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Abstract
This thesis presents work done on compressed graph representations via hyperedge replacement
grammars. It comprises two main parts. Firstly the RePair compression scheme, known for
strings and trees, is generalized to graphs using graph grammars. Given an object, the scheme
produces a small context-free grammar generating the object (called a “straight-line grammar”).
The theoretical foundations of this generalization are presented, followed by a description of a
prototype implementation. This implementation is then evaluated on real-world and synthetic
graphs. The experiments show that several graphs can be compressed stronger by the new
method, than by current state-of-the-art approaches.

The second part considers algorithmic questions of straight-line graph grammars. Two algorithms
are presented to traverse the graph represented by such a grammar. Both algorithms have
advantages and disadvantages: the first one works with any grammar but its runtime per traversal
step is dependent on the input grammar. The second algorithm only needs constant time per
traversal step, but works for a restricted class of grammars and requires quadratic preprocessing
time and space. Finally speed-up algorithms are considered. These are algorithms that can
decide specific problems in time depending only on the size of the compressed representation,
and might thus be faster than a traditional algorithm would on the decompressed structure. The
idea of such algorithms is to reuse computation already done for the rules of the grammar. The
possible speed-ups achieved this way is proportional to the compression ratio of the grammar.
The main results here are a method to answer “regular path queries”, and to decide whether
two grammars generate isomorphic trees.
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Lay Summary
Data can take many forms. For one example, consider social networks. Here we have people
and the relations (say, friendships) between them. In general terms, such data is called a graph.
A graph consists of nodes (e.g., people) and edges connecting the nodes (e.g., if two people
are friends, there is an edge between them). As there are many people using such networks,
this data can get very large. When dealing with large data, it is common to use compression
methods. These are algorithms, that represent the data given in a smaller way than the explicit
representation. In our example, consider two people Alice and Bob, who know each other and
thus have many friends in common. There is no need to store these common friends twice, it
would instead suffice to represent them once and link both, Alice and Bob, to this common
representation.

One particular method of compression is called grammar-based or dictionary compression. It
works by finding recurring elements in the input data, removes them, and instead represents
these elements using just one small symbol. This small symbol is further attached to a rule that
stores the original recurring data, but only once instead of many times. Thus, we can recover
the original data from the representing symbols. This thesis presents one way of doing this with
graph data.

Compression usually comes at the cost that accessing the data takes longer than before, because
it needs to be decompressed first. One advantage of grammar-based compression is, that this
is not always the case. This is, because there exists a hierarchy on the symbols, and thus the
recurring elements of the original data. With some queries, it is possible to use this hierarchy,
and compute partial results of the query on only the recurring elements. These partial results
can then be reused further up in the hierarchy and thus do not need to be computed again. This
has the potential to lead to faster computation of specific queries, with a speed-up proportional
to the compression ratio, which is by how much the representation is smaller than the original
data. We present two queries, for which this is possible in the proposed representation.
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Chapter 1

Introduction

Part of the nature of technology is its constant evolution. Amongst other areas, this is very
visibly exemplified by our capacity to store data. For example, in the ten years between 1997
and 2007 the capacity of commercially available hard disk drives grew by more than an order of
magnitude: the IBM Deskstar 16GP of 1997 had a capacity of 16 GB, whereas 2007 saw the
release of the first 1 TB hard disk drive (Hitachi Deskstar 7K1000) – at about the same price
the IBM drive was 10 years prior. Development has slowed since, with hard drives as of 2017
being in the realm of 10 TB capacities, but networked storage in the “cloud” has been becoming
of increasing importance offering virtually unrestricted capacities. At the same time, the ability
to generate and collect more data, has sped up by at least the same amount, in some areas,
possibly even faster. It is therefore of paramount importance to find ways to computationally
deal with this data. As it is not feasible to wait for the storage capacity to catch up, compression
is a popular method to do so. This allows to store the same amount using less space, while
preserving the ability to access the data, albeit usually at slower speeds, as it needs to be
decompressed first. Some of this dramatically increased amount of data is naturally represented
using graphs. To give a few examples: internet search engines often use a network representation
of the internet to rank the search results (they use the structure of the graph to estimate, which
pages are most important, see e.g. PageRank [BP98]). The rising popularity of online social
networks is another example. They have attracted a vast amount of users, whose connections
are naturally modelled as a graph. Social network analysis is a key method of modern sociology
with applications in many other fields (see e.g. [OR02]). Particularly visible to the general
public is the use of this data in journalism, e.g. through the use of Twitter trends to provide
insight into current events. A third example is the semantic web, an effort to annotate websites
with semantic information, enabling new ways to search and explore data on the internet. A
key technology of the semantic web is the Resource Description Framework (RDF), commonly
represented in a graph format. These applications may intersect. Facebook introduced graph
search in 2013 (however, it has since been deactivated again) combining social graphs with
semantic information. The search allowed users to explore the underlying graph structure of the
social network using semantic search terms given in natural language. In conclusion, this makes
graph compression a specific area of interest.

1



2 Chapter 1. Introduction

This thesis presents a method of grammar-based compression for graphs, generalizing a well-
known approximation algorithm from trees (and strings) to graphs. It further discusses the
algorithmic aspects, particularly regarding speed-up algorithms. These are algorithms that
can use the structure of the compressed representation to achieve a faster computation in
comparison with an algorithm that runs on the uncompressed data, despite the usual slow-down
in query-performance with compressed data. The remainder of this introduction gives a high-level
overview of the methods used in the thesis and some of the results achieved.

1.1 Grammar-Based Compression

A popular formalism for compression is to use a context-free grammar G syntactically restricted
such that its language is guaranteed to consist of only one element, referred to as val(G). These
grammars are called straight-line grammars. Consider as an example the grammar

S → B_is_B_andA_B

A→ _I_am

B → whatA

It represents the string “what_I_am_is_what_I_am_and_I_am_what_I_am”, which is 41 charac-
ters long. The grammar on the other hand only consists of 23 characters (we count the size of a
grammar by summing over the sizes of its right-hand sides). The grammar thus is a compressed
representation of the original string. A reason for the success of grammar-based compression
is its mathematical simplicity and the ability to capture classical compression schemes, such
as variants of the popular Lempel-Ziv family of compressors [CLL+05]. Unfortunately, that
same paper also proves that finding a grammar of minimal size is NP-complete, making exact
solutions infeasible. It then considers various approximations. One of these is the RePair-
algorithm invented by Larsson and Moffat [LM00], which follows a simple yet effective idea: a
most frequently occurring digram (pair of adjacent symbols) is replaced by a fresh nonterminal
generating the digram as its rule. This process is recursively repeated until no digram appears
more than once. For example: given the string abcabcab, RePair first replaces every occurrence
of ab by a new nonterminal A, yielding the string AcAcA. Now the digram Ac appears twice
and is thus replaced by B, which results in the final grammar

S → BBA

A→ ab

B → Ac

of size 7 compared to the original string, which has size 8. RePair was generalized to node-
labelled, ordered, ranked trees using context-free tree grammars in [LMM13]. A major part
of the present work is the further generalization of this method to edge-labelled graphs, using
graph grammars. In the graph grammars used here, edges may be labelled by a nonterminal.
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Figure 1.1: Example of a graph grammar with three nonterminal edges (a) and its full derivation (b).
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Figure 1.2: A digram replacement step resulting in the grammar of Figure 1.1a.

A nonterminal edge is, during the derivation, replaced by a right-hand side of an associated
rule, just like with context-free string grammars. The difference is, that a string automatically
provides an order (from left to right) and thus the insertion of the right-hand side is well defined.
With graphs more information is necessary: replacing an edge should logically involve the nodes
it is incident with, but further information is needed in the right-hand side of the rule to specify
how and where it is connected with the remaining graph. This is done with specially marked
external nodes, which are merged, in order, with the nodes incident with the nonterminal edge
being replaced. Consider for example Figure 1.1a. It shows a graph with three nonterminal
edges labelled A, and the corresponding rule for A. The right-hand side of this rule has two
external nodes, which we fill black and label by their order. Figure 1.1b shows a full derivation
of this grammar. During a derivation step, a nonterminal edge is removed and a disjoint copy
of the right-hand side is added to the graph. Then the external nodes are merged, in order,
with the nodes that were incident to the removed edge. As with strings above, we see that this
structure is compressing: the startgraph has three edges and two nodes, the right-hand side of
A has two edges and three nodes, resulting in a total size of 10. The derived graph on the other
hand has five nodes and six edges, i.e., a size of 11.

Of course, to compress a graph using graph grammars this process is done in reverse. One of the
first steps to generalize RePair is the definition of a digram. For strings, a digram is a pair of
consecutive symbols. For trees a digram is a node, its j-th edge to a child, and that child node.
When generalizing RePair to graphs, we define a digram as a pair of edges that share an incident
node. Thus, the digram replacement shown in Figure 1.2 leads to the grammar of Figure 1.1a.
Note that the digram used – an a edge followed by a b edge – was the most frequent one with
three non-overlapping occurrences. The three a-edges (or the b-edges) also make three distinct
occurrences, but any two of those have one edge in common. Thus they overlap and only one
non-overlapping occurrence exist. This is important, as two overlapping occurrences cannot be
replaced. In a first step, we want to find an initial set of non-overlapping occurrences of maximal
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Figure 1.3: Two different traversals for counting digram occurrences.

size for every digram. This is one of the most important challenges faced in this generalization.
It is possible to find such a set for a digram in at most O(n4) time, but this is not feasible
in practice. With strings and trees it can be easily shown that searching for occurrences in a
greedy traversal following a specific order (left to right for strings, post-order for trees) always
results in a set of non-overlapping occurrences of maximal size. Unfortunately such an order is
unknown for graphs and the order during a greedy traversal can have a significant effect on how
many occurrences are found. Consider for example Figure 1.3. We count occurrences of digrams
consisting of two a-labelled edges by using the edges incident to the currently visited central
node. Starting in the centre node of the graph (node 1 in Figure 1.3a) two such occurrences
are found. If on the other hand the central node is avoided and the nodes are visited in the
order indicated in Figure 1.3b the maximal amount of four occurrences can be found. For this
reason we evaluate four different node-orders using a prototype implementation. Out of those,
an order inspired by the Weisfeiler-Lehman method to test for isomorphism [WL68] works best
in our evaluation. It orders the nodes by first ordering them by their degrees and then refines
this order using the neighbourhoods until a fixed point is reached.

Consider further the graph in Figure 1.4a: it is a slight variation of the graph in Figure 1.2.
This small variation has an important effect. The digram replacement used before in Figure 1.2
is no longer possible. This is because, when replacing the same occurrences as before, the two
edges labelled c are now missing the nodes they are attached to. However, by that reasoning
there is no pair of edges that can be replaced by a simple nonterminal edge, as every node
incident to any chosen pair is also incident to at least one edge not part of that pair. As this
is a common phenomenon in graphs, we introduce hyperedges, which are edges that can be
attached to more than two nodes. We refer to the number of nodes an edge is attached to,
as its rank. Consequently, the right-hand side of a rule for a hyperedge may also have more
than two external nodes. In fact, it is enforced that two edges of the same label always have
the same rank. Further, if a nonterminal has edges of rank k, then the right-hand side of its
associated rule must have k external nodes. Otherwise the derivation is not well defined. The
use of hyperedges complicates the size definition of a graph. Consider the digram replacement in
Figure 1.4b: it is the equivalent of the previously used one, now using hyperedges. Hyperedges
are drawn using boxes with the label, which are connected to the nodes the edge is attached to
by numbered lines. The numbers indicate the order the nodes are attached in, which is necessary
to match the external nodes in order. It should be intuitively clear that this grammar cannot be
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Figure 1.4: A variant of the graph in Figure 1.2 without any digrams that can be replaces by a
simple edge (a), and a replacement using hyperedges of rank 3 instead (b).

considered smaller than the original graph: every “line” represents information that needs to be
stored, and the graph on the right (even disregarding the additional size of the rule) has more
such lines than the original graph on the left (11 vs. 8). Finding a good size definition is another
challenge of our generalization. Note that these hyperedge replacement grammars have been
well studied (proposed by [BC87, HK86, Hab92], see also e.g. [DKH97]), but not with respect
to their size. A further consideration is whether to allow the rank of nonterminal edges to be
unbounded. It turns out that this is generally not a good idea. In fact, it is possible to show
that some graphs only compress well with a bounded maximal rank, whereas others compress
better with the rank unbounded (a phenomenon already well-known for tree RePair [LMM13]).
The runtime for some algorithms on the grammar might also depend on the maximal rank of a
nonterminal, keeping it low is thus desirable. The experimental evaluation shows that, on the
test data used, a rank of 4 gives the best, or close to the best, results.

1.2 Algorithms over Compressed Input

There is usually a trade-off between compression ratio and query performance. If a structure
is compressed more, answering queries about it takes more time. In general this is true for
grammars as well. We present algorithms to compute the neighbourhood of a given node without
a full decompression of the graph, but the runtime of this method is proportional to the height of
the grammar’s derivation tree per neighbour. There are a few ways to get around this limitation
for specialised queries, or for restricted grammars.

1.2.1 Constant-Delay Traversal

One way to improve query performance is to precompute a data structure of similar size to
the grammar (thus still much smaller than the uncompressed data), which allows for a single
traversal step, to be carried out in constant time. Such data structures are known for grammar-
compressed strings [GKPS05]. The method works by essentially providing a data structure
that can be used to navigate from leaf to leaf in the derivation tree, (i.e., from one symbol of
the represented string to the next). This method is extended to tree grammars in [LMR16].
The right-hand sides of rules in tree grammars contain parameter nodes (or just parameters),
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which fulfil the same role as external nodes in graph grammars. During derivation they are
replaced by subtrees. There exists a normal form for tree grammars that only allows four types
of rules, which have at most one parameter node in their right-hand sides [LMS12]. The traversal
algorithm assumes that grammars are given in this normal form. It structures the grammar:
it allows to partition the derivation into a set of “spine-trees”. Such a spine consists of a line
of terminals that replace the parameter nodes, and any other children are nonterminals whose
right-hand sides do not have a parameter node. It is then possible to represent these spine-trees
as strings using a straight-line grammar computed directly from, and not larger than, the given
tree grammar. Navigating along the spine is then the same as navigating along the string, using
the previous result for grammar-compressed strings. When diverting from the spine, the only
action necessary is to “bookmark” the current position in the string-grammar and restart the
navigation along the string rooted at a different nonterminal. Both are possible in constant time.
With graphs, one problem immediately arises: when traversing a cycle, there is always at least
one pair of nodes, where the traversal from the first to the second node does not represent a step
from one leaf to the next in the derivation tree. Instead, a larger jump within the derivation
tree is necessary. This makes it unlikely that the same method can be generalized to graphs.
For a restricted set of grammars we present a precomputed pointer structure, which allows for
constant-delay traversal on the represented graphs. Notably, this also includes tree grammars of
any parameter size, but needs more memory than the method in [LMR16]. We give the general
idea of our method assuming an input grammar G of rank k. For every node x within the
grammar and every alphabet symbol σ, the method precomputes the node y (which may be in a
different rule) that represents the σ-neighbour of x. This is enough to find the correct node, but
without the path in the derivation tree to get from the rule containing x to the rule containing y,
there is no way to determine the value of y within val(G). Thus, the method also precomputes a
“tableau” which represents this path in the derivation tree. Such a tableau is an h+ 1×k-matrix
where h is the length of the path in the derivation tree, the tableau represents. It contains a set
of pointers, which map every external node on the path to their corresponding internal node.
These pointers are structured in such a way that two or more tableaux can be combined to
represent longer paths within the derivation tree in constant time (specifically in time O(k),
which we assume to be fixed). This prevents an exponential amount of precomputation, as only
tableaux for immediate steps have to be precomputed. The only assumption on the grammar
the method therefore makes, is that its rank is bounded by a constant. No other normal form is
necessary.

1.2.2 Speeding Computation up

An important property of grammar-based compression is that some queries can be answered
faster on a grammar than on the explicit representation. One of the first such methods was a
pattern-matching algorithm for LZW-compressed files [ABF96]. This was later also extended to
LZ77-compressed strings [FT98], which provide better compression ratios. Generally, membership
to any given deterministic finite automaton can be checked using grammar-compressed strings
as input in time O(|G|n), where |G| is the size of the given grammar and n the number of states
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of the automaton [PR99]. The method to do so exploits the hierarchical nature of a straight-line
grammar. The automaton is evaluated for every right-hand side separately starting at every one
of its n states. This is done bottom-up on the grammar’s hierarchy, such that when encountering
a nonterminal, the previous computation is reused. While no generally accepted automata
model for graphs exists, the same method can still be applied to straight-line graph grammars
for specific queries. We take a closer look at regular path queries. Such a query consists of a
regular expression α, a graph g and two nodes s, t of g. The question is, whether there exists
a path from s to t in g such that the edge labels on the path, seen as a string, match α. It
is commonly solved [Woo12] by computing the nondeterministic finite automaton Aα, which
decides the same language that α matches. Then the graph g is considered to be an automaton
itself, with starting state s and final state t. Now the product of Aα and g deciding their
intersection is constructed. There exists a path matching α if and only if the language of this
product automaton is non-empty, which can be checked with a reachability test. Interestingly,
the same method can be applied to grammar-compressed graphs, by combining a grammar G
and an automaton Aα to achieve a new grammar G′, which generates the product automaton
of Aα and val(G) but is only of size O(|G||Aα|). A reachability test can then be used to check
(also in O(|G||Aα|) time) for emptiness, like with the explicit representation above.

For grammar-compressed strings it is possible to check in polynomial time, whether two different
grammars produce the same string, as was independently proved in [HJM96, MSU97, Pla94].
This result can be extended to ordered trees, as it is possible to convert a tree grammar into a
string grammar that represents a canonical traversal of the tree. For strings and ordered trees,
equality is the same as isomorphism. This is not the case for graphs or unordered trees, and in
both cases the question of isomorphism is usually more interesting, as isomorphic structures
often can be seen as semantically equivalent. However, even the complexity of the isomorphism
problem for grammar-compressed unordered trees was unknown. It is shown in this thesis that
testing two tree-generating grammars for isomorphism is indeed possible in polynomial time.
The proof uses the technique of canonical ordering previously used in [Lin92] to show that
isomorphism of (uncompressed) trees can be decided using logarithmic space. A major problem
is that the rules of a tree grammar cannot always be canonically ordered as the specific position
of the parameter node is unknown. To overcome this problem the proof reuses a central idea of
the constant-delay traversal method in [LMR16]. Namely that tree grammars can be brought
into a normal form, which partitions the tree into “spines” that can be derived separately. This
is important because, while this spine may be of exponential length, it can be shown that only a
polynomial amount of different re-orderings are necessary along the nonterminals on the spine.
This argument then inductively applies to the entire derivation tree.

1.3 Outline of this Thesis

The thesis is structured similarly to this introductory chapter. Chapter 2 covers some prelim-
inaries to introduce notation and definitions used throughout the thesis. Then the gRePair
compressor is introduced in Chapter 3. This consists of two main parts: the first introduces
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the algorithm, explains the encoding of the final grammar, and discusses some theoretical
results about its parameters, its relation to RePair compression of strings and trees, and the
choices of formalism made. Afterwards a prototype implementation is experimentally evaluated
and compared to existing compressors. This shows that gRePair is able to compress some
graphs much better than other compressors. After this, Chapters 4 and 5 discuss algorithmic
considerations. Chapter 4 first introduces general algorithms to perform neighbourhood queries
on a graph grammar, with runtime proportional to the grammar’s height. Then a data structure
is presented which enables constant time traversal steps on a restricted set of grammars. Finally
Chapter 5 introduces speed-up algorithms for directed reachability, regular path queries, and
to test isomorphism of two given straight-line tree grammars. Every chapter (except for the
preliminaries) ends with an overview of literature related to the content of that chapter.

Some work presented in this thesis has been previously published. Specifically, Section 5.3
was published at the International Colloquium on Automata, Languages and Programming
(ICALP) [LMP15] and much of Chapter 3 and Section 5.1 was published at the International
Conference on Data Engineering (ICDE) [MP16]. Furthermore, the contents in Chapter 3 and
Chapter 5 (excluding Section 5.3) are currently under review for publication in Information
Systems (preprint available at [MP17]).



Chapter 2

Preliminaries

We denote the set of natural numbers by N = {1, 2, . . .} and by N0 the set N ∪ {0}. For k ≥ 0
we denote by [k] the set {1, . . . , k} and by [0, k] the set [k] ∪ {0}. An alphabet ∆ is a finite,
non-empty set of symbols. A ranked alphabet consists of an alphabet Σ together with a mapping
rank : Σ→ N0 that assigns a rank to every symbol in Σ. Occasionally we may use rankΣ to refer
to the rank-mapping of the ranked alphabet Σ specifically, if otherwise this would be ambiguous.
For the remainder of this thesis, let Σ = [µ] for some µ ∈ N be a ranked alphabet, and ∆ = [ν]
for some ν ∈ N an alphabet, unless otherwise specified. Examples use lower-case letters a, b, c, . . .
(possibly with indices) as elements of either of these alphabets instead of numbers, to improve
readability.

We sometimes use matrices as underlying structures. For an m×n matrix a we denote by a(i, j)
(with i ∈ [m] and j ∈ [n]) the element in the i-th column and j-th row. Similarly, for an n-tuple
t we denote its i-th element by t(i) (for i ∈ [n]).

2.1 Strings, Trees, and Graphs

We first define the basic data structures used throughout this thesis. Let ∆ be an alphabet.
Definition 2.1. A string is an ordered sequence u = a1a2 · · · ak (ai ∈ ∆ for i ∈ [k]) of symbols
from ∆.

We denote the empty string by ε, and for two strings u, v the concatenation of u and v by
u · v, or uv if that is unambiguous. The size of such a u (as in Definition 2.1) is defined as
|u| = k with |ε| = 0, and we write ai ∈ u to express that ai is part of the string u. Any string
v = aiai+1 · · · aj for some i, j ∈ [k] is called a substring of u, and we explicitly denote such a
substring by u[i..j] with u[i..0] = ε. We use the shorthand u[i] for u[i, i]. For a set of strings X
we denote by X∗ = {u1 · · ·un | n ∈ N0 and ui ∈ X for all i ∈ [n]} the set of all strings that can
possibly be obtained by concatenating strings from X. We also let X+ = X∗ \ {ε}. Let <∆ be
an order on ∆. We define the lexicographical ordering <lex on equal-length strings u, v ∈ ∆∗

9
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as: u <lex v if and only if there exist p, u′, v′ ∈ ∆∗ and letters a, b ∈ ∆ with a <∆ b such that
u = pau′ and v = pbv′.
Definition 2.2. Trees over a (possibly ranked) alphabet Σ are recursively defined as the smallest
set of strings T , such that for k ≥ 0, if t1, . . . , tk ∈ T , then σ(t1, . . . , tk) ∈ T , provided that
σ ∈ Σ and rank(σ) = k, if Σ is ranked.

We speak of ranked trees if Σ is ranked and unranked trees otherwise. We denote by TΣ the set
of all such trees with labels from Σ. For two trees t1, t2 ∈ TΣ we call t2 a subtree of t1, if t2 is a
substring of t1. The nodes of a tree t can be addressed by their Dewey addresses D(t). For a tree
t = σ(t1, . . . , tk), D(t) is recursively defined as D(t) = {ε} ∪

⋃
i∈[k] i.D(ti). Thus ε addresses

the root node, and u.i the i-th child of u. Again we write uv for u.v if that is unambiguous.
For u ∈ D(t) we denote by t[u] ∈ Σ the symbol at u. The size of t is |t| = |D(t)| − 1, i.e., the
number of edges in t, and the height of a tree is defined by height(t) = max{|u|+ 1 | u ∈ D(t)}.
The rank of a node u is its number of children.

Unranked trees can be converted into ranked trees using a different alphabet. Let ∆ be an
unranked alphabet and t a tree from T∆. Let r be the highest rank of any node appearing in t.
Finally, let Σ = {δi|δ ∈ ∆ and 0 ≤ i ≤ r} with rank(δi) = i for any symbol δ ∈ ∆ be a ranked
alphabet based on ∆. Then we can define t′ ∈ TΣ by using the appropriate symbol from Σ for
every node. For example if a node u in t is labelled δ and has 3 children, then the node u in t′

is labelled δ3. Thus we achieve a ranked tree representing the same information.
Definition 2.3. A hypergraph over Σ (or simply graph) is a tuple g = (V,E, att, lab, ext) where
V ⊂ N is a finite set of nodes, E is a finite set of edges, att : E → V + is the attachment mapping,
lab : E → Σ is the label mapping, and ext ∈ V ∗ is a string of external nodes.

We define the rank of an edge as rank(e) = |att(e)| and require that rank(e) = rank(lab(e)) ≥ 1
for every edge e in E. The latter requirement (and the attachment mapping mapping to V +)
mean that we do not allow edges that are not attached to any nodes. We add the following two
restrictions on hypergraphs:

(C1) for all edges e ∈ E : att(e) contains no node twice, and

(C2) ext contains no node twice.

For a hypergraph g = (V,E, att, lab, ext) we use Vg, Eg, attg, labg, and extg to refer to its
components. We may omit the subscript if the hypergraph is clear from context. Let x be a
node of a graph g. We call x incident to an edge e ∈ Eg if x ∈ attg(e). Two distinct nodes x, y
are adjacent to each other, if there is an edge e ∈ Eg such that x ∈ attg(e) and y ∈ attg(e).
We denote by N(x) = {y ∈ Vg | ∃e ∈ Eg : x, y ∈ attg(e)} the set of adjacent nodes of x (or
neighbourhood of x) and by E(x) = {e ∈ Eg | x ∈ attg(e)} the set of edges incident with x.
We consider hyperedges to be directed from the first attached node to the remaining ones.
Thus we also define N−(x) = {y ∈ Vg | ∃e ∈ Eg : attg(e) = xαyβ for some α, β ∈ V ∗} and
N+(x) = {y ∈ Vg | ∃e ∈ Eg : attg(e) = yαxβ for some α, β ∈ V ∗}, the outgoing and incoming
neighbourhoods of x, respectively. These can further be restricted as N−σ (x) (N+

σ (x)) which
include only nodes reachable by an edge labelled σ. An edge is simple, if its rank equals two.
A hypergraph g is simple, if all its edges are simple, and for any distinct edges e1, e2 of g it
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Figure 2.1: Example of a drawing of a hypergraph with three nodes (two of which external) and
three edges, two of which are simple.

holds that att(e1) 6= att(e2) or lab(e1) 6= lab(e2), i.e., g has no “multi-edges”. The rank of a
hypergraph g is defined as rank(g) = |extg|. Nodes that are not external are called internal.
We often refer to the node extg[i] as the i-th external node. We define the node size of g as
|g|V = |V |, the edge size1 as

|g|E = |{e ∈ Eg | rank(e) ≤ 2}|+
∑

e∈Eg,rank(e)>2

rank(e),

and the size as |g| = |g|V + |g|E . We denote the set of all hypergraphs over Σ by HGR(Σ). For
two nodes s, t ∈ V we say that there is a path p from s to t, if there exists a sequence of edges
p = (e1, . . . , en) ∈ En for some n ∈ N, such that att(e1)[1] = s, t ∈ att(en)[2..|att(en)|], and
for every i ∈ [n− 1] if att(ei) = uv1 · · · vk then there exists a j ∈ [k] such that att(ei+1) = vjα

for some α ∈ V ∗. For an edge e let head(e) be the first node e is attached to. For a path
p = (e1, . . . , en) we refer to the nodes (head(e2), . . . , head(en)) as the nodes on the path p. We
call p internal, if all the nodes on p are internal. Note that the nodes s and t are not considered
to be on the path.
Example 2.4. An example of a hypergraph can be seen in Figure 2.1. Formally, the pictured
graph has V = {1, 2, 3}, E = {e1, e2, e3}, att = {e1 7→ 2 · 1, e2 7→ 1 · 3, e3 7→ 2 · 1 · 3},
lab = {e1 7→ a, e2 7→ b, e3 7→ A}, and ext = 2 · 3. Note that external nodes are filled black, their
position within ext is given implicitly by their number (because it is normalized, see below).
Hyperedges of rank > 2 have indices indicating the order of the attached nodes, whereas simple
edges are drawn directed, from their first to second attachment node.

In the following we sometimes omit the indices and the node numbers. In these cases specific
order is irrelevant for the example.

A graph g = (V,E, att, lab, ext) is called normalized if there exist n, i ∈ N, i ≤ n such that
V = [n] and ext = i · (i + 1) · · ·n or ext = ε. For an injective function ρ : Vg → N let
ρ∗ : V ∗g → N∗ be its natural extension to strings. We call ρ a node renaming on g and define
g[ρ] = ({ρ(v) | v ∈ Vg}, Eg, attρ, labg, ρ∗(extg)), where attρ(e) = ρ∗(attg(e)) for all e ∈ Eg. Note
that for any graph g there exists a node renaming ρ such that g[ρ] is normalized. For this reason
graphs appearing in any example (including Example 2.4 above) and most other graphs in this
thesis are (assumed to be) normalized. We call two graphs g and h isomorphic (denoted g ∼= h),
if there exists a node renaming ρ such that Vh[ρ] = Vg, exth[ρ] = extg, and there is a bijection
ϕ : Eh → Eg such that attg(ϕ(e)) = ρ∗(atth(e)) and labg(ϕ(e)) = labh(e) for every e ∈ Eh. We
call h a subgraph of g, if Vh ⊆ Vg, Eh ⊆ Eg, atth(e) = attg(e) and labh(e) = labg(e) for every
e ∈ Eh, and exth is the string that remains when removing every symbol in Vg \ Vh from extg.

1This definition may seem unusual. It is motivated by the encoding we use, see Section 3.5.3 below.
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Occasionally we use simple graphs without edge labels. In these cases we may denote the graph
as a tuple (V,E) where V is the set of nodes and E ⊆ V × V the set of directed edges. In the
above model an edge (x, y) corresponds to an edge e with att(e) = xy and lab(e) is arbitrary,
but the same for every edge.

