. Negative values correspond to drops 

remaining on the surface during retraction.  Upon impact on a wettable surface, the more 

a drop spreads, the less likely is the tendency to rebound. As substrate wettability 

decreases however, the likelihood increases for equivalent values of βm. Through 

comparison with experiments, Mao et al. found this expression to be capable of 

predicting rebound events, although the accuracy of predicting events diminished 

significantly for values of EERE close to zero. 

 

1.1.4 Newtonian drop spreading dynamics on solid surfaces 
 

The spreading of drops on solid surfaces is a complex process, made increasingly 

more so by the preceding dynamics of the expansion and retraction phases. When a liquid 
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drop is deposited on a solid horizontal surface it will eventually either form a film or a 

spherical cap (for RE < a), depending on the wettability of the surface. The timescale of 

spreading is typically much longer than the impact process and has been found to vary 

significantly with θe and viscosity. By balancing the equilibrium interfacial energies for a 

sessile drop, shown in Figure [4] where θ = θe, Young13 established the equation: 

 

0cos =−− eslsv θσσσ     [26] 

 

where σ is the surface tension and subscripts s, l and v are the solid liquid and vapour 

phases respectively. Due to its frequency of appearance, the liquid-vapour interfacial 

tension is denoted throughout this thesis without subscripts. Complete wetting (θe = 0o) 

results with σsv – σsl = σ. Wenzel118 modified this equation to account for surface 

roughness, giving: 

 

 )(cos slsvfav r σσθσ −=     [27] 

 

where θav is the average apparent angle of contact and rf, the roughness factor, is the ratio 

of true to apparent area of the solid. Harkins and Feldman119 established that for drops 

where interfacial energies are not in equilibrium, the spreading coefficient S is given by: 

 

slsvS σσσ −−=      [28] 

 

In equilibrium, the spreading coefficient, where S = Seq, can never be positive120. 

Whereas complete wetting corresponds to Seq = 0, SEq. < 0 corresponds with partial 

wetting.  

 

The spreading may be positive initially99 however, wherein the difference 

between initial and equilibrium spreading coefficients is due to vapour molecule 

adsorption to the substrate, reducing σsv to less than the surface free energy in the absence 

of vapour σs0. Substituting these terms gives: 
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 slsiS σσσ −−= 0      [29] 

 

where the initial spreading coefficient, Si > SEq. Si can be both positive and negative, 

however when Si is negative, so will Seq and the drop will not spread. In contrast, for Si > 

0, Seq can be both positive and negative.  

 

 De Gennes99 highlights in his review that drop spreading velocities vr are large at 

first and then decrease significantly. This is often represented by a power law and in 

terms of the wetted area Awet = πR2(t), is given by: 

 
qnttR Ω≅)(2π      [30] 

 

where Ω is the fluid volume. The parameter n has been obtained by a number of 

investigations121,122, however one of the most accurate and well established studies was 

by Tanner123, who obtained n = 0.21. Values of q have not been investigated as 

thoroughly, however Lelah and Marmur122 established a value of 2/3. Moreover, 

Hoffman124 established through experimental investigations of silicone oil drop spreading 

that the capillary number Ca in the limit of low velocity could be related to the advancing 

contact angle θa by: 

 
m
aKCa θ=       [31] 

 

where K is a constant and m = 3 ± 0.5. This describes a relationship between the contact 

line velocity and the advancing contact angle of the form: 

 

m
adt

dR θ
µ
σ

≅       [32] 

 

For drop radii less than the capillary length (Equation 17), the drop will take on a 

spherical cap shape, where drop height h(t) and radius R(t) are related by: 
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Ω=2

2
hRπ ,      [34] 

 

where h is considered small in comparison with R.  Substituting Equations [33] and [34] 

into Equation [32] and integrating gives: 

 

 ttR mm Ω≅+

µ
σ13)(      [35] 

 

Comparing Equation [30] with Equation [35] indicates n = 2/(3m+1) and q = 2m/(3m+1). 

Taking Hoffman’s value of m = 3 gives n = 0.2 and q = 0.6, in close agreement with 

experimental results. Equation [35] is commonly known as Tanner’s law. 

 

Research has also established the way the contact line advances during spreading. 

On a macroscopic level, the contact line forms an advancing contact angle θa with the 

surface. Through marking the upper surface of viscous spreading drops with spots of dye, 

Dussan and Davis125 established that a characteristic rolling motion occurs, similar to that 

of a caterpillar track vehicle; this motion gives rise to viscous friction effects. Ahead of 

the wedge is a precursor film, extending in front of the apparent contact line. Whereas 

extensive investigations on this film have been performed and reviewed99, this is 

considered outwith the scope of the research, where we concentrate on macroscopic 

events and phenomena. 

 

It should be noted that there are several schools of thought when considering 

dynamic contact angle. The two main approaches are hydrodynamic and molecular 

dynamic theories; the first of which is described within this section.  In molecular 

dynamic theory, the motility of molecules in the liquid and at the solid-liquid interface 

are considered. Ruijter et al171 show that molecular dynamic calculations of contact 

angles and flow fields agree with experimental observations of spreading drops, 



Yield-stress Drops           Guy German                                                                           61 

supporting the validity of the molecular-kinetic model of wetting. Using this molecular-

kinetic approach, changes in the strength of the solid-liquid interactions varied the 

wettability of the system.    

 

Research cited so far in this chapter details the spreading dynamics of drops 

deposited on a surface. Drop impact dynamics prior to drop spreading must however also 

be taken account and consideration given to the crossover period between inertial 

expansion or retraction phases and the spreading phase.  

 

Biance et al.100 investigated the early stages of spreading for drops deposited on a 

solid surface and established that spreading has two regimes; a fast inertial regime with 

R(t) α t1/2, followed by the well established viscous regime described by Tanner’s law 

where R(t) α t1/10 (Equation 35). The inertial regime was found to eventually crossover to 

the conventional spreading regime after the characteristic timescale: 
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 The physics behind drops deposited slowly on a surface are therefore not 

dissimilar to drop impacts. Both will exhibit an inertial regime followed by a viscous 

regime and whilst the drop morphology and timescales to reach a sessile state may differ 

considerably, the final sessile state will ultimately be governed by Equation [26].    

 

 

1.1.5  Complex fluids 

 

With a better understanding of rheology and rheological techniques, industries 

have realised that working fluids can be tailored specifically to their intended purpose and 

be used to optimise existing industrial processes. Contemporary research into complex 

fluid drop dynamics, particularly for impact and deposition processes is therefore of 

interest. A classic example of industrial optimisation is the work by Bergeron et al.3, who 
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established that rebound and splashing of impacting aqueous based pesticide drops on the 

upper surface of waxy, hydrophobic leaves could be suppressed through the addition of 

small amounts (~100 p.p.m) of flexible polymers. Not only does this improve application 

efficiency, it also reduces environmental impact from ground contamination. 

  Sections §1.2.1 - 1.2.4 detail existing research into Newtonian fluid drop dynamic 

behaviour as well as some additive effects such as surfactants that act at the fluid 

interface. Unlike dynamic surface tension effects, changes in fluid drop dynamics arise 

most commonly from variations in the rheological composition of the fluid; which 

describe homogenous fluid properties, albeit not necessarily isotropic when subject to 

external forces. Unlike Newtonian fluids, where the applied shear stress is proportional to 

the rate of strain (the constant of proportionality being the viscosity µ), non-Newtonian 

fluids exhibit variations in this proportionality; either as a function of applied shear-stress 

(shear thickening or thinning fluids) as displayed in Figure [7] or with time when subject 

to a constant shear-stress (rheopectic or thixotropic fluids). 

 
Figure 7. The characteristics of common non-Newtonian fluids, plotted on a graph of shear-stress τ against 

shear rateγ& . 
 

Some fluid types can exhibit solid-like and fluid-like properties; these are called 

viscoplastic or ‘yield-stress’ fluids. This fluid type forms the focus of the research 
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project. Rather surprisingly, very little research into yield-stress drop dynamics has been 

published to date. Viscosplastic fluids can exhibit both shear-thinning and yield-stress 

characteristics. With the exception of viscoelastic fluids, which are currently a popular 

research topic and will be briefly discussed here, complex fluids that do not exhibit these 

characteristics are considered outwith the scope of the research and will not be considered 

further.  

 

As the name suggests, viscoelastic fluids exhibit both viscous and elastic 

components. These fluids are easily produced by adding small amounts of polymer (of 

the order parts per million) such as polyethylene oxide (P.E.O) to water. Research is 

extensive and includes rheological characterisation126,127 and the behaviour of viscoelastic 

drop dynamics3,67,77,128,159,165. The research by Bergeron3, which details the retraction 

phase and splash suppression effects of small amounts of P.E.O in impacting water drops 

has already been highlighted. We describe here some other aspects of dynamic 

viscoelastic drop behaviour, specifically with regard to drop detachment. 

 

As described in §1.2.1, unstable Newtonian fluid drops detaching from a capillary 

tube will initially exhibit exponential increases in the perturbation amplitude at the point 

of minimum drop neck thickness followed by a transition to Stokes and then Navier-

Stokes self-similar flow regimes. Amarouchene et al.159 however show experimentally 

that a remarkably different behaviour can occur with the addition of minute amounts of 

polymer to a low viscosity Newtonian fluid. Whilst the initial behaviour of these 

viscoelastic fluids is similar to that of the Newtonian fluid drops up to and including the 

transition to the Stokes flow self-similar regime, subsequent behaviour shows inhibition 

of self-similar breakup. The drop neck instead forms a long thin filament which continues 

to elongate and thin but at a much slower rate. This rate is found to be exponential. 

Filament formation is found to occur when the critical elongation rate in the neck 

becomes comparable to the reciprocal of twice the polymer relaxation time164. In other 

words, the interaction of the polymer with the flow is found to occur when the elongation 

rate is sufficiently large enough to stretch the polymer coils. Increasing either the additive 

concentration or the polymer molecular weight is also found to slow the filament 

thinning. 
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Experimental and numerical studies by Wagner et al.165 show that viscoelastic 

fluids can also inhibit satellite drop formation. Satellite drop formation in Newtonian 

fluids occurs when pinching in the neck occurs simultaneously at the end close to the 

capillary tube and the end closest to the drop. This produces a much smaller satellite drop 

above the detached primary drop. With the addition of small amounts of polymer additive 

to Newtonian fluids, pinching is inhibited and thin cylindrical threads remain connected 

to the small satellite bead in the middle, forming a ‘bead on a string’ appearance. For 

small enough capillary tube diameters, no satellite bead is formed and the thread remains 

uniform.  

 

 

1.1.5.1 Shear-thinning fluids 

 

The viscosity of a shear-thinning fluid decreases as a function of increasing shear-

stress. A number of rheological models have been proposed to characterise this shear-

thinning behaviour. These include: 
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where τ is the applied shear stress. K is the consistency coefficient, which describes the 

viscosity at low shear-rates; this gives an idea of the overall range of viscosities across 
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the part of the flow curve that is being modeled. The exponent n is the power law index, 

where 0 < n < 1; the more shear-thinning the fluid, the closer n is to zero. A value of n = 

1 corresponds to a Newtonian fluid. µ0 and µ∞  are the viscosities at zero shear and 

infinite shear respectively and C is the cross time constant. This parameter is the 

reciprocal of the strain rate at which the zero strain rate component and the power-law 

component of the flow curve intersect. (1-m) is the rate constant describing fluid shear-

thinning for the Cross and Carreau models.  τ1/2 in the Ellis model is the shear stress at 

which µ is exactly half of the µ0 value. 

 
 It is important to choose a rheological model that provides the best correlation to 

experimental data. Equation [37] is the simplest model with only two fitting parameters. 

Whilst this can adequately model shear-thinning characteristics, it fails to describe very 

low and high shear rate regions132. The Cross model is more complex and has the added 

capability of modelling low (µ ~ µ0) and high shear (µ ~ µ∞) Newtonian regions. 

Additional models have been proposed (Equation 39) that include a fifth fitting 

parameter, a. The Carreau model designates a = 2 and has been found to fit experimental 

data better than the Cross model. Frequently the high shear rate Newtonian region is not 

observed, common for fluids such as polymer melts132. The Ellis model (Equation 40) 

sets µ∞ in the Cross model (Equation 38) to zero and is usually expressed in terms of a 

stress variable.     

 
 One of the difficulties in studying fluids exhibiting shear-thinning characteristics 

is that during any drop dynamic process, the viscosity will vary both spatially and 

temporally as a function of the local shear-rate. This is unlike Newtonian fluids, whose 

viscosity remains constant. This additional complexity increases the difficulty in 

establishing relationships between the macroscopic drop dynamic behaviour and the 

underlying viscometric properties of the fluid. Moreover, common parameters used to 

characterise drop behaviour such as Re, Oh and Ca cannot be defined adequately because 

they are not fixed for any given process due to the variation of the viscosity term. Whilst 

computational studies can be used to model the drop dynamic behaviour of fluids 

exhibiting shear-thinning characteristics145, establishing empirically derived models is 
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difficult and observing dynamic behaviour qualitatively is often the limit to what can be 

expected. 

    
Existing research into shear-thinning fluid drops focuses mainly on detachment 

dynamics from capillary tubes and the spreading behaviour on solid surfaces. Davidson et 

al.145 investigated the detachment dynamics of both shear-thinning and yield-stress fluids 

detaching from a thin capillary tube using computational methods. This is discussed 

collectively in section §1.2.5.2. 

 
 Carre and Eustache152 examined the spreading behaviour of shear-thinning fluids 

on solid surfaces by equating surface tension forces driving the spreading, Fm: 
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where θa(vr) is the advancing contact angle at a spreading velocity of vr. The logarithmic 

form of the resultant expression: 
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was assessed by plotting the values of the left hand side of Equation [43] with the first 

term on the right hand side and comparing the slope of the line (the power law index n) 
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with experiment results. The theory was found to be in good agreement with 

experimental results. 

  
Advancing upon gravitational and capillary spreading of Newtonian drops, whose 

spreading laws have been well established theoretically99,123 as R(t) ~ t1/8
 and R(t) ~ t1/10 

respectively and confirmed by experiment153, Starov et al.154 established theoretical 

spreading laws for non-Newtonian power law fluids with both shear-thinning and dilatant 

characteristics. Analyses were performed for both gravitationally driven (RE > a) and 

capillary driven (RE < a) spreading regimes, where a is the capillary length (Equation 17). 

Drops were assumed to be completely wetting with small dynamic contact angles. 

Reynolds numbers were also small and drop radii were significantly larger than the 

height. The evolution of drop shapes for each regime was deduced to have self-similar 

solutions, from which spreading laws were obtained. For the case of an axisymmetric 

non-Newtonian drop within the capillary spreading regime, a self-similar relationship of 

the form: 
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was established, where: 
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Ω is the drop volume, λ is dimensionless constant, n is the power law index (Equation 37) 

and for axisymmetric spreading drops, m = 1. 

 

Experimental analyses by Rafaï et al.156 measured temporal variations in drop 

radius and established best fit power law curves of the form R(t) = Ctp for shear-thinning 

fluids in the range 0.3 ≤ n ≤ 0.9. The results agreed with predictions by Starov et al., 

indicating that the temporal spreading exponents of shear-thinning fluids are less than 
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those predicted by Tanners law (p = 1/(3m+1) = 0.1, Equation 35). For shear-thinning 

fluids with n ≥ 0.6 however, error margins were sufficiently large for spreading 

exponents to agree with both predictions by both Starov et al. and Tanners law. Rafaï et 

al.156 conclude that Tanner’s law is remarkably robust, with neither strong shear-thinning 

nor large normal stress effects (found in viscoelastic fluids) significantly affecting 

spreading rates.    

 
 
 

1.1.5.2 Yield-stress fluids 

 

 Yield-stress fluids exhibit two distinct regimes. For applied shear stresses 

below a critical value the fluid behaves like an elastic solid. Above the critical value or 

‘yield-stress’, fluids exhibit shear-thinning behaviour. Measurement of the yield-stress 

magnitude, τc, is most commonly performed by determining the intersection of the solid-

like and fluid like regimes via extrapolation as shown in Fig [8]133. 

  

Figure 8. Shear strain plotted against shear stress for a 0.3 mass fraction hair-gel solution in water, 
replotted from Bertola133. The data is used to establish yield-stress magnitude; defined as the extrapolated 

intersection of the solid-like and liquid-like regimes. 

 

τ [Pas] 

τc  



Yield-stress Drops           Guy German                                                                           69 

The viscometric properties of each fluid solution can be fitted using a Herschel-

Bulkley134 rheological model, given by: 

 

c
n

c

c

forK

forG

ττγττ

ττγτ

≥+=

<=

&
     [46] 

 
where G is the shear modulus, γ is the shear strain and τc is the yield-stress magnitude. 

Whilst this model is well established135 and amongst the most commonly used when 

analyzing yield-stress behaviour, other models include: 

 
 cc for ττγµττ ≥+= &   (Bingham model)136  [47] 

cc for ττγµττ ≥+= &  (Casson model)137  [48] 

 

The Bingham model assumes a Newtonian fluid flow for in the liquid-like region and the 

Casson model has a more gradual transition from the Newtonian to the yield region.132  

 
Research into viscoplastic fluids; their measurement and characterisation is 

extensive and has been summarised in numerous reviews132,135,138,139 with the term now 

commonly used to describe fluids that exhibit solid-like and fluid-like characteristics. 

Barnes135 highlights that references to this term in research number 2500 alone from 

1985-1998. Bingham136 was not the first to study these types of fluids; rather it was 

Schwedoff140, who first experimented on gelatine solutions in 1900. Bingham however 

left rather a greater impression; coining the term ‘rheology’, commencing the first society 

of rheology and describing through experimental research the first non-Newtonian 

characteristic, that of a ‘Bingham yield-value’; now more commonly known as the ‘yield-

stress’. 
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There are ongoing debates as to the validity of the previous description of a yield-

stress fluid; these centre on whether fluids can actually exhibit a ‘yield-stress’. The 

review by Barnes135 examines the evidence for and against its existence and argues that 

whereas the concept of a definable yield-stress has and continues to prove useful in a 

whole range of applications, when carefully measured rheological data is plotted on a 

logarithmic scale, a Newtonian\power-law\Newtonian behaviour is seen, as described by 

the Cross shear-thinning model and displayed in Figure [9]  
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Figure 9. The variation of viscosity with applied shear-stress for a 6% (by volume) suspension of 
iron oxide dispersed in mineral oil (replotted from Macosko132). 

 
 The viewpoint highlighted in this review is that at low shear-rates (typically less 

than 10-5 s-1), yield-stress fluids exhibit creep; a slow moving viscous flow regime instead 

of a solid-like regime whose viscosity tends towards an infinite value. This lower 

Newtonian regime can be seen in Figure [9]. This contradicts many of the numerous 

definitions of yield-stress including; 

 ‘where no flow can be observed under the conditions of experimentation’,141 

‘yield stress is a limiting shear stress at which the material starts to flow; below 
the yield value the material behaves as an elastic solid’142 and  

Lower Newtonian 
region 

Upper Newtonian 
region Power law 

region 
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‘A plastic material is one that shows little or no deformation up to a certain level 
of stress’132. 

In his definition of yield-stress; 

  ‘a stress below which no unrecoverable flow occurs’, 

Barnes highlights that such a definition effectively rules out experimental proof of the 

existence of a yield-stress since it would require an infinite amount of time to show that 

the shear rate, at any given stress is actually zero. Moreover, he systematically argues 

against all experimental data suggesting the existence of a yield-stress, as the title of his 

review suggests ('παητα ρει' - everything flows). These arguments are reasoned and not 

without validity, however he on occasion adopts a fervent and (rather ironically) 

unyielding stance that no yield-stress can exist on an absolute level.  

Barnes does however recognise the counterpoint that is most eloquently detailed 

by Malkin143; 

‘even though the (yield-stress) material is a liquid and flows though its viscosity is very 
high, it is reasonable to treat the behaviour of a yield-stress material as solid-like’. 

This argument is further supported by Coussot138 in his review of the rheophysics 

of pastes. Coussot highlights with regard to Barnes’s review, subsequent authors have 

demonstrated that although they are unable to ascertain the absolute absence of flow 

below the yield-stress, some viscoplastic fluids exhibit negligible flow characteristics 

with regards to the time frame of observation. This can be most easily understood by 

introducing the dimensionless Deborah number144: 

 

 
p

r

t
tDe =      [49] 

 

The dimensionless Deborah number is the ratio of the relaxation time scale tr, 

characterising the fluidity of a material, to the observed time scale of an experiment 

probing the response of the material tp. Whereas yield-stress fluids may exhibit low-shear 

rate flows, this fluidity can only be observed over long timescales. For shorter timescales; 
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characteristic of rheometric measurement and drop dynamic phenomena, the dynamic 

behaviour of fluids for stresses less than the yield-stress magnitude are negligible. 

Furthermore, Coussot details that when observing the temporal deformation of a 

bentonite suspension (a yield-stress fluid) subject to sufficiently low stresses, the slopes 

of the deformation curves continuously decrease with time; eventually levelling out at a 

finite value. This limited deformation at low stresses is highlighted as being the hallmark 

of a solid regime; deformations over long time periods are observed in solids and 

attributed to ageing effects. For higher stresses the rate of deformation tends towards a 

constant value consistent with flowing material.   

 

 Research into the influence of shear-thinning and yield-stress fluids on drop 

dynamic behaviour is limited. Both computational fluid dynamic and experimental 

measurements of drop detachment dynamics from a thin capillary were analysed by 

Davidson and Cooper-White145 for both fluid types, using a volume of fluid (VOF) 

approach, wherein fluid location is recorded by employing a colour function which 

defines a value of unity within the fluid region, zero outside of the fluid and within these 

limiting values for cells on the free surface. A Carreau model (Equation 39) was used to 

reproduce shear-thinning fluid behaviour and a Bingham model implemented with a bi-

viscosity approximation160 (Equation 50) was used for the yield-stress fluids, where: 
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In Equation [50], µ1 is a large Newtonian viscosity below the critical shear rate cγ&  (of 

regime change), µ2 is a significantly smaller Newtonian viscosity above the critical shear 

rate cγ&  and the critical shear rate cγ& = τc/(µ1-µ2). εµ is a dimensionless ratio µ1/µ2, such 

that as εµ 1 the fluid becomes Newtonian. This model assumes that the material 

behaves as a Newtonian fluid with a very large viscosity until the critical yield-stress is 

exceeded, whereupon it exhibits a rapidly decreasing viscosity. 
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Changes in the temporal variations of minimum neck thickness DN and drop 

length L (§2.8.1) were used to observe the influence of shear-thinning properties. Fluid 

shear-thinning was varied by changing µ∞ and Re independently, where the Reynolds 

number was defined in terms of the zero shear viscosity µ0. This definition is 

counterintuitive however because Re characterises the ratio of inertial to viscous forces 

and µ0 defines the flow under zero shear, where inertial forces are zero. 

Decreases in both µ0 and µ∞ were found to increase the rapidity of neck 

narrowing; for a fixed volume flow rate Q, pinch off occurs sooner after the onset of 

instability.  This effect is consistent with the influence of viscosity on Newtonian fluid 

pendent drops; during the detachment process, where liquid flows out of the thinning 

neck filament as it thins due to increased pressure induced from the curvature, the fluid 

will exit towards the detaching drop in the lower region and towards the capillary tube in 

the upper region. Decreasing the viscosity will reduce the normal viscous stresses whilst 

the induced pressure from the surface tension forces remains the same. This increases 

neck squeezing and therefore the rate of outflow, resulting in a more rapid onset of pinch 

off. The maximum drop length at pinch-off also varies considerably with shear-thinning 

characteristics. Drop lengths become shorter for decreases in both µ0 and µ∞. This is 

expected given that the fluid in the neck will drain more rapidly as the viscosity 

decreases. 

  
Davidson and Cooper-White only perform one computational analysis of a 

detaching viscoplastic fluid drop with τc = 20 Pa. Whereas satellite droplets formed 

during the detachment of shear-thinning fluids and a reduction of surface tension 

increased the likelihood of formation, no droplets were observed in the yield-stress fluid. 

This is due to the initial resistivity to flow, followed by a rapid reduction in viscosity as 

the fluid yields. This reduction results in the filament length remaining short.  

 

Prior to the formation of a filament, the shear rate was found to be zero except at 

the expanding drop surface, corresponding to plug flow (or in the case of a biviscosity 

model µ1 ~ O(1010) Pas). As a neck is formed, the shear rate becomes much larger and 

rises towards pinch-off, considerably reducing the fluid viscosity (µ2 ~O(0.1 - 1) Pas). 
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This large variation in local viscosity results in rapid drainage of the neck. Furthermore, 

the drop was observed to be torpedo shaped at pinch-off, rather than spherical or 

ellipsoidal. They highlight that the drop is expected to eventually obtain a spherical 

shape, but this does not occur by the time it reaches the limit of the computational 

domain. 

Viscoplastic fluid drop detachment dynamics are also examined by Coussot and 

Gaulard146, who demonstrated that high yield-stress magnitude fluid drops become 

unstable when the weight of the material supported by a fluid element becomes larger 

than the inhibiting yield-stress forces. Moreover, high yield-stress magnitude fluid drops 

appear like a cylindrical extrudate instead of a typical pendant shape because capillary 

forces cannot overcome the inhibiting yield-stress. In order to establish a relationship 

between drop length at critical breakup and yield-stress magnitude, Coussot and Gaulard 

assume the drop length is much larger than its diameter. Fluid rheological properties are 

also modelled using the constitutive equation: 
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where Σ and D are the stress and strain (symmetric component of the velocity gradient 

tensor) rate tensors, p is the pressure, I is the unit tensor, TII and DII are the second 

invariants of the stress and strain tensor and the final term on the right hand side of the 

cIIT τ≥− case equation is the Herschel-Bulkley rheological model. The normal stress 

resulting from purely elongational flow (with radial and longitudinal velocity components 

vr = -rd/2 and vz = zd respectively with RRd &−= ) is established as: 
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IID− = 3 d /2 was calculated for uniaxial extensional flow, where ε= dd / and z is 

the vertical distance along the drop length. This formulation utilises the von-Mises yield 

criterion that states the yielding of materials will arise when the second deviatoric 

invariant of the stress tensor reaches a critical value, equivalent to the square of the yield-

stress magnitude. Moreover, the stress resulting from the weight of the material below a 

fluid element ρgπXR0
2ez in cylindrical coordinates is of the form: 
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The second invariant of the stress tensor was determined as IIT− = 

ρgXR0
2/ 3 R2, where IIT− = τc at critical breakup. The resultant drop length Xc was 

established as: 

  

    
g

X c
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=      [54] 

 

Predictions were found to show a reasonable correlation with measured results. 

 
A similar study by Al Khatib and Wilson147 interestingly reveals an identical 

result even though a biviscosity model (Equation 50) is used instead of a Herschel-

Bulkley model. At the critical yield point, the relationship at the critical yield point was 

established as:      

 

c

gQTA
τ

ρ
3

=      [55] 

 

where A is cross sectional area of the fluid, Q is the volume flow rate and T defines the 

time at which a fluid element emerges from the capillary nozzle (the base of the fluid 

drop being T = 0). For a cylindrical drop, the value QT/A is dimensionally equivalent to a 
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drop length, and thus Equation [55] is equivalent to Equation [54]. Both equations 

describe a critical drop length increasing proportionally with the yield-stress magnitude.  

        

 The only published investigation of yield-stress fluid drop impacts in open 

literature is by Nigen148, who examined how impact dynamics on a solid plexiglass 

surface vary with changes in inertial energy. Fluid rheological behaviour was modelled 

using a Cross model, modified to include a yield-stress component. Whilst this was found 

to provide a good fit with viscometric measurements in the range 10-2 ≤γ& ≤ 103 s-1, the 

‘double-definition’ of combining both a Cross model (which models low and high shear-

rate Newtonian regimes) and a yield-stress term (defining a yield-limit below which the 

fluid is solid-like) is rather ambiguous. 

 
 Upon pinch-off from a thin capillary tube (0.4 mm inner diameter), drops were 

observed to be prolate in shape, however drop heights in free-fall decrease asymptotically 

in time towards a non-spherical equilibrium shape; in disagreement with Davidson and 

Cooper-White145 who expected viscoplastic drops to form an equilibrium spherical shape.   

 
Upon impact at low velocities (vz = 0.67 ms-1), drops decrease sharply in height, 

however inertial spreading is small with no lamella formation; drops appear to be gently 

deposited on the surface and behave like a deformable solid. Nigen highlights that a slow 

creeping flow is observed thereafter until drops assume a sessile state after approximately 

5 minutes. At slightly larger velocities (vz = 0.85 ms-1), drops retract after maximum 

inertial spreading and height oscillations are observed. After retraction, the diameter 

continues to spread at a near constant rate. At high impacts (vz = 2.3 ms-1), recoil is 

inhibited with wetted area retractions of no greater than 5% of the maximum spreading. 

Again, creeping flow is observed, however this is small and does not affect the maximum 

drop diameter.  
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Sessile drop shapes were established to be independent of the impact velocity (to 

within experimental error) for vz ≤ 0.85 ms-1. For vz ≥ 0.85 ms-1 however the opposite is 

true; sessile drop shapes differ for impacts at different velocities. This variation in final 

shape indicates that yield-stress effects dominate over capillary forces during both the 

retraction and capillary driven spreading phases and inhibit drops from taking on final 

equilibrium states governed by Equation [26].  

Nigen concludes that upon characterising the impact dynamics with respect to the 

Bingham number: 

 

 
z

Ec

v
D

Bm
µ
τ

=      [56] 

 

where µ in Equation [56] is defined as the zero shear rate viscosity µ0, the inertial 

spreading of low velocity drop impacts with Bm > 0.004 is small and subsequent 

creeping flow will occur towards a final sessile state3. The final sessile state of high 

velocity impacts with Bm < 0.004 however, will be identical to the diameter reached at 

the end of inertial spreading. In a similar fashion to Davidson and Cooper-White, Nigen’s 

definition of the dimensionless Bingham number by attributing µ0 to the viscosity term is 

not well posed because whilst the Bingham number characterises the ratio of viscous to 

yield-stress forces, viscous dissipation only occurs during fluid motion and the µ0 term is 

only valid at zero shear rate. Moreover, the characterisation of sessile drop shapes using 

this dimensionless number is not appropriate because Equation [56] characterises the 

inhibiting yield-stress forces with respect to the viscosity and not the driving surface 

tension forces (it has been well established that sessile drop shapes vary with surface 

energies and not the fluid viscosity, which acts only to vary the rate at which sessility is 

reached). Nigen however does recognise that significantly more research into drop impact 

behaviour of yield-stress drops is required and should include investigations to assess the 

influence of shear-thinning and yield-stress magnitude.    

                                                 
3 It is not clarified however whether it is capillary forces driving the spreading or the hydrostatic pressure 
from the weight of the undeformed prolate drop. 
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    Yield-stress fluid studies also include gravitationally driven spreading of yield-

stress fluids down an inclined plane150,  surface tension driven spreading through thin 

capillary tubes133 and the behaviour of Saffman-Taylor instabilities (an overdamped case 

of Rayleigh-Taylor instability) forming within a host fluid151. These investigations are 

considered outside the framework of drop dynamics however, and will not be further 

discussed.  

To summarise; currently there is a good understanding of Newtonian fluid drop 

dynamics, achieved through extensive theoretical and experimental research. This 

framework of understanding has been used as a basis from which more complex non-

Newtonian fluid drop dynamic behaviour has been studied. Whilst this research is 

relatively new, it has produced significant advances, however there are numerous avenues 

of research that remain unexplored in detail, primarily due to the many different types of 

non-Newtonian fluids in existence. With regard to yield-stress fluids, there is scope for 

significant improvement of our understanding of drop dynamic behaviour by advancing 

upon limited existing studies; the current research is thus not only timely, it also has the 

opportunity to be extremely novel.  

