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Abstract

Active learning reduces annotation costs for supervisathlag by concentrating la-
belling efforts on the most informative data. Most activarfeng methods assume that
the model structure is fixed in advance and focus upon impgoparameters within
that structure. However, this is not appropriate for ndtlanlaguage processing where
the model structure and associated parameters are detgtunsing labelled data. Ap-
plying traditional active learning methods to natural laage processing can fail to
produce expected reductions in annotation cost. We shawotteaof the reasons for
this problem is that active learning can only select examplhich are already cov-
ered by the model. In this thesis, we better tailor activeriea to the need of natural
language processing as follows. We formulatelmeeliable Parameter Principle
Active learning should explicitly and additionally addsesireliably trained

model parameters in order to optimally reduce classificegiwor. In order
to do so, we should target both missing events and infrecgiasitts.

We demonstrate the effectiveness of such an approach forge ef natural lan-
guage processing tasks: prepositional phrase attachsentence labelling, and syn-
tactic parsing. For prepositional phrase attachment, xpéait selection of unknown
prepositions significantly improves coverage and clasgifo performance for all ex-
amined active learning methods. For sequence labellingntkeduce a novel active
learning method which explicitly targets unreliable paedens by selecting sentences
with many unknown words and a large number of unobservedsitian probabili-
ties. For parsing, targeting unparseable sentences sgnily improves coverage and

f-measure in active learning.
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Chapter 1
Introduction

Active learning refers to a class of methods which reduceatim@unt of manually
annotated data necessary for the supervised training esitilxrs to reach a given
performance level. The standard training of supervisedsdli@rs assumes randomly
sampled training data. This risks the inclusion of redundearrrelevant data points,
thereby wasting human annotation effort. By contrastvadearning directs human
annotation effort towards useful data points. It has be@tiegin the field of machine
learning, such as boundary recognition problems (Cohn e1@94), benchmark clas-
sification tasks (Melville and Mooney, 2004), and speeclogadion (Hakkani-Tur
et al., 2006). It has also been applied widely within the f@fldiatural language pro-
cessing, for instance text categorisation (McCallum anghiti, 1998), part-of-speech
tagging (Argamon-Engelson and Dagan, 1999), and parsing (M

We can define active learning as an incremental labellingratrdining process
with a human annotator in the loop as in Figure 1. First, a h@des trained on a
training set of labelled examplés Then,n new data points are chosen from a pool
of unlabelled exampled, according to the current model and a selection funcfion
These selected data points are submitted to the annotatiatielling. Labelled data
points are added to training detind removed from the pobl. The process is repeated
until either the model converges, the pool is exhaustedehthman stops.

There are a wide variety of approaches to active learnind,they can generally
be characterised by their choice of selection functfonAnalytical solutions to the
problem of finding the minimal training set are, in generatractable except for a
very few kinds of problems, for instance learning robot aonteol (Cohn et al., 1996).
Similarly, methods which attempt to minimise the classtfawaerror directly are also
computationally impractical for most situations (Roy and@éllum, 2001).

1



2 Chapter 1. Introduction

U is a set of unlabelled candidates
L is a set of labelled training examples
C is the current hypothesis
Initialise
C « Train(L)
Repeat
N < Selectn,U,C, f)
U<—U-N
L «— LuLabelN)
C « Train(L)
Until (C = Cyye) or (U =0) or (human stops)

Figure 1.1: Generic active learning algorithm, pseudo-code due (Hwa, 2000).

For this reason, most research in active learning has focasecomputationally
cheaper methods such ascertainty samplingind Query-by-Committe@QBC). Un-
certainty sampling selects examples where the currergigead classifier is uncertain
with regard to the preferred labelling (Lewis and Catle®94). QBC selects examples
for which an ensemble of classifiers shows a high degree afjcgement with respect
to the preferred labelling (Seung et al., 1992). Althougithbancertainty sampling
and QBC appear to yield excellent results, a closer examimahows that, typically,
practitioners do not apply these techniques in a ‘pureirggtt That is, each exam-
ple selected for labelling may not be the most informative ¢as predicted by active
learning). As we show in this thesis, the reason for thisas #ttive learning methods
typically do not directly address the problems of dealinthvgiparse data.

Sparse data problems are ubiquitous in natural languagegsmg due to the Zip-
fian nature of language. Zipf’s law states that a small nuroberords (or event types
in general) occur very often, whereas the majority of wonee(e types) occurs very
rarely (Zipf, 1935). In a machine learning scenario, thisangethat some rare events
will be missing completely from a training set, even whers ¥ery large. Accordingly,
parameter estimation for such rare events can be unreiiabi® ways, depending on
whether a rare event in question has been observed in timéngaset or not. We will
refer to these two types of situationsiafequent eventandmissing events

Parameter estimation for infrequent events suffers frongh tegree of variance
and can result in degraded classification performance. @ihmedolds for situations



where an event is entirely missing from the training set,vbeitstipulate its presence.
For instance, in the parameter estimation for Hidden Markodels, some probability
mass is commonly reserved for stipulated, yet unobsenastitiion probabilities, in
other words, probability estimates without correspondirgyams in the training set, in
order to avoid zero probability transitions. However, ssaioothing methods merely
alleviate variance problems, and do not solve them.

Missing events can also result in a lossof/erage a situation when the structure
of the probabilistic model is not rich enough to cover allégpof input. Forout-of-
coverageexamples, the classifier may not be able to predict any lab&ll ar only
output a generic label. Example for this are complete paagerés due to missing
rules in the case of syntactic parsing, unknown prepostionprepositional phrase
attachment, and unknown words in part-of-speech tagging.

An important observation is that both uncertainty samphng QBC have short-
comings with regard to unreliably estimated parametersthidemethod has a prin-
cipled way to deal with missing events, because they can mafilye probability es-
timateswithin a given model structure. We will demonstrate this repegtadlater
chapters, in a variety of applications. One example is thatngertainty sampling
applied to the learning of a state-of-the-art parser (Bik&04a). As we will show
in more detail in Section 6.2, a standardly smoothed paesty to select examples
which would provide novel and important parsing events. Wansthat entropy alone
does not reliably identify such examples. Another illustacase is that when apply-
ing QBC to the prepositional phrase attachment method dfifG@nd Brooks, 1995)
without further adjustments, QBC will assign minimal dissgment scores to exam-
ples with unknown prepositions and hence ignore them. Weshdw in Section 4.2
that this can result in important prepositions missing ftbeatraining set and in severe
coverage problems.

Uncertainty sampling may not properly address infrequyeatserved events ei-
ther. In fact, uncertainty sampling prefers examples witihrentropy distributions
regardless of the underlying empirical counts. In chaptsti®n 4.1, we show that
uncertainty sampling applied to prepositional phrasechtteent can lead to a situation
where annotation effort is stubbornly directed towardswgl& preposition — and away
from all other prepositions — for many iterations on end diniy@cause this preposition
happens to have a high entropy distribution. This is inappate because the remain-
ing prepositions will continue to suffer from infrequentipserved events. QBC can,
in fact, address the problem of infrequently observed es/eat only indirectly. QBC is
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typically based on methods that perturb the model distidimst Infrequently observed
events will exhibit a higher degree of variance and thus rdaute to disagreement
within the ensemble. However, due to the stochastic natumeodel perturbation, we
are not guaranteed to select the appropriate examples.

1.1 Explicit Treatment of Unreliable Parameters

In view of these shortcomings of active learning, we stagefttiowing principle:
Unreliable Parameter Principle:

Active learning should explicitly and additionally addsesreliably trained
model parameters in order to optimally reduce classifice¢iwor. In order
to do so, we should target both missing events and infrecgiasitts.

We demonstrate how this principle applies to a variety obpgms, namely prepo-
sitional phrase attachment, part-of-speech tagging, daenéty recognition (NER)
and syntactic parsing. We have chosen these tasks as nafat@seof typical natural
language processing applications and for having variogsegs of difficulty. Preposi-
tional phrase attachment, the simplest of the tasks, onjyires binary classification.
Part-of-speech tagging and NER are representative of sequabelling tasks and are
therefore more difficult than mere classification. Syntaparsing, which requires the
assignment of structured labellings, presents an everehdggree of difficulty. Be-
cause of the different characteristics of these tasks, ¢heahimplementation of the
Unreliable Parameter Principle varies.

Prepositional Phrase Attachment Completely unknown prepositions are a particu-
larly severe manifestation of missing events for this ta¥de show that the
preferred selection of unknown prepositions results inroepd classification
accuracy. This can be achieved within the framework of saashdhethods such
as uncertainty sampling QBC by using appropriate backafbabilities during
sample selection to flag such instances. This approach ssdréhamissing
eventsaspect of the Unreliable Parameter Principle.

Sequence Labelling We introduce a novel active learning method suitable for se-
guence labelling tasks. This method explicitly targetseliable model para-
meters by selecting sequences with many unknown words aaidj@ éxpected
number of unobserved transition probabilities. This mdthoo, addresses the
missing eventaspect of the Unreliable Parameter Principle.
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Syntactic Parsing We demonstrate that the preferred selection of unparsadie s
tences is a surprisingly strong active learning methoceréstingly, this method
requires that the parser runs with a lesser degree of smmptHBy targeting
missing parsing rules, we again addressiissing evenaspect of the Unre-
liable Parameter Principle. We also present a novel twgestaethod which
selects unparsable sentences according to a parser whectrauged on a per-
turbed training set. This method implements both thissing evenand the
infrequent evenaspect of the Unreliable Parameter Principle.

1.2 Contributions of the Thesis

The main contributions of this thesis fall into the followjicategories:

Comparison between Uncertainty Sampling and QBC

Given their popularity, we consider uncertainty samplimgl BC as points of de-
parture and as important benchmarks throughout this theégesprovide an extensive
comparison of these methods in application to three differeatural language pro-
cessing tasks of varying degrees of difficulty. Within QB explore i) alternative
methods of creating diverse ensembles, ii) different djgace metrics, and iii) influ-
ence of ensemble size. Interesting results from this patiethesis include:

e Generally, both uncertainty sampling and QBC outperfomaoan sampling, as
expected. In most cases, we find that QBC beats uncertaimiylse. However,
in named entity recognition uncertainty sampling outpen® QBC.

e For QBC, there is no particular setting of ensemble creatn@thod or diver-
gence metric which is always guaranteed to be best. Rathy@mariate settings
vary from application to application.

In general, these findings suggest caution when choosingedetrning methods
for novel applications. Unfortunately, the explorablesatiative active learning meth-
ods are restricted due to a shortage of training materiataictty those situations when
the use of active learning is desirable.

To the best of our knowledge, a comprehensive comparisomeeegt uncertainty
sampling and QBC across different tasks has not been pezsenprevious literature.
Similarly, the exploration of the experimental paramefece for QBC is novel.
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Explicitly Targeting Unreliable Parameters via Smoothing /Backing-Off

Choosing appropriate smoothing or backoff settings invadgarning can be vital to
allow for the targeted selection of out-of-coverage exaapWe demonstrate this for
prepositional phrase attachment and for parsing.

e For prepositional phrase attachment, assigning an apptefrackoff probabil-
ity helps to select unknown prepositions and substantiallyroves coverage
and accuracy for both uncertainty sampling and QBC.

e For parsing, switching ofonstraint relaxatior{an effective smoothing method)
helps to select out-of-coverage examples and substagnimagiroves coverage
and f-measure. Again, this method combines gracefully witbertainty sam-
pling and QBC and results in improved performance in eaclasan.

This goes against the perceived wisdom in the literaturgtieesame model should
be used in the sample selection phase and in deploymenidorme (Baldridge and
Osborne, 2004). Even for standard methods such as undgrsampling and QBC,
using an off-the-shelf classifier may not be the best opti®n.the contrary, we find
that the best settings for sample selection may not be apptegor deployment. In
summary, we should consider settings which promote theseteof out-of-coverage
examples. The successful application of these technigupgeosts our thesis that active
learning should explicitly address unreliably trainedgraeters.

Explicitly Targeting Unreliable Parameters via Other Meth odologies

Beyond adjusted smoothing, we introduce two novel methodsis thesis which ex-
plicitly target either out-of-coverage examples or vacain parameter estimates.

e For sequence labelling tasks, we introduce a novel methoecha@rgets unsup-
ported model parameters. For part-of-speech taggingntiethod in isolation
performs as well as, or better than, uncertainty samplimgcdmbination with
uncertainty sampling, we match QBC at its optimal setting.

e For parsing, we present a novel two-stage method whichtsaleparsable sen-
tences according to a parser which was trained on a pertindiadg set. Again,
this method works as well as the best QBC setting for parsing.

The success of both of these techniques supports once agiaihesis regarding
unreliable parameters.
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1.3 Structure of the Thesis
The remainder of this thesis is structured as follows.

¢ In Chapter 2, we first provide the background for the diffétasks to which we
apply our active learning methods: prepositional phrasgchtnent, sequence
labelling, and syntactic parsing. Next, we cover relevaatdture for different
active learning methods with a special focus on uncertaatgpling and Query-
by-Committee.

e In Chapter 3, we set out the experimental conditions for ladl €xperiments
in subsequent chapters, including evaluation metrics #atastcal significance
tests.

¢ In Chapter 4, we present results for active learning as a@b prepositional
phrase attachment.

¢ In Chapter 5, we present results for sequence labellingattiqular, we apply
active learning to part-of-speech tagging and named emgygnition.

¢ In Chapter 6, we present results using active learning fotatic parsing.

e Chapter 7 discusses the implications of the experimengallt® and suggests
future work.






Chapter 2
Literature Review

This chapter describes the background literature relgeghe remainder of this thesis.
In the first three sections, we give a survey of those natarguage processing tasks to
which we apply our active learning methods. In Section 24 digcuss prepositional
phrase attachment as a suitable testing ground for actwaitey. In Section 2.2, we
review sequencing models with applications to part-ofegbetagging and named en-
tity recognition. In Section 2.3, we cover the relevantritere on syntactic parsing.
We give a more detailed overview of one representative mfmdetach of the tasks
as we use it in the corresponding experimental sectionstén thapters and discuss
relevant applications and available data sets. In Sectibv#& examine relevant lit-
erature in the field of active learning with a special focusiapertainty sampling and
Query-by-Committee. We conclude in Section 2.5.

2.1 Prepositional Phrase Attachment

Attachment choices present a common source of ambiguitigarsyntactic analysis
of sentences. In prepositional phrase attachment (PPA&)paedicts whether a prepo-
sitional phrase is attached to the verb in the matrix claus® ¢the preceding noun
phrase. This is useful for determining the argument stmectf a sentence and its
semantic interpretation. Suppose we would like to analysddllowing sentencé:

He bought a car with a steering wheel.

The sentence receives different interpretations, depgnain whether the preposi-
tional phrase ‘with a steering wheel’ is attached to the vbdught' or to the noun
phrase ‘a car’ in the analysis of the verbal phrase.

1This example is adapted from (Brill and Resnik, ).
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NP-attached: (bought ((a car) (with a steering wheel)))
VP-attached: ((bought (a car)) (with a steering wheel))

World knowledge helps us to decide that the prepositionedggshould be noun-
attached which yields the intended interpretation of 'tliechase of a car which is
equipped with a steering wheel’.

2.1.1 Approaches

Altmann and Steedman, 1988 argued that, at least in soms, c@senay need to re-
sort to a discourse model for proper PPA disambiguation. él@r subsequent work
showed that we can disambiguate successfully based ontycahlexical information
in the majority of cases. Seminal work by Hindle and Rootl93 @8emonstrated the
feasibility of a corpus-based approach. Setting the scenebst later research, they
showed that attachment can be predicted fairly accuratgsgd only on lexical head
information for the involved verb, noun, and prepositioplatases. They applied unsu-
pervised learning, using co-occurrence information frooogus of 13 million words
of AP news. Later approaches showed that even larger cogaordurther improve
estimation, for example by tapping into the web as a corpotk(\2000).

Not surprisingly, supervised approaches based on anaddigies extracted from
the Penn treebank yield better results. Successful appesaaclude maximum en-
tropy modelling (Ratnaparkhi et al., 1994) and transforarabased learning (Brill
and Resnik, ).

2.1.2 An Exemplary PPA Approach — Collins & Brooks, 1995

Collins and Brooks, 1995 present a supervised trainingagmgtr involving maximum
likelihood estimation (MLE) and backing-off for sparse agtroblems. They use a
training set which was extracted from the Penn treebank byn@parkhi et al., 1994).
Each training instance is a quadruple of the fgum, p, n,) together with the correct
attachment information, wheseis the verb,n the first head nounp the preposition,
andn;y the second head noun, for example:

(joined board, as, director) — v

(boughtcar, with, whee} — n

The naive application of MLE suggests the following frequyebased estimation
for the probability of a quadruple to be noun-attached:



2.1. Prepositional Phrase Attachment 11

f1 = (v,n,p,n2)

fz =(upn), fF=(npn), f3=(wnp)
={vp), f§=(n.p), f$ = (p,n2)

f4=< p)

Table 2.1: Feature sets for prepositional phrase attachment at different backoff levels

Cn(<V, n,p, n2>>
C(<V7 n, p, n2>)

whereC(-) counts all occurrences of a tuple, a@gl-) counts all noun-attached oc-

P(n|<V7 n, p7n2>> = (21)

currences. The problem with this approach is that the feaset is too specific in
most cases so that the estimate will be undefined for testrines which are not in the
training set.

To counter this problem, Collins and Brooks use a backofésad based on work
in speech recognition (Katz, 1987). Their backoff schendefned as follows:

) = Gy

i = CE:(;?;((?))ﬁCcn((E(%);: o fgi;)) 22)
i) = S

Ps(nju) = 10

where feature tuples are as defined in Table 2.1. As we can see, feature tuples are
increasingly general for later backing-off stages whileayjs retaining the preposition.

The probabilityP(n|u) is taken to beR (n|u) at the most specific backoff level
(lowesti) for which the value is defined. This is the case where the hemator is
non-zero. An instance is classified as noun-attach&{rifu) > 0.5. If none of the
feature tuples match on the first four levan|u) is set to 1.0 and the instance will
be (deterministically) classified as noun-attached.

To give an example from (Collins and Brooks, 1995), assuraevie would like to
classify the instancéoined board, as director) and that none of these features have
been observed on the first three backoff levels. Howeveretage 4 instances which
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match on the fourth levelfg = (as)), 3 out of which are labelled as noun-attached.
This instance would be classified as noun-attached.
_Gi({ag) _3

P4(n‘U) - C(<a3>) = Z (23)

Collins and Brooks achieve 84.1% classification accuragyplying preprocess-

ing, for instance by replacing four-digit numbers with thergy 'YEAR’, yields a
further increase in performance up to 84.5%. Interestintgigy get best results by
retaining all low count events.

A baseline method for PPA which always votes for noun-atteatt yields 59%
accuracy. By contrast, assigning the most likely attachirf@ameach preposition in-
creases accuracy to 72.2%. For practical purposes, oneetiably guess the most
likely attachment by labelling just a few instances for epoéposition. This insight
motivates the idea that active learning methods in appdicab PPA should pursue
coverage so that every preposition has been seen at leastianfes. \We explore this
idea in Chapter 4.

2.1.3 Summary

We have outlined the prepositional phrase attachment tagldscussed relevant lit-
erature. Particular attention was given to the approaciCoflihs and Brooks, 1995)
which we will use for our experiments in Chapter 4.

2.2 Sequence Labelling

Sequencing tasks imply the assignment of labels to tokeassequence. While this
task superficially looks like a classification task, lab®jldecisions for individual to-

kens will typically inform each other and best results afei@oed by aiming at a glob-

ally optimal decision. Prominent examples for sequencagks are part-of-speech
tagging and named entity recognition.

Part-of-speech tagging

Part-of-speech tagging is the assignment of syntactictlgbespeech tags to the words
in a sentence based on their context. For instance, thergenft&his is not a trivial
issue .” will be labelled as follows:
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This/DT is/VBZ not/RB a/DT trivial/JJ issue/NN ./.

Here, ‘DT’ stands for determiner, ‘VBZ’ for an inflected vernd so on. A chal-
lenge in part-of-speech tagging is the accurate labellirgnadbiguous words, for ex-
ample the word ‘issue’ which can either be a noun or a verb. i-@laspeech tagger
can reliably decide for the noun reading in this case giverdétterminer and adjective
in the preceding context.

Named entity recognition

Named entity recognition (NER) is the task of identifyinglaassifying (hon-embedded)
phrases in a text as belonging to a set of predefined entits & person and com-
pany names, locations, and time and date expressions. foltb@ing example, we
identify ‘Karim Alami’ as a person hame and ‘Morocco’ as adton.

He meets [PER Karim Alami] of [LOC Morocco] .

NER was first introduced in the Sixth Message Understandmgfé€ence in 1995
(MUC-6) as a task separate from information extraction,ig@nan and Sundheim,
1996). In a strict sense, NER is a structural labelling task, using a suitable token-
wise representation for brackets, sequence labelling bas buccessfully applied to
this task. In fact, the majority of recent work on NER addessthe problem as a
sequence labelling problem as is evidenced for example égmiries for the shared
NER tasks of the Conference on Computational Natural Laggu&arning (CoNLL)
in 2002 and 2003 (Tjong Kim Sang, 2002; Tjong Kim Sang and Deli&s, 2003).
Using the 10B labelling scheme of Ramshaw and Marcus, 198&nts within an
entity are marked by their entity type, prefixed with ‘B’ farkens at the beginning
of an entity and with ‘I’ for all other tokens in an entity; namtities are marked ‘O’.
Thus, the bracketing above is represented in the IOB scherfodlews:

He/O meets/O Karim/B-PER Alami/lI-PER of/O Morocco/I-LOO .

