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Abstract

Active learning reduces annotation costs for supervised learning by concentrating la-

belling efforts on the most informative data. Most active learning methods assume that

the model structure is fixed in advance and focus upon improving parameters within

that structure. However, this is not appropriate for natural language processing where

the model structure and associated parameters are determined using labelled data. Ap-

plying traditional active learning methods to natural language processing can fail to

produce expected reductions in annotation cost. We show that one of the reasons for

this problem is that active learning can only select examples which are already cov-

ered by the model. In this thesis, we better tailor active learning to the need of natural

language processing as follows. We formulate theUnreliable Parameter Principle:

Active learning should explicitly and additionally address unreliably trained
model parameters in order to optimally reduce classification error. In order
to do so, we should target both missing events and infrequentevents.

We demonstrate the effectiveness of such an approach for a range of natural lan-

guage processing tasks: prepositional phrase attachment,sequence labelling, and syn-

tactic parsing. For prepositional phrase attachment, the explicit selection of unknown

prepositions significantly improves coverage and classification performance for all ex-

amined active learning methods. For sequence labelling, weintroduce a novel active

learning method which explicitly targets unreliable parameters by selecting sentences

with many unknown words and a large number of unobserved transition probabili-

ties. For parsing, targeting unparseable sentences significantly improves coverage and

f-measure in active learning.
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Chapter 1

Introduction

Active learning refers to a class of methods which reduce theamount of manually

annotated data necessary for the supervised training of classifiers to reach a given

performance level. The standard training of supervised classifiers assumes randomly

sampled training data. This risks the inclusion of redundant or irrelevant data points,

thereby wasting human annotation effort. By contrast, active learning directs human

annotation effort towards useful data points. It has been applied in the field of machine

learning, such as boundary recognition problems (Cohn et al., 1994), benchmark clas-

sification tasks (Melville and Mooney, 2004), and speech recognition (Hakkani-Tür

et al., 2006). It has also been applied widely within the fieldof natural language pro-

cessing, for instance text categorisation (McCallum and Nigam, 1998), part-of-speech

tagging (Argamon-Engelson and Dagan, 1999), and parsing (Hwa, ).

We can define active learning as an incremental labelling andretraining process

with a human annotator in the loop as in Figure 1. First, a model C is trained on a

training set of labelled examplesL. Then,n new data points are chosen from a pool

of unlabelled examplesU , according to the current model and a selection functionf .

These selected data points are submitted to the annotator for labelling. Labelled data

points are added to training setL and removed from the poolU . The process is repeated

until either the model converges, the pool is exhausted or the human stops.

There are a wide variety of approaches to active learning, and they can generally

be characterised by their choice of selection functionf . Analytical solutions to the

problem of finding the minimal training set are, in general, intractable except for a

very few kinds of problems, for instance learning robot arm control (Cohn et al., 1996).

Similarly, methods which attempt to minimise the classification error directly are also

computationally impractical for most situations (Roy and McCallum, 2001).

1



2 Chapter 1. Introduction

U is a set of unlabelled candidates

L is a set of labelled training examples

C is the current hypothesis

Initialise

C← Train(L)

Repeat

N← Select(n,U,C, f )

U ←U−N

L← L∪Label(N)

C← Train(L)

Until (C = Ctrue) or (U = /0) or (human stops)

Figure 1.1: Generic active learning algorithm, pseudo-code due (Hwa, 2000).

For this reason, most research in active learning has focused on computationally

cheaper methods such asuncertainty samplingandQuery-by-Committee(QBC). Un-

certainty sampling selects examples where the currently trained classifier is uncertain

with regard to the preferred labelling (Lewis and Catlett, 1994). QBC selects examples

for which an ensemble of classifiers shows a high degree of disagreement with respect

to the preferred labelling (Seung et al., 1992). Although both uncertainty sampling

and QBC appear to yield excellent results, a closer examination shows that, typically,

practitioners do not apply these techniques in a ‘pure’ setting. That is, each exam-

ple selected for labelling may not be the most informative one (as predicted by active

learning). As we show in this thesis, the reason for this is that active learning methods

typically do not directly address the problems of dealing with sparse data.

Sparse data problems are ubiquitous in natural language processing due to the Zip-

fian nature of language. Zipf’s law states that a small numberof words (or event types

in general) occur very often, whereas the majority of word (event types) occurs very

rarely (Zipf, 1935). In a machine learning scenario, this means that some rare events

will be missing completely from a training set, even when it is very large. Accordingly,

parameter estimation for such rare events can be unreliablein two ways, depending on

whether a rare event in question has been observed in the training set or not. We will

refer to these two types of situations asinfrequent eventsandmissing events.

Parameter estimation for infrequent events suffers from a high degree of variance

and can result in degraded classification performance. The same holds for situations
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where an event is entirely missing from the training set, butwe stipulate its presence.

For instance, in the parameter estimation for Hidden Markovmodels, some probability

mass is commonly reserved for stipulated, yet unobserved transition probabilities, in

other words, probability estimates without correspondingn-grams in the training set, in

order to avoid zero probability transitions. However, suchsmoothing methods merely

alleviate variance problems, and do not solve them.

Missing events can also result in a loss ofcoverage, a situation when the structure

of the probabilistic model is not rich enough to cover all types of input. Forout-of-

coverageexamples, the classifier may not be able to predict any label at all or only

output a generic label. Example for this are complete parse failures due to missing

rules in the case of syntactic parsing, unknown prepositions in prepositional phrase

attachment, and unknown words in part-of-speech tagging.

An important observation is that both uncertainty samplingand QBC have short-

comings with regard to unreliably estimated parameters. Neither method has a prin-

cipled way to deal with missing events, because they can onlyrefine probability es-

timateswithin a given model structure. We will demonstrate this repeatedly in later

chapters, in a variety of applications. One example is that of uncertainty sampling

applied to the learning of a state-of-the-art parser (Bikel, 2004a). As we will show

in more detail in Section 6.2, a standardly smoothed parser fails to select examples

which would provide novel and important parsing events. We show that entropy alone

does not reliably identify such examples. Another illustrative case is that when apply-

ing QBC to the prepositional phrase attachment method of (Collins and Brooks, 1995)

without further adjustments, QBC will assign minimal disagreement scores to exam-

ples with unknown prepositions and hence ignore them. We will show in Section 4.2

that this can result in important prepositions missing fromthe training set and in severe

coverage problems.

Uncertainty sampling may not properly address infrequently observed events ei-

ther. In fact, uncertainty sampling prefers examples with high entropy distributions

regardless of the underlying empirical counts. In chapter Section 4.1, we show that

uncertainty sampling applied to prepositional phrase attachment can lead to a situation

where annotation effort is stubbornly directed towards a single preposition – and away

from all other prepositions – for many iterations on end simply because this preposition

happens to have a high entropy distribution. This is inappropriate because the remain-

ing prepositions will continue to suffer from infrequentlyobserved events. QBC can,

in fact, address the problem of infrequently observed events but only indirectly. QBC is
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typically based on methods that perturb the model distributions. Infrequently observed

events will exhibit a higher degree of variance and thus contribute to disagreement

within the ensemble. However, due to the stochastic nature of model perturbation, we

are not guaranteed to select the appropriate examples.

1.1 Explicit Treatment of Unreliable Parameters

In view of these shortcomings of active learning, we state the following principle:

Unreliable Parameter Principle:

Active learning should explicitly and additionally address unreliably trained
model parameters in order to optimally reduce classification error. In order
to do so, we should target both missing events and infrequentevents.

We demonstrate how this principle applies to a variety of problems, namely prepo-

sitional phrase attachment, part-of-speech tagging, named entity recognition (NER)

and syntactic parsing. We have chosen these tasks as representative of typical natural

language processing applications and for having various degrees of difficulty. Preposi-

tional phrase attachment, the simplest of the tasks, only requires binary classification.

Part-of-speech tagging and NER are representative of sequence labelling tasks and are

therefore more difficult than mere classification. Syntactic parsing, which requires the

assignment of structured labellings, presents an even higher degree of difficulty. Be-

cause of the different characteristics of these tasks, the actual implementation of the

Unreliable Parameter Principle varies.

Prepositional Phrase Attachment Completely unknown prepositions are a particu-

larly severe manifestation of missing events for this task.We show that the

preferred selection of unknown prepositions results in improved classification

accuracy. This can be achieved within the framework of standard methods such

as uncertainty sampling QBC by using appropriate backoff probabilities during

sample selection to flag such instances. This approach addresses themissing

eventsaspect of the Unreliable Parameter Principle.

Sequence Labelling We introduce a novel active learning method suitable for se-

quence labelling tasks. This method explicitly targets unreliable model para-

meters by selecting sequences with many unknown words and a large expected

number of unobserved transition probabilities. This method, too, addresses the

missing eventsaspect of the Unreliable Parameter Principle.
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Syntactic Parsing We demonstrate that the preferred selection of unparsable sen-

tences is a surprisingly strong active learning method. Interestingly, this method

requires that the parser runs with a lesser degree of smoothing. By targeting

missing parsing rules, we again address themissing eventaspect of the Unre-

liable Parameter Principle. We also present a novel two-stage method which

selects unparsable sentences according to a parser which was trained on a per-

turbed training set. This method implements both themissing eventand the

infrequent eventaspect of the Unreliable Parameter Principle.

1.2 Contributions of the Thesis

The main contributions of this thesis fall into the following categories:

Comparison between Uncertainty Sampling and QBC

Given their popularity, we consider uncertainty sampling and QBC as points of de-

parture and as important benchmarks throughout this thesis. We provide an extensive

comparison of these methods in application to three different natural language pro-

cessing tasks of varying degrees of difficulty. Within QBC, we explore i) alternative

methods of creating diverse ensembles, ii) different divergence metrics, and iii) influ-

ence of ensemble size. Interesting results from this part ofthe thesis include:

• Generally, both uncertainty sampling and QBC outperform random sampling, as

expected. In most cases, we find that QBC beats uncertainty sampling. However,

in named entity recognition uncertainty sampling outperforms QBC.

• For QBC, there is no particular setting of ensemble creationmethod or diver-

gence metric which is always guaranteed to be best. Rather, appropriate settings

vary from application to application.

In general, these findings suggest caution when choosing active learning methods

for novel applications. Unfortunately, the explorable alternative active learning meth-

ods are restricted due to a shortage of training material in exactly those situations when

the use of active learning is desirable.

To the best of our knowledge, a comprehensive comparison between uncertainty

sampling and QBC across different tasks has not been presented in previous literature.

Similarly, the exploration of the experimental parameter space for QBC is novel.
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Explicitly Targeting Unreliable Parameters via Smoothing /Backing-Off

Choosing appropriate smoothing or backoff settings in active learning can be vital to

allow for the targeted selection of out-of-coverage examples. We demonstrate this for

prepositional phrase attachment and for parsing.

• For prepositional phrase attachment, assigning an appropriate backoff probabil-

ity helps to select unknown prepositions and substantiallyimproves coverage

and accuracy for both uncertainty sampling and QBC.

• For parsing, switching offconstraint relaxation(an effective smoothing method)

helps to select out-of-coverage examples and substantially improves coverage

and f-measure. Again, this method combines gracefully withuncertainty sam-

pling and QBC and results in improved performance in each situation.

This goes against the perceived wisdom in the literature that the same model should

be used in the sample selection phase and in deployment, for example (Baldridge and

Osborne, 2004). Even for standard methods such as uncertainty sampling and QBC,

using an off-the-shelf classifier may not be the best option.On the contrary, we find

that the best settings for sample selection may not be appropriate for deployment. In

summary, we should consider settings which promote the selection of out-of-coverage

examples. The successful application of these techniques supports our thesis that active

learning should explicitly address unreliably trained parameters.

Explicitly Targeting Unreliable Parameters via Other Meth odologies

Beyond adjusted smoothing, we introduce two novel methods in this thesis which ex-

plicitly target either out-of-coverage examples or variance in parameter estimates.

• For sequence labelling tasks, we introduce a novel method which targets unsup-

ported model parameters. For part-of-speech tagging, thismethod in isolation

performs as well as, or better than, uncertainty sampling. In combination with

uncertainty sampling, we match QBC at its optimal setting.

• For parsing, we present a novel two-stage method which selects unparsable sen-

tences according to a parser which was trained on a perturbedtraining set. Again,

this method works as well as the best QBC setting for parsing.

The success of both of these techniques supports once again our thesis regarding

unreliable parameters.
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1.3 Structure of the Thesis

The remainder of this thesis is structured as follows.

• In Chapter 2, we first provide the background for the different tasks to which we

apply our active learning methods: prepositional phrase attachment, sequence

labelling, and syntactic parsing. Next, we cover relevant literature for different

active learning methods with a special focus on uncertaintysampling and Query-

by-Committee.

• In Chapter 3, we set out the experimental conditions for all the experiments

in subsequent chapters, including evaluation metrics and statistical significance

tests.

• In Chapter 4, we present results for active learning as applied to prepositional

phrase attachment.

• In Chapter 5, we present results for sequence labelling. In particular, we apply

active learning to part-of-speech tagging and named entityrecognition.

• In Chapter 6, we present results using active learning for syntactic parsing.

• Chapter 7 discusses the implications of the experimental results and suggests

future work.





Chapter 2

Literature Review

This chapter describes the background literature relevantto the remainder of this thesis.

In the first three sections, we give a survey of those natural language processing tasks to

which we apply our active learning methods. In Section 2.1, we discuss prepositional

phrase attachment as a suitable testing ground for active learning. In Section 2.2, we

review sequencing models with applications to part-of-speech tagging and named en-

tity recognition. In Section 2.3, we cover the relevant literature on syntactic parsing.

We give a more detailed overview of one representative modelfor each of the tasks

as we use it in the corresponding experimental sections in later chapters and discuss

relevant applications and available data sets. In Section 2.4, we examine relevant lit-

erature in the field of active learning with a special focus onuncertainty sampling and

Query-by-Committee. We conclude in Section 2.5.

2.1 Prepositional Phrase Attachment

Attachment choices present a common source of ambiguity in the syntactic analysis

of sentences. In prepositional phrase attachment (PPA), one predicts whether a prepo-

sitional phrase is attached to the verb in the matrix clause or to the preceding noun

phrase. This is useful for determining the argument structure of a sentence and its

semantic interpretation. Suppose we would like to analyse the following sentence:1

He bought a car with a steering wheel.

The sentence receives different interpretations, depending on whether the preposi-

tional phrase ‘with a steering wheel’ is attached to the verb‘bought’ or to the noun

phrase ‘a car’ in the analysis of the verbal phrase.
1This example is adapted from (Brill and Resnik, ).

9
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NP-attached: (bought ((a car) (with a steering wheel)))

VP-attached: ((bought (a car)) (with a steering wheel))

World knowledge helps us to decide that the prepositional phrase should be noun-

attached which yields the intended interpretation of ’the purchase of a car which is

equipped with a steering wheel’.

2.1.1 Approaches

Altmann and Steedman, 1988 argued that, at least in some cases, we may need to re-

sort to a discourse model for proper PPA disambiguation. However, subsequent work

showed that we can disambiguate successfully based only on local lexical information

in the majority of cases. Seminal work by Hindle and Rooth, 1993 demonstrated the

feasibility of a corpus-based approach. Setting the scene for most later research, they

showed that attachment can be predicted fairly accurately based only on lexical head

information for the involved verb, noun, and prepositionalphrases. They applied unsu-

pervised learning, using co-occurrence information from acorpus of 13 million words

of AP news. Later approaches showed that even larger corporacan further improve

estimation, for example by tapping into the web as a corpus (Volk, 2000).

Not surprisingly, supervised approaches based on annotated tuples extracted from

the Penn treebank yield better results. Successful approaches include maximum en-

tropy modelling (Ratnaparkhi et al., 1994) and transformation-based learning (Brill

and Resnik, ).

2.1.2 An Exemplary PPA Approach – Collins & Brooks, 1995

Collins and Brooks, 1995 present a supervised training approach involving maximum

likelihood estimation (MLE) and backing-off for sparse data problems. They use a

training set which was extracted from the Penn treebank by (Ratnaparkhi et al., 1994).

Each training instance is a quadruple of the form〈v,n, p,n2〉 together with the correct

attachment information, wherev is the verb,n the first head noun,p the preposition,

andn2 the second head noun, for example:

〈joined,board,as,director〉 → v

〈bought,car,with,wheel〉 → n

The naïve application of MLE suggests the following frequency-based estimation

for the probability of a quadruple to be noun-attached:
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f1 = 〈v,n, p,n2〉

f 1
2 = 〈v, p,n2〉, f 2

2 = 〈n, p,n2〉, f 3
2 = 〈v,n, p〉

f 1
3 = 〈v, p〉, f 2

3 = 〈n, p〉, f 3
3 = 〈p,n2〉

f4 = 〈p〉

Table 2.1: Feature sets for prepositional phrase attachment at different backoff levels

P(n|〈v,n, p,n2〉) =
Cn(〈v,n, p,n2〉)

C(〈v,n, p,n2〉)
(2.1)

whereC(·) counts all occurrences of a tuple, andCn(·) counts all noun-attached oc-

currences. The problem with this approach is that the feature set is too specific in

most cases so that the estimate will be undefined for test instances which are not in the

training set.

To counter this problem, Collins and Brooks use a backoff scheme based on work

in speech recognition (Katz, 1987). Their backoff scheme isdefined as follows:

P1(n|u) =
Cn( f1(u))

C( f1(u))

P2(n|u) =
Cn( f 1

2 (u))+Cn( f 2
2(u))+Cn( f 3

2(u))

C( f 1
2(u))+C( f 2

2(u))+C( f 3
2(u))

P3(n|u) =
Cn( f 1

3 (u))+Cn( f 2
3(u))+Cn( f 3

3(u))

C( f 1
3(u))+C( f 2

3(u))+C( f 3
3(u))

(2.2)

P4(n|u) =
Cn( f4(u))

C( f4(u))

P5(n|u) = 1.0

where feature tuplesf are as defined in Table 2.1. As we can see, feature tuples are

increasingly general for later backing-off stages while always retaining the preposition.

The probabilityP(n|u) is taken to bePi(n|u) at the most specific backoff leveli

(lowest i) for which the value is defined. This is the case where the denominator is

non-zero. An instance is classified as noun-attached ifP(n|u) > 0.5. If none of the

feature tuples match on the first four levels,P(n|u) is set to 1.0 and the instance will

be (deterministically) classified as noun-attached.

To give an example from (Collins and Brooks, 1995), assume that we would like to

classify the instance〈joined,board,as,director〉 and that none of these features have

been observed on the first three backoff levels. However, there are 4 instances which



12 Chapter 2. Literature Review

match on the fourth level (f4 = 〈as〉), 3 out of which are labelled as noun-attached.

This instance would be classified as noun-attached.

P4(n|u) =
Cn(〈as〉)
C(〈as〉)

=
3
4

(2.3)

Collins and Brooks achieve 84.1% classification accuracy. Applying preprocess-

ing, for instance by replacing four-digit numbers with the string ’YEAR’, yields a

further increase in performance up to 84.5%. Interestingly, they get best results by

retaining all low count events.

A baseline method for PPA which always votes for noun-attachment yields 59%

accuracy. By contrast, assigning the most likely attachment for each preposition in-

creases accuracy to 72.2%. For practical purposes, one can reliably guess the most

likely attachment by labelling just a few instances for eachpreposition. This insight

motivates the idea that active learning methods in application to PPA should pursue

coverage so that every preposition has been seen at least a few times. We explore this

idea in Chapter 4.

2.1.3 Summary

We have outlined the prepositional phrase attachment task and discussed relevant lit-

erature. Particular attention was given to the approach of (Collins and Brooks, 1995)

which we will use for our experiments in Chapter 4.

2.2 Sequence Labelling

Sequencing tasks imply the assignment of labels to tokens ina sequence. While this

task superficially looks like a classification task, labelling decisions for individual to-

kens will typically inform each other and best results are achieved by aiming at a glob-

ally optimal decision. Prominent examples for sequencing tasks are part-of-speech

tagging and named entity recognition.

Part-of-speech tagging

Part-of-speech tagging is the assignment of syntactical part-of-speech tags to the words

in a sentence based on their context. For instance, the sentence “This is not a trivial

issue .” will be labelled as follows:
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This/DT is/VBZ not/RB a/DT trivial/JJ issue/NN ./.

Here, ‘DT’ stands for determiner, ‘VBZ’ for an inflected verb, and so on. A chal-

lenge in part-of-speech tagging is the accurate labelling of ambiguous words, for ex-

ample the word ‘issue’ which can either be a noun or a verb. A part-of-speech tagger

can reliably decide for the noun reading in this case given the determiner and adjective

in the preceding context.

Named entity recognition

Named entity recognition (NER) is the task of identifying and classifying (non-embedded)

phrases in a text as belonging to a set of predefined entities such as person and com-

pany names, locations, and time and date expressions. In thefollowing example, we

identify ‘Karim Alami’ as a person name and ‘Morocco’ as a location.

He meets [PER Karim Alami] of [LOC Morocco] .

NER was first introduced in the Sixth Message Understanding Conference in 1995

(MUC-6) as a task separate from information extraction, (Grishman and Sundheim,

1996). In a strict sense, NER is a structural labelling task,but, using a suitable token-

wise representation for brackets, sequence labelling has been successfully applied to

this task. In fact, the majority of recent work on NER addresses the problem as a

sequence labelling problem as is evidenced for example by the entries for the shared

NER tasks of the Conference on Computational Natural Language Learning (CoNLL)

in 2002 and 2003 (Tjong Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003).

Using the IOB labelling scheme of Ramshaw and Marcus, 1995, tokens within an

entity are marked by their entity type, prefixed with ‘B’ for tokens at the beginning

of an entity and with ‘I’ for all other tokens in an entity; non-entities are marked ‘O’.

Thus, the bracketing above is represented in the IOB scheme as follows:

He/O meets/O Karim/B-PER Alami/I-PER of/O Morocco/I-LOC ./O

2.2.1 Applications

Sequencing applications have a variety of applications in natural language processing.