 
 

1.2 Aims and Objectives 

 

The primary aim of this research is to establish, through experimentation, the 

influence of fluid yield-stress on drop dynamic behaviour from initial growth and 

detachment from a thin, flat ended capillary to the end of spreading after impact on a 

solid substrate. This research can be divided into four main research areas, namely; 

 

A. drop detachment behaviour, 

B. drop behaviour during free-fall, 

C. drop impact behaviour and  

D. drop spreading dynamics on a solid substrate. 

 



Yield-stress Drops           Guy German                                                                           79 

This research describes each research area chronologically. Drops grow at the end 

of a capillary tube, then detach and fall towards the solid substrate, whereupon they 

impact and subsequently spread until they assume an equilibrium state. Dynamic 

behaviour during each stage is significantly different due to the varied inertial, surface 

tension and dissipative forces experienced by the drop.  

 

 In order to distinguish viscoplastic yield-stress characteristics from shear thinning 

and more classical Newtonian effects, the behaviour of viscoplastic fluid drops across a 

wide range of yield-stress magnitudes were compared with those of shear-thinning and 

viscous Newtonian fluid drops, ranging in their degree of shear-thinning and viscosity 

respectively. Due to the complex rheological characteristics of viscoplastic fluids 

however, the independent influence of yield-stress effects often cannot be established 

directly (i.e. direct comparison of two sets of experimental data or experimental data with 

theory) and indirect methods must be used. 

 

 The research objectives for each area are; 

 

 

A. Drop detachment behaviour 

 

To establish the influence of fluid shear-thinning and yield-stress magnitude on: 

 

 the stability characteristics of drops attached to a thin capillary tube and 

 the initial exponential growth of perturbations and transition to self –

similar flow after the onset of instability.  

 

Whereas the behaviour of Newtonian drops detaching under their own weight has 

been well established, the influence of fluid shear-thinning and yield-stress effects have 

not been analysed in detail. These objectives intend to progress existing research145-147 by 

investigating how variations in both shear-thinning and fluid yield-stress magnitude 

influence drop detachment dynamics and how these may differ from well established 

Newtonian fluid behaviour.     
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B. Drop behaviour during free-fall 

 

To establish the influence of shear-thinning and fluid yield-stress on the dynamic and 

equilibrium shapes of drops during free-fall. It has been well established that capillary 

forces drive the drop during free-fall towards an equilibrium spherical shape whilst 

changes in Newtonian viscous characteristics alter drop dynamic behaviour. This 

objective will provide experimental data expected to validate existing drop oscillation 

dynamic theories37,100
 and develop initial observations of detached yield-stress drops145,148 

by investigating whether fluid yield-stress can inhibit the formation of spherical drops 

and if so, whether there is a definable correlation between equilibrium drop shape and 

yield-stress magnitude.   

 

 

C. Drop impact behaviour 

 

To provide experimental evidence expected to support existing theories of Newtonian 

drop dynamic behaviour and establish the independent influence of shear-thinning effects 

and yield-stress magnitude on: 

 

 the inertial impact phase of drop impact; from initial deformation up until 

a maximum inertial deformation is reached and 

 the retraction phase driven by capillarity.  

 

The research also reports on a number of additional objectives. These are;   

 

 to establish the influence of surface wettability on Newtonian, shear-

thinning and yield-stress fluid drop impact dynamics and 

 to evaluate the predictive capability of existing drop impact prediction 

models through comparison with standardized experimental results and 

optimize those exhibiting the best performance for low impact velocity, 

high viscosity fluids; an impact regime where the predictive capability of 

existing models has not been studied in detail. 



Yield-stress Drops           Guy German                                                                           81 

 

Research examining the effects of surface wettability on drop impact dynamics 

has been completed only for low viscosity fluids (µ~0.001 Pas). The current research 

extends this investigation by examining how surface wettability effects influence drop 

impact dynamics for increasingly viscous fluids.  

 

D. Drop spreading dynamics 

 

 To provide evidence expected to support theoretical models describing the drop 

spreading behaviour of shear-thinning fluids and establish the independent influence of 

yield-stress magnitude on: 

 

 the rate of drop spreading and 

 the sessile shape of drops on surfaces of differing wettability. 

 

The drop spreading behaviour of Newtonian and some shear-thinning fluids is 

well established, however very little research has yet been published that focuses on the 

inhibiting influence of fluid yield-stress on spreading drops after inertial impact. This 

objective will answer whether fluid yield-stress effects can influence the evolution of 

spreading drops and prevent the formation of sessile drop shapes according to classical 

theory over a wide range of impact velocities.  
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2. Methodology 

 

2.1 Test fluid preparation and rheology 
 

 
 2.1.1. Newtonian fluids 

Six Newtonian fluids, with viscosities in the range 0.001 ≤ µ ≤ 0.925 Pas were 

prepared by dissolving glycerol, with mass fractions 0.98, 0.96, 0.94, 0.9, 0.8 and 0.0 in 

de-ionised water. Glycerol solutions were mixed for approximately 2 hours to ensure 

homogeneity using a magnetic stirrer and then re-stirred before use. Table [2] displays 

the fluid properties of each solution.  

Table 2. Fluid properties measured at 296 K for aqueous solutions of glycerol. 
Glycerol 

mass fraction 
 

Density 
[kgm-3] 

Viscosity [Pas] 
Error ± 0.005 

Surface Tension* 

[Nm-1] 

Abbreviations 
used in figure 

captions 
0.98 1256 0.925 0.069 ± 0.003 GL098 
0.96 1251 0.631 0.069 ± 0.003 GL096 
0.94 1248 0.428 0.069 ± 0.003 GL094 
0.9 1236 0.213 0.069 ± 0.003 GL090 
0.8 1211 0.056 0.070 ± 0.003 GL080 
0.0 998 0.001 0.075 ± 0.003 Water 

* Measured on a Kruss EasyDyne surface tensiometer using a Du Nouy ring method. Errors are based on 
the correct reading of de-ionised water at 296K. 

 

 Viscosity measurements for fluids with 0.056 ≤ µ ≤ 0.925 Pas are displayed in 

Figure [10] and were obtained by performing a controlled rate (CR) test across the shear 

rate range 0 ≤ γ&  ≤ 100 s-1 using a Haake-Mars rotational rheometer with a cone-and-plate 

configuration (35mm diameter, 2o  angle). 
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Figure 10. Shear stress (τ) versus shear rate (γ& ) for glycerol solutions with µ = 0.925 Pas (triangle 

symbol), µ = 0.631 Pas (cross), µ = 0.428 Pas (circle), µ = 0.213 Pas (plus) and µ = 0.056 Pas (square) 
determined using a Haake-Mars rotational rheometer with a cone and plate configuration (35mm diameter, 

2o  angle). 
 
 
 

2.1.2. Shear-thinning fluids 

 
Four shear-thinning fluids were prepared by dissolving Xanthan gum with mass 

fractions 0.00125, 0.0025, 0.005 and 0.01 in de-ionised water. The solutions; none of 

which exhibit yield-stress characteristics, were prepared by slowly adding the Xanthan 

gum whilst continuously swirling the fluid in order to disperse the powder and avoid 

agglomeration. The solutions were then subjected to continued mixing using a magnetic 

stirrer for two hours and re-stirred before each use. Each fluid sample was used within 48 

hours to avoid changes in viscometric characteristics due to bacterial degradation. The 

fluid properties of each solution are detailed in Table [3]. 
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Viscosity measurements are displayed in Figure [11] and were obtained by 

performing a controlled rate (CR) test across the shear rate range 0 s-1 ≤ γ&  ≤ 100 s-1 using 

a Haake-Mars rotational rheometer with a cone-and-plate configuration (35mm diameter, 

2o  angle). 
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Figure 11. Viscosity (µ) plotted against shear rate (γ& ) and (inset) shear stress (τ) plotted against shear rate 

(γ& ) for shear-thinning fluid solutions of Xanthan gum in de-ionised water with mass fractions ranging 
between 0.00125 and 0.01. Dashed lines represent best fit power law model distributions (Equation 37). 

 

To characterise each fluid solution, rheological measurements were fitted with a 

power law model (Equation 37); chosen to allow fluid shear-thinning properties to be 

most simply characterised in terms of the power law index n and the consistency 

coefficient K. The fluids investigated did not show appreciable low and high Newtonian 

regions, therefore the Cross (Equation 38) and Carreau (Equation 39) models were 

deemed overly complex. Table [3] displays the fitted parameters for each fluid solution. 

 

 

 



Yield-stress Drops           Guy German                                                                           85 

Table 3. Fluid properties measured at 296 K for aqueous solutions of Xanthan gum and power law model 
fitted parameters n and K. 

Xanthan Gum 
mass fraction 

 

Density 
[kgm-3] 

Surface Tension* 

[Nm-1] 

Consistency coefficient 
K 

[Pasn] 

Power law index 
n 
 

Abbreviations 
used in figure 

captions 
0.00125 998 0.0713 ± 0.0015 0.208 ± 0.001 0.400 ± 0.003 X0125 
0.0025 998 0.0714 ± 0.0001 0.962 ± 0.006 0.155 ± 0.005 X025 
0.0050 998 0.0704 ± 0.0008 2.846 ± 0.015 0.129 ± 0.004 X05 
0.0075 998 0.0717 ± 0.0012 5.064 ± 0.027 0.084 ± 0.005 X075 

*Measured on a Kruss EasyDyne surface tensiometer using a Du Nouy ring method . Errors are based on 
the standard deviation of five samples for each shear thinning fluid solution. 

 

 

2.1.3. Yield-stress fluids 

 
Seven yield-stress fluid solutions were prepared by dissolving a commercial hair-

gel, with mass fractions 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5 in de-ionised water; hair-gel 

is comprised of a mixture of alcohol, water, carbomers, surfactants and glycerin and 

mixes readily with water.  The solutions were mixed slowly in a container to avoid the 

formation of bubbles, left to settle for 24 hours and then thoroughly mixed to ensure 

homogeneity using a magnetic stirrer. The fluid properties of each solution are detailed in 

Table [4]. Each hair-gel solution was used within 48 hours of preparation to minimise any 

changes in viscometric properties, which can become visibly apparent after 1-2 weeks. 

 
 Yield-stress magnitudes were measured by performing a controlled stress 

(CS) test on a Haake-Mars rotational rheometer using a plate-and-plate configuration 

with the surfaces covered with sandpaper to avoid slip. Measurements were made within 

the range 0 Pa ≤ τ ≤ 50 Pa. Aqueous solutions of hair-gel are model yield-stress fluids; 

altering the mass fraction of the hair-gel allows τc to be varied in a continuous fashion. 

Fluid yield-stress magnitudes were found to vary as a linear function of the solution 

concentration, as detailed in Figure [12].  



Yield-stress Drops           Guy German                                                                           86 

0

10

20

30

40

50

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
Hair-gel mass fraction [-]

Yi
el

d-
st

re
ss

 m
ag

ni
tu

de
 [P

a]
 

 
Figure 12. Variation of fluid yield-stress magnitude τc with hair-gel mass fraction. 

 
   Whereas there is continued debate over whether it is entirely accurate to define a 

fluid as having a yield-stress, as discussed in §1.2.5.2, the ratio of the fluid relaxation 

time-scale for applied stresses less than τc to the observed experimental time-scale in each 

of the drop dynamic processes investigated is very high (Equation 49), indicating that it is 

reasonable to assume the fluid exhibits solid-like behaviour. The viscometric properties 

of each fluid solution were therefore fitted using a Herschel-Bulkley rheological model 

(Equation 46). Table [4] displays the fitted model parameters for each solution.  

Table 4. Fluid properties, measured yield-stress and Herschel Bulkley model (Equation 46) fitted 
parameters n and K for yield-stress fluid solutions at 296K. 

Hair-gel 
mass 

fraction  

Density 
[kgm-3] 

Surface 
Tension* 

[Nm-1] 

Measured 
Yield-stress, τc 

[Pa] 

Consistency 
coefficient 
K [Pasn] 

Power law 
index 

n  

Abbreviations 
used in figure 

captions 

0.2 1037 0.0341 ± 0.0008 0 1.443 ± 0.009 0.4747 ± 0.005 YSF020 
0.25 1047 0.0343 ± 0.0008 5.4 ± 0.6 3.096 ± 0.019 0.4311 ± 0.007 YSF025 
0.3 1057 0.0340 ± 0.0015 11.5 ± 1.3 5.533 ± 0.015 0.3775 ± 0.004 YSF030 

0.35 1067 0.0340 ± 0.0024 19.1 ± 0.7 6.982 ± 0.030 0.3730 ± 0.005 YSF035 
0.4 1076 0.0340 ± 0.0031 26.1 ± 1.8 7.936 ± 0.033 0.3727 ± 0.004 YSF040 

0.45 1086 0.0340 ± 0.0040 32.7 ± 0.9 12.05 ± 0.039 0.3579 ± 0.007 YSF045 
0.5 1096 0.0340 ± 0.0041 36.2 ± 1.9 19.93 ± 0.051 0.3116 ± 0.006 YSF050 
* Measured on a Kruss EasyDyne surface tensiometer using a Du Nouy ring method. Errors are based on 

the standard deviation of ten samples. 
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Viscosity measurements for fluids with 0 ≤ τc ≤ 26.1 are displayed in Figure [13]. 

These were obtained by performing a controlled rate (CR) test across the shear rate range 

0 ≤γ&  ≤ 100 s-1. 
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Figure 13. Viscosity (µ) plotted against shear rate (γ& ) and shear stress (τ) plotted against shear rate (γ& ) 

(inset) for yield-stress fluid solutions with τc= 0 Pa (cross), τc=5.4 Pa (triangle), τc=11.5 Pa (diamond), τc= 
19.1 Pa (circle) and τc= 26.1 Pa (square), measured using a Haake-Mars rotational rheometer with a 35mm 

plate and plate configuration. Dashed lines represent best fit Herschel-Bulkley model distributions 
(Equation 46). 

 

 The influence of dynamic surface tension effects on yield-stress drop dynamic 

behaviour must also be considered due to the presence of surfactants. Surfactants act to 

reduce the interfacial surface tension. Reducing the surface tension of a fluid drop 

typically decreases the rate of pinch-off during detachment, increases the maximum 

spread upon impact and reduces the likelihood of retraction/rebound. Dynamic surface 

tension indicates non-equilibrium surface tension characteristics and is usually brought 

about by the creation of new interface regions. Drop dynamic behaviour can occur over 

very short time intervals, typically; 
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 Drop detachment (~10-30 ms) 

 Drop impact – Inertial expansion phase (~3-7 ms) 

 Drop impact – Retraction phase (~15-30 ms) 

 Drop spreading – (~ms - minutes) 

Significant amounts of new liquid-gas interface can be created during these 

periods, especially for high velocity impacts. The drop dynamic behaviour of fluids 

containing surfactant molecules exhibiting long migration periods can therefore be 

significantly influenced by dynamic surface tension effects.    

 
The surfactant Polysorbate 20 is present in each of the yield-stress fluid solutions 

at concentrations significantly higher than the C.M.C. Equilibrium surface tension 

measurements of each solution, displayed in Table [4] correlate with previous 

measurements157 of Polysorbate 20 in de-ionised water (σ = 0.034 Nm-1) for 

concentrations at and above the C.M.C (0.06 mg ml-1). Previous research establishes that 

above the C.M.C., adsorption kinetic timescales will be drastically reduced due to 

demicellisation close to the surface, as highlighted in Figure [14] and described in 

§1.2.3.5. The surface tension of the viscoplastic fluids was therefore assumed to be 

constant during each drop dynamic process. 
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Figure 14. Migration of surfactant molecules during drop impact and the temporal variation of 
surface tension σ in regions of newly created surface for (lower) a fluid containing a surfactant 

concentration significantly below the C.M.C and (upper) a fluid containing a surfactant concentration 
significantly greater than the C.M.C. 
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2.2 Experimental apparatus 

 
2.2.1 General experimental apparatus design  

Figure 15. Drop generation and image capturing equipment. 

 
The general configuration of the experimental apparatus is shown in Figure [15] 

and comprises a 1.27mm outer diameter (O.D.), 0.838mm inner diameter (I.D.) Needle 

gauge 18 flat-ended metallic hypodermic needle attached to a digital height gauge with a 

precision of ± 0.01 mm. Control of drop detachment was achieved using a screw driven 

mechanical syringe pump. Drops were allowed to form slowly at the end of the needle 

and detach under their own weight. The formation process could take up to a minute for 

the higher mass fraction hair-gel solutions, however timescales for typical drop formation 

were of the order of seconds. 

   
Drop dynamic behaviour was observed and recorded using a high frame rate 

Mikrotron MC1311 camera, equipped with a Sony 18mm-108mm / f2.5 zoom lens and 
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camera   
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30mm extension tube, aligned orthogonally to the substrate. The substrate was backlit 

using a 100W halogen lamp positioned behind a light diffuser. Digital images were 

recorded at 1000 f.p.s (frames per second) with a maximum achievable resolution of 1280 

x 1024 pixels. To achieve a frame rate of 1000 f.p.s however, the image resolution was 

decreased to 720 x 512 pixels. The magnification was manipulated so that the image 

could accommodate the maximum spread of impacting drops or the full height of 

detaching drops and was kept constant throughout each study with a typical spatial 

resolution of 32.6 mm/pixel. Lighting positions and camera settings were also maintained 

to ensure conditions were identical for each drop impact recording. The light source 

could heat up significantly over short periods of time, therefore to ensure temperature 

consistency to within ± 2 oC of room temperature (23 oC), the light was switched on only 

when needed. When the light was switched on, it was allowed to reach a maximum 

intensity before any experimentation was performed. This took no longer than 30 

seconds. Vibrational isolation and fine optical alignment were achieved by attaching the 

apparatus to an optical bench. The calibration of drop dimensions was achieved by 

establishing the ratio of pixilated to measured needle outer diameter. 

 
 

2.2.2 Adaptation for drop stability and detachment studies 

 
The arrangement shown in Figure [15] is used with the needle reduced to a fall 

height of Hf = 15mm so that both the needle and drop were sufficiently backlit.  Drop 

stability and detachment characteristics were analysed through the measurement of 

minimum neck width, drop height and the vertical distance between the base of the drop 

and the position of minimum neck thickness, as detailed in §2.8.1. For each fluid 

solution, the growth and detachment dynamics of five drops were recorded and averaged 

to establish errors magnitudes and ensure repeatability. 
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2.2.3 Adaptation for drop impact and free-fall studies 

 
The experimental apparatus was modified so that the needle was centered over an 

aluminium square block (40mm x 40mm) upon which different substrates were placed. 

Studies of drop impacts were made for fall heights of 7.5, 10, 25, 50, 100 and 200mm, 

corresponding to a Weber number range of 1.7 ≤ We ≤ 240 for the Newtonian solutions, 

0.8 ≤ We ≤ 194 for the shear-thinning fluids and 0.7 ≤ We ≤ 340 for the yield-stress 

fluids. Drop impact behaviour was analysed through the measurement of axisymmetric 

drop diameter and apex height, as detailed in §2.8.2 and §2.8.3 respectively. For each fall 

height, the impact dynamics of five drops were recorded and averaged to establish errors 

magnitudes and ensure repeatability. 

 
 The influence of surface wettability was determined by comparing equivalent 

drop impacts on two different substrates; a hydrophobic Parafilm-M coating and a 

hydrophilic clean glass surface. To characterise the properties of each surface, the 

equilibrium contact angles of de-ionised water drops were measured.  

 
Drops of the YSF040 solution could not be analysed from fall heights lower than 

10 mm because impacts were observed to occur before complete detachment from the 

needle. Furthermore, for fall heights greater than 100mm, drops with yield-stress 

magnitudes greater than or equal to the YSF030 solution (τc = 11.5 Pa) were observed to 

occasionally rotate during free fall, resulting in an angled impact. This phenomenon 

could be observed because of the prolate drop shapes. Nigen148 also observed this 

phenomenon and noted that even plastic tubing surrounding the falling drop and shielding 

it from external air currents did not eliminate the effect. All angled drop impacts were 

discounted from the experimental results.  

 
The experimental configuration and methodology used for the examination of 

drop impacts was also used for drop free-fall studies with a number of alterations. Firstly, 

additional viscoplastic fluid solutions were studied to obtain a more detailed relationship 

between fluid yield-stress magnitude and free-fall drop shape. Viscoplastic fluids with 
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hair-gel mass fractions of 0.275 (τc = 7.8 ± 0.36 Pa, σ = 0.034 N.m-1) and 0.325 (τc = 15.4 

± 0.4 Pa, σ = 0.034 N.m-1) were created for this specific study. Additional experiments 

were also completed so as to incorporate the influence of drop size on viscoplastic fluid 

free-fall equilibrium drop shape. These experiments were completed using a smaller 

0.813 mm O.D, 0.495 mm I.D. (Needle gauge 21) flat ended hypodermic needle. The 

characteristics of viscoplastic drops detaching from this smaller nozzle are detailed in 

Table [5]. Finally, to lengthen the periods over which free-fall drop dynamics were 

studied, some experiments (where necessary) also included additional fall heights of 300, 

400 and 500mm. These additional heights were only used when drop shapes in free-fall 

did not reach equilibrium within a fall height of 200 mm. For each fluid solution, the 

free-fall dynamics of five drops were recorded at each fall height to establish errors 

magnitudes and ensure repeatability. 

 
 

2.2.4  Adaptation for drop spreading studies 

 

Drop spreading experiments were designed to be performed within a translucent 

acrylic box, built to surround the substrate region with saturated air to eliminate 

evaporative effects whilst allowing digital images to be recorded. With the aim of 

minimising the box volume and thus the time period required to obtain complete 

saturation, the minimum box width and breadth dimensions were constrained by the size 

of the substrate to be placed inside. The minimum height was constrained by the 

requirement that the camera field of view contained no box edges or corners; the visual 

clarity of the images being of importance to ensure accurate drop dimensional 

measurements. The box was designed to include a moat following the internal perimeter 

through which the enclosed air could become saturated. The moat (15mm wide, 13.5 mm 

tall) was designed to contain a volume of de-ionised water greater than that required to 

saturate the enclosed air and to maximise the surface area of water (56 cm2 for a box 

volume of 721 cm3) and hence the evaporation rate.  

 

To ensure an airtight seal, internal corner and edge seals of the box were coated 

with paraffin wax along with holes in the optical bench. The seals were then tested for 
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leaks by filling the box completely with water. To minimise changes in image clarity, 

surfaces were cleaned thoroughly and the box sealed to the optical bench, where it 

remained static thereafter. Access to the box was achieved through a side window. Once 

the substrate was inserted and correctly positioned, the window was closed and sealed 

along the edges with putty. The box was then left for an hour to allow the enclosed air to 

become re-saturated. Impacting drops entered the box via a 10 mm circular hole drilled in 

the top of the box. A plug was removed just prior to drop detachment and quickly 

replaced after impact to prevent the escape of saturated air. For drop impacts at fall 

heights below 25 mm, the needle protruded through the plug. A schematic of the acrylic 

box design and its position within the experimental apparatus is displayed in Appendix A 

and Figure [16] respectively. 

 

 
Figure 16. Side view of experimental apparatus used for drop spreading experiments. 

 

The spreading dynamics of drops on surfaces after inertial impact can occur over 

timescales significantly longer than either drop detachment or impact processes. A low 

speed Sony black and white video CCTV CCD camera was therefore utilized to record 

spreading processes. The camera was connected to a computer via a live-feed frame 

grabber adaptor and recordings were made using Capture Studio Professional v4.05. The 

camera was capable of 30 f.p.s (interlaced) or 15 f.p.s (single frame) however digital 

images were recorded between 1 and 5 f.p.s for up to 15 minutes with a maximum 

achievable resolution of 768 x 576 pixels. The camera was equipped with a Vicotar Type: 



Yield-stress Drops           Guy German                                                                           95 

T150/0.19 114 mm/ 25.7 x 19.3 mm F.O.V (field of view based on 1/3” sensor size) 

telecentric measurement lens combined with a 10mm extension tube to produce a correct 

image focus. A telecentric lens was used primarily to ensure a consistent magnification 

over every part of the object image and eliminate optical distortion, which could 

introduce inaccuracies in measured drop dimensions; for drops on wettable surfaces 

where spreading is significant and extends towards the edges of the image, distortions 

would become influential. Figure [17] highlights image differences between conventional 

and telecentric lenses.        

 

 
Figure 17. A comparison of images produced by conventional and telecentric lenses.   

 

The experiments performed were identical to the drop impact study, however 

recordings were made over longer periods so that sessile drop shapes could be 

established. 

 
 

2.3 Image post-processing 

 
Digital image processing was performed using the IMAQ functionality suite in 

Labview v6.1. An 8-bit digital image is a matrix of pixel intensities, ranging from black 

[0] to white [255]. Iterative routines can be employed to perform fast arithmetic, filtering 

and measurement processes on the image matrices in a data set, typically consisting of 

close to a thousand images. Figures [19] and [20] detail the flow diagrams of the 

programmed routines. The first routine was used to extract relevant information for the 

drop free-fall, impact and spreading experiments. The second routine was used for drop 
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detachment experiments. Typically the algorithm processes include the subtraction of the 

background image, image filtering and de-speckling to identify and remove unwanted 

pixels originating from dust or airborne particulates, the retrieval of relevant pixel 

information used to establish drop widths, heights and pixel areas and the storage of this 

information in a simple array string. Drop width and height dimensions were obtained by 

establishing the lowest and highest row and column numbers where the variation of pixel 

intensities over 3 pixel lengths exceeds a threshold intensity value of 60, as displayed in 

Figure [18]. The rake function in Figure [20] performs a sub-routine where the smallest 

horizontal pixel distance between the two edges of the drop neck was established. The 

horizontal row where this occurs was also recorded. This sub-routine required the manual 

selection of an area around the neck region to avoid values of zero that would otherwise 

arise if the whole image was used. The outer diameter of the flat ended needle was 

measured for each results set and used as a dimensional calibration to convert pixel 

dimensions to S.I unit lengths. These calibration measurements were extracted manually 

from the images using a simple routine programmed specifically for the task.   

 
 

 

Figure 18. Drop pixel width and height measurement through establishing the maximum and minimum 
row and column where pixel light intensities exceed a threshold value. 

 
Background image subtraction and filtering (removal of pixels with intensities 

less than 30) was performed to improve image consistency by reducing small fluctuations 

in background light intensity due to the light source. De-speckling removed erroneous 

regions with less than 30 pixels (drop areas in contrast show measured areas of greater 

than 3000 pixels) that would ordinarily be recognized by the algorithm. Image inversion 

was performed prior to subtraction of the background image because drops appear as a 

dark image on a light background; inversion results in high image intensities in the drop 

region (near 255) with low intensities in the background (near 0). Subtraction of the 

background image therefore does not significantly affect the drop region in the image. 

Schematics of both Labview post-processing routines are displayed in Appendix B.  
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Figure 19. Flow diagram of image processing algorithm used to extract drop width, height and 
area for free-fall, impact and spreading experiments.  
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Figure 20. Flow diagram of image processing algorithm used to extract minimum drop neck 
widths, heights and areas for detachment experiments.  
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2.4 Drop production and characterization 
 

The equivalent spherical diameter DE of each fluid solution was established by 

averaging 50 drop weight measurements made using a Mettler Toledo MT100 precision 

balance and substituting into: 
 

3
6
πρ
mDE =      [57] 

 

where m is the average drop weight. Values of DE were not extracted directly from the 

digital images because of limitations in measurement accuracy arising from both drops 

oscillations during free-fall and non-spherical equilibrium shapes of some yield-stress 

fluid drops. The average drop mass4 and DE for each solution is detailed in Table [5]. 
 

Table 5.  Drop weight, capillary length and equivalent diameter measurements for drops produced using 
both the 0.838mm I.D. (Needle gauge 18) and 0.495mm I.D. (Needle gauge 21) flat-ended metallic needles. 

Fluid 
Abbreviation 

Capillary 
tube I.D. 
Diameter 

[mm] 

Average 
Drop mass 

[mg] 

Measurement 
error 
[mg] 

DE 
[mm] 

Standard 
Deviation 

[mm] 

Capillary 
length 

a 
[mm] 

GL098 0.838 19.64 0.332 3.102 0.0175 2.37 
GL096 0.838 19.81 0.329 3.116 0.0172 2.37 
GL094 0.838 19.50 0.166 3.101 0.0087 2.37 
GL090 0.838 20.06 0.474 3.141 0.0248 2.39 
GL080 0.838 19.50 0.293 3.133 0.0157 2.43 
Water 0.838 22.07 0.482 3.480 0.0254 2.77 
X0125 0.838 21.96 0.324 3.474 0.0171 2.70 
X025 0.838 20.50 0.583 3.396 0.0322 2.70 
X05 0.838 21.10 0.127 3.428 0.0069 2.68 

X075 0.838 19.63 0.115 3.347 0.0065 2.70 
YSF020 0.838 12.10 0.224 2.848 0.0176 1.83 
YSF025 0.838 10.81 0.336 2.743 0.0284 1.82 
YSF030 0.838 10.05 0.308 2.678 0.0273 1.81 
YSF035 0.838 9.59 0.275 2.636 0.0142 1.80 
YSF040 0.838 9.39 0.147 2.617 0.0136 1.79 
YSF045 0.838 9.44 0.168 2.619 0.0156 1.79 
YSF050 0.838 9.22 0.164 2.602 0.0154 1.78 
YSF030 0.495 7.12 0.086 2.344 0.0094 1.81 
YSF0325 0.495 6.83 0.083 2.307 0.0093 1.81 
YSF035 0.495 6.39 0.165 2.253 0.0194 1.80 
YSF040 0.495 6.00 0.129 2.200 0.0158 1.79 

 
                                                 
4 Drop mass measurements were performed at the lowest achievable flow rate (allowing drops to detach 
under their own weight). This detachment process was employed for all the experiments presented in this 
thesis. Mass measurements show a good repeatability. To ensure small variations in flow rate did not result 
in changes in detached drop mass, measurements were also made at slightly larger flow rates. Drop masses 
were found not to differ from the original measurements by amounts larger than the experimental error. 
This indicates that small variations in the flow rate (close to the minimum rate achievable) do not 
significantly influence drop mass.  
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 Figure [21] displays the variation of DE with glycerol, Xanthan gum and hair-gel 

mass fraction respectively. Whereas the drop diameters of the Newtonian fluids in the 

range 0.056 ≤ µ ≤ 0.925 Pas (upper figure) do not vary significantly (DE = 3.118 ± 0.016 

mm), shear-thinning drop diameters (middle figure) vary as a linear function of the 

Xanthan gum mass fraction, X, and are well represented by XDE 483.1648.3 −= mm 

(short dashed line). The variation in DE with shear-thinning characteristics is thought to 

be due both to changes in the volume of fluid remaining attached to the capillary after 

drop detachment and the formation of satellite droplets during detachment.  

 
Viscoplastic fluid drop diameters (lower figure) also vary as a linear function of 

the hair-gel mass fraction, Y, and are well represented by YDE 222.1059.3 −= mm (short 

dashed line). The zero mass fraction viscoplastic fluid measurement (filled circle symbol 

on the y-axis) corresponds to a dilution of Polysorbate 20 in de-ionised water with a 

concentration of 0.08mg/ml; chosen to be well above the C.M.C to minimise dynamic 

surface tension effects during drop detachment. This fluid is Newtonian with the same 

surface tension as the viscoplastic fluids (σ = 0.034 Nm-1). Decreases in DE with 

increasing hair-gel mass fraction are thought to originate primarily from changes in fluid 

density. Although changes in fluid density do not appear to significantly influence DE for 

the Newtonian fluids, the Bond number Bo = ρD2g/σ of the viscoplastic fluids in 

comparison is nearly double (σ ~ 0.07 N/m for the Newtonian fluids, σ = 0.034 N/m for 

the viscoplastic fluids) due to the significantly smaller surface tension. This 

dimensionless parameter characterises the ratio of gravitational forces to surface tension 

forces. A larger Bond number indicates that surface tension effects are less dominant (i.e. 

capillary forces are comparatively weaker) and changes in fluid density are more likely to 

have an influence on the final drop diameter.   

