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1. INTRODUCTION

In the future, more and more older people will find themselves interacting with
Spoken Dialog Systems (SDS). In contrast to traditional touch-tone Interactive
Voice Response (IVR) systems, full SDS take speech input and produce speech
output. SDS have been successfully deployed in a range of commercial applica-
tions, from flight information to cinema ticket booking. Increasingly, SDS are
being developed for telecare applications, such as diabetes symptom manage-
ment [Black et al. 2005] and behavioral interventions designed to decrease hy-
pertension [Giorgino et al. 2005]. Although these systems were not specifically
adapted to older people, they address conditions which become more prevalent
with age. Therefore, they need to accommodate older users’ needs, abilities,
and preferences. SDS have also been used in task and medication reminder
systems such as the NURSEBOT robot [Roy et al. 2000; Pollack et al. 2003],
which was tested in retirement homes with care facilities. Finally, SDS have
been developed for controlling smart homes [Möller et al. 2006]. Such SDS can
be extended to support environmental control systems, which can help older
people remain in their own home for longer and improve their quality of life
[Tang and Venables 2000].

Much recent work in SDS and related fields has focused on adapting systems
to the needs and preferences of the user [Buchanan et al. 1995; Walker et al.
2005; Carenini and Moore 2006; Demberg and Moore 2006]. It is well known
that older users are a particularly difficult group to design for because of their
diverse needs and abilities [Gregor et al. 2002]. When adapting to older users,
we have several choices:

(1) design a single strategy that works well for all types of users,

(2) design for prototypical older and younger users,

(3) design a system that works with a range of user profiles, including those of
“extreme” older users [Pullin and Newell 1997].

The first approach works well if a given strategy indeed benefits both older
and younger users, regardless of age-related changes in ability. An example of
such a result are the guidelines for adapting speech synthesis to older users
that were proposed by Wolters et al. [2007]. Although these guidelines have
the potential to make synthetic speech easier and more pleasant to listen to for
all age groups, the beneficial effect will be higher for older users. The second
approach, designing for prototypical older and younger users, requires
designers to identify user age reliably and to develop specific dialog strategies
tailored to the typical auditory, vocal, and cognitive abilities of older users.
For example, Müller et al. [2003] classify users into age groups according to
their voice. This information is then passed on to the underlying SDS, which
selects a dialog strategy that can accommodate the effects of cognitive aging.
The third approach motivates detailed studies of fully implemented systems
or system prototypes with a small number of older users, such as Zajicek et al.
[2004], that focus on the needs and problems of individual users.

But what if the relevant user groups are not delineated by age, but by char-
acteristic patterns of behavior? This is the question we pursue in this study.
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Using data from a large corpus of 447 interactions between older and younger
users and simulated SDS, we investigate whether users can be grouped ac-
cording to the way in which they interact with the system. The statistical
analysis methodology that we use allows us to both identify “extreme” users
and “typical” users. Age does not enter into the initial analysis at all.

We quantify the interaction style of each user based on a detailed linguis-
tic analysis of their dialogs. For the purpose of this article, interaction style
encompasses the linguistic choices that users make when they interact with
an SDS. Examples of relevant linguistic choices are choosing between differ-
ent expressions of assent (e.g., “yes” versus “that’s fine”), or choosing to use
politeness markers such as “please”.

The interactions were collected during an experimental laboratory study
that compared different dialog strategies for accommodating cognitive aging
[Wolters et al. 2009]. In this laboratory study, we observed how users interact
with a range of spoken dialog systems, and measured three central facets of
usability [ISO 1998]: effectiveness, efficiency, and user satisfaction.

In the present article, we address three research questions, next given.

(1) Can users be categorized into distinct groups depending on how they speak
to the system? If yes, how can these groups be characterized?

(2) Can the interaction style of a user be predicted?

(3) Does interaction style affect usability?

The article is structured as follows. In Section 2, we introduce impor-
tant theoretical concepts related to the study of SDS, review relevant work
on adapting SDS to older users, and summarize the literature on cognitive
aging and language production that underpins our design and analysis. In
Section 3, we describe the dataset that was analyzed for this study. The statis-
tical methodology used in this study, cluster analysis, is described in Section 4.
In Section 5, we report the clusters found in our data, discuss how these clus-
ters relate to age and cognitive abilities, and examine the effect of interaction
style on usability. The implications of our results for the design of spoken di-
alog systems for older people are discussed in Section 6. We conclude with a
description of future work in Section 7.

2. LITERATURE REVIEW

2.1 What Are Spoken Dialog Systems?

Spoken dialog systems (SDS) enable users to interact with computers natu-
rally and efficiently using one of the most natural communication modalities
of all, speech. Due to their potential for commercial exploitation as well as the
technological challenges they impose, SDS have attracted increased attention
in both industry and research.

SDS have been developed for many different domains, including information
provision [Seneff et al. 1998; Levin et al. 2000; Raux et al. 2006], command-
and-control [Paek and Chickering 2007], tutoring [Zinn et al. 2002; Litman
and Silliman 2004], simulation-based training [Traum et al. 2008], controlling
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smart homes [Möller et al. 2006], delivering reminders [Roy et al. 2000; Pollack
et al. 2003], telecare [Giorgino et al. 2005; Black et al. 2005], and companion-
ship [Catizone et al. 2008].

SDS typically consist of five main components. Automatic Speech Recogni-
tion (ASR) converts audio signals of human speech into text strings, Natural
Language Understanding (NLU) determines the meanings and intentions of
the recognized utterances, Dialog Management (DM) controls the interaction,
Natural Language Generation (NLG) generates the text of system responses,
and Text-To-Speech synthesis (TTS) converts the system utterances into actual
speech output.

Based on the dominant dialog management strategy, SDS can be divided
into three main categories: system-initiative, mixed-initiative, and user-
initiative. Most currently deployed commercial SDS are system-initiative, that
is, the user is not allowed to deviate from the dialog script imposed by the sys-
tem, which may lead to long and tedious interactions and generally unnatural
dialogs. At the other extreme, in user-initiative SDS the user has full control
and is free to change the dialog structure as desired. Given the limitations
of current ASR and NLU systems, user-initiative often leads to many errors
and misunderstandings throughout the interaction. In task-oriented dialogs,
task completion rates are low and users are frequently left frustrated. Mixed-
initiative interaction allows both system and user to take initiative. The user
is expected to respond to system prompts but may also provide more informa-
tion than the system requests. This is called “overanswering”. Another dialog
phenomenon widely studied in the dialog literature is “grounding”. This is
the process by which conversational participants develop a body of mutually
agreed upon information [Traum 1994]. Different types of users exhibit differ-
ent grounding behavior.

Current research in dialog focuses on building systems that can dynami-
cally adapt to user behavior and dialog context [Chickering and Paek 2007;
Dzikovska et al. 2007] or that can be tailored to specific user models [Carenini
and Moore 2000; Moore et al. 2004; Winterboer and Moore 2007] in order to
increase efficiency and user satisfaction. At the same time a new paradigm is
emerging: automatically learning dialog strategies from data and/or user sim-
ulations using statistical optimization methods [Young 2000; Georgila et al.
2008; 2005; Lemon et al. 2006]. These statistical approaches are very attrac-
tive because of their potential for efficient development and automatic opti-
mization of dialog systems, and easy adaptation of existing applications to new
domains.

In terms of NLU, most commercial systems are based on shallow parsing
techniques such as identifying predefined words and phrases [Swift and Allen
2004]. This is sufficient for applications where user input is restrained to sim-
ple answers such as “yes”, “no”, “Monday afternoon”, “three p.m.”, but it breaks
down when confronted with sentences such as “I can only make afternoons on
Mondays”. Such a sentence is ambiguous: It can mean that the user is only
free on Monday afternoons, but not on other afternoons, or it can mean that the
user cannot make Monday mornings. In order to cope with such sentences, re-
searchers are developing complex syntactic and semantic processing modules

ACM Transactions on Accessible Computing, Vol. 2, No. 1, Article 2, Pub. date: May 2009.



Being Old Doesn’t Mean Acting Old · 2: 5

[Klein and Manning 2003; Nivre and Nilsson 2005; Dzikovska et al. 2007]. In
general, the more complex the user behavior the dialog system aims to deal
with, the more advanced its NLU component should be.

2.2 Why Does Interaction Style Matter?

The way in which users interact with an SDS affects all system components.
Here, we will concentrate on the effects on ASR, NLU, and DM.

Most modern ASR systems consist of two components:

(1) An acoustic model which uses information about the acoustic features of
an utterance to generate a list of hypotheses about the words the user
may have spoken. Typically, the acoustic features are derived from the
frequency spectrum of the utterance.

(2) A language model which establishes constraints on possible word se-
quences. Effectively, language modeling ensures that the words included
in the recognition hypotheses will be in the correct context and follow some
syntactic structure.

The larger the vocabulary and richer the syntax of users’ utterances, the
more complex the language model needs to be. However, due to performance
constraints, typically language models only take into account the previous two
words and ignore larger contexts. This makes them unable to model longer-
range dependencies.

In addition, NLU components typically only cover a very restricted set of
inputs. Substantial research and large computational resources are required
to deal with complex linguistic phenomena and perform sophisticated semantic
processing.