2.2 Languages and Grammars

We call a set of strings (or trees, graphs) L a string language (or tree language, graph language,
respectively). Often we will simply say language, when the contents are clear from context. There
are many formalisms to specify languages, we mainly use (context-free) grammars. Grammars
are defined over a (potentially ranked) alphabet Σ, whose symbols are called terminals. Below
we define three grammar formalisms. They all have in common that a grammar is a triple
G = (N,P, S), where N is a finite set of nonterminals with N ∩ Σ = ∅, P is a set of rules, and
S is a start symbol. A rule p ∈ P always has the form (A, x) (usually written as A→ x), where
A ∈ N and x is a string, tree, or graph. We refer to the individual components of a rule as the
right-hand side (rhsG(p) = x) and the left-hand side (lhsG(p) = A). For every type of grammar
we define a relation ⇒G, which we call a derivation step and its transitive and reflexive closure
⇒∗G called a derivation. We now define the specifics for each of the three grammar types.
Definition 2.5. Let ∆ be an alphabet. A context-free string grammar over ∆ is a triple
G = (N,P, S), where N is a finite, non-empty set of nonterminals, S ∈ N is the start nonterminal,
and P ⊆ N × (∆ ∪N)+ is a set of rules.

For two strings u, v ∈ (∆ ∪N)∗ we write u⇒G v, if there exist α, β ∈ (∆ ∪N)∗, a nonterminal
A ∈ N and a rule A→ w such that u = αAβ and v = αwβ. The language of G is L(G) = {u ∈
∆∗ | S ⇒∗G u}. We generally omit the subscript G, unless it is ambiguous. The size of a string
grammar G is defined as |G| =

∑
A→u∈P |u|.

We fix a set Y = {y1, y2, . . .} of parameters and for any k ∈ N we let Y k = {y1, . . . , yk} be a
ranked alphabet with rank(yi) = 0 for every i ∈ [k]. We denote by T∆(Y ) the union of all sets
T∆∪Y k for any k ∈ N. For trees t, t1, . . . , tk ∈ T∆(Y ) we use t[yj ← tj | j ∈ [k]] to denote the
tree obtained by replacing, in parallel, every occurrence of yj by tj for j ∈ [k].
Definition 2.6. Let ∆ be an alphabet. A context-free tree grammar over ∆ is a triple
G = (N,P, S) where N is a ranked alphabet of nonterminals, S ∈ N is the initial nonterminal
(with rank(S) = 0), and P is a finite set of rules of the form A(y1, . . . , yk)→ t, where A ∈ N ,
rank(A) = k, and t ∈ TN∪∆∪Y k .

For two trees t, r ∈ TN∪∆(Y ) we write t ⇒G r if t contains a subtree A(t1, . . . , tk), and r is
obtained by replacing this subtree with s[yj ← tj | j ∈ [k]] where A(y1, . . . , yk) → s is a rule
in P . A tree grammar G defines the tree language L(G) = {t ∈ T∆ | S ⇒∗G t}. We say a
rule A(y1, . . . , yk)→ t has rank k (i.e., the rank of a rule is defined by the number of distinct
parameters it has). As with string grammars, the size of a tree grammar G is defined as
|G| =

∑
A→t∈P |t|. A context-free tree grammar G is called linear, if for every rule A→ t and
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Figure 2.2: Example of a grammar (a) and its full derivation (b)

every y ∈ Y , y occurs at most once in t. Every context-free tree grammar considered in this
thesis is linear.
Definition 2.7. Let Σ be a ranked alphabet. A hyperedge replacement grammar (HR grammar)
over Σ is a tuple G = (N,P, S), where N ⊂ N is a ranked alphabet of nonterminals, P ⊂
N × HGR(Σ ∪N) is the set of rules such that for every (A, g) ∈ P the graph g is normalized
and rank(A) = rank(g), and S ∈ HGR(Σ ∪N) is the (normalized) start graph.

The rank of an HR grammar G is defined by rank(G) = max{rank(A) | A ∈ N}. An edge is
called terminal if it is labelled by a terminal and nonterminal otherwise. Examples generally
use upper-case letters A,B,C, . . . (possibly with indices) as nonterminals instead of numbers, to
improve readability.

To define the replacement of nonterminal edges by a graph, we first introduce some notation.
For a hypergraph g and an edge e ∈ Eg we denote by g[−e] the hypergraph obtained from g

by removing the edge e. For two hypergraphs g, h we denote by g ∪ h the union of the two
hypergraphs defined by (Vg ∪ Vh, Eg ] Eh, attg ] atth, labg ] labh, extg). Note that this union

1. merges nodes that exist in both g and h,

2. creates disjoint copies of Eh, atth, and labh, and

3. uses the external nodes of g only.

Now, let g, h be normalized hypergraphs and e ∈ Eg such that rank(e) = rank(h). Let ρ be
a node renaming on h such that exth[ρ] = attg(e) and ρ(v) = |Vg|+ v for every internal node
v of h. The replacement of e by h in g is defined as g[e/h] = g[−e] ∪ h[ρ]. Let g be a graph
with a nonterminal edge e. For two graphs g, h ∈ HGR(Σ ∪N) we write g ⇒G h if there exists
a nonterminal edge e ∈ Eg and a rule lab(e) → g′ ∈ P such that h = g[e/g′]. The language
of an HR grammar G is defined as L(G) = {g ∈ HGR(Σ) | S ⇒∗ g}. In line with the size
definition of hypergraphs, we define two sizes for an HR grammar G: the node size is defined as
|G|V = |S|V +

∑
A→g∈P |g|V . Analogously the edge size is defined as |G|E = |S|E+

∑
A→g∈P |g|E

and the total size |G| = |G|V + |G|E .
Example 2.8. Figure 2.2 revisits the example grammar from Chapter 1, but now with the
node-IDs added in. It also shows how the node-IDs are chosen during the derivation. Note that
this is the only derivation of this grammar, as it has only one rule and deriving the nonterminal
edges in a different order will still yield the same graph up to a bijective renaming of the edges.
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Comparing the three grammar formalisms, we can see that external nodes of HR grammars and
parameters in tree grammars perform the same role: both define how the right-hand side of
a rule is combined with the structure during a derivation step. The specific method however,
is quite different: parameter nodes in a tree grammar are replaced by another tree, which is
then connected at the root. External nodes on the other hand are merged with the nodes a
nonterminal edge attaches to. There is another graph grammar formalism – node replacement
grammars – which uses a replace/connect-method of derivation. We discuss its relation to HR
grammars with respect to compression and why we choose the latter in Section 3.5, but already
mention here that this leads to a more expressive grammar formalism. Finally note that string
grammars have no notation equivalent to parameters or external nodes. This is due to strings
being a simpler structure which is always ordered from left to right. This order is naturally used
during a derivation step.

2.3 Straight-Line Grammars

Grammars generally generate languages, i.e., sets containing many (possibly infinitely many)
strings (or trees/graphs). For grammar-based compression, this is not practical. We instead
need a restriction on grammars that ensures the grammar can only generate exactly one string
(tree/graph). A grammar like this can be generated by the compression algorithm. The straight-
line (SL) property ensures exactly this and is purely syntactic, meaning it can be checked for
a grammar whether it holds. A grammar G = (N,P, S) is straight-line, if it is deterministic
and acyclic. Deterministic means, that for every A ∈ N there is exactly one rule p ∈ P with
lhs(p) = A. We define acyclicity separately for each grammar formalism, as the relation is
occasionally used in other contexts. Informally it means that, starting from a nonterminal A, it
is not possible to derive a structure again containing A. We formally define straight-line variants
for the three grammar formalisms defined in Section 2.2.
Definition 2.9. Let Gs = (Ns, Ps, Ss), Gt = (Nt, Pt, St), and Gg = (Ng, Pg, Sg) be a string,
tree, and HR grammar, respectively. We call

• Gs a straight-line program (SLP) if it is deterministic, and the relation

≤sNT= {(A1, A2) | ∃(A1, u) ∈ Ps : A2 ∈ u}

is acyclic,

• Gt a straight-line tree grammar (SLT grammar) if it is linear, deterministic, and the
relation

≤tNT= {(A1, A2) | ∃(A1, t) ∈ Pt : A2 ∈ t}

is acyclic, and

• Gg a straight-line hyperedge replacement graph grammar (SL-HR grammar) if it is deter-
ministic, and the relation

≤gNT= {(A1, A2) | ∃h : (A1, h) ∈ Pg,∃e ∈ Eh : labh(e) = A2}
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is acyclic.

We further require such grammars to have no useless (unreachable) rules, i.e., for every nonter-
minal A ∈ N there exists at least one nonterminal B ∈ N such that (B,A) is a pair in ≤sNT (or
≤tNT/≤

g
NT, respectively). The exception is S, which is in turn required to appear as (S,A) for at

least one nonterminal A ∈ N in ≤sNT (or ≤tNT).

For any straight-line grammar G = (N,P, S) we let rhs(A) = x for any nonterminal A ∈ N
where (A, x) ∈ P , since the right-hand side for a nonterminal is unique in straight-line grammars.
SL-HR grammars differ slightly from SLPs/SLTs in that S is a graph instead of a nonterminal.
By convention, whenever we state something over all right-hand sides of an SL-HR grammar,
this includes the start graph (i.e., S is assumed to be implicitly in N and rhs(S) = S). The
height of an SL-grammar height(G) is defined as the longest distance of any two nonterminals
in their respective ≤NT-relation. Note that, for SLPs Gs and SLTs Gt, their languages L(Gs)
and L(Gt) only contain exactly one element. We refer to this element by val(Gs) and val(Gt),
respectively. For an SL-HR grammar Gg, this is slightly more involved: Depending on the order
the nonterminals are derived in, the node numbers in the result change and thus L(Gg) contains
many (isomorphic) graphs. To solve this, we fix this derivation order: For a graph g let Ent

g

be the set of nonterminal edges in g. We define the sibling-tuple sib(Ent
g ) as a tuple (e1, . . . , en)

such that {e1, . . . , en} = Ent
g , and if i < j (for i, j ∈ [n]), then

• attg(ei) <lex attg(ej) (here <lex is the lexicographical order), or

• attg(ei) = attg(ej) and labg(ei) ≤ labg(ej).

Note that (e1, e2) and (e2, e1) are both possible sibling tuples of a graph with att(e1) = att(e2)
and lab(e1) = lab(e2), but the definition of sib(Ent

g ) picks one arbitrarily. We now define val(A)
for every nonterminal A, and define val(G) as val(S). Simultaneously, we define the derivation-
tree dt(A) of A, and the derivation-tree of G (dt(G)) as dt(S). Note that dt(A) is a ranked tree
with nodes labelled by rules of G; the number of children of a node is equal to the number of
nonterminal edges in the right-hand side of the rule in the label. Let g = rhs(A). If Ent

g = ∅
then val(A) = g and dt(A) = (A → g) (that is, a single leaf, labelled by the rule A → g),
otherwise let sib(Ent

g ) = (e1, . . . , en) and define val(A) = g[e1/val(labg(e1))] · · · [en/val(labg(en))]
and dt(A) = (A→ g)(dt(labg(e1)), . . . , dt(labg(en))).

For a derivation tree s = dt(A) we refer to a node u of s as an s-context. For any s-context u
we denote by gs,u the graph rhs(s[u]). If s = dt(S) we omit the s-prefix and just say context
and gu. For a nonterminal A we let nodes(A) be the number of internal nodes in val(A). For a
derivation tree s = dt(A) and an s-context u we recursively define firsts(u) as firsts(u) = 0 if
u = ε, and if u = v.i for some i ∈ N and sib(Ent

gs,u) = (e1, . . . , en) then we define

firsts(u) = firsts(v) +
∑
j<i

nodes(lab(ej)) + |Vgs,v | − |extgs,v |.

Now any internal node x in gs,u becomes within val(A) the node nodes(u, x) = firsts(u) + x.
Again if s = dt(S) we omit the subscript. For a context u and an internal node x of gu, the
tuple (u, x) can therefore be seen as a representation of the node node(u, x) within val(G). We
refer to such a tuple as a G-representation of node(u, x).
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Figure 2.3: Example of an SL-HR grammar G (a), and the graph val(G) it represents (b). The
graph val(G) is created according to dt(G) given in Figure 2.4. The nodes in this figure and in the
derivation tree in Figure 2.4 are coloured to show where in dt(G) they originate from.

Example 2.10. A full example for an SL-HR grammar is given in Figure 2.3a. It has the
derivation tree shown in Figure 2.4, and thus represents the unique graph val(G) given in
Figure 2.3b. Figure 2.4 also includes an example for the computation of a node-ID. To expand
on it, the precise computation of first(u3) is

first(u3) = first(u2) + |Vrhs(A)| − |extrhs(A)|+ nodes(C)

= first(u1) + |VS | − |extS |+ |Vrhs(A)| − |extrhs(A)|+ nodes(E)

= 0 + 5− 0 + 3− 2 + 1 = 7.

And therefore node 1 in rhs(C) represents the node first(u3) + 1 = 8 in val(G) (compare to
Figure 2.3b to confirm).

2.4 Encoding Strings and Trees as Graphs

Strings and trees can be conveniently encoded as hypergraphs. As hypergraphs are more
complex, this affects the size. We make use of these encodings, when discussing the relation
of graph compression to previously proposed string- and tree-compression in Section 3.4. Let
w = a1 · · · an be a string. We define the hypergraph s-graph(w) representing the string w

as ({0, 1, . . . , n}, Ew, attw, labw, extw), where Ew = {e1, . . . , en}. For an edge ei ∈ Ew we let
attw(ei) = i − 1 · i and lab(ei) = wi. Finally the external nodes are extw = 0 · n. The size of
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Figure 2.4: Every node of this derivation tree contains its respective context. The graph represented
by this derivation tree is shown in Figure 2.3b. Nodes in both figures are coloured to show their
origin.

s-graph(w) is 2n+ 1 = 2|w|+ 1. Note that the external nodes indicate beginning and end of the
string. Figure 2.5a shows s-graph(w) for w = abca.

The encoding for trees is a little less straight-forward, because the node labels are moved into the
edges, and the children of a node in a tree are ordered. We convert a node with k children into
a hyperedge of rank k + 1 (as it is connected to the parent as well). The order of the hyperedge
retains the order of the children and the parent is always located at the first node attached
to a hyperedge. This is a well-known encoding, see e.g. [EH92]. Note that graphs are always
ranked and thus this encoding requires a ranked tree. As discussed in Section 2.1 above, every
unranked tree can be converted into a semantically equivalent ranked tree by extending the
alphabet. Let t be a ranked tree with parameters y1, . . . , yk, none of which appear more than
once in t, and let <t be the lexicographical order on D(t). For an address i ∈ D(t) we denote
by pos(i) the position of i within the order <t, such that pos(ε) = 0. Let pos(Y ) = {i | t[pos(i)]
is a parameter} and let w(Y ) = i1 · · · ik be the string of positions in pos(Y ) in ascending order.
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Figure 2.5: Example of a string-graph (a), and a tree-graph (b).

We define the hypergraph t-graph(t) representing the tree t as ({0, 1, . . . , |D(t)|}, {ei | i ∈ D(t)
and t[i] is not a parameter}, att, lab, 0 · w(Y )), where for i ∈ D(t) and k = rank(t[i]),

• att(ei) = (pos(i)) · (pos(i) + 1) · · · (pos(i) + k), and

• lab(ei) = t[i].

The size of t-graph(t) is between 2|t|+ 2 (for a monadic tree t) and 3|t|+ 2 (for a tree where
every inner node has rank greater than 1). Figure 2.5b shows t-graph(t) for t = f(a, g(a, b)).

We can also encode a string- or tree grammar as an HR graph grammar. Using the above
encodings this is a straight-forward process. Let Gs = (Ns, Ps, Ss) be a string grammar, then the
grammar s-grammar(Gs) = (Ns, P, S) is the grammar with P = {A→ s-graph(w) | A→ w ∈ Ps}
and S = ({1, 2}, {e}, att(e) = 1 · 2, lab(e) = Ss, ext = 1 · 2). This way L(s-grammar(Gs)) ∼=
{s-graph(w) | w ∈ L(Gs)}. The sets are isomorphic, because the nodes of the graphs in
L(s-grammar(G)) will have different IDs than the nodes of s-graph(w) for w ∈ L(Gs).

Similarly, we encode a tree grammar Gt = (Nt, Pt, St) as t-grammar(Gt) = (N,P, S) with
N = Nt, but rankN (A) = rankNt(A) + 1 for every A ∈ N , P = {A→ t-graph(t) | A→ t ∈ Pt}
and S = ({1, . . . , k}, {e}, att(e) = 1 · · · k, lab(e) = S, ext = 1), where k = rankN (St). Thus
L(t-grammar(Gt)) ∼= {t-graph(t) | t ∈ L(Gt)}, with the isomorphism again due to different
node-IDs.

2.5 RDF Graphs

A particular type of graph mainly used in the experimental evaluation in Section 3.6, are
RDF graphs. The Resource Description Framework (RDF) is a fairly recent specification, first
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standardized by the W3C in February 2004. The current version is RDF1.12 from February
2014. It is used to represent linked data and semantic information. Its relationship to graphs
is similar to XML’s relationship to trees, in that graphs are a natural representation of the
structure defined by RDF. Roughly speaking, RDF data is represented as a set of triples (s, p, o),
connecting a subject s with an object o by a predicate p. Notably, the domains for these can
overlap to some degree (for example, values used as predicates or objects in some triples may be
subjects in others). Such a set of triples can be represented by having nodes for the subjects
and objects, and edges for the predicates. Thus (s, p, o) becomes an edge from s to o labelled p.
Note that while the standard allows for predicates to also appear as subjects this is unusual.
Even if it happens, it is not necessary to model overlapping domains as edges pointing to other
edges. Instead, there may be a node label that also appears as an edge label. As RDF graphs
encode semantic information, the concrete values for subjects, predicates, and objects can be
long strings (for example URIs). It is a common practice (see e.g. [FGM10, MFC12, ÁBF+15])
to map the possible values to integers using a dictionary and to represent the graph using triples
of integers. We also use this encoding.

2.6 Computational Model and Direct Graph Representations

Our computational model is a word RAM model, where registers have a fixed bit length β. The
space of a data structure is measured by the number of registers it uses. Registers are addressed
by numbers, which we refer to as pointers, and can be randomly accessed in constant time.
Arithmetic operations (we only need addition) and comparisons of the contents of two registers
can be carried out in O(1).

We present some direct (non-succinct) data structures to represent graphs g = (V,E, att, lab, ext)
with V = {1, . . . , n} and E = {e1, . . . , em} as a baseline. For directed simple graphs without
edge-labels there are essentially two widely known representations: adjacency lists and adjacency
matrices. An adjacency list maps each node to the set of nodes it is adjacent to. For normalized
graphs, it uses O(log2(n)(n+m)) bits of space and the question “is u an out-neighbour of v?”
(an adjacency query) can be answered in O(log d) time, where d is the number of neighbours of
v using a binary search (assuming the lists are ordered by the IDs). An adjacency matrix on
the other hand is a n× n matrix a where a(i, j) = 1 if and only if there is an edge from i to j,
every other entry in a is 0. This needs O(n2) bits of space, but adjacency queries can be done in
constant time. Note that an adjacency matrix cannot represent parallel edges (i.e., more than
one edge connecting the same two nodes), but multiple matrices can be used to represent the
parallel edges.

There are no such widely used representations for edge-labelled graphs and/or hypergraphs
as used here. We present some direct generalisations of the above methods. An adjacency
list could include labels by mapping nodes to tuples (u, l) where u is the neighbouring node
and l is the edge label. This increases the space used to O(log2(n)(n+m) + log2(|Σ|)m) bits.
For a hyperedge of rank k, the adjacency mapping maps a node to a k-tuple containing the

2https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
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k − 1 neighbours and the label. It is sufficient to do so for the first node of every hyperedge
in terms of representation (i.e., all the information to reconstruct the graph is available) using
O(log2(n)(n+m)k + log2(|Σ|)m) space. Adjacency matrices can be extended to using labels by
using one matrix for every label, increasing the space needed to O(|Σ|n2) bits, and increasing the
time for an adjacency query to O(|Σ|) (however, it remains constant time, if only neighbours with
a certain label are queried). There is no direct generalisation of adjacency matrices to hyperedges.
Instead, one can use an incidence matrix, which is an m× n matrix a where a(i, j) = 1 if and
only if j ∈ att(ei). However, this keeps no information about the order of att(ei). One way to
keep this order is to extend the matrix, such that a(i, j) = x if and only if att(ei)[x] = j. Let r
be the maximal rank appearing in g, then this needs O(log2(r)|E||V ||Σ|) bits of space. Another
option is to store the order separately for every edge in another mapping p : E → [r]r, which
lists the positions of the nodes relative to their order as natural numbers. As an example: if
the edge ei has att(ei) = 3 · 6 · 1 and r = 3, then the relevant row of the incidence matrix has
a(i, 1) = a(i, 3) = a(i, 6) = 1 and a(i, j) = 0 for j /∈ {1, 3, 6}, and p(e) = (2, 3, 1). This way we
need O(|E||V |Σ + |E| log2(r)2) bits of space. A neighbourhood-query on an incidence matrix
needs O(|E|) time, as the check whether both a(i, u) = 1 and a(i, v) = 1 needs to be made for
every edge.
Remark. The times given above for adjacency queries are based on relatively naïve approaches
and do not consider whether there are data structures that can significantly improve the runtime.

2.7 Necessary Complexity Theoretic Terms

The present work is not complexity theoretic in nature, but we use some well-known terms,
which we briefly recap. A decision problem is essentially any algorithmic problem that can be
answered with “yes” or “no”. For example “given a graph g, does it have a complete subgraph
g′ with at least k nodes?” is a decision problem, as a graph either has the property or not.
Formally, a decision problem is a language L of all correct inputs, i.e., all inputs for which the
answer is “yes”. An algorithm deciding this problem is therefore deciding a language membership
problem. In the example above, L contains (an encoding of) every graph g which has a complete
subgraph with at least k nodes. Let f, h : N→ R be some functions. We say that a problem L

can be decided in runtime O(f(n)) and space O(h(n)) if there exists an algorithm A that, given
an input x correctly determines whether x ∈ L using O(f(|x|)) computation steps and O(h(|x|))
registers of memory in addition to the input. We say that A deterministically decides L in
O(f(n)) time and O(h(n)) space (or just A decides L). An algorithm can be non-deterministic,
which means that given an input x (e.g. an encoding of a graph) and a witness y (e.g. a complete
subgraph of x with k nodes), the algorithm can verify whether x ∈ L by checking, in O(f(|x|))
time and O(h(|x|)) space, that the witness is a proof for x ∈ L. For example, an algorithm for
the above problem of finding a complete subgraph with k nodes would check that the witness y
is a complete graph with at least k nodes and would then verify that it indeed is a subgraph of x.
However, such an algorithm can not compute the witness itself, it can only verify the correctness
of a given one. Intuitively, this can be considered “guessing” a solution: the witness is guessed
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and then verified in polynomial time. We say A non-deterministically decides L in O(f(n)) time
and O(h(n)) space. A complexity class C is a set of decision problems which can be decided
within a certain time or space bound. There are some well-known such classes, most notably P
(polynomial time) which contains every decision problem for which there exists an algorithm
that (deterministically) decides the problem in O(nc) time for some constant c. Conversely,
the class NP (non-deterministic polynomial time) contains every decision problem, for which
there exists an algorithm that non-deterministically decides the problem in O(nc) time for some
constant c. It is often assumed that P ( NP, but while P ⊆ NP is obvious, there is no known
proof for P 6= NP at the time of writing.

For two decision problems L,L′ we write L ≤p L′ if there exists a function f such that

1. f(w) ∈ L′ if and only if w ∈ L, and

2. f(w) can be computed in polynomial time for any input w.

Informally, this means that any instance of the problem L can be encoded into an instance
of the problem L′ and thus an algorithm deciding L′ can also be used to decide L. We say L
can be reduced to L′. For a complexity class C and a decision problem L we say L is C-hard if
L′ ≤p L for every L′ ∈ C. A problem L is complete for C (or C-complete) if it is C-hard and in C.





Chapter 3

RePair for Graphs

This chapter presents a way to extend the popular RePair compression scheme [LM00] to graphs
using SL-HR grammars. We will first briefly recall the classic algorithm for strings and the
previous extension to trees. Afterwards we discuss the extension of the algorithm to graphs, and
give detailed explanations for some of the challenges unique to graphs. We then compare the
result with the previous versions for strings and trees, and discuss the graph grammar formalism
we use, highlighting a possible other choice. Finally we provide an experimental evaluation
on a varied set of graphs based on a prototype implementation and close the chapter with a
discussion on related work on graph compression and some directions for future work.

3.1 The RePair Compression Scheme

Let us first explain the classical RePair compressor for strings and trees. The RePair compression
scheme is an approximation algorithm for a smallest context-free grammar for a given string.
The relevant decision problem for finding a smallest grammar is the problem of deciding, given a
string u and a number k ∈ N, whether there exists a straight-line grammar G of size at most k
generating u. It was shown by Charikar et al. [CLL+05] that the smallest grammar problem is
NP-complete. Hence, already for string-graphs it follows that finding a smallest grammar is an
NP-hard optimization problem. Several approximations exist to work around this problem. One
of these is Larsson and Moffat’s RePair compression scheme [LM00]. The idea of this compressor
is to repeatedly replace all (non-overlapping) occurrences of a most frequent “digram” by a new
nonterminal. In a string, a digram consists of two consecutive symbols. The process ends when
no repeating digrams occur. Consider as an example the string

u = abcabcabc.

23
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It contains occurrences of the digrams ab (3 times), bc (3 times), and ca (2 times). If ab is
replaced by A then we obtain AcAcAc. If now Ac is replaced by B, then we obtain this grammar

S → BBB

B → Ac

A → ab

Note that the original string u has size |u| = 9, whereas the grammar has size 7. Note that
overlapping occurrences only exist for digrams of the form aa.

To compute in linear time such a grammar from a given string requires a set of carefully designed
data structures. The input string is represented as a doubly linked list. Additionally a list of
active digrams (digrams that occur at least twice) is maintained. Every entry in the list of
active digrams points to an entry in a priority queue Q of length

√
n (with n being the length

of the input string) containing doubly linked lists. The list with priority i in Q contains every
digram that occurs i times, the last list contains every digram occurring

√
n or more times. The

list items also contain pointers to the first occurrence of the respective digram. This queue
is used to find the most frequent digram in constant time. Larsson and Moffat [LM00] prove
that

√
n-length guarantees a linear runtime for the complete algorithm. Basically, in a string of

length n the most occurrences a digram can have is n/2 and in that case no other digram can
occur as often in the string. There may, in general, be more than one digram occurring more
than

√
n times, but the last list can not have more than

√
n entries, and the frequency of the

most frequent digram is monotonely decreasing. This overall leads to a linear running time. All
these data structures are updated whenever an occurrence is removed. Consider removing one
occurrence of ab in the example above: when doing so, one occurrence of bc and possibly ca
need to be removed from the list. On the other hand, new occurrences of Ac and possibly cA
are created.

An even smaller grammar than the one above can be obtained through pruning, which removes
nonterminals that are referenced only once, i.e., pruning would remove the nonterminal A in the
grammar above, so that the B-rule becomes B → abc. This reduces the size of the grammar
from 7 to 6. Note that pruning can never increase the size of the grammar (but may not decrease
it). Also note that sometimes it may be beneficial not to prune, as the encoding of the grammar
can then be defined under the assumption that every right-hand side has size 2. This may make
the encoding smaller, even though the size of the grammar is larger.

RePair was generalized to trees by Lohrey et al. [LMM13]. Here a digram consists of two nodes,
and the i-edge between them, with i meaning that the second node is the i-th child of the first
node, denoted by (a, i, b). Here overlapping occurrences can only happen for digrams of the
form (a, i, a). A digram (a, i, b) has, in a binary tree, at most three “dangling edges”. Dangling
edges in context-free tree grammars are represented by parameters of the form y1, . . . , yk. Note
that only the first of the two replacements shown in Figure 3.1 make the resulting grammar
smaller and would thus be considered contributing: while the digram represented by the B-rule
occurs twice, replacing it would make the grammar larger, as the two edges removed from
the tree are represented by a rule using 4 edges. This is an effect that can never happen for
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Figure 3.1: Different digrams TreeRePair considers in a tree and their replacement rules.

strings and makes the pruning step for trees (and graphs) more involved as we further discuss in
Section 3.2.2 below. Replacing the digram represented by the A-rule on the other hand reduces
the size of the tree by 3 and the right-hand side of the rule has size two, thus leading to a
grammar that is by one smaller than the original graph. Were the digram to occur once less
however, the replacement would become not contributing. The rank of a grammar also has an
impact on further algorithms run on it, see e.g. [LM06, LMS12]. Keeping the rank small is thus
desirable. Therefore, TreeRePair has a user-defined “maxRank” parameter.

3.2 The GraphRePair Algorithm

The first step in generalizing RePair to graphs, is defining the notion of a digram in a graph.
For simple graphs two options come up naturally: two neighbouring nodes and the edge between
them, or two edges with a common node. The first option is not viable, as it does not allow to
compress some very basic graphs: consider a cycle Cn consisting of n consecutive edges (and n
nodes). Replacing a digram of the first kind does not remove nodes nor edges (because both
nodes in the digram need to be external), and only relabels edges by a nonterminal. Thus no
compression is achieved. We therefore use the latter option.
Definition 3.1. A digram over Σ is a hypergraph d ∈ HGR(Σ), with Ed = {e1, e2} such that

1. for all v ∈ Vd, v ∈ attd(e1) or v ∈ attd(e2),

2. there exists a v ∈ Vd such that v ∈ attd(e1) and v ∈ attd(e2), and

3. extd 6= ε.

Every possible digram over undirected, unlabelled edges is shown in Figure 3.2. Note that
some digrams are grouped. This is because, one can represent one by the other by using a
different order in the att-relation of the nonterminal edge. Another example for digrams are
the right-hand sides of the two A-rules in Figure 3.3. Note that both grammars in the figure
generate the graph on the left. However, they differ in size: the grammar in the middle has
size 12, while the grammar on the right has size 9 (recall that simple edges have size 1).

As mentioned before, RePair replaces a digram that has the largest number of non-overlapping
occurrences.
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Figure 3.2: Every possible digram using two unlabelled, undirected simple edges.