2.2.1 Applications

Sequencing applications have a variety of applicationainnal language processing.
Part-of-speech taggers and NER systems can be used as amtgiorinformation ex-
traction systems as the first essential processing stagewdlevant entities are iden-
tified before relations between entities are establishad-d#-speech taggers are also
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commonly used to provide input for parsers as a method faraied the search space.
This has been shown to increase both speed and parsing @c¢@faarniak, 1996;
Prins and van Noord, 2003). In text-to-speech systemsgtagare used to provide
more information for the correct pronunciation. Typicabexples include words which
are ambiguous in their written form. For instance, the waldjéct’ is stressed on the
first syllable as a noun, and on the second as a verb. Lasttyyatic part-of-speech
tagging in combination with subsequent human correcti@emmonly used in corpus
annotation and is significantly faster than human annotdtimm scratch (Skut et al.,
1997). This is often done incrementally so that previousipaiated sentences are
added to the training set in order to improve performancelsetter guide humans in
their annotation of later sentences.

2.2.2 Approaches

Manual writing of rule-based systems has been shown to leetefé, for example
the ENGTWOL system for English part-of-speech tagging (Wainen, 1995). This
tagger has been shown to outperform automatically traingddrs (Samuelsson and
Voutilainen, 1997). The majority of modern systems, howesee probabilistic tag-
gers (Garside et al., 1987; Church, 1988; DeRose, 1988;t8ra@00b). These have
the advantage that they can be automatically trained ontatatbcorpora.

2.2.3 An Exemplary Sequencing Approach — Brants, 2000

In the following, we describe the Trigrams’n’'Tags taggen{) as an exemplary statis-
tical Markov model tagger (Brants, 2000b)A Markov model describes a stochastic
process which generates sequences of symbols. The sawftarMarkov model is
given by a set of states and transitions between statesesStatit symbols with an
emission probabilityand transitions between states are taken wittaasition proba-
bility. In many NLP applications, states represent tags and emssepresent words.
Markov models have thilarkov property transition probabilities only condition on a
path history of a fixed length. TnT uses a second-order Markouel, so that transi-
tion probabilities condition only on the previous two state

Sequential decoding implies finding the most probable tageecd; ...t given
the wordsw; ... wy of a sentence:

2For our experiments in Chapter 5 we will use the freely awdédamplementation of (Schroder,
2002) which is based on the TnT tagger.
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tp...tr = argmaxP(ty...tr|wy...wr) (2.4)

t1..tr
This expression can be simplified by assuming that wordsemergted condition-

ally independently of each other and only dependent on thdividual tags, and by
applying the Markov assumption:

P(wi...wrlty...tT)P(t1...tT)

P(t]_...tT|W1...WT) P(Wl...WT) (2.5)
O P(wi...wrltg...t1)P(ty...t1) (2.6)
n
= I_lP(Wi|t1...tT)] P(ty...t1) (2.7)
_i:
= -
= rlP(Wi|ti) P(ty...tT) (2.8)
_i: -
n
= rlP(Wi i) | x P(trftr—1...t2) (2.9)
_i: -
XP(tr_q|tr—2...t1) x -+ X P(t2t1) x P(t1)
n
= r!P(Wi )P (ti[ti—1,ti—2) (2.10)
i=
Thus, the tagging problem reduces to the following expoessi
t1...tt = argma P(wi|t)P(ti[ti—1,t—2) (2.11)
>ﬂ [BR| 1{t— 1 —

This problem can be solved efficiently using Viterbi decad}iterbi, 1967). This
is a dynamic programming technique where intermediatdtseate stored in a trellis
structure for later reuse.

Training such a model requires estimation of the transpiababilitiesP(t; |t _1,t_»)
and the emission probabilitidyw;|tj). In Brants, 2000b, this is done using standard
maximum likelihood estimation using relative frequendiesn manually annotated
data, and appropriate backoff/smoothing schemes for sgkats problems.

Transition Probabilities

The transition probabilityP(ti|ti_1,ti_2) is also calledrigram probability because it
involves a sequence of three tags. Estimating trigram itiangorobabilities from rel-

ative frequencies only, either observed or unobserved|dwuffer from many unseen
event types due to data sparseness, and, therefore, sodnaf kimoothing is required.
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TnT combines trigram transition probabilities with trainmn probabilities of shorter
sequences in the conditioning history liimear interpolation UnigramsP(t3) have no
history, bigramsP(tzt,) have a transition history of length one:

Bits) — % (2.12)
P(taltz) = fit(zt’zt; ) (2.13)
P(tafty, t2) = T, t2ts) (2.14)

f(t1,t2)
wheref (-) are frequencies of observed events &hid the size of the training set.
The linear interpolation of n-grams uses appropriatealues to arrive at an esti-
mate for conditional trigram tag probabilities:

P(ta]t1, t2) = A1P(t3) + A2P(t3|t2) + A3P(ta]ty, to) (2.15)

such that\; +A>+ A3z = 1. Values forA; are estimated on the training set using
deleted interpolatiorfJelinek and Mercer, 1980). This technique successivdbtee
each trigram in turn and estimatevalues using the remaining n-grams in the corpus.

Emission Probabilities Emission probabilities for known words are maximum like-
lihood probability estimates based on relative frequesicie

f(wt)
f(t)
Emission probabilities for unknown words are estimatedhgs suffix analysis
in a process calleduccessive abstractigiamuelsson, 1993). For example, words
ending in -able are most likely to be adjectives, for inseanapable, recognisable,
whereas words ending in -ion are most likely to be nounsi¢stasatisfaction, etc).
The probability distribution for a particular suffix is deed from words in the training

P(wit) = (2.16)

set that share the same suffix:

f(t,-able
f(-able
Probabilities are smoothed by combining the distributiohshorter suffixes:

P(t|-able) = (2.17)

~ P(tlnsitts -, ln) +FBP(t]In i, .., In)

P(t|ln7i+17~-~a|n) - 1+6 (218)
|
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The value of8 is based on the standard deviation of unconditional MLE tadpp
abilities, see (Samuelsson, 1993) for detallg |t) is obtained by Bayesian in-
version. The lookup procedure can be efficiently implemenigng a suffix trie. The
training set for parameter estimation is restricted todqgtrent words since infrequently
words have different tag output distributions from freqtgnbserved ones (Dermatas
and Kokkinakis, 1995; Baayen and Sproat, 1996).

2.2.4 Annotated Resources
Part-of-Speech Tagging

A pioneering effort in corpus linguistics was the compiatiof the Brown Univer-
sity Standard Corpus of Present-Day American English (Br@werpus) by Francis
and Kitera in the 1960s (Francis and &ara, 1964; Ktera and Francis, 1967). This
corpus contains over a million words of modern American Eigfrom a variety of
genres. The first editions of the corpus were just raw, untated text, but over time
the entire corpus was part-of-speech tagged with a tagst te#fgs, using a combina-
tion of automatic tagging and manual correction. A similioe has been made for
British English with the Lancaster-Oslo-Bergen corpuspalsing the Brown tagset
(Johansson et al., 1978).

The Penn treebank is best known as an annotated resourgetactc tree struc-
tures (Marcus et al., 1993), and we will review it in more dataSection 2.3. How-
ever, the Penn treebank is also annotated with part-ofebpags. The Penn treebank
tagset is a simplified version of the Brown tagset with onlytads (Santorini, 1990).

NER

NER was first introduced in the Sixth Message Understandiogfé@ence in 1995
(MUC-6) as a task separate from information extraction,ig@nan and Sundheim,
1996). Here the target language was English. NER also fedtarthe shared tasks
of the Conference on Computational Natural Language Legrf€oNLL). Dutch and
Spanish were target language at CoNLL-2002, (Tjong Kim $2602), English and
German at CoNLL-2003 (Tjong Kim Sang and De Meulder, 2003)eskE data sets
are still commonly used for research purposes.
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2.2.5 Summary

Despite the success of manually constructed taggers, dumminant paradigm is to
use stochastically trained taggers, due to their very gastbpnance and easy train-
ability. With the availability of large annotated corpotamay seem as if tagging is
a solved problem. However, only a small fraction of the warldnguages have such
annotated corpora. With an interest of the research conmtyntmiacquire annotated
resources for these languages for a wide range of potemications such as ma-
chine translation the annotation bottleneck continue®ta pressing problem. In Sec-
tion 2.4, we will look at active learning methods which calewhte the cost problem
of annotation.

2.3 Parsing

Parsing is the process of recognising sentences as gracanaiih respect to a gram-
mar while simultaneously assigning syntactical structaréhe input. Let us consider
the syntactic analysis of the sentence “They fell into abhvafter the 1929 crash”
in Figure 2.1. As in NER, we bracket associated words in tmeesee, for example
“the 1929 crash” is considered to be a noun phrase. In cantbvd@$ER, brackets can
be recursive like the noun phrases which are embedded inrépogitional phrases.
Furthermore, analysis is usually complete in parsing, exgénse that all words in a
sentence will be part of a phrase.

2.3.1 Applications

Parsing has been employed in a variety of applications, gnotmers in grammar and
style checking (Thurmair, 1990), language modelling (@fed¢, 2001), and question
answering (Harabagiu et al., 2001). Recently, the sta#isthachine translation com-
munity has focused a lot of attention on the possible ben#fggntax-based machine
translation (Yamada and Knight, 2001). Finally, as withgiag, parsers have been
used in corpus annotation efforts in combination with huroamection, for example

in the creation of the Penn treebank (Marcus et al., 1993)
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S
NP VP

|
PRP

|
They vBD PP PP

fel IN NP N NP
o
Into NN after

oblivion | | |
the 1929 crash

Figure 2.1: Syntactic analysis of an example sentence from WSJ

2.3.2 Approaches

There is a wide range of approaches to parsing. These cambdlpclassified by the
type of grammar formalism employed, and if the parser hasehsistic component.

Context-free grammars are formal production systems terdesrecursive con-
stituency in human languages (Chomsky, 1956). In a CFGuldbkrhave the form
X —y, whereX is a non-terminal symbol angis a sequence of non-terminals and/or
terminals. Rules are said to be context-free because threpeapplied regardless of
the context ofX. Despite linguistic arguments that at least some natungilages are
mildly context-sensitive, such as Swiss-German (Shiel8d5), CFGs are widely used
for parsing. Feature-based or constraint-based grammaiafesms are popular from
a linguistic perspective, for example Lexical Functionab@mar (LFG) (Bresnan,
1982), or Head-Driven Phrase Structure Grammar (HPSG)glohnd Sag, 1988).
They allow fine-grained description of natural languageshe®©approaches include
categorial grammars and dependency grammars.

All of these approaches can be endowed with a stochasticaoemp which assigns
probabilities to every reading of a sentence. The main gtheaf such probabilistic
parsers is their principled way of dealing with the ubiqué@mbiguity in natural lan-
guages by selecting the most probable parse. The simplasalpitistic version of a
CFG is an unlexicalised probabilistic context-free gram@®CFG). Charniak, 1996
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reports work on estimating unlexicalised PCFGs using tiakb. Rules of the form
LHS — RHS are read off directly from the parse trees of the Penivénele Rule prob-
abilitiesp(RHSLHS) are estimated by smoothed relative frequencies accorditiget
maximum likelihood principle. This simple scheme achieserprisingly good results.
More recently, it has been shown that such unlexicalisechoust can achieve near
state-of-the-art results (Klein and Manning, 2003). Altgture-based approaches
have been made probabilistic, in particular LFG (Johnsoalet1999) and HPSG
(Toutanova and Manning, 2002).

Treebank Grammars vs Manually Coded Grammars

PCFGs, either lexicalised or unlexicalised, are typicaljuced from an existing tree-
bank where all local tree configurations in the gold-staddezes of a treebank are
taken to be valid production rules. While such grammars whie derived from tree-
banks in this way are data-driven, it is important to bear indrthat the treebanks
themselves were annotated with an implicit grammar forsmalin mind as evidenced
by comprehensive manuals in annotation projects such aPé¢he treebank (Mar-
cus et al., 1993). By contrast, grammars in constraintd&s@nalisms are explicitly
specified, often with a focus on linguistically interestiprgblems, and not necessarily
with a focus on frequent phenomena. But, large scale deredapof English formal
grammars, aiming at coverage (Flickinger, 2000), and theldpment of treebanks
for HPSG has helped to narrow the gap between these para@gpen et al., 2002).

Lexicalisation

Unlexicalised PCFGs can make overly strong independerstargstions with negative
effects. For example, the probability of a verb phrase egpaninto a verb and two
following noun phrases is independent of the verb in an uoised PCFG. This is
clearly wrong since this probability should be consideydtayher for ditransitive verbs
such as ‘give’ or ‘tell’ than for other verbs (Manning and 8tte, 1999).

To remedy such problems, we decorate syntactic trees witbdiehead informa-
tion. For each local tree, we need to identify tiead in other words, the constituent
which determines the syntactic character of the phraseefample in the left tree in
Figure 2.2, VB is the head of the VP, and VP the head of S. Suall hesignments
are not given in a treebank and need to be implemented as &lsehd-finding rules
(Jelinek et al., 1994; Magerman, 1995). Lexical informai®projected upwards from
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TOP TOP
|S S(Io|ves)
Py /\
NP VP NP(Mary)  VP(loves)
| TN | T
NNP VB NP NNP VB  NP(cheese)

| | | | | |
Mary loves NN Mary  |oves NN

cheese cheese

Figure 2.2: Head lexicalisation information percolates upwards from yield of tree.

the yield of a treebank tree along lexical head lines. Tlssllts in a decorated tree as
in the right of Figure 2.2. From such a decorated tree we caa off rules like:

S(loves) — NP(Mary)VP(loves)

In the general format which is the starting point for virtiyadll lexicalised PCFGs,
non-terminal categorX is decorated with additional lexical informationand we
write X(x) in the notation of (Collins, 1997) for each non-terminal iruée:

P(h) — Lm(Im)- .. L1(I)H (W)Ry(r1) . .. Ra(rn) (2.19)

whereP is the parentH the head-daughter of the phrase, &nhdndR; are left and
right modifiers of the head-daughter. Head-whbrid inherited fromH to P.

Lexicalised PCFGs may differ from each other with respec¢h&okind of lexical
information they include. Carroll and Rooth, 1998 only umi¢ words, while Collins,
1997 includes words and part-of-speech tags.

2.3.3 An Exemplary Parsing Approach — Collins, 1997

Reliably estimating the expansion probability of ruleshatformat as in Example 2.19
is impossible because of massive sparse data problemsiéntormake parameter es-
timation robust, lexicalised parsing models must makehkrrindependence assump-
tions. Collins, 1997 introduces three lexicalised parsimgdels which successively
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encode more and more linguistic knowledge. In the following discuss Model 2 in
more detail which makes the following two crucial indepemckeassumptions:

e Left daughterd,;, right daughter&;, and headH are generated independently of
each other.

e The generation of daughters on either side is independestabf other (Oth order
Markov assumption).

Thus, we arrive at the following formulation for rule exp@rsprobabilities.

P(RHSLHS) = P(H|P) (2.20)
<[P IPH.0)

<[] PRIPH.d()

i

In order to compensate for these drastic independence assms, daughter gen-
eration is also conditionalised on distance measi{ie which models if there is an
intervening verb or some form of punctuation betweenitheconstituent and head-
daughteH. The linguistic modelling specific to Model 2 concerns subgarisation
information. Here, an incremental subcat frame featurentaais arguments of H
which have yet to be generated on that side.

Despite these independence assumptions, all paramets tgmdition on large
contexts such that direct parameter estimation would strifen sparse-data problems
in many situations. To counter this problem, a number of baf€kevels are fore-
seen for each parameter type. For example, the head dawyp@nsion probability
P(H|P,w,t) smoothes wittP(H|P,t) andP(H|P). As with TnT, these parameters are
combined via linear interpolation.

The Model 2 parser achieves 88.6% precision and 88.1% mac&Ection 23 of the
Penn treebank (for sentences shorter than 40 words). Thésgaiblished (Collins,
1997) were a leap forward over other models at the time ang#per was hugely
influential. In fact, Dan Bikel devoted considerable effiarthe reimplementation of
Model 2 (Bikel, 2004a). Bikel showed that a clean-room impdatation based entirely
on information from (Collins, 1997) and Collins’ PhD the§@ollins, 1999) does not
match the reported performance. In order to bridge this agrovided a thorough
analysis of all missing details to reach the published tesulmportantly, he finds
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in his analysis that bilexical dependencies are much leg®itant than previously
thought. We use Bikel's implementation for our experimenitéch can be downloaded
athttp://ww. ci s. upenn. edu/ ~dbi kel / sof tware. htm .

2.3.4 Annotated Resources

The supervised training of probabilistic parsers requgwstactically annotated cor-
pora, so-called treebanks. A number of treebanks has besssesl over the last decade
for a variety of languages, including English, German, @s& Korean, etc.

English — The Penn Treebank

Perhaps the most prominent example is the University of 8duania treebank, or
Penn treebank (Marcus et al., 1993; Taylor et al., 2003). per@od of eight years,
from 1989 until 1996, American English texts from a wide ramj genres were anno-
tated at different levels of linguistic analysis. Genreduded computer manuals, Wall
Street Journal (WSJ) articles and transcribed telephonestsations. About 7 million
words were part-of-speech tagged; 1.6 million words artedtéor speech disfluen-
cies. 3 million words were skeletally parsed, that is to sayotated with context-free
bracketing with limited empty categories and no indicattdmon-contiguous struc-
tures and dependencies. Over 2 million words were parsegridicate-argument
structure, Figure 2.3 shows an example annotation for aseatfrom the WSJ sec-
tion.

Marcus et al., 1993 explicitly state that a primary motigatifor the enormous
endeavour of creating the Penn treebank was to support tiieeeatic construction of
statistical models for the grammar of the written and théocplial spoken language”.
Indeed, since its release it has spawned a considerabledfadgearch into learning
probabilistic parsers from annotated data.

German — NEGRA and TIGER Treebanks

The NEGRA project constructed the first large-scale corpusserman (Skut et al.,
1997; Brants et al., 2003). The treebank consists of aba@0R0sentences (350,000
tokens) from articles from the Germain daily newspap@nkfurter RundschauThe
NEGRA annotation scheme is more flexible than the Penn plstaseture framework
in order to accommodate for free word order phenomena in @ernGrammatical
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( (S
(NP-SBJ (PRP He) )
(VP (VBZ succeeds)
(NP
(NP (NNP Terrence) (NNP D.) (NNP Daniels) )

G )
(NP
(ADVP (RB fornerly) )
(DT a) (NNP WR) (NNP Grace) (NN vice) (NN chairnan) )

G )
( SBAR
(WHNP-11 (WP who) )
(S
(NP-SBJ (-NONE- *T*-11) )
(VP (VBD resigned) )))))
(. )))

Figure 2.3: Syntactic analysis of an example sentence in bracketed format. Annotation
includes part-of-speech (for example personal pronoun, PRP), syntactic category (noun
phrase, NP), grammatical function (subject, SBJ), and coindexing. The wh-noun phrase

dominating who is coindexed with the understood subject of the embedded sentence.

functions can be annotated explicitly by labelling brarsch&urthermore, branches
may cross, thus allowing for the convenient annotation slodiated constituents.

The TIGER project extended NEGRA both in size and level ofogéaton (Brants
etal., 2002). TIGER Release 2 comprises of 50,000 annctatgences. The extended
annotation scheme contains morphological information,caentetailed scheme for
prepositional phrase functions, and secondary branchesd@ppropriate representa-
tion of coordinations.

Cost of annotation ~ With automatic support from part-of-speech taggers angqrar
annotation speed for the syntactic annotation of the Peathéink ranges between 750
and 1,000 words per hour for experienced annotators (Taylal, 2003). Brants et al.,
2003 report approximately 1,300 words per hour for trainedicdators® Given the size

3The higher performance for NEGRA annotation might be exgdiby the use of part-of-speech
tagger and chunker trained on previously labelled matédah the same domain.
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of the corpus one can imagine the extent of human effort tedeisito this project. A
further complication in the construction of high-qualityreotated corpora is the need
to guard against human error. In annotating the NEGRA cqrpash sentence is
independently labelled by two annotators (Brants et al0320 Diverging labels are
detected automatically and submitted to the annotatorsdorparison. Reportedly,
comparison requires much more time than the initial anmataBrants, 2000a reports,
among other things, on annotator errors in syntactic aniootaf the NEGRA corpus.
Two annotators achieve labelled f-scores against the faraian of 94.9% and 95.1%,
disregarding the annotation of grammatical functions. émeyal, manual syntactic
annotation is a very costly enterprise. Double annotatimhsubsequent comparison
for higher quality standards typically aggravate the cosbfem.

2.3.5 Summary

We have provided an overview over approaches to parsingavifnong emphasis on
lexicalised probabilistic models. In particular, we ondd Collins’ Model 2 parser
which we use — in Bikel's implementation — for our active l@ag experiments for
parsing in Chapter 6. We also gave an overview over treebaskm indispensable
factor in the training of probabilistic parsing models andcdssed the expense nec-
essary for their creation. The application of active leagnio parsing should help to
incur savings in the annotation of treebanks for new langeag

2.4 Active Learning

The preceding sections made clear the necessity of andatata for the supervised
training of classifier. Standardly, the training of supsed classifiers assumes ran-
domly sampled training data. This risks the inclusion ofurdnt or irrelevant data
points, thereby wasting human annotation effort. We havevaied the use of active
learning in the Introduction Chapter as a means to reducaunhetation effort over
random sampling. In contrast to the random sampling of datatg active learn-
ing can select data points for annotation by directing huararotation effort towards
useful data points.