Whilst SDS should be able to accommodate a range of individual interaction
styles, the system may not have to do all the work itself. It is well known that
people tend to adapt their interaction style to their conversational partner.
This tendency has been explored in great detail by social or communication ac-
commodation theory [Giles 2001]. Niederhoffer and Pennebaker [2002] demon-
strate that people match their linguistic styles both in verbal human-human
interactions and in computer-mediated interactions such as conversations in
chat rooms. The tendency to adapt one’s language to one’s communication
partner is a largely unconscious effect of a fundamental process: alignment of
situation models [Pickering and Garrod 2004; Branigan et al. 2009]. Situation
models are complex cognitive models of the situation under discussion in the
current dialog. In order to have a successful conversation, dialog partners need
to align their situation models with each other. This is often achieved covertly
by adopting aspects of each other’s speech, such as syntactic constructions or
ways of referring to objects.

These alignment processes are also at work when people interact with
machines [Branigan et al. 2009]. People tend to treat computers as social
actors [Nass and Brave 2005], projecting emotion and personality onto the
machine. Oviatt et al. [2004] showed that children adapted their intonation
to the intonation of the computer-generated characters they were interacting
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with. Branigan et al. [2003] observed that users adapt their syntax to that of
their interlocutor, regardless of whether they believe that they are talking to
a computer or to a real person. Word choice is also influenced by users’ theo-
ries about the system they interact with [Pearson et al. 2006]. Users were more
likely to adapt their vocabulary to the system’s vocabulary if they believed that
the system’s ability to understand their utterances was restricted. Since users
adapt their linguistic style to incorporate words and syntax modeled by com-
puters, a system can “shape” user input to ensure successful interactions by
providing adequate templates at strategic points during the interaction [Leiser
1989; Zoltan-Ford 1991; Sheeder and Balogh 2003; Wolters et al. ms].

2.3 Adapting SDS to Older Users

Existing work on adapting SDS to older people falls into two main groups: ex-
perimental assessments of full end-to-end systems [Pollack et al. 2003; Zajicek
et al. 2004; Black et al. 2005; Giorgino et al. 2005] and guidelines that are
largely based on the literature on cognitive and perceptual aging [Hawthorn
2000; Petrie 2001; Gregor and Dickinson 2007].

Many of the end-to-end systems, such as the HOMEY hypertension man-
agement system [Giorgino et al. 2005], are mixed-initiative. HOMEY asked
patients with hypertension questions about lifestyle and relevant symptoms.
When asked about their blood pressure, patients could give systolic and dias-
tolic pressure in one utterance or they could wait for the system to ask for each
value in turn. However, in mixed-initiative systems, user utterances can be
complex. Without adequate ASR and NLU models, task success may decline.
To improve reliability, system developers may opt for a more system-initiative
design [Black et al. 2005].

Sharit et al. [2003] demonstrated that cognitive aging affects the usabil-
ity of touch-tone Interactive Voice Response (IVR) systems. They found that
older users performed less well on both easy and highly complex tasks than
younger and middle-aged users. Older users were also less efficient and took
longer to call the system. When older users were provided with a graphical aid
that explained the menu structure of the IVR systems they were operating,
performance improved. Sharit et al. [2003] expect similar results for sys-
tems that replace touch-tone by speech input, even though systems that accept
speech input do not require users to remember mappings between tasks and
keys on the telephone keypad.

Gödde et al. [2008] presented 15 older and 16 younger users with two
versions of a smart home system. In the first version, context-sensitive help
was given early on in the dialog, in the second version, context-sensitive help
was only given when needed. Older users had lower task success and were
less likely to speak to the system in a way that was easy for the system to un-
derstand. However, when given help early on in the dialog, older people were
able to adapt their interaction style, in particular their vocabulary [Wolters
et al. ms].

The dataset used for the present study differs from that of Gödde et al.
[2008] in several important aspects. We used a different domain (appointment
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scheduling), we investigated more dialog strategies (nine), and our corpus
was annotated in more linguistic detail (see Georgila et al. [2008] for a de-
tailed overview of the annotations of the present corpus). Finally, while Gödde
et al. [2008] only assessed the short-term memory span of their participants,
our users took part in a comprehensive battery of cognitive tests (refer to
Section 3.1.1).

2.4 Relevant Properties of Older Users

2.4.1 General Cognitive Aging. Cognitive abilities such as processing
speed, working memory, and fluid intelligence affect the extent to which people
can successfully use computers [Czaja and Lee 2007]. In healthy adult aging,
these abilities decline [Salthouse 2004], with the decline starting as early as
middle age [Garden et al. 2001]. However, there is considerable interindivid-
ual variation in terms of the speed and extent to which abilities change with
increasing age [Rabbitt and Anderson 2006]. While some of this variation is
predicted by an individual’s cognitive abilities in childhood, it can also be at-
tributed to the events experienced during his/her lifetime [Deary et al. 2004].
The wide range of individual differences among older adults makes it very dif-
ficult to define prototypical older users for the design process.

Aging may also affect our ability to process social information. As people
age, they may find it more difficult to take another person’s perspective and
to attribute and reason about the mental states of others [Maylor et al. 2002;
Bailey and Henry 2008]. This ability, often referred to as theory of mind, is
crucial when interlocutors adapt their own cognitive model of the situation to
resemble the other’s model. This may affect language production. Horton and
Spieler [2007] have shown that older people are less likely to adapt textual
descriptions to their audience.

2.4.2 Changes in Language Production. Not all aspects of language pro-
duction decline with age. Most notably, vocabulary, which is linked to acquired
knowledge, is preserved [Schaie 1994; Verhaeghen 2003]. However, older peo-
ple may experience word finding problems [Burke and Shafto 2004]. Patterns
of word use also change during the life span. Pennebaker and Stone [2003]
observe that older people use fewer words that denote negative emotions and
fewer self-referential words. In addition, aspects of language production that
are linked to general physiological and cognitive aging are affected by age.
Anatomical and physiological changes to the vocal tract affect a person’s voice
[Ramig et al. 2001]. Since working memory is needed for sentence construc-
tion, sentence length and sentence complexity decrease as the working mem-
ory span shrinks with age [Nef and Hupet 1992; Kemper et al. 2003]. The
speech of older people tends to be less coherent, with more ambiguous refer-
ences [Nef and Hupet 1992] and more off-topic speech [James et al. 1998]. At
the same time, the overall structural complexity of discourse increases. Older
people are more likely to talk about multiple episodes and embed stories into
the ongoing episode [Nef and Hupet 1992].
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Fig. 1. Presentation of options.

Fig. 2. Confirmation Strategies.

3. THE CORPUS

3.1 The Wizard-of-Oz Experiment

The interactions we analyze here were collected in the context of a laboratory
experiment [Wolters et al. 2009]. In this experiment, we tested two approaches
to accommodate users with low working memory span.

—Reduce Number of Options. If users are presented with a large number of op-
tions at each step in the appointment scheduling dialog, they are less likely
to use the dialog system successfully. Users were presented with one, two,
or four options at a time. For examples, see Figure 1.

—Provide Confirmations. If the system confirms each aspect of the appoint-
ment, users will find it easier to remember the appointment, since relevant
information is repeated. Confirmation was given explicitly, implicitly, or not
at all. For examples, see Figure 2.

The combination of these 3 × 3 design choices yielded nine different dialog
systems. We expected that users with lower Working Memory Span (WMS)
would benefit more from reduced numbers of options and repeated confirma-
tions than users with higher WMS.

Each of the nine systems was simulated using a Wizard-of-Oz (WoZ) de-
sign [Dahlbaeck et al. 1993]. In a WoZ setup, users interact with a human
wizard but they think they are interacting with an automated dialog system.
WoZ experiments are an invaluable tool for investigating different design op-
tions for spoken dialog systems without the cost of actually implementing these
systems. Furthermore, they allow experimenters to isolate the effects of high-
level information presentation and dialog management from the problems
introduced by the limitations of current ASR and NLU systems.
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3.1.1 Participants. 50 participants were recruited: 26 older participants
and 24 younger participants. The older users’ age ranged from 52 to 84 years
(M=66, SD=9.1). The younger users were aged between 18 to 29 years (M=22,
SD=2.7). 62% of the older users and 71% of the younger users were female.
Older users had spent an average of 15 years in formal education, younger
users an average of 17 years.

All participants took part in a battery of four cognitive tests. These tests
were carefully chosen to cover the two main dimensions of intelligence: fluid

intelligence, which is linked to abstract reasoning, and crystallized intelligence,
which is linked to acquired knowledge, as well as working memory and infor-

mation processing speed. All tests were presented visually, to avoid problems
due to age-related hearing loss [Rabbitt 1990]. The full battery took 60 to 90
minutes to administer.

Fluid intelligence was assessed using Ravens’ Progressive Matrices [Raven
et al. 1998, Ravens]. Participants were not timed. Crystallized intelligence was
measured using the Mill Hill Vocabulary test [Raven et al. 1998, MillHill].
Working memory span was assessed using a sentence reading span task
[Unsworth and Engle 2005, SentSpan]. Reading span was chosen because this
measure requires participants to process the stimuli instead of simply remem-
bering them. Thus, it taps into the key function of working memory as a short-
term store for information processing. In this article, we report the absolute
score, which aggregates participants’ scores for all test items. Information
processing speed was assessed using the Digit Symbol Substitution subtest of
the Wechsler Adult Intelligence Scale-Revised [Wechsler 1981, DSST].

3.1.2 The Wizard-of-Oz System. All dialogs followed the same overall
structure. First, users arranged to see a specific health care professional, then
they arranged a specific half-day, and finally, a specific time slot on that half-
day was agreed. All dialogs were strictly system-initiative: The WoZ system
not only controlled the choice of options presented to the user at each stage
of the dialog, it also did not allow users to skip stages by, say, requesting an
appointment on a particular half-day at a particular time. This design ensured
that all users were presented with the appropriate number of options and the
appropriate confirmation strategy at least three times in each dialog.