Definition 3.2. Let g, d ∈ HGR(Σ) such that d is a digram. Let ed1, ed2 be the two edges of d.
Let o = {e1, e2} ⊆ Eg and let Vo be the set of nodes incident with the edges in o. Then o is an
occurrence of d in g, if there is a bijection ψ : Vo → Vd such that for i ∈ {1, 2} and v ∈ Vo

1. ψ(v) = attd(edi )[j] if and only if v = attg(ei)[j] for j ∈ [rank(ei)],

2. labd(edi ) = labg(ei), and

3. ψ(v) ∈ extd if and only if v ∈ attg(e) for some e ∈ Eg \ {o} or v ∈ extg.

The first two conditions of this definition ensure that the two edges of an occurrence induce a
graph isomorphic to d. The third condition requires that every external node of d is mapped
to a node in g that is incident with at least one other edge. Thus, the edges marked in the
graph on the left of Figure 3.3 constitute an occurrence of the digram (b) of Figure 3.2, which is
the same as the one of the A-rule of the right grammar, but not an occurrence of the digram
of the A-rule in the middle grammar (digram (a) of Figure 3.2). We call the nodes in Vo that
are mapped to external nodes of d, attachment nodes of o, and the ones mapped to internal
nodes, removal nodes of o. Two occurrences o1, o2 of the same digram d are called overlapping
if o1 ∩ o2 6= ∅. Otherwise they are non-overlapping. If there are at least two non-overlapping
occurrences of d in a graph g, we call d an active digram.

Let A be a symbol of rank k and d a digram of rank k. The replacement of an occurrence o
of d in g by A is the graph obtained from g by removing the edges in o from g, removing the
removal nodes of o, and adding an edge labelled A that is attached to the attachment nodes of
o, in such a way that applying the rule A → d yields the original graph (when using ψ from
Definition 3.2 as the node renaming). Consider again Figure 3.3: the start graph of the right
grammar is the replacement of the shaded occurrence of d in the left graph by A (where d is
rhs(A) of the grammar on the right).

Using these definitions, given a graph g, we define the main loop of gRePair as the steps given
in Algorithm 1. After this loop finishes, the algorithm continues by connecting the disconnected
components of the graph with virtual edges (identified by a special label used only for these) and
runs the main loop again. Finally, the grammar is pruned and in a final step the virtual edges
are removed from the grammar. This improves the compression on graphs with disconnected
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Algorithm 1 Main replacement-loop of the gRePair algorithm
Input: Graph g = (V,E, att, lab, ext)
Output: Grammar G with val(G) ∼= g and |G| ≤ |g|
1: N = P = ∅
2: S ← g

3: L(d)← list of non-overlapping occurrences for every digram d appearing in g
4: while |L(d)| > 1 for at least one digram d do
5: Select a most frequent digram mfd
6: A← fresh nonterminal of rank rank(mfd)
7: In the graph S, replace every occurrence o in L(mfd) by a new A-edge
8: N ← N ∪ {A}
9: P ← P ∪ {A→ mfd}
10: Update the occurrence lists

11: return G = (N,P, S)

1 2 3 S =

A→

1 2 3

A

1 2 3

1 2 3

S =

A→

1 2

2 1 3

A

Figure 3.3: Two ways of replacing a pair of edges by a nonterminal. Only the one on the right is
considered by gRePair in this case.

Algorithm 2 Full gRePair-Algorithm.
1: function GraphRePair(Graph g = (V,E, att, lab, ext))
2: G1 ←run Algorithm 1 on g
3: Connect disconnected components in SG1 with edges labelled v /∈ Σ ∪NG1 .
4: G2 ←run Algorithm 1 on SG1 (using fresh nonterminals)
5: G← (NG1 ∪NG2 , PG1 ∪ PG2 , SG2)
6: Prune G
7: Remove virtual edges from G

8: return G

components. This leads to the full algorithm given in Algorithm 2. We now provide more details
on the steps in lines 3 and 10 of Algorithm 1, and on the pruning step.

3.2.1 Occurrence Lists: Data Structures, Generation, and Updates

To keep track of all digram occurrences, the data structures used are a direct generalization
to graphs of the data structures used for strings [LM00] and trees [LMM13, Figure 11]. The
occurrences are managed using doubly linked lists for every active digram. The list items are
also referenced from the individual edges of the graph, to allow for expected constant time access
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to the list of digrams an edge is occurring in. For example, if an edge e is part of an occurrence
o of a digram d, then e also contains a (hashed) set containing d, and a mapping that maps
d to the list-item representing o, within the occurrence list for d. Whenever an occurrence is
added or removed from one of the occurrence lists, these mappings are updated in constant time.
This is possible because the occurrence always contains links to the two participating edges. Of
further importance is a priority queue, which uses the frequency of a digram as the priority. It is
used to find the most frequent digram. Following Larsson and Moffat [LM00] the length of this
queue is chosen as

√
n, where n is the number of edges of the original input graph to gRePair.

Generating Occurrence Lists There are two parts of the main replacement loop given in
Algorithm 1, which directly involve the occurrence lists: lines 3 and 10. In the first of these
lines, we aim to find a set of non-overlapping occurrences for every digram occurring in g, that
is of maximal size. This can be solved in O(|E|4) time by reducing it to maximum matching (a
maximal cardinality set of edges X such that no two edges e1, e2 ∈ X have a common node). Let
g be a graph with n nodes and m edges, and d a digram. The first step is to compute a set O
containing all occurrences of d in g, including overlapping ones. This already takes O(m2) time,
as |O| ∈ O(m2). To see this, consider a “star”; a graph with one central node connected to m
other nodes, which in turn have no neighbours except the central node. There are m(m− 1)/2
pairs of edges and thus as many overlapping occurrences of the same digram. We encode this
set of occurrences into a graph gO such that every occurrence {e1, e2} in O is represented by
an edge from e1 to e2 in gO. Thus, gO potentially has a node for every edge in g, and an edge
for every occurrence in O. It can be shown that a maximum matching on gO corresponds to a
maximal non-overlapping subset of O. Computing a maximum matching in graphs can be done
in O(|V |2|E|) by using, e.g. the Blossom-algorithm [Edm65]. As gO has O(m) nodes, and |O|
edges, the total running time is in O(m2|O|) = O(m4).

As this solution is already prohibitively expensive for just one digram, we use an approximation.
Let ω be an order on the nodes of g. We traverse the nodes of g in this order, and at every
node iterate through occurrences centred around this node. Some care has to be taken to do
this in linear time: as noted above, a centre node v of degree k has O(k2) different pairs of
edges centred around the node and thus O(k2) possible occurrences. Consider for now the case
of unlabelled and undirected edges. Then, after choosing one of the O(k2) occurrences and
adding it to the occurrence list for a digram, the two involved edges are taken out of further
consideration, because every other occurrence using one of these edges would overlap. Let E
be the edges incident with v that have not been added into occurrence lists yet. We partition
E into two sets E1 = {e1, . . . , en} and E2 = {f1, . . . , fm} where m− n ∈ {0, 1}. We then add
Occ(E1, E2) = {{ei, fi} | 1 ≤ i ≤ n} as the occurrences around v to the list. Note that only
if all occurrences around v are occurrences of the same digram, this procedure guarantees to
produce a maximum non-overlapping set of occurrences around v (even though the digrams
use the same edge labels, they can still differ in the external nodes). From here, adding labels
(or directions, which can be viewed as labels) is straightforward. For two labels σ1 and σ2 let
Eσ1,σ2(v) be the set of edges incident with v labelled σ1 and not yet added to an occurrence
list for a digram with an edge labelled σ2. These sets can be precomputed for every node and
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Figure 3.4: Three different traversals visiting the nodes in the numbered order to find occurrences of
digram (a) of Figure 3.2. The occurrences found for each traversal are marked.

kept up to date with every replacement of an occurrence. Then for distinct symbols σ1 and σ2

add the occurrences Occ(Eσ1,σ2(v), Eσ2,σ1(v)) and for every σ add the occurrences where both
edges have the same symbol by splitting Eσ,σ(v) as above. This takes O(|Σ|2) time (where |Σ|
is expected to be small).

The node order ω heavily influences the compression behaviour. Consider the graph in Figure 3.4.
We want to find the non-overlapping occurrences of the digram a) in Figure 3.2. Note that all
three nodes are external, that is, we are looking for three nodes u, v, w such that u has an edge
e1 to v, v has an edge e2 to w, and all three nodes also have edges to other nodes (different
from e1, e2). Figure 3.4a shows the non-overlapping occurrences found if we start in the central
node of the graph. Using the DFS-type order starting at a different node given by the numbers
in Figure 3.4b, three occurrences are determined. Using the “jumping” order in Figure 3.4c, a
maximum set of four non-overlapping occurrences is found. As any order that traverses along
the edges has to visit the centre node before all occurrences are found, such a jumping order is
necessary to find all occurrences in this graph. Note that for strings and trees, maximum sets of
non-overlapping occurrences can be obtained in linear time using left-to-right and post order,
respectively, and assigning occurrences in a greedy way, in much the same method as we do for
graphs. For graphs however, we know of no order that always guarantees a maximum set of
non-overlapping occurrences using this approximation. Our implementation offers a choice of
four different orders, which are detailed in Section 3.3.1.

Updating during Digram Replacement The above method works during initial traversal,
however every time an occurrence of a digram is replaced, the occurrence lists of affected digrams
need to be updated (line 10 in the algorithm). Let o be an occurrence of d that is being replaced
and let F be the set of edges in g that are incident with the attachment nodes of o. Removing o
from the graph can only affect the occurrence lists of digrams that have occurrences using edges
in F . In particular, for the two edges in o (e1 and e2) we need to remove every occurrence that
either e1 or e2 participate in from the corresponding occurrence list. This can be done efficiently,
as we store a list of digrams with every edge for which the edge appears in an occurrence. After
the replacement let e′ be the new A-labelled nonterminal edge in g. Then for every e ∈ F the
pair {e′, e} is an occurrence of a digram, and is thus inserted into the appropriate occurrence list
(and the frequency counts are updated accordingly). Again, this leads to potential complexity
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issues. Let k be the sum of degrees of all attachment nodes of o. Then there are O(k) pairs of
edges to be considered as occurrences with the new nonterminal edge. This is not a problem in
itself, but examine the following situation: let there be an attachment node v with degree k.
Further, let every one of the k edges around v be part of a distinct occurrence of the digram d

being replaced. As explained, when replacing one of these occurrences, pairs of the other k − 1
edges and the new nonterminal are possible occurrences of a new digram. Now however, when
replacing the next occurrence, the remaining k − 2 are again possible pairings with the new
nonterminal. Thus, during all the replacement steps, we would again need to consider O(k2)
occurrences. To solve this issue, we again first look at the case of a graph without edge labels
and directions. Then, if node v has degree k, only one of the edges will make a new occurrence
with e′, every other one would overlap (at e′). Thus, only one of the O(k) edge pairs in F

actually needs to be added as a new occurrence (per label), and this pair needs to be picked in
constant time, to guarantee a bound of O(k) for the entire process. Our implementation does
this by storing a list of available edges (Eσ1,σ2) for every pair of edge labels attached to every
node of the graph. For every edge label the first edge e in the respective list is selected to create
the occurrence {e′, e}. This takes O(|Σ|) time, i.e., constant time per label.

3.2.2 Pruning the Grammar

As mentioned in Section 3.1, pruning can reduce the size of a grammar. For string grammars,
pruning removes every nonterminal that is referenced only once in the grammar. The presence
of parameters for tree grammars, or external nodes for HR grammars, complicates the pruning
step. While every nonterminal only referenced once can be removed just like before, it is then
possible to still have nonterminals which are referenced more than once but do not contribute
to the compression (this is not the case for strings). For example, consider the following tree
grammar (from [LMM13, Example 8]):

S → f(A(a, a), B(A(a, a)))

A(y1, y2)→ f(B(y1), y2)

B(y1)→ f(y1, a)

In this grammar A and B are each referenced twice, but do not “contribute” to compression.
To see this, note that the grammar above has size 12 (recall that the size of a tree is defined as
its number of edges) and consider the grammars obtained by removing either nonterminal (left:
after removing A, right: after removing B):

S → f(f(B(a), a), B(f(B(a), a))) S → f(A(a, a), f(A(a, a), a))

B(y1)→ f(y1, a) A(y1, y2)→ f(f(y1, a), y2)

These grammars now have sizes 11 and 12, respectively. Clearly, both rules were therefore not
contributing in the full grammar above, as neither grammar is now larger than before. However,
removing A first did make the grammar smaller than it was before. Further, if we were to
remove one more nonterminal, we would in both cases get the original tree

f(f(f(a, a), a), f(f(f(a, a), a), a)),
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Figure 3.5: Example of an SL-HR grammar to be encoded.

which is still of size 12. This shows that the A rule was still not contributing after removal of
the B-rule, but the B-rule turns into a contributing rule if the A-rule is removed first. Thus the
order in which the nonterminals are removed may also affect the quality of the pruning. Finding
an optimal order is a complex optimization problem as mentioned in [LMM13, Section 3.2].

Let us consider pruning for SL-HR grammars. For a nonterminal A of rank n we define
handle(A) = ({v1, . . . , vn}, {e}, lab(e) = A, att(e) = v1 · · · vn, ext = v1 · · · vn). The contribution
of A is defined as

con(A) = |ref(A)| · (|rhs(A)| − |handle(A)|)− |rhs(A)|,

where ref(A) = |{e ∈ ES | lab(e) = A}| +
∑
B∈N |{e ∈ Erhs(B) | lab(e) = A}| is the number

of edges labelled A in the grammar. The contribution of A counts by how much the size of
the grammar changes when every instance of the nonterminal is derived, i.e., it measures how
much A contributes towards compression. If con(A) > 0 then we say that A contributes towards
compression. The grammar in Figure 2.2a represents the graph of Figure 3.4. Here, the A-rule
has con(A) = 4 · (5 − 3) − 5 = 3 and thus contributes to the compression. The reader may
verify that the sizes of this grammar and the graph differ by exactly three. Note that, as we
remove rules, the contribution of other nonterminals might change as edges are added or deleted.
Therefore, the effectiveness of pruning depends on the order in which the nonterminals are
considered. For TreeRePair, a bottom-up hierarchical order works well in practice. We use a
similar approach. First every nonterminal A with ref(A) = 1 is removed, because, by definition,
they do not contribute towards compression. The order does not matter for this step. To remove
A we apply its rule to each A-edge in the grammar and remove the A-rule. Then we traverse
the nonterminals in bottom-up ≤gNT-order (see Section 2.3), removing each nonterminal with
con(A) ≤ 0.

3.2.3 Encoding SL-HR Grammars

We encode the start graph and the productions in different ways. As an example, consider the
grammar in Figure 3.5. The start graph is encoded using k2-trees [BLN14], using k = 2 as
this provides the best compression. This data structure partitions the adjacency matrix into
k2 squares and represents it in a k2-ary tree. Consider the left adjacency matrix in Figure 3.6.
The 9× 9-matrix is first expanded with 0-values to the next power of two; i.e., 16× 16. If one
partition has only 0-entries, a leaf labelled 0 is added to the tree. This happens for the 3rd and
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Figure 3.6: Start graph (middle): terminal edges (left) and nonterminal edges (right) and their
k2-tree representations (below) with k = 2.

4th partition in this case (the partitions are numbered left to right, top to bottom as indicated
in the bottom centre of the figure). Thus the 3rd and 4th child of the root are 0-leaves. The
other two have at least one 1-entry, therefore inner nodes labelled 1 are added and the square is
again partitioned into k2 squares. This is continued at most until every square covers exactly
one value. At this point the values are added to the tree as leaves. As we need to consider edges
with different labels, we use a method similar to the representation of RDF graphs proposed
in [ÁBF+15] and mentioned as a possible representation of hypergraphs in Section 2.6. Let
Eσ ⊆ E be the set of all edges labelled σ. For every label σ appearing in S we encode the
subgraph (V,Eσ). If rank(σ) = 2, then this is encoded as an adjacency matrix. Otherwise we
use an incidence matrix, i.e., a matrix that has one row for every edge and a column for every
node. Thus, a 1 in row i, column j of the incidence matrix means, that edge i is attached to
node j. All of these matrices are encoded as k2-trees. Figure 3.6 is an example with two edge
labels. Note that this example only uses edges of rank 2. For a hyperedge e, the incidence
matrix only provides information on the set of nodes attached to e, but not the specific order of
att(e). For this reason we also store a permutation for every edge to recover att(e). We count
the number of distinct such permutations appearing in the grammar and assign a number to
each. Then we store the list encoded in a dlogne-fixed length encoding, where n is the number
of distinct permutations.

For the rules we use a different format, as we expect the right-hand-sides to be very small
graphs (due to pruning, they may be larger than just a digram). We store an edge list for
every production, encoding the nodes using a variable-length δ-code [Eli75]. One more bit per
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node is used to mark external nodes. As the order of the external nodes is also important, we
make sure that the order induced by the IDs of the external nodes is the same as the order of
the external nodes (this is automatically the case for normalized graphs). Every production
begins with the edge count (again, using δ-codes). For every edge we first use one bit to mark
terminal/nonterminal edges, then store the number of attached nodes, followed by the δ-codes
of the list of IDs. Finally, we also use a δ-code for the edge label. The edges are stored using
the order given in Section 2.3. This way, nonterminals appear in the same order as in the
sibling-tuple. For the rule in Figure 3.5 this leads to the following encoding:

δ(2) two edges

0δ(2) edge is terminal (0), has two nodes

1δ(2)0δ(1)δ(1) nodes 1 (external) and 2 (internal), label 1

0δ(2) next edge is terminal, has two nodes

1δ(2)1δ(3)δ(1) nodes 2 (external) and 3 (external), label 1

This is a bit sequence of length 33.

3.3 Important Parameters

Two user-definable parameters have potentially big impact on the compression performance.
The node order has an influence on the size of the sets of non-overlapping occurrences found
in step 3 of Algorithm 1, as already mentioned in Section 3.2.1. The second parameter is the
maximal rank a digram may have during the compression. In the next two sections we discuss
the specific node orders available in the gRePair implementation, and we show that there cannot
be an optimal choice for the maximal rank of a digram that always produces the best result.

3.3.1 Node Order

As discussed before the node order heavily influences the digram counting, which in turn
influences the compression behaviour. A node order <V is given by a bijective function
f : V → [|V |] such that u <V v if f(u) < f(v). Some of the orders below are modelled by
functions h : V → [k] for some k < |V |, i.e., there exist nodes u, v such that h(u) = h(v), but
a strict order is needed to run the algorithm. For this reason, we consider sets of functions
F = {f : V → [|V |] | ∀u, v ∈ V : f(u) < f(v)⇒ h(u) ≤ h(v)} to be an admissible set of orders.
This means, that whenever we state that a node order was used, we actually use an arbitrary
order out of the set of admissible orders. We evaluate these orders:

1. natural order (nat) uses the node numbers as given in the source graph,

2. BFS order follows a breadth-first traversal,

3. FP computes a fixpoint on the node neighbourhoods starting from the degrees, and

4. FP0, which is a degree order.
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Figure 3.7: Computing the FP-order of a small graph.

Formally, the natural order is just the identity. In the case of BFS there exists an additional
element of nondeterminism. We choose as the first node v (i.e., the one with f(v) = 1) any node
of lowest degree. For any other node u the function h(u) evaluates to the length of a shortest
path from v to u. This forms the basis for an admissible set of orders. Note that, for graphs
with more than one connected component, one node v has to be picked for every connected
component. All of these initial nodes evaluate to 1 by h. We now define the FP and FP0 orders.
For a graph g let ci : Vg → N be a family of functions that colour every node with an integer.
We first define c0(v) = d(v), where d(v) is the degree of v. This is the order FP0. Now we map
every node v to the tuple f0(v) = (c0(v), c0(v1), . . . , c0(vn)), where v1, . . . , vn are the neighbours
of v ordered by their values in c0. We sort these tuples lexicographically and let c1(v) be the
position of f0(v) in this lexicographical order. This process is iterated until ci+1 = ci. The
process terminates due to the lexicographical ordering of fi: it ensures that the relative position
of a node v within ci and ci+1 remains unchanged, i.e., for every node u with ci(u) < ci(v) we
also have ci+1(u) < ci+1(v) and vice-versa. Thus the order ci+1 is always finer than the order ci
and a fixpoint is guaranteed. Now ci can be used as a basis for an admissible set of orders. This
computation of the order works for undirected, unlabelled graphs, but can be straightforwardly
extended to directed labelled graphs. We call this order FP.
Example 3.3. Figure 3.7 shows an example of the FP-order. The graph on the left is annotated
by c0, the graph in the middle shows f0, which is then ordered lexicographically to get c1 on
the right. This is the fixpoint for this graph, as c2 = c1.

Note that FP is not a strict order and thus also implies an equivalence relation on the nodes
(v ∼=FP u if and only if ci(v) = ci(u)). The number of equivalence classes of ∼=FP has an
interesting correlation with the compression ratio of gRePair, as discussed in Section 3.6.2.

3.3.2 Maximal Nonterminal Rank

The maximal rank is a user defined parameter of gRePair that specifies the maximal rank of
a digram (and thus the maximal rank of a nonterminal edge) that the compressor considers.
Digrams with a higher rank are ignored and not counted. It was shown already for TreeRe-
Pair [LMM13, Theorems 9 and 10] that choosing this parameter too high or too small can
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strongly degrade the compression ratio. The two families of trees given there, can be converted
into families of graphs showing the same relation to the maximal rank for gRePair. We briefly
recap the arguments, but as the proof details are almost identical to the case for TreeRePair,
we do not repeat them here.

High Rank Let gn,k be the graph t-graph(sn,k), where sn,k is a tree consisting of a right comb
of 2n nodes labelled fk, a symbol of rank k. The first k − 1 children of these nodes are leaves
labelled a, the last child is the next fk-labelled node (except for the last of these, which only has
a-children). This is the same tree as given in [LMM13, Theorem 9]. The size of gn,k depends on
k: for k = 1 the f -edges are of rank 2 (i.e., size 1) and thus we get |gn,1| = 2n + 2n + 1. For
k > 1 the size of each f -edge is k + 1 and thus |gn,k| = 2n · (k + 1) + 2n + 1.
Lemma 3.4. Given gn,k gRePair produces a grammar of size O(k2 + n) if the maximal rank
allowed is at least k, and does not compress at all if the maximal rank is less than k.

It is easy to see that there can be no compression with a maximal rank less than k: gn,k does
not contain occurrences of any digram with a rank smaller than k. Once the allowed rank is at
least k, gRePair reduces the width of the tree by 1 with every iteration by combining one of the
a-leaves with its fk-/nonterminal parent. Finally a line of 2n nonterminal edges remains, which
all have the same label and can be compressed exponentially. This argument is identical to the
one in the proof of [LMM13, Theorem 9], only the notation changes to the one used for graphs.

Small Rank We give an example of graphs which gRePair compresses best, if the maximum
rank is limited to 2. Our example is similar to the one for TreeRePair [LMM13, Theorem 10].
The main difference is that we use a graph with 2n edges labelled f , instead of nodes. Let
Tn be a graph over Σ = {f, a0, a1, a2, a3, a4} with 2n+1 + 2 nodes {0, . . . , 2n+1 + 1} and 2n+1

edges {e1, . . . , e2n+1}. The attachment relation is defined as att(ei) = i− 1 · i for i ∈ {1, . . . , 2n},
and att(ei) = i − 2n · i for i ∈ {2n + 1, . . . , 2n+1 + 1}. They are labelled by lab(ei) = f for
i ∈ {1, . . . , 2n} and

lab(ei) =



a0 if i ≡ 0 (mod 5)

a1 if i ≡ 1 (mod 5)

a2 if i ≡ 2 (mod 5)

a3 if i ≡ 3 (mod 5)

a4 if i ≡ 4 (mod 5)

,

for i ∈ {2n + 1, . . . , 2n+1}. This graph is a tree consisting of a path of 2n edges labelled f , and
every node attached to one of these f -edges, is also attached to an edge labelled a0, a1, a2, a3,
or a4. These edges appear in this order, i.e., if a node is attached to an edge labelled ai, then
the previous node (one f -edge up in the tree) is labelled ai−1 (mod 5), and the next node (one
f -edge down in the tree) is labelled ai+1 (mod 5). The size of Tn is 2n+2 + 2.
Lemma 3.5. Given Tn, gRePair produces a grammar of size O(n) if the maximal rank is
restricted to 2 and compresses at best to 75% of the original size if the maximal rank is
unbounded.
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The argument for this is mostly identical to [LMM13, Theorem 10]. With a maximal rank of 2
it compresses well, because gRePair then only has limited choice in digrams. It will first replace
the pairs of f - and al-labelled (0 ≤ l ≤ 4) edges, because every other possible digram has a
rank greater than 2. After this is done, a string-graph remains that can now be compressed
exponentially. If the maximal rank is unrestricted, the digrams of higher rank (pairs of 2 f -edges
in the first iteration) occur more frequently and are thus replaced by gRePair. This will replace
all the f -edges, but all of the nodes remain in the start graph. Furthermore, in the next step,
pairs of nonterminal edges will be replaced as the most frequent digram, again without sharing
any nodes. This continues until, after the last iteration, the start graph still has all 2n+1 + 2
nodes, and all the edges labelled al for 0 ≤ l ≤ 4. Furthermore, it has 2 nonterminal edges of
rank 2n−1. Thus,

|S| = 2n+1 + 2n + 2 · 2n−1 + 4 = 2n+2 + 4.

Regardless of the rules and the pruning step, |S| is already larger than |Tn|. In particular note
that, not counting the nonterminal edges, the size of S is still x = 2n+1 + 2n + 4. Therefore

x

|Tn|
= 2n+1 + 2n + 4

2n+1 + 2n+1 + 2
n→∞−→ 3

4 .

The pruning step reduces the grammar’s size, but the nodes and terminal edges in the start
graph remain. Thus, the compression ratio cannot be better than 3/4. Note that for TreeRePair
the compression with unbounded rank is at best 50% instead of 75%. The reason for this is, that
the size definition for trees only counts edges, whereas we consider nodes and edges in graphs.

3.4 GraphRePair in Relation to Variants for Strings and Trees

In the previous section we already drew some parallels between RePair for Trees and gRePair.
Before going on, we look in more detail on the relation of gRePair with the previous variants
for strings [LM00] and trees [LMM13]. Let w be a string, and d1, . . . , dn be the digrams that
string-RePair would replace during its run on w. If we run gRePair on s-graph(w), and use a
left-to-right node order, then the digrams d′1, . . . , d′n that gRePair replaces are exactly s-graph(d1)
to s-graph(dn). Therefore, we obtain a graph-encoding of the string-grammar that the original
RePair generates. The comparison with TreeRePair is less clear. TreeRePair compresses ordered
trees where the nodes, not the edges, are labelled from a finite alphabet. For gRePair to compress
trees in the same way, we need to represent the tree as a tree-graph as given in Section 2.4
and use a similar postOrder-traversal as TreeRePair does. We can experimentally confirm
that gRePair achieves comparable (within the same order of magnitude) compression ratios as
TreeRePair. Therefore, generally, gRePair is a generalisation of these previous variants.

An SL tree grammar achieves compression by representing only once repeating connected
subgraphs of the given tree. An SL-HR grammar is more general, because it can share repeating
disconnected subgraphs. Does this allow, for an SL-HR grammar, to compress a tree more
effectively than any SL tree grammar? We show that this is not the case by proving that every
SL-HR grammar G that represents a tree (string), can be converted to an SL-HR grammar, that
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Figure 3.8: A set of tree-generating rules, the tree they represent, and their line-structures.

is only slightly larger than G and for which every right-hand side is a tree (string). This is not
trivial, as the expressive power of graph grammars is higher than the one of context-free string
grammars. For example, it is possible to generate the language {s-graph(w) | w = anbncn, n ∈ N}
using HR grammars, but the string-language represented here is not context-free. We call an
SL-HR grammar G tree generating, if val(G) is a tree-graph as defined in Section 2.4. Similarly,
G is called string-generating, if val(G) is a string-graph. Recall that a path from a node u to a
node v in a hypergraph is a tuple (e1, . . . , en) of edges, which connect u to v, such that an edge
of rank k is considered to have one source (the first attached node) and k − 1 target nodes, and
that we call a path internal, if it uses only internal nodes (with the possible exception of u and
v). For example, in Figure 3.8 the right-hand side of A has a path (C,B) from the green to the
red node, but it is not an internal path, because it crosses the orange node.
Definition 3.6. Let g be a graph with the set X of external nodes. Then the line-structure
ls(g) = (X,E) is the directed, unlabelled graph such that for all u, v ∈ X, (u, v) ∈ E if and only
if there is an internal path from u to v in val(g).

For a nonterminal A of an SL-HR grammar we denote ls(rhs(A)) by ls(A). For an example of a
line-structure, see Figure 3.8. Note that if a grammar G is tree-generating, ls(A) is always a
rooted forest for every nonterminal A in G (otherwise there would be a cycle in val(A), because
G is tree-generating and A is useful). We refer to this property by (LG). However, the right-hand
side of A may not be a tree-graph itself, as in the A-rule in Figure 3.8. There are two ways in
which rhs(A) for a rule in a tree-generating grammar can not be a tree-graph: it can contain
cycles, or nodes with multiple parents. Both of these cases can only happen with nonterminal
edges, however. The line-structure is a tool to split these nonterminal edges, such that the
resulting graphs are tree-graphs. The following Theorem is a variant of [Dre99, Theorem 7.4]
assuming straight-line grammars, and considering how the transformation affects the size.
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Theorem 3.7. Let G = (N,P, S) be a tree-generating SL-HR grammar. We can construct an
SL-HR grammar G′ = (N ′, P ′, S′) such that

1. val(G′) = val(G),

2. |G′| ≤ 2|G|, and

3. rhsG′(A) is a tree-graph for every A ∈ N ′ ∪ {S′}.