Part-of-speech taggers and NER systems can be used as components in information ex-

traction systems as the first essential processing stage where relevant entities are iden-

tified before relations between entities are established. Part-of-speech taggers are also
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commonly used to provide input for parsers as a method for reducing the search space.

This has been shown to increase both speed and parsing accuracy (Charniak, 1996;

Prins and van Noord, 2003). In text-to-speech systems, taggers are used to provide

more information for the correct pronunciation. Typical examples include words which

are ambiguous in their written form. For instance, the word ‘object’ is stressed on the

first syllable as a noun, and on the second as a verb. Lastly, automatic part-of-speech

tagging in combination with subsequent human correction iscommonly used in corpus

annotation and is significantly faster than human annotation from scratch (Skut et al.,

1997). This is often done incrementally so that previously annotated sentences are

added to the training set in order to improve performance andbetter guide humans in

their annotation of later sentences.

2.2.2 Approaches

Manual writing of rule-based systems has been shown to be effective, for example

the ENGTWOL system for English part-of-speech tagging (Voutilainen, 1995). This

tagger has been shown to outperform automatically trained taggers (Samuelsson and

Voutilainen, 1997). The majority of modern systems, however, are probabilistic tag-

gers (Garside et al., 1987; Church, 1988; DeRose, 1988; Brants, 2000b). These have

the advantage that they can be automatically trained on annotated corpora.

2.2.3 An Exemplary Sequencing Approach – Brants, 2000

In the following, we describe the Trigrams’n’Tags tagger (TnT) as an exemplary statis-

tical Markov model tagger (Brants, 2000b).2 A Markov model describes a stochastic

process which generates sequences of symbols. The structure of a Markov model is

given by a set of states and transitions between states. States emit symbols with an

emission probabilityand transitions between states are taken with atransition proba-

bility. In many NLP applications, states represent tags and emissions represent words.

Markov models have theMarkov property: transition probabilities only condition on a

path history of a fixed length. TnT uses a second-order Markovmodel, so that transi-

tion probabilities condition only on the previous two states.

Sequential decoding implies finding the most probable tag sequencet1 . . .tT given

the wordsw1 . . .wT of a sentence:

2For our experiments in Chapter 5 we will use the freely available implementation of (Schröder,
2002) which is based on the TnT tagger.
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t1 . . .tT = argmax
t1...tT

P(t1 . . .tT |w1 . . .wT) (2.4)

This expression can be simplified by assuming that words are generated condition-

ally independently of each other and only dependent on theirindividual tags, and by

applying the Markov assumption:

P(t1 . . .tT |w1 . . .wT) =
P(w1 . . .wT |t1 . . .tT)P(t1 . . .tT)

P(w1 . . .wT)
(2.5)

∝ P(w1 . . .wT |t1 . . .tT)P(t1 . . .tT) (2.6)

=

[

n

∏
i=1

P(wi |t1 . . .tT)

]

P(t1 . . .tT) (2.7)

=

[

n

∏
i=1

P(wi |ti)

]

P(t1 . . .tT) (2.8)

=

[

n

∏
i=1

P(wi |ti)

]

×P(tT |tT−1 . . .t1) (2.9)

×P(tT−1|tT−2 . . .t1)×·· ·×P(t2|t1)×P(t1)

=
n

∏
i=1

P(wi |ti)P(ti|ti−1, ti−2) (2.10)

Thus, the tagging problem reduces to the following expression:

t1 . . .tT = argmax
t1...tT

n

∏
i=1

P(wi |ti)P(ti|ti−1, ti−2) (2.11)

This problem can be solved efficiently using Viterbi decoding (Viterbi, 1967). This

is a dynamic programming technique where intermediate results are stored in a trellis

structure for later reuse.

Training such a model requires estimation of the transitionprobabilitiesP(ti|ti−1, ti−2)

and the emission probabilitiesP(wi |ti). In Brants, 2000b, this is done using standard

maximum likelihood estimation using relative frequenciesfrom manually annotated

data, and appropriate backoff/smoothing schemes for sparse data problems.

Transition Probabilities

The transition probabilityP(ti|ti−1, ti−2) is also calledtrigram probability because it

involves a sequence of three tags. Estimating trigram transition probabilities from rel-

ative frequencies only, either observed or unobserved, would suffer from many unseen

event types due to data sparseness, and, therefore, some kind of smoothing is required.
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TnT combines trigram transition probabilities with transition probabilities of shorter

sequences in the conditioning history vialinear interpolation. UnigramsP̂(t3) have no

history,bigramsP̂(t3|t2) have a transition history of length one:

P̂(t3) =
f (t3)
N

(2.12)

P̂(t3|t2) =
f (t2, t3)
f (t2)

(2.13)

P̂(t3|t1, t2) =
f (t1, t2, t3)
f (t1, t2)

(2.14)

where f (·) are frequencies of observed events andN is the size of the training set.

The linear interpolation of n-grams uses appropriateλi values to arrive at an esti-

mate for conditional trigram tag probabilities:

P(t3|t1, t2) = λ1P̂(t3)+λ2P̂(t3|t2)+λ3P̂(t3|t1, t2) (2.15)

such thatλ1 + λ2 + λ3 = 1. Values forλi are estimated on the training set using

deleted interpolation(Jelinek and Mercer, 1980). This technique successively deletes

each trigram in turn and estimatesλ values using the remaining n-grams in the corpus.

Emission Probabilities Emission probabilities for known words are maximum like-

lihood probability estimates based on relative frequencies:

P̂(w|t) =
f (w, t)
f (t)

(2.16)

Emission probabilities for unknown words are estimated using a suffix analysis

in a process calledsuccessive abstraction(Samuelsson, 1993). For example, words

ending in -able are most likely to be adjectives, for instance capable, recognisable,

whereas words ending in -ion are most likely to be nouns (station, satisfaction, etc).

The probability distribution for a particular suffix is derived from words in the training

set that share the same suffix:

P(t|-able) =
f (t, -able)
f (-able)

(2.17)

Probabilities are smoothed by combining the distributionsof shorter suffixes:

P(t|ln−i+1, . . . , ln) =
P̂(t|ln−i+1, . . . , ln)+θiP(t|ln−i, . . . , ln)

1+θi
(2.18)
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The value ofθ is based on the standard deviation of unconditional MLE tag prob-

abilities, see (Samuelsson, 1993) for details.P(lsuff|t) is obtained by Bayesian in-

version. The lookup procedure can be efficiently implemented using a suffix trie. The

training set for parameter estimation is restricted to infrequent words since infrequently

words have different tag output distributions from frequently observed ones (Dermatas

and Kokkinakis, 1995; Baayen and Sproat, 1996).

2.2.4 Annotated Resources

Part-of-Speech Tagging

A pioneering effort in corpus linguistics was the compilation of the Brown Univer-

sity Standard Corpus of Present-Day American English (Brown Corpus) by Francis

and Kǔcera in the 1960s (Francis and Kučera, 1964; Kǔcera and Francis, 1967). This

corpus contains over a million words of modern American English from a variety of

genres. The first editions of the corpus were just raw, unannotated text, but over time

the entire corpus was part-of-speech tagged with a tagset of87 tags, using a combina-

tion of automatic tagging and manual correction. A similar effort has been made for

British English with the Lancaster-Oslo-Bergen corpus, also using the Brown tagset

(Johansson et al., 1978).

The Penn treebank is best known as an annotated resource for syntactic tree struc-

tures (Marcus et al., 1993), and we will review it in more detail in Section 2.3. How-

ever, the Penn treebank is also annotated with part-of-speech tags. The Penn treebank

tagset is a simplified version of the Brown tagset with only 45tags (Santorini, 1990).

NER

NER was first introduced in the Sixth Message Understanding Conference in 1995

(MUC-6) as a task separate from information extraction, (Grishman and Sundheim,

1996). Here the target language was English. NER also featured in the shared tasks

of the Conference on Computational Natural Language Learning (CoNLL). Dutch and

Spanish were target language at CoNLL-2002, (Tjong Kim Sang, 2002), English and

German at CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003). These data sets

are still commonly used for research purposes.
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2.2.5 Summary

Despite the success of manually constructed taggers, the predominant paradigm is to

use stochastically trained taggers, due to their very good performance and easy train-

ability. With the availability of large annotated corpora it may seem as if tagging is

a solved problem. However, only a small fraction of the world’s languages have such

annotated corpora. With an interest of the research community to acquire annotated

resources for these languages for a wide range of potential applications such as ma-

chine translation the annotation bottleneck continues to be a pressing problem. In Sec-

tion 2.4, we will look at active learning methods which can alleviate the cost problem

of annotation.

2.3 Parsing

Parsing is the process of recognising sentences as grammatical with respect to a gram-

mar while simultaneously assigning syntactical structureto the input. Let us consider

the syntactic analysis of the sentence “They fell into oblivion after the 1929 crash”

in Figure 2.1. As in NER, we bracket associated words in the sentence, for example

“the 1929 crash” is considered to be a noun phrase. In contrast to NER, brackets can

be recursive like the noun phrases which are embedded in the prepositional phrases.

Furthermore, analysis is usually complete in parsing, in the sense that all words in a

sentence will be part of a phrase.

2.3.1 Applications

Parsing has been employed in a variety of applications, among others in grammar and

style checking (Thurmair, 1990), language modelling (Charniak, 2001), and question

answering (Harabagiu et al., 2001). Recently, the statistical machine translation com-

munity has focused a lot of attention on the possible benefitsof syntax-based machine

translation (Yamada and Knight, 2001). Finally, as with tagging, parsers have been

used in corpus annotation efforts in combination with humancorrection, for example

in the creation of the Penn treebank (Marcus et al., 1993)
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Figure 2.1: Syntactic analysis of an example sentence from WSJ

2.3.2 Approaches

There is a wide range of approaches to parsing. These can be broadly classified by the

type of grammar formalism employed, and if the parser has a stochastic component.

Context-free grammars are formal production systems to describe recursive con-

stituency in human languages (Chomsky, 1956). In a CFG, all rules have the form

X→ y, whereX is a non-terminal symbol andy is a sequence of non-terminals and/or

terminals. Rules are said to be context-free because they can be applied regardless of

the context ofX. Despite linguistic arguments that at least some natural languages are

mildly context-sensitive, such as Swiss-German (Shieber,1985), CFGs are widely used

for parsing. Feature-based or constraint-based grammar formalisms are popular from

a linguistic perspective, for example Lexical Functional Grammar (LFG) (Bresnan,

1982), or Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1988).

They allow fine-grained description of natural languages. Other approaches include

categorial grammars and dependency grammars.

All of these approaches can be endowed with a stochastic component which assigns

probabilities to every reading of a sentence. The main strength of such probabilistic

parsers is their principled way of dealing with the ubiquitous ambiguity in natural lan-

guages by selecting the most probable parse. The simplest probabilistic version of a

CFG is an unlexicalised probabilistic context-free grammar (PCFG). Charniak, 1996
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reports work on estimating unlexicalised PCFGs using treebanks. Rules of the form

LHS→RHS are read off directly from the parse trees of the Penn treebank. Rule prob-

abilitiesp(RHS|LHS) are estimated by smoothed relative frequencies according to the

maximum likelihood principle. This simple scheme achievedsurprisingly good results.

More recently, it has been shown that such unlexicalised methods can achieve near

state-of-the-art results (Klein and Manning, 2003). Also,feature-based approaches

have been made probabilistic, in particular LFG (Johnson etal., 1999) and HPSG

(Toutanova and Manning, 2002).

Treebank Grammars vs Manually Coded Grammars

PCFGs, either lexicalised or unlexicalised, are typicallyinduced from an existing tree-

bank where all local tree configurations in the gold-standard trees of a treebank are

taken to be valid production rules. While such grammars which are derived from tree-

banks in this way are data-driven, it is important to bear in mind that the treebanks

themselves were annotated with an implicit grammar formalism in mind as evidenced

by comprehensive manuals in annotation projects such as thePenn treebank (Mar-

cus et al., 1993). By contrast, grammars in constraint-based formalisms are explicitly

specified, often with a focus on linguistically interestingproblems, and not necessarily

with a focus on frequent phenomena. But, large scale development of English formal

grammars, aiming at coverage (Flickinger, 2000), and the development of treebanks

for HPSG has helped to narrow the gap between these paradigms(Oepen et al., 2002).

Lexicalisation

Unlexicalised PCFGs can make overly strong independence assumptions with negative

effects. For example, the probability of a verb phrase expanding into a verb and two

following noun phrases is independent of the verb in an unlexicalised PCFG. This is

clearly wrong since this probability should be considerably higher for ditransitive verbs

such as ‘give’ or ‘tell’ than for other verbs (Manning and Schütze, 1999).

To remedy such problems, we decorate syntactic trees with lexical head informa-

tion. For each local tree, we need to identify thehead, in other words, the constituent

which determines the syntactic character of the phrase. Forexample in the left tree in

Figure 2.2, VB is the head of the VP, and VP the head of S. Such head assignments

are not given in a treebank and need to be implemented as a set of head-finding rules

(Jelinek et al., 1994; Magerman, 1995). Lexical information is projected upwards from
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Figure 2.2: Head lexicalisation information percolates upwards from yield of tree.

the yield of a treebank tree along lexical head lines. This results in a decorated tree as

in the right of Figure 2.2. From such a decorated tree we can read off rules like:

S(loves)→ NP(Mary)VP(loves)

In the general format which is the starting point for virtually all lexicalised PCFGs,

non-terminal categoryX is decorated with additional lexical informationx and we

write X(x) in the notation of (Collins, 1997) for each non-terminal in arule:

P(h)→ Lm(lm) . . .L1(l1)H(h)R1(r1) . . .Rn(rn) (2.19)

whereP is the parent,H the head-daughter of the phrase, andLi andRi are left and

right modifiers of the head-daughter. Head-wordh is inherited fromH to P.

Lexicalised PCFGs may differ from each other with respect tothe kind of lexical

information they include. Carroll and Rooth, 1998 only include words, while Collins,

1997 includes words and part-of-speech tags.

2.3.3 An Exemplary Parsing Approach – Collins, 1997

Reliably estimating the expansion probability of rules with a format as in Example 2.19

is impossible because of massive sparse data problems. In order to make parameter es-

timation robust, lexicalised parsing models must make further independence assump-

tions. Collins, 1997 introduces three lexicalised parsingmodels which successively
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encode more and more linguistic knowledge. In the following, we discuss Model 2 in

more detail which makes the following two crucial independence assumptions:

• Left daughtersLi , right daughtersRi , and headH are generated independently of

each other.

• The generation of daughters on either side is independent ofeach other (0th order

Markov assumption).

Thus, we arrive at the following formulation for rule expansion probabilities.

P(RHS|LHS) = P(H|P) (2.20)

×
m

∏
i=0

P(Li |P,H,d(i))

×
n

∏
i=0

P(Ri|P,H,d(i))

In order to compensate for these drastic independence assumptions, daughter gen-

eration is also conditionalised on distance measured(i) which models if there is an

intervening verb or some form of punctuation between theith constituent and head-

daughterH. The linguistic modelling specific to Model 2 concerns subcategorisation

information. Here, an incremental subcat frame feature maintains arguments of H

which have yet to be generated on that side.

Despite these independence assumptions, all parameter types condition on large

contexts such that direct parameter estimation would suffer from sparse-data problems

in many situations. To counter this problem, a number of back-off levels are fore-

seen for each parameter type. For example, the head daughterexpansion probability

P(H|P,w, t) smoothes withP(H|P, t) andP(H|P). As with TnT, these parameters are

combined via linear interpolation.

The Model 2 parser achieves 88.6% precision and 88.1% recallon Section 23 of the

Penn treebank (for sentences shorter than 40 words). The results published (Collins,

1997) were a leap forward over other models at the time and thepaper was hugely

influential. In fact, Dan Bikel devoted considerable effortto the reimplementation of

Model 2 (Bikel, 2004a). Bikel showed that a clean-room implementation based entirely

on information from (Collins, 1997) and Collins’ PhD thesis(Collins, 1999) does not

match the reported performance. In order to bridge this gap,he provided a thorough

analysis of all missing details to reach the published results. Importantly, he finds
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in his analysis that bilexical dependencies are much less important than previously

thought. We use Bikel’s implementation for our experimentswhich can be downloaded

athttp://www.cis.upenn.edu/~dbikel/software.html.

2.3.4 Annotated Resources

The supervised training of probabilistic parsers requiressyntactically annotated cor-

pora, so-called treebanks. A number of treebanks has been released over the last decade

for a variety of languages, including English, German, Chinese, Korean, etc.

English – The Penn Treebank

Perhaps the most prominent example is the University of Pennsylvania treebank, or

Penn treebank (Marcus et al., 1993; Taylor et al., 2003). In aperiod of eight years,

from 1989 until 1996, American English texts from a wide range of genres were anno-

tated at different levels of linguistic analysis. Genres included computer manuals, Wall

Street Journal (WSJ) articles and transcribed telephone conversations. About 7 million

words were part-of-speech tagged; 1.6 million words annotated for speech disfluen-

cies. 3 million words were skeletally parsed, that is to say,annotated with context-free

bracketing with limited empty categories and no indicationof non-contiguous struc-

tures and dependencies. Over 2 million words were parsed forpredicate-argument

structure, Figure 2.3 shows an example annotation for a sentence from the WSJ sec-

tion.

Marcus et al., 1993 explicitly state that a primary motivation for the enormous

endeavour of creating the Penn treebank was to support “the automatic construction of

statistical models for the grammar of the written and the colloquial spoken language”.

Indeed, since its release it has spawned a considerable bodyof research into learning

probabilistic parsers from annotated data.

German – NEGRA and TIGER Treebanks

The NEGRA project constructed the first large-scale corpus for German (Skut et al.,

1997; Brants et al., 2003). The treebank consists of about 20,000 sentences (350,000

tokens) from articles from the Germain daily newspaperFrankfurter Rundschau. The

NEGRA annotation scheme is more flexible than the Penn phrase-structure framework

in order to accommodate for free word order phenomena in German. Grammatical
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( (S

(NP-SBJ (PRP He) )

(VP (VBZ succeeds)

(NP

(NP (NNP Terrence) (NNP D.) (NNP Daniels) )

(, ,)

(NP

(ADVP (RB formerly) )

(DT a) (NNP W.R.) (NNP Grace) (NN vice) (NN chairman) )

(, ,)

(SBAR

(WHNP-11 (WP who) )

(S

(NP-SBJ (-NONE- *T*-11) )

(VP (VBD resigned) )))))

(. .) ))

Figure 2.3: Syntactic analysis of an example sentence in bracketed format. Annotation

includes part-of-speech (for example personal pronoun, PRP), syntactic category (noun

phrase, NP), grammatical function (subject, SBJ), and coindexing. The wh-noun phrase

dominating who is coindexed with the understood subject of the embedded sentence.

functions can be annotated explicitly by labelling branches. Furthermore, branches

may cross, thus allowing for the convenient annotation of dislocated constituents.

The TIGER project extended NEGRA both in size and level of annotation (Brants

et al., 2002). TIGER Release 2 comprises of 50,000 annotatedsentences. The extended

annotation scheme contains morphological information, a more detailed scheme for

prepositional phrase functions, and secondary branches for the appropriate representa-

tion of coordinations.

Cost of annotation With automatic support from part-of-speech taggers and parsers,

annotation speed for the syntactic annotation of the Penn treebank ranges between 750

and 1,000 words per hour for experienced annotators (Tayloret al., 2003). Brants et al.,

2003 report approximately 1,300 words per hour for trained annotators.3 Given the size

3The higher performance for NEGRA annotation might be explained by the use of part-of-speech
tagger and chunker trained on previously labelled materialfrom the same domain.
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of the corpus one can imagine the extent of human effort invested into this project. A

further complication in the construction of high-quality annotated corpora is the need

to guard against human error. In annotating the NEGRA corpus, each sentence is

independently labelled by two annotators (Brants et al., 2003). Diverging labels are

detected automatically and submitted to the annotators forcomparison. Reportedly,

comparison requires much more time than the initial annotation. Brants, 2000a reports,

among other things, on annotator errors in syntactic annotation of the NEGRA corpus.

Two annotators achieve labelled f-scores against the final version of 94.9% and 95.1%,

disregarding the annotation of grammatical functions. In general, manual syntactic

annotation is a very costly enterprise. Double annotation and subsequent comparison

for higher quality standards typically aggravate the cost problem.

2.3.5 Summary

We have provided an overview over approaches to parsing witha strong emphasis on

lexicalised probabilistic models. In particular, we outlined Collins’ Model 2 parser

which we use – in Bikel’s implementation – for our active learning experiments for

parsing in Chapter 6. We also gave an overview over treebanksas an indispensable

factor in the training of probabilistic parsing models and discussed the expense nec-

essary for their creation. The application of active learning to parsing should help to

incur savings in the annotation of treebanks for new languages.

2.4 Active Learning

The preceding sections made clear the necessity of annotated data for the supervised

training of classifier. Standardly, the training of supervised classifiers assumes ran-

domly sampled training data. This risks the inclusion of redundant or irrelevant data

points, thereby wasting human annotation effort. We have motivated the use of active

learning in the Introduction Chapter as a means to reduce theannotation effort over

random sampling. In contrast to the random sampling of data points, active learn-

ing can select data points for annotation by directing humanannotation effort towards

useful data points.

Dasgupta, 2004 gives the important theoretical result thateven optimal active learn-

ing methods are not always guaranteed to perform better thanrandom sampling. In

fact, it is easy to construct situations where this would be the case. In a domain where



26 Chapter 2. Literature Review

all data points have disjoint feature bundles, selecting some data points according to a

selection function is as good as selecting data points randomly.

In practice, of course, active learning is found to incur substantial savings in anno-

tation effort over random sampling. We will look at a varietyof different approaches to

active learning for the remainder of this chapter. Uncertainty sampling and Query-by-

Committee are very commonly used methods in the field and we use these as starting

points in all our experiments. Correspondingly, we pay particular attention to the de-

scription of these two types of methods. Other methods we consider are statistically

optimal solutions, error reduction sampling, density estimation, kernel-based methods

and hybrid methods.