3.1.3 Procedure. Appointments could be made with four different health
care professionals: a community nurse, a diabetes nurse, an occupational ther-
apist, and a physiotherapist. Participants were asked to book nine appoint-
ments in total. Each appointment was booked with a different prototype dialog
system. Four randomized lists with nine tasks each were created in which each
health professional appeared at least twice. Each user was randomly assigned
to one of the lists. After an appointment had been booked, participants were
asked to fill in a detailed user satisfaction questionnaire with 39 items which
are listed in the relevant result tables (Table XV through XVI). The question-
naire was administered on paper. Completion took on average five minutes.
Once the questionnaire had been completed, participants were asked to recall
the appointment. In order to mitigate effects of tiredness, participants were
able to take breaks at any time in between dialogs.
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Fig. 3. Dialog with a younger user (4 options at a time, explicit confirmation), labeled with [speech

act, task] pairs. For social speech acts, the task is not defined.

3.1.4 Scoring. We measured two aspects of task success: completion and
recall. Completion measures whether users successfully arranged an ap-
pointment with the correct health professional that fits their schedule, while
recall assesses whether users were able to remember the appointment they
scheduled. Users received points for remembering location, weekday, morn-
ing/afternoon, hour, half-hour, class of health professional (nurse versus ther-
apist), and exact name of health professional (community nurse, diabetes
nurse, physiotherapist, occupational therapist). Both completion and recall
are equally important: If a user manages to arrange an appointment but fails
to attend because crucial details have been forgotten, the appointment has es-
sentially not been scheduled successfully. We also assessed the effect of the
nine different dialog strategies on efficiency and user satisfaction. Contrary to
expectations, we found no differences in task success. Users were more effi-
cient when more options were presented at a time and explicit confirmations
were omitted. Older users tended to be less satisfied with the dialog systems
[Wolters et al. 2009].

3.2 Corpus Construction

Each dialog consists of a sequence of user and system turns. Each system turn
corresponds to a system message. User turns are coherent sequences of one or
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Fig. 4. Dialog with an older user (4 options at a time, explicit confirmation), labeled with [speech

act, task] pairs. For social speech acts, the task is not defined.

more utterances produced by the user. Each user utterance may consist of one
or more speech acts. User and system turns may overlap.

For 47 users, the full set of 9 dialogs was recorded, and for the remain-
ing 3 users, we have 8 dialogs each. All 447 dialogs were recorded digitally
with a sampling frequency of 48 kHz and transcribed orthographically by
an experienced human transcriber using the tool Transcriber (http://trans.
sourceforge.net, [Barras et al. 2000]). The transcriber followed the guidelines
developed by the AMI project (http://www.amiproject.org) for the creation of
the AMI meeting corpus [Carletta 2007]. Figure 3 shows a typical interac-
tion between a younger user and one of our dialog systems, with the system
that always gives explicit confirmations and presents four options at a time.
Figure 4 presents an excerpt from an interaction between the same system
and an older user.

All transcriptions and annotations are stored in NXT format [Carletta et al.
2003]. Orthographic transcriptions are linked to the corresponding audio files.
Information about users’ scores on the cognitive tests, the agreed appointment,
the recalled appointment, and user satisfaction ratings are also stored in the
NXT representation of each interaction.

In addition to orthographic transcriptions, the corpus was annotated with
dialog acts, because it is intended as a resource for research into dialog man-
agement, in particular for learning dialog policies [Georgila et al. 2008]. An
initial automatic annotation was subsequently hand-corrected [Georgila et al.
2008].
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Speech acts were defined on the basis of the annotation scheme presented
in Georgila et al. [2008]. Speech acts specify the action that is performed by a
sequence of words [Searle 1969]. For example, in Figure 4, the utterance “That
is correct.” confirms that the user intends to see the occupational therapist
(speech act confirm pos), while the user’s first utterance, “Good morning”, is a
greeting and therefore belongs to the general class of social speech acts. For
an overview of all user speech acts, see Table I.

3.3 Interaction Style Measures

We characterized the interaction style of each user using three groups of
measures:

—Dialog Level Measures. These include dialog length in terms of turns, speech
acts, and word forms, the number of different speech acts and word forms,
and the frequency of actions that are of theoretical interest, such as taking
the initiative, grounding information that has been received, and confirming
system suggestions. The full set of features is defined in Table II.

—Speech Act Measures. These include frequencies of groups of speech acts that
are defined in Table III. Speech act groups consist of a number of related,
distinct speech acts. For example, the group provide consists of the two
speech acts in Table I that begin with provide , while the group accept con-
sists of six speech acts that begin with accept . The frequency of a speech
act group is defined as the sum of the number of occurrences of each speech
act in all dialogs produced by the user. For example, the older user O1 uses
46 provide speech acts in 9 dialogs, while the older user O11 only produces 6
instances of such speech acts.

—Word Group Measures. These include frequencies of words that fall into par-
ticular semantic/pragmatic groups, such as social words (“hello”, “thanks”),
or words used to talk about the interaction (“voice”, “understand”). Word
groups are defined by a list of associated word forms. For example, goodbye
is associated with the word forms “cheerio”, “bye”, and “goodbye”. Each oc-
currence is counted separately. Thus, the utterance “That’s fine, thanks,
cheerio, goodbye.” contains two instances of goodbye. O1 produces 7 words
that are associated with the group sorry in 9 dialogs, while O11 produces 0
instances of such word forms. A full list of all word groups can be found in
Table IV.

Word groups were defined with a view to ASR and language modeling. In
particular, we wanted to know how often people used words that were not di-
rectly relevant to the task, words that are politeness markers, synonyms for
straightforward yes/no answers, or words that indicated meta-communication
about the dialog. Such material can be difficult for a speech recognizer to
process. Compare the two dialogs in Figure 5. The first dialog is no problem
for a standard language model. The user answers the simple yes/no question
with one of the two expected keywords, “yes”. Such single-word utterances, es-
pecially if they consist of frequent responses such as digits or yes/no, can be de-
tected extremely reliably. Moreover, the utterance contains no extra material.
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Table I. List of User Speech Acts

Speech Act Description

Accepting / Rejecting System Suggestions

accept info user accepts option suggested by the system
accept info yes user accepts option by saying “yes”
accept info null user implicitly accepts option suggested by the system
accept info prevprovided user accepts option that s/he previously provided
accept info yes prevprovided user accepts option s/he previously provided by saying “yes”
accept info null prevprovided user implicitly accepts option s/he previously provided
reject info user rejects option suggested by the system
reject info no user rejects option suggested by the system by saying “no”
reject info null user rejects option suggested by the system
confirm pos user confirms an option when asked for confirmation
confirmimplicit pos user continues w/ dial. after implicit confirmation

by system
confirm neg user rejects an option when asked for confirmation
yes answer user answers “yes” to system question
no answer user answers “no” to system question

Correcting System / Indicating Misunderstandings

correct info user corrects system information
correct info no user corrects system information using a negative
correctblock info user corrects previously provided info about options that

are not possible
signal misunderstanding user signals that system has misunderstood previous

utterance
request info request for help, clarification, or repetition

Taking Initiative

provide info user provides information about possible options
provideblock info user provides information about options that are

not possible
reprovide info user reprovides information in the same utterance or turn

reprovide info overall user reprovides information for slot that has already
been filled

reprovide info overall notfilled user reprovides info for slot that has not been filled yet
reprovideblock info user reprovides info about options that are not possible
reprovideblock info overall user reprovides info for slot already marked unavailable
repeat info user repeats info given by system in explicit/implicit

confirmation
repeatblock info user repeats info about options that are not possible
repeat info misunderstanding user repeats information as a reaction to a

misunderstanding

Social Interaction with the System

acknowledgement user shows that s/he can understand system
social social interaction with the system, e.g. “goodbye”,

“thank you”
stall wizard user asks the wizard to wait

In the second dialog, the user uses a four-word phrase to signal an affirmative
answer and proceeds to engage in meta-communication and provide two pieces
of additional information, one of which is not relevant to the task at hand
(appointment scheduling). If the system only expects a yes/no answer, it will
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Table II. Dialog-Level Measures Used for Analysis

Name Description

# Turns number of user turns in the dialog
# Word Forms total number of distinct word forms
# Words total number of words
Avg. Word Form Freq. average number of occurrences of each word form
# Distinct Speech Acts total number of distinct speech acts
# Total Speech Acts total number of speech acts
# Confirmations number of confirmations
# Grounding number of times information has been grounded
# Init number of times user has taken initiative

Table III. Speech Act Groups Used for Analysis

Name Description

accept user accepts system suggestion
provide user provides additional information
reprovide user provides information again
grounding user provides information again, grounding a filled slot
block user gives information about options that do not suit
repeat user repeats information
request user requests clarification, repetition, or help
confirm user reacts to system suggestion
social greetings, apologies, and other social interaction
garbage uninterpretable

Table IV. Word Groups Used for Analysis

Name # word forms Description

hes 7 hesitations, filled pauses
no 2 forms of “no”
yes 4 forms of “yes”
pos 11 forms of affirmative answers other than “yes”
neg 4 forms of negative answers other than “no”
hello 2 forms of “hello”
bye 4 word forms associated with “goodbye”
please 1 forms of “please”
thanks 3 word forms associated with thanking
sorry 2 apologies
modal 7 forms of modal verbs such as “can”
qualifiers 16 qualifiers of information such as “most”

request 14 forms of requests
meta 67 communication about the dialog

be impossible to understand what the user is saying. If the system has access
to a richer grammar of affirmative and negative responses, it might be able
to map “that’s great” to a “yes” answer. But in order to answer the user fully,
the ASR component needs to be able to recognize at least key words such as
“Tuesdays”, “Wednesdays”, and “understand”, the NLU engine would need to
detect the two subsequent speech acts and extract the relevant information,
and the DM component would have to select a reaction that indicates whether
the system can understand the user.
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Fig. 5. Two types of positive answers.