Proof. We describe three transformations on G, which, applied in order, yield the desired
grammar G′. In the first transformation, the set of nonterminals remains unchanged. We use
the line-structure to order the external nodes in a top-down way, i.e., if u is an ancestor of
v within the line-structure, then u should be ordered before v. Let ls(A) = (V,E) for some
nonterminal A, and let u, v ∈ V . We define the partial order ≺A such that u ≺A v if and only if
there is a directed path from u to v in ls(A). Due to the property (LG) mentioned above, ≺A is
well-defined. Let (A, g) be a rule, and u, v two of its external nodes, such that u ≺A v, but v
appears before u in extg. We reorder extg (and by extension, the attachment relation of every
nonterminal edge labelled A in the entire grammar) such that they are sorted according to some
(arbitrary, but fixed) strict order consistent with ≺A. This step does not change the structure of
the grammar or affect its size. As an example, consider ls(X) for X ∈ {A,B,C} in Figure 3.8.
In all three cases, the red external node, needs to come first to be consistent with ≺X , but it is
currently third. The orange and green nodes can be ordered arbitrarily after that. Permissible
orders for ext thus are red < orange < green or red < green < orange (see Figure 3.9 for the
final grammar).

In the next two steps, additional nonterminals are (in general) added to the set of nonterminals.
We iterate over N in a bottom-up fashion, i.e., in reverse ≤NT-order. If we encounter an A ∈ N
such that ls(A) has at least two connected components g1, . . . , gk then we add rules (Ai, hi) for
i ∈ [k], where Ai is a new nonterminal of rank |Vgi |, and hi is a subgraph of rhs(A). Note that∑
i∈[k]Ai = rank(A). The set of nodes of hi is defined as

Ui = {u ∈ rhs(A) | ∃v ∈ Vgi : there is a path from v to u in rhs(A)},

i.e., Ui contains the nodes of rhs(A) that can be reached from the external nodes in gi. The
set of edges of hi contains every edge of rhs(A), which is attached only to nodes in Ui. Let
w = a1 · · · an be a string and X = {x1, . . . , xm} ⊆ [n] a set of indices. By w|X we denote the
string ax1 · · · axm such that x1 < x2 < · · · < xm. We define the set of i-indices as

idx[i] = {j | ∃v ∈ Vgi such that v is at position j within extrhs(A)}.

Using this, we define ext[i] = extrhs(A)|idx[i], and for some edge e labelled A we define att[i](e) =
att(e)|idx[i]. Now, we replace every occurrence of an edge e labelled A within the grammar
by k edges, such that for i ∈ [k] the edge ei is labelled Ai and attached to the nodes att[i](e).
We remove the nonterminal A and its rule from the grammar. Note that now all right-hand
sides are tree graphs. Note further that

∑
i∈[k] rank(ei) = rank(e), and

∑
i∈[k] |hi| ≤ |rhs(A)|

and therefore the size of the new grammar is at most |G|.



3.4. GraphRePair in Relation to Variants for Strings and Trees 39

A→

B →

C1 →

C2 →

1

2

3 4

B

C1

1
2

3

1

C2

2

3

1 4

f
1

3

2 a

1

b

1

2

b

a

Figure 3.9: The rules of Figure 3.8 after converting them to tree-graphs.

In the third step we eliminate rules that have external nodes, which are neither root nor leaves.
To do so, we again split the rules up. Let (A, g) be a rule which has at least three external
nodes u, v, w such that there is a path from u to v and from v to w, i.e., v is an inner node and
not root or leaf. Let g1, . . . , gk be the maximally sized subgraphs of g, such that their union is
g, and for every i ∈ [k], gi is a tree-graph which does not have a triple of external nodes u, v, w
such that paths exist from u to v and v to w, i.e., every external node of gi is either a root
or a leaf. Let e be an A-labelled edge of the grammar and let ext[i] and att[i](e) be defined as
above. Now we again replace (A, g) by the rules (A1, g1), . . . , (Ak, gk) and every nonterminal
edge e with lab(e) = A by the edges e1, . . . , ek, where lab(ei) = Ai and att(ei) = att[i](e). In
this case, an external node that is neither root nor leaf will appear in more than one of the
graphs g1, . . . , gk, thus this step increases the size of the grammar. This can be bounded by∑

i∈[k]

rank(Ai) ≤ 2rank(A) and
∑
i∈[k]

|gi|V ≤ 2|g|V − 1.

The factor 2 comes from the fact that, in the worst case, we may split at every external node.
Thus the node- and edge-sizes are at most doubled. Therefore, for the grammar G′ we have
|G′| ≤ 2|G|.

As an example, we provide in Figure 3.9 the conversion of the rules presented in Figure 3.8.
We first adjust the order of the external nodes to one consistent with ≺X for X ∈ {A,B,C}
by using red < orange < green as the order of the external nodes in all three cases. Thus, the
first external node becomes the third one, and the third external node becomes the first one. In
the same way, the appropriate nonterminal edges (B and C in rhs(A)) have their attachment
relation reordered. We then apply the second step, splitting the C-rule into two rules C1 and
C2. In this case the conversion was already finished after the second step, thus the new rules
are not larger than the original ones (in fact, they are smaller, because the C2-edge now is of
rank 2, which counts as size 1).

Consider again Theorem 3.7. It clearly follows from the construction of G′ that VS′ = VS .
This allows us to easily transfer the result also to string-graphs. Let G be a string-generating
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SL-HR grammar. Recall that G’s start graph S has two external nodes (because it generates
a string-graph), and note that every nonterminal of G has rank ≥ 2. We convert G into a
tree-generating SL-HR grammar by making the second external node v in S internal. The
resulting grammar generates a monadic tree, and we can use the result of Theorem 3.7 to convert
it into a grammar, where every right-hand side is a monadic tree-graph (of rank 2). Finally, this
grammar can be converted back into a string-generating grammar, by again making v external.
Corollary 3.8. Let G = (N,P, S) be a string-generating SL-HR grammar. We can construct
an SL-HR grammar G′ = (N ′, P ′, S′) such that

1. val(G′) = val(G),

2. |G′| ≤ 2|G|, and

3. rhsG′(A) is a string-graph for every A ∈ N ′ ∪ {S′}.

3.5 Choice of Formalism

We discuss briefly the reasoning for some of our choices regarding the grammar formalism used.
This includes the choice of hyperedge replacement over a different replacement method, the
restrictions we further enforce on hypergraphs, and how the size of a hypergraph is defined.

3.5.1 Hyperedge vs. Node Replacement

There are two well-known types of context-free graph grammars (see, e.g. [Eng97]):

• context-free hyperedge replacement grammars (HR grammars), and

• context-free node replacement grammars (NR grammars).

In terms of graph language generating power, NR grammars are strictly more expressive than
HR grammars. For instance, NR grammars can describe the set of all complete graphs, whereas
this is not possible with HR grammars. If we use NR grammars to produce bipartite graphs
that encode hypergraphs, then the resulting hypergraph language generating power is exactly
the same as that of HR grammars (see [Eng97, Theorem 4.28]). Note that for any given SL-HR
grammar one can construct an equivalent (with respect to a bipartite encoding of hyperedges)
SL-NR grammar of similar size.

The difference in expressive power comes due to node replacement grammars using a different
formalism for derivation. Instead of merging external nodes with the nodes in the nonterminals
neighbourhood, every rule in an NR-grammar includes a connection relation, which specifies,
which nodes in the rule are to be connected to which nodes in the nonterminal’s neighbourhood.
Consider as an example the grammar given in Figure 3.10: the initial graph S has two nonterminal
nodes, both labelled A. The rule for A has two nonterminal nodes labelled B, and the connection
relation {(A,B), (C,B), (D,B), (a,B)}. When deriving one of the A-nodes in S we note that
the neighbourhood of this node consists of only one node with label A. The tuple (A,B) in the
connection relation means that every A-node from the nonterminals neighbourhood is connected
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Figure 3.10: NR grammar that generates a complete graph with 32 nodes.
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Figure 3.11: Two derivation steps of the grammar from Figure 3.10.

with every B-node in the rule. Figure 3.11 shows this, and one more derivation step as an
example.

The natural choice to define a digram for use of RePair with NR-grammars would be two
neighbouring nodes and the edge between them. However, due to the connection relation, we
would also need to include the neighbourhood in this definition, as different occurrences of
the same two nodes may need different connection relations. These may be incompatible with
each other in some cases, or could be merged into one rule in others. This could make digrams
too specific, and occurrences somewhat rare. It is therefore unclear, whether the use of node
replacement yields a successful RePair variant, but we note that it is interesting future work,
particularly as we believe, that complete graphs can be compressed much better using NR
grammars.
Conjecture 3.9. Let Cn be a complete graph with 2n nodes. Then there exists an SL-NR
grammar Gn such that val(Gn) = Cn, and |Gn| ∈ O(n), but there is no SL-HR grammar G′n
such that val(G′n) = Cn and |Gn| ∈ O(n).

The previously mentioned grammar in Figure 3.10 is an example for an SL-NR grammar that
compresses a complete graph as in the conjecture and can be extended to generate Cn for any n.
The connection relation for this grammar could also use a shorthand (i.e., {(∗, a)} could be used
for the connection relation of the D-rule instead of {(A, a), (B, a), (C, a), (D, a)}). Doing so
yields a grammar with n rules, each having two nodes, one edge, and one tuple in the connection
relation. We currently have no proof for the second part of the conjecture.

3.5.2 On the Additional Conditions for Hypergraphs

Recall, we also enforce two conditions on hypergraphs, which are not always found in the
literature:

(C1) for every edge e: att(e) contains no node twice, and
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Figure 3.12: Example for a grammar that is not att-distinct (left), but smaller than the att-distinct
grammar produced by gRePair (right) representing the same graph (middle).

(C2) the string ext of external nodes contains no node twice.

We refer to these as att-, and ext-distinctness, respectively. We also call a rule att-distinct
(ext-distinct), if its right-hand side is att-distinct (ext-distinct). A grammar is att-distinct
(ext-distinct), if every rule and the start graph are att-distinct (ext-distinct). These conditions
have no effect on the graph language generating power of HR grammars (provided the graphs
do not require edges/external nodes that are not att/ext-distinct) as shown in [Hab92, Chapter
1, Theorem 4.6]. With respect to compression however, this is not the case in both cases: For
efficiency reasons gRePair does not consider or produce edges that are not att-distinct. This
potentially weakens the compression, as nonterminal edges that are not att-distinct could be
used to represent occurrences of different digrams using only one rule. For example, consider
the digrams g) in Figure 3.2. Occurrences of them could also be replaced by a rule using the
digrams a) from that same figure, by merging the centre and right-most external nodes. This is
not necessarily always an improvement: in this case we are using a rank-3 nonterminal edge,
where a rank-2 edge would have sufficed, thus storing larger nonterminals. It can be shown
however, that there are grammars, which are not att-distinct, but smaller than the smallest
att-distinct grammar for the same graph. Figure 3.12 is an example for such a graph. For
ext-distinctness, on the other hand, we can show that the condition not only has no effect on
compression, but enforcing it makes the grammar smaller.
Lemma 3.10. Given a non-ext-distinct SL-HR grammar G = (N,P, S), an ext-distinct SL-HR
grammar G′ can be constructed (in linear time), such that L(G′) = L(G) and |G′| < |G|.

Proof. For a string w let symb(w) be the set of symbols appearing in w, and dist(w) the string
v derived from w by only keeping the first occurrence of every distinct symbol in w. For
example, for w = acbac, symb(w) = {a, b, c}, and dist(w) = acb. Let (A, g) be a rule that is
not ext-distinct. We first add a new rule (A′, g′) with rank(A′) = |dist(extg)|, and g′ is the
same graph as g except with extg′ = dist(extg). Then we replace the A-rule by (A, h) where
h = (symb(extg), {e}, lab(e) = A′, att(e) = dist(extg), ext = extg). We can now derive every
occurrence of A in the grammar and remove the A-rule altogether. Doing this merges some of
the nodes in the grammar, as they were referenced by the same external node. Note that this
process reduces the size of the grammar. Let u be a node that occurs k ≥ 2 times in extg. Then,
applying the A-rules decreases the node size by k − 1. The edge-size also decreases by k − 1, as
A′ has a smaller rank.
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3.5.3 Size of a Hypergraph

Of particular importance for compression is how the size of the object is defined. In our case it
directly influences whether a nonterminal is considered contributing or not, and thus which rules
are kept in the pruning stage. The size of simple graphs is usually counted as |V |+ |E|. For
hypergraphs as used here we know of no such convention. Using |V |+ |E| seems too reduced:
clearly a hyperedge of rank n >> 2 should have a higher size than a simple edge, simply
because much more information about attached nodes needs to be stored. Initially the size of
an edge e was therefore defined as rank(e). This has the effect that a simple graph has a size
of |V |+ 2|E| (because all the edges have rank 2). Early experiments showed that, under this
size definition, complete graphs could be compressed to about 60%, however the output files
were not much smaller than the input (if at all). The size definition presented here (size of
an edge e is 1 if rank(e) ≤ 2 and rank(e) otherwise) is motivated from the way the graphs are
encoded. Simple edges are encoded using adjacency matrices where only one “1”-entry exists per
edge. Hyperedges of rank 3 and higher on the other hand use incidence matrices where rank(e)
“1”-entries exist per edge. It much closer resembles the output sizes, however the amount of
different labels (i.e., |Σ|+ |N |) and the possible overhead generated by labels that only occur
very few times is still disregarded. This is difficult to include in a size definition, as it depends
on other edges and therefore cannot be used in the definition of the size for a single edge.

It is possible to encode a hypergraph into a bipartite simple graph. A bipartite graph is a simple
graph g whose set of nodes V can be denoted as the union of two disjoint sets S and T such
that N(x) ⊆ T for any x ∈ S and N(y) ⊆ S for any y ∈ T . A hypergraph g can be encoded
as such a bipartite graph, by using S = V and T = E and connecting every node e ∈ T with
rank(e) simple edges to the nodes attg(e). Then the size of a hypergraph can be defined by the
sum of nodes and edges of its bipartite encoding. This has similar effects to using the rank of
an edge and thus does not correlate well with the file size of our encoding, but might be a good
idea if such a bipartite encoding is used to encode SL-HR grammars.

3.6 Experimental Evaluation

We implemented a prototype in Scala (version 2.11.7) using the Graph for Scala library1 (version
1.9.4). The experiments are conducted on a machine running Scientific Linux 6.6 (kernel version
2.6.32), with 2 Intel Xeon E5-2690 v2 processors at 3.00 GHz and 378 GB memory. As we are
only evaluating a prototype, we do not mention runtime or peak memory performance, as these
can be considerably improved by a more careful implementation. We compare to the following
compressors:

• k2-tree, where the first 5 levels of the tree use k = 4, and beyond that k = 2.

• The list merge (LM) algorithm by Grabowski and Bieniecki [GB14]. We use 64 for their
chunk size parameter, as in their paper.

1http://www.scala-graph.org/
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• The combination of dense substructure removal [BC08] and k2-tree by Hernández and
Navarro [HN14] (HN). For the parameters to the algorithm we use T = 10, P = 2, and
ES = 10, which are the parameters their experiments show to provide the best compression.
Note that this compressor uses a k2-tree implementation with all the optimizations.

For all three of these, we use implementations provided by the authors. In the case of the
k2-tree-method we use their regular implementation for network and web graphs, but the
interleaved method based on [ÁdBBN17] for RDF and version graphs with edge labels, as that
yields better results in all but one case. We also experimented with RePair on adjacency lists
by Claude and Navarro [CN10], but omit the results here, because on all graphs we tested,
stronger compression was achieved by another compared compressor. For the results on network
graphs (in Section 3.6.3 below) we also mention some results achieved with MPk linearizations
in [Mas12], a compressor designed to be used with social networks. As we do not have their
implementation, we do not include a full comparison.

As common in graph compression, we present the compression ratios in bpe (bits per edge).
Note that our compressor reorders the nodes. We omit the space required to retain the original
node IDs, because we assume that they represent arbitrary data values and it is possible to
update this mapping. This is particularly true for RDF graphs, as explained in Section 3.6.3.

Note that it is known that using different node orders will change the results for all of these com-
pressors, including gRePair. We discussed the importance of the traversal order in Section 3.2.1,
but another area where the node order will have an effect is the final encoding of the start graph
using the k2-tree-structure. To get comparable results, we use the natural order in all cases,
when it comes to the encoding. We ran experiments, where the start graph of the grammar
produced by gRePair was reordered according to the initially computed FP-order. This improves
some of the results, but we consider it future work to test the impact of different orders on the
encoding of the start graph (cf Section 3.8). Furthermore, we use our own implementation of the
k2-tree-method for the encoding of the start graph. It follows the description in [BLN14], using
the same binary format, however it does not include the further optimization on compressing
the leaf-level described there. The output files of gRePair do not seem to work very well
with this optimization, as in most cases the results got slightly worse when using the k2-tree
implementation provided by its authors.

3.6.1 Datasets

We use three different types of graphs: network graphs, which are further split into web graphs
(Table 3.1) and social networks (Table 3.2), RDF graphs (Table 3.3), and version graphs
(Table 3.4). Each table lists the numbers of nodes and edges and the number of equivalence
classes of ∼=FP (see Section 3.3.1) of each graph. For RDF graphs we also list the number of
edge labels (i.e., predicates) of each graph. Two of the version graphs also have labelled edges.
We give a short description of each graph: the network graphs are from the Stanford Large
Network Dataset Collection2 and are unlabelled. They are communication networks (Email-

2http://snap.stanford.edu/data/index.html
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Graph |V | |E| |[∼=FP]|

NotreDame 325,729 1,497,134 118,264

Google 875,713 5,105,039 568,044

Stanford 281,903 2,312,497 182,349

Table 3.1: Web graphs

Graph |V | |E| |[∼=FP]|

CA-AstroPh 18,772 396,160 14,742

CA-CondMat 23,133 186,936 17,135

CA-GrQc 5,242 28,980 3,394

Email-Enron 36,692 367,662 20,417

Email-EuAll 265,214 420,045 28,895

Wiki-Talk 2,394,385 5,021,410 566,846

Wiki-Vote 7,115 103,689 5,805

Table 3.2: Social network graphs

Graph |V | |E| |Σ| |[∼=FP]|

1 Specific properties en 609,014 819,764 71 236,235

2 Types ru 642,340 642,364 1 79

3 Types es 818,657 819,780 1 336

4 Types de with en 618,708 1,810,909 1 335

5 Identica 16,355 29,683 12 14,588

6 Jamendo 438,975 1,047,898 25 396,725

Table 3.3: RDF graphs

EuAll, Wiki-Vote, Wiki-Talk), web graphs (NotreDame, Google, Stanford) and Co-Authorship
networks (CA-AstroPh, CA-CondMat, CA-GrQc). Even if they were advertised as undirected,
we considered all of them to be lists of directed edges, to improve the comparability with the
other compressors, as these would also assume the input graph to be directed.

The RDF graphs mostly come from the DBPedia project3, which is an effort of representing
ontology information fromWikipedia. We evaluate on specific mapping-based properties (English),
which contains infobox data from the English Wikipedia and mapping-based types, which contains
the rdf:types for the instances extracted from the infobox data. We use three different versions
of the latter: types for instances extracted from the Spanish and Russian Wikipedia pages that
do not have an equivalent English page, and types for instances extracted from the German
Wikipedia pages that do have an equivalent English page. The Identica-dataset4 represents
messages from the public stream of the (no longer active) microblogging site identi.ca. Its triples

3http://wiki.dbpedia.org/Downloads2015-04
4http://www.it.uc3m.es/berto/RDSZ/
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Graph |V | |E| |Σ| |[∼=FP]|

Tic-Tac-Toe 5,634 10,016 3 9

Chess 76,272 113,039 12 74,592

DBLP60-70 24,246 23,677 1 2,739

DBLP60-90 658,197 954,521 1 207,305

Table 3.4: Version graphs

map a notice or user with predicates such as creator (pointing to a user), date, content, or name.
The Jamendo-dataset5 is a linked-data representation of the Jamendo-repository for Creative
Commons licensed music. Subjects are artists, records, tags, tracks, signals, or albums. The
triples connect them with metadata such as names, birth date, biography, or date.

Version graphs are disjoint unions of multiple versions of the same graph. Here, Tic-Tac-Toe
represents winning positions, and Chess represents legal moves6. The files contain node labels
from a finite alphabet, which we ignore here. DBLP60-70 and DBLP60-90 are co-authorship
networks from DBLP, created from the XML7 file by using author IDs as nodes and creating an
edge between two authors who appear as co-authors of some entry in the file. To make version
graphs, we created graphs containing the disjoint union of yearly snapshots of the co-authorship
network.

3.6.2 Influence of Parameters

We evaluate how the different parameters for our compressor affect compression. For these
experiments every parameter except the one being evaluated is fixed for the runs. Note that this
sometimes leads to situations where none of the results in a particular experiment represents
the best compression our compressor is able to achieve for the given graph. The parameters
evaluated are the maximum rank of a nonterminal and the node order.

Maximal Rank We test maxRank values from 2 up to 8. The average results for the three
types of graphs tested are given in Table 3.5, as compression in bpe. We did some tests for
higher values (up to 16) but only got worse results. The best results are marked in bold. For
each class of graphs, a value of 4 achieved the best results on average. We therefore conclude
that a value of 4 is a good compromise for our data sets.

Node Order Figure 3.13 shows the compression ratio of a selection of graphs under the different
node orders detailed in Section 3.3.1 above. The selection aims to be representative for the
graphs of the types we evaluated: CA-graphs behave similar to CA-AstroPh, version graphs
similar to DBLP60-70, and the RDF graphs similar to Specific properties en. The other graphs
in the figure are chosen because they are outliers in their respective category. Our FP-order

5http://dbtune.org/jamendo/
6Both from http://ailab.wsu.edu/subdue/download.htm
7http://dblp.uni-trier.de/xml/ (release from August 1st, 2015)
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2 3 4 5 6 7 8

Network Graphs 11.74 11.59 11.44 11.94 12.51 13.67 12.92

RDF Graphs 5.17 5.40 4.85 4.92 5.60 6.12 6.25

Version Graphs 7.99 8.21 5.57 5.93 6.07 6.12 6.11

Table 3.5: Average results for different values of maxRank (compression in bpe).
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Figure 3.13: Performance of gRePair under different node orders.

achieves the best result on almost all of the graphs. On RDF graphs the order generally had
only marginal impact: the best and worst results usually are within 1 bpe of each other. The
Jamendo graph presents an exception here, with the natural order being about 1 bpe better
than the closest other result and featuring the largest difference between FP0 and FP of all
our graphs. Version graphs however benefit hugely from the FP-order, as evidenced by the
results for DBLP60-70, and further discussed in Section 3.6.3. This shows that two or more
versions of the same graph are similarly ordered in the FP-order, increasing the likelihood of
the compressor of recognizing repeating structures.

There is another interesting observation about the FP-order, or in particular the equivalence
relation ∼=FP. It is likely that nodes with a high similarity, i.e., the same neighbourhood up to a
certain distance, are equivalent in this relation. This implies that graphs with a low number
of equivalence classes should compress well, as they would have many repeating substructures.
Figure 3.14 shows this correlation. There is no graph in the lower right corner, i.e., there is no
graph with a low number of equivalence classes and low compression. Note that this is neither a
necessary nor a sufficient condition for good compression, but merely an indication. For example,
complete graphs always have only one equivalence class but do not compress well with gRePair.

3.6.3 Comparison with other compressors

We compare gRePair with the compressors k2-tree, LM, and HN listed at the beginning
of Section 3.6. Note that we compare RDF graph compression only against the k2-tree-
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method, as LM and HN have not been extended to RDF graphs (they only work with graphs
without edge labels). While these algorithms all work as in-memory data structures, they
produce outputs with file sizes comparable to the in-memory representations. We measure the
compression performance based on these file sizes. Where applicable, we furthermore use the
dense substructure removal done as a first step in the HN-method in combination with our
compressor, marked as “gRePair+DSR”. A dense substructure in this case is defined by two sets
of nodes U, S that induce a complete bipartite graph. Note that U and S need not be disjoint.
The edges in these bicliques are replaced by a single “virtual node” with incoming edges from
the nodes in U and outgoing edges to the nodes in S. Usually, the virtual nodes would be
identified by their ID: ID’s higher than |V | (with respect to the input graph) are virtual nodes.
As our compressor renames the nodes, this is no longer feasible. Therefore, we added specially
labelled rank-1 edges to the virtual nodes created by the dense substructure removal, to ensure
that the original graph could be restored. This is the most space-efficient method we found.

Let us give an idea of the compression ratio for the graphs according to our size definition.
Using gRePair (without DSR), we achieve, on average, a compression ratio ( |G||g| ) of

• 83% for web graphs,

• 68% for network graphs,

• 35% for RDF, and

• 24% for version graphs.

The parameters we choose for gRePair are maxRank = 4 and the FP-order, both being generally
the best choice for our dataset. We note that in most results the majority of the file sizes of
gRePair’s output (> 90%) is for the representation of the start graph.
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Figure 3.15: Web graph comparison of gRePair with three other compressors.

Network Graphs The methods we compare against are all designed with compression of web
graphs in mind, though particularly the HN-compressor also was applied successfully to social
graphs. Our results on web graphs compared to k2-tree, LM, and HN are summarized in
Figure 3.15. Clearly, by itself gRePair is not a good choice for the compression of web graphs.
Only with the NotreDame graph are the results close and even then gRePair produces the
least compression. However, combining the dense substructure removal with our compressor as
detailed above improves the results significantly and leads to the best results on the Google and
Stanford graphs. They are also better than the best results reported in [Mas12] for these two
graphs (11.58 bpe and 9.88 bpe, respectively), which otherwise are the second-best results out
of the compared compressors.

Our results on social network graphs compared to k2-tree, LM, and HN are summarized in
Figure 3.16. We improve on the plain k2-tree-representation on all graphs. However, our results
are often slightly worse than LM and HN, with Email-EuAll and CA-GrQc being exceptions.
Our result for Email-EuAll is also significantly better than the 22.55 bpe reported in [Mas12].
That being said, combining dense substructure removal with our compressor, generally improves
on our results and achieves the smallest bpe-values for two of the three CA-graphs. These
are likely improved further by the method of [Mas12], however, as they report 6.69 bpe on
CA-CondMat.

While not all the results are mentioned here, we conducted experiments on most of the graphs
given in [Mas12] for their evaluation of MPk linearizations. It is interesting to note that gRePair
performs well on the graphs MPk linearizations perform worst on. They attribute the worse
performance on these graphs to a lack of locality. Specifically, these graphs have a very low
“global clustering coefficient”. Intuitively this is a measure for the likelihood of an edge existing
between two nodes, if they have a common neighbour (cf. [Mas12, Section 4.1]). Our method
performs better on graphs exhibiting less such interconnection.
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Figure 3.16: Social network graph comparison of gRePair with three other compressors.

RDF-Graph 1 2 3 4 5 6

gRePair 11.04 0.01 0.03 1.24 8.52 6.76

k2-tree 25.59 10.62 7.83 4.53 14.61 5.32

Table 3.6: Results on RDF graphs (in bpe)

RDF Graphs Recall from Section 2.5 that the values for subject, predicate, and object of RDF
triples are commonly mapped to integers using a dictionary to represent the original values. As
in this way dictionary and graph are separate entities, we only focus on compressing the graph.
Any method for dictionary compression can be used to additionally compress the dictionary
(e.g. [MFC12]) and we omit the space necessary for the dictionary.

Our results in comparison to k2-tree are given in Table 3.6. We greatly improve against this
representation on all graphs except for the Jamendo graph. For the graphs 2 – 4 (in particular 2
and 3) we are able to produce a representation that is orders of magnitude smaller than the
k2-tree-representation (note that |[∼=FP]| is very low for these graphs). For these two graphs in
particular, this is due to the majority of their nodes being laid out in a star pattern: a few hub
nodes of very high degree are connected to nodes, most of which are only connected to the hub
node. Furthermore, while not acyclic, the graphs are also very tree-like. Structures like these
are compressed well by gRePair, because every iteration of the replacement-round of gRePair
roughly halves the number of edges around the hub node.

Version Graphs We describe several experiments over version graphs. First we study how the
compressor behaves given a high number of identical copies of the same simple graph. The
graph in this case is a directed cycle with four nodes and one of the two possible diagonal
edges. Figure 3.17a shows the results of this experiment for identical copies starting from 8
going in powers of 2 up to 4096. Clearly, gRePair is able to compress much better in this case
(“exponential compression”), while the file size of other methods rises with roughly the same
gradient as the size of the graph. Note that both axes in this graph use a logarithmic scale: in
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TTT Chess DBLP60-70 DBLP60-90

gRePair 0.12 9.06 7.31 12.10

k2-tree 4.38 8.54 16.62 17.98

LM - - 15.71 17.75

HN - - 13.17 15.41

Table 3.7: Results on version graphs (compression in bpe)

this case, gRePair produces a representation that is orders of magnitude smaller than the other
compressors.

Except for identical copies of rather simple graphs, however, we cannot expect to achieve
exponential compression on version graphs. Every version has changes and it is not easy to
decide which parts of two versions remain the same and can thus be compressed using the same
nonterminals. Even if we can guarantee that the same (or rather, isomorphic) substructures are
consistently compressed in the same way, the changes between versions might be too big to allow
for exponential compression. Our FP-order is inspired by the Weisfeiler-Lehman method [WL68]
(see also [CFI92]), which approximates a test for isomorphism. The results on version graphs,
when comparing different orders (see also Section 3.6.2 above), suggest that this is indeed
exploited. Figure 3.17b shows a comparison on the compression of a version graph from the
DBLP co-authorship network. We started with a co-authorship network including publications
from 1960 and older. To this graph we then add versions with the publications from 1961,
1962,. . . until 1970 and compress the graphs obtained in this way. The comparison shows that
using the FP-order our method achieves better compression than using other orders. Note that
the results for BFS or natural order are much closer to k2-trees. Our full results for version
graphs are given in Table 3.7. Note that we compare Tic-Tac-Toe and Chess only against k2-tree,
because these graphs have edge labels. The results show that gRePair compresses version graphs
well.

3.6.4 Results on Synthetic Graphs

We finally describe experiments on synthetic graphs. These show some of the effects described
earlier, namely that

1. some graphs can be compressed exponentially,

2. the maximal rank can have a big impact, and

3. different node orders can have a big influence on the compression.