2.4.1 Uncertainty Sampling

Uncertainty Sampling estimates the usefulness of a data point according to the uncer-

tainty of the model about the correct label of that data point. In a binary classification

scenario, uncertainty is highest when probabilities are atthe decision boundary of 0.5

(Lewis and Gale, 1994; Lewis and Catlett, 1994). Accordingly, examples with class

probabilities near the decision boundary are preferably selected.

For multinomial distributions, we can quantify uncertainty usingentropy. The en-

tropy of a discrete random variableH is defined as follows:

H(X) =−∑
x∈X

p(x) logp(x) (2.21)

Application to Parsing

Uncertainty sampling has been successfully used for activelearning of a probabilistic

parser (Hwa, ). Uncertainty of the parser about its analysisof a given sentence is ex-

pressed in terms oftree entropy, the entropy of the output distribution over all possible

analyses. Hwa gives a dynamic programming algorithm to efficiently compute entropy

over the exponential number of parse trees. Tree entropy as ameasure of uncertainty

has also been demonstrated to work well for different types of parsers (Hwa, 2001b).

Does Entropy Quantify Parameter Unreliability?

In this thesis, we posit that active learning methods shouldaddress unreliable parame-

ters. This raises the question if uncertainty sampling doesin fact do that. Or in other
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words, is entropy a reasonable quantity to express parameter unreliability? We can an-

swer this question with two illustrative examples from the domain of PP-attachment.

First, imagine we have a single empirical count for a featuref in favour of be-

ing noun-attached. Using maximum likelihood estimation without smoothing (as in

(Collins and Brooks, 1995)), we arrive at the following probability estimate:

P(n|u) =
Cn( f ) = 1
C( f ) = 1

= 1.0 (2.22)

For such a peaked distribution, entropy is 0.0, meaning thatthere is no uncertainty.

However, this is clearly a case of an extremely unreliable parameter estimate. For

example, if we were to acquire one more instance which is in favour of verb attach-

ment, the estimate would undergo a major shift from 1.0 to 0.5. By contrast, imagine

a parameter with a large number of counts equally distributed between verb and noun

attachment.

P(n|u) =
Cn( f ) = 500
C( f ) = 1000

= 0.5 (2.23)

This is a situation of a highly reliable probability estimate forP(n|u) as the acquisi-

tion of another data point would do very little to change thisestimate in either direction.

Clearly, spending more annotation effort on such a parameter estimate would be waste-

ful. However, the probability distribution has high entropy, and uncertainty sampling

would assess this as a worthwhile target for annotation.

The examples demonstrate that uncertainty and unreliability are not equivalent.

As seen above in Equation 2.21, entropy is a function over a probability distribution

only, and we do not consider information about the empiricalcounts from which the

distribution was estimated. We will see in later experiments, in particular for PP-

attachment, how this can cause problems for uncertainty sampling.4

2.4.2 Query-by-Committee

Query-by-Committee is an active learning method which requests annotation of data

points for which a committee of models disagrees the most (Seung et al., 1992). It can

be shown analytically that the generalisation error of the algorithm decreases exponen-

tially with the number of examples. Muslea, 2002 provides anintuitive explanation

for QBC: Whenever an ensemble disagrees over the labelling of a data point, at least

4These problems have been acknowledged already in Lewis and Gale, 1994; Lewis and Catlett, 1994.
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one ensemble member must have predicted a wrong label, and learning the true label

will benefit at least the member that made the mistake. Seung et al., 1992 suggested

QBC for a perceptron-learning task and provided theoretical foundations for the al-

gorithm. Freund et al., 1997 established theoretically that the approach is valid for a

larger class of models. QBC has since been applied to a variety of applications, in-

cluding document classification (McCallum and Nigam, 1998), part-of-speech tagging

(Argamon-Engelson and Dagan, 1999), and parsing (Baldridge and Osborne, 2003).

Ensemble Creation

QBC requires a method to create diverse ensembles. InCo-Testing, diverse ensemble

members are based on multiple views (Muslea, 2002). For example, web page classifi-

cation can be factored into views based either on the words ona web page or based on

the words in the hyperlinks pointing towards that page (Blumand Mitchell, 1998). As

in other QBC approaches, Co-Testing selects examples for annotation where the en-

semble classifiers disagree. Similarly, feature-based approaches allow to create multi-

ple views by creating suitable feature splits (Jones et al.,2003; Osborne and Baldridge,

2004; Becker et al., 2005). However, not all problems have a way of being factored

into alternative views of the learning problem. Furthermore, this method requires man-

ual intervention to create a feature split. For these reasons, we consider only automatic

ways of inducing ensemble diversity in this thesis. Two popular methods to do this are

baggingandsampling from a Dirichlet distribution.

Bagging Bagging (Breiman, 1996) and boosting (Schapire, 1990) are well-known

ensemble methods in machine learning and have been applied in the context of active

learning asQuery-by-BaggingandQuery-by-Boosting(Abe and Mamitsuka, 1998).

Both methods achieve significant (and similar) improvements over random sampling

for a variety of machine learning tasks. Because of their similar performance, we re-

strict our studies of such methods in later experiments to bagging. Bagging is a general

machine learning technique that reduces the variance of theunderlying training meth-

ods (Breiman, 1996). It aggregates the parameter estimatesfrom classifiers trained on

bootstrap replicates (bags) of the original training data.Creating a bootstrap replicate

entails sampling with replacementn examples from a training set ofn examples. Train-

ing a classifier on such a perturbed training set results in fluctuating model parameters

across bags. What is important for the application in QBC is that this variance is higher

for parameters based on infrequent events.
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Sampling from a Dirichlet Distribution As an alternative to perturbing the entire

training set, one can sample the individual distributions of the model according to

their posterior distributions (McCallum and Nigam, 1998; Argamon-Engelson and Da-

gan, 1999). The probability distributions which we perturbin this way are multino-

mial in general.5 The parameters of multinomial distributions are describedby the

Dirichlet distribution. The probability density functionof the Dirichlet distribution is

parametrised by the empirical counts in the training set. Asin bagging, lower counts

suffer from higher variance which contribute to higher ensemble divergence.

Discussion Since both bagging and Dirichlet sampling are capable of creating di-

verse ensembles, and both methods create higher variance for lower counts, it may

seem as if the methods are equivalent. However, there is one crucial difference.

Dirichlet sampling, as applied in (McCallum and Nigam, 1998; Argamon-Engelson

and Dagan, 1999), samples from each probability distributions which is present in the

model individually. As a consequence, the total number of distributions (and hence

the model structure) remains unchanged. By contrast, Query-by-Bagging (Abe and

Mamitsuka, 1998) eliminates some of the low frequency eventtypes and thus has the

potential to change the model structure. We will consider both methods in all our

QBC experiments. To the best of our knowledge, no one has compared the effects of

using these alternative perturbation methods previously.In particular, the potential of

eliminating events through bagging will be put to use in a novel method for parsing

which we describe in Section 6.4.

Divergence Metrics

Once the ensemble classifiers have been applied to the unlabelled instances in the pool,

the divergence within the ensemble can be quantified in a number of ways. The two

most popular methods arevote entropyandJensen-Shannon divergence.

Vote Entropy Vote entropy is defined as the entropy of the distribution which results

from each classifier in the ensemble voting for its top-ranked label (Argamon-Engelson

and Dagan, 1999).

D(e) =−∑
c

V(c,e)
k

log
V(c,e)

k
(2.24)

5The binomial distribution, appropriate for binary classification tasks such as PPA, can be adequately
treated as a special case of the multinomial.
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Example A Example B

Figure 2.4: Output distributions of two binary classifiers for two examples

wherek is the size of the committee andV(c,e) is the number of committee mem-

bers assigning a classc for the examplee. One can further normalise this score by

taking the logarithm of the number of possible labels so thatthe score ranges from

0 to 1.6

Jensen-Shannon Divergence The Jensen-Shannon (JS) divergence is a measure for

the distance between a set of distributions{p1, p2, . . . , pn} (Lin, 1991). It is defined as:

JSπ({p1, p2, . . . , pn}) = H
( n

∑
i=1

πi pi

)

−
n

∑
i=1

πiH(pi) (2.25)

whereH(·) is entropy as defined above in Equation 2.21 andπ is a weight vector

such that∑i πi = 1. JS-divergence can be seen as an extension of the well-known

KL-divergence towards multiple distributions (Kullback and Leibler, 1951).

KL(p,q) = ∑
x∈X

p(x)
p(x)
q(x)

(2.26)

For a uniform weight vectorπ, it can be shown that the JS-divergence is the average

KL-divergence to the mean of the set of distributions (Dhillon et al., 2002). This metric

has been previously applied as divergence metric in active learning (McCallum and

Nigam, 1998; Melville and Mooney, 2004).7

6In fact, Argamon-Engelson and Dagan, 1999 normalise by committee size and the number of pos-
sible labels. Since these are constant for one experiment, normalising in this way does not alter the
ranking of scores.

7McCallum and Nigam used the termKL-divergence to the mean.
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Discussion McCallum and Nigam, 1998 found empirically that QBC appliedto the

problem of text classification achieved better results whenusing JS-divergence than

when using vote entropy. They attributed it to the fact that JS-divergence takes into

account the classifiers’ confidence by considering their entire distribution, in contrast

to vote entropy. On the other hand, it can be argued that ensemble divergence is more

critical when it occurs near decision boundaries. Considerthe output distributions

of an ensemble of two binary classifiers for the two examples in Figure 2.4. The

ensemble exhibits more uncertainty around the decision boundary for example A, and

vote entropy would yield a higher score for example A. This may be beneficial since

example A is potentially a more informative data point to label than example B. By

contrast, JS-divergence would preferably select example Bbecause it shows a higher

divergence in its output distributions. This shows that theadvantage of using one

divergence metric over the other cannot be derived from firstprinciples, and we will

therefore consider both metrics in all our QBC experiments.

2.4.3 Other Active Learning Methods

We are going to describe a range of other possible active learning methods which we

do not consider in this thesis. Some of these methods are computationally to expen-

sive to apply such as statistically optimal solutions or error-reduction sampling. Other

methods such as density estimation and online choice algorithms are orthogonal to our

research and could be combined in principle.

Statistically Optimal Solutions

There are approaches to active learning which have statistically optimal solutions, in

other words, on average they reach the highest possible error reduction. Cohn et al.,

1996 suggest artificially constructing a query such that theexpected variance is min-

imised after knowing the label. This approach takes advantage of thebias and variance

decomposition analysis(Geman et al., 1992). This analysis states that the expecteder-

ror in supervised learning can be derived from first principles as the sum of the intrinsic

target noise, bias, and variance. The intrinsic target noise can be understood as the er-

ror of the Bayes-optimal classifier. Bias expresses how closely the average guess of

a classifier matches the target. Variance measures how much the classifier “moves”

around. According to this analysis, minimising variance also minimises the expected

error as long as the learner is unbiased or the bias is constant. Of course, guaranteeing
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unbiased or constant-bias classifiers may not always be possible. Also, it is difficult

in general to compute the variance of a classifier in closed form. Furthermore, the

construction of artificial examples for manual labelling may be either not feasible or

would result in unnatural examples for most applications inNLP. For these reasons,

most research in active learning has focused on approximateapproaches which opti-

mise indirect measures other than variance in order to minimise the classification error.

Error-Reduction Sampling

Roy and McCallum, 2001 suggesterror-reduction samplingand report improvements

over other approaches in a document classification task using naive Bayes. Error-

reduction sampling successively considers each example inthe pool and estimates by

how much adding this example to the training set would reduceclassification error on

test data. An example is selected for annotation when it results in the lowest expected

error as compared against all other examples in the pool. Of course, pool examples are

unlabelled. Therefore, each example is added tentatively with all possible labels, and

error reduction is averaged over the label distribution according to the current state of

the classifier. This approach requires to retrain the training set very often: the number

of pool examples multiplied by the number of labels. Unfortunately, this continuous

retraining is prohibitively expensive for most applications. Roy and McCallum, 2001

acknowledge that this approach is only feasible for applications which are either very

fast to train or allow incremental retraining.

Active Learning for Support Vector Machines

In the following, we will discuss a number of different approaches of applying active

learning to support vector machines (SVM) or large margin classifiers. SVMs are a

class of discriminative classifiers with strong theoretical foundations and very good

generalisation performance (Vapnik, 1982). Data points inSVMs are represented as

vectors in ann-dimensional space. Assuming linearly separable data, thedecision

boundary is a hyperplane of dimensionalityn−1 which separates positively and neg-

atively labelled data points in a binary classification setting.8 Given a set of labelled

data, training a SVM means finding the unique separating hyperplane which maximises

themargin, that is the minimal distance between data points and the decision boundary.

8Non-linearly separable cases can be addressed by using slack variables (Cortes and Vapnik, 1995).
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Campbell et al., 2000 Support vectorsare data points which fall exactly on the mar-

gin. A characteristic of SVMs is that they can be constructedby using support vectors

only. In other words, in training a SVM one can safely ignore non-support vectors and

still arrive at the same hypothesis. This fact motivates theapplication of active learning

in (Campbell et al., 2000). If one knew a priori which data points are support vectors,

one could focus on labelling only these. Campbell et al., 2000 suggest a heuristic for

active learning which selects data points closest to the decision boundary. Empirically,

they found best results for active learning withsparsedata sets. These are data sets

which require only few support vectors (in relation to the size of the full training set).

By contrast,densedata sets which require a relative large number of support vectors

to accurately represent the hypothesis cannot achieve the same result with less data.

Schohn and Cohn, 2000 A range of heuristics is discussed in (Schohn and Cohn,

2000). They present empirical results for a heuristic whichselects examples which

are close to the decision boundary, as in (Campbell et al., 2000). The motivation is

to maximally narrow the margin. Schohn and Cohn, 2000 discuss cases where se-

lecting examples from sparse regions may result in a displacement of the hyperplane

without significant change in the margin. However, empirically they found substantial

improvements over random sampling for a variety of text classification tasks.

They also discuss a heuristic which prefers examples which are orthogonal to the

space spanned by the current training set, thus giving the learner information about

unobserved dimensions. Aiming for such unobserved events would be similar in spirit

to our main thesis of addressing unreliable parameters in the form of unknown events.

However, they do not consider this heuristic in their experiments, even though this

would be computationally inexpensive. Also, we are not aware of any other research

in the area of large margin classifiers which target unobserved dimensions.

Tong and Koller, 2001 Tong and Koller, 2001 use the notion ofversion spaceas a

theoretical motivation for their approach to active learning for SVMs. Version space is

the size of the subset of parameter space that correctly classifies the labelled examples

(Mitchell, 1982). An optimal active learning method shouldtry to reduce the size of

the version space as quickly as possible.

Starting from the observation that an explicit computationof the version space

size is not practical, they present different approximations to this problem. A first

approximation follows the work discussed above (Campbell et al., 2000; Schohn and
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Cohn, 2000), by selecting data points closest to the decision boundary since these

would most accurately bisect the version space. Tong and Koller, 2001 argue that this

is a rough approximation relying on the assumption that the data point is centrally

placed. To overcome such problems, another approximation estimates the expected

reduction in the version space space by computing the reduction in the size of the

margin. This entails retraining the SVM for every unlabelled data point added to the

training set with a stipulated positive and negative label.Empirically, they found best

results with this latter method.

One can see a correspondence of this method with the idea of targeting unreliable

parameters as proposed in this thesis. Large margins in an SVM are a source of unre-

liability, and minimising such regions contributes to better classification performance

as evidenced by the good empirical results found by Tong and Koller, 2001.

Online Choice

It is a well-known fact that there is no single active learning method which is always

guaranteed to be optimal across applications. This motivates the combination of active

learning algorithms under one master learner. Baram et al.,2004 introduce an algo-

rithm that, for a given iteration, selects the example whichhas been suggested by the

best current learner. The key idea is to define a metric which evaluates learners. Of

course, the true accuracy, as measured against a test set, isnot available. Furthermore,

evaluation over the labelled training set is not necessarily a good indicator of the true

accuracy since active learning algorithms tend to collect hard, rather than representa-

tive examples. Instead, aClassification Entropy Maximizationscore is introduced to

estimate learner quality. This is the binary entropy of the learner over an unlabelled

set of data points. In an evaluation over different tasks, Baram et al., 2004 report that

their approach consistently performs nearly as well or better as the best algorithm in

the ensemble.

Density Estimation

Active learning can have a tendency to select atypical examples or evenoutliers. An

outlier is an observation that lies outside the overall pattern of a distribution (Moore

and McCabe, 1999). For instance, a French sentence in an English corpus would con-

stitute an outlier. A classifier trained on English sentences would be highly uncertain

as to the proper analysis of such a French sentence, so that a method like uncertainty
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sampling would preferably select it for annotation.Density estimationcan help active

learning to avoid such atypical examples. In the context of text classification, McCal-

lum and Nigam, 1998 approximate the density of a document by measuring its average

KL-divergence to all other documents. This method essentially quantifies the overlap

between a document and all other documents. Examples are selected which have both

high density and high disagreement according to QBC.

In application to parsing, Tang et al., 2002 estimate density using k-means clus-

tering. Pointwise distance between two sentences is computed as the edit distance

between the derivations of the individual best parse trees of two sentences under the

current parameter model. Similar to (McCallum and Nigam, 1998), sentences are

selected for annotation which have high density and high uncertainty. This is an com-

putationally intense process since all pairwise edit distances between all sentences in

the pool have to be computed in every iteration.

As we will see in later chapters, active learning methods, especially uncertainty

sampling, can suffer severe performance problems from selecting atypical examples

and density estimation may well help to alleviate such problems. In general, we see

density estimation as a general purpose technique which is orthogonal to the choice

of active learning method. Of course, this raises the question if we should continue

using such methods if they require such a fix. However, the application of density

estimation to active learning is a matter of ongoing research. For instance, it is not

clear if density estimation is best applied over unlabelledinstances, as in (McCallum

and Nigam, 1998) or tentatively labelled instances, according to the current state of

the classifier, as in (Tang et al., 2002). For this reason, we do not consider density

estimation in the experiments of this thesis.

2.5 Conclusion

In this chapter, we described the natural language processing tasks to which we apply

active learning methods in Chapters 4, 5, and 6 and gave a moredetailed overview

of one representative model for each of the tasks. Furthermore, we discuss relevant

applications and available data sets. Next, we described active learning with a special

focus on uncertainty sampling and QBC. We also described other popular methods in

the field which we do not consider in our research.





Chapter 3

Experimental Conditions

This chapter details the experimental conditions which arecommon to all experiments

in this thesis. More details will be discussed later in placewith the descriptions of the

individual experiments.

In Section 3.1, we outline the general data split scheme for data appropriate for

active learning and discuss details of the 10-fold cross-validation scheme we employ

throughout all experiments. In Section 3.2, we discuss evaluation metrics, such as

accuracy, coverage and f-measure, which are appropriate tothe diverse tasks in this

thesis. In Section 3.3, we explain and motivate the choice ofstatistical significance test

which we apply throughout all experiments. In Section 3.4, we motivate the choice of

(graphical) learning curves for the display of performanceresults in active learning,

plotted alongside p-levels to indicate significance of results. Section 3.6 concludes this

chapter.

3.1 Data Splits and 10-Fold Cross-Validation

For any active learning experiment, we need to decide on experimental parameters

regarding the sizes of the following sets:1 i) the initial training set Lof manually

labelled examples, ii) thetest setwhich consists of manually labelled examples which

provide the gold standard for evaluation, iii) thepool U of unlabelled candidates and

iv) thebatchof examples which is selected from the pool in one iteration.

For the experiments in the following chapters, we set these as summarised in Ta-

ble 3.1. We consider the size of the (initial) training set and the batch to be particularly

interesting parameters, and demonstrate their effects on the relative performance of

1The variable names refer to the algorithm in Figure 1 in the first chapter.
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PPA Sequencing Parsing

Training set 1/100/1000 100/1000 100/1000

Test set 2000 1000 1000

Pool all 1000 1000

Batch 1/100 100 100

Table 3.1: Data splits for experiments in prepositional phrase attachment, sequencing,

and parsing tasks

different active learning methods. We include experimentsof varying training set sizes

for all applications. For pragmatic reasons, we deal with varying batch sizes only in

the context of the very fast prepositional phrase attachment (PPA) tasks since smaller

batch sizes entail a larger number of iterations and correspondingly longer experimen-

tal running times.

The test set and pool size were set as large as conveniently possible. Again, for the

fast PPA application, we can afford to have a very large pool comprising all instances

which are neither in the training nor in the test set. As sequencing and parsing are

considerably slower, we use a smaller pool of 1000 instanceswhich are randomly

sampled in each iteration from all remaining instances (notin training or test set),

which we will refer to as theglobal pool.

For all experiments, we carry out a 10-fold cross-validation for improved statistical

significance of the results. For each fold, we randomly sample (without replacement)

an initial training set, a test set and a pool according to thespecifications in Table 3.1,

while ensuring that test sets are disjoint across folds. We run each fold until comple-

tion, that is, until the pool is exhausted for PPA, or for a fixed number of rounds for

all other tasks since running until completion can be too time-consuming. Finally, we

report results averaged across all 10 folds.

Specifics of Parsing Experiments

We can achieve better parsing results by providing the parser with part-of-speech

tagged input. For realistic parsing experiments, we tag thetest set automatically (as

opposed to using gold-standard tags), using the TnT part-of-speech tagger (Brants,

2000b), trained on 30,000 sentences from the global pool. For methodological rea-

sons, it would be desirable to automatically tag the sentences in the global pool, too.

However, there are not enough sentences in the treebank to allow a further split into



3.2. Evaluation Metrics 39

a disjoint training set for the tagger and the pool in order toavoid application on the

training set. For this reason, we do not use automatically tagged sentences when pars-

ing the pool, but manually tagged sentences.