4. METHOD

In this study, we examine whether our users can be divided into groups based
on their interaction style. Each user is represented by a data point that is spec-
ified by the frequency of a number of features as defined in Section 3. Underly-
ing structures in datasets can be found using clustering methods. Clustering is
used to partition a given dataset into groups such that each item in the original
dataset belongs to exactly one group, and items in each group are more sim-
ilar to each other than to items in other groups. There are many techniques
for finding groups in data that differ both in the way the clusters are created
and in the way in which the quality of the resulting clusters is judged [Webb
2002]. In this study, we used seven classic methods that have complementary
strengths and weaknesses.

4.1 Cluster Analysis

The groups that are found through cluster analysis can be affected by many
factors: presence of outliers, normalization of data, distance metric used, pres-
ence of irrelevant features, the clustering algorithm itself, and the metric
for determining cluster quality [Webb 2002; Tan et al. 2005]. Quality metric,
relevant features, and outliers were determined once at the beginning of
the analysis. The remaining aspects, data normalization, distance metrics,
and clustering algorithm, were systematically varied using the R package
ClusterSim [Walesiak 2008]. In total, we examined 560 combinations of
parameters per feature set.

4.1.1 Quality Metric. As our quality metric, we chose Rousseeuw’s Silhou-
ette measure [Rousseeuw 1987]. This metric favors compact clusters that are
well separated. Let a(i) be the average dissimilarity between i and all other
items in A, and b (i) the minimum dissimilarity between i and the nearest
member of the cluster B that is closest to A. Then the silhouette of a data item
i from cluster A is defined as

S(i) =
b (i) − a(i)

max(a(i), b (i))
. (1)

The silhouette of a cluster A is the average silhouette of all data points i ∈ A,
and the silhouette of a given set of clusters C is the maximum of the silhou-
ettes of each cluster A ∈ C. As a rough guide, overall silhouettes of 0.71 and
higher indicate that a very reliable structure has been found, while values be-
tween 0.50 and 0.70 indicate that a reasonable clustering has been detected
[Rousseeuw 1987].

ACM Transactions on Accessible Computing, Vol. 2, No. 1, Article 2, Pub. date: May 2009.



2: 16 · M. Wolters et al.

4.1.2 Outliers. Outliers in the dataset can skew the clustering such that
we end up with several tiny clusters that consist of the outliers, and one
big cluster that contains the rest of the dataset. Such an analysis completely
obscures any more detailed structure in the main dataset. Therefore, as a
first step, outliers need to be detected and removed before proceeding with
analysis.

4.1.3 Feature Sets. Each user is represented by one feature vector. All fea-
ture values except for the average frequency of word forms and distinct speech
acts are counts. These counts represent the total number of occurrences of a
feature in all dialogs recorded for a given user.

We tested four feature sets.

—Dialog. Measures of conversation length and frequencies of characteristic
actions as given in Table II.

—Speech Acts. Number of occurrences of speech act groups as given in
Table III.

—Words. Number of occurrences of word groups as given in Table IV.

—All. Combination of all three feature sets.

These feature sets were derived from the features reported in Georgila et al.
[2008] through a combination of a priori considerations and inspection of the
feature value distribution. Word and speech act groups that only occurred
in very few of our 447 dialogs were excluded. Features that only occurred in
dialogs from a small number of users were included if they were of theoretical
interest.

The frequency distribution of many features is highly skewed. Take, for
example, the number of times when users provided information about times
and days that they cannot make (blocking). We only find blocking in dialogs
from 7 users, all of whom are older. Five of these users block less than 3 times
in all 9 dialogs, while one user provides 52% of all instances of blocking.

4.1.4 Normalization. Five normalization procedures were tested, stan-
dardization (Eq. (2)), Weber standardization (Eq. (3)), unitization (Eq. (4)),
unitization with zero minimum (Eq. (5)), and normalization with a range of
[-1,1] (Eq. (6)).

x′ = (x − mean(x))/stddev(x) (2)

x′ = (x − median(x))/median absolute dev.(x) (3)

x′ = (x − mean(x))/range(x) (4)

x′ = (x − min(x))/range(x) (5)

x′ = (x − mean(x))/max(|x − mean(x)|) (6)

4.1.5 Distance Metric. The distance metric defines the extent to which two
items i and j are similar. Many of our features do not occur in at least 20% of
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our users, which means that they have an absolute frequency of 0 for that user.
This can greatly skew distance measures. Therefore, we transformed the n×m

matrix of feature values, where n is the number of features and m the num-
ber of users, into the corresponding covariance matrix. In our experiments, we
compared five distance metrics: Euclidean distance, squared Euclidean dis-
tance, Manhattan distance, Chebyschev distance, and the General Distance
Measure [Walesiak 1999; Jajuga et al. 2003]. The first four distances can be
found in standard textbooks [Webb 2002, Appendix A]. The General Distance
Measure was designed to accommodate ratio-scale, interval-scale, and ordinal
data. Here, we used GDM1, the version for ratio and interval-scale data. Let
xij be the value of feature j for object i. Then the GDM distance between two
objects i,k is given as

GDM1(i, k) =
1

2
−

m
∑

j=1

(xij − xkj)(xkj − xij) +
m
∑

j=1

n
∑

l=1,l6=i,k

(xij − xlj)(xkj − xlj))

2

[

m
∑

j=1

n
∑

l=1

(xij − xlj)2
m
∑

j=1

n
∑

l=1

(xkj − xlj)2

]1/2
. (7)

4.1.6 Clustering Method. There are many different clustering methods. In
this section, we will only discuss the methods used in our study as imple-
mented in the ClusterSim package; for a more detailed overview, see, for ex-
ample, Kaufman and Rousseeuw [1990] and Webb [2002].

We tested seven methods: six hierarchical methods and one partitioning-
based method. The hierarchical methods were single linking, complete link-
ing, average linking, median linking, centroid linking, and the Ward method
as implemented in the R method hclust [R Development Core Team 2008];
the partitioning-based method was Kaufman and Rousseeouw’s 1990 Parti-
tioning Around Medoids (PAM) as implemented in the R method pam [R De-
velopment Core Team 2008]. All of these methods are well known and widely
used.

All six hierarchical methods are agglomerative. They start with a partition-
ing of the dataset where each data point is assigned its own cluster. In each
step, the two nearest clusters are merged until the data is represented by one
single cluster. The clusters can be represented as a binary tree where each
node is associated with a cluster. Each internal node n has exactly two daugh-
ters d1, d2. When we join the clusters which are associated with d1, d2, we get
the cluster associated with n. In order to partition a dataset into x clusters, we
simply cut the tree at the appropriate height. Figure 6 shows the dendrogram
for a sample clustering of our dataset.

The six hierarchical methods differ with respect to the rule used to deter-
mine the distance between clusters. For single linking, the distance between
two clusters A, B is taken to be the distance between the two nearest data
points.

dA B = min
i∈A , j∈B

dij (8)
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Fig. 6. Dendrogram of clustering for all users excluding outliers, feature set All. Left daughter of
root corresponds to cluster 1, right daughter to cluster 2. O: older users, Y: younger user.

Single linking favors elongated clusters; it is less well suited to detecting com-
pact, globular structures [Tan et al. 2005]. In complete linking, the distance
between the two farthest data points is used instead.

dA B = max
i∈A , j∈B

dij (9)

Average linking uses the average distance between data items, while centroid

linking is based on the distance between the cluster means, and median link-
ing determines the distance between clusters by calculating the distance be-
tween cluster medians. Complete, average, centroid, and median linking favor
compact, globular clusters. Median linking is useful if some of the clusters
have a small diameter compared to others [Webb 2002]. Ward clustering uses
a slightly different approach. The core measure is the sum of squares of dis-
similarities between data points. The lower the sum of squares, the more sim-
ilar the cluster items. In each step, the algorithm merges those two clusters
that yield the new cluster with the smallest sum of squares. Thus, the Ward
algorithm also favors very compact clusters.

Partitioning around medoids (PAM) [Kaufman and Rousseeuw 1990] follows
a different strategy. Whereas the hierarchical approaches discussed earlier
yield a sequence of possible clusters, in PAM, the desired number of clusters k

is one of the inputs into the algorithm. Briefly, for each cluster, the algorithm
systematically searches for one data item that represents the center of the
cluster, the “medoid”. Data points are assigned to the cluster that is associated
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Table V. Best Combinations for Each Dataset

Feature Set Method Distance Measure Normalisation Silhouette

All Single Linking GDM 1 Normalisation to [-1,1] 0.713
Word Single Linking GDM 1 Normalisation to [-1,1] 0.681
Speech Acts Complete Linking GDM 1 Normalisation to [-1,1] 0.606
Dialogue Complete Linking GDM 1 Weber standardization 0.798

with the nearest medoid. PAM is a variant of classical k-means approaches to
clustering. From a design perspective, it is useful for defining “typical” users.

5. RESULTS

5.1 Interaction Style Groups

Before running the clustering algorithms, the dataset was examined for out-
liers using Principal Component Analysis (PCA, R method prcomp with scaling
and centering of feature values [R Development Core Team 2008]). All 34 fea-
tures present in the full dataset (All) were used in the analysis. The first two
principal components covered 61.9% of the overall variance. When plotting the
dataset against the first two principal components, two outliers were identi-
fied and removed from the dataset for all subsequent cluster analyzes. Both of
these outliers were older users. This leaves us with a dataset consisting of 48
users, leaving us with 24 older and 24 younger users.