We evaluate two different families of graphs: “grid” and “triangle fractal”. Both have a parameter
n ∈ N to achieve different sizes. Let gridn be an n× 2n-grid graph, i.e., a graph with n · 2n nodes
where node i has edges to i+ 1 (unless i ≡ 0 mod 2n), and to i+ 2n (unless i+ 2n > n · 2n).
Following this construction, gridn has n · 2n nodes, and (n− 1) · 2n + n · 2n−1 edges, yielding
a size of |gridn| = n(2n + 2n−1) + (n− 1) · 2n. Furthermore we define a triangle fractal in the
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Figure 3.18: The tf1, tf2, tf3, and tf6 triangle fractals. The node colours indicate the layer of the
node: red nodes are tf1, dark orange is added in tf2, and every step towards green means the nodes
are added in the next iteration, with white being the nodes added in tf6 from tf5.

following way: initially tf1 is a complete graph with 3 nodes. To define tfi with i > 1, we start
with tfi−1 and let X be the set of edges in tfi−1 that are incident to a node of degree 2. For
each edge e in X we add a new node v and add edges from the target of e to v and from v to
the source of e, creating another triangle. Intuitively, we add another triangle at every outer
edge. Regarding the size, tn has |tn|V = 2n + 2n−1 nodes, and |tn|E = 2|tn|V − 3 edges. The
natural order (i.e., the order of the node-IDs) is a top-to-bottom, left-to-right order for gridn,
while the natural order for tfn is to start with the three nodes of the innermost triangle and
then go outward from there in the same way as generated (i.e., in “layers”).

Table 3.8 lists the results for these graphs using various orders, graph sizes, and values of
maxRank. Here we state the compression performance in relation to the size definition, i.e., the
compression ratio is given by |G||g| (in percent), where G is the compressed representation of g.
Some notable results: triangle fractal compresses best at maxRank = 2. This is not surprising,
as in this case the construction of the graph is exactly reversed (with respect to the recursive
definition of tfn). However, note that at maxRank = 4 the results are still very close using the
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Triangle fractal Grid

Order MaxRank n = 4 n = 8 n = 12 n = 4 n = 8 n = 12

FP 2 36.23% 4.61% 0.44% 98.26% 99.95% 100.00%

4 46.38% 5.40% 0.50% 100.00% 95.95% 97.15%

15 85.51% 23.59% 9.43% 100.00% 72.31% 46.38%

∞ 85.51% 24.80% 6.23% 100.00% 70.00% 33.99%

FP0 2 36.23% 4.61% 0.44% 98.26% 99.95% 100.00%

4 46.38% 16.54% 5.70% 100.00% 92.23% 93.37%

15 46.38% 61.10% 8.99% 100.00% 99.93% 96.99%

∞ 46.38% 61.10% 8.99% 100.00% 99.93% 96.99%

Nat 2 39.13% 4.79% 0.45% 98.26% 99.95% 100.00%

4 100.00% 82.77% 80.69% 99.42% 95.88% 97.15%

15 95.65% 28.72% 5.19% 94.77% 62.96% 75.48%

∞ 95.65% 28.72% 4.51% 94.77% 13.13% 1.23%

BFS 2 60.87% 18.28% 7.49% 98.26% 99.95% 100.00%

4 81.16% 54.22% 56.68% 100.00% 95.88% 97.15%

15 81.16% 57.18% 72.33% 100.00% 47.81% 37.89%

∞ 81.16% 52.13% 71.11% 100.00% 63.74% (19.85%)

Table 3.8: Results on triangle fractal- and grid-graphs for various values of n, four orders, and 4
different values of maxRank.

FP-order, whereas they get noticeably worse for every other order. Indeed, with the BFS-order
even for maxRank = 2 the optimal result is not found any more. Using a higher rank than 4
is generally detrimental for this graph, because digrams of higher rank occur more often than
the ones of rank 2. This is not a problem in itself, as carefully chosen occurrences can still be
reduced well, but there are many more sets of occurrences for rank-3 digrams, than there are for
rank-2 digrams. Which one is found by gRePair depends on the node order. This graph family
shows that

1. maxRank can have a huge impact (compare 2 vs. 4 for the natural order), and

2. the node order can have a huge impact (compare FP vs. BFS order).

Grids are the opposite, when it comes to maxRank: best compression is achieved for unbounded
rank, while maxRank = 2 gives almost no compression (independent of the node order). For
unbounded rank, FP0 gives close to no compression, FP compresses to 34%, and natural order
compresses to 12% (for n = 12). It is possible to achieve “exponential compression” with grids,
by treating the grid as n identical lines of length 2n. Node orders that traverse the grid in
such a way (like the natural order, which goes row by row, or the BFS-order which follows
the rows “in parallel”), are likely to find digram occurrences corresponding to this structure.
Accordingly, the BFS-order also achieves good compression. In particular, it has the best result
for maxRank = 15 with n = 8 or n = 12. Note however, that for grid12 with BFS-order and
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unbounded maxRank the rank was actually bounded to 1500, because the computation takes
too long otherwise.

3.7 Related Work

Context-free hyperedge replacement grammars are due Habel/Kreowski and Bauderon/Courcelle [HK86,
BC87, Hab92], and also comprehensively discussed in, e.g. [Eng97, DKH97]. An approximation
algorithm for finding a small HR grammar that generates a given graph is considered already by
Peshkin [Pes07]. It is based on the SEQUITUR compression scheme [NW97]. However, the main
aim of their work is to gain insight into the structure of a graph, rather than compression. Ex-
periments are thus only presented for rather small protein graphs, and while the implementation
is available8, it does not consider succinct encoding of the output. As far as we know, no other
compressor for straight-line graph grammars has been considered. Claude and Navarro [CN10]
apply string RePair on the adjacency list of a graph. This works well, but is outperformed by
newer compression schemes such as k2-trees [BLN14]. More database oriented work is found for
semi-structured data. For example the XMill-compressor [LS00] groups XML-data such that a
subsequent use of general-purpose compression (e.g. gzip) is more effective. Schema information
can improve its effectiveness, but is not required. Deriving schema information from existing
data can be seen as a form of lossy compression. DataGuides [GW97] are a way of doing just
that for XML data. As XML documents can be represented as trees, methods to compress
trees are applicable. Grammar-based tree compression can be seen as a precursor to the work
presented here. One of the first such algorithms was BPLEX [BLM08]. The results of BPLEX
were later improved by applying the RePair compression scheme to trees [LMM13].

3.7.1 Succinct Graph Representations

A succinct data structure typically is an encoding that represents the data within the information
theoretic lower bound using only o(n) additional bits and often supporting a reasonable set of
operations on the data. For graphs, these are typically adjacency or neighbourhood queries. This
section summarizes some theoretic (to our knowledge no implementations of these algorithms
exist) work on succinct graph representations. Most of these methods only work on subsets of
graphs, we detail for each method which subset exactly it works for. Furthermore, “graphs” in
the context of these algorithms are directed simple graphs without labels unless otherwise stated.
For such a graph with n nodes and m edges the information theoretic lower bound (according
to [FM13]) is H(n,m) = dlog

(
n2

m

)
e bits.

Turán [Tur84] presents a succinct representation for planar graphs. Specifically it encodes
undirected planar graphs without loops or multiple edges into a bitstring with at most 12n bits.
Furthermore an undirected planar graph with node labels can be represented by ndlog2 ne+ 12n
bits. This is achieved by first choosing a spanning tree of the graph. The nodes of the graph are
then arranged into a cyclic sequence according to a post-order traversal of the spanning tree

8https://github.com/Peshkin/Graphitour



3.7. Related Work 55

(length: 2n− 2). The remaining edges (i.e. the ones not part of the spanning tree) are included
as diagonals of the cycle. This is where planarity is necessary, as otherwise these diagonals might
cross. The sequence is then encoded as a string consisting of the symbols +,−, (, ), which can
be encoded by 2 bits each, leading to an encoding of at most 12n− 24 bits. In the labelled case
the same encoding is used, padded to the maximum amount of bits, followed by a dictionary for
the labels. Access to the compressed structure is not considered.

Jacobson’s approach [Jac89] works on graphs of bounded pagenumber. This means that the
graph can be represented by a bounded number of pages, which is a linear drawing of a subset
of nodes with the edges connecting them drawn above so that they do not intersect. Such a
page can be encoded as a string of parentheses, leading to an encoding for the full graph by
combining the encodings of the single pages. He proves it to be optimal for trees and within a
logarithmic factor of the information theoretic lower bound for graphs of bounded pagenumber.
Jacobson also considers accessing the succinct structure and shows that an algorithm can test
adjacency of two nodes in O(logn) bit inspections for graphs with one page. For graphs with k
pages, Jacobson’s approach uses O(kn) bits and tests adjacency in O(k logn) time.

Deo and Litow [DL98] consider graphs of bounded genus g (a topological embedding similar to
the pagenumber above) and present an encoding representing such graphs using O(g + n) bits
and O(g + n) time. However, finding a minimal genus embedding for a graph G is NP-complete,
but fixed-parameter tractable, therefore finding an embedding for a fixed genus g is possible in
P. They furthermore show separator theorems for graphs defined by an excluded minor. These
and similar separator techniques are later used for compression, as further mentioned below.

The approach by Farzan and Munro [FM13] works for arbitrary graphs. They first prove that it
is not possible to achieve a representation within the information theoretic lower bound up to
lower order terms unless the graph is either too sparse (i.e. m = o(nδ) for any constant δ > 0)
or too dense (i.e. m = ω(n2−δ) for any constant δ > 0). They then present a succinct encoding
supporting adjacency and neighbourhood queries in constant time. The space needed for the
encoding is within a (1 + ε)-factor of the information theoretic lower bound for any arbitrarily
small constant ε > 0, and it tightly achieves the information theoretic lower bound within lower
order terms for too sparse or too dense graphs.

Lu [Lu14] gives a compression scheme for hereditary classes of graphs. A class of graphs is
hereditary, if it is closed under taking subgraphs. Let G be such a class of graphs, and let
num(G, n) be the amount of graphs with n nodes in G. They prove that, if log num(G, n) = O(n),
given a graph G ∈ G with n nodes and a genus-o( n

log2 n
) embedding, it is possible to represent the

graph using βn+o(n) bits, where β is any positive constant such that log num(G, n) ≤ βn+o(n).
This is achieved by using graph separators as above.

3.7.2 Web Graph Compression

Several compression approaches have been developed particularly for web graphs. However, some
have been successfully applied to other graphs as well, which we mention where appropriate.
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In a web graph, nodes represent pages (i.e., URLs) and edges represent links from one page to
another. Web graphs have two properties which are useful for compression:

Locality: most links lead to pages within the same host (i.e., URLs have the same prefix) and

Similarity: pages on the same host often share the same links.

Due to these properties, ordering the nodes lexicographically by their URL provides an order in
which similar nodes are close to each other. The WebGraph framework [BV04] by Boldi and
Vigna is originally based on this order, but was later improved with a different order [BSV09].
It represents the adjacency list of a graph using several layers of encodings, while retaining the
ability to answer out-neighbourhood queries. A different approach is proposed by Grabowski and
Bieniecki [GB14], where contiguous blocks of the adjacency list are merged into a single ordered
list, and a list of flags which are used to recover the original lists. They then encode the ordered
list and use the deflate-compressor to compress both lists. To our knowledge, their method
is the current state-of-the-art in compression/query trade-off, when only out-neighbourhood
queries are considered and the compression ratio is prioritized.

The methods above have in common that they encode the adjacency list of a graph and natively
only support out-neighbourhood queries. The k2-trees of Brisaboa et al. [BLN14] on the other
hand compress the adjacency matrix of the graph. As briefly explained in Section 3.2.3, they do
this by recursively partitioning it into k2 many squares. If one of these includes only 0-values,
then it is represented by a 0-leaf in the tree, and otherwise the square is partitioned further. This
Quadtree-like representation is well known (see, e.g. [Ši09]), but their succinct binary encoding
is a clever new approach. The method provides access to both, in- and out-neighbourhood
queries, and can be applied to any binary relation. The k2-tree-method was combined by
Hernández and Navarro [HN14] with dense substructure removal, originally proposed by Buehrer
and Chellapilla [BC08]. This also works well on general graphs, and to our knowledge, the
method of [HN14] is the current state-of-the-art in compression/query trade-off, when in- and
out-neighbourhood queries are considered and the compression ratio is prioritized. For graphs
that are “tree-like” in the sense that there are not many edges in addition to those in a spanning
tree, Fischer and Peters [FP16] propose a method called “GLOUDS”, which is based on the
LOUDS encoding [Jac89] to succinctly represent trees. Informally, the LOUDS encoding is
used to represent a spanning tree and enhanced with additional information for the remaining
non-tree edges.

3.7.3 Beyond Web Graphs

Web graph compression relies strongly on properties commonly found in web graphs, but not
common to other graphs. These methods therefore tend to work less well on, for example,
social networks. Some work on compression of general graphs exists, but it is less common than
methods focussed on web graphs. One immediate problem is the node order. Outside of web
graphs, a lexicographical order of the node-names is not necessarily possible or useful. Apostolico
and Drovandi therefore propose an encoding of the adjacency list based on a BFS-order [AD09].
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This method provides competitive compression while supporting out-neighbourhood queries,
but their evaluation still focusses on web graphs.

Maserrat [Mas12] presents lossless and lossy compression schemes which support both, in- and
out-neighbourhood queries, and also more efficient incremental updates than the above, based on
MPk-linearizations. These schemes are mainly evaluated on social networks achieving between
5 and 30 bpe. On two web graphs the methods achieves around 11 bpe, suggesting that it is
indeed more suitable for general network graphs, as the WebGraph framework achieves better
results (but only supporting out-neighbourhood queries).

Claude and Ladra [CL11] combine the k2-tree representation with two other methods. First they
use the method by Claude and Navarro [CN10] using RePair on the adjacency lists of a graph to
compress web graphs. In addition to that, they also combine k2-tree with the previous method
of MPk-linearizations to compress some social networks, but the results are not presented in
detail. In both cases, this method retains the ability to query for both, in- and out-neighbours.

3.7.4 RDF Graph Compression

As previously (Section 2.5) mentioned, RDF is a specification used to represent linked data. As
such there exists previous work on compressing this data. The splitting into graph structure
and dictionary, now commonly used, was first proposed by Fernández et al. [FMG10] as a data
structure called HDT (Header-Dictionary-Triples). Together with an encoding of the triples
grouping them by subject as an adjacency list, this yields an in-memory representation of RDF
data. They also investigate compressing this data structure using conventional general-purpose
compression methods (gzip, bzip2, and ppmdi), beating these universal compressors used on the
plain original file. Generally this leads to two approaches of RDF graph compression: one can
either compress the dictionary (see, e.g. [MFC12, UMD+13]), or the underlying graph structure,
which the present work focusses on.

It may be a natural idea to apply general graph compression methods to RDF graphs, but out
of the methods mentioned in the previous sections, only the k2-tree has been used for RDF
graph compression in two ways [ÁBF+15, ÁdBBN17]. The first encodes a separate adjacency
matrix for every predicate (i.e., edge label) in the graph in the same way we use the k2-tree
method for representing the start graphs of SL-HR grammars. The second method starts out
this way as well, but then proceeds to store the resulting tree in one big “interleaved” k2-tree,
instead of |Σ| separate ones. They also give and evaluate algorithms for common queries on
RDF data. Another data structure mainly concerned with finding a good trade-off between
compression and querying performance is due to Brisaboa et al. [BCFN15]. They propose the
use of an index structure based on compressed suffix arrays, which does not always save space
compared to other RDF representations, but is significantly faster.

A different approach to RDF graph compression is by using the semantics: some triples may
be semantically redundant and can therefore be removed without losing any data. One such
method by Iannone et al. [IPR05] focuses on finding blank nodes that represent redundant data
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and how to merge them with either named or other blank nodes. Meier [Mei08] and Pichler et
al. [PPSW10] describe two rule-based approaches to remove redundant triples, but both methods
require user input, and are therefore not appropriate for general purpose compression of large
datasets. To our knowledge the first work investigating the automated removal of general triples
is by Joshi et al. [JHD13] where a frequent itemset mining approach is used to split the dataset
into two separate sets of triples. The so called “dormant” partition contains all the triples that
could not be compressed, the “active” partition contains triples which can be used to recreate the
deleted triples using rules created from the frequent itemsets. Jiang et al. [JZG+13] introduce
two compression schemes (“equivalent” and “dependent” compression) to compress annotated
graphs called Typed Object Graphs. These are RDF-graphs with type information attached
to each node. Thus the edges are quintuples in this model instead of the usual RDF-triples,
as subject and object also get a type attached. The equivalent compression aims to combine
nodes that have the same type and the same family (i.e. the same neighbours and the same
relations to these) into one node. Dependent compression searches for nodes that have only
one neighbour and combines the information stored in this node with the information stored
in the node of their only neighbour. Their evaluation shows that the dependent compression
achieves consistently better results. In a somewhat similar way, Pan et al. [PGR+14] also focus
on compressing the graph structure by mining for redundant graph patterns. They describe two
methods of removing redundancies:

• By logical compression they mean the search for patterns that appear often and can be
replaced by a generalized triple. For example, if the pattern

<?x, a, foaf: Person >,<?x, a,dbp: Person >

appears often, a type T could be introduced, along with a rule to expand T to foaf: Person
and dbp: Person. Then the single triple <?x, a, T > would represent the above pattern.

• RDF files are a textual representation of the graph structure. As there are many ways of
serializing such a graph, some of these serializations are more concise than others. They
therefore describe a way of using graph patterns to group triples in such a way that they
can then be serialized more concisely, resulting in shorter files.

The two methods are joined by a pattern mining phase at the beginning to find the patterns which
are used to achieve the compression. Then all three steps (pattern mining, logical compression,
serialization) can be iterated to achieve compression.

Another approach of Swacha and Grabowski [SG15] combines techniques to compress graph
and dictionary achieving a succinct representation of the RDF graph, which is subsequently
compressed by general purpose compressors.

3.8 Discussion and Further Research

In this chapter a generalization of the RePair compression scheme to (hyper)graphs using
hyperedge replacement graph grammars is presented. Some theoretical results about SL-HR
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grammars are proven, for instance that they cannot compress trees or strings (represented as
graphs) better than the existing native grammars, despite being more expressive.

A prototype implementation of the algorithm is then studied and experimentally evaluated. It
uses a greedy approximation to get a list of non-overlapping digrams, which is heavily influenced
by the node order (as also experimentally verified). It is shown that a node order inspired by
the Weisfeiler-Lehman method to test for isomorphism [WL68] works well in practice. The
experimental evaluation is inconclusive in parts: on network graphs (without edge labels) the
prototype sometimes outperforms the other compressors we compared to, but in most cases
does not. On edge-labelled RDF graphs however, very good results are achieved by gRePair,
sometimes even orders of magnitude better than other methods.

There are several directions for interesting future work on this topic. Firstly, investigating the
use of NR graph grammars could be fruitful. As these are more expressive than HR grammars,
particularly when it comes to complete graphs, it is possible that a RePair variant using SL-NR
grammars yields better results. However, this would need to be balanced with more complex
rules, which are more expensive to store due to the addition of connection relations.

For the HR grammar based compressor presented here, there are also some open questions. A
further investigation into node orders would be interesting, as this could improve compression
particularly on version graphs. Another area is the encoding of hypergraphs. The k2-tree-based
method used here is unlikely to be the best way encoding hypergraphs, as it generates many
large but sparse matrices. However, even staying with it, there is a possibility that it could be
improved further by reordering the nodes in the start graph again before encoding. Experiments
have shown that k2-tree tends to work better after ordering the nodes with a BFS ordering.
Finally, the prototype implementation used to evaluate the algorithm is rather poor with regards
to runtime and memory usage. A proper implementation is necessary to make the method
viable, the work here shows that this may be a useful endeavour.





Chapter 4

Traversal of Compressed Graphs

In the previous chapter we discussed a method to compute compressed SL-HR grammar
representations of a given graph. These representations can be exponentially smaller than the
graph they represent. It is therefore not feasible to decompress the original graph, whenever
a query occurs. Instead, we now focus on methods to directly query val(G) using only the
grammar G (and potentially additional space polynomial in |G|). In this and the next chapter
we present two types of algorithms to do so. First we look into neighbourhood and adjacency
queries. Neighbourhood queries are queries where, given a node x of val(G), we wish to compute
the neighbourhood N(x) of x using the grammar. Adjacency queries were already mentioned in
Section 2.6 and mean queries where, given two nodes x and y of val(G), we determine, whether
there exists an edge between them. Adjacency queries can be reduced to neighbourhood queries
by computing whether y ∈ N(x). We therefore focus on neighbourhood queries. Both of these
queries can be restricted to edges of a specific label, which we generally do, as lifting the
restriction can be done by running the same algorithm |Σ| times. These queries allow for any
graph algorithm to be run on G, but this comes at a significant expense in runtime compared to
a direct representation. Afterwards in the next chapter we present some speed-up algorithms,
which allow to compute certain queries faster than on the uncompressed graph.

As they are used extensively in this chapter, recall from Section 2.3 that we refer to a node
u of a derivation tree s as an s-context, denote rhs(s[u]) by gs,u, and omit the subscript s if
s = dt(G). For the neighbourhood queries, we present two methods. Both use the same general
approach. We navigate along the derivation tree and store the current context such that we can
compute two queries from it:

1. for every internal node, its ID within val(G), and

2. for every external node, the internal node (and the corresponding context) it represents.

We first explain the general notions of this navigation within val(G) using the derivation tree
dt(G) of G, without discussing data structures and computation. Afterwards, we outline direct
algorithms to achieve this navigation in time proportional to the height of the grammar, for
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any SL-HR grammar. Finally we present a precomputed data structure, which allows to do the
individual navigation steps in constant time, but only works on a restricted set of grammars.

Note that the algorithms presented in this chapter are always given only for outgoing simple
edges/out-neighbourhood queries. The case for incoming edges/in-neighbourhood queries is
algorithmically symmetric (however, runtimes might differ, depending on the underlying data
structures). Graphs with terminal hyperedges of rank 3 or greater can also be considered, but
the complexity then always rises by a factor r (where r is the largest terminal rank of val(G)).

4.1 Traversing along the Derivation Tree

We first explain how to navigate val(G) by using the derivation tree dt(G) of G. Let G = (N,P, S)
be an SL-HR grammar. Consider the derivation tree in Figure 4.1 and take note of the red
arrows. These show for some external nodes, which internal nodes they represent, i.e., where
the graphs will be merged during the derivation steps. We make the following observation: for
any derivation tree s = dt(A), s-context u, and external node x of gs,u, there either exists a
proper ancestor v of u such that gs,v contains the inner node that is merged with x, or this inner
node does not exist in dt(A). Formally, for an s-context u we define a mapping internals(u, x) as
internals(u, x) = (u, x) if x is internal. Otherwise x is the j-th external node of gs,u and there
are two cases for u: if u = ε, internals(u, x) is undefined, otherwise u can be written as v.i for
some i. Then internals(u, x) = internals(v, att(ei)[j]), where ei is the i-th edge in sib(Ent

gv). As
before, if s = dt(S) we omit the subscript.
Remark. Should S have external nodes we pretend they are internal for the purpose of the
internal-mapping. Otherwise there are nodes for which the mapping is undefined even with
respect to dt(S).

Given a context u, an internal node x within gu, and an alphabet symbol σ, our goal is to
compute every context v and node y within gv, such that there is a σ-labelled edge from
node(u, x) to node(v, y) in val(G). We need one more mapping to achieve this. We define
out(lhs(u), x, σ) = {(v1, y1), . . . , (vk, yk)} where k is the number of outgoing σ-labelled edges
from node(u, x) in val(G) and yi (for i ∈ [k]) is a node in guvi such that there exists a σ-labelled
edge e in guvi with att(e) = x′yi and internal(uvi, x′) = x. Note that, while we did use the
context u for the definition, the result of out(A, x, σ) is independent from the particular context
u with lhs(u) = A used. There may be two contexts u and u′ with u 6= u′ such that x is a node
in both gu and gu′ (they are just right-hand sides of the grammar G). The graph gu′vi equally
includes the node yi, however, yi represents two different nodes in val(G) depending on the two
different contexts u′vi and uvi. In summary, to compute N−σ (node(u, x))1 we

1. compute out(lhs(u), x, σ) = {(u1, x1), . . . , (uk, xk)},

2. for every i ∈ [k] compute internal(uui, xi) = (vi, yi), and

3. compute {node(v1, y1), . . . , node(vk, yk)}.

1Recall that N−
σ denotes the out-neighbourhood of a node, restricted to edges labelled σ.
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Figure 4.1: Derivation tree of a grammar. Matching internal nodes for some external nodes are
marked by red arrows.

Figure 4.1 shows an example of this method. If the current node is 1 in the context u2, then
out(A, 1, e) = {(1, 3)} (note that u2.1 = v). After that internal(v, 3) = (u1, 3). Thus, there is an
e-labelled edge from node(1, u2) = 7 to node(3, u1) = 3 in val(G).

Note that for any A ∈ N , x ∈ rhs(A), and σ ∈ Σ the mapping nodes(A) (see Section 2.3) can
be computed in one bottom-up parse of the grammar. This is because it can be defined as
nodes(A) =

∑
{nodes(lab(e)) | e ∈ Ent

rhs(A)}+|Vrhs(A)|−|extrhs(A)|. Provided that the nonterminals
are traversed in reverse ≤NT-order, this computation is always well defined. In the following
we assume this is done and the result is stored in memory for every nonterminal (using O(|N |)
space).



64 Chapter 4. Traversal of Compressed Graphs

Algorithm 3 Routine to compute a G-representation for a given node-ID x.
Precondition: Every right-hand side of G is normalised.
1: function getGRep(x: node-ID (of val(G)))
2: if x ≤ |VS | then
3: return (ε, x)
4: else
5: i← smallest number such that first(i) ≥ x
6: j ← first(i− 1)
7: return getGRep(x, i− 1, j)

8: function getGRep(x: node-ID, u: context, offSet: Integer)
9: int ← number of internal nodes in gu
10: if offSet + int ≥ x then
11: n← x− offSet
12: return (u, n)
13: else
14: i← smallest number such that first(i) ≥ x
15: j ← first(u.(i− 1))
16: return getGRep(x, u.(i− 1), j)

4.2 Direct Algorithms

We present direct algorithms to compute the neighbourhood of a node x of val(G). This is done
in two steps:

1. Compute the G-representation (u, y) of x (recall that a G-representation of x is a tuple
(u, y) where u is a context of G and y a node in gu such that node(u, y) = x).

2. Compute the mappings described in the previous section to get the neighbourhood.

Computing the G-representation of x is a straightforward top-down algorithm: starting in the
start-graph the algorithm searches for the nonterminal edge that generates x (if x > |VS |) and
goes down into the rules from there, repeating the same process in the right-hand sides until y
is found. The full algorithm is given as Algorithm 3. Using a binary search in lines 5 and 14
it has a runtime of O(log2 |G|E · height(G)), assuming the uses of the first-mapping in lines 5
and 6 (and lines 14/15) are partially precomputed: first can be computed in O(h) time by
using O(|G|) additional space. To do so, for every nonterminal A and every nonterminal edge e
within rhs(A), let i be the position of e in sib(Ent

rhs(A)). We then let firstOffset(A, e) = firstdt(A)(i).
Precomputing and storing firstOffset for every nonterminal edge in G needs O(|G|) additional
space, but now first(u) can be computed in O(h) time, using the formula

first(v.i) = first(v) + firstOffset(lhs(dt(G)[u]), ei) + |Vgu | − |extgu |.

Moreover, in Algorithm 3, the value of first(v) in this formula is carried along as a parameter
(offset). Thus, within this algorithm, first is computed in constant time.
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Algorithm 4 Algorithm to compute out(A, x, σ).
1: function out(A: Nonterminal, x: node of rhs(A), σ: edge label)
2: N ← {(ε, y) | y ∈ N−σ (x)}
3: Ent ← {e ∈ Erhs(A) | e is nonterminal and x ∈ att(e)}
4: for e ∈ Ent do
5: i← position of x in att(e)
6: j ← position of e in sib(Ent

rhs(A))
7: Ne ← {(j.u, y) | (u, y) ∈ out(lab(e), extrhs(lab(e))[i], σ)}

8: return N ∪
⋃
e∈Ent

Ne

Algorithm 5 Algorithm to compute internal(u, x).
1: function internal((u, x): G-representation)
2: if u = ε or x is internal then
3: return x

4: else . x is external, and u 6= ε

5: Let u = v.i, where i ∈ [rank(dt(G)[v])]
6: Let e be the i-th edge in sib(Ent

gv )
7: Let x be the j-th external node of gu
8: return internal((v, att(e)[j]))

Using the G-representation we can now give algorithms for the out-, internal-, and node-mappings.
Starting with out: given a nonterminal A, a node x of rhs(A) and a label σ we compute the set
of dt(A)-contexts containing the outgoing neighbours of x using Algorithm 4. This recursive
top-down algorithm first computes the direct σ-neighbours of x within rhs(A) and then continues
its search within the nonterminal edges incident to x. It terminates, because the algorithm only
moves downwards in the derivation tree, never up. Its runtime is in O(nheight(G)), where n is
the number of σ-neighbours x has in val(A). Note that, as explained in Section 4.1 above, some
of these nodes may be external. To get the full neighbourhood, it is necessary to combine this
result with the internal-mapping, which can be computed using Algorithm 5. Given a node
(u, x)2 it uses the context u to find the internal node merged with x. The runtime is therefore in
O(height(G)). The final ingredient to give a full neighbourhood-algorithm is the node-mapping.
As node(u, x) = first(u) + x its runtime is identical to that of first already discussed above (i.e.,
O(height(G))).

Finally the algorithms can be combined to compute the (σ-labelled) out-neighbourhood of a node
x within val(G). The algorithm is stated as Algorithm 6. Assuming x has n such neighbours
the total runtime is O(log2 |G|E · height(G) + height(G)2n).
Remark. Note that we define a G-representation using a context of the derivation tree and
subsequently use these contexts in the algorithms. As constructing the derivation tree explicitly
is infeasible, an implementation of these algorithms may better be done with the following
equivalent definition of G-representations. Let (u, x) be a G-representation with u = u1 . . . un.