Dasgupta, 2004 gives the important theoretical resultathan optimal active learn-
ing methods are not always guaranteed to perform betterrdorashom sampling. In
fact, it is easy to construct situations where this wouldHeedase. In a domain where
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all data points have disjoint feature bundles, selectimgesdata points according to a
selection function is as good as selecting data points rahdo

In practice, of course, active learning is found to incursahtial savings in anno-
tation effort over random sampling. We will look at a variefydifferent approaches to
active learning for the remainder of this chapter. Uncettasampling and Query-by-
Committee are very commonly used methods in the field and wehese as starting
points in all our experiments. Correspondingly, we payipatar attention to the de-
scription of these two types of methods. Other methods weidenare statistically
optimal solutions, error reduction sampling, densityrastion, kernel-based methods
and hybrid methods.

2.4.1 Uncertainty Sampling

Uncertainty Sampling estimates the usefulness of a datd pocording to the uncer-
tainty of the model about the correct label of that data pdmt binary classification
scenario, uncertainty is highest when probabilities atb@tdecision boundary of 0.5
(Lewis and Gale, 1994; Lewis and Catlett, 1994). Accordingkamples with class
probabilities near the decision boundary are preferaligcsed.

For multinomial distributions, we can quantify uncertginsingentropy The en-
tropy of a discrete random variabteis defined as follows:

H(X)=— ; p(x) log p(x) (2.21)

Application to Parsing

Uncertainty sampling has been successfully used for algaming of a probabilistic
parser (Hwa, ). Uncertainty of the parser about its analyke given sentence is ex-
pressed in terms dfee entropythe entropy of the output distribution over all possible
analyses. Hwa gives a dynamic programming algorithm toieffity compute entropy
over the exponential number of parse trees. Tree entropynasagure of uncertainty
has also been demonstrated to work well for different tygesacsers (Hwa, 2001b).

Does Entropy Quantify Parameter Unreliability?

In this thesis, we posit that active learning methods shadtitess unreliable parame-
ters. This raises the question if uncertainty sampling dioésct do that. Or in other
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words, is entropy a reasonable quantity to express paramnateliability? We can an-
swer this question with two illustrative examples from tlardhin of PP-attachment.

First, imagine we have a single empirical count for a feattuia favour of be-
ing noun-attached. Using maximum likelihood estimatiotheut smoothing (as in
(Collins and Brooks, 1995)), we arrive at the following patbiity estimate:

Ca(f) =1
C(f)=1

For such a peaked distribution, entropy is 0.0, meaningth®ae is no uncertainty.

P(n|u) = =10 (2.22)

However, this is clearly a case of an extremely unreliablaipeter estimate. For
example, if we were to acquire one more instance which isuodaof verb attach-
ment, the estimate would undergo a major shift from 1.0 to By contrast, imagine
a parameter with a large number of counts equally distribbetween verb and noun
attachment.

_ Cn(f)=500
~ C(f)=1000

This is a situation of a highly reliable probability estiradbr P(n|u) as the acquisi-

P(n|u) 0.5 (2.23)

tion of another data point would do very little to change #stimate in either direction.
Clearly, spending more annotation effort on such a paramestenate would be waste-
ful. However, the probability distribution has high entyppnd uncertainty sampling
would assess this as a worthwhile target for annotation.

The examples demonstrate that uncertainty and unrelialaite not equivalent.
As seen above in Equation 2.21, entropy is a function ovewobahility distribution
only, and we do not consider information about the empirazalnts from which the
distribution was estimated. We will see in later experinsent particular for PP-
attachment, how this can cause problems for uncertaintpkagf

2.4.2 Query-by-Committee

Query-by-Committee is an active learning method which estisl annotation of data
points for which a committee of models disagrees the mostr{§et al., 1992). It can
be shown analytically that the generalisation error of figedthm decreases exponen-
tially with the number of examples. Muslea, 2002 providesrdnitive explanation
for QBC: Whenever an ensemble disagrees over the labelfiagdata point, at least

4These problems have been acknowledged already in Lewis aleg 894; Lewis and Catlett, 1994.
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one ensemble member must have predicted a wrong label, amirig the true label
will benefit at least the member that made the mistake. Setal, €992 suggested
QBC for a perceptron-learning task and provided theorkfmandations for the al-
gorithm. Freund et al., 1997 established theoretically tha approach is valid for a
larger class of models. QBC has since been applied to a yaredpplications, in-

cluding document classification (McCallum and Nigam, 1998)t-of-speech tagging
(Argamon-Engelson and Dagan, 1999), and parsing (Baldréhgli Osborne, 2003).

Ensemble Creation

QBC requires a method to create diverse ensembleSotiestingdiverse ensemble
members are based on multiple views (Muslea, 2002). For pkanveb page classifi-
cation can be factored into views based either on the word@swab page or based on
the words in the hyperlinks pointing towards that page (Bamd Mitchell, 1998). As
in other QBC approaches, Co-Testing selects examples fartation where the en-
semble classifiers disagree. Similarly, feature-basedoagpes allow to create multi-
ple views by creating suitable feature splits (Jones e2@03; Osborne and Baldridge,
2004; Becker et al., 2005). However, not all problems haveag @f being factored
into alternative views of the learning problem. Furthermahis method requires man-
ual intervention to create a feature split. For these resiswsa consider only automatic
ways of inducing ensemble diversity in this thesis. Two gapmethods to do this are
baggingandsampling from a Dirichlet distribution

Bagging Bagging (Breiman, 1996) and boosting (Schapire, 1990) ai&kmown
ensemble methods in machine learning and have been applibd context of active
learning asQuery-by-Baggingand Query-by-BoostingAbe and Mamitsuka, 1998).
Both methods achieve significant (and similar) improvers@ver random sampling
for a variety of machine learning tasks. Because of theiilaimperformance, we re-
strict our studies of such methods in later experiments ¢glvey. Bagging is a general
machine learning technique that reduces the variance afritlerlying training meth-
ods (Breiman, 1996). It aggregates the parameter estirfratalassifiers trained on
bootstrap replicates (bags) of the original training d&eeating a bootstrap replicate
entails sampling with replacememéxamples from a training set nofexamples. Train-
ing a classifier on such a perturbed training set results aiifating model parameters
across bags. What is important for the application in QB@at this variance is higher
for parameters based on infrequent events.
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Sampling from a Dirichlet Distribution As an alternative to perturbing the entire
training set, one can sample the individual distributiohshe@ model according to
their posterior distributions (McCallum and Nigam, 1998gAmon-Engelson and Da-
gan, 1999). The probability distributions which we pertimithis way are multino-
mial in generaP The parameters of multinomial distributions are describgdhe
Dirichlet distribution. The probability density functiasf the Dirichlet distribution is
parametrised by the empirical counts in the training setinAsagging, lower counts
suffer from higher variance which contribute to higher enbke divergence.

Discussion  Since both bagging and Dirichlet sampling are capable ditorg di-
verse ensembles, and both methods create higher variant@aer counts, it may
seem as if the methods are equivalent. However, there isras@tdifference.

Dirichlet sampling, as applied in (McCallum and Nigam, 198&jamon-Engelson
and Dagan, 1999), samples from each probability distrmstiwhich is present in the
model individually. As a consequence, the total number sfritiutions (and hence
the model structure) remains unchanged. By contrast, Qoyiagging (Abe and
Mamitsuka, 1998) eliminates some of the low frequency etygrgs and thus has the
potential to change the model structure. We will considethbuethods in all our
QBC experiments. To the best of our knowledge, no one has amdfhe effects of
using these alternative perturbation methods previouslparticular, the potential of
eliminating events through bagging will be put to use in aglowethod for parsing
which we describe in Section 6.4.

Divergence Metrics

Once the ensemble classifiers have been applied to the llathimstances in the pool,
the divergence within the ensemble can be quantified in a eumibwvays. The two
most popular methods awete entropyandJensen-Shannon divergence

Vote Entropy  Vote entropy is defined as the entropy of the distributionchhresults
from each classifier in the ensemble voting for its top-rahiabel (Argamon-Engelson
and Dagan, 1999).

D(e) — —Zv(i’e) Iogv(i’e) (2.24)

5The binomial distribution, appropriate for binary classifiion tasks such as PPA, can be adequately
treated as a special case of the multinomial.
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Example A Example B

Figure 2.4: Output distributions of two binary classifiers for two examples

wherek is the size of the committee aMic, e) is the number of committee mem-
bers assigning a clagsfor the examplee. One can further normalise this score by
taking the logarithm of the number of possible labels so thatscore ranges from
Oto 18

Jensen-Shannon Divergence ~ The Jensen-Shannon (JS) divergence is a measure for
the distance between a set of distributigps, p2,..., pn} (Lin, 1991). Itis defined as:

IS ({paPe....Pr}) =H( 3 p) = 5 (P (2.25)

whereH (-) is entropy as defined above in Equation 2.21 arisl a weight vector
such thaty;; = 1. JS-divergence can be seen as an extension of the wellkknow
KL-divergence towards multiple distributions (KullbackdaLeibler, 1951).

; p(X p—) (2.26)

For a uniform weight vector, it can be shown that the JS-divergence is the average
KL-divergence to the mean of the set of distributions (Qdmilet al., 2002). This metric
has been previously applied as divergence metric in actigening (McCallum and
Nigam, 1998; Melville and Mooney, 2004).

8n fact, Argamon-Engelson and Dagan, 1999 normalise by cittexrsize and the number of pos-
sible labels. Since these are constant for one experimentalising in this way does not alter the
ranking of scores.

"McCallum and Nigam used the tergi-divergence to the mean
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Discussion  McCallum and Nigam, 1998 found empirically that QBC appliedhe
problem of text classification achieved better results whsing JS-divergence than
when using vote entropy. They attributed it to the fact ti&divergence takes into
account the classifiers’ confidence by considering theireedistribution, in contrast
to vote entropy. On the other hand, it can be argued that drisativergence is more
critical when it occurs near decision boundaries. Consibleroutput distributions
of an ensemble of two binary classifiers for the two exampte&igure 2.4. The
ensemble exhibits more uncertainty around the decisiomdieny for example A, and
vote entropy would yield a higher score for example A. Thisyrba beneficial since
example A is potentially a more informative data point todathan example B. By
contrast, JS-divergence would preferably select exampedause it shows a higher
divergence in its output distributions. This shows that #ldeantage of using one
divergence metric over the other cannot be derived from fiirsiciples, and we will
therefore consider both metrics in all our QBC experiments.

2.4.3 Other Active Learning Methods

We are going to describe a range of other possible activailegamethods which we
do not consider in this thesis. Some of these methods are watignally to expen-

sive to apply such as statistically optimal solutions ooereduction sampling. Other
methods such as density estimation and online choice #igusiare orthogonal to our
research and could be combined in principle.

Statistically Optimal Solutions

There are approaches to active learning which have statilstioptimal solutions, in
other words, on average they reach the highest possibleredaction. Cohn et al.,
1996 suggest artificially constructing a query such thatetkigected variance is min-
imised after knowing the label. This approach takes adgmtéthebias and variance
decomposition analys{§&eman et al., 1992). This analysis states that the expected
ror in supervised learning can be derived from first prineges the sum of the intrinsic
target noise, bias, and variance. The intrinsic targetencés be understood as the er-
ror of the Bayes-optimal classifier. Bias expresses howetyothe average guess of
a classifier matches the target. Variance measures how rhectldssifier “moves”
around. According to this analysis, minimising variancgoahinimises the expected
error as long as the learner is unbiased or the bias is can€énourse, guaranteeing
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unbiased or constant-bias classifiers may not always behp@s#\Iso, it is difficult

in general to compute the variance of a classifier in closeshfoFurthermore, the
construction of artificial examples for manual labellingyrze either not feasible or
would result in unnatural examples for most applicationdlltP. For these reasons,
most research in active learning has focused on approxiagisaches which opti-
mise indirect measures other than variance in order to mgae classification error.

Error-Reduction Sampling

Roy and McCallum, 2001 suggestror-reduction samplingnd report improvements
over other approaches in a document classification taslgusaive Bayes. Error-

reduction sampling successively considers each exampleipool and estimates by
how much adding this example to the training set would real&ssification error on

test data. An example is selected for annotation when ittesuthe lowest expected
error as compared against all other examples in the pooloQfse, pool examples are
unlabelled. Therefore, each example is added tentativitlyall possible labels, and
error reduction is averaged over the label distributioroading to the current state of
the classifier. This approach requires to retrain the tngjrsiet very often: the number
of pool examples multiplied by the number of labels. Unfagtely, this continuous

retraining is prohibitively expensive for most applicatso Roy and McCallum, 2001
acknowledge that this approach is only feasible for appboa which are either very

fast to train or allow incremental retraining.

Active Learning for Support Vector Machines

In the following, we will discuss a number of different appohes of applying active
learning to support vector machines (SVM) or large margassifiers. SVMs are a
class of discriminative classifiers with strong theordtfoaindations and very good
generalisation performance (Vapnik, 1982). Data pointSUMs are represented as
vectors in ann-dimensional space. Assuming linearly separable datadéuogsion
boundary is a hyperplane of dimensionality- 1 which separates positively and neg-
atively labelled data points in a binary classificationisgtf Given a set of labelled
data, training a SVM means finding the unique separatingipjgree which maximises
themargin, that is the minimal distance between data points and thsidadoundary.

8Non-linearly separable cases can be addressed by usitkgvslaables (Cortes and Vapnik, 1995).
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Campbell et al.,, 2000  Support vectorare data points which fall exactly on the mar-
gin. A characteristic of SVMs is that they can be construttgdsing support vectors
only. In other words, in training a SVM one can safely ignoomfsupport vectors and
still arrive at the same hypothesis. This fact motivatesghy@ication of active learning
in (Campbell et al., 2000). If one knew a priori which datargsiare support vectors,
one could focus on labelling only these. Campbell et al. 028@ygest a heuristic for
active learning which selects data points closest to thisaecboundary. Empirically,
they found best results for active learning wiparsedata sets. These are data sets
which require only few support vectors (in relation to theesof the full training set).
By contrast,densedata sets which require a relative large number of suppatove
to accurately represent the hypothesis cannot achievathe sesult with less data.

Schohn and Cohn, 2000 A range of heuristics is discussed in (Schohn and Cohn,
2000). They present empirical results for a heuristic wtsekects examples which
are close to the decision boundary, as in (Campbell et abQR0The motivation is
to maximally narrow the margin. Schohn and Cohn, 2000 ds@ases where se-
lecting examples from sparse regions may result in a disph@nt of the hyperplane
without significant change in the margin. However, emplhjctney found substantial
improvements over random sampling for a variety of textsifasation tasks.

They also discuss a heuristic which prefers examples whielbdahogonal to the
space spanned by the current training set, thus giving #u@ée information about
unobserved dimensions. Aiming for such unobserved eveotsdibe similar in spirit
to our main thesis of addressing unreliable parametersaatm of unknown events.
However, they do not consider this heuristic in their expemts, even though this
would be computationally inexpensive. Also, we are not anarany other research
in the area of large margin classifiers which target unolesedimensions.

Tong and Koller, 2001  Tong and Koller, 2001 use the notion wérsion spacas a
theoretical motivation for their approach to active leamfor SVMs. Version space is
the size of the subset of parameter space that correctlgifitessthe labelled examples
(Mitchell, 1982). An optimal active learning method shotriglto reduce the size of
the version space as quickly as possible.

Starting from the observation that an explicit computatodrthe version space
size is not practical, they present different approximagito this problem. A first
approximation follows the work discussed above (Campledl.e 2000; Schohn and



34 Chapter 2. Literature Review

Cohn, 2000), by selecting data points closest to the decisaundary since these
would most accurately bisect the version space. Tong angiK@001 argue that this
is a rough approximation relying on the assumption that th gboint is centrally

placed. To overcome such problems, another approximastmates the expected
reduction in the version space space by computing the rexfuat the size of the

margin. This entails retraining the SVM for every unlabdl#ata point added to the
training set with a stipulated positive and negative laBshpirically, they found best

results with this latter method.

One can see a correspondence of this method with the ideggetiteg unreliable
parameters as proposed in this thesis. Large margins in & &¥ a source of unre-
liability, and minimising such regions contributes to leettlassification performance
as evidenced by the good empirical results found by Tong aiéiK2001.

Online Choice

It is a well-known fact that there is no single active leaghmethod which is always
guaranteed to be optimal across applications. This metsvaie combination of active
learning algorithms under one master learner. Baram e2@04 introduce an algo-
rithm that, for a given iteration, selects the example whiak been suggested by the
best current learner. The key idea is to define a metric whiehuates learners. Of
course, the true accuracy, as measured against a testrsat agailable. Furthermore,
evaluation over the labelled training set is not necessargood indicator of the true
accuracy since active learning algorithms tend to collectihrather than representa

tive examples. Instead, @assification Entropy Maximizatioscore is introduced to
estimate learner quality. This is the binary entropy of tbarher over an unlabelled
set of data points. In an evaluation over different tasksaBeet al., 2004 report that
their approach consistently performs nearly as well ordreds the best algorithm in
the ensemble.

Density Estimation

Active learning can have a tendency to select atypical exesqr everoutliers. An

outlier is an observation that lies outside the overallgratof a distribution (Moore
and McCabe, 1999). For instance, a French sentence in arskrgrpus would con-
stitute an outlier. A classifier trained on English sentsneeuld be highly uncertain
as to the proper analysis of such a French sentence, so thethadnlike uncertainty
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sampling would preferably select it for annotatidensity estimatiolgan help active
learning to avoid such atypical examples. In the contexexf tlassification, McCal-
lum and Nigam, 1998 approximate the density of a documentdgsuring its average
KL-divergence to all other documents. This method essintjaantifies the overlap
between a document and all other documents. Examples actesg:which have both
high density and high disagreement according to QBC.

In application to parsing, Tang et al., 2002 estimate dgnsing k-means clus-
tering. Pointwise distance between two sentences is cadmsg the edit distance
between the derivations of the individual best parse trééw® sentences under the
current parameter model. Similar to (McCallum and Nigam98)9 sentences are
selected for annotation which have high density and higledamty. This is an com-
putationally intense process since all pairwise edit dista between all sentences in
the pool have to be computed in every iteration.

As we will see in later chapters, active learning methodpgesilly uncertainty
sampling, can suffer severe performance problems frontseteatypical examples
and density estimation may well help to alleviate such moid. In general, we see
density estimation as a general purpose technique whicklthsgonal to the choice
of active learning method. Of course, this raises the qoestiwe should continue
using such methods if they require such a fix. However, thdiGimn of density
estimation to active learning is a matter of ongoing redeaf€or instance, it is not
clear if density estimation is best applied over unlabelledances, as in (McCallum
and Nigam, 1998) or tentatively labelled instances, adgogrtb the current state of
the classifier, as in (Tang et al., 2002). For this reason, waat consider density
estimation in the experiments of this thesis.

2.5 Conclusion

In this chapter, we described the natural language praugsasks to which we apply
active learning methods in Chapters 4, 5, and 6 and gave a detaded overview

of one representative model for each of the tasks. Furthernwee discuss relevant
applications and available data sets. Next, we describidedearning with a special

focus on uncertainty sampling and QBC. We also describegr gthpular methods in
the field which we do not consider in our research.






Chapter 3
Experimental Conditions

This chapter details the experimental conditions whichcaramon to all experiments
in this thesis. More details will be discussed later in pleatid the descriptions of the
individual experiments.

In Section 3.1, we outline the general data split scheme &ba dppropriate for
active learning and discuss details of the 10-fold crodsl@aon scheme we employ
throughout all experiments. In Section 3.2, we discussuataln metrics, such as
accuracy, coverage and f-measure, which are appropridteetdiverse tasks in this
thesis. In Section 3.3, we explain and motivate the choicstatistical significance test
which we apply throughout all experiments. In Section 3.4, motivate the choice of
(graphical) learning curves for the display of performanesults in active learning,
plotted alongside p-levels to indicate significance of lissBection 3.6 concludes this
chapter.

3.1 Data Splits and 10-Fold Cross-Validation

For any active learning experiment, we need to decide onrgrpatal parameters
regarding the sizes of the following sétsi) the initial training set Lof manually
labelled examples, ii) theest setwhich consists of manually labelled examples which
provide the gold standard for evaluation, iii) theol U of unlabelled candidates and
iv) the batchof examples which is selected from the pool in one iteration.

For the experiments in the following chapters, we set thessuanmarised in Ta-
ble 3.1. We consider the size of the (initial) training sed éme batch to be particularly
interesting parameters, and demonstrate their effecthendative performance of

1The variable names refer to the algorithm in Figure 1 in thst fihapter.

37
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PPA | Sequencing Parsing
Training set| 1/100/1000, 100/1000{ 100/1000

Test set 2000 1000 1000
Pool all 1000 1000
Batch 1/100 100 100

Table 3.1: Data splits for experiments in prepositional phrase attachment, sequencing,

and parsing tasks

different active learning methods. We include experimefisarying training set sizes
for all applications. For pragmatic reasons, we deal wittyivey batch sizes only in

the context of the very fast prepositional phrase attachifi&fPA) tasks since smaller
batch sizes entail a larger number of iterations and coomdingly longer experimen-
tal running times.