3.2 Evaluation Metrics

In order to compare methods against each other and to trace learning progress for

individual methods, we use a variety of evaluation metrics depending on the task at

hand.

Accuracyis the proportion of correctly labelled instances as compared to the gold

standard. We use accuracy to evaluate prepositional phraseattachment and part-of-

speech tagging, that is, the proportion of correctly labelled tuples in prepositional

phrase attachment and the proportion of correctly labelledword tokens in tagging.

A related metric in the context of parsing isexact match rate, the proportion of entire

sentences which are parsed perfectly. This is a very harsh metric, because no credit is

given if only a single constituent has been misclassified.

Accordingly, for structured labelling tasks such as parsing and NER, a more appro-

priate evaluation metric, PARSEVAL, measuresprecisionand recall, based on con-

stituents (for parsing) or on entities (for NER) (Black et al., 1991).

(Labelled) Precision =
#identical (labelled) constituents in parse and correct tree

#constituents in parse tree

(Labelled) Recall =
#identical (labelled) constituents in parse and correct tree

#constituents in correct tree

In order to determine if a predicted constituent (or entity)is identical to the one

in the gold standard, we require that they at least have the same span, in other words,

cover the same input tokens. Additionally, it is customary to require that they have the

same label. We refer to these measures aslabelledprecision/recall. In this thesis, we

follow the usual practice in the literature and exclusivelyreport labelled precision and

recall.

Because it is possible to increase precision at the cost of recall, and vice versa,

a common summary statistic is theF-measure, the harmonic mean of precision and

recall.

F-Measure =
2PR

P+R
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Furthermore, we report thecoveragescore, a commonly used metric for parsing. It

is the proportion of parsable sentences in a test set, that is, those sentences which re-

ceive at least one analysis. We will also report coverage in the context of prepositional

phrase attachment, as the proportion of test instances withknown prepositions. Cover-

age can be conveniently evaluated on unannotated corpora. This metric does not tell us

about the quality of the predicted analyses, though. Also note, that as a design decision,

a parser may or may not recourse to more aggressive backoff orsmoothing schemes

in order to increase coverage, possibly at the expense of parsing quality. However, we

find coverage a useful notion because high coverage is a necessary precondition for

good performance in general.

3.3 Statistical Significance of Results

In order to establish that the performance difference between two methods is in fact

significant, and has not just arisen by chance, we need to apply statistical significance

testing.2 Statistical significance is reported with respect to a single test statisticof

interest such as classification accuracy. The usual methodology is to state a null hy-

pothesis of the form “Method A and method B do not differ with respect to the test

statistic”. Then, we can determine the probability that an observed difference in the

test statistic of that magnitude has arisen by chance given the null hypothesis. This

probability is known as thep-value. If the p-value is lower than a predefinedsignif-

icance levelwe can reject the null hypothesis. Commonly used significance tests are

p < 0.01 andp < 0.05.

We use randomisation tests for significance testing (Noreen, 1989). Randomisation

tests are a class of computer-intensive statistical methods which can compute p-values

for more complex test statistics such as the f-measure whereanalytical methods fail.

They also free us from “making troubling assumptions about sampling models and

population distribution” (Cohen, 1995). Randomisation tests automatically generate

sample distributions by randomly reshuffling observed datapoints between experimen-

tal conditions. For small enough test sets, one can enumerate all possible outcomes of

this procedure and compute anexact randomisation. For many practical purposes, this

is not possible and we must resort toapproximate randomisationwhere the collection

of test statistics is based on a large enough number of reshuffles.

In particular, we use an (approximate) randomisation version of the paired t-test,

2The description in this paragraph is based on (Chinchor et al., 1993).
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APPROXIMATE RANDOMISATION

1. Collect difference in test statistic for methods A and B

|statA−statB|

2. Shufflens times (ns is 9,999 in our case)

3. Count the number of times (number greater than or equal,nge) that

|statPseudoA−statPseudoB| ≥ |statA−statB|

(stat can be accuracy or F-measure)

4. The estimate of the p-value isnge+1
ns+1

(1 is added to achieve an unbiased estimate)

Table 3.2: Implementation of randomised paired-samples t test

motivated by the fact that, by design, we compare two methodsat a time on exactly

the same sequence of test items. Table 3.2 gives an outline ofthe implementation of

this randomisation test, based on (Chinchor, 1992). Initially, we determine the absolute

difference between test statistics over the original outcomes of methods A and B. Then,

we repeatedly createshuffledversions of A and B, determine the absolute difference

between their test statistics and count the number of times that this perturbed difference

is equal or larger than the original difference. In order to create the shuffled versions

of the data sets, we iterate over each data point and decide based on the outcome of

a (simulated) coin-flip whether records should be exchangedbetween A and B. The

p-value is the proportion of iterations in which the absolute difference in test statistics

was indeed larger for the shuffled version (corrected to achieve an unbiased estimate).

Such randomised tests for significance results are common innatural language pro-

cessing, for instance in the evaluation of information extraction systems (Chinchor

et al., 1993) and parsers (Bikel, 2004b). For systematic purposes, we decided to use

randomisation tests to compute significance results for allrelevant test statistics re-

ported in this thesis, including accuracy and f-measure, following the advice from

Noreen, 1989 to “use them instead of ordinary t-tests because they free us from wor-

rying about parametric assumptions and they are no less powerful.”

3.4 Comparing Active Learning Results

Reporting and comparing results for active learning methods can be problematic. Some-

times, active learning performances are summarily reported using a single character-
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Figure 3.1: Graphical display of learning curves with associated p-level graphs

istic. For example, savings in training effort are reportedfor a fixed arbitrary perfor-

mance level, which may be difficult to decide beforehand. Similarly, when reporting

the increase in performance for a fixed arbitrary training set size, we need to decide

on a reasonable size beforehand. Furthermore, such pointwise characteristics do not

reveal trends in active learning performance.

As an alternative, one may decide to report the average performance over all itera-

tions. This can be misleading if we are interested in the performance at the limit. Let

us consider the learning curves for two active learning methods A and B in comparison

to random sampling in the top panel in Figure 3.1.3 While method A in this example

has a higher average f-measure across all iterations (80.9%) than method B (80.8%),

we would still prefer method B when dealing with larger training set sizes.

Since active learning performance really is a function of a growing training set

size, we graphically display active learning results in theform of learning curves (Fig-

ure 3.1), as is common in the literature. This practice allows for convenient eye-balling

of results and for comparing trends in learning curves. Looking at the graphs in the

example, we can see that method A initially performs best, but is eventually overtaken

3This graph anticipates results from Chapter 6 on parsing.
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by method B. Furthermore, we can glean from the graph the range within which the

methods’ performances are roughly equivalent.

To indicate the significance of results, we introduce a novelgraphical convention

in this thesis. In the three bottom panes of Figure 3.1, we report p-values of a (ran-

domised) paired t-test for all pairwise comparisons between results of the same training

set size, on a scale from 0.001 to 0.5.4 We mark two standard levels of significance,

0.01 and 0.05, as grid marks for reference.

We believe that representing p-values in this graphical wayallows for an appropri-

ate qualitative discussion of results while incorporatingtrend information with respect

to the growth of the training set. For example, we can now state more precisely that

method A is significantly better than method B from the first iteration until 900 sen-

tences have been sampled (p < 0.05); and method B is significantly better than A after

2,400 sentences have been sampled until the end.

P-values can also help to judge improvements which may be difficult based on raw

performance measures, especially when given graphically.For example, performance

levels around 3,000 sentences seem very similar but p-values show that the differences

are in fact significant.

Throughout this thesis, we will frequently compare multiple experiments on the

same data set and report statistical significance results. Such multiple comparisons

call for a downward correction of significance levels to avoid finding spurious ‘signif-

icant’ results, see for example (Shaffer, 1995) for a discussion. The chosen graphical

representation allows us to apply more stringent significance levels if required.

3.5 Length-Balanced Sampling

When applying active learning to sentence-labelling taskssuch as tagging or pars-

ing, the sentences need a variable number of labelling decisions. This may confound

active learning metrics and introduce a bias towards longersentences. To ensure a

balanced selection of examples, it is necessary to control for this factor. For example,

tree entropy may be directly normalised by sentence length (Hwa, ), or by the binary

logarithm of the number of parser readings (Hwa, 2001a).

In practice, we found non-linear dependencies between sentence length and scores,

4After some experimentation, we decided to give p-values on alogarithmic scale since this resulted
in smoother graphs. Also note that for the chosen number of 9,999 shuffles in the randomised test, 0.001
is the smallest possible p-value that can be computed. For any lower p-values the graph will be a flat
line as we will commonly see in later result discussions.
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such that most normalisation schemes introduce a selectionbias either towards longer

or shorter sentences. In order to control for this selectionbias in active learning, we

use the following method: Given a batch sizeb, we randomly sampleb sentences

from the pool and record the numberel of selected examples for sentence lengthl .

Then, for all lengthsl = 1,2, . . .40, we select from all sentences in the pool of length

l the el examples with the highest score according to our sample selection metric.

Of course, the union of these sets will haveb examples again. Since we randomly

sampled the batch from the pool, we may assume that the batch distribution reflects

the pool distribution, particularly with respect to the distribution of sentence lengths.

By construction, this method effectively reproduces the sentence length profile of

the original corpus and therefore guards against the selection of sentence length bi-

ased subsets. Furthermore, it is equally applicable for allmetrics and allows a direct

comparison between metrics. We apply this method to all active learning tasks where

sequential data are involved, namely sequencing tasks and parsing since one may ex-

pect to find correlations between sample length and score.

3.6 Conclusion

In this chapter, we discussed the data split scheme we used for all experiments in this

thesis. Furthermore, we introduced diverse evaluation metrics which are appropriate to

the tasks in this thesis and motivated the choice of statistical significance test. Finally,

we motivated the choice of (graphical) learning curves for displaying the performance

results of active learning, plotted alongside p-levels to indicate significance of results.

With this chapter, we have provided a convenient overview ofall experimental

conditions which will allow a faithful reproduction of all our results.



Chapter 4

Unreliable Parameters

in Prepositional Phrase Attachment

In prepositional phrase attachment (PPA), one decides whether a prepositional phrase

is an argument or modifier of the verb in the matrix clause, or if it modifies the directly

preceding noun phrase. This is an important step towards determining the argument

structure of a sentence and its semantic interpretation. Previous work has shown that

this can be done accurately based on lexical head information for the involved verb,

noun, and prepositional phrases (Ratnaparkhi et al., 1994;Collins and Brooks, 1995).

Standalone PPA has been obsoleted by the advent of state-of-the-art lexicalised parsers

such as (Collins, 1997; Charniak, 2000), where PPA is addressed jointly with other

lexical and structural disambiguation steps. Nevertheless, PPA is still attractive as a test

bed for active learning research (Hwa, 2004). A quick turn-around in (otherwise highly

time-consuming) active learning experiments is facilitated through the fast training and

application of classifiers, particularly when using maximum likelihood estimation, as

in (Collins and Brooks, 1995). Following Hwa, we also use theCollins and Brooks

algorithm for the experiments in this chapter, as describedin Section 2.1.

We argue in this thesis that popular active learning methods, such as uncertainty

sampling and QBC, have been previously misapplied in the context of natural language

processing tasks. These methods are defined in such a way as toimprove the quality

of parameter estimates within the current model structure.However, an important fac-

tor in learning accurate stochastic models is the acquisition of an appropriate model

structure such that as many cases as possible are covered when predicting unseen test

data. This is particularly important for natural language processing where probability

distributions often need to be estimated for a potentially unbounded number of indi-
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vidual words or combinations of words. Neither uncertaintysampling nor QBC have

a well-defined mechanism to actively pursue expansion of thegiven model structure.

In the context of prepositional phrase attachment, unknownprepositions are a

prime example of insufficient model structure due to missingevents. In the absence

of specific information for a preposition, we cannot expect the classifier to do well.

However, assigning the most likely attachment for each preposition instead of assign-

ing the majority label (noun-attached) results in an increase in accuracy from 59.0%

to 72.2%. As mentioned in the Literature Review in Section 2.1, we can actually de-

termine the most likely attachment relatively cheaply by labelling just a few instances

for all prepositions. Accordingly, active learning methods should explicitly pursue un-

known prepositions and thereby increase the coverage whilesimultaneously improving

the parameter estimation within the current model structure.

Chapter Structure

We begin in Section 4.1 by demonstrating experimentally that a naïve application of

uncertainty sampling to prepositional phrase attachment,without targeting coverage,

can result in suboptimal performance. To address this problem, we introduce a change

in the base classifier in order to preferentially select instances with unknown preposi-

tions. This obviates the need to change the active learning method itself. We show that

this method improves classification accuracy. Targeting unknown prepositions gen-

erally proves to be an effective way to improve unreliable parameters in the model.

However, we find that uncertainty sampling can still underperform compared to ran-

dom sampling, particularly when starting with small training sets. We give a detailed

analysis as to why this is the case.

In Section 4.2, we show for QBC that a similar change in the base classifier can

target out-of-coverage instances and substantially improve performance. We examine

a range of sampling and scoring methods, and show that QBC canhave vastly different

experimental outcomes depending on the combination of methods used. We achieve

best overall results with bagging for sampling and vote entropy for scoring. An analysis

shows that the selection of sampling method allows one to bias the composition of the

training set against prepositions that are easier to label.
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4.1 Uncertainty Sampling for Prepositional Phrase

Attachment

Uncertainty sampling is a popular and intuitive active learning method. However, it

is essentially heuristic and may not accurately target unreliable model parameters if

applied naïvely, as discussed in Subsection 2.4.1 in the Literature Review.

Unknown prepositions present an obvious and important caseof unreliable param-

eters in prepositional phrase attachment. An important contribution of this section is

to show that the targeted selection of unknown prepositionsincreases the classifier’s

coverage and thereby substantially improves classification accuracy. This preferential

selection of unknown prepositions can be superimposed on top of standard uncertainty

sampling.

Furthermore, we show that uncertainty sampling can exhibitdegenerate behaviour

and perform worse than random sampling even when it is well within the range of

standardly used experimental parameter settings. In an experiment with a particularly

small (randomly sampled) initial training set, we show thatsample selection becomes

stuck repetitively choosing instances with the same preposition. This happens even

when targeting unknown parameters. In this situation, parameter estimates can be too

coarse to support a meaningful selection process for uncertainty sampling.

Targeting Unknown Prepositions

The targeted selection of unknown prepositions can be done,entirely within the frame-

work of uncertainty sampling, by applying a minimal, but crucial change to the base

classifier. This change concerns the setting of the backoff probability for instances

with unknown prepositions. In (Collins and Brooks, 1995), this value is defined as

P5(n|u) = 1.0, such that instances with unknown prepositions are deterministically

decided to be noun-attached, cf. Equation 2.2 in the Literature Review in Chapter 2.

This is motivated by the fact, that the majority of instancesin the given data set are

noun-attached.

However, using this value in sample selection results in ignoring unknown prepo-

sitions since a probability of 1.0 indicates minimal uncertainty. To alter this behaviour,

we choose a setting such that instances with unknown prepositions will be preferred.

Of course, such a value isP5(n|u) = 0.5, indicating maximal uncertainty. In this way,

we control the preferred or dispreferred selection of out-of-coverage instances by set-
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ting the final backoff value without further changes to the active learning algorithm.

In the experiments of this section, we will demonstrate the benefits of applying such

a targeted selection of out-of-coverage instances. We willuse the following naming

convention:

• UNC-STD: Uncertainty sampling, standard settingP5(n|u) = 1.0

• UNC-ALT: Uncertainty sampling, altered settingP5(n|u) = 0.5

• RND: Random sampling, base-line

4.1.1 Pure Uncertainty Sampling

Many active learning experiments reported in the literature use relatively large, ran-

domly sampled initial training sets, for example 500 instances in (Hwa, 2004). How-

ever, there is no general way to determine the optimal size ofthis initial training set.

In principle, one should trust an active learning method to be able to exclusively drive

the selection process without any contribution of random sampling. In fact, very small

training sets have been used (successfully) in the literature, for instance starting with

a single example in (Osborne and Baldridge, 2004). In this first experiment, we also

start with a single, randomly sampled instance to show the unadulterated effect of un-

certainty sampling alone without the influence of random sampling.1

For this experiment, we select one instance from the pool perround. A batch size

of one instance is considered optimal because, in theory, itshould avoid the problem of

selecting redundant examples. For subsequent experimentsin this and later chapters,

we will use larger batch sizes for efficiency reasons. This isalso common practice in

work reported in the literature (Hwa, 2004).

We show results in the form of accuracy learning curves for the two experimental

conditions in comparison with random sampling in Figure 4.1. As expected, we find

that the altered setting is consistently better than the standard setting. This improve-

ment is significant until ca. 12.5k instances have been sampled.

To explain why the altered setting performs better, we look at coverage, the pro-

portion of known prepositions in the test set, in Figure 4.2.

1One could in principle also start with an empty training set.This would have the same effect, though
since, in the absence of any annotation, all instances in thepool would receive the same score, and the
sampling of the first instance is effectively random.
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Figure 4.1: Backoff settings for uncertainty sampling (from one instance)
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round 1 2 3 4 - 70 71 72 73 . . . 3041 . . .

preposition to of in from, for, . . . of in in . . . in . . .

Table 4.1: Prepositions of selected instances in uncertainty sampling

In random sampling, coverage increases steadily and eventually converges towards

100%.2 99% coverage is reached at around 1000 instances.

The altered setting results in a considerably faster convergence than random sam-

pling: 99% coverage is reached after 39 instances, and all prepositions in the pool

have been selected at least once well before 100 instances have been selected. This is

of course because, by construction, the altered setting probes all unknown preposition

instances first: Initially, instances with known prepositions have empirical counts of

(exactly) one. They assign a probability of 1.0 for being either noun- or verb-attached

and thus flag minimal uncertainty. Those instances with unknown prepositions show

maximal uncertainty at 0.5 and will be preferred on a one-on-one basis.

By contrast, coverage using uncertainty sampling with the standard setting markedly

underperforms compared to both random sampling and the altered setting. Coverage

exhibits a stepping behaviour with extremely long stretches, up to 1000 instances,

where it is stalling. This stepping behaviour arises because, again by construction, this

method cannot select instances with unknown prepositions while there are still known

prepositions in the pool.

As a second important observation from Figure 4.1, we find that both uncertainty

sampling conditions markedly underperform with respect torandom sampling until

late in the learning curve. The altered condition breaks even with random sampling

after ca. 10.5k instances have been sampled, the standard one only after ca. 11.5k

instances. This is in marked contrast to the results of (Hwa,2004) where uncertainty

sampling clearly outperforms random sampling from the beginning.3

Error Analysis

To explain this underperformance, we looked at the sequenceof instances which where

selected during a single run of uncertainty sampling with the beneficial altered condi-

tion. Table 4.1 schematically shows the main prepositions of these instances for the

first part of the sequence.

2In fact, even with a maximal training set, coverage is a little under 100% since in some of the
cross-validation folds low-frequency prepositions occuronly in the test set but not in the training set.

3However, as we will see later, uncertainty sampling performs better at larger values ofn andb.
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After the first 70 rounds, each preposition in the pool has been selected exactly

once. In this situation, predictions for all remaining instances will have no uncertainty

since they are supported by a single empirical count in favour of being either noun-

attached or verb-attached. Then, in round 72, a second instance of prepositionin is

randomly selected. This happens to be labelled differentlyfrom the instance sampled

in the third round.4 From this moment on, the selection algorithm is trapped into

selecting further instances of prepositionin, since their predictions have at least a min-

imal amount of uncertainty due to the two initial differing labellings. This continues

for 2969 rounds until eventually all instances with this preposition have been labelled.

Even worse, shortly after this the selection gets trapped into selecting instances of

prepositionfrom for the same reason.

This selection behaviour is reflected in the accuracy learning curve for this run

in Figure 4.3. The early increase in accuracy is due to the comprehensive selection

of different prepositions. From round 72 onwards, the further increase in accuracy

is entirely due to the continued modelling of instances of prepositionin. However,

performance soon converges around 76%, with no further progress until round 3042,

4The first double labelling actually occurs in round 71. Sincethe second instance of prepositionon
happens to have the same label as the first no uncertainty is introduced.
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when the onsetting selection of instances of prepositionfromcauses a new boost.

We found this degenerate selection behaviour not only in this run, but across all

runs of a 10-fold validation. The selection mechanism always got trapped early on into

the selection of instances of a single kind of preposition for extended stretches. The

main problem here can be pinpointed to the confusion of uncertainty and unreliabil-

ity which is prevalent in uncertainty sampling. Prepositions with low empirical counts

exhibit high certainty in their classification and get ignored; on the other hand, preposi-

tions with high empirical counts show a higher degree of uncertainty and thus continue

to receive more attention. Clearly, rather than directing annotation effort towards in-

stances of a single type, prepositions with small empiricalcounts should receive more

attention. These findings reveal serious problems of uncertainty sampling, at least in

the pure form we used in this experiment.

A Discussion of Potential Remedies

These problems raise the question how uncertainty samplingcan be fixed and we will

now discuss a number of potential remedies.

By modelling the distribution of examples,density estimationcan help to avoid

problems of distorted selection in active learning (McCallum and Nigam, 1998; Tang

et al., 2002). Here, density estimation is applied to avoid the selection of outliers. How-

ever, the problematic prepositions from the above example run are clearly not outliers

but rather highly typical examples –in andfromare among the most frequent preposi-

tions in this data set. It is unclear if density estimation can help in such a situation in

order to ensure the selection of a more comprehensive range of prepositions.