2Note that, because x may be external, this is not necessarily a G-representation
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Algorithm 6 Function getOutNeighborhood, which given a G-representation p returns the set
of IDs that are out-neighbors of the node represented by p within val(G).
1: function getOutNeighborhood(x: node ID, σ: edge label)
2: (u, y)←getGRep(x)
3: N ← out(lhs(dt(G)[u]), y, σ)
4: return {node(internal((u.v, z))) | (v, z) ∈ N}

For ui (i ∈ [n− 1]) let Ai be the nonterminal lhs(dt(G)[u1 . . . ui]), and ei the ui+1-th edge in
sib(Ent

rhs(Ai)). Finally, let An = lhs(dt(G)[u]). Then a G-representation can also be defined as
(A1, e1) · · · (An−1, en−1)(An, x). This definition explicitly lists the nonterminals and edges in
the grammar that make the context u. This does not affect the runtimes as stated, or the logic
of the algorithms.

4.3 Constant-Delay Traversal of Specific Graphs

As an improvement of the previous section, we present a data structure that allows for a traversal
step in constant time for grammars of bounded rank. The caveat is that it only works for a
restricted class of grammars: we call a graph unique-label, if for every node x, any label σ ∈ Σ
and any i ∈ N there is at most one edge e with att(e)[i] = x and lab(e) = σ. The algorithm
presented in this chapter only works for SL-HR grammars G where val(G) is unique-label. This
has one important consequence: out(A, x, σ) always has at most one element. For the rest of this
section we will therefore refer to this element directly by out(A, x, σ). Should out(A, x, σ) = ∅
we say the mapping is undefined. This also makes it possible to precompute the out-mapping
in one bottom-up run of the grammar. The following recursive definition can be applied to
compute the mapping out(A, x, σ):

• out(A, x, σ) = (ε, y), if there is an edge e ∈ Erhs(A) with att(e) = xy, and lab(e) = σ.

• out(A, x, σ) = (v.i, y) if out(lab(ei), extrhs(lab(ei))[j], σ) = (v, y) for a j ∈ [1, rank(ei)].

This can be used in a bottom-up computation, because the definition always only depends on
already computed results for nonterminals smaller than A according to ≤NT. Note however,
that out(A, x, σ) needs to be computed for external nodes x as well for this to work. As an
example, the grammar with the derivation tree in Figure 4.1 has the unique-label restriction. We
furthermore assume that any grammar G in this section has the rank κ, which is considered to be
fixed, and we let ηG be the maximal appearing node-ID within G (i.e., ηG = max{

⋃
A→g∈P Vg}).

Remark. If we are only interested in out-neighbourhood queries the unique-label restriction only
needs to apply to the first node of every att-relation, making the method work on a larger set of
grammars.
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4.3.1 Tableaux and their Precomputation

We seek a data structure that allows to compute, in constant time, each of the three operations
out, internal, and node, and which can be precomputed in polynomial time and space. To support
out(A, x, σ) for every nonterminal A, every node x in rhs(A), and every σ ∈ Σ, we compute a
“tableau” tab(A, x, σ) for each such triple. A tableau represents the internal-mapping for every
right-hand side used in the shortest derivation starting with A and producing the σ-labelled
edge starting at x.
Definition 4.1. Let G = (N,P, S) be an SL-HR grammar. For some A ∈ N , x ∈ {1, . . . , ηG},
and σ ∈ Σ let m be the height of dt(A). The tableau tab(A, x, σ) consists of an m× κ-matrix t,
an (m+ 1)-tuple tnode ∈ V m+1

val(G), and an m-tuple tnt ∈ Nm. For i ∈ [0,m− 1] and j ∈ [0, κ− 1] a
cell t(i, j) contains a tuple (nxt, node) where nxt ∈ ([0, 2β − 1]× [0, height(G)− 1]× [0, k − 1]) is
a triple consisting of a pointer to a matrix, a row number, and a column number (recall from
Section 2.6 that β is the bit length) and node ∈ [0, ηG].

For a tableau t with m rows we let #row(t) = m. Every cell of t uses 4 registers (the triple nxt
and one number for node). We refer to the entirety of nxt as a pointer to a cell, because the
triple identifies one cell of a matrix. For a cell t(i, j) = (nxt, node) we refer by nxt(t(i, j)) to the
dereferenced contents (i.e., the cell it references) and by node(t(i, j)) to the node-ID in the cell.
Let nxt(t(i, j)) = t′(i′, j′). We call nxt a short pointer if t′ = t and a long pointer otherwise. If
nxt is a short pointer we call it downwards if i′ ≥ i and upwards otherwise. For a tableau t let
π(t) be the address of the register containing (the start of) t. Thus, if nxt is a triple (π(t), i, j)
it references the cell t(i, j).

We define the empty tableau tε for a dt(A)-context ε as the 1× κ-tableau that has tε(0, j) =
((π(tε), 0, j), 0) for j ∈ [0, rank(A)− 1] (that is, nxt(tε(0, j)) points to itself), tε(0, j) = (0, 0) for
j ≥ rank(A), tnode

ε (0) = tnode
ε (1) = 0, and tnt

ε (0) = A. For any A ∈ N , x ∈ Vrhs(A), and σ ∈ Σ
where out(A, x, σ) = (u, y) we compute the tableau tab(A, x, σ) = createTableau(A, u) using
Algorithm 7. Let t = tab(A, x, σ). Note that #row(t) = |u|+ 1: the intention is that every row
of t represents an ancestor of u. Let v be such an ancestor and let gdt(A),v have n external nodes.
Then, for every j ∈ [0, n − 1] we want that the nxt-pointer of t(|v|, j) references a cell c such
that this cell contains the node y with internaldt(A)(v, extg[0, j]) = (w, y). This cell should also
be in the |w|-th row of t. If this property holds for every ancestor of u, then t represents the
internal-mapping for the whole dt(A)-context u. Furthermore, tnode(|v|) should be firstdt(A)(v)
so that we can compute the number of any internal node within val(A).

An example of this computation is shown in Figure 4.2. The Figure shows the results of every
recursive call of createTableau from top to bottom, with tab(S, 2, a) = t1.2.1. We invite the reader
to verify the figure by applying the algorithm on the grammar in Figure 4.1. Note that the
construction creates downwards pointers which reference a cell containing an upwards pointer
(e.g. cells (1, 0) or (2, 1)). This seems unnecessary: these cells could instead directly reference
the cell (0, 0) containing the correct internal node at this position. However, there may be many
cells that all reference the same internal node (in this small example there are already 3 for the
node in cell (0, 0)). In the next section we will proceed to attach tableaux together, but we
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Algorithm 7 Algorithm to create a tableau that s-models an s-context
1: function createTableau(Nonterminal A, dt(A)-context u)
2: if u = ε then
3: return tε

4: else . u = v.l for some l ∈ N
5: tv =createTableau(A, v)
6: Initialize tu as |u| × κ-tableau
7: for all i ∈ [0, |v|], j ∈ [κ− 1] do
8: tu(i, j)← tv(i, j)
9: tnt

u (i)← tnt
v (i)

10: tnode
u (i)← tnode

v (i)

11: Let B = tnt
v (|v|) and sib(Ent

rhs(B)) = (e1, . . . , en)
12: for j ∈ [0, rank(el)− 1] do . −1 because column indices start with 0
13: x← att(el)[j + 1]
14: if x is internal then
15: nxt(tu(|u|, j))← (π(tu), |v|, j)
16: node(tu(|v|, j))← x

17: node(tu(|u|, j))← 0
18: else . x is the j′-th external Node of rhs(B)
19: Xj ← {(a, b) | nxt(tv(a, b)) = tv(|v|, j′ − 1)}
20: nxt(tu(|u|, j))← nxt(tv(|v|, j′ − 1))
21: nxt(tu(|v|, j′ − 1))← (π(tu), |u|, j)
22: node(tu(|u|, j))← 0
23: For all (a, b) ∈ Xj : nxt(tu(a, b))← (π(tu), |u|, j)

24: tnt
u (|u|)← lab(el)

25: tnode
u (|u|)← tnode

v (|v|) +
∑
j<l nodes(lab(ej)) + |Vgdt(A),v | − |extgdt(A),v |

26: return tu

need to do so by only changing one pointer per column, to obtain O(κ) time. This technique of
concatenating pointers allows us to do so, because we only need to change the upwards pointer
to have every relevant cell reference a new node. — For an example of the internal-mapping
consider that out(S, 2, a) = (u4, 2) in Figure 4.1. Every row of tab(S, 2, a) as shown in Figure 4.2
corresponds to an ancestor of u4 in the derivation tree. As a concrete example, the third row
represents u3. Here we have internal(u3, 4) = (u1, 2), and if we follow the arrow in cell (2, 1) of
tab(S, 2, a) it first leads to cell (3, 0) and then to cell (0, 0), where the node-ID given is 2, and
the corresponding nonterminal in tab(S, 2, a)nt(0) = S.

We want to show that our construction is “correct” with respect to the intuition given above. We
first define an auxiliary method findNode(t(i, j)) for a cell (i, j) in the tableau t. This operation
dereferences the nxt-pointer once or twice, depending on whether it first encounters a downwards
pointer or not. The resulting cell is defined below to contain the internal node that is merged
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Figure 4.2: Every step of the computation of tab(S, 2, a) for the derivation tree in Figure 4.1. Some
arrows are coloured to make it easier to read where the pointers are leading.

with the j-th external node. Note that the resulting cell may be in a different tableau. We
distinguish two cases for the pointer nxt(t(i, j)):

1. If nxt(t(i, j)) is upwards or long, then findNode(t(i, j))) = nxt(t(i, j)) = t′(i′, j′).

2. If nxt(t(i, j)) is downwards, then findNode(t(i, j)) = nxt(nxt((t(i, j))) = t′(i′, j′).

Note, in both cases t′ 6= t if and only if one of the pointers was a long pointer. A tableau
tab(A, x, σ) never includes long pointers, but they will be important in Section 4.3.2 where we
attach tableaux. We now define formally how a tableau represents a dt(A)-context.
Definition 4.2. Let A ∈ N , s = dt(A), and let u be an s-context. For any ancestor v of u we
let Av = lhs(s[v]). A tableau t s-models u if for every ancestor v of u

1. tnt(|v|) = Av
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Algorithm 8 Algorithm to attach t2 to the i-th row of t1.
Input: tnt

1 (i) = B and t2 models dt(B)-context
1: function attach(Tableaux t2, t1, number i)
2: for j ∈ [0, rank(B)− 1] do
3: if nxt(t2(1, j)) is a downwards pointer then
4: c← nxt(t2(1, j))
5: else . nxt(t2(1, j)) is a long pointer from a previous attachment
6: c← t2(1, j)

7: Let t(i′, j′) = findNode(t1(i, j))
8: nxt(c)← (π(t), i′, j′)

9: tnode
2 (#row(t2) + 1)← tnode

1 (#row(t1) + 1) + tnode
1 (i)

2. tnode(|v|) = firsts(v)

3. For j ∈ [0, rank(Av)− 1] let c = findNode(t(|v|, j)) and let y = extgs,v [j]. If internal(v, y) =
(w, z) then node(c) = z and c is a cell of the |w|-th row of t. If internal(v, y) is undefined
then node(c) = 0 and c is a cell in the first row of t.

Lemma 4.3. For A ∈ N , x ∈ Vrhs(A), and σ ∈ Σ let out(A, x, σ) = (u, y). The tableau
tab(A, x, σ) then dt(A)-models u.

Proof. We proof the claim inductively over u. For u = ε the tableau tε obviously dt(A)-models
u. Let u = v.l for some l ∈ rank(lhs(dt(A)[v])). By induction we obtain tv, which dt(A)-models
v. Let tu be computed using Algorithm 7. Condition 1 of Definition 4.2 obviously holds.
Condition 2 is also fulfilled, as Line 25 of Algorithm 7 is just the definition of first(v). This leaves
condition 3. Let j ∈ [0, rank(lhs(dt(A)[u]))] and let x be defined as in Line 13 of Algorithm 7. If
x is internal, then findNode(tu(|v|, j)) fulfils condition 3 by induction and findNode(tu(|u|, j))
correctly references the cell containing x by Lines 15 to 17 of the Algorithm. If otherwise x is
external then let internaldt(A)(v, x) = (w, y) and let x be the j′-th external node of rhs(dt(A)[v]).
By induction findNode(tv(|v|, j′− 1)) references a cell c in the |w|-th row of tv, which contains y.
Note that it has to be an upwards pointer, because there is no row below |v| in tv. After Line 23 of
the algorithm, nxt(tu(|u|, j)) = c is an upwards pointer, and every downwards pointer previously
pointing to tu(|v|, j) now instead points to tu(|u|, j) and thus has the same findNode-result as
before (i.e., c). The same argument holds if internaldt(A)(v, x) is undefined, where tv(|v|, j′) is
some cell in the first row of tv.

For out(A, x, σ) = (u, y) and an ancestor v of u we also say that the first |v| rows of tab(A, x, σ)
dt(A)-model v.

4.3.2 Attaching Tableaux

The tableaux computed in the previous section do not represent every possible context u in dt(S),
as there can be O(2|G|) many contexts. They do, however, provide the information necessary to
traverse along the edges. Consider again the example at the end of the introduction to Section 4.1
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Figure 4.3: Example for the attachment of tableaux. The figure shows the result of the operation
attach(tab(A, 1, e), tab(S, 2, b), 1) for the derivation tree shown in Figure 4.1.

and Figure 4.1: if we start in node 2 of S and follow the b-edge (out(S, 2, b) = (u2, 1)) we move
to node 1 in rhs(A). From there let us follow the e-edge: out(A, 1, e) = (w, 3) where w = 1 and
v = u2.w. Thus the dt(A)-context w and the dt(S)-context u2 combine into a new dt(S)-context
v. Our tableaux provide the same functionality. Given t1 = tab(S, 2, b) and t2 = tab(A, 1, e) we
can combine them using an operation attach(t2, t1, i), where i is a row number of t1 marking
the point where we wish to attach t2 at. This section details the attach operation. Let t1 be a
tableau tab(A, x, σ) and i a row number, such that the first i rows of t model a dt(A)-context
u with lhs(dt(A)[u]) = B. For some y ∈ Vrhs(B) and σ′ ∈ Σ let t2 = tab(B, y, σ′) be a tableau
modelling a dt(B)-context v. We combine them by linking from t2 to t1 using one long pointer
per column. Therefore, attach(t2, t1, i) is defined as given in Algorithm 8. The main operation
is in Line 8: here we create a long pointer from t2 to the cell of t1 containing the internal node
merged with the j-th external node.

An example of this operation is shown in Figure 4.3. Here, the tableau tab(A, 1, e) is attached
to the last row of the tableau tab(S, 2, b) (both tableaux are based on the derivation tree in
Figure 4.1). Changes are entered in red: The two original nxt-pointers are replaced by the red
long pointers, and the offset in tab(A, 1, e)node is adjusted.

Again, we want to show that this leads to a correct representation of the combined context. We
define “correct representation” using the following definition, which extends the arguments of
Definition 4.2 to include the possibility of long pointers and the usage of the offset element in
tnode(#row(t) + 1).
Definition 4.4. Let u = u1 . . . un be a dt(S)-context. Let A1 = S and for every i ∈ {2, . . . , n}
let Ai = lhs(dt(S)[ui−1]). Let t1, . . . , tn be tableaux such that for i ∈ {1, . . . , n} the first |ui|
rows of ti dt(Ai)-model ui. Then we say the sequence of tableaux t1, . . . , tn models the context
u if for every ancestor v = u1 . . . ul[1..i] (with l ∈ [n] and i ∈ [|ul|]) of u

1. tnt
l (|v|) = lhs(dt(S)[v])

2. tnode
l (|v|) + tnode

l (#row(tl) + 1) = first(v)
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3. For j ∈ [0, rank(gv)] let c = findNode(tl(i, j)) and let y = extgv [j]. Let internal(v, y) = (w, z)
where w = u1 . . . ul′ [1..i′] for some l′ ≤ l and i′ ∈ [0, |ul′ |]. Then node(c) = z and c is a
cell in the i′-th row of tl′ .

Note that, as we are now only considering dt(S)-contexts, internal is always defined.
Lemma 4.5. Let t1, . . . , tn be a sequence of tableaux modelling a context u = u1 . . . un, and for
A = lhs(dt(S)[u]), x ∈ rhs(A), and σ ∈ Σ let t = tab(A, x, σ) be the tableau that dt(A)-models
a dt(A)-context v. Then, after running attach(tn, t, |un|) the sequence t1, . . . , tn, t models u.v.
Computing attach(tn, t, |un|) takes O(κ) time.

Proof. Condition 1 of Definition 4.4 is trivially fulfilled. For Condition 2 consider first that tn in
row |un| and t in the first row actually represent the same context: for any derivation tree s, the
first row of a tableau s-modelling an s-context v models the s-context ε. Also, for any tableau
t by definition tnode(1) = 0 (because first(ε) = 0). As t1, . . . , tn model u, by Definition 4.4
tnode
n (|un|) + tnode

n (#row(tn) + 1) = first(u) = tnode(#row(t) + 1) and as first(u) = first(u.ε) we
also have tnode(1) + tnode(#row(t) + 1) = first(u.ε).

This leaves condition 3. Let j ∈ [0, κ− 1]. As t1, . . . , tn models u, tn(|un|, j) satisfies condition
3. Let r = findNode(tn(|un|, j)). Now t(1, j) needs to have the same property, which is
true: if nxt(t(1, j)) was a long pointer originally it now is a long pointer to c. If nxt(t(1, j))
is a downwards pointer, then nxt(nxt(t(1, j))) is now a long pointer to c. In both cases
findNode(t(1, j)) = findNode(tn(|un|, j)).

Finally, regarding the runtime, the attach-operation uses one call of findNode and follows up
to one nxt-pointer per column of the tableau. As every tableau has κ columns, we obtain a
runtime of O(κ).

4.3.3 Traversal Algorithm

To traverse a graph using the method outlined at the beginning of Section 4.1 we need to store
the current context u = u1 . . . un within dt(S). As detailed in the previous section we represent
this context using a sequence of tableaux t1, . . . , tn. However as these tableaux are all chained
together using long pointers, we only need to store a pointer to tn = tab(A, x, σ) for some A ∈ N ,
x ∈ rhs(A) and σ ∈ Σ. We call this pointer curTab. It is possible that un is actually modelled
by the first i rows of tn and not the entire tableau. We also need to store this number i of the
current row of tn, which we call pos. Finally, our current position is a node y ∈ gu, which we
call cur.

To find the matching internal node of a node x ∈ gu let internal(x, curTab, pos) = (x, curTab, pos)
if x is internal. Otherwise, let x be the j-th external node of gu and let c = findNode(curTab(pos, j−
1)) be a cell in the j′-th row of tab(A, y, σ) for some A ∈ N , y ∈ rhs(A), and σ ∈ Σ. Then
internal(x, curTab, pos) = (node(c), tab(A, y, σ), j′).
Theorem 4.6. Given a unique-label SL-HR grammar G = (N,P, S) of bounded rank κ and
height h, we can traverse the edges of the graph val(G) starting from any node in the start
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graph, with constant time per traversal step. The precomputation uses O(|G||Σ|κh2) time and
O(|G||Σ|κh) space on a word-RAM with bit length β ∈ O(log2 |G|).

Proof. For any A ∈ N , x ∈ [0, ηG], and σ ∈ Σ we precompute the tableaux tab(A, x, σ)
and for out(A, x, σ) = (v, y) we define (and store) succ(A, x, σ) = y. This mapping can be
computed simultaneously with the precomputation of the tableaux. There are |G| · |Σ| many such
tableaux to compute and computing one takes O(h2κ) time. Therefore the precomputation takes
O(|G||Σ|κh2) time, but only O(|G||Σ|κh) space, because the intermediate tableaux constructed
in Algorithm 7 are not stored, only the final ones. We then initialize the global state with
curTab = tε, pos = 1, and cur = x for any x ∈ VS . Now, assume we want to traverse to the
σ′-successor of the current node, then we do the following:

1. Let A = curTabnt(pos) and x = cur

2. If #row(tab(A, x, σ′)) = 1 let cur = succ(A, x, σ′)

3. Otherwise attach(curTab, tab(A, x, σ′))

4. curTab = tab(A, x, σ′), pos = |tab(A, x, σ′)|, cur = succ(A, x, σ′)

5. Let internal(cur, curTab, pos) = (y, t, j) and let cur = y, curTab = t, and pos = j.

All these steps take O(1) time, with the exception of the attach-operation, which takes O(κ)
time. At any point we can determine our position in val(G) using node(cur) = curTabnode(pos) +
curTabnode(#row(curTab) + 1) + cur.

Regarding the space for the precomputation, specifically O(|N | ·ηG · |Σ| ·h ·κ) registers are needed
with β ∈ O(log2 |G|) for the tableaux. Furthermore, the current state during the traversal
(curTab, pos, and cur) uses three registers.

For Theorem 4.6 it is assumed that the traversal starts from a node in the start graph. This can be
expanded to any node of val(G) by using Algorithm 3. Given some node ID x of val(G), compute
first its G-representation (u, y) using Algorithm 3. Then, initialize curTab = createTableau(S, u)
(Algorithm 7), pos = |u|, and cur = y. This adds an initial computation using O(h log2 |G|E+h2κ)
time.

It is straight-forward to apply this result also to SLT grammars of bounded rank κ. Let r be
the largest terminal rank appearing in the grammar. The trees can now be viewed as directed
graphs with the edges labelled by their Dewey-address, i.e., out(x,A, i) would lead to the i-th
child of node x within rhs(A) and internal matches the parameter nodes with the root of the
trees they represent. Thus we get for any SLT grammar H:
Corollary 4.7. Assuming κ is constant, given a κ-bounded SLT grammar H over Σ of height h
and with a maximal terminal rank r we can traverse the tree val(H) starting from the root-node
with constant time per traversal step. The precomputation uses O(|H|rκh2) time and O(|H|rκh)
space.

The previously known result on constant-delay traversal of SLT grammars [LMR16] only works
for SLT grammars of rank 1. Any rank-κ SLT grammar (or κ-bounded SLT grammar) can be
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Figure 4.4: Grammar generating a Star with exponentially many tableaux.

converted into one of rank 1 [LMS12], but this takes O(rκ|H|) time and O(r|H|) space. Thus,
the method presented here induces additional space overhead proportional to height(H), but the
constant for a traversal step is potentially smaller as it only uses arrays and pointer-operations
in contrast to the more complex data structures of [LMR16].

4.3.4 Limitations of the Method

The unique-label restriction is a strong one: it includes all tree-generating grammars and some
other graphs, but of all the labelled graphs mentioned in Section 3.6, none have the property.
Naturally this raises the question, whether it is necessary. Unfortunately, at least for the method
as presented here, this seems to be the case. Consider the grammar given in Figure 4.4. It
generates a star-graph with one centre node and 2n a-neighbours. For the method given here
to work, it would now be necessary to represent every context with only O(n) precomputed
tableaux. However, as evidenced by the derivation tree given in Figure 4.5, every leaf is modelled
by a different tableaux. Furthermore, every leaf contains a node that is a neighbour of the
1-node in the start graph. Thus all of these tableaux need to be precomputed, but there are
O(2n) many such tableaux. They do share some similarities, making it possible to generate all
of them from “partial tableaux”, but there is no clear way to generalize this idea to arbitrary
grammars.

We do note, however, that the grammar is a rather unnatural way of generating such a star-
pattern. The more natural grammar in Figure 4.6 on the other hand has the property that
every relevant context of the derivation tree indeed uses almost the same tableau. Only the
node-vector would need to be adapted at runtime to the concrete context, which could likely be
done using precomputed offsets. It is possible that there exists some normal form for SL-HR
grammars, where our method would always work. Thus far we have not found one.

4.4 Related Work

The compression methods given in Sections 3.7.2 and 3.7.3 all support adjacency and neigh-
bourhood queries. We already mention there, whether this only works for out-neighbourhood
queries, or covers in-neighbourhood as well. While the methods of this section have not been
implemented, it is likely that the access times will be slower than the compared methods, due
to the additional overhead introduced by the grammar representation.
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Figure 4.5: Derivation tree for the grammar in Figure 4.4 with n = 3. Every leaf is annotated with
the tableau that dt(S)-models the leaf.
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Figure 4.6: Alternative grammar equivalent to the grammar in Figure 4.4, but with polynomially
many tableaux.

To the best of our knowledge, there are no other traversal methods for graph grammars. Constant-
delay traversal of string and tree grammars is discussed in [GKPS05] and [LMR16], respectively.
The latter method builds on the former. Both represent the position in the derivation tree using
a stack, which contains the nodes where the direction was changed. They use an additional
data structure to find the parent of such a node in constant time, making it in turn possible to
update the stack in constant time to implement the traversal step. Both methods require the
input grammar to be in a normal form. For strings, every rule needs to have exactly size 2, for
trees the normal form using only one parameter from [LMS12] is required.

4.5 Discussion and Further Research

In this chapter the question of access to the compressed structure is discussed. We present
algorithms to find a compressed representation of a node within the represented graph (a “G-
representation”), and to traverse the graph from there. Both of these methods have disadvantages:
while the first one works on arbitrary grammars, its runtime per traversal step depends on the
height of the grammar and the size of the right-hand sides. The second one can do a traversal
step in constant time, but requires preprocessing using quadratic time and space (with respect
to the size of the grammar). More importantly, it only works on a restricted set of grammars
and we also give indication that this restriction is likely inherent to the method.

This leaves two clear routes for future work. First, the given algorithm for constant-delay
traversal should be experimentally evaluated. Even doing so only for tree grammars would
already be interesting, as a previous implementation of the ideas in [LMR16] were slower than the
naïve (and space hungry) traversal presented in [MS10]. While our method uses more space than
the one given in [LMR16], the actual traversal is realized using rather simple pointer structures,
thus we would hope for competitive speed. A second direction is to find a constant-delay
traversal method that works for larger classes of SL-HR grammars. This method would likely
need to use a new approach as both the one presented here, as well as the approach for trees
in [LMR16] do not easily generalize to (arbitrary) SL-HR grammars.
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Speed-Up Algorithms

One attractive feature of straight-line context-free grammars is the ability to execute finite
automata over them without prior decompression. This was first proved for strings (see
e.g. [BMPT97, MS04, PR99]) and later extended to trees (and various models of tree automata,
see [LMS12]). The idea is to run the automaton in one pass, bottom-up, through the grammar.
As an example, consider the grammar S → AAA and A→ ab, and a deterministic automaton
A that accepts strings (over {a, b}) with an odd number of a’s. Thus, A has states q0, q1 (where
q0 is initial and q1 is final) and the transitions (q0, a, q1), (q1, a, q0), and (q, b, q) for q ∈ {q0, q1}.
Since the actual active states are not known during the bottom-up run through the grammar, we
need to run the automaton in every possible state over a rule. For the nonterminal A we obtain
(q0, A, q1) and (q1, A, q0), i.e., running in state q0 over the string produced by A brings us to state
q1, and starting in q1 brings us to q0. Since S is the start nonterminal, we are only interested in
starting the automaton in its initial state q0. We obtain the run (q0, A, q1)(q1, A, q0)(q0, A, q1),
i.e., the automaton arrives in its final state q1 and hence the grammar represents a string with
odd number of a’s. It should be clear that the running time of this process is O(|Q||G|), where Q
is the set of states of the automaton, and G is the grammar. As |G| is smaller than |val(G)| this
presents a speed-up proportional to the compression ratio. This is a major advantage over many
other compressed input representations (e.g. boolean circuits), which induce an exponential
blow-up in complexity (see also Section 5.4 below).

Unfortunately, for graphs there does not exist an accepted notion of finite-state automaton.
Nevertheless, properties that can be checked in one pass through the derivation tree of a graph
grammar have been studied under various names: “compatible”, “finite”, and “inductive”,
and it was later shown that these notions are essentially equivalent [HKL93]. Courcelle and
Mosbah [CM93] show that all properties definable in “counting monadic second-order logic”
(CMSO) belong to this class, and by their Proposition 3.1, the complexity of evaluating a CMSO
property ψ over a derivation tree t can be done in O(|t|η), where η is an upper bound on the
complexity of evaluation on each right-hand side of the rules in t. This is done by a bottom-up
computation on the nodes of t, where every node u can use the results of its children to achieve
a correct computation for the subtree rooted at u.

77
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Proposition 5.1. Let ψ be a fixed CMSO property. For a given SL-HR grammar G it can be
decided in O(|G|η) time whether or not ψ holds on val(G), where η is an upper bound on the
time needed for the computation per right-hand side of the grammar.

Note that we state the time complexity based on |G| instead of |t|. This needs an adjustment
of the proof, as the derivation tree t cannot be explicitly constructed, because it may be
exponentially larger than G. However, a derivation DAG (directed acyclic graph) still retains all
information necessary for the algorithm stated in [CM93] to work. It has a hierarchy, that makes
the bottom-up computation possible, and while there is ambiguity in the parent relationship,
the children for every node are well defined. A computation for one right-hand side depending
on the results of that computation on the children in the derivation tree, can therefore be done
in the derivation DAG as well.

Beware that η in Proposition 5.1 need not be linear in the size of a right-hand side, but is rather
a generic upper bound. Courcelle and Mosbah [CM93] show (for their Proposition 3.1) linearity
for evaluations using a certain Boolean algebra, and cubic complexity for sets of cardinalities.
For universal evaluation they give an exponential upper bound. Lohrey [Loh12b] proves that
a fixed MSO-property exists such that the problem in Proposition 5.1 is PSPACE-hard for
grammars where both the rank and the number of nonterminals per right-hand side are bounded
by a constant. Without these restrictions the problem is complete for EXPTIME. Note that
PSPACE-completeness is already true for explicitly represented graphs.

The specific complexity thus depends on the problem. We show for two problems that they can
be solved in linear time with grammar-compressed graphs as input. We then also consider the
question of isomorphism for grammar-compressed tree-graphs.

5.1 Reachability

An important class of queries are reachability queries. For a given graph g and nodes x and y such
a query asks if y is reachable from x, i.e., if there exists a path from x to y in g. It is well known
that this problem can be solved in O(|g|) time (e.g. by doing a BFS-traversal in O(|V |+ |E|)
time). How can we solve this problem on an SL-HR grammar G? The following direct linear
time algorithm essentially uses the method already applied by Lengauer and Wanke [LW88].
Their formalism is slightly different from ours however, as it uses an encoding of the hypergraphs
using bipartite graphs (see also Section 3.5.3 for how that affects the size), and the algorithm as
stated only decides reachability in undirected graphs. We therefore restate the algorithm using
the following notion, which will again be used in the next section:
Definition 5.2. Let g be a graph with set V of external nodes. Then the skeleton graph
sk(g) = (V,E) is the directed, unlabelled graph such that for all v, v′ ∈ V , v′ is reachable from
v in sk(G) if and only if v′ is reachable from v in val(g).