In the next step, we determined optimal clustering methods for each of the
four feature sets, All, Dialog, SpeechActs, and Words, using ClusterSim. The
best combination for each dataset is shown in Table V. For an explanation
of the relevant parameters, see Section 4. The preferred normalizations are
Weber standardization, which relies on medians, and normalization to [-1, 1].
The preferred distance measure was always the General Distance Measure.
The silhouette values indicate that the clustering algorithms found a reason-
able structure. It is interesting that the best methods alternate between sin-
gle and complete linking, since the first favors long, straggly clusters and the
second compact, globular clusters. The explanation lies in our dataset: As
Figure 7 shows, one of the two clusters is very compact, an ideal candidate
for complete linking, while the other is long, extended, and fuzzy, the type of
cluster that single linking detects very well.

In order to determine the number of clusters, we examined the ten best
solutions for each of the four feature sets. 75% of the best solutions are for two
clusters. The remaining solutions are five-cluster solutions when clustering
on dialog-level data only. This strongly suggests that there are indeed two
groups of users in the data. Therefore, we chose two-cluster solutions for all
four feature sets.

In the next step, we identified the users that belonged to each of the two clus-
ters. First, the dataset was clustered four times, once per feature set, using the
best algorithm and settings for this particular feature set. We then compared
the clusters that users were assigned to. There was considerable overlap: For
85% (41 out of 48), the four cluster analyzes agreed. Of these unambiguous
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Fig. 7. Principal Component Analysis of all users. O: older, Y: younger, 1,2: Cluster, ?: assigned
by majority vote, U: undecided, X: outlier.

cases, 19 were older users and 22 younger users. The first cluster contains 12
users, while the second group consists of 29 users. The high level of agreement
indicates that our cluster analysis is uncovering a real structure in the data,
not imposing a spurious order. Of the users that could not be assigned reliably,
taking a majority vote assigns 3 to cluster 1, and 3 to cluster 2. Only one user
cannot be assigned to a cluster by majority vote.

Figure 7 shows the distribution of all 50 users along the two first principal
components identified by the PCA. The 6 users that were assigned to clusters
by a majority vote are marked with a “?”. Four of these users are at the bound-
ary between clusters, while the two older users who are potentially in cluster 1,
are at the outer boundary of this cluster. The single user for whom no decision
can be made sits at the boundary between the two clusters. The two outliers,
who are not marked with a cluster label, are older users who are firmly on the
side of cluster 1. They may well be “extreme” users in the sense of Pullin and
Newell [1997].

In order to establish the characteristics of these two clusters, let us now con-
sider the 41 unambiguous cases. Table VI shows the distribution of age groups
across clusters. While almost all of the users in cluster 1 are older (92%), a
significant proportion of the older users are in cluster 2, which is dominated
by younger users. The clusters cannot be completely segregated by age.
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Table VI. Distribution of Age Groups Across Clusters

Age Group Cluster 1 Cluster 2 Total

Older 11 8 19
Younger 1 21 22
Total 12 29 41

This is a key result: Older users differ greatly in how they interact with the
simulated systems. Although cluster 1 is dominated by older people, with a
lone younger straggler, 8 older people have been assigned to cluster 2 because
they appear to behave very much like younger users. This number corresponds
to two-fifths of the older people in our unambiguous sample of 41 cases and a
third of our original sample of 26 users.

Figure 7 shows all users and their associated clusters. We see that cluster
2 is very compact and well defined, while cluster 1, which is mostly populated
by older users, is highly diffuse, just as we would expect from the literature on
aging (refer to Section 2.4.1).

In the following subsections, we analyze the behavior of the users in each
cluster in detail. Once typical patterns of behavior have been identified (Sec-
tion 5.1.1), we turn our attention to older users. In particular, we would like to
know in what respect the older users in cluster 2 differ from the older people in
cluster 1, which consists exclusively of older users (Section 5.1.2). We also ex-
amine whether there are any age-related differences in interaction style within
cluster 2, which contains a mix of older and younger users (Section 5.1.3).

In order to get a clear picture of the characteristics of each cluster, the an-
alyzes presented in the rest of this section are restricted to those 41 users
that could be assigned unambiguously to one of the two clusters. Since cluster
analysis is an exploratory technique, it is wise to be conservative when us-
ing its results for further analysis. However, as Figure 7 shows, most of the
remaining users are very close to one of the two clusters, and the older users
who have been marked as outliers are “extreme” examples of cluster 1. Indeed,
when repeating our analyzes with all users, classifying the two “extreme” users
and the undecided user into cluster 1, we obtained very similar results to the
ones reported here.

5.1.1 Cluster Characteristics. The differences between the two clusters are
illustrated in Table VII. Users in cluster 1 need more turns to complete the
whole set of nine dialogs. They also produce roughly three times as many
individual words and twice as many individual speech acts as users in cluster
2. During their interaction, they use a richer vocabulary, and a more varied
repertoire of speech acts. Despite this, the token/type ratio is similar between
clusters. Users in cluster 1 are also more likely to use confirmations, ground
information, and take the initiative in providing additional information.

The additional speech acts seen in cluster 1 users can be classified into four
groups, next described.

—Managing Information. Users from cluster 1 are significantly more likely
to provide additional information about aspects of the appointment. They
do this around 15 times during the whole set of 9 dialogs, while users from
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Table VII. Frequency of Dialog-Level, Speech-Act-Level, and Word-Level Features by Cluster.

Group Measure Cluster 1 Cluster 2 Sig.

Dialog Turns 78.75 61.14 p < 0.000 ***
Words 349.67 98.66 p < 0.000 ***

Word Forms 99.17 29.69 p < 0.000 ***
Avg. Word Form Freq. 3.47 3.38 p < 0.931 n.s.
Distinct Speech Acts 134.17 73.07 p < 0.000 ***

Total Speech Acts 16.08 8.76 p < 0.000 ***
Confirmations 31.75 29.52 p < 0.011 .

Grounding 33.00 29.52 p < 0.002 **
Initiative 18.50 1.69 p < 0.000 ***

Speech Act Groups Provide 15.25 1.62 p < 0.000 ***
Reprovide 3.17 0.07 p < 0.000 ***

Block 1.33 0.00 p < 0.001 **
Request 1.00 0.21 p < 0.125 n.s.
Repeat 4.25 0.14 p < 0.000 ***
Social 33.50 4.21 p < 0.000 ***

Garbage 5.92 0.38 p < 0.000 ***
Word Groups Yes 16.33 25.66 p < 0.001 **

No 2.25 6.38 p < 0.001 **
Positive 9.25 1.69 p < 0.000 ***
Negative 1.50 0.90 p < 0.169 n.s.
Thanks 9.42 0.48 p < 0.000 ***

Bye 4.67 0.24 p < 0.000 ***
Please 14.58 3.21 p < 0.000 ***
Hello 0.25 0.10 p < 0.13 n.s.
Sorry 0.67 0.17 p < 0.159 n.s.
Meta 5.25 0.24 p < 0.000 ***
Extra 1.33 0.03 p < 0.034 .
Modal 7.58 0.14 p < 0.000 ***
Qual 3.58 0.00 p < 0.000 ***

.: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001 or better.

cluster 2 only give unprompted information once or twice during all 9 in-
teractions. Cluster 1 users are also more likely to ground slots that have
already been filled by the system.

—Being Sociable. Users from cluster 1 are more likely to interact socially with
the system. They produce an average of around 33 social speech acts during
all 9 dialogs (more than 3 per dialog), whereas cluster 2 users only produce
5 speech acts of this type in 9 dialogs (less than 1 per dialog).

—Repeating Information. Users from cluster 1 are more likely to to re-
peat information that comes from the system (repeat) and from themselves
(reprovide). While cluster 1 users do this on average seven times during
their interactions with the nine SDS, cluster 2 users almost never repeat
information.

—Garbage. Users from cluster 1 are more likely to produce uninterpretable
utterances. On average, six utterances from a typical cluster 1 user are
classified as garbage, compared to less than one utterance from a typical
cluster 2 user.

This suggests that, overall, cluster 1 users are more likely to actively man-
age the interaction as they would try to manage the interaction with a human
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receptionist. They provide information that they expect the system to process,
even though all dialogs are system-initative and system questions are specifi-
cally designed to elicit brief, factual responses. Cluster 1 users are also more
likely to repeat information and to produce problematic utterances.

As we can see in Table VII, the additional vocabulary that characterizes
cluster 1 falls into four distinct groups:

(1) affirmative answers couched in terms other than forms of “yes” (category
positive);

(2) social expressions such as “thanks”, “bye”, and “please” (categories thanks,
bye, please);

(3) communication about the discourse, about the user’s internal reasoning
processes, and about reasons for the users’ decisions (category meta); and

(4) modal expressions and qualifiers (categories modal, qualifier).

Cluster 1 users are also far more likely to use nonwords such as backchan-
nels or filled pauses.

Most of the modals and qualifiers are part of polite idiomatic expressions
signaling levels of preference, such as “I would like to” or “I can make” or “I
would rather”. This is in addition to variants of “no” and “yes”. Cluster 1
users are also more likely to follow social conventions in bidding “good-bye”
to the system, adding “please”, or thanking the system. However, they are as
unlikely as cluster 2 users to apologize or greet the system with “hello”.

To summarize, users who belong to cluster 1 have an interaction style that
can be characterized as sociable, chatty, and communicative. In contrast, users
from cluster 2 are more terse and dispense with many of the social niceties
that would be expected in conversation with a human. In the following discus-
sion, we will characterize these two tendencies with the keywords “social” (for
cluster 1) and “factual” (for cluster 2). These keywords are solely intended as
descriptors of user behavior; they should not be taken to allude to stereotypical
views of older users.