The test set and pool size were set as large as conveniessgjb@ Again, for the
fast PPA application, we can afford to have a very large poaigrising all instances
which are neither in the training nor in the test set. As seging and parsing are
considerably slower, we use a smaller pool of 1000 instamdgsh are randomly
sampled in each iteration from all remaining instances (ndraining or test set),
which we will refer to as thglobal pool

For all experiments, we carry out a 10-fold cross-validafiar improved statistical
significance of the results. For each fold, we randomly san\pithout replacement)
an initial training set, a test set and a pool according tcsfiexifications in Table 3.1,
while ensuring that test sets are disjoint across folds. ¥eeach fold until comple-
tion, that is, until the pool is exhausted for PPA, or for a dixeumber of rounds for
all other tasks since running until completion can be toeticonsuming. Finally, we
report results averaged across all 10 folds.

Specifics of Parsing Experiments

We can achieve better parsing results by providing the paxsth part-of-speech
tagged input. For realistic parsing experiments, we tagéleset automatically (as
opposed to using gold-standard tags), using the TnT paspeéch tagger (Brants,
2000b), trained on 30,000 sentences from the global poot.mt&thodological rea-
sons, it would be desirable to automatically tag the semt®ntthe global pool, too.
However, there are not enough sentences in the treebanlote alfurther split into
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a disjoint training set for the tagger and the pool in ordeatoid application on the
training set. For this reason, we do not use automaticaljged sentences when pars-
ing the pool, but manually tagged sentences.

3.2 Evaluation Metrics

In order to compare methods against each other and to traceirlg progress for
individual methods, we use a variety of evaluation metriepahding on the task at
hand.

Accuracyis the proportion of correctly labelled instances as coragao the gold
standard. We use accuracy to evaluate prepositional plattesehment and part-of-
speech tagging, that is, the proportion of correctly laxkituples in prepositional
phrase attachment and the proportion of correctly labelNedd tokens in tagging.
A related metric in the context of parsingagact match ratethe proportion of entire
sentences which are parsed perfectly. This is a very harsticynigecause no credit is
given if only a single constituent has been misclassified.

Accordingly, for structured labelling tasks such as paygind NER, a more appro-
priate evaluation metric, PARSEVAL, measumggcisionandrecall, based on con-
stituents (for parsing) or on entities (for NER) (Black et 4091).

#identical (labelled) constituents in parse and corres tr

#constituents in parse tree
#identical (labelled) constituents in parse and corresg tr

#constituents in correct tree

(Labelled) Precision =

(Labelled) Recall =

In order to determine if a predicted constituent (or entigy)dentical to the one
in the gold standard, we require that they at least have time span, in other words,
cover the same input tokens. Additionally, it is customaryetquire that they have the
same label. We refer to these measurekabslledprecision/recall. In this thesis, we
follow the usual practice in the literature and exclusivagort labelled precision and
recall.

Because it is possible to increase precision at the costoallyeand vice versa,
a common summary statistic is tlfemeasure the harmonic mean of precision and
recall.

2PR
F-Measure = ——
P+R
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Furthermore, we report theoveragescore, a commonly used metric for parsing. It
is the proportion of parsable sentences in a test set, théitdse sentences which re-
ceive at least one analysis. We will also report coveragkercontext of prepositional
phrase attachment, as the proportion of test instanceswwitivn prepositions. Cover-
age can be conveniently evaluated on unannotated corpbismetric does not tell us
about the quality of the predicted analyses, though. Alde,ribat as a design decision,
a parser may or may not recourse to more aggressive backsfhioothing schemes
in order to increase coverage, possibly at the expense singaquality. However, we
find coverage a useful notion because high coverage is asaggsrecondition for
good performance in general.

3.3 Statistical Significance of Results

In order to establish that the performance difference bebmg/o methods is in fact
significant, and has not just arisen by chance, we need ty apgdlstical significance
testing? Statistical significance is reported with respect to a singst statisticof
interest such as classification accuracy. The usual melbgylds to state a null hy-
pothesis of the form “Method A and method B do not differ widspect to the test
statistic’. Then, we can determine the probability that &sevved difference in the
test statistic of that magnitude has arisen by chance glvemull hypothesis. This
probability is known as th@-value If the p-value is lower than a predefinsaynif-
icance levelwe can reject the null hypothesis. Commonly used signifiedasts are
p < 0.01 andp < 0.05.

We use randomisation tests for significance testing (NQre@80). Randomisation
tests are a class of computer-intensive statistical mestiuuich can compute p-values
for more complex test statistics such as the f-measure wdraaytical methods fail.
They also free us from “making troubling assumptions ab@ming models and
population distribution” (Cohen, 1995). Randomisatiostseautomatically generate
sample distributions by randomly reshuffling observed gatats between experimen-
tal conditions. For small enough test sets, one can enuenaligiossible outcomes of
this procedure and compute aract randomisationFor many practical purposes, this
is not possible and we must resortapproximate randomisatiowhere the collection
of test statistics is based on a large enough number of iéshuf

In particular, we use an (approximate) randomisation wversif the paired t-test,

2The description in this paragraph is based on (Chinchor.g1293).
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APPROXIMATE RANDOMISATION

1. Collect difference in test statistic for methods A and B
|staty — stag|
2. Shufflenstimes fisis 9,999 in our case)

3. Count the number of times (number greater than or eqga),that
|Stapseudoa— Stapseudo > |Stata — Staf|
(stat can be accuracy or F-measure)
: ngetl
4. The estimate of the p-valueJ,.%ﬁ
(1 is added to achieve an unbiased estimate)

Table 3.2: Implementation of randomised paired-samples t test

motivated by the fact that, by design, we compare two metladdstime on exactly
the same sequence of test items. Table 3.2 gives an outlithe a@inplementation of
this randomisation test, based on (Chinchor, 1992). Ihitf\ae determine the absolute
difference between test statistics over the original oues of methods A and B. Then,
we repeatedly createhuffledversions of A and B, determine the absolute difference
between their test statistics and count the number of tilreghis perturbed difference
is equal or larger than the original difference. In order teate the shuffled versions
of the data sets, we iterate over each data point and decsésl lwan the outcome of
a (simulated) coin-flip whether records should be excharmpdieen A and B. The
p-value is the proportion of iterations in which the abseldifference in test statistics
was indeed larger for the shuffled version (corrected toeaehan unbiased estimate).

Such randomised tests for significance results are commuetural language pro-
cessing, for instance in the evaluation of information &stion systems (Chinchor
et al., 1993) and parsers (Bikel, 2004b). For systematipgaes, we decided to use
randomisation tests to compute significance results foreddlvant test statistics re-
ported in this thesis, including accuracy and f-measurbboiing the advice from
Noreen, 1989 to “use them instead of ordinary t-tests becthey free us from wor-
rying about parametric assumptions and they are no lessrphdwe

3.4 Comparing Active Learning Results

Reporting and comparing results for active learning meshaaoh be problematic. Some-
times, active learning performances are summarily repansgng a single character-
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Figure 3.1: Graphical display of learning curves with associated p-level graphs

istic. For example, savings in training effort are reporteda fixed arbitrary perfor-
mance level, which may be difficult to decide beforehand. ilaiy, when reporting
the increase in performance for a fixed arbitrary traininggsize, we need to decide
on a reasonable size beforehand. Furthermore, such psathiaracteristics do not
reveal trends in active learning performance.

As an alternative, one may decide to report the average npeafoce over all itera-
tions. This can be misleading if we are interested in thequarance at the limit. Let
us consider the learning curves for two active learning méshA and B in comparison
to random sampling in the top panel in Figure 3.While method A in this example
has a higher average f-measure across all iterations (§Gre2% method B (80.8%),
we would still prefer method B when dealing with larger tiaimset sizes.

Since active learning performance really is a function ofremgng training set
size, we graphically display active learning results inftiven of learning curves (Fig-
ure 3.1), as is common in the literature. This practice adlfov convenient eye-balling
of results and for comparing trends in learning curves. lioglat the graphs in the
example, we can see that method A initially performs bestideventually overtaken

3This graph anticipates results from Chapter 6 on parsing.
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by method B. Furthermore, we can glean from the graph theeravithin which the
methods’ performances are roughly equivalent.

To indicate the significance of results, we introduce a ngvaphical convention
in this thesis. In the three bottom panes of Figure 3.1, wengp-values of a (ran-
domised) paired t-test for all pairwise comparisons betwesults of the same training
set size, on a scale from 0.001 to 6.5Ve mark two standard levels of significance,
0.01 and 0.05, as grid marks for reference.

We believe that representing p-values in this graphical &tkys for an appropri-
ate qualitative discussion of results while incorporatirgnd information with respect
to the growth of the training set. For example, we can nowestadre precisely that
method A is significantly better than method B from the firstation until 900 sen-
tences have been samplguk( 0.05); and method B is significantly better than A after
2,400 sentences have been sampled until the end.

P-values can also help to judge improvements which may lieuifbased on raw
performance measures, especially when given graphidadiiyexample, performance
levels around 3,000 sentences seem very similar but p-sahw that the differences
are in fact significant.

Throughout this thesis, we will frequently compare mukigixperiments on the
same data set and report statistical significance resultsh Swultiple comparisons
call for a downward correction of significance levels to avfinding spurious ‘signif-
icant’ results, see for example (Shaffer, 1995) for a dismus The chosen graphical
representation allows us to apply more stringent signifiedavels if required.

3.5 Length-Balanced Sampling

When applying active learning to sentence-labelling temksh as tagging or pars-
ing, the sentences need a variable number of labelling idasis This may confound
active learning metrics and introduce a bias towards losgatences. To ensure a
balanced selection of examples, it is necessary to cortrahfs factor. For example,
tree entropy may be directly normalised by sentence lertdiia( ), or by the binary
logarithm of the number of parser readings (Hwa, 2001a).

In practice, we found non-linear dependencies betweerseaiength and scores,

4After some experimentation, we decided to give p-values logarithmic scale since this resulted
in smoother graphs. Also note that for the chosen numbe®&®shuffles in the randomised test, 0.001
is the smallest possible p-value that can be computed. Roloarer p-values the graph will be a flat
line as we will commonly see in later result discussions.
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such that most normalisation schemes introduce a seldgit@reither towards longer
or shorter sentences. In order to control for this selechias in active learning, we
use the following method: Given a batch sizewe randomly samplé sentences
from the pool and record the numberof selected examples for sentence lenigth
Then, for all lengths = 1,2,...40, we select from all sentences in the pool of length
| the g examples with the highest score according to our sampletsmiemetric.
Of course, the union of these sets will havexamples again. Since we randomly
sampled the batch from the pool, we may assume that the bathbdtion reflects
the pool distribution, particularly with respect to thetdisution of sentence lengths.

By construction, this method effectively reproduces thetesiece length profile of
the original corpus and therefore guards against the saheof sentence length bi-
ased subsets. Furthermore, it is equally applicable famalirics and allows a direct
comparison between metrics. We apply this method to aadtiarning tasks where
sequential data are involved, namely sequencing tasks asthg since one may ex-
pect to find correlations between sample length and score.

3.6 Conclusion

In this chapter, we discussed the data split scheme we usedl &xperiments in this
thesis. Furthermore, we introduced diverse evaluatiomiosawhich are appropriate to
the tasks in this thesis and motivated the choice of stegissignificance test. Finally,
we motivated the choice of (graphical) learning curves fsptaying the performance
results of active learning, plotted alongside p-levelsticate significance of results.

With this chapter, we have provided a convenient overvievalbexperimental
conditions which will allow a faithful reproduction of allup results.



Chapter 4

Unreliable Parameters

In Prepositional Phrase Attachment

In prepositional phrase attachment (PPA), one decideshghatprepositional phrase
is an argument or modifier of the verb in the matrix clausef bmnodifies the directly
preceding noun phrase. This is an important step towardsrdéating the argument
structure of a sentence and its semantic interpretatioeviéus work has shown that
this can be done accurately based on lexical head informé&iothe involved verb,
noun, and prepositional phrases (Ratnaparkhi et al., 100Uins and Brooks, 1995).
Standalone PPA has been obsoleted by the advent of stéte-aft lexicalised parsers
such as (Collins, 1997; Charniak, 2000), where PPA is addcegintly with other
lexical and structural disambiguation steps. NevertlseleBA is still attractive as a test
bed for active learning research (Hwa, 2004). A quick turouad in (otherwise highly
time-consuming) active learning experiments is faciiththrough the fast training and
application of classifiers, particularly when using maximlikelihood estimation, as
in (Collins and Brooks, 1995). Following Hwa, we also use @adlins and Brooks
algorithm for the experiments in this chapter, as describetkection 2.1.

We argue in this thesis that popular active learning methsdsh as uncertainty
sampling and QBC, have been previously misapplied in theezdof natural language
processing tasks. These methods are defined in such a waynagrayve the quality
of parameter estimates within the current model structdmvever, an important fac-
tor in learning accurate stochastic models is the acqaisitf an appropriate model
structure such that as many cases as possible are coveradpvdukcting unseen test
data. This is particularly important for natural languageqessing where probability
distributions often need to be estimated for a potentiatipaunded number of indi-

45
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vidual words or combinations of words. Neither uncertaiséynpling nor QBC have
a well-defined mechanism to actively pursue expansion ofjitlen model structure.

In the context of prepositional phrase attachment, unknpvapositions are a
prime example of insufficient model structure due to missagnts. In the absence
of specific information for a preposition, we cannot expée tlassifier to do well.
However, assigning the most likely attachment for each gsijon instead of assign-
ing the majority label (noun-attached) results in an insesim accuracy from 59.0%
to 72.2%. As mentioned in the Literature Review in Sectidh #ie can actually de-
termine the most likely attachment relatively cheaply dyeléing just a few instances
for all prepositions. Accordingly, active learning metlsahould explicitly pursue un-
known prepositions and thereby increase the coverage sihileltaneously improving
the parameter estimation within the current model strctur

Chapter Structure

We begin in Section 4.1 by demonstrating experimentally ghaaive application of

uncertainty sampling to prepositional phrase attachmeitihout targeting coverage,
can result in suboptimal performance. To address this proplve introduce a change
in the base classifier in order to preferentially selectanses with unknown preposi-
tions. This obviates the need to change the active learnathad itself. We show that
this method improves classification accuracy. Targetingnown prepositions gen-

erally proves to be an effective way to improve unreliableapzeters in the model.

However, we find that uncertainty sampling can still undegren compared to ran-

dom sampling, particularly when starting with small traigisets. We give a detailed
analysis as to why this is the case.

In Section 4.2, we show for QBC that a similar change in theslidassifier can
target out-of-coverage instances and substantially ingperformance. We examine
a range of sampling and scoring methods, and show that QB8asaawvastly different
experimental outcomes depending on the combination of odsthised. We achieve
best overall results with bagging for sampling and voteagtifor scoring. An analysis
shows that the selection of sampling method allows one ®thiacomposition of the
training set against prepositions that are easier to label.
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4.1 Uncertainty Sampling for Prepositional Phrase

Attachment

Uncertainty sampling is a popular and intuitive active féag method. However, it
is essentially heuristic and may not accurately targetliaile model parameters if
applied naively, as discussed in Subsection 2.4.1 in thezdtiire Review.

Unknown prepositions present an obvious and importantctgereliable param-
eters in prepositional phrase attachment. An importantridanion of this section is
to show that the targeted selection of unknown prepositinaeases the classifier’s
coverage and thereby substantially improves classificaozuracy. This preferential
selection of unknown prepositions can be superimposedmaftstandard uncertainty
sampling.

Furthermore, we show that uncertainty sampling can extddgenerate behaviour
and perform worse than random sampling even when it is wehiwithe range of
standardly used experimental parameter settings. In a@riexent with a particularly
small (randomly sampled) initial training set, we show teample selection becomes
stuck repetitively choosing instances with the same prigipas This happens even
when targeting unknown parameters. In this situation,patar estimates can be too
coarse to support a meaningful selection process for uaiogytsampling.

Targeting Unknown Prepositions

The targeted selection of unknown prepositions can be donigely within the frame-
work of uncertainty sampling, by applying a minimal, but @al change to the base
classifier. This change concerns the setting of the backofbability for instances
with unknown prepositions. In (Collins and Brooks, 199%)stvalue is defined as
Ps(nju) = 1.0, such that instances with unknown prepositions are détéstically
decided to be noun-attached, cf. Equation 2.2 in the LiiegaReview in Chapter 2.
This is motivated by the fact, that the majority of instanceshe given data set are
noun-attached.

However, using this value in sample selection results iigy unknown prepo-
sitions since a probability of 1.0 indicates minimal unaatty. To alter this behaviour,
we choose a setting such that instances with unknown prepaswill be preferred.
Of course, such a value B(n|u) = 0.5, indicating maximal uncertainty. In this way,
we control the preferred or dispreferred selection of dut@verage instances by set-
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ting the final backoff value without further changes to thavadearning algorithm.

In the experiments of this section, we will demonstrate @dbits of applying such
a targeted selection of out-of-coverage instances. Weusdl the following naming
convention:

e UNC-STD: Uncertainty sampling, standard settiggn|u) = 1.0
e UNC-ALT: Uncertainty sampling, altered settifg(n|u) = 0.5

e RND: Random sampling, base-line

4.1.1 Pure Uncertainty Sampling

Many active learning experiments reported in the literatuse relatively large, ran-
domly sampled initial training sets, for example 500 inst&sin (Hwa, 2004). How-
ever, there is no general way to determine the optimal sizbisfinitial training set.
In principle, one should trust an active learning methodd@ble to exclusively drive
the selection process without any contribution of randomang. In fact, very small
training sets have been used (successfully) in the litezatar instance starting with
a single example in (Osborne and Baldridge, 2004). In thss érperiment, we also
start with a single, randomly sampled instance to show tlaglulterated effect of un-
certainty sampling alone without the influence of randomslarg.

For this experiment, we select one instance from the pootqerd. A batch size
of one instance is considered optimal because, in theatyoitld avoid the problem of
selecting redundant examples. For subsequent experinmethtis and later chapters,
we will use larger batch sizes for efficiency reasons. Thase common practice in
work reported in the literature (Hwa, 2004).

We show results in the form of accuracy learning curves ferttho experimental
conditions in comparison with random sampling in Figure. 4A% expected, we find
that the altered setting is consistently better than thedstal setting. This improve-
ment is significant until ca. 12.5k instances have been sainpl

To explain why the altered setting performs better, we lobkowverage, the pro-
portion of known prepositions in the test set, in Figure 4.2.

10ne could in principle also start with an empty training Jétis would have the same effect, though
since, in the absence of any annotation, all instances ipabéwould receive the same score, and the
sampling of the first instance is effectively random.
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Table 4.1: Prepositions of selected instances in uncertainty sampling

In random sampling, coverage increases steadily and esdyntonverges towards
100%?2 99% coverage is reached at around 1000 instances.

The altered setting results in a considerably faster cgarere than random sam-
pling: 99% coverage is reached after 39 instances, and @figsitions in the pool
have been selected at least once well before 100 instaneedbban selected. This is
of course because, by construction, the altered settingggrall unknown preposition
instances first: Initially, instances with known prepasis have empirical counts of
(exactly) one. They assign a probability of 1.0 for beindpeitnoun- or verb-attached
and thus flag minimal uncertainty. Those instances with onknprepositions show
maximal uncertainty at 0.5 and will be preferred on a onesna-basis.

By contrast, coverage using uncertainty sampling with taedard setting markedly
underperforms compared to both random sampling and theedlsetting. Coverage
exhibits a stepping behaviour with extremely long streschgp to 1000 instances,
where it is stalling. This stepping behaviour arises beeaagain by construction, this
method cannot select instances with unknown prepositidniewhere are still known
prepositions in the pool.

As a second important observation from Figure 4.1, we find blogh uncertainty
sampling conditions markedly underperform with respectailodom sampling until
late in the learning curve. The altered condition breaksrevigh random sampling
after ca. 10.5k instances have been sampled, the standardriy after ca. 11.5k
instances. This is in marked contrast to the results of (H2084) where uncertainty
sampling clearly outperforms random sampling from the beigig 3

Error Analysis

To explain this underperformance, we looked at the sequeiiostances which where
selected during a single run of uncertainty sampling withlikeneficial altered condi-
tion. Table 4.1 schematically shows the main prepositidrthese instances for the
first part of the sequence.

2In fact, even with a maximal training set, coverage is aelitthder 100% since in some of the
cross-validation folds low-frequency prepositions ocenly in the test set but not in the training set.
SHowever, as we will see later, uncertainty sampling perfobmtter at larger values afandb.
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Figure 4.3: Accuracy for a single run of uncertainty sampling (from one instance)

After the first 70 rounds, each preposition in the pool hasmbssdected exactly
once. In this situation, predictions for all remaining arstes will have no uncertainty
since they are supported by a single empirical count in fawbubeing either noun-
attached or verb-attached. Then, in round 72, a secondheestaf prepositionn is
randomly selected. This happens to be labelled differdraiy the instance sampled
in the third round® From this moment on, the selection algorithm is trapped into
selecting further instances of prepositiansince their predictions have at least a min-
imal amount of uncertainty due to the two initial differingplellings. This continues
for 2969 rounds until eventually all instances with thisgwsition have been labelled.
Even worse, shortly after this the selection gets trappéal $electing instances of
prepositionfromfor the same reason.

This selection behaviour is reflected in the accuracy legr@urve for this run
in Figure 4.3. The early increase in accuracy is due to theptehensive selection
of different prepositions. From round 72 onwards, the fertmcrease in accuracy
is entirely due to the continued modelling of instances @ppsitionin. However,
performance soon converges around 76%, with no furtherrpesguntil round 3042,

4The first double labelling actually occurs in round 71. Sitfee second instance of preposition
happens to have the same label as the first no uncertaintyaslirced.



52 Chapter 4. Unreliable Parameters in Prepositional Phrase Attachment

when the onsetting selection of instances of preposftmm causes a new boost.