The edges of a skeleton graph are computed as follows. First, assume that g is a terminal
graph. We determine the strongly connected components of g in linear time (e.g. using Tarjan’s
algorithm [Tar72]). Let g′ be the corresponding graph which has as nodes the strongly connected
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components of g and an edge between two nodes A and B, if there is an edge from the strongly
connected component A to B in g. We remove from g′ each strongly connected component C
that does not contain external nodes. This is done by inserting for every pair of edges e1, e2

where e1 = (D,C) and e2 = (C,E) (such that D,C,E are pairwise distinct) an edge e = (D,E).
Afterwards C and all edges incident with C are deleted. Finally, we replace each component
by a cycle of the external nodes of that component, and, for an edge from a component D
to a component E we add an edge from an arbitrary external node of D to one of E. If g
is not a terminal graph (i.e., has nonterminal edges), let e1, . . . , en be the nonterminal edges
labelled A1, . . . , An. Then compute g[e1/sk(rhs(A1))] · · · [en/sk(rhs(An))]. The resulting graph
is terminal, and we can use the above procedure to compute the skeleton graph of g.
Theorem 5.3. Let g be a graph and G = (N,S, P ) an SL-HR grammar with val(G) = g. Given
nodes x, y ∈ Vg, it can be determined in O(|G|) time whether or not y is reachable from x in g.

Proof. We first compute G-representations (u, x′), (v, y′) of x and y in O(log2 |G|E + h) time,
as described in Section 4.2. We traverse G bottom-up with respect to ≤NT in one pass and
compute for each nonterminal A its skeleton graph sk(A). After having computed in O(|G|)
time the skeleta for all nonterminals, we can solve a reachability query as follows. Let S′ be the
graph obtained from S by replacing each nonterminal edge by its skeleton graph; clearly, it can
be obtained in O(|G|) time.

Case 1: Assume that u and v both equal ε, i.e., x′ and y′ are both in the start graph. It should
be clear that y is reachable from x in val(G) if and only if y′ is reachable from x′ in S′. The
latter is checked in O(|S′|) time.

Case 2: Let u = u1 · · ·un and v = v1 · · · vm. Let Ai = lhs(dt(S)[u1 . . . ui]) for i ∈ {1, . . . , n} and
let Bj = lhs(dt(S)[v1 . . . vj ] for j ∈ {1, . . . ,m}. For the right-hand side hn of An we determine
the set En of external nodes that are reachable from x′ in hn. This is done by replacing the
nonterminal edges in hn by their skeleton graphs, and then running a standard reachability test.
We now move up the derivation tree (viz. to the left in u), at each step computing a subset Ei of
the external nodes of sk(Ai): we locate the nodes corresponding Ei+1 in sk(Ai) and determine
the set Ei of external nodes reachable from these. Finally, we obtain a set E0 of nodes in S′ (all
incident with the edge e0). In a similar way we compute a set F0 of nodes in S that are incident
with f0 (and can reach y′). Finally, we check if a node in F0 is reachable from a node in E0.
This is done by adding edges over F0 that form a cycle, and edges over E0 that form a cycle.
We now pick arbitrary nodes f in F0 and e in E0 and check if f is reachable from e in S′.

Furthermore, by Lengauer and Wagner [LW92] the reachability problem on grammar-compressed
graphs is P-complete.

5.2 Regular Path Queries

Regular path queries (RPQ) are a well-known (see, e.g. [Woo12]) way to query graph data: the
query is given as a regular expression α over the edge alphabet of the graph g. Given two nodes
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x, y in g the problem is to decide whether there exists a path from x to y such that its edge
labels, taken as a string, match the regular expression α. Such queries are of relevance in modern
applications: version 1.1 of the SPARQL query-language1, for RDF data, introduces property
paths, which are a variant of regular path queries. It is well-known that the problem whether a
regular path query holds for two given nodes in a graph is decidable in time O(|g| · |Aα|) where
Aα is an NFA deciding the language L(α) of α. Such an automaton Aα can be constructed in
linear time and with |Aα| ∈ O(|α|), e.g. using Thompson’s construction [Tho68]. The algorithm
works as follows:

• Consider g to be an NFA Ag with initial state x and final state y.

• Construct the product automaton of Ag and Aα deciding L(Ag) ∩ L(α).

• Test the product automaton for emptiness.

If the final test is true, then there is no such path. Otherwise it exists and we say x and y satisfy
α. We generalize this method to grammar-compressed graphs. Given a grammar G and a regular
expression α, we first compute an SL-HR grammar Gα which generates the graph-structure
(ignoring initial and final states for now) of the product automaton of Aval(G) and Aα. Then,
using the result from the previous section, we decide reachability from the initial to the final
state. To make this construction easier to read, we will relax one condition we enforced on
hypergraphs before: nodes in the grammar are named not just by IDs, but by a tuple of ID and
state. In fact, for a node-ID i and a set of states Q, we generate nodes (i, q) for every q ∈ Q.
We refer to i as the node’s ID, and q as the node’s state. Consequently, this affects how nodes
are named during a derivation step. The renaming ρ for nodes (i, q) always only affects the ID
portion of the node, i.e., for any q ∈ Q only renamings of the form ρ((i, q)) = (j, q) are allowed.
The rules by which the ID is renamed still follow the method laid out in Section 2.3. However,
as there may now be distinct nodes (i, q) and (i, p) for two different states q, p ∈ Q, we also
require that ρ((i, q)) = (j, q) and ρ((i, p)) = (j, p), i.e., nodes with the same ID will keep this
property.

We recall some necessary definitions. A nondeterministic finite automaton (NFA) over an
alphabet Σ is a tuple A = (Q, δ, qi, qf ), where Q is a finite set of states, δ ⊆ Q× (Σ ∪ {ε})×Q
is the transition relation, qi ∈ Q is the initial state, and qf ∈ Q is the final state. A tuple
(q, w) ∈ Q× Σ∗ is called a configuration of A. A configuration (p, v) can follow a configuration
(q, w), denoted (q, w) ` (p, v), if

1. w = σv for some σ ∈ Σ and (q, σ, p) ∈ δ, or

2. w = v and (q, ε, p) ∈ δ.

We denote the transitive and reflexive closure of ` by `∗. The language decided by A is
denoted as L(A) = {w | (qi, w) `∗ (qf , ε)}. Let A = (Q, δ, qi, qf ) and A′ = (Q′, δ′, q′i, q′f ) be two

1https://www.w3.org/TR/sparql11-query/
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NFA’s. By A⊗A′ = (Q⊗, δ⊗) we denote the product construction defined by Q⊗ = Q×Q′ and
δ⊗ = δΣ ∪ δε, where

δΣ = { ((q, q′), σ, (p, p′)) | q, p ∈ Q, q′, p′ ∈ Q′, σ ∈ Σ,

(q, σ, p) ∈ δ, and (q′, σ, p′) ∈ δ′}, and

δε = { ((q, q′), ε, (p, p′)) | q, p ∈ Q, q′, p′ ∈ Q′,

(q, ε, p) ∈ δ and (q′, ε, p′) ∈ δ′, or

(q, ε, p) ∈ δ and q′ = p′, or

q = p and (q′, ε, p′) ∈ δ′}.

Note that, while the product construction defines a system of state transitions, it does not set
initial and final states by default. However, the NFA (Q⊗, δ⊗, (qi, q′i), (qf , q′f )) does decide the
language L(A) ∩ L(A′). This property is used to decide whether there exists a path satisfying a
regular path query between two given nodes. Such automata without initial/final states are also
just called transition systems. The product construction still works if either or both the automata
are transition systems. A simple graph g = (V,E, att, lab, ext) with edge labels from Σ defines a
transition system trans(g) = (Qg, δg) with Qg = V and δg = {(x, σ, y) | ∃e ∈ E : lab(e) = σ and
att(e) = xy}.

Consider the product construction trans(g) ⊗ A for some simple graph g and an NFA A. It
represents every possible run of A on any path within g, only by setting an initial and final
state we choose specific start and end-nodes within g, and initial/final states of A. Thus, for
any two nodes x, y of g we can check whether there is a path between them that A accepts with
the same product construction. We next extend this notion to SL-HR grammars representing
simple graphs, by describing a construction which, given an SL-HR grammar G and an NFA
A, generates an SL-HR grammar representing the product construction of trans(val(G)) and A.
Thus, we achieve a compressed representation of all runs of A on paths of val(G).
Lemma 5.4. Given an SL-HR grammar G = (N,P, S) that generates a simple graph and an NFA
A = (Q, δ, qi, qf ), we can compute in O(|G||A|) time an SL-HR grammar GA = (NA, PA, SA),
such that trans(val(GA)) = trans(val(G))⊗A.

Proof. The construction is straightforward: for every rule p = (A, g) of G, the product con-
struction of g and A is computed. Due to this, the rank increases: if rank(g) = k, then
rank(g ⊗A) = k|Q|. Accordingly, some care has to be taken with nonterminal edges, as these
also increase in rank. They need to be attached to the same node-IDs as before, but once for
every state in Q. To make sure that nodes attached to nonterminal edges and external nodes
match up correctly, we enforce some (arbitrary) order on Q.
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Let Q = {q1, . . . , qn} and let <Q be a strict total order q1 <Q q2 <Q · · · <Q qn on Q. For
a string w = w1 · · ·wm let w ×Q be the string (w1, q1)(w2, q1) · · · (wm, q1)(w1, q2) · · · (wm, qn).
For every (A, g) ∈ P , PA contains a rule (A, g⊗) defined as follows. Let V⊗ = V ×Q and

E⊗ = {ei,q,σ,p | ei ∈ Eg, (q, σ, p) ∈ δ, labg(ei) = σ}∪

{ei,q,ε,p | i ∈ Vg, (q, ε, p) ∈ δ}∪

{ei | ei ∈ Eg, labg(ei) ∈ N}

such that

att⊗(ei,q,σ,p) = (x, q) · (y, p) (with attg(ei) = xy) lab⊗(ei,q,σ,p) = σ

att⊗(ei,q,ε,p) = (i, q) · (i, p) lab⊗(ei,q,ε,p) = ε

att⊗(ei) = attg(ei)×Q lab⊗(ei) = labg(ei).

For the external nodes we set ext⊗ = ext×Q. This defines the rules of GA. Clearly, we do not
add any nonterminals, and thus have NA = N , where rankNA(A) = |Q|rankN (A) for any A ∈ N .
Finally SA is constructed from S and A using the same construction as described above for the
right-hand sides of the rules (i.e., SA = S⊗).

It should be clear that |GA| ∈ O(|G||A|). It can now be used to decide regular path queries:
Theorem 5.5. Given an SL-HR grammar G, where val(G) is a simple graph, an RPQ α, and
a pair of nodes x, y from val(G), it can be decided in time O(|α||G|) whether x and y satisfy α.

Proof. First compute an NFA A from α by using Thompson’s well known construction [Tho68].
Note that |A| ∈ O(|α|). Using Lemma 5.4 compute the grammar GA generating the product
construction of G and A. Now, using Theorem 5.3, decide reachability from (x, qi) to (y, qf )
in val(GA). Note that x, y are node-IDs in val(G), but a G-representation (u, x′) of x can be
converted into a GA-representation of (x, qi) by using (u, (x′, qi)). If a path exists, we can
conclude that there is a path from x to y satisfying the RPQ α. Otherwise, it does not exist.

As an example showing how powerful this construction is, consider the string a1040, which can
be represented by a grammar as a1024a16 and the obvious SL-HR grammar G representing the
string-graph encoding this string. The minimal NFA A deciding L = {ax | x mod 5 = 0} has
5 states. The product construction of s-graph(a1040) and A would therefore have 5202 States,
whereas the grammar GA only has 155 states, and just replacing the nonterminals with their
skeleta in the small start graph (20 states), e.g. when testing for reachability between (0, qi)
and (1040, qf ), immediately shows that there is an accepting run from the first to the last node
(i.e., nodes 0 and 1040, respectively) of the graph.

We can also use this “product grammar” to decide a more general problem. In a way, the product
construction encodes every pair of nodes that fulfils the query α. Thus, the product grammar
GA is a compressed representation of every such pair. We can therefore decide, whether there
exists a pair of nodes at all, that satisfies the query. Intuitively, this is done by computing,
bottom-up, for every rule, which external nodes can be reached from any initial state, and from
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which external nodes a final state can be reached. If an external node appears in both these
lists at some point, we know that there is a path between some initial and final state.
Theorem 5.6. Given an SL-HR grammar G, where val(G) is a simple graph, and an RPQ α,
it can be decided in time O(|α||G|), if there exist nodes x, y in val(G) satisfying α.

Proof. As before, construct A from α, and GA from G and A according to Lemma 5.4. We now
compute some helpful information in a bottom-up pass over the grammar, i.e., iterating over the
rules in the reverse ≤NT-order. For a rule (A, g) we first compute whether any node (y, qf ) can
be reached from any node (x, qi) (where (x, qi) and (y, qf ) are nodes in g) within val(g), using
the methods from Theorem 5.3. If this is the case, a pair satisfying α exists. Otherwise, we
compute two sets of nodes PA and QA. Intuitively, PA contains the external nodes of g that
can be reached from some (x, qi) (an initial state) while QA contains the external nodes of g
from which a node (y, qf ) (a final state) is reachable.

PA and QA for a rule (A, g) are computed in the following way: first we compute two sets of
nodes, X and Y . The set X contains every node x ∈ Vg with the following properties:

• there exists a nonterminal edge e ∈ Eg such that x ∈ attg(e), and

• if x = attg(e)[i], then the i-th external node of rhs(lab(e)) is in Plab(e).

The set Y is defined analogously, but using Qlab(e) instead of Plab(e). Now we replace every
nonterminal edge of g by its skeleton (see Definition 5.2) and let this graph be g′. To g′ we add a
new node s and an edge from s to every node in {(x, qi) ∈ Vg | x ∈ N}∪X. Every external node
now reachable from s belongs to the set PA. This set can be computed by a single BFS-traversal
starting in s. To compute QA we add a new node t to g′ that has an edge from every node in
{(x, qf ) ∈ Vg | x ∈ N} ∪ Y . Every external node that can reach t is part of QA. This can be
computed by complementing all the edges and again starting a BFS traversal from t.

If, for any A ∈ N , PA ∩QA 6= ∅, then a pair of nodes x, y exists within val(A) such that they
satisfy α. Otherwise, we compute X and Y for the start graph SA, replace the nonterminals in
SA by their skeleta, and add both s and t to SA as above. If t is now reachable from s, then
there exist nodes x, y within val(G) satisfying α. Otherwise no such nodes exist.

Note that the constructions in this section all generalize to hypergraphs (instead of simple
graphs) in a straightforward way. There is some ambiguity on how to define transition systems
using hyperedges. We suggest to use a similar approach as for the definition of paths within
hypergraphs (cf. Section 2.1). A hyperedge in a transition system would thus be considered
as directed with one source node (the first one it is attached to) and multiple target nodes.
Semantically, a rank k (k > 2) hyperedge labelled σ and attached to nodes x1 · · ·xk would then
be the same as k − 1 simple edges all labelled σ, starting in x1, and using x2, . . . , xk as target
nodes.
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5.3 Isomorphism of Grammar-Compressed Tree-Graphs

Checking structures for isomorphism is a problem occurring in many applications and therefore
of high interest. Indeed, the search for digram occurrences gRePair does is essentially a search
for isomorphic subgraphs, with a very limited scope. In general, testing isomorphism for graphs
is rather famous for having no known deterministic polynomial time algorithm, but also not
being known to be NP-hard. For trees on the other hand, polynomial time algorithms exist
(e.g. [Lin92]). A natural question is, if it is possible to test whether val(G) ∼= val(H) for two
tree-generating SL-HR grammars G,H in time polynomial in |G|+ |H|. In this section we show
that this is indeed the case, using equivalent SLT grammars.

In Section 2.4 we discussed how trees can be encoded as graphs. For a tree-graph g we let
tree(g) be the tree encoded by the graph (i.e., the reversal of t-graph). By Theorem 3.7 we can
convert a tree-generating SL-HR grammar G into a grammar G′ where every right-hand side is
a tree-graph. Applying tree(g) to every right-hand side g in the grammar thus yields an SLT
grammar Gt with t-graph(val(Gt)) ∼= val(G). Therefore, given two tree-generating grammars
G,H testing whether val(G) ∼= val(H) according to the definition of isomorphism in Section 2.1
can be done in the following way. First, convert them to equivalent SLT grammars Gt and
Ht. Then test whether val(Gt) = val(Ht), which is possible in polynomial time (with respect to
|Gt|+ |Ht|) as shown in [BLM08].

However, this definition of isomorphism assumes the trees to be ordered, which often does
not quite capture the intuition for isomorphic trees. In many situations, two trees should be
considered isomorphic regardless of the order of the children. For example, consider the following
two XML documents:

<person>

<first name>John</first name>

<surname>Doe</surname>

</person>

<person>

<surname>Doe</surname>

<first name>John</first name>

</person>

They encode the same information, yet their document trees are not equal, because the nodes
appear in a different order. The isomorphism definition thus should be one that respects the
parent/child relationship, but disregards the specific order of the children. We next present
an algorithm that checks, in polynomial time with respect to the grammar sizes, whether two
SLT grammars produce isomorphic unordered trees by restructuring the grammars such that
they generate the trees in a canonic order. The remainder of this section uses SLT grammars,
because, as mentioned above, tree-generating SL-HR grammars can be converted into equivalent
SLT grammars and it massively simplifies the notation.

We start with some known results about SLT grammars and notation used below. Let ∆ be
an alphabet. A tree t ∈ T∆({y}) is called a frame if it has exactly one occurrence of y. The
set of all frames is referred to as F∆ (and F∆∪N for frames that include nonterminals). For a
frame t(y) and a tree s we write t[s] for t[y ← s]. The following lemma is already mentioned in



5.3. Isomorphism of Grammar-Compressed Tree-Graphs 85

Section 4.3.3 above and proved in [LMS12] for SLT grammars over ranked terminal alphabets,
but carries over to unranked alphabets.
Lemma 5.7. Any SLT grammar G = (N,P, S) over ∆ can be transformed, in polynomial time,
into an equivalent SLT grammar, where each rule has one of the following four types (where
δ ∈ ∆ and A,B,C,A1, . . . , Ak ∈ N):

1. A→ δ(A1, . . . , Ak),

2. A→ B(C),

3. A(y)→ δ(A1, . . . , Ai, y, Ai+1, . . . , Ak), or

4. A(y)→ B(C(y)).

We assume that every SLT grammar below has this form, and let N (0) = {A ∈ N | rank(A) = 0}
and N (1) = {A ∈ N | rank(A) = 1}. For an SLT grammar G in the normal form from Lemma 5.7,
we let G(i) with i ∈ [4] be the SLT grammar (without start nonterminal) consisting of all rules
of G of type i from the Lemma. We denote by t ⇒G(i) s a derivation using a rule of type i.
Occasionally, we also consider SLT grammars, where the start nonterminal belongs to N (1), i.e.,
has rank 1. We call such a grammar a 1-SLT grammar. Note that val(G) for a 1-SLT grammar
G is a frame.

A straight-line program over ∆ (SLP, i.e., a grammar-compressed string) can be seen as a 1-SLT
grammar G = (N,P, S) containing only rules of the form A(y) → B(C(y)) and A(y) → δ(y)
with B,C ∈ N and δ ∈ ∆ and vice-versa. Thus, if G produces val(G) = a1(· · · an(y) · · · ) then it
represents the string a1 · · · an. We also write val(G) = a1 · · · an in this case. The following result
follows from [Hag00, Algorithm 8.1.4], where it is shown that an “interval grammar” (an SLP
with right-hand sides of the form A[l, r] for positions l ≤ r) can be transformed into regular
SLPs (in Chomsky normal form) of quadratic size.
Lemma 5.8. Let G be an SLP and l, r ∈ [|val(G)|] two binary encoded numbers with l ≤ r.
One can compute in polynomial time an SLP G′ such that val(G′) = val(G)[l, r].

5.3.1 Length-lexicographical Ordering

For a tree t ∈ T∆ we denote by dflr(t) its depth-first left-to-right (or pre-order) traversal string
in ∆∗. It is defined as dflr(δ(t1, . . . , tk)) = δdflr(t1) · · · dflr(tk) for every δ ∈ ∆, k ≥ 0, and
t1, . . . , tk ∈ T∆.

The length-lexicographical ordering <llex on ∆∗ is defined by u <llex w if and only if (i) |u| < |w|
or (ii) |u| = |w| and u <lex w. We extend the definition of <llex to trees s, t over ∆ by s <llex t if
and only if dflr(s) <llex dflr(t).
Lemma 5.9. Given SLT grammars G,H, it is decidable in polynomial time, whether or not

1. val(G) <llex val(H), and

2. val(G) = val(H).
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Proof. As mentioned above, point 2 is shown in [BLM08] by computing from G,H in polynomial
time SLPs G′, H ′ with val(G′) = dflr(val(G)) and val(H ′) = dflr(val(H)). Equivalence of SLPs
can be decided in polynomial time; this was proved independently in [HJM96, MSU97, Pla94],
cf. [Loh12a].

To show point 1, we compute in two single bottom-up runs the numbers n1 = |val(G′)| and
n2 = |val(H ′)|. If n1 6= n2 we are done; so assume that n = n1 = n2. Next, we compute the
first position for which the strings val(G′) and val(H ′) differ. This is done via binary search
and polynomially many equivalence tests: We compute m = dn/2e and, using Lemma 5.8,
construct SLPs G1 and G2 for val(G′)[1,m] and val(G′)[m + 1, n], respectively, and SLPs H1

and H2 for val(H ′)[1,m] and val(H ′)[m + 1, n], respectively. We proceed with G1 and H1 if
val(G1) 6= val(H1), otherwise we proceed with G2 and H2. After c ≤ dlog(n)e many steps we
obtain SLPs Gc, Hc representing the first position for which val(G′) and val(H ′) differ. We
compute the terminal symbols g, h with val(Gc) = {g} and val(Hc) = {h} and determine whether
or not g <∆ h.

5.3.2 Canonizing SLT grammars

For a tree t we denote with uo(t) the unordered rooted version of t. It is the node-labelled directed
graph (V,E, λ) where V = D(t) is the set of nodes, E = {(u, u.i) | i ∈ N, u ∈ N∗, u.i ∈ D(t)} is
the edge relation, and λ is the node-labelling function with λ(u) = t[u]. For an SLT grammar
G, we also write valuo(G) for uo(val(G)).

In this section we fix the terminal alphabet ∆ and the order <∆ on ∆. As defined in Section 5.3.1,
this induces the order <llex on trees in T∆. For a tree t ∈ T∆ we define its canon canon(t) as
follows: Let t = δ(t1, . . . , tk) with δ ∈ ∆ and k ≥ 0 and let ci = canon(ti) for i ∈ [k]. Let
ci1 ≤llex ci2 ≤llex . . . ≤llex cik be the length-lexicographically ordered list of the canons c1, . . . , ck.
Then canon(t) = δ(ci1 , . . . , cin). The following lemma can be shown by an induction on the tree
structure:
Lemma 5.10. Let s, t ∈ T∆. Then uo(s) and uo(t) are isomorphic if and only if canon(s) =
canon(t).

In the following, we denote a tree A1(A2(· · ·An(t) · · · )), where A1, A2, . . . , An are unary nonter-
minals with A1A2 · · ·An(t).
Theorem 5.11. From a given SLT grammar G one can construct in polynomial time an SLT
grammar G′ such that val(G′) = canon(val(G)).

Proof. Let G = (N,P, S) be an SLT grammar over ∆. We assume that G contains no distinct
nonterminals A1, A2 ∈ N (0) such that valG(A1) = valG(A2). This is justified because we can test
valG(A1) = valG(A2) in polynomial time by Lemma 5.9 (and replace A2 by A1 in G in such a case).
We will add polynomially many new nonterminals to G and change the rules for nonterminals
from N (0) such that for the resulting SLT grammar G′ we have valG′(Z) = canon(valG(Z)) for
every Z ∈ N (0).
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Consider a nonterminal Z ∈ N (0) and let M be the set of all nonterminals in G that can be
reached from Z. By induction, we can assume that G already satisfies valG(A) = canon(valG(A))
for every A ∈M (0) \ {Z}. We distinguish two cases.

Case (i). Z is of type (1) from Lemma 5.7, i.e., has a rule Z → δ(A1, . . . , Ak). Using Lemma 5.9
we construct an ordering i1, . . . , ik of [k] such that valG(Ai1) ≤llex valG(Ai2) ≤llex · · · ≤llex

valG(Aik). We obtain G′ by replacing the rule Z → δ(A1, . . . , Ak) by Z → δ(Ai1 , . . . , Aik) and
get valG′(Z) = canon(valG(Z)).

Case (ii). Z is of type (2), i.e., has a rule Z → B(A). Let {S1, . . . , Sm} = M (0) \ {Z} be an
ordering such that

valG(S1) <llex valG(S2) <llex · · · <llex valG(Sm).

Note that A is one of these Si. The sequence S1, S2, . . . , Sm partitions the set of all trees t in
T∆ into intervals I0, I1, . . . , Im with

• I0 = {t ∈ T∆ | t <llex valH(S1)},

• Ii = {t ∈ T∆ | valH(Si) ≤llex t <llex valH(Si+1)} for 1 ≤ i < m, and

• Im = {t ∈ T∆ | valH(Sm) ≤llex t}.

Consider the maximal G(4)-derivation starting from B(A), i.e.,

B(A)⇒∗G(4) B1B2 · · ·BN (A),

where Bi is a type-(3) nonterminal. Clearly, the number N might be of exponential size, but the
set {B1, . . . , BN} can be easily constructed. In order to construct an SLT for canon(valG(Z)),
it remains to reorder the arguments in right-hand sides of the type-(3) nonterminals Bi. The
problem is that different occurrences of a type-(3) nonterminal in the sequence B1B2 · · ·BN
have to be reordered in a different way. But we will show that the sequence B1B2 · · ·BN can be
split into m+ 1 blocks such that all occurrences of a type-(3) nonterminal in one of these blocks
have to be reordered in the same way.

Let tk = valG(BkBk+1 · · ·BN (A)) for k ∈ [N ] and tN+1 = valG(A). Note that t1 = valG(Z) >llex

valG(Sm) and that tk+1 <llex tk for all k. For i ∈ [m] let ki be the maximal position k ≤ N + 1
such that tk ≥llex valG(Si). Since t1 ≥llex valG(Sm) ≥llex valG(Si) this position is well defined.
Also note that if A = Si, then we have ki = ki−1 = · · · = k1 = N + 1. For every 0 ≤ i ≤ m, the
interval [ki+1 + 1, ki] is the set of all positions k such that valG(tk) ∈ Ii. Here we set km+1 = 0
and k0 = N + 1. Clearly, the interval [ki+1 + 1, ki] might be empty. The positions k0, . . . , km

can be computed in polynomial time, using binary search combined with Lemma 5.9. To apply
the latter, note that for a given position k we can compute in polynomial time an SLT grammar
for the tree tk using Lemma 5.8 for the SLP consisting of all type-(4) rules that are used to
derive B1B2 · · ·BN .

We now factorize the string B1B2 · · ·BN as B1B2 · · ·BN = umum−1 · · ·u0, where um =
B1 · · ·Bkm−1 and ui = Bki+1 · · ·Bki−1 for 0 ≤ i ≤ m − 1. By Lemma 5.8 we can com-
pute in polynomial time an SLP Gi for the string ui. For the further consideration, we view
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Gi as a 1-SLT grammar consisting only of type-(4) rules. Note that val(Gi) is a linear tree,
where every node is labelled with a type-(3) nonterminal. We now add reordered versions of
type-(3) rules to Gi. Consider a type-(3) rule (C(y) → δ(A1, . . . , Aj , y, Aj+1, . . . , Ak)) ∈ P

where C ∈ {B1, . . . , BN}. Then we add to Gi the type-(3) rule

C(y)→ δ(Aj1 , . . . , Ajν , y, Ajν+1 , . . . , Ajk),

where {j1, . . . , jk} = [k] and 0 ≤ ν ≤ k are chosen such that

1. valG(Aj1) ≤llex valG(Aj2) ≤llex · · · ≤llex valG(Ajk) and

2. valG(Ajν ) ≤llex valG(Si) <llex valG(Ajν+1).

Note that if ν = k then condition (2) states that valG(Ajk) ≤llex valG(Si), and if ν = 0 then it
states that valG(Si) <llex valG(Aj1). Also note that condition (2) ensures that for every tree
t ∈ Ii we have valG(Ajν ) ≤llex t <llex valG(Ajν+1). Hence, valG(δ(Aj1 , . . . , Ajν , t, Ajν+1 , . . . , Ajk))
is a canon. The crucial observation now is that the above factorization umum−1 · · ·u0 of
B1B2 · · ·BN was defined in such a way that for every occurrence of a type-(3) nonterminal C(y)
in ui, the parameter y will be substituted by a tree from Ii during the derivation from Z to
valG(Z). Hence, we reorder the arguments in the right-hand sides of nonterminal occurrences in
ui in the correct way to obtain a canon.

We now rename the nonterminals in the SLT grammars Gi (which are now of type (3) and type
(4)) so that the nonterminal sets of G,G0, . . . , Gm are pairwise disjoint. Let Xi(y) be the start
nonterminal of Gi after the renaming. Then we add to the current SLT grammar G the union
of all the Gi, and replace the rule Z → B(A) by Z → XmXm−1 · · ·X0(A). The construction
implies that valG′(Z) = canon(valG(Z)) for the resulting grammar G′.

It remains to argue that the above construction can be carried out in polynomial time. All steps
only need polynomial time in the size of the current SLT grammar. Hence, it suffices to show
that the size of the SLT grammar is polynomially bounded. The algorithm is divided into |N (0)|
many phases, where in each phase it enforces valG′(Z) = canon(valG(Z)) for a single nonterminal
Z. Consider a single phase, where valG′(Z) = canon(valG(Z)) is enforced for a nonterminal Z.
In this phase, we (i) change the rule for Z and (ii) add new type-(3) and type-(4) rules to G
(the union of the Gi above). But the number of these new rules is polynomially bounded in
the size of the initial SLT grammar (the one before the first phase), because the nonterminals
introduced in earlier phases are not relevant for the current phase. This implies that the additive
size increase in each phase is bounded polynomially in the size of the initial grammar.