5.1.2 Social Older Users versus Factual Older Users. Table VIII presents
the differences between older users in the Social and older users in the Factual
cluster. Overall, the differences between the two groups of older users mirror
the differences between the two clusters. However, there are a few commonal-
ities across clusters. Older users from both clusters are less likely to use “yes”,
and more likely to use alternatives to “yes” (category pos) for affirmative an-
swers. They are also equally likely to use grounding speech acts, and to repeat
information. In addition, they share a tendency to use words associated with
talking about the dialog (category meta).

5.1.3 Age-Group Differences Between Factual Users. Table IX shows that
the behavior of older “factual” users barely differs from that of younger “fac-
tual” users. The only significant difference is the number of affirmative expres-
sions other than “yes” (pos). Weakly significant differences include the amount
of metacommunication, where “factual” older users behave like their more
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Table VIII. Frequency of Features by Cluster (Older Users Only)

Group Measure Social Factual Sig.

Dialog Turns 80.36 66.75 p < 0.013 .
Words 358.64 115.00 p < 0.000 ***

Word Forms 101.73 35.88 p < 0.000 ***
Avg. Word Form Freq. 3.47 3.27 p < 0.869 n.s.
Distinct Speech Acts 136.82 79.25 p < 0.000 ***

Total Speech Acts 16.45 9.88 p < 0.001 **
Confirmations 31.91 30.12 p < 0.17 n.s.

Grounding 33.09 30.12 p < 0.089 n.s.
Initiative 19.00 1.38 p < 0.000 ***

Speech Act Groups Provide 15.45 1.25 p < 0.000 ***
Reprovide 3.27 0.12 p < 0.001 **

Block 1.45 0.00 p < 0.064 n.s.
Request 4.64 0.00 p < 0.016 .
Repeat 1.09 0.25 p < 0.481 n.s.
Social 33.91 5.50 p < 0.000 ***

Garbage 6.09 0.88 p < 0.002 **
Word Groups Yes 16.36 23.25 p < 0.117 n.s.

No 2.27 6.00 p < 0.013 .
Positive 9.45 5.62 p < 0.135 n.s.
Negative 1.64 0.75 p < 0.128 n.s.
Thanks 9.64 1.25 p < 0.001 **

Bye 4.64 0.62 p < 0.004 **
Please 14.27 3.00 p < 0.001 **
Hello 0.27 0.00 p < 0.117 n.s.
Sorry 0.73 0.25 p < 0.422 n.s.
Meta 5.64 0.75 p < 0.066 n.s.
Extra 1.45 0.12 p < 0.416 n.s.
Modal 7.73 0.38 p < 0.001 **
Qual 3.82 0.00 p < 0.003 **

.: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001 or better.

“social” counterparts, the number of turns, which is higher for older users,
and the number of distinct speech acts.

5.2 Users Adapting to the System

Another interesting aspect of interaction style is the extent to which users
adapt to the system. As we have seen in Section 2, people tend to change how
they speak when they interact with another person, and this accommodation
may even extend to artificial interlocutors. It is difficult to assess whether our
participants changed their behavior in response to the system, since they were
presented with nine system variants and only had one conversation with each
of these. However, the systems were very similar in several key aspects.

—Discouraging User Initiative and Overanswering. The dialogs were tightly
scripted. Users were required to react to options suggested by the system.
By default, options were generated randomly. Information that the system
had not explicitly asked for was not taken into account. This is typical of
system-initiative SDS and a very common way of making systems more ro-
bust. Moreover, the “wizard” was unable to overtly acknowledge or repeat
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Table IX. Frequency of Features by Age Group (Factual Users Only)

Group Measure Older Younger Sig.

Dialog Turns 66.75 59.00 p < 0.04 .
Words 115.00 92.43 p < 0.087 n.s.

Word Forms 35.88 27.33 p < 0.059 n.s.
Avg. Word Form Freq. 3.27 3.42 p < 0.494 n.s.
Distinct Speech Acts 79.25 70.71 p < 0.142 n.s.

Total Speech Acts 9.88 8.33 p < 0.041 .
Confirmations 30.12 29.29 p < 0.489 n.s.

Grounding 30.12 29.29 p < 0.489 n.s.
Initiative 1.38 1.81 p < 0.781 n.s.

Speech Act Groups Provide 1.25 1.76 p < 0.761 n.s.
Reprovide 0.12 0.05 p < 0.47 n.s.

Block 0.00 0.00 n/a
Request 0.00 0.19 p < 0.537 n.s.
Repeat 0.25 0.19 p < 0.328 n.s.
Social 5.50 3.71 p < 0.302 n.s.

Garbage 0.88 0.19 p < 0.161 n.s.
Word Groups Yes 23.25 26.57 p < 0.221 n.s.

No 6.00 6.52 p < 0.695 n.s.
Positive 5.62 0.19 p < 0.003 **
Negative 0.75 0.95 p < 0.875 n.s.
Thanks 1.25 0.19 p < 0.129 n.s.

Bye 0.62 0.10 p < 0.058 n.s.
Please 3.00 3.29 p < 0.539 n.s.
Hello 0.00 0.14 p < 0.374 n.s.
Sorry 0.25 0.14 p < 0.502 n.s.
Meta 0.75 0.05 p < 0.02 .
Extra 0.12 0.00 p < 0.105 n.s.
Modal 0.38 0.05 p < 0.106 n.s.

.: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001 or better.

back additional information offered by the user, because there were no mes-
sage templates for such utterances. Thus, users should provide less addi-
tional information in the later dialogs than in the earlier ones.

—Factual System Prompts. All prompts were designed to be neutral, clear,
and concise. In addition, the “wizard” was unable to react to social chit-
chat. Thus, users should be less likely to use social dialog acts and words
associated with interpersonal interaction in the latter dialogs.

We identified six markers that are relevant to these two points and occur
reasonably frequently in the data: the frequency of provide * and reprovide *

speech acts (taking initiative and overanswering), the frequency of social
speech acts, and the respective frequencies of the three word groups “thanks”,
“bye”, and “please”. The number of occurrences of each of these markers in the
first three dialogs was compared to their frequency in the last three dialogs.
Since the sequence of dialog systems was randomized for each user, the distri-
bution of conditions in the first three dialogs and in the last three dialogs is
the same (Wilcoxon test, p< 0.9). Hence, it is feasible to statistically compare
aggregate data from these two groups of dialogs.

Figure 8 shows a sample dialog where the user both takes the initiative and
includes many social elements. This particular exchange took place right after
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Fig. 8. Overanswering with social speech acts.

Fig. 9. Overanswering with blocking.

Table X. Frequency of Key Features in First Three versus Last Three Dialogs by Cluster

Measure Social Cluster Factual Cluster
First 3 Last 3 Sig. First 3 Last 3 Sig.

Social 12.58 11.50 p < 0.488 n.s. 3.41 0.83 p < 0.008 *
Provide 6.42 5.92 p < 0.5 n.s. 1.10 0.24 p < 0.001 **
Reprovide 1.42 0.83 p < 0.137 n.s. 0.07 0.00 p < 0.167 n.s.
Thanks 3.42 3.58 p < 0.637 n.s. 0.52 0.00 p < 0.011 .
Bye 2.00 1.08 p < 0.032 . 0.14 0.07 p < 0.095 n.s.
Please 4.58 4.67 p < 0.547 n.s. 2.38 0.72 p < 0.014 .

.: p<0.5, *: p<0.01, **: p<0.001, ***: p<0.0001 or better.

the start of the dialog, after the system greeting. We see three social speech
acts: The user greets the system with “good morning”, qualifies a request with
“if at all possible”, and asks for confirmation with “thanks”.

The user also provides four pieces of information (hence the four
provide info speech acts), namely day and time for two alternative appoint-
ments. Figure 9 comes from the next stage of the dialog, where the half-day
is agreed. The user explicitly accepts one of the options, Friday morning, but
then goes on to specify a time slot that is impossible (provideblock info) and
a time slot that is suitable (provide info).

The results are summarized in Tables X through XII. The tables show mean
differences in frequency between the first and the last dialogs. Table X shows
changes in behavior by cluster. Users in the Social cluster only become less
likely to sign off with “good-bye”. Users in the Factual cluster, on the other
hand, change their behavior in the expected direction: less overanswering,
fewer social speech acts, fewer social responses. When we unpick this tendency
further, we notice a clear difference between older users in the two clusters
(refer to Table XI): Older users in the Factual cluster adapt more aspects of
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Table XI. Frequency of Key Features by Cluster (Older Users Only)

Measure Older (Social Cluster) Older (Factual Cluster)
First 3 Last 3 Sig. First 3 Last 3 Sig.

Social 13.18 11.45 p < 0.346 n.s. 4.75 0.75 p < 0.084 n.s.
Provide 6.36 6.09 p < 0.579 n.s. 0.88 0.00 p < 0.006 *
Reprovide 1.55 0.82 p < 0.089 n.s. 0.00 0.00 p < 1 n.s.
Thanks 3.73 3.45 p < 0.408 n.s. 1.50 0.00 p < 0.038 .
Bye 1.91 1.18 p < 0.072 n.s. 0.25 0.25 p < 0.35 n.s.
Please 4.73 4.45 p < 0.382 n.s. 2.38 0.38 p < 0.046 .

.: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001 or better.

Table XII. Frequency of Key Features by Age Group (Factual Users Only)

Measure Older (Factual Cluster) Younger (Factual Cluster)
First 3 Last 3 Sig. First 3 Last 3 Sig.