We found this degenerate selection behaviour not only i fian, but across all
runs of a 10-fold validation. The selection mechanism amggt trapped early on into
the selection of instances of a single kind of prepositianefctended stretches. The
main problem here can be pinpointed to the confusion of uacgy and unreliabil-
ity which is prevalent in uncertainty sampling. Preposisavith low empirical counts
exhibit high certainty in their classification and get igedyon the other hand, preposi-
tions with high empirical counts show a higher degree of uiagety and thus continue
to receive more attention. Clearly, rather than directingaation effort towards in-
stances of a single type, prepositions with small empigoaints should receive more
attention. These findings reveal serious problems of uaicegyt sampling, at least in
the pure form we used in this experiment.

A Discussion of Potential Remedies

These problems raise the question how uncertainty samgéinge fixed and we will
now discuss a number of potential remedies.

By modelling the distribution of exampledgensity estimatioran help to avoid
problems of distorted selection in active learning (McGadland Nigam, 1998; Tang
etal., 2002). Here, density estimation is applied to avoédselection of outliers. How-
ever, the problematic prepositions from the above exampieare clearly not outliers
but rather highly typical examplesir andfrom are among the most frequent preposi-
tions in this data set. It is unclear if density estimation balp in such a situation in
order to ensure the selection of a more comprehensive ranmepositions.

The impact of over-confident estimates, especially for e/eith single observa-
tions, could potentially be reduced to some degresrhgothing Using a simple tech-
nique such as Lidstone smoothing (akldmoothing), probability estimates for events
with a single observation would be considerably less peakedexample, withh = 1,
estimates for such cases will be either 1/3 or 2/3 in favounain-attachment and,
accordingly, their uncertainty i$2"(u,M) = 1/3. In the case of prepositions with
a more peaked distribution than that, repeated selectiandv/entually bring their
uncertainty below this threshold of 1/3, and selection stopn the other hand, the
estimate of prepositions with a less peaked distributidhstabilise above that thresh-
old so that the same problem of over-selection persisteotiyinues. Also, smoothing
would only be needed for sample selection, not for testing, iais not clear how to
determine the optimal setting of smoothing paramgter
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4.1.2 Starting with a Larger, Randomly Selected Training Se  t

This section deals with another potential remedy, namedytiagy with a consider-
ably larger initial training set. This should have a sim#diect to the application of
smoothing. Larger empirical counts would result in lesskeelgprobability estimates
for a wider range of prepositions such that they will have idsehance of being se-
lected according to an uncertainty criterion. In this sactiwe will examine to what
degree larger initial training sets can help solve the pwid of uncertainty sampling
identified above, and we let uncertainty sampling start i@ and 1000 instances.

At the same time, we continue our investigation of the selaaif out-of-coverage
instances. The last experiment has shown that the prefeetedtion of out-of-coverage
instances substantially improves uncertainty samplinteai®y, the previous exper-
iment has intensified this effect by starting with minimalvewage. This raises the
guestion whether this factor still plays a role when usingéa initial training sets
with higher coverage, as is often done in active learningeerpents. For example,
after randomly sampling 100 instances, coverage is 93.58; #0000 instances, we
have already covered 99% of all instances in the test seti&i 2). Hence, one might
assume that the effects from different settings for the fiaakoff level do not bear out
anymore.

From now on, we will use a larger batch size of 100 instancexdier to accel-
erate experimental turnaround. This corresponds to gensage of active learning.
Figures 4.4 and 4.5 show results for initial training setsl00 and 1000 instances.
Interestingly, we find that using the altered setting seBults in consistently better
performance than the standard setting, conforming to thidtiefrom the previous ex-
periment. This is the case for both starting points. Whenistawith 100 instances,
improvements are significant from the beginning until cak ir8tances have been
annotated. When starting with 1000 instances, differeacedess pronounced and
significance between the two active learning conditionsivergonly in some parts
of the learning curve. However, we can argue that the altsetting is significantly
better than random sampling until ca. 16k instances, wkdtga significance of the
improvements over random sampling with the standard ggigimt best sporadic. At
any rate, these results clearly indicate that out-of-cagelinstances should always be
expressly pursued.

Returning now to the question of intrinsic shortcomings n€ertainty sampling,
we see that uncertainty sampling still performs worse tlzerom sampling until late
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into the experiment when starting with 100 instances in lmmthditions. Looking
at the sequence of selected prepositions reveals simitdrigms as in the previous
experiment. Only when starting with 1000 instances, doegiainty sampling gain
sufficient momentum to outperform random sampling.

Such problems with uncertainty sampling on small trainiats @re not always so
pronounced for other applications. Uncertainty sampliag afford us improvements
over random sampling even for small training sets when add sequencing tasks
and parsing, as we will see in the two chapters to follow. H@wvausing other methods
such as QBC generally gives better performance.

4.1.3 Summary

Uncertainty sampling as such ignores questions of covelgalemonstrated that the
naive application of uncertainty sampling to a standarg@séional phrase classifier
results in inferior performance due to a failure to targetoticoverage examples. We
addressed this problem by merely adjusting the backoffrpatar for unknown prepo-
sitions in the base classifier, thus obviating the need toghahe sample selection
algorithm itself. This results in the preferred selectidroat-of-coverage instances
and in consistent improvements in terms of accuracy.

However, even when addressing coverage problems in thisenawe found se-
vere shortcomings of uncertainty sampling to the degretttban perform worse than
random sampling. In our analysis, this can be attributedhéofact that uncertainty
sampling cannot accurately identify unreliable paramestimates as such. For the
remainder of this chapter, we will examine the capacity oetby-Committee in
this respect.

4.2 Query-by-Committee for Prepositional Phrase

Attachment

In general, we expect Query-by-Committee methods to be-sugléd to improve
model parameters based on infrequent events. The randdnrlgsion of models
will result in larger variance for such parameters whichtum, will be reflected by
a higher degree of disagreement across the committee. llrepiglstances associated
with these parameters will help to decrease variance, atehpally increase classifi-
cation accuracy. The experiments in this section will showhat degree QBC can
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overcome the problems we encountered with uncertainty BagipHowever, intro-
ducing QBC brings with it a number of design decisions:

Which methods are suitable for model perturbation? We will examine two popu-
lar methods which have been used previously for active legrni) bagging
(Abe and Mamitsuka, 1998)), and ii) Dirichlet sampling (M&ldm and Nigam,
1998).

Which metrics are suitable to quantify disagreement? We will compare the two most
popular metrics i) vote entropy (Argamon-Engelson and Dad®99) and ii)
Jensen-Shannon divergence (McCallum and Nigam, 1998).

Changing the Base Classifier for QBC

Coverage plays an important role in the course of sampletaheas we demonstrated
above for uncertainty sampling. As part of the on-going ith#sat unreliable parame-
ters need special attention, we will examine the problemubfad-coverage instances
also in the context of QBC.

We show experimentally that also QBC suffers from coveragblems when us-
ing the unmodified classifier as defined in (Collins and Brodk#95). This is for
similar reasons to the ones which we have identified abovledrcontext of uncer-
tainty sampling. It is easy to see that using the standarge\®l(n|u) = 1.0 for the
final backoff level or, in fact any constant value, will reisil perfect agreement of
the committee for instances with unknown prepositionsarélgss of the chosen dis-
agreement metric. Accordingly, such instances will be ros&lected. To remedy this
problem, we randomly sample values f&(n|u) from the uniform distribution in the
range 0.0 to 1.0Rs(n|u) ~ uni(0,1), to create a high degree of ensemble divergence
for such instances.

For these experiments, we will use the following naming @mion:

e QBC-STD: QBC, standard setting;(nju) = 1.0

e QBC-ALT: QBC, altered settings(n|u) ~ uni(0, 1)

e RND: Random sampling
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4.2.1 Experiments

In the experiments of this section, we evaluate all cominatof classifier perturba-
tion methods and disagreement metric for the standard amdltered setting in the
base classifier, using an ensemble size of 10. This givedaisiee following four
different experimental conditions.

Dirichlet sampling/JS-divergence

Dirichlet sampling/vote entropy

Bagging/JS-divergence

Bagging/vote entropy

Dirichlet Sampling/JS-Divergence

Results for the first condition, combining Dirichlet sanmgjiand JS-divergence, are
shown for initial training set sizes of 100 and 1000 instaniceFigures 4.6 and 4.7.
The most notable finding is that QBC massively underperfacompared to random
sampling, both for the standard and the altered settingydbgss of the starting point.
We will explore later in this section what are the potentialpgems of this condition.

Furthermore, we find that the altered setting consistenttp@rforms the standard
one. This is significant throughout except for the last fedtions when starting from
100 sentences; and significant after ca. 10k instances hes@ $een when starting
with 1000 instances.

Dirichlet Sampling/Vote Entropy

Substituting vote entropy as a disagreement metric resultSgures 4.8 and 4.9.

Again, we find that the altered setting consistently outprent the standard one; sig-
nificantly so until 18k instances have been sampled whetirgjawith 100 sentences,

and from 5k - 18k when starting with 1000 sentences.

QBC using the standard setting massively underperformgomnsampling when
starting with 100 instances; significantly until 18k instas have been sampled; and is
only about as good as random sampling when starting fromstiirces. By contrast,
QBC with the altered setting is at least as good as random lsegnr better but
significantly so only in some parts.
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Figure 4.8: Backoff settings for Dirichlet sampling/vote entropy (from 100 instances)
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Bagging/JS-Divergence

Using a combination of bagging and JS-divergence in thigexgent, we arrive at the
results in Figures 4.10 and 4.11. Again, the altered setiimgistently outperforms the
standard setting for both starting points. The standarihgetinderperforms random
sampling consistently when starting with 100 sentenced;i@only about as good as
random sampling when starting with 1000 sentences.

QBC with the altered setting, when starting from 100 serdgenis worse than ran-
dom sampling until ca. 5k sentences have been sampled, sinalsjgood afterwards.
Only when starting from 1000 sentences, this combinatidretter than random sam-
pling; but the difference is significant only in some partsta learning curve.

Bagging/Vote Entropy

Finally, using bagging and vote entropy we get the resultSigures 4.12 and 4.13.
Again, the altered setting outperforms the standard orautiirout. The standard set-
ting is worse than random sampling until ca. 11k instances theen sampled when
starting with 100 instances. It performs better than randampling when starting
late, but not significantly throughout.

Most importantly, this is the best out of the four examinedditons and the only
one where QBC with the altered setting consistently ougpers random sampling
both when starting at 100 or at 1000 instances. QBC with ttezeal setting is sig-
nificantly better than random sampling early on and untill&k instances have been
sampled for both starting points.

4.2.2 Summary

We saw in all examined conditions that it is beneficial to usedltered setting over
the standard one. This conforms to the findings we made fantaiaty sampling and,
again, supports our thesis that the preferred selectiorubbbcoverage instances is
important for sample selection.

Equally, or even more, important for QBC is a good choice ofyybation method
and disagreement metric. Figure 4.14 and 4.15 gives an ievef results for all
four combinations under a €Z-ALT setting, starting from 100 and 1000 instances.
The best combination is bagging and vote entropy; a padityubad combination
is Dirichlet sampling and Jensen-Shannon divergence. Mererally, we find that
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Bagging Dirichlet Sampling Proportion
Preposition| Random|| Vote Ent.| JS-Div. | Vote Ent.| JS-Div. || Uncert.|| noun-att.
1. of 26.5 2.9 3.0 15.5 24.3 2.9 98.8
2.1in 16.8 26.5 23.4 23.0 15.7 28.6 46.6
3.to 12.5 10.5 13.2 11.0 13.7 12.7 22.4
4. for 10.2 19.4 16.6 16.4 10.8 18.3 45.9
5.0n 6.5 11.7 10.9 9.1 7.4 10.2 46.1
6. from 4.5 4.9 7.5 4.7 5.2 6.6 34.2
7. with 4.4 6.0 7.3 5.6 5.3 7.5 36.9
8. at 3.2 3.2 3.7 3.3 4.3 0.7 20.1
9. as 2.4 0.4 0.7 1.5 2.8 3.2 18.9
10. by 2.2 2.9 2.8 1.4 1.5 0.2 27.0

Table 4.2: Distribution of prepositions in training set for different conditions

bagging outperforms Dirichlet sampling (dashed lines wemotted lines); and vote
entropy outperforms Jensen-Shannon divergence (thiek fersus thin lines).

Contrasting the best QBC result, bagging/vote entropy wWithbest uncertainty
sampling result (both with the altered setting), we can bae ®BC is always better
than uncertainty sampling or at least as good, see Figutésafhd 4.17.

Discussion

To shine a light on these performance differences betwee@ Qihditions, we look
at the proportion of the ten most frequent prepositions @tthining set in Table 4.2.
For reference, we indicate their proportions when randasalyipling a training set of
10k instances in the second column. We find a roughly Zipfiatridution; the most
frequent prepositiomf constitutes 26.5% of all instances in the training set; dre t
most frequent preposition together cover almost 90%.

For each of the four QBC conditions (and for uncertainty slmgp using the al-
tered setting, we ran a single fold of active learning; stgrtvith 1000 randomly sam-
pled sentences and iterating 90 times with a batch size ofridi@nces, we eventually
reach 10k instances in total.

For the two bagged conditions (bagging/vote entropy andjinag)S divergence),
the profiles of sampled prepositions in the training set Glumns 3 and 4) clearly
deviate from random sampling: the most frequent prepasitib now only consti-
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tutes ca. 3% of all instances. Other prepositions are ay@esented, for instance the
prepositionn went up from 16.8% to 26.5% under bagging/vote entropy.deictally,
uncertainty sampling shows very similar deviations fromdam sampling.

On the other hand, we see that QBC using Dirichlet samplihJshdivergence
(in column 6) quite faithfully reproduces the random profil®BC using Dirichlet
sampling and vote entropy seems to follow a more hybrid pajte

How do distributional differences bear on classification ac curacy? It may be
surprising at first that methods which deviate from randomgang in their distribu-
tional patterns should perform better than methods whiphoguce random sampling
behaviour. We have to consider, though, that prepositiens kastly different biases
with respect to their attachment preferences, cf. the lalsinen of Table 4.2. For ex-
ample, prepositionf is very strongly biased in favour of noun-attachment; pegfoan
in, on the other hand, is almost balanced between noun- anebt&thment.

In this light, the undersampling of prepositiohfound in the bagging-based meth-
ods turns out to be very economical since the bias of praposit allows one to learn
its distribution from only a small number of training instas, and still achieve almost
99% accuracy. This is particularly beneficial since it widllir to reliably classify a
substantial proportion of the test set. On the other haredatimost balanced preposi-
tion in presumably is harder to learn. Under a bagging-based mgthisgoreposition
receives considerably more attention than its proportiould predict from random
sampling.

By contrast, methods with Dirichlet sampling more clos@gnoduce the distribu-
tional profile of random sampling and thus spend substaatiabtation effort on the
peaked and easy-to-leash distribution, thus withholding annotation effort from neor
difficult cases such da andfor.

This is a clear demonstration that a good sample selectidhadenust not neces-
sarily reproduce the distributional patterns found in @mdsampling. Rather it should
devote annotation effort to difficult distributions and sddess effort on easy ones.

How does a method know which distributions are easy? We choosef as a pro-
totypically easy preposition, and contrast the scoringuochsnstances under one con-
dition which assigns high scores (using Dirichlet samplamgl JS-divergence) and
another condition which assigns low scores (using baggnaigvate entropy).

Running a single selection round using Dirichlet samplind aS divergence, with
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an initial training set of 1000 instances, we picked fromliatch of selected examples
a (prototypical)of instance with featuregretain,title, of,chairmar) and a score of
0.45. It had no matches on the first two levégn|u), andP.(n|u) (according to the
the backoff probability scheme from Equation 2.2); on |;ghere was one matching
training instance which was noun-attached, with featdgretsin, «, of, x). On the next
back-off level, there were 268 instances, matching, of, x), the vast majority being
noun-attached.

1
Ps(nfu) = 1

265
Pa(n|u) = 268

A characteristic of Dirichlet sampling is that it only usewm@rical counts on one
level at a time; in this particular example with the most sfi@enatch on level 3,
counts argnouns= 1,verbs= 0). Assuming a uniform prior of one, we sample from
a Dirichlet distribution with parameter®, 1). Using a simulation of a very large en-
semble, we find that the expected Jensen-Shannon diverfgrarech a set of counts
converges towards 0.19. However, with just 10 trials we oqureet considerable vari-
ance, and the score of 0.45 is well within that range.

Under bagging and vote entropy, the same instance receigesra of 0. If the
single training instance which supports paramé¥n|u) is present in the bagged
training set, the test instancdeetain, title, of, chairman will be classified as noun-
attached. If the training instance is deleted (through bapgthe classifier backs off
to parametePy(n|u). In this case the estimate will be close to 1.0, and againesie t
instance will be classified as noun-attached. Thus, engeméibers will always vote
for noun-attachment under a bagged training set. The mirdmagreement for such
instances entails a dispreferred selection which is baakéis we have seen above.

One reason why we did not see disagreement for the condisimg bbagging and
vote entropy is that we did not have to introduce a prior f& Birichlet distribution.
Furthermore, both parameteRs(n|u), and P4(n|u) had empirical support with the
same polarity (in favour of noun-attachment). On the otraard) if these parameters
would have had support of different polarities we would extpe higher degree of
disagreement. Presumably, it would be worthwhile to ledwa true label of such
an instance. Such a situation would not be recognised by haadeising Dirichlet
sampling, again, because the disagreement is establishedd level at a time.
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4.3 Conclusion

The experiments in this chapter have shown that the naiviecappn of popular ac-
tive learning methods such as uncertainty sampling and QBQesult in suboptimal
performance since they lack a principled way of targetingajtcoverage instances.
We demonstrated how a simple change in the base classifiana@ase coverage and
accuracy, both for uncertainty sampling and QBC, withodtiakly having to change
the definition of the sample selection schemes themselves.

Even when applying this method, we found that uncertaintg@eng can under-
perform compared to random sampling, in particular whertisgwith small training
sets. We show that the very notion of uncertainty used in aicgy sampling can
mislead the sample selection process. In certain situgtgood parameter estimates
attract more annotation effort simply because they coetittulook more uncertain
than parameters with low counts and unreliable estimates.

QBC generally has a more principled way of addressing wadvdiparameters, be-
yond out-of-coverage instances, and can achieve sulmtgibietter results than uncer-
tainty sampling. However, QBC performance depends omggestinumber of param-
eters right. Best performance is achieved using baggingasdomisation technique
(rather than sampling from local distributions) and empigyvote entropy for scoring
(rather than Jensen-Shannon divergence). In a detaildgsé)ave showed how this
choice can influence the proportion of selected preposti@ubstantial savings were
achieved by “recognising” that prepositions with a biasael distribution required
less annotation effort than prepositions with a more badrdistribution.

In this chapter, we have demonstrated that treating uelarameters is an im-
portant objective for active learning in the domain of preifional phrase attachment.
In particular, the targeted selection of unknown preposgicauses significant im-
provements. Prepositional phrase attachment is argualdyyasimple task which we
selected mainly for expository purposes. The simple pritiseib model of the classi-
fier makes error analysis very easy. Furthermore, previous\wn the same domain
allowed for comparison (Hwa, 2004).

In the next two chapters, we will look at natural languagecpssing problems
which are both more difficult and more currently researcimeaiely sequencing tasks
and syntactic parsing, in order to demonstrate that thecimim of directly treating
unreliable parameters is vital for active learning.



Chapter 5

Unreliable Parameters in

Sequence Labelling

As maintained throughout this thesis, it is not sufficiemtdotive learning methods to
only improve the quality of parameter estimates within tbeent model, they should
also expand the model structure where appropriate. We shaolig chapter that this
is important in application to sequence labelling as well.

The labelling of sequences is ubiquitous in natural langyagcessing. Examples
for sequence labelling include part-of-speech tagging rsenthied entity recognition
both of which we will deal with in this chapter. Sequencingiksiare more challenging
than prepositional phrase attachment which we invesiigetehe last chapter. La-
belling decisions in a sequence are carried out jointlytireowords, the labelling of
a token is not only dependent on its individual tag distiitnubut also on the labelling
decisions in the neighbouring context.

We will use Hidden Markov Models for the experiments in thspter. They show
close to state-of-the-art performance for sequencingtéBiants, 2000b) but are con-
siderably faster to train than discriminative models (Ragrkhi, 1996). This is of
course critical for active learning experiments where weetta train and retrain mod-
els many times. In particular, we will use Ingo Schroedert®post tagger (Schréder,
2002). This is a freely available, reverse-engineeredeersf the TnT tagger.

In the context of prepositional phrase attachment, we de#it unknown prepo-
sitions as a prime example for insufficient model structéteorresponding problem
in sequence labelling are unknown words, that is, a sitnatibere the current lexi-
con does not cover all inputs. While backoff methods suchufixgries can provide
reasonable guesses for unknown words, tagging accuraaychn cases is generally

69
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considerably lower than for known words. Another manifasetaof insufficient model
structure concerns label sequences which have not beervetisa the training set,
but are necessary for decoding test examples. In HMMs, tbhesar as unobserved
state transitions. In order to avoid zero probabilities wiestimating parameters in
such cases, we need to apply smoothing or backoff. Still, xpe& unobserved state
transitions to contribute to a higher variance and highereate.