 
  The significant difference in DE between a drop of de-ionised water (DE = 3.48 

mm, open triangle symbol) and an equivalent drop with a Polysorbate 20 additive (DE = 

3.048 mm, open square symbol) in the lower figure of Figure [21] highlights the effect of 

surface tension on drop detachment and agrees with previous observations of drop 

detachment behaviour10,11,16; where decreases in surface tension reduce the maximum 

supportable weight of hanging drops from a thin capillary tube.      
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Figure 21. Drop DE produced using the 0.838mm I.D. (Needle gauge 18) needle and plotted against (upper 
figure) glycerol, (middle figure) Xanthan gum and (bottom figure) hair-gel mass fraction. In all figures, the 

short dashed line corresponds to a least square linear best fit of the experimental results (filled circle). 
(upper figure) Experimental data is well represented by DE = 3.118 mm. (middle figure) Experimental data 
is well represented by DE = 3.48 – 16.483X mm where X is the Xanthan gum mass fraction. (bottom figure) 

Experimental data is well represented by DE = 3.059 – 1.222Y mm where Y is the hair-gel mass fraction. 
The filled circle symbol on the y-axis in the bottom figure corresponds to a zero hair-gel mass fraction 

measurement. This is the measured value of DE for drops of de-ionised water containing concentrations of 
Polysorbate 20 well above the C.M.C. (σ = 0.034 Nm-1) The open triangle symbol corresponds to a 

measurement of DE for de-ionised water (σ = 0.075 Nm-1). Each symbol corresponds to an average of 5 
drop measurements. Where not observed, errors are comparable in size to symbol dimensions. 

 
To characterise the shape of drops, comparisons of their radii were made with the 

capillary length, a (Equation 17). The capillary length for each fluid solution was found 

to be larger than the drop radius RE, as detailed in Table [5]. This indicates that 

gravitational effects are not dominant and the drop will assume a spherical cap shape 

when sessile on a substrate. This characteristic is also true for the drops produced using 

the smaller 0.495 mm O.D. needle.  

 
 

2.5 Impact Velocity 

 
Drop impact velocities just prior to impact were extracted directly from the digital 

images and compared with the theoretical free-fall velocity: 
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)(2 HHgv fz −=      [58] 

 
where Hf denotes the fall height and vz is the vertical impact velocity. Equation [58] 

incorporates the height of the pendant drop, H, to account for changes in the drop centre 

of mass prior to detachment. This modification was made because the height of attached 

yield-stress pendant drops could be greater than twice the value of DE. Figure [22] 

compares predicted impact velocities from Equation [58] with measurements for fluids 

within the range 0 ≤ τc ≤ 26.1 Pa. Predictions closely agree with the measurements for fall 

heights ranging between 7.5 mm ≤ Hf ≤ 200 mm. 
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Figure 22. Comparison of measured drop impact velocities with those predicted by Equation (58). The 

YSF020 (cross) and YSF040 (circle) viscoplastic solutions (respectively) typically represent spherical and 
prolate drop shapes upon detachment. The solid and short dashed lines represent predicted impact velocities 

for the YSF020 and YSF040 solutions respectively. 
 
 

2.6 Surface preparation 

 
In order to examine the influence of surface energy on drop impact and spreading 

behaviour, comparisons of impact and spreading behaviour were made on two different 

substrates; a hydrophobic parafilm-M film and a hydrophilic glass slide. Hydrophobic 

parafilm-M substrates were created by stretching the film tightly over the aluminium 
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block. Hydrophilic glass was prepared by washing standard glass slides with a surfactant 

solution, rinsing the surface with de-ionised water, repeatedly washing the surface with 

acetone and ethanol to remove chemical contaminants, subjecting the slide to an 

ultrasound bath in a surfactant solution for 10 minutes to remove any residual traces of 

particulates and finally washing with de-ionised water and allowing to dry in a clean 

heated cabinet to accelerate evaporation and minimise the likelihood of particles settling 

on the surface. The slides were then transferred to a sealed container until they were used. 

 
The equilibrium contact angles of de-ionised water drops (DE = 3.48 mm) were 

measured to characterise the properties of each surface. A contact angle of θe = 95 ± 2o 

was determined for the Parafilm-M substrate averaged over five drop measurements; the 

glass substrate was found to be completely wetting (θe = 0o). Drop contact angles were 

measured manually using a contact angle measurement plug-in to the ImageJ software 

called BigDrop158.  

 
 

2.7 Evaporative effects 

 
The spreading of viscous fluid drops on wettable substrates can take in the order 

of minutes to reach a sessile state. The elimination of evaporative effects is therefore 

necessary to prevent changes in drop volume during this period. 

 
 Sessile drop evaporation rates (in ambient air conditions) were initially 

established for de-ionised water, YSF020, YSF030 and YSF040 yield-stress fluid 

solutions. Drops were allowed to detach from a needle and impact from a fall height of 

150 mm on to a substrate placed on a precision balance. The ratio of the instantaneous 

drop weight, m(t), to original drop weight, m, was calculated for five drops of each 

solution over a 10 minute period and averaged. Average fractional mass losses are 

displayed in Figure [23] for both parafilm and glass substrates. 
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Figure 23. Fractional mass loss through evaporation m(t)/m plotted against time for drops of de-ionised 

water (square) (µ = 0.001 Pas, DE = 3.48 mm), YSF020 (circle) (DE = 2.85 mm, τc = 0 Pa), YSF030 
(triangle) (DE = 2.68 mm, τc = 11.5 Pa) and YSF040 (diamond) (DE = 2.617 mm, τc = 26.1 Pa) impacting 

from a fall height of 150mm on to a parafilm substrate (open symbols and dashed line) and a glass substrate 
(filled symbols and solid line). Each set of data points corresponds to the average of five drop 

measurements. 
 

A minimum evaporation rate of 3.4 x 10-6 gs-1 was recorded for drops of de-

ionised water on a parafilm substrate. Over the three second high speed camera recording 

period this constitutes a mass loss of 0.05% (for a DE = 3.48 mm). In contrast, the 

maximum recorded evaporation rate for water drops on the glass substrate  (1.24 x 10-5 

gs-1) causes a mass loss of 0.17% over the same period. This increased rate is due to 

continued drop spreading after the inertial expansion phase of the impact, increasing the 

liquid-vapour surface area. For similar sized drops of the hair-gel solutions, both the 

YSF020 and YSF030 solutions show increased evaporation rates on the parafilm 

substrate and decreased rates on the glass substrate. On the parafilm substrate, the 

viscoplastic fluids exhibit decreased retraction rates (after βm is reached) over the same 

measurement period as the water drop, resulting in a comparatively larger liquid-vapour 

surface area. On the glass substrate, spreading after inertial impact is retarded, resulting 

in lower liquid-vapour surface areas. These phenomena are caused by the combined 



Yield-stress Drops           Guy German                                                                           106 

effect of increased average viscosity retarding the spreading/retraction rate and yield-

stress effects inhibiting spreading motion. 

 
 Drops of the YSF040 solution continue the trend of increased evaporation rate on 

the parafilm surface, however the evaporation rate increases rather than decreases on the 

glass surface. Whilst the cause of this not immediately recognisable, it is likely that this is 

due to the highly prolate shape of the impacting drops; whilst lower yield-stress fluid 

drops completely deform; creating a lamella upon impact, higher yield-stress fluid drops 

do not completely deform and the upper part of the drop is still visible in the centre of the 

drop in the form of a peak. This increases the drop surface area, thereby increasing the 

evaporation rate.  

 
Unlike high yield-stress magnitude fluids, both low yield stress magnitude fluids 

(YSF020, τc = 0 Pa) and water with drop radii below the capillary length will exhibit 

spherical cap shapes when sessile on the substrate. For these fluids it is interesting to note 

that the mass appears to vary linearly with time. This is unexpected seeing as evaporation 

occurs at the liquid-vapour interface and should vary as a function of DE
2 (Surface area), 

not DE
3 (volume). Existing published research however highlights the non-trivial 

behaviour or evaporating drops. Subsequent studies are considered outwith the scope of 

the research however because evaporation studies were performed primarily to determine 

whether a saturated air environment was needed for each of the drop dynamic studies. 

Furthermore, whilst there is scope for further research into the effects of yield-stress and 

fluid shear-thinning on drop evaporation, the underlying spreading dynamics and sessile 

state characteristics need first to be examined; an understanding of which is one of the 

objectives of the research project. This study highlights however that mass losses over the 

period of drop detachment and impact are too small to influence drop dimensions 

noticeably.  

 
The minimum and maximum fractional mass losses over a typical spreading 

period of 5 minutes148 were 4.3% and 19.7%, achieved by de-ionised water drops on 

parafilm-M and glass substrates respectively. In both cases, mass losses significantly 

influence the drop dimensions during this period, therefore evaporative effects must be 

eliminated or accounted for in experiments over this time-period.  
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To further assess the effectiveness of saturated air within the acrylic box on 

retarding evaporative losses, a comparison of de-ionised water drop evaporation rates was 

made with those in an ambient air environment. Drops were deposited on the surface of a 

parafilm substrate (chosen so that a sessile state is reached after a very short period) and 

images were recorded once a minute over a 20 minute period. This period exceeds the 

maximum recording periods for drop spreading studies. Both internal and ambient air 

temperatures remained at a constant 23oC over this period. The air within the acrylic box 

was left to saturate for 24 hours prior to experimentation. Figure [24] highlights that 

whilst evaporation is noticeable after only 5 minutes in the open air environment (most 

clearly as a decrease in contact angle), no noticeable differences are observed for the drop 

within the casing. Figure [25] shows the temporal variation of maximum apex drop 

height and width averaged over 5 drop experiments and confirms this observation. The 

figure also highlights that evaporative effects are noticeable only when observing drop 

height; drop diameters remain nearly constant over the recorded period.      
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Open air environment Enclosed within casing 

0 min 0 min 

4 min 4 min 

8 min 8 min 

12 min 12 min 

16 min 16 min 

20 min 20 min 

Figure 24. The temporal variation of drop shape with evaporation in (left) an ambient air environment and 
(right) saturated air confined within the acrylic box. 
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Figure 25. The temporal variation of dimensionless drop height and diameter with evaporation in an 
ambient air environment (open symbols) and saturated air confined within the acrylic box (filled symbols). 
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2.8 Drop shape Characteristics 

 
2.8.1 Drop detachment parameters 

 
Drop detachment dynamics were analysed through the measurement of drop 

height L, minimum axisymmetric filament neck diameter DN and both the position of the 

neck from the end of the capillary tube Lneck/2 and its velocity, vneck, as defined in Figure 

[26]. Drop dimensions were non-dimensionalised with respect to the inner diameter of the 

capillary tube D0. Five drop measurements were recorded and averaged for each fluid 

sample to establish errors magnitudes and ensure repeatability.  

 

Figure 26. Drop shape and dimensional parameters. 
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2.8.2 Drop free-fall parameters 

 
Drop shapes during free fall were analysed using the dimensionless shape factor 

S, where: 

 

)()(
)()(

tDtH
tDtHS

+
−

=      [59] 

 
In the absence of inhibiting forces, free-falling drops with radii smaller than the 

capillary length take on a spherical shape in equilibrium37 by action of capillarity, where 

the equilibrium shape is denoted as Se. Using Equation [59], prolate drop shapes (where 

the maximum axisymmetric height is larger than the maximum diameter) have a positive 

value and oblate shapes produce a negative value. This factor characterises drop shapes in 

terms of their deviation from a spherical shape, as detailed in Figure [27].     

 

Figure 27. Drop free-fall shape and dimensional parameters. 
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2.8.3 Drop impact and spreading parameters 

 

 

Figure 28. Drop impact and spreading dimensional parameters including drop peak measurement for yield-
stress fluid drops using the intersection of surface tangents (dashed lines). 

 

 

Drop shapes during inertial impact, retraction and subsequent spreading were 

analysed primarily through the measurement of maximum drop width DMax and 

maximum apex drop height hMax. In terms of dimensionless numbers, the drop diameter 

D(t) scaled with respect to DE is denoted as the dimensionless spread factor β with a 

maximum where βm = DMax/DE. Equivalently drop height h(t) scaled by DE is denoted as 

the dimensionless height factor ξ with a minimum where ξm = hMin/DE. Furthermore, the 

influence of fluid yield-stress magnitude on drop shape was established by analysing the 

size of drop peaks; observed at the centre of some axisymmetric viscoplastic drops after 

impact. Peak diameters DPeak were measured by extrapolating the length between 

intersections of surface tangents to the undeformed peak regions and outlying deformed 

regions of the drop, as displayed in Figure [28]. This length was non-dimensionalised by 

scaling with respect to the maximum drop impact diameter DMax and denoted as βPeak. 
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3. Results and Discussion - Drop detachment dynamics 

 

 We consider here the formation and detachment behaviour of liquid drops from a 

thin 0.838 mm I.D. capillary tube to establish influences from Newtonian viscosity, 

shear-thinning and fluid yield-stress. Typically, drops grow at the end of a capillary 

needle and take on a pendent shape appearance with the maximum drop width larger than 

the capillary diameter D0. Classically for viscous Newtonian fluids after the onset of 

instability, perturbations will initially grow exponentially with a rate determined by 

Equations [1] and [4]. A critical point of instability can therefore be defined as the 

intersection of the exponential and zero growth rate regimes. The point of critical 

breakup, denoted as DN,Crit can most clearly be observed in temporal variations of DN. 

The drop height at DN,Crit is denoted as LCrit. 

  

Figures [29] – [31] display drop images at the onset of instability overlaid with 

outlines of drop shapes at instances 50ms, 20ms and 3ms prior to pinch–off as well as at 

the point of pinch-off for Newtonian, shear-thinning and yield-stress fluids in the range 

0.056 ≤ µ ≤ 0.925 Pas, 0.084 ≤ n ≤ 0.400 and 0 ≤ τc ≤ 26.1 Pa respectively. 

GL080 GL090 GL094  GL096  GL098 
µ = 0.056 Pas µ = 0.213 Pas µ = 0.428 Pas µ = 0.635 Pas µ = 0.925 Pas 

Figure 29. Newtonian fluid drop shape during detachment. Annotation corresponds to time in milliseconds 
prior to detachment (at which t = 0 ms) 
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X0125 X0250 X050 X075 

n = 0.400 n = 0.155 n = 0.129  n = 0.084 

Figure 30. Shear-thinning fluid drop shape during detachment. Annotation corresponds to time in 
milliseconds prior to detachment (at which t = 0 ms) 

 
 

τc = 0 Pa τc = 5.4 Pa τc = 11.5 Pa τc = 19.1 Pa τc = 26.1 Pa 
YSF020 YSF025 YSF030 YSF035 YSF040 

Figure 31. Yield-stress fluid drop shape during detachment. Annotation corresponds to time in 
milliseconds prior to detachment (at which t = 0 ms) 

 
 

The shapes of some yield-stress fluid drops during detachment are clearly 

different from the Newtonian and shear-thinning fluids, varying in prolateness as a 

function of increasing τc (Figure 31). Differences are only visibly apparent for fluids with 

τc ≥ 11.5 Pa. Prolate drop shapes within this yield-stress magnitude range have previously 
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been observed in fluids with τc ≥ 11 Pa. by Nigen148 and τc ≥ 20 Pa by Davidson and 

Cooper-White145. After the onset of instability, drop neck thicknesses decrease non-

linearly with time, however long, thin filaments are not observed and pinch-off occurs 

quickly and at a similar position below the end of the capillary. This behaviour is 

considerably different from that of both the Newtonian and shear-thinning fluids, whose 

filament lengths and drop lengths at pinch-off vary as a function of the viscosity and 

shear-thinning characteristics respectively. Moreover, with the exception of the YSF020 

solution where the yield-stress magnitude is negligible, no satellite droplets are formed, 

unlike those observed during the pinch-off process of both Newtonian (with µ ≤ 0.056 

Pas) and shear-thinning fluids (observed in all four fluids). This final characteristic agrees 

with previous observations made by Davidson and Cooper-White.  

 

 
3.1      Detachment dynamics and stability of Newtonian fluid drops. 

 
 

3.1.1 Drop stability 
 

Figures [32] and [33] display the dimensionless drop length L/D0 and minimum 

neck diameter DN/D0 plotted against time for Newtonian fluids with 0.056 ≤ µ ≤ 0.925 

Pas respectively. Prior to DN,Crit, DN/D0 remains constant (with DN/D0 = 1) and the drop 

height grows slowly in time (in the range 1.17 ≤ m ≤ 2.53 mms-1, where m is the drop 

height growth rate prior to the onset of instablity). Thereafter, DN/D0 and L/D0 

respectively decrease and increase non-linearly as the drop gains inertia, neck filaments 

form and subsequently stretch to become longer and thinner. The position of DN,Crit has 

been marked on both Figures. 
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Figure 32. Temporal variations in drop height L/D0 for Newtonian fluids with viscosities in the range 0.056 
≤ µ ≤ 0.925 Pas. Each set of experimental results constitutes the average of 5 drop measurements. Linear 

best fit trendlines of the form L/D0 = -mt + C were fitted to the experimental data of each results set prior to 
DN,Crit (critical breakup denoted by short dashed lines).  Drop height growth with time varies in the range 
1.17 ≤ m ≤ 2.53 mms-1. This is due to the limited control of flow rate, not the physics of drop breakup. 

These variations however, do not alter the breakup behaviour. All of the lines of best fit are not displayed in 
the Figure. To aid visual clarity, only the line of best fit for the GLY080 solution is displayed, denoted by 

the long dashed line. Moreover, measurement errors are not displayed for visual clarity, however are 
comparable with symbol size. 
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Figure 33. Temporal variations in minimum dimensionless drop neck thickness DN/D0 for Newtonian 

fluids with viscosities in the range 0.056 ≤ µ ≤ 0.925 Pas (D0 = 1.27 mm). Each set of experimental results 
constitutes the average of 5 drop measurements.The short dashed lines correspond to the time of the onset 

of instability, where DN/D0 deviates from a value of 1, denoted by the long dashed line. Measurement errors 
are not displayed for visual clarity, however are comparable with symbol size. 
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Whereas the onset of instability begins earlier for fluids with increasing viscosity; 

varying linearly in the range -0.055 ≥ t ( CritND ,
~ ) ≥ -0.137 ms for 0.056 ≤ µ ≤ 0.925 Pas 

(Figure 34), the magnitudes of DN,Crit/D0 and LCrit/D0 remain nearly identical for each 

fluid (DN,Crit/D0 = 1, LCrit = 4.28 ± 0.058 mm),  indicating that fluid viscosity does not 

alter the equilibrium shape of attached drops at the critical breakup point; in agreement11 

with the fact that viscous effects are only influential in the presence of motion since they 

are proportional to the rates of deformation. 
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Figure 34. Time prior to pinch-off at which the onset of instability occurs in detaching drops plotted 

against Newtonian viscosity. The dashed line corresponds to a linear fit of the experimental data with a 
gradient of 0.093 Pa-1.  
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3.1.2 Drop detachment behaviour. 
 

Figure [35] compares measured temporal variations in DN/D0 with those predicted 

using Equations [1], [4] and [5] during the detachment process. Whereas the predicted 

behaviour in both the initial exponential instability growth regime and subsequent Stokes 

flow self-similar regime closely match the experimental results for fluids with 0.213 ≤ µ 

≤ 0.925 Pas, significant differences are observed for µ < 0.213 Pas. This discrepancy is 

due to the omission of gravitational effects in the formulation of Equation [3] during 

pinch-off18 and has previously been highlighted in equivalent work by Rothbert, Richter 

and Rehberg21
. Furthermore, analysis of the Navier-Stokes self-similar regime (Equation 

5 with χ = 0.0304) is limited; the resolution of the images prevents accurate measurement 

of very small filament thicknesses.  
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Figure 35.  The temporal variation of dimensionless DN with time for Newtonian fluids with 0.056 ≤ µ ≤ 
0.925 Pas. Solid lines represent predictions of viscous exponential instability growth rate using Equations 

[1] and [4]. Dashed lines represent predicted self-similar Stokes flow using Equation [5]. Each 
experimental results set is based on the average of 5 drop measurements. Errors are not displayed for visual 

clarity, however are comparable with symbol size. 
 

The intersection of the solid and dashed lines, denoted as DN,Trans, denotes the 

transition from the initial exponential instability growth regime (LSM16 regime) to the 

self-similar Stokes flow regime23 (Equations 1 and 4 to Equation 5 with χ = 0.0709). 

0.213 
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Comparisons of measured DN,Trans with previous experimental work21
 show a reasonable 

agreement and are displayed in Figure [36]. These results however show that above the 

largest kinematic viscosity previously analysed (ν ~ 400 mm2s-1), the minimum neck 

thickness at the transition of the flow regime continues to grow monotonically with ν 

(although less than linearly).  This result weakens the conclusion by Rothbert, Richter and 

Rehberg21 that DN,Trans does not vary as a function of  ν, although it is difficult to 

conclude otherwise even based on their original experimental data.       
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Figure 36. The variation of DN, Trans with kinematic viscosity ν for Newtonian fluids.  

 
 
 

3.2 Detachment dynamics and stability of shear-thinning fluid drops. 
 
 

3.2.1 Drop stability 
 

Figures [37] and [38] display DN/D0 and L/D0 plotted against time for the shear-

thinning fluids. Prior to the onset of instability, DN,Crit  remains nearly identical for each of 

the four fluids and variations in LCrit are small with 4.8 ≤ LCrit ≤ 5.3 mm. This indicates 

that fluid shear-thinning characteristics do not significantly alter the shape of attached 

drops at the critical breakup point.  
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Figure 37. Temporal variations in dimensionless minimum drop neck thickness DN/D0 for shear thinning 
fluids with power law indices in the range (0.084 ≤ n ≤ 0.4). Solid lines represent best fit predictions of 

viscous exponential instability growth rate using an apparent viscosity µapp in Equation [4]. Long dashed 
lines represent best fit predictions for the self-similar Stokes flow using µapp in Equation [5]. Short dashed 

lines correspond to the time of DN,Crit prior to pinch-off.  Each experimental results set is based on the 
average of 5 drop measurements. Errors are not displayed for visual clarity, however are comparable with 

symbol size. 
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Figure 38. Temporal variations in dimensionless drop height L/D0 for shear thinning fluids with power law 
indices in the range (0.084 ≤ n ≤ 0.4). Long dashed lines represent linear variations in drop height prior to 

the onset of instability. Short dashed lines correspond to the time of DN,Crit prior to pinch-off. Each 
experimental results set is based on the average of 5 drop measurements. Errors are not displayed for visual 

clarity, however are comparable with symbol size. 
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3.2.2 Drop detachment behaviour 
 

As with the Newtonian fluids, the period between the onset of instability and drop 

pinch-off varies between fluids: increasing the shear-thinning characteristics of the fluid 

in the range 0.084 ≤ n ≤ 0.4 (along with corresponding changes in the consistency 

coefficient in the range 0.208 ≤ K ≤ 5.064 Pasn) results in this period increasing in the 

range -0.06 ≥ t (DN,Crit) ≥ -0.109 s, as displayed in Figures [39] and [40]5. Davidson and 

Cooper-White145 established numerically that decreasing µ0 in a Cross type rheological 

model (Equation 37), equivalent here to decreasing K resulted in a more rapid narrowing 

of the neck and therefore decreased the breakup period, consistent with the results of 

Figure [40]. They also established that increases in µ∞ (whilst keeping µ0 constant), 

equivalent to decreased shear-thinning (n  1) retarded drop breakup. Whilst this 

contradicts the results of Figure [39], one further aspect that must be considered here is 

the relative influence of changes in the consistency coefficient K over changes in the 

degree of shear thinning, characterised by n. Whereas each fluid exhibits a different 

degree of shear-thinning, they also vary considerably in K. Increases in K result in 

comparatively larger average viscosities during detachment and increased detachment 

periods (the time between DN/Crit and pinch-off); consistent with that of the Newtonian 

fluids. The influence of changes in the degree of shear-thinning may therefore be 

swamped by increases in the average viscosity during detachment. 

   
The effect of shear-thinning on drop detachment can be highlighted with a direct 

comparison of a shear-thinning and Newtonian fluid. The viscosity of the X025 (K = 

0.962 Pasn) shear-thinning fluid in the limit of a Newtonian regime (where n  1 and K 

 µ) at very low shear-rates is approximately the same as the GL098 Newtonian fluid 

viscosity (µ = 0.925 Pas). The associated timescale for detachment of the shear-thinning 

drop (t(DN,Crit) = 0.068 s) however is considerably smaller6 than the maximum Newtonian 

detachment period (t (DN,Crit) = 0.137 s. The cause of the increased rate of breakup 

                                                 
5 It should be noted that Figures [39] and [40] are not fully representative of the relationship between 
t(DN,Crit), n and K because Figure [39] does not highlight the influences of K on detachment dynamics and 
Figure [40] does not highlight the influences of n.  
6 Whilst the value of K (0.962 Pans) for the X025 fluid and the viscosity of the GLY098 fluid differ by a 
small amount, according to Fig [32] the difference in detachment timescale between these two values in a 
Newtonian regime should be 3.4 ms (based on a gradient of 0.091 s-1), however the measured difference is 
considerably larger (69 ms).  
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appears therefore to be shear-thinning, where increases in the strain rate during 

detachment reduce the local fluid viscosity in the shear-thinning fluid, reducing the 

break-up period. This agrees with previously established numerical findings145. 
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Figure 39. The time prior to pinch-off at which the onset of instability occurs in detaching shear-
thinning drops plotted against power law index n (Equation 37). The dashed line corresponds to a best fit 

power law curve t(DN, Crit)) = 0.04n-0.37.  
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Figure 40. The time prior to pinch-off at which the onset of instability occurs in detaching shear-thinning 

drops plotted against consistency coefficient K (Equation 37). The dashed line corresponds to a linear fit of 
the form t(DN, Crit)) = 0.0101n Pa-1s1-n.  

 
 

To further examine the influence of shear-thinning on drop detachment dynamics, 

Equations [1], [4] and [5] were used to fit changes in DN/D0 in time for both the LSM and 

self-similar Stokes flow regimes (Figure 37). Best fit representations were determined by 

replacing the viscosity term µ with an apparent viscosity µapp, Table [6] highlights that 

µapp in both the initial exponential instability growth and self-similar Stokes flow regimes 

increase as the Xanthan gum mass fraction increases, indicative of a higher average 

viscosity and therefore the dominant influence of consistency coefficient K over the 

power law index. Moreover, the apparent viscosity of each fluid over the period from 

transition to Stokes flow to pinch-off is significantly smaller than the apparent viscosity 

over the period from onset of instability to the transition point, indicating that the 

increases in shear rate with time during the detachment process result in fluid shear-

thinning. 
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Table 6. Variation of apparent fluid viscosity µapp in both the linear stability analysis and self-similar 
Stokes flow regimes of shear-thinning fluids. 

Xanthan Gum 
mass fraction 

 

Best least square fit µapp for 
linear instability analysis 

regime Equation [4] 
[Pas] 

Best least dquare fit µapp for 
self-similar Stokes flow regime 

Equation [5] 
[Pas] 

Abbreviations used 
in figure captions 

0.00125 0.115 0.0405 X0125 
0.0025 0.13 0.048 X025 
0.0050 0.29 0.059 X05 
0.0075 0.47 0.073 X075 

 
 

3.3 Detachment dynamics and stability of yield-stress fluid drops. 
 
 

3.3.1 Drop stability 
 

The drop stability and detachment dynamics of viscoplastic fluids can appear 

remarkably different from those of shear-thinning and Newtonian fluids. Figures [41] and 

[42] display DN/D0 and L/D0 plotted against time for yield-stress fluids with 0 ≤ τc ≤ 36.2 

Pa respectively. Whereas fluids with τc < 11.5 Pa exhibit similar behavioral traits to those 

of Newtonian and shear-thinning fluids; with similar values of LCrit/D0 and values of 

DN,Crit/D0 close to unity, fluids with τc > 11.5 Pa show increasingly small values of 

DN,Crit/D0 in the range 0.67 ≤ DN,Crit/D0 ≤ 0.88 and increasingly longer drop lengths (with 

3.99 ≤ LCrit/D0 ≤ 7.02).  Figures [43] and [44] display LCrit/D0 and DN,Crit/D0 plotted 

against τc respectively. There is a clear influence of yield-stress on drop behaviour at the 

onset of instability. Moreover, the relationship between τc and DN,Crit/D0 appears to be 

linear. Upon fitting a least square best fit line to the critical drop heights of fluids with τc 

≥ 11.5 Pa in Figure [43] and extrapolating it back to τc = 0 Pa, the linear relationship does 

not appear to be representative towards low yield-stress magnitudes. The results also 

show that low yield-stress drop heights at critical breakup are very similar. Whilst there 

may be a change in the governing fluid characteristics for detaching drops of low and 

high yield-stress magnitude fluids, these results are not adequately incisive to make any 

conclusive relationships. 

 



Yield-stress Drops           Guy German                                                                           125 

0

0.2

0.4

0.6

0.8

1

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0
Time [s]

D
N
/D

0 [
-]

YSF020 (τc = 0 Pa)
YSF025 (τc = 5.4 Pa)
YSF030 (τc = 11.5 Pa)
YSF035 (τc = 19.1 Pa)
YSF040 (τc = 26.1)
YSF045 (τc=32.7 Pa)
YSF050 (τc = 36.2 Pa)

t(DN,Crit)
[YSF020]t(DN,Crit)

[YSF030]

t(DN,Crit)
[YSF050]

t(DN,Crit)
[YSF040]

t(DN,Crit)
[YSF025]

t(DN,Crit)
[YSF045]

t(DN,Crit)
[YSF035]

 
Figure 41. Temporal variations in minimum drop neck thickness (DN/D0) for yield-stress fluids with 0 ≤ τc 

≤ 36.2 Pa. Long dashed lines correspond to a linear best fit variation of DN/D0 prior to the onset of 
instability. DN,Crit corresponds to where the experimental data points deviate from the linear trend lines, 
highlighted for each fluid with a short dashed vertical line. Each experimental results set is based on the 

average of 5 drop measurements. Errors are not displayed for visual clarity, however are comparable with 
symbol size. 
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Figure 42. Temporal variations in drop height L/D0 for yield-stress fluids with 0 ≤ τc ≤ 36.2 Pa. Dashed 

lines correspond to the linear best fit variation of L/D0 prior to the onset of instability at DN, Crit. Each 
experimental results set is based on the average of 5 drop measurements. Errors are not displayed for visual 

clarity, however are comparable with symbol size. 
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Figure 43. The variation of LCrit/D0 with yield-stress magnitude for 0 ≤τc ≤ 36.2 Pa. 
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Figure 44. The variation of DN,Crit/D0 with yield-stress magnitude for 0 ≤τc ≤ 36.2 Pa. 
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To establish more concisely the independent influences of viscosity, shear-

thinning and yield-stress magnitude on drop detachment dynamics, the maximum tensile 

stress in the drop neck at the point of yielding is examined. Values of the tensile stress ζz  

at the position of minimum neck thickness were calculated using:  

2

3

3
2

areaneckminimum N

E

neck

z
z D

gDmg
A
F ρζ ===    [60] 

where the tensile stress is the weight7 of the detached drop divided by the area of the neck 

at the thinnest point of the filament. In all detachment experiments, the capillary pressure 

(2σ/DN) is significantly smaller than the tensile stress (Eq. 60) and can therefore be 

considered relatively unimportant. 

 
This stress is plotted against the apparent rate of elongation8 ε& , defined as: 

neck

neck

L
v

=ε&      [61] 

where vneck is the velocity of the minimum neck thickness position DN and Lneck is the 

length of the neck; defined as twice the vertical length between the end of the capillary 

tube and the minimum neck thickness position. These parameters are displayed for clarity 

in Figure [26]. 