Social 4.75 0.75 p < 0.084 n.s. 2.90 0.86 p < 0.025 .
Provide 0.88 0.00 p < 0.006 * 1.19 0.33 p < 0.014 .
Reprovide 0.00 0.00 p < 1 n.s. 0.10 0.00 p < 0.17 n.s.
Thanks 1.50 0.00 p < 0.038 . 0.14 0.00 p < 0.081 n.s.
Bye 0.25 0.25 p < 0.35 n.s. 0.10 0.00 p < 0.081 n.s.
Please 2.38 0.38 p < 0.046 . 2.38 0.86 p < 0.063 n.s.

.: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001 or better.

their interaction style to the system than older users in the Social cluster.
Within the Factual cluster, older users again behave much like younger users
(Table XII).

5.3 Predicting Older Users’ Interaction Style

Now that we have identified two very distinct patterns of interaction style, it
would be useful to find a way of determining which group a given user will fall
into. The obvious candidate is age. If we assign users to clusters by majority
vote, then almost all younger users (96%) belong to the Factual cluster. So, for
younger users, age group predicts interaction style fairly well. Older users, on
the other hand, are split. 35% of the 26 older users are in the Factual cluster,
either unambiguously (8 users) or by majority vote (1 user).

In order to attempt to predict the interaction style of an older user, we now
look for significant differences in cognitive abilities and demographic variables.
There is a slight difference in chronological age between older users in the two
clusters (Social cluster: M=67, SD=9.5 years, Factual cluster: M=62, SD=5.8
years), but this is not statistically significant (Kruskal-Wallis test, p<0.21).
There is also no significant difference in gender distribution (p<0.37) or years
of education (p<0.45) between older users in the Factual cluster and those in
the Social cluster. This leaves us with our last potential explanatory variable,
cognition. As Table XIV demonstrates, none of the four aspects of cognition we
tested can account for differences in interaction style, even though younger and
older users in the Factual cluster differ significantly on all cognitive measures
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Table XIII. Differences in Cognitive Abilities Between Age Groups (Factual Cluster)

Measure Older Younger Sig.
Mean Stddev Mean Stddev

Ravens 49.00 6.84 54.64 3.55 p < 0.006 *
MillHill 52.58 7.81 42.23 6.91 p < 0.004 **
DSST 52.11 11.68 75.59 8.57 p < 0.000 ***
SentSpan 31.22 16.57 37.09 15.59 p < 0.981 n.s.

.: p<0.05, *: p<0.01, **: p<0.001, ***: p<0.0001 or better.

Table XIV. Differences in Cognitive Abilities Between Clusters (Older Users Only)

Measure Social Factual Sig.
Mean Stddev Mean Stddev

Ravens 48.36 8.35 49.88 4.39 p < 0.934 n.s.
MillHill 53.36 9.67 51.50 4.57 p < 0.214 n.s.
DSST 51.45 14.22 53.00 7.75 p < 0.869 n.s.
SentSpan 28.40 16.86 34.75 16.61 p < 0.286 n.s.

except SentSpan (Table XIII).1 We will discuss this finding in the context of
the literature on cognitive aging and social cognition in Section 6.

5.4 Interaction Style and Usability

Now that differences in interaction style have been firmly established, the final
question is: Do they affect usability? Since the two interaction styles require,
at the very least, different language models, usability of a full SDS will defi-
nitely suffer if the social users cannot be accommodated, especially given that
these users are the least likely to adapt their behavior to the system. Even in
our WoZ experiments, where speech recognition and language understanding
are near perfect, we can detect important differences in usability between the
two groups.

First, we examine task success. Overall, users in the two clusters do not
differ significantly in terms of task success (Kruskal-Wallis test, p<0.441 not
significant). Looking at each cluster in turn, we found no significant effect of
dialog strategy on performance. This fits well with our previous analyzes of
the complete dataset [Wolters et al. 2009].

When it comes to efficiency, on the other hand, we find very clear differ-
ences between the clusters, as we have discussed earlier. “Social” users take
significantly longer to reach their goal than “factual” users (refer to Table VII).

The clusters also differ in terms of user satisfaction. Table XV shows the
main significant differences in user ratings between “social” and “factual”
users. We examined differences in ratings for all 38 interval-scaled and ordi-
nal items in the questionnaire, excluding the binary perceived task completion.
“Social” users are invariably more negative than “factual” users. They notice

1Incindentally, despite the large age range, there is no correlation between chronological age and
working memory span, Ravens scores, or the MillHill vocabulary test results in our population.
We do find a significant correlation between information processing speed and age (Pearson’s
ρ=-0.502, p < 0.009).
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Table XV. Differences in User Satisfaction Between Clusters

Feature Social Factual Sig

Overall impression 3.46 3.69 p < 0.076 n.s.
Did not do what I wanted 2.67 2.24 p < 0.000 ***
System info clear 3.76 3.97 p < 0.001 **
System info incomplete 2.39 2.10 p < 0.001 **
System efficient 3.70 3.71 p < 0.682 n.s.
System unreliable 2.35 2.05 p < 0.000 ***
System understood me 3.27 3.78 p < 0.000 ***
Knew what to say to system 3.40 3.67 p < 0.002 **
Had to concentrate to hear 2.94 2.68 p < 0.007 *
System natural 2.55 2.93 p < 0.002 **
System slow 3.08 2.89 p < 0.081 n.s.
System friendly 2.96 3.36 p < 0.003 **
System reactions not as expected 2.89 2.48 p < 0.000 ***
System’s expectations not clear 2.71 2.48 p < 0.009 *

Too many errors 2.16 1.93 p < 0.000 ***
Easy error recovery 3.30 3.26 p < 0.198 n.s.
System like human 2.54 2.83 p < 0.015 .
System cooperative 3.31 3.74 p < 0.000 ***
Easy to lose way in dialog 2.51 2.17 p < 0.000 ***
Conversation unnatural 3.22 2.82 p < 0.002 **
Could Direct Conversation 2.90 2.90 p < 0.819 n.s.
Conversation too long 2.57 2.72 p < 0.706 n.s.
Reached aim quickly 3.41 3.49 p < 0.141 n.s.
Conversation balanced 3.04 3.10 p < 0.852 n.s.
System pleasant 3.00 3.21 p < 0.224 n.s.
Felt relaxed 3.11 3.43 p < 0.005 *
Had to concentrate mentally 3.11 2.82 p < 0.005 *
Fun to use 2.33 2.92 p < 0.000 ***
Satisfied with system 3.13 3.69 p < 0.000 ***
System difficult to use 2.34 2.17 p < 0.002 **
System easy to learn 3.75 4.02 p < 0.000 ***
System comfortable to use 3.08 3.47 p < 0.001 **
System inflexible 2.89 2.77 p < 0.284 n.s.
System not helpful 2.64 2.19 p < 0.000 ***
Would prefer different way 3.61 3.32 p < 0.007 *
Will use system again 3.33 3.56 p < 0.009 *
System like receptionist 2.83 3.07 p < 0.042 .
Using system is worthwhile 3.34 3.65 p < 0.000 ***

.: p<0.05, *:p<0.01, **:p<0.001, ***:p<0.0001 or better.

that the systems do not react to their initiative, and rate the systems as less
friendly and natural. They also report greater effort in using the system, and
are significantly less satisfied overall and less likely to use the system again.

These judgements are tied to interaction style, not to age. When we examine
differences between older and younger users in the Factual cluster (Table XVI),
we see that, overall, older users are more positive than younger users. They
are more likely to rate the system as being like a human and natural, while
younger users show some frustration with the length of dialogs.

In summary, these analyzes show that it is not primarily age that affects key
aspects of usability such as efficiency or user satisfaction. Instead, it appears
to matter whether the system can accommodate the user’s interaction style.
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Table XVI. Differences in User Satisfaction Between Age Groups (Factual Cluster)

Feature Older Younger Sig

Overall impression 3.74 3.67 p < 0.751 n.s.
Did not do what I wanted 2.27 2.22 p < 0.372 n.s.
System info clear 3.88 4.00 p < 0.36 n.s.
System info incomplete 2.13 2.09 p < 0.445 n.s.
System efficient 3.81 3.66 p < 0.14 n.s.
System unreliable 2.07 2.04 p < 0.46 n.s.
System understood me 3.79 3.78 p < 0.808 n.s.
Knew what to say to system 3.72 3.65 p < 0.543 n.s.
Had to concentrate to hear 2.57 2.73 p < 0.243 n.s.
System natural 3.33 2.76 p < 0.000 ***
System slow 2.58 3.03 p < 0.003 **
System friendly 3.34 3.37 p < 0.431 n.s.
System reactions not as expected 2.61 2.43 p < 0.241 n.s.
System’s expectations not clear 2.34 2.54 p < 0.228 n.s.
Too many errors 1.97 1.91 p < 0.229 n.s.
Easy error recovery 3.23 3.27 p < 0.717 n.s.
System like human 3.21 2.67 p < 0.000 ***
System cooperative 3.71 3.75 p < 0.608 n.s.
Easy to lose way in dialog 2.12 2.19 p < 0.394 n.s.
Conversation unnatural 2.76 2.85 p < 0.681 n.s.
Could Direct Conversation 2.87 2.92 p < 0.842 n.s.
Conversation too long 2.37 2.86 p < 0.002 **
Reached aim quickly 3.56 3.45 p < 0.759 n.s.
Conversation balanced 3.45 2.96 p < 0.000 ***
System pleasant 3.21 3.21 p < 0.604 n.s.
Felt relaxed 3.41 3.44 p < 0.798 n.s.
Had to concentrate mentally 2.77 2.85 p < 0.641 n.s.
Fun to use 2.83 2.95 p < 0.208 n.s.
Satisfied with system 3.53 3.76 p < 0.057 n.s.
System difficult to use 2.23 2.15 p < 0.537 n.s.
System easy to learn 3.89 4.07 p < 0.121 n.s.