Standard active learning methods such as uncertainty sagrgohd QBC have no
direct mechanism to deal with unknown word problems or upsuied transition prob-
abilities. We introduce a novel method for sequencing tagkish directly addresses
deficient model structures by selecting examples whictes@rfbm many unsupported
model parameters. In particular, this method counts theowk words in a sentence
and computes the expected number of unsupported trarsitibimese two quantities
then are combined into a single sample selection score. @mknvord problems are
easy to quantify: we use the number of unknown words in a seatdirectly as a
score. The problem of counting the number of unsupportetitians can be formu-
lated as an expectation over all possible label sequencegrdose a novel dynamic
programming algorithm which computes the expected numbansupported transi-
tions over all possible sequences implicitly.

This chapter extends joint (unpublished) work with Trevah@.

Chapter Structure

In Section 5.1, we start by explaining why we do not considiraative smoothing
settings for active learning in application to sequencellaiy in contrast to the previ-
ous and the subsequent chapter.

In the following four sections, we present results for aetigarning in application
to part-of-speech tagging as a prototypical sequencing t&ection 5.2 has results
for uncertainty sampling, Section 5.3 for QBC, and Sectiohfér the count-based
method. In Section 5.5, we summarise results for part-eksh tagging.

In Section 5.6, we apply this range of active learning meshtmdnamed entity
recognition. We discuss the unexpected result that unngrtsampling outperforms
all other methods, and conduct experiments which link tesult to the size of the
tagset involved in the task.

Section 5.7 concludes the chapter.
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5.1 No Altered Smoothing Settings in Sequence Labelling

In the previous and in the next chapter, we demonstrate hodifirad smoothing or
backoff settings allow the identification of training inst&s which help to overcome
unreliable parameter estimates.

Can such techniques also be used for sequencing tasks? \Wéocaxample,
disable smoothing and allow zero probabilities to occuniioobserved transitions in
the HMM and for unknown words. We can then easily identifyteanes which suffer
from such problems as they become undecodable. This woeklprably help the
selection process to identify unreliable parameters. Iplaatory experiments, we
found that such a method does not perform well in the contésequencing task.
Disabling smoothing renders the majority of instances @bol as out-of-coverage
and makes selection effectively perform like random sanapli

For these reasons, we do not consider different smoothibgdckoff settings as in
the other chapters. A major contribution of this chapter &esy is a more fine-grained
measure than the Boolean out-of-coverage criterion. Wecoint the number of zero
probabilities and the number of unknown words.

5.2 Uncertainty Sampling for Part-of-Speech Tagging

For active learning for sequencing tasks one has to decidetat to label. It is
conceivable to select single words for annotation. In tlisec one would have to
train the classifier on partially annotated sentences usinte kind of semi-supervised
learning scheme. For example, Scheffer et al., 2001 exglibre use of expectation-
maximisation in this situation. Doing so however raisedidift questions about me-
diating between cost factors annotation time for a word a&adling time for the sur-
rounding context. To avoid this we decided to label instararethe sentence level. To
determine an uncertainty score for a sentence we averagehm/encertainty score
for the tag distributions of individual tokens. We show riésin Figures 5.1 and 5.2
for initial training set sizes of 100 and 1000 sentences.ddamty sampling (McC) is
significantly better than random sampling throughout afterfirst iterationt

IWe also let uncertainty sampling start from a single exampBlesults are very similar to the dis-
played results.
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5.3 Query-By-Committee for Part-Of-Speech Tagging

As we have seen in the previous chapter, using QBC as an detiveing method
can result in substantial improvements over uncertaintgmismg. In a first set of
experiments for QBC in application to part-of-speech taggwe try to find an optimal
set of parameters. We will investigate the influence of thkefang parameters.

e Sampling Method
e Divergence Metric

e Ensemble size

5.3.1 Experiments

Experiment 1 In the first experiment, we compare sampling methods, naivexdy
ging and Dirichlet sampling, while using vote entropy asdhergence metric. Inci-
dentally, in this setting the condition with Dirichlet salimg corresponds to the set-
tings employed in Argamon-Engelson and Dagan, 1999 whieh @bncerns part-of-
speech tagging. We however do not explicitly try to adjusirttheat” parameter.

We show results using initial training set sizes of 100 and0l€entences in Fig-
ures 5.3 and 5.4 respectively. We first note that both camthtsignificantly improve
over random sampling throughout from the first iterations When comparing both
conditions against each other, we find that the bagged méshmmhsistently as good
or better than the Dirichlet sampled method. Bagging isiaantly better in almost
all iterations when starting with 100 sentences. Whenistawith 1000 sentences, it
is significantly better in almost all iterations until caklgntences have been sampled.

Experiment 2  Using Jensen-Shannon divergence as a disagreement meteon-
trast bagging and Dirichlet sampling in Figures 5.5 and Bgain, we find that using
QBC significantly improves over random sampling throughd@dmparing both con-
ditions against each other, there are hardly any differeicperformance. Only in the
early phases, bagging can be seen to be significantly blegemirichlet sampling.

Experiment3  From the two previous experiments, we find that the comtondiag-

ging/vote entropy performs the best. Sticking with thigisgtwe are now going to
examine the influence of ensemble size on performance. Weavitrast the perfor-
mance of the best current setting using five ensemble membtran ensemble of
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10 members. Again, we show results for two different initraining set sizes in Fig-
ures 5.7 and 5.8. Performance is almost indistinguishabidy in the final phase of
the learning curve is there a significant improvement by gisitarger ensemble.

Experiment 4  Finally, we are interested to see how the QBC method with #st b
set of parameters performs with respect to uncertainty sagipResults are shown
in Figures 5.9 and 5.10. Just like QBC, uncertainty samptintperforms random
sampling significantly throughout. In comparison with eather, QBC is always as
good or better than uncertainty sampling with long stresclieere QBC improvements
are significant. However, uncertainty sampling is a sunpgly strong baseline. In
particular, when starting with a smaller training set, imy@ments cannot be shown to
be significant throughout.

5.3.2 Summary

In this first set of experiments, we have found an optimal $gtwameters for QBC,

namely bagging as a sampling method and vote entropy as egeihae metric. In-

creasing the ensemble size from 5 to 10 made virtually n@udiffce. In this setting,
QBC can be seen to be as good or better than uncertainty sgmpliso, this setting

presents an improvement over the results in (Argamon-Bogednd Dagan, 1999)
while using a conceptually very simple method of samplimgrfithe training set with-

out the need of setting an extra parameter.

5.4 A Novel Count-Based Method

The hidden Markov model we use for the experiments in thiptdrauses smoothed
probability estimates in the form of backing-off when obhseg novel state sequences
and novel observations, as described in Section 2.2.3. Sondothing allows the
model to estimate the probability of sequences with unsakeel Isequences and out-
of-vocabulary words. However, examples in the pool of cdaths which can only
be processed via (multiple) backing off will suffer from grarate estimates, and thus
methods such as uncertainty sampling may be unreliable.

We present a novel active learning method which producesra sccording to the
number of times the model encounters probability estimatash are based on miss-
ing events. In the case of an HMM, this amounts to statistres backed-off transition
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trigrams words average

count| norm || count| norm || of norm
2.08| 0.52 5| 05 0.51
1.28| 0.32 2| 0.2 0.26
0.64| 0.16 3| 03 0.23

Table 5.1: Creating a single score from the number of unknown words and the (ex-

pected) number of unsupported transitions

probabilities and backed-off lexical emission probaigét Intuitively, a sentence for
which the analysis depends on many such smoothed prolegiould be regarded
as informative. Hence, its annotation and inclusion in thiming set allows the system
to model its novel properties.

The number of unknown words,(0) in observatioro can be established by simple
lexicon lookup. The situation is more complicated with thuenber of backed-off tran-
sition probabilities since the generating state sequsigkidden. If the sequence was
labelled, the degree to which backing-off is required fderpretation can be measured
by simply counting the number of unsupported trigrams. Foualabelled example,
we can average this count over all possible sequences, igdidly the probability of
each labelling:

Ee[c(0)] = ) pe(slo)c(s,0) (5.1)

S

wherec(s,0) counts the number of unsupported trigram transitions iruseqge
s. We can compute this average over the exponential numbapfences efficiently
using dynamic programming, see Appendix A.

We have introduced two new statistics for an observasidghe number of unknown
words ¢y,(0) and the expected number of unsupported trigram transit{oag0)).
In order to summarily express a single score for the humbearmsupported model
parameters, we combine these two scores by giving them acpigiht, since we cannot
know a priori which one might be more important. We combineres in the following
way. First, we normalise scores of both types such that theyte one. Then, we take
the arithmetic mean of the scores. (See Table 5.1 for an eg@mp
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5.4.1 Experiments

First, we compare the count-based conditiomn{against standard uncertainty sam-
pling (UNC) under two different initial training set sizes of 100 and@Gsentences
in Figures 5.11 and 5.12 respectively. Count-based samglimsistently and sig-
nificantly outperforms random sampling, as does uncegtaampling. Count-based
sampling is as good as uncertainty sampling when startinly $¥90 sentences with
no significant differences apart from an initial dip of codnatsed sampling. When
starting at 1000 sentences, count-based sampling is nadlygbetter than uncertainty
sampling after ca. 3.5k sentences have been sampled. How@gamprovement is
significant only in some phases of the learning curve.

Are selected examples different? This raises the question whether we can mean-
ingfully combine uncertainty sampling and the count-basexthod. For this to be
the case, we expect the methods to be complementary, sudnéyaselect different
examples. To this end, we conduct the following experimafie train a model on
1000 sentences, and apply it to a pool of another 1000 sesge®®r each sentence
in the pool, we record two scores, i) average entropy (as aedainty sampling) and
i) count-based method. In other words, this set-up minmtesfirst round of sample
selection when starting at 1000 sentences. We find a Peapsdiicent of 0.2, indi-
cating only a small correlation. In fact, when using theseas to select two batches
of 100 examples each, we find an overlap of only 22 examplesudmmary, we find
that score types are sufficiently different to warrant inigeging their combination.

A Hybrid Method =~ Combining scores of different methods directly can be probl
atic. Scores might be arranged on different scales, for @kaone method may pro-
duce scores between 0 and 100, whereas the other methoEs snay be bounded
between 0 and 1. For such cases, we could use a simple linéginting scheme.
However, such a linear combination cannot accommodatatsifis when scores grow
in different orders, for instance linear versus exponénfiasimple but very effective
solution is based on the observation that the main purpoaesobre in active learning
is to impose a ranking over the examples to be sampled fronpdibé This allows
us to determine the ranks of an example under both methodthandaverage these
ranks. For the following experiment we use such an averagekibased combination
method.

We present a comparison of the combined methadcYCNT with uncertainty
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sampling WNC in isolation in Figures 5.13 and 5.14.N@d+CNT is significantly better
than random sampling. When starting with 100 sentencesfisigmt improvements
over UNC show from 500 to ca. 10k sentences and again towards the énellebirning
curve. When starting with 1000 sentences, improvementsigreficant throughout
after ca. 3k sentences have been sampled.

These findings present an improvement over uncertainty kagngs well as over
the count-based method in isolation, and we can conclud¢itea@ombination of the
two methods is indeed beneficial.

Finally, we should compare the combined method with the QBathmd which
we have found previously to be the best. We present resukgjires 5.15 and 5.16.
Results are virtually indistinguishable in when startinghw100 sentences with no
significant differences between the methods. Starting d@®0 sentences, there are
almost no significant differences early on. Only after 15keaces have been sampled
is there a temporary but significant drop in performance.

5.4.2 Summary

The newly proposed count-based method is as good or betteruhcertainty sam-
pling for part-of-speech tagging. Furthermore, a combamadf count-based sampling
with uncertainty sampling can perform (almost) as well &stiast QBC method. This
presents more support for the on-going thesis that exigliaddressing model defi-
ciencies helps to improve active learning.

5.5 Summary — Part-of-Speech Tagging

So far in this chapter, we have given an overview of activerlieg methods in ap-
plication to part-of-speech tagging as a prototypical seging task. Confirming our
findings from the previous chapter on prepositional phréiselment, and as expected
from previous work in the literature, we found that uncertgisampling performs bet-
ter than random sampling.

In order to see if QBC can outperform uncertainty samplinthia domain as well,
we optimised relevant experimental parameters for QBCh siscsampling method,
divergence metric and ensemble size. We found that a conntinaf bagging and
vote entropy works best and performs significantly bettanthncertainty sampling.
Using a larger ensemble does not yield significantly be#sults.
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We introduced a novel count-based method which counts thebauof unknown
words in a sentence and the expected number of unsuppatesitions used in decod-
ing. This method by itself is as good or better than uncetyasampling. Furthermore,
it tends to select examples which are different from undeifasampling. This ob-
servation suggests the combination of both methods. Thdic@md method performs
better than either method in isolation, and its performaa@most indistinguishable
from best QBC performance.

5.6 Active Learning for Named Entity Recognition

To see how far the findings for part-of-speech tagging geiserave consider named
entity recognition as another sequencing task. NER andgbapeech tagging differ
in a number of important aspects. Most importantly, NER is@lined segmentation
and classification task, as opposed to the tokenwise clzsiin in tagging. Neverthe-
less, we can treat NER as a sequencing problem by adoptirigj@enarkup scheme
(Ramshaw and Marcus, 1995).

A direct ramification of the difference between tagging ar@RNis that perfor-
mance in NER is usually reported as f-measure, whereas vikeagcseiracy to measure
performance for tagging. Another difference concerns timalper of different labels.
This of course may vary strongly even within tagging or NEBpending on the data
set. At any rate, while there are 45 labels in the tagging, theksize of the label set is
considerably smaller in NER. Assuming a task with four naraetity types — ORG,
LOC, MISC, and PER — we arrive at a potential set of 9 labelsami |- labels for
each of the entity types and an additional O label.

We present a summary of results for uncertainty samplirggctiunt-based method
and the QBC using bagging and vote entropy in comparisonnaitdom sampling in
Figures 5.17 and 5.18 We note that all active learning methods outperform random
sampling. Interestingly, uncertainty sampling outperierall other methods by a wide
margin. This demonstrates that uncertainty sampling cdhbgean effective method
to improve unreliable parameters. However, this is in asttio the relative perfor-
mance of uncertainty sampling compared to other activeiegmethods for all other
applications detailed in this thesis.

2In fact, one label is missing from this set, B-PER.

3We do not show results for combined count-based/unceytaamhpling which is better than count-
based but worse than uncertainty sampling by itself. Alsoshown here and in the following experi-
ments are results for other QBC settings which all performsedhan bagging/vote entropy.
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As is well known from the literature, relative performandeaotive learning meth-
ods can vary across tasks. Baram et al., 2004 suggest a @aetanlg protocol which
dynamically chooses among several sample selection metharbrding to a maxi-
mum entropy criterion. They found that this method almostagis matches the per-
formance of the best method for a given task. Still, it woudddmod to know why
uncertainty sampling performs so well for NER. In genertlsidesirable to have a
criterion by which to predict the relative performance ofiee learning methods ap-
plied to a particular problem. This is in particular the cageen having to choose a
method for a novel type of application.

As pointed out above, there are differences between NERaggirtg with respect
to i) the choice of evaluation metric, ii) the size of tagsatd more generally iii)
the type of task. In order to see if relative performance ofhuds may depend on
the choice of evaluation metric, we evaluated the abovetioregd range of active
learning methods for NER according to label accuracy. We firel same relative
ranking for the methods, with uncertainty sampling stilifpeming the best. Hence,
we can discard evaluation metric as a potential explandbiotnese differences. This
leaves tagset size and task type as potential factors. Swéagxamined results for
tagging with a large tagset and NER with a small tagset. lewotol tease apart these
factors, we introduce a fully-crossed design, where weycaut the two following
additional experiments:

e Decrease size of label set for part-of-speech tagging

e Increase size of label set for NER

Simplified Part-of-Speech Tagging

To decrease the size of the label set for part-of-speechrtggge collapsed the origi-
nal set of 45 different part-of-speech tags to 5 labels aMiGallum et al., 2003):

e Collapse all different types of nouns into one label NOUN.

Collapse all different types of verbs into one label VERB.

Collapse all different types of adjectives into one labelJAD

Collapse all different types of adverbs into one label ADV.

Collapse the remaining POS labels into one label OTHER.
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We present results for the same set of active learning methodpplication to
simplified part-of-speech tagging in Figures 5.19 and 5Q0alitatively, results are
very similar to named entity recognition (with a small tagysé&Jncertainty sampling
outperforms all other methods by a wide margin while coustdal and QBC perform
quite similarly. This shows again that uncertainty sangploan be effective to deal
with unreliable parameters under certain circumstanchs i§ also an indication that
the relative performance of active learning methods mayelstted to the size of the
tagset rather than the nature of the task.

Named Entity Recognition with Increased Label Set

In order to increase the size of the label set for NER, we user involved coding
for outside tokens (previously labelled O). For these, vaaate the type of the tokens
which surround them in a context two tokens to the left andttmtbe right. Contextual
tokens within an entity are coded N; outside an entity O;eyere boundaries are coded
X. For example, the sequence “BRUSSELS/I-LOC 1996-08-22¢(how labelled
as “BRUSSELS/I-LOC 1996-08-22/XN-O-XX". Using this codinwe increase the
label set to 56 tokens, while performance remains rougtdysdime as when using the
standard BIO set when using random sampling.

We show results in Figures 5.21 and 5.22. The previous adgantf uncertainty
sampling over other methods has disappeared now and QB®@ig ab good as un-
certainty sampling for this task. The performance of cdoeted sampling is only
marginally better than random sampling. This is probablgause considerable an-
notation effort is directed towards annotating the mudtéwf different O labels. Ar-
guably, this is an artifact of the contrived tagset.

Again, we can see a clear dependence on the size of the tagdbefrelative
performance of different active learning methods.

Summary

For NER, we found that the count-based method and QBC penfoughly equally

well. However, uncertainty sampling achieves by far thet besults. This contrasts
with the results for part-of-speech tagging in this chapaed results in the chapters
on prepositional phrase attachment and on parsing. Géndralvever, this coincides
with the perceived wisdom that there is no single best adtaening method across
all applications (Baram et al., 2004). The results of a caEsigned experiment with
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tagset size and task type as independent factors indicatéhtihtagset size is the main
reason behind this finding.

5.7 Conclusion

In this chapter, we demonstrated the need to specificallyeaddinreliable parameters
when applying active learning to sequencing tasks. In teegdart, we focused on part-
of-speech tagging as a task. We found that uncertainty saghpltperforms random
sampling and that we can do even better than uncertainty Issgripy using QBC.
However, in order to make QBC perform properly requires atljlg experimental
parameters. We found best performance by using a combmatibagging and vote
entropy.

Furthermore, we introduced a novel method which directlyrds the number of
unreliable parameters based on missing events which adedder decoding a given
sentence. This method in isolation is as good as or bettaeruhaertainty sampling.
This again demonstrates that directly addressing unteljdrameters is a successful
strategy. Furthermore, we established that it tends ta@sel@mples which are differ-
ent from the examples that uncertainty sampling would $elgus situation suggests
the combination of the count-based method with uncertaatgpling and, in fact, the
combination beats both methods in isolation and almostmestthe best overall result
from QBC.

We found surprising results when applying this range of rad¢hto named en-
tity recognition. In this domain, best results are achiewéthi uncertainty sampling.
Experiments indicate that uncertainty sampling works weellproblems with small
tagsets. At least in some domains, uncertainty sampling Imeasuited to deal with
unreliable parameters as well as other methods investigathis thesis.






Chapter 6
Unreliable Parameters in Parsing

In the previous two chapters, we have demonstrated imprex&rover standard ac-
tive learning methods by specifically selecting exampleslath the analysis depends
on unreliably estimated model parameters. We applied seiniques to preposi-
tional phrase attachment and to sequencing tasks. In tapgteh we show that we can
achieve similarimprovements for parsing as well; usingsidi@e strategy of preferably
annotating examples associated with unreliably estimadeameters.

As with the previous applications, the supervised trairohgrobabilistic parsers
(Collins, 1997; Charniak, 2000) requires large amountsafivally annotated material
to achieve high performance levels. Syntactically aneotabrpora are available for
a variety of languages, for instance the Penn Treebank fgtign(Marcus et al.,
1993), the Negra Treebank for German (Skut et al., 1997)@Aipino Treebank for
Dutch (van der Beek et al., 2002). However, for the many laggs which as yet lack
treebanks, active learning holds the promise to signiflgaatiuce annotation costs.

Parsing is an interesting application for active learnitigpresents a more com-
plex task than prepositional phrase attachment or sequgsaice labels are not only
assigned to individual words, but to recursively embeddststituents. Also, the use
of bilexical dependencies in lexicalised parsers causesemata problems which are
more severe than for sequencing models. We expect our agiptoebe particularly
useful for such cases where distributions have long tailsfoéquent rules.

For the experiments in this chapter, we use a near statieeoédt lexicalised parser,
Collins’ model 2 parser (Collins, 1997), which we describbednore detail in Sub-
section 2.3.3. In particular, we use Dan Bikel's implemé&ntadescribed in (Bikel,
2004a). For the training of Collins’ parsing model, manyalhnotated parse trees are
decomposed into head- and modifier-generation events. diseng performance of a

93
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trained model will suffer in particular from missing or iefjuently observed events.

Sentences are unparsable usually becausgssing events the grammat. This
suggests the selection of unparsable sentences to ledrmsssing events. The acqui-
sition of the correct parse tree for an unparsable sentenely enables its analysis.
More importantly, learning new parsing events augmentg#rsing model in general
and should help the analysis of similar sentences, and tltuedse coverage. In one
set of experiments, we investigate this strategy to inereaverage in combination
with standard uncertainty sampling. Results show thatatwsays beneficial to select
unparsable sentences for annotation. At least in the ebdggs of training, we show
that striving for coverage is more important than selectingertain examples. By
contrast, we show that ignoring unparsable sentences iartancty sampling results
in a performance worse than random sampling.