The impact of over-confident estimates, especially for events with single observa-

tions, could potentially be reduced to some degree bysmoothing. Using a simple tech-

nique such as Lidstone smoothing (add-λ smoothing), probability estimates for events

with a single observation would be considerably less peaked. For example, withλ = 1,

estimates for such cases will be either 1/3 or 2/3 in favour ofnoun-attachment and,

accordingly, their uncertainty isf bin
unc(u,M) = 1/3. In the case of prepositions with

a more peaked distribution than that, repeated selection would eventually bring their

uncertainty below this threshold of 1/3, and selection stops. On the other hand, the

estimate of prepositions with a less peaked distribution will stabilise above that thresh-

old so that the same problem of over-selection persistentlycontinues. Also, smoothing

would only be needed for sample selection, not for testing, and it is not clear how to

determine the optimal setting of smoothing parameterλ.
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4.1.2 Starting with a Larger, Randomly Selected Training Se t

This section deals with another potential remedy, namely starting with a consider-

ably larger initial training set. This should have a similareffect to the application of

smoothing. Larger empirical counts would result in less peaked probability estimates

for a wider range of prepositions such that they will have a better chance of being se-

lected according to an uncertainty criterion. In this section, we will examine to what

degree larger initial training sets can help solve the problems of uncertainty sampling

identified above, and we let uncertainty sampling start with100 and 1000 instances.

At the same time, we continue our investigation of the selection of out-of-coverage

instances. The last experiment has shown that the preferredselection of out-of-coverage

instances substantially improves uncertainty sampling. Clearly, the previous exper-

iment has intensified this effect by starting with minimal coverage. This raises the

question whether this factor still plays a role when using larger initial training sets

with higher coverage, as is often done in active learning experiments. For example,

after randomly sampling 100 instances, coverage is 93.5%; after 1000 instances, we

have already covered 99% of all instances in the test set (Figure 4.2). Hence, one might

assume that the effects from different settings for the finalbackoff level do not bear out

anymore.

From now on, we will use a larger batch size of 100 instances inorder to accel-

erate experimental turnaround. This corresponds to general usage of active learning.

Figures 4.4 and 4.5 show results for initial training sets of100 and 1000 instances.

Interestingly, we find that using the altered setting still results in consistently better

performance than the standard setting, conforming to the results from the previous ex-

periment. This is the case for both starting points. When starting with 100 instances,

improvements are significant from the beginning until ca. 13k instances have been

annotated. When starting with 1000 instances, differencesare less pronounced and

significance between the two active learning conditions is given only in some parts

of the learning curve. However, we can argue that the alteredsetting is significantly

better than random sampling until ca. 16k instances, whereas the significance of the

improvements over random sampling with the standard setting is at best sporadic. At

any rate, these results clearly indicate that out-of-coverage instances should always be

expressly pursued.

Returning now to the question of intrinsic shortcomings of uncertainty sampling,

we see that uncertainty sampling still performs worse than random sampling until late
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into the experiment when starting with 100 instances in bothconditions. Looking

at the sequence of selected prepositions reveals similar problems as in the previous

experiment. Only when starting with 1000 instances, does uncertainty sampling gain

sufficient momentum to outperform random sampling.

Such problems with uncertainty sampling on small training sets are not always so

pronounced for other applications. Uncertainty sampling can afford us improvements

over random sampling even for small training sets when applied to sequencing tasks

and parsing, as we will see in the two chapters to follow. However, using other methods

such as QBC generally gives better performance.

4.1.3 Summary

Uncertainty sampling as such ignores questions of coverage. We demonstrated that the

naïve application of uncertainty sampling to a standard prepositional phrase classifier

results in inferior performance due to a failure to target out-of-coverage examples. We

addressed this problem by merely adjusting the backoff parameter for unknown prepo-

sitions in the base classifier, thus obviating the need to change the sample selection

algorithm itself. This results in the preferred selection of out-of-coverage instances

and in consistent improvements in terms of accuracy.

However, even when addressing coverage problems in this manner, we found se-

vere shortcomings of uncertainty sampling to the degree that it can perform worse than

random sampling. In our analysis, this can be attributed to the fact that uncertainty

sampling cannot accurately identify unreliable parameterestimates as such. For the

remainder of this chapter, we will examine the capacity of Query-by-Committee in

this respect.

4.2 Query-by-Committee for Prepositional Phrase

Attachment

In general, we expect Query-by-Committee methods to be well-suited to improve

model parameters based on infrequent events. The random perturbation of models

will result in larger variance for such parameters which, inturn, will be reflected by

a higher degree of disagreement across the committee. Labelling instances associated

with these parameters will help to decrease variance, and potentially increase classifi-

cation accuracy. The experiments in this section will show to what degree QBC can



4.2. Query-by-Committee for Prepositional Phrase Attachment 55

 65

 70

 75

 80

 85

A
cc

ur
ac

y 
in

 %

UNC-ALT
UNC-STD

RND

0.05
0.01

UNC-ALT vs RND

0.05
0.01

UNC-STD vs RND

0.05
0.01

25k20k15k10k5k 0

   
   

   
   

   
   

   
   

  p
-v

al
ue

Number of instances

UNC-ALT vs UNC-STD

Figure 4.4: Backoff settings for uncertainty sampling (from 100 instances)
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Figure 4.5: Backoff settings for uncertainty sampling (from 1000 instances)
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overcome the problems we encountered with uncertainty sampling. However, intro-

ducing QBC brings with it a number of design decisions:

Which methods are suitable for model perturbation? We will examine two popu-

lar methods which have been used previously for active learning: i) bagging

(Abe and Mamitsuka, 1998)), and ii) Dirichlet sampling (McCallum and Nigam,

1998).

Which metrics are suitable to quantify disagreement? We will compare the two most

popular metrics i) vote entropy (Argamon-Engelson and Dagan, 1999) and ii)

Jensen-Shannon divergence (McCallum and Nigam, 1998).

Changing the Base Classifier for QBC

Coverage plays an important role in the course of sample selection as we demonstrated

above for uncertainty sampling. As part of the on-going thesis that unreliable parame-

ters need special attention, we will examine the problem of out-of-coverage instances

also in the context of QBC.

We show experimentally that also QBC suffers from coverage problems when us-

ing the unmodified classifier as defined in (Collins and Brooks, 1995). This is for

similar reasons to the ones which we have identified above in the context of uncer-

tainty sampling. It is easy to see that using the standard value P5(n|u) = 1.0 for the

final backoff level or, in fact any constant value, will result in perfect agreement of

the committee for instances with unknown prepositions, regardless of the chosen dis-

agreement metric. Accordingly, such instances will be not be selected. To remedy this

problem, we randomly sample values forP5(n|u) from the uniform distribution in the

range 0.0 to 1.0,P5(n|u) ∼ uni(0,1), to create a high degree of ensemble divergence

for such instances.

For these experiments, we will use the following naming convention:

• QBC-STD: QBC, standard settingP5(n|u) = 1.0

• QBC-ALT: QBC, altered settingP5(n|u)∼ uni(0,1)

• RND: Random sampling
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4.2.1 Experiments

In the experiments of this section, we evaluate all combinations of classifier perturba-

tion methods and disagreement metric for the standard and the altered setting in the

base classifier, using an ensemble size of 10. This gives riseto the following four

different experimental conditions.

• Dirichlet sampling/JS-divergence

• Dirichlet sampling/vote entropy

• Bagging/JS-divergence

• Bagging/vote entropy

Dirichlet Sampling/JS-Divergence

Results for the first condition, combining Dirichlet sampling and JS-divergence, are

shown for initial training set sizes of 100 and 1000 instances in Figures 4.6 and 4.7.

The most notable finding is that QBC massively underperformscompared to random

sampling, both for the standard and the altered setting, regardless of the starting point.

We will explore later in this section what are the potential problems of this condition.

Furthermore, we find that the altered setting consistently outperforms the standard

one. This is significant throughout except for the last few iterations when starting from

100 sentences; and significant after ca. 10k instances have been seen when starting

with 1000 instances.

Dirichlet Sampling/Vote Entropy

Substituting vote entropy as a disagreement metric resultsin Figures 4.8 and 4.9.

Again, we find that the altered setting consistently outperforms the standard one; sig-

nificantly so until 18k instances have been sampled when starting with 100 sentences,

and from 5k - 18k when starting with 1000 sentences.

QBC using the standard setting massively underperforms random sampling when

starting with 100 instances; significantly until 18k instances have been sampled; and is

only about as good as random sampling when starting from 1k instances. By contrast,

QBC with the altered setting is at least as good as random sampling or better but

significantly so only in some parts.
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Figure 4.6: Backoff settings for Dirichlet sampling/JS-divergence (from 100 instances)
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Figure 4.7: Backoff settings for Dirichlet sampling/JS-divergence (from 1000 instances)
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Figure 4.8: Backoff settings for Dirichlet sampling/vote entropy (from 100 instances)
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Figure 4.9: Backoff settings for Dirichlet sampling/vote entropy (from 1000 instances)
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Bagging/JS-Divergence

Using a combination of bagging and JS-divergence in this experiment, we arrive at the

results in Figures 4.10 and 4.11. Again, the altered settingconsistently outperforms the

standard setting for both starting points. The standard setting underperforms random

sampling consistently when starting with 100 sentences; and is only about as good as

random sampling when starting with 1000 sentences.

QBC with the altered setting, when starting from 100 sentences, is worse than ran-

dom sampling until ca. 5k sentences have been sampled, and just as good afterwards.

Only when starting from 1000 sentences, this combination isbetter than random sam-

pling; but the difference is significant only in some parts ofthe learning curve.

Bagging/Vote Entropy

Finally, using bagging and vote entropy we get the results inFigures 4.12 and 4.13.

Again, the altered setting outperforms the standard one throughout. The standard set-

ting is worse than random sampling until ca. 11k instances have been sampled when

starting with 100 instances. It performs better than randomsampling when starting

late, but not significantly throughout.

Most importantly, this is the best out of the four examined conditions and the only

one where QBC with the altered setting consistently outperforms random sampling

both when starting at 100 or at 1000 instances. QBC with the altered setting is sig-

nificantly better than random sampling early on and until ca.16k instances have been

sampled for both starting points.

4.2.2 Summary

We saw in all examined conditions that it is beneficial to use the altered setting over

the standard one. This conforms to the findings we made for uncertainty sampling and,

again, supports our thesis that the preferred selection of out-of-coverage instances is

important for sample selection.

Equally, or even more, important for QBC is a good choice of perturbation method

and disagreement metric. Figure 4.14 and 4.15 gives an overview of results for all

four combinations under a QBC-ALT setting, starting from 100 and 1000 instances.

The best combination is bagging and vote entropy; a particularly bad combination

is Dirichlet sampling and Jensen-Shannon divergence. Moregenerally, we find that



4.2. Query-by-Committee for Prepositional Phrase Attachment 61

 65

 70

 75

 80

 85

A
cc

ur
ac

y 
in

 %

QBC-ALT
QBC-STD

RND

0.05
0.01

QBC-ALT vs RND

0.05
0.01

QBC-STD vs RND

0.05
0.01

25k20k15k10k5k 0

   
   

   
   

   
   

   
   

  p
-v

al
ue

Number of instances

QBC-ALT vs QBC-STD

Figure 4.10: Backoff settings for bagging/JS-divergence (from 100 instances)
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Figure 4.11: Backoff settings for bagging/JS-divergence (from 1000 instances)
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Figure 4.12: Backoff settings for bagging/vote entropy (from 100 instances)
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Figure 4.13: Backoff settings for bagging/vote entropy (from 1000 instances)
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Figure 4.15: Ensemble creation methods and divergence metrics for QBC (from 1000

instances)
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Figure 4.16: Best settings for uncertainty sampling and QBC (from 100 instances)
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Figure 4.17: Best settings for uncertainty sampling and QBC (from 1000 instances)
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Bagging Dirichlet Sampling Proportion

Preposition Random Vote Ent. JS-Div. Vote Ent. JS-Div. Uncert. noun-att.

1. of 26.5 2.9 3.0 15.5 24.3 2.9 98.8

2. in 16.8 26.5 23.4 23.0 15.7 28.6 46.6

3. to 12.5 10.5 13.2 11.0 13.7 12.7 22.4

4. for 10.2 19.4 16.6 16.4 10.8 18.3 45.9

5. on 6.5 11.7 10.9 9.1 7.4 10.2 46.1

6. from 4.5 4.9 7.5 4.7 5.2 6.6 34.2

7. with 4.4 6.0 7.3 5.6 5.3 7.5 36.9

8. at 3.2 3.2 3.7 3.3 4.3 0.7 20.1

9. as 2.4 0.4 0.7 1.5 2.8 3.2 18.9

10. by 2.2 2.9 2.8 1.4 1.5 0.2 27.0

Table 4.2: Distribution of prepositions in training set for different conditions

bagging outperforms Dirichlet sampling (dashed lines versus dotted lines); and vote

entropy outperforms Jensen-Shannon divergence (thick lines versus thin lines).

Contrasting the best QBC result, bagging/vote entropy withthe best uncertainty

sampling result (both with the altered setting), we can see that QBC is always better

than uncertainty sampling or at least as good, see Figures 4.16 and 4.17.

Discussion

To shine a light on these performance differences between QBC conditions, we look

at the proportion of the ten most frequent prepositions in the training set in Table 4.2.

For reference, we indicate their proportions when randomlysampling a training set of

10k instances in the second column. We find a roughly Zipfian distribution; the most

frequent prepositionof constitutes 26.5% of all instances in the training set; the ten

most frequent preposition together cover almost 90%.

For each of the four QBC conditions (and for uncertainty sampling) using the al-

tered setting, we ran a single fold of active learning; starting with 1000 randomly sam-

pled sentences and iterating 90 times with a batch size of 100instances, we eventually

reach 10k instances in total.

For the two bagged conditions (bagging/vote entropy and bagging/JS divergence),

the profiles of sampled prepositions in the training set (in columns 3 and 4) clearly

deviate from random sampling: the most frequent preposition of now only consti-
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tutes ca. 3% of all instances. Other prepositions are over-represented, for instance the

prepositionin went up from 16.8% to 26.5% under bagging/vote entropy. Incidentally,

uncertainty sampling shows very similar deviations from random sampling.

On the other hand, we see that QBC using Dirichlet sampling and JS divergence

(in column 6) quite faithfully reproduces the random profile. (QBC using Dirichlet

sampling and vote entropy seems to follow a more hybrid pattern.)

How do distributional differences bear on classification ac curacy? It may be

surprising at first that methods which deviate from random sampling in their distribu-

tional patterns should perform better than methods which reproduce random sampling

behaviour. We have to consider, though, that prepositions have vastly different biases

with respect to their attachment preferences, cf. the last column of Table 4.2. For ex-

ample, prepositionof is very strongly biased in favour of noun-attachment; preposition

in, on the other hand, is almost balanced between noun- and verb-attachment.

In this light, the undersampling of prepositionof found in the bagging-based meth-

ods turns out to be very economical since the bias of preposition of allows one to learn

its distribution from only a small number of training instances, and still achieve almost

99% accuracy. This is particularly beneficial since it will help to reliably classify a

substantial proportion of the test set. On the other hand, the almost balanced preposi-

tion in presumably is harder to learn. Under a bagging-based method, this preposition

receives considerably more attention than its proportion would predict from random

sampling.

By contrast, methods with Dirichlet sampling more closely reproduce the distribu-

tional profile of random sampling and thus spend substantialannotation effort on the

peaked and easy-to-learnof distribution, thus withholding annotation effort from more

difficult cases such asin andfor.

This is a clear demonstration that a good sample selection method must not neces-

sarily reproduce the distributional patterns found in random sampling. Rather it should

devote annotation effort to difficult distributions and spend less effort on easy ones.

How does a method know which distributions are easy? We chooseof as a pro-

totypically easy preposition, and contrast the scoring of such instances under one con-

dition which assigns high scores (using Dirichlet samplingand JS-divergence) and

another condition which assigns low scores (using bagging and vote entropy).

Running a single selection round using Dirichlet sampling and JS divergence, with
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an initial training set of 1000 instances, we picked from thebatch of selected examples

a (prototypical)of instance with features〈retain, title,of ,chairman〉 and a score of

0.45. It had no matches on the first two levels,P1(n|u), andP2(n|u) (according to the

the backoff probability scheme from Equation 2.2); on level3, there was one matching

training instance which was noun-attached, with features〈retain,∗,of,∗〉. On the next

back-off level, there were 268 instances, matching〈∗,∗,of,∗〉, the vast majority being

noun-attached.

P3(n|u) =
1
1

P4(n|u) =
265
268

A characteristic of Dirichlet sampling is that it only uses empirical counts on one

level at a time; in this particular example with the most specific match on level 3,

counts are〈nouns= 1,verbs= 0〉. Assuming a uniform prior of one, we sample from

a Dirichlet distribution with parameters〈2,1〉. Using a simulation of a very large en-

semble, we find that the expected Jensen-Shannon divergencefor such a set of counts

converges towards 0.19. However, with just 10 trials we can expect considerable vari-

ance, and the score of 0.45 is well within that range.

Under bagging and vote entropy, the same instance receives ascore of 0. If the

single training instance which supports parameterP3(n|u) is present in the bagged

training set, the test instance〈retain, title,of,chairman〉 will be classified as noun-

attached. If the training instance is deleted (through bagging), the classifier backs off

to parameterP4(n|u). In this case the estimate will be close to 1.0, and again the test

instance will be classified as noun-attached. Thus, ensemble members will always vote

for noun-attachment under a bagged training set. The minimal disagreement for such

instances entails a dispreferred selection which is beneficial as we have seen above.

One reason why we did not see disagreement for the condition using bagging and

vote entropy is that we did not have to introduce a prior for the Dirichlet distribution.

Furthermore, both parametersP3(n|u), and P4(n|u) had empirical support with the

same polarity (in favour of noun-attachment). On the other hand, if these parameters

would have had support of different polarities we would expect a higher degree of

disagreement. Presumably, it would be worthwhile to learn the true label of such

an instance. Such a situation would not be recognised by a method using Dirichlet

sampling, again, because the disagreement is established for one level at a time.
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4.3 Conclusion

The experiments in this chapter have shown that the naïve application of popular ac-

tive learning methods such as uncertainty sampling and QBC can result in suboptimal

performance since they lack a principled way of targeting out-of-coverage instances.

We demonstrated how a simple change in the base classifier canincrease coverage and

accuracy, both for uncertainty sampling and QBC, without actually having to change

the definition of the sample selection schemes themselves.

Even when applying this method, we found that uncertainty sampling can under-

perform compared to random sampling, in particular when starting with small training

sets. We show that the very notion of uncertainty used in uncertainty sampling can

mislead the sample selection process. In certain situations, good parameter estimates

attract more annotation effort simply because they continue to look more uncertain

than parameters with low counts and unreliable estimates.

QBC generally has a more principled way of addressing unreliable parameters, be-

yond out-of-coverage instances, and can achieve substantially better results than uncer-

tainty sampling. However, QBC performance depends on setting a number of param-

eters right. Best performance is achieved using bagging as arandomisation technique

(rather than sampling from local distributions) and employing vote entropy for scoring

(rather than Jensen-Shannon divergence). In a detailed analysis, we showed how this

choice can influence the proportion of selected prepositions. Substantial savings were

achieved by “recognising” that prepositions with a biased label distribution required

less annotation effort than prepositions with a more balanced distribution.

In this chapter, we have demonstrated that treating unreliable parameters is an im-

portant objective for active learning in the domain of prepositional phrase attachment.

In particular, the targeted selection of unknown prepositions causes significant im-

provements. Prepositional phrase attachment is arguably avery simple task which we

selected mainly for expository purposes. The simple probabilistic model of the classi-

fier makes error analysis very easy. Furthermore, previous work in the same domain

allowed for comparison (Hwa, 2004).

In the next two chapters, we will look at natural language processing problems

which are both more difficult and more currently researched,namely sequencing tasks

and syntactic parsing, in order to demonstrate that the principle of directly treating

unreliable parameters is vital for active learning.



Chapter 5

Unreliable Parameters in

Sequence Labelling

As maintained throughout this thesis, it is not sufficient for active learning methods to

only improve the quality of parameter estimates within the current model, they should

also expand the model structure where appropriate. We show in this chapter that this

is important in application to sequence labelling as well.

The labelling of sequences is ubiquitous in natural language processing. Examples

for sequence labelling include part-of-speech tagging andnamed entity recognition

both of which we will deal with in this chapter. Sequencing tasks are more challenging

than prepositional phrase attachment which we investigated in the last chapter. La-

belling decisions in a sequence are carried out jointly, in other words, the labelling of

a token is not only dependent on its individual tag distribution but also on the labelling

decisions in the neighbouring context.

We will use Hidden Markov Models for the experiments in this chapter. They show

close to state-of-the-art performance for sequencing tasks (Brants, 2000b) but are con-

siderably faster to train than discriminative models (Ratnaparkhi, 1996). This is of

course critical for active learning experiments where we have to train and retrain mod-

els many times. In particular, we will use Ingo Schroeder’s Acopost tagger (Schröder,

2002). This is a freely available, reverse-engineered version of the TnT tagger.

In the context of prepositional phrase attachment, we dealtwith unknown prepo-

sitions as a prime example for insufficient model structure.A corresponding problem

in sequence labelling are unknown words, that is, a situation where the current lexi-

con does not cover all inputs. While backoff methods such as suffix tries can provide

reasonable guesses for unknown words, tagging accuracy in such cases is generally

69
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considerably lower than for known words. Another manifestation of insufficient model

structure concerns label sequences which have not been observed in the training set,

but are necessary for decoding test examples. In HMMs, theseoccur as unobserved

state transitions. In order to avoid zero probabilities when estimating parameters in

such cases, we need to apply smoothing or backoff. Still, we expect unobserved state

transitions to contribute to a higher variance and higher error rate.

Standard active learning methods such as uncertainty sampling and QBC have no

direct mechanism to deal with unknown word problems or unsupported transition prob-

abilities. We introduce a novel method for sequencing taskswhich directly addresses

deficient model structures by selecting examples which suffer from many unsupported

model parameters. In particular, this method counts the unknown words in a sentence

and computes the expected number of unsupported transitions. These two quantities

then are combined into a single sample selection score. Unknown word problems are

easy to quantify: we use the number of unknown words in a sentence directly as a

score. The problem of counting the number of unsupported transitions can be formu-

lated as an expectation over all possible label sequences. We propose a novel dynamic

programming algorithm which computes the expected number of unsupported transi-

tions over all possible sequences implicitly.