Figure [45] displays ζz plotted against ε& for the most viscous GLY098 (µ = 0.925 

Pas) and least viscous GLY080 (µ = 0.056 Pas) Newtonian fluids. The characteristic 

trends observed for these fluids are representative of all of the Newtonian fluids 
                                                 
7 We assume here that the detached drop weight is comprised of all fluid below the position of the 
minimum neck thickness, where pinch-off occurs. 
8 The actual elongation or strain rate is ε& = ∂uz/∂z. Due to the shape of the drop neck (non cylindrical), the 
actual strain rate will vary throughout the filament. The apparent rate of elongation in Eq. [61] refers to the 
measured strain rate at the point of minimum neck filament diameter and whilst not entirely accurate, is 
useful for establishing where the strain begins to increase during pinch-off. Moreover, the apparent rate of 
elongation is defined here in terms of neck length. It can also be determined in terms of the drop radius at 
the point of minimum neck thickness. The mass flow, 4/2 ρπ zN vDM =& of a cylindrical region of fluid of 
length L, density ρ and radius DN/2 moving with velocity vz can be equated to the derivative of the mass 

4/2
NDLM πρ= (where 4/2 ρπ LDDM NN

&& = ),  giving NNz DDLv /2/ && −==ε . A comparison of apparent 
rates of elongation measured using the drop neck length and minimum neck thickness was made. Results 
were found to agree to within ±10%. 
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examined. Figure [46] displays an equivalent plot for the least shear-thinning X0125 and 

most shear-thinning X075 fluids. As with the Newtonian fluids, trends observed in these 

results are representative of the other shear-thinning fluids examined. 
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Figure 45. Tensile stress ζz at the position of minimum neck thickness as a function of the apparent rate of 
elongation ε& for the GLY098 (µ = 0.925 Pas, open triangle symbol) and GLY080 (µ = 0.056 Pas, open 

circle symbol) Newtonian fluids. The maximum tensile stress at the point of instability corresponds to the 
intersection of the least square linear best fits (short dashed lines) for the near-constant stress region prior to 
the onset of instability and the unstable region of increasing tensile stress. Each experimental results set is 

based on the average of 5 drop measurements. Errors are not displayed for visual clarity, however are 
comparable with symbol size. 
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Figure 46. Tensile stress ζz at the position of minimum neck thickness as a function of the apparent rate of 
elongation ε& for the X0125 (K = 0.208 Pasn, n = 0.400, open triangle symbol) and X075 (K = 5.064 Pasn, n 

= 0.084, open circle symbol) shear-thinning fluids. The maximum tensile stress at the point of instability 
corresponds to the intersection of the least square linear best fits (short dashed lines) for the near-constant 

stress region prior to the onset of instability and the unstable region of increasing tensile stress. Each 
experimental results set is based on the average of 5 drop measurements. Errors are not displayed for visual 

clarity, however are comparable with symbol size. 
 

As Newtonian and shear-thinning drops (with similar DE) grow on the end of the 

capillary tube, the tensile stress increases slowly due to increased drop mass; the 

minimum neck thickness prior to critical breakup remains equal to D0. At the point of 

critical breakup, the maximum tensile stress of a stable drop supportable by the cohesive 

surface tension forces is reached. After this point, the tensile stress begins to increase 

significantly towards pinch-off; whilst the weight of the drop below the minimum neck 

thickness position remains the same (and equal to the detached drop weight), the increase 

is due to decreases in the minimum neck thickness. The maximum tensile stress at the 

point of instability, ζcrit, is established by measuring the intersection of least square linear 

best fits of the form, mkεζ &=  or )log()log()log( εζ &mk += , representing the near-

constant stress region prior to the onset of instability and the unstable region of increasing 

tensile stress. Measured values of ζcrit plotted against viscosity are displayed in Figure [47] 

for the Newtonian fluids. Figures [48] and [49] plot ζcrit for the shear-thinning fluids, 

plotted respectively against n and K.  
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From Figures [47] – [49], the influence of both viscosity and shear-thinning on 

ζcrit is small. A maximum measurable difference of ∆ζcrit = 1 Pa is observed for the 

Newtonian fluids with an average of ζcrit = 16.15 Pa. A maximum measurable difference 

of ∆ζcrit = 0.51 Pa is observed for the shear-thinning fluids with an average of ζcrit = 17.16 

Pa. These results support the previously established observation that viscous effects do 

not alter the stability characteristics of hanging drops11. 
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Figure 47. ζcrit plotted against viscosity µ for Newtonian fluids in the range 0.056 ≤ µ ≤ 0.925 Pas. The 
long dashed line represents the average of ζcrit for the fluids (ζcrit = 16.2 Pa). ζcrit varies in the range 15.7 ≤ 

ζcrit ≤ 16.7 Pa. 
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Figure 48. ζcrit plotted against power law index n (Equation 37) for shear-thinning fluids in the range 0.084 
≤ n ≤ 0.4. The long dashed line represents the average ζcrit for the fluids (ζcrit = 17.2 Pa). ζcrit varies in the 

range 16.9 ≤ ζcrit ≤ 17.4 Pa. 
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Figure 49. ζcrit plotted against consistency coefficient K (Equation 37) for shear-thinning fluids in the range 
0.208 ≤ K ≤ 5.064 Pans.  The long dashed line represents the average ζcrit for the fluids (ζcrit = 17.2 Pa). ζcrit 

varies in the range 16.9 ≤ ζcrit ≤ 17.4 Pa. 
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If one makes the conjecture that fluid yield-stress can influence the stability 

characteristics of hanging drops, then one should be able to measure these influences as 

variations in the maximum tensile stress arising in the drop neck at the onset of instability. 

Figures [50] – [53] display ζz plotted against ε& for the YSF020 (τc = 0 Pa), YSF025 (τc = 

5.4 Pa), YSF040 (τc = 26.1 Pa) and YSF050 (τc = 36.2 Pa) fluids. Again, least square best 

fit lines were applied to measurements of tensile stress in the stable and unstable linear 

regimes (short dashed lines in the figures); values of ζcrit were determined from the 

intersection of these lines. From the figures, ζcrit does not vary significantly for fluids with 

a low yield-stress magnitude, however there is a large increase in ζcrit with τc for fluids 

with τc ≥ 11.5 Pa. To better understand this relationship, Figure [54] plots ζcrit against τc. 

Whilst values of ζcrit remain similar for low yield-stress magnitude fluids with τc < 11.5 

Pa, the critical tensile stress increases significantly with τc for fluid drops with τ > 11.5 Pa.  
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Figure 50. Tensile stress ζz at the position of minimum neck thickness as a function of the apparent rate of 
elongation ε& for the YSF020 (τc = 0 Pa) viscoplastic fluid. Lines of best fit were made to the stress 
measurements in the linear stable and unstable regimes (short dashed lines); the intersection of these 

corresponds with ζcrit. Experimental results are based on the average of 5 drop measurements. Errors are not 
displayed for visual clarity, however are comparable with symbol size. 
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YSF025 (τc = 5.4 Pa)

Figure 51. Tensile stress ζz at the position of minimum neck thickness as a function of the apparent rate of 
elongation ε& for the YSF025 (τc = 5.4 Pa) viscoplastic fluid. Lines of best fit were made to the stress 
measurements in the linear stable and unstable regimes (short dashed lines); the intersection of these 

corresponds with ζcrit. Experimental results are based on the average of 5 drop measurements. Errors are not 
displayed for visual clarity, however are comparable with symbol size. 
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YSF040 (τc = 26.1 Pa)

Figure 52. Tensile stress ζz at the position of minimum neck thickness as a function of the apparent rate of 
elongation ε& for the YSF040 (τc = 26.1 Pa) viscoplastic fluid. Lines of best fit were made to the stress 
measurements in the linear stable and unstable regimes (short dashed lines); the intersection of these 

corresponds with ζcrit. Experimental results are based on the average of 5 drop measurements. Errors are not 
displayed for visual clarity, however are comparable with symbol size. 



Yield-stress Drops           Guy German                                                                           134 

10

100

1000

1 10 100
Strain rate [s-1]

Te
ns

ile
 s

tre
ss

 [P
a]

YSF050 (τc = 36.2 Pa)

Figure 53. Tensile stress ζz at the position of minimum neck thickness as a function of the apparent rate of 
elongation ε& for the YSF050 (τc = 36.2 Pa) viscoplastic fluid. Lines of best fit were made to the stress 
measurements in the linear stable and unstable regimes (short dashed lines); the intersection of these 

corresponds with ζcrit. Experimental results are based on the average of 5 drop measurements. Errors are not 
displayed for visual clarity, however are comparable with symbol size. 
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Figure 54. Measured ζcrit plotted against τc for viscoplastic fluids with 0 ≤ τc ≤ 36.2 Pa. The long dashed 
line corresponds to the von Mises yield criterion (Equation 62). 

 



Yield-stress Drops           Guy German                                                                           135 

An additional complexity is that deformation in the neck during the onset of 

instability and subsequent detachment is extensional, however the yield-stress magnitude 

is measured by applying a shear-force to a fluid sample during rheometry. Figure [54] 

therefore represents the relationship between the tensile and shear yield points. A 

relationship between these two parameters can be established using the von-Mises yield 

criterion163, which states that the yielding of plastic materials begins when the second 

deviatoric stress tensor IIT− reaches a critical value. In the case of the generalized 

Herschel-Bulkley rheological model (Equation 46), this is cIIT τ=− . Moreover, the 

shear stress at the onset of yielding is 3  times smaller than the tensile stress in the case 

of simple tension at the yield criterion:  

 
ccrit τζ 3=      [62]  

 
 

Figure [54] highlights two interesting characteristics. Firstly, fluids with τc ≤ 5.4 Pa show 

larger values of ζcrit than those predicted using Equation [62] (long dashed line). Secondly, 

values of ζcrit  for fluids with τc ≥ 5.4 Pa generally show a good agreement with the von 

Mises yield relationship, although the measured critical tensile stress of the YSF035 

solution is smaller than that predicted using Equation [62] and slightly outwith the margin 

of experimental error.  

 
The von-Mises relationship predicts the tensile stress in the drop neck at the point 

of critical breakup to be zero for all fluids that do not exhibit a finite yield-stress 

magnitude. As the Newtonian and shear-thinning drop measurements show in Figures [47] 

- [49] however, this is clearly not true; both fluids types exhibit a near constant value of 

ζcrit with changes in both viscosity and shear-thinning characteristics. Moreover, values of 

ζcrit for yield-stress fluids with τc ≤ 5.4 Pa are nearly identical, although smaller than the 

Newtonian and shear-thinning fluids because the reduced surface tension lowers the 

supportable drop mass at critical breakup. This suggests therefore that the von Mises 

relationship breaks down towards low yield-stress magnitude fluids. For yield-stress 
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fluids with τc > 5.4 Pa however, the relationship between the tensile and shear yield-

stresses follows Equation [62], indicative of a system being governed by fluid plasticity. 

 
In order to characterise why the behaviour of detaching drops of low and high 

yield-stress magnitude fluids differ, we separate stability characteristics into two regimes; 

a classical regime where critical breakup is governed by competition between gravity and 

fluid capillarity and a regime where fluid yield-stress forces are comparable with or 

exceed surface tension forces and govern the critical breakup of detaching drops.  In the 

first regime; characteristic of Newtonian, shear-thinning and small yield-stress magnitude 

fluids, drop detachment dynamics are governed by well established classical behaviour; 

instabilities arise when gravity overcomes cohesive surface tension forces and once a 

cylindrical shape is reached on the drop surface, perturbations will increase exponentially 

in magnitude, driven by capillarity. In the second regime, cohesive forces originating 

from yield-stress characteristics can inhibit capillary driven breakup. Moreover, within 

this regime, critical instability is governed by yield-stress magnitude. 

 

The two regimes can be distinguished by introducing a dimensionless number B̂  

that compares the yield-stress to the capillary pressure133: 

 

σ
τ EcDB =ˆ

     
 [63] 

 
This term is the product of the dimensionless Capillary (Equation 15) and Bingham 

(Equation 56) numbers and characterises the ratio of yield-stress to capillary forces. This 

term specifically relates capillary forces with fluid yield-stress magnitude when subject to 

shear forces. As previously highlighted however, the stress in the drop neck during 

detachment is extensional. A more appropriate parameter for characterisation in this case 

is therefore: 
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 [64] 

 
When surface tension forces exceed extensional yield-stress forces ( EB̂ < 1), ζcrit 

remains unchanged, however when extensional yield-stress forces exceed surface tension 

forces ( EB̂ > 1), the critical breakup characteristics of drops are governed by yield-stress 

effects. 

 
Figure [55] plots measured values of ζcrit against EB̂ , whose extensional yield-

stress term is calculated in terms of the measured τc and Equation [62]. The two trendlines 

correspond to a least square best fit line representing the average ζcrit for fluids with EB̂ < 

1, and a least square line of best fit applied to the results of the yield-stress fluids with 

EB̂ > 1. The intersection of these lines occurs at EB̂ ~ 1.3 ± 0.1, close to the expected 

transition value of EB̂ = 1.   
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Figure 55. ζcrit plotted against EB̂  for viscoplastic fluids in the range 0 ≤ τc ≤ 36.2 Pa. The short dashed line 
correspond to the average ζcrit for EB̂ < 1 and the long dashed line corresponds to the least square line of best 

fit for fluids with EB̂ > 1. The intersection of the dashed lines corresponds with the transition point from 
capillary governed detachment to yield-stress governed detachment. This occurs at EB̂ ~ 1.3 ± 0.1. 
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Figure [55] supports the conjecture that surface tension and yield-stress governed 

regimes exist. For EB̂ < 1, tensile stresses at critical breakup remains very similar in 

magnitude; a characteristic also observed in both the Newtonian (15.7 ≤ ζcrit ≤ 16.7 Pa) 

and shear-thinning fluids (16.9 ≤ ζcrit ≤ 17.4 Pa). This is representative of a system where 

the stability criterion of detachment is governed by competition between the drop weight 

and the cohesive surface tension forces; a near constant parameter for each fluid type. At 

the intersection of the two regimes close to EB̂ = 1, the maximum stable tensile stress in 

the drop neck that can be supported by capillary forces is equal in magnitude to the 

extensional yield-stress.  For EB̂ > 1, the extensional forces required to yield the fluid are 

greater than those required to produce the onset of instability by overcoming capillary 

forces, indicative of a yield-stress governed regime146,147.  

 
 

3.3.2 Drop detachment behaviour 
 

Unlike Newtonian and shear-thinning fluids, the period between the onset of 

instability and pinch-off (Figure 40) for fluids with a measurable yield-stress does not 

vary significantly. With the exception of the YSF020 fluids (τc = 0 Pa), whose 

detachment period is t (DN,Crit) = - 0.16 s, the remaining fluids; all of which exhibit a 

measurable yield-stress , have similar detachment periods in the range -0.337 ≤ t(DN,Crit) 

≤ -0.263 s. This is displayed in Figure [56]. The similarity is interesting because the 

viscoplastic fluids each exhibit differing shear-thinning properties and shear-thinning 

characteristics in the absence of a yield-stress have previously been shown to produce a 

measurable change in the detachment period (Figure 39 and 40). This suggests that fluid 

yield-stress influences the detachment dynamics of the drops as well as the stability 

characteristics. 
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Figure 56. Detachment period or the time of the onset of instability prior to pinch off t(DN,Crit) for 
viscoplastic fluids in the range 0 ≤ τc ≤ 36.2 Pa. The long dashed line corresponds to the average 

detachment period of 0.298 s for fluids with a measurable yield-stress. 

 

Figure [57] displays the temporal variations of DN/D0 , normalised with respect to 

DN,Crit. The normalisation results with the onset of instability for each fluid occurring at 

the same neck diameter. The graph highlights that with exception of the YSF020 fluid (τc 

= 0 Pa), drop detachment behaviour is nearly identical for each fluid and does not vary 

like Newtonian or shear-thinning characteristics. Whereas shear-thinning characteristics 

of the yield-stress fluids vary (Table 4) and should significantly influence the period of 

detachment, the similarity of the results in Figure [57] suggests that increasing fluid 

yield-stress within the range 5.4 ≤ τc ≤ 32.7 Pa does not change the detachment period, 

but instead alters the rate at which DN/D0 varies. In other words, increasing fluid yield-

stress does not alter the detachment period, but instead reduces the rates of detachment.  

 

[Pa] 
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Figure 57.  (DN/D0) normalized with respect to DN,Crit for each fluid plotted against time. Experimental 
results are based on the average of 5 drop measurements. Errors are not displayed for visual clarity, 

however are comparable with symbol size. 
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4. Results and Discussion - Drop free-fall dynamics 

 

Directly after pinch-off, the portion of the neck filament remaining attached to the 

drop will be absorbed into the initially prolate main drop body. This shape will become 

more spherical during free-fall by action of capillary forces. Whilst a spherical drop 

shape is reached quickly for each of the Newtonian (0.056 ≤ µ ≤ 0.925 Pas) and shear-

thinning (0.084 ≤ n ≤ 0.4, 0.208 ≤ K ≤ 5.065 Pasn) fluid solutions, the shape of some 

yield-stress fluid drops can be prolate throughout the measured free-fall period. Whilst 

drops of the YSF020 (τc = 0 Pa) and YSF025 (τc = 5.4 Pa) solutions take on a near 

spherical equilibrium shape, increasing τc results in drop shapes appearing progressively 

more prolate, this may indicate that yield-stress can prevent spherical drop shape 

formation; in agreement with previous observations148. Figure [58] displays images of the 

equilibrium free fall shape (§2.8.2) for the Newtonian, shear-thinning and viscoplastic 

drops.  
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Figure 58. Equilibrium free-fall drop shapes just prior to impact for the Newtonian, shear-thinning and 

yield-stress fluids. 
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4.1 Newtonian fluid drops 
 

 
Figures [59] – [63] display measured temporal variations in drop shape factor S 

(Equation 59) just after pinch-off for each Newtonian fluid. Experimental measurements 

are compared with predictions of Equations [10] and [11] using parameters detailed in 

Table [7]. Moreover, drop relaxation dynamics can be described in terms of the drop 

shape factor, S, instead of x(t) using: 
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This approximation assumes that the initial drop perturbations are small and prolate. S is 

then simply the perturbation length non-dimensionalised by the equivalent drop diameter 

DE (Equation 57). Values of S(0) used in the predictions were measured directly from 

drop images at the point of detachment after the absorption of the neck filament. In 

general these initial values fall within the observed range of eccentricities e = H/D by 

Ford and Furmidge53 (0.8 ≤ e ≤ 1.2, approximately equivalent to -0.1 ≤ S ≤ 0.1), however 

measured values of S(0) for the GLY098 and GLY096 fluids are larger, as detailed in 

Table [7]. This is primarily due to the long filament attached to drop upon detachment.  
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Figure 59. Temporal variation in dimensionless drop shape factor S after pinch-off for the GLY080 

solution (µ = 0.056 Pas). The solid line corresponds to predictions using Equations [10] and [65] with 
values detailed in Table [7]. Experimental results are based on the average of 5 drop measurements. 
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Figure 60. Temporal variation in dimensionless drop shape factor S after pinch-off for the GLY090 

solution (µ = 0.213 Pas). The solid line corresponds to predictions using Equations [10] and [65] with 
values detailed in Table [7]. Experimental results are based on the average of 5 drop measurements. 
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Figure 61. Temporal variation in dimensionless drop shape factor S after pinch-off for the GLY094 

solution (µ = 0.428 Pas). The solid line corresponds to predictions using Equations [10] and [65] with 
values detailed in Table [7]. Experimental results are based on the average of 5 drop measurements. 
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Figure 62. Temporal variation in dimensionless drop shape factor S after pinch-off for the GLY2 solution 

(µ = 0.631) Pas). The solid line corresponds to predictions using Equations [11] and [65] with values 
detailed in Table [7]. Experimental results are based on the average of 5 drop measurements. 
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Figure 63. Temporal variation in dimensionless drop shape factor S after pinch-off for the GLY098 

solution (µ = 0.925 Pas). The solid line corresponds to predictions using Equations [11] and [65] with 
values detailed in Table [7]. Experimental results are based on the average of 5 drop measurements. 

 
 

Table 7. Parameters associated with free drop dynamic behaviour including measured initial drop shape 
factors S(0) used for predictions. 

Material 
Viscosity 

[Pas] 

Undamped 

natural 

frequency 

ωn0/2π [s-1] 

Damping 

factor bn0 [s-1] 

Approximate 

Eccentricity at pinch-

off (H0/D0) 

 e  

Measured initial 

drop shape factor 

S(0) 

  

      

GLY080 0.056  54.8 0.094 1.1 0.05 ± 0.01 
GLY090 0.213 54.0 0.350 1.1 0.04 ± 0.02 
GLY094 0.428 54.8 0.713 1.2 0.1 ± 0.02 
GLY096 0.631 54.4 1.039 1.4 0.2 ± 0.02 
GLY098 0.925 55.0 1.531 1.6 0.3 ± 0.02 

 
 
 
 
 
 
 
 
 
 



Yield-stress Drops           Guy German                                                                           147 

Experimental results in Figures [59] – [63] are each comprised of a composite of 

measurements taken from different fall heights using a fixed camera field of view. 

Altering the fall height allowed different periods of free-fall to be observed. 

Quantification of this period was made by extracting the time of impact from the 

recorded images and using Equation [58], with u = (Hf – H)/t to establish the total free 

fall time. The drop characteristics of five drops were recorded and averaged for each 

measurement to ensure repeatability and to establish errors. 

 

The measured drop relaxation behaviour of each Newtonian fluid (Figures 59 – 

63) agrees closely with its respective prediction curve. Fluids with µ ≤ 0.213 Pas show 

periodic behaviour, whilst aperiodic behaviour is observed for µ ≥ 0.428 Pas. Moreover, 

Table [8] compares the measured and predicted frequencies ωd/2π for the GLY090 and 

GLY080 fluids (detailed in §1.2.2). Values in both cases agree to within experimental 

error. Increases in viscosity for the periodic regime act to increase the damping and thus 

reduce oscillatory behaviour and the period from pinch-off until equilibrium. The 

opposite is true in the aperiodic regime; increasing viscosity acts to slow relaxation 

driven by capillarity, lengthening the period from pinch-off until equilibrium. 

 
Table 8. A comparison of measured and predicted damped natural frequencies for fluids exhibiting 

periodic behaviour along with periodic/aperiodic transition characterization parameters. 

Material 

Quarter 

wavelength 

period tq  

[ms] 

Damped natural frequency 

ωd/2π [s-1] 

Dimensionless 

 viscosity ε  

 

  Measured Error Predicted  

GLY080 4.6 61.3 6.6 54.5 0.15 
GLY090 4.6 59.75 10.1 50.6 0.58 
GLY094 4.6 - - - 1.17 
GLY096 4.6 - - - 1.72 
GLY098 4.5 - - - 2.51 

 

 The characterisation of drop relaxation dynamics in free-fall can be made using 

the dimensionless viscosity ε (Equation 12). Prosperetti37 developed the understanding of 

classical damped harmonic and overdamped system behaviour in free drops by 

establishing that fluids with ε ≥ 0.7665 will exhibit aperiodic motion throughout their 



Yield-stress Drops           Guy German                                                                           148 

relaxation period. Figure [64] plots dimensionless viscosity ε against µ for Newtonian 

fluids in the range 0.056 ≤ µ ≤ 0.925 Pas and confirms that this characterisation agrees 

with the observed behaviour.    
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Figure 64. Dimensionless viscosity ε (Equation 12) plotted against viscosity, µ, for Newtonian fluids in the 
range 0.056 ≤ µ ≤ 0.925 Pas. Filled and open symbols denote periodic and aperiodic relaxation behaviour 

respectively. The dashed line corresponds to ε = 0.7665. Values of ε above this threshold exhibit only 
aperiodic motion. Where not observed, error bars are comparable in size to the symbol. 

   

 

4.2 Shear-thinning fluid drops 

 

Figures [65] – [68] display measured temporal variations in S after pinch-off for 

each of the shear-thinning fluids. In order to establish the effects of shear-thinning on 

drop dynamics during free-fall, the measured relaxation behaviour of each fluid is 

compared with predictions (using Equations 10, 11 and 65) of an equivalent Newtonian 

fluid exhibiting no shear-thinning effects. An equivalent Newtonian fluid is conceived by 

recognising that as shear-thinning properties decrease (n  1), the power law model 

( nKγτ &= ) tends to the Newtonian model ( γµτ &= ) with the consistency coefficient K 

tending towards the Newtonian viscosity. Here K denotes the maximum viscosity of the 

shear-thinning fluids as shear-rates tend to zero. Equivalent Newtonian predictions 
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therefore use values of K replacing the viscosity term, with all other fluid parameters (σ, 

ρ and DE) kept the same as those detailed in Tables [3] and [5]. Moreover, predicted 

values of S(0) correspond with those measured directly after pinch-off for each fluid.  

 

As with the Newtonian fluid measurements, results are not continuous because of 

the static camera field of view through which the drop passes. Measurements are 

composites of recordings from several fall heights, combined in the same way as 

described in §4.1. Table [9] details the parameters used for the equivalent Newtonian 

predictions.  
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Figure 65. Temporal variation in dimensionless drop shape factor S after pinch-off for the X0125 fluid 

solution (n = 0.4, K = 0.208 Pasn). The solid line corresponds to the drop shape prediction of an equivalent 
Newtonian fluid using Equations [10] and [65] with the viscosity replaced with the consistency coefficient 

K, detailed in Table [9]. Experimental results are based on the average of 5 drop measurements. 
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Figure 66. Temporal variation in dimensionless drop shape factor S after pinch-off for the X025 fluid 

solution (n = 0.155, K = 0.962 Pasn). The solid line corresponds to the drop shape prediction of an 
equivalent Newtonian fluid using Equations [11] and [65] with the viscosity replaced with the consistency 
coefficient K, detailed in Table [9]. Experimental results are based on the average of 5 drop measurements. 
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Figure 67. Temporal variation in dimensionless drop shape factor S after pinch-off for the X050 fluid 

solution (n = 0.129, K = 2.85 Pasn). The solid line corresponds to the drop shape prediction of an equivalent 
Newtonian fluid using Equations [11] and [65] with the viscosity replaced with the consistency coefficient 

K, detailed in Table [9]. Experimental results are based on the average of 5 drop measurements. 
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Figure 68. Temporal variation in dimensionless drop shape factor S after pinch-off for the X050 fluid 

solution (n = 0.084, K = 5.06 Pasn). The solid line corresponds to the drop shape prediction of an equivalent 
Newtonian fluid using Equations [11] and [65] with the viscosity replaced with the consistency coefficient 

K, detailed in Table [9]. Experimental results are based on the average of 5 drop measurements. 
 

 

 
Table 9. Parameters associated with shear-thinning and equivalent Newtonian fluid drop dynamic 

behaviour including initial measured drop shape factor S(0) used for predictions. 

Material 

Consistency 

coefficient K 

[Pasn] 

Undamped 

natural 

frequency 

ωn0/2π [s-1] 

Damping 

factor bn0 [s-1] 

Dimensionless 

viscosity ε  

Measured initial 

drop shape factor 

S(0) 

 

X0125 0.208 52.55873 0.345 0.59 ± 0.022 0.05 ± 0.01 
X025 0.962 54.41798 1.672 2.77 ± 0.089 0.06 ± 0.02 
X050 2.846 53.2807 4.853 8.20 ± 0.268 0.1 ± 0.02 
X075 5.064 55.73408 9.059 14.63 ± 0.510 0.15 ± 0.02 

 

From the predicted values of ε (Equation 12 with µ replaced with K) given in 

Table [9], all fluids except the X0125 solution are expected to show overdamped 

aperiodic behaviour (ε > 0.7665). In contrast however, both the measured relaxation 

behaviour of the X0125 and X025 fluids in Figures [65] and [66] exhibit periodic 

relaxation. This indicates that fluid shear-thinning during relaxation reduces the 

dimensionless viscosity of the X025 fluid to below ε = 0.7665. Moreover, the effects of 
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fluid shear-thinning can also be observed for the X0125 in Figure [65]; predictions show 

increased damping in comparison with measured drop relaxation behaviour. In other 

words, the action of fluid shear-thinning decreasing local fluid viscosity during relaxation 

also reduces the damping (comparable to reducing the damping coefficient bn0 in 

Equation [9] by decreasing the Newtonian viscosity µ), resulting in a longer timescale of 

oscillation. 

 

Shear-thinning effects can be observed for aperiodic relaxation as well in Figures 

[67] and [68]. For both the X050 and X075 fluids, the initial measured retraction after 

pinch-off is substantially faster than that predicted for the equivalent Newtonian fluids. 

We highlight here how this increase is indicative of shear-thinning. Figure [69] compares 

predicted (Equations 10, 11 and 65) and measured timescales from pinch-off until drops 

first assume a spherical shape (S = 0) for the Newtonian fluids in the range 0.056 ≤ µ ≤ 

0.925 Pas. These results are further compared with the quarter wavelength timescale tq of 

equivalent inviscid drops where: 

 

02 n
qt ω

π
=      [66] 

 

and ωn0 is calculated using Equation [8]. The period from pinch-off until drops first reach 

S = 0 corresponds to the quarter wavelength timescale for periodic relaxation and the 

complete relaxation period for aperiodic behaviour. Both measured and predicted 

timescales for low viscosity fluids with µ ≤ 0.213 Pas (corresponding to a periodic regime) 

are small and agree closely with tq. This suggests that fluid viscosity in this regime does 

not play a significant role during initial retraction. Results of pure water (µ = 0.001 ± 

0.00012 Pas, σ = 0.075 ± 0.002 Nm-1, ρ = 1000 kgm-3, DE = 3.265 ± 0.0137 mm) were 

also included to further corroborate this observation. For aperiodic relaxation of fluids 

with µ > 0.213 Pas, both measured and predicted timescales increase linearly with 

viscosity. In other words, aperiodic relaxation timescales of Newtonian fluid drops 

shorten with decreasing viscosity. For shear-thinning fluids therefore, a faster relaxation 

period in comparison with the equivalent Newtonian prediction suggests that fluid shear-

thinning reduces the local viscosity in the drop.  
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Figure 69. Measured and predicted (using Equations 10, 11 and 65) quarter wavelength relaxation periods 

(the period between pinch-off and when drops first reach a spherical shape (S = 0)) plotted against 
viscosity. Open and filled symbols correspond to predictions and measurements respectively. For aperiodic 

behaviour, the quarter wavelength period corresponds to the complete relaxation period. Open triangle 
symbols correspond to the quarter wavelength timescale tq of an inviscid drop (Equation 66 with equal 

values of DE and σ), where values of tq = π/2ωn0 are provided in Table [8]. 
 

Whilst the effect of fluid shear-thinning on drop relaxation behaviour has been 

qualitatively examined, a quantitative analysis of how the degree of shear-thinning 

(characterised by the power law index n) influences drop dynamic behaviour has not been 

investigated because for the fluids considered in the present work, it is not possible to 

compare fluids with equal values of K and differing power law indices n, therefore this 

analysis falls out of the scope of the thesis. 
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4.3 Yield-stress fluid drops 

 

Figures [70] and [71] display the measured temporal variations in drop shape 

factor S for yield-stress fluids in the range 0 ≤ τc ≤ 36.2 Pa detaching from a 1.27 mm 

O.D. and 0.813 mm O.D. flat ended needle respectively. Solid lines correspond with best 

fit curves of the form 2/1/)( tttt
e BeAeStS −− ++= . A second order exponential fitting 

method was used because first order fitting methods consistently over-predicted values of 

Se. Details of the fitting parameters are given in Table [10]. 
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Figure 70.  The temporal evolution of drop shape factor S for yield-stress fluid with 0 ≤ τc ≤ 36.2 Pa 

detaching from a 1.27 mm O.D. needle. Solid lines correspond to best fit curves of the form 
2/1/)( tttt

e BeAeStS −− ++= with parameters detailed in Table [10]. Experimental results are based on the 
average of 5 drop measurements. 
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Figure 71.  The temporal evolution of drop shape factor S for yield-stress fluid with 11.5 ≤ τc ≤ 26.2 Pa 

detaching from a 0.813 mm O.D. needle. Solid lines correspond to best fit curves of the form 
2/1/)( tttt

e BeAeStS −− ++= with parameters detailed in Table [10]. Experimental results are based on the 
average of 5 drop measurements. 

 
Table 10. Free-fall drop shape characteristics: parameters associated with 2nd order exponential fitting 

curves of the form 2/1/)( tttt
e BeAeStS −− ++= for viscoplastic fluids with 0 ≤ τc ≤ 36.2 Pa in free-fall after 

detachment from 0.838 mm and 0.495 mm I.D. flat ended needles.  The negative value of Se for the 
YSF030 (0.838 mm capillary tube) exponential curve is erroneous because measurements exhibit no 

significant asymptotic trend towards an equilibrium value.   