Parameter estimates basedionfrequently observed eventall typically exhibit
a higher degree of variance and contribute to a higher eat&. rHence, acquiring
the correct analyses for sentences where the analysis ésl lmas such infrequently
observed events will eventually increase low event coumthé model and thereby
reduce variance and error rate. We identify such sentengcéiiming the model on
a bootstrap replicate of the original training set. This theseffect of (stochastically)
eliminating some, but not all infrequent events. Clearhg tinalysis of a sentence
which becomes unparsable under such a bagged model has dsshdn a low fre-
guency event. We note here that the eliminated analysistmmheven have been the
correct one. In either case, as a positive effect, acquitiegcorrect parse tree for
such a sentence either increases some of the low frequepaysesr introduces new
events. This approach is essentially an approximationgartathod discussed in the
previous chapter in order to target infrequently observezhes. We conduct experi-
ments with a two-stage method which first selects unparsanitences according to a
bagged parser, and then applies uncertainty sampling t@thaining sentences using
a fully trained parser, and contrast these with a more caimeal ensemble-based ap-
proach where the ensemble members have been created byrtbersgthod, namely
by training on a bootstrap replicate of the original tramset. Both methods clearly
outperform uncertainty sampling. Furthermore, the sintywte-stage method performs
as well or better than the more involved ensemble-basedadeth

This chapter extends joint work with Miles Osborne, pregigypublished as (Becker
and Osborne, 2005).

10ther potential causes for parse failures are memory pnadbber time-out conditions.
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Chapter Structure

We begin in Section 6.1, by showing the importance of cowemgarsing in a random
sampling experiment. By using an appropriate smoothinghaeism, in the form of
constraint relaxationwe improve coverage and other relevant evaluation metrics

In Section 6.2, we demonstrate clear improvements ovedatdruncertainty sam-
pling by specifically selecting unparsable sentences. ddtisally requires the switch-
ing off of constraint relaxation in the sample selectiongshan order to let the parser
fail on difficult sentences. We show that this method combigiacefully with other
methods such as uncertainty sampling.

In Section 6.3, we investigate relevant parameters for QB@articular the choice
of divergence metric and ensemble size. As with uncertaatypling, we find im-
provements for parser ensembles which do not use constedéxiation.

In Section 6.4, we introduce a novel method which targetgliabyle parameters
due to infrequent counts.

We conclude this chapter in Section 6.5.

6.1 Parsing Coverage in Random Sampling

Achieving high coverage clearly is important for a good paggerformance. Low
coverage in a parser is directly reflected in low recall angstalso in a low f-measure.
Increasing the coverage of a parser will generally be beaéfor recall, even if the
predicted parse trees are not entirely correct, since wexpeact at least partial credit
for some of the constituents, assuming a Parseval evatuatide show in this sec-
tion how an appropriate smoothing regime can help to inereaserage. In the Bikel
parser, smoothing occurs in a number of different formsef@mple back-off smooth-
ing for probabilities with unobserved conditioning cortexOne form of smoothing
called constraint relaxationhas been implemented in Bikel's parser which replaces
all zero probability estimates with small probabilities &entences which cannot be
parsed with the default parsing scheme at the maximum beadlth wi

Experiment

In this experiment, we examine the effects of applying Bskebnstraint relaxation
on coverage and other relevant evaluation metrics. Hereyieonsider a random
sampling setting, that is, apart from constraint relaxatige do not consider any other



Chapter 6. Unreliable Parameters in Parsing

100

90

80

70

Coverage in %

60

50

SMOOTH
40 | NOSMOOTH -------- B

100 300 1k 3k 10k 30k
Number of sentences

Figure 6.1: Coverage of a parser with and without constraint relaxation

35

30

) /

X »
N
L p
©
c 20
3] /
(U -
>
w15

10

SMOOTH
5 , NOSMOOTH ---------
100 300 1k 3k 10k 30k

Number of sentences

Figure 6.2: Exact match rate of a parser with and without constraint relaxation



6.1. Parsing Coverage in Random Sampling

90
80 e et
F O auintatat " ¥e o7
/ 2
“,a’
70 i ,"’/
/’d/
60 S
O\O /
£ /
50 16'
40
/ SMOOTH: precision ——
30 recall ——
] NOSMOOTH precision --+-
recall —-e--
20 1 1 1 1
100 300 1k 3k 10k 30k

Number of sentences

Figure 6.3: Precision and recall of a parser with and without constraint relaxation

90

80 : T

70

60

F-measure in %

50

40

SMOOTH ——
NOSIMOOTH _

p-level
oo
oo
=01

sig —
100 300 1k 3k 10k 30k
Number of sentences

Figure 6.4: F-measure of a parser with and without constraint relaxation



98 Chapter 6. Unreliable Parameters in Parsing

means to increase coverage. We record learning curvesrfdonaly sampled training
sets of different sizes for coverage, exact match rate jgoex recall, and f-measure,
both for a parser with constraint relaxation, and for a pargthout.

Figure 6.1 gives results for coverage. A parser smoothed@ahstraint relaxation
consistently has more than 99% coverage, even for very sraaling sets. By con-
trast, a parser without constraint relaxation shows muchllgmcoverage for small
training sets, but eventually converges towards full cagerfor a large training set.
However, a level of 99% coverage is reached only after cMznotated sentences
have been seen.

The effect of applying constraint relaxation is less d@kir the exact match rate,
see Figure 6.2. A parser with constraint relaxation perfoonly slightly better than
one without. This is somewhat to be expected, since the esaa@ fairly small of
correctly predicting the entire structure for those seaésnwhich could not be parsed
without constraint relaxation and obviously are difficult.

Figure 6.3 gives precision and recall learning curves fahhmarser types. Re-
call and precision are fairly high for a parser with consitaielaxation, even with
very small training sets. Also, recall and precision areadtrcompletely balanced
throughout. As predicted analytically, recall for a parsghout constraint relaxation
is severely impaired due to a lack of coverage. On the othed harecision is higher
than for the parser with constraint relaxation.

The net effect of drastically improved recall and slightiygaired precision can be
seen in Figure 6.4. F-measure for the parser with constraiaxation is significantly
better throughout. The improvements are particularlykstg for small training sets:
With a training set of 100 sentences, f-measure goes up f&ntd 68%.

These results clearly demonstrate that employing com$elaxation as a smooth-
ing technique is beneficial as measured by a variety of rateg@aluation metrics,
among them coverage, exact match rate, and f-measure. é-putpose of deploying
the parser, that is, using it for testing purposes, we witideforth use the parser with
constraint relaxation.

6.2 Uncertainty Sampling for Parsing

The previous section has shown that smoothing in the formoaoktraint relaxation
is beneficial when parsing test sentences. We stipulate ytpetlhesis that it might
be beneficial to allow the parser to fail on difficult sentengethe pool by explicitly
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switching off constraint relaxation in the selection phamed to subsequently target
such sentences for annotation. The acquisition of corradeptrees for unparsable
sentences necessarily increases the size of the modeiusgdor the grammar, and
eventually may help to parse new sentences more reliablgh &umethod may be
combined with standard uncertainty sampling by selectioiip inparsable sentences
and parsable sentences with high entropy. These consaesamotivate the following
sample selection methods.

Coverage-based selection: (Cov) Select out-of-coverage sentences based on an un-
smoothed parser; fill the batch with random sentences. Theithod directly
aims to acquire missing parsing events.

Coverage- and uncertainty-based selection: (Cov-UNC) Select out-of-coverage sen-
tences based on an unsmoothed parser; fill the batch withdngbpy sen-
tences. By combining out-of-coverage and uncertainty $iagnpthis method
also aims to acquire missing parsing events and to genematisove unreliable
model parameters.

Uncertainty-based selection, unsmoothed: (UNcC-Nsm) Select high-entropy sentences
based on an unsmoothed parser. This method generally aiimptove unreli-
able model parameters but, by implicitly dispreferring argable sentences, it
will fail to acquire the missing parsing events associatét these sentences.

Uncertainty-based selection, smoothed: (UNcC-Sm) Select high-entropy sentences
based on a smoothed parser. This method also generally aimgptove un-
reliable model parameters. It does not have a specific mehaio acquire
missing parsing events. It thus serves as a baseline to segadpy by itself can
reliably select useful sentences for annotation as coroeadty done in active
learning?

Random selection: (RND) We compare all results against a parser trained on ran-
domly sampled training sets of different sizes.

With larger training sets, unparsable sentences becoradrexpuent, and the dif-
ferences between the methods should be less pronouncedivésigate this effect,
we start at initial training set sizes of 100 and 1000 sergenc

2Unparsable sentences will also be included preferablyy #veugh they occur quite rarely when
making use of constraint relaxation.
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Sentence length restriction In this experiment, we will have to deal with an artefact
of the implementation of the n-best parse enumeration inbtoation with smoothing.
To compute the n-best parses, the implementation switdhdgmmamic programming
which causes long parsing times in general. The applicaifaronstraint relaxation
aggravates this problem, resulting in extremely long panses (half hour per sentence
and more) in particular for longer sentences. This requaresppropriate time-out
threshold to keep experimental run-times feasible. Fuantloee, memory requirements
are very high for the combination of n-best enumeration andathing, resulting in
occasional out-of-memory problems.

It is not immediately clear what to do with such sentencestviuffer from either
time-out or out-of-memory problems. One could ignore thesatences, and thereby
deprive the smoothed parser of these examples. Given tisamibstly happens for
sentences which are unparsable for the unsmoothed pdrseseems like an unfair
advantage for the unsmoothed parser. Alternatively, onédathoose to include these
sentences as selected examples just as we do with the ursdquarser, thereby
blurring the distinction between the two approaches.

Given that we would actually like to contrast an approachchlantirely relies on
entropy scores with one that has the added possibility ofifmgunparsed sentences
due to coverage problems, we restrict the experiment bysihgdraining set and pool
set only from sentences with length30. This length threshold has been chosen since
almost all sentences can be parsed without time-out or meproblems, even with
n-best enumeration and constraint relaxation. For thesetstwe use sentences with
length< 40.

6.2.1 Experiments

Experimentl We compare coverage-based selection{ixo a baseline of smoothed
uncertainty-based selection id-Sm). Using coverage-based selection will show
how far out-of-coverage sampling can go by itself, withoatking use of uncertainty.
We contrast both methods against random selection.

Figures 6.5 and 6.6 show results when starting with a snafiitrg set of 100 sen-
tences and a large training set of 1000 sentences resggcive find that both meth-
ods perform significantly better than random sampling fostwd the iterations. There
is however a clear difference between the two methods. Ttrease in f-measure is
slow initially for standard uncertainty sampling, but aftbe first few iterations the
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improvement over random sampling is significant througholihe coverage-based
method on the other hand has a remarkably steep rise in fureeasd is significantly
better than random sampling after only a single iterationwelver, this performance
is not sustained through the experiment, and in later itaratf-measure converges
towards random sampling.

In a direct comparison between the two methods, we find tleatolverage-based
method is significantly better than standard uncertaintyeng until 900 sentences
have been annotated when starting with a small trainingaset,significantly worse
only after ca. 2200 sentences. When starting with a largeitiga set, the coverage-
based method is as good as standard uncertainty samplirgeier) until ca. 2300
sentences.

This demonstrates that pursuing unparsable sentence®$b tmverage is benefi-
cial in sample selection at least in the early phases ofatdmrning. When coverage
converges to 100% however, such a method looses its impdcanple selection is
increasingly based on random sampling.

Experiment 2  In the next experiment, we compare coverage- and unceythaged
selection (©v-UNC) to the baseline of smoothed uncertainty-based seledtiorc{
SM as above). The motivation for the coverage- and uncertdiaged selection method
is that we would like to harness the advantages of early butweerage selection and
have a sustainable selection method for later phases. tRésuthis comparison are
shown in Figures 6.7 and 6.8, again starting with a small diadg@ training set.

Both conditions consistently outperform random samplimgeirms of f-measure
for both starting points. However, the increase using smemuncertainty-based se-
lection is slower and significantly better than random sangpbnly after a few iter-
ations. By contrast, f-measure increases faster using-@ggeand uncertainty-based
selection and is significantly better after only a singleat®n for both initial training
set sizes.

When comparing both conditions against each other, we fiatldbverage- and
uncertainty-based selection is consistently better thaoothed uncertainty-based se-
lection. When starting at 100 sentences, this improvengesignificant throughout
all iterations. When starting at 1000 sentences, resudts dittle less pronounced and
significance is achieved only in some iterations.

The difference between the two methods is that we turn ofstramt relaxation in
the sample selection stage. Apart from improved perforreanderms of f-measure,
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this has the added advantage that the sample selection paasen considerably
faster. When using a grammar trained on 100 sentencesngargool of 1000 sen-
tences takes two minutes with an unsmoothed parser, buttimameseven hours with a
smoothed parser. When using a grammar trained on 1000 sestgrarsing a pool of
1000 sentences takes 18 minutes with an unsmoothed pardenae than two hours
with a smoothed parser.

Experiment 3  Finally, we might ask what happens if we used a purely unceya
based selection in combination with an unsmoothed parsec{Nsm). This method
implicitly disprefers unparsable sentences; hence weabipt perform poorly. We
contrast this method with the already discussed coveragku@acertainty-based selec-
tion which prefers unparsable sentencesVY&JINC) in Figures 6.9 and 6.10.

The most striking result is found when starting with the drivatial training set.
F-measure for purely uncertainty-based selection is stesily worse than random
sampling and significantly so from the first iteration un®i0D sentences have been
sampled. Correspondingly, this method is also signifigamtbrse than coverage-
and uncertainty-based selection in all iterations. Whartisg from 1000 sentences,
purely uncertainty-based selection increases at the sa@as random sampling in the
first few iterations, and is significantly better than randsampling only after the third
iteration. It is significantly worse than coverage- and utaipty-based selection until
2900 sentences. This clearly demonstrates that failinglecsunparsable sentences
is harmful.

Uncertainty Sampling alone cannot reliably identify diffic ult sentences

The previous experiments demonstrated that the selecfiamparsable sentences
(with an unsmoothed parser) is beneficial. Also, we saw tekgction using the en-
tropy of a smoothed full-coverage parser alone is not a seifficeplacement for this
simple method. Admittedly, this would be more elegant siweavould run the parser
with the same set of settings regardless of whether our perpotesting or sample
selection; and we use entropy as the single selectionioriter

This indicates that difficult unparsable sentences do nat hdnigher entropy once
they are made parsable through smoothing. To verify thi fae ran an experiment
in which we recorded entropies of 1000 sentences when paisegrammars trained
on 100 and 1000 sentences. We show results in Table 6.1. Wétkrhall training
set, 554 sentences require constraint relaxation to bealplarat all. Nevertheless,
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average entropy number of instances

#sentences smoothed unsmoothed| #smoothed #unsmoothed (other)
100 0.47 0.45 554 432 (14)
1000 0.52 0.54 57 937 (6)

Table 6.1: Average entropies for easy and difficult examples

the average entropy for these sentences (0.47) is only nadkgiigher than for the
432 sentences which do not require smoothing (0.45). 148ea$ were not parsable
at all due to time-outs or genuine unparsability. With theydatraining set only 57
sentences required constraint relaxation to be parsalhieir @&verage entropy (0.52)
is even lower than for the large majority of sentences wheguired no smoothing.
Here, 6 sentences were not parsable even with constraaxiatebn.

In short, entropy is not a good indicator for the selectiordificult sentences
which can only be parsed with a smoothed parser. This clsapyorts the notion that
an uncertainty-based sample selection method should sésparsability information.

6.2.2 Summary

We have looked at aspects of selecting out-of-coverageesees in the context of
standard uncertainty sampling.

Only selecting out-of-coverage sentences from the podhawuit any further sources
of information, is a surprisingly effective method to inase f-measure at a higher rate
than random sampling, at least in the early rounds of actiaening. This method im-
plies switching off the standard smoothing in order to idgninparsable sentences.
On the other hand, failing to select out-of-coverage ser@gneven when uncertainty
sampling is employed, is detrimental and can result in perémce worse than random
sampling.

Best performance in a single learner setting is achieveld asdombination of out-
of-coverage selection and uncertainty sampling. In paldic we preferably select
out-of-coverage sentences (according to an unsmoothedrmand fill the batch with
high-entropy sentences. This finding is another manifiestaif the central idea of this
thesis that unreliable parameters should be explicittyeted. By contrast, uncertainty
sampling, as standardly applied, does not incorporate susthanisms and yields
inferior results. We also see that the optimal smoothingmmegior sample selection
may well be different than for testing.
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6.3 Query-By-Committee for Parsing

We have seen in the two previous chapters that using QBC ault ie substantial
improvements over single learner uncertainty samplingdaniifying unreliable pa-
rameters based on infrequent parsing events. This sedioarnicerned with finding
optimal parameter settings for QBC with the aim of improvimger the best uncer-
tainty sampling results in this chapter. We compare andhapé the performance of
ensembles along the following dimensions:

e Divergence Metric: Jensen-Shannon divergence; vote entropy
e Smoothing: On; Off

e Ensemble Size: Small; Large

In preliminary experiments, we found that using either baggr Dirichlet sam-
pling as sampling methods resulted in very similar resWs.will use bagging as the
sampling method.

Assigning scores for partially unparsable sentences

Throughout the following experiments, we preferably setmmtences with high dis-
agreement measured either as JS-divergence or as vot@enfius raises the ques-
tion how to apply these metrics in cases where a sentenc@a sable for some or all
ensemble parsers due to coverage or timeout problems.

A possible solution is to ignore unparsable sentences ih silgations and com-
pute divergence only for the remaining analyses. Howereaaddition to not working
well in practice, this is unsatisfactory for a number of @@ Most importantly, this
approach does not allow us to properly distinguish betweses with many and few
unparsable situations even though, intuitively, we woikld to prefer sentences where
the ensemble has many unparsable cases. Also, we would dha@eas tattention to a
number of special situations: i) in cases where no ensemblabar can analyse a
particular sentence, both divergence metrics are ill-@efinnstead we may want to
assign a high score; ii) in cases where only one member cdgsana sentence, the
current definitions for divergence metrics would suggestglete agreement which is
counter-intuitive; again we may want to assign a high score.
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To remedy such problems, we employ the following stratédye replace every
unparsed result in an ensemble with a single and unique sieglgssociated with a
probability of 1.0). This addresses the main problem with phevious solution since
this way we assign larger divergences in case of larger nisxdfeinparsed results. At
the same time, we deal with all mentioned special cases: énwlo ensemble parser
can analyse a sentence, we have a maximal number of uniglysesmand will assign
a maximal score for both JS-divergence and vote entropywhgn only one member
can analyse a sentence we again have a maximal number ofelamglyses since the
one genuine analysis will be different from all artificiatygsigned analyses, and we
assign a maximal score in this case.

6.3.1 Impact of Smoothing on Parser Ensembles

In the previous section, we have established that it is beiakfo use an unsmoothed
parser for uncertainty sampling while applying parsapibis a selection criterion.
The first set of experiments in this section will look at theegtion whether this also
holds true when using QBC as a sample selection metric. Weasirensembles of
smoothed parsers with ensembles of unsmoothed parsersufzactive learning us-
ing smoothed parsers is extremely time consuming, we coenparformances only
for a minimal ensemble containing two ensemble members Néeanake these com-
parisons for the following set of conditions:

e Bagging, JS-divergence

e Bagging, vote entropy

Bagging, JS-divergence

In our first comparison between smoothed and unsmootheddahsg, we use bagging
as a sampling method and JS-divergence as a divergence.nkégiires 6.11 and 6.12
show results when starting with initial training sets of 0@ 1000 sentences.

The unsmoothed method B@-Nsm) performs significantly better than random
sampling; following the second iteration when startinghnat small training set, and
right from the start when starting with a large set.

The smoothed method @2-Sm) performs worse than random sampling when
starting with a small training set. When starting with a &taining set, the smoothed

3We are grateful to David Talbot who suggested this approach.
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method performs better than random sampling; but the @iffee is significant only in
some of the iterations.

Overall, the unsmoothed method clearly outperforms theatheal method; sig-
nificantly through all iterations for the small training setd until 3200 sentences have
been sampled for the large training set.

Bagging, Vote Entropy

Next, we compare smoothed and unsmoothed ensembles whem hesjging as a
sampling method and vote entropy as a divergence metriar€sgs.13 and 6.14 show
results when starting with initial training sets of 100 arQ@ sentences.

We first note that the performance of smoothed and unsmoetisembles is much
closer than in the two previous experiments using Jensam&n divergence. Perfor-
mance is almost identical when starting early; almost alwiae comparisons are not
significant. Performance of an unsmoothed of an unsmoothgeheble is just a little
bit better when starting late; and improvements are sigaitionly in some iterations.

In comparison to random sampling, we find that both smootimeddumsmoothed
ensembles perform significantly better when starting eatyd mostly significantly
better when starting late. However, we find that the improsetrof using an un-
smoothed ensemble over a smoothed ensemble is not as goothagprevious exper-
iments.

6.3.2 Increasing Ensemble Size

As we saw in the previous chapter, using larger ensemble siZguery-by-Committee
can improve active learning performance. We now examirtesfis also the case when
applied to parsing. To this end, we contrast small ensentblego parsers with larger
ensembles of five parsers. Having established that it is eléficial to use smoothed
parser ensembles, we only use unsmoothed ensembles fexggagament. Again, we
make these comparisons for the set of conditions:

e Bagging, JS-divergence

e Bagging, vote entropy
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Bagging, JS-divergence

In our first comparison between small and large ensemblesise@dagging as a sam-
pling method and JS-divergence as divergence metric. ur€g6.15 and 6.16, we see
that using a large ensemble results improves performanmeusing a small ensemble.
When starting early, this improvement is significant aft@riterations; when starting
late, improvements are significant after only four iteraio

Bagging, Vote Entropy

Next, we compare small and large ensembles when using lpggismsampling method
and vote entropy as divergence metric. In Figures 6.17 ab8, Gve see again that
using a large ensemble results improves performance oweg @ssmall ensemble.
Improvements are significant throughout, both when staegrly and late.