This chapter extends joint (unpublished) work with Trevor Cohn.

Chapter Structure

In Section 5.1, we start by explaining why we do not consider alternative smoothing

settings for active learning in application to sequence labelling in contrast to the previ-

ous and the subsequent chapter.

In the following four sections, we present results for active learning in application

to part-of-speech tagging as a prototypical sequencing task. Section 5.2 has results

for uncertainty sampling, Section 5.3 for QBC, and Section 5.4 for the count-based

method. In Section 5.5, we summarise results for part-of-speech tagging.

In Section 5.6, we apply this range of active learning methods to named entity

recognition. We discuss the unexpected result that uncertainty sampling outperforms

all other methods, and conduct experiments which link this result to the size of the

tagset involved in the task.

Section 5.7 concludes the chapter.
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5.1 No Altered Smoothing Settings in Sequence Labelling

In the previous and in the next chapter, we demonstrate how modified smoothing or

backoff settings allow the identification of training instances which help to overcome

unreliable parameter estimates.

Can such techniques also be used for sequencing tasks? We can, for example,

disable smoothing and allow zero probabilities to occur forunobserved transitions in

the HMM and for unknown words. We can then easily identify sentences which suffer

from such problems as they become undecodable. This would presumably help the

selection process to identify unreliable parameters. In exploratory experiments, we

found that such a method does not perform well in the context of sequencing task.

Disabling smoothing renders the majority of instances in the pool as out-of-coverage

and makes selection effectively perform like random sampling.

For these reasons, we do not consider different smoothing orbackoff settings as in

the other chapters. A major contribution of this chapter however is a more fine-grained

measure than the Boolean out-of-coverage criterion. We will count the number of zero

probabilities and the number of unknown words.

5.2 Uncertainty Sampling for Part-of-Speech Tagging

For active learning for sequencing tasks one has to decide onwhat to label. It is

conceivable to select single words for annotation. In this case, one would have to

train the classifier on partially annotated sentences usingsome kind of semi-supervised

learning scheme. For example, Scheffer et al., 2001 explored the use of expectation-

maximisation in this situation. Doing so however raises difficult questions about me-

diating between cost factors annotation time for a word and reading time for the sur-

rounding context. To avoid this we decided to label instances on the sentence level. To

determine an uncertainty score for a sentence we average over the uncertainty score

for the tag distributions of individual tokens. We show results in Figures 5.1 and 5.2

for initial training set sizes of 100 and 1000 sentences. Uncertainty sampling (UNC) is

significantly better than random sampling throughout afterthe first iteration.1

1We also let uncertainty sampling start from a single example. Results are very similar to the dis-
played results.
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Figure 5.1: Uncertainty sampling (from 100 sentences)
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Figure 5.2: Uncertainty sampling (from 1000 sentences)
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5.3 Query-By-Committee for Part-Of-Speech Tagging

As we have seen in the previous chapter, using QBC as an activelearning method

can result in substantial improvements over uncertainty sampling. In a first set of

experiments for QBC in application to part-of-speech tagging, we try to find an optimal

set of parameters. We will investigate the influence of the following parameters.

• Sampling Method

• Divergence Metric

• Ensemble size

5.3.1 Experiments

Experiment 1 In the first experiment, we compare sampling methods, namelybag-

ging and Dirichlet sampling, while using vote entropy as thedivergence metric. Inci-

dentally, in this setting the condition with Dirichlet sampling corresponds to the set-

tings employed in Argamon-Engelson and Dagan, 1999 which also concerns part-of-

speech tagging. We however do not explicitly try to adjust their “heat” parameter.

We show results using initial training set sizes of 100 and 1000 sentences in Fig-

ures 5.3 and 5.4 respectively. We first note that both conditions significantly improve

over random sampling throughout from the first iterations on. When comparing both

conditions against each other, we find that the bagged methodis consistently as good

or better than the Dirichlet sampled method. Bagging is significantly better in almost

all iterations when starting with 100 sentences. When starting with 1000 sentences, it

is significantly better in almost all iterations until ca. 18k sentences have been sampled.

Experiment 2 Using Jensen-Shannon divergence as a disagreement metric,we con-

trast bagging and Dirichlet sampling in Figures 5.5 and 5.6.Again, we find that using

QBC significantly improves over random sampling throughout. Comparing both con-

ditions against each other, there are hardly any differences in performance. Only in the

early phases, bagging can be seen to be significantly better than Dirichlet sampling.

Experiment 3 From the two previous experiments, we find that the combination bag-

ging/vote entropy performs the best. Sticking with this setting we are now going to

examine the influence of ensemble size on performance. We will contrast the perfor-

mance of the best current setting using five ensemble memberswith an ensemble of
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Figure 5.3: Ensemble creation methods using vote entropy (from 100 sentences)
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Figure 5.4: Ensemble creation methods using vote entropy (from 1000 sentences)
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Figure 5.5: Ensemble creation methods using JS-divergence (from 100 sentences)
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Figure 5.6: Ensemble creation methods using JS-divergence (from 1000 sentences)
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10 members. Again, we show results for two different initialtraining set sizes in Fig-

ures 5.7 and 5.8. Performance is almost indistinguishable.Only in the final phase of

the learning curve is there a significant improvement by using a larger ensemble.

Experiment 4 Finally, we are interested to see how the QBC method with the best

set of parameters performs with respect to uncertainty sampling. Results are shown

in Figures 5.9 and 5.10. Just like QBC, uncertainty samplingoutperforms random

sampling significantly throughout. In comparison with eachother, QBC is always as

good or better than uncertainty sampling with long stretches where QBC improvements

are significant. However, uncertainty sampling is a surprisingly strong baseline. In

particular, when starting with a smaller training set, improvements cannot be shown to

be significant throughout.

5.3.2 Summary

In this first set of experiments, we have found an optimal set of parameters for QBC,

namely bagging as a sampling method and vote entropy as a divergence metric. In-

creasing the ensemble size from 5 to 10 made virtually no difference. In this setting,

QBC can be seen to be as good or better than uncertainty sampling. Also, this setting

presents an improvement over the results in (Argamon-Engelson and Dagan, 1999)

while using a conceptually very simple method of sampling from the training set with-

out the need of setting an extra parameter.

5.4 A Novel Count-Based Method

The hidden Markov model we use for the experiments in this chapter uses smoothed

probability estimates in the form of backing-off when observing novel state sequences

and novel observations, as described in Section 2.2.3. Suchsmoothing allows the

model to estimate the probability of sequences with unseen label sequences and out-

of-vocabulary words. However, examples in the pool of candidates which can only

be processed via (multiple) backing off will suffer from inaccurate estimates, and thus

methods such as uncertainty sampling may be unreliable.

We present a novel active learning method which produces a score according to the

number of times the model encounters probability estimateswhich are based on miss-

ing events. In the case of an HMM, this amounts to statistics over backed-off transition
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Figure 5.7: Ensemble sizes for best QBC (from 100 sentences)
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Figure 5.8: Ensemble sizes for best QBC (from 1000 sentences)
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Figure 5.9: Comparing uncertainty sampling with best QBC (from 100 sentences)
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Figure 5.10: Comparing uncertainty sampling with best QBC (from 1000 sentences)
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trigrams words average

count norm count norm of norm

2.08 0.52 5 0.5 0.51

1.28 0.32 2 0.2 0.26

0.64 0.16 3 0.3 0.23

Table 5.1: Creating a single score from the number of unknown words and the (ex-

pected) number of unsupported transitions

probabilities and backed-off lexical emission probabilities. Intuitively, a sentence for

which the analysis depends on many such smoothed probabilities should be regarded

as informative. Hence, its annotation and inclusion in the training set allows the system

to model its novel properties.

The number of unknown wordscw(o) in observationo can be established by simple

lexicon lookup. The situation is more complicated with the number of backed-off tran-

sition probabilities since the generating state sequences is hidden. If the sequence was

labelled, the degree to which backing-off is required for interpretation can be measured

by simply counting the number of unsupported trigrams. For an unlabelled example,

we can average this count over all possible sequences, weighted by the probability of

each labelling:

Eθ[c(o)] = ∑
s

pθ(s|o)c(s,o) (5.1)

wherec(s,o) counts the number of unsupported trigram transitions in sequence

s. We can compute this average over the exponential number of sequences efficiently

using dynamic programming, see Appendix A.

We have introduced two new statistics for an observationo: the number of unknown

words cw(o) and the expected number of unsupported trigram transitions〈ctri(o)〉.

In order to summarily express a single score for the number ofunsupported model

parameters, we combine these two scores by giving them equalweight, since we cannot

know a priori which one might be more important. We combine scores in the following

way. First, we normalise scores of both types such that they sum to one. Then, we take

the arithmetic mean of the scores. (See Table 5.1 for an example.)
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5.4.1 Experiments

First, we compare the count-based condition (CNT) against standard uncertainty sam-

pling (UNC) under two different initial training set sizes of 100 and 1000 sentences

in Figures 5.11 and 5.12 respectively. Count-based sampling consistently and sig-

nificantly outperforms random sampling, as does uncertainty sampling. Count-based

sampling is as good as uncertainty sampling when starting with 100 sentences with

no significant differences apart from an initial dip of count-based sampling. When

starting at 1000 sentences, count-based sampling is marginally better than uncertainty

sampling after ca. 3.5k sentences have been sampled. However, this improvement is

significant only in some phases of the learning curve.

Are selected examples different? This raises the question whether we can mean-

ingfully combine uncertainty sampling and the count-basedmethod. For this to be

the case, we expect the methods to be complementary, such that they select different

examples. To this end, we conduct the following experiment.We train a model on

1000 sentences, and apply it to a pool of another 1000 sentences. For each sentence

in the pool, we record two scores, i) average entropy (as in uncertainty sampling) and

ii) count-based method. In other words, this set-up mimics the first round of sample

selection when starting at 1000 sentences. We find a Pearson coefficient of 0.2, indi-

cating only a small correlation. In fact, when using these scores to select two batches

of 100 examples each, we find an overlap of only 22 examples. Insummary, we find

that score types are sufficiently different to warrant investigating their combination.

A Hybrid Method Combining scores of different methods directly can be problem-

atic. Scores might be arranged on different scales, for example one method may pro-

duce scores between 0 and 100, whereas the other method’s scores may be bounded

between 0 and 1. For such cases, we could use a simple linear weighting scheme.

However, such a linear combination cannot accommodate situations when scores grow

in different orders, for instance linear versus exponential. A simple but very effective

solution is based on the observation that the main purpose ofa score in active learning

is to impose a ranking over the examples to be sampled from thepool. This allows

us to determine the ranks of an example under both methods andthen average these

ranks. For the following experiment we use such an averaged rank-based combination

method.

We present a comparison of the combined method UNC+CNT with uncertainty
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Figure 5.11: Comparing count-based method with uncertainty sampling (from 100 sen-

tences)
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Figure 5.12: Comparing count-based method with uncertainty sampling (from 1000

sentences)
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sampling UNC in isolation in Figures 5.13 and 5.14. UNC+CNT is significantly better

than random sampling. When starting with 100 sentences significant improvements

over UNC show from 500 to ca. 10k sentences and again towards the end ofthe learning

curve. When starting with 1000 sentences, improvements aresignificant throughout

after ca. 3k sentences have been sampled.

These findings present an improvement over uncertainty sampling as well as over

the count-based method in isolation, and we can conclude that the combination of the

two methods is indeed beneficial.

Finally, we should compare the combined method with the QBC method which

we have found previously to be the best. We present results inFigures 5.15 and 5.16.

Results are virtually indistinguishable in when starting with 100 sentences with no

significant differences between the methods. Starting with1000 sentences, there are

almost no significant differences early on. Only after 15k sentences have been sampled

is there a temporary but significant drop in performance.

5.4.2 Summary

The newly proposed count-based method is as good or better than uncertainty sam-

pling for part-of-speech tagging. Furthermore, a combination of count-based sampling

with uncertainty sampling can perform (almost) as well as the best QBC method. This

presents more support for the on-going thesis that explicitly addressing model defi-

ciencies helps to improve active learning.

5.5 Summary – Part-of-Speech Tagging

So far in this chapter, we have given an overview of active learning methods in ap-

plication to part-of-speech tagging as a prototypical sequencing task. Confirming our

findings from the previous chapter on prepositional phrase attachment, and as expected

from previous work in the literature, we found that uncertainty sampling performs bet-

ter than random sampling.

In order to see if QBC can outperform uncertainty sampling inthis domain as well,

we optimised relevant experimental parameters for QBC, such as sampling method,

divergence metric and ensemble size. We found that a combination of bagging and

vote entropy works best and performs significantly better than uncertainty sampling.

Using a larger ensemble does not yield significantly better results.
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Figure 5.13: Comparing hybrid method with uncertainty sampling (from 100 sentences)
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Figure 5.14: Comparing hybrid method with uncertainty sampling (from 1000 sen-

tences)
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Figure 5.15: Comparing hybrid method with best QBC (from 100 sentences)
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Figure 5.16: Comparing hybrid method with best QBC (from 1000 sentences)
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We introduced a novel count-based method which counts the number of unknown

words in a sentence and the expected number of unsupported transitions used in decod-

ing. This method by itself is as good or better than uncertainty sampling. Furthermore,

it tends to select examples which are different from uncertainty sampling. This ob-

servation suggests the combination of both methods. The combined method performs

better than either method in isolation, and its performanceis almost indistinguishable

from best QBC performance.

5.6 Active Learning for Named Entity Recognition

To see how far the findings for part-of-speech tagging generalise, we consider named

entity recognition as another sequencing task. NER and part-of-speech tagging differ

in a number of important aspects. Most importantly, NER is a combined segmentation

and classification task, as opposed to the tokenwise classification in tagging. Neverthe-

less, we can treat NER as a sequencing problem by adopting theBIO-markup scheme

(Ramshaw and Marcus, 1995).

A direct ramification of the difference between tagging and NER is that perfor-

mance in NER is usually reported as f-measure, whereas we used accuracy to measure

performance for tagging. Another difference concerns the number of different labels.

This of course may vary strongly even within tagging or NER, depending on the data

set. At any rate, while there are 45 labels in the tagging task, the size of the label set is

considerably smaller in NER. Assuming a task with four namedentity types – ORG,

LOC, MISC, and PER – we arrive at a potential set of 9 labels, B-and I- labels for

each of the entity types and an additional O label.2

We present a summary of results for uncertainty sampling, the count-based method

and the QBC using bagging and vote entropy in comparison withrandom sampling in

Figures 5.17 and 5.18.3 We note that all active learning methods outperform random

sampling. Interestingly, uncertainty sampling outperforms all other methods by a wide

margin. This demonstrates that uncertainty sampling can well be an effective method

to improve unreliable parameters. However, this is in contrast to the relative perfor-

mance of uncertainty sampling compared to other active learning methods for all other

applications detailed in this thesis.

2In fact, one label is missing from this set, B-PER.
3We do not show results for combined count-based/uncertainty sampling which is better than count-

based but worse than uncertainty sampling by itself. Also not shown here and in the following experi-
ments are results for other QBC settings which all perform worse than bagging/vote entropy.
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As is well known from the literature, relative performance of active learning meth-

ods can vary across tasks. Baram et al., 2004 suggest a meta-learning protocol which

dynamically chooses among several sample selection methods according to a maxi-

mum entropy criterion. They found that this method almost always matches the per-

formance of the best method for a given task. Still, it would be good to know why

uncertainty sampling performs so well for NER. In general, it is desirable to have a

criterion by which to predict the relative performance of active learning methods ap-

plied to a particular problem. This is in particular the casewhen having to choose a

method for a novel type of application.

As pointed out above, there are differences between NER and tagging with respect

to i) the choice of evaluation metric, ii) the size of tagset,and more generally iii)

the type of task. In order to see if relative performance of methods may depend on

the choice of evaluation metric, we evaluated the above-mentioned range of active

learning methods for NER according to label accuracy. We findthe same relative

ranking for the methods, with uncertainty sampling still performing the best. Hence,

we can discard evaluation metric as a potential explanationfor these differences. This

leaves tagset size and task type as potential factors. So far, we examined results for

tagging with a large tagset and NER with a small tagset. In order to tease apart these

factors, we introduce a fully-crossed design, where we carry out the two following

additional experiments:

• Decrease size of label set for part-of-speech tagging

• Increase size of label set for NER

Simplified Part-of-Speech Tagging

To decrease the size of the label set for part-of-speech tagging, we collapsed the origi-

nal set of 45 different part-of-speech tags to 5 labels as in (McCallum et al., 2003):

• Collapse all different types of nouns into one label NOUN.

• Collapse all different types of verbs into one label VERB.

• Collapse all different types of adjectives into one label ADJ.

• Collapse all different types of adverbs into one label ADV.

• Collapse the remaining POS labels into one label OTHER.
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Figure 5.17: Overview of methods for NER (from 100 sentences)
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Figure 5.18: Overview of methods for NER (from 1000 sentences)
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We present results for the same set of active learning methods in application to

simplified part-of-speech tagging in Figures 5.19 and 5.20.Qualitatively, results are

very similar to named entity recognition (with a small tagset). Uncertainty sampling

outperforms all other methods by a wide margin while count-based and QBC perform

quite similarly. This shows again that uncertainty sampling can be effective to deal

with unreliable parameters under certain circumstances. This is also an indication that

the relative performance of active learning methods may be related to the size of the

tagset rather than the nature of the task.

Named Entity Recognition with Increased Label Set

In order to increase the size of the label set for NER, we use a more involved coding

for outside tokens (previously labelled O). For these, we indicate the type of the tokens

which surround them in a context two tokens to the left and twoto the right. Contextual

tokens within an entity are coded N; outside an entity O; sentence boundaries are coded

X. For example, the sequence “BRUSSELS/I-LOC 1996-08-22/O” is now labelled

as “BRUSSELS/I-LOC 1996-08-22/XN-O-XX”. Using this coding, we increase the

label set to 56 tokens, while performance remains roughly the same as when using the

standard BIO set when using random sampling.

We show results in Figures 5.21 and 5.22. The previous advantage of uncertainty

sampling over other methods has disappeared now and QBC is about as good as un-

certainty sampling for this task. The performance of count-based sampling is only

marginally better than random sampling. This is probably because considerable an-

notation effort is directed towards annotating the multitude of different O labels. Ar-

guably, this is an artifact of the contrived tagset.

Again, we can see a clear dependence on the size of the tagset for the relative

performance of different active learning methods.

Summary

For NER, we found that the count-based method and QBC performroughly equally

well. However, uncertainty sampling achieves by far the best results. This contrasts

with the results for part-of-speech tagging in this chapter, and results in the chapters

on prepositional phrase attachment and on parsing. Generally, however, this coincides

with the perceived wisdom that there is no single best activelearning method across

all applications (Baram et al., 2004). The results of a cross-designed experiment with
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tagset size and task type as independent factors indicate that the tagset size is the main

reason behind this finding.

5.7 Conclusion

In this chapter, we demonstrated the need to specifically address unreliable parameters

when applying active learning to sequencing tasks. In the first part, we focused on part-

of-speech tagging as a task. We found that uncertainty sampling outperforms random

sampling and that we can do even better than uncertainty sampling by using QBC.

However, in order to make QBC perform properly requires adjusting experimental

parameters. We found best performance by using a combination of bagging and vote

entropy.

Furthermore, we introduced a novel method which directly counts the number of

unreliable parameters based on missing events which are needed for decoding a given

sentence. This method in isolation is as good as or better than uncertainty sampling.

This again demonstrates that directly addressing unreliable parameters is a successful

strategy. Furthermore, we established that it tends to select examples which are differ-

ent from the examples that uncertainty sampling would select. This situation suggests

the combination of the count-based method with uncertaintysampling and, in fact, the

combination beats both methods in isolation and almost matches the best overall result

from QBC.

We found surprising results when applying this range of methods to named en-

tity recognition. In this domain, best results are achievedwith uncertainty sampling.

Experiments indicate that uncertainty sampling works wellon problems with small

tagsets. At least in some domains, uncertainty sampling maybe suited to deal with

unreliable parameters as well as other methods investigated in this thesis.





Chapter 6

Unreliable Parameters in Parsing

In the previous two chapters, we have demonstrated improvements over standard ac-

tive learning methods by specifically selecting examples ofwhich the analysis depends

on unreliably estimated model parameters. We applied such techniques to preposi-

tional phrase attachment and to sequencing tasks. In this chapter, we show that we can

achieve similar improvements for parsing as well; using thesame strategy of preferably

annotating examples associated with unreliably estimatedparameters.

As with the previous applications, the supervised trainingof probabilistic parsers

(Collins, 1997; Charniak, 2000) requires large amounts of manually annotated material

to achieve high performance levels. Syntactically annotated corpora are available for

a variety of languages, for instance the Penn Treebank for English (Marcus et al.,

1993), the Negra Treebank for German (Skut et al., 1997) or the Alpino Treebank for

Dutch (van der Beek et al., 2002). However, for the many languages which as yet lack

treebanks, active learning holds the promise to significantly reduce annotation costs.

Parsing is an interesting application for active learning.It presents a more com-

plex task than prepositional phrase attachment or sequencing since labels are not only

assigned to individual words, but to recursively embedded constituents. Also, the use

of bilexical dependencies in lexicalised parsers causes sparse data problems which are

more severe than for sequencing models. We expect our approach to be particularly

useful for such cases where distributions have long tails ofinfrequent rules.

For the experiments in this chapter, we use a near state-of-the-art lexicalised parser,

Collins’ model 2 parser (Collins, 1997), which we describedin more detail in Sub-

section 2.3.3. In particular, we use Dan Bikel’s implementation described in (Bikel,

2004a). For the training of Collins’ parsing model, manually annotated parse trees are

decomposed into head- and modifier-generation events. The parsing performance of a

93
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trained model will suffer in particular from missing or infrequently observed events.