Corollary 5.12. The problem of deciding whether valuo(G1) and valuo(G2) are isomorphic for
given SLT grammars G1 and G2 is P-complete.

Proof. Membership in P follows immediately from Lemma 5.9, Lemma 5.10, and Theorem 5.11.
Moreover, P-hardness already holds for dags, i.e., SLT grammars where all nonterminals have
rank 0, as shown in [LM13].
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5.3.3 Isomorphism of Unrooted, Unordered SLT-Compressed Trees

We can extend this result further. For two tree-generating grammars we can also test in
polynomial time, whether the (undirected) graph structures they generate are isomorphic
regardless of the root-node. An unrooted unordered tree t over ∆ can be seen as a node-
labelled (undirected) graph t = (V,E, λ), where E ⊆ V × V is symmetric and λ : V → ∆. For
two nodes u, v of t we denote the distance between them (i.e., the number of edges on the
path from u to v in t) by distancet(u, v). We further define the eccentricity of a node v as
ecct(v) = maxu∈V distancet(u, v) and the diameter φ(t) = maxv∈V ecct(v).

Let t ∈ T∆ be a rooted ordered tree over ∆ and let t′ = uo(t) = (V,E, λ) be the rooted unordered
tree corresponding to t. The tree ur(t′) = (V,E ∪E−1, λ) over ∆ is the unrooted version of t′.
An unrooted unordered tree t can be represented by an SLT grammar G by forgetting the order
and root information present in G. Let valur,uo(G) = ur(uo(val(G))).

In this section it is proved that isomorphism for unrooted unordered trees t1, t2 represented by
SLT grammars G1, G2, respectively, can be solved in polynomial time with respect to |G1|+ |G2|.
We reduce the problem to the (rooted) unordered case solved in Corollary 5.12.

Let t = (V,E, λ) be an unordered unrooted tree. A node u of t is called centre node of t if for
all leaves v of t:

distancet(u, v) ≤ (φ(s) + 1)/2.

Let centre(t) be the set of all centre nodes of t. One can compute the centre nodes by deleting
all leaves of the tree and iterating this step, until the current tree consists of at most two
nodes. These are the centre nodes of t. In particular, t has either one or two centre nodes.
Another characterization of centre nodes that is important for our algorithm is via longest paths.
Let p = (v0, v1, . . . , vn) be a longest simple path in t, i.e., n = φ(t). Then the middle points
vbn/2c and vdn/2e (which are identical if n is even) are the centre nodes of t. These nodes are
independent of the concrete longest path p.

Note that there are two centre nodes if and only if φ(t) is odd. Since our constructions are
simpler if a unique centre node exists, we first make sure that φ(t) is even. Let # be a new
symbol not in ∆. For an unrooted unordered tree t we denote by even(t) the tree where every
pair of edges (u, v), (v, u) is replaced by the edges (u, v′), (v′, v), (v, v′), (v′, u), where v′ is a new
node labelled #. Then for an SLT grammar G = (N,P, S) over ∆ we let even(G) = (N,P ′, S)
be the SLT grammar over ∆ ∪ {#} where P ′ is obtained from P by replacing every subtree
δ(t1, . . . , tk) with δ ∈ ∆, k ≥ 1, in a right-hand side by the subtree δ(#(t1), . . . ,#(tk)). Observe
that

• valur,uo(even(G)) = even(valur,uo(G)),

• φ(even(t)) = 2 · φ(t) is even, i.e., even(t) has only one centre node, and

• trees t and s are isomorphic if and only if even(t) and even(s) are isomorphic.
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Since even(G) can be constructed in polynomial time, we assume in the following that every
SLT grammar produces a tree of even diameter and therefore has only one centre node. For a
tree t of even diameter, we denote with centre(t) its unique centre node.

Let u ∈ V . We construct a rooted version root(t, u) of t, with root node u. We set root(t, u) =
(V,E′, λ), where E′ = {(v, v′) ∈ E | distancet(u, v) < distancet(u, v′)}.

Two unrooted unordered trees t1, t2 of even diameter are isomorphic if and only if root(t1, centre(t1))
is isomorphic to root(t2, centre(t2)). Thus, we can solve in polynomial time the isomorphism
problem for unrooted unordered trees represented by SLT grammars G,G′ by

1. determining in polynomial time compressed representations ũ1 and ũ2 of u1 = centre(valur,uo(G))
and u2 = centre(valur,uo(G′)), respectively (Section 5.3.4),

2. constructing in polynomial time SLT grammarsG1, G2 such that valuo(G1) = root(valur,uo(G), u1)
and valuo(G2) = root(valur,uo(G′), u2) (Section 5.3.5), and

3. testing in polynomial time if valuo(G1) is isomorphic to valuo(G2) (Corollary 5.12).

5.3.4 Finding a Root-Node

Let G = (N,P, S) be an SLT grammar over ∆. A G-compressed path p is a string of pairs
p = (A1, u1) · · · (An, un) such that for all i ∈ [n], Ai ∈ N , A1 = S, ui ∈ D(ti) is a Dewey address
in ti where (Ai → ti) ∈ P , ti[ui] = Ai+1 for i < n, and ti[un] ∈ ∆. If we omit the condition
ti[un] ∈ ∆, then p is a partial G-compressed path. Note that by definition, n ≤ |N |. A partial
G-compressed path uniquely represents one particular node in the derivation tree of G, and
a G-compressed path represents a leaf of the derivation tree and hence a node of val(G). We
denote this node by valG(p). The concatenation u1, u2, . . . , un of the Dewey addresses is denoted
by u(p).

Recall that the height of a tree s ∈ T∆ is defined as height(s) = max{|u|+ 1 | u ∈ D(t)}. For a
frame t(y) ∈ F∆ we define ecc(t) = ecct(y) (recall that in a frame there is a unique occurrence
of the parameter y) and rty(t) = distancet(ε, y) (the distance from the root to the parameter
y). We extend these notions to frames t ∈ F∆∪N and trees s ∈ T∆∪N by ecc(t) = ecc(valG(t)),
rty(t) = rty(valG(t)), and height(s) = height(valG(s)).

Eccentricity, distance from root to y, and height can be computed in polynomial time for all
nonterminals bottom-up. To do so, observe that for two frames t(y), t′(y) ∈ F∆∪N and a tree
s ∈ T∆∪N we have

• rty(t[t′]) = rty(t) + rty(t′),

• ecc(t[t′]) = max{ecc(t′), ecc(t) + rty(t′)}, and

• height(t[s]) = max{height(s), rty(t) + height(s)}.

Similarly, for a frame t(y) = δ(s1, . . . si, y, si+1, . . . , sk) and a tree s = δ(s1, . . . , sk) we have:

• rty(t) = 1,



5.3. Isomorphism of Grammar-Compressed Tree-Graphs 91

• ecc(t) = 2 + max{height(si) | 1 ≤ i ≤ k}, and

• height(s) = 1 + max{height(si) | 1 ≤ i ≤ k}.

Finally, note that for the tree t[s] (t(y) ∈ F∆, s ∈ T∆) we have

φ(t[s]) = max{φ(t), φ(s), ecc(t) + height(t)}. (5.1)

Our search for the centre node of an SLT-compressed tree is based on the following lemma. For
a frame t(y) ∈ F∆, where u is the Dewey address of the parameter y, and a tree s ∈ T∆ we say
that a node v of t[s] belongs to t if the Dewey address of v is in D(t) \ {u}. Otherwise, we say
that v belongs to s, which means that u is a prefix of the Dewey address of v.
Lemma 5.13. Let t(y) ∈ F∆ be a frame and s ∈ T∆ a tree such that φ(t[s]) is even. Let
c = centre(t[s]). Then we have the following:

• If ecc(t) ≤ height(s) then c belongs to s.

• If ecc(t) > height(s) then c belongs to t.

Proof. Let us first assume that ecc(t) ≤ height(s), Then we have φ(t) ≤ 2 · ecc(t) ≤ ecc(t) +
height(s), i.e., φ(t[s]) = max{φ(s), ecc(t) + height(s)} by (5.1). Together with ecc(t) ≤ height(s)
this implies that the middle point of a longest path in s[t] (which is c) belongs to the tree s.

Next, assume that ecc(t) = height(s) + 1. Then we have φ(s) ≤ 2 · height(s) < ecc(t) + height(s),
i.e., φ(t[s]) = max{φ(t), ecc(t) + height(s)}. Moreover, we claim that ecc(t) + height(s) ≥ φ(t).
In case φ(t) = ecc(t), this is clear. Otherwise, φ(t) > ecc(t) and a longest path in t does not end
in the parameter node y. It follows that φ(t) ≤ 2 · (ecc(t)− 1) < ecc(t) + height(s). Thus, we
have φ(t[s]) = ecc(t) + height(s) = 2 · height(s) + 1, which is odd, a contradiction. Hence, this
case cannot occur.

Finally, assume that ecc(t) > height(s)+1. Again, we get φ(t[s]) = max{φ(t), ecc(t)+height(s)}.
Moreover, since ecc(t) > height(s) + 1 the centre nodes c must belong to t.

Lemma 5.14. For a given SLT grammar G such that valur,uo(G) has even diameter, one can
construct a G-compressed path for centre(valur,uo(G)).

Proof. Consider the recursive Algorithm 9. It is started with tl = tr = p = ε and A = S and
computes the node centre(valur,uo(G)). The following invariants are preserved by the algorithm:
If centre(tl, A, tr, p) is called, then we have:

• If A has rank 0 then tr = ε

• val(G) = val(tl[A[tr]]) (here we set ε[t] = t = t[ε]).

• The tree tl[A[tr]] can be derived from the start variable S.

• p is the partial G-compressed path to the distinguished A in tl[A[tr]].

• centre(valur,uo(G)) belongs to the subframe val(A) in val(tl)[val(A)[val(tr)]].
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Algorithm 9 Recursive procedure to find the G-compressed path for the centre node
procedure centre(tl, A, tr, p)

if A→ B(C) (and thus tr = ε) or A(y)→ B(C(y)) then
if ecc(tl[B(y)]) ≤ height(C[tr]) then

return(tl[B(y)], C, tr, p · (A, 1))
else

return(tl, B,C[tr], p · (A, ε))

if A→ δ(A1, . . . , Ak) (and thus tr = ε) then
ti ← tl(δ(A1, . . . , Ai−1, y, Ai+1, . . . , Ak) for all i ∈ [k]
if there is an i ∈ [k] such that ecc(ti) ≤ height(Ai) then

return(ti, Ai, ε, p · (A, i))
else

return (p · (A, ε))

if A(y)→ δ(A1, . . . As−1, y, As+1, . . . , Ak) then
ti ← tl(δ(A1, . . . , Ai−1, y, Ai+1, . . . , As−1, tr, As+1, . . . , Ak) if i < s

ti ← tl(δ(A1, . . . , As−1, tr, As+1, . . . , Ai−1, y, Ai+1, . . . , Ak) if s < i

if there is an i ∈ [k] \ {s} such that ecc(ti) ≤ height(Ai) then
return(ti, Ai, ε, p · (Ai, i))

else
return (p · (A, ε))

For a call centre(tl, A, tr, p), the algorithm distinguishes on the right-hand side of A. If this right-
hand side has the form A(B) or A(B(y)), then, by comparing ecc(tl[B(y)])and height(C[tr]), we
determine, whether the search for the centre node has to continue in B or C, see Lemma 5.13.

The case that the right-hand side of A has the form δ(A1, . . . , Ak) is slightly more involved.
Let sl = val(tl) and si = val(Ai) (by the first invariant we know that tr = ε). We have to find
the centre node of t := sl(δ(s1, . . . , sk) and by the last invariant we know that it is contained
in δ(s1, . . . , sk). We now consider all k many cuts of t along one of the edges between the
δ-node and one of the si, i.e., we cut t into sl(δ(s1, . . . , si−1, y, si+1, . . . , sk) and si. Using again
Lemma 5.13, it suffices to compare ecc(sl(δ(s1, . . . , si−1, y, si+1, . . . , sk))) and height(si) in order
to determine whether the centre node belongs to sl(δ(s1, . . . , si−1, y, si+1, . . . , sk) or si. If for
some i, it turns out that the centre node is in si, then we continue the search with Ai. Finally,
assume that for all i, it turns out that the centre node is in sl(δ(s1, . . . , si−1, y, si+1, . . . , sk).
Since by the last invariant, the centre node is in δ(s1, . . . , sk), the δ-labelled node must be
the centre node. The case of a rule A(y)→ δ(A1, . . . As−1, y, As+1, . . . , Ak) can be dealt with
similarly.

Finally, note that whenever ecc(t) and height(t) have to be determined by the algorithm, then t
is a polynomial size tree built from terminal and nonterminal symbols. By the previous remarks,
ecc(t) and height(t) can be computed in polynomial time.
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5.3.5 Moving the Root Node

Let G = (N,P, S) be an SLT grammar over ∆ (as usual, having the normal form from Lemma 5.7)
and p a G-compressed path. Let s(p) ∈ T∆∪N be the tree defined inductively as follows: Let
(A→ t) ∈ P and u ∈ D(t). Then s((A, u)) = t. If p = (A, t)p′ with p′ non-empty, then either
(i) u = ε and t = B(C) or (ii) u = i ∈ N and t[i] ∈ N (0). In case (i) we set s(p) = s(p′)[C], in
case (ii) we set s(p) = t′[s(p′)], where t′(y) is obtained from t by replacing the i-th argument of
the root by y. Note that s(p′) ∈ F∆∪N if p′ starts with a nonterminal of rank 1. Let s = s(p);
its size is bounded by the size of G. Note that s[u(p)] is a terminal symbol (recall that u(p)
denotes the concatenation of the Dewey addresses in p). Assume that s[u(p)] = δ ∈ ∆. Let
# be a fresh symbol and let s′ be obtained from s by changing the label at u(p) from δ to #.
Let s′ ⇒∗G s′′ be the shortest derivation such that s′′[ε] = γ ∈ ∆ (it consists of at most |N |
derivation steps). We denote the #-labelled node in s′′ by u. Finally, let t be obtained from
s′′ by changing the unique # into δ. We define the p-expansion of G, denoted exG(p), as the
tuple (t, u, δ, γ). Note that valG(p) is the unique #-labelled node in valG(s′′). Moreover, the
p-expansion can be computed in polynomial time from G and p.

The p-expansion (t, u, δ, γ) has all information needed to construct a grammar G′ representing
the rooted version at p of val(G). If u = ε then also valG(p) = ε. Since G is already rooted at ε
nothing has to be done in this case and we return G′ = G. If u 6= ε then valG(p) 6= ε and hence
t contains two terminal nodes which uniquely represent the root node and the node valG(p) of
the tree val(G).

Let s1 ∈ T∆ be a rooted ordered tree representing the unrooted unordered tree s̃1 = ur(uo(s1)).
Let u 6= ε be a node of s1. Let s1[ε] = γ ∈ ∆ and s1[u] = δ ∈ ∆. A rooted ordered tree s2 that
represents the rooted unordered tree s̃2 = root(s̃1, u) can be defined as follows: Since u 6= ε, we
can write

s1 = γ(ζ1, . . . , ζi−1, t
′[δ(ξ1, . . . , ξm)], ζi+1, . . . , ζk),

where t′ is a frame, and u = iu′, where u′ is the Dewey address of the parameter y in t′. We
can define s2 as

s2 = δ(ξ1, . . . , ξm, rooty(t′)[γ(ζ1, . . . , ζi−1, ζi+1, . . . , ζk)]), (5.2)

where rooty is a function mapping frames to frames defined recursively as follows, where f ∈ ∆,
t1, . . . , ti−1, ti+1, . . . , t` ∈ T∆, and t(y), t′(y) ∈ F∆:

rooty(y) = y (5.3)

rooty(f(t1, . . . , ti−1, y, ti+1, . . . , t`)) = f(t1, . . . , ti−1, y, ti+1, . . . , t`) (5.4)

rooty(t[t′(y)]) = rooty(t′)[rooty(t(y))] (5.5)

Intuitively, the mapping rooty unroots a frame t(y) towards its y-node u, i.e., it reverses the path
from the root to u. Thus, for instance, rooty(f(a, y, b)) = f(a, y, b) and rooty(f(a, g(c, y, d), b)) =
g(c, f(a, y, b), d).
Lemma 5.15. From a given SLT grammar G and a G-compressed path p one can construct in
polynomial time an SLT grammar G′ such that valuo(G′) is isomorphic to root(valur,uo(G), valG(p)).
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Proof. Let G = (N,P, S) over ∆ and exG(p) = (t, u, δ, γ). If u = ε then define G′ = G. If u 6= ε

then we can write

t = γ(B1, . . . , Bi−1, t
′[δ(ξ1, . . . , ξm)], Bi+1, . . . , Bk), (5.6)

where Bj ∈ N (0), ξj ∈ TN , t′ is a frame composed of nonterminals A ∈ N (1) and frames
f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (ζj ∈ TN ), and u = iu′, where u′ is the Dewey address of the
parameter y in t′.

We define G′ = (N ]N ′, P ′, S) where N ′ = {A′ | A ∈ N (1)}. To define the rule set P ′, we extend
the definition of rooty to frames from F∆∪N by (i) allowing in the trees tj from Equation (5.4)
also nonterminals, and (ii) defining for every B ∈ N (1), rooty(B(y)) = B′(y). We now define
the set of rules P ′ of P as follows: We put all rules from P except for the start rule (S → s) ∈ P
into P ′. For the start variable S we add to P ′ the rule

S → δ(ξ1, . . . , ξm, rooty(t′)[γ(B1, . . . , Bi−1, Bi+1, . . . , Bk)]).

Moreover, let A ∈ N (1) and (A(y)→ ζ) ∈ P . If this is a type-(3) rule, then we add A′(y)→ ζ

to P ′. If ζ = B(C(y)) then add A′(y)→ C ′(B′(y)) to P ′.

Claim. Let A ∈ N (1). Then valG′(A′) = rooty(valG(A)).

The claim is easily shown by induction on the reverse hierarchical structure of G: Let (A→ tA) ∈
P . If tA = f(A1, . . . , Aj , y, Aj+1, . . . , Al) then rooty(valG(A)) = valG(A). Since (A′ → tA) ∈ P ′

and G′ contains all rules of G except for the start rule, we obtain valG′(A′) = rooty(valG(A)).
If tA = B(C(y)) then, by Equation (5.5), rooty(valG(B(C(y)))) = rooty(valG(C))[valG(B)]. By
induction the latter is equal to valG′(C ′)[valG′(B′)] which equals val(A′) by the definition of the
right-hand side of A′. This proves the claim.

The above claim implies that valG′(rooty(c(y))) = rooty(valG(c(y))) for every frame c(y) that
is composed of frames f(ζ1, . . . , ζj−1, y, ζj+1, . . . , ζl) (ζj ∈ TN ) and nonterminals A ∈ N (1). In
particular, valG′(rooty(t′)) = rooty(valG(t′(y))) for the frame t′ from Equation (5.6). Hence,
with sj = valG′(ξj) = valG(ξj) and tj = valG′(Bj) = valG(Bj) we obtain

val(G′) = valG′(δ(ξ1, . . . , ξm, rooty(t′)[γ(B1, . . . , Bi−1, Bi+1, . . . , Bk)]))

= δ(s1, . . . , sm, valG′(rooty(t′))[γ(t1, . . . , ti−1, ti+1, . . . , tk)])

= δ(s1, . . . , sm, rooty(valG(t′))[γ(t1, . . . , ti−1, ti+1, . . . , tk)]).

Since val(G) = γ(t1, . . . , ti−1, valG(t′)[δ(s1, . . . , sm)], ti+1, . . . , tk), it follows that valuo(G′) is
isomorphic to root(valur,uo(G), valG(p)).

Corollary 5.16. Given SLT grammars G1 and G2, deciding whether or not valur,uo(G1) and
valur,uo(G2) are isomorphic is P-complete.

Proof. Membership in P follows from Lemma 5.14, Lemma 5.15, and Corollary 5.12. Hardness
for P follows from the P-hardness for dags [LM13] and the fact that isomorphism of rooted
unordered trees can be reduced to isomorphism of unrooted unordered trees by labelling the
roots with a fresh symbol.
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5.4 Related Work

As mentioned at the beginning of Chapter 5 above, compressed input often induces an exponential
blow-up in complexity when deciding queries on the represented data. Such “upgrading-theorems”
have been shown for example for the representation of graphs as boolean circuits, which can be
exponentially smaller than an explicit representation, but in turn make queries exponentially
harder to answer (see e.g. [GW83, PY86]). Fortunately, upgrading theorems do not hold for
grammar-compressed data. Therefore it is possible, to achieve a speed-up proportional to the
compression ratio for certain queries. Various such algorithms are known for SLPs and SLT
grammars. For recent surveys see [Loh12a] and [Loh15], respectively.

SL-HR grammars are also known in literature as “hierarchical graph definitions”. Some algo-
rithmic properties of problems on graphs represented by such hierarchical graph definitions are
studied by Lengauer and Wanke [LW88]. They show that connectivity of grammar-compressed
graphs can be decided in linear time with respect to the size of the compressed representation.
They also show this for biconnectivity and (undirected) reachability. For strong connectivity
however, they only get a quadratic upper bound. It should be noted that there is still an increase
in complexity here, but a smaller one. Lengauer and Wagner [LW92] study several problems and
their complexity on explicit versus hierarchical representations. They show, for example, that
reachability is complete for P on hierarchical graphs, but the problem is NL-complete for explicit
representations. The latter class is widely believed to be a proper subset of the former, but
both classes only include problems which can be solved deterministically in polynomial time, so
there is no exponential blow-up in computation time. As the hierarchical representation can be
exponentially smaller than the represented graph, this makes a speed-up possible. This smaller
increase in complexity is also stated by Marathe et al. [MRHR97, MHR94, MHSR98], who
show that some NP-complete problems on graphs (e.g., 3-colourization, Max Cut, and Vertex
Cover) become PSPACE-hard on hierarchically defined graphs, which again does not imply an
exponential blow-up in computation time (assuming widely-held assumptions in complexity
theory). They also present polynomial approximation algorithms for some of these problems
with hierarchical input. Note that we cannot conclude that hierarchical versions of classical
problems always lead to a speed-up: in [LW92] they also show that the P-complete threshold
network flow problem and the circuit value problem become PSPACE-complete for hierarchical
input graphs.

5.5 Discussion and Further Research

This chapter focussed on queries, where the answer can be provided faster on a grammar-
compressed representation than on the explicit graph. Input compression usually slows compu-
tation down, but as already known for SLPs and SLT grammars, grammar-based compression
has the somewhat unique property of allowing for speed-up queries. The reason for this is that
the hierarchical representation allows for precomputation and reuse of partial results on the
rules of the grammar. We start by mentioning a general result that MSO model checking is
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PSPACE-complete. However, specific formulae can be checked in polynomial time. We then recap
that this is possible for (s, t)-reachability and present algorithms to solve regular path queries in
a single bottom-up pass of the grammar, reusing the reachability result in the process. Finally
we look into the isomorphism problem and show that deciding whether two tree-generating
grammars produce isomorphic trees (regardless of the order of the hyperedges attachment
relations) is possible in time polynomial in the size of the input grammars.

For future work investigations into several more graph algorithms are of interest. To give some
examples: graph pattern matching is not, in general, an easy problem but is often used in graph
databases as it essentially represents what conjunctive queries are within a graph database (see
e.g. [Woo12]). Investigating its complexity for a grammar-compressed representation could be a
useful step in making this a viable choice for a graph data storage model, provided the result
works well in practice. Somewhat easier might be to work on queries used in network analysis,
like average clustering coefficient, density, or PageRank. Finally, deciding isomorphism for
general graph grammars, or at least larger classes than tree-generating, would be very interesting.
We note however that this is a difficult problem for explicitly represented graphs as well: at
the time of writing, no polynomial time algorithm is known to decide the isomorphism of two
graphs. Therefore, even showing that isomorphism of grammar-compressed graphs is in NP, or
even PSPACE is a non-trivial achievement.



Chapter 6

Conclusions

The main result of the thesis is the generalization of the RePair compression scheme to graphs,
using hyperedge-replacement graph grammars. We see that an exact application of the RePair
method is not feasible, as currently no practically viable method to the problem of finding
a maximal set of non-overlapping digram occurrences is known. Instead a working greedy
approximation based on a node order is presented. Using the right order, this approximation
will yield the same result on a string-graph, as RePair would otherwise give on a string. For
tree-graphs this is also true (given the right order) for the initial replacement of digrams. Due
to the differences in size definition, however, gRePair will remove more rules during the pruning
step than TreeRePair does. Experimentally it can be verified that tree-graphs still compress to
a similar level using gRePair, as the represented trees are compressed by TreeRePair. We also
give examples on how the maximal rank can affect the compression and experimentally verify
that these effects can indeed occur. The design decisions and choice of formalism are explained,
and finally an experimental evaluation is presented based on a prototype. This evaluation shows
competitive performance on some graphs, particularly on RDF and version graphs. Also note
that the compression of web graphs is promising, if a dense substructure removal is applied first,
even though gRePair by itself does not compress web graphs particularly well.

The second half of the thesis considers algorithmic questions. First it presents two ways of
dealing with neighbourhood queries. The first one is a set of direct algorithms, which work on any
given SL-HR grammar, but for a grammar with a total of m edges and height h the algorithms
need O(h2) time per neighbour and an additional preprocessing using O(log2m · h) time for
a neighbourhood query. This is followed by a data structure, which can be used to retrieve a
neighbour in constant time. It works by precomputing the possible paths that can be taken
within one step in the derivation tree, which induces O(|G||Σ|kh2) additional precomputation
time and space requirements in the order of O(|G||Σ|kh), where k is the maximal rank of
the grammar and G is the grammar. However, the method only works on a restricted set of
grammars, representing graphs where every node has at most one incoming and outgoing edge
per label. After neighbourhood queries, speed-up algorithms are considered. There are already
a few known results for hierarchical graph definitions, which are essentially the same as the
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SL-HR grammars used here. We extend this with a new result computing regular path queries.
Doing so, we see that an SL-HR grammar G can be combined with a finite automaton A to
compute a new SL-HR grammar which represents the product automaton of val(G) and A in
O(|G||A|) space. Finally, we show that it is possible to decide isomorphism of tree-generating
grammars in time polynomial in the size of the two grammars.

6.1 Discussion of the Results

Grammar-based compression is well understood for strings and trees. Some work exists on
algorithmic aspects of hierarchical graph definitions, thus there clearly is interest in grammar-
based representations of graphs. Achieving a small such representation, however was barely
considered. The work presented here closes part of this gap. We successfully show that it
is possible to compress the more complex graph data structure using known approximation
methods for small grammars. We experimentally verify that some real-world graphs compress
very well using this method, as expected particularly on graphs exhibiting a lot of repetition.
However, the best results come from rather atypical graphs: the compressor works best with
graphs having low amounts of locality and the two RDF graphs compressing best have only
slightly more edges than nodes. In general, the method struggles with dense subgraphs, possibly
the strongest indicator for the Conjecture 3.9 to be true. This makes it a somewhat specialised
solution, but it does excel in these cases.

The second half focusses on algorithms on graphs represented by grammars and first presents
traversal methods and a speed-up algorithm for regular path queries. These are interesting
auxiliary results, as they present ways to use the achieved grammars. More work can be done
here, particularly with the constant-delay traversal. The method presented here is still rather
limited in application, due to the strong restriction it imposes on the grammar. However, if the
number of edges per node for every label can be bounded by a constant c then the method can
be extended, at the cost of an additional factor c in precomputation time/space. The thesis
closes with addressing the question of isomorphism of two straight-line tree grammars. The
complexity of this problem is settled with it being P-complete, by showing that it is possible in
polynomial time (with respect to the size of the input grammars) to decide, whether two SLT
grammars generate isomorphic trees. As an extension, it is also shown that this still holds for
unrooted trees (i.e., tree-graphs without a dedicated root-node).

6.2 Directions for Future Work

Finally we mention some interesting questions and issues that are left open for now and could
be approached in future work. First is the possibility of using node replacement grammars. As
discussed in Section 3.5.1, a good digram definition may be more involved for NR grammars.
But once found, the compressor likely works better: the encoding of the grammar should be
simpler, because it is not necessary to deal with hyperedges. Furthermore, counting digram
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occurrences might be easier as there are generally fewer pairs of nodes than pairs of edges in a
graph, and dense substructures may be less of a problem.

The method as stated, based on hyperedge-replacement grammars, also has potential for
improvement. The currently used encoding of the start graph may not be the best choice.
Particularly with incidence matrices of hyperedges, very large matrices are compressed that
consist almost exclusively of zeroes. This makes the k2-trees used quite unbalanced. A new
method designed with hypergraphs in mind, might give better results. A further investigation
into more node orders might also lead to an improvement. Finally the prototype implementation
is very slow, particularly in decompression (and thus, the pruning step). A technical direction
for future work would therefore be to provide a more thoughtful implementation, which would
definitely improve the practical viability of the method. RePair as a method generally uses a
fair amount of space during computation and has originally been proposed as an offline-method.
Graph compression often works online or on streaming data to deal with graphs too large to
fit into memory. A very interesting direction would be to look into possibilities to improve
gRePair’s memory performance. A technique based on recompression [Jez16] could be a way to
achieve an algorithm that works for streaming data, considering the incoming edges as updates.
A similar method was proposed for grammar-based compression of trees [BHJM16] and works
quite well. For a general idea on more space-efficient RePair compression we further point to
recent work by Bille et al. [BGP17] as a start.

As a final direction more algorithms could be investigated for viability of speed-up queries.
PageRank might be a good choice. Graph pattern matching on grammar-compressed graphs is
also very interesting and could provide some insight into the question of isomorphism, as pattern
matching on graphs is essentially subgraph isomorphism. One thing noticeable when considering
speed-up algorithms for grammar-based compression of trees is that these often work only by
computing a normal-form for the grammar first. This normal form is particularly well suited to
many computational approaches, due to it structuring the tree into a set of spine-trees. Working
on similar normal forms for SL-HR grammars might therefore be a valuable approach.
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