JS-divergence versus Vote Entropy

When comparing performance for large ensembles betweasrgdiice metrics, we
find vote entropy and JS-divergence to be almost identicalvgtarting early. (Results
not included here.) When starting late, JS-divergenceopeis slightly better but not
significantly so. For the remaining comparisons, we will iesge ensembles with a
combination of JS-divergence and bagging.

6.3.3 Comparison with Uncertainty Sampling

Having identified a setting for Query-by-Committee whiclsuks in best improve-
ments over random sampling, it is interesting to see how nuelgain over the best
results for uncertainty sampling, see results in Figur@® @énd 6.20. When starting
early we find that uncertainty sampling and Query-by-Corteriperform almost iden-
tical. When starting late improvements of using Query-m¥nittee over uncertainty
sampling are significant only from iterations 3 to 11. Givka tomputational cost of
running an ensemble as opposed to a single learner methodugggst the preferred
use of single learner uncertainty sampling over Query-byr@iittee.

6.3.4 Summary

In this section, we have looked at different aspects of ebt&methods, including
the role of smoothing, different sampling methods, différdivergence metrics and



6.3. Query-By-Committee for Parsing 113

85 o mmmmmm—m T ERETTET
g 80 e
£
©
> /
@ 75 /
£
L|I_ 4
) QBC-5 - ]
QBC-2 -
RND —
65 | |
8:82
QBC-5Vs RWD -
5
S 88
) QBC-2 Vs R\D -
8:82
! ngs @C_ZI B
100 1K ” .

Number of sentences

Figure 6.15: Ensemble sizes for bagging/JS-divergence (from 100 sentences)

86
.
: B 2
s e
8 P e
§ 83 /,/—"// .........
e R
E g2 |
LL QBC-5 ---
81 s - ]
RND —
80 | |
882
QBC'S vs R\D -
q) i
=
S 88
o QBC-2 VS RVD_—
882
\\/\/\/w
1k ok ” -

Number of sentences

Figure 6.16: Ensemble sizes for bagging/JS-divergence (from 1000 sentences)



114 Chapter 6. Unreliable Parameters in Parsing

85 ___________________________________
O\o 80 .......................
£
g
5
@ 75
(0]
£
L
: QBC-5 - ]
QBC-2
RND —
65 I I
8:82
QBC-5 Vs R\D -
CD .
E 8:82
> 0
é_ —QgC-Z VS RID I B
8:82
QBC-5vs BC-2 -

100 1k 2k 3k
Number of sentences

Figure 6.17: Ensemble sizes for bagging/vote entropy (from 100 sentences)

86
o .
O\o ________________________________________________ n
.E 84 "—" e
8 "/“”” I
» e
: "/”
E 82 - I ......... .
} N
o . |
,_f.,’-_’....~~ RND :
80 I I
8:82
QBC-S VS RWD -
m .
S
S 88
a . , Qec2vs RiD -
8:82
| . QBC-5vS (BC-2
1k ” . i

Number of sentences

Figure 6.18: Ensemble sizes for bagging/vote entropy (from 1000 sentences)



6.3. Query-By-Committee for Parsing

F-measure in %

p-value

Figure 6.19: Best settings for uncertainty sampling and QBC (from 100 sentences)

F-measure in %

p-value

Figure 6.20: Best settings for uncertainty sampling and QBC (from 1000 sentences)

85 ........=._..._.._..;.:-_-.~_-;-::-:-.-:-::-—--wa
80 ‘/_,.e..—--'"
75
70 QBC
UNC -
RND —
65
882
QBC vs R\D .
882
UNC vs R\D .
8.8
. QBC Vs U\ICI -
100 1k 2k 3k

Number of sentences

86
. e T
> e a
83 L
82
QBC -
81 : cuc ]
m._f-' RND .
80 |
882
QBC VS R\D -
882
UNCvs R\D -
882
- QBC Vs NC -
1k ” ” .

Number of sentences




116 Chapter 6. Unreliable Parameters in Parsing

ensemble size. Best results are achieved with ensemblessofaothed parsers in
combination with Jensen-Shannon divergence as a measudisagfreement. Using
smoothed parsers ensembles in combination with this daverg metric results in a
decrease of performance, and may even perform worse thdomasampling.

Using vote entropy results in lower performance, in paticwhen used with
small ensembles. This is in contrast to our findings witheespo prepositional phrase
attachment and part-of-speech tagging, but serves taréliesthe fact that divergence
metrics should be carefully selected for the task at hand.

Using either bagging or Dirichlet sampling does not make Imoica difference.
This is a finding of practical relevance since generally liagef the training set is
simpler to implement than Dirichlet sampling.

Increasing the ensemble size has a positive influence oorpehce. However,
even with an ensemble of a moderate size it can be difficulutpexform uncertainty
sampling in combination with out-of-coverage selection.

6.4 A Novel Two Stage Method

Acquiring the correct analysis of a sentence for which thedmted analysis was se-
lected on the basis of infrequent parsing events may welhfimmative. A simple
but effective method is to eliminate some infrequent evénais the parsing model.
Simply bagging the current training set, and retraininggheser on this set allows to
identify such examples for labelling.

The proposed method operates in two stages. First, we plnsedh sentences
with a parser which has been trained on a bootstrap replafatee training set. Sec-
ond, we parse the pool sentences with a parser trained orulheaiining set. In
both stages, we deliberately allow the parser to fail by mpmiying constraint relax-
ation. The selection of sentences for manual annotatioregas as follows. As in the
coverage-based methods, we first select sentences whicimpagsable according to
the fully trained parser. From the remaining sentences,elecssentences which are
unparsable according to the bagged parser. Finally, wetsblese sentences with the
highest entropy according to the fully trained parser.

We can express this formally as follows:

T (S, T) = max(failure(s, M, 2¢), failure(s, M', ¢, fif(s,tm)) ~ (6.1)

wheref(® is the entropy according to a fully trained mod&| defined in Equation 2.21.
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The functionfailure(s,M, c) returns a very large constantwhen sentencs is un-
parsable given parser model M and O otherwidedenotes a fully trained model, and
M’ a bagged model.

This method operates very similar to the coverage- and taiogy-based method
described in Section 6.2. The difference is the extra layigh e bagged parser
which is designed to additionally identify sentences ofahithe analysis is based on
infrequent events.

Experiments

In the following, we will compare the two-stage method agaisarlier best results
from uncertainty sampling and QBC.

Figures 6.21 and 6.22 show results when comparing the tagesnethod against
best uncertainty sampling, namely the coverage- and waingrtbased selection method.
We find that the two-stage method does not achieve an impreneaver uncertainty
sampling when starting early. However, when starting lagefiwd a significant im-
provement right from the beginning.

These two methods are identical in their uncertainty samggomponent and differ
only in the way how out-of-coverage sentences are identifigdlly. The coverage-
and uncertainty-based method selects unparsable sestarumding to a fully trained
parser; the two-stage method selects them according toaoiothy trained parser and
a bagged parser. While the former is good at identifying gdaswith unseen parsing
events, the latter identifies examples with both unseen @inelguent parsing events.
Clearly, the improved performance of the two-stage metheehsn Figure 6.22 is
attributable to this fact.

Figures 6.23 and 6.24 show the results when comparing thestage method
against QBC at the best setting, namely QBC with an ensenfldentembers, us-
ing bagging and JS-divergence. We find that the two-staghadéds always as good
as or better than QBC, and never significantly worse for btattiag points.

As argued before, QBC can be good at identifying examplas frdhich we can
learn both unseen and infrequent parsing events. The algostalent performance
seen in the last experiment indicates that the two-stage goad in this respect as
QBC.
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Figure 6.23: Comparing two-stage method with best QBC (from 100 sentences)
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Figure 6.24: Comparing two-stage method with best QBC (from 1000 sentences)
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A Baseline

The two-stage method uses bagging to eliminate low frequewents from the train-
ing set. This raises the question if we can achieve comparakults using a simple
cutoff instead of bagging to create a reduced parser. Teetidsve perform a baseline
experiment where we replace the bagging component of thestage method with
a frequency cutoff, removing all parse events which occurefethann times. We
found little difference in the choice affor reasons that we will explain below. For the
following experiment, we sat = 2, removing all parse events which occur only once.

Figures. 6.25 and 6.26 show that such a baseline methoalynjierforms well but
eventually converges towards the performance of randonpkagn This behaviour is
very similar to that of coverage-based sampling which weldisin the same graph
for demonstrative purposes. The significance test for thsvse comparison of this
baseline method against coverage-based sampling shoisothamethods are virtu-
ally indistinguishable.

To explain the difference between the baseline method amthitb-stage method,
we look at the coverage of the reduced parser for both methbds is the bagged
parser and the cutoff parser, on the pool. Figures 6.27 &lghow that coverage of
a bagged parser converges towards 99%, starting from bed@sn@hen starting early
and from 90% when starting late. By contrast, a cutoff pahsex very little cover-
age, starting from almost 0% towards 20% coverage wherirggagtirly and towards
25% when starting late. This means that the majority of th@ pentences would be
marked for preferable selection. In a situation where weafilatch which is consid-
erably smaller than the pool, this effectively results indam selection in the second
selection phase, and since the third phase using uncersgntpling is never reached
we observed random selection behaviour throughout afédiigt phase. This explains
the similarity in behaviour with coverage-based samplidging higher cutoff values
for n only aggravates the problem, and results in even lowerdeMatoverage.

In summary, we find that the bagged component of the two-stegkod is indeed
essential and cannot be replaced with a simple cutoff method

Summary

We introduced a novel two-stage method which primarily sslenparsable sentences
according to a fully trained parser and a bagged parser (Wdtiout constraint re-
laxation). This technique identifies both unseen and infeed parsing events. This
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two-stage method performs as well as or better than the besriainty sampling
method, and just as well as the best QBC method, while beingiderably cheaper to
run.

6.5 Conclusion

In this chapter, we demonstrated various ways of dealing witreliable parameter
problems in the case of parsing. A particular important fafwnreliable parame-
ters are unseen head- and modifier-generation eventssthatants which cannot be
learned from the current training set. Parsing failures ttusuch unknown events
impair both recall and f-measure.

Coverage problems can be addressed in different ways. Aatdnvay is to apply
more aggressive smoothing regimes. In a random samplingriexent, we demon-
strated that the application of constraint relaxation ikeBs parser is indeed a suc-
cessful way of bringing coverage close to 100%. This caussisosg increase in
recall, especially for small training sets, while only nmrally impairing precision.
Correspondingly, we observe a highly significant increasemeasure for all training
set sizes.

In the context of active learning, we can explicitly targeparsed sentences and
thus learn new events, rather than applying smoothing touith groblems after the
fact. This requires that the parser be run with a lesser @egfesmoothing during
sample selection. We show that selecting unparsed sestasscie only sample se-
lection method is successful in its own right; this methodhbimes gracefully with
other active learning methods such as uncertainty sampBggontrast, the use of a
fully smoothed parser in uncertainty sampling yields imderesults; this is because
sentences which are difficult to parse and hence would beislusefinnotate do not
show higher entropy than other sentences.

The observation that it may be necessary to apply less shmgoitth the sample
selection phase in order to have the full benefit of an outeserage selection strategy
is a novel and important contribution of this chapter. Whilbas been recognised
before that out-of-coverage examples should be seleciférpbly when applying
active learning to parsing, for instance (Thompson et &99) and (Hwa, personal
communication, 2003), the importance of this question leasaceived any attention.

Identifying infrequent (rather than unseen) events is@édbmain of QBC. By ran-
domly perturbing parsing models, parameters based onquénetly observed events
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will show higher variance and hence higher disagreementoumexperiments, we
show that it is beneficial to select sentences which requich parameters for their
decoding. We optimised sample selection performance fo€ @B exploring rele-
vant experimental parameters. We achieve best resultg bsigged ensembles with
JS-divergence. Furthermore, we find that using larger ebhlefiurther improves per-
formance. As with uncertainty sampling, using unsmoothacgrs is beneficial for
ensemble-based methods.

Finally, we introduced a novel two-stage method which prilmaelects unparsable
sentences according to a fully trained and a bagged par$es. tdchnique identifies
both unseen and infrequent parsing events in cases wherevidre deleted during
bagging. In order to fill the batch we apply uncertainty sangpto the remaining sen-
tences using a fully trained parser. This two-stage metlofbpns as well as the best
QBC methods, and is considerably cheaper to run.

We have demonstrated the importance of addressing uneel@tameters when
applying active learning to parsing. New parsing eventseéffiextively learned by se-
lecting out-of-coverage sentences; parameter estimaieseruently observed events
can be improved using the two-stage method. These are tet cavtributions of this
chapter.



Chapter 7
Conclusion

This thesis concerns the proper treatment of sparse datéepne when applying active
learning to natural language processing tasks. Sparsedailems are ubiquitous in
natural language processing due to the Zipfian nature ofulagg When randomly
sampling a training set from a population, sparse eventawiear either infrequently
or not at all. Both cases are problematic for the supervisaohing of statistical models
and can result in degraded classification performance eduintly observed events
cause high variance when estimating model parameter, asglngievents can cause
the model structure to be incomplete such that a trainedifielsmay not be able to
predict any label for some input.

Active learning is a class of methods which are supposeddiocesthe amount of
manually annotated data necessary for the supervisedhigaah classifiers to reach a
given performance level. However, the two most populavadigarning methods in
the literature, uncertainty sampling and QBC, have seyewgsomings with regard to
sparse data situations. Neither method has a principledavdgal with missing events
as they are both defined to refine probability estimates wihgiven model structure.
In view of these shortcomings of active learning, we statednreliable Parameter
Principle:

Active learning should explicitly and additionally addsesreliably trained
model parameters in order to optimally reduce classificetioor. In order
to do so, we should target both missing events and infrecgiasntts.

In this thesis, we demonstrated how this principle apptes Yariety of problems,
namely prepositional phrase attachment, part-of-spesginig, named entity recog-
nition (NER) and syntactic parsing.

125
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7.1 Contributions of the Thesis

The main contributions of this thesis fall into the followjicategories.

Comparison between Uncertainty Sampling and QBC

Uncertainty sampling and QBC are very commonly used aciaening methods. For
this reason, we provided an extensive comparison of thesbaue for a variety of
natural language processing tasks.

In a number of situations, we found that it is easy to misapptwe learning when
using unfortunate experimental parameters to the degegathive learning underper-
forms random sampling. However, we found that, in generailh Imethods perform
better than random sampling as was expected. Furthermerégumd that QBC out-
performs uncertainty sampling in most cases. Surprisjrglg is not the case in NER.
We conducted some preliminary experiments which indicasée the relative perfor-
mance of active learning methods may be related to the siteedfgset.

QBC is equipped with a number of experimental parametershvheed to be set
properly for good active learning results. In particulae explored the use of en-
semble creation method and divergence metric. With resfgeensemble creation
method, we explored bagging (Abe and Mamitsuka, 1998) amitHdét sampling
(McCallum and Nigam, 1998; Argamon-Engelson and Dagan9)L88 popular meth-
ods. We found empirically that QBC using bagging performedvall or better than
QBC using Dirichlet sampling in all applications. From agreal point of view, this
is an expedient result for QBC, since bagging is considgrahsier to implement than
Dirichlet sampling in most cases. Bagging only requiresapplication of sampling
with replacement to the training set, leaving the subseiuaining and application of
the classifier unchanged. By contrast, Dirichlet sampliqguires the application of
resampling techniques on the level of individual distribas within the model.

With respect to the choice of divergence metrics we get damsults. For PPA
and part-of-speech tagging, we get best results with QB@gugdte entropy, while
best results for parsing were achieved with QBC using J8rdance. McCallum and
Nigam, 1998 found that JS-divergence works better thanewt®py but were careful
to note that this finding is specific to their application ofttelassification. It seems
that later work has overgeneralised their finding, for exengMelville and Mooney,
2004). Our findings indicate that the choice of appropriaterdence metric may well
need to be established from domain to domain.
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In general, these findings suggest caution when choosingdetrning methods
for novel applications. To the best of our knowledge, sucbramrehensive compar-
ison between uncertainty sampling and QBC across diffaesis has not been pre-
sented in previous literature. Similarly, the exploratafrthe experimental parameter
space for QBC is novel.

Explicitly Targeting Unreliable Parameters via Smoothing /Backing-Off

Choosing appropriate smoothing or backoff settings invadearning can be vital to
allow for the targeted selection of out-of-coverage exaapWe demonstrate this for
prepositional phrase attachment and for parsing. For gigpoal phrase attachment,
assigning an appropriate backoff probability helps toceal@known prepositions and
substantially improves coverage and accuracy for bothrtaiogy sampling and QBC.
For parsing, switching offonstraint relaxatior{an effective smoothing method) helps
to select out-of-coverage examples and substantiallyongs coverage and f-measure.

The observation that altered smoothing regimes in actaenlag can be beneficial
is an important contribution of this thesis. This may seenmnter-intuitive at first and
goes against the practice in the field to use the same modatfive learning and for
later testing purposes (Baldridge and Osborne, 2004).

To provide an intuition, we offer the following analogy: Tmang a model from
annotated data is like building a house, where we liken spdata problems to cracks
in the wall. To make a model usable in practice we need to applyothing; similarly,
we make a house habitable after completion by papering srae&r with wallpaper.
Staying in the analogy, active learning can be compareditdibg a house in stages.
When acquiring data for the next stage, we should focus aotstral problems such as
missing events in the model. To expose such problems, we tchappty smoothing (or
apply smoothing to a lesser degree). The application of shmogin this stage would
be like having to find cracks in the wall while the wallpapeusalready.

Explicitly Targeting Unreliable Parameters via Other Meth odologies

Beyond adjusted smoothing, we introduced two novel methiodiis thesis which
explicitly target either out-of-coverage examples or &ade in parameter estimates.

For sequence labelling tasks, we introduced a novel methochvdirectly counts
the number of unreliable parameters based on missing ewdnth are needed for
decoding a given sentence. This method in isolation is asl ggoor better than un-
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certainty sampling. Furthermore, we established thahidisgo select examples which
are different from the examples that uncertainty samplioghd select. This situation

suggests the combination of the count-based method witartamsty sampling and,

in fact, the combination beats both methods in isolationmatches the best overall
result from QBC. This method directly implements the migsavents aspect of the
Unreliable Parameter Principle and demonstrates thatttiiraddressing unreliable
parameters is a successful strategy.

For parsing, we introduced a novel two-stage method whiaghaly selects un-
parsable sentences according to a fully trained parser &ad@ed parser (both with-
out constraint relaxation). This technique identifies batiseen and infrequent rules
in cases where they were deleted during bagging. In ordel thdi batch we apply
uncertainty sampling to the remaining sentences usingatfained parser. This two-
stage method performs as well as the best QBC methods, ands&lerably cheaper
to run. This method implements both the missing event anthfreguent event aspect
of the Unreliable Parameter Principle.

7.2 Future Work

In this thesis, we have identified the need to deal with spdas problems in the con-
text of active learning and suggested a variety of methodeogpiate for the respective
tasks. We have not provided a formal or a unified treatment toodeal with sparse
data problems in active learning. Devising such a treatmentld be a worthwhile
endeavour but is outside the scope of this thesis.

Other worthwhile avenues of research would be to investitfa@ combination of
active learning methods suggested in this thesis with otlzgk in the field. In par-
ticular, density estimation may help to iron out some of trerst/problems we have
identified for uncertainty sampling (McCallum and Nigam989Tang et al., 2002).
The application of online choice algorithms (Baram et @002) may obviate the need
to commit to one particular primary active learning metheéthwever, while each of
this approaches could potentially further improve perfante, we believe that they
are orthogonal to our methods.

A more general remark concerns the question why active ilegnmethods have
been deployed so little in practical projects since thateption. Most active learning
research assumes that an active learning method almostsesatly drives the sam-
pling process, leading to a bias in the selected data. Hawig\should be acknowl-
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edged that there is an inherent value in randomly sampled ftatexample for corpus
linguistics. Correspondingly, annotation projects maydiber unwilling to hand over
control about how data are sampled to an active learningedetA line of work that
we would like to follow in the future is to consider active temg as an add-on to
existing annotation project, such that active learningily employed late in the entire
annotation process. Interesting research would concernulestion when to start the
active learning process. The use of the techniques sughesthis thesis may well
help to further improve performance.
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Appendix A

Dynamic Programming

of Expected Backoff

Given a hidden Markov mode®, we calculate the expected back-off count as:
Ee[c(0)] = ) pe(slo)c(s,0) (A1)
S

wherec(s,0) counts the number of trigrams &that are not present in the labelled
training sample used to estimate the moflelThis measure can be factorised into
sub-sequences of length three, and thus (A.1) can be wagen

Po(St-1,%,5+1/0)C3(S—1,%,S+1) (A.2)
t7S[717St:S+l

wherecs(-) here is a function returning one when the given trigram isen¢ in the
training sample and zero otherwise. This can be efficiemtigguted using the forward
and backward matrices andf3, using the trigram marginal probabilities:

O (S—1,5) B (S, St+1)
Pg(0)

wherepg(0) is the observation probability, which is given By | s a1(s-1,%).

Po(S—1,%,S+1/0) =
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