Sentences are unparsable usually because ofmissing eventsin the grammar.1 This

suggests the selection of unparsable sentences to learn such missing events. The acqui-

sition of the correct parse tree for an unparsable sentence trivially enables its analysis.

More importantly, learning new parsing events augments theparsing model in general

and should help the analysis of similar sentences, and thus increase coverage. In one

set of experiments, we investigate this strategy to increase coverage in combination

with standard uncertainty sampling. Results show that it isalways beneficial to select

unparsable sentences for annotation. At least in the early phases of training, we show

that striving for coverage is more important than selectinguncertain examples. By

contrast, we show that ignoring unparsable sentences in uncertainty sampling results

in a performance worse than random sampling.

Parameter estimates based oninfrequently observed eventswill typically exhibit

a higher degree of variance and contribute to a higher error rate. Hence, acquiring

the correct analyses for sentences where the analysis is based on such infrequently

observed events will eventually increase low event counts in the model and thereby

reduce variance and error rate. We identify such sentences by training the model on

a bootstrap replicate of the original training set. This hasthe effect of (stochastically)

eliminating some, but not all infrequent events. Clearly, the analysis of a sentence

which becomes unparsable under such a bagged model has been based on a low fre-

quency event. We note here that the eliminated analysis might not even have been the

correct one. In either case, as a positive effect, acquiringthe correct parse tree for

such a sentence either increases some of the low frequency events or introduces new

events. This approach is essentially an approximation to the method discussed in the

previous chapter in order to target infrequently observed events. We conduct experi-

ments with a two-stage method which first selects unparsablesentences according to a

bagged parser, and then applies uncertainty sampling to theremaining sentences using

a fully trained parser, and contrast these with a more conventional ensemble-based ap-

proach where the ensemble members have been created by the same method, namely

by training on a bootstrap replicate of the original training set. Both methods clearly

outperform uncertainty sampling. Furthermore, the simpletwo-stage method performs

as well or better than the more involved ensemble-based method.

This chapter extends joint work with Miles Osborne, previously published as (Becker

and Osborne, 2005).

1Other potential causes for parse failures are memory problems or time-out conditions.
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Chapter Structure

We begin in Section 6.1, by showing the importance of coverage in parsing in a random

sampling experiment. By using an appropriate smoothing mechanism, in the form of

constraint relaxation, we improve coverage and other relevant evaluation metrics.

In Section 6.2, we demonstrate clear improvements over standard uncertainty sam-

pling by specifically selecting unparsable sentences. Thisactually requires the switch-

ing off of constraint relaxation in the sample selection phase in order to let the parser

fail on difficult sentences. We show that this method combines gracefully with other

methods such as uncertainty sampling.

In Section 6.3, we investigate relevant parameters for QBC,in particular the choice

of divergence metric and ensemble size. As with uncertaintysampling, we find im-

provements for parser ensembles which do not use constraintrelaxation.

In Section 6.4, we introduce a novel method which targets unreliable parameters

due to infrequent counts.

We conclude this chapter in Section 6.5.

6.1 Parsing Coverage in Random Sampling

Achieving high coverage clearly is important for a good parsing performance. Low

coverage in a parser is directly reflected in low recall and thus also in a low f-measure.

Increasing the coverage of a parser will generally be beneficial for recall, even if the

predicted parse trees are not entirely correct, since we canexpect at least partial credit

for some of the constituents, assuming a Parseval evaluation. We show in this sec-

tion how an appropriate smoothing regime can help to increase coverage. In the Bikel

parser, smoothing occurs in a number of different forms, forexample back-off smooth-

ing for probabilities with unobserved conditioning contexts. One form of smoothing

calledconstraint relaxationhas been implemented in Bikel’s parser which replaces

all zero probability estimates with small probabilities for sentences which cannot be

parsed with the default parsing scheme at the maximum beam width.

Experiment

In this experiment, we examine the effects of applying Bikel’s constraint relaxation

on coverage and other relevant evaluation metrics. Here, wewill consider a random

sampling setting, that is, apart from constraint relaxation, we do not consider any other
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means to increase coverage. We record learning curves for randomly sampled training

sets of different sizes for coverage, exact match rate, precision, recall, and f-measure,

both for a parser with constraint relaxation, and for a parser without.

Figure 6.1 gives results for coverage. A parser smoothed with constraint relaxation

consistently has more than 99% coverage, even for very smalltraining sets. By con-

trast, a parser without constraint relaxation shows much smaller coverage for small

training sets, but eventually converges towards full coverage for a large training set.

However, a level of 99% coverage is reached only after ca. 4,900 annotated sentences

have been seen.

The effect of applying constraint relaxation is less drastic for the exact match rate,

see Figure 6.2. A parser with constraint relaxation performs only slightly better than

one without. This is somewhat to be expected, since the chances are fairly small of

correctly predicting the entire structure for those sentences which could not be parsed

without constraint relaxation and obviously are difficult.

Figure 6.3 gives precision and recall learning curves for both parser types. Re-

call and precision are fairly high for a parser with constraint relaxation, even with

very small training sets. Also, recall and precision are almost completely balanced

throughout. As predicted analytically, recall for a parserwithout constraint relaxation

is severely impaired due to a lack of coverage. On the other hand, precision is higher

than for the parser with constraint relaxation.

The net effect of drastically improved recall and slightly impaired precision can be

seen in Figure 6.4. F-measure for the parser with constraintrelaxation is significantly

better throughout. The improvements are particularly striking for small training sets:

With a training set of 100 sentences, f-measure goes up from 39% to 68%.

These results clearly demonstrate that employing constraint relaxation as a smooth-

ing technique is beneficial as measured by a variety of relevant evaluation metrics,

among them coverage, exact match rate, and f-measure. For the purpose of deploying

the parser, that is, using it for testing purposes, we will henceforth use the parser with

constraint relaxation.

6.2 Uncertainty Sampling for Parsing

The previous section has shown that smoothing in the form of constraint relaxation

is beneficial when parsing test sentences. We stipulate the hypothesis that it might

be beneficial to allow the parser to fail on difficult sentences in the pool by explicitly
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switching off constraint relaxation in the selection phase, and to subsequently target

such sentences for annotation. The acquisition of correct parse trees for unparsable

sentences necessarily increases the size of the model structure for the grammar, and

eventually may help to parse new sentences more reliably. Such a method may be

combined with standard uncertainty sampling by selecting both unparsable sentences

and parsable sentences with high entropy. These considerations motivate the following

sample selection methods.

Coverage-based selection: (COV) Select out-of-coverage sentences based on an un-

smoothed parser; fill the batch with random sentences. This method directly

aims to acquire missing parsing events.

Coverage- and uncertainty-based selection: (COV-UNC) Select out-of-coverage sen-

tences based on an unsmoothed parser; fill the batch with high-entropy sen-

tences. By combining out-of-coverage and uncertainty sampling, this method

also aims to acquire missing parsing events and to generallyimprove unreliable

model parameters.

Uncertainty-based selection, unsmoothed: (UNC-NSM) Select high-entropy sentences

based on an unsmoothed parser. This method generally aims toimprove unreli-

able model parameters but, by implicitly dispreferring unparsable sentences, it

will fail to acquire the missing parsing events associated with these sentences.

Uncertainty-based selection, smoothed: (UNC-SM) Select high-entropy sentences

based on a smoothed parser. This method also generally aims to improve un-

reliable model parameters. It does not have a specific mechanism to acquire

missing parsing events. It thus serves as a baseline to see ifentropy by itself can

reliably select useful sentences for annotation as conventionally done in active

learning.2

Random selection: (RND) We compare all results against a parser trained on ran-

domly sampled training sets of different sizes.

With larger training sets, unparsable sentences become less frequent, and the dif-

ferences between the methods should be less pronounced. To investigate this effect,

we start at initial training set sizes of 100 and 1000 sentences.

2Unparsable sentences will also be included preferably, even though they occur quite rarely when
making use of constraint relaxation.
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Sentence length restriction In this experiment, we will have to deal with an artefact

of the implementation of the n-best parse enumeration in combination with smoothing.

To compute the n-best parses, the implementation switches off dynamic programming

which causes long parsing times in general. The applicationof constraint relaxation

aggravates this problem, resulting in extremely long parsetimes (half hour per sentence

and more) in particular for longer sentences. This requiresan appropriate time-out

threshold to keep experimental run-times feasible. Furthermore, memory requirements

are very high for the combination of n-best enumeration and smoothing, resulting in

occasional out-of-memory problems.

It is not immediately clear what to do with such sentences which suffer from either

time-out or out-of-memory problems. One could ignore thesesentences, and thereby

deprive the smoothed parser of these examples. Given that this mostly happens for

sentences which are unparsable for the unsmoothed parser, this seems like an unfair

advantage for the unsmoothed parser. Alternatively, one could choose to include these

sentences as selected examples just as we do with the unsmoothed parser, thereby

blurring the distinction between the two approaches.

Given that we would actually like to contrast an approach which entirely relies on

entropy scores with one that has the added possibility of flagging unparsed sentences

due to coverage problems, we restrict the experiment by choosing training set and pool

set only from sentences with length≤ 30. This length threshold has been chosen since

almost all sentences can be parsed without time-out or memory problems, even with

n-best enumeration and constraint relaxation. For the testset, we use sentences with

length≤ 40.

6.2.1 Experiments

Experiment 1 We compare coverage-based selection (COV) to a baseline of smoothed

uncertainty-based selection (UNC-SM). Using coverage-based selection will show

how far out-of-coverage sampling can go by itself, without making use of uncertainty.

We contrast both methods against random selection.

Figures 6.5 and 6.6 show results when starting with a small training set of 100 sen-

tences and a large training set of 1000 sentences respectively. We find that both meth-

ods perform significantly better than random sampling for most of the iterations. There

is however a clear difference between the two methods. The increase in f-measure is

slow initially for standard uncertainty sampling, but after the first few iterations the
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improvement over random sampling is significant throughout. The coverage-based

method on the other hand has a remarkably steep rise in f-measure and is significantly

better than random sampling after only a single iteration. However, this performance

is not sustained through the experiment, and in later iterations f-measure converges

towards random sampling.

In a direct comparison between the two methods, we find that the coverage-based

method is significantly better than standard uncertainty sampling until 900 sentences

have been annotated when starting with a small training set,and significantly worse

only after ca. 2200 sentences. When starting with a large training set, the coverage-

based method is as good as standard uncertainty sampling (orbetter) until ca. 2300

sentences.

This demonstrates that pursuing unparsable sentences to boost coverage is benefi-

cial in sample selection at least in the early phases of active learning. When coverage

converges to 100% however, such a method looses its impact and sample selection is

increasingly based on random sampling.

Experiment 2 In the next experiment, we compare coverage- and uncertainty-based

selection (COV-UNC) to the baseline of smoothed uncertainty-based selection (UNC-

SM as above). The motivation for the coverage- and uncertainty-based selection method

is that we would like to harness the advantages of early out-of-coverage selection and

have a sustainable selection method for later phases. Results for this comparison are

shown in Figures 6.7 and 6.8, again starting with a small and alarge training set.

Both conditions consistently outperform random sampling in terms of f-measure

for both starting points. However, the increase using smoothed uncertainty-based se-

lection is slower and significantly better than random sampling only after a few iter-

ations. By contrast, f-measure increases faster using coverage- and uncertainty-based

selection and is significantly better after only a single iteration for both initial training

set sizes.

When comparing both conditions against each other, we find that coverage- and

uncertainty-based selection is consistently better than smoothed uncertainty-based se-

lection. When starting at 100 sentences, this improvement is significant throughout

all iterations. When starting at 1000 sentences, results are a little less pronounced and

significance is achieved only in some iterations.

The difference between the two methods is that we turn off constraint relaxation in

the sample selection stage. Apart from improved performance in terms of f-measure,
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this has the added advantage that the sample selection phasecan run considerably

faster. When using a grammar trained on 100 sentences, parsing a pool of 1000 sen-

tences takes two minutes with an unsmoothed parser, but morethan seven hours with a

smoothed parser. When using a grammar trained on 1000 sentences, parsing a pool of

1000 sentences takes 18 minutes with an unsmoothed parser, and more than two hours

with a smoothed parser.

Experiment 3 Finally, we might ask what happens if we used a purely uncertainty-

based selection in combination with an unsmoothed parser (UNC-NSM). This method

implicitly disprefers unparsable sentences; hence we expect it to perform poorly. We

contrast this method with the already discussed coverage- and uncertainty-based selec-

tion which prefers unparsable sentences (COV-UNC) in Figures 6.9 and 6.10.

The most striking result is found when starting with the small initial training set.

F-measure for purely uncertainty-based selection is consistently worse than random

sampling and significantly so from the first iteration until 1900 sentences have been

sampled. Correspondingly, this method is also significantly worse than coverage-

and uncertainty-based selection in all iterations. When starting from 1000 sentences,

purely uncertainty-based selection increases at the same rate as random sampling in the

first few iterations, and is significantly better than randomsampling only after the third

iteration. It is significantly worse than coverage- and uncertainty-based selection until

2900 sentences. This clearly demonstrates that failing to select unparsable sentences

is harmful.

Uncertainty Sampling alone cannot reliably identify diffic ult sentences

The previous experiments demonstrated that the selection of unparsable sentences

(with an unsmoothed parser) is beneficial. Also, we saw that selection using the en-

tropy of a smoothed full-coverage parser alone is not a sufficient replacement for this

simple method. Admittedly, this would be more elegant sincewe would run the parser

with the same set of settings regardless of whether our purpose is testing or sample

selection; and we use entropy as the single selection criterion.

This indicates that difficult unparsable sentences do not have a higher entropy once

they are made parsable through smoothing. To verify this fact, we ran an experiment

in which we recorded entropies of 1000 sentences when parsedwith grammars trained

on 100 and 1000 sentences. We show results in Table 6.1. With the small training

set, 554 sentences require constraint relaxation to be parsable at all. Nevertheless,
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uncertainty-based selection (from 100 sentences)
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Figure 6.9: Comparing coverage- and uncertainty-based selection with unsmoothed

uncertainty-based selection, excluding unparsed sentences (from 100 sentences)
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average entropy number of instances

#sentences smoothed unsmoothed #smoothed #unsmoothed (other)

100 0.47 0.45 554 432 (14)

1000 0.52 0.54 57 937 (6)

Table 6.1: Average entropies for easy and difficult examples

the average entropy for these sentences (0.47) is only marginally higher than for the

432 sentences which do not require smoothing (0.45). 14 sentences were not parsable

at all due to time-outs or genuine unparsability. With the large training set only 57

sentences required constraint relaxation to be parsable. Their average entropy (0.52)

is even lower than for the large majority of sentences which required no smoothing.

Here, 6 sentences were not parsable even with constraint relaxation.

In short, entropy is not a good indicator for the selection ofdifficult sentences

which can only be parsed with a smoothed parser. This clearlysupports the notion that

an uncertainty-based sample selection method should also use parsability information.

6.2.2 Summary

We have looked at aspects of selecting out-of-coverage sentences in the context of

standard uncertainty sampling.

Only selecting out-of-coverage sentences from the pool, without any further sources

of information, is a surprisingly effective method to increase f-measure at a higher rate

than random sampling, at least in the early rounds of active learning. This method im-

plies switching off the standard smoothing in order to identify unparsable sentences.

On the other hand, failing to select out-of-coverage sentences, even when uncertainty

sampling is employed, is detrimental and can result in performance worse than random

sampling.

Best performance in a single learner setting is achieved with a combination of out-

of-coverage selection and uncertainty sampling. In particular, we preferably select

out-of-coverage sentences (according to an unsmoothed parser) and fill the batch with

high-entropy sentences. This finding is another manifestation of the central idea of this

thesis that unreliable parameters should be explicitly targeted. By contrast, uncertainty

sampling, as standardly applied, does not incorporate suchmechanisms and yields

inferior results. We also see that the optimal smoothing regime for sample selection

may well be different than for testing.
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6.3 Query-By-Committee for Parsing

We have seen in the two previous chapters that using QBC can result in substantial

improvements over single learner uncertainty sampling by identifying unreliable pa-

rameters based on infrequent parsing events. This section is concerned with finding

optimal parameter settings for QBC with the aim of improvingover the best uncer-

tainty sampling results in this chapter. We compare and optimise the performance of

ensembles along the following dimensions:

• Divergence Metric: Jensen-Shannon divergence; vote entropy

• Smoothing: On; Off

• Ensemble Size: Small; Large

In preliminary experiments, we found that using either bagging or Dirichlet sam-

pling as sampling methods resulted in very similar results.We will use bagging as the

sampling method.

Assigning scores for partially unparsable sentences

Throughout the following experiments, we preferably select sentences with high dis-

agreement measured either as JS-divergence or as vote entropy. This raises the ques-

tion how to apply these metrics in cases where a sentence is unparsable for some or all

ensemble parsers due to coverage or timeout problems.

A possible solution is to ignore unparsable sentences in such situations and com-

pute divergence only for the remaining analyses. However, in addition to not working

well in practice, this is unsatisfactory for a number of reasons. Most importantly, this

approach does not allow us to properly distinguish between cases with many and few

unparsable situations even though, intuitively, we would like to prefer sentences where

the ensemble has many unparsable cases. Also, we would have to pay attention to a

number of special situations: i) in cases where no ensemble member can analyse a

particular sentence, both divergence metrics are ill-defined; instead we may want to

assign a high score; ii) in cases where only one member can analyse a sentence, the

current definitions for divergence metrics would suggest complete agreement which is

counter-intuitive; again we may want to assign a high score.
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To remedy such problems, we employ the following strategy:3 We replace every

unparsed result in an ensemble with a single and unique analysis (associated with a

probability of 1.0). This addresses the main problem with the previous solution since

this way we assign larger divergences in case of larger numbers of unparsed results. At

the same time, we deal with all mentioned special cases: i) when no ensemble parser

can analyse a sentence, we have a maximal number of unique analyses and will assign

a maximal score for both JS-divergence and vote entropy; ii)when only one member

can analyse a sentence we again have a maximal number of unique analyses since the

one genuine analysis will be different from all artificiallyassigned analyses, and we

assign a maximal score in this case.

6.3.1 Impact of Smoothing on Parser Ensembles

In the previous section, we have established that it is beneficial to use an unsmoothed

parser for uncertainty sampling while applying parsability as a selection criterion.

The first set of experiments in this section will look at the question whether this also

holds true when using QBC as a sample selection metric. We contrast ensembles of

smoothed parsers with ensembles of unsmoothed parsers. Because active learning us-

ing smoothed parsers is extremely time consuming, we compare performances only

for a minimal ensemble containing two ensemble members here. We make these com-

parisons for the following set of conditions:

• Bagging, JS-divergence

• Bagging, vote entropy

Bagging, JS-divergence

In our first comparison between smoothed and unsmoothed ensembles, we use bagging

as a sampling method and JS-divergence as a divergence metric. Figures 6.11 and 6.12

show results when starting with initial training sets of 100and 1000 sentences.

The unsmoothed method (QBC-NSM) performs significantly better than random

sampling; following the second iteration when starting with a small training set, and

right from the start when starting with a large set.

The smoothed method (QBC-SM) performs worse than random sampling when

starting with a small training set. When starting with a large training set, the smoothed

3We are grateful to David Talbot who suggested this approach.
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method performs better than random sampling; but the difference is significant only in

some of the iterations.

Overall, the unsmoothed method clearly outperforms the smoothed method; sig-

nificantly through all iterations for the small training setand until 3200 sentences have

been sampled for the large training set.

Bagging, Vote Entropy

Next, we compare smoothed and unsmoothed ensembles when using bagging as a

sampling method and vote entropy as a divergence metric. Figures 6.13 and 6.14 show

results when starting with initial training sets of 100 and 1000 sentences.

We first note that the performance of smoothed and unsmoothedensembles is much

closer than in the two previous experiments using Jensen-Shannon divergence. Perfor-

mance is almost identical when starting early; almost all pairwise comparisons are not

significant. Performance of an unsmoothed of an unsmoothed ensemble is just a little

bit better when starting late; and improvements are significant only in some iterations.

In comparison to random sampling, we find that both smoothed and unsmoothed

ensembles perform significantly better when starting early; and mostly significantly

better when starting late. However, we find that the improvement of using an un-

smoothed ensemble over a smoothed ensemble is not as good as in the previous exper-

iments.

6.3.2 Increasing Ensemble Size

As we saw in the previous chapter, using larger ensemble sizes in Query-by-Committee

can improve active learning performance. We now examine if this is also the case when

applied to parsing. To this end, we contrast small ensemblesof two parsers with larger

ensembles of five parsers. Having established that it is not beneficial to use smoothed

parser ensembles, we only use unsmoothed ensembles for thisexperiment. Again, we

make these comparisons for the set of conditions:

• Bagging, JS-divergence

• Bagging, vote entropy
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Figure 6.11: Smoothing settings for bagging/JS-divergence (from 100 sentences)
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Figure 6.12: Smoothing settings for bagging/JS-divergence (from 1000 sentences)
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Figure 6.13: Smoothing settings for bagging/vote entropy (from 100 sentences)
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Figure 6.14: Smoothing settings for bagging/vote entropy (from 1000 sentences)
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Bagging, JS-divergence

In our first comparison between small and large ensembles, weuse bagging as a sam-

pling method and JS-divergence as divergence metric. In Figures 6.15 and 6.16, we see

that using a large ensemble results improves performance over using a small ensemble.

When starting early, this improvement is significant after 12 iterations; when starting

late, improvements are significant after only four iterations.

Bagging, Vote Entropy

Next, we compare small and large ensembles when using bagging as a sampling method

and vote entropy as divergence metric. In Figures 6.17 and 6.18, we see again that

using a large ensemble results improves performance over using a small ensemble.

Improvements are significant throughout, both when starting early and late.

JS-divergence versus Vote Entropy

When comparing performance for large ensembles between divergence metrics, we

find vote entropy and JS-divergence to be almost identical when starting early. (Results

not included here.) When starting late, JS-divergence performs slightly better but not

significantly so. For the remaining comparisons, we will uselarge ensembles with a

combination of JS-divergence and bagging.