Material 

Capillary tube 

inner diameter 

 D0 [mm] 

A  t1 [s] B  t2 [s] 

Equilibrium 

Drop shape      

Se  

YSF020 0.838 0.063 ± 0.0023 0.136 ± 0.014 0.113 ± 0.0040 0.0043 ± 0.0003 0 ± 0.0005 
YSF025 0.838 0.168 ± 0.0035 0.164 ± 0.0071 0.077 ± 0.0058 0.0052 ± 0.0008 0 ± 0.0006 
YSF030 0.838 0.816 ± 0.754 1.107 ± 1.120 0.0352 ± 0.007 0.0012 ± 0.0005 -0.517 ± 0.760 
YSF035 0.838 0.057 ± 0.0037 0.051 ± 0.0095 0.034 ± 0.0062 0.0018 ± 0.0007 0.370 ± 0.0035 
YSF040 0.838 0.030 ± 0.0037 0.003 ± 0.0006 0.044 ± 0.0015 0.3180 ± 0.049 0.476 ± 0.0020 
YSF045 0.838 0.019 ± 0.0760 0.002 ± 0.0064 0.013 ± 0.078 0.0093 ± 0.0574 0.545 ± 0.0014 
YSF050 0.838 0.032 ± 0.0085 0.002 ± 0.0014 0.028 ± 0.009 0.0498 ± 0.016 0.600 ± 0.0012 
YSF030 0.495 0.083 ± 0.024 0.0015 ± 0.0009 0.120 ± 0.015 0.0474 ± 0.0350 0.090 ± 0.0047 

YSF0325 0.495 0.0883 ± 0.009 0.03066 ± 0.003 0.0883 ± 0.009 0.0307 ± 0.003 0.1717 ± 0.005 
YSF035 0.495 0.0673 ± 0.012 0.003 ± 0.001 0.12473 ± 0.005 0.108 ± 0.0179 0.2448 ± 0.09 
YSF040 0.495 0.0502 ± 0.005 0.158 ± 0.016 0.0502 ± 0.005 0.158 ± 0.016 0.4567 ± 0.09 
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Newtonian, shear-thinning and viscoplastic fluid drops in free-fall are all subject 

to gravitational, viscous and capillary forces. Whilst the Newtonian and shear-thinning 

fluids consistently exhibit a near spherical shape in equilibrium (0 ≤ Se ≤ 0.014) within 

the investigated range of viscosities (0.056 ≤ µ ≤ 0.925 Pas), consistency coefficients 

(0.208 ≤ K ≤ 5.064 Pasn) and power law indices (0.084 ≤ n ≤ 0.400), viscoplastic fluids 

can exhibit highly non-spherical equilibrium shapes. It can be reasonably assumed this 

characteristic could be caused by fluid yield-stress. 

 

To establish the relationship between equilibrium drop shape and yield-stress, it is 

first necessary to rule out effects due to shear-thinning and viscosity. The consistency 

coefficient for the YSF035 (K = 6.98 Pasn) and YSF040 (K = 7.94 Pasn) viscoplastic 

fluids are significantly larger than the maximum measured for the shear-thinning fluids 

(K = 5.064 Pasn for the X075 fluid). What appears therefore to be a non-spherical 

equilibrium state, denoted by Se, could instead be a very slow retraction due to high fluid 

viscosity. In order to examine this premise, measured temporal variations in drop shape 

are compared with predictions of equivalent Newtonian drops with the same viscous 

characteristics as those of the yield-stress fluids at very small shear-rates (similar to that 

described in §4.2). Again, predictions are made using Equations [11] and [65] using 

identical values of σ, DE, ρ (Table 4) and measured S(0), however the viscoplastic 

consistency coefficient (Table 11) replaces the Newtonian viscosity term. Equivalent 

Newtonian fluids associated with the viscoplastic fluids exhibit no shear-thinning or 

yield-stress effects (n = 1, µ = K and τc = 0).  

 
Table 11. Predicted relaxation parameters of equivalent Newtonian fluids associated with viscoplastic 

fluids in the range 0 ≤ τc ≤ 26.1 Pa. 

Material 

Consistency 

coefficient 

K [Pasn] 

Undamped 

natural 

frequency 

ωn0/2π [s-1] 

Damping 

factor bn0 

[s-1] 

Dimensionless 

viscosity 

ε  

Measured initial 

drop shape factor 

S(0)  

YSF020 1.44 48.97 3.57 6.55 0.166 
YSF025 3.10 51.96 8.25 14.29 0.246 
YSF030 5.53 53.63 15.46 25.96 0.331 
YSF035 6.98 54.91 20.14 33.02 0.457 
YSF040 7.94 55.51 23.22 37.66 0.549 
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Figure 72.  Measured (symbols) temporal variation in S for the high yield-stress magnitude YSF040 (τc = 
26.1 Pa) fluid detaching from a 0.838 mm I.D. flat ended needle compared with predictions (solid line) of 
its equivalent Newtonian fluid (with viscosity µ terms replaced with the consistency coefficient K detailed 

in Table 11). Experimental results are based on the average of 5 drop measurements. 
    

From Table [11], the dimensionless viscosity ε of each equivalent Newtonian 

fluid indicates that aperiodic behaviour is expected (ε ≥ 0.7665). This flow characteristic 

is consistent with fluid measurements, indicating that shear-thinning does not cause 

transition to periodic motion. Figure [72] compares the measured relaxation behaviour of 

the high yield-stress magnitude YSF040 (τc = 26.1 Pa) fluid with the predicted behaviour 

of its equivalent Newtonian fluid. The equivalent Newtonian prediction shows a slow 

relaxation towards equilibrium, however over the maximum measurement timescale of 

320 ms (equivalent to a fall height of Hf = 500 mm), drop shape decreases to within 10% 

of the spherical. In contrast, the measured drop shape of the YSF040 fluid decreases 

initially and at a similar rate to the prediction, however it then rapidly slows and forms a 

very prolate equilibrium shape. This difference indicates that even the high viscosities 

associated with low shear-rate flow in the viscoplastic fluids cannot account for the 

slowing and eventual cessation of the drop shape factor for high yield-stress magnitude 

fluids. Moreover, shear-thinning effects have been established not to cause cessation of 

drop shape; this property acts only to increase the rate of retraction when fluids are 

subject to higher shear-rates. Fluid yield-stress therefore appears capable of inhibiting the 
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formation of spherical drops. Further analysis examines the relationship between the 

equilibrium drop shape Se and the yield-stress magnitude. 

 
 With the exception of drops of the YSF030 solution detaching from the 0.838 mm 

I.D. needle (Fig 70), an equilibrium drop shape, Se, is reached for all of the viscoplastic 

solutions. Whilst spherical or near-spherical equilibrium drop shapes are obtained for 

fluids solutions with τc ≤ 7.8 Pa, above this magnitude Se increases as a function of τc. 

This is displayed in Figure [73]. The figure also indicates that for τc ≥ 7.8 Pa, Se does not 

vary linearly with τc; the size of the drop also appears to be a dependent factor. Yield-

stress magnitude alone does not therefore seem to be a suitable parameter to characterise 

equilibrium drop shape characteristics. Instead, the Bingham-Capillary number (Equation 

63) is used.  
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Figure 73. Equilibrium drop shape Se plotted against yield-stress magnitude τc for yield-stress fluids with 0 
≤ τc ≤ 36.2 Pa detaching from both the 0.838 mm I.D. (filled circle) and 0.495 mm I.D. flat ended needles 

(open triangle). 
 

Flow within the drop during free-fall will not be purely extensional, therefore 

characterisation is made with respect to τc and not the measured tensile yield-stress. For 

this investigation, B̂  eliminates the viscosity term whilst retaining the yield-stress and 

surface tension terms; important factors in the framework of this experiment because they 

act to drive and inhibit the drop from obtaining a spherical equilibrium shape 
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respectively. Viscous fluid characteristics are not important here because they only 

influence the dynamic characteristics of fluid motion and not the equilibrium shape. 

Figure [74] displays the equilibrium shape factor Se as a function of B̂ . 
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Figure 74. Equilibrium drop shape Se plotted as a function of B̂ for yield-stress fluids with 0 ≤ τc ≤ 36.2 Pa 

detaching from both the 0.838 mm I.D. (filled circle) and 0.495 mm I.D. needles (open triangle). The 
dashed line corresponds to a least square line of best fit for results in the range B̂ > 1 . The solid line 

corresponds to the average Se value for results with B̂  ≤ 1 (Se = 0.0299) . The intersection of the lines 
occurs at B̂  = 0.8 ± 0.1. 

 
There are two clearly distinct regions in Figure [74]; for values of B̂  < 1, 

representative of drops whose surface tension forces exceed those that arise from the fluid 

yield-stress, the equilibrium free-fall shapes are spherical. For values of B̂ > 1, 

representative of fluid drops in which the yield-stress forces exceed surface tension 

forces, the equilibrium drop shape will be non-spherical. Moreover, Se increases linearly 

with B̂  (with a gradient of m = 0.350 based on a least square line of best fit). The critical 

point occurs at B̂ ≈ 1 ( B̂ = 0.8 ± 0.1 in Figure 74), where surface tension forces equal 

those arising from fluid yield-stress. 

 
 Figure [74] suggests that an equilibrium spherical drop shape will be formed as 

long as inhibiting forces are not above a magnitude capable of preventing the driving 

capillary force from minimising the surface area. When yield-stress forces are sufficiently 

^ 
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large to overcome capillary forces however, a non-spherical equilibrium shape will result. 

Within the regime B̂ > 1, increasing the yield-stress magnitude will further inhibit 

relaxation by driving capillary forces, resulting in an increase in the equilibrium drop 

shape Se.  
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5 Results and Discussion - Drop impact dynamics 

 

Figures [75], [78], [81] and [84] show image sequences of Newtonian drop 

impacts (with 0.056 ≤ µ ≤ 0.925 Pas) on a parafilm-M surface from a fall height of 10, 

25, 50 and 100mm. Equivalent image sequences for shear-thinning drops with  0.084 ≤ n 

≤ 0.4 and 0.208 ≤ K ≤ 5.064 Pasn and yield-stress fluid drops with 0 ≤ τc ≤ 26.1 Pa are 

displayed in Figures [76], [79], [82], [85] and [77], [80], [83], [86] respectively. As 

discussed in §5.1, initial impact behaviour on glass substrates is identical to that on 

parafilm surfaces for the fluids examined, therefore only image sequences of drop 

impacts on parafilm are shown here.   

 
 The influence of impact velocity and Newtonian fluid viscosity can clearly be 

observed from the image sequences in Figures [75], [78], [81] and [84]. The maximum 

spread factor βm and minimum apex height factor ζm for each fluid increases and 

decreases respectively as impact velocity is increased. A decrease in viscosity also has a 

similar effect, whereby drops reach a larger maximum inertial spread diameter with the 

lamella appearing much thinner; this characteristic becomes more noticeable as fall 

height is increased. Drop shapes of low viscosity fluids (µ ≤ 0.213 Pas) impacting from 

fall heights with Hf  ≥ 25 mm typically take on a cylindrical shape at the end of inertial 

expansion. The deformation of higher viscosity fluids upon impact is reduced and can 

appear closer in appearance to that of a spherical cap (increasingly so as the fall height is 

reduced to Hf = 10 mm).  

 
 Whilst differences in impact dynamics between the different shear-thinning fluids 

are noticeable from the image sequences in Figures [76], [79], [82] and [85] it is not 

immediately obvious how the consistency coefficient K and the power law index n 

independently influence dynamic behaviour. Increases in βm and decreases in ζm are 

observed for increasing n and decreasing K. 

 
Drop impact dynamics of yield-stress fluids differ significantly from both the 

Newtonian and shear-thinning fluids during the expansion phase, as shown in Figures 

[77], [80], [83] and [86]. This is due primarily to the prolate shape of the drops prior to 

impact. As previously discussed in §3.3 and §4.3, viscoplastic fluid drops with 1ˆ >eB , 
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growing on the end of a capillary tube increase in prolateness with τc. Moreover, fluids 

with a yield-stress characterised by 1ˆ >B  appear to inhibit surface tension driven 

formation of spherical drops during free-fall. For fluids with τc ≤ 11.5 Pa, general drop 

impact behaviour does not appear to vary significantly from those of shear-thinning and 

Newtonian drops; decreases in impact velocity and increases in hair-gel mass fraction 

reduce βm and increase ξm in a similar fashion to increasing the consistency coefficient or 

Newtonian viscosity. As the fluid yield-stress magnitude is increased however, drops do 

not deform completely and instead of the drop taking on a disk like shape at maximum 

spread, central peaks are observed (visible in Figures 80, 83 and 86). This suggests that 

flow is localised during inertial expansion; the top of the prolate drop throughout the 

impact process does not deform from its original shape prior to impact, resulting with a 

characteristic peak. Peaks are most noticeable for lower velocity impacts where 

deformation is relatively small. As impact velocity increases, the drop peak size 

decreases and eventually disappears. Peak sizes also appear to increase with τc. High τc 

drops impacting at low Weber numbers show very little deformation during inertial 

expansion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 



Yield-stress Drops           Guy German                                                                           163 
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Figure 75. The parametric morphology of viscous Newtonian fluid drops impacting on a parafilm substrate 

from a fall height of 10 mm. 
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Figure 76. The parametric morphology of shear-thinning fluid drops impacting on a parafilm substrate 

from a fall height of 10 mm. 
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  Increasing yield-stress magnitude 
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Figure 77. The parametric morphology of yield-stress fluid drops impacting on a parafilm substrate from a 
fall height of 10 mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Yield-stress Drops           Guy German                                                                           166 

 
  Increasing Viscosity 
  µ  = 0.056 Pas µ  = 0.213 Pas µ  = 0.428 Pas µ  = 0.631 Pas µ  = 0.925 Pas 

-2
 m

s 

           

0 
m

s 

           

2 
m

s 

           

Ti
m

e 

4 
m

s 

     
       
Figure 78. The parametric morphology of viscous Newtonian fluid drops impacting on a parafilm substrate 

from a fall height of 25 mm. 
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Figure 79. The parametric morphology of shear-thinning fluid drops impacting on a parafilm substrate 
from a fall height of 25 mm. 
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  Increasing yield-stress magnitude 
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Figure 80. The parametric morphology of yield-stress fluid drops impacting on a parafilm substrate from a 

fall height of 25 mm. 
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  Increasing Viscosity 
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Figure 81. The parametric morphology of viscous Newtonian fluid drops impacting on a parafilm substrate 

from a fall height of 50 mm. 
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Figure 82.  The parametric morphology of shear-thinning fluid drops impacting on a parafilm substrate 

from a fall height of 50 mm. 
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  Increasing yield-stress magnitude 
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Figure 83. The parametric morphology of yield-stress fluid drops impacting on a parafilm substrate from a 

fall height of 50 mm. 
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Figure 84. The parametric morphology of viscous Newtonian fluid drops impacting on a parafilm substrate 

from a fall height of 100 mm. 
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Figure 85.  The parametric morphology of shear-thinning fluid drops impacting on a parafilm substrate 
from a fall height of 100 mm. 
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  Increasing yield-stress magnitude 
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Figure 86. The parametric morphology of yield-stress fluid drops impacting on a parafilm substrate from a 

fall height of 100 mm. 
 
 
 

 
5.1 The influence of surface wettability on drop impact behaviour 

 

Previous studies have reported differences in the maximum dimensionless spread 

factor βm = DMax/DE at the end of the expansion phase for water drops (µ = 0.001 Pas) 

impacting on substrates with differing wettabilities. Differences of up to ±23.6% were 

measured by Pasandideh-Fard et al.43 for drops (of similar size to this investigation) 

impacting on glass (θe = 27o) and beeswax (θe = 111o) substrates in the ranges 59 ≤ We ≤ 

271 and 2084 ≤ Re ≤ 5833. Differences of ±10.4% were measured by Mao et al.47 for 

similar sized drops impacting on glass (θe = 37o) and wax (θe = 97o) substrates in the 

range 11.3 ≤ We ≤ 518 and 1482 ≤ Re ≤ 10024. We extend these investigations here by 

examining the influence of surface wettability on drops of more viscous Newtonian fluids 
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with 0.056 ≤ µ ≤ 0.925 Pas over the ranges 1.7 ≤ We ≤ 240 and 1.1 ≤ Re ≤ 137, shear 

thinning fluids with 0.084 ≤ n ≤ 0.400 and 0.208 ≤ K ≤ 5.064 Pasn over the range 0.8 ≤ 

We ≤ 194 and viscoplastic fluids with 0.3727 ≤ n ≤ 0.4747, 1.443 ≤ K ≤ 7.936 Pasn and 0 

≤ τc≤ 26.1 Pa over the range 0.7 ≤ We ≤ 340. 

 

  Equivalent drop impacts on hydrophobic parafilm-M (θe = 95 ± 2o for water 

drops with µ = 0.001 Pas and DE = 3.48 mm) and hydrophilic clean glass (θe = 0o for 

identical water drops) surfaces are compared for the Newtonian, shear-thinning and yield-

stress fluids by plotting temporal variations in dimensionless inertial spread factor β = 

D/DE. Whilst the viscoplastic fluids exhibit much lower surface tensions and hence 

smaller equilibrium contact angles than water (σ = 0.034 Nm-1 for viscoplastic fluids, σ = 

0.075 Nm-1 for water), characterisation of the surface energy using de-ionised water 

drops is used here purely to highlight the difference in surface energy between the glass 

and parafilm substrates. A more detailed analysis of shear-thinning and yield-stress fluid 

drop equilibrium contact angle is presented in the drop spreading section (§6.2). Figures 

[87] – [89] compare equivalent drop impacts on glass and parafilm substrates for the 

GLY098 (µ = 0.925 Pas), GLY094 (µ = 0.428 Pas) and GLY080 (µ = 0.056 Pas) 

Newtonian solutions. Figures [92] – [94] and [97] – [99] display equivalent comparisons 

for the shear-thinning X0125 (n = 0.400, K = 0.208 Pasn), X050 (n = 0.129, K = 2.846 

Pasn),  and X075 (n = 0.084, K = 5.064 Pasn) fluids and the viscoplastic YSF020 (n = 

1.443, K = 0.475 Pasn, τc = 0 Pa), YSF030 (n = 0.378, K = 5.53 Pasn, τc = 11.5 Pa) and 

YSF040 (n = 0.373, K = 7.94 Pasn, τc = 26.1 Pa) fluids respectively.  
 

 

5.1.1 Newtonian fluids 

 
Throughout the inertial expansion phase in Figures [87] – [89], β remains similar 

for impacts on both glass and parafilm substrates. The similarity of the maximum 

dimensionless spread and height factors can be observed more clearly in Figures [90] and 

[91], which plot βm = DMax/DE and ξm = hMin/DE as a function of We. βm and ξm increase 

and decrease respectively with increases in We and decreases in viscosity, in agreement 

with previous observations41-62. Unlike the effect of wettability on low viscosity drop 

impacts (with µ ~ 0.001 Pas), both βm and ξm for fluids with 0.056 ≤ µ ≤ 0.925 Pas do not 
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vary significantly with substrate wettability within the ranges 1.7 ≤ We ≤ 240 and 1.1 ≤ 

Re ≤ 137. The most significant variable between these results and those of Mao et al.47 

and Pasandideh et al.43 is the viscosity of the test fluids examined. This indicates that 

whilst substrate wettability will influence the impact dynamics of low viscosity liquids 

during the expansion phase, the measurable difference will decrease as the viscosity is 

increased and for Newtonian fluids with µ ≥ 0.056 Pas, measured differences fall within 

experimental error. 
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Figure 87. Dimensionless drop diameter β plotted against time for drops of the GLY098 Newtonian fluid 

(µ = 0.925 Pas) impacting from fall heights of 10 (We ~ 4), 50 (We ~ 45) and 200 mm (We ~ 220) on glass 
[G] (θe = 0o, solid symbols) and parafilm-M [P] (θe = 95 ± 2o, open symbols) substrates. Each results set 

represents the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 88. Dimensionless drop diameter β plotted against time for drops of the GLY094 Newtonian fluid 

(µ = 0.428 Pas) impacting from fall heights of 10 (We ~ 5), 50 (We ~ 50) and 200 mm (We ~ 210) on glass 
[G] (θe = 0o, solid symbols) and parafilm-M [P] (θe = 95 ± 2o, open symbols) substrates. Each results set 

represents the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 89. Dimensionless drop diameter β plotted against time for drops of the GLY080 Newtonian fluid 

(µ = 0.056 Pas) impacting from fall heights of 10 (We ~ 5), 50 (We ~ 50) and 200 mm (We ~ 220) on glass 
[G] (θe = 0o, solid symbols) and parafilm-M [P] (θe = 95 ± 2o, open symbols) substrates. Each results set 

represents the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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The maximum inertial spread factor of water drops were concluded in a paper by 

Fukai et al.65 to decrease as the advancing contact angle, θa increased. To extend this 

conclusion to account for more viscous Newtonian fluid viscosities, θa was measured for 

drops of each solution impacting on the glass and parafilm substrates. θa was found to be 

135 ± 10o
 for impacts of each fluid on both substrates. This indicates that differences in θa 

between the two substrates are small for fluids with µ ≥ 0.056 Pas and fall within 

experimental error. 

 
 The influence of substrate wettability on impact dynamics can only significantly 

be observed after the inertial expansion phase. After βm is reached, a large retraction 

phase is typically observed for impacts on the parafilm substrate. In contrast, impacts on 

the glass surface can show a short initial retraction phase, typically followed by slow 

spreading driven by capillarity. These characteristics are not true in all cases. Low fall 

height impacts of high viscosity fluids on a parafilm substrate, such as Hf = 10mm for the 

GLY098 solution (Figure 87) show very little retraction, suggesting that the inertial 

energy converted to capillary energy during inertial expansion is small and not 

sufficiently large to produce a retraction phase. This behaviour is consistent for an impact 

with Re = 1.1, where near parity exists between inertial and viscous forces.  
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Figure 90. Comparison of maximum dimensionless spread factor βm for Newtonian fluid drops GL098 (µ = 
0.925 Pas, DE = 3.102 mm), GL094 (µ = 0.428 Pas, DE = 3.101 mm) and GLY080 (µ = 0.056 Pas, DE = 
3.133 mm) impacting on parafilm [P] (θe = 95 ± 2o, open symbols) and glass [G] (θe = 0o, solid symbols) 

substrates. Each results set is based on the average of 5 drop measurements. 
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Figure 91. Comparison of the minimum dimensionless height factor ξm for Newtonian fluid drops GLY098 
(µ = 0.925 Pas, DE = 3.102 mm), GL094 (µ = 0.428 Pas, DE = 3.101 mm) and GLY080 (µ = 0.056 Pas, DE 
= 3.133 mm) impacting on parafilm [P] (θe = 95 ± 2o, open symbols) and glass [G] (θe = 0o, solid symbols) 

substrates. Each results set is based on the average of 5 drop measurements. 
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5.1.2 Shear-thinning fluids 

Equivalent shear-thinning fluid impacts on glass and parafilm substrates (Figures 

92 – 94) are very similar during the inertial expansion phase. Noticeable differences can 

only be observed after maximum inertial spread, whereupon drops on the parafilm 

surface show significantly larger retraction phases than on the glass surface. Small 

retraction phases can be observed for drop impacts of the X0125 solution on glass (Figure 

92), however this decreases as the impact velocity decreases; similar to that observed for 

impacts on parafilm. Impacts from fall heights of 10 mm show no visible retraction phase 

at all and slow capillary driven spreading continues directly after the fast spreading of the 

inertial expansion phase.   
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Figure 92. Dimensionless drop diameter β plotted against time for drops of the X0125 shear-thinning fluid 

(K = 0.208 Pasn, n = 0.400) impacting from fall heights of 10 (We ~ 3), 50 (We ~ 40) and 200 mm (We 
~185) on glass [G] (solid symbols) and parafilm-M [P] (open symbols) substrates. Each results set 

represents the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 93. Dimensionless drop diameter β plotted against time for drops of the X050 shear-thinning fluid 
(K = 2.846 Pasn, n = 0.129) impacting from fall heights of 10 (We ~ 3), 50 (We ~ 42) and 200 mm (We ~ 

185) on glass [G] (solid symbols) and parafilm-M [P] (open symbols) substrates. Each results set represents 
the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 94. Dimensionless drop diameter β plotted against time for drops of the X075 shear-thinning fluid 
(K = 5.064 Pasn, n = 0.084) impacting from fall heights of 10 (We ~ 2), 50 (We ~ 40) and 200 mm (We ~ 

186) on glass [G] (solid symbols) and parafilm-M [P] (open symbols) substrates. Each results set represents 
the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figures [95] and [96] respectively display measurements of βm and ξm plotted 

against We for drops of the shear-thinning fluid solutions impacting on the two substrates 

within the range 0.8 ≤ We ≤ 194. For equivalent impacts on the two substrates, both 

height and diameter results agree to within experimental error, indicating that surface 

wettability does not appear to influence drop impact behaviour during the inertial 

expansion phase.  
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Figure 95. Comparison of the dimensionless diameter βm at the end of inertial expansion for shear-thinning 
fluid drops X0125 (K = 0.208 Pasn, n = 0.400, DE = 3.474 mm), X050 (K = 2.846 Pasn, n = 0.129, DE = 

3.428 mm) and X075 (K = 5.064 Pasn, n = 0.084, DE = 3.347 mm) impacting on parafilm [P] (open 
symbols) and glass [G] (solid symbols) substrates. Each results set is based on the average of 5 drop 

measurements. 
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Figure 96. Comparison of the dimensionless apex height  ξm at the end of inertial expansion for shear-
thinning fluid drops X0125 (K = 0.208 Pasn, n = 0.400, DE = 3.474 mm), X050 (K = 2.846 Pasn, n = 0.129, 
DE = 3.428 mm) and X075 (K = 5.064 Pasn, n = 0.084, DE = 3.347 mm) impacting on parafilm [P] (open 

symbols) and glass [G] (solid symbols) substrates. Each results set is based on the average of 5 drop 
measurements. 

  
 

5.1.3 Viscoplastic fluids 

 As with the Newtonian and shear-thinning fluids, the influence of surface 

wettability on drop impacts of viscoplastic fluids in the range 0 ≤ τc ≤ 26.1 Pa (Figures 97 

– 99) is only noticeable after the end of the inertial expansion stage. Whilst retraction 

phases are observed after impacts of YSF020 fluid drops on parafilm, fluids with τc ≥ 5.4 

Pa exhibit only small retraction phases similar to those observed for high viscosity 

Newtonian fluids. Viscoplastic drop impacts on glass show no significant retraction phase 

and slow capillary driven spreading follows directly on from the fast spreading of inertial 

expansion for low impact velocity impacts with Hf < 25 mm. For fall heights Hf ≥ 50 mm, 

drop diameters remain nearly constant after βm is reached, however Figures [97] – [99] 

only show periods up to 0.1 s after impact; the influence of yield-stress on spreading after 

impact is detailed in  §6.2.  
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Figure 97. Dimensionless drop diameter β plotted against time for drops of the YSF020 viscoplastic fluid 
(K = 1.443 Pasn, n = 0.4747, τc = 0 Pa) impacting from fall heights of 10 (We ~ 9), 50 (We ~ 75) and 200 
mm (We ~ 320) on glass [G] (solid symbols) and parafilm-M [P] (open symbols) solid substrates. Each 

results set represents the average of 5 drop measurements. Errors are comparable in size to symbol 
dimensions.  
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Figure 98. Dimensionless drop diameter β plotted against time for drops of the YSF030 viscoplastic fluid 
(K = 5.533 Pasn, n = 0.3775, τc = 11.5 Pa) impacting from fall heights of 10, 50 and 200 mm on glass [G] 

(solid symbols) and parafilm-M [P] (open symbols) solid substrates. Each results set represents the average 
of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 99. Dimensionless drop diameter β plotted against time for drops of the YSF040 viscoplastic fluid 
(K = 7.936 Pasn, n = 0.3727, τc = 26.1 Pa) impacting from fall heights of 10, 50 and 200 mm on glass [G] 

(solid symbols) and parafilm-M [P] (open symbols) solid substrates. Each results set represents the average 
of 5 drop measurements. Errors are comparable in size to symbol dimensions. 

 

 

Figures [100] and [101] respectively compare βm and ξm against We for 

equivalent impacts of viscoplastic drops with 0 ≤ τc ≤ 26.1 Pa on parafilm and glass 

substrates in the range 0.7 ≤ We ≤ 340. Both diameter and height results closely agree, 

with measured differences falling within experimental error for each solution. Fluid 

yield-stress effects therefore do not contribute to increases in the influence of surface 

wettability. Moreover, the similarity of the results also highlights that the phenomena of 

slip effects, commonly observed in yield-stress fluid flows133 are also not significant or 

equally influential on both substrates. This however cannot be quantified. 
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Figure 100. Comparison of βm at the end of inertial expansion for viscoplastic fluid drops YSF020 (K = 

1.443 Pasn, n = 0.4747, τc = 0 Pa, DE = 2.848 mm), YSF030 (K = 5.533 Pasn, n = 0.3775, τc = 11.5 Pa, DE = 
2.678 mm) and YSF040 (K = 7.936 Pasn, n = 0.3727, τc = 26.1 Pa, DE = 2.617 mm) impacting on parafilm 
[P] (open symbols) and glass [G] (solid symbols) substrates. Each results set is based on the average of 5 

drop measurements. 
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Figure 101. Comparison of ξm at the end of inertial expansion for viscoplastic fluid drops YSF020 (K = 

1.443 Pasn, n = 0.4747, τc = 0 Pa, DE = 2.848 mm), YSF030 (K = 5.533 Pasn, n = 0.3775, τc = 11.5 Pa, DE = 
2.678 mm) and YSF040 (K = 7.936 Pasn, n = 0.3727, τc = 26.1 Pa, DE = 2.617 mm) impacting on parafilm 
[P] (open symbols) and glass [G] (solid symbols) substrates. Each results set is based on the average of 5 

drop measurements. 
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5.2 Newtonian drop impact behaviour 

 

5.2.1 Experimental studies 

 

Figures [102] - [104] respectively display temporal variations in dimensionless 

spread factor β = D/DE and dimensionless height ξ = h/DE for drops of the GLY098 (µ = 

0.925 Pas), GLY094 (µ = 0.428 Pas) and GLY080 (µ = 0.056 Pas) fluids impacting from 

fall heights in the range 7.5 ≤ Hf ≤ 200 mm (3.4 ≤ We ≤ 214, 1.1 ≤ Re ≤ 134) on to a 

parafilm-M substrate. It has been well established that the maximum spread diameters of 

drops vary as a function of the impact velocity and fluid viscosity, most simply 

characterised by ratios of inertial to viscous (Re) and capillary (We) forces. The 

underlying relation between impact velocity and contact line radial velocity during 

inertial spreading has not however been examined in great detail. As a first 

approximation from simple scaling analyses50, the contact line velocity of an inviscid 

drop during inertial spreading has been established to be of the same order of magnitude 

as the impact velocity, vr = O(vz).  
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Figure 102. Temporal variations in dimensionless inertial spread diameter β and height ξ for Newtonian 

GLY098 fluid drops (DE = 3.10 mm, µ = 0.925 Pas) impacting on a parafilm-M substrate from fall heights 
in the range 10 mm ≤ Hf ≤ 200 mm (corresponding to 3.7 ≤ We ≤ 209, 1.1 ≤ Re ≤ 8.1). Each results set 
represents the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 103. Temporal variations in dimensionless inertial spread diameter β and height ξ for Newtonian 

GLY094 fluid drops (DE = 3.10 mm, µ = 0.428 Pas) impacting on a parafilm-M substrate from fall heights 
in the range 10 mm ≤ Hf ≤ 200 mm (corresponding to 5.3 ≤ We ≤ 210, 1.7 ≤ Re ≤ 18). Each results set 
represents the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 104. Temporal variations in dimensionless inertial spread diameter β and height ξ for Newtonian 

GLY80 fluid drops (DE = 3.13 mm, µ = 0.056 Pas) impacting on a parafilm-M substrate from fall heights in 
the range 7.5 mm ≤ Hf ≤ 200 mm (corresponding to 3.4 ≤ We ≤ 213, 17≤ Re ≤ 134).  Each results set 
represents the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure [105] plots the maximum radial spread velocity9: 
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of drops on both parafilm and glass surfaces during inertial expansion against the impact 

velocity for fluids with 0.056 ≤ µ ≤ 0.925 Pas in the range  3.7 ≤ We ≤ 230.  Advancing 

contact angles were measured to be θa = 135 ± 10o for each fluid. For drops of equal 

viscosity, there is a clear linear variation of vr with vz. The line gradients decrease with 

increasing fluid viscosity. Figure [106] plots the gradient of the lines of best fit against 

the dimensionless viscosity (the ratio of fluid viscosity, µ, to that of water, µwater at 23oC). 