System comfortable to use 3.28 3.56 p < 0.044 .
System inflexible 2.60 2.84 p < 0.124 n.s.
System not helpful 2.34 2.13 p < 0.066 n.s.
Would prefer different way 3.43 3.27 p < 0.237 n.s.
Will use system again 3.38 3.63 p < 0.079 n.s.
System like receptionist 3.07 3.07 p < 0.955 n.s.
Using system is worthwhile 3.57 3.68 p < 0.419 n.s.

.: p<0.05, *:p<0.01, **:p<0.001, ***:p<0.0001 or better.

6. DISCUSSION

Our analysis yields the following answers to our research questions (Section 1).

(1) Can users be categorized into distinct groups? Yes. The interaction style of
older and younger users falls into two main groups, a “social” group which
is characterized by more interpersonal communication, higher verbosity,
and great variability between users, and a “factual” group that is charac-
terized by the ability to adapt to the system, a concise communication style,
and fairly uniform behavior.
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(2) Can the interaction style of older users be predicted? Not from the data
available to us. Whether a user falls into the “social” or the “factual”
group cannot be predicted by age, gender, years in education, or cognitive
abilities. Although older users dominate the “social” group, and younger
users the “factual” group, a considerable minority of older users behave
like younger users.

(3) Does interaction style affect usability? Yes. Interaction style affects effi-
ciency and user satisfaction: “Social” users are less efficient and less satis-
fied with the system, which is tailored to the “factual” interaction style.

Our “social” older users conformed in several ways to the predictions made
by research into aging. In terms of language production, they were more likely
to supply additional information, which led to a more complex discourse. They
also used a richer vocabulary. In terms of social cognition, they did not adapt
to the very formulaic interaction offered by the system; instead, they tended
to interact with the computer as they would with a human. This includes
politeness markers and social speech acts that are not only unnecessary, but
also likely to severely confuse an actual end-to-end SDS. Our “factual” older
users, on the other hand, did not conform to these predictions at all; in fact,
they were virtually indistinguishable from younger users.

6.1 Implications for Research

These results illustrate the need to include a wide variety of users of all ages
in datasets for research into speech and language interfaces. Since older users
may well behave just like younger users, it is important to recruit a substantial
range and number of people. All five components of SDS will benefit greatly
from corpora that contain a substantial number of older users. For illustra-
tion purposes, we discuss one aspect in depth, building statistical models for
simulating user behavior [Schatzmann et al. 2006].

User simulations are a cornerstone of statistical approaches to spoken di-
alog systems. Data collection with real users requires substantial time and
effort. In addition, every time a dialog strategy is modified, all experiments
with human users must be restarted from scratch. Simulated users, on the
other hand, allow different dialog policies to be tested efficiently and cost effec-
tively. Using statistical techniques for learning dialog policies with simulated
users enables exploration of strategies that are not present in existing corpora
of human-machine dialogs. The systems can then learn new and potentially
better dialog strategies.

What constitutes a good user simulation model is still an open question
[Schatzmann et al. 2006; Georgila et al. 2008]. It is generally accepted in the
field that the more diverse the available data, the more likely it is to train
simulated users that capture realistic user behavior [Schatzmann et al. 2006].
Therefore it is important that simulated users are trained on large corpora
representative of a wide range of user behaviors. Current corpora used for
training simulated users, such as the DARPA Communicator corpus of flight-
booking dialogs [Walker et al. 2002], do not appear to have been designed to
ensure older people are sufficiently represented. It would be interesting to
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see whether a group similar to our Social users can be found in the DARPA
Communicator corpus.

Our data is also restricted by the fact that our simulated systems were
strictly system-initiative. We chose this approach because the original cog-
nitive psychology experiment demanded that all users be exposed to the
chosen dialog strategy several times during the dialog. We achieved this by
imposing a clear, inflexible structure on all dialogs. However, as we have seen,
our “social” users did not take kindly to this fixed, system-initiative structure.
Thus, we hypothesize that a mixed-initiative approach would lead to higher
efficiency and greater user satisfaction for this user group. Although well-
designed mixed-initiative dialog systems can outperform comparable system-
initiative dialog systems in terms of both user satisfaction and task efficiency
[Chu-Carroll and Nickerson 2000], in practice, any mixed-initiative system
that is tested with older users should also include system-initiative dialogs be-
cause these are a useful fall-back strategy for error recovery [Chu et al. 2007].

We recognize that our results are limited by the characteristics of our par-
ticipant pool. Overall, both younger and older users were highly educated.
Since the majority of older users were recruited from the participant pool of
the Department of Psychology, University of Edinburgh, they may well be un-
usually open to experience and interested in technology. We would expect to
find similar clusters in a more diverse population.

Another open question is whether the interaction style of older users can be
predicted from user characteristics, and if yes, from which. The only predictor
we found, age, was unreliable, and cognitive abilities did not explain any of
the remaining variation. There are three additional candidates for predictors
which we have not considered yet: attitude to technology, personality, and so-
cial cognition. Measures such as computer anxiety and computer self-efficacy
affect whether older people will use technology [Ellis and Allaire 1999; Czaja
et al. 2006]. Computer anxiety has been shown to affect the efficiency with
which younger and older people perform computer-related tasks [Mahar et al.
1997; Laguna and Babcock 1997]. Personality is not only linked to computer
anxiety, it also affects a person’s interaction style, in particular in terms of vo-
cabulary [Mairesse et al. 2007; Pennebaker et al. 2003]. Social cognition, in
particular the capacity for theory of mind, is potentially even more important.
Our “social” older users not only treated the computer system more like a hu-
man than like a computer, they were also less likely to adapt to the system’s
interaction style.

6.2 Implications for Design

Our “social” users pose real challenges for system design. They are more likely
to use synonyms for simple answers such as “yes” or “no”, more likely to ask
for help and use meta-communication, more likely to be sociable, and more
likely to supply the system with information that it cannot process. In related
work on the present corpus, we have shown that the ASR component will need
more sophisticated language models to accommodate the additional vocabulary
[Vipperla et al. 2009]. The NLU module will require adequate strategies for
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identifying and discarding irrelevant material. However, due to the added com-
plexity, such ASR and NLU systems are also more likely to fail. It remains to
be seen whether the benefit of adapting to the user’s preferred interaction style
outweighs the added cost of error recovery dialogs and task failures. Other use-
ful measures include using task-specific help prompts early on in the dialog
[Zajicek et al. 2004; Wolters et al. ms], improving problem detection [Walker
et al. 2002], and better error recovery [Skantze 2005; McTear et al. 2005]. It
also remains to be seen what happens when our “social” users are faced with
an end-to-end dialog system that is unable to process social speech acts and
unexpected provision of information. It is not clear whether these users would
be able to adopt a more effective interaction style, or whether they would give
up in frustration. We would expect to see both outcomes.

In terms of dialog management and language generation, our usability re-
sults suggest that “social” users expect the system to adapt to their interaction
style. This may mean that system prompts and messages need to be more po-
lite and that the system may well benefit from adding appropriate social dialog
acts. Note that such changes could be counter-productive for “factual” users,
who value efficiency highly.

Based on our results, we would also caution against using a uniform “older
people strategy” for all older users. Our “factual” older users actually slightly
preferred the pared-down highly efficient systems they were presented with
(Table XVI). As for the “social” cluster, the behavior of users in this cluster
is highly variable (see Figure 7). This supports the user-sensitive inclusive
design strategy of Newell and Gregor [2000]. The most extreme users are the
most verbose ones with the largest vocabulary. A SDS with which these users
can interact successfully should be able to handle most of the users in the
“social” cluster relatively easily.

If designers prefer to work with “representative” users, these can be found
with the pam cluster method. For all four datasets, pam led to reasonable parti-
tions of the dataset. A solution based on this clustering technique was among
the top four algorithms for each feature set.

7. CONCLUSION

In this article, we have shown that being old does not necessarily mean acting
old. Even though older users were more likely to have a “social” interaction
style than younger users, a sizeable proportion of older users preferred the
same “factual” interaction style as younger users.

We plan to annotate the corpus further to allow more detailed analyzes of
both language and usability. This should yield additional insights into the re-
lation between interaction style and usability. Linguistic analyses will include
part-of-speech tagging and basic syntactic analysis, while usability annota-
tions will focus on problems and misunderstandings. They will be annotated
using the schema outlined by Möller et al. [2007]. We will also run more de-
tailed acoustic analyses to investigate the function of disfluencies and look for
evidence of language production difficulties such as word finding problems.
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It remains to be seen whether the clusters observed in our dataset can
be replicated in other domains with more challenging tasks, and to what ex-
tent including full ASR and NLU will affect users’ behavior. To this end, we
plan to collect and analyze a corpus of interactions between older and younger
users and a flight-booking system [Winterboer and Moore 2007; Moore et al.
2004]. For this experiment, the test battery will be expanded to cover some of
the potential influences on interaction style discussed in Section 6.1 such as
computer anxiety and theory of mind.

Finally, our findings need to be verified against deployed systems in the
field. Ai et al. [2007] found that both word use and dialog act frequency differed
between participants in laboratory experiments and real users in the field.
For example, real users were more likely to request help than participants in
experiments. It remains to be seen whether our “factual” older users would be
just as factual in the real world, or whether they are likely to at least partially
revert to a more “social” interaction style.
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