6.3.3 Comparison with Uncertainty Sampling

Having identified a setting for Query-by-Committee which results in best improve-

ments over random sampling, it is interesting to see how muchwe gain over the best

results for uncertainty sampling, see results in Figures 6.19 and 6.20. When starting

early we find that uncertainty sampling and Query-by-Committee perform almost iden-

tical. When starting late improvements of using Query-by-Committee over uncertainty

sampling are significant only from iterations 3 to 11. Given the computational cost of

running an ensemble as opposed to a single learner method maysuggest the preferred

use of single learner uncertainty sampling over Query-by-Committee.

6.3.4 Summary

In this section, we have looked at different aspects of ensemble methods, including

the role of smoothing, different sampling methods, different divergence metrics and
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Figure 6.15: Ensemble sizes for bagging/JS-divergence (from 100 sentences)
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Figure 6.16: Ensemble sizes for bagging/JS-divergence (from 1000 sentences)
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Figure 6.17: Ensemble sizes for bagging/vote entropy (from 100 sentences)
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Figure 6.18: Ensemble sizes for bagging/vote entropy (from 1000 sentences)
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Figure 6.19: Best settings for uncertainty sampling and QBC (from 100 sentences)
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Figure 6.20: Best settings for uncertainty sampling and QBC (from 1000 sentences)
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ensemble size. Best results are achieved with ensembles of unsmoothed parsers in

combination with Jensen-Shannon divergence as a measure ofdisagreement. Using

smoothed parsers ensembles in combination with this divergence metric results in a

decrease of performance, and may even perform worse than random sampling.

Using vote entropy results in lower performance, in particular when used with

small ensembles. This is in contrast to our findings with respect to prepositional phrase

attachment and part-of-speech tagging, but serves to illustrate the fact that divergence

metrics should be carefully selected for the task at hand.

Using either bagging or Dirichlet sampling does not make much of a difference.

This is a finding of practical relevance since generally bagging of the training set is

simpler to implement than Dirichlet sampling.

Increasing the ensemble size has a positive influence on performance. However,

even with an ensemble of a moderate size it can be difficult to outperform uncertainty

sampling in combination with out-of-coverage selection.

6.4 A Novel Two Stage Method

Acquiring the correct analysis of a sentence for which the predicted analysis was se-

lected on the basis of infrequent parsing events may well be informative. A simple

but effective method is to eliminate some infrequent eventsfrom the parsing model.

Simply bagging the current training set, and retraining theparser on this set allows to

identify such examples for labelling.

The proposed method operates in two stages. First, we parse all pool sentences

with a parser which has been trained on a bootstrap replicateof the training set. Sec-

ond, we parse the pool sentences with a parser trained on the full training set. In

both stages, we deliberately allow the parser to fail by not applying constraint relax-

ation. The selection of sentences for manual annotation proceeds as follows. As in the

coverage-based methods, we first select sentences which areunparsable according to

the fully trained parser. From the remaining sentences, we select sentences which are

unparsable according to the bagged parser. Finally, we select those sentences with the

highest entropy according to the fully trained parser.

We can express this formally as follows:

f two
M,M′(s,τ) = max(failure(s,M,2c), failure(s,M′,c), f te

M(s,τM)) (6.1)

wheref te
M is the entropy according to a fully trained modelM, defined in Equation 2.21.
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The functionfailure(s,M,c) returns a very large constantc when sentences is un-

parsable given parser model M and 0 otherwise.M denotes a fully trained model, and

M′ a bagged model.

This method operates very similar to the coverage- and uncertainty-based method

described in Section 6.2. The difference is the extra layer with the bagged parser

which is designed to additionally identify sentences of which the analysis is based on

infrequent events.

Experiments

In the following, we will compare the two-stage method against earlier best results

from uncertainty sampling and QBC.

Figures 6.21 and 6.22 show results when comparing the two-stage method against

best uncertainty sampling, namely the coverage- and uncertainty-based selection method.

We find that the two-stage method does not achieve an improvement over uncertainty

sampling when starting early. However, when starting late we find a significant im-

provement right from the beginning.

These two methods are identical in their uncertainty sampling component and differ

only in the way how out-of-coverage sentences are identifiedinitially. The coverage-

and uncertainty-based method selects unparsable sentences according to a fully trained

parser; the two-stage method selects them according to botha fully trained parser and

a bagged parser. While the former is good at identifying examples with unseen parsing

events, the latter identifies examples with both unseen and infrequent parsing events.

Clearly, the improved performance of the two-stage method seen in Figure 6.22 is

attributable to this fact.

Figures 6.23 and 6.24 show the results when comparing the two-stage method

against QBC at the best setting, namely QBC with an ensemble of 5 members, us-

ing bagging and JS-divergence. We find that the two-stage method is always as good

as or better than QBC, and never significantly worse for both starting points.

As argued before, QBC can be good at identifying examples from which we can

learn both unseen and infrequent parsing events. The almostequivalent performance

seen in the last experiment indicates that the two-stage is as good in this respect as

QBC.



118 Chapter 6. Unreliable Parameters in Parsing

 65

 70

 75

 80

 85

F
-m

ea
su

re
 in

 %

TWO
UNC
RND

0.05
0.01

TWO vs RND

0.05
0.01

UNC vs RND

0.05
0.01

3k2k1k 100

   
   

   
   

   
   

   
   

  p
-v

al
ue

Number of sentences

TWO vs UNC

Figure 6.21: Comparing two-stage method with best uncertainty sampling (from 100

sentences)
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Figure 6.22: Comparing two-stage method with best uncertainty sampling (from 1000

sentences)
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Figure 6.23: Comparing two-stage method with best QBC (from 100 sentences)
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Figure 6.24: Comparing two-stage method with best QBC (from 1000 sentences)
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A Baseline

The two-stage method uses bagging to eliminate low frequency events from the train-

ing set. This raises the question if we can achieve comparable results using a simple

cutoff instead of bagging to create a reduced parser. To thisend we perform a baseline

experiment where we replace the bagging component of the two-stage method with

a frequency cutoff, removing all parse events which occur fewer thann times. We

found little difference in the choice ofn for reasons that we will explain below. For the

following experiment, we setn = 2, removing all parse events which occur only once.

Figures. 6.25 and 6.26 show that such a baseline method initially performs well but

eventually converges towards the performance of random sampling. This behaviour is

very similar to that of coverage-based sampling which we display in the same graph

for demonstrative purposes. The significance test for the pairwise comparison of this

baseline method against coverage-based sampling shows that both methods are virtu-

ally indistinguishable.

To explain the difference between the baseline method and the two-stage method,

we look at the coverage of the reduced parser for both methods, that is the bagged

parser and the cutoff parser, on the pool. Figures 6.27 and 6.27 show that coverage of

a bagged parser converges towards 99%, starting from below 30% when starting early

and from 90% when starting late. By contrast, a cutoff parserhas very little cover-

age, starting from almost 0% towards 20% coverage when starting early and towards

25% when starting late. This means that the majority of the pool sentences would be

marked for preferable selection. In a situation where we filla batch which is consid-

erably smaller than the pool, this effectively results in random selection in the second

selection phase, and since the third phase using uncertainty sampling is never reached

we observed random selection behaviour throughout after the first phase. This explains

the similarity in behaviour with coverage-based sampling.Using higher cutoff values

for n only aggravates the problem, and results in even lower levels of coverage.

In summary, we find that the bagged component of the two-stagemethod is indeed

essential and cannot be replaced with a simple cutoff method.

Summary

We introduced a novel two-stage method which primarily selects unparsable sentences

according to a fully trained parser and a bagged parser (bothwithout constraint re-

laxation). This technique identifies both unseen and infrequent parsing events. This
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Figure 6.25: Comparing baseline method with coverage-based selection (from 100 sen-

tences)
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Figure 6.26: Comparing baseline method with coverage-based selection (from 1000

sentences)
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Figure 6.27: Comparing coverage on the pool between baseline and two-stage method

(from 100 sentences)
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two-stage method performs as well as or better than the best uncertainty sampling

method, and just as well as the best QBC method, while being considerably cheaper to

run.

6.5 Conclusion

In this chapter, we demonstrated various ways of dealing with unreliable parameter

problems in the case of parsing. A particular important formof unreliable parame-

ters are unseen head- and modifier-generation events, that is, events which cannot be

learned from the current training set. Parsing failures dueto such unknown events

impair both recall and f-measure.

Coverage problems can be addressed in different ways. A standard way is to apply

more aggressive smoothing regimes. In a random sampling experiment, we demon-

strated that the application of constraint relaxation in Bikel’s parser is indeed a suc-

cessful way of bringing coverage close to 100%. This causes astrong increase in

recall, especially for small training sets, while only minimally impairing precision.

Correspondingly, we observe a highly significant increase in f-measure for all training

set sizes.

In the context of active learning, we can explicitly target unparsed sentences and

thus learn new events, rather than applying smoothing to fix such problems after the

fact. This requires that the parser be run with a lesser degree of smoothing during

sample selection. We show that selecting unparsed sentences as the only sample se-

lection method is successful in its own right; this method combines gracefully with

other active learning methods such as uncertainty sampling. By contrast, the use of a

fully smoothed parser in uncertainty sampling yields inferior results; this is because

sentences which are difficult to parse and hence would be useful to annotate do not

show higher entropy than other sentences.

The observation that it may be necessary to apply less smoothing in the sample

selection phase in order to have the full benefit of an out-of-coverage selection strategy

is a novel and important contribution of this chapter. Whileit has been recognised

before that out-of-coverage examples should be selected preferably when applying

active learning to parsing, for instance (Thompson et al., 1999) and (Hwa, personal

communication, 2003), the importance of this question has not received any attention.

Identifying infrequent (rather than unseen) events is in the domain of QBC. By ran-

domly perturbing parsing models, parameters based on infrequently observed events
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will show higher variance and hence higher disagreement. Inour experiments, we

show that it is beneficial to select sentences which require such parameters for their

decoding. We optimised sample selection performance for QBC by exploring rele-

vant experimental parameters. We achieve best results using bagged ensembles with

JS-divergence. Furthermore, we find that using larger ensembles further improves per-

formance. As with uncertainty sampling, using unsmoothed parsers is beneficial for

ensemble-based methods.

Finally, we introduced a novel two-stage method which primarily selects unparsable

sentences according to a fully trained and a bagged parser. This technique identifies

both unseen and infrequent parsing events in cases where they were deleted during

bagging. In order to fill the batch we apply uncertainty sampling to the remaining sen-

tences using a fully trained parser. This two-stage method performs as well as the best

QBC methods, and is considerably cheaper to run.

We have demonstrated the importance of addressing unreliable parameters when

applying active learning to parsing. New parsing events areeffectively learned by se-

lecting out-of-coverage sentences; parameter estimates of infrequently observed events

can be improved using the two-stage method. These are the novel contributions of this

chapter.



Chapter 7

Conclusion

This thesis concerns the proper treatment of sparse data problems when applying active

learning to natural language processing tasks. Sparse dataproblems are ubiquitous in

natural language processing due to the Zipfian nature of language. When randomly

sampling a training set from a population, sparse events will appear either infrequently

or not at all. Both cases are problematic for the supervised learning of statistical models

and can result in degraded classification performance. Infrequently observed events

cause high variance when estimating model parameter, and missing events can cause

the model structure to be incomplete such that a trained classifier may not be able to

predict any label for some input.

Active learning is a class of methods which are supposed to reduce the amount of

manually annotated data necessary for the supervised training of classifiers to reach a

given performance level. However, the two most popular active learning methods in

the literature, uncertainty sampling and QBC, have severe shortcomings with regard to

sparse data situations. Neither method has a principled wayto deal with missing events

as they are both defined to refine probability estimates within a given model structure.

In view of these shortcomings of active learning, we stated theUnreliable Parameter

Principle:

Active learning should explicitly and additionally address unreliably trained
model parameters in order to optimally reduce classification error. In order
to do so, we should target both missing events and infrequentevents.

In this thesis, we demonstrated how this principle applies to a variety of problems,

namely prepositional phrase attachment, part-of-speech tagging, named entity recog-

nition (NER) and syntactic parsing.

125
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7.1 Contributions of the Thesis

The main contributions of this thesis fall into the following categories.

Comparison between Uncertainty Sampling and QBC

Uncertainty sampling and QBC are very commonly used active learning methods. For

this reason, we provided an extensive comparison of these methods for a variety of

natural language processing tasks.

In a number of situations, we found that it is easy to misapplyactive learning when

using unfortunate experimental parameters to the degree that active learning underper-

forms random sampling. However, we found that, in general, both methods perform

better than random sampling as was expected. Furthermore, we found that QBC out-

performs uncertainty sampling in most cases. Surprisingly, this is not the case in NER.

We conducted some preliminary experiments which indicate that the relative perfor-

mance of active learning methods may be related to the size ofthe tagset.

QBC is equipped with a number of experimental parameters which need to be set

properly for good active learning results. In particular, we explored the use of en-

semble creation method and divergence metric. With respectto ensemble creation

method, we explored bagging (Abe and Mamitsuka, 1998) and Dirichlet sampling

(McCallum and Nigam, 1998; Argamon-Engelson and Dagan, 1999) as popular meth-

ods. We found empirically that QBC using bagging performed as well or better than

QBC using Dirichlet sampling in all applications. From a practical point of view, this

is an expedient result for QBC, since bagging is considerably easier to implement than

Dirichlet sampling in most cases. Bagging only requires theapplication of sampling

with replacement to the training set, leaving the subsequent training and application of

the classifier unchanged. By contrast, Dirichlet sampling requires the application of

resampling techniques on the level of individual distributions within the model.

With respect to the choice of divergence metrics we get varied results. For PPA

and part-of-speech tagging, we get best results with QBC using vote entropy, while

best results for parsing were achieved with QBC using JS-divergence. McCallum and

Nigam, 1998 found that JS-divergence works better than voteentropy but were careful

to note that this finding is specific to their application of text classification. It seems

that later work has overgeneralised their finding, for example (Melville and Mooney,

2004). Our findings indicate that the choice of appropriate divergence metric may well

need to be established from domain to domain.
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In general, these findings suggest caution when choosing active learning methods

for novel applications. To the best of our knowledge, such a comprehensive compar-

ison between uncertainty sampling and QBC across differenttasks has not been pre-

sented in previous literature. Similarly, the explorationof the experimental parameter

space for QBC is novel.

Explicitly Targeting Unreliable Parameters via Smoothing /Backing-Off

Choosing appropriate smoothing or backoff settings in active learning can be vital to

allow for the targeted selection of out-of-coverage examples. We demonstrate this for

prepositional phrase attachment and for parsing. For prepositional phrase attachment,

assigning an appropriate backoff probability helps to select unknown prepositions and

substantially improves coverage and accuracy for both uncertainty sampling and QBC.

For parsing, switching offconstraint relaxation(an effective smoothing method) helps

to select out-of-coverage examples and substantially improves coverage and f-measure.

The observation that altered smoothing regimes in active learning can be beneficial

is an important contribution of this thesis. This may seem counter-intuitive at first and

goes against the practice in the field to use the same model foractive learning and for

later testing purposes (Baldridge and Osborne, 2004).

To provide an intuition, we offer the following analogy: Training a model from

annotated data is like building a house, where we liken sparse data problems to cracks

in the wall. To make a model usable in practice we need to applysmoothing; similarly,

we make a house habitable after completion by papering cracks over with wallpaper.

Staying in the analogy, active learning can be compared to building a house in stages.

When acquiring data for the next stage, we should focus on structural problems such as

missing events in the model. To expose such problems, we do not apply smoothing (or

apply smoothing to a lesser degree). The application of smoothing in this stage would

be like having to find cracks in the wall while the wallpaper isup already.

Explicitly Targeting Unreliable Parameters via Other Meth odologies

Beyond adjusted smoothing, we introduced two novel methodsin this thesis which

explicitly target either out-of-coverage examples or variance in parameter estimates.

For sequence labelling tasks, we introduced a novel method which directly counts

the number of unreliable parameters based on missing eventswhich are needed for

decoding a given sentence. This method in isolation is as good as or better than un-



128 Chapter 7. Conclusion

certainty sampling. Furthermore, we established that it tends to select examples which

are different from the examples that uncertainty sampling would select. This situation

suggests the combination of the count-based method with uncertainty sampling and,

in fact, the combination beats both methods in isolation andmatches the best overall

result from QBC. This method directly implements the missing events aspect of the

Unreliable Parameter Principle and demonstrates that directly addressing unreliable

parameters is a successful strategy.

For parsing, we introduced a novel two-stage method which primarily selects un-

parsable sentences according to a fully trained parser and abagged parser (both with-

out constraint relaxation). This technique identifies bothunseen and infrequent rules

in cases where they were deleted during bagging. In order to fill the batch we apply

uncertainty sampling to the remaining sentences using a fully trained parser. This two-

stage method performs as well as the best QBC methods, and is considerably cheaper

to run. This method implements both the missing event and theinfrequent event aspect

of the Unreliable Parameter Principle.

7.2 Future Work

In this thesis, we have identified the need to deal with sparsedata problems in the con-

text of active learning and suggested a variety of methods appropriate for the respective

tasks. We have not provided a formal or a unified treatment howto deal with sparse

data problems in active learning. Devising such a treatmentwould be a worthwhile

endeavour but is outside the scope of this thesis.

Other worthwhile avenues of research would be to investigate the combination of

active learning methods suggested in this thesis with otherwork in the field. In par-

ticular, density estimation may help to iron out some of the worst problems we have

identified for uncertainty sampling (McCallum and Nigam, 1998; Tang et al., 2002).

The application of online choice algorithms (Baram et al., 2004) may obviate the need

to commit to one particular primary active learning method.However, while each of

this approaches could potentially further improve performance, we believe that they

are orthogonal to our methods.

A more general remark concerns the question why active learning methods have

been deployed so little in practical projects since their inception. Most active learning

research assumes that an active learning method almost exclusively drives the sam-

pling process, leading to a bias in the selected data. However, it should be acknowl-
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edged that there is an inherent value in randomly sampled data, for example for corpus

linguistics. Correspondingly, annotation projects may berather unwilling to hand over

control about how data are sampled to an active learning method. A line of work that

we would like to follow in the future is to consider active learning as an add-on to

existing annotation project, such that active learning is only employed late in the entire

annotation process. Interesting research would concern the question when to start the

active learning process. The use of the techniques suggested in this thesis may well

help to further improve performance.
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Gîrju, R., Rus, V., and Morǎrescu, P. (2001). The role of lexico-semantic feedback

in open-domain textual question-answering. InProceedings of the 39th Annual

Meeting of the Association for Computational Linguistics (ACL-01), Toulouse,

France.

Hindle, D. and Rooth, M. (1993). Structural ambiguity and lexical relations.Compu-

tation Linguistics, 19(1):103–120.

Hwa, R. Sample selection for statistical grammar induction. In Proceedings of the 2000

Joint SIGDAT Conference on Empirical Methods in Natural Language Processing

and Very Large Corpora, Hong Kong.

Hwa, R. (2001a).Learning Probabilistic Lexicalized Grammars for Natural Language

Processing. PhD thesis, Harvard University.

Hwa, R. (2001b). On minimizing training corpus for parser acquisition. InProceedings

of the Conference on Computational Natural Language Learning (CoNLL-01),

Toulouse, France.

Hwa, R. (2004). Sample selection for statistical parsing.Computational Linguistics,

30(3):253–276.

Jelinek, F., Lafferty, J., Magerman, D., Mercer, R., Ratnaparkhi, A., and Roukos, S.

(1994). Decision tree parsing using a hidden derivation model. In Proceedings of

the Workshop on Human Language Technology (HLT-94), Plainsboro, NJ, USA.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of Markov source param-

eters from sparse data. InProceedings of the Workshop on Pattern Recognition in

Practice, Amsterdam, Netherlands.



136 Bibliography

Johansson, S., Leech, G. N., and Goodluck, H. (1978).Manual of Information to

accompany the Lancaster-Oslo/Bergen Corpus of British English, for Use with

Digital Computers. University of Oslo.

Johnson, M., Geman, S., Canon, S., Chi, Z., and Riezler, S. (1999). Estimators

for stochastic "unification-based" grammars. InProceedings of the 37th Annual

Meeting of the Association for Computational Linguistics (ACL-99).

Jones, R., Ghani, R., Mitchell, T., and Riloff, E. (2003). Active learning for informa-

tion extraction with multiple view feature sets. InProceedings of the ECML-03

Workshop on Adaptive Text Extraction and Mining, Cavtat and Dubrovnik, Croa-

tia.

Katz, S. M. (1987). Estimation of probabilities from sparsedata for the language model

component of a speech recognizer.IEEE Transactions on Acoustics, Speech and

Signal Processing, ASSP-35(4).

Klein, D. and Manning, C. (2003). Accurate unlexicalized parsing. InProceedings of

the 41st Annual Meeting of the Association for Computational Linguistics (ACL-

03), Sapporo, Japan.
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Appendix A

Dynamic Programming

of Expected Backoff

Given a hidden Markov model,θ, we calculate the expected back-off count as:

Eθ[c(o)] = ∑
s

pθ(s|o)c(s,o) (A.1)

wherec(s,o) counts the number of trigrams ins that are not present in the labelled

training sample used to estimate the modelθ. This measure can be factorised into

sub-sequences of length three, and thus (A.1) can be writtenas:

∑
t,st−1,st ,st+1

pθ(st−1,st,st+1|o)c3(st−1,st ,st+1) (A.2)

wherec3(·) here is a function returning one when the given trigram is present in the

training sample and zero otherwise. This can be efficiently computed using the forward

and backward matricesα andβ, using the trigram marginal probabilities:

pθ(st−1,st,st+1|o) =
αt(st−1,st)βt(st ,st+1)

pθ(o)

wherepθ(o) is the observation probability, which is given by∑st−1,st
αT(st−1,st).
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