A power law of the form: 
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provides the best fit to the combined results of both substrates. The inviscid scaling law 

equating the spread velocity to the same order of magnitude as the impact velocity 

provides a good approximation for low viscosity fluid drops with µ << 0.056 Pas, 

however this approximation degrades with increasing viscosity.  

                                                 
9 The radial spread velocity at the beginning of impact can be very large and may not be adequately 
recorded for each drop impact due to the limiting temporal resolution of the high speed camera (1000 Hz). 
Impact and radial velocities are based on an average of 5 drop impact processes however, significantly 
increasing the probability of recording the initial inertial spreading rate. Measurement errors are based on 
the variance of the maximum recorded radial spread velocity (from 5 impacts) because these are 
significantly larger than both the spatial image resolution (32.6 µm) error and the temporal resolution 
(which based on the maximum recorded spread velocity of vr ~ 1.5 ms-1 recorded at 1000 Hz gives a spatial 
resolution of 0.015 m).  
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Figure 105. Maximum drop spread velocity (Equation 67) plotted against impact velocity vz for Newtonian 
fluids GLY098 (µ = 0.925 Pas), GLY090 (µ = 0.213 Pas) and GLY080 (µ = 0.056 Pas) impacting on glass 
[G] (θe = 0 o, solid symbols) and parafilm [P] (θe = 95 ± 2o, open symbols) substrates over the range 3.7 ≤ 

We ≤ 230.    
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Figure 106. Gradient of linear relationship between spread velocity vr and impact velocity vz (Figure 105) 

plotted as a function of dimensionless viscosity (fluid viscosity scaled by the viscosity of water). The 
dashed line corresponds to a best fit power law relation described by Equation [68].   
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Increasing impact velocity on hydrophobic substrates increases βm and hence the 

surface energy stored in the lamella available for retraction. In Figure [104], the amount 

and duration of the retraction phase grows significantly with increasing We. The initial 

gradient of retraction however appears similar in magnitude for impacts at different We.  

Figures [107] – [109] plot temporal variations in β, normalised with respect to βm  for 

GLY098, GLY094 and GLY080 fluid drops impacting on the parafilm surface. For 

impacts of each fluid across the range 5.1 ≤ We ≤ 213, results for the initial retraction 

period (over the period 5-10 ms after βm) collapse onto a single curve.  Figures [110] – 

[112] plot the maximum retraction rate χ&  as a function of We for the GLY098, GLY094 

and GLY080 fluids where: 
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for impacts on the parafilm substrate. The negative sign in Equation [69] indicates that 

χ& is positive for retraction. From the figures, low velocity impacts with Re < 10 and We 

< 10 typically show significantly smaller retraction rates (where present) in comparison 

with high velocity impacts with Re > 10 and We > 10, where inertial forces are an order 

of magnitude larger than capillary or viscous forces.  
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Figure 107. Temporal variations in dimensionless inertial spread diameter β normalised by βm for GLY080 
fluid drops (DE = 3.13 mm, µ = 0.056 Pas) impacting on a parafilm-M [P] substrate from fall heights in the 
range 10 mm ≤ Hf ≤ 200 mm (corresponding to 5.1 ≤ We ≤ 213, 21 ≤ Re ≤ 134). Each results set represents 

the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 108. Temporal variations in dimensionless inertial spread diameter β normalised by βm for GLY094 
fluid drops (DE = 3.10 mm, µ = 0.428 Pas) impacting on a parafilm-M [P] substrate from fall heights in the 
range 10 mm ≤ Hf ≤ 200 mm (corresponding to 5.3 ≤ We ≤ 210, 2.8 ≤ Re ≤ 18). Each results set represents 

the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 109. Temporal variations in dimensionless inertial spread diameter β normalised by βm for GLY098 
fluid drops (DE = 3.10 mm, µ = 0.925 Pas) impacting on a parafilm-M [P] substrate from fall heights in the 
range 25 mm ≤ Hf ≤ 200 mm (corresponding to 21 ≤ We ≤ 209, 2.6 ≤ Re ≤ 8.1). Each results set represents 

the average of 5 drop measurements. Errors are comparable in size to symbol dimensions. 
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Figure 110.  Maximum retraction rate χ& plotted against We for GLY098 (µ = 0.925 Pas, DE = 3.10 mm) 

fluid drops impacting on a parafilm [P] substrate. 
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Figure 111.  Maximum retraction rate χ& plotted against We for GLY094 (µ = 0.428 Pas, DE = 3.10 mm) 

fluid drops impacting on a parafilm [P] substrate. 
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Figure 112.  Maximum retraction rate χ& plotted against We for GLY080 (µ = 0.428 Pas, DE = 3.10 mm) 

fluid drops impacting on a parafilm [P] substrate. A measurable retraction phase was not observed for 
impacts on the glass substrate. 
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The long dashed lines in Figures [110] – [112] represent the average χ&  for drop 

impacts with We > 10. With the exception of low velocity impacts (We < 10) whose 

retraction rate decreases as We decreases, measured values of χ& agree to within the 

experimental error of the average, suggesting that the retraction rate remains constant 

with increasing We for sufficiently large impact velocities.  

 

The maximum retraction rate also varies with fluid viscosity. Drop retraction can 

be divided into two regimes98; an inertial regime, where the non-dimensionalised 

retraction rate, χ& TI, for fluids with Oh < 0.05 is independent of viscosity and a viscous 

regime, where χ& TI for fluids with Oh > 0.05 is proportional to Oh-1. A theoretical 

retraction rate can be established from:  
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where θr is the drop contact angle during retraction, Λ and λ are respectively the 

macroscopic and microscopic cut-off length scales from the linear-force-velocity relation 

by De Gennes99: 
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and σµν /ERT =  is the large-scale relaxation timescale of a viscous drop. Typically Λ is 

the same order of magnitude as the drop size (O ~ 1mm) and λ is of the order O ~ 1nm. 

The retraction rate in the viscous regime is then non-dimensionalised by an inertial 

timescale TI: 
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denoting the oscillation period of a perturbed inviscid drop. Nondimensionalising χ&  in 

Equation [70] with TI in Equation [72] then gives the relationship 1−∝ OhTIχ& .  

 

Measured values of χ& TI are plotted against Oh in Figure [113]. Measurements 

agree with the previously established98 1−∝ OhTIχ& relationship to within experimental 

error. Moreover, this work extends the range of Oh to larger values than previously 

measured (0.11 ≤ Oh ≤ 1.78, previously 0.0035 ≤ Oh ≤ 0.85).  
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Figure 113.  Dimensionless retraction rate χ& TI  plotted against Oh in the range 0.11 ≤ Oh ≤ 1.7 for 
Newtonian drops during the retraction phase on a parafilm substrate. χ& TI  shows an inverse linear  

proportional relationship with Oh for Oh ≤ 0.85 (short dashed line). For Oh ≥ 0.85, this linearity breaks 
down.  

 

Whilst this section provides only a qualitative description of how fluid viscosity, 

surface wettability and impact velocity influences drop impact behaviour, the following 

section provides a more quantitative analysis by detailing and reviewing the capability of 

models that use dimensionless parameters such as We, Re and Oh to characterise and 

predict drop impact behaviour during inertial expansion.     
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5.2.2 Prediction models 

 

As highlighted in the literature review, there are several theoretical, empirical and 

semi-empirical models that attempt to accurately predict the maximum diameter or 

minimum height of impacting drops on a solid surface at the end of the inertial expansion 

phase. Models typically utilise common measurable parameters in their prediction 

including We, Re, Oh, θe and θa. The advantage of using prediction models in comparison 

with performing complete three-dimensional numerical solutions using computational 

methods is the speed with which parameters of interest (in this case β and ξ) can be 

estimated; useful when designing and optimising engineering applications incorporating 

spray or drop impact processes. The main disadvantage however is that model predictions 

are typically very approximate; therefore it is important to understand the predictive 

capability of each model. 

 

 Creating a robust one-dimensional model is challenging, primarily because a 

number of flow physics assumptions and approximations must be made which are only 

valid for specific drop impact behaviour. Impact dynamics can vary widely with fluid, 

impact and substrate properties. We have previously established that drop deformation 

(excluding splashing phenomena) can be considerable for high We impacts of low 

viscosity fluids. Drop shape towards the end of inertial expansion can typically be 

approximated by a thin flat cylinder. Moreover in some high impact velocity cases, the 

lamella may be bounded by a rim. In contrast however, for low We impacts of 

moderately high viscosity fluids, the cylindrical approximation described in the literature 

review becomes invalid and impacting drops exhibit deformations similar in shape to that 

of a spherical cap. The diversity of drop impact dynamics makes the formulation of a 

general one dimensional prediction model; valid over large ranges of Oh and We 

numbers, difficult.  

 
Since the publication of review papers by Bennett and Poulikakos51 and Healy et 

al.74, a number of one-dimensional prediction models have been proposed, ranging from 

simple order of magnitude studies to more technical energy conservation models, which 

account for more complex flow physics including deformed drop shape and additional 
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dissipative effects arising from the rolling motion of liquid near the contact line. Whilst 

not a review paper, Attané et al.48 also provide a thorough analysis of some more 

contemporary models and compare their predictions with both experimental results and a 

newly proposed AGM model over a larger range of Oh (0.002 ≤ Oh ≤ 0.585) than 

previously assessed. We propose that there are two remaining regions where additional 

work would contribute to the existing high quality research already performed in this 

area.  Firstly, details of drop prediction models are dispersed. This section aims to 

consolidate previous analyses of contemporary models and highlight their attributes and 

limitations by establishing their predictive capabilities with respect to a standardised set 

of experimental measurements: drop impact dynamics of Newtonian drops with 

viscosities in the range 0.001 ≤ µ ≤ 0.925 Pa·s (0.00195 ≤ Oh ≤ 1.78) for impacts with 1.8 

≤ We ≤ 214 and 1.1 ≤ Re ≤ 6889. Secondly, model predictions are most commonly 

compared only with experimental results of low viscosity fluid drops (water with µ = 

0.001 Pas or Oh ~ 0.002) impacting at moderate We (vz ≥ 1ms-1 or We > 50). The work 

presented here focuses more on establishing the predictive capability of models towards 

higher Oh and lower We, where viscous effects during inertial expansion play a more 

dominant role. The shape of drops at the end of inertial spreading for high Oh fluids or 

low We impacts can differ significantly from a cylindrical lamella (an assumption made 

by a number of energy balance approach models), therefore analyses of model predictive 

capabilities are more likely to highlight limitations. Moreover, emerging industrial 

processes such as the manufacture of glass microlenses162 for the electronics industry, 

where deposition of fluid drops is made at relatively low We, makes the investigation 

timely. The review is concluded with a summary of the predictive capabilities of each 

model, from which the best performing model is established. A further study then 

investigates empirical modifications to this model to improve the predictive capability at 

in the low We, high Oh regime.    

   

The models reviewed here are presented in terms of increasing complexity, 

beginning with simple order of magnitude and scaling law analyses to more complex 

models that utilise an energy balance approach. The energy balance models themselves 

can be further divided into those that assume a spherical cap drop shape at the end of the 

inertial expansion phase and those that assume a cylindrical shape. For the latter type, 
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models are presented chronologically from the original approach by Chandra and 

Avedisian42 through derivative models by Pasandideh-Fard et al.43 and Mao et al.47 to the 

most contemporary energy balance approach formulated by Attané et al.48, which 

incorporates aspects that account for more complex flow physics; namely flow circulation 

close to the contact line during inertial spreading and the presence of a bounding rim for 

low viscosity, high velocity drop impacts46.         

 

It should be noted that whilst the complexity of prediction models has increased 

significantly to incorporate descriptions for more complex flow physics, models typically 

exhibit good predictions only in a range of Weber and Reynolds numbers (as highlighted 

in §5.2.2.3). Outwith this range (both towards high and low Re and We), predictions 

degrade. As highlighted by Roisman et al.166, if Re and We are large enough (such that 

the effects of viscous forces can be considered negligible), models that are based on the 

energy balance approach or use a cylindrical shape approximation are incorrect. In this 

regime, the lamella shape far from the drop edge during impact can be described in terms 

of a universal law. Moreover, the lamella thickness, velocity and pressure distributions 

almost become independent of the impact conditions. This conclusion suggests that there 

is a limit to the predictive capability of models employing an energy balance approach. 

This review and subsequent empirical model optimization has been included however 

because prediction models are useful to both academia and industry as a method for 

estimating drop impact behaviour without using intensive computational methods.  

 

This review is not exhaustive and there exist a number of additional prediction 

models since the publication of the last review papers that have not been analysed. These 

include Asai et al.64, Yarin and Weiss169 and Kim and Chun55. These models each use an 

energy balance approach with a cylindrical drop shape approximation. Previous 

research47,48 has shown however that these models provide poorer predictive capabilities 

than the respective models they were compared with (and which are reviewed here), 

therefore they have not been included. 
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5.2.2.1 Scaling law models. 
 
 Scaling law models establish simple theoretical and empirical relationships 

between the fluid properties and the dimensionless diameter and height factors βm and ξm 

(see §2.8.3). These models do not consider the complex flow physics that occurs during 

drop impact and as such, their predictive capabilities are often severely limited.  

 
 

5.2.2.1.1 Bejan and Gobin. 
 
 The model proposed by Bejan and Gobin50 is based upon a purely theoretical 

order of magnitude argument derived from the principle that flow geometry maximises 

inertial drop spreading to accelerate the attaining of equilibrium. This theory proposes 

that inertial spreading ceases when viscous diffusion has swept the entire lamella cross 

section. At this time the maximum drop spread factor will be: 
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Equation [73] significantly overpredicts measured maximum spread factors by up 

to nearly an order of magnitude as displayed in Figure [114]. The limitations of this 

scaling law originate from the assumptions that immediately after impact, the flow is 

initially inviscid and all radial flow motion is constant and the same as the velocity at the 

drop rim, resulting in a toroidal drop shape. This assumption is therefore invalid for low 

impact velocities and viscous fluids. Spreading ceases when viscous diffusion originating 

from the contact surface sweeps transversally through the entire drop cross-section. It is 

recognised however that this scaling law is a means to an end with the objective of the 

research being to evaluate whether a principle of maximisation of flow access anticipates 

the splashing phenomenon during drop impact. The onset of splashing is more readily 

observed for low viscosity fluids, where inertial deformations can result in toroidal and 

rimmed disk drop shapes, therefore this model is not expected to provide good agreement 

with drop impacts at high Oh or low We.    
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Figure 114. Comparison of measured βm with predictions using Equation [73] in the range 0.0019 ≤ Oh ≤ 

1.78 and 1.9 ≤ We ≤ 214. 
     

 
5.2.2.1.2 Clanet et al. 
 

 
 Clanet et al.44 establishes the maximum drop spread factor to scale as βm ~ We1/4 

for low viscosity fluids (µ = 0.001 Pas) impacting on super-hydrophobic surfaces. They 

highlight that this relationship differs from the more classical proposition42,57 where 

dissipation of kinetic energy (of the order 23
zEvDρ ) arises from viscous dissipation (energy 

dissipation scales as 3)/( Maxz Dhvµ , where h is the lamella thickness). This order of 

magnitude argument along with the conservation of drop volume ( 3
0

2 ~ DhDMax ) yields the 

scaling law: 

 
5

1
Re~mβ      [74] 

 
with a corresponding height scale of: 
 

5
2

Re

1~mξ      [75] 
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Moreover, Attané et al.48 demonstrate that whilst the We1/4 power law provides a 

reasonable description at low Oh, this power law changes to:  

 
6

1
~ Wemβ      [76] 

 
at higher Oh, with: 
 

3
1

1~
We

mξ      [77] 

 
In Figure [115] the Re1/5 (Equation 74) scaling law under-predicts measured 

values of βm for fluids with µ ≥ 0.213 Pas (Oh ≥ 0.412) and over-predicts βm for µ ≤ 

0.056 Pa·s (Oh ≤ 0.109). The predicted variation of βm with We exhibits the same trend as 

that observed in the experimental results, however the largest deviations between them 

arise towards the lowest Weber numbers. Whilst predictions disagree with experimental 

measurements by up to ± 136% for low viscosity fluid drops with Oh = 0.00195, 

predictions agree to within ± 18% for more viscous drops with 0.11 ≤ Oh ≤ 1.78 and do 

not appear to worsen significantly with changes in Oh. Height predictions (Equation 75) 

in Figure [116] agree with measurements for 0.412 ≤  Oh ≤  1.78 to within ± 15%, 

however this worsens for Oh = 0.11 where predictions disagree by up to ± 37%. Similarly 

to predictions of βm, the variation of ξm with We is similar to the experimental results 

with the largest deviations arising towards lower Weber numbers. 
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Figure 115. Comparison of measured βm with scaling law predictions from Clanet et al. and Attané et al. 

(Equations 74 and 76 respectively) in the range 0.11 ≤ Oh ≤ 1.78 and 1.9 ≤ We ≤ 214. 
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Figure 116. Comparison of measured ξm with scaling law predictions from Clanet et al. and Attané et al. 

(Equations 75 and 77 respectively) in the range 0.11 ≤ Oh ≤ 1.78 and 1.9 ≤ We ≤ 214. 
 

To further analyse the relationship between βm, viscosity and how this varies 

towards low We, measured values of βm were replotted against µ and power laws were 

fitted to the experimental results. For impacts with We ~ 211 in Fig [117], βm scales as   
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µ-1/6. This viscosity dependence is close to that proposed by Equation [74]. As We 

decreases however, the relative importance of fluid viscosity on βm diminishes. For 2.6 ≤ 

We ≤ 4.8, βm scales between µ-1/11 and µ-1/14. The influence of fluid viscosity on drop 

impact behaviour therefore varies with We. 
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 Figure 117. Power law distributions (lines) fitted to measured maximum spreading ratio (symbols) plotted 
as a function of viscosity for Weber numbers We = 2.6 ± 0.60 (diamond), We = 4.8 ± 0.61 (square), We = 

22 ± 0.43 (triangle), We = 49 ± 1.2 (cross), We = 104 ± 2.0 (star) and We = 211 ± 1.8 (circle). 
 
 
The We1/6 (Equation 76) scaling law for super hydrophobic surfaces applicable 

for high Oh is also compared with experimental results in Figures [115] and [116]. 

Predictions for Glycerol solutions with µ ≥ 0.056, corresponding to the range 0.11 ≤ Oh ≤ 

1.78 are identical and fall between the experimental results for the GL080 and GL090 

solutions (0.056 ≤ µ ≤ 0.213 Pas). The scaling law does not however show an improved 

relationship between βm and We over the classical Re1/5 scaling law. Moreover, the 

significant limitation of this scaling law is the inability to account for variations in fluid 

viscosity. It should be noted that whilst this scaling law was derived for impacts on 

superhydrophobic surfaces, the experimental results provided here are for impacts on 

hydrophobic Parafilm-M surfaces. This comparison is considered valid however because 

measured differences in βm between impacts surfaces with varying wettabilities 
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(Parafilm-M and hydrophilic glass) for Newtonian fluid drops with µ ≥ 0.056 Pas (Oh ≥ 

0.109) have previously been found to be small, with differences accountable by 

experimental error.  

 
 

5.2.2.2 Energy balance models. 
 

From published literature, one of the most common methods of estimating the 

maximum spreading ratio βm has been to utilise an energy balance approach; 

Kurabayashi56, Bechtel et al.49 and Chandra and Avedisian42 were amongst the first to 

utilise this method to estimate βm and ξm. In general, the energy balance can be expressed 

by Equation [20]. Difficulty arises when attempting to estimate the surface tension term 

at the end of the inertial expansion phase. Most models approximate the shape of the drop 

at maximum spread to be a cylinder (Equations 21 and 22), however an alternative 

method is to approximate drop shape to that of spherical cap49 whereupon the equation 

used is given in Equation [23].     

 
 

5.2.2.2.1 Bechtel et al. 
 

Bechtel et al.49 utilise an energy balance approach with a spherical cap 

approximation to derive a nonlinear second order differential equation for the drop 

height. For convenience, they introduce dimensionless time (t*), surface tension (ST) and 

viscosity (VIS) parameters, and reduce the differential equation to a first order system of 

the form: 
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The functions C(ξ), D(ξ) and E(ξ) are given respectively by: 
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E(ξ) = 2 4ξ −ξ−2 − ST(2ξ + ξ−2)[ ]    [81] 

 
where: 
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The dimensionless time is defined as ( ) 213* −

= σρ EDtt , and the function C(ξ) includes a 
boundary layer effect. Equations [78] – [81] were reformulated more concisely by Attané 
et al.48 to: 
 

( ) 0
)2(

)21()1(
18

cos)(2
3
1

45
26

18
11

92
21

12
1

2

234

2323
2121

25212

4

3

=⎥⎦
⎤

⎢⎣
⎡

⎥
⎦

⎤
⎢
⎣

⎡
+

+−Λ
+⎥⎦

⎤
⎢⎣
⎡ −−++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+

−−

−

dt
dOh

dt
d

dt
d

dt
d

e
ξ

ξξ
ξξθξξξξ

ξξξξ
ξξ
ξ

[83] 

 
where: 
 

21−=Λ Ohπ      [84] 
 
The initial conditions are: 
 

We
dt
d

t

t
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Attané et al.48 observe that the expression for Λ in Equation [83] was originally 

incorrectly derived due to a sign error in Equation [79] and propose a more accurate 

empirical expression given by: 

 
2123 −=Λ Oh      [86] 

 
Figure [118] compares experimental values of ξm with those predicted by 

Equation [83] using the modified expression for Λ (Equation 86). Figure [119] highlights 
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the improved agreement between measured and predicted ξm for the empirically modified 

Λ term (Equation 86) in comparison with the original term (Equation 84). Whereas 

predictions using the original empirical term disagree with experimental measurements 

by up to ± 72%, this decreases to ± 28% for the modified empirical term. Due to the large 

errors associated with water drop (Oh = 0.00195) lamella thickness measurements, no 

comparisons were made with the prediction model. 
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Figure 118. Comparison of measured ξm with predictions using the Bechtel et al. model (Equation 83) with 

the empirically modified Λ term (Equation 86) in the range 0.11 ≤ Oh ≤ 1.78 and 1.9 ≤ We ≤ 214.  
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Figure 119. Comparison of measured with predicted ξm using Eq, [83] with (i) the original Λ term, 

Equation [84] (open symbols) and (ii) the empirically modified Λ term, Equation [86] (filled symbols). 
Short dashed lines correspond to a ± 10% variation. 

 

 The predictive capability of this model using the empirically modified Λ term 

improves with decreasing Oh over the range 0.11 ≤ Oh ≤ 1.78. Whereas predictions agree 

with measured values of ξm to within ± 27% for Oh = 1.78, this decreases to ± 14% for 

Oh = 0.11. This trend initially seems counterintuitive; drop shapes upon inertial impact 

appear less like the spherical cap approximation for lower Ohnesorge numbers and more 

cylindrical in shape. The trend is due however to the empirically modified Λ term being 

optimised for low Oh numbers. 

 
 

5.2.2.2.2 Chandra and Avedisian. 
 
 

Whilst this model has been reviewed previously51, 74, it is included here to provide 

a baseline comparison from which improvements in more contemporary energy balance 

prediction models can be highlighted. 

 
The energy balance approach used by Chandra and Avedisian42 equates the 

kinetic and surface tension energies of the drop at the moment of impact to the kinetic, 
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surface tension and viscous dissipation energies at the point of maximum inertial spread. 

Using a cylindrical approximation for the drop shape at the end of inertial expansion, the 

resultant expression is: 

 

0)4
3
1()cos1(

Re2
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The work done, W, in deforming the drop against viscosity was established as: 
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where the dissipation function is: 
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and h is the lamella height. 

 
 Figure [120] compares predictions of βm with experimental results over the range 

1.9 ≤ We ≤ 214. For low viscosity fluids (µ = 0.001 Pas, corresponding to Oh = 0.0019), 

the model significantly overpredicts βm by up to 29%. The opposite is true however for 

fluids with µ ≥ 0.056 (0.11 ≤ Oh ≤ 1.78), where the model underpredicts experimental 

results by up to 29%; the greatest deviation occurring at the highest Ohnesorge numbers. 

Moreover, the greatest deviations occur in each case for predictions at higher Weber 

numbers. 
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Figure 120. Comparison of measured βm with predictions using Equation [87] in the range 0.0019 ≤ Oh ≤ 

1.78 and 1.9 ≤ We ≤ 214. 
 

 
5.2.2.2.3 Pasandideh-Fard et al. 

 
Pasandideh-Fard et al.43 recognised that the results of Chandra and Avedisian 

overestimated βm by up to 40% for low viscosity fluids and instead of using the lamella 

height h as the length scale associated with the viscous dissipation term, proposed it 

instead to be the boundary layer thickness, δ, determined from the analytical solution of 

an axisymmetric stagnation point flow. The expression for βm using this approach is 

given by: 

 

Re)/(4)cos1(3
12
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m

+−
+

=
θ
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In the published paper, predictions using Equation [90] were compared with 

experimental results from their own measurements as well as those by Ford and 

Furmidge53, Madjeski79, Fukanuma and Ohmori54 and Bhola and Chandra81 for drop 

impacts with 26 ≤ We ≤ 641, 213 ≤ Re ≤ 35339, 0.000573 ≤ Oh ≤ 0.0239 and 20 ≤ θa ≤ 

140o. The agreement between measured and predicted results was less than ± 15% in 

most cases with the largest deviation of ± 21% occurring at the largest Oh. 
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Figure [121] compares predictions using Equation [90] with measured values of 

βm from the present investigation. Whilst the model agrees to within ± 6% over 3 ≤ We ≤ 

180 for low viscosity fluids (µ = 0.001 Pas, Oh = 0.0019), predictions worsen 

significantly for higher viscosities (Oh ≥ 0.109) and disagree with experimental results by 

up to ± 47% over the range 1.8 ≤ We ≤ 213. This is due to the incorrect estimation of the 

boundary-layer thickness. For We ≤ 50, predictions even show decreases in βm with 

increases in We. These observations confirm a previous comparison47 showing that 

Equation [90] significantly underpredicts the maximum spread of viscous liquids.  
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Figure 121. Comparison of measured βm with predictions using Equation [90] in the range 0.0019 ≤ Oh ≤ 

1.78 and 1.9 ≤ We ≤ 214.  
 

 
5.2.2.2.4 Mao et al. 

 
Mao et al.47 developed their model in a number of ways from the Chandra and 

Avedisian original. Firstly, surface tension estimations at maximum spread were derived 

as a function of the static contact angle instead of the advancing contact angle (Equation 

22) since it is uniquely related to the surface energies. Secondly, whilst the boundary 

layer thickness δ was calculated using an analytical solution to the stagnation point flow, 

they recognised that for highly viscous fluids, δ was larger than the flattened drop height 
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h. The flow regime when δ < h would therefore be different to when δ > h and were 

considered separately. Viscous dissipation models were developed for each regime and 

jointly used to develop a general maximum spread model, given by: 
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Mao et al. compared predictions using this semi-empirical model with their own 

experimental measurements and those from Cheng52
, Scheller60, Ford and Furmidge53, 

Asai et al.64 and Fukai et al.63. A good agreement was found to within ± 10% for a wide 

range of impact velocities (1 ≤ vz ≤ 6 m/s), static contact angle (30 ≤ θe ≤ 120o) and 

droplet sizes (1.5 ≤ DE ≤ 3.5 mm), however the range of viscosities was limited to 

relatively low viscosity fluids (µ ≤ 0.1 Pas). Comparisons of the proposed model were 

also made with previous empirical (Asai et al.; Scheller and Bousfield45) and semi-

empirical models (Chandra and Avedisan42; Pasandideh-Fard et al.43), and found to agree 

more closely with experimental measurements.   

 
 Figure [122] shows the predictive capability of Equation [91] to be best for low 

viscosity (Oh = 0.0019) fluids over 3 ≤ We ≤ 180. Predictions agree to within ± 9 % of 

the experimental results. The model underpredicts βm at higher viscosities (Oh ≥ 0.11) 

however, by up to ± 33% over 1.9 ≤ We ≤ 214. Predictions decrease in accuracy for 

impact velocities less than 1 m/s since for impacts with lower inertial energy, surface 

tension plays an increasingly greater role on the spreading dynamics and the flat disk 

assumption and stagnation point flow analogies cannot be assumed to be appropriate.   
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Figure 122. Comparison of measured βm with predictions using Equation [91] in the range 0.0019 ≤ Oh ≤ 

1.78 and 1.9 ≤ We ≤ 214. 
 

 

5.2.2.2.5 Attané et al. 
 
 
 The model proposed by Attané et al.48, henceforth denoted as the AGM model is 

currently one of the most contemporary energy balance approach models. This model 

focuses primarily on providing more accurate predictions of low Oh fluids at high impact 

velocities. Model developments include incorporating shear flow descriptions from 

Madjeski79 and the rimmed disk model developed by Roisman et al.46. 

 

Typically, for low Oh fluids (Oh ~O[10-3]) impacting with We > 200, toroidal 

rims are observed that are thicker than the more central liquid. The authors highlight that 

a cylindrical approximation is no longer sufficiently descriptive. To account for this, the 

AGM model replaces the standard cylindrical shape approximation with that of a rimmed 

disk, where the rim is of typical dimension L x αL with volume 2παRL2 and α is an 

adjustable parameter function of the fluid viscosity that takes into account the differences 

observed between fluids drops of different viscosities. The model is not expected to hold 

for L << h and L >> h, where h is the lamella height. The L << h case is representative of 
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when drops adopt a spherical cap shape upon deformation and not a cylindrical disk. 

With regard to the present investigation, this is the most significant limitation of the 

AGM model. The use of an approximation more closely resembling a cylindrical lamella 

instead of a spherical cap is justified by the assumptions that the description of the 

dissipation at the very beginning of the impact is less important than a correct description 

of the dissipation for spread factors over 1 and that a cylindrical shape provides a good 

general representation of the deformed drop shape for a majority of impacts over a large 

range of We. The focus of the present study however includes the drop impact behaviour 

of fluids with Oh >> 10-3, where cylindrical and rimmed-cylindrical assumptions do not 

adequately represent the deformed drop shape. The AGM model is not expected to 

provide accurate predictions for high Oh fluids impacting at low We. 

 
The other significant development of this semi-empirical model was the inclusion 

of a term into the dissipative work that accounts for additional dissipation arising from 

rolling fluid motion near the contact line; a characteristic necessary for the triple line to 

advance125. This term is specifically aimed at low viscosity fluid drops with βm > 3 

 
 Attané et al. review the derivations of a number of existing 1D energy balance 

approach prediction models and compare the proposed AGM model predictions with an 

extensive selection of literature data (Mao et al.47, Kim and Chun55, Clanet et al.44 

Scheller and Bousfield45 and Rioboo et al.58) encompassing a diverse range of drop 

impact dynamics over approximately 0.002 ≤ Oh ≤ 0.585, 6 ≤ We ≤ 1100 and 5 ≤ θe ≤ 

100o.  

 
The AGM model differential equation is given by: 
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with the initial conditions: 
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where r = βm/2 and r0 is the initial spread factor. The first initial condition is derived from 

the approximation that the drops assumes a cylindrical shape upon deformation but the 

initial value of the surface energy (derived using the surface area of a cylinder) must 

equal that of the surface energy of a spherical drop. Attané et al. also highlight that 

Equation [93] has no real positive root of r0 for θe > 109.4o, however using a value of r0 = 

0.39 provides an evaluation of the initial surface energy to within 16% irrespective of θe. 

The term s in Equation [92] is an adjustable parameter defined as: 

  
3241.1 −= Ohs      [95] 

 
and constitutes the only empirical term.  

 
Predictions of βm for the AGM model were determined by solving the differential 

equation (Equation 92) with initial conditions given by Equations [93] and [94]. Whereas 

explicit solutions for βm exist for impacts where a retraction phase exists, predictions of 

βm for impacts where spreading continues after a maximum inertial expansion spread 

factor is reached are ambiguous and were taken as the midpoint between the fast inertial 

spreading rate and the slower rate corresponding to capillary driven spreading.   

 
Figure [123] compares AGM model predictions of βm with experimental results 

for 0.0019 ≤ Oh ≤ 1.78 within the range 1.9 ≤ We ≤ 214. Whilst predictions of βm for 

liquid drops with a low viscosity (µ = 0.001 Pas, Oh = 0.0019) agree closely with 

experimental results to within ± 9%, predictions worsen for more viscous fluids with µ ≥ 

0.056 Pas (corresponding to Oh ≥ 0.11) and can disagree with experimental 

measurements by up to ± 34%.  
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Figure 123.  Comparison of experimental βm with predictions using Equation [92] in the range 0.0019 ≤ Oh 

≤ 1.78 and 1.9 ≤ We ≤ 214.   
 

 

5.2.2.3 Summary of models. 
 

Tables [12] and [13] summarise the characteristics and predictive capabilities of 

each model for fluids with 0.00195 ≤ Oh ≤ 1.78 impacting within the range 1.9 ≤ We ≤ 

214 and 1 ≤ Re ≤ 6889. Table [13] highlights the model publication date, approach taken 

during the derivation of the model, drop shape approximation used for the energy balance 

approach models when deriving the surface tension energy at the end of inertial 

expansion, the predicted parameter, the model format and the solution type; where T, E 

and SE corresponds to theoretical, empirical and semi-empirical respectively. Table [13] 

summarises the predictive capability of each model by quantifying the maximum 

percentage deviation of predictions away from equivalent experimental measurements; 

the values in bold correspond to the best model predictive capability for the specified 

Ohnesorge number.  
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Table 12. – Summary of prediction models. Abbreviations E, SE and T represent empirical, semi-empirical 
and theoretical solution types respectively.  

Model Model approach 
Drop shape 

approximation 

Model 

Derivation 

Model 

format 

Prediction 

parameter 

Bejan and Gobin (2006) scaling law - T algebraic βm 

Clanet et al. - Attané et al. (2007) scaling law - E algebraic βm 

Chandra and Avedisian (1991) scaling law - T algebraic βm 

Bechtel et al. (1981) Energy balance Spherical cap SE differential ξm 

Chandra and Avedisian (1991) Energy balance cylindrical SE algebraic βm 

Pasandideh-Fard et al. (1996) Energy balance cylindrical SE algebraic βm 

Mao et al. (1997) energy balance cylindrical SE algebraic βm 

Attané et al. (2007) energy balance cylindrical SE differential βm 

Modified Mao et al. (2008) energy balance cylindrical SE algebraic βm 

Kurabayashi - Yang with Healy et 

al. modification (2000) 
energy balance cylindrical SE algebraic βm 

 
Table 13. Model predictive capabilities upon comparison with experimental results for fluid drops with 
0.056 ≤ µ ≤ 0.925 Pas impacting with 1.9 ≤ We ≤ 214. Values in bold type constitute the best predictive 

capability of all the models assessed. 
Maximum % variation between predicted and 

experimental in range 1.8 ≤ We ≤ 213 

Oh  
Model 

0.00195 0.109 0.403 0.8 1.167 1.718 

Bejan and Gobin (2006) 4539 779 456 341 294 250 

Clanet et al. – Attané et al. (2007 38 17 15 27 37 48 

Chandra and Avedisian (1991) 136 18 4.5 13 12 16 

Bechtel et al. (1981) - 14 28 20 21 27 

Chandra and Avedisian (1991) 29 13 22 27 28 29 

Pasandideh-Fard et al. (1996) 6 36 42 45 46 47 

Mao et al. (1997) 9 21 31 33 26 25 

Attané et al.  (2007) 9 26 32 34 34 33 

Modified Mao et al. (2008) 17 6 2 2 2 5 

Kurabayashi - Yang with Healy et 

al.  modification (2000) 
22 19 21 20 18 16 

 
 
 
 
 



Yield-stress Drops           Guy German                                                                           218 

 
5.2.2.4 Empirical adjustments for low Weber numbers and 

high viscosities. 
 

 
 

5.2.2.4.1 Kurabayashi-Yang Model. 
 
 
 Empirical modifications to existing prediction models have previously been 

proposed. In order to improve model predictive capabilities for impacts with We ≤ 150, 

an empirical correction was made by Healy et al.74 to the semi-empirical prediction 

model initially proposed by Kurabayashi56 and later modified by Yang76: 
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µdrop is the fluid viscosity evaluated at the initial drop temperature and µwall is the fluid 

viscosity evaluated at the substrate temperature. The purely empirical modification:  
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was derived to account purely for surface wettability effects (the original Kurabayashi-

Yang model does not take into account contact angle), where βm,corr is the corrected 

spread factor, βm is the spread factor derived using Equation [96] and θe is the sessile 

contact angle of the drop. Healy et al. chose this model to modify after comparing it 

against those proposed by Chandra and Avedisian42, Madjeski79, Shi and Chen59, Bechtel 

et al.49 and Naber78 and finding predictions to agree most closely with the experimental 

results. The correction was established for impacts with 25 ≤ We ≤ 150 and 1000 ≤ Re ≤ 

7500 for fluids with 30 ≤ θe ≤ 90o and 0.000386 ≤ µ ≤ 0.001 Pas. Healy et al. found the 

modification improved predictive capability for low viscosity fluid impacts at low We 

from greater than ± 20% to within approximately ± 10% when compared with a selection 

of experimental results including Chandra and Avedisian, Ford and Furmidge53 and Fukai 

et al.63. 
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Figure [124] plots the predicted results from Equation [96] (where µ and µwall are 

assumed to be identical) incorporating the correction from Equation [97] (with θe = 90o, 

the close to the measured value of θe = 95o) against experimental results from the current 

investigation for impacts with We ≤ 150. Over the range 0.0019 ≤ Oh ≤ 1.78, predictions 

agree with experiment to within ± 20%, however this significantly improves to within ± 

10% for We ≤ 25. 
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Figure 124.  Comparison of predicted βm against experimental results for Equation [96] using the empirical 

correction of Equation [97]. 
 

The combined prediction model with empirical modification has a number of 

limitations. Firstly, the correction factor given by Equation [97] varies by up to 30% in 

the range 30 ≤ θ ≤ 90o for fluids with Oh ≥ 0.109 and cannot be used at all when the fluid 

is completely wetting (θe = 0o). This variation is not observed in equivalent experimental 

results where values of βm are observed not to vary significantly with surface wettability 

(§5.1.1). Secondly, the empirical power term has been derived for low viscosity fluids 

with µ ≤ 0.001 Pas, therefore is unlikely to accurately predict βm for more viscous fluids. 

In contrast, the more contemporary energy balance approach models of Attané et al. and 

Mao et al. account for drop contact angle within their formulation. Whilst the Healy-

Kurabayashi-Yang model does provide more accurate predictions over these two models 

for We ≤  25 and equivalent predictions for 25 ≤  We ≤  200, the previously cited 

-10% 

10% 
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limitations are sufficient enough to warrant the examination of empirical modifications to 

the other models in order to establish a more generalised prediction method with an 

improved predictive capability for low Weber number impacts across a wide range of 

fluid viscosities. Empirical modifications were therefore chosen to be made to the model 

that provided the best predictive capability for We ≤ 200. 

 

 

5.2.2.4.2 Modified Mao et al. model. 
 
 In comparison with the model proposed by Mao et al., the AGM model has been 

shown48 to provide more accurate predictions of βm for Oh ≤ 0.035 within the range 10 ≤ 

We ≤ 1100 and Oh ≤ 0.535 in the range 100 ≤ We ≤ 1000. These models are further 

compared in Fig [125]. For fluids with Oh ≥ 0.109 impacting in the range 1.9 ≤ We ≤ 214, 

both models underpredict βm with differences exceeding ± 10%. Within this range 

however, the Mao et al. model predictions agree more closely with the experimental 

results: the differences in predictive capability becoming more evident with increasing 

Oh. Whilst both models are semi-empirical and have the potential for modification to 

improve predictions at low We and high Oh by adaptation of the empirical parameters; 

based on this comparison the Mao et al. model was chosen to be modified. 
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Figure 125. Comparison of predicted βm against experimental results for (i) the AGM model (Equation 92, 

filled symbols) and (ii) the Mao et al. model (Equation 91, open symbols).  
 

 

Adjustments to the Mao et al. model (Equation 91) were made through an 

iterative process of optimising the empirically based powers of We and Re and the 

empirical constant term (2nd term in the cubic polynomial) by minimising differences 

between predicted and experimental βm for each Newtonian solution over the range 1.9 < 

We < 214.  

 
Small variations in the Reynolds number power term were found to result in 

minor improvements, the optimised value varying as a function of Oh. More significant 

improvements were obtained however by varying the empirical constant, with the optimal 

value varying as a function of We. Changing the Weber number power term was found 

not to improve predictions. These modifications result in a revised model of the form: 
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where κ = 0.45Oh0.05

 replaces the analogous exponent κ = 0.33 in Equation [91], and ψ = 

0.07We0.2 replaces a constant empirical coefficient. The Reynolds number power term 
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remains nearly identical to the original model for low viscosities, however for more 

viscous fluids the power term increases, representative of the increased importance of 

viscous effects during drop impact. The replacement for the empirical constant term 

varies in the range 0.083 ≤ ψ ≤ 0.213 for 1.9 ≤ We ≤ 214 and remains close to the original 

value of 0.2 for We > 100.  

 

Figure [126] compares predictions of βm from both the original Mao et al. model 

(Equation 91) and the empirically adjusted model Equation [98]. The modifications result 

in improved predictions for fluids drop impacts over 1.9 ≤ We ≤ 214 and 0.11 ≤ Oh ≤ 

1.78; consistently agreeing with experimental results to within ±10%. This predictive 

capability reduces however for low fluid viscosities, where for Oh = 0.00195, predictions 

exceed 10% and the original model is more accurate. 
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Figure 126. Comparison of predicted βm against experimental results for the original (Equation 91) (open 

symbols) and modified (Equation 98) (filled symbols) Mao et al. models. 
 

In comparison with the Healy-Kurabayashi-Yang model, the influence of surface 

wettability on βm for fluids with 0.109 ≤Oh ≤  1.718 is significantly reduced in the 

modified Mao et al. model; variations of less than 15% are predicted for changes in 

equilibrium contact angle over 30 ≤ θ ≤ 99o. Overall, the modifications significantly 
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improve predictions for low We, high Oh drop impacts, where the original model 

underpredicts βm by up to ±33%.     

 

 

5.3 Shear-thinning drop impact behaviour 

 

Figures [127] and [128] display temporal variations in β and ξ for drops of the 

X0125 (n = 0.4 K = 0.208 Pasn) and X075 (n = 0.084 K = 5.064 Pans) shear-thinning 

fluids during impact on a hydrophobic surface. These fluids respectively exhibit the least 

and most shear-thinning fluid characteristics.  
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Figure 127. Temporal variations in dimensionless inertial spread factor β and height factor ξ for shear-

thinning X0125 fluid drops (DE = 3.47 mm, n = 0.400 , K = 0.208 Pasn) impacting on a parafilm-M 
substrate from fall heights of  7.5 mm ≤ Hf ≤ 200 mm (corresponding to 2.8 ≤ We ≤ 183).  Each set of 

results corresponds to an average of five drop impacts. To aid visual clarity, experimental errors are not 
shown, however they are comparable with symbol size. 
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Figure 128. Temporal variations in dimensionless inertial spread factor β and height factor ξ for shear-
thinning X075 fluid drops (DE = 3.34 , n = 0.084 , K = 5.064 Pasn) impacting on a parafilm-M substrate 

from fall heights of  7.5 mm ≤ Hf ≤ 200 mm (corresponding to 2.1 ≤ We ≤ 187).  Each set of results 
corresponds to an average of five drop impacts. To aid visual clarity, experimental errors are not shown, 

however they are comparable with symbol size. 
 

 Increasing We results in increases in βm and decreases in ξm for impacts on a 

parafilm surface, similar to the behaviour of Newtonian fluids. This is more clearly 

observed in Figures [95] and [96], which plot βm and ξm against We respectively. Drop 

impact dynamics on both substrates are very similar during the inertial expansion phase 

with substrate wettability having previously been established (§5.1) not to measurably 

influence drop impact behaviour during this phase for fluids in the ranges 0.084 ≤ n ≤ 0.4 

and 0.208 ≤ K ≤ 5.064 Pasn. across 0.7 ≤ We ≤ 193. 

 

Unlike Newtonian fluids, whose viscometric properties are characterised only by 

viscosity, shear-thinning fluids are characterised most simply with the consistency 

coefficient K and power law index n parameters from the power law rheological model 

(Equation 37). Figures [129] - [131] replot temporal variations of β and ξ for the four 

shear-thinning fluids for impacts at We = 3.65 ± 1.1 (Hf = 10 mm), We = 43.2 ± 1.4 (Hf = 

50 mm) and We = 191.6 ± 2.7 (Hf = 200 mm) on a parafilm substrate to highlight the 

influence of viscous properties on impact dynamics.  
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Figure 129. Temporal variations in β and ξ for drops of the four shear-thinning fluids with 0.084 ≤ n ≤ 

0.400 and 0.208 ≤ K ≤ 5.064 Pasn impacting from Hf = 10 mm (We = 3.65 ± 1.1) on a parafilm substrate. 
Each results set is based on the average of 5 drop measurements. To aid visual clarity, experimental errors 

are not shown, however they are comparable with symbol size. 
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Figure 130. Temporal variations in β and ξ for drops of the four shear-thinning fluids (0.084 ≤ n ≤ 0.400, 

0.208 ≤ K ≤ 5.064 Pasn) impacting from Hf = 50 mm (We = 43.2 ± 1.4) on a parafilm substrate. Each 
results set is based on the average of 5 drop measurements. To aid visual clarity, experimental errors are not 

shown, however they are comparable with symbol size. 
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Figure 131. Temporal variations in β and ξ for drops of the four shear-thinning fluids (0.084 ≤ n ≤ 0.400, 
0.208 ≤ K ≤ 5.064 Pasn) impacting from Hf = 200 mm (We = 191.6 ± 2.7) on a parafilm substrate. Each 

results set is based on the average of 5 drop measurements. To aid visual clarity, experimental errors are not 
shown, however they are comparable with symbol size. 

 

Increasing the mass fraction of Xanthan gum decreases βm, however ξm for each 

fluid remains very similar at each fall height, indicative of thin cylindrical lamella 

formation where variations in drop height and the variation of height with impact velocity 

are both small. Increasing the mass fraction increases the consistency coefficient K, 

however it also decreases the power law index n. In other words, fluids become more 

shear-thinning with increased mass fraction.  

 

In order to separate the effects of K and n a thought experiment is performed. For 

two identical fluid drops with equal values of K and differing power law indices subject 

to equivalent impacts, the fluid exhibiting the greatest degree of shear-thinning (n closest 

to 0) would be expected to exhibit lower local viscosities during inertial expansion and 

therefore increased βm. Figures [129] - [131] show the opposite trend; βm increases for 

less shear-thinning fluids. This suggests that whilst shear-thinning effects may influence 

the impact behaviour, the influence of the consistency coefficient K (whose relationship 

with βm and ξm is expected to be similar to that of Newtonian viscosity) appears to 

dominate.  
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An alternative perspective can be achieved by modelling the viscous 

characteristics in terms of the Cross model (Equation 38), where C is the Cross time 

constant, (1-m) is the rate constant and µ0 and µ1 are the high and low shear rate finite 

dynamic viscosities. This model characterises shear-thinning properties using a dynamic 

viscosity range (µ0 – µ1). During impact, a shear-thinning drop exhibiting axisymmetric 

spreading (with a central stagnation point) will produce a range of viscosities between µo 

and a minimum µ’ where µ1 ≤ µ’. For high velocity impacts where shear rates are very 

large, µ’ is expected to be similar to µ1. From Table [14], increasing the mass fraction of 

Xanthan gum increases the dynamic viscosity range, primarily by increasing µ0. For two 

drops subject to equivalent impacts, the higher mass fraction fluid will therefore exhibit 

larger average viscosities and hence a decrease in βm in a similar fashion to increasing µ 

for Newtonian fluids. 

 
Table 14. Cross model parameters for shear-thinning fluids.  

Shear-thinning 
solution 

µ0 
[Pas] 

µ1 
[Pas] 

(1-m) 
 R2 fit 

X0125 0.597 ± 0.068 0.0048 ± 0.00083 0.23666 ± 0.025 0.99841 

X075 14.436 ± 0.417 0.0068 ± 0.00081 0.0648 ± 0.0032 0.99998 

 

The analysis of shear-thinning fluid drops during impact is made increasingly 

complex because viscosity is not constant and varies as a function of the shear-rate, 

which itself varies both with radial position in the drop and time. Newtonian prediction 

models (§5.2.2) that characterise impact behaviour using dimensionless numbers such as 

Re, Oh and Ca cannot therefore be easily modified to predict shear-thinning fluid 

behaviour without losing their original simplicity and requiring iterative methods to 

obtain a solution. Moreover, it is not possible to produce fluids with equal consistency 

coefficients and varying power law indices, therefore like-with-like experimental 

comparisons to establish the independent effects of shear-thinning on drop impact 

dynamics cannot be performed. This limits the amount of experimental analyses that can 

be completed. Qualitatively however, some effects of fluids shear-thinning can be 

examined. 

 

 βm for each shear-thinning fluid (Figure 95), is typically much larger than those 

observed for the Newtonian fluids (Figure 90). The consistency coefficient K provides an 
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indication of the maximum fluid viscosity that each shear-thinning fluid exhibits; this 

ranges between 0.208 ≤ K ≤ 5.064 Pasn. The X075 (K = 5.064 Pasn) fluid can thus exhibit 

much larger viscosities than the most viscous GLY098 Newtonian fluid (µ = 0.925 Pas), 

however values of βm at similar We are similar in magnitude to the least viscous GLY080 

(µ = 0.056 Pas) Newtonian fluid. This suggests that fluid shear-thinning has an effect on 

impact behaviour. For high velocity impacts where shear-rates are large, shear-thinning 

has the effect of increasing the maximum spread factor considerably.       

 

Drop retraction characteristics on hydrophobic substrates can also be examined 

using a similar method to that used for the Newtonian fluids. Figures [132] and [133] 

display temporal variations in β normalised by βm for drop impacts of the X0125 and 

X075 fluids in the range 16 ≤ We ≤ 187. The retraction phase for impacts with We > 20 

collapse on to a single curve for periods up to 10 ms after the end of inertial expansion.  
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Figure 132. Temporal variations in β/βm for X0125 fluid drops impacting in the range 19 ≤ We ≤ 183 on a 

parafilm surface. Each results set is based on the average of 5 drop measurements. To aid visual clarity, 
experimental errors are not shown, however they are comparable with symbol size. 
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Figure 133. Temporal variations in β/βm for X075 fluid drops impacting in the range 16 ≤ We ≤ 187 on a 
parafilm surface. Each results set is based on the average of 5 drop measurements. To aid visual clarity, 

experimental errors are not shown, however they are comparable with symbol size. 
 

Figures [134] – [136] display the maximum measured retraction rate χ&  (Equation 

69) during this period for the X0125, X050 and X075 fluids. Dashed lines correspond to 

the average χ&  for impacts with We ≥ 20. Impacts with We < 20 typically show smaller 

retraction rates in comparison with this average and decrease further as We reduces. For 

We ≥ 20, χ& remains constant and independent of We for each fluid; measurements agree 

with the average to within experimental error. This characteristic is also observed for 

Newtonian fluids. Moreover, χ& decreases with increasing Xanthan gum mass fraction 

(increasing K, decreasing n).  

 

An inverse linear relationship between the dimensionless retraction rate χ& TI and 

the consistency coefficient K is displayed in Figure [137], where TI is the oscillation 

period of a perturbed inviscid drop (Equation 70). This variation is similar to that 

observed between χ& TI and µ (for Oh ≤ 0.85) for the Newtonian fluids (Figure 113 in 

§5.2.1). Whilst establishing a relationship between χ& TI and Oh is not possible for shear-

thinning fluids because µ and hence Oh varies both spatially and temporally during 
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retraction, the 1−∝ KTIχ&  relationship does suggest that increases in K act to increase the 

average fluid viscosity during retraction and hence reduce the retraction rate based on 

increased energy dissipation.  

 

χ& TI and n shows the opposite trend to that of the relationship between χ& TI and 

K, with χ& TI increasing with n. This again suggests that the magnitude of the initial 

retraction rate is governed more by the viscosity of each fluid at low shear-rates rather 

than their degree of shear-thinning.  
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Figure 134. Maximum retraction rate χ& plotted against We for the X0125 (K = 0.208 Pasn, n = 0.400, DE = 
3.474 mm) shear-thinning fluid in the range 2.8 ≤ We ≤ 183. The dashed line corresponds to the average χ&  

for We > 20. 
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Figure 135. Maximum retraction rate χ& plotted against We for the X050 (K = 2.846 Pasn, n = 0.129, DE = 
3.428 mm ) shear-thinning fluid in the range 0.7 ≤ We ≤ 179. The dashed line corresponds to the average 

χ&  for We > 20. 
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Figure 136. Maximum retraction rate χ& plotted against We for the X050 (K = 5.064 Pasn, n = 0.084, DE = 
3.347 mm ) shear-thinning fluid in the range 2.1 ≤ We ≤ 187. The dashed line corresponds to the average 

χ&  for We > 20. 
 



Yield-stress Drops           Guy German                                                                           232 

0

0.5

1

0 1 2 3 4 5 6
Consistency coefficient K [Pasn]

D
im

en
si

on
le

ss
 re

tra
ct

io
n 

ra
te

 [-
]

 
Figure 137. Average dimensionless retraction rate χ& TI for impacts with We > 20 plotted against 

consistency coefficient K for shear-thinning fluids with 0.084 ≤ n ≤ 0.400 and 0.208 ≤ K ≤ 5.064 Pasn. The 
dashed line corresponds to a linear best fit. 

 

 

5.4 Yield-stress drop impact behaviour 

 

Figures [138] and [139] display βm and ξm  (respectively) plotted against We for 

viscoplastic fluids with 0 ≤ τc ≤ 26.1 Pa impacting on a parafilm substrate in the range 

0.68 ≤ We ≤ 312. Measured values of ξm for viscoplastic fluids with τc ≥ 11.5 Pa are 

significantly larger than both the shear-thinning and Newtonian fluids over similar We 

ranges. This is due to the combined effect of incomplete drop deformation during impact 

and the prolate shape of drops prior to impact.   
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Figure 138. βm plotted against We for viscoplastic fluid drops with 0 ≤ τc ≤ 26.1 Pa impacting on a 
parafilm substrate in the range 0.68 ≤ We ≤ 312. Each results set is based on the average of 5 drop 

measurements. 
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Figure 139. ξm plotted against We for viscoplastic fluid drops with 0 ≤ τc ≤ 26.1 Pa impacting on a parafilm 
substrate in the range 0.68 ≤ We ≤ 312. Each results set is based on the average of 5 drop measurements. 
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Figure [140] displays βm re-plotted as a function of the yield-stress magnitude. 

For each viscoplastic fluid, the relationship appears linear across the full range of We. 

Whilst this indicates a consistent inversely proportional relationship, the effects of shear-

thinning have not been accounted for, therefore this relationship is not entirely accurate.  

 
Viscoplastic drop impacts are influenced both by shear-thinning and yield-stress 

characteristics, making qualitative and quantitative assessments of the independent 

influence of yield-stress magnitude on drop impact dynamics difficult to establish. 

Moreover, it is not possible to determine the independent influence of yield-stress on 

impact dynamics by direct comparison of experimental results because the viscometric 

characteristic of the shear-thinning and yield-stress fluids differ, therefore like-with-like 

comparisons10 cannot be made. One aspect that can be further scrutinised however is the 

presence of viscoplastic drop peaks at the end of inertial expansion. Neither shear-

thinning or Newtonian fluid drops are observed to exhibit this morphological 

characteristic, therefore it is considered entirely related to viscoplasticity.   
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Figure 140. βm plotted against τc for viscoplastic fluid drops with 0 ≤ τc ≤ 26.1 Pa impacting on a parafilm 
substrate in the range 0.68 ≤ We ≤ 312 . 

                                                 
10 It is not possible to produce viscoplastic (τc > 0 Pa) and shear-thinning (τc = 0 Pa) fluids with identical 
shear-thinning viscometric properties. Therefore a direct experimental comparison of βm and ξm cannot be 
made to establish the independent influence of fluid yield-stress on impact dynamics.  
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The presence of yield-stress fluid drop peaks can more clearly be observed in 

Figure [139]. Whereas the largest difference in ξm for impacts of the YSF020 solution (τc 

= 0 Pa) in the range 4.4 ≤ We ≤ 312 is small with ∆ξm= 0.35 (and similar to equivalent 

height differences of the Newtonian (0.27 ≤ ∆ξm ≤ 0.47 for 0.056 ≤ µ ≤ 0.925 Pas) and 

shear-thinning fluids (0.25 ≤ ∆ξm ≤ 0.62 for 0.208 ≤ K ≤ 5.064 Pasn, 0.084 ≤ n ≤ 0.4) 

across similar ranges in We), height differences increase significantly with increasing τc; 

the maximum difference for the YSF040 solution (τc = 26.1 Pa) is ∆ξm = 1.3 over 3 ≤ We 

≤ 141. This value exceeds unity and is due to the presence of a central peak in the drop 

(Figures 77, 80, 83 and 86). Drop peaks are present due to incomplete drop deformation 

during impact; the upper region of impacting drops do not significantly deform from their 

original prolate shape during free-fall. For impacts at similar We, peak heights increase 

with τc. Moreover, for low velocity impacts (Hf = 10 mm) deformation is small for fluids 

with τc ≥ 11.5 Pa and peaks can account for most of the drop volume. This suggests that 

radial flow will be inhibited within a threshold radius where shear stresses arising during 

impact fall below the yield-stress magnitude. 

 Dimensionless drop peak diameters, βPeak = DPeak/DMax, are determined by 

measuring the intersection of the drop peak and lamella surface tangents, as shown in 

Figure [27]. Measurable drop peaks are present after impacts of the YSF035 and YSF040 

fluids for Hf  ≤ 100 mm and for the YSF045 and YSF050 fluids for Hf  ≤ 150 mm. Whilst 

peaks exist at low fall heights for each of these solutions, deformations are small and 

surface tangent intersections and drop heights at the rim cannot not be accurately 

measured, therefore have not been analysed. Moreover, complete drop deformation is 

observed for fluids with τc ≤ 19.1 Pa over the full range of We.  

To establish a relationship between peak diameter and yield-stress magnitude, 

measured values of βPeak were compared with a theoretical threshold diameter, βT = 

DT/DMax, where DT is defined as the radial drop diameter where maximum shear-stresses 

arising in the lamella during inertial spreading equal the yield-stress magnitude of the 

fluid. During the expansion phase, the radial velocity, vr, will be at a maximum close to 

the drop rim46. The maximum shear-rate and shear-stress can be therefore be 

approximated respectively by: 
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where hrim(RMax) is the lamella height at the rim, r is the radial position and the viscosity 

term has been replaced by a Herschel-Bulkley model. vr will vary with time during the 

impact process, therefore this term represents the maximum average radial velocity 

during inertial spreading. This is used to provide an upper limit to the shear rate and 

stress terms. vr for each drop is directly extracted from measurements.   

Whilst it is not known how the radial velocity, shear-rates or shear-stresses vary 

across the lamella during impact, upon assuming the deforming drop has rotational 

symmetry about the vertical axis, each of these terms will decrease from a maximum near 

the rim to zero at the lamella centre. As a first approximation, we assume this variation to 

be linear. The dimensionless threshold diameter βT can therefore be defined as where the 

shear stress will equal the fluid yield-stress magnitude: 
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Within this perimeter, shear-stresses will be too small to cause deformation during impact 

and the drop shape will remain undeformed, resulting in a drop peak. 

Figure [141] compares βT (Equation 101) with measured values of βPeak. 

Predictions are confined within a range limited by an upper level above which inertial 

forces result in the complete deformation of impacting drops (such that no central peak is 

observed) and a lower limit below which drops exhibit only small deformations and 

measured values of the drop rim height cannot be measured. The predictions agree with 
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the measured drop peak diameters to within ± 20%. It is also noted that only fluids with 

B̂  > 1 exhibit peaks.    
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Figure 141. Measured drop peak diameter βPeak plotted against predicted threshold diameter βT (denoting 
the perimeter inside which shear-stresses during impact are smaller than the yield-stress) for yield-stress 
fluid drops with 19.1 ≤ τc ≤ 36.2 Pa impacting on a parafilm substrate within the range 67 ≤ We ≤ 203. 

Long dashed lines correspond to a deviation of ± 20% from predictions.  

 
The similarity of predicted threshold diameters with measurements appears to 

confirm the hypothesis that fluid yield-stress will influence drop impact dynamics by 

inhibiting fluid motion within a definable region during the expansion phase. Predictions 

also highlight that the threshold region will vary in size both with τc and We. As We 

increases, the maximum shear stresses near the drop rim will rise and (based on the 

approximated linear radial variation of shear-stress from the centre to the lamella edge) 

the threshold region of yield-stress influence will decrease in size, eventually resulting in 

complete deformation of the impacting drop and the disappearance of the drop peak. 

Observed changes in measured drop peak sizes confirm these trends. Whilst yield-stress 

effects may continue to influence inertial spreading behaviour for higher velocity 

impacts, where drops completely deform and peaks are no longer present, this cannot be 

established from the analysis. Moreover, larger drop peak sizes are observed for 

equivalent impacts of fluids with increasing τc, indicative of an increase in the threshold 

diameter.  
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6 Results and Discussion - Drop spreading dynamics 

 

This section focuses on extending well established research into spreading 

dynamics of Newtonian and shear-thinning fluids, as detailed in §1.2.5 and §1.2.6.1, by 

examining the drop spreading behaviour of viscoplastic fluids. The investigation can be 

split into two distinct topics; the influence of yield-stress magnitude on the dynamic 

spreading rate of drops on wettable substrates and the influence of fluid yield-stress on 

sessile drop shapes on surfaces of varying wettability.    

 

Whilst Newtonian fluid drop shapes at the end of inertial expansion vary both 

with viscosity and impact velocity (Figures 75, 78, 81 and 84)), the final sessile shape is 

independent of both these parameters, although it does vary with substrate wettability. 

The same characteristic is also observed for the shear-thinning fluids. Figure [142] 

compares the shape of viscoplastic fluid drops with 0 ≤ τc ≤ 26.1 Pa at the end of inertial 

expansion (which is similar for impacts on different wettability substrates as detailed in 

§5.1.3) with sessile drop shapes after impacts from 10, 25, 50 and 100 mm on a 

hydrophilic (light grey outline) and hydrophobic (white outline) substrate. Whilst low 

yield-stress fluid drops show similar characteristics to the Newtonian and shear-thinning 

fluids with equilibrium drop shapes varying only with substrate wettability, the final 

sessile drop shapes of higher yield-stress magnitude fluid drops vary with yield-stress 

magnitude, impact velocity and substrate wettability.  
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Figure 142. A comparison of viscoplastic fluid drop shape at the end of inertial expansion with 

sessile drop shape. Light grey outlines indicate sessile drop shapes on hydrophilic glass. White outlines 
indicate sessile drop shapes on hydrophobic parafilm-M. Comparisons are made with viscoplastic fluids 

with 0 ≤ τc ≤ 26.1 Pa impacting from fall heights of 10, 25, 50 and 100 mm. 
 

 

6.1 The influence of fluid shear-thinning and yield-stress on spreading. 

 

To understand any effects fluid yield-stress may have on the spreading of drops it 

is first necessary to examine the effects of fluid shear-thinning. Whilst significant 

research has been performed on this topic152,154,156
, the most relevant here is the 

theoretical analysis performed by Starov et al.154 and the experimental investigation of 

shear-thinning drop spreading performed by Rafaï et al.156.    

  

As detailed in §1.2.6.1, Starov et al.154 examined the spreading of non-Newtonian 

liquid drops on nearly complete (small θe) and completely wetting (θe = 0o) horizontal 

solid substrates. Theoretical analyses were performed for both gravitationally driven (RE 
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> a) and capillary driven (RE < a) spreading regimes. The evolution of drop shapes for 

each regime were deduced to have self-similar solutions, from which spreading laws were 

obtained. For the case of an axisymmetric non-Newtonian drop within the capillary 

spreading regime, a self-similar relationship of the form given in Equation [44] was 

established. The temporal spreading exponent p is obtained from Equation [45].  

 

Temporal variations in drop radius R(t) were measured for each of the four shear-

thinning fluids from impacts of Hf = 10 mm on a glass substrate. A best fit power law 

curve of the form R(t) = Atp
  was then fitted to each set of results. Figures [143] and [144] 

display variations in R(t) for drops of the X0125 (n = 0.400) and X075 (n = 0.084) fluids 

respectively, along with their best fit power law curves (short dashed line). Each results 

set constitutes the average of five drop measurements. 
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Figure 143. Drop radius plotted against time for impacts of the X0125 fluid (K = 0.208 Pasn, n = 0.400, DE 
= 3.474 mm) from Hf = 10 mm (We = 4.9) on to a glass substrate. The short dashed line corresponds to a 

best fit power law of the form R(t) = Atp. The results displayed here are an average of 5 separate drop 
spreading measurements. To aid visual clarity, measurement errors are not displayed, however are 

comparable with the symbol size. 
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Figure 144. Drop radius plotted against time for impacts of the X0125 fluid (K = 0.208 Pasn, n = 0.400, DE 
= 3.347 mm) from Hf = 10 mm (We = 2.1) on to a glass substrate. The short dashed line corresponds to a 

best fit power law of the form R(t) = Atp. The results displayed here are an average of 5 separate drop 
spreading measurements. To aid visual clarity, measurement errors are not displayed, however are 

comparable with the symbol size. 
  

 Figure [145] compares measured values of the spreading exponent p with those 

predicted by Equation [45], denoted by the long dashed line. The solid line represents the 

constant spreading exponent derived for Newtonian fluids using Tanner’s law (Equation 

35). An experimental investigation by Rafaï et al.156 also compared measured spreading 

exponents against those predicted by Equation [45] for shear-thinning fluids with 0.3 ≤ n 

≤ 0.94. These results are reproduced in Figure [145]. For fluids with n ≥ 0.6, Rafaï et al. 

measured spreading exponents slightly smaller than the Newtonian exponent (p = 0.1) 

from Tanner’s law. Moreover, experimental results were found to agree with those 

predicted by Starov et al. for all except the most shear-thinning (n = 0.3) fluid, whose 

measured exponent was notably larger than the predicted result. 
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Figure 145. Drop spreading coefficient p (R(t) = Atp) plotted against shear-thinning power law index n 
(Equation 37) for measurements of the four shear-thinning fluids with 0.084 ≤ n ≤ 0.400 (open square 
symbol) and measurements reproduced from Rafaï et al.156 for shear-thinning fluids with 0.3 ≤ n ≤ 0.9 
(filled triangle symbol). The dashed line corresponds to predictions using Equation [45] from Starov et 

al.154. The solid line corresponds to the spreading exponent p = 0.1 established by Tanner for the spreading 
of Newtonian fluid drops (Equation 35). 

 

The results from Rafaï et al. are not sufficiently accurate to provide conclusive 

evidence supporting Equation [45]; the exponent for the n = 0.3 fluid differs from 

predictions by a margin in excess of the experimental error and for less-shear-thinning 

fluids (n ≥ 0.6), error margins are sufficiently large for measurements to agree with 

predictions by both Starov et al. and Tanner’s law (p = 0.1). In contrast, the results from 

the current investigation provide evidence unambiguously supporting the theory by 

Starov et al. to within experimental error and extend measurements towards lower power 

law indices, highlighting the validity of the theory for highly shear-thinning fluids.    

 

 Variations in drop radius with time are now plotted for the yield-stress fluids in 

the range 0.3727 ≤ n ≤ 0.475, 0 ≤ τc
 ≤ 26.1 Pa. As with the shear-thinning fluids, best fit 

power law curves are fitted to the results to establish the temporal spreading exponent p. 

Figures [146] – [148] display the results and best fit curves for the YSF020, YSF030 and 

YSF040 fluids impacting from fall heights of Hf = 10 mm on a glass substrate. 
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Figure 146. Drop radius plotted against time for impacts of the YSF020 fluid (K = 1.44 Pasn, n = 0.475, τc 
= 0 Pa, DE = 2.848 mm) from Hf = 10 mm (We = 8.8) on to a glass substrate. The results displayed here are 

an average of 5 separate drop spreading measurements. To aid visual clarity, measurement errors are not 
displayed, however are comparable with the symbol size. 
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Figure 147. Drop radius plotted against time for impacts of the YSF030 fluid (K = 5.53 Pasn, n = 0.378, τc 
= 11.5 Pa, DE = 2.678 mm) from Hf = 10 mm (We = 5.2) on to a glass substrate. The results displayed here 

are an average of 5 separate drop spreading measurements. To aid visual clarity, measurement errors are 
not displayed, however are comparable with the symbol size. 
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Figure 148. Drop radius plotted against time for impacts of the YSF040 fluid (K = 7.94 Pasn, n = 0.373, τc 
= 26.1 Pa, DE = 3.347 mm) from Hf = 10 mm (We = 3.0) on to a glass substrate. The results displayed here 

are an average of 5 separate drop spreading measurements. To aid visual clarity, measurement errors are 
not displayed, however are comparable with the symbol size. 

 

Figure [149] plots the measured spreading exponent p as a function of the shear-

thinning power law index n for the viscoplastic fluids. Whilst the measured exponent 

agrees with predictions by Starov et al. (dashed line, Equation 45) for the YSF020 fluid 

(τc = 0 Pa) to within experimental error, fluids with τc > 0 Pa show significantly smaller 

values than the predictions. The YSF020 fluid has no measurable yield-stress and as such, 

behaves characteristically like a shear-thinning fluid. In contrast, the exponent values of 

fluids with τc > 0 indicate that spreading rates are retarded by fluid yield-stress forces 

acting against the capillary driven spreading. Moreover the retardation rate increases with 

yield-stress magnitude. The resultant influence on final sessile drop shape is assessed in 

the following section.      
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Figure 149. Drop spreading coefficient p (R(t) = Atp) plotted against shear-thinning power law index n 

(Equation 37) for viscoplastic fluids with 0.373 ≤ n ≤ 0.475 and 0 ≤ τc ≤ 26.1. The dashed line corresponds 
to predictions using Equation [45] from Starov et al. The solid line corresponds to the spreading exponent p 

= 0.1 established by Tanner for the spreading of Newtonian fluid drops (Equation 35). 
 

 

6.2 The influence of yield-stress magnitude on sessile drop shape. 

 

 To establish the influence of yield-stress magnitude on the final sessile state of 

impacting drops, the effect of viscous fluid characteristics are first assessed, 

Measurements of βSessile = DSessile/DE and the static contact angle θe are taken for the 

shear-thinning fluids after impacts on both glass and parafilm substrates from a range of 

fall heights. Figures [150] and [151] respectively plot βSessile and θe against the power law 

index n for drops of the four shear-thinning fluids in the range 3.5 ≤ We ≤ 183. Error 

margins are not displayed in either figure to aid visual clarity, however both βSessile and θe 

results agree with the averaged values of βSessile = 2.75 and θe = 95.5o to within 

experimental error. Whilst the results are compared here against n, a similar 

independence is also obtained when comparing measurements with the consistency 

coefficient K. Changes in n, K and We therefore do not significantly influence either the 

final drop spread factor or sessile contact angle for impacts on parafilm. The same 

conclusion can be attributed to impacts on the glass substrate, where shear-thinning drops 
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were found to be completely wetting (θe = 0o). Variations in final drop shape for the 

viscoplastic fluids can therefore be attributed to yield-stress effects. 

 

The results for shear-thinning drop equilibrium contact angles are similar to those 

established by Mao et al.47 for Newtonian drops. They observed that fluid viscosity and 

We do not influence the equilibrium contact angle of drops after impact. 
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Figure 150. Sessile drop spread factor βSessile plotted against shear-thinning power law index n (Equation 

37) for impacts from Hf = 10 mm (We = 3.5 ± 1), Hf = 50 mm (We = 41 ± 0.5) and Hf = 100 mm (We = 89 
± 0.9) on a parafilm substrate. Error margins are not displayed for visual clarity, however measurements 

agree with the average βSessile = 2.75 to within experimental error. 
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Figure 151. Sessile drop contact angle θe plotted against shear-thinning power law index n (Equation 37) 
for impacts from Hf = 10 mm (We = 3.5 ± 1), Hf = 50 mm (We = 41 ± 0.5) and Hf = 100 mm (We = 89 ± 

0.9) on a parafilm substrate. Error margins are not displayed for visual clarity, however measurements 
agree with the average θe = 95.5o to within experimental error. 

  

Fluids with a yield-stress above a threshold magnitude (related to the size of the 

drop) have previously been established to influence the formation of spherical drops 

during free-fall (§4.3) and inhibit inertial drop spreading during the expansion phase of 

impact (§5.4). We make the further conjecture that fluid yield-stress may also inhibit the 

spreading of drops, preventing the formation of drop shapes governed by Equation [26]. 

In order to verify this conjecture, βSessile and θe for each viscoplastic fluid are plotted 

against the yield-stress magnitude τc for each impact We; Figures [152] and [153] display 

results for impacts on the parafilm and glass substrates respectively.    
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Figure 152. Sessile drop spread factor βSessile plotted against fluid yield-stress magnitude τc for impacts in 

the range 10 mm ≤ Hf ≤ 200 mm (5.7 ≤ We ≤ 303) on a parafilm substrate. Each data point is the average of 
five separate drop measurements.  
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Figure 153. Sessile drop spread factor βSessile plotted against fluid yield-stress magnitude τc for impacts in 
the range 10 mm ≤ Hf ≤ 200 mm (6.0 ≤ We ≤ 332) on a glass substrate. Each data point is the average of 

five separate drop measurements.  
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For drops spreading on the parafilm surface in Figure [152], βSessile remains 

independent of impact velocity for low yield-stress magnitude fluids with τc < 11.5 Pa, 

similar to the results observed for the Newtonian and shear-thinning fluids. For τc > 11.5 

Pa however, there is a clear variation in final sessile drop diameter for impacts at 

different velocities, indicative of βSessile varying with We. This indicates that fluid yield-

stress prevents drops from forming similar sessile drop shapes by inhibiting spreading or 

retraction. For impacts on glass in Figure [153], βSessile for fluids with τc ≤ 5.4 Pa are 

similar in magnitude, although the YSF025 fluid shows slightly smaller values of βSessile 

in comparison with the YSF020 fluid (τc = 0 Pa). As τc increases above τc = 11.5 Pa, 

βSessile decreases notably for impacts at similar We, indicating that spreading becomes 

increasingly inhibited. 

 

A more clear understanding of the inhibiting effect of yield-stress on drop 

spreading is provided in Figure [154]. This displays the measured difference between 

βSessile for equivalent impacts on the glass and parafilm substrates, denoted ∆βSessile. 

Results are plotted against τc for impacts in the range 5.8 ≤ We ≤ 317.  
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Figure 154. The difference between βSessile for equivalent drop impacts on a glass and parafilm substrate, 
∆βSessile,, plotted against yield-stress magnitude for impacts at Hf = 10 mm (We = 5.8 ± 2.8), Hf = 50 mm 

(We = 70 ± 6) and Hf = 100 mm (We = 317 ± 9). 
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Low yield-stress magnitude fluids with τc ≤ 5.4 Pa exhibit a similar characteristic 

to both the Newtonian and shear-thinning fluids upon examination of ∆βSessile. Fluid 

drops are completely or nearly completely wetting on glass substrates and partially 

wetting on parafilm. ∆βSessile for each fluid type is large and similar in magnitude 

irrespective of We and the viscous characteristics of the fluid. In contrast for viscoplastic 

fluids with τc > 5.4 Pa, ∆βSessile is reduced and decreases with increased τc. The spread 

factor at the end of inertial expansion (βm) for these fluids is the same on both substrates 

(§5.1.3), therefore these results indicate that as yield-stress magnitudes increase, the 

amount of spreading/retraction after impact reduces and sessile drop shapes become more 

similar, irrespective of the substrate wettability.     

 

This analysis provides a qualitative assessment of the influence of fluid yield-

stress on spreading. A more quantitative approach cannot be made however because 

whilst βSessile is independent of viscous fluid characteristics (whilst varying as a function 

of τc), the maximum spread factor at the end of inertial expansion is dependent on the 

viscous characteristics of the fluid. An analysis of the difference between βm and βSessile to 

establish how much drops spread after inertial expansion therefore cannot be 

disassociated from viscous fluid properties.  

 

 Figures [155] and [156] respectively display sessile drop contact angles for 

viscoplastic fluids after impacts from varying fall heights on parafilm and glass substrates. 

For impacts at similar We, increasing the yield-stress magnitude over the range 0 ≤ τc ≤ 

26.1 Pa results in increases in θe on both substrates. Increases of 10.4 ≤ ∆θe ≤ 13.6o are 

observed for the parafilm substrate (5.6 ≤ We ≤ 146) and 27.6 ≤ ∆θe ≤ 33.4o
 (6 ≤ We ≤ 

160) for the glass substrate. The short dashed line in Figure [155] corresponds to the 

measured sessile contact angle of water drops containing a Polysorbate 20 additive at 

concentrations greater than 10X C.M.C (θe = 53 ± 2.6o). The surface tension of these 

drops are equal (σ = 0.034 Nm-1) to those measured for the viscoplastic fluids, however 

only values of θe for the YSF020 and YSF025 fluids agree closely and to within 

experimental error of the water drop measurements. 
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The variation of θe with We is small for low yield-stress fluids and similar to that 

observed for the Newtonian and shear-thinning fluids, where θe for non-splashing drops is 

similar and independent of the impact velocity. Variations increase however as τc 

increases. For the YSF040 fluid (τc = 26.1 Pa), θe varies by 3.9o for impacts (in the range 

3 ≤ We ≤ 141.3) on the parafilm substrate and 6.5o (in the range 2.9 ≤ We ≤ 153.3) for the 

glass substrate. This indicates that final sessile drop shapes become increasingly 

influenced by impact conditions as τc increases. 
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Figure 155. Sessile drop contact angle θe plotted against yield-stress magnitude for viscoplastic fluids with 
0 ≤ τc ≤ 26.1 Pa impacting on a parafilm substrate from Hf = 10 mm (We = 5.6 ± 2), Hf = 25 mm (We = 29 

± 2), Hf = 50 mm (We = 68 ± 3) and Hf = 100 mm (We = 146 ± 4). The short dashed line corresponds to the 
sessile state contact angle of water drops with a Polysorbate 20 additive at greater than 10X C.M.C (σ = 
0.034 Nm-1). Errors margins are not displayed to aid visual clarity. (Inset) average θe for drops of each 

viscoplastic fluid (averaged over the four fall heights) plotted against Bingham-Capillary number B̂ . The 
average of measurements for B̂ < 1 is denoted by the long dashed line. The line of best fit for fluids with 
B̂ ≥ 1 (including the YSF030 fluid where B̂ ~1) is denoted by the solid line. Error bars are equal to the 

standard deviation of relative errors from each set of data points at a fixed yield-stress magnitude. 
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Figure 156. Sessile drop contact angle θe plotted against yield-stress magnitude for viscoplastic fluids with 
0 ≤ τc ≤ 26.1 Pa impacting on a glass substrate from Hf = 10 mm (We = 6.0 ± 2), Hf = 25 mm (We = 32 ± 2), 
Hf = 50 mm (We = 73 ± 6) and Hf = 100 mm (We = 160 ± 5). Errors are not displayed to aid visual clarity. 

(Inset) average θe for each fluid (averaged over the four fall heights) plotted against Bingham-Capillary 
number B̂ . The average of measurements for B̂ < 1 is denoted by the long dashed line. The line of best fit 
for fluids with B̂ ≥ 1 (including the YSF030 fluid where B̂ ~1) is denoted by the solid line. Error bars are 

equal to the standard deviation of relative errors from each set of data points at a fixed yield-stress 
magnitude 

 

Inset in both Figures [155] and [156] are plots of the average θe for each fluid 

(over impacts at the different We) plotted against the Bingham-Capillary number B̂  

(Equation 63). For viscoplastic fluids with B̂ < 0.5, variations in θe are small and agree 

with the averaged value of θe = 54.8o for the parafilm substrate and θe = 4.8o
 for the glass 

substrate (long dashed lines) to within experimental error. Fluids with B̂ > 1 however 

show deviations away from this value; increasing in size with increasing τc. A line of best 

fit made to these results (including the YSF030 fluid with B̂ ~ 1) is denoted by the solid 

line. The intersection of these lines occurs at B̂ ~ 0.9 for the parafilm substrate and B̂ ~ 

0.8 for the glass substrate, close to the expected value of B̂ = 1 in both cases. This value 

indicates a regime change from capillary governed to yield-stress governed flow 

behaviour. 
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For fluids with B̂ < 1, capillary forces appear to dominate over yield-stress forces 

and the sessile state contact angle remains near constant and unchanging with yield-stress 

magnitude, power law index n or consistency coefficient K. This is the same as what is 

observed for shear-thinning fluids. For fluids with B̂ > 1 however, θe increases with τc, 

indicating that yield-stress effects influence the sessile drop shape with the influence 

becoming more apparent with increasing yield-stress magnitude.  
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7 Conclusion. 
 
 Systematic experiments show that viscoplastic fluid drops can exhibit peculiar 

behaviour during detachment, free-fall, impact and subsequent spreading on a solid, 

horizontal substrate. An investigation was completed that examined the morphological 

aspects of viscoplastic fluid drops during these processes. Viscoplastic fluids exhibit 

shear-thinning fluid behaviour when the applied stress exceeds a certain threshold value, 

called the yield-stress. Below this threshold however, the fluid exhibits elastic solid 

characteristics. This behaviour can be described using the Herschel-Bulkley rheological 

model. In order to separate the effects of yield-stress from viscous effects, comparisons were 

made with Newtonian and shear-thinning fluid drop behaviour. The rheological properties 

of each fluid type were measured using a Haake-Mars rotational rheometer. 

 

 High speed imaging at 1000 Hz. was used to record the dynamics of drops during 

the fast detachment, free-fall and impact processes. Spreading occurs over much longer 

timescales however, therefore imaging was performed at slower frame-rates of 1 Hz.   

 

 Unlike Newtonian and shear-thinning fluids, which assume a spherical equilibrium 

drop shape during free-fall, viscoplastic fluid drops can exhibit a non-spherical equilibrium 

shape, with an aspect ratio that varies as a function of the yield-stress. The behaviour of 

these drops can be characterised by a dimensionless number which is the product of the 

Bingham and the capillary numbers, and represents the ratio of the Laplace pressure (which 

acts to minimise the surface energy) to the yield-stress. In drops where the Laplace pressure 

exceeds the yield-stress a spherical equilibrium drop shape is obtained; otherwise drops are 

prolate, and their aspect ratio grows linearly with the yield-stress magnitude in the explored 

range of experimental parameters. We name this dimensionless number the Bingham-

Capillary number and abbreviate it to B̂ . 

 
 Prior to free-fall, viscoplastic fluid drops grow and detach from a flat ended capillary 

tube. Their behaviour during this process can differ significantly from Newtonian and shear-

thinning fluids with drops appearing increasingly more prolate with yield-stress magnitude. 

Drops grow at the end of a capillary tube until a critical threshold is reached. They then 

become unstable and detach. This stability threshold can be characterised by a variant of B̂ , 
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characterising the ratio of extensional yield-stress to capillary pressure. This variant is used 

because flow in the drop neck is nearly purely extensional. For viscoplastic drops where the 

capillary pressure is greater than the extensional yield-stress, the tensile stress at critical 

breakup remains nearly constant. A similar characteristic is also observed for Newtonian 

and shear-thinning fluids. When the extensional yield-stress exceeds the capillary pressure 

the maximum tensile stress at critical breakup increases linearly with yield-stress magnitude. 

This relationship is consistent with the von Mises yield criterion, which relates the 

extensional yield-stress to the yield-stress in pure shear. 

 
 The inertial spreading of drops after impacting on a solid surface exhibits some 

features that can be related to the fluid rheology. In particular, at the end of the expansion 

phase, the fluids with the higher yield-stresses exhibit peaks at the centre of the lamella. This 

suggests that the drop deformation is localised in the external part, while the central part 

remains undeformed because the stress is smaller than the yield point of the fluid. 

Predictions defining a threshold diameter wherein shear-stresses (which are assumed 

during impact to vary linearly from zero at the axisymmetric drop centre to a maximum at 

the lamella rim) equal the yield-stress magnitude show reasonable agreement with 

measured drop peak diameters. More direct quantitative comparisons are difficult because 

one must also take into account the potential effects of shear thinning.  

 
 The final sessile shapes of drops after spreading are also influenced by fluid yield-

stress and can be characterised with the Bingham-Capillary number. Quantitative 

measurements show fluid yield-stress can act to inhibit spreading driven by capillarity. On a 

hydrophilic substrate, increasing the yield-stress magnitude decreases the final sessile drop 

diameter. This characteristic differs from Newtonian and shear-thinning fluids which both 

completely wet the substrate. For drops where the capillary pressure is greater than the 

yield-stress, equilibrium contact angles remain similar to that of a Newtonian fluid (with an 

equivalent surface tension) and independent of the impact velocity or yield-stress 

magnitude. For drops where the yield-stress exceeds the capillary pressure, the contact angle 

appears to grow linearly with yield-stress. 
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8 Further Work 

 

There are a number of regions where further research outwith the scope of the 

current investigation would improve our understanding of viscoplastic fluid drop 

behaviour. Firstly, as this research has highlighted, it is difficult to produce fluids with 

viscometric properties that enable systematic comparisons to be performed. Specifically, 

the effect of yield-stress magnitude on the amount of inertial spreading during impact 

cannot be directly established. Moreover, the independent influences of (shear-thinning) 

power law index n and consistency coefficient K on drop impact behaviour cannot be 

determined from the existing research. Numerical studies would therefore contribute 

towards a better understanding of the behaviour. By incorporating viscoplastic bi-

viscosity (Eq. 50) or Herschel Bulkley models (Eq. 46) into the viscosity terms of a 

robust computational fluid dynamics code (FLUENT, STAR CCM) using a volume of 

fluid conservation approach, investigations analysing the independent effects of power 

law index, consistency coefficient and yield-stress magnitude on free-fall and impact 

behaviour could be performed. Investigations should initially focus on validating the fluid 

dynamics equations for Newtonian fluid drop impacts where only one viscosity term is 

required. The AGM model in §5.2.2.2.5 would be a good starting point because it 

includes aspects describing more complex fluid flow. This or an alternative model could 

then be modified to include shear-thinning behaviour. Numerical results could be directly 

compared with experimental results presented in this thesis for validation purposes. The 

rheological model employed (Power law, Cross, Carreau) should first be analysed to find 

which provides numerical predictions closest to the experimental results. The influence of 

the degree of shear-thinning (e.g power law index n and consistency coefficient K in the 

power law model) should then be analysed in detail. Once this study is complete, the 

rheological model most accurately predicting viscoplastic behaviour should be studied 

(Herschel-Bulkley or bi-viscosity model). A parametric study analysing the effect of 

yield-stress magnitude and the degree of shear-thinning should then be completed. This 

analysis should asses the validity of the central viscoplastic peak prediction equation (Eq. 

101). This research would be timely and a natural progression from existing numerical 

and theoretical analyses of viscoplastic drop detachment145-147. Validation of the results 
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could be made by comparing predictions with the experimental results presented within 

this thesis. 

    

Further experimental studies into drop free-fall behaviour could potentially be 

achieved with the use of diamagnetic levitation techniques167. Currently drop free-fall 

behaviour is observed with the drop in a moving reference frame with respect to the 

camera. This limits the period of observation. Diamagnetic levitation techniques would 

allow the drop to remain indefinitely within the field of view of the camera. Interfacial 

oscillations and damping behaviour of drops could then be examined more thoroughly as 

well as the equilibrium prolate shapes of the viscoplastic drops over longer timescales. 

The results of this experiment would contribute towards a better understanding of fluid 

yield-stress. For instance if drop shapes varied over long timescales instead of remaining 

in an equilibrium shape, this would suggest a bi-viscosity model, rather than a Herschel-

Bulkley model is more suitable in characterising  viscoplasticity.      
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Appendix A 

Appendix A – Acrylic Case  

 

(all dimensions in mm) 
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Appendix B 

Labview Post-processing routines: 
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Labview post-processing routine schematic – Figure [19] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Labview post-processing routine schematic – Figure [20] 
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Glossary of useful terms  
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Glossary of useful terms  
 
Please consult the nomenclature for a description of all terms used in equations. 
 
Bingham number 
 

Non-dimensional number characterising the ratio of yield-stress to capillary 
forces. 
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Bingham model (rheology) 
 

The Bingham rheological model assumes a linearly elastic solid-like behaviour 
for applied shear-stresses less than the yield-stress. Above the yield stress, the 
viscoplastic fluid exhibits Newtonian fluid flow: 
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Bingham-Capillary number (shear) 
 

A dimensionless number that is the ratio of the yield-stress to the capillary 
pressure. 

 

σ
τ EcDB =ˆ

     
  

   
This term is the product of the dimensionless Capillary and Bingham numbers. 
 
Bingham-Capillary number (extensional) 
 

This term is more significant for extensional flows such as those found in the 
neck filament during drop detachment. The dimensionless term is the ratio of the 
extensional yield stress to capillary pressure. Based on von-Mises criterion. The 
extensional yield-stress of a viscoplastic fluid is 3  times larger than the shear-stress 
in purely shear  flow. The term is thus a modification of the Bingham-Capillary 
number, such that: 
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Capillary length 
 

A drop with a radius smaller than the capillary length can be considered a low 
Bond number surface, wherein gravitational effects are not dominant. A sessile drop 
on a solid surface will take the shape of spherical cap; the solution to the Young 
equation with gravity absent. Drops with a radius greater than the capillary length will 
differ increasingly from typical impact behaviour.   

 

g
a

ρ
σ

=      

  
 
Capillary number 
    

A dimensionless number characterising the ratio of viscous to capillary forces. 
 

σ
µ.xv

Ca =   

 
Carreau model (rheology) 
 

A common model used for shear-thinning fluids. This model defines the liquid 
as having low and high shear rate Newtonian regions. In between these regions, fluid 
exhibits shear-thinning. This model is nearly identical to the Cross model (the Cross 
model is a simplification of this model), with only one extra term. It has been found 
that the utilisation of this extra term, a, improves the fit with experimental data.  

 
 

[ ] amaC )1(
0 )(1

1
−

∞

∞

+
=

−
−

γµµ
µµ

&
      

    
Casson model (rheology) 
 

The Casson model is similar to the Bingham model, only with a more gradual 
transition from the Newtonian to the solid-like regime. 
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Complex fluid - see non-Newtonian fluid 
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Cross model (rheology) 
 

A common model used for shear-thinning fluids. This model defines the liquid 
as having low and high shear rate Newtonian regions. In between these regions, fluid 
exhibits shear-thinning. This model is a simplification of the Carreau model. 
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Deborah number 
 

A dimensionless number used in rheology to characterize how "fluid" a 
material is. It is defined as the ratio of the material relaxation time (characterizing the 
intrinsic fluidity of the material) to the characteristic time scale of the experiment 
probing the response of the material. The smaller the Deborah number, the more fluid 
the material appears. 
 
Dimensionless number 
 

As the name suggests, a dimensionless number has no dimensional units and 
usually describes a ratio of forces (e.g. surface tension, yield stress, viscous or 
inertial) or timescales (see Deborah number). These terms are usually used to 
characterise fluid behaviour.  
 
Dynamic surface tension 
 

All fluids have a surface tension, which acts at the interface of the fluid. 
Whilst the magnitude of the surface tension does not ordinarily vary, the addition of 
surfactants into the fluid can alter surface energies. Surfactants have a hydrophilic 
head and a hydrophilic tail. They find it energetically favourable to move to the fluid 
interface. This results in a reduction of surface energy. In equilibrium, the fluid 
interface has a constant surface tension value, however non-equilibrium situations can 
exist where new surface regions are formed more quickly than the surfactants can 
migrate to the interface and the surface tension may vary with position. Eventually the 
surfactant/fluid system will form an equilibrium. The temporal variation in surface 
energy is called dynamic surface tension.  
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Ellis model (rheology) 
 

Shear-thinning models such as the Cross or Carreau model define low and 
high shear Newtonian regimes. The Ellis model also defines a low shear Newtonian 
regime, however now, the fluid viscosity tends to zero at high shear-rates. This model 
is typically used for materials such as polymer melts where the high shear rate 
Newtonian region is not observed. The model is also typically expressed in terms of a 
stress variable.     
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Herschel-Bulkley model (rheology) 
 
This is the most commonly used rheological model for viscoplastic fluids. 

Below the yield-stress, the fluid is modeled as a linearly elastic solid. Above the yield 
stress, the fluid is modeled as a shear-thinning fluid. 
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Newtonian fluid 
 
 A fluid where the ratio of applied shear-stress to shear-rate, called the 
viscosity, is constant. 
   
Non-Newtonian fluid 
 
 A fluid where the viscosity (the relationship between shear-stress and shear-
rate) is not constant (unlike a Newtonian fluid). The most common fluids are 
 

• Shear-thinning/Pseudoplastic fluid – Apparent viscosity increases with 
increased stress 

• Shear-thickening/Dilatant fluid – Apparent viscosity increases with increased 
stress 

• Thixotropic fluid – Apparent viscosity decreases with duration of stress 
• Rheopectic fluid – Apparent viscosity increases with duration of stress 
• Viscoelastic fluid – A fluid which is viscous but which also exhibits certain 

elastic properties such as the ability to store energy of deformation. 
• Viscoplastic fluid – exhibits solid like characteristics when the applied shear-

stress is below the yield-stress. For applied shear-stresses above the yield-
stress, fluid-like behaviour is observed. Typically this fluid behaviour is 
shear-thinning.  
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Ohnesorge number 

   
A dimensionless number characterising the ratio of viscous to capillary forces 

in terms of the drop size. 
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Power law model (rheology) 
 
 The most simple rheological model describing shear-thinning fluid behaviour. 
Unlike the Cross and Carreau models, this model does not describe low or high shear 
Newtonian regimes.  
 

1−= nKγµ &                     
  

Reynolds number 
   

A dimensionless number characterizing  the ratio of inertial to viscous forces.  
 

µ
ρ zE vD ..Re =  

 
Shear-thinning  - see Non-Newtonian fluid 
 
Surfactant – see Dynamic surface tension 
 
Yield-stress (shear and extensional) 
 

This defines the shear or tensile (for extensional flow) stress above which a 
viscoplastic fluid will exhibit fluid-like properties 
 
Von-Mises yield criterion 
 

The von-Mises yield criterion states that the yielding of plastic materials 
begins when the second deviatoric stress tensor reaches a critical value. In the case of 
the generalized Herschel-Bulkley rheological model, this is the square of the yield-
stress magnitude. Moreover, the shear stress at the onset of yielding is 3  times 
smaller than the tensile stress in the case of simple tension at the yield criterion.  
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Weber number 
 

A dimensionless number characterising the ratio of inertial to capillary forces. 
 

σ
ρ 2.. zE vD
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Wettability 
 
 A fully wetting substrate is one in which a fluid drop will readily spread on the 
surface.  Accordingly, a partially wettable substrate is one in which a fluid drop will 
(if the drop radius is less than the capillary length) form a spherical cap shape. The 
final shape of the drop on the surface will depend on the drop size and the fluid and 
substrate surface energies. 
 
